Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The emergence of class concept formation in preschool children Fryer, Margo 1974

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1974_A8 F79.pdf [ 2.27MB ]
Metadata
JSON: 1.0076802.json
JSON-LD: 1.0076802+ld.json
RDF/XML (Pretty): 1.0076802.xml
RDF/JSON: 1.0076802+rdf.json
Turtle: 1.0076802+rdf-turtle.txt
N-Triples: 1.0076802+rdf-ntriples.txt
Original Record: 1.0076802 +original-record.json
Full Text
1.0076802.txt
Citation
1.0076802.ris

Full Text

THE EMERGENCE OF CLASS CONCEPT FORMATION IN PRESCHOOL CHILDREN BY MARGARET L. FRYER B.A., University of British Columbia, 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in the Department of Psychology We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1974 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e H e a d o f my D e p a r t m e n t o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f P s y c h o l o g y The U n i v e r s i t y o f B r i t i s h C o l u m b i a V a n c o u v e r 8 , C a n a d a Date September 6, 1974 A b s t r a c t T h e a b i l i t y t o c l a s s i f y c o m p l e x v i s u a l f o r m s w a s s t u d i e d i n t h r e e , f o u r , a n d f i v e y e a r o l d c h i l d r e n . E a c h s u b j e c t p e r f o r m e d t w o t a s k s b a s e d o n t w o c l a s s e s o f c o m p u t e r - g e n e r a t e d s t i m u l i . T h e o d d i t y t a s k r e q u i r e d t h e i d e n t i f i c a t i o n o f t h e o d d f o r m i n a s e t o f t h r e e e i g h t - s i d e d p o l y g o n s . T h e s e q u e n t i a l t a s k r e q u i r e d t h e a s s i g n m e n t o f e a c h s e q u e n t i a l l y p r e s e n t e d s i n g l e p o l y g o n t o o n e o f t w o c l a s s e s . N o f e e d b a c k w a s g i v e n . T h e r e s u l t s r e v e a l e d a m a r k e d d e v e l o p m e n t a l c h a n g e i n c l a s s i f i c a t i o n a b i l i t y o c c u r r i n g b e t w e e n a b o u t 4 1 / 2 a n d 5 1 / 2 y e a r s o f a g e . T h e o d d i t y t a s k a p p e a r e d t o b e a m o r e s e n s i t i v e t e s t o f c l a s s c o n c e p t f o r m a t i o n . S i g n a t u r e o f S u p e r v i s o r TABLE OF CONTENTS Page 1. INTRODUCTION 1 2. METHOD 4 3. RESULTS 10 4. DISCUSSION 20 5. REFERENCES . . . . . . 27 6. APPENDICES . . . . . . 28 i i L i s t o f T a b l e s p a g e T a b l e I . S u m m a r y o f a n a l y s i s o f v a r i a n c e o f n u m b e r o f c o r r e c t 1 2 r e s p o n s e s , b o t h t a s k s i n c l u d e d . T a b l e I I . M e a n n u m b e r o f o d d i t y p r o b l e m s c o r r e c t l y s o l v e d ( p e r 1 6 b l o c k ) b y a g e a n d b y d i f f i c u l t y l e v e l . T a b l e I I I . P r o p o r t i o n o f c o r r e c t r e s p o n s e s a n d m o s t f r e q u e n t l y 1 7 c h o s e n p a t t e r n f o r n i n e e s c p e c i a l l y d i f f i c u l t p r o b l e m s . T a b l e I V . S u m m a r y o f a n a l y s i s o f v a r i a n c e o f n u m b e r o f c o r r e c t 1 9 r e s p o n s e s o n t h e o d d i t y t a s k . T a b l e V . M e a n n u m b e r o f s e q u e n t i a l p r o b l e m s c o r r e c t l y s o l v e d 2 1 ( p e r b l o c k ) b y a g e a n d b y d i f f i c u l t y l e v e l . T a b l e V I . S u m m a r y o f a n a l y s i s o f v a r i a n c e o f n u m b e r o f c o r r e c t 2 2 r e s p o n s e s o n t h e s e q u e n t i a l t a s k . T a b l e V I I . P r o p o r t i o n o f c o r r e c t r e s p o n s e s b y v a r i a b i l i t y l e v e l 2 4 a n d b y a g e ( o n t h e o d d i t y t a s k ) . i i i L i s t o f F i g u r e s p a g e F i g u r e 1 . P r o t o t y p e s a n d s a m p l e p r o b l e m s a t t h r e e d i f f i c u l t y 6 l e v e l s . iv Acknowledgement I would l i k e to express my a p p r e c i a t i o n and g r a t i t u d e to Tannis M. W i l l i a m s f o r the a s s i s t a n c e , support, and encouragement given to me at every p o i n t from the p r e p a r a t i o n to the completion of t h i s t h e s i s . V The a b i l i t y to c l a s s i f y complex v i s u a l patterns was st u d i e d develop- mentally by Aiken and Wi l l i a m s (1973). Using a task i n which s u b j e c t s were r e q u i r e d to i d e n t i f y one odd p a t t e r n i n sets of three, they found that c h i l d r e n i n Grade 5 and a d u l t s , who d i d not d i f f e r , were both more accurate than c h i l d r e n i n Grades 1 and 3, who a l s o d i d not d i f f e r . How- ever, w h i l e the two younger age groups were s t a t i s t i c a l l y s i g n i f i c a n t l y l e s s accurate than the two ol d e r age groups, the absolute d i f f e r e n c e s were s m a l l and, the youngest group, Grade 1, s t i l l performed s i g n i f i - c a n t l y above chance l e v e l s . These r e s u l t s i n d i c a t e d to Aiken and W i l l i a m s (1973) that development of the a b i l i t y to perform t h e i r o d d i t y c l a s s i - f i c a t i o n t a sk occurs sometime p r i o r to age s i x . In order to assess developmental change of s t r a t e g y i n approach to t h e i r c l a s s i f i c a t i o n t a s k , Aiken and W i l l i a m s (1973) conducted s e v e r a l psychophysical analyses. They found that subjects at a l l age l e v e l s tended to make the same e r r o r s and used the same p h y s i c a l features f o r judging p a t t e r n c l a s s membership. The data i n d i c a t e d that the two younger age groups were merely s l i g h t l y l e s s p r o f i c i e n t at usi n g the same s t r a t e g i e s used by the ol d e r groups. The s t i m u l i used by Aiken and W i l l i a m s (1973) were e i g h t sided polygons generated from each of two prototypes. Psychophysical analyses of t h e i r data revealed t h a t subjects a t a l l age l e v e l s used both the general s i m i l a r i t y between patterns and t h e i r prototypes and two p a r t i - c u l a r p h y s i c a l p a t t e r n f e a t u r e s to judge p a t t e r n c l a s s membership. In other words, n e i t h e r prototypes nor d i s t i n c t i v e f e a t u r e s were s u f f i c i e n t to account f o r performance. This f i n d i n g c o n t r a d i c t s the view of 2 E . J . G i b s o n ( 1 9 6 9 ) w h o h a s a r g u e d t h a t t h e l e a r n i n g o f d i s t i n c t i v e f e a t u r e s i s t h e m o s t i m p o r t a n t p r o c e s s i n p e r c e p t u a l l e a r n i n g a n d d e v e l o p m e n t . T o s u p p o r t h e r a r g u m e n t , s h e c i t e s w o r k d o n e b y P i c k ( 1 9 6 5 ) o n v i s u a l a n d t a c t u a l f o r m d i s c r i m i n a t i o n . P i c k f o u n d t h a t t h e d i s c o v e r y o f d i s t i n c t i v e f e a t u r e s f a c i l i t a t e d t r a n s f e r o f l e a r n i n g m o r e t h a n d i d t h e f o r m a t i o n o f p r o t o t y p e s . S h e t r a i n e d k i n d e r g a r t e n c h i l d r e n t o d i s c r i m i n a t e b e t w e e n s t a n d a r d f o r m s a n d s p e c i f i e d t r a n s - f o r m a t i o n s o f t h e m a n d t h e n m a d e t h r e e t e s t s f o r t r a n s f e r o f l e a r n i n g . T h e e x p e r i m e n t a l g r o u p w h i c h w a s g i v e n n e w s t a n d a r d s a n d t r a n s f o r m a t i o n s w h i c h h a d t h e s a m e d i m e n s i o n s o f d i f f e r e n c e a s t h o s e i n t h e t r a i n i n g s e s s i o n m a d e f e w e s t e r r o r s i n t h e t r a n s f e r t a s k , i n d i c a t i n g t h a t l e a r n i n g d e p e n d e d o n d i s c o v e r i n g t h e d i m e n s i o n s b y w h i c h t r a n s f o r m a t i o n s a n d t h e i r s t a n d a r d s d i f f e r e d . T h e g r o u p w h i c h h a d t h e s a m e s t a n d a r d s ( i . e . , p r o t o t y p e s ) b u t n e w t r a n s f o r m a t i o n s m a d e f e w e r e r r o r s t h a n t h e g r o u p