Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The numerical classification and mapping of vegetation in two mountainous watersheds of southeastern… Jones, Richard Keith 1978

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1978_A6_7 J88.pdf [ 12.76MB ]
Metadata
JSON: 831-1.0075403.json
JSON-LD: 831-1.0075403-ld.json
RDF/XML (Pretty): 831-1.0075403-rdf.xml
RDF/JSON: 831-1.0075403-rdf.json
Turtle: 831-1.0075403-turtle.txt
N-Triples: 831-1.0075403-rdf-ntriples.txt
Original Record: 831-1.0075403-source.json
Full Text
831-1.0075403-fulltext.txt
Citation
831-1.0075403.ris

Full Text

THE NUMERICAL CLASSIFICATION AND MAPPING OF VEGETATION IN TWO MOUNTAINOUS WATERSHEDS OF SOUTHEASTERN BRITISH COLUMBIA  by RICHARD KEITH JONES B.Sc,  U n i v e r s i t y of V i c t o r i a , 1972  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF , MASTER OF SCIENCE  in THE FACULTY OF GRADUATE STUDIES (FACULTY OF FORESTRY)  We accept t h i s t h e s i s as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA June, 1978  ©  Richard K e i t h Jones, 1978  In  presenting  an  advanced degree  the I  Library  further  for  shall  agree  scholarly  by  his  of  this  written  this  thesis  in  at  University  the  make  that  for  It  financial  is  for  The  of  University  of)  British  2075 W e s b r o o k P l a c e V a n c o u v e r , Canada V6T.1W5  12 A p r i l 1978  of  of  Columbia,  British  gain  by  shall  Forestry  Columbia  for  extensive the  understood  permission.  (Faculty  fulfilment  available  p u r p o s e s may be g r a n t e d  representatives. thesis  freely  permission  Department o f  Date  it  partial  requirements  reference copying  Head o f  that  not  the  of  I  agree  and this  be a l l o w e d  or  that  study. thesis  my D e p a r t m e n t  copying  for  or  publication  w i t h o u t my  - ii ABSTRACT  Concommittant w i t h an i n c r e a s i n g t r e n d towards the e c o l o g i c a l c l a s s i f i c a t i o n o f f o r e s t l a n d i n B r i t i s h Columbia i s the need f o r more d e t a i l e d v e g e t a t i o n i n v e n t o r i e s and l a r g e r mapping s c a l e s .  Although e x i s t i n g  c l a s s i f i c a t i o n schemes ( b i o g e o c l i m a t i c , p r o v i n c i a l b i o p h y s i c a l and h a b i t a t type c l a s s i f i c a t i o n ) u s u a l l y p r e s e n t a u s e f u l i n i t i a l s t r a t i f i c a t i o n of b r o a d z o n a l v e g e t a t i o n p a t t e r n s , t h e y seldom p r o v i d e , o r were i n t e n d e d to p r o v i d e a c l a s s i f i c a t i o n s u i t a b l e f o r d e t a i l e d v e g e t a t i o n i n v e n t o r y and mapping i n a p a r t i c u l a r study a r e a .  I n most i n s t a n c e s , p r i m a r y v e g e t a t i o n d a t a must be  c o l l e c t e d and c l a s s i f i e d a t a l e v e l of d e t a i l c o m p a t i b l e w i t h the s c a l e o f mapping and the v a r i a b i l i t y o f the v e g e t a t i o n l a n d s c a p e .  L i m i t e d a c c e s s and  steep mountainous t e r r a i n a r e a d d i t i o n a l problems c o n t r i b u t i n g to the a c q u i s i t i o n , classification,  i n t e r p r e t a t i o n and mapping of v e g e t a t i o n a t l a r g e s c a l e s .  D i s s i m i l a r i t y A n a l y s i s i s a n u m e r i c a l c l a s s i f i c a t i o n a n a l y s i s programmed and s t u d i e d by the p r o v i n c i a l government as a means t o s t r a t i f y l a r g e volumes of v e g e t a t i o n d a t a i n a r e l a t i v e l y o b j e c t i v e and e f f i c i e n t manner. divisive-polythetic  As a  c l a s s i f i c a t i o n s t r a t e g y i t demonstrates s e v e r a l advantages  over other numerical a n a l y s e s .  A l t h o u g h i t i s now used as a r o u t i n e a n a l y s i s  by the p r o v i n c i a l b i o p h y s i c a l s u r v e y , i t has n o t y e t been t h o r o u g h l y  evaluated  o r f o r m a l l y p r e s e n t e d w i t h r e g a r d to i t s s u i t a b i l i t y f o r v e g e t a t i o n c l a s s i f i c a t i o n and mapping on an o p e r a t i o n a l b a s i s . T h i s study i n v e s t i g a t e d f o u r r e l a t e d q u e s t i o n s :  a . What methods can  be employed f o r d e t a i l e d v e g e t a t i o n mapping ( s c a l e 1 : 1 5 , 8 4 0 ) i n mountainous t e r r a i n w i t h l i m i t e d access?  b. What i s the v a l u e of D i s s i m i l a r i t y A n a l y s i s  f o r the c l a s s i f i c a t i o n of v e g e t a t i o n i n p r i m a r y survey? c a p a b i l i t y of the p r e t y p i n g v e g e t a t i o n mapping?  (prestratification)  c . What i s the  approach developed  predictive  for  d . What i s the r e l i a b i l i t y of t h e v e g e t a t i o n maps. The  -  iii  -  study was d i v i d e d i n t o two s e p a r a t e b u t r e l a t e d i n v e s t i g a t i o n s :  the  o p e r a t i o n a l c l a s s i f i c a t i o n and mapping o f v e g e t a t i o n i n two s m a l l mountainous watersheds and a d e t a i l e d s y s t e m a t i c s a m p l i n g study of two  representative  a r e a s w i t h i n one of the w a t e r s h e d s to a s s e s s t h e v e g e t a t i o n mapping procedure and map r e l i a b i l i t y . A d e t a i l e d v e g e t a t i o n mapping p r o c e d u r e was developed  which.utilized  permanent p h y s i o g r a p h i c l a n d s c a p e f e a t u r e s d i r e c t l y o b s e r v a b l e o r from b l a c k and w h i t e s t e r e o a e r i a l photographs  inferred  ( s c a l e 1 : 1 5 , 8 4 0 ) , macro and  meso physiognomic v e g e t a t i o n f e a t u r e s , a s i m p l e concept r e l a t i n g the above f e a t u r e s to the a v a i l a b l e m o i s t u r e f o r v e g e t a t i o n , and i n f o r m a t i o n about existing vegetation (e.g.  f o r e s t c o v e r maps; c o n c e p t s and maps of  vegetation  zonation). D i s s i m i l a r i t y A n a l y s i s was found to be an o b j e c t i v e and e f f i c i e n t method of v e g e t a t i o n s t r a t i f i c a t i o n by r e d u c i n g p e r s o n a l b i a s and e n s u r i n g an optimum and c o n s i s t e n t u t i l i z a t i o n of the a v a i l a b l e i n f o r m a t i o n i n the data s e t .  I t was f e l t to be an a p p r o p r i a t e t e c h n i q u e f o r  stratifying  p r i m a r y v e g e t a t i o n d a t a s i n c e i t maximizes d i f f e r e n c e s between g r o u p s , l i m i t s to c l a s s e s and f a c i l i t a t e s the f o r m a t i o n of a h i e r a r c h i c a l  defines  identification  procedure. I t was c o n c l u d e d t h a t the v e g e t a t i o n p r e t y p i n g approach developed  for  o p e r a t i o n a l mapping p r o v i d e d a m e t h o d i c a l , p r e l i m i n a r y s t r a t i f i c a t i o n of the l a n d s c a p e upon w h i c h improved mapping c r i t e r i a c o u l d be added to p r e d i c t present vegetation  better  condition.  A q u a n t i t a t i v e assessment of map r e l i a b i l i t y i n two r e p r e s e n t a t i v e  areas  of one of the watersheds r e s u l t e d i n a v a l u e of 79% r e l a t i v e to an independent chance of agreement of 6.2% and an optimum chance of agreement of 29%. was f e l t t h a t these v a l u e s were r e p r e s e n t a t i v e remainder of the w a t e r s h e d .  It  of the map r e l i a b i l i t y i n the  -T  iv  -  TABLE OF CONTENTS Page ABSTRACT L i s t of T a b l e s L i s t of F i g u r e s ACKNOWLEDGEMENTS  ii ix x xiv  1  1  INTRODUCTION 1.1  The need f o r an e c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t s  1.2  The ecoystem concept i n f o r e s t management  3  1.3  F o r e s t l a n d c l a s s i f i c a t i o n i n B r i t i s h Columbia . . . . 1.3.1 Biogeoclimatic c l a s s i f i c a t i o n 1.3.2 Biophysical c l a s s i f i c a t i o n 1 . 3 . 3 H a b i t a t type c l a s s i f i c a t i o n  5 6 7 9  1.4  Problem d e f i n i t i o n 1.4.1 Detailed vegetation inventory 1.4.2 D i s s i m i l a r i t y Analysis - a numerical C l a s s i f i c a t i o n technique  11 11  Thesis  13  1.5 2  objectives  .  and study o u t l i n e  THE CLASSIFICATION AND MAPPING OF VEGETATION 2.1 2.2 2.3  2.4  12  16  P r i n c i p l e s of c l a s s i f i c a t i o n as t h e y a p p l y vegetation H i s t o r y of and t r a d i t i o n a l approaches t o classification  2  to 17  vegetation 18  N u m e r i c a l approaches to v e g e t a t i o n c l a s s i f i c a t i o n . . . 2 . 3 . 1 I n t r o d u c t i o n to and o b j e c t i v e s of c l a s s i f i cation 2 . 3 . 2 Vegetation data 2 . 3 . 3 Numerical c l a s s i f i c a t i o n s t r a t e g i e s 2 . 3 . 4 Measures of s i m i l a r i t y / d i s s i m i l a r i t y and algorithms  23  32  V e g e t a t i o n mapping 2 . 4 . 1 Maps, i n v e n t o r i e s and c l a s s i f i c a t i o n 2 . 4 . 2 Approaches t o l a n d s c a p e mapping 2 . 4 . 3 V e g e t a t i o n maps 2 . 4 . 4 V e g e t a t i o n maps i n B r i t i s h Columbia  34 34 35 36 40  23 27 29  -  V  -  Page 3  DISSIMILARITY ANALYSIS 3.1  D i s s i m i l a r i t y A n a l y s i s as a c l a s s i f i c a t i o n s t r a t e g y .  3.2  The A n a l y s i s 3 . 2 . 1 R e s t r i c t i o n r u l e or r e s t r i c t i o n p r o c e d u r e . . . 3 . 2 . 2 The i n f o r m a t i o n s t a t i s t i c as a d i s s i m i l a r i t y function 3 . 2 . 3 Stopping r u l e  49 51  Development and use o f D i s s i m i l a r i t y A n a l y s i s B r i t i s h Columbia  52  3.3  4  5  44 .  45 48 49  in  METHODS OF STUDY  55  4.1  Study s t r a t e g y  56  4.2  F i e l d studies 4.2.1 Reconnaissance 4.2.2 Pretyping 4 . 2 . 3 F i e l d sampling  58 59 59 60  4.3  Data a n a l y s i s , i n t e r p r e t a t i o n and a p p l i c a t i o n t o mapping 4.3.1 Coenos 1 computer program output 4 . 3 . 1 . 1 D i s s i m i l a r i t y Analysis 4 . 3 . 1 . 2 Accessory analyses 4 . 3 . 1 . 3 Tables 4 . 3 . 2 A n a l y s i s and i n t e r p r e t a t i o n of r e s u l t s 4.3.2.1 Comparative a n a l y s i s 4 . 3 . 2 . 2 C h a r a c t e r i z a t i o n of v e g e t a t i o n types . 4.3.2.3 I n t e r p r e t a t i o n of v e g e t a t i o n types . . 4 . 3 . 3 Mapping 4 . 3 . 3 . 1 Mapping of v e g e t a t i o n types 4 . 3 . 3 . 2 Mapping o f b i o g e o c l i m a t i c subzones . .  68 68 69 70 72 73 73 74 77 77 77 79  GRASSY CREEK WATERSHED STUDY  81  5.1  82 82 82 86 87 88  D e s c r i p t i o n of s t u d y a r e a 5 . 1 . 1 L o c a t i o n and g e o g r a p h i c s e t t i n g 5 . 1 . 2 Bedrock geology 5 . 1 . 3 S u r f i c i a l geology 5.1.4 Soils 5.1.5 Climate  - vi  -  Page 5.2  R e s u l t s and i n t e r p r e t a t i o n of the c l a s s i f i c a t i o n analysis 5.2.1 Dissimilarity Analysis 5 . 2 . 2 F i n a l y group c l u s t e r a n a l y s i s 5 . 2 . 3 P l o t c l u s t e r a n a l y s i s and mean s i m i l a r i t y values 5 . 2 . 4 The v e g e t a t i o n types and t h e i r d e s c r i p t i o n .  90 90 96 . .  Engelmann s p r u c e - s u b a l p i n e f i r p a r k l a n d subzone V e g e t a t i o n Type A V e g e t a t i o n Type B V e g e t a t i o n Type C Engelmann s p r u c e - s u b a l p i n e f i r subzone V e g e t a t i o n Type D V e g e t a t i o n Type D - l V e g e t a t i o n Type D-2 V e g e t a t i o n Type E  100.  forest  Engelmann s p r u c e - s u b a l p i n e f i r - D i s c l i m a x . . V e g e t a t i o n Type F Engelmann s p r u c e - s u b a l p i n e f i r f o r e s t subzone — I n t e r i o r w e s t e r n hemlock dry subzone transition V e g e t a t i o n Type G V e g e t a t i o n Type G - l I n t e r i o r w e s t e r n hemlock dry subzone V e g e t a t i o n Type H V e g e t a t i o n Type H - l V e g e t a t i o n Type H-2 V e g e t a t i o n Type I V e g e t a t i o n Type 1 - 1 V e g e t a t i o n Type 1 - 2 V e g e t a t i o n Type J  6  96 100  106  108  108  110  5.3  Correlation with e x i s t i n g vegetation c l a s s i f i c a t i o n . .  113  5.4  Mapping o f v e g e t a t i o n 5.4.1 Pretyping 5 . 4 . 2 V e g e t a t i o n types and b i o g e o c l i m a t i c subzones . .  116 116 116  TEMPLETON RIVER WATERSHED STUDY  120  6.1  121 121 125 125 127 128  D e s c r i p t i o n of s t u d y a r e a 6 . 1 . 1 L o c a t i o n and g e o g r a p h i c s e t t i n g 6 . 1 . 2 Bedrock geology 6 . 1 . 3 S u r f i c i a l geology 6.1.4 Soils 6.1.5 Climate  - vii  -  Page 6.2  R e s u l t s and i n t e r p r e t a t i o n of the c l a s s i f i c a t i o n analysis 6.2.1 Dissimilarity Analysis 6 . 2 . 2 F i n a l group c l u s t e r a n a l y s i s . . . 6 . 2 . 3 P l o t c l u s t e r a n a l y s i s and mean s i m i l a r i t y values 6 . 2 . 4 The v e g e t a t i o n types and t h e i r d e s c r i p t i o n Engelmann s p r u c e - s u b a l p i n e f i r subzone V e g e t a t i o n Type A V e g e t a t i o n Type B V e g e t a t i o n Type C  132 133 133 136 139  . . .  parkland 139  A v a l a n c h e Zone ^ V e g e t a t i o n Type C - l ^ V e g e t a t i o n Type D - l  145  Engelmann s p r u c e -- s u b a l p i n e f i r f o r e s t subzone (Douglas f i r n o t u s u a l l y a s e r a i s p e c i e s ) . . . . V e g e t a t i o n Type D V e g e t a t i o n Type E V e g e t a t i o n Type F  147  Avalanche Zone V e g e t a t i o n Type G ^ V e g e t a t i o n Type 1 - 1  148  Engelmann spruce - s u b a l p i n e f i r f o r e s t subzone (Douglas f i r o f t e n a s e r a i s p e c i e s and p e r s i s t and i n mature f o r e s t s ) V e g e t a t i o n Type H V e g e t a t i o n Type H - l V e g e t a t i o n Type I V e g e t a t i o n Type 1 - 2 V e g e t a t i o n Type J V e g e t a t i o n Type J - l  7  6.3  Correlation with e x i s t i n g vegetation c l a s s i f i c a t i o n .  6.4  Mapping of v e g e t a t i o n 6.4.1 Pretyping 6 . 4 . 2 V e g e t a t i o n types and b i o g e o c l i m a t i c subzones  150  .  154  ••,.  155 155 156  . .  SYSTEMATIC SAMPLING STUDY  160  7.1 7.2  161 163 164 164  I n t r o d u c t i o n and o b j e c t i v e s Methods o f study 7 . 2 . 1 F i e l d sampling 7 . 2 . 2 Data a n a l y s i s and i n t e r p r e t a t i o n  ,  - viii  -  Page 7.3  8,  9  R e s u l t s and d i s c u s s i o n 7 . 3 . 1 P r e d i c t i v e c a p a b i l i t y of the p r e t y p i n g approach. 7 . 3 . 2 R e l i a b i l i t y of the f i n a l v e g e t a t i o n map  167 167 172  SUMMARY DISCUSSION  184  8.1 8.2 8.3  185 187 192  Review Vegetation c l a s s i f i c a t i o n V e g e t a t i o n mapping  CONCLUSIONS  197  REFERENCES CITED  201  APPENDICES I. II. III.  D e f i n i t i o n of v e g e t a t i o n s t r a t a and coverage classes .  212  Plant species l i s t : R i v e r watersheds  214  Grassy Creek and Templeton  D e s c r i p t i o n of symbols and a b b r e v i a t i o n s f o r T e r r a i n U n i t s , s o i l c l a s s i f i c a t i o n , s o i l drainage and s o i l t e x t u r e  225  -  ix  -  LIST OF TABLES Table  Page  4.1  V e g e t a t i o n p r e t y p i n g legend  61  4.2  A e r i a l photo f e a t u r e s and o t h e r e x i s t i n g i n f o r m a t i o n used t o c h a r a c t e r i z e map u n i t components  62  4.3  Ground t r u t h o b t a i n e d f o r each v a l l e y r e l a t i v e to w a t e r s h e d a r e a and t h e number of p r e t y p e d u n i t s (polygons)  64  4.4  C a t e g o r i e s , v a l u e s and r a t i o s o f s p e c i e s constancy used i n the comparative a n a l y s i s of dendrogram branches  75  4.5  Examples of v e g e t a t i o n type names  76  5.1  Grassy Creek - v e g e t a t i o n f e a t u r e s and c h a r a c t e r i s t i c s p e c i e s a t ^ g e n e r a l l e v e l s of d i v i s i o n i n the D i s s i m i l a r i t y Analysis c l a s s i f i c a t i o n hierarchy  94  5.2  Grassy Creek - v e g e t a t i o n types a r r a n g e d a c c o r d i n g to z o n e , subzone, s u c c e s s i o n a l s t a t u s and m o i s t u r e regime f o r use i n the map l e g e n d  101  5.3  Grassy Creek - b i o p h y s i c a l summary of the types  6.1  Templeton R i v e r - v e g e t a t i o n types a r r a n g e d a c c o r d i n g t o zone, s u b z o n e , s u c c e s s i o n a l s t a t u s and m o i s t u r e regime f o r use i n the map l e g e n d  6.2  Templeton R i v e r - b i o p h y s i c a l summary of t h e types  7.1  R e l a t i o n s h i p s between the p r e t y p e d map u n i t s (and t h e i r components), sample p l o t s and the f i n a l v e g e t a t i o n map units  166  7.2  R e l a t i o n s h i p s between t h e f i n a l groups of the " s y s t e m a t i c " ( s t a n d a r d ) a n a l y s i s and t h e o p e r a t i o n a l v e g e t a t i o n types of the Templeton R i v e r w a t e r s h e d s t u d y  175  7.3  Agreement between the groups of g r i d p o i n t s ( s y s t e m a t i c sample p l o t s ) r e p r e s e n t i n g t h e s y s t e m a t i c v e g e t a t i o n types and the f i n a l o p e r a t i o n a l v e g e t a t i o n map u n i t s  176  vegetation 138  v e g e t a t i o n (in—hack ricU?  LIST OF FIGURES Figure  Page  2.1  A dichotomous key showing the c h o i c e s of c l a s s i f i c a t i o n s t r a t e g y (based on W i l l i a m s , 1971) and t h e r e l a t i v e p o s i t i o n of D i s s i m i l a r i t y A n a l y s i s i n t h i s key  30  4.1  S t y l i z e d s l o p e p r o f i l e i l l u s t r a t i n g t h e use of the v e g e t a t i o n p r e t y p i n g legend ( v e r t i c a l s c a l e exaggerated).  63  4.2  Grassy Creek - sample p l o t l o c a t i o n s , f i e l d t r a v e r s e s and access roads  65  4.3  Templeton R i v e r - sample p l o t l o c a t i o n s , f i e l d t r a v e r s e s and a c c e s s roads  66  4.4  The components of a D i s s i m i l a r i t y A n a l y s i s dendrogram as c o n s t r u c t e d from t h e a n a l y s i s p r i n t - o u t  71  4.5  Examples o f c l u s t e r a n a l y s i s dendrograms: (a) p l o t c l u s t e r a n a l y s i s w i t h i n a f i n a l g r o u p ; (b) c l u s t e r a n a l y s i s of f i n a l groups d e r i v e d from D i s s i m i l a r i t y Analysis  71  5.1  Grassy Creek - s t u d y a r e a l o c a t i o n  83  5.2  Grassy Creek - topography t e r v a l = 100 m) .  (scale 1 : 5 0 , 0 0 0 ; contour i n -  84  5.3  Grassy Creek - view of n o r t h and s o u t h - f a c i n g s l o p e s ( l o o k i n g s o u t h e a s t ) . Note t h e g e n t l e s i d e s l o p e s , r o l l i n g uplands ( f o r e g r o u n d ) and rounded d i v i d e s (background). A g r a s s l a n d - s u b a l p i n e f o r e s t mosaic . o c c u r s i n the f o r e g r o u n d w h i l e a montane, i n t e r i o r w e s t e r n hemlock dry subzone f o r e s t c h a r a c t e r i z e s the v a l l e y bottom and s i d e s l o p e s t o the s o u t h e a s t  85  5.4  Grassy Creek - view of e a s t e r n h a l f of the w a t e r s h e d ( l o o k i n g w e s t ) as i t meets the s o u t h - f l o w i n g E r i e C r e e k . Many of t h e lower e l e v a t i o n s have been s u b j e c t t o f r e quent f i r e s (open, s e r a i f o r e s t on outwash i n f o r e g r o u n d )  85  5.5  Grassy Creek - t o t a l mean monthly p r e c i p i t a t i o n at elevations  89  three  - xi:  -  Figure  Page  5.6  Grassy Creek - amount of p r e c i p i t a t i o n f a l l i n g as snow and r a i n a t t h r e e e l e v a t i o n s  89  5.7  Grassy Creek - mean monthly t e m p e r a t u r e at t h r e e elevations  91  5.8  Grassy Creek - D i s s i m i l a r i t y A n a l y s i s dendrogram and mean s i m i l a r i t y v a l u e s of f i n a l groups  93  5.9  Grassy Creek - s u c c e s s i o n a l and physiognomic v e g e t a t i o n f e a t u r e s of the D i s s i m i l a r i t y A n a l y s i s dendrogram  95  5.10  Grassy Creek - z o n a l , s u c c e s s i o n a l and physiognomic v e g e t a t i o n f e a t u r e s of the f i n a l group c l u s t e r a n a l y s i s dendrogram  97  5.11  Grassy Creek - p l o t c l u s t e r a n a l y s i s of f i n a l group 9 showing t h r e e p o t e n t i a l s u b d i v i s i o n s ( a , b and c)  98  5.12  Grassy Creek - f o r m a t i o n of v e g e t a t i o n types u s i n g A n a l y s i s and the p l o t c l u s t e r a n a l y s i s  99  5.13  Grassy Creek - key f i g u r e f o r s t y l i z e d l a n d s c a p e p r o f i l e s ( F i g u r e s 5 . 1 3 . 1 and 5 . 1 3 . 2 f o l l o w i n g ) i l l u s t r a t i n g the g e o g r a p h i c r e l a t i o n s h i p between the b i o g e o c l i m a t i c s u b z o n e s , v e g e t a t i o n t y p e s , s o i l development and s o i l parent m a t e r i a l s (Terrain Units)  102  5.31.1  T r a n s e c t "A^ — A2" - approximate n o r t h - s o u t h c r o s s s e c t i o n o f t h e w e s t e r n h a l f of the w a t e r shed  104  5.13.2  T r a n s e c t " B ^ — B " - approximate n o r t h - s o u t h c r o s s s e c t i o n of t h e e a s t e r n h a l f of the w a t e r shed  109  5.14  2  Grassy Creek - p r e t y p e d v e g e t a t i o n map on u n c o n t r o l l e d  *j  photo mosaic base (approximate s c a l e 1 : 8 , 0 0 0 )  l  ;T  5.15  Grassy Creek - n a t u r a l v e g e t a t i o n on p l a n i m e t r i c base (scale 1:15,840)  *  5.16  Grassy Creek - b i o g e o c l i m a t i c subzones ( s c a l e 1 : 5 0 , 0 0 0 ) .  117  6.1  Templeton R i v e r - s t u d y a r e a l o c a t i o n  122  j  ©  ,^  -  xii.  -  Figure  Page  6.2  Templeton R i v e r - topography i n t e r v a l . = 100 m).  (scale 1:50,000; contour  123  6.3  Templeton R i v e r - view of w e s t e r n h a l f of w a t e r s h e d (looking west). Note the U-Shaped v a l l e y , the a l t e r n a t i n g f o r e s t and a v a l a n c h e t r a c k v e g e t a t i o n p a t t e r n and the p r e v a l e n c e of r o c k and snow a t h i g h e r elevations  124  6.4  Templeton R i v e r - view o f e a s t e r n p o r t i o n of w a t e r shed ( l o o k i n g west) as i t opens out i n t o t h e d r y e r and warmer Rocky Mountain Trench  124  6.5  Templeton R i v e r - mean monthly p r e c i p i t a t i o n a t f i v e elevations  129  6.6  Templeton R i v e r - amount of p r e c i p i t a t i o n f a l l i n g as snow and r a i n a t f i v e e l e v a t i o n s  129  6.7  Templeton R i v e r - mean monthly temperature a t f o u r elevations  131  6.8  Templeton R i v e r - D i s s i m i l a r i t y A n a l y s i s dendrogram and mean s i m i l a i r t y v a l u e s of f i n a l groups  134  6.9  Templeton R i v e r - z o n a l and physiognomic v e g e t a t i o n f e a t u r e s of t h e f i n a l group c l u s t e r a n a l y s i s dendrogram  135  6.10  Templeton R i v e r r- f o r m a t i o n of v e g e t a t i o n types u s i n g D i s s i m i l a r i t y A n a l y s i s and t h e p l o t c l u s t e r a n a l y s i s  137  6.11  Templeton R i v e r - key f i g u r e f o r s t y l i z e d l a n d s c a p e p r o f i l e s ( F i g u r e s 6 . 1 1 . 1 , 6 . 1 1 . 2 and 6 . 1 1 . 3 f o l l o w i n g ) i l l u s t r a t i n g the g e o g r a p h i c r e l a t i o n s h i p between the b i o g e o c l i m a t i c subzones, v e g e t a t i o n t y p e s , s o i l development and s o i l p a r e n t m a t e r i a l s ( T e r r a i n U n i t s )  140  6.11.1  T r a n s e c t "A^ - A2" approximate n o r t h - s o u t h c r o s s s e c t i o n of the w e s t e r n h a l f of the w a t e r s h e d  142  6.11.2  T r a n s e c t "B.^ - B " - approximate n o r t h - s o u t h c r o s s s e c t i o n of the w e s t e r n h a l f o f the w a t e r s h e d  143  6.11.3  T r a n s e c t "C^ - G^" - approximate w e s t - e a s t c r o s s s e c t i o n o f t h e v a l l e y s o u t h and u p l a n d t r e n c h region  151  2  - xiii  -  Figure  Page  6.12  Templeton R i v e r - p r e t y p e d v e g e t a t i o n map on u n c o n t r o l l e d photo mosaic base (approximate s c a l e 1 : 8 , 0 0 0 )  6.13  Templeton R i v e r - n a t u r a l v e g e t a t i o n map on p l a n i m e t r i c base ( s c a l e 1 : 1 5 , 8 4 0 )  6.14  Templeton R i v e r - b i o g e o c l i m a t i c subzones  157  7.1  S y s t e m a t i c Sampling Study - sample p l o t l o c a t i o n s i n the Templeton R i v e r watershed ( s c a l e 1 : 1 5 , 8 4 0 ; c o n t o u r i n t e r v a l = 100 m)  165  7.2  S y s t e m a t i c Sampling Study - p r e t y p e d v e g e t a t i o n map u n i t s ( t h i c k dashed l i n e and numbered symbols) superimposed onto the f i n a l v e g e t a t i o n map u n i t s ( t h i n s o l i d l i n e and l e t t e r - n u m b e r symbols) w i t h i n t h e g r i d a r e a s . S o l i d dots r e p r e s e n t o p e r a t i o n a l sample p l o t s w i t h i n or i n the immediate v i c i n i t y of the g r i d areas  170  7.3  S y s t e m a t i c Sampling Study - D i s s i m i l a r i t y A n a l y s i s d e n d r o gram and mean s i m i l a r i t y v a l u e s  173  7.4  S y s t e m a t i c Sampling Study - f i n a l group c l u s t e r a n a l y s i s , p l o t c l u s t e r a n a l y s i s o f f i n a l group 8 and the f o r m a t i o n of v e g e t a t i o n types u s i n g 3 l e v e l s of i n t e r p r e t a t i o n . Note f i n a l group 8 has the l o w e s t mean s i m i l a r i t y v a l u e i n Figure 7.3  173  7.5  S y s t e m a t i c Sampling Study - f i n a l g r o u p s , s i n g l e p l o t s and v e g e t a t i o n t y p e s p l o t t e d onto the o p e r a t i o n a l v e g e t a t i o n u n i t s w i t h i n the g r i d areas  178  Maps a r e i n S p e c i a l C o l l e c t i o n s D i v i s i o n , Main L i b r a r y , U n i v e r s i t y of B r i t i s h Columbia.  - xiv -  ACKNOWLEDGEMENT S  Acknowledgement i s made t o M r . J . W . C ecologist  f o r the Research D i v i s i o n , B . C .  (Win) A r l i d g e ,  Forest  S e r v i c e whose  e n t h u s i a s m i n n u m e r i c a l c l a s s i f i c a t i o n and t h e m e r i t s of Analysis in phytosociology  retired  plant  early  Dissimilarity  f o s t e r e d t h e o r i g i n a l purpose of t h i s  investiga-  tion. Ms. Mary W e a v e r - U t z i g  i s a p p r e c i a t e d f o r her c o n s t a n t energy and  p e r s e v e r a n c e i n the c o l l e c t i o n of f i e l d d a t a and i d e n t i f i c a t i o n of specimens.  plant  Mr. B r i a n H a l l and M r . Emery S p a n d l i , I n v e n t o r y D i v i s i o n ,  F o r e s t S e r v i c e are thanked f o r t h e i r h o s p i t a l i t y ,  i n d u l g e n c e and c o n t i n u a l  h e l p d u r i n g the f i e l d s t u d i e s and c a r t o g r a p h i c p l o t t i n g . Inventory D i v i s i o n , B.C.  B.C.  Mr. Gary Hansen,  F o r e s t S e r v i c e i s acknowledged f o r h i s a s s i s t a n c e  i n s u r v e y i n g t h e f i e l d l o c a t i o n of the s y s t e m a t i c sample p l o t s . Ms. Susan P h e l p s , computer programmer, F a c u l t y o f F o r e s t r y , of B r i t i s h C o l u m b i a ; Ms. Fay L e e , computer programmer, B . C . Environment;  Ministry  and Mr. J i m McPhalen and Mr. T e r r y Rapoch, g r a d u a t e  F a c u l t y of F o r e s t r y ,  University of  students,  U n i v e r s i t y of B r i t i s h Columbia a r e thanked f o r  theirr-  p a t i e n c e and p e r s i s t a n c e i n the computer a n a l y t i c a l a s p e c t s of t h i s  study.  Ms. Anne J a c o b s o n , K r y s i a S t e i n b e r g ,  C a r o l Gagnon, J a c k i e S c a l e s and F r a n  I c a r d are acknowledged f o r the t y p i n g o f the m a n u s c r i p t . Mr. Andrew McLennan a s s i s t e d on some of t h e  M r . Don I r v i n e and  figures.  D r . L . M L a v k u l i c h , Department of S o i l S c i e n c e , U n i v e r s i t y B r i t i s h C o l u m b i a ; Dr. A. K o z a k , F a c u l t y of F o r e s t r y , C o l u m b i a ; D r . D . S . L a c a t e , Lands D i r e c t o r a t e , Environment;  and D r .  T.E.  of  U n i v e r s i t y of  British  Department of F i s h e r i e s and  Baker, Research D i v i s i o n , B.C.  Forest  Service  -  -  XV  p r o v i d e d v a l u a b l e a d v i c e and c r i t i c i s m i n t h e p r e p a r a t i o n of t h i s m a n u s c r i p t . A p p r e c i a t i o n i s a l s o extended to Ms. J u l i a ( J o o l s ) D r e x e l who c o n t r i b u t e d much o f h e r time i n r e v i e w i n g the p a p e r . D r . J . P . Kimmins, t h e s i s s u p e r v i s o r ,  F a c u l t y of F o r e s t r y ,  University  of B r i t i s h Columbia i s thanked f o r h i s guidance and e n t h u s i a s m d u r i n g t h e graduate program and f o r h i s r e v i e w o f the m a n u s c r i p t . graduate s t u d e n t , F a c u l t y of F o r e s t r y ,  Mr. D e n i s B r i e r e ,  U n i v e r s i t y of B r i t i s h Columbia i s  a p p r e c i a t e d f o r h i s a l l o w i n g t h e i n c o r p o r a t i o n and use of some of t h e c o n c e p t s p r e s e n t l y under i n v e s t i g a t i o n i n h i s r e s e a r c h , h i s open-minded a t t i t u d e and genuine i n t e r e s t i n t h i s s t u d y .  The many hours of d i s c u s s i o n and r e v i e w  of  t h e m a n u s c r i p t by M r . J i m van B a r n e v e l d , V e g e t a t i o n S e c t i o n , Resource A n a l y s i s B r a n c h , B . C . M i n i s t r y o f Environment s i g n i f i c a n t l y improved t h e q u a l i t y t h i s research.  of  H i s c o n t i n u a l a s s i s t a n c e w i l l always be a p p r e c i a t e d .  Mr. Greg U t z i g ,  g r a d u a t e s t u d e n t , Department of S o i l S c i e n c e ,  U n i v e r s i t y of B r i t i s h C o l u m b i a , i s thanked f o r h i s a s s i s t a n c e , humour and companionship d u r i n g the f i e l d work and h i s c o n t i n u a l s u p p o r t , c r i t i c i s m and f r i e n d s h i p throughout  the e n t i r e study.  constructive  Our shared b e l i e f  in  a common t h r e a d between s o i l s c i e n c e and p l a n t e c o l o g y always enhanced the e x p e r i e n c e of our  investigations.  Much c r e d i t i s a l s o due t o - my w i f e C h e r y l f o r h e r a s s i s t a n c e w i t h f i g u r e s and i n r e v i e w i n g the t h e s i s and w i t h o u t whose encouragement, p a t i e n c e and u n d e r s t a n d i n g t h i s s t u d y might n o t have been c o m p l e t e d .  - 1-  CHAPTER 1.  INTRODUCTION  -  CHAPTER 1.  1.1  2 -  INTRODUCTION  The need for an e c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t s The e c o l o g i c a l c l a s s i f i c a t i o n of forest land i n B r i t i s h Columbia  has recently been considered as a means to improve e x i s t i n g f o r e s t management p r a c t i c e s .  There a r e several reasons to consider the merits  of e c o l o g i c a l c l a s s i f i c a t i o n i n f o r e s t r y .  F i r s t , i t i s now widely  recognized that not a l l forest " s i t e s " are i d e n t i c a l ; that a f o r e s t landscape consists of a mosaic of forest s i t e s of which some are s i m i l a r to one another while others are very d i s s i m i l a r .  Consequently, broad  management p o l i c i e s , applied ubiquitously over forest d i s t r i c t s , have proved i n e f f e c t i v e i n terms of both e c o l o g i c a l considerations range economic goals.  and long  The day for intensive forest management i s f o r t h -  coming when decision-making processes w i l l occur on a s i t e - s p e c i f i c basis. Second, i t i s also now recognized that forest management i s no longer timber management.  T r a d i t i o n a l forest management i s , out of  necessity, becoming f o r e s t landscape management i n the h o l i s t i c sense. Forest management must now consider the forest-associated  resource values  of water, w i l d l i f e , f i s h , recreation and, i n some instances, (grazing).  agriculture  This approach to forest management i s often referred to as  the "multiple use concept" of management or "integrated  resource management"  Third, p u b l i c concern f o r forest management p r a c t i c e s i s no longer an avoidable issue.  Forest harvesting and r e f o r e s t a t i o n a c t i v i t i e s are  under c l o s e r p u b l i c s c r u t i n y as a r e s u l t of increased a c t i v i t y and a more educated general p u b l i c .  forest r e c r e a t i o n a l  P u b l i c response to f o r e s t  -  3 -  o p e r a t i o n s i s becoming i n c r e a s i n g l y more e f f e c t i v e as a method of i n s t i g a t i n g change i n f o r e s t management p o l i c i e s . these t h r e e f a c t o r s ,  As a consequence of  f o r e s t management i s becoming a c h a l l e n g i n g and  d i f f i c u l t t a s k which must be c o g n i z a n t of e c o l o g i c a l , e c o n o m i c a l and s o c i a l needs.  1.2  The ecosystem concept i n f o r e s t management A f o r e s t l a n d s c a p e c o n s i s t s of a s p a c i a l l y arranged mosaic of  f o r e s t ecosystems.  An ecosystem i s " t h e t o t a l assemblage of  organisms t o g e t h e r w i t h t h e i r t o t a l p h y s i c a l environment unit"  (Tansley, 1935).  It  living  i n any t i m e - s p a c e  i s a concept u s e f u l i n d e f i n i n g a f u n c t i o n a l  l e v e l of b i o l o g i c a l and p h y s i c a l o r g a n i z a t i o n and i n t e g r a t i o n  (Rowe,  1961).  The essence of an ecosystem i s the c i r c u l a t i o n , t r a n s f o r m a t i o n and a c c u m u l a t i o n o f energy and m a t t e r from t h e p h y s i c a l environment the medium of a s t r u c t u r e d assemblage of l i v i n g t h i n g s and t h e i r (Kimmins, 1 9 7 3 ) .  through activities  The ecosystem i s t h e r e f o r e a complex m u l t i p l y - d e t e r m i n e d  entity. The c o m p l e x i t y of the f o r e s t ecosystem poses a s e r i o u s problem t o f o r e s t management. correctly  S u c c e s s f u l f o r e s t management i m p l i e s t h e a b i l i t y  to  a s s i g n and p r e d i c t the response of management p r a c t i c e s on  p a r t i c u l a r segments of f o r e s t l a n d .  In o r d e r t o p r o p e r l y manage a f o r e s t  ecosystem, t h e manager must understand t h e c o m p l e x i t y and interdependent  n a t u r e of the system.  interactive,  The g r e a t e r the u n d e r s t a n d i n g  the s y s t e m , the g r e a t e r the p r e d i c t i o n s u c c e s s . Inasmuch as a f o r e s t ecosystem i s a c o n c e p t u a l u n i t w i t h no defined boundaries, i t  i s o f t e n of p r a c t i c a l v a l u e to  artificially  of  -  4 -  d e l i n e a t e i t s bounds.  T h i s s p a c i a l l y d e f i n e d e n t i t y may be d e f i n e d by  a s s i g n i n g an a r b i t r a r y  l e v e l of homogeneity t o i t s component p a r t s .  Jenny ( 1 9 4 1 ) , when d i s c u s s i n g f a c t o r s of s o i l f o r m a t i o n and Major ( 1 9 5 1 ) , when d i s c u s s i n g f a c t o r s of v e g e t a t i o n f o r m a t i o n , e s s e n t i a l l y p r e s e n t e d a s i m p l i s t i c model of an ecosystem and i t s component p a r t s : v,  s = f  ( c l , p, r,  o,  t).  In t h i s m o d e l , the r e g i o n a l c l i m a t e ( c l ) , s o i l o r i g i n a t e d (p), demension, time ( t ) t a t i o n (v)  topography  (r),  p a r e n t m a t e r i a l from w h i c h t h e  b i o t i c factor  (o)  and the  fourth  are the independent s t a t e ' f a c t o r s w h i l e b o t h v e g e -  and s o i l (s)  a r e the dependent f a c t o r s .  Crocker  (1952)  suggested t h a t t h e f i v e independent v a r i a b l e s approximate the ecosystem concept o f T a n s l e y and t h a t v e g e t a t i o n and s o i l t o g e t h e r i n t e g r a t e independent ecosystem f a c t o r s .  the  Hence, v e g e t a t i o n and s o i l , w h i c h o c c u r  as r e p e a t a b l e p a t t e r n s on a l a n d s c a p e , can be used t o i d e n t i f y and d e s c r i b e the b o u n d a r i e s of an e c o s y s t e m , an ecosystem t y p e ( K l i n k a , 1 9 7 6 ) , biogeocoenose (Sukachev,  or  1960).  S i n c e f o r e s t ecosystems can be g i v e n p r a c t i c a l s p a c i a l l i m i t s , may be i d e n t i f i e d and d e l i n e a t e d on a f o r e s t l a n d s c a p e .  they  W i t h a knowledge  of the d i s t r i b u t i o n and e x t e n t of t h e v a r i o u s f o r e s t ecosystem t y p e s , the f o r e s t manager may p r e s c r i b e and p r e d i c t the e f f e c t s of h i s management practices with greater confidence.  -  1.3  5 -  Forest land c l a s s i f i c a t i o n i n B r i t i s h Columbia Several approaches f o r c l a s s i f y i n g forest land have been devised  for B r i t i s h Columbia.  They include a n a t i o n a l s t r a t i f i c a t i o n of  Canadian f o r e s t s into "Forest Regions" ( H a l l i d a y , 19.37; Rowe, 1959, 1972); a " b i o t i c zone" c l a s s i f i c a t i o n f o r B.C.'s fauna and f l o r a (Munroe and McT. Cowan, 1947); a d e t a i l e d forest cover c l a s s i f i c a t i o n (B.C. Forest Service); a biogeoclimatic c l a s s i f i c a t i o n f o r B.C. (Krajina, 1965, 1969); a more recent, b i o p h y s i c a l c l a s s i f i c a t i o n (Lacate, 1969; Kowall and Runka, 1968; Young et^ a l . , 1973) and a relevant "habitat type" c l a s s i f i c a t i o n developed f o r the neighbouring United States (Daubenmire, 1952, • 19.68). The f o r e s t regions approach and forest cover approach w i l l not be considered at t h i s time, as they are both phyto-geographical i n nature and are not s t r i c t l y e c o l o g i c a l c l a s s i f i c a t i o n s .  In the f i r s t case, the  intent i s to describe the geographic extent of the major forest types (an a s s o c i a t i o n of e x i s t i n g trees) i n Canada.  In the second case, the  intent i s to prepare d e t a i l e d maps of the geographical extent of the "goods on hand" at the present time - a s t a t i c inventory of B.C.'s timber resource.  I t should be noted, however, that both these mapping and des-  c r i p t i v e procedures often provide u s e f u l information f o r e c o l o g i c a l studies i n p a r t i c u l a r areas.  The c l a s s i f i c a t i o n developed by Munroe and  McT. Cowan w i l l also not be discussed i n d e t a i l below, since the biogeoc l i m a t i c c l a s s i f i c a t i o n i s e s s e n t i a l l y a more recent and more s o p h i s t i c a t e d development of the e a r l i e r " b i o t i c zone" concept.  -6 -  1.3.1  Biogeoclimatic c l a s s i f i c a t i o n Biogeoclimatic c l a s s i f i c a t i o n i n B r i t i s h Columbia (Krajina, 1965,  1969) stemmed from c l a s s i c a l European schools of phytosociology (BraunBlanquet, 1928) and the biogeocoenotic studies of the Russian e c o l o g i s t , Sukachev (196) .  This rather t r a d i t i o n a l method of c l a s s i f i c a t i o n i s an  ecosystematic approach, employing the i n t e g r a t i v e r o l e of vegetation and s o i l to recognize and describe ecosystems (biogeocoenoses).  At the  higher l e v e l of the c l a s s i f i c a t i o n , b i o g e o c l i m a t i c zones and subzones (when i d e n t i f i e d ) are geographic areas which have a c h a r a c t e r i s t i c pattern of vegetation and s o i l w i t h i n a uniform macroclimate.  Each zone and sub-  zone i s named by one or two shade t o l e r a n t tree species capable of s e l f regeneration on most of the h a b i t a t s . s e r i e s of biogeocoenoses  Within each zone or subzone a  have been described.  Each biogeocoenose character-  i z e s the vegetation and s o i l of the various h a b i t a t s which occur as a r e s u l t of l o c a l changes i n topography and .climate.  A biogeocoenose i s  named by i t s d i f f e r e n t i a t i n g species and associated s o i l .  This c l a s s i f i -  cation i s p a r t i c u l a r l y valuable f o r making i n t e r p r e t a t i o n s concerning s i l v i c u l t u r e , r e f o r e s t a t i o n and provenance ( i . e . those of a b i o l o g i c a l nature).  Some of the more common c r i t i c i s m s of the b i o g e o c l i m a t i c approach  and i t s presentation may be summarized as f o l l o w s : a.  i t i s too abstract and sophisticated f o r the p r a c t i c i n g resource manager to comprehend (concepts, terminology and nomenclature);  b.  the sampling methods used i n the d e t a i l e d biogeocoenotic studies are h i g h l y s u b j e c t i v e ;  c.  techniques used f o r data synthesis and a n a l y s i s are not  - 7-  always c o n s i s t e n t or r e p e a t a b l e and tend t o r e q u i r e a c e r t a i n "artistry"; d.  the h i g h e r s y n s y s t e m a t i c u n i t s o f o r d e r ,  a l l i a n c e and c l a s s  a r e f l o r i s t i c a l l y h i e r a r c h i c a l but have l i t t l e  practical  c l a s s i f i c a t i o n v a l u e f o r r e s o u r c e management; e.  i t does not always i l l u s t r a t e z o n a l , s u b z o n a l and b i o g e o coenotic p a t t e r n s . w i t h i n a c l e a r geomorphological  f.  the system i s not c o m p l e t e l y g e o g r a p h i c a l l y  framework;  hierarchical;  : ( i . e . . zones and subzones a r e q u i t e b r o a d , biogeocoenoses very g.  are  detailed);  s i n c e the c l a s s i f i c a t i o n u n i t s a r e based on modal c o n c e p t s r a t h e r than c l a s s l i m i t s ,  they ( z o n e s ,  subzones,  biogeo-  coenoses) a r e d i f f i c u l t t o map on an o p e r a t i o n a l b a s i s ; h.  b i o g e o c l i m a t i c u n i t s can have l i m i t e d g e o g r a p h i c  extra-  p o l a t i o n c a p a b i l i t y from t h e i r o r i g i n a l a r e a of s t u d y ; i.  the c l a s s i f i c a t i o n i s s t r o n g l y b i a s e d f o r making i n t e r p r e t a t i o n s concerning forest p r o d u c t i v i t y  and does not  p r o v i d e the n e c e s s a r y base i n f o r m a t i o n f o r o t h e r (land) resource concerns ( e . g . e n g i n e e r i n g and r e c r e a t i o n  1.3.2  always forest  terrain characteristics  for  interpretations).  Biophysical classification The b i o p h y s i c a l c l a s s i f i c a t i o n e v o l v e d from s t u d i e s i n  (Hills, al.,  and  1953) and A u s t r a l i a n land c l a s s i f i c a t i o n s t u d i e s  1960).  R e f e r r e d to as the " l a n d s c a p e a p p r o a c h " , i t  Ontario  (Christian stresses  et  the  -  8 -  value of the rather permanent-site features as these exert the fundamental c o n t r o l over a l l other associated phenomena ( l o c a l climate, surface,subsurface hydrologic regime, s o i l , fauna and f l o r a ) (Rowe, 1971).  Rowe  (1971) suggests the c l a s s i f i c a t i o n has a strong geomorphic bias where: Landforms c o n s t i t u t e the e s s e n t i a l framework of environment, and the f a c t o r s or parameters such as s o i l moisture, temperature, n u t r i e n t s etc. are attached to t h i s framework which i n r e a l i t y creates, supports and p o s i t i o n s them i n space. A f u l l d e s c r i p t i o n of the land requires a t t e n t i o n both to the genetic s t r u c t u r a l features and to the parameters that adhere to them. Due to i t s physiographic nature, the b i o p h y s i c a l approach i s able to place a heavy r e l i a n c e on the i n t e r p r e t a t i o n of a e r i a l photographs.  The  b i o p h y s i c a l approach may be applied at almost any mapping s c a l e , depending on the purpose of the survey (e.g. n a t i o n a l , p r o v i n c i a l , r e g i o n a l , watershed) and the time, manpower and money a v a i l a b l e .  At a l l scales there i s  an attempt to integrate and map patterns of physiography, s o i l , vegetation and water (Lacate, 1966, 1969; Jurdant, 1968, 1969; Kowall and Runka, 1968). For a l l intents and purposes, the "land type", the most d e t a i l e d b i o p h y s i c a l u n i t , i s approximately the same as the biogeocoenose of the biogeoclimatic classification.  Vegetation information i s employed at a l l l e v e l s  of the c l a s s i f i c a t i o n but i s set w i t h i n a c l e a r l y defined framework of physiography, geomorphology and s o i l s - a landscape approach.  The c l a s s i -  f i c a t i o n i s intended to be h o l i s t i c i n the sense that i t i s x a p a b l e of serving the needs of a l l resource concerns ( f o r e s t r y , a g r i c u l t u r e , water, w i l d l i f e , f i s h and reacreation). The b i o p h y s i c a l approach applied i n B.C. is~somewhat d i f f e r e n t from the n a t i o n a l c l a s s i f i c a t i o n  (Lacate, 1966,  1969).  The p r o v i n c i a l b i o -  p h y s i c a l survey uses a "sector" approach whereby component inventories  - 9 -  are conducted i n p a r t i c u l a r map  areas.  These component maps are then  interpreted for s p e c i f i c concerns or integrated using standard techniques.  overlay  The vegetation component of the b i o p h y s i c a l c l a s s i f i c a t i o n  employs s i m i l a r concepts to the biogeoclimatic zone c l a s s i f i c a t i o n that used by Daubenmire i n the United States. i s sampled according to a p r e s t r a t i f i c a t i o n  and  However, the vegetation  of landforms and  soils.  The vegetation data i s then coded and analysed by a computer a s s i s t e d , numerical- c l a s s i f i c a t i o n approach c a l l e d " D i s s i m i l a r i t y Some of the c r i t i c i s m s of the B.C.  Analysis".  biophysical c l a s s i f i c a t i o n  are: a.  to date, the methods used i n t h i s approach are s t i l l c l e a r l y defined and  b.  not  published;  i t attempts to characterize u n i t s of landscape with parameter information at a l e v e l of taxonomy too d e t a i l e d for the scale of mapping and the amount of ground v e r i f i c a t i o n ;  c.  the i n t e g r a t i v e p o t e n t i a l of t h i s approach i s frequently neglected; component i n v e n t o r i e s are seldom integrated i n t o " b i o p h y s i c a l u n i t s " ; and  d.  the information i s u s u a l l y of a reconnaissance nature and  not  always appropriate or presented i n a manner s u i t a b l e f o r s i t e - s p e c i f i c management decisions.  1.3.3  Habitat Type c l a s s i f i c a t i o n The habitat type c l a s s i f i c a t i o n was developed by Daubenmire for  the forest vegetation of northeastern  Washington and northern Idaho.  His c l a s s i f i c a t i o n technique has been applied i n parts of B.C.'s southern  - 10 -  interior.  This s y n u s i a l vegetation c l a s s i f i c a t i o n characterizes a s e r i e s  of habitat types which may be considered climax phytocoenoses (the climax plant community of the biogeocoenose).  Daubenmire uses a bionomial  system of nomenclature, l i s t i n g the dominant species i n both the tree and understory "union" f o r each habitat type (Daubenmire, 1952).  A "key"  to the habitat types i s also provided f o r the f i e l d i n v e s t i g a t i o n of both s e r a i and climax communities.  His c l a s s i f i c a t i o n i s s t r i c t l y a vegetation  c l a s s i f i c a t i o n although s o i l information i s discussed f o r each habitat type but i s not used as d e f i n i t i v e c r i t e r i a f o r h i s c l a s s i f i c a t i o n .  Zones  define a higher l e v e l of c l a s s i f i c a t i o n and are c l e a r l y r e l a t e d to patterns of macroclimate (Daubenmire, 1968). Daubenmire's approach has been employed i n the southern i n t e r i o r of B.C. (McLean, 1969; Tisdale and McLean, 1957; McLean and Holland, 1957), i n the Rocky Mountain region of A l b e r t a ( O g i l v i e , 1962, 1963, 1966, 1969), i n Montana ( P f i s t e r et a l . , 1974) and to some extent i n western Washington and Oregon ( F r a n k l i n and Dyrness, 1973).  Operational t r i a l s have been  conducted to t e s t the f e a s i b i l i t y of mapping habitat types i n a U.S. n a t i o n a l f o r e s t (Deitschman, 1973). For the most p a r t , Daubenmire's c l a s s i f i c a t i o n approach i s s i m i l a r to both the biogeoclimatic and B.C. b i o p h y s i c a l approach but applies the " s o c i a t i o n " concept i n forming the c l a s s i f i c a t i o n .  The habitat type  classification i s criticized for: a.  p l a c i n g a reduced importance on edaphic factors and too heavy an emphasis on elevation and aspect;  b.  p l a c i n g too much importance on dominance; and  - 11 -  c.  d e s c r i b i n g t y p e s t h a t a r e too from an e c o l o g i c a l p o i n t of From t h e above d i s c u s s i o n , i t  geographically'"extensive  view. i s evident  that there are  several  approaches i n e x i s t e n c e f o r c l a s s i f y i n g f o r e s t l a n d i n B r i t i s h C o l u m b i a . This d i v e r s i t y  of c l a s s i f i c a t i o n s and c l a s s i f i c a t i o n approaches has l e d  to c o n s i d e r a b l e c o n f u s i o n among t h e v a r i o u s r e s o u r c e a g e n c i e s  regarding  w h i c h approach i s most s u i t e d t o t h e i r n e e d s .  1.4  Problem d e f i n i t i o n  1.4.1  Detailed vegetation  inventory  A l t h o u g h i t i s w e l l r e c o g n i z e d t h a t v e g e t a t i o n i s an i n t e g r a l component of t h e f o r e s t  landscape, i t  i s seldom g i v e n adequate  a t i o n i n n a t u r a l resource i n v e n t o r i e s .  V e g e t a t i o n i s the most  f e a t u r e of t h e f o r e s t l a n d s c a p e w h i c h can s e r v e as a u s e f u l t o o l f o r the i d e n t i f i c a t i o n and mapping of f o r e s t addition,  it  ecosystems.  evident  integration In  i s i m p o r t a n t to c o n s i d e r v e g e t a t i o n as a r e s o u r c e i n  w h i c h r e q u i r e s a s u i t a b l e i n v e n t o r y and i n t e r p r e t a t i o n resource  consider-  itself  for a variety  of  concerns.  The growing t r e n d towards i n t e n s i v e  forest  l a n d management  suggests the need f o r more d e t a i l e d v e g e t a t i o n i n v e n t o r i e s and l a r g e r mapping scales"*".  D e t a i l e d r e s o u r c e i n f o r m a t i o n and i n t e r p r e t a t i o n  is  i n c r e a s i n g i n demand:  d a t a needs f o r r e s o u r c e f o l i o s and e n v i r o n m e n t a l  p r o t e c t i o n areas ( B . C .  Forest Service),  w i l d l i f e and f i s h h a b i t a t mapping,  e n v i r o n m e n t a l impact a s s e s s m e n t s , urban s u i t a b i l i t y mapping,  recreation  c a p a b i l i t y mapping, g r a z i n g c a p a b i l i t y mapping and domestic watershed  - 12 -  Inventories.  However, access and steep mountainous t e r r a i n are common  problems i n the a c q u i s i t i o n of such d e t a i l e d vegetation information i n B.C.  Very few d e t a i l e d vegetation surveys have been conducted i n the  province. Unfortunately, the c l a s s i f i c a t i o n approaches discussed i n section 1.3 have l i m i t e d a p p l i c a t i o n i n d e t a i l e d vegetation surveys. They u s u a l l y provide a working concept of broad zonation patterns (sometimes sub-zonation)  and may, depending on the geographic l o c a t i o n  of the survey, describe some of the plant a s s o c i a t i o n s f o r the area. Daubenmire's c l a s s i f i c a t i o n key i s a u s e f u l guide f o r vegetation inventory and mapping but unfortunately has l i m i t e d a p p l i c a t i o n i n B.C.  