UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Energy and economic life-cycle analysis of an office building Hood, Innes William 1995

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
ubc_1995-0161.pdf [ 9.92MB ]
Metadata
JSON: 1.0076806.json
JSON-LD: 1.0076806+ld.json
RDF/XML (Pretty): 1.0076806.xml
RDF/JSON: 1.0076806+rdf.json
Turtle: 1.0076806+rdf-turtle.txt
N-Triples: 1.0076806+rdf-ntriples.txt
Original Record: 1.0076806 +original-record.json
Full Text
1.0076806.txt
Citation
1.0076806.ris

Full Text

ENERGY AND ECONOMIC LIFE-CYCLE ANALYSIS OF AN OFFICE BUILDING by INNES WILLIAM HOOD  B.A.Sc,  The U n i v e r s i t y  of B r i t i s h Columbia,  1987  M.A.Sc,  The U n i v e r s i t y  of B r i t i s h Columbia,  1989  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Resource Management and Environmental  We accept t h i s t h e s i s as t o the r e q u i r e d  conforming  standard  THE UNIVERSITY OF BRITISH COLUMBIA March  1995  Innes W i l l i a m Hood,  1995  Studies)  In presenting this thesis in partial fulfillment of the requirements f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head of my department or by h i s or her representatives. I t i s understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my written permission.  Department of  /^E^QV^cE  ^  ^  A  The U n i v e r s i t y of B r i t i s h Columbia Vancouver, Canada Date  II  APrPl  -J  C  ^  ^  S  N  I  ABSTRACT  This  thesis  investigates  the  life-cycle  economic  and  energy  i m p l i c a t i o n s of a commercial o f f i c e b u i l d i n g , l o c a t e d i n Vancouver, British  Columbia.  commercial levels  The work  building  stock  of performance.  is  is  based  on  designed  the  premise  and b u i l t  In the p r e s e n t  context,  to  the  that  the  sub-optimal criteria  for  a n a l y z i n g o p t i m a l i t y are d e f i n e d i n terms of energy and monetary a c c o u n t i n g . The b u i l d i n g i s designed i n compliance w i t h the energy efficiency  code  for  Vancouver.  The  energy  performance  b u i l d i n g i s improved t o achieve an energy e f f i c i e n t o f f i c e through the adoption of a s e r i e s of d e s i g n  of  the  building  strategies.  C o n c l u s i o n s r e s u l t i n g from the work a r e :  •  The o p e r a t i n g performance of the case study b u i l d i n g may be improved  77%  through  technologies. reduced  As  66 t o  a  the  result,  68% f o r  adoption the  building  of  simple,  life-cycle lives  of  40  proven  energy  may  and 80  be  years,  respectively.  •  The  life-cycle  embodied  energy  is  0.21  GJ/m .yr  G J / m . y r . f o r b u i l d i n g l i v e s of 40 and 80 y e a r s , 2  These f i g u r e s  are v a l i d  f o r a l l the b u i l d i n g  2  and  0.16  respectively. configurations  studied.  •  For a b u i l d i n g  life  of  40 y e a r s , ii  the  life-cycle  energy  is  reduced from 1.6  to 0.54  G J / m . y r by the cumulative adoption 2  of energy c o n s e r v a t i o n s t r a t e g i e s . T h i s c o r r e s p o n d i n g to a 66% r e d u c t i o n i n energy consumed.  For  a building l i f e  reduced from 1.55  of  80 y e a r s ,  the  life-cycle  energy  is  to 0.49 G J / m . y r by the cumulative adoption 2  of energy c o n s e r v a t i o n s t r a t e g i e s . T h i s c o r r e s p o n d i n g t o a 68% reduction.  Reducing  the  with  a  of net  the  case  present  study  in  million  and $0,253 m i l l i o n f o r b u i l d i n g l i v e s  If  savings  energy  results  years,  a  operating  value  building of  of  $0,246  40 and 80  respectively.  only  those  implemented,  a  strategies  which  60% r e d u c t i o n  in  are  cost  operating  effective energy  achieved.  The c o r r e s p o n d i n g decrease i n l i f e - c y c l e  50%  48%  and  for  building  lives  of  40  and  are  may  be  energy  is  80  years,  respectively.  Methodological p l u r a l i s m i s energy debate. number  of  a central characteristic  of  the  Competing models and t h e i r s o l u t i o n s p r o v i d e a  policy  alternatives  based  on  pricing,  utility  sponsored DSM, and r e g u l a t o r y o p t i o n s . A l l s t r a t e g i e s p r o v i d e opportunities  to  reduce  energy  consumption,  c o n t i n u e t o form components of f u t u r e p o l i c y  and  should  initiatives.  TABLE OF CONTENTS  ABSTRACT  ii  TABLE OF CONTENTS  iv  LIST OF TABLES  xi  LIST OF FIGURES  xiv  CHAPTER ONE: INTRODUCTION  1  1.1  THESIS OBJECTIVES  2  1.2  BACKGROUND INFORMATION  3  1.3  1.2.1  The Case study B u i l d i n g  3  1.2.2  Choosing an End Use  5  1.2.3  R a t i o n a l e f o r the Work  6  1.2.4  Scope of the A n a l y s i s  7  1.2.5  An I n t e r d i s c i p l i n a r y Approach  9  1.2.6  The B u i l d i n g Industry  10  THESIS STRUCTURE  11  CHAPTER TWO: ENERGY ANALYSIS  14  2.1  INTRODUCTION  14  2.2  DEFINING AN ENERGY ANALYSIS  14  2.3  ENERGY ANALYSIS AS A PUBLIC POLICY TOOL  14  2.4  WHAT AN ENERGY ANALYSIS CAN DO  18  2.5 USE OF ENERGY ANALYSIS IN THE PRESENT WORK iv  20  2.6  SYSTEM BOUNDARIES  21  2.6.1  Human Energy  21  2.6.2  Infrastructure  22  CHAPTER THREE: OPERATING ENERGY OF CASE STUDY BUILDING  24  3.1  INTRODUCTION  24  3.2  BACKGROUND  24  3.3  QUANTIFYING THE OPERATING ENERGY OF BUILDINGS  26  3.3.1  S i t e Versus Source Energy  3.4  DESIGN PROCESS  3.5  IMPROVING THE OPERATING ENERGY OF THE CASE STUDY  27 28  BUILDING  29  3.6 RESULTS OF THE OPERATING ENERGY MODEL  32  3.7  36  OBSERVATIONS ON THE OPERATING ENERGY MODEL  3.8 MODEL VERIFICATION AND UNCERTAINTY  37  3.9  39  CONCLUDING REMARKS  CHAPTER FOUR: EMBODIED ENERGY OF CASE STUDY BUILDING  40  4.1  CHAPTER LAYOUT  40  4.2  DEFINING THE EMBODIED ENERGY OF A BUILDING  40  4.3  SIGNIFICANCE OF THE EMBODIED ENERGY OF BUILDINGS  41  4.4  METHODS OF ANALYSIS  41  4.4.1  Input-Output A n a l y s i s  41  4.4.2  Process A n a l y s i s  43 v  4.4.3 S t a t i s t i c a l  Analysis  44  4.5 REVIEW OF THE LITERATURE  44  4 . 5 . 1 Energy I n t e n s i t y of B u i l d i n g M a t e r i a l s  44  4 . 5 . 2 Embodied Energy of B u i l d i n g s  47  4.6 INITIAL EMBODIED ENERGY OF BASE CASE STUDY BUILDING  4.7  52  4 . 6 . 1 Energy t o Produce the B u i l d i n g Components  53  4 . 6 . 2 M a t e r i a l s Wastage  54  4 . 6 . 3 C o n s t r u c t i o n Energy  54  4.6.4 Results  55  4 . 6 . 5 Comparison With Other S t u d i e s  58  RECURRING EMBODIED ENERGY OF CASE STUDY BUILDING  59  4.7.1 Building L i f e  59  4 . 7 . 2 Replacement and Refurbishment  60  4 . 7 . 3 Changes t o Embodied Energy of B u i l d i n g  Components  With Time  60  4 . 7 . 4 Two Methodologies  61  4 . 7 . 4 . 1 R e c u r r i n g Embodied Energy Based on Input-Output A n a l y s i s  62  4 . 7 . 4 . 2 R e c u r r i n g Embodied Energy Based on Replacement Schedule  63  4 . 7 . 3 Comparison of R e s u l t s  63  4.8 DEMOLITION AND RECYCLING  64  4.9 LIFE-CYCLE EMBODIED ENERGY OF CASE STUDY BUILDING  65  4 . 9 . 1 Comparison With Other S t u d i e s 4.10 INITIAL EMBODIED ENERGY OF IMPROVED BUILDINGS vi  68 69  4.11  RECURRING EMBODIED ENERGY OF IMPROVED BUILDINGS  72  4.12  LIFE-CYCLE EMBODIED ENERGY OF IMPROVED BUILDINGS  74  4.13  REDUCING THE LIFE-CYCLE EMBODIED ENERGY OF  THE CASE STUDY BUILDING  76  4.14  MODEL UNCERTAINTY  79  4.15  CHAPTER SUMMARY  81  CHAPTER FIVE: LIFE-CYCLE ENERGY ANALYSIS  84  5.1  INTRODUCTION  84  5.2  LIFE-CYCLE ENERGY ANALYSIS  84  5.2.1  O p e r a t i n g Energy  84  5.2.2  L i f e - c y c l e Embodied Energy  85  5.3  LIFE-CYCLE ENERGY ANALYSIS  87  5.4  DISCUSSION OF RESULTS  90  5.5  COMPARISON WITH OTHER STUDIES  90  5.6  CHAPTER SUMMARY  91  CHAPTER SIX: LIFE-CYCLE COST ANALYSIS  93  6.1  INTRODUCTION  93  6.2  ASSUMPTIONS AND DEFINITIONS  93  6.2.1  Inflation  Rate  6.2.2  Discount Rate  94  6.2.3  Energy P r i c e s  94  6.2.4  Discount Rate Adjustment  95  93  vii  6 . 2 . 5 Present Value C a l c u l a t i o n s 6 . 2 . 6 Economic E f f i c i e n c y ,  Energy  96 Efficiency  and Cost E f f e c t i v e n e s s  96  6.3 CAPITAL COST OF CASE STUDY BUILDING  97  6.4 OPERATING COSTS  98  6.5 LIFE-CYCLE COSTS  101  6.5.1 S e n s i t i v i t y Analysis  105  6.5.2 Payback P e r i o d  105  6.6 LEVELIZED COST ANALYSIS  106  6 . 6 . 1 Comparing the Net Present Value C a l c u l a t i o n s t o the L e v e l i z e d Cost A n a l y s i s  111  6.7 COMPARISON OF THE ENERGY ANALYSIS AND ECONOMIC ANALYSES  112  6.8 CHAPTER SUMMARY  115  CHAPTER SEVEN: POLICY ISSUES  117  7.1 INTRODUCTION  117  7.2 NATURE OF THE POLICY DEBATE  117  7.3 VIEWS OF ENERGY  12 0  7 . 3 . 1 Energy as a Commodity 7 . 3 . 2 The B e h a v i o r a l i s t / T e c h n o l o g i s t  122 Model  124  7 . 3 . 3 B e h a v i o r a l B a r r i e r s t o Improving Energy Efficiency  125  7 . 3 . 3 . 1 Energy I n v i s i b i l i t y  125  7 . 3 . 3 . 2 Information  12 6 viii  7 . 3 . 3 . 3 Discount Rates  127  7 . 3 . 3 . 4 The Symbolic Meaning of Energy  127  7 . 3 . 3 . 5 Momentum of Past Behaviour  12 8  7.3.3.6 Literacy  128  7.3.3.7 Intermediaries  129  7 . 3 . 4 A T h i r d Conceptual Model  129  7.4 ANALYSIS OF COMPETING VIEWS  131  7.5 CONSUMER RATIONALITY  13 3  7.6 MAPPING THE SUB-GOVERNMENT  13 6  7.7 POLICY ALTERNATIVES  138  7 . 7 . 1 U t i l i t y Sponsored  13 9  7.7.2 Competitive Markets  142  7 . 7 . 3 Regulatory  14 3  7 . 7 . 3 . 1 Information  143  7 . 7 . 3 . 2 Standards  144  7.7.3.3 Pricing  146  7.8 RELEVANCE TO THE CURRENT STUDY  149  CHAPTER EIGHT: CONCLUSIONS, SUMMARY, AND RECOMMENDATIONS  153  8.1 SUMMARY OF FINDINGS AND CONCLUSIONS 153 8 . 1 . 1 O p e r a t i n g Energy  153  8.1.2 Embodied Energy  153  8 . 1 . 3 L i f e - c y c l e Energy A n a l y s i s  155  ix  8.1.4  Life-cycle  Cost A n a l y s i s  8.1.5  Policy Implications  155 157  8.2  THESIS CONCLUSIONS  160  8.3  RECOMMENDATIONS  160  REFERENCES  162  APPENDICES  170  Appendix A: B u i l d i n g S p e c i f i c a t i o n s and Drawings  171  Appendix B: O p e r a t i n g Energy C a l c u l a t i o n s  176  Appendix C: Embodied Energy  Calculations  Appendix C I : Energy I n t e n s i t y of B u i l d i n g Materials.  187  Appendix C2: Energy I n t e n s i t y Trends Materials:  for  1976-1990.  Appendix C3: I n i t i a l  200 Embodied Energy of  Base B u i l d i n g .  203  Appendix C4: R e c u r r i n g Embodied Energy of Base B u i l d i n g .  Appendix D: L i f e - c y c l e  225  Energy A n a l y s i s R e s u l t s  Appendix E : L i f e - c y c l e Cost A n a l y s i s R e s u l t s x  229  231  L I S T OF TABLES  T a b l e 1.1.  Components of the L i f e - c y c l e  Analysis.  Table 3 . 1 .  Summary of B u i l d i n g Energy Performance  8  Index  f o r Case study B u i l d i n g .  Table 4.1.  Summary of I n i t i a l  33  and  Life-cycle  Embodied Energy R e s u l t s .  T a b l e 4.2.  Initial  52  Embodied Energy and Mass of  Building  Materials.  56  Table 4.3.  Initial  Embodied Energy by B u i l d i n g Component.  T a b l e 4.4.  Comparison of R e c u r r i n g Embodied Energy Based  on two Methods.  Table 4.5.  64  Summary of L i f e - c y c l e  Embodied Energy Based  on two Methods.  T a b l e 4.6.  66  Comparison of the L i f e - c y c l e  Embodied Energy  by B u i l d i n g Component.  Table 4.7.  Summary of I n i t i a l  Energy R e s u l t s ,  57  67  and L i f e - c y c l e  Embodied  I n c l u d i n g R e s u l t s of Present Study. xi  69  T a b l e 4.8.  Changes i n I n i t i a l  Embodied Energy due  to  Changes i n B u i l d i n g D e s i g n .  Table 4.9.  72  R e c u r r i n g Embodied Energy f o r  Improved  Buildings.  T a b l e 4.10.  74  Summary of L i f e - c y c l e  Embodied Energy of  B u i l d i n g With Improvements.  75  T a b l e 4.11.  81  Table 5.1.  R e s u l t s of S e n s i t i v i t y A n a l y s i s .  Summary of B u i l d i n g Energy Performance  Index  f o r Case Study B u i l d i n g . T a b l e 5.2.  85  Summary of L i f e - c y c l e  Embodied Energy of  Case Study B u i l d i n g .  Table 5.3.  Life-cycle  86  Energy R e s u l t s of Case  Study  Building.  Table 6.1.  88  C a p i t a l Cost of B u i l d i n g Under  Different  Design S c e n a r i o s .  98  T a b l e 6.2.  Annual and L i f e - c y c l e  T a b l e 6.3.  Building Life-cycle  Operating Costs.  Costs. xii  100  102  T a b l e 6.4.  Net Present Value of S t r a t e g i e s .  T a b l e 6.5.  Investment Payback P e r i o d f o r  103  Cost  Effective  Strategies.  106  T a b l e 6.6.  Levelized  Cost per U n i t of Energy Saved.  108  T a b l e 6.7.  Levelized  Cost per U n i t of Energy Purchased.  109  T a b l e 6.8.  D i f f e r e n c e Between L e v e l i z e d  of Energy Saved and the L e v e l i z e d  Cost per U n i t  Cost per  unit  of Energy Purchased.  T a b l e 6.9.  110  Improvements to the Operating  of B u i l d i n g Using Cost E f f e c t i v e  Performance  Strategies.  114  Table A l . B u i l d i n g S p e c i f i c a t i o n s .  174  T a b l e B l . Energy Consumption of Case Study B u i l d i n g .  181  T a b l e C l . Energy I n t e n s i t y of B u i l d i n g M a t e r i a l s .  187  T a b l e C2. Energy I n t e n s i t y Trends f o r Materials  Building  i n Canada, 1976-1990.  Table C3.1. I n i t i a l  Embodied Energy of Case xiii  200  Study  Building.  203  T a b l e C 3 . 2 . Mechanical T a k e o f f .  218  Table C3.3.  224  E l e c t r i c a l Takeoff.  T a b l e C4. R e c u r r i n g Embodied Energy of Base B u i l d i n g .  224  LIST OP FIGURES F i g u r e A l . B u i l d i n g Drawings.  171  F i g u r e A2. B u i l d i n g Drawings.  172  F i g u r e A3. B u i l d i n g Drawings.  173  F i g u r e B I . Monthly Energy Consumption, F i g u r e B2. Monthly Heating Loads,  B u i l d 7A.  175  B u i l d 7A.  177  F i g u r e B3. B u i l d i n g Energy Performance Index  178  F i g u r e B4. Energy Consumption by End Use.  179  F i g u r e B5. Energy Consumption by End Use.  180  Figure D l . L i f e c y c l e  Energy,  B u i l d i n g L i f e = 40 y e a r s .  229  F i g u r e D2. L i f e c y c l e  Energy,  Building L i f e =80  23 0  years.  F i g u r e E l . Net Present Value of S t r a t e g i e s .  231  F i g u r e E2. Ranking of  232  Strategies.  xiv  CHAPTER 1: INTRODUCTION  This  thesis  investigates  the  life-cycle  economic  and  energy  i m p l i c a t i o n s of a commercial o f f i c e b u i l d i n g , l o c a t e d i n Vancouver, British  Columbia.  commercial levels  The work  building  stock  is  is  based  designed  of performance. In the  present  on  the  premise  and b u i l t context,  a n a l y z i n g o p t i m a l i t y are d e f i n e d i n terms of  to  the  that  the  sub-optimal criteria  for  energy and monetary  accounting.  T h i s work f r e q u e n t l y r e f e r s t o the concept of o p t i m a l i t y and subo p t i m a l i t y . However, t h i s work does not c l a i m t o p r o v i d e a s o l u t i o n for  an o p t i m a l  variables  building.  and the  Because  subjective  of  the  number of  nature of many of  o p t i m a l i t y cannot be d e f i n e d r i g o r o u s l y . I t  independent  those v a r i a b l e s ,  is possible,  however,  t o d e f i n e the magnitude and d i r e c t i o n of improvements t o  building  performance r e l a t i v e t o some b a s e l i n e ,  thus making i t p o s s i b l e  to  s u b s t a n t i a t e and q u a n t i f y the c l a i m of s u b - o p t i m a l i t y . The b a s e l i n e used t o q u a n t i f y l e v e l s  of  sub-optimality i n this  analysis  case study b u i l d i n g conforming t o the energy e f f i c i e n c y  code  is  a  for  commercial b u i l d i n g s i n Vancouver. T h e r e f o r e , a b u i l d i n g t h a t uses l e s s energy, and has lower l i f e - c y c l e d o l l a r c o s t s r e l a t i v e t o the b a s e l i n e b u i l d i n g may be s a i d t o be b e t t e r the b a s e l i n e  ( l e s s sub-optimal) than  building.  A p r i n c i p a l r o l e of the l i f e - c y c l e energy a n a l y s i s i n t h i s work i s Page 1  t o p r o v i d e i n f o r m a t i o n t h a t may be u t i l i z e d i n the a l l o c a t i o n of scarce  energy  complimentary  resources. to  an  Such  economic  a  role  analysis.  should Whereas  be  viewed  the  as  economic  a n a l y s i s w i l l p r o v i d e i n f o r m a t i o n based on market i n f o r m a t i o n , the energy a n a l y s i s may p r o v i d e an a d d i t i o n a l p e r s p e c t i v e  based on a  p h y s i c a l d e s c r i p t i o n of a b u i l d i n g . As d i s c u s s e d i n Chapter Two, an energy  analysis  may p r o v i d e r e l e v a n t  i n f o r m a t i o n when a n a l y z i n g  a c t i v i t i e s where t h e r e i s evidence of market f a i l u r e s .  1.1 THESIS OBJECTIVES  The major o b j e c t i v e s  of t h i s work are l i s t e d  below.  - V a l i d a t e the premise t h a t commercial b u i l d i n g s are s u b - o p t i m a l by the c r i t e r i o n of energy. T h i s work w i l l perform a l i f e - c y c l e energy a n a l y s i s of a s i n g l e a r c h e t y p a l commercial o f f i c e b u i l d i n g , in  Vancouver. The b u i l d i n g  energy e f f i c i e n c y  is  designed  in  located  compliance w i t h  the  code f o r Vancouver . The energy performance of 1  the b u i l d i n g w i l l be improved t o achieve an energy e f f i c i e n t b u i l d i n g through a s e r i e s of d e s i g n s t r a t e g i e s . extend t r a d i t i o n a l energy a n a l y s e s ,  office  The a n a l y s i s  will  based on o p e r a t i n g energy,  to  The energy e f f i c i e n c y code f o r commercial b u i l d i n g s i n Vancouver i s c o n s i s t e n t w i t h the American S o c i e t y f o r H e a t i n g , R e f r i g e r a t i o n and A i r C o n d i t i o n i n g Engineers (ASHRAE) standards [ASHRAE, 1989]. J  Page 2  i n c l u d e the cycle  life-cycle  embodied  i n v e s t i g a t e the  -Validate  the  energy total  of  life-cycle  the  is  t h e b u i l d i n g . The  of  incorporated  sub-optimality  T h i s work w i l l  energy performance a f f e c t  in  the  analysis  to  a building.  by  the  criterion  provide a l i f e - c y c l e  case study b u i l d i n g to  life-  2  energy requirements of  premise  monetary a c c o u n t i n g . analysis  embodied e n e r g y o f  observe  economic  how c h a n g e s i n  the l i f e - c y c l e  of  the  d o l l a r costs of  the b u i l d i n g .  -Compare analysis  and  contrast  with the  the  economic  information  provided  the  energy  and e c o n o m i c  the  energy  analysis.  - P r o v i d e a p o l i c y framework f o r r e c o n c i l i n g t h e on  by  i n f o r m a t i o n based  analyses.  1.2 BACKGROUND INFORMATION  1.2.1  The Case Study B u i l d i n g  T h e e m b o d i e d e n e r g y i s d e f i n e d as t h a t component o f t h e e n e r g y b u d g e t d e r i v e d f r o m e x t r a c t i n g o r r e c y c l i n g t h e raw m a t e r i a l s , primary and secondary processing, transporting the building materials, and o n - s i t e e r e c t i o n . " L i f e - c y c l e " embodied energy e x p a n d s t h e b o u n d a r i e s o f t h e embodied e n e r g y a n a l y s i s t o i n c l u d e t h e e m b o d i e d e n e r g y consumed t h r o u g h o u t t h e u s e f u l life of a building. This includes the energy consumed in component replacement and m a i n t e n a n c e of the b u i l d i n g , and t h e energy r e q u i r e d t o d e m o l i s h and d i s p o s e o f t h e s t r u c t u r e a t t h e end o f i t s useful l i f e . 2  Page 3  The d e s i g n of the case study b u i l d i n g used i n t h i s work corresponds t o a g e n e r i c o f f i c e s t r u c t u r e t h a t i s r e p r e s e n t a t i v e of many o f f i c e b u i l d i n g s . Drawings of the b u i l d i n g , occupancy s c h e d u l e s ,  operating  requirements and systems c h a r a c t e r i s t i c s are presented i n Appendix A.  During the p r e l i m i n a r y phase of the energy a n a l y s i s work,  b u i l d i n g was designed as a t h r e e - s t o r y  office  is  found i n Cole [1994]. The t h r e e - s t o r e y  a  comparison  structures. floor  of  embodied  design,  moving from a t h r e e to  model  restrictions.  The  the  concrete  but to  is  of  a  wood,  steel  five-storey  a five-storey  the  of  building  the  Concrete i s  study  configuration permitted and  concrete  configuration.  structure,  using  wood,  due  to  case  study  building  it  due  The f l o o r area of the b u i l d i n g i s  structure  concrete.  of  b u i l d i n g . T h i s work  The b u i l d i n g used i n the present work adopts the same  plate  possible  energy  the  is  no  to  longer  fire  code  8026 m . 2  is  steel  reinforced  chosen as the primary b u i l d i n g m a t e r i a l i n  two  related  factors:  the  cost  advantage  c o n s t r u c t i o n over the s t e e l c o n f i g u r a t i o n ; and,  i s more r e p r e s e n t a t i v e  In  of l o c a l c o n s t r u c t i o n p r a c t i c e s .  of  concrete It  should  be noted t h a t any b u i l d i n g i s a system of many components, u s i n g 50 to  100  materials.  component  of  the  In the  case  study  embodied energy  due,  s t e e l r e i n f o r c i n g i n the  concrete.  A fictitious  chosen  real  building is  building)  for  two  reasons.  building,  in this First,  Page 4  steel  in part,  analysis this  to  is  the  a major need  for  ( r a t h e r than a  work  continues  an  analysis  of  a  case  study  building  started  by  Cole  [1994].  T h e r e f o r e , a l o t of i n f o r m a t i o n needed f o r the a n a l y s i s has a l r e a d y been generated. B u i l d i n g drawings, the s t r u c t u r a l a n a l y s i s , much of the m a t e r i a l s t a k e - o f f for  the  and the p r e l i m i n a r y o p e r a t i n g energy model  b u i l d i n g were  available.  Second,  this  work performs  a  p a r a m e t r i c study r e l a t i n g energy and economic v a r i a b l e s . I f a r e a l b u i l d i n g was used as the case study b u i l d i n g , i n f o r m a t i o n a t  only  one p o i n t i n the energy and economic a n a l y s e s would be a v a i l a b l e .  1.2.2 Choosing an End Use  This  analysis  d e a l s w i t h economic  and energy  study b u i l d i n g . The commercial o f f i c e  i s s u e s of  s e c t o r i s s t u d i e d because of  the l a r g e p o t e n t i a l improvements w i t h i n t h i s s e c t o r , relative  magnitude of t h i s  Considering e l e c t r i c i t y  sector  one case  and due t o the  w i t h i n the p r o v i n c i a l economy.  consumption i n the commercial s e c t o r ,  the  c o s t e f f e c t i v e e l e c t r i c i t y savings p o t e n t i a l i s of the o r d e r o f 58% i n B r i t i s h Columbia the t e c h n i c a l [B.C.  Hydro,  commercial Environment  [ B . C . Hydro,  electricity 1993] . 3  sector Report  is for  1993]. B . C . Hydro a l s o  savings  The 93  potential  annual PJ  BC,  in  1993].  energy British This  is  predicts  approximately 68%  consumption Columbia corresponds  in  the  [State  of  to  of  9%  The c o s t e f f e c t i v e and t e c h n i c a l c o n s e r v a t i o n p o t e n t i a l p r e d i c t e d by B . C . Hydro correspond to the r e d u c t i o n of e l e c t r i c i t y consumption by 2010. The work assumes adoption of the most energy e f f i c i e n t t e c h n o l o g i e s by a l l commercial e l e c t r i c i t y consumers. For the economic a n a l y s i s , the study uses the long run m a r g i n a l c o s t of electricity. 3  Page 5  provincial the  energy  fastest  1.6%  per  consumption.  growing s e c t o r  year.  It  is  Further,  of the  expected  commercial s e c t o r  is  economy w i t h a growth r a t e  of  that  the  by  2015,  r e q u i r e 134 P J , c o r r e s p o n d i n g to an i n c r e a s e  of  this  sector  will  45% [ M i n i s t r y of  Energy Mines and Petroleum Resources, 1994], T h e r e f o r e , t h i s  sector  p r o v i d e s an important o p p o r t u n i t y to e x p l o r e improvements i n energy and economic  efficiency.  1.2.3 R a t i o n a l e f o r the Work  In  performing  building,  an  analysis  one must address  of  the  the  performance  question  "Is  it  of  a  commercial  worth i t ? " .  work i s deemed important f o r both economic and e c o l o g i c a l As  noted  electricity  previously,  B.C.  Hydro  predicts  that  This  reasons.  commercial  u s e r s can reduce consumption 58% by the year 2010  by  implementing s t r a t e g i e s t h a t are c o s t e f f e c t i v e [ B . C . Hydro, 1993]. T h i s f i g u r e may be o p t i m i s t i c . The survey by Komor and Moyad [1994] of  studies  investigating  the  cost  effective  energy  savings  p o t e n t i a l f o r commercial b u i l d i n g s i n the U n i t e d S t a t e s p r e d i c t s a range of 13% to 45% . Komor and Moyad suggest t h a t a c o s t 4  potential  of  3 3% i s  more  v a r i a t i o n i n the p r e d i c t i o n s ,  plausible.  Although  there  the magnitude of the c o s t  effective is  wide  effective  I t i s not s u r p r i s i n g t h a t d i f f e r e n t s t u d i e s should p r e d i c t d i f f e r e n t c o s t e f f e c t i v e p o t e n t i a l s . The r e s u l t s of s t u d i e s are based on computer s i m u l a t i o n s which r e q u i r e p r e d i c t i o n s of the f u t u r e , i n c l u d i n g : p o p u l a t i o n growth r a t e s , technology a d o p t i o n rates, energy prices, economic conditions, and consumption patterns. 4  Page 6  potential  is  sufficiently  l a r g e to warrant f u r t h e r  investigation.  C o n s i d e r i n g e c o l o g i c a l r e a s o n i n g , t h e r e i s an obvious l i n k between energy use and environmental q u a l i t y t h a t i s d i f f i c u l t t o  explore  by a p p l y i n g o n l y economic a n a l y s i s . The environmental i m p l i c a t i o n s 5  of  burning  fossil  Statistics  Canada,  Macdonald  (1994,  consumption  by  fuels 1994, pg.  one  well  British 7.122)  generic  r e d u c t i o n i n greenhouse tonnes of  are  documented  [Brown,  Columbia Energy C o u n c i l ,  has  noted  quad/yr i n  that  reducing  buildings  may l e a d  1992, 1994]. energy to  a  gas emissions of approximately 16 m i l l i o n  carbon e q u i v a l e n t .  Alternately,  the  adverse  effect  on  f i s h and w i l d l i f e p o p u l a t i o n s , the d e s t r u c t i o n of l o c a l h a b i t a t and the a l t e r a t i o n of m i c r o - c l i m a t e s due t o hydro e l e c t r i c i t y s i t e s well  known  Council,  [B.C.,  Hydro,  1994  Northwest  Power  Planning  1991].  1.2.4  Scope o f t h e A n a l y s i s  It  the  is  (c) ,  is  intent  life-cycle  of  this  analysis  for  work t o p r o v i d e an energy a  representative  and economic  commercial  building,  l o c a t e d i n Vancouver. The r e s e a r c h w i l l p r o v i d e i n f o r m a t i o n about the r e l a t i o n s h i p between an economic l i f e - c y c l e a n a l y s i s i n c l u d i n g capital  and  operating  dollar  costs,  and  an  energy  life-cycle  There i s the growing body of l i t e r a t u r e e x p l o r i n g the l i n k s among n a t u r a l r e s o u r c e s , energy and economic t h e o r y . The j o u r n a l E c o l o g i c a l Economics, works by Daly [1981, 1993], and Constanza [1993] p r o v i d e examples. 5  Page 7  analysis  i n c l u d i n g the  embodied and o p e r a t i n g energy c o s t s f o r a  case study b u i l d i n g . These v a r i a b l e s are summarized i n T a b l e  T a b l e 1.1.  Components of the L i f e - c y c l e A n a l y s i s .  Capital  Dollar  Embodied Energy  Costs of Case Study B u i l d i n g  of Case Study B u i l d i n g  Operating D o l l a r  Operating  Costs of Case Study B u i l d i n g  energy  of Case Study B u i l d i n g  F i n a l l y , t h i s work w i l l i n v e s t i g a t e p u b l i c p o l i c y o p t i o n s towards  1.1.  improving  the  energy  and  economic  directed  efficiency  of  the  operation  of  one  b u i l d i n g i n d u s t r y i n B r i t i s h Columbia.  This  work  focuses  on  the  construction  and  commercial b u i l d i n g i n one geographic l o c a t i o n . However, t h e r e are many important i s s u e s t h i s  work does not  address.  This  analysis  does not address the i s s u e of whether the b u i l d i n g should ever be c o n s t r u c t e d i n the f i r s t p l a c e .  The p r e s e n t  study does not  extend  the a n a l y s i s t o i n v e s t i g a t e the energy and d o l l a r i m p l i c a t i o n s the e n t i r e o f f i c e  b u i l d i n g stock  6  and does not p r o v i d e a  to  life-cycle  See B . C . Hydro, [1993] f o r a model of e l e c t r i c i t y consumption t r e n d s f o r the e n t i r e commercial b u i l d i n g s t o c k . 6  Page 8  analysis  It  of a l l the environmental i m p l i c a t i o n s of the b u i l d i n g . 7  i s argued t h a t energy p r o v i d e s a b a s i c p h y s i c a l and e c o l o g i c a l  indicator  of  m i n i m i z i n g the stressors  are  environmental energy  implications  of  buildings . 8  impacts of a b u i l d i n g , other  simultaneously  reduced.  However,  By  environmental  the  relationship  between energy consumption and, f o r example, emissions of V o l a t i l e Organic  Compounds  (VOC's)  or b i o d i v e r s i t y  is  not  quantified  or  T h i s work takes an i n t e r d i s c i p l i n a r y approach t o the a n a l y s i s  of  e x p l o r e d i n t h i s work.  1.2.5  the  An I n t e r d i s c i p l i n a r y  Approach  energy and economic performance of a b u i l d i n g . B u i l d i n g s and  energy are used and v a l u e d i n many d i f f e r e n t ways by s o c i e t y . By imposing boundaries on the a n a l y s i s  along d i s c i p l i n a r y l i n e s ,  may c r e a t e "conceptual b l i n d spots" and miss e s s e n t i a l 9  to  improving b u i l d i n g  energy  performance.  buildings,  engineering,  ingredients  An i n t e r d i s c i p l i n a r y  approach strengthens the understanding of the architectural,  interactions  economic and p o l i c y i s s u e s of  b u i l d i n g occupants  and the  ecological  See K o h l e r and Lutzkendorf i n [ C o l e , about l i f e - c y c l e assessments of b u i l d i n g s . 7  one  1992]  impacts  for  among  energy, o f the  information  There are other i n d i c a t o r s t h a t may be i n f o r m a t i v e , such as carbon d i o x i d e emissions [CMHC, 1991], or a p p r o p r i a t e d c a r r y i n g c a p a c i t y [Rees, 1992]. 8  9  P.  Stern,  1986 Page 9  interactions.  This  work  serves  as  a  means  of  developing  an  understanding of improving energy e f f i c i e n c y of b u i l d i n g s . However, this  i n f o r m a t i o n i s of l i m i t e d v a l u e i f  broader  framework.  analysis  it  The r e s e a r c h p r o v i d e s  of an important p u b l i c p o l i c y  i s not p l a c e d w i t h i n a an economic  and  energy  issue.  1.2.6 The B u i l d i n g I n d u s t r y  There are a number of d i f f e r e n c e s other  sectors  analysis  of  the  used i n t h i s  economy  between the b u i l d i n g i n d u s t r y and that  work. F i r s t ,  may the  influence  longevity  the  type  of b u i l d i n g s  of is  t y p i c a l l y 40 to 80 y e a r s , w i t h many s t r u c t u r e s l a s t i n g hundreds of y e a r s . T h i s i m p l i e s the t u r n o v e r r a t e f o r b u i l d i n g s i s of the order of 1 t o 2% per y e a r .  Second i s the magnitude of the b u i l d i n g i n d u s t r y w i t h i n an economy. The  building  office  industry  buildings  are  [Brand,  1994].  nations  is the It  the  second  largest has  largest  capital  been  in  the  assets  predicted  that  world,  of  and  developed  the  building  s e c t o r may consume 20% t o 30% of a l l r e s o u r c e s i n an economy [ C o l e , pg.  Ill,  1992].  In B r i t i s h Columbia,  operating buildings  consume  approximately 24% of the p r o v i n c i a l energy requirements [ M i n i s t r y of Energy Mines and Petroleum Resources,  pg. 2,  1989]. Due t o  the  s i z e , complexity and i n e r t i a of the b u i l d i n g i n d u s t r y , changing the way the i n d u s t r y operates i s a complex  Page 10  task.  Third is  the fragmented nature of the b u i l d i n g i n d u s t r y . Much of  the b u i l d i n g i n d u s t r y i s operated by s m a l l c o n t r a c t o r or  tradesman  companies. The i n d u s t r y i s r e g u l a t e d a t the f e d e r a l , p r o v i n c i a l and municipal conflicts  levels  of  government,  resulting  in  variations  and  i n standards and enforcement between r e g i o n s .  The cumulative e f f e c t of these f a c t o r s  i s t h a t i n n o v a t i o n s i n the  b u i l d i n g i n d u s t r y occur a t a v e r y slow r a t e of d i f f u s i o n . T y p i c a l l y i t takes 10 t o 20 years f o r b u i l d i n g i n n o v a t i o n s t o be adopted by the  industry  [Cole,  pg.  Ill,  1992].  In a d d i t i o n ,  because  of  the  slow t u r n o v e r r a t e i n b u i l d i n g s , the time f o r b u i l d i n g i n n o v a t i o n s to  saturate  economy.  the  sector  is  T h e r e f o r e , the  longer than most other  impact of  current design  s e c t o r s of decisions  have a l a r g e and a long l a s t i n g impact on economic e f f i c i e n c y  the will and  environmental q u a l i t y .  1.3 THESIS STRUCTURE  Chapter Two i n t r o d u c e s the concept of an energy a n a l y s i s a p p l i c a b i l i t y t o the c u r r e n t study.  Information r e g a r d i n g the  of energy a n a l y s i s as a p u b l i c p o l i c y t o o l i s d i s c u s s e d . been  controversy  provided  in  by an energy  the  literature  analysis,  and the  regarding  and the  various  the  use  There has  information  viewpoints  are  presented and d i s c u s s e d .  Chapter Three p r o v i d e s an a n a l y s i s of the p o t e n t i a l t o reduce the Page 11  o p e r a t i n g energy of the case study b u i l d i n g through the a d o p t i o n of are  based  simple, on  proven t e c h n o l o g i e s .  computer  simulations  of  Results the  iterative  of the  building,  analysis  using  the  software program D 0 E 2 . 1 - D .  Chapter Four q u a n t i f i e s the l i f e - c y c l e embodied energy of the case study  building.  The  life-cycle  embodied  energy  includes  four  components:  -the  initial  embodied energy  from c o n s t r u c t i o n of  the  base  building; - t h e r e c u r r i n g embodied energy due to r e p a i r and replacement of b u i l d i n g components; - t h e embodied energy i m p l i c a t i o n s of improving the o p e r a t i n g c h a r a c t e r i s t i c s of the b u i l d i n g ; and, -the  energy r e q u i r e d t o demolish the b u i l d i n g a t the end of its  service  life.  Chapter F i v e uses the i n f o r m a t i o n of the p r e v i o u s two c h a p t e r s perform  an  configurations.  energy  analysis  of  the  different  to  building  The r e l a t i v e magnitudes of o p e r a t i n g and embodied  components of the b u i l d i n g are e x p l o r e d .  Chapter S i x performs a l i f e - c y c l e  c o s t a n a l y s i s of the case study  b u i l d i n g . T h i s a n a l y s i s c a l c u l a t e s the l i f e - c y c l e net p r e s e n t v a l u e of a d o p t i n g s t r a t e g i e s t o improve the performance of the case study Page 1 2  building. present  Strategies  value.  are ranked a c c o r d i n g t o  A comparison i s  energy and economic  their  made between the  economic  results  chapters  Chapter  Seven  present  work  policy.  focus  discusses in  Energy  the  analyses.  In Chapter Seven the focus of the d i s c u s s i o n changes. previous  of  net  the as  attention the  on  the  case  broader p o l i c y  context  of  perceived  current  by  Whereas the  study  building,  implications  thinking  economists  about  is  of  the  energy  compared  and  c o n t r a s t e d w i t h the views expressed by b e h a v i o r a l and e n g i n e e r i n g researchers.  The  second  section  of  the  chapter  reviews  the  s t a k e h o l d e r s i n v o l v e d i n r e g u l a t i n g energy e f f i c i e n c y of commercial buildings  in British  Columbia.  uses  background  information  the  provide p o l i c y options  The f i n a l of  the  section  of  preceding  the  chapter  sections  f o r improving the performance of the  to case  study b u i l d i n g .  Chapter E i g h t p r o v i d e s a summary and the c o n c l u s i o n s of t h i s work. From t h i s  i n f o r m a t i o n , a set  of recommendations i s  Page 13  presented.  CHAPTER 2: ENERGY ANALYSIS  2.1 INTRODUCTION  T h i s chapter i n t r o d u c e s the  concept  and use  of  energy  analysis.  Information r e g a r d i n g the use of energy a n a l y s i s as a p u b l i c p o l i c y tool  is  discussed.  There has been c o n t r o v e r s y i n the  literature  r e g a r d i n g the i n f o r m a t i o n p r o v i d e d by an energy a n a l y s i s ,  and the  opposing v i e w p o i n t s are presented and d i s c u s s e d .  2.2 DEFINING AN ENERGY ANALYSIS Energy a n a l y s i s requirement  for  is a  a procedure f o r q u a n t i f y i n g the good  or  service.  This  total  energy  the  energy  includes  r e q u i r e d i n the a c q u i s i t i o n of raw m a t e r i a l s , primary and secondary processing, focus  of  analysis Statistics accounts  o p e r a t i n g , and f i n a l d i s p o s a l . Although energy i s  the  present  to  quantify  Canada based  has  study,  it  resource recently  on augmented  is use  possible in  to  apply a s i m i l a r  general.  developed  input-output  a  For  example,  of  national  which  quantify  system  tables  n a t u r a l r e s o u r c e use and waste and p o l l u t a n t output by s e c t o r the Canadian economy [ S t a t i s t i c s  Canada,  the  for  1994].  2.3 ENERGY ANALYSIS AS A PUBLIC POLICY TOOL  There  has  been  a  great  deal  of  controversy  in  the  literature  d e a l i n g w i t h the p o t e n t i a l v a l u e of energy a n a l y s i s as a l e g i t i m a t e Page 14  and v a l u a b l e source of i n f o r m a t i o n f o r p u b l i c p o l i c y . Much of d i s c u s s i o n o c c u r r e d between 1970 and 1980.  At one extreme  work of Webb and Pearce  [1975] who argue  [1975] and Leach,  is  this the that  energy a n a l y s i s p r o v i d e s no a d d i t i o n a l i n f o r m a t i o n t o an economic analysis.  By c o n t r a s t  is  the work of G i l l i l a n d  [1975,  1978]  and  Odum [1971], In t h e i r work, the authors express the o p i n i o n t h a t as energy i s the u l t i m a t e s c a r c e r e s o u r c e , an energy a c c o u n t i n g system should r e p l a c e the  existing  monetary system.  It  is  important t o  d i s c u s s these extreme views of energy a n a l y s i s t o both  legitimize  and p r o v i d e a context t o i t s use i n the p r e s e n t work.  Webb and Pearce [1975] r a i s e s e v e r a l important i s s u e s about the use of energy a n a l y s i s from the p o i n t of view of economics.  The major  c r i t i c i s m s are:  •  P r i c e s w i l l r i s e to r e f l e c t  s c a r c i t y whereas the energy c o s t  will  is  be  constant.  This  reflected  in  problems  of  intertemporal a l l o c a t i o n decisions;  •  There i s no i n f o r m a t i o n on the d e v i a t i o n between a c t u a l market prices  and  the  shadow  prices  for  commodities,  so  it  is  i m p o s s i b l e t o say whether an energy a n a l y s i s p r o v i d e s b e t t e r i n f o r m a t i o n than an economic a n a l y s i s ;  •  Energy a n a l y s i s i s based on the assumption of  Page 15  homogeneity:  [t]he  problem then i s simply t h a t the s a v i n g of  energy  measured i n p h y s i c a l u n i t s i m p l i c i t l y assumes a o n e - t o one correspondence of b e n e f i t s therm)  saved.  In the  reason why t h i s P e a r c e , p g . 325,  forgone t o energy  market type  (per  economy t h e r e  correspondence should e x i s t .  is  no  [Webb and  1975]  In d e a l i n g w i t h the f i r s t two i s s u e s ,  i t i s u s e f u l t o r e f e r t o the  work of Georgescu-Roegen who s t a t e s t h a t :  [e]ven a simple a n a l y s i s of the energy aspects of man's e x i s t e n c e may h e l p us reach a t l e a s t a g e n e r a l p i c t u r e of the  ecological  conclusions.  problem and  arrive  The t r u t h however,  at  a  few  general  i s t h a t the most we can  do i s prevent any unnecessary d e p l e t i o n of r e s o u r c e s and any unnecessary without  d e t e r i o r a t i o n of  claiming that  we know the  unnecessary i n t h i s c o n t e x t .  It  the  environment,  precise  but  meaning of  [Georgescu-Roegen,  1975]  should be acknowledged t h a t d e f i n i n g an optimum i n t e r t e m p o r a l  allocation economics  is  not  resolved  literature  does  in  not  energy offer  a  analysis.  comprehensive  r e g a r d i n g the a l l o c a t i o n of  scarce resources  For  discount  example,  the  issue  of  However,  rate  across  in  the  treatment  generations.  utilizing  natural  r e s o u r c e s i s s u b j e c t t o a g r e a t d e a l of c o n t r o v e r s y and ambiguity [Norgaard and Howarth,  i n Constanza, p g . 88,  1991].  