w h i c h h a d b o t h n e w s t a n d a r d s a n d n e w t r a n s f o r m a t i o n s . T h u s , G i b s o n ( 1 9 6 9 ) a r g u e d t h a t w h i l e p r o t o t y p e l e a r n i n g m a y p l a y a r o l e w h e n r e t e n - t i o n o v e r t i m e i s r e q u i r e d , d i s t i n c t i v e f e a t u r e l e a r n i n g i s t h e m o r e i m p o r t a n t p r o c e s s i n p e r c e p t u a l l e a r n i n g a n d d e v e l o p m e n t . I n d i s c u s s i n g t h e r o l e s p l a y e d b y d i s t i n c t i v e f e a t u r e s a n d p r o - t o t y p e s i n p e r c e p t u a l d e v e l o p m e n t , i t i s i m p o r t a n t t o n o t e t h e t y p e o f p e r c e p t u a l t a s k u n d e r c o n s i d e r a t i o n . W h e n t h e t a s k r e q u i r e s t h e d e - t e c t i o n o f w h a t i s d i f f e r e n t a m o n g s t i m u l i , a s i n d i s c r i m i n a t i o n , i t i s r e a s o n a b l e t o a s s u m e t h a t d i s t i n c t i v e f e a t u r e s w i l l b e m o r e u s e f u l . O n t h e o t h e r h a n d , w h e n t h e t a s k r e q u i r e s t h e d e t e c t i o n o f w h a t I s c o m m o n a m o n g s t i m u l i , a s i n c l a s s i f i c a t i o n , i t s e e m s r e a s o n a b l e t o 3 a s s u m e t h a t p r o t o t y p e s w i l l b e m o r e u s e f u l . P i c k ( 1 9 6 5 ) u s e d a d i s - c r i m i n a t i o n m a t c h i n g t a s k ; A i k e n a n d W i l l i a m s ( 1 9 7 3 ) u s e d a c l a s s i f i c a t i o n t a s k . I t i s t h e r e f o r e n o t s u r p r i s i n g t h a t t h e r e s u l t s o f t h e f o r m e r s t u d y i n d i c a t e d t h a t s u b j e c t s u s e d d i s t i n c t i v e f e a t u r e s m o r e t h a n t h e y u s e d p r o t o t y p e s . W h i l e t h e s u b j e c t s i n t h e A i k e n a n d W i l l i a m s ( 1 9 7 3 ) s t u d y d i d u s e d i s t i n c t i v e f e a t u r e s , t h e y s e l e c t e d p a t t e r n - f e a t u r e s w h i c h w e r e u n r e l a t e d t o c l a s s m e m b e r s h i p s . I n d e e d , r e l i a n c e o n t h e s e f e a t u r e s m i s l e d s u b j e c t s a t a l l a g e l e v e l s o n c e r t a i n p r o b l e m s . T h u s , c l a s s i f i c a t i o n a c c u r a c y w a s p r i m a r i l y d u e t o t h e u s e o f p r o t o t y p e i n f o r m a t i o n r a t h e r t h a n t o t h e u s e o f d i s t i n c t i v e p a t t e r n f e a t u r e s . T h e p r e s e n t s t u d y w a s d e s i g n e d t o a n s w e r s o m e o f t h e q u e s t i o n s l e f t u n a n s w e r e d b y A i k e n a n d W i l l i a m s ( 1 9 7 3 ) . O f p r i m a r y i n t e r e s t w a s t h e q u e s t i o n o f w h e n i n d e v e l o p m e n t ( p r i o r t o a g e s i x ) t h e a b i l i t y t o c l a s s i f y c o m p l e x v i s u a l p a t t e r n s f i r s t o c c u r s . A c c o r d i n g l y , t h e o d d i t y t a s k e m p l o y e d b y A i k e n a n d W i l l i a m s ( 1 9 7 3 ) w a s g i v e n t o c h i l d r e n 3 , 4 , a n d 5 y e a r s o f a g e . I n a d d i t i o n , t h e f o r m s u s e d i n t h e o d d i t y t a s k w e r e p r e s e n t e d s e q u e n t i a l l y t o t h e s a m e s u b j e c t s . W h i l e t h e o d d i t y t a s k i s b a s e d o n t h e a s s u m p t i o n t h a t a c c u r a t e p e r f o r m a n c e r e q u i r e s t h e a s s i g n m e n t o f e a c h f o r m t o o n e c l a s s o r t h e o t h e r , i t i s p o s s i b l e t h a t s u b j e c t s n e e d o n l y d i s c r i m i n a t e t h e o d d f o r m i n a n y g r o u p o f t h r e e . T h e s e q u e n t i a l t a s k w a s i n c l u d e d i n t h e p r e s e n t s t u d y b e c a u s e i t p r o v i d e s a m o r e s t r i n g e n t t e s t o f t h e p r o t o t y p e u s e i n t h e c l a s s i f i c a t i o n o f c o m p l e x v i s u a l f o r m s . D i r e c t c o m p a r i s o n o f t h e s t i m u l i i s i m p o s s i b l e a n d t h e r e f o r e a c c u r a t e p e r f o r m a n c e m u s t r e f l e c t p a t t e r n c l a s s l e a r n i n g . A s e q u e n t i a l c l a s s i f i c a t i o n t a s k u s i n g t h e s a m e p a t t e r n c l a s s e s 4 e m p l o y e d i n t h e o d d i t y t a s k w a s u s e d s u c c e s s f u l l y w i t h a d u l t s b y A i k e n a n d B r o w n ( 1 9 7 1 ) . M e t h o d S u b j e c t s S u b j e c t s f o r t h e s t u d y w e r e t h r e e , f o u r a n d f i v e y e a r o l d c h i l d r e n a t t e n d i n g e i g h t d a y c a r e c e n t r e s i n m e t r o p o l i t a n V a n c o u v e r , B r i t i s h C o l u m b i a . H a l f o f t h e t w e l v e c h i l d r e n i n e a c h a g e g r o u p w e r e f e m a l e a n d h a l f w e r e m a l e . S u b j e c t s w e r e s e l e c t e d s o t h a t a t l e a s t f o u r m o n t h s h a d p a s s e d s i n c e t h e i r l a s t b i r t h d a y i n o r d e r t o m a k e t h e a g e g r o u p s m o r e h o m o g e n e o u s a n d t h e r e f o r e a v o i d o b s c u r i n g d e v e l o p m e n t a l a g e - r e l a t e d c h a n g e s . T h e m e a n c h r o n o l o g i c a l a g e s o f t h e t h r e e a g e g r o u p s w e r e 3 y e a r s , 8 m o n t h s ( S . D . 2 . 2 2 m o n t h s ) , 4 y e a r s , 8 m o n t h s ( S . D . 2 . 2 7 m o n t h s ) , a n d 5 y e a r s , 7 m o n t h s ( S . D . 3 . 1 1 m o n t h s ) , r e s p e c t i v e l y . A l l s u b j e c t s w e r e t e s t e d d u r i n g J u n e a n d J u l y , w i t h a l l b u t 8 o f t h e 7 2 t e s t i n g s e s - s i o n s o c c u r r i n g d u r i n g t h e m o r n i n g . T w e n t y p o t e n t i a l s u b j e c t s w e r e e l i m i n a t e d f o r a v a r i e t y o f r e a s o n s . F i v e s u b j e c t s w e r e a b s e n t f o r t h e i r s e c o n d t e s t i n g s e s s i o n ( o n e 3 y e a r o l d , t w o 4 y e a r o l d s , a n d t w o 5 y e a r o l d s ) . O n e 4 y e a r o l d h a d t o b e e l i m i n a t e d b e c a u s e o f p r o - j e c t o r m a l f u n c t i o n . F o u r t e e n s u b j e c t s w e r e e l i m i n a t e d f o r i n a t t e n t i o n o r i n a p p r o p r i a t e r e s p o n s e s t o t h e s e q u e n t i a l t a s k . O f t h e s e , f i v e w e r e t h r e e y e a r o l d s , f o u r w e r e 4 y e a r o l d s a n d f i v e w e r e 5 y e a r o l d s . B e - c a u s e t h e n u m b e r o f s u b j e c t s a t e a c h a g e l e v e l e l i m i n a t e d f r o m t h e s t u d y d u e t o t h e i r i n a b i l i t y t o p e r f o r m t h e t a s k w a s c o m p a r a b l e a c r o s s a g e l e v e l s , a g e - r e l a t e d r e s u l t s w e r e n o t l i k e l y t o b e d u e t o s u b j e c t 5 selection. Stimuli The stimuli were eight-sided polygons computer generated from two prototypes to form two classes of patterns. Within each class, patterns were generated at three levels of similarity to their prototypes and thus three levels of classification d i f f i c u l t y : low, moderate and high. Patterns most similar to their own prototypes are easiest to distinguish from patterns of the other class. The procedure for gene- rating the patterns has been described in detail by Aiken and Brown (1971). The overall principle i s one of producing random changes in each of the prototype vertices. Oddity task problems consisted of three patterns placed horizon- t a l l y on a 4" x 6" card. Examples of problems are shown in Figure 1. On each problem, two patterns were from one prototype class and one was from the other class, but a l l were of the same degree of simi- l a r i t y to their prototype and thus were a l l of low, moderate, or high d i f f i c u l t y . There were 36 problems in total, selected from the 63 problems used by Aiken and Williams (1973) so as to include 12 at each d i f f i c u l t y level. The correct pattern occurred equally often in each position and equally