The two  remaining c l a s s i f i c a t i o n s , biogeoclimatic and b i o p h y s i c a l , were not s p e c i f i c a l l y designed f o r the more pragmatic concerns of vegetation inventory and mapping at a d e t a i l e d s c a l e .  Many of the d e f i c i e n c i e s of  the e x i s t i n g c l a s s i f i c a t i o n and t h e i r methods of c l a s s i f i c a t i o n are simply a r e s u l t of a lack of information on the vegetation of B r i t i s h Columbia and a lack of concern f o r the geographic process of vegetation mapping.  1.4.2  D i s s i m i l a r i t y Analyses - a numerical c l a s s i f i c a t i o n  technique  The c l a s s i f i c a t i o n of vegetation has followed a rather d i s j o i n t e d evolution and even today d i f f e r e n t views are expressed by c l a s s i c a l and numerical p h y t o s o c i o l o g i s t s . The lack of standardized methods for the c l a s s i f i c a t i o n and d e s c r i p t i o n of vegetation has done l i t t l e to a s s i s t the i n c l u s i o n of vegetation i n f o r e s t land inventory programs (Kowall and Runka, 1968).  Today, plant e c o l o g i s t s are often faced w i t h voluminous  masses of data, making c l a s s i c a l a n a l y t i c a l techniques l e s s favourable.  - 13 -  In B . C . ,  no s t a n d a r d i z e d approach has y e t been a c c e p t e d  for  c l a s s i f y i n g p r i m a r y v e g e t a t i o n d a t a , a s b o t h c l a s s i c a l and n u m e r i c a l t e c h n i q u e s a r e employed by p r a c t i c i n g p l a n t e c o l o g i s t s . approach u s u a l l y f o l l o w s t h e method developed by the s c h o o l of p h y t o s o c i o l o g y  (Braun-Blanquet,  1928).  The c l a s s i c a l  Zurich-Montpellier  On t h e o t h e r hand,  there i s a m u l t i t u d e of numerical techniques a v a i l a b l e , n e a r l y a l l them r e q u i r i n g t h e a s s i s t a n c e of an e l e c t r o n i c  of  computer.  D i s s i m i l a r i t y A n a l y s i s , as o r i g i n a l l y c o n c e i v e d by MacnaughtonSmith (1964, 1 9 6 5 ) , i s a n u m e r i c a l c l a s s i f i c a t i o n a n a l y s i s w h i c h has been programmed and s t u d i e d by the p r o v i n c i a l government as a means t o stratify It  l a r g e volumes of d a t a i n a r e l a t i v e l y  is a divisive,  f a s t and o b j e c t i v e  manner.  p o l y t h e t i c c l a s s i f i c a t i o n t e c h n i q u e w h i c h demonstrates 2.  some advantages o v e r o t h e r n u m e r i c a l approaches .  The c l a s s i f i c a t i o n i s  now employed as a r o u t i n e method to s t r a t i f y and c h a r a c t e r i z e  vegetation  i n f o r m a t i o n i n the B.C. b i o p h y s i c a l c l a s s i f i c a t i o n approach.  Dissimilarity  A n a l y s i s has not y e t been t h o r o u g h l y  evaluated or f o r m a l l y presented  with  r e g a r d t o i t s s u i t a b i l i t y f o r v e g e t a t i o n c l a s s i f i c a t i o n and mapping on an o p e r a t i o n a l b a s i s . 1.5  T h e s i s o b j e c t i v e s and study  outline  The above r e v i e w of t h e e x i s t i n g approaches to s t r a t i f y  forest  l a n d i n B r i t i s h Columbia i n d i c a t e s t h a t none of t h e methods a r e w e l l s u i t e d f o r d e t a i l e d v e g e t a t i o n i n v e n t o r y and mapping.  There i s an  o b v i o u s need f o r a p r a c t i c a l and m e a n i n g f u l method to c l a s s i f y and map f o r e s t v e g e t a t i o n at a s c a l e s u i t e d to an i n t e g r a t e d approach to  forest  - 14 -  management.  The method s h o u l d accommodate t h e c o m p l e x i t y of  t e r r a i n and the d i f f i c u l t y inventories.  t h a t t h i s imposes on d e t a i l e d  B.C.'s  vegetation  The approach should be as s i m p l e as p o s s i b l e ;  should  have c l e a r l y d e f i n e d methods and be t h e r e f o r e r e p e a t a b l e ; s h o u l d be f e a s i b l e i n terms of t i m e , manpower and c o s t s ; s h o u l d be  relatively  f l e x i b l e w i t h s c a l e ; and should be p r e s e n t e d i n a manner t h a t i s  under-  s t o o d by a f o r e s t l a n d manager. Computer a s s i s t e d , n u m e r i c a l c l a s s i f i c a t i o n t e c h n i q u e s a r e now a v a i l a b l e to a n a l y s e l a r g e volumes of v e g e t a t i o n d a t a i n a r e l a t i v e l y o b j e c t i v e manner.  D i s s i m i l a r i t y A n a l y s i s i s the numerical c l a s s i f i c a t i o n  a n a l y s i s p r e s e n t l y used by t h e p r o v i n c i a l b i o p h y s i c a l i n v e n t o r y program. A f o r m a l p r e s e n t a t i o n and e v a l u a t i o n of t h i s approach as an a i d t o t h e c l a s s i f i c a t i o n and mapping of v e g e t a t i o n i s Consequently, the f o l l o w i n g a.  required.  t h i s s t u d y was u n d e r t a k e n to attempt t o answer  questions:  What methods can be employed f o r d e t a i l e d v e g e t a t i o n mapping ( s c a l e 1 : 1 5 , 8 4 0 ) i n mountainous t e r r a i n w i t h l i m i t e d a c c e s s ?  b.  What i s the v a l u e of D i s s i m i l a r i t y A n a l y s i s f o r c l a s s i f i c a t i o n of v e g e t a t i o n i n p r i m a r y  c.  survey?  What i s t h e p r e d i c t i v e c a p a b i l i t y of t h e v e g e t a t i o n (prestratification)  d.  the  pretyping  approach developed f o r v e g e t a t i o n mapping?  What i s the r e l i a b i l i t y of the v e g e t a t i o n maps? The f o l l o w i n g g e n e r a l o u t l i n e w i l l be used to d e s c r i b e the s t u d y .  Chapter 2 w i l l d i s c u s s t h e v a r i o u s a s p e c t s of t r a d i t i o n a l and n u m e r i c a l approaches to v e g e t a t i o n c l a s s i f i c a t i o n , methods of l a n d s c a p e mapping and the s t a t u s of v e g e t a t i o n maps i n B . C .  Chapter 3 w i l l d e s c r i b e t h e  development of the D i s s i m i l a r i t y A n a l y s i s c l a s s i f i c a t i o n a n a l y s i s ,  the  -  15 -  g e n e r a l f u n c t i o n of the a n a l y s i s and t h e p r e s e n t Chapter 4 w i l l o u t l i n e the study s t r a t e g y , the f i e l d d a t a , and t h e a n a l y s i s ,  format of t h e program.  t h e methods used to  collect  i n t e r p r e t a t i o n , mapping and p r e s e n t -  a t i o n of the v e g e t a t i o n d a t a c o l l e c t e d f o r t h e two o p e r a t i o n a l watershed studies  (Grassy Creek and Templeton R i v e r ) .  Chapters 5 and 6 have a  p a r a l l e l s t r u c t u r e d e s c r i b i n g t h e Grassy Creek and Templeton watersheds r e s p e c t i v e l y .  River  Each c h a p t e r d e s c r i b e s the study a r e a ,  presents  and d i s c u s s e s the r e s u l t s of the c l a s s i f i c a t i o n a n a l y s i s and t h e s u b sequent mapping of the v e g e t a t i o n .  Chapter 7 i s an i n c l u s i v e  discussion  of t h e s y s t e m a t i c s a m p l i n g study used t o determine t h e p r e d i c t i v e b l i t y of the p r e t y p i n g approach and the r e l i a b i l i t y o f t h e maps.  Chapter 8 i s a summary d i s c u s s i o n o f v e g e t a t i o n  vegetation  classification  and mapping p r o c e d u r e s and f i n d i n g s i n t h i s i n v e s t i g a t i o n . g i v e s the c o n c l u s i o n s to t h i s  capa-  Chapter 9  study.  Footnotes: 1. The terms " d e t a i l e d " and " l a r g e s c a l e " w i l l be used to i n d i c a t e a s c a l e of a p p r o x i m a t e l y 1 : 1 5 , 8 4 0 . 2.  These w i l l be d i s c u s s e d i n more d e t a i l i n Chapter 3 .  -  CHAPTER 2 .  16  -  THE CLASSIFICATION AND MAPPING OF VEGETATION  - 17 -  CHAPTER 2.  2.1  THE CLASSIFICATION AND MAPPING OF VEGETATION  P r i n c i p l e s of c l a s s i f i c a t i o n as they apply to vegetation C l a s s i f i c a t i o n i s a n a t u r a l , inherent and i n t u i t i v e process of  man which imposes a state of r e l a t i v e order on an otherwise d i s s o r d e r l y array of e n t i t i e s . C l a s s i f i c a t i o n a s s i s t s our memory, allows f o r communication and comparison and i s an a b s t r a c t i o n of our knowledge. I t provides a model for t e s t i n g and generating hypotheses and p r e d i c t i n g events.  A l l c l a s s i f i c a t i o n s are purposive (Rowe, 1971).  They may be  devised for purely pragmatic reasons or for l e s s t a n g i b l e ,  abstract  reasons, but i n a l l cases the purpose w i l l d i c t a t e the c r i t e r i a chosen for c l a s s i f i c a t i o n and the r e s u l t s obtained. In the b i o l o g i c a l and earth sciences,  the process of c l a s s i f i c a -  t i o n attempts to i d e n t i f y d i s c r e t e e n t i t i e s w i t h i n n a t u r a l l y continuous systems.  These systems consist of a number of i n d i v i d u a l s which  c o l l e c t i v e l y form a population.  The individuals possess c e r t a i n properties  or a t t r i b u t e s which can be used to p a r t i t i o n a population into a s e r i e s of classes.  Thus, "a class i s a group of i n d i v i d u a l s , or of other classes,  s i m i l a r i n selected properties and distinguished from a l l other classes of the same population by differences i n these p r o p e r t i e s . "  ( C l i n e , 1949).  Each c l a s s contains i n d i v i d u a l s with the " d i f f e r e n t i a t i n g c h a r a c t e r i s t i c s " chosen to define the c l a s s ; with "accessory c h a r a c t e r i s t i c s " which covary with the d i f f e r e n t i a t i n g c h a r a c t e r i s t i c s ; and with " a c c i d e n t a l  characteris-  t i c s " , independent of the d i f f e r e n t i a t i n g c h a r a c t e r i s t i c ( s ) . Each class i s  -  18 -  therefore defined by both the d i f f e r e n t i a t i n g and accessory c h a r a c t e r i s t i c s , the range of the c l a s s being the standard d e v i a t i o n . The c e n t r a l concept of the c l a s s i s expressed by the properties of a modal i n d i v i d u a l , whether r e a l or s t a t i s t i c a l l y estimated ( C l i n e , 1949). "Vegetation" i s a c o l l e c t i v e term used to describe the assemblage of plant species on the surface of the earth.  I t i s a three dimensional  feature which v a r i e s i n s t r u c t u r e , composition and s p a c i a l d i s t r i b u t i o n . Consequently,  vegetation i s n a t u r a l l y heterogeneous, the degree of hetero-  geneity being a measure of i t s c o n t i n u i t y as w e l l as i t s d i s c o n t i n u i t y . The c l a s s i f i c a t i o n of vegetation h i g h l i g h t s i t s discontinuous nature, while the process of o r d i n a t i o n accentuates i t s continuous nature.  The i n t e r e s t  of t h i s study i s i n the c l a s s i f i c a t i o n of vegetation. When c l a s s i f y i n g vegetation, the p h y t o s o c i o l o g i s t views the landscape as a mosaic of rather d i s t i n c t and repeatable three dimensional u n i t s .  Each  tesserae''" of the mosaic i s c a l l e d a plant community and possesses a number of a t t r i b u t e s (growth form, l i f e form, s t r a t a , species composition).  When  communities (or samples representing these) are grouped according to t h e i r s i m i l a r and d i s s i m i l a r a t t r i b u t e s , a c l a s s i f i c a t i o n i s formed.  In each 2  class the c e n t r a l concept represents a "community-type" (Whittaker, 1973). The community-type i s an abstract e n t i t y which has been synthesized from a number of r e a l i n d i v i d u a l s observed i n the f i e l d . 2.2  H i s t o r y of and t r a d i t i o n a l approaches to vegetation c l a s s i f i c a t i o n The c l a s s i f i c a t i o n of vegetation has had a remarkably  disparate h i s t o r y .  complex and  C l a s s i f i c a t i o n was, and s t i l l i s of c e n t r a l  concern  - 19 -  to those studying n a t u r a l communities (whittaker, 1962).  Shimwell (1971)  suggests that h i s t o r i c a l l y much of the confusion over vegetation c l a s s i f i c a t i o n was due to problems with language b a r r i e r s ; the constant attempt to form an analogous c l a s s i f i c a t i o n to that of species taxonomy and systematics; and c l a s s i c a l problems w i t h s c i e n t i f i c jargon and i t s m i s i n t e r p r e t a t i o n . Several exhaustive reviews of the h i s t o r y and e v o l u t i o n of phytosociology have been w r i t t e n (whittaker, 1962, 1973; Alexandrova,  1969; Shimwell, 1971).  This s e c t i o n w i l l h i g h l i g h t some of the more important aspects discussed i n these reviews. The study of n a t u r a l communities had i t s o r i g i n i n the f i e l d of botany, where the term " a s s o c i a t i o n " (von Humbolt, 1807), used to define a group of c o - e x i s t i n g p l a n t s , had i t s f i r s t use i n a s c i e n t i f i c c l a s s i f i c a t i o n ( C l i f f o r d and Stephenson, 1975).  Grisebach  (1838) l a t e r defined the  term "formation" as a fundamental physiognomic expression of n a t u r a l communities.  I t was not u n t i l the l a t t e r h a l f of the 1800's that the  community concept was considered f o r animal populations (von Post, 1868 and Mobius, 1877). Various "schools" or t r a d i t i o n s " of phytosociology have developed since the e a r l y part of the twentieth century.  The t r a d i t i o n generally  evolved i n d i f f e r e n t geographical regions, and accordingly r e f l e c t e d the character of the l o c a l vegetation as w e l l as the p h i l o s o p h i c a l bias of the p a r t i c u l a r school.  whittaker (1973) suggests that u n l i k e species 3  taxonomy, there i s no " n a t u r a l " u n i t i n vegetation.  He suggests that i f  species are d i s t r i b u t e d i n d i v i d u a l i s t i c a l l y and communities tend to  -  20 -  i n t e g r a t e , a v a r i e t y of features may be selected to c l a s s i f y a l l of them r e s u l t i n g i n a r b i t r a r y u n i t s .  vegetation,  Most of these features are  c l o s e l y r e l a t e d to one another but have t h e i r own d i s t r i b u t i o n w i t h i n a vegetation  structure.  Depending on the features chosen to c l a s s i f y ,  the vegetation u n i t s may be quite d i f f e r e n t i n t h e i r membership and a r e a l extent.  The f i v e major approaches ( t r a d i t i o n s ) w i l l be discussed  below  to i l l u s t r a t e the v a r i e t y of features and concepts used i n vegetation classification: floristic.  physiognomic, dominance-type, s t r a t a l , s i t e - t y p e and  However, some of the approaches are s i m i l a r to one another  since they use r e l a t e d features and properties of vegetation. The physiognomic t r a d i t i o n marked the e a r l i e s t approach used to c l a s s i f y vegetation.  This approach came i n t o e a r l y favour with those  undertaking studies i n plant geography (von Humbolt, 1807; Grisebach, 1839).  Physiognomic a t t r i b u t e s of vegetation are p a r t i c u l a r l y u s e f u l  during preliminary i n v e s t i g a t i o n s and studies conducted at small s c a l e s , since the u n i t s can be q u i c k l y established, e a s i l y recognized and r e a d i l y mapped.  The r e s u l t i n g u n i t s ("formation-types") are u s u a l l y highly  correlated with macroclimatic patterns.  According to Beard (1973), the  physiognomic c l a s s i f i c a t i o n r e l a t e s w e l l to "the s a l i e n t s t r u c t u r a l c h a r a c t e r i s t i c s of communities" and t h e i r f u n c t i o n a l r e l a t i o n s h i p to the environmental f a c t o r s of the landscape.  Physiognomic methods of vegetation  c l a s s i f i c a t i o n have been employed throughout the world and are s t i l l used today as a u s e f u l measure of community s t r u c t u r e .  - 21 The "dominance-type" approach defines i t s u n i t s on the basis of one or more dominant species w i t h i n the community.  I t i s often used to  complement a physiognomic treatment of vegetation, since i t i s the next most obvious character of the plant community.  The American t r a d i t i o n ,  developed by Clements (1928, 1936), emphasized successional r e l a t i o n s h i p s and dominant species growth forms (Whittaker, 1962).  The B r i t i s h t r a d i t i o n  a l s o favoured the use of dominance-types and the successional approaches used by Clements (Tansley, 1939).  C l a s s i f i c a t i o n s based on dominance are  e a s i l y accessible and r e l a t i v e l y simple to convey to f i e l d p r a c t i t i o n e r s l e s s f a m i l i a r with the complexity of vegetation.  On the other hand, many  e c o l o g i s t s b e l i e v e that dominance i s only one feature that characterizes a community and i s seldom the most s i g n i f i c a n t (Whittaker, 1973; Shimwell, 1971). The "Northern" t r a d i t i o n (sometimes c a l l e d "Scandinavian" and " B a l t i c " t r a d i t i o n s ) was o r i g i n a l l y influenced by physiognomic concepts of c l a s s i f i c a t i o n .  Although the f l o r a i n these northern regions lacked  species d i v e r s i t y , i t displayed well-defined s t r a t a , or l a y e r s .  The s t r a t a l  concept i n c l a s s i f i c a t i o n was pursued i n three major d i r e c t i o n s .  A synusial  approach fathered by Gams (1918, 1927), recognized d i s t i n c t species s t r a t a and l i f e f o r m s and c a l l e d them "unions". The famous Uppsala School developed an approach which used a combination of unions and c a l l e d them " s o c i a t i o n s " . The s o c i a t i o n concept has been used extensively throughout Scandinavia (Whittaker, 1962).  Daubenmire (1952) has used t h i s concept f o r c h a r a c t e r i z i n g  the vegetation of northeastern Washington and northern Idaho.  -  22  -  The fourth t r a d i t i o n was the " f o r e s t s i t e - t y p e " o r i g i n a l l y developed  i n Finland by Cajander (1909).  The f o r e s t s i t e - t y p e approach  groups f o r e s t stands on the basis of a s i m i l a r understory  composition.  The composition of the f o r e s t canopy was f e l t to have l i t t l e i n d i c a t i v e value for s i t e q u a l i t y (Frey, 1973).  Forest s i t e - t y p e s have been a  u s e f u l method to assess s i t e q u a l i t y and have accordingly, been a preferred u n i t f o r f o r e s t management.  This concept has had considerable  use i n c l a s s i f y i n g Canadian f o r e s t s ( I l v e s s a l o , 1929; Heimburger, 1934; Sisam, 1938; Ray, 1941; Spilsbury and Smith, 1947). F l o r i s t i c methods i n vegetation c l a s s i f i c a t i o n are best represented by the Braun-Blanquet school of phytosociology.  This f l o r i s t i c method  c l a s s i f i e s communities on the basis of t h e i r e n t i r e complement of species. Selected stands are grouped by f l o r i s t i c c r i t e r i a to form abstract u n i t s c a l l e d " a s s o c i a t i o n s " . An a s s o c i a t i o n i s characterized by a group of diagnostic species which are l a t e r used to e s t a b l i s h a more generalized hierarchy above the l e v e l of the a s s o c i a t i o n (syntaxa: and c l a s s ) .  Sometimes c a l l e d the "Southern"  orders, a l l i a n c e  t r a d i t i o n , the Braun-Blanquet  school s t i l l has the l a r g e s t f o l l o w i n g : " i t i s the most widely applied and most e f f e c t i v e l y standardized of a l l approaches to c l a s s i f i c a t i o n " (Whittaker, 1973).  V a r i a t i o n s of t h i s school have been used i n eastern  Canada (Grandtner, 1960; Lafond et al_., 1964; Jurdant and Roberge,  1965)  and i n B r i t i s h Columbia ( K r a j i n a , 1965). Many of the approaches discussed above are used today as they were o r i g i n a l l y conceived, w i t h modifications to the o r i g i n a l approach or by  -  combining the various concepts.  23 -  When d i s c u s s i n g the merits of the  various techniques i n phytosociology, Poore (1955) a p t l y points out: " I t i s important not to be dogmatic about these concepts.  None of them  has complete v a l i d i t y ; a l l are u s e f u l . "  2.3  Numerical approaches to vegetation c l a s s i f i c a t i o n As a framework f o r a l a t e r d i s c u s s i o n on D i s s i m i l a r i t y A n a l y s i s  (Chapter 3), t h i s s e c t i o n w i l l review some of the b a s i c p r i n c i p l e s employed i n the numerical c l a s s i f i c a t i o n of vegetation. Although some of the advantages and disadvantages of various approaches w i l l be h i g h l i g h t e d , t h i s section i s not intended to be an exhaustive c r i t i q u e of the multitude of numerical c l a s s i f i c a t i o n analyses that are now a v a i l a b l e .  2.3.1  I n t r o d u c t i o n to and o b j e c t i v e s of numerical c l a s s i f i c a t i o n Over the l a s t 25 years, b i o l o g i c a l and e c o l o g i c a l sciences have  shown increasing favour towards numerical methods of c l a s s i f i c a t i o n , where c l a s s i f i c a t i o n has been the desired end r e s u l t .  Some of the reasons f o r  t h i s trend i n phytosociology are: a.  a decreasing confidence i n s u b j e c t i v e sampling and a n a l y t i c a l methods and an increasing need to make i n v e s t i g a t i o n s more o b j e c t i v e and repeatable;  b.  the vast q u a n t i t i e s of data presently being c o l l e c t e d f o r a n a l y s i s and the need to c o r r e l a t e fresh data and analyses with those of e a r l i e r studies;  -  c.  24 -  the development and a v a i l a b i l i t y of f a s t , s o p h i s t i c a t e d , d i g i t a l computers; and  d.  concomittant w i t h the above reasons, a r e c i p r o c a l i n t e r e s t by s t a t i s t i c i a n s , mathematicians and computer programmers to devise appropriate a n a l y t i c a l techniques and programs. I n i t i a l l y , the use of numerical methods i n the b i o l o g i c a l sciences  was r e s t r i c t e d to standard s t a t i s t i c a l and mathematical procedures. For approximately the l a s t 15 years, however, there has been a surge of numerical techniques f o r taxonomy and synecology (biocoenology). Several adjectives have been used to describe these techniques, not a l l of them synonymous:  s t a t i s t i c a l , mathematical, computer, o b j e c t i v e , q u a n t i t a t i v e  and numerical.  The term " s t a t i s t i c a l " i s used i n the more general sense  to include both p r o b a b i l i s t i c and n o n - p r o b a b i l i s t i c studies (as defined by Lambert and Dale, 1964).  The word "mathematical" simply suggests that  the analyses used have a mathematical b a s i s even though i n many cases not a l l the mathematical properties are f u l l y understood ( C l i f f o r d and Stephenson, 1975).  The term "computer" has often been used to acknowledge the  dependency of these techniques on the speed and e f f i c i e n c y with which computer systems can perform complex and r e p e t i t i v e c a l c u l a t i o n s . a l l of these approaches are " o b j e c t i v e " approache.  That  i s somewhat misleading.. No  to c l a s s i f i c a t i o n can be completely objective since subjective  decisions w i l l always enter a s c i e n t i f i c i n v e s t i g a t i o n i n the nature of the data c o l l e c t e d and the form of a n a l y s i s .  However, many of these  approaches are more o b j e c t i v e than the more c l a s s i c a l , i n t u i t i v e methods  - 25 -  of c l a s s i f i c a t i o n . been introduced.  In some instances, the term " q u a n t i t a t i v e " has The use of t h i s word should be r e s t r i c t e d to techniques  that employ q u a n t i t a t i v e data and q u a n t i t a t i v e analyses.  The term  "numerical" seems most appropriate for t h i s study, since both mathematics and s t a t i s t i c s employ numbers as fundamental characters of examination. For the most part, numerical and t r a d i t i o n a l approaches to vegetation c l a s s i f i c a t i o n use s i m i l a r p r i n c i p l e s but employ d i f f e r e n t symbols and terminology.  The prime o b j e c t i v e i n c l a s s i f i c a t i o n i s to r e v e a l some  structure i n a continuous set of data.  This process should be d i s t i n g u i s h e d  from " i d e n t i f i c a t i o n " which involves the a l l o c a t i o n of an i n d i v i d u a l to an already established set of c l a s s e s .  O r l o c i (1975) states three main ob-  j e c t i v e s of c l a s s i f i c a t i o n : a.  problem s o l v i n g ( p r e d i c t i o n , hypothesis t e s t i n g e t c ) ;  b.  problem r e c o g n i t i o n (hypothesis generation); and  c.  data reduction, inventory etc.  In the f i r s t case, there has been some concern that "while c l a s s i f i c a t i o n s can be used to perform a p r e d i c t i v e f u n c t i o n reasonably w e l l , they are generally not s u i t e d t o serve as a b a s i s f o r t e s t i n g hypotheses about the existence of n a t u r a l types" ( O r l o c i , 1975).  P r e s e n t l y , there i s considerable  disagreement between and among s t a t i s t i c i a n s and "taxonomists" over the r e l a t i v e merits of p r e d i c t i v e analyses.  The concern a r i s e s over whether  p r o b a b i l i t y concepts apply to many of the numerical c l a s s i f i c a t i o n approaches ( p a r t i c u l a r l y the n o n - p r o b a b i l i s t i c techniques).  S t a t i s t i c a l parameters may  be used as r e l a t i v e i n d i c e s , although such parameters cannot serve to t e s t  -  26 -  <  hypotheses i n v o l v i n g f r e q u e n c y d i s t r i b u t i o n , s i n c e such d i s t r i b u t i o n s a r e u s u a l l y not known.  The i n f e r e n c e a s p e c t s of n u m e r i c a l c l a s s i f i c a t i o n s  have been d i s c u s s e d i n c o n s i d e r a b l e d e t a i l w i t h no apparent agreement on the i s s u e (Macnaughton-Smith, 1965; W i l l i a m s and L a n c e , 1968; G o o d a l l , 1975; O r l o c i , 1 9 7 5 ) .  Any c l a s s i f i c a t i o n w i l l t e c h n i c a l l y be  rather than " n a t u r a l " . ^  arbitrary  Depending on the number of a c c e s s o r y  character-  i s t i c s a s s o c i a t e d w i t h a c l a s s , some c l a s s i f i c a t i o n s are more " s u c c e s s f u l " than o t h e r s a t p r e d i c t i n g the v a l u e of unobserved v a r i a b l e s . I n the second c a s e , O r l o c i s u g g e s t s t h a t c l a s s i f i c a t i o n a c t s as a p r e l i m i n a r y a n a l y s i s , by r e v e a l i n g c a u s a l f a c t o r s and p e r m i t t i n g the g e n e r a t i o n of h y p o t h e s e s .  C o n t r a r y to t h i s v i e w p o i n t ,  Cormack (1971)  warns t h a t where d a t a a r e c o n t i n u o u s i n n a t u r e , c l a s s i f i c a t i o n has an imposing i n f l u e n c e t h e r e b y r e s t r i c t i n g the p o t e n t i a l number of hypotheses t h a t can be generated hypotheses).  (e.g.  i t r e j e c t s the p o s s i b i l i t y of the continuum  G o o d a l l (1973) emphasizes t h a t i f n u m e r i c a l a n a l y s e s a r e used  t o g e n e r a t e hypotheses then the hypotheses s h o u l d be s t a t e d c l e a r l y i n a t a n g i b l e form and s u b s e q u e n t l y t e s t e d f o r t h e i r p e r f o r m a n c e ,  preferrably  using a separate data s e t . The t h i r d , and p r o b a b l y most e s s e n t i a l f u n c t i o n of c l a s s i f i c a t i o n i s t h a t of d a t a r e d u c t i o n , sometimes r e f e r r e d to as d e s c r i p t i v e  analysis  (the a n a l y s i s a p p l i e s o n l y t o the i n d i v i d u a l s b e i n g c l a s s i f i e d ) .  This  o p e r a t i o n i s of p a r t i c u l a r v a l u e when the number of i n d i v i d u a l s and t h e i r a t t r i b u t e s exceed our c a p a c i t y to i d e n t i f y them as i n d i v i d u a l s .  This  common u t i l i t a r i a n p r a c t i c e s e r v e s as a b a s i s f o r i n v e n t o r y , mapping and the g e n e r a l o r g a n i z a t i o n of i n f o r m a t i o n .  Its  purpose i s t o r e v e a l  structure  -  27 -  and pattern among the groups formed (Yamada, 1976).  For each c l a s s  we can make a number of statements, assign an appropriate name and d i s c l o s e other q u a l i t i e s of the class that are otherwise not apparent.  2.3.2  Vegetation data Studies using numerical c l a s s i f i c a t i o n generally recognize  vegetation as a three component system:  the plants (usually s p e c i e s ) ,  the s i t e s (geographic p o s i t i o n - l a t i t u d e and longitude) and the habitat (climate, r e l i e f , parent m a t e r i a l and fauna) (Lambert and Dale, 1964). Phytosociology i s the study of p l a n t / p l a n t r e l a t i o n s h i p s on a s i t e and plant/plant r e l a t i o n s h i p s over a number of s i t e s .  Plant ecology or  vegetation ecology (Mueller-Dombois, 1974) i s the study of p l a n t / s i t e / habitat r e l a t i o n s h i p s . Numerical approaches to vegetation c l a s s i f i c a t i o n predominantly i n v e s t i g a t e plants i n r e l a t i o n to one another and i n r e l a t i o n to t h e i r geographic p o s i t i o n ( s i t e s ) .  The c o r r e l a t i o n of habitat f a c t o r s with  c l a s s i f i c a t i o n u n i t s generally occurs as a separate operation. The most frequently used vegetation a t t r i b u t e i s species composition ( f l o r i s t i c variables).  The reason f o r t h i s i s the "general acceptance of the species  concept as an economical method of c h a r a c t e r i z i n g plant m a t e r i a l by a number of p r o p e r t i e s simultaneously at a generally convenient l e v e l of abstraction." directions:  (Lambert and Dale, 1964).  C l a s s i f i c a t i o n proceeds i n two  "normal a n a l y s i s " where s i t e s are grouped according to t h e i r  -  28 -  species or "inverse a n a l y s i s " where species are grouped according to s i t e s of t h e i r occurrence.^  I d e a l l y , an optimal grouping should occur with a  s i n g l e , composite a n a l y s i s (nodal a n a l y s i s ) whereby normal and inverse analyses are performed simultaneously. Q u a l i t a t i v e and q u a n t i t a t i v e f l o r i s t i c v a r i a b l e s are used i n numerical c l a s s i f i c a t i o n a n a l y s i s , the most common being simple binary data or the presence or absence of a species.  There i s some d i f f e r e n c e  of opinion concerning the r e l a t i v e merits of presence/absence data and q u a l i t a t i v e data.  Presence/absence data i s quicker to obtain i n the  f i e l d , requires shorter computing time and permits the use of more powerf u l a n a l y t i c a l techniques.  Some authors contend that the information  gain using q u a n t i t a t i v e data (informing c l a s s i f i c a t i o n ) i s minimal and Dale, 1964 and Macnaughton-Smith, 1965). use of binary data are:  (Lambert  Arguments against the sole  r a r e species occurrences have high information  value, emphasis i s placed on the extremes of a s p e c i f i c d i s t r i b u t i o n ( C l i f f o r d and Stephenson, 1975), and a species presence i s not n e c e s s a r i l y the same as a species absence (Lambert and Dale, 1964).  A general con-  census of opinion would suggest that presence/absence data and analyses are appropriate when samples are quite heterogeneous but should y i e l d to more s e n s i t i v e q u a n t i t a t i v e procedures when the samples are r e l a t i v e l y less heterogeneous.  Most numerical c l a s s i f i c a t i o n s give equal weight to a l l  a t t r i b u t e s i n the primary a n a l y s i s . Less obvious weighting may occur however as a r e s u l t of c e r t a i n a n a l y t i c a l c a l c u l a t i o n s ( e . g . i n d i c e s ) , p l o t - s p e c i e s r a t i o s , h i g h l y associated a t t r i b u t e s and s t r u c t u r e i n the community.  -  2.3.3  29 -  Numerical c l a s s i f i c a t i o n s t r a t e g i e s  0  S i m i l a r to t r a d i t i o n a l approaches to c l a s s i f i c a t i o n , each nume r i c a l approach has a p a r t i c u l a r c l a s s i f i c a t i o n strategy.  Williams,  who i s a renowned authority on numerical c l a s s i f i c a t i o n , has r a t h e r appropriately (amusingly) " c l a s s i f i e d " the various c l a s s i f i c a t i o n ^ s t r a t e g i e s according to a dichotomous key (see Figure 2.1).  The cate-  g o r i c a l l e v e l s of the r e s u l t a n t dendrogram are i n order of i n c r e a s i n g d i f f i c u l t y of "choice".  I t i s important f o r the user of numerical  c l a s s i f i c a t i o n s to be cognizant of these choices.  The r e s u l t i n g c l a s s -  i f i c a t i o n w i l l be a f u n c t i o n of the data c o l l e c t e d and a n a l y s i s strategy selected. The f i r s t dichotomy  (choice 1) i s between non-exclusive and  exclusive c l a s s i f i c a t i o n s .  I n the l a t t e r s i t u a t i o n , an i n d i v i d u a l  ( e n t i t y ) belongs e x c l u s i v e l y to one c l a s s , once c l a s s i f i e d .  This form  of grouping i s common to systematics and land survey where "boundaries" must be delineated.  The non-exclusive grouping allows each i n d i v i d u a l  a membership i n more than one c l a s s .  This non-exclusive strategy i s  extremely purposive (e.g. a geographic index of vegetation samples). The second dichotomy intrinsic classification.  (choice 2) occurs between e x t r i n s i c and I n t r i n s i c c l a s s i f i c a t i o n employs a l l a t t r i b u t e s  of the i n d i v i d u a l equally i n forming groups.  In land survey, the r e s u l t -  ing c l u s t e r s can r e v e a l d i s c o n t i n u i t i e s i n the " e x t e r n a l " a t t r i b u t e s which were unknown i n advance (e.g. common plant communities d i s c o n t i n u i t i e s i n the depth of the water t a b l e ) .  revealing  Extrinsic clustering,  CHOICE 1  NONEXCLUSIVE  EXCLUSIVE CHOICE 2  EXTRINSIC  INTRINSIC  I  CHOICE 3  HIERARCHICAL  NON-HIERARCHICAL  CHOICE 4  AGG LOMOERATIVE (POLYTHETIC ONLY)  DIVISIVE CHOICE 5  DISSIMSLARiTY ANALYSIS  MONOTHETIC  POLYTHETIC  F i g u r e 2 . 1 A dichotomous k e y showing t h e c h o i c e s of c l a s s i f i c a t i o n s t r a t e g y (based on W i l l i a m s , 1971) and t h e r e l a t i v e p o s i t i o n o f D i s s i m i l a r i t y A n a l y s i s i n t h i s k e y .  - 31 -  on  the o t h e r hand, r e s u l t s i n groups which enhance d i s c o n t i n u i t i e s  in the external first  a t t r i b u t e s , which were d e f i n e d i n advance. These  two c h o i c e s a r e s t r o n g l y  governed by t h e use to which a c l a s s -  i f i c a t i o n i s intended. Choice 3 i s between a h i e r a r c h i c a l and n o n - h i e r a r c h i c a l Hierarchical  c l a s s i f i c a t i o n e x p r e s s e s the r e l a t i o n s h i p between t h e  g r o u p i n g ( s ) and the e n t i r e p o p u l a t i o n a t any given l e v e l D a l e , 1964).  (Lambert and  The h i e r a r c h y i s p r e s e n t e d i n a two-dimensional dendrogram  which o u t l i n e s individuals  strategy.  a " r o u t e between the e n t i r e p o p u l a t i o n and t h e s e t o f  o f which i t i s composed" ( W i l l i a m s , 1971).  The h i e r a r c h i c a l  dendrogram may p l o t t h e r o u t e from t h e e n t i r e p o p u l a t i o n t o t h e i n d i v i d u a l or due to some a r b i t r a r y s t o p p i n g r u l e , may o n l y p l o t t o some convenient "final"  grouping o f i n d i v i d u a l s .  i s that  a grouping may be e x t r a c t e d a t any chosen l e v e l o f  Most h i e r a r c h i e s  The advantage of a h i e r a r c h i c a l scheme generalization.  a r e dichotomous, t h e few t r i c h o t o m o u s approaches h a v i n g  proved l e s s u s e f u l  ( W i l l i a m s , 1971).  U n l i k e h i e r a r c h i c a l systems which  optimize the route of f u s i o n  or f i s s i o n  groupings), non-hierarchical  systems o p t i m i z e t h e f i n a l group  (homogeneity), w i t h no parent p o p u l a t i o n .  (which can r e s u l t  i n sub-optimal  r o u t e d e f i n e d between the i n d i v i d u a l s ,  Although t h e n o n - h i e r a r c h i c a l  structure groups and  approaches a r e i n some  i n s t a n c e s t h e o r e t i c a l l y f a v o u r a b l e , t h e a n a l y s e s a r e a t an e a r l y stage o f development and do n o t have the f l e x i b i l i t y ,  sophistication  and speed o f  h i e r a r c h i c a l methods. Choice 4 i s between a d i v i s i v e o r a g g l o m e r a t i v e procedure. former, the i n i t i a l d a t a s e t i s s u c c e s s i v e l y  divided  into smaller  In t h e groupings,  -  32  -  the groupings at each l e v e l of d i v i s i o n being examined independent of the o r i g i n a l population p r i o r to s p l i t t i n g .  An aggomerative  procedure  begins with the i n d i v i d u a l s and progressively groups i n d i v i d u a l s , i n d i v i d u a l s and established groups (or i n d i v i d u a l s ) with one another. D i v i s i v e s t r a t e g i e s tend to emphasize differences between groups while agglomerative s t r a t e g i e s tend to h i g h l i g h t s i m i l a r i t i e s w i t h i n groups. D i v i s i v e tehniques have several advantages over agglomerative  approaches  (Lambert and Dale, 1964; O r l o c i , 1967; Goodall, 1973; Poole, 1974; Williams, 1971; C l i f f o r d and Stephenson,  1975).  The f i n a l choice i n c l a s s i f i c a t i o n strategy (choice 5) i s between a monothetic or p o l y t h e t i c treatment of a t t r i b u t e information. Monothetic c l a s s i f i c a t i o n divides a set on the b a s i s of a s i n g l e a t t r i b u t e whereas a p o l y t h e t i c method divides or aggregates a set on the basis of a l l a t t r i b u t e s . Monothetic approaches can only be d i v i s i v e while p o l y t h e t i c techniques apply to a l l agglomerative and some d i v i s i v e analyses (Lambert and Dale, 1964 and Williams, 1971).  Monothetic techniques are simple and w e l l suited to the  formation of d i s c r i m i n a n t keys.  P o l y t h e t i c procedures take advantage of a l l  a t t r i b u t e information i n the c o n s t r u c t i o n of the hierarchy and often the f i n a l groups formed.  The most commonly used h i e r a r c h i c a l s t r a t e g i e s are  p o l y t h e t i c and agglomerative.  2.3.4  Measures of s i m i l a r i t y or d i s s i m i l a r i t y and algorithms Measures of s i m i l a r i t y or d i s s i m i l a r i t y i n numerical c l a s s i f i c a t i o n  analysis are used to define the " l i k e n e s s " or "unlikeness" of:  two  -  33 -  i n d i v i d u a l s , an i n d i v i d u a l and a g r o u p i n g ,  and two groups of  individuals.  S i m i l a r i t y and d i s s i m i l a r i t y a r e m u t u a l l y dependent c o n c e p t s , t h e former term u s u a l l y b e i n g a p p l i e d to b o t h c o n c e p t s  (Clifford  and S t e p h e n s o n ,  A p l e t h o r a o f s i m i l a r i t y measures have be d e v e l o p e d : c o e f f i c i e n t s  1975).  of  s i m i l a r i t y and a s s o c i a t i o n , E u c l i d e a n d i s t a n c e , i n f o r m a t i o n c o n t e n t and s i m i l a r i t y measures dependent on p r o b a b i l i t y  e s t i m a t e s , andr;,many o t h e r s .  Not a l l measures can be performed on a l l d a t a - t y p e s and c l a s s i f i c a t i o n strategies.  Comprehensive r e v i e w s o f s i m i l a r i t y measures can be found  i n S o k a l and Sneath (1963) and Cormack(1971). An a l g o r i t h m i s a m a t h e m a t i c a l p r o c e d u r e used t o implement a c l a s s i f i c a t i o n strategy.  It  i s t h e mechanism by w h i c h t h e measures o f  s i m i l a r i t y a r e s y n t h e s i z e d and e v a l u a t e d to form g r o u p i n g s .  As an example,  " A s s o c i a t i o n A n a l y s i s " , as developed by W i l l i a m s and Lambert  (1959 and  1 9 6 0 ) , employs a p o p u l a r a l g o r i t h m .  This monothetic d i v i s i v e  approach  s u c c e s s i v e l y d i v i d e s an i n i t i a l s e t by t h e p r e s e n c e of absence o f one 2 species.  The s p e c i e s chosen i s based on t h e "X  gencyytable.  A f t e r d i v i s i o n of the i n i t i a l s e t ,  test using the 2 x 2 the process i s  on t h e r e s u l t i n g groups by s e l e c t i n g a n o t h e r s p e c i e s c r i t e r i o n .  contin-  iterated The p r o -  c e s s c o n t i n u e s u n t i l the groups formed i n t h e p r e v i o u s d i v i s i o n have an a s s o c i a t i o n m a t r i x which may have o c c u r r e d by chance (as measured by an 2 arbitrary  s t o p p i n g r u l e based on a s e l e c t e d X  l e v e l of  significance).  Many o t h e r a l g o r i t h m s have been developed t o implement t h e v a r i o u s c l a s s i f i c a t i o n s t r a t e g i e s and measures o f s i m i l a r i t y .  These have been  reviewed by P i e l o u ( 1 9 6 9 ) , Cormack((1971), G o o d a l l (1973), O r l o c i (1975) and C l i f f o r d and Stephenson X1975).  -  34 -  2.4  Vegetation mapping  2.4.1  Maps, i n v e n t o r i e s and c l a s s i f i c a t i o n A map i s t y p i c a l l y a two-dimensional f l a t surface representing a  segment of the earth's sphere.  Maps portray an arrangement of features  geographically and i n s p a c i a l arrangement to one another.  Maps, together  with t h e i r legends, serve a number of p r a c t i c a l functions: a.  they provide a v i s u a l c h a r a c t e r i z a t i o n of earth features and l o c a t i o n s at a reduced s c a l e , comprehendable to the human mind;  b.  they provide a v i s u a l synthesis, s i m p l i f i c a t i o n and emphasis of earth features and l o c a t i o n s that are of p a r t i c u l a r i n t e r e s t ;  c.  they provide for the dissemination of information (data) i n a geographic form; and  d.  they provide f o r a geographic comparison of earth features and locations. Maps are a t o o l used extensively f o r the study and management of  n a t u r a l resources.  Natural resource inventories are u s u a l l y presented i n  the form of a map and legend.  Such mapping involves the i d e n t i f i c a t i o n or  r e c o g n i t i o n of " u n i t s " of landscape which are s i m i l a r or d i s s i m i l a r according to some c l a s s i f i c a t i o n .  Hence, c l a s s i f i c a t i o n should not be considered  the same as an inventory but rather a t o o l used to compare one u n i t with another - a y a r d s t i c k . "landscape mapping"  The usefulness of a p a r t i c u l a r c l a s s i f i c a t i o n t o  depends on the s i m i l a r i t y of the u n i t s being c l a s s i f i e d  to those being mapped, the s i m i l a r i t y of the a t t r i b u t e s chosen to c l a s s i f y to those chosen as mapping c r i t e r i o n and the d i s t r i b u t i o n of these u n i t s on the landscape.  -  2.4.2  35 -  Approaches to landscape mapping The approaches used i n landscape mapping w i l l vary with the  nature of the information being mapped, the scale of mapping and the a v a i l a b i l i t y of e x i s t i n g information or relevant associated information. From an h o l i s t i c point of view, i t would be i d e a l to map a l l n a t u r a l landscapes using an almost i n f i n i t e number of observations to f a c i l i t a t e an almost i n f i n i t e number of i n t e r p r e t a t i o n s . For obvious reasons, t h i s i s very i m p r a t i c a l . Generally, two major approaches are used f o r mapping: one i n which samples are c o l l e c t e d to represent d i f f e r e n t u n i t s of landscape and one i n which samples are c o l l e c t e d to r e v e a l the existence of p a r t i c u l a r u n i t s or landscape. The f i r s t approach favours the use of e x t r i n s i c a t t r i b u t e s of the landscape (e.g. slope, aspect, slope configuration) f o r mapping the r e source but u s u a l l y defines the mapped u n i t s on the basis of i t s i n t r i n s i c a t t r i b u t e s (e.g. s o i l development, plant community).  The assumption behind  such a procedure i s that repeatable d i s c o n t i n u i t i e s observed f o r external features imply a r e l a t i v e homogeneity of the i n t e r n a l features w i t h i n the unit.  Samples w i t h i n the e x t r i n s i c a l l y defined repeatable  "pretyped"  ( p r e s t r a t i f i e d ) u n i t s characterize the i n s t r i n s i c nature of the u n i t thereby t e s t i n g the i n t e r n a l - e x t e r n a l c o r r e l a t i o n . The r e l i a b i l i t y of t h i s mapping approach depends on the c o r r e l a t i o n success.  This technique can be applied  at nearly a l l s c a l e s , i s w e l l suited to remote sensing aids and i s quick and economical i n terms of the time and e f f o r t required per u n i t area mapped.  Many exploratory and reconnaissance  approach to mapping.  surveys therefore employ t h i s  -  36  -  The second approach to landscape mapping imposes no prior stratification  of the landscape into pretyped units.  Using  this  procedure, samples are taken either at random or systematically; systematic sampling being obviously more p r a c t i c a l for mapping objectives.  The systematic sample i s usually conducted using a pre-  selected, intersample distance grid. similar grid points forming a map  The samples are then  unit.  Since there i s no sample  c r i t e r i a for the exact placement of boundaries between two grid points, e x t r i n s i c features may position.  classified,  adjacent  be used to approximate a boundary  This approach lends i t s e l f well to s t a t i s t i c a l a n a l y t i c a l  techniques.  However, for p r a c t i c a l reasons i t i s often not f e a s i b l e  since many samples are required per unit area, making i t slow and uneconomical.  This approach i s a necessary  technique when there i s no  prior knowledge about the d i s t r i b u t i o n of the resource being  considered  or i t s r e l a t i o n to e x t r i n s i c features.  2.4.3  Vegetation maps  Kuchler  (1967), i n describing the history of vegetation maps, states  that vegetation features f i r s t occurred on maps during the f i f t e e n t h and sixteenth centuries.  Forests were the common feature shown since they  were "of s i g n i f i c a n c e i n m i l i t a r y matters, hunting reserves, timber resources or obstacles of communication" (Kuchler, 1967).  Most of the early  maps however, employed vegetation symbols as purely decorational features or to indicate the vast unexplored  regions of a map.  Seventeenth and  -  37  -  eighteenth century maps began to d i s t i n g u i s h between a number of vegetation features:  meadows, f i e l d s , swamps, deciduous and c o n i -  ferous f o r e s t s and vineyards.  During the nineteenth century, vegetat-  ion mapping was conducted i n various parts of the world at a v a r i e t y of scales and with an increasing s o p h i s t i c a t i o n .  The e a r l y twentieth  century saw a greater development of p h y t o s o c i o l o g i c a l methods and t h e i r gradual i n f l u e n c e on vegetation mapping.  European approaches  at t h i s time were u s u a l l y of a large scale and very p r e c i s e .  By the  early twentieth century, vegetation mapping had become a science and i t s value affirmed by the establishment of two famous i n s t i t u t i o n s : "Service de l a carte de l a vegetation de l a France an 1:200,000" at Toulouse, founded by Gaussen; and the "Service de l a carte des groupements vegetaux de l a France an 1:20,000" at M o n t p e l l i e r , founded and directed by Emberger.  The Russians followed a s i m i l a r development to  the Europeans while the American s t u d i e s , f o l l o w i n g Clements, lacked a p r e c i s e l y defined terminology f o r t h e i r d e t a i l e d vegetation u n i t s .  The  American mapping tended to be more pragmatic than the s c i e n t i f i c concepts used i n Europe and Russia. for many parts of the world.  P r e s e n t l y , vegetation maps have been prepared The v a r i a t i o n i n the maps and mapping  approach r e f l e c t s the v a r i a t i o n of the vegetation under study and objectives for mapping.  the  Therefore, i t i s not s u r p r i s i n g that there i s  no standardized method f o r mapping vegetation. Assuming that d i s c o n t i n u i t i e s i n vegetation can be revealed and that they are repeatable, vegetation may be defined as "a mosaic of plant  -  communities i n the landscape"  38 -  (Kuchler, 1967).  Consequently, each  plant community (tesserae) can be i d e n t i f i e d " ^ and mapped.  The  community-type concept, discussed above (2.1), provides a necessary framework f o r the mapping of n a t u r a l vegetation.  The purpose of a  vegetation map i s to show the d i s t r i b u t i o n and extent of a number 11 of vegetation u n i t s .  Vegetation maps should only show features  s p e c i f i c to vegetation (Fosberg, 1961), with the associated features (e.g. s o i l and climate) included as accessory items c o r r e l a t e d i n the legend, even though they may have been used as c r i t e r i a f o r d e l i n e a t i n g map u n i t s .  S i m i l a r l y , the names and symbols used to i d e n t i f y the u n i t s  should represent features of vegetation (e.g. species  composition,  dominance, s t r u c t u r e , l i f e form etc.) As discussed e a r l i e r , vegetation i s a complex phenomena which can be described i n a number of ways.  This not only poses d i f f i c u l t i e s i n  the c l a s s i f i c a t i o n of vegetation, but also i n the mapping of vegetation. Four basic features have been used to map vegetation:  physiognomy and  s t r u c t u r e , f l o r i s t i c s , community dynamics, and b i o t o p i c features of the communities, or combinations of these four (Kuchler, 1973).  Historically,  physiognomy and s t r u c t u r e have been a successful way of mapping n a t u r a l vegetation.  Physiognomic features are p a r t i c u l a r l y w e l l suited to small  mapping scales (e.g. the world, continents and c o u n t r i e s ) .  Floristic  maps require more d e t a i l e d information on the species composition of a region.  Consequently, f l o r i s t i c maps are u s u a l l y presented at l a r g e r scales  than those using purely physiognomic q u a l i t i e s of the vegetation.  -  39  -  Vegetation dynamics have always caused concern over the mapping and c l a s s i f i c a t i o n of vegetation.  Kuchler (1961, 1967) points out that  i t i s p r i m a r i l y the aperiodic n a t u r a l and anthropic changes to the environment that cause the greatest d i f f i c u l t y to vegetation mapping: l a n d s l i d e s , g l a c i e r s , recent f l u v i a l d e p o s i t i o n , f o r e s t harvesting, grazing (animals and i n s e c t s ) and f i r e .  Kuchler  (1967) defines " a c t u a l  vegetation" (or present vegetation) as that which occurs at the time of observation.  "Natural vegetation" i s that vegetation unaffected by  while " p o t e n t i a l n a t u r a l vegetation" (synonymous with climax  man,  vegetation)  i s defined as that vegetation r e s u l t i n g from the normal processes of succession without the influence of man (Kuchler, 1967).  and without any c l i m a t i c change  The term " s t a b l e vegetation" has also been used to  describe that vegetation which has been allowed to grow without  disturbance  and has reached a balance with the environment; i n t h i s s t a t e , the plants are able to reproduce themselves f o r generations u n t i l the environment changes ( Z o l t a i and Pettapiece, 1973).  The successional " s t a t e " of the  vegetation adopted f o r mapping w i l l always depend on the purpose of the survey.  Kuchler  (1961, 1967)  change a s t a t i c map  suggests that a w e l l defined legend  can  i n t o a map which d i s c l o s e s the present status of the  u n i t s and t h e i r r e l a t i v e p o s i t i o n i n the successional sequence. B i o t o p i c approaches to vegetation mapping use the h a b i t a t features of the plant community as c r i t e r i a f o r d e f i n i n g the p o s i t i o n and of the vegetation u n i t s .  extent  This use of e x t r i n s i c features f o r mapping was  discussed above i n s e c t i o n 2.4.2.  Most mapping approaches r e l y on  - 40 -  e x t r i n s i c c r i t e r i a f o r approximating  some of the u n i t boundaries  not r e a d i l y apparent or observable.  2.4.4  Vegetation Maps i n B r i t i s h Columbia R e l a t i v e to many European c o u n t r i e s , remarkably few vegetation  maps have been prepared f o r the vegetation of B r i t i s h Columbia.  At a  p r o v i n c i a l scale (1:3,484,800), Munroe and McT. Cowan's map of " B i o t i c Zones" (1947, 1956) i s probably the f i r s t approximation  of the major  12 vegetation zones d i s t r i b u t e d across the province.  As part of a  n a t i o n a l mapping program, H a l l i d a y (1937) and l a t e r , Rowe (1959, 1972), prepared a map of "Forest Regions" at a scale of 1:6,336,000.  Since 7  out of the 10 n a t i o n a l categories (8 regions plus grasslands and tundra) occur i n B.C., Rowe's map i s often used as a reference f o r broad vegetation types i n the province.  A t h i r d and s l i g h t l y more d e t a i l e d map i s the  "Biogeoclimatic Zones" map of the province ( K r a j i n a , 1973) at a scale of 1:1,900,800.  By d e f i n i t i o n , t h i s i s an e c o l o g i c a l map; however, vegetation  zonation i s e a s i l y i n f e r r e d . Reconnaissance scale maps have r e c e n t l y been prepared  f o r a number  13 of N.T.S.  map sheets by the p r o v i n c i a l b i o p h y s i c a l survey operation.  The maps show "present vegetation c o n d i t i o n " (physiognomy, successional status and f l o r i s t i c character) and the same for " c l i m a t i c climax" vegetation zones and subzones at several scales ranging from 1:50,000 1:250,000.  P i l o t p r o j e c t s conducted by the B.C. Forest Service i n the  C h i l l i w a c k P r o v i n c i a l Forest, Toquart River and Chapman Creek, included  - 41 -  the mapping of biogeoclimatic subzones at a scale of 1:63,360 (Briere, 1974, 1975). MacMillan Bloedel. has published a map of "The Biogeoclimatic Subzones of Vancouver Island and Adjacent Mainland and Islands" at a scale of 1:380,160 (Packee, 1974), and the B.C. Forest Service i s engaged i n biogeoclimatic subzone mapping i n selected f o r e s t d i s t r i c t s ; the r e s u l t i n g maps w i l l probably be published at a scale of 1:250,000.  The Canadian Forestry Service has prepared a reconnaissance  vegetation map i n the " C a p i t a l Region" at a scale of 1:125,000 (McMinn et a l . , 1976). Detailed maps of f o r e s t cover types have been prepared by the B.C. Forest Service at a scale of 1:15,840.  With a strong commercial  b i a s , these maps show a s t a t i c inventory of B.C. f o r e s t cover s t r a t i f i e d by age, height, volume and s i t e c l a s s e s .  The recent i n t r o d u c t i o n of  resource f o l i o s by the B.C. Forest Service has necessitated the mapping of " d e t a i l e d - reconnaissance" landscape u n i t s and t h e i r associated vegetation i n selected watersheds throughout the Vancouver Forest D i s t r i c t (Briere, 1975 and Jones, 1976).  The Canadian Forestry Service has also  conducted d e t a i l e d landscape analyses  (1:10,000 - 1:20,000) on two Gulf  Islands (Hirvonen et a l . , 1974; Hirvonen, 1976) and the V i c t o r i a (Eis and Oswald, 1975).  highlands  To date, the most d e t a i l e d vegetation ("eco-  systematic") map i s that prepared by K l i n k a (1976) f o r the U.B.C. Research Forest at a scale of 1:10,000. In the United States, P f i s t e r (1969), Daubenmire (1973) and Deitschman (1973) have mapped "habitat-types" at a d e t a i l e d scale  -  42 -  ( 1 : 3 1 , 6 8 0 ) i n s e v e r a l n a t i o n a l f o r e s t s of W a s h i n g t o n , Oregon,  Idaho  and Montana.  interest,  D e i t s c h m a n ' s mapping t e c h n i q u e i s of p a r t i c u l a r  s i n c e i t a d d r e s s e s the problem of mapping v e g e t a t i o n i n l a r g e i n a c c e s s i b l e areas u s i n g e x t r i n s i c evaluated i n t h i s  landscape a t t r i b u t e s .  A s i m i l a r technique  study.  Chapter 2 has r e v i e w e d some of the b a s i c p r i n c i p l e s of classification;  is  vegetation  t h e f i v e major t r a d i t i o n s i n v e g e t a t i o n c l a s s i f i c a t i o n ;  some of the more i m p o r t a n t f e a t u r e s of n u m e r i c a l c l a s s i f i c a t i o n ; and mapping p r o c e d u r e s ,  the r e l a t i o n s h i p between mapping and c l a s s i f i c a t i o n  and the s t a t u s of v e g e t a t i o n maps i n B . C .  Chapter 3 w i l l d i s c u s s  numerical c l a s s i f i c a t i o n analysis applied i n t h i s  the  study.  Footnotes: 1.  A s m a l l p i e c e of marble o r g l a s s , h a v i n g a square f a c e , used i n mosaic work.  2.  W h i t t a k e r (1973) uses t h e " c o m m u n i t y - t y p e " a s a g e n e r a l term t o d e s c r i b e the " c l a s s c o n c e p t " used i n any c l a s s i f i c a t i o n system. The "communitytype i s e s s e n t i a l l y synonomous w i t h the term " p l a n t a s s o c i a t i o n " ( M u e l l e r Dombois, 1975, pi. 1 7 3 ) .  3.  The s u g g e s t i o n t h a t s p e c i e s taxonomy i s ' n a t u r a l " i s not t o t a l l y upon by a l l t a x o n o m i s t s .  4.  Assuming a " n a t u r a l " c l a s s i f i c a t i o n c o u l d ever  5.  E a r l i e r s t u d i e s i n n u m e r i c a l taxonomy ( S o k a l and S n e a t h , 1963) r e f e r r e d t o "Q" a n a l y s i s o r e n t i t y c l a s s i f i c a t i o n (normal a n a l y s i s ) and " R " a n a l y s i s or a t t r i b u t e c l a s s i f i c a t i o n ( i n v e r s e a n a l y s i s ) .  6.  The d i s c u s s i o n i n t h i s s e c t i o n has be based l a r g e l y on W i l l i a m s ( 1 9 7 1 ) , Lambert and Dale ( 1 9 6 4 ) , . G o o d a l l (1973) and C l i f f o r d and Stephenson (1975).  agreed  exist.  -  43 -  7.  The word " c l a s s i f i c a t i o n " i n the n u m e r i c a l sense i s synonymous w i t h " c l u s t e r " or " g r o u p i n g " ( a n a l y s i s ) .  8.  The advantages of d i v i s i v e t e c h n i q u e s w i l l be d i s c u s s e d i n Chapter 3 .  9.  The term " l a n d s c a p e ' m a p p i n g " i s used i n a g e n e r a l sense t o d e s c r i b e t h e mapping of any a t t r i b u t e of a n a t u r a l l a n d s c a p e . T h i s i s a l e s s s p e c i f i c use of the t e r m " l a n d s c a p e " as a p p l i e d i n s e c t i o n 1 . 3 . 2 .  10.  Note: not n e c e s s a r i l y " r e c o g n i z e d " .  11.  V e g e t a t i o n maps s h o u l d be d i s t i n g u i s h e d from maps w h i c h show t h e d i s t r i b u t i o n of s p e c i f i c p l a n t s p e c i e s , s i n c e t h e s e a r e p u r e l y t a x a d i s t r i b u t i o n maps and not v e g e t a t i o n maps.  12.  I n a more r e c e n t p u b l i c a t i o n used t o d e s c r i b e B . C . ' s f l o r a , L y o n ' s (1971) uses t h i s map t o i n t r o d u c e t h e ' m a j o r v e g e t a t i o n zones of the province.  13.  N.T.S. —  N a t i o n a l Topographic  Series.  -  CHAPTER 3 .  44 -  DISSIMILARITY ANALYSIS  -  CHAPTER 3 .  3.1  45 -  DISSIMILARITY ANALYSIS  D i s s i m i l a r i t y A n a l y s i s as a c l a s s i f i c a t i o n s t r a t e g y D i s s i m i l a r i t y Analysis i s a numerical c l a s s i f i c a t i o n analysis  i n i t i a l l y c o n c e i v e d by Macnaughton-Smith et a l , (1964) t o investigations  facilitate  i n t o the causes of d e l i n q u e n c y and the t r e a t m e n t of  offenders.  The " i n d i v i d u a l s " i n M a c n a u g h t o n - S m i t h ' s r e s e a r c h were a c t u a l p e o p l e ; "attributes",  any p h y s i c a l o r m e n t a l c h a r a c t e r of a human b e i n g .  h i s study was concerned w i t h t h e c l a s s i f i c a t i o n of p e o p l e , A n a l y s i s , l i k e any o t h e r c l a s s i f i c a t i o n p r o c e d u r e , v a r i e t y of t h i n g s f o r a v a r i e t y o f p u r p o s e s .  the  Although  Dissimilarity  can be a p p l i e d t o a  As Macnaughton-Smith (1965)  p o i n t s o u t , " t h e i n d i v i d u a l s may be p e o p l e , a n i m a l s , p l a n t s , w o r d s , i t e m s t e s t s o r q u e s t i o n n a i r e s , o r p h y s i c a l m a t e r i a l s ; i n d e e d any o b j e c t for s c i e n t i f i c  in  suitable  observation."  F i g u r e 2 . 1 shows t h e r e l a t i v e p o s i t i o n o f D i s s i m i l a r i t y A n a l y s i s t h e dichotomous h i e r a r c h y of c l a s s i f i c a t i o n s t r a t e g i e s . Dissimilarity Analysis is "exclusive" one c l a s s ; " i n t r i n s i c " -  To  in  reiterate,  t h e i n d i v i d u a l i s a member of o n l y  the c l a s s i f i c a t i o n i s based on i n h e r e n t f e a t u r e s  the i n d i v i d u a l s ; " h i e r a r c h i c a l " -  there i s a c l a s s i f i c a t i o n structure  i n d i v i d u a l s , groups and the i n i t i a l p o p u l a t i o n ; " d i v i s i v e " - t h e  of  between  initial  p o p u l a t i o n i s s u c c e s s i v e l y d i v i d e d i n t o s m a l l e r and s m a l l e r g r o u p s ;  and  " p o l y t h e t i c " - d i v i s i o n s a r e based on a measure of d i s s i m i l a r i t y a p p l i e d to all  attributes. P o l y t h e t i c - d i v i s i v e c l a s s i f i c a t i o n s t r a t e g i e s have s e v e r a l advantages  o v e r t h e more common p o l y t h e t i c - a g g l o m e r a t i v e  approaches:  - 46 -  a.  a d i v i s i v e strategy begins with the maximum information available over the whole population to determine the c r i t i c a l top-most d i v i s ions"'" (Lambert and Dale, 1964; 1971;  b.  Williams and Lambert, 1966;  Williams,  Goodall, 1973);  a d i v i s i v e strategy quickly reveals the higher l e v e l s of the hierarchy, which are often of greatest i n t e r e s t , without having to e s t a b l i s h a complete hierarchy from the i n d i v i d u a l to the population as i n agglomerative  c.  techniques;  related to "b" above, a d i v i s i v e operation can be terminated  at  any convenient l e v e l ; d.  i f i n i t i a l subdivisions of the population have been missed by chance, they are usually recognized at lower h i e r a r c h i c a l l e v e l s i n a d i v i s ive c l a s s i f i c a t i o n strategy, whereas agglomerative techniques  are  prone to irrevocable a l l o c a t i o n at the i n t e r - i n d i v i d u a l l e v e l where the p o s s i b i l i t y of errors i s greatest (Williams, 1971); and e.  a d i v i s i v e strategy maximizes differences between groups and  defines  l i m i t s to classes. The main disadvantages of p o l y t h e t i c - d i v i s i v e c l a s s i f i c a t i o n strategies are that: a.  the necessary calculations frequently require more computing time than agglomerative techniques  and methods which attempt to reduce  the number of calculations do not allow consideration of a l l p o t e n t i a l divisions; b.  sets may  be p a r t i t i o n e d by chance too early i n the process, forming  hierarchies which do not completely population;  and  r e f l e c t the structure of the  -  c.  47 -  t h e r e i s an i n a b i l i t y t o d i s t i n g u i s h i n t e r n a l v a r i a t i o n from v a r i a t i o n between groups w h i c h may l e a d t o " a r t i f i c i a l " divisions. I n the p a s t , most n u m e r i c a l , d i v i s i v e s t r a t e g i e s have been l i m i t e d  t o t h e c o m p u t a t i o n a l l y more f a v o u r a b l e m o n o t h e t i c a n a l y s e s :  positive 2  i n t e r s p e c i f i c c o r r e l a t i o n (Goodall, 1953), A s s o c i a t i o n A n a l y s i s and L a m b e r t , 1 9 5 9 , 1 9 6 0 ; N o y - M e i r e t a l . , 1970) and Group A n a l y s i s and W i s h a r t , 1 9 6 8 ) .  (Crawford  S u r p r i s i n g l y few a t t e m p t s have been made t o develop  a satisfactory polythetic-divisive 1973).  (Williams  strategy  ( W i l l i a m s , 1 9 7 1 ; Lambert e t a l . ,  Edwards and C a r a l l i - S f o r v a (1965) were p r o b a b l y the f i r s t t o d e s c r i b e  a p o l y t h e t i c - d i v i s i v e a n a l y s i s and r a t h e r a d m i r a b l y e l e c t e d to c o n s i d e r p o s i b l e dichotomous s u b d i v i s i o n s of t h e p o p u l a t i o n . a n a l y s i s i s t h e most i d e a l i t i s h i g h l y i m p r a c t i c a l .  A l t h o u g h t h i s form of In a d i v i s i v e a n a l y s i s ,  the t o t a l number of p o s s i b l e s u b d i v i s i o n s a t any l e v e l o f t h e h i e r a r c h y 2  n  all  is  " ^ - 1 o r as W i l l i a m s (1967) r a t h e r a p p r o p r i a t e l y i l l u s t r a t e d : "suppose we  had 600 i n d i v i d u a l s . . . The number of ways we"can d i v i d e t h e s e i n t o two groups i s r e p r e s e n t e d by a f i g u r e 4 f o l l o w e d by 180 z e r o s ; t h e e a r t h i s 3 to e x i s t l o n g enough f o r t h e j o b t o be c o m p l e t e d . "  It  unlikely  i s therefore  not  s u r p r i s i n g t h a t the method of C a v a l l i - S f o r v a has been r e s t r i c t e d t o d a t a s e t s of l e s s than about 16 i n d i v i d u a l s It  soom became apparent  (Lambert et a l . , 1 9 7 3 ) .  that p o l y t h e t i c - d i v i s i v e analyses  require  a method to reduce the t o t a l number o f " p o t e n t i a l d i v i s i o n s " c o n s i d e r e d a t any l e v e l of the h i e r a r c h y . rule"  T h i s r e d u c t i o n method has been c a l l e d a " r e s t r i c t i o n  (Macnaughton-Smith,1965) o r a " ' d i r e c t e d s e a r c h ' t o l i m i t t h e number  of s p l i t s examined" (Lambert e t a l . , 1 9 7 3 ) .  At the p r e s e n t , r e l a t i v e l y  few  - 48 -  t e c h n i q u e s are a v a i l a b l e w h i c h i n s t i t u t e a r e s t r i c t i o n r u l e o r search.  directed  A d i v i s i v e s t r a t e g y w h i c h reduces the number of p o t e n t i a l  divisions  to be c o n s i d e r e d has been i n t r o d u c e d i n t h e D i s s i m i l a r i t y A n a l y s i s scheme proposed by Macnaughton-Smith ( 1 9 6 4 , 1 9 6 5 ) .  H i s approach forms a " r e s t r i c t e d  f a m i l y " o f p o t e n t i a l d i v i s i o n s f o r each s u b d i v i s i o n of the p o p u l a t i o n o r subpopulation. analyses  Lambert et a l .  (1973) d e s c r i b e s two  ("AXER" and "MONIT") w h i c h e i t h e r c l a s s i f y  o r d i n a t e the p o p u l a t i o n f i r s t , the s p l i t .  polythetic-divisive (monothetically)  and t h e n , r e l o c a t e the i n d i v i d u a l to  or improve  D i s s i m i l a r i t y A n a l y s i s w i l l be d i s c u s s e d b e l o w .  4 3.2  The a n a l y s i s Polythetic-divisive  c l a s s i f i c a t i o n s t r a t e g i e s have f o u r b a s i c  requirements: a.  a " r e s t r i c t i o n r u l e " or " r e s t r i c t i o n procedure" which l i m i t s  the  number of " p o t e n t i a l d i v i s i o n s " t h a t a r e to be c o n s i d e r e d a t any l e v e l o f t h e c l a s s i f i c a t i o n ( t h e s e p o t e n t i a l d i v i s i o n s form t h e "restricted b.  family");  a d i s s i m i l a r i t y f u n c t i o n or measure to d e f i n e t h e " l i k e n e s s " and " u n l i k e n e s s " between two i n d i v i d u a l s , an i n d i v i d u a l and a group and two groups so t h a t a c h o i c e can be made between the members of restricted  c.  the  family;  a " s t o p p i n g r u l e " t o d e s i g n a t e when groups are f i n a l and r e q u i r e no f u r t h e r s u b d i v i s i o n ; and  d.  an a l l o c a t i o n r u l e to a s s i g n new i n d i v i d u a l s i n i t i a l data set)  (not i n c l u d e d i n t h e  t o an a l r e a d y e s t a b l i s h e d group  (class).  -  The f i r s t  49 -  t h r e e r e q u i r e m e n t s w i l l be d i s c u s s e d i n more d e t a i l b e l o w .  The a l l o c a t i o n r u l e i s d i s c u s s e d i n d e t a i l by Macnaughton-Smith (1965) and w i l l n o t be d i s c u s s e d b e l o w , s i n c e i t  i s not r e q u i r e d f o r t h i s  particular  investigation.  3.2.1  R e s t r i c t i o n r u l e or r e s t r i c t i o n Since there are 2  n  procedure  ^ " - 1 p o s s i b l e ways o f s u b d i v i d i n g a p o p u l a t i o n of  " n " i n d i v i d u a l s , Macnaughton-Smith developed a s t e p - l i k e p r o c e d u r e t o form a restricted family.  G i v e n an i n i t i a l s e t w i t h " n " members, t h a t  individual  w h i c h i s most u n l i k e t h e r e s t of a l l o t h e r members i s s e l e c t e d o u t .  Next,  t h i s s e l e c t e d member i s combined w i t h each member o f t h e r e m a i n i n g s e t  to  form " t l - l " p o s s i b l e p a i r s and t h e p a i r most u n l i k e the s e t o f a l l o t h e r p a i r s i s chosen.  N e x t , the chosen p a i r i s combined w i t h each member of t h e r e m a i n -  i n g s e t to form " n - 2 " p o s s i b l e t r i a d s and the t r i a d most u n l i k e the s e t of other t r i a d s i s selected.  T h i s p r o c e d u r e i s i t e r a t e d u n t i l " t h e a d d i t i o n of  one more i n d i v i d u a l to the i n c r e a s o n g s e t reduces the b e t w e e n - s e t i t y i n s t e a d of i n c r e a s i n g i t "  3.2.2  all  (Macnaughton-Smith,  dissimilar-  1965).  The i n f o r m a t i o n s t a t i s t i c as a d i s s i m i l a r i t y  function  As d i s c u s s e d e a r l i e r i n s e c t i o n 2 . 3 . 4 , a v a r i e t y o f s i m i l a r i t y and d i s s i m i l a r i t y measures a r e a v a i l a b l e t o d e t e r m i n e the l i k e n e s s o f two i o n s o r two a g g l o m e r a t i o n s i n d i c h o t o m o u s , h i e r a r c h i c a l p r o c e d u r e s .  partitIn  D i s s i m i l a r i t y A n a l y s i s , the d i s s i m i l a r i t y f u n c t i o n measures t h e " u n l i k e n e s s " between two groups formed i n a p o t e n t i a l d i v i s i o n .  Hence a l l p o t e n t i a l  d i v i s i o n s of t h e r e s t r i c t e d f a m i l y can be compared, c h o o s i n g t h a t w h i c h maximizes b e t w e e n - s e t  dissimilarity.  division  -  50 -  The d i s s i m i l a r i t y f u n c t i o n proposed f o r D i s s i m i l a r i t y A n a l y s i s (Macnaughton-Smith, 1965) uses " i n f o r m a t i o n t h e o r y " as a means to measure dissorder.  I n f o r m a t i o n t h e o r y was o r i g i n a l l y developed by Shannon (1948)  t o s o l v e problems i n communication (message t r a n s m i s s i o n , message l e n g t h , number of messages and c a b l e u t i l i z a t i o n ) .  More r e c e n t l y ,  (since the l a t e  1 9 5 0 ' s ) , i n f o r m a t i o n t h e o r y has been a p p l i e d i n b i o l o g i c a l s t u d i e s  concerning  species d i v e r s i t y ,  (Orloci,  1968,1970).  e v o l u t i o n , c l a s s i f i c a t i o n and p l a n t s u c c e s s i o n  I n t h e p r o c e s s of c l a s s i f i c a t i o n , t h e i n i t i a l p o p u l a t i o n and t h e  groups formed c o n t a i n " i n f o r m a t i o n " ( s p e c i e s p r e s e n c e and absence and s p e c i e s performance) w h i c h i s a " p h y s i c a l p r o p e r t y of t h e d a t a r e l a t e d t o p r o b a b i l ity."  (Orloci,  1968).  The g r e a t e r t h e s i m i l a r i t y between t h e members of a  g r o u p , t h e l o w e r t h e i n f o r m a t i o n c o n t e n t and t h e g r e a t e r t h e between t h e members o f a g r o u p ,  the h i g h e r t h e i n f o r m a t i o n  An " i n f o r m a t i o n s t a t i s t i c " (I)  difference  content.  i s used as a s i m i l a r i t y o r d i s s i m i l a r -  i t y f u n c t i o n to measure the d e v i a t i o n from complete e n t r o p y ( d i s o r d e r ) among and between a s e t of e n t i t i e s so t h a t a r e d u c t i o n i n e n t r o p y s t a t e of o r d e r ) can be c r e a t e d .  both  (relative  As a d i s s i m i l a r i t y f u n c t i o n , t h e i n f o r m a t i o n  s t a t i s t i c e v a l u a t e s the i n f o r m a t i o n g a i n (AI)  of each p o t e n t i a l d i v i s i o n  of  t h e i n i t i a l s e t and s e l e c t s t h a t d i v i s i o n f o r w h i c h the i n f o r m a t i o n g a i n i s maximized between t h e two groups formed. Orloci  ( 1 9 6 8 ) , when d i s c u s s i n g t h e advantages o f the i n f o r m a t i o n  s t a t i s t i c , p o i n t s out t h a t c o n v e n t i o n a l m u l t i v a r i a t e t e c h n i q u e s o f t e n r e l y on r i g i d assumptions about the d i s t r i b u t i o n o f t h e i n d i v i d u a l analysed.  variables  The i n f o r m a t i o n s t a t i s t i c , on t h e o t h e r h a n d , i s f r e e from such  r e s t r i c t i o n s and can be e a s i l y a p p l i e d to a v a r i e t y of d a t a t y p e s . the i n d i v i d u a l v a r i a b l e s i n many v e g e t a t i o n s t u d i e s may be h i g h l y  Since skewed,  -  51 -  d i s c o n t i n u o u s o r p o l y m o d a l , the n o n - p a r a m e t r i c i n f o r m a t i o n s t a t i s t i c p a r t i c u l a r i l y appropriate  3.2.3  Stopping Divisive,  ( W i l l i a m s and L a n c e , 1 9 6 8 ) .  rule  h i e r a r c h i c a l c l a s s i f i c a t i o n s p a r t i t i o n an a l r e a d y known  i n i t i a l d a t a s e t i n t o a number of g r o u p s . continues without  is  interference,  If  the c l a s s i f i c a t i o n process  t h e " g r o u p s " u l t i m a t e l y become each i n d i v i d -  u a l of the i n i t i a l p o p u l a t i o n (assuming t h e r e a r e no i d e n t i c a l However, i n most c l a s s i f i c a t i o n e n d e a v o u r s ,  the i n v e s t i g a t o r  individuals).  i s most  interest-  ed i n t h e i n t e r m e d i a t e p o p u l a t i o n s of the h i e r a r c h y and d e s i g n a t e s them as " f i n a l groups".  A s t o p p i n g r u l e c o n t r o l s a d i v i s i v e a c t i v i t y by a s s i g n i n g  a l e v e l o f t h e h i e r a r c h y beyond w h i c h no f u r t h e r s u b d i v i s i o n s a r e u n d e r t a k e n . Lambert and W i l l i a m s (1966) have d i s c u s s e d t h e p r i n c i p l e s and use of  stopping  rules in d e t a i l . I n D i s s i m i l a r i t y A n a l y s i s , a s t o p p i n g r u l e i s a p p l i e d where t h e r e a l e v e l i n the d i v i s i v e h i e r a r c h y  is  i n w h i c h the d i s s i m i l a r i t y between two  p o t e n t i a l s e t s i s n o t s u f f i c i e n t l y g r e a t and the d i v i s i o n s h o u l d be s u s p e n d ed (Macnaughton-Smith, 1 9 6 5 ) .  Assuming t h a t the d i s s i m i l a r i t y f u n c t i o n  is  comparable o v e r a l l s t a g e s of t h e a n a l y s i s , then an a r b i t r a r y v a l u e can be a s s i g n e d t o determine s e t s as f i n a l .  Macnaughton-Smith (1965) and W i l l i a m s  and Lance (1968) emphasize t h a t t e s t s of s i g n i f i c a n c e a r e n o t a p p l i c a b l e , even when the d i s s i m i l a r i t y measure has known s t a t i s t i c a l p r o p e r t i e s ,  because  the groups formed a r e not random but have been d e r i v e d u s i n g some o p t i m a l criteria.  Thus, a s t o p p i n g r u l e must always be a r b i t r a r y .  The  information  -  52 -  s t a t i s t i c used i n D i s s i m i l a r i t y A n a l y s i s i s r e l a t e d to the X t h a t 21 approximates t h e X  2  distribution.  5  function  in  Macnaughton-Smith recommends  using t h i s property to provide a stopping r u l e .  Consequently,  the stopping  2 v a l u e used i n t h i s a n a l y s i s uses t h e X  s t a t i s t i c w i t h "v"  (v = number of  s p e c i e s minus one) degrees of freedom s i g n i f i c a n t a t the 5% l e v e l of 3.3  confidence.  Development and use of D i s s i m i l a r i t y A n a l y s i s i n B r i t i s h Columbia J . W . C . A r l i d g e o f the Research D i v i s i o n , B . C . F o r e s t S e r v i c e , was  one of t h e f i r s t  a p p l i e d p l a n t e c o l o g i s t s i n B r i t i s h Columbia to show a  s p e c i a l i n t e r e s t i n t h e a p p l i c a t i o n of n u m e r i c a l a n a l y t i c a l t e c h n i q u e s problems i n v e g e t a t i o n c l a s s i f i c a t i o n and l a n d s u r v e y .  to  In conjunction w i t h  M. K o v a t s , a programmer a n a l y s t f o r t h e D i v i s i o n , A r l i d g e  (1971) began h i s  s t u d i e s u s i n g t h e m o n o t h e t i c - d i v i s i v e , N o d a l A n a l y s i s f o l l o w i n g W i l l i a m s and Lambert ( 1 9 6 1 ) .  The same a n a l y s i s and program was a p p l i e d s u c c e s s f u l l y by  J . van B a r n e v e l d (1971) on v e g e t a t i o n d a t a c o l l e c t e d i n t h e C a r i b o o L a t e r , A r l i d g e became p a r t i c u l a r l y i n t e r e s t e d i n t h e  polythetic-divisive  c l a s s i f i c a t i o n i n t r o d u c e d by Macnaughton-Smith (1964,1965) and i t advantages o v e r the m o n o t h e t i c s t r a t e g i e s .  region.  potential  A r l i d g e and K o v a t s developed and  t e s t e d t h e D i s s i m i l a r i t y A n a l y s i s program i n 1972 and found i t t o be a u s e f u l technique f o r vegetation c l a s s i f i c a t i o n .  U n t i l t h e time of h i s  ment, A r l i d g e c o n t i n u e d h i s s t u d i e s w i t h D i s s i m i l a r i t y A n a l y s i s by  retire-  investigate  i n g the p o s s i b i l i t y of i n c o r p o r a t i n g q u a n t i t a t i v e d a t a and f i n d i n g a more s a t i s f a c t o r y stopping value.  -  53 -  S i n c e A r l i d g e ' s r e t i r e m e n t , h i s program has been adopted by the p r o v i n c i a l b i o p h y s i c a l s u r v e y o p e r a t i o n and has been expanded i n t o a more complete v e g e t a t i o n d a t a a n a l y s i s package e n t i t l e d "Coenos 1 " .  This  r a t h e r complex d a t a a n a l y s i s and p r e s e n t a t i o n r o u t i n e was d e s i g n e d by J.l.vanBarneveld  v  6  and programmed by A. Ce&ka. g Dissimilarity Analysis include:  7  A d d i t i o n s t o the  original  9  v  a.  an o p t i o n f o r c o n d i t i o n a l or u n c o n d i t i o n a l e n t r o p y ( C e s k a , 1 9 7 5 ) ;  b.  a mean s i m i l a r i t y measure u s i n g S ^ r e n s e n ' s c o e f f i c i e n t to  indicate  t h e homogeneity of f i n a l groups (CeSka, 1966, 1 9 6 8 ) ; c . a c l u s t e r a n a l y s i s of s p e c i e s u s i n g S ^ r e n s e n ' s  coefficient;  d . a c l u s t e r a n a l y s i s of f i n a l group members u s i n g E u c l i d e a n d i s t a n c e o r SjrJrensen's c o e f f i c i e n t ; and e . a c l u s t e r a n a l y s i s o f f i n a l groups u s i n g C e s k a ' s (1966, 1968) mean similarity  coefficient."^  P r e s e n t l y the Coenos 1 program i s b e i n g a p p l i e d t o v e g e t a t i o n d a t a o p e r a t i o n a l l y i n p r o v i n c i a l b i o p h y s i c a l studies"'"''",  i n research studies  in  the B . C . F o r e s t S e r v i c e and i n academic s t u d i e s a t t h e U n i v e r s i t y of B r i t i s h Columbia.  It  i s hoped t h a t i n the near f u t u r e improved documentation  f o r the program w i l l make i t more r e a d i l y t r a n s f e r a b l e to o t h e r computer f a c i l i t i e s and more e a s i l y u n d e r s t o o d by p o t e n t i a l u s e r s . T h i s c h a p t e r has attempted t o e x p l a i n D i s s i m i l a r i t y A n a l y s i s as a c l a s s i f i c a t i o n strategy,  the b a s i c c o m p o n e n t s ' o f - t h e a n a l y s i s and i t s  development and use i n B r i t i s h C o l u m b i a .  Chapter 4 w i l l o u t l i n e the methods  used to implement D i s s i m i l a r i t y A n a l y s i s i n t o " t h e c l a s s i f i c a t i o n and mapping of f o r e s t v e g e t a t i o n a t a d e t a i l e d s c a l e .  -  54 -  Footnotes: 1.  N o t e : a g g l o m e r a t i v e t e c h n i q u e s b e g i n a t the i n t e r - i n d i v i d u a l where i n f o r m a t i o n i s m i n i m a l .  level  2.  A s s o c i a t i o n A n a l y s i s was d e s c r i b e d e a r l i e r i n s e c t i o n 2 . 3 . 4 .  3.  I n a l a t e r p u b l i c a t i o n , W i l l i a m s (1971) s u g g e s t s t h a t l a r g e r m a t r i c e s c o u l d p o s s i b l y be h a n d l e d u s i n g t h e h i g h l y s o p h i s t i c a t e d i n f o r m a t i o n s t a t i s t i c program o f W a l l a c e and B o u l t o n ( 1 9 6 8 ) , but fliere has been l i t t l e e x p e r i e n c e of i t s u s e .  4.  Most o f the d i s c u s s i o n i n s e c t i o n 3 . 2 i s based on a d e t a i l e d account of D i s s i m i l a r i t y A n a l y s i s by Macnaughton-Smith (1964, 1 9 6 5 ) .  5.  T h i s r e l a t i o n s h i p i s d i s c u s s e d i n d e t a i l by K u l l b a c k ( 1 9 5 9 ) .  6.  P l a n t e c o l o g i s t , Resource A n a l y s i s B r a n c h , M i n i s t r y of B r i t i s h Columbia.  7.  P l a n t e c o l o g i s t , CeSka G e o b o t a n i c a l R e s e a r c h , V i c t o r i a , B r i t i s h C o l u m b i a .  8.  These a d d i t i o n s w i l l be d i s c u s s e d i n g r e a t e r d e t a i l i n C h a p t e r 4 (section 4 . 3 . 1 . ) .  9.  N o t e : the o r i g i n a l program used o n l y u n c o n d i t i o n a l e n t r o p y w h i c h i s based on s p e c i e s p r e s e n c e and absence as d i v i s i v e c r i t e r i a ; c o n d i t i o n a l e n t r o p y , on t h e o t h e r hand i s based o n l y on s p e c i e s presence as d i v i s i v e criteria.  Envionment,  10.  A l l c l u s t e r i n g r o u t i n e s have been w r i t t e n by D r . E . M . Hagmeier, Department, U n i v e r s i t y of V i c t o r i a .  11.  V e g e t a t i o n S e c t i o n , Resource A n a l y s i s B r a n c h , M i n i s t r y of B r i t i s h Columbia.  Biology  Environment,  -  55 -  CHAPTER 4 .  METHODS OF STUDY  -  CHAPTER 4.  4.1  56 -  METHODS OF STUDY  Study strategy In an e f f o r t to answer the four questions posed i n section 1.5,  the study was divided into two rather separate i n v e s t i g a t i o n s .  The  f i r s t i n v e s t i g a t i o n was operational''" i n nature, addressing the f i r s t two  questions: a.  What methods can be employed for d e t a i l e d vegetation mapping (scale 1:15,840) i n mountainous t e r r a i n with l i m i t e d access?  b.  What i s the value of D i s s i m i l a r i t y Analysis for the c l a s s i f i c a t i o n of vegetation i n primary survey?  This i n v e s t i g a t i o n was conducted i n two i n t e r i o r watersheds of B r i t i s h Columbia:  Grassy Creek and Templeton River.  The r e s u l t s from each  watershed study are discussed i n Chapters 5 and 6 r e s p e c t i v e l y . The second i n v e s t i g a t i o n addressed the second two questions posed i n section 1.5: c.  What i s the p r e d i c t i v e c a p a b i l i t y of the vegetation  pretyping  ( p r e s t r a t i f i c a t i o n ) approach developed for vegetation mapping? d.  What i s the r e l i a b i l i t y  of the vegetation maps?  This i n v e s t i g a t i o n , dependent i n part on the r e s u l t s of the f i r s t i n v e s t i gation, used a systematic sampling method.  The s p e c i f i c o b j e c t i v e s ,  methods and r e s u l t s of t h i s i n v e s t i g a t i o n are discussed i n Chapter 7. The methods discussed i n t h i s chapter p e r t a i n p r i m a r i l y to the f i r s t (operational) The  investigation.  study was undertaken i n conjunction with a p a r a l l e l i n v e s t i -  gation of s o i l s and s u r f i c i a l  material.  2  Watershed  3  areas were selected  - 57 f o r study because of t h e i r conceptual value i n understanding, characteri z i n g and d e s c r i b i n g landscape patterns and t h e i r geographical p r a c t i c a l i t y i n p r o v i d i n g l o g i c a l and n a t u r a l boundaries f o r areas subject to a p a r t i c u l a r tenure and f o r e s t (land) management p r a c t i c e s folios).  (e.g. resource  The Grassy Creek and Templeton River watersheds were chosen  for the f o l l o w i n g reasons: a.  both watersheds were located i n P u b l i c Sustained Y i e l d U n i t s that were being inventoried f o r forest cover types by the B.C. Forest Service, Inventory D i v i s i o n , and were therefore e a s i l y studied i n terms of l o g i s t i c s ;  b.  both watersheds have recent, large scale (1:15,840), black and white a e r i a l  c.  photography;  both watersheds have at l e a s t one main access road along the the v a l l e y bottom s u i t a b l e f o r v e h i c l e transport;  d.  both watersheds are of s u i t a b l e s i z e and have s u f f i c i e n t access to permit the c o l l e c t i o n of a l l necessary f i e l d data w i t h i n a four month f i e l d season;  e.  both watersheds contain s e r a i and climax forest vegetation so that dynamic aspects of vegetation could be considered i n the c l a s s i f i c a t i o n and mapping procedure; and  f.  the two watersheds are s i g n i f i c a n t l y d i f f e r e n t i n terms of bedrock, s u r f i c i a l m a t e r i a l s , climate, s o i l s and vegetation to f a c i l i t a t e comparison between them.  -  4.2  58 -  F i e l d studies P r i o r to f i e l d i n v e s t i g a t i o n s , e x i s t i n g information f o r each  watershed was c o l l e c t e d . This included s o i l reports, g e o l o g i c a l memoirs, vegetation reports and theses, c l i m a t i c data, topographic maps, Canada Land Inventory maps and black and white a e r i a l photographs. F i e l d studies commenced i n the Templeton River v a l l e y during the second week of June, 1974. With the assistance of one f u l l - t i m e a s s i s t a n t , the f i e l d work was completed i n 40 days. spent i n f i e l d reconnaissance  Seven days were  ( i n c l u d i n g one hour of h e l i c o p t e r reconnais-  4 sance), 5 days i n the f i e l d o f f i c e ,  and 28 days i n p l o t sampling ( i n c l u d i n g  5 days spent on the systematic sampling study).^  A h e l i c o p t e r was used on  three occasions to transport the f i e l d crew to the upper e l e v a t i o n of a descending transect. F i e l d studies i n the Grassy Creek v a l l e y commenced i n the first'week of August and continued reconnaissance  f o r 24 days.  Three days were spent i n f i e l d  ( i n c l u d i n g one hour of h e l i c o p t e r reconnaissance),  in the f i e l d o f f i c e and 17 days p l o t sampling.  4 days  A h e l i c o p t e r was used on  two occasions to transport the f i e l d crew to the upper e l e v a t i o n of a descending transect. 4.2.1  Reconnaissance Following a preliminary viewing of two scales of a e r i a l photography  (1:63,360 and 1:15,840), f i e l d reconnaissance watershed.  The reconnaissance  was conducted i n each  procedure consisted of:  an i n v e s t i g a t i o n  of a l l p o t e n t i a l access roads; f a m i l i a r i z a t i o n with l o c a l watershed geography; walking along selected topographic  transects to obtain an; :  - 59 -  o v e r v i e w of v e g e t a t i o n p a t t e r n s ;  f a m i l i a r i z a t i o n w i t h watershed f l o r a ;  and an e v a l u a t i o n of e x i s t i n g i n f o r m a t i o n a v a i l a b l e f o r t h e watershed (bedrock,  s u r f i c i a l m a t e r i a l s , s o i l s , topography,  and f o r e s t cover).  drainage patterns  I n a d d i t i o n , a p p r o x i m a t e l y one hour of  helicopter  r e c o n n a i s s a n c e was c a r r i e d out i n each w a t e r s h e d .  4.2.2  P r e t y p i n g approach The f i e l d r e c o n n a i s s a n c e p r o v i d e d a u s e f u l i n t r o d u c t i o n t o t h e  broad s c a l e v e g e t a t i o n p a t t e r n s o c c u r r i n g i n each watershed and r e v e a l e d t h e v a r i a b i l i t y t h a t c o u l d be expected w i t h i n some u n i t s .  It  a l s o made  apparent the problems of l i m i t e d a c c e s s t o and t h e a r e a l e x t e n t of each watershed w h i c h would make t h e a c q u i s i t i o n of i n t e n s i v e  vegetation  i n f o r m a t i o n w i t h i n the a l l o t t e d t i m e - f r a m e ( a p p r o x i m a t e l y 3 months) a d i f f i c u l t task.  It  t h e r e f o r e became e v i d e n t t h a t the methods used must  r e l y h e a v i l y on a e r i a l photo i n t e r p r e t a t i o n ; t h e t e c h n i q u e of p r e d i c t i n g p r e s e n t v e g e t a t i o n c o n d i t i o n on the b a s i s of o b s e r v a b l e or  inferred  l a n d s c a p e f e a t u r e s and t h e c o r r e l a t i o n of these f e a t u r e s w i t h o b s e r v a t i o n s and s a m p l i n g .  T h i s approach to mapping i s common i n t h e  e a r t h s c i e n c e s ( B u r i n g h , 1954; B u r g e r , Staff,  ground  1 9 5 7 ; C o l w e l l , 1960; S o i l Survey  1966; L o r d and McLean, 1969) and has been a p p l i e d i n e a s t e r n  Canada to map f o r e s t v e g e t a t i o n and f o r e s t s i t e s ( L o s e e , 1 9 4 2 ; R i n f r e t , 1964; J u r d a n t ,  1964).  The p r e t y p i n g approach used i n t h i s study e v o l v e d from a l a n d s c a p e a n a l y s i s t e c h n i q u e o r i g i n a l l y developed by B r i e r e ^ (1974, 1975) f o r " d e t a i l e d - r e c o n n a i s s a n c e " f o r e s t s i t e mapping u s i n g p r i m a r i l y a e r i a l photo i n t e r p r e t a t i o n .  B r i e r e ' s scheme was d e s i g n e d f o r use i n mountainous  - 60 -  regions where permanent, geographical features of slope length, slope configuration and slope aspect are integrated into landscape u n i t s . These rather permanent u n i t s of landscape are used to " t i e - i n " the a s s o c i a t e d ' c h a r a c t e r i s t i c s of water, t e r r a i n , s o i l s and vegetation. The study adopted most of the concepts, features and symbols from Briere's landscape a n a l y s i s but modified the legend with a bias toward pretyping present vegetation c o n d i t i o n . for t h i s study i s shown i n Table 4.1.  The pretyping legend developed Using t h i s legend, the s i t e and  present vegetation condition were p r e d i c t e d , using observable features from a e r i a l photographs (1:15,840) and e x i s t i n g information on vegetation zonation and forest cover. components;  Each map unit was characterized by four basic  hygrotope/slope p o s i t i o n , aspect/exposure, present vegetation  conditien^and any t e r r a i n features and processes having a major influence on present vegetation condition.  The d i r e c t and i n f e r r e d a e r i a l photo  features and other e x i s t i n g information used to characterize each unit component are l i s t e d i n Table 4.2  map  A s t y l i z e d slope p r o f i l e i l l u s t r a t i n g  the use of the vegetation pretyping legend i s shown i n Figure 4.1.  Using  Old D e l f t scanning stereoscope, the a e r i a l photographs f o r Grassy Creek and Templeton River were pretyped according to the legend discussed above.  4.2.3  F i e l d sampling Following f i e l d reconnaissance and a e r i a l photo pretyping, vegetation  sample p l o t s were taken i n each v a l l e y .  The pretyped u n i t s provided the  necessary s t r a t i f i c a t i o n f o r l o c a t i n g f i e l d transects and sample p l o t s . Due to l i m i t e d access and time, transect l o c a t i o n s were selected to include the greatest v a r i e t y and number of pretyped u n i t s .  High e l e v a t i o n areas  'PRESENT VEGETATION CONDITION*  HYGROTOPE /SLOPE POSITION SR  Shedding r i d g e top o r k n o l l top tone ( U ) *  SH  Shedding zone (U)  SJ  Seepage tone top Blope (U)  SL  Seepage zone lower slope ( L )  v IV  R e c e i v i n g zone w e l l dralnf.1 (L)  Seepage zone middle s l o p e (M)  R i p a r i a n Zone ( L )  AV  Avalanche Zona  M  f o r e s t age f o r e s t cover  HYCROTOPE/SLOPE POSITION-—Sl_ :  ASPECT/EXPOSURE  U  •E?  U  occurs i n upper e l e v a t i o n landscapes  M  occurs l n middle e l e v a t i o n landscapes  L  occurs l n lower e l e v a t i o n landscapes  p_£J fTERRAIN FEATURES AND PROCESSES (having a major  ASPECT/EXPOSURE  t  aspect/exposure modifie  •resent .d i t i o n )  "Grassland" (grass, sedge, rush and herb) cover  0  Denuded areas absent o f v e g e t a t i o n f o r n a t u r a l reasons (e.g. rock, recent moraine)  P  P y r o l ( f i r e ) h i B t o r y evident.  L  Lagged  Y  Young f o r e s t s (< 40 years and/or l e s s than 10 m)  MODIFIERS - FOREST ACE  1  Immature f o r e s t s ( <120 years)  H  Mature f o r e s t s (> 120 years)  C  c l o s e d canopy (> 75X)  * V e g e t a t i o n z o n a t l o n concepts and asps (whoa a v a i l a b l e ) . a n d f o r e s t cover maps may a s s i s t l n determining t h i s f e a t u r e .  TERRAIN FEATURES AND PROCESSES* 1.  C o l l u v l a l slopes (used p r i m a r i l y where rubbly and blocxy t a l u s slopes occur)  F  P l u v i a l m a t e r i a l s (used p r i m a r i l y I n c o n J u n c t i o n w i t h the R i p a r i a n Zone)  F**  P l u v l o - g l a c i a l (used t o I n d i c a t e c o a r s e t e x t u r e d , w e l l drained m a t e r i a l s )  H  H o r a l n a l (used to d e s c r i b e denuded areas associated with cirque g l a c i a t i o n )  ft  Rock and outcrops 2.  the components on e i t h e r s i d e of the symbol are approximately equal  /  the component I n f r o n t o f the symbol i s more e x t e n s i v e than the one that f o l l o w s  //  t h e component i n f r o n t of the symbol l e cons i d e r a b l y more e x t e n s i v e than the one t h a t follows  Table 4.1  Vegetation pretyping legend  SURFACE EXPRESSION  North - average aspect 0°  f£  Northeast - average aspect 45°  m  subdued (slopes up t o ID , >1 n r e l i e f )  £  East - average aspect 90°  r  r i d g e d (elopes 10-35°,> 1 m r e l i e f )  $£  Southeast - average aspect 135°  s  steep (slopes > 35°)  5  South - average aspect 180  t  terraced  Southwest - average aspect 225°  v  veneer (used w i t h c o l l u v i u m when associated w i t h outcrops (R) and s a i l s between .1 and 1 m thick)  r i d g e o r k n o l l - no dominant aspect influence  A  y  v a l l e y bottom and/or adjacent land mass i n f l u e n c e (shadow)  avalanched (J-used t o i n d i c a t e narrow avalanche t r a c k s )  E  channelled  p  f l a t - no dominant aspect i n f l u e n c e MODIFIERS Any aspect may be modified due t o l o c a l topographic v a r i a t i o n u s i n g t h e same l e t t e r symbols described above, denoted as a s u p e r s c r i p t (e.g. [£ ) .  West - average aspect 270°  -  GENETIC MATERIAL  C  fj  $y Composite symbols a r e employed w i t h i n each map u n i t quadrant where two o r three f e a t u r e s are i n t e r m i x e d o r occupy such s m a l l areas that they cannot be designated aa separate u n i t s . Features w i t h i n the quadrants are w r i t t e n i n d e c r e a s i n g order of Importance. I f i t i s p o s s i b l e t o i n d i c a t e the r e l a t i v e amounts o f each f e a t u r e , the f o l l o w i n g symbols are employed:  semi-open canopy (50-75X) , open f o r e s t ( < 502)  ;  M o d i f i e r s are used f o r complex v a l l e y slopes where l o c a l v a r i a t i o n i n the macroslope r e s u l t s l n e l e v a t i o n s l v a r i a n t s of hygrotope/alope p o s i t i o n . They a r e denoted u s i n g the l e t t e r symbols d e s c r i b e d below l n the s u p e r s c r i p t p o s i t i o n (e.g. SL >PRESENT VEGETATION CONDITION  Brush (shrub) cover  6  s  MODIFIERS  Slope p o s i t i o n m o d i f i e r — y  S c r a l c o n i f e r o u s f o r e s t cover  B  o  * Assumed simple slope l o c a t i o n  MAP UNIT  Climax (or near climax) c o n i f e r o u s f o r e s t cover  5  MODIFIERS - FOREST COVER  ft[ R e c e i v i n g zone i m p e r f e c t l y drained (L) A  C  Northwest - average aspect 315° T  3.  MODIFYING PROCESS (nay ba used o n i t a own when p r e f i x e d w i t h a dash)  channelled by g l a c i a l meltwater F  falling  V  gullied  * T e r r a i n C l a s s i f i c a t i o n System (Environment and Land Use Committee S e c r e t a r i a t . 1976),  MAP UNIT . COMPONENT  AERIAL PHOTO FEATURES DIRECTLY OBSERVABLE ABOUT THE MAP UNIT COMPONENT  SLOPE POSITION/  a slope p o s i t i o n f o r complex and simple slopes  HYGROTOPE  ASPECT/ EXPOSURE  PRESENT VEGETATION  TERRAIN FEATURES MD PROCESSES (i.e.LANDFORMS AND PARENT MATERIAL  AERIAL PHOTO FEATURES DIRECTLY OBSERVABLE USED TO INFER THE PROPERTIES OF THE MAP UNIT COMPONENT  EXISTING INFORMATION  topographic map (1:50,000) planimetric map (1:15,840)  drainage network  slope p o s i t i o n , slope length, slope c o n f i g u r a t i o n , present vegetation c o n d i t i o n , aspect/ exposure, t e r r a i n features (parent m a t e r i a l drainage)  slope, slope o r i e n t a t i o n , slope p o s i t i o n , v a l l e y position, valley orientation  g l a c i e r s and snow, present vegetation  physiognomy, p a t t e r n , tree species i d e n t i f i c a t i o n , tone, texture, d e n s i t y , land use  land use, slope p o s i t i o n / hygrotope, aspect/exposure, t e r r a i n features (parent material drainage)  forest cover map (1:15,840) vegetation zonation map (1:50,000-1:2,000,000)  exposed t a l u s , rock, or unconsolidated deposit, drainage network, snow, g l a c i e r , slope p o s i t i o n , slope c o n f i g u r a t i o n , valley orientation, valley position  present vegetation c o n d i t i o n  landform and s o i l s maps (1:50,000)  topographic map (1:50,000)  geology map (1:250,000)  Table 4.2 A e r i a l photo features and other e x i s t i n g information used to characterize map unit components.  ION  SR D Co T Rs  Figure 4 . 1  ST N  CSB  Rl  F  N  u  GB  SR T  N  M  Co RC  SH  SCs AV  SM  SL N  RI Csc NV  A SCc VF - E  RW SoP F  s  Ft  S t y l i z e d s l o p e p r o f i l e i l l u s t r a t i n g the use of t h e v e g e t a t i o n p r e t y p i n g legend ( v e r t i c a l exaggerated). Symbols a r e d e s c r i b e d i n Table 4 . 1 .  G  scale  - 64 -  had a low sampling i n t e n s i t y due to t h e i r l i m i t e d access and, i n the Templeton watershed, t h e i r l i m i t e d development of vegetation.  Sample  p l o t l o c a t i o n s , f i e l d traverses and access roads are shown i n Figures 4.2 and 4.3 f o r Grassy Creek and Templeton River r e s p e c t i v e l y .  The  g  extent of "ground t r u t h " obtained f o r each v a l l e y , r e l a t i v e to watershed area and the number of pretyped map u n i t s , i s summarized i n Table  4.3  below. Table 4.3.  Extent of ground t r u t h obtained f o r each v a l l e y , r e l a t i v e to watershed area and the number of pretyped u n i t s .  no. of pretyped map  Grassy Ck  Templeton R.  208  228**  units  no. of pretyped map units sampled at l e a s t once*  62  (29%)  75  (33%)  no. of pretyped map u n i t s intersected by transects"  97  (46%)  105  (46%)  no. of sample p l o t s area of watershed  (ha)  85 3240  121 3650  " expressed i n absolute values and as a percentage of the t o t a l number of vegetated pretyped map u n i t s . ''""an a d d i t i o n a l 21 pretyped map u n i t s i n the watershed were mapped as non-vegetated.  Transects were marked on a e r i a l photographs and located i n the f i e l d using features observable both on the groundand i n a e r i a l photos (e.g. roads, forest openings, t a l u s , forest type changes, e t c . ) , and by f o l l o w i n g a compass bearing.  Sample p l o t s were located w i t h i n the  pretyped units on those s i t e s observed to have a r e l a t i v e l y homogeneous  Figure  4.2  Grassy Creek - sample p l o t roads.  locations,  f i e l d traverses  and access  -  vegetation graphy,  67 -  ( s t r u c t u r e and c o m p o s i t i o n )  and h a b i t a t  (slope,  microtopo-  m o i s t u r e r e g i m e , p a r e n t m a t e r i a l , s o i l and m i c r o c l i m a t e ) .  observable v a r i a t i o n s  Any  i n v e g e t a t i o n or h a b i t a t were noted d u r i n g t h e  t r a v e r s e through a p a r t i c u l a r p r e t y p e d u n i t .  V a r i a t i o n s f e l t to  occur  i n more than 15% of the p r e t y p e d u n i t were sampled. The s i z e of a sample p l o t was not determined u s i n g the concept  of  minimum a r e a (Poore, 1 9 5 5 ) , but v a r i e d somewhat depending on the n a t u r e of the v e g e t a t i o n and h a b i t a t under s t u d y .  For example, sample p l o t s  l o c a t e d i n a v a l a n c h e t r a c k s and a l o n g narrow f l o o d p l a i n s were considerably smaller (e.g.  usually  . 0 0 1 ha) than those l o c a t e d i n f o r e s t  The average p l o t s i z e f o r f o r e s t  stands.  stands was . 0 4 ha (1/10 of an a c r e )  recommended by Daubenmire (1967) f o r s t a n d s o f s i m i l a r c h a r a c t e r . p l o t s were c i r c u l a r i n shape.  