UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Container nursery methods for producing seedlings of chinese pine (Pinus tabulaeformis Carr.) and oriental… Dong, Hanmin 1985

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A6 D66.pdf [ 8.81MB ]
Metadata
JSON: 831-1.0075365.json
JSON-LD: 831-1.0075365-ld.json
RDF/XML (Pretty): 831-1.0075365-rdf.xml
RDF/JSON: 831-1.0075365-rdf.json
Turtle: 831-1.0075365-turtle.txt
N-Triples: 831-1.0075365-rdf-ntriples.txt
Original Record: 831-1.0075365-source.json
Full Text
831-1.0075365-fulltext.txt
Citation
831-1.0075365.ris

Full Text

CONTAINER NURSERY METHODS FOR PRODUCING SEEDLINGS OF CHINESE PINE (PINUS TABULAEFORMIS CARR.) AND ORIENTAL ARBORVITAE (THUJA ORIENTALIS (L.) FRANCO) by . HANMIN DONG B.Agr., Huazhong A g r i c u l t u r a l C o l l e g e , China, 1981 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF FORESTRY in FACULTY OF GRADUATE STUDIES Department of F o r e s t r y We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA December 18, 1985 © Hanmin Dong, 1985 # 8 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the The U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree that permission f o r e x t e n s i v e copying of t h i s t h e s i s for s c h o l a r l y purposes may be granted by the Head of my Department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department of F o r e s t r y The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date: December 18, 1985 A b s t r a c t An experiment was conducted to determine the s u i t a b i l i t y of nine types of p l a s t i c or paper c o n t a i n e r s f o r r a i s i n g p l a n t i n g stock of Chinese pine (Pinus tabul aeformi s Carr.) and o r i e n t a l a r b o r v i t a e (Thuja orientalis (L.) F r a n c o ) . P l a n t s were grown on the campus of the U n i v e r s i t y of B r i t i s h Columbia, i n i t i a l l y , i n an unheated p l a s t i c s h e l t e r and l a t e r in a shade house. Height, r o o t - c o l l a r diameter and dry weight measurements were taken 22 weeks a f t e r germination. R e s u l t s showed that dry matter p r o d u c t i o n per u n i t area increased as c o n t a i n e r spacing decreased. However, the dry weight of i n d i v i d u a l p l a n t s i n c r e a s e d with i n c r e a s e i n both the volume and spacing of c o n t a i n e r s . Shoot/root and h e i g h t / r o o t - c o l l a r diameter r a t i o s decreased with i n c r e a s e i n c o n t a i n e r spacing. A c o n t r o l l e d experiment, i n which p l a n t d e n s i t y was v a r i e d independently of c o n t a i n e r volume, showed that with c l o s e r s e e d l i n g d e n s i t y shoot height i n c r e a s e d , but r o o t - c o l l a r diameter decreased. In P. tabul aeformi s but not T. orientalis, there was a s i g n i f i c a n t negative r e l a t i o n s h i p between s e e d l i n g d e n s i t y and whole p l a n t dry weight. A c o n t r o l l e d experiment i n which c o n t a i n e r volume was v a r i e d independently of p l a n t spacing showed a s i g n i f i c a n t p o s i t i v e r e l a t i o n s h i p between c o n t a i n e r volume and t o t a l p l a n t dry weight i n both s p e c i e s . Comparison of three mineral n u t r i e n t regimes i n d i c a t e d that e l e v a t i o n of phosphorus l e v e l at the beginning and end of the growing season d i d not i n c r e a s e s e e d l i n g dry matter p r o d u c t i o n . Growth was b e t t e r when n i t r o g e n was s u p p l i e d at 100 ppm, than at 250 ppm. L a t e r a l r o o t s of both s p e c i e s were prevented from growing down or around the c o n t a i n e r w a l l by p a i n t i n g the i n s i d e of the c o n t a i n e r s with a c r y l i c l a t e x p a i n t c o n t a i n i n g c u p r i c carbonate. The c h e m i c a l l y - i n h i b i t e d r o o t s were able to resume e l o n g a t i n g a f t e r the s e e d l i n g s were t r a n s p l a n t e d from the c o n t a i n e r s . Thus, a f t e r t r a n s p l a n t i n g , the primary l a t e r a l r o o t s of the c h e m i c a l l y root-pruned p l a n t s extended s t r a i g h t out from the tap r o o t . In c o n t r a s t , the primary roots of p l a n t s from unpainted c o n t a i n e r s grew mainly from the lower end of the root plug where they were a i r - p r u n e d a f t e r growing down the c o n t a i n e r w a l l . In t r i a l s with k r a f t paper c o n t a i n e r s , the paper d i s i n t e g r a t e d before the end of the growing season. Thus root s of adjacent s e e d l i n g s became intermeshed and were d i f f i c u l t to separate. T h i s was prevented e i t h e r by using p o l y e t h y l e n e coated k r a f t paper,, pr by impregnating the paper with copper s u l f i d e . L a t e r a l r o o t s of s e e d l i n g s r a i s e d in copper s u l f i d e impregnated paper c o n t a i n e r s were pruned as e f f i c i e n t l y as those of s e e d l i n g s grown i n copper-painted p l a s i c c o n t a i n e r s , yet r e t a i n e d the c a p a c i t y to resume e l o n g a t i o n a f t e r t r a n s p l a n t i n g . Table of Contents Chapter Page A b s t r a c t i i Table of Contents i v L i s t of Tables v i i L i s t of F i g u r e s ix L i s t of Appendices x Acknowledgements x i I . Introdnjction 1 A. Advantages of Container Nursery Methods 1 B. L i m i t a t i o n s to the Use of Co n t a i n e r s i n China . . . 1 C. O b j e c t i v e s of the Study 2 I I . L i t e r a t u r e Review 4 A. Review of Chinese Container Systems 4 a . H i s t o r y . . 4 b. Container Types .... 5 c. Growing Media 9 d. Summary 10 B. Review of Western Container Systems ....13 a . H i s t o r y ... 1 3 b. Container Types 18 c. Growing Media ...24 d. Summary 25 C. F a c t o r s I n f l u e n c i n g Container-grown S e e d l i n g Q u a l i t y 26 a. Container Type 26 b. Container Volume 29 c. S e e d l i n g Density 29 i v d. Growing Medium 30 e. M i n e r a l N u t r i e n t Supply 32 f . I n f l u e n c e of Container on Root Form 32 g. Chemical and A i r Root Pruning 33 I I I . M a t e r i a l s and Methods 35 A. Species C h a r a c t e r i s t i c s 35 a. Chinese Pine 35 b. O r i e n t a l A r b o r v i t a e 35 B. C u l t u r e of Se e d l i n g s 36 a. Seed Germination 36 b. Growing Medium P r e p a r a t i o n 37 c. Seeding 37 d. S e e d l i n g C u l t u r e 37 e. Sampling f o r M o r p h o l o g i c a l Asssessment ...38 f. M o r p h o l o g i c a l Assessment of Stock 38 g. Data Analyses 38 C. Methods 40 a. Experiment 1: Container Types 40 b. Experiment 2: S e e d l i n g D e n s i t i e s 40 c. Experiment 3: Container Volumes 41 d. Experiment 4; F e r t i l i z e r Regimes 41 e. Experiment 5: L a t e r a l Root Pruning i n Copper-painted C o n t a i n e r s 43 f. Experiment 6. L a t e r a l Root Pruning i n Copper-impregnated K r a f t Paper Pots 46 IV. R e s u l t s and D i s c u s s i o n 48 A. Experiment 1: E f f e c t s of Container Type on Seedling.Growth and Morphology 48 v a. Container Type Ranking 48 b. Root Morphology 49 c. D i s c u s s i o n 51 B. Experiment 2: In f l u e n c e of S e e d l i n g Density on Se e d l i n g Form and Growth Rate 55 C. Experiment 3: In f l u e n c e of Container Volume on Se e d l i n g Form and Growth Rate 59 D. Experiment 4: E f f e c t s of M i n e r a l N u t r i e n t Regime on S e e d l i n g Growth Rate 63 E. Experiment 5: E f f e c t s of Chemical Root Pruning on Root Form and S e e d l i n g Growth Rate i n P l a s t i c C o n t a i n e r s 65 F. Experiment 6. I n f l u e n c e of Chemical Root Pruning on Root Form and Growth i n Copper-impregnated K r a f t Paper Pots 71 a. Container Degradation 71 b. Root Morphology 71 c. S e e d l i n g Growth 76 d. Summary 76 G. Summary and C o n c l u s i o n s 79 a. Container Type 79 b. S e e d l i n g D e n s i t y 80 c. Container Volume 80 d. M i n e r a l N u t r i e n t 80 e. Chemical Root Pruning 81 References 82 Appendices 93 v i L i s t of Tables Table Page 1 Growing media used i n China ....11 2 Time schedule of f e r t i l i z e r a p p l i c a t i o n s 39 3 Container types and t h e i r s t a t i s t i c s 39 4 Three s e e d l i n g d e n s i t i e s d e f i n e d i n Leach Tube c o n t a i n e r s 42 5 Three c o n t a i n e r volumes d e f i n e d i n three types of S t y r o b l o c k c o n t a i n e r s 42 6 Three f e r t i l i z e r regimes each at two n u t r i e n t l e v e l s 44 7 Chemical a n a l y s i s of Green V a l l e y standard f e r t i l i z e r s 44 8 Treatment combinations i n K r a f t Paper Pot experiment 47 9 Container type ranking by s e e d l i n g morphology and dry matter p r o d u c t i o n e f f i c i e n c y i n Chinese pine and o r i e n t a l a r b o r v i t a e 50 10 S e e d l i n g q u a l i t y parameters of the two s p e c i e s i n three s e e d l i n g d e n s i t i e s 56 11 E f f e c t s of c o n t a i n e r volume on the s e e d l i n g dry weight and r o o t i n g i n t e n s i t y of Chinese pine and o r i e n t a l a r b o r v i t a e 60 v i i 12 S e e d l i n g q u a l i t y parameters of Chinese pine and o r i e n t a l a r b o r v i t a e s e e d l i n g s i n three f e r t i l i z e r regimes 64 13 Comparisons of s e e d l i n g q u a l i t y parameters of Chinese pine and o r i e n t a l a r b o r v i t a e r a i s e d i n copper-painted and c o p p e r - f r e e c o n t a i n e r s ." 66 14 New r o o t s produced by c h e m i c a l l y root-pruned and c o n t r o l s e e d l i n g s w i t h i n 13 days a f t e r t r a n s p l a n t i n g 68 15 Comparisons of morphology and growth of Chinese pine s e e d l i n g s r a i s e d i n p o l y e t h y l e n e coated K r a f t Paper Pots with and without copper impregnation 77 16 Comparisons of morphology and growth of Chinese pine s e e d l i n g s r a i s e d i n K r a f t Paper Pots with and without copper impregnation 77 17 K r a f t Paper Pot e v a l u a t i o n 77 v i i i L i s t of F i g u r e s F i g u r e Page 1 Four of the c o n t a i n e r types used i n China 7 2 Four of the c o n t a i n e r types used i n the West 19 3 Root deformation of Chinese pine s e e d l i n g s r a i s e d i n S t y r o b l o c k s and R o o t r a i n e r s 52 4 New roo t s produced from copper-pruned and co p p e r - f r e e S t y r o b l o c k plugs d i f f e r i n amount and p o s i t i o n 69 5 K r a f t Paper Pots decomposed i n l e s s than 90 days 72 6 Performance of p o l y e t h y l e n e - c o a t e d K r a f t Paper Pots: copper-impregnated and c o n t r o l 73 7 S e e d l i n g plugs of Chinese pine r a i s e d i n p o l y e t h y l e n e coated K r a f t Paper Pots: copper-impregnated and c o n t r o l 74 8 Root c h a r a c t e r i s t i c s of Chinese pine s e e d l i n g s r a i s e d i n p o l y e t h y l e n e coated K r a f t Paper Pots ( f r e e of growing medium): copper impregnated and c o n t r o l 75 ix L i s t of Appendices Appendix Page 1 Japanese Paper Pot s t a t i s t i c s 93 2 BC/CFS St y r o b l o c k s t a t i s t i c s 94 3 Spencer-Lemaire R o o t r a i n e r s t a t i s t i c s 95 4 N a t u r a l d i s t r i b u t i o n of Pi nus t abul aeformi s ......96 5 N a t u r a l d i s t r i b u t i o n of Thuja orientalis 97 6 F r i t t e d Trace Elements (F.T.E.) p r e s c r i p t i o n 98 7 F e r t i l i z e r 20-20-20 p r e s c r i p t i o n 99 8 Data Analyses 100 9 Summary of Data 143 x Acknowledgements I wish to express my s i n c e r e g r a t i t u d e and a p p r e c i a t i o n to Dr. 0. S z i k l a i f o r i n i t i a t i n g the program and p r o v i d i n g s u p e r v i s i o n and encouragement throughout the two-year Master's program. I am g r e a t l y indebted to Dr. A.N. Burdett f o r h i s e n t h u s i a s t i c and p a t i e n t guidance and a s s i s t a n c e from experimental design to manuscript r e v i s i o n s . S p e c i a l thanks are a l s o extended to the Burdett f a m i l y f o r p r o v i d i n g accommodation while s t a y i n g i n V i c t o r i a f o r l a b o r a t o r y work. I would l i k e to f u r t h e r acknowledge Mrs. R. Davidson f o r her v a l u a b l e suggestions on the manuscript. Many thanks are given to Mrs. L. Charleson f o r her k i n d l y a s s i s t a n c e i n the l a b o r a t o r y and f i e l d work. Acknowledgements are a l s o extended to the F o r e s t Research I n s t i t u t e of Shanxi Province of China, which generously o f f e r e d the r e s e a r c h m a t e r i a l s . S p e c i a l thanks are given to Mrs. S. Chan's f a m i l y f o r t h e i r l o v i n g care and a s s i s t a n c e i n adapting to a new envi ronment. Success of t h i s program was made p o s s i b l e through f i n a n c i a l support p r o v i d e d by a s c h o l a r s h i p from the M i n i s t r y of A g r i c u l t u r e , Animal Husbandry, and F i s h e r y of the People's Republic of China, and f e l l o w s h i p s from the Canadian F o r e s t r y S e r v i c e , and the Donald S. McPhee F e l l o w s h i p Fund. x i F i n a l l y , I wish to acknowledge my parents f o r t h e i r constant moral support and encouragement. I d e d i c a t e t h i s work with a l l my love to them. x i i I. I n t r o d u c t i o n A. Advantages of Container Nursery Methods The use of c o n t a i n e r s i n f o r e s t n u r s e r i e s i s not new. However, r a p i d expansion in p r o d u c t i o n of container-grown, f o r e s t p l a n t i n g stock d i d not occur i n North America u n t i l the beginning of the 1970's when a number of c o n t a i n e r nursery systems were designed, t e s t e d , and adopted in commercial p r a c t i c e . Reasons f o r s w i t c h i n g from bareroot to c o n t a i n e r stock i n c l u d e d the p o t e n t i a l not only f o r s h o r t e r crop r o t a t i o n s , but a l s o higher, and more uniform stock q u a l i t y . In some areas, a shortage of land s u i t a b l e f o r bareroot n u r s e r i e s may a l s o have encouraged the adoption of c o n t a i n e r p r o d u c t i o n techniques. B. L i m i t a t i o n s to the Use of C o n t a i n e r s i n China In China, c o n t a i n e r nursery methods were adapted from h o r t i c u l t u r e to f o r e s t nursery p r a c t i c e i n the 1950's and have not s i n c e been r a d i c a l l y a l t e r e d . C o n t a i n e r s used are almost e x c l u s i v e l y hand-made from indigenous m a t e r i a l s . T h i s minimizes c a p i t a l expenditure, but prevents e f f i c i e n t use of labour. The use of r e l a t i v e l y l a r g e c o n t a i n e r s prevents e f f i c i e n t use of high value land and adds g r e a t l y to the c o s t of s h i p p i n g stock from nursery to p l a n t i n g s i t e . High c a p i t a l c o s t s have i n h i b i t e d the adoption i n China of Western c o n t a i n e r nursery systems which make e f f i c i e n t use of land and labour. Furthermore, in some areas with 1 2 a p p r e c i a b l e p r e c i p i t a t i o n and m i l d c l i m a t e , s a t i s f a c t o r y s u r v i v a l and e a r l y growth i s u s u a l l y achieved with bareroot s e e d l i n g s . For these reasons, the p r o p o r t i o n a t e i n c r e a s e i n c o n t a i n e r - n u r s e r y p r o d u c t i o n i n China has not matched that i n the West. However, the a b s o l u t e number of container-grown s e e d l i n g s produced in China i s l a r g e even by Western standards. C. O b j e c t i v e s of the Study T h i s study, with Chinese pine (Pi nus l abul aeformi s Carr.) and o r i e n t a l a r b o r v i t a e (Thuja orientalis (L.) Franco) was intended to assess the value of Western c o n t a i n e r - n u r s e r y techniques f o r use i n China. I t was hoped, a l s o , that i t might p r o v i d e a b a s i s f o r d e v e l o p i n g c o n t a i n e r nursery methods adaptable to China's s i t u a t i o n . The s p e c i f i c o b j e c t i v e s were t o : 1. assess c o n t a i n e r types i n present day use i n Western f o r e s t n u r s e r i e s ; 2. i n v e s t i g a t e the e f f e c t s of p l a n t d e n s i t y on s e e d l i n g s i z e and morphology when c o n t a i n e r volume and other f a c t o r s are kept constant; 3. i n v e s t i g a t e the e f f e c t s of c o n t a i n e r volume on s e e d l i n g s i z e and morphology when p l a n t d e n s i t y and other f a c t o r s are kept constant; 4. evaluate the s u i t a b i l i t y of three f e r t i l i z e r regimes each at two c o n c e n t r a t i o n s ; 5. observe the e f f e c t s of chemical root pruning on root 3 growth and morphogenesis a f t e r t r a n s p l a n t i n g and i n v e s t i g a t e the p o t e n t i a l of copper-impregnated k r a f t paper f o r manufacturing low-cost t r e e s e e d l i n g c o n t a i n e r s . I I . L i t e r a t u r e Review A. Review of Chinese Container Systems a. H i s t o r y During the e a r l y 1950's in southern China, the growth and high s u r v i v a l r a t e s of lemon eucalyptus (Eucalyptus citriodora Hook /.) and masson pi n e (Pi nus massoniana) s e e d l i n g s r a i s e d in newspaper pots encouraged great use of container-grown f o r e s t p l a n t i n g stock. Soon h o r s e t a i l beefwood (Casuarina equisetifol i a L.) and other c o a s t a l t r e e species were a l s o being grown i n c o n t a i n e r s . Late i n the 1950's, f e r t i l i z e d s o i l - b l o c k s , p o l y e t h y l e n e bags, and straw-mud cups were developed. F e r t i l i z e d s o i l b l o c k s proved p a r t i c u l a r l y s u i t a b l e f o r p r o d u c t i o n of lemon e u c a l y p t u s . However, newspaper pots, p o l y e t h y l e n e bags, and straw-mud cups were most commonly used f o r r a i s i n g masson pine and other southern pine s p e c i e s . In the 1960's, r e s e a r c h was conducted on the composition of growing media although s o i l c o n t i n u e d to be the p r i n c i p a l component of the media most widely used. A l s o s e v e r a l new c o n t a i n e r types i n c l u d i n g k r a f t paper pot, bamboo basket, and bamboo tube were developed ( L i a n et al. 1982). During the l a s t ten years, the range of t r e e s p e c i e s grown i n c o n t a i n e r s has broadened r a p i d l y . T h i s development has been accompanied by f u r t h e r r e s e a r c h on c o n t a i n e r types 4 5 and growing media ( L i n 1979, L i and Yu 1981, L i a n et al . 1982, and Chinese F o r e s t r y A s s o c a t i o n 1984). In China, Guangdong i s the l e a d i n g p r o v i n c e i n c o n t a i n e r s e e d l i n g p r o d u c t i o n . In 1983, i t produced 250 m i l l i o n s e e d l i n g s i n c o n t a i n e r s which accounted fo r 25% of p r o v i n c i a l stock p r o d u c t i o n (Chinese F o r e s t r y A s s o c i a t i o n 1984). T h i s i s a l a r g e program. However, i n China as a whole, the p r o p o r t i o n of f o r e s t p l a n t i n g stock r a i s e d i n c o n t a i n e r s has expanded more slowly than i n Western c o u n t r i e s . The main reason f o r t h i s i s economic. Container stock produced by the l a b o u r - i n t e n s i v e methods most commonly used in China i s f a r more expensive than bareroot stock (Liang et al. 1981). Adoption of more e f f i c i e n t , c a p i t a l - i n t e n s i v e c o n t a i n e r nursery methods has been r e s t r i c t e d by n a t i o n a l c a p i t a l spending p r i o r i t i e s . b. Container Types C u r r e n t l y , China uses s e v e r a l kinds of c o n t a i n e r s . They are made from v a r i o u s m a t e r i a l s a c c o r d i n g to l o c a l r e s o u r c e s . M a t e r i a l s used i n c l u d e paper, p l a s t i c , straw, clay-mud, bamboo, and wood. Container s i z e v a r i e s a c c o r d i n g to the s p e c i e s to be r a i s e d . S e e d l i n g s of angiosperms such as o i l t e a c a m e l l i a (Camellia oleifera A b e l . ) , Quercus spp., and Manchurian walnut (Juglans mandshuri ca), f o r i n s t a n c e , are r a i s e d i n l a r g e c o n t a i n e r s (1000 cm 3 or more). Most c o n i f e r s , however, are r a i s e d i n small c o n t a i n e r s (360 cm 3 or l e s s ) (Lian et al. 1982). The f o l l o w i n g are the types of 6 c o n t a i n e r s most commonly used i n China (Qian 1982). 1. Paper C o n t a i n e r s Most paper c o n t a i n e r s used in s e e d l i n g p r o d u c t i o n are hand-made from newspaper, or k r a f t paper. The advantages of paper c o n t a i n e r s i n c l u d e the a v a i l a b i l i t y of raw m a t e r i a l , low c o s t , and ease of manufacture. However, paper c o n t a i n e r s u s u a l l y decompose a f t e r one or two months' use. As a r e s u l t , roots p e n e t r a t e c o n t a i n e r w a l l s , and c o n t a i n e r s become hard to separate. T h e r e f o r e , paper c o n t a i n e r s are o f t e n u n s a t i s f a c t o r y f o r general use. 2. Straw-mud Co n t a i n e r s Straw-mud c o n t a i n e r s are made by a p p l y i n g a c o a t i n g of mud to straw wound around a mold ( F i g u r e 1a). Advantages of t h i s type of c o n t a i n e r a r e : ready a v a i l a b i l i t y of raw m a t e r i a l ; low c o s t ; and g r e a t e r d u r a b i l i t y than paper c o n t a i n e r s . In southern China, l a r g e q u a n t i t i e s of Eucalyptus s p e c i e s , h o r s e t a i l beefwood, Phoebe s p e c i e s , and Mytilaria s p e c i e s are r a i s e d i n straw-mud c o n t a i n e r s . 3. Bamboo-basket Co n t a i n e r s T h i s type of c o n t a i n e r i s woven with t h i n bamboo s t r i p s ( F igure 1b). I t i s mainly used f o r r a i s i n g l a r g e ornamental t r e e s e e d l i n g s . The common s i z e i s 40 cm x 40 cm x 45 cm (Qian 1982). Wide use i s l i m i t e d by the high c o s t and l i m i t e d a v a i l a b i l i t y of bamboo. 4. F e r t i l i z e d - s o i l Blocks a. Straw-mud C o n t a i n e r s c. F e r t i l i z e d - s o i l B l o c k s F i g u r e 1. Four of the c o n t a i b. Bamboo-basket C o n t a i n e r s d. P o l y e t h y l e n e Bags er types used i n China 8 S o i l b l o c k s are made by mixing c a l c i u m superphosphate ( u s u a l l y 1%) with nursery s o i l and wetting the mixture to make mud. The mud i s spread onto l e v e l ground and smoothed to the d e s i r e d t h i c k n e s s ( u s u a l l y 12 cm) with a board. A l a y e r of p l a n t ash ( u s u a l l y 0.2 to 0.3 cm) i s s c a t t e r e d on the top to prevent c r a c k i n g . Blocks of the d e s i r e d s i z e ( u s u a l l y 8 cm x 8 cm) are marked out and a seed hole i s made at the centre of each bl o c k . F i n a l l y b l o c ks are cut along the l i n e s to 2/3 of t h e i r f u l l depth (Figure 1c). When s e e d l i n g s reach the d e s i r e d s i z e , the blocks are separated with a blade and shipped f o r p l a n t i n g ( B e i j i n g F o r e s t r y U n i v e r s i t y 1980, and Qian 1982). F e r t i l i z e d - s o i l blocks have been used i n southern China f o r a long time. Lemmon eu c a l y p t u s , Phoebe s p e c i e s , and masson pine are s u c c e s s f u l l y grown i n t h i s type of c o n t a i n e r s . In northern and c e n t r a l China, f e r t i l i z e d - s o i l b l o c k s are used f o r r a i s i n g Chinese pine (Pi nus t abul aeformi s) and o r i e n t a l a r b o r v i a t e (Thuja ori ental i s) s e e d l i n g s . 5. P o l y e t h y l e n e Bags P o l y e t h y l e n e f i l m i s cut to the d e s i r e d s i z e , and the seams are s e a l e d e i t h e r with a hot i r o n or a sewing machine. To improve a e r a t i o n , s i x to e i g h t holes are u s u a l l y made around the c o n t a i n e r w a l l 2 to 3 cm from the bottom (Figure 1d). C o n i f e r s e e d l i n g s are o f t e n • r a i s e d i n bags 4.5 cm (diameter) by 12 cm ( h e i g h t ) , f o r 9 broadleaf s e e d l i n g s , p o l y e t h y l e n e bags approximately 8 cm by 15 cm are used (Qian 1982). 