UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Energy and economic life-cycle analysis of an office building 1995

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
ubc_1995-0161.pdf
ubc_1995-0161.pdf [ 9.92MB ]
ubc_1995-0161.pdf
Metadata
JSON: 1.0076806.json
JSON-LD: 1.0076806+ld.json
RDF/XML (Pretty): 1.0076806.xml
RDF/JSON: 1.0076806+rdf.json
Turtle: 1.0076806+rdf-turtle.txt
N-Triples: 1.0076806+rdf-ntriples.txt
Citation
1.0076806.ris

Full Text

ENERGY AND ECONOMIC LIFE-CYCLE ANALYSIS OF AN OFFICE BUILDING by INNES WILLIAM HOOD B . A . S c , The Univers i ty of B r i t i s h Columbia, 1987 M . A . S c , The Univers i ty of B r i t i s h Columbia, 1989 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Department of Resource Management and Environmental Studies) We accept t h i s thes i s as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA March 1995 Innes Wi l l iam Hood, 1995 In presenting t h i s thesis i n p a r t i a l f u l f i l l m e n t of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y a v a i l a b l e for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. I t i s understood that copying or pub l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of / ^ E ^ Q V ^ c E ^ ^ A C ^ ^ S N I The University of B r i t i s h Columbia Vancouver, Canada Date II APrPl -J A B S T R A C T This thes i s invest igates the l i f e - c y c l e economic and energy impl ica t ions of a commercial o f f i c e b u i l d i n g , located i n Vancouver, B r i t i s h Columbia. The work i s based on the premise that the commercial b u i l d i n g stock i s designed and b u i l t to sub-optimal l eve l s of performance. In the present context, the c r i t e r i a for analyzing opt imal i ty are defined i n terms of energy and monetary accounting. The b u i l d i n g i s designed i n compliance with the energy e f f i c i e n c y code for Vancouver. The energy performance of the b u i l d i n g i s improved to achieve an energy e f f i c i e n t o f f i c e b u i l d i n g through the adoption of a ser ies of design s t r a t e g i e s . Conclusions r e s u l t i n g from the work are: • The operating performance of the case study b u i l d i n g may be improved 77% through the adoption of simple, proven technologies . As a r e s u l t , the l i f e - c y c l e energy may be reduced 66 to 68% for b u i l d i n g l i v e s of 40 and 80 years, r e s p e c t i v e l y . • The l i f e - c y c l e embodied energy i s 0.21 GJ/m 2 .yr and 0.16 GJ /m 2 . y r . for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . These f igures are v a l i d for a l l the b u i l d i n g conf igurat ions s tudied . • For a b u i l d i n g l i f e of 40 years , the l i f e - c y c l e energy i s i i reduced from 1.6 to 0.54 GJ/m 2 .yr by the cumulative adoption of energy conservation s t ra teg ie s . This corresponding to a 66% reduct ion i n energy consumed. For a b u i l d i n g l i f e of 80 years , the l i f e - c y c l e energy i s reduced from 1.55 to 0.49 GJ/m 2 .yr by the cumulative adoption of energy conservation s t ra teg ie s . This corresponding to a 68% reduct ion . Reducing the operating energy of the case study b u i l d i n g r e s u l t s i n a savings with a net present value of $0,246 m i l l i o n and $0,253 m i l l i o n for b u i l d i n g l i v e s of 40 and 80 years , r e spec t ive ly . I f only those s trateg ies which are cost e f f e c t i v e are implemented, a 60% reduct ion i n operating energy may be achieved. The corresponding decrease i n l i f e - c y c l e energy i s 50% and 48% for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . Methodological p l u r a l i s m i s a c e n t r a l c h a r a c t e r i s t i c of the energy debate. Competing models and t h e i r so lut ions provide a number of p o l i c y a l t ernat ives based on p r i c i n g , u t i l i t y sponsored DSM, and regulatory options. A l l s t ra teg ies provide opportuni t ies to reduce energy consumption, and should continue to form components of future p o l i c y i n i t i a t i v e s . TABLE OF CONTENTS ABSTRACT i i TABLE OF CONTENTS i v LIST OF TABLES x i LIST OF FIGURES x iv CHAPTER ONE: INTRODUCTION 1 1.1 THESIS OBJECTIVES 2 1.2 BACKGROUND INFORMATION 3 1.2.1 The Case study B u i l d i n g 3 1.2.2 Choosing an End Use 5 1.2.3 Rationale for the Work 6 1.2.4 Scope of the Analys i s 7 1.2.5 An I n t e r d i s c i p l i n a r y Approach 9 1.2.6 The B u i l d i n g Industry 10 1.3 THESIS STRUCTURE 11 CHAPTER TWO: ENERGY ANALYSIS 14 2.1 INTRODUCTION 14 2.2 DEFINING AN ENERGY ANALYSIS 14 2.3 ENERGY ANALYSIS AS A PUBLIC POLICY TOOL 14 2.4 WHAT AN ENERGY ANALYSIS CAN DO 18 2.5 USE OF ENERGY ANALYSIS IN THE PRESENT WORK 20 i v 2.6 SYSTEM BOUNDARIES 21 2.6.1 Human Energy 21 2.6.2 Infras tructure 22 CHAPTER THREE: OPERATING ENERGY OF CASE STUDY BUILDING 24 3.1 INTRODUCTION 24 3.2 BACKGROUND 24 3.3 QUANTIFYING THE OPERATING ENERGY OF BUILDINGS 26 3.3.1 S i t e Versus Source Energy 27 3.4 DESIGN PROCESS 28 3.5 IMPROVING THE OPERATING ENERGY OF THE CASE STUDY BUILDING 29 3.6 RESULTS OF THE OPERATING ENERGY MODEL 32 3.7 OBSERVATIONS ON THE OPERATING ENERGY MODEL 3 6 3.8 MODEL VERIFICATION AND UNCERTAINTY 37 3.9 CONCLUDING REMARKS 39 CHAPTER FOUR: EMBODIED ENERGY OF CASE STUDY BUILDING 40 4.1 CHAPTER LAYOUT 40 4.2 DEFINING THE EMBODIED ENERGY OF A BUILDING 40 4.3 SIGNIFICANCE OF THE EMBODIED ENERGY OF BUILDINGS 41 4.4 METHODS OF ANALYSIS 41 4.4.1 Input-Output Analys i s 41 4.4.2 Process Analys i s 43 v 4.4.3 S t a t i s t i c a l Analys i s 44 4.5 REVIEW OF THE LITERATURE 44 4.5.1 Energy Intens i ty of Bu i ld ing Mater ia l s 44 4.5.2 Embodied Energy of Bui ld ings 47 4.6 INITIAL EMBODIED ENERGY OF BASE CASE STUDY BUILDING 52 4.6.1 Energy to Produce the B u i l d i n g Components 53 4.6.2 Mater ia l s Wastage 54 4.6.3 Construct ion Energy 54 4.6.4 Results 55 4.6.5 Comparison With Other Studies 58 4.7 RECURRING EMBODIED ENERGY OF CASE STUDY BUILDING 59 4.7.1 B u i l d i n g L i f e 59 4.7.2 Replacement and Refurbishment 60 4.7.3 Changes to Embodied Energy of B u i l d i n g Components With Time 60 4.7.4 Two Methodologies 61 4 .7 .4 .1 Recurring Embodied Energy Based on Input-Output Analys i s 62 4.7.4.2 Recurring Embodied Energy Based on Replacement Schedule 63 4.7.3 Comparison of Results 63 4.8 DEMOLITION AND RECYCLING 64 4.9 LIFE-CYCLE EMBODIED ENERGY OF CASE STUDY BUILDING 65 4.9.1 Comparison With Other Studies 68 4.10 INITIAL EMBODIED ENERGY OF IMPROVED BUILDINGS 69 v i 4.11 RECURRING EMBODIED ENERGY OF IMPROVED BUILDINGS 72 4.12 LIFE-CYCLE EMBODIED ENERGY OF IMPROVED BUILDINGS 74 4.13 REDUCING THE LIFE-CYCLE EMBODIED ENERGY OF THE CASE STUDY BUILDING 76 4.14 MODEL UNCERTAINTY 79 4.15 CHAPTER SUMMARY 81 CHAPTER FIVE: LIFE-CYCLE ENERGY ANALYSIS 84 5.1 INTRODUCTION 84 5.2 LIFE-CYCLE ENERGY ANALYSIS 84 5.2.1 Operating Energy 84 5.2.2 L i f e - c y c l e Embodied Energy 85 5.3 LIFE-CYCLE ENERGY ANALYSIS 87 5.4 DISCUSSION OF RESULTS 90 5.5 COMPARISON WITH OTHER STUDIES 90 5.6 CHAPTER SUMMARY 91 CHAPTER SIX: LIFE-CYCLE COST ANALYSIS 93 6.1 INTRODUCTION 6.2 ASSUMPTIONS AND DEFINITIONS 6.2.1 I n f l a t i o n Rate 6.2.2 Discount Rate 6.2.3 Energy Pr ices 6.2.4 Discount Rate Adjustment v i i 93 93 93 94 94 95 6.2.5 Present Value Ca lcu la t ions 96 6.2.6 Economic E f f i c i e n c y , Energy E f f i c i e n c y and Cost Effect iveness 96 6.3 CAPITAL COST OF CASE STUDY BUILDING 97 6.4 OPERATING COSTS 98 6.5 LIFE-CYCLE COSTS 101 6.5.1 S e n s i t i v i t y Analys i s 105 6.5.2 Payback Period 105 6.6 LEVELIZED COST ANALYSIS 106 6.6.1 Comparing the Net Present Value Ca lcu la t ions to the Leve l i zed Cost Analys i s 111 6.7 COMPARISON OF THE ENERGY ANALYSIS AND ECONOMIC ANALYSES 112 6.8 CHAPTER SUMMARY 115 CHAPTER SEVEN: POLICY ISSUES 117 7.1 INTRODUCTION 117 7.2 NATURE OF THE POLICY DEBATE 117 7.3 VIEWS OF ENERGY 12 0 7.3.1 Energy as a Commodity 122 7.3.2 The Behav iora l i s t /Techno log i s t Model 124 7.3.3 Behavioral B a r r i e r s to Improving Energy E f f i c i e n c y 125 7 .3 .3 .1 Energy I n v i s i b i l i t y 125 7.3.3.2 Information 12 6 v i i i 7.3.3.3 Discount Rates 127 7.3.3.4 The Symbolic Meaning of Energy 127 7.3 .3 .5 Momentum of Past Behaviour 12 8 7 .3 .3 .6 L i t e r a c y 128 7.3 .3 .7 Intermediaries 129 7.3.4 A T h i r d Conceptual Model 129 7.4 ANALYSIS OF COMPETING VIEWS 131 7.5 CONSUMER RATIONALITY 13 3 7.6 MAPPING THE SUB-GOVERNMENT 13 6 7.7 POLICY ALTERNATIVES 138 7.7.1 U t i l i t y Sponsored 13 9 7.7.2 Competitive Markets 142 7.7.3 Regulatory 14 3 7 .7 .3 .1 Information 143 7.7.3.2 Standards 144 7.7.3.3 P r i c i n g 146 7.8 RELEVANCE TO THE CURRENT STUDY 149 CHAPTER EIGHT: CONCLUSIONS, SUMMARY, AND RECOMMENDATIONS 153 8.1 SUMMARY OF FINDINGS AND CONCLUSIONS 153 8.1.1 Operating Energy 153 8.1.2 Embodied Energy 153 8.1.3 L i f e - c y c l e Energy Analys i s 155 ix 8.1.4 L i f e - c y c l e Cost Analys i s 155 8.1.5 P o l i c y Implicat ions 157 8.2 THESIS CONCLUSIONS 160 8.3 RECOMMENDATIONS 160 REFERENCES 162 APPENDICES 170 Appendix A: B u i l d i n g Spec i f i ca t ions and Drawings 171 Appendix B: Operating Energy Calcu la t ions 176 Appendix C: Embodied Energy Calcu la t ions Appendix CI: Energy Intens i ty of B u i l d i n g M a t e r i a l s . 187 Appendix C2: Energy Intens i ty Trends for M a t e r i a l s : 1976-1990. 200 Appendix C3: I n i t i a l Embodied Energy of Base B u i l d i n g . 203 Appendix C4: Recurring Embodied Energy of Base B u i l d i n g . 225 Appendix D: L i f e - c y c l e Energy Analys i s Results 229 Appendix E : L i f e - c y c l e Cost Analys i s Results 231 x L I S T OF TABLES Table 1.1. Components of the L i f e - c y c l e A n a l y s i s . 8 Table 3 .1 . Summary of B u i l d i n g Energy Performance Index for Case study B u i l d i n g . 3 3 Table 4 .1 . Summary of I n i t i a l and L i f e - c y c l e Embodied Energy Resul ts . 52 Table 4.2. I n i t i a l Embodied Energy and Mass of B u i l d i n g M a t e r i a l s . 56 Table 4.3. I n i t i a l Embodied Energy by B u i l d i n g Component. 57 Table 4.4. Comparison of Recurring Embodied Energy Based on two Methods. 64 Table 4.5. Summary of L i f e - c y c l e Embodied Energy Based on two Methods. 66 Table 4.6. Comparison of the L i f e - c y c l e Embodied Energy by B u i l d i n g Component. 67 Table 4.7. Summary of I n i t i a l and L i f e - c y c l e Embodied Energy Resul t s , Including Results of Present Study. 69 x i Table 4.8. Changes i n I n i t i a l Embodied Energy due to Changes i n B u i l d i n g Design. 72 Table 4.9. Recurring Embodied Energy for Improved B u i l d i n g s . 74 Table 4.10. Summary of L i f e - c y c l e Embodied Energy of B u i l d i n g With Improvements. 75 Table 4.11. Results of S e n s i t i v i t y A n a l y s i s . 81 Table 5.1. Summary of B u i l d i n g Energy Performance Index for Case Study B u i l d i n g . 85 Table 5.2. Summary of L i f e - c y c l e Embodied Energy of Case Study B u i l d i n g . 86 Table 5.3. L i f e - c y c l e Energy Results of Case Study B u i l d i n g . 88 Table 6.1. C a p i t a l Cost of B u i l d i n g Under D i f f erent Design Scenarios . 98 Table 6.2. Annual and L i f e - c y c l e Operating Costs . 100 Table 6.3. B u i l d i n g L i f e - c y c l e Costs . 102 x i i Table 6.4. Net Present Value of S trateg ies . 103 Table 6.5. Investment Payback Period for Cost E f f e c t i v e S trateg ies . 106 Table 6.6. Leve l i zed Cost per Unit of Energy Saved. 108 Table 6.7. Leve l i zed Cost per Unit of Energy Purchased. 109 Table 6.8. Dif ference Between Leve l i zed Cost per Uni t of Energy Saved and the Leve l i zed Cost per u n i t of Energy Purchased. 110 Table 6.9. Improvements to the Operating Performance of B u i l d i n g Using Cost E f f e c t i v e Strateg ies . 114 Table A l . B u i l d i n g S p e c i f i c a t i o n s . 174 Table B l . Energy Consumption of Case Study B u i l d i n g . 181 Table C l . Energy Intens i ty of Bu i ld ing M a t e r i a l s . 187 Table C2. Energy Intens i ty Trends for B u i l d i n g Mater ia l s i n Canada, 1976-1990. 200 Table C3 .1 . I n i t i a l Embodied Energy of Case Study x i i i B u i l d i n g . 203 Table C3.2. Mechanical Takeoff. 218 Table C3.3 . E l e c t r i c a l Takeoff. 224 Table C4. Recurring Embodied Energy of Base B u i l d i n g . 224 LIST OP FIGURES Figure A l . B u i l d i n g Drawings. 171 Figure A2. B u i l d i n g Drawings. 172 Figure A3. B u i l d i n g Drawings. 173 Figure BI . Monthly Energy Consumption, B u i l d 7A. 175 Figure B2. Monthly Heating Loads, B u i l d 7A. 177 Figure B3. B u i l d i n g Energy Performance Index 178 Figure B4. Energy Consumption by End Use. 179 Figure B5. Energy Consumption by End Use. 180 Figure D l . L i f e c y c l e Energy, B u i l d i n g L i f e = 40 years . 229 Figure D2. L i f e c y c l e Energy, B u i l d i n g L i f e =80 years . 23 0 Figure E l . Net Present Value of S trateg ies . 231 Figure E2. Ranking of S trateg ies . 232 x iv CHAPTER 1: INTRODUCTION This thes i s invest igates the l i f e - c y c l e economic and energy impl ica t ions of a commercial o f f i c e b u i l d i n g , located i n Vancouver, B r i t i s h Columbia. The work i s based on the premise that the commercial b u i l d i n g stock i s designed and b u i l t to sub-optimal l eve l s of performance. In the present context, the c r i t e r i a for analyzing opt imal i ty are defined i n terms of energy and monetary accounting. This work frequently re fers to the concept of opt imal i ty and sub- o p t i m a l i t y . However, t h i s work does not c laim to provide a so lu t ion for an optimal b u i l d i n g . Because of the number of independent v a r i a b l e s and the subject ive nature of many of those v a r i a b l e s , op t imal i ty cannot be defined r i g o r o u s l y . I t i s pos s ib l e , however, to define the magnitude and d i r e c t i o n of improvements to b u i l d i n g performance r e l a t i v e to some base l ine , thus making i t poss ib le to substant iate and quantify the c laim of sub-opt imal i ty . The basel ine used to quantify l eve l s of sub-opt imal i ty i n t h i s ana lys i s i s a case study b u i l d i n g conforming to the energy e f f i c i e n c y code for commercial bu i ld ings i n Vancouver. Therefore, a b u i l d i n g that uses less energy, and has lower l i f e - c y c l e d o l l a r costs r e l a t i v e to the base l ine b u i l d i n g may be sa id to be better ( less sub-optimal) than the basel ine b u i l d i n g . A p r i n c i p a l r o l e of the l i f e - c y c l e energy analys i s i n t h i s work i s Page 1 to provide information that may be u t i l i z e d i n the a l l o c a t i o n of scarce energy resources. Such a r o l e should be viewed as complimentary to an economic ana lys i s . Whereas the economic ana lys i s w i l l provide information based on market information, the energy analys i s may provide an a d d i t i o n a l perspect ive based on a p h y s i c a l d e s c r i p t i o n of a b u i l d i n g . As discussed i n Chapter Two, an energy analys i s may provide relevant information when analyzing a c t i v i t i e s where there i s evidence of market f a i l u r e s . 1.1 THESIS OBJECTIVES The major object ives of t h i s work are l i s t e d below. - V a l i d a t e the premise that commercial bu i ld ings are sub-optimal by the c r i t e r i o n of energy. This work w i l l perform a l i f e - c y c l e energy analys i s of a s ing le archetypal commercial o f f i c e b u i l d i n g , located i n Vancouver. The b u i l d i n g i s designed i n compliance with the energy e f f i c i e n c y code for Vancouver 1. The energy performance of the b u i l d i n g w i l l be improved to achieve an energy e f f i c i e n t o f f i c e b u i l d i n g through a ser ies of design s t ra teg i e s . The analys i s w i l l extend t r a d i t i o n a l energy analyses, based on operating energy, to JThe energy e f f i c i e n c y code for commercial bu i ld ings i n Vancouver i s consistent with the American Society for Heating, R e f r i g e r a t i o n and A i r Condit ioning Engineers (ASHRAE) standards [ASHRAE, 1989]. Page 2 i n c l u d e the l i f e - c y c l e embodied energy o f the b u i l d i n g 2 . The l i f e - c y c l e embodied energy i s i n c o r p o r a t e d i n the a n a l y s i s t o i n v e s t i g a t e the t o t a l energy r e q u i r e m e n t s o f a b u i l d i n g . - V a l i d a t e the premise o f s u b - o p t i m a l i t y by the c r i t e r i o n o f monetary a c c o u n t i n g . T h i s work w i l l p r o v i d e a l i f e - c y c l e economic a n a l y s i s o f the case s tudy b u i l d i n g t o observe how changes i n the l i f e - c y c l e energy performance a f f e c t the l i f e - c y c l e d o l l a r c o s t s o f the b u i l d i n g . -Compare and c o n t r a s t the i n f o r m a t i o n p r o v i d e d by the energy a n a l y s i s w i t h the economic a n a l y s i s . - P r o v i d e a p o l i c y framework f o r r e c o n c i l i n g t h e i n f o r m a t i o n based on t h e energy and economic a n a l y s e s . 1.2 BACKGROUND INFORMATION 1.2.1 The Case Study Building 2 The embodied energy i s d e f i n e d as t h a t component o f the energy budget d e r i v e d from e x t r a c t i n g o r r e c y c l i n g the raw m a t e r i a l s , p r i m a r y and secondary p r o c e s s i n g , t r a n s p o r t i n g the b u i l d i n g m a t e r i a l s , and o n - s i t e e r e c t i o n . " L i f e - c y c l e " embodied energy expands the b o u n d a r i e s o f the embodied energy a n a l y s i s t o i n c l u d e the embodied energy consumed throughout the u s e f u l l i f e o f a b u i l d i n g . T h i s i n c l u d e s the energy consumed i n component rep lacement and maintenance o f the b u i l d i n g , and t h e energy r e q u i r e d t o d e m o l i s h and d i s p o s e o f the s t r u c t u r e a t the end o f i t s u s e f u l l i f e . Page 3 The design of the case study b u i l d i n g used i n t h i s work corresponds to a generic o f f i c e s tructure that i s representat ive of many o f f i c e b u i l d i n g s . Drawings of the b u i l d i n g , occupancy schedules, operating requirements and systems c h a r a c t e r i s t i c s are presented i n Appendix A. During the pre l iminary phase of the energy analys i s work, the b u i l d i n g was designed as a three-s tory o f f i c e b u i l d i n g . This work i s found i n Cole [1994]. The three-s torey conf igurat ion permitted a comparison of embodied energy of wood, s t e e l and concrete s t ruc tures . The b u i l d i n g used i n the present work adopts the same f l o o r p la te design, but i s of a f i ve - s torey conf igurat ion . In moving from a three to a f i ve - s torey s t ruc ture , i t i s no longer poss ib le to model the b u i l d i n g using wood, due to f i r e code r e s t r i c t i o n s . The f l o o r area of the b u i l d i n g i s 8026 m2. The s tructure of the case study b u i l d i n g i s s t e e l re in forced concrete. Concrete i s chosen as the primary b u i l d i n g mater ia l i n the study due to two re la ted fac tors : the cost advantage of concrete construct ion over the s t ee l conf igurat ion; and, concrete i s more representat ive of l o c a l construct ion p r a c t i c e s . I t should be noted that any b u i l d i n g i s a system of many components, using 50 to 100 mater ia l s . In the case study b u i l d i n g , s t e e l i s a major component of the embodied energy due, i n p a r t , to the need for s t e e l r e i n f o r c i n g i n the concrete. A f i c t i t i o u s b u i l d i n g i s chosen i n t h i s analys i s (rather than a r e a l bui lding) for two reasons. F i r s t , t h i s work continues an Page 4 analys i s of a case study b u i l d i n g s tarted by Cole [1994]. Therefore, a l o t of information needed for the ana lys i s has already been generated. B u i l d i n g drawings, the s t r u c t u r a l a n a l y s i s , much of the mater ia l s take-of f and the pre l iminary operating energy model for the b u i l d i n g were a v a i l a b l e . Second, t h i s work performs a parametric study r e l a t i n g energy and economic v a r i a b l e s . I f a r e a l b u i l d i n g was used as the case study b u i l d i n g , information at only one point i n the energy and economic analyses would be a v a i l a b l e . 1.2.2 Choosing an End Use This ana lys i s deals with economic and energy issues of one case study b u i l d i n g . The commercial o f f i c e sector i s s tudied because of the large p o t e n t i a l improvements wi th in t h i s sector , and due to the r e l a t i v e magnitude of t h i s sector wi th in the p r o v i n c i a l economy. Considering e l e c t r i c i t y consumption i n the commercial sector , the cost e f f ec t i ve e l e c t r i c i t y savings p o t e n t i a l i s of the order of 58% i n B r i t i s h Columbia [B.C. Hydro, 1993]. B . C . Hydro a lso pred ic t s the t e c h n i c a l e l e c t r i c i t y savings p o t e n t i a l i s approximately 68% [B .C. Hydro, 1993] 3. The annual energy consumption i n the commercial sector i s 93 PJ i n B r i t i s h Columbia [State of Environment Report for BC, 1993]. This corresponds to 9% of 3 The cost e f f ec t ive and t e c h n i c a l conservation p o t e n t i a l predic ted by B . C . Hydro correspond to the reduct ion of e l e c t r i c i t y consumption by 2010. The work assumes adoption of the most energy e f f i c i e n t technologies by a l l commercial e l e c t r i c i t y consumers. For the economic ana lys i s , the study uses the long run marginal cost of e l e c t r i c i t y . Page 5 p r o v i n c i a l energy consumption. Further , the commercial sector i s the fas tes t growing sector of the economy with a growth rate of 1.6% per year. I t i s expected that by 2015, t h i s sector w i l l require 134 P J , corresponding to an increase of 45% [Minis try of Energy Mines and Petroleum Resources, 1994], Therefore, t h i s sector provides an important opportunity to explore improvements i n energy and economic e f f i c i e n c y . 1.2.3 Rationale for the Work In performing an analys i s of the performance of a commercial b u i l d i n g , one must address the question "Is i t worth i t ? " . This work i s deemed important for both economic and e c o l o g i c a l reasons. As noted prev ious ly , B . C . Hydro pred ic t s that commercial e l e c t r i c i t y users can reduce consumption 58% by the year 2010 by implementing s trateg ies that are cost e f f ec t i ve [B .C. Hydro, 1993]. This f igure may be o p t i m i s t i c . The survey by Komor and Moyad [1994] of studies inves t iga t ing the cost e f f ec t i ve energy savings p o t e n t i a l for commercial bu i ld ings i n the United States pred ic t s a range of 13% to 45%4. Komor and Moyad suggest that a cost e f f ec t ive p o t e n t i a l of 3 3% i s more p l a u s i b l e . Although there i s wide v a r i a t i o n i n the pred ic t i ons , the magnitude of the cost e f f ec t ive 4 I t i s not s u r p r i s i n g that d i f f e r e n t studies should p r e d i c t d i f f e r e n t cost e f f ec t ive p o t e n t i a l s . The r e s u l t s of s tudies are based on computer s imulations which require pred ic t ions of the future , inc lud ing: populat ion growth ra tes , technology adoption ra te s , energy p r i c e s , economic condi t ions , and consumption pat terns . Page 6 p o t e n t i a l i s s u f f i c i e n t l y large to warrant further i n v e s t i g a t i o n . Considering eco log i ca l reasoning, there i s an obvious l i n k between energy use and environmental q u a l i t y that i s d i f f i c u l t to explore by applying only economic ana lys i s 5 . The environmental impl ica t ions of burning f o s s i l fuels are we l l documented [Brown, 1992, S t a t i s t i c s Canada, 1994, B r i t i s h Columbia Energy C o u n c i l , 1994]. Macdonald (1994, pg. 7.122) has noted that reducing energy consumption by one generic quad/yr i n bu i ld ings may lead to a reduct ion i n greenhouse gas emissions of approximately 16 m i l l i o n tonnes of carbon equivalent . A l t e r n a t e l y , the adverse e f fec t on f i s h and w i l d l i f e populat ions, the des truct ion of l o c a l habi ta t and the a l t e r a t i o n of micro-cl imates due to hydro e l e c t r i c i t y s i t e s i s we l l known [ B . C . , Hydro, 1994 (c) , Northwest Power Planning C o u n c i l , 1991]. 1 . 2 . 4 Scope of the Analys i s I t i s the intent of t h i s work to provide an energy and economic l i f e - c y c l e ana lys i s for a representat ive commercial b u i l d i n g , located i n Vancouver. The research w i l l provide information about the r e l a t i o n s h i p between an economic l i f e - c y c l e ana lys i s inc lud ing c a p i t a l and operating d o l l a r costs , and an energy l i f e - c y c l e 5There i s the growing body of l i t e r a t u r e explor ing the l i n k s among natura l resources, energy and economic theory. The journal E c o l o g i c a l Economics, works by Daly [1981, 1993], and Constanza [1993] provide examples. Page 7 analys i s inc lud ing the embodied and operating energy costs for a case study b u i l d i n g . These var iab le s are summarized i n Table 1.1. Table 1.1. Components of the L i f e - c y c l e A n a l y s i s . C a p i t a l D o l l a r Costs of Case Study Bu i ld ing Embodied Energy of Case Study B u i l d i n g Operating D o l l a r Costs of Case Study Bu i ld ing Operating energy of Case Study B u i l d i n g F i n a l l y , t h i s work w i l l invest igate pub l i c p o l i c y options d irec ted towards improving the energy and economic e f f i c i e n c y of the b u i l d i n g industry i n B r i t i s h Columbia. This work focuses on the construct ion and operation of one commercial b u i l d i n g i n one geographic l o c a t i o n . However, there are many important issues t h i s work does not address. This ana lys i s does not address the issue of whether the b u i l d i n g should ever be constructed i n the f i r s t p lace . The present study does not extend the ana lys i s to invest igate the energy and d o l l a r impl i ca t ions to the en t i re o f f i c e b u i l d i n g stock 6 and does not provide a l i f e - c y c l e 6See B . C . Hydro, [1993] for a model of e l e c t r i c i t y consumption trends for the en t i re commercial b u i l d i n g stock. Page 8 analys i s of a l l the environmental impl icat ions of the b u i l d i n g 7 . I t i s argued that energy provides a bas ic p h y s i c a l and e c o l o g i c a l i n d i c a t o r of environmental impl icat ions of b u i l d i n g s 8 . By minimizing the energy impacts of a b u i l d i n g , other environmental s tressors are simultaneously reduced. However, the r e l a t i o n s h i p between energy consumption and, for example, emissions of V o l a t i l e Organic Compounds (VOC's) or b i o d i v e r s i t y i s not quant i f i ed or explored i n t h i s work. 1.2.5 An I n t e r d i s c i p l i n a r y Approach This work takes an i n t e r d i s c i p l i n a r y approach to the ana lys i s of the energy and economic performance of a b u i l d i n g . Bui ld ings and energy are used and valued i n many d i f f e r e n t ways by soc ie ty . By imposing boundaries on the analys i s along d i s c i p l i n a r y l i n e s , one may create "conceptual b l i n d spots" 9 and miss e s s e n t i a l ingredients to improving b u i l d i n g energy performance. An i n t e r d i s c i p l i n a r y approach strengthens the understanding of the in terac t ions among a r c h i t e c t u r a l , engineering, economic and p o l i c y issues of energy, b u i l d i n g s , b u i l d i n g occupants and the eco log i ca l impacts of the 7See Kohler and Lutzkendorf i n [Cole, 1992] for information about l i f e - c y c l e assessments of bu i ld ings . 8There are other ind ica tors that may be informative , such as carbon dioxide emissions [CMHC, 1991], or appropriated carry ing capaci ty [Rees, 1992]. 9 P. Stern, 1986 Page 9 i n t e r a c t i o n s . This work serves as a means of developing an understanding of improving energy e f f i c i e n c y of b u i l d i n g s . However, t h i s information i s of l i m i t e d value i f i t i s not placed wi th in a broader framework. The research provides an economic and energy analys i s of an important pub l i c p o l i c y i ssue . 1.2.6 The Building Industry There are a number of d i f ferences between the b u i l d i n g industry and other sectors of the economy that may inf luence the type of ana lys i s used i n t h i s work. F i r s t , the longevity of bu i ld ings i s t y p i c a l l y 40 to 80 years , with many s tructures l a s t i n g hundreds of years . This implies the turnover rate for bu i ld ings i s of the order of 1 to 2% per year. Second i s the magnitude of the b u i l d i n g industry wi th in an economy. The b u i l d i n g industry i s the second larges t i n the world, and o f f i c e bu i ld ings are the larges t c a p i t a l assets of developed nations [Brand, 1994]. I t has been predic ted that the b u i l d i n g sector may consume 20% to 30% of a l l resources i n an economy [Cole, pg. I l l , 1992]. In B r i t i s h Columbia, operating bu i ld ings consume approximately 24% of the p r o v i n c i a l energy requirements [Minis try of Energy Mines and Petroleum Resources, pg. 2, 1989]. Due to the s i z e , complexity and i n e r t i a of the b u i l d i n g industry , changing the way the industry operates i s a complex task. Page 10 T h i r d i s the fragmented nature of the b u i l d i n g industry . Much of the b u i l d i n g industry i s operated by small contractor or tradesman companies. The industry i s regulated at the f e d e r a l , p r o v i n c i a l and municipal l eve l s of government, r e s u l t i n g i n v a r i a t i o n s and c o n f l i c t s i n standards and enforcement between regions . The cumulative e f fec t of these factors i s that innovations i n the b u i l d i n g industry occur at a very slow rate of d i f f u s i o n . T y p i c a l l y i t takes 10 to 20 years for b u i l d i n g innovations to be adopted by the industry [Cole, pg. I l l , 1992]. In a d d i t i o n , because of the slow turnover rate i n bu i ld ings , the time for b u i l d i n g innovations to saturate the sector i s longer than most other sectors of the economy. Therefore, the impact of current design dec is ions w i l l have a large and a long l a s t i n g impact on economic e f f i c i e n c y and environmental q u a l i t y . 1.3 THESIS STRUCTURE Chapter Two introduces the concept of an energy analys i s and the a p p l i c a b i l i t y to the current study. Information regarding the use of energy analys i s as a p u b l i c p o l i c y t o o l i s d iscussed. There has been controversy i n the l i t e r a t u r e regarding the information provided by an energy ana lys i s , and the various viewpoints are presented and discussed. Chapter Three provides an analys i s of the p o t e n t i a l to reduce the Page 11 operating energy of the case study b u i l d i n g through the i t e r a t i v e adoption of simple, proven technologies . Results of the analys i s are based on computer simulations of the b u i l d i n g , using the software program D 0 E 2 . 1 - D . Chapter Four quant i f i e s the l i f e - c y c l e embodied energy of the case study b u i l d i n g . The l i f e - c y c l e embodied energy includes four components: -the i n i t i a l embodied energy from construct ion of the base b u i l d i n g ; -the r e c u r r i n g embodied energy due to r e p a i r and replacement of b u i l d i n g components; - the embodied energy impl icat ions of improving the operating c h a r a c t e r i s t i c s of the b u i l d i n g ; and, -the energy required to demolish the b u i l d i n g at the end of i t s serv ice l i f e . Chapter Five uses the information of the previous two chapters to perform an energy analys i s of the d i f f e r e n t b u i l d i n g conf igurat ions . The r e l a t i v e magnitudes of operating and embodied components of the b u i l d i n g are explored. Chapter Six performs a l i f e - c y c l e cost analys i s of the case study b u i l d i n g . This analys i s ca lcu la tes the l i f e - c y c l e net present value of adopting s trateg ies to improve the performance of the case study Page 12 b u i l d i n g . Strategies are ranked according to t h e i r economic net present value . A comparison i s made between the r e s u l t s of the energy and economic analyses. In Chapter Seven the focus of the d i scuss ion changes. Whereas the previous chapters focus at tent ion on the case study b u i l d i n g , Chapter Seven discusses the broader p o l i c y impl i ca t ions of the present work i n the context of current th ink ing about energy p o l i c y . Energy as perceived by economists i s compared and contrasted with the views expressed by behavioral and engineering researchers . The second sect ion of the chapter reviews the stakeholders involved i n regu la t ing energy e f f i c i e n c y of commercial bu i ld ings i n B r i t i s h Columbia. The f i n a l sect ion of the chapter uses the background information of the preceding sect ions to provide p o l i c y options for improving the performance of the case study b u i l d i n g . Chapter Eight provides a summary and the conclusions of t h i s work. From t h i s information, a set of recommendations i s presented. Page 13 CHAPTER 2: ENERGY ANALYSIS 2.1 INTRODUCTION This chapter introduces the concept and use of energy a n a l y s i s . Information regarding the use of energy analys i s as a p u b l i c p o l i c y t o o l i s discussed. There has been controversy i n the l i t e r a t u r e regarding the information provided by an energy a n a l y s i s , and the opposing viewpoints are presented and discussed. 2.2 DEFINING AN ENERGY ANALYSIS Energy ana lys i s i s a procedure for quant i fy ing the t o t a l energy requirement for a good or serv ice . This includes the energy required i n the a c q u i s i t i o n of raw mater ia l s , primary and secondary process ing, operat ing, and f i n a l d i s p o s a l . Although energy i s the focus of the present study, i t i s poss ib le to apply a s i m i l a r ana lys i s to quantify resource use i n general . For example, S t a t i s t i c s Canada has recent ly developed a system of nat iona l accounts based on augmented input-output tables which quantify natura l resource use and waste and po l lu tant output by sector for the Canadian economy [ S t a t i s t i c s Canada, 1994]. 2.3 ENERGY ANALYSIS AS A PUBLIC POLICY TOOL There has been a great deal of controversy i n the l i t e r a t u r e dea l ing with the p o t e n t i a l value of energy analys i s as a leg i t imate Page 14 and valuable source of information for p u b l i c p o l i c y . Much of t h i s d i scuss ion occurred between 1970 and 1980. At one extreme i s the work of Webb and Pearce [1975] and Leach, [1975] who argue that energy analys i s provides no a d d i t i o n a l information to an economic a n a l y s i s . By contrast i s the work of G i l l i l a n d [1975, 1978] and Odum [1971], In t h e i r work, the authors express the opinion that as energy i s the ul t imate scarce resource, an energy accounting system should replace the e x i s t i n g monetary system. I t i s important to discuss these extreme views of energy analys i s to both l e g i t i m i z e and provide a context to i t s use i n the present work. Webb and Pearce [1975] r a i s e several important issues about the use of energy analys i s from the point of view of economics. The major c r i t i c i s m s are: • Pr ices w i l l r i s e to r e f l e c t s c a r c i t y whereas the energy cost w i l l be constant. This i s r e f l e c t e d i n problems of intertemporal a l l o c a t i o n dec i s ions; • There i s no information on the dev ia t ion between ac tua l market p r i c e s and the shadow pr i ce s for commodities, so i t i s impossible to say whether an energy analys i s provides bet ter information than an economic ana lys i s ; • Energy analys i s i s based on the assumption of homogeneity: Page 15 [t]he problem then i s simply that the saving of energy measured i n phys i ca l uni t s i m p l i c i t l y assumes a one-to- one correspondence of benefi ts forgone to energy (per therm) saved. In the market type economy there i s no reason why t h i s correspondence should e x i s t . [Webb and Pearce, pg. 325, 1975] In dea l ing with the f i r s t two issues , i t i s use fu l to r e f e r to the work of Georgescu-Roegen who states that: [e]ven a simple analys i s of the energy aspects of man's existence may help us reach at l east a general p i c t u r e of the e c o l o g i c a l problem and a r r i v e at a few general conclus ions . The t r u t h however, i s that the most we can do i s prevent any unnecessary deplet ion of resources and any unnecessary d e t e r i o r a t i o n of the environment, but without c la iming that we know the prec i se meaning of unnecessary i n t h i s context. [Georgescu-Roegen, 1975] I t should be acknowledged that def in ing an optimum intertemporal a l l o c a t i o n i s not resolved i n energy a n a l y s i s . However, the economics l i t e r a t u r e does not o f fer a comprehensive treatment regarding the a l l o c a t i o n of scarce resources across generations. For example, the issue of discount rate i n u t i l i z i n g natura l resources i s subject to a great deal of controversy and ambiguity [Norgaard and Howarth, i n Constanza, pg. 88, 1991]. In response to Webb and Pearce's t h i r d po int , homogeneity i s not a necessary feature of energy ana lys i s . I t should be stressed that the l e v e l of aggregation i n an energy analys i s fol lows from the Page 16 focus of the analys i s and the l e v e l of abs trac t ion involved. Examples where the analys i s i s disaggregated by f u e l type include the energy analyses that consider the environmental impl ica t ions of energy u t i l i z a t i o n . S p e c i f i c examples include OPTIMIZE [CMHC, 1991] and the S t a t i s t i c s Canada Environmental Perspect ives [ S t a t i s t i c s Canada, 1993]. In i t s ana lys i s of the embodied energy of b u i l d i n g s , the present work attempts to aggregate a l l sources of energy. This approach may be j u s t i f i e d as a use fu l , a l b e i t rough i n d i c a t i o n of energy conservation performance and p o t e n t i a l . G i l l i l a n d [1975], Odum [1971], and Constanza et a l . [1989] promote an a l ternate argument that energy i s the ul t imate l i m i t i n g input fac tor into product ion, and should therefore be used as an economic metr ic . Although the works r e l a t e d to an energy theory of value have in teres t and merit i n terms of proposing a bas ic b iophys i ca l metric for va lu ing goods and serv ices , there are several problems with the system. Georgescu-Roegen, for example s tates: I have maintained that i t would be a great mistake to think that the economic process can be represented by a vast system of thermodynamic equations. The economic process moves through an i n t r i c a t e web of anthropomorphic categories , of u t i l i t y and labour i n the f i r s t p lace . I t s true product i s not a phys ica l flow of high entropy, but the immaterial f lux of the enjoyment of l i f e obtained through the drudgery of work. [Georgescu-Roegen i n Daly Page 17 and Umana, pg. 68, 1981] A second c r i t i c i s m of energy analys i s as a va luat ion technique i s common to a l l s ing le fac tor theories of value . Namely, that by t h i s theory, p r i c e l eve l s are defined based on supply information only . The r e l a t i v e p r i c e between commodities i s based on the s ing le fac tor input of energy. This implies that commodity demand and other input s c a r c i t i e s are i r r e l e v a n t to the p r i c e [Leach, 1975]. The arguments presented above regarding the value and use of energy ana lys i s as a pub l i c p o l i c y t o o l provides a framework for developing an energy analys i s for the present work. The views of Web and Pearce [1975], versus those of Odum [1971] and G i l l i l a n d [1975, 1978] provide ins ight into the l i m i t s of energy a n a l y s i s . However, the extreme views of these authors are of l i m i t e d u t i l i t y . The next sect ion develops energy analys i s as i t i s used i n the present work. 2 . 4 WHAT AN ENERGY ANALYSIS CAN DO The l a s t sect ion reviewed the polar viewpoints about the use of energy analys i s as a p u b l i c p o l i c y t o o l . This sec t ion provides a more moderate d iscuss ion of the a b i l i t i e s and l i m i t a t i o n s of energy a n a l y s i s . The work by Berry [1979] provides a d d i t i o n a l information. I t i s a premise of Berry ' s work that an energy analys i s may provide Page 18 information that w i l l not be picked up by an economic a n a l y s i s . A p r i n c i p a l r o l e of energy analys i s i s to provide information that may be u t i l i z e d i n the a l l o c a t i o n of scarce resources . Such a r o l e should be viewed as complimentary to an economic a n a l y s i s . Whereas an economic analys i s w i l l provide information based on market information, an energy analys i s may provide an a d d i t i o n a l perspect ive based on a phys i ca l d e s c r i p t i o n of a process or system. This information i s e s p e c i a l l y re levant i n analyzing a c t i v i t i e s where there i s evidence of market imperfections or market f a i l u r e s . The market f a i l u r e s may take the form of imperfect competit ion, e x t e r n a l i t i e s , or issues of p u b l i c goods. In a p e r f e c t l y competit ive market where the p r i c e of goods and services r e f l e c t s f u l l s o c i a l costs , i t i s ant i c ipated that an economic ana lys i s would provide a l l the information necessary to make optimum a l l o c a t i o n dec i s ions . This impl ies , for example, the l i f e - c y c l e energy of bu i ld ings and t h e i r components would be f u l l y captured i n the p r i c e of those goods. However, under e x i s t i n g condi t ions , there are several reasons the l i f e - c y c l e energy of b u i l d i n g components may not be f u l l y picked up i n the p r i c e . For example, government p o l i c i e s such as taxes, subsides, or u t i l i t y rate s tructures may d i s t o r t the market p r i c e of energy and inf luence dec is ions about energy use. The rate s tructure used by the u t i l i t i e s industry i n B r i t i s h Columbia i s based on the average cost of supplying energy. This value i s l ess than the long-run marginal cost of prov id ing new Page 19 suppl ies , and may provide incorrec t p r i c e information to consumers. Second, the d e c l i n i n g block rate s tructure for commercial e l e c t r i c i t y customers encourages consumption, and does not provide accurate information about the cost of energy serv ices . I t i s an t i c ipa ted that the d e c l i n i n g block s tructure w i l l be replaced with a f l a t rate during the f i s c a l year of 1995-1996 [ B r i t i s h Columbia U t i l i t i e s Commission, pg. 7, 1994]. A second d i s c o n t i n u i t y between economic and energy costs may a r i s e when energy flows i n the absence of money flow. For example, many natura l resources entering a production and consumption c y c l e , or wastes e x i t i n g from that cyc le may have zero p r i c e , but do have an energy value that w i l l be captured by an energy a n a l y s i s . For example, during demolit ion of bu i ld ings , used mater ia l such as carpets , roof ing and gypsum products have zero economic value , and are frequent ly discarded to l a n d f i l l s . However, a l l these materia ls do have an energy value that w i l l be picked up i n an energy a n a l y s i s . In contras t ing the a t t r ibutes of economic and energy analyses, i t i s not the intent of t h i s work to suggest or advocate an energy theory of value . However, i t i s a premise of the present work that energy analys i s may provide information that may not be picked up i n a d i s t o r t e d market. 