UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Classification of coastal grizzly bear habitat for forestry interpretations and the role of food in habitat… Hamilton, Anthony Neil 1987

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1988_A6_7 H35.pdf [ 4.64MB ]
Metadata
JSON: 831-1.0075363.json
JSON-LD: 831-1.0075363-ld.json
RDF/XML (Pretty): 831-1.0075363-rdf.xml
RDF/JSON: 831-1.0075363-rdf.json
Turtle: 831-1.0075363-turtle.txt
N-Triples: 831-1.0075363-rdf-ntriples.txt
Original Record: 831-1.0075363-source.json
Full Text
831-1.0075363-fulltext.txt
Citation
831-1.0075363.ris

Full Text

CLASSIFICATION OF COASTAL GRIZZLY BEAR HABITAT FOR FORESTRY INTERPRETATIONS and THE ROLE OF FOOD IN HABITAT USE BY COASTAL GRIZZLY BEARS by ANTHONY NEIL HAMILTON B.Sc. ( A g r . ) , U n i v e r s i t y of B r i t i s h Columbia, 1 9 7 8 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES (DEPARTMENT OF FORESTRY) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard UNIVERSITY OF BRITISH COLUMBIA DECEMBER, 1 9 8 7 (c) Anthony N e i l Hamilton, 1 9 8 7 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada DE-6 (2/88) i i ABSTRACT A g r i z z l y bear h a b i t a t c l a s s i f i c a t i o n was developed by m o d i f y i n g and expanding the climax-based B i o g e o c l i m a t i c Ecosystem C l a s s i f i c a t i o n (BEC) t o accommodate s e r a i v e g e t a t i o n . L o c a t i o n s of r a d i o - c o l l a r e d bears were a s s i g n e d to a l a r g e number (N=110) of s t r u c t u r a l l y and f l o r i s t i c a l l y unique h a b i t a t s . An i n t e r p r e t i v e c l a s s i f i c a t i o n o f 14 Bear H a b i t a t U n i t s (BHUs) was d e r i v e d from the taxa of the BEC system; u n i t s were amalgamated on the b a s i s o f g r i z z l y bear h a b i t a t v a l u e and s i m i l a r i t y o f response t o f o r e s t management p r a c t i c e s . F i f t e e n c limax f o r e s t , t h r e e s u b a l p i n e , t h r e e wetland, and t h r e e avalanche chute u n i t s were i d e n t i f i e d and d e s c r i b e d i n the lower Kimsquit R i v e r . Two a d u l t female g r i z z l y bears (numbers 08 and 25) were monitored f o r 1238 and 1196 days, r e s p e c t i v e l y , from A p r i l 1982 t o October 1985 and had m u l t i - a n n u a l minimum convex polygon (MCP) home ranges of 85 km 2 (N=23 6), and 60 km 2 (N=241). R i v e r f l o o d p l a i n BHUs were used most h e a v i l y by bears 08 and 25 d u r i n g t h e i r a c t i v e seasons (65% of l o c a t i o n s and 51% of time f o r bear 08; 75% of l o c a t i o n s and 63% o f time f o r bear 25) f o l l o w e d by avalanche chutes and s i d e h i l l c l i m a x and old-growth f o r e s t s . Rank t e s t i n g between q u a l i t y / q u a n t i t y i n d i c e s (food p l a n t n u t r i e n t content, biomass, b e r r y abundance) and g r i z z l y bear use i n d i c a t e d t h a t movements were g e n e r a l l y c o r r e l a t e d w i t h food a v a i l a b i l i t y a t the h i g h e r , or BHU, l e v e l o f the c l a s s i f i c a t i o n (r s=0.61 and 0.83, p_<.05 f o r bears 08 and 25, r e s p e c t i v e l y ) . Salmon (Oncorhynchus spp.) and i n s e c t s were the o n l y common non-plant items i n a d i e t of over 3 0 s p e c i e s , although food h a b i t s d i f f e r e d between bears. I t i s concluded t h a t , although food p l a y s a c r i t i c a l r o l e i n h a b i t a t s e l e c t i o n of c o a s t a l g r i z z l y bears, a r e l a t i v e l y r i c h environment p r e c l u d e s the need f o r i n d i v i d u a l s t o f o r a g e o p t i m a l l y a t a m i c r o - h a b i t a t l e v e l . Except f o r the e a r l y s p r i n g and l a t e f a l l , food can be found i n a number of u n i t s t h a t c o l l e c t i v e l y meet l i f e r e q u i s i t e s . These a n a l y s e s were used i n combination w i t h o t h e r use and h a b i t a t q u a l i t y i n f o r m a t i o n t o develop seasonal h a b i t a t v a l u e s . A s s i g n e d v a l u e s allowed p r e d i c t i o n s about the e f f e c t s of f o r e s t management p r a c t i c e s on h a b i t a t c a p a b i l i t y . i v TABLE OF CONTENTS Page SECTION ONE A b s t r a c t i i L i s t o f T a b l e s v i L i s t o f F i g u r e s v i i i Acknowledgements i x SECTION TWO C l a s s i f i c a t i o n o f c o a s t a l g r i z z l y bear h a b i t a t f o r f o r e s t r y i n t e r p r e t a t i o n s I n t r o d u c t i o n 1 Study Area 5 Methods H a b i t a t c l a s s i f i c a t i o n and mapping 8 Capture and m o n i t o r i n g 12 Home range and h a b i t a t u s e / a v a i l a b i l i t y 13 R e s u l t s H a b i t a t c l a s s i f i c a t i o n and mapping 18 Capture and m o n i t o r i n g 24 Seasons 2 6 Home range and h a b i t a t u s e / a v a i l a b i l i t y 27 Management p r e s c r i p t i o n s 34 D i s c u s s i o n 36 SECTION THREE The r o l e o f food i n h a b i