6. Other Types In a d d i t i o n to the c o n t a i n e r s d e s c r i b e d above, p l a s t i c cups and bamboo tubes sometimes are used in Chinese f o r e s t n u r s e r i e s . A number of new types of c o n t a i n e r s are being t e s t e d . Guangxi and H e i l o n g j i a n g p r o v i n c e s , f o r example, are t e s t i n g honeycomb-like paper pots and L i a o n i n g p r o v i n c e i s developing pulp-peat c o n t a i n e r s (Chinese F o r e s t r y A s s o c i a t i o n 1984). In the South, where bamboo i s a v a i l a b l e , bamboo tubes are sometimes used. c. G r o w i n g M e d i a In China's f o r e s t c o n t a i n e r n u r s e r i e s , the most commonly used growing medium i s f e r t i l i z e d s o i l . When t h i s i s used, p l a n t s are f e r t i l i z e d only o c c a s i o n a l l y or not at a l l d u r i n g the growing season. The s o i l used i n c o n t a i n e r s may be of v a r i o u s types i n c l u d i n g nursery s o i l , f o r e s t s o i l , , l o e s s , humus s o i l , or s o i l i n the paddy f i e l d . F e r t i l i z e r s to be used may i n c l u d e i n o r g a n i c f e r t i l i z e r s or manure or a combination of both. The p r e p a r a t i o n of s o i l i s u s u a l l y based on l o c a l experience r a t h e r than res e a r c h which, so f a r , has had only a l i m i t e d b e a r i n g on o p e r a t i o n a l p r a c t i c e . The p a r t i c u l a r components of the growing media vary from p l a c e to p l a c e depending on the l o c a l r e s o u r s e s . T h i s v a r i a t i o n evident i n the growing 1 0 medium p r e s c r i p t i o n s p r o v i d e d by r e s e a r c h s t a t i o n s i n d i f f e r e n t p a r t s of the country (Table 1). S o i l s i n c o r p o r a t e d i n c o n t a i n e r growing media are normally s t e r i l i z e d to e l i m i n a t e weeds, i n s e c t p e s t s , and pathogens. Formalin (30 kg 0.15% per m3) i s probably the most common s t e r i l a n t used in China, although i n the North f e r r o u s s u l f a t e (20 kg 5% FeSO« per m3) i s sometimes used (Qian 1982). d. Summary The use of c o n t a i n e r s i n Chinese f o r e s t n u r s e r i e s s t a r t e d i n the beginning of the 1950's, but the development has been slow compared to that i n the West. Although the c o n t a i n e r method i s r e a d i l y accepted by the Chinese f o r e s t e r s , high c o s t s have l i m i t e d i t s use. Furthermore, the widespread use of l a r g e s o i l - b a s e d c o n t a i n e r s c r e a t e s a major d i f f i c u l t y i n the t r a n s p o r t of s e e d l i n g s from nursery to p l a n t i n g s i t e s . Research conducted in t h i s f i e l d has been focused on developing new c o n t a i n e r s a n d - e v a l u a t i n g growing media. Knowledge of c o n t a i n e r c u l t u r e , greenhouse management, and the r e l a t i o n s h i p between s e e d l i n g c h a r a c t e r i s t i c s and f i e l d performance has presumably accumulated through experience, but l i t t l e of t h i s i s a v a i l a b l e i n l i t e r a t u r e . 11 Table 1. Growing Media Used i n China (Qian 1982) PRESCRIPTION TREE SPECIES TESTING AUTHORITY Pond sludge 60%, Pla n t ash 37%, Phosphate f e r t i l i z e r 3% Burnt s o i l 65%, Pine s o i l 32%, Calcium superphosphate 3% f o r e s t (1) Pond sludge 50%, River sand 49.7%, Phosphate f e r t i l i z e r 0.3%, ( s t e r i l i z e d with 0.5% Formalin) (2) Fo r e s t s o i l 50%, Ri v e r sand 30%, Burned s o i l 20% Peat "moss 50%, Humus s o i l 50-Fo r e s t s o i l 95.5%, Calcium superphosphate 3%, Potassium sulphate 1%, Ferrous sulphate 0.5% Loess 56%, Humus s o i l 33%, Sand 11%, ( s t e r i l i z e d with 0.5% Formalin) Camel I i a ol ei f er a Pi nus el I i ot t i i Cunni nghami a I anceol at a, Me t as equoi.a gl ypt os I r o-boi des, Pi nus el I i ot t i i , Pi nus I aeda, Pi nus mass oni ana, Foki eni a hodgi ns i i Lar i x ol ge ns i s , Pi cea as per at a, Pi nus kor ai ens i s Pi nus t abul aeformis PI atycl adus or i e nt a I i s , Xant hoc er as sorbifolia, Ulmus pumi I a, Ai I ant hus al I i ssima, Robi ni a ps eudoacacia Pi nus t abulaeformi s F o r e s t Research I n s t i t u t e of Guangxi Province F o r e s t Research S t a t i o n of Gao County-, Guangdong Province F o r e s t Research S t a t i o n of Chongyang County, Hubei Province F o r e s t Admini s t r a t ion Bureau of Mudanjiang C i t y F o r e s t Research I n s t i t u t e of Gasu Province F o r e s t Research I n s t i t u t e of Shaanxi Province 12 PRESCRIPTION TREE SPECIES TESTING AUTHORITY Loess 85%, Sand 13%, Phosphate Pi nus f e r t i l i z e r 2% tabulaeformis , Lar i x spp. Coal A d m i n i s t r a t i o n S t a t i o n of Shaanxi Province Black s o i l 50%, Pla n t ash Horse dung 25%, (heated 2 hours at 80 - 90°C) 25%, to 3 Lari x gmeIini Northeast F o r e s t r y C o l l e g e Sand s o i l 65%, Manure 35% Pi nus tabulaeformis , Pi nus densiflor a, Pi nus Syl v e s t r i s (L.) v a r . mo ngo I i ca L i t v . F o r e s t S o i l Research I n s t i t u t e of Shenyang Province F o r e s t Humus s o i l and l o e s s 60%, Burned s o i l 40%, (plus 1.0 kg Urea, 1.0 kg Benzene Hexachloride, and 0.5 kg Phenylmercuric a c e t a t e per 100 kg medium) (1) peat 50%, v e r m i c u l i t e 30%, p e r l i t e 20% (2) Pine f o r e s t s u r f a c e s o i l 50%, v e r m i c u l i t e 50% (plus 2.3 kg Calcium superphosphate, 1.8 kg Potassium sulphate, 50 gram Magnesium su l p h a t e , 50 gram Manganese su l p h a t e , 10 gram Potassium permanganate, 25 gram Borate a c i d i n each c u b i c meters of growing medium) Pi nus tabul aef ormi s Pi nus tabulaeformis , PI at ycladus or i e nt a I i s , Lar i x spp. Pi nus armandi A g r o - f o r e s t r y Research I n s t i t u t e of Qinghai Province Chinese Academy of F o r e s t r y 1 3 B. Review of Western Container Systems a. H i s t o r y Since the 1950's, the need f o r a r t i f i c i a l f o r e s t r e g e n e r a t i o n i n Western c o u n t r i e s has i n c r e a s e d with an in c r e a s e i n demand f o r f o r e s t products and environmental p r o t e c t i o n . Although most European c o u n t r i e s and p a r t s of the United S t a t e s had numerous, w e l l - e s t a b l i s h e d bareroot n u r s e r i e s , the i n c r e a s e d demand f o r s e e d l i n g s c o u l d not be met by e x i s t i n g n u r s e r i e s . T h i s was e s p e c i a l l y the case i n the P a c i f i c Northwest, Southern U.S. s t a t e s , and most of Canada where f o r e s t nursery c a p a c i t y was small i n r e l a t i o n to the r a t e of f o r e s t h a r v e s t i n g . In order to f i l l the immediate need f o r a r t i f i c i a l r e g e n e r a t i o n , a e r i a l ' s e e d i n g was attempted i n some areas. T h i s was of only l i m i t e d e f f e c t i v e n e s s , however. At the same time, experiments suggested that the use of c o n t a i n e r s p r o v i d e d a means of r a p i d l y producing stock s u p e r i o r i n q u a l i t y to c o n v e n t i o n a l bareroot stock. Raised, o f t e n i n p r i m i t i v e r e s e a r c h f a c i l i t i e s , container-grown s e e d l i n g s showed good s u r v i v a l and an e x c e l l e n t p o t e n t i a l f o r mechanization. E a r l y r e s e a r c h was c e n t r e d mainly on dev e l o p i n g s u i t a b l e c o n t a i n e r types. L a t e r , much e f f o r t was devoted to deve l o p i n g mechanical systems f o r ha n d l i n g t r e e s e e d l i n g s i n c o n t a i n e r s . In some areas, the need f o r immediate and l a r g e s c a l e s e e d l i n g p r o d u c t i o n t r i g g e r e d r a p i d c o n t a i n e r development. As an example, annual p r o d u c t i o n of container-grown s e e d l i n g s i n Oregon and Washington grew from l e s s than one m i l l i o n to 56 m i l l i o n d u r i n g the l a s t decade (Hahn 1981). S i m i l a r r a p i d development occured i n Canada and Scandinavia. Both the Canadians and Scandinavians have been pioneers i n l a r g e s c a l e c o n t a i n e r development. 1. Container Programs i n the Scandinavian C o u n t r i e s The c o l d Nordic c l i m a t e and short growing season are major concerns i n t r e e s e e d l i n g p r o d u c t i o n i n the Scandinavian c o u n t r i e s (Hulten 1974, Rasanen 1981). To overcome these d i f f i c u l t i e s , F i n l a n d f i r s t adopted inexpensive p l a s t i c - c o v e r e d greenhouse to r a i s e bareroot s e e d l i n g s (Hahn 1981). Such f a c i l i t i e s l a t e r proved s u i t a b l e f o r producing container-grown s e e d l i n g s . The Scandinavians had the d e s i r e to extend t h e i r p l a n t i n g season i n t o the summer. Thus, container-grown s e e d l i n g s , with t h e i r p r o t e c t e d and undisturbed root system, proved to be more s u i t a b l e f o r p l a n t i n g season e x t e n s i o n than bareroot s e e d l i n g s . There was a l s o a need f o r mechanization i n the Scandinavian c o u n t r i e s because of high labour c o s t s and s t o r a g e s . Container stock u s u a l l y c o s t s more than bareroot stock of the same s i z e . Mechanical s i t e p r e p a r a t i o n has become more common in Sweden and F i n l a n d s i n c e the beginning of the 1960's. Ease of p l a n t i n g container-grown stock makes i t cheaper 1 5 to use than bareroot stock (Rasanen 1981). As a r e s u l t , c o n t a i n e r stock p r o d u c t i o n i n Scandinavia rose to 225 m i l l i o n s e e d l i n g s by 1974 (Hulten 1974) and 335 m i l l i o n s e e d l i n g s by 1980 (Rasanen 1981). The Japanese Paper Pot, N i s u l a R o l l , M u l t i p o t , and Peat Pot become the major c o n t a i n e r types used i n Scandinavia (Haig 1972, Hulten 1974, and Rasanen 1981). 2. Container Programs in Canada A demand for container-grown s e e d l i n g s developed e a r l i e r i n Canada than i n the United S t a t e s and other c o u n t r i e s because Canada's bareroot nursery c a p a c i t y lagged f u r t h e r behind s e e d l i n g demand. Furthermore, l i t t l e use was made of a e r i a l seeding as an a l t e r n a t i v e to p l a n t i n g (Hahn 1981). The Province of B r i t i s h Columbia (B.C.), i n c o l l a b o r a t i o n with the Canadian F o r e s t S e r v i c e (C.F.S.), has been a pioneer i n the development and use of container-grown p l a n t i n g s t o c k . Small t r i a l s with Walters' B u l l e t and M i l k Carton c o n t a i n e r s were c a r r i e d out i n B.C. i n the 1950's. However, i t was Jack Walters (1961) who provided a s i g n i f i c a n t impetus to the c o n t a i n e r s e e d l i n g program when he p u b l i s h e d The Planting Gun and Bullet: a new t r e e-pi ant i ng technique. Between 1961 and 1967, a number of experiments were conducted with Walter's B u l l e t s , O n t a r i o Tubes, and standard 2-0 bareroot s e e d l i n g s by the P a c i f i c F o r e s t Research Centre of C.F.S. and the Research and 1 6 S i l v i c u l t u r e Branches of the B.C. M i n i s t r y of F o r e s t s (Johnson 1981). During the winter of 1969-70, the L i a i s o n and Development S e c t i o n of the C.F.S. i n c o o p e r a t i o n with the R e f o r e s t a t i o n D i v i s i o n of B.C. M i n i s t r y of F o r e s t s designed and developed BC/CFS Styr o b l o c k - 2 c o n t a i n e r (B'amford 1974). One m i l l i o n s e e d l i n g s were r a i s e d i n t h i s type of c o n t a i n e r i n the same year (Matthews 1971). By the f a l l of 1970, growth and s u r v i v a l r a t e s of the S t y r o b l o c k stock encouraged the S i l v i c u l t u r e Branch to begin p r o d u c t i o n of t h i s type of stock on an o p e r a t i o n a l b a s i s . In the f o l l o w i n g year, the S t y r o b l o c k - 2 was m o d i f i e d to add four v e r t i c a l r i b s on the i n s i d e w a l l to prevent root s p i r a l l i n g (Sjoberg 1974). A s e r i e s of S t y r o b l o c k s with d i f f e r e n t volumes have been developed s i n c e i t s appearance i n B.C. In 1974, 17 m i l l i o n S t y r o p l u g s were produced (Bamford 1974). In 1980, the p r o v i n c e produced 58 m i l l i o n such plugs wich accounted f o r 60% of t o t a l p l a n t i n g stock (Johnson 1981). While Walters' B u l l e t s and S t y r o b l o c k s were being t e s t e d i n B.C., a book-type c o n t a i n e r c a l l e d the Spencer-Lemaire R o o t r a i n e r was developed i n A l b e r t a and a s p l i t tube c o n t a i n e r was developed i n O n t a r i o (Ontario Tube). Another c o n t a i n e r type, the Can-Am M u l t i p o t , based on a Scandinavian design (Swedish M u l t i p o t ) , was developed i n Nova S c o t i a ( H a l l e t t 1981) and i s c u r r e n t l y used i n Nova S c o t i a , Newfoundland, and Quebec (Ramsay 1 7 and Smyth 1981). 3. Container Programs i n the United S t a t e s The appearance of the Ray Leach Tube system was a notable development in the U n i t e d S t a t e s P a c i f i c Northwest duri n g the e a r l y 1970's. The Leach Tube gained widespread acceptance when the Weyerhaeuser Company adapted i t i n t o i t s c o n t a i n e r nursery i n 1973 (Hahn 1981). Besides Weyerhaeuser, the major users of t h i s c o n t a i n e r type were mostly l o c a t e d in the P a c i f i c Northwest. The i n i t i a l enthusiasm fo r the Leach Tube c o n t a i n e r d i m i n i s h e d when c o s t s were c l o s e l y examined. The i n i t i a l c o s t of the c o n t a i n e r was high, and a p p l y i n g some of the advantages such as r e a r r a n g i n g tubes i n the frame to a v o i d blanks, the e x t r a c t i o n of the tubes f o r packaging, s t o r i n g and f i e l d p l a n t i n g , and the r e c y c l i n g of the tubes f o r another use, a l l turned out to be labour i n t e n s i v e and c o s t l y . Moreover, the t h i n - w a l l e d < c o n t a i n e r s d i d not provide i d e a l c o n d i t i o n f o r s e e d l i n g growth because of the l a c k of thermal i n s u l a t i o n . F i e l d e x t r a c t i o n of s e e d l i n g s from the tubes made p l a n t i n g slower and more d i f f i c u l t . T h e r e f o r e , Leach Tubes have slo w l y been r e p l a c e d by b e t t e r and l e s s expensive c o n t a i n e r s . BC/CFS S t y r o b l o c k s , with i t s advantages over Leach Tube in low c o s t , r e u s a b i l i t y , and b i o l o g i c a l p r o t e c t i o n , soon became dominant in the P a c i f i c Northwest. 18 Of the P a c i f i c Northwest s t a t e s , Oregon and Washington, with the most c o n t a i n e r n u r s e r i e s , produced 1 m i l l i o n s e e d l i n g s i n 1970, 42 m i l l i o n s e e d l i n g s i n 1974, and 52.8 m i l l i o n c o n t a i n e r s e e d l i n g s (accounted fo r 85% of the r e g i o n a l t o t a l stock) i n 1980 (Ter Bush 1974, and Landis 1981). b. Container Types 1. Japanese Paper Pots The bio-degradable Japanese Paper Pot c o n t a i n e r s are made from pulp and v a r i o u s q u a n t i t i e s of the a r t i f i c i a l f i b r e v i n y l o n . The breakdown r a t e of the paper can be v a r i e d by a l t e r i n g the a r t i f i c i a l f i b r e c o ntent. A w a t e r - i n s o l u b l e glue bonds i n d i v i d u a l tubes. A set of tubes l a t e r a l l y a t t a c h e d with w a t e r - s o l u b l e adhesive forms a "honeycomb". Sets of pots are compressed as an a c c o r d i o n (Hoedemaker 1974). A set of paper pots i s supported by a p l a s t i c h o l d i n g t r a y which i s designed to h o l d the paper pot sets throughout the e n t i r e growing c y c l e ( F igure 2a). Japanese Paper Pots are d i f f e r e n t from one another i n pot c o n f i g u r a t i o n , volume, t r a y dimension, and degradation r a t e ( S c a r r a t t 1973). The types of Japanese Paper Pots a v a i l a b l e in Canada are d e s c r i b e d i n Appendix 1 . Advantages: p o s s i b l y cheaper than any other type; 19 c. BC/CFS S t y r o b l o c k s d. Spencer-Lemaire R o o t r a i n e r s F i g u r e 2. Four of the c o n t a i n e r types used i n the West 20 r a t e of root egress can be c o n t r o l l e d through s e l e c t i v e b l e n d i n g of wood pulp and s y n t h e t i c f i b r e ; r o o t s not d i s t u r b e d d u r i n g shipment and p l a n t i n g ; reduced h a n d l i n g by d i r e c t l y p l a n t e d with stock; l e s s storage space. Di sadvantages: breakdown of c o n t a i n e r e i t h e r too e a r l y or too l a t e ; root s p i r a l l i n g w i t h i n a pot; ro o t s i n t e r w i n e between adjacent p o t s . 2. Walters' B u l l e t s The new Walters' b u l l e t c o n s i s t s of four i d e n t i c a l separable s e c t i o n s . Each s e c t i o n of the b u l l e t has i n t e r c o n n e c t i n g p i n s on two s i d e s which i n t e r l o c k with two other i d e n t i c a l s e c t i o n s to form a c o n t a i n e r (Figure 2b) . In p r e p a r a t i o n f o r use, the b u l l e t s are assembled and h e l d together i n bundles with a s t r a p or rubber band. The bundles are then f i l l e d with growing medium and seeded. The square shape and i n t e r l o c k i n g arrangement prevents medium from f a l l i n g between b u l l e t s . The bundle arrangement i s r e a d i l y adapted to e i t h e r hand-gun p l a n t i n g or f u l l y automatic machine p l a n t i n g (Walters 1974). Advantages: h i g h l y mechanized p l a n t i n g system; good s o l u t i o n to the labour shortage and high labour c o s t s i n r e f o r e s t i n g d i s t a n t cutover a r e a s . 21 Disadvantages: high c o s t of b u l l e t s ; s u b j e c t to f r o s t heaving; p o s s i b l e r e s t r i c t i o n s to root growth and p e n e t r a t i o n i n t o s o i l due to r i g i d b u l l e t w a l l . 3. BC/CFS S t y r o b l o c k s S t y r o b l o c k s are molded from expanded p o l y s t y r e n e beads (Figure 2 c ) . Block dimensions are approximately 35 cm x 60 cm x 11 to 15 cm deep. The p a r t i c u l a r type of block used depends on the s i z e of stock r e q u i r e d . Four v e r t i c a l r i b s on the c a v i t y w a l l d i r e c t r o o t s downwards to drainage hole at the bottom. Two molded bars support and e l e v a t e the block f o r c a v i t y drainage and a i r c i r c u l a t i o n necessary f o r root pruning (Sjoberg 1974). BC/CFS S t y r o b l o c k s c u r r e n t l y a v a i l a b l e , have c a v i t i e s ranging from 45 to 240 and c a v i t y volumes ranging from 36 to 366 cm 3 (Appendix 2). Advantages: heat i n s u l a t i o n to p r o t e c t root growth; s e e d l i n g s from S t y r o p l u g s have good s u r v i v a l and e a r l y growth; r e u s a b i l i t y ; l i g h t weight. Disadvantages: l a r g e space f o r s t o r i n g empty b l o c k s ; s e e d l i n g s have to be e x t r a c t e d before p l a n t i n g , or blo c k s have to be sent back to nursery; 22 c a r e f u l h a n d l i n g i s needed due to the r e l a t i v e l y low s t r e n g t h of s t y r o f o r m . 4. Spencer-Lemaire R o o t r a i n e r s Spencer-Lemaire R o o t r a i n e r i s a book design i n which c o n t a i n e r s are thermoformed from t h i n p o l y s t y r e n e sheet p l a s t i c to produce a row of c a v i t i e s when each p o r t i o n i s assembled. The p l a s t i c hinge i n the middle of a sheet makes i t p o s s i b l e to form a row of b o o k - l i k e c o n t a i n e r s when f o l d e d . When assembled, the book sheet forms three to s i x c a v i t i e s , more or l e s s r e c t a n g u l a r i n c r o s s - s e c t i o n , tapered at the lower end and with a number of i n t e r n a l grooves to c o n t r o l root o r i e n t a t i o n and prevent root s p i r a l l i n g . Books are h e l d together i n s p e c i a l l y designed t r a y s ( F i g u r e 2d). S e v e r a l types are c u r r e n t l y a v a i l a b l e , ranging from 40 to 750 m3 (Appendix 3) . Advantages: root growth i n s p e c t i o n without moving the root p l u g ; a s l i p - c l a p s e a l between c a v i t i e s prevents r o o t s growing i n t o adjacent c a v i t i e s ; r e u s a b i l i t y . Di sadvantages: the c o n t a i n e r s must be assembled before l o a d i n g ; the t h i n - w a l l e d c o n t a i n e r does not provide thermal i n s u l a t i o n to p r o t e c t s e e d l i n g r o o t s from r a p i d a i r temperature changes. 23 5. Ray Leach Tubes Ray Leach Tube i s made of i n j e c t i o n - m o l d e d p o l y e t h y l e n e . Each tube c o n t a i n s four i n t e r n a l l o n g i t u d i n a l r i b s to prevent root s p i r a l l i n g . Two hundred s e e d l i n g tubes are h e l d in an i n j e c t i o n - m o l d e d p o l y s t y r e n e t r a y . The t r a y i s approximately 60 cm long, 30.5 cm wide, and 17.5 cm high ( A l l i s o n 1974). Advantages: a d j u s t a b l e s e e d l i n g d e n s i t y a c c o r d i n g to arrangement of tubes i n racks; tubes can be rearranged i n racks to e l i m i n a t e blanks and enhance u t i l i z a t i o n of greenhouse space; p r o t e c t r o o t s u n d i s t u r b e d u n t i l p l a n t i n g ; r e u s a b i l i t y . Disadvantages: high c o n t a i n e r c o s t s ; labour i n t e n s i v e to rearrange the tubes, e x t r a c t s e e d l i n g s and prepare tubes f o r reuse. 6. Other Types Besides the major types mentioned above, there are a number of other c o n t a i n e r s developed i n Canada, the Uni t e d S t a t e s , or elsewhere. These i n c l u d e the Can-Am M u l t i p o t , O n t a r i o Tube, Deepot, Swedish N i s u l a R o l l , and RCA Peat Sausage. 24 c. Growing Media A c o n t a i n e r growing medium should have a high water h o l d i n g c a p a c i t y , good a e r a t i o n , high c a t i o n exchange c a p a c i t y , low s a l i n i t y , r e l a t i v e l y low bulk d e n s i t y , and no weed seeds or pathogens (Matthews 1981). Many m a t e r i a l s can be i n c l u d e d i n a growing medium, f o r example, peat moss, vermiculite', p e r l i t e , compost, t o p s o i l , sawdust, ground bark, and some s y n t h e t i c m a t e r i a l s . M i n e r a l s o i l or sand alone are not s a t i s f a c t o r y growing media because they do not have the r e q u i r e d p h y s i c a l c h a r a c t e r i s t i c s such as water h o l d i n g c a p a c i t y , a e r a t i o n and bulk d e n s i t y . Furthermore, mineral s o i l and sand are too heavy f o r container-grown s e e d l i n g s which o f t e n have to be c a r r i e d over d i f f i c u l t t e r r a i n to the p l a n t i n g s i t e s . Many t e s t s have been c a r r i e d out to evaluate growing media. Based on a comparison of nine d i f f e r e n t combinations of sphagnum peat, v e r m i c u l i t e , sand, loam, and a r c i l l i t e , Phipps (1974b) concluded that 1:1 p e a t : v e r m i c u l i t e was the best medium f o r r a i s i n g red pine (Pi nus r e s i n o s a A i t . ) s e e d l i n g s . Ward et a l . (1981) r e p o r t e d that sugar maple (Acer saccharum Marsh.) s e e d l i n g s a t t a i n e d the g r e a t e s t s i z e when r a i s e d i n 1:1:1 peat:per1ite:loamy sand than those r a i s e d i n 1:1 s a n d : r o t t e d bark, or 7:3:2 peat:gravel:loamy sand. S t u d i e s by Lackey and Aim (-1982) with s i x media i n d i c a t e d that the best q u a l i t y red pine (Pi nus r e s i n o s a A i t . ) s e e d l i n g s were r a i s e d i n 1:1:1 sphagnum-peat-moss: peat-moss:vermiculite and the best q u a l i t y white spruce 25 (Pi cea glauca (Moench) Voss) were grown in 1:1 sphagnum-peat-moss:vermiculite. Before 1969, B r i t i s h Columbia c o n t a i n e r n u r s e r i e s used C a l i f o r n i a "U.C. Mix" c o n s i s t i n g of an equal volume of sand and peat. In 1970, the medium changed to a 3:1 sphagnum-peat-moss:vermiculite mix which i s only h a l f the weight of the "U.C." medium (Matthews 1971). The use of 3:1 p e a t : v e r m i c u l i t e i s now a standard p r a c t i c e i n B.C. F o r e s t S e r v i c e n u r s e r i e s , at s e v e r a l i n d u s t r i a l n u r s e r i e s i n A l b e r t a and i n many U.S. c o n t a i n e r n u r s e r i e s ( C a r l s o n 1979). In the P r a i r i e p r o v i n c e s and the Maritime p r o v i n c e s , peat alone or a 2:1 p e a t : v e r m i c u l i t e i s the most common medium c u r r e n t l y used (Edwards et al. 1981, H a l l e t t 1981). In the Scandinavian c o u n t r i e s , the use of peat as growing medium i s common (Haig 1972, Hulten 1974, and Rasanen 1981). d. Summary Rapid i n c r e a s e i n the p r o d u c t i o n of c o n t a i n e r stock has o c c u r r e d i n Western c o u n t r i e s i n response to a demand f o r i n c r e a s e d q u a n t i t i e s of high q u a l i t y s e e d l i n g s . Many d i f f e r e n t c o n t a i n e r types emerged i n the l a s t two decades. Each type has advantages and disadvantages, and the choice of a c o n t a i n e r type i s dependent upon the o b j e c t i v e s and g o a l s of a p a r t i c u l a r nursery. There i s no s i n g l e c o n t a i n e r that w i l l f i t a l l needs. 