2.5 USE OF ENERGY ANALYSIS IN THE PRESENT WORK Page 2 0 In t h i s work, energy analys i s i s used to provide a process by which the t o t a l energy of a case study b u i l d i n g may be examined. The t o t a l energy includes the l i f e - c y c l e embodied energy and the operating energy. As noted prev ious ly , t h i s should be viewed as prov id ing complimentary information to the economic a n a l y s i s . There i s present ly a l i m i t e d understanding of the in terac t ions between the various components of l i f e - c y c l e energy use i n commercial b u i l d i n g s . Cole [1994] provides an ana lys i s of operating versus embodied energy for a three-s torey o f f i c e b u i l d i n g , u t i l i z i n g three s t r u c t u r a l materia ls choices . The present work provides information on the r e l a t i o n s h i p between the operating and embodied energy of an archetypal o f f i c e b u i l d i n g over a range of operating performances. The r e l a t i o n s h i p between operating and embodied energy for the case study b u i l d i n g i s explored f u l l y i n Chapter F i v e . 2.6 SYSTEM BOUNDARIES An obstacle i n developing an energy analys i s of bu i ld ings i s i n the development of the system boundaries. I t i s important to include a l l the s i g n i f i c a n t energy inputs , and exclude a l l i n s i g n i f i c a n t and extraneous inputs . Two examples of boundary problems are the i n c l u s i o n of human energy and s o c i a l i n f r a s t r u c t u r e i n the energy a n a l y s i s . 2.6.1 Human Energy Page 21 Controversy ex i s t s i n the l i t e r a t u r e regarding i f and how the energy input from human labour should be accounted for i n an energy a n a l y s i s . At one extreme are the works of Odum [1971] and Punti [1988] who advocate the i n c l u s i o n of the energet ic value of human labour. At the other extreme i s the convention set out i n the In ternat iona l Federation of Ins t i tu tes of Advanced Study Workshop [IFIAS, 1974] that does not incorporate human labour i n the ana lys i s of i n d u s t r i a l i s e d a c t i v i t i e s . The construct ion process i s labour intens ive r e l a t i v e to many other a c t i v i t i e s . In add i t i on , there are instances where automated and energy intens ive processes may replace low energy human energy inputs . Therefore, the choice of whether and how to incorporate the energy value of human input may modify the energy ana lys i s . A Pre l iminary ana lys i s was performed to compare the. energy value of human labour i n the b u i l d i n g process to the embodied energy of the b u i l d i n g mater ia l s . The ana lys i s assumed a human labour input based on the metabolic energy input into the b u i l d i n g and i t s components. I t i s estimated for the case study b u i l d i n g i n t h i s ana lys i s , the labour component of the i n i t i a l embodied energy i s of the order of 0.4%. This i s l ess than the uncertainty of the energy a n a l y s i s , and i s not invest igated fur ther . 2.6.2 i n f r a s t r u c t u r e A second boundary problem i s how or i f one should include i n the energy analys i s of a b u i l d i n g the i n f r a s t r u c t u r e associated with Page 22 serv ices to that b u i l d i n g . Services may inc lude , for example, e l e c t r i c i t y generation and transmiss ion, water, communications, roads, f i r e pro tec t ion , and waste water treatment. For t h i s a n a l y s i s , the system boundary has been chosen to include the s i t e and b u i l d i n g , but does not extend the ana lys i s to include the embodied energy of s o c i a l i n f r a s t r u c t u r e . In a s i m i l a r way, the b u i l d i n g design may d ic ta te the f u r n i t u r e used and the c lo th ing worn by occupants. Again, the boundary i s chosen to exclude the embodied energy of these components. Page 2 3 CHAPTER 3 : OPERATING ENERGY OF CASE STUDY BUILDING 3 . 1 INTRODUCTION This chapter provides an analys i s of the p o t e n t i a l to reduce the operating energy of a commercial o f f i c e s t ruc ture . The case study b u i l d i n g i s consistent with the energy performance requirements of the energy e f f i c i e n c y code for Vancouver, B . C . S imi lar analyses have been performed for commercial bu i ld ings i n B r i t i s h Columbia [BC Hydro, 1992]. While the B . C . Hydro study invest igates energy conservation p o t e n t i a l of the ent i re b u i l d i n g stock, the intent here i s to perform an independent and comprehensive ana lys i s of the energy conservation p o t e n t i a l for one case study s t ruc ture . 3 . 2 BACKGROUND There are numerous works deal ing with the operating c h a r a c t e r i s t i c s of b u i l d i n g s , and s trateg ies to improve energy e f f i c i e n c y . An example that has relevance to the present work i s provided by the B . C . M i n i s t r y of Energy Mines and Petroleum Resources [1991:a, b ] . These works examine the l i f e - c y c l e costs of adopting energy e f f i c i e n c y standards, based on the American Society for Heating, R e f r i g e r a t i o n and A i r - c o n d i t i o n i n g Engineers (ASHRAE) performance standards (ASHRAE, 1989). The M i n i s t r y ' s work considers 13 commercial b u i l d i n g types for three c l i m a t i c regions of B r i t i s h Columbia. The t h i r t e e n b u i l d i n g types analyzed i n the projec t were: Page 24 -Warehouse - R e t a i l non-food store -Gas bar/Convenience store - R e t a i l food/Grocery store -Low r i s e o f f i c e (three-storeys or less) -High r i s e o f f i c e (more than three-storeys) -Elementary/secondary school - U n i v e r s i t y / c o l l e g e -Hote l -Restaurant - H o s p i t a l -Refr igerated warehouse -Shopping m a l l . The c l i m a t i c regions invest igated i n the work were: -Temperate coasta l - C e n t r a l i n t e r i o r -Upper i n t e r i o r . The work i s based on computer s imulations of the energy consumption c h a r a c t e r i s t i c s of the bui ld ings using the program DOE-2.ID [Lawrence Berkeley Laboratory 1989, 1991]. The analys i s suggests i t was cost e f f ec t ive to improve a l l the bu i ld ings studied to meet or exceed the ASHRAE 90.1 standards. The analys i s i s based on a 15-year study period and a discount rate of 10%. Several bu i ld ings i n the study had a negative c a p i t a l cost for upgrading to meet the Page 25 ASHRAE performance standard. This i s because improving the performance of the b u i l d i n g permitted the i n s t a l l a t i o n of smaller and less expensive Heating, V e n t i l a t i o n and A i r - c o n d i t i o n i n g (HVAC) systems. Focusing on a b u i l d i n g s i m i l a r to the case study b u i l d i n g examined i n t h i s work, the net present value of implementing the performance standards was found to be $19.45/ m2. To a r r i v e at the net present value f igures requires an estimate of the future cost of energy. The r e s u l t s of the above analys i s are based on energy p r i c e forecasts found i n a report on the forecast demand and supply requirements for B r i t i s h Columbia between 1990 and 2010 [Energy Mines and Petroleum Resources, 1991]. 3.3 QUANTIFYING THE OPERATING ENERGY OF BUILDINGS The un i t used to quantify the operating energy of bu i ld ings i s the B u i l d i n g Energy Performance Index (BEPI) 1 . This corresponds to the operating energy consumed per un i t of f l o o r space per year, and i s measured i n Gigajoules per square metre per year [GJ /m 2 . yr ] . T y p i c a l BEPIs for commercial bui ld ings i n Vancouver range from 0.4 GJ /m 2 .yr to 4.8 GJ/m 2 . yr , with an average of 1.75 GJ/m 2 .yr [Cole, pg. 26, 1994]. A l t e r n a t e l y , the average BEPI for offi.ce bu i ld ings i n the United States i s estimated at 1.2 GJ/m 2 .yr [Houghton, pg. 9.190, 'This un i t i s standard i n the l i t e r a t u r e . Page 26 1994]. I t i s important to note that many of the bu i ld ings used i n a r r i v i n g at these f igures are not b u i l t to ASHRAE 90.1 standards. As a bas is of comparison, high energy e f f i c i e n c y designs i n European bu i ld ings are achieving BEPIs of the order of 0.1 GJ/m 2 .yr to 0.3 GJ/m 2 .yr [Cole, pg. 27, 1994]. Because of the e f fec t of c l i m a t i c v a r i a t i o n s and d i f f e r e n t operating schedules between Vancouver and the c i t i e s of Europe and the United States , d i r e c t comparisons of operating energy performance are d i f f i c u l t to make. The operating energy for the case study s tructure i s ca l cu la ted using the computer design t o o l "DOE-2.ID". The program was developed by the United States Department of Energy, and i s a h igh ly f l e x i b l e computer modell ing device that i s capable of s imulat ing a l l aspects of the b u i l d i n g . This includes c l i m a t i c condi t ions , envelope and systems c h a r a c t e r i s t i c s as we l l as occupancy schedules and loads. The case study b u i l d i n g was introduced i n Chapter One. Drawings, d e t a i l s of the occupancy schedule, operating loads and systems c h a r a c t e r i s t i c s are contained i n Appendix A. 3.3.1 S i t e Versus Source Energy In quant i fy ing the operating performance of the case study b u i l d i n g , i t i s important to d i s t i n g u i s h between the source (primary) energy and the s i t e (secondary) energy. Source energy re f er s to the primary energy requirement for operating a b u i l d i n g , Page 27 i n c l u s i v e of e f f i c i e n c y losses . S i te energy re f er s to the energy a c t u a l l y consumed i n the b u i l d i n g 2 , exc lus ive of e f f i c i e n c y losses . In the present work, i t i s assumed that e l e c t r i c i t y generated by thermal p lants represents 15% of e l e c t r i c i t y use [B .C. M i n i s t r y of Energy Mines and Petroleum Resources, 1989], and i t i s assumed that the thermal p lant i s 33% e f f i c i e n t . Therefore, one un i t of s i t e e l e c t r i c i t y i s equivalent to 1.45 un i t s of source e l e c t r i c i t y . I t i s assumed that source and s i t e energy i s equivalent for hydro e l e c t r i c i t y 3 and natura l gas serviced to the b u i l d i n g 4 . The d i s t i n c t i o n between source and s i t e energy i s made i n order to maintain consistency when comparing the operating and embodied energy c h a r a c t e r i s t i c s of the case study b u i l d i n g . 3 . 4 D E S I G N PROCESS Model l ing the b u i l d i n g ' s operating energy was an i t e r a t i v e process . An i t e r a t i v e approach was u t i l i z e d to minimize p o t e n t i a l mistakes and the e f for t s required to "debug" the operating energy program. The process to model thermal performance was based on the fo l lowing steps: 2 I t i s assumed that the BEPI's r e f erred to i n the l a s t sect ion correspond to s i t e energy. However, the d i s t i n c t i o n between s i t e and source energy i s not made by any of the references . t r a n s m i s s i o n losses have not been inc luded. 4 Natural gas has a net energy r a t i o of approximately 60. See Nemetz [1993]. Page 28 - s i n g l e - s t o r e y , s ing le thermal zone5 s t ruc ture ; - s i n g l e - s t o r e y , f i v e thermal zone s truc ture ; - three - s toreys , f i v e thermal zones per f l o o r ; - f i v e - s t o r e y s , f i v e thermal zones per f l o o r ; and, - f i v e - s t o r e y s , twenty-one thermal zones per f l o o r , based on a 7.5 m. g r i d conf igurat ion used as the base case study s t ruc ture . Once the base b u i l d i n g was obtained, the design was a l t ered to observe the operating c h a r a c t e r i s t i c s under d i f f e r i n g design conf igurat ions . An i d e n t i f i c a t i o n numbering system was implemented through t h i s design process. Simulation run #1 through #6 correspond to the pre l iminary models 6 i n the i t e r a t i v e process. Test runs #7 to #17 correspond to the tes t runs of the base case study b u i l d i n g and modified b u i l d i n g s . 3 . 5 IMPROVING T H E OPERATING ENERGY OF T H E C A S E STUDY B U I L D I N G The base b u i l d i n g was sys temat ica l ly upgraded from a t y p i c a l o f f i c e b u i l d i n g to an energy e f f i c i e n t b u i l d i n g . There i s a large and diverse set of s trateg ies that may be implemented to improve the operating performance of a b u i l d i n g . The s trateg ies employed i n the present work were guided by a set of c r i t e r i a i n c l u d i n g : 5A s ing le thermal zone implies the en t i re b u i l d i n g i s c o n t r o l l e d by one thermostat, and the temperature of a l l areas i s to be maintained at a s ing le temperature. This i s a s i m p l i f i c a t i o n , s ince the core of the b u i l d i n g usua l ly requires coo l ing while the perimeter areas require heating, coo l ing or both. 6 Single storey, s ing le thermal zone, e tc . Page 29 -maintain the a i r q u a l i t y of the indoor environment 7; -implement s trateg ies that are wel i es tabl i shed i n the b u i l d i n g community; -implement s trateg ies that can be modelled wi th in the operating energy s imulat ion program; I t i s acknowledged that the operating energy computer model l i m i t e d the range of s trateg ies incorporated i n the case study b u i l d i n g . For example, i t was not poss ib le to model stack v e n t i l a t i o n . Any design process i s a synthesis of t e c h n i c a l knowledge, experience, i n t u i t i o n and external cons tra in t s . The necess i ty of u t i l i z i n g and incorporat ion of experience and i n t u i t i o n extens ive ly i n the process of r e f i n i n g the operating c h a r a c t e r i s t i c s of the b u i l d i n g implies that there i s no optimal pathway or b u i l d i n g design. Once the s trateg ies to improve the operating energy were se lected, a h ierarchy was implemented based on a set of p r i n c i p l e s out l ined i n ASHRAE 90.1 [1989]. • Identify and minimize the impact of the functional requirements of the building. This implies, for example that: 7The indoor environment re fers to indoor a i r q u a l i t y , v i s u a l access to the outs ide, and sources of noise . Page 3 0 -the b u i l d i n g systems should be matched to the occupancy requirements for the b u i l d i n g . • Identify and minimize the internal and external loads on the building. Strategies carried out here include: -changing the b u i l d i n g or i en ta t ion to maximize passive heating and l i g h t i n g c a p a b i l i t y ; - c o n t r o l l i n g a i r i n f i l t r a t i o n ; - improving the i n s u l a t i o n and g laz ing ; -implementing day l ight ing s t ra teg ie s ; -reducing l i g h t i n g l eve l s -us ing high e f f i c i e n c y o f f i c e equipment, such as high e f f i c i e n c y copiers , p r i n t e r s and f a c s i m i l e s . •Integrate subsystems to improve the efficiency of the building systems. For example: -reducing the l i g h t i n g load through the implementation of d a y l i g h t i n g and high e f f i c i e n c y l i g h t s , there i s a corresponding reduct ion i n the coo l ing load of the b u i l d i n g and poss ib le increase i n heating requirements. • Improve the efficiency of subsystems by: - r e p l a c i n g the v a r i a b l e a i r volume heating system with a heat pump. The h ierarchy of s trateg ies used to improve the performance of the Page 31 case study b u i l d i n g i s consistent with general procedure out l ined above. This process was re f ined by studying the output of the computer s imulations a f ter each run to determine which b u i l d i n g load contr ibuted the greatest amount to the energy consumption of the b u i l d i n g . That load was targeted i n the next b u i l d i n g s imulat ion . 3 . 6 RESULTS OF THE OPERATING ENERGY MODEL Table 3.1 provides summary information of the b u i l d i n g energy performance of the case study b u i l d i n g under a number of conf igurat ions . Spec i f i ca t ions of the base b u i l d i n g are presented i n Appendix A. In add i t i on , complete graphica l and tabular data for the operating energy of the case study b u i l d i n g i s presented i n Appendix B. Page 32 Table 3 .1 . Summary of Bu i ld ing Energy Performance Index for Case study B u i l d i n g . SIMULATION RUN STRATEGY BEPI [GJ/m 2 .yr] CUMULATIVE % CHANGE s i t e , (source) 7A Base Case 0.96 (1.39) 7B Orienta t ion 0.95 (1.38) -3% 7C I n f i l t r a t i o n 0.91 (1.32) -7% 7D I n f i l t r a t i o n 0.89 (1.29) -9% 8A Dayl ight ing 0.56 (0.93) -43% 8B Heat Pump 0.44 (0.64) -55% 9 Glazing 0.41 (0.59) -58% 10 L ight ing Density 0.35 (0.51) -64% 11 Insulat ion 0.34 (0.49) -65% 12 Equipment 0.28 (0.41) -71% 13 Night Purge 0.28 (0.41) -71% 14 L i g h t i n g E f f i c i e n c y 0.23 (0.33) -77% 15 Wall to Window Ratio 0.23 (0.33) -77% 16 Increase Comfort Zone 0.23 (0.33) -77% 17 Sun-space 0.23 (0.33) -77% Page 3 3 The cumulative percent reduct ion i n operating energy corresponds to the reduct ion i n operating energy achieved by implementing the s tra teg ies success ive ly . Incremental percent changes are less meaningful i n t h i s analys i s as the magnitude of performance improvements i s dependent on what s tra teg ies precede. This c h a r a c t e r i s t i c may be a t t r ibuted to the dependence of b u i l d i n g subsystems: for example, l i g h t s and coo l ing systems. Test runs 13, 15, 16 and 17 are s trateg ies that were found to have n e g l i g i b l e or negative impact on the operating performance of the b u i l d i n g . The r e s u l t s of the operating energy analys i s are consis tent with other analyses of operating energy 8. The i n i t i a l s i t e B u i l d i n g Energy Performance Index (BEPI) i s 0.9 6 GJ /m 2 . yr . This i s consis tent with a b u i l d i n g conforming to ASHRAE 90.1 standards. Through an i t e r a t i v e design process, a f i n a l s i t e BEPI of 0.23 GJ/m 2 .yr was achieved, corresponding to a 77% reduct ion i n operating energy of the case study b u i l d i n g . Test runs 7A through 11 imply no behavioral modi f i cat ion by b u i l d i n g occupants. Nor does i t imply a reduct ion i n the q u a l i t y or quanti ty of energy services provided. Test runs 12 and 14 incorporate the p o t e n t i a l to reduce energy loads through behavioral modi f i cat ion by bu i ld ing , occupants. For example, the e l e c t r i c i t y 8See M i n i s t r y of Energy Mines and Petroleum Resources, [1991], BC Hydro, [1993,1994]. Houghton [1994] presents s i m i l a r r e s u l t s based on s imulat ion runs using D0E2.1E, and measured energy consumption. Page 34 consumption from the e levator was reduced by making stairways the primary mode of t ransport ing occupants between f l o o r s . This may be achieved by making stairways more v i s i b l e or convenient and e levators less so. Reducing the energy load associated with o f f i c e equipment has been invest igated by Danbridge et a l . [1994]. The author notes a 57% reduct ion i n energy consumption i s current ly p o s s i b l e . The reductions i n the l i g h t i n g load i n t e s t run 14 i s achieved by maintaining low ambient l i g h t i n g and u t i l i z i n g high e f f i c i e n c y task l i g h t i n g . Because of l i m i t a t i o n s i n the D0E2 program, the f u l l advantage of the sun-space design cannot be explored. For example i t i s not poss ib le to explore reductions i n operating energy through the implementation of passive stack v e n t i l a t i o n e f fec t s 9 coupled to the sun-space. Test runs were performed to e s tab l i sh the e f fec t on the b u i l d i n g operating energy through the reduct ion of indoor a i r c i r c u l a t i o n . There was no reduct ion of the outside a i r supply i n t h i s t e s t run. A reduct ion i n the operating energy to a s i t e BEPI of 0.18 GJ/m 2 was achieved. As stated prev ious ly , however, a c r i t e r i o n for improving the case study b u i l d i n g was that there should be no loss of indoor environmental q u a l i t y . Indoor a i r q u a l i t y i s of s u f f i c i e n t 'Passive stack v e n t i l a t i o n re fers to a process of buoyancy dr iven (as opposed to mechanical fans) v e n t i l a t i o n r e s u l t i n g from the temperature d i f f e r e n t i a l between i n t e r i o r and e x t e r i o r spaces. Page 3 5 importance t h a t t h i s s t r a t e g y was not implemented i n the case study b u i l d i n g . 3.7 OBSERVATIONS ON THE OPERATING ENERGY MODEL There are a number of p o i n t s t h a t should be emphasized i n r e v i e w i n g the data presented i n Table 3 .1 and Appendix B . F i r s t , the data f o r monthly energy use p r e d i c t s anomalous behaviour f o r the month of February. T h i s i s e x p l a i n e d by the nature of the c a l c u l a t i o n method. The s i m u l a t i o n program performs an hour by hour a n a l y s i s of energy use. S i n c e t h e r e are fewer days i n February, t h e r e i s a c o r r e s p o n d i n g decrease i n energy use f o r t h i s month 1 0. Second, u n c o n t r o l l e d a i r i n f i l t r a t i o n i n commercial b u i l d i n g s i s d i f f i c u l t t o c o n t r o l and p r e d i c t . In a d d i t i o n , a i r i n f i l t r a t i o n i s f r e q u e n t l y an important source of h e a t i n g l o a d . For example, a n a l y s i s by P u b l i c Works Canada [1994, pg. 1-4] has documented a s a v i n g s p o t e n t i a l i n h e a t i n g energy of 2 0% t o 60% through reduced a i r i n f i l t r a t i o n . S t u d i e s by the Canadian Mortgage and Housing C o r p o r a t i o n [CMHC, 1993] suggest t h a t i n f i l t r a t i o n i n b u i l d i n g s may be one t o two orders of magnitude l a r g e r than d e s i g n s p e c i f i c a t i o n s . In the computer a n a l y s i s performed i n t h i s a n a l y s i s , a i r i n f i l t r a t i o n r a t e s p r e s c r i b e d i n the ASHRAE 90 .1 standards are used. I t i s not c l e a r , however, how w e l l t h e s e d e s i g n 1 0 T h i s anomaly may be removed by n o r m a l i z i n g the i n f o r m a t i o n f o r an average month (30.4 days). However, t h i s r e s u l t s i n a l o s s of i n f o r m a t i o n , so t h i s step i s not performed here. Page 3 6 s t a n d a r d s a r e a c h i e v e d i n p r a c t i c e , nor i s i t c l e a r t h a t zero u n c o n t r o l l e d a i r i n f i l t r a t i o n i s p o s s i b l e . T h i r d , t h e f i n a l l e v e l o f performance does no t i m p l y a l i m i t t o the t e c h n i c a l o r b e h a v i o r a l energy s a v i n g s p o t e n t i a l f o r the b u i l d i n g . R a t h e r , t h i s i s the l e v e l o f performance a c h i e v e d t h r o u g h the a p p l i c a t i o n o f s i m p l e , i n e x p e n s i v e and f a m i l i a r s t r a t e g i e s t o improve t h e o p e r a t i n g c h a r a c t e r i s t i c s o f the b u i l d i n g . W i t h the a d d i t i o n o f a c t i v e s o l a r d e v i c e s such as p h o t o v o l t a i c p a n e l s and s o l a r h e a t e r s , t h i s b u i l d i n g c o u l d p o t e n t i a l l y be t r a n s f o r m e d i n t o an energy autonomous b u i l d i n g . A p r e l i m i n a r y a n a l y s i s o f the p o t e n t i a l t o make the case s tudy b u i l d i n g energy autonomous was p e r f o r m e d . The c a p i t a l c o s t o f t h i s s t ep was o f t h e o r d e r o f one m i l l i o n d o l l a r s f o r the p h o t o v o l t a i c c e l l s a l o n e . A d d i t i o n a l c a p i t a l c o s t s f o r the i n v e r t o r s and the b a t t e r i e s were not c a l c u l a t e d . Due t o the c a p i t a l c o s t e s t i m a t e d from the p r e l i m i n a r y a n a l y s i s , no f u r t h e r r e s e a r c h of a p h o t o v o l t a i c system was p e r f o r m e d . A s o l a r water h e a t i n g system was a l s o i n v e s t i g a t e d . However, t h i s system was o n l y a b l e t o augment the c e n t r a l h e a t i n g system ( r a t h e r t h a n r e p l a c e i t ) . T h e r e f o r e , t h i s o p t i o n was not e x p l o r e d f u r t h e r . 3 . 8 MODEL VERIFICATION AND UNCERTAINTY To g a i n c o n f i d e n c e i n the r e s u l t s o f the o p e r a t i n g energy model , the computer output was v e r i f i e d u s i n g two a p p r o a c h e s . F i r s t , the Page 37 data were compared against a set of t e s t runs from the developer of the D0E2 program [Lawrence Berkeley Laboratory, 1986]. The f i ve - s torey o f f i c e tower was compared with a case study s tructure of s i m i l a r aspect r a t i o , but of a t h i r t y - s t o r e y design. Assuming the heat t rans fer between f loors i s of second order magnitude, the B u i l d i n g Energy Performance indexes (BEPI) for the f i v e and t h i r t y storey, o f f i c e s tructures were found to be comparable. The assumption of n e g l i g i b l e f l o o r to f l o o r heat t rans fer i s based on the observation that the temperature and pressure d i f ferences between f l o o r s i s small or zero. Therefore, the heat t rans fer between f l oors w i l l be smal l . As a second te s t of the operating energy model, the computer data were compared to measured r e s u l t s . o f s i m i l a r b u i l d i n g s . For an o f f i c e B u i l d i n g located i n Vancouver, conforming to ASHRAE 90.1, the B u i l d i n g Energy Performance Index (BEPI) should be i n the range 0.8 GJ/m 2 .yr to 0.95 G J / m 2 . y r u . The v e r i f i c a t i o n process i s acknowledged to be i n d i r e c t . However, i n the absence of a r e a l b u i l d i n g with energy performance data over a range of performance c h a r a c t e r i s t i c s , i t i s impossible to v e r i f y the operating energy model d i r e c t l y . The uncerta inty i n the operating energy analys i s i s in f erred from discuss ions from i n d i v i d u a l s with experience i n applying the model to e x i s t i n g and n Ray Cole Page 3 8 new b u i l d i n g s 1 2 . Using these estimates, the uncerta inty i n the ana lys i s of the b u i l d i n g operating energy i s estimated at 10%. 3.9 CONCLUDING REMARKS I t was found that the operating energy for the case study b u i l d i n g could be reduced by 77% below a b u i l d i n g conforming to ASHRAE 90.1 standards. This f igure i s consistent with other inves t iga t ions of achievable reductions i n operating energy [BC Hydro, 1992], The reduct ion i n operating energy i s achieved through the adoption of simple, proven technologies . 1 2Gord Shimco, DW Thompson Inc. Page 39 CHAPTER 4: EMBODIED ENERGY OP CASE STUDY BUILDING 4.1 CHAPTER LAYOUT This chapter begins by def in ing the concept of embodied energy, and d i scuss ing i t s magnitude i n b u i l d i n g s . Methods used to p r e d i c t the energy i n t e n s i t y 1 of goods and services are reviewed. Published r e s u l t s of analyses of the energy i n t e n s i t y of b u i l d i n g materia ls and embodied energy of bu i ld ings are presented. The i n i t i a l and l i f e - c y c l e embodied energy for the case study b u i l d i n g i s ca l cu la ted over the range of operating performances examined i n Chapter Three. 4.2 DEFINING THE EMBODIED ENERGY OF A BUILDING The embodied energy of a b u i l d i n g i s that component of the energy budget derived from extract ing or r e c y c l i n g the raw b u i l d i n g mater ia l s , primary and secondary process ing, t ransport ing the b u i l d i n g mater ia ls to the s i t e , and on-s i t e erec t ion . " L i f e - c y c l e " embodied energy expands the boundaries of the embodied energy analys i s to include the embodied energy consumed throughout the use fu l l i f e of a b u i l d i n g . This includes the energy consumed i n component replacement and maintenance of the b u i l d i n g , and the energy required to demolish and dispose of the s tructure at the end JIn t h i s work, energy i n t e n s i t y re fers to b u i l d i n g materia ls and embodied energy to the b u i l d i n g . Page 40 of i t s use fu l l i f e . 4.3 SIGNIFICANCE OF THE EMBODIED ENERGY OF BUILDINGS Depending on the l i f e s p a n , the l i f e - c y c l e embodied energy for a b u i l d i n g may be 18% [CMHC, pg. 1, 1991] to 40% (Kohler i n Cole , 1991, pg. 29) of the l i f e - c y c l e energy budget of a b u i l d i n g . As the operating energy of the b u i l d i n g decreases, the embodied energy may become a larger component of the t o t a l energy budget. However, lack of information i n the published l i t e r a t u r e suggests there i s no c l e a r understanding how changes to the operating performance of a b u i l d i n g w i l l inf luence the embodied energy of a b u i l d i n g . 4.4 METHODS OF ANALYSIS The present analys i s r e l i e s on prev ious ly publ ished data for the energy i n t e n s i t y of b u i l d i n g mater ia l s . This sec t ion provides a b r i e f d e s c r i p t i o n of how the information has been generated. The methods used to estimate the energy i n t e n s i t y values include input - output a n a l y s i s , process analys i s and s t a t i s t i c a l methods. 4.4.1 Input-Output Analys i s Input-output analys i s provides information on the i n t e r - r e l a t i o n s h i p s between d i f f e r e n t sectors of the economy, prov id ing information i n terms of energy embodied per monetary u n i t of Page 41 output. The analys i s permits the c a l c u l a t i o n of d i r e c t and i n d i r e c t primary energy required to produce a good or s e r v i c e . The use of input-output analys i s techniques to estimate the energy i n t e n s i t y of commodities i s developed i n Re i s ter [1978], Bush [1981], and Peet [1993]. An advantage of input-output analys i s i s the a b i l i t y to capture a l l the d i r e c t and i n d i r e c t energy inputs of a product . The i n d i r e c t energy inputs include the upstream energy embodied i n mater ia ls and equipment, such as the too l s required to produce the f i n a l good. A problem with information derived from an input-output table ar i ses from the l e v e l of disaggregation of the tab le s . S p e c i f i c a l l y , the c o e f f i c i e n t s derived from an input-output ana lys i s provide estimates of the energy embodied i n a d o l l a r ' s worth of the average product of an industry . This impl ies that an input-output analys i s w i l l provide an imprecise estimate of the embodied energy of commodities that have a p r i c e that i s far away from the average product p r i c e [Reister , 1978]. This i s l ess of a problem i n Canadian data compared to input-output data from other countr ies . The Canadian commodity input-output tab le i s disaggregated into 602 commodities (compared to 215 indus tr i e s for the United States) r e s u l t i n g i n fewer a t y p i c a l products . A second problem with input-output analys i s i s the four-year time lag between the age of the data and p u b l i c a t i o n of the tab le s . Page 42 There has been a steady decrease i n the embodied energy of commodities produced i n Canada of approximately 1.0% per year 2 . Rely ing only on input-output analys i s may r e s u l t i n a systematic over-est imation of the energy i n t e n s i t y of current b u i l d i n g mater ia l s . 4.4.2 Process Analys i s Process ana lys i s involves the q u a n t i f i c a t i o n of a l l the d i r e c t and i n d i r e c t energy inputs to and outputs from a process . Although conceptual ly simple, a number of l i m i t a t i o n s of t h i s method have been expressed i n the l i t e r a t u r e , [Baird and Aun, pg. 6, 1983, CMHC, Appendix I I , p g . , x i , 1991]. F i r s t , i t i s a complex task to keep track of a l l the i n d i r e c t energy inputs . This frequently r e s u l t s i n truncat ion e r r o r . Second, the inputs to a process may vary by the production technology used. Therefore, the energy i n t e n s i t y f igures may be dependent on var iab le s inc lud ing age of the data, and loca t ion s p e c i f i c var iab le s inc lud ing manufacturer, or p lant e f f i c i e n c y . Input-output ana lys i s and process analys i s are the predominant means employed i n d e r i v i n g the data used i n the present a n a l y s i s . A t h i r d method, S t a t i s t i c a l analys i s i s used to a l esser extent. 2See Section 4.7.3 for d e t a i l s of the change i n energy i n t e n s i t y of materia ls with time. Page 43 4.4.3 S t a t i s t i c a l Analysis The energy input per un i t of product output may be ca l cu la ted from nat iona l s t a t i s t i c s . This method has been used i n the energy i n t e n s i t y data published by Baird and Aun [1983]. However, due to the age of t h i s data set and because the information i s generated for the New Zealand economy, the present ana lys i s assumes minimal dependence on t h i s information. 4.5 REVIEW OP THE LITERATURE 4.5.1 Energy Intensity of Building Materials There has been extensive research into the energy i n t e n s i t y of mater ia l s . For the present study, the energy i n t e n s i t y of a number of b u i l d i n g materia ls has been c o l l e c t e d from various sources dat ing from 1968 to 1993. This data i s presented i n Appendix C I . The data i s derived from several countr ies , inc lud ing Canada, the United Kingdom, the United States and New Zealand. The methods used to der ive the energy i n t e n s i t y f igures are documented with the data. The techniques include input-output a n a l y s i s , process a n a l y s i s , and to a l esser extent, nat iona l s t a t i s t i c s . The l e v e l of ana lys i s var i e s with the mater ia l and source, with many of the f igures represent ing an analys i s to l e v e l two and three boundaries s t i p u l a t e d by the Internat ional Federation of I n s t i t u t e s of Page 44 Advanced Studies (IFIAS). I t i s predicted that such an analys i s w i l l capture 90% to 95% of the f u l l energy i n t e n s i t y of a commodity [CMHC, 1991]. . . The divergence i n the energy i n t e n s i t y according to the source i s l arge . I t should be stressed that there i s no absolute ly correct value for the energy i n t e n s i t y of any mater ia l [Kohler, i n Cole , 1991]. V a r i a t i o n s may occur due to d i f ferences i n : -the s p e c i f i c b u i l d i n g products inves t igated; -the primary energy sources used, for example, hydro e l e c t r i c i t y versus natura l gas; -the scope of the energy i n t e n s i t y ana lys i s , inc lud ing system boundaries and the l e v e l of ana lys i s ; - the method of ana lys i s ; - t ranspor ta t ion factors inc luded; - v a r i a t i o n s i n the conventions used i n dea l ing with feedstock m a t e r i a l , r e c y c l i n g , and mul t ip l e products; or , - v a r i a t i o n s i n the manufacturing process a r i s i n g from the technology used to produce the good. An example of v a r i a t i o n i n conventions r e l a t e d to feedstock energy value ar i se s when comparing the energy i n t e n s i t y of p l a s t i c and wood. In c a l c u l a t i n g the embodied energy Of p l a s t i c , the feedstock energy has been incorporated into the energy i n t e n s i t y f i gures . Page 45 Conversely, i n est imating the energy i n t e n s i t y of wood, no such add i t ion has been incorporated. In B r i t i s h Columbia, wood accounts for approximately 8% of primary and secondary energy use [ S t a t i s t i c s Canada, pg.XX, 1991, b ] . I t may be argued that i t i s incons i s tent to include the feedstock for p l a s t i c and not for wood. However, i n the case study b u i l d i n g examined i n t h i s work, the use of wood accounts for a n e g l i g i b l e f r a c t i o n of the l i f e - c y c l e embodied energy. Therefore, t h i s inconsistency w i l l create l i t t l e uncerta inty i n the r e s u l t s . V a r i a t i o n s i n manufacturing processes may i n part be due to the age of the data (and corresponding technology), and geographical l o c a t i o n . The dependence of energy i n t e n s i t y on age of the data i s further explored i n Appendix C2. Based on data provided by S t a t i s t i c s Canada, the energy i n t e n s i t y (per $1000 of commodity) i s l i s t e d for b u i l d i n g materials from 1976 to 1990. Concrete and s t e e l are dominant materia ls i n the case study b u i l d i n g . Small inaccuracies i n the energy i n t e n s i t y of these mater ia ls w i l l have a correspondingly large e f fec t on r e s u l t s . In the present a n a l y s i s , works by Stelco [1993] and Radian [1993] are used for s t e e l and concrete products, r e s p e c t i v e l y . These pub l i ca t ions provide current , l oca t ion s p e c i f i c information on a range of s t e e l and concrete products, based on Canadian i n d u s t r i a l surveys. Page 4 6 4.5.2 Embodied Energy of Bui ld ings There have been several references deal ing with estimates of the embodied energy of r e s i d e n t i a l and commercial bu i ld ings over the l a s t 20 years . These published works provide ins ight to the i n i t i a l embodied energy of b u i l d i n g s , and explore the r e l a t i o n s h i p between the embodied and operating energy of b u i l d i n g s . The works of Ste in et a l . [197 6] and Serber [1976] provides the f i r s t comprehensive analys i s of the embodied energy of b u i l d i n g s . The works are based on input-output information of the United States economy for the year 1967. Results of the analyses pred ic t the embodied energy of an average o f f i c e b u i l d i n g of 18.6 GJ/m 2 . Serber's work provides a pre l iminary analys i s of the r e l a t i v e magnitude of operating and embodied energy for two commercial o f f i c e bu i ld ings located i n New York. For the bu i ld ings used i n Serber's a n a l y s i s , the embodied energy i s equivalent i n magnitude to f i v e to ten years of operating energy. Because of the age of the data, the r e s u l t s of the analyses are of l i m i t e d value to the present work. The energy i n t e n s i t y of mater ia ls has decreased considerably s ince 1967, and the operating c h a r a c t e r i s t i c s of new bui ld ings has improved 3. However, the methodologies used and ins ights gained from these works remain important. 3The B u i l d i n g Energy Performance Index (BEPI) i n Serber's ana lys i s i s 3.97. The BEPI for the base b u i l d i n g i n the present ana lys i s i s 0.96. Page 47 Baird and Aun [1983] i n New Zealand document the energy cost of b u i l d i n g s , and provide an estimate of the r e l a t i v e magnitude of embodied versus operating energy for houses and l i g h t cons truct ion . For s ing le family housing, the authors pred ic t the construct ion energy to be approximately 3 GJ/m 2 and the r a t i o of construct ion energy to annual operating energy to be approximately 8. Ba i rd and Aun's work focuses on timber framed b u i l d i n g s . In a d d i t i o n , the age of the study l i m i t s the a b i l i t y to i n f e r information from the a n a l y s i s . The Canadian Mortgage and Housing Corporation (CMHC) produced a computer program c a l l e d "OPTIMIZE" [CMHC, 1991] to inves t igate the l i f e - c y c l e energy and environmental impact of housing i n Canada. The study i s based on energy i n t e n s i t y data obtained from Canadian input-output tables for the year 1987. For a 350 m2 house with a l i f e - s p a n of 40 years , r e s u l t s of the ana lys i s suggest the l i f e - cyc le energy of a house i s 29.9 GJ/m 2 . The i n i t i a l embodied energy i s ca l cu la ted to be 2.4 GJ/m 2 , and the l i f e - c y c l e embodied energy i s 4.2 GJ/m 2 . Leve l i zed over the 40-year l i f e s p a n , the l i f e - c y c l e embodied energy i s 0.11 GJ/m 2 . yr . Howard and S u t c l i f f e [1992] provide an i n v e s t i g a t i o n of the l i f e - cyc le embodied energy c h a r a c t e r i s t i c s for a number of b u i l d i n g designs. The authors pred ic t an i n i t i a l embodied energy for o f f i c e bu i ld ings of 3.5 GJ/m 2 to 7.3 GJ/m 2 , depending on the Page 48 c h a r a c t e r i s t i c s of b u i l d i n g f i t - o u t 4 . Considering the l i f e - c y c l e embodied energy, and l e v e l i z i n g over a 60-year l i f e span, the authors p r e d i c t a l i f e - c y c l e embodied energy of 0.18 GJ/m 2 .yr to 0.45 GJ/m 2 . yr . These values depend on the l e v e l of f i t - o u t , and the frequency of component replacement. This compares to the predic ted operating energy of 0.84 GJ/m 2yr to 1.41 GJ/m 2 yr. Rearranging these numbers, the l i f e - c y c l e embodied energy may range from 11% to 3 6% of the t o t a l energy budget for the bui ld ings s tudied . Oka et a l . [1993] have performed an analys i s of the t o t a l energy consumed and environmental p o l l u t i o n generated i n the construct ion of s ix commercial bui ld ings i n Japan. The bu i ld ings range i n s i ze from 1500 m2 to 216,000 m2. The smaller bu i ld ings are re in forced concrete construct ion and the larger bui ld ings are predominantly s t e e l . The energy i n t e n s i t y f igures for the b u i l d i n g mater ia ls are based on an input-output analys i s of the Japanese economy. The major f indings of t h i s inves t iga t ion are: -the i n i t i a l embodied energy of o f f i c e bu i ld ings i s of the order of 8-12 GJ/m 2 ; - the embodied energy of the bui ld ings appears to decrease with increas ing o f f i c e s i z e , although the change i s not monotonic. -the construct ion cost i s proport iona l to the energy consumption. The authors predic ted that the energy i n t e n s i t y per un i t p r i c e i s "Office f i t - p u t re fers to the q u a l i t y of f i n i s h i n g work used i n the p r o j e c t . Page 49 32 MJ/1000 yen (4.6 MJ/$) . Buchanon and Honey [1994] invest igated the embodied energy and environmental impacts of a range of b u i l d i n g types inc lud ing housing, i n d u s t r i a l and commercial bu i ld ings i n New Zealand. The r e s u l t s of t h i s work are based on the energy i n t e n s i t y data set of Ba ird and Aun. For o f f i c e b u i l d i n g s , the authors p r e d i c t the i n i t i a l embodied energy for wood, concrete and s t e e l construct ion , are 3.7 GJ/m 2 , 5.6 GJ/m 2 , and 6.6 GJ/m 2 , r e s p e c t i v e l y . These f igures are for mul t i - s torey bui ld ings i n the range from three to s ix s toreys . Cole [1994] invest igated the l i f e - c y c l e energy use of a three-s torey o f f i c e b u i l d i n g located i n two geographic l oca t ions ; Vancouver and Toronto 5 . The b u i l d i n g i s modelled assuming three s t r u c t u r a l conf igurat ions based on wood, concrete and s t e e l cons truct ion . Data for the embodied energy c a l c u l a t i o n s are based on recent ly published f igures . Major f indings of t h i s work are: • the i n i t i a l embodied energy of a concrete b u i l d i n g i s 4.66 GJ/m 2 for a b u i l d i n g with no underground parking , and 4.93 GJ/m 2 for the same s t ruc ture , but with underground parking; 5The f l o o r p late design i n Cole [1994] i s i d e n t i c a l to the design used i n the present work. Page 50 • assuming a 50-year b u i l d i n g l i f e , the r e c u r r i n g embodied energy i s 6.5 GJ/m 2 , • for a b u i l d i n g l i f e of 25, 50 and 100 years , the l e v e l i z e d l i f e - c y c l e embodied energy i s 0.3, 0.26 and 0.2 GJ/m 2 . yr , r e s p e c t i v e l y ; and, • the operating energy for the case study b u i l d i n g located i n Vancouver i s approximately 1.05 GJ/m 2 . yr , suggesting the l i f e - c y c l e embodied energy i s 20 to 30% of l i f e - c y c l e energy budget. In i t s input-output tab les , S t a t i s t i c s Canada [1994] provides estimates of non-res ident ia l construct ion and r e p a i r cons truct ion . The t o t a l energy for these commodity gr.oups, i s 5.79, and 5.83 MJ/$ , r e s p e c t i v e l y . These f igures correspond to the energy i n t e n s i t y i n 19906, measured i n 1986 d o l l a r s . A summary of the f indings of the i n i t i a l and l i f e - c y c l e embodied energy of bu i ld ings i s provided i n Table 4 .1 . 