The c i r c u m f e r e n c e of the f i r s t  as  Sample  20 sample 9  p l o t s was marked u s i n g a measured r a d i u s measure of 1 1 . 3 m ( 3 7 . 2 A v i s u a l e s t i m a t e of t h i s r a d i u s  (and c i r c u m f e r e n c e ) was used i n s u b -  sequent sample p l o t s and o n l y t h e p l o t At each sample p l o t , p l a n t s and b r y o p h y t e s  c e n t r e was marked w i t h  flagging.  a s p e c i e s l i s t was prepared f o r a l l  growing i n m i n e r a l s o i l and humus.  field  The s p e c i e s l i s t was s u b d i v i d e d i n t o 8 s t r a t a based on h e i g h t  and growth form.  A coverage estimate"'"^ was o b t a i n e d , f o r each s p e c i e s  i n each l a y e r i t o c c u r r e d , , u s i n g a 6 - c l a s s coverage s c a l e 19.59) .  vascular  Unfamilar  s p e c i e s were c o l l e c t e d , l a b e l l e d and i d e n t i f i e d " ^ l a t e r i n the office.  feet).  (Daubenmire,  S t r a t a l c a t e g o r i e s and coverage c l a s s e s a r e d e f i n e d i n Appendix  A s p e c i e s l i s t f o r b o t h watersheds i s g i v e n i n Appendix I I .  Additional  s i t e i n f o r m a t i o n r e c o r d e d a t each sample p l o t i n c l u d e d e l e v a t i o n , a s p e c t , macro and m i c r o - t o p o g r a p h y ,  slope c o n f i g u r a t i o n ,  site  slope,  history  I.  -  (e.g.  logging,  fire,  68 -  slides, etc.),  moisture regime,  substrate  quality  (by p e r c e n t c o v e r ) and an e s t i m a t e of t h e p a r e n t m a t e r i a l and s o i l development.  4.3  Data a n a l y s i s i n t e r p r e t a t i o n and a p p l i c a t i o n t o mapping F o l l o w i n g f i e l d s t u d i e s , t h e d a t a were assembled and checked  e r r o r s and o m i s s i o n s .  V e g e t a t i o n and p h y s i c a l d a t a were coded f o r  for computer  a n a l y s i s and s t o r a g e and a s e p a r a t e d a t a s e t was e s t a b l i s h e d f o r each s t u d y area:  Grassy Creek (85 s a m p l e s ) , Templeton R i v e r  " S y s t e m a t i c Sampling Study"  (31 s a m p l e s ) .  (121 samples) and  V e g e t a t i o n d a t a were  analysed  u s i n g t h e Coenos 1 program at the p r o v i n c i a l government computer f a c i l i t y . "*" The " o u t p u t "  from t h e Coenos 1 program, i t s a n a l y s i s , i n t e r p r e t a t i o n and  a p p l i c a t i o n to mapping a r e d i s c u s s e d . •  4.3.1  Coenos 1 computer program output As mentioned e a r l i e r i n s e c t i o n 3 . 3 , D i s s i m i l a r i t y A n a l y s i s  program has been i n c o r p o r a t e d i n t o a more complete v e g e t a t i o n d a t a a n a l y s i s r o u t i n e e n t i t l e d "Coenos 1" (Ceska, 1 9 7 5 ) .  The Coenos 1  program o f f e r s a number of " a c c e s s o r y a n a l y s e s " and p r i n t - o u t  options  u s u a l l y performed a f t e r an i n i t i a l s t r a t i f i c a t i o n of the d a t a s e t by 14 Dissimilarity Analysis.  The a n a l y s i s o p t i o n s s e l e c t e d i n t h i s  are the same as those s e l e c t e d by t h e p r o v i n c i a l b i o p h y s i c a l  study  (vegetation)  survey s t u d i e s : a.  D i s s i m i l a r i t y A n a l y s i s performed u s i n g c o n d i t i o n (a q u a l i t a t i v e  analysis);  entrophy  -  b.  s p e c i e s c l u s t e r e d u s i n g S ^ r e n s e n s c o e f f i c i e n t and unweighted 1  pair c.  69 -  clustering;  p l o t s c l u s t e r e d w i t h i n f i n a l groups u s i n g E u c l i d e a n d i s t a n c e and weighted p a i r group c l u s t e r i n g (a q u a n t i t a t i v e  analysis);  and d.  f i n a l groups  (from D i s s i m i l a r i t y A n a l y s i s )  clustered using  mean s i m i l a r i t y c o e f f i c i e n t s between f i n a l groups and weighted p a i r group c l u s t e r i n g .  4.3.1.1  Dissimilarity  Analysis  Due t o l i m i t e d computer s t o r a g e ,  an "unmasked" s p e c i e s l i s t was .  s e l e c t e d f o r i n p u t t o t h e D i s s i m i l a r i t y A n a l y s i s program when t h e t o t a l  15 number of s p e c i e s exceeded 2Q0.  The s p e c i e s "masked" were t h o s e w h i c h  o c c u r r e d o n l y once i n t h e t o t a l d a t a s e t ( i . e . the lowest and were r e t r i e v e d a g a i n d u r i n g t h e t a b l e  constancy),  printouts.  V e g e t a t i o n s t r u c t u r e i s i n t r o d u c e d i n t o t h e a n a l y s i s by t h e p o t e n t i a l f o r a " l a y e r w e i g h t i n g " o f t r e e and shrub s p e c i e s .  Weighting  i s a c c o m p l i s h e d by a l l o x j i n g any p a r t i c u l a r t r e e o r shrub s p e c i e s t o s c o r e a s i n g l e a t t r i b u t e f o r each l a y e r i t o c c u p i e s .  F o r example, a p a r t i c u l a r  t r e e s p e c i e s r e p r e s e n t e d by i n d i v i d u a l p l a n t s i n a l l t r e e and shrub (6 l a y e r s i n t o t a l ) plot.  layers  would c o n t r i b u t e a s c o r e of 6 a t t r i b u t e s t o t h e sample  Shrub s p e c i e s can c o n t r i b u t e a maximum o f 2 a t t r i b u t e s p e r s p e c i e s  s i n c e t h e r e a r e o n l y 2 shrub l a y e r s . D i s s i m i l a r i t y A n a l y s i s was performed on each d a t a s e t u s i n g t h e  2 s t o p p i n g v a l u e d i s c u s s e d i n s e c t i o n 3.2.3 (x species -1).  05(v)'  The r e s u l t s o f t h e a n a l y s i s showed:  V  =  n u m  ^  e r  the d i v i s i v e  °^ hierarchy  of t h e d a t a s e t i n t o " i n t e r m e d i a t e g r o u p s " , plots";  " f i n a l groups" and " s i n g l e  the " c h i - s q u a r e " v a l u e f o r i n t e r m e d i a t e groups and f i n a l  and the "mean s i m i l a r i t y v a l u e " of each f i n a l group.  This  information  was used to c o n s t r u c t a D i s s i m i l a r i t y A n a l y s i s dendrogram (see 4.4).  groups  Figure  An " i n t e r m e d i a t e group" i s a s u b d i v i s i o n of t h e i n i t i a l s e t  p l o t s whose members a r e not c o n s i d e r e d t o be a f i n a l group a t p a r t i c u l a r l e v e l of t h e h i e r a r c h y  of  that  (on the b a s i s of the s t o p p i n g  value).  A " f i n a l group" i s a s u b d i v i s i o n of the i n i t i a l set of p l o t s whose members cannot be d i v i d e d any f u r t h e r and t h e r e f o r e (on the b a s i s of the s t o p p i n g v a l u e ) . but w i t h o n l y one member.  form a f i n a l group  A "single plot"  is a "final  group"  The " c h i - s q u a r e " f i g u r e i n d i c a t e s t h e i n f o r m -  16 a t i o n gained (AI) of d i v i s i o n  by d i v i d i n g t h e s e t of p l o t s at an i n t e r m e d i a t e  level  ( i n t e r m e d i a t e groups) o r t h e p o t e n t i a l i n f o r m a t i o n g a i n by  d i v i d i n g t h e s e t o f p l o t s w i t h i n a f i n a l group.  The "mean s i m i l a r i t y  measure" i n d i c a t e s the homogeneity among t h e members of a f i n a l  group.  V  Ceska ( 1 9 7 5 ) , s u g g e s t s t h a t v a l u e s below 50 p e r c e n t i n d i c a t e  heterogenous  g r o u p s , v a l u e s between 50 and 60 p e r c e n t i n d i c a t e r e a s o n a b l y homogeneous groups and v a l u e s g r e a t e r than 60 p e r c e n t i n d i c a t e v e r y homogenous 4.3.1.2  Accessory  groups.  analyses  The " s p e c i e s c l u s t e r a n a l y s i s " aggregated t h o s e s p e c i e s w h i c h were d i s t r i b u t e d s i m i l a r i l y o v e r the p l o t s sampled.  These groupings  do not  n e c e s s a r i l y r e f l e c t c a u s a l r e l a t i o n s h i p s among s p e c i e s .  However,  d e t e c t e d p a t t e r n s may prove u s e f u l i n s t u d y i n g a v a r i e t y  of  r e l a t i o n s h i p s to one a n o t h e r and t o e n v i r o n m e n t a l f a c t o r s .  the  species The  results  - 71 -  INITIAL SET (10 plots)  (3 plots)  (7 plots)  (4 plots) H R l o t s )  (1 plot) I (2 plots)  SINGLE PLOT m 56.7  Figure 4.4  i 31.7  C02 (a)  Figure 4.5  ~ MEAN SIMILARITY VALUES  The components of a D i s s i m i l a r i t y A n a l y s i s Dendrogram as c o n s t r u c t e d from the a n a l y s i s p r i n t - o u t .  FINAL GROUP3( FROM FIGURE 4.4 >  SAMPLE / p n i PLOTS \  | FINAL GROUPS 64.2 •  31.7  (INTERMEDIATE GROUPS  INITIAL SET  B10  FINAL GROUP/ (from figure \ 4.4)  (b)  Examples of c l u s t e r a n a l y s i s dendrograms: (a) p l o t c l u s t e r w i t h i n a f i n a l group; (b) c l u s t e r a n a l y s i s of f i n a l groups d e r i v e d from D i s s i m i l a r i t y A n a l y s i s .  - 72 -  of t h i s analysis complemented the comparative a n a l y s i s procedure discussed i n section 4.3.2.1 below.  The r e s u l t s of t h i s analysis are shown by a  dendrogram i n which species are not p a r t i t i o n e d by layer. The " p l o t c l u s t e r a n a l y s i s " was performed on a l l p l o t s of each f i n a l group with more than two members.  This a n a l y s i s revealed the  h i e r a r c h i c a l structure w i t h i n each f i n a l group based on the s i m i l a r i t y of the p l o t members to one another  (see example Figure 4.5(a)).  The " f i n a l group c l u s t e r a n a l y s i s " ( f i n a l groups derived from D i s s i m i l a r i t y Analysis) displayed the h i e r a r c h i c a l structure of f i n a l groups based on the s i m i l a r i t y of the f i n a l groups to one another  (see  example Figure 4.5(b)).  4.3.1.3  Tables  Two tables were printed f o l l o w i n g the D i s s i m i l a r i t y A n a l y s i s and the accessory ( c l u s t e r ) analyses: table".  a "synthesis t a b l e " and a "constancy  The synthesis table presented a species x plot matrix with cover  values as matrix e n t r i e s .  Species were arranged according to the r e s u l t s  of the "species c l u s t e r a n a l y s i s " and were p a r t i t i o n e d by layer.  The  p l o t s were arranged according to the p l o t c l u s t e r analysis (the arrangement of p l o t s w i t h i n a f i n a l group) and then by f i n a l group order according to the c l u s t e r a n a l y s i s . The "constancy t a b l e " presented a species x f i n a l group matrix with constancy values as matrix e n t r i e s .  Species were arranged i n the  same order as the "synthesis t a b l e " and the f i n a l groups were arranged according to the f i n a l group c l u s t e r a n a l y s i s .  -  4.3.2  73 -  A n a l y s i s and i n t e r p r e t a t i o n of  results  The r e s u l t s from t h e Coenos 1 program were a n a l y s e d and i n t e r p r e t e d f o r t h r e e main o b j e c t i v e s : a.  to a s s e s s the homogeneity of each f i n a l group ( i . e .  consider  a more d e t a i l e d c l a s s i f i c a t i o n by s u b d i v i d i n g a f i n a l group"'"''); b.  i n c o n j u c t i o n w i t h " a " , t o c h a r a c t e r i z e each " v e g e t a t i o n ( f i n a l group, s i n g l e p l o t or subset of a f i n a l group)  type"  (defined  below) i n terms of i t s v e g e t a t i o n and h a b i t a t f e a t u r e s ; and c.  subsequent to " b " , d e t e r m i n e t h e e c o l o g i c a l r e l a t i o n s h i p between v e g e t a t i o n t y p e s (historical),  (zonal, subzonal, successional  e d a p h i c , c l i m a t i c and t o p o g r a p h i c ) .  To r e a l i z e t h e s e o b j e c t i v e s ,  the c l a s s i f i c a t i o n h i e r a r c h i e s from the  D i s s i m i l a r i t y A n a l y s i s and p l o t c l u s t e r a n a l y s i s were a n a l y s e d , p r e t e d and t r a n s l a t e d i n t o map u n i t  4.3.2.1  inter-  categories.  Comparative a n a l y s i s F i n a l group homogeneity was i n i t i a l l y a s s e s s e d by examining t h e  mean s i m i l a r i t y v a l u e s and t h e p l o t c l u s t e r a n a l y s i s . a low mean s i m i l a r i t y ( e . g .  l e s s than 50 p e r c e n t )  relatively discrete plot clusters for subdivision.  F i n a l groups  with  and/or d i s p l a y i n g  ( w i t h i n a f i n a l group) were c o n s i d e r e d  For example, i n F i g u r e 4 . 5 ( a ) ,  f i n a l group 2 would be  s t r o n g l y c o n s i d e r e d f o r s u b d i v i s i o n s i n c e i t has a low mean s i m i l a r i t y ( 3 1 . 7 ) and shows a s t r o n g dichotomy i n t h e p l o t c l u s t e r a n a l y s i s C01, C02 v e r s u s p l o t  BIO).  (plots  -  74 -  A " v e g e t a t i o n t y p e " i s d e f i n e d as a s y n t h e t i c g r o u p i n g v e g e t a t i o n sample p l o t s  of  ( i n the case of a s i n g l e p l o t t h e " g r o u p i n g "  has o n l y one r e p r e s e n t a t i v e )  w h i c h demonstrates some l e v e l of  homogeneity but w h i c h has no assumed taxonomic r a n k .  internal  Vegetation  types  were r e p r e s e n t e d by f i n a l groups, s u b d i v i s i o n s of f i n a l groups o r plots.  V e g e t a t i o n t y p e s were c h a r a c t e r i z e d i n terms of t h e i r  and h a b i t a t f e a t u r e s .  single  vegetation  The d i v i s i v e h i e r a r c h y d e r i v e d from t h e D i s s i m i l a r -  i t y A n a l y s i s was used as a b a s i s f o r a c o m p a r a t i v e a n a l y s i s of t h e f l o r i s t i c attributes  ( s p e c i e s c o m p o s i t i o n and c o n s t a n c y )  of each v e g e t a t -  18 i o n type or " b r a n c h "  of t h e dendrogram ( v e g e t a t i o n t y p e s ) and c o n t i n u e d  up the h i e r a r c h y to t h e more g e n e r a l i z e d end of the dendrogram (groups  19 of v e g e t a t i o n t y p e s ) .  At each " l e v e l of d i v i s i o n "  t h e two  resultant  branches of the dendrogram were compared w i t h r e s p e c t to t h e i r c o m p o s i t i o n (presence or absence) and s p e c i e s c o n s t a n c y v a l u e s .  species Each  s p e c i e s p r e s e n t i n the b r a n c h b e i n g compared (branch " a " ) was a l l o c a t e d 20 to one of 7 c a t e g o r i e s shown i n T a b l e 4 . 4 .  This analysis  the f l o r i s t i c c h a r a c t e r of each b r a n c h throughout  revealed  a l l l e v e l s of  division  i n the c l a s s i f i c a t i o n h i e r a r c h y . 4.3.2.2  C h a r a c t e r i z a t i o n of v e g e t a t i o n  types  The c o m p a r a t i v e a n a l y s i s c h a r a c t e r i z e d each s p e c i e s p r e s e n t i n a branch of the dendrogram a c c o r d i n g t o i t s " d i a g n o s t i c " or " n o n - d i a g n o s t i c " value.  T h i s i n f o r m a t i o n permitted the comparison of v e g e t a t i o n types  one a n o t h e r , of v e g e t a t i o n t y p e s . t o a b r a n c h of t h e dendrogram (groups of v e g e t a t i o n t y p e s ) and of branches of the dendrogram t o one a n o t h e r .  to  VALUES AND RATIOS OF x AND X , a b  SPECIES CATEGORY DIAGNOSTIC SPECIES (x ^25,x =0) a b  NON-DIAGNOSTIC SPECIES 0)  (x ^=80,x, *0) a b FREQUENT ASSOCIATE (80^x ^25,x *0) a b  1.  x = t h e constancy v a l u e (branch " a " ) .  63  0  PREFERENTIAL  x -80,x, ^0,x 5=2x, a b a b  93  25  NON-PREFERENTIAL  x ^80,x^0,x ^ 2 x a b a b  100  93  L  PREFERENTIAL  80^x ^25,x,_^0,x ^2x, a b a b  72  35  NON-PREFERENTIAL  80^x ^25 ,x,=*0 ,x ^2x, a b a b  36  25  25=* x =*0,x, -0 a b  12  8  (%) o f a p a r t i c u l a r s p e c i e s i n the branch b e i n g c h a r a c t e r i z e d  b= the c o n s t a n c y v a l u e (%) o f t h e same s p e c i e s i n the branch b e i n g compared t o branch "a" (branch " b " ) . The above constancy v a l u e s a p p l y t o branches w i t h 5 o r more p l o t s . The above constancy v a l u e o f "80" i s reduced t o "75" f o r branches w i t h 4 p l o t s . The above c o n s t a n c y v a l u e o f "80" i s reduced t o "67" f o r branches w i t h 3 p l o t s . Branches w i t h 2 p l o t s a r e c h a r a c t e r i z e d by Constant s p e c i e s when x = 100 and Frequent A s s o c i a t e s p e c i e s when x = 50 (x, can have any v a l u e ) . a b Branches w i t h a s i n g l e p l o t a r e c h a r a c t e r i z e d by D i a g n o s t i c s p e c i e s when x i s p r e s e n t a  6.  cl  and x^ i s absent and Non-Diagnostic s p e c i e s when x i s p r e s e n t and x i s a l s o p r e s e n t . Branch "b" i n t h i s case i s c h a r a c t e r i z e d by o n l y D i a g n o s t i c s p e c i e s n o t found i n branch " a " . a  T a b l e 4.4  b  80^x^25,^=0  X  2. 3. 4. 5.  X  0  OCCASIONAL ASSOCIATE NOTES:  a  100  FREQUENT ASSOCIATE CONSTANT  (xj±25,x* a b  x -80,x, =0 a b  CONSTANT  EXAM 1PLE X  fa  C a t e g o r i e s , v a l u e s and r a t i o s o f s p e c i e s constancy used i n the comparative of dendrogram branches.  analysis  - 76 -  Vegetation types were therefore characterized by t h e i r diagnostic and p r e f e r e n t i a l species and described by physiognomic features (based on species composition by l a y e r and cover values) and t h e i r associated " r e c o g n i t i o n species" (species w i t h a high average cover value but not n e c e s s a r i l y c h a r a c t e r i s t i c of the u n i t ) . Vegetation types were named using at l e a s t three species, u s u a l l y representing the t r e e , shrub and herb l a y e r .  Within each  l a y e r , the species chosen for naming were, i n decreasing order of choice: diagnostic constants and frequent associates with a high  constancy;  non-diagnostic p r e f e r e n t i a l constants and frequent associated; nondiagnostic n o n - p r e f e r e n t i a l constants and frequent associates w i t h a high constancy and x^ > x^; and species with a high cover value.  Table  4.5 below demonstrates the nomenclature system used i n t h i s study. Table 4.5  Examples of vegetation type, names  PHYSIOGNOMY  VEGETATION TYPE NAME  FOREST (tree/shrub/herb)  Pinus contorta/Rhododendron albiflorum/Xerophyllum tenax (or) Tsuga-*—Thuja^/Taxusbrevifolia/Athyrium f i l i x - f e m i n a  KRUMIIOLTZ or BRUSH (/shrub/herb)  /Abies lasiocarpa/Phyllodoce empetriformis-Luzula glabrata^  SAVANNAH (//herb)  //Madia glomerata-Lupinus hensis)^ '  w y e t h i i (-Festuca idaho-  1.  Tree species are abbreviated to the generic name only when only one species represents the genus i n the study area (e.g. Tsuga = Tsuga heterophylla; Thuja = Thuja p l i c a t a ) .  2.  "-Thuja" i n d i c a t e s that Thuja p l i c a t a i s also a c h a r a c t e r i s t i c tree species for t h i s vegetation type but had a lower c h a r a c t e r i s t i c value than Tsuga heterophylla.  3.  Two herb species are used to name t h i s vegetation type since a tree layer i s absent.  4.  Parentheses around a species i n d i c a t e s a species which i s not p a r t i c u l a r l y c h a r a c t e r i s t i c but gives a u s e f u l v i s u a l impression of the vegetation type.  -  The p h y s i c a l d a t a ( h a b i t a t  77 -  features)  a c c o r d i n g t o v e g e t a t i o n type and summarized.  f o r each p l o t Were a r r a n g e d Each v e g e t a t i o n type was  c h a r a c t e r i z e d by t e r r a i n u n i t s , s o i l development,  s o i l texture,  d r a i n a g e , e l e v a t i o n , s l o p e , a s p e c t , s l o p e c o n f i g u r a t i o n and  4.3.2.3  Interpretation  of v e g e t a t i o n  soil  hygrotope.  types  Sample p l o t l o c a t i o n s were p l o t t e d on the p r e t y p e d maps and l a b e l l e d a c c o r d i n g t o t h e i r v e g e t a t i o n , type  vegetation  (membership)...  A knowledge of t h e d i s t r i b u t i o n of the v e g e t a t i o n types t o g e t h e r  with  t h e i r v e g e t a t i v e and p h y s i c a l c h a r a c t e r i s t i c s a l l o w e d f o r the f o l l o w i n g interpretations: a.  successional status  (history);  b.  b i o g e o c l i m a t i c subzone  c.  e d a p h i c , t o p o g r a p h i c and m e s o - m i c r o c l i m a t i c c h a r a c t e r ;  d.  t h e o v e r a l l e c o l o g i c a l r e l a t i o n s h i p of one t y p e '  character;  t  o  These i n t e r p r e t a t i o n s were made by i n t e g r a t i n g a l l a v a i l a b l e about each v e g e t a t i o n t y p e :  and  another. information  v e g e t a t i o n d a t a , t r e e ages and h e i g h t s ,  p h y s i c a l d a t a , f o r e s t cover maps, s o i l s and t e r r a i n u n i t maps;  pretyped  v e g e t a t i o n maps, a e r i a l photographs and t o p o g r a p h i c maps.  4.3.3  Mapping  4.3.3.1  Mapping of v e g e t a t i o n  types  The v e g e t a t i o n t y p e s had a s t r o n g geographic b i a s w i t h i n each study a r e a , s i n c e t h e p r e t y p i n g a p p r o a c h , method of d a t a c o l l e c t i o n and  -  78 -  i n t e r p r e t a t i o n of the r e s u l t s a l l r e f l e c t e d the n a t u r a l d i s t r i b u t i o n of the vegetation across the landscape. were w e l l suited to mapping.  Hence, the vegetation types  Vegetation types were arranged i n a  legend fashion according to biogeoclimatic subzone, successional status and mositure regime (usually a topoedaphic  sequence).  L e t t e r symbols  were used to i n d i c a t e the climax, p o t e n t i a l climax or d i s c l i m a x veget a t i o n of the type.  Numbers f o l l o w i n g the l e t t e r symbol were used to  i n d i c a t e the successional status of the unit (e.g. D = climax, D-l = approximately one sere from a climax s i t u a t i o n , D-2 = approximately two seres from a climax c o n d i t i o n ) . The pretyped vegetation maps served as a basis to map the geographical extent of each vegetation type.  The pretyped designations  associated with each sample p l o t and i t s c l a s s i f i c a t i o n according to the analysis were examined to determine the p r e d i c t i v e c a p a b i l i t y of the pretyping approach.  O r i g i n a l pretyping concepts and mapping c r i t e r i a  which proved to be inconsequent were re-examined and adjusted on the a e r i a l photographs.  Once r e l a t i o n s h i p s were established between the  pretyped map u n i t s (and t h e i r i n d i v i d u a l components) and the vegetation types, mapping proceeded q u i c k l y . i n areas with b e t t e r ground t r u t h .  I n i t i a l l y , mapping was concentrated Patterns developed  i n these areas  were then extrapolated to adjacent landscapes using the c o r r e l a t i o n s developed  f o r the pretyped u n i t s and the vegetation types.  -  4.3.3.2  79  -  Mapping of biogeoclimatic subzones  A f t e r several approximations, biogeoclimatic subzone maps were prepared f o r each v a l l e y (Grassy Ck. — F i g u r e 5.3; Templeton R. Figure 6.3).  The i n i t i a l "model" f o r zonation was based on K r a j i n a ' s  (1973) map of "Biogeoclimatic Zones of B r i t i s h Columbia" (1:1,900,800) and vegetation zonation maps prepared by the p r o v i n c i a l b i o p h y s i c a l ,-'21 survey.  As the f i e l d season progressed and more experience was gained  on vegetation patterns w i t h i n each v a l l e y , the o r i g i n a l zonation u n i t s were adjusted.  Forest cover types (B.C. Forest S e r v i c e ) , a e r i a l photo-  graphs, sample p l o t data and the f i n a l d i s t r i b u t i o n of the vegetation types a l l a s s i s t e d i n the f i n a l approximation of subzones.  The f i n a l  maps were prepared at a scale of 1:50,000, i n d i c a t i v e of the l e v e l of confidence of such mapping u n i t s .  Footnotes: 1.  Operational — "an action done as part of p r a c t i c a l work" (Webster's New World D i c t i o n a r y , College E d i t i o n , 1966).  2.  Study conducted by G. U t z i g , graduate student, Department of S o i l Science, U n i v e r s i t y of B r i t i s h Columbia.  3.  A "watershed" i s defined by that area of land drained by a r i v e r or r i v e r system (Webster's New World D i c t i o n a r y , College E d i t i o n , 1966).  4.  Reviewing maps, a e r i a l photo i n t e r p r e t a t i o n (pretyping), data organization and i d e n t i f i c a t i o n of unknown plant specimens.  5.  Chapter 7 - "Systematic Sampling Study".  6.  D. B r i e r e , graduate student, Hydrology, Faculty of Forestry, U n i v e r s i t y of B r i t i s h Columbia. Ph.D. t h e s i s i n progress e n t i t l e d , "The s t r a t i f i cation of forested landscapes f o r i n t e n s i v e management: development and a p p l i c a t i o n " .  -  80 -  7.  A statement about t h i s feature i s o p t i o n a l , only those features r e a d i l y observable need be recorded.  8.  "Ground t r u t h " —  9.  TT(11.3m) = .04 hectares 2  ground v e r i f i c a t i o n of a i r photo i n t e r p r e t a t i o n . (TT(37.2 f e e t )  2  = .1 acre).  10.  I d e n t i f i c a t i o n and nomenclature of plant species followed e t a l . , (1955, 1959, 1961, 1964, 1969).  11.  "Cover" i s defined as "the area of ground occupied by a perpendicular p r o j e c t i o n on to i t of the f o l i a g e and stems of i n d i v i d u a l s of a p a r t i c u l a r species". (Shimwell, 1971).  12.  A f t e r K r a j i n a (1965); 8 classes - very x e r i c , x e r i c , subxeric, submesic, mesic, subhygric, hygric and subhydric.  13.  An IBM 370 - model 158 (system VS1) computer was used.  14.  There i s an option not to perform D i s s i m i l a r i t y Analysis when the user wishes to s p e c i f y the p l o t groups.  15.  This l i m i t a t i o n w i l l probably be eliminated when the Coenos 1 program i s improved and optimized. 2 R e c a l l that 21 ( I = information s t a t i s t i c ) approximates the x d i s t r i b u t i o n (section 3.2.3). A more s i m p l i f i e d c l a s s i f i c a t i o n could be achieved by aggregating f i n a l groups, however t h i s was not required i n the o p e r a t i o n a l studies.  16. 17.  Hitchcock  18.  The term "branch(es)" w i l l be used to describe the l i n e s of the dendrogram which are p a r a l l e l to the "flow" of the hierarchy from d e t a i l e d to general or v i c e versa.  19.  The phrase " l e v e l s of d i v i s i o n " w i l l be used to describe the l i n e s of the dendrogram which run perpendicular to the " flow" of the hierarchy.  20.  This approach was developed by the Vegetation Section of the Resource Analysis Branch, M i n i s t r y of Environment, Kelowna, B.C. I t i s hoped that i n the future t h i s a n a l y s i s w i l l be performed automatically as part of the Coenos 1 program.  21.  Grassy Creek: map sheet 82F (1:50,000); Templeton River: 82K (1:250,000).  map sheet  - 81 -  CHAPTER 5 .  GRASSY CREEK WATERSHED STUDY  -  CHAPTER 5.  82 -  GRASSY CREEK WATERSHED STUDY  5.1  D e s c r i p t i o n of study area  5.1.1  Location and geographic s e t t i n g The Grassy Creek watershed i s s i t u a t e d approximately 27 km south-  west of Nelson w i t h i n the S e l k i r k Mountains of southeastern B r i t i s h Columbia (117 23'-30' W; 49°15 -19' N) (see Figure 5.1). o  ,  I t s topography i s  characterized by gentle side slopes, r o l l i n g uplands and rounded d i v i d e s (see Figures 5.2 and 5.3).  The highest elevation i n the study area (2180 m)  i s at Grassy Mountain, i n the northwestern corner of the watershed (see Figure 5.2).  Grassy Creek, w i t h two main t r i b u t a r i e s , flows i n an e a s t e r l y  d i r e c t i o n u n t i l i t meets E r i e Creek at an elevation of 910 m (see Figure 5.4). The t o t a l catchment i s 8 km long (east-rwest), i s an average width (northsouth) of 4.5 km and an area of 3240 ha.  5.1.2  Bedrock geology The Grassy Creek watershed  i s dominated by Lower Cretaceous,  p l u t o n i c rocks of the Nelson b a t h o l i t h w i t h l e s s amounts of mixed s e d i mentary and v o l c a n i c rocks of the Lower J u r a s s i c Sinemurian Beds and the Rossland Formation ( L i t t l e , • I 9 6 0 ) .  The p l u t o n i c rocks include p o r p h y r i t i c  and non-porphyritic granite on the northern ridge and grade to granodior i t e on the southern ridge.  The eastern quarter of the watershed  s i s t s of sedimentary and v o l c a n i c rocks which include a r g i l l i t e s ,  con-  F i g u r e 5.1  Grassy Creek study a r e a l o c a t i o n .  Figure 5.2  G r a s s y Creek -  topography  ( s c a l e 1 : 1 5 , 8 4 0 ; c o n t o u r i n t e r v a l = 100 m ) .  - 85 -  Figure 5.3  Grassy Creek - view of north and south-facing slopes (looking southeast). Note the gentle side slopes, r o l l i n g uplands (foreground) and rounded divides (background). A grasslandsubalpine f o r e s t mosaic occurs i n the foreground while a montane I n t e r i o r western hemlock dry subzone characterizes the v a l l e y bottom and slopes to the southwest.  Figure 5.4  Grassy Creek - view of eastern end of the watershed (looking west) as i t meets the south-flowing E r i e Creek. Many of the lower elevations have been subject to frequent f i r e s ( open, s e r a i f o r e s t on outwash i n foreground).  -  86  -  s i l t s t o n e s , graywackes, t u f f s and a n d e s i t i c to b a s a l t i c lava flows. Extensive mineral e x p l o r a t i o n was and i s presently being c a r r i e d out in  the area, p a r t i c u l a r l y i n the area of contact between the two  rock  types.  5.1.3  S u r f i c i a l geology''' The s u r f i c i a l geology of the Grassy Creek watershed r e f l e c t s the 2  most recent advance of the C o r d i l l e r a n i c e sheet between 26,000 yB.P. and 10,000 yB.P.  (Fulton, 1971; Clague, 1975).  The i c e sheet flowed i n  a southerly d i r e c t i o n and was of s u f f i c i e n t thickness to override and deposit t i l l along ridge c r e s t s ( L i t t l e , 1960).  Following d e g l a c i a t i o n ,  most of the study area was covered with a veneer of v o l c a n i c ash (Sneddon, 1973). The s u r f i c i a l materials include t i l l , g l a c i o f l u v i a l , f l u v i a l , a e o l i a n and c o l l u v i a l deposits p r i m a r i l y of g r a n i t i c o r i g i n .  T i l l s can  occur along ridge c r e s t s down to the v a l l e y bottom and vary i n thickness from shallow veneers (less than 1 m) to greater than 10 m.  Glaciofluvial  deposits include ice-marginal t e r r a c e s , kames, and r i l l complexes.  Most  of the g l a c i o f l u v i a l deposits occur i n v a l l e y bottom l o c a t i o n s except for  a few, small outwash terraces i n upper slope l o c a t i o n s (1700  m).  Recent f l u v i a l materials are d i s t r i b u t e d along present water courses and include narrow, discontinuous stream terraces and f l o o d p l a i n s and occasional fan.  an  Aeolian m a t e r i a l s , composed of slope wash,, reworked  volcanic ash and l o e s s , are concentrated throughout the v a l l e y .  along lower, r e c e i v i n g slopes  -  5.1.4  87 -  Soils The v a r i a t i o n i n s o i l development i n the Grassy Creek study area  is p r i m a r i l y a r e f l e c t i o n of topographic p o s i t i o n and drainage, since the parent materials are dominantly  t i l l derived from g r a n i t i c materials.  On  t i l l s that occur i n moisture-receiving p o s i t i o n s (depressions or gently s l o p i n g areas at the base of a long slope), s o i l s are poorly drained Gleyed Orthic Ferro-Humic Podzols grading to imperfectly drained Gleyed Orthic Humo^'Eerric Podzols.  Mesic s i t e s , commonly occupying middle slope  l o c a t i o n s , contain x^ell drained Orthic Humo-Ferric Podzols which become gleyed with a decreasing slope.  L i t h i c Podzols occur on shallow  deposits and are r a p i d l y drained.  till  On dry forested slopes w i t h south  aspects podzols are poorly expressed and grade to D y s t r i c B r u n i s o l s . Subalpine grasslands above 1600 m i n e l e v a t i o n are predominantly L i t h i c Orthic D y s t r i c B r u n i s o l s developed on c o l l u v i a l veneers.  Depres-  s i o n a l areas, associated w i t h these southern aspects, often develop Sombric Humo-Ferric Podzols with an improved moisture regime. C o l l u v i a l materials i n forested areas have r a p i d l y drained M i n i Humo-Ferric Podzols grading to L i t h i c D y s t r i c Brunisols i n shallow-to-bedrock  areas.  Coarse g l a c i o f l u v i a l terraces are capped with f i n e textured m a t e r i a l and are r a p i d l y drained. are M i n i Humo-Ferric Podzols.  The common s o i l s on these deposits  Gleyed Degraded D y s t r i c B r u n i s o l s are  c h a r a c t e r i s t i c of coarse f l o o d p l a i n deposits w i t h high water t a b l e s and poor drainage.  -  5.1.5  88 -  Climate The c l i m a t i c i n f o r m a t i o n p r e s e n t e d f o r t h e Grassy Creek watershed  has been e x t r a p o l a t e d from d a t a o b t a i n e d from an e l e v a t i o n a l  transect  3 between T r a i l ,  R o s s l a n d and Old G l o r y M o u n t a i n .  of the study a r e a i s s t r o n g l y  The g e n e r a l c l i m a t e  i n f l u e n c e d by t h e p r e v a i l i n g e a s t e r l y  movement of P a c i f i c a i r masses over t h e Columbia M o u n t a i n s .  ^  However,  t h i s p a t t e r n i s o c c a s i o n a l l y i n t e r r u p t e d d u r i n g t h e w i n t e r by s o u t h f l o w i n g p o l a r a i r o r d u r i n g t h e summer by n o r t h - f l o w i n g , masses from the s o u t h e r n Columbia p l a t e a u x .  hot and dry  air  P r e c i p i t a t i o n and temperature  p a t t e r n s a r e t y p i c a l of mountainous t e r r a i n :  c o i n c i d e n t w i t h an i n c r e a s -  i n g e l e v a t i o n t h e r e i s an i n c r e a s e i n mean a n n u a l p r e c i p i t a t i o n and a d e c r e a s e i n mean annual t e m p e r a t u r e .  Both of t h e s e parameters have been  e x t r a p o l a t e d f o r t h r e e e l e v a t i o n s w i t h i n t h e study a r e a :  760 m, 1070 m  and 1370 m. The annual p r e c i p i t a t i o n p a t t e r n i s r e l a t i v e l y t h e months a l t h o u g h maxima a r e noted f o r J a n u a r y ,  even  throughout  June and October  through December and minima f o r A p r i l and J u l y through September Figure 5.5).  F r o n t a l cloud a c t i v i t y  strongly  affects  (see  elevational  g r a d i e n t s i n p r e c i p i t a t i o n ; below 1400 m they a r e most a c t i v e and p r e c i p i t a t i o n decreases s l i g h t l y .  Summer maxima i n p r e c i p i t a t i o n a r e  p r i m a r i l y the r e s u l t of c o n v e c t i o n s t o r m s .  The amount of  f a l l i n g as snow and r a i n a r e shown i n F i g u r e 5 . 6 .  precipitation  The p e r c e n t a g e  of  snow i n c r e a s e s u p s l o p e i n response to c o o l e r temperatures and i n c r e a s i n g precipitation.  Annual snow pack a c c u m u l a t i o n d o u b l e s from t h e  bottom t o t h e 1320 m l e v e l  ( F e b r u a r y : 760 m - 86 cm; 1320 m -  valley 170 cm).  - 89 -  Figure 5 . 6  Grassy Creek - amount of p r e c i p i t a t i o n f a l l i n g as snow and r a i n a t three e l e v a t i o n s .  -  90 -  Mean monthly temperatures at three elevations are shown i n Figure 5.7.  Minimum temperatures generally show a decrease with  increasing e l e v a t i o n , however an area j u s t above the v a l l e y bottom may be s l i g h t l y warmer than below as a r e s u l t of cold a i r drainage. The winter lapse rate f o r minimum and maximum temperatures i s low, r e f l e c t i n g rather stable conditions.  During the summer months the  lapse rate f o r maximum temperatures increases dramatically, r e f l e c t i n g unstable conditions due to snow r e t e n t i o n at upper e l e v a t i o n s . These temperature and p r e c i p i t a t i o n patterns r e s u l t i n a r a p i d l y increasing snow pack with elevation.  At lower elevations the  winter maximum i s reached i n January while at high elevations the snow continues to accumulate into the month of A p r i l .  5.2  Results and i n t e r p r e t a t i o n of the c l a s s i f i c a t i o n a n a l y s i s This section presents and i n t e r p r e t s the r e s u l t s of the c l a s s i f i -  c a t i o n a n a l y s i s f o r the Grassy Creek watershed study.  The r e s u l t s of  the D i s s i m i l a r i t y Analysis and f i n a l group c l u s t e r a n a l y s i s are presented f i r s t i n order to discuss general trends observed i n the c l a s s i f i c a t i o n hierarchy.  The r e s u l t s of the p l o t c l u s t e r a n a l y s i s and development of  the "vegetation types" are presented second as the most d e t a i l e d l e v e l s of the c l a s s i f i c a t i o n .  5.2.1  D i s s i m i l a r i t y Analysis D i s s i m i l a r i t y Analysis was performed on the 85 sample p l o t s using  200 s p e c i e s - a t t r i b u t e s as d i v i s i v e c r i t e r i a .  >Tan species which occurred  -91 -  F i g u r e 5.7  Grassy Creek - mean monthly temperature a t t h r e e e l e v a t i o n s .  -  92 -  only once i n t h e 85 p l o t s were "masked" from the a n a l y s i s i n o r d e r to meet the imposed s p e c i e s - d i m e n s i o n  o f 200.  D i s s i m i l a r i t y A n a l y s i s sub-  s e t i n t o 12 f i n a l groups and 2 s i n g l e p l o t s u s i n g a  divided the i n i t i a l  2 stopping value of 24 p l o t s .  x  =  232.63.  F i n a l group membership ranged from  2  to  F i n a l groups and s i n g l e p l o t l e v e l s o f t h e h i e r a r c h y were  e s t a b l i s h e d w i t h as few as 2 l e v e l s o f d i v i s i o n o r as many as 7 l e v e l s of  division.  65.9  Mean s i m i l a r i t y v a l u e s  (very homogeneous) t o 32.6  f o r t h e f i n a l groups ranged  ( r e l a t i v e l y heterogeneous) w i t h 10 o f  the f i n a l groups h a v i n g v a l u e s between 50.6 homogeneous) (mean v a l u e = and  54.9).  and 65.9  ( r e a s o n a b l y to v e r y  The D i s s i m i l a r i t y A n a l y s i s dendrogram  mean s i m i l a r i t y v a l u e s of t h e f i n a l The  from  groups a r e shown i n F i g u r e  5.8.  comparative a n a l y s i s o f the D i s s i m i l a r i t y A n a l y s i s dendrogram  r e v e a l e d t h e v e g e t a t i v e c h a r a c t e r of t h e v a r i o u s l e v e l s of d i v i s i o n i n the h i e r a r c h y . of  The g e n e r a l l e v e l s of t h e c l a s s i f i c a t i o n h i e r a r c h y  d i v i s i o n I , I I and I I I ) e x h i b i t e d s u c c e s s i o n a l and t o a l e s s e r  physiognomic f e a t u r e s o f t h e v e g e t a t i o n . of  Zonal and subzonal  (levels extent,  qualities  t h e v e g e t a t i o n were not d i s p l a y e d u n t i l t h e most d e t a i l e d l e v e l s o f  division  ( i . e . f i n a l groups).  The r e l a t i o n s h i p s f o r t h e f i r s t  l e v e l s o f d i v i s i o n a r e shown i n T a b l e  5.1  and i n F i g u r e 5.9.  three Two c h a r -  4 acteristic  species  a r e g i v e n f o r each branch of each d i v i s i o n .  The  d e t a i l e d l e v e l s of the D i s s i m i l a r i t y A n a l y s i s are discussed i n s e c t i o n s 5.2.3  and 5.2.4  below.  (85) a(25)  b(60)  b(8)  c(36)  d(24)  111  d(15) f(2)  d(2)  b(3)  c(21) d(4)  »V e(13)  C  b(6)  C  I  m  54.8  64.5  LU  58.8  VI  i.  Vlla(7  t  I  i L  H3  65.9  62.7  62.2  32.6  54.7  62.1  1 65.9 V IV b(2) a(12) 1  37.5  52.8  I2J 50.6  FINAL GROUP & MEAN SIMILARITY VALUE  4  Figure 5.8  a{12)  a(8] ND  i  lv  a(14]  |V  d(1) VI (1 0)  I  III a(14) b(2)  •V (17) b(3)  V c(11)  a(17)  I"  SINGLE PLOT  I  LEVEL OF DIVISION(IV); BRANCHES (a&b); NUMBER OF PLOTS (2&12).  Grassy Creek - D i s s i m i l a r i t y Analysis dendrogram and mean s i m i l a r i t y values of f i n a l groups.  LEVEL OF DIVISION  BRANCH  (successional  VEGETATION FEATURE status, physiognomy and subzone)  CHARACTERISTIC SPECIES  a  disclimax, edaphic climax and early s e r a i  Hieracium a l b i f l o r u m , Polytrichum -juniper inum  b  climax, near climax and mature s e r a i  T i a r e l l a u n i f o l i a t a , R h y t i d i o p s i s robusta  a  e a r l y s e r a i (semi-open and open forest and brush) L a r i x o c c i d e n t a l i s , Hieracium a l b i f l o r u m  b  disclimax (savannah) and edaphic climax (outcrops)  Aster spp., Festuca idahohensis  c  ESSF^oc (forest) and ESSFxB (parkland) subzones 2 IWH a (dry subzone)  Abies lasiocarpa (B2), Xerophyllum tenax  a  open and semi-open f o r e s t and brush  L a r i x o c c i d e n t a l i s , Apocynum androsaemifolium  b  logged-off  Ribes l a c u s t r e , Epilobium  c  near climax and mature s e r a i  L a r i x o c c i d e n t a l i s , Abies l a s i o c a r p a  d  climax  Rhododendron a l b i f l o r u m , Thalictrum occidentale  I  II d  III  l . E S S F - Engelmann spruce subalpine f i r zone  Tsuga heterophylla, Athyrium f i l i x - f e m i n a  augustifolium  2. IWH - I n t e r i o r western hemlock zone  Table 5.1 - Vegetation f e a t u r e s and c h a r a c t e r i s t i c s p e c i e s at g e n e r a l l e v e l s of d i v i s i o n i n the Analysis c l a s s i f i c a t i o n h i e r a r c h y .  Dissimilarity  SUCCESSIONAL FEATURES  Climax  PHYSIOGNOMIC L^J FEATURES Closed Forest  F i g u r e 5.9  1 I L^-J Semi-Open Forest Closed Forest  Near Climax & Mature Serai  I  , Semi-Open & Closed Forest  Disclimax & Edaphic Climax  Early Serai  I 1 J I Savannah Open & Semi-Open Brush & Outcrops and Forest v  ?  Grassy Creek - s u c c e s s i o n a l and physiognomic v e g e t a t i o n f e a t u r e s of the D i s s i m i l a r i t y A n a l y s i s dendrogram.  -  5.2.2  F i n a l group c l u s t e r  96 -  analysis  The f i n a l group c l u s t e r a n a l y s i s formed an a g g l o m e r a t i v e of f i n a l groups based on t h e i r f l o r i s t i c  hierarchy  s i m i l a r i t y t o one a n o t h e r .  a n a l y s i s r e v e a l e d t h e s u c c e s s i o n a l f e a t u r e s of t h e v e g e t a t i o n as by broad z o n a l r e l a t i o n s h i p s  (see F i g u r e 5 . 1 0 ) .  Physiognomic  stratified  relationships  between t h e groups a r e a l s o i n d i c a t e d i n t h e i r arrangement.  This analysis  a s s i s t e d i n d e t e r m i n i n g t h e s u c c e s s i o n a l r e l a t i o n s h i p s between the t a i o n types w i t h i n a p a r t i c u l a r  5.2.3  values  The p l o t c l u s t e r a n a l y s i s was performed on t h o s e f i n a l  in total).  S i m i l a r t o the f i n a l groups c l u s t e r r o u t i n e ,  based on t h e i r f l o r i s t i c  this  s i m i l a r i t y t o one a n o t h e r . the p l o t c l u s t e r  dendrograms and the g e o g r a p h i c d i s t r i b u t i o n of sample p l o t s  subdivision.  4 f i n a l groups  groups  analysis  of the sample p l o t s w i t h i n one  e x a m i n a t i o n of t h e mean s i m i l a r i t y v a l u e s ,  each f i n a l g r o u p ,  groups  w i t h more than 2 members (9 f i n a l  formed an a g g l o m e r a t i v e h i e r a r c h y group,  final  F o l l o w i n g an analysis constituting  ( 1 , 8 , 9 and 10) were c o n s i d e r e d  A c o m p a r a t i v e a n a l y s i s of each p o t e n t i a l b r a n c h of  for these  s u b d i v i s i o n s demonstrated they were s i g n i f i c a n t l y ^ d i f f e r e n t w i t h to t h e i r  floristic  procedure,  attributes  vege-  subzone.  P l o t c l u s t e r a n a l y s i s and mean s i m i l a r i t y  (from D i s s i m i l a r i t y A n a l y s i s )  This  (see F i g u r e 5 . 1 2 ) .  respect  As an example of  this  the c l u s t e r a n a l y s i s dendrogram of f i n a l group 9 i s shown i n  F i g u r e 5 . 1 1 . . W i t h a low mean s i m i l a r i t y v a l u e of 3 2 . 6 , f i n a l group 9 displayed 3 p o t e n t i a l dendrogram..  subdivisionsaaccording to i t s plot c l u s t e r  t A ' . c o m p a r a t i v e . a n a l y s i s of each p o t e n t i a l b r a n c h  analysis  indicated  1  I  •  ZONAL FEATURES  ILU  LU  cHn^T  J L _ _  LU  LU  m  J LHJl  ESSFxet ESSFx-Disclimax  I L ^ J  Mature Serai S Near Climax  PHYSIOGNOMIC L FEATURES Semi-Open Subalpine Forest  Figure 5.10  L  ESSFxet & ESSFx-IWH transition  SUCCESSIONAL |  FEATURES  L H j CD  GO  JL  x  -CMmax^'  J  Closed. (Subalpine) Forest  JL  U _ J L  L  filature Serai  JL  JL Early Serai  JL^JL  Closed Forest Semi-Open Log& Closed ged Forest  Disclimax & Edaphic Climax  JL  J  Open & Semi- Savannah & Open Forest and Open Krumholtz Brush Forest  Grassy Creek - zonal, successional, and physiognomic vegetation features of the f i n a l group c l u s t e r analysis dendrogram.  -  Open Krumholtz Forest  Figure 5.11  98 -  Savannah (Grasslands)  Outcrop Communities  Grassy Creek - p l o t c l u s t e r a n a l y s i s o f f i n a l group 9 showing t h r e e p o t e n t i a l s u b d i v i s i o n s (a,b and c ) .  (85) a(25)  b(60)  b(8)  c(36)  d(24)  III  d(15) f(2)  IV  d(2)  V c(11) d(D Vlc(10)  a(17)  c(21) d(4)  e(13)  »  b(3)  b(2) IVa(12)  rv (i7) C  b(3)  III a(14)  V  DISSIMILARITY ANALYSIS DENDROGRAM  a(14) b(6)  V  a(8)  b(D  VII a(7)  " 1 H  8 62-1  54.8  no (5)  1a  H  T (w)  I  19)  1b 1c  I  J  3  10  11  12  87.5  52.8  60.6-  rt  7  8a  1-1  G-1 H-1  4  9 32.6  (l)T'2>  14 44+14 A F C  VI  SUBDIVISIONS OF FINAL GROUPS  •  8b 9a 9b 10a 10b 11  D-2  FINAL GROUPS ' M E A N SIMILARITY VALUES  12  VEGETATION TYPE  H-2  [ VEGETATION TYPES  MAP UNIT SYKSOLS FOR  ( © ) T h e s e divisions were not used since they were represented by only one sample plot and occurred to a very limited extent in the watershed.  F i g u r e 5.12 Grassy Creek - f o r m a t i o n o f v e g e t a t i o n t y p e s u s i n g D i s s i m i l a r i t y A n a l y s i s and t h e p l o t analysis.  cluster  -  100 -  that o n l y branch " a " c o u l d be f l o r i s t i c a l l y d i f f e r e n t i a t e d from " b " and "c".  6  5.2.4  The v e g e t a t i o n t y p e s and t h e i r  description  As a r e s u l t of the d e t a i l e d e x a m i n a t i o n of the f i n a l  groups  d e r i v e d from the D i s s i m i l a r i t y A n a l y s i s , 17 " v e g e t a t i o n t y p e s " d i s t i n g u i s h e d f o r t h e Grassy Creek watershed  were  (see F i g u r e 5 . 1 2 ) .  Each  v e g e t a t i o n t y p e was c h a r a c t e r i z e d a c c o r d i n g to i t s v e g e t a t i v e ^ and g p h y s i c a l f e a t u r e s and a r r a n g e d a c c o r d i n g t o zone, subzone, s u c c e s s i o n a l 9  s t a t u s and m o i s t u r e regime (see T a b l e 5 . 2 ) .  Each " t y p e "  was named  a c c o r d i n g t o the nomenclature system o u t l i n e d i n s e c t i o n 4 . 3 . 2 . 2 and g i v e n a map u n i t symbol a c c o r d i n g t o t h e system d i s c u s s e d i n s e c t i o n 4.3.2.1.  A b i o p h y s i c a l summary of the v e g e t a t i o n t y p e s i s g i v e n  T a b l e 5 . 3 ( i n back p o c k e t ) .  Two s t y l i z e d l a n d s c a p e p r o f i l e s of  Grassy Creek watershed have been p r e p a r e d to i l l u s t r a t e the r e l a t i o n s h i p s between the b i o g e o c l i m a t i c subzones,  5 . 1 3 . 1 and 5 . 1 3 . 2 ) .  the  geographic  vegetation_types,  s o i l development and s o i l p a r e n t m a t e r i a l s ( t e r r a i n u n i t s ) 5.13 -  in  (see  Figures  The v e g e t a t i o n f e a t u r e s and commonly a s s o c i a t  p h y s i c a l c h a r a c t e r i s t i c s of each v e g e t a t i o n type a r e d e s c r i b e d below.  Englemann spruce A.  s u b a l p i n e f i r p a r k l a n d subzone (ESSF xB)  /Abies l a s i o c a r p a / P h y l l o d o c e empetriformis - Luzula (open k r u m h o l t z f o r e s t ,  glabrata  subxeric-submesic)  Type A was d e r i v e d from a s u b d i v i s i o n of f i n a l group 9 and i s r e p r e s e n t e d be 2 p l o t s .  It  o c c u r s a l o n g r i d g e s and s h e d d i n g  zones at the h i g h e s t e l e v a t i o n s i n t h e study a r e a (1920 m -  2075 m)  BIOGEOCLIMATIC SUBZONE  ESSFxB  MAP SYMBOL  subxeric-submesic  low s u b a l p i n e forest  subxeric  semi-open islands  forest  submesic  Abies lasiocarpa/Rhododendron a l b i f l o r u m / X e r o p h y l l u m tenax  semi-open  forest  subxeric-submesic  Pinus contorta/Rhododendron tenax  s e m i - o p e n and closed forest  xeric-subxeric  open and s e m i - o p e n forest  xeric-subxeric  A b i e s l a s i o c a r p a / V a c c i n l u m membranaceum/ Tiarella unifoliata  closed  subhygric-mesic  //Madia g l o m e r a t a - L u p i n u s w y e t h i i (-Festuca idahohensis) 1 2 Picea (Tsuga) /Rhododendron a l b i f l o r u m / R u b u s p e d a t u s Larix -Picea/Sorbus sitchensis/Trillium-ovatum  savannah and outcrops  xeric  closed  mesic  s e m i - o p e n and closed forest  mesic-subhygric  Tsuga/Pachistima myrsinltes/Chimaphila umbellata  closed  mesic  Larix-Pseudotsuga^/Tsuga/Pedicularis  s e m i - o p e n and closed forest  submesic  open f o r e s t and b r u s h  subxeric  closed  forest  mesic-subhygric  closed  forest  mesic  B  Abies lasiocarpa/Rhododendron a l b i f l or u m / Luzula glabrata Abies lasiocarpa/Sorbus  D-1 D-2 E F G  ESSFx«-IWHa G-1 H H-1 H-2 IWHa  I  /'inus c o n t o r t a / S o r b u s  Larix/Apocynum  sitchensis/Luzula  -  glabrata  albiflorum/Xerophyllum  sltchensis/Aster spp.  bracteosa  androsaemifolium/Clintonla  Tsuga-Thuia /Taxus brevifolia/Anthyrium 5  1-1  Abies grandis/Taxus  I-2  LOGGED/Rubus p a r v i f l o r u s / H i e r a c i u m (-Clintonia uniflora)  J  Thuja (-Tsuga)/Ribes l a c u s t r e Veratrum e s c h s c h o l t z i i  uniflora  filix-femlna  brevifolla/Adenocaulon  blcolor  albiflorum  (-Oplopanax  horridus)/  1 . P i c e a - P i c e a e n g e l m a n n i i ; 2 . T s u g a - Tsuga h e t e r o p h y l l a ; 3 . L a r i x A. Pseudotsuga - Pseudotsuga m e n s i e s i i : 5 . Thuja - Thuja p l i c a t a .  Larix  Table  subzone,  5.2  MOISTURE REGIME  open k r u m h o l t z forest  /Abies lasiocarpa/Phyllodoce empetriformis Luzula glabrata  D  ESSFx-Disclimax  PHYSIOGNOMY  A  C  ESSFXK  VEGETATION TYPE  Grassy Creek - v e g e t a t i o n types arranged a c c o r d i n g t o zone, f o r u s e i n t h e map l e g e n d .  forest  forest  forest  b r u s h and h e r b s  mesic  closed  hygric  forest  (-submesic)  occidentalis:  s u c c e s s i o n a l s t a t u s and  moisture regime. .  TRANSECT LOCATIONS ESSFac! ESSFw-IWHa i  BIOGEOCLIMATIC SUBZONE  j  D-1  — MAP UNIT SYMBOL FOR VEGETATION TYPE' -•-REPRESENTATIVE VEGETATION STRUCTURE AND COMPOSITION 1-*-  SURFICIAL MATERIALS AND BEDROCK 2  - TERRAIN UNIT  Mv.Ev-  2  -SOIL CLASSIFICATION  3  -SOIL DRAINAGE  LMHFP-R-  -SOIL PROFILE DESCRIPTION  -i-b  LF  4  -HORIZON pH IN WATER  GSiL 4.8-  "HORIZON TEXTURE - HORIZON BOUNDARY -SOIL DEPTH (IN 20 cm INCREMENTS)  20  4  R  SCALE 0  -HORIZON DESIGNATION  1  /2  1  VEGETATION STRUCTURE AND COMPOSITION  it  2g SHRUBS  ABIES LASIOCARPA  LARIX LVALII  Figure 5.13  LARIX OCCIDENTALS  PICEA ENGELMANNII  POPULUS TREMULOIDES  PINUS AL8ICAULIS  P'NUS CONTORTA (MATURE)  PINUS CONTORTA (IMMATURE]  PSEUDOTSUGA MENZIESII VETERAN)  PSEUDOTSUGA MENZIESII (IMMATURE)  THUJA PLICATA  TSUGA HETEROPHYLL A  Grassy Creek - key f i g u r e f o r s t y l i z e d l a n d s c a p e p r o f i l e s ( F i g u r e s 5 - 1 3 . 