t a t use by c o a s t a l g r i z z l y bears I n t r o d u c t i o n 45 Methods S i t e and fo r a g e i n v e s t i g a t i o n s 48 S t a t i s t i c a l a n a l y s i s 52 R e s u l t s M o n i t o r i n g 53 S i t e i n v e s t i g a t i o n s and d i e t 53 Forage a v a i l a b i l i t y 59 Hypothesis t e s t i n g 63 D i s c u s s i o n 67 SECTION FOUR Summary 77 References c i t e d 79 v i LIST OF TABLES Page T a b l e 1. D e f i n i t i o n s and nomenclature o f c a t e g o r i e s used t o c l a s s i f y g r i z z l y bear h a b i t a t i n the Kimsquit R i v e r , B.C 9 Ta b l e 2. Seasons of g r i z z l y bear a c t i v i t y i n t h e Kimsquit R i v e r , B.C 14 Ta b l e 3. B i o g e o c l i m a t i c v a r i a n t s , ecosystem a s s o c i a t i o n s , n o n - f o r e s t e d wetlands, d i s c l i m a x communities, and v a r i a t i o n s i n the Kimsquit R i v e r , B.C 20 Ta b l e 4. C o a s t a l g r i z z l y Bear H a b i t a t U n i t s (BHUs) i n the Kimsquit R i v e r , B.C.... 23 Ta b l e 5. Seasonal, annual, and m u l t i - a n n u a l home range s i z e s o f r a d i o - c o l l a r e d g r i z z l y bears i n the Kimsquit R i v e r , B.C 25 Ta b l e 6. Frequency o f s i g n i f i c a n t l y g r e a t e r (p_<.01) use of Bear H a b i t a t U n i t s than expected from a v a i l a b i l i t y i n 18 home ranges o f two r a d i o - c o l l a r e d a d u l t female g r i z z l y bears i n the Kimsquit R i v e r , B.C.. 33 Ta b l e 7. Management p r e s c r i p t i o n s f o r commercially f o r e s t e d g r i z z l y Bear H a b i t a t U n i t s i n the Kimsquit R i v e r , B.C 35 Ta b l e 8. Percent bear-days by BHU f o r bear 08, Kimsquit R i v e r , B.C., 1982-1985 54 Ta b l e 9. Percent bear-days by BHU f o r bear 25, Kimsquit R i v e r , B.C., 1982-1985 55 Table 10. Comparison of f e e d i n g frequency and ranks by Bear H a b i t a t U n i t and season f o r two a d u l t female g r i z z l y bears, Kimsquit R i v e r , B.C., 1982-1985 57 Table 11. G r i z z l y bear foods i n the Kimsquit R i v e r , B.C., 1982-1985 58 Table 12. Comparison of s p e c i e s h a b i t a t d i s t r i b u t i o n , prominence ranks, and 3 ranks o f n u t r i e n t q u a l i t y r a t i o s f o r g r i z z l y bear food s p e c i e s determined i n the Kimsquit R i v e r , B.C., 1982-1985 60 Number o f s i g n i f i c a n t r a n k c o r r e l a t i o n c o e f f i c i e n t s between f o r a g e and u s e , and and t o t a l number o f a v a i l a b l e , used, and f e e d i n g h a b i t a t s f o r 6 home ranges o f 2 a d u l t female g r i z z l y b e a r s , K i m s q u i t R i v e r , B.C., 1982-1985 v i i i LIST OF FIGURES Page F i g u r e 1. Map of f o r e s t e d b i o g e o c l i m a t i c subzones of the Kimsquit R i v e r V a l l e y 19 F i g u r e 2. M u l t i - a n n u a l minimum convex polygon and harmonic moment contour home range o u t l i n e s f o r bears 08 and 25, Kimsquit R i v e r , B.C., 1982-1985 28 F i g u r e 3. Bear 08 a c t i v e season bear-days by BHU, 1982-1985 30 F i g u r e 4. Bear 25 a c t i v e season bear-days by BHU, 1982-1985 31 F i g u r e 5. Percent p r o t e i n and a c i d d e t e r g e n t f i b r e , g e n e r a t i v e phenology, and seasonal frequency o f use of L y s i c h i t o n americanum by two a d u l t female g r i z z l y bears, Kimsquit R i v e r , B.C., 1982-1985... 62 ACKNOWLEDGEMENTS The p r o j e c t i s funded and ad m i n i s t e r e d c o o p e r a t i v e l y by the B r i t i s h Columbia M i n i s t r i e s o f Environment and Parks, and F o r e s t s and Lands. A d d i t i o n a l f u n d i n g has been p r o v i d e d by the U n i v e r s i t y o f B r i t i s h Columbia, the U.S. F i s h and W i l d l i f e S e r v i c e , the Canadian F o r e s t r y S e r v i c e , and the Canadian W i l d l i f e F e d e r a t i o n . I n v a l u a b l e f i e l d a s s i s t a n c e has been p r o v i d e d by P. B e l l i v e a u , C. Bryden, J . Cofske, L. D a r l i n g , A. Derocher, L. Giguere, L. Hartman, I . H a t t e r and R. Woods. E. L o f r o t h gave a b l e a s s i s t a n c e i n the f i e l d and customized t h e home range programs. The h a b i t a t c l a s s i f i c a t i o n work competently completed by A. Banner and C. Clement formed the b a s i s f o r f u r t h e r r e s e a r c h . P. F r e i s e n , B. Porteus, and R. Thompson p r o v i d e d the CAPAMP (Computer A i d e d Pl a n n i n g , Assessment, and Map Production) outputs. Chuck K a l n i n and h i s s t a f f a t the A g r i c u l t u r e Canada Laboratory, Kamloops, B.C., analyzed the p l a n t samples. R. A r c h i b a l d , F. B u n n e l l , D. Eastman and R. E l l i s deserve s p e c i a l thanks f o r t h e i r guidance and p a t i e n c e . 