6The l a s t year for which data are a v a i l a b l e . Page 51 Table 4 .1 . Summary of I n i t i a l and L i f e - c y c l e Embodied Energy Resul t s . AUTHOR DATE INITIAL EMBODIED ENERGY [GJ/m2] ANNUAL LIFE-CYCLE EMBODIED ENERGY [GJ/m 2 .yr] ANNUAL OPERATING ENERGY [GJ/m 2 .yr] S te in et a l . 1976 18 . 6 4.8 Ba ird and Aun 1983 3 0.38 CMHC 1991 2.4 0.11 0. 64 Howard & S u t c l i f f e 1992 3.5-7.5 0.18-0.45 0.84-1.41 Oka et a l . 1993 8-12 Buchanan & Honey 1994 5.6 Cole 1994 4 . 9 0.2-0.3 1. 05 4.6 INITIAL EMBODIED ENERGY OF BASE CASE STUDY BUILDING This sec t ion describes the methods used and r e s u l t s obtained for the i n i t i a l embodied energy of the base case study b u i l d i n g . The i n i t i a l embodied energy of the case study b u i l d i n g inc ludes: -the energy required to produce the bas ic components (e .g . b r i c k s , heating equipment or windows); and, -the energy required to transport the b u i l d i n g mater ia l s and components from the manufacturer to the b u i l d i n g s i t e , p lus the Page 52 energy required for on-s i te assembly. 4.6.1 Energy to Produce the B u i l d i n g Components To ca l cu la t e the component of embodied energy r e s u l t i n g from mater ia l s product ion, the fo l lowing methodology was appl ied: • Define the energy i n t e n s i t y of the b u i l d i n g mater ia l s . This information i s obtained from the published sources r e f e r r e d to i n Sect ion 4.5. The energy i n t e n s i t y of b u i l d i n g mater ia l s i s found i n Appendix C l . • Based on a r c h i t e c t u r a l , s t r u c t u r a l , mechanical and e l e c t r i c a l 7 drawings of the b u i l d i n g , quantify the mater ia ls required for the b u i l d i n g (a materials takeof f ) . This information i s provided i n Appendix C3, and corresponds to pr in touts of the spreadsheets used i n the c a l c u l a t i o n process . • Combine the information on energy i n t e n s i t y with the mater ia ls takeoff 8 for the case study b u i l d i n g to c a l c u l a t e the embodied energy of each b u i l d i n g component and assembly. 7The mechanical and e l e c t r i c a l drawings used i n est imating mater ia ls were not ava i lab le for the case study b u i l d i n g . Instead, a s i m i l a r o f f i c e b u i l d i n g having i d e n t i c a l systems was used to define an energy/m 2 for mechanical and e l e c t r i c a l systems. 8A takeoff i s a l i s t of a l l materials used to construct the b u i l d i n g . Page 53 • Sum the embodied energy of b u i l d i n g component to obtain the t o t a l embodied energy of the b u i l d i n g mater ia l s . 4.6.2 Materials Wastage In the c a l c u l a t i o n of energy i n t e n s i t y of b u i l d i n g mater ia l s , an allowance has been made for materia ls wastage. The allowance i s determined for each component of the b u i l d i n g , and i s i n the range of 0 to 5%. The wastage fac tor i s based on the works of Cole [1994], CMHC [1991] and experience. 4.6.3 Construction Energy Construct ion energy includes the energy required for transport ing b u i l d i n g assemblies to the s i t e plus assembly and erec t ion of the components into the b u i l d i n g . Cole [1994] suggests a range of 7 to 10% of t o t a l embodied energy, and appl ies a general f igure of 7% of the i n i t i a l embodied energy for the construct ion energy. An ana lys i s was performed to invest igate the magnitude of t ranspor ta t ion energy and s i t e energy requirements. Based on the energy i n t e n s i t y of f r e i g h t transport of 1.7 MJ/tonne Km9, an 'Based on (dated) 1970 estimates of the energy e f f i c i e n c y of f r e i g h t t ransport . See Nemetz [1993]. Page 54 average t r a v e l l i n g distance between suppl i er and s i t e of 20 Km10, and a b u i l d i n g weight of 9600 tonnes 1 1 , the transport energy corresponds to 330 GJ. To ca l cu la te the s i t e energy, i t i s assumed that 100 KW (400 V o l t s @ 250 Amps) of power i s used for 7.5 hours a day for the durat ion of the projec t of 15 months. This corresponds to a s i t e energy of 810 GJ . The t o t a l construct ion energy used i n t h i s analys i s i s the sum of the t ransporta t ion energy and s i t e energy, 1140 GJ . These numbers are not prec i se c a l c u l a t i o n s , but provide order of magnitude estimates of the construct ion energy. I t w i l l be shown i n the next sect ion that the construct ion energy i s small compared to the embodied energy of b u i l d i n g mater ia l s . The energy required to transport workers to the s i t e has not been inc luded. 4 . 6 . 4 Results Applying the methodology out l ined i n the l a s t s ec t ion , the i n i t i a l embodied energy of the base b u i l d i n g i s ca l cu la ted to be 34300 GJ . D e t a i l s of the c a l c u l a t i o n are i n Appendix C3. The f l o o r area of the b u i l d i n g i s 802 6 m2. Therefore, the i n i t i a l embodied energy of the b u i l d i n g , inc lud ing construct ion energy and normalized for f l o o r area i s 4.2 6 GJ/m 2 . Table 4.2 presents the embodied energy of the b u i l d i n g components, summarized from the data i n Appendix C3. 1 0 This i s a representat ive t r a v e l l i n g d is tance . 1 1 This value i s ca lcu la ted from the mater ia ls takeoff . Page 55 Table 4.2. I n i t i a l Embodied Energy and Mass of B u i l d i n g M a t e r i a l s . MATERIAL EMBODIED ENERGY, [GJ] % BY EMB. ENERGY MASS [TONNES] % BY MASS Stee l 12900 38.73 410 4.22 Concrete 4870 14.64 8100 84.34 Aluminum, Copper 3650 10.97 57 0. 60 Gypsum 2040 6.14 460 4 .76 Insu la t ion 1560 4.70 51 0.53 Roofing 1470 4.43 47 0.48 P l a s t i c 1450 4.37 15 0.16 Paint/adhe s ives 1120 3 .36 26 0.27 Br ick 910 2.73 360 3 .78 Glass 840 2.54 83 0.87 Other 2310 6.96 Construc- t i o n 1140 3.43 T o t a l 34300 100.00 9600 100.00 The information presented i n Table 4.2 suggests that approximately 90% of the i n i t i a l embodied energy i s contained i n 10 bas ic mater ia l types. The importance of concrete and s t e e l i s worth Page 56 not ing . 53% of the i n i t i a l embodied energy and 89% of the b u i l d i n g mass may be a t t r i b u t e d to these two mater ia l s . In Table 4.3, the same information i s organized by b u i l d i n g component. This information h igh l igh t s the importance of the s tructure and mechanical systems i n terms of the i n i t i a l embodied energy. Table 4 .3. I n i t i a l Embodied Energy by B u i l d i n g Component. COMPONENT EMBODIED ENERGY, [GJ] %0F INITIAL EMBODIED ENERGY Structure 10800 31.53 Mechanical 5800 16.93 Envelope 3950 11.55 Glaz ing 2830 8.25 I n t e r i o r P a r t i t i o n 2790 8.16 E l e c t r i c a l 2170 6.33 Roof 2130 6.21 Floor F i n i s h 1320 3.85 Other 1320 3 .85 Construct ion Energy 1140 3.33 T o t a l 34300 100.00 Page 57 4.6.5 Comparison With Other Studies As noted i n the review of the l i t e r a t u r e , there i s a commodity c las s i n Canadian input-output tables for n o n - r e s i d e n t i a l cons truct ion . I t may be argued that an adequate p r e d i c t i o n of the embodied energy of the case study b u i l d i n g can be achieved by u t i l i z i n g t h i s s ing le f i g u r e . However, there i s a wide v a r i a t i o n i n n o n - r e s i d e n t i a l bu i ld ings types, so t h i s f igure was not r e l i e d on a priori. Instead, the input-output value of embodied energy of bu i ld ings i s used as a check on the r e s u l t s of the analys i s performed i n the present work. Referr ing to Appendix C2, the embodied energy of non-res ident ia l bu i ld ings i s approximately 6 GJ/$1000. The c a p i t a l cost of the case study b u i l d i n g (see Chapter Six for de ta i l s ) i s 5.2 m i l l i o n d o l l a r s , and the f l o o r area i s 8026 m2. Therefore, the i n i t i a l embodied energy, predic ted d i r e c t l y from the input-output tables , . i s 3.9 GJ/m 2 . From the preceding analys i s of the b u i l d i n g by component," the embodied energy i s predic ted to be 4.26 GJ/m 2 . The d i f ference i n these two pred ic t ions i s of the order of 8%. The r e s u l t s of the present analys i s are lower than many other s tudies . For example, Howard and S u t c l i f f e [1992] p r e d i c t an i n i t i a l embodied energy of 3.5-7.5 GJ/m 2 . A l t e r n a t e l y , Buchanon and Honey [1994] p r e d i c t an i n i t i a l embodied energy of 5.6 GJ/m 2 . Discrepancies between the r e s u l t s may be the r e s u l t of d i f ferences i n the age of the data. For example, the r e s u l t s of Buchanon and Page 58 Honey are based on information generated i n 1976. Because of the importance of concrete and s t e e l i n the p r e d i c t i o n of i n i t i a l embodied energy, small d i f ferences i n energy i n t e n s i t y f igures between the present work and other studies w i l l have a s i g n i f i c a n t impact on r e s u l t s . Cole [1994] pred ic t s an i n i t i a l energy i n t e n s i t y of 4.93 GJ/m2 for a three-s torey concrete s tructure with underground parking . Differences between the present r e s u l t s and those of Cole may be a t t r i b u t e d to d i f ferences i n the construct ion energy used i n the a n a l y s i s . In add i t i on , the work of Oka et a l . [1993] suggest a decrease i n energy i n t e n s i t y with increas ing f l o o r area. Therefore, d iscrepancies between the present work and the work of Cole , may be the r e s u l t of the trend predicted by Oka et a l . 4.7 RECURRING EMBODIED ENERGY OF CASE STUDY BUILDING The r e c u r r i n g embodied energy corresponds to the energy required to maintain the b u i l d i n g over i t s l i f e . This includes energy to r e p a i r and replace b u i l d i n g components. In order to c a l c u l a t e the r e c u r r i n g embodied energy of a b u i l d i n g , three factors must be quant i f i ed : b u i l d i n g l i f e ; frequency of maintenance and refurbishment; and, future trends i n the energy i n t e n s i t y of b u i l d i n g mater ia l s . 4.7.1 B u i l d i n g L i f e Page 59 I t i s very d i f f i c u l t to pred ic t the l i f e span of a b u i l d i n g . Therefore, representat ive time spans of 40 years and 80 years are chosen for the l i f e of the case study b u i l d i n g . 4.7.2 Replacement and Refurbishment The second factor to be incorporated into the r e c u r r i n g energy ana lys i s i s the schedule of replacement and refurbishment. Replacement i s defined as maintenance r e q u i r i n g a completely new assembly or system. Refurbishment implies that less than 100% of an assembly i s replaced. In the present work, the replacement and refurbishment schedules used by Cole [1994], and CMHC [1991] are used to formulate r e c u r r i n g embodied energy of the case study b u i l d i n g . This information i s i n Appendix C4. 4.7.3 Changes to Embodied Energy of Building Components With Time The t h i r d fac tor to be predicted i s the energy i n t e n s i t y of b u i l d i n g components i n the future . This issue has received inadequate a t tent ion i n the l i t e r a t u r e . Cole [1994] and CMHC [1991] assume no change i n energy i n t e n s i t y with time. However, between 1971 and 1986, there was a 20% decrease i n energy i n t e n s i t y for s t e e l , a 24% decrease for non-ferrous metals, and a 3 3% decrease for cement [ S t a t i s t i c s Canada, 1993]. These rates of change i n energy i n t e n s i t y may not be sustained into the future , but i t i s assumed there w i l l continue to be s i g n i f i c a n t reductions i n energy Page 60 i n t e n s i t i e s . For example, the work by CANMET pred ic t s the energy i n t e n s i t y of s t e e l produced i n Canada w i l l decrease from 27 GJ/Tonne i n 1989 to 11.9 GJ/Tonne i n 2010 [CANMET, pg. x i i i , 1993]. In order to make the pred ic t ions of the change i n energy i n t e n s i t y of b u i l d i n g materia ls over time, the energy i n t e n s i t y of construct ion r e l a t e d commodities from 1976 to 1990 was examined. This information i s i n Appendix C2. The annual rate of change i s determined from a graphica l analys i s of data found i n Appendix C2. A Geometric ser ie s 1 2 i s used, implying that the energy i n t e n s i t y decreases to zero asymptot ica l ly . An annual reduct ion i n energy i n t e n s i t y of materia ls of 1.0%/yr. i s appl ied i n t h i s a n a l y s i s . Higher order ser ies could have been used to p r e d i c t the trend i n energy i n t e n s i t y . However, the geometric ser ies provides a simple and (over the range of data examined) reasonably accurate means of p r e d i c t i n g the time trend. 4.7.4 Two Approaches Two methods are used to pred ic t the r e c u r r i n g energy of the case study b u i l d i n g . The f i r s t method appl ies energy i n t e n s i t y data from the Canadian input-output table [ S t a t i s t i c s Canada, 1994], combined with survey r e s u l t s of maintenance expenses [BOMA, 1994]. The method i s conceptual ly simple, and provides an a l ternate 1 2A geometric ser ies i s defined as a set of consecutive numbers that vary by a constant mul t ip le of the previous value i n the s e r i e s . Page 61 methodology to that used by Cole [1994], CMHC [1991], and Howard and S u t c l i f f e [1992]. The second method used i s consistent with the authors noted above. This method appl ies a replacement and refurbishment schedule to a l l b u i l d i n g components, ca lcu la tes the embodied energy due to the maintenance schedule, and sums over the b u i l d i n g l i f e . 4.7.4.1 Recurring Embodied Energy Based on Input-Output Analysis In order to estimate the embodied energy associated with replacement and maintenance, the energy i n t e n s i t y of b u i l d i n g reconstruct ion i s obtained from the 1990 S t a t i s t i c s Canada input - output t a b l e . A value of 6.11 MJ/$ i s used for 1994. The maintenance expenses are obtained from the most recent survey of the B u i l d i n g Owners and Managers Assoc ia t ion (BOMA) exchange report [BOMA, pg. 429, 1994]. For 1994, the maintenance costs of pr iva te sector o f f i c e b u i l d i n g s , located i n downtown Vancouver i s $15.51/m 2. An annual i n f l a t i o n rate of 2%/yr. i s assumed1 3. M u l t i p l y i n g the energy i n t e n s i t y of b u i l d i n g reconstruct ion and the annual maintenance cost r e s u l t s i n an estimate for the annual r e c u r r i n g embodied energy. The annual r e c u r r i n g embodied energy i s summed over the l i f e of the b u i l d i n g , g iv ing an estimate of the r e c u r r i n g 1 3 This rate i s consistent with the projected i n f l a t i o n rate predic ted by the M i n i s t r y of Finance and Corporate Relat ions [1994] . Page 62 embodied energy. Based on the above assumptions and method, the r e c u r r i n g embodied energy for the case study b u i l d i n g i s 4.7 GJ/m 2 for a b u i l d i n g l i f e of 40 years, and 11.6 GJ/m 2 for a b u i l d i n g l i f e of 80 years . Normalized for b u i l d i n g l i f e , the 40-year b u i l d i n g has an annual r e c u r r i n g embodied energy of 0.12 GJ/m 2 . yr , and the 80-year b u i l d i n g has an annual r e c u r r i n g embodied energy of 0.15 GJ /m 2 . y r . 4.7.4.2 Recurring Embodied Energy Based on Replacement Schedule The second method used to estimate the r e c u r r i n g embodied energy i s based on an assumed maintenance and r e p a i r schedule, consistent with the schedule used by Cole [1994]. De ta i l s of the maintenance schedule are found i n Appendix C4. Based on the above assumptions, the r e c u r r i n g embodied energy for the case study b u i l d i n g i s 4.2 GJ/m 2 for a b u i l d i n g l i f e of 40 years, and 8.5 GJ/m 2 for a b u i l d i n g l i f e of 80 years . Normalized for b u i l d i n g l i v e s , the 40-year b u i l d i n g has an annual r e c u r r i n g embodied energy of 0.11 GJ/m 2 . yr , and the 80-year b u i l d i n g has an annual r e c u r r i n g embodied energy of 0.11 GJ /m 2 . y r . 4.7.3 Comparison of Results The r e s u l t s of the r e c u r r i n g embodied energy are summarized i n Table 4.4. Page 63 Table 4.4. Comparison of Recurring Embodied Energy Based on two Methods. BUILDING LIFE INPUT-OUTPUT METHOD MAINTENANCE METHOD T o t a l GJ/m 2 Annual GJ/m 2 .yr T o t a l GJ/m 2 Annual GJ/m 2 .yr 40 years 4.7 0.12 4.2 0.11 80 years 11. 6 0.15 8.8 0.11 Agreement between the two methods i s good for an assumed b u i l d i n g l i f e of 40 years . The di f ference i n r e s u l t s for the case of an 80-year b u i l d i n g l i f e i s of the order of 25%. I t i s hypothesized that the input-output values may be h igh . As a b u i l d i n g nears the end of i t s l i f e , maintenance does not occur as r e g u l a r l y , and b u i l d i n g components are allowed to degrade. This i s captured i n the maintenance schedule method of c a l c u l a t i n g r e c u r r i n g embodied energy, but not i n the input-output method. Therefore, the remaining analys i s w i l l u t i l i z e the maintenance schedule information. 4.8 DEMOLITION AND RECYCLING The f i n a l component of embodied energy to be quant i f i ed i s the energy required to demolish or recyc le the b u i l d i n g at the end of i t s l i f e . Demolition consis ts of the ac tua l demoli t ion process, plus haul ing away debris to a l a n d f i l l . Recycl ing implies s o r t i n g Page 64 of mater ia ls and reuse. There i s l i t t l e r e c y c l i n g of b u i l d i n g mater ia ls at t h i s t ime 1 4 . In add i t ion , i t i s not c l ear how r e c y c l i n g should be incorporated into an energy a n a l y s i s . Due to these l i m i t i n g fac tors , r e c y c l i n g i s not considered further i n the ana lys i s 1 5 . To pred ic t the demolit ion energy, the energy i n t e n s i t y f igure used i n transport ing the b u i l d i n g mater ia ls at the time of o r i g i n a l construct ion i s used. I t i s assumed that the energy required for the ac tua l demolit ion of the b u i l d i n g i s smal l . The energy i n t e n s i t y of demolit ion i s estimated at 330 G J 1 6 . The demoli t ion energy i s less than 1% of the i n i t i a l embodied energy. 4 . 9 LIFE-CYCLE EMBODIED ENERGY OF CASE STUDY BUILDING The l i f e - c y c l e embodied energy of the case study b u i l d i n g may be ca l cu la ted by summing the i n i t i a l , r e c u r r i n g and demoli t ion energy components defined i n the previous sect ions . 1 4 In B r i t i s h Columbia i n 1992, approximately 7.5% (by weight) of b u i l d i n g demolit ion mater ia l was recyc l ed . Most of t h i s mater ia l was asphalt [SENES, 1993]. 1 5The r o l e of r e c y c l i n g of b u i l d i n g materia ls requires further i n v e s t i g a t i o n . However, i t i s beyond the scope of t h i s work to perform that a n a l y s i s . 1 6Because of the uncertainty of i n demoli t ion energy, t h i s f igure i s not adjusted for changes to energy i n t e n s i t y i n the future . Therefore, t h i s provides a conservative estimate of demoli t ion energy. Page 65 Table 4.5. Summary of L i f e - c y c l e Embodied Energy Based on two Methods. BUILDING LIFE INPUT-OUTPUT METHOD MAINTENANCE METHOD T o t a l GJ/m 2 Annual GJ/m 2 .yr T o t a l GJ/m 2 Annual GJ/m 2 .yr 4 0 years 9.0 0.23 8.5 0.21 80 years 15.9 0.20 12.7 0.16 As noted i n the l a s t sec t ion , the f igure for the 8 0-year b u i l d i n g , based on input-output analys i s may be high due to the p r e d i c t i o n of r e c u r r i n g energy i n t e n s i t y near the end of the b u i l d i n g l i f e . The r e s u l t s suggest that by doubling the l i f e of a b u i l d i n g , the l i f e - cyc le embodied energy may be reduced by 13 to 24%. As noted i n Section 4.6.4, the i n i t i a l embodied energy i s 4.27 GJ/m 2 . This impl ies that the i n i t i a l embodied energy accounts for between 47% to 50% of the l i f e - c y c l e embodied energy for a b u i l d i n g with a 40-year l i f e . For an 80-year b u i l d i n g l i f e , the i n i t i a l embodied energy accounts for between 27% to 34% of the l i f e - c y c l e embodied energy. Table 4.6 examines the r e l a t i v e magnitudes of the l i f e - c y c l e embodied energy by b u i l d i n g component. Comparing the r e s u l t s of Table 4.3, the magnitude of the s tructure reduces from 31.5% to between 16% and 10.5% for 40 and 80 year b u i l d i n g s , r e s p e c t i v e l y . Page 66 A l t e r n a t e l y , the importance of i n t e r i o r f in i shes ( inc luding carpet s ) , increases from approximately 12% of the i n i t i a l embodied energy to 23% and 2 6% of the l i f e - c y c l e embodied energy for the 40 and 80-year b u i l d i n g l i v e s , r e spec t ive ly . Table 4.6. Comparison of the L i f e - c y c l e Embodied Energy by B u i l d i n g Component. COMPONENT % OF LIFE-CYCLE EMBODIED ENERGY 40 Year 80 Year S i t e 1.39% 1. 60% Structure 16.00% 10.50% Envelope 7.81% 6.13% Glaz ing 14.23% 16.15% Roof 11.32% 13.12% I n t e r i o r P a r t i t i o n s 14.64% 16.33% Floor Finishes 8.42% 9.52% Mechanical 13 .72% 13.89% Elevator 0.56% 2.64% E l e c t r i c a l 3.84% 2 . 84% Other 8. 07% 7 .29% T o t a l 100% 100% Page 67 4.9.1 Comparison With Other Studies Agreement between the present study and s i m i l a r works i s summarized i n Table 4.7 below. The r e s u l t s of t h i s work are i n the range of publ ished works. Discrepancies between t h i s study and the r e s u l t s of Cole [1994] may be a t t r ibuted l a r g e l y to d i f ferences i n the methodology employed to ca l cu la te the r e c u r r i n g embodied energy. This study assumes a decrease i n energy i n t e n s i t y over time, whereas Cole does not. Therefore, the r e s u l t s of Cole are h ighly dependent on the assumed l i f e span of the b u i l d i n g . Differences between t h i s work and the r e s u l t s of Howard and S u t c l i f f e [1992] may also be a t t r ibuted to d i f f e r e n t assumptions and methods employed to ca l cu la te the r e c u r r i n g embodied energy of the b u i l d i n g . In t h e i r work, Howard and S u t c l i f f e assume three grades of o f f i c e f i t - o u t , three frequencies of maintenance schedules, and a s ing le l i f e span of 60 years . Conversely, t h i s work assumes a s ing le grade of f i t - o u t , two l i f espans scenarios and employs two independent methods to ca l cu la te the embodied energy associated with r e c u r r i n g energy. Because of the d i f f e r e n t assumptions made and the speculat ive nature employed i n quant i fy ing the r e c u r r i n g embodied energy, i t i s not poss ib le to say which set of r e s u l t s provides the most accurate or "best" r e s u l t s . Page 68 Table 4.7. Summary of I n i t i a l and L i f e - c y c l e Embodied Energy Resul t s , Including Results of Present Study. AUTHOR DATE INITIAL EMBODIED ENERGY GJ/m 2 ANNUALIZED LIFE-CYCLE EMBODIED ENERGY GJ/m 2 .yr Ste in et a l . 1976 18 . 6 Ba ird and Aun 1983 3 CMHC 1991 2.4 0.11 Howard & S u t c l i f f e 1992 3.5-7.5 0.18-0.45 Oka et a l . 1993 8-12 Buchanan & Honey 1994 5.6 Cole 1994 4.9 0.2-0.3 This Study 1994 4.1 0.16-0.23 4.10 INITIAL EMBODIED ENERGY OF IMPROVED BUILDINGS As noted i n Chapter One, an object ive of t h i s thes i s i s to inves t igate the r e l a t i o n s h i p between the operating and embodied energy of a b u i l d i n g as the design progresses from a bas ic conf igurat ion to an (operating) energy e f f i c i e n t conf igurat ion . This sec t ion quant i f i e s the e f fec t on the embodied energy due to changes i n the case study b u i l d i n g operating performance. Page 69 The s trateg ies implemented i n reducing the operating energy were discussed and quant i f i ed i n Chapter Three. To quantify the e f fec t on the i n i t i a l embodied energy due to changes i n operating performance, the spreadsheets used to ca l cu la t e the embodied energy of the base b u i l d i n g are modified according to the changes i n b u i l d i n g design s trategy. The program used to ca l cu la t e the operating c h a r a c t e r i s t i c s of the b u i l d i n g i s used to estimate the heating v e n t i l a t i o n and a i r - c o n d i t i o n i n g (HVAC) equipment s i ze s . Changes i n the b u i l d i n g embodied energy due to r o t a t i n g by 90 degrees i s assumed to be zero. This implies there i s no constra int imposed by the b u i l d i n g s i t e . S i m i l a r l y , changes i n a i r i n f i l t r a t i o n are assumed to cause zero change i n b u i l d i n g embodied energy. I t i s assumed that higher q u a l i t y workmanship w i l l achieve the reductions i n a i r i n f i l t r a t i o n 1 7 . The s tra teg ies l i s t e d i n Table 4.8 cumulately reduce the operating energy of the case study b u i l d i n g by 77%. Conversely, the i n i t i a l embodied energy changes by a maximum of 2%. The negative signs i n runs 7B to 10 imply a reduction i n the i n i t i a l embodied energy of the b u i l d i n g due to smaller HVAC equipment s i z e s . The changes i n s ign and the small magnitude of changes i n the embodied energy suggest that operating energy and embodied energy are loose ly coupled. I n t u i t i v e l y t h i s makes sense. None of the design "There w i l l be an increase i n the c a p i t a l costs of the b u i l d i n g . This w i l l be quant i f i ed i n Chapter S ix . Page 70 s trateg ies implemented to reduce operating energy s i g n i f i c a n t l y a l t e r the b u i l d i n g design. Therefore, i t i s expected that changes to the embodied energy w i l l be smal l . Page 71 Table 4.8. Changes i n I n i t i a l Embodied Energy due to Changes i n B u i l d i n g Design. RUN STRATEGY EMBODIED ENERGY GJ/m 2 % DIFF FROM 7A STRUCTURE AND ENVELOPE MECH- ANICAL ELEC- TRICAL TOTAL 7A Base 3 .29 0.7 0. 27 4.26 0 7B O r i e n - t a t i o n 3 .29 0. 67 0.27 4 .23 -1% 7C I n f i l - t r a t i o n 3 .29 0. 62 0. 27 4 .18 -2% 7D I n f i l - t r a t i o n 3 .29 0. 62 0. 27 4 .18 -2% 8A Day- l i g h t i n g 3.29 0. 61 0.28 4.18 -2% 8B Heat Pump 3.29 0. 61 0.28 4 .18 -2% 9 Glaz ing 3.33 0. 61 0.28 4.22 -1% 10 L i g h t i n g Density 3.33 0.61 0.27 4.21 -1% 11 Insu la - t i o n 3.46 0.61 0.27 4.34 2% 12 Equip. Loads 3.46 0. 61 0.27 4.34 2% 14 L i g h t i n g E f f i c . 3.46 0.61 0.26 4 .33 2% 4.11 RECURRING EMBODIED ENERGY OF IMPROVED BUILDINGS The spreadsheet used to ca l cu la te the r e c u r r i n g embodied energy of Page 72 the base b u i l d i n g was modified to ca l cu la te the r e c u r r i n g embodied energy associated with b u i l d i n g improvements. The method based on the replacement and refurbis'hment schedule i s used. Again, a 1% decrease per year i s assumed for the change i n energy i n t e n s i t y of b u i l d i n g components. Page 73 Table 4.9. Recurring Embodied Energy for Improved B u i l d i n g s . RUN STRATEGY RECURRING EMBODIED ENERGY [GJ/m2] 40 Year 80 Year 7A Base Case 4.15 8.76 7B Orientat ion 4.11 8.65 7C I n f i l t r a t i o n 4.02 8.45 7D I n f i l t r a t i o n 4 . 01 8.41 8A Dayl ight ing 4.02 8.44 8B Heat Pump 4.02 8.44 9 Glaz ing 4 .11 8.62 10 L ight ing Density 4.09 8.59 11 Insu lat ion 4.12 8. 65 12 Equip. Loads 4.12 8.65 14 L ight ing E f f i c i e n c y 4.11 8. 62 4.12 LIFE-CYCLE EMBODIED ENERGY OF IMPROVED BUILDINGS The l i f e - c y c l e embodied energy i s obtained from summing the i n i t i a l , r e c u r r i n g and demolit ion energy for each case study run. Page 74 Table 4.10 below summarizes the change i n the l i f e - c y c l e energy for the range of improved b u i l d i n g s . Table 4.10. Summary of L i f e - c y c l e Embodied Energy of B u i l d i n g With Improvements. RUN STRATEGY LIFE-CYCLE EMBODIED ENERGY [GJ/m2] 40 Year 80 Year 7A Base 8.41 13 .02 7B Orienta t ion 8.37 12 .91 7C I n f i l t r a t i o n 8.28 12 .71 7D I n f i l t r a t i o n 8.27 12.67 8A Dayl ight ing 8.28 12.7 8B Heat Pump 8 . 28 12.7 9 Glazing 8.37 12.88 10 L i g h t i n g Density 8.35 12.85 11 Insu lat ion 8.38 12.91 12 Equip. Loads 8.38 12.91 14 L ight ing E f f i c i e n c y 8.37 12.88 The maximum dev iat ion i n l i f e - c y c l e embodied energy r e l a t i v e to the Page 75 base case i s less than 2%. I f the values i n Table 4.10 are l e v e l i z e d for the 40 and 80-year l i f e span of the b u i l d i n g , the l i f e - c y c l e embodied energy (to two decimal places) i s 0.21 GJ/m 2 .yr for a 40-year l i f e and 0.16 GJ/m 2 .yr for the 80-year l i f e span for all strategies. This again suggests that changes to the operating energy occur (almost) independently to changes i n the embodied energy of the b u i l d i n g over the range of operating s tra teg ies and performances s tudied . 4.13 REDUCING THE LIFE-CYCLE EMBODIED ENERGY OF THE CASE STUDY BUILDING A number of methods that may be usefu l i n reducing the l i f e - c y c l e embodied energy of the case study b u i l d i n g are given below. The f i r s t method i s mater ia l r e c y c l i n g 1 8 . The in troduct ion of s t e e l m i n i - m i l l s and scrap s t e e l processing provides an important means of reducing the energy i n t e n s i t y of s t e e l products . Using recyc led s t e e l impl ies a reduct ion i n the energy i n t e n s i t y of s t e e l by approximately 40%. S i m i l a r l y , through the adoption of mater ia ls r e c y c l i n g , the energy i n t e n s i t y of copper may be reduced by 84% and aluminum by 95% [Nemetz, 1993] The report by SENES [1993] documents construct ion waste r e c y c l i n g 1 8 Recycl ing of bu i ld ings i s an a l t e r n a t i v e . For example, o f f i c e bu i ld ings being converted into apartment b u i l d i n g s . Page 76 prac t i ce s i n Canada. In 1992, B r i t i s h Columbia recyc led 7.5% of i t s b u i l d i n g construct ion and demolit ion waste. This f igure i s wel l below the nat iona l average of 17%. Therefore, r e c y c l i n g provides a p o t e n t i a l l y important means of reducing the energy i n t e n s i t y of b u i l d i n g s . A second method of reducing the l i f e - c y c l e embodied energy of the case study b u i l d i n g was found from an analys i s of the energy i n t e n s i t y of the Canadian economy since 1976. Appendix C.2 traces the change i n the energy i n t e n s i t y of b u i l d i n g mater ia ls i n Canada over the l a s t 2 0 years . In t h i s work i t i s assumed that the energy i n t e n s i t y of goods and services produced i n Canada decreases by approximately 1% per year. This suggests that t echnolog ica l development i n materia ls production may play an important r o l e i n reducing the embodied energy of bui ld ings i n the future . I t i s not c l e a r i f t h i s w i l l remain true over the long term. As e a s i l y recovered sources of fue l and bas ic mater ia ls are depleted, the energy i n t e n s i t y of materia ls may begin to r i s e 1 9 . A t h i r d method for decreasing the l i f e - c y c l e embodied energy of the case study b u i l d i n g i s through increased b u i l d i n g l i f e . As noted i n the l a s t sec t ion , by increas ing the l i f e of the b u i l d i n g , the annual l i f e - c y c l e embodied energy decreases from 0.21 to 0.16 1 9 This argument may be countered by the opportunity for s u b s t i t u t i o n towards low energy i n t e n s i t y mater ia l s , or the growing trend i n Canada towards r e c y c l i n g m a t e r i a l . Page 77 GJ/m 2 . yr , corresponding to a 24% reduct ion . While increas ing b u i l d i n g l i f e provides an a t t r a c t i v e so lu t ion at the b u i l d i n g l e v e l , i t may not be su i tab le when deal ing with the e n t i r e b u i l d i n g stock over the long run. Due to t e c h n i c a l obsolescence, bu i ld ings constructed to present standards may be h igh ly i n e f f i c i e n t by the standards of 40 or 80 years hence. I t may be des i rab le to decrease the l i v e s of s ing le un i t s i n order to increase the energy e f f i c i e n c y of the en t i re b u i l d i n g stock. However, there i s i n s u f f i c i e n t information i n the l i t e r a t u r e regarding the change i n b u i l d i n g performance over time to quantify optimal replacement i n t e r v a l s of b u i l d i n g s . Therefore, the strategy of increas ing the serv ice l i f e of bui ld ings i s ambiguous at the macro l e v e l . The methods described above to reduce the embodied energy of the case study b u i l d i n g are conceptually qui te d i f f e r e n t from methods used to reduce the operating energy of the b u i l d i n g . For example, creat ing i n f r a s t r u c t u r e to support materia ls r e c y c l i n g or reducing energy i n t e n s i t y through research and development funding i s qui te a d i f f e r e n t dec i s ion making process to decreasing the l i g h t i n g i n t e n s i t y of an o f f i c e b u i l d i n g . The scale of the dec i s ion i s l a r g e r , and the dec i s ion i s made by stakeholders outside the b u i l d i n g design team. The fourth means of reducing b u i l d i n g involves decis ions includes subs t i tu t ion or the embodied energy of the case study at the b u i l d i n g design l e v e l , and omission of b u i l d i n g mater ia l s . Page 78 Subs t i tu t ion implies choosing b u i l d i n g mater ia ls with low energy i n t e n s i t y . A l t e r n a t e l y , omitt ing c e r t a i n f in i shes such as carpets and drywal l assemblies i s a growing a r c h i t e c t u r a l form with a number of a t t r i b u t e s . Lower c a p i t a l and maintenance costs , improved a i r q u a l i t y , and a t t r a c t i v e appearances (eg. po l i shed concrete f l oors instead of carpet) provide further incent ives to explore t h i s opt ion . As noted i n Table 4.6, i n t e r i o r p a r t i t i o n s and f l o o r coverings account for 23% to 26% of the l i f e - c y c l e embodied energy of the case study b u i l d i n g . Therefore, omitt ing c e r t a i n f in i shes may provide an important means for reducing l i f e - c y c l e energy consumption. While i t i s v a l i d to examine a l t ernat ives to reduce the l i f e - c y c l e embodied energy of the case study b u i l d i n g , i t i s important to make dec is ions i n the context of the t o t a l energy consumed by the b u i l d i n g . Chapter Five compares the r e l a t i v e magnitude of the operating and embodied components of the b u i l d i n g energy consumption. 4.14 MODEL UNCERTAINTY I t i s a d i f f i c u l t task to place a l e v e l of confidence on the ana lys i s of t h i s chapter. The value obtained for the i n i t i a l embodied energy of the case study b u i l d i n g i s accurate to wi th in the uncerta inty of the energy i n t e n s i t y of the base mater ia l s . As noted i n Sect ion 4 .5 .1 , and assuming a l e v e l II a n a l y s i s , the Page 79 uncerta inty i n the i n i t i a l embodied energy of the case study b u i l d i n g i s of the order of 10%. I t i s not poss ib le to place a r igorous error estimate on the l i f e - cyc le embodied energy of the case study b u i l d i n g . The r e s u l t s of the l i f e - c y c l e analys i s are dependent on the assumed frequency of maintenance, and the rate of change of the energy i n t e n s i t y with time. Neither of these var iab le s can be defined without empir ica l information. A s e n s i t i v i t y analys i s was performed to observe the dependence of the r e s u l t s on the assumed frequency of maintenance and assumed change of energy i n t e n s i t y with time. To provide an upper l i m i t on the embodied energy estimates, i t i s assumed that the frequency of maintenance i s doubled for i n t e r i o r f i t out 2 0 , and the rate of change of energy i n t e n s i t y i s halved (from 1%/yr. to 0.5%/yr.) . Under t h i s scenario , the l i f e - c y c l e embodied energy i s 0.26 GJ/m 2 .yr and 0.20 GJ/m 2 .yr for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . To provide a lower l i m i t , the frequency of i n t e r i o r f i t - o u t i s halved and the rate of change of energy i n t e n s i t y i s increased to 1.5% per year. Under t h i s scenario , the l i f e - c y c l e embodied energy i s 0.18 GJ/m 2 .yr and 0.13 GJ/m 2 .yr for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . These r e s u l t s are summarized i n Table 4.11 below. The large v a r i a t i o n i n the r e s u l t s of the s e n s i t i v i t y analys i s h igh l igh t s the need to make cautious 2 0The f i t - o u t i s included i n the s e n s i t i v i t y ana lys i s s ince the frequency of maintenance work to i n t e r i o r f in i shes i s h igh ly speculat ive compared to other b u i l d i n g components. Page 8 0 assumptions about future trends i n the l i f e - c y c l e embodied energy of b u i l d i n g s . This places r e a l constra ints on the a b i l i t y to i n f e r general information from the present ana lys i s . Table 4.11. Results of S e n s i t i v i t y A n a l y s i s . LIFE-CYCLE EMBODIED ENERGY [GJ/m 2 .yr] B u i l d i n g L i f e 40 Year 8 0 Year High Scenario 0.26 0.20 Used i n Analys i s 0.21 0.16 Low Scenario 0.18 0.13 4.15 CHAPTER SUMMARY A summary of the f indings are: -The i n i t i a l embodied energy of the b u i l d i n g i s 4.26 GJ/m 2 . Normalizing for b u i l d i n g l i f e , t h i s corresponds to 0.10 GJ/m 2 .yr for a b u i l d i n g l i f e of 40 years , and .0.053 GJ/m 2 .yr for a b u i l d i n g l i f e of 80 years . - S t e e l accounts for 38.7% of the i n i t i a l embodied energy and concrete accounts for a further 14.6% of the i n i t i a l embodied energy. Page 81 -The s tructure accounts for approximately 32% of the i n i t i a l embodied energy and the HVAC system accounts for a further 17%. -Using the maintenance method to ca l cu la t e the r e c u r r i n g embodied energy, the r e c u r r i n g embodied energy i s 0.11 GJ/m 2 .yr for b u i l d i n g l i v e s of 40 and 80 years. -The l i f e - c y c l e embodied energy i s 0.21 GJ/m 2 .yr and 0.16 GJ/m 2 . yr . for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . These f igures are v a l i d for a l l the b u i l d i n g conf igurat ions s tudied i n Chapter Three. -Over the range of performances and s trateg ies studied i n t h i s work, the operating energy and l i f e - c y c l e embodied energy are nearly independent. -The r e s u l t s of the analys i s suggest that over the range of energy performances studied i n t h i s work, m u l t i p l y i n g b u i l d i n g p r i c e and the input-output value for non-res ident ia l construct ion provides s u f f i c i e n t accuracy to pred ic t the i n i t i a l embodied energy of the case study b u i l d i n g . -Options ava i l ab l e to reduce the l i f e - c y c l e embodied energy of bu i ld ings inc lude: materia ls r e c y c l i n g ; r e l y i n g on the natura l trend i n the Canadian economy to reduce the embodied energy of goods and serv ices ; increas ing the b u i l d i n g l i f e ; and, mater ia ls Page 82 s u b s t i t u t i o n or omission of c e r t a i n f i n i s h e s . - B u i l d i n g l i f e , the future trends i n energy i n t e n s i t y of b u i l d i n g mater ia l s and the frequency (and magnitude) of b u i l d i n g maintenance are var iab le s that cannot be quant i f i ed i n the ana lys i s ex ante. Therefore, the r e s u l t s of the l i f e - c y c l e embodied energy c a l c u l a t i o n s are h ighly dependent on assumptions made throughout the a n a l y s i s . Page 83 CHAPTER 5: LIFE-CYCLE ENERGY ANALYSIS 5.1 INTRODUCTION This chapter combines the r e s u l t s of Chapters Three and Four to explore the l i f e - c y c l e energy requirements of the case study b u i l d i n g . Results of the present ana lys i s are compared to the f indings of other s tudies . The r e l a t i v e magnitudes of the operating and l i f e - c y c l e embodied energy are compared over the range of case study s trateg ies examined i n previous chapters. 5.2 LIFE-CYCLE ENERGY ANALYSIS In order to obtain the l i f e - c y c l e energy of the case study b u i l d i n g , the t o t a l energy consumed by the b u i l d i n g must be q u a n t i f i e d . The t o t a l energy i s the sum of the annual operating energy and the l i f e - c y c l e embodied energy (normalized for assumed b u i l d i n g l i f e ) . 