often from each prototype class. No more than two problems of the same d i f f i c u l t y level occurred in sequence. The correct pattern occurred in the same position and was from the same class no more than three times i n a sequence. The problems were arranged in three blocks of 12 t r i a l s each with four problems of each d i f f i c u l t y level in each block. The blocks were presented in the 6 PROTOTYPES PROBLEMS low D i f f i c u l t y 4 4 ̂ MOOEXATi tuffICUITY HIGH Dlff iCUUY V w 4 F i g u r e 1. P r o t o t y p e s a n d s a m p l e p r o b l e m s a t t h r e e d i f f i c u l t y l e v e l s . [ O n e a c h p r o b l e m t h e s u b j e c t ' s t a s k i s t o c h o o s e t h e p a t t e r n t h a t i s o d d o r d i f f e r e n t ( e . g . , P a t t e r n s 3 , 3 , a n d 2 , r e s p e c t i v e l y ) . S u b j e c t s w e r e n e v e r s h o w n t h e p r o t o t y p e s . ] 7 t h r e e o r d e r s o f a b a l a n c e d L a t i n S q u a r e . I n e a c h a g e g r o u p , t w o m a l e s a n d t w o f e m a l e s w e r e a s s i g n e d t o e a c h b l o c k o r d e r . I n e a c h c a s e , t h e f i r s t b l o c k w a s p r e s e n t e d a g a i n a t t h e e n d o f t h e t a s k a s a m e a s u r e o f i m p r o v e m e n t o v e r t i m e . A i k e n a n d W i l l i a m s ( 1 9 7 3 ) h a d f o u n d t h a t 1 5 ( a p p r o x i m a t e l y 2 5 % ) o f t h e i r 6 3 p r o b l e m s w e r e e s p e c i a l l y d i f f i c u l t ; l e s s t h a n a c h a n c e p r o p o r t i o n o f s u b j e c t s a t o n e o r m o r e a g e l e v e l s g o t e a c h o f t h e s e 1 5 p r o b l e m s c o r r e c t . I n o r d e r t o m a i n t a i n a c o m - p a r a b l e p r o p o r t i o n o f d i f f i c u l t p r o b l e m s , 9 o f t h e 1 5 p r o b l e m s f o u n d b y A i k e n a n d W i l l i a m s ( 1 9 7 3 ) t o b e e s p e c i a l l y d i f f i c u l t w e r e i n c l u d e d i n t h e p r e s e n t s t u d y , w i t h t h r e e o c c u r r i n g i n e a c h b l o c k o f 1 2 p a t t e r n s . P a t t e r n s f o r t h e s e q u e n t i a l t a s k s w e r e e i g h t s i d e d p o l y g o n s f r o m t h e s t i m u l u s s a m p l e s u s e d i n t h e o d d i t y t a s k . I n t h e s e q u e n t i a l t a s k , e a c h p r o b l e m c o n s i s t e d o f a s i n g l e p a t t e r n o n a t r a n s p a r e n t s l i d e . A s i n t h e o d d i t y t a s k , t h e r e w e r e 3 6 p r o b l e m s a r r a n g e d i n 3 b l o c k s o f 1 2 p r o b l e m s e a c h . E a c h b l o c k c o n t a i n e d f o u r p r o b l e m s f r o m e a c h d i f - f i c u l t y l e v e l a n d n o m o r e t h a n t w o p r o b l e m s o f t h e s a m e d i f f i c u l t y l e v e l o c c u r r e d i n s e q u e n c e . W i t h i n a n y b l o c k , v a r i a t i o n s o n e a c h p r o - t o t y p e o c c u r r e d e q u a l l y b u t n o m o r e t h a n t h r e e t i m e s i n a r o w . A s i n t h e o d d i t y t a s k , t h e b l o c k s w e r e p r e s e n t e d i n t h e t h r e e o r d e r s o f a ft b a l a n c e d L a t i n S q u a r e a n d t h e f i r s t b l o c k w a s r e p e a t e d a f t e r t h e t h i r d , m a k i n g a t o t a l o f 4 8 t r i a l s . E a c h c h i l d r e c e i v e d t h e s a m e b l o c k o r d e r f o r b o t h t h e s e q u e n t i a l a n d t h e o d d i t y t a s k . T a s k p r e s e n t a t i o n o r d e r w a s c o u n t e r b a l a n c e d , w i t h h a l f t h e f e m a l e s a n d h a l f t h e m a l e s a t e a c h a g e l e v e l r e c e i v i n g e a c h t a s k f i r s t . T h e t a s k s w e r e p r e s e n t e d i n s e p a r a t e s e s s i o n s f o r e a c h 8 c h i l d . T i m e b e t w e e n s e s s i o n s r a n g e d f r o m t h r e e t o e i g h t d a y s , w i t h a m e a n o f 6 . 1 0 d a y s . P r o c e d u r e A l l c h i l d r e n w e r e t e s t e d b y t h e s a m e w o m a n i n a q u i e t r o o m a w a y f r o m t h e r e s t o f t h e d a y c a r e c e n t r e . O d d i t y T a s k . T h e c h i l d w a s s e a t e d o p p o s i t e t h e e x p e r i m e n t e r a n d g i v e n t h e f o l l o w i n g i n s t r u c t i o n s . I a m g o i n g t o s h o w y o u s o m e c a r d s . T h e r e a r e t h r e e s h a p e s o n e a c h o f t h e s e c a r d s . T w o o f t h e s e s h a p e s b e l o n g t o o n e f a m i l y a n d o n e o f t h e s h a p e s b e l o n g s t o a n o t h e r , d i f f e r e n t f a m i l y . W h e n I s h o w y o u a c a r d , I w a n t y o u t o l o o k v e r y c a r e f u l l y a t t h e s h a p e s . Y o u w i l l s e e t h a t t w o o f t h e s h a p e s g o t o g e t h e r a n d o n e d o e s n o t g o w i t h t h e o t h e r s . I w a n t y o u t o p o i n t t o t h e o n e s h a p e t h a t d o e s n o t g o w i t h t h e o t h e r s , t h e o n e t h a t d o e s n o t b e l o n g . N o w , l e t ' s l o o k a t s o m e c a r d s f o r p r a c t i c e ; ( t h e e x p e r i m e n t e r s h o w e d t h e c h i l d t h e c a r d — t w o s q u a r e s a n d a c i r c l e ) . P o i n t t o t h e o n e t h a t d o e s n o t b e l o n g w i t h t h e o t h e r s . T h a t ' s r i g h t . T h e s e t w o a r e t h e s a m e , t h e y b e l o n g t o g e t h e r . ( E x p e r i m e n t e r p o i n t s t o t w o s q u a r e s ) a n d t h i s o n e ( p o i n t s t o c i r c l e ) i s d i f f e r e n t . T h i s i s t h e o n e t h a t d o e s n o t b e l o n g . T h e s e c o n d , t h i r d , a n d f o u r t h t r a i n i n g p r o b l e m s c o n s i s t e d o f t w o s i m i l a r b u t n o t i d e n t i c a l s h a p e s , s u c h a s a s q u a r e a n d a r e c t a n g l e , a n d o n e d i f f e r e n t s h a p e , s u c h a s a c i r c l e . T h e f i f t h t r a i n i n g p r o b l e m c o n - s i s t e d o f t h r e e p o l y g o n s s i m i l a r t o t h e e x p e r i m e n t a l s t i m u l i . A f t e r t h e c h i l d h a d r e s p o n d e d t o e a c h o f t h e t r a i n i n g p r o b l e m s , t h e e x p e r i m e n t e r 9 v e r b a l i z e d t h e s o l u t i o n w h i l e p o i n t i n g t o t h e a p p r o p r i a t e s h a p e s . S e q u e n t i a l T a s k . T h e s e q u e n t i a l t a s k s t i m u l i w e r e b a c k - p r o j e c t e d o n t o a s c r e e n , p l a c e d o n t h e t a b l e a b o u t t w o f e e t i n f r o n t o f t h e c h i l d . A b o u t 6 " d i r e c t l y i n f r o n t o f t h e c h i l d w a s a 6 " x 4 " x 1 / 2 " b l a c k w o o d e n p a n e l . T w o p l a s t i c c i r c l e s 1 1 / 4 " d i a m e t e r w e r e n a i l e d f l a t o n t h e b l a c k p a n e l . T h e c i r c l e o n t h e l e f t w a s r e d ; t h e o n e o n t h e r i g h t w a s b l u e . T h e e x p e r i m e n t e r , w h o o p e r a t e d t h e p r o j e c t o r w i t h a r e m o t e c o n t r o l , g a v e t h e f o l l o w i n g i n s t r u c t i o n s : I a m g o i n g t o s h o w y o u s o m e s h a p e s . T h e r e a r e t w o d i f f e r e n t k i n d s o f s h a p e s . I f y o u s e e o n e t h a t l o o k s l i k e t h i s , ( e x p e r i m e n t e r s h o w s f i r s t s l i d e , l o w v a r i a b i l i t y e x a m p l e o f o n e c l a s s ) I w a n t y o u t o p o i n t t o t h i s c i r c l e h e r e , t h e r e d o n e . N o w y o u p o i n t t o i t . T h i s i s w h a t o n e k i n d o f s h a p e l o o k s l i k e . T h i s ( e x p e r i m e n t e r s h o w s s e c o n d s l i d e , l o w v a r i a b i l i t y e x a m p l e o f o t h e r c l a s s ) i s w h a t t h e o t h e r s h a p e s l o o k l i k e . I f y o u s e e o n e t h a t l o o k s l i k e t h i s , y o u p o i n t t o t h i s c i r c l e , t h e b l u e o n e . N o w y o u p o i n t t o i t . A l l t h e s h a p e s y o u w i l l s e e l o o k e i t h e r l i k e t h i s o n e ( s e c o n d