1 CLASSIFICATION OF COASTAL GRIZZLY BEAR HABITAT FOR FORESTRY INTERPRETATIONS INTRODUCTION The P r o v i n c e of B r i t i s h Columbia's F o r e s t A c t o f 1978 s t a t e s t h a t " s u b j e c t t o r e g u l a t i o n s , a P r o v i n c i a l f o r e s t s h a l l be managed and used" f o r s e v e r a l purposes, i n c l u d i n g " f orage p r o d u c t i o n and g r a z i n g by l i v e s t o c k and w i l d l i f e " , and "water, f i s h e r i e s and w i l d l i f e r e s o u r c e purposes" (Harcombe 1984). S i n c e 1978, some r e s e a r c h p r o j e c t s have been undertaken j o i n t l y by the P r o v i n c i a l M i n i s t r i e s o f Environment and Parks, and F o r e s t s and Lands t o b e t t e r i n t e g r a t e f o r e s t and w i l d l i f e r e s o u r c e v a l u e s (Youds e t a l . 1985, Armleder e t a l . 1986, Nyberg e t a l . 1986). Research t o a i d management of c o a s t a l g r i z z l y bears i n areas b e i n g logged o r scheduled f o r l o g g i n g began i n A p r i l 1982. The mainland r i v e r v a l l e y s o f the Coast Mountains of B r i t i s h Columbia are p r o d u c t i v e f o r both g r i z z l y bears and timber. They support some of the densest g r i z z l y bear p o p u l a t i o n s i n North America and a f o r e s t i n d u s t r y t h a t has an annual economic v a l u e of 1 t o 2 b i l l i o n d o l l a r s ( A r c h i b a l d 1983). G r i z z l y bear abundance a p p a r e n t l y d e c l i n e s w i t h l o g g i n g , but i t i s u n c l e a r whether d e c l i n e s are due t o h a b i t a t change, e x c e s s i v e k i l l i n g d u r i n g and a f t e r l o g g i n g , o r o t h e r f a c t o r s . A f l e x i b l e h a b i t a t c l a s s i f i c a t i o n system was r e q u i r e d t o meet the p r o j e c t ' s broad o b j e c t i v e s : t o determine 2 s e a s o n a l requ i rement s o f bear s and t h e e f f e c t s o f f o r e s t r y p r a c t i c e s on h a b i t a t c a p a b i l i t y , and, t o deve lop and d e l i v e r f o r e s t r y g u i d e l i n e s throughout the c o a s t . I d e a l l y , the system would have a d e t a i l e d s t r a t i f i c a t i o n t h a t c o u l d be mapped e a s i l y , a h i e r a r c h i c a l o r g a n i z a t i o n , and common u t i l i t y t o w i l d l i f e and f o r e s t managers. To ensure c o r r e c t ass ignment o f h a b i t a t - s p e c i f i c v a l u e s f o r f ood , s e c u r i t y c o v e r , denn ing , and o t h e r l i f e r e q u i s i t e s , t h e l owes t l e v e l t y p e s would be combined l a n d s c a p e / v e g e t a t i o n u n i t s . These u n i t s would be a r ranged a c c o r d i n g t o s i t e p o t e n t i a l , r a t h e r than p r e s e n t v e g e t a t i o n , so h a b i t a t c a p a b i l i t y over t ime c o u l d be p r e d i c t e d . Group ing the lower l e v e l u n i t s w i t h i n a h i e r a r c h i c a l s t r u c t u r e would s i m p l i f y e x t r a p o l a t i o n o f r e s e a r c h r e s u l t s and p r o v i d e a way o f a d d r e s s i n g h a b i t a t concerns d u r i n g watershed p l a n n i n g . There c l e a r l y was a need f o r a h a b i t a t c l a s s i f i c a t i o n system t h a t c o u l d be used by bo th w i l d l i f e and f o r e s t managers (Stevenson 1982, Harcombe 1984). The B i o g e o c l i m a t i c Ecosystem C l a s s i f i c a t i o n (BEC) system i s used by the M i n i s t r y o f F o r e s t s and Lands and f o r e s t companies because o f i t s p roven e f f e c t i v e n e s s i n s e v e r a l a s p e c t s o f f o r e s t management (Po ja r e t a l . 1987). T h i s c l a s s i f i c a t i o n system i s u s e f u l f o r f o r e s t p l a n n i n g ( K l i n k a e t a l . 1980), s i t e d i a g n o s i s , t r e e s p e c i e s s e l e c t i o n , s l a s h b u r n i n g g u i d e l i n e s (e .g . K l i n k a e t a l . 1984, H a e u s s l e r e t a l . 1984), and h y d r o l o g i c a l i n t e r p r e t a t i o n s (Wink ler and Ro thwe l l 1983). Few w i l d l i f e 3 h a b i t a t p r o j e c t s , however, have used the BEC system (e.g. P o j a r 1986, B.C. M i n i s t r y of F o r e s t s and Lands 1986) because i t l a c k e d methods t o c l a s s i f y s u c c e s s i o n a l v e g e t a t i o n , i t c o n c e n t r a t e d on mature f o r e s t types, and i t was seldom used i n l a r g e s c a l e mapping p r o j e c t s (Harcombe 1984). D e s p i t e the l a c k of w i l d l i f e precedents, the BEC system was chosen f o r the C o a s t a l G r i z z l y P r o j e c t . I t had the advantages of an a v a i l a b l e z o n a l c l a s s i f i c a t i o n and s m a l l s c a l e maps (e.g. K l i n k a e t a l . 1984), a c l o s e t i e t o o t h e r f o r e s t management p r e s c r i p t i o n s (e.g. B.C. M i n i s t r y of F o r e s t s and Lands 1984) , and p r e v i o u s l o c a l work (Yole e t a l . 1982). Research o b j e c t i v e s were met by m o d i f y i n g and expanding the e x i s t i n g , climax-based ecosystem c l a s s i f i c a t i o n f o r the lower Kimsquit v a l l e y t o accommodate s e r a i and n o n - f o r e s t e d h a b i t a t s (Banner e t a l . 