In response t o Webb and P e a r c e ' s t h i r d p o i n t , homogeneity i s not a necessary  f e a t u r e of energy a n a l y s i s .  the  of  level  aggregation  It  should be s t r e s s e d  i n an energy a n a l y s i s Page 16  follows  from  that the  focus  of  the  analysis  and  the  Examples where the a n a l y s i s  level  of  i s disaggregated  abstraction  involved.  by f u e l type  include  the energy a n a l y s e s t h a t c o n s i d e r the environmental i m p l i c a t i o n s of energy u t i l i z a t i o n . S p e c i f i c examples i n c l u d e OPTIMIZE [CMHC, and  the  Canada,  In  its  Statistics  Canada Environmental P e r s p e c t i v e s  1991]  [Statistics  1993].  analysis  of the embodied energy of b u i l d i n g s ,  the  present  work attempts t o aggregate a l l sources of energy. T h i s approach may be  justified  as  a  useful,  albeit  rough  indication  of  energy  c o n s e r v a t i o n performance and p o t e n t i a l .  Gilliland an  [1975], Odum [1971], and Constanza et a l .  alternate  argument t h a t  energy  is  the u l t i m a t e  [1989] promote l i m i t i n g input  f a c t o r i n t o p r o d u c t i o n , and should t h e r e f o r e be used as an economic metric.  Although the works r e l a t e d to  have i n t e r e s t  w i t h the system.  Georgescu-Roegen,  have maintained t h a t  it  system  of  t h e r e are s e v e r a l  f o r example  states:  would be a g r e a t  mistake  t h i n k t h a t the economic process vast  theory  of  thermodynamic  problems  to  can be r e p r e s e n t e d by a equations.  The  economic  process moves through an i n t r i c a t e web of anthropomorphic categories,  of u t i l i t y and labour i n the f i r s t p l a c e .  Its  t r u e product i s not a p h y s i c a l flow of h i g h entropy,  but  the  value  and m e r i t i n terms of p r o p o s i n g a b a s i c b i o p h y s i c a l  m e t r i c f o r v a l u i n g goods and s e r v i c e s ,  I  an energy  immaterial flux  of  the  enjoyment  through the drudgery of work.  of  life  [Georgescu-Roegen  Page 17  obtained i n Daly  and Umana, p g . 68,  1981]  A second c r i t i c i s m of energy a n a l y s i s as a v a l u a t i o n t e c h n i q u e  is  common t o a l l s i n g l e f a c t o r t h e o r i e s of v a l u e . Namely, t h a t by t h i s t h e o r y , p r i c e l e v e l s are d e f i n e d based on supply i n f o r m a t i o n o n l y . The  relative  factor  price  i n p u t of  between  energy.  commodities  This  implies  is  that  based  on the  single  commodity demand and  o t h e r i n p u t s c a r c i t i e s are i r r e l e v a n t t o the p r i c e [Leach,  1975].  The arguments presented above r e g a r d i n g the v a l u e and use of energy analysis  as  a  public  policy  d e v e l o p i n g an energy a n a l y s i s Web and Pearce [1975,  1978]  [1975],  tool  provides  a  framework  for  f o r the p r e s e n t work. The views of  versus those of Odum [1971] and G i l l i l a n d  provide insight  i n t o the  l i m i t s of energy  analysis.  However, the extreme views of these authors are of l i m i t e d u t i l i t y . The next  section  develops  energy  analysis  as  it  is  used  in  the  p r e s e n t work.  2 . 4 WHAT AN ENERGY ANALYSIS CAN DO  The l a s t  section  reviewed the p o l a r v i e w p o i n t s  energy a n a l y s i s as a p u b l i c p o l i c y t o o l .  about the use  of  This section provides a  more moderate d i s c u s s i o n of the a b i l i t i e s and l i m i t a t i o n s of energy a n a l y s i s . The work by B e r r y [1979] p r o v i d e s a d d i t i o n a l i n f o r m a t i o n .  I t i s a premise of B e r r y ' s work t h a t an energy a n a l y s i s may p r o v i d e  Page 18  i n f o r m a t i o n t h a t w i l l not be p i c k e d up by an economic a n a l y s i s . A p r i n c i p a l r o l e of energy a n a l y s i s  i s to provide information that  may be u t i l i z e d i n the a l l o c a t i o n of s c a r c e r e s o u r c e s .  Such a r o l e  should be viewed as complimentary t o an economic a n a l y s i s . Whereas an  economic  analysis  information,  an  will  provide  energy  i n f o r m a t i o n based  analysis  may  provide  an  on market additional  p e r s p e c t i v e based on a p h y s i c a l d e s c r i p t i o n of a p r o c e s s or system. This  information i s  especially  relevant  in analyzing  activities  where t h e r e i s evidence of market i m p e r f e c t i o n s or market f a i l u r e s . The market f a i l u r e s may take the externalities,  or  issues  of  form of  public  imperfect  goods.  In  competition, a  perfectly  c o m p e t i t i v e market where the p r i c e of goods and s e r v i c e s  reflects  full  analysis  social  would  costs,  provide  allocation  all  it  is  the  decisions.  anticipated that information  This  implies,  an economic  necessary for  to  example,  make the  optimum  life-cycle  energy of b u i l d i n g s and t h e i r components would be f u l l y c a p t u r e d i n the p r i c e of those goods. However, under e x i s t i n g c o n d i t i o n s , t h e r e are s e v e r a l reasons the  energy of b u i l d i n g  components  may not be f u l l y p i c k e d up i n the p r i c e . For example,  government  policies  such as t a x e s ,  life-cycle  subsides,  d i s t o r t the market p r i c e of  or u t i l i t y r a t e s t r u c t u r e s may  energy and i n f l u e n c e d e c i s i o n s  about  energy use.  The  rate  structure  Columbia i s value  is  used  based on the  less  than the  by  the  utilities  average c o s t of l o n g - r u n marginal Page 19  industry  in  British  s u p p l y i n g energy. cost  of  providing  This new  s u p p l i e s , and may p r o v i d e i n c o r r e c t p r i c e i n f o r m a t i o n t o consumers. Second,  the  declining  block  rate  structure  for  commercial  e l e c t r i c i t y customers encourages consumption, and does not p r o v i d e accurate  information  anticipated with  a  that  flat  the  rate  about  the  cost  of  energy  services.  d e c l i n i n g block structure w i l l  d u r i n g the  fiscal  Columbia U t i l i t i e s Commission, p g . 7,  year  of  I t is  be  replaced  1995-1996  [British  1994].  A second d i s c o n t i n u i t y between economic and energy c o s t s may a r i s e when energy flows i n the absence of money flow. n a t u r a l resources  For example, many  e n t e r i n g a p r o d u c t i o n and consumption c y c l e ,  or  wastes e x i t i n g from t h a t c y c l e may have zero p r i c e , but do have an energy  value  example, carpets,  that  will  be  during demolition  captured by an energy of  buildings,  used  analysis.  material  such  For as  r o o f i n g and gypsum products have zero economic v a l u e , and  are f r e q u e n t l y d i s c a r d e d t o l a n d f i l l s . However, a l l these m a t e r i a l s do  have  an  energy  value  that  will  be  picked  up  in  an  energy  analysis.  In c o n t r a s t i n g the a t t r i b u t e s is  not the  intent  of  this  of economic and energy a n a l y s e s ,  work t o  suggest or advocate  it  an energy  t h e o r y of v a l u e . However, i t i s a premise of the p r e s e n t work t h a t energy a n a l y s i s may p r o v i d e i n f o r m a t i o n t h a t may not be p i c k e d up i n a d i s t o r t e d market.  2.5 USE OF ENERGY ANALYSIS IN THE PRESENT WORK Page 2 0  In t h i s work, energy a n a l y s i s i s used to p r o v i d e a process by which the  total  total  energy  energy  of  includes  o p e r a t i n g energy. providing There  is  the  complimentary  the  b u i l d i n g may be examined.  life-cycle  embodied  As noted p r e v i o u s l y ,  presently  between  a case study  a  various  information  this  to  components  of  and  the  should be viewed  the  l i m i t e d understanding  energy  The  economic of  the  life-cycle  as  analysis.  interactions  energy  use  in  commercial b u i l d i n g s . Cole [1994] p r o v i d e s an a n a l y s i s of o p e r a t i n g versus  embodied  utilizing  three  energy  for  a  three-storey  structural materials  choices.  office  building,  The p r e s e n t  work  p r o v i d e s i n f o r m a t i o n on the r e l a t i o n s h i p between the o p e r a t i n g and embodied energy of an a r c h e t y p a l o f f i c e operating  performances.  b u i l d i n g over a range of  The r e l a t i o n s h i p  between  embodied energy f o r the case study b u i l d i n g i s  operating  explored f u l l y  and in  Chapter F i v e .  2.6 SYSTEM BOUNDARIES  An o b s t a c l e i n d e v e l o p i n g an energy a n a l y s i s of b u i l d i n g s i s i n the development all  the  of the  significant  and extraneous  system b o u n d a r i e s . energy  inputs.  inputs,  It  is  important t o  and exclude  Two examples  all  insignificant  of boundary problems are  i n c l u s i o n of human energy and s o c i a l i n f r a s t r u c t u r e i n the analysis.  2.6.1 Human Energy Page 21  include  the  energy  Controversy  exists  in  the  literature  regarding i f  and how  the  energy i n p u t from human labour should be accounted f o r i n an energy analysis.  At one extreme  are the works of Odum [1971] and P u n t i  [1988] who advocate the i n c l u s i o n of the e n e r g e t i c v a l u e of human labour.  At the  other  extreme  is  the  convention  set  out  I n t e r n a t i o n a l F e d e r a t i o n of I n s t i t u t e s of Advanced Study [IFIAS,  1974]  that  does  not  incorporate  a n a l y s i s of i n d u s t r i a l i s e d a c t i v i t i e s . labour i n t e n s i v e  human  in  the  Workshop  labour  in  the  The c o n s t r u c t i o n p r o c e s s  r e l a t i v e t o many other a c t i v i t i e s .  is  In a d d i t i o n ,  t h e r e are i n s t a n c e s where automated and energy i n t e n s i v e p r o c e s s e s may of  r e p l a c e low energy human energy i n p u t s . T h e r e f o r e , the  choice  whether and how t o i n c o r p o r a t e the energy v a l u e of human i n p u t  may  modify  performed  the  to  energy  analysis.  compare t h e . energy  A value  Preliminary of  analysis  human l a b o u r  was  in  the  b u i l d i n g p r o c e s s t o the embodied energy of the b u i l d i n g m a t e r i a l s . The  a n a l y s i s assumed a human labour i n p u t based on the  metabolic  energy i n p u t i n t o the b u i l d i n g and i t s components. I t i s  estimated  for of  the case study b u i l d i n g i n t h i s a n a l y s i s , the l a b o u r component the  less  initial  than  the  embodied energy i s uncertainty  of  of the order of  the  energy  0.4%.  analysis,  and  This is  is not  investigated further.  2.6.2  infrastructure  A second boundary problem i s how or i f energy a n a l y s i s  of a b u i l d i n g the  one should i n c l u d e i n the  infrastructure associated  Page 22  with  services  to  electricity roads,  that  generation  fire  analysis,  Services  may i n c l u d e ,  and t r a n s m i s s i o n ,  protection,  and  waste  water,  water  for  example,  communications,  treatment.  For t h i s  the system boundary has been chosen t o i n c l u d e the  and b u i l d i n g ,  but  embodied energy of building  building.  does  not  social  include  the  i n f r a s t r u c t u r e . In a s i m i l a r way,  the  d e s i g n may d i c t a t e  worn by occupants.  Again,  extend  the  the  analysis  to  site  f u r n i t u r e used and the  the boundary i s  embodied energy of these components.  Page 2 3  chosen t o  clothing  exclude  the  CHAPTER 3 : OPERATING ENERGY OF CASE STUDY BUILDING  3.1  INTRODUCTION  T h i s chapter p r o v i d e s an a n a l y s i s  of the p o t e n t i a l  o p e r a t i n g energy of a commercial o f f i c e  structure.  t o reduce  the  The case study  b u i l d i n g i s c o n s i s t e n t w i t h the energy performance requirements of the  energy  efficiency  code  f o r Vancouver, B . C . S i m i l a r a n a l y s e s  have been performed f o r commercial b u i l d i n g s [BC Hydro,  in British  Columbia  1992]. While the B . C . Hydro study i n v e s t i g a t e s  conservation  potential  of  the  entire  b u i l d i n g stock,  energy  the  intent  here i s t o perform an independent and comprehensive a n a l y s i s of the energy c o n s e r v a t i o n p o t e n t i a l f o r one case study s t r u c t u r e .  3 . 2 BACKGROUND  There are numerous works d e a l i n g with the o p e r a t i n g c h a r a c t e r i s t i c s of  buildings,  and  strategies  to  improve  energy  efficiency.  An  example t h a t has r e l e v a n c e t o the present work i s p r o v i d e d by the B . C . M i n i s t r y of Energy Mines and Petroleum Resources These  works  efficiency  examine  standards,  the  life-cycle  costs  (ASHRAE,  adopting  based on the American S o c i e t y  R e f r i g e r a t i o n and A i r - c o n d i t i o n i n g Engineers standards  of  1989).  commercial b u i l d i n g types  The  Ministry's  for three  [1991:a,  b].  energy  for Heating,  (ASHRAE) performance work  considers  c l i m a t i c regions  of  13  British  Columbia. The t h i r t e e n b u i l d i n g types analyzed i n the p r o j e c t were: Page 24  -Warehouse - R e t a i l non-food s t o r e -Gas bar/Convenience s t o r e - R e t a i l food/Grocery store -Low r i s e o f f i c e  (three-storeys  -High r i s e o f f i c e  (more than  or l e s s )  three-storeys)  -Elementary/secondary school -University/college -Hotel -Restaurant -Hospital -Refrigerated  warehouse  -Shopping m a l l .  The c l i m a t i c r e g i o n s i n v e s t i g a t e d  i n the work were:  -Temperate c o a s t a l -Central interior -Upper i n t e r i o r .  The work i s based on computer s i m u l a t i o n s of the energy consumption characteristics  of  the  buildings  using  the  program  DOE-2.ID  [Lawrence B e r k e l e y Laboratory 1989, 1991]. The a n a l y s i s suggests i t was c o s t e f f e c t i v e exceed  the  ASHRAE  t o improve a l l the b u i l d i n g s s t u d i e d t o meet or 90.1  standards.  The a n a l y s i s  is  based  on  a  15-year study p e r i o d and a d i s c o u n t r a t e of 10%. S e v e r a l b u i l d i n g s i n the study had a negative  c a p i t a l c o s t f o r upgrading t o meet the Page 25  ASHRAE  performance  standard.  This  is  because  improving  performance of the b u i l d i n g p e r m i t t e d the i n s t a l l a t i o n of  the  smaller  and l e s s expensive H e a t i n g , V e n t i l a t i o n and A i r - c o n d i t i o n i n g (HVAC) systems.  F o c u s i n g on a b u i l d i n g s i m i l a r t o the case study b u i l d i n g examined i n t h i s work, the net present v a l u e of implementing the performance standards was found to be $19.45/ m . To a r r i v e a t the net 2  present  value figures  r e q u i r e s an estimate of the f u t u r e c o s t of  energy.  The  results  forecasts  of  found  requirements  the in  above  analysis  a report  for B r i t i s h  on the  are  based  forecast  energy  demand and  Columbia between 1990  Mines and Petroleum Resources,  on  and 2010  price supply [Energy  1991].  3.3 QUANTIFYING THE OPERATING ENERGY OF BUILDINGS  The u n i t used to q u a n t i f y the o p e r a t i n g energy of b u i l d i n g s i s  the  B u i l d i n g Energy Performance Index  the  (BEPI) . T h i s corresponds t o 1  o p e r a t i n g energy consumed per u n i t of f l o o r space per y e a r , and i s measured i n G i g a j o u l e s per square metre per year [ G J / m . y r ] . T y p i c a l 2  BEPIs f o r commercial b u i l d i n g s i n Vancouver range from 0.4  GJ/m .yr  to  pg.  26,  buildings in  the  4.8  GJ/m .yr, 2  w i t h an average  1994]. A l t e r n a t e l y , the United States i s  of  1.75  GJ/m .yr 2  average BEPI f o r offi.ce  estimated  at  1.2  'This u n i t i s standard i n the  GJ/m .yr 2  [Houghton, p g .  literature.  Page 26  [Cole,  2  9.190,  1994]. I t  is  important t o note t h a t many of the b u i l d i n g s used i n  a r r i v i n g a t these f i g u r e s As  a  basis  of  are not b u i l t to ASHRAE 90.1  comparison,  high  energy  efficiency  standards. designs  in  European b u i l d i n g s are a c h i e v i n g BEPIs of the o r d e r of 0.1 G J / m . y r 2  to  0.3  GJ/m .yr  [Cole,  2  climatic  variations  pg.  and  27,  1994].  different  Because  operating  of  the  effect  schedules  of  between  Vancouver and the c i t i e s of Europe and the U n i t e d S t a t e s ,  direct  comparisons of o p e r a t i n g energy performance are d i f f i c u l t t o make.  The o p e r a t i n g energy  f o r the  using  design  the  computer  developed highly  by the  flexible  simulating  all  conditions, occupancy  schedule,  computer aspects  envelope  in  tool  United States  schedules  introduced  case study  the  and and  "DOE-2.ID".  Department  modelling  of  device  building.  systems loads.  Chapter One.  structure  of  The  program  is  Drawings,  case  study  details  of  was  and i s  capable  includes  characteristics The  calculated  Energy,  that  This  is  of  climatic  as  well  building the  a  as was  occupancy  o p e r a t i n g loads and systems c h a r a c t e r i s t i c s are c o n t a i n e d  i n Appendix A .  3.3.1  In  S i t e Versus Source Energy  quantifying  building, (primary)  it  the is  energy  operating  important and the  to  site  performance distinguish (secondary)  of  the  case  between energy.  the  Source  study source energy  r e f e r s t o the primary energy requirement f o r o p e r a t i n g a b u i l d i n g , Page 27  i n c l u s i v e of e f f i c i e n c y  losses.  S i t e energy r e f e r s t o the  a c t u a l l y consumed i n the b u i l d i n g , e x c l u s i v e of e f f i c i e n c y 2  In the p r e s e n t work, i t  is  energy losses.  assumed t h a t e l e c t r i c i t y generated by  thermal p l a n t s r e p r e s e n t s 15% of e l e c t r i c i t y use  [ B . C . M i n i s t r y of  Energy Mines and Petroleum Resources, 1989], and i t i s assumed t h a t the  thermal p l a n t i s  electricity is  distinction maintain  T h e r e f o r e , one u n i t of  site  i s e q u i v a l e n t t o 1.45 u n i t s of source e l e c t r i c i t y .  assumed t h a t  electricity  33% e f f i c i e n t .  3  source  and  and s i t e  natural  between source  consistency  gas  energy  serviced  and s i t e  is to  energy  when comparing the  equivalent the is  f o r hydro  building . 4  made i n o r d e r  operating  It  The to  and embodied  energy c h a r a c t e r i s t i c s of the case study b u i l d i n g .  3.4  DESIGN  PROCESS  M o d e l l i n g the b u i l d i n g ' s o p e r a t i n g energy was an i t e r a t i v e p r o c e s s . An i t e r a t i v e approach was u t i l i z e d t o minimize p o t e n t i a l and the e f f o r t s  mistakes  r e q u i r e d t o "debug" the o p e r a t i n g energy program.  The p r o c e s s t o model thermal performance was based on the f o l l o w i n g steps:  I t i s assumed t h a t the BEPI's r e f e r r e d t o i n the l a s t s e c t i o n correspond t o s i t e energy. However, the d i s t i n c t i o n between s i t e and source energy i s not made by any of the r e f e r e n c e s . 2  t r a n s m i s s i o n l o s s e s have not been i n c l u d e d . N a t u r a l gas has a net energy r a t i o of approximately 60. Nemetz [1993]. 4  Page 28  See  -single-storey,  s i n g l e thermal zone  -single-storey,  f i v e thermal zone s t r u c t u r e ;  -three-storeys,  f i v e thermal zones per  5  structure;  floor;  -five-storeys,  f i v e thermal zones per f l o o r ; and,  -five-storeys,  twenty-one thermal zones per f l o o r ,  m.  based on a 7.5  g r i d c o n f i g u r a t i o n used as the base case study s t r u c t u r e .  Once the observe  base the  b u i l d i n g was operating  obtained,  the  characteristics  d e s i g n was  under  altered  differing  to  design  c o n f i g u r a t i o n s . An i d e n t i f i c a t i o n numbering system was implemented through  this  design  correspond t o  the  process.  Simulation  p r e l i m i n a r y models  T e s t runs #7 t o #17  6  run  i n the  #1  through  iterative  #6  process.  correspond t o the t e s t runs of the base case  study b u i l d i n g and m o d i f i e d b u i l d i n g s .  3.5  IMPROVING  THE OPERATING  ENERGY O F T H E C A S E STUDY  BUILDING  The base b u i l d i n g was s y s t e m a t i c a l l y upgraded from a t y p i c a l building  to  diverse set  an energy  efficient  of s t r a t e g i e s  building.  There  is  office  a l a r g e and  t h a t may be implemented t o improve the  o p e r a t i n g performance of a b u i l d i n g . The s t r a t e g i e s employed i n the p r e s e n t work were guided by a set  of c r i t e r i a  including:  A single thermal zone i m p l i e s the e n t i r e b u i l d i n g is c o n t r o l l e d by one thermostat, and the temperature of a l l areas i s t o be maintained a t a s i n g l e temperature. T h i s i s a s i m p l i f i c a t i o n , s i n c e the core of the b u i l d i n g u s u a l l y r e q u i r e s c o o l i n g w h i l e the p e r i m e t e r areas r e q u i r e h e a t i n g , c o o l i n g or b o t h . 5  6  Single storey,  s i n g l e thermal zone, Page 29  etc.  - m a i n t a i n the a i r q u a l i t y of the indoor environment ; 7  -implement  strategies that  are w e l i  established  i n the  strategies  can be modelled w i t h i n the  building  community; -implement  that  operating  energy s i m u l a t i o n program;  It  is  limited  acknowledged  that  the  strategies  building.  range  For  of  example,  the  operating  energy  computer  i n c o r p o r a t e d i n the  it  was  not  possible  a  synthesis  to  case model  model study stack  ventilation.  Any  design  experience, utilizing  process  is  i n t u i t i o n and e x t e r n a l and  extensively  incorporation  in  characteristics  the  technical  constraints.  of  process  of  The n e c e s s i t y of  experience  of  refining  of the b u i l d i n g i m p l i e s t h a t  knowledge,  and  intuition  the  operating  there  is  no o p t i m a l  pathway or b u i l d i n g d e s i g n .  Once the s t r a t e g i e s t o improve the o p e r a t i n g energy were s e l e c t e d , a h i e r a r c h y was implemented based on a set in  ASHRAE 90.1  •  Identify  of p r i n c i p l e s o u t l i n e d  [1989].  requirements  and  minimize  the  of the building.  impact  This  of  implies,  the  functional  for example  The indoor environment r e f e r s to indoor a i r q u a l i t y , access t o the o u t s i d e , and sources of n o i s e . 7  Page 3 0  that:  visual  - t h e b u i l d i n g systems should be matched t o occupancy requirements  •  Identify  and minimize  building.  Strategies  the  f o r the b u i l d i n g .  the internal carried  and external  out here  loads  on the  include:  -changing the b u i l d i n g o r i e n t a t i o n t o maximize p a s s i v e h e a t i n g and  lighting  capability;  -controlling air infiltration; - i m p r o v i n g the i n s u l a t i o n and g l a z i n g ; -implementing d a y l i g h t i n g -reducing l i g h t i n g -using  high  efficiency  •Integrate systems.  levels  efficiency  copiers,  subsystems  strategies;  office  p r i n t e r s and  to improve  such  as  high  facsimiles.  the efficiency  of the  building  For example:  -reducing  the  daylighting  lighting and  high  load  through  efficiency  c o r r e s p o n d i n g r e d u c t i o n i n the and p o s s i b l e  •  equipment,  increase  Improve the efficiency  the  lights,  cooling  i n heating  implementation there  l o a d of the  is  of a  building  requirements.  of subsystems by:  - r e p l a c i n g the v a r i a b l e a i r volume h e a t i n g system w i t h a heat pump.  The h i e r a r c h y of s t r a t e g i e s used t o improve the performance of Page 31  the  case study b u i l d i n g i s c o n s i s t e n t w i t h g e n e r a l procedure above.  T h i s process  computer  simulations  was  refined  after  by  studying  each run to  the  outlined  output  determine  of  the  which b u i l d i n g  l o a d c o n t r i b u t e d the g r e a t e s t amount t o the energy consumption of the  building.  That  load  was  targeted  in  the  next  building  simulation.  3 . 6 RESULTS OF THE OPERATING ENERGY MODEL  Table  3.1  provides  performance  of  configurations.  the  summary case  information study  Specifications  of  building  the  building  under  a  of the base b u i l d i n g are  energy  number  of  presented  i n Appendix A . In a d d i t i o n , complete g r a p h i c a l and t a b u l a r data f o r the  operating  energy  of  the  case study b u i l d i n g i s  Appendix B.  Page 32  presented  in  T a b l e 3 . 1 . Summary of B u i l d i n g Energy Performance  Index f o r Case  study B u i l d i n g . SIMULATION  BEPI  CUMULATIVE  [GJ/m .yr]  % CHANGE  STRATEGY  RUN  2  site,  (source)  7A  Base Case  0.96  (1.39)  7B  Orientation  0.95  (1.38)  -3%  7C  Infiltration  0.91  (1.32)  -7%  7D  Infiltration  0.89  (1.29)  -9%  8A  Daylighting  0.56  (0.93)  -43%  8B  Heat Pump  0.44  (0.64)  -55%  9  Glazing  0.41  (0.59)  -58%  10  Lighting Density  0.35  (0.51)  -64%  11  Insulation  0.34  (0.49)  -65%  12  Equipment  0.28  (0.41)  -71%  0.28  (0.41)  -71%  13  Night  Purge  14  Lighting Efficiency  0.23  (0.33)  -77%  15  Wall t o Window R a t i o  0.23  (0.33)  -77%  16  Increase Comfort Zone  0.23  (0.33)  -77%  17  Sun-space  0.23  (0.33)  -77%  Page 3 3  The cumulative percent r e d u c t i o n i n o p e r a t i n g energy corresponds to the  reduction  in  operating  strategies  successively.  meaningful  in  improvements  this is  characteristic  dependent  may be  achieved  Incremental  analysis  as on  by  percent  the what  attributed  subsystems: f o r example, 15,  energy  implementing changes  magnitude  of  strategies  to  the  are  less  performance  precede.  dependence  l i g h t s and c o o l i n g systems.  the  of  This  building  T e s t runs 13,  16 and 17 are s t r a t e g i e s t h a t were found t o have n e g l i g i b l e  or  n e g a t i v e impact on the o p e r a t i n g performance of the b u i l d i n g . The r e s u l t s of the o p e r a t i n g energy a n a l y s i s are c o n s i s t e n t w i t h other analyses  of  operating  energy . 8  The i n i t i a l  site  B u i l d i n g Energy  Performance Index (BEPI) i s 0.9 6 G J / m . y r . T h i s i s c o n s i s t e n t w i t h 2  a  building  conforming  to  process,  ASHRAE a final  90.1  standards.  s i t e BEPI of  0.23  Through  an  iterative  design  G J / m . y r was  achieved,  corresponding t o a 77% r e d u c t i o n i n o p e r a t i n g energy of  2  the case study b u i l d i n g .  Test  runs  7A through  11  imply  no  behavioral  modification  by  b u i l d i n g occupants. Nor does i t imply a r e d u c t i o n i n the q u a l i t y or quantity  of  energy  services  provided.  Test  runs  12  and  14  i n c o r p o r a t e the p o t e n t i a l to reduce energy loads through b e h a v i o r a l modification  by b u i l d i n g , occupants.  For example,  the  electricity  See M i n i s t r y of Energy Mines and Petroleum Resources, [1991], BC Hydro, [1993,1994]. Houghton [1994] p r e s e n t s s i m i l a r r e s u l t s based on s i m u l a t i o n runs u s i n g D0E2.1E, and measured energy consumption. 8  Page 34  consumption from the e l e v a t o r was reduced by making s t a i r w a y s primary mode of t r a n s p o r t i n g occupants between f l o o r s . making  by  elevators  l e s s so. Reducing the energy l o a d a s s o c i a t e d w i t h been  investigated  more  visible  by Danbridge et  author notes a 57% r e d u c t i o n i n energy possible. achieved  The  reductions  task  sun-space  possible  to  al.  consumption  and  office  [1994]. is  The  currently  lighting  is  and u t i l i z i n g h i g h  lighting.  Because of l i m i t a t i o n s the  convenient  i n the l i g h t i n g l o a d i n t e s t r u n 14  by m a i n t a i n i n g low ambient  efficiency  or  T h i s may be  achieved  equipment has  stairways  the  design explore  i n the D0E2 program, the f u l l cannot  be  reductions  explored. in  advantage  For example  operating  energy  implementation of p a s s i v e s t a c k v e n t i l a t i o n e f f e c t s  9  it  of  is  not  through  the  coupled t o the  sun-space.  T e s t runs were performed t o e s t a b l i s h  the e f f e c t  on the b u i l d i n g  o p e r a t i n g energy through the r e d u c t i o n of indoor a i r c i r c u l a t i o n . There was no r e d u c t i o n of the o u t s i d e a i r supply i n t h i s t e s t r u n . A r e d u c t i o n i n the o p e r a t i n g energy t o a s i t e BEPI of 0.18 GJ/m was 2  a c h i e v e d . As s t a t e d p r e v i o u s l y , however,  a c r i t e r i o n f o r improving  the case study b u i l d i n g was t h a t t h e r e should be no l o s s of indoor environmental  quality.  Indoor  air  quality  is  of  sufficient  'Passive s t a c k v e n t i l a t i o n r e f e r s to a process of buoyancy d r i v e n (as opposed t o mechanical fans) v e n t i l a t i o n r e s u l t i n g from the temperature d i f f e r e n t i a l between i n t e r i o r and e x t e r i o r spaces. Page 3 5  importance  t h a t t h i s s t r a t e g y was  not implemented i n t h e case  study  building.  3.7  OBSERVATIONS ON  THE  OPERATING ENERGY MODEL  T h e r e a r e a number o f p o i n t s t h a t s h o u l d be e m p h a s i z e d i n r e v i e w i n g t h e d a t a p r e s e n t e d i n T a b l e 3.1 monthly  energy  February.  This  method. The energy  is  Since  corresponding  explained  there  decrease  analysis  an  are  the  fewer  i n energy  by  important  nature  Studies  C o r p o r a t i o n [CMHC, 1993] one  to  two  specifications. analysis,  air  by  the  of  infiltration  standards are used.  i n commercial  heating pg.  Canadian  magnitude  rates  calculation  1-4]  has  buildings i s  For  and  a  reduced Housing  than  performed  I t i s n o t c l e a r , however, how  example,  i n b u i l d i n g s may  larger  in  is  documented  through  Mortgage  prescribed  is a  air infiltration load.  analysis  there  10  o f 2 0% t o 60%  computer  of  month .  suggest t h a t i n f i l t r a t i o n  orders In  the  the  i n February,  for this  [1994,  i n h e a t i n g energy  infiltration.  f o r t h e month  of  In a d d i t i o n , of  the data f o r  an h o u r by h o u r a n a l y s i s o f  days  use  source  P u b l i c Works Canada  savings p o t e n t i a l  be  by  t o c o n t r o l and p r e d i c t .  frequently  First,  anomalous b e h a v i o u r  uncontrolled a i r infiltration  difficult  air  predicts  s i m u l a t i o n program performs  use.  Second,  use  and A p p e n d i x B .  the  design in  ASHRAE  this 90.1  w e l l these design  T h i s anomaly may be removed by n o r m a l i z i n g t h e i n f o r m a t i o n f o r an a v e r a g e month (30.4 d a y s ) . However, t h i s r e s u l t s i n a l o s s of i n f o r m a t i o n , so t h i s s t e p i s not performed h e r e . 1 0  Page 3 6  standards  are  achieved  uncontrolled a i r  Third, the  the  level  or  a p p l i c a t i o n of  improve  the  addition  active  solar heaters, an  energy  to  performed.  make  dollars  capital  costs  calculated. analysis, performed. However, system  (rather  explored  for for  devices  case  study  cost  of  the the  further  A solar  this  savings  inexpensive  building.  the  Due t o t h e no  energy  of  such  A  that  zero  imply a l i m i t  potential  the  for  as  photovoltaic  to the  s t e p was  photovoltaic  cells  and  the  c a p i t a l cost estimated  water  of  heating only able  replace  it) .  a  to  was  and into the  autonomous  was  the  order of  alone.  one  Additional  batteries  were  not  from the p r e l i m i n a r y  also  augment t h e  Therefore,  panels  of  photovoltaic  system  the  analysis  of  to  With  be t r a n s f o r m e d  b u i l d i n g energy  this  research  building.  preliminary  invertors  s y s t e m was than  clear  and f a m i l i a r s t r a t e g i e s  characteristics  The c a p i t a l  million  it  possible.  building could potentially  autonomous  potential  is  i s the l e v e l of performance achieved through  solar  this  nor  performance does not  simple,  operating  of  of  behavioral  b u i l d i n g . Rather, t h i s the  practice,  i n f i l t r a t i o n is  final  technical  in  system  investigated.  central  this  was  option  heating was  not  further.  3 . 8 MODEL VERIFICATION AND UNCERTAINTY  To the  gain  confidence  i n the  results  of  the  operating  energy  c o m p u t e r o u t p u t was v e r i f i e d u s i n g two a p p r o a c h e s . Page  37  model,  First,  the  data were compared a g a i n s t a set of t e s t runs from the developer of the  D0E2 program [Lawrence B e r k e l e y L a b o r a t o r y ,  -storey  office  1986].  transfer  five  tower was compared w i t h a case study s t r u c t u r e of  s i m i l a r aspect r a t i o , but of a t h i r t y - s t o r e y d e s i g n . heat  The  between f l o o r s  is  of  second  Assuming the  o r d e r magnitude,  the  B u i l d i n g Energy Performance indexes (BEPI) f o r the f i v e and t h i r t y storey,  office  structures  assumption of n e g l i g i b l e the  observation  between  floors  that is  were  to  be  comparable.  The  f l o o r t o f l o o r heat t r a n s f e r i s based on  the  small  found  temperature or  zero.  and  pressure  Therefore,  the  differences  heat  transfer  between f l o o r s w i l l be s m a l l .  As a second t e s t of the o p e r a t i n g energy model, the computer data were compared t o office  measured  Building located  results.of  similar buildings.  For an  i n Vancouver, conforming t o ASHRAE  90.1,  the B u i l d i n g Energy Performance Index (BEPI) should be i n the range 0.8  G J / m . y r t o 0.95 2  GJ/m .yr . 2  The v e r i f i c a t i o n process  u  i s acknowledged t o be i n d i r e c t . However,  i n the absence of a r e a l b u i l d i n g w i t h energy performance data over a range of performance c h a r a c t e r i s t i c s , the  operating  operating  energy  energy  model  analysis  i n d i v i d u a l s w i t h experience  n  i t i s impossible to v e r i f y  directly. is  inferred  The  uncertainty  from  in  discussions  i n a p p l y i n g the model t o e x i s t i n g  Ray Cole Page 3 8  the from and  new  buildings . 1 2  analysis  Using  these  estimates,  the  uncertainty  of the b u i l d i n g o p e r a t i n g energy i s estimated  at  in  the  10%.  3.9 CONCLUDING REMARKS  I t was found t h a t the o p e r a t i n g energy f o r the case study b u i l d i n g c o u l d be reduced by 77% below a b u i l d i n g conforming t o ASHRAE 90.1 standards.  This figure  achievable  reductions  i s c o n s i s t e n t w i t h other i n v e s t i g a t i o n s of i n operating  energy  [BC Hydro,  1992],  The  r e d u c t i o n i n o p e r a t i n g energy i s achieved through the adoption of simple,  12  proven t e c h n o l o g i e s .  Gord Shimco, DW Thompson I n c . Page 39  CHAPTER 4: EMBODIED ENERGY OP CASE STUDY BUILDING  4.1 CHAPTER LAYOUT  T h i s chapter begins by d e f i n i n g the concept of embodied energy, and d i s c u s s i n g i t s magnitude i n b u i l d i n g s . Methods used t o p r e d i c t the energy  intensity  results  1  of  of analyses  goods and s e r v i c e s  of  embodied  calculated  Published  of the energy i n t e n s i t y of b u i l d i n g m a t e r i a l s  and embodied energy life-cycle  are reviewed.  over the  b u i l d i n g s are p r e s e n t e d .  energy  for  range of  the  case  The i n i t i a l  study  o p e r a t i n g performances  building examined  and is in  Chapter T h r e e .  4.2 DEFINING THE EMBODIED ENERGY OF A BUILDING  The embodied energy of a b u i l d i n g i s t h a t component of the budget  derived  materials,  from  primary  extracting and  secondary  b u i l d i n g m a t e r i a l s t o the s i t e , embodied  energy  analysis  to  useful  life  component  expands  i n c l u d e the of  the  recycling  the  processing,  raw  building  transporting  the  and o n - s i t e e r e c t i o n . " L i f e - c y c l e " boundaries  embodied energy  a b u i l d i n g . This  replacement  or  energy  includes  and maintenance  of  of  the  embodied  energy  consumed throughout the the  energy  consumed  building,  and  the in the  energy r e q u i r e d to demolish and dispose of the s t r u c t u r e a t the end  In t h i s work, energy i n t e n s i t y r e f e r s t o b u i l d i n g m a t e r i a l s and embodied energy to the b u i l d i n g . J  Page 40  of  its  useful  life.  4.3 SIGNIFICANCE OF THE EMBODIED ENERGY OF BUILDINGS  Depending on the  lifespan,  b u i l d i n g may be 18%  the  life-cycle  [CMHC, p g .  1,  1991]  embodied energy  for a  to 40% (Kohler i n C o l e ,  1991, p g . 29) of the l i f e - c y c l e energy budget of a b u i l d i n g . As the o p e r a t i n g energy of the b u i l d i n g d e c r e a s e s , the embodied energy may become a l a r g e r component of the t o t a l energy budget. However, l a c k of  i n f o r m a t i o n i n the  published l i t e r a t u r e  suggests t h e r e  is  no  c l e a r understanding how changes t o the o p e r a t i n g performance of a b u i l d i n g w i l l i n f l u e n c e the embodied energy of a b u i l d i n g .  4.4 METHODS OF ANALYSIS  The p r e s e n t energy brief  analysis  intensity  of  relies  on p r e v i o u s l y p u b l i s h e d data f o r  building materials.  d e s c r i p t i o n of how the  This  section  the  provides  i n f o r m a t i o n has been generated.  a  The  methods used t o estimate the energy i n t e n s i t y v a l u e s i n c l u d e i n p u t output a n a l y s i s ,  4.4.1  process  analysis  and s t a t i s t i c a l  methods.  Input-Output A n a l y s i s  Input-output  analysis  provides  r e l a t i o n s h i p s between d i f f e r e n t information  in  terms  of  energy  information  on  the  inter-  s e c t o r s of the economy, p r o v i d i n g embodied  Page 41  per  monetary  unit  of  o u t p u t . The a n a l y s i s permits the c a l c u l a t i o n of d i r e c t and i n d i r e c t primary energy r e q u i r e d t o produce a good or s e r v i c e . i n p u t - o u t p u t a n a l y s i s techniques of  commodities  Peet  is  developed  The use  t o estimate the energy  in Reister  [1978],  of  intensity  Bush [1981],  and  [1993].  An advantage of i n p u t - o u t p u t a n a l y s i s i s the a b i l i t y t o capture a l l the d i r e c t and i n d i r e c t energy  i n p u t s of a p r o d u c t . The i n d i r e c t  energy i n p u t s i n c l u d e the upstream energy embodied i n m a t e r i a l s and equipment,  such as the t o o l s r e q u i r e d to produce the f i n a l good.  A problem w i t h arises  information  derived  from  the  level  Specifically,  the  coefficients  analysis  of  p r o v i d e estimates of  worth of the average input-output  analysis  from an  input-output  disaggregation  the  derived energy  from  of an  the  table tables.  input-output  embodied i n a  dollar's  product of an i n d u s t r y . T h i s i m p l i e s t h a t an w i l l p r o v i d e an i m p r e c i s e  e s t i m a t e of  embodied energy of commodities t h a t have a p r i c e t h a t i s from the average product p r i c e [ R e i s t e r ,  1978]. T h i s i s  the  f a r away l e s s of a  problem i n Canadian data compared t o i n p u t - o u t p u t data from other countries. disaggregated  The  Canadian  commodity  i n t o 602 commodities  the U n i t e d States)  input-output  (compared t o 215 i n d u s t r i e s  between the  is for  r e s u l t i n g i n fewer a t y p i c a l p r o d u c t s .  A second problem w i t h i n p u t - o u t p u t a n a l y s i s lag  table  age  of  the  i s the f o u r - y e a r time  data and p u b l i c a t i o n of Page 42  the  tables.  There  has  been  commodities  a  steady  decrease  produced i n Canada of  in  the  embodied  approximately 1.0%  R e l y i n g o n l y on i n p u t - o u t p u t a n a l y s i s may r e s u l t over-estimation  of  the  energy  energy  intensity  of  of  per y e a r . 2  in a  systematic  current  building  materials.  4.4.2  Process A n a l y s i s  Process a n a l y s i s i n v o l v e s the q u a n t i f i c a t i o n of a l l the d i r e c t and indirect  energy  inputs  conceptually simple, been  expressed  keep  track  results vary  of  and outputs  a number of  i n the  CMHC, Appendix I I ,  to  all  the  in truncation error.  by  intensity  the  [Baird  1991]. F i r s t ,  indirect  Although  l i m i t a t i o n s of t h i s method have  literature,  pg., x i ,  from a p r o c e s s .  energy  Second, the  p r o d u c t i o n technology  used.  and Aun, pg. it  6,  1983,  i s a complex t a s k  inputs.  This  to  frequently  i n p u t s t o a p r o c e s s may Therefore,  the  energy  f i g u r e s may be dependent on v a r i a b l e s i n c l u d i n g age of  the d a t a , and l o c a t i o n s p e c i f i c v a r i a b l e s i n c l u d i n g manufacturer, or p l a n t  efficiency.  