s l i d e ) o r l i k e t h i s o n e ( f i r s t s l i d e ) . O . K . L e t ' s l o o k a t s o m e n e w o n e s . ( T h e n , t w o e x a m p l e s o f f i r s t f a m i l y , a l s o l o w v a r i a b i l i t y , a r e s h o w n ; t h e n t w o e x a m p l e s o f s e c o n d f a m i l y , a l s o l o w v a r i a b i l i t y , a r e s h o w n . ) W h e n e a c h s l i d e i s o n e x p e r i m e n t e r s a y s , " W h i c h c i r c l e d o y o u t h i n k y o u s h o u l d p o i n t t o n o w ? " M i s t a k e s m a d e b y c h i l d r e n o n t r a i n i n g t r i a l s w e r e c o r r e c t e d . T h e e x p e r i m e n t e r s a y s , " N o , f o r t h i s o n e y o u s h o u l d p o i n t t o t h e r e d c i r c l e , b e c a u s e t h i s s h a p e l o o k s l i k e t h e o t h e r o n e w h e r e y o u p o i n t e d t o t h e r e d c i r c l e . " E a c h e x p e r i m e n t a l s e s s i o n l a s t e d f r o m 1 0 - 2 0 m i n u t e s d e p e n d i n g o n 1 0 t h e s p e e d w i t h w h i c h t h e c h i l d m a d e c h o i c e s . R e s u l t s T w o s e t s o f a n a l y s e s o f v a r i a n c e w e r e p e r f o r m e d , o n e o n t h e d a t a f r o m o n l y t h e f i r s t t h r e e b l o c k s ( T i m e s 1 - 3 ) a n d o n e o n t h e d a t a f r o m a l l f o u r b l o c k s ( T i m e s 1 - 4 , i n c l u d i n g t h e r e p e a t e d f i r s t b l o c k ) . I n e a c h c a s e t h r e e a n a l y s e s w e r e c o n d u c t e d : o n e o n t h e d a t a f o r b o t h t a s k s , o n e f o r o n l y t h e o d d i t y d a t a a n d o n e f o r o n l y t h e s e q u e n t i a l d a t a . O n l y t h e r e s u l t s o f t h e a n a l y s e s o f t h e d a t a f r o m a l l f o u r b l o c k s ( T i m e s 1 - 4 ) w i l l b e d i s c u s s e d b e c a u s e t h e d i f f e r e n c e s b e t w e e n t h e t w o s e t s o f a n a l y s e s w e r e n o t s u b s t a n t i a l . T h e s t r e n g t h e n i n g o f s i g n i f i c a n t e f f e c t s t h a t o c c u r r e d i n t h e T i m e 1 - 4 a n a l y s e s c a n b e a t t r i b u t e d t o t h e i n c r e a s e d n u m b e r s o f t a s k i t e m s . T h e r e s u l t s o f t h e a n a l y s e s o f t h e d a t a f r o m o n l y t h e f i r s t t h r e e b l o c k s ( T i m e s 1 - 3 ) a r e g i v e n i n t h e A p p e n d i x . T h e r e s u l t s o f t h e t h r e e t y p e s o f a n a l y s e s a r e p r e s e n t e d i n o r d e r , w i t h t h e d a t a f r o m t h e c o m b i n e d a n a l y s e s b e i n g d i s c u s s e d f i r s t . C o m b i n e d A n a l y s e s T h e p r o b a b i l i t y o f b e i n g c o r r e c t b y c h a n c e o n a n y o n e t r i a l w a s . 3 3 f o r t h e o d d i t y t a s k a n d . 5 f o r t h e s e q u e n t i a l t a s k . I n o r d e r t o m a k e t h e d a t a f r o m t h e t w o t a s k s c o m p a r a b l e , t h e n u m b e r o f c o r r e c t r e - s p o n s e s p e r b l o c k p e r s u b j e c t w a s d i v i d e d b y t h e c h a n c e n u m b e r c o r r e c t p e r b l o c k f o r t h a t t a s k . T h e r e s u l t i n g v a l u e s w e r e a n a l y z e d i n a n a n a l y s i s o f v a r i a n c e o f O r d e r ( o d d i t y f i r s t , s e q u e n t i a l s e c o n d , o r v i c e - v e r s a ) b y S e x b y A g e ( 3 , 4 , 5 , y e a r s ) b y T a s k ( o d d i t y , s e q u e n t i a l ) 1 1 b y V a r i a b i l i t y L e v e l ( l o w , m o d e r a t e , h i g h ) b y T i m e ( t r i a l s 1 - 1 2 , 1 3 - 2 4 , 2 5 - 3 6 , 3 7 - 4 8 ) . C o n s e r v a t i v e d e g r e e s o f f r e e d o m w e r e u s e d f o r a l l t e s t s o f s i g n i f i c a n c e i n v o l v i n g r e p e a t e d m e a s u r e s . T h e r e s u l t s o f t h e a n a l y s i s a r e s u m m a r i z e d i n T a b l e 1 . T h e A g e m a i n e f f e c t w a s s i g n i f i c a n t ( F £ 24 = 6 . 6 1 , p_ < . 0 1 ) , w i t h a N e w m a n K e u l s a n a l y s i s r e v e a l i n g t h a t 5 - y e a r - o l d s w e r e s i g n i f i c a n t l y m o r e a c c u r a t e t h a n b o t h 4 a n d 3 y e a r o l d s (p_ < . 0 1 i n b o t h c a s e s ) , w h o d i d n o t d i f f e r . T h e s i g n i f i c a n t T a s k m a i n e f f e c t ( F 1 ^ = 2 5 . 6 0 , p_ < . 0 1 ) r e f l e c t e d g r e a t e r o v e r a l l a c c u r a c y o n t h e o d d i t y t h a n o n t h e s e q u e n t i a l t a s k . B o t h t h e A g e a n d T a s k m a i n e f f e c t s m u s t b e i n t e r p r e t e d i n c o n j u n c - t i o n w i t h t h e s i g n i f i c a n t A g e b y T a s k i n t e r a c t i o n ( F ^ ^ = 5 . 5 4 , £ < . 0 5 ) . A s i m p l e e f f e c t s a n a l y s i s r e v e a l e d t h a t t h e r e w e r e s i g n i f i c a n t a g e d i f - f e r e n c e s i n p e r f o r m a n c e o n t h e o d d i t y t a s k ( F £ 24 = H - 2 4 , p_ < . 0 1 ) b u t n o t o n t h e s e q u e n t i a l t a s k ( F < 1 ) . A N e w m a n K e u l s a n a l y s i s f u r t h e r r e v e a l e d t h a t o n t h e o d d i t y t a s k , 5 y e a r o l d s w e r e s i g n i f i c a n t l y m o r e a c c u r a t e t h a n b o t h 4 y e a r o l d s a n d 3 y e a r o l d s (p_ < . 0 1 i n b o t h c a s e s ) , w h o d i d n o t d i f f e r . W h e n t a s k d i f f e r e n c e s w e r e e x a m i n e d a t t h e v a r i o u s a g e l e v e l s , s i m p l e e f f e c t s a n a l y s e s r e v e a l e d t a s k d i f f e r e n c e s o n l y f o r t h e 5 y e a r o l d s ( F ^ ^ ~ 3 1 . 7 1 , p_ < . 0 1 ) , w h o w e r e m o r e a c c u r a t e o n t h e o d d i t y t h a n o n t h e s e q u e n t i a l t a s k . T h e v a r i a b i l i t y m a i n e f f e c t w a s s i g n i f i c a n t ( F . . „ = 6 9 . 2 8 , 1, i z p_ < . 0 1 ) w i t h a l l d i f f i c u l t y l e v e l s b e i n g d i f f e r e n t i a t e d i n t h e e x p e c t e d d i r e c t i o n (p_ < . 0 1 f o r a l l c o m p a r i s o n s i n a N e w m a n K e u l s a n a l y s i s ) . T h e A g e b y V a r i a b i l i t y i n t e r a c t i o n w a s a l s o s i g n i f i c a n t ( F „ = 1 2 T a b l e I . S u m m a r y o f a n a l y s i s o f v a r i a n c e o f n u m b e r o f c o r r e c t r e s p o n s e s o n b o t h o d d i t y a n d s e q u e n t i a l t a s k s . S o u r c e d f m s F B e t w e e n s u b j e c t s A ( o r d e r ) 1 . 1 7 < 1 B ( s e x ) 1 5 . 9 4 3 . 2 8 C ( a g e ) 2 1 1 . 9 5 6 . 6 1 * * A B 1 . 0 2 < 1 A C 2 2 . 1 3 1 . 1 8 B C 2 1 . 9 6 1 . 0 8 A B C 2 1 . 8 1 1 . 0 0 S s w i t h g r p s . 2 4 1 . 8 1 W i t h i n s u b j e c t s D ( T a s k ) 1 1 1 . 4 8 2 5 . 6 0 * * A D 1 . 2 6 < 1 B D 1 . 4 0 < 1 C D 2 2 . 4 8 5 . 5 4 * A B D 1 . 3 2 < 1 A C D 2 2 . 0 5 4 . 5 7 B C D 2 . 1 8 < 1 A B C D 2 . 8 8 1 . 9 6 D x S s 2 4 . 4 5 F ( v a r i a b i l i t y ) 2 2 0 . 5 5 6 9 . 2 8 * * A F 2 . 1 5 < 1 B F 2 . 4 5 1 . 5 2 C F 4 1 . 2 6 4 . 2 5 * A B F 2 . 7 4 2 . 5 0 A C F 4 . 3 4 1 . 1 6 B C F 4 . 9 1 3 . 0 8 A B C F 4 . 0 3 < 1 F x S s 4 8 . 3 0 G ( t i m e ) 3 . 0 7 < 1 A G 3 . 0 1 < 1 B G 3 . 2 5 < 1 C G 6 . 3 8 1 . 0 1 A B G 3 . 9 0 2 . 4 3 A C G 6 . 4 2 1 . 1 3 B C G 6 . 4 0 1 . 0 7 A B C G 6 . 2 9 < 1 G x S s 7 2 . 3 7 1 3 T a b l e I ( C o n t ' d ) d f m s F D F 2 7 . 2 0 2 3 . 5 3 * A D F 2 . 4 6 1 . 5 1 B D F 2 . . . 17 < 1 . C D F 4 . 7 4 2 . 4 5 A B D F 2 . 5 5 1 . 7 9 A C D F 4 . 1 4 < 1 B C D F 4 . 4 1 1 . 3 4 A B C D F 4 . 2 7 < 1 D F x S s 4 8 . 3 1 D G 3 . 6 1 1 . 8 3 A D G 3 . 5 8 1 . 7 6 B D G 3 . 1 9 < 1 C D G 6 . 1 6 < 1 A B D G 3 . 4 5 1 . 3 5 A C D G 6 . 2 8 < 1 B C D G 6 . 0 6 < 1 A B C D G 6 . 0 5 < 1 D G x S s 7 2 . 3 3 F G 6 . 2 1 < 1 A F G 6 . 1 3 < 1 B F G 6 . 3 7 1 . 0 1 C F G 1 2 . 3 6 < 1 A B F G 6 . 1 2 < 1 A C F G 1 2 . 2 3 < 1 B C F G 1 2 . 3 0 < 1 A B C F G 1 2 . 3 0 < 1 F G x S s 1 4 4 . 3 7 D F G 6 . 1 4 < 1 A D F G 6 . 3 4 1 . 2 5 B D F G 6 . 1 3 < 1 C D F G 1 2 . 2 8 1 . 0 1 A B D F G 6 . 3 0 1 . 1 0 A C D F G 1 2 . 