26 C. F a c t o r s I n f l u e n c i n g Container-grown S e e d l i n g Q u a l i t y a. Container Type In the past, many d i f f e r e n t types of c o n t a i n e r s have been used i n h o r t i c u l t u r e and a g r i c u l t u r e . In h o r t i c u l t u r e , the term " c o n t a i n e r " s i g n i f i e d what most f o r e s t nurserymen would c a l l a "pot", meaning a c y l i n d r i c a l or r e c t a n g u l a r p l a n t c o n t a i n e r , s l i g h t l y s m a l l e r i n diameter at the bottom than the top, with a depth not much gr e a t e r than the diameter, and having a f l a t bottom (Tinus and Mcdonald 1979). A f o r e s t nurseryman's idea of a c o n t a i n e r d i f f e r s c o n s i d e r a b l y from t h i s . F o r e s t t r e e c o n t a i n e r s can be great e r i n depth than i n width. One reason f o r t h i s i s t h a t , in w i l d l a n d p l a n t i n g s , i t i s d e s i r a b l e to p l a c e the roo t s as deeply as p o s s i b l e i n t o the s o i l where moisture i s most l i k e l y to be a v a i l a b l e d u r i n g dry weather. Another reason i s that p l a n t i n g holes of necessary depth are e a s i e r to punch or auger i f the hole has a small diameter. Not the l e a s t i n importance i s the f a c t that s e e d l i n g s are produced most cheaply at a high d e n s i t y (Tinus and Mcdonald 1979). Many types of f o r e s t c o n t a i n e r s are commercially a v a i l a b l e . Apart from d i f f e r e n c e s i n volume, which are not a f u n c t i o n of c o n t a i n e r design, c o n t a i n e r s vary i n spacing, depth/diameter r a t i o , c r o s s s e c t i o n , taper, d r a i n hole s i z e , and the m a t e r i a l of which they are composed (Burdett 1984). 1. Spacing 27 C o n t a i n e r s are u s u a l l y formed i n s e t s , blocks or t r a y s each with many contiguous c a v i t i e s . Container design, t h e r e f o r e , determines s e e d l i n g d e n s i t y which, as d i s c u s s e d below, i s a major determinant of s e e d l i n g growth r a t e , form, and p h y s i o l o g i c a l c o n d i t i o n . Depth/diameter R a t i o Depth to diameter r a t i o of t r e e s e e d l i n g c o n t a i n e r s v a r i e s from 0.3 (peat s l a b s f o r s u r f a c e p l a n t i n g ) to 5 to 7 (BC/CFS S t y r o b l o c k s ) . At a constant spacing, depth/diameter r a t i o probably does not g r e a t l y a f f e c t s e e d l i n g growth. I t may, however, g r e a t l y a f f e c t f i e l d performance. G e n e r a l l y , i t w i l l be b e n e f i c i a l to have a low r a t i o f o r stock p l a n t e d on s o i l s prone to waterlogging, whereas a high r a t i o i s l i k e l y to improve performance on s o i l s prone to s u r f a c e d r y i n g . Cross S e c t i o n The c r o s s s e c t i o n determines whether l a t e r a l r o o t s s p i r a l the c o n t a i n e r , or grow s t r a i g h t down the w a l l s . Root s p i r a l l i n g w i l l occur i n c o n t a i n e r s with a round or oval s e c t i o n unless there are v e r t i c a l r i b s or grooves to channel the r o o t s . An angular s e c t i o n (e.g., square or hexagonal) prevents s p i r a l l i n g . The number of r i b s or angles w i l l i n f l u e n c e the r a d i a l d i s t r i b u t i o n of r o o t s i n the c o n t a i n e r and a f t e r p l a n t i n g . Container c r o s s s e c t i o n c o u l d , t h e r e f o r e , i n f l u e n c e a t r e e ' s mechanical s t a b i l i t y a f t e r p l a n t i n g and a l s o i t s a b i l i t y to o b t a i n access to mineral n u t r i e n t s and water i n the surrounding 28 s o i 1. Taper Co n t a i n e r s may be e i t h e r tapered or s t r a i g h t - s i d e d . Tapered c o n t a i n e r s y i e l d a tapered plug which may be e a s i e r to d i b b l e p l a n t than a s t r a i g h t - s i d e d p l u g . A tapered c o n t a i n e r w a l l f a c i l i t a t e s easy s e e d l i n g e x t r a c t i o n . Drain Holes Most c o n t a i n e r s have a s i n g l e d r a i n h o l e . If t h i s i s too small i t may become plugged with r o o t s which w i l l impede drainage. I f i t i s too l a r g e the growing medium w i l l f a l l through. Large c o n t a i n e r s may have a f l o o r with s e v e r a l d r a i n h o l e s . Depending on the c o n s t r u c t i o n of the f l o o r and the l o c a t i o n of d r a i n h o l e s , r o o t s may be d e f l e c t e d upwards a f t e r reaching the bottom of the c o n t a i n e r r a t h e r than being d i r e c t e d to d r a i n holes where they can be a i r - p r u n e d . P r o v i s i o n f o r L a t e r a l Root Pruning L a t e r a l root pruning prevents r o o t s from growing down or around the c o n t a i n e r w a l l . Pruned ro o t s resume e l o n g a t i o n a f t e r p l a n t i n g to pr o v i d e the t r e e with an ar r a y of f i r s t order l a t e r a l r o o t s extending s t r a i g h t out from the ta p - r o o t i n a more or l e s s h o r i z o n t a l plane. Mechanical Pruning - Cont a i n e r s with mesh w a l l s , or with w a l l s c o n s i s t i n g of unconnected v e r t i c a l r i b s (e.g., Stora Koparberg P l a n t System 80), allow l a t e r a l 29 r o o t s to grow from one c o n t a i n e r to another. These roots can be pruned by p a s s i n g knives between the c o n t a i n e r s . Chemical Pruning - As d i s c u s s e d f u r t h e r below, l a t e r a l r o o t s can be "pruned" by the use of c o n t a i n e r s coated on the i n s i d e with a root growth i n h i b i t o r . . b. C o n t a i n e r Volume Con t a i n e r volume i s a major determinant of p l a n t s i z e (Stevenson 1967 and 1970, C o r n f o r t h 1968, Boudoux 1970 and 1972, S c a r r a t t 1972a and 1972b, Endean and C a r l s o n 1975, C a r l s o n and Endean 1976, and A r n o t t and Beddows 1982). The e f f e c t i s not w e l l understood, however, because in few s t u d i e s has volume been v a r i e d independently of s p a c i n g . The volume of c o n t a i n e r s used f o r r a i s i n g f o r e s t p l a n t i n g stock ranges from around 10 cm 3 ( O n t a r i o Tube) to 750 cm 3 (Super 45 R o o t r a i n e r s ) . According to c o n t a i n e r volume, s e e d l i n g s produced range i n dry weight from about 0.5 to 10 grams. Smaller c o n t a i n e r s (1 to 5 cm 3) are used f o r r a i s i n g s e e d l i n g s f o r t r a n s p l a n t i n g to l a r g e c o n t a i n e r s or bareroot n u r s e r i e s . Large c o n t a i n e r s (750 to 1000 cm 3) have been used e x p e r i m e n t a l l y . c. S e e d l i n g D e n s i t y Much has been r e p o r t e d concerning the e f f e c t s of s e e d l i n g d e n s i t y on growth of bareroot stock ( F o s t e r 1956, Shoulders 1961, Armson 1968, Wilson and Campbell 1972, McClain 1977, M u l l i n and Bowdery 1977, van den D r i e s s c h e 30 1971, 1982, and 1984). However, t h i s knowledge i s not e n t i r e l y a p p l i c a b l e to c o n t a i n e r nursery p r a c t i c e s i n c e i n c o n t a i n e r s , not i n the bareroot nursery, p l a n t spacing and s o i l volume can be v a r i e d independently. P l a n t growth r a t e i s a f f e c t e d by s e e d l i n g d e n s i t y ; although the magnitude of the e f f e c t depends on p l a n t s i z e and hence the degree of competition f o r l i g h t . S e e d l i n g d e n s i t y a l s o a f f e c t s m orphological c h a r a c t e r i s t i c s such as shoot height/diameter r a t i o and shoot/root dry weight r a t i o , and p h y s i o l o g i c a l c h a r a c t e r i s t i c s such as r a t e of f r o s t hardening (Tanaka and Timmis 1974), and the degree of sun-or shade-adaptation of f o l i a g e . Another important e f f e c t of s e e d l i n g d e n s i t y i s on s u s c e p t i b i l i t y to d i s e a s e s such as Botrytis and Sirococcus. The advantages of low s e e d l i n g d e n s i t y must, however, be weighed a g a i n s t c o s t of nursery space which i s a major component of s e e d l i n g p r o d u c t i o n c o s t . d. Growing Medium Container growing media are u s u a l l y comprised of s e v e r a l components such as peat, sawdust, ground bark, s o i l , v e r m i c u l i t e , and p e r l i t e . There i s great v a r i a t i o n i n both the nature and r e l a t i v e p r o p o r t i o n s of m a t e r i a l s used i n c o n t a i n e r growing media. Each medium should have c e r t a i n p h y s i c a l and chemical p r o p e r t i e s which favor s e e d l i n g growth. 1. P h y s i c a l P r o p e r t i e s : 31 A growing medium should be p h y s i c a l l y homogeneous in order to a t t a i n even f i l l i n g . Media that are w a t e r - r e p e l l e n t when dry, should be moistened before l o a d i n g i n t o c o n t a i n e r s . The medium should not been too wet, however, otherwise i t w i l l not flow or s e t t l e u n i f o r m l y i n c o n t a i n e r s . T h i s w i l l r e s u l t i n uneven s e e d l i n g development. The p h y s i c a l p r o p e r t i e s of growing media that promote s e e d l i n g growth in c o n t a i n e r s have not w e l l been d e f i n e d . However, knowing some of the c h a r a c t e r i s t c s would be b e n e f i c i a l i n e v a l u a t i n g d i f f e r e n t kinds of growing media. These c h a r a c t e r i s t i c s may i n c l u d e bulk d e n s i t y , s p e c i f i c g r a v i t y , pore volume, water c a p a c i t y , a i r c a p a c i t y , and the r a t i o of coarse to f i n e p a r t i c l e s ( C a r l s o n 1979). Chemical P r o p e r t i e s : C o n t r o l of medium pH i s e s s e n t i a l f o r s a t i s f a c t o r y mineral uptake. The optimum range f o r c o n i f e r s e e d l i n g s i s 4.5 to 6.0. T h i s l e v e l may be a t t a i n e d by adding lime to i n c r e a s e pH or adding sulphur to decrease pH. The pH can be maintained by r e g u l a t i n g the pH of the n u t r i e n t s o l u t i o n and the i r r i g a t i o n water. C a t i o n Exchange C a p a c i t y (CEC) and E l e c t i c a l C o n d u c t i v i t y (EC) are a l s o important because they w i l l a f f e c t n u t r i e n t a v a i l a b i l i t y and s a l t t o x i c i t y to p l a n t s . The recommended ranges of CEC and EC are 85 to 160 meq/l00g and l e s s than 0.50 mS/cm, r e s p e c t i v e l y 32 ( C a r l s o n 1979). Other p r o p e r t i e s such as n i t r o g e n , phosphorus, p o t a s s i u m l e v e l s and t h o s e minor elements f o r p l a n t n u t r i t i o n a r e of l e s s c o n c e r n because a program of f e r t i l i z a t i o n i s necessay t o m a i n t a i n s a t i s f a c t o r y growth. e. M i n e r a l N u t r i e n t Supply C o n t a i n e r growing media u s u a l l y l a c k m i n e r a l n u t r i e n t s and s e e d l i n g n u t r i t i o n depends upon e i t h e r s o l i d f e r t i l i z e r mixed i n t o the growing medium or n u t r i e n t s s u p p l i e d i n s o l u t i o n d u r i n g i r r i g a t i o n . Each element i n the f e r t i l i z e r has a s p e c i f i c r o l e t o p l a y i n p l a n t m e t a b o l i s m , and the q u a n t i t y a v a i l a b l e t o the p l a n t must not o n l y be adequate, but must a l s o be i n b a l a n c e w i t h the o t h e r m i n e r a l n u t r i e n t s ( T i n u s 1 9 8 1 ). The optimum r a t i o of m i n e r a l n u t r i e n t s may not be c o n s t a n t t hroughout the l i f e of a s e e d l i n g and i t has been c l a i m e d t h a t e l e v a t i o n of P l e v e l i n the b e g i n n i n g and towards t h e end of the growing season i n c r e a s e p l a n t growth and h a r d i n e s s development ( B r i x and van den D r i e s c h e 1974, S j o b e r g and Hagel 1981). f . I n f l u e n c e of Container on Root Form C o n t a i n e r growing g r e a t l y i n f l u e n c e s s e e d l i n g r o o t morphology. The n a t u r e of the e f f e c t v a r i e s w i t h c o n t a i n e r d e s i g n . I n round c o n t a i n e r s , such as p o l y e t h y l e n e bags and 33 bamboo t u b e s , r o o t s f o l l o w a s p i r a l c o u r s e around the i n s i d e of the c o n t a i n e r . Such s p i r a l l i n g may have been the major cause of poor r o o t development and low s u r v i v a l i n s t o c k r a i s e d i n c o n t a i n e r of e a r l y d e s i g n (Khonje 1976). Root s p i r a l l i n g can be p r e v e n t e d by p r o v i d i n g v e r t i c a l r i b s about 2 mm h i g h on the i n n e r w a l l of the c a v i t y t o guide r o o t s v e r t i c a l l y downwards (King h o r n 1974). Root s p i r a l l i n g can a l s o be p r e v e n t e d by u s i n g c o n t a i n e r s w i t h a square or p o l y g o n a l c r o s s s e c t i o n . When a r o o t t i p growing h o r i z o n t a l l y comes t o an a n g l e i n the c o n t a i n e r w a l l , i t i s d i v e r t e d downwards. g. C h e m i c a l and A i r Root P r u n i n g 1. "Bottom" R o o t - P r u n i n g Roots r e a c h i n g the bottom of a c o n t a i n e r may c i r c l e a round, be d e f l e c t e d upwards or grow from the d r a i n h o l e where they may be a i r - p r u n e d or c h e m i c a l l y pruned. C h e m i c a l r o o t p r u n i n g can be a c h i e v e d by p l a c i n g a copper sheet or mesh, or a c o p p e r - p a i n t e d t r a y beneath the c o n t a i n e r s ( S a u l 1968, Hocking 1972, B a r n e t t et al. 1974, S j o b e r g 1974). Copper-pruned s e e d l i n g s were r e p o r t e d t o have a h i g h s u r v i v a l r a t e (Hocking 1972, B a r n e t t et al. 1974). Copper naphthanate and o t h e r m a t e r i a l s , a p p l i e d t o the bottom of s e e d l i n g f l a t s , have a l s o been used, a t l e a s t e x p e r i m e n t a l l y , t o prune the t a p r o o t of s e v e r a l ornamental s p e c i e s (Nussbaum 1969, P e l l e t et al. 1980). The t r e a t m e n t s t i m u l a t e d l a t e r a l 34 root development and promoted the development of a compact, f i b r o u s root system. I n h i b i t i o n of r o o t s by p l a c i n g c o n t a i n e r s i n p l a s t i c t r a y s , with an a i r gap beneath has been found e f f e c t i v e (Armson and Sadreika 1974). 2. " L a t e r a l " Root Pruning A technique f o r pruning l a t e r a l r o o t s was developed by Burdett (1978a). C o n t a i n e r s were coated i n s i d e with c u p r i c carbonate (CuC0 3) i n a c r y l i c l a t e x p a i n t . C o n t a i n e r s were coated by d i p p i n g them i n a tank of p a i n t c o n t a i n i n g 30 to 100 g// of c u p r i c carbonate. In p a i n t e d c o n t a i n e r s , s e e d l i n g root t i p s r e a c h i n g the c o n t a i n e r w a l l stopped growing. The development of secondary and higher order l a t e r a l r o o t s was s t i m u l a t e d . However, these r o o t s a l s o stopped growing upon, c o n t a c t with the p a i n t e d w a l l . Thus, a root system was formed comprising of a tap root bearing a number of very short f i r s t order l a t e r a l s . When the t r e e s were p l a n t e d , the c h e m i c a l l y - i n h i b i t e d r o o t s resumed growth. Thus, the s e e d l i n g s formed a r a d i a l l y symmetrical system of l a t e r a l r o o t s growing s t r a i g h t out from the tap root i n the h o r i z o n t a l plane which resembled that of a n a t u r a l l y - e s t a b l i s h e d s e e d l i n g . In 1982, Burdett and M a r t i n r e p o r t e d that the e f f e c t i v e n e s s of copper p a i n t v a r i e d with t r e e s p e c i e s , c o n t a i n e r s i z e , growing medium, and c o n c e n t r a t i o n of c u p r i c carbonate i n the c o n t a i n e r w a l l c o a t i n g . III. Materials and Methods A. Species Characteristics a. Chinese Pine Chinese pine (Pi nus tabul aeformis Carr.) i s a major commercial s p e c i e s i n northern and c e n t r a l China. Chinese pine occurs n a t u r a l l y i n temperate areas (Appendix 4 ) . I t i s r e s i s t a n t to temperature as low as -25°C, but does not grow w e l l i n areas with high temperature and seasonal drought. I t i s a shade i n t o l e r a n t s p e c i e s , well-adapted to r e l a t i v e l y i n f e r t i l e s o i l s with good drainage ( E d i t i n g Committee of Woody F l o r a of China 1978). b. Oriental Arborvitae O r i e n t a l a r b o r v i t a e (Thuja orientalis (L.) Franco) i s c u l t i v a t e d a l l over China (Appendix 5). I t grows i n both c o o l and warm c l i m a t e s with annual p r e c i p i t a t i o n between 300 and 1600 mm, and average annual temperature between 8 and 16°C. I t can withstand temperature as low as -35°C. I t grows on w e l l - d r a i n e d s o i l s v a r y i n g widely i n f e r t i l i t y and pH. O r i e n t a l a r b o r v i t a e i s a l s o known as a halophyte which grows w e l l i n extremely s a l i n e s o i l (0.2% s a l t content) ( E d i t i n g Committee of Woody F l o r a of China 1978). 35 36 B. C u l t u r e of Seedlings The study was c a r r i e d out on the campus of the U n i v e r s i t y of B r i t i s h Columbia which i s l o c a t e d i n Vancouver, Canada. P l a n t s were accommodated i n a simple p o l y e t h y l e n e - f i l m covered s h e l t e r . C o n t a i n e r s were p l a c e d on r a i s e d wooden p a l l e t s . The s e e d l i n g s were grown i n the s h e l t e r from the 15th of May to the 13th of June and then moved to a shade-house (60% of f u l l s u n l i g h t ) because of the high temperature. On the 15th of September, with s t a r t of f a l l r a i n s , the s e e d l i n g s were moved back to the greenhouse u n t i l h a r v e s t i n g (October 19th, 1984). The e n t i r e growing p e r i o d was 22 weeks. a. Seed Germination Seeds of the two c o n i f e r s were pr o v i d e d by the Fo r e s t Research I n s t i t u t e of Shanxi Province i n China. A study on seed germination by Dong (1983) showed that seed germination of the two Chinese c o n i f e r s was u n a f f e c t e d by c o l d s t r a t i f i c a t i o n . A ccording to the E d i t i n g Committee of Woody F l o r a of China (1978), seeds of Chinese pine and o r i e n t a l a r b o r v i t a e are dormant only i n the absence of a p p r o p r i a t e temperature, moisture, and oxygen. F o l l o w i n g the recommendations of B e i j i n g F o r e s t r y I n s t i t u t e (1980), seeds were immersed i n warm water (50°C) and soaked o v e r n i g h t . They were then p l a c e d between sheets of moist paper towels at room temperature (20 to 25 °C). The seeds were washed once a day i n warm water u n t i l they germinated. Seeds were 37 p l a n t e d i n d i v i d u a l l y i n c o n t a i n e r s as soon as the r a d i c a l emerged. b. Growing Medium P r e p a r a t i o n The growing medium used was s i m i l a r to that used i n most B.C. F o r e s t S e r v i c e n u r s e r i e s . I t was comprised of three p a r t s of Sphagnum peat to one p a r t of v e r m i c u l i t e . To t h i s were added 125 g/m3 F r i t t e d Trace Elements (Green V a l l e y F.T.E. 503) (Appendix 6) and 3 kg/m3 dolomite (T2 mesh or f i n e r ) to r a i s e the pH of the medium from 3.8 to 5.0 and to supply Calcium and Magnesium f o r crop n u t r i t i o n (Matthews 1981). c. Seeding Seeding s t a r t e d on the 15th of May, 1984. One germinated seed was p l a c e d i n each c a v i t y and covered with 2 to 3 mm coarse sand. Seeded c o n t a i n e r s were then p l a c e d on p a l l e t s i n the greenhouse. d. S e e d l i n g C u l t u r e A f t e r seeding, c o n t a i n e r s were misted twice d a i l y u n t i l most s e e d l i n g s had emerged and shed the seed c o a t s . F e r t i l i z a t i o n was then commenced. A l l s e e d l i n g s except those i n the experiment on f e r t i l i z e r regimes were f e r t i l i z e d three times each week with a s o l u t i o n 20-20-20, N-P-K f e r t i l i z e r with t r a c e elements (Appendix 7). Concentrated f e r t i l i z e r s o l u t i o n was 38 i n j e c t e d with a siphon i n t o the i r r i g a t i o n water to give a f i n a l N c o n c e n t r a t i o n of 100 ppm unl e s s otherwise i n d i c a t e d (Table 2) . e. Sampling f o r M o r p h o l o g i c a l Asssessment Twenty-five s e e d l i n g s were s e l e c t e d at random from each r e p l i c a t e of the experiments on the 19th of October, 1984. f. M o r p h o l o g i c a l Assessment of Stock Measurements of s e e d l i n g height and root c o l l a r diameter were taken f o r each sampled s e e d l i n g . I t was then d i v i d e d at the root c o l l a r and the shoot and root p l a c e d i n separate paper bags f o r d r y i n g . Shoot and root dry weights were measured and. recorded a f t e r oven-drying f o r 24 hours at 80°C. g. Data Analyses The data were analyzed with a s t a t i s t i c package c a l l e d UBC MFAV ( a n a l y s i s : of v a r i a n c e and co v a r i a n c e ) a v a i l a b l e i n the computing centr e of the U n i v e r s i t y of B r i t i s h Columbia (Le 1980). Duncan's m u l t i p l e range t e s t s were c a r r i e d out i f p r o b a b i l i t i e s of the F-values were g r e a t e r than or equal to 0.05 (Appendix 8 ) . In the experiments of s e e d l i n g d e n s i t y and c o n t a i n e r volume, r e c i p r o c a l and l o g a r i t h m i c t r a n s f o r m a t i o n s were made to normalize the data. 39 Table 2. Time schedule of f e r t i l i z e r a p p l i c a t i o n s Growing P e r i o d Date commenced F e r t i l i z e r C o n c e n t r a t i o n STARTER GROWER FINISHER May 30 June 30 September 30 20-20-20 20-20-20 20-20-20 100 ppm 200 ppm 100 ppm Table 3. Container types and t h e i r s t a t i s t i c s Container Type Block ] Dimension C a v i t i e s Volume P l a n t s (cm 2) per t r a y (cm 3) per m2 Kr.Paper Pot 21 .6 X 36; 8 = = 795 28(4x7) 272 352 Rootrainer-4 21.6 X 36. 8 = = 795 32(4x8) 1 50 403 Sty r o b l o c k - 6 35.4 X 60. 0 = = 2124 112(8x14) 1 02 527 Styroblock-4 35.2 X 59. 4 = = 2090 160(10x16) 65 766 Leach Tube 30.5 X 60. 1 = = 1858 200(10x20) 49 1 076 Ro o t r a i n e r - 6 21 .6 X 36. 8 = = 795 102(6x17) 40 1 208 Ja.Paper Pot 38.5 X 59. 0 = = 2272 238(14x17) 40 1 048 Groove Tube 30.0 X 55. 7 = = 1671 170(7x10) 38 1017 Styroblock-2 35.2 X 60. 