1986) . The h i e r a r c h i c a l arrangement of the BEC can be used t o group ecosystems a t the r e g i o n a l , r a t h e r than l o c a l l e v e l . Such grouping can o r g a n i z e ecosystems a c c o r d i n g t o s i m i l a r i t i e s w i t h i n a v e g e t a t i o n - i n f e r r e d , c l i m a t i c space (Pojar e t a l . 1987), and thus p r o v i d e a g e o g r a p h i c a l b a s i s f o r e x t r a p o l a t i o n . The b i o g e o c l i m a t i c zonal concept a l l o w s the r e s u l t s o f the i n t e n s i v e r e s e a r c h t o be t r a n s l a t e d i n t o s p e c i f i c management p r e s c r i p t i o n s and a p p l i e d throughout the range of the c o a s t a l g r i z z l y . A separate, i n t e r p r e t i v e c l a s s i f i c a t i o n of types grouped a c c o r d i n g t o t h e i r bear h a b i t a t v a l u e and s i m i l a r i t y i n response t o l o g g i n g p r a c t i c e or treatment was developed 4 f o r the Kimsquit. The approach w i l l be used i n c o a s t a l watersheds where l o c a l h a b i t a t v a l u e s and n o n - f o r e s t c l a s s i f i c a t i o n s are not a v a i l a b l e . By i n c l u d i n g n o n - f o r e s t u n i t s , the i n t e r p r e t i v e c l a s s i f i c a t i o n p r o v i d e s a simple means of e x t r a p o l a t i n g a l l h a b i t a t v a l u e s a s s i g n e d i n the Kimsquit. I n t e r p r e t i v e c l a s s e s , c a l l e d Bear H a b i t a t U n i t s (BHUs), are a l s o a means of examining l o g g i n g impacts on a watershed, r a t h e r than on a s i t e - s p e c i f i c b a s i s . T h i s s e c t i o n summarizes the r e s e a r c h framework and r e s u l t s o f h a b i t a t c l a s s i f i c a t i o n , mapping, and use e v a l u a t i o n i n the lower Kimsquit v a l l e y . An i n t e r p r e t i v e c l a s s i f i c a t i o n and a proposed s t r a t e g y f o r u s i n g the BEC system t o e x t r a p o l a t e r e s u l t s are g i v e n . 5 STUDY AREA The s t u d y a r e a i s t h e K i m s q u i t R i v e r v a l l e y , l o c a t e d 500 km n o r t h w e s t o f Vancouver i n m i d c o a s t a l B.C. S i t u a t e d a t t h e head o f a l o n g , narrow i n l e t , t h e K i m s q u i t i s about 80 km from t h e open P a c i f i c c o a s t . The l o w e r 18 km o f t h e r i v e r t y p i f y a c o a s t a l - i n t e r i o r t r a n s i t i o n r a t h e r t h a n a c o a s t a l r a i n f o r e s t . The topography i s rugged and s t e e p , w i t h e l e v a t i o n s r a n g i n g from sea l e v e l t o o v e r 2000 m. Landforms and s o i l s a r e g e n e r a l l y r e p r e s e n t a t i v e o f t h e Coas t M o u n t a i n s (Jungen and Lewis 1978). The h i s t o r i c a l i n f l u e n c e o f g l a c i a t i o n on s u r f i c i a l g e o l o g y i s e v i d e n t , and most o f t h e t e r r a i n has been m o d i f i e d by f l u v i a l and c o l l u v i a l p r o c e s s e s , and by a c c u m u l a t i o n o f s u r f a c e o r g a n i c m a t t e r . The l o w e r v a l l e y has a humid, s u b o c e a n i c c l i m a t e . A n n u a l p r e c i p i t a t i o n a t t h e n e a r e s t , l o n g - t e r m c l i m a t e s t a t i o n , Kemano, l o c a t e d 90 km n o r t h w e s t , a v e r a g e s 1867 mm, o f w h i c h 11% i s snow. Annual mean t e m p e r a t u r e a t Kemano i s 6.5°C (Banner e t a l . 1986). V e g e t a t i o n i n t h e a r e a has been d e s c r i b e d i n d e t a i l (Clement 1984a, 1984b, Banner 1985, Banner e t a l . 1986). Three b i o g e o c l i m a t i c zones ( K r a j i n a 1965, P o j a r 1983) o c c u r w i t h i n t h e v a l l e y : t h e C o a s t a l Western Hemlock Zone (CWH) a t l o w e r and montane e l e v a t i o n s , t h e Mo u n t a i n Hemlock Zone (MH), and t h e A l p i n e Tundra zone (AT) ( H a m i l t o n 1983, Banner e t a l . 1986). Two subzones o f t h e CWH a r e found i n t h e l o w e r v a l l e y , t h e m i d c o a s t d r i e r t r a n s i t i o n a l (CWHh) and t h e 6 wetter maritime (CWHi). S i m i l a r l y , two subzones of the MH zone were d e s c r i b e d : the c o a s t a l f o r e s t e d (MHd) and c o a s t a l p a r k l a n d (MHdp) (Clement 1984a). Nomenclature o f the CWH and MH subzones i s c u r r e n t l y i n f l u x . T a b l e s o f e q u i v a l e n t u n i t s and new nomenclature are g i v e n i n K l i n k a e t a l . (1984). The f o l l o w i n g d e s c r i p t i o n o f the v e g e t a t i v e cover i n the study area (Yole e t a l . 