3 1 1 . 1 4 B C D F G 1 2 . 2 5 . 9 0 A B C D F G 1 2 . 1 4 . 5 1 D F G x S s 1 4 4 . 2 7 N o t e : C o n s e r v a t i v e d e g r e e s o f f r e e d o m w e r e u s e d f o r t e s t s o f a l l e f f e c t s i n v o l v i n g r e p e a t e d m e a s u r e s . * i n d i c a t e s p_ < . 0 5 ; ** i n d i c a t e s p < . 0 1 . 1 4 4 . 2 5 , p_ < . 0 5 ) . A s i m p l e e f f e c t s a n a l y s i s r e v e a l e d t h a t t h e r e w e r e a g e d i f f e r e n c e s i n a c c u r a c y o n l o w ( F ^ 24 = H - 2 4 , £ < . 0 1 ) a n d m o d e r a t e (F2 24 = 6 . 0 5 , £ < . 0 1 ) b u t n o t o n h i g h d i f f i c u l t y p r o b l e m s . N e w m a n K e u l s a n a l y s e s i n d i c a t e d t h a t o n b o t h l o w a n d m o d e r a t e v a r i a b i l i t y p r o b l e m s , 5 y e a r o l d s w e r e s i g n i f i c a n t l y m o r e a c c u r a t e t h a n b o t h 4 a n d 3 y e a r o l d s (p_ < . 0 1 i n b o t h c a s e s ) , w h o d i d n o t d i f f e r . S i m p l e e f f e c t s a n a l y s e s a l s o r e v e a l e d t h a t t h e r e w e r e s i g n i f i c a n t d i f f e r e n c e s i n a c - c u r a c y d u e t o p a t t e r n v a r i a b i l i t y a t a l l a g e l e v e l s ( f o r 5 y e a r o l d s , F 2 4 8 = 5 0 ' 9 0 » £ • < • 0 1 > f o r 4 y e a r o l d s » F 2 48 = 1 6 - 3 0 » P_ < - 0 1 ; f o r 3 y e a r o l d s , F 2 ^ g = 1 0 . 6 6 , £ < . 0 1 ) . A t a l l a g e l e v e l s , a c c u r a c y o n l o w v a r i a b i l i t y i t e m s w a s s i g n i f i c a n t l y g r e a t e r t h a n o n b o t h h i g h ( £ < . 0 1 f o r a l l a g e g r o u p s ) a n d m o d e r a t e v a r i a b i l i t y i t e m s ( £ < . 0 1 f o r 5 a n d 4 y e a r o l d s a n d £ < . 0 5 f o r 3 y e a r o l d s ) . F u r t h e r m o r e , a t a l l a g e l e v e l s p e r f o r m a n c e o n m o d e r a t e i t e m s w a s s i g n i f i c a n t l y m o r e a c c u r a t e t h a n o n h i g h v a r i a b i l i t y i t e m s ( £ < . 0 1 f o r 5 a n d 4 y e a r o l d s a n d £ < . 0 5 f o r 3 y e a r o l d s ) . T h u s , a t a l l a g e l e v e l s , a l l v a r i a b i l i t y l e v e l s w e r e s i g n i f i c a n t l y d i f f e r e n t i a t e d . T h e T a s k b y V a r i a b i l i t y i n t e r a c t i o n w a s s i g n i f i c a n t ( F ^ 24 = 2 3 . 5 3 , £ < . 0 1 ) , w i t h a s i m p l e e f f e c t s a n a l y s i s r e v e a l i n g t h a t p e r f o r m a n c e a c r o s s p a t t e r n v a r i a b i l i t y l e v e l s d i f f e r e d s i g n i f i c a n t l y o n b o t h t a s k s ( f o r t h e o d d i t y t a s k , F2 ^ g = 8 5 . 8 0 , £ < . 0 1 ; f o r t h e s e q u e n t i a l t a s k , ^ 2 4 8 = ° . 4 6 , P_ < . 0 1 ) . N e w m a n K e u l s a n a l y s e s i n d i c a t e d t h a t o n t h e o d d i t y t a s k , p e r f o r m a n c e o n a l l v a r i a b i l i t y l e v e l s w a s s i g n i f i c a n t l y d i f f e r e n t i a t e d i n t h e e x p e c t e d d i r e c t i o n s ( £ < . 0 1 f o r a l l c o m p a r i s o n s ) . O n t h e s e q u e n t i a l t a s k , a c c u r a c y w a s g r e a t e r o n l o w t h a n o n h i g h e r 1 5 v a r i a b i l i t y p r o b l e m s ( p < . 0 1 ) a n d a l s o g r e a t e r o n m o d e r a t e t h a n o h h i g h d i f f i c u l t y p r o b l e m s (p_< . 0 5 ) . W h e n p e r f o r m a n c e o n t h e t w o t a s k s w a s e x a m i n e d a t e a c h v a r i a b i l i t y l e v e l , g r e a t e r a c c u r a c y o n t h e o d d i t y t h a n o n t h e s e q u e n t i a l t a s k w a s f o u n d f o r l o w ( F ^ ^ = 6 6 . 6 6 , j a < . 0 1 ) a n d m o d e r a t e v a r i a b i l i t y p r o b l e m s ( F ^ ^ = 6 . 0 2 , p_ < . 0 5 ) , w i t h n o t a s k d i f f e r e n c e s o n t h e h i g h v a r i a b i l i t y p r o b l e m s . N o n e o f t h e e f f e c t s i n v o l v i n g O r d e r , S e x , o r T i m e w e r e s i g n i f i c a n t . O d d i t y T a s k A n a l y s e s T h e m e a n n u m b e r o f o d d i t y p r o b l e m s ( p e r b l o c k ) c o r r e c t l y s o l v e d b y a g e a n d b y d i f f i c u l t y l e v e l i s s h o w n i n T a b l e 2 . T h e p e r f o r m a n c e o f 5 y e a r o l d s w a s s i g n i f i c a n t l y a b o v e c h a n c e o n l o w ( p < . 0 1 ) a n d o n m o d e - r a t e (p_ < . 0 5 ) v a r i a b i l i t y p r o b l e m s b u t n o t o n h i g h v a r i a b i l i t y p r o b l e m s . F o u r y e a r o l d s p e r f o r m e d a b o v e c h a n c e l e v e l s o n o n l y l o w v a r i a b i l i t y p r o b l e m s (p_ < . 0 5 ) a n d t h e p e r f o r m a n c e o f 3 y e a r o l d s d i d n o t e x c e e d c h a n c e a t a n y v a r i a b i l i t y l e v e l . T h e p r o p o r t i o n o f s u b j e c t s i n e a c h a g e g r o u p c o r r e c t l y a n s w e r i n g e a c h o f t h e n i n e p r o b l e m s f o u n d t o b e e s p e c i a l l y d i f f i c u l t i n t h e A i k e n a n d W i l l i a m s ( 1 9 7 3 ) s t u d y , a n d t h e m o s t p o p u l a r p a t t e r n c h o i c e , a r e g i v e n i n T a b l e 3 a l o n g w i t h t h e d a t a f o r t h e o l d e r a g e g r o u p s i n t h e A i k e n a n d W i l l i a m s ( 1 9 7 3 ) s t u d y . P r o b l e m s t h a t w e r e e s p e c i a l l y d i f - f i c u l t f o r o l d e r s u b j e c t s w e r e a p p a r e n t l y a l s o d i f f i c u l t f o r p r e - s c h o o l c h i l d r e n , w h o t e n d e d t o m a k e t h e s a m e w r o n g c h o i c e s . N u m b e r o f c o r r e c t o d d i t y t a s k r e s p o n s e s w a s e x a m i n e d i n a n a n a l y s i s o f v a r i a n c e o f O r d e r b y S e x b y A g e b y V a r i a b i l i t y b y T i m e . C o n s e r v a t i v e d e g r e e s o f f r e e d o m w e r e u s e d f o r a l l t e s t s o f s i g n i f i c a n c e i n v o l v i n g 1 6 T a b l e I I . M e a n n u m b e r o f o d d i t y p r o b l e m s c o r r e c t l y s o l v e d ( p e r b l o c k ) b y a g e a n d b y d i f f i c u l t y l e v e l . V a r i a b i l i t y L e v e l A g e L o w M o d e r a t e H i g h O v e r a l l 3 y e a r s 2 . 0 8 1 . 7 2 1 . 2 5 1 . 6 9 4 y e a r s 2 . 3 1 * 1 . 7 8 1 . 4 4 1 . 8 4 5 y e a r s 3 . 3 1 * * 2 . 2 2 * 1 . 6 9 2 . 4 1 X 2 . 5 7 1 . 9 1 1 . 4 6 N o t e : I n r e l a t i o n t o t h e c h a n c e p r o b a b i l i t y o f 1 . 3 3 c o r r e c t p e r b l o c k , * = _p_ < - 0 5 ; ** = p_ < . 0 1 . T a b l e I I I . P r o p o r t i o n o f c o r r e c t c h o i c e s a n d m o s t f r e q u e n t l y c h o s e n p a t t e r n f o r n i n e e s p e c i a l l y d i f f i c u l t p r o b l e m s . ( D a t a f o r g r a d e s 1 , 3 , 5 , a n d a d u l t g r o u p s a r e f r o m A i k e n a n d W i l l i a m s , 1 9 7 3 . ) P r o b l e m P r o p o r t i o n C o r r e c t A g e M o s t P o p u l a r C h o i c e A g e N u m b e r 3; y r s 4 y r s 5 y r s G r 1 G r 3 G r 5 A d u l t 3 y r s 4 y r s 5 y r s G r 1 G r 3 G r 5 A d u l t L o w D i f f i c u l t y 1 . 2 5 . 5 0 . 5 8 . 4 4 . 4 8 ' . 3 1 . 1 9 * 3 1 1 1 1 3 3 M o d e r a t e D i f f i c u l t y 2 . 2 5 . 2 5 . 5 0 . 2 2 * . 2 5 . 3 1 . 3 6 3 3 l , 3 a 3 3 3 3 3 . 1 7 * . 2 5 . 2 5 . 1 5 * . 0 2 * . 1 1 * . 3 8 2 3 3 3 3 3 1 4 . 2 5 . 2 5 . 4 2 . 3 9 . 1 7 * . 2 2 * . 2 4 2 1 3 2 2 2 2 H i g h D i f f i c u l t y 5 . 4 2 . 1 7 * . 1 7 * . 1 0 * . 0 8 * . 1 8 * . 1 7 * 2 2 2 2 2 2 2 6 . 1 7 * . 2 5 . 1 7 * . 1 5 * . 1 0 * . 3 1 . 2 1 * 2 1 1 1 1 1 1 7 . 2 5 . 1 7 * . 3 3 . 1 5 * . 0 4 * . 0 7 * . 0 5 * 3 1 1 3 3 3 3 8 . 1 7 * . 0 8 * . 1 7 * . 0 5 * . 0 6 * . 1 3 * . 2 4 2 2 2 2 2 2 3 9 . 1 7 * . 3 3 . 5 0 . 3 9 . 2 3 . 2 0 * . 2 6 2 2 l , 2 a 2 2 2 2 N o t e : * i n d i c a t e s c h o i c e m a d e b y s i g n i f i c a n t l y f e w e r t h a n c h a n c e n u m b e r o f s u b j e c t s (p_ < . 