5.2.1 Operating Energy Table 5.1 summarizes the annual operating performance of the case study b u i l d i n g over the range of energy conservation s trateg ies examined i n t h i s work. Results are given i n terms of the B u i l d i n g Energy Performance Index (BEPI). Page 84 Table 5.1. Summary of Bu i ld ing Energy Performance Index for Case Study B u i l d i n g . SIMULATION RUN STRATEGY BEPI [GJ/m 2/year] CUMULATIVE % CHANGE S i t e , (Source) 7A Base Case 0.96 (1.39) 7B Orienta t ion 0.95 (1.38) -3% 7C I n f i l t r a t i o n 0.91 (1.32) -7% 7D I n f i l t r a t i o n 0.89 (1.29) -9% 8A Dayl ight ing 0.56 (0.93) -43% 8B Heat Pump 0.44 (0.64) -55% 9 Glaz ing 0.41 (0.59) -58% 10 L i g h t i n g Density 0.35 (0.51) -64% 11 Insulat ion 0.34 (0.49) -65% 12 Equipment 0.28 (0.41) -71% 14 L ight ing E f f i c i e n c y 0.23 (0.33) -77% 5.2.2 L i f e - c y c l e Embodied Energy The l i f e - c y c l e embodied energy was explored i n Chapter Four. Table 5.2 summarizes the re su l t s of the l i f e - c y c l e embodied energy a n a l y s i s . Page 85 Table 5.2. Summary of L i f e - c y c l e Embodied Energy of Case Study B u i l d i n g . RUN STRATEGY LIFE-CYCLE EMBODIED ENERGY [GJ/m2] 40 Year 80 Year 7A Base Case 8 .41 13.02 7B Or ienta t ion 8.37 12.91 7C I n f i l t r a t i o n 8.28 12.71 7D I n f i l t r a t i o n 8.27 12.67 8A Dayl ight ing 8.28 12.7 8B Heat Pump 8.28 12.7 9 Glazing 8.37 12.88 10 L i g h t i n g Density 8.35 12.85 11 Insu lat ion 8.38 12.91 12 Equip. Loads 8.38 12.91 14 L ight ing E f f i c i e n c y 8.37 12.88 D i v i d i n g the l i f e c y c l e embodied energy by the b u i l d i n g l i f e r e s u l t s i n the annualized l i f e - c y c l e embodied energy. The annualized l i f e - cyc le embodied energy i s 0.21 GJ/m 2 .yr for a 40 year l i f e and 0.16 GJ/m 2 .yr for the 80 year l i f e span for all strategies examined i n Page 86 t h i s work. 5.3 LIFE-CYCLE ENERGY ANALYSIS Combining the annual operating and l i f e - c y c l e embodied energy data provides an estimate of the annual l i f e - c y c l e energy requirement for the b u i l d i n g . Table 5.3 summarizes the l i f e - c y c l e energy requirements of the case study b u i l d i n g over the range of s t r a t e g i e s . The r e s u l t s are presented g r a p h i c a l l y i n Appendix D. In the r e s u l t s presented below, the source 1 operating energy i s used i n the c a l c u l a t i o n s . Using the source energy ensures consistency of system boundaries when comparing the embodied and operating components of the l i f e - c y c l e energy. JThe source energy re fers to the primary energy consumed to produce energy. The d i s t i n c t i o n between s i t e and source energy i s discussed i n Sect ion 3 .3 .1 . Page 87 Table 5.3. L i f e - c y c l e Energy Results of Case Study B u i l d i n g . STRATEGY EMPLOYED RUN LIFE-CYCLE ENERGY [GJ/m 2 .yr] LIFE-CYCLE EMBODIED ENERGY AS % OF TOTAL 40 year 80 year 40 year 80 year Base Case 7A 1.6 1.55 13.13% 10.32% Orienta t ion 7B 1.59 1.54 13.21% 10.39% I n f i l t r a t i o n 7C 1.53 1.49 13.73% 10.74% I n f i l t r a t i o n 7D . 1.5 1. 45 14.00% 11.03% Dayl ight ing 8A 1.14 1. 09 18.42% 14.68% Heat Pump 8B 0.85 0.8 24.71% 20.00% Glazing 9 0.8 0.75 26.25% 21.33% L i g h t i n g Density 10 0.72 0. 66 29.17% 24.24% Insu la t ion 11 0.7 0. 65 30.00% 24.62% Elevator , Equipment 12 0.62 0.57 33 .87% 28.07% L i g h t i n g E f f i c i e n c y 14 0.54 0.49 38.89% 32.65% For a b u i l d i n g l i f e of 40 years, the l i f e - c y c l e energy may be reduced from 1.6 to 0.54 GJ/m 2 .yr by the cumulative adoption of energy conservation s t ra teg ie s . This corresponds to a 66% Page 88 reduct ion . S i m i l a r l y , for a b u i l d i n g l i f e of 80 years , the l i f e - cyc le energy may be reduced from 1.55 to 0.49 GJ/m 2 .yr by the cumulative implementation of the energy conservation s t ra teg i e s , corresponding to a 68% decrease. As hypothesized i n Chapter One and confirmed i n Table 5.3, the embodied energy becomes a more s i g n i f i c a n t component of the t o t a l energy budget as the operating energy decreases. For a b u i l d i n g l i f e of 40 years , the r a t i o of embodied to operating energy ranges from 10.3% for the case study b u i l d i n g i n i t s base conf igurat ion to 38.9% for an energy e f f i c i e n t b u i l d i n g . S i m i l a r l y , for a b u i l d i n g l i f e of 80 years , the r a t i o of embodied to operating energy ranges from 13.13% for the base case to 32.7% for an energy e f f i c i e n t design. Stated d i f f e r e n t l y , the l i f e - c y c l e embodied energy i s equivalent to 8 to 26 years of (source) operating energy. This i s equivalent to 5 to 16 years of (site) operating energy. In applying the BEPI f igures to the l i f e - c y c l e r e s u l t s i n Table 5.3, i t i s assumed the operating energy w i l l remain constant over the l i f e of the case study b u i l d i n g . There i s not s u f f i c i e n t information i n the l i t e r a t u r e to v a l i d a t e t h i s assumption. I t i s not c l e a r whether b u i l d i n g performance deter iorates over time, or i f i t a c t u a l l y improves due to the replacement of obsolete components with newer, more e f f i c i e n t u n i t s . This issue deserves further a t t en t ion . Page 89 5.4 DISCUSSION OF RESULTS A premise of t h i s work i s that commercial bu i ld ings are b u i l t and operated at sub-optimal l e v e l of energy performance. The energy ana lys i s presented above confirms t h i s premise, and suggests that a 66-69% reduct ion of energy consumption i s poss ib le through the adoption of simple, proven energy saving s t ra teg i e s . The l i f e - c y c l e analys i s suggests the magnitude of the embodied energy i s s i g n i f i c a n t l y less than the operating energy over the range of b u i l d i n g performances examined. This suggests that reducing the operating energy of bui ld ings should be the primary focus of further research and p o l i c y ana lys i s . This i s not to imply that the l i f e - c y c l e embodied energy i s i n s i g n i f i c a n t . For example, reducing the l i f e c y c l e embodied energy of the case study b u i l d i n g by 2 5% (through the adoption of s trateg ies examined i n Sect ion 4.13) corresponds to an energy savings 16.9 T J 2 and 25.7 T J , for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . 5.5 COMPARISON WITH OTHER STUDIES The r e s u l t s obtained i n t h i s analys i s are consistent with the r e s u l t s of other s tudies . Howard and S u t c l i f f e [1992] explore three grades of o f f i c e f i t - o u t , assuming three frequencies of renovations 2 1 TJ= one t era joule = 1012 j ou les . Page 90 and predic ted a l i f e - c y c l e energy i n the range 1.02 to 1.86 GJ/m 2 . yr . As discussed i n Section 4 .5 .2 , Cole [1994] predic ted a l i f e - c y c l e energy ranging from 1.2 to 1.3 GJ /m 2 . yr . The v a r i a t i o n occurs as a r e s u l t of a range of assumed b u i l d i n g l i v e s , ranging from 25 to 100 years . No a r t i c l e s were found deal ing with the change i n l i f e - c y c l e energy as the operating c h a r a c t e r i s t i c s of the b u i l d i n g are improved. 5.6 CHAPTER SUMMARY The major f indings of t h i s chapter are: - f o r a b u i l d i n g l i f e of 40 years , the l i f e - c y c l e energy ranges i n magnitude from 1.6 to 0.54 GJ/m 2 . yr ; - f o r a b u i l d i n g l i f e of 80 years , the l i f e - c y c l e energy ranges from 1.55 to 0.49 GJ/m 2 . yr ; - the r a t i o of l i f e - c y c l e energy a t t r i b u t e d to the embodied energy ranges from 13.1% to 38.9% for a b u i l d i n g l i f e of 40 years , and from 10.3% to 32.7% for a b u i l d i n g l i f e of 80 years , depending on the operating c h a r a c t e r i s t i c s ; -reducing the operating energy requirements of the case study b u i l d i n g provides the larges t p o t e n t i a l energy savings for the b u i l d i n g ; and, Page 91 -the r e s u l t s of the energy analys i s i n t h i s work i s consis tent with the f indings of other s tudies . Page 92 CHAPTER SIX: LIFE-CYCLE COST ANALYSIS 6.1 INTRODUCTION This chapter examines the economic impl icat ions of construct ing and operating the case study b u i l d i n g . In add i t i on , the d o l l a r costs of a l t e r i n g the base b u i l d i n g to an energy e f f i c i e n t design are pred ic ted . 6.2 ASSUMPTIONS AND DEFINITIONS A number of assumptions are required to perform an economic l i f e - cyc le a n a l y s i s . This sect ion defines the i n f l a t i o n r a t e , discount rate and energy pr i ce s used i n the ana lys i s . 6.2.1 I n f l a t i o n Rate In order to maintain consistency of methods between the present and s i m i l a r l i f e - c y c l e analyses [Minis try of energy Mines and Petroleum Resources, 1991, a ,b , B . C . Hydro, 1994], the i n f l a t i o n rate i s not netted out. An annual i n f l a t i o n rate of 2% i s assumed for t h i s a n a l y s i s . This value i s consistent with the projected i n f l a t i o n rate for B r i t i s h Columbia [Minis try of F i n a n c i a l and Corporate Re la t ions , pg.10, 1994]. A d d i t i o n a l i n f l a t i o n rates of 1.5% and 3% per year are used to perform a s e n s i t i v i t y a n a l y s i s . Page 93 6.2.2 Discount Rate In t h i s a n a l y s i s , a discount rate of 10% has been chosen. This i s consis tent with guidel ines for benef i t -cos t ana lys i s publ ished by the Province of B r i t i s h Columbia [Environment and Land Use Committee S e c r e t a r i a t , 1977]. A d d i t i o n a l discount rates of 8% and 12% are used to provide a s e n s i t i v i t y a n a l y s i s . 6.2.3 Energy Pr ices A t h i r d issue i n developing a l i f e - c y c l e cost ana lys i s i s def in ing the energy costs to be used i n the l i f e - c y c l e a n a l y s i s . Options include p r i v a t e and s o c i a l costs , average and marginal costs , or time of use versus long run marginal costs . In the present a n a l y s i s , the long run marginal cost 1 of energy i s used. A d d i t i o n a l economic analyses are performed using current energy p r i c e s . I t i s argued 2 that the long run marginal cost of energy i s the minimum value that should be used i n de f in ing p u b l i c p o l i c y options regarding energy use. This p r i c e promotes the e f f i c i e n t 3 a l l o c a t i o n of energy resources. The long run marginal cost of e l e c t r i c i t y used :The Long Run Marginal Cost of energy i s the cost of an a d d i t i o n a l u n i t of energy, suppl ied through increas ing the capacity of the generating system. 2See, for example, Sutherland [1993] or the B r i t i s h Columbia U t i l i t i e s Commission [1992]. 3 E f f i c i e n t from an economic perspect ive . See Sect ion 6.2.6 for a d i scuss ion of t h i s term. Page 94 i n the present analys i s i s $0.0691/KW.hr ($19.19/GJ). This f igure i s obtained from B . C . Hydro [1991, 1993]. The long run marginal cost of natura l gas used i n the analys i s i s $4 .9 /GJ, and i s obtained from B . C . Gas [Appendix D, pg. 41, 1994]. I t i s acknowledged that the long run marginal cost of energy does not r e f l e c t the cost of environmental e x t e r n a l i t i e s of energy use. Although environmental concerns r e l a t e d to energy use are a primary reason for undertaking t h i s the s i s , i t i s argued 4 that monetizing 5 environmental e x t e r n a l i t i e s has many d i f f i c u l t i e s . I f environmental e x t e r n a l i t i e s are to be quant i f i ed while developing p o l i c y for energy e f f i c i e n c y , M u l t i p l e A t t r i b u t e U t i l i t y Theory (MAUT6) may provide a more defensible and robust means of inc lud ing environmental issues i n the p o l i c y ana lys i s . 6.2.4 Discount Rate Adjustment The economic analys i s appl ies an analys i s i n 1994 d o l l a r s . Combining the i n f l a t i o n rate and the discount rate r e s u l t s i n the computed nominal discount r a t e . The computed nominal discount rate i s 12.2% (1.10*1.02-1=0.122). In the s e n s i t i v i t y a n a l y s i s , nominal discount rates of 9.62% (1.08*1.015-1=0.0962) and 16.5% (1.12*1.04- 4See, for example, B r i t i s h Columbia Energy Counci l [1994], and the B r i t i s h Columbia U t i l i t i e s Commission [1993]. 5See B r i t i s h Columbia U t i l i t i e s Commission [pg.3, 1993] for a d i scuss ion of t h i s term. 6See McDaniels [1993] for a development of MAUT. Page 95 1=0.1648) are a lso app l i ed . 6.2.5 Present Value Calculations The present value (PV) of a stream of costs ($y), assuming a discount rate of r for T years may be ca lcu la ted using equation (1) • z (1+r) T 6.2.6 Economic E f f i c i e n c y , Energy E f f i c i e n c y and Cost Effectiveness The terms economic e f f i c i e n c y , energy e f f i c i e n c y and cost ef fect iveness deserve some e laborat ion . Economic e f f i c i e n c y implies that maximum benef i ts are obtained at a minimum cost . This occurs when the benef i ts of producing an a d d i t i o n a l u n i t of output (marginal benefit) equals the cost of producing an a d d i t i o n a l un i t of output (marginal cos t ) . Increased energy e f f i c i e n c y implies that the energy input to produce a un i t of output i s decreased. Improving the energy e f f i c i e n c y of output may increase , decrease or leave unchanged the economic e f f i c i e n c y of a process . Cost e f fect iveness implies the l eas t cost method of achieving a goa l . In the present ana lys i s , cost ef fect iveness i s quant i f i ed using two methods; a net present value technique, and an analys i s of the incremental cost of b u i l d i n g improvement per un i t of energy saved. Page 9 6 The methods are explained i n sect ions 6.5 and 6.6, r e s p e c t i v e l y . 6.3 C A P I T A L COST OF C A S E STUDY B U I L D I N G The c a p i t a l cost of the case study b u i l d i n g i s ca l cu la ted using the mater ia l s takeoff for the b u i l d i n g (see appendix B) i n conjunction with a d e t a i l e d cost database for b u i l d i n g components7 [Means, 1994]. This database provides cost information on construct ion labour, b u i l d i n g assemblies and components. The c a p i t a l cost of the base b u i l d i n g i s estimated at 5.23 m i l l i o n d o l l a r s , or $652/m2. The same process i s used to estimate the c a p i t a l costs of the b u i l d i n g improvements. I t i s assumed i n the ana lys i s that b u i l d i n g improvements are not treated as "add-ons" by the contractor . Therefore, there are no premiums paid due to design changes associated with improvements to b u i l d i n g performance. The cumulative costs of success ive ly implementing the energy conserving s trateg ies are presented i n Table 6.1. Implementing s tra teg ies 7A to 14 i n c l u s i v e , the c a p i t a l cost of the improved b u i l d i n g i s 5.66 m i l l i o n d o l l a r s . This corresponds to a cost of $705/m2, corresponding to an 8.2% increase over the c a p i t a l cost of 7The construct ion cost data i n Means [1994] i s based on surveys of b u i l d i n g costs across North America. The information i s updated annual ly . Correct ions are appl ied i n the present ana lys i s to account for cost estimates s p e c i f i c to Vancouver. C i t y estimate c o r r e c t i o n factors are included i n the Means database. Page 97 the base case. Improvements to the operating performance of the b u i l d i n g lead to a continuous down-sizing of the HVAC system. The smaller HVAC system frequently of fsets the increased c a p i t a l cost of the b u i l d i n g improvements. Table 6.1. C a p i t a l Cost of Bu i ld ing Under Di f f erent Design Scenarios . SIMULATION RUN STRATEGY CAPITAL COST, [$] INCREMENTAL COST, [$] 7A Base Case 5,233,000 7B Orientat ion 5,237,000 4,000 7C I n f i l t r a t i o n 5,250,000 13,000 7D I n f i l t r a t i o n 5,303,000 53,000 8A Dayl ight ing 5,250,000 -56,000 8B Heat Pump 5,285,000 38,000 9 Glaz ing 5,592,000 307,000 10 L i g h t i n g Density 5,558,000 -33,000 11 Insulat ion 5,652,000 95,000 12 Elevator , Equipment 5,650,000 -2,000 14 L i g h t i n g E f f i c i e n c y 5,660,000 10,000 6.4 OPERATING COSTS Page 98 The operating costs include energy, b u i l d i n g c leaning and maintenance, adminis trat ive , and f inanc ing . To estimate the costs associated with maintenance, c leaning and f inanc ing , information published by the B u i l d i n g Owners and Managers Assoc ia t ion [BOMA, 1994] i s used. This mater ia l i s based on survey data for pr iva te sector commercial o f f i c e space. For Vancouver, the annual operating and f ixed expenses, less u t i l i t i e s i s $893/m2. This value i s used i n a l l the analyses of the case study b u i l d i n g . To estimate the u t i l i t y costs , the energy consumption of the b u i l d i n g i s obtained from the operating energy simulations of Chapter Three. This information i s combined with energy p r i c e information of Section 6.2.3 to obtain annual energy costs . The annual operat ing cost estimates for the b u i l d i n g are summarized i n Table 6.2. In a d d i t i o n , the present value of the operating cost assuming 40 and 80-year l i f e s p a n i s presented. The present value c a l c u l a t i o n s assume a discount rate of 12.2%. Page 99 Table 6.2. Annual and L i f e - c y c l e Operating Costs . SIMULATION RUN STRATEGY ANNUAL OPERATING COST [$] PRESENT VALUE OF OPERATING COSTS [$] 40 Year 8 0 Year 7A Base Case 845,000 6,850,000 6,920,000 7B Or ienta t ion 845,000 6, 850,000 6,920,000 7C I n f i l t r a t i o n 844,000 6,850,000 6,920,000 7D I n f i l t r a t i o n 845,000 6,860,000 6,930,000 8A Dayl ight ing 795,000 6,450,000 6,520,000 8B Heat Pump 782,000 6,350,000 6,410,000 9 Glazing 791,000 6,420,000 6,480,000 10 L i g h t i n g Density 781,000 6,340,000 6,400,000 11 Insulat ion 780,000 6,330,000 6,390,000 , 000 12 Elevator , Equipment 771,000 6,260,000 6,320,000 14 L i g h t i n g E f f i c i e n c y 761,000 6,180,000 6,240,000 For a b u i l d i n g l i f e of 40 years, the present value of the operating costs decreases from 6.85 m i l l i o n d o l l a r s to 6.18 m i l l i o n d o l l a r s by the cumulative adoption of s trateg ies 7 to 14. This corresponds to a 9.8% reduct ion . S i m i l a r l y for a l i f e s p a n of 80 years , the present value of the operating costs i s reduced by 9.8%. Page 100 6 . 5 LIFE-CYCLE COSTS By combining the c a p i t a l and present value operating cost estimates for the b u i l d i n g , the l i f e - c y c l e b u i l d i n g costs are determined 8 . Estimates of the b u i l d i n g l i f e - c y c l e costs are summarized i n Table 6.3 for the d i f f e r e n t design conf igurat ions . D e t a i l s of the ana lys i s and graphs are presented i n Appendix E . 8Due to the nature of present value c a l c u l a t i o n s , costs incurred a f ter 40 and are smal l , and a f ter 80 years even smal ler . Therefore, the cost associated with demolishing the b u i l d i n g at the end of i t s serv ice l i f e i s found to be less than the uncerta inty i n the economic ana lys i s , and i s not included i n further a n a l y s i s . Page 101 Table 6.3. B u i l d i n g Lifer-cycle Costs . Discount Rate = 12.2%. SIMULATION RUN STRATEGY LIFE-CYCLE COSTS [$] 40 Year 80 Year 7A Base Case 12,100,000 12,200,000 7B Orientat ion 12,100,000 12,200,000 7C I n f i l t r a t i o n 12,100,000 12,200,000 7D I n f i l t r a t i o n 12,200,000 12,200,000 8A Dayl ight ing 11,700,000 11,800,000 8B Heat Pump 11,600,000 11,700,000 9 Glazing 12,000,000 12,100,000 10 L ight ing Density 11,900,000 12,000,000 11 Insulat ion 12,000,000 12,000,000 12 Elevator , Equipment 11,900,000 12,000,000 14 L i g h t i n g E f f i c i e n c y 11,800,000 11,900,000 To obtain the Net Benefi t (NB) associated with implementing the a l ternate design s t ra teg ie s , the l i f e - c y c l e cost of each strategy i s subtracted from the l i f e - c y c l e cost of the base b u i l d i n g . This information i s summarized i n Table 6.4. Page 102 Table 6.4. Incremental Net Benefi t of S trateg ies . Discount Rate = 12.2%. SIMULATION RUN STRATEGY NET BENEFIT [$] 40 Year 80 Year 8A Dayl ight ing 462,000 466 000 10 L i g h t i n g Density 116,000 116,000 12 Equipment, Elevator 71,700 72,400 14 L ight ing E f f i c i e n c y 71,000 71,800 8B Heat Pump 67,200 68,200 7B Or ienta t ion -3,670 -3,670 7C I n f i l t r a t i o n -9,230 -9,180 7D I n f i l t r a t i o n -63,500 -63,600 11 Insulat ion -86,700 -86,700 9 Glaz ing -378,000 -379,000 T o t a l NPV 246,000 253,000 The values i n Table 6.4 represent the incremental l i f e - c y c l e net benef i t of adopting the s t ra teg ie s . I f those s tra teg ies with a p o s i t i v e net benef i t are implemented, a savings of $0,788 m i l l i o n and $0,794 m i l l i o n ($98.18/m2 and $98.93/m2) may be achieved over Page 103 the l i f e of the b u i l d i n g of 40 and 80 years , r e s p e c t i v e l y 9 . I f a l l the s trateg ies are adopted, inc lud ing those that are not cost e f f e c t i v e , the t o t a l Net Benefit (NB) i s $0,246 m i l l i o n and $0,253 m i l l i o n for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y 1 0 . This impl ies that implementing a l l the s trateg ies to reduce energy consumption w i l l r e s u l t i n net savings over the l i f e of the b u i l d i n g with a net benef i t of approximately $0.25 m i l l i o n . The r e s u l t s suggest that i f one i s interested i n saving both energy and money, adopting a l l s trateg ies may be j u s t i f i e d . However, i t should be stressed that adopting a l l s trateg ies i s not cost e f f e c t i v e . The order of the s trateg ies i n Table 6.4 r e f l e c t s decreasing net benef i t . Strategies deal ing with o r i e n t a t i o n , i n f i l t r a t i o n , i n s u l a t i o n and g laz ing have a negative l i f e - c y c l e net benef i t . Or ienta t ion and i n f i l t r a t i o n r e s u l t i n negative net benef i t due to the increased use of e l e c t r i c i t y (although the t o t a l energy consumed i s lower) r e s u l t i n g i n an increased operating cost . Improved g laz ing and i n s u l a t i o n are found to have negative net benef i ts due to the high c a p i t a l costs of these improvements. In t h i s a n a l y s i s , the g laz ing i s changed from double pane c l ear glass to t r i p l e pane, low-e g lass . The i n s u l a t i o n i s doubled on wal ls and the roof . This ' work does not invest igate whether less dramatic 'Repeating t h i s analys i s using current energy pr i ce s ( instead of long run marginal cos t s ) , the NB i s $556,000 and $572,000 for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . 1 0Repeating the analys i s using current energy p r i c e s (rather than the long run marginal cos t ) , the NB i s $53,000 and $58,000 for b u i l d i n g l i v e s of 40 and 80 years, r e s p e c t i v e l y . Page 104 design changes (for example, a 25-50% increase i n i n s u l a t i o n instead of 100% used here) might produce a p o s i t i v e NB for i n s u l a t i o n and g laz ing s t ra teg i e s . 6.5.1 S e n s i t i v i t y Analys i s A s e n s i t i v i t y analys i s was performed to observe the e f fec t on the r e s u l t s of the analys i s due to changes i n the discount r a t e . With a discount rate of 9.62%n, the net benef i t of the cost e f f ec t ive s tra teg ies i s $0.98 m i l l i o n and $1.01 m i l l i o n for b u i l d i n g l i v e s of 4 0 and 8 0 years , r e s p e c t i v e l y . Using a discount rate of 16.5%, the net benef i t of implementing the cost e f f ec t i ve s tra teg ies i s $0.58 m i l l i o n and $0.59 m i l l i o n for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . 6.5.2 Payback Period An analys i s was performed of those s trateg ies with a p o s i t i v e net benef i t to observe the payback per iod of inves t ing i n energy e f f i c i e n c y . u See Sect ion 6.2.4 for d e t a i l s . Page 105 Table 6.5. Investment Payback Period for C o s t - E f f e c t i v e S trateg ies . SIMULATION RUN STRATEGY PAYBACK PERIOD 8A Dayl ight ing Immediate 10 L i g h t i n g Density Immediate 12 Elevator , Equip Immediate 14 L ight ing E f f i c i e n c y 0.02 Y r . 8B Heat Pump 11.3 Y r . A l l P o s i t i v e NB Strategies Immediate 7B-14 A l l Strategies 17.2 Y r . Although the addi t ion of a heat pump has a payback per iod of 11.3 years , i f a l l the s trateg ies with a p o s i t i v e NB are implemented together, the payback period i s immediate. I f a l l s trateg ies invest igated to improve the operating performance are implemented, the payback per iod i s qui te long, at 9 years 1 2 . 6.6 LEVELIZED COST ANALYSIS The ana lys i s of sect ion 6.5 provides information on the r e l a t i v e 1 2 Based on a discount rate of 12.2%. Assuming a discount rate of 9.62%, the payback per iod i s 7.5 years . With a discount rate of 16.5%, the payback period i s 12.5 years . Page 106 value of the s trateg ies used to decrease operating energy based on a net benef i t a n a l y s i s . An a l ternate methodology i s to examine the incremental cost of b u i l d i n g improvement per u n i t of energy saved. This value may be compared to the cost of purchasing an a d d i t i o n a l un i t of energy. I f the cost of saved energy i s less than the cost to purchase an a d d i t i o n a l un i t of energy, then i t i s economically a t t r a c t i v e to implement the energy saving s trategy . The l e v e l i z e d cost ana lys i s provides s l i g h t l y d i f f e r e n t information to the net benef i t ana lys i s of Section 6.5; t h i s i s discussed further i n Section 6 .6 .1 . To obtain the incremental cost of b u i l d i n g improvement per un i t of energy saved, the present value of the incremental l i f e - c y c l e cost i s d iv ided by the b u i l d i n g l i f e to obtain the l e v e l i z e d cost . This value i s then d iv ided by the annual energy savings i n GJ . Results are summarized i n Table 6.6. Page 107 Table 6.6. Leve l i zed Cost per Unit of Energy Saved. SIMULATION RUN STRATEGY LEVELIZ] PER UNIT SAVED 3D COST ENERGY :$/GJ] 40 Year 80 Year 7A Base Case 7B Or ienta t ion 0.38 0.38 7C I n f i l t r a t i o n 0.72 0.72 7D I n f i l t r a t i o n 9.89 9.91 8A Dayl ight ing -4.36 -4.40 8B Heat Pump -1.74 -1.77 9 Glazing 39.30 39.37 10 L ight ing Density -6.00 -6 . 05 11 Insu lat ion 27.02 27.00 12 Elevator , Equipment -3.72 -3.76 14 L ight ing E f f i c i e n c y -4.42 -4.47 The l e v e l i z e d cost per un i t of energy purchased i s determined by l e v e l i z i n g the present value of energy costs over the 40-year and 80 year b u i l d i n g l i v e s . The l e v e l i z e d energy costs are d iv ided by the t o t a l energy consumed over the same 40 or 80-year l i f e . The l e v e l i z e d cost per un i t of energy purchased i s shown i n Table 6.7. Page 108 Table 6.7. Leve l i zed Cost per Unit of Energy Purchased. SIMULATION RUN STRATEGY LEVELIZED COST PER UNIT ENERGY PURCHASED [$/GJ] 40 Year 80 Year 7A Base Case 7B Or ienta t ion 3.04 1.53 7C I n f i l t r a t i o n 3.15 1.59 7D I n f i l t r a t i o n 3.24 1. 63 8A Dayl ight ing 2.77 1.40 8B Heat Pump 3.35 1. 69 9 Glaz ing 3.49 1.76 10 L i g h t i n g Density 3 .32 1. 68 11 Insu lat ion 3 .38 1.71 12 Elevator , Equipment 3.27 1. 65 14 L ight ing E f f i c i e n c y 2.98 1.50 Table 6.8 presents the d i f ference between the l e v e l i z e d cost per u n i t of energy saved and the l e v e l i z e d cost per un i t of energy purchased. A p o s i t i v e value indicates the investment i n energy e f f i c i e n c y i s less expensive than paying for an a d d i t i o n a l un i t of energy, implying the investment i s cost e f f e c t i v e . The magnitude of Page 109 the d i f ferences indicates the r e l a t i v e a t tract iveness of the investment a l t e r n a t i v e s . Table 6.8 ranks the investment a l t e r n a t i v e s according to the a t tract iveness of the investment. Table 6.8. Dif ference Between Leve l i zed Cost per Unit of Energy Saved and the Leve l i zed Cost per un i t of Energy Purchased. RANK SIMULATION STRATEGY DIFFERENCE [$/GJ] 40 Years 80 Years 1 10 L i g h t i n g Density 9.32 7.72 2 14 L i g h t i n g E f f i c i e n c y 7.40 5.97 3 8A Dayl ight ing 7.13 5.80 4 12 Elevator , Equipment 6.99 5.41 5 8B Heat Pump 5. 09 3.46 6 7B Orienta t ion 2.66 1.15 7 7C I n f i l t r a t i o n 2.43 0.87 8 7D I n f i l t r a t i o n -6.66 -8.27 9 11 Insu lat ion -23.64 -25.29 10 9 Glazing -35.81 -37.61 I f only those i n d i v i d u a l s trateg ies which are cost e f f e c t i v e are adopted, the d i f ference between l e v e l i z e d cost per u n i t of energy Page 110 saved and the l e v e l i z e d cost per un i t of energy purchased i s $41.02/GJ and $30.38/GJ for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . I f s trateg ies 7B through 14 are a l l adopted, the d i f ference between l e v e l i z e d cost per un i t of energy saved and the l e v e l i z e d cost per un i t of energy purchased i s $1.93/GJ and $0.949/GJ for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . A s e n s i t i v i t y ana lys i s was performed to observe the e f fec t of discount rate on the d i f ference between l e v e l i z e d cost per un i t of energy saved and the l e v e l i z e d cost per u n i t of energy purchased. Adopting a l l cost e f f ec t ive s t ra teg ie s , and assuming a discount rate of 9.6%., the d i f ference i s $55.83/GJ and $41.35/GJ for b u i l d i n g l i v e s of 40 and 80 years, r e s p e c t i v e l y . Assuming a discount rate of 16.5%, the d i f ference i s $31.91/GJ and $23.63/GJ for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . 6.6.1 Comparing the Net Benefit Calculations to the Levelized Cost Analysis The r e s u l t s of Table 6.8 are consistent with r e s u l t s of the net benef i t r e s u l t s presented i n Table 6.4. The order of s tra teg ies has changed, i n d i c a t i n g the dependence of r e s u l t s on the methods used to perform the ana lys i s . In add i t i on , Table 6.8 suggests that changing the o r i e n t a t i o n and reducing i n f i l t r a t i o n are a t t r a c t i v e investments. This i s i n contrast to the r e s u l t s i n Table 6.4. The discrepancies are smal l , and may r e f l e c t c h a r a c t e r i s t i c s of the Page 111 d i f f e r e n t c a l c u l a t i o n methods or inaccuraccies i n the c a l c u l a t i o n s . Which method one uses to decide on the energy conserving s trateg ies to be implemented depends on the p r i o r i t i e s used i n the dec i s ion making process . For example, while adopting a heat pump has a p o s i t i v e NB and p o s i t i v e l e v e l i z e d cost , the payback per iod of t h i s s trategy i s 11.3 years . I f one i s constrained to a f ive -year pay- back per iod , t h i s strategy may not be : implemented i f taken i n i s o l a t i o n . 6.7 COMPARISON OF THE ENERGY ANALYSIS AND ECONOMIC ANALYSES Comparing the r e s u l t s of the economic analys i s of t h i s chapter to the energy analys i s of Chapters Three to Five suggests there i s a c o r r e l a t i o n and dependence between the methodologies. For example, i n order to obtain the operating costs over a range of b u i l d i n g performances, the operating energy must be simulated. A consequence of t h i s dependence i s that i t i s not poss ib le to perform an economic ana lys i s without also performing (even p a r t i a l l y ) an energy a n a l y s i s . Therefore, i n the present a n a l y s i s , economic ana lys i s and energy analys i s should be viewed as complementary. Consistent with the notion that economic and energy analyses are based on complementary information i s the observation that they provide consistent r e s u l t s . Many s trateg ies used to reduce the l i f e - c y c l e energy consumption of the b u i l d i n g are a lso cost Page 112 e f f e c t i v e . The operating energy model for the b u i l d i n g was r e - r u n to observe the s i ze of cost e f f ec t ive energy saving s t ra teg i e s . The order of strategy was changed to be consistent with the economic analys i s based on the d i f ference between l e v e l i z e d cost per u n i t of energy saved and the l e v e l i z e d cost per un i t of energy purchased of Table 6.8 1 3 . Results of the rev ised operating energy analys i s are presented i n Table 6.9. Only those s trateg ies that were found to be cost e f f ec t i ve are inc luded. 1 3As noted i n Section 3.6, b u i l d i n g sub-systems are coupled. This impl ies that changing the order of implementation of s tra teg ies changes the incremental reduct ion i n operating performance. Page 113 Table 6.9. Improvements to the Operating Performance of B u i l d i n g Using C o s t - E f f e c t i v e Strateg ies . RANK SIMULATION STRATEGY BEPI [GJ/m 2 .yr] CUMULATIVE % CHANGE 7a Base Case 0.96 1 10 L i g h t i n g Density 0.86 10. 6 2 14 L i g h t i n g E f f i c i e n c y 0.80 16.6 3 8A Dayl ight ing 0. 61 36.8 4 12 Elevator , Equipment 0.55 43.0 5 8B Heat Pump 0.51 47.1 6 7B Orienta t ion 0.42 56.8 7 7C I n f i l t r a t i o n 0.38 60. 0 The information i n Table 6.9 suggests a 60% decrease i n the operating energy of the b u i l d i n g i s poss ib le by applying s tra teg ies that are cost e f f e c t i v e . A l t e r n a t e l y , the l i f e - c y c l e energy of the b u i l d i n g decreases by 50% and 48% for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . Page 114 6.8 CHAPTER SUMMARY The major f indings of t h i s chapter are l i s t e d below. -The c a p i t a l cost of improving the energy performance of the case study b u i l d i n g i s $53/m2. This corresponds to an 8.2% increase . - I f only those s trateg ies are implemented that are cost e f f e c t i v e , the net benef i t of upgrading the b u i l d i n g i s $0,788 m i l l i o n , and $0,794 for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . - I f only those s trateg ies are implemented that are cost e f f e c t i v e , the payback per iod i s immediate. -A second c r i t e r i o n for cost ef fect iveness used i n the ana lys i s i s the d i f ference between the un i t cost of energy savings and the un i t cost of energy purchases. I f only those i n d i v i d u a l s tra teg ies which are cost e f f ec t i ve are adopted, the d i f ference between l e v e l i z e d cost per u n i t of energy saved and the l e v e l i z e d cost per un i t of energy purchased i s $41.02/GJ and $30.38/GJ for b u i l d i n g l i v e s of 40 and 80 years , r e spec t ive ly . -S trateg ies used to reduce a i r i n f i l t r a t i o n , increase b u i l d i n g i n s u l a t i o n and improve the performance of f enes trat ion systems are found to be uneconomic. The analys i s of the cost ef fect iveness of the i n s u l a t i o n and fenes trat ion i s incomplete. A doubling of Page 115 i n s u l a t i o n above ASHRAE 90.1 i s invest igated here. S i m i l a r l y , the g laz ing i s changed from double pane to t r i p l e - p a n e , low-e g lass . This work does not invest igate whether less dramatic design changes (for example, a 25-50% increase i n i n s u l a t i o n instead of 100% used here) might produce a p o s i t i v e NB for i n s u l a t i o n and g laz ing s t r a t e g i e s . This deserves greater a t t en t ion . -The economic and energy analyses are based on complementary information and provide consistent r e s u l t s . A 60% decrease i n the operating energy of the b u i l d i n g i s poss ib le by applying s trateg ies that are cost e f f e c t i v e . This implies the l i f e - c y c l e energy of the b u i l d i n g may be decreased by 50% and 48% for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . Page 116 CHAPTER SEVEN: ENERGY POLICY RELATED TO COMMERCIAL BUILDINGS 7.1 INTRODUCTION Results from the previous chapters suggest there i s a large p o t e n t i a l to save energy and money by improving the performance of the case study b u i l d i n g . Yet most o f f i ce s being b u i l t today do not take advantage of the (energy and economic) savings p o t e n t i a l found i n t h i s work. In t h i s chapter, the focus moves away from the ana lys i s of the case study b u i l d i n g and considers the broader context i n which decis ions re la ted to the b u i l d i n g industry i s made. The f i n a l sect ion focuses again on the case study b u i l d i n g to provide p o l i c y a l t ernat ives that may help to improve the performance of s i m i l a r bu i ld ings . 7.2 NATURE OP THE POLICY DEBATE Over the past twenty years , there have been hundreds of papers on the top ic of energy use and energy conservation [Lutzenhiser, 1992]. What s tarted i n the 1970's as an inves t iga t ion of the l i n k between energy and the economy moved i n the 1980's to an i n v e s t i g a t i o n of the "hard" versus the "soft" energy paths 1 . More recent ly , the focus has sh i f t ed to concerns about energy use leading to environmental degradation. As Sanstad and Howarth note: 'See Lovins [1976] and Robinson [1982] for a d i scuss ion of these terms. Page 117 Almost every aspect of the problem has been s tudied: d i f f e r e n t end uses; technologies; types of dec i s ions ; psycho log ica l , economic, s o c i a l f ac tors ; and so f o r t h . Energy analysts who c a l l for more research t y p i c a l l y f a i l to address t h i s fac t and to answer these fundamental questions: What i s further research l i k e l y to uncover that has heretofore passed unrecognized i n the l i t e r a t u r e ? Why has a l l the work done to date f a i l e d to c l a r i f y debates over consumer r a t i o n a l i t y and i t s t i e s to energy e f f i c i ency? [Sanstad and Howarth, pg. 1.176, 1994, a] I t i s admitted that the present chapter uncovers l i t t l e that i s new. Fundamental issues that were cen tra l to the energy debate twenty years ago remain unresolved. A wide d i v e r s i t y of opinion remains i n the l i t e r a t u r e regarding the most e f f e c t i v e p o l i c y mechanisms for achieving improved l eve l s of energy e f f i c i e n c y . At one extreme i s the view general ly associated with economists and rooted i n the concepts of consumer sovereignty and r a t i o n a l choice . At the other extreme i s the work of behavioral researchers and technolog ica l analysts who perceive the dec i s ion making process of consumers i s incons is tent with the economic concepts of r a t i o n a l i t y and u t i l i t y maximization. A re so lu t ion of t h i s debate i s u n l i k e l y due to d i f ferences at the framework l e v e l between the r a t i o n a l choice advocates and behavioral and technology analys ts . This impl ies that d i f f e r e n t pos i t ions i n the energy p o l i c y debate are u l t imate ly based upon a set of s e l f - d e f i n e d , s e l f - l i m i t i n g fundamental i n t e r e s t s , and assumptions that do not r e s u l t from the Page 118 debate, but guide i t . In the ear ly 80's, a s i m i l a r debate occurred r e l a t e d to "hard" versus "soft" energy paths, prompting the fo l lowing observation: . . . u n d e r l y i n g the f a c t u a l issues apparently i n dispute are d i f ferences at the framework l e v e l , that i s , d i f ferences i n bas ic presupposit ions and i n the patterns of th ink ing employed. In the main, these d i f ferences manifest themselves i n d i f ferences concerning the nature of present s o c i a l r e a l i t y , the focus of i n t e r e s t of ana lys i s and p o l i c y , and the i n t e r p r e t a t i o n and use of data . None of these d i f ferences , which are often i n e x t r i c a b l y intertwined, can be unambiguously resolved s ince the c r i t e r i a i n terms of which such a r e s o l u t i o n should be made are themselves i n dispute . [Robinson, pg. 24, 1982] Although agreement i s not l i k e l y between opposing views i n the current energy debate, some kind of r e c o n c i l i a t i o n may be explored. I t i s argued that disagreement over the facts and models i s a c e n t r a l c h a r a c t e r i s t i c of the p o l i c y debate r e l a t e d to energy e f f i c i e n c y . As such, there i s a strong argument for methodological p l u r a l i s m : where no one model can describe t h i s p o l i c y issue unambiguously and completely, combining the competing models and t h e i r so lut ions may provide a more robust basis for developing p u b l i c p o l i c y . This issue i s further explored i n Sect ion 7.4. Further , i t i s postulated that the concept of "bounded r a t i o n a l i t y " may provide a means for br idg ing the methodological and conceptual d i s p a r i t i e s between the po lar views of economics, and behavioral Page 119 and engineering researchers . This i s explored i n Sect ion 7.5. 7.3 VIEWS OF ENERGY I t i s a premise of t h i s work that energy i s used and valued i n a number of ways. How i n d i v i d u a l s and soc iety th ink about energy a f fec t s the way consumers value energy and p o l i c y makers contro l energy. Prevalent views of energy inc lude: • The t echno log i s t ' s view of energy as a p o t e n t i a l source of work, heat or information; • As a s t r a t e g i c mater ia l , energy i s viewed as having importance for m i l i t a r y and economic s e c u r i t y . • In terms of a s o c i a l necess i ty , energy supply i s treated as a bas ic human r i g h t . • As an eco log i ca l resource, t h i s implies that energy i s part of a natura l system and must r e f l e c t the values of s u s t a i n a b i l i t y and f r u g a l i t y . • F ina l ly . , energy can also be viewed as a commodity [Stern and Aronson, 1984]. For the purpose of t h i s work, the f i r s t four views l i s t e d above are Page 12 0 c o l l e c t e d i n t o one conceptual model c a l l e d the b e h a v i o r a l i s t / t e c h n o l o g i s t ' s view of energy. The energy conservation l i t e r a t u r e appears to be p o l a r i z e d i n a bimodal fashion. At one extreme i s the work of behavioral analysts and technolog i s t s . At the other extreme i s the work associated with n e o c l a s s i c a l economists and consistent with the view of energy as a commodity. Proponents of the extremes are easy to i d e n t i f y i n the l i t e r a t u r e , although many a r t i c l e s appear to f a l l somewhere i n the middle. In the next sec t ion , a t t r i b u t e s and values of the two models are compared and contrasted. I t i s important to d i s t i n g u i s h between the views of energy because p o l i c y choices are often i m p l i c i t l y choices among the views of energy. When a view of energy i s adopted, i t l e g i t i m i z e s c e r t a i n choices and actors wi th in the p o l i c y arena, and may marginal ize or exclude others . For example, choosing the view of energy as a commodity over the view of energy as an eco log i ca l resource may set l i m i t s or i n s t i t u t i o n a l b a r r i e r s on what dec i s ion makers consider an appropriate energy conservation p o l i c y . These b a r r i e r s and l i m i t s may be i m p l i c i t or e x p l i c i t . The dominance of the view of energy as a commodity i s a problem i n the present work, because i t l i m i t s the scope of p o l i c y options aimed at energy conservat ion. Frequently , i n order for energy conservation concerns to be addressed wi th in a commodity framework, interested par t i e s must argue not on t h e i r own Page 121 terms of f i n i t e resources or environmental impl i ca t ions , but on the bas is of economic e f f i c i e n c y or the advantage of u t i l i t i e s s e l l i n g energy services rather than energy as a commodity. I f dec i s ion makers and consumers are to explore and be responsive to the wide range of p o l i c y options ava i l ab l e i n order to increase energy e f f i c i e n c y , a primary step must be a broadening of views of energy. 