Input-output  analysis  and process  analysis  are  the  predominant  means employed i n d e r i v i n g the data used i n the p r e s e n t  analysis.  A t h i r d method, S t a t i s t i c a l a n a l y s i s i s used t o a l e s s e r e x t e n t .  See S e c t i o n 4.7.3 for details i n t e n s i t y of m a t e r i a l s w i t h time. 2  Page 43  of  the  change  in  energy  4.4.3  The  Statistical  Analysis  energy i n p u t per u n i t of product output may be c a l c u l a t e d from  national  statistics.  This  method  has  been  used  in  the  energy  i n t e n s i t y data p u b l i s h e d by B a i r d and Aun [1983]. However, due t o the age of t h i s data s e t for  and because the i n f o r m a t i o n i s  generated  the New Zealand economy, the p r e s e n t a n a l y s i s assumes minimal  dependence on t h i s i n f o r m a t i o n .  4.5  REVIEW OP THE LITERATURE  Energy I n t e n s i t y of B u i l d i n g  4.5.1  There has  been  extensive  research  Materials  into  the  energy  intensity  of  m a t e r i a l s . For the p r e s e n t study, the energy i n t e n s i t y of a number of  building  materials  has  d a t i n g from 1968 t o 1993.  The  been  collected  from  various  sources  T h i s data i s p r e s e n t e d i n Appendix C I .  data i s d e r i v e d from s e v e r a l c o u n t r i e s ,  i n c l u d i n g Canada,  the  U n i t e d Kingdom, the U n i t e d S t a t e s and New Zealand. The methods used to  d e r i v e the  data.  The  energy  techniques  intensity include  figures  are documented w i t h  input-output  analysis,  a n a l y s i s , and t o a l e s s e r e x t e n t , n a t i o n a l s t a t i s t i c s . analysis  varies  w i t h the  m a t e r i a l and s o u r c e ,  the  process  The l e v e l of  w i t h many of  the  f i g u r e s r e p r e s e n t i n g an a n a l y s i s t o l e v e l two and t h r e e boundaries stipulated  by  the  International  Federation  Page 44  of  Institutes  of  Advanced S t u d i e s  (IFIAS).  It  is  predicted that  such an a n a l y s i s  w i l l c a p t u r e 90% t o 95% of the f u l l energy i n t e n s i t y of a commodity [CMHC, 1991].  . .  The d i v e r g e n c e i n the energy i n t e n s i t y a c c o r d i n g t o the source large.  It  should be s t r e s s e d  is  t h a t t h e r e i s no a b s o l u t e l y c o r r e c t  v a l u e f o r the energy i n t e n s i t y of any m a t e r i a l [ K o h l e r ,  i n Cole,  1991]. V a r i a t i o n s may occur due t o d i f f e r e n c e s i n :  - t h e s p e c i f i c b u i l d i n g products i n v e s t i g a t e d ; -the  primary  energy  e l e c t r i c i t y versus  sources  natural  used,  for  example,  hydro  gas;  - t h e scope of the energy i n t e n s i t y a n a l y s i s ,  including  system boundaries and the l e v e l of a n a l y s i s ; - t h e method of a n a l y s i s ; -transportation factors  included;  - v a r i a t i o n s i n the conventions used i n d e a l i n g w i t h feedstock  material,  recycling,  and  multiple  products;  or, -variations  in  the  manufacturing process  a r i s i n g from  the  technology used t o produce the good.  An example of v a r i a t i o n i n conventions r e l a t e d t o feedstock value a r i s e s  when comparing the  energy i n t e n s i t y  of p l a s t i c and  wood. In c a l c u l a t i n g the embodied energy Of p l a s t i c , the energy has been  i n c o r p o r a t e d i n t o the Page 45  energy  energy  intensity  feedstock figures.  Conversely,  i n e s t i m a t i n g the  energy  intensity  of wood,  no such  a d d i t i o n has been i n c o r p o r a t e d . In B r i t i s h Columbia, wood accounts for  approximately  [Statistics  8%  of  Canada, pg.XX,  primary 1991,  b].  and  secondary  energy  I t may be argued t h a t  use it  is  i n c o n s i s t e n t t o i n c l u d e the feedstock f o r p l a s t i c and not f o r wood. However, i n the case study b u i l d i n g examined i n t h i s work, the use of  wood  accounts  for  a  negligible  embodied energy. T h e r e f o r e , t h i s u n c e r t a i n t y i n the  fraction  of  the  life-cycle  inconsistency w i l l create  little  results.  V a r i a t i o n s i n manufacturing processes may i n p a r t be due t o the age of  the  data  (and  corresponding  technology),  and  geographical  l o c a t i o n . The dependence of energy i n t e n s i t y on age of the d a t a further  explored  in  Appendix  C2.  Based  S t a t i s t i c s Canada, the energy i n t e n s i t y  building.  and  steel  Small  are  dominant  inaccuracies  in  provided  by is  1990.  materials the  data  (per $1000 of commodity)  l i s t e d f o r b u i l d i n g m a t e r i a l s from 1976 t o  Concrete  on  is  energy  in  the  case  intensity  of  study these  m a t e r i a l s w i l l have a c o r r e s p o n d i n g l y l a r g e e f f e c t on r e s u l t s .  In  the p r e s e n t a n a l y s i s , works by S t e l c o [1993]  and Radian [1993] are  used  respectively.  for  steel  and  concrete  products,  publications provide current, l o c a t i o n s p e c i f i c  These  i n f o r m a t i o n on a  range of s t e e l and c o n c r e t e p r o d u c t s , based on Canadian i n d u s t r i a l surveys.  Page 4 6  4.5.2  Embodied Energy of B u i l d i n g s  There have been s e v e r a l  references  embodied energy of r e s i d e n t i a l  d e a l i n g w i t h e s t i m a t e s of  the  and commercial b u i l d i n g s over  the  l a s t 20 y e a r s . These p u b l i s h e d works p r o v i d e i n s i g h t t o the i n i t i a l embodied energy of b u i l d i n g s , and e x p l o r e the r e l a t i o n s h i p between the embodied and o p e r a t i n g energy of b u i l d i n g s .  The works of first The  S t e i n et  al.  [197 6]  comprehensive a n a l y s i s  works  are  based  on  input-output  work p r o v i d e s  magnitude office  of  a  operating  buildings  located  Serber's analysis,  information  office  of  the  b u i l d i n g of  preliminary analysis  and  the  United  R e s u l t s of the a n a l y s e s p r e d i c t  embodied energy of an average  Serber's  [1976] p r o v i d e s  of the embodied energy of b u i l d i n g s .  S t a t e s economy f o r the year 1967. the  and Serber  embodied  energy  i n New York.  For the  of  for  18.6  the  two  GJ/m . 2  relative  commercial  b u i l d i n g s used  the embodied energy i s e q u i v a l e n t  in  i n magnitude  t o f i v e t o t e n years of o p e r a t i n g energy. Because of the age of the data,  the  present  results  work.  insights  has  the  The energy  considerably since buildings  of  1967,  analyses intensity  are of  of  limited  materials  value has  3  However,  the  methodologies  the  decreased  and the o p e r a t i n g c h a r a c t e r i s t i c s  improved .  to  of new  used  and  gained from these works remain i m p o r t a n t .  The B u i l d i n g Energy Performance Index (BEPI) i n S e r b e r ' s a n a l y s i s i s 3.97. The BEPI f o r the base b u i l d i n g i n the p r e s e n t a n a l y s i s i s 0.96. 3  Page 47  B a i r d and Aun [1983] i n New Zealand document the buildings,  and p r o v i d e an estimate of  the  energy c o s t  relative  magnitude  of of  embodied versus o p e r a t i n g energy f o r houses and l i g h t c o n s t r u c t i o n . For  single  f a m i l y housing,  the  authors  energy t o be approximately 3 GJ/m  2  predict  the  construction  and the r a t i o of  construction  energy t o annual o p e r a t i n g energy t o be approximately 8. B a i r d and Aun's work focuses on timber framed b u i l d i n g s . In a d d i t i o n , the age of  the  study  limits  the  ability  to  infer  information  from  the  analysis.  The  Canadian Mortgage and Housing C o r p o r a t i o n  (CMHC)  computer program c a l l e d "OPTIMIZE" [CMHC, 1991] life-cycle  produced a  t o i n v e s t i g a t e the  energy and environmental impact of housing i n Canada.  The study i s based on energy i n t e n s i t y data o b t a i n e d from Canadian i n p u t - o u t p u t t a b l e s f o r the year 1987. life-span  of  40 y e a r s ,  results  For a 350 m house w i t h a 2  of the a n a l y s i s  suggest the  life-  c y c l e energy of a house i s 29.9 GJ/m . The i n i t i a l embodied energy 2  is  c a l c u l a t e d t o be 2.4  is  4.2  GJ/m . 2  0.11  Howard and S u t c l i f f e embodied  designs. buildings  2  and the l i f e - c y c l e  L e v e l i z e d over the 40-year  embodied energy i s  cycle  GJ/m ,  lifespan,  embodied energy the  GJ/m .yr. 2  [1992] p r o v i d e an i n v e s t i g a t i o n  energy  life-cycle  characteristics  for  of the  a number of  building  The authors p r e d i c t an i n i t i a l embodied energy f o r of  3.5  GJ/m  2  to  7.3  Page 48  GJ/m , 2  depending  life-  on  office the  characteristics embodied  of  energy,  building fit-out .  C o n s i d e r i n g the  4  and  levelizing  authors p r e d i c t a l i f e - c y c l e  over  a  60-year  embodied energy of  life 0.18  life-cycle span,  the  GJ/m .yr  to  2  0.45 G J / m . y r . These v a l u e s depend on the l e v e l of f i t - o u t , 2  and the  frequency of component replacement. T h i s compares t o the p r e d i c t e d o p e r a t i n g energy of 0.84 GJ/m yr to 1.41 GJ/m yr. Rearranging these 2  numbers, the l i f e - c y c l e  2  embodied energy may range from 11% t o 3 6%  of the t o t a l energy budget f o r the b u i l d i n g s  Oka et  al.  [1993] have performed an a n a l y s i s  studied.  of the t o t a l  energy  consumed and environmental p o l l u t i o n generated i n the c o n s t r u c t i o n of s i x commercial b u i l d i n g s i n Japan. The b u i l d i n g s range i n s i z e from 1500 concrete  m to 2  216,000 m . The s m a l l e r b u i l d i n g s 2  c o n s t r u c t i o n and the  are  reinforced  l a r g e r b u i l d i n g s are predominantly  s t e e l . The energy i n t e n s i t y f i g u r e s f o r the b u i l d i n g m a t e r i a l s are based  on an  input-output  major f i n d i n g s of t h i s  analysis  of  investigation  the  Japanese  economy.  The  are:  - t h e i n i t i a l embodied energy of o f f i c e b u i l d i n g s i s of the order of 8-12 -the  GJ/m ; 2  embodied energy of the b u i l d i n g s appears t o decrease w i t h  increasing office  size,  although the change i s not monotonic.  - t h e c o n s t r u c t i o n c o s t i s p r o p o r t i o n a l t o the energy consumption. The authors p r e d i c t e d t h a t the energy i n t e n s i t y per u n i t p r i c e  is  "Office f i t - p u t r e f e r s t o the q u a l i t y of f i n i s h i n g work used i n the p r o j e c t . Page 49  32 MJ/1000 yen (4.6 M J / $ ) .  Buchanon and Honey environmental housing,  [1994]  impacts  industrial  of  investigated a  range  of  the  embodied energy and  building  types  including  and commercial b u i l d i n g s i n New Zealand. The  r e s u l t s of t h i s work are based on the energy i n t e n s i t y data s e t of Baird  and Aun. For o f f i c e  buildings,  the  authors  predict  the  i n i t i a l embodied energy f o r wood, c o n c r e t e and s t e e l c o n s t r u c t i o n , are are  3.7 GJ/m , 5.6 GJ/m , and 6.6 GJ/m , r e s p e c t i v e l y . 2  2  for multi-storey  2  buildings  i n the range  from  life-cycle  energy  These f i g u r e s three  to  six  storeys.  Cole  [1994]  investigated  three-storey office Vancouver structural  b u i l d i n g l o c a t e d i n two geographic  and T o r o n t o . 5  The b u i l d i n g  configurations  construction.  the  based  the i n i t i a l 4.66 GJ/m and  concrete  a  locations;  modelled assuming  wood,  of  and  three steel  Data f o r the embodied energy c a l c u l a t i o n s a r e based  on r e c e n t l y p u b l i s h e d f i g u r e s .  •  on  is  use  4.93  2  Major f i n d i n g s of t h i s work a r e :  embodied energy of a c o n c r e t e  building  is  f o r a b u i l d i n g w i t h no underground p a r k i n g , GJ/m  2  for  the  same  structure,  but  with  underground p a r k i n g ;  The f l o o r p l a t e d e s i g n i n Cole d e s i g n used i n the p r e s e n t work. 5  Page 50  [1994]  is  i d e n t i c a l t o the  •  •  assuming  a  50-year  energy i s  6.5 GJ/m ,  life,  the  recurring  embodied  2  for a building l i f e  of  life-cycle  energy  embodied  respectively;  •  building  25,  50 and 100 y e a r s , is  0.3,  0.26  the  levelized  and 0.2  GJ/m .yr, 2  and,  the o p e r a t i n g energy f o r the  case study b u i l d i n g l o c a t e d  Vancouver  is  1.05  life-cycle  embodied energy i s  approximately  GJ/m .yr, 2  suggesting  20 t o 30% of l i f e - c y c l e  in the  energy  budget.  In  its  input-output  e s t i m a t e s of The  total  MJ/$,  Statistics  energy  for  these These  commodity gr.oups, figures  i n 1990 , measured i n 1986 6  A summary of the f i n d i n g s  of the  is  correspond  [1994]  provides  initial  to  the  and l i f e - c y c l e 4.1.  The l a s t year f o r which data are a v a i l a b l e . Page 51  5.79,  and  5.83  energy  dollars.  energy of b u i l d i n g s i s p r o v i d e d i n Table  6  Canada  n o n - r e s i d e n t i a l c o n s t r u c t i o n and r e p a i r c o n s t r u c t i o n .  respectively.  intensity  tables,  embodied  Table  4.1.  Summary of  Initial  and  Life-cycle  Embodied  Energy  Results. DATE  INITIAL EMBODIED ENERGY [GJ/m ]  AUTHOR  2  ANNUAL LIFE-CYCLE EMBODIED ENERGY [GJ/m .yr]  ANNUAL OPERATING ENERGY [GJ/m .yr] 2  2  1976  18 . 6  4.8  B a i r d and Aun  1983  3  0.38  CMHC  1991  2.4  0.11  0. 64  Howard & Sutcliffe  1992  3.5-7.5  0.18-0.45  0.84-1.41  Oka et al.  1993  8-12  Buchanan & Honey  1994  5.6  Cole  1994  4. 9  0.2-0.3  1. 05  Stein al.  4.6  et  INITIAL EMBODIED ENERGY OF BASE CASE STUDY BUILDING  This section the  initial  initial  describes  the methods used and r e s u l t s  obtained for  embodied energy of the base case study b u i l d i n g . The  embodied energy of the case study b u i l d i n g i n c l u d e s :  - t h e energy r e q u i r e d t o produce the b a s i c components  (e.g.  bricks,  h e a t i n g equipment or windows); and, -the  energy  components  required to  transport  the  building materials  and  from the manufacturer t o  the  building site,  the  Page 52  plus  energy r e q u i r e d f o r o n - s i t e  4.6.1  To  assembly.  Energy to Produce the B u i l d i n g Components  calculate  the  component  of  embodied  energy  resulting  from  m a t e r i a l s p r o d u c t i o n , the f o l l o w i n g methodology was a p p l i e d :  •  Define the  energy  intensity  of the b u i l d i n g m a t e r i a l s .  This  i n f o r m a t i o n i s obtained from the p u b l i s h e d sources r e f e r r e d to i n Section 4.5.  The energy i n t e n s i t y of b u i l d i n g m a t e r i a l s  is  found i n Appendix C l .  •  Based on a r c h i t e c t u r a l , s t r u c t u r a l , mechanical and e l e c t r i c a l  7  drawings of the b u i l d i n g , q u a n t i f y the m a t e r i a l s r e q u i r e d f o r the  building  (a  materials  takeoff).  This  information  p r o v i d e d i n Appendix C3, and corresponds t o p r i n t o u t s of spreadsheets used i n the c a l c u l a t i o n  •  is the  process.  Combine the i n f o r m a t i o n on energy i n t e n s i t y w i t h the m a t e r i a l s takeoff  8  f o r the case study b u i l d i n g to c a l c u l a t e the embodied  energy of each b u i l d i n g component and assembly.  The mechanical and e l e c t r i c a l drawings used i n e s t i m a t i n g m a t e r i a l s were not a v a i l a b l e f o r the case study b u i l d i n g . I n s t e a d , a s i m i l a r o f f i c e b u i l d i n g having i d e n t i c a l systems was used to d e f i n e an energy/m f o r mechanical and e l e c t r i c a l systems. 7  2  A takeoff building. 8  is  a list  of a l l m a t e r i a l s Page 53  used t o  construct  the  •  Sum the embodied energy of b u i l d i n g component t o o b t a i n the t o t a l embodied energy of the b u i l d i n g m a t e r i a l s .  4.6.2  In  M a t e r i a l s Wastage  the c a l c u l a t i o n of energy i n t e n s i t y  of b u i l d i n g m a t e r i a l s ,  allowance has been made f o r m a t e r i a l s wastage. determined f o r each component of the b u i l d i n g , of  0 to  5%.  The wastage  factor  is  based  The allowance  an is  and i s i n the range  on the  works  o f Cole  [1994], CMHC [1991] and e x p e r i e n c e .  4.6.3  Construction  Energy  C o n s t r u c t i o n energy i n c l u d e s the energy r e q u i r e d f o r t r a n s p o r t i n g b u i l d i n g assemblies  t o the s i t e p l u s assembly and e r e c t i o n o f the  components i n t o the b u i l d i n g . Cole [1994] suggests a range o f 7 t o 10% of t o t a l embodied energy, and a p p l i e s a g e n e r a l f i g u r e o f 7% of the i n i t i a l  An  analysis  embodied energy f o r the c o n s t r u c t i o n energy.  was  performed  to  investigate  the  magnitude  of  t r a n s p o r t a t i o n energy and s i t e energy r e q u i r e m e n t s . Based on the energy  intensity  of  freight  transport  of  1.7  MJ/tonne  Km , an 9  'Based on (dated) 1970 estimates of the energy e f f i c i e n c y f r e i g h t t r a n s p o r t . See Nemetz [1993]. Page 54  of  average t r a v e l l i n g d i s t a n c e  between s u p p l i e r and s i t e of 20 Km ,  and  9600  a  building  weight  of  10  tonnes ,  the  11  transport  energy  corresponds t o 330 G J . To c a l c u l a t e the s i t e energy,  i t is  t h a t 100 KW (400 V o l t s @ 250 Amps) of power i s used  f o r 7.5  hours  a  months.  This  day  for  corresponds  the to  a site  energy  used  in  energy  and s i t e  calculations,  duration  this  the  energy  of  analysis  is  energy,  but  of  1140  provide  project 810 the  of  15  G J . The t o t a l sum of  G J . These  order  of  the  construction  transportation  numbers are  magnitude  assumed  not  estimates  precise of  c o n s t r u c t i o n energy.  I t w i l l be shown i n the next s e c t i o n t h a t  construction  is  energy  s m a l l compared to  the  embodied energy  the the of  b u i l d i n g m a t e r i a l s . The energy r e q u i r e d t o t r a n s p o r t workers t o the s i t e has not been i n c l u d e d .  4.6.4  Results  A p p l y i n g the methodology o u t l i n e d i n the l a s t s e c t i o n ,  the i n i t i a l  embodied energy of the base b u i l d i n g i s c a l c u l a t e d t o be 34300 G J . Details  of the c a l c u l a t i o n are i n Appendix C3. The f l o o r area of  the b u i l d i n g i s 802 6 m . T h e r e f o r e , the i n i t i a l embodied energy of 2  the  building,  including construction  energy  and n o r m a l i z e d  for  f l o o r area i s 4.2 6 GJ/m . Table 4.2 p r e s e n t s the embodied energy of 2  the b u i l d i n g components,  10  11  summarized from the data i n Appendix C3.  This i s a representative  travelling  distance.  T h i s v a l u e i s c a l c u l a t e d from the m a t e r i a l s Page 55  takeoff.  Table  4.2.  Initial  Embodied  Energy  and Mass  of  Building  Materials.  MATERIAL  EMBODIED ENERGY, [GJ]  MASS [TONNES]  % BY MASS  Steel  12900  38.73  410  4.22  Concrete  4870  14.64  8100  84.34  Aluminum, Copper  3650  10.97  57  0. 60  Gypsum  2040  6.14  460  4 .76  Insulation  1560  4.70  51  0.53  Roofing  1470  4.43  47  0.48  Plastic  1450  4.37  15  0.16  Paint/adhe sives  1120  3 .36  26  0.27  Brick  910  2.73  360  3 .78  Glass  840  2.54  83  0.87  Other  2310  6.96  Construction  1140  3.43  Total  34300  100.00  9600  100.00  The i n f o r m a t i o n presented 90%  % BY EMB. ENERGY  of  material  the  initial  types.  i n T a b l e 4.2 suggests t h a t  embodied  The importance  energy of  Page 56  is  contained  concrete  approximately in  10  basic  and s t e e l  is  worth  n o t i n g . 53% o f the i n i t i a l embodied energy and 89% of the b u i l d i n g mass may be a t t r i b u t e d  t o these two m a t e r i a l s .  same  organized  information  information  is  highlights  the  by  In T a b l e 4 . 3 ,  building  importance  mechanical  systems i n terms of the i n i t i a l  Table 4.3.  Initial  of  component.  the  structure  embodied energy.  Embodied Energy by B u i l d i n g  Component.  COMPONENT  EMBODIED ENERGY, [GJ]  %0F INITIAL EMBODIED ENERGY  Structure  10800  31.53  Mechanical  5800  16.93  Envelope  3950  11.55  Glazing  2830  8.25  Interior Partition  2790  8.16  Electrical  2170  6.33  Roof  2130  6.21  Floor Finish  1320  3.85  Other  1320  3 .85  Construction Energy  1140  3.33  Total  34300  100.00  Page 57  the This and  4.6.5  As  Comparison With Other S t u d i e s  noted  class  i n the  in  Canadian  construction. embodied  review  of  the  literature,  input-output  there  tables  is  for  a commodity  non-residential  I t may be argued t h a t an adequate p r e d i c t i o n of  energy  of  the  case  study  b u i l d i n g can be  the  achieved  by  u t i l i z i n g t h i s s i n g l e f i g u r e . However, t h e r e i s a wide v a r i a t i o n i n n o n - r e s i d e n t i a l buildings types, a priori.  Instead,  the  buildings  is  used  as  performed  in  the  embodied  energy  f i g u r e was not r e l i e d on  input-output value a  check  present  of  so t h i s  on  work.  the  of  embodied energy  results  of  Referring to  non-residential  buildings  the  analysis  Appendix C2, is  of  the  approximately 6  GJ/$1000. The c a p i t a l c o s t of the case study b u i l d i n g (see Chapter Six for details)  i s 5.2 m i l l i o n d o l l a r s , and the f l o o r area i s 8026  m . T h e r e f o r e , the i n i t i a l embodied energy, p r e d i c t e d d i r e c t l y  from  2  the of  i n p u t - o u t p u t t a b l e s , . i s 3.9  GJ/m . 2  From the p r e c e d i n g  analysis  the b u i l d i n g by component," the embodied energy i s p r e d i c t e d t o  be 4.26  GJ/m .  The d i f f e r e n c e  2  i n these two p r e d i c t i o n s  is  of  the  order of 8%.  The  results  studies.  For  of  the  present  example,  analysis  Howard  and  are  lower  Sutcliffe  than  [1992]  many  other  predict  an  i n i t i a l embodied energy of 3 . 5 - 7 . 5 GJ/m . A l t e r n a t e l y , Buchanon and 2  Honey  [1994]  predict  an  initial  embodied  energy  of  D i s c r e p a n c i e s between the r e s u l t s may be the r e s u l t of in  the age of the d a t a .  For example, Page 58  the r e s u l t s  5.6  GJ/m . 2  differences  of Buchanon and  Honey are based on i n f o r m a t i o n generated i n 1976. importance embodied  of  concrete  energy,  small  and s t e e l  in  differences  the  in  Because of  p r e d i c t i o n of  energy  intensity  the  initial figures  between the p r e s e n t work and other s t u d i e s w i l l have a s i g n i f i c a n t impact on r e s u l t s .  Cole [1994] p r e d i c t s an i n i t i a l energy i n t e n s i t y of 4.93 GJ/m2 f o r a  three-storey  concrete  structure  with  D i f f e r e n c e s between the p r e s e n t r e s u l t s a t t r i b u t e d to differences analysis.  underground  parking.  and those of Cole may be  i n the c o n s t r u c t i o n energy used i n the  In a d d i t i o n , the work of  Oka et  al.  [1993]  suggest a  decrease i n energy i n t e n s i t y w i t h i n c r e a s i n g f l o o r a r e a . T h e r e f o r e , d i s c r e p a n c i e s between the p r e s e n t work and the work of C o l e , may be the r e s u l t of the t r e n d p r e d i c t e d by Oka et a l .  4.7 RECURRING EMBODIED ENERGY OF CASE STUDY BUILDING  The r e c u r r i n g embodied energy corresponds t o the energy r e q u i r e d t o m a i n t a i n the b u i l d i n g over i t s l i f e . T h i s i n c l u d e s energy t o r e p a i r and  replace  recurring  building  components.  embodied energy  quantified:  building  refurbishment;  and,  Building  order  of  a building,  life;  frequency  future  trends  building materials.  4.7.1  In  Life Page 59  in  the  to  three of  calculate factors  must  maintenance  energy  intensity  the be and of  It  is  very  Therefore,  difficult  to  predict  the  life  span  of  a  building.  r e p r e s e n t a t i v e time spans of 40 y e a r s and 80 y e a r s are  chosen f o r the l i f e of the case study b u i l d i n g .  Replacement and Refurbishment  4.7.2  The  second  analysis  factor is  the  Replacement i s  to  be  incorporated into  schedule  of  the  replacement  recurring  and  energy  refurbishment.  d e f i n e d as maintenance r e q u i r i n g a c o m p l e t e l y new  assembly or system. Refurbishment i m p l i e s t h a t l e s s than 100% of an assembly  is  replaced.  In the  refurbishment schedules used  to  formulate  building.  4.7.3  The  used by Cole  recurring  This information i s  Changes t o Embodied  third  building  factor  to  components  be in  present  work,  the  [1994],  replacement and  and CMHC [1991] are  embodied energy  of  the  case  study  i n Appendix C4.  Energy o f B u i l d i n g Components With Time  predicted the  is  future.  the  energy  This  issue  intensity has  of  received  inadequate a t t e n t i o n i n the l i t e r a t u r e . Cole [1994] and CMHC [1991] assume no change i n energy i n t e n s i t y w i t h t i m e . 1971 and 1986, steel, for  t h e r e was a 20% decrease  a 24% decrease  cement  [Statistics  i n energy i n t e n s i t y  for non-ferrous metals, Canada,  1993].  However, between  and a 3 3%  These r a t e s  for  decrease  of  change  in  energy i n t e n s i t y may not be s u s t a i n e d i n t o the f u t u r e ,  but i t  is  assumed t h e r e w i l l continue t o be s i g n i f i c a n t r e d u c t i o n s i n energy Page 60  intensities. intensity  of  For example, the work by CANMET steel  produced  in  Canada  p r e d i c t s the energy  will  decrease  from  GJ/Tonne i n 1989 t o 11.9 GJ/Tonne i n 2010 [CANMET, p g . x i i i ,  In o r d e r t o make the p r e d i c t i o n s of the change i n energy of  building  materials  over  time,  the  energy  c o n s t r u c t i o n r e l a t e d commodities from 1976 t o This information i s  27  1993].  intensity  intensity  of  1990 was examined.  i n Appendix C2. The annual r a t e of change  is  determined from a g r a p h i c a l a n a l y s i s of data found i n Appendix C2. A Geometric s e r i e s decreases t o intensity  1 2  is  used,  implying that  zero a s y m p t o t i c a l l y .  of m a t e r i a l s  of  the  energy  intensity  An annual r e d u c t i o n i n  1.0%/yr.  is  applied in this  energy  analysis.  Higher order s e r i e s c o u l d have been used t o p r e d i c t the t r e n d i n energy i n t e n s i t y . and  However, the geometric s e r i e s p r o v i d e s a simple  (over the range of data examined) r e a s o n a b l y a c c u r a t e means of  p r e d i c t i n g the time t r e n d .  Two Approaches  4.7.4  Two methods are used t o p r e d i c t the r e c u r r i n g energy of the  case  study b u i l d i n g . The f i r s t method a p p l i e s energy i n t e n s i t y data from the Canadian i n p u t - o u t p u t t a b l e [ S t a t i s t i c s Canada, 1994], combined with  survey  method  is  results  of  conceptually  maintenance simple,  expenses and  [BOMA,  provides  an  1994].  The  alternate  A geometric s e r i e s i s d e f i n e d as a s e t of c o n s e c u t i v e numbers t h a t v a r y by a constant m u l t i p l e of the p r e v i o u s v a l u e i n the series. 12  Page 61  methodology t o t h a t used by Cole and  Sutcliffe  [1994],  CMHC [1991],  and Howard  [1992].  The second method used i s c o n s i s t e n t w i t h the authors noted above. T h i s method a p p l i e s a replacement and refurbishment schedule t o a l l building  components,  maintenance s c h e d u l e ,  4.7.4.1 R e c u r r i n g  In  order  replacement  to  calculates  the  embodied energy  and sums over the b u i l d i n g  life.  Embodied Energy Based on Input-Output A n a l y s i s  estimate  the  and maintenance,  embodied the  energy  energy  associated  intensity  r e c o n s t r u c t i o n i s o b t a i n e d from the 1990 S t a t i s t i c s output  table.  A  due t o the  value  of  6.11  MJ/$  is  used  of  with  building  Canada i n p u t for  1994.  maintenance expenses are obtained from the most r e c e n t  The  survey of  the B u i l d i n g Owners and Managers A s s o c i a t i o n (BOMA) exchange r e p o r t [BOMA, p g . 429,  1994]. For 1994,  the maintenance c o s t s of p r i v a t e  s e c t o r o f f i c e b u i l d i n g s , l o c a t e d i n downtown Vancouver i s An annual i n f l a t i o n r a t e energy  intensity  of  2%/yr.  building  maintenance c o s t r e s u l t s embodied energy.  of  is  assumed . 13  reconstruction  $15.51/m . 2  Multiplying and  the  the  annual  i n an estimate f o r the annual r e c u r r i n g  The annual r e c u r r i n g  embodied energy  is  summed  over the l i f e of the b u i l d i n g , g i v i n g an e s t i m a t e of the r e c u r r i n g  T h i s r a t e i s c o n s i s t e n t with the p r o j e c t e d i n f l a t i o n r a t e p r e d i c t e d by the M i n i s t r y of Finance and Corporate R e l a t i o n s [1994] . 13  Page 62  embodied energy.  Based on the above assumptions and method,  r e c u r r i n g embodied energy f o r the case study b u i l d i n g i s 4.7 for  a b u i l d i n g l i f e of 40 y e a r s , and 11.6 GJ/m  2  the GJ/m  for a building  2  life  of 80 y e a r s . Normalized f o r b u i l d i n g l i f e , the 40-year b u i l d i n g has an  annual  recurring  embodied  energy  of  0.12  GJ/m .yr,  and  2  80-year b u i l d i n g has an annual r e c u r r i n g embodied energy of  the 0.15  GJ/m .yr. 2  4.7.4.2 R e c u r r i n g Embodied Energy Based on Replacement Schedule  The second method used t o estimate the r e c u r r i n g embodied energy i s based on an assumed maintenance and r e p a i r w i t h the schedule used by Cole  schedule,  consistent  [1994]. D e t a i l s of the maintenance  schedule are found i n Appendix C4. Based on the above assumptions, the r e c u r r i n g embodied energy f o r the case study b u i l d i n g GJ/m  f o r a b u i l d i n g l i f e of 40 y e a r s , and 8.5 GJ/m  2  life  of  80  years.  Normalized  for  building  2  is  4.2  for a building  lives,  the  b u i l d i n g has an annual r e c u r r i n g embodied energy of 0.11  40-year GJ/m .yr, 2  and the 80-year b u i l d i n g has an annual r e c u r r i n g embodied energy of 0.11  GJ/m .yr. 2  4.7.3  The  Comparison o f R e s u l t s  results  Table  of  the  recurring  embodied energy  4.4.  Page 63  are  summarized i n  Table  4.4.  Comparison of  R e c u r r i n g Embodied Energy Based on two  Methods. BUILDING LIFE  INPUT-OUTPUT METHOD T o t a l GJ/m  2  MAINTENANCE METHOD  Annual GJ/m .yr  T o t a l GJ/m  Annual GJ/m .yr  2  2  2  40 y e a r s  4.7  0.12  4.2  0.11  80 years  11. 6  0.15  8.8  0.11  Agreement between the two methods i s good f o r an assumed b u i l d i n g life  of  40 y e a r s .  The d i f f e r e n c e  80-year b u i l d i n g l i f e  is  in results  f o r the  of the order of 25%. I t  is  case of  an  hypothesized  t h a t the i n p u t - o u t p u t v a l u e s may be h i g h . As a b u i l d i n g nears  the  end  and  of  its  life,  maintenance  does  not  occur  as  regularly,  b u i l d i n g components are allowed t o degrade. T h i s i s c a p t u r e d i n the maintenance energy,  schedule  but  remaining  not  in  analysis  method the will  of  calculating  input-output utilize  recurring  method.  the  embodied  Therefore,  maintenance  the  schedule  information.  4.8 DEMOLITION AND RECYCLING  The  final  component  of  embodied energy  to  be q u a n t i f i e d  is  the  energy r e q u i r e d t o demolish or r e c y c l e the b u i l d i n g a t the end of its  life.  Demolition consists  of  the  p l u s h a u l i n g away d e b r i s to a l a n d f i l l . Page 64  actual demolition  process,  Recycling implies sorting  of  materials  materials  at  and r e u s e . this  There  time . 14  In  is  little  addition,  recycling it  is  of  not  building clear  r e c y c l i n g should be i n c o r p o r a t e d i n t o an energy a n a l y s i s . these l i m i t i n g f a c t o r s , analysis . 1 5  how  Due to  r e c y c l i n g i s not c o n s i d e r e d f u r t h e r i n the  To p r e d i c t the d e m o l i t i o n energy,  the energy  intensity  f i g u r e used i n t r a n s p o r t i n g the b u i l d i n g m a t e r i a l s a t the time of original  construction  is  used.  It  is  assumed  that  r e q u i r e d f o r the a c t u a l d e m o l i t i o n of the b u i l d i n g i s energy  intensity  of  demolition  is  estimated  at  330  the  energy  s m a l l . The G J . The 1 6  d e m o l i t i o n energy i s l e s s than 1% of the i n i t i a l embodied energy.  4.9  LIFE-CYCLE EMBODIED ENERGY OF CASE STUDY BUILDING  The  life-cycle  embodied energy of the case study b u i l d i n g may be  c a l c u l a t e d by summing the i n i t i a l , r e c u r r i n g and d e m o l i t i o n energy components d e f i n e d i n the p r e v i o u s  sections.  In B r i t i s h Columbia i n 1992, approximately 7.5% (by weight) of b u i l d i n g d e m o l i t i o n m a t e r i a l was r e c y c l e d . Most of t h i s m a t e r i a l was a s p h a l t [SENES, 1993]. 14  The r o l e of r e c y c l i n g of b u i l d i n g m a t e r i a l s r e q u i r e s f u r t h e r i n v e s t i g a t i o n . However, i t i s beyond the scope of t h i s work t o perform t h a t a n a l y s i s . 15  Because of the u n c e r t a i n t y of i n d e m o l i t i o n energy, this f i g u r e i s not a d j u s t e d f o r changes to energy i n t e n s i t y i n the future. Therefore, t h i s provides a conservative e s t i m a t e of d e m o l i t i o n energy. 16  Page 65  Table  4.5.  Summary of  L i f e - c y c l e Embodied  Energy  Based on  two  Methods. MAINTENANCE METHOD  INPUT-OUTPUT METHOD  BUILDING LIFE  T o t a l GJ/m  Annual GJ/m .yr  2  Total  GJ/m  Annual GJ/m .yr  2  2  2  4 0 years  9.0  0.23  8.5  0.21  80 y e a r s  15.9  0.20  12.7  0.16  As noted i n the l a s t s e c t i o n ,  the f i g u r e f o r the 8 0-year  building,  based on i n p u t - o u t p u t a n a l y s i s may be h i g h due t o the p r e d i c t i o n of r e c u r r i n g energy i n t e n s i t y near the end of the b u i l d i n g l i f e . The r e s u l t s suggest t h a t by d o u b l i n g the l i f e of a b u i l d i n g , the  life-  c y c l e embodied energy may be reduced by 13 t o 24%.  As  noted  GJ/m . 2  i n Section  4.6.4,  the  initial  T h i s i m p l i e s t h a t the i n i t i a l  embodied energy  is  4.27  embodied energy accounts  for  between 47% t o 50% of the l i f e - c y c l e embodied energy f o r a b u i l d i n g with  a 40-year  life.  For an 80-year  building  life,  the  embodied energy accounts f o r between 27% t o 34% of the  initial  life-cycle  embodied energy.  Table  4.6  examines  the  relative  embodied energy by b u i l d i n g Table 4.3,  magnitudes  component.  the magnitude of the  of  the  Comparing the  s t r u c t u r e reduces  between 16% and 10.5% f o r 40 and 80 year b u i l d i n g s ,  Page 66  life-cycle results  of  from 31.5%  to  respectively.  Alternately, carpets),  the  importance  of  interior  (including  i n c r e a s e s from approximately 12% of the i n i t i a l  energy t o 23% and 2 6% of the l i f e - c y c l e and  finishes  80-year b u i l d i n g l i v e s ,  Table 4.6.  embodied  embodied energy f o r the  40  respectively.  Comparison of the L i f e - c y c l e Embodied Energy by B u i l d i n g  Component. % OF LIFE-CYCLE EMBODIED ENERGY COMPONENT  40 Year  80 Year  Site  1.39%  1. 60%  Structure  16.00%  10.50%  Envelope  7.81%  6.13%  Glazing  14.23%  16.15%  Roof  11.32%  13.12%  Interior Partitions  14.64%  16.33%  8.42%  9.52%  Mechanical  13 .72%  13.89%  Elevator  0.56%  2.64%  Electrical  3.84%  2 . 84%  Other  8. 07%  7 .29%  Total  100%  100%  Floor  Finishes  Page 67  4.9.1  Comparison With Other S t u d i e s  Agreement between the p r e s e n t study and s i m i l a r works i s summarized i n T a b l e 4.7  below.  The r e s u l t s of t h i s work are i n the range of  p u b l i s h e d works. D i s c r e p a n c i e s between t h i s study and the of  Cole  [1994] may be a t t r i b u t e d l a r g e l y t o  results  differences  in  the  methodology employed t o c a l c u l a t e the r e c u r r i n g embodied energy. This  study  assumes  a  whereas Cole does n o t .  decrease  in  Therefore,  energy  the r e s u l t s  dependent on the assumed l i f e s p a n of the  Differences Sutcliffe  between  this  work  intensity  and  the  over  time,  of Cole are h i g h l y  building.  results  of  [1992] may a l s o be a t t r i b u t e d t o d i f f e r e n t  Howard  and  assumptions  and methods employed t o c a l c u l a t e the r e c u r r i n g embodied energy of the  building.  grades  of  In t h e i r work, Howard and S u t c l i f f e  office  fit-out,  three  frequencies  assume  of  three  maintenance  s c h e d u l e s , and a s i n g l e l i f e s p a n of 60 y e a r s . C o n v e r s e l y , t h i s work assumes a s i n g l e  grade of  fit-out,  two  lifespans  scenarios  and  employs two independent methods t o c a l c u l a t e the embodied energy a s s o c i a t e d w i t h r e c u r r i n g energy.  Because  of  the  different  assumptions  made  and the  speculative  nature employed i n q u a n t i f y i n g the r e c u r r i n g embodied energy, i t  is  not p o s s i b l e t o say which s e t of r e s u l t s p r o v i d e s the most a c c u r a t e or "best" r e s u l t s . Page 68  Table  4.7.  Results,  Summary  of  Initial  and  Life-cycle  Embodied  Energy  I n c l u d i n g R e s u l t s of Present Study.  AUTHOR  DATE  INITIAL EMBODIED ENERGY GJ/m  2  ANNUALIZED LIFE-CYCLE EMBODIED ENERGY GJ/m .yr 2  S t e i n et a l .  1976  18 . 6  B a i r d and Aun  1983  3  CMHC  1991  2.4  0.11  Howard & Sutcliffe  1992  3.5-7.5  0.18-0.45  Oka et a l .  1993  8-12  Buchanan & Honey  1994  5.6  Cole  1994  4.9  0.2-0.3  T h i s Study  1994  4.1  0.16-0.23  4.10 INITIAL EMBODIED ENERGY OF IMPROVED BUILDINGS  As  noted  in  investigate energy  of  Chapter the  a  configuration  One,  objective  of  r e l a t i o n s h i p between the  building to  an  an  as  the  (operating)  design energy  T h i s s e c t i o n q u a n t i f i e s the e f f e c t  this  thesis  is  to  o p e r a t i n g and embodied  progresses efficient  from  a  basic  configuration.  on the embodied energy due t o  changes i n the case study b u i l d i n g o p e r a t i n g performance.  Page 69  The s t r a t e g i e s  implemented i n r e d u c i n g the o p e r a t i n g energy were  d i s c u s s e d and q u a n t i f i e d i n Chapter T h r e e . To q u a n t i f y the on  the  initial  embodied  energy  due  to  changes  in  effect  operating  performance, the spreadsheets used t o c a l c u l a t e the embodied energy of  the  building  base  building  design  are m o d i f i e d a c c o r d i n g t o  strategy.  The  program  used  the  to  changes  calculate  o p e r a t i n g c h a r a c t e r i s t i c s of the b u i l d i n g i s used t o estimate  in the the  h e a t i n g v e n t i l a t i o n and a i r - c o n d i t i o n i n g (HVAC) equipment s i z e s .  Changes  in  the  building  embodied energy  due  to  rotating  by  90  degrees i s assumed t o be z e r o . T h i s i m p l i e s t h e r e i s no c o n s t r a i n t imposed  by  the  building  site.  Similarly,  changes  in  air  i n f i l t r a t i o n are assumed t o cause zero change i n b u i l d i n g embodied energy. I t i s assumed t h a t h i g h e r q u a l i t y workmanship w i l l the r e d u c t i o n s i n a i r  The s t r a t e g i e s  achieve  infiltration . 1 7  l i s t e d i n Table 4.8 cumulately reduce the o p e r a t i n g  energy of the case study b u i l d i n g by 77%. C o n v e r s e l y , the  initial  embodied energy changes by a maximum of 2%. The n e g a t i v e s i g n s i n runs 7B t o 10 imply a reduction  i n the i n i t i a l  embodied energy of  the b u i l d i n g due t o s m a l l e r HVAC equipment s i z e s . sign  and the  suggest coupled.  that  s m a l l magnitude of operating  Intuitively  energy this  changes  i n the  and embodied  makes  sense.  The changes embodied  energy  None  "There w i l l be an i n c r e a s e i n the c a p i t a l b u i l d i n g . T h i s w i l l be q u a n t i f i e d i n Chapter S i x . Page 70  of  in  energy  are  loosely  the  design  costs  of  the  strategies  implemented  to  a l t e r the b u i l d i n g d e s i g n .  reduce  operating  Therefore, i t  to the embodied energy w i l l be s m a l l .  Page 71  energy  significantly  i s expected t h a t changes  Table  4.8.  Building  Changes i n  Initial  to  Changes  in  Design.  RUN STRATEGY  4.11  Embodied Energy due  EMBODIED ENERGY GJ/m  % DIFF  2  STRUCTURE AND ENVELOPE  MECHANICAL  ELECTRICAL  TOTAL  FROM 7A  7A  Base  3 .29  0.7  0. 27  4.26  0  7B  Orientation  3 .29  0. 67  0.27  4 .23  -1%  7C  Infiltration  3 .29  0. 62  0. 27  4 .18  -2%  7D  Infiltration  3 .29  0. 62  0. 27  4 .18  -2%  8A  Daylighting  3.29  0. 61  0.28  4.18  -2%  8B  Heat Pump  3.29  0. 61  0.28  4 .18  -2%  9  Glazing  3.33  0. 61  0.28  4.22  -1%  10  Lighting Density  3.33  0.61  0.27  4.21  -1%  11  Insulation  3.46  0.61  0.27  4.34  2%  12  Equip. Loads  3.46  0. 