1982) i s arranged by physiognomic groups. P l a n t nomenclature f o l l o w s T a y l o r and MacBryde (1977). C o n i f e r o u s f o r e s t s cover the l a r g e s t p r o p o r t i o n o f the ve g e t a t e d area; western hemlock (Tsuga  h e t e r o p h y l l a ) i s the dominant c l i m a t i c climax s p e c i e s , w e l l adapted t o the l o n g growing season and h i g h p r e c i p i t a t i o n . Depending on l o c a l m i c r o c l i m a t e and edaphic f e a t u r e s , western hemlock may be accompanied by a v a r i e t y o f o t h e r c o n i f e r s ; these s p e c i e s may dominate edaphic c l i m a x e s . For example, D o u g l a s - f i r (Pseudotsuga m e n z i e s i i ) i s found on the r a p i d l y d r a i n e d s i d e s l o p e s of the lower v a l l e y . Lodgepole p i n e (Pinus c o n t o r t a ) i s r e s t r i c t e d t o v e r y dry, open canopy, rocky k n o l l s . Western redcedar (Thuia p l i c a t a ) p r e f e r s wetter, more n u t r i e n t - r i c h s i t e s , as do S i t k a spruce ( P i c e a s i t c h e n s i s ) and y e l l o w - c e d a r (Chamaecyparis  n o o t k a t e n s i s ) . A m a b i l i s f i r (Abies a m a b i l i s ) i s found throughout the upper v a l l e y and on some m o i s t e r , s h a d i e r s i t e s i n the lower Kimsquit. At h i g h e r e l e v a t i o n s w i t h heavy snow accumulation, mountain hemlock (Tsuga  mertensiana) i s common. 7 Deciduous f o r e s t s cover much of the watershed, p r i m a r i l y i n the lower v a l l e y . Two t r e e s p e c i e s dominate: r e d a l d e r (Alnus rubra) i s a fa s t - g r o w i n g p i o n e e r t h a t r a p i d l y c o l o n i z e s d i s t u r b e d s i t e s ; b l a c k cottonwood (Populus  b a l s a m i f e r a spp. t r i c h o c a r p a ) has h i g h f l o o d r e s i s t a n c e and dominates the a l l u v i a l s e r a i areas of the lower Kimsquit. The deciduous f o r e s t s have r e l a t i v e l y open canopies, and a p r o d u c t i v e u n d e r s t o r y . F i v e major shrub-dominated areas have been i d e n t i f i e d i n t he study area: avalanche chutes, r i p a r i a n areas, f r i n g e s o f bogs, s u b a l p i n e shrub areas, and r e c e n t c l e a r c u t s . Numerous shrubs occur i n the s e r a i r i p a r i a n areas. Many, such as salmonberry (Rubus s p e c t a b i l i s ) , d e v i l 1 s c l u b (Oplopanax h o r r i d u s ) , and red e l d e r b e r r y (Sambucus racemosa) are important bear foods. Three s i g n i f i c a n t areas o f the Kimsquit are dominated by graminoids; the t i d a l f l a t s , the e s t u a r y , and a l a r g e o r g a n i c bog i n the upper v a l l e y . Herb-dominated meadows are commonly found on avalanche chutes throughout the v a l l e y . The Kimsquit R i v e r i s one of the most important f i s h e r y systems o f the c e n t r a l c o a s t ; i t has major runs o f a l l s p e c i e s o f P a c i f i c salmon (Onchorynchus spp.). The timber v a l u e o f the Kimsquit drainage i s a l s o h i g h . The lower 6 km was logged u s i n g a r a i l w a y system i n 1917 and 1918 t o p r o v i d e a i r p l a n e - g r a d e spruce; c u r r e n t h a r v e s t i n g began i n 1979. 8 METHODS H a b i t a t C l a s s i f i c a t i o n and Mapping One of the f u n c t i o n s of the BEC system i s " t o i d e n t i f y and c h a r a c t e r i z e the ecosystems t h a t are the s u b j e c t of r e s e a r c h or management" (Pojar e t a l . 1987). Most f i e l d , a n a l y t i c a l , and c l a s s i f i c a t i o n methods used i n t h i s study are commonly r e p o r t e d by p r o j e c t s u s i n g the BEC system (e.g. I n s e l b e r g e t a l . 1982, H a e u s s l e r e t a l . 1984). A comprehensive taxonomic review of the system i s g i v e n i n P o j a r e t a l . (1987). General sampling methods are o u t l i n e d i n Walmsley e t a l . (1980), data e n t r y procedures i n Sondheim e t a l . (1983), and the data p r o c e s s i n g system i n M e i d i n g e r e t a l . (1987). Be f o r e g r i z z l y bear h a b i t a t v a l u e s c o u l d be i n v e s t i g a t e d , d i s t i n c t , r e p e a t a b l e h a b i t a t u n i t s had t o be i d e n t i f i e d and d e s c r i b e d . T h i s o b j e c t i v e was met by i n c o r p o r a t i n g s e r a i communities and d i s c l i m a x e s (e.g. avalanche chutes) i n t o an e x i s t i n g climax-based c l a s s i f i c a t i o n f o r the area (Yole e t a l . 1982), then a g g r e g a t i n g s i m i l a r types i n t o a new taxon c a l l e d Bear H a b i t a t U n i t s (BHUs). Three ecosystem c a t e g o r i e s were used w i t h i n each b i o g e o c l i m a t i c subzone or v a r i a n t : the ecosystem a s s o c i a t i o n , s u c c e s s i o n a l stage, and v a r i a t i o n (Table 1). Wetlands and avalanche chutes were i n c o r p o r a t e d by a s s i g n i n g T a b l e 1. D e f i n i t i o n s and nomenclature of c a t e g o r i e s used to c l a s s i f y g r i z z l y bear h a b i t a t i n the K i m s q u i t R i v e r , B.C. Category. D e s c r i p t i o n ^ -Ecosystem a s s o c i a t i o n A l l ecosystems capable of p r o d u c i n g v e g e t a t i o n b e l o n g i n g to the same p l a n t a s s o c i a t i o n at c l i m a x . N o n - f o r e s t e d wetlands and d i s c l