7.3.1 Energy as a Commodity The model of energy as a commodity i s based on the assumptions of consumer r a t i o n a l i t y 2 and u t i l i t y maximization. This impl ies that: . . . p r o d u c e r s and consumers have s table preferences that they seek to s a t i s f y through market t ransac t ions . Consumer choices thus reveal information about underlying preferences, and the acceptance or r e j e c t i o n of energy- e f f i c i e n t technologies r e f l e c t s a r a t i o n a l evaluat ion of the re levant costs and benef i t s . Market imperfections invo lv ing imperfect information or t ransac t ion costs might impede the adoption of cost e f f ec t i ve energy e f f i c i e n t technologies . But deviat ions from r a t i o n a l behaviour are ru l ed out by assumption and cannot, therefore , const i tute an appropriate basis for p o l i c y in tervent ion . [Sanstad and Howarth, pp. 1.176-1.177, 1994, a] 2 This model i s based on the p r i n c i p l e s that: 1) i n d i v i d u a l s have stable and t r a n s i t i v e preferences ( i f a>b and b>c, then a>c); 2) i n d i v i d u a l s are s e l f in teres ted; and, 3) i n d i v i d u a l s have accurate and complete information. Page 122 Consistent with the view of energy as a commodity i s the argument that p r i c e provides the best s i gna l to consumers regarding the optimal l eve l s of consumption and conservat ion. "Theory would ind ica te that the marginal un i t of consumption should be p r i c e d at the marginal p r i c e of future supply. Indeed, a l l un i t s of consumption could be pr iced at the marginal p r i c e of future supply and consumers would be induced to use the resource e f f i c i e n t l y from an economic stand po in t ." [ B r i t i s h Columbia U t i l i t i e s Commission, pg. 39, 1990] Recent examples i n the l i t e r a t u r e of the view of energy as a commodity are the works by Sutherland [1992, 1994, Energy Mines and Resources Canada, 1993]. Sutherland argues that many b a r r i e r s to energy e f f i c i e n t investments are simple c h a r a c t e r i s t i c s of normally funct ioning markets. The author suggests that consumers who invest i n energy e f f i c i e n c y require higher rates of re turn when the investments are i l l i q u i d , r i s k y or possess high transact ions costs . "The high discount rates required by consumers for energy e f f i c i e n c y investments r e f l e c t r e a l costs i n a competit ive market, not a r t i f i c i a l market b a r r i e r s , " [Sutherland, pg. 15, 1992]. A second argument presented i n Sutherland's works i s the notion that many programs designed to be energy e f f i c i e n t may not be economically e f f i c i e n t . The author argues that the l eg i t imate r o l e for p u b l i c p o l i c y i s i n deal ing with market f a i l u r e s , of which he c i t e s issues based on e x t e r n a l i t i e s , the p u b l i c goods nature of Page 123 energy resources and nat iona l s e c u r i t y . F i n a l l y , Sutherland argues that p r i c i n g and u t i l i t y rate s tructure are the best mechanisms to promote energy e f f i c i e n c y among end users [Energy Mines and Resources Canada, pp. 30-31, 1993], The author argues that energy p o l i c y should be l i m i t e d to br ing the consumer p r i c e of energy i n l i n e with i t s marginal cos t . 7.3.2 The Behavioralist/Technologist Model The incorporat ion of behavioral analys i s i n energy conservation p o l i c y provides an a l t e r n a t i v e model to the economics approach expressed by Sutherland. The works of Stern [1986], Stern and Aronson [1984], Kempton and Schipper [1994], and Robinson [1991] provide examples of t h i s view. In general , t h i s group perceives that consumers do not minimize the costs of obta ining energy serv ices . In add i t i on , t h i s group general ly does not endorse the r a t i o n a l choice model of consumer dec i s ion making. Therefore, behav iora l / t echnolog i s t analysts tend to promote the adoption of p u b l i c p o l i c y to promote energy e f f i c i e n c y : Consumers are not merely i l l - i n f o r m e d about energy technologies , but also have trouble determining how to make "correct" choices when provided with f u l l information. Thus p o l i c i e s of various kinds are j u s t i f i e d to ensure that consumers reap the benef i ts of energy- e f f i c i e n t technologies as i d e n t i f i e d by t e c h n i c a l experts . [Sanstad and Howarth, pg. 1.177, 1994, a] Page 124 7.3.3 Behavioral Barriers to Improving Energy E f f i c i e n c y L i s t e d i n the b e h a v i o r a l i s t / t e c h n o l o g i s t l i t e r a t u r e are a number of fac tors that create b a r r i e r s to improving energy e f f i c i e n c y . I t i s beyond the scope of t h i s work to produce an exhaustive l i s t of these b a r r i e r s , but a number of issues stand out, and are explained below. 7.3.3.1 Energy I n v i s i b i l i t y The i n v i s i b i l i t y of energy i s frequently argued as a major obstacle to improving e f f i c i e n c y . Because of energy's i n v i s i b i l i t y , i n d i v i d u a l s may develop "folk ca lcu la t ions" to provide information on estimates of energy e f f i c i e n c y . These c a l c u l a t i o n s may be based on running time or estimates of the amount of human labour replaced. Such ca l cu la t ions contr ibute to sub-optimal energy choices [Lutzenhiser, pg. 261, 1993], An example of energy i n v i s i b i l i t y i s common i n the trend towards automating energy systems. In heating systems, one may set a s ing le d i a l to c o n t r o l the temperature for an e n t i r e b u i l d i n g . This i n v i s i b i l i t y comes at the cost of a loss of c o n t r o l , making energy conservation more d i f f i c u l t . In add i t i on , evidence suggests that consumers frequently manually over -r ide the automatic contro l s , us ing devices i n ways they were never intended, thus exacerbating engineering attempts at improving energy e f f i c i e n c y [Lutzenhiser, Page 125 pg. 261, 1993). 7.3.3.2 Information Energy information may be a b a r r i e r to behavioral changes i n conservat ion. A major problem with energy information i s that i t may be presented i n unfami l iar or abstract ways. Instead of there being a simple index of e f f i c i e n c y , information i s frequent ly given i n s c i e n t i f i c un i t s that may have l i t t l e or no meaning to the user of the information. A second problem with energy information i s the d i v e r s i t y wi th in the target audience. Because there i s a great d i v e r s i t y among bui ld ings and energy users , information d irec ted towards an average b u i l d i n g or consumer i s probably going to be i n c o r r e c t for any p a r t i c u l a r b u i l d i n g or user. As an example of consumer d i v e r s i t y , there may be a 100% change i n the consumption of energy merely by changing the occupants of a b u i l d i n g [Stern, 1987]. This v a r i a b i l i t y creates great uncertainty about the accuracy or value of information provided. Another problem with energy information i s the confusion and loss of c r e d i b i l i t y of experts created by c o n f l i c t i n g advice and p o l i c i e s . An example of t h i s may occur when u t i l i t y companies promote the conversion of heating systems from e l e c t r i c i t y to gas as a means of saving on energy b i l l s , while ignor ing that Page 126 e l e c t r i c i t y powered heat pumps are h igh ly e f f i c i e n t for space cond i t ion ing . I m p l i c i t i n t h i s problem i s the need for c r e d i b l e , accurate and non-biased sources of information. People respond not only to information, but to t h e i r perceptions and evaluations about the source of information. Unfortunately, many u t i l i t i e s lack c r e d i b i l i t y among t h e i r customers, so i t becomes a d i f f i c u l t task to penetrate a market with information, even i f that information i s c o r r e c t . 7.3.3.3 Discount Rates A common problem among consumers considering improvements to energy conservation equipment i s the high discount rate many i n d i v i d u a l s i m p l i c i t l y place on t h e i r investments. In one study, a range from 20% to 200% was observed [Stern and Aronson, 1984]. The consequence of t h i s i s that many investments do not appear economically v i a b l e to these consumers. For example, high e f f i c i e n c y l i g h t i n g systems have higher c a p i t a l costs than regular l i g h t s , but over the l i f e , the investment w i l l save money. I f the discount rate used by an i n d i v i d u a l i s h igh, the investment i n e f f i c i e n c y w i l l not be a t t r a c t i v e . 7.3.3.4 The Symbolic Meaning of Energy The debate of energy supply, demand and conservation i s frequently associated with c o n t r o l , power, and freedom. In essence, a l o t of Page 127 symbolism revolves around the issues of energy consumption and conservat ion. Freedom and contro l are powerful symbols, and i t i s poss ib le that energy conservation programs may be viewed as a threat to personal freedom. 7.3.3.5 Momentum of Past Behaviour A l t e r i n g the i n e r t i a of past behaviour i s often d i f f i c u l t because people tend to commit themselves to habits that have evolved over long time spans. This problem may be confounded by fear of change and r i s k . An example of t h i s occurs i n the res i s tance to t echnolog ica l innovations. Heat pumps used for condi t ion ing bu i ld ings have lower c a p i t a l costs than comparable HVAC systems. In a d d i t i o n , they are cheaper to run. Even so, these devices are not the f i r s t choice of many b u i l d i n g designers. 7.3.3.6 L i t e r a c y I t was estimated i n Canada i n 1991 that 16% of Canadian adults are f u n c t i o n a l l y i l l i t e r a t e i n e i ther o f f i c i a l language, and 14% are innumerate 3 [ S t a t i s t i c s Canada, 1991, a ] . I f an i n d i v i d u a l cannot recognize numbers i n i s o l a t i o n or cannot read, that i n d i v i d u a l w i l l not be able to understand non-verbal information r e l a t e d to energy e f f i c i e n c y . 3There were 16.4 m i l l i o n adults i n Canada i n 1991. This impl ies there were 2.6 m i l l i o n i l l i t e r a t e adults and 2.3 m i l l i o n innumerate adul t s . Page 128 7.3.3.7 Intermediaries The presence of intermediaries such as land- lords or b u i l d i n g contractors may have an e f fec t on the success of e f f i c i e n c y programs. These i n d i v i d u a l s are responsible for the i n i t i a l design and purchase of b u i l d i n g components, but are not responsible for the operating costs . Therefore, energy e f f i c i e n c y may not be an important fac tor i n the dec i s ion making process of these i n d i v i d u a l s . 7.3.4 A T h i r d Conceptual Model A c r i t i c i s m l e v e l l e d at both the b e h a v i o r a l i s t / t e c h n o l o g i s t ' s view and the economic approach i s that the models focus a t tent ion and p o l i c y on aggregate e f fects of typical bu i ld ings and occupants. I t has been argued that p o l i c y based on these two models exaggerates the importance of pr i ce s and technolog ica l so lu t ions , and underestimates the importance of i n d i v i d u a l ac t ion [Lutzenhiser, 1993]. A t h i r d conceptual model of energy use that focuses p r i m a r i l y on the human occupants of bu i ld ings i s a c u l t u r a l l y based model. There i s evidence from the s o c i a l science l i t e r a t u r e that a person's energy consumption and conservation l eve l s vary sys temat ica l ly on the basis of s o c i a l c l a s s , e t h n i c i t y , l i f e - c y c l e stage, gender, occupation, education, geographic l o c a t i o n and l o c a l cu l ture [Lutzenhiser, pg. 53, 1992]. In a d d i t i o n , a c u l t u r a l l y based model: Page 129 t rea t s energy as a key v a r i a b l e i n c u l t u r a l evo lut ion , observing that a l l soc i e t i e s require energy-conversion technologies to surv ive , that the amount of a v a i l a b l e energy to a cu l ture i s a funct ion of the technology, that energy-conversion d i f f e r e n t i a l s inf luence the r e l a t i v e prosper i ty and power of soc i e t i e s ( l i m i t i n g i n some cases and s t imulat ing dramatic growth i n o thers ) , that technology choices are determined p r i m a r i l y by p o l i t i c a l processes, and that the p o l i t y and economy are i n turn shaped by c u l t u r a l i n s t i t u t i o n s ( e .g . , r e l i g i o u s , s c i e n t i f i c , governmental and corporate arrangements, understandings and be l i e f s ) . [Lutzenhiser, pg. 54, 1992] An i m p l i c a t i o n of the c u l t u r a l l y based model i s the asser t ion that there i s as much i n e f f i c i e n c y i n consumers' choice of demands to be met as there i s i n the way those demands are provided [Kempton and Schipper, 1994]. For example, as noted i n Sect ion 7 .3 .3 .2 , there may be a 100% change i n the energy consumed i n a b u i l d i n g simply by changing the occupants. Although the c u l t u r a l model does provide important in s igh t into energy consumption and conservation at the i n d i v i d u a l l e v e l , the model poses more questions than i t appears to be capable of answering at t h i s time. Therefore, the present work w i l l focus p r i m a r i l y on the b e h a v i o r a l i s t / t e c h n o l o g i s t model versus the economics model for energy conservation p o l i c y 4 . 4The b e h a v i o r a l i s t model of energy consumption i s s t a r t i n g to include c u l t u r a l var iab le s and issues . See for example Kempton and Schipper [1994]. Page 13 0 7.4 ANALYSIS OP COMPETING VIEWS As stated i n the d i scuss ion on the nature of the debate between the proponents of the competing models, the b e h a v i o r a l i s t / t e c h n o l o g i s t and the economic models appear to be based on a set of s e l f - l i m i t i n g assumptions. As such, there are a number of problems with the competing models. This sect ion h i g h l i g h t s the l i m i t s of the models presented i n the l a s t sec t ion . Due to the l i m i t a t i o n s of the economics and b e h a v i o r a l i s t models, a case i s made for methodological p l u r a l i s m . There are a number of responses to the arguments presented i n the economics approach expressed i n Sutherland's work. A f i r s t c r i t i c i s m i s that by assuming a priori that energy and conservation measures are valued only as a commodity, bought and so ld i n a we l l funct ion ing , competitive market, the author l i m i t s the p o t e n t i a l explanations for the low l eve l s of energy conserving behaviour. As noted i n Sect ion 7.3, energy may be viewed and valued i n a number of ways. A l t e r n a t e l y , Sanstad and Howarth [1994, b] note there i s l i t t l e evidence to support the premise that energy i s bought and so ld i n a "normal" market. A second argument i s that i t i s d i f f i c u l t to d i s t i n g u i s h between a market f a i l u r e and a market b a r r i e r . Government p o l i c y may improve economic e f f i c i e n c y for the case of market b a r r i e r s , and may reduce transact ions costs or r i s k s through a su i tab le choice of p o l i c y instruments. A t h i r d argument against the work of Sutherland i s that the author's conclusions are Page 131 not neces sar i ly va l ida ted by experience. The ana lys i s of Chapter Six suggests p o t e n t i a l l y large savings over the l i f e c y c l e of bu i ld ings through the adoption of energy saving technologies . A l t e r n a t e l y , i t was found that the net present value of the benef i ts associated with implementing energy e f f i c i e n c y standards to commercial bu i ld ings i n B r i t i s h Columbia was $17.32/m2 (1 .61 / f t 2 ) 5 [Energy Mines and Petroleum Resources, pg. 23, 1991]. The b e h a v i o r a l i s t / t e c h n o l o g i s t model has a number of c r i t i c i s m s associated with i t a l so . While t h i s model frequently endorses the implementation of pub l i c p o l i c y as a means of r e s o l v i n g the perceived market b a r r i e r s and market f a i l u r e s associated with energy consumption, t h i s model does not address a number of key i ssues . F i r s t , proponents of t h i s model have not acknowledged that the b a r r i e r s that i n h i b i t the adoption of energy e f f i c i e n t technologies are l i k e l y to i n h i b i t the effect iveness of any pub l i c p o l i c y d i rec ted at so lv ing the problems. Second, the presence of market b a r r i e r s does not necessar i ly mean that the benef i ts of p u b l i c p o l i c y exceed the costs . T h i r d , the existence of behavioral b a r r i e r s i s frequently acknowledged i n the l i t e r a t u r e , yet there i s l i t t l e understanding of t h e i r r e l a t i v e importance compared to economic c r i t e r i a . Fourth, much of the information generated by behavioral analysts focuses at tent ion on r e s i d e n t i a l energy users . I t i s not c l ear i f the issues and p o t e n t i a l so lut ions are the same 5Based on the assumptions of a 10% discount rate and a 15 year study p e r i o d . Page 132 for the commercial and i n d u s t r i a l sectors . F i n a l l y , the arguments presented by behav iora l i s t s and technologis ts are frequently consis tent with p r i n c i p l e s of economics, and may be strengthened by more thorough use of the economics l i t e r a t u r e [Sanstad and Howarth, 1994, a ] . The ana lys i s of competing views suggests that the economics and the behaviora l i s t / t echnology models provide incomplete information for understanding energy conservation behaviour. This i s hardly s u r p r i s i n g , as any model i s a s i m p l i f i c a t i o n of r e a l i t y , and the models are attempting to describe and pred ic t complicated, dynamic i ssues . In a d d i t i o n , observing the debate that has occurred over the l a s t 20 years suggests that disagreement over the facts and models i s a c e n t r a l c h a r a c t e r i s t i c of the debate r e l a t e d to energy e f f i c i e n c y . As such, there i s a strong argument for methodological p l u r a l i s m : where no one model can describe t h i s p o l i c y issue completely, combining the competing models and t h e i r so lut ions may provide a more robust basis for developing p u b l i c p o l i c y than choosing one model and i t s s o l u t i o n . 7.5 CONSUMER RATIONALITY The f o c a l point i n the debate between economists and the behav iora l / t echnolog i s t analysts appears to be based on d i f f e r e n t in terpre ta t ions of and l eve l s of confidence i n the concept of economic r a t i o n a l i t y . At an informal l e v e l , the concept of Page 133 r a t i o n a l i t y makes sense: i n d i v i d u a l s prefer better to worse and t r y to make we l l informed, reasonable dec i s ions . However, i t seems less p l a u s i b l e that i n d i v i d u a l s a c t u a l l y make choices according to a formal opt imizat ion process expressed by r a t i o n a l choice t h e o r i s t s . As Simon notes: In i t s treatment of r a t i o n a l i t y , n e o c l a s s i c a l economics d i f f e r s from the other s o c i a l sciences i n three main aspects:(a) i n i t s s i l ence about the content of goals and values; (b) i n i t s pos tu la t ing g lobal consistency of behaviour; and (c) i n i t s pos tu la t ing "one world"-that behaviour i s ob jec t ive ly r a t i o n a l i n r e l a t i o n to i t s t o t a l environment, inc lud ing both present and future environment as the actor moves through time. [Simon, pg. S210, 1986] Evidence suggests that i n d i v i d u a l s "muddle through," 6 making imperfect dec is ions framed by l i m i t e d time and processing c a p a b i l i t i e s , incomplete information, external cons tra in t s , and a range of n o n - f i n a n c i a l motives. Simon [1986] makes the d i s t i n c t i o n between the "substantive" r a t i o n a l i t y of economics and the "procedural" or "bounded" r a t i o n a l i t y of other s o c i a l sc iences . I t i s suggested that the concept of bounded r a t i o n a l i t y may provide more comprehensive and r e a l i s t i c basis for creat ing p u b l i c p o l i c y . Further , i t has been postulated that many behavioral b a r r i e r s to energy e f f i c i e n c y create "departures from substantive r a t i o n a l i t y 6See Lindblom [1959] for a d i scuss ion of t h i s concept. Page 134 and r e s u l t i n the systematic overconsumption of energy r e l a t i v e to the l e v e l that would p r e v a i l given the c o s t - e f f e c t i v e p r o v i s i o n of energy serv ices ." [Sanstad and Howarth, pg. 1.178, 1994, a] There are a number of impl icat ions of adopting the concept of bounded r a t i o n a l i t y : • i t i s no longer poss ib le to l a b e l c e r t a i n energy e f f i c i e n c y programs as economically " ine f f i c i en t" based on the t h e o r e t i c a l grounds rooted i n the concept of substantive r a t i o n a l i t y ; • departures from substantive r a t i o n a l i t y may imply the systematic overconsumption of energy, r e s u l t i n g i n a sub- optimal a l l o c a t i o n of energy resources; and, • the same factors which create departures from substantive r a t i o n a l i t y may create b a r r i e r s to any program designed to improve energy e f f i c i e n c y . The preceding sect ions have attempted to provide a bas is for understanding the c o n f l i c t i n g views and l i m i t e d understanding surrounding the debate on energy consumption and conservat ion. The next step i n developing a p o l i c y framework for energy conservation i n commercial bui ld ings i s to define the p a r t i c i p a n t s i n the dec i s ion making process. The next sect ion maps the "sub-government" of t h i s p o l i c y i ssue . Page 135 7.6 MAPPING THE SUB-GOVERNMENT In developing a p o l i c y framework for improving the l i f e c y c l e energy e f f i c i e n c y of b u i l d i n g s , i t i s important to understand the context wi th in which the p o l i c y i s designed, implemented and enforced. The b u i l d i n g industry i s made up of a large and fragmented group of stakeholders . Interact ions between these groups range from c o l l a b o r a t i v e to confronta t iona l . Frequently , however, there i s l i t t l e communication or co-ordinat ion between stakeholders . The major stakeholders involved i n improving energy e f f i c i e n c y i n bu i ld ings inc lude: Government: Federal Government; Natural Resources Canada, Consumer A f f a i r s , B r i t i s h Columbia P r o v i n c i a l Government; Energy Mines and Petroleum Resources, Munic ipal A f f a i r s , B r i t i s h Columbia U t i l i t i e s Commission, B r i t i s h Columbia Energy Counci l (Unt i l November 1994) Munic ipa l Government Planning Engineering Permits Page 136 U t i l i t y Companies (Private and P u b l i c l y Owned) E l e c t r i c i t y Gas Pr iva te Companies Bui lders Designers (Archi tec t s , Engineers) Product Manufacturers Performance Contractors B u i l d i n g Owners B u i l d i n g Occupants Advocacy Groups Consumers Environmental Internat iona l organizat ions A number of impl icat ions r e s u l t from having such a large and diverse group of stakeholders involved i n the p o l i c y arena. • Gett ing issues onto the p o l i c y agenda may be a simple task due to the number of access po int s . • No one stakeholder can se ize the p o l i c y agenda as author i ty and resources are d iverse . • Each stakeholder has a d i s t i n c t set of p r i o r i t i e s , and author i ty i s d iverse , therefore , the task of ge t t ing p u b l i c Page 137 p o l i c y implemented i s a long and d i f f i c u l t task [Lutzenhiser, 1994]. 7.7 POLICY ALTERNATIVES This sect ion reviews the p o l i c y options that have been implemented i n B r i t i s h Columbia and elsewhere to improve the energy e f f i c i e n c y of the b u i l d i n g sector . The use and choice of p o l i c y instrument i s discussed b r i e f l y . Further information oh p o l i c y options used to regulate the energy industry may be obtained i n the l i t e r a t u r e 7 . The object ives which d i c ta t e the choice of p o l i c y options inc lude: e f f i c i e n c y , f l e x i b i l i t y ; d i s t r i b u t i o n a l consequences; the a b i l i t y to implement, monitor and enforce the p o l i c y ; and, the philosophy of the governing agent concerning the presence of non-market forces . These factors provide a basis for comparison of the various p o l i c y options presented below. P o l i c y options inc lude: • adopt u t i l i t y sponsored programs i n the form of Demand Side Management (DSM); • permit a competitive market to determine the l e v e l of energy e f f i c i e n c y through deregulat ion of energy markets; 7 See, for example, The Energy J o u r n a l f Energy P o l i c y . Energy Systems, and Energy. Page 138 • introduce p u b l i c p o l i c y to provide information or gu ide l ines ; or , • implement and enforce a set of regulat ions such as standards or p r i c i n g . 7.7.1 U t i l i t y Sponsored There are many programs offered by u t i l i t i e s under the framework of Integrated Resource Planning (IRP) and Demand Side Management (DSM)8. Considering, for example, the e l e c t r i c i t y conservation programs for commercial bu i ld ings by B . C . Hydro, measures inc lude: • f i n a n c i a l incent ives i n the form of grants to perform b u i l d i n g s imulat ion studies to examine a r c h i t e c t u r a l design a l t e r n a t i v e s ; and, • performance incent ives based on the d i f ference between actual b u i l d i n g performance and b u i l d i n g performance modelled on the ASHRAE 90.1 energy code 9. 8See B r i t i s h Columbia U t i l i t i e s Commission [1993] for an explanation of these terms. For current issues regarding IRP and DSM, see Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . 9 In the form of f i n a n c i a l incent ives a v a i l a b l e to designers and contractors i f the b u i l d i n g i s more energy e f f i c i e n t than i s required by the energy code. Page 139 Focusing on natura l gas conservation p o l i c y by B . C . Gas, there are no DSM programs to reduce natura l gas consumption by commercial users at t h i s t ime. An incent ive /rebate program for medium and high e f f i c i e n c y b o i l e r s i s expected to commence s h o r t l y . In add i t i on , incent ive programs for heat pumps and natura l gas powered coolers i s expected to be included i n the Integrated Resource Plan (IRP) for B . C . Gas i n the spring of 1995 [Connally, 1995], There are a number of points to emphasize i n order to assess the value of incent ives as an option i n DSM programs. F i r s t , i t i s d i f f i c u l t to pred ic t or evaluate the ef fect iveness of incent ive programs. Because p a r t i c i p a t i o n i s voluntary, i t may be d i f f i c u l t to design a program with enough f l e x i b i l i t y to a t t r a c t a large number of p a r t i c i p a n t s . P a r t i c i p a t i o n rate i s a c r i t i c a l fac tor a f f e c t i n g the success of u t i l i t y sponsored DSM programs. The review by Berry [1993] suggests that p a r t i c i p a t i o n i s frequently of the order of 6%. A recent survey by Nadel et a l . [1994] provides a number of s trateg ies common to successful DSM programs. The authors l i s t the fo l lowing important a t t r i b u t e s : -implement programs which are easy to p a r t i c i p a t e i n ; -design programs which attempt to involve the e n t i r e community; -promote personal contact between the sponsoring organizat ion and the customer; Page 140 -provide t e c h n i c a l ass istance made r e a d i l y a v a i l a b l e ; -maintain high q u a l i t y of service and product; - i n v o l v e trade a l l i e s to a s s i s t i n the design and marketing of the programs; - inc lude e f f i c i e n c y thresholds to create market push; -use good marketing strategy, i n c l u d i n g , -marketing that targets many stakeholders i n the process with information that i s re levant to each stakeholder, and, -marketing that informs the p a r t i c i p a n t of the f u l l range of economic and noneconomic benef i ts of the program; -make i t poss ib le for p a r t i c i p a t i o n by customers, manufacturers, and d i s t r i b u t o r s ; - s t a r t programs by target ing p o t e n t i a l p a r t i c i p a n t s ; -maintain consistency i n program e l i g i b i l i t y and incent ives ; -provide f i n a n c i a l incent ives ; -work with other stakeholders to encourage coordinat ion and cooperation between, for example, the u t i l i t y and government regulatory bodies. [Nadel et a l . , pp.42-44, 1994] A second issue of DSM programs i s t h e i r cost . In the case of B . C . Hydro, the f i n a n c i a l incent ives are seen as a temporary measure to promote and p u b l i c i z e conservation to customers. The high cost of some DSM programs makes them a less a t t r a c t i v e long term component of conservation strategy [Barry, 1993]. A f i n a l concern of u t i l i t y sponsored conservation programs i s the a l l o c a t i o n of r i s k and the " p r i n c i p a l agent problem". As noted by Sutherland [1994] and Nadel et a l . [1992], the u t i l i t i e s (the Page 141 agent) make DSM investment decis ions and are i n the p o s i t i o n to p r o f i t from the gains of successful investments. However, the customers (the p r i n c i p a l s ) incur the r i s k s and losses i f the DSM investment i s not success fu l . Although there are uncerta int ies associated with the adoption of u t i l i t y sponsored DSM programs, incent ives , rebates and grants are a p o s i t i v e way of introducing the concept of e f f i c i e n c y and conservation to consumers. As opposed to standards or p r i c e increases , the a b i l i t y to evoke a p o s i t i v e response towards conservation i s p o t e n t i a l l y a strong a t t r i b u t e of these programs. An a l t e r n a t i v e to DSM programs i s performance based hook-up fees [Wirtshafter , 1994], that l i n k b u i l d i n g performance to the charge l ev i ed by u t i l i t i e s for i n i t i a l connection to the g r i d . The a t t r a c t i o n of t h i s option i s that such a program would force bu i lders and designers to consider the long-term energy impl i ca t ions of t h e i r b u i l d i n g s . Another option i s prov id ing the u t i l i t y with the author i ty to enforce b u i l d i n g standards r e l a t e d to energy e f f i c i e n c y . C r i t i c i s m of the performance based hook-up fee has centered around the notion that there i s no standard method of measuring the operating performance of a b u i l d i n g . However, the use of the B u i l d i n g Energy Performance Index (BEPI) may provide a so lu t ion to the c r i t i c i s m . 7.7.2 Competitive Markets Page 142 A second p o l i c y option i s the use of deregulat ion and competitive markets to determine the optimal l e v e l of energy e f f i c i e n c y . This option has been u t i l i z e d to some extent i n the na tura l gas market, where marketing functions prev ious ly held by the B r i t i s h Columbia Petroleum Corporation were t rans ferred to the p r i v a t e sector [Minis try of Energy Mines and Petroleum Resources, 1989], The e l e c t r i c i t y sector i s v e r t i c a l l y integrated , r e s u l t i n g i n a monopoly by B . C . Hydro throughout much of the province . Due to the market f a i l u r e a r i s i n g from a natura l monopoly, deregulat ion of the e l e c t r i c i t y sector i s d i f f i c u l t to j u s t i f y . 7.7.3 Regulatory Within the context of regulatory approaches to improving end use e f f i c i e n c y , a number of options are a v a i l a b l e to government agencies. These options range i n l eve l s of coerciveness from information, education or guidel ines to imposing standards or adjust ing p r i c e . 7.7.3.1 Information Information programs are important, but information i s e a s i l y forgotten . Many conservation programs r e l y on the process of d i f f u s i o n of information for improving e f f i c i e n c y l e v e l s . There are a number of l i m i t a t i o n s and drawbacks to t h i s process . For instance, i t i s slow. In add i t i on , i t i s d i f f i c u l t to c o n t r o l and Page 143 p r e d i c t where or how much e f fect the programs w i l l have. F i n a l l y , the whole process r e l i e s on an ind iv idua l ' s w i l l ingness to p a r t i c i p a t e . The low rates of success that are t y p i c a l of many conservation programs suggest the need for a more aggressive approach to energy conservation. In a s i m i l a r way, education programs are important, but i f the i n d i v i d u a l s who are being educated are not i n a p o s i t i o n to make dec is ions regarding consumption patterns (such as school c h i l d r e n ) , the value of the programs must be questioned. 7.7.3.2 Standards Commercial bu i ld ings constructed i n Vancouver are subject to energy e f f i c i e n c y standards designed by the American Society for Heating Re fr igera t ion and A i r - C o n d i t i o n i n g Engineers [ASHRAE, 1989]. This standard i s used i n the design of the base b u i l d i n g i n the present a n a l y s i s . The Nat ional Research Counci l i s developing a s i m i l a r set of e f f i c i e n c y standards to be implemented n a t i o n a l l y i n 1995/96 [National Research Counc i l , 1994]. The use of standards i s widely discussed i n the l i t e r a t u r e , and there are a number of issues surrounding t h i s choice of p o l i c y instrument. The f l e x i b i l i t y of p o l i c y instruments i s an issue to be considered. Standards tend to be a r e l a t i v e l y i n f l e x i b l e p o l i c y t o o l . However, i t i s not c e r t a i n how much f l e x i b i l i t y i s opt imal , nor i s i t c l ear whether the reduct ion i n uncerta inty derived from Page 144 standards of f se ts the disadvantage of lack of f l e x i b i l i t y . A second argument against standards i s that they may act as a c e i l i n g as we l l as a f l o o r s ince there i s no incent ive to surpass the requirements of a standard. However, i f a ra tche t ing process i s used, t h i s need not be the case. Standards are usua l ly considered a poor choice because they may be i n e f f i c i e n t . This may be true when the options of taxes or tradeable permits e x i s t , but under the present circumstances, standards appear to have a number of advantages. For example, i t may cost B . C . Hydro on the order of one m i l l i o n d o l l a r s to provide an incent ive program and market that program e f f e c t i v e l y . Conversely, the M i n i s t r y of Energy, Mines and Petroleum Resources can implement a standard at a cost of approximately f i f t y thousand d o l l a r s [Barry, 1993]. A l t e r n a t e l y , standards are an e f f i c i e n t means of overcoming the b a r r i e r discussed i n sec t ion 7 .5 .1 .7 associated with intermediar ies . I f those intermediaries do not have the choice to purchase i n e f f i c i e n t devices , there i s no longer a problem for the i n d i v i d u a l who must pay the operating costs . Because standards are capable of transforming en t i re markets, they are a p o t e n t i a l l y powerful p o l i c y instrument. A f i n a l c r i t i c i s m of standards has been expressed by Conover et a l . [1994] who assert that the e f f o r t needed to enforce a standard i s corre la t ed to the complexity and stringency of the standard. The authors found non-compliance rates as high as 25%. Page 145 7.7.3.3 P r i c i n g The r o l e of economic rates (Through p r i c e s tructure and taxes) i s seen by The M i n i s t r y of Energy Mines and Petroleum Resources as the most important way for energy u t i l i t i e s to encourage customers to conserve energy and to use i t more wisely [Energy Mines and Petroleum Resources, 1989]. However, current p r i c i n g does not r e f l e c t t h i s view, as the p r i c e for energy i s less than the cost of prov id ing a d d i t i o n a l suppl ies . Based on information from the M i n i s t r y of Energy Mines and Petroleum Resources [1994], the p r i c e for natura l gas i s approximately 2.5% less than i t s long run marginal cost . S i m i l a r l y , the p r i c e of e l e c t r i c i t y i s approximately 12% less than i t s long run marginal cost . Prov id ing consumers with inaccurate p r i c e s ignals for energy may lead to m i s a l l o c a t i o n of resources , r e s u l t i n g i n excessive energy consumption above the economically e f f i c i e n t l e v e l . In making the argument for p r i c e change as a means of reducing energy consumption, the p r i c e e l a s t i c i t y of demand provides useful information. The p r i c e e l a s t i c i t y of demand measures the percentage change i n demand r e s u l t i n g from a 1% change i n the p r i c e of a commodity, ceteris paribus10. 1 0Used to ind ica te that a l l var iab le s except the ones s p e c i f i e d are assumed constant. Page 146 There are a number of sources that have estimated the p r i c e e l a s t i c i t y for e l e c t r i c i t y and natura l gas i n B r i t i s h Columbia. In a recent rate design a p p l i c a t i o n , B . C . Hydro uses an aggregate c o e f f i c i e n t for B r i t i s h Columbia of -0.67 1 1 [ B r i t i s h Columbia U t i l i t i e s Commission, pg. 38, 1990]. A l t e r n a t e l y , J e k e l - S a d l i e r [pg. 2, 1990] estimates the p r i c e e l a s t i c i t y for e l e c t r i c i t y consumption i n the commercial sector of B r i t i s h Columbia to be -0.147, -0.489 and -0.476 for 1 year, 6 year and 16 year impact analyses, r e s p e c t i v e l y . The p r i c e e l a s t i c i t y for natura l gas i s estimated i n the range of -0.046 to -0.013 by B . C . Gas [BCUC, pp 9-10, 1994, b] . J e k e l - Sad l i er [pg. 5, 1990] estimates the p r i c e e l a s t i c i t y for natura l gas consumption by commercial users i n B r i t i s h Columbia to be - 0.113, -0.533, and -0.565 for 1 year, 6 year and 16 year impact analyses, r e s p e c t i v e l y . The magnitudes of p r i c e e l a s t i c i t y for e l e c t r i c i t y and natura l gas are s i g n i f i c a n t l y less than u n i t y . This impl ies that a change to the p r i c e of e l e c t r i c i t y and natura l gas w i l l generate less than a proport ionate decrease i n energy consumption. This suggests that large p r i c e increases may be required to achieve moderate 1 1 The e l a s t i c i t y f igure includes r e s i d e n t i a l , commercial, and i n d u s t r i a l e l e c t r i c i t y users . The e l a s t i c i t y for the i n d u s t r i a l sector i s estimated at -0.15 to -0 .25, and t h i s sector corresponds to approximately 45% of t o t a l e l e c t r i c i t y sales by B . C . Hydro. Therefore, the e l a s t i c i t y for the commercial sector i s probably greater than -0 .67, although no f igures were l i s t e d . Page 147 improvements i n energy conservation l e v e l s . Therefore, i t i s not c l e a r that p r i c e mechanisms alone provide the most appropriate mechanism to reduce energy consumption i n the commercial sector . This i s e s p e c i a l l y true i n the short and medium time frames. An a l t e r n a t i v e or supplement to uniform p r i c e increases i s rate design. The B r i t i s h Columbia U t i l i t i e s Commission has stated that "Rate design can be e f f ec t ive i n s e t t ing rate s tructures that expand p u b l i c awareness by sending appropriate p r i c i n g s i g n a l s . . . rate design [ is] the preferable veh ic l e for promoting conservation and e f f i c i e n t use through customer rates" [BCUC, pg. 3, 1992]. Considering for the moment e l e c t r i c i t y consumption, B . C . Hydro current ly uses a d e c l i n i n g block rate s tructure for commercial consumers. This implies that the more e l e c t r i c i t y a customer consumes i n a month, the cheaper i t becomes for a un i t of consumption. The t r a i l i n g block rate s tructure evolved from a t r a d i t i o n a l energy scenario of customers benef i t ing from economies of scale and d e c l i n i n g costs i n the development of new generation. However, the s i t u a t i o n has reversed s ince B . C . Hydro now faces the prospect of developing higher cost resources to supply the growth i n demand for e l e c t r i c i t y . Since 1992, the B r i t i s h Columbia U t i l i t i e s Commission (BCUC) has d i rec ted u t i l i t i e s to move to a f l a t rate s t ruc ture . I t i s ant i c ipated i n the case of B . C . Hydro, that t r a n s i t i o n to a f l a t rate w i l l be complete by the 1995/96 Page 148 f i s c a l year [ B r i t i s h Columbia U t i l i t i e s Commission, pg. 7, 1994]. I t i s important to assess the value of p r i c e and rate s tructure wi th in the framework for evaluat ing p o l i c y options out l ined above. The issue of e f f i c i e n c y i s an important p o l i c y goa l . The most e f f i c i e n t way for a commodity to be p r i c e d i s through market forces . However, because the p r i c e e l a s t i c i t y for e l e c t r i c i t y and natura l gas are s i g n i f i c a n t l y less than un i ty i n the short and medium term, large p r i c e increases would be required to achieve moderate gains i n energy conservation l e v e l s , t h i s impl ies that a mix of p o l i c y mechanisms may provide a more appropriate so lu t ion to t h i s p o l i c y i s sue . In add i t i on , there are many e x t e r n a l i t i e s associated with energy supply and consumption. With the presence of mul t ip le market f a i l u r e s for energy, i t i s impossible for the p r i c e to ever be defined opt imal ly . However, on the basis of the a l t e r n a t i v e s , p r i c i n g must s t i l l be acknowledged as an important method of achieving p o l i c y goals e f f i c i e n t l y . An advantage of p r i c i n g and rate design over other options i s the ease of implementation and s i m p l i c i t y of monitoring the e f fects on conservat ion. In add i t i on , p o l i c y using p r i c i n g and rate design can transform ent i re markets, r e s u l t i n g i n increased d i f f u s i o n rates of technology. This i s i n contrast to the u t i l i t y sponsored approach that d i f fuses in to the market b u i l d i n g - b y - b u i l d i n g . 