1 and 5 . 1 3 . 2 f o l l o w i n g ) F o o t n o t e s a r e e x p l a i n e d on the f o l l o w i n g page.  -  Figure 5.13 Footnotes: 1.  103 -  Vegetation types are d e s c r i b e d i n s e c t i o n 5 . 2 . 4 .  2.  T e r r a i n U n i t symbols ( s u r f i c i a l m a t e r i a l s and landform) a r e d e s c r i b e d i n Appendix I I I .  3.  S o i l s a r e c l a s s i f i e d a c c o r d i n g t o t h e System of S o i l C l a s s i f i c a t i o n f o r Canada, 1974 ( R e v i s e d ) ; a b b r e v i a t i o n s are d e s c r i b e d i n Appendix I I I .  4.  A b b r e v i a t i o n s f o r s o i l d r a i n a g e and h o r i z o n are d e s c r i b e d i n Appendix I I I .  ESSFx-Disclimax & ESSFxB ESSFx*  LMHFP-R L. F Bhf  JLb  4.9  Ga 4.7  Te  Ahe  Bf GSL 5.1  LS  5.2  Bf GL  •20  HBm-  w  40  Lf :. 52 BnV|GSiL 95 2  40  -60  LTBm 'VGSL 5.2 Bfh GSL  5.0  Bmg -GSL 5.1  UBC' VGL  IBfg 'VGLS 5.0 n c  Figure 5.13.1  .  VGISTO  5.3  ^GSL  5.1  Bfh •GSL 4.8  LF Bfh,..GSiL 4.6  Ah GSL 4.0  nBfh •VGa 4.2 2  nc v G a T a  GSiL 5.2  nBm VGLS 4.5  .40  UBCIvGa 4.9J  Ah _GSiL 4^7 Bhf GSiL 4.8  nc VGLS 4.7 •60  R  HBf VGSIL4.9 R •60 2  HBfg"VGSL 4.7 •120  nc  •120  GRASSY CREEK  nc  •80  VGa 5.7  "LT  Ahe  VGL  nc_ VGSL  C+GSL 5.0  Grassy Creek - t r a n s e c t " A the w a t e r s h e d .  - A " - approximate n o r t h - s o u t h c r o s s s e c t i o n o f t h e w e s t e r n h a l f 2  - 105  (see Figure 5.13.1).  -  A d d i t i o n a l c h a r a c t e r i s t i c species"^ include  Antennaria roseus, Hieracium g r a c i l i s and Carex spp.  Festuca  idahohensis  and Antennaria roseus"'""'" are r e c o g n i t i o n species of moderate average cover (40%).  The commonly associated s o i l s are Sombric Melanic Ferro-  Humic Podzols and Alpine D y s t r i c B r u n i s o l s w i t h ( g r a v e l l y ) s i l t loam textures.  These s o i l s have developed on gently sloping (5-13%) aeolean  veneers and c o l l u v i a l blankets and are moderately w e l l to w e l l drained. Depending on l o c a l topography, snow can remain on these h a b i t a t s w e l l beyond the middle of summer (July - August).  Type A i s discontinuous  and occurs i n c l o s e a s s o c i a t i o n w i t h Type F. B.  Abies lasiocarpa/Rhododendron  albiflorum/Luzula glabrata  (low open subalpine f o r e s t , subxeric) Type B was derived from f i n a l group 2 w i t h 2 p l o t s . i n two s i t u a t i o n s :  I t occurs  as a somewhat continuous forest immediately below  ridges on north aspects and as a discontinuous f o r e s t on upper, convex shedding slopes with south aspects (1830 m - 1980 m) (see Figure 5.13.1). A d d i t i o n a l c h a r a c t e r i s t i c species include Sorbus s i t c h e n s i s and Arnica cordifolia.  Recognition species are Rhododendron a l b i f l o r u m , Vaccinium  membranaceum and Luzula glabrata.  S o i l s on these type are moderately  w e l l to imperfectly drained Gleyed Orthic Ferro-Humic Podzols. C.  Abies lasiocarpa/Sorbus s i t c h e n s i s / L u z u l a glabrata (semi-open forest i s l a n d s , submesic) Type C was derived from a s u b d i v i s i o n of f i n a l group 10 and  i s represented by 1 p l o t .  I t occurs i n middle slope depressional areas  w i t h a south aspect (1800 - 1980 m) (see Figure 15.13.1). A d d i t i o n a l  - 106 -  species i n Type C include Vaccinium membranaceum, Ribes l a c u s t r e and an almost continuous cover of Xerophyllum tenax.  Since i t occurs i n close  a s s o c i a t i o n with Type F (savannah), Madia glomerata, Lupinus spp. and Aster spp. are also present.  Sombric Melanic Ferro-Humic Podzols developed  on s i l t y aeolean veneers characterize these h a b i t a t s . Engelmann spruce - subalpine f i r forest subzone D.  (ESSFxcc  )  Abies lasiocarpa-Picea/Rhododendron albiflorum/Xerophyllum tenax (semi-open f o r e s t , subxeric-submisid:) Type D was derived from f i n a l group 3 w i t h 2 p l o t s .  I t occurs  i n gently sloping shedding areas and upper slopes (1430 m - 1920 m) w i t h i n the subalpine forest (see Figure 5.13.1).  Addional c h a r a c t e r i s t i c  species include Sorbus s i t c h e n s i s , P y r o l a secunda and R h y t i d i o p s i s robusta. Rhododendron a l b i f l o r u m , Vaccinium membranaceum and Xerophyllum tenax are recognition species f o r t h i s type.  S o i l s on these typesare L i t h i c Orthic  D y s t r i c Brunisols on c o l l u v i a l veneers and M i n i Humo-Ferric Podzols on c o l l u v i a l blankets. D-l.  Pinus contorta/Rhododendron  albiflorum/Xerophyllum tenax  (semi-open and closed f o r e s t , x e r i c - s u b x e r i c ) Type D-l was derived from f i n a l group 5 with 4 p l o t s . mature s e r a i type which w i l l l i k e l y climax t o type D.  It i s a  I t occurs i n  approximately the same landscape p o s i t i o n s as type D (1430 m - 1950 m) (see Figure 5.13.1).  A d d i t i o n a l c h a r a c t e r i s t i c species include P i c e a  engelmannii, P y r o l a secunda, Erigonium subalpinum (on l i t h i c h a b i t a t s ) and Pleurozium schreberi.  Recognition species include Pinus contorta  and those species l i s t e d f o r Type D. i n Type D.  S o i l s i n t h i s type are the same as  - 107 -  D-2.  Pinus contorta/Sorbus s i t c h e n s i s / A s t e r spp. (open and semiopen f o r e s t , x e r i c - s u b x e r i c ) Type D-2 was derived from f i n a l group 11 with 2 p l o t s .  It i s  an early successional stage of Type D and occurs i n about the same landscape p o s i t i o n s as Type D and D-l (1465 m - 1950 m).  A d d i t i o n a l charact-  e r i s t i c species include Vaccinium membranaceum, Amelanchier  alnifolia,  Xerophyllum tenax, Hieracium a l b i f l o r u m , Erigonium subalpinum and Polytrichum juniperiunum.  Xerophyllum tenax i s a recognition species.  Soils  i n t h i s type are w e l l to r a p i d l y drained M i n i Humo-Ferric Podzols and L i t h i c M i n i Humo-Ferric Podzols developed on coarse textured c o l l u v i a l veeneers and morainal blankets. E.  Abies lasiocarpa-Picea/Vaccinium membranaceum/Tiarella . 1  unifoliat  (closed f o r e s t , subhygric-mesic) Type E was derived from f i n a l group c o n s i s t i n g of 10 p l o t s . I t occurs i n seepage zones associated with subalpine drainages and on c o o l , moist, north aspects r e c e i v i n g seepage waters from upslope snow melt (1400 m - 1770 m) (see Figure 5.13.1).  Additional characteristic  species include Vaccinium membranaceum, Rhododendron a l b i f l o r u m , A r n i c a c o r d i f o l i a , Xerophyllum tenax and Veratrum e s c h s c h o l t z i i .  Vaccinium  membranaceum and C l i n t o n i a u n i f l o r a are r e c o g n i t i o n species. The dominant s o i l s on t h i s type range from w e l l to imperfectly drained Gleyed Orthic Ferro-Humic Podzols, Orthic Ferr-Humic Podzols and Gleyed Mini Humo-Ferric Podzols, a l l developed on morainal blankets.  - 108 -  Engelmann spruce - subalpine f i r - Disclimax F.  //Madia glomerata-Lupinus  (ESSFx-Disclimax-)'  w y e t h i i (-Festuca idahohensis)  (savannah and outcrops, x e r i c (-submesic)) Type F was derived from a s u b d i v i s i o n of f i n a l group 9 and i s represented by 6 p l o t s .  As discussed e a r l i e r i n section 5.2.3, t h i s  s u b d i v i s i o n contains two c l o s e l y associated communities:  extensive  south f a c i n g , r o l l i n g savannah (approximately 1615 m - 2100 m) and outcrop communities (1200 m - 1600 m) (see Figure 5.13.1 and 5.12.2).  Addi-  t i o n a l c h a r a c t e r i s t i c species include Campanula r o t u n d i f o l i a , Sedum divergens, Eriogonum subalpinum, S e l a g i n e l l a s i t c h e n s i s and Cryptogramma c r i s p a . Recognition species are Festuca idahohensis, Madia glomerata and Aster spp. The s o i l s associated w i t h the savannah are w e l l drained ( L i t h i c ) A l p i n e Dystric B r u n i s o l s developed  on g r a v e l l y c o l l u v i a l veneers.  Outcrop  communities are n o n - s o i l s . Engelmann spruce - subalpine f i r f o r e s t subzone —  Interior  western hemlock dry subzone t r a n s i t i o n (ESSFypc-IWHa t r a n s i t i o n ) G.  Picea (-Tsuga)/Rhododendron albiflorum/Rubus pedatus (closed f o r e s t , mesic) Type G was derived from f i n a l group 6 w i t h 3 p l o t s .  I t occurs  on shedding slopes and slopes r e c e i v i n g temporary seepage between the ESSF and IWH zones (1370 m - 1770 m) (see Figure 5.13.1). type i t contains species c h a r a c t e r i s t i c of both zones.  As a t r a n s i t i o n a l  A d d i t i o n a l character-  i s t i c species include Abies l a s i o c a r p a (tree and shrub l a y e r s ) , Arnica c o r d i f o l i a and P e d i c u l a r i s bracteosa.  Recognition species are Rhododendron  a l b i f l o r u m , Vaccinium membranaceum, Pachistima m y r s i n i t e s , Xerophyllum tenax amd C l i n t o n i a u n i f l o r a .  S o i l s are w e l l to r a p i d l y drained  M i n i Humo-Ferric Podzols developed  on morainal blankets.  (Lithic)'  W I Ha  IESSFXKS  - D;2  H-1  H-2  ESSFx-Disclimax  i  F  ill  r-E-, 1600  Jlf O  < >  UJ —I  1300 LULU <  x O cr O-  o <_  1000  Ae L  h  IE  Bf GL •40  1  5.2 —  L  Bfh Bf  v  HBf  2  GSL GSL  5.6 5.5  VGLS 5.2  LF Bfh  VGSL 5.6  Ah  Bf  VGSiL 5.6  Bfh  • 40  R BBC  VGSL  51  •80  nc VGSL  60  5.0  LIBfc  VGS  5.2  GSL GSL  5.3  -40  (sedimentary . -volcanic) jBmgJGSiL 5.3 (granitic & Risedimentary - —volcanic)  •120  SL  5.0  nzc- LS  5.0  IBm  GRASSY  CREEK  Figure 5.13.2  G r a s s y Creek watershed.  t r a n s e c t " B ^ - B2" - approximate n o r t h - s o u t h c r o s s s e c t i o n o f t h e e a s t e r n h a l f o f the  - 110 -  G—l.  Larix-Picea/Sorbus sitchensis/T.r.lllium ovatum (semi-open and closed f o r e s t s ,  mesic-subhygric)  Type G—l was derived from a s u b d i v i s i o n of f i n a l group 8 and i s represented by 3 p l o t s . climax to Type G.  I t i s a mature s e r a i type which w i l l l i k e l y  I t occurs i n the same landscape p o s i t i o n s and has the  same p h y s i c a l features as Type G (1340 m - 1770 m).  A d d i t i o n a l character-  i s t i c species include Pinus monticola, Abies l a s i o c a r p a , Rhododendron a l b i f l o r u m , Goodyera o b l o n g i f o l i a and P y r o l a secunda.  Recognition species  include Vaccinium membranaceum, Pachistima m y r s i n i t e s , Xerophyllum  tenax  and Arnica c o r d i f o l i a . I n t e r i o r western hemlock dry subzone (IWHa) H.  Tsuga/Pachistima  myrsinites/Chimaphila umbellata (closed f o r e s t ,  mesic) Type H was derived from a s u b d i v i s i o n of f i n a l group 1 and i s represented by 5 p l o t s .  I t occurred predominantly  on shedding and middle  slope p o s i t i o n s w i t h i n the IWHa subzone (1030 m - 1525 m) (see Figure 5.13.1). A d d i t i o n a l c h a r a c t e r i s t i c species are P y r o l a secunda and C l i n t o n i a u n i f l o r a . Recognition species include Tsuga heterophylla (shrub l a y e r ) , Pachistima m y r s i n i t e s , C l i n t o n i a u n i f l o r a and R h y t i d i o p s i s robusta.  The s o i l s  associated w i t h t h i s type are p r i m a r i l y w e l l drained Orthic and M i n i Humo-Ferric Podzols developed g l a c i a l f l u v i a l deposits.  on aeolean veneers o v e r l y i n g moraine and  - Ill -  H-l.  Larix-Pseudotsuga/Thuja/Pedicularis bracteosa (semi-open and closed f o r e s t , submesic) Type H-l was derived from a s u b d i v i s i o n of f i n a l group 8 and  i s represented by 4 p l o t s . climax to Type II.  I t i s a mature s e r a i type which w i l l l i k e l y  I t occurs i n approximately the same landscape p o s t i t i o n s  and has the same p h y s i c a l features as Type H (975 m - 1525 m) 5.13.1 and 5.13.2).  (see Figure  A d d i t i o n a l c h a r a c t e r i s t i c species include Pinus  contorta, Linnaea b o r e a l i s , Alnus sinuata, P e d i c u l a r i s bracteosa and Hieracium a l b i f l o r u m .  Recognition species include Vaccinium membranaceiim,  Pachistima m y r s i n i t e s , Rubus p a r v i f l o r u m and C l i n t o n i a u n i f l o r a . H-2.  Larix/Apocynum androsaemifolium/Clintonia u n i f l o r a (open f o r e s t and brush, subxeric) Type H-2 was derived from f i n a l group 12 and 12 p l o t s .  an e a r l y s e r a i type which w i l l l i k e l y climax to Type H.  It is  I t occurs i n  roughly the same landscape p o s i t i o n s and has s i m i l a r p h y s i c a l features as Type H (950 m - 1585 m) (see Figure 5.13.2).  Additional characteristic  species include S a l i x spp., Rubus p a r v i f l o r u s , Epilobium augustifolium, Pteridium aqualinum and Solidago canadensis.  Recognition species include  L a r i x o c c i d e n t a l i s , Vaccinium membranace um, Pachistima m y r s i n i t e s , Apocynum androsaemifolium I.  and Pteridium aqualinum.  Tsuga-Thuja/Taxus b r e v i f o l i a / A t h y r i u m f i l i x - f e m i n a (closed f o r e s t , mesic - subhygric) Type I was derived from a subdivsion of f i n a l group 1 and i s  represented by 8 p l o t s .  I t generally occurs i n lower slope p o s i t i o n s with  deep s o i l s and a temporary seepage i n f l u e n c e (1090 m - 1525 m)  (see Figure  - 112 -  5.13.1).  A d d i t i o n a l c h a r a c t e r i s t i c species include Acer glabrum, Asarum  caudatum, T r i l l i u m ovatum, Osmorhiza c h i l e n s i s .  Recognition species  include C l i n t o n i a u n i f l o r a , Gymnocarpium d r y o p t e r i s, Streptopus amplexif o l i u s , T i a r e l l a u n i f o l i a t a and Athyrium f i l i x - f e m i n a .  The dominant s o i l s  are Gleyed IIumo-Ferric Podzols and Gleyed Ferro-Humic Podzols on moraine. 1-1.  Abies grandis/Taxus brevifolia/Adenocaulon b i c o l o r (closed f o r e s t , mesic-subhygric) Type 1-1 was derived from f i n a l group 7 w i t h 6 p l o t s .  Itisa  mature s e r a i type which w i l l probably climax to Type I . I t occurs i n s i m i l a r landscape p o s i t i o n s to Type I (1190 m - 1585 m).  Additional  c h a r a c t e r i s t i c species include Tsuga heterophylla (tree and shrub l a y e r ) , Streptopus a m p l e x i f o l i u s , Rubus pedatus, Chimaphila umbellata, P y r o l a a s a r i f o l i a and T r i l l i u m ovatum.  Recognition species include Vaccinium  membranaceum, Pachistima m y r s i n i t e s , Xerophyllum tenax and C l i n t o n i a uniflora.  The associated s o i l s are w e l l drained M i n i Humo-Ferric Podzols  developed on aeolean veneers o v e r l y i n g moraine. 1-2.  LOGGED/Rubus parviflorus/Hieracium a l b i f l o r u m (-Clintonia u n i f l o r a ) (brush and herbs, mesic) Type 1-2 was derived from a s u b d i v i s i o n of f i n a l group 10 and  i s represented by 2 p l o t s .  I t i s a very e a r l y s e r a i type which w i l l  l i k e l y climax to Type I . I t occurs i n about the same landscape p o s i t i o n and has the same associated s o i l s and parent m a t e r i a l s as 1-1 (1130 m 1400 m). A d d i t i o n a l c h a r a c t e r i s t i c species include Chimaphila umbellata, T i a r e l l a u n i f o l i a t a , Linnaea b o r e a l i s and Anaphalis margaritacea. Recognition species include Hieracium a l b i f l o r u m , C l i n t o n i a u n i f l o r a and Epilobium augustifolium.  - 113  J.  -  Thuja (-Tsuga)/Ribes l a c u s t r e (-Oplopanax)/Veratrum e s c h s c h l o t z i i (closed f o r e s t , hygric) Type J i s derived from a s u b d i v i s i o n of f i n a l group 1 and i s  represented by 10 p l o t s .  I t occurs i n v a l l e y bottom seepage zones and  depressional areas and i n a s s o c i a t i o n w i t h smaller t r i b u t a r y draws along v a l l e y sides (1095 m - 1585 m)  (see Figures55.13.1 and 5.13.2).  Additional  c h a r a c t e r i s t i c s species include Smilacina racemosa, Galium t r i f l o r u m , Athyrium f i l i x - f e m i n a and Streptopus a m p l e x i f o l i u s . Recognition species include Oplopanax horridus, C l i n t o n i a u n i f l o r a , Streptopus and Athyrium f i l i x - f e m i n a .  amplexifolus  Morainal blankets are the dominant parent  material f o r the associated s o i l s :  Gleyed Ferro-Humic Podzols, Ferro-Humic  Podzols and Gleyed Mini Humo-Ferric Podzols.  5.3  C o r r e l a t i o n with e x i s t i n g vegetation c l a s s i f i c a t i o n s B e l l (1964), K r a j i n a ( 1 % 9 ) , Daubenmire (1952), Daubenmire and 1 2  Daubenmire (1968), P f i s t e r et a l . (1974), O g i l v i e (1969) and F r a n k l i n and 13 Dyrness (1973)  have developed vegetation c l a s s i f i c a t i o n s p a r t i a l l y  a p p l i c a b l e i n the Grassy Creek study area.  For reasons discussed e a r l i e r  i n s e c t i o n 1.4.1, these c l a s s i f i c a t i o n s have l i m i t e d a p p l i c a t i o n s f o r the more pragmatic concerns of vegetation inventory and mapping at a d e t a i l e d scale.  The r e s u l t s of t h i s vegetation study were compared  s u b j e c t i v e l y with the various e x i s t i n g c l a s s i f i c a t i o n s .  The comparison  was based on the author's general e c o l o g i c a l and p h y t o s o c i o l o g i c a l understanding  of the vegetation types derived from t h i s study and  the  associations or h a b i t a t types discussed i n the e x i s t i n g c l a s s i f i c a t i o n s .  - 114 -  B e l l (1964) studied the I n t e r i o r western hemlock dry subzone and recognized  f i v e plant a s s o c i a t i o n s .  Grassy Creek watershed occurred  j u s t w i t h i n the southern extension of B e l l ' s study area. plant associations ( B e l l , 1964)  The f o l l o w i n g  and/or biogeocoenoses ( K r a j i n a ,  are f e l t to be approximately equivalent: and biogeocoenose 65b; Type H-2  —  Type H —  1969)  the "moss" a s s o c i a t i o n  biogeocoenose 65a; Type I —  the  " A r a l i a oakfern" a s s o c i a t i o n and biogeocoenose 62; and Type J — " d e v i l ' s club" a s s o c i a t i o n and biogeocoenose 61.  B e l l also  the  describes  two "southern v a r i a n t s " of the moss and A r a l i a oakfern assoications which are consistent with data obtained the occurrence of Abies grandis  i n the Grassy Creek watershed; notably Biogeocoenose 76a i s roughly  equivalent  to Type E i n the Engelmann spruce - subalpine f i r zone. Daubenmire and Daubenmire (1968) have studied the "Tsuga heterophylla Series" i n eastern Washington and northern Idaho and  Pfister  et a l . (1974) have studied the "Thuja p l i c a t a " and"Tsuga heterophylla" s e r i e s i n western Montana.  Two  of the habitat types recognized  by these  authors are roughly the same as those characterized i n Grassy Creek: Type I —  the "Tsuga heterophylla —  Pachistima m y r s i n i t e s " (Daubenmires')  or "Tsuga h e t e r o p h y l l a / C l i n t o n i a u n i f l o r a " the "Thuja p l i c a t a —  Oplopanax horridus"  ( P f i s t e r et a l . ) ; and Type J  —  (Daubenmires') or "Thuja  plicata/Oplopanax horridus" ( P f i s t e r et a l . ) . In the subalpine f o r e s t and subalpine f o r e s t - montane t r a n s i t i o n area (Type G and G - l ) , Daubenmire and Daubenmire (1968), P f i s t e r et a l . (1974) and O g i l v i e (1969) recognize types"^:  Type D, D-l and D-2  —  several roughly equivalent  habitat  the "Abies lasiocarpa - Xerophyllum  tenax" habitat types (Daubenmires', P f i s t e r et a l . ) or the "Picea  -.Abies/  - 115  -  Xerophyllum tenax" a s s o c i a t i o n (Ogilvie) on south aspects and/or s e r a i , subalpine f o r e s t s ; and the "Abies l a s i o c a r p a —  Menziesia  habitat types (Daubenmires', P f i s t e r et a l . ) or "Picea —  ferruginea" Abies/Menziesia  ferruginea — T i a r e l l a u n i f o l i a t a " a s s o c i a t i o n on north aspects and/or climax, subalpine  forests.  The "Abies l a s i o c a r p a —  h a b i t a t type (Daubenmires';) or "Picea —  Pachistima  Abies/Pachistima  myrsinites"  myrsinites"  a s s o c i a t i o n ( O g i l v i e ) have q u a l i t i e s expressed i n both Types G and P f i s t e r et a l . ' s study i s more d e f i n i t i v e : to the "Menziesia  E.  Type G (and G-l) correspond  ferruginea" phase of the "Abies l a s i o c a r p a / C l i n t o n i a  u n i f l o r a " habitat type; Type E i s somewhat synonymous with the "Abies lasiocarpa/Galium  t r i f l o r u m " habitat type with minor i n c l u s i o n s of the  "Abies l a s i o c a r p a - Oplopanax horridus" habitat type (a " d e v i l ' s club v a r i a n t " of the "Picea —  Abies/Heracleum —  Equisetum" a s s o c i a t i o n  described by O g i l v i e . In the parkland  subzone, P f i s t e r et a l . ' s (1974) "Abies l a s i o c a r p a /  Luzula hitchcockii"''"^ habitat type, "Menziesia O g i l v i e ' s (1969) "Picea — correspond to Type B. lasiocarpa —  Abies/Luzula  ferruginea" phase and  wahlenbergii"  a s s o c i a t i o n roughly  The "Vaccinium scoparium" phase of the "Abies  Luzula h i t c h c o c k i i " habitat type ( P f i s t e r et_ al_.) i s  analogous to Type A i n the subalpine The subalpine  parkland.  grassland disclimax Type F i s consistent with  s i m i l a r "grassy parks" or "balds" reported by Daubenmire and S l i p p (1943), Daubenmire and Daubenmire (1968), F r a n k l i n and Dyrness (1973) and Tiedemann (1972).  - 116 -  5.4  Mapping of  5.4.1  Pretyping  vegetation  A " " p r e t y p e d v e g e t a t i o n " map was prepared f o r t h e Grassy Creek watershed u s i n g the methods d i s c u s s e d e a r l i e r i n s e c t i o n 4 . 2 . 2 .  The  p r e t y p e d v e g e t a t i o n map u n i t s were d e l i n e a t e d on t h e b l a c k and w h i t e a e r i a l photographs maps:  ( 1 : 1 5 , 8 4 0 ) and were l a t e r t r a n s f e r r e d onto two base  a v i s u a l t r a n s f e r onto an u n c o n t r o l l e d photo mosaic base at an  approximate s c a l e of 1 : 8 , 0 0 0 (see F i g u r e 5 . 1 3 i n r e a r map p o c k e t ) and K a i l  p l o t t r a n s f e r onto B . C .  Forest Service  p l a n i m e t r i c base maps a t a s c a l e of 1 : 1 5 , 8 4 0 .  (Inventory D i v i s i o n )  Sample p l o t l o c a t i o n s were  a l s o p l o t t e d on the p l a n i m e t r i c base map.  5.4.2  V e g e t a t i o n t y p e s and b i o g e o c l i m a t i c subzones U s i n g the procedure o u t l i n e d e a r l i e r i n s e c t i o n 4 . 3 . 3 . 1 , map u n i t s  (both pure and complex) were i d e n t i f i e d and d e l i n e a t e d u s i n g t h e p r e t y p e d v e g e t a t i o n map as a b a s i s .  In most i n s t a n c e s , t h e r e was good c o r r e l a t i o n  between the a t t r i b u t e s and d i s t r i b u t i o n of t h e v e g e t a t i o n t y p e s plots)  and the p r e t y p e d u n i t d e s i g n a t i o n s .  to determine any i n i t i a l p r e t y p i n g e r r o r s  (sample  I n c o n s i s t e n c i e s were r e - e x a m i n e d ( u n i t d e s i g n a t i o n and b o u n d a r i e s )  and to determine the p o t e n t i a l f o r complex u n i t s o r u n i t i n c l u s i o n s . g r e a t e s t agreement o c c u r r e d on upland l i t h i c s i t e s , d i s t i n c t v e g e t a t i o n types  (e.g.  g r a s s l a n d s , c l i m a x mature f o r e s t ,  l a n d ) and v a l l e y bottom seepage t y p e s .  Conversely,  The  physiognomic  subalpine park-  middle slope l o c a t i o n s  w i t h r e l a t i v e l y u n i f o r m v e g e t a t i v e cover and u n i f o r m s l o p e  configuration  c o n t a i n e d the g r e a t e s t number of a n o m a l i e s and were t h e r e f o r e t h e most  -  117 -  IWHa ( d r y subzone)  ESSFxoc ( f o r e s t  subzone)  ESSFxjJ ( p a r k l a n d subzone)  ESSFx-Disclimax (grassland disclimax)  ESSFx<-IWHa ( t r a n s i t i o n zone) —K—H—n— ti A  A  A A A ft L ti  *  &  Figure 5.15  A  &  A  A  £ A  4  1 A|  E S S F x - D i s c l i m a x § ESSFxB complex  A  Grassy Creek - b i o g e o c l i m a t i c s u b z o n e s .  - 118  d i f f i c u l t to map.  -  When ground t r u t h information was absent i n these  l o c a t i o n s , a strong emphasis was placed on known vegetative patterns and sequences on comparable slopes.  Thus the pretyped vegetation map u n i t s  were adjusted where necessary and l a b e l l e d according to the vegetation type legend.  A f i n a l map  of the n a t u r a l vegetation of the Grassy Creek  watershed was prepared using the p l a n i m e t r i c base at a scale of 1:15,840 (see Figure 5.12  i n rear map  pocket).  A knowledge of the d i s t r i b u t i o n of the f i n a l vegetation map u n i t s allowed for an improvement of the e a r l i e r biogeoclimatic subzone models discussed i n s e c t i o n 4.3.3.2.  The extensive grasslands'*"^ occurring at  high elevations on south aspects are believed to be  the r e s u l t of f i r e  followed by the successive wind t r a n s f e r of snow and s o i l drought ( F r a n k l i n and Dyrness, 1973).  These areas have been delineated and l a b e l l e d as 18  "grassland disclimaxes" A f i n a l map  w i t h i n the Engelmann spruce subalpine f i r zone.  of biogeoclimatic subzones was prepared  (see Figure 5.15 and the i n s e t map on Figure 5.14  at a scale of 1:50,000  i n rear map  pocket).  Footnotes: 1.  A more d e t a i l e d account of s u r f i c i a l geology and s o i l s i s given by G. U t z i g , graduate student, Department of S o i l Science, U n i v e r s i t y of B r i t i s h Columbia; Master's t h e s i s i n progress e n t i t l e d : "An evaluation of d e t a i l e d s o i l s mapping i n f o r e s t e d , mountainous t e r r a i n " .  2.  yB.P. - years before present.  3.  C l i m a t i c information i s summarized from a report prepared by R. C h i l t o n , Climate and Data Services D i v i s i o n , Environment and Land Use Committee S e c r e t a r i a t , Province of B.C., V i c t o r i a .  4.  C h a r a c t e r i s t i c species are e i t h e r very diagnostic or very p r e f e r e n t i a l to the branch according to the comparative a n a l y s i s .  - 119  -  5.  The term " s i g n i f i c a n t l y " i s not used i n a s t a t i s t i c a l sense. A s i g n i f i c a n t s u b d i v i s i o n was judged as one i n which there were obvious differences ( i . e . diagnostic or p r e f e r e n t i a l ) i n species composition and/or vegetation structure between the two p o t e n t i a l branches.  6.  Note - the outcrop communities often occurred i n a s s o c i a t i o n with the savannah (see Figure 5.8).  7.  Vegetative features include the diagnostic and p r e f e r e n t i a l species, " r e c o g n i t i o n species", physiognomy, successional status, zone and subzone.  8.  P h y s i c a l features include t e r r a i n u n i t s , s o i l development, s o i l texture, s o i l drainage, e l e v a t i o n , slope, aspect, slope c o n f i g u r a t i o n and hygrotope (see section 4.3.2.2).  9.  The term "type" w i l l sometimes be used f o r an abbreviation of type".  "vegetation  10.  In a d d i t i o n to those used to name the type.  11.  A species l i s t f o r the Grassy Creek watershed i s given i n Appendix I I .  12.  Krajina's c l a s s i f i c a t i o n of the I n t e r i o r western hemlock zone (p. 1923, 45-47) included the o r i g i n a l studies conducted by B e l l (1964).  13.  F r a n k l i n and Dyrness' p u b l i c a t i o n of the n a t u r a l vegetation of Oregon and Washington included the o r i g i n a l studies conducted by Daubenmire (1952, 1968).  14.  O g i l v i e (1969) c a l l s h i s c l a s s i f i c a t i o n u n i t s " a s s o c i a t i o n s " .  15.  Luzula h i t c h c o c k i i = Luzula glabrata ( P f i s t e r ,  16.  K a i l ( P h i l i p B.) r a d i a l - l i n e , stereoscopic, planimetric p l o t t e r .  1974)  - 120 -  CHAPTER 6.  TEMPLETON RIVER WATERSHED STUDY  - 121  CHAPTER 6.  -  TEMPLETON RIVER WATERSHED STUDY  6.1  D e s c r i p t i o n of study area  6.1.1  Location and geographic s e t t i n g The Templeton River watershed i s s i t u a t e d approximately 34 km  northwest of Radium Hot Springs w i t h i n the P u r c e l l Mountains (Septet Range) of southeastern B r i t i s h Columbia' (116° (see Figure 6.1).  25'-36' W; 50° 46'-49' N)  The Septet Range forms an e a s t e r l y - f l o w i n g shoulder  of the P u r c e l l Mountains and borders on the Rocky Mountain Trench."'"  The  highest e l e v a t i o n i n the study area (3000 m) i s Mt. E t h e l b e r t i n the southwestern p o r t i o n of the catchment (see Figure 6.2).  The western  region of the study area contains a s e r i e s o f . r e c e n t l y a c t i v e cirque basins between 2,400 and 2,500 m i n e l e v a t i o n i n adddition to a lower cirque basin (1950 m) and tarn (Templeton Lake) (see Figure 6.3). Templeton River decends sharply from the t a r n to the main v a l l e y (1800 m). Continuing east, the r i v e r flows along a r e l a t i v e l y uniform gradient through a deeply i n c i s e d , U-shaped v a l l e y .  At about 1350 m i n e l e v a t i o n ,  the r i v e r enters the trench and begins a sinuous path across a drumlinized t e r r a i n to the Columbia River (see Figure 6.4). butaries  There are no main t r i -  to Templeton River other than two small streams which o r i g i n a t e  from cirque basins on the south side of the v a l l e y .  The t o t a l catchment  i s 10 km long (east-west), i s an average width of 4 km and has an area of 3650 ha.  -122  Figure 6.1  -  Templeton R i v e r - s t u d y a r e a l o c a t i o n .  Figure 6.2  Templeton R i v e r r- topography  ( s c a l e 1 : 1 5 , 8 4 0 ; contour i n t e r v a l = 100 m) .  -  Figure 6.3  Figure 6.4  124 -  Templeton E l v e r - view of w e s t e r n h a l f o f w a t e r s h e d ( l o o k i n g west). Note the U-shaped v a l l e y , t h e a l t e r n a t i n g f o r e s t and a v a l a n c h e t r a c k v e g e t a t i o n p a t t e r n and the e x t e n t of r o c k and snow at the h i g h e r e l e v a t i o n s  Templeton R i v e r - view of e a s t e r n p o r t i o n of watershed ( l o o k i n g west) as i t opens i n t o the d r y e r and warmer Rocky Mountain Trench.  - 125  6.1.2  -  Bedrock geology The Templeton River watershed c o n s i s t s of p r i m a r i l y a r g i l l i t e  bedrock.  Dolomite, limestone, q u a r t z i t e and s l a t e are associated  bedrocks which occur to a l i m i t e d extent i n the watershed.  These  bedrocks are included i n the Dutch Creek and Mt. Nelson formations of the P u r c e l l System (Reesor, 1973).  These Precambrian Rocks generally  dip to the east, although minor f o l d s and a n o r t h - s t r i k i n g normal f a u l t occurring j u s t below Templeton Lake complicate the r e g i o n a l trend ( U t z i g , personal communication). e n t i r e study area.  The a r g i l l i t e s are d i s t r i b u t e d throughout the  The q u a r t z i t e s and dolomite are r e s t r i c t e d to the  upper elevations and the s l a t e s and minor dolomite occur along the northern ridge at the mouth of the v a l l e y .  2 6.1.3  Surficial  geology  The s u r f i c i a l materials occurring throughout the Templeton River area are t y p i c a l of the extensive and complex g l a c i a t i o n during the Pleistocene Epoch.  During major g l a c i a l advances, the trench served as  an o u t l e t v a l l e y for the southerly flowing C o r d i l l e r a n Ice Sheet (Clague, 1975).  Numerous side v a l l e y g l a c i e r s coalesced with the main trench i c e  i n c l u d i n g one from the Templeton River V a l l e y .  Clague (1975) suggests  there were three d i s t i n c t stades during the l a s t major (Pinedale) g l a c i 2 a t i o n i n the southern (B.C.) trench region.  Studies by U t z i g  i n the  Templeton River area also i n d i c a t e a sequence of three, successively reduced g l a c i a l advances.  - 126  -  The s u r f i c i a l materials deposited i n the study area are therefore a consequence of a complex g l a c i a l h i s t o r y during the Pleistocene followed by recent f l u v i a l , c o l l u v i a l and a e o l i a n a c t i v i t y .  Utzig  (personal communication) has i d e n t i f i e d f i v e t i l l s i n the watershed: a compact g r a v e l l y s i l t loam t i l l from the f i r s t advance; a non-compact g r a v e l l y sandy loam t i l l overlying the compact t i l l ; a g r a v e l l y loam to s i l t loam t i l l absent from the eastern quarter of the v a l l e y bottom; a recent, coarse moraine occurring i n a c t i v e cirques; and a highly compacted, cemented, calcareous, g r a v e l l y sandy loam t i l l s i t u a t e d along the eastern (trench) p o r t i o n of the watershed. G l a c i o f l u v i a l sands and gravels and g l a c i o l a c u s t r i n e s i l t s , which occur to a l i m i t e d extent near the mouth of the v a l l e y , are representative of the complex d e g l a c i a l phases of the Pleistocene Epoch.  Recent f l u v i a l  deposits comprise a narrow f l o o d p l a i n w i t h i n the trench segment of the r i v e r and a s i n g l e fan on the southern slope of the v a l l e y . t e r r a i n features p r e v a i l over most of the watershed.  Colluvial  Coarse, rubbly,  c o l l u v i a l aprons and fans are p a r t i c u l a r i l y extensive i n the western h a l f of the watershed and are c l o s e l y associated with r e c u r r i n g avalanche a c t i v i t y (see Figure 6.4).  C o l l u v i a l materials also o v e r l i e morainal  deposits i n areas with steep slopes and upland bedrock sources.  Aeolian  s i l t and s i l t loams cap a majority of the unconsolidated deposits i n the study area.  The thickness of these materials v a r i e s s i g n i f i c a n t l y due to  t h e i r r e d i s t r i b u t i o n by c o l l u v i a l and f l u v i a l a c t i v i t y .  - 127  6.1.4  Soils  -  J  A wide range of s o i l s occur i n the Templeton River watershed r e s u l t i n g from the d i v e r s i t y of parent m a t e r i a l s and v a r i a b i l i t y i n l o c a l climate (e.g. aspect, proximity to the trench, snow and avalanching).  L u v i s o l s w i t h a b r u n i s o l i c development at t h e i r surface occur  along the eastern p o r t i o n of the study area i n a dry (trench) climate and on calcareous parent m a t e r i a l s .  South facing slopes near the v a l l e y  mouth, which a l s o experience a dry and warm climate, develop E u t r i c Brunisols ( i n calcareous parent m a t e r i a l s ) and D y s t r i c B r u n i s o l s ( i n a r g i l l a c e o u s and s l a t e - d e r i v e d parent m a t e r i a l s ) .  At higher elevations  and on slopes f u r t h e r to the west i n the watershed, the i n f l u e n c e of a southern exposure becomes s i g n i f i c a n t l y modified with i n c r e a s i n g snowf a l l and avalanche a c t i v i t y .  Forested slopes i n these l o c a t i o n s develop  Humo-Ferric Podzols on deep m a t e r i a l s and B r u n i s o l s on l i t h i c s i t e s .  A  complex mosaic of s o i l s occurs i n subalpine basins and upper reaches of avalanche tracks:  Alpine D y s t r i c B r u n i s o l s , L i t h i c F o l i s o l s ,  Ferro-Humic Podzols and Gleyed Humo-Ferric Podzols.  Gleyed  Avalanche track  s o i l s vary with avalanche p e r i o d i c i t y , vegetative cover and aspect.  In  general, avalanche tracks w i t h frequent a c t i v i t y d i s p l a y Regosols while those w i t h only o c c a s s i o n a l a c t i v i t y d i s p l a y B r u n i s o l s . S o i l development on g l a c i o f l u v i a l deposits i s p r i m a r i l y O r t h i c Humo-Ferric Podzols. Regosols are the major s o i l s associated w i t h the narrow f l o o d p l a i n .  Gleyed  - 128 -  6.1.5  Climate The c l i m a t i c information presented f o r the Templeton River  watershed has been extrapolated from data obtained from an e l e v a t i o n a l transect between Golden and G l a c i e r National Park and r e c a l c u l a t e d using 4 Brisco  5 as a base . Located adjacent to the trench, the study area i s  affected by both P a c i f i c and polar a i r masses.  The prevalent P a c i f i c a i r  flow i s r e l a t i v e l y dry at t h i s point i n i t s e a s t e r l y flow having most of i t s moisture on the intervening mountain range.  deposited  Cool, south  flowing polar a i r masses o c c a s i o n a l l y inundate the trench region during the winter season.  Summer temperatures i n the study area are sometimes  influenced by warm a i r o r i g i n a t i n g from the i n t e r i o r plateau of Washington State.  Within the watershed, the lower elevations near the mouth of the  v a l l e y experience a warm and dry climate s i m i l a r to that of the trench. Higher elevations towards the west show p r e c i p i t a t i o n and temperature patterns t y p i c a l of mountainous landscapes:  coincident with an increase  i n e l e v a t i o n there i s an increase i n mean annual p r e c i p i t a t i o n and a decrease i n mean annual temperature. The Templeton River area experiences the e f f e c t of two p r e c i p i t a t i o n shadows:  the general i n f l u e n c e of the P u r c e l l Mountain Range and the more  l o c a l impact of the Septet Range.  Mean monthly p r e c i p i t a t i o n values have  been p l o t t e d f o r f i v e d i f f e r e n t elevations (see Figure 6.5).  The two  lowest elevations (760 m and 1070 m) are representative of trench prec i p i t a t i o n values while the three upper elevations (1370 m, 1680 m and 1980 m) are representative values for the study area.  The monthly pre-  CENTIMETERS OF WATER Figure 6.6  Templeton R i v e r - amount o f p r e c i p i t a t i o n f a l l i n g as snow and r a i n at f i v e e l e v a t i o n s .  - 130 -  c i p i t a t i o n pattern shows maximum amounts i n December-January and again i n May-June.  March has the lowest mean monthly p r e c i p i t a t i o n .  Pre-  c i p i t a t i o n values show a gradual increase w i t h e l e v a t i o n and hence, distance (west) from the trench (41.9 cm - 63.0 cm). This trend maybe i n part due to an e a s t e r l y d r i f t of r a i n beyond the crest of the r a i n shadow and i n t o the d r i e r trench a i r . The r a i n f a l l i n g from higher elevations at t h i s point may evaporate before reaching the lower e l e vations (observed during f i e l d work).  In a d d i t i o n , most summer pre-  c i p i t a t i o n o r i g i n a t e s from convection storms which u s u a l l y form over the ridges.  Winter p r e c i p i t a t i o n patterns, however, r e s u l t from p r i -  marily low l e v e l f r o n t a l systems which y i e l d a maximum p r e c i p i t a t i o n at about 1500 m w i t h v i r t u a l l y no increase above t h i s e l e v a t i o n . The proportion of p r e c i p i t a t i o n f a l l i n g as r a i n and snow i s shown i n Figure 6.6.  Both snowpack and snowfall increase w i t h e l e v a t i o n con-  comittant w i t h increases i n p r e c i p i t a t i o n and decreases i n temperature. The snowpack at low elevations i n the study area reaches a maximum i n January-February while at higher e l e v a t i o n s , snow continues to accumulate u n t i l the l a t t e r part of March.  Wind and avalanche a c t i v i t y at the higher  elevations make snowpack estimates d i f f i c u l t and h i g h l y v a r i a b l e . Mean monthly temperatures at four elevations are shown i n Figure 6.7.  In the winter months, minimum temperatures are coldest i n the  v a l l e y bottom, increase r a p i d l y over the next one hundred meter increase i n e l e v a t i o n and then remain e s s e n t i a l l y constant with increasing e l e v a t i o n . This temperature column r e s u l t s from s t a b l e i n v e r s i o n conditions when cold  - 131 -  20  n  J  F  M  A  M  J  J  A  S  O  N  D  MONTH  Figure 6.7  Templeton R i v e r - mean monthly t e m p e r a t u r e a t f o u r e l e v a t i o n s .  - 132 -  air  ( d e r i v e d from r a d i a t i o n c o o l i n g or i n c o m i n g p o l a r a i r )  under the warm a i r above.  is  S p r i n g and f a l l seasons show the  trapped  reverse  s i t u a t i o n when temperatures c o o l s l o w l y w i t h i n c r e a s i n g e l e v a t i o n . D u r i n g the summer months, minimum temperatures f l u c t u a t e i n response to a g r e a t e r number of c l e a r n i g h t s and r a d i a t i o n c o o l i n g . minimum temperatures occur i n the v a l l e y  The  coldest  bottom.  Maximum w i n t e r temperatures show l i t t l e change w i t h  increasing  e l e v a t i o n due to the more s t a b l e c o n d i t i o n s c r e a t e d by i n c r e a s e d c l o u d cover.  S p r i n g and summer maximum temperatures d e c r e a s e w i t h  elevation  p r i m a r i l y as a r e s u l t of g r e a t e r depth and p e r s i s t e n c e of snowpacks a t higher l e v e l s .  Autumn temperatures a r e i n c o n s i s t e n t but d i s p l a y a d e -  f i n i t e i n v e r s i o n at higher  elevations.  D i u r n a l f l u c t u a t i o n s a r e t h e g r e a t e s t i n summer a t low i n the w a t e r s h e d .  Cloud cover and s t a b l e c o n d i t i o n s l i m i t the  range i n temperature i n t h e  6.2  elevations diurnal  winter.  R e s u l t s and i n t e r p r e t a t i o n of t h e c l a s s i f i c a t i o n a n a l y s i s  T h i s s e c t i o n p r e s e n t s and i n t e r p r e t s  the r e s u l t s of the  c a t i o n a n a l y s i s f o r t h e Templeton R i v e r watershed s t u d y .  classifi-  The r e s u l t s  of  the D i s s i m i l a r i t y A n a l y s i s and f i n a l group c l u s t e r a n a l y s i s are p r e s e n t e d first  i n o r d e r to d i s c u s s g e n e r a l t r e n d s observed i n the c l a s s i f i c a t i o n  hierarchy.  The r e s u l t s of the p l o t c l u s t e r a n a l y s i s and development  " v e g e t a t i o n t y p e s " a r e p r e s e n t e d s e c o n d , b e i n g the most d e t a i l e d of the  classification.  of  levels  - 133 -  6.2.1  D i s s i m i l a r i t y Analysis D i s s i m i l a r i t y Analysis was performed on the 121 sample p l o t s  using 200 s p e c i e s - a t t r i b u t e s as d i v i s i v e c r i t e r i a .  Two species which  occurred only once i n the 121 p l o t s were "masked" from the a n a l y s i s i n order to meet the imposed species-dimension  of 200.  The a n a l y s i s sub-  divided the i n i t i a l set i n t o 13 f i n a l groups and 4 s i n g l e p l o t s using 2 a stopping value of x ranged from 4 to 21.  =  232.63 (see Figure 6.8). F i n a l group membership  F i n a l groups and s i n g l e p l o t l e v e l s of the hierarchy  were established with as low as 3 and as high as 9 l e v e l s of d i v i s i o n . Mean s i m i l a r i t y values f o r the f i n a l groups ranged from 32.8 to 64.6 (mean value = 51.6).  S i x mean s i m i l a r i t y values were l e s s than 50  (heterogeneous, 3 were l e s s than 60 (reasonably homogeneous) and 4 were greater than 60 (very homogeneous). Unlike the Grassy Creek a n a l y s i s , the D i s s i m i l a r i t y A n a l y s i s dendrogram f o r Templeton River d i d not show any vegetative c h a r a c t e r i s t i c s (successional, physiognomic or zonal) at the more general l e v e l s of d i v i s i o n i n the hierarchy.  D e f i n i t i v e vegetation features were only  revealed at the f i n a l group l e v e l of the comparative a n a l y s i s . 6.2.2  F i n a l group c l u s t e r a n a l y s i s The f i n a l group c l u s t e r a n a l y s i s formed an agglomerative  hierarchy  of f i n a l groups based on t h e i r f l o r i s t i c s i m i l a r i t y to one another.  This  analysis revealed zonal and physiognomic r e l a t i o n s h i p s that existed between the f i n a l groups derived from D i s s i m i l a r i t y Analysis (see Figure  (121)  I.  b(84)  III g  (14)  b(12)  c(49)  d(35) h (21]  a(37)  f(7)  I'll  I"  e(42)  d(8)  IV  VI  45.5  60.3  52 JB  VI  a(4)  |V"a(12) VIII a(11)  IX a(10)  r LU  a(11)  b(1)  c(22)  b{1)  LU  IV a(11)  b(6)  b(D  S 54.1  I"' a(16)  JV_c(23)  N10)  m 60.3  b(9)  b(5)  d(D  LU  c(8)  c(34)  d(11)  m 64.6  a(25)  LU 62.2  k LU 45.2  LU  39.1  m 49.2 A LU  LUi  32.8  58.0  na 47.2  FINAL GROUP & MEAN SIMILARITY VALUE  54.1 V k/cv o i i n D(5) | api) 1 V  Figure 6.8  SINGLE PLOT LEVEL OF DIVISION (IV); BRANCHES . m m E R OF PLOTS (6&11).  { a & b )  Templeton River - D i s s i m i l a r i t y Analysis dendrogram and mean s i m i l a r i t y values and f i n a l groups.  E  mm  ZONAL FEATURES  m J l  Avalanche Zone  ESSFx«(df)  J l  Brush  B  JL  Douglas fir often a serai species and persistant in mature forests.  (Lower elevations)  PHYSIOGNOMIC FEATURES  m  l  n-2  ff3  21  11 ba -Jl  c b a _J»  ESSFXK Douglas fir not usually a serai species.  ESSFxB & Avalanche Zone ESSFxa(df) (Upper elevations)  l  SemiOpen Forest  Closed Forest  Open, Krumholtz & Discontinuous Forest Low Regeneration Forest  J Closed Forest  Figure 6.9 Templeton River - zonal and physiognomic vegetation features of the f i n a l group c l u s t e r analysis dendrogram.  - 136 -  6.9).  The r e s u l t s of t h i s a n a l y s i s a s s i s t e d i n the arrangement  of  the c l a s s i f i c a t i o n u n i t s w i t h i n the f i n a l v e g e t a t i o n legend (Table 6 . 1 ) .  6.2.3  P l o t c l u s t e r a n a l y s i s , mean s i m i l a r i t y v a l u e s and geographic assessment of c l a s s i f i c a t i o n u n i t s The p l o t c l u s t e r a n a l y s i s was performed on a l l f i n a l groups  more than 2 p l o t members (13 f i n a l groups i n t o t a l )  (see F i g u r e  with  6.9).  T h i s a n a l y s i s formed an a g g l o m e r a t i v e h i e r a r c h y of t h e sample p l o t s w i t h i n each f i n a l group based on t h e i r f l o r i s t i c ^ s i m i l a r i t y to one another.  The mean s i m i l a r i t y v a l u e g i v e n f o r each f i n a l group was a  u s e f u l guide to determine the r e l a t i v e homogeneity among the members of a p a r t i c u l a r f i n a l group.  F o l l o w i n g an e x a m i n a t i o n of the p l o t  cluster  a n a l y s e s , mean s i m i l a r i t y v a l u e s and t h e g e o g r a p h i c d i s t r i b u t i o n of sample p l o t s w i t h i n each f i n a l group, considered for s u b d i v i s i o n ^ .  4 f i n a l groups  ( 1 , 9 , 10 and 11) were  A c o m p a r a t i v e a n a l y s i s of each p o t e n t i a l  branch of these s u b d i v i s i o n s showed t h a t o n l y 2 of the s u b d i v i s i o n s groups 1 and 11) were s i g n i f i c a n t l y ^ d i f f e r e n t w i t h r e s p e c t to f l o r i s t i c attributes  (see F i g u r e  (final  their  6.10).  F i n a l group 13 was a heterogeneous group r e p r e s e n t i n g p l o t s w h i c h c o n t a i n e d more than one community type w i t h i n them. s e l e c t i o n of the sample p l o t l o c a t i o n .  T h i s was due to poor  S i n c e the p l o t c l u s t e r  analysis  showed almost no r e l a t i o n s h i p among the p l o t s and t h e r e was no apparent g e o g r a p h i c a s s o c i a t i o n w i t h the p l o t members, f i n a l group 13 d i d n o t form a vegetation  type.  (121) I  b(84)  h  (21) III 9 <">  a[37) b(12L  c(49)  d(35) '(7)  III  e(42)  d(4)  cK.11)  64.6 (81  1a  Tl'3)  I4i  j  [9)  45.5 •  1b 1c 2  • • M  A  if.  D-1 D C A  LU  l» a(1Q)  E  H  V  3  E  4  J  5  J-1  s  a 49.2  0 0  I IA I I 32  V  6  H-1  DISSIMILARITY ANALYSIS DENDOGRAM  V a(11) VI a(4) b(1)  VII a(12) VIII a(11) b(1)  60.3  IV a(11) b(6)  V c(22) N10)  LU H LU  3(16)  b(5)  V c(23)  d(D  s  III  b(9)  IV c(34)  d(8)  m  a(25)  l"c(8)  6 7  I-2  8  9  C-1  A  •  M  A  10 11a 11b  •  G  •  1-1  •  fljTl FINAL GROUPS  4T2-*-MEAN SIMILARITY VALUES I SUBDIVISION OF FINAL GROUPS VEGETATION TYPE  12  •  B F  }  MAP UNIT SYMBOLS FOR VEGETATION TYPES  Final group 13 is a heterogeneous group whose memoes each contained more than one community type within them. These divisions were not used since they were represented by only one sample plot and occurred to a very limited extent in the watershed.  F i g u r e 6 . 1 0 ' Templeton R i v e r analysis.  f o r m a t i o n o f v e g e t a t i o n types u s i n g D i s s i m i l a r i t y A n a l y s i s and t h e p l o t  cluster  BIOGEOCLIMATIC SUBZONE  ESSFxB  AVALANCHE ZONE  ESSFxoc Douglas fir not usually a serai species  AVALANCHE ZONE  ESSF«x(df) Douglas fir often a serial species and persistant in mature forests  MAP SYMBOL  VEGETATION TYPE  PHYSIOGNOMY  A  1 2 L a r i x - P i c e a /Larix/Cassiope mertensiana  open f o r e s t  B  Rhododendron a l b i f l o r u m - V a c c i n i u m scoparium/ Senecio t r i a n g u l a r i s - C l a y t o n i a l a n c e o l a t a  meadow and discontinuous  C  L a r i x - P i c e a / P i n u s a l b i c a u l i s (-Vaccinium scoparium)/Saxifraga b r o n c h i a l i s 3 4 AV /Abies - P i n u s a l b i c a u l i s - V a c c i n i u m membranaceum/Saxifraga b r o n c h i a l i s AV/Picea-Pinus a l b i c a u l i s - M e n z i e s i a ferruginea/ Hylocomnium splendens  open f o r e s t and low regeneration f o r e s t  xeric-submesic  krumholtz shrubf o r e s t patches  xeric-meslc  low regeneration forest  submesic-mesic  Picea-Pinus albicaulis/Menziesia Hylocomnium splendens  closed forest -  submesic-mesic  Picea/Vaccinium scoparium-Rhododendron a l b i f l o r u m /  closed  forest  mesic  P i c e a - A b i e s / L o n i c e r a involucrata/Rubus  closed  forest  subhygric-hygric  dense, brush  continuous  subhygric  C-1  A  D-1  A  D E F G I-1  A  AV/Alnus sinuata/Athyrium lanceolata  ferruginea/  pedatus  filix-femina-Claytonia  subxeric-mesic (subhygric) subhygric-hygric forest  (-hygric)  AV/Populus tremuloides-Amelanchier a l n i f o l i a / Frageria virginiana-Thalictrum occidentalis  discontinuous and herbs  H  ? not represented i n the study area at the time of mapping  ?  H-1  Pinus contorata-Pseudotsuga /Juniperus scopulorum/ Epilobium a u g u s t i f o l i u m - A r n i c a c o r d i f o l i a  semi open and closed f o r e s t s  xeric-submesic  I 1-1 I-2 J J-1  ? not represented i n the study area at the time of mapping Pseudotsuga-Abies/Acer glabrum/Smilacina racemosa  closed f o r e s t  mesic  Pseudotsuga-Abies/Alnus sinuata/Cornus canadensis  closed  submesic-subhygric  A b i e s - P i c e a / R i b e s lacustre/Goodyera  closed f o r e s t  mesic-subhygric  closed f o r e s t  mesic-subhygric  5  Pseudotsuga-Picea/menziesia canadensis  oblongifolia  ferruginea/Cornus  1. L a r i x - L a r i x l y a l l i i ; 2. P i c e a - P i c e a engelmannii; 3, AV 5. Pseudotsuga - Pseudotsuga m e n z i e s i i var glauca. Table 6 . 1  MOISTURE REGIME  forest  brush  subxeric-mesic  avalanched; 4. Abies - Abies l a s i o c a r p a  Templeton River - c l a s s i f i c a t i o n u n i t s arranged according to zone, subzone, successional status and moisture regime f o r use i n the map legend.  - 139 -  6.3.4  The vegetation types and t h e i r d e s c r i p t i o n As a r e s u l t of the d e t a i l e d examination of the f i n a l groups  derived from D i s s i m i l a r i t y A n a l y s i s , 15 "vegetation types" were distinguished f o r the Templeton River watershed (see Figure 6.10). 9  Each vegetation type was characterized w i t h respect to i t s vegetative and p h y s i c a l features'*"^ and arranged i n the form of a map legend according to zone, subzone, successional status and moisture regime (see Table 6.1).  Each type was named according to the nomenclature system  discussed i n s e c t i o n 4.3.2.2 and given a map u n i t symbol according to the method discussed i n s e c t i o n 4.3.2.1.  A summary " b i o p h y s i c a l " t a b l e  of the u n i t s i s given i n Table 6.2 ( i n back pocket).  The vegetation  features and commonly associated p h y s i c a l c h a r a c t e r i s t i c s of each u n i t are described below.  Three s t y l i z e d landscape p r o f i l e s of the Templeton  River watershed have been prepared to i l l u s t r a t e the geographic  relation-  ship between the biogeoclimatic subzones, vegetation types, s o i l development and s o i l parent m a t e r i a l s ( t e r r a i n u n i t s ) (see Figures 6.11 - 6.11.1 to.  6.11.2).  The vegetation features and commonly associated p h y s i c a l  c h a r a c t e r i s t i c s of each vegetation type are described below. Engelmann spruce - subalpine f i r parkland subzone (ESSFxB) A  -  Larix-Picea/Larix/Cassiope mertensiana  (open f o r e s t , subxeric-  mesic (subhygric) Type A was derived from a s u b d i v i s i o n of f i n a l group 1 ( l a ) and i s represented by 8 p l o t s . watershed:  I t occurs i n two d i s t i n c t s i t u a t i o n s i n the  windswept ridges w i t h steep rock and c o l l u v i a l slopes and more  protected cirque basins on deep hummocky colluvium and moraine (1830 m -  TRANSECT LOCATIONS  BIOGEOCLIMATIC SUBZONE  ESSFxeci ESSFXK—IWHa  -MAP UNIT SYMBOL FOR VEGETATION TYPE -•-REPRESENTATIVE VEGETATION STRUCTURE AND COMPOSITION SURFICIAL MATERIALS AND BEDROCK 2  Mv.Ev-  -TERRAIN UNIT  2  -SOIL CLASSIFICATION  3  LMHFP-RLF  -SOIL DRAINAGE  4  O  -SOIL PROFILE DESCRIPTION  -Bfh GSiL 4.8R  -HORIZON pH IN WATER -HORIZON TEXTURE - HORIZON BOUNDARY -SOIL DEPTH (IN 20 cm INCREMENTS) -HORIZON DESIGNATION 4  zd  km  VEGETATION STRUCTURE AND COMPOSITION  fit HERBS  SHRUBS ABIES LASIOCARPA  Figure 6.11  LARIX LYALII  LARIX OCCIDENTALIS  PICEA ENGELMANNII  POPULUS TREMULOI DES  PINUS ALBICAULIS  P'NUS CONTORTA (MATURE)  PINUS CONTORTA OMMATUREI  PSEUDOTSUGA MENZIESII VETERAN)  PSEUDOTSUGA MEN2IESII (IMMATURE)  THUJA PLICATA  TSUGA HETEHOPHTLLA  Templeton River - key figure f o r s t y l i z e d landscape p r o f i l e s (Figures 6.11.1, 6.11.2 and 6.11.3) following). Footnotes are explained on the following page.  "  -  Figure 6.11  Footnotes: 1.  141 -  V e g e t a t i o n types a r e d e s c r i b e d i n s e c t i o n 6 . 3 . 4 .  2.  T e r r a i n U n i t symbols ( s u r f i c i a l m a t e r i a l s and l a n d f o r m ) are d e s c r i b e d i n Appendix I I I .  3.  S o i l s a r e c l a s s i f i e d a c c o r d i n g t o t h e System o f S o i l C l a s s i f i c a t i o n f o r Canada, 1974 ( R e v i s e d ) ; a b b r e v i a t i o n s a r e d e s c r i b e d i n Appendix I I I .  4.  A b b r e v i a t i o n s f o r s o i l d r a i n a g e and h o r i z o n t e x t u r e a r e d e s c r i b e d i n Appendix I I I .  Rock & Snow 2900  2600  -  E  2300 < 2 O cr  2000  Q. Q. <  1700  L F— H  =  3 2  L Fl  4.7  lAheJvGSiL  5.5|  GLMFHP-P LFH Bhf CoL  20  Ah CoS  GLOFHP-P  5,i 5.4  ODYB-W  LFH  17  Bm VGL  5.0  4.6  1L4 LFH Ahe VGSiL ' 4.9 Bfh. VGSiL 5,0 pBmg VGSL 5.3  Ah VGSiL 5.9 Bm CoSiL  6.8  CoSi!"  73  •20  C  L F H 5.2 R (argillite)  --40  Bhf VGSiL  6.3  Bfh- -CoSiL 6.1  •60  nCJVGSL  •40  n BC VGSL  5.1  6.0  •60 C  CoS  HBfg VSiL  6.4  HCg VSiL TEMPLETON RIVER  Figure 6.11.1  6.6 nc VGSL  DC VGSiL 6.7  Templeton River - transect "A. - A " - approximate north-south cross section of the western h a l f of the watershed. *• 1  Rock & Snow  Rock. Snow & Glaciers  GLOFHP-I  LFH Ae Bhf UBC. HCg VGSL 4.4 fi/GSL 4.5|  SE9  DGDYB-R  OHFP-W  GLOFHP-I  LF_ Aet=  LF Ahe ssnr 4.2 HBrn VGSL 4.6 UIBfhb- I 2 3 0 ; 4 IIBmivGSL 5.1 LVBCb VGSL 5.1 nc |VGLS~5.7| TVJC . iyGsTir3  Mb  Mb  Mt  ±9 LFH Ae CoSiL 4.1 •20 Bhf  HBfg GL  4.9  EC ^  4~4  BIHFP-MW L X6 F Ae-) GSiL 4.1 Bf GSiL_ _5.0 Ae2 VGLS 5.3 •40 AB VGSL 5.4 Bt VGL  5.3  -100 C VGL 6.2  DGDYB-W Ae VGLS 4.1 IIBmi.VGS 4.7 rUBti IVGL  4.8  *40  pSBm2 VGSL 5.0 3ZB1T13  GSL  5.3'  Bm  GS  6.3  4  ODYB-W  L F pZT3l5 Bm GL 7.4 •20 BC  GL  7.5  • 80 C VGSiL 7.9  C •GS "  TEMPLETON RIVER Figure  6.11.2  Templeton R i v e r the watershed.  -  transect  "B^ - B ^ " -  approximate n o r t h - s o u t h  OMB-R LF &-7 Ah CoSiL 7.0 40 Bm CoSiL 7.2  ORR  OHP-MW LF Bh  -20  VGLS Bhf" VGLS CjyGS 20  Ah Co(SiL)6.9  i,4 5.2 5.6)  •80 Btj ..CoS C _ Cos'  100  C_ Co(sT  • (Douglas fir often a serai species and persistant in mature forests) cross s e c t i o n of  the e a s t e r n h a l f  of  - 144 -  4  2285 m) (see Figure 6.11.1 and 6.11.2). A d d i t i o n a l c h a r a c t e r i s t i c 11 species of these open, parkland f o r e s t s i n c l u d e Phyllodoce empetri12 formis  , Phyllodoce g l a n d u l i f l o r a and Pinus a l b i c a u l i s .  The r e -  cognition species are Pinus a l b i c a u l i s and L a r i x l y a l l i i (tree l a y e r ) , Abies l a s i o c a r p a (shrub l a y e r ) , Vaccinium membranaceum, Cassiope mertensiana and Dicranum spp.  Commonly associated s o i l s on Type A  are w e l l to r a p i d l y drained Orthic Humo-Ferric Podzols and Orthic Regosols on rubbly colluvium and i m p e r f e c t l y drained Gleyed Orthic Ferro-Humic Podzols on c o l l u v i a l veneers o v e r l y i n g moraine.  Type A  i s o f t e n adjacent to or i s complexed w i t h Types C or B. B.  /Rhododendron a l b i f l o r u m - Vaccinium scoparium/Senecio  trian-  g u l a r i s - C l a y t o n i a l a n c e o l a t a (meadow and discontinuous f o r e s t , subhygric-hygric) Type B was derived from a s u b d i v i s i o n of f i n a l group 11 ( l i b ) and i s represented by 3 p l o t s . area:  I t occurs i n two s i t u a t i o n s i n the study  open r e c e i v i n g areas w i t h i n cirque basins (meadow) and on gently  sloping or f l a t seepage areas at the base of steep rock and c o l l u v i a l slopes (1920 m - 2165 m) (see Figures 6.11.2 and 6.11.1 r e s p e c t i v e l y ) . These types receive most of t h e i r moisture from upslope and/or o n - s i t e snow meltwaters.  A d d i t i o n a l c h a r a c t e r i s t i c species are Pinus a l b i c a u l i s  and L a r i x l y a l l i i (shrub l a y e r ) , P e d i c u l a r i s bracteosa, V a l e r i a n a s i t c h e n s i s , Anemone m u l t i f i d a and Veratrum e s c h s c h o t z i i .  Recognition species include  Abies l a s i o c a r p a (shrub l a y e r ) , Vaccinium scoparium, Rhododendron a l b i f l o r u m  - 145 -  and Claytonia l a n c e o l a t a . S o i l s on these types are imperfectly drained Gleyed Orthic Humo-Ferric Podzols and Gleyed Orthic Ferro-Humic Podzols developed on c o l l u v i a l veneers o v e r l y i n g moraine.  Type B occurs to a  very l i m i t e d extent i n the watershed and i s u s u a l l y complexed w i t h Type A. Although i t was not mapped, Type B a l s o occurs along very narrow drainages w i t h i n the subalpine avalanche C.  zones.  Larix-Picea/Pinus a l b i c a u l i s (-Vaccinium scoparium)/Saxifraga b r o n c h i a l i s (open forest and low regeneration f o r e s t , xeric-submesic) Type C was derived from f i n a l group 2 with 14 p l o t s .  I t occurs on  steep, wind-swept, c o l l u v i a l slopes o f t e n adjacent to areas w i t h frequent avalanching (Type C - l ). I n many parts of the watershed, p a r t i c u l a r l y the north-facing slopes and r i d g e s , t h i s u n i t represents the highest e l e v a t i o n f o r e s t community (1740 m - 2285 m) (see Figures 6.11.1 and 6.11.2). scopulorum i s an a d d i t i o n a l c h a r a c t e r i s t i c species.  Juniperus  Recognition species  include L a r i x l y a l l i i , Abies l a s i o c a r p a (shrub l a y e r ) , Vaccinium membranaceum, Vaccinium scoparium and Dicranum species.  The s o i l s associated with t h i s u n i t  are q u i t e v a r i a b l e i n c l u d i n g L i t h i c , Alpine and Degraded D y s t r i c B r u n i s o l s and Orthic Regosols.  A l l s o i l s are developed on coarse colluvium.  Avalanche zone (AV) C-l .  AV/Abies - Pinus a l b i c a u l i s - Vaccinium membranaceum/Saxifraga b r o n c h i a l i s (Krumholtz shrub-forest patches, xeric-mesic) A.  Type C - l was derived from f i n a l group 8 with 4 p l o t s .  I t occurs  at the uppermost elevations of avalanche tracks and i n i s o l a t e d niches  - 146 -  throughout the highest, wind-swept rock and c o l l u v i a l t e r r a i n (1920 m 2500 m) (see Figure 6.11.1).  I t s d i s t r i b u t i o n i n the watershed i s p r i -  marily l i m i t e d to south-facing slopes.  A d d i t i o n a l c h a r a c t e r i s t i c species  include Vaccinium scoparium. Penstemon f r u t i c o s i s . Cryptogramma c r i s p a , Cassiope mertensiana. Phyllodoce empetriformis and Carex spp.  Recognition  species are Abies l a s i o c a r p a (a procumbent shrub), Vaccinium membranaceum, Vaccinium scoparium and Pinus a l b i c a u l i s (shrub l a y e r ) . drained Alpine D y s t r i c Brunisols developed  S o i l s are w e l l  on colluvium.  Type C - l i s  frequently complexed with Types R and U (rock and unconsolidated deposits) i n the extreme upper elevations of the north slope. D-l .  AV/Pincea - Pinus a l b i c a u l i s - Menziesia ferruginea/Hylocomnium splendens (low regeneration f o r e s t , submesic-mesic) Type D-l was derived from a s u b d i v i s i o n of f i n a l group 1 (lb)  and i s represented by 4 p l o t s .  I t occurs on a l l aspects i n the upper, treed  elevations of avalanche tracks (1615 - 2100 m) (see Figure 6.11.1).  Re-  c u r r i n g avalanche a c t i v i t y maintains these types as low regeneration f o r e s t s with a t h e o r e t i c a l climax of Type D (described below).  Recognition species  include Menziesia f e r r u g i n e a , Vaccinium scoparium. Rhododendron a l b i f l o r u m , Dicranum spp. and Pleurozium s c h r e b e r i . The associated s o i l s i n these types are moderately w e l l to w e l l drained Orthic Regosols developed colluvium.  on rubbly  These u n i t s t y p i c a l l y d i s s e c t f o r e s t s characterized by Type D.  - 147  -  Engelmann spruce subalpine f i r f o r e s t subzone (Douglas f i r not u s u a l l y a s e r a i species) (ESSFxoc) D.  Picea - Pinus a l b i c a u l i s / M e n z i e s i a ferruginea//Hylocomnium splendens (closed f o r e s t submesic-mesic) Type D was derived from a s u b d i v i s i o n of f i n a l group 1 ( l c ) and  i s represented by 9 p l o t s .  I t occurs on both north and south facing slopes  i n the upper and cooler elevations of the f o r e s t subzone (1525 - 2050 m) (see Figures 6.11.1 and 6.11.2).  With a herb l a y e r almost completely  absent, the recognition species include Picea engelmannii, Pinus a l b i c a u l i s , Abies l a s i o c a r p a . Vaccinium membranaceum. Menziesia  ferruginea, Vaccinium  scoparium, Rhododendron a l b i f l o r u m , Dicranum spp. and Pleurozium schreberi. Orthic Humo-Ferric Podzols and Bisequa Orthic Humo-Ferric Podzols developed on w e l l drained colluvium and colluvium overlying morainevare commonly associated with these types. E.  Picea/Vaccinium scoparium - Rhododendron a l b i f l o r u m / ( c l o s e d f o r e s t , mesic) Type E was derived from f i n a l group 3 and i s represented by 7 p l o t s .  I t occurs s p o r a t i c a l l y throughout the cooler elevations of the f o r e s t subzone (see Figures 6.11.1 and 6.11.2).  Other than where i t was noted during  sampling, i t was d i f f i c u l t to p r e d i c t the occurrence of Type E.  field  I t was  often i n t i m a t e l y associated with Type D i n cool subalpine f o r e s t s and  with  Type F i n v a l l e y bottom l o c a t i o n s under the influence of cold a i r drainage and long snow duration.  A d d i t i o n a l c h a r a c t e r i s t i c species include Abies  l a s i o c a r p a , Alnus sinuata and Barbilophosia spp.  Recognition  species  are  -  148 -  Abies l a s i o c a r p a (shrub l a y e r ) , Vaccinium membranaceum, Menziesia ferruginea, Dicranum spp. and Pleurozium schreberi.  Commonly associated  s o i l s are w e l l to r a p i d l y drained BisequaOrthic Humo-Ferric Podzols and Orthic and Degraded D y s t r i c B r u n i s o l s . F.  Picea-Abies/Lonicera involucrata/Rubus pedatus (closed f o r e s t , subhygric-hygric) Type F was derived from f i n a l group 12 and i s represented by 6  plots.  I t s occurrence i s l i m i t e d to c o o l , v a l l e y bottom seepage zones and  f l o o d p l a i n s w i t h high moisture regimes and cold a i r drainage (and/or pooling) (see Figures 6.11.1 and 6.11.3).  A d d i t i o n a l c h a r a c t e r i s t i c species include  Rhododendron a l b i f l o r u m , Lycopodium annotinum, Dryopteris a u s t r i a c a , Equisetum arvense, Osmorhiza c h i l e n s i s and Streptopus a m p l e x i f o l i u s . Recognition species are Abies l a s i o c a r p a , P i c e a engelmannii, Menziesia f e r r u g i n i a , Cornus canadensis, Rubus pedatus, Pleurozium s c h r e b e r i and Hylocomnium splendens.  S o i l s on these types i n c l u d e poorly drained Gleyed  Orthic Regosols developed on f l o o d p l a i n deposits and poorly, drained Gleyed Orthic Humo-Ferric Podzols developed on c o l l u v i a l veneers o v e r l y i n g moraine. Avalanche zone (AV) G.  AV/Alnus sinuata/Athyrium f i l i x - f e m i n a - C l a y t o n i a lanceolata (dense, continuous brush, subhygric-hygric) Type G was derived from f i n a l group 10 and i s represented by 9 p l o t s .  I t occupies lower slope l o c a t i o n s i n avalanche tracks that are under r e l a t i v e l y cool and moist conditions (1400 - 1900 m) (see Figure 6.11.1).  The dominant  - 149 -  shrub i n the type i s Alnus s i n u a t a which forms a dense r e s i l i e n t A d d i t i o n a l c h a r a c t e r i s t i c species  i n c l u d e Veratrum e s c h s c h o t z i i , Senecio  triangularis,  Sambucus racemosa, Streptopus a m p l e x i f o l i u s  occidentale.  Below the dense canopy of Alnus s i n u a t a ,  species and  brush.  and  Thalictrum  further  recognition  are Ribes l a c u s t r e , Streptopus a m p l e x i f o l i u s , Athyrium f i l i x - f e m i n a  Claytonia lanceolata.  Moderately w e l l drained  O r t h i c Regosols developed  on r u b b l y  colluvium  I-l  AV/Populus t r e m u l o i d e s - Amelanchier a l n i f o l i a / F r a g a r i a v i r g i n i a n a  .  are c h a r a c t e r i s t i c s o i l s f o r Type  (discontinuous Type I - l plots.  was  I t o c c u r s on dry  below steep r o c k r i d g e s avalanching The  brush and derived  herbs,  G.  subxeric-mesic)  from f i n a l group 9 and  south a s p e c t s between 1500 (see F i g u r e 6.11.2).  i s represented  and  Both r o c k  m a i n t a i n these types i n a brushy and  1800  m  8  elevation  (colluvium)  herbaceous s t a t e  h y p o t h e t i c a l c l i m a x on these s i t e s i s Type I.  by  and  snow  (disclimax).  Although the s p e c i e s  com-  p o s i t i o n of these types i s o f t e n q u i t e v a r i a b l e , some a d d i t i o n a l c h a r a c t e r i s t i c species  i n c l u d e Rubus p a r v i f l o r u s , V i o l a c a n a d e n s i s , A l l i u m cernuum, A c h i l l e a  m i l l e f o l i u m and tremuloides,  Thalictrum  occidentale.  Amelanchier a l n i f o l i a ,  The  recognition species  S h e p e r d i a c a n a d e n s i s , J u n i p e r u s scopulorum,  Thalictrum  o c c i d e n t a l e , F r a g a r i a v i r g i n i a n a and  associated  s o i l s are r a p i d l y d r a i n e d  colluvium.  are Populus  Epilobium  augustifolium.  O r t h i c Regosols developed on  rubbly  The  - 150  -  Engelmann spruce subalpine f i r f o r e s t subzone (Douglas f i r often a s e r a i species and p e r s i s t a n t i n mature f o r e s t s ) (ESSFxoc(df)) H.  Type H i s a h y p o t h e t i c a l climax of Type H - l .  Type H was not  represented i n the study area at the time of mapping. H-l.  Pinus contorta-Pseudotsuga/Juniperus scopulorum/Epilobium a u g u s t i folium-Arnica c o r d i f o l i a (semi open and closed f o r e s t s , x e r i c submesic) Type H-l was derived from f i n a l group 6 and i s represented by 10  plots.  I t occurs on dry south aspects and shedding zones u s u a l l y influenced  by the dry trench climate (1300 - 1900 m) (see Figure 6.11.3).  This u n i t  becomes established a f t e r f i r e and has a h y p o t h e t i c a l climax of Type H. A d d i t i o n a l c h a r a c t e r i s t i c species are Alnus sinuata, Carex concinnoides and Spiraea b e t u l a f o l i a .  Recognition species include Pseudotsuga m e n z i e s i i ,  Spiraea b e t u l i f o l i a and Calamagrostis rubescens. v a r i e t y of w e l l to r a p i d l y drained s o i l s :  Type H-l occurs on a  L i t h i c D y s t r i c Brunisols on  g r a v e l l y c o l l u v i a l veneers, Bisequa Grey L u v i s o l s on c o l l u v i a l veneers over moraine and Orthic D y s t r i c Brunisols on g l a c i o f l u v i a l deposits. I.  Type I i s a h y p o t h e t i c a l climax of Type 1-1 and 1-2.  Type I was  not represented i n the study area at the time of mapping. 1-1.  Pseudotsuga-Abies/Acer  glabrum/Smilacina racemosa (closed f o r e s t ,  mesic) Type 1-1 i s derived from a s u b d i v i s i o n of f i n a l group 11 (11a) and i s represented by 2 p l o t s .  I t occurs on dry south facing slopes i n  ESSFxcr. (Douglas fir often a serai species and persistant in mature stands)  TEMPELTON -f v. %P RIVER '* ' 3  T  LFH A e 57L Bm SSiJ. HBt  GL  5.2 5.4  5.8  VGL  Bf  4.5 GL  L Bm  M GSiL  Bm-j  6.1  20  LF  DBtj VGLS  HBt  VGLS  5.4  R " (argillite)  I I B C . VGLS  nc  LF  5-9  6.6  5.2  6.1  40  •40 IBtrQ VGSiL  5.9 5~9  HBm .VGLS  5.8  mc C VGLS  4.7 4.4  riBm-i VGST ;  7.0  (dolomite)  LF A e G57L Bf GSiL  Bm VGSL  R  Figure 6.11.3  GSiL  •60  7.1  TEMPLETON RIVER  D^4  5.4  6.3  '40  nek  LF  VGLS  L F  ,  4.7  A h VGLS  6.4  C g VGLS  6.7  5.9  8.3  •SOUTH ASPECT  5.3  VGLS  Templeton R i v e r - t r a n s e c t " C ^ - C^" - approximate w e s t - e a s t c r o s s s e c t i o n of the v a l l e y mouth and u p l a n d t r e n c h r e g i o n .  - 152 -  approximately the middle of the watershed (1600 - 1750 m) (see Figure 6.11.2).  This u n i t i s characterized by veteran f o r e s t s of Pseudotsuga  m e n z i e s i i which probably became established f o l l o w i n g a f i r e several hundred years ago (400 - 500 years?).  A d d i t i o n a l c h a r a c t e r i s t i c species  are Rubus p a r v i f l o r u s , Amelanchier a l n i f o l i a , Disporum hookeri, Clematis. columbiana and Thalictrum occidentale.  Acer glabrum, Rubus p a r v i f l o r u s ,  Smilacina racemosa and Thalictrum occidentale are r e c o g n i t i o n species. The associated s o i l s f o r Type 1-1 are r a p i d l y drained Orthic E u t r i c Brunisols developed 1-2.  on rubbly c o l l u v i a l blankets o v e r l y i n g moraine.  Pseudotsuga-Abies/Alnus sinuata/Cornus  canadensis  (closed f o r e s t ,  submesic-subhygric) Type 1-2 was derived from f i n a l group 7 and i s represented by 10 plots.  I t occurs i n the same landscape p o s i t i o n s as Type 1-1 i n a d d i t i o n  to lower slope l o c a t i o n s on south aspects and on the channelled upland t e r r a i n of the trench region (1250 - 1800 m) (see Figures 6.11.2 and 6.11.3.). I t i s a s e r a i type which could p o t e n t i a l l y develop i n t o the mature s e r a i Type 1-1 and h y p o t h e t i c a l climax Type I . A d d i t i o n a l c h a r a c t e r i s t i c species are Ribes l a c u s t r e , Amelanchier a l n i f o l i a , Rubus p a r v i f l o r u s , Spiraea b e t u l a f o l i a , Lonicera i n v o l u c r a t a . Aster conspicuous, Calamagrostis rubescens, c r i s t a - c a s t r e n s i s and Polytrichum juniperinum.  Ptilium  Recognition species include  Pinus contorta. Pseudotsuga m e n z i e s i i , Abies l a s i o c a r p a , Cornus canadensis, Pleurozium schreberi and Dicranum spp. The commonly associated s o i l s i n clude B r u n i s o l i c Grey L u v i s o l s developed  on c o l l u v i a l veneers o v e r l y i n g  - 153 -  moraine and morainal veneers o v e r l y i n g g l a c i o f l u v i a l d e p o s i t s ; and Orthic Humo-Ferric Podzols developed on g l a c i o f l u v i a l deposits. A l l s o i l s associated with Type 1-2 are moderately w e l l to w e l l drained. J.  Abies-Picea/Ribes lacustre/Goodyera o b l o n g i f o l i a (closed f o r e s t , mesic-subhygric) Type J was derived from f i n a l group 4 and i s represented by 8  plots.  I t generally occurs on both, north and south aspects i n l o c a t i o n s  influenced by cooler subalpine conditions than Types 1-1 and 1-2  (lower  slopes on southern aspects subject to shading; landscapes adjacent to areas of longer snow duration and northeastern aspects; f l o o d p l a i n s and depressional areas where cooler a i r may d r a i n and pool) (1250 - 2000 m) (see Figures 6.11.2 and 6.11.3).  An a d d i t i o n a l c h a r a c t e r i s t i c species i s Menziesia ferruginea.  Recognition species i n c l u d e Picea engelmanii, Ribes l a c u s t r e , Menziesia ferruginea, Dicranum spp. and Pleurozium s c h r e b e r i .  The commonly associated  s o i l s are w e l l drained Orthic Humo-Ferric Podzols developed on c o l l u v i a l veneers overlying moraine and g l a c i o f l u v i a l deposits. J-1  Pseudotsuga-Picea/Menziesia  ferruginea/Cornus canadensis  (closed  f o r e s t , mesic-subhygric) Type J-1 was derived from f i n a l group 5 and i s represented by 11 plots.  I t occurs i n e s s e n t i a l l y the same landscape as Type J .  s e r a i type which w i l l l i k e l y climax to Type J .  It is a  A d d i t i o n a l character species  are P y r o l a v i r e n s , Ribes l a c u s t r e and P t i l i u m c r i s t a - c a s t r e n s i s .  Recognition  species are Pseudotsuga m e n z i e s i i , Picea engelmannii, Abies l a s i o c a r p a (shrub l a y e r ) , Vaccinium membranaceum, Menziesia f e r r u g i n e a , Cornus canadensis,  - 154  -  P t i l i u m c r i s t a - c a s t r e n s i s , Dlcranum spp., Pleurozium schreberl and Hylocomnlum splendens. A v a r i e t y of s o i l s are associated w i t h Type J-1, none of them dominant.  6.3  C o r r e l a t i o n with e x i s t i n g vegetation c l a s s i f i c a t i o n O g i l v i e (1962, 1969), P f i s t e r et a l . (1974), F r a n k l i n and Dyrness  (1973), A r l i d g e (1955) and K r a j i n a (1969) have developed c l a s s i f i c a t i o n s p a r t i a l l y a p p l i c a b l e i n the Templeton River study area.  The r e s u l t s of  t h i s vegetation study were s u b j e c t i v e l y compared w i t h these e x i s t i n g classifications.  The comparison was based on the author's general e c o l o g i c a l  and p h y t o s o c i o l o g i c a l understanding of the vegetation types derived from t h i s study and the taxa discussed i n the e x i s t i n g c l a s s i f i c a t i o n s . A r l i d g e (1955) conducted a preliminary c l a s s i f i c a t i o n and evaluation of the Engelmann spruce area of B.C. Type E —  subalpine f i r f o r e s t (ESSF) i n the Bolean Lake  Three of A r l i d g e ' s associations might be considered analogous:  the "Picea engelmanii —  Abies l a s i o c a r p a —  Rubus pedatus" a s s o c i a t i o n ; and Type F — Abies l a s i o c a r p a —  a complex of the "Picea engelmanhii —  Vaccinium o v a l i f o l i u m —  "Picea engelmannii — recurvum" a s s o c i a t i o n .  Abies l a s i o c a r p a —  Vaccinium membanaceum —  Dryopteris linnaeana" and the  Equisetum arvense —  K r a j i n a (1969) describes 15 biogeocoenoses f o r the  ESSF zone of which 10 may be considered roughly s i m i l a r : geocoenoses 83 a & b; Type D — 79; Type F — Type H —  Sphagnum  biogeocoenose 80; Type E —  Type A —  bio-  biogenocoenose  a complex of biogeocoenose 76 a & b, 87 and 88; h y p o t h e t i c a l  biogeocoenose 82; and Type H-l —  biogeocoenose 84.  - 155  -  O g i l v i e (1969) and P f i s t e r et a l . (1974) have described  the  "Picea-Abies/Calamagrostis rubescens" a s s o c i a t i o n and "Abies l a s i o c a r p a / Calamagrostis rubescens" habitat type r e s p e c t i v e l y .  Pseudotsuga menziesii  and Pinus contorta s e r a i f o r e s t s are the main representative  tree  of these types making them roughtly equivalent  Ogilvie's  to Type H-1.  species  c l a s s i f i c a t i o n for the mountain forest and alpine zones of Alberta most c l o s e l y corresponds to that developed for t h i s study area.  He  describes  6 other a s s o c i a t i o n s , i n a d d i t i o n to the one above, which are v e r y s s i m i l a r : Type A —  the "Picea-Abies/Vaccinium scoparium" a s s o c i a t i o n ; Type B  —  the "Phyllodoce" a s s o c i a t i o n and the "Cassiope" a s s o c i a t i o n ; Type D  —  the "Picea-Abies/Hylocomnium splendens — Type E —  Cornus canadensis" a s s o c i a t i o n ;  the "Picea-Abies/Menziesia ferruginea —  a s s o c i a t i o n ; and Type F —  Lycopodium annotinum"  the "Picea-Abies/Equisetum" a s s o c i a t i o n .  F r a n k l i n and Dyrness (1973) describe a number of "subalpine meadow" communities which are p a r t i a l l y analogous to Type B. some of the complexities  They also  describe  of the L a r i x l y a l l i i f o r e s t s (Types A and  C)  o r i g i n a l l y reported by Arno (1972).  6.4  6.4.1  Mapping of  vegetation  Pretyping A "pretyped vegetation" map  was prepared for the Templeton River  watershed using the methods discussed  e a r l i e r i n s e c t i o n 4.2.2.  The pre-  typed vegetation u n i t s were delineated on the black and white a e r i a l  - 156 -  photographs (1:15,840) and were l a t e r transferred onto two base maps: a v i s u a l t r a n s f e r onto an uncontrolled photo mosaic base at an approximate scale of 1:8,000 (see Figure 6.12,  i n rear map pocket) and a K a i l p l o t  t r a n s f e r onto B.C. Forest Service (Inventory D i v i s i o n ) planimetric base maps at a scale of 1:15,840.  Sample p l o t l o c a t i o n s were also p l o t t e d on  the planimetric base map.  6.4.2.  Vegetation  types and biogeoclimatic subzones  Using the procedure outlined i n s e c t i o n 4.3.3.1, map u n i t s  (both  pure and complex) were i d e n t i f i e d and delineated using the pretyped vegetation map (Figure 6.12) as a b a s i s .  Some of the concepts developed  for pretyping the vegetation were proven to be of l e s s e r s i g n i f i c a n c e than i n the Grassy Creek study.  In p a r t i c u l a r , the hygrotope/slope p o s i t i o n  concept was often masked by the e f f e c t of a d r i e r and cooler, c o n t i n e n t a l macroclimate and by the predominance of coarse, f r e e l y drained parent materials and t h e i r e f f e c t on seepage waters.  Several important vegetation  breaks (the "present vegetation c o n d i t i o n " component of the pretype u n i t ) were overlooked during the pretyping due to an i n i t i a l inexperience at photo i n t e r p r e t i n g .  Consequently, the necessary corrections were made on  the a e r i a l photographs and were then t r a n s f e r r e d t o the p l a n i m e t r i c base. The amended map units were l a b e l l e d according  to the vegetation type legend  i n a s i m i l a r manner to the Grassy Creek study (see section 5.4.2).  A final  map of the n a t u r a l vegetation of the Templeton River watershed was prepared using the planimetric base at a scale of 1:15,840 (see Figure 6.13 i n rear map pocket).  BIOGEOCLIMATIC SUBZONES  ESSFxJJ (parkland subzone)  ESSFx* (forest subzone)  Douglas fir not usual l y a serai species  1 ESSFwt(df) (forest subzone)  j Douglas fir often a serai species and j persistant in mature forests.  fill  AVALANCHE ZONE (ESSFxDischmax) Vegetation subject to recurring avalanche activity.  mm  F i g u r e 6.14 Templeton R i v e r - b i o g e o c l i m a t i c subzones.  - 158  -  The c l a s s i f i c a t i o n and mapping of the vegetation provided a better understanding of the p a t t e r n of b i o g e o c l i m a t i c subzones i n the watershed.  Following a c a r e f u l examination of the i n d i v i d u a l p l o t data  and c l a s s i f i c a t i o n analyses, a l l of the continuous f o r e s t areas were included w i t h i n the ESSF f o r e s t subzone (ESSFxoc).  Because of c l i m a t i c  influences from the trench and of the i n s o l a t i v e p r o p e r t i e s of the steep south-facing slope, the northern p o r t i o n of the f o r e s t subzone was d i s tinguished from the r e s t on the basis of Pseudotsuga m e n z i e s i i (Douglas 13 f i r ) e x i s t i n g as a s e r a i species and p e r s i s t i n g i n mature f o r e s t s (see Figure 6.14).  P a r t i t i o n i n g the subalpine f o r e s t i n t h i s way i s  consistent with concepts expressed by McLean and Holland (1958), P f i s t e r et a l .  (1974) and van Barneveld (1969). The extensive avalanche zones which are d i s t r i b u t e d  throughout  most of the study area have been delineated and l a b e l l e d as "ESSFx Disclimax".  The vegetation i n h a b i t i n g these s i t e s i s subject to r e c u r r i n g  avalanche a c t i v i t y .  I t i s i n t e r e s t i n g to note that nearly h a l f of the  watershed i s e s s e n t i a l l y non-vegetated due to a severe climate and an i n h o s p i t a b l e substrate of rock, snow and g l a c i e r s .  A f i n a l map of b i o -  geoclimatic subzones was prepared at a s c a l e of 1:50,000 (see Figure 6.14).  1.  The "Rocky Mountain Trench" w i l l hereafter be simply r e f e r r e d to as the "trench".  2.  A more d e t a i l e d account of s u r f i c i a l geology and s o i l s i s given by G. U t z i g , graduate student, Department of S o i l Science, U n i v e r s i t y of B r i t i s h Columbia; Masters t h e s i s i n progress e n t i t l e d : "An evaluation of d e t a i l e d s o i l s mapping i n forested, mountainous t e r r a i n " .  - 159 -  3.  Same as footnote "2" above.  4.  The l o c a t i o n of Brisco i s shown i n Figure 6.1  5.  C l i m a t i c information i s summarized from a report prepared by R. C h i l t o n , Climate and Data Services D i v i s i o n , Environment and Land Use Committee S e c r e t a r i a t , Province of B.C., V i c t o r i a .  6.  An example of t h i s procedure was given e a r l i e r i n s e c t i o n 5.2.3.  7.  The term " s i g n i f i c a n t l y " i s not used i n a s t a t i s t i c a l sense. A " s i g n i f i c a n t " s u b d i v i s i o n was judged as one i n which there were obvious differences ( i . e . diagnostic or p r e f e r e n c i a l ) i n species composition and/or vegetation s t r u c t u r e between the two p o t e n t i a l branches of the hierarchy.  8. For example: an abandoned s k i d road and a s e l e c t i v e l y logged s i t e ; a f l o o d p l a i n with complex m i c r o r e l i e f ; a h i g h l y v a r i a b l e avalanche track vegetation. 9. Vegetative features include the diagnostic and p r e f e r e n t i a l species, "recognition species", physiognomy, successional s t a t u s , zone/subzone. 10. P h y s i c a l features include t e r r a i n u n i t s , s o i l development, s o i l texture, s o i l drainage, e l e v a t i o n , slope, aspect, slope c o n f i g u r a t i o n and hygrotope (see s e c t i o n 4.3.2.2.). 11. I n a d d i t i o n to those used t o name the type. 12. A species l i s t f o r Templeton River watershed i s given i n Appendix I I . 13. The o r i g i n a l subzone model included a "tongue" of ESSF-IDF t r a n s i t i o n (IDF = I n t e r i o r Douglas f i r zone) i n t o the ESSF f o r e s t subzone.  - 160 -  CHAPTER 7.  SYSTEMATIC SAMPLING STUDY  -  CHAPTER 7.  7.1  161 -  SYSTEMATIC SAMPLING STUDY  I n t r o d u c t i o n and o b j e c t i v e s Chapters 5 and 6 d e s c r i b e d t h e a p p l i c a t i o n of D i s s i m i l a r i t y  Analysis"'' t o d e t a i l e d v e g e t a t i o n c l a s s i f i c a t i o n and mapping i n two mountainous w a t e r s h e d s .  The procedures employed i n t h e s e s t u d y areas 2  were of an " o p e r a t i o n a l "  nature s u i t e d to p r a c t i c a l considerations  i n t h e a c q u i s i t i o n , a n a l y s i s , i n t e r p r e t a t i o n and p r e s e n t a t i o n of vegetation inventory data.  T h i s c h a p t e r d e s c r i b e s an i n d e p e n d e n t ,  more d e t a i l e d s t u d y of two r e p r e s e n t a t i v e areas i n the Templeton R i v e r watershed.  Two a s p e c t s of v e g e t a t i o n mapping a r e i n v e s t i g a t e d :  p r e d i c t i v e c a p a b i l i t y of the v e g e t a t i o n p r e t y p i n g approach  The  (described  i n s e c t i o n 4 . 2 . 2 ) and the r e l i a b i l i t y of t h e f i n a l v e g e t a t i o n maps ( F i g u r e s 5.14 and 6 . 1 3 ) .  The l a t t e r i n v e s t i g a t i o n employed a p o s t -  mapping, s y s t e m a t i c s a m p l i n g p r o c e d u r e . As i n most n a t u r a l r e s o u r c e i n v e n t o r y schemes conducted i n i n a c c e s s i b l e a r e a s , the mapping approaches developed f o r the o p e r a t i o n a l s t u d i e s p l a c e d a s t r o n g emphasis on a e r i a l photo  interpretation—the 3  e x t r a p o l a t i o n of known landscape a t t r i b u t e s and p a t t e r n s areas p o s s e s s i n g s i m i l a r v i s u a l f e a t u r e s Table 4 . 2 ) .  (e.g.  i n t o unknown  those features l i s t e d i n  The q u a l i t y of such an i n v e n t o r y ^ , i n t h i s instance"*, i s  measured by t h e r e l i a b i l i t y of t h e i n f o r m a t i o n o b t a i n e d : u n i t l a b e l l e d as " x " ,  the d i f f e r e n c e between the p r e d i c t e d  f o r any map probability  - 162 -  o f o c c u r r e n c e of " x " and t h e a c t u a l o c c u r r e n c e of It  "x".  i s o n l y more r e c e n t l y t h a t map r e l i a b i l i t y has been an i s s u e  o f concern i n n a t u r a l r e s o u r c e i n v e n t o r i e s . assessed s u b j e c t i v e l y  Usually r e l i a b i l i t y  through c o n s i d e r a t i o n of a number o f  b r e a d t h of the s u r v e y o r ' s e x p e r i e n c e ;  is  factors:  the i n h e r e n t c o m p l e x i t y of t h e  l a n d s c a p e ; the n a t u r e o f the r e s o u r c e under c o n s i d e r a t i o n ( i . e .  ease of  r e c o g n i t i o n and i d e n t i f i c a t i o n ) ; t h e amount and a v a i l a b i l i t y o f e x i s t i n g i n f o r m a t i o n ; t h e a v a i l a b i l i t y of t o p o g r a p h i c base maps and u s e f u l remote s e n s i n g i n f o r m a t i o n ; the number and d i s t r i b u t i o n of o b s e r v a t i o n s  relative  t o the e x t e n t of a r e a b e i n g mapped; and the s c a l e s of b o t h f i e l d mapping and f i n a l map p r e s e n t a t i o n ( p u b l i c a t i o n ) .  I n some s u r v e y s ,  a t t e m p t s have  been made t o i n d i c a t e map r e l i a b i l i t y i n a q u a l i t a t i v e way.  Small s c a l e  " r e l i a b i l i t y " i n s e t maps, q u a l i f i e d map u n i t boundary l i n e s  (dotted,  dashed o r s o l i d l i n e s )  or d i f f e r e n t map u n i t symbols ( l i g h t , medium or  b o l d f a c e t y p e , upper and lower c a s e , v a r i a b l e c h a r a c t e r s i z e ) used t o i n d i c a t e t h e degree of c o n f i d e n c e i n maps and map u n i t s . few s t u d i e s have attempted t o q u a n t i f y mapping r e l i a b i l i t y  are However,  ( e . g . by p e r -  centages or p r o b a b i l i t i e s ) by comparing the p r e d i c t e d o c c u r r e n c e  of  landscape a t t r i b u t e s w i t h t h e i r a c t u a l occurrence. T h i s s t u d y employs a p o s t - m a p p i n g , s y s t e m a t i c s a m p l i n g p r o c e d u r e t o q u a n t i t a t i v e l y determine map r e l i a b i l i t y .  Four i n t e r r e l a t e d  factors  w h i c h c o n t r i b u t e t o the r e l i a b i l i t y o f the f i n a l v e g e t a t i o n maps a r e examined:  -  a.  163 -  the p r e d i c t i v e c a p a b i l i t y and c o n s i s t e n c y o f a p p l i c a t i o n of the p r e t y p i n g a p p r o a c h ;  b.  the i n t e n s i t y and d i s t r i b u t i o n of ground o b s e r v a t i o n s  relative  t o the number of p r e t y p e d map u n i t s and f i n a l v e g e t a t i o n map units delineated; c.  i n c o n j u n c t i o n w i t h " a " and " b " above, the a p p l i c a t i o n of  the  c l a s s i f i c a t i o n a n a l y s i s t o the p r e t y p i n g concepts and d i s t r i b u t i o n of the p r e t y p e d map u n i t s ; and d.  t h e homogeneity o f t h e f i n a l v e g e t a t i o n map u n i t s and t h e o v e r a l l mapping r e l i a b i l i t y .  These f a c t o r s are d i s c u s s e d below w i t h i n t h e c o n t e x t of the p r e t y p i n g a s p e c t of v e g e t a t i o n mapping ( s e c t i o n 7 . 3 . 1 ) and t h e r e l i a b i l i t y a s p e c t of v e g e t a t i o n mapping ( s e c t i o n  7.2  Methods of  7.3.2).  study  The methods used i n t h i s s t u d y were independent from the o p e r a t i o n mapping p r o c e d u r e s used i n Templeton R i v e r w a t e r s h e d and i n v o l v e d  field  s a m p l i n g f o l l o w e d by d a t a a n a l y s i s and i n t e r p r e t a t i o n .  7.2.1  F i e l d sampling  F o l l o w i n g the c o l l e c t i o n of sample p l o t d a t a f o r the Templeton R i v e r w a t e r s h e d s t u d y , two areas were s e l e c t e d f o r d e t a i l e d s y s t e m a t i c sampling.  One n o r t h and one s o u t h - f a c i n g s l o p e were s e l e c t e d as r e p r e -  -  164 -  s e n t a t i v e o f the predominant p a t t e r n s of v e g e t a t i o n , s o i l ' , m a t e r i a l o c c u r r i n g i n the watershed.  and p a r e n t  The s e l e c t e d areas were examined  on t h e a e r i a l photographs and an a p p r o p r i a t e g r i d p a t t e r n ( i n t e r v a l 8 c o n f i g u r a t i o n ) was determined .  Thirty-one grid points  9  and  (19 on the s o u t h  a s p e c t and 12 on the n o r t h a s p e c t ) were p l o t t e d on t h e a e r i a l photographs u s i n g a square g r i d i n t e r v a l o f a p p r o x i m a t e l y 200 m. Given an approximate s t a r t i n g p o i n t ,  compass b e a r i n g and g r i d  c o n f i g u r a t i o n , B.C. Forest Service Inventory D i v i s i o n personnel the f i e l d l o c a t i o n of the 31 g r i d p o i n t s  (see F i g u r e 7 . 1 ) .  surveyed  A standard  v e g e t a t i o n sample p l o t was t a k e n at each g r i d p o i n t u s i n g the method described i n section 4 . 2 . 3 .  The sample p l o t r a d i u s  ( 1 1 . 3 m) and c i r c u m -  f e r e n c e were e s t i m a t e d v i s u a l l y . The two g r i d areas and the sample p l o t d a t a were used t o examine t h e two a s p e c t s of the s y s t e m a t i c s a m p l i n g s t u d y .  7.2.2  Data a n a l y s i s and i n t e r p r e t a t i o n To examine the p r e d i c t i v e c a p a b i l i t y of the p r e t y p i n g approach  the p r e t y p e d map u n i t s were superimposed onto the f i n a l v e g e t a t i o n map w i t h i n the g r i d areas (see F i g u r e 7 . 2 ) .  The o p e r a t i o n a l sample p l o t s  w i t h i n and a d j a c e n t t o the g r i d areas w h i c h c o n t r i b u t e d to the mapping, procedure were a l s o i n d i c a t e d i n F i g u r e 7 . 2 .  A summary t a b l e of compar-  i s o n s i s p r e s e n t e d t o examine the r e l a t i o n s h i p s between the p r e t y p i n g approach and the f o r m a t i o n o f f i n a l v e g e t a t i o n map u n i t s  (see Table  7.1).  F i g u r e 7 . 1 • S y s t e m a t i c S a m p l i n g Study i n t e r v a l = 100 m).  sample p l o t l o c a t i o n s i n the Templeton R i v e r watershed ( s c a l e 1 : 1 5 , 8 4 0 ;  -  166 -  The v e g e t a t i o n d a t a from the 31 sample p l o t s were a n a l y s e d u s i n g the Coenos 1 program d e s c r i b e d i n s e c t i o n 4 . 2 .  The r e s u l t s  of the D i s s i m i l a r i t y A n a l y s i s and c l u s t e r a n a l y s e s were used t o e v a l u a t e t h e r e l i a b i l i t y o f the o p e r a t i o n a l mapping of the Templeton River watershed.  A comparative a n a l y s i s (described i n s e c t i o n 4 . 3 . 2 . 1 )  o f the D i s s i m i l a r i t y A n a l y s i s dendrogram was conducted and t h e c h a r a c t e r i s t i c s p e c i e s f o r each b r a n c h were compared w i t h those o f the o p e r a t i o n v e g e t a t i o n t y p e s of the Templeton R i v e r s t u d y . i t y A n a l y s i s dendrogram) a n a l y s i s dendrograms)  and a g g l o m e r a t i v e  The d i v i s i v e  (Dissimilar-  ( f i n a l group and p l o t  cluster  c l a s s i f i c a t i o n h i e r a r c h i e s were i n t e r p r e t e d at  d i f f e r e n t l e v e l s of d e t a i l c o n s i s t e n t w i t h the c h a r a c t e r of the o p e r a t i o n a l vegetation types.  The r e s u l t i n g "systematic""'"^ v e g e t a t i o n types were  then c o n s i d e r e d the "most c o r r e c t " r e g a r d i n g the c l a s s i f i c a t i o n of v e g e t a t i o n w i t h i n the g r i d a r e a s . The r e l i a b i l i t y of the o p e r a t i o n a l v e g e t a t i o n map w i t h i n the  grid  a r e a was determined by the p e r c e n t agreement o c c u r r i n g between the-, o p e r a t i o n a l v e g e t a t i o n map u n i t s and the groups of g r i d p o i n t s sample p l o t s ) area.  (systematic  r e p r e s e n t i n g the s y s t e m a t i c v e g e t a t i o n t y p e s of the  The r e l i a b i l i t y v a l u e s  (percentages)  grid  a r e r e p o r t e d r e l a t i v e to a  p u r e l y independent chance o f agreement and r e l a t i v e t o an optimum chance of agreement based on the most f r e q u e n t l y o c c u r r i n g s y s t e m a t i c v e g e t a t i o n type.  -  167 -  7.3  R e s u l t s and d i s c u s s i o n  7.3.1  P r e d i c t i v e c a p a b i l i t y of the p r e t y p i n g As p r e v i o u s l y  approach  discussed i n sections 4 . 3 . 3 . 1 ,  5 . 4 and 6 . 4 the  p r e t y p e d map u n i t s were used as a b a s i s t o form the f i n a l maps.  vegetation  The r e l a t i o n s h i p s between the p r e t y p e d map u n i t s , t h e  operational  v e g e t a t i o n map u n i t s and t h e o p e r a t i o n a l sample p l o t s are shown i n Table 7 . 1 and F i g u r e 7 . 2 . separately  The n o r t h and s o u t h a s p e c t s are d i s c u s s e d  below.  N o r t h A s p e c t ( r e f e r t o T a b l e 7 . 1 and F i g u r e  7.2)  The p r e t y p i n g o f v e g e t a t i o n on the n o r t h a s p e c t was d i f f i c u l t s i n c e v a r i a t i o n s i n the f o r e s t  particularily  cover were o n l y c l e a r l y  i n the upper p a r k l a n d e l e v a t i o n s and t h e s e l e c t i v e l y  logged  evident  forests  SL (D  ) i n the v a l l e y bottom.  Between t h e s e e l e v a t i o n s , p r e t y p i n g r e l i e d '  s t r o n g l y - on the " h y g r o t o p e / s l o p e  p o s i t i o n " concept  (discussed i n  4 . 2 . 2 a n d / i l l u s t r a t e d i n F i g u r e 4 . 1 ) as i n f e r r e d from s l o p e  configuration,  slope o r i e n t a t i o n , slope a n g l e , slope l e n g t h , drainage network, l e s s e r e x t e n t f o r e s t h e i g h t and d e n s i t y .  section  and t o a  Two p r e t y p e d map u n i t s were  r e c o g n i z e d on the b a s i s of " t e r r a i n f e a t u r e s and p r o c e s s e s h a v i n g a major i n f l u e n c e on p r e s e n t v e g e t a t i o n c o n d i t i o n " : map u n i t #9 — and map u n i t #1 —  f l u v i a l f a n (see F i g u r e  Three o f t h e 9 p r e t y p e d map u n i t s  exposed  colluvium  7.2).  (8 v e g e t a t e d ,  1 non-vegetated)  c o n t a i n e d an o p e r a t i o n a l sample p l o t w i t h i n the g r i d a r e a (map u n i t s ' # 1 , #2 and #4).  The 9 p r e t y p e d map u n i t s were m o d i f i e d to form 8 f i n a l  ffi  ro 3 Prr cn  n o  TJ  JN  H  n  3* ro  3  U)  O P ro p rr  3  o TJ  •i P* W P3 O era O P* rt O =r P fD tn  cr o  to r-tl O •i  rt P* ro TJ  H i tn i-t ro rs 3 * TJ r t CD 03 •< 1—  <  1-J T J  d> Prr ro 0 0  ro ro Q*  00  rt  P> rn r r (-h P * ro O !-t P ro p P  ma  o o 3  3 3 TJ H* o  n o 3  TJ  O P ro P rr cn  pi H ro  H* P P  P*  < ro 00  ro rr P  rr PO 3 3 TJ  C  3 Prt cn  ta ti fD cn PO  P* P> ro n H* P  TJ  «:  P3 rr H O ro  < 00  P" ro O rt o rr PH* O P 3 rr rr  i-h POQ C H  O  EC  W  2! C 3 cf  <; ro ro pn i-( ro CUrP-t o O to ro Hi 3 rt  a.  r/ O  cu 3  3 Cu  ro  a  C  TJ  P  H  P0  O  Z  G r i d Area  (Aspect)  no.  of PTU's  no.  o f FVU's  no. of PTU's a plot  containing  no. o f p l o t s w i t h i n or adjacent to g r i d area  0)  ri  rr  no. o f boundary l i n e s created-*-  3 O  no. PTU's aggregated ( ) = partial  to 3Cu VS rfti n 1 ro cn roc H-'P-3 P-P" C33 rr CU tu 3 r r cn P- cn ro-*r t roHC Prr  TJ  <S P(tl T J 00 tfl  TJ  00  cn  O  3  n  i-i fD  (B cn 3 o  pi-n n cu rt pO 3  FVU's  I-.  rt  «ror t o ro n ro ro t-h W rt r i . ro Q - • i-t rr C P- P 3 rro t P" ^ r r P* P  a  P> 3  C  Ab br  c  H  *i  " d c P>  no. o f p l o t s c o n t r i b u t i n g to FVU d e l i n e a t i o n  TJ  TJ  H* O 3 ro Pu  cn  a.  rt 3* ro  ii  O  3  rr  §•  g p-  Q.  no.  TJ  ro  a.  o f PTU's w i t h i n  FVU('s)  i d e n t i f i c a t i o n n o ( s ) of PTU's ( f i g u r e 7.2)  3  P TJ  s* ro ro tn vs  00  TJ  30  mroroi ro r t o o p  cu r t r r  TJ TJ n r t ro ro 3 * Q r r ft)  n  o  T J cn p p- r t TJ  P  o x o.  ^  p ro H  3  P  00  co n ,  H  CU C r+ 3 (OH  to  O H  !  a  O  TJ  rt  ro  C  O  P*  3  ^ T J  3 00  a  TJ  O Z PI tn  3  •O cr p  ro  « CD p* ^  S3  O 3  00  3  9 > w  ^  to r t p.  -  TJ O  fl  P * ro  o ororo n 3  M  89T  ro s Ml  ro r ? ro P * cn ro tn r t w H ro p -  O rr it, 3 "  O  55  H  a. cn  -  CO P  -  169 -  Table 7 . 1 c o n t i n u e d . COMMENTS: 1.  At h i g h e l e v a t i o n s i n the p a r k l a n d f o r e s t , l a n d s c a p e s a r e dominated by r o c k and c o l l u v i u m . The d i s t i n c t i o n between a " s h e d d i n g r i d g e zone" (SR) and a " s h e d d i n g zone" (SH) had l i t t l e s i g n i f i c a n c e i n p r e d i c t i n g present vegetation c o n d i t i o n .  2.  E a s t e r l y and w e s t e r l y t r e n d s i n aspect on a d o m i n a n t l y n o r t h - f a c i n g s l o p e have a p p r o x i m a t e l y the same p o t e n t i a l i n f l u e n c e on v e g e t a t i o n condition. A " v a l l e y b o t t o m " exposure (V) w i t h i n s u b a l p i n e f o r e s t r e g i o n s i s r o u g h l y analogous t o a c o o l " n o r t h a s p e c t " .  3.  Improved photo i n t e r p r e t a t i o n w i t h a g r e a t e r c o n c e n t r a t i o n on s u b t l e v a r i a t i o n s i n crown d e n s i t y and p a t t e r n may have f a c i l i t a t e d a b e t t e r d i s t i n c t i o n o f p a r k l a n d f o r e s t V e g e t a t i o n Types A and C.  4.  G u l l i e d t e r r a i n (-V) commonly c o n t a i n s " l i n e a r i n c l u s i o n s " of t a t i o n c h a r a c t e r i s t i c of h i g h e r m o i s t u r e r e g i m e s .  5.  The i n f l u e n c e of a " f l u v i a l f a n " ( F f ) on p r e s e n t v e g e t a t i o n c o n d i t i o n ( i n c r e a s e d m o i s t u r e ) was o v e r e s t i m a t e d . O n l y t h e l o w e r d i s t r i b u t a r y w a t e r channels and apron l o c a t i o n s had v e g e t a t i o n t y p i c a l of h i g h e r m o i s t u r e r e g i m e s . M i d d l e and apex l o c a t i o n s on the f a n were u s u a l l y w e l l d r a i n e d and s u p p o r t e d v e g e t a t i o n s i m i l a r t o t h e main . s l o p e ( V e g e t a t i o n Type D ) .  6.  The h y g r o t o p e / s l o p e p o s i t i o n concept (SR,SH,SM) was i n c o n s i s t e n t due to t h e o v e r r i d i n g i n f l u e n c e of a s t e e p s o u t h a s p e c t and the complex topography o c c u r r i n g at t h e v a l l e y mouth.  7.  The l o w e r s l o p e s of the g r i d a r e a thought t o be i n f l u e n c e d by " a v a l l e y bottom e x p o s u r e " (S ) showed l i t t l e v a r i a t i o n i n v e g e t a t i o n from those w i t h o n l y a d o m i n a n t l y " s o u t h e r n e x p o s u r e " ( S ) .  8.  An e a s t e r n " t r e n c h " a s p e c t (E) was s i m i l a r to the " s o u t h e r n a s p e c t s " (S) a t t h e v a l l e y mouth i n terms of t h e i r i n f l u e n c e on p r e s e n t vegetation condition.  9.  I n i t i a l c o n f u s i o n o v e r v e g e t a t i o n z o n a t i o n on the s o u t h a s p e c t caused i n c o n s i s t e n c i e s i n a s s i g n i n g the s t a t u s of the p r e s e n t v e g e t a t i o n c o n d i t i o n of t h e s e map u n i t s . " P y r a l " i n f l u e n c e (P) was r e s e r v e d f o r s t a n d s of d o m i n a n t l y P i n u s c o n t o r t a . Variations in canopy c l o s u r e appeared t o have l e s s i n f l u e n c e on the p r e s e n t v e g e t a t i o n c o n d i t i o n than o r i g i n a l l y t h o u g h t . G The i n f l u e n c e of " g l a c i a l c h a n n e l s " (E ) on p r e s e n t v e g e t a t i o n c o n d i t i o n a r e r e c o g n i z e d by a complex map u n i t ( J - l / l - 2 ) . V e g e t a t i o n Type 1 - 2 o c c u r s on k n o l l s w h i l e Type J - 1 o c c u r s i n the c h a n n e l s . Q The " g l a c i o f l u v i a l t e r r a c e " top (F t ) p r o v i d e d a s l i g h t l y c o o l e r h a b i t a t than most of the s o u t h - f a c i n g s l o p e i n t h i s p a r t o f w a t e r s h e d .  10.  11'..  vege-  F i g u r e 7.2  -  171 -  v e g e t a t i o n map u n i t s based on the o p e r a t i o n a l v e g e t a t i o n type  classi-  f i c a t i o n of t h e 13 c o n t r i b u t o r y sample p l o t s w i t h i n or a d j a c e n t the g r i d a r e a (see F i g u r e 7 . 2 ) .  Table 7 . 1 . h i g h l i g h t s some o f the  r e l a t i o n s h i p s and anomalies between the p r e t y p e d map u n i t and the f i n a l v e g e t a t i o n map u n i t s . and F i g u r e  to  designations  South A s p e c t ( r e f e r t o T a b l e 7.2  7.2).  