0 = = 2112 240(12x20) 36 1 1 36 40 C. Methods a. Experiment 1: Container Types S e e d l i n g s w e r e r a i s e d i n n i n e t y p e s o f c o n t a i n e r s r a n g i n g i n v o l u m e f r o m 36 t o 272 c m 3 p e r c a v i t y ( T a b l e 3 ) . The S t y r o b l o c k c o n t a i n e r s w e r e m o l d e d f r o m p o l y s t y r o f o a m a c c o r d i n g a d e s i g n d e s c r i b e d by S j o b e r g ( 1 9 7 4 ) . T h e s e c o n t a i n e r s a r e a l s o c a l l e d B C / C F S S t y r o b l o c k s ( A p p e n d i x 2 ) . The b o o k - l i k e R o o t r a i n e r s w e r e made f r o m s p e c i a l d u r a b l e p l a s t i c by S p e n c e r - L a m a i r e I n d u s t r i e s L i m i t e d . R o o t r a i n e r s - 4 a n d R o o t r a i n e r s - 6 u s e d i n t h i s e x p e r i m e n t a r e a l s o c a l l e d H i l l s o n a n d F e r d i n a n d c o n t a i n e r s r e s p e c t i v e l y ( A p p e n d i x 3 ) . The L e a c h t u b e i s an i n d i v i d u a l c o n t a i n e r . R a c k s t o h o l d 200 c e l l s a r e s u p p l i e d w i t h t h e c o n t a i n e r s . G r o o v e T u b e s a r e l o w - c o s t v a c u u m f o r m e d c o n t a i n e r s f o r h o r t i c u l t u r a l c r o p s . J a p a n e s e P a p e r P o t s a r e t u b u l a r c o n t a i n e r s , t h a t come i n a r a n g e o f d i a m e t e r s a n d d e p t h s a n d h a v e a r a n g e o f b r e a k d o w n r a t e s ( A p p e n d i x 1 ) . K r a f t P a p e r P o t s w e r e made by h a n d f r o m k r a f t p a p e r c o a t e d on one s i d e w i t h a t h i n p o l y e t h y l e n e f i l m . The p o t d i m e n s i o n s w e r e 4 . 5 cm x 4 . 5 cm x 1 2 . 5 cm h i g h a n d 32 o f t h e s e p o t s w e r e h e l d i n a m e s h - b o t t o m e d p l a s t i c t r a y . D e t a i l s o f c o n t a i n e r t y p e s c a n be r e f e r r e d t o t h e r e v i e w o f W e s t e r n c o n t a i n e r p r o g r a m s . b. Experiment 2: S e e d l i n g D e n s i t i e s S e e d l i n g s o f b o t h C h i n e s e p i n e a n d a r b o r v i t a e w e r e r a i s e d i n 49 c m 3 L e a c h T u b e s a t 3 d e n s i t i e s . T r a y s o f 200 4 1 s i n g l e c e l l s were s e l e c t i v e l y seeded to a t t a i n d e n s i t i e s of 50, 100, or 200 s e e d l i n g s / t r a y e q u i v a l e n t to 269, 538, or 1076 s e e d l i n g s / m 2 , r e s p e c t i v e l y (Table 4). The experimental design was a Randomized Complete Block with three r e p l i c a t e s (i.e. , t r a y s of c o n t a i n e r s ) i n each treatment. To e l i m i n a t e edge e f f e c t s , the two outer rows of s e e d l i n g s i n each t r a y were excluded from the p o p u l a t i o n sampled. c. Experiment 3: Container Volumes Se e d l i n g s of both s p e c i e s were r a i s e d i n BC/CFS St y r o b l o c k c o n t a i n e r s having c a v i t y volumes of 57, 102, or 336 cm 3. Co n t a i n e r s were s e l e c t i v e l y seeded to o b t a i n an approximately uniform s e e d l i n g d e n s i t y of 217 seedlings/m 2 (Table 5). The experiment was a l s o a Randomized Block Design with f i v e r e p l i c a t e s f o r each treatment. d. Experiment 4: F e r t i l i z e r Regimes Commercial f e r t i l i z e r s are d i s t i n g u i s h e d from one another by the N:P 20 5:K 20 percentage r a t i o . F e r t i l i z e r 28-14-14, f o r i n s t a n c e , c o n t a i n s 28% N, 14% P 2 0 5 , and 14% K 20. To c a l c u l a t e P and K content, the f o l l o w i n g formulae can be used: P = P 2 0 5 x 0.44 = 14 x 0.44 = 6.16% K = K 20 x 0.83 = 14 x 0.83 = 11.62% 42 Table 4. Three s e e d l i n g d e n s i t i e s d e f i n e d i n Leach Tube c o n t a i n e r s Treatment Densi t y D e n s i t y D e n s i t y A B C C a v i t y Volume (cm 3) 49 49 49 C a v i t i e s per 30 . 5x60.1 cm Block 200 200 200 C a v i t i e s / b l o c k Density seeded (plants/m 2) 50 1 00 200 269 538 1 076 Table 5. Three c o n t a i n e r volumes d e f i n e d i n three types of S t y r o b l o c k c o n t a i n e r s * Treatment C a v i t y Volume C a v i t i e s per C a v i t i e s / b l o c k Density (cm 3) 35.4x60.0 cm Seeded (plants/m 2) Block Volume 1 - 57 198 45 212 Volume 2 102 112 48 226 Volume 3 336 45 45 212 * Three types of S t y r o b l o c k s Styroblock-4A i n Volume 1, St y r o b l o c k - 6 in Volume 2, Styroblock-20 i n Volume 3. used i n the Experiment: 43 In t h i s experiment, commercial f e r t i l i z e r s 20-20-20 and 10-52-17 were s u p p l i e d , i n s o l u t i o n , to provide three f e r t i l i z e r regimes, each at 100 ppm N and 250 ppm N co n c e n t r a t i o n s : a. 2:1, N:P throughout the growing season; b. 1:2, N:P at the beginning and end of the growing season, and 2:1, N:P i n the middle of the growing season; c. 1:2, N:P throughout the growing season (Table 6). The experiment was a Randomized Block Design with 2 s p e c i e s , 3 f e r t i l i z e r regimes, 2 c o n c e n t r a t i o n s , and 3 r e p l i c a t e s . Thus, there were a l t o g e t h e r 36 r e p l i c a t e s , each r e p l i c a t e was comprised of 72 s e e d l i n g s grown i n Styroblock-2 (240 c a v i t i e s ) d i v i d e d i n t o t h i r d s . A n a l y s i s of samples from commercial f e r t i l i z e r s 20-20-20 and 10-52-17 by van den D r i e s s c h e (1983) i n d i c a t e d that high P f e r t i l i z e r c o n t a i n e d no N0 3~, S, Mn, or Zn, a l l of which were present i n low P f e r t i l i z e r (Table 7). The d i f f e r e n c e i n t r a c e element composition i s u n l i k e l y to have a f f e c t e d the experimental r e s u l t s , s i n c e t r a c e elements were added to the growing medium. The d i f f e r e n c e i n N source, however, may have been of some s i g n i f i c a n c e . e. Experiment 5: L a t e r a l Root Pruning i n Copper-painted C o n t a i n e r s S e e d l i n g s were r a i s e d i n BC/CFS Styroblock-4 (65 cm 3) and R o o t r a i n e r s - 4 (175 cm 3). To i n h i b i t growth of r o o t s making c o n t a c t with the c o n t a i n e r w a l l , the c o n t a i n e r s were 44 Table 6. Three f e r t i l i z e r regimes each at two n u t r i e n t l e v e l s REGIMES STARTER GROWER FINISHER Regime A 20-20-20 20-20-20 20-20-20 100 ppm 100 ppm 100 ppm 250 ppm 2 50 ppm 250 ppm Regime B " 10-52-17 20-20-20 10-52-17 100 ppm 100 ppm 100 ppm 250 ppm 250 ppm 2 50 ppm Regime C 10-52-17 1 0-52-17 10-52-17 100 ppm 100 ppm 100 ppm 2 50 ppm 250 ppm 2 50 ppm Table 7. Chemical a n a l y s i s of Green V a l l e y standard f e r t i l i z e r s N u t r i e n t NH 4" N0 3" P 2 0 5 K 20 Ca Mg S Fe Mn Cu Zn B |< % >> | |< ppm >>| 10-52-17 10.5 0.0 54 18 .01 .01 0 41 0 2 0 3 20-20-20 8.6 8.5 24 21 .02 .91 .16 907 342 460 808 246 45 coated i n s i d e with white e x t e r i o r l a t e x p a i n t c o n t a i n i n g 70 g/7 c u p r i c carbonate (malachite) powder (Burdett 1978a). The l a t e x p a i n t was s u p p l i e d by Bapco P a i n t L t d . of Surrey, B.C., and was formulated from an aqueous emulsion of a c r y l i c l a t e x , t i t a n i u m d i o x i d e , and aluminum s i l i c a t e as pigments and a number of a d d i t i t i v e s s e r v i n g as s u r f a c t a n t s , p r e s e r v a t i v e s , and d i s p e r s a n t s . C u p r i c carbonate was f i r s t s l u r r i e d with water then added to p a i n t . T h i s i s e s s e n t i a l otherwise the powder w i l l not mix with the p a i n t . The p a i n t was used immediately a f t e r the a d d i t i o n of c u p r i c carbonate and allowed to dry thoroughly before the c o n t a i n e r s were used. As a c o n t r o l , s e e d l i n g s were r a i s e d i n unpainted c o n t a i n e r s of Styroblock-4 and R o o t r a i n e r s - 4 . In the f a l l , s e e d l i n g s both from copper-painted and c o p p e r - f r e e c o n t a i n e r s were e x t r a c t e d and t r a n s p l a n t e d to 4 l i t r e pots of limed 3:1 p e a t : v e r m i c u l i t e mix and p l a c e d i n a growth chamber p r o v i d i n g day and'night temperatures of 30 and 25°C, r e s p e c t i v e l y , a r e l a t i v e humidity of 75%, and a 16-hour d a i l y photoperiod (400 ju Eisteins«cm" 2 «sec~ 1 from f l u o r e s c e n t and incandescent lamps). The pots were watered thoroughly when pl a c e d i n the growth chamber and, three times weekly, t h e r e a f t e r . A f t e r 13 days, the extent of root growth was evaluated by c o u n t i n g the number of newly-developed r o o t s a centimeter or more i n l e n g t h . 46 f . Experiment 6 . L a t e r a l Root Pruning in Copper-impregnated K r a f t Paper Pots 1. O b j e c t i v e The purpose of t h i s experiment was to i n v e s t i g a t e the use of copper-impregnated k r a f t paper c o n t a i n e r s as a low-cost a l t e r n a t i v e to copper-painted p l a s t i c c o n t a i n e r s f o r r a i s i n g s e e d l i n g s with a c h e m i c a l l y pruned l a t e r a l root system. 2. Container Design and C o n s t r u c t i o n K r a f t paper with and without a p o l y e t h y l e n e c o a t i n g was used. Sets of 28 paper pots (4.8 cm x 4.8 cm x 12.7 cm ) were p l a c e d i n a p l a s t i c t r a y which i s used to hold R o o t r a i n e r s . K r a f t paper was cut to the d e s i r e d s i z e and se a l e d at two ends with a p l a s t i c s e a l i n g machine ( p o l y e t h y l e n e - c o a t e d k r a f t paper) or s t a p l e s ( k r a f t p a p e r ) . The p o l y e t h y l e n e f i l m was kept o u t s i d e when making c o n t a i n e r s . 3. Copper-impregnation K r a f t paper with and without a p o l y e t h y l e n e c o a t i n g was impregnated with c u p r i c sulphate and c u p r i c s u l p h i d e as f o l l o w s : The paper was f i r s t soaked overnight i n 1M CuSO„ s o l u t i o n . I t was then dipped i n 1M Na 2S s o l u t i o n f o r 1 to 2 seconds, dur i n g which time copper was p r e c i p i t a t e d i n the paper as c u p r i c s u l p h i d e . 47 CuSO a + Na 2S = CuS + Na 2SO„ The paper was washed i n tap water f o r s e v e r a l hours to remove excess Sodium s u l p h i d e and the sodium sulphate produced i n the r e a c t i o n . The k r a f t paper was then ovendried at 85°C. The paper was f i n a l l y f o l d e d and s e a l e d to form c o n t a i n e r s . 4. Experimental Design S e e d l i n g s of Chinese pine were grown i n copper impregnated K r a f t Paper Pots both with and without a p o l y e t h y l e n e c o a t i n g (Table 8 ) . The growing medium, i r r i g a t i o n regime, and m i n e r a l n u t r i e n t supply were as d e s c r i b e d f o r Experiment 1. Table 8. Treatment combinations i n KP pot experiment Treatment No. of KP pots No. of with PEL c o a t i n g . KP pots Copper-impregnated 28 14 C o n t r o l 28 14 KP and PEL stand f o r k r a f t paper and p o l y e t h y l e n e , r e s p e c t i v e l y . IV. R e s u l t s and D i s c u s s i o n A. Experiment 1: E f f e c t s of Container Type on S e e d l i n g Growth and Morphology a. Container Type Ranking Container nursery systems can most u s e f u l l y be ranked a c c o r d i n g to t h e i r e f f e c t on the co s t of f o r e s t e s t a b l i s h m e n t . The present study does not pro v i d e the data f o r such a ranking. However, i t does provide some in f o r m a t i o n on the e f f e c t of c o n t a i n e r type on s e e d l i n g c o s t , s i z e and morphology, a l l of which i n f l u e n c e the cost per e s t a b l i s h e d t r e e . I t i s g e n e r a l l y accepted that a stocky s e e d l i n g ( i . e . , one with a low h e i g h t / r o o t - c o l l a r diameter [H/D] r a t i o ) with a low shoot/root dry weight r a t i o (S/R) has the best chance of s u r v i v i n g when t r a n s p l a n t e d . S e e d l i n g s with the lowest. H/D r a t i o were produced i n K r a f t Paper Pots, Groove Tubes and the Rootrainer-4 c o n t a i n e r s . Chinese pine s e e d l i n g s with the lowest S/R r a t i o s were produced i n K r a f t Paper Pots, R o o t r a i n e r - 4 s and the sm a l l e r S t y r o b l o c k c o n t a i n e r s . There was l i m i t e d v a r i a t i o n i n S/R r a t i o of o r i e n t a l a r b o r v i t a e s e e d l i n g s from d i f f e r e n t c o n t a i n e r s ; but as i n Chinese pine the lowest value was f o r s e e d l i n g s from K r a f t Paper Pots. A d i f f e r e n t ranking i s obtained when dry matter p r o d u c t i o n per u n i t area i s c o n s i d e r e d . On t h i s b a s i s the K r a f t Paper Pots ranked the lowest, whereas the more c l o s e l y 48 49 spaced c o n t a i n e r s , f o r example the Leach Tube, Groove Tube and s m a l l e r S t y r o b l o c k s have high ranks. The hig h e s t p r o d u c t i o n per u n i t c o n t a i n e r volume was obtained i n e i t h e r the Groove Tube (Chinese pine) or the S t y r o b l o c k - 2 ( o r i e n t a l a r b o r v i t a e ) ( T a b l e - 9 ) . I t i s apparent, t h e r e f o r e , that there i s an in v e r s e r e l a t i o n s h i p between s e e d l i n g q u a l i t y and s e e d l i n g p r o d u c t i o n economy. How the two should be balanced to achieve the lowest cost per e s t a b l i s h e d p l a n t cannot be determined from the data a v a i l a b l e . b. Root Morphology Container growing a f f e c t s root morphology. T h i s i n f l u e n c e can p e r s i s t i n the f i e l d and a f f e c t t r e e s t a b i l i t y and e a r l y growth r a t e . O b s ervations made i n the present study i n d i c a t e d that root morphology was g r e a t l y a f f e c t e d by c o n t a i n e r type. L a t e r a l r o o t s of both s p e c i e s r a i s e d i n Japanese'Paper Pots s p i r a l l e d the c o n t a i n e r w a l l . The K r a f t Paper Pots d i f f e r e d from the Japanese Paper Pots i n having a square, ra t h e r than a c i r c u l a r c r o s s - s e c t i o n . In some cases, l a t e r a l r o o t s growing to the c o r n e r s of the k r a f t paper c o n t a i n e r s were d e f l e c t e d downwards. T h i s was not always the case, however, and root s p i r a l l i n g i n k r a f t paper c o n t a i n e r s were common. V e r t i c a l r i b s in the R o o t r a i n e r and St y r o b l o c k c o n t a i n e r s were g e n e r a l l y e f f e c t i v e i n d i v e r t i n g l a t e r a l 50 Table 9. Container type ranking by s e e d l i n g morphology and dry matter p r o d u c t i o n e f f i c i e n c y i n Chinese pine and o r i e n t a l a r b o r v i a t e Container Type cm 2/ cm 3/ p l a n t p l a n t Pi nus K r f . Paper Pot 28.4 272 Rootrainer-4 24.8 1 50 Styro b l o c k - 6 19.0 1 02 Styroblock-4 13.1 65 Leach Tube 9.3 49 Roo t r a i n e r - 6 8.3 40 Jap. Paper Pot 9.5 40 Groove Tube 9.8 38 Styroblock-2 8.8 36 Thuj a K r f . Paper Pot 28.4 272 Rootrainer-4 24.8 1 50 Styro b l o c k - 6 19.0 1 02 Styroblock-4 13.1 65 Leach Tube 9.3 49 Ro o t r a i n e r - 6 8.3 40 Jap. Paper Pot 9.5 40 Groove Tube 9.8 38 Styro b l o c k - 2 8.8 36 R stands f o r rank. -H/D R S/R R mg/cm2 R mg/cm3 R r a t i o r a t i o abulaeformis 26. 1 1 1 . 54 1 33.8 •9, 3.5 9 30.5 3 1 .60 2 65. 1 8 10.8 8 32.2 5 2.59 9 90.4 6 16.8 7 34.3 7 1.81 4 93.6 5 18.9 5 32.9 6 1 .69 3 1 34.6 1 25.5 3 40.7 8 1 .97 6 116.6 3 24.2 4 31 .5 4 2.48 8 72.6 7 17.3 6 26.2 2 •2.01 7 117.8 2 30.4 1 41.7 9 1 .84 5 109.6 4 26.8 2 1 r i e nt a I i 5 55.8 3 2.15 1 22. 5 9 2.3 8 55.2 1 2.35 3 25.9 8 4.3 7 68.2 7 2.46 5 68.5 3 12.8 5 72.8 9 2.38 4 72.9 2 14.7 2 65.7 6 2.96 7 67. 1 4 12.7 6 59.5 4 2.30 2 61 .7 5 12.8 5 78.3 8 2.35 3 57.4 6 13.6 4 55.7 2 2.58 6 56.0 7 14.4 3 64.4 5 2.15 1 77.9 1 19.0 1 51 r o o t s downwards to the d r a i n h o l e . Roots of o r i e n t a l a r b o r v i t a e were u s u a l l y a i r - p r u n e d on r e a c h i n g the d r a i n h o l e . T h i s was not always t r u e of Chinese pine r o o t s , however, which f r e q u e n t l y turned and grew upward a f t e r reaching the bottom of the c o n t a i n e r . At the s u r f a c e of the plug, upward growing r o o t s sometimes turned to grow down the c o n t a i n e r w a l l once again which suggests a c a p a c i t y f o r hydrotropism by Chinese pine r o o t s ( J a f f e et a l . ) (Figure 3) . c. D i s c u s s i o n Both p l a n t s i z e and q u a l i t y , as assessed by H/D and S/R r a t i o s , tended to i n c r e a s e with c o n t a i n e r volume and spacing; although s e e d l i n g s from the K r a f t Paper Pots were smaller than might have been expected from t h e i r dimensions. Dry matter p r o d u c t i o n per u n i t area, however, was i n v e r s e l y r e l a t e d to c o n t a i n e r s p a c i n g . Thus the b e n e f i c i a l e f f e c t s of reduced p l a n t d e n s i t y on s e e d l i n g morphology and i n d i v i d u a l p l a n t s i z e are o f f s e t by an i n c r e a s e i n p r o d u c t i o n c o s t s . Compared with North American standards f o r container-grown p l a n t i n g stock, the s e e d l i n g s produced even in the l a r g e s t c o n t a i n e r s were r a t h e r s m a l l . T h i s can be a t t r i b u t e d to the l a t e sowing date. If sowing had corresponded to the normal date of sowing i n B r i t i s h Columbia c o n t a i n e r n u r s e r i e s ( i . e . , before A p r i l 1st) the p l a n t s would almost c e r t a i n l y have met North American s i z e standards f o r container-grown c o n i f e r p l a n t i n g stock. F i g u r e 3. Root d e f o r m a t i o n of C h i n e s e p i n e s e e d l i n g s r a i s e d i n S t y r o b l o c k s ( f a r l e f t ) and R o o t r a i n e r s ( f a r r i g h t ) T h i s f i g u r e a l s o shows the new r o o t development i n c o p p e r - p a i n t e d S t y r o b l o c k s (middle l e f t ) and i n u n p a i n t e d R o o t r a i n e r s ( m i d d l e r i g h t ) w i t h i n 13 days a f t e r t r a n s p l a n t i n g . 53 A container-grown s e e d l i n g has a root that i.s g r o s s l y d i f f e r e n t i n form from that of a n a t u r a l l y e s t a b l i s h e d t r e e . Often t h i s abnormality appears to have l i t t l e f u n c t i o n a l s i g n i f i c a n c e . T h i s i s not always true of p i n e s , however, and mechanical i n s t a b i l i t y l e a d i n g to t o p p l i n g and b a s a l bowing can be a consequence of nursery e f f e c t s on root morphology. V e r t i c a l r i b s or grooves on the inner w a l l of the c o n t a i n e r s prevented l a t e r a l r o o t s c i r c l i n g the tap r o o t . The angle of the w a l l i n the K r a f t Paper Pots was a l s o p a r t i a l l y e f f e c t i v e i n p r e v e n t i n g r o o t s e n c i r c l i n g the c o n t a i n e r . However, i n S t y r o b l o c k and R o o t r a i n e r c o n t a i n e r s r o o t s of Chinese pine s e e d l i n g s were o f t e n not a i r - p r u n e d when they reached the d r a i n hole, but grew back up the c o n t a i n e r w a l l . Without evidence as to i t s e f f e c t on t r e e s t a b i l i t y , t h i s type of development suggested a need f o r c a u t i o n i n adopting c o n t a i n e r methods f o r producing Chinese pine p l a n t i n g s t o c k . In the wide-bottomed K r a f t Paper Pots, roots reaching the bottom of the c o n t a i n e r were a i r - p r u n e d e f f e c t i v e l y . T h i s suggests that the f a i l u r e of a i r - p r u n i n g i n the S t y r o b l o c k and R o o t r a i n e r c o n t a i n e r s o c c u r r e d because the r e l a t i v e l y narrow d r a i n hole became blocked with r o o t s . N e v e r t h e l e s s , even with e f f e c t i v e a i r - p r u n i n g of r o o t s reaching the d r a i n h o l e , c o n t a i n e r growing prevents p l a g i o t r o p i c f i r s t order l a t e r a l r o o t s from growing s t r a i g h t out from the tap root i n a h o r i z o n t a l plane. T h i s i n i t s e l f may be a cause of mechanical i n s t a b i l i t y a f t e r p l a n t i n g . However, as d i s c u s s e d below, i t may be p o s s i b l e to ensure s t a b i l i t y i n c o n t a i n e r - g r o w n t r e e s by p r u n i n g t h e l a t e r a l r o o t s c l o s e t o t h e t a p r o o t ( s e e E x p e r i m e n t s 5 a n d 6 ) . 55 B. Experiment 2: Influence of S e e d l i n g D e n s i t y on S e e d l i n g Form and Growth Rate With i n c r e a s e i n s e e d l i n g d e n s i t y , the r o o t - c o l l a r diameter of Chinese pine decreased s i g n i f i c a n t l y , but height i n c r e a s e d . The same trends were evident i n o r i e n t a l a r b o r v i t a e although the e f f e c t on r o o t - c o l l a r diameter was not s t a t i s t i c a l l y s i g n i f i c a n t (Table 10). In both s p e c i e s , i n c r e a s i n g d e n s i t y caused a s i g n i f i c a n t i n c r e a s e i n height to diameter r a t i o . Root dry weight decreased s l i g h t l y with i n c r e a s i n g d e n s i t y , but shoot dry weight i n c r e a s e d . In Chinese p i n e , but not o r i e n t a l a r b o r v i t a e , these trends r e s u l t e d i n a s i g n i f i c a n t i n c r e a s e in shoot to root r a t i o with i n c r e a s e in d e n s i t y . T o t a l dry weight decreased s l i g h t l y with d e n s i t y i n Chinese pine, but not i n the c o n s i d e r a b l y smaller Thuja s e e d l i n g s . The r e s u l t s i n d i c a t e d that when c o n t a i n e r volume i s h e l d c o n s t a n t , p l a n t form can be s u b s t a n t i a l l y m o d i f i e d by v a r y i n g d e n s i t y without n e c e s s a r i l y a l t e r i n g t o t a l biomass. However, when p l a n t s are l a r g e r e l a t i v e to t h e i r spacing, v a r i a t i o n i n d e n s i t y w i l l a f f e c t dry weight and form. Data obtained i n t h i s experiment were analyzed and l i n e a r r e g r e s s i o n s were set up between s e e d l i n g d e n s i t y and the parameters of s e e d l i n g q u a l i t y : 1. S e e d l i n g height (Y) (mm) versus s e e d l i n g d e n s i t y (X) Chinese pine Y = 36.19 + 472.015 (1/X) R 2 = 0.99 O r i e n t a l a r b o r v i t a e Y = 72.39 + 344.950 (1/X) 56 Table 10. S e e d l i n g height (Ht), r o o t - c o l l a r diameter (Di) t o t a l dry weight (T-Wt), height:diameter r a t i o (H:D), and shoot:root dry weight r a t i o (S:R) of the two s p e c i e s i n three s e e d l i n g d e n s i t i e s D e n s i t y No./m2 Ht(mm) Di(mm) T-Wt(mg) H:D S:R Pi nus t abul aeformi s D e n s i t y A 269 48.65a De n s i t y B 538 61.91b Densit y C 1076 86.83c 2.28a 1190.0a 21.52a 1.23a 2.24a 1193.0a 27.90b 1.31a 1.94b 965.9b 45.14c 1.86b Thuj a or i e nt a I i s D e n s i t y A 269 84.56a 1.49a 574.7a 57.24a 1.90a Den s i t y B 538 86.59a 1.44a 621.3a 60.45a 2.12a Density C 1076 110.9b 1.39a 590.1a 80.11b 2.33a Means not fol l o w e d by a common l e t t e r are s i g n i f i c a n t l y d i f f e r e n t at 5% l e v e l . 57 R 2 = 0.93 2. R o o t - c o l l a r diameter (Y) (mm) versus s e e d l i n g d e n s i t y (X) Chinese pine Y = 2.435 - 4.437 (1/X) R 2 = 0.94 O r i e n t a l a r b o r v i t a e Y = 1.520 - 1.329 (1/X) R 2 = 0.98 3. Height:diameter r a t i o (Y) versus s e e d l i n g d e n s i t y (X) Chinese pine " Y = 12.90 + 296.65 (1/X) R 2 = 0.99 O r i e n t a l a r b o r v i t a e Y = 47.410 + 295.315 (1/X) R 2 = 0.96 4. Shoot:root r a t i o (Y) versus s e e d l i n g d e n s i t y (X) Chinese pine Y = 0.960 + 8.131 (1/X) R 2 = 0.96 O r i e n t a l a r b o r v i t a e Y = 1.845 + 3.797 (1/X) R 2 = 0.86 Where Y = parameters of s e e d l i n g q u a l i t y , X = s e e d l i n g spacing ( c m 2 / s e e d l i n g ) , 1/X = s e e d l i n g d e n s i t y ( ( s e e d l i n g s / m 2 ) • 1 0 " " ) . Such equations i n d i c a t e how s e e d l i n g s of a p a r t i c u l a r s i z e can be achieved by r e g u l a t i n g s e e d l i n g d e n s i t y . The equations only apply to p l a n t s grown f o r 22 weeks under the c o n d i t i o n s of t h i s experiment. However, s i m i l a r equations c o u l d presumably be developed to apply under the c o n d i t i o n s i n any p a r t i c u l a r f o r e s t nursery. 