7.8 RELEVANCE TO THE CURRENT STUDY Page 149 Much of what has been discussed so far i n t h i s chapter i s derived from a review of the l i t e r a t u r e . The next step i s to take the general information of the previous sect ions and draw out p o l i c y conclusions that may be u t i l i z e d to improve the energy and economic performance of commercial bu i ld ings s i m i l a r to the case study b u i l d i n g . Methodological p l u r a l i s m i s a c en tra l c h a r a c t e r i s t i c of the energy debate. Competing models and t h e i r so lut ions provide a number of p o l i c y a l t e r n a t i v e s based on p r i c i n g , u t i l i t y sponsored DSM, and regulatory opt ions . A l l s trateg ies l i s t e d above provide options to reduce energy consumption, and should continue to form components of future p o l i c y i n i t i a t i v e s . As noted i n Section 7.4, however, the b a r r i e r s that i n h i b i t the adoption of energy conserving technologies are l i k e l y to i n h i b i t the ef fect iveness of p u b l i c p o l i c y so lut ions implemented to deal with the problems. The p r i c e for energy does not r e f l e c t the marginal cost of adding new supply. Provid ing commercial energy users with the correct p r i c e s i g n a l i s an important step i n improving the energy and economic e f f i c i e n c y i n the b u i l d i n g sector . As noted i n Sect ion 7 .7 .3 .3 , the p r i c e for energy i s less than the long run marginal cost of energy. However, the p r i c e e l a s t i c i t y for energy among commercial users i s less than uni ty for e l e c t r i c i t y and natura l gas i n the short and long run. This implies that large p r i c e increases would be required to achieve moderate reductions i n enery Page 150 consumption. Therefore, p r i c e changes alone may not provide the most a t t r a c t i v e so lu t ion to improving energy e f f i c i e n c y . The d e c l i n i n g block rate s tructure used by B . C . Hydro does not encourage energy conservation. However, as noted i n Sect ion 7 .7 .3 .3 , a f l a t ra te s tructure w i l l be implemented by the 1995/96 f i s c a l year. Moving to an i n c l i n i n g block rate s tructure may provide further incent ive to improve e f f i c i e n c y , and should be considered i n future p o l i c y ana lys i s . The adoption of the ASHRAE 90.1 energy e f f i c i e n c y standards for commercial bu i ld ings i n Vancouver provides a basel ine performance for b u i l d i n g s . However, i t has been shown i n t h i s work that the standards define a l e v e l of performance that i s sub-optimal . More s tr ingent performance standards, e s p e c i a l l y for l i g h t i n g systems w i l l have p o s i t i v e energy and economic benef i t s . U t i l i t y sponsored programs are a p o t e n t i a l l y powerful option at improving energy conservation i n the commercial sector . Current Demand Side Management i n i t i a t i v e s include performance based incent ives for l i g h t i n g , and funding for design s tudies . Incentive programs to encourage medium and high e f f i c i e n c y b o i l e r s w i l l commence s h o r t l y . There are a broad range of a d d i t i o n a l DSM programs a v a i l a b l e . Notably, the idea of performance-based hook-up fees deserves greater a t t ent ion . In a d d i t i o n , d a y l i g h t i n g and heat pumps provide v i a b l e energy conservation s t ra teg i e s . Future DSM Page 151 programs should target these s t ra teg ie s . The current governance system may i n h i b i t improvements i n energy performance of b u i l d i n g s . As noted i n Section 7.6, there are many stakeholders i n t h i s i ssue , each with a d i s t i n c t set of p r i o r i t i e s . Author i ty i s d iverse , mandates overlap, and there i s l i t t l e leadership or c o l l a b o r a t i o n . Therefore, future p o l i c y should include mechanisms for improving the i n s t i t u t i o n a l arrangements i n t h i s i s sue . Page 152 CHAPTER EIGHT: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 8.1 SUMMARY OF FINDINGS AND CONCLUSIONS 8.1.1 Operating Energy • The i n i t i a l B u i l d i n g Energy Performance Index (BEPI) for the case study b u i l d i n g i s 0.96 GJ/m 2 . yr . This i s cons is tent with the case study b u i l d i n g conforming to the ASHRAE 90.1 energy e f f i c i e n c y code. • By the adoption of simple, proven technologies , the operating energy of the case study b u i l d i n g i s reduced to 0.23 GJ/m 2 . yr . This corresponds to a 77% reduct ion i n operating energy consumption. 8.1.2 Embodied Energy • The i n i t i a l embodied energy of the case study b u i l d i n g i s 4.26 GJ/m 2 . Normalizing for b u i l d i n g l i f e , t h i s corresponds to 0.10 GJ/m 2 .yr for a b u i l d i n g l i f e of 40 years , and 0.053 GJ/m 2 .yr for a b u i l d i n g l i f e of 80 years . • S tee l accounts for 38.7 % of the i n i t i a l embodied energy and concrete accounts for a further 14.6% of the i n i t i a l embodied energy. Page 153 The s tructure accounts for approximately 32% of the i n i t i a l embodied energy and the HVAC system accounts for a further 17%. The r e c u r r i n g embodied energy i s 0.11 GJ/m 2 .yr for b u i l d i n g l i v e s of 40 and 80 years. The l i f e - c y c l e embodied energy i s 0.21 GJ/m 2 .yr and 0.16 GJ/m 2 . yr . for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . These f igures are v a l i d for a l l the b u i l d i n g conf igurat ions studied i n t h i s work. Over the range of performances and s trateg ies studied i n t h i s work, the operating energy and l i f e - c y c l e embodied energy are nearly independent. This implies that improving the operating performance of the case study b u i l d i n g does not change the l i f e - c y c l e embodied energy of the b u i l d i n g . The r e s u l t s of the analys i s suggest that over the range of energy performances studied i n t h i s work, m u l t i p l y i n g b u i l d i n g p r i c e and the input-output value for n o n - r e s i d e n t i a l construct ion provides s u f f i c i e n t accuracy to p r e d i c t the i n i t i a l embodied energy of the case study b u i l d i n g . Options a v a i l a b l e to reduce the l i f e - c y c l e embodied energy of the case study b u i l d i n g inc lude: materia ls r e c y c l i n g ; r e l y i n g Page 154 on the natura l trend, i n the Canadian economy to reduce the embodied energy of goods and serv ices ; increas ing the b u i l d i n g l i f e ; and, materia ls subs t i tu t ion or omission of c e r t a i n f i n i s h e s . 8.1.3 L i f e - c y c l e Energy Analysis • For a b u i l d i n g l i f e of 40 years , the l i f e - c y c l e energy i s reduced from 1.6 to 0.54 GJ/m 2 .yr by the cumulative adoption of energy conservation s t ra teg i e s . This corresponding to a 66% reduct ion i n energy consumed. • For a b u i l d i n g l i f e of 80 years , the l i f e - c y c l e energy i s reduced from 1.55 to 0.49 GJ/m 2 .yr by the cumulative adoption of energy conservation s t ra teg ie s . This corresponding to a 68% reduct ion . • The r a t i o of l i f e - c y c l e energy a t t r i b u t e d to the embodied energy ranges from 13.1% to 38.9% for a b u i l d i n g l i f e of 40 years , and from 10.3% to 32.7% for a b u i l d i n g l i f e of 80 years , depending on the operating c h a r a c t e r i s t i c s . • Reducing the operating energy requirements of the case study b u i l d i n g provides the larges t p o t e n t i a l energy savings. 8.1.4 L i f e - c y c l e Cost Analysis Page 155 The c a p i t a l cost of the case study b u i l d i n g i n i t s base conf igurat ion i s $5.23 m i l l i o n ($652/m2) . The c a p i t a l cost of improving the case study b u i l d i n g to an energy e f f i c i e n t design i s $53/m2. This corresponds to an 8.2% increase i n c a p i t a l costs . I f only those s trateg ies are implemented that are cost e f f e c t i v e , the net benef i t of upgrading the b u i l d i n g i s $0,788 m i l l i o n , and $0,794 for b u i l d i n g l i v e s of 40 and 80 years, r e s p e c t i v e l y . The analys i s assumes a discount rate of 12.2%, and u t i l i z e s cost data based on the long run marginal cost of energy. Strategies used to reduce a i r i n f i l t r a t i o n , increase b u i l d i n g i n s u l a t i o n and improve the performance of f enes trat ion systems are found to be uneconomic. However, the ana lys i s of the cost ef fect iveness of the i n s u l a t i o n and fenes trat ion a l t erna t ive s i s incomplete, and requires further a n a l y s i s . The l i f e - c y c l e net benef i t of implementing a l l b u i l d i n g improvements i s $0,246 m i l l i o n and $0,253 m i l l i o n for b u i l d i n g l i v e s of 40 and 80 years, r e spec t ive ly . I f only those s trateg ies with a p o s i t i v e net benef i t are implemented, the payback per iod i s immediate. Implementing a l l s t ra teg ies has a payback per iod of 9 years . These r e s u l t s are Page 156 based on a discount rate of 12.2%. • A second c r i t e r i o n for cost ef fect iveness used i n the analys i s i s the d i f ference between the un i t cost of energy savings and the u n i t cost of energy purchases. A p o s i t i v e value implies i t i s cheaper to purchase energy savings than to purchase a d d i t i o n a l energy. I f only those i n d i v i d u a l s tra teg ies that are cost e f f ec t ive are adopted, the d i f f erence between l e v e l i z e d cost per un i t of energy saved and the l e v e l i z e d cost per un i t of energy purchased i s $41.02/GJ and $30.38/GJ for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . I f a l l the s tra teg ies are implemented, the d i f ference between the un i t cost of energy savings and the un i t cost of energy purchases i s $1.93/Gj and $0.949/Gj for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . • The economic and energy analyses are based on complementary information and provide consistent r e s u l t s . A 60% decrease i n the operating energy of the b u i l d i n g i s poss ib le by applying s trateg ies that are cost e f f e c t i v e . This impl ies the l i f e - cyc le energy of the b u i l d i n g may be decreased by 50% and 48% for b u i l d i n g l i v e s of 40 and 80 years , r e s p e c t i v e l y . 8.1.5 P o l i c y Implicat ions I t has been postulated that the concept of bounded r a t i o n a l i t y Page 157 may provide a means for br idg ing the methodological and conceptual d i s p a r i t i e s between the po lar views of economics, and behavioral and technology researchers . Further , i t i s argued that disagreement over the facts and models i s a c e n t r a l c h a r a c t e r i s t i c of the p o l i c y debate r e l a t e d to energy e f f i c i e n c y . As such, there i s a strong argument for methodological p l u r a l i s m : where no one model can describe t h i s p o l i c y issue unambiguously, combining the competing models and t h e i r so lut ions may provide a more robust bas is for developing p u b l i c p o l i c y . P r i c i n g , u t i l i t y sponsored DSM,' and regulatory measures provide options to reduce energy consumption, and should continue to form components of future p o l i c y i n i t i a t i v e s . However, the b a r r i e r s that i n h i b i t the adoption of energy conserving technologies are l i k e l y to i n h i b i t the ef fect iveness of p u b l i c p o l i c y so lut ions implemented to deal with the problems. The p r i c e for energy does not r e f l e c t the marginal cost of adding new supply. Providing commercial energy users with the correc t p r i c e s igna l i s an important step i n improving energy and economic e f f i c i e n c y i n the b u i l d i n g sector . The p r i c e e l a s t i c i t y for energy among commercial users i s less than uni ty for e l e c t r i c i t y and natura l gas i n the short and long run. Therefore, for p r i c e changes to be an e f f ec t i ve p o l i c y Page 158 instrument, large p r i c e increases would be requ ired . This suggests that a mix of p o l i c y instruments may provide a more appropriate p o l i c y choice . The d e c l i n i n g block rate s tructure used by B . C . Hydro does not encourage energy conservation. However, a f l a t rate s tructure w i l l be implemented by the 1995/96 f i s c a l year. Moving to an increas ing block rate s tructure may provide further incent ive to improve e f f i c i e n c y , and should be considered i n future p o l i c y a n a l y s i s . The adoption of the ASHRAE 90.1 energy e f f i c i e n c y standards for the case study b u i l d i n g provides a base l ine performance. However, the standards define a l e v e l of performance that i s sub-optimal . More s tr ingent performance standards, e s p e c i a l l y for l i g h t i n g systems w i l l have p o s i t i v e energy and economic benef i t s . U t i l i t y sponsored programs are a p o t e n t i a l l y powerful option to improve energy conservation i n the commercial sector . Current Demand Side Management i n i t i a t i v e s inc lude performance based incent ives for l i g h t i n g , and funding for design s tudies . Incentive programs to encourage medium and high e f f i c i e n c y b o i l e r s w i l l commence s h o r t l y . There are a broad range of a d d i t i o n a l DSM programs a v a i l a b l e . Notably, the idea of performance based hook-up fees deserves greater a t t e n t i o n . In Page 159 a d d i t i o n , day l ight ing and heat pumps provide v i a b l e energy conservation s t ra teg i e s . Future DSM programs should target these energy conservation s t ra teg i e s . • The current governance system may i n h i b i t improvements i n energy performance of b u i l d i n g s . There are many stakeholders i n t h i s i ssue , each with a d i s t i n c t set of p r i o r i t i e s . Author i ty i s d iverse , mandates overlap, and there i s l i t t l e leadership or c o l l a b o r a t i o n . Therefore, future p o l i c y should include mechanisms for improving the i n s t i t u t i o n a l arrangements i n t h i s i ssue. 8 . 2 RECOMMENDATIONS I t i s recommended that an economic and energy a n a l y s i s , s i m i l a r to the one performed here, be performed for a l l commercial b u i l d i n g types and c l i m a t i c regions of B r i t i s h Columbia. I f s i m i l a r performance improvements are obtainable at cost e f f ec t i ve l e v e l s , i t i s recommended that the b u i l d i n g code be modified to improve the minimum energy performance of commercial bu i ld ings i n B r i t i s h Columbia above ASHRAE 90.1 standards. I t i s recommended that future work should continue to focus on the operating performance of b u i l d i n g s . I f the b u i l d i n g energy performance index (BEPI) i s less than 0.3 GJ/m 2 . yr , the embodied energy w i l l be an important component of the l i f e - c y c l e energy, and Page 160 should be quant i f i ed .and minimized. P r i c i n g , u t i l i t y sponsored DSM, and regulatory measures provide options to reduce energy consumption. I t i s recommended that a l l options should continue to form components of future p o l i c y i n i t i a t i v e s . Page 161 REFERENCES American Society of Heating Refr igera t ion and A i r Condit ioning Engineers, ASHRAE Standard 90.1-1989: Energy E f f i c i e n t Design of New Bui ld ings Except Low-Rise Res ident ia l B u i l d i n g s . At lanta G a . , 1989. B . C . Hydro, 1994 E l e c t r i c i t y Plan: An Introduct ion to BC Hydro's Integrated Resource Plan . Vancouver, 1994 (b) . B . C . Hydro, E l e c t r i c i t y Conservation P o t e n t i a l Review. 1988-2010. Phase 2: Constrained P o t e n t i a l . Vancouver, 1994 (d) . B . C . Hydro, The Cost of New E l e c t r i c i t y Supply i n B r i t i s h Columbia, Vancouver, 1994 (a). B . C . Hydro, Resource A q u i s i t i o n P o l i c y , Vancouver, 1994 (c) . B . C . Hydro, Long Run Incremental Cost of Service Study, Vancouver, 1991. B . C . Hydro, E l e c t r i c i t y Conservation P o t e n t i a l Review, 1988-2010, Phase l ; Unconstrained P o t e n t i a l , Vancouver, 1993. B . C . Gas, B . C . Gas Integrated Resource Plan, Vancouver, March 1994. B a i r d , G. , Aun, C . S . , Energy Cost of Houses and L ight Construct ion . School of A r c h i t e c t u r e , V i c t o r i a U n i v e r s i t y of Wel l ington, Report o. 76, 1983. Barry , M . , M i n i s t r y of Energy Mines and Petroleum Resources, Personal Communication, V i c t o r i a , B . C . , 1993. Berry , L . , "A Review of the Market Penetrat ion of U .S . Res ident ia l and Commercial Demand Side Management Programmes", Energy P o l i c y , Jan, 1993. Berry , S . R . , "Energy Analys i s for Energy Po l i cy" , Journal of Business Admin i s t ra t ion f P.Nemetz, E d . , V o l . 10, Nos. 1&2, Vancouver, B . C . , 1979. Brand, How Bui ld ings Learn Brand, S . , How Bui ld ings Learn: What Happens Af ter They're B u i l d , V i k i n g , New York, N . Y . , 1994. B r i t i s h Columbia M i n i s t r y of Energy Mines and Petroleum Resources, Supply and Requirement Forecast: 1993-2015, V i c t o r i a , B . C . , 1994. B r i t i s h Columbia M i n i s t r y of Energy Mines and Petroleum Resources, Energy Standards For New Low-Rise Bui ld ings i n B r i t i s h Columbia: L i f e Cycle A n a l y s i s . V i c t o r i a , B . C . , Sept. 1991, a. Page 162 B r i t i s h Columbia M i n i s t r y of Energy Mines and. Petroleum Resources, Energy Standards For New Commercial Bui ld ings i n B r i t i s h Columbia: L i f e Cycle A n a l y s i s . V i c t o r i a , B . C . , Sept. 1991, b. B r i t i s h Columbia M i n i s t r y of Energy Mines and Petroleum Resources, Supply and Requirement Forecast: 1990-2010. V i c t o r i a , B . C . , 1991, c. B r i t i s h Columbia M i n i s t r y of Energy Mines and Petroleum Resources, B r i t i s h Columbia Energy P o l i c y : New Direc t ions for the 1990's, V i c t o r i a , B . C . , 1989. B r i t i s h Columbia M i n i s t r y . of Finance and Corporate Re la t ions , B r i t i s h Columbia Economic Review and Outlook. Aug. 1994. B r i t i s h Columbia M i n i s t r y of Munic ipal A f f a i r s , B r i t i s h Columbia B u i l d i n g Code. V i c t o r i a , B . C . , 1992. B r i t i s h Columbia U t i l i t i e s Commission, Annual Report. 1993. Vancouver, B . C . , May 1994a. B r i t i s h Columbia U t i l i t i e s Commission, Dec i s ion . 1994/95 Revenue Requirements A p p l i c a t i o n . Phase 2. Vancouver, B . C . , Aug 1994b. B r i t i s h Columbia U t i l i t i e s Commission, Integrated Resource Planning Guide l ines . Vancouver, B . C . , 1993. B r i t i s h Columbia U t i l i t i e s Commission, In the Matter of a Rate A p p l i c a t i o n by B r i t i s h Columbia Hydro and Power Author i ty . Vancouver, B . C . , A p r i l , 1990. B r i t i s h Columbia Energy Counc i l , Planning Today for Tomorrow's Energy: An Energy Strategy for B r i t i s h Columbia. Vancouver, 1994. Brown, L . E d . , State of the World, 1992, WW Norton & C o . , New York, 1992. Buchannon, A . H . , Honey, B . G . , "Energy and Carbon impl icat ions of B u i l d i n g Construct ion", Energy and B u i l d i n g . V o l . 20, pp. 205-217, 1994. B u i l d i n g Owners and Managers Assoc ia t ion (BOMA), 1994 BOMA Experience Exchange Report. Washington, DC, 1994. Bush, M . J . , "The Energy Intens i ty of Commodities Produced i n Canada", Energy f V o l . 6, pp. 503-517, 1981. Canada Center for Mineral and Energy Technology, (CANMET), Present and Future use of Energy i n the Canadian Stee l Industry, Ottawa, Ont . , 1993. Canadian Mortgage and Housing Corporation (CMHC), CMCH Research Page 163 Energy Mines and Resources Canada, Proceedings of a Workshop on the P o t e n t i a l for Energy E f f i c i e n c y i n Canada, Ottawa, 1993. Environment and Land Use Committee S e c r e t a r i a t , Guidel ines for Benef i t Cost A n a l y s i s , V i c t o r i a , B . C . , 1977. Georgescu-Roegen, N . , "Energy and Economic Myths", Southern Economic J o u r n a l . J a n . , 1975. G i l l i l a n d , M.W., E d . , Energy Ana lys i s : A New P u b l i c P o l i c y T o o l . Westview Press , Boulder, C o l o . , 1978. G i l l i l a n d , M.W., "Energy Analys i s and Pub l i c P o l i c y " , Science. V o l . 189, No. 4208, pp. 1051-1056, 1975. Houghton, D . J . , "Projected and Measured Results from an Energy E f f i c i e n t Small Commercial Of f i ce B u i ld in g" , Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American Counci l for an Energy E f f i c i e n t Economy, pp. 9.187-9.193, 1994. Howard, N . , S u t c l i f f e , H . , "Precious Joules", B u i l d i n g . V o l . 18, pp. 48-50, March, 1992. In ternat iona l Federation of Ins t i tu tes of Advanced Study (IFIAS) Workshop, Energy Analyses. Workshop Report No. 6, S-17171, Solna, Sweden, 1974. J e k e l - S a d l i e r , S . , Estimated Energy P r i c e and Income E l a s t i c i t i e s . M i n i s t r y of Energy, Mines and Petroleum Resources, V i c t o r i a , B . C . , 1990. Kempton, W. , Schipper, L . , "Expanding the Human Dimensions Research Agenda," Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American Counci l for an Energy E f f i c i e n t Economy, pp. 1.85-1.90, 1994. Komor, P . , Moyad, A . , "How Large i s the C o s t - E f f e c t i v e Energy Savings P o t e n t i a l i n U .S . Bui ld ings?", Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American Counci l for an Energy E f f i c i e n t Economy, pp. 6.125-6.134, 1994. Lawrence Berkeley Laboratory, DOE-2 Reference Mannual (2... 1A) . Simulation Researh Group, Un ivers i ty of C a l i f o r n i a , Berkely , Ca, 1987. Lawrence Berkeley Laboratory, DOE-2 Sample Run Book. Simulation Researh Group, Un ivers i ty of C a l i f o r n i a , Berkely , Ca, 1989. Lawrence Berkeley Laboratory, DOE-2 Supliment. Simulation Researh Group, U n i v e r s i t y of C a l i f o r n i a , Berkely, Ca, 1989. Lawrence Berkeley Laboratory, DOE-2 Basics Mannual. Simulation Page 165 Projec t : Test ing of A i r B a r r i e r Construct ion D e t a i l s , Report No. 32173.03/1, Ottawa, 1993. Canadian Mortgage and Housing Corporat ion, OPTIMIZE, A Method for Est imating the L i f e c y c l e Energy and Environmental Impacts of a House, Ottawa, 1991. Cole , R . J . , B u i l d i n g Mater ia l s i n the Context of Sustainable Development. Environmental Research Group, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B . C . , J u l y , 1994. Cole , R . J . , E d . , Bui ld ings and the Environment, Proceedings of a one day Forum held at the Un ivers i ty of B . C . , School of A r c h i t e c t u r e , Un ivers i ty of B r i t i s h Columbia, Vancouver, 1991. Cole , R . J . , Rousseau, D. , Energy Intens i ty Data Base, U n i v e r s i t y of B r i t i s h Columbia, 1993. Cole , R . J . , E d . , Bui ld ings and the Environment, An Internat iona l Research Workshop, Environmental Research Group, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, 1992. Common, M. , "The Economics of Energy Analys i s Reconsidered", Energy P o l i c y , pp. 158-165, June, 1976. Conal ly , S . , B . C . Gas, Personal Communication, Vancouver, B . C . , 1995. Conover, R . , Jarnagin , R . E . , Shankle, D . , "Commercial B u i l d i n g Energy Standards Implemintation: Myth vs Rea l i ty" , Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American Counci l for an Energy E f f i c i e n t Economy, pp. 6.27-6.34, 1994. Constanza, R . , Farber, S . , Maxwell, J . , "Valuation and Management of Wetland Ecosystems", E c o l o g i c a l Economics. V o l . 1, pp. 335-361, 1989. Costanza, R . , E d . , E c o l o g i c a l Economics The Science and Management of S u s t a i n a b i l i t y . Columbia Univers i ty Press , New York, 1991. Daly, H . E . , Townsend, K . N . , E d . , Valuing the Ear th , Economics. Ecology. E t h i c s . MIT Press, Cambridge, Mass. , 1993. Daly H . E . , UmanaA.E . , E d . , Energy. Economics and the Environment: C o n f l i c t i n g Views of an E s s e n t i a l I n t e r r e l a t i o n s h i p . AAAS Symposium 64, Westview Press , Boulder C o l o . , 1981. Danbridge, C . B . , Rotur i er , J . , Norford, L . K . , "Energy P o l i c i e s for Energy E f f i c i e n c y i n Of f i ce Equipment", Energy P o l i c y , V o l . 22, No. 9, pp. 735-747, 1994. Page 164 Researh Group, Un ivers i ty of C a l i f o r n i a , Berkely , Ca, 1991. Leach, G . , "Net Energy A n a l y s i s - i s i t any use?", Energy P o l i c y . V o l . 3, No. 4, pp. 322-344, (Dec.) 1975. Lindblom, C . E . , "The Science of Muddling Through", Publ ic Adminis trat ion Review. V o l . XIX, No. 2, pp. 79-88, Spr ing , 1959. Lovins , A . B . , "Expansio ad Absurdum", The Energy J o u r n a l . V o l . 2, No. 4, pp. 25-42, 1981. Lov ins . A . B . . "Energy Strategy; The Road Not Taken?". Foreign A f f a i r s . F a l l , 1976. Lutzenhiser , L . , "Innovations and Organizat ional Networks", Energy P o l i c y . V o l . 22, No.10, pp.867-876, 1994. Lutzenhiser , L . , "Socia l and Behavioral Aspects of Energy Use", Annual Review of Energy and the Environment. V o l . 18, pp.247-289, 1993. Lutzenhiser , L . , "A C u l t u r a l Model of Household Energy Consumption", Energy. V o l . 17, No. 1, pp. 47-60, 1992. MacDonald, M . J . , "Energy E f f i c i e n c y C a p i t a l Requirements for Bui ld ings i n the United States ," Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n B u i l d i n g s . American Counci l for an Energy E f f i c i e n t Economy, pp. 1.175-1.183, 1994. McDaniels, T . , Environmental P o l i c y Ana lys i s : Risks and Values . A Reader. U n i v e r s i t y of B r i t i s h Columbia, School of Community and Regional Planning, Vancouver, B . C . , 1993. Means, R . S . , Means Construct ion Cost Data. 52th E d . , W a t t f o r d M a . , 1994. Nadel, S . , Pye, M . , Jordan, J . , "Achieving High P a r t i c i p a t i o n Rates: Lessons Taught By Successful DSM Programs", American Counci l for an Energy E f f i c i e n t Economy, 1994. Nadel, S . M . , Reid , M.W., Wolcott, D . R . , E d . , Regulatory Incentives for Demand Side Management, American Counci l for an Energy E f f i c i e n t Economy, Washington, D . C . , 1992. Nat ional Research Counc i l , Draf t : The Nat ional B u i l d i n g Code of Canada Ottawa, 1994. Nat ional Cooperative Highway Rsearch Program, Energy involved i n construct ion materia ls and procedures. Nat ional research c o u n c i l , Washington, D . C . , 1981. Nemetz, P . N . , Commerce 595 Class Notes, U n i v e r s i t y of B r i t i s h Page 166 Columbia, Vancouver, B . C . , 1993 Nemetz, P . N . , E d . , Resource P o l i c y Internat iona l Perspect ives . The I n s t i t u t e for Research on Publ i c P o l i c y , Montreal , Que. , 1980. Northwest Power Planning Counc i l , Northwest Conservation and E l e c t r i c Power P lan . Document 91-05, Port land, Oregon, 1991. Odum, H . T . , Environment. Power and Society , Wi ley-Intersc ience , New York, 1971. Oka, T . , Suzuki , M . , Konnya, T . , "The Est imation of Energy Consumption and Amount of Po l lutants due to Construct ion of Bui ld ings" , Energy and Bu i ld ings , V o l . 19, pp. 303-311, 1993. Peet, M . J . , "The Energy Intens i ty of Commodities Produced i n Canada", Energy, V o l . 6, pp. 503-517, 1981. Pub l i c Works Canada, A i r Leakage Contro l ; Guidl ines for I n s t a l l a t i o n of A i r Leakage Control Measures i n Commercial B u i l d i n g s . Ottawa, 1994. P u n t i , A . , "Energy Accounting: Some New Proposals", Human Ecology. V o l . 16, No. 1, pp. 79-86, 1988. Radian Canada Inc./Canada Center for Mineral and Energy Technology, Raw Mater ia l s Balances. Energy P r o f i l e s and Environmental Unit Factor Estimates for Cement and S t r u c t u r a l Concrete Products. Oct. 1993 . Rees, W . E . , "Ecolog ica l Footprints and Appropriated Carrying Capacity: What Urban Economics Leaves Out", Environment and Urbanizat ion , V o l . 4, No.2, pp. 121-130, Aug. 1992. Re i s t er , D . B . , "The Energy Embodied i n Goods", Energy. V o l . 3, pp. 499-505, 1978. Robinson, J . B . , "Apples and Horned Toads: On the Framework- Determined Nature of the Energy Debate", P o l i c y Sciences. V o l . 15, pp. 23-45, 1982. Robinson, J . B . , "The Proof of the Pudding: Making Energy E f f i c i e n c y Work." Energy P o l i c y . V o l . 19, No. 7, pp. 631-645, 1991. Sanstad, A . H . , Howarth, R . B . , "Consumer R a t i o n a l i t y and Energy E f f i c i e n c y " , Proceedings of the ACEEE 1994 Summer Study on Energy E f f i c i e n c y i n Bu i ld ings . American Counci l for an Energy E f f i c i e n t Economy, pp. 1.175-1.183, 1994, a. Sanstad, A . H . , Howarth, R . B . , " 'Normal' Markets, market Imperfections and Energy E f f i c i e n c y " , Energy P o l i c y . V o l . 22, No. 10, pp.811-818, 1994, b. Page 167 SENES Consultants , L T D . , Construct ion and Demolit ion Waste i n Canada. Richmond H i l l , Ont, 1993. Serber, D . , "Energy Embodied i n Bui ld ings and B u i l d i n g Components", Energy P o l i c y . V o l . , pp. 317-326, 1976. Simon, H . A . , "Rat iona l i ty i n Psychology and Economics", Journal of Business. V o l . 59, No. 4, Pt . 2, pp. S209-S224, 1986. Smith, R . , S t a t i s t i c s Canada, Personal communication, Otawa, Ont . , 1994. S t a t i s t i c s Canada, Catalogue Number 89-525E, Adult L i t e r a c y i n Canada: Results of a Nat ional Survey. Ottawa, 1991, a. S t a t i s t i c s Canada, Catalogue Number 57-003-IV, Quarter ly Report- Energy Supply-Demand 1991-IV. Ottawa, 1991, b. S t a t i s t i c s Canada, Catalogue Number 11-528E, Environmental Perspect ives 1993. Ottawa, 1993. S t a t i s t i c s Canada, Catalogue Number 62-001, Monthly, The Consumer P r i c e Index. Ottawa, A u g . , 1994. S te in , R . G . , Serber, D . , Hannon, B . , "Energy Use for Bu i ld ing Construct ion", Center for Advanced Computations, U n i v e r s i t y of I l l i n o i s , 1976. Ste lco Technica l Services L t d . , Raw Mater ia l s Balances. Energy P r o f i l e s and Environmental Unit Factor Estimates for S t r u c t u r a l Stee l Products. Aug. 1993. Stern, P . C . , "Bl ind Spots i n P o l i c y A n a l y s i s : What Economics doesn't say about Energy Use", Journal of P o l i c y Analys i s and Management, pp. 200-227, 1986. Stern, P . C . , Aronson, E . , Energy Use: The Human Dimension. New York, W.H. Freeman, 1984. Sutherland, R . J . , "Market B a r r i e r s to Energy E f f i c i e n c y Investments", The Energy Journa l . V o l . 12, No.3, pp. 15-34, 1992. Sutherland, R . J . , "Energy E f f i c i n c y or the E f f i c i e n t Use of Resources?", Energy Sources f V o l . 16, pp. 257-268, 1994. United Nations Cenre for Human Settlements, Energy for b u i l d i n g . N a i r o b i , 1991. Webb, M . , Pearce, D . , "The Economics of Energy Analys i s" , Energy P o l i c y , pp. 318-331, Dec. 1975. Wirt shaf ter , R . M . , "Energy Performance-Based Hookup Fees for Page 168 Bui ld ings" , Energy Sources, V o l . 16, pp.483-501, 1994. Page 169 APPENDICES Page 170 U) £ d L fi 0) c *5 CQ c a < cu L 3 g> -p o L 0 ) JO j J i i - l - t - L 4 - - 4 - OJ > +* c 0 L f t .jAJiliy,.! CD c CO c 3 X IS c QJ < a a -OLi <. L 3 CO l l c o L O a L 0 +> c 0) > L CD CL d in 0) c $ d L n Q) c <E 3 X T5 c OJ a a 3 CQ <E CU L 3 O) LL d "o" d L d d 2: J2 d i CO cs C L Append ix A Tab le A1: 3ui lding Speci f icat ions test run B A S E BUI . D I N G C O N F I G U R A T I O N Schedu les Day Hours Fac tor O c c u p a n c y Mon-Fr i 1.8 0 9,11 1 12 0.8 13 0.4 14 0.8 15,18 1 19 0.5 20 0.1 21 0.1 22,24 0 W e e k e n d s 1,24 0 and Hol idays Lights Mon-Fr i 1,8 0.15 9 0.9 10 0.95 11 1 12 0.95 13 0.8 14 0.9 15,18 1 19 0.6 20,21 0.2 22,24 0.15 W e e k e n d s 1.24 0.15 and Hol idays Equ ipmen t Mon-Fr i 1.8 0.02 9,20 0.8 21,24 0.02 W e e k e n d s 1.24 0.02 and Hol idays Inf i l t rat ion Mon-Fr i 1.7 0.4 8,18 0.06 19,24 0.4 W e e k e n d s 1,24 0.4 and Hol idays Fans Mon-Fr i 1.7 0.4 8,18 0.06 Page 174 A p p e n d i x A 19,24 0.4 W e e k e n d s 1,24 0.4 and Hol idays Des ign Character is t ics Or ientat ion Major Ax i s Paral le l to North South Occupancy 13.9 sq . m/person Lights 27 W / s q . m Equ ipmen t 5.4 W / s q . m Ai r Inf i l t rat ion 2 A C H Peop le Heat Ga in 0.47 MJ/person/hour Hot W a t e r 5000 W a t t s S c h e d u l e ^ O c c u p a n c y E levator 75 K W Schedu le= O c c u p a n c y Glaz ing 2 layers A l u m i n u m F r a m e W i t h o u t T h e r m a l Break Shading coef f ic ient 0.909 The rma l Conduct iv i ty 0.72 Of f ice Condi t ions Design Heat T e m p 21 Deg . C Design Coo l T e m p 23 Deg . C Ai r Changes /Hr 4.5 O/A changes /Hr 0.58 cu m./person Var iable A i r V o l u m e S y s t e m Baseboard Heat ing Underground Park ing Condi t ions Outs ide A i r Changes /Hr 6 Heat ing, Cool ing Not Supp l ied Page 175 ^ CO £ 2 T5 3 i> « LU Z To 15 o o II 00 X !n c CD C L C L < < Z3 C Q C o E CO c o O >» O) CD C LU c o C Q i— C D 03Q AON 10O d3S t onv t w co cu CC CL o Nnr udv yviAi t 93d Nvr [rol uoijdujnsuoo A6jau3 42 </> TO —-~ o o nr i w TO CT. D O c ij> D) CD b) o b> c c c O c TO c . *j—: —: co £1 "O TO TO ro t TO J—• TO C CO CO CO 3 CO v*— 0 O X X X CO 1 : _C X o 1 i t i 1 1 1 3 C 1 ¥ 1 A O N 3 I O I d d 3 O N I 1 H O H dinD3 'yoivA3n3 CQ X T3 tz CD CL CL < X 0) "D c (D o c ro E L _ CD Q _ CO i _ (D c LU a> c ' 2 '5 OQ C O G Q <X> L-13 NoiivnnsNi A 1 I S N 3 0 O N I 1 H O I 1 ONizvno oo CD D) cc Q. dlAind 1 V 3 H O N I I H O H A V Q z Noi ivyn idNi L N o i i v y n i d N i N0HV1N3IU0 3 S V 0 3 s v a cn o OO o o CD d d d d CN d [LU b s / r o ] i d 3 a DO X c co Q- Q. < W) = ) T J C LU .Q C o "-*—' C L E CO c o O >. CO 1 c LU CQ CD l_ CO c CO E Q. -3 <T UJ CO O) 0 CO > 1 X < 05 h- CO D) CO Q. co co I CO o CO Q . CO CN CN CN CN CN CN T— — — + + + + + + + LU LU LU LU - LU LU LU LO CO LO CN LO LO CO Csi [sainof] asn A&jaua pawnsuoo A6J8U3 leioj. J O juaojad CO CM co CM |m CM CM CO -! o 1̂ - 91 CM p O |m CM O 00 lO CM 111 N W I-2 UJ D. D o UJ a: x CO o £1 CD X a •I I ° ! 8 LL c Q. Q. 10 LU N (fi \~ • 2 LU 0. Z> a LU cr. x 15 i - 00 14) l a a: x D I- 00 cn c o o o lO _ re" 03 «— >« a. a. 3 10 CD z | C M LU oo tf CM + LU CO 00 X T3 CD a. a. < CD 3 CO 3 loo <f- co o LU | i|LU + LU CM O + LU co" CM | LU CO CM I + LU 1̂ co + LU T— CD 1CM CM LU •* m CM c\T LU CO m cd I<N '+ LU CM O to CM LU CO CM 1̂ O z U J i LU I CM , + LU CM + LU co CO + LU + LU CO CM I + UJ CD co + LU a> CD CM I LU CO + LU m l» CM | + LU + U J m led + LU CM CM'I CM LU co co cd | C M + U J E 3 CO oo CD cn ro 0. o 3 CO . l o E> CD c ILU - loo CD l-O O 2 o in co CM CO d co O 2 CO CO CD oo d co H OO LU _ l LU I S i m CM in oo m cn o o co CM T— CM O c LU _ l LU at O) in co O ) o o co CM CM < Q _j CQ 3 jQ CD CO CO •Q > O LU H CO a _j m 3 J2 z cc: co CD l ^ 1 CO 'I c CD E a . '3 UJ CO >- O LU o I- Z 3 DC co CD U CO CD E a.. UJ CO GO X TD CD Q . Q . < T t CO CM CN CN O ) CM O 01 • rt, CD CD O CO CM CM T— T - «6 CO + W CO U J 05 CD t o 5 o O ) T - i ; Q . E rf, CD CD CM CM M CD t- T t in ^ co LU JO a. m E J =: -55 10 CO CM OO CD O ) CO a. LU N CO H - Z LU 9_ o LU CM O X I- CQ x o co o co cn CM or X CO f o o o 19.. c >> C L C L 3 </> O I CM + LU CM CO + LU x— •sl- ed CM + LU CD CD 00 •o c CO C L C L < CO a 3 I ° CO CO 05 3 O |1=»1 O LU _ J LU + LU + LU CD CD + LU CD CM j 00 co + LU m loo CM | X— + LU CO o + LU M cn I co I CM + LU t>- M - co LU f>- CD CM co co CO oo d CD < co Q .J m on co i f co E _co ca. E > O LU H < on i - w LU _ ] LU CO CO o o CM CM CO CO IX CO o co, J C L CO o o o CD o co, Q. co CO > co ILU c CO CM T- IT) r- oo cn + l*» CM LU «J «*> CD J f i co «J co © o CM cd cn T - CO CO to 2 5 CL at %* to <fl co oo T — CD O) CO Q_ cn a _j co 3 CN O d 00 o o cn co LU N (0 H Z LU CL 3 o LU tr. x D I- 00 X 3 I- 00 I f 8 c IS >. Q. Q. 3 CO CO x T3 C <u CL CL < CO CO - TO O) CO CO E cu o 1^ co N TO I CT |_co CL o z + LU oo + LU co' + LU cn co a 3 CO + LU |CN] co O LU _ l LU CO + LU T— ro + LU CO co + LU O CD CN CN] Si co co + LU CO ioci CM I + LU CO o rs N TO CT 0 J 2 3 O •o CO o TO Q. £. >- o LU C/> O z co CO oo d co 3 I- m LU _ J LU m cn CN CO O O CN CN CO IS S-i CO o iS 3; TO Q-l CO CO TO > co ILU cz 0 E CL . ' 3 01 LU CM 00 CO T - O O E UJ IS* « . « g CO GO co 5> O CM CM cn "**** CM + CO CO LU «M r - CO Jfi CM IN. CO "T a. LU m 1.1 CO <fl 00 0 O) CD 0_ 3 CO z 3 or LU N CO H • Z LU DL 3 o LU o cn cc: x h-co 5 o o CD co co OH X 15 CO LCD I f 8 lo _ CO a. C L 3 10 + LU co o + LU cb CO X T3 C CD C L < CO CD CJ CO t 3 CO I'd c 3 o \ S» CD "O c 3 c: co sd "co 5 o p CD c o _co 3 CO c CD 3 3 o >- o LU I-< DC f— CO CD 3 I ° CO + LU CN CN CO + LU CO CM + LU 00 CO + LU oo co CN + LU a> co CO + LU CN cn + LU m I CD | CM T LU co oo CM \™ LU cn CN CN co CO 00 b co 3 H 0 3 LU _ l LU CO CM CO CO CN CN CO CD IX o o O 18 CO o IX CD CN CO T - rt + r~ co 2 co CN ° W_ (0 3 CO CO CM o CM irt co T- (1 O + r- CN UJ » s CO CO CN CN CN CM a. UJ CO I I to W in oo CD CO CO 0_ Q _J 3 CQ 3 DC UJ N CO H Z UJ D_ a UJ CN X I- m o .Q O oo co or x t— CO o f! o >» CL CL 3 CO GO T3 c CD CL CL < o z o UJ _J UJ CD + UJ CM + LU « , + LU p cd + LU CM CO + LU co + LU oo co CM + LU oo . — CM + UJ CO CO | C M + UJ m CM cr co ]CD o iJT 1° E p cz 'CO 3 > o UJ I— I- o z o CO co LU _l LU CM m CM m CO co o cc I CL Ico1 o O •8 (0 Si co > CD |UJ c CD E a., 3 cr] LU CM t-s T - rt + r- UJ oo ~ CM:; CM © b m o CM | CM QL UJ CO i n co v> o < Q_ LU > < o LU z or o _ i < LU > < • X o Q Z D o D 00 o" LU H CO LU 1- co UJ o UJ CO _J < z o Q Q < co T— Q _J D | 10- cb CD •a o CM c CO " CO CD i ai co " P CD CL E " u. O •c CD —̂* _c CD " O) 3 I-a p cn I c - c CD > .9? ' c >' O LU H m a _J OQ O 2 "co 3 o o C IS CD CO co o CD TJ CD to CO 8> o c co oo CD cn CO 0. Q _J D | ml >-O LU H CD C o N IS E o u CD to CO CD CJ C > O UJ LU o < 0. w z CO u. O •c CD 3 OQ HO CO >-' O LU z cc: co z D Oil co z D Z D or h- co •o c CD Q. Q. < CN CO CO •CO- •CO- co o ro D_ CJ X T 3 C CO a a < CO CM CO CD CO CO CO CO O) CO a. < CO CD TJ TJ CD CD E u o O) O) O) E c CO CO CO 3 5 8 2 .5 3  3 5 8 2 .5 3  2 2 5 1 .2 0  5 6 5 1 .4 5  1 1 7 2 .5 0  1 8 7 6 .0 0  2 2 5 1 .2 0  2 8 1 4 .0 0  2 1 1 0 .5 0  3 7 5 2 .0 0  5 1 5 9 .0 0  3 1 8 9 .2 0  3 5 1 7 .5 0  4 6 6 6 .5 5  1 5 .0 9  14 87 .0 9 1 1 9 1 .9 8  1 .4 9  0 .9 6  2 .4 1  LO d CO d 0 .9 6  CN cn d cn LO CO CN CN 1 .3 6  LO 1 .9 9  4 .9 6  cn cn 1 3 .1 9  In c l.  t ra n s . 19 5. 23  CO E CO E CO E CO E CO E CO E CO E CO E CO E CO E CO E CO E CO E CO E k g  N o . CN E m 2  T a b le  C 1 : E n e rg y  In te n s it y  o f B u ild in g  M a te ri a ls  T a b le  C 1 : E n e rg y  In te n s it y  o f B u ild in g  M a te ri a ls  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  2 3 4 5  T a b le  C 1 : E n e rg y  In te n s it y  o f B u ild in g  M a te ri a ls  R e a d y  m ix  c o n c re te  o *-» o o •*-» 1 5  m P a  2 0  m P a  3 0  m P a  M a s o n ry  B ri c k  ( 5 6 x 9 0 x 1 9 0 m m ) B ri c k  w a ll  in c l.  m o rt a r B ri c k  w a ll  1 O 0 m m  T a b le  C 1 : E n e rg y  In te n s it y  o f B u ild in g  M a te ri a ls  R e a d y  m ix  c o n c re te  C o n c re te  C o n c re te  C o n c re te  C o n c re te  C o n c re te  C e m e n t C o n c re te  C o n c re te  C e m e n t C e m e n t C e m e n t D iv is io n  4  M o rt a r B ri c k  ( 5 6 x 9 0 x 1 9 0 m m ) B ri c k  w a ll  in c l.  m o rt a r B ri c k  w a ll  1 O 0 m m  TJ c OJ Q. Q. < CM oo CM CD in cn CM CM co CD CD (fi (fi CO (fi (fi (fi o cn CP to u c co a a. < CO CO CO CN CO CT) CO cn CD 0_ < TJ TJ TJ E c Cl) _ ^ CO cu CO TJ TJ 8. 04  8 .0 2  1 0 .2 3  1 0 .5  5 9 .9  ro 2 3 6 .3  2 7 3 .9  2 6 1 .7  CD 00 9 5 .3 6  1 0 8 .8 5  1 6 2 .1 1  1 7 0 .0 2  o CN 9 3 .0 3  6 0 .4 7  * — CO CO CO 3 .1 2  b d  ft  b d  ft  b d  ft  CO E T a b le  C 1 : E n e rg y  In te n s it y  o f B u ild in g  M a te ri a ls  T a b le  C 1 : E n e rg y  In te n s it y  o f B u ild in g  M a te ri a ls  8 9 1 2  W o o d  a n d  P la s ti c s  5 1 2 .9 1  T a b le  C 1 : E n e rg y  In te n s it y  o f B u ild in g  M a te ri a ls  1 0 0 %  re c y c le d  a lu m in u m  o A lu m in u m  a n o d iz e d  C a s t o r ro lle d  c o p p e r S tr u c tu ra l s h a p e s  W ir e , e x tr u s io n s  M e ta l fa s te n e rs  W o o d  a n d  P la s ti c s  S o ft w o o d  f ra m in g  o *-> F in is h e d  t o m b e r O •*-» S o ft w o o d , k il n  d ri e d , p la n e d  P ly w o o d , e x te ri o r g ra d e  T a b le  C 1 : E n e rg y  In te n s it y  o f B u ild in g  M a te ri a ls  1 0 0 %  re c y c le d  a lu m in u m  S h e e t,  b a r A lu m in u m  A lu m in u m  a n o d iz e d  A lu m in u m  A lu m in u m  A lu m in u m  C o p p e r C a s t o r ro lle d  c o p p e r S tr u c tu ra l s h a p e s  S h e e ts , s tr ip s  P ip e  W ir e , e x tr u s io n s  C o p p e r M e ta l fa s te n e rs  D iv is io n  6  S o ft w o o d  f ra m in g  L u m b e r F in is h e d  t o m b e r S o ft w o o d , k il n  d ri e d , p la n e d  P ly w o o d , e x te ri o r g ra d e  CJ x T 3 C CU Q. CL < CO tn CO CO cn cu CO a. sz TJ TJ TJ TJ sz TJ TJ sz TJ TJ SZ TJ TJ SZ 4- 4- 4— 4- E 4- 4- CD 4— o CO LO CO CO LO t CO CD CN CO CD co CJ) CD CJ) CD CN LO r- CD CJ) CM LO O O L |-» cn CD CO 00 CN 4 9 .3  LO o co CN CO 2 6 .8  k g  k g  k g  k g  k g  k g  k g  k g  D) T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  T h e rm a l a n d  M o is tu re  P ro te c ti o n  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  T h e rm a l a n d  M o is tu re  P ro te c ti o n  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  G e n e ra l p la s ti c s  o O o o O P o ly o le fi n , p ro d . P o ly e th y le n e , p ro d . P o ly s ty re n e  in s u la ti o n  P o ly s ty re n e  i n s .,  p ro d . T h e rm a l a n d  M o is tu re  P ro te c ti o n  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  P la s ti c s  G e n e ra l p la s ti c s  P o ly m e rs  P o ly e th y le n e  P o ly e th y le n e  P V C  P V C  P o ly p ro p y le n e  P o ly p ro p y le n e  P o ly s ty re n e  P o ly s ty re n e  P o ly o le fi n  P o ly o le fi n , p ro d . P o lt e th y le n e  P o ly e th y le n e , p ro d . P o lt e th y le n e  P o ly s ty re n e  in s u la ti o n  P o ly s ty re n e  i n s .,  p ro d . A d h e s iv e s  D iv is io n  7  K ra ft  p a p e r u X T> C <P Q . C L < CM CO CO in cu co co O- < .c E c TJ TJ _y CO 4- CO CO CO CO o E c CO CO CO CO CO LO in CN 00 2 4 1 8  1 2 8 3  2 5 .2 2  2 7 .1 6  3 5 .6 4  o in o o 1 2 2 .8  1 1 8 .8  2 9 .3  2 9 .3 1  CN CN 1 0 .2  1 1 .9  2 1 .6  1 6 .5  4 3 .5  8 .1 2  0 .5 8  0 .6 2  0 .8 2  k g  k g  k g  k g  k g  k g  CN E CN E CN E CN E k g  CJ) k g  k g  E E E k g  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  D o o rs  a n d  w in d o w s  2 5 3 9  2 5 3 9  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  F ib re g la s s  b a tt s  D o o rs  a n d  w in d o w s  o 6 m m  G la s s  (p la te  &  fl o a t)  T e m p e re d  g la s s  L a m in a te d  p la te  g la s s  L a m in a te d  s h e e t g la s s  S h e e t g la s s  U K  F in is h e s  S te e l s tu d s  2 5 g a  9 0 m m  1 0 0 m m  1 5 0 m m  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  F ib re g la s s  b a tt s  P o ly s ty re n e  P o ly s ty re n e  P o ly s ty re n e  D iv is io n  8 G la s s  G la s s  G la s s  6 m m  G la s s  (p la te  &  fl o a t)  T e m p e re d  g la s s  L a m in a te d  p la te  g la s s  L a m in a te d  s h e e t g la s s  S h e e t g la s s  U K  G la s s  ( s h e e t)  G la s s  ( s h e e t)  D iv is io n  9  S te e l s tu d s  2 5 g a  G y p s u m  b o a rd  < ro ro u o CD E ro ro CD CD CD ro CO CO CO T5 c 7 9 .2 4  9 9 .1  CM CO 2 5 7 .3  3 0 .7 5  1 3 6 .0 1  1 3 6 .2 8  1 4 1 .8 6  1 2 1 .7 9  in 00 in 00 d Lf> 5 .0 2  1 1 6 .2 9  1 8 .6 1  CN 00 CM 7 6 .7  9 .7 6  1 2 .2  6 .3 5  1 4 .6 4  CM CM E CN E k g  k g  k g  k g  k g  O) co CM E CD CD o CM E m 2  _ i _ i _ i i I _J kg  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  1 2 m m  1 6 m m  o G y p s u m  b d . in t.  