61  0.27  4.34  2%  14  Lighting Effic.  3.46  0.61  0.26  4 .33  2%  RECURRING EMBODIED ENERGY OF IMPROVED BUILDINGS  The spreadsheet used t o c a l c u l a t e the r e c u r r i n g embodied energy of Page 72  the base b u i l d i n g was m o d i f i e d t o c a l c u l a t e the r e c u r r i n g embodied energy a s s o c i a t e d w i t h b u i l d i n g improvements. The method based on the  replacement and refurbis'hment schedule  is  used.  Again,  a 1%  decrease per year i s assumed f o r the change i n energy i n t e n s i t y of b u i l d i n g components.  Page 73  Table 4.9.  R e c u r r i n g Embodied Energy f o r Improved  RUN  Buildings.  RECURRING EMBODIED ENERGY  STRATEGY  [GJ/m ] 2  40 Year  80 Year  7A  Base Case  4.15  8.76  7B  Orientation  4.11  8.65  7C  Infiltration  4.02  8.45  7D  Infiltration  4 . 01  8.41  8A  Daylighting  4.02  8.44  8B  Heat Pump  4.02  8.44  9  Glazing  4 .11  8.62  10  Lighting Density  4.09  8.59  11  Insulation  4.12  8. 65  4.12  8.65  4.11  8. 62  12 14  Equip.  Loads  Lighting Efficiency  4.12  LIFE-CYCLE EMBODIED ENERGY OF IMPROVED BUILDINGS  The  life-cycle  initial,  embodied  energy  r e c u r r i n g and d e m o l i t i o n  is  obtained  from  summing  the  energy f o r each case study r u n .  Page 74  T a b l e 4.10 below summarizes the change i n the l i f e - c y c l e energy f o r the range of improved  T a b l e 4.10.  buildings.  Summary of L i f e - c y c l e Embodied Energy of B u i l d i n g With  Improvements. RUN  LIFE-CYCLE EMBODIED ENERGY [GJ/m ]  STRATEGY  2  40 Year  80 Year  7A  Base  8.41  13 .02  7B  Orientation  8.37  12 .91  7C  Infiltration  8.28  12 .71  7D  Infiltration  8.27  12.67  8A  Daylighting  8.28  12.7  8B  Heat Pump  8 . 28  12.7  9  Glazing  8.37  12.88  10  Lighting Density  8.35  12.85  11  Insulation  8.38  12.91  8.38  12.91  8.37  12.88  12 14  Equip.  Loads  Lighting Efficiency  The maximum d e v i a t i o n i n l i f e - c y c l e embodied energy r e l a t i v e t o Page 75  the  base  case  levelized  is  less  f o r the  than  2%.  If  the  40 and 80-year  values  life  in  span of the  l i f e - c y c l e embodied energy (to two decimal p l a c e s ) for  a 40-year l i f e and 0.16  all  strategies.  energy  occur  Table  4.10  building,  i s 0.21  are the  GJ/m .yr 2  G J / m . y r f o r the 80-year l i f e span for 2  T h i s again suggests t h a t changes t o the o p e r a t i n g (almost)  independently  to  changes  in  the  embodied  energy of the b u i l d i n g over the range of o p e r a t i n g s t r a t e g i e s and performances s t u d i e d .  4.13  REDUCING THE LIFE-CYCLE EMBODIED ENERGY OF THE CASE STUDY  BUILDING  A number of methods t h a t may be u s e f u l  i n r e d u c i n g the  life-cycle  embodied energy of the case study b u i l d i n g are g i v e n below.  The f i r s t method i s m a t e r i a l r e c y c l i n g . The i n t r o d u c t i o n of s t e e l 1 8  m i n i - m i l l s and scrap s t e e l p r o c e s s i n g p r o v i d e s an important means of r e d u c i n g the energy i n t e n s i t y of s t e e l p r o d u c t s . U s i n g r e c y c l e d steel  implies  approximately  a reduction 40%.  i n the  Similarly,  energy  through the  intensity  of  a d o p t i o n of  steel  by  materials  r e c y c l i n g , the energy i n t e n s i t y of copper may be reduced by 84% and aluminum by 95% [Nemetz,  1993]  The r e p o r t by SENES [1993] documents c o n s t r u c t i o n waste r e c y c l i n g  R e c y c l i n g of b u i l d i n g s i s an a l t e r n a t i v e . For example, b u i l d i n g s being converted i n t o apartment b u i l d i n g s . 18  Page 76  office  p r a c t i c e s i n Canada. In 1992, B r i t i s h Columbia r e c y c l e d 7.5% of building  c o n s t r u c t i o n and d e m o l i t i o n waste.  This  figure  is  its well  below the n a t i o n a l average of 17%. T h e r e f o r e , r e c y c l i n g p r o v i d e s a potentially  important means of  r e d u c i n g the  energy  intensity  of  buildings.  A second method of r e d u c i n g the l i f e - c y c l e case  study  b u i l d i n g was  found  from  an  i n t e n s i t y of the Canadian economy s i n c e  embodied energy of analysis  1976.  of  the  the  energy  Appendix C.2 t r a c e s  the change i n the energy i n t e n s i t y of b u i l d i n g m a t e r i a l s i n Canada over the l a s t 2 0 y e a r s . In t h i s work i t i s assumed t h a t the intensity  of  goods and s e r v i c e s  approximately  1%  per  year.  energy  produced i n Canada decreases by  This  suggests  that  technological  development i n m a t e r i a l s p r o d u c t i o n may p l a y an important r o l e i n r e d u c i n g the embodied energy of b u i l d i n g s i n the f u t u r e . I t i s not clear  if  this  will  r e c o v e r e d sources  remain t r u e  of  fuel  over  the  long  and b a s i c m a t e r i a l s  energy i n t e n s i t y of m a t e r i a l s may begin t o  term.  As  easily  are d e p l e t e d ,  the  rise . 1 9  A t h i r d method f o r d e c r e a s i n g the l i f e - c y c l e embodied energy of the case study b u i l d i n g i s through i n c r e a s e d b u i l d i n g l i f e . As noted i n the  last  annual  section,  life-cycle  by  increasing  embodied  the  energy  life  of  decreases  the from  building, 0.21  to  the 0.16  T h i s argument may be countered by the o p p o r t u n i t y f o r s u b s t i t u t i o n towards low energy i n t e n s i t y m a t e r i a l s , or the growing t r e n d i n Canada towards r e c y c l i n g m a t e r i a l . 19  Page 77  GJ/m .yr,  corresponding  2  building level,  life  provides  to  a  an  24%  reduction.  attractive  While  solution  at  increasing  the  building  i t may not be s u i t a b l e when d e a l i n g w i t h the e n t i r e b u i l d i n g  stock over the long r u n . Due t o t e c h n i c a l o b s o l e s c e n c e ,  buildings  c o n s t r u c t e d t o p r e s e n t standards may be h i g h l y i n e f f i c i e n t by the standards of 40 or 80 years hence. the  lives  of  single  efficiency  of  the  units  entire  I t may be d e s i r a b l e t o  in  order  building  to  increase  stock.  decrease  the  However,  energy  there  is  i n s u f f i c i e n t i n f o r m a t i o n i n the l i t e r a t u r e r e g a r d i n g the change i n building  performance over  time  to  quantify  optimal  replacement  i n t e r v a l s of b u i l d i n g s . T h e r e f o r e , the s t r a t e g y of i n c r e a s i n g the s e r v i c e l i f e of b u i l d i n g s i s ambiguous a t the macro l e v e l .  The methods d e s c r i b e d above t o reduce the embodied energy of  the  case study b u i l d i n g are c o n c e p t u a l l y q u i t e d i f f e r e n t from methods used t o reduce the o p e r a t i n g energy of the b u i l d i n g .  For example,  c r e a t i n g i n f r a s t r u c t u r e t o support m a t e r i a l s r e c y c l i n g or r e d u c i n g energy i n t e n s i t y through r e s e a r c h and development funding i s q u i t e a  different  intensity larger,  of  and  decision  making process  an o f f i c e the  building.  decision  is  to  decreasing  The s c a l e  made  by  of  the  stakeholders  the  lighting  decision outside  is the  b u i l d i n g d e s i g n team.  The f o u r t h means of r e d u c i n g the embodied energy of the case study building includes  involves  decisions  substitution  or  at  the  omission Page 78  building of  design  building  level,  and  materials.  S u b s t i t u t i o n i m p l i e s choosing b u i l d i n g m a t e r i a l s w i t h low energy intensity. and  Alternately, omitting certain finishes  drywall  assemblies  is  such as  a growing a r c h i t e c t u r a l form  carpets with  a  number of a t t r i b u t e s . Lower c a p i t a l and maintenance c o s t s , improved air  quality,  floors  and a t t r a c t i v e  instead  of  carpet)  appearances  (eg.  polished  provide further incentives  t h i s o p t i o n . As noted i n Table 4 . 6 ,  concrete  to  explore  i n t e r i o r p a r t i t i o n s and f l o o r  c o v e r i n g s account f o r 23% t o 26% of the l i f e - c y c l e embodied energy of may  the case study b u i l d i n g . provide  an  Therefore, omitting c e r t a i n  important means  for  reducing  life-cycle  finishes energy  consumption.  While i t i s v a l i d t o examine a l t e r n a t i v e s t o reduce the  life-cycle  embodied energy of the case study b u i l d i n g , i t i s important t o make decisions  in  building.  Chapter  operating  the  and  context Five  of  the  compares  embodied  total the  energy  relative  components  of  the  level  of  consumed  by  the  magnitude  of  the  building  energy  consumption.  4.14 MODEL UNCERTAINTY  It  is  a difficult  analysis  of  this  task  to  chapter.  place  a  The v a l u e  confidence  obtained  embodied energy of the case study b u i l d i n g i s  for  the  on  the  initial  accurate to within  the u n c e r t a i n t y of the energy i n t e n s i t y of the base m a t e r i a l s . As noted  in  Section  4.5.1,  and assuming Page 79  a  level  II  analysis,  the  uncertainty  in  the  initial  embodied  energy  of  the  case  study  b u i l d i n g i s of the order of 10%.  I t i s not p o s s i b l e t o p l a c e a r i g o r o u s e r r o r e s t i m a t e on the c y c l e embodied energy of the case study b u i l d i n g .  life-  The r e s u l t s  of  the l i f e - c y c l e a n a l y s i s are dependent on the assumed frequency of maintenance,  and the r a t e of change of the energy i n t e n s i t y w i t h  t i m e . N e i t h e r of these v a r i a b l e s can be d e f i n e d without e m p i r i c a l information.  A sensitivity  a n a l y s i s was performed t o observe  the  dependence of the r e s u l t s on the assumed frequency of maintenance and  assumed change of  energy i n t e n s i t y w i t h t i m e .  upper l i m i t on the embodied energy e s t i m a t e s ,  it  To p r o v i d e an  is  assumed t h a t  the frequency of maintenance i s doubled f o r i n t e r i o r f i t o u t , and 20  the r a t e of change of energy i n t e n s i t y i s h a l v e d (from 1%/yr.  to  0 . 5 % / y r . ) . Under t h i s s c e n a r i o , the l i f e - c y c l e embodied energy  is  0.26  GJ/m .yr 2  years,  and 0.20  respectively.  interior  fit-out  is  GJ/m .yr 2  for building  lives  To p r o v i d e a lower l i m i t , halved  and the  rate  of  the  of  40 and 80  frequency of  change  of  energy  i n t e n s i t y i s i n c r e a s e d t o 1.5% per y e a r . Under t h i s s c e n a r i o ,  the  life-cycle  for  embodied energy i s  0.18  G J / m . y r and 0.13 2  GJ/m .yr 2  b u i l d i n g l i v e s of 40 and 80 y e a r s , r e s p e c t i v e l y . These r e s u l t s are summarized i n T a b l e 4.11 below. The l a r g e v a r i a t i o n i n the of  the s e n s i t i v i t y  results  a n a l y s i s h i g h l i g h t s the need t o make c a u t i o u s  The f i t - o u t i s i n c l u d e d i n the s e n s i t i v i t y a n a l y s i s s i n c e the frequency of maintenance work t o i n t e r i o r f i n i s h e s i s h i g h l y s p e c u l a t i v e compared t o other b u i l d i n g components. 20  Page 8 0  assumptions about f u t u r e t r e n d s i n the l i f e - c y c l e  embodied energy  of b u i l d i n g s . T h i s p l a c e s r e a l c o n s t r a i n t s on the a b i l i t y t o i n f e r g e n e r a l i n f o r m a t i o n from the present  T a b l e 4.11.  analysis.  R e s u l t s of S e n s i t i v i t y A n a l y s i s . LIFE-CYCLE EMBODIED ENERGY [ G J / m . y r ] 2  40 Year  8 0 Year  High S c e n a r i o  0.26  0.20  Used i n A n a l y s i s  0.21  0.16  Low S c e n a r i o  0.18  0.13  Building  4.15  Life  CHAPTER SUMMARY  A summary of the f i n d i n g s a r e :  -The  initial  embodied  energy  of  the  building  is  4.26  GJ/m . 2  N o r m a l i z i n g f o r b u i l d i n g l i f e , t h i s corresponds t o 0.10 G J / m . y r f o r 2  a b u i l d i n g l i f e of 40 y e a r s , and .0.053 G J / m . y r f o r a b u i l d i n g l i f e 2  of 80 y e a r s .  -Steel concrete  accounts accounts  for for  38.7% a  of  the  further  initial  14.6%  energy. Page 81  of  embodied the  energy  initial  and  embodied  -The  structure  accounts  for  approximately  32%  embodied energy and the HVAC system accounts  of  the  initial  f o r a f u r t h e r 17%.  - U s i n g the maintenance method t o c a l c u l a t e the r e c u r r i n g embodied energy, the r e c u r r i n g embodied energy i s 0.11 G J / m . y r f o r b u i l d i n g 2  l i v e s of 40 and 80 y e a r s .  -The l i f e - c y c l e  embodied energy i s 0.21 G J / m . y r and 0.16  GJ/m .yr.  2  f o r b u i l d i n g l i v e s of 40 and 80 y e a r s , r e s p e c t i v e l y . are v a l i d f o r a l l the b u i l d i n g c o n f i g u r a t i o n s  2  These  studied  figures  i n Chapter  Three.  -Over  the  range  work,  the  operating  nearly  of  performances energy  and  and s t r a t e g i e s life-cycle  studied  embodied  in  energy  this are  independent.  -The r e s u l t s of the a n a l y s i s suggest t h a t over the range of  energy  performances s t u d i e d i n t h i s work, m u l t i p l y i n g b u i l d i n g p r i c e and the  input-output value  sufficient  for non-residential  construction  provides  accuracy to p r e d i c t the i n i t i a l embodied energy of  the  case study b u i l d i n g .  -Options buildings trend  available include:  i n the  to  reduce  the  materials  recycling;  Canadian economy  goods and s e r v i c e s ;  life-cycle  to  reduce  embodied  relying the  Page 82  on the  embodied  i n c r e a s i n g the b u i l d i n g l i f e ;  energy  and,  of  natural  energy  of  materials  s u b s t i t u t i o n or omission of c e r t a i n  -Building l i f e ,  finishes.  the f u t u r e t r e n d s i n energy i n t e n s i t y  of  building  m a t e r i a l s and the frequency (and magnitude) of b u i l d i n g maintenance are v a r i a b l e s t h a t cannot be q u a n t i f i e d i n the a n a l y s i s Therefore,  the  calculations the  results  of  the  are h i g h l y dependent  life-cycle  embodied  ex  ante. energy  on assumptions made throughout  analysis.  Page 83  CHAPTER 5: LIFE-CYCLE ENERGY ANALYSIS  5.1 INTRODUCTION  T h i s c h a p t e r combines the explore  the  building.  life-cycle  Results  of  results  energy  the  of  Chapters Three and Four  requirements  present  analysis  of are  the  case  to  study  compared t o  the  f i n d i n g s of other s t u d i e s . The r e l a t i v e magnitudes of the o p e r a t i n g and l i f e - c y c l e embodied energy are compared over the range of case study s t r a t e g i e s examined i n p r e v i o u s c h a p t e r s .  5.2 LIFE-CYCLE ENERGY ANALYSIS  In  order  to  building,  obtain  the  quantified.  the  total  The t o t a l  life-cycle  energy energy  energy  consumed is  the  by  building  the  sum of  energy and the l i f e - c y c l e embodied energy  of  the  the  case  building  study  must  be  annual o p e r a t i n g  (normalized f o r assumed  life).  5.2.1 O p e r a t i n g Energy  T a b l e 5.1  summarizes the annual o p e r a t i n g performance of the case  study b u i l d i n g  over the  range of  energy  conservation  strategies  examined i n t h i s work. R e s u l t s are g i v e n i n terms of the Energy Performance Index  (BEPI).  Page 84  Building  Table 5.1.  Summary of B u i l d i n g Energy Performance  Index f o r Case  Study B u i l d i n g .  SIMULATION  STRATEGY  RUN  BEPI  CUMULATIVE  [GJ/m /year]  % CHANGE  2  Site, 7A  Base Case  0.96  (1.39)  7B  Orientation  0.95  (1.38)  -3%  7C  Infiltration  0.91  (1.32)  -7%  7D  Infiltration  0.89  (1.29)  -9%  8A  Daylighting  0.56  (0.93)  -43%  8B  Heat Pump  0.44  (0.64)  -55%  9  Glazing  0.41  (0.59)  -58%  10  Lighting Density  0.35  (0.51)  -64%  11  Insulation  0.34  (0.49)  -65%  12  Equipment  0.28  (0.41)  -71%  14  Lighting Efficiency  0.23  (0.33)  -77%  5.2.2 L i f e - c y c l e  The 5.2  (Source)  Embodied Energy  l i f e - c y c l e embodied energy was explored i n Chapter Four. T a b l e summarizes  the  results  of  the  analysis.  Page 85  life-cycle  embodied  energy  Table  5.2.  Summary of  Life-cycle  Embodied Energy of  Case  Study  Building. RUN  STRATEGY  LIFE-CYCLE EMBODIED ENERGY [GJ/m ] 2  40 Year  80 Year  7A  Base Case  8 .41  13.02  7B  Orientation  8.37  12.91  7C  Infiltration  8.28  12.71  7D  Infiltration  8.27  12.67  8A  Daylighting  8.28  12.7  8B  Heat Pump  8.28  12.7  9  Glazing  8.37  12.88  10  Lighting Density  8.35  12.85  11  Insulation  8.38  12.91  12  E q u i p . Loads  8.38  12.91  14  Lighting Efficiency  8.37  12.88  D i v i d i n g the l i f e c y c l e embodied energy by the b u i l d i n g l i f e i n the a n n u a l i z e d l i f e - c y c l e c y c l e embodied energy i s  embodied energy. The a n n u a l i z e d  life-  0.21 G J / m . y r f o r a 40 year l i f e and 0.16  G J / m . y r f o r the 80 year l i f e 2  results  2  span for all strategies Page 86  examined i n  t h i s work.  5.3 LIFE-CYCLE ENERGY ANALYSIS  Combining the annual o p e r a t i n g and l i f e - c y c l e embodied energy data p r o v i d e s an estimate of the annual l i f e - c y c l e for  the  building.  requirements strategies.  of  Table the  5.3  case  summarizes  study  the  building  energy requirement life-cycle  over  the  energy  range  of  The r e s u l t s are presented g r a p h i c a l l y i n Appendix D. In  the r e s u l t s p r e s e n t e d below,  the source  1  o p e r a t i n g energy i s  used  i n the c a l c u l a t i o n s . Using the source energy ensures c o n s i s t e n c y of system  boundaries  when  comparing  the  embodied  and  operating  components of the l i f e - c y c l e energy.  The source energy r e f e r s t o the primary energy consumed t o produce energy. The d i s t i n c t i o n between s i t e and source energy i s discussed i n Section 3.3.1. J  Page 87  Table 5.3.  L i f e - c y c l e Energy R e s u l t s of Case Study B u i l d i n g . RUN  STRATEGY EMPLOYED  LIFE-CYCLE ENERGY [GJ/m .yr]  LIFE-CYCLE EMBODIED ENERGY AS % OF TOTAL  2  40 year 80 year 40 year 80 year  For  Base Case  7A  1.6  1.55  13.13%  10.32%  Orientation  7B  1.59  1.54  13.21%  10.39%  Infiltration  7C  1.53  1.49  13.73%  10.74%  Infiltration  7D  1.5  1. 45  14.00%  11.03%  Daylighting  8A  1.14  1. 09  18.42%  14.68%  Heat Pump  8B  0.85  0.8  24.71%  20.00%  Glazing  9  0.8  0.75  26.25%  21.33%  Lighting Density  10  0.72  0. 66  29.17%  24.24%  Insulation  11  0.7  0. 65  30.00%  24.62%  Elevator, Equipment  12  0.62  0.57  33 .87%  28.07%  Lighting Efficiency  14  0.54  0.49  38.89%  32.65%  a building  reduced from 1.6 energy  life to  conservation  of 0.54  .  40 y e a r s ,  the  l i f e - c y c l e energy may be  G J / m . y r by the cumulative 2  strategies.  This  Page 88  corresponds  a d o p t i o n of to  a  66%  reduction. cycle  Similarly,  energy  may be  for a building l i f e reduced from  cumulative implementation of the  1.55  of 80 y e a r s ,  to  0.49  the  GJ/m .yr 2  energy c o n s e r v a t i o n  lifeby  the  strategies,  c o r r e s p o n d i n g t o a 68% decrease.  As h y p o t h e s i z e d  i n Chapter One and confirmed i n T a b l e  5.3,  embodied energy becomes a more s i g n i f i c a n t component of the energy budget as the  o p e r a t i n g energy d e c r e a s e s .  the total  For a b u i l d i n g  l i f e of 40 y e a r s , the r a t i o of embodied t o o p e r a t i n g energy ranges from 10.3% f o r the case study b u i l d i n g i n i t s base c o n f i g u r a t i o n t o 38.9% f o r an energy e f f i c i e n t  building.  Similarly,  for a building  l i f e of 80 y e a r s , the r a t i o of embodied t o o p e r a t i n g energy ranges from  13.13% f o r the base case t o  design.  Stated  differently,  the  32.7% f o r an energy life-cycle  e q u i v a l e n t t o 8 t o 26 years of  (source)  e q u i v a l e n t t o 5 t o 16 years of  (site)  In a p p l y i n g the 5.3, the  it  BEPI f i g u r e s  t o the  embodied  efficient energy  o p e r a t i n g energy. T h i s  is is  o p e r a t i n g energy.  life-cycle  results  i n Table  i s assumed the o p e r a t i n g energy w i l l remain constant over  life  of  the  case  i n f o r m a t i o n i n the  study  building.  There  is  sufficient  assumption. I t  is  not c l e a r whether b u i l d i n g performance d e t e r i o r a t e s over t i m e ,  or  if  it  actually  l i t e r a t u r e to v a l i d a t e t h i s  not  improves  components w i t h newer, further  due  to  the  more e f f i c i e n t  attention.  Page 89  replacement units.  of  This issue  obsolete deserves  5.4 DISCUSSION OF RESULTS  A premise of t h i s work i s t h a t commercial b u i l d i n g s are b u i l t and operated a t  sub-optimal l e v e l  of  energy performance. The energy  a n a l y s i s p r e s e n t e d above confirms t h i s premise, and suggests t h a t a 66-69% r e d u c t i o n of energy consumption i s a d o p t i o n of s i m p l e , proven energy s a v i n g  The  life-cycle  energy range  is of  analysis  significantly building  suggests less  the  than the  performances  possible  through the  strategies.  magnitude  of  the  embodied  o p e r a t i n g energy over  examined.  This  suggests  r e d u c i n g the o p e r a t i n g energy of b u i l d i n g s should be the  the that  primary  focus of f u r t h e r r e s e a r c h and p o l i c y a n a l y s i s . T h i s i s not t o imply t h a t the l i f e - c y c l e embodied energy i s i n s i g n i f i c a n t . For example, r e d u c i n g the l i f e c y c l e embodied energy of the case study b u i l d i n g by  2 5% (through the  4.13)  adoption of  strategies  corresponds t o an energy savings  b u i l d i n g l i v e s of 40 and 80 y e a r s ,  16.9  examined  in  T J and 25.7 2  Section T J , for  respectively.  5.5 COMPARISON WITH OTHER STUDIES  The  results  obtained  in  this  analysis  are  consistent  with  the  r e s u l t s of o t h e r s t u d i e s . Howard and S u t c l i f f e [1992] e x p l o r e t h r e e grades of o f f i c e f i t - o u t , assuming t h r e e f r e q u e n c i e s of r e n o v a t i o n s  2  1 TJ= one t e r a j o u l e = 10  12  joules.  Page 90  and  predicted  GJ/m .yr.  a  life-cycle  As d i s c u s s e d  2  life-cycle  energy  in  the  i n Section 4.5.2,  energy r a n g i n g from 1.2  range  Cole  t o 1.3  1.02  25  to  100  years.  No a r t i c l e s  were  1.86  [1994] p r e d i c t e d a  GJ/m .yr. 2  The v a r i a t i o n  occurs as a r e s u l t of a range of assumed b u i l d i n g l i v e s , from  to  ranging  found d e a l i n g w i t h  the  change i n l i f e - c y c l e energy as the o p e r a t i n g c h a r a c t e r i s t i c s of the b u i l d i n g are improved.  5.6  CHAPTER  SUMMARY  The major f i n d i n g s of t h i s chapter a r e :  -for  a b u i l d i n g l i f e of 40 y e a r s ,  magnitude from 1.6  t o 0.54  the l i f e - c y c l e energy ranges i n  GJ/m .yr; 2  -for  a b u i l d i n g l i f e of 80 y e a r s , the l i f e - c y c l e energy ranges from  1.55  t o 0.49  GJ/m .yr; 2  - t h e r a t i o of l i f e - c y c l e energy a t t r i b u t e d t o the embodied energy ranges  from 13.1% t o  38.9% f o r a b u i l d i n g  life  of  40 y e a r s ,  from 10.3% t o 32.7% f o r a b u i l d i n g l i f e of 80 y e a r s ,  and  depending on  the o p e r a t i n g c h a r a c t e r i s t i c s ;  -reducing building  the  operating  provides  the  energy  largest  requirements potential  b u i l d i n g ; and, Page 91  of  energy  the  case  savings  study  for  the  - t h e r e s u l t s of the energy a n a l y s i s i n t h i s work i s c o n s i s t e n t w i t h the f i n d i n g s of other  studies.  Page 92  CHAPTER SIX: LIFE-CYCLE COST ANALYSIS  6.1 INTRODUCTION  T h i s c h a p t e r examines the economic i m p l i c a t i o n s of c o n s t r u c t i n g and o p e r a t i n g the case study b u i l d i n g . In a d d i t i o n , the d o l l a r c o s t s of altering  the  base  building  to  an  energy  efficient  design  are  predicted.  6.2 ASSUMPTIONS AND DEFINITIONS  A number of assumptions are r e q u i r e d t o perform an economic cycle analysis.  This section defines  r a t e and energy p r i c e s used i n the  6.2.1  the i n f l a t i o n r a t e ,  life-  discount  analysis.  I n f l a t i o n Rate  In o r d e r t o m a i n t a i n c o n s i s t e n c y of methods between the p r e s e n t and s i m i l a r l i f e - c y c l e analyses Resources, netted  out.  analysis. rate  1991,  for  a , b , B . C . Hydro, 1994], the i n f l a t i o n r a t e i s  An annual i n f l a t i o n r a t e  This value British  R e l a t i o n s , pg.10, per  [ M i n i s t r y of energy Mines and Petroleum  is  consistent  Columbia  of  2% i s  w i t h the  [Ministry  of  assumed  projected  Financial  for  not this  inflation  and Corporate  1994]. A d d i t i o n a l i n f l a t i o n r a t e s of 1.5% and 3%  year are used to perform a s e n s i t i v i t y  Page 93  analysis.  6.2.2  D i s c o u n t Rate  In t h i s a n a l y s i s , consistent the  a d i s c o u n t r a t e of 10% has been chosen.  with guidelines for b e n e f i t - c o s t  Province  of  British  Committee S e c r e t a r i a t ,  Columbia  is  a n a l y s i s p u b l i s h e d by  [Environment  and  Land  Use  1977]. A d d i t i o n a l d i s c o u n t r a t e s of 8% and  12% are used t o p r o v i d e a s e n s i t i v i t y  6.2.3  This  analysis.  Energy P r i c e s  A t h i r d issue i n developing a l i f e - c y c l e cost a n a l y s i s i s defining the  energy c o s t s t o  be used i n the  i n c l u d e p r i v a t e and s o c i a l c o s t s , time  of  use  versus  long  It  is  argued  2  analysis.  Options  average and m a r g i n a l c o s t s ,  run marginal  a n a l y s i s , the long run marginal c o s t economic analyses  life-cycle  1  costs.  In  the  or  present  of energy i s used. A d d i t i o n a l  are performed u s i n g c u r r e n t energy p r i c e s .  that  the  long run marginal  cost  of  energy  is  the  minimum v a l u e t h a t should be used i n d e f i n i n g p u b l i c p o l i c y o p t i o n s r e g a r d i n g energy use. T h i s p r i c e promotes the e f f i c i e n t  3  allocation  of energy r e s o u r c e s . The long run marginal c o s t of e l e c t r i c i t y used The Long Run M a r g i n a l Cost of energy i s the c o s t of an a d d i t i o n a l u n i t of energy, s u p p l i e d through i n c r e a s i n g the c a p a c i t y of the g e n e r a t i n g system. :  See, f o r example, S u t h e r l a n d [1993] or the B r i t i s h Columbia U t i l i t i e s Commission [1992]. 2  E f f i c i e n t from an economic p e r s p e c t i v e . See S e c t i o n 6.2.6 a d i s c u s s i o n of t h i s term. 3  Page 94  for  i n the p r e s e n t a n a l y s i s i s is  $0.0691/KW.hr ( $ 1 9 . 1 9 / G J ) . T h i s  o b t a i n e d from B . C . Hydro [1991,  cost  of  natural  gas  used  in  the  1993]. The long run marginal analysis  o b t a i n e d from B . C . Gas [Appendix D, pg. 41,  It  figure  is  $4.9/GJ,  and  is  1994].  i s acknowledged t h a t the long run m a r g i n a l c o s t of energy does  not r e f l e c t the c o s t of environmental e x t e r n a l i t i e s  of energy use.  Although environmental concerns r e l a t e d t o energy use are a primary reason f o r u n d e r t a k i n g t h i s t h e s i s ,  it  i s argued t h a t m o n e t i z i n g 4  5  environmental e x t e r n a l i t i e s has many d i f f i c u l t i e s . I f environmental externalities  are  energy e f f i c i e n c y , provide  a  more  to  be  quantified while  developing  Multiple Attribute U t i l i t y defensible  and  robust  Theory  means  policy  for  (MAUT ) may 6  of  including  1994  dollars.  environmental i s s u e s i n the p o l i c y a n a l y s i s .  6.2.4  The  Discount Rate Adjustment  economic  analysis  applies  an  analysis  in  Combining the i n f l a t i o n r a t e and the d i s c o u n t r a t e r e s u l t s  i n the  computed nominal d i s c o u n t r a t e . The computed nominal d i s c o u n t r a t e i s 12.2% (1.10*1.02-1=0.122). In the s e n s i t i v i t y a n a l y s i s , nominal d i s c o u n t r a t e s of 9.62% (1.08*1.015-1=0.0962) and 16.5% (1.12*1.04See, f o r example, B r i t i s h Columbia Energy C o u n c i l [1994], and the B r i t i s h Columbia U t i l i t i e s Commission [1993]. 4  See B r i t i s h Columbia U t i l i t i e s Commission [ p g . 3 , d i s c u s s i o n of t h i s term. 5  6  See McDaniels [1993] f o r a development of MAUT. Page 95  1993]  for a  1=0.1648) are a l s o a p p l i e d .  6.2.5  The  P r e s e n t Value  present  value  Calculations  (PV)  of  a  stream  of  costs  ($y),  assuming  d i s c o u n t r a t e of r f o r T years may be c a l c u l a t e d u s i n g  a  equation  (1) •  z  6.2.6  The  (1+r)  T  Economic E f f i c i e n c y , Energy E f f i c i e n c y and Cost E f f e c t i v e n e s s  terms  economic  efficiency,  energy  efficiency  and  cost  e f f e c t i v e n e s s deserve some e l a b o r a t i o n . Economic e f f i c i e n c y i m p l i e s t h a t maximum b e n e f i t s when  the  benefits  (marginal b e n e f i t )  are o b t a i n e d a t a minimum c o s t .  of  p r o d u c i n g an  energy  input  unit  of  output  equals the c o s t of p r o d u c i n g an a d d i t i o n a l u n i t  of output (marginal c o s t ) . the  additional  T h i s occurs  to  Increased energy e f f i c i e n c y i m p l i e s t h a t  produce  a  unit  of  output  is  decreased.  Improving the energy e f f i c i e n c y of output may i n c r e a s e , decrease or leave  unchanged  effectiveness  the  economic  efficiency  of  a  process.  Cost  i m p l i e s the l e a s t c o s t method of a c h i e v i n g a g o a l .  In the p r e s e n t a n a l y s i s , c o s t e f f e c t i v e n e s s i s q u a n t i f i e d u s i n g two methods;  a net  present  value  technique,  and an a n a l y s i s  of  the  i n c r e m e n t a l c o s t of b u i l d i n g improvement per u n i t of energy saved. Page 9 6  The methods are e x p l a i n e d i n s e c t i o n s 6.5  6.3  C A P I T A L C O S T O F C A S E STUDY  and 6.6,  respectively.  BUILDING  The c a p i t a l c o s t of the case study b u i l d i n g i s c a l c u l a t e d u s i n g the m a t e r i a l s t a k e o f f f o r the b u i l d i n g (see with  a detailed  1994].  This  cost  database  database  for  provides  cost  appendix B) i n c o n j u n c t i o n  b u i l d i n g components information  on  [Means,  7  construction  l a b o u r , b u i l d i n g assemblies and components. The c a p i t a l c o s t of the base b u i l d i n g i s estimated  a t 5.23  The  to  same process  is  used  million dollars,  estimate  the  or  capital  $652/m . 2  costs  of  the  b u i l d i n g improvements. I t i s assumed i n the a n a l y s i s t h a t b u i l d i n g improvements Therefore, associated  The  are  not  treated  there  are  no  costs  conserving  strategies  strategies  7A t o  building is  5.66  2  "add-ons"  premiums  paid  by  due  the  to  contractor.  design  changes  w i t h improvements t o b u i l d i n g performance.  cumulative  $705/m ,  as  14  of  successively  are  presented  inclusive,  the  million dollars.  in  implementing Table  6.1.  c a p i t a l c o s t of  the  energy  Implementing the  T h i s corresponds t o  improved a c o s t of  c o r r e s p o n d i n g to an 8.2% i n c r e a s e over the c a p i t a l c o s t of  The c o n s t r u c t i o n c o s t data i n Means [1994] i s based on surveys of b u i l d i n g c o s t s a c r o s s North America. The i n f o r m a t i o n i s updated a n n u a l l y . C o r r e c t i o n s are a p p l i e d i n the p r e s e n t a n a l y s i s to account f o r c o s t estimates s p e c i f i c t o Vancouver. C i t y e s t i m a t e c o r r e c t i o n f a c t o r s are i n c l u d e d i n the Means database. 7  Page 97  the  base c a s e .  Improvements  t o the o p e r a t i n g performance of the  b u i l d i n g l e a d t o a continuous d o w n - s i z i n g of the HVAC system. The s m a l l e r HVAC system f r e q u e n t l y o f f s e t s the i n c r e a s e d c a p i t a l c o s t of  the b u i l d i n g improvements.  Table  6.1.  Capital  Cost  of  Building  Under  Different  Design  Scenarios. SIMULATION RUN  STRATEGY  CAPITAL COST, [$]  7A  Base Case  5,233,000  7B  Orientation  5,237,000  4,000  7C  Infiltration  5,250,000  13,000  7D  Infiltration  5,303,000  53,000  8A  Daylighting  5,250,000  -56,000  8B  Heat Pump  5,285,000  38,000  9  Glazing  5,592,000  307,000  10  Lighting Density  5,558,000  -33,000  11  Insulation  5,652,000  95,000  12  Elevator, Equipment  5,650,000  -2,000  14  Lighting Efficiency  5,660,000  10,000  6.4 OPERATING  COSTS  Page 98  INCREMENTAL COST, [$]  The  operating  maintenance, associated  costs  include  administrative,  energy,  building  cleaning  and f i n a n c i n g . To e s t i m a t e the  w i t h maintenance,  c l e a n i n g and f i n a n c i n g ,  i s used.  costs  information  p u b l i s h e d by the B u i l d i n g Owners and Managers A s s o c i a t i o n 1994]  and  T h i s m a t e r i a l i s based on survey data f o r  [BOMA, private  s e c t o r commercial o f f i c e space. For Vancouver, the annual o p e r a t i n g and f i x e d expenses, in  a l l the  a n a l y s e s of  u t i l i t y costs, from  the  to  estimates addition, 80-year  the  $893/m . 2  This value i s  case study b u i l d i n g . To e s t i m a t e  energy  simulations  of  the  building  costs.  are  in  Table  the  This  Section  The annual o p e r a t i n g  summarized  used  obtained  Chapter T h r e e .  combined w i t h energy p r i c e i n f o r m a t i o n of  o b t a i n annual energy for  is  the energy consumption of the b u i l d i n g i s  operating  information i s 6.2.3  less u t i l i t i e s  6.2.  cost In  the p r e s e n t v a l u e of the o p e r a t i n g c o s t assuming 40 and lifespan  is  presented.  The present  assume a d i s c o u n t r a t e of 12.2%.  Page 99  value  calculations  T a b l e 6.2. Annual and L i f e - c y c l e O p e r a t i n g C o s t s . SIMULATION RUN  ANNUAL OPERATING COST [$]  STRATEGY  PRESENT VALUE OF OPERATING COSTS [$] 40 Year  8 0 Year  7A  Base Case  845,000  6,850,000  6,920,000  7B  Orientation  845,000  6, 850,000  6,920,000  7C  Infiltration  844,000  6,850,000  6,920,000  7D  Infiltration  845,000  6,860,000  6,930,000  8A  Daylighting  795,000  6,450,000  6,520,000  8B  Heat Pump  782,000  6,350,000  6,410,000  9  Glazing  791,000  6,420,000  6,480,000  10  L i g h t i n g Density  781,000  6,340,000  6,400,000  11  Insulation  780,000  6,330,000  6,390,000 , 000  12  Elevator, Equipment  771,000  6,260,000  6,320,000  14  Lighting Efficiency  761,000  6,180,000  6,240,000  For a b u i l d i n g l i f e of 40 y e a r s , the present v a l u e of the o p e r a t i n g c o s t s decreases from 6.85 m i l l i o n d o l l a r s t o 6.18 m i l l i o n d o l l a r s by the cumulative adoption of s t r a t e g i e s 7 t o 14. T h i s corresponds to  a 9.8% r e d u c t i o n .  Similarly for a lifespan  of  80 y e a r s ,  p r e s e n t v a l u e o f the o p e r a t i n g c o s t s i s reduced by 9.8%.  Page 100  the  6 . 5 LIFE-CYCLE COSTS  By combining the c a p i t a l and present v a l u e o p e r a t i n g c o s t estimates for  the b u i l d i n g , the  life-cycle  b u i l d i n g c o s t s are determined . 8  Estimates of the b u i l d i n g l i f e - c y c l e c o s t s are summarized i n T a b l e 6.3  for  the  different  design  configurations.  Details  of  the  a n a l y s i s and graphs are presented i n Appendix E .  Due t o the nature of p r e s e n t v a l u e c a l c u l a t i o n s , costs i n c u r r e d a f t e r 40 and are s m a l l , and a f t e r 80 years even s m a l l e r . T h e r e f o r e , the c o s t a s s o c i a t e d w i t h d e m o l i s h i n g the b u i l d i n g a t the end of i t s s e r v i c e l i f e i s found t o be l e s s than the u n c e r t a i n t y i n the economic a n a l y s i s , and i s not i n c l u d e d i n f u r t h e r a n a l y s i s . 8  Page 101  Table 6.3.  B u i l d i n g Lifer-cycle Costs.  SIMULATION RUN  Discount  STRATEGY  Rate = 12.2%.  LIFE-CYCLE COSTS  40 Year  [$]  80 Year  7A  Base Case  12,100,000  12,200,000  7B  Orientation  12,100,000  12,200,000  7C  Infiltration  12,100,000  12,200,000  7D  Infiltration  12,200,000  12,200,000  8A  Daylighting  11,700,000  11,800,000  8B  Heat Pump  11,600,000  11,700,000  9  Glazing  12,000,000  12,100,000  10  L i g h t i n g Density  11,900,000  12,000,000  11  Insulation  12,000,000  12,000,000  12  Elevator, Equipment  11,900,000  12,000,000  14  Lighting Efficiency  11,800,000  11,900,000  To o b t a i n  the Net B e n e f i t  (NB) a s s o c i a t e d w i t h  a l t e r n a t e design s t r a t e g i e s ,  implementing  the l i f e - c y c l e c o s t of each s t r a t e g y  i s s u b t r a c t e d from the l i f e - c y c l e c o s t of the base b u i l d i n g . information  i s summarized  the  i n Table  6.4.  Page 102  This  Table 6.4.  Incremental Net B e n e f i t of S t r a t e g i e s .  D i s c o u n t Rate =  12.2%. SIMULATION RUN  The  STRATEGY  NET BENEFIT  40 Year  80 Year  8A  Daylighting  462,000  466 000  10  L i g h t i n g Density  116,000  116,000  12  Equipment, Elevator  71,700  72,400  14  Lighting Efficiency  71,000  71,800  8B  Heat Pump  67,200  68,200  7B  Orientation  -3,670  -3,670  7C  Infiltration  -9,230  -9,180  7D  Infiltration  -63,500  -63,600  11  Insulation  -86,700  -86,700  9  Glazing  -378,000  -379,000  T o t a l NPV  246,000  253,000  v a l u e s i n Table 6.4 r e p r e s e n t the incremental  benefit  of  [$]  adopting the  strategies.  If  those  l i f e - c y c l e net  s t r a t e g i e s with a  p o s i t i v e net b e n e f i t are implemented, a s a v i n g s of $0,788 m i l l i o n and  $0,794 m i l l i o n  ($98.18/m and $98.93/m ) may be achieved over 2  Page 103  2  the l i f e the  of the b u i l d i n g of 40 and 80 y e a r s ,  strategies  effective,  are  adopted,  respectively .  i n c l u d i n g those  the t o t a l Net B e n e f i t  that  consumption  implementing will  result  b u i l d i n g w i t h a net  all in  the  net  benefit  that  are  not  all cost  (NB) i s $0,246 m i l l i o n and $0,253  m i l l i o n f o r b u i l d i n g l i v e s of 40 and 80 y e a r s , implies  If  9  of  respectively .  strategies  savings  to  over  approximately  This  1 0  reduce  the  energy  life  of  the  $0.25 m i l l i o n . The  r e s u l t s suggest t h a t i f one i s i n t e r e s t e d i n s a v i n g both energy and money, a d o p t i n g a l l s t r a t e g i e s may be j u s t i f i e d . However, i t should be s t r e s s e d t h a t adopting a l l s t r a t e g i e s i s not c o s t  The order of the s t r a t e g i e s i n T a b l e 6.4 benefit.  Strategies  insulation  dealing  and g l a z i n g  have  with  reflects  decreasing  orientation,  a negative  effective.  net  infiltration,  life-cycle  net  benefit.  O r i e n t a t i o n and i n f i l t r a t i o n r e s u l t i n n e g a t i v e net b e n e f i t due t o the  increased  consumed  is  use  lower)  Improved g l a z i n g  of  electricity  resulting  in  and i n s u l a t i o n  (although an  are  the  increased found t o  total  energy  operating  have  cost.  negative  b e n e f i t s due t o the h i g h c a p i t a l c o s t s of these improvements. this analysis,  net In  the g l a z i n g i s changed from double pane c l e a r g l a s s  t o t r i p l e pane, low-e g l a s s . The i n s u l a t i o n i s doubled on w a l l s and the  roof.  T h i s ' work does not  investigate  whether  less  dramatic  'Repeating t h i s a n a l y s i s u s i n g c u r r e n t energy p r i c e s ( i n s t e a d of l o n g run m a r g i n a l c o s t s ) , the NB i s $556,000 and $572,000 f o r b u i l d i n g l i v e s of 40 and 80 y e a r s , r e s p e c t i v e l y . Repeating the a n a l y s i s u s i n g c u r r e n t energy p r i c e s ( r a t h e r than the long run m a r g i n a l c o s t ) , the NB i s $53,000 and $58,000 f o r b u i l d i n g l i v e s of 40 and 80 y e a r s , r e s p e c t i v e l y . 10  Page 104  design  changes  instead  of  100%  (for  example,  used  i n s u l a t i o n and g l a z i n g  6.5.1  here)  a  25-50%  might  increase  produce  a  in  insulation  positive  NB  for  strategies.  Sensitivity Analysis  A sensitivity  a n a l y s i s was performed t o observe the e f f e c t on the  r e s u l t s of the a n a l y s i s due t o changes i n the d i s c o u n t r a t e . a d i s c o u n t r a t e of 9.62% , the net b e n e f i t n  strategies  of the c o s t  With  effective  i s $0.98 m i l l i o n and $1.01 m i l l i o n f o r b u i l d i n g l i v e s of  4 0 and 8 0 y e a r s , r e s p e c t i v e l y . U s i n g a d i s c o u n t r a t e of 16.5%, net b e n e f i t of implementing the c o s t e f f e c t i v e m i l l i o n and $0.59 m i l l i o n f o r b u i l d i n g l i v e s  strategies  is  the  $0.58  of 40 and 80 y e a r s ,  respectively.  