58 In summary, s e e d l i n g d e n s i t y i s an important f a c t o r c o n t r o l l i n g s e e d l i n g m o r p h o l o g i c a l t r a i t s i n c l u d i n g h e i g h t , r o o t - c o l l a r diameter, and shoot/root dry weight r a t i o . D ensity can a f f e c t p l a n t dry weight. However, i t may not do so i f p l a n t s are small i n r e l a t i o n to the spacing a v a i l a b l e to them. Parameters of s e e d l i n g q u a l i t y can be i n f e r r e d from p l a n t spacing by means of r e g r e s s i o n equation d e r i v e d from o b s e r v a t i o n made under the a p p l i c a b l e c o n d i t i o n s . 59 C. Experiment 3: Influence of Container Volume on Se e d l i n g Form and Growth Rate The e f f e c t s of c o n t a i n e r volume on the growth of Chinese pine and o r i e n t a l a r b o r v i t a e a f t e r 22 weeks are shown i n Table 11. There was a continuous i n c r e a s e i n p l a n t s i z e with i n c r e a s i n g c o n t a i n e r volume. S i g n i f i c a n t d i f f e r e n c e s (a < 0.05) are shown between a l l volumes f o r shoot, root and t o t a l s e e d l i n g dry weight i n Chinese pine s e e d l i n g s . For o r i e n t a l a r b o r v i t a e s e e d l i n g s , however, s i g n i f i c a n t d i f f e r e n c e s e x i s t only between Sty r o b l o c k - 6 (102 cm 3) and Styroblock-20 (336 cm 3) i n shoot, r o o t , and t o t a l dry weights. The f o l l o w i n g q u a n t i t a t i v e r e l a t i o n s h i p between c o n t a i n e r volume and s e e d l i n g dry weight were determined f o r Chinese pine and o r i e n t a l a r b o r v i t a e : 1. Shoot dry weight versus c o n t a i n e r volume Chinese pine Y = -0.1874 + 0.2763 ln(X) R 2 = 0.99 O r i e n t a l a r b o r v i t a e Y = 0.1462 + 0.0795 ln(X) R 2 = 0.91 2. Root dry weight versus c o n t a i n e r volume Chinese pine Y = -0.055 + 0.1785 ln(X) R 2 = 0.99 O r i e n t a l a r b o r v i t a e Y = -0.0227 + 0.0544 ln(X) R 2 = 0.90 3. T o t a l dry weight versus c o n t a i n e r volume Chinese pine Y = -0.2426 + 0.4548 ln(X) 60 Table 11. E f f e c t of c o n t a i n e r volume on the s e e d l i n g dry weight and shoot/root dry weight r a t i o (S/R) of Chinese pine and o r i e n t a l a r b o r v i t a e Container Type Volume Sh.Wt Rt.Wt T.Wt S/R (cm 3) (mg) (mg) (mg) Pi nus t abul aeformi s Styro-4 57 932.5a 655.4a 1588.0a 1.46a Styro-6 102 1087.0b 781.4b 18.68.0b 1.43a Styro-20 336 1417.0c 982.8c 2400.0c 1.56a Thuja orientalis Styro-4 57 452.8a 212.5a 666.3a 2.23a Styro-6 102 540.5ab 248.7a 789.2ab 2.25a Styro-20 336 595.8b 301.3b 897.1b 2.01a Means not fol l o w e d by a common l e t t e r are s i g n i f i c a n t l y d i f f e r e n t at 5% l e v e l . 61 R 2 = 0.99 O r i e n t a l a r b o r v i t a e Y = 0.1609 + 0.1289 ln(X) R 2 = 0.94 Where Y = P l a n t dry weight (gram) X = Container volume (cm 3). Such r e l a t i o n s h i p s i n d i c a t e d how, d u r i n g a s p e c i f i c time and under s p e c i f i c c o n d i t i o n s , Chinese pine s e e d l i n g s can be r a i s e d to a s p e c i f i c s i z e by r e g u l a t i n g c o n t a i n e r volume. However, under the c o n d i t i o n s of any p a r t i c u l a r f o r e s t nursery, the r e l a t i o n s h i p between p l a n t s i z e and c o n t a i n e r volume would have to be determined e m p i r i c a l l y . The l o g a r i t h m i c r e g r e s s i o n between c o n t a i n e r volume and s e e d l i n g dry weight i s a l s o a p p l i c a b l e to lodgepole pine (Pi nus contort a Dougl. ) and white spruce (Pi cea gl auca V o s s ) . For example, the f o l l o w i n g r e g r e s s i o n equations are d e r i v e d from: 1. Lodgepole pine data by Endean and C a r l s o n (1975), Y = -1202.79 + 577.236 ln(X) R 2 = 0.99 Where Y = S e e d l i n g dry weight (mg), X = Container volume (cm 3). A p p l i c a b l e volumes were from 10 to 524 cm 3. 2. White spruce data by C a r l s o n and Endean (1976), Y = -216.02 + 126.851 ln(X) R 2 = 0.96 Where Y = S e e d l i n g dry weight (mg), X = Container volume (cm 3). A p p l i c a b l e volumes ranged from 10 to 524 cm 3. 62 C a r l s o n and Endean (1976) a l s o noted that v a r i a t i o n i n the height and diameter of c o n t a i n e r s of constant volume appeared to have l i t t l e i n f l u e n c e on p l a n t dry weight. In c o n c l u s i o n , dry weight of container-grown Chinese pine and o r i e n t a l a r b o r v i t a e s e e d l i n g s i s i n f l u e n c e d by c o n t a i n e r volume over a wide range. If as i s normally the case, spacing v a r i e s with c o n t a i n e r volume, i n c r e a s i n g c o n t a i n e r volume w i l l tend to i n c r e a s e s e e d l i n g p r o d u c t i o n c o s t s . T h i s e f f e c t may be mod i f i e d , however, by e f f e c t s of c o n t a i n e r volume on stock q u a l i t y , crop r o t a t i o n l e n g t h , or the degree of environmental m o d i f i c a t i o n (e.g., use of greenhouse h e a t i n g necessary to produce p l a n t s of d e s i r e d s i z e i n a f i x e d t i m e ) . Another f a c t o r that must be c o n s i d e r e d i n determining the optimum c o n t a i n e r volume, i s the e f f e c t of r o o t - b a l l volume and weight on the c o s t of s t o r i n g , s h i p p i n g , and p l a n t i n g s e e d l i n g s . 63 D. Experiment 4: E f f e c t s of M i n e r a l N u t r i e n t Regime on S e e d l i n g Growth Rate Performance of Chinese pine and o r i e n t a l a r b o r v i t a e s e e d l i n g s are shown in Table 12. The d i f f e r e n c e s i n height of the two s p e c i e s in the three f e r t i l i z e r regimes are s t a t i s t i c a l l y not s i g n i f i c a n t (a < 0.05) e i t h e r i n 100 ppm or i n 250 ppm c o n c e n t r a t i o n . At 100 ppm, no s i g n i f i c a n t d i f f e r e n c e s are found in diameter, shoot dry weight, and shoot/root dry weight r a t i o of Chinese pine s e e d l i n g s i n the three treatments. R e l a t i v e l y , s e e d l i n g height growth in the 100 ppm treatment was g r e a t e r than that i n the 250 ppm treatment. Shoot growth r e l a t i v e to root growth was favoured by high n u t r i e n t c o n c e n t r a t i o n , which i s c o n s i s t e n t with the f i n d i n g s of e a r l i e r s t u d i e s by Ledig (1983) and Burdett et al . (1986a). In c o n c l u s i o n , e l e v a t i o n of P l e v e l at the beginning and towards the end of the growing p e r i o d i s not b e n e f i c i a l to s e e d l i n g growth. Dry weight was no higher with N at 250 ppm than at 100 ppm. At the higher f e r t i l i z e r r a t e , shoot/root dry weight r a t i o was e l e v a t e d . T h i s would normally be c o n s i d e r e d a disadvantage. I t i s t h e r e f o r e recommended that 20-20-20 f e r t i l i z e r be used at 100 ppm N when r a i s i n g Chinese pine and o r i e n t a l a r b o r v i t a e s e e d l i n g s because i t i s both economic and easy to apply. However, f u r t h e r study i s needed to determine whether f u r t h e r savings can be made by using even lower f e r t i l i z e r c o n c e n t r a t i o n s . 64 Table 12. Se e d l i n g height (Ht), r o o t - c o l l a r diameter ( D i ) , height:diameter r a t i o (H:D), shoot dry weight (Sh-Wt), root dry weight (Rt-Wt), and shootrroot dry weight r a t i o (S:D) of Chinese pine and o r i e n t a l a r b o r v i t a e i n three f e r t i l i z e r regimes PARAMETER REG.1 REG.2 REG.3 REG.1 REG.2 REG.3 |< 100 ppm >| |< 250 ppm >| Pi nus I abul aeformis Ht (mm) 98.93a 103.5a 99.43a 95.40a 93.97a 90.73a Di (mm) 2.28a 2.25a 2.20a 2.35a 2.20b 2.16b H:D 43.55a 46.33a 45.70a 41.18a 42.83a 42.38a Sh-Wt(mg) 663.6a 653.3a 635.7a 726.9a 673.6b 632.4b Rt-Wt(mg) 391.3a 361.3a 351.7a 375.9a 340.1b 320.1b S:R 1.81a 1.89a 1.87a ; 2.03a 2.05a 2.10a Thuja oriental is. Ht (mm) 97.08a 100.9a 88.95a 96.80a 89.80a 76.53b Di (mm) 1.43a 1.41a 1.47a 1.24a 1.46b 1.06c H:D 68.44a 71.66a 60.81b: 78.24a 61.75b 73.18a Sh-Wt(mg) 330.8a 329.1a 279.7a 382.7a 311.7b 218.8c Rt-Wt(mg) 189.5a 166.7b 159.5b 150.4a .131 . 6ab 101.2b S:R 1.84a 2.03a 1.87a 2.67a 2.46a 2.30a Means not f o l l o w e d by a common l e t t e r are s i g n i f i c a n t l y d i f f e r e n t at 5% l e v e l . 65 E. Experiment 5: E f f e c t s of Chemical Root Pruning on Root Form and S e e d l i n g Growth Rate in P l a s t i c C o n t a i n e r s Comparisons of s e e d l i n g s from copper-painted and unpainted c o n t a i n e r s i n d i c a t e d that the copper p a i n t had l i t t l e e f f e c t on root and shoot dry weights, and had almost no e f f e c t on s e e d l i n g height and r o o t - c o l l a r diameter. Root dry weight was reduced s l i g h t l y , but shoot dry weight was s l i g h t l y i n c r e a s e d as a r e s u l t of the copper-paint treatment (Table 13). Treated s e e d l i n g s d i s p l a y e d no symptoms of copper t o x i c i t y . The copper p a i n t g r e a t l y a f f e c t e d root morphology by stopping e l o n g a t i o n of r o o t s coming i n t o c o n t a c t with the c o n t a i n e r w a l l . As a r e s u l t , the l a t e r a l r o o t s were tr u n c a t e d , whereas those of s e e d l i n g s from unpainted c o n t a i n e r s grew down the c o n t a i n e r w a l l , i n some cases t u r n i n g to grow up again upon reachin g the d r a i n h o l e . Secondary and higher order l a t e r a l r o o t s were a l s o i n h i b i t e d by c o n t a c t with the copper p a i n t . Thus, s e e d l i n g s from the p a i n t e d c o n t a i n e r s d i f f e r e d from c o n t r o l p l a n t s i n having a root plug with few,, i f any, s u p e r f i c i a l r o o t s . The t r e a t e d s e e d l i n g had a r e l a t i v e l y f i r m root plug that was h e l d together by a mass of second- and h i g h e r - o r d e r l a t e r a l r o o t s borne by the chemically-pruned f i r s t order l a t e r a l s . To determine whether the c h e m i c a l l y i n h i b i t e d roots were ab l e to resume growth when the t r e e s were t r a n s p l a n t e d , both copper-pruned and c o n t r o l s e e d l i n g s were t r a n s p l a n t e d i n t o 4 / pots and p l a c e d i n growth chamber, p r o v i d i n g day 66 Table 13. Comparison of shoot height (H), r o o t - c o l l a r diameter (D), height:diameter r a t i o (H:D), shoot dry weight (S-Wt), root dry weight (R-Wt), and shoot:root dry weight r a t i o (S:R) of Chinese pine and o r i e n t a l a r b o r v i t a e r a i s e d i n copper-painted and co p p e r - f r e e S t y r o b l o c k s Treatment H(mm) D(mm) H:D S-Wt(mg) R-Wt(mg) S:R Copper-treated 83.52 ±5.32 C o n t r o l 88.80 ±7.60 Pi nus t abul aeformi s — 2.63 31.93 861.20 ±0.10 ±2.04 ±64.95 2.60 34.32 778.40 ±0.15 ±2.46 ±98.68 363.20 2.61 ±42.10 ±0.33 447.20 1.81 ±56.65 ±0.18 Thuj a orientalis Copper-treated 106.76 1.70 63.52 573.60 205.60 2.82 ±5.86 ±0.09 ±3.46 ±60.12 ±21.29 ±0.16 C o n t r o l 119.64 1.64 72.83 662.40 292.80 2.38 ±7.47 ±0.06 ±3.99 ±56.79 ±27.62 ±0.26 The c o n f i d e n c e l e v e l i s 95%. 67 and night temperatures of 30° and 25°C, a r e l a t i v e humidity of 75% and a 16-hour pho t o p e r i o d . A f t e r 13 days, the s e e d l i n g s were e x t r a c t e d from the pots and r o o t s that had grown a centimeter or more from the s i d e s of the root plugs counted (Table 14). The chemically-pruned r o o t s of s e e d l i n g s from St y r o b l o c k c o n t a i n e r s elongated r a p i d l y d u r i n g the t e s t ( F i gure 4). Thus, the root-pruned t r e e s produced an array of primary l a t e r a l roots extended from the s i d e s of the root p l u g . Root extension by c o n t r o l s e e d l i n g s , however, was l a r g e l y r e s t r i c t e d to the e l o n g a t i o n of l a t e r a l roots that had grown down the c o n t a i n e r w a l l and been a i r - p r u n e d at the d r a i n h o l e . The s e e d l i n g s from copper-painted R o o t r a i n e r s had fewer new r o o t s than the c o n t r o l s e e d l i n g s . There might be two reasons f o r t h i s . F i r s t , .two l a y e r s of copper p a i n t were a p p l i e d to the R o o t r a i n e r s . Perhaps a r e s i d u e of the copper s a l t adhered to the plug s u r f a c e a f t e r e x t r a c t i o n from the c o n t a i n e r and t h i s c o u l d have a f f e c t e d root growth a f t e r t r a n s p l a n t i n g . Second, the root growth h a b i t s i n the two c o n t a i n e r types were d i f f e r e n t i n that R o o t r a i n e r s e e d l i n g s had l a t e r a l root t i p s d i s t r i b u t e d on the p l u g s u r f a c e , whereas c o n t r o l s e e d l i n g s i n S t y r o b l o c k s had t h e i r l a t e r a l t i p s gathered at the egress h o l e s . T h i s c o u l d probably a l s o e x p l a i n why c o n t r o l R o o t r a i n e r plugs produced more new r o o t s than c o n t r o l s e e d l i n g s from S t y r o b l o c k s . 68 T a b l e 14. New r o o t s produced by c h e m i c a l l y r o o t - p r u n e d and c o n t r o l C h i n e s e p i n e s e e d l i n g s w i t h i n 13 days a f t e r t r a n s p l a n t i n g Treatment No. p l a n t s S t y r o b l o c k - 4 R o o t r a i n e r s - 4 C o p p e r - t r e a t e d C o n t r o l 8 8 3 6 . 3 ± 1 0 . 6 14.614.4 9 . 3 ± 4 . 2 21 .814.8 — The c o n f i d e n c e l e v e l i s 95%, F i g u r e 4 . New roots produced from copper-painted ( l e f t ) and copper-free ( r i g h t ) S t y r o b l o c k s vary i n amount and p o s i t i o n ( f r e e of growing medium) In summary, the copper pruning technique appears promising f o r the two Chinese c o n i f e r s . The copper c o n c e n t r a t i o n i s c r i t i c a l to s e e d l i n g performance, e s p e c i a l l y to those s p e c i e s s e n s i t i v e to copper (Burdett al . 1982). F u r t h e r s t u d i e s are needed to f i n d a minimum c o n c e n t r a t i o n of copper p a i n t which i s both e f f e c t i v e and economic f o r Chinese pine and o r i e n t a l a r b o r v i t a e . 71 F . Exper iment 6 . I n f l u e n c e of C h e m i c a l Root P r u n i n g on Root Form and Growth i n C o p p e r - i m p r e g n a t e d K r a f t Paper Pots a . C o n t a i n e r D e g r a d a t i o n K r a f t paper (KP) Pots with or without copper impregnation completely decomposed i n l e s s than 3 months (Figure 5). However, the p o l y e t h y l e n e - c o a t e d KP pots with or without copper-impregnation remained i n t a c t when harvested d e s p i t e degradation of the paper ( F i g u r e 6). b . Root Morphology As with p l a n t s from copper-painted p o l y s t y r e n e c o n t a i n e r s , r o o t s of s e e d l i n g s i n copper-impregnated KP pots stopped growth when they reached the c o n t a i n e r w a l l (Figure 7). Development of secondary and higher order l a t e r a l s was ap p a r e n t l y s t i m u l a t e d so that a firmed root plug was formed ( F i g u r e 8) . Even though the copper-impregnated KP pots decomposed i n l e s s than 3 months, a root growth i n h i b i t i n g l a y e r remained between adjacent pots and prevented r o o t s growing from one plug to another. In c o n t r a s t , r o o t s of the c o n t r o l s e e d l i n g s grown i n KP pots without p o l y e t h y l e n e c o a t i n g grew from one pot to another, thus, making the s e e d l i n g s d i f f i c u l t to separate (Figure 5). Roots grown i n copper-impregnated KP pots with p o l y e t h y l e n e c o a t i n g had the same root morphology as the ro o t s grown i n copper-impregnated KP pot s . However, the F i g u r e 5. K r a f t Paper Pots decomposed i n l e s s than 90 days. N o t i c e that r o o t s p e n e t r a t e d to the adjacent p o t s . 73 b. C o n t r o l K r a f t Paper Pots F i g u r e 6 . Performance of p o l y e t h y l e n e - c o a t e d K r a f t Paper Pots. N o t i c e that the t h i n f i l m maintained a b a r r i e r between roo t s of i n d i v i d u a l s e e d l i n g s a f t e r the inner k r a f t paper had decomposed. 7 4 F i g u r e 7 . S e e d l i n g s of C h i n e s e p i n e r a i s e d i n p o l y e t h y l e n e - c o a t e d K r a f t Paper P o t s : copper-impregnated ( r i g h t ) and c o n t r o l ( l e f t ) . N o t i c e t h a t e l o n g a t i o n of r o o t s i n c o p p e r - t r e a t e d c o n t a i n e r s was i n h i b i t e d upon c o n t a c t w i t h the c o n t a i n e r w a l l ( r i g h t ) , whereas r o o t s of c o n t r o l s e e d l i n g s ( l e f t ) grew down, or s p i r a l l e d , the c o n t a i n e r w a l l . 7 5 F i g u r e 8 . Root c h a r a c t e r i s t i c s of C h i n e s e p i n e s e e d l i n g s r a i s e d i n p o l y e t h y l e n e - c o a t e d K r a f t Paper P o t s : c o p p e r - i m p r e g n a t e d ( r i g h t ) and c o n t r o l ( l e f t ) . The f i g u r e i l l u s t r a t e s a c o n s i s t e n t l y o b served d i f f e r e n c e i n degree of f i n e r o o t development between c o p p e r - t r e a t e d and u n t r e a t e d s e e d l i n g s . 76 r o o t s of the c o n t r o l s e e d l i n g s ( i . e . , those grown i n KP pots with p o l y e t h y l e n e c o a t i n g ) were d e f l e c t e d downwards when they reached the co r n e r . There were a l s o e xceptions where ro o t s s p i r a l l e d . c. S e e d l i n g Growth K r a f t Paper (KP) Pots with P o l y e t h y l e n e Coating -Copper-treated s e e d l i n g s were l a r g e r than the c o n t r o l s e e d l i n g s (Table 15). K r a f t Paper (KP) Pots without P o l y e t h y l e n e Coating -T o t a l dry weight and S/R r a t i o of c o p p e r - t r e a t e d s e e d l i n g s are l a r g e r than those i n the c o n t r o l . However, i t i s not the case i n height growth and H/D r a t i o (Table 16). Ne v e r t h e l e s s , the advantages of root morphology i n copper-impregnated pots would compensate f o r the height d i f f e r e n c e . d. Summary Copper-impregnated K r a f t Paper Pots proved to be as e f f e c t i v e as copper-painted p l a s t i c c o n t a i n e r s i n p i n c h i n g l a t e r a l r o o t s of Chinese pine s e e d l i n g s . The implementation of t h i s technique would s o l v e root deformation problems i n paper c o n t a i n e r s . By e v a l u a t i n g the KP pot c h a r a c t e r i s t i c s (Table 17), the p r e f e r e n c e i s l i s t e d below: 1. Copper-impregnated K r a f t Paper Pots without p o l y e t h y l e n e c o a t i n g ; 77 Table 15. Comparisons of morphology and growth of Chinese pine s e e d l i n g s r a i s e d i n p o l y e t h y l e n e coated K r a f t Paper Pots with and without copper-impregnation Treatment Height Diameter H/D Sh.Wt. Rt.Wt. (mm) (mm) (mg) (mg) Cu-impr. 75.92 2.67 28.59 982.8 476.4 (25 p l a n t s ) ± 5.10 ±0.14 ±104.7 ±66.5 C o n t r o l 53.60 2.07 26.07 582.4 '• 376.4 (25 p l a n t s ) ±3.29 ±0.12 ±79.3 ; ±3.3 The con f i d e n c e l e v e l i s 95%. Table 16. Comparisons of morphology and growth of Chinese pine s e e d l i n g s r a i s e d i n K r a f t Paper Pots with and without copper-impregnation Treatment Cu-impr. (11 p l a n t s ) C o n t r o l (10 p l a n t s ) Height (mm) 73.5 ±0.9 77.8 ±6.4 diameter H/D (mm) 2.47 29.76 ±0.18 2.34 33.25 ±0.15 Sh.Wt. (mg) 909. 1 ±126.8 751 .0 ±93.0 Rt.Wt. S/R (mg) 416.4 2.19 ±107.0 419.0 1.79 ±49.3 The con f i d e n c e l e v e l i s 95%. Table 17. K r a f t Paper Pot e v a l u a t i o n Treatment KP pots with PEL c o a t i n g KP pots Cu-impr. - B e t t e r s e e d l i n g growth - B e t t e r s e e d l i n g growth - D e s i r a b l e root form - D e s i r a b l e root form - Unnecessary PEL f i l m - Unnecessary s e e d l i n g e x t r a c t ion C o n t r o l - Last longer than PK - Root p e n e t r a t i o n alone - Root deformation - Hard to separate 78 2. Copper-impregnated K r a f t Paper Pots with p o l y e t h y l e n e c o a t i n g ; 3 . K r a f t Paper Pots with p o l y e t h y l e n e c o a t i n g ; 4. K r a f t Paper Pots without p o l y e t h y l e n e c o a t i n g . 7 9 G. Summary and Conc l u s i o n s a. Container Type Chinese t r e e s p e c i e s appear to grow as w e l l i n Western c o n t a i n e r types as the Western s p e c i e s f o r which these c o n t a i n e r s were designed. In terms of dry matter p r o d u c t i o n per u n i t space and volume, the smaller c o n t a i n e r s (36 to 65 cm 3) were more e f f i c i e n t than the l a r g e r ones. In morphology, s a t i s f a c t o r y s e e d l i n g s of both s p e c i e s were r a i s e d i n p o l y e t h y l e n e - c o a t e d K r a f t Paper Pots even though growth r a t e i n t h i s type of c o n t a i n e r was l e s s than c o u l d have been expected on the b a s i s of t h e i r s i z e . T h i s i s probably not the r e s u l t of any fundamental l i m i t a t i o n to growth in t h i s kind of c o n t a i n e r , but i n d i c a t e s the need f o r a d d i t i o n a l r e s e a r c h to develop an optimum c u l t u r a l regime f o r use with these c o n t a i n e r s . Provided that such work i s undertaken s u c c e s s f u l l y , the p o l y e t h y l e n e coated k r a f t paper c o n t a i n e r s appear w e l l s u i t e d f o r use i n China by v i r t u e of t h e i r low c o s t and the f a c t that they c o u l d be manufactured l o c a l l y with a minimum of investment i n equipment. Furthermore, they should be r e a d i l y accepted as an improvement of e x i s t i n g types of paper c o n t a i n e r used i n China which are prone to premature d i s i n t e g r a t i o n . The k r a f t paper c o n t a i n e r s are a l s o of i n t e r e s t i n that they can be impregnated with copper s a l t s which c h e m i c a l l y prune ro o t s r e a c h i n g the c o n t a i n e r w a l l . From Western experience with container-grown p i n e s , i t seems 80 l i k e l y t h a t l a t e r a l r o o t - p r u n i n g of container-grown Chinese pine w i l l prove d e s i r a b l e to ensure s a t i s f a c t o r y root morphogenesis and mechanical s t a b i l i t y a f t e r t r a n s p l a n t i n g . b. S e e d l i n g D e n s i t y S e e d l i n g d e n s i t y i s an important f a c t o r i n f l u e n c i n g p l a n t m o r p h o l o g i c a l t r a i t s such as h e i g h t , r o o t - c o l l a r diameter, heightrdiameter r a t i o , and s h o o t r r o o t dry weight r a t i o . S e e d l i n g height was i n c r e a s e d s u b s t a n t i a l l y , while r o o t - c o l l a r diameter was decreased, with an i n c r e a s e i n s e e d l i n g d e n s i t y . Depending on p l a n t s i z e r e l a t i v e to p l a n t spacing, s e e d l i n g dry weight may not respond to s e e d l i n g d e n s i t y when c o n t a i n e r volume i s kept c o n s t a n t . c. Container Volume Container volume can be a major, determinant of stock s i z e . G e n e r a l l y , i n a given time, l a r g e s e e d l i n g s are r a i s e d i n l a r g e r c o n t a i n e r s . To u t i l i z e greenhouse space e f f i c i e n t l y and r a i s e good q u a l i t y s e e d l i n g s , both c o n t a i n e r volume and s e e d l i n g d e n s i t y should be c o n s i d e r e d . d. M i n e r a l N u t r i e n t E l e v a t i o n of P l e v e l at the beginning and end of the growing season had no e f f e c t on s e e d l i n g growth i n e i t h e r s p e c i e s . F e r t i l i z e r 20-20-20 throughout the growing season i s , t h e r e f o r e , recommended. Growth was b e t t e r when n u t r i e n t l e v e l was 100 ppm N than 250 ppm N. 81 e. Chemical Root Pruning Chemical root pruning with copper p a i n t e d c o n t a i n e r s i s e f f e c t i v e with Chinese pine and o r i e n t a l a r b o r v i t a e s e e d l i n g s . For Chinese pine, s a t i s f a c t o r y l a t e r a l root pruning c o u l d be achieved by r a i s i n g p l a n t s i n c o n t a i n e r s made of k r a f t paper impregnated with copper s a l t s . The copper s a l t s remained e f f e c t i v e a f t e r the paper had decomposed, p r e v e n t i n g r o o t s growing from one pot to another. T h i s simple approach p r o v i d e s a promising improvement on the v a r i o u s e a s i l y brokendown paper pots c u r r e n t l y used i n China. References A l l i s o n , C.J., J r . 