0 5 ) . cl t w o p a t t e r n s c h o s e n b y e q u a l n u m b e r o f s u b j e c t s . i— 1 8 repeated measures. The r e s u l t s of the analysis are summarized i n Table 4 , and serve to confirm the r e s u l t s reported above f o r the combined an a l y s i s . The Age main e f f e c t was s i g n i f i c a n t (F^ 24 = 1 0 . 5 , p_ < . 0 1 ) , with a Newman Keuls analysis i n d i c a t i n g that 5 year olds were s i g n i f i - cantly more accurate than both 4 year olds (p_ < . 0 1 ) and 3 year olds (p_ < . 0 1 ) , who did not d i f f e r . The V a r i a b i l i t y main e f f e c t was also s i g n i f i c a n t (F^ ^ = 6 9 . 5 5 , p_ < . 0 1 ) with a l l d i f f i c u l t y l e v e l s s i g n i f i c a n t l y d i f f e r e n t i a t e d from one another i n the expected d i r e c t i o n (p_ < . 0 1 i n a l l comparisons). The only s i g n i f i c a n t i n t e r a c t i o n was Age by V a r i a b i l i t y (F£ 24 = 3 . 7 8 , p_ < . 0 5 ) . A simple e f f e c t s analysis revealed that the age groups d i f f e r e d on low (F2 24 = 1 7 . 7 2 , p_ < . 0 1 ) and moderate (F2 24 = ^ . 1 2 , p_ < . 0 5 ) but not on high d i f f i c u l t y problems. Newman Keuls analyses revealed that i n both low and moderate d i f f i c u l t y problems, 5 year olds were s i g n i f i c a n t l y more accurate than both 4 and 3 year olds (p_ < . 0 1 i n a l l cases), who d i d not d i f f e r . When the e f f e c t s of v a r i a b i l i t y were examined at each age l e v e l , simple e f f e c t s analyses revealed that v a r i a b i l i t y affected performance at a l l age l e v e l s (for 5 year olds, F 2 4 8 = 4 7 ' 8 3 > P. < *015 f o r 4 y e a r ° l d s > F 2 48 = 1 8 « 3 1 » £ < ' 0 1 '> a n d f o r 3 year olds, F2 = 1 0 . 9 8 , p_ < . 0 1 ) . Newman Keuls analyses indicated that the accuracy of both the 5 and 4 year age groups was s i g n i f i c a n t l y greater on low than on both moderate and high v a r i a b i l i t y problems (p_ < . 0 1 f o r a l l comparisons). The 3 year age group was more accurate on both low and moderate than on high d i f f i c u l t y problems 1 9 T a b l e I V . S u m m a r y o f a n a l y s i s o f v a r i a n c e o f n u m b e r o f c o r r e c t r e s p o n s e s o n t h e o d d i t y t a s k . S o u r c e d f m s F B e t w e e n s u b j e c t s A ( o r d e r ) 1 . 0 1 < 1 B ( t a s k ) 1 8 . 3 3 3 . 9 3 C ( a g e ) 2 2 2 . 4 0 1 0 . 5 7 * * A B 1 . 1 5 < 1 A C 2 3 . 7 2 1 . 7 6 B C 2 . 9 2 < 1 A B C 2 1 . 0 9 < 1 S s w i t h i n g r o u p s 2 4 2 . 1 2 W i t h i n s u b j e c t s F ( v a r i a b i l i t y ) 2 4 5 . 6 5 6 9 . 5 6 * * A F 2 . 5 6 < 1 B F 2 . 1 3 < 1 C F 4 2 . 4 8 3 . 7 8 * A B F 2 2 . 2 4 3 . 4 1 A C F 4 . 7 7 1 . 1 8 B C F 4 1 . 5 8 2 . 4 0 A B C F 4 . 3 0 < 1 F x S s 4 8 . 6 6 G ( t i m e ) 3 . 8 4 1 . 0 5 A G 3 . 5 2 < 1 B G 3 . 3 8 < 1 C G 6 . 5 0 < 1 A B G 3 1 . 5 0 1 . 8 6 A C G 6 1 . 0 6 1 . 3 2 B C G 6 . 6 2 < 1 A B C G 6 . 2 4 < 1 G x S s 7 2 . 8 1 F G 6 . 4 9 < 1 A F G 6 . 5 6 < 1 B F G 6 . 8 0 < 1 C F G 1 2 . 8 2 1 . 0 2 A B F G 6 . 4 0 < 1 A C F G 1 2 . 6 7 < 1 B C F G 1 2 . 7 2 < 1 A B C F G 1 2 . 4 4 < 1 F G x S s 1 4 4 . 8 0 N o t e : C o n s e r v a t i v e d e g r e e s o f f r e e d o m w e r e u s e d f o r t e s t s o f a l l e f f e c t s i n v o l v i n g r e p e a t e d m e a s u r e s . * i n d i c a t e s p_ < . 0 5 ; ** i n d i c a t e s p < . 0 1 . 2 0 (p_ < . 0 1 i n b o t h c a s e s ) . S e q u e n t i a l T a s k A n a l y s e s T h e m e a n n u m b e r o f s e q u e n t i a l p r o b l e m s s o l v e d b y a g e a n d b y d i f - f i c u l t y l e v e l i s s h o w n i n T a b l e 5 . T h e p e r f o r m a n c e o f t h e 5 y e a r o l d s w a s s i g n i f i c a n t l y a b o v e c h a n c e o n l o w (p_ < . 0 5 ) a n d o n m o d e r a t e (p_ < . 0 5 ) b u t n o t o n h i g h v a r i a b i l i t y i t e m s . T h e p e r f o r m a n c e o f t h e 4 a n d 3 y e a r a g e g r o u p s d i d n o t e x c e e d c h a n c e a t a n y v a r i a b i l i t y l e v e l . T h e n u m b e r o f c o r r e c t s e q u e n t i a l t a s k c l a s s i f i c a t i o n s w a s e x a m i n e d i n a n a n a l y s i s o f v a r i a n c e o f O r d e r b y S e x b y A g e b y V a r i a b i l i t y b y T i m e . T h e r e s u l t s o f t h e a n a l y s i s a r e s u m m a r i z e d i n T a b l e 6 . A s w i t h t h e o d d i t y t a s k a n a l y s i s , t h e r e s u l t s s e r v e t o c o n f i r m t h e f i n d i n g s d e s c r i b e d a b o v e f o r t h e c o m b i n e d a n a l y s i s . O n l y t h e V a r i a b i l i t y m a i n e f f e c t w a s s i g n i f i c a n t ( F „ , = 8 . 4 0 , -L , i. H p_ < . 0 1 ) . A N e w m a n K e u l s a n a l y s i s r e v e a l e d t h a t p e r f o r m a n c e o n b o t h l o w a n d m o d e r a t e v a r i a b i l i t y p r o b l e m s w a s s i g n i f i c a n t l y b e t t e r t h a n p e r f o r - m a n c e o n h i g h v a r i a b i l i t y p r o b l e m s (p_ < . 0 1 f o r b o t h c o m p a r i s o n s ) . D i s c u s s i o n T h e r e s u l t s o f t h e p r e s e n t s t u d y p r o v i d e c o n v i n c i n g e v i d e n c e t h a t t h e a b i l i t y t o c l a s s i f y c o m p l e x v i s u a l p a t t e r n s d o e s i n d e e d d e v e l o p p r i o r t o s i x y e a r s o f a g e . A m a r k e d d e v e l o p m e n t a l c h a n g e i n a c c u r a c y t a k e s p l a c e b e t w e e n t h e a g e s o f a b o u t 4 1 / 2 a n d 5 1 / 2 y e a r s . E v i d e n c e f o r t h i s d e v e l o p m e n t a l s h i f t c a n b e f o u n d i n t h e s i g n i f i c a n t a g e m a i n e f f e c t s , t h e a g e - r e l a t e d i n t e r a c t i o n s a n d t h e d a t a c o n c e r n e d w i t h p e r - f o r m a n c e r e l a t i v e t o c h a n c e l e v e l s . T h e p e r f o r m a n c e o f t h e 3 y e a r a g e 2 1 T a b l e V . M e a n n u m b e r o f s e q u e n t i a l p r o b l e m s ( p e r b l o c k ) c o r r e c t l y s o l v e d b y a g e a n d b y d i f f i c u l t y l e v e l ( m a x i m u m p o s s i b l e = f o u r ) . V a r i a b i l i t y L e v e l A g e L o w M o d e r a t e H i g h O v e r a l l 3 2 . 5 2 2 . 2 1 2 . 2 3 2 . 3 2 4 2 . 5 2 2 . 4 4 2 . 2 3 2 . 4 0 5 2 . 9 6 * 3 . 0 4 * 2 . 2 1 2 . 7 4 X 2 . 6 7 2 . 5 6 2 . 2 2 N o t e : I n r e l a t i o n t o t h e c h a n c e p r o b a b i l i t y o f 2 . 0 c o r r e c t p e r b l o c k , ** i n d i c a t e s p < . 0 1 ; * i n d i c a t e s p < . 0 5 . T a b l e V I . S u m m a r y o f a n a l y s i s o f v a r i a n c e o f n u m b e r o f c o r r e c t r e s p o n s e s o n t h e s e q u e n t i a l t a s k . S o u r c e d f . m s F B e t w e e n s u b j e c t s A ( o r d e r ) 1 1 . 6 9 < 1 B ( s e x ) 1 6 . 5 0 1 . 5 3 C ( a g e ) 2 7 . 0 9 1 . 6 7 A B 1 1 . 0 2 < 1 A C 2 8 . 3 1 1 . 9 6 B C 2 6 . 4 7 1 . 5 3 A B C 2 8 . 3 1 1 . 9 6 S_s w i t h i n g r o u p s 2 4 4 . 2 4 W i t h i n s u b j e c t s F ( v a r i a b i l i t y ) 2 7 . 7 8 8 . 4 0 * * A F 2 1 . 1 7 1 . 2 7 B F 2 2 . 2 0 2 . 3 7 C F 4 2 . 4 4 2 . 6 4 A B F 2 . 0 9 < 1 A C F 4 . 1 7 < 1 B C F 4 1 . 7 3 1 . 8 7 A B C F 4 . 5 1 < 1 F x S s 4 8 . 9 3 G ( t i m e ) 3 . 8 2 < 1 A G 3 1 . 1 9 1 . 2 1 B G 3 . 9 0 < 1 C G 6 1 . 0 2 1 . 0 3 A B G 3 2 . 0 1 2 . 0 3 A C G 6 . 4 2 < 1 B C G 6 . 4 2 < 1 A B C G 6 . 8 1 < 1 G x S s 7 2 . 9 9 F G 6 . 2 6 < 1 A F G 6 . 6 1 < 1 B F G 6 . 2 9 < 1 C F G 1 2 . 6 9 < 1 A B F G 6 - . 8 0 1 . 0 3 A C F G 1 2 . 6 7 < 1 B C F G 1 2 . 5 5 < 1 A B C F G 1 2 . 7 4 < 1 F G x S s 1 4 4 . 7 7 N o t e : C o n s e r v a t i v e d e g r e e s o f f r e e d o m w e r e u s e d f o r t e s t s o f a l l e f f e c t s i n v o l v i n g r e p e a t e d m e a s u r e s . * i n d i c a t e s p < . 0 5 ; ** i n d i c a t e s p < . 0 1 . 