V e g e t a t i o n p r e t y p i n g on the s o u t h a s p e c t was e a s i e r than the n o r t h a s p e c t due t o the more r e a d i l y o b s e r v a b l e v a r i a t i o n i n c o v e r and t o p o g r a p h y .  forest  Some d i f f i c u l t i e s a r o s e when d e l i n e a t i n g t h e  " s h e d d i n g " map u n i t s a l o n g the d i v i d e between the Templeton R i v e r w a t e r s h e d and the t r e n c h r e g i o n to the e a s t (map u n i t s #8 and #9). The i n c r e a s e d e f f e c t of e v a p o t r a n s p o r a t i o n on a s t e e p l y s l o p i n g s o u t h a s p e c t reduced t h e e f f e c t of seepage w a t e r i n r e c e i v i n g s l o p e p o s i t i o n s . F i v e of the 14 p r e t y p e d map u n i t s were r e p r e s e n t e d by an o p e r a t i o n a l sample p l o t w i t h i n the g r i d a r e a ( u n i t s #4, #6, #12, #13 and #14). The 14 p r e t y p e d map u n i t s were m o d i f i e d t o form 6 f i n a l v e g e t a t i o n map u n i t s based on the o p e r a t i o n a l v e g e t a t i o n types of t h e 13 c o n t r i b u t o r y sample p l o t s w i t h i n or a d j a c e n t t o the g r i d a r e a (see F i g u r e 7 . 2 ) .  Table  7 . 1 h i g h l i g h t s some of t h e r e l a t i o n s h i p s and anomalies between the p r e typed map u n i t d e s i g n a t i o n s and the f i n a l v e g e t a t i o n map u n i t s . T h i s s e c t i o n has attempted to demonstrate the a p p l i c a t i o n of t h e p r e t y p i n g approach t o t h e o p e r a t i o n a l mapping of f i n a l v e g e t a t i o n u n i t s and t h e c a p a b i l i t y of t h i s approach t o p r e d i c t v a r i a t i o n  in  -  vegetation.  172 -  On b o t h g r i d areas the p r e t y p e d map was more d e t a i l e d  (more map u n i t s )  than the f i n a l v e g e t a t i o n map.  r e s p o n s i b l e f o r the g r e a t e r d e t a i l ( e . g . t e r r a i n f e a t u r e s and p r o c e s s e s )  Some of the  criteria  v a r i a t i o n i n aspect and  d i d n o t c o r r e l a t e w e l l w i t h changes  i n the p r e s e n t v e g e t a t i o n c o n d i t i o n .  The h y g r o t o p e / s l o p e  position  concept p r o v i d e d o n l y a rough s t r a t i f i c a t i o n of the t o p o e d a p h i c m o i s t u r e sequence down the s l o p e .  Weaknesses i n t h i s a s p e c t o f the p r e t y p i n g . :  method a r e p r o b a b l y due to the combined e f f e c t of s e v e r a l f a c t o r s : o v e r r i d i n g i n f l u e n c e of c o o l e r  (meso) c l i m a t e s on v e g e t a t i o n  the  development  a t h i g h e r e l e v a t i o n s and on n o r t h a s p e c t s , the predominance of w e l l d r a i n e d overburden  (colluvium)  on the v a l l e y s l o p e s , a r e l a t i v e l y  c o n t i n e n t a l macroclimate ( r e l a t i v e  t o the c o a s t and i n t e r i o r wet  dry belt)  and t h e i n s o l a t i v e p r o p e r t i e s of the s t e e p s o u t h - f a c i n g s l o p e s .  Never-  t h e l e s s , the p r e t y p i n g approach approximated many o f the f i n a l  vegetation  map u n i t b o u n d a r i e s .  It  provided a methodical, preliminary  stratification  o f the l a n d s c a p e upon w h i c h improved mapping c r i t e r i a c o u l d be added t o b e t t e r p r e d i c t present vegetation  7.3.2  condition.  R e l i a b i l i t y of t h e f i n a l v e g e t a t i o n map D i s s i m i l a r i t y A n a l y s i s s u b d i v i d e d the 31 s y s t e m a t i c sample p l o t s  i n t o 8 f i n a l groups and 4 s i n g l e p l o t s  (see F i g u r e 7 . 3 ) .  Mean s i m i l a r i t y  v a l u e s o f the f i n a l groups ranged from 5 6 . 0 to 8 7 . 8 w i t h a mean v a l u e 7 3 . 0 ( v e r y homogeneous)  (see F i g u r e 7 . 3 ) .  F i n a l group and s i n g l e  plot  of  - 173 b(19) 11  o 2  _  55  III  d(2)  Q  |V  O co _i  V _  _1  —  Ui  c(16)  b(2)  a(9)  VII  a (8)  b(1)  VIII  b(1l  a(7)  67.6  M E A N SIMILARITY  VALUES  a(4)  !10) b(1)  -68.4  a{6)  cC!2) b(2)  FINAL GROUPS & SINGLE PLOTS  a(9) b(3)  d(4)  _  0 2)  b(3)  c|17) d(1)  > H u-  a  5  A 6  76.5  87.8  A m  84.8  A 8 56.0  NORTH ASPECT  SOUTH ASPECT  " A r r o w s i n d i c a t e the f i n a l group most s i m i l a r to t h e s i n g l e p l o t .  Figure  7.3  S y s t e m a t i c Sampling Study - D i s s i m i l a r i t y A n a l y s i s dendrogram and mean s i m i l a r i t y v a l u e s . Note f i n a l group 8 has t h e lowest mean s i m i l a r i t y value.  =o >•  7  A  3  6  A  2  o 20  I  21  I  1-1  I  1  level of interpretation  FINAL GROUP CLUSTER ANALYSIS  FINAL GROUPS  >  PLOT C L U S T E R A N A L Y S I S  10  I  INTERPRETATION O F A N A L Y S I S  V E G E T A T I O N TYPE  WORTH ASPECT F i g u r e 7.4  SOUTH ASPECT  S y s t e m a t i c Sampling Study - f i n a l group c l u s t e r a n a l y s i s , p l o t c l u s t e r a n a l y s i s of f i n a l group 8 and the f o r m a t i o n o f v e g e t a t i o n t y p e s u s i n g 3 l e v e l s of i n t e r p r e t a t i o n .  -  174 -  l e v e l s of t h e d i v i s i v e h i e r a r c h y were e s t a b l i s h e d w i t h as few as 2 and as many as 8 l e v e l s of d i v i s i o n .  A c l e a r d i s t i n c t i o n between the sample  p l o t s from t h e n o r t h and s o u t h a s p e c t was r e f l e c t e d i n t h e i n i t i a l dichotomy of b o t h t h e d i v i s i v e hierarchies however,  (see F i g u r e s  (Dissimilarity Analysis)  7 . 3 and 7 . 4 ) .  and a g g l o m e r a t i v e  Below t h i s l e v e l of  generalization  t h e r e a r e few s i m i l a r i t i e s between the two h i e r a r c h i e s .  F o l l o w i n g a c o m p a r a t i v e a n a l y s i s of t h e D i s s i m i l a r i t y A n a l y s i s dendrogram, r e l a t i o n s h i p s were e s t a b l i s h e d between the f i n a l groups  of  the s y s t e m a t i c sample p l o t s and t h e o p e r a t i o n a l v e g e t a t i o n types of  the  Templeton R i v e r w a t e r s h e d study  (see T a b l e 7 . 2 ) .  It  i s i m p o r t a n t to n o t e  t h a t the comparisons d i d not employ a n u m e r i c a l a n a l y s i s . t i o n s h i p s were e s t a b l i s h e d by comparing ( v i s u a l l y ) structure,  Rather,  t h e i r general  rela-  vegetation  c h a r a c t e r s p e c i e s , c o n s t a n t s p e c i e s , r e c o g n i t i o n s p e c i e s and  t h e i r t o t a l species composition.  U n l i k e s o i l s c i e n c e , i n w h i c h a number  o f taxonomies have been d e v e l o p e d " ^ , v e g e t a t i o n s c i e n c e  (phytosociology)  has no s i n g l e a c c e p t e d taxonomy i n t h i s r e g i o n t o f a c i l i t a t e a more objective  comparison of c o m m u n i t i e s , c o m m u n i t y - t y p e s ,  or v e g e t a t i o n  types.  The f i n a l group and p l o t c l u s t e r a n a l y s e s r e v e a l e d the more g e n e r a l i z e d and more d e t a i l e d s i m i l a r i t y l e v e l s of the c l a s s i f i c a t i o n hierarchy respectively.  S i n c e t h e r e i s no assumed taxonomic r a n k to  the c l a s s i f i c a t i o n s t r u c t u r e s  (Clifford  and W i l l i a m s , 1973)  (Clifford  and S t e p h e n s o n , 1 9 7 5 ) , the a g g l o m e r a t i v e h i e r a r c h i e s were t r u n c a t e d at l e v e l s c o n s i s t e n t w i t h the r e l a t i o n s h i p s shown i n T a b l e 7 . 2 . s y s t e m a t i c v e g e t a t i o n types  Eight  (the seven shown i n F i g u r e 7 . 4 and the  single  -  T a b l e 7.2  175 -  R e l a t i o n s h i p s between t h e f i n a l groups of s y s t e m a t i c sample p l o t s and the o p e r a t i o n a l v e g e t a t i o n t y p e s of the Templeton R i v e r watershed s t u d y .  F i n a l Group Number  S i m i l a r O p e r a t i o n a l V e g e t a t i o n Types  1  " H - 1 " , but w i t h pure P i n u s c o n t o r t a t r e e l a y e r and more s u b a l p i n e ( V a c c i n i u m scoparium)  2  "H-1"  3  "H-1"  4  "1-2"  5  "A"  6  "D"  7  "D",  8  "D" and " F "  Single 1.6  plot  and t o a l e s s e r e x t e n t  "E"  "J"  p l o t 1.6 i n F i g u r e 7.3) were e s t a b l i s h e d w i t h 3 d i f f e r e n t i n t e r p r e t a t i o n of the c l a s s i f i c a t i o n h i e r a r c h y .  levels  Single plots  of  arising  from the D i s s i m i l a r i t y A n a l y s i s dendrogram are d i s c u s s e d i n Table 7 . 3 The f i n a l g r o u p s , s i n g l e p l o t s and v e g e t a t i o n types of  the  s y s t e m a t i c c l a s s i f i c a t i o n a n a l y s i s were p l o t t e d onto the f i n a l ,  operat-  i o n a l v e g e t a t i o n map u n i t s w i t h i n t h e g r i d a r e a s (see F i g u r e 7 . 5 ) . r e l i a b i l i t y of the o p e r a t i o n a l map u n i t s was determined by the o f agreement o c c u r r i n g between the groups of g r i d p o i n t s sample p l o t s )  r e p r e s e n t i n g the s y s t e m a t i c v e g e t a t i o n types  The  percentage  (systematic (an e s t i m a t e  Table 7.3  Agreement between the groups of g r i d p o i n t s ( s y s t e m a t i c sample p l o t s ) r e p r e s e n t i n g s y s t e m a t i c v e g e t a t i o n types and the f i n a l o p e r a t i o n a l v e g e t a t i o n map u n i t s .  the  NORTH ASPECT systematic final s y s t e m a t i c a g r e e - Comment systematic final systematic final a g r e e - Comment final sample vegetation v e g e t a t i o n ment • vegetation vegetation sample # group ment # group plot map u n i t type type map u n i t plot TjSL F 8 8a Yes 4 2.0 1 Yes 8b 8 1.0 SL SL 8b Yes 1 8 8 2.1 1 Yes 8b 8 1.1 IDI 6+7 Yes 2 6 2.2 2 6+7 Yes 6 D 1.2 D 5 No 6 5 2.3 2 6+7 Yes 7 D 1.3 D 6+7 Yes 2 6 2.4 5 6+7 No 7 A 1.4 A 5 Yes 3 5 2.5 3 5 Yes 5 A 1.5 D  final systematic vegetation sample map u n i t plot 1-2 1.0 1-2 1.1 1-2 1.2 1-2£H-1 1.3 H-1 1.4 H-1 1.5 J 1.6 H-1 1.7 H-1 2.1 H- 1 2.2  D  final group 4 4 4 SP(4) 4 4 SP(4) 3 3 2  SUMMARY OF AGREE MENT agreement 10 North aspect 14. 5 South a s p e c t 24.5 Total grid «.  SOUTH ASPECT systematic final systematic a g r e e - Comment sample v e g etation vegetation ment # p l o t map unit type H-1 2 . 3 7 Yes 4 H-1 2.4 7 Yes 4 H-1 2 . 5 7 Yes 4 J l /I-2 2 . 6 10 Yes/No 4 J l /I-2 2.7 14 No 4 H-1 3 . 1 14 No 4 H-1 3.2 12 Yes SP 1.6 H-1 3 . 3 8 Yes 2+3 1-2 3 . 4 8 Yes 2+3 NOTE: SP(4) = single Yes 8 2+3 max. 12 19 31  % 83.3 76.3 79.0  s y s t e m a t i c a g r e e - Comment final vegetation # ment group type 2 2+3 Yes 8 2 2+3 Yes 8 2 2+3 Yes 8 4 4 Yes 9 4 44 Yes 9 1 11 No 15 1 1 No 155 SP(2) 2 Yes 13 SP(4) 4 Yes 11 p l o t ( s i m i l a r to f i n a l group 4)  Independent chance of agreement (% ) : Chance of agreement i f o n l y : •systematic V e g e t a t i o n Type 6+7 chosen(% ) : •systematic V e g e t a t i o n Type 4 chosen (%)  north aspect 12.5 41.6  south aspect 12.5 —  47.3  both 6.2 26.3 29.0  -  177 -  Table 7.3 c o n t i n u e d .  COMMENTS: 1.  SL S y s t e m a t i c V e g e t a t i o n Type 8a and o p e r a t i o n a l map u n i t D are similar  2.  S y s t e m a t i c V e g e t a t i o n Type 6+7 and o p e r a t i o n a l map u n i t D a r e similar  3.  S y s t e m a t i c V e g e t a t i o n Type 5 and o p e r a t i o n a l map u n i t A a r e similar.  4.  S y s t e m a t i c V e g e t a t i o n Type 8b and o p e r a t i o n a l map u n i t F a r e similar.  5.  Disagreement may be a r e s u l t o f a p l o t t i n g - b o u n d a r y  6.  Disagreement may be due t o a map u n i t i n c l u s i o n .  7.  S y s t e m a t i c V e g e t a t i o n Type 4 and o p e r a t i o n a l map u n i t 1 - 2 a r e similar.  8.  S y s t e m a t i c V e g e t a t i o n Type 2+3 and o p e r a t i o n a l map u n i t H - 1 a r e similar.  9.  1 - 2 component of complex o p e r a t i o n a l map u n i t i s s i m i l a r t o V e g e t a t i o n Type 4.  problem.  10.  S i n g l e p l o t 1 . 3 i s more s i m i l a r t o f i n a l group 4 (see F i g u r e and i s t h e r e f o r e s i m i l a r to o p e r a t i o n a l map u n i t 1 - 2 .  7.3)  11.  S i n g l e p l o t 3 . 4 i s second most s i m i l a r t o f i n a l group 4 (see F i g u r e 7 . 3 ) and i s t h e r e f o r e s i m i l a r t o map u n i t 1 - 2 .  12.  S i n g l e p l o t 1 . 6 i s l e a s t s i m i l a r to f i n a l group 4 (see f i g u r e and i s t h e r e f o r e c o n s i d e r e d a s e p a r a t e , s y s t e m a t i c v e g e t a t i o n s i m i l a r t o o p e r a t i o n a l map u n i t J .  13.  S i n g l e p l o t 3 . 3 i s most s i m i l a r t o f i n a l group 2 (see f i g u r e and i s t h e r e f o r e s i m i l a r t o o p e r a t i o n a l map u n i t H - 1 .  14.  Disagreement p r o b a b l y due t o mapping e r r o r .  15.  Disagreement p r o b a b l y due to i n s u f f i c i e n t o p e r a t i o n a l s a m p l i n g a t t h i s e l e v a t i o n on the s o u t h a s p e c t and t h e r e f o r e l a c k of a p p r o p r i a t e vegetation type. The p r e t y p e d map u n i t s i n d i c a t e d a p o t e n t i a l d i f f e r e n c e i n v e g e t a t i o n between sample p l o t s 3 . 1 - 3 . 2 and 2 . 2 - 2 . 3 .  7.3) type 7.3)  •NORTH ASPECT  Figure 7.5  SOUTH ASPECT  S y s t e m a t i c S a m p l i n g Study - f i n a l g r o u p s , s i n g l e p l o t s and v e g e t a t i o n types p l o t t e d o n t o t h e o p e r a t i o n a l v e g e t a t i o n map u n i t s w i t h i n t h e g r i d a r e a s .  -  179 -  of the a c t u a l v e g e t a t i o n types o c c u r r i n g w i t h i n the g r i d a r e a s ) and the f i n a l ,  o p e r a t i o n a l v e g e t a t i o n map u n i t s  (a p r e d i c t i o n of  v e g e t a t i o n types o c c u r r i n g w i t h i n the g r i d a r e a s ) . point  ( s y s t e m a t i c sample p l o t )  the  For each g r i d  a comparison was made between i t s  f i n a l , o p e r a t i o n a l v e g e t a t i o n map u n i t l a b e l and i t s s y s t e m a t i c v e g e t a t i o n type membership (see Table 7 . 3 ) .  The p e r c e n t a g e of  agree-  ment f o r b o t h g r i d a r e a s t o g e t h e r was 79% r e l a t i v e t o an independent chance of agreement of 6.2% and an optimum chance o f agreement of 29.0% (by c h o o s i n g t h e most common V e g e t a t i o n Type 4 f o r a l l s y s t e m a t i c sample p l o t s ) .  12 The n o r t h a s p e c t (83.3%) showed a s l i g h t l y 13  agreement than the s o u t h a s p e c t (76.3%)  .  better  The comments i n c l u d e d i n  T a b l e 7 . 3 have attempted t o e x p l a i n the reasons f o r agreement and d i s agreement between t h e u n i t s .  I n g e n e r a l , d i s a g r e e m e n t s were t h e  result  of 4 f a c t o r s : a.  e x a c t boundary l o c a t i o n (comments 5 and 1 0 ) ;  b.  map u n i t i n c l u s i o n s (comment 6 ) ;  c.  d e f i n i t e mapping e r r o r  d.  l a c k o f ground t r u t h i n the o p e r a t i o n a l s u r v e y t o f a c i l i t a t e the  (comment 1 4 ) ; and  f o r m a t i o n o f s e p a r a t e o p e r a t i o n a l v e g e t a t i o n t y p e s and/or a difference in scale ( i . e .  number of s a m p l e s , number of s p e c i e s  and e x t e n t o f a r e a under s t u d y between the g r i d a r e a s and t h e watershed a r e a ) .  -  180 -  Problems c o n c e r n i n g the " e x a c t boundary l o c a t i o n " are u s u a l l y a r e s u l t o f c a r t o g r a p h i c l i m i t a t i o n s ( p l o t t i n g e r r o r s and i n a c c u r a c i e s r e l a t e d t o s c a l e ) and are d i f f i c u l t t o a v o i d .  "Map u n i t i n c l u s i o n s "  a r e areas w i t h i n a map u n i t w h i c h a r e d i f f e r e n t from the r e s t o f  the  map u n i t , w h i c h o c c u r i n n o t more than 15 t o 20% of the map u n i t a r e a and w h i c h cannot be d e l i n e a t e d and l a b e l l e d at the adopted map s c a l e . Anomalies o f t h i s n a t u r e are common to any mapping a c t i v i t y  conducted  i n n a t u r a l l a n d s c a p e s and a r e seldom a v o i d e d by t h e s e l e c t i o n of mapping s c a l e s .  larger  " D e f i n i t e mapping e r r o r s " r e s u l t from w r o n g l y e x t r a -  p o l a t i n g a c c e p t e d mapping concepts i n t o areas l a c k i n g ground i n f o r m a t i o n . I n the o p e r a t i o n a l s t u d i e s , e x t r a p o l a t i o n s were made u s i n g r e c o g n i z a b l e f e a t u r e s on b l a c k and w h i t e a e r i a l photographs viewed i n s t e r e o .  Grid  p o i n t s 1 . 4 and 1 . 5 on the s o u t h a s p e c t s h o u l d have been i n c l u d e d w i t h i n the o p e r a t i o n a l map u n i t 1 - 2 (see F i g u r e 7 . 5 ) .  This k i n d of e r r o r  can  be a v o i d e d w i t h a g r e a t e r s a m p l i n g i n t e n s i t y and improved a e r i a l photo interpretation. The f o u r t h f a c t o r n o t e d above (d)  may e x p l a i n the i n c l u s i o n of  g r i d p o i n t s 3 . 1 and 3 . 2 ( s o u t h a s p e c t ) w i t h i n the o p e r a t i o n a l map u n i t H-l.  If  a d d i t i o n a l samples had been t a k e n i n t h i s a r e a d u r i n g the  operational survey,  a s e p a r a t e o p e r a t i o n a l v e g e t a t i o n type s i m i l a r t o  s y s t e m a t i c V e g e t a t i o n Type 1 may have been formed (depending upon t h e i r impact on the t o t a l c l a s s i f i c a t i o n a n a l y s i s ) .  On the o t h e r h a n d , any  a d d i t i o n a l samples i n t h i s r e g i o n may s t i l l have f a l l e n w i t h i n  the  -  181 -  a c c e p t a b l e v a r i a t i o n o f the o p e r a t i o n a l map u n i t H - l .  T h i s would  i n d i c a t e the disagreement was more a r e s u l t of a d i f f e r e n c e of s c a l e (number o f s p e c i e s , number o f p l o t s and e x t e n t of a r e a under s t u d y ) between the two c l a s s i f i c a t i o n s and t h e r e s u l t i n g maps.  A more  d e t a i l e d s t r a t i f i c a t i o n of t h e s o u t h - f a c i n g s l o p e i n d i c a t e s e x i s t e n c e of a s e p a r a t e upper e l e v a t i o n v e g e t a t i o n t y p e  the  (#1).  Very few s t u d i e s have been conducted on mapping r e l i a b i l i t y using a post-mapping, systematic sampling procedure. r e l i a b i l i t y has been determined s u b j e c t i v e l y  by t h e s u r v e y o r based  on the f a c t o r s l i s t e d e a r l i e r i n s e c t i o n 7 . 1 . 1 . objective  Traditionally,  Post-mapping,  s a m p l i n g s t u d i e s have been conducted on s o i l s u r v e y s  Michigan State (Whiteside,  1977).  in  These s t u d i e s have found t h a t  s o i l s e r i e s d e s i g n a t i o n s agreed 52 t o 62% o f the time and t h a t lected s o i l properties 64 to 98% o f the t i m e .  se-  ( t e x t u r e , s l o p e c l a s s and e r o s i o n c l a s s ) S t u d i e s c o n c e r n i n g r e l i a b i l i t y of  the  agreed  terrain  ( l a n d f o r m and s u r f i c i a l m a t e r i a l s ) and s o i l a s s o c i a t i o n mapping i n B r i t i s h Columbia suggest t h a t agreement v a l u e s between 55 and 75% a r e about average f o r r e c o n n a i s s a n c e ( 1 : 5 0 ; 0 0 0 - 1 : 1 0 0 , 0 0 0 ) s u r v e y s t i n e et^ a l . , 1 9 7 1 : V a l e n t i n e and Hawkins, 1975; A l l e y , communication).  (Valen-  personal  These p e r c e n t a g e s suggest t h a t the v a l u e s a c h i e v e d  in  t h i s study f a l l w e l l w i t h i n an a c c e p t a b l e l e v e l of mapping r e l i a b i l i t y . It  i s s t i l l d i f f i c u l t t o judge how "good" the r e s u l t s of t h i s  are w i t h o u t fortunately,  comparing them t o s e v e r a l s i m i l a r i n v e s t i g a t i o n s .  study Un-  no such i n v e s t i g a t i o n s have been conducted t o d a t e .  -  182 -  T h i s c h a p t e r has examined two a s p e c t s of the o p e r a t i o n a l mapping o f v e g e t a t i o n i n the Grassy Creek and Templeton R i v e r w a t e r s h e d s : predictive  the  c a p a b i l i t y of the v e g e t a t i o n p r e t y p i n g approach and the  r e l i a b i l i t y of the f i n a l v e g e t a t i o n maps.  A d e t a i l e d e x a m i n a t i o n of  two r e p r e s e n t a t i v e a r e a s w i t h i n the Templeton R i v e r w a t e r s h e d  revealed  the m e r i t s and i n a d e q u a c i e s of the v e g e t a t i o n p r e t y p i n g a p p r o a c h .  An  a n a l y s i s of sample p l o t s c o l l e c t e d on a s y s t e m a t i c b a s i s w i t h i n the same representative  areas i n d i c a t e d an o p e r a t i o n a l mapping r e l i a b i l i t y  of  79%.  Footnotes: 1.  The " a c c e s s o r y a n a l y s e s " o f t h e Coenos program were a l s o a p p l i e d section 4.3.1.2).  2.  H e r e a f t e r the term " o p e r a t i o n a l " w i l l be used t o d e s c r i b e any aspect o f t h e c l a s s i f i c a t i o n and mapping of v e g e t a t i o n i n the Grassy Creek and Templeton R i v e r watersheds (Chapters 5 and 6 r e s p e c t i v e l y ) .  3.  Known l a n d s c a p e a t t r i b u t e s and p a t t e r n s a r e o b t a i n e d w i t h ground t r u t h (sample p l o t d a t a ) and the c o r r e l a t i o n of ground t r u t h w i t h v i s i b l e f e a t u r e s on a e r i a l p h o t o g r a p h s .  4.  I n t h i s s t u d y , the r e s u l t s of an i n v e n t o r y are p r e s e n t e d i n the form of a map and l e g e n d .  5.  I n o t h e r i n s t a n c e s , the q u a l i t y of an i n v e n t o r y may be measured by i n t e r p r e t a b i l i t y , usefulness, presentation etc.  6.  For example: d o t t e d l i n e s , l i g h t type f a c e o r s h o r t c h a r a c t e r s i z e would i n d i c a t e low c o n f i d e n c e ; s o l i d l i n e s , b o l d type f a c e or t a l l c h a r a c t e r s i z e would i n d i c a t e h i g h c o n f i d e n c e .  7.  An analogous s o i l and p a r e n t m a t e r i a l s t u d y was conducted by G. U t z i g , graduate s t u d e n t , Department of S o i l S c i e n c e , U n i v e r s i t y of B r i t i s h Columbia.  8.  Considerations i n known v a r i a b i l i t y v a r i a b i l i t y (from the t i m e r e q u i r e d  the s e l e c t i o n o f the g r i d p a t t e r n i n c l u d e d the (from o p e r a t i o n a l f i e l d s a m p l i n g ) and i n f e r r e d the a e r i a l photographs) of these l a n d s c a p e s and to c o l l e c t the f i e l d d a t a .  (see  its  -  9.  183 -  A g r i d p o i n t was formed by the i n t e r s e c t i o n of two p e r p e n d i c u l a r g r i d l i n e s . Each g r i d p o i n t became the c e n t r e p o i n t l o c a t i o n of a sample p l o t .  1 0 . H e r e a f t e r t h e term " s y s t e m a t i c " w i l l be used t o d e s c r i b e any a s p e c t of the c l a s s i f i c a t i o n and mapping of v e g e t a t i o n i n the g r i d areas based on the independent f i e l d sample p l o t s . 11. It i s recognized that the e x i s t e n c e of s e v e r a l s o i l c l a s s i f i c a t i o n s causes d i f f i c u l t i e s i n c o m p a r a t i v e s t u d i e s i n s o i l s c i e n c e . However comparisons can u s u a l l y be a c c o m p l i s h e d by making them r e l a t i v e t o a p a r t i c u l a r taxonomy or by e s t a b l i s h i n g the e x a c t r e l a t i o n s h i p between the t a x o n o m i e s . 1 2 . The independent chance of agreement = 1 2 . 5 % ; t h e optimum chance of agreement ( V e g e t a t i o n Type 6 and 7) = 4 1 . 6 % . 1 3 . The independent chance of agreement = 1 2 . 5 % ; the optimum chance o f agreement ( V e g e t a t i o n Type 4) = 4 7 . 3 % .  -  CHAPTER 8.  184 -  SUMMARY DISCUSSION  CHAPTER 8 .  8.1  185 SUMMARY DISCUSSION  Review  Concommittant w i t h an i n c r e a s i n g t r e n d towards the e c o l o g i c a l c l a s s i f i c a t i o n of f o r e s t l a n d i s t h e need f o r more d e t a i l e d v e g e t a t i o n , i n v e n t o r i e s and l a r g e r mapping s c a l e s ( 1 : 1 5 , 8 4 0 ) .  Although the  existing  l a n d c l a s s i f i c a t i o n schemes ( b i o g e o c l i m a t i c , p r o v i n c i a l b i o p h y s i c a l and h a b i t a t type c l a s s i f i c a t i o n ) may p r e s e n t an i n i t i a l s t r a t i f i c a t i o n of broad z o n a l p a t t e r n s ,  they seldom p r o v i d e ,  or  were i n t e n d e d t o p r o v i d e  a vegetation c l a s s i f i c a t i o n suitable for detailed vegetation and mapping i n p a r t i c u l a r s t u d y a r e a s .  inventory  I n most i n s t a n c e s , p r i m a r y v e g e t a -  t i o n d a t a must .be c o l l e c t e d and c l a s s i f i e d a t a l e v e l of d e t a i l c o m p a t i b l e w i t h the s c a l e of mapping and the v a r i a b i l i t y  of the v e g e t a t i o n l a n d s c a p e .  L i m i t e d a c c e s s and steep mountainous t e r r a i n a r e a d d i t i o n a l problems c o n t r i b u t i n g to the a q u i s i t i o n , c l a s s i f i c a t i o n and mapping of  vegetation  at large scales. I n B r i t i s h Columbia t h e r e i s no s t a n d a r d i z e d approach f o r vegetation c l a s s i f i c a t i o n .  Both t r a d i t i o n a l and n u m e r i c a l methods of c l a s s -  i f i c a t i o n a r e employed by p r a c t i s i n g p l a n t e c o l o g i s t s .  Numerical c l a s s i f i -  c a t i o n approaches have s e v e r a l advantages over the s u b j e c t i v e ,  traditional  methods of c l a s s i f i c a t i o n but s t i l l r e q u i r e a c c r e d i t a t i o n f o r t h e p r a c t i c a l concerns of o p e r a t i o n a l v e g e t a t i o n  survey.  D i s s i m i l a r i t y Analysis i s a numerical c l a s s i f i c a t i o n analysis c o n c e i v e d by Macnaughton-Smith (1964, 1965) w h i c h has been programmed and s t u d i e d by the p r o v i n c i a l government as a means to s t r a t i f y  l a r g e volumes  - 186 -  of v e g e t a t i o n d a t a i n a r e l a t i v e l y f a s t and o b j e c t i v e manner. Analysis i s a divisive-polythetic  Dissimilarity  c l a s s i f i c a t i o n s t r a t e g y w h i c h demonstrates  some advantages over o t h e r n u m e r i c a l a n a l y s e s .  A l t h o u g h i t i s now used as  a r o u t i n e a n a l y s i s by the p r o v i n c i a l b i o p h y s i c a l s u r v e y , i t has not y e t been t h o r o u g h l y e v a l u a t e d or f o r m a l l y p r e s e n t e d w i t h r e g a r d to i t s  suitability  f o r v e g e t a t i o n c l a s s i f i c a t i o n and mapping on an o p e r a t i o n a l b a s i s . I n v i e w of the problems i n t h e c l a s s i f i c a t i o n and mapping of  vegetation  o u t l i n e d above, t h i s s t u d y attempted to answer f o u r r e l a t e d q u e s t i o n s : a.  What methods can be employed f o r d e t a i l e d v e g e t a t i o n mapping ( s c a l e 1 : 1 5 , 8 4 0 ) i n mountainous t e r r a i n w i t h l i m i t e d a c c e s s ?  b.  What i s the v a l u e of D i s s i m i l a r i t y A n a l y s i s f o r the c l a s s i f i c a t i o n of v e g e t a t i o n i n p r i m a r y  c.  survey?  What i s the p r e d i c t i v e c a p a b i l i t y of the p r e t y p i n g  (prestratifica-  t i o n ) approach developed f o r v e g e t a t i o n mapping? d.  What i s the r e l i a b i l i t y of the v e g e t a t i o n maps? I n o r d e r to answer these q u e s t i o n s the s t u d y was d i v i d e d i n t o two  s e p a r a t e but r e l a t e d i n v e s t i g a t i o n s :  the o p e r a t i o n a l c l a s s i f i c a t i o n and  mapping of v e g e t a t i o n i n t h e G r a s s y Creek and. Templeton R i v e r w a t e r s h e d s ; and a s y s t e m a t i c s a m p l i n g study of two r e p r e s e n t a t i v e a r e a s i n the Templeton River  watershed t o a s s e s s t h e v e g e t a t i o n mapping p r o c e d u r e and map r e l i a b i l i t y . A summary d i s c u s s i o n of r e s u l t s from the two i n v e s t i g a t i o n s  is  p r e s e n t e d below under the t o p i c s of v e g e t a t i o n c l a s s i f i c a t i o n and v e g e t a t i o n mapping.  - 187 -  8.2  Vegetation c l a s s i f i c a t i o n There were t h r e e o b j e c t i v e s of c l a s s i f i c a t i o n i n t h i s s t u d y :  r e d u c t i o n , h y p o t h e s i s g e n e r a t i o n and h y p o t h e s i s t e s t i n g .  data  The p r i m a r y  o b j e c t i v e of the o p e r a t i o n a l i n v e n t o r i e s was d a t a r e d u c t i o n —  the s t r a t i f i -  c a t i o n of the d a t a s e t i n t o g r o u p s . The second f u n c t i o n of c l a s s i f i c a t i o n was h y p o t h e s i s g e n e r a t i o n —  a p o s t u l a t i o n r e g a r d i n g the e x i s t e n c e of  certain  v e g e t a t i o n t y p e s a n d , i n the case of mapping, the g e o g r a p h i c e x t e n t of the v e g e t a t i o n t y p e s .  H y p o t h e s i s t e s t i n g was an o b j e c t i v e of c l a s s i f i c a t i o n  i n the map r e l i a b i l i t y s t u d y —  an independent c l a s s i f i c a t i o n used t o  the e x i s t e n c e and a r e a l e x t e n t df the o p e r a t i o n a l v e g e t a t i o n  types.  Data r e d u c t i o n i s an e s s e n t i a l o p e r a t i o n i n any v e g e t a t i o n If  test  inventory.  an a p p r o p r i a t e c l a s s i f i c a t i o n system i s i n e x i s t e n c e t h e n t h e i n v e n t o r y  p r o c e d u r e becomes an " i d e n t i f i c a t i o n " p r o c e s s i n w h i c h sample p l o t s a r e simply a l l o c a t e d into e x i s t i n g c l a s s e s .  If  on the o t h e r hand, an a p p r o p r i a t e  c l a s s i f i c a t i o n i s not i n e x i s t e n c e then the i n v e n t o r y p r o c e d u r e w i l l depend on the f o r m a t i o n of some c l a s s i f i c a t i o n .  D u r i n g the c o l l e c t i o n of p r i m a r y  i n v e n t o r y d a t a an e x p e r i e n c e d s u r v e y o r i s u s u a l l y c a p a b l e of m e n t a l l y s t r a t i f y i n g t h e sample p l o t s i n t o a s e r i e s of t e n t a t i v e t y p e s . . as the number of o b s e r v a t i o n s i n c r e a s e i t becomes i n c r e a s i n g l y t o " p i g e o n - h o l e " each a d d i t i o n a l o b s e r v a t i o n .  However more d i f f i c u l t  At t h i s s t a g e of a v e g e t a t i o n  i n v e n t o r y , c l a s s i f i c a t i o n becomes an i m p e r a t i v e o p e r a t i o n .  In  floristic  c l a s s i f i c a t i o n the aim i s u s u a l l y s i m p l e : t o assemble t h o s e sample p l o t s (individuals)  most s i m i l a r t o one a n o t h e r and to p a r t i t i o n those sample  p l o t s most d i s s i m i l a r t o one a n o t h e r i n terms of t h e i r s p e c i e s c o m p o s i t i o n (qualitative)  and p o s s i b l y s p e c i e s performance ( q u a n t i t a t i v e ) .  Classification  can be a c h i e v e d t h r o u g h t r a d i t i o n a l approaches or n u m e r i c a l a n a l y s e s .  - 18 8-  I n t h i s s t u d y v e g e t a t i o n c l a s s i f i c a t i o n was a c c o m p l i s h e d u s i n g a numerical a n a l y s i s .  N u m e r i c a l t e c h n i q u e s have s e v e r a l i m p o r t a n t a d v a n -  t a g e s over t r a d i t i o n a l approaches t o c l a s s i f i c a t i o n , . a more o b j e c t i v e b a s i s f o r c l a s s i f i c a t i o n . objectivity  Firstly,  they p r o v i d e  In primary v e g e t a t i o n survey  reduces p e r s o n a l b i a s developed b e f o r e , d u r i n g or a f t e r d a t a  c o l l e c t i o n w h i c h can u n j u s t l y  i n f l u e n c e the c l a s s i f i c a t i o n .  In t h i s  c l a s s i f i c a t i o n should " r e v e a l " d i s c o n t i n u i t i e s i n vegetation rather " i m p o s e " them (Lambert and D a l e , 1 9 6 4 ) . repeatable.  respect than  Secondly, numerical analyses are  F o r a g i v e n d a t a s e t the same r e s u l t s w i l l always be o b t a i n e d  u s i n g the same a n a l y s i s p r o c e d u r e . and e f f i c i e n t .  T h i r d l y , numerical techniques are f a s t  The complex and r e p e t i t i v e c a l c u l a t i o n s a r e performed  q u i c k l y and a r e c a p a b l e of e x t r a c t i n g the maximum amount of  information  a v a i l a b l e from the data s e t i n forming the c l a s s i f i c a t i o n .  The  inherent  i n a d e q u a c i e s of v e g e t a t i o n d a t a from p r i m a r y s u r v e y s i n remote a r e a s  (i.e.  l i m i t e d d i s t r i b u t i o n and r e p l i c a t i o n of samples) a r e improved by the e f f i c i e n cy of n u m e r i c a l a n a l y s e s w h i c h ensure an optimum and c o n s i s t e n t u t i l i z a t i o n of t h e i n f o r m a t i o n c o n t a i n e d i n t h e d a t a s e t . Dissimilarity Analysis i s a divisive-polythetic  s t r a t e g y w h i c h has  s e v e r a l advantages over ( p o l y t h e t i c - ) a g g l o m e r a t i v e a n a l y s e s f o r the  classifi-  c a t i o n of v e g e t a t i o n i n p r i m a r y s u r v e y s .  frequent-  In primary survey there i s  l y a l a c k of r e p l i c a t i o n of c e r t a i n " t y p e s " due t o a number of r e a s o n s poor a c c e s s , l i m i t e d time o r low p r i o r i t y ) .  In agglomerative  (e.g.  strategies  r e p r e s e n t a t i v e p l o t s from t h e s e ' ' t y p e s " can be i n c o r r e c t l y u n i t e d w i t h c l u s t e r s a t an e a r l y s t a g e of a n a l y s i s and w i l l no l o n g e r be r e c o g n i z e d as unique t y p e s .  I n d i v i s i v e s t r a t e g i e s on t h e o t h e r hand, c l a s s i f i c a t i o n b e g i n s  - 189 -  w i t h the maximum i n f o r m a t i o n o v e r the whole d a t a s e t and s u c c e s s i v e l y s u b d i v i d e s u n t i l t h e s e " t y p e s " a r e u s u a l l y p a r t i t i o n e d from the r e m a i n i n g group.  In D i s s i m i l a r i t y A n a l y s i s ,  these t y p e s a r e r e p r e s e n t e d by  ......  e i t h e r " s i n g l e p l o t s " or f i n a l groups w i t h a v e r y low mean s i m i l a r i t y " ! " . By m a x i m i z i n g d i f f e r e n c e s between g r o u p s , D i s s i m i l a r i t y A n a l y s i s does n o t g i v e a p o t e n t i a l l y f a l s e i m p r e s s i o n of " s i m i l a r i t y " between t h a t s h o u l d be c o n s i d e r e d  groups  distinct.  A second advantage of D i s s i m i l a r i t y A n a l y s i s over  agglomerative  t e c h n i q u e s i s t h a t i t d e f i n e s l i m i t s to the c l a s s e s formed.  This  quality  of d i v i s i v e c l a s s i f i c a t i o n i n v e g e t a t i o n s u r v e y f a c i l i t a t e s an o b j e c t i v e , d i s t i n c t i v e c h a r a c t e r i z a t i o n of groups by t h e i r d i a g n o s t i c s p e c i e s and an h i e r a r c h i c a l i d e n t i f i c a t i o n procedure  (key)  f o r a l l o c a t i n g new p l o t s  into  2 e x i s t i n g groups.  A key  can t h e n be employed f o r the  of v e g e t a t i o n t y p e s w i t h i n the study classification is s t i l l applicable.  future  "identification"  a r e a or i n a d j a c e n t a r e a s where T h i s d i s c r i m i n a n t f e a t u r e of  Dissim-.  i l a r i t y A n a l y s i s i s a l s o u s e f u l f o r any mapping programs f o l l o w i n g primary survey.  Unfortunately,  ted s i n c e the o b j e c t i v e s  the  the  t h i s approach to mapping c o u l d not be e v a l u -  of t h i s study r e q u i r e d t h a t the p r i m a r y s u r v e y  c o n t r i b u t e t o b o t h the c l a s s i f i c a t i o n and mapping of the v e g e t a t i o n . I n Chapter 7 the comparison of the s y s t e m a t i c v e g e t a t i o n t y p e s w i t h  the  o p e r a t i o n a l v e g e t a t i o n t y p e s i n the g r i d a r e a s was a c c o m p l i s h e d u s i n g an i d e n t i f i c a t i o n procedure  (i.e.  comparisons were made between c h a r a c t e r  s p e c i e s and t h e i r d i a g n o s t i c v a l u e ) ( s e e  section 7.3.2).  " V e g e t a t i o n t y p e s " were e s t a b l i s h e d and d e s c r i b e d f o l l o w i n g  the  i n t e r p r e t a t i o n of the n u m e r i c a l a n a l y s i s ( D i s s i m i l a r i t y A n a l y s i s and the cluster analyses).  The v e g e t a t i o n type i s a u s e f u l c l a s s i f i c a t i o n concept  i n p r i m a r y v e g e t a t i o n s u r v e y s i n c e i t does not c o n f i n e the c l a s s e s to a  - 190 -  s p e c i f i c taxonomic rank and l e v e l of homogeneity.  Rather, vegetation  types  s i m p l y r e f l e c t d i s t i n c t v a r i a t i o n s i n the v e g e t a t i o n as r e v e a l e d by t h e a n a l y s i s of the d a t a s e t .  I n some c a s e s the v e g e t a t i o n types may approximate  a " p l a n t a s s o c i a t i o n " o r " c o m m u n i t y - t y p e " l e v e l of homogeneity; w h i l e i n o t h e r cases i t may o n l y r e p r e s e n t one sample p l o t of a d i f f e r e n t v e g e t a t i o n which warrants f u r t h e r i n v e s t i g a t i o n (hypothesis  generation).  e a r l i e r i n s e c t i o n 2 . 3 . 1 i t i s d i f f i c u l t to t e s t  (hypothesis  existence  ("significance")  type  As d i s c u s s e d testing)  the  of v e g e t a t i o n t y p e s s i n c e the n a t u r e of p r o b a b i l -  i t y c o n c e p t s i n n u m e r i c a l c l a s s i f i c a t i o n a r e not c l e a r l y u n d e r s t o o d by statisticians.  Intuitively,  the v e g e t a t i o n types i n the two watershed  s t u d i e s were " l o g i c a l " and were c o n s i s t e n t w i t h t h e l a n d s c a p e p a t t e r n s and h a b i t a t f e a t u r e s observed i n the f i e l d and on a e r i a l p h o t o g r a p h s .  In some  r e s p e c t s , t h e c l a s s i f i c a t i o n a n a l y s i s of t h e s y s t e m a t i c sample p l o t s  support-  ed the e x i s t e n c e of v e g e t a t i o n t y p e s s i m i l a r to the o p e r a t i o n a l v e g e t a t i o n t y p e s i n the g r i d a r e a s (see s e c t i o n 7 . 3 . 2 ) .  However,  even i f comparisons  has been more o b j e c t i v e by employing a n u m e r i c a l a n a l y s i s , the same problem a r i s e s over the degree of s i m i l a r i t y —  namely a t what " l e v e l of s i g n i f i c a n c e "  a r e the two t y p e s c o n s i d e r e d s i m i l a r ? When the r e s u l t s of the c l a s s i f i c a t i o n a n a l y s i s were i n t e r p r e t e d  every  e f f o r t was made t o be as o b j e c t i v e as p o s s i b l e and t o d i s m i s s any p r e c o n c e i v e d n o t i o n s of c l a s s i f i c a t i o n .  I n i t i a l p e c u l i a r i t i e s or a n o m a l i e s noted  i n t h e c l a s s i f i c a t i o n were always e x p l a i n e d f o l l o w i n g a c a r e f u l r e v i e w of the d a t a .  In t h i s r e s p e c t , n u m e r i c a l c l a s s i f i c a t i o n o f t e n f o r c e s  the  s u r v e y o r to c o n s i d e r the l e s s o b v i o u s c l a s s e s of v e g e t a t i o n w h i c h would have o t h e r w i s e n o t been c o n s i d e r e d or would have been d i s c a r d e d due to  subjective  - 191 -  b i a s developed d u r i n g f i e l d s a m p l i n g . Both d i v i s i v e and a g g l o m e r a t i v e h i e r a r c h i e s were used t o  reveal  r e l a t i o n s h i p s between sample p l o t s , groups of sample p l o t s and the e n t i r e s e t o f sample p l o t s .  The D i s s i m i l a r i t y A n a l y s i s dendrogram d e f i n e d t h e  d i v i s i v e r o u t e between t h e i n i t i a l s e t and the f i n a l groups and p r o v i d e d a framework f o r t h e " c o m p a r a t i v e a n a l y s i s " ( s e c t i o n 4 . 3 . 2 . 1 ) .  In  the  Grassy Creek watershed s u c c e s s i o n a l and physiognomic f e a t u r e s of the v e g e t a t i o n c o u l d be i n t e r p r e t e d a t g e n e r a l l e v e l s of t h e d i v i s i v e  hierarchy.  In t h e Templeton R i v e r watershed t h e s e f e a t u r e s w e r e r n o t as e v i d e n t g e n e r a l l e v e l s of t h e dendrogram.  It  i s u n l i k e l y that the  re.-  at  divisive  h i e r a r c h y w i l l c o n s i s t e n t l y demonstrate b r o a d - s c a l e s i m i l a r i t i e s i n t h e v e g e t a t i o n f e a t u r e s s i n c e i t s c o m p o s i t i o n i s based on d i f f e r e n c e s between the  groups. The a g g l o m e r a t i v e h i e r a r c h i e s a r e c o n s t r u c t e d on t h e b a s i s of  more t a n g i b l e concept of s i m i l a r i t y .  the  G e n e r a l l e v e l s of t h e s e h i e r a r c h i e s  were u s e f u l f o r r e v e a l i n g g e n e r a l p a t t e r n s of z o n a t i o n , s u c c e s s i o n and p h y s i o g n o m y ! i n the v e g e t a t i o n d a t a (see F i g u r e s 5 . 1 0 and 6 . 9 ) .  In  this  r e g a r d , a more g e n e r a l i z e d c l a s s i f i c a t i o n of t h e s y s t e m a t i c sample p l o t s was a c c o m p l i s h e d by i n t e r p r e t i n g the f i n a l group c l u s t e r a n a l y s i s  (Figure  7.4) and u n i t i n g t h o s e f i n a l groups most s i m i l a r t o one a n o t h e r .  Although  the p l o t c l u s t e r a n a l y s i s h i e r a r c h y was used t o f u r t h e r s u b d i v i d e  final  groups, i t d i d not always c l e a r l y i n d i c a t e the d i s t i n c t i o n s f e l t t o  exist  I n t h i s r e s p e c t , a d i v i s i v e h i e r a r c h y would have p r o b a b l y p r o v i d e d a b e t t e r basis for further  s u b d i v i s i o n of f i n a l groups and would have overcome  some of the d i f f i c u l t i e s i n h e r e n t t o a g g l o m e r a t i v e c l a s s i f i c a t i o n s t r a t e g i e s .  - 192 -  8.2  V e g e t a t i o n mapping The o p e r a t i o n a l mapping of v e g e t a t i o n i n the mountainous t e r r a i n  of t h e Grassy Creek and Templeton R i v e r watersheds r e l i e d h e a v i l y on a e r i a l photo i n t e r p r e t a t i o n .  F i e l d s a m p l i n g was o r g a n i z e d as e f f i c i e n t l y as  p o s s i b l e i n o r d e r t o make optimum use of t h e time and manpower a v a i l a b l e . To t h i s e n d , i t was e s s e n t i a l t h a t some form o f v e g e t a t i o n p r e s t r a t i f i c a t i o n precede the f i e l d program s i n c e t h i s would p r o v i d e t h e n e c e s s a r y framework f o r a l l o c a t i n g the q u a n t i t y and d i s t r i b u t i o n of t h e sample p l o t s . F i e l d work i n v o l v e d p r i m a r i l y t h e c o l l e c t i o n of sample p l o t d a t a and the d e s c r i p t i o n of v e g e t a t i o n p a t t e r n s a l o n g t o p o g r a p h i c sequences.  The  mapping p r o c e d u r e developed f o r t h e two o p e r a t i o n a l s t u d i e s i s summarized below. 1.  Develop a v e g e t a t i o n p r e t y p i n g legend t o s t r a t i f y mountainous landscapes a c c o r d i n g to p o t e n t i a l v a r i a t i o n i n present condition.  vegetation  The legend s h o u l d i n c o r p o r a t e t h e f o l l o w i n g f e a t u r e s  ( d i r e c t l y o b s e r v a b l e on or i n f e r r e d from b l a c k and w h i t e a e r i a l photographs),  c o n c e p t s and i n f o r m a t i o n f o r p r e d i c t i n g  present  vegetation condition: a.  Permanent p h y s i o g r a p h i c l a n d s c a p e f e a t u r e s length,  slope,  slope  s l o p e c o n f i g u r a t i o n , s l o p e o r i e n t a t i o n (macro and  meso a s p e c t and e x p o s u r e ) , (gullies, b.  (e.g.  channels,  surficial terrain  features  outcrops)).  A s i m p l e concept r e l a t i n g permanent p h y s i o g r a p h i c l a n d s c a p e f e a t u r e s to the a v a i l a b l e moisture f o r Vegetation c o n d i t i o n s i n lower concave s l o p e p o s i t i o n s , x e r i c on convex s l o p e p o s i t i o n s ) .  (e.g.  hygric  conditions  - 193 -  c.  Macro and meso physiognomic f e a t u r e s of the p r e s e n t tion cover.(e.g.  macro: f o r e s t v s .  f o r e s t v s . open f o r e s t d.  ion (e.g.  canopy).  forest  cover maps) and v e g e t a t i o n  zonat-  b i o g e o c l i m a t i c zone and subzone maps).  P r e t y p e the d e t a i l e d ( s c a l e 1 : 1 5 , 8 4 0 ) b l a c k and w h i t e ,  stereo  a e r i a l photographs o f t h e s u r v e y a r e a a c c o r d i n g t o t h e  vegetation  pretyping legend. photographs 3.  g r a s s l a n d ; meso: c l o s e d  E x i s t i n g v e g e t a t i o n i n f o r m a t i o n r e g a r d i n g dominant s p e c i e s composition (e.g.  2.  vegeta-  C o r r e l a t e mapping between a d j a c e n t  and form a photo map of t h e " p r e t y p e d  aerial  vegetation".  Sample the v e g e t a t i o n a c c o r d i n g t o t h e d i s t r i b u t i o n and v a r i a b i l i t y of t h e p r e t y p e d v e g e t a t i o n map u n i t s and s t r a t i f y  t h e sample  p l o t s a c c o r d i n g to some c l a s s i f i c a t i o n p r o c e d u r e . 4.  E s t a b l i s h r e l a t i o n s h i p s between the p r e t y p e d v e g e t a t i o n map u n i t s and the c l a s s i f i c a t i o n o f the sample p l o t s .  If  necessary,  modify  t h e o r i g i n a l p r e t y p i n g c r i t e r i a .to accomodate t h e s e r e l a t i o n s h i p s . 5.  A d j u s t the p r e t y p e d v e g e t a t i o n map u n i t s where n e c e s s a r y i n g to the r e l a t i o n s h i p s mentioned i n " 4 " above. v e g e t a t i o n map a t a s c a l e o f  accord-  Prepare a f i n a l  1:15,840.  As mentioned above ( s e c t i o n 8 . 2 ) , t h e f i e l d d a t a i n t h i s  study  c o n t r i b u t e d to b o t h t h e c l a s s i f i c a t i o n and mapping of the v e g e t a t i o n each w a t e r s h e d .  in  I n t h i s r e s p e c t , map r e l i a b i l i t y was v e r y dependent on  the c a p a b i l i t y of the p r e t y p i n g approach to p r e d i c t v e g e t a t i o n  change.  T h i s a s p e c t of t h e mapping procedure w i l l not be d i s c u s s e d any  further  s i n c e i t has a l r e a d y been a n a l y s e d i n c o n s i d e r a b l e d e t a i l i n Chapter 7. I t was concluded t h a t the p r e t y p i n g approach approximated many of  the  - 194 -  v e g e t a t i o n b o u n d a r i e s and p r o v i d e d a m e t h o d i c a l , p r e l i m i n a r y s t r a t i f i c a t i o n of the l a n d s c a p e upon w h i c h improved mapping c r i t e r i a c o u l d be added. Physiognomy i s a v e g e t a t i o n f e a t u r e t h a t i s seldom g i v e n adequate c o n s i d e r a t i o n i n v e g e t a t i o n mapping approaches w h i c h are based p r i m a r i l y on f l o r i s t i c c l a s s i f i c a t i o n .  I n t h i s s t u d y , an e f f o r t was made t o  physiognomic f e a t u r e s w i t h f l o r i s t i c v a r i a t i o n .  correlate  Physiognomic f e a t u r e s  and p a t t e r n s r e c o g n i z a b l e on the a e r i a l photographs were used f o r  extrapo-  l a t i n g known p h y s i o g n o m i c - f l o r i s t i c r e l a t i o n s h i p s i n t o a r e a s w i t h no ground o b s e r v a t i o n s .  Physiognomic i n f o r m a t i o n i n  detailed  vegetation  mapping c o u l d be improved by t h e use of low l e v e l (70 mm) s t e r e o photo transects.  F e a t u r e s noted at t h i s s c a l e ( e . g .  o f the v e g e t a t i o n s t r a t a )  the s t r u c t u r a l  variation  c o u l d be used t o enhance t h e i n t e r p r e t a t i o n  the s m a l l e r s c a l e photography  of  (1:15,840).  The term " d e t a i l e d " ^ h a s been used throughout  t h i s study to d e s c r i b e  the " l e v e l of d e t a i l " of the v e g e t a t i o n c l a s s i f i c a t i o n and mapping i n the two o p e r a t i o n a l s u r v e y s . implied  I n e a r l y s o i l s u r v e y s t h e term " d e t a i l e d "  mapping s c a l e s of 1 : 2 0 , 0 0 0 and 1 : 1 5 , 8 4 0 i n w h i c h t h e " b o u n d a r i e s  a r e s k e t c h e d from o b s e r v a t i o n s of t h e i r e n t i r e o c c u r r e n c e on the ( S o i l Survey S t a f f ,  1951).  ground  " R e c o n n a i s s a n c e s u r v e y " i m p l i e d mapping  s c a l e s o f between 1 : 3 1 , 6 8 0 and 1 : 6 3 , 3 6 0 i n w h i c h " o n l y a p a r t of t h e s o i l b o u n d a r i e s a r e a c t u a l l y seen by t h e f i e l d s c i e n t i s t " w h i l e " d e t a i l e d r e c o n n a i s s a n c e " s u r v e y s were s l i g h t l y l e s s d e t a i l e d than d e t a i l e d s u r v e y s ( S o i l Survey S t a f f ,  1951).  A p p l y i n g t h e s e d e f i n i t i o n s t o t h i s s t u d y would  i n d i c a t e t h a t t h e o p e r a t i o n a l s u r v e y s were " d e t a i l e d r e c o n n a i s s a n c e " a d e t a i l e d s c a l e of p r e s e n t a t i o n ( 1 : 1 5 , 8 4 0 ) w i t h (at b e s t ) l e v e l o f ground v e r i f i c a t i o n of map b o u n d a r i e s .  —  a reconnaissance  R e c e n t l y , more d e f i n i t i v e  - 195 -  c l a s s e s of map s c a l e s have been proposed ( U . S .  Dept. of  S o i l C o n s e r v a t i o n S e r v i c e , 1977, i n , p r e p a r a t i o n ) .  Agriculture,  T h i s new p r o p o s a l  would i d e n t i f y the s c a l e s i n t h i s study as " m e s o d e t a i l e d " ( s c a l e s between 1 : 7 , 92Q and 1 : 2 4 , 0 0 0 ) . ' ' 3  It  i s i m p o r t a n t to n o t e t h a t most of t h e ranges i n s c a l e and terms  used t o d e s c r i b e survey i n t e n s i t y have e v o l v e d p r i m a r i l y f r o m s o i l survey e x p e r i e n c e on a g r i c u l t u r a l l a n d s .  The a p p l i c a t i o n of t h e s e  s t a n d a r d s t o s u r v e y s conducted i n mountainous f o r e s t r e g i o n s  requires  some q u a l i f i c a t i o n . E s s e n t i a l l y t h e r e are t h r e e elements t o c o n s i d e r w i t h map s c a l e s : cartographic d e t a i l — to land area ( C l i n e ,  t h e number and s i z e of d e l i n e a t i o n s i n r e l a t i o n  1977); c a t e g o r i c a l d e t a i l —  u n i t s i n r e l a t i o n to the range of s e t s of (Cline,  1 9 7 7 ) ; and-map r e l i a b i l i t y —  the d e f i n i t i o n of map  ( s o i l ) p r o p e r t i e s i n the a r e a  t h e d i f f e r e n c e between t h e p r e d i c t e d  p r o b a b i l i t y o f o c c u r r e n c e of the map u n i t s and t h e a c t u r a l o c c u r r e n c e  of  4 the map u n i t s . I d e a l l y a l l t h r e e f a c t o r s s h o u l d be somewhat and i n t e r d e p e n d e n t , however t h i s i s not always t h e c a s e . f i n a l v e g e t a t i o n maps i n t h i s study  interrelated  For example, the  ( F i g u r e s 5 . 1 5 and 6.13) c o u l d t o l e r a t e 2  a c a r t o g r a p h i c l e v e l of d e t a i l of a p p r o x i m a t e l y 1 cm  and t h e map u n i t  symbols are c o n c i s e and l e g i b l e at a s c a l e of 1 : 1 5 , 8 4 0 .  