i m a x e s are a l s o i n c l u d e d i n t h i s t a x o n . D i s c l i m a x Communities s u b j e c t to d i s t u r b a n c e s (e.g. s n o w s l i d e s ) t h a t p r e v e n t development towards c l i m a x . V a r i a t i o n S u b d i v i s i o n s of ecosystem a s s o c i a t i o n s based on t h e i r p r e s e n t s p e c i e s c o m p o s i t i o n . Some v a r i a t i o n s may r e p r e s e n t minor d e v i a t i o n s from the c e n t r a l concept of a c l i m a x a s s o c i a t i o n , whereas o t h e r s d e s c r i b e d i s t i n c t p l a n t communities r e p r e s e n t i n g s e r a i stages of a s s o c i a t i o n s . S u c c e s s i o n a l stage An e i g h t l e v e l m o d i f i e r of ecosystem a s s o c i a t i o n s or v a r i a t i o n s t h a t d e s c r i b e s the p r e s e n t physiognomic or s t r u c t u r a l development stage without r e f e r e n c e to s p e c i e s c o m p o s i t i o n . L a n d f o r m / s o i l types Groups of s i m i l a r t e r r a i n , s o i l t y p e s , humus forms, parent m a t e r i a l s , and s l o p e p o s i t i o n s . H a b i t a t type When combined, the ecosystem a s s o c i a t i o n , s u c c e s s i o n a l stage, v a r i a t i o n , and l a n d f o r m / s o i l c a t e g o r y d e s c r i b e the v e g e t a t i o n of any l a n d u n i t i n terms of i t s p o t e n t i a l c l i m a x c o n d i t i o n , p r e s e n t s t r u c t u r e , s p e c i e s c o m p o s i t i o n , and edaphic c h a r a c t e r i s t i c s . Land u n i t s d e s c r i b e d t h i s way are r e f e r r e d to as h a b i t a t t y p e s . Bear H a b i t a t U n i t Groups of h a b i t a t types of s i m i l a r s e r a i stage, s t r u c t u r e , s p e c i e s c o m p o s i t i o n , and l a n d f o r m / s o i l type. The Bear H a b i t a t U n i t i s the only taxon i n a s e p a r a t e , i n t e r p r e t i v e c l a s s i f i c a t i o n . The primary c r i t e r i a used to amalgamate h a b i t a t types were s i m i l a r i t y i n bear h a b i t a t v a l u e and, f o r the commercial f o r e s t e d types, s i m i l a r i t y i n f o r e s t r y p r e s c r i p t i o n s . B i o g e o c l i m a t i c v a r i a n t 2 D i v i s i o n s of b i o g e o c l i m a t i c subzones t h a t r e f l e c t d i f f e r e n c e s i n r e g i o n a l c l i m a t e and are g e n e r a l l y r e c o g n i z e d f o r areas t h a t are d r i e r , w e t t e r , snowier, warmer, or c o l d e r than what i s c o n s i d e r e d t y p i c a l f o r the subzone. B i o g e o c l i m a t i c subzone 2 That p o r t i o n of a p l a n t a s s o c i a t i o n t h a t r e p r e s e n t s the z o n a l c l i m a x ecosystem d e f i n e s a subzone, and the d i s t r i b u t i o n of a zonal ecosystem d e l i n e a t e s the g e o g r a p h i c a l e x t e n t of the subzone. Zonal or c l i m a t i c climax ecosystems are those i n which the i n t e g r a t e d i n f l u e n c e of c l i m a t e on v e g e t a t i o n , s o i l , and other ecosystem components i s most s t r o n g l y e x p r e s s e d . B i o g e o c l i m a t i c 2 zone Subzones with s i m i l a r z o n a l p l a n t a s s o c i a t i o n s are grouped i n t o zones. see Banner et a l . 1986 and P o j a r et a l . 1987 f o r d e t a i l s Taxa of a s e p a r a t e h i e r a r c h y which groups g e o g r a p h i c a l l y r e l a t e d ecosystems t h a t are d i s t r i b u t e d i n a v e g e t a t i o n a l l y - i n f e r r e d c l i m a t i c space. To d e f i n e and d e l i n e a t e these groups, each i n f l u e n c e d by r o u g h l y the same c l i m a t e , the BEC system uses the zonal concept and the v e g e t a t i o n of z o n a l n e a r - c l i m a x ecosystems. them e d a t o p i c g r i d p o s i t i o n s (Pojar e t a l . 1987) and l a b e l s , but not c a t e g o r i z i n g them as ecosystem a s s o c i a t i o n s . Although the wetlands and avalanche chutes i n c l u d e d s e v e r a l d i s t i n c t p l a n t a s s o c i a t i o n s , o n l y those found on the e s t u a r y were d e s c r i b e d i n d e t a i l (Clement 1984b). The ecosystem c l a s s i f i c a t i o n r e l i e s mainly on v e g e t a t i o n t o c h a r a c t e r i z e u n i t s . Banner (1985) a l s o used landform and g e n e r a l i z e d s o i l t y p e s t o s u b d i v i d e u n i t s . The Kimsquit watershed was d i v i d e d i n t o t h r e e study a r e a s : the CWHh, which formed the core o f the i n t e n s i v e study area i n the lower v a l l e y ; the CWHi and MH, found above the CWHh i n the lower v a l l e y and c o v e r i n g a l l o f the upper v a l l e y ; and the e s t u a r y . E f f o r t s were c o n c e n t r a t e d i n the CWHh because o f ease o f access, importance o f the f l o o d p l a i n u n i t s t o g r i z z l y bears, and the l o g g i n g a c t i v i t y o c c u r r i n g t h e r e . Fourteen 1:20 000 maps were produced. The e