V in y l fl o o ri n g  3 m m  R u b b e r,  p la s ti c , ti li n g  E x te ri o r o il b a s e  E x te ri o r w a te  b a s e  In te ri o r o il  b a s e  In te ri o r w a te r b a s e  o P a in t w a te r b a s e , d ry  T a b le  C 1 : E n e rg y  I n te n s it y  o f B u ild in g  M a te ri a ls  G y p s u m  U K  G y p s u m  G y p s u m  G y p s u m  b d . in t.  D ry  w a ll  V in y l fl o o ri n g  V in y l fl o o ri n g  3 m m  V in y l ti le  R u b b e r,  p la s ti c , ti li n g  C a rp e t C a rp e t T il e s  P a in ti n g  E x te ri o r o il b a s e  E x te ri o r w a te  b a s e  In te ri o r o il  b a s e  In te ri o r w a te r b a s e  P a in t P a in t w a te r b a s e , d ry  u TJ c cu Q. Q. < co CO cn CD D) CD 0- u c cu Q. Q. < CD U) CO CD O) CD D_ CM O T3 C <D a. CL < o 05 ro • CD 1^ 05 "S CO c , CO lo • c w .ro i'cs c (0 TO c 0) u c LU CN O .CO CO .c o *l O) 00 05 00 CD 00 05 LO s 05 005 8 CN 00 05 co O) 8 00 05 O E E cS CN LO 1̂ CM 05 10 'a CN 3 05 8 8 LU 3! < O _ J co _ i o X W D z < co 00 CM 8 3 col o'l s iii or O 2 or o Q O O o H CO O 8 8 S Si 18 8 21 CO < LL. LU CC o. - J o X LU D O or a. CN Isl O) a: s 9 8 131 8 CO o ltd CM Is 8 co loo |co CN 151 LO •>* LO~| CD I led LO 8 iri oo 81 LO 81 05 co 05 ~*\ co" CO 5 o t— CO H LU _ J _ J CO gl o CO LU LU I - to o f l z jo I or 5 I T 111 CN O CO £ 8 CN 81 LO * l CM" iri '8 Or l°o w let: < |on i LU LU its o LO in LO CO •*r o LO sl a. z ILU w z o or l § 8 |CD | CO a CN O h-" CO Isl lO CO oo" o CM co" CM CO col LOj CN S LU LU H co o f l z o or or LU x CM | o CD CN O) CO -<r CM CN 8 8 $1 IS 8 CN 8 CO CN s CO CM w 1̂ 1 CD LO CN LU S=E| o or co < LL >- o I < CD h- CM CN LO O IS CN 00 O CN 8| cd C N | 8 CN CO CO o liri co CO CO CD CO I CO s CO 05 CM 7^ CO CO 8; CO LO |co to" LO | CD | CO IcN 5 0. _1 LU LU I - co o LU o or co < CM CM CM CM co co o CN in t-- ro # o q CD o ro CO # CD in # o •A # CD ro # CO co CO CO CM I*- ro cn CM O CN •A CO X— 8 "•S CM in CM CD cn m •A o o ro o> CO r- in CO ro CO CM •A o •fl- # in CO in • f l =« ro m | 15 5. 47 %  CO m 1*-° O .— 8 CO o *— d CM s 8 4 8 ro" •A iri in CO 00 d 00 CM A 5? d •A s 8 iri CO 8 4 s CN in CN m iri CO d iri •fl- CO in 8" cri d CD | 15 5. 47 %  10 .4 1 | | 2 3. 38 1 [1 1. 80 1 10 .4 7|  | 3 1. 24 1 11 2. 26 1 11 .4 7|  12 .1 11  | 8. 64  | | 8. 29  | I 7 .8 3 ] 11 2. 48 1 11 2. 81 ] 11 2. 51 1 [ 6. 08  J I 6 .0 7 ] I 7 .6 0 | I 7. 53  ] [ 8 .1 41  8. 19  1. 61  7. 53  | 6. 89  ] I 7 .0 3 ] 11 2. 77 1 11 3. 92 ] I 7 .0 7 ] 7.2 5 17 0. 74 ] [2 0. 10  | 2 9. 44  | 3 5. 22  | 2 2. 66  | 2 2. 89  | 23 .01  12 3. 01 ] 11 7. 99 1 | 3 4. 04  13 .0 51  | 2 8. 43 ] [1 4.1 51  12 .3 21  36 .4 61  11 5. 08 ] pl 3. 94 | ] 1 3. 82 ] 11 0. 89 ] I 9 -6 1 I | 9. 08  j 11 5. 38 ] [ 1 5. 59 1 [1 4. 61 ] | 6. 00  [  [ 5 .0 0 ] | 8. 28  ] I 8. 51  ]  | 8. 85  | | 9. 12  ]  [ 1. 78  ]  8.5 7 [ 7. 46  ] I 7 .7 6 11 2. 95 1 11 4. 67 1 | 7. 53  ] | 7. 93  \  | 8 1. 11  | 2 1. 03 1 [3 1. 23 1 | 3 7. 20  | 2 5. 36  12 5. 35 ] | 2 5. 59  | 2 5. 62 ] [1 8. 78 ] | 3 5. 18 1 13 .7 51  | 2 9. 57 1 14 .1 1 13 .2 11  38 .9 21  [1 6. 65 ] 15 .20  14 .53  11 1. 79 ] | 9. 89  ] I 9 -2 4 | [1 5. 45 ] [1 5. 47 1 [1 4. 60 ] I 6 -4 5 | | 6. 77  | [ 8 .3 4 ] [ 8. 86  ] [ 9 .3 9 | [ 8. 94  | I 2 .1 4 | [8 .7 6 ] 8. 11  I 8 .2 5 13 .3 7 11 6. 10  | 8. 68  | I 8 .5 1 ] [7 7. 00  [2 1. 71  [3 1. 61 1 [3 3. 32  | 2 4. 94  24 .5 7! | 2 4. 78  24 .7 9!  | 2 0. 25  | 3 4. 23  14 .0 91  29 .0 21  14 .0 21  13 .0 21  30 .5 7 j 14 .8 2]  14 .1 2|  15 .5 9]  12 .5 4]  9. 89  ] 10 .4 3]  11 5. 19 ] [1 5. 29 1 [1 4. 73 ] f6 .7 4 | [ 6 .93  |  f8 .5 0 ] [ 8. 57  ]  [9 .3 4 | |9 .1 0l  f2 .3 6 ] 10 .4 31  9.2 8 8.8 5 13 .3 61  15 .3 91  f9 .3 6 ] ( 9 .2 8 [7 3. 79  [ 2 0.9 1 [2 9. 79 ] [2 9. 87  [2 4. 64  | 2 4. 05  [2 4. 37  [2 4. 37  [1 9. 03  | 3 5. 50  13 .0 81  28 .6 51  11 3. 02 1 11 2. 72 1 28 .8 31  11 3. 14 1 12 .9 01  11 4. 22 1 11 .3 9 9. 27  | 9.7 5 | 14 .4 01  14 .6 51  15 .28  6.7 0 | 7.9 1 7.4 3 7.6 9 | 8. 18  ]  8. 17  2.9 4 ] 9.7 6 ] 8.9 9 ] 8.5 8 j 12 .8 31  14 .8 4]  9.0 7 | 9.0 0 ] 62 .9 11  18 .3 11  24 .1 4 31 .52  25 .2 5 25 .10  25 .5 4 25 .5 4 19 .72  | 32 .13  14 .0 91  30 .1 21  13 .9 71  13 .0 91  29 .44 1 14 .0 31  13 .6 51  14 .6 11  12 .27  9.6 9 | 10 .1 0|  13 .4 41  13 .9 01  11 3. 45 1 6.4 9 | 8.4 9 | 7.9 6 | 8.0 5 | 8.8 1 | 8.5 6 | 3.4 3 | 9.9 5 | 9.2 3 | 8.7 8 | 14 .01  | 15 .97  9.3 3 | 9.2 9 | [5 2.0 4J  16 .0 2]  21 .7 2 | 3 4. 86 j 26 .51  ] | 2 6.4 1 j 26 .7 8]  26 .8 11  [2 0. 18 1 | 3 1. 66 1 CO o CN cn CM .i— •fl-.— CO co CO cn •* CN 8 s 9. 75  | o CO cn ro m CO i— CM ro o CD ro 00 in CN ro in CM 00 in CO CO o CO in ro CO CO ^— .— ro in CO CO CO ro CO cn CO •fl cq ro CN co' 82 CO co N! in iri in" T " 9. 75  | d •A iri •A cd ro CO CO od CO d ro CO •A iri .— ro cd CO CO CO CD CN iri co ro' (N d CO d CO d CO CN M CO m ro co ro in •fl- CM CO ro •* O) CO o CN O A- CO CO •A m in A CN 9.9 1 | 8.6 6 ] CD CO r--co ro CO 5.6 1 ] ro o CO CD co A o o CO •<f CO o CO CD CO o O CO in o co CD CN N; CN N; CO CO CO 00 CO csi CO co' • f l CO co" CO t - ° CM d iri iri iri s° 9. 91  |  8.6 6 ] co° ai 00° 5. 61  ]  cri d iri <6 •— cri ro* cri in ro* (6 CN •fl-' CO to co CO CO CO CM d CO co co m CO s Ii •fl- 3 • f l - in •fl; CM 5 CO CD CM CO 8.8 1 | ro o 8.8 8 ] m o o q t̂  CO CO o CM r— CN ro CM î -m CM CN m m CN in CO in CO CD CO O m CM CN d CO CN CO ed d d iri iri iri d cd cd 8. 81  |  d 8.8 8 ] CO* d cri iri ID d d iri CO ro° ro* CM CO CO CO* CO CM CO co" co CO CO CO CM ro CM • f l - co CO CO CO m CO in I-- CO in CO CO CO ro cn o O CO CN 6.7 0 j 9.2 4 | 8.0 7 j ro CO 9.6 8 | o ro r- CN CO CO CO CO O 00 CO CM m co CO CM to m in •fl- CO m CO cn CN CD CO CM csi d CO co' •* d d d A" •A 6.7 0 j 9.2 4 | 8.0 7 j od 9.6 8 | CO CO d cri CO* A d ro* ro* s ro ro* CN cri CN co CO CO CO iri CM d CN m CO in N- 8 cn m CD 8 8 CM 5 8 In s CO o a 8 ro ro ro 5.8 7 ] 00 ro ro m CO A CO ro cn CO s 00 CM CO CO • f l - 8 •fl-oo CN • f l - 8 8 s s o ro ro 5 d CN cd •fl- d CM CN in iri CN •* CN CD ro ro' CD •A CM CN 8 CM CM iri iri T— d iri 5.8 7 ] A co" CO* CM iri CM co* cn ed CM CM* • f l - CO • f l - ed CO <D CM CD CN d CO CO CO ro .— O) CO CO CN 0) CO CO m ro O CO h- •* CM 8 cn cn •A CM CO cn cn ro 3 A in CO CO ro ro A 00 s CO ro CD m CO CM CN m ro m CD •<* O m N- 0) CO ro in CO 0) CO N- CN 00 in 0) CO an ad a ro" CO 1̂  •fl- ro CO CD •fl- f- CO CO 3 3 s 3 in m GO •A f- Ii CN i-- CM m CO in r>-! m CO m ro <— d m iri A iri A A h-' CO r»-' m cd m CN* CO CO d ro • f l - • f l - 00 • f l - CN d d cn d ro CO o • f l - CN | T ab le C2 : En er gy  In te ns ity  T re nd s f or  B ui ld in g M at er ia ls in  C  | PO W ER  B O IL ER S j | IR ON  &  S TE EL  S TR UC TU RA L M AT ER IA LS  | | PR EF AB . M ET AL  B LD G S & ST RU CT UR ES  | | O TH ER  M ET AL  B UI LD IN G PR O DU CT S | | FL AT  I RO N & ST EE L,  A LL OY , O TH  C O AT ED  j | CO RR UG AT ED  M ET AL  C UL VE RT  P IP E j | M ET AL  R O O FI NG , S ID IN G,  D UC TS , E TC  j | H AR DW AR E ] | O TH ER  H EA TI NG  E Q UI PM EN T ] | NO N- EL EC T.  F UR NA CE S & H EA T EQ UI P | | OI L & GA S BU RN ER S,  E TC  | | IR ON  &  S TE EL  F O RG IN G S | | .  VA LV ES  ] PL UM BI NG  F IX TU RE S & FI TT IN GS  ] G AS  &  W AT ER  M ET ER S J CO NT RO L PA NE LS , R EG UL AT O RS , E TC  ] PU M PS , C O M PR ES SO RS  &  B LO W ER S j FA NS  &  A IR  C IR C.  U N IT S,  N O T IN DU ST . j PK G ., AI R PU R . &  O TH  G EN .P UR P. M AC H ] RE FR IG ER AT IO N & AI R CO ND . E Q UI P j CO M PU TE RS .O FF IC E M AC H. EX CL  P H O TO .& FA X j EL EC TR IC  F UR NA CE & O TH  E LE CT .H EA T. EQ UI P | TR AN SF O RM ER S,  B AL LA ST  &  C O NV ER TE RS  j IN DU ST RI AL  E LE CT RI C EQ UI PM EN T ] W IR E & CA BL E,  I NS UL AT ED , E XC L AL UM . j AL UM IN UM  W IR E & CA BL E ] W IR IN G M AT . &  E LE CT RI CA L M ET ER S ] LI GH TI NG  F IX TU RE S,  B UL BS  &  T UB ES  ] CE M EN T ) CO NC RE TE  P RO DU CT S,  I NC L SA ND  &  L IM E | RE AD Y- M IX  C O N C R ET E BR IC K S & O TH ER  C LA Y BL DG . P RO DU CT S 1  RE FR AC TO RY  P RO DU CT S | NA TU RA L ST O NE  B UI LD IN G PR O DU CT S G YP SU M  B UI LD IN G PR O DU CT S M IN ER AL  W O O L BU IL DI NG  P RO DU CT S G LA SS  &  G LA SS  P RO DU CT S AS PH AL T & PR O DU CT S cn CN o CN CN CM CO 8 •A 8 fi fi fi O) CM o •A CM CO A CN A A CN m A CN CO A CN 5? CM CO m CM CO m CM m CN CO CN A- CO CM 00 CM co ro CN ro cn CM o CO CM O CO CO o co T O CO m o CO h-o CO co o co cn o co CN .— CO CO *— • f l - T— CO in CO co CO oo CM CO CD av er ag e | 13 5. 72 %  | | 85 .1 2%  | [ 33 .2 8%  |  [ 60 .2 0%  |  | 31 .1 6%  | [ 32 .1 3%  |  f 29 .3 4%  |  | 9. 07 %  | | 64 .2 4%  |  | 56 .2 9%  |  24 .9 5 j 11 1. 80 1 21 .2 2 [1 1. 89  [ 5. 83  [6 .5 3 | 5. 79  '5 .6 2 I 5. 43  26 .9 81  12 .7 1 29 .3 0 13 .3 51  [6 .6 6 | 7. 38  6. 74  [ 6. 03  | 5. 65 . 26 .6 5 12 .8 9J  27 .2 7 13 .0 2J  6. 88  7. 69  j | 6. 86  j  6. 13  6. 22  26 .6 81  14 .9 2|  28 .7 71  12 .8 81  I 7. 03  |  I 7. 54  j  | 6. 85  ,| I 6. 51  |  1 6. 45  J 27 .2 6 14 .5 9|  24 .9 2 12 .8 7 6. 35  [ 6. 80  [ 6. 26  j - 6. 33  |  6. 23  28 .6 01  11 4. 83 1 24 .4 2 12 .8 4 6. 52  7. 15  6. 29  6. 17  6. 76  | 2 9. 98 1 11 5. 29 1 24 .8 11  11 3. 45 1 [. 6. 93  |  7. 54  '6 .5 6 | I 6. 18  | [ 7. 25  [ 32 .2 01  11 6. 58 1 28 .4 61  14 .3 21  7. 10  [ 7. 69  |  [ 6. 88  |  [ 5. 76  |  1 7. 72  |  35 .8 41  15 .4 1 [1 3. 39 1 [ 1 4. 98 ) 6. 73  7. 38  7. 01  5. 67  7. 79  33 .2 8 1. 13 .9 11  11 3. 70 ] 14 .9 7 | 6. 96  j  7. 87  I 7. 20  j  5. 42  7. 42  3- 19 90 . I | 50 .7 4 | | 27 .9 8 I [ 27 .5 4 ] [ 23 .3 2 | [ 11 .7 5 j 12 .6 4 I I 11 -3 7 . I 7. 34  | 17 .6 4 an ad a,  1 97 ( I 17 1. 49  j I 94 .5 6 j [ 93 .0 8 J 78 .8 3 | | 39 .7 2 | I 42 .7 1 ] [ 38 .4 2 | | 24 .8 1 | [ 59 .6 2 | T ab le  C 2:  E ne rg y In te ns ity  T re nd s fo r Bu ild in g M at er ia ls  in  C  PO L Y M E R S I PA IN T S &  R EL A TE D  P R O D U C T S j A D H E SI V E S | | FL O O R  &  W A LL  C O V E R IN G , EX C L V IN Y L I [ R EP A IR  C O N ST R U C T IO N  j [ R ES ID EN TI A L C O N ST R U C T IO N  I [ N O N -R E SI D E N T IA L BU IL D IN G  C O N ST R U C T IO N  | [ SE R V IC E S T O  B U IL D IN G S & D W E L L IN G S | [ SP A R E  P A R T S& M A IN T .S U PP L M A C H & E Q U IP  | [ R ef .: B us h,  1 98 1 I [ ba se d  o n  S ta ts  C an  C on su m er  p ri ce  in de x.  j [ R ef .: Sm ith , 19 94 . | x— CO CO m 8 cn CO cS CO i 1 1 3 1 1 N ot es  | 2 3" 2 CO O TJ C CD CL < Co sts  a dju ste d fo r V an . | 0.0 81  0. 10  0.0 31  0.0 61  Co sts  a dju ste d fo r V an . | $ Cd n. | 4, 47 11  6, 66 61  ID CN ID 3,3 93 1 Co sts  a dju ste d fo r V an . | Co nv . |  11 3.1 1 11 3.1  11 3. 11  11 3.1  * 0. 07 1 0.0 91  0.0 21  0.0 6 *3 o 3, 95 31  000'9 j 1,3 48 1 3, 00 0 j  tot al j 16 .2 50 .7 ID CN eq uip . |  5.8 1 6.8 1 CO ID CN CN •* 8.6 3 £ 9. 36 1 9.3 5 1.2 6J  14 .5 26 .1  7.2 8 1.2 6 7. 25 | 16 .8 11 .6 6.9 61  ma t. 0.7 91  cn 19 .8 0.7 9 CN 4.9 9 4. 63  0. 13  0. 06  0. 06  0. 02 1 E 41 82 4 21 03 1|  19 16 3 67 20 1 £ o CD » * IP un its  E no . | E •ou D m j/u nit  | mj  to tal  | mj  to ta l | r*. CN ID CN CO «* CN 63 61  M  39 90 1 42 00 1 21 00 | 86 41  | 21 00 1 21 03 1 | ? CO CO CN LD CO CN ID LO CO E 20 00 ] 31 20 ] o o CO 67 20 ] E CO CO CD 2 r < 2 D 3 W as te j to « 1 ID to ID ID ID W as te | ID ID LD •<* ID W as te j ID ID ID ID ID W as te I o o W as te 1 ID ID to E r» E r* O CN ID 0) to o CN 61 1 '1" 38 00 1 40 00 1 20 00 1 83 09 1 20 00 1 20 10 9 'E CO CO CN O O CO o CN CO CO CO E 20 00 1 30 00 1 o o CO 0099 ? CO at CN CD LL 3 r u ~i I E mj /kg  1 E mj /kg  | 1 E 1 E" la b le  In it ia l b m b od ie d b n er gy  o t C as e y tu d y B u il d in g.  r i 5 3 3 5 3 3 la b le  In it ia l b m b od ie d b n er gy  o t C as e y tu d y B u il d in g.  co nv . co nv . co nv . | co nv . | co nv . | co nv . | la b le  In it ia l b m b od ie d b n er gy  o t C as e y tu d y B u il d in g.  • _i D 10 11 J J- J. D u s < r J. JJ m j/u nit  | 7.2 6 m j/u nit  | 7.2 61  O 03 7.2 6 0) LD O CN c 3 t 38 00 1 10 00 ) o o ID 34 62 ) 20 00 ) m j/u nit  j 7.2 51 O cn 7.2 61 3O 0 | O CN m j/u nit  | 20 00 1 10 00 1 o o CN m j/u nit  | 7. 2B  | 90 1 7.2 61 la b le  In it ia l b m b od ie d b n er gy  o t C as e y tu d y B u il d in g.  GE NE RA L CO ND IT IO NS  (O ve rhe ad , p ro fit an d co nti ng en cie s) Qt y./ m  OB d E > 5 01 d 0. 22 6 j  0. 67 6|  Qt y. | «* CN >• a 0. 44 1 0. 14 | CO d Ot y. | CO CO Qt y. | 0. 32 6]  0. 78 | la b le  In it ia l b m b od ie d b n er gy  o t C as e y tu d y B u il d in g.  GE NE RA L CO ND IT IO NS  (O ve rhe ad , p ro fit an d co nti ng en cie s) Un its  | CO E U nit s I CO E CO E CO E E E U nit s | no . | no . | no . | CO E n o. | Un its  | CO E CO E CO E E E U nit s | no . | no . | no . | Un its  | CO E CO E CO E la b le  In it ia l b m b od ie d b n er gy  o t C as e y tu d y B u il d in g.  GE NE RA L CO ND IT IO NS  (O ve rhe ad , p ro fit an d co nti ng en cie s) Tr ac er  w ire  (1 4g a s tra nd ed  c op pe r) | Co ne , t hr us t b loc ks  (6 no . 2 0m pa ) | Tr ac er  w ire  (1 4g a s tra nd ed  c op pe r) | El ec tric ity  a nd  te lep ho ne  su pp ly | la b le  In it ia l b m b od ie d b n er gy  o t C as e y tu d y B u il d in g.  ii DC u z o J GE NE RA L CO ND IT IO NS  (O ve rhe ad , p ro fit an d co nti ng en cie s) [SI TE  S ER VI CE S AS SE M BL IE S 1 16 0m m  d ia.  p vc  p ipe  | Tr ac er  w ire  (1 4g a s tra nd ed  c op pe r) | To tal  m j p er m of co mp on en t | W ate r s up ply  a cc es so rie s | Co ne , t hr us t b loc ks  (6 no . 2 0m pa ) | 50 m m  d ia.  p oly eth yle ne  p ipe  |  Tr ac er  w ire  (1 4g a s tra nd ed  c op pe r) | To tal  m j p er m of co mp on en t | Ga s s up ply  a cc es so rie s j El ec tric ity  a nd  te lep ho ne  su pp ly | la b le  In it ia l b m b od ie d b n er gy  o t C as e y tu d y B u il d in g.  GE NE RA L CO ND IT IO NS  (O ve rhe ad , p ro fit an d co nti ng en cie s) SI TE  P RE P.  | | E xc av ati on  | [SI TE  S ER VI CE S AS SE M BL IE S 1 | W ate rm ain  | Ex ca va tio n | Be dd ing  sa nd  |  j B ac kfi llin g | 16 0m m  d ia.  p vc  p ipe  | Tr ac er  w ire  (1 4g a s tra nd ed  c op pe r) | To tal  m j p er m of co mp on en t | W ate r s up ply  a cc es so rie s | Hy dr an ts | Va lve  b ox es  | i V alv es  | Co ne , t hr us t b loc ks  (6 no . 2 0m pa ) | W ate r m ete r j To tal  m j j Ga s p ipe  j Ex ca va tio n j Be dd ing  s an d j Ba ck fill ing  | 50 m m  d ia.  p oly eth yle ne  p ipe  |  Tr ac er  w ire  (1 4g a s tra nd ed  c op pe r) | To tal  m j p er m of co mp on en t | Ga s s up ply  a cc es so rie s j Ga s me ter  | Va lve  b ox es  | Va lve s | To tal  m j 1 El ec tric ity  a nd  te lep ho ne  su pp ly | Ex ca va tio n | Be dd ing  s an d j Ba ck fill ing  | to o CM CD cn to 0. CO O cu Q. Q. < 0 .3 1  J 0. 02 | 0. 17 | 0. 09 | 0 .3 1 1 0 .0 5 ] 1 8 ,2 6 3 1 1 ,3 2 9 1 1 0 ,1 2 1  |  5 ,4 2 9 1 1 8 ,6 0 6 1 2 ,7 1 4 1 11 3. 1  11 3. 1  11 3. 1  11 3. 1  1 1 3 .1 ] 1 1 3 .1  0. 29 1 0. 02  0. 16  0 .0 9 ) 0 .3 0  0 .0 4  1 6 ,1 3 9 | 1 ,1 7 6 ] 8, 94 91  4, 80 01  1 6 ,4 5 0  2 ,4 0 0  o CN 11 76 1 4 9 .2  CO d •«* 2 3 6 0 ] S 8 .5 3 | CN CM CN CN 26 .1 1 3 1 .3  76 .8 1 7 .2 8 | 2 .7 2 | 20 .2 1 30 .2 1 7. 28 1 2. 7 2\  10 .7 1 20 .7  12 26 1 18 .8 1 CD o ID o to CN CO CO 1 4 .8 ! CO 13 .7 1 1 6 .6 ] 1 1 2 5  0. 23 1 0. 01 1 0. 21 1 0. 40 1 0 .1 9 ] 0 .0 2 ] 7 7 7 1 0 ] 4 7 2 6 ] 7 1 5 8 9 , 1 3 1 7 7 4 ] 6 4 8 3 1  6 1 2 0  r- r - CN CO CO r̂  CO E no . j  E E no . no . LO CO CO ID CO CO CN O CN O 10 09 1 E" 4 7 2 6 1 4 7 2 6 | CD CO CO CN CO CO CN CO at CO E CD CO CO 10 46 1 CN 11 07  |  'E O CO ID 12 24 1 CN LD o CN r - 18 72 1 13 10 1 CN ca r - CO CO CN CO CM CO CO 2 0 0 0 1 10 o CN 9 2 6 2 1 E 10 20 1 1 0 2 0 ] lO lO CN CN W as te  | LO W as te  ] ID ID ID ID LO W as te  | ID ID ID ID ID W as te  j ID ID ID ** •<* «* LO CO LD o W as te  CN CD r» co CO CO O o O O r~ CD a> E 4 6 0 0 1 46 00 1 E CD O CO CO CD CO O CN ID P- CO E CD O CO CO CO CO CO O CM 10 66  E o> CN ID 11 77  CO CO CN CO CD 1 8 0 0 | 1 2 6 0 | CM CD r- LD CO CN •<* CM CO CO 2 0 0 0  CO O CN CN oi to E 10 00  10 00  I E m j/k g  j  m j/k g  | m j/k g  | 3 6 .0 0 | 36 .0 01  36 .0 01  2. 50 1 2 0 .0 0  4 5 .0 0  a S" | la b le  U 3 .1 . In it ia l tm b o d ie d  b n e rg y  o t C a s e  S tu d y  b u il d in g . | 3 3 3 3 •* LD CO CO CO GO o o LO O) | la b le  U 3 .1 . In it ia l tm b o d ie d  b n e rg y  o t C a s e  S tu d y  b u il d in g . | co n v.  | co n v.  | co n v.  | co nv . | 0 .9 9 1 r-. 0 .9 9 1 2. 04 1 o o L0 co n v.  j | la b le  U 3 .1 . In it ia l tm b o d ie d  b n e rg y  o t C a s e  S tu d y  b u il d in g . | CO CO CD o o O O m j/u n it 4 6 0 0  m j/u n it | 7. 26 1 o 0) 7 .2 6  CD CO O CN m j/u n it j 7 .2 6  o CO 7 .2 6  CD CO CO O CN m j/u n it j  7 .2 6 J 7 .2 6 | 3 4 6 2 1 3 4 6 2 1 3 4 6 2 1 3 4 6 2 ] 2 1 4 .2 | oq 2 0 0 0 ] 2 0 2 .6 1 m j/u n it j 1 0 0 0 | | la b le  U 3 .1 . In it ia l tm b o d ie d  b n e rg y  o t C a s e  S tu d y  b u il d in g . | CN CO Q ty . Q ty . | 0 .7 8  0. 33 1 0 .4 6  Q ty . 0 .7 8  0. 33 1 0 .4 6 ) Q ty - CM 0 .3 4  CM d 0 .6 2  ID 0 .2 2  [ CO CM o CM O) Q ty . | | la b le  U 3 .1 . In it ia l tm b o d ie d  b n e rg y  o t C a s e  S tu d y  b u il d in g . | E E £ E U ni ts  no . U ni ts  | CO E CO E (*) E E E U ni ts  CO E CO E CO E E E U ni ts  CO E CO E CO E E CO E CO E CN E CO £ E n o.  j 3 no . ] no . J  U ni ts  | no . j  | la b le  U 3 .1 . In it ia l tm b o d ie d  b n e rg y  o t C a s e  S tu d y  b u il d in g . | | E le ct ric ity  a nd  t el ep ho ne  s up pl y ac ce ss or ie s [T ra ce r w ir e  ( 14 ga  s tra nd ed  c op pe r)  T ra ce r w ir e  ( 14 ga  s tr an de d  c op pe r)  | la b le  U 3 .1 . In it ia l tm b o d ie d  b n e rg y  o t C a s e  S tu d y  b u il d in g . | 11 00 m m  d ia . p vc  p ip e  c on du it |7 5 m m  d ia . p vc  p ip e  c on du it |In co m in g  e le ct ric al  s e rv ic e  |In co m in g  t el ep ho ne  s e rv ic e  iT ot al  m j pe r m  o f co m po ne nt  | E le ct ric ity  a nd  t el ep ho ne  s up pl y ac ce ss or ie s | P ul l bo x (c on cr et e)  [ 2 6 0 m m  d ia . co nc re te  p ip e  [T ra ce r w ir e  ( 14 ga  s tra nd ed  c op pe r)  [T ot al  m j pe r m  o f co m po ne nt  26 0m m  d ia . ab s pi pe  j T ra ce r w ir e  ( 14 ga  s tr an de d  c op pe r)  T ot al  m j pe r m  o f co m po ne nt  ] C on cr et  b as e 20 m pa  j  R ei nf or ci ng  m es h | C as t iro n co ve r an d  f ra m e  | La dd er  r un gs  | | T ot al  m j pe r co m po ne nt  | T ot al  m j pe r co m po ne nt  ] | la b le  U 3 .1 . In it ia l tm b o d ie d  b n e rg y  o t C a s e  S tu d y  b u il d in g . | 11 00 m m  d ia . p vc  p ip e  c on du it |7 5 m m  d ia . p vc  p ip e  c on du it |In co m in g  e le ct ric al  s e rv ic e  |In co m in g  t el ep ho ne  s e rv ic e  iT ot al  m j pe r m  o f co m po ne nt  | E le ct ric ity  a nd  t el ep ho ne  s up pl y ac ce ss or ie s | P ul l bo x (c on cr et e)  1 T ot al  m j ] | S to rm  s ew er  | 1 E xc av at io n j  [B ed di ng  s an d  1  | u «0 CO [ 2 6 0 m m  d ia . co nc re te  p ip e  [T ra ce r w ir e  ( 14 ga  s tra nd ed  c op pe r)  [T ot al  m j pe r m  o f co m po ne nt  [S an ita ry  s ew er | E xc av at io n I  B ed di ng  s an d I B ac kf ill in g  26 0m m  d ia . ab s pi pe  j T ra ce r w ir e  ( 14 ga  s tr an de d  c op pe r)  T ot al  m j pe r m  o f co m po ne nt  ] M an ho le  J  E xc av at io n j B ac kf ill in g  j C on cr et  b as e 20 m pa  j  R eb ar , no .4  j B en ch in g  J  C on cr et e sh af t I R ei nf or ci ng  m es h | C on cr et e lid  I R eb ar , no .4  I B ric k I M or ta r I C as t iro n co ve r an d  f ra m e  | La dd er  r un gs  | | T ot al  m j pe r co m po ne nt  | R oa d gu lli es  j T ot al  m j pe r co m po ne nt  ] •A o CN CU CD ro CL CO O T3 C CD Cu Q. < 0 .3 6  0 .0 6  0 .0 8  0 .3 3  |  0 . 0 3 |  2 0 ,8 1 0 1  | 3 ,6 2 4 1 |  4 .6 1 0 |  1 9 ,7 3 9  |  1 . 9 2 9  1 1 3 .1 1  1 1 3 .1 1 |  1 1 3 .1 1  1 1 3 .1  |  1 1 3 .1  0 .3 3 1 ! 0 .0 6 1 0 .0 7  0 .3 2  1 0 . 0 3  1 8 ,4 0 0 1  j 3 ,2 0 6 1  |  3 ,9 8 8  j 1 7 ,4 6 3 |  1 1 . 7 0 6  | 2 3 0 0 1  1 6 4 -1 l |  1 3 .8 1  |  3 1 .8  |  2 2 .7  | 2 .6 9 1 | 2 .6 9 1  t o CN p* 3.7 61 2.6 61 3 1 .3 1 3 7 .7  |  I 6 7 5 1  |  2 0 .2  |  1 1 . 6  1 6 7 6 |  1 .7 7  1 1 .9 ] o 23 .71  OD r ii -e i I 1 1 .2 ! 0 .0 6 1 0 .0 6 ) | 0 .0 0 1 | 0 .2 2  j |  1 .0 6 |  |  0 .0 6  1 8 7 1 6 |  | 2 1 6 4 1 |  | 7 1 7 6 7 j |  3 6 1 8 0 6 ) |  1 8 0 0 9  oo o 10 o O ) C N 03 LO LD r^ d c E CN E CN E E E o CO CO 0 0 o C N CO C N - * 0 0 CN 1 0 CO r » | 0 0 £  2 3 3 9 1  £ 0 0 CO CD I D CO CO O CN CO E C N CD CN CO •<* ca t o r - * r CN "E" CN 03 1 0 CN CO CN 0 0 p*. CD CD E r*. CN CO CN o CN W a st e  |  ^ 1 0 1 0 U> to o W a st e  |  1 0 1 0 I D 1 0 CN | W a st e  |  1 0 ID I D to to {W a st e  i to to to 1 0 o a 5 to I D 'E I D p* CO 0 0 CD CO o O P» CN o o f v o o CO 2 2 4 6 1  E 0 0 CO CN CO CO CO O CN 1 %  o f to ta l J  E CN O O CO 0) o I D CD CO C N E C N 1 0 1 0 o CO 01 LO I D CD CD 'E P* o CN C N C N O) CN CN m j/ k g  |  ; 3 6 . 0 0 ]  ! 2 8 .0 0 1  1 4 6 . 0 0 1  | 2 8 .0 0 1  2 t 1 %  o f to ta l J  1 1 . 4 6 % |  1 1 . 8 3 % |  (m j/ k g  |  1 m j/ k g  1  | m j/ k g  1 la ble ( J 3 . 1 .  Ini tial bmb odi ed bne rgy  ot Cas e S tud y Bu ildi ng. 1  2 CD t o CN 2 1 0 0 0 •* 8 4 8 2 0 j 9 5 5 0 7 I o 2 2 1 la ble ( J 3 . 1 .  Ini tial bmb odi ed bne rgy  ot Cas e S tud y Bu ildi ng. 1  c o n v . j u j c o n v . I  " 5 GO Z> </> c "O u </• co n v . 1  1 c o n v . 1  [c o n v . 1 la ble ( J 3 . 1 .  Ini tial bmb odi ed bne rgy  ot Cas e S tud y Bu ildi ng. 1  m j/ u n it  1  3 7 4 6 1  \ooc m j/ u n it  I  1 0 CN P»" O 03 7 .2 6 1  CD O CN E m b o d ie d  e n e rg y  1  m j/ u n it  I 1 7 "2 5 l o to I D O O CO 1 1 3 7 6 1  1 0 C N | m j/ u n it  1 7 - 2 6 1  o to 1 0 o o to 1 4 6 9 3 ! CO CO 1 m j/ u n it  1 4 5 9 3  O I D I D 1 la ble ( J 3 . 1 .  Ini tial bmb odi ed bne rgy  ot Cas e S tud y Bu ildi ng. 1  Q ty . d t o 1 4 .4 1  t o Q ty . j  0 .3 2 6 1  0 .7 8 1  CO E m b o d ie d  e n e rg y  1  I 1 1 2 .6 1  | Q ty . |  1 0 .2 5  j CN d d 1 0 .0 6 5 1  0 0 Q ty . 0 .2 6  d d d CO | Q ty . 1 0 .0 4 5  1 0 .0 4  i 1 la ble ( J 3 . 1 .  Ini tial bmb odi ed bne rgy  ot Cas e S tud y Bu ildi ng. 1  U n it s  CO E 2 2 d c E 6 c Un it s  I  CO E CO E CO E E E E m b o d ie d  e n e rg y  1  V a n c o u v e r  c o s ts  U n it s  1  CO E CO E CO £ CO £ _ J U n it s  1  CO E CO E CO E CO E 1 U n it s  1  CO E CO E 1 la ble ( J 3 . 1 .  Ini tial bmb odi ed bne rgy  ot Cas e S tud y Bu ildi ng. 1  T O T A L  F O R  S IT E  S E R V IC E S  A S S E M B L IE S  V a n c o u v e r  c o s ts  1 2 0 0 m m  s u b  b a se  <  7 6 m m  g ra v e l 1  1 1 0 0 m m  b a se  > 3 8 m m  s a n d / g ra v e l 1  1 0 0 m m  s u b  b a se  <  7 5 m m  g ra v e l 1 1 0 0 m m  b a se  > 3 8 m m  s a n d / g ra v e l 1  1 la ble ( J 3 . 1 .  Ini tial bmb odi ed bne rgy  ot Cas e S tud y Bu ildi ng. 1  1 L ig h t  s ta n d a rd s  1 S te e l b a se  p la te  1 A n c h o r  b o lt s  I  H S S  s h a ft  1 6 0 x 1 6 0 m m  L ig h t fi x tu re  I  I  I T o ta l m j p e r c o m p o n e n t  I  I S it e  l ig h ti n g  e le c tr ic it y  s u p p ly  | 7 6 m m  d ia . p v c  p ip e  c o n d u it  1 In c o m in g  e le c tr ic a l se rv ic e  1 T o ta l m j p e r c o m p o n e n t  T O T A L  F O R  S IT E  S E R V IC E S  A S S E M B L IE S  P A V IN G  A S S E M B L IE S  1 2 0 0 m m  s u b  b a se  <  7 6 m m  g ra v e l 1  1 1 0 0 m m  b a se  > 3 8 m m  s a n d / g ra v e l 1  | 6 4 m m  a sp h a lt ic  c o n c re te  j  (A sp h a lt  p ri m e r j  j  (T o ta l m j p e r m 2  o f a ss e m b ly  1  1 0 0 m m  s u b  b a se  <  7 5 m m  g ra v e l 1 1 0 0 m m  b a se  > 3 8 m m  s a n d / g ra v e l 1  1 1 0 0 m m  c o n c re te  ( 3 0 m p a ) 1 1 5 0 x 1 6 0 m m  r e in fo rc in g  m e sh  (T o ta l m j p e r m 2  o f a ss e m b ly  (C o n c re te  c u rb  ( 3 0 m p a )  > CD 5) E E to r » V 2 E E o o CN T o ta l m j p e r m  o f a ss e m b ly  - 1 la ble ( J 3 . 1 .  Ini tial bmb odi ed bne rgy  ot Cas e S tud y Bu ildi ng. 1  S it e  l ig h ti n g  1 L ig h t  s ta n d a rd s  1 C o n c re te  b a se  R e b a r 1 S te e l b a se  p la te  1 A n c h o r  b o lt s  I  H S S  s h a ft  1 6 0 x 1 6 0 m m  L ig h t fi x tu re  I  I  I T o ta l m j p e r c o m p o n e n t  I  I S it e  l ig h ti n g  e le c tr ic it y  s u p p ly  1 E x c a v a ti o n  1 B e d d in g  s a n d  B a c k fi ll in g  | 7 6 m m  d ia . p v c  p ip e  c o n d u it  1 In c o m in g  e le c tr ic a l se rv ic e  1 T o ta l m j p e r c o m p o n e n t  T O T A L  F O R  S IT E  S E R V IC E S  A S S E M B L IE S  P A V IN G  A S S E M B L IE S  1 P a rk in g  a re a s 1  1 E x c a v a ti o n  1 2 0 0 m m  s u b  b a se  <  7 6 m m  g ra v e l 1  1 1 0 0 m m  b a se  > 3 8 m m  s a n d / g ra v e l 1  | 6 4 m m  a sp h a lt ic  c o n c re te  j  (A sp h a lt  p ri m e r j  j  (T o ta l m j p e r m 2  o f a ss e m b ly  1  (s id e w a lk s  1 E x c a v a ti o n  1 0 0 m m  s u b  b a se  <  7 5 m m  g ra v e l 1 1 0 0 m m  b a se  > 3 8 m m  s a n d / g ra v e l 1  1 1 0 0 m m  c o n c re te  ( 3 0 m p a ) 1 1 5 0 x 1 6 0 m m  r e in fo rc in g  m e sh  (T o ta l m j p e r m 2  o f a ss e m b ly  [C o n c re te  c u rb  (C o n c re te  c u rb  ( 3 0 m p a )  T o ta l m j p e r m  o f a ss e m b ly  to o C N CU O) to 0- j 0.7 2|  0.2 11  P0 .2 2|  0.3 3| 0.1 6 0.3 0| 0.0 8| | 0. 02 | 1.4 9| 3.2 71 0.0 4| I 42, 762 1 12 ,21 5 | 12, 911 | 19, 269 1 LO CD 17, 760 1 4,6 26 J | 1,1 61 | 88, 090 1 [ 1 93, 516 ] ] 2,6 20]  | 1 13. 1| 113 .1 | | 1 13. 1 j q q q q q q 108 .7 111 .0 | 0 .69 1 0.20 1 | 0 .21 ] 0.3 2 j I 0 .1B  | 0.29 1 | 0.0 8]  | 0.0 2] 3.2 4 I 0 .04 ] | 37, 800  j 10, 800 1 | 11, 416 ) 17, 360  609'8 000'9l 4, 168  | 1,0 46]  79, 360  178 ,02 7 2,3 60 LO to | 64. 41 97. 8 97. 8 ( 1 000 1 CO CN CN CO CN | 51 .2  r- 1 51 .2  i 9. 361  1 3 0.6 1 ; 3 9.9 J 72. 2| 72. 2 LO LO LO CN CO CO CD 34.1  | 79. 6] 34.1  | 1 10. 2|  | 4 .33 1 ! 14. 6|  25. 61 25. 6 LO •<* 98. 61 j 9 8.6 1 ".1 1 37. 6| 17. 1 |  | 0 .19 1 0.03 1 | 0 .18 1 | 639 46|  109 62 696 46|  | 8 400 | 144 0| o CN 177 .61  CO CO CO | 1 660 J o> LO 46.1  | CO E CO E E E E |no.  |  no.  no.  CN E CN E CN E E to CO M  CO CO 'E CO CN CO CO CO CN E 1 146 89]  I 232 71]  1 720 0] j 1 14 06  1*198 | | 466 99 I . 2 482 7I 1 136 871  | 44 14  1 2 41 5]  I 2 069 99 | 283 727  | 175 469  | 227 432  | 293 492  | 186 979  | 842 69 | 776 70 00 10 CO CD | 0 .0 01  [Wa ste  I  LO LO | Wa ste  LO LO Was te 1 LO LO LO i 0. 00 1  ! Wa ste  |  •* it 'E r» E P- E CO 00 CO CN O CO r*. CN 'E 145 44|  223 76|  712 81 109 67|  842 98|  448 07|  I 245 81|  i 130 64|  437 0| 232 31 204 949 | 280 918  173 732 | 218 684  290 586 | 178 826 ] 834 26|  746 83|  629 61 | 1.3 2%j  | 0.6 0%|  s E mj /kg  |  Imj /kg  1  | 0 .40 %|  | 1.2 9%|  mj/ kg | 0.6 01 38. 20|  0.6 01 38. 20 0.6 0| 38. 20 ! 0. 60 1 38. 201  0.6 0| 38. 20 0.6 0 38. 20|  0.6 0 38. 20|  0.6 01 38. 20 0.6 0 38. 201  0.6 0] 11 a b le  In it ia l b m b o d ie d  b n er g y  o i C a se  b tu d y  B u il d in g , j  tN * * I 2 314 61 | 260 62)  a .v. 2 2 LO CO | 600 16|  | 676 78|  3 0) CO CN •<t CN CO GO L0 118 81 f*. CO CN 140 497 | 117 3| | 409 68|  CN CO 728 3| CO 341 682 | 736 41 289 653 | 672 5| 484 310  00 CD 139 041 | 196 5 104 92|  11 a b le  In it ia l b m b o d ie d  b n er g y  o i C a se  b tu d y  B u il d in g , j  "5 Ui <«• c •o o <A con v. con v. con v. | 3 CO ZD c TJ o <l> con v. j 227 6] 227 6J 227 6| | 227 6| 227 6| 227 6J 227 6] 227 6] 227 6] 227 8] 11 a b le  In it ia l b m b o d ie d  b n er g y  o i C a se  b tu d y  B u il d in g , j  | Em bod ied  en erg y j | mj /un it |  j 7 .26 | | mj /un it |  7. 26  [mj/ unit  1 00 00 O CO o CN [Em bod ied  en erg y | Qty . | 686 .81  287 .1 | 117 3 CN CO 60. 81 <r 10 CO i — 672 6 468 1 |  196 5 11 a b le  In it ia l b m b o d ie d  b n er g y  o i C a se  b tu d y  B u il d in g , j  | Em bod ied  en erg y j | 1 12. 6| | Qt y. I Qty . |Qty . J  1 0 2 6 1  CO [Em bod ied  en erg y | | 1 12. 6! | Qt y. | 10. 66J  6.2 2 61. 73|  CO CN CO 160 .11  127 .2|  212 .8|  61. 091  4.61  | 11 a b le  In it ia l b m b o d ie d  b n er g y  o i C a se  b tu d y  B u il d in g , j  | Em bod ied  en erg y j [Va nco uve r c osts  I Un its  I  CO E 1 Un its ! co E [ Un its  1 E CO E CN E [Em bod ied  en erg y | Van cou ver  cos ts | Uni ts | CO E 2 CO E o CO E 2 CO E o CO E 5 CO E * CO E 2 CO E 5 CO E 2 CO E 11 a b le  In it ia l b m b o d ie d  b n er g y  o i C a se  b tu d y  B u il d in g , j  (TO TAL  FO R P AVI NG ASS EMB LIE S I [Va nco uve r c osts  • iPe rim ete r dr ain and  da mpp roo fin g (TO TAL  BU ILD ING  EX CAV ATI ON | Van cou ver  cos ts | IWa ll foo tin gs (eas t &  we st stai rs) j | Eas t a nd wes t st airs  sla b o n g rad e j s 00 11 a b le  In it ia l b m b o d ie d  b n er g y  o i C a se  b tu d y  B u il d in g , j  (TO TAL  FO R P AVI NG ASS EMB LIE S I (Bui ldin a ex cav ati on j (Tot al mj per  m3  of  as sem bly  |  iTo tal  mj  pe r m 3 o f a sse mbl y 1  iPe rim ete r dr ain and  da mpp roo fin g 110 0m m p vc pip e 1 | Bed din g s and  |  | | Bit umi nou s a sph alt  | (To tal  mj  pe r m  of  as sem bly  |  (TO TAL  BU ILD ING  EX CAV ATI ON | | All stru ctur al c onc ret e 2 0MP a iBe low  gr ade  hor izo nta l I IWa ll f oot ing s ( bas eme nt wal ls)  I a Xi V az IWa ll foo tin gs (eas t &  we st stai rs) j | Reb ar | | | Col umn  foo tin gs | | Reb ar j | | Pila ster  foo tin gs 1 [Re bar  ( I | Ele vat or f oot ing s | CD -Q V or iBa sem ent  sla b on  gr ade  I CO -O 4) CC | Gro und  flo or s usp end ed sla b |  | Eas t a nd wes t st airs  sla b o n g rad e j 11 a b le  In it ia l b m b o d ie d  b n er g y  o i C a se  b tu d y  B u il d in g , j  (TO TAL  FO R P AVI NG ASS EMB LIE S I (Bui ldin a ex cav ati on j (Ex cav ati on | Exc ava tio n (Tot al mj per  m3  of  as sem bly  |  (Bac kfil ling  1 Bac kfil ling  iTo tal  mj  pe r m 3 o f a sse mbl y 1  iPe rim ete r dr ain and  da mpp roo fin g 110 0m m p vc pip e 1 | Bed din g s and  |  | | Bit umi nou s a sph alt  | (To tal  mj  pe r m  of  as sem bly  |  (TO TAL  BU ILD ING  EX CAV ATI ON | (S TR UC TU RE J | All stru ctur al c onc ret e 2 0MP a iBe low  gr ade  hor izo nta l I IWa ll f oot ing s ( bas eme nt wal ls)  I IWa ll foo tin gs (eas t &  we st stai rs) j | Reb ar | | | Col umn  foo tin gs | | Reb ar j | | Pila ster  foo tin gs 1 [Re bar  ( I | Ele vat or f oot ing s | iBa sem ent  sla b on  gr ade  I | Gro und  flo or s usp end ed sla b |  ISl ab b and s 1 m V CC 126 4m m s lab s j  1 Re bar  1 117 8mm  sl abs  I | Reb ar | | Eas t a nd wes t st airs  sla b o n g rad e j oo" O 0.0 1 1.3 6 0.0 3| 0.1 0 0.0 21  0.0 1 0.1 7 0.1 4 13 .0 9|  3.2 7 0.0 91  0.0 21  1.0 31  O CO 10 80 ,0 62  j 1.7 34 1 6, 20 61  * t LO CD <D CM CO 9, 80 7 |  8, 49 3 77 4, 06 1 19 3, 61 6 6,2 62 1 1. 07 7| 60 .9 82 | 11 1. 0 q q q q q 10 8.7  | 10 8.7  10 8.7  10 8.7  10 8.7 ] 10 8.7 ] 10 8. 7| 0.0 11  1.3 11  0.0 3 j 0.1 0 0.0 21  0.0 1 j 0.1 6 j 0.1 4J  12 .96  3.2 41  0.0 91  0.0 21  1.0 2| CM CM LO 72 ,1 28 | 1,6 62  6,6 80 1 oa to CO 9,0 22 1 7, 81 3| 71 2, 10 7 | 17 8, 02 7 |  4, 84 11  O) CO o CD CO 61 .2 CO co CN o CO 63 .7 46 .61  CD ID CD OO r* 88 .61  88 .6]  r* CO 34 .1 CO CN CO LO CO LO * r 36 .61  CD CO * CO 00 CO 79 .6 79 .61  CN CO CD 69 .2 99 .61  17 .1 CN CD o CN ID 12 .2 o OO CM L0 o 37 .6 37 .61  29 .3]  29 .3J  6.3 61  1.6 6 17 .1 9| 17 86 97 9 55 12 41 | 67 32 77 6| 10 .2 24 4. 5 J  CN CN CO CD CO CD CO 60 76 1 16 19  64 .71  11 .2 | 40 8. 6]  CN E E E E d c d c d c d c CN E CN E CN E CN E CN E 14 07  10 64 0 17 86 97 9 E 18 10 00  26 06 76  33 38  71 14 ! 12 67 9 26 81 2 o o CO 26 86 1 62 41  17 24 | 93 38 1 30 38 3|  33 79  10 99 0 65 12 41  35 09 38  70 73 66  13 71 74 1 85 63 26  61 66 29  33 70 63 ) 31 06 79  89 11 4]  17 82 27 ] 34 66 11 ] 21 68 67 ] 16 54 49  84 26 9 77 67 0]  15 08 9| 30 90 ] 16 76 1]  67 32 77 6 E 20 70 26 ] W as te j •* W as te | ^- W as te | 13 93  »J co LO O 17 62 48 3 E 17 92 08  26 06 49  33 06  68 41 1 12 46 4 26 78 0| CM CD r*. 24 86 1 CD ID 16 57  | 92 45 1 29 21 6| 33 46  10 66 7 63 60 66  E 34 74 63  70 03 62  13 18 98 2 84 78 46  69 29 13  33 37 26 j 29 87 30 ] 88 23 1]  17 64 63 ] 33 31 83 ] 21 37 30 ] 14 94 70 ] 63 42 6]  74 68 3I  14 94 0]  30 69 J 16 11 6]  56 93 32 1]  E 20 49 77  0.6 01  38 .20 1 M E 0.6 01  38 .20 1 0.6 01  38 .20 1 0.6 01  38 .2 0]  0.6 01  38 .20 1 0.6 01  38 .20 1 0.6 01  38 .20 1 0.6 01  38 .20 1 mj /kg  | 0.6 01  0.6 01  38 .20 1 0.6 01  38 .20 1 0.6 0] 38 .20 1 0.6 01  0.6 01  38 .20 1 0.6 01  38 .20 1 0.6 01  38 .20 1 0.6 01  0.6 0| 38 .20 1 M IV q I 0.6 01  [ l ab le  In iti al  b m bo di ed  b ne rg y ot  ( Ja se  S tu dy  b ui ld in g.  )  23 22 1 CD CN 3 29 88 79 | 66 62  j 66 08 1 CO r - 20 76 7J  LO r - <D 13 20 1 LO OD ID CD 00 CO 15 40 9| LO CO r - 55 76 1 r*. CM o> 67 91 06  ft * ft ft ft ft 34 62 8|  % ft ft * ft ft 16 62 1 1 66 62 09 | 78 20 1 14 70 62 | 29 41 06 | 87 22 | 35 62 17 | 39 13  13 90 41  | 19 65 1 24 89 9|  8609 CI CM **• 5 34 16 28 | [ l ab le  In iti al  b m bo di ed  b ne rg y ot  ( Ja se  S tu dy  b ui ld in g.  )  22 76  co nv . I 22 76 ] 22 76  j 22 76 1 22 76  j 22 76 : 22 76 ) 22 76 1 co nv . j 22 76  22 76 1 22 76 1 22 76 1 22 76  22 76 1 22 76 | 22 76 1 CD r~ CN CM 22 76 1 co nv . | 22 76 | [ l ab le  In iti al  b m bo di ed  b ne rg y ot  ( Ja se  S tu dy  b ui ld in g.  )  27 6. 8 Qt y. CN CD LO CD 17 9. 1 67 4. 9J  66 .0 91  43 .3 9 j  76 4.8 1 27 6.6 1 Qt y. | 34 62 8|  16 62 1| 78 20 1 87 22  | 39 13 | 19 66 1 42 1. 9)  Qt y. | [ l ab le  In iti al  b m bo di ed  b ne rg y ot  ( Ja se  S tu dy  b ui ld in g.  )  1.0 2 Qt y. 13 1.2  2.4 2 9.1 2 0.6 81  0.3 81  6.7 71  2.4 61  Qt y. 26 4.4 1 61 2. 91  62 0.9 1 24 4.4 1 64 .61  | 12 9. 2| 16 6. 5| 61 .0 91  10 .94 1 2.2 4 Qt y. | 16 0.1 1 [ l ab le  In iti al  b m bo di ed  b ne rg y ot  ( Ja se  S tu dy  b ui ld in g.  )  ro E 3 Un its  CO E 5 CO E 3 CO E 3 to E a CO E 3 CO E 3 CO E O) Un its  j  CO E CO E 3 CO E 3 CO E 3 CO E CO E O) CO E o CO E CJ CO E CO E O) Un its  | CO E [ l ab le  In iti al  b m bo di ed  b ne rg y ot  ( Ja se  S tu dy  b ui ld in g.  )  | E lev ato r p it an d wa lls  to  u/ s s lab  Ro of sla b to ea st an d we st sta irs  | [ l ab le  In iti al  b m bo di ed  b ne rg y ot  ( Ja se  S tu dy  b ui ld in g.  )  | B elo w- gr ad e v er tic al | B ase me nt wa lls  s & | F ou nd ati on  w all  to  w es t s tai r | R eb ar | | E lev ato r p it an d wa lls  to  u/ s s lab  | R eb ar | | |C olu mn s b elo w ba sem en t s lab ] <3 -a i> cc | P ila ste rs be low  b as em en t s lab  j to Ji V CC | C olu mn s t o u /s sla b ba nd  j to Ji V cc ( Pil ast ers  to  u/ s s lab  b an d j Ab ov e-g ra de  h or izo nta l | Up pe r f loo rs t4n o.)  | 12 00 m m  sl ab  b an ds  24 00 m m  sl ab  b an ds  | 12 00 m m  sl ab  b an ds  | 24 00 m m  sl ab  b an ds  j Ro of sla b to ea st an d we st sta irs  | Ab ov e-g ra de  ve rti ca l | Sh ear  w all s I  1 [ l ab le  In iti al  b m bo di ed  b ne rg y ot  ( Ja se  S tu dy  b ui ld in g.  )  S <9 in | R eb ar | S ub  to tal  | B elo w- gr ad e v er tic al | B ase me nt wa lls  | F ou nd ati on  w all  to  w es t s tai r | R eb ar | | E lev ato r p it an d wa lls  to  u/ s s lab  | R eb ar | | |C olu mn s b elo w ba sem en t s lab ] | P ila ste rs be low  b as em en t s lab  j | C olu mn s t o u /s sla b ba nd  j (P ila ste rs to u/s  sl ab  b an d j | R eb ar Su b tot al Ab ov e-g ra de  h or izo nta l | Up pe r f loo rs t4n o.)  | 12 00 m m  sl ab  b an ds  24 00 m m  sl ab  b an ds  | Re ba r J 22 8m m  sl ab s J Re ba r J 17 8m m sla bs  j Re ba r | Ro of | 12 00 m m  sl ab  b an ds  | 24 00 m m  sl ab  b an ds  j 5 SI u cc 22 8m m sla bs  j Re ba r | 17 8m m sla bs  j  Re ba r I Ro of sla b to ea st an d we st sta irs  | Sla b J Sla b I ii D V rr Su b tot al I Ab ov e-g ra de  ve rti ca l | Sh ear  w all s I  1 < 1. 34 | 0 .6 9 | 1. 08 1 0 .3 3 | 0 .2 9 | 0. 33 I 0 .2 9 | 1. 09 | 7 9 ,2 4 9 1 3 4 ,9 2 3  j 6 3 ,9 3 7  | 1 9 ,6 1 6  1 6 ,9 8 6 1 1 9 ,6 1 6  1 6 ,9 8 6 1 6 4 ,7 0 7  |  10 8. 7  j 10 8. 7  10 8. 71  1 0 8 .7 ] 1 0 8 .7 ] 1 0 8 .7 ] 10 8. 71  1 0 8 .7 ] 1. 33  0 .6 8  1. 07  0. 33  0. 28  0 .3 3 ] 0. 28 1 1 .0 8 ] 7 2 ,9 0 6 | 3 2 ,1 2 8  6 8 ,8 1 9  j 1 8 ,0 4 6 ] 1 6 ,6 2 6 ] 1 8 ,0 4 6 ] 1 6 ,6 2 6 ] 6 9 ,5 2 8 1 r*. CO co CO •» CD LD CO CD CD ID CD CD * 21 26  99 .6 ] 99 .6  99 .6  j CD CO CO CO CO CD CO * CO CO CO 14 98  37 .8  37 .8  37 .8  CD CN ID O CO CN 10 6  CD CN CD 7 .1 3 | 1. 0B  | 2 3 7 6 4 4 6 ] 3 6 0 7 7 3 | 2 6 7 0 0 0 ) CO LO to CN 4 2 8 .4  CN CO CN CO CN CO CM CO CD CN CN E CN E CN E d c i 6 c i o' C CM E 8 7 9 6 0 7  1 2 9 6 9 1  1 3 2 2 4 6  6 1 1 0 1  6 2 3 0 2  2 2 4 6 8 1  2 2 9 0 8 8  6 0 8 3 9  3 3 9 0 2  2 7 6 8 2 0  1 2 7 1 7  8 4 6 9  6 8 9 6 6  2 3 7 6 4 4 6  2 6 4 8 2  1 3 2 4 1  8 2 6 3 6  2 2 8 6 1 6  3 5 0 7 7 3 | O to ta l m j j CO CO CO a CO o r- CM CM CM 10 10 E to o CO LO CM o W as te  | W as te  | o LO LO LO LO LO LO 10 W as te  | LO LO LO 8 4 6 7 7 6  1 2 8 4 0 7  1 2 7 1 6 9  6 0 4 9 6  6 9 9 0 6  2 2 2 4 6 6  2 2 0 2 7 7  6 0 3 3 6  3 3 6 6 6  2 6 6 2 1 2  12 69 1  8 3 8 6  6 6 3 0 3  2 3 0 6 8 4 8 ] ? 2 6 2 2 0 ] 1 3 1 1 0 ] 8 1 7 1 8 ] 2 1 9 7 2 6 ] 3 4 0 7 7 3 ) 2 6 7 0 0 0 ) E CO CM CO CO LO CO CO r* CO CO CM CM CM o CO -* E CO 00 CM to ?*. CO 3 8 .2 0  0. 60  3 8 .2 0  0. 60  3 8 .2 0  0. 60  3 8 .2 0  0. 60  0. 60  3 8 .2 0  0. 60  0. 60  3 8 .2 0  E 0. 60  0. 60  0. 60  3 8 .2 0  32 .3 6%  | CO LO CO m j/k g  | O LO CM 46 .0 01  4 5 .0 0 ) 2 8 .0 0 ) O q LO •* m j/k g  | 1 0 6 .0 0 ) 6 7 .0 0 ) 9 7 .0 0 ) | la ble Initi al b mbo die d h ner gy o t Ca se btu dy buil ding . 22 14 1 2 1 4 0 1 2 | 3 3 2 9  1 0 0 8 2 7 1 1 6 6 8 | 37 07 60 j 6 7 6 6  8 3 8 9 3 ] 6 6 9 4 4 | 6 9 4 3 1 2 0 9 8 6 | 1 3 9 7 6  1 7 3 6 | 2 4 3 6 9 9 | 2 1 8 5 0 1 1 3 6 1 9 6 6 7 6 2  1 0 7 9 8 ) * * % % * * *fc *fc I t *fc 2 CO O O CM o CO O | la ble Initi al b mbo die d h ner gy o t Ca se btu dy buil ding . 2 2 7 6  CO r~ CN CN 2 2 7 6  2 2 7 6  2 2 7 6  2 2 7 6 ] 2 2 7 6 ] co nv . 2 2 7 6 ] 2 2 7 6 | 2 2 7 6  j "3 CO c TJ O </> co n v.  | . _ 2. 04  0 .0 6 7  |  0. 00 61  7 .9 7  LO O* co nv . | 2. 76 J 0 .0 2 ] | la ble Initi al b mbo die d h ner gy o t Ca se btu dy buil ding . 2 2 1 4 1  3 3 2 9  16 68  6 7 6 6  6 9 4 3 ] 1 7 3 6  Q ty . CN LO r*. to E m bo di ed  e ne rg y m j/u n it 1 CO IN. id r-- co m j/u n it)  | la ble Initi al b mbo die d h ner gy o t Ca se btu dy buil ding . 9 4 .0 3  4 4 .3  16 2. 9  3 6 .8 6  2 4 .6 8  9. 22 ] 6. 14  Q ty . 19 .2  <D oi 6 9 .8 4 ] E m bo di ed  e ne rg y 1 1 2 .7 ) E > 5 CO 32 .41  LO CO CO 6 CO d CO d Q ty ./m  | LO CO* | la ble Initi al b mbo die d h ner gy o t Ca se btu dy buil ding . 2 CO E 5 CO E 5 CO E 3 CO E CO E 3 CO E CO E 3 U ni ts  CO E CO E CO E 2 E m bo di ed  e ne rg y V an co uv er  c os ts  | U ni ts  | o* c 2 No . | N o.  | E 6 c E E U ni ts  | CM E i CM E | la ble Initi al b mbo die d h ner gy o t Ca se btu dy buil ding . | I nt er io r w al ls  t o  n o rt h  s ta ir &  w a sh rm . |P er im et er  c ol um ns  u pp er  f lo or s CO E 2 LO CO | |T O T A L S T R U C T U R A L  A S S E M B U E S  | V an co uv er  c os ts  | | E xt er io r w a ll as se m bl y (f ra m e d  w a lls ) | 10 0m m  c la y br ic k (2 1 0 x7 5 m m  f ac e)  | B ac ke r ro d  ( po ly et hy le ne  f o a m ) j 76 m m  e xt ru de d  p ol ys ty re ne  b oa rd  j | la ble Initi al b mbo die d h ner gy o t Ca se btu dy buil ding . | I nt er io r w al ls  t o  n o rt h  s ta ir &  w a sh rm . | E as t an d  w es t st ai r w a lls  | R eb ar  | jln te rio r co lu m ns  u pp er  f lo or s |P er im et er  c ol um ns  u pp er  f lo or s I R eb ar  | | I n te rio r co lu m ns  r oo f | P er im et er  c ol um ns  r oo f ] |T O T A L S T R U C T U R A L  A S S E M B U E S  | [ E N V E LO  P E  A S S E M B U  E S  | | E xt er io r w a ll as se m bl y (f ra m e d  w a lls ) | 10 0m m  c la y br ic k (2 1 0 x7 5 m m  f ac e)  | M or ta r | | S ta in le ss  s te el  t ie s ) ; C au lk  ( po ly ur et ha ne ) j B ac ke r ro d  ( po ly et hy le ne  f o a m ) j T ot al  m j pe r m 2  o f co m p o n e n t]  76 m m  e xt ru de d  p ol ys ty re ne  b oa rd  j P la st ic  c lip s (p vc ) | A dh es iv e  | j | la ble Initi al b mbo die d h ner gy o t Ca se btu dy buil ding . A V CC | I nt er io r w al ls  t o  n o rt h  s ta ir &  w a sh rm . |R eb ar  | E le va to r sh a ft  | R eb ar  | E as t an d  w es t st ai r w a lls  | R eb ar  | jln te rio r co lu m ns  u pp er  f lo or s |P er im et er  c ol um ns  u pp er  f lo or s I R eb ar  | | I n te rio r co lu m ns  r oo f | P er im et er  c ol um ns  r oo f ] | R eb ar  | S ub  to ta l [M is ce lla ne ou s |L an di ng s |H al f-t an di nc js  | S ta ir fli a h ts  CO xt V CC | S ub  to ta l [f o rm  p ly w oo d  ]  |T O T A L S T R U C T U R A L  A S S E M B U E S  | [ E N V E LO  P E  A S S E M B U  E S  | | E xt er io r w a ll as se m bl y (f ra m e d  w a lls ) | | B ric k | 10 0m m  c la y br ic k (2 1 0 x7 5 m m  f ac e)  | M or ta r | | S ta in le ss  s te el  t ie s ) ) N ai ls  | S te el  a ng le  | ) B ol ts  | ; C au lk  ( po ly ur et ha ne ) j B ac ke r ro d  ( po ly et hy le ne  f o a m ) j T ot al  m j pe r m 2  o f co m p o n e n t]  In su la tio n  | 76 m m  e xt ru de d  p ol ys ty re ne  b oa rd  j P la st ic  c lip s (p vc ) | A dh es iv e  | j CO O X T3 c tu Q_ 3.6 6| 216 ,44 61 114 .0|  3.4 6) 189 ,86 4) CN CD LD O 67. 6) 7.2 3 240 996 1| 117 2) CM E CM E o E CD CO ea CN CN 1" to CN CO to o CO CO E CO to CO CO CM 10 CO "E CM CO E CD (0 o o CN CM o CO 206 61 tota l m j | CO CO CD CO CO o r- Was te 10 to to Was te | O to Was te to to to to to Was te j to 10 Was te | o to ID ID to 10 Was te j o LO LD LD LO o CO (0 E CO 10 CD CN to H  O 10 IX to 10 10 E to CM CM CM CO E CO CN 10 'E o CO o O CN CM o LD r - 192 01 E CD CN CO CO tD CO CO IV CO mj/ kg 1 £ 76. 001  46. 001  a E 2 9.0 0| 29. 00|  29. 00)  46. 00)  46. 001  mj/ kg j mj/ kg | 46. 001  29. 001  mj/ kg | 2.6 01 46. 001  46. 00]  28. 00]  | 1 a bl e Ini tia l b mb od ie d bn er gy  o t Ua se  S tu dy  b uil din g. 3 3 o o 3 CM o O O O 3 3 o o to o o CN | 1 a bl e Ini tia l b mb od ie d bn er gy  o t Ua se  S tu dy  b uil din g. con v. con v. | o 0.0 061  con v. j d 0.7 41 0.7 41 0.0 061  0.0 07 | con v. | con v. | 0.0 013 ) 0.1 8| con v. j 2.0 41 0.0 57]  900'0 7. 971  | 1 a bl e Ini tia l b mb od ie d bn er gy  o t Ua se  S tu dy  b uil din g. mj/ uni t CO O CO B.7  mj/u nit  j mj/u nit  | mj/ uni t [ CN f>- 10 mj/ uni t] O CO 0.2 8J CM ID o mj/ uni tj CO | 1 a bl e Ini tia l b mb od ie d bn er gy  o t Ua se  S tu dy  b uil din g. Qty ./m  1.06 1 d Qty ./m  CN E > 5 10 CN 0.6 61 0.5 61 o LO CM Qty ./m  | CO d Qty ./m  | 0.2 31 Cb CO d CO d E > o CO 32. 4 j ID CO •<* to d | 1 a bl e Ini tia l b mb od ie d bn er gy  o t Ua se  S tu dy  b uil din g. Uni ts | CN E CN E E Uni ts | CN E no . Uni ts | E E E no.  no.  j Uni ts j CN E E Un its  |  CN E E 3 no.  | E E CM E Un its  [  no.  | D) No.  | No.  | E | 1 a bl e Ini tia l b mb od ie d bn er gy  o t Ua se  S tu dy  b uil din g. 11 m m r ubb eri zed  asp halt  me mbr ane  112 mm rei nfo rce d g yps um boa rd [Sc rew s, self  tap pin g, bul ge hea d 2 6m m Exte rior  wal l a sse mbl y ( shea r wa lls ) | 10 0m m c lay bric k ( 21 0x 75 mm  fac e) | | 1 a bl e Ini tia l b mb od ie d bn er gy  o t Ua se  S tu dy  b uil din g. |Tot al m j p er m2  of  co mpo nen t | A ir b arri er ( peel  an d s tick ) | | R ubb er bas ed liqu id p rim er j 11 m m r ubb eri zed  asp halt  me mbr ane  | C aul kin g (a t ti es) j |Tot al m j p er m 2 o f c omp one nt!  | E xter ior shea thin g ( Den sgo ld)  | - 112 mm rei nfo rce d g yps um boa rd [Sc rew s, self  tap pin g, bul ge hea d 2 6m m [Tot al m j p er m2  of com pon ent  | 92 mm  ste el s tud s | | St eel  stu d t rac k | [Tot al m j p er m 2 o f c omp one nt)  | Po lye thy len e sh eet  [ Sea lan t | j Tot al m j p er m 2 o f c omp one nt!  inte rior  Fin ish (Gw b) j 12 mm gyp sum  bo ard  | Gw b t ape  |  | Gw b c omp oun d | Tot al m j p er m 2 o f co mpo nen t! Tot al m j p er m 2 o f a sse mbl y |  Exte rior  wal l a sse mbl y ( shea r wa lls ) | 10 0m m c lay bric k ( 21 0x 75 mm  fac e) | Mor tar  | | Stai nles s st eel ties  | | 1 a bl e Ini tia l b mb od ie d bn er gy  o t Ua se  S tu dy  b uil din g. |Tot al m j p er m2  of  co mpo nen t | A ir b arri er ( peel  an d s tick ) | | R ubb er bas ed liqu id p rim er j 11 m m r ubb eri zed  asp halt  me mbr ane  | C aul kin g (a t ti es) j |Tot al m j p er m 2 o f c omp one nt!  | E xter ior shea thin g ( Den sgo ld)  | 112 mm rei nfo rce d g yps um boa rd [Sc rew s, self  tap pin g, bul ge hea d 2 6m m [Tot al m j p er m2  of com pon ent  | | St eel stu ds 92 mm  ste el s tud s | | St eel  stu d t rac k | [Bl ock ing  | Sc rew s | Fa ste ner s j [Tot al m j p er m 2 o f c omp one nt)  [Va pou r ba rrie r [ | Po lye thy len e sh eet  [ Sea lan t | j Tot al m j p er m 2 o f c omp one nt!  inte rior  Fin ish (Gw b) j 12 mm gyp sum  bo ard  | Gw b t ape  |  | Gw b c omp oun d | Scr ews  j Met al bea ds | Sea lan t j Pai nt ( 3 c oats ) j Tot al m j p er m 2 o f co mpo nen t! Tot al m j p er m 2 o f a sse mbl y |  Exte rior  wal l a sse mbl y ( shea r wa lls ) | Bri ck | 10 0m m c lay bric k ( 21 0x 75 mm  fac e) | Mor tar  | | Stai nles s st eel ties  | Nai ls | Stee l a ngl e | o 0 01 OJ ro 0. CO O X ' o c <u C L a. < | 3 .6 8 | [ 6 .3 3 | [ 2 1 1 ,9 6 3 1 | 3 1 6 ,2 9 7 ] | 1 1 4 .0 ) ( 1 1 4 .0  ) 3 .3 9 ] 6 .0 4 ] | 1 8 5 ,9 3 2 ) 2 7 6 ,6 7 6 | CO CN CO LO CN | 8 3 .3 1 01 CN I 4 2 -5 1 cn CN I 4 .6 3 1 2 .0 3 ] | 6 .3 4 1  | 0 .9 8 1  1 0 .1 2I  | 1 6 4 4 6 0 6 | | 6 7 6 3 6 0 | | 1 7 7 9 0 6 0 ) | 3 2 7 4 0 3 ) \ 3 9 8 9 6  | 1 4 7 8 | 10 72  [ 2 7 8 7 ) 01 CO 10 CO 10 CN E CN E E E |n o.  CN CN CN LO LO E CO o CO LO CN o o 01 o> 03 CN CN [ 1 0 4 6 | E LO CO LO CO o o CD E CO o LO CO CN *~ CO CO CO E" LO LD LO LO E CO LO CN CO LO CN 10 LO LO jW as te  | LO LO LO [W as te  | LO LO LO W as te  | (0 10 W as te  | LO LO LO LO | W as te  | 10 o CO CO CN CN CN 0 01 E CO CO CN io r*. CO o CO CO E 00 LO 01 CN LO LO 01 CO E o o CO o o CO o o CO 'E o CO •* CO o CO o CD E 00 •* LD 00 LO E o LD CN O LO CN 4 5 .0 0 1  s E 1 0 5 .0 0 1  , 6 7 .0 0 1  I 9 7 .0 0 1  E | 1 1 .8 6 % | | 8 .0 9 % ) | m j/k g  I  1 E | 2 7 4 .0 0 ] | 2 3 6 .0 0 1  | 45 .0 01  |m j/k g  J  1 2 7 4 .0 0 1  | m j/k g  I la b le  In it ia l b m b o d ie d  b n e rg y  o t (J a s e  b tu d y  b u il d in g . I 2 CO o 2 1 3 9 5 4 1  | 3 7 6 7 9 6 ] | 4 -2 31 47  |  2 2 CN O 2 CN 2 I la b le  In it ia l b m b o d ie d  b n e rg y  o t (J a s e  b tu d y  b u il d in g . I 1 ° -5 l co nv . | [ 2 .7 5 1  1 0 .0 2 1  co nv . | '5 CO c "O CJ </> co nv . j  [c on v.  j  1. 75  LO d | 0. 00 71  | c o n v.  CN |c on v.  I la b le  In it ia l b m b o d ie d  b n e rg y  o t (J a s e  b tu d y  b u il d in g . I fN id cd m j/u n it | m j/u n it j  00 o CO P» 10 E m bo di ed  e ne rg y j  m j/u n it I  o o CO o o CO : m j/u n it)  LO i m j/u n it m j/u n it O 10 CN I la b le  In it ia l b m b o d ie d  b n e rg y  o t (J a s e  b tu d y  b u il d in g . I CO 6 CO d [Q ty ./ m  1 LO CO Q ty ./m  j | 1 .0 6 ) d E m bo di ed  e ne rg y j  | 1 1 2 .6 ] E >• o Q ty ./ m  |  CO CN E >• a Q ty . I la b le  In it ia l b m b o d ie d  b n e rg y  o t (J a s e  b tu d y  b u il d in g . I no . 1  E E [U ni ts  CN E n o.  1  CN E U ni ts  | CN E CN E E E m bo di ed  e ne rg y j  V an co uv er  c os ts  | [U ni ts  j  CN E CN E CO E ! U ni ts  ! E E [n o.  j  E | U ni ts  j  E U ni ts  no . ) I la b le  In it ia l b m b o d ie d  b n e rg y  o t (J a s e  b tu d y  b u il d in g . I {B ac ke r ro d  ( po ly et hy le ne  f o a m ) I |7 6 m m  e xt ru de d  p ol ys ty re ne  b oa rd  1  11  m m  r ub be riz ed  a sp ha lt m em br an e  | |T O T A L  E X TE R IO R  W A LL  A S S E M B U E S  | V an co uv er  c os ts  | I la b le  In it ia l b m b o d ie d  b n e rg y  o t (J a s e  b tu d y  b u il d in g . I j C au lk  ( po ly ur et ha ne ) 1  {B ac ke r ro d  ( po ly et hy le ne  f o a m ) I {T o ta l m j pe r m 2  o f co m po ne nt ! |7 6 m m  e xt ru de d  p ol ys ty re ne  b oa rd  1  | P la st ic  c lip s (p vc ) 1  | A dh es iv e  j 1  {T o ta l m j pe r m 2  o f co m po ne nt ! | A ir ba rr ie r (p ee l an d  s tic k)  | {R ub be r ba se d liq u id  p rim er  | 11  m m  r ub be riz ed  a sp ha lt m em br an e  | {C au lk in g  ( at  t ie s)  {T ot al  m j pe r m 2  o f co m po ne nt ] | T ot al  m j pe r m 2  o f as se m bl y J  |T O T A L  E X TE R IO R  W A LL  A S S E M B U E S  | {W in do w s an d  e nt ry  d oo rs  I [T o ta l m j pe r m 2  o f co m po ne nt ] [A lu m in um  f ra m e  | [T o ta l m j pe r m  o f co m po ne nt  |  [D ef le ct io n  h ea d  s ec tio n  | [D e fle ct io n  h ea d se ct io n  1  | T ot al  m j pe r m  o f co m po ne nt  | — [W in do w  h ar dw ar e  J  |P er  o pe ra bl e  w in do w  | | T ot al  m j pe r co m po ne nt  | I la b le  In it ia l b m b o d ie d  b n e rg y  o t (J a s e  b tu d y  b u il d in g . I {B ol ts  j  j C au lk  ( po ly ur et ha ne ) 1  {B ac ke r ro d  ( po ly et hy le ne  f o a m ) I {T o ta l m j pe r m 2  o f co m po ne nt ! {in su la tio n  j  |7 6 m m  e xt ru de d  p ol ys ty re ne  b oa rd  1  | P la st ic  c lip s (p vc ) 1  | A dh es iv e  j 1  {T o ta l m j pe r m 2  o f co m po ne nt ! | A ir ba rr ie r (p ee l an d  s tic k)  | {R ub be r ba se d liq u id  p rim er  | 11  m m  r ub be riz ed  a sp ha lt m em br an e  | {C au lk in g  ( at  t ie s)  {T ot al  m j pe r m 2  o f co m po ne nt ] | T ot al  m j pe r m 2  o f as se m bl y J  |T O T A L  E X TE R IO R  W A LL  A S S E M B U E S  | {W in do w s an d  e nt ry  d oo rs  I {G la zi ng  I [G la ss  l ay er  1  j  [G la ss  l ay er  2  1  LU [T o ta l m j pe r m 2  o f co m po ne nt ] 1 Fr am e ] [A lu m in um  f ra m e  | | S pa ce r 1  | F as te ne rs  | 1 G la zi ng  ta pe  [T o ta l m j pe r m  o f co m po ne nt  |  [D ef le ct io n  h ea d  s ec tio n  | [D e fle ct io n  h ea d se ct io n  1  | T ot al  m j pe r m  o f co m po ne nt  | [W in do w  h ar dw ar e  J  |P er  o pe ra bl e  w in do w  | | T ot al  m j pe r co m po ne nt  | tN 9) C D to 0_ | 1 .38 | 0.1 2 | 0 .02 | | 81, 840 | 6,91 1 |  I 1.0 92|  | 1 09. 7) 109 .7|  | 10 9.7 1 ! 1 .36 | 0.11  | 1  0. 02]  | 74, 603 1 6,3 001  to cn CO I 2 1 -4 I 1 2 0 -7 l CD 1 4 8 -1 l o CO ID CO CD 11. 7 CD CO o CM 10 to Pv rv co' 16.8  CD 28.1  io o CM 00 1 0 0 1 1 | B.3 6 1 1 .02 ] | 0 .01 ] ! 303 0j 178 448 4 339 688 ] | 400 0] •<* 166 1 |  o CM no. j CM E E no.  E CO 10 r- CO LO rv E o CM CO rv o CM rv '£" 00 CO 00 CM 00 rv cn CM 1 H  CM CM cn CO CO E CO CO to -» CO 00 CM o CM o 00 I 16 17  'E o o o -<* | 400 0 | Wa ste  Was te to to to o 0) (0 5 to to ID ID Was te LO LD LD Was te | LO LD ID ID LO LD |Wa ste  o E o IO rv o LO E CM 09 CO 09 CO CM r» CD 09 CD E o CO oo rv O 00 CO CO CM E rv o CM 00 p» CM | 10 96  E CD ID CO CM 00 o O O CO rv |0fr9l | E | 400 0| | 400 0 | mj /kg  CD 00 1 6 .06 %|  I mj /kg  [mj /kg  1 1 29. 701  I 45. 00]  I 29. 701  | 45. 001  mj/ kg 1 mj /kg  1 | 2 36. 001  E [ 6 .38 % 1 1  ab le C3 .1 . Ini tia l b mb od ie d bn er gy  o t Ca se  S tu dy  Bu ild ing . 1  o I 282 61 1 2 765 761  1 31 723 31 5 3 LD o •«* o 2 3 CM 3 I 2 12 8]  86818 | 1 1  ab le C3 .1 . Ini tia l b mb od ie d bn er gy  o t Ca se  S tu dy  Bu ild ing . 1  Ico nv.  1 '5 (f) </> c XI O <A I co nv.  J con v. 1 to* | 0.0 61  CD CO i 0.0 61 ! co nv.  con v. 1 3.17 ] con v. ] '5 CO 1 1  ab le C3 .1 . Ini tia l b mb od ie d bn er gy  o t Ca se  S tu dy  Bu ild ing . 1  mj/ uni tj O LO rv Emb odi ed ene rgy  1 mj/u nit I 00 CO 00 CM ID CM : mj /un it 1  mj/u nitj  o o ID CM 00 mj/ uni t 1 ** ** ** % Pv CO 13. 21 % *t *t % i mj/ uni t 1 i 4 000 1 Emb odi ed ene rgy  | - 1 1  ab le C3 .1 . Ini tia l b mb od ie d bn er gy  o t Ca se  S tu dy  Bu ild ing . 1  iQt y. 1 Emb odi ed ene rgy  1 114 .71  114 .7|  E > O CNI CM fv CM Qty ./m  1 3.6 | LD co' Qty ./m  | 1.07  | IV d .E > 5 0.7 5] CM CO d d CO CO d Qty  1 Emb odi ed ene rgy  | 1 1  ab le C3 .1 . Ini tia l b mb od ie d bn er gy  o t Ca se  S tu dy  Bu ild ing . 1  Uni ts 1 no. Emb odi ed ene rgy  1 1 Va nco uve r c ost s 1 Uni ts | CM E CM E O Un its  1 CM E no.  1 CM E no.  1 Uni ts | CM E 2 CM E Un its  1 CM E CM E CM E CM E E CM E Un its  1 Emb odi ed ene rgy  | 1 1  ab le C3 .1 . Ini tia l b mb od ie d bn er gy  o t Ca se  S tu dy  Bu ild ing . 1  1 TO TAL  GL AZI NG ASS EMB LIE S 1 1 Va nco uve r c ost s 1 [Ta per ed fibr egla ss c rick ets 60 mm  ave . J [Fl ash ing  an d c oun ter -fl ash ing  (1 8ga ) | |l 1 mm  As pha lt i mpr egn ate d f ibr ebo ard  | |TO TAL  RO OFI NQ ASS EMB LIE S | - 1 1  ab le C3 .1 . Ini tia l b mb od ie d bn er gy  o t Ca se  S tu dy  Bu ild ing . 1  | A lum inu m d oo r h ard war e [Tot al m j p er com pon ent  — 1 TO TAL  GL AZI NG ASS EMB LIE S 1 | R oof  as sem bly  | G ran ula r fi nish  SB S t op she et | S BS bas e s hee t I As pha lt (2 l aye rs)  j 1 To tal  mj  per  m2  of com pon ent ! |76 mm  rig id f ibre glas s bo ard  J I Sc rew s a nd s tres s pl ates  j [Ta per ed fibr egla ss c rick ets 60 mm  ave . J [Sc rew s a nd s tre ss p late s ] [Tot al m j p er m 2 o f c omp one nt!  | V apo ur ret ard er { [Tot al m j p er m 2 o f c omp one nt|  JTo tal  mj per  m2  of ass emb ly | [Fl ash ing  an d c oun ter -fl ash ing  (1 8ga ) | [Me mbr ane  |  | [ 1 2m m p lyw ood  blo cki ng | |l 1 mm  As pha lt i mpr egn ate d f ibr ebo ard  | |38 x89 mm can t an d b loc kin g |  | V apo ur ret ard er m emb ran e | |Tot al m j p er m  of com pon ent  | |Ro of acc ess  ha tch  | | T ota l m j p er c omp one nt | |TO TAL  RO OFI NQ ASS EMB LIE S | 1 1  ab le C3 .1 . Ini tia l b mb od ie d bn er gy  o t Ca se  S tu dy  Bu ild ing . 1  | A lum inu m d oo r h ard war e | P er d oor  | [Tot al m j p er com pon ent  1 TO TAL  GL AZI NG ASS EMB LIE S 1 | R oof  as sem bly  iMe mbr ane  J | G ran ula r fi nish  SB S t op she et | S BS bas e s hee t I As pha lt (2 l aye rs)  j 1 To tal  mj  per  m2  of com pon ent ! Ilns ulat ion 1 |76 mm  rig id f ibre glas s bo ard  J I Sc rew s a nd s tres s pl ates  j [Ta per ed fibr egla ss c rick ets 60 mm  ave . J [Sc rew s a nd s tre ss p late s ] [Tot al m j p er m 2 o f c omp one nt!  | V apo ur ret ard er { [Me mbr ane  j [As pha lt | [Pr ime r | [Tot al m j p er m 2 o f c omp one nt|  JTo tal  mj per  m2  of ass emb ly | 1 Pa rap et 1 [Fl ash ing  an d c oun ter -fl ash ing  (1 8ga ) | [Me mbr ane  |  | [ 1 2m m p lyw ood  blo cki ng | |l 1 mm  As pha lt i mpr egn ate d f ibr ebo ard  | |38 x89 mm can t an d b loc kin g |  | V apo ur ret ard er m emb ran e | |Tot al m j p er m  of com pon ent  | |Ro of acc ess  ha tch  | [Ha tch  1 | T ota l m j p er c omp one nt | |TO TAL  RO OFI NQ ASS EMB LIE S | CL CO O X •o c a> a. CL < 4. 09 1 0.1 6 2. 01  24 2. 12 11  | 9, 44 31  | 11 8. 91 9 11 1. 2|  11 1. 2 | 11 1. 2 3. 96 1 0.1 6 | 1 .9 6  21 7, 73 6|  I 8, 49 21  | 10 6. 94 2 31 .8 | | 2 6. 61  | 32 .3  16 .9  I 1 8 7 1 | 21 .6  16 .9  j CO CD I 10 .8  2. 32  | 0.1 9|  | 3. 14  77 42 46 | | 64 66 6|  | 10 46 96 0 68 47 1 CO CO CO | 33 16  CN E CN E CN E CO co CO o CO E CO CD O O CD CO LO LO CN CN o CO •* CO "tT CN CO CO CO CO LO •* 00 00 o LO CD CO W as te  | LO LO LO ID W as te  | O LO LD ID LD ID 10 LO LO LO [W as te  J  O LO LO LO LO io LO LD ID ID LO ID E CO 00 CD CO o to o E O CD o o •«* CO CO LO CN CN o CO CO CO £ O CN CO CD o L0 •<* r» r- CO LO O CD 00 CN 1. 80 %  | m j/k g | [08'8 : 30 .0 0]  i 29 .0 0]  j 46 .0 0|  m j/k g | | 46 .0 01  | 29 .0 01  | 29 .0 01  | 29 .0 01  1 45 .0 0]  | 29 .0 01  * ID CN S 4. 72 % ] | m j/k g | | 46 .0 0|  | 29 .0 0)  | 29 .0 0)  | 29 .0 0)  | 46 .0 0)  | 22 .3 0)  | 97 .0 0;  I l ab le (J a. 1 . I nit ial  t mb od ie d tn er gy  ot  (J ase  S tu dy  b ui ld in g.  1  93 93 7|  5 CN o O 2 o CN O o O a CO CO j 2 26 22 61  | 2 47 03 91  2 o O CN O o o I l ab le (J a. 1 . I nit ial  t mb od ie d tn er gy  ot  (J ase  S tu dy  b ui ld in g.  1  c "O (J <*• co nv . 1  3.8 71  0. 75 1 d 0. 00 6]  co nv . 1  0.0 01 31  0. 62 ] 0. 75 ] d 0.0 06 1 0. 18 ] '3 CO c •o o </> co nv . j | 0 .0 01 3)  I 0 .1 8 ) [ 0. 6 3 ) | 0. 6 3 ) j 0. 00 61  1 P .7 6 1  | 0 .7 6 ) I l ab le (J a. 1 . I nit ial  t mb od ie d tn er gy  ot  (J ase  S tu dy  b ui ld in g.  1  m j/u ni t 1  I m j/u ni t 1  O CD 1 0. 2 8 ] CN r*. id O Em bo di ed  e ne rg y | j m j/u ni t ]  O CD [ 0 .2 8 ] CN rv 10 12 .8  O I l ab le (J a. 1 . I nit ial  t mb od ie d tn er gy  ot  (J ase  S tu dy  b ui ld in g.  1  11 4. 71  11 4. 71  Q ty ./m  1 CO CN 1 1 .2 5 ] E > 5 | 0. 23 1 0) 1  2 - 2 5 l 1  2 - 2 B l CO CN CO d CO d CO Em bo di ed  e ne rg y | 1 1 09 .2 1 E > o CN CN CN | 0. 46 1 CN CN cp d LD 1 2 -7 5 l 1 0 .7 41  r- CN I 0 .7 4 ! I 0. 07 1 CD I l ab le (J a. 1 . I nit ial  t mb od ie d tn er gy  ot  (J ase  S tu dy  b ui ld in g.  1  Va nc ou ve r c os ts  1  Un its  j CN E E E n o.  Un its  | CN E E 2 in o.  1 E E E ino . 1 E E CN E E m bo di ed  e ne rg y | Va nc ou ve r co st s ] 1 U ni ts  1  CN E E 2 n o.  E E E E no . CN E E CN E CN E I l ab le (J a. 1 . I nit ial  t mb od ie d tn er gy  ot  (J ase  S tu dy  b ui ld in g.  1  Va nc ou ve r c os ts  1  11 2g a su sp en sio n w ire  @  6 00 m m  o c j 12 1 m m  fu rri ng  c ha nn el s @ 60 0 oc  1 13 8m m  c ha nn el s @  6 00  o c 1  11 2g a su sp en sio n w ire  @  6 00 m m  o c 1 Va nc ou ve r co st s ] [In te rio r p ar tit io n,  n o ra tin g,  2 70 0m m  N gh  1 J6 4m m  s te el  s tu ds  @  4 00 m m  o c I l ab le (J a. 1 . I nit ial  t mb od ie d tn er gy  ot  (J ase  S tu dy  b ui ld in g.  1  {IN TE RI O R  A SS EM BU ES  1 1 C ei lin g as se m bl ie s (A co us tic  ti le  a nd  t- ba r 1 112 00 x6 00 m m  ti le  1 T- ba r I 1 11 2g a su sp en sio n w ire  @  6 00 m m  o c j I F as te ne rs  I I IT ot al  m j p er  m 2 of  c om po ne nt ! 112 m m  g yp su m  b oa rd  1 I G wb  ta pe  ] 1 IG w b co m po un d { (S cr ew s I 1 12 1 m m  fu rri ng  c ha nn el s @ 60 0 oc  1 13 8m m  c ha nn el s @  6 00  o c 1  11 2g a su sp en sio n w ire  @  6 00 m m  o c 1 {T ot al  m j p er  m 2 of  c om po ne nt  (T O TA L C H U N G  A SS EM BU ES  [In te rio r p ar tit io n,  n o ra tin g,  2 70 0m m  N gh  1 [p ar tit io n to  u /s  c ei lin g 112 m m  g yp su m  b oa rd  | G wb  ta pe  { (G wb  c om po un d J6 4m m  s te el  s tu ds  @  4 00 m m  o c St ee l s tu d tra ck  (F as te ne rs /s cr ew s |6 4m m  a co us tic  in su la tio n 11 00 m m  r ub be r ba se  1 T ot al  m j p er  m 2 of  c om po ne nt  I l ab le (J a. 1 . I nit ial  t mb od ie d tn er gy  ot  (J ase  S tu dy  b ui ld in g.  1  {IN TE RI O R  A SS EM BU ES  1 1 C ei lin g as se m bl ie s (A co us tic  ti le  a nd  t- ba r 1 112 00 x6 00 m m  ti le  1 T- ba r I 1 11 2g a su sp en sio n w ire  @  6 00 m m  o c j I F as te ne rs  I I IT ot al  m j p er  m 2 of  c om po ne nt ! IG w b ce ilin g 112 m m  g yp su m  b oa rd  1 I G wb  ta pe  ] 1 IG w b co m po un d { (S cr ew s I 1 12 1 m m  fu rri ng  c ha nn el s @ 60 0 oc  1 13 8m m  c ha nn el s @  6 00  o c 1  11 2g a su sp en sio n w ire  @  6 00 m m  o c 1 I F as te ne rs  j I M et al  b ea ds  {S ea la nt  | P ain t ( 3 co at s)  {T ot al  m j p er  m 2 of  c om po ne nt  (T O TA L C H U N G  A SS EM BU ES  [In te rio r p ar tit io n,  n o ra tin g,  2 70 0m m  N gh  1 [p ar tit io n to  u /s  c ei lin g 112 m m  g yp su m  b oa rd  | G wb  ta pe  { (G wb  c om po un d (S cr ew s (M et al  b ea ds  {S ea la nt  J6 4m m  s te el  s tu ds  @  4 00 m m  o c St ee l s tu d tra ck  (F as te ne rs /s cr ew s |6 4m m  a co us tic  in su la tio n 11 00 m m  r ub be r ba se  | A dh es ive  | P ain t ( 3 c oa ts ) 1 T ot al  m j p er  m 2 of  c om po ne nt  CN d> O) to 0. 0 .6 7 | 0 .4 7 | 3 3 ,4 3 7  | 2 8 ,0 1 5 1 1 1 1 .2 | 11 1. 21  0. 66  0. 46 1 3 0 ,0 6 9  2 6 ,1 9 3 ] 61 .4  30 .5 1 3 1 .6  20 .2 1 19 .8  1 0 .3 ] 0. 94 1 0 .6 9 ] 3 1 3 3 7 9  2 2 9 0 6 5 ] IO CO ID CD CN CD CM E CN E CN LO CO CN CN CO 00 m CO CD CO o IO CD 6 3 6  j r v CD CN CN r "* CO CO CO CD CO CO rv rv. CN CD CD o o CM CO CD ID CO E T E W as te  o LO LO to LO LO LD IO ID ID ID ID CO W as te  [ O ID LD ID LD ID LD LO LD LD LD to W as te  | o ID ID ID ID LD LD ID IO to o CN CO CN CN CO 00 o IO r - Pv CO CO O CD r~ CD CN CN CD CN CO O CD •st CO ro CO CN CO CN o CO O O CN O CD 10 CO ¥ E" E m j/k g  4 6 .0 0 | 46 .0 01  2 9 .0 0 | 2 9 .0 0  2 9 .0 0 ) 4 6 .0 0 ) 2 2 .3 0 ) 9 7 .0 0  m j/k g  | 4 6 .0 0 ) 29 .0 01  2 9 .0 0 ] 2 9 .0 0  j 2 9 .0 0 ] 4 6 .0 0 ] 97 .0 0 ] m j/k g  j 4 6 .0 0 ] 2 9 .0 0 ] 2 9 .0 0 ] 4 6 .0 0 ] 97 .0 0 ] di ng . 5 o o o o o o 5 o o CO o CN o o 3 o o CM o o >- co nv . ! 0 .0 0 1 3 1  0 .0 0 2 | 0 .1 8 ) 0 .6 3  0. 63 ) 0 .0 0 6 ) 0. 76 ) 0 .7 6  co nv . 0 .0 0 1 3 ) 0. 18  0. 63  j 0 .6 3 ] 0 .5 2 ] 0 .0 0 6 ] 0 .7 6 ] co n v.  | 0 .0 0 1 3 1 0 .1 8 | 0 .6 2 ] 0 .0 0 6 1 0 .7 6 ] 55 m j/u n it o CO 0 .2 8 | CN 6.7  12 .8  o m j/u n it | O CD 0. 28 ) CN rv LD 1 2 .8 ) o m j/u n it | o CO 0 .2 8 1  CM rv ID' 12 .8 1  er gy  o t (Ja s Q ty ./m  CN CN 0 .9 2 ; CN CN CN CN CD d 1.6  2 .7 6  0. 69 1 pv CN 0. 74 1 0. 07  | CO .E > o 0 .2 3 ) CD CO d 0.7 6J ID 0 .7 4  j *t 0 .3 7  |  0 .0 3 6 1  CO Q ty ./ m  | 0 .2 3 1  0) CO d 0.7 6 1  ^ 0 .3 7  |  0 .0 3 5 1  er gy  o t (Ja s U ni ts  CN E E 3 no . i no . 1 E E E E no . CN E E CM E CM E U ni ts  CN E E 3 n o.  ) E E E E E no . | E CN E CN E U ni ts  | CM E E o no . | E E E no . | E CM E 1.  In iti al tm bo di ed  h n 10 0m m  h ig h  U u m m  o c | m m  o c | 1.  In iti al tm bo di ed  h n l, 2h r.  r at in g,  3 ' flo or  bo ar d 64 m m  s te el  s tu ds  @  4 0 0 m m  c  in su la tio n  ba se  T ot al  m j pe r. m 2  o f co m po ne nt  bo ar d ids  @  4 0 0 m m  c  ha nn el s @  6 00  ba se  | T o ta l m j pe r m 2  o f co m po ne nt  | bo ar d | ha nn el s @  6 00  ba se  | yi J CD Q CD [in te rio r p a rt iti o i [P ar tit io n  t o  u /s  11 6m m  gy ps um  | G w b ta pe  JG w b co m po un c {S cr ew s 25 m m  | S cr ew s 41  m m  {M et at  b ea ds  [S ea la nt  j 64 m m  s te el  s tu ds  @  4 0 0 m m  c  [S te el  s tu d  t ra ck  ) F as te ne rs  j 6 4 m m  a co us tic  10 0m m  ru bb er  [A dh es iv e j P ai nt  1 3 co at s)  { T ot al  m j pe r. m 2  o f co m po ne nt  F ur rin g  [ C ol um n  f ur rin g[  12 m m  gy ps um  G w b ta pe  | G w b co m po un c S cr ew s | M et al  b ea ds  | 'S ea la nt  64 m m  s te el  s tc  S te el  s tu d  t ra ck  21 m m  f ur rin g  c  F as te ne rs  | 10 0m m  r ub be r A dh es iv e  j P ai nt  ( 3  c oa ts ) j  T o ta l m j pe r m 2  o f co m po ne nt  | W al l fu rr in g  | 12 m m  g yp su m  & to XI i O G w b co m po un d  S cr ew s 1  M et al  b ea ds  | S ea la nt  | 2 1 m m  f ur rin g  c  F as te ne rs  I 10 0m m  ru bb er  A dh es iv e  | CL CO O X c CD Q_ C L < 0.6 2| 1.8 4| 0.3 71 0.4 6| 0.2 0| 30 .62 4 j 10 8,8 37  | ID q CN CN 26 ,92 21  11 ,76 9 111 .2 11 1.2 1 11 1.2 | 11 1.2 1 11 1.2 1 0.6 0 1.7 8| 0.3 61  0.4 41  0.1 9 27 ,46 0] 97 .87 6| 19 ,83 01  24 ,21 0| 10 ,67 6| 30. 61 LO rv CO 132 21 242 11 t o 20 .21  CN 29 .6 CO CO o CN L0 f** CO 00 09 CN p*. CN o ID 00 oa CN CN 10 1. 9 10 .3|  CO CO CN en CO 67. 61 o o CO r*. LO LO CO CO CD O o L0 o o 10 24 ) O CO CO CO CD 10 00 1 o o CN 189 91 00 0.4 8 j 0.2 31  0.0 21  0.0 31  LO d 16 08 69 | 76 92 0| 80 32 1 10 17 0| 49 76 4| 006 LO L0 o 28 58 1 tN E n o. | no . | no . | E o CO 01 r*. E CN O CN p» p* •«* 03 CO 99 CD CO CO 00 o CN CO •* CN 10 E o p» 00 CD ID LO CO o CO CO CO 00 CN CN -10 44 1 ID CO LD e 12 12 ) cn to L0 00 CO CD CO CD CD LD r» ID CN a 03 CN ID CN CN -20 88 1 10 17 ) £ CO r* W ast e LO LO W ast e LO LO W ast e | ID LO W ast e LO ID o to CO CO E O o CN CM P» •* CO CO "* LO O CO CN CO 00 CO CO •** O) 10 00 CO LO E o o •«* CN P* •** 00 CD •<t LD o o CO CN CO 00 CD -<* CO CD ID CD LO 12 00 | LO ID 00 CD CO O CO LO CD 10 0} CO CN ID •<* CD -19 89 1 108 11 'E CO mj /kg  | 29 .00 1 46 .00 1 46 .00  j 60 .00 1 60 .00 1 46 .00 1 29 .00 1 mj /kg  | 29 .00 1 46 .00 1 46 .00 1 60 .00 1 60 .00 1 46 .00 1 29 .00 1 1 E 29 .00 1 46 .00 1 66 .00 ] 66 .00 1 66 .00 1 29 .00 1 66 .00 ] 66 .00 1 29 .00 1 a E 97 .00 1 | l ab le C3 .1 . I nit ial  b mb od ie d bn er gy  ot  (J ase  b tu dy  b ui ld in g. 3 CO CN CN CN O CO 2 CO CN LO CN o 2 0) CN CN o CO o | l ab le C3 .1 . I nit ial  b mb od ie d bn er gy  ot  (J ase  b tu dy  b ui ld in g. con v. j 3.1 3| 0.2 61  •* d 10 CN CN •* d 0.6 31  con v. | 3.1 3| 0.2 61  d L0 CN CN d 0.7 41 con v. | 3.1 31 0.2 6J d to 10 CN CN -* d 0.7 4 |  con v. J 0.3 91  | l ab le C3 .1 . I nit ial  b mb od ie d bn er gy  ot  (J ase  b tu dy  b ui ld in g. o mj /un it o o CN r» CD CN mj /un it ]  o o -49 7 |  mj /un it |  o o CO -49 71 mj /un it |  12 .8 | l ab le C3 .1 . I nit ial  b mb od ie d bn er gy  ot  (J ase  b tu dy  b ui ld in g. to Qty . | CN LO CO CO LO CN Qty . | CN 10 CD CO ^ ; i d CN Qty . | CN CD CO CD CN CN CN CN «t i d Qt y./ m | d | l ab le C3 .1 . I nit ial  b mb od ie d bn er gy  ot  (J ase  b tu dy  b ui ld in g. tN E U nit s no . E no . no . no . no . no . E Un its | no.  E no . j no . j no . | no . | no . j E Un its | no . | E no . | no . | no . | no . | E no . | no . | E CN £ Un its | E tN E | l ab le C3 .1 . I nit ial  b mb od ie d bn er gy  ot  (J ase  b tu dy  b ui ld in g. | So lid  co re no n r ate d (21 00 x9 00 mm ) [Le ss 2 sq m of no n r ate d pa rti tio n j Ste el 1hr . r ate d {21 00 x9 00 mm ) j Le ss 2 sq m of Ih r. rat ed  pa rti tio n | Pai r s oli d c ore  Ih r. rat ed  (2 x2 10 0x 90 0m m)  | Le ss 4 s q m of 1hr . r ate d pa rti tio n J | l ab le C3 .1 . I nit ial  b mb od ie d bn er gy  ot  (J ase  b tu dy  b ui ld in g. | T ota l m j p er m2  of  c om po nen t | D oo rs ass em bli es | So lid  co re no n r ate d (21 00 x9 00 mm ) 118 ga pr ess ed  m eta l fr am e [Ad dit ion al stu ds  [Le ss 2 sq m of no n r ate d pa rti tio n j [To tal  m j p er com po nen t Ste el 1hr . r ate d {21 00 x9 00 mm ) j 18g a p res sed  m eta l f ra me  | Ad dit ion al stu ds | Le ss 2 sq m of Ih r. rat ed  pa rti tio n | To tal  m j p er com po ne nt | Pai r s oli d c ore  Ih r. rat ed  (2 x2 10 0x 90 0m m)  | 18g a p res sed  m eta l f ra me  | Ad dit ion al stu ds 92 mm  | Le ss 4 s q m of 1hr . r ate d pa rti tio n J To tal  m j p er com po ne nt | 10 0m m rub ber  ba se | Ad he siv e | | To tal  m j p er m of com po ne nt | | l ab le C3 .1 . I nit ial  b mb od ie d bn er gy  ot  (J ase  b tu dy  b ui ld in g. | P ain t ( 3 c oa ts)  | T ota l m j p er m2  of  c om po nen t | D oo rs ass em bli es | So lid  co re no n r ate d (21 00 x9 00 mm ) Do or 118 ga pr ess ed  m eta l fr am e | F ram e a nch ors  Bu tts  | L ock set  J |Cl ose r j |St op  | [Ad dit ion al stu ds  [Le ss 2 sq m of no n r ate d pa rti tio n j [To tal  m j p er com po nen t Ste el 1hr . r ate d {21 00 x9 00 mm ) j Do or | 18g a p res sed  m eta l f ra me  | Fr am e a nch ors  | Bu tts  | Pa nic  se t | Clo ser  | Sto p | Ad dit ion al stu ds | Le ss 2 sq m of Ih r. rat ed  pa rti tio n | To tal  m j p er com po ne nt | Pai r s oli d c ore  Ih r. rat ed  (2 x2 10 0x 90 0m m)  | Do or | 18g a p res sed  m eta l f ra me  | Fr am e a nch ors  | Bu tts  | Pa nic  se ts | Co ord ina tor  | As tra gal  (s tee l) |  Clo ser  J Sto p | Ad dit ion al stu ds 92 mm  | Le ss 4 s q m of 1hr . r ate d pa rti tio n J To tal  m j p er com po ne nt | Ru bb erb ase  j  10 0m m rub ber  ba se | Ad he siv e | | To tal  m j p er m of com po ne nt | CSI CO D) TO CL co O x 'a c OJ a. 2 0 .6 3  6 .6 2  0 .2 6  0 .1 5  0 .3 6 | 0 .0 4 1 3 1 .3 3 2  3 3 2 ,3 6 6  1 5 ,2 3 6  8 ,6 0 4  2 1 ,1 1 0 ] 2 ,4 8 6  11 1. 2  1 1 1 .2  1 1 1 .2  11 1. 2  1 1 1 .2 ! 11 4. 0  0. 61  j  6 .4 4  0 .2 6  0. 14  0 .3 6 | 0. 04  2 8 ,1 7 7 ) 2 9 8 ,8 8 0 1 1 3 ,7 0 2 1  7 ,7 3 7  1 8 .9 8 4 ] 2 ,1 8 0  6 1 .7  j 4 6 .7  40 .9 1 6 6 .7  j 00 LD 2 1 8 0 , 28 .2 1 Pv CD 12 .9  29 .3  8 9 .3  ID ID rv 23 .6 1 O 00 CM 3 7 .4  68 .9 ! LO CM 0 .1 8 ] 3. 77 1 0 .0 8 ) 0. 06 1 0. 04 ] 0 .0 3  9 L 9 0 9  CD ID CD CO ID CM 2 7 3 7 7 ] 1 7 9 0 6  1 4 7 4 2 ] 9 6 7 6  LO ID 64 00 1 LO CO CO CD o CM CM E CM E CN E CM E CN E o" c E LO CO CD r v 11 1  E" to Pv CO o Pv CO E CM •* o CN 00 E CO ID CM O CO E CM CM o CO CM E 71 61  2 4 2 4  LO Pv ID CO W as te  | LO LO W as te  | ID LD LO W as te  | ID ID W as te  j  ID LO O s s LO ID W as te  'E CO CO CO r v CD O E O Pv CO o o Pv CO £ O -* 00 CO 00 pv E O ID rv CO r* E O CN rv 00 Pv E 7 0 8 0 ; 2 4 0 0  9 4 8 0  m j/k g  | 9 7 .0 0 1 # 10 CO ID 7 .7 3 % | 1 E 8 0 .0 0 1  8 0 .0 0 1 9 7 .0 0 | ? E 9 7 .0 0 1 i '£ 9 7 .0 0 1 m j/k g  j 9 7 .0 0 ] LD CO CO 6 .8 0 % ] m j/k g  6 0 .0 0 ; 6 0 .0 0  la bl e U 3. 1.  In iti al tm bo di ed  t ne rg y o t Ua se  S tu dy  Bu il di ng . 1  c* 19 64 1 3 7 0 3 2 0 ] 4 0 4 3 8 9 1  3 o o o 3 3 13 19 ] 3 3 9 3 0 3 ] 3 6 6 9 2 9 ] 3 00 o la bl e U 3. 1.  In iti al tm bo di ed  t ne rg y o t Ua se  S tu dy  Bu il di ng . 1  co nv . 1  0 .7 6 | "3 to </> c TJ o <A co n v.  J 0. 87 J 1. 35 1 b co nv . J 0 .3 9 ) co nv . ] co n v.  | "5 01 D <A c TJ CJ <A co n v.  oo o 1* la bl e U 3. 1.  In iti al tm bo di ed  t ne rg y o t Ua se  S tu dy  Bu il di ng . 1  m j/u n it 1 Co E m bo di ed  e ne rg y 1  m j/u n it 1 m j/u ni t I  o •* m j/u n it j  O ID m j/u n it ] O CM E m bo di ed  e ne rg y m j/u n it la bl e U 3. 1.  In iti al tm bo di ed  t ne rg y o t Ua se  S tu dy  Bu il di ng . 1  E > a E m bo di ed  e ne rg y 1  1 0 9 .2 1  Q ty ./ m  1  Q ty ./m  | Q ty ./m  | Q ty ./m  | E m bo di ed  e ne rg y 1 0 4 .9 ] Q ty . la bl e U 3. 1.  In iti al tm bo di ed  t ne rg y o t Ua se  S tu dy  Bu il di ng . 1  U ni ts  j CN E CN E E m bo di ed  e ne rg y 1  V an co uv er  c os ts  1  U ni ts  1  CM E CN E CM E U ni ts  I CN E CM E U ni ts  j CN E CM E U ni ts  | CM E CM E E m bo di ed  e ne rg y V an co uv er  c os ts  ] U ni ts  | d c o* c la bl e U 3. 1.  In iti al tm bo di ed  t ne rg y o t Ua se  S tu dy  Bu il di ng . 1  T O T A L  IN TE R IO R  P A R T IT IO N  A S S B M B U E S  1  V an co uv er  c os ts  1  P ol yp ro py le ne  b ac ki ng  ( 1 .3 6 kg /m 2 ) 1 T O T A L FL O O R  F IN IS H  A S S E M B U E S  V an co uv er  c os ts  ] M IS C E LL A N E O U S  A S S E M B LI E S  la bl e U 3. 1.  In iti al tm bo di ed  t ne rg y o t Ua se  S tu dy  Bu il di ng . 1  C er am ic  w a ll til e  T N ns et  a dh es iv e  T o ta l m j pe r m 2  o f co m p o n e n t!  T O T A L  IN TE R IO R  P A R T IT IO N  A S S B M B U E S  1  FL O O R  F IN IS H  A S S E M B U E S  N yl on  f ac e (. 8 7 kg /m 2 ) 1 P ol yp ro py le ne  b ac ki ng  ( 1 .3 6 kg /m 2 ) 1 A dh es iv e  I I T ot al  m j pe r m 2  o f co m p o n e n t!  R es ilia nt  f lo or in g  I 3. 2m m  L in ol eu m  I A dh es iv e  I I T ot al  m j pe r m 2  o f co m p o n e n t]  C er am ic  t ile  f lo o rin g  j T hi n- se t ad he si ve  T o ta l m j pe r m 2  o f co m po ne nt  G ra ni te  t ile  f lo o rin g  T hi n- se t ad he si ve  T o ta l m j pe r m 2  o f co m po ne nt  T O T A L FL O O R  F IN IS H  A S S E M B U E S  M IS C E LL A N E O U S  A S S E M B LI E S  G ar ag e do or  a nd  o pe ne r T o ta l m j pe r co m po ne nt  S ta ir as se m bl ie s S ta ir fli g h t ac ce ss or ie s la bl e U 3. 1.  In iti al tm bo di ed  t ne rg y o t Ua se  S tu dy  Bu il di ng . 1  C er am ic  w a ll til e  C er am ic  t ile  T N ns et  a dh es iv e  T o ta l m j pe r m 2  o f co m p o n e n t!  T O T A L  IN TE R IO R  P A R T IT IO N  A S S B M B U E S  1  FL O O R  F IN IS H  A S S E M B U E S  C ar pe t 1  N yl on  f ac e (. 8 7 kg /m 2 ) 1 P ol yp ro py le ne  b ac ki ng  ( 1 .3 6 kg /m 2 ) 1 A dh es iv e  I I T ot al  m j pe r m 2  o f co m p o n e n t!  R es ilia nt  f lo or in g  I 3. 2m m  L in ol eu m  I A dh es iv e  I I T ot al  m j pe r m 2  o f co m p o n e n t]  C er am ic  t ile  f lo o rin g  j C er am ic  t ile  T hi n- se t ad he si ve  T o ta l m j pe r m 2  o f co m po ne nt  G ra ni te  t ile  f lo o rin g  G ra ni te  t ile  T hi n- se t ad he si ve  T o ta l m j pe r m 2  o f co m po ne nt  T O T A L FL O O R  F IN IS H  A S S E M B U E S  M IS C E LL A N E O U S  A S S E M B LI E S  G ar ag e do or  a nd  o pe ne r D oo r O pe ne r ] T o ta l m j pe r co m po ne nt  S ta ir as se m bl ie s S ta ir fli g h t ac ce ss or ie s CN CU O) CD 0- 0. 21 1 0. 44 ] 0. 16 | 0. 30 | ro .o 7 | 0. 06 | 0. 16 | 0.0 21  0. 03 ] 0. 01 1 0.4 8| 4.8 01  1. 36 ] 3. 68 | 1. 39 | 12 ,6 74 1 26 ,0 80 1 8, 94 61  17 ,7 89 | 4, 12 1 | 3, 16 6|  8, 98 91  1, 03 6|  1, 68 0)  81 0|  28 ,4 18 ] 28 3, 92 81  80 ,6 61 1 21 7, 78 6|  81 ,9 20 1 11 1. 2 10 0. 6J  10 0. 6 j 10 0. 61  10 0. 6|  10 0. 5]  10 5. 6|  10 3. 31  10 3. 3]  10 3. 3]  10 3. 3]  10 0. 5]  10 0. 6]  10 0. 6]  10 2. 4]  0. 21 1 0. 47  j 0. 16 ) 0. 32 : 0. 07  j 0. 06  j o.i e; 0. 02 1 0. 03 ] 0. 01  j 0. 60 ] 6. 14  1. 46 ] 3. 96 ] 1. 46  11 ,3 08 | o LO CO LD CM 8, 90 01  17 ,7 00 1 4, -1 00 1 3, 14 0|  o CM U) od 1 ,0 02 | 1, 62 6|  00 Ps 27 ,6 10 | 28 2, 51 51  80 ,2 60 1 21 6, 70 21  80 ,0 00 1 o o -* LO LD CO 00 o CO 00 o CD LD o CM 00 00 CM CO CO CM •«* 33 .4 1 64 .2 ] 39 .2 1 Ps CD 35 .2  o Ps CN C os ts  in cl . a bo ve  | CM CM C os ts  in cl . a bo ve  | O LO CO O CO LD CO O CO CO CO CO CM to to Ps* CN CO* CN CO* Ps CO CO CM C os ts  in cl . a bo ve  | LO LO o CO Ps CO CM o »J *r ID CD CO o CO CO 25 .8 1 LD o CO o Ps 0. 46 1 0. 01 ) 0. 11 ) 0. 02 1 0. 06 1 0. 01 1 0. 01 1 0. 02 ) 0. 01 1 0. 01  ] 0. 01 1 0. 04 ] 8. 42 ] 6. 02 ] 1. 81  | 16 46 50 j 18 76 J 36 63 3]  74 24 ] 17 81 6|  44 64 1 29 69 1 80 80 1 27 27 | 18 18 | 27 27 | 12 12 0]  28 09 10 0]  20 06 60 0]  60 19 60 ] 38 00 00 ] CM CM CO o to o o to LO LO o CM O CO o CO o CM o to 80 26 ] to CM o CO 80 26 1  80 26 ] O c d c ? o c o c o c O c o c O c o c O c o c CN E CN E CM E E 61 79 ] CN LO OO O CO cp CM CM CM o CO CO CO CN 70 30 1 E CO CO LO LO to oo to CM CD E CO 00 CM Ps CO ID Ol 00 <r CO ID 1 -<)• o CD to CO ro •d-o 'E o 10 CO o LD CN LO Ps ID CO W as te  | LO W as te  | W as te  | W as te  | W as te  | ID ID to o E 49 32 | 00 ps o CO *t CM CM CO CO CM LO CO *t CM 67 66 1  E" LO *r CO CO LO CM oo 0) CO 'E 11 76 | LD CO Ps OO 00 to CM 00 oo CO 00 LO E o o O CO o CD LD CO o o ̂ m j/s q m  ] O ID CO O LO CN o to LO CO m j/k g 27 4. 00 1  28 .0 01  28 .0 01  28 .0 01  28 .0 0 45 .0 01  2 E 28 .0 01  28 .0 01  28 .0 01  m j/k g | 29 .4 0 j 29 .4 0 j 29 .4 0 j 29 .4 01  29 .4 0)  m j/k g j 80 .0 0 j 60 .0 0 j 60 .0 0]  46 .0 0]  0. 78 % j 2. 26 % ) E | l ab le (J 3. 1 . I nit ial  b mb od ie d hn er gy  ot  (J ase  b tu dy  Bu il di ng . |  a oo o CO 00 — CO 2 CM LO 2 O LO CM O CM O CO O CM 2 to CM CO CN CD CN 11 27 20 [ 11 82 43 ] 3 | l ab le (J 3. 1 . I nit ial  b mb od ie d hn er gy  ot  (J ase  b tu dy  Bu il di ng . |  co nv . 2. 74 1 2. 74 1 CM 2. 74 1 0. 76 1 co nv . 2. 74  2. 74  CM co nv . | o 10 CM O CM O CO O CM co nv . j LO ID CO '3 CD c "O O <A c on v.  | | l ab le (J 3. 1 . I nit ial  b mb od ie d hn er gy  ot  (J ase  b tu dy  Bu il di ng . |  m j/u ni t |  O m j/u ni t o m j/u ni t |  m j/u ni t |  o o Em bo di ed  e ne rg y [ m j/u ni t |  O LO CO o ID CN o LO 0. 03 61  | l ab le (J 3. 1 . I nit ial  b mb od ie d hn er gy  ot  (J ase  b tu dy  Bu il di ng . |  Q ty . 00 eo CO 2.3 6 j Q ty ./m  j LO CM CM 0. 81 1 Q ty . | Q ty . j Em bo di ed  e ne rg y [ 10 4. 9|  Q ty ./m  | | l ab le (J 3. 1 . I nit ial  b mb od ie d hn er gy  ot  (J ase  b tu dy  Bu il di ng . |  U ni ts  E E E d c E d c CM E U ni ts  | E E d c CM E U ni ts  J d c d c d c d c d c U ni ts  | d c 6 c o" c o" c o* c Em bo di ed  e ne rg y [ V an co uv er  c os ts  | U ni ts  | CM E CM £ CN £ CN £ | l ab le (J 3. 1 . I nit ial  b mb od ie d hn er gy  ot  (J ase  b tu dy  Bu il di ng . |  | V er tic al  s up po rt s 40 m m  s te el  t ub e j | P ai nt  ( 3 co at s,  0 .1 26 m 2 pe r m ) | [V er tic al  s up po rt s 40 m m  s te el  t ub e | [ F ix in g pl at es  a nd  s tu ds  | | |P ai nt  ( 3 co at s,  0 .1 26 m 2 pe r m ) [T O TA L M IS CE LL AN EO US  A SS EM BU ES  | V an co uv er  c os ts  | | l ab le (J 3. 1 . I nit ial  b mb od ie d hn er gy  ot  (J ase  b tu dy  Bu il di ng . |  | G ua rd  r ai l 4 0m m  s te el  t ub e | V er tic al  s up po rt s 40 m m  s te el  t ub e j | F ix in g pl at es  a nd  s tu ds  |H an d ra il 40 m m  s te el  t ub e CO 1 u to | P ai nt  ( 3 co at s,  0 .1 26 m 2 pe r m ) | | T ot al  m j pe r st ai r fli gh t j | S ta ir  la nd in g ac ce ss or ie s j [G ua rd  r ail  4 0m m  s te el  t ub e | [V er tic al  s up po rt s 40 m m  s te el  t ub e | [ F ix in g pl at es  a nd  s tu ds  | | |P ai nt  ( 3 co at s,  0 .1 26 m 2 pe r m ) | T ot al  m j pe r la nd in g | | P lu m bi ng  f ix tu re s | | U rin al  ( wa ll hu ng ) | | D rin ki ng  f ou nt ai n | [W as hr oo m  a cc es so ri es  | | T oi le t p ap er  h ol de r j [T oi le t pa rt iti on s an d do or s | [T O TA L M IS CE LL AN EO US  A SS EM BU ES  | | l ab le (J 3. 1 . I nit ial  b mb od ie d hn er gy  ot  (J ase  b tu dy  Bu il di ng . |  1 S ta ir no si ng s | G ua rd  r ai l 4 0m m  s te el  t ub e | V er tic al  s up po rt s 40 m m  s te el  t ub e j | F ix in g pl at es  a nd  s tu ds  |H an d ra il 40 m m  s te el  t ub e | P ai nt  ( 3 co at s,  0 .1 26 m 2 pe r m ) | | T ot al  m j pe r st ai r fli gh t j | S ta ir  la nd in g ac ce ss or ie s j [G ua rd  r ail  4 0m m  s te el  t ub e | [V er tic al  s up po rt s 40 m m  s te el  t ub e | [ F ix in g pl at es  a nd  s tu ds  | | |P ai nt  ( 3 co at s,  0 .1 26 m 2 pe r m ) | T ot al  m j pe r la nd in g | 1 W as hr oo m s I | P lu m bi ng  f ix tu re s | |W C | | U rin al  ( wa ll hu ng ) | |L av . | |J an ito rs  s in k | | D rin ki ng  f ou nt ai n | [T ot al  . | [W as hr oo m  a cc es so ri es  | | E lec tr ic dr ye r | | T oi le t p ap er  h ol de r j | S oa p di sp en se r]  | G ra b ba rs  | [T oi le t pa rt iti on s an d do or s | | T ot al  | [T O TA L M IS CE LL AN EO US  A SS EM BU ES  | M EC H AN IC AL  | EL EC TR IC AL  | CL CO O . X c <u Q . C U < CD C O 0. m a te ri a l c o s t t o 3 9 6 0 0  %  o f to ta l 15. 0%  0 .0 %  0 .0 %  0 .3 %  0 .2 %  0 .0 %  0 .0 %  0 .6 %  0 .1 %  0 .1 %  0 .1 %  0 .0 %  0 .4 %  0 .0 %  0 .1 %  0 .1 %  0 .1 %  0 .0 %  0 .0 %  0 .1 %  0 .0 %  0 .2 %  0 .7 %  0 .0 %  0 .0 %  0 .1 %  e m b o d ie d  e n e rg y  to ta l 1 5 4 8 0 0 0  2 7 7 0 4 .0 4  1 7 3 1 5 .0 3  5 9 2 8 6 .4  1 0 1 6 1 .2  1 0 1 6 1 .2  1 1 7 6 5 .6  4 2 0 2  4 2 0 2 0  4 2 0 2  8 4 0 4  1 4 8 2 1 .6  1 4 8 2 1 .6  9 5 0 4  2 0 5 2 0  7 3 3 2 4 .8  1 0 1 6 1 .2  e m b o d ie d  e n e rg y  M j/k g  51 .6 7 6 .4  7 6 .4  7 6 .4  7 6 .4  7 6 .4  7 6 .4  7 6 .4  7 6 .4  7 6 .4  7 6 .4  7 6 .4  7 6 .4  28. 5 28. 5 7 6 .4  U se  f lo o r a re a  m u lt ip li e r to  g e t e m b o d ie d  e n e rg y  f ig u re s  f o r w e ig h t 3 0 0 0 0  3 6 2 .6 1 8 3  2 2 6 .6 3 6 5  M- CO CO T— CO CO ^ — [» • | V - IO m m m m io if> m co •* CD M j/s q  m  CO r» 1 3 .4  co CO U se  f lo o r a re a  m u lt ip li e r to  g e t e m b o d ie d  e n e rg y  f ig u re s  f o r 1 2 0 .8 7 2 8  1 5 .1 0 9 1  s iz e [h p ] 7 .3 7  T a b le  C 3. 2.  M e ch a n ic a l T a ke o ff . N o te : T a k e o ff  i s  f o r J a c k  D a v is  B u ild in g . U se  f lo o r a re a  m u lt ip li e r to  g e t e m b o d ie d  e n e rg y  f ig u re s  f o r n u m b e r CM n u m b e r CO n u m b e r CM o i — CM T— n u m b e r C\l o CM CM CD n u m b e r ^ — T a b le  C 3. 2.  M e ch a n ic a l T a ke o ff . N o te : T a k e o ff  i s  f o r J a c k  D a v is  B u ild in g . U se  f lo o r a re a  m u lt ip li e r to  g e t e m b o d ie d  e n e rg y  f ig u re s  f o r d e s c ri p ti o n  9 5 0  k W  e a c h  s iz e s : 1 5 0  m m  7 5  m m  s iz e  [ k w ] 3 .7 5  2 .2 5  If) in d 0 .3 5  0 .2 5  0 .1 5  s iz e  in •<* s iz e  [ k w ] LO iri T a b le  C 3. 2.  M e ch a n ic a l T a ke o ff . N o te : T a k e o ff  i s  f o r J a c k  D a v is  B u ild in g . U se  f lo o r a re a  m u lt ip li e r to  g e t e m b o d ie d  e n e rg y  f ig u re s  f o r c a s e  s tu d y  b u ild in g . d e s c ri p ti o n  9 5 0  k W  e a c h  19  v a lv e s , w a te r p u m p  a ir  c o m p re s s o r V A V  b o x e s  T a b le  C 3. 2.  M e ch a n ic a l T a ke o ff . N o te : T a k e o ff  i s  f o r J a c k  D a v is  B u ild in g . U se  f lo o r a re a  m u lt ip li e r to  g e t e m b o d ie d  e n e rg y  f ig u re s  f o r c a s e  s tu d y  b u ild in g . p a rt  b o ile rs  a u to m a ti c  p u m p s  w a te r p u m p  a ir  c o m p re s s o r a ir  f il te rs  d if fu s e rs  V A V  b o x e s  fa n s  CO O < 0. 5%  0. 2%  1. 3%  0. 1%  0. 0%  0. 0%  0. 1%  0. 0%  0. 0%  0. 0%  1. 3%  0. 0%  0. 0%  0. 2%  0. 2%  0. 0%  0. 0%  0. 0%  0. 0%  0. 4%  0. 3%  0. 0%  0. 0%  0. 2%  0. 0%  4. 0%  0. 0%  0. 0%  1. 4%  0. 0%  23 .3 %  0. 0%  50 80 6  17 64 8. 4 13 44 64  12 60 6 4 2 0 2  4 2 0 2  12 60 6  1 3 0 1 3 5 .2  15 48 0 15 48 0  85 .8 88  36 69 6  3 0 3 6 0  2 2 8 0 7 .2  41 28 00  14 44 80  2 4 0 5 7 6 0  76 .4  76 .4  76 .4  76 .4  76 .4  76 .4  76 .4  51 .6  5 1 .6  5 1 .6  5 1 .6  51 .6  5 1 .6  CO co CO r- I S - LO LO LO LO LO LO LO LO LO LO 2 5 2 2  o LO ^— o LO M j/s q  m  CD I S - T— CD I S - CD I S - CN 80 00  o LO co 3 7 5 9 0  5 .0 2 5  3 .0 1 5 1 .0 0 5 0 .8 0 4  0 .5 0 2 5  0 .2 6 8  0. 13 4 ~ 5 to n  I fo r w t c a lc u la ti o n s  T ab le  C 3. 2.  M ec ha ni ca l T ak eo ff . LO CO CM co co T— CO cn n u m b e r n u m b e r CM CM n u m b e r o co LO n u m b e r t— n u m b e r co I fo r w t c a lc u la ti o n s  T ab le  C 3. 2.  M ec ha ni ca l T ak eo ff . 3 .7 5 2. 25  0. 75  co d 0 .3 7 5  CM d •<— d s iz e  5. 2 l/ s e c  s iz e  0 .4 8 8  6. 95  11 .5  s iz e  18 .7 5 k w  30 0 to n  s iz e  11 .2 5 k w  se e  s h e e t 1  T ab le  C 3. 2.  M ec ha ni ca l T ak eo ff . h e a t e x c h a n g e  e x p a n s io n  t a n k s  h o t w a te r ta n k s  c o o li n g  t o w e r a ir  h a n d lin g  u n it s  T ab le  C 3. 2.  M ec ha ni ca l T ak eo ff . h e a t e x c h a n g e  e x p a n s io n  t a n k s  h o t w a te r ta n k s  s ile n c e rs  c o o li n g  t o w e r c h il le rs  a ir  h a n d lin g  u n it s  d u c ti n g  CO O X T 3 C CD Q . Q . < CO oo CM LO LO oo oo co co oo o CM CM CD co CO 0- CO O X T3 cz CD CL Q. < 0 0 co 0 0 CD CM OO CM 5 CM CM CD CO C3 CL CO O X T3 c CD CL CL < 8 9 8 g 8 3 i n co CO to CM 3 3 2 CM CM CM CD CO CD CL 13 .6 6%  9. 43 %  1. 87 %  | 0. 00 %  0. 00 %  0. 00 %  [ 0. 00 % ] 5. 00 %  j 1. 35 %  1. 35 % ) 0. 67 %  0. 00 %  0. 00 %  0. 00 %  4. 50 %  2. 85 %  3. 05 %  0. 90 %  to ta l [M j]  E C T i" [to ta l 26 49 02 7 37 20 90 .5  32 89 43 4 26 9. 62 57  [pe r f lo or  | [ 33 11 28 .4  56 15 3. 61  38 75 8. 22 93  j 76 97 .0 66 67 ) 20 55 5. 55 56 ] 55 55 .5 55 56 ] 55 55 .5 55 56  27 55 .5 55 56  | 14 81 68 .5 33  93 75 0. 27 2 [ 10 04 11 .7 33  [ 29 76 0|  o C D o C D o C D 5? C N 5? C N o K o C N o C D o C D o C D C D c n in cl ud es  c ity  m ul tip ly er , s iz e fa ct or  21 05 .7 6)  14 53 .4 34 J 10 8. 24 1 s 8 8 O C O 55 56 .3 2 35 15 .6 35  14 12 .0 4 o C O in cl ud es  c ity  m ul tip ly er , s iz e fa ct or  co d 1.1  e  | m al um  ] ia lu m  | al um  | 2.4 21  6.3 81  0. 20 51  in cl ud es  c ity  m ul tip ly er , s iz e fa ct or  71 66 20 .1 3 84 88 3. 12  87 07 33 .0 9 6. 49 80 08 1 5. 86  for  8  fl oo rs  89 57 7. 52  to ta l el ec tri ca l to ta l/S .F . m ea ns  S .F  d at a 15 02 1. 09 1 78 93 .6 48 1 35 98 .9 81  01 0) o 24 25 ] m CT) CO 19 50 1 22 61 5. 61  14 05 1. 52 1 48 21 6]  to ta l el ec tri ca l m ea ns  S .F  d at a 1 4. 28 ] C O C D 66 .51  | 55 .5 1 9.8 51  I 2 5 -5 l o o f- E E E w at ts  j E E E 10 70  C M | 66 00 | o o in ] 26 10 0]  ] 26 00 ] I 46 00  [3 0k VA  | o o co C D | 21 00 I in su la tio n 1 T ab le  C 3. 3.  E le ct ric al  t ak eo ff E o in o o C O in su la tio n 1 T ab le  C 3. 3.  E le ct ric al  t ak eo ff 12  m m  I  12 5 m m  I  C O Iw al l re ce pt ic le s [c on du it | w ire  | 1 T ab le  C 3. 3.  E le ct ric al  t ak eo ff I c on du it j I w ire  | Iw al l re ce pt ic le s 1 s pe ak er s I p an el  b oa rd s [T ra ns fo rm er  1  I v er tic le  r is er s j 0 J O a. < ft s O CL < 8 s 8 8 3 S O 5 8 s 3 O 3 8 fo r 8 0 yr  li fe  | fo r 4 0 yr  li fe  | — fo r 8 0 yr  li fe  | fo r 4 0 yr  li fe  | | 47 44 .4 48 1 | 63 10 .1 16 | •to ta l | | 92 51 8. 19 | CO CO | 25 12 .0 75 | | 33 41 .0 6  to ta l | | 44 31 7. 77 | CN | 56 0. 94 61 1  | 74 6. 05 84  | 31 6. 97 94  | 42 1. 58 26  o o o o 16 16 5. 94 1 | 21 50 0. 69 | | 68 80 .9 18 ] | 91 51 .6 2|  15 94 .1 98 ] 1 21 20 .2 84 ] I8 98 .4 66 2J  1 11 94 .9 6]  | 10 02 8. 98 | | 13 33 8. 54 | | 48 41 .0 51 | | 64 38 .5 97 1 10 51 2. 75  13 98 1. 96  53 20 .4 91 ] [ 70 76 .2 53  85 39 .3 96 1 11 35 7. 4 j | 41 44 .1 03 ] 55 11 .6 57 ] | 12 58 5. 98  j | 16 73 9. 35 1 | 61 09 .4 55 | 81 25 .5 76 ] | 17 59 .9 62 | | 23 40 .7 5]  | 98 9. 95 45 | | 13 16 .6 39 | o o o o {T ab le  C 4.  R ec ur ri ng  E m bo di ed  E ne rg y of  B as e Bu ild in g j [ 30 69 .9 55 1 I 40 83 .0 4]  1 13 08 .1 37 | | 17 39 .8 23 ] {T ab le  C 4.  R ec ur ri ng  E m bo di ed  E ne rg y of  B as e Bu ild in g j | s ub -t ot al  ) [to ta l J | s ub -to ta l | I to ta l J {T ab le  C 4.  R ec ur ri ng  E m bo di ed  E ne rg y of  B as e Bu ild in g j {T ab le  C 4.  R ec ur ri ng  E m bo di ed  E ne rg y of  B as e Bu ild in g j {T ab le  C 4.  R ec ur ri ng  E m bo di ed  E ne rg y of  B as e Bu ild in g j Q x X3 c CD Q . Q . < to i cn o II .0) C 32 '5 m 5v CO i CD C LU _Q) O >» O i <1> Q Q) LL Ii -- AON3IOIdd3 ONIIHOH dinD3 'UOiVA313 NOIlVinSNI A1ISN30 ONIIHOH CD CN CN CD C S CO D. O N i z v n o dlAIDd 1V3H ONiiHonAva z NOiivanidNi NouvynidNi NOIIVINHIUO 3SVO 3SV8 O) CD CO co d co d M-d CM d [jA-2iu/ro] uoiidiunsuoo Afjjaua |Bnuuy Q X T3 OJ Q. Q. < W I— CO CD >-o 00 II .0) CO c T J '5 DQ >; CD 1 CD c LU 0) O 0 1 .0) CN Q <D i _ CO A0N3l0ldd3 ONI1HOH dinD3 'UCU.VA313 NOIlVinSNI A1ISN3Q 0NI1H9H 0NIZV13 dIAind 1V3H ONIlHOHAVa Z NOIlVMll ldNI NonvynidNi NOLLVINSIUO 3SVO 3SV9 o ro CN OJ D) CO a. OJ s CO V- o o o o [JA^iuvro] uoudiunsuoo ABjaug |enuuv LU X TJ c CD CL Q- < CO CD 'cn CD ' co O CD J3 CO > c CD CO CD L _ CL LLI CD LL i _ CO CO CD CD >- >-o O El co 1111111118 ::V:.,.::::-::.:-::- " , nsNii ivan NOUV1N3 mo dlAJnd 1V3H Z ONIlHOlh dinoa 'yoiVAa-ik ONIIHOH ONiiHonAva JNI CO CM CD cn co 0. co ro i— to 9 o [ZW/$] on|BA luosojd J9N Ill X T3 C CD Q- Q- < W a) co 3 ro —̂* co CD > O eg LU "So o 0 CO c 1 ^ c co 01 CN LU <D v— =5 CO N 0 l l V l N 3 l c j 0 NOiiyynidNi dl/MDcH 1 V 3 H dinoa yO!VA313 ONiiHsnAva Z ONlLHOn ONIlHOn CO CO co co >- >- o o co CM co CM OJ O) CO CL 8 8 8 o o o o iri CO 8 [P9/$] ssau8A|pajj3 ISOQ

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 9 0
France 6 0
Ireland 4 0
Russia 4 0
China 3 29
Canada 2 1
Japan 2 0
Algeria 1 0
City Views Downloads
Unknown 13 6
Dublin 4 0
Washington 4 0
Redmond 3 0
Beijing 3 0
Tokyo 2 0
Vancouver 1 1
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items