1974. Design c o n s i d e r a t i o n s f o r the RL s i n g l e c e l l system, pp. 233-236. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] Armson, K.A. and V. Sa d r e i k a . 1974. F o r e s t Tree Nursery S o i l Management and Rel a t e d P r a c t i c e s . 177 p. D i v i s i o n of F o r e s t s , O n t a r i o M i n i s t r y of N a t i o n a l Resources. 1974. Armson, K.A. 1968. The e f f e c t s of f e r t i l i z a t i o n and seedbed d e n s i t y on the growth and n u t r i e n t content of white spruce and red pine s e e d l i n g s . F a c u l t y of F o r e s t r y , U n i v e r s i t y of Toronto, T e c h n i c a l Report No. 10. pp. 1-16. A r n o t t , J.T. and D. Beddows. 1982. In f l u e n c e of Sty r o b l o c k c o n t a i n e r s i z e on f i e l d performance of Douglas f i r , Western hemlock, and s i t k a spruce. Tree P l a n t e r s ' Notes 33(3) : 31-34. A s s o c i a t i o n of O f f i c i a l Seed A n a l y s t s . 1970. Rules f o r seed t e s t i n g . Proc. Assoc. O f f . Seed An a l . 60:1-116. Augsburger, N.D., H.R. Bohanon, J.L. Calhoun, and J.D. H i l d i n g e r . 1975. The Greenhouse Climate C o n t r o l Handbook. Acme Eng. and Manuf. Co., Muskogee, Okla., 31 P-A u s t i n , K. 1965. Two de v i c e s f o r speeding morphological assessment of nursery stock. Tree P l a n t e r s ' Notes No. 71:29-31. Baker, K.F. (ed.). 1957. The U.C. system for. producing h e a l t h y container-grown p l a n t s . C a l i f o r n i a A g r i . Exp. Stn. Manual 23. 332 p. Bamford, A.H. 1974. Development of the B r i t i s h Columbia c o n t a i n e r program, pp. 53-58. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] B a r n e t t , J.P. and J.M. Mc G i l v r a y . 1974. Copper screen c o n t r o l s root growth and i n c r e a s e s u r v i v a l of c o n t a i n e r i z e d southern pine s e e d l i n g s . Tree P l a n t e r s ' Notes 25(2):11-12. B e a t t i e , J.H. 1934. Greenhouse c o n s t r u c t i o n and h e a t i n g . USDA Farmers B u l l . 1318, 38 p. 82 83 B e i j i n g F o r e s t r y U n i v e r s i t y . 1980. S i l v i c u l t u r e ( i n Ch i n e s e ) . 393 p. China Publ. House. B e l l , T.I.W. 1978. The e f f e c t of s e e d l i n g c o n t a i n e r r e s t r i c t i o n s on the development of Pi nus caribea r o o t s , pp. 9 1-95. In E.Van Eerden and J.M. Kinghorn (eds.) Proc. Root Form of Pl a n t e d Trees Symposium, V i c t o r i a , B r i t i s h Columbia. [ B r i t i s h Columbia M i n i s t r y of Forests/Canadian F o r e s t r y S e r v i c e J o i n t Report No. 8., 1978, 357 p.] Ben Salem, B. 1971. Root s t r a n g u l a t i o n - A neg l e c t e d f a c t o r in c o n t a i n e r grown nursery stock. M.S. t h e s i s , Univ. C a l i f . , Berkeley., 50 p. Benzian, B. and R.G. Warren. 1956. Copper d e f i c i e n c y i n s i t k a spruce s e e d l i n g s . Nature 178^864. Benzian, B. and R.G. Warren. 1957. Copper d e f i c i e n c y i n poplar c u t t i n g s . Rathamstead England Exp. Stn. Rep. For. 1956, pp. 56-57. Boudoux, M.E. 1970. E f f e c t of tube dimension on root d e n s i t y of s e e d l i n g s . Dep. F i s h . For., Ca. For. Serv., Bi-Mon. Res. Note 26:29-30. Boudoux, M.E. 1972. Optimum c o n t a i n e r s i z e f o r black spruce. In Proc. of a Workshop on Container P l a n t i n g i n Canada, e d i t e d by R.M. Waldron. E n v i r o n . Can. For. Serv, Ottawa. In f o . Rep. DPC-X-2 P142-150. B r i x , H. and R. van den D r i e s s c h e . 1974. M i n e r a l n u t r i t i o n of container-grown t r e e s e e d l i n g s , pp. 77-84. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] Burdett, A.N. 1978a. C o n t r o l of root morphogenesis f o r improved mechanical s t a b i l i t y i n container-grown lodgpole p i n e . Can. J . For. Res. 8:483-486. Burdett, A.N. 1978b. Root form and mechanical s t a b i l i t y i n p l a n t e d lodgepole pine i n B r i t i s h Columbia, pp. 162-165. In E.Van Eerden and J.M. Kinghorn (eds.) Proc. Root Form of P l a n t e d Trees Symposium, V i c t o r i a , B r i t i s h Columbia. [ B r i t i s h Columbia M i n i s t r y of Forests/Canadian F o r e s t r y S e r v i c e J o i n t Report No. 8., 1978, 357 p.] Burdett, A.N. 1979a. New methods of measuring root growth c a p a c i t y : t h e i r value i n a s s e s s i n g lodgepole pine stock q u a l i t y . Can. J . For. Res. 9:63-67. Burdett, A.N. 1979b. J u v e n i l e i n s t a b i l i t y i n p l a n t e d p i n e s . I r i s h F or. 36:36-47. v. 84 Burdett, A.N. 1981. Box-pruning the r o o t s of c o n t a i n e r grown t r e e s e e d l i n g s , pp. 203-206. In Proc. Can C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 P. [Toronto, O n t a r i o , Sept. 1981] Burdett, A.N. 1983a. Q u a l i t y c o n t r o l in the p r o d u c t i o n of f o r e s t p l a n t i n g s t o c k . F o r e s t r y C h r o n i c l e 59(3):132-138. Burdett, A.N. 1983b. Heightrdiameter r a t i o and p l a n t i n g stock q u a l i t y . Personal communication. Burdett, A.N. 1984. Tree s e e d l i n g c o n t a i n e r c h a r a c t e r i s t i c s . P e r sonal communication. Burdett, A.N., H. Coates, R. Eremko and P.A.F. M a r t i n . 1986. T o p p l i n g i n B r i t i s h Columbia's lodgepole pine p l a n t a t i o n s : cause, s i g n i f i c a n c e , and p r e v e n t i o n . The For. Chron. ( i n p r e s s ) . Burdett, A.N. and H. Dong. 1986. Copper-impregnated K r a f t Paper Pots f o r r a i s i n g Chinese pine (Pi nus tabulaeformis) s e e d l i n g s wth s a t i s f a c t o r y root morphology, (to be p u b l i s h e d ) . Burdett, A.N., H. Dong, R. G a d z i o l a , S.E. T a y l o r , and S. Yamamoto. 1986. Adaptive v a r i a t i o n i n dry matter p a r t i t i o n i n g by lodgepole pine and Douglas f i r s e e d l i n g s : I. Environmental and Genotypic r e g u l a t i o n of shoot:root r a t i o . J . Appl. E c o l . ( i n p r e s s ) . Burdett, A.N. and P.A.F. M a r t i n . 1982. Chemical root pruning of c o n i f e r o u s seedlings.. HortScience 1 7 (4) : 622-624 . Burdett, A.N., D.G. Simpson, and C.F. Thompson. 1983. Root development and p l a n t a t i o n establishment success. P l a n t and S o i l 71:103-110. C a r l s o n , L.W. 1979. G u i d e l i n e s f o r Rearing C o n t a i n e r i z e d C o n i f e r S e e d l i n g s i n the P r a i r i e P r a c t i c e s . Dep. E n v i r o n . , Can. For. Serv., Edmonton, A l t a . I n f . Rep. NOR-X-214, 62 p. C a r l s o n , L.W. and F. Endean. 1976. The e f f e c t of r o o t i n g volume and c o n t a i n e r c o n f i g u r a t i o n on the e a r l y growth of white spruce s e e d l i n g s . Can. J . For. Res. 6:221-224. C a r l s o n , L.W. and L.P. Narn. 1977. Root d e f o r m i t i e s i n some container-grown jack pine i n southeastern Manitoba. For. Chron. 53:147-149. Chinese F o r e s t r y A s s o c i a t i o n . 1984. Comments on the development of t r e e s e e d l i n g c o n t a i n e r i z a t i o n i n China ( i n C h i n e s e ) . Personal communication. 85 C l a r k e , R.W. 1956. Wind damage i n p l a n t e d s t o c k and n a t u r a l r e g e n e r a t i o n of Pi nus radiata a t Mount S t r o m l o A.C.T. A u s t r . F o r . 20:37-39. C o r n f o r t h , I.S. 1968. R e l a t i o n s h i p between s o i l volume used by r o o t s and n u t r i e n t a c c e s s i b i l i t y . J . S o i l Sc. 19:291-301. C z a b a t o r , F . J . 1962. G e r m i n a t i o n v a l u e : an index c o m b i n i n g speed and completeness of p i n e seed g e r m i n a t i o n . F o r . S c i . 8:386-396. D a n i e l s , R.R. and B.E. Struckmeyer. 1973. Copper t o x i c i t y i n Phasedus vulgaris L. as i n f l u e n c e d by i r o n n u t r i t i o n . I I I . P a r t i a l a l l e v i a t i o n by s u c c i n i c a c i d 2 ,2-dimenthyl h y d r a z i d e . J . Am. Soc. H o r t i c . S c i . 98(5):449-452. Dong, H. 1983. Seed s t r a t i f i c a t i o n of Chinese p i n e (Pi nus tabul aeformi s) and o r i e n t a l a r b o r v i t a e (Thuja orientalis). Term paper of FRST 510, UBC. ( u n p u b l i s h e d ) . Edgren, J.W. and J.G. I y e r . 1979. Immersion d e t e r m i n a t i o n of s e e d l i n g r o o t - t o p r a t i o and i t s c o r r e l a t i o n w i t h a drought r e s i s t a n c e i n d e x . Tree P l a n t e r s ' Notes 3( 1 ) : 8 - 1 0 . E d i t i n g Committee of Woody F l o r a of C h i n a . A f f o r e s t a t i o n Methods of Major F o r e s t Trees i n China ( i n C h i n e s e ) 1341 P. 1978 A g r i c . P r e s s , B e i j i n g . Edwards, M.V., J . A t t e r s o n and R.S. H o w e l l . 1963. Wind l o o s e n i n g of young t r e e s , on upla n d h e a t h s . U.K. F o r . Comm.: F o r . Rec. No. 50, 16 pp. Endean, F. and L.W. C a r l s o n . 1975. The e f f e c t of r o o t i n g volume on the e a r l y growth of l o d g e p o l e p i n e s e e d l i n g s . Can..J. F o r . Res. 5:55-60. Greenhouse c o n d i t i o n s . USDA F o r . S e r v . I n t e r m t . F o r . and Range Exp. S t n . Res. Note • INT-301. F o s t e r , A.A. 1956. The e f f e c t s of seedbed d e n s i t y on s e e d l i n g p r o d u c t i o n a t ' t h e G e o r g i a f o r e s t n u r s e r i e s . Tree P l a n t e r s ' Notes No. 25:1-3. F u r u t a , T., W.C. Jon e s , W. Humpherey, and J . Mock. 1972. C h e m i c a l l y c o n t r o l l i n g r o o t growth i n c o n t a i n e r s . C a l i f . A g r i c . 26:10-11. Goodwin, O.C. 1975. Greenhouse c o n t a i n e r s e e d l i n g p r o d u c t i o n manual. N.C. D i v . of F o r . Resour., F o r e s t r y Note 19, 65 P-G u i l i n , R.W. and J.P. B a r n e t t ( e d s . ) . 1981. P r o c e e d i n g s of the Southern C o n t a i n e r i z e d F o r e s t Tree S e e d l i n g 86 Conference. Gen. Tech. Rep. SO-37. 156 p. Savannah, Georgia, Aug. 25-27, 1981. Hahn, P.F. 1981. A h i s t o r i c a l overview of the use of c o n t a i n e r i z e d s e e d l i n g s f o r o p e r a t i o n a l r e f o r e s t a t i o n -How d i d we get where we are today? pp. 7-12. In Proceedings of the Southern C o n t a i n e r i z e d F o r e s t Tree S e e d l i n g Conference. Gen. Tech. Rep. So-37. 156 p. Savannah, Georgia, Aug. 25-27, 1981. Haig, R.A. 1972. Container p l a n t i n g i n F i n l a n d , Sweden and S c o t l a n d , pp. 160-165. In Waldron, R.M. (ed.) Proc. of a Workshop on Container P l a n t i n g i n Canada. Can. Dep. E n v i r o n . , Can. For. Serv. D i r . Program Coord., Ottawa, I n f . Rep. DPC-X-2. H a l l e t t , R.D. 1981. C o n t r a s t i n g approaches to c o n t a i n e r i z e d s e e d l i n g p r o d u c t i o n 3. The Maritime p r o v i n c e s , pp. 129-138. In Proc. Can. C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 p. [Toronto, O n t a r i o , Sept. 1981] H a r r i s , R.W., A.T. L e i s e r , P.L. Neel, D. Long, N.W. S t i c e , and R.G. Maire. 1972. Spacing of container-grown t r e e s i n the nursery. J . Am. Soc. Hort. S c i . 97:503-506. Helium, A.K. 1981. Root egress in lodgepole pine s e e d l i n g s grown in peat and p l a n t e d s o i l . pp. 389-396 In Proc. Can. C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 p. [Toronto, O n t a r i o , Sept. 1981] Hocking, D. 1972. Copper t o x i c i t y i n c o n t a i n e r s e e d l i n g s i n copper-bottomed f l a t s . Can. For. Serv. Bi-monthly Res. Notes 28(4):26. Hoedemaker, E. 1974. The Japanese paper pot system, pp. 214-216. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] Hulten, H. 1974. C o n t a i n e r i z a t i o n i n S c a n d i n a v i a , pp. 2-2. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] J a f f e , M.J., H. Takahashi, and R.L. B i r o . 1985. A pea mutant fo r the study of hydrotropism i n r o o t s . Science 230:445-447. Janouch, K.L. 1927. E f f e c t of spacing and root pruning on the development of t r a n s p l a n t s . J . For. 25:62-67. Johnson, CM. 1981. The s t a t u s of c o n t a i n e r p l a n t i n g programs in Canada. 1. B r i t i s h Columbia, pp. 19-21. In 87 Proc. Can. C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 p. [Toronto, O n t a r i o , Sept. 1981 ] Khonje, O.F.X. 1976. The e f f e c t of c o n t a i n e r form on root d i s t r i b u t i o n and t r e e growth i n a t w e l v e - y e a r - o l d Douglas f i r stand. BSF t h e s i s (45p.). Univ. of B r i t i s h Columbia. Kinghorn, J.M. 1974. P r i n c i p l e s and concepts in c o n t a i n e r p l a n t i n g , pp. 8-18. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] Lackey, M. and A. Aim. 1982. E v a l u a t i o n of growing media f o r c u l t u r i n g c o n t a i n e r i z e d red pine and white spruce. Tree P l a n t e r s ' Notes 3 3 ( l ) : 3 - 7 . L a n d i s , T.D. 1981. The s t a t u s of c o n t a i n e r p l a n t i n g programs i n the Northern U n i t e d S t a t e s . 3. Northwestern United S t a t e s , pp. 67-70. In Proc. Can. C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 p. [Toronto, O n t a r i o , Sept. 1981] Le, C D . 1980. UBC MFAV - a n a l y s i s of v a r i a n c e and c o v a r i a n c e . R e p r i n t e d March 1983 (64 pp.). The Computing Centre, U n i v e r s i t y of B r i t i s h Columbia, Canada. L e d i g , F.T. 1983. The i n f l u e n c e of genotype and environment on dry matter d i s t r i b u t i o n i n p l a n t s . In Huxley, P.A. (ed.) Plant Research i n A g r o f o r e s t r y . Proc. of a C o n s u l t a t i v e Meeting Held i n N a i r o b i , 8-15 A p r i l , 1981. I n t e r n a t i o n a l C o u n c i l of Research i n A g r o f o r e s t r y , N a i r o b i , Kenya. 617 P. L e d i g , F.T., F.H. Bormann, and K.F. Wenger. 1970. The d i s t r i b u t i o n of dry matter growth between shoot and ro o t s i n l o b l o l l y p i n e . Bot. Gaz. 131:349-359. L i , S.Q. and H.B. Yu. 1981. The r e l a t i o n s h i p between c o n t a i n e r s i z e , growing medium and s e e d l i n g growth ( i n Ch i n e s e ) . F o r e s t r y Research Notes 1981(8):2-5. L i a n , Y.Q., Y.H. Zhou, W.H. Zeng, Y.L. L i u , S.Z. J i a n g , and H.Y. Wu. 1982. Development and s t a t u s of container-grown t r e e s e e d l i n g s i n ' s o u t h e r n China ( i n C h i n e s e ) . Research Report 1982(1):62-71 . Li a n g , J.R., Z. Zhou, X.Z. Sun, Y.Z. Gu, and K.S. Zhou. 1981. Comments on the f o r e s t t r e e s e e d l i n g c o n t a i n e r i z a t i o n i n c h i n a ( i n Ch i n e s e ) . F o r e s t Research Notes 1981(2):9-11. L i n , C.H. 1979. Grow Cryptomeria ( Cryptomeria japonica) s e e d l i n g s i n p o l y e t h y l e n e bags ( i n C h i n e s e ) . F o r e s t r y 88 Research Notes 1979(8):2-4. L i n e s , R. 1957. Pi nus contorta i n I r e l a n d , 1955. F o r e s t r y 30:139-150. L i n e s . R. and T.C. Booth. 1972. I n v e s t i g a t i o n of b a s a l sweep of lodgepole pine and shore pines i n Great B r i t a i n . F o r e s t r y 45:59-66. Martinsson, 0. 1983. Lodgepole pine i n the Swedish r e f o r e s t a t i o n - problems and p r o s p e c t s , pp. 49-52. In M. Murray (ed.) Proc. Fourth I n t e r n a t i o n a l Workshop, Canadian F o r e s t S e r v i c e / S c h o o l of A g r i c u l t u r e and Land Resource Management, U n i v e r s i t y of A l a s k a , p u b l i s h e d by USDA P a c i f i c Northwest F o r e s t and Range Experiment S t a t i o n , P o r t l a n d , Oregon. Matthews, R.G. 1971. Container s e e d l i n g p r o d u c t i o n : a p r o v i s i o n a l manual. Can. For. Serv., Pac. For. Res. Cent., I n f . Rept. BC-X-58, 58 p. Matthews, R.G. 1981. C o n t r a s t i n g approaches to c o n t a i n e r i z e d s e e d l i n g p r o d u c t i o n . I. B r i t i s h Columbia, pp. 115-122. In Proc. Can. C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 p. [Toronto, O n t a r i o , Sept. 1981 ] McClain, K.M. 1977. D i f f e r e n t i a l e f f e c t s of seedbed d e n s i t y on s e e d l i n g growth. Ont. Min. Nat. Resour., For. Res. Note. No. 7, pp. 1-4. McDonald, S.E. 1981. Root Development C o n t r o l Measures f o r Ponderosa Pine S e e d l i n g s Growth i n C o n t a i n e r s . Ph.D. D i s s e r t a t i o n (178pp.). Colorado S t a t e U n i v e r s i t y , F o r t C o l l i n s , U.S.A. McDonald, S.E.,.R.W. Tinus, and C P . P . Reid. 1980. Root morphology c o n t r o l i n f o r e s t t r e e s e e d l i n g c o n t a i n e r s . In Proc. Intermt. Nurseryman's Assoc. and West. For. Nursery Assoc. Combined Meet. p. 148. [Boise, Idaho, Aug. 1980] McDonald, S.E., R.W. Tinus and C P . P . Reid. 1984. M o d i f i c a t i o n of ponderosa pine root systems i n c o n t a i n e r s . J . E n v i r o n . Hort. 2:1-5. McDonald, S.E., R.W. Tinus and C P . P . Reid. 1984b. E f f e c t of CuC0 3 c o n t a i n e r w a l l treatment and mycorrhizae f u n g i i n o c u l a t i o n of growing medium on pine s e e d l i n g growth and root development. J . E n v i r o n . Hort. 2:5-8. M u l l i n , R.E. and L. Bowdery. 1977. E f f e c t s of seedbed d e n s i t y and nursery f e r t i l i z a t i o n on s u r v i v a l and growth of white spruce. For. Chron. 53:83-86. 89 Nussbaum, J . J . 1969. Chemical p i n c h i n g of r o o t s of c o n t a i n e r p l a n t s . C a l i f . A g r i c u l t u r e 23(10) : 16-18. O ' D r i s c o l l , J . 1980. The importance of lodgepole pine i n I r i s h f o r e s t r y . I r i s h For. 37:7-22. P e l l e t t , H., M. Litzow, and L. M a i n g u i s t . 1980. Use of metal compounds as root pruning agents. HortScience 15:308-309. Persson, P. 1982. I n s t a b i l i t y i n p l a n t a t i o n s - extent, causes and p o s s i b l e remedies, pp. 11-20, In H. Hulten (ed.) Root deformation of f o r e s t t r e e s e e d l i n g s - Proc. a Nordic symposium. The Swedish U n i v e r s i t y of A g r i c u l t u r a l S c i e n c e s , Department of F o r e s t . Y i e l d Research Rep. No. 11. P f e i f e r , A.R. 1982. F a c t o r s that c o n t r i b u t e to b a s a l sweep in lodgepole p i n e . I r i s h For. 39:7-16. Phipps, H.M. 1974a. Growing media a f f e c t s i z e of container-grown red p i n e . USDA For. Serv. North Cent. For. Exp. Stn. Res. Note NC-165, 4 P. Phipps, H.M. 1974b. I n f l u e n c e of growing media on growth and s u r v i v a l of container-grown s e e d l i n g s , pp. 398-400. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] Preston, R.J., J r . 1976. North American Trees (3rd Ed..). The Iowa State U n i v e r s i t y Press, Ames, Iowa (1976). Qian, Y.M. 1982. C u l t u r e of. Container-grown S e e d l i n g s ( i n C h i n e s e ) . F o r e s t r y P r ess. Racey, G.D., C. Glerum, and R.E. Hutchison. 1983. The p r a c t i c a l i t y of top-root r a t i o i n nursery stock c h a r a c t e r i z a t i o n . For. Chron. 59(5):240-243. Ramsay, K.L. and J.H. Smyth. 1981. S t a t i s t i c a l summary of c o n t a i n e r i z e d s e e d l i n g s and bareroot program i n Canada: 1980 s i t u a t i o n and p r o j e c t i o n s f o r 1983. pp. 57-58. In Proc. Can. C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 p. [Toronto, O n t a r i o , Sept. 1981] Rasanen, P.K. 1981. C o n t a i n e r i z e d f o r e s t t r e e s e e d l i n g p r o d u c t i o n and development p r o s p e c t s i n F i n l a n d and S c a n d i n a v i a , pp. 9-17. In Proc. Can. C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 p. [Toronto, O n t a r i o , Sept. 1981] S a u l , G.H. 1968. Copper s a f e l y c o n t r o l s r o o t s of tubed 90 s e e d l i n g s . Tree P l a n t e r s ' Notes 19(1):7-9. S c a r r a t t , J.B. 1972a. E f f e c t of tube diameter and spacing on the s i z e of tubed s e e d l i n g p l a n t i n g stock. Great Lake For. Res. Cent., S a u l t Ste. Marie. O n t a r i o . I n f . Rep. O-X-170. S c a r r a t t , J.B. 1972b. Container s i z e a f f e c t s dimensions of white spruce, Jack pine p l a n t i n g stock. Tree P l a n t e r s ' Notes 23(4):21-25. S c a r r a t t , J.B. 1973. Japanese paper pots f o r c o n t a i n e r i z e d p l a n t i n g of t r e e s e e d l i n g s . I. Tools and equipment. Can. For. Serv., S a u l t Ste. Marie, O n t a r i o . , I n f . Rep. O-X-188, 27 p. i l l u s . S c a r r a t t , J.B., C. Gerum, and C A . Plexman ( e d s . ) . 1981. Proceedings of the Canadian C o n t a i n e r i z e d Tree S e e d l i n g Symposium. COJFRC Symposium Proceedings O-P-10. September, 14-16, 1981. Toronto, O n t a r i o . S c a r r a t t , J.B. and D.E. Ketcheson. 1974. Japanese paper pots f o r c o n t a i n e r i z e d p l a n t i n g of t r e e s e e d l i n g s . I I . P r e l i m i n a r y e v a l u a t i o n of p l a n t i n g t o o l s . Can. For. Serv., S a u l t Ste. Marie, O n t a r i o . I n f . Rep. O-X-204, 13 P-Shoulders, E. 1961. E f f e c t of nursery bed d e n s i t y on l o b l o l l y and s l a s h pine s e e d l i n g s . J . For. 59:576-579. Sjoberg, N.E. 1974. The S t y r o b l o c k c o n t a i n e r system, pp. 217-228. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] Sjoberg, N.E. and R.D. Hagel. 1981. C o n t a i n e r i z e d s e e d l i n g p r o d u c t i o n i n B r i t i s h Columbia, p. 431 In Proc. Can. C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 p. [Toronto, O n t a r i o , Sept. 1981] Snedigar, C F . 1974. N u t r i e n t i n j e c t o r , pp. 142-143. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974]". Spencer, H.A. 1974. To "engineer" the c o n t a i n e r , pp. 229-232. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] Stevenson, D.S. 1967. E f f e c t i v e s o i l volume and i t s importance to root and top growth of p l a n t s . Can. J . S o i l Sc. 47:163-174. 91 Stevenson, D.S. 1970. S o i l volume and f e r t i l i z e r e f f e c t s on growth and n u t r i e n t contents of sunflower p l a n t s . Can. J . S o i l S c i . 50:353-360. Tanaka, Y. and R. Timmis. 1974. E f f e c t s of c o n t a i n e r d e n s i t y on growth and c o l d h a r d i n e s s of Douglas f i r s e e d l i n g s , pp. 181-186. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] Ter Bush, F.A. 1974. Container boom i n the Northwest, pp. 59-60. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. P u b l . 68, 458 p. [Denver, Colo., Aug. 1974] Ter Bush, F.A. 1977. Tree s e e d l i n g d e s c r i p t i o n code. Tree P l a n t e r s ' Notes 28(3&4):6. Tinus, R.W. 1977. Container s e e d l i n g p r o d u c t i o n : i n f o r m a t i o n needed and how to get i t . In Proc. 25th Northeast Tree Improv. Conf. [Orano, Me. J u l y 26-29, 1977, 19 p.] Tinus, R.W. 1981. Environmental c o n t r o l of s e e d l i n g p h y s i o l o g y , pp. 75-82. In Proc. Can. C o n t a i n e r i z e d Tree S e e d l i n g Symp. COJFRC Symp. Proc. O-P-10. 460 p. [Toronto, O n t a r i o , Sept. 1981] Tinus, R.W. and S.E. McDonald. 1979. How to Grow Tree S e e d l i n g s i n Co n t a i n e r s i n Greenhouse. USDA Fo r . Serv., Gen. Tech. Rep. RM-60. 256 p. Tinus, R.W., W.I. S t e i n , and W.E. Balmer (e d s . ) . 1974. Proceedings of the North America C o n t a i n e r i z e d F o r e s t Tree S e e d l i n g Symposium. Great P l a i n s A g r i c u l t u r a l C o u n c i l P u b l i c a t i o n No. 68. 