6.5.2  Payback P e r i o d  An a n a l y s i s was performed of those s t r a t e g i e s benefit  to  observe  the  payback p e r i o d  efficiency.  u  S e e S e c t i o n 6.2.4  for  details. Page 105  of  with a p o s i t i v e investing  in  net  energy  T a b l e 6.5.  Investment Payback P e r i o d f o r C o s t - E f f e c t i v e S t r a t e g i e s . SIMULATION RUN  STRATEGY  PAYBACK PERIOD  8A  Daylighting  Immediate  10  L i g h t i n g Density  Immediate  12  Elevator,  Equip  Immediate  14  Lighting Efficiency  0.02 Y r .  8B  Heat Pump  11.3 Y r .  A l l P o s i t i v e NB Strategies  Immediate  7B-14  All  Strategies  17.2 Y r .  Although the a d d i t i o n of a heat pump has a payback p e r i o d of years,  if  together,  a l l the the  s t r a t e g i e s with a p o s i t i v e  payback  period  is  immediate.  NB are If  all  11.3  implemented strategies  i n v e s t i g a t e d t o improve the o p e r a t i n g performance are implemented, the payback p e r i o d i s q u i t e l o n g , a t 9 y e a r s . 12  6.6 LEVELIZED COST ANALYSIS  The  analysis  of  section  6.5  p r o v i d e s i n f o r m a t i o n on the  relative  Based on a d i s c o u n t r a t e of 12.2%. Assuming a d i s c o u n t r a t e of 9.62%, the payback p e r i o d i s 7.5 y e a r s . With a d i s c o u n t r a t e of 16.5%, the payback p e r i o d i s 12.5 y e a r s . 12  Page 106  v a l u e of the s t r a t e g i e s  used t o decrease o p e r a t i n g energy based on  a net b e n e f i t a n a l y s i s . An a l t e r n a t e methodology i s t o examine the i n c r e m e n t a l c o s t of b u i l d i n g improvement per u n i t of energy saved. T h i s v a l u e may be compared t o the c o s t of p u r c h a s i n g an a d d i t i o n a l u n i t of energy.  I f the c o s t of saved energy i s  t o purchase an a d d i t i o n a l u n i t of energy,  l e s s than the  then i t  is  a t t r a c t i v e t o implement the energy s a v i n g s t r a t e g y . cost analysis provides s l i g h t l y d i f f e r e n t benefit  analysis  Section  6.6.1.  of  Section  6.5;  this  is  cost  economically The l e v e l i z e d  i n f o r m a t i o n t o the discussed  net  further  in  To o b t a i n the i n c r e m e n t a l c o s t of b u i l d i n g improvement per u n i t of energy saved, the p r e s e n t v a l u e of the i n c r e m e n t a l l i f e - c y c l e  cost  i s d i v i d e d by the b u i l d i n g l i f e t o o b t a i n the l e v e l i z e d c o s t .  This  v a l u e i s then d i v i d e d by the annual energy savings are summarized i n Table  6.6.  Page 107  i n GJ. Results  Table 6.6.  L e v e l i z e d Cost per U n i t of Energy Saved.  SIMULATION RUN  STRATEGY  LEVELIZ]3D COST PER UNIT ENERGY SAVED :$/GJ] 40 Year  The  80 Year  7A  Base Case  7B  Orientation  0.38  0.38  7C  Infiltration  0.72  0.72  7D  Infiltration  9.89  9.91  8A  Daylighting  -4.36  -4.40  8B  Heat Pump  -1.74  -1.77  9  Glazing  39.30  39.37  10  Lighting Density  -6.00  - 6 . 05  11  Insulation  27.02  27.00  12  Elevator, Equipment  -3.72  -3.76  14  Lighting Efficiency  -4.42  -4.47  levelized  c o s t per u n i t of energy purchased i s  determined by  l e v e l i z i n g the p r e s e n t v a l u e of energy c o s t s over the 40-year and 80 year b u i l d i n g l i v e s . the  total  energy  The l e v e l i z e d  consumed over the  energy c o s t s are d i v i d e d by  same 40 or 80-year  life.  The  l e v e l i z e d c o s t per u n i t of energy purchased i s shown i n T a b l e 6 . 7 . Page  108  Table 6.7.  L e v e l i z e d Cost per U n i t of Energy Purchased.  SIMULATION RUN  Table 6.8 unit  of  LEVELIZED COST PER UNIT ENERGY PURCHASED [$/GJ] 40 Year  80 Year  7A  Base Case  7B  Orientation  3.04  1.53  7C  Infiltration  3.15  1.59  7D  Infiltration  3.24  1. 63  8A  Daylighting  2.77  1.40  8B  Heat Pump  3.35  1. 69  9  Glazing  3.49  1.76  10  L i g h t i n g Density  3 .32  1. 68  11  Insulation  3 .38  1.71  12  Elevator, Equipment  3.27  1. 65  14  Lighting Efficiency  2.98  1.50  presents energy  purchased.  STRATEGY  the d i f f e r e n c e between the  saved and the  A positive  value  levelized indicates  l e v e l i z e d c o s t per  c o s t per u n i t the  investment  of  energy  in  energy  e f f i c i e n c y i s l e s s expensive than p a y i n g f o r an a d d i t i o n a l u n i t of energy, i m p l y i n g the investment i s c o s t e f f e c t i v e . Page 109  The magnitude of  the  differences  investment  indicates  alternatives.  the  relative  Table  6.8  attractiveness ranks  the  a l t e r n a t i v e s a c c o r d i n g t o the a t t r a c t i v e n e s s of the  Table  6.8.  Difference  Between L e v e l i z e d  of  the  investment investment.  Cost per U n i t of  Energy  Saved and the L e v e l i z e d Cost per u n i t of Energy Purchased. RANK  If  SIMULATION  STRATEGY  Lighting  Density  DIFFERENCE  [$/GJ]  40 Years  80 Years  9.32  7.72  1  10  2  14  Lighting Efficiency  7.40  5.97  3  8A  Daylighting  7.13  5.80  4  12  Elevator, Equipment  6.99  5.41  5  8B  Heat Pump  5. 09  3.46  6  7B  Orientation  2.66  1.15  7  7C  Infiltration  2.43  0.87  8  7D  Infiltration  -6.66  -8.27  9  11  Insulation  -23.64  -25.29  10  9  Glazing  -35.81  -37.61  o n l y those i n d i v i d u a l s t r a t e g i e s which are c o s t e f f e c t i v e  adopted,  the d i f f e r e n c e  are  between l e v e l i z e d c o s t per u n i t of energy Page 110  saved  and the  $41.02/GJ  levelized  cost  per  unit  and $30.38/GJ f o r b u i l d i n g  respectively.  If  strategies  of  lives  7B through 14  energy of  40  are  purchased and 80  all  is  years,  adopted,  the  d i f f e r e n c e between l e v e l i z e d c o s t per u n i t of energy saved and the levelized  cost  per  unit  of  energy  purchased  is  $0.949/GJ f o r b u i l d i n g l i v e s of 40 and 80 y e a r s ,  A  sensitivity  analysis  was  performed t o  $ 1 . 9 3 / G J and  respectively.  observe  the  effect  of  d i s c o u n t r a t e on the d i f f e r e n c e between l e v e l i z e d c o s t per u n i t of energy saved and the l e v e l i z e d c o s t per u n i t of energy purchased. Adopting a l l rate  cost  of  9.6%.,  the  building  lives  of  effective  difference 40  and  d i s c o u n t r a t e of 16.5%, for  building lives  6.6.1  strategies,  80  is  and assuming a d i s c o u n t  $55.83/GJ  years,  and  $41.35/GJ  respectively.  the d i f f e r e n c e i s  of 40 and 80 y e a r s ,  for  Assuming a  $31.91/GJ and $23.63/GJ  respectively.  Comparing the Net B e n e f i t C a l c u l a t i o n s t o t h e L e v e l i z e d Cost  Analysis  The  results  of Table 6.8  are c o n s i s t e n t  b e n e f i t r e s u l t s p r e s e n t e d i n Table 6.4. changed, to  with r e s u l t s  of the  The o r d e r of s t r a t e g i e s  net has  i n d i c a t i n g the dependence of r e s u l t s on the methods used  perform  the  analysis.  In  addition,  Table  6.8  suggests  that  changing the o r i e n t a t i o n and r e d u c i n g i n f i l t r a t i o n are a t t r a c t i v e investments. discrepancies  This i s  i n c o n t r a s t t o the r e s u l t s  are s m a l l ,  and may r e f l e c t Page 111  i n T a b l e 6.4.  characteristics  The  o f the  d i f f e r e n t c a l c u l a t i o n methods or i n a c c u r a c c i e s i n the c a l c u l a t i o n s .  Which method one uses t o d e c i d e on the energy c o n s e r v i n g s t r a t e g i e s t o be implemented depends on the p r i o r i t i e s used i n the making p r o c e s s .  For example,  while  adopting a heat  decision  pump has  a  p o s i t i v e NB and p o s i t i v e l e v e l i z e d c o s t , the payback p e r i o d of t h i s strategy back  is  11.3 y e a r s .  period,  this  I f one i s c o n s t r a i n e d t o a f i v e - y e a r pay-  strategy  may not  be  :  implemented  if  taken  in  isolation.  6.7 COMPARISON OF THE ENERGY ANALYSIS AND ECONOMIC ANALYSES  Comparing the r e s u l t s of the economic a n a l y s i s of t h i s chapter t o the energy a n a l y s i s of Chapters Three t o F i v e suggests t h e r e i s a c o r r e l a t i o n and dependence between the methodologies. i n order to  For example,  o b t a i n the o p e r a t i n g c o s t s over a range of  building  performances, the o p e r a t i n g energy must be s i m u l a t e d . A consequence of  this  dependence  economic energy  analysis  analysis.  is  that  without  it  also  Therefore,  in  is  not  possible  performing the  (even  present  to  perform  an  partially)  an  analysis,  economic  a n a l y s i s and energy a n a l y s i s should be viewed as complementary.  C o n s i s t e n t w i t h the n o t i o n t h a t economic and energy a n a l y s e s based on complementary i n f o r m a t i o n i s provide  consistent  life-cycle  energy  results.  the  observation that  Many s t r a t e g i e s  consumption  of  the  Page 112  used  building  to are  reduce also  are they the cost  effective.  The o p e r a t i n g energy model f o r the b u i l d i n g was r e - r u n t o the s i z e of c o s t e f f e c t i v e  energy s a v i n g s t r a t e g i e s .  s t r a t e g y was changed t o be c o n s i s t e n t  observe  The o r d e r of  w i t h the economic  analysis  based on the d i f f e r e n c e between l e v e l i z e d c o s t per u n i t of  energy  saved and the l e v e l i z e d c o s t per u n i t of energy purchased of Table 6.8 .  Results  13  of  the  presented i n Table 6.9. cost effective  revised  operating  Only those s t r a t e g i e s  energy  analysis  are  t h a t were found t o be  are i n c l u d e d .  As noted i n S e c t i o n 3 . 6 , b u i l d i n g sub-systems are c o u p l e d . This implies that changing the order of implementation of strategies changes the incremental reduction in operating performance. 13  Page 113  Table 6.9.  Improvements t o  Using C o s t - E f f e c t i v e RANK  the  Operating Performance  Building  Strategies.  SIMULATION  STRATEGY  BEPI  CUMULATIVE  [GJ/m .yr]  % CHANGE  2  The  of  7a  Base Case  0.96  1  10  L i g h t i n g Density  0.86  10. 6  2  14  Lighting Efficiency  0.80  16.6  3  8A  Daylighting  0. 61  36.8  4  12  Elevator, Equipment  0.55  43.0  5  8B  Heat Pump  0.51  47.1  6  7B  Orientation  0.42  56.8  7  7C  Infiltration  0.38  60. 0  information  in  Table  6.9  suggests  a  60%  decrease  in  the  o p e r a t i n g energy of the b u i l d i n g i s p o s s i b l e by a p p l y i n g s t r a t e g i e s t h a t are c o s t e f f e c t i v e . A l t e r n a t e l y ,  the l i f e - c y c l e energy  of  the  b u i l d i n g decreases by 50% and 48% f o r b u i l d i n g l i v e s of 40 and 80 years,  respectively.  Page 114  6.8  CHAPTER  SUMMARY  The major f i n d i n g s of t h i s chapter are l i s t e d  -The  c a p i t a l c o s t of improving the energy performance of the case  study b u i l d i n g i s  -If  $53/m . T h i s corresponds t o an 8.2% 2  o n l y those s t r a t e g i e s  the net b e n e f i t  of upgrading the b u i l d i n g i s  o n l y those s t r a t e g i e s  the payback p e r i o d i s  increase.  are implemented t h a t are c o s t  $0,794 f o r b u i l d i n g l i v e s of 40 and 80 y e a r s ,  -If  below.  effective,  $0,788 m i l l i o n ,  and  respectively.  are implemented t h a t are c o s t  effective,  immediate.  - A second c r i t e r i o n f o r c o s t e f f e c t i v e n e s s used i n the a n a l y s i s  is  the d i f f e r e n c e between the u n i t c o s t of energy s a v i n g s and the u n i t c o s t of energy purchases. I f o n l y those i n d i v i d u a l s t r a t e g i e s which are  cost effective  are adopted, the d i f f e r e n c e between  levelized  c o s t per u n i t of energy saved and the l e v e l i z e d c o s t per u n i t of energy purchased i s 40 and 80 y e a r s ,  -Strategies  used  $41.02/GJ and $30.38/GJ f o r b u i l d i n g l i v e s  of  respectively.  to  reduce  air  infiltration,  increase  building  i n s u l a t i o n and improve the performance of f e n e s t r a t i o n systems are found t o be uneconomic. the  insulation  and  The a n a l y s i s of the c o s t e f f e c t i v e n e s s of  fenestration  is  Page 115  incomplete.  A doubling  of  i n s u l a t i o n above ASHRAE 90.1 i s glazing is  investigated here. S i m i l a r l y ,  changed from double pane t o t r i p l e - p a n e , low-e  the  glass.  T h i s work does not i n v e s t i g a t e whether l e s s d r a m a t i c d e s i g n changes ( f o r example, a 25-50% i n c r e a s e i n i n s u l a t i o n i n s t e a d of 100% used here)  might  strategies.  -The  produce  a  positive  NB f o r  insulation  and  glazing  T h i s deserves g r e a t e r a t t e n t i o n .  economic  and  energy  analyses  are  based  i n f o r m a t i o n and p r o v i d e c o n s i s t e n t r e s u l t s .  on complementary  A 60% decrease i n the  o p e r a t i n g energy of the b u i l d i n g i s p o s s i b l e by a p p l y i n g t h a t are c o s t e f f e c t i v e .  strategies  T h i s i m p l i e s the l i f e - c y c l e energy  of the  b u i l d i n g may be decreased by 50% and 48% f o r b u i l d i n g l i v e s of 40 and 80 y e a r s ,  respectively.  Page 116  CHAPTER SEVEN: ENERGY POLICY RELATED TO COMMERCIAL BUILDINGS  7.1 INTRODUCTION  Results  from  the  previous  chapters  suggest  there  is  a  large  p o t e n t i a l t o save energy and money by improving the performance of the case study b u i l d i n g . Yet most o f f i c e s  b e i n g b u i l t today do not  take advantage of the (energy and economic) s a v i n g s p o t e n t i a l found in  this  work.  analysis context  of  In  the  this case  chapter, study  i n which d e c i s i o n s  the  focus  building related  moves  away  and c o n s i d e r s  to  the  from  the  building  the  broader  industry  is  made. The f i n a l s e c t i o n focuses a g a i n on the case study b u i l d i n g t o provide  policy  alternatives  that  may  help  to  improve  the  performance of s i m i l a r b u i l d i n g s .  7.2 NATURE OP THE POLICY DEBATE  Over the p a s t twenty y e a r s , t h e r e have been hundreds of papers on the  topic  of  energy  use  and energy  conservation  [Lutzenhiser,  1992]. What s t a r t e d i n the 1970's as an i n v e s t i g a t i o n of the between  energy  and  the  economy  moved  in  the  1980's  to  i n v e s t i g a t i o n of the "hard" versus the "soft" energy p a t h s . 1  recently,  the  focus  has  shifted  to  concerns  about  link an More  energy  use  l e a d i n g t o environmental d e g r a d a t i o n . As Sanstad and Howarth note:  'See L o v i n s these terms.  [1976] and Robinson [1982] Page 117  for  a discussion  of  Almost  every  different  aspect  of  end u s e s ;  psychological,  the  problem has  technologies;  economic,  types  social factors;  been of  studied:  decisions;  and so  forth.  Energy a n a l y s t s who c a l l f o r more r e s e a r c h t y p i c a l l y f a i l to  address  questions: that  this  fact  What i s  has  and t o  further  heretofore  answer these fundamental  research l i k e l y to  passed  unrecognized  uncover in  the  l i t e r a t u r e ? Why has a l l the work done t o date f a i l e d t o c l a r i f y debates over consumer r a t i o n a l i t y and i t s t i e s t o energy e f f i c i e n c y ? [Sanstad and Howarth, p g . 1.176,  1994,  a]  It  is  new.  admitted t h a t the present Fundamental  issues  that  chapter uncovers l i t t l e  were  c e n t r a l to  the  that  energy  is  debate  twenty y e a r s ago remain u n r e s o l v e d . A wide d i v e r s i t y of o p i n i o n remains  in  the  literature  r e g a r d i n g the  most  effective  policy  mechanisms f o r a c h i e v i n g improved l e v e l s of energy e f f i c i e n c y . At one extreme i s  the view g e n e r a l l y a s s o c i a t e d w i t h economists and  r o o t e d i n the concepts of consumer s o v e r e i g n t y and r a t i o n a l c h o i c e . At  the  other  extreme  is  the  work of  b e h a v i o r a l r e s e a r c h e r s and  t e c h n o l o g i c a l a n a l y s t s who p e r c e i v e the d e c i s i o n making p r o c e s s of consumers i s i n c o n s i s t e n t w i t h the economic concepts of r a t i o n a l i t y and u t i l i t y m a x i m i z a t i o n . A r e s o l u t i o n of t h i s debate i s u n l i k e l y due t o  differences  choice  advocates  at  the  framework l e v e l  and b e h a v i o r a l and technology  implies that different positions ultimately  based  between  upon  fundamental i n t e r e s t s ,  a  set  the  rational  analysts.  This  i n the energy p o l i c y debate are of  self-defined,  self-limiting  and assumptions t h a t do not r e s u l t from the  Page 118  debate,  but guide i t .  related  to  "hard"  In the e a r l y 8 0 ' s , versus  "soft"  a s i m i l a r debate o c c u r r e d  energy  paths,  prompting  the  following observation:  . . . u n d e r l y i n g the  factual  are  at  differences  differences of  issues apparently i n  the  framework  level,  that  i n b a s i c p r e s u p p o s i t i o n s and i n the  t h i n k i n g employed.  In  the  main,  dispute  these  is,  patterns  differences  manifest themselves i n d i f f e r e n c e s c o n c e r n i n g the nature of  present  analysis data.  social  reality,  and p o l i c y ,  None  of  the  and the  these  focus  of  interest  i n t e r p r e t a t i o n and use  differences,  which  are  of of  often  i n e x t r i c a b l y i n t e r t w i n e d , can be unambiguously r e s o l v e d s i n c e the c r i t e r i a i n terms of which such a r e s o l u t i o n should be made are themselves i n d i s p u t e . 24,  [Robinson, p g .  1982]  Although  agreement  is  not  likely  between opposing views  in  the  c u r r e n t energy debate, some k i n d of r e c o n c i l i a t i o n may be e x p l o r e d . It  is  argued t h a t  central  disagreement  characteristic  of  the  over  the  policy  facts  debate  and models  related  to  is  a  energy  efficiency.  As such, t h e r e i s a s t r o n g argument f o r m e t h o d o l o g i c a l  pluralism:  where  no  one  model  unambiguously and c o m p l e t e l y , their public  solutions policy.  can  describe  combining the  may p r o v i d e a more r o b u s t This  issue  is  further  this  policy  issue  competing models and basis  explored  for in  developing  Section  7.4.  F u r t h e r , i t i s p o s t u l a t e d t h a t the concept of "bounded r a t i o n a l i t y " may p r o v i d e a means f o r b r i d g i n g the m e t h o d o l o g i c a l and c o n c e p t u a l disparities  between the p o l a r views of  Page 119  economics,  and b e h a v i o r a l  and e n g i n e e r i n g r e s e a r c h e r s . T h i s i s e x p l o r e d i n S e c t i o n  7.5.  7.3 VIEWS OF ENERGY  It  is  a premise of t h i s work t h a t energy i s used and v a l u e d i n a  number of  ways.  How i n d i v i d u a l s and s o c i e t y  t h i n k about  energy  affects  the way consumers v a l u e energy and p o l i c y makers c o n t r o l  energy.  P r e v a l e n t views of energy i n c l u d e :  •  The t e c h n o l o g i s t ' s  view of  energy as  a potential  source  of  work, heat or i n f o r m a t i o n ;  •  As a s t r a t e g i c m a t e r i a l , energy i s viewed as h a v i n g importance f o r m i l i t a r y and economic s e c u r i t y .  •  In terms of a s o c i a l n e c e s s i t y ,  energy supply i s t r e a t e d as a  b a s i c human r i g h t .  •  As an e c o l o g i c a l r e s o u r c e , t h i s i m p l i e s t h a t energy i s p a r t of a n a t u r a l system and must r e f l e c t the v a l u e s of s u s t a i n a b i l i t y and  •  frugality.  Finally.,  energy can a l s o be viewed as a commodity [ S t e r n and  Aronson,  1984].  For the purpose of t h i s work, the f i r s t f o u r views l i s t e d above are Page 12 0  collected  into  one  conceptual  behavioralist/technologist's conservation fashion.  literature  A t one  technologists. neoclassical  appears  extreme  A t the  view  is  the  other  economists  model  of  to  energy.  be  is  and c o n s i s t e n t  the  The  polarized  work of  extreme  called  in  energy  a  bimodal  behavioral analysts the work a s s o c i a t e d  and with  w i t h the view of energy  as  a commodity. Proponents of the extremes are easy t o i d e n t i f y i n the l i t e r a t u r e , although  many a r t i c l e s appear to f a l l somewhere i n the  middle.  section,  In the  next  attributes  and v a l u e s  of  the  two  models are compared and c o n t r a s t e d .  I t i s important t o d i s t i n g u i s h between the views of energy policy  choices  energy.  are  often  i m p l i c i t l y choices  When a view of energy  is  adopted,  it  among the  because  views  legitimizes  of  certain  c h o i c e s and a c t o r s w i t h i n the p o l i c y a r e n a , and may m a r g i n a l i z e or exclude  others.  For example, view  of  choosing the view of energy as a commodity over  energy  institutional  as  an  barriers  ecological on  what  resource decision  may  set  makers  the  limits  or  consider  an  a p p r o p r i a t e energy c o n s e r v a t i o n p o l i c y . These b a r r i e r s and l i m i t s may be i m p l i c i t or e x p l i c i t . The dominance of the view of energy as a commodity i s a problem i n the p r e s e n t work, because i t l i m i t s the scope of p o l i c y o p t i o n s aimed a t energy c o n s e r v a t i o n . F r e q u e n t l y , i n o r d e r f o r energy c o n s e r v a t i o n concerns t o be addressed w i t h i n a commodity framework, i n t e r e s t e d p a r t i e s must argue not on t h e i r own Page  121  terms of f i n i t e r e s o u r c e s or environmental i m p l i c a t i o n s , but on the b a s i s of economic e f f i c i e n c y or the advantage of u t i l i t i e s energy  services  r a t h e r than energy  as  a commodity.  If  selling decision  makers and consumers are t o e x p l o r e and be r e s p o n s i v e t o the wide range  of  policy  efficiency,  7.3.1  options  available  in  order t o  increase  energy  a primary step must be a broadening of views of energy.  Energy as a Commodity  The model of energy as a commodity i s based on the assumptions of consumer r a t i o n a l i t y  2  and u t i l i t y m a x i m i z a t i o n . T h i s i m p l i e s t h a t :  . . . p r o d u c e r s and consumers have s t a b l e p r e f e r e n c e s they  seek  to  satisfy  through  market  that  transactions.  Consumer c h o i c e s thus r e v e a l i n f o r m a t i o n about u n d e r l y i n g preferences,  and the acceptance or r e j e c t i o n of  energy-  e f f i c i e n t t e c h n o l o g i e s r e f l e c t s a r a t i o n a l e v a l u a t i o n of the  relevant  involving might  costs  and b e n e f i t s .  imperfect  impede  the  information  adoption  efficient  technologies.  behaviour  are  therefore,  constitute  intervention. 1994,  ruled [Sanstad  of  But  out  by  Market  imperfections  or  transaction  cost  effective  deviations  from  assumption  an a p p r o p r i a t e b a s i s and Howarth,  pp.  costs energy  rational  and for  cannot, policy  1.176-1.177,  a]  T h i s model i s based on the p r i n c i p l e s t h a t : 1) i n d i v i d u a l s have s t a b l e and t r a n s i t i v e p r e f e r e n c e s ( i f b>c, then a>c); 2) i n d i v i d u a l s are s e l f i n t e r e s t e d ; and, 3) i n d i v i d u a l s have a c c u r a t e and complete i n f o r m a t i o n . 2  Page 122  a>b and  C o n s i s t e n t w i t h the view of energy as a commodity i s the argument that  price  optimal  provides  levels  of  the  best  signal  consumption  to  and  consumers  regarding  conservation.  the  "Theory would  i n d i c a t e t h a t the m a r g i n a l u n i t of consumption s h o u l d be p r i c e d a t the  marginal  price  of  future  supply.  Indeed,  all  units  of  consumption c o u l d be p r i c e d at the m a r g i n a l p r i c e of f u t u r e supply and consumers would be induced to use the r e s o u r c e e f f i c i e n t l y from an economic stand p o i n t . " pg.  39,  Recent  [ B r i t i s h Columbia U t i l i t i e s Commission,  1990]  examples  in  the  literature  of  the  view  commodity are the works by S u t h e r l a n d [1992, 1994, Resources  Canada,  energy e f f i c i e n t  1993].  of  energy  as  a  Energy Mines and  S u t h e r l a n d argues t h a t many b a r r i e r s to  investments are simple c h a r a c t e r i s t i c s of normally  f u n c t i o n i n g markets. The author suggests t h a t consumers who i n v e s t in  energy  efficiency  require  higher  rates  of  return  when  the  investments are i l l i q u i d , r i s k y or possess h i g h t r a n s a c t i o n s  costs.  "The  energy  high  efficiency  discount  rates  required  by  consumers  for  investments r e f l e c t r e a l c o s t s i n a c o m p e t i t i v e market,  not a r t i f i c i a l market b a r r i e r s , " [ S u t h e r l a n d , p g . 15,  A second that  argument presented  many programs designed  economically e f f i c i e n t . for public policy is cites  i n S u t h e r l a n d ' s works to  be  energy  is  efficient  1992].  the  notion  may not  The author argues t h a t the l e g i t i m a t e  i n d e a l i n g w i t h market f a i l u r e s ,  i s s u e s based on e x t e r n a l i t i e s , Page  123  the  be  role  of which he  p u b l i c goods n a t u r e  of  energy r e s o u r c e s  and n a t i o n a l  security.  Finally,  S u t h e r l a n d argues t h a t p r i c i n g and u t i l i t y r a t e s t r u c t u r e  are  b e s t mechanisms  the  users  to  promote  [Energy Mines and Resources  author argues  that  energy  Canada,  energy p o l i c y  efficiency pp.  among end  30-31,  1993],  The  bring  the  should be l i m i t e d t o  consumer p r i c e of energy i n l i n e w i t h i t s m a r g i n a l c o s t .  7.3.2  The  The B e h a v i o r a l i s t / T e c h n o l o g i s t  i n c o r p o r a t i o n of  policy  provides  expressed  by  [1984],  provide  examples  that  consumers  services. rational  behavioral analysis  an a l t e r n a t i v e  Sutherland.  Aronson  The works  do  this not  view.  choice  model  behavioral/technologist  of  technologies, make  not  to  of  the  conservation  the  economics  Stern  [1986],  [1994],  approach Stern  consumer  analysts  merely  this  costs  of  group  perceives  obtaining  decision  making.  tend to promote the efficiency:  ill-informed  about  choices  when  provided  energy  with  ensure  efficient experts.  that  consumers  technologies  reap the as  benefits  identified  [Sanstad and Howarth, p g . 1.177, Page 124  by  of  full energy-  technical  1994,  a]  the  adoption of  i n f o r m a t i o n . Thus p o l i c i e s of v a r i o u s k i n d s are j u s t i f i e d to  energy  Therefore,  but a l s o have t r o u b l e d e t e r m i n i n g how t o  "correct"  and  and Robinson [1991]  group g e n e r a l l y does not endorse  p u b l i c p o l i c y t o promote energy  are  i n energy  In g e n e r a l ,  minimize  In a d d i t i o n , t h i s  Consumers  model  Kempton and Schipper of  Model  7.3.3  B e h a v i o r a l B a r r i e r s t o Improving Energy E f f i c i e n c y  L i s t e d i n the b e h a v i o r a l i s t / t e c h n o l o g i s t l i t e r a t u r e are a number of f a c t o r s t h a t c r e a t e b a r r i e r s to improving energy e f f i c i e n c y . beyond the  scope of  this  work t o  produce an exhaustive  It  list  is of  these b a r r i e r s , but a number of i s s u e s stand out, and are e x p l a i n e d below.  7.3.3.1 Energy  Invisibility  The i n v i s i b i l i t y of energy i s f r e q u e n t l y argued as a major o b s t a c l e to  improving  efficiency.  Because  of  energy's  invisibility,  i n d i v i d u a l s may develop " f o l k c a l c u l a t i o n s " to p r o v i d e i n f o r m a t i o n on e s t i m a t e s of energy e f f i c i e n c y . on  running  replaced. choices  time Such  or  estimates  calculations  These c a l c u l a t i o n s may be based  of  the  amount  contribute  [ L u t z e n h i s e r , p g . 261,  to  of  human  labour  sub-optimal  energy  1993],  An example of energy i n v i s i b i l i t y i s  common i n the t r e n d towards  automating energy systems. In h e a t i n g systems, one may set a s i n g l e dial  to  control  the  temperature  for  an  entire  building.  This  i n v i s i b i l i t y comes a t the c o s t of a l o s s of c o n t r o l , making energy c o n s e r v a t i o n more d i f f i c u l t . consumers  frequently  using devices  In a d d i t i o n , evidence  manually o v e r - r i d e the  automatic  i n ways they were never i n t e n d e d , thus  e n g i n e e r i n g attempts  at improving energy e f f i c i e n c y Page 125  suggests  that  controls,  exacerbating [Lutzenhiser,  pg.  261,  1993).  7.3.3.2 Information  Energy  information  conservation.  may  be  a  barrier  to  behavioral  A major problem w i t h energy  information i s  may be presented i n u n f a m i l i a r or a b s t r a c t ways. being a simple index of e f f i c i e n c y , in scientific  changes  in  that  Instead of  it  there  information i s frequently given  u n i t s t h a t may have l i t t l e or no meaning t o the user  of the i n f o r m a t i o n .  A second problem w i t h energy the  target  audience.  Because  b u i l d i n g s and energy u s e r s , building  information i s  or consumer  is  there  is  a  the d i v e r s i t y  great  within  diversity  among  i n f o r m a t i o n d i r e c t e d towards an average  p r o b a b l y going  p a r t i c u l a r b u i l d i n g or u s e r .  to  be  incorrect  for  any  As an example of consumer d i v e r s i t y ,  t h e r e may be a 100% change i n the consumption of energy merely by changing  the  occupants  of  a  building  [Stern,  1987].  This  v a r i a b i l i t y c r e a t e s g r e a t u n c e r t a i n t y about the accuracy or v a l u e of i n f o r m a t i o n p r o v i d e d .  Another problem w i t h energy i n f o r m a t i o n i s the c o n f u s i o n and l o s s of  credibility  policies.  of  experts  An example  of  created  this  by  conflicting  may occur  when  utility  advice  companies  promote the c o n v e r s i o n of h e a t i n g systems from e l e c t r i c i t y t o as  a  means  of  saving  on  energy Page 126  bills,  while  and  ignoring  gas that  electricity  powered  conditioning.  heat  pumps  Implicit in this  are  highly  problem i s  efficient  the need f o r  for  space  credible,  a c c u r a t e and non-biased sources of i n f o r m a t i o n . People respond not o n l y t o i n f o r m a t i o n , but t o t h e i r p e r c e p t i o n s and e v a l u a t i o n s the  source  of  information.  Unfortunately,  c r e d i b i l i t y among t h e i r customers,  many  about  utilities  lack  so i t becomes a d i f f i c u l t  task  t o p e n e t r a t e a market w i t h i n f o r m a t i o n , even i f t h a t i n f o r m a t i o n i s correct.  7.3.3.3 Discount Rates  A common problem among consumers c o n s i d e r i n g improvements t o energy c o n s e r v a t i o n equipment i s the h i g h d i s c o u n t r a t e many i n d i v i d u a l s i m p l i c i t l y p l a c e on t h e i r investments.  In one study,  a range from  20% t o 200% was observed [Stern and Aronson, 1984]. The consequence of t h i s i s t h a t many investments do not appear e c o n o m i c a l l y v i a b l e to these consumers.  For example,  high e f f i c i e n c y  have h i g h e r c a p i t a l c o s t s than r e g u l a r l i g h t s , the  investment  individual  is  will high,  save money. the  If  the  investment  in  l i g h t i n g systems  but over the  discount  life,  r a t e used by an  efficiency  will  not  be  attractive.  7.3.3.4 The Symbolic Meaning of Energy  The debate of energy s u p p l y , demand and c o n s e r v a t i o n i s associated  w i t h c o n t r o l , power, and freedom. Page 127  frequently  In essence, a l o t  of  symbolism r e v o l v e s conservation. possible  around the  issues  of  energy  consumption and  Freedom and c o n t r o l are powerful symbols,  that  energy  conservation  programs may be  and i t  viewed  as  is a  t h r e a t t o p e r s o n a l freedom.  7.3.3.5 Momentum of Past Behaviour  A l t e r i n g the i n e r t i a of p a s t behaviour i s o f t e n d i f f i c u l t because people tend t o commit themselves t o h a b i t s t h a t have evolved long time spans. and  risk.  An  technological  T h i s problem may be confounded by f e a r of example  of  innovations.  this Heat  occurs pumps  in used  the  change  resistance  for  over  to  conditioning  b u i l d i n g s have lower c a p i t a l c o s t s than comparable HVAC systems. In addition,  they are cheaper t o r u n . Even so,  these d e v i c e s are not  the f i r s t c h o i c e of many b u i l d i n g d e s i g n e r s .  7.3.3.6 L i t e r a c y  I t was estimated i n Canada i n 1991 t h a t 16% of functionally innumerate  3  illiterate  in either  [ S t a t i s t i c s Canada,  official  1991,  a].  Canadian a d u l t s are  language,  and 14% are  I f an i n d i v i d u a l cannot  r e c o g n i z e numbers i n i s o l a t i o n or cannot r e a d , t h a t i n d i v i d u a l w i l l not be a b l e t o understand n o n - v e r b a l i n f o r m a t i o n r e l a t e d t o  energy  efficiency. There were 16.4 m i l l i o n a d u l t s i n Canada i n 1991. T h i s i m p l i e s t h e r e were 2.6 m i l l i o n i l l i t e r a t e a d u l t s and 2.3 m i l l i o n innumerate adults. 3  Page 128  7.3.3.7 I n t e r m e d i a r i e s  The  presence  contractors  of may  intermediaries have  an  such  as  on  the  effect  land-lords success  or  of  building efficiency  programs. These i n d i v i d u a l s are r e s p o n s i b l e f o r the i n i t i a l and purchase of b u i l d i n g components, the  operating costs.  important  factor  in  but are not r e s p o n s i b l e  T h e r e f o r e , energy e f f i c i e n c y the  design  decision  making  for  may not be an  process  of  these  individuals.  7.3.4 A T h i r d Conceptual Model  A c r i t i c i s m l e v e l l e d a t both the b e h a v i o r a l i s t / t e c h n o l o g i s t ' s and the economic approach i s  t h a t the models focus  p o l i c y on aggregate e f f e c t s of typical  view  a t t e n t i o n and  b u i l d i n g s and occupants.  It  has been argued t h a t p o l i c y based on these two models exaggerates the  importance  underestimates 1993].  A  of the  third  prices  and  importance of  conceptual  technological individual  model  of  solutions,  action  energy  use  and  [Lutzenhiser, that  focuses  p r i m a r i l y on the human occupants of b u i l d i n g s i s a c u l t u r a l l y based model. There i s evidence from the s o c i a l s c i e n c e l i t e r a t u r e t h a t a person's  energy  consumption  and  conservation  s y s t e m a t i c a l l y on the b a s i s of s o c i a l c l a s s ,  levels  ethnicity,  vary  life-cycle  s t a g e , gender, o c c u p a t i o n , e d u c a t i o n , geographic l o c a t i o n and l o c a l culture  [Lutzenhiser,  pg.  53,  1992].  based model: Page 129  In  addition,  a culturally  t r e a t s energy as a key v a r i a b l e i n c u l t u r a l observing that technologies  all  to  societies require  survive,  that  the  evolution,  energy-conversion  amount of  available  energy t o a c u l t u r e i s a f u n c t i o n of the t e c h n o l o g y , energy-conversion  differentials  influence  the  that  relative  p r o s p e r i t y and power of s o c i e t i e s ( l i m i t i n g i n some cases and  stimulating  dramatic  growth  in  others),  that  technology c h o i c e s are determined p r i m a r i l y by p o l i t i c a l processes, shaped  by  scientific,  and t h a t the p o l i t y and economy are i n t u r n cultural  institutions  governmental  and  (e.g.,  corporate  religious,  arrangements,  understandings and b e l i e f s ) . [ L u t z e n h i s e r , p g . 54,  1992]  An i m p l i c a t i o n of the c u l t u r a l l y based model i s the a s s e r t i o n  that  t h e r e i s as much i n e f f i c i e n c y i n consumers' c h o i c e of demands t o be met as t h e r e i s i n the way those demands are p r o v i d e d [Kempton and Schipper,  1994].  For example,  as noted i n S e c t i o n 7 . 3 . 3 . 2 ,  there  may be a 100% change i n the energy consumed i n a b u i l d i n g simply by changing the  occupants.  Although the  cultural  model does p r o v i d e important i n s i g h t  energy consumption and c o n s e r v a t i o n a t the model  poses  answering primarily  at on  more this the  questions time.  than  it  Therefore,  individual  appears the  to  present  behavioralist/technologist  be  level,  the  capable  of  work w i l l  model  into  versus  focus the  economics model f o r energy c o n s e r v a t i o n p o l i c y . 4  The b e h a v i o r a l i s t model of energy consumption i s s t a r t i n g t o i n c l u d e c u l t u r a l v a r i a b l e s and i s s u e s . See f o r example Kempton and Schipper [1994]. 4  Page 13 0  7.4 ANALYSIS OP COMPETING VIEWS  As s t a t e d i n the d i s c u s s i o n on the nature of the debate between the proponents of the competing models, the b e h a v i o r a l i s t / t e c h n o l o g i s t and  the  economic models  appear t o  be  based  on a s e t  of  self-  l i m i t i n g assumptions. As such, t h e r e are a number of problems w i t h the  competing models.  This  section  highlights  the  limits  of  the  models p r e s e n t e d i n the l a s t s e c t i o n . Due t o the l i m i t a t i o n s of the economics  and  behavioralist  models,  a  case  is  made  for  methodological p l u r a l i s m .  There are a number of responses t o the arguments p r e s e n t e d i n the economics  approach  expressed  in  Sutherland's  c r i t i c i s m i s t h a t by assuming a priori  work.  A  first  t h a t energy and c o n s e r v a t i o n  measures are v a l u e d o n l y as a commodity, bought and s o l d i n a w e l l functioning,  c o m p e t i t i v e market, the author l i m i t s the  potential  e x p l a n a t i o n s f o r the low l e v e l s of energy c o n s e r v i n g b e h a v i o u r . As noted i n S e c t i o n 7 . 3 ,  energy may be viewed and v a l u e d i n a number  of ways. A l t e r n a t e l y , Sanstad and Howarth [1994, b] note t h e r e little sold  evidence t o support the premise t h a t energy i s in  difficult  a  "normal" to  market.  A second  argument  is  d i s t i n g u i s h between a market f a i l u r e  is  bought and that  it  is  and a market  b a r r i e r . Government p o l i c y may improve economic e f f i c i e n c y f o r the case of market b a r r i e r s , and may reduce t r a n s a c t i o n s c o s t s or r i s k s through a s u i t a b l e c h o i c e of p o l i c y i n s t r u m e n t s . A t h i r d argument a g a i n s t the work of S u t h e r l a n d i s t h a t the a u t h o r ' s c o n c l u s i o n s are Page 131  not n e c e s s a r i l y Six  suggests  buildings  v a l i d a t e d by e x p e r i e n c e .  potentially  through  Alternately,  it  the  was  benefits associated to  commercial  (1.61/ft ) 2  5  large  energy  over  energy  the  net  the  in  British  present  Columbia  with i t also.  market  value  policy  barriers this  the  standards  was  $17.32/m  p g . 23,  a number of  of  1991].  criticisms  as  a  and market  means  of  failures  resolving associated  model does not address  the with  a number of  i s s u e s . F i r s t , proponents of t h i s model have not acknowledged the  barriers  that  2  While t h i s model f r e q u e n t l y endorses the  public  consumption,  model has  of  technologies.  w i t h implementing energy e f f i c i e n c y  buildings  of  lifecycle  saving  [Energy Mines and Petroleum Resources,  implementation perceived  of  that  The b e h a v i o r a l i s t / t e c h n o l o g i s t associated  savings  adoption found  The a n a l y s i s of Chapter  inhibit  the  adoption  of  energy  key that  efficient  t e c h n o l o g i e s are l i k e l y to i n h i b i t the e f f e c t i v e n e s s of any p u b l i c p o l i c y d i r e c t e d a t s o l v i n g the problems. market  b a r r i e r s does not  necessarily  Second,  mean t h a t  the presence  of  the  of  benefits  p u b l i c p o l i c y exceed the c o s t s . T h i r d , the e x i s t e n c e of b e h a v i o r a l b a r r i e r s i s f r e q u e n t l y acknowledged i n the l i t e r a t u r e , y e t t h e r e  is  little  compared  to  i n f o r m a t i o n generated  by  understanding  economic  criteria.  of  their  Fourth,  relative  much of  the  importance  b e h a v i o r a l a n a l y s t s focuses a t t e n t i o n on r e s i d e n t i a l energy u s e r s . I t i s not c l e a r i f the i s s u e s and p o t e n t i a l s o l u t i o n s  are the same  Based on the assumptions of a 10% d i s c o u n t r a t e and a 15 year study p e r i o d . 5  Page  132  for  the commercial and i n d u s t r i a l s e c t o r s .  presented  by  behavioralists  and  Finally,  technologists  the  are  arguments frequently  c o n s i s t e n t w i t h p r i n c i p l e s of economics, and may be strengthened by more thorough use of the economics l i t e r a t u r e [Sanstad and Howarth, 1994,  a].  