s t u a r y and beach f r i n g e s were mapped a t 1:2500 because o f t h e i r importance as f e e d i n g areas f o r g r i z z l y b ears. F i e l d mapping methods i n v o l v e d p r e t y p i n g 1: 24 000 c o l o u r a i r photos, and "g r o u n d - t r u t h i n g " polygon l a b e l s and boundaries. A d d i t i o n a l data were c o l l e c t e d d u r i n g the mapping p r o c e s s t o d e s c r i b e ecosystem o r s o i l / l a n d f o r m u n i t s not p r e v i o u s l y encountered o r r e q u i r i n g b e t t e r c h a r a c t e r i z a t i o n . The two mapsheets c o v e r i n g the lower Kimsquit were d i g i t i z e d . Polygons were a s s i g n e d numbers and polygon a t t r i b u t e data were coded and keypunched. D e r i v a t i v e maps of s p e c i f i c h a b i t a t s were produced, i n c l u d i n g a map o f amalgamated t y p e s . S e v e r a l c r i t e r i a were used t o amalgamate h a b i t a t types i n t o Bear H a b i t a t U n i t s (BHUs). In most cases, types w i t h s i m i l a r age, s t r u c t u r e , s p e c i e s composition, e l e v a t i o n , and l a n d f o r m / s o i l type were grouped. Most commercial f o r e s t h a b i t a t t y p e s were combined i n t o BHUs w i t h uniform f o r e s t management p r e s c r i p t i o n s ( c f . treatment u n i t s , K l i n k a e t a l . 1980). Types w i t h s i m i l a r recommendations f o r l o g g i n g method, p r e - p l a n t i n g s i t e treatment, and p l a n t i n g s t o c k were grouped. S i m i l a r i t y o f n a t u r a l r e g e n e r a t i o n and brush p o t e n t i a l (Haeussler e t a l . 1984) and the p r e d i c t e d requirement f o r s p a c i n g (B.C. M i n i s t r y o f F o r e s t s and Lands 1984) were a l s o c o n s i d e r e d . H a b i t a t type combinations were a l s o based on s i m i l a r i t y i n bear food, s e c u r i t y , and thermal cover v a l u e s . The BHU c l a s s i f i c a t i o n was not developed u n t i l year 3 o f the c o l l a r e d g r i z z l y m o n i t o r i n g program. Observed movement p a t t e r n s and sea s o n a l h a b i t a t use data were used t o determine h a b i t a t type uniqueness. I f g r i z z l y bears d i d not appear t o r e g a r d r e l a t e d h a b i t a t types as d i s t i n c t , they were combined. As a r e s u l t , BHUs may c o n s i s t o f e c o l o g i c a l l y d i f f e r e n t t y pes. For example, skunk cabbage-dominated h a b i t a t types were grouped r e g a r d l e s s o f t r e e s p e c i e s cover o r stand age. Capture and M o n i t o r i n g H a b i t a t type and BHU e v a l u a t i o n were based on c a p t u r i n g and r a d i o c o l l a r i n g a sample of g r i z z l y bears r e s i d e n t t o the study area, d e t e r m i n i n g t h e i r l o c a t i o n s d a i l y , and then c o n d u c t i n g s i t e i n v e s t i g a t i o n s a t these l o c a t i o n s . Bears were ca p t u r e d i n A l d r i c h f o o t snares s e t i n b a i t e d cubbies or a l o n g t r a i l s (Flowers 1977) and immobilized w i t h M99 ( e t o r p h i n e h y d r o c l o r i d e , Cyanamid Canada L t d . ) . Mature g r i z z l y bears were equipped w i t h r a d i o c o l l a r s ( T e l o n i c s , Mesa, AZ). A premolar t o o t h was removed from each bear t o determine age u s i n g cementum a n n u l i ; standard body measurements were a l s o taken (Hamilton 1983). T r a n s m i t t e r - e q u i p p e d bears were monitored from the a i r and the ground. Upon r e c e i v i n g an a e r i a l s i g n a l , t h e bear was l o c a t e d as a c c u r a t e l y as p o s s i b l e ; i t s p o s i t i o n and a s s o c i a t e d u n c e r t a i n t y area were p l o t t e d on a 1:50 000 t o p o g r a p h i c map. U n l e s s the bear was observed, the u n c e r t a i n t y area was c o n s i d e r e d t o be a t l e a s t 100 m i n diameter. H a b i t a t types were a s s i g n e d t o a e r i a l l o c a t i o n s by p l o t t i n g the s i t e on the t y p e - l a b e l l e d 1:24 000 c o l o u r a i r photographs used f o r h a b i t a t mapping. I f the u n c e r t a i n t y area overlapped more than one h a b i t a t type, the dominant type near the c e n t r e p o i n t of the u n c e r t a i n t y area was chosen. A ground m o n i t o r i n g system was developed t h a t c o u l d r a p i d l y and p r e c i s e l y determine bear l o c a t i o n s . The system 13 p r o t e c t e d the equipment from heavy r a i n , and was easy t o use a f t e r dark (Hamilton and A r c h i b a l d 1986). Output from t h i s system i n c l u d e d the b e s t estimate o f the bear's l o c a t i o n , based on the i n t e r s e c t i o n o f s e v e r a l b e a r i n g s , i n U n i v e r s a l T r a n s v e r s e Mercator (U.T.M.) c o o r d i n a t e s . Radio l o c a t i o n s guided s i t e i n v e s t i g a t i o n s . I n v e s t i g a t i o n s were conducted i n areas of r e c e n t g r i z z l y bear a c t i v i t y t o i d e n t i f y and e v a l u a t e h a b i t a t c h a r a c t e r i s t i c s p o t e n t i a l l y important i n de t e r m i n i n g movements between, and use of, s p e c i f i c h a b i t a t types (Hamilton e t a l . 