458 p. Denver, Colorado, Aug. 26-29, 1974. Van den D r i e s s c h e , R. 1971. Growth of one-year-old D o u g l a s - f i r p l a n t s at four spacings. Ann. Bot. (London) 35:117-126. Van den D r i e s s c h e , R. 1982. R e l a t i o n s h i p between spacing and n i t r o g e n f e r t i l i z a t i o n of s e e d l i n g s i n the nursery, s e e d l i n g s i z e , and o u t p l a n t i n g performance. Ca. J . For. Res. 12:865-875. Van den D r i e s s c h e , R. 1983. E f f e c t of 5 f e r t i l i z e r s with and without i r o n on c o n t a i n e r s e e d l i n g s . P r o j e c t E. P. 753 Report, (personal communication). Van den D r i e s s c h e , R. 1984. S e e d l i n g spacing i n the nursery i n r e l a t i o n to growth, y i e l d , and performance of stock. For. Chron. Dec. 60(6):345-355. 92 Van Eerden, E. 1978. E f f e c t s of s i z e of container-grown stock on f i e l d performance. R e f o r e s t a t i o n Notes 3(2):12-13. Van Eerden, E. and J . Kinghorn ( e d s . ) . 1978. Proceedings: Root Form of P l a n t e d Trees Symposium. B.C. M i n i s t r y of For. and Pac. For. Res. Cent. J o i n t Rep. No. 8. 340 p. [May 1978, V i c t o r i a , B.C.] Waldron, R.M. (ed.). 1972. Proceedings of a Workshop on Container P l a n t i n g i n Canada. E n v i r o n . Can., Can. For. Serv., D i r e c t o r a t e of Program C o o r d i n a t i o n , I n f . Rep. DPC-X-2, 168 p. Walker, J.N. and D.C. S l a c k . 1970. P r o p e r t i e s of greenhouse c o v e r i n g m a t e r i a l s . Trans. A g r i c . Soc. Am. Eng. 13(5):682-684. Walters, J . 1961. The p l a n t i n g gun and b u l l e t : a new t r e e p l a n t i n g technique. For. Chron. 3 ( 2 ) : 94-95,107. Walters, J . 1974. E n g i n e e r i n g f o r i n j e c t i o n p l a n t i n g , pp. 242-243. In Proc. North Am. C o n t a i n e r i z e d For. Tree S e e d l i n g Symp., Great P l a i n s A g r i c . Counc. Publ. 68, 458 p. [Denver, Colo., Aug. 1974] Wall, R.E. 1975. Copper naphthenate t r e a t e d f l a t s t o x i c to pine s e e d l i n g s . Can. For. Serv. Bi-mon. Res. Notes. 31:4-5. Ward, T.M., J.R. Donnelly, and CM. C a r l . J r . 1981. The e f f e c t s of c o n t a i n e r s and media on sugar maple s e e d l i n g growth. Tree P l a n t e r s ' Notes 32(3):15-17. Wilson, B.C. and R.K. Campbell. 1972. Seedbed d e n s i t y i n f l u e n c e h e i g h t , diameter, and dry weight of 3-0 Douglas f i r . Tree P l a n t e r s ' Notes 23(2):1-4. Append ix 1. Japanese Paper Pot s t a t i s t i c s ( S c a r r a t t 1973) Pot s i z e 213 313 305 308 408 505 508 G05 608 808 1010 15 Breakdown ava i1ab i 1 i t y BH BH FH FH BH, FH VH, FH VH, FH VH, FH VH, FH VH, FH VH, FH p l a s t i c l a m i n a t e D i ameter (cm)' 1.9 . 3 3 3 3 .8 5 5 6 6 7 . 5 10 15 H e i g h t (cm) 13 13' 5 7 . 5 7 . 5 5 7 . 5 7 . 5 7 . 5 7 . 5 10 10 Volume cm 3 3 0 . 0 79 .0 29 . 3 44 .0 7 0 . 4 8 1 . 2 121.8 1 1G . 9 175 .4 274 .0 649 .5 1,461 .0 P o t s per s e t 1 ,400 700 532 532 336 420 420 280 280 168 84 39 S e t s per D i m e n s i o n s c a r t o n (cm) 30 30 x 118 30 .... 33 x 1 18 100 32 x 94 60 32 x 94 60 34 X 94 70 38 X 180 45 60 70 80 38 x 180 90 37 x 180 37 X 180 36 x 180 33 x 180 120 34 x 18Q P o t s p e r m ! 4 , 2 7 4 1 ,709 1 ,709 1 , 709 1 ,066 616 616 428 428 274 154 68 >4> co Append ix 2 . BC /CFS S t y r o b l o c k s t a t i s t i c s PSB NAME DIMENSION (cm ! ) N o . / b l k N o / m ! 211 2 313 4A 312 4 314 5 323 7 415A 8 415B 6 4 16 9 615 20 3 5 . 2 x 6 0 . 0 3 5 . 4 x 6 0 . 0 3 5 . 2 x 5 9 . 4 3 5 . 4 x 6 0 . 0 3 5 . 2 x 5 9 . 4 3 5 . 2 x 5 1 . 8 3 5 . 4 x 6 0 . 0 3 5 . 4 x 6 0 . 0 3 5 . 2 x 6 0 . 0 12x20 11x18 10x16 9x16 10x16 80 14x8 7x12 5x9 1 135 932 764 678 764 438 527 395 212 TOP Di (mm) 24 .0 27 .0 3 0 . 5 3 1 . 0 30. 5 39 .4 35 . 2 4 0 . 6 6 1 . 0 DEPTH VOL HOLE RIBS DIMENS. (mm) ( c m 3 ) (mm) (mm) 114.3 36 9 . 5 4 2 x 1 . 5 133.4 57 12 .0 4 2 x 1 . 5 127 .0 65 . 1 1 . 1 * 4 140 .0 76 13 .0 4 3x1 .8 2 2 8 . 6 121 -152.4 130 6 . 0 -149 .0 102 13 .0 - 3 x 1 . 8 165 .0 150 14 .0 6 4 x 2 . 0 152.4 336 -TAPER D:H 1 4 1 1*15' 1' 59 ' 1' 4 0 ' 2" 1 ' 1* 44 ' 1* 55 ' .21 .20 . 24 . 22 . 13 . 26 . 24 . 25 .40 P r o v i d e d by Dr . A . N . B u r d e t t , p l a n t p h y s i o l o g i s t . R e s e a r c h B r a n c h , B . C . F o r e s t S e r v i c e , V i c t o r i a , CANADA V8Z 5 J 3 . VO 95 Appendix 3 Spencer-Lemaire R o o t r a i n e r s s t a t i s t i c s Book S t y l e Volume Dimensions C a v i t i e s Books Trays (cm 3) (cm) /book / t r a y /case Ferdinand 40 1.9x1.9x10.2 6 1 7 30 F i v e s 65 2.5x2.5x10.8 5 1 4 36 Sixes 1 40 2.4x2.9x14.0 6 1 2 42 H i l l s o n 1 75 3.8x3.8x12.7 4 8 63 Tinus 350 3.8x5.1x18.4 4 1 0 25 Super 45 750 5.1x6.4x22.9 3 9 1 1 C i t e d from the P r i c e L i s t (Nov . 1st, 1982) of Spencer-Lemaire I n d u s t r i e s L i m i t e d i n Edmonton, A l b e r t a , CANADA'T5G 2Y3. Appendix 4 97 Appendix 5 N a t u r a l d i s t r i b u t i o n of Thuja ori ent al i s 98 Appendix 6 F r i t t e d Trace Elements (F.T.E.) P r e s c r i p t i o n Manganese (Mn) 7.5% Iron (Fe) 18% Zinc (Zn) 7% Copper (Cu) 3% Boron (B) 3% F.T.E. was manufacured by Green V a l l e y F e r t i l i z e r & Chemical Co. L t d . i n Surrey, B.C., CANADA. 99 Appendix 7 F e r t i l i z e r 20-20-20 P r e s c r i p t i o n T o t a l N i t r o g e n (N) 20% A v a i l a b l e Phosphoric a c i d ( P 2 0 5 ) 20% So l u b l e Potassium (K 20) 20% Boron (B) 0.026% • Molybdenum (Mo) 0.001% Iron (Fe) 0.100% Copper (Cu) 0.051% Manganese (Mn) = 0.051% Zinc (Zn) 0.110% Complete f e r t i l i z e r 20-20-20 was manufacured by Green V a l l e y F e r t i l i z e r L t d . i n Surrey, B.C., CANADA V3T 4W8 Appendix 8. Data Analy ***** p INUS-* -HEIGHT IN SEEDLING DENSITY ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SQ ERROR F-VALUE PROB BLOCKS 2 18.903 9 .4514 3 .6386 0 .12581 SPACES 2 2253 .9 1126.9 433 .85 0 . 2 1 0 5 6 E - 0 4 ERROR 4 10 .390 2 .5975 TOTAL 8 2283 .2 GRAND MEAN 6 5 . 7 9 6 STANDARD DEVIATION OF VARIABLE 1 IS 16.894 FREQUENCIES, MEANS, STANDARD DEVIATIONS BLOCKS .1 .2 .3 MN YIELD 1 6 7 . 3 6 6 6 . 1 6 63 .87 ******************************************************************************** SPACES 1. 2. 3 . MN YIELD 1 8 6 . 8 3 61 .91 4 8 . 6 5 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 . 0 1 6 9 THERE ARE 3 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3) ( 2) ( 1 ) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 6 9 3 E - 0 2 SECONDS. ANALYSIS COMPLETE. O ***** PINUS-*-DIAMETER IN SEEDLING DENSITY ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 0.24667E-02 0.12333E-02 1.4231 0.34137 SPACES 2 0.20647 0.10323 119.12 0.27268E-03 ERROR 4 0.346S7E-02 0.86667E-03 TOTAL 8 0.21240 GRAND MEAN 2.1533 STANDARD DEVIATION OF VARIABLE 1 IS 0.16294 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS . 1 . 2 . 3 MN YIELD 1 2.177 2.143 2.140 SPACES 1. 2. 3. MN YIELD 1 1.940 2.243 2.277 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3.9336 4.0169 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( D ( 2, 3) TIME FOR MULTIPLE RANGE TESTS IS 0.1276E-02 SECONDS. ANALYSIS COMPLETE. r-1 O ***** PINUS-*-HEIGHT:DIAMETER RATIO IN SEEDLING DENSITY ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 2.3950 1.1975 0.93607 0.46401 SPACES 2 895.43 447.71 349.97 0.32289E-04 ERROR 4 5.1172 1.2793 TOTAL 8 902.94 GRAND MEAN 31.519 STANDARD DEVIATION OF VARIABLE 1 IS 10.624 FREQUENCIES, MEANS, STANDARD DEVIATIONS . • ******************************************************************************** BLOCKS .1 .2 .3 MN YIELD 1 31.86 31.91 30.79 ***************************************** SPACES 1. 2. 3. MN YIELD 1 45.14 27.90 21.52 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3.9336 4.0169 THERE ARE 3 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3) ( 2) ( D TIME FOR MULTIPLE RANGE TESTS IS 0.1679E-02 SECONDS. ANALYSIS COMPLETE. O CO ***** PINUS-*-SHOOT:ROOT DRY WEIGHT RATIO IN SEEDLING DENSITY ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS SPACES ERROR TOTAL 26289E-01 70269 16978E-01 74596 0 . 1 3 1 4 4 E - 0 1 0 .35134 0 . 4 2 4 4 4 E - 0 2 3 .0969 82 .777 0 .15398 0 . 5 5 6 5 4 E - 0 3 GRAND MEAN 1.4678 STANDARD DEVIATION OF VARIABLE 1 IS 0 .30536 FREQUENCIES, MEANS, STANDARD DEVIATIONS ****************************************** *'* ******* *,* ************* .** ************ BLOCKS .1 .2 .3 MN YIELD 1 1.453 1.540 . 1,410 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *'* * * * * * *'* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * SPACES 1. 2. 3 . MN YIELD 1 1 .860 1.313 1.230 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 .0169 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3 , 2) ( 1) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 2 6 3 E - 0 2 SECONDS. ANALYSIS COMPLETE. O ***** piNUS-*-TOTAL DRY WEIGHT INI SEEDLING DENSITY ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE OF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS SPACES ERROR TOTAL 1694.5 0.10183E+06 9150.1 0.11268E+06 847 . 23 50916. 2287.5 0.37037 22.258 0.71191 0.67974E-02 GRAND MEAN 1116.3 STANDARD DEVIATION OF VARIABLE -1 IS 118.68 FREQUENCIES, MEANS, STANDARD DEVIATIONS ****************************************************************** *•* ************ BLOCKS .1 .2 .3 MN YIELD 1 1113. 1 134 . 1101. ************************************ *_* ************ SPACES 1 . 2. 3. MN YIELD 1 965.9 1 193. 1 190.. DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3.9336 4.0169 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( D ( 3, 2) TIME FOR MULTIPLE RANGE TESTS IS 0.1562E-02 SECONDS. ANALYSIS COMPLETE. O ***** T H U J A - * - H E IGHT IN SEEDLING DENSITY ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 12.378 6 .1888 0 .28688 0 .76484 SPACES 2 1292.4 646.21 29 .955 0 . 3 9 1 7 2 E - 0 2 ERROR 4 8 6 . 2 9 0 21 .573 TOTAL 8 1391.1 GRAND MEAN 9 4 . 0 2 7 STANDARD DEVIATION OF VARIABLE 1 IS 13.187 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************************.******************************* BLOCKS .1 .2 .3 MN YIELD 1 9 3 . 4 9 9 5 . 6 5 9 2 . 9 3 ***************************************** SPACES 1. 2. 3 . MN YIELD 1 110.9 8 6 . 5 9 8 4 . 5 6 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 . 0 1 6 9 THERE ARE . 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT S IZE) WHICH ARE LISTED AS FOLLOWS ( 3 , 2) ( D TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 3 0 2 E - 0 2 SECONDS. ANALYSIS COMPLETE. O ***** THUUA-*-DIAMETER IN SEEDLING DENSITY ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS SPACES ERROR TOTAL 0 . 4 9 5 5 6 E - 0 2 0 .15022E -01 0 . 5 3 7 7 8 E - 0 2 0 .25356E -01 24778E-02 75111E-02 13444E-02 1.8430 5 .5868 0 .27085 0 . 6 9 4 9 4 E - 0 1 GRAND MEAN 1 .4422 STANDARD DEVIATION OF VARIABLE 1 IS 0 . 5 6 2 9 8 E - 0 1 FREQUENCIES, MEANS, STANDARD DEVIATIONS **************************************************** BLOCKS .1 .2 .3 MN YIELD 1 1.417 1 .473 1 .437 ******************************************************************************** SPACES 1. 2 . 3 . MN YIELD 1 1.393 1.440 1.493 ANALYSIS COMPLETE ***** THUJA-* -HEIGHT:DIAMETER RATIO IN SEEDLING DENSITY ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SQ MEAN SQ ERROR F-VALUE PROB BLOCKS SPACES ERROR TOTAL 1.6671 9 1 9 . 7 5 50 .335 971 .75 0 .83354 459 .87 12.584 0 .66240E -01 36 .545 0 .93691 0 . 2 6 9 2 3 E - 0 2 GRAND MEAN 6 5 . 9 3 4 STANDARD DEVIATION OF VARIABLE 1 IS 11.021 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************************** BLOCKS .1 .2 .3 MN YIELD 1 6 6 . 5 3 6 5 . 5 2 6 5 . 7 6 ************************************** SPACES 1. 2. 3 . MN YIELD 1 80 .11 6 0 . 4 5 57 .24 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 . 0 1 6 9 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3 , 2) ( D TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 5 6 2 E - 0 2 SECONDS. ANALYSIS COMPLETE. O CO ***** THUJA-*-SHOOT:ROOT DRY WEIGHT RATIO IN SEEDLING DENSITY ***** SOURCE BLOCKS SPACES ERROR TOTAL ANALYSIS OF VARIANCE - YIELD 1 DF SUM SO MEAN SO ERROR F-VALUE 0 .248G7E-01 0 .27740 0 .10853 0 .41080 12433E-01 13870 27133E-01 0 .45823 5 .1118 PROB 0 .66193 0 . 7 9 0 8 6 E - 0 1 GRAND MEAN 2 . 1 2 0 0 STANDARD DEVIATION OF VARIABLE 1 IS 0 .22661 FREQUENCIES, MEANS, STANDARD DEVIATIONS **************************************************** BLOCKS .1 .2 .3 MN YIELD 1 2 .107 2 .063 2 . 1 9 0 ************************************** SPACES 1. 2. 3 . MN YIELD 1 2 . 3 3 3 2 .123 1.903 ANALYSIS COMPLETE ***** THUJA -* -TOTAL DRY WEIGHT IN SEEDLING DENSITY ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 3382 .2 1691.1 0 .44460 0 .66933 SPACES 2 2548 .9 1274.4 0 .33507 0 .73360 ERROR 4 • 15214. 3803 .6 TOTAL 8 21145. GRAND MEAN 5 9 5 . 4 0 STANDARD DEVIATION OF VARIABLE 1 IS 51 .412 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************************** BLOCKS .1 .2 .3 MN YIELD 1 590 .1 6 2 1 . 3 574 .7 ******************************************************************************** SPACES 1. 2. 3 . MN YIELD 1 6 1 2 . 9 572 .7 6 0 0 . 7 ANALYSIS COMPLETE ***** PINUS-* -SHOOT DRY WEIGHT IN CONTAINER VOLUME ***** SOURCE BLOCKS VOLUME ERROR TOTAL ANALYSIS OF VARIANCE - YIELD 1 DF SUM SO MEAN SO ERROR F-VALUE 4 2 8 14 25981. 0.61317E+OG 34025. 0.67318E+06 6 4 9 5 . 2 0.30659E+06 4253 . 1 1 .5272 72 .085 PROB 28241 76390E- 05 GRAND MEAN 1145 . 5 STANDARD DEVIATION OF VARIABLE 1 IS 219 .28 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 .4 .5 MN YIELD 1 1219. 1095. 1154. 1139. 1120. ******************************************************************************** VOLUME 1. 2. 3 . MN YIELD 1 9 3 2 . 5 1087. 1417. DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 . 2 5 7 0 3 . 3 9 6 0 THERE ARE 3 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( D ( 2) ( 3) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 6 7 9 E - 0 2 SECONDS. ANALYSIS COMPLETE. ***** PINUS-* -ROOT DRY WEIGHT IN CONTAINER VOLUME ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 4 9 8 5 8 . 0 2464 .5 0 .60216 0 .67198 VOLUME 2 0.27279E+06 0.13639E+06 33 .325 0 . 1 3 1 8 9 E - 0 3 ERROR 8 32742. 4092 .8 TOTAL 14 0.31539E+06 GRAND MEAN 8 0 6 . 5 1 STANDARD DEVIATION OF VARIABLE • 1 IS 150.09 FREQUENCIES, MEANS, STANDARD DEVIATIONS BLOCKS .1 .2 .3 .4 .5 MN YIELD 1 8 3 7 . 7 8 0 2 . 0 8 1 4 . 3 760 .7 817 .9 ******************************************************************************** VOLUME 1. 2. 3 : MN YIELD 1 6 5 5 . 4 781 .4 982 .8 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 . 2 5 7 0 3 . 3 9 6 0 THERE ARE 3 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( D ( 2) ( 3 ) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 4 1 9 E - 0 2 SECONDS. ANALYSIS COMPLETE. ***** PINUS-*-SHOOT:ROOT DRY WEIGHT RATIO IN CONTAINER VOLUME ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 4 0 .12077 0 . 3 0 1 9 3 E - 0 1 0 .70342 0 .61131 VOLUME 2 0 . 4 6 8 1 3 E - 0 1 0 . 2 3 4 0 7 E - 0 1 0 .54531 0 .59977 ERROR 8 0 .34339 0 . 4 2 9 2 3 E - 0 1 TOTAL 14 0 .51097 GRAND MEAN 1.4847 STANDARD DEVIATION OF VARIABLE 1 IS 0 .19104 FREQUENCIES, MEANS, STANDARD DEVIATIONS ************************************* BLOCKS .1 .2 .3 .4 .5 MN YIELD 1 1 .640 1.407 1.463 1.520 1.393 ******************************************************************************** VOLUME 1. 2. 3 . MN YIELD 1 1 .460 1.432 1.562 ANALYSIS COMPLETE ***** P INUS - * -TOTAL DRY WEIGHT IN CONTAINER VOLUME ***** 1 ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 4 51227. 12807. 0 .93803 0 .48896 VOLUME 2 0.17017E+07 0.85083E+06 62 .318 0 . 1 3 2 3 4 E - 0 4 ERROR 8 0.10922E+06 13653. TOTAL 14 0.18621E+07 GRAND MEAN 1952 .0 STANDARD DEVIATION OF VARIABLE 1 IS 3 6 4 . 7 0 FREQUENCIES, MEANS, STANDARD DEVIATIONS BLOCKS . 1 .2 .3 .4 .5 MN YIELD 1 2057. 1897. 1969. 1900. 1937. + ******************* VOLUME 1. 2. 3 . MN YIELD 1 1588. 1868. 2400. DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 . 2 5 7 0 3 . 3 9 6 0 THERE ARE 3 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( D ( 2) ( 3) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 4 0 6 E - 0 2 SECONDS. ANALYSIS COMPLETE. ***** THlMA-* -SHOOT DRY WEIGHT IN CONTAINER VOLUME ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 4 14260. 3 5 6 5 . 0 0 .93557 0 .49011 VOLUME 2 52022. 26011. 6 .8261 0 . 1 8 6 3 6 E - 0 1 ERROR 8 30484. 3810 .5 TOTAL 14 96766. GRAND MEAN 529 .71 STANDARD DEVIATION OF VARIABLE 1 IS 83 .137 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************************** BLOCKS .1 .2 .3 .4 .5 MN YIELD 1 5 4 7 . 3 5 1 6 . 3 558 .4 5 5 1 . 3 4 7 5 . 2 ************************************* VOLUME 1. 2 . 3 . MN YIELD 1 4 5 2 . 8 5 4 0 . 5 595 .8 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 . 2 5 7 0 3 . 3 9 6 0 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 1, . 2) ( 2 , 3) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 3 2 8 E - 0 2 SECONDS. ANALYSIS COMPLETE. ***** THUJA-* -ROOT DRY WEIGHT IN CONTAINER VOLUME ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO ' MEAN SO ERROR F-VALUE PROB BLOCKS 4 2036 .3 509 .08 0 .64272 0 .64715 VOLUME 2 19506. 9 7 5 2 . 8 12.313 0 . 3 6 1 4 9 E - 0 2 ERROR 8 6336 .6 792 .07 TOTAL 14 27879. GRAND MEAN 254 .51 STANDARD DEVIATION OF VARIABLE 1 IS 44 .624 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 .4 .5 MN YIELD 1 2 6 6 . 3 2 5 9 . 3 250 .4 262 .8 233 .7 ************************************************** VOLUME 1. 2. 3 . MN YIELD 1 2 1 3 . 5 248 .7 301 .3 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 . 2 5 7 0 3 . 3 9 6 0 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 1 , 2 ) ( 3) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 7 3 2 E - 0 2 SECONDS. ANALYSIS COMPLETE. ***** THUJA-*-SHOOT:ROOT DRY WEIGHT RATIO IN CONTAINER VOLUME ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SQ MEAN SO ERROR F-VALUE PROB BLOCKS VOLUME ERROR TOTAL 4 2 8 14 17431 18352 1S561 52344 0 . 4 3 5 7 7 E - 0 1 0 . 9 1 7 6 0 E - 0 1 0 . 2 0 7 0 2 E - 0 1 2 .1050 4 .4325 0 .17192 0 . 5 0 6 3 1 E - 0 1 GRAND MEAN 2 . 1 6 2 0 STANDARD DEVIATION OF VARIABLE 1 IS 0 .19336 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 .4 .5 MN YIELD 1 2 . 1 4 0 2 . 0 4 0 2 . 3 5 0 2 .197 2 .083 *************************************************** *•* **,************************* VOLUME 1 . 2. 3 . MN Y I E L D ' 1 2 . 2 3 0 2 . 2 5 0 2 :006 ANALYSIS COMPLETE ***** THUJA-* -TOTAL DRY WEIGHT IN CONTAINER VOLUME ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SQ ERROR F-VALUE PROB BLOCKS 4 24314. 6078 .4 0 .77455 0 .57148 VOLUME 2 0.13336E+06 66679. 8 .4967 0 . 1 0 4 9 7 E - 0 1 ERROR 8 62781 . 7847 .7 TOTAL 14 0.22045E+06 GRAND MEAN 784.21 STANDARD DEVIATION OF VARIABLE 1 IS 125.49 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************************** BLOCKS .1 .2 .3 .4 .5 MN YIELD 1 8 1 3 . 6 7 7 5 . 6 808 .8 814.1 708 .9 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *'.* * * * * * * * * * * * * * * VOLUME 1 . 2 . 3 . MN YIELD 1 6 6 6 . 3 7 8 9 . 2 -897 .1 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 . 2 5 7 0 3 . 3 9 6 0 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 1, 2) ( 2, 3) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 5 2 3 E - 0 2 SECONDS. ANALYSIS COMPLETE. C O ***** P INUS-* -HEIGHT IN FERTILIZER REGIME (100 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 136.22 6 8 . 1 1 0 3 .1477 0 . 1 5 0 9 5 REGIME 2 3 7 . 8 0 5 18.903 0 .87358 0 .48441 ERROR 4 8 6 . 5 5 2 21 .638 TOTAL 8 260 .58 ' GRAND MEAN 100.62 STANDARD DEVIATION OF VARIABLE 1 IS 5 .7072 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 MN YIELD 1 9 5 . 5 7 105 .0 101.3 ******************************************************************************** REGIME 1. 2. 3 . MN YIELD 1 . 9 8 . 9 3 103.5 9 9 . 4 3 ANALYSIS COMPLETE ***** PINUS-* -DIAMETER IN FERTILIZER REGIME (100 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE BLOCKS REGIME ERROR TOTAL DF SUM SO 2 0 . 6 6 6 6 7 E - 0 2 2 0 . 9 8 0 0 0 E - 0 2 4 0 .30133E -01 8 0 .46600E -01 MEAN SO O.33333E -02 0 . 4 9 0 0 0 E - 0 2 O .75333E -02 ERROR F-VALUE O.44248 0 .65044 PROB 0 .67050 0 .56941 GRAND MEAN 2 . 2 4 3 3 STANDARD DEVIATION OF VARIABLE 1 IS 0 .76322E -01 FREQUENCIES, MEANS, STANDARD DEVIATIONS ****************************************** *•*•**•* ******** ************************* BLOCKS .1 .2 .3 MN YIELD 1 2 . 2 4 3 2 .277 2 . 2 1 0 ******************************************************************************** REGIME • 1 . MN YIELD 1 2 . 2 8 0 2 . 250 2 . 200 ANALYSIS COMPLETE NJ O ***** PINUS-* -SHOOT DRY WEIGHT IN FERTILIZER REGIME (100 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 5002 .9 2501 .5 2 .6522 0 . 18482 REGIME 2 1191 .7 595 .86 0 .63176 0 . 57752 ERROR 4 3772 .7 943 . 16 TOTAL 8 9967 . 3 GRAND MEAN 6 5 0 . 8 9 STANDARD DEVIATION OF VARIABLE 1 IS 35 .297 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************** *~* ********************* BLOCKS .1 .2 .3 MN YIELD 1 6 3 0 . 9 6 8 4 . 0 6 3 7 . 7 **************************************************** REGIME 1. 2. 3 . MN YIELD 1 6 6 3 . 6 6 5 3 . 3 6 3 5 . 7 ANALYSIS COMPLETE. ***** PINUS-* -ROOT DRY WEIGHT IN FERTILIZER REGIME (100 PPM) ***** SOURCE BLOCKS REGIME ERROR TOTAL ANALYSIS OF VARIANCE - YIELD 1 DF SUM SO MEAN SO ERROR F-VALUE 1011.3 2560 .3 1010.1 4581 .8 505 .65 1280.2 252 .53 2 .0023 5 .0693 PROB 0 .24971 0 .8004 1E- 01 GRAND MEAN 3 6 8 . 1 3 STANDARD DEVIATION OF VARIABLE 1 IS 23 .932 FREQUENCIES, MEANS, STANDARD DEVIATIONS *********************************** BLOCKS .1 .2 .3 MN YIELD 1 3 5 6 . 3 3 8 2 . 0 366.1 ******************************************************************************** REGIME 1. 2. 3 . MN YIELD 1 3 9 1 . 3 3 6 1 . 3 351 .7 ANALYSIS COMPLETE *** PINUS-* -HEIGHT:DIAMETER RATIO IN FERTILIZER REGIME (100 PPM) *** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 22 . . 166 11.083 1 .5617 0. .31531 REGIME 2 12 . 728 6 .3638 0 .89676 0. .47669 ERROR 4 28 . . 386 7 .0965 TOTAL 8 63 . . 279 GRAND MEAN 4 5 . 1 9 4 STANDARD DEVIATION OF VARIABLE 1 IS 2 .8125 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************************** BLOCKS .1 .2 .3 MN YIELD 1 4 2 . 9 8 4 6 . 4 3 46 .17 ******************************************************************************** REGIME 1. 2. 3 . MN YIELD 1 4 3 . 5 5 4 6 . 3 3 4 5 . 7 0 ANALYSIS COMPLETE * P lNUS-* -SHOOT:ROOT DRY WEIGHT RATIO IN FERTILIZER REGIME (100 PPM) ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 0 .72GG7E-02 0 . 3 6 3 3 3 E - 0 2 1.3133 0 .36438 REGIME 2 0 .10867E -01 0 . 5 4 3 3 3 E - 0 2 1.9639 0 .25458 ERROR 4 0 .11067E -01 0 . 2 7 6 6 7 E - 0 2 TOTAL 8 0 .29200E -01 GRAND MEAN 1 .8567 STANDARD DEVIATION OF VARIABLE 1 IS 0 .60415E -01 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************************** BLOCKS .1 .2 .3 MN YIELD 1 1.873 1.880 1.817 ************************************* REGIME 1. 2. 3 . MN YIELD 1 1 .810 1.893 1.867 ANALYSIS COMPLETE ***** THUJA-* -HEIGHT IN FERTILIZER REGIME (100 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 101.39 50 .697 1.1648 0 .39936 REGIME 2 224 .68 112.34 2.5811 0 .19060 ERROR 4 174.09 4 3 . 5 2 3 TOTAL 8 500 .17 GRAND MEAN 9 5 . 6 5 3 STANDARD DEVIATION OF VARIABLE 1 IS 7 .9070 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 MN YIELD 1 100 .4 9 3 . 2 5 93.31 REGIME 1. 2. 3 . MN YIELD 1 9 7 . 0 8 100.9 8 8 . 9 5 ANALYSIS COMPLETE ***** THUJA-* -DIAMETER IN FERTILIZER REGIME (100 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PRCB BLOCKS 2 0 . 7 7 5 5 6 E - 0 2 0 . 3 8 7 7 8 E - 0 2 0 .87250 0 .48477 REGIME 2 0 . 5 7 5 5 6 E - 0 2 0 . 2 8 7 7 8 E - 0 2 0 .64750 0 .57067 ERROR 4 0 . 1 7 7 7 8 E - 0 1 0 . 4 4 4 4 4 E - 0 2 TOTAL 8 0 . 3 1 2 8 9 E - 0 1 GRAND MEAN 1 . 4389 STANDARD DEVIATION OF VARIABLE 1 IS 0 .62539E -01 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************************** BLOCKS .1 .2 .3 MN YIELD 1 1 .480 1.413 1.423 ************************************** REGIME 1. 2. 3 . MN YIELD 1 1 .430 1.413 1.473 ANALYSIS COMPLETE. ***** THUdA-*-SHOOT DRY WEIGHT IN FERTILIZER REGIME (100 PPM) ***** SOURCE BLOCKS REGIME ERROR TOTAL ANALYSIS OF VARIANCE - YIELD 1 DF SUM SO MEAN SO ERROR F-VALUE 669 .44 5044 .6 3776 .9 9 4 9 0 . 