On the o t h e r hand  the p r e t y p e d v e g e t a t i o n maps ( F i g u r e s 5.14 and 6.12) c o u l d o n l y  tolerate  a c a r t o g r a p h i c l e v e l of d e t a i l of no s m a l l e r t h a n a p p r o x i m a t e l y 1 " 8 , 0 0 0 s i n c e the map symbols a r e l a r g e and complex. The taxonomic rank of t h e v e g e t a t i o n legend would n o r m a l l y p e r m i t an assessment of the c a t e g o r i c a l map s c a l e ( e . g .  Can p l a n t a s s o c i a t i o n s  -  be mapped at a s c a l e of 1 : 1 5 , 8 4 0 t i o n t y p e " assumes no p a r t i c u l a r  196 -  i n t h i s study a r e a ? ) taxonomic rank i t  Since the " v e g e t a -  is difficult  to  a s s e s s t h e c a t e g o r i c a l l e v e l of d e t a i l of the o p e r a t i o n a l s u r v e y s .  However,  assuming t h a t t h e sample p l o t s approximated p l a n t communities ( t h a t t h e established .vegetation c l a s s i f i c a t i o n s i n the v e g e t a i o n of the w a t e r s h e d s , r e l i a b i l i t y was a c h i e v e d )  r e p r e s e n t e d t h e major  variation  and t h a t a r e a s o n a b l e l e v e l of map  then the s c a l e of 1 : 1 5 , 8 4 0 was c o m p a t i b l e w i t h  the l e v e l of d e t a i l of t h e c l a s s i f i c a t i o n s ( c a t e g o r i c a l d e t a i l ) . t h e r e l i a b i l i t y o f the mapping i n the g r i d a r e a s was 79% i t  is  Since reasonable  to suggest t h a t the map s c a l e of 1 : 1 5 , 8 4 0 i s a l s o c o m p a t i b l e w i t h mapping confidence. Chapter 8 has attempted to summarize and d i s c u s s some of the more pertinent  subjects concerning t h i s i n v e s t i g a t i o n .  It  i s f e l t that  t o p i c s w h i c h might have been d i s c u s s e d have a l r e a d y been d e l t w i t h c o n s i d e r a b l e d e t a i l i n the preceeding chapters. the c o n c l u s i o n s to the  Chapter 9 w i l l  other in  present  study.  Footnotes: 1.  These f i n a l groups would have been s u b d i v i d e d i f a lower v a l u e had been a s s i g n e d f o r the a n a l y s i s .  stopping  2.  A key i s formed by s i m p l y expanding t h e c o m p a r a t i v e a n a l y s i s procedure described i n section 4 - 3 . 2 . 1 . I n p o l y t h e t i c a n a l y s e s the key i s a l s o p o l y t h e t i c i n t h a t s e v e r a l s p e c i e s c r i t e r i a are r e p o r t e d f o r each s t e p o f the k e y . •  3.  " U l t r a d e t a i l e d " a r e s c a l e s g r e a t e r than 1 : 7 , 9 2 0 and " m a c r o d e t a i l e d " a r e s c a l e s between 1 : 2 4 , 0 0 0 and 1 : 6 2 , 5 0 0 .  4.  The use of t h e term "map r e l i a b i l i t y " i n t h i s c o n t e x t i s u s u a l l y c o n s i d e r e d i n terms of the q u a n t i t y and d i s t r i b u t i o n of the ground observations.  - 197 -  CHAPTER 9 .  CONCLUSIONS  - 198 -  CHAPTER 9.  CONCLUSIONS  T h i s study has i n v e s t i g a t e d two a s p e c t s of v e g e t a t i o n s c i e n c e : v e g e t a t i o n c l a s s i f i c a t i o n and v e g e t a t i o n mapping.  F o l l o w i n g a study  v e g e t a t i o n c l a s s i f i c a t i o n and mapping i n two i n t e r i o r w a t e r s h e d s ,  of  the  f o u r q u e s t i o n s posed i n Chapter 1 a r e answered below.  1.  What methods can be employed f o r d e t a i l e d v e g e t a t i o n mapping ( s c a l e 1 : 1 5 , 8 4 0 ) i n mountainous t e r r a i n w i t h l i m i t e d a c c e s s ? The methods used f o r d e t a i l e d v e g e t a t i o n mapping i n mountainous t e r r a i n w i t h l i m i t e d a c c e s s s h o u l d u t i l i z e permanent,  physio-  g r a p h i c l a n d s c a p e f e a t u r e s d i r e c t l y o b s e r v a b l e or i n f e r r e d b l a c k and w h i t e s t e r e o a e r i a l photographs  from  (scale 1:15,840);  macro and meso physiognomic f e a t u r e s o f the p r e s e n t  vegetation  c o v e r ; a s i m p l e concept r e l a t i n g the above mentioned f e a t u r e s t o t h e a v a i l a b l e m o i s t u r e f o r v e g e t a t i o n ; and i n f o r m a t i o n about e x i s t i n g v e g e t a t i o n r e g a r d i n g s p e c i e s c o v e r t y p e s and v e g e t a t i o n zonation.  2.  What i s t h e v a l u e of D i s s i m i l a r i t y A n a l y s i s f o r the c l a s s i f i c a t i o n of vegetation i n primary  survey?  D i s s i m i l a r i t y A n a l y s i s p r o v i d e s a more o b j e c t i v e b a s i s  for  c l a s s i f i c a t i o n than t r a d i t i o n a l methods by r e d u c i n g p e r s o n a l b i a s and by r e v e a l i n g d i s c o n t i n u i t i e s i n the d a t a set based e n t i r e l y on the i n f o r m a t i o n c o n t a i n e d t h e r e i n .  Dissimilarity  a n a l y s i s i s an a p p r o p r i a t e t e c h n i q u e f o r s t r a t i f y i n g p r i m a r y  - 199 -  vegetation data i n remote areas because i t i s e f f i c i e n t at ensuring an optimum and consistent a p p l i c a t i o n of the a v a i l a b l e information i n the data set; i t maximizes d i f f e r e n c e s between groups that should be considered d i s t i n c t ; and i t defines l i m i t s to classes and f a c i l i t a t e s the o b j e c t i v e c h a r a c t e r i z a t i o n of groups, the determination of d i a g n o s t i c species and the formation of a h i e r a r c h i c a l i d e n t i f i c a t i o n procedure (key).  3.  What i s the p r e d i c t i v e c a p a b i l i t y of the vegetation pretyping ( p r e s t r a t i f i c a t i o n ) approach developed f o r vegetation mapping? A q u a l i t a t i v e assessment of the p r e d i c t i v e c a p a b i l i t y of the vegetation pretyping approach indicated that the c r i t e r i a f o r pretyping r e s u l t e d i n a more d e t a i l e d s t r a t i f i c a t i o n of the landscape than i n the f i n a l vegetation map and that the "hygrotope/slope approximation slope.  p o s i t i o n " concept provided only a rough  of the topoedaphic moisture sequence down a  However, the vegetation pretyping approach provided  a methodical, preliminary s t r a t i f i c a t i o n of the landscape upon which improved mapping c r i t e r i a could be added to b e t t e r p r e d i c t present vegetation condition.  4.  What i s the r e l i a b i l i t y of the vegetation maps? A q u a n t i t a t i v e assessment of map r e l i a b i l i t y i n two representat i v e areas of the Templeton River watershed r e s u l t e d i n a value of 79% r e l a t i v e to an independent chance of agreement of 6.2% and an optimum chance of agreement of 29%. I t i s reasonable  -  200 -  t o suggest t h a t t h i s v a l u e  (79%). i s r e p r e s e n t a t i v e of map  r e l i a b i l i t y i n the remainder of Templeton R i v e r w a t e r s h e d . A v a l u e of 79% r e p r e s e n t s t h e upper l i m i t s of t h e range of map r e l i a b i l i t i e s r e p o r t e d i n s i m i l a r s t u d i e s .  Map r e l i -  a b i l i t y i n t h e Grassy Creek watershed was not d e t e r m i n e d .  -  201 -  REFERENCES CITED  -  202 -  REFERENCES CITED  A r l i d g e , J . W . C . 1955. A p r e l i m i n a r y c l a s s i f i c a t i o n and e v a l u a t i o n of E n g e l mann Spruce - A l p i n e f i r f o r e s t at B o l e a n L a k e , B . C . M.Sc. T h e s i s , F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouver, B . C . A r l i d g e , J . W . C . 1971. E x p e r i m e n t a l computer program f o r N o d a l A s s o c i a t i o n A n a l y s i s u s i n g an i n f o r m a t i o n s t a t i s t i c . U n p u b l i s h e d m a n u s c r i p t . B r i t i s h Columbia F o r e s t S e r v i c e , V i c t o r i a . A r n o , S . F . 1972. Ecology of a l p i n e l a r c h ( L a r i x l y a l l i i P a r i . ) P a c i f i c Northwest. E c o l . Monogr. 4 2 ( 4 ) : 4 1 7 - 4 5 0 .  i n the  B e l l , M . A . M . 1964. Phytocoenoses i n the dry subzone of the i n t e r i o r w e s t e r n hemlock zone of B r i t i s h C o l u m b i a . P h . D . T h e s i s , Department of B i o l o g y and B o t a n y , U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouver, B . C . B e a r d , J . S . 1973. The physiognomic approach I_n Handbook of V e g e t a t i o n S c i e n c e , Part V: O r d i n a t i o n and C l a s s i f i c a t i o n of Communities. R.H. w h i t t a k e r (Ed.) D r . W. Junk b . v . - P u b l i s h e r s - The Hague, p p . 3 5 4 - 3 8 6 . B r a u n - B l a n q u e t , J . 1928. P f l a n z e n s o z i o l o g i e . 1 A u f l . , Springer, B e r l i n . 330 p.  Grundz'uge der  Vegetationskunde  B r i e r e , D. 1974. Chapman Creek i n t e g r a t e d r e s o u r c e management s t u d y . B . C . Forest S e r v i c e , Research D i v i s i o n , Experimental P r o j e c t 732. V i c t o r i a . B r i e r e , D. 1974. I n t e g r a t e d r e s o u r c e study C h i l l i w a c k P r o v i n c i a l F o r e s t . Phase I - B a s i c R e s o u r c e s . I n t e r n a l Report, B.C. Forest S e r v i c e , Research D i v i s i o n , V i c t o r i a . BrieSre, D. 1974. Toquart watershed i n t e g r a t e d r e s o u r c e s t u d y . Internal R e p o r t , B . C . F o r e s t S e r v i c e , Research D i v i s i o n , E x p e r i m e n t a l P r o j e c t 731. Victoria. B r i e r e , D. 1975. Nahmint watershed i n t e g r a t e d r e s o u r c e s t u d y . Internal R e p o r t , B . C . F o r e s t S e r v i c e , Vancouver F o r e s t D i s t r i c t , Vancouver. B u r g e r , D. 1957. I d e n t i f i c a t i o n of f o r e s t s o i l s on a e r i a l photographs F o r . Chron. 3 3 ( 1 ) : 5 4 - 6 0 . B u r i n g h , P. 1954. The a n a l y s i s and i n t e r p r e t a t i o n of a e r i a l photographs i n s o i l survey and l a n d c l a s s i f i c a t i o n . N e t h . J . A g r . S c i . 1 ( 4 ) : 251-255. Ces'ka, A . 1966. E s t i m a t i o n of the mean s i m i l a r i t y between and w i t h i n of v e g e t a t i o n r e l e v e s . F o l i a geobot. p h y t o t a x . 1 : 9 3 - 1 0 0 .  sets  c'es'ka, A . 1968. A p p l i c a t i o n of a s s o c i a t i o n c o e f f i c i e n t s f o r e s t i m a t i n g the mean s i m i l a r i t y between s e t s of r e l e v e s . F o l i a geobot. p h y t o t a x . 3:57-64.  - 203 -  c'eska, A. 1 9 7 5 . Coenos 1 - p r o c e d u r e s f o r v e g e t a t i o n d a t a p r o c e s s i n g B r i t i s h Columbia. Biocon Research L t d . V i c t o r i a . X e r o x 6 3 p.  in  C h r i s t i a n , C . S . , G.A. Stewart and R . A . P e r r y . 1 9 6 0 . t h e r n A u s t r a l i a . A u s t r a l . Geog. 7 : 2 1 7 - 2 3 1 .  nor-  Land r e s e a r c h i n  C l a g u e , John J . 1 9 7 5 . L a t e Quaternary sediments and geomorphic h i s t o r y of Southern Rocky Mountain t r e n c h , B . C . Can. J . E a r t h S c i e n c e 1 2 : 5 9 5 - 6 0 5 . Clements, F.E. 1928. Plant succession: an a n l y s i s of the development vegetation. P u b i s . C a r n e g i e I n s t n . , Washington 2 4 2 : 1 - 5 1 2 . Nature and s t r u c t u r e  Clements, F.E.  1936.  C l i f f o r d , H.T. fication.  and W. Stephenson. 1 9 7 5 . An I n t r o d u c t i o n t o N u m e r i c a l C l a s s i Academic P r e s s , San F r a n c i s c o .  C l i f f o r d , H.T. and W.T. W i l l i a m s . their interpretation. Austr.  of the c l i m a x .  J . Ecol.  of  24:252-284.  1 9 7 3 . C l a s s i f i c a t o r y dendrograms J . Bot. 21(1):151-162.  and  C l i n e , M.G. 1 9 7 7 . Thoughts about a p p r a i s i n g the u t i l i t y of s o i l maps. In: S o i l Resource I n v e n t o r i e s . ( P r o c e e d i n g s of a workshop o r g a n i z e d by the S o i l Resource I n v e n t o r y Study Group at C o r n e l l U n i v e r s i t y A p r i l 4 - 7 , 1 9 7 7 . ) Agronomy Mimeo No. 7 7 - 2 3 . D e p t . of Agronomy, New.eYork S t a t e C o l l e g e of A g r i c u l t u r e and L i f e S c i e n c e s , C o r n e l l U n i v e r s i t y , I t h a c a , New Y o r k 1 4 8 5 3 . C l i n e , M.G. 1 9 4 9 .  B a s i c p r i n c i p l e s of s o i l c l a s s i f i c a t i o n .  S o i l Science  67:81-91.  C o l w e l l , R . N . ( E d . ) . 1960. Manual of p h o t o g r a p h i c i n t e r p r e t a t i o n . S o c i e t y of Photogrammetry. 8 6 8 p. Cormack, R . M . 1 9 7 1 . p.  A r e v i e w of c l a s s i f i c a t i o n .  American  J . Rogg. S t a t . S o c .  Ser.,  321-353.  Crocker, RVLY 1952. Biol.  S o i l g e n e s i s and the pedogenic f a c t o r s .  Quart.  Rev.  27:139.  Daubenmire, R. 1 9 5 2 . F o r e s t v e g e t a t i o n of n o r t h e r n Idaho and a d j a c e n t W a s h i n g t o n , and i t s b e a r i n g on concepts of v e g e t a t i o n c l a s s i f i c a t i o n . E c o l . Mono. 2 2 ( 4 ) : 3 0 1 - 3 3 0 . Daubenmire, R. 1 9 5 9 . Canopy coverage method of v e g e t a t i o n a n a l y s i s . west S c i e n c e 3 3 : 4 3 - 6 4 .  North-  Daubenmire, R. 1 9 7 3 . A comparison of approaches t o the mapping of f o r e s t l a n d f o r i n t e n s i v e management. F o r e s t r y C h r o n i c l e 4 9 ( 2 ) : 8 7 - 9 1 . Daubenmire, R. and J . B . Daubenmire. 1 9 6 8 . F o r e s t v e g e t a t i o n of e a s t e r n Washington and n o r t h e r n I d a h o . Wash. A g r i c . Exp. S t n . T e c h . B u l l . 6 0 , 1 0 4 p.  -  204 -  Daubenmire, R . F . and A.W. S l i p p . 1943. P l a n t s u c c e s s i o n on t a l u s s l o p e s i n n o r t h e r n Idaho as i n f l u e n c e d by s l o p e e x p o s u r e . B u l l . Torr. Bot. Club 7 0 ( 5 ) : 4 7 3 - 4 8 0 . D e i t s c h m a n , G l e n H. 1973. Mapping of h a b i t a t types throughout a N a t i o n a l Forest. U.S. Dept. A g r i c u l t u r e , Forest Service General T e c h n i c a l Report I N T - 1 1 . Edwards, A . W . F . and L . L . C a v a l l i - S f o r z a . ysis. Biometrics 21:362-375.  1965.  A method f o r c l u s t e r  anal-  E i s , S . and E.T. O s w a l d . The H i g h l a n d l a n d s c a p e . P a c i f i c F o r e s t R e s e a r c h C e n t r e , C a n . F o r . S e r v . Rep. B C - X - 1 1 9 . D e p t . E n v . V i c t o r i a . F o s b u r g , F . R . 1 9 6 1 . What s h o u l d we map? I n : Methodes de l a C a r t o g r a p h i e de l a V e g e t a t i o n . P a r i s . C e n t r e N a t i o n a l de l a Recherche S c i e n t i f i q u e . 9 7 t h I n t e r n a t i o n a l C o l l o q u i u m , T o u l o u s e , 1960. p p . 2 4 - 3 5 . F r a n k l i n , J . F . and C.T. D y r n e s s . 1973. N a t u r a l v e g e t a t i o n of Oregon and Washington. U.S. Dept. A g r i c u l t u r e , Forest Service General T e c h n i c a l Report PNW-8. F r e y , T . E . A . 1 9 7 3 . The F i n n i s h s c h o o l and f o r e s t s i t e - t y p e s . In: Handbook of V e g e t a t i o n S c i e n c e , P a r t V : O r d i n a t i o n a a n d C l a s s i f i c a t i o n of Comm u n i t i e s . R . H . W h i t t a k e r ( E d . ) . D r . W. Junk b . v . - P u b l i s h e r s - The Hague, p p . 4 0 2 - 4 2 7 . F u l t o n , R . J . 1 9 7 1 . R a d i o c a r b o n geochronology of s o u t h e r n B r i t i s h C o l u m b i a . G e o l o g i c a l Survey of Canada Paper 7 1 - 3 7 . Gams, 1918. P r i n z i p i e n f r a g e n der V e g e t a t i o n s - f o r c h u n g : E i n B e i t r a g z u r B e g r i f f s k l a r u n g und M e t h o d i k der B i o c o e n o l o g i e . V j s c h r . n a t u r f . Ges. Zurich 63:293-493. Gams, H. 1927. Von den F o l l a t e r e s zur Dent de Morcles: Vegetationsmonographie aus dem W a l l i s . B e i t r . geobot. Landesaufn. Schweiz 1 5 : 1 - 7 6 0 . G o o d a l l , D.W. 1953. Objective methods f o r c l a s s i f i c a t i o n or vegetation I . The use of p o s i t i v e i n t e r s p e c i f i c c o r r e l a t i o n . Aust. J . Bots. 1 : 3 9 - 6 3 . Goodall, D.W. 1975. Numerical c l a s s i f i c a t i o n . I n : Handbook of Vegetation Science. Part V: Ordination and C l a s s i f i c a t i o n of Communities. R.H. Whittaker (Ed.). Dr. W. Junk b.v. - Publishers - The Hague, pp. 5 7 4 - 6 1 5 . Grandtner, M.M. 1960. L a f o r e t de Beausejour, comte de L e v i s , Quebec. Etude phytosociologique. Fonds de Recherches f o r . Univ. L a v a l , Quebec. C o n t r i b u t i o n 7. G r i s e b a c k , A . H . R . 1838. Ueber den E i n f l u s s d e s K l i m a s auf d i e Begrenzung der n a t v i r l i c h e n F l o r e n . L i n n a e a 1 2 : 1 5 9 - 2 0 0 . H a l l i d a y , W.E.D. 1937. A f o r e s t c l a s s i f i c a t i o n f o r Canada. Resources and Development. B u l l e t i n 89.  Canada D e p t .  -  205 -  H e i m b u r g e r , C C . 1934. F o r e s t - t y p e s t u d i e s i n the A d i r o n d a c k r e g i o n . ' C o r n e l l U n i v . , A g r i c u l t u r a l Experiment S t a t i o n . Memoir 1 6 5 . H i l l s , G . A . 1953. The use of s i t e i n f o r e s t management. Chronicle 29:128-136. H i r v o n e n , H . E . 1976. Bowen I s l a n d - a l a n d s c a p e a n a l y s i s . Canada, F o r e s t r y S e r v i c e . B C - X - 1 2 2 .  Forestry Environment  H i r v o n e n , H . E . , Senyk, J . P . and F . T . O s w a l d . 1974. S a l t s p r i n g I s l a n d a landscape a n a l y s i s . P a c i f i c F o r e s t R e s e a r c h C e n t r e , Can. F o r . Rep. B C - X - 9 9 . D e p t . E n v i r . V i c t o r i a .  Serv.  H i t c h c o c k , C . L . , C r o n q u i s t , A . , Ownbey, M. and J . W . Thompson. 1 9 5 5 , 1959, 1 9 6 1 , 1964, 1969. V a s c u l a r P l a n t s of the P a c i f i c N o r t h w e s t . Part 1 ( 1 9 6 9 ) , V a s c u l a r Cryptograms, Gymnosperms,and M o n o c o t y l e d o n s ; P a r t 2 ( 1 9 6 4 ) , . S a l i c a c e a e to Saxifragaceae; Part 3 (1961), Saxifragaceae to E r i c a c e a e ; P a r t 4 ( 1 9 5 9 ) , E r i c a c e a e t o Campanulaceae; P a r t 5 ( 1 9 5 5 ) , Compositae. U n i v e r s i t y of Washington P r e s s , S e a t t l e , Washington. I l v e s s a l o , Y . 1929. Notes on some f o r e s t Acta Geographica. 34(39):1-111. J e n n y , H. 1 9 4 1 .  (site)  F a c t o r s of s o i l f o r m a t i o n .  types i n North America.  M c G r a w - H i l l , New Y o r k .  281 p.  J o n e s , R . K . 1976. T e r r a i n u n i t s , s o i l s and l a n d s c a p e u n i t s of the Two and Four M i l e Creeks and Upper S i l v e r h o p e Creek Resource F o l i o s . Internal R e p o r t , B . C . Pedology U n i t , A g r i c u l t u r e R e s e a r c h S t a t i o n . Vancouver. 73 p. J u r d a n t , M i c h e l . 1964. Photo I n t e r p r e t a t i o n and F o r e s t Land C l a s s i f i c a t i o n . F o r e s t R e s e a r c h B r a n c h C o n t r i b u t i o n N o . 634 r e p r i n t e d from Woodlands Review S e c t i o n , P u l p and Paper Magazine of Canada, O c t o b e r , 1964. J u r d a n t , M. 1968. Report of the subcommittee on b i o p h y s i c a l l a n d c l a s s i f i cation. P r o c . 7 t h M e e t i n g N a t i o n a l S o i l Survey Committee of Canada, Edmonton, A l b e r t a , p p . 1 7 9 - 1 8 4 . J u r d a n t , M. 1969. The e c o l o g i c a l s u r v e y : the b i o p h y s i c a l b a s i s of f o r e s t l a n d management. P u l p and Paper Magazine of Canada 7 0 ( 9 ) : 8 9 - 9 3 . J u r d a n t , M. and M.R. Roberge. 1965. Etude e c o l o g i q u e de l a f o r e t Watopeka. M i n i s t e r e des F o r e t s , Canada. P u b l . 1051 F.  de  Kimmins, J . P . 1973. F o r e s t e c o l o g y : the b i o l o g i c a l b a s i s f o r t h e management of renewable f o r e s t r e s o u r c e s . Forestry Chronicle 4 9 ( l ) : 2 5 - 3 0 . K l i n k a , K. 1976. Ecosystem u n i t s , t h e i r c l a s s i f i c a t i o n , i n t e r p r e t a t i o n and mapping i n the U n i v e r s i t y of B r i t i s h Columbia R e s e a r c h F o r e s t . Ph.D. T h e s i s , F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h C o l u m b i a , V a n c o u v e r , B.C.  -  206 -  K o w a l l , R . C . and G . G . Runka. (Ed.) 1968. R e v i s i o n of g u i d e l i n e s f o r b i o p h y s i c a l l a n d c l a s s i f i c a t i o n as a p p l i e d t o f o r e s t and a s s o c i a t e d wildlands. B r i t i s h Columbia Land C l a s s i f i c a t i o n Subcommittee, Canada Land I n v e n t o r y . Canada D e p t . F o r . and R u r a l Development. K r a j i n a , V . J . 1 9 6 5 . E c o l o g y of Western N o r t h A m e r i c a . V o l . 1 . D e p t . B o t a n y , U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouver. K r a j i n a , V . J . 1969. Ecology of f o r e s t t r e e s i n B r i t i s h C o l u m b i a . of Western N o r t h A m e r i c a 2 ( 1 ) : 1 ^ 1 4 6 .  of  Ecology  K u c h l e r , A.W. 1 9 6 1 . Mapping t h e dynamic a s p e c t s of v e g e t a t i o n . In: Methodes de l a c a r t o g r a p h i e de l a v e g e t a t i o n . P a r i s . C e n t r e N a t i o n a l de l a Recherche S c i e n t i f i q u e . 97th I n t e r n a t i o n a l C o l l o q u i u m , T o u l o u s e , 1960. pp. 1 8 8 - 2 0 1 . K u c h l e r , A.W. 1967.  V e g e t a t i o n Mapping.  Ronald P r e s s .  New Y o r k .  K u c h l e r , A.W. 1973. Problems i n c l a s s i f y i n g and mapping v e g e t a t i o n ecological regionalization. Ecology. 54(3):512-523. K u l l b a c k , S . 1959.  I n f o r m a t i o n Theory and S t a t i s t i c s .  L a c a t e , D . S . 1966. W i l d l a n d i n v e n t o r y and mapping. 42(2):184-194.  472 p. for  New Y o r k .  Forestry  Chronicle  L a c a t e , D . S . 1969. G u i d e l i n e s f o r b i o p h y s i c a l l a n d c l a s s i f i c a t i o n . F i s h , and Fore., Can. F o r . S e r v . P u b l . 1264. 61 p.  Dept.  L a f o n d , A . , J . P a q u e t , and M. L o r t i e . 1964. Amenagement des f o r e t s de S a i n t - R a y m o n d . Fonds R e c h , F o r . U n i v . L a v a l , Quebec. B u l l . 6. L a m b e r t , J . M . and M . B . D a l e . 1964. Adv. i n E c o l . R e s . 2 : 5 9 - 9 9 .  The use o f - s t a t i s t i c s i n  phytosociology.  L a m b e r t , J . M . , S . E . Meacock, J . B a r r i s , P . F . M . S m a r t t . 1 9 7 3 . AXOR and MINIT: Two new p o l y t h e t i c d i v i s i v e s t r a t e g i e s f o r h i e r a r c h i a l c l a s s i f i c a t i o n . Taxon 2 2 ( 2 1 3 ) : 1 7 3 - 1 7 6 . L a m b e r t , J . M . and W.T. W i l l i a m s . 1966. M u l t i v a r i a t e methods i n p l a n t ecology. V I . Comparison of i n f o r m a t i o n - a n a l y s i s and a s s o c i a t i o n a n a l y s i s . , J . E c o l . 54:635-664. L i t t l e , H.W. 1960. N e l s o n M a p - A r e a , west h a l f , Survey of Canada Memoir 3 0 8 .  B.C.  (82FW11/2)  L o r d , T . M . and A . McLean. 1969. A e r i a l photo i n t e r p r e t a t i o n Columbia r a n g e l a n d s . J . of Range Management 2 2 : 3 - 9 .  Geological  on B r i t i s h  L o s e e , S . T . B . 1942. A i r photographs and f o r e s t s i t e s . I. Mapping methods i l l u s t r a t e d on an a r e a of the Petawawa F o r e s t E x p e r i m e n t a l S t a t i o n F o r . Chron. 1 8 ( 3 ) : 1 2 9 - 1 4 4 .  - 207 -  McLean, A . .1969. P l a n t communities of the Similkameen V a l l e y , B r i t i s h Columbia and t h e i r r e l a t i o n s h i p to s o i l s . P h . D . T h e s i s , Washington S t a t e U n i v e r s i t y , P u l l m a n , Washington. McLean, A. and W.D. H o l l a n d . 1958. V e g e t a t i o n zones and t h e i r r e l a t i o n s h i p to the s o i l s and c l i m a t e of the Upper Columbia V a l l e y . Can. J . Plant Science 38:328-345. McMinn, R . G . , E i s , S . , H i r v o n e n , H . E . , O s w a l d , E . T . , and J . P . Senyk. 1976. N a t i v e v e g e t a t i o n i n B r i t i s h C o l u m i a ' s C a p i t a l R e g i o n . Environment Canada, F o r e s t r y S e r v i c e . M a c n a u g h t o n - S m i t h , P. 1965. Some s t a t i s t i c a l and o t h e r n u m e r i c a l methods for c l a s s i f y i n g i n d i v i d u a l s . Home O f f i c e R e s e a r c h U n i t Report No. 6 . H.M.S.O. London, E n g l a n d . M a c n a u g h t o n - S m i t h , P . , W i l l i a m s , W . T . , D a l e , M . B . and L . G . M o c k e t t . 1964. Dissimilarity Analysis: a new t e c h n i q u e of h i e r a r c h i c a l s u b d i v i s i o n . Nature 202:1034-1035. M a j o r , J . 1 9 5 1 . A f u n c t i o n a l , f a c t o r i a l approach to p l a n t Ecology 32:392-412.  ecology.  M u e l l e r - D o m b o i s , D. and H. E l l e n b u r g . 1974. Aims and Methods of Ecology. John W i l e y and Sons, T o r o n t o . 547 p.  Vegetation  Munro, J . A . and I. McT.Cowan. 1947. A r e v i e w of the b i r d f a u n a of B r i t i s h C o l u m b i a . B . C . P r o v i n c i a l Museum, Department of E d u c a t i o n . Special P u b l i c a t i o n No. 2 . N o y - M e i r , E . , Tadmor, N . H . , and G. O r s h a n . 1970. A s s o c i a t i o n a n a l y s i s desert vegetation. I s r a e l J . Bot. 19:561-591.  of  O g i l v i e , R.T. 1962. E c o l o g y of spruce f o r e s t s on the e a s t s l o p e of the Rocky Mountains i n A l b e r t a . PhD T h e s i s Washington S t a t e U n i v e r s i t y , P u l l m a n , Washington. O g i l v i e , R.T. 1963. Dept. F o r e s t r y ,  E c o l o g y of t h e f o r e s t s i n Rocky M t n s . A l t a . F o r e s t Research B r a n c h . 57 p p .  Can.  O g i l v i e , R.T. 1966. F i e l d t o u r number two, f i f t y - e i g h t h annual m e e t i n g , October 3 - 6 , 1 9 6 6 , B a n f f , A l b e r t a - S u b a l p i n e f o r e s t e c o l o g y - f o r e s t h a b i t a t types of B a n f f N a t i o n a l P a r k , Mimeo 15 p p . O g i l v i e , R.T. 1 9 6 9 . The mountain f o r e s t and a l p i n e zones of A l b e r t a . In: P r o c e s s and Method i n Canadian Geography, V e g e t a t i o n , S o i l s and W i l d life. N e l s o n , J . G . and M . J . Chambers ( E d s . ) . Methuen, T o r o n t o , pp. 2 5 - 4 4 . O r l o c i , L . 1967. An a g g l o m e r a t i v e method f o r c l a s s i f i c a t i o n of p l a n t communities. J . E c o l . 55:193-205.  -  208 -  O r l o c i , L. 1968. I n f o r m a t i o n a n a l y s i s i n p h y t o s o c i o l o g y : partition, s i f i c a t i o n and p r e d i c t i o n . J . Theoretical Biology. 20:271-284. O r l o c i , L . 1970. A n a l y s i s of v e g e t a t i o n samples based on the use of mation. J . Theor. B i o l . 29:173-189. O r l o c i , L . 1975. Chapter IV. i n Vegetation Research.  Classifications. Iii: The Hague p. 1 0 3 - 1 4 4 .  clasinfor-  Multivariate Analysis  P a c k e e , E. 1974. The b i o g e o c l i m a t i c subzones of Vancouver I s l a n d and a d j a c e n t m a i n l a n d and i s l a n d s . M a c M i l l a n B l o e d e l L t d . C o l o u r map (1:380,160). P f i s t e r , R . D . 1969. E f f e c t s of roads on growth of w e s t e r n w h i t e p i n e p l a n t a t i o n s i n n o r t h e r n Idaho. U . S . F . S . R e s . Paper I N T - 6 5 . 8 p. P f i s t e r , R . D . , B . L . K o v a l c h i k , S . F . Arno and R . C . P r e s b y . 1974. F o r e s t H a b i t a t Types of Montana. I n t e r m o u n t a i n F o r e s t and Range Experiment S t a t i o n and N o r t h e r n R e g i o n , U . S . F o r e s t S e r v i c e , M i s s o u l a , Montana. P i e l o u , E . C . 1969. An I n t r o d u c t i o n t o M a t h e m a t i c a l E c o l o g y . I n t e r s c i e n c e , New Y o r k . 286 p.  Wiley-  P o o l e , R.W. 1974. Community c l a s s i f i c a t i o n and o r d i n a t i o n . I n : An I n t r o d u c t i o n to Q u a n t i t a t i v e E c o l o g y (Chapter 1 3 ) . p p . 3 4 3 - 3 7 4 . P o o r e , M . E . D . 1955. investigations.  The use of p h y t o s o c i o l o g i c a l methods i n e c o l o g i c a l III. P r a c t i c a l A p p l i c a t i o n . J . E c o l . 43:606-631.  R a y , R . G . 1941. S i t e - t y p e s and r a t e of growth at Lake Edward, Champlain County, Quebec. Canada D e p t . Mines and R e s o u r c e s , Dominion F o r . S e r v i c e . S i l v . R e s . Note 6 5 . R e e s o r , J . E . 1 9 7 3 . Geology of the L a r d e a u M a p - A r e a E s t - H a l f , l o g i c a l Survey of Canada Memoir 3 6 9 .  B.C.  Geo-  R i n f r e t , R. 1964. F o r e s t s i t e c l a s s i f i c a t i o n i n r e l a t i o n t o photo i n t e r p r e t a t i o n and l o g g i n g c r u i s e s . P u l p and Paper Magazine of Canada, Woodlands R e v i e w , A u g u s t : 4 1 0 - 4 1 8 . Rowe, J . S . 1959. F o r e s t r e g i o n s of Canada. and N a t i o n a l R e s o u r c e s . B u l l e t i n 1 2 3 .  Canada D e p t . N o r t h e r n  Rowe, J . S . 1 9 6 1 . 42:420-427.  The l e v e l - o f - i n t e g r a t i o n concept and e c o l o g y .  Rowe, J . S .  Why c l a s s i f y f o r e s t l a n d ? . F o r .  1971.  Affairs  Ecology  Chron. 4 7 ( L ) : 1 4 4 - 1 4 8 .  Rowe, J . S . 1972. F o r e s t Regions o f Canada. . . . C a n a d i a n , . F o r e s t r y P u b l i c a t i o n , No. 1300.  Service  -  209 -  S c h o f i e l d , W.B. 1969. Some common mosses o f B r i t i s h C o l u m b i a . P r o v i n c i a l Museum Handbook N o . - 2 8 .  B.C.  S h i m w e l l , D.W. 1972. The D e s c r i p t i o n and C l a s s i f i c a t i o n of V e g e t a t i o n . U n i v e r s i t y of Washington P r e s s , S e a t t l e . 322 p. S i s a r n , J . W . B . 1938. S i t e as a f a c t o r i n s i l v i c u l t u r e , i t s w i t h s p e c i a l r e f e r e n c e t o the use of p l a n t i n d i c a t o r s . Mines and R e s o u r c e s . S i l v . R e s . Note 5 4 .  determination Canada D e p t .  Sneddon, J . I . 1 9 7 3 . A study of two s o i l s d e r i v e d from v o l a n i c ash i n s o u t h w e s t e r n B . C . and a r e v i e w and d e t e r m i n a t i o n of ash d i s t r i b u t i o n i n w e s t e r n Canada. U n p u b l i s h e d P h . D . T h e s i s , U . B . C . D e p t . of S o i l Science. S o i l Survey S t a f f . 1 9 5 1 . S o i l survey manual. U . S . D e p t . A g r i c . Handbk. No. 1 8 . U . S . G o v t . P r i n t i n g O f f i c e , W a s h i n g t o n , D . C . 20402. S o i l Survey S t a f f . 1966. A e r i a l - p h o t o i n t e r p r e t a t i o n s i n c l a s s i f y i n g and mapping s o i l s . U . S . Dep. A g r . Handbook 294. 89 p. S o k a l , R.R. and P . H . A . S n e a t h . 1963. Freeman, San F r a n c i s c o .  P r i n c i p l e s of N u m e r i c a l Taxonomy.  S p i l s b u r y , R . H . and D . S . S m i t h . 1947. F o r e s t s i t e t y p e s of the P a c i f i c Northwest. (A p r e l i m i n a r y r e p o r t . ) B r i t i s h Columbia F o r e s t S e r v i c e . T e c h n i c a l P u b l . T30. Sukachev, V . N . 1960. The c o r r e l a t i o n of the concept " f o r e s t e c o s y s t e m " and " f o r e s t b i o g e o c e n o s e " and t h e i r importance f o r the c l a s s i f i c a t i o n of forests. S i l v a Fennica 105:94-97. System of S o i l C l a s s i f i c a t i o n f o r Canada. 1 9 7 4 . ( R e v i s e d ) . A g r i c u l t u r e , P u b l i c a t i o n 1455.  Canada D e p t .  of  T a n s l e y , A . G . 1935. The use and abuse of v e g e t a t i o n concepts t e r m s . Ecology 16:284-307. T a n s l e y , A . G . 1939. The B r i t i s h I s l a n d s and T h e i r V e g e t a t i o n . U n i v e r s i t y , Cambridge, E n g l a n d .  Cambridge  Tiedemann, A r t h u r R. 1972. S o i l p r o p e r t i e s and n u t r i e n t a v a i l a b i l i t y i n tarweed communities of C e n t r a l W a s h i n g t o n . J . Range Manage. 2 5 ( 6 ) : 438-443. T i s d a l e , E.W. and A . McLean. 1957. The Douglas F i r zone of s o u t h e r n C o l u m b i a . E c o l . Mono. 2 7 : 2 4 7 - 2 6 6 . U.S.  Department of A g r i c u l t u r e , S o i l C o n s e r v a t i o n S e r v i c e . survey m a n u a l , r e v . e d . (4th d r a f t , 1974-75).  British  1977. S o i l  -  210 -  V a l e n t i n e , K.W.G. and J . F . Hawkins. 1975. Q u a n t i t i a t i v e comparison of c o l o u r photography and L a n d s t a t imagery f o r a s m a l l s c a l e l a n d r e source map of n o r t h e r n B r i t i s h C o l u m b i a . P r o c e e d i n g s T h i r d Canadian Symposium on Remote S e n s i n g . Edmonton p . 4 8 9 - 4 9 4 . V a l e n t i n e , K . W . G . , L o r d , T . M . , W a t t , W. and A . L . Bedwany. 1971. S o i l mapping a c c u r a c y from b l a c k i a n d w h i t e , c o l o u r and i n f r a r e d a e r i a l photography. Canadian J o u r n a l of S o i l S c i e n c e 5 1 ( 3 ) : 4 6 1 - 4 6 9 . v a n B a r n e v e l d , J . W . 1970. Supplement t o " E c o l o g y " s e c t i o n I n Runka e t . a l . 1970. Lands of the E a s t Kootenays - T h e i r C h a r a c t e r i s t i c s and C a p a b i l i t y f o r A g r i c u l t u r e and F o r e s t r y . Report to the B . C . S o i l C a p a b i l i t y f o r A g r i c u l t u r e and F o r e s t r y Committee. v a n B a r n e v e l d , J . W . 1 9 7 1 . N o d a l A s s o c i a t i o n A n a l y s i s of the v e g e t a t i o n of Timothy M o u n t a i n , L a c L a Hache, B r i t i s h C o l u m b i a , f o r a p p l i c a t i o n i n a b i o - p h y s i c a l l a n d c l a s s i f i c a t i o n program. B . S c . Honors T h e s i s , Department of B i o l o g y , U n i v e r s i t y of V i c t o r i a , V i c t o r i a . vonHumbolt, A. 1 8 0 5 . E s s a i s u r l a g e o g r a p h i e des p l a n t e s ; accompagne d ' u n t a b l e a u p h y s i q u e des r e g i o u s e q u i n o c i a l e s . L e v r a u l t , S c h o e l l C o . , Paris. W h i t a k e r , R . H . 1962. 28:1-239.  C l a s s i f i c a t i o n of n a t u r a l c o m m u n i t i e s .  B o t . Rev.  W h i t t a k e r , R . H . 1 9 7 3 . Handbook of V e g e t a t i o n S c i e n c e , P a r t V : Ordination and c l a s s i f i c a t i o n of communities. D r . W. Junk b . v . - P u b l i s h e r s . The Hague. W h i t e s i d e , E . D . 1977. Notes c o n c e r n i n g u p d a t i n g and q u a l i t y c o n t r o l of s o i l surveys i n M i c h i g a n . N a t i o n a l Technical Work-Planning Conference of the C o o p e r a t i v e S o i l S u r v e y . O r l a n d o , F l o r i d a . W i l l i a m s , W.T.  1967.  W i l l i a m s , W.T. 1 9 7 1 . 2:303-326.  The computer b o t a n i s t .  Aust. J .  P r i n c i p l e s of c l u s t e r i n g .  S c i . 29:266-271.  A n n . Rev. E c o l . and S y s t .  W i l l i a m s , W.T. and J . M . L a m b e r t . 1959. M u l t i v a r i a t e methods i n p l a n t e c o l o g y I. A s s o c i a t i o n - a n a l y s i s i n p l a n t c o m m u n i t i e s . J . E c o l . 47:83-101. W i l l i a m s , W.T. and J . M . L a m b e r t . 1960. M u l t i v a r i a t e methods i n p l a n t ecology. I I . The use of an e l e c t r o n i c d i g i t a l computer e c o l o g y f o r association analysis. J . E c o l . 48:689-710. W i l l i a m s , W.T. and J . M . L a m b e r t . 1966. M u l t i v a r i a t e methods i n p l a n t ecology. V . S i m i l a r i t y a n a l y s i s and i n f o r m a t i o n - a n a l y s i s . J. E c o l . 54:427-445.  -  2-11 -  W i l l i a m s , W.T. and G . N . L a n c e . 1968. A p p l i c a t i o n of computer c l a s s i f i c a t i o n t e c h n i q u e s t o problems i n l a n d s u r v e y . B u l l e t i n I n s t . I n t . S t a t . 42:345-355. Yamada, M i c h a e l M. 1976. C l a s s i f i c a t i o n a n a l y s i s - and a p p l i c a t i o n s i n natural resources. ( X e r o x , paper f o r Commerce 5 1 3 , U n i v e r s i t y of B r i t i s h Columbia.) Young, G.Y. e t . a l . 1973. C r e s t o n w i l d l i f e p i l o t p r o j e c t . B r i t i s h Columb i a Land I n v e n t o r y and S o i l s B r a n c h , B . C . D e p t . A g r i c u l t u r e . 82 p. Z o l t a i , S . C . and W.W. P e t t a p i e c e . 1973. S t u d i e s of v e g e t a t i o n , l a n d f o r m and p e r m a f r o s t i n the Mackenzie V a l l e y : T e r r a i n , V e g e t a t i o n and P e r m a f r o s t R e l a t i o n s h i p s i n the n o r t h e r n p a r t of the M a c k e n z i e V a l l e y and N o r t h e r n Yukon. E n v i r o n m e n t a l - S o c i a l Committee N o r t h e r n P i p e l i n e s , Task F o r c e on N o r t h e r n O i l Development. Report No. 7 3 - 4 .  - 212  -  APPENDIX I D e f i n i t i o n of vegetation s t r a t a and coverage classes  - 213 -  1.  V e g e t a t i o n s t r a t a categories"*" AO  Veteran trees -  t r e e s c o n s i d e r a b l y o l d e r t h a n the t r e e s o f the  main canopy w h i c h have o f t e n s u r v i v e d one or more f i r e s ;  often  o c c u r s i n g l y and a r e u s u a l l y w e l l above t h e main t r e e canopy. •Al  Taller trees -  t r e e s w h i c h p r o t r u d e above t h e main t r e e canopy  but of a p p r o x i m a t e l y t h e same age c l a s s as t h e main canopy. A2  Main t r e e canopy -  t r e e s w h i c h form a more or l e s s c o n t i n u o u s  crown canopy. A3  Secondary t r e e canopy -  t r e e s o c c u r r i n g below t h e main t r e e  canopy but of a p p r o x i m a t e l y t h e same age as t h e main canopy and g r e a t e r than 8 m (25 f e e t ) . Bl  T a l l shrubs and r e g e n e r a t i o n l a y e r -  a l l non-herbaceous species  r e a c h i n g h e i g h t s between 2m (6 f e e t ) and 8m (25 f e e t ) . B2  Low shrub and r e g e n e r a t i o n l a y e r - a l l non-herbaceous s p e c i e s r e a c h i n g h e i g h t s no g r e a t e r than 2m (6 f e e t ) .  2.  6  Herb l a y e r -  D  Moss l a y e r - b r y o p h y t e s  (non-vascular).  V e g e t a t i o n c o v e r a g e c l a s s e s (Daubenmire, 1 9 5 9 ) . Class  1.  a l l v a s c u l a r non-woody p l a n t s r e g a r d l e s s of h e i g h t .  Range (% c o v e r )  M i d p o i n t (% c o v e r )  1  0-5  2.5  2  5-25  15  3  25-50  37.5  4  50-75  62.5  5  75-95  85  6  95-100  97.5  V e g e t a t i o n S e c t i o n , Resource A n a l y s i s B r a n c h , M i n i s t r y of E n v i r o n m e n t , B r i t i s h Columbia.  -  214 -  APPENDIX  II  P l a n t s p e c i e s l i s t f o r t h e Grassy Creek and Templeton R i v e r  watersheds  1. Nomenclature f o r t h e v a s c u l a r p l a n t s f o l l o w s H i t c h c o c k et a l . (1955, 1959, 1961, 1964, 1 9 6 9 ) . Nomenclature f o r t h e b r y o p h y t e s f o l l o w s S c h o f i e l d ( 1 9 6 9 ) .  -  215 -  TEMPLETON RIVER WATERSHED  Vascular  Plants A b i e s l a s i o c a r p a (Hook.)  Nutt.  Acer glabrum T o r r . A c h i l l e a m i l l e f o l i u m L. Actaea rubra  (Ait.)  Willd.  A l l i u m cernuum Henry A l n u s s i n u a t a (Regel)  Rydb.  Amelanchier a l n i f o l i a  Nutt.  Anaphalis margaritacea (L.)  B. & H.  Anemone m u l t i f i d a P o i r . Anemone p a r v i f l o r a  Michx.  A n t e n n a r i a racemosa Hook. A r i t e n n a r i a r o s e a Greene A q u i l e g i a f l a v e s c e n s Wats. A r a b i s drummondii Gray Aralia nudicaulis Arctostaphylos  L.  uva-ursi  Arenaria c a p i l l a r i s  (L.)  Spreng.  Poir  A r n i c a c o r d i f o l i a Hook. A s t e r conspicuous A s t e r spp.  Lindl.  L.  Athyrium f i l i x - f e m i n a (L.)  Roth  B e r b e r i s repens L i n d . C a l a m a g r o s t i s rubescens Calypso bulbosa (L.)  Buckl.  Dakes  Carex c o n c i n n o i d e s Mack. Carex s p p . C a s s i o p e m e r t e n s i a n a (Bong.) G. Don C a s t i l l e j a s p p . M u t i s ex L. Chimaphila umbellata (L.) C i r c u t a d o u g l a s i i (DC.)  Bart.  Coult.  & Rose  -  216  -  Claytonla l a n c e o l a t a Pursh Clematls columbiana  (Nutt.) T. & G.  C l i n t o n i a u n i f l o r a (Schult.) Kunth Cornus canadensis L. Cornus s t o l i n i f e r u m Michx. Cryptogramma c r i s p a (L.) R. Br. Delphinium glareosum Greene Disporum hookeri (Torr.) Nicholson Draba aureola Wats. Dryas octopetala L. Dryopteris a u s t r i a c a (Jacq.) Woynar ex Schinz & T h e l l . Epilobium a u g u s t i f o l i u m L. Equisetum arvense L. F r a g a r i a glauca Rydb. F r a g e r i a v i r g i n i a n a Duchesne Galium t r i f l o r u m Michx. Goodyera o b l o n g i f o l i a Raf. Gymnocarpium d r y o p t e r i s (L.) Newm. Habenaria saccata Greene Heracleum lanatum Michx. Heuchera c y l i n d r i c a Dougl. ex Hook. Heuchera p a r v i f o l i a Nutt. ex T. & G. Hieracium a l b i f l o r u m Hook. Hypochaeris r a d i c a t a L. Juniperus scopulorum Sarg. Kalmia p o l i f o l i a Wang. Larix l y a l l i i Pari Linnaea b o r e a l i s (Gronov) L. L i s t e r a caurina Piper Lomatium ambiguum (Nutt.) Coult. & Rose Lonicera i n v o l u c r a t a (Rich.) Banks Lonicera utahensis Wats. Lycopodium annotinum L. Mentha arvensis L.  - 217 -  Menziesia ferruginea  Smith  M i t e l l a nuda L. Moneses u n i f l o r a  (L.)  A. Gray  M y o s o t i s s y l v a t i c a Hoffm. D e u t s c h l . Oplopanax h o r r i d u m ( J . E .  Smith) M i q .  Osmorhiza c h i l e n s i s H. & A. P e d i c u l a r i s braceteosa Benth. P e d i c u l a r i s racemosa D o u g l . Penstemon f r u t i c o s u s v a r s c o u l e r i  (Lindl.)  P e t a s i t e s palmatus ( A i t . ) A. Gray Phyllodoce empetriformis  (Sm.) D. Don  Phyllodoce g l a n d u l i f l o r a  (Hook.)  Coville  P i c e a e n g e l m a n n i i P a r r y ex Engelm. P i n u s a l b i c a u l i s Engelm. Pinus contorta Dougl.  ex Loud.  Polystichum l o n c h i t i s  (L.)  Roth  Populus t r e m u l o i d e s M i c h x . Populus t r i c h o c a r p a T o r r . & Gray Potentilla fruticosa  L.  P o t e n t i l l a g r a c i l i s D o u g l . ex Hook. Prunus e m a r g i n a t a D o u g l . Pseudotsuga m e n z i e s i i ( M i r b e l )  Franco  P y r o l a secunda L. Pyrola virens  Schweigg.  Ranunculus e s c h s c h o l t z i i  Schlecht.  Rhododendron a l b i f l o r u m Hook. Ribes l a c u s t r e  (Pers.)  Rosa gymnocarpa  Poir  Nutt.  Rubus p a r v i f l o r u s Rubus pedatus J . E .  Nutt. Smith  Rubus s p p . S a l i x drummondii B a r a t t i n Hook. S a l i x spp.  L.  Sambucus racemosa L.  Cronq.  - 218 -  Saxifraga b r o n c h l a l l s L. Saxifraga l y a l l i l Engl. Sedum lanceolatum Torr. Sedum laxum ( B r i t t . ) Berger Seneclo t r i a n g u l a r i s Hook. Sheperdia canadensis (L.) Nutt. Smilacina racemosa (L.) Desf. Sorbus scopulina Greene, P i t t . Sorbus s i t c h e n s i s Roemer Spiraea b e t u l i f o l i a P a l l . Spiraea spp. L. Streptopus a m p l e x i f o l i u s (L.) D.C. Streptopus streptbpoides (Ledeb.) F. & Thalictrum occidentale Gray Thuja p l i c a t a D. Don T i a r e l l a u n i f o l i a t a Hook. Tolmiea m e n z i e s i i (Pursh) T. & G. T r o l l i u s laxus S a l i s b . Tsuga heterophylla (Raf.) Sarg. Tsuga mertensiana (Bong.) Carr. Vaccinium membranaceum Dougl. ex Hook. Vaccinium scoparium Leiberg Valeriana s i t c h e n s i s Bong. Veratrum e s c h s c h o l t z i i A. Gray Viburnum edule (Michx.) Raf. V i o l a adunca Smith V i o l a canadensis L. V i o l a g l a b e l l a Nutt. V i o l a n u t t a l l i i Pursh V i o l a o r b i c u l a t a Geyer ex Hook.  - 219 -  Bryophytes Aulacomnlum androgynum (Hedw.) Aulacomnium t u r g l d u m (Wahlenb.)  Schaegr. Schaegr.  B a r b l l o p h b s i a spp. C r a t o n e u r o n commutatum (Hedw.) Ross Dicranum s p p . Hylocomnlum splendens  (Hedw.)  B.S.G.  I s o t h e c i u m s t o l i n l f e r u m (Hook.) B r i d . Plaglomnlum drummondii (Bruch & Schimp) Koponen Pleurozium schreberi  (Brid.)  Mitt.  P o l y t r i c h u m j u n i p e r i n u m Hedw. Ptilium crista-castrensis Rhytidiadelphus triquetrus Sphagnum s p p .  (Hedw.) De N o t . (Hedw.) Warnst.  -  220 -  GRASSY CREEK WATERSHED  Vascular  Plants Abies grandis  (Dougl.)  Lindl.  Abies l a s i o c a r p a Torr. Acer glabrum T o r r . A c h i l l e a m i l l e f o l i u m L. Aconitum columbianum N u t t . Actaea rubra  (Ait.)  Willd.  Aderiocaulbn b i c o l o r  Hook.  A g o s e r i s g l a u c a (Pursh)  Raf.  A l n u s s i n u a t a (Regel)  Rydb.  Amelanchier a l n i f o l i a  Nutt.  Anaphalis margaritacea (L.)  B. & H.  Anemone o c c i d e n t a l i s Wats. A n t e n n a r i a racemosa Hook. A n t e n n a r i a r o s e a Greene A n t e n n a r i a spp.  Gaertn.  Apocynum a n d r o s a e m i f o l i u m L. A q u i l e g i a f l a v e s c e n s Wats. Aralia nudicaulis  L.  Arenaria c a p i l l a r i s Arnica cordifolia  Poir.  Hook.  Asarum caudatum L i n d l . A s t e r conspicuous A s t e r spp.  Lindl.  L.  Athyrium f e l i x - f e m i n a  (L.)  B e r b e r i s repens L i n d l . Betula p a p y r i f e r a Marsh. Calochortus  l y a l l i i Baker  Campanula r o t u n d i f o l i a  L.  Carex spp. C a s t i l l e j a s p p . M u t i s ex L.  Roth  - 221  -  Ceanothus v e l u t i n u s Dougl. ex Hook. Cheilanthes g r a c i l l i m a P.C. Eat. Cheilanthes s i l i q u o s a Maxon Chimaphila umbellata (L.) Bart. C i r c u t a d o u g l a s i i (D.C.) Coult & Rose C l i n t o n i a u n i f l o r a (Schult.) Kunth C o r a l l o r h i z a mertensiana Bong. Cornus s t o l i r i i f e r a Michx. Corylus cornuta Marsh. Cryptbgramma c r i s p a (L.) R. Br. Delphinium spp. L. Disporum trachycarpum (Wats.) Benth. & Hook Dryopteris a u s t r i a c a (Jacq.) Woynar ex Schinz & T h e l l . Epilobium augustifolium L. Eriogonum umbellatum v a r . subalpinum (Greene) Jones Erythrbnium grandiflorum Pursh. Festuca idahbhensis Elm. F r a g a r i a vesca L. F r a g a r i a v i r g i n i a n a Duchesne Galium t r i f l o r u m Michx. Gaultheria o v a t i f o l i a Gray Geum t r i f l o r u m Pursh Goodyera oblongifolium Raf. Gymnocarpium d r y o p t e r i s (L.) Newm. Habenaria hyperborea (L.) R. Br. Heracleum lanatum Michx. Heuchera c y l i n d r i c a Dougl. Hieracium a l b i f l o r u m Hook. Hieracium g r a c i l e Hook. Holodiscus d i s c o l o r (Pursh) Maxim. Juniperus scopulorum Sarg. L a r i x o c c i d e n t a l i s Nutt. Ligusticum canbyi Coult. & Rose L i l i u m columbianum Hanson  -  222  -  Linnaea b o r e a l i s (Gronov.) L. L i s t e r a caurina Piper Lonicera i n v o l u c r a t a (Rich.) Banks Lonicera utahensis Wats. Lupinus spp. L. Luzula glabrata (Hoppe) Desv. Lycopodium annotinum L. Madia glomerata Hook. Mentha arvensis L. Moneses u n i f l o r a (L.) A. Gray Oplopanax horridum (J.E. Smith.) Miq. Osmorhiza c h i l e n s i s H. & A. Pachistima myrsinites P e d i c u l a r i s bracteosa Benth. P e d i c u l a r i s groenlandica Retz. P e d i c u l a r i s racemosa Dougl. Penstemon f r u t i c o s u s ( L i n d l . ) Cronq. Phacelia heterophylla Pursh Phyllodoce .empetriformis (Sm.) D. Don Picea engelmannii Parry ex Engelm. Pinus a l b i c a u l i s Engelm. Pinus cbntorta Dougl. ex Loud. Pinus monticola ex D. Don Polygonum sawatchense Small Populus tremuloides Michx. Populus trichocarpa Torr. & Gray Polystichum l o n c h i t i s (L.) RothPrunus emarginata Dougl. Pseudotsuga m e n z i e s i i (Mirb.) Franco Pteridium aqualinum (L.) Kuhn P y r o l l a a s a r i f o l i a Michx. P y r o l l a secunda L. Rhododendron a l b i f l o r u m Hook. Ribes l a c u s t r e (Pers.) P o i r  -  223  -  Rosa gymnocarpium Nutt. Rubus p a r v i f l o r u s Nutt. Rubus pedatus J.E. Smi th S a l i x spp. L. Sambucus racemosa L. Saxifraga b r o n c h i a l i s  L.  Sedum divergens Wats. S e l a g i n e l l a densa Rydb. Senecio integerrimus Nutt. Senecio t r i a n g u l a r i s Hook. Sheperdia canadensis (L.) Nutt. Smilacina racemosa (L.) Desf. Solidago canadensis L. Sorbus s i t c h e n s i s Roemer Spiraea b e t u l i f o l i a P a l l . Spiraea spp. L. Spiranthes romanzoffiana Cham. Streptopus a m p l e x i f o l i u s (L.) D.C. Taxus b r e v i f o l i a Nutt. Thalictrum occidentale Gray Thuja p l i c a t a D.  Don  T i a r e l l a u n i f o l i a t a Hook. Tolmiea m e n z i e s i i (Pursh) T. & G. Tragopogon dubius Scop. T r i l l i u m ovatum Pursh Tsuga heterophylla (Raf.) Sarg. Vaccinium membranaceum Dougl. ex Hook. V a l e r i a n a s i t c h e n s i s Bong. Veratrum e s c h s c h o l t z i i A. Gray V i o l a adunca Smith V i o l a canadensis L. V i o l a g l a b e l l a Nutt. Xerophyllum tenax Pursh Nutt.  -  224 -  Bryophytes Aulacomnium androgynum (Hedw.)  Schaegr.  Barbilophosa spp. Cratoneurori commutatum (Hedw.) Ross Dicranum s p p . Hylocomnium splendens  (Hedw.)  B.S.G.  I s o t h e c i u m s t o l i n i f e r u m (Hook.) B r i d . Plagiomnium drummondii (Bruch & Schimp) Koponen P l a g i o t h e c i u m d e n t i c u l a t u m (Hedw.) Pleurozium schreberi  (Brid.)  Mitt.  P o l y t r i c h u m j u n i p e r i r i u m Hedw. R h y t i d i o p s i s r o b u s t a (Hook.)  Broth.  B.S.G.  -  225  -  APPENDIX  III  D e s c r i p t i o n of symbols and abbreviations f o r Terrain U n i t s , S o i l C l a s s i f i c a t i o n , S o i l Drainage and S o i l Texture.  - 226 -  TERRAIN CLASSIFICATION SYSTEM"  Example o f T e r r a i n U n i t  Symbol: qualifying descriptor  genetic material texture  ^ s u r f a c e expression G / _ . . »- g L v - F ^ < — m o d i f y i n g p r o c e s s J  n  gsMb ^underlying  stratigraphic indicator  Genetic  material  Materials:  C  colluvial  L  E  Eolian  M  morainal  F  Fluvial  Surface  surficial  lacustrine  Expression:  a  apron  t  terraced  b  blanket  v  veneer  r  ridged  Texture: c  clayey  s  sandy  g  gravelly  &  silty  calc =  calcareous  1. Developed by t h e Environment and Land Use Committee S e c r e t a r i a t , P r o v i n c e o f B r i t i s h Columbia (May, 1976).  - 227 -  Q u a l i f y i n g Descriptors: A  active  Modifying -F  G  glacial  Processes: failing  2 SOIL CLASSIFICATION ( s o i l subgroups)  BRGL  B r u n i s o l i c Grey L u v i s o l  GLBRGL  Gleyed B r u n i s o l i c Grey L u v i s o l  BIGL  Bisequa Grey L u v i s o l  GLOFHP  Gleyed Orthic Ferro-Humic Podzol  GLMFHP  Gleyed M i n i Ferro-Humic Podzol  SMFHP  Sombric Ferro-Humic Podzol  OHFP  Orthic Humo-Ferric Podzol  BIOHFP  Bisequa Orthic Humo-Ferric Podzol  GLOHFP  Gleyed Orthic Humo-Ferric Podzol  LSMHFP  L i t h i c Sombric Humo-Ferric Podzol  LOHFP  L i t h i c Orthic Humo-Ferric Podzol  LMHFP  L i t h i c M i n i Humo-Ferric Podzol  MHFP  M i n i Humo-Ferric Podzol  PMHFP  P l a c i c M i n i Humo-Ferric Podzol  GLMHFP  Gleyed M i n i Humo-Ferric Podzol  2. System of S o i l C l a s s i f i c a t i o n f o r Canada, 1974 (Revised). The s o i l s l i s t e d are a l l s o i l s occurring i n both the Templeton River and Grassy Creek watersheds (described by G. U t z i g ) .  -  223  -  OEB  Orthic E u t r i c B r u n i s o l  LOEF  L i t h i c Orthic E u t r i c B r u n i s o l  ODYB  Orthic D y s t r i c B r u n i s o l  LODYB  L i t h i c Orthic D y s t r i c Brunisol  BLDGDYB  Gleyed Degraded D y s t r i c B r u n i s o l  DGDYB  Degraded D y s t r i c Brunisol  ALDYB  Alpine D y s t r i c Brunisol  LALDYB  L i t h i c Alpine D y s t r i c B r u n i s o l  OR  Orthic Regosol  GLOR  Gleyed Orthic Regosol  LFO  Lithic Folisol  SOIL DRAINAGE  R  Rapid  I  Imperfect  W  Well  P  Poor  MW  Moderately Well  VP  Very Poor  SOIL TEXTURE  S  sand  SC  sandy c l a y  LS  loamy sand  SiC  s i l t y clay  SL  sandy loam  C  clay  L  loam  0  organic  SiL  s i l t y loam  G  gravelly  Si  silt  VG  very g r a v e l l y  - 229 -  SCL  sandy c l a y loam  CO  cobbly  CL  c l a y loam  B  bouldery  SiCL  s i l t y c l a y loam  R  rubbly  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0075403/manifest

Comment

Related Items