The a n a l y s i s of competing views suggests t h a t the economics and the b e h a v i o r a l i s t / t e c h n o l o g y models p r o v i d e incomplete i n f o r m a t i o n f o r understanding surprising,  energy  conservation  as any model i s  behaviour.  This  is  hardly  a s i m p l i f i c a t i o n of r e a l i t y ,  and the  models are attempting t o d e s c r i b e and p r e d i c t c o m p l i c a t e d , dynamic issues. the  last  In a d d i t i o n , o b s e r v i n g the debate t h a t has o c c u r r e d over 20 years  suggests t h a t  disagreement  over the  facts  and  models i s a c e n t r a l c h a r a c t e r i s t i c of the debate r e l a t e d t o energy efficiency.  As such, t h e r e i s a s t r o n g argument f o r m e t h o d o l o g i c a l  pluralism:  where  completely,  combining the competing models and t h e i r s o l u t i o n s may  provide  no  one  a more r o b u s t  model  basis  choosing one model and i t s  can  for  describe  developing  this  policy  public  issue  policy  than  solution.  7.5 CONSUMER RATIONALITY  The  focal  point  in  the  debate  between  economists  and  the  behavioral/technologist  a n a l y s t s appears t o be based on d i f f e r e n t  interpretations  levels  economic  of  and  rationality.  At  an  of  confidence  informal  Page 133  level,  in  the the  concept  of  concept  of  r a t i o n a l i t y makes sense: i n d i v i d u a l s p r e f e r b e t t e r t o worse and t r y t o make w e l l informed, reasonable d e c i s i o n s . plausible  that  However, i t seems l e s s  i n d i v i d u a l s a c t u a l l y make c h o i c e s  according to  formal o p t i m i z a t i o n process expressed by r a t i o n a l c h o i c e  a  theorists.  As Simon n o t e s :  In i t s  treatment of r a t i o n a l i t y , n e o c l a s s i c a l  differs  from the  other  social  sciences  in  economics three  main  a s p e c t s : ( a ) i n i t s s i l e n c e about the content of g o a l s and values;  (b)  in  its  b e h a v i o u r ; and (c) behaviour total  is  postulating in its  objectively  environment,  global  consistency  postulating  "one  rational  relation  including  both  in  present  environment as the a c t o r moves through t i m e . S210,  Evidence  world"-that to  and  its  future  [Simon, p g .  1986]  suggests  imperfect  that  decisions  capabilities,  individuals  framed  incomplete  by  the  "muddle  limited  through,"  time  and  making  6  processing  information, external constraints,  range of n o n - f i n a n c i a l motives. between  of  "substantive"  Simon [1986] makes the rationality  of  distinction  economics  "procedural" or "bounded" r a t i o n a l i t y of other s o c i a l  and a  and  the  sciences.  I t i s suggested t h a t the concept of bounded r a t i o n a l i t y may p r o v i d e more comprehensive and r e a l i s t i c b a s i s f o r c r e a t i n g p u b l i c p o l i c y . Further,  it  has been p o s t u l a t e d  energy e f f i c i e n c y  6  create  t h a t many b e h a v i o r a l b a r r i e r s t o  "departures from s u b s t a n t i v e  See Lindblom [1959] f o r a d i s c u s s i o n of t h i s Page 134  rationality  concept.  and r e s u l t i n the systematic  overconsumption of energy r e l a t i v e to  the l e v e l t h a t would p r e v a i l g i v e n the c o s t - e f f e c t i v e p r o v i s i o n of energy s e r v i c e s . " are a number of  [Sanstad and Howarth, p g . 1.178, i m p l i c a t i o n s of  adopting the  1994,  concept  a] There  of  bounded  rationality:  •  it  is  no longer p o s s i b l e  programs  as  to  l a b e l c e r t a i n energy  economically  theoretical  grounds  rooted  "inefficient" in  the  efficiency  based  concept  of  on  the  substantive  rationality;  •  departures  from  systematic  substantive  overconsumption  of  rationality energy,  may  imply  resulting  in  a  the sub-  o p t i m a l a l l o c a t i o n of energy r e s o u r c e s ; and,  •  the  same  factors  rationality  may c r e a t e  improve energy  The  preceding  understanding  which c r e a t e  b a r r i e r s to  from  substantive  any program designed  to  efficiency.  sections the  departures  have  attempted  conflicting  views  to  and  provide limited  a  basis  for  understanding  s u r r o u n d i n g the debate on energy consumption and c o n s e r v a t i o n . The next s t e p i n d e v e l o p i n g a p o l i c y framework f o r energy c o n s e r v a t i o n in  commercial  buildings  is  to  define  the  participants  in  the  d e c i s i o n making p r o c e s s . The next s e c t i o n maps the "sub-government" of t h i s p o l i c y  issue. Page 135  7.6 MAPPING THE SUB-GOVERNMENT  In d e v e l o p i n g a p o l i c y framework f o r improving the l i f e c y c l e efficiency  of b u i l d i n g s ,  i t i s important to understand the context  w i t h i n which the p o l i c y i s designed, building  industry is  stakeholders. collaborative little  made up of  Interactions to  implemented and e n f o r c e d . The  a large  between  confrontational.  and fragmented  these  buildings  groups  Frequently,  communication or c o - o r d i n a t i o n between  The major s t a k e h o l d e r s  energy  group of  range  however,  from  there  stakeholders.  i n v o l v e d i n improving energy e f f i c i e n c y  include:  Government: F e d e r a l Government; N a t u r a l Resources  Canada,  Consumer A f f a i r s , B r i t i s h Columbia P r o v i n c i a l Government; Energy Mines and Petroleum Resources, Municipal  Affairs,  B r i t i s h Columbia U t i l i t i e s Commission, B r i t i s h Columbia Energy C o u n c i l M u n i c i p a l Government Planning Engineering Permits Page  136  is  ( U n t i l November  1994)  in  U t i l i t y Companies  ( P r i v a t e and P u b l i c l y Owned)  Electricity Gas P r i v a t e Companies Builders Designers  (Architects,  Engineers)  Product Manufacturers Performance C o n t r a c t o r s B u i l d i n g Owners B u i l d i n g Occupants Advocacy Groups Consumers Environmental International  A number  of  organizations  implications  result  d i v e r s e group of s t a k e h o l d e r s  •  •  such  i n v o l v e d i n the p o l i c y  a  large  No one s t a k e h o l d e r  diverse.  Each  has  stakeholder  authority  is  diverse,  a  task  points.  can s e i z e the  and r e s o u r c e s are  and  arena.  G e t t i n g i s s u e s onto the p o l i c y agenda may be a simple due t o the number of access  •  from having  distinct  therefore, Page 137  p o l i c y agenda as  set the  of  task  authority  priorities, of g e t t i n g  and  public  p o l i c y implemented i s a long and d i f f i c u l t t a s k [ L u t z e n h i s e r , 1994].  7.7 POLICY ALTERNATIVES  T h i s s e c t i o n reviews the p o l i c y o p t i o n s t h a t have been implemented i n B r i t i s h Columbia and elsewhere t o improve the energy of the b u i l d i n g s e c t o r . discussed  briefly.  efficiency  The use and c h o i c e of p o l i c y instrument  is  F u r t h e r i n f o r m a t i o n oh p o l i c y o p t i o n s used  to  r e g u l a t e the energy i n d u s t r y may be o b t a i n e d i n the  literature . 7  The o b j e c t i v e s which d i c t a t e the c h o i c e of p o l i c y o p t i o n s i n c l u d e : efficiency,  f l e x i b i l i t y ; d i s t r i b u t i o n a l consequences;  the  ability  t o implement, monitor and enforce the p o l i c y ; and, the p h i l o s o p h y of  the  governing  agent  concerning  the  presence  of  non-market  f o r c e s . These f a c t o r s p r o v i d e a b a s i s f o r comparison of the v a r i o u s p o l i c y o p t i o n s presented below.  •  P o l i c y options  adopt u t i l i t y sponsored programs i n the  include:  form of Demand Side  Management (DSM);  •  permit a c o m p e t i t i v e market t o determine the l e v e l of efficiency  energy  through d e r e g u l a t i o n of energy markets;  See, f o r example, The Energy J o u r n a l Systems, and Energy. 7  Page 138  f  Energy P o l i c y . Energy  •  i n t r o d u c e p u b l i c p o l i c y t o p r o v i d e i n f o r m a t i o n or g u i d e l i n e s ; or,  •  implement and enforce a set  of r e g u l a t i o n s  such as  standards  or p r i c i n g .  7.7.1 U t i l i t y Sponsored  There are many programs o f f e r e d by u t i l i t i e s under the framework of Integrated (DSM) . 8  Resource  Considering,  Planning for  (IRP)  example,  and the  Demand Side electricity  Management conservation  programs f o r commercial b u i l d i n g s by B . C . Hydro, measures  •  f i n a n c i a l incentives simulation  •  i n the form of g r a n t s to perform b u i l d i n g  studies  alternatives;  include:  to  examine  architectural  design  and,  performance i n c e n t i v e s  based on the d i f f e r e n c e between a c t u a l  b u i l d i n g performance and b u i l d i n g performance modelled on the ASHRAE 90.1  energy  code . 9  See B r i t i s h Columbia U t i l i t i e s Commission [1993] f o r an e x p l a n a t i o n of these terms. For c u r r e n t i s s u e s r e g a r d i n g IRP and DSM, see Proceedings of the ACEEE 1994 Summer Study on Energy Efficiency in Buildings. 8  I n the form of f i n a n c i a l i n c e n t i v e s a v a i l a b l e t o d e s i g n e r s and c o n t r a c t o r s i f the b u i l d i n g i s more energy e f f i c i e n t than i s r e q u i r e d by the energy code. 9  Page 139  F o c u s i n g on n a t u r a l gas c o n s e r v a t i o n p o l i c y by B . C . Gas, t h e r e are no DSM programs t o  reduce n a t u r a l gas  consumption by commercial  u s e r s a t t h i s t i m e . An i n c e n t i v e / r e b a t e program f o r medium and h i g h efficiency  boilers  is  expected  to commence s h o r t l y .  In a d d i t i o n ,  i n c e n t i v e programs f o r heat pumps and n a t u r a l gas powered is  expected  t o be i n c l u d e d i n the I n t e g r a t e d Resource P l a n (IRP)  f o r B . C . Gas i n the s p r i n g of 1995  [ C o n n a l l y , 1995],  There are a number of p o i n t s to emphasize value  of  incentives  difficult  coolers  or evaluate  i n DSM programs.  is  difficult  enough  effectiveness  it  programs. Because p a r t i c i p a t i o n i s v o l u n t a r y , i t may be a program w i t h  the  First,  incentive  design  predict  an o p t i o n  the  of  to  to  as  i n o r d e r to a s s e s s  flexibility  to  attract  a  large  number of p a r t i c i p a n t s .  Participation rate  is  a c r i t i c a l factor  affecting  the  success of  u t i l i t y sponsored DSM programs. The review by B e r r y [1993] suggests that  participation  survey  by Nadel  is  et  al.  common t o s u c c e s s f u l important  frequently [1994]  of  the  provides  order  of  6%.  a number of  DSM programs. The authors l i s t  the  A recent strategies following  attributes:  -implement programs which are easy t o p a r t i c i p a t e i n ; -design  programs which  attempt  to  involve  the  entire  community; -promote  personal  contact  o r g a n i z a t i o n and the  between  customer;  Page  140  the  sponsoring  - p r o v i d e t e c h n i c a l a s s i s t a n c e made r e a d i l y a v a i l a b l e ; - m a i n t a i n h i g h q u a l i t y of s e r v i c e and p r o d u c t ; -involve  trade  allies  to  assist  in  the  design  and  marketing of the programs; - i n c l u d e e f f i c i e n c y t h r e s h o l d s t o c r e a t e market push; -use good marketing s t r a t e g y , -marketing that  including,  targets  many s t a k e h o l d e r s  process with information that  is  in  the  relevant  to  each s t a k e h o l d e r , and, -marketing  that  informs  the  participant  of  the  f u l l range of economic and noneconomic b e n e f i t s of the program; -make  it  possible  manufacturers,  for  participation  by  customers,  and d i s t r i b u t o r s ;  - s t a r t programs by t a r g e t i n g p o t e n t i a l p a r t i c i p a n t s ; -maintain  consistency  in  program  eligibility  and  incentives; -provide f i n a n c i a l  incentives;  -work w i t h other s t a k e h o l d e r s t o encourage c o o r d i n a t i o n and  c o o p e r a t i o n between,  and government pp.42-44,  f o r example,  regulatory bodies.  the u t i l i t y  [Nadel et  al.,  1994]  A second i s s u e of DSM programs i s t h e i r c o s t .  In the case of B . C .  Hydro, the f i n a n c i a l i n c e n t i v e s are seen as a temporary measure t o promote and p u b l i c i z e c o n s e r v a t i o n t o customers. The h i g h c o s t of some DSM programs makes them a l e s s a t t r a c t i v e long term component of c o n s e r v a t i o n s t r a t e g y  A final  [Barry,  1993].  concern of u t i l i t y sponsored c o n s e r v a t i o n programs i s  a l l o c a t i o n of r i s k and the Sutherland  [1994]  the  " p r i n c i p a l agent problem". As noted by  and Nadel  et  al.  Page 141  [1992],  the  utilities  (the  agent)  make DSM investment  decisions  profit  from the  successful  customers investment  gains  of  (the p r i n c i p a l s ) i s not  Although t h e r e  and are  investments.  positive  conservation increases,  of  to the  However,  to the  the DSM  successful.  are u n c e r t a i n t i e s  way  position  i n c u r the r i s k s and l o s s e s i f  associated  u t i l i t y sponsored DSM programs, i n c e n t i v e s , a  i n the  introducing  consumers. ability  the  As  to  a  r e b a t e s and g r a n t s are  concept  opposed  evoke  w i t h the a d o p t i o n of  to  of  efficiency  standards  positive  or  response  and price  towards  c o n s e r v a t i o n i s p o t e n t i a l l y a s t r o n g a t t r i b u t e of these programs.  An a l t e r n a t i v e [Wirtshafter, levied  by  attraction builders  t o DSM programs i s  1994], t h a t l i n k b u i l d i n g performance t o the  utilities of  performance based hook-up  this  and  for option  designers  initial is to  connection  that  such  consider  a  to  the  long-term  i m p l i c a t i o n s of t h e i r b u i l d i n g s . Another o p t i o n i s  charge  grid.  program would  the  fees  The force  energy  p r o v i d i n g the  u t i l i t y w i t h the a u t h o r i t y t o enforce b u i l d i n g standards r e l a t e d t o energy e f f i c i e n c y .  C r i t i c i s m of the performance based hook-up  fee  has c e n t e r e d around the n o t i o n t h a t t h e r e i s no standard method of measuring the o p e r a t i n g performance of a b u i l d i n g . However, the use of  the  Building  Energy Performance  s o l u t i o n t o the c r i t i c i s m .  7.7.2  C o m p e t i t i v e Markets Page  142  Index  (BEPI)  may p r o v i d e  a  A second p o l i c y o p t i o n i s the use of d e r e g u l a t i o n markets t o determine the o p t i m a l l e v e l  and  competitive  of energy e f f i c i e n c y .  This  o p t i o n has been u t i l i z e d t o some extent i n the n a t u r a l gas market, where marketing f u n c t i o n s  p r e v i o u s l y h e l d by the B r i t i s h Columbia  Petroleum  C o r p o r a t i o n were  [Ministry  of  electricity  Energy Mines sector  is  transferred and  to  Petroleum  vertically  the  private  Resources,  integrated,  sector  1989],  resulting  The in  monopoly by B . C . Hydro throughout much of the p r o v i n c e . Due t o  a the  market f a i l u r e a r i s i n g from a n a t u r a l monopoly, d e r e g u l a t i o n of the electricity  sector is d i f f i c u l t  to  justify.  7.7.3 R e g u l a t o r y  W i t h i n the  c o n t e x t of  efficiency,  a  agencies.  adjusting  number  These  information,  regulatory of  options  education  approaches  options range  or  are  in  improving end  available  levels  guidelines  to  to  of  to  government  coerciveness  imposing  use  from  standards  or  price.  7.7.3.1 Information  Information forgotten.  programs Many  are  important,  conservation  but  programs  information  rely  on  d i f f u s i o n of i n f o r m a t i o n f o r improving e f f i c i e n c y a  number  instance,  of it  limitations is  and  drawbacks  slow. In a d d i t i o n ,  it  Page 143  to  the  is  easily  process  of  l e v e l s . There are  this  is d i f f i c u l t  process.  For  t o c o n t r o l and  p r e d i c t where or how much e f f e c t the programs w i l l have. the  whole  process  relies  on  participate.  The low r a t e s  conservation  programs  approach  to  energy  programs  are  important,  but  educated  are  not  position  suggest  in  a  individual's  success t h a t the  conservation.  consumption p a t t e r n s programs must be  of  an  if  need In  the to  a  willingness  are  for  typical  a  more  similar  who  of many  education are  decisions  (such as s c h o o l c h i l d r e n ) ,  to  aggressive  way,  individuals make  Finally,  being  regarding  the v a l u e of  the  questioned.  7 . 7 . 3 . 2 Standards  Commercial b u i l d i n g s c o n s t r u c t e d i n Vancouver are s u b j e c t t o energy efficiency  standards designed by the American S o c i e t y f o r Heating  R e f r i g e r a t i o n and A i r - C o n d i t i o n i n g Engineers [ASHRAE, 1989]. standard i s used i n the design of the base b u i l d i n g i n the  This  present  a n a l y s i s . The N a t i o n a l Research C o u n c i l i s d e v e l o p i n g a s i m i l a r set of  efficiency  standards  to  [ N a t i o n a l Research C o u n c i l ,  The use there  of  are  standards a number of  is  be  implemented n a t i o n a l l y  in  1995/96  1994].  widely discussed issues  i n the  surrounding t h i s  literature, choice  of  and  policy  i n s t r u m e n t . The f l e x i b i l i t y of p o l i c y instruments i s an i s s u e t o be considered. tool. nor i s  Standards tend t o  However, i t  be a r e l a t i v e l y  inflexible  i s not c e r t a i n how much f l e x i b i l i t y  is  policy  optimal,  i t c l e a r whether the r e d u c t i o n i n u n c e r t a i n t y d e r i v e d from Page  144  standards o f f s e t s the disadvantage of l a c k of f l e x i b i l i t y . A second argument a g a i n s t well  as  a  floor  requirements used,  standards  of  since  is  that  there  is  they may a c t no  a s t a n d a r d . However,  t h i s need not be the  as  a ceiling  to  surpass  incentive if  as the  a r a t c h e t i n g process  is  case.  Standards are u s u a l l y c o n s i d e r e d a poor c h o i c e because they may be inefficient. tradeable  This  permits  may  be  exist,  true but  when  under  the the  options  of  present  taxes  or  circumstances,  standards appear t o have a number of advantages.  For example,  it  may c o s t B . C . Hydro on the order of one m i l l i o n d o l l a r s t o p r o v i d e an  incentive  program  and  market  that  program  effectively.  C o n v e r s e l y , the M i n i s t r y of Energy, Mines and Petroleum Resources can implement a standard at a c o s t of approximately f i f t y dollars means  of  [Barry,  1993].  overcoming  Alternately,  the  barrier  standards  discussed  are  in  an  thousand efficient  section  7.5.1.7  a s s o c i a t e d w i t h i n t e r m e d i a r i e s . I f those i n t e r m e d i a r i e s do not have the c h o i c e t o purchase i n e f f i c i e n t problem  for  the  i n d i v i d u a l who  devices, must  pay  there the  is  no longer a  operating  costs.  Because standards are capable of t r a n s f o r m i n g e n t i r e markets, are a p o t e n t i a l l y powerful p o l i c y  they  instrument.  A f i n a l c r i t i c i s m of standards has been expressed by Conover et a l . [1994] who a s s e r t t h a t the e f f o r t  needed to enforce a s t a n d a r d  c o r r e l a t e d t o the complexity and s t r i n g e n c y  of the s t a n d a r d . The  authors found non-compliance r a t e s as h i g h as 25%. Page 145  is  7.7.3.3 P r i c i n g  The r o l e of economic r a t e s  (Through p r i c e s t r u c t u r e and taxes)  is  seen by The M i n i s t r y of Energy Mines and Petroleum Resources as the most important way f o r energy u t i l i t i e s conserve Petroleum  energy  and  to  Resources,  use  it  1989].  more  t o encourage customers wisely  However,  [Energy  current  to  Mines  and  does  not  pricing  r e f l e c t t h i s view, as the p r i c e f o r energy i s l e s s than the c o s t of providing  additional  supplies.  Based  on  information  M i n i s t r y of Energy Mines and Petroleum Resources for  natural  gas  is  approximately  2.5%  less  from  the  [1994], the p r i c e  than  its  long  run  m a r g i n a l c o s t . S i m i l a r l y , the p r i c e of e l e c t r i c i t y i s approximately 12% l e s s than i t s  long run m a r g i n a l c o s t . P r o v i d i n g consumers w i t h  inaccurate p r i c e signals  f o r energy may l e a d t o m i s a l l o c a t i o n  resources,  excessive  resulting  in  economically e f f i c i e n t  In making the  argument  energy  consumption  for price  change  as  a means  of  i n demand r e s u l t i n g  reducing  of demand p r o v i d e s u s e f u l  i n f o r m a t i o n . The p r i c e e l a s t i c i t y of demand measures the  commodity, ceteris  the  level.  energy consumption, the p r i c e e l a s t i c i t y  change  above  of  from a 1% change  i n the  percentage price  of  a  paribus . 10  Used t o i n d i c a t e t h a t a l l v a r i a b l e s except the ones s p e c i f i e d are assumed c o n s t a n t . 10  Page 146  There  are  a  elasticity a recent  rate  Utilities 2,  of  sources  that  design  for  application,  British  estimates  38, the  of  -0.489 and -0.476 f o r  to  Sadlier gas  -0.013  [pg.  5,  -0.533,  analyses,  price  an aggregate  [British  11  Alternately,  price  elasticity  Columbia  Jekel-Sadlier  for  electricity  of B r i t i s h Columbia t o be  1 year,  6 year and 16 year  f o r n a t u r a l gas i s estimated  by B . C . Gas  1990]  [BCUC,  impact  pp 9-10,  i n the range of  1994,  estimates the p r i c e e l a s t i c i t y  consumption by commercial u s e r s  0.113,  the  respectively.  The p r i c e e l a s t i c i t y -0.046  -0.67  1990].  consumption i n the commercial s e c t o r  analyses,  estimated  B . C . Hydro uses  Columbia  Commission, pg. 1990]  -0.147,  have  f o r e l e c t r i c i t y and n a t u r a l gas i n B r i t i s h Columbia. In  coefficient  [pg.  number  in British  and -0.565 f o r 1 y e a r ,  b] .  Jekel-  for natural  Columbia t o  be  -  6 year and 16 year impact  respectively.  The magnitudes of p r i c e e l a s t i c i t y are s i g n i f i c a n t l y  f o r e l e c t r i c i t y and n a t u r a l gas  l e s s than u n i t y .  T h i s i m p l i e s t h a t a change  to  the p r i c e of e l e c t r i c i t y and n a t u r a l gas w i l l generate l e s s than a p r o p o r t i o n a t e decrease i n energy  consumption.  large  required  price  increases  may  be  to  T h i s suggests achieve  that  moderate  The e l a s t i c i t y f i g u r e i n c l u d e s r e s i d e n t i a l , commercial, and i n d u s t r i a l e l e c t r i c i t y u s e r s . The e l a s t i c i t y f o r the i n d u s t r i a l s e c t o r i s estimated a t -0.15 t o - 0 . 2 5 , and t h i s s e c t o r corresponds t o approximately 45% of t o t a l e l e c t r i c i t y s a l e s by B . C . Hydro. T h e r e f o r e , the e l a s t i c i t y f o r the commercial s e c t o r i s p r o b a b l y g r e a t e r than - 0 . 6 7 , although no f i g u r e s were l i s t e d . 11  Page 147  improvements i n energy c o n s e r v a t i o n l e v e l s . clear  that  p r i c e mechanisms  alone  Therefore, i t  p r o v i d e the  most  is  not  appropriate  mechanism t o reduce energy consumption i n the commercial  sector.  T h i s i s e s p e c i a l l y t r u e i n the s h o r t and medium time frames.  An a l t e r n a t i v e design. "Rate  is  rate  The B r i t i s h Columbia U t i l i t i e s Commission has s t a t e d  that  design  expand  or supplement  can  public  s i g n a l s . . . rate  be  effective  awareness design  in  by  [is]  the  c o n s e r v a t i o n and e f f i c i e n t 3,  to uniform p r i c e  setting sending  increases  rate  structures  appropriate  preferable vehicle  that  pricing  f o r promoting  use through customer r a t e s "  [BCUC, p g .  1992].  Considering currently  uses  consumers. consumes  for  This in  consumption.  a  the  moment  electricity  a declining implies month,  block rate  that  the  The t r a i l i n g  consumption,  the  more  cheaper block  structure  it  rate  for  electricity becomes  for  structure  B . C . Hydro commercial a  customer  a  unit  evolved  from  of a  t r a d i t i o n a l energy s c e n a r i o of customers b e n e f i t i n g from economies of s c a l e and d e c l i n i n g c o s t s i n the development of new g e n e r a t i o n . However, the s i t u a t i o n has r e v e r s e d s i n c e B . C . Hydro now f a c e s the p r o s p e c t of d e v e l o p i n g h i g h e r c o s t r e s o u r c e s t o supply the growth in  demand  Utilities  for  electricity.  Commission (BCUC)  Since  1992,  the  British  has d i r e c t e d u t i l i t i e s  to  Columbia move t o  a  f l a t r a t e s t r u c t u r e . I t i s a n t i c i p a t e d i n the case of B . C . Hydro, that  t r a n s i t i o n to  a flat  rate w i l l Page 148  be complete  by the  1995/96  f i s c a l year  It  is  [ B r i t i s h Columbia U t i l i t i e s Commission, p g . 7,  important to  assess the  value  of p r i c e and r a t e  1994].  structure  w i t h i n the framework f o r e v a l u a t i n g p o l i c y o p t i o n s o u t l i n e d above. The  issue  of  efficient  efficiency  way  for  a  is  an  commodity  important p o l i c y  goal.  to  through  be  priced  forces.  However, because the p r i c e e l a s t i c i t y  natural  gas  are  medium term,  significantly  large price  moderate g a i n s  less  increases  is  The most  f o r e l e c t r i c i t y and  than u n i t y  i n the  short  would be r e q u i r e d t o  i n energy c o n s e r v a t i o n l e v e l s ,  market  this  and  achieve  implies that a  mix of p o l i c y mechanisms may p r o v i d e a more a p p r o p r i a t e s o l u t i o n to this  policy  issue.  In  addition,  there  are  many  externalities  a s s o c i a t e d w i t h energy supply and consumption. With the presence of m u l t i p l e market f a i l u r e s f o r energy, to  ever  be  defined  alternatives,  optimally.  p r i c i n g must s t i l l  method of a c h i e v i n g p o l i c y g o a l s  i t i s i m p o s s i b l e f o r the p r i c e  However,  on  the  basis  of  the  be acknowledged as an important efficiently.  An advantage of p r i c i n g and r a t e d e s i g n over other o p t i o n s  is  the  ease of implementation and s i m p l i c i t y of m o n i t o r i n g the e f f e c t s on c o n s e r v a t i o n . In a d d i t i o n , p o l i c y u s i n g p r i c i n g and r a t e d e s i g n can t r a n s f o r m e n t i r e markets, r e s u l t i n g i n i n c r e a s e d d i f f u s i o n r a t e s of technology.  This i s  that diffuses  i n c o n t r a s t t o the u t i l i t y sponsored approach  i n t o the market b u i l d i n g - b y - b u i l d i n g .  7.8 RELEVANCE TO THE CURRENT STUDY Page 149  Much of what has been d i s c u s s e d from a review general  of  the  so f a r i n t h i s  literature.  chapter i s  The next step  i n f o r m a t i o n of the p r e v i o u s  is  to  derived take  s e c t i o n s and draw out  the  policy  c o n c l u s i o n s t h a t may be u t i l i z e d t o improve the energy and economic performance  of  commercial  buildings  similar  to  the  case  study  building.  M e t h o d o l o g i c a l p l u r a l i s m i s a c e n t r a l c h a r a c t e r i s t i c of the debate.  Competing models and t h e i r  policy alternatives  solutions  based on p r i c i n g ,  energy  p r o v i d e a number of  utility  sponsored DSM, and  r e g u l a t o r y o p t i o n s . A l l s t r a t e g i e s l i s t e d above p r o v i d e o p t i o n s  to  reduce energy consumption, and should continue t o form components of f u t u r e p o l i c y i n i t i a t i v e s . barriers  that  technologies  are  policy solutions  inhibit likely  As noted i n S e c t i o n 7.4,  the to  adoption  inhibit  supply.  price  is  conserving  effectiveness  of  public  the m a r g i n a l c o s t of adding  P r o v i d i n g commercial energy  signal  an  important i n the  step  economic  efficiency  7.7.3.3,  the p r i c e f o r energy i s  cost  energy.  of  the  energy  the  implemented t o d e a l w i t h the problems.  The p r i c e f o r energy does not r e f l e c t new  of  however,  However,  in  users  elasticity  correct  energy  As noted  l e s s than the  price  the  improving the  building sector.  the  with  in  and  Section  long run m a r g i n a l for  energy  among  commercial u s e r s i s l e s s than u n i t y f o r e l e c t r i c i t y and n a t u r a l gas i n the s h o r t and long r u n . T h i s i m p l i e s t h a t l a r g e p r i c e would  be  required  to  achieve Page  moderate 150  reductions  increases in  enery  consumption.  Therefore,  most a t t r a c t i v e  p r i c e changes alone  s o l u t i o n to improving energy  The d e c l i n i n g b l o c k r a t e encourage 7.7.3.3, fiscal  may not p r o v i d e  energy  structure  conservation.  used  efficiency.  by B . C . Hydro does  However,  as  noted  in  provide  Moving  further  to  an  incentive  to  considered i n future p o l i c y  The a d o p t i o n of  inclining  block  rate  improve e f f i c i e n c y ,  buildings.  standards d e f i n e stringent  and should  be  energy  efficiency  standards  for  performance s t a n d a r d s ,  especially  energy and economic  for  energy  Side  incentives  work t h a t  the  conservation  Management  i n the  initiatives  lighting  powerful  to  encourage  commence  shortly.  include  medium and h i g h  There  are  a  broad  option  commercial s e c t o r .  efficiency range  of  at  Current  performance  f o r l i g h t i n g , and funding f o r d e s i g n s t u d i e s .  programs  systems  benefits.  sponsored programs are a p o t e n t i a l l y  improving Demand  has been shown i n t h i s  performance  a l e v e l of performance t h a t i s s u b - o p t i m a l . More  w i l l have p o s i t i v e  Utility  it  may  analysis.  the ASHRAE 90.1  However,  1995/96  structure  commercial b u i l d i n g s i n Vancouver p r o v i d e s a b a s e l i n e for  not  Section  a f l a t r a t e s t r u c t u r e w i l l be implemented by the year.  the  based  Incentive  boilers  will  a d d i t i o n a l DSM  programs a v a i l a b l e . N o t a b l y , the i d e a of performance-based hook-up fees deserves g r e a t e r a t t e n t i o n . pumps p r o v i d e v i a b l e  energy  In a d d i t i o n , d a y l i g h t i n g and heat  conservation Page  151  strategies.  F u t u r e DSM  programs should t a r g e t these s t r a t e g i e s .  The c u r r e n t governance  system may i n h i b i t improvements  performance of b u i l d i n g s . As noted i n S e c t i o n 7.6, stakeholders Authority leadership  in  energy  t h e r e are many  i n t h i s i s s u e , each w i t h a d i s t i n c t s e t of p r i o r i t i e s .  is or  diverse,  mandates  collaboration.  overlap,  Therefore,  and  there  future  is  little  policy  should  i n c l u d e mechanisms f o r improving the i n s t i t u t i o n a l arrangements this  issue.  Page  152  in  CHAPTER EIGHT: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS  8.1 SUMMARY OF FINDINGS AND CONCLUSIONS  8.1.1  •  O p e r a t i n g Energy  The i n i t i a l B u i l d i n g Energy Performance Index  (BEPI)  f o r the  case study b u i l d i n g i s 0.96 G J / m . y r . T h i s i s c o n s i s t e n t 2  the case study b u i l d i n g conforming to the ASHRAE 90.1 efficiency  •  energy  code.  By the a d o p t i o n of s i m p l e , proven t e c h n o l o g i e s ,  the o p e r a t i n g  energy of the case study b u i l d i n g i s reduced t o 0.23 This  with  corresponds  to  a  77%  reduction  in  GJ/m .yr.  operating  2  energy  consumption.  8.1.2  •  Embodied Energy  The i n i t i a l embodied energy of the case study b u i l d i n g i s  4.26  GJ/m .  0.10  2  Normalizing for b u i l d i n g l i f e ,  GJ/m .yr for a building l i f e 2  for  •  a building l i f e  t h i s corresponds t o  of 40 y e a r s ,  and 0.053 G J / m . y r 2  of 80 y e a r s .  S t e e l accounts f o r 38.7  % of the i n i t i a l  embodied energy and  c o n c r e t e accounts f o r a f u r t h e r 14.6% of the i n i t i a l embodied energy. Page 153  The s t r u c t u r e accounts embodied energy  f o r approximately 32% of the  and the  HVAC system accounts  initial  for a further  17%.  The r e c u r r i n g embodied energy i s  0.11  GJ/m .yr for b u i l d i n g 2  l i v e s of 40 and 80 y e a r s .  The  life-cycle  embodied  energy  is  0.21  GJ/m .yr  G J / m . y r . f o r b u i l d i n g l i v e s of 40 and 80 y e a r s , 2  These f i g u r e s  and  2  are v a l i d f o r a l l the b u i l d i n g  0.16  respectively. configurations  s t u d i e d i n t h i s work.  Over the range of performances and s t r a t e g i e s s t u d i e d i n t h i s work, the o p e r a t i n g energy and l i f e - c y c l e  embodied energy are  n e a r l y independent.  T h i s i m p l i e s t h a t improving the o p e r a t i n g  performance of  case study  life-cycle  the  b u i l d i n g does not  change  the  embodied energy of the b u i l d i n g .  The r e s u l t s  of  the  analysis  suggest t h a t  over the  range  of  energy performances s t u d i e d i n t h i s work, m u l t i p l y i n g b u i l d i n g price  and  construction initial  the  input-output  provides  value  sufficient  for  accuracy  non-residential to  predict  the  embodied energy of the case study b u i l d i n g .  Options a v a i l a b l e to reduce the l i f e - c y c l e  embodied energy of  the case study b u i l d i n g i n c l u d e : m a t e r i a l s r e c y c l i n g ; r e l y i n g Page  154  on  the  n a t u r a l trend, i n the  Canadian economy t o  embodied energy of goods and s e r v i c e s ; life;  and,  materials  substitution  reduce  the  i n c r e a s i n g the b u i l d i n g or  omission  of  certain  finishes.  8.1.3  •  L i f e - c y c l e Energy A n a l y s i s  For a b u i l d i n g l i f e reduced from 1.6 of  to  of  40 y e a r s ,  0.54  the  life-cycle  energy  is  G J / m . y r by the cumulative adoption 2  energy c o n s e r v a t i o n s t r a t e g i e s . T h i s c o r r e s p o n d i n g t o a 66%  r e d u c t i o n i n energy consumed.  •  For a b u i l d i n g l i f e reduced from 1.55 of  of  80 y e a r s ,  the  life-cycle  energy  is  t o 0.49 G J / m . y r by the cumulative adoption 2  energy c o n s e r v a t i o n s t r a t e g i e s . T h i s c o r r e s p o n d i n g t o a 68%  reduction.  •  The r a t i o  of  life-cycle  energy  energy ranges from 13.1% to  •  10.3%  to  attributed  to  embodied  38.9% f o r a b u i l d i n g l i f e  years,  and from  32.7%  for  a building l i f e  years,  depending on the o p e r a t i n g c h a r a c t e r i s t i c s .  of  40  of  80  Reducing the o p e r a t i n g energy requirements of the case study b u i l d i n g p r o v i d e s the l a r g e s t p o t e n t i a l energy  8.1.4  the  L i f e - c y c l e Cost A n a l y s i s Page 155  savings.  The  capital  cost  of  the  case  c o n f i g u r a t i o n i s $5.23 m i l l i o n improving  the  design  $53/m .  is  capital  If  2  study  This  building  in  its  base  ($652/m ) . The c a p i t a l c o s t of 2  building  to  an  energy  corresponds  to  an 8.2%  efficient  increase  in  costs.  only  those  effective, million,  case  study  strategies  are  implemented  that  are  cost  the net b e n e f i t of upgrading the b u i l d i n g i s $0,788 and $0,794 f o r b u i l d i n g  respectively.  lives  of  40 and 80  years,  The a n a l y s i s assumes a d i s c o u n t r a t e of 12.2%,  and u t i l i z e s c o s t data based on the long run m a r g i n a l c o s t of energy.  S t r a t e g i e s used t o reduce a i r i n f i l t r a t i o n ,  increase building  i n s u l a t i o n and improve the performance of f e n e s t r a t i o n systems are found t o be uneconomic. However, the a n a l y s i s of the c o s t e f f e c t i v e n e s s of the i n s u l a t i o n and f e n e s t r a t i o n is  alternatives  i n c o m p l e t e , and r e q u i r e s f u r t h e r a n a l y s i s .  The  life-cycle  net  benefit  of  implementing  all  building  improvements i s $0,246 m i l l i o n and $0,253 m i l l i o n f o r b u i l d i n g lives  If  of 40 and 80 y e a r s ,  only  those  strategies  respectively.  with  a positive  net  benefit  are  implemented, the payback p e r i o d i s immediate. Implementing a l l strategies  has a payback p e r i o d of 9 y e a r s . These r e s u l t s are Page 156  based on a d i s c o u n t r a t e of 12.2%.  •  A second c r i t e r i o n f o r c o s t e f f e c t i v e n e s s used i n the a n a l y s i s i s the d i f f e r e n c e between the u n i t c o s t of energy savings and the u n i t c o s t of energy purchases. A p o s i t i v e v a l u e i m p l i e s is  cheaper  to  purchase  additional  energy.  are  effective  cost  If  energy  savings  than  o n l y those i n d i v i d u a l are  adopted,  the  to  it  purchase  strategies  difference  that  between  l e v e l i z e d c o s t per u n i t of energy saved and the l e v e l i z e d c o s t per  u n i t of energy purchased i s  building lives strategies  $41.02/GJ and $30.38/GJ f o r  of 40 and 80 y e a r s ,  respectively.  are implemented, the d i f f e r e n c e  If  all  between the  the unit  c o s t of energy savings and the u n i t c o s t of energy purchases is  $1.93/Gj  years,  •  and $0.949/Gj  for building  lives  of  40  and 80  respectively.  The economic and energy analyses  are based on complementary  i n f o r m a t i o n and p r o v i d e c o n s i s t e n t r e s u l t s . A 60% decrease i n the o p e r a t i n g energy of the b u i l d i n g i s p o s s i b l e by a p p l y i n g strategies  that  c y c l e energy for  8.1.5  are c o s t  effective.  This  implies  the  life-  of the b u i l d i n g may be decreased by 50% and 48%  b u i l d i n g l i v e s of 40 and 80 y e a r s ,  respectively.  P o l i c y Implications  I t has been p o s t u l a t e d t h a t the concept of bounded r a t i o n a l i t y Page 157  may  provide  a  means  for  bridging  the  methodological  c o n c e p t u a l d i s p a r i t i e s between the p o l a r views of and  behavioral  argued  that  and technology  disagreement  over  researchers. the  facts  economics,  Further, and  As  such,  there  is  a  strong  it  models  c e n t r a l c h a r a c t e r i s t i c of the p o l i c y debate r e l a t e d t o efficiency.  and  is  is  a  energy  argument  for  m e t h o d o l o g i c a l p l u r a l i s m : where no one model can d e s c r i b e  this  p o l i c y i s s u e unambiguously, combining the competing models and t h e i r s o l u t i o n s may p r o v i d e a more r o b u s t b a s i s f o r d e v e l o p i n g public policy.  Pricing, provide  utility options  sponsored to  DSM,' and  reduce  energy  continue  to  form components  However,  the  b a r r i e r s that  conserving  technologies  of  consumption,  future  inhibit are  regulatory  policy  the  likely  e f f e c t i v e n e s s of p u b l i c p o l i c y s o l u t i o n s  and  should  initiatives.  adoption to  measures  of  energy  inhibit  the  implemented t o  deal  w i t h the problems.  The p r i c e f o r energy does not r e f l e c t  the m a r g i n a l c o s t  of  adding new s u p p l y . P r o v i d i n g commercial energy u s e r s w i t h the c o r r e c t p r i c e s i g n a l i s an important step i n improving energy and economic elasticity  efficiency  for  energy  unity for e l e c t r i c i t y run.  in  the  building sector.  among commercial u s e r s and n a t u r a l gas  i n the  is  The p r i c e less  s h o r t and long  T h e r e f o r e , f o r p r i c e changes t o be an e f f e c t i v e Page 158  than  policy  instrument,  large  price  increases  would  be  required.  This  suggests t h a t a mix of p o l i c y instruments may p r o v i d e a more appropriate p o l i c y  choice.  The d e c l i n i n g b l o c k r a t e s t r u c t u r e used by B . C . Hydro does not encourage energy c o n s e r v a t i o n . However, a f l a t r a t e  structure  w i l l be implemented by the 1995/96 f i s c a l y e a r . Moving t o an i n c r e a s i n g b l o c k r a t e s t r u c t u r e may p r o v i d e f u r t h e r to  improve  policy  efficiency,  and should  be  considered  in  future  analysis.  The adoption of the ASHRAE 90.1  energy  efficiency  f o r the case study b u i l d i n g p r o v i d e s a b a s e l i n e However, the standards d e f i n e  a level  standards  performance.  of performance t h a t  s u b - o p t i m a l . More s t r i n g e n t performance s t a n d a r d s , for  incentive  l i g h t i n g systems w i l l have p o s i t i v e  energy  is  especially  and  economic  benefits.  