9 334 . 72 2522 .3 944.21 0 .35450 2 .67 13 PROB 0 .72155 0 .18331 GRAND MEAN 3 1 3 . 2 0 STANDARD DEVIATION OF VARIABLE 1 IS 34 .444 FREQUENCIES, MEANS, STANDARD DEVIATIONS **************************************** BLOCKS .1 .2 .3 MN YIELD 1 3 2 4 . 7 ' 311.1 303 .9 *************************************************** REGIME 1. 2. 3 . MN YIELD 1 3 3 0 . 8 329 .1 279 .7 ANALYSIS COMPLETE ***** THUJA-* -ROOT DRY WEIGHT IN FERTILIZER REGIME (100 PPM) ***** SOURCE BLOCKS REGIME ERROR TOTAL ANALYSIS OF VARIANCE - YIELD 1 DF SUM SO MEAN SO ERROR F-VALUE 167.79 1471 .7 151 . 25 1790.7 8 3 . 8 9 3 735 .84 37 .813 2 .2186 19.460 PROB 0 .22476 O .86858E -02 GRAND MEAN 171.87 STANDARD DEVIATION OF VARIABLE 1 IS 14.961 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 MN YIELD 1 177.7 167 .5 170.4 ******************************************************************************** REGIME 1. 2. 3 . MN YIELD 1 189 .5 166.7 159.5 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 . 0 1 6 9 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3 , 2) ( D TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 6 0 1 E - 0 2 SECONDS. ANALYSIS COMPLETE. M 00 *** THUJA-* -HEIGHT:DIAMETER RATIO IN FERTILIZER REGIME (100 PPM) *** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 8 .4772 4 .2386 0 .48148 0 .64959 REGIME 2 186.25 9 3 . 1 2 5 10.578 0 . 2 5 2 8 2 E - 0 1 ERROR 4 35 .213 8 .8032 TOTAL 8 229 .94 GRAND MEAN 66 .971 STANDARD DEVIATION OF VARIABLE 1 IS 5 .3612 FREQUENCIES, MEANS, STANDARD DEVIATIONS ************************************ BLOCKS .1 .2 .3 MN YIELD 1 6 8 . 3 4 6 6 . 2 6 66 .31 ******************************************************************************** REGIME 1. 2. 3 . MN YIELD 1 6 8 . 4 4 71 .66 60 .81 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 . 9 3 3 6 4 . 0 1 6 9 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3) ( 1 . 2 ) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 3 1 5 E - 0 2 SECONDS. ANALYSIS COMPLETE." * THUJA-*-SHOOT:ROOT DRY WEIGHT RATIO IN FERTILIZER REGIME (100 PPM) ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 0 . 1 0 4 2 2 E - 0 1 0 . 5 2 1 1 1 E - 0 2 0 .16599 0 .85260 REGIME 2 0 . 6 5 6 2 2 E - 0 1 0 . 3 2 8 1 1 E - 0 1 1.0451 0 .43137 ERROR 4 0 .12558 0 . 3 1 3 9 4 E - 0 1 TOTAL 8 0 .20162 GRAND MEAN 1.9144 STANDARD DEVIATION OF VARIABLE 1 IS 0 .15875 FREQUENCIES, MEANS, STANDARD DEVIATIONS ************************************** BLOCKS .1 .2 .3 MN YIELD 1 1.943 1.933 1.867 **************************************** REGIME 1. 2. 3 . MN YIELD 1 1.837 2 . 0 3 3 1.873 ANALYSIS COMPLETE ***** P INUS-* -HEIGHT IN FERTILIZER REGIME (250 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SQ MEAN SQ ERROR F-VALUE PROB BLOCKS 2 2 .2340 1.1170 - 0 .66362E -01 0 . 9 3 6 8 0 REGIME 2 34.311 17.155 1.0192 0 .43880 ERROR 4 67 .327 16.832 TOTAL 8 103.87 GRAND MEAN 9 3 . 3 6 9 STANDARD DEVIATION OF VARIABLE 1 IS 3 .6033 FREQUENCIES, MEANS, STANDARD DEVIATIONS ************************************* BLOCKS .1 .2 .3 MN YIELD 1 9 2 . 6 9 9 3 . 8 8 9 3 . 5 3 ******************************************************************************** REGIME 1. 2. 3 . MN YIELD 1 9 5 . 4 0 9 3 . 9 7 9 0 . 7 3 ANALYSIS COMPLETE ***** P lNUS-* -D IAMETER IN FERTILIZER REGIME (250 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 0 . 3 4 8 6 7 E - 0 1 0 . 1 7 4 3 3 E - 0 1 9 .8679 0 . 2 8 3 9 9 E - 0 1 REGIME 2 0 . 6 1 0 6 7 E - 0 1 0 . 3 0 5 3 3 E - 0 1 17.283 0 . 1 0 7 5 7 E - 0 1 ERROR 4 0 . 7 0 6 6 7 E - 0 2 0 . 1 7 6 6 7 E - 0 2 TOTAL 8 0 .10300 GRAND MEAN 2 .2367 STANDARD DEVIATION OF VARIABLE 1 IS 0 .11347 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 MN YIELD 1 2 .267 2 . 1 5 0 2 .293 ************************************** REGIME 1. 2. 3 . MN YIELD 1 2 . 3 5 0 2 . 2 0 3 2 .157 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 .0169 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3 , 2) ( D TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 6 8 0 E - 0 2 SECONDS. ANALYSIS COMPLETE. CO ***** PINUS-* -SHOOT DRY WEIGHT IN FERTILIZER REGIME (250 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SQ ERROR F-VALUE PROB BLOCKS REGIME ERROR TOTAL 9911 .6 13478. 1614.6 25005. 4955 . 8 6739 . 2 403 .64 12 .278 16.696 0 . 1 9 6 2 2 E - 0 1 0 . 1 1 4 4 4 E - 0 1 GRAND MEAN 6 7 7 . 6 4 STANDARD DEVIATION OF VARIABLE 1 IS 55 .907 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 MN YIELD 1 6 8 9 . 5 6 3 2 . 4 711.1 ******************************************************************************** REGIME 1. MN YIELD 1 7 2 6 . 9 6 7 3 . 6 632 .4 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 . 0 1 6 9 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS DF ELEMENTS, NO PAIR.OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3 , 2 ) ( D TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 3 0 3 E - 0 2 SECONDS. ANALYSIS COMPLETE. CO CO ***** PINUS-* -ROOT DRY WEIGHT IN FERTILIZER REGIME (250 PPM) ***** SOURCE BLOCKS REGIME ERROR TOTAL ANALYSIS OF VARIANCE - YIELD 1 DF SUM SO MEAN SO ERROR F-VALUE 6 1 5 8 . 3 4783 . 1 8 0 5 . 1 9 11747. 3079 .2 2391 . 5 2 0 1 . 3 0 15.297 11.881 PROB 0 . 1 3 3 7 0 E - 0 1 0 . 2 0 7 6 1 E - 0 1 GRAND MEAN 3 4 5 . 3 8 STANDARD DEVIATION OF VARIABLE 1 IS 38 .319 FREQUENCIES, MEANS, STANDARD DEVIATIONS **************************************** BLOCKS .1 .2 .3 MN YIELD 1 3 6 4 . 8 308 .4 362 .9 ******************************************************************************** REGIME 1. 2. 3 . MN YIELD 1 3 7 5 . 9 340.1 320.1 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 . 9 3 3 6 4 . 0 1 6 9 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3 , 2) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 2 8 8 E - 0 2 SECONDS. ANALYSIS COMPLETE . 00 **** PINUS-* -HEIGHT:DIAMETER RATIO IN FERTILIZER REGIME (250 PPM) *** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 13.377 6 .6884 1.9891 0 .25137 REGIME 2 4 .3891 2 .1945 0 .65265 0 .56846 ERROR 4 13.450 3 .3625 TOTAL 8 31 .216 GRAND MEAN 4 2 . 1 3 0 STANDARD DEVIATION OF VARIABLE 1 IS 1.9753 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************************** BLOCKS .1 .2 .3 MN YIELD 1 4 1 . 1 7 4 3 . 8 5 4 1 . 3 7 ************************************ REGIME 1. 2. 3 . MN YIELD 1 4 1 . 1 8 4 2 . 8 3 4 2 . 3 8 ANALYSIS COMPLETE. On * PINUS-*-SHOOT:ROOT DRY WEIGHT RATIO IN FERTILIZER REGIME (250 PPM)* ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 0 . 3 4 8 6 7 E - 0 1 0 .17433E -01 0 .79303 0 .51276 REGIME 2 0 . 7 8 0 0 0 E - 0 2 0 . 3 9 0 0 0 E - 0 2 0 .17741 0 .84369 ERROR 4 0 . 8 7 9 3 3 E - 0 1 0 .21983E -01 TOTAL 8 0 . 1 3 0 6 0 GRAND MEAN 2 .0567 STANDARD DEVIATION OF VARIABLE 1 IS 0 .12777 FREQUENCIES, MEANS, STANDARD DEVIATIONS ************************************************** BLOCKS .1 . .2 .3 MN YIELD 1 1 .970 2 . 1 1 3 2 .087 ******************************************************************************** REGIME 1. 2. 3 . MN YIELD 1 2 .027 2 .047 2 .097 ANALYSIS COMPLETE ***** THUJA-* -HEIGHT IN FERTILIZER REGIME (250 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SQ ERROR F-VALUE PROB BLOCKS 2 68 .24G 34 .123 1.7433 0 .28547 REGIME 2 635 .74 317 .87 16.239 0 . 1 2 0 2 4 E - 0 1 ERROR 4 78 .296 19.574 TOTAL 8 782 .28 GRAND MEAN 87 .71 1 STANDARD DEVIATION OF VARIABLE 1 IS 9 .8887 FREQUENCIES, MEANS, STANDARD DEVIATIONS **************************************************** BLOCKS .1 .2 .3 MN YIELD 1 84 .91 9 1 . 4 5 86 .77 ************************************* REGIME 1. 2. 3 . MN YIELD 1 9 6 . 8 0 8 9 . 8 0 7 6 . 5 3 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 . 0 1 6 9 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3) ( 2 , 1 ) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 3 4 1 E - 0 2 SECONDS. ANALYSIS COMPLETE. LO —] ***** THUJA-* -DIAMETER IN FERTILIZER REGIME (250 PPM) ***** ANALYSIS OF VARIANCE YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE :PROB BLOCKS 2 0 . 4 4 2 2 2 E - 0 2 0 . 2 2 1 1 1 E - 0 2 1.0076 0 . 4 4 2 2 0 REGIME 2 0 .24056 0 .12028 5 4 . 8 1 0 0 . 1 2 3 9 4 E - 0 2 ERROR 4 0 . 8 7 7 7 8 E - 0 2 0 . 2 1 9 4 4 E - 0 2 TOTAL 8 0 .25376 GRAND MEAN 1.2578 STANDARD DEVIATION OF VARIABLE 1 IS 0 . 1 7 8 1 0 FREQUENCIES, MEANS, STANDARD DEVIATIONS ************************************************** BLOCKS .1 .2 .3 MN YIELD 1 1.227 1.270 1.277 REGIME 1. 2. 3 . MN YIELD 1 1.247 1.463 1.063 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 . 0 1 6 9 THERE ARE 3 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3) ( D ( 2) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 4 1 9 E - 0 2 SECONDS. ANALYSIS COMPLETE. LO CO ***** THUJA-*-SHOOT DRY WEIGHT IN FERTILIZER REGIME (250 PPM) ***** SOURCE BLOCKS REGIME ERROR TOTAL ANALYSIS OF VARIANCE - YIELD 1 DF SUM SO MEAN SO ERROR F-VALUE 6 1 5 . 1 5 40520. 2417.1 43553. 307 .57 20260. 604 .27 0 .50900 33 .529 PROB 63542 31689E-02 GRAND MEAN 3 0 4 . 4 0 STANDARD DEVIATION OF VARIABLE 1 IS 73 .784 FREQUENCIES, MEANS, STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 MN YIELD 1 2 9 5 . 6 3 1 5 . 5 302.1 ************************************* REGIME 1. 2. 3 . MN YIELD 1 3 8 2 . 7 3 1 1 . 7 218 .8 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 . 0 1 6 9 THERE ARE 3 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 3) ( 2) ( 1 ) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 4 1 9 E - 0 2 SECONDS. ANALYSIS COMPLETE. LO vo ***** THUJA-*-ROOT DRY WEIGHT IN FERTILIZER REGIME (250 PPM) ***** ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SQ MEAN SQ ERROR F-VALUE PROB BLOCKS 2 91 .627 4 5 . 8 1 3 0 .23934 0 .79766 REGIME 2 3698 .2 1849.1 9 .6604 0 .29420E -01 ERROR 4 765 .65 191.41 TOTAL 8 4 5 5 5 . 5 GRAND MEAN 127.73 (STANDARD DEVIATION OF VARIABLE 1 IS 23 .863 FREQUENCIES, MEANS. STANDARD DEVIATIONS ******************************************************************************** BLOCKS .1 .2 .3 MN YIELD 1 124.7 126.4 132.1 ************************************* REGIME 1. 2. 3 . MN YIELD 1 150.4 131.6 101.2 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 .0169 THERE ARE 2 HOMOGENEOUS SUBSETS (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( , 3 , 2) ( 2 , 1 ) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 3 6 7 E - 0 2 SECONDS. ANALYSIS COMPLETE . O *** THUJA-* -HEIGHT:DIAMETER RATIO IN FERTILIZER REGIME (250 PPM) ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SO MEAN SO ERROR F-VALUE PROB BLOCKS 2 2 4 . 4 9 0 12.245 1.8411 0.27111 REGIME 2 427 .94 213 .97 32.171 0 . 3 4 2 5 6 E - 0 2 ERROR 4 26 .604 6 . 6 5 1 0 TOTAL 8 4 7 9 . 0 3 GRAND MEAN ' 7 1 . 0 5 7 STANDARD DEVIATION OF VARIABLE 1 IS 7 .7382 FREQUENCIES, MEANS, STANDARD DEVIATIONS *************************************** BLOCKS . 1 . 2 . 3 MN YIELD 1 70 .71 7 3 . 2 3 69 .23 *************************************************** REGIME 1. 2. 3 . MN YIELD 1 7 8 . 2 4 6 1 . 7 5 73 .18 DUNCAN'S MULTIPLE RANGE TEST, RANGES FOR ALPHA=0.05 3 .9336 4 . 0 1 6 9 THERE ARE 2 HOMOGENEOUS SUBSETS. (SUBSETS OF ELEMENTS, NO PAIR OF WHICH DIFFER BY MORE THAN THE SHORTEST SIGNIFICANT RANGE FOR A SUBSET OF THAT SIZE) WHICH ARE LISTED AS FOLLOWS ( 2) (• 3 , 1) TIME FOR MULTIPLE RANGE TESTS IS 0 . 1 2 8 9 E - 0 2 SECONDS. ANALYSIS COMPLETE. * THUJA-*-SHOOT:ROOT DRY WEIGHT RATIO IN FERTILIZER REGIME (250 PPM)* ANALYSIS OF VARIANCE - YIELD 1 SOURCE DF SUM SQ MEAN SQ ERROR F-VALUE PROB BLOCKS 2 0 .36200E-O1 0 . 1 8 1 0 0 E - 0 1 0 .50231 0.G3882 REGIME 2 0 .20987 0 .10493 2.9121 0 .16578 ERROR 4 0 .14413 0 . 3 6 0 3 3 E - 0 1 TOTAL 8 0 .39020 GRAND MEAN 2 .4767 STANDARD DEVIATION OF VARIABLE 1 IS 0 .22085 FREQUENCIES, MEANS, STANDARD DEVIATIONS **************************************** BLOCKS - 1 * .2 .3 MN YIELD 1 2 . 4 5 3 2 .563 2 .413 ******************************************************************************** REGIME 1. 2 . 3 . MN YIELD 1 2 . 6 7 0 2 . 4 6 3 2 .297 ANALYSIS COMPLETE 1 43 Appendix 9. Summary of Data A b b r e v i a t i o n s : P Pi nus T Thuja V Volume . S Spacing F F e r t i l i z e r regime C Container type SD Standard D e v i a t i o n based on 25 samples HT(MM) Mean shoot height i n m i l l i m e t r e DI(MM) Mean r o o t - c o l l a r diametre i n m i l l i m e t r e H:D Mean height rdiameter r a t i o S-WT(MG) -- Mean shoot dry weight i n m i l l i g r a m . R-WT(MG) -- Mean root dry weight i n m i l l i g r a m S:R Mean shoot:root dry weight r a t i o e.g. , PC-3 Pine i n Container type 3; PS2-3 Pine i n r e p l i c a t e 3 of Densit y 2; TV3-5 Thuja i n r e p l i c a t e 5 of Volume 3; TF123 Thuja i n r e p l i c a t e 3 of c o n c e n t r a t i o n 2 of regime 1. ***** Each datum i s a mean of 25 sampled s e e d l i n g s 1 4 4 REPLICATE HT(MM) DI(MM) H:D S-WT(MG) R-WT(MG) S:R P C -S D 1 8 6 . 1 2 1 8 . 9 3 • 2 . 7 0 0 . 3 1 3 2 . 1 8 7 . 3 2 1 0 5 8 . 4 0 2 4 1 . 5 9 6 5 9 . 6 0 2 1 0 . 9 6 2 . 5 9 5 . 0 9 PC-S D 2 8 8 . 8 0 2 2 . 2 1 2 . 6 0 0 . 4 4 3 4 . 3 2 7 . 1 8 7 7 8 . 4 0 2 8 8 . 5 5 4 4 7 . 2 0 1 6 5 . 6 4 1 . 8 1 0 . 5 3 PC-S D •2(Cu) 8 3 . 5 2 1 5 . 5 6 2 . 6 3 0 . 2 9 3 1 . 9 3 5 . 9 6 8 6 1 . 2 0 1 8 9 . 9 2 3 6 3 . 2 0 1 2 3 . 1 1 2 . 6 1 0 . 9 7 PC-S D 3 8 4 . 5 2 1 3 . 4 0 2 . 0 4 0 . 3 0 4 1 . 7 2 6 . 4 3 6 2 1 . 6 0 1 2 7 . 3 3 3 4 3 . 2 0 7 9 . 0 4 1 . 8 4 0 . 2 9 PC-SD 4 9 0 . 9 2 1 9 . 2 9 2 . 2 8 0 . 3 2 4 0 . 0 0 6 . 9 8 6 3 4 . 8 0 1 6 7 . 1 4 3 3 3 . 2 0 9 9 . 9 5 1 . 9 7 0 . 4 3 PC-S D •5 8 7 . 5 6 1 6 . 9 4 2 . 8 9 0 . 4 0 3 0 . 5 4 5 . 7 1 9 8 0 . 8 0 2 6 7 . 8 6 6 3 4 . 8 0 1 8 5 . 4 1 1 . 6 0 0 . 4 3 PC-S D •5(Cu) 5 8 . 8 8 1 5 . 3 6 2 . 5 9 0 . 3 8 2 2 . 8 6 5 . 1 6 7 3 6 . 8 0 2 4 3 . 3 6 3 4 8 . 0 0 1 1 7 . 7 6 2 . 1 6 0 . 3 6 P C -SD 6 5 9 . 6 0 1 2 . 1 5 1 . 9 2 0 . 3 2 . 3 1 . 4 7 7 . 1 3 4 8 4 . 8 0 1 7 7 . 3 4 2 0 5 . 2 0 8 6 . 4 6 2 . 4 8 0 . 5 6 P C -SD 7 5 3 . 6 0 9 . 6 1 2 . 0 7 0 . 3 5 2 6 . 0 7 3 . 4 3 5 8 2 . 4 0 2 3 1 . 9 5 3 7 6 . 4 0 1 1 2 . 0 6 1 . 5 4 0 . 2 8 P C -S D •7(Cu) 7 5 . 9 2 1 4 . 9 1 2 . 6 7 0 . 4 1 2 8 . 5 9 5 . 0 5 9 8 2 . 8 0 3 0 6 . 2 1 4 7 6 . 4 0 1 9 4 . 4 4 2 . 1 4 0 . 3 7 PC-S D 8 6 5 . 4 0 1 0 . 4 3 2 . 0 0 0 . 2 5 3 2 . 8 7 5 . 3 6 5 7 3 . 2 0 1 5 6 . 6 2 3 5 1 . 6 0 8 8 . 8 2 1 . 6 9 0 . 4 5 PC-SD •9 5 9 . 5 6 1 1 . 6 4 2 . 2 8 0 . 2 8 2 6 . 1 6 4 . 5 3 7 5 9 . 2 0 2 0 8 . 7 8 3 9 5 . 2 0 1 2 7 . 2 8 2 . 0 1 0 . 4 9 Container type codes: 1 S t y r o b l o c k - 6 ; 2 S t y r o b l o c k - 4 ; 3 S t y r o b l o c k - 2 4 R o o t r a i n e r - 6 ; 5 R o o t r a i n e r - 4 ; 6 Jap. Paper Pot 7 K r a f t Paper Pot; 8 - — Leach Tube; 9 Groove Tube. PC - 2(Cu) PC - 5(Cu) PC - 7(Cu) REPLICATE HT(MM) DI(MM) H:D S-WT(MG) R-WT(MG) S:R PS1-1 SD PS1-2 SD PS 1-3 SD PS2-1 SD PS2-2 SD PS2-3 SD PS3-1 SD PS3-2 SD PS3-3 SD 89. 28 1 . 9 5 4 5 . 9 3 613. 2 0 3 3 5 . 60 1 .87 14. 4 5 0 .18 7 . 13 117. 78 82. 01 0 .31 87. 68 1 .91 46. 28 622. 40 328. 80 1 . 9 7 15. 1 0 0 .23 8. 70 1 3 3 . 92 9 7 . 10 0 . 3 7 83. 52 1 .96 4 3 . 2 0 621 . 60 376. 0 0 1 . 7 4 14. 1 7 0 .31 7 . 96 1 26. 61 1 1 2 . 03 0 .42 61 . 64 2 .27 27. 28 675. 60 526. 40 1 .29 8. 28 0 . 2 1 3 . 9 9 1 0 2 . 6 4 7 5 . 71 0 .16 62. 96 2 .23 28. 4 9 694. 0 0 4 9 9 . 60 1 .41 8. 28 0 .29 3 . 84 1 2 1 . 04 89. 65 0 .27 61 . 1 2 2 .23 27. 92 652. 80 530. 0 0 1 .24 7 . 30 0 .32 5 . 1 2 131. 58 68. 07 0 .24 51 . 1 6 2 .31 2 2 . 36 640. 0 0 405. 60 1 . 2 0 5 . 68 0 .27 2 . 90 1 4 9 . 4 4 229. 5 7 0 .26 4 7 . 84 2 .29 2 0 . 96 689. 60 501 . 60 1 .24 6 . 9 3 0 .29 2 . 4 3 1 1 0 . 09 1 9 3 . 51 0 .23 46. 96 2 .23 21 . 25 623. 60 436. 0 0 1 .25 5 . 7 7 0 .31 2 . 7 9 1 5 9 . 71 1 7 6 . 5 9 0 .23 1PLICATE HT(MM) DI(MM) H : D S-WT(MG) R-WT(MG) S:R PV1-SD 1 69.36 14.02 2.64 0.30 26. 4. 36 86 1050.80 206.50 711.60 122.26 1 .50 0.31 PV1 -SD 2 74.60 1 3.48 2.66 0.31 28. 5. 26 23 854.00 182.25 624.00 131.28 1 .39 0.28 PV1-SD 3 73.96 12.31 2.76 0.33 27. 4. 05 87 1037.20 244.84 765.20 196.34 1 .38 0.25 PV1 -SD 4 67. 12 12.08 2.37 0.23 28. 5. 49 50 866.80 172.48 559.20 121.34 1 .61 0.47 PV1 -SD 5 70. 12 9.94 2.57 0.22 27. 3. 27 1 2 853.60 172.62 616.80 110.86 1 . 42 0.35 PV2-SD 1 70.52 1 1 .39 3.14 0.35 22. 3. 67 92 1099.20 256.64 846.80 153.29 1.31 0.23 PV2-SD 2 68.36 1 2.23 3.03 0.37 22. 4. 83 87 1072.40 235.36 762.00 219.11 1 .46 0.36 PV2-SD 3 63.52 7.99 3. 17 0.33 20. 2. 1 3 32 1043.20 161.21 711.20 170.74 1 .57 0.57 PV2-SD 4 71 .64 1 3.43 3.01 0.33 23. 4. 80 29 1098.80 275.32 769.20 124.40 1 .43 0.30 PV2-SD 5 71 .24 9.37 3.21 0.28 22. 3. 37 81 1120.80 252.75 817.60 148.67 1 .39 0.32 PV3-SD 1 82.56 16.14 3.16 0.44 26. 4. 23 03 1506.40 460.96 954.80 278.70 2.11 3.06 PV3-SD 3 80.52 14.31 3.22 0.36 25. 4. 20 77 1360.00 305.90 1020.00 274.68 1 .37 0.26 PV3-SD 2 80.08 1 3.84 3.08 0.35 26. 5. 29 1 1 1382.40 368.76 966.40 197.25 1 .44 0.27 PV3-SD 4 80.96 16.10 3.20 0.49 25. 4. 46 08 1452.80 424.54 953.60 232.68 1 .52 0.23 PV3-SD 5 80.84 18.07 2.99 0.41 27. 4. 09 81 1384.40 285.92 1019.20 197.95 1 .37 0.23 REPLICATE HT(MM) DI(MM) H PF1 1 1 90.96 2.23 41 SD 17.70 0.29 7 PF1 1 2 101.60 2.29 44 SD 17.20 0.28 6 PF1 1 3 104.24 2.32 45 SD 1 9.49 0.27 7 PF1 21 95.40 2.39 40 SD 1 6.87 0.31 7 PF1 22 98.48 2.23 44 SD 1 6.94 0.36 6 PF1 23 92.32 2.43 38 SD 16.70 0.45 8 PF21 1 101.64 2.25 45 SD 1 7.45 0.30 8 PF212 105.32 2.37 44 SD 18.88 0.29 6 PF21 3 103.52 2.13 48 SD 21 .63 0.19 9 PF221 94.04 2.20 42 SD 13.71 0.22 5 PF222 95.72 2.17 44 SD 23.55 0.31 9 PF223 92. 1 6 2.24 41 SD 18.40 0.28 9 PF31 1 94.08 2.25 42 SD 15.81 0.32 7 PF312 108.20 2.17 50 SD 16.83 0.25 7 PF31 3 96.00 2.18 44 SD 14.59 0.29 8 PF321 88.64 2.21 40 SD 16.09 0.27 6 PF322 87.44 2.05 42 SD 10.09 0.15 6 PF323 96.12 2.21 43 SD 15.71 0.23 7 :D S-WT(MG) R-WT(MG) S:R .05 .15 605.60 170.39 361.60 139.60 1 .79 0.43 .53 .40 714.00 186.75 416.40 152.67 1 .85 0.52 .08 .79 671.20 136.97 396.00 136.63 1 .79 0.35 .24 .25 725.60 195.73 395.20 117.02 1 .92 0.50 .46 .25 704.80 210.70 324.40 116.16 2.26 0.49 .83 .72 750.40 211.16 408.00 128.58 1 .90 0.35 .72 .47 658.80 188.07 368.00 142. 16 1 .90 0.44 .66 .80 684.40 139.47 364.80 95.62 1 .96 0.47 .62 . 1 5 616.80 136.37 351.20 103.21 1 .82 0.32 .87 .90 686.80 163.55 354.00 93.27 1 .99 0.34 . 1 1 .18 628.40 176.25 317.60 98.54 2.03 0.38 .51 .23 705.60 209.23 348.80 99.97 2.12 0.70 .17 .31 628.40 165.65 339.20 107.58 1 .93 0.41 .10 .77 653.60 158.74 364.80 105.28 1 .83 0.26 .82 .68 625.20 128.94 351.20 96.97 1 .84 0.32 .39 .82 656.00 132.98 345.20 99.84 2.00 0.51 .98 .21 564.00 88.93 283.20 61.96 2.05 0.42 .78 .20 677.20 128.08 332.00 97.04 .2.24 1 .07 REPLICATE HT(MM) DI(MM) H:D 148 S-WT(MG) R-WT(MG) S:R TC-SD 1 127.84 23.92 1 .88 0.17 68. 16 1 1 .49 913.20 241.17 387.60 131.13 2.46 0.59 TC-SD 2 119.64 21 .84 1 .64 0.17 72.83 1 1 .67 662.40 166.04 292.80 80.75 2.38 0.75 TC-SD 2(Cu) 106.76 17.12 1 .70 0.25 63.52 10.11 573.60 175.80 205.60 62.25 2.82 0.47 TC-SD 3 111.92 18.50 1 .77 0.27 64.39 12.83 465.20 115.73 220.40 61 .47 2.15 0.35 TC-SD 4 86.64 15.36 1 .47 0.18 59.45 9.72 350.80 105.51 1 61 .60" 55.88 2.30 0.63 TC-SD 5 91 .40 16.95 1 .66 0.25 55.23 7.33 442.00 168.10 200.40 89. 19 2.35 0.63 TC-SD •5(Cu) 96.32 22.20 1 .83 0.30 53. 1 3 1 0.68 630.80 212.80 194.80 60.35 3.39 1 .30 TC-SD 6 99.48 18.26 1 .28 0.16 78.26 12.35 415.20 134.88 130.40 44.20 3.35 0.98 TC-SD •7 90.00 1 3.96 1 .62 0.18 55.77 8.65 436.40 139.64 202.40 37.56 2.15 0.48 TC-SD •7(Cu) 96.44 17.54 1 .89 0.26 51 .29 7.28 533.60 209.82 179.20 62. 18 3.02 0.65 TC-SD 8 89.80 15.77 1 . 38 0.15 65.65 1 1 .29 440.40 112.53 154.00 48.99 2.96 0.54 TC-SD •9 85.08 14.21 1 .55 0.26 55.68 10.16 387.60 112.04 160.80 61.10 2.58 0.70 Container type code: 1 S t y r o b l o c k - 6 ; 2 St y r o b l o c k - 4 ; 3 St y r o b l o c k - 2 ; 4 R o o t r a i n e r - 6 ; 5 Ro o t r a i n e r - 4 ; 6 Jap. Paper Pot; 7 K r a f t Paper Pot; 8 Leach Tube; 9 Groove Tube. TC-2(Cu) copper-painted S t y r o b l o c k - 4 ; TC-5(Cu) copper-painted S t y r o b l o c k - 2 ; TC-7(Cu) copper-impregnated K r a f t Paper Pots. "PLICATE HT(MM) DI(MM) H : D . S-WT(MG) R-WT(MG) S:R TS 1 -1 107.32 1 .38 78. 25 402.80 176.80 2.43 SD 1 6.53 0.15 12. 1 7 76.24 51 .05 0.70 TS1-2 113.80 1 .45 78. 93 425.20 198.40 2.23 SD 1 7.79 0.16 1 1 . 92 64. 1 7 48. 10 0.44 TS1-3 111.68 1 .35 83. 1 5 437.60 198.00 2.34 SD 22. 96 0.19 14. 10 95.06 58.88 0.67 TS2-1 91 .56 1 .43 64. 04 415.60 222.40 1 .90 SD 1 9.37 0.16 10. 65 98.79 55.47 0.31 TS2-2 83.52 1 .46 57. 56 375.20 184.80 2.12 SD 6.7 4 0.16 6. 70 79.48 35.84 0.68 TS2-3 84.68 1 .43 59. 76 357.60 162.40 2.35 SD 14.47 0.18 10. 69 70.31 49.27 0.69 TS3-1 81 .60 1 .44 57. 29 361.60 191.20 1 .99 SD 1 1 .00 0.18 8. 67 79.62 54.26 0.58 TS3-2. 89.64 1.51 60. 06 435.60 244.80 1 .84 SD 16.94 0.20 1 1 . 81 98.37 57.09 0.50 TS3-3 82.44 1 .53 54. 37 367.60 201.20 1 .88 SD 1 2.04 0 . 1 9 7. 54 97.05 55.55 0.40 REPLICATE HT(MM) DI(MM) T V 1 -SD 1 97.32 1 6.08 1 .92 0.21 T V 1 -SD 2 92.04 1 8.26 1 .82 0.25 TV1 -SD 3 98.84 21.10 1 .70 0.22 TV1 -SD 4 97.72 13.15 1 .80 0.21 T V 1 -SD 5 94.84 1 3.49 1 .68 0.17 TV2-SD 1 100.64 22.24 1 .59 0.20 TV2-SD 2 94.48 .17.15 1 .46 0.19 TV2-SD 3 101 .72 17.85 1 .51 0.17 TV2-SD 4 101.96 15.59 1 .52 0.17 TV2-SD 5 100.00 17.24 1 .53 0.19 T V 3 -SD 1 93.24 18.24 1 .91 0.21 T V 3 -SD 2 100.16 • 17.87 1 .98 0.25 T V 3 -SD 3 108.52 1 6.56 2.09 0.20 T V 3 -SD 4 105.28 21.62 1 .95 0.22 T V 3 -SD 5 97.04 20.82 1 .78 0.23 H : D S-WT(MG) R-WT(MG) S: R 50. 91 517. 60 254. 00 2. 09 8. 25 119. 56 63. 57 0. 41 50. 52 427. 60 217. 60 2. 07 7. 70 147. 83 90. 29 0. 47 58. 74 430. 80 1 72. 00 2. 65 14. 44 106. 42 54. 01 0. 70 54. 96 491 . 20 230. 40 2. 24 8. 57 92. 30 69. 49 0. 51 56. 52 396. 80 193. 60 2. 10 7. 75 92. 50 47. 07 0. 47 63. 27 560. 40 256. 80 2. 28 1 1 . 04 1 22. 1 5 78. 35 0. 47 64. 64 518. 00 253. 60 2. 07 8. 53 1 60. 88 74. 49 . 0. 38 67. 27 518. 80 232. 40 2. 28 9. 38 1 52. 46 60. 09 0. 70 66. 93 550. 00 254. 00 2. 28 7. 45 1 46. 46 79. 1 1 0. 60 65. 55 555. 20 246. 80 2. 34 9. 98 1 32. 89 74. 76 0. 52 48. 94 564. 00 288. 00 2. 05 8. 75 1 63. 63 93. 90 0. 57 50. 79 603. 20 306. 80 1 . 98 8. 73 213. 38 95. 08 0. 42 52. 34 725. 60 346. 80 2. 12 8. 54 1 94. 72 84. 89 0. 40 54. 05 612. 80 304. 00 2. 07 9. 83 208. 98 93. 76 0. 60 54. 34 473. 60 260. 80 1 . 81 6. 60 1 68. 1 2 62. 58 0. 40 REPLICATE HT(MM) DI(MM) TF1 1 1 107. 08 1 .52 SD 17. 92 0 .22 TF1 1 2 92. 00 1 .33 SD 13. 46 0 .19 TF1 1 3 92. 1 6 1 .44 SD 16. 01 0 .18 TF1 21 89. 72 1 .19 SD 17. 1 7 0 . 17 TF1 22 102. 40 1 .29 SD 18. 27 0 .17 TF1 23 98. 28 1 .26 SD 17. 21 0 .19 TF2 1 1 104. 84 1 .43 SD 22. 48 0 .21 TF21 2 1 04. 04 1 .46 SD 24. 91 0 .19 TF21 3 93. 92 1 .35 SD 16. 21 0 .17 TF221 87. 48 1 .46 SD 16. 09 0 . 16 TF222 96. 12 1 .49 SD 21 . 1 2 0 .25 TF223 85. 80 1 .44 SD 12. 79 0 .21 TF31 1 89. 28 1 .49 SD 1 1 . 87 0 .18 TF312 83. 72 1 .45 SD 17. 54 0 .21 TF31 3 93. 84 1 .48 SD 12. 63 0 .19 TF321 77. 52 1 .03 SD 9. 73 0 .13 TF322 75. 84 1 .03 SD 9. 36 0 .17 TF323 76. 24 1 .13 SD 10. 96 0 .21 H : D S-WT(MG) R-WT(MG) S :R 71 . 06 350 .40 190 .80 1 .96 10. 84 91 .31 67 .20 0 .55 69. 63 320 .80 183 .20 1 .80 8. 66 80 .88 53 .91 0 .35 64. 62 321 .20 1 94 .40 1 .75 12. 06 66 .16 54 .01 0 .47 76. 27 346 .80 1 40 .40 2 .55 13. 35 124 .49 48 .09 0 .63 79. 69 396 .40 1 39 .60 2 .92 1 1 . 82 94 .82 32 .08 0 .80 78. 76 404 .80 171 .20 2 .54 12. 84 1 30 .04 66 .85 0 .99 73. 46 340 .80 1 78 .80 1 .97 10. 75 99 .91 58 .69 0 .40 70. 99 358 .40 160 .00 2 .26 13. 95 1 1 1 .08 34 .40 . 0 .59 70. 54 288 .00' 161 .20 1 .87 14. 68 61 .91 45 .76 0 .45 60. 1 2 305 .20 131 .20 2 .41 10. 52 78 .32 35 .04 0 .61 65. 05 330 .00 141 .60 2 .38 12. 41 1 32 .22 50 .80 0 .54 60. 09 300 .00 1 22 .00 2 .60 7. 54 74 .27 36 .40 0 .79 60. 51 282 .80 1 63 .60 1 .90 8. 96 50 .71 47 .69 0 .92 58. 16 254 .00 159 .20 1 .74 10. 1 7 59 .65 45 .73 0 .70 63. 77 302 .40 155 .60 1 .98 7. 35 73 .56 35 .48 0 .39 75. 75 234 .80 102 .40 2 .40 10. 31 57 .38 30 .04 0 .64 74. 94 220 .00 98 .00 2 .39 9. 89 57 .81 35 .36 0 .67 68. 84 201 .60 103 .20 2 .10 10. 92 74 .42 41 .71 0 .71 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0075365/manifest

Comment

Related Items