2 3 g r o u p w a s n o t a b o v e c h a n c e o n e i t h e r t a s k , t h e 4 y e a r a g e g r o u p p e r f o r m e d a b o v e c h a n c e o n o n l y l o w v a r i a b i l i t y i t e m s i n t h e o d d i t y t a s k , a n d t h e f i v e y e a r a g e g r o u p p e r f o r m e d s i g n i f i c a n t l y a b o v e c h a n c e l e v e l s o n b o t h l o w a n d m o d e r a t e v a r i a b i l i t y i t e m s o n b o t h t a s k s . T h i s d e v e l o p m e n t a l c h a n g e i n c l a s s i f i c a t i o n a b i l i t y c a n a l s o b e c l e a r l y s e e n i n T a b l e 7 , w h i c h g i v e s t h e p r o p o r t i o n o f c o r r e c t r e s p o n s e s o n t h e o d d i t y t a s k a t e a c h v a r i a b i l i t y l e v e l a c h i e v e d b y 3 , 4 , a n d 5 y e a r o l d s i n t h e p r e s e n t s t u d y a l o n g w i t h t h e p r o p o r t i o n o f c o r r e c t r e s p o n s e s a c h i e v e d b y a d u l t s a n d 6 , 8 , a n d 1 0 y e a r o l d s i n t h e A i k e n a n d W i l l i a m s ( 1 9 7 3 ) s t u d y . T h e s e q u e n t i a l t a s k w a s i n c l u d e d i n t h e p r e s e n t s t u d y b e c a u s e i t p r o v i d e s a m o r e s t r i n g e n t t e s t o f c l a s s i f i c a t i o n s k i l l s a n d t h e u s e o f p r o t o t y p e s i n c l a s s i f i c a t i o n t h a n d o e s t h e o d d i t y t a s k . T h e s u b j e c t s e e s t h e p r o t o t y p e s t h e m s e l v e s i n n e i t h e r t a s k , b u t a c c u r a t e p e r f o r m a n c e i n t h e o d d i t y t a s k m i g h t b e p o s s i b l e m e r e l y t h r o u g h d i s c r i m i n a t i o n o f t h e o d d p a t t e r n i n e a c h s e t o f t h r e e , r a t h e r t h a n t h r o u g h p r o t o t y p e l e a r n i n g . I n t h e s e q u e n t i a l t a s k , t h e s u b j e c t m u s t c l a s s i f y e a c h p a t - t e r n m e r e l y o n t h e b a s i s o f h i s p a s t e x p e r i e n c e w i t h i n s t a n c e s o f e a c h c l a s s . T h a t p e r f o r m a n c e r e l a t i v e t o c h a n c e l e v e l s w a s c o m p a r a b l e o n t h e t w o t a s k s i n t e r m s o f t h e s k i l l s b e i n g t a p p e d l i e s i n t h e a b s e n c e o f s i g n i f i c a n t e f f e c t s i n v o l v i n g o r d e r o f t a s k p r e s e n t a t i o n . I f p r o t o t y p e l e a r n i n g o c c u r r e d d i f f e r e n t i a l l y i n t h e t w o t a s k s , t h e n p e r f o r m a n c e w o u l d b e l i k e l y t o v a r y w i t h o r d e r o f t a s k p r e s e n t a t i o n , s i n c e t h e p r o t o t y p e s o n w h i c h t h e c l a s s e s w e r e b a s e d w e r e t h e s a m e i n b o t h c a s e s . I t i s n o t s u r p r i s i n g t h a t t h e s e q u e n t i a l t a s k w a s i n g e n e r a l m o r e d i f f i c u l t t h a n t h e o d d i t y t a s k . I n d e e d , i t i s m o r e s u r p r i s i n g t h a t 5 y e a r o l d s w e r e 2 4 T a b l e V I I . P r o p o r t i o n o f c o r r e c t r e s p o n s e s o n t h e o d d i t y t a s k b y v a r i a b i l i t y l e v e l a n d b y a g e . V a r i a b i l i t y A g e L o w M o d e r a t e H i g h 3 y r . 5 1 0 4 . 4 3 2 3 . 3 1 7 7 4 y r . 5 7 2 9 . 4 4 2 7 . 3 2 2 9 5 y r . 8 1 7 7 . 5 7 2 9 . 4 1 6 7 6 y r . 8 2 4 0 . 5 6 4 3 . 4 4 7 6 8 y r . 8 2 6 4 . 5 6 4 4 . 4 5 4 1 1 0 y r . 8 9 6 0 . 6 0 4 1 . 4 9 3 0 a d u l t . 9 0 3 5 . 6 3 9 8 . 5 0 3 8 N o t e : D a t a f o r a g e s 6 , 8 , 1 0 y r s a n d a d u l t s a r e f r o m A i k e n a n d W i l l i a m s , 1 9 7 3 . T h e s e p r o p o r t i o n s a r e b a s e d o n s i x t y - t h r e e p r o b l e m s . P r o p o r t i o n s f r o m t h e p r e s e n t s t u d y a r e b a s e d o n f o r t y - e i g h t p r o b l e m s . 2 5 a b l e t o p e r f o r m a t a b o v e c h a n c e l e v e l s o n t h e s e q u e n t i a l t a s k , w h i c h r e q u i r e s p a t t e r n c o m p a r i s o n s f r o m m e m o r y . I n s u m m a r y , t h e r e s u l t s p r o - v i d e s t r o n g e v i d e n c e t h a t t h e o d d i t y a n d s e q u e n t i a l t a s k s a s s e s s t h e s a m e u n d e r l y i n g p e r c e p t u a l a n d / o r c o g n i t i v e p r o c e s s e s . W h i l e t h e a b s e n c e o f s i g n i f i c a n t e f f e c t s i n v o l v i n g o r d e r a n d s e x w a s e x p e c t e d , t h e a b s e n c e o f s i g n i f i c a n t e f f e c t s i n v o l v i n g t i m e i s m o r e t h o u g h t - p r o v o k i n g . W h i l e i t i s p o s s i b l e t h a t w i t h a l a r g e r s a m p l e o f p r o b l e m s ( e . g . , a s u s e d b y A i k e n a n d W i l l i a m s , 1 9 7 3 ) p e r f o r m a n c e m i g h t i m p r o v e s i g n i f i c a n t l y o v e r t i m e , t h e r e s u l t s s u g g e s t t h a t l e a r n i n g t h e n a t u r e o f t h e c l a s s e s , i n c l u d i n g w h a t e v e r p r o t o t y p e l e a r n i n g t o o k p l a c e , o c c u r r e d r e l a t i v e l y e a r l y i n b o t h t a s k s . I t i s a l s o l i k e l y , h o w e v e r , t h a t t h e v e r y y o u n g s u b j e c t s t i r e d a s t h e t r i a l s p r o g r e s s e d , a n d t h a t i m p r o v e m e n t i n c l a s s i f i c a t i o n a b i l i t y a n d f a t i g u e e f f e c t s t e n d e d t o c a n c e l o n e a n o t h e r . A l t h o u g h t h e p r e s e n t s t u d y d i d n o t i n c l u d e p s y c h o p h y s i c a l a n a l y s e s r e l a t i n g p r o t o t y p e a n d d i s t i n c t i v e f e a t u r e m e a s u r e s t o c l a s s i f i c a t i o n a c c u r a c y , t h e f i n d i n g t h a t 5 y e a r o l d s i n t h e p r e s e n t s t u d y w e r e s o s i m i l a r i n a c c u r a c y t o t h e 6 a n d 8 y e a r o l d s i n t h e A i k e n a n d W i l l i a m s ( 1 9 7 3 ) s t u d y s u g g e s t s t h a t t h e y d i d i n d e e d u s e t h e s a m e b a s e s o f j u d g - m e n t . F u r t h e r e v i d e n c e t h a t s u b j e c t s i n t h e p r e s e n t s t u d y u s e d s t r a t e g i e s s i m i l a r t o t h o s e u s e d b y o l d e r s u b j e c t s e x i s t s i n t h e i r c o m p a r a b l y p o o r p e r f o r m a n c e i n t h e n i n e p a r t i c u l a r l y d i f f i c u l t p r o b l e m s , a n d t h e f a c t t h a t t h e y t e n d e d t o m a k e t h e s a m e w r o n g c h o i c e s ( s e e T a b l e 7 ) . T h e s e r e s u l t s c l e a r l y i n d i c a t e t h a t m a s t e r y o f t h e a b i l i t y t o c l a s s i f y c o m p l e x v i s u a l p a t t e r n s o c c u r s b e t w e e n 4 1 / 2 a n d 5 1 / 2 y e a r s 2 6 o f a g e . T h e q u e s t i o n t o b e a n s w e r e d n o w i s w h y 3 a n d 4 y e a r o l d s a r e u n a b l e t o p e r f o r m t h e t a s k s u c c e s s f u l l y . I t i s t e m p t i n g t o h y p o t h e s i z e t h a t t h i s c h a n g e i n c l a s s i f i c a t i o n a b i l i t y i s r e l a t e d t o a d v a n c e m e n t f r o m t h e p r e o p e r a t o r y t o t h e c o n c r e t e o p e r a t o r y s t a g e o f d e v e l o p m e n t , b u t c o n f i r m a t i o n w o u l d h a v e t o c o m e i n a s t u d y d e m o n s t r a t i n g t h a t s u b j e c t s w h o a r e m o r e a c c u r a t e o n t h e c l a s s i f i c a t i o n t a s k a r e m o r e a d - v a n c e d i n t e r m s o f P i a g e t ' s d e v e l o p m e n t a l s t a g e s . 27 R e f e r e n c e s A i k e n , L . S . a n d B r o w n , D . R . A f e a t u r e u t i l i z a t i o n a n a l y s i s o f t h e p e r c e p t i o n o f p a t t e r n c l a s s s t r u c t u r e . P e r c e p t i o n a n d P s y c h o p h y s i c s , 1971, 9, 279-283. A i k e n , L . S . a n d W i l l i a m s , T . M . A d e v e l o p m e n t a l s t u d y o f s c h e m a t i c c o n c e p t f o r m a t i o n . D e v e l o p m e n t a l P s y c h o l o g y , 1973, 8_, 162-167. G i b s o n , E . J . P r i n c i p l e s o f p e r c e p t u a l l e a r n i n g a n d d e v e l o p m e n t . N e w Y o r k : A p p l e t o n - C e n t u r y - C r o f t s , 1969. P i c k , A n n e D . I m p r o v e m e n t o f v i s u a l a n d t a c t u a l f o r m d i s c r i m i n a t i o n . J o u r n a l o f E x p e r i m e n t a l P s y c h o l o g y , 1965, J59_, 331-339. 