U t i l i t y sponsored programs are a p o t e n t i a l l y to  improve  energy  conservation  in  the  powerful  commercial  option sector.  Current Demand Side Management i n i t i a t i v e s i n c l u d e performance based i n c e n t i v e s f o r l i g h t i n g , and funding f o r d e s i g n s t u d i e s . Incentive boilers  programs t o  will  additional  commence  encourage shortly.  DSM programs  medium and h i g h There are  available.  efficiency  a broad range idea  of  performance based hook-up fees deserves g r e a t e r a t t e n t i o n .  In  Page  159  Notably,  the  of  addition,  d a y l i g h t i n g and heat pumps p r o v i d e v i a b l e  conservation  strategies.  Future DSM programs should  these energy c o n s e r v a t i o n  •  The c u r r e n t  governance  this  issue,  Authority is  each  system may i n h i b i t  with  diverse,  target  strategies.  improvements  energy performance of b u i l d i n g s . There are many in  energy  a  distinct  mandates  set  overlap,  in  stakeholders  of  priorities.  and t h e r e  is  little  l e a d e r s h i p or c o l l a b o r a t i o n . T h e r e f o r e , f u t u r e p o l i c y should include  mechanisms  for  arrangements i n t h i s  8.2  improving  the  institutional  issue.  RECOMMENDATIONS  I t i s recommended t h a t an economic and energy a n a l y s i s , the one performed h e r e , types  and  climatic  s i m i l a r to  be performed f o r a l l commercial b u i l d i n g  regions  of  British  Columbia.  If  performance improvements are o b t a i n a b l e at c o s t e f f e c t i v e  similar levels,  i t i s recommended t h a t the b u i l d i n g code be m o d i f i e d t o improve the minimum  energy  performance  Columbia above ASHRAE 90.1  of  commercial  buildings  in  British  standards.  I t i s recommended t h a t f u t u r e work should c o n t i n u e t o focus on the operating  performance  performance index  (BEPI)  of is  buildings.  If  l e s s than 0.3  the  building  GJ/m .yr, 2  the  energy embodied  energy w i l l be an important component of the l i f e - c y c l e energy, and Page 160  should be q u a n t i f i e d . a n d minimized.  Pricing, options options  utility  sponsored  DSM, and r e g u l a t o r y measures p r o v i d e  t o reduce energy consumption. should  continue  to  form  is  recommended t h a t  components  initiatives.  Page  It  161  of  future  all  policy  REFERENCES  American S o c i e t y of Heating R e f r i g e r a t i o n and A i r C o n d i t i o n i n g E n g i n e e r s , ASHRAE Standard 90.1-1989: Energy E f f i c i e n t Design of New B u i l d i n g s Except Low-Rise R e s i d e n t i a l B u i l d i n g s . A t l a n t a G a . , 1989. B . C . Hydro, 1994 E l e c t r i c i t y P l a n : An I n t r o d u c t i o n I n t e g r a t e d Resource P l a n . Vancouver, 1994 (b) .  to  BC Hydro's  B . C . Hydro, E l e c t r i c i t y C o n s e r v a t i o n P o t e n t i a l Review. Phase 2: C o n s t r a i n e d P o t e n t i a l . Vancouver, 1994 (d) .  1988-2010.  B . C . Hydro, The Cost of New E l e c t r i c i t y Supply i n B r i t i s h Columbia, Vancouver, 1994 (a). B.C.  Hydro, Resource A q u i s i t i o n P o l i c y ,  B . C . Hydro, Long Run Incremental 1991.  Vancouver,  1994  (c).  Cost of S e r v i c e Study,  Vancouver,  B . C . Hydro, E l e c t r i c i t y C o n s e r v a t i o n P o t e n t i a l Review, Phase l ; Unconstrained P o t e n t i a l , Vancouver, 1993.  1988-2010,  B . C . Gas, B . C . Gas I n t e g r a t e d Resource P l a n , Vancouver, March  1994.  B a i r d , G. , Aun, C . S . , Energy Cost of Houses and L i g h t C o n s t r u c t i o n . School of A r c h i t e c t u r e , V i c t o r i a U n i v e r s i t y of W e l l i n g t o n , Report o. 76, 1983. B a r r y , M . , M i n i s t r y of Energy Mines and Petroleum P e r s o n a l Communication, V i c t o r i a , B . C . , 1993.  Resources,  B e r r y , L . , "A Review of the Market P e n e t r a t i o n of U . S . R e s i d e n t i a l and Commercial Demand Side Management Programmes", Energy P o l i c y , Jan, 1993. Berry, S.R., "Energy A n a l y s i s f o r Business A d m i n i s t r a t i o n P.Nemetz, Vancouver, B . C . , 1979. f  Energy P o l i c y " , Ed., Vol. 10,  J o u r n a l of Nos. 1&2,  Brand, How B u i l d i n g s Learn Brand, S . , How B u i l d i n g s L e a r n : What Happens A f t e r T h e y ' r e B u i l d , V i k i n g , New York, N . Y . , 1994. B r i t i s h Columbia M i n i s t r y of Energy Mines and Petroleum Resources, Supply and Requirement F o r e c a s t : 1993-2015, V i c t o r i a , B . C . , 1994. B r i t i s h Columbia M i n i s t r y of Energy Mines and Petroleum Resources, Energy Standards For New Low-Rise B u i l d i n g s i n B r i t i s h Columbia: L i f e C y c l e A n a l y s i s . V i c t o r i a , B . C . , Sept. 1991, a. Page 162  B r i t i s h Columbia M i n i s t r y of Energy Mines and. Petroleum Resources, Energy Standards For New Commercial B u i l d i n g s i n B r i t i s h Columbia: L i f e C y c l e A n a l y s i s . V i c t o r i a , B . C . , Sept. 1991, b. B r i t i s h Columbia M i n i s t r y of Energy Mines and Petroleum Resources, Supply and Requirement F o r e c a s t : 1990-2010. V i c t o r i a , B . C . , 1991, c. B r i t i s h Columbia M i n i s t r y of Energy Mines and Petroleum Resources, B r i t i s h Columbia Energy P o l i c y : New D i r e c t i o n s f o r the 1990's, V i c t o r i a , B . C . , 1989. B r i t i s h Columbia M i n i s t r y . of Finance and Corporate R e l a t i o n s , B r i t i s h Columbia Economic Review and Outlook. Aug. 1994. B r i t i s h Columbia M i n i s t r y of M u n i c i p a l A f f a i r s , B u i l d i n g Code. V i c t o r i a , B . C . , 1992. British Columbia U t i l i t i e s Vancouver, B . C . , May 1994a.  Commission,  British  Annual  Columbia  Report.  1993.  B r i t i s h Columbia U t i l i t i e s Commission, D e c i s i o n . 1994/95 Revenue Requirements A p p l i c a t i o n . Phase 2. Vancouver, B . C . , Aug 1994b. B r i t i s h Columbia U t i l i t i e s Commission, G u i d e l i n e s . Vancouver, B . C . , 1993.  I n t e g r a t e d Resource P l a n n i n g  B r i t i s h Columbia U t i l i t i e s Commission, In the Application by B r i t i s h Columbia Hydro and Vancouver, B . C . , A p r i l , 1990.  Matter Power  of a Rate Authority.  B r i t i s h Columbia Energy C o u n c i l , P l a n n i n g Today f o r Tomorrow's Energy: An Energy S t r a t e g y f o r B r i t i s h Columbia. Vancouver, 1994. Brown, L . E d . , S t a t e of the World, 1992, 1992.  WW Norton & C o . , New York,  Buchannon, A . H . , Honey, B . G . , "Energy and Carbon i m p l i c a t i o n s of B u i l d i n g C o n s t r u c t i o n " , Energy and B u i l d i n g . V o l . 20, pp. 205-217, 1994. Building Owners and Managers Association (BOMA), Experience Exchange Report. Washington, DC, 1994. Bush, M . J . , "The Energy I n t e n s i t y of Commodities Canada", Energy V o l . 6, pp. 503-517, 1981.  1994  BOMA  Produced  in  f  Canada Center f o r M i n e r a l and Energy Technology, (CANMET), Present and Future use of Energy i n the Canadian S t e e l I n d u s t r y , Ottawa, Ont., 1993. Canadian Mortgage and Housing  Corporation  Page  163  (CMHC),  CMCH Research  Energy Mines and Resources Canada, Proceedings of a Workshop on the P o t e n t i a l f o r Energy E f f i c i e n c y i n Canada, Ottawa, 1993. Environment and Land Use Committee S e c r e t a r i a t , B e n e f i t Cost A n a l y s i s , V i c t o r i a , B . C . , 1977. Georgescu-Roegen, N., "Energy Economic J o u r n a l . J a n . , 1975.  and  Economic  G i l l i l a n d , M.W., E d . , Energy A n a l y s i s : Westview P r e s s , B o u l d e r , C o l o . , 1978.  Guidelines  Myths",  for  Southern  A New P u b l i c P o l i c y  Tool.  G i l l i l a n d , M . W . , "Energy A n a l y s i s and P u b l i c P o l i c y " , S c i e n c e . V o l . 189, No. 4208, pp. 1051-1056, 1975. Houghton, D . J . , "Projected and Measured R e s u l t s from an Energy E f f i c i e n t Small Commercial O f f i c e B u i l d i n g " , Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American C o u n c i l f o r an Energy E f f i c i e n t Economy, pp. 9.187-9.193, 1994. Howard, N . , S u t c l i f f e , H . , "Precious pp. 48-50, March, 1992.  Joules",  Building. Vol.  18,  I n t e r n a t i o n a l F e d e r a t i o n of I n s t i t u t e s of Advanced Study (IFIAS) Workshop, Energy A n a l y s e s . Workshop Report No. 6, S-17171, S o l n a , Sweden, 1974. J e k e l - S a d l i e r , S . , Estimated Energy P r i c e and Income E l a s t i c i t i e s . M i n i s t r y of Energy, Mines and Petroleum Resources, V i c t o r i a , B . C . , 1990. Kempton, W. , S c h i p p e r , L . , "Expanding the Human Dimensions Research Agenda," Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American C o u n c i l f o r an Energy E f f i c i e n t Economy, pp. 1 . 8 5 - 1 . 9 0 , 1994. Komor, P . , Moyad, A . , "How Large i s the C o s t - E f f e c t i v e Energy Savings P o t e n t i a l i n U . S . B u i l d i n g s ? " , Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American C o u n c i l f o r an Energy E f f i c i e n t Economy, pp. 6.125-6.134, 1994. Lawrence B e r k e l e y S i m u l a t i o n Researh 1987.  L a b o r a t o r y , DOE-2 Reference Mannual (2... 1A) . Group, U n i v e r s i t y of C a l i f o r n i a , B e r k e l y , Ca,  Lawrence B e r k e l e y L a b o r a t o r y , DOE-2 Sample Run Book. S i m u l a t i o n Researh Group, U n i v e r s i t y of C a l i f o r n i a , B e r k e l y , Ca, 1989. Lawrence B e r k e l e y L a b o r a t o r y , DOE-2 Supliment. S i m u l a t i o n Group, U n i v e r s i t y of C a l i f o r n i a , B e r k e l y , C a , 1989. Lawrence  Berkeley  Laboratory,  DOE-2  Page 165  Basics  Mannual.  Researh  Simulation  P r o j e c t : T e s t i n g of A i r B a r r i e r C o n s t r u c t i o n D e t a i l s , 32173.03/1, Ottawa, 1993.  Report No.  Canadian Mortgage and Housing C o r p o r a t i o n , OPTIMIZE, A Method f o r E s t i m a t i n g the L i f e c y c l e Energy and Environmental Impacts of a House, Ottawa, 1991. C o l e , R . J . , B u i l d i n g M a t e r i a l s i n the Context of Sustainable Development. Environmental Research Group, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B . C . , J u l y , 1994. C o l e , R . J . , E d . , B u i l d i n g s and the Environment, Proceedings of a one day Forum h e l d at the University of B . C . , School of A r c h i t e c t u r e , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, 1991. C o l e , R . J . , Rousseau, D. , Energy I n t e n s i t y Data Base, U n i v e r s i t y of B r i t i s h Columbia, 1993. C o l e , R . J . , E d . , B u i l d i n g s and the Environment, An I n t e r n a t i o n a l Research Workshop, Environmental Research Group, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, 1992. Common, M. , "The Economics of Energy A n a l y s i s Reconsidered", P o l i c y , pp. 158-165, June, 1976. Conally, 1995.  S.,  B . C . Gas,  Personal  Communication,  Energy  Vancouver, B . C . ,  Conover, R . , J a r n a g i n , R . E . , Shankle, D . , "Commercial B u i l d i n g Energy Standards Implemintation: Myth vs R e a l i t y " , Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American C o u n c i l f o r an Energy E f f i c i e n t Economy, pp. 6 . 2 7 - 6 . 3 4 , 1994. Constanza, R . , F a r b e r , S . , Maxwell, J . , " V a l u a t i o n and Management of Wetland Ecosystems", E c o l o g i c a l Economics. V o l . 1, pp. 335-361, 1989. Costanza, R . , E d . , E c o l o g i c a l Economics The Science and Management of S u s t a i n a b i l i t y . Columbia U n i v e r s i t y P r e s s , New York, 1991. D a l y , H . E . , Townsend, K . N . , E d . , V a l u i n g the E a r t h , E c o l o g y . E t h i c s . MIT P r e s s , Cambridge, M a s s . , 1993.  Economics.  Daly H . E . , U m a n a A . E . , E d . , Energy. Economics and the Environment: C o n f l i c t i n g Views of an E s s e n t i a l I n t e r r e l a t i o n s h i p . AAAS Symposium 64, Westview P r e s s , Boulder C o l o . , 1981. Danbridge, C . B . , R o t u r i e r , J . , N o r f o r d , L . K . , "Energy P o l i c i e s f o r Energy E f f i c i e n c y i n O f f i c e Equipment", Energy P o l i c y , V o l . 22, No. 9, pp. 735-747, 1994. Page 164  Researh Group, U n i v e r s i t y of C a l i f o r n i a , B e r k e l y ,  Ca,  Leach, G . , "Net Energy A n a l y s i s - i s i t any use?", V o l . 3, No. 4, pp. 322-344, (Dec.) 1975.  1991.  Energy  Lindblom, C . E . , "The Science of Muddling Through", A d m i n i s t r a t i o n Review. V o l . XIX, No. 2, pp. 79-88, S p r i n g ,  Policy. Public 1959.  L o v i n s , A . B . , "Expansio ad Absurdum", The Energy J o u r n a l . V o l . 2, No. 4, pp. 25-42, 1981. Lovins. A . B . . Affairs. Fall,  "Energy 1976.  Strategy;  The Road Not  Taken?".  L u t z e n h i s e r , L . , "Innovations and O r g a n i z a t i o n a l Networks", P o l i c y . V o l . 22, No.10, pp.867-876, 1994.  Foreign Energy  L u t z e n h i s e r , L . , " S o c i a l and B e h a v i o r a l Aspects of Energy Use", Annual Review of Energy and the Environment. V o l . 18, pp.247-289, 1993. Lutzenhiser, Consumption",  L., "A Cultural Model of Household Energy. V o l . 17, No. 1, pp. 47-60, 1992.  Energy  MacDonald, M . J . , "Energy E f f i c i e n c y C a p i t a l Requirements for B u i l d i n g s i n the U n i t e d S t a t e s , " Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American C o u n c i l f o r an Energy E f f i c i e n t Economy, pp. 1.175-1.183, 1994. M c D a n i e l s , T . , Environmental P o l i c y A n a l y s i s : R i s k s and V a l u e s . A Reader. U n i v e r s i t y of B r i t i s h Columbia, School of Community and R e g i o n a l P l a n n i n g , Vancouver, B . C . , 1993. Means, R . S . , Means C o n s t r u c t i o n Cost Data. 52th E d . , W a t t f o r d M a . , 1994. N a d e l , S . , Pye, M . , J o r d a n , J . , "Achieving High P a r t i c i p a t i o n Rates: Lessons Taught By S u c c e s s f u l DSM Programs", American C o u n c i l f o r an Energy E f f i c i e n t Economy, 1994. N a d e l , S . M . , R e i d , M.W., W o l c o t t , D . R . , E d . , R e g u l a t o r y f o r Demand Side Management, American C o u n c i l f o r E f f i c i e n t Economy, Washington, D . C . , 1992. N a t i o n a l Research C o u n c i l , Canada Ottawa, 1994.  Draft:  The N a t i o n a l  Incentives an Energy  B u i l d i n g Code of  N a t i o n a l C o o p e r a t i v e Highway Rsearch Program, Energy i n v o l v e d i n c o n s t r u c t i o n m a t e r i a l s and procedures. N a t i o n a l r e s e a r c h c o u n c i l , Washington, D . C . , 1981. Nemetz,  P.N.,  Commerce  595  Class  Notes,  Page 166  University  of  British  Columbia, Vancouver,  B . C . , 1993  Nemetz, P . N . , E d . , Resource P o l i c y I n t e r n a t i o n a l P e r s p e c t i v e s . The I n s t i t u t e f o r Research on P u b l i c P o l i c y , M o n t r e a l , Q u e . , 1980. Northwest Power P l a n n i n g C o u n c i l , Northwest C o n s e r v a t i o n E l e c t r i c Power P l a n . Document 91-05, P o r t l a n d , Oregon, 1991.  and  Odum, H . T . , Environment. Power and S o c i e t y , W i l e y - I n t e r s c i e n c e , York, 1971.  New  Oka, T . , S u z u k i , M . , Konnya, T . , "The E s t i m a t i o n of Energy Consumption and Amount of P o l l u t a n t s due t o C o n s t r u c t i o n of B u i l d i n g s " , Energy and B u i l d i n g s , V o l . 19, pp. 303-311, 1993. Peet, M . J . , "The Energy I n t e n s i t y of Commodities Canada", Energy, V o l . 6, pp. 503-517, 1981.  Produced  in  Public Works Canada, Air Leakage Control; Installation of A i r Leakage C o n t r o l Measures B u i l d i n g s . Ottawa, 1994.  Guidlines for i n Commercial  P u n t i , A . , "Energy A c c o u n t i n g : Some New P r o p o s a l s " , V o l . 16, No. 1, pp. 79-86, 1988.  Human E c o l o g y .  Radian Canada I n c . / C a n a d a Center f o r M i n e r a l and Energy Technology, Raw M a t e r i a l s B a l a n c e s . Energy P r o f i l e s and Environmental U n i t F a c t o r Estimates f o r Cement and S t r u c t u r a l Concrete P r o d u c t s . O c t . 1993 . Rees, W . E . , " E c o l o g i c a l F o o t p r i n t s and A p p r o p r i a t e d C a r r y i n g C a p a c i t y : What Urban Economics Leaves Out", Environment and U r b a n i z a t i o n , V o l . 4, No.2, pp. 121-130, Aug. 1992. R e i s t e r , D . B . , "The Energy Embodied i n Goods", Energy. V o l . 3, pp. 499-505, 1978. Robinson, J . B . , "Apples and Horned Toads: On the FrameworkDetermined Nature of the Energy Debate", P o l i c y S c i e n c e s . V o l . 15, pp. 23-45, 1982. Robinson, J . B . , "The Proof of the Pudding: Making Energy E f f i c i e n c y Work." Energy P o l i c y . V o l . 19, No. 7, pp. 631-645, 1991. Sanstad, A . H . , Howarth, R . B . , "Consumer R a t i o n a l i t y and Energy E f f i c i e n c y " , Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American C o u n c i l f o r an Energy E f f i c i e n t Economy, pp. 1.175-1.183, 1994, a. Sanstad, A . H . , Howarth, R.B., " I m p e r f e c t i o n s and Energy E f f i c i e n c y " , 10, pp.811-818, 1994, b. Page 167  'Normal' Markets, market Energy P o l i c y . V o l . 22, No.  SENES C o n s u l t a n t s , L T D . , Construction Canada. Richmond H i l l , Ont, 1993.  and  Demolition  Waste  in  S e r b e r , D . , "Energy Embodied i n B u i l d i n g s and B u i l d i n g Components", Energy P o l i c y . V o l . , pp. 317-326, 1976. Simon, H . A . , " R a t i o n a l i t y i n Psychology and Economics", B u s i n e s s . V o l . 59, No. 4, P t . 2, pp. S209-S224, 1986. Smith, R . , S t a t i s t i c s Canada, P e r s o n a l communication, 1994.  J o u r n a l of  Otawa, O n t . ,  S t a t i s t i c s Canada, Catalogue Number 89-525E, A d u l t L i t e r a c y Canada: R e s u l t s of a N a t i o n a l Survey. Ottawa, 1991, a . S t a t i s t i c s Canada, Catalogue Number 57-003-IV, Energy Supply-Demand 1991-IV. Ottawa, 1991, b. Statistics Canada, Catalogue Number P e r s p e c t i v e s 1993. Ottawa, 1993.  in  Quarterly Report-  11-528E,  Environmental  S t a t i s t i c s Canada, Catalogue Number 62-001, Monthly, The Consumer P r i c e Index. Ottawa, A u g . , 1994. S t e i n , R . G . , S e r b e r , D . , Hannon, B . , "Energy Use f o r B u i l d i n g C o n s t r u c t i o n " , Center f o r Advanced Computations, U n i v e r s i t y of Illinois, 1976. S t e l c o T e c h n i c a l S e r v i c e s L t d . , Raw M a t e r i a l s B a l a n c e s . Energy P r o f i l e s and Environmental U n i t F a c t o r Estimates f o r S t r u c t u r a l S t e e l P r o d u c t s . Aug. 1993. S t e r n , P . C . , " B l i n d Spots i n P o l i c y A n a l y s i s : What Economics d o e s n ' t say about Energy Use", J o u r n a l of P o l i c y A n a l y s i s and Management, pp. 200-227, 1986. S t e r n , P . C . , Aronson, E . , York, W.H. Freeman, 1984.  Energy Use:  The Human Dimension.  New  Sutherland, R.J., "Market Barriers to Energy Efficiency Investments", The Energy J o u r n a l . V o l . 12, N o . 3 , pp. 15-34, 1992. Sutherland, Resources?",  R . J . , "Energy Energy Sources  f  E f f i c i n c y or the E f f i c i e n t V o l . 16, pp. 257-268, 1994.  U n i t e d Nations Cenre f o r Human S e t t l e m e n t s , N a i r o b i , 1991. Webb, M . , Pearce, D . , "The Economics P o l i c y , pp. 318-331, Dec. 1975. Wirtshafter,  R.M.,  "Energy  of  Energy f o r  Hookup  of  building.  Energy A n a l y s i s " ,  Performance-Based Page 168  Use  Energy  Fees  for  Buildings",  Energy Sources, V o l . 16, pp.483-501,  Page 169  1994.  APPENDICES  Page 170  U) £ d L fi  0) c  -p  j  J  i  i  o  a < cu L 3  > +* c  JO  *5 CQ c  OJ  0  L  L  0)  - l - t -  L4--4-  g> ft .jAJiliy,.!  CD c  CO c  X  3  c o  L O  IS  a  QJ < a a -OLi  L  c  <.  L 3 CO  ll  0)  >  0 CD  +> c  L  CL  d  in 0)  c  $  d L n Q)  c <E  X T5 c OJ  a a  3 3  J2  CQ  d 2:  <E CU L 3 O) LL  d  CO  i  cs CL  d  "o" d  L d  Appendix A T a b l e A1: 3uilding S p e c i f i c a t i o n s  test run  B A S E BUI . D I N G C O N F I G U R A T I O N  Schedules  Day Occupancy  Mon-Fri  Weekends  Hours  Factor  1.8  0  9,11 12 13  0.8  14  0.8  15,18 19  1 0.5  20  0.1  21  0.1  22,24  0  1,24  0  1,8 9  0.15  10  0.95  1 0.4  and Holidays Lights  Mon-Fri  Weekends and Equipment  0.9  11  1  12  0.95  13  0.8  14  0.9  15,18  1  19  0.6  20,21 22,24  0.2 0.15  1.24  0.15  1.8  0.02  Holidays  Mon-Fri  Weekends  9,20  0.8  21,24  0.02  1.24  0.02  1.7 8,18  0.06  19,24  0.4  1,24  0.4  and Holidays Infiltration  Mon-Fri  Weekends  0.4  and Holidays Fans  Mon-Fri  P a g e 174  1.7  0.4  8,18  0.06  Appendix A  Weekends  19,24  0.4  1,24  0.4  and Holidays Design Characteristics Orientation  M a j o r A x i s Parallel t o N o r t h S o u t h  Occupancy  13.9 s q . m / p e r s o n  Lights Equipment  27 W/sq. m 5.4 W / s q . m  A i r Infiltration  2 ACH  People Heat Gain Hot W a t e r  0.47 M J / p e r s o n / h o u r 5000 Watts  Elevator  75 K W  Glazing  2 layers Aluminum Frame Without Thermal Break  Schedule^ Occupancy Schedule= Occupancy  Shading coefficient  0.909  Thermal Conductivity  0.72  Office Conditions Design Heat T e m p  21 D e g . C  Design Cool T e m p  23 Deg. C  Air Changes/Hr  4.5  O/A changes/Hr  0.58 cu m . / p e r s o n  Variable Air V o l u m e System Baseboard Heating Underground Parking Conditions Outside Air Changes/Hr  6  H e a t i n g , C o o l i n g Not S u p p l i e d  P a g e 175  ^ CO  £ 2 T5 3 i> « LU  Z  To 15 o o II  03Q  AON  <  10O  Z3 CQ  C d3S  o E 00 X !n c  CD CL CL <  CO  t onv  c o  co  O >»  cu CC  O)  CD C LU  t  CL  w  o  c o  Nnr  CQ  i— CD  udv  yviAi  t  93d  Nvr [rol uoijdujnsuoo A6jau3  c *j—: TO CO X i  t  42 o o CT. ij>  c —: TO CO X  i 1  </>  nri  TO — -~  D  w  TO O  c D) CD b) o b> c O c TOc . co £1 "O ro t TOJ—• TO C CO 3 CO v*— 0 O X CO _C X o : 1 1 1 1 3C 1  ¥  1  AON3IOIdd3 ONI1HOH  dinD3 'yoivA3n3  X  NoiivnnsNi  0)  "D  c (D o c ro  A1ISN30  E  ONI1HOI1  L_  CD CQ X T3  tz CD CL CL  <  Q_  ONizvno  CO  i_  oo CD D)  (D c LU a> c  cc  Q.  dlAind 1 V 3 H  '2  '5 OQ CO GQ  ONIIHOHAVQ  <X> L-  13 z NoiivynidNi  L NoiivynidNi  N0HV1N3IU0  3SV0  cn o  OO  o  o  CD  d  d  d  [LU b s / r o ] i d 3 a  d  CN  d  3sva  c CO E Q. 3 <T UJ -  W) =)  TJ C LU  CO O)  .Q C  o "-*—'  DO X  c co QQ. <  CL  E  05 h-  CO  c o O >.  0 CO >  1  CO  X  1  <  c  LU  CQ CD  l_  co co I CO  CO  o  CO  CN  +  LU LO CO  CN  +  LU CO  CN  T—  +  LU LO Csi  CN  +  LU CN  -  CN  CN  +  LU  LU LO  [sainof] asn A&jaua  —  +  Q. CO  —  +  LU LO  CO D) CO Q.  pawnsuoo A6J8U3 leioj. J O juaojad  CO CM  o 1^-  CM CM  |m  co  91 CM  CM CO ! -  a: x  111 N W I2 UJ  CO  D. D  CD  o X  o  £1  UJ  •I Q. Q.  0. Z>  8  LU  I ° !  a  a: x D I-  00  lO _  re" 03  cn >« c «—  a.  14)  a  10  CM  00  \~  c  O  CM  i-  •2 LU  O 00 lO  |m  cr. x 15  LU N (fi  LL  p  o o a. o 3 10  la  CM  LU CO CM  1^ |CM  CM  + LU  LU oo CD tf CM  z  LU •* m  CO  + LU CM O  00  3 CO  X T3 CD  a. a. <  LU CO  T—  CO  1CM  m cd  CD  loo  co"  i|LU  LU  LU co CO  CO  +  +  LU  UJ  i LU  CM CM I  LU  UJ  CO  CD  co  '+ LU CM O to  co  CM I  CM  I<N  + LU 1^  LU |  3  +  LU  +  + LU LU  CM I  + LU  z  c\T  CM |  CD  O  CM  I CM ,+  +  LU co co cd  LU m l»  CM |  |CM  + + + + LU U J LU U J m CM led CM'I  +  LU  a>  CD  <fco o  o  o co  CO d co  O in 2  CM  O 2  CO CO CD  oo d co  3 CO .  lo  H  E> CD c ILU -  loo  CD  l-O  OO  LU _l LU  m in oo CM m  I Si  < Q _j CQ  T—  c  CM  3 jQ CD CO CO •Q O LU H  cc:  O CM  CO  > z  cn o o co  a _j  m co CD  l^  1  CO  'I  E  a. '3 o UJ I-  Z 3  DC  O)  at  O)  in co  o o co  CM CM  3 J2  CO >O LU  c CD  LU _l LU  co CD  CD U CO  E a..  CO  UJ  E  3 CO  oo CD  cn  ro 0.  CM  O CD  CD  CM CM  «6 + W U J 05  CO CN CN O ) CM O Tt  T -  CM  01  •  to  5  O)  T—  CO CO CD  E rf,  CD  CD  o  CD  a. m E J =: -55 10  GO X TD  M  in ^ co LU JO Tt  T -  i;Q. rt,  CM  t-  CO  CM OO CD O) CO  CD Q. Q. <  a.  CO  CM O  o co cn CM  or  X  LU N  X  I-  CO  H  CO  CQ  -Z  LU  19.. c  9_  o  x o  LU  co  >>  f  CL CL  o o o  3 <> / CM T- IT)  CM  r-  T -  oo cn  + l*» CM LU «J «*> CD J f i  co «J co © o I CM  CM  +  +  LU  O  CM CO  x—  •sl-  ed CM  CO  00  a  •o c  °  LU  3I  CO CL CL  CO 05 O 3 LU O _J |1=»1 LU  <  CO  j  +  CD  00  CD  co loo  CD CD  at  +  LU t>M-  m  2 5 CL  I CM + LU  CO CO  +  LU  LU  cd cn  to  %* to <fl co oo  co  T—  CD O) CO  CM |  +  X—  + +  +  LU  LU  LU  CO  CD  co co  o  LU f>-  LU  Q_  CD  M cn I co  CM  oo  d  CO  CD  co LU _] LU  if  CO o o  CO  CM CM  < co co Q E .J _co  cn  m  co  a _j  ca. E  > O  LU H < on  ionw  CO o CO o  IX o CO CD o  o  co, co, Q.  J co CL  CO  c  CO CO  >  co ILU  3  CN  00 o cn O o  co  d  LU N  (0 H Z  tr. x  X  D I00  3 I00 O  LU  c  IS  >. I f Q.  CL  3  5>  co  Q. 3 8 CO  o LU  CM 00 CO T- O O  CM CM cn "**** CM + CO CO LU «M r CO Jfi CM  IN.  +  +  LU o oo z  CO CO TO  <  1^ co N TO I  a.  UJ  LU  m  «. «  1.1  g CO  CO <fl  + LU  00  ioci  CO  CM I  +  O LU _l LU  E  IS*  co CO co  |CN] CO co co  3  E cu  o  cn  Si  LU LU  a  CO CO  CL CL  co' + +  co CO  T3 C <u  LU  CN]  O)  x  +  LU  CO "T  LU  CO  T—  ro  0  O) CD  +  + LU  0_  LU  O CD CN  CO  o  CT  |_co CL  oo d co  O co z CO  rs N  TO  CT 0 J2 3  3 Im  LU _J LU  m cn CN  O  CO O O  CN CN  GO  •o  CO  o  TO Q.  £. >o LU  3 CO CO o  IS iS 3;  S-i TO  CO Q-l CO C/>  cz 0  E CO TOCL  >  co ILU  '3  01  LU  .  z  3  or  LU N CO  o  cc: x  OH  X  15  co  H  CD  co co  h-  CO  5  •Z LU  o  o cn  lo _  o  CO  DL  I f a.  LCD  3  o  CL  8  LU  3 10  CM irt co T- (1 O + r- CN UJ s CO CO CN » CN CN  CN CO T-  rt  + r~ co 2 co CN °  + LU co o  a.  + LU  UJ CO  cb  W_ (0 | CM  CO X T3 C CD CL  <  CO CD CJ CO  + +  CD  t  LU LU CO 00 CO  3 I  °  3  CO  I'd c  CO  3  S»  CD "O  +  T  CO  CM  II  3  to W  CO  LU co oo  LU a> co  in  oo CD CO  \™  +  LU CN CN CO  o  \  CM  CM  + +  + LU oo co  LU LU CN m cn I CD  CN  CO  LU  0_  cn  CN  c 3  c: co sd "co  5 o p  c o _co 3  CO  00  CN co CO  CD  3 H 03  b co  LU _l LU  CO CO  CO CM  c  CM  CN CN  CD  Q _J 3 CQ  3 3  o >-  o  LU I<  DC  f— CO  CO CD  IX  o o  O  CD  18 CO  o IX  CO  3  DC  CN  O oo co  UJ N CO H Z UJ  X  or x  I-  — t  m  CO  D_  o  >» f! CL  a  o  UJ  o  .Q  CL 3 CO  CM t-sm o rt + r-  T-  UJ CM:; oo CM ~  +  o z  CM CO  + LU  LU co  «  GO  in  co v>  +  +  LU oo CM |CM  c  CD CL CL <  ,+ LU  o  + LU oo co  UJ CD p cd _J UJ  + UJ m  +  UJ  CO CO  CM  CM  <  c  LU  z or o  CO "  <  ai  C O C iD  o z  P LU > <  CO  E p  co  LU _l LU  m  CM  m  CO  CM  co o  O •8 CL Ico (0 1  CD  Si  co >  CD  E a.,  3  cr] |UJ LU  C CD C  IS  o  N IS  CD CO  E  co  co  cn c -  I  c Q CD _J > D | .9? 'c T—  >' O  < z o  cc: co  o <  CD TJ  0.  w z  CD to CO  m  a  8> o c  _J  CO  u. O  >  >O  CD  3 HO OQ CO >-'  O  O  LU H  LU  UJ  z  z  Oil co  D  D  •c  CD  to Q CO _J CD D | CJ  ml C  OQ  LU H  z  LU  o u  o  I-a p  co  Q Q <  o  CD "  3  CO _J  I  o  LU H CO LU 1-  3  c  u. O •c CD  O)  o  o  3  00  UJ  cc  E"  ^—*  UJ  'CO  2  "co  _c  o"  1°  CD cn CO 0.  O  CD CL  D  o  co oo  co "  o  iJT  I-  CM  o  Q Z D  o  UJ — I  CD  •a o  o  ]CD  > o  cb  >  •X  cr co  cz  10-  _i  .—  T3  CM  UJ CO  LU  CM  o  © b< Q_ QL LU  +  UJ  CM |  Z D  h-  or co  CO co •o c  o  CD  ro  Q. Q. <  D_  •CO-  CN  CO  •CO-  CM  CD  CO  CO CJ  CO CO  X T3 C  CO O) CO  CO  a a <  a.  CO  o  195.23 m2  Brick wall 1O0mm  Masonry  cn cn 13.19 15.09 1191.98  1487.09  E c  Mortar  Division 4  4.96  4666.55  3189.20 3517.50  1.99  5159.00  1.36 LO  Cement  2345  30 mPa  O) O) O)  Cement  2345  20 mPa  o  3752.00  2814.00  u  2110.50  2251.20  0.96  1876.00  1172.50  5651.45  2251.20  3582.53  3582.53  E  Cement  2345  15 mPa  2345  2.41  0.96  1.49  CN cn cn CO CN CN d LO  Concrete  Concrete  CN E  Brick wall incl. mortar  o •*-»  CO CO CO CO CO E E E E E kg No.  CO CO CO CO CO CO CO CO CO E E E E E E E E E  Brick (56x90x190mm)  2345  2345  2345  2345  < Incl. trans.  Cement  Concrete  Concrete  o *-» 2345  2345  2345  2345  2345  LO CO d d  Concrete  Concrete  Concrete  Ready mix concrete  Table C1: Energy Intensity of Building Materials CO CD TJ TJ CD CD CO CO CO  CM oo  CM  in cn CM CM  co  o  cn  TJ c OJ Q. Q. <  CP  to  CD  CD CD  (fi (fi CO  (fi (fi  (fi  u CN  CT) CO  c  co a a.  cn  CD 0_  <  CO CO  CO  CO  o  Copper  *->  o  •*-»  O  3.12  CO CO CO  Plywood, exterior grade  bd ft  *—  Softwood, kiln dried, planed  512.91  bd ft  bd ft  8.04 8.02 10.23  CO  Finished tomber  Lumber  Softwood framing  Wood and Plastics  o CN 93.03  CO cu  60.47  170.02  162.11  108.85  Cl) _ ^  Division 6  Metal fasteners  Copper  8912  95.36  E c  Wire, extrusions  Pipe  Sheets, strips  Structural shapes  Cast or rolled copper  261.7  273.9  236.3  CD 00  Aluminum  Aluminum  Aluminum  Aluminum anodized  59.9  10.5 ro  Aluminum  Sheet, bar  100% recycled aluminum  Table C1: Energy Intensity of Building Materials  TJ TJ TJ TJ TJ  <  CO E  CO  tn CJ x T3  C CU Q. CL  <  CO  CO cn  cu CO  a.  Plastics  o  o kg kg  Poltethylene  LO co CO o CN 26.8  4- 4- CD  Kraft paper  Division 7  Thermal and Moisture Protection  Polystyrene ins., prod.  D)  Adhesives  CD CO 00 CN  Polystyrene insulation  Poltethylene  cn  49.3  kg  Polyolefin, prod.  |-»  Polyethylene, prod.  kg  O  Polyolefin  kg  LO CD CM r- CJ) LO  Polystyrene  Polystyrene  kg  kg  kg  CO CN CO co CD CD CD CD CJ) CJ) CN  Polypropylene  Polypropylene  O  PVC  PVC  o  Polyethylene  Polyethylene  Polymers  General plastics  o LO CO t CO CO LO OOL  Table C1: Energy Intensity of Building Materials  sz TJ TJ TJ TJ sz TJ TJ sz TJ TJ SZ TJ TJ SZ 4- 4- 4— 4- E  4—  CM  u  CO CO  in  X  T> C <P Q. CL  <  cu co co O-  o  6mm Glass (plate & float)  Laminated plate glass  43.5  kg E E E kg  0.82  35.64  27.16  25.22  CO CO CO CO  Gypsum board  150mm  100mm  90mm  Steel studs 25ga  Division 9  1283  E c  8.12  16.5  2418  o  0.62  21.6  kg  Glass (sheet)  CJ)  Glass (sheet)  10.2  11.9  0.58  <  kg  CN CN CN CN E E E E  Finishes  29.3 29.31  CO CO CO CO LO CN in 00  Sheet glass UK  Laminated sheet glass  2539  kg  kg  TJ TJ _y CO 4-  Tempered glass  2539  118.8  CN CN  Glass  Glass  Doors and windows  kg  E c  Glass  Division 8  Polystyrene  122.8  o  kg  kg  in o  Polystyrene  kg  o  Polystyrene  Fibreglass batts  Table C1: Energy Intensity of Building Materials  .c CO  o _i _i _i  Exterior wate base  co CM CD CD o CM E E  Interior oil base i I _J  o  kg  76.7  CM  Paint water base, dry  121.79  141.86  136.28  136.01  ro CO CO CO  Paint  Interior water base  257.3 30.75  CD  Exterior oil base  CN 00  Painting  14.64  CO  m2  CD CD  Tiles  18.61  116.29 CM  Carpet  Carpet  6.35  ro ro  Rubber, plastic, tiling  Vinyl tile  O)  Vinyl flooring 3mm  5.02  CD E  Vinyl flooring  kg  Lf>  Dry wall  Gypsum bd. int.  kg  00 d  Gypsum  99.1  79.24  o  kg  kg  12.2  9.76  u  Gypsum  kg  CM CN E E  Gypsum UK  16mm  <  12mm  Table C1: Energy Intensity of Building Materials  ro ro  in 00 in  T5 c  CM  u  CO cn CD D) CD 0-  TJ c cu Q. Q. <  co  u  CO  CD O) CD D_  c  cu  Q. Q. <  CD  U)  .c o *l  C N LO  O ) 0 00 5  1^  s  CM  05  00 3  05 C D 05 0 0 LO s 5 05 0 0  10  col  8  o'l  'a 8  s  8  iii  C N 0 00 5 CM  O  9  8  8  ltd  CM  CN  05  LO CO  CD h-  •*r  CO 05  CM  7^ CO CO  CO8 CN s C O CM  8; COCO CO CD CO  1^1  LO |co to" LO |C C D| O  CO D L CN  col  s  8 8| cd CN|  w  CO  co" CO  I CO  L O O IS 00 CNCN O CN  CM  05 ~*\  CO o liri co  CM CN  co"  co  LOjCN CN  5  8 0 00 5  o  LO in  L O •> * 5 o LO~| IT LO CM CD I |o D led 111 sl 8 C CN C || D O CN COCO) O C O < r LO LOa CM N *l C 8 O-" 8 8 8 h £ CNCM" CO CO iri 8 iriIsl 81 lC O oo O oo" o o 8 81 8 81 CM LO05  O)  a.  CL <  18  3  co  C < D  T3  Si  C N CO  o  co  l|c oo o CN 151  IcN  CM  ro  •  CD 1^ 05  "S CO c , CO  S $1 IS  Isl 131 8 O)  00  lo •  c  w .ro  i'cs c 0 T(O c 0)  u c  LU  or O  LU  O E E  cS  o t— CO  21 CO  <  3!  2  <  or  O  o  _ J  co _i o X W D z  Q O O  LU _J _J  o. o X  o  LU  CO LU LU I-  a:  to ofl  H CO  co  z  jo I or  O  CN  S =E| o  O  LU LU H  <  |onILU  i  0. _1 LU LU I-  LL  let:  LU LU  5  or co <  '8  CO Or l°o gl w  -J  o  <  z  H  LL. LU CC  D O or a.  LU  a.  w z  o  its or  >-  co o  o  co  LU  ofl  z  o or co <  o  or or LU  x  l§  I  .CO  <  CO  CN  8  8S  Is  CM CM  CM CM  o  ro ro  5 ro .—  | POWER BOILERS j | IRON & STEEL STRUCTURAL MATERIALS | | PREFAB. METAL BLDGS & STRUCTURES | | OTHER METAL BUILDING PRODUCTS | | FLAT IRON & STEEL, ALLOY, OTH COATED j | CORRUGATED METAL CULVERT PIPE j | METAL ROOFING, SIDING, DUCTS, ETC j | HARDWARE ] | OTHER HEATING EQUIPMENT ] | NON-ELECT. FURNACES & HEAT EQUIP | | OIL & GAS BURNERS, ETC | | IRON & STEEL FORGINGS | | . VALVES ] PLUMBING FIXTURES & FITTINGS ] GAS & WATER METERS J CONTROL PANELS, REGULATORS, ETC ] PUMPS, COMPRESSORS & BLOWERS j FANS & AIR CIRC. UNITS, NOT INDUST. j PKG., AIR PUR. & OTH GEN.PURP.MACH ] REFRIGERATION & AIR COND. EQUIP j COMPUTERS.OFFICE MACH.EXCL PHOTO.&FAX j ELECTRIC FURNACE&OTH ELECT.HEAT.EQUIP | TRANSFORMERS, BALLAST & CONVERTERS j INDUSTRIAL ELECTRIC EQUIPMENT ] WIRE & CABLE, INSULATED, EXCL ALUM. j ALUMINUM WIRE & CABLE ] WIRING MAT. & ELECTRICAL METERS ] LIGHTING FIXTURES, BULBS & TUBES ] CEMENT ) CONCRETE PRODUCTS, INCL SAND & LIME | READY-MIX CONCRETE BRICKS & OTHER CLAY BLDG. PRODUCTS 1 REFRACTORY PRODUCTS | NATURAL STONE BUILDING PRODUCTS GYPSUM BUILDING PRODUCTS MINERAL WOOL BUILDING PRODUCTS GLASS & GLASS PRODUCTS ASPHALT & PRODUCTS  | Table C2: Energy Intensity Trends for Building Materials in Canada  ]  !  m  .—  CN  CN CN CN CM  cn o  O d 8 Co *—  m in 8 m cn CD 8 8 CO Ncd d •fl- d CN in iri •*  CM  0) 1 •fl^-  O) CO O CO CN C CO ro" CD ro CO CO  f•fl-  m ro O h-  CO CO CO  CO •A  # # o ro in CD o •A  CO CM  CO CN CM  — i. •fl.—- CcoO CO •* 8 s cn cn CN coo' 82 CO co N! in iri in" " m co in CM ro •* CO CN Aro ro •fl- CO O - ° CM CO csi co' • f l CO co" O) CO to d co CO • f l - in m co CO s Ii •fl- 3 •fl; CM CN d CN CO ed d CO • f l - co CO m in CO CO I-- in CO CO con O ro d CD CM C CO •* d CN CO csi d CO co' CO T  CN CN CM CD  5 8 In s  ro  8 3 3 s 3 CM  •*  8 8 fi fi fi ro'  # # CD CO  s 8 48  ro co  CO CO  ro"  •A  o cn CO •A d  CO O cn •fl ro 00 in CO CO in — ro in C cq ro CO ro o CD 00 CN in roCCOO CO .CD CO CN C M CO •A o CO d CO CM iri iri ro ro CO CO o d CO d c d d d ro . — ro in CN CO iri CO CN co (N CO CO CO CO CO A C O O CN CN CO CO in CD o o co ro o CD o CD r-- ro •<f o CO 00 CO in CO co •A m A CN CO CO CO cri o (6 •fl-' CD N; N; CO CO CO <6 co° ai 00° cri cd co iri cri in CN CO to co CO CO CM d iri iri iri s° CO ^- CM CN m CN in CO CO CO CO ro m o t^ CO o — CD r ro CM im CD O m 5 o CM CO o q CO CM CM m CO CO* CM in c o " CN ID C O C O d iri iri iri d cd cd d CO* d cri iri d d iri CO CO co CO CM ro CM CO CM CO CM CO to in CO CO CO CN CO CO 00 cn ro o rCO co CM m •flO CO O CO CN CO m m •A A CO d A" o d CO d cri C O * d cri ro s ro CN CN co CO CO CO iri dCN  ro m Ci—O  •A  CD •A CM CN CO  T—  o a 8 ro ro ro 8 CM CM iri iri d iri  cn •A CO cn cn CM ro 3 cn in •A m GO fIi  O) o CO A m CO CO CO Aco ro CM CO T m h•A A A A A m m m CO O o O o o CO ro cn o CO CM CM CN CN CN CN CM CM CN CM CM CN CM co CO CO CO CN CO CM  5? 5.87  CO O  CD  9.68 |  6  #  6.70 j 9.24 | 8.07 j  14.091 13.081 14.091 13.751 13.051 10.41 | 30.121 28.651 29.021| 29.571| 28.43]| 23.381 13.971113.021 14.021 14.11 [14.151[11.801 13.091112.721 13.021 13.211 12.321 10.47| 29.441 28.831 30.57 j 38.921 36.461| 31.241 14.031113.141 14.82][16.65]115.08]112.261 13.651 12.901 14.12| 15.20 pl3.94| 11.47| 14.611114.221 15.59] 14.53 ] 13.82] 12.111 12.27 11.39 12.54]111.79]110.89]| 8.64 | 9.75 | 9.69 | 9.27 | 9.89 ]| 9.89 ]I 9-61 I| 8.29 | 10.10| 9.75 | 10.43]I 9-24 || 9.08 jI 7.83 ] 13.441 14.401115.19][15.45]115.38]112.481 13.901 14.651[15.291[15.471[ 15.591112.81] 113.451 15.28 [14.73][14.60][14.61]112.511 6.49 | 6.70 |f6.74 |I -45 || 6.00 [[ 6.08 J 8.49 | 7.91 [ 6.93 || 6.77 [| 5.00 ]I 6.07 ] 9.91 | 7.96 | 7.43 f8.50 ][ 8.34 |] 8.28 ]I 7.60 | 8.66 ] 8.05 | 7.69 |[ 8.57 [] 8.86 ]I 8.51 I ] 7.53 ] 8.81 | 8.81 | 8.18 ][9.34 |[ 9.39 | 8.85 |[ 8.141 8.88 ] 8.56 | 8.17 | 9 . 1 0 l[ 8.94 | 9.12 ]8.19 3.43 | 2.94 ]f2.36 ]I 2.14 [ | 1.78 ] 1.61 5.61 ] 9.95 | 9.76 ] 10.431[8.76 ] 8.57 7.53 9.23 | 8.99 ] 9.28 8.11 [ 7.46 ]| 6.89 ] 8.78 | 8.58 j 8.85 I 8.25 I 7.76 I 7.03 ] 14.01 | 12.831 13.361 13.37 112.951112.771 15.97 14.84] 15.391116.10 114.671113.92] 9.33 | 9.07 |f9.36 ]| 8.68 | 7.53 ]I 7.07 ] 9.29 | 9.00 ]( 9.28 I 8.51 |] 7.93 \ 7.25 [52.04J 62.911[73.79 [77.00 | 81.11 170.74] 16.02] 18.311[ 20.91 [21.71 | 21.031[20.10 21.72 24.14 [29.79][31.611[31.231| 29.44 | 34.86j31.52 [29.87 [33.32 | 37.20 | 35.22 26.51 ] 25.25 [24.64 | 24.94 | 25.36 | 22.66 | 26.41 j 25.10 | 24.05 24.57 125.35] | 22.89 26.78] 25.54 [24.37 | 24.78 | 25.59 | 23.01 26.811 25.54 [24.37 24.79!| 25.62]123.01] [20.181 19.72 [19.03 | 20.25 [18.78]117.991 | 31.661| 32.13 | 35.50 | 34.23 | 35.181| 34.04 | 155.47%  co o in ro o q co CN 1*-° t--  "•S o> # CM CN CO CD m o ro CO in ro CM o in •A •fl- CO in I*- ro cn O •A 8 CM in o CO •A C O CM cn riri in C0O0 d CAM 5? d•A s 8 iri 8 4 s CN CN iri CO d iri •fl- CO 8" cri in m in CO 00  CM  X—  •fl  cd ro CO  CM  •—  00 ro CO mA  CO ro A co" CO* ro CM iri  00 CO  cn  CM  ro*  ro* ro*  CM  0 CO 8 •floo CN 8 8 CM CO s s s 0 co* ed CM* CO ed <D CD d CO cn CO CM CN •fl-  CM  CD m 0) CO in 0) N- 00 0) CD CO CN ro s CO m CM m •<* O ro CO CO CN in CO m r»-' cd CN* d Nin 00 d ro A h-' CO ro m m CO 00 CN d dcn dro CO m m iri iri o CN CO i-- m in m A A CO ro A CO ro CN CM CO r>-! CO ro  <— •fl-  •fl-  CO  •fl•fl-  co con CN CO • f l o c — T— co o .CO *— CO  =« ro m d  CD  ^—  ro'  ro*  ro° ro*  ro*  •fl-  CO  A  •fl-  •fl-  in co oCMo  CO CO CO  CD  C CO O8 COcS i 1 1 3 1 CO  | [ [ [ [ [  [ [ [  Ref.: Bush, 1981 I based on Stats Can Consumer price index. Ref.: Smith, 1994. |  POLYMERS PAINTS & RELATED PRODUCTS ADHESIVES FLOOR & WALL COVERING, EXCL VINYL REPAIR CONSTRUCTION RESIDENTIAL CONSTRUCTION NON-RESIDENTIAL BUILDING CONSTRUCTION SERVICES TO BUILDINGS & DWELLINGS SPARE PARTS&MAINT.SUPPLMACH&EQUIP  I  j  II 171.49 j| 50.74 | 33.28 35.841 32.201| 29.981 28.601 27.26 26.681 26.65 26.981 24.95 j jI 94.56 j| 27.98 I1.13.911 15.41 116.581115.291114.831 14.59| 14.92| 12.89J 12.71 111.801| |[ 93.08 J[ 27.54 ]113.70][13.391 28.461 24.811 24.42 24.92 28.771 27.27 29.30 21.22 [ I 78.83 |[ 23.32 | 14.97 [ 14.98) 14.321113.451 12.84 12.87 12.881 13.02J 13.351[11.89 [ j| 39.72 |[ 11.75 | 6.96 j 6.73 7.10 [.6.93 | 6.52 6.35 I 7.03 | 6.88 [6.66 |[ 5.83 | II 42.71 ]j 12.64 I 7.87 7.38 [ 7.69 | 7.54 7.15 [ 6.80 [I 7.54 j 7.69 j 7.38 [6.53 |[ [| 38.42 I| 11-37 . I 7.20 j 7.01 [ 6.88 | '6.56 | 6.29 6.26 | 6.85 ,|| 6.86 j 6.74 5.79 f | | 24.81 |I 7.34 5.42 5.67 [ 5.76 I| 6.18 | 6.17 j -6.33 I| 6.51 | 6.13 [ 6.03 | '5.62 | [| 59.62 || 17.64 7.42 7.79 1 7.72 [| 7.25 [ 6.76 6.23 1 6.45 J 6.22 5.65. I 5.43 | |  Table C2: Energy Intensity Trends for Building Materials in C anada, 197(3-1990.  1 Notes |  x — m cn  2  3" 2  | | | | | | 29.34% | 9.07% | 64.24% | 56.29% | average |  135.72% 85.12% 33.28% 60.20% 31.16% 32.13%  r J. JJ ii DC  J  u z o '1"  I  E  5  CO  E O  cn  >• 3O0  1  E 1  1  3 3  5  3  3  O CN  CO  d  a  CO CO CO  EEEEE CO CO CN CO  |  o  20001 30001  E  Waste I o  o  E  CO  CO  ID ID  oo  E  CN  o  o  CO  Waste 1  CO  6720]  2000] 3120]  oo  Units | Qty. | mj/unit | conv. 7.2B | 0.326] 901 0.78| 7.261  |  O O CO  ID  | Oty. | mj/unit | conv. | 20001 | 10001 |  |  ?  Waste j  E  EEE  Excavation | Bedding sand j Backfilling |  CN ID ID ID ID  ID CN LO CO  |  «* CO  Electricity and telephone supply  oo CO CO CN  LD  Units no. no. no.  ?  |  E  mj/unit j conv. | 0.441 7.251 0.14| 7.261  |  CD »  | | | 1  EEEEE 39901 42001 2100| 8641 | 21001 21031 | no.  6361  £  Gas meter Valve boxes Valves Total mj  t  ID  Units |  mj total |  E  j  3  CO CO CN  0.79  7.25|  7.28 1.26  67201 0.021  CN  •*  11.6 8.63 4.63 6.961  19163 0.06 4.99 16.8  21031| 0.06  41824 0.13 19.8 26.1  14.5 50.7  9.361 5.81 16.2  equip. |total j  9.35 6.81 0.791 1.26J  mat.  CN  Gas supply accessories  CO CO CO  c  |  0) ID LD •<* ID  j  Waste | ID  Excavation j Bedding sand j Backfilling | 50mm dia. polyethylene pipe | Tracer wire (14ga stranded copper) Total mj per m of component |  O LD CN  38001 40001 20001 83091 20001 20109  611  | units o  Gas pipe  5  E  no.  0O3 0) o to CN  |  E 01 >d ID  | Qty. | conv. | | 38001 | 1000) | 3462) | 2000)  r* OCN ID ID  Units no. no. no.  d  to ID  Hydrants | Valve boxes | i Valves | Cone, thrust blocks (6no. 20mpa) Water meter j Total mj j  1 «*  |  OB ID  0.226 j 0.676| 7.26  « ID CN CO CN  Water supply accessories  CO  'E  mj/kg  E  mj/kg  E  3 r u ~i  E |  • _i D D 3  Units I  r»  Excavation | Bedding sand | j Backfilling | 160mm dia. pvc pipe | Tracer wire (14ga stranded copper) Total mj per m of component |  i  |  r  | Watermain  to  Waste j mj total |  <  [SITE SERVICES ASSEMBLIES 1  |  2 r  r*. CN cn  CN  0099  s <  | Excavation  LL  mj/unit | conv. 7.261  J JJ. D u  |  2  Units | Qty./m mj/unit | conv. 7.26  10 11  SITE PREP.  D  GENERAL CONDITIONS (Overhead, profit and contingencies)  TCJ C CD L < mj/unit  CO CO ID  •ou  Initial bmbodied bnergy ot Case ytudy Building.  £  M  lable  O  j  0.031 1,3481 0.021 113.11  3,000 j 0.06 113.1  6,6661 0.10  0.091 113.1  |  4,4711 0.081  Costs adjusted for Van. Conv. | $ Cdn. |  3,9531 0.071 113.11  *3 o 000'9  *  3,3931 0.061  ID CN ID  ID CN  IP  *  CO CO  CO at CN  CD  to  CD  E"  CO CO CO  too CM CD  0.  cn to  |  «0 CO  u E E E E E E E £ E CO CO CN CO  214.2| oq  CM  o  3  CO CN O CN oi  to  LD CO CO CO GO  o o LO  r-. o o L0  1000 1000  Waste  20001  10201 1020] no.  92621 no.  CN  j  2000  18721 13101  o  O)  | mj/unit j conv. 1000|  20.00 45.00  CM LD •<* CO CD CO CO CN CM  2000]  36.001 2.501  r-  202.61  O)  •*  0.991 2.041  LO CO LD  10  Units | Qty. no. j  CO CM  ] J  ID  ca  no. no.  j  d  CN CO CO CO CO CO r - CN CM  ]  CO CO CO CM  1800| 1260|  12241  64831  6120  CO  o  Total mj per component  E E E E E CO CN CO CO CD  •<*«*  no.  CM  **  0.22 [ 3462]  3 36.001  CN  1177  o>ID ID  34621 34621  E  36.00|  'E  Waste j  0.02]  0.19] 1125 12261  131774] 0.401 16.6] 20.7  49.2  113.1]  113.1  0.30  0.04  16,450  2,400  2,7141  18,6061  0.05]  0.311  0.09| 5,4291  0.09) 113.1  4,8001  8,9491  10,121 | 0.17|  0.02|  0.31 J  113.1  1,3291  18,2631  0.16  113.1  113.1  0.291  1,176] 0.02  16,139|  2360]  d •«*  j  CO CO CO ID  o  0.62  CD O CO CN CO ID  0.991  E  |  ID  34621  mj/kg  CD O CO CO O CO CO CM CO  1107 |  13.71 10.71  7.281 2.7 2\  71589, 0.211 14.8! 30.21  20.21  7.28| 2.72|  11761  CO  Road gullies  E E E E E CO ID CN CN LD r -  | | |  CO CO (*)  o ID O ID CO  |  CD O CN CO ID  E  0.34  3  |  CD O CO CD O ID CN PCO CO CO ID  mj/unit jconv. 7.26J 7.26|  LO CN  Qty-  ID CO  j  0) ID CO  Units  ID CD  1066  E  10461  CN CO  Excavation j Backfilling j Concret base 20mpa Rebar, no.4 j Benching J Concrete shaft I Reinforcing mesh Concrete lid I Rebar, no.4 I Brick I Mortar I Cast iron cover and frame Ladder rungs | Total mj per component  o CO CN CO CO CN at CO CO  7.26  E  Waste |  CO  0.46)  E  |  rCO  J  CN CO  mj/kg  r-  0.331  3  |  E CO  mj/unit j conv. Qty. 0.78 7.26  CO  CN  Manhole  E E £ E Waste ]  4726] 0.011  CN  Units  I  7.26  E ID  CM  Excavation I Bedding sand I Backfilling 260mm dia. abs pipe j Tracer wire (14ga stranded copper) Total mj per m of component ]  o O o O LO  0.46  a> CD  0.331  r~ CD  mj/kg j  j  76.81 8.53|  CN  [Sanitary sewer|  3  |  O O  47261 4726| no.  o o to  [ 260mm dia. concrete pipe [Tracer wire (14ga stranded copper) [Total mj per m of component  CO CD CO  o  7.261  CO  Units | Qty. | mj/unit | conv. 0.78  E"  Waste |  E  1 Excavation j [Bedding sand 1  CD CO O  46001 46001  77710] 0.231 CN  | Storm sewer |  r» co l O CN CN  |  O  mj/unit conv. 4600  Qty.  lO  Units no.  LO ID CN CN CO CO O O CO CO  | Pull box (concrete) 1 Total mj ]  cu Q. Q. < ID  10091  18.81 26.11 31.3 CD  | Electricity and telephone supply accessories  CO  1100mm dia. pvc pipe conduit |75mm dia. pvc pipe conduit |Incoming electrical service |Incoming telephone service iTotal mj per m of component  | lable U3.1. Initial tmbodied bnergy ot Case Study building. |  o  CN  S  r^ CO  E CN  E  a  S"  •A  ro  o CN CU CD CL  CO  CO CO  E E E E E  CN o to  ID  O O CO  CN  d d  CO CO CO  E E  £ CO  £ 10  CN  00  _J o to  o o  to 4693!  d d d  CO CO CO CO  E E E  E  10  ID CD CD  'E  2  CO CO  CO  i  LO  r*.  CN  to  P* o  CO CO  E E 0.04  "E"  1  E  | mj/kg  01  CD  4593  CO  1 mj/unit [conv.  o  CD  E CO  CN  CN  CN CN  >  CD  5) E E to r» V  2  E E o o CN  Total mj per m of assembly  10  to  p*.  1 0.045 1  10 10  CO  CN 00  1 Units 1 |Qty.  E  (Concrete curb (30mpa)  CN  [Concrete curb  |  |  |  |  18009|  361806) |  71767j|  I 0.06  e  |  I  11.2!|  ii  r - i  j  1.06|  0.22  0.001  23.71  11.9]  1.77  1676|  OD  (Total mj per m2 of assembly  CN  1  o to to  CN  1150x160mm reinforcing mesh  i  10  03  1  {Waste  CN  1100mm concrete (30mpa)  CD CO CN  100mm sub base < 75mm gravel  1  E  1 mj/kg  ID  1100mm base >38mm sand/gravel  1  oo  7-261  to  1  0)  | mj/unit 1 conv.  |  to  r*r CN  0.26  | Waste  to  Units 1Qty.  |  O CO  •<* ca  1 Excavation  (mj/kg  21641| 0.06)  |  18716| 0.061  o  (sidewalks  c  "O  O ID  1 0.06511 13761  1  E  (Asphalt primer j j (Total mj per m2 of assembly 1  u </•  25 CN  ID  1  Z>  7  1.83%|  CO CN CO  j  GO 10 CD  |64mm asphaltic concrete  CO  1.46%|  CN  1  O </>  1j " l  uj  1100mm base >38mm sand/gravel  "5  |mj/unit I conv.  •*  0.25  2 95507I1  10 00  1200mm sub base < 76mm gravel  CD  O CN  1  to CN 1  CO  Units 1|Qty.  03 CO  1 Excavation  O CO 10  I 112.61  CN P»" CO CN ID  Vancouver costs  10 10  84820j  CN  CN  PAVING ASSEMBLIES  6 c E  O CN  1  £  |  CO ID CO CO  Embodied energy  Waste  23391  o 10  1 Parking areas 1  to J  |  oo  TOTAL FOR SITE SERVICES ASSEMBLIES  E  1 % of total  Waste  d c  1 Total mj per component  00  7.261  t  0.781  22461  CO CD  1 Incoming electrical service  E o o 10  Backfilling  2  I  28.001  o o fv 00  |76mm dia. pvc pipe conduit  d c  2  |  P» CN  j mj/unit I conv.  28.001 O  o  0.3261  Qty.  CD  to  1 Bedding sand  2 2 46.001  o U>  Units I  to CO  r»  1 Excavation  E 00 CD  1  CO 10  CN  I Site lighting electricity supply  I I  CO 10 00  10 CO  Light fixture I I Total mj per component  d 36.00]  'E  !  | p*  ;  mj/kg ID CN CO CN -*  1 Anchor bolts I HSS shaft 160x160mm  j  ^ o  14.41  37461  mj/unit 1 conv.  E  Rebar  Qty.  1  CCD CQ.u < 00  1 Steel base plate  Units  Initial bmbodied bnergy ot Case Study Building.  T3  1 Concrete base  1 Light standards  Site lighting  (J3.1.  CO CO  \ooc  lable  CO O o  |00£  1  |  11.6  1 22.7  31.8  | 20.2  |  13.81|  675  |  1  - jl  1  64  2.691  1  2.691  | 23001  37.7 | |  31.31  2.661  3.761  to CN p*  o 03  O) CN  LO  LD r^  CN  o  CN  E  E ID  a 5  o  to  too CO)U  0-  O) CN CN  2  O ID ID  -  0.07  1.706  1  | 113.1| 0.03  113.1  |  | 113.11  0.061 113.11|  0.331 113.11  17,463| 0.32  3,988 j  3,2061!  18,4001  0.33  0.08  0.06  0.36  1.929| 0.03|  19,739  4.610|  3,6241  20,8101  CN  E E E CO CN  •  CO  CO o CO CO o CO CO E2 E E2 E E5 E*  j  Xi V az  a CN  CO CO  or  CD -Q V  CN CO 10 CO i—  <r  CO -O 4) CC  LO  46.1 |  CN CN  E  •*  00 CD  CO  E2 E5 E2 CO  V CC  m  CO  62961  E  0.60]  CN  o>  2278] 10492|  51.2  37.6| 79.6]  1  ".11 34.1 |  17.1 | 34.1 |  | 51.2  r-  4.61 |  E  175469 227432 293492 186979 84269 77670  CO  | | | | | |  LO  2276] 289653| 0.60 173732| 6726 6725| 38.20| 218684 212.8| 2276] 484310 0.601 290586| 4681 | 38.20 178826] 2276] 139041| 0.60 83426| 61.091 1965 1965 38.201 74683|  CO CD  |  CN CO  98.61  88,0901 1.49|  1,161 || 0.02|  4,626 J 0.08| |  17,7601 0.30|  2,360 I 0.04]111.0 ]  2,620] 0.04|  178,027 3.24 108.7 [ 193,516] 3.271  79,360  1,046]| 0.02]  4,168 | 0.08]  0.291 LO LO LO  98.61  0.16  I 0.1B |  97.8 ( 10001  19,2691 0.33|  17,360 0.32 j  97.8  0.211  12,911|P0.22|  10,8001 0.201 113.1 | 12,215  37,800| j0.691| 113.1|I 42,7621j 0.72|  | 11,416)| 0.21]| 113.1 |j | 64.41  CN CO CN  2276J 341682| 73641  j  25.6 72.2  25.61 72.2|  |  CO CN  j  CO  7283|  CN  2276|  CO  q  127.2|  CO CN  60.81  CO  160.11  f*.  2276| 140497| 1173| | 2276|| 40968|!  1 14689] 177.61 I 23271] 1 7200] j 11406 |no. | | 46699 I . 24827Ino. 1 136871 | 4414 no. 1 2415] I 206999 | 1660J | 283727  i 9.361 10.2|  | 4.3311 30.61 69646|| 0.181 ! 14.6| ; 39.9J  1  10962 0.031  1440|  CO  1173  CN  2276J 11881  •<t  287.1 |  0) CO CO GO CN L0  61.73|  6.22  3  0.601 14544| 38.20| 22376| 0.601 71281 38.20 10967| 0.60| 84298| 38.20 44807| I 24581| 0.601 38.201i 13064| 0.60| 4370| 38.20 23231 0.60 204949| 38.20| 280918  'E  2276]  CN  686.81  r*.  10.66J  ! Waste | E  •<*  q  1264mm slabs j 1 Rebar 1 1178mm slabs I | Rebar | | East and west stairs slab on grade  CO  E  q  | Ground floor suspended slab | ISlab bands 1  o mj/kg |  0.001  E  q  I  O CO  Units || Qty. |Qty. |conv. j  i  CO CO CN CO CO CN  IWall footings (east & west stairs) | Rebar | | | Column footings | | Rebar j | | Pilaster footings 1 [Rebar ( I | Elevator footings |  00 00  c CO TJ ol> 3 ZD <  (STRUCTUREJ | All structural concrete 20MPa iBelow grade horizontal I IWall footings (basement walls) I  LO LO LO  || 112.6!  LO CO  | 0.40%| | 60016| | 67678|| 1.29%|  Waste 1 'E  Vancouver costs  2  |  E  |[Embodied energy  Imj/kg 1  | Waste  63946|| 0.191  | 8400||  CN  CD  iBasement slab on grade  co E CO CO O 00 CN CO  (TOTAL BUILDING EXCAVATION  E  1  2  1conv. |  P-  026  .v.  E  1  a  J[mj/unit  E  [ Units 1|Qty.  E  1100mm pvc pipe 1 | Bedding sand | | | Bituminous asphalt | (Total mj per m of assembly |  s  mj/kg |  'E  7.26  | mj/unit conv. |  [Waste I  | 0.001  r» LO LO  iPerimeter drain and dampproofing  CO  1 U n i t s !Qty.  j 7.26|  I Units I| Qty. I| mj/unit conv. |  | 1.32%j I 231461 | 26062)| 0.60%|  LO LO  (Backfilling 1 Backfilling iTotal mj per m3 of assembly 1  (Excavation | Excavation (Total mj per m3 of assembly |  j  j c • oo  (Buildina excavation  | 112.6|  I | Embodied energy  [Vancouver costs  (TOTAL FOR PAVING ASSEMBLIES  Initial bmbodied bnergy oi Case btudy B u i l d i n g , j  <A CO CO  o  |  Ui CO  CO  1*198  tN **  E  CO  000'9l  to to  q  609'8  "5 <«• E  M  1 1 able  LO  q  LO  00 10 CO CD  E  it  CO  E  s  00  S <9 in  &  s  <3 -a i>  cc  to Ji  cc  V  CO  O)  5 SI u  cc CO  E o CO  E CJ CO  E E CO  O)  ii  rr  D V  | Qty.  |  I  E  CI CM **•  5  0.601 204977  MIVq  Waste |  408.6]  6732776| 17.19|  29.3] 29.3J 69.2 64.71 11.2| CN CN  E  207026]  E  2276| 341628|  | conv.  421.9)  0.601 0.60| 38.201  15089| 3090] 16761] 6732776  24899|  14940] 3069J 16116] 5693321]  22761  E E  160.11  Units | Qty.  10.941 2.24  19661  3913|  89114] 178227] 346611] 216867] 165449 84269 77670]  ^-  2276 147062| 0.601 88231] 22761 294106| 0.601 176463] 8722| 38.201 333183] 2276| 356217| 0.601 213730] 3913 38.201 149470] 22761 139041 | 0.601 63426] 19651 38.201 74683I CD r~ CN CM  1  E E |  CO  61.091  350938 707366 1371741 856326 616629 337063) 310679  CN  |  CO  8722 |  6241  1724| 93381 30383| 3379 10990 651241  CN  Above-grade vertical Shear walls I  CO  E E3 E3 E3 166.5|  37.61 79.61  1619  CN  I  CO  CO % ft ft * ft ft  64.61 | 129.2|  ft  78201  37.6 60761  d c  Sub total  O)  o> ft * ft ft ft  16621|  CM  244.41  r*.  228mm slabs j Rebar | 178mm slabs j Rebar I Roof slab to east and west stairs Slab J Slab I  CO CO to CO CO a CO E5 E3 E3 E E3 E3 E  E  34628|  CD  2276 679106 0.601 347463 22761 0.601 700362 34628| 38.201 1318982 22761 0.601 847846 16621 1 38.201 692913 22761 666209| 0.60] 333726j 78201 38.201 298730]  Waste |  d c  E  | j  CO  |  ID  620.91  LO CO r-  mj/kg  d c  E  264.41 612.91  LO ID CO OD CD 00  Qty. | conv. j  •*  Units j Qty.  551241| 1.66  cd o o  6,2061 0.10 0.021 0.01  1,662 0.03 j  0.01 j  6,2621 0.091 1.077| 0.021  60.982| 1.031  4,8411 0.091 108.7] 0.021 108.7]  1.02| 108.7|  88.61 88.6]  CO 00 CO CN CO CD  o OO CM L0  99.61  79.6  36.61 CD CO *  193,616  178,027 | 3.241 108.7  3.27  774,061 13.09|  712,107 | 12.96 108.7  0.14  8,493  r* CO  7,813| 0.14J 108.7  r*  9,807 | 0.17 CD OO  9,0221 0.16 j 108.7 |  46.61 CD ID  o  |  | |  to Ji V CC  Above-grade horizontal Upper floors t4no.) 1200mm slab bands 2400mm slab bands Rebar J 228mm slabs J Rebar J 178mm slabs j Rebar | Roof | 1200mm slab bands 2400mm slab bands  LO r<D  276.61  CM CD r*.  2.461  CO  CO  j  CD  E  (Pilasters to u/s slab band | Rebar Sub total  CO  *r  764.81  CO r-  CO  6.771  CD  0.021  CO  63.7  CN CN LO  oa to  j  CN CD LO CD  12.2  E ID  LO  26861  1.7341 0.03|  q  6,6801 0.10  80,062 j 1.36  0.01  q  72,128| 1.311  0.011 111.0  q  | Columns to u/s slab band  E  q  43.39 j  CN  q  CO  0.381  M  <D CM CO  o  | Pilasters below basement slab j  E CN  o CO  66.091  E CO  0.681  244.5 J  6.361  cCNo  674.9J  E  181000 260676 3338 7114! 12679 26812  1786979  61.2  17.1 34.1  CN CD  9.12  Waste j  10.2  CN  179.1  1762483  1407 10640 1786979  CO  2.42  3  I  1393 E  2276] 298879| 0.601 179208 6662 j 38.201 260649 3306 2276 j 66081 0.601 38.201 68411 0.601 12464 22761 20767J 38.20] 26780| 2276 j 13201 0.601 38.201 24861 2276: 0.601 1657 | 38.201 2276) 15409| 0.601 92451 38.201 29216| 3346 22761 55761 0.601 38.201 10667 636066  conv.  0.601 38.201 CN  131.2  Qty.  23221  CO  | Foundation wall to west stair | Rebar | | Elevator pit and walls to u/s slab | Rebar | | |Columns below basement slab]  ro E3 Qty.  2276 CD  Units  276.8 »J co LO O  | Below-grade vertical | Basement walls  1.02  oo" O  | Rebar | Sub total  Initial bmbodied bnergy ot (Jase Study building. ) CM CM LO  *t LO CD  8609  [ lable  O CO 10  O) CO  CD CO  o  CO  E  | lable  A V CC  CO  CO  2  E  LO CO  |  xt  V CC  CO  j  CN LO  r*. to E > 5 CO  o* c 2 LO CO  O O  CO  CO  6  |  |  total mj  10  LO  10  CO CO CO CO r* CO CM CM o CM LO CO CM CO CO  -*  O q  LO •*  CM  LO  O*  IN.  r-id co  CO CO  d d  E c E E  6  CM  67.00) 97.00)  LO  j  CM CM 10  0.02]  Waste  LO  CM  mj/kg | 106.00)  LO  |  CO  o r-  2.76J  CM  CO  | Qty./m |mj/unit) conv.  LO  45.00) 28.00)  O  46.001  LO  7.97  LO  0.0061  Waste  a  Units  c  CO TJ O </> CO  j  2  0.067 |  E  o  32.41  |  CO  | |  LO CO  mj/kg  CO  No. No.  % ** *fc *fc It *fc  | mj/unit 1 conv. . _ 2.04  CO  Units | |  |  | 112.7)  "3 ** %  Vancouver costs  26482 13241 82636 228616 350773|  CM  E  76mm extruded polystyrene board Plastic clips (pvc) | Adhesive | j  CO  O  |  CO  267000)  26220] 13110] 81718] 219726] 340773) C  100mm clay brick (210x75mm face) Mortar | | Stainless steel ties ) ) Nails | Steel angle | ) Bolts | ; Caulk (polyurethane) j Backer rod (polyethylene foam) Total mj per m2 of component]  oi 10798) 32.36% |  0.60 0.60 0.60 38.20  |  267000)  360773| 1.0B |  1498  2126  o'  | Embodied energy  218501 136196 2276 j 6762  Waste  6 i c  Insulation  E E E 2 <D  69.84]  2 43699|  E  2276] 2276|  ?  19.2  conv.  CD CN  [ ENVELO PE ASSEMBU ES | | Exterior wall assembly (framed walls) | Brick |  CO CO  Qty.  CM CO  |TOTAL STRUCTURAL ASSEMBUES  CO  Qty.  CN CO  [form plywood ]  CO  Units  2376446] 7.13|  CN CO  69,5281 1.08] 108.7]  0.281 108.71  108.7] 108.7] 18,046] 0.33] 108.7] 16,626]  108.71  CO CN  106  1.07  108.7  j  CD ID CN O  d c i  1736  69431 20986| 13976 1736|  68,819 j  0.68  32,128  108.7  CD CO CO CO * CO  | Sub total  CO  2276] 2276]  j  1.33  72,906|  CD CO CO CO CO  CN CO  [Miscellaneous |Landings |Half-tandincjs | Stair fliahts  CO  ]  CO  6943]  99.6  99.6  99.6]  18,046] 0.33 16,626] 0.28  37.8  37.8  CD CD CD ID *  37.8  E •» CO CD CD LD  428.4  CN  83893] 66944|  E  2276 2276  CN  370760j 6766  CN  9.22] 6.14  CO r~ CN CN  2276  879607 129691 132246 61101 62302 224681 229088 60839 33902 276820 12717 8469 68966 2376446  to  6766  846776 128407 127169 60496 69906 222466 220277 60336 33666 266212 12691 8386 66303 2306848] E CO  I Rebar | | Interior columns roof | Perimeter columns roof | Rebar | Sub total  162.9  38.20 0.60 38.20 0.60 38.20 0.60 38.20 0.60 0.60 38.20 0.60 0.60 38.20 CN  1008271 1668|  22141 2276 214012| 3329 CO LO  1668  3329  22141  co  36.86 24.68  44.3  2 E 5 E 5 E 3 E E 3 E E 3 94.03  <  | Interior walls to north stair & washrm. |Rebar | Elevator shaft | Rebar | East and west stair walls | Rebar | jlnterior columns upper floors |Perimeter columns upper floors  Initial bmbodied hnergy ot Case btudy building. CO  r*.  CD CN CD  CO  E to o LO CM  LO LO LO  CO 00 CM  to ?*.  CO  o  CO  E  O  o  LO  CO*  E i E CM  64,707 |  16,9861  19,616  1.09|  0.29|  0.33I  0.33| 0.29|  19,616 16,9861  1.081  0.69|  1.34|  63,937 |  34,923 j  79,2491  5  E >  10 CN  E E E o  LO CM  Units j Qty./m |mj/unit [conv. | 3  CN f>10  CO  d  CN  E E 3  CN CM ID  E E3 o o  o  Cb CO CO  d d E > o  E E E CM CO  20661  o  Waste jtotal mj | CD  LO  D)  LD  E  to  7.971  LD r-  CO  46.001 46.00] 28.00]  to 10  CO  0.057]  o  E  32.4 j  o O O O CN CM  E  | |  CO  CO  19201  Waste |  CM  No. No.  O  mj/kg | 2.601  46.001 29.001  'E ID  o  mj/unitj conv. j 2.041  0.0013) 0.18|  o o  CN CM  Units [ |no. |  O CO  o o  |  |  Waste j  o to ID  no.  CO CN 10  0.28J  |  Waste  E  0.231  mj/kg  E  Units |Qty./m |mj/unit] conv. |  mj/kg j  29.00| 29.00| 29.00) 46.00) 46.001 CO CD (0  100mm clay brick (210x75mm face) Mortar | | Stainless steel ties | Nails | Steel angle |  CN  d  no. no. j  3  0.741 0.741 0.0061 0.007 |  CM  0.661 0.561  o o a E CM CM CM CO  Exterior wall assembly (shear walls) Brick |  E to CM to 10  12mm gypsum board | Gwb tape | | Gwb compound | Screws j Metal beads | Sealant j Paint (3 coats) j Total mj per m2 of component! Total mj per m2 of assembly |  CN  E to to to to to "E  j  E E E o E 10 CO  interior Finish (Gwb)  3  mj/unit |conv. j  £ CO CO CO CO CO CM to  | Polyethylene sheet [ Sealant | j Total mj per m2 of component!  CN CN  to to o  [Vapour barrier [  d IX 10 O 10 to 10  Units |  1 O to  92mm steel studs | | Steel stud track | [Blocking | Screws |[Total Fasteners mj per m2j of component)  3 CN CO  | Steel studs  CO O CO  to  0.0061  CO 10 CN CD  Waste |  to to 1"  no.  o CN CN  76.001 46.001  10  Units |Qty./m mj/unit j conv. |  E  112mm reinforced gypsum board [Screws, self tapping, bulge head 26mm [Total mj per m2 of component |  ea  | Exterior sheathing (Densgold) |  Waste CD CO  B.7  E  mj/kg  CO (0  1.061  Units |Qty./m mj/unit conv.  Q_  | Rubber based liquid primer j 11 mm rubberized asphalt membrane | Caulking (at ties) j |Total mj per m2 of component!  |  O X T3  c tu  | Air barrier (peel and stick)  o  900'0  |Total mj per m2 of component  Initial bmbodied bnergy ot Uase Study building.  CO  H  | 1 able  1172)  2409961| 7.23 67.6)  CN CD  LD O  CM CO CO  o r-  LD LO  ro 0.  CD CO CO CO IV CN tD CO CO  o o CN  CO  ID •<* CO  to d  E  o 0 01 OJ  189,864) 3.46) 114.0| 216,4461 3.66|  6 d  E E CN  E  LO CO  CN  E CN CN  E E E  LU  CO CO  E >• o  CN CN CO  E E E d  E E E  LO  CO CN  E mj/unit |conv.  J  | mj/kg  CO  1 274.001  CD  o  E >•  a  E Units Qty. no. )  O |mj/kg  E"  | Waste |  LO LO LO LO 10  00 00 •* LD LO  2  —  | |  o o o o LO  LD LO  |Per operable window | Total mj per component  2  |no.  E  LO LO  J  CN  o  E  CO CO CO  [Window hardware  2 CO  i mj/unit | conv.  E  45.001  CO •*  | Units j  1  |  Waste |  E  [Deflection head section 1 | Total mj per m of component |  'E  | 236.001  o  0.0071  CO  |  o o  j  CO CO  [no.  Waste | 10  | 274.00]  o o o o  ! Units ! Qty./m |: mj/unit)[conv. j 1.75  I E *~  |  c  CO "O CJ </>  E  | mj/kg  00 LO CN LO LO 01 01 CO (0 CD  CO CO o CN LO  [Deflection head section  d CN  E o o  [Aluminum frame | | Spacer 1 | Fasteners | 1 Glazing tape [Total mj per m of component |  P» CO 10 CO CO  ]  '5  mj/unit Iconv. j  \  39896 1  0.12I  327403) | 0.981  1779060) | 6.341  [ 2787)|  |  676360| 2.03]  4  1644606|I 4.631I 2-51 | 83.31  1072 |  | 1478||  | 185,932)) 3.39] | 114.0)[ 211,9631| 3.68|  276,676| 6.04]( 114.0| 316,297][ 6.33| CO LO CN  1 Frame  o LO LO  [Total mj per m2 of component]  2  [Units j  LO LO LO  [Glass layer 1 j [Glass layer 2 1  o  I  E  || 112.6]  E  1 39541| 11.86%| | 376796] | 4-23147 || 8.09%)  CN  E  [ 1046|  X  CN  Vancouver costs  00 CN  j  03  o>  {Windows and entry doors {Glazing I  2  |Embodied energy  CO CO CO  |TOTAL EXTERIOR WALL ASSEMBUES  io r*. o  | 1.06)  LO LO LO  [Waste | 01  |  E  jWaste |  o  11 mm rubberized asphalt membrane {Caulking (at ties) {Total mj per m2 of component] | Total mj per m2 of assembly J  CO  |  E  s  Units | Qty./m jmj/unit jconv.  CO CO CN  |  CO CO CO  o  {Rubber based liquid primer  id cd o  |  fN  CO LO CN  | Air barrier (peel and stick)  E  105.001 , 67.001 I 97.001  CO CN CN 0 CN 01  [Units [Qty./m 1 mj/unit |conv. | [ 2.751 1 1 0.021 no. 1  a. < CL  j  45.001  LO  |76mm extruded polystyrene board | Plastic clips (pvc) 1 | Adhesive j 1 {Total mj per m2 of component!  5  °- l  10 LO LO  {insulation  1 CN  I  1  'o c <u  no.  Initial bmbodied bnergy ot (Jase btudy building. I  O  {Bolts j j Caulk (polyurethane) 1 {Backer rod (polyethylene foam) {Total mj per m2 of component!  I lable  CO CN CN LO CO CN  01 CN  cn  CN  01 CO 10 CO 10  CO CO LO LO CN CN  E tN  o  9)  CD  CO  0_  to  o O  LD LO CN CN  E  CN  CN  2  O 10 CN  CM  0.061  IV d  .E  E 2 E CM  0.75]  > 5  Units 1 ** Pv ** CO ** %  CM CM CM CM  *t *t %  % CM CO CO CO d d d  E E E E E E CM  E  E  3  2128][ 6.38%  1617  16.8  o |  4000]| 0.01]  339688]1 1.02]  io  E o o  o -<*  'E 4000 no.  1  11.7  7  4  -I  0.02]| 109.71I 1  6,3001 0.11 | 109.7|  1.092|| 0.02|  6,911 | 0.12  74,6031! 1.36 | 109.7)| 81,840|| 1.38| 48  to  1  1 - l|  20  21  1 -l  I  10  I  |Waste 4000| 4000 |  I  001  1661 | 1784484 | B.36 28.1  3030j1  o  |  Waste |  Waste  !  ID CO CD  |Embodied energy  E  | |  CO O O O C rv CD CM o ID 00  1i mj/unit 1 conv. ] i 40001  1096  CM  13.21  o CM  1 mj/kg 1 | 236.001  |  p» LO LD ID ID LO LD  Units 1 Qty  3  mj/unit 1 conv. 1 3.17]  mj/kg  E  |  i  j  CO  |TOTAL ROOFINQ ASSEMBLIES  E o ID 00 o CM CO -» CM o CM o CO CO 00 to 00  |  CM  2  |  co'  Units |Qty./m |mj/unitj! conv. 1.07 |  1 LD  E  E  [Hatch 1 | Total mj per component  E no.  | 0.061  no.  CM  |  CM CD CO  CD  |Roof access hatch  E E to* •«*  rv CM 00 o  [Flashing and counter-flashing (18ga) [Membrane | | [ 1 2mm plywood blocking | |l 1mm Asphalt impregnated fibreboard |38x89mm cant and blocking | | Vapour retarder membrane | |Total mj per m of component |  3 00 CO CO CM LO LD LD  1  CM CM O CO  o oo rv O CM CM cn CO CO  1 Parapet  O LD o ID ID  [Membrane j [Asphalt | [Primer | [Total mj per m2 of component| JTotal mj per m2 of assembly |  E CNI CM fv CM >  3.6|  '£"  {  00 00 ID CO CM CM 00 00 CM 00 rv CO cn CM  | Vapour retarder  5  1  CM 09 r» CD 09 09 CO CD CO CM  5  no.  E  [mj/kg 1 1 29.701 I 45.00] I 29.701 | 45.001  Waste  0) (0  o to to  J  E  Units 1 Qty./m 1: mj/unit 1conv. 1  o o to to to  |76mm rigid fibreglass board J I Screws and stress plates j [Tapered fibreglass crickets 60mm ave. [Screws and stress plates ] [Total mj per m2 of component!  IO LO rv  1  I mj/kg E  Ilnsulation  mj/unit II conv. J  c (f) XI <A '5 </>O  Units |  CD  | Granular finish SBS top sheet | SBS base sheet I Asphalt (2 layers) j 1 Total mj per m2 of component!  | Roof assembly iMembrane J  E CM rv o CM rv CO  CM  o  86818 |  —  1 114.71 114.7|  00  I 28261 1 2765761 1 31723311 6.06%|  o  1 Vancouver costs  O LO rv  1  | Waste •<*  |  1 Embodied energy  | mj/kg E  1 TOTAL GLAZING ASSEMBLIES  Units 1iQty. 1 mj/unitjIconv. 1 no.  o CD CO  |0fr9l  | Per door | [Total mj per component CO CO 10 LO r- rv  H  | Aluminum door hardware  co'  1  1 1 able C3.1. Initial bmbodied bnergy ot Case Study Building. 1  rv  CD  tcno  CO  Pv  o  CM 00  CM  o  CL  '5 CO  -  -  E E E  E E2 E E E CO  CN CO CO  d d CO  E E E CN  '3  </>  E > O CD  CN  o  CN CN  CN CN  CN CN  E E2 cp d  o O CN  LD  o  •* 00  o LO  LD ID ID LO ID  •<*  rv 10  E E E E  00  r» r-  O o o  CN  97.00;  |  CD  LO  r-  CN  j 0.0061 1 P.761 0.74! 12.8 0.071 | 0.76)  CO  io  | 29.00) | 29.00) | 46.00) | 22.30)  O CN  LO  I I  2  LO  [ 0.63) | 0.63)  £  46.00| 29.00)  "tT CO LO  1 0.741  | |  [Waste J LO  CO  75  c •o o LO  2  CO  CO  no.  r*. O id CN CO  1 - l  CO CO  O  | 0.0013) I 0.18)  CO CO  no.  O o O |  CO  E o •*CO  [ 0.28] | 0.461  ID CN  | mj/kg  CO  j  o  j mj/unit ] conv.  LO  1 Units 1  CN CN  j 2262261 | 2470391S 4.72%]  CN  ]1 109.21  LO LO  Vancouver costs  LO  |  ID 10 CN  Embodied energy  d 0.0061 0.18]  a  CN  1  •«* CO CO CN  1  0) 2B  46.001 29.001 29.001 29.001 45.00] 29.001  o  *  | | | | 1 |  o o LO LO  112mm gypsum board | Gwb tape { (Gwb compound (Screws (Metal beads {Sealant J64mm steel studs @ 400mm oc Steel stud track (Fasteners/screws |64mm acoustic insulation 1100mm rubber base | Adhesive | Paint (3 coats) 1 Total mj per m2 of component  CN ID LD  2  2  0.00131 0.62] 0.75]  E CD CO  [Interior partition, no rating, 2700mm Ngh [partition to u/s ceiling  5 LD  25  LO  2  O  1 - l 1 - l  O CD 0.28]  Waste | E O O  ino.  E > 1  O CD  | 0.231  |  o O mj/kg  X CO CD  1  CN  o to o  1  CN  E  1  d ID  I mj/unit 1conv.  CO  CO  ino. 1  CO LO  Units |  i 29.00] j 46.00| CN  (TOTAL CHUNG ASSEMBUES  CN  00 CD  0.006]  Waste | co o  112mm gypsum board 1 I Gwb tape ] 1 IGwb compound { (Screws I 1 121 mm furring channels @600 oc 138mm channels @ 600 oc 1 112ga suspension wire @ 600mm oc I Fasteners j I Metal beads {Sealant | Paint (3 coats) {Total mj per m2 of component  c "O (J <*• : 30.00]  CO LO  1 1.25]  |  E LO  no.  mj/kg  O CO  IGwb ceiling  j  5  Units j Qty./m 1 mj/unit 1 conv. 1 3.871 0.751  <  1  1  93937| 1.80% |  CL  11200x600mm tile 1 T-bar I 1 112ga suspension wire @ 600mm oc I Fasteners I I ITotal mj per m2 of component!  {INTERIOR ASSEMBUES 1 Ceiling assemblies (Acoustic tile and t-bar  1 114.71 114.71  •o c a> a.  [08'8  Vancouver costs  I l a b l e (Ja.1. Initial tmbodied tnergy ot (Jase Study building. 1  CO CO  64666|| 0.19|  | CO CO CO  | 3316 |  I  187  1  16.9 j 16.9  CD  1046960 | 3.14 I 10.8| 21.6  774246| 2.32  68471  CO  CN  L0  CO LO  E E E E CN  CD  CN  E  O CD  CO  CN d> O)  0.  to  00 CN  O  CD  CN  8,4921 0.16 111.2 |  2.01  9,4431 0.16  | 32.3 | 106.942 | 1.96 | 111.2 | 118.919  | 26.61I  31.8| 217,736| 3.961 111.2| 242.1211 4.091  yi J  Q  CD  CD  o  E E E E CM CM  U  CN  E E 3 CD CO  d ID  E E E E E rv  LD  *t  E E E CN  o  CO  CN  u  &  XI  i O  3  CM  CM  o E E  to 0) CO  d  o o CM  rv  ID'  ^  E E  E E E  97.00]  CN  O CD  0.76]  29.00] 46.00]  CO  12.81  o  0.62]  O  LD  0.37 | 0.0351  CO  ID ID ID  0.0061  ID  |  o  CM  no.  o  O  Fasteners I 100mm rubber base Adhesive |  o o  0.761  o  |  E  46.00] 29.00]  CO CN CO CN  0.00131 0.18|  E  |  Waste |  to  CD CD  no.  j  E  0.281  o ro  mj/kg  636 j  CO CO rv rv. CN  0.231  CN CO  |  O •st CD LD  Units | Qty./m | mj/unit | conv.  o LD  97.00]  29.00] 29.00 j 29.00] 46.00]  CD CN CO LD  0.76]  CO CO CD  Gwb compound Screws 1 Metal beads | Sealant | 21mm furring c hannels @ 600 mm oc  5  12.8)  o o LO  0.37 | 0.0361  CN ID LD  0.74 j  29.001  CN  0.63 j 0.63] 0.52] 0.006]  46.00)  CN CO CO  |  .E > ID LD  "*  |  CO  O CD ID LD r  12mm gypsum board  CN CD  |  CN  o O CN  0.76J  o r~  0.0013) 0.18  T  Waste [  IO ID ID ID ID CO  0.28)  E"  |  o o mj/kg  E CN  no.  pv CO CO O CD  rv CD  |  E E E E Pv  mj/unit | conv.  97.00  r-  0.76  IO CD  0.23)  12.8  CM  E  |  d o  0.741 0.07 |  o o o 29.00 29.00) 46.00) 22.30)  CO 00 IO  )  CD  0.63 0.63) 0.006) 0.76)  CN CO  o  no.  CN CN LD  0.691  CN LO CD CO  61.4  30.51  229065] 0.69] 10.3] 20.21  19.8  31.6  0.941  313379  CD CN CD  Wall furring  E E 3 CN CN  29.00|  Waste  CO  m  Units  CN  46.001  46.00|  CN LO CO 00  12mm gypsum board Gwb tape | Gwb compounc Screws | Metal beads | 'Sealant 64mm steel stcids @ 400mm c Steel stud track 21mm furring c hannels @ 600 mm oc Fasteners | 100mm rubber base | Adhesive j Paint (3 coats) j Total mj per m2 of component |  CN CN  6.7  5  0.00131 0.002| 0.18)  mj/kg  ¥ to  1.6 2.76  !  o LO CN  no.  i 1  CN  0.28|  CO  0.92;  o LO  no. no.  55  Qty./m mj/unit conv.  ding.  o CN  Furring [ Column furring[  Units  >-  116mm gypsum board | Gwb tape JGwb compounc {Screws 25mm | Screws 41 mm {Metat beads [Sealant j 64mm steel studs @ 400mm c [Steel stud track ) Fasteners j 64mm acoustic insulation 100mm rubber base [Adhesive j Paint 13 coats) { Total mj per.m2 of component  [interior partitioil, 2hr. rating, 3' 100mm high [Partition to u/s floor  1. Initial tmbodied hn ergy ot (Jas  CN LO CO IO CO ID  CN CO CD ID CO  LD ID IO  to CL  10  o  CO  o  CM  26,193]  30,069  0.461  0.66  111.21  111.2|  28,0151  33,437 |  0.47|  0.67|  CN CN 10  E CD  d  2  LO CN  o  L0 CN CN  d  oo  CO ^; id  E LO ID  1 E 0)  CN CN  E 00 CD  CO CO  CD  Waste  1212)  CD CD LD  O CO LO  CN CN  d to o  r»  ID  CD 10  no.  CN  a  0}  10  CD CN  E  03  CN  CO  CN  ID  oo CO  CN CN  -* d  CN CN  CN CN  ID  ID •<* CD  CN  E  -20881 1017) no.  |  |  10001  L0  1.9 00  id  «t  CN  £  49764|  CN CN 10  10170| 0.031 18991  CN  o 28581  80321 0.021 1024)  oa oo  LO  'E a E  CO  97.001  ID CD LO CD CO  -19891 10811  e  Waste |  -10441  cn 00CO to L0 00  d  Units | Qty./m | mj/unit | conv. J 12.8 0.391  -<* CO CD  ID  0.74 |  CD  0.26J  00 LO  29.001 46.001 66.00] 66.001 66.001 29.001 66.00] 66.001 29.001  LO ID CO LD  3.131  E  1200|  LO CN CN  -4971  |  CN CO 00  | mj/unit | conv.  •<t oo LD CO CO CO  0.741  76920| 0.231  30.61  24,210| 0.441 111.21  24211  10,676| 0.19 111.21 11,769 0.20|  26,9221 0.46|  0.371  19,8301 0.361 111.2|  13221  30.624 j 0.62|  97.876| 1.78| 1 1 1 . 2 1 108,837 | 1.84|  27,460] 0.60 111.2  CN CN  100mm rubber base | Adhesive | | Total mj per m of component |  E  q  Rubberbase j  LO CN  oCO  o  J  CO CO CO  CO CD  | |  CD CN  2  -497 |  LO  O CO CO  CN  no. no.  r» E 00 CD  o oo  p*.  | | | |  oo CN oo CNP* •«* •** ID LO  O  00 09 CN  no. no. no. no.  •* d o p» 00CD  L0  Units | Qty. no. |  CN CN 00 CO LO  CO CD CO  |  •* 10 d f**  |  O CO  L0  j  CN •** O) 10  LO LO CO  | |  E  j  CN  •*  29.001 46.001 46.001 60.001 60.001 46.001 29.001  CO CO CN CN CO 10  3.13| 0.261  Waste  LO  |  00  o  mj/kg  00  |  |  67.61 29.6  r*.  j  CN CN O CO CO  oCN  Door | 18ga pressed metal frame | Frame anchors | Butts | Panic sets | Coordinator | Astragal (steel) | Closer J Stop | Additional studs 92mm | Less 4 sq m of 1hr. rated partition Total mj per component |  E CO LO CO  Pair solid core Ihr. rated (2x2100x900mm)  CN LO  "* CO CO CO  no. no. no. no. no.  CO CO CO CD  | mj/unit ] conv.  CM P» •*  no.  pp*» 03 CO •«* oo  Units | Qty. no.  Waste  CO  j  E en  0.631  oCN  29.001 46.001 46.00 j 60.001 60.001 46.001 29.001  |  160869| 0.48 j 10.3| 20.21  CO CO CN  Door | 18ga pressed metal frame | Frame anchors | Butts | Panic set | Closer | Stop | Additional studs | Less 2 sq m of Ihr. rated partition Total mj per component |  E O  3.13| 0.261  mj/kg  CO CO CO  Steel 1hr. rated {2100x900mm)  tN CN  j  to CN O CN  no. no. no. no. no.  3  | mj/unit conv. j  o  Units Qty. no.  oto  Door 118ga pressed metal frame | Frame anchors Butts | Lockset J |Closer j |Stop | [Additional studs [Less 2 sq m of non rated partition [Total mj per component  CD Q_ CL  | Doors assemblies | Solid core non rated (2100x900mm)  <  | Paint (3 coats) | Total mj per m2 of component tN  E 01 o r*. CO 99  | lable C3.1. Initial bmbodied bnergy ot (Jase btudy building.  006  CO O X c LO  rCOv  ID  to  d  LO  CO  LO  E r*  £ ID  CSI  CL  CO  o  E E tN  CO D) TO  Units j  a E >  CN CN  E E CM CN CM  E E E  CN  o •*  E E CM  i  3  CN  '£  O ID  E E CM  Waste  O CN rv 00  E  o  3  CM CM  E E LD CO CO  E  01  "5 mj/kg 60.00; 60.00  r*  TJ D CJ <A <A  c  O  CM  mj/unit conv.  O ID  Units | Qty.  s  s LO  6.80%]  Pv  7080; 2400 9480  7161 2424  CM CO CM o CM  E  ] 104.9]  CN  CO CM ID O CO  Vancouver costs  E rv CO  1319] 339303] 366929]  CM  CN 00  Embodied energy  £ LO  97.00]  O ID  j  O 00 00 -* CO pv ID  mj/kg  Waste j  E  0.03  14742] 0.04]  9676  17906  0.061  27377] 0.08)  3.771  2180,  66.7 j  89.3  29.3  40.91  46.7  61.7 j  68.9!  37.4  12.9  0.18] 23.61 28.21  ID ID rv LO CM  E  E  00  3  Stair assemblies Stair flight accessories  o  |  E  Units | Qty./m |mj/unit ] conv.  ? CN  Door Opener ] Total mj per component  b ID  o  MISCELLANEOUS ASSEMBLIES Garage door and opener  3 ID  97.001  Pv CO  o CM  CD  TOTAL FLOOR FINISH ASSEMBUES  Co  o E  CM •*  Granite tile Thin-set adhesive Total mj per m2 of component  </> <A  c o LO CO CO  Granite tile flooring  E o E  ]  CM  Units j Qty./m |mj/unit jconv.  1 CO o  Pv CO  97.001  O Pv 00 CM  Ceramic tile Thin-set adhesive Total mj per m2 of component  10 CO ID ID LD LO  o O  j  E E  CO CD  Ceramic tile flooring  # |  E" to  0.39)  CO CO CD CO r v O  Waste  Pv  J  CM  Units I Qty./m |mj/unit Iconv.  64001  ID  3.2mm Linoleum I Adhesive I I Total mj per m2 of component]  |  LO  I  LO  80.001 97.00|  Waste  E  80.001  111  CD ID CD CO ID CM  Resiliant flooring  TJ  Units 1Qty./m 1mj/unit 1conv. J 0.87J 1.351 1  |  E  Nylon face (.87kg/m2) 1 Polypropylene backing (1.36kg/m2) Adhesive I I Total mj per m2 of component!  "3  FLOOR FINISH ASSEMBUES Carpet 1  to  1 109.21  c* 19641 370320] 4043891 7.73%|  Waste LO  Vancouver costs  1  | 'E  97.001  mj/kg LO CD CO r v  TOTAL INTERIOR PARTITION ASSBMBUES 1Embodied energy  1  0.76|  mj/unit 1conv.  a. 2  Ceramic tile TNnset adhesive Total mj per m2 of component!  Ceramic wall tile  lable U3.1. Initial tmbodied tnergy ot Uase Study Building. 1  'a c OJ 9L909  co O x Pv  00 LD  LO Pv ID CO  o" c  E  0-  CN CU O) CD  o  1*  oo o  d o* c c  0.04  114.0  2,486  21,110]  18.984] 0.36| 111.2!  2,180  8,604  15,236  332,366  31.332  111.2  7,737  0.14  111.2  0.26 13,7021  111.2  298,8801 6.44  28,177) 0.61 j 111.2  0.041  0.36|  0.15  0.26  6.62  0.63  | Vertical supports 40mm steel tube | Fixing plates and studs |Hand rail 40mm steel tube  1  CO  u to o c  LD OO CM CO CO 00 00 00 Ps oo LO  to o o  O CM  2  O O CO CM  d d d d d c c c c c c  CD  O CO  o o o CO CM to 8026]  O  CD  o  LD CO  E  2 to CM CO  LO ID CO  o o  d 6 oc" oc" co* c c  35.2  39.21 CD  LO  o o ^  '3 CD  "O O <A  c  o  to CM o  o O o c c c CO •dto ro o CN CN  CO  E E E o o LO Ps  10 LD  'E CO  CN  ID ID  CN CD CN  E  3  O ID CO O LO CN  O LO CO  o o  ID CN  80261 8026]  2809100] 8.42] 2006600] 6.02] 601960] 1.81 | 380000]  0.011 0.04]  33.41 64.2] Ps  o to  LO  0.0361  1  |  CO  o  ] Waste  O CM CO  CO  mj/sq m  -<)•  111.2  0.47 j 100.6J 0.16) 100.6 j 0.32: 100.61 0.07 j 100.6| 0.06 j 100.5]  0.211  282,5151 6.14 80,2601 1.46] 216,7021 3.96] 80,0001 1.46  0.211  8,9891 1,036| 1,680) 810| 28,418]  4.801 1.36] 3.68| 1.39|  0.011 0.48|  0.021 0.03]  0.16|  26,0801 0.44] 8,9461 0.16| 17,789| 0.30| 4,121 |ro.o7| 3,166| 0.06|  12,6741  100.5] 283,9281 100.6] 80,6611 100.6] 217,786| 102.4] 81,9201  o.ie; 105.6| 1,002| 0.021 103.31 1,626| 0.03] 103.3] 0.01 j 103.3] 27,610| 0.60] 103.3]  8,9001 17,7001 4,-1001 3,140|  Ps  |  O CM CM  o 10 00 ID  |  LO O O CM CM CO LO  LD  | Qty./m | mj/unit | conv.  o  Units  Ps o ID CO »J CD CM *r CO  0.011 25.81 0.01 ]  0.02) o  80801 2727| 1818| 2727| 12120]  o  0.78%j 112720[ 118243] 2.26%)  E  |  LO CO CO  00  ELECTRICAL  d CM E E c E  to to  MECHANICAL |  o  CO O CO LD CO CO CO CO CM  | 104.9|  CM  O  Vancouver costs  O  CO CM •«*  [  CM LO  od  | Embodied energy  —  o o o O c c c c <r  Ol  CM U)  [TOTAL MISCELLANEOUS ASSEMBUES  'E CO Ps ID  o  |  2 Waste  00 CM  mj/kg j 80.00 j 60.00 j 60.00] 46.00]  ?  j  CO  j mj/unit | conv.  CM CD  | Qty.  d c to oo to  29.401 29.40)  CO  o o o to to LO  Units  CM CM  oo 0) 36633] 0 . 1 1 ) 7424] 0.021 17816| 0.061 44641 0.011 29691 0.011  CO  O LO CO  CO  j  d d CM E E E c E c E |  o o o 00 CO CD CM CM 00 00 LD 00 CO  | Electric dryer | | Toilet paper holder | Soap dispenser] | Grab bars | [Toilet partitions and doors | Total |  LO LO  |  a Waste  |  11,308|  LD CO  [Washroom accessories  CO CM  1176|  1876J 0.01) Costs incl. above  164650j 0.461  -*  LO CO LD CM  |  E  2 CO LO  |  CO  29.40 j 29.40 j 29.40 j  *r  mj/kg  E  |  E"  |  LO  | mj/unit | conv.  CO LO LO  Units J Qty.  |  70301  CM CM  |WC | | Urinal (wall hung) |Lav. | |Janitors sink | | Drinking fountain [Total . |  CO CO  0.811  Waste  E  28.001 28.001 28.001  6179]  CO CO CM  |  O  Units | Qty./m j mj/unit conv. 2.74 2.74 |  |  CM CM  1 Washrooms I | Plumbing fixtures  |  eo 67661  Waste  O  c  [Guard rail 40mm steel tube | [Vertical supports 40mm steel tube [ Fixing plates and studs | |Paint (3 coats, 0.126m2 per m) | Total mj per landing |  00 LO *t CO CM  j  CO  45.001  CO CM CO  | Stair landing accessories  00  *t  j  oo o  2.741 0.761  4932| o  j  274.001 28.001 28.001 28.001 28.00  mj/kg 00 CO CM CM  2.36  CM  2.741 2.741  mj/unit | conv.  ps  cp CM CO CM o CO CN CM CO  | Total mj per stair flight  |  Qty. CN O LO OO CO  | Paint (3 coats, 0.126m2 per m)  j  Units E  1 Stair nosings | Guard rail 40mm steel tube  | lable (J3.1. Initial bmbodied hnergy ot (Jase btudy Building. |  LO  o o o  Ps CN  CN CN Ps Ps* CO* CO*  o o Ps  CM ID CO  to o CL  LO CO  CM CM CN CN  E £ £ £  CO  O  .X  c <u  Q. CU <  CD CO  0.  19 valves, sizes:  automatic  T—  C\l  in •<*  size [kw]  CM CM CM CD number  o  7.37  size[hp]  14821.6  76.4 76.4  0.7%  73324.8  10161.2  76.4  13.4  co  0.1%  0.0%  0.0%  0.2%  20520  28.5 28.5  0.0%  0.1%  9504  0.0%  0.0%  0.1%  0.1%  0.1%  0.0%  0.4%  0.0%  0.1%  0.1%  0.1%  0.6%  0.0%  0.0%  0.2%  0.3%  0.0%  0.0%  15.0%  % of total  Mj/sq m  CD  CO  r»  fans  8404  76.4  •*  VAV boxes  number  4202  76.4  m if> m m io m co  diffusers  If) in d o  size  42020  76.4  IO m  14821.6  4202  76.4  11765.6  76.4  10161.2  10161.2  [»•  air filters  i —  air compressor  CM  0.15  CO |V-  0.25  76.4 76.4  76.4  59286.4  17315.03  76.4  226.6365  15.1091  ^—  0.35  number  27704.04  76.4  362.6183  1548000  total  51.6  120.8728  Mj/kg  embodied energy  CO CO CO CO  T—  2.25  3.75  size [kw]  75 mm  number  30000  weight  M-  water pump  pumps  950 kW each  boilers  number CM  150 mm  description  part  case study building.  Use floor area multiplier to get embodied energy figures for  Note: Takeoff is for Jack Davis Building.  Table C3.2. Mechanical Takeoff.  39600  material cost to  CO  ^—  LO  iri  144480 2405760  51.6  — t co  see sheet 1I for wt calculations  number  412800  0.3%  51.6  0.4% 30360  37590  0.0%  23.3%  0.0%  1.4%  0.0%  0.0%  4.0%  0.0%  0.2%  0.0%  0.0%  0.0% 36696  0.0%  0.0%  0.0%  0.2%  0.2%  0.0%  0.0%  1.3%  0.0%  0.0%  0.0%  0.0%  0.1%  85.888  LO  o co  ducting  11.25 kw  size  air handling units  Mj/sq m  CN  8000  LO  22807.2  o co  300 ton  15480  51.6  S  chillers  15480  51.6  T—  51.6  ~5 ton  130135.2  51.6  2522  S  number  12606  76.4  CD CD CD I - I - I -  18.75 kw  size  cooling tower  CM CM  11.5  4202  76.4  S  6.95  0.488  number  0.0% 0.1%  4202  76.4  ^—  size  number  0.5025  LO LO  silencers  5.2 l/sec  cn  hot water tanks  •— CM < d d  d  0.375  12606  76.4  1.3%  134464  76.4  o o  LO LO LO LO LO LO LO LO LO LO  expansion tanks  co number  CO  0.75  0.5% 0.2%  50806  < 17648.4  S  76.4  O 76.4  CO I -  size  T—  2.25  co r-  heat exchange  0.134  co  3.015  0.268  5.025  LO CO CM  3.75 1.005  co 0.804  Table C3.2. Mechanical Takeoff.  CO CO  co  CM  co  LO  CO  CO  O X  o CM CM  T3 C  CD  Q. Q.  oo  <  LO  oo  oo  oo  CD co CO 0-  CD  CM  00  co  5 CO  O  CM CM  X  cz  T3  CD CO  CD  C3  CL Q. <  OO  CM  00  CL  in co  CO to CM  8  g  8  CO  O X  CM CM CM CD CO CD  3  T3  c  CL  CD CL CL <  8  9  3  3  2  125 mm |  I wire  CO  o E o o in 2100I  CD  | insulation  E E o co  |  o  I  -l  5  9.851  CT) CO  84883.12  CD  CD c n  O  o o f-  E  CO  5556.32 3515.635 1412.04 CO  o  5.86 includes city multiplyer, size factor  6.4980081  CD  total/S.F.  0.2051  CD  | [total  [  1.87% |  2755.55556 [per floor  0.90%  269.6257  3289434 total [Mj]  3.05% [  372090.5  2.85% [ 100411.733 29760|  4.50%  0.00% 93750.272  [ 331128.4  0.00%  1.35%) 0.67% 0.00%  5555.55556 2649027  5.00% j 1.35%  5555.55556]  20555.5556]  0.00%]  0.00%  0.00% 0.00%  9.43%  7697.06667)  13.66%  56153.61 38758.2293 j  148168.533  | o o o  means S.F data  2.421 6.381  CN  total electrical 870733.09  14051.521 48216]  22615.61  716620.13  |  alum CO  25  m  19501 for 8 floors 89577.52  |  s 88  wire  |  4600  ]  alum ialum  108.241  CN  [30kVA  I  2425]  2105.76) 1453.434J  o o  [conduit |  in CN  K  I verticle risers j  o o  j  1.1 e |  5? 5?  [Transformer 1  E  2600]  3598.981 01 0) o  26100] watts  |  66.51 55.51  4.28] 15021.091 7893.6481 m  ]  ]  E  CM  6600|  1 CO CD CD  I panel boards  |  E  1070 co d CD  1 speakers  I I CD  Iwall recepticles  j 12 mm  I conduit  1 Table C3.3. Electrical takeoff o o o  C T  E  i"  0J  O  a. <  ft  s  O  CL <  8  s  8  8  3  S  O  5  8  s  3  O  3  8  | 1759.962|| 12585.98 j 8539.3961 10512.75 | 10028.98| 1594.198] 16165.941 | 2340.75]| 16739.351 11357.4 j 13981.96 | 13338.54|1 2120.284]| 21500.69|  | 989.9545|| 6109.455|| 4144.103] 5320.491]| 4841.051|I898.4662J| 6880.918] | 1316.639| 8125.576] 5511.657][ 7076.253 | 6438.59711 1194.96]| 9151.62|  | sub-total 1| 1308.137| I total J| 1739.823]  o o  | sub-total )[ 3069.9551 [total JI 4083.04]  {Table C4. Recurring Embodied Energy of Base Building j  | 560.94611| 4744.4481 | 746.0584 | 6310.116| •total | | 92518.19|for 80 yr life  | 316.9794 | 2512.075| | 421.5826 | 3341.06 total | | 44317.77|for 40 yr life  o o  CO CO  o o  o o  —  CN  |  |  to  AON3IOIdd3 ONIIHOH  i  cn  o II  dinD3 'UOiVA313  .0)  Ii  C  32  Q x X3  c CD Q. Q. <  NOIlVinSNI  '5 m 5v C O  --  CD CN CN  A1ISN30 ONIIHOH  CD C S CO  i  CD C LU _Q)  D. ONizvno  O >» O i  O)  <1>  dlAIDd 1V3H  CD  CO  Q ONiiHonAva  Q) LL  z NOiivanidNi  NouvynidNi  NOIIVINHIUO  3SVO 3SV8  co d  co d  [jA-2iu/ro] uoiidiunsuoo Afjjaua  M-  d  |Bnuuy  CM  d  A0N3l0ldd3 ONI1HOH W I—  CO CD >-  dinD3 'UCU.VA313  o  00 II .0)  NOIlVinSNI  CO  c TJ  Q  X T3 OJ Q. Q. <  A1ISN3Q 0NI1H9H  '5  o ro  DQ  >;  CN OJ D) CO  CD 0NIZV13  1  CD  c  a.  LU 0) O  dIAind 1V3H  0  1 .0)  OJ  s CO  CN Q  ONIlHOHAVa  <D i_ CO Z NOIlVMllldNI  NonvynidNi  NOLLVINSIUO  3SVO 3SV9  V-  o  o  o  [JA^iuvro] uoudiunsuoo ABjaug |enuuv  o  i_  CO CO CD CD  >- >-  o O co El  nsNii  CO  CD  'cn  ivan JNI  CD '  co O  LU  X  TJ c  CD  CL Q<  CD J3 CO  CO CM  > c  CD cn co 0.  NOUV1N3 mo  CD CO  CD L_  CL  co  dlAJnd 1V3H  LLI  ro i—  to  CD  LL  Z ONIlHOlh  dinoa 'yoiVAa-ik  ONIIHOH 1111111118  ::V:.,.::::-::.:-: - " , :  ONiiHonAva  9  o  [ZW/$] on|BA luosojd J9N  W a)  co ro ^—* co  3  CD >  N0llVlN3lcj0  O Ill X T3 C CD QQ<  eg LU  "So  CM co CM  NOiiyynidNi  OJ O) CO CL  o  0  CO c 1^ c co  dl/MDcH 1 V 3 H  01 CN LU <D v—  =5  CO  dinoa  yO!VA313  ONiiHsnAva  CO CO  co co >- >o o co  Z ONlLHOn  ONIlHOn 8  8  8  o o  o o iri CO  [P9/$] ssau8A|pajj3  ISOQ  8  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 16 1
France 6 0
Ireland 4 0
Russia 4 0
Canada 3 3
China 3 31
Japan 2 0
United Kingdom 1 0
Algeria 1 0
Ukraine 1 8
Spain 1 1
City Views Downloads
Unknown 15 14
Ashburn 6 0
Dublin 4 0
Washington 4 0
Beijing 3 1
Redmond 3 0
Tokyo 2 0
Redwood City 1 0
Manchester 1 0
Kansas City 1 0
Valencia 1 1
Vancouver 1 1

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0076806/manifest

Comment

Related Items