2 8 A P P E N D I X I : R a w D a t a , N u m b e r o f C o r r e c t c h o i c e s ( o u t o f a p o s s i b l e 4 ) O d d i t y T a s k S e q u e n t i a l T a s k S u b j e c t T a s k S e x A g e L o w M o d H i g h L o w M o d H i g h N u m b e r O r d e r ( i n T i m e T i m e ( l = o d d . 1 s t ) y e a r s ) T i m e T i m e T i m e T i m e 2 = s e q . 1 s t ) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 0 1 1 M 3 2 1 2 2 2 1 1 1 1 1 1 3 1 2 3 3 2 2 3 1 2 2 2 2 0 2 1 M 3 3 3 4 4 3 3 2 2 2 2 3 2 4 4 4 4 4 4 4 2 2 4 2 3 0 3 1 M 3 2 1 3 0 1 2 2 2 2 1 2 2 2 2 0 4 1 1 3 2 2 2 2 2 0 4 1 F 3 3 2 1 3 2 2 1 2 2 2 1 2 3 1 2 2 1 0 1 2 3 2 0 0 0 5 1 F 3 3 2 4 3 2 1 1 3 1 2 1 0 3 2 2 1 3 1 1 2 2 3 2 2 0 6 1 F 3 2 1 3 0 2 1 1 2 1 0 1 0 2 3 1 2 0 1 1 2 2 1 2 1 0 7 2 M 3 1 4 2 3 2 3 1 1 3 1 0 1 2 3 2 3 0 2 0 3 2 3 3 2 0 8 2 M 3 3 2 0 0 2 2 1 1 1 0 1 0 4 2 4 1 3 4 4 2 3 2 1 1 0 9 2 M 3 3 3 2 3 1 2 2 1 1 3 0 2 2 1 1 2 3 4 3 3 1 2 3 4 1 0 2 F 3 2 2 2 2 1 2 2 3 2 1 1 2 2 3 4 4 0 2 4 2 3 2 4 2 1 1 2 F 3 2 0 1 0 1 1 2 1 1 0 1 2 2 1 2 3 3 1 1 1 2 3 2 2 1 2 2 F 3 2 2 0 3 2 3 2 2 2 1 0 0 4 4 4 4 4 4 4 4 4 3 2 4 1 3 1 M 4 4 4 1 0 2 1 1 3 2 2 2 2 4 4 4 4 4 4 3 4 2 4 3 2 1 4 1 M 4 2 2 1 3 2 2 2 2 0 2 2 0 0 3 3 1 2 2 4 2 3 2 1 2 1 5 1 M 4 1 1 2 3 2 2 1 2 0 1 1 1 3 3 3 3 2 1 3 1 1 1 2 2 1 6 1 F 4 2 2 2 2 0 2 3 1 2 1 0 1 1 2 2 2 0 4 2 0 3 2 2 1 1 7 1 F 4 2 2 1 1 2 0 1 1 2 3 2 0 2 2 2 2 2 1 3 2 1 2 3 3 1 8 1 F 4 1 3 2 2 2 1 2 2 0 2 1 1 3 2 0 2 4 1 2 2 3 1 1 2 1 9 2 M 4 4 4 4 4 3 2 3 4 1 1 3 0 4 3 4 4 4 2 3 4 3 3 3 2 2 0 2 M 4 3 1 0 4 2 2 0 1 0 2 2 0 3 1 1 4 2 2 2 2 3 1 4 2 2 1 2 M 4 4 4 4 4 3 3 3 1 2 2 1 2 4 3 4 4 3 2 4 4 3 2 2 4 2 2 2 F 4 1 4 3 2 2 2 2 1 2 1 3 1 2 2 3 1 1 3 3 2 1 1 3 1 2 3 2 F 4 2 1 2 1 2 0 2 1 1 2 2 2 3 2 1 2 3 2 4 2 1 2 3 2 2 4 2 F 4 1 3 3 1 2 1 1 2 0 1 1 0 2 2 3 1 2 1 2 3 4 3 4 1 2 5 1 M 5 3 4 3 4 3 2 4 3 3 2 3 2 4 4 3 4 4 4 4 4 2 2 4 3 2 6 1 M 5 2 4 4 3 2 2 3 3 1 2 2 2 2 3 2 3 4 2 4 2 0 2 1 3 2 7 1 M 5 4 2 3 3 2 2 1 3 2 2 1 1 2 2 2 3 3 3 1 3 2 2 3 2 2 8 1 F 5 2 4 4 3 2 2 2 2 1 2 3 1 4 4 3 3 3 4 3 2 1 2 2 2 2 9 1 F 5 4 4 4 2 2 2 3 1 1 2 0 1 4 4 4 4 3 3 3 3 4 1 2 3 3 0 1 F ' 5 3 4 3 4 3 2 1 3 3 1 1 3 4 4 4 4 4 4 2 4 3 3 3 3 3 1 2 M 5 3 4 1 4 4 3 2 1 2 2 2 1 1 2 3 4 2 3 3 4 2 2 2 2 3 2 2 M 5 4 3 3 4 2 2 3 2 1 3 2 1 4 4 4 4 3 4 4 4 2 3 3 2 3 3 2 M 5 4 4 2 2 2 2 2 4 2 1 1 2 1 1 1 2 4 2 1 4 1 1 2 2 3 4 2 F 5 4 4 3 3 2 2 1 3 1 1 2 2 2 3 3 2 4 2 3 1 2 2 2 2 3 5 2 F 5 4 2 4 3 1 1 2 2 3 1 2 1 1 2 3 2 2 3 3 3 1 3 1 2 3 6 2 F 5 3 3 3 3 4 3 2 3 1 2 0 2 3 2 4 4 3 2 2 4 2 2 3 4 A P P E N D I X 2 : S u m m a r y o f a n a l y s i s o f v a r i a n c e o f n u m b e r o f c o r r e c t c h o i c e s , b o t h t a s k s i n c l u d e d , f o r t i m e 1 - 3 ( p r o b l e m s 1 - 1 2 ; 1 3 - 2 4 ; 2 5 - 3 6 ) o n l y . S o u r c e d f m s F B e t w e e n s u b j e c t s A ( o r d e r ) 1 . 1 1 < 1 B ( s e x ) 1 3 . 2 4 2 . 1 7 C ( a g e ) 2 7 . 4 6 4 . 9 8 * A B 1 . 0 0 < 1 A C 2 1 . 8 8 1 . 2 6 B C 2 1 . 0 8 < 1 A B C 2 . 8 3 < 1 S s w i t h i n g r o u p s 2 4 1 . 5 0 W i t h i n s u b j e c t s D ( t a s k ) 1 1 0 . 7 5 2 7 . 8 8 * * A D 1 . 0 7 < 1 B D 1 ° . 5 5 1 . 4 2 C D 2 2 . 1 6 5 . 6 0 * A B D 1 . 8 0 2 . 0 8 A C D 2 1 . 6 5 4 . 2 7 B C D 2 . 2 2 < 1 ; A B C D 2 . 6 0 1 . 5 7 D x S s 2 4 . 3 9 F ( v a r i a b i l i t y ) 2 1 4 . 0 0 4 0 . 8 4 * * A F 2 . 1 4 < 1 B F 2 . 5 7 1 . 6 6 C F 4 1 . 1 6 3 . 3 9 A B F 2 . 3 5 1 . 0 1 A C F 4 . 3 7 1 . 0 7 B C F 4 . 7 3 2 . 1 3 A B C F 4 . 1 1 < 1 F x S s 4 8 . 3 4 G ( t i m e ) 2 . 1 1 < 1 A G 2 . 0 1 < 1 B G 2 . 1 8 < 1 C G 4 . 2 7 < 1 A B G 2 1 . 3 2 3 . 4 9 A C G 4 . 6 0 1 . 5 8 B C G 4 . 3 5 < 1 A B C G 4 . 1 9 < 1 G x S s 4 8 . 3 8 3 0 A P P E N D I X 2 ( C o n t ' d ) S o u r c e d f m s F D F 2 5 . 9 2 1 7 . 7 9 * * A D F 2 . 4 0 1 . 2 1 B D F 2 . 0 7 < 1 C D F 4 . 6 6 1 . 9 8 A B D F 2 . 1 9 < 1 A C D F 4 . 1 2 < 1 B C D F 4 . 2 9 < 1 A B C D F 4 . 1 1 < 1 D F x S s 4 8 . 3 3 D G 2 . 6 7 2 . 0 0 A D G 2 . 8 1 2 . 4 1 B D G 2 . 2 1 < 1 C D G 4 . 2 1 < 1 A B D G 2 . 3 4 1 . 0 1 A C D G 4 . 4 2 1 . 2 4 B C D G 4 . 0 4 < 1 A B C D G 4 . 0 5 < 1 D F x S_s 4 8 . 3 4 F G 4 . 2 0 < 1 A F G 4 . 1 6 < 1 B F G 4 . 3 1 < 1 C F G 8 . 4 6 1 . 3 3 A B F G 4 . 0 7 < 1 A C F G 8 . 2 7 < 1 B C F G 8 . 1 6 < 1 A B C F G 8 . 1 3 < 1 F G x S s 9 6 . 3 4 D F G 4 . 0 6 < 1 A D F G 4 . 2 9 1 . 2 4 B D F G 4 . 1 4 < 1 C D F G 8 . 3 2 1 . 3 7 A B D F G 4 . 2 4 1 . 0 3 A C D F G 8 . 4 3 1 . 8 4 B C D F G 8 . 3 3 1 . 4 1 A B C D F G 8 . 1 3 < 1 D F G x S s 9 6 . 2 3 N o t e : C o n s e r v a t i v e d e g r e e s o f f r e e d o m w e r e u s e d f o r a l l t e s t s i n v o l v i n g r e p e a t e d m e a s u r e s . * i n d i c a t e s p_ < . 0 5 ; ** i n d i c a t e s p_ < . 0 1 . 3 1 A P P E N D I X 3 : S u m m a r y o f a n a l y s i s o f v a r i a n c e o f n u m b e r o f c o r r e c t c h o i c e s o n t h e o d d i t y t a s k o n l y , f o r t i m e 1 - 3 o n l y . S o u r c e B e t w e e n s u b j e c t s A ( o r d e r ) B ( s e x ) C ( a g e ) A B A C B C A B C S_s w i t h i n g r o u p s W i t h i n s u b j e c t s F ( v a r i a b i l i t y ) A F B F C F A B F A C F B C F A B C F F x S s G ( t i m e ) A G B G C G A B G A C G B C G A B C G G x S s F G A F G B F G C F G A B F G A C F G B C F G A B C F G F G x S s d f 1 1 2 1 2 2 2 2 4 2 2 2 4 2 4 4 4 4 8 2 2 2 4 2 4 4 4 4 8 4 4 4 8 4 8 8 8 9 6 m s . 0 0 5 . 7 1 1 5 . 5 8 . . 6 9 3 . 1 1 . 3 0 . 4 5 1 . 7 2 3 3 . 1 9 . 6 0 . 2 3 2 . 0 9 . 7 3 . 6 5 . 9 6 . 2 7 . 7 0 1 . 0 0 . 7 4 . 5 4 . 5 1 1 . 7 5 1 . 5 5 . 4 9 . 2 6 . 8 5 . 4 0 . 5 6 . 7 3 . 9 9 . 2 0 . 9 5 . 6 7 . 3 9 . 6 6 < < 1 3 . 3 1 9 . 0 4 * * 1 1 . 8 1 1 1 < < < < < 4 7 . 4 7 * * 1 1 2 . 9 8 1 . 0 5 1 1 . 3 7 1 1 . 1 8 1 1 1 2 . 0 5 1 . 8 2 1 1 1 1 1 . 1 . 1 1 . 1 0 4 9 4 4 1 . 0 2 1 N o t e : C o n s e r v a t i v e d e g r e e s o f f r e e d o m w e r e u s e d f o r a l l t e s t s i n v o l v i n g r e p e a t e d m e a s u r e s . * i n d i c a t e s p_ < . 0 5 ; ** i n d i c a t e s p_ < . 0 1 . 3 2 A P P E N D I X 4 : S u m m a r y o f a n a l y s i s o f v a r i a n c e o f n u m b e r o f c o r r e c t c h o i c e s o n t h e s e q u e n t i a l t a s k o n l y , f o r t i m e 1 - 3 o n l y . S o u r c e d f m s F B e t w e e n s u b j e c t s A ( o r d e r ) 1 . 6 9 < 1 B ( s e x ) 1 2 . 2 5 < 1 C ( a g e ) 2 3 . 2 6 < 1 A B 1 1 . 6 3 < 1 A C 2 7 . 0 6 1 . 9 4 B C 2 4 . 5 1 1 . 2 4 A B C 2 4 . 7 1 1 . 2 9 S s w i t h i n g r o u p s 2 4 3 . 6 4 W i t h i n s u b j e c t s F ( v a r i a b i l i t y ) 2 4 . 6 3 4 . 1 3 A F 2 . 8 4 < 1 B F 2 2 . 0 6 1 . 8 4 C F 4 2 . 5 7 2 . 2 9 A B F 2 . 4 8 < 1 A C F 4 . 4 9 < 1 B C F 4 1 . 9 1 1 . 7 0 A B C F 4 . 2 8 < 1 F x S s 4 8 1 . 1 2 G ( t i m e ) 2 . 8 5 < 1 A G 2 1 . 6 2 1 . 7 2 B G 2 . 3 4 < 1 C G 4 . 7 6 < 1 A B G 2 2 . 6 9 2 . 8 6 A C G 4 . 5 7 < 1 B C G 4 . 4 6 < 1 A B C G 4 . 3 7 < 1 G x S s 4 8 . 9 4 F G 4 . 1 2 < 1 A F G 4 . 5 3 < 1 B F G 4 . 1 4 < 1 C F G 8 . 8 9 1 . 0 9 A B F G 4 . 8 0 < 1 A C F G 8 . 6 4 < 1 B C F G 8 . 4 3 < 1 A B C F G 8 . 1 7 < 1 F G x S s 9 6 . 8 2 N o t e : C o n s e r v a t i v e d e g r e e s o f f r e e d o m w e r e u s e d f o r , i n v o l v i n g r e p e a t e d m e a s u r e s . ** i n d i c a t e s p_ < . 0 1 * i n d i c a t e s . 0 5 ;

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 3 0
United States 3 4
Canada 2 0
City Views Downloads
Beijing 3 0
Ashburn 2 0
Longueuil 2 0
Redwood City 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0076802/manifest

Comment

Related Items

Admin Tools

To re-ingest this item use button below, on average re-ingesting will take 5 minutes per item.

Reingest

To clear this item from the cache, please use the button below;

Clear Item cache