1986, Hamilton and Bu n n e l l 1987). Seasons of g r i z z l y bear a c t i v i t y , l i k e those d e s c r i b e d by L l o y d (1979), were adapted t o the Kimsquit study area. E i g h t seasons were i d e n t i f i e d (Table 2) based on food p l a n t phenology, the a v a i l a b i l i t y o f p r e f e r r e d foods, and major s h i f t s i n p a t t e r n s o f h a b i t a t use. Home Range and H a b i t a t U s e / A v a i l a b i l i t y To determine h a b i t a t a v a i l a b i l i t y , s e v e r a l d i g i t a l map l e v e l s o r "themes" were prepared. Each theme c o n s i s t e d o f two components, a computer g r a p h i c s f i l e c o n t a i n i n g polygon boundaries and a f i l e o f d e s c r i p t i v e a t t r i b u t e data (e.g. polygon h a b i t a t t y p e ) . A l l computer mapping was done w i t h the B.C. M i n i s t r y o f Environment's CAPAMP system (Computer A i d e d P l a n n i n g Assessment and Map P r o d u c t i o n ) . Two methods o f home range d e t e r m i n a t i o n were used: a T a b l e 2. Seasons of g r i z z l y bear a c t i v i t y i n the Kimsquit R i v e r , B.C. Season Season Length (days ) Average Season Dumber S t a r t De f i n i t i on i982 1983 1984 1985 Length (Days) 1 E a r l y A p r i l Emergence to v a l l e y f l o o r l e a f f l u s h _ 6 4 6 5 2 M i d - A p r i l Leaf f l u s h to avalanche chute green-up - 24 44 35 34 3 Late May Avalanche chute green-up to b e r r y p r o d u c t i o n 45 31 34 71 45 4 Late June Berry p r o d u c t i o n , no salmon 27 42 36 27 33 5 Late J u l y B e r r i e s and salmon 35 35 40 36 37 6 Late August Salmon, no b e r r i e s 45 45 33 29 38 7 Mid-October Post-salmon 16 8 17 - 14 8 E a r l y November Denning 166 160 141 156 m o d i f i c a t i o n o f the minimum convex polygon (MCP) technique (Harestad 1981) and a procedure t h a t i d e n t i f i e d and mapped the harmonic mean c e n t r e s o f a c t i v i t y and s p e c i f i e d contours around them (Dixon and Chapman 1980). V e r i f i e d ground and a e r i a l t e l e m e t r y l o c a t i o n s were combined on s e a s o n a l , annual, and m u l t i - a n n u a l bases. Repeat l o c a t i o n s o f bears i n dens were not i n c l u d e d i n the home range a n a l y s e s . Techniques were developed t o reduce the e f f e c t o f o u t l i e r s on home range d e t e r m i n a t i o n (Hamilton e t a l . 1986). To c r e a t e a s i n g l e MCP theme, the g r a p h i c f i l e s of i n d i v i d u a l home ranges were combined w i t h CAPAMP. A new a t t r i b u t e f i l e was coded t o d e s c r i b e the home range c h a r a c t e r i s t i c s o f each polygon r e s u l t i n g from t h i s combination. The second home range theme was prepared by d i g i t i z i n g t he 1:20 000 contour p l o t s o f s p e c i f i e d harmonic moments. Again, a l l home ranges were combined w i t h CAPAMP, a s i n g l e p l o t produced, and a new a t t r i b u t e f i l e prepared t o d e s c r i b e the r e s u l t a n t polygons. The CAPAMP system uses v e c t o r , o r l i n e segment d e f i n i t i o n o f map f e a t u r e s . Home range and h a b i t a t themes were o v e r l a i n w i t h a program t h a t converted the i n p u t v e c t o r d a t a t o r a s t e r - o n - g r i d ( i . e . p i x e l - b a s e d ) format, and allowed the p r o c e s s i n g o f m u l t i p l e i n p u t themes. A l g o r i t h m s were w r i t t e n t o generate t a b u l a r output o f h a b i t a t types f o r each home range. Output was arranged h i e r a r c h i c a l l y w i t h i n t h e c l a s s i f i c a t i o n ; areas were summed by zone, subzone, v a r i a n t , ecosystem a s s o c i a t i o n , s u c c e s s i o n a l stage, and v a r i a t i o n (Table 1). Area summaries by BHU were made by r e a d i n g the h a b i t a t type output f i l e s w i t h SAS, amalgamating a p p r o p r i a t e t y p e s , and summing t h e i r areas. Continuous m o n i t o r i n g o f c o l l a r e d bears was not p o s s i b l e because t e l e m e t r y was l i m i t e d by the rugged topography and t h i c k v e g e t a t i o n i n the area. Bears were monitored on a 24-hour b a s i s when they were w i t h i n ground t e l e m e t r y range, and thus h a b i t a t s s u b j e c t t o the h i g h e r acc u r a c y and p r e c i s i o n o f ground t e l e m e t r y may have been o v e r - r e p r e s e n t e d i n the l o c a t i o n frequency sample. Because of t h i s p o t e n t i a l b i a s and problems of a u t o c o r r e l a t i o n (Swihart and Slade 1985), time spent i n a h a b i t a t type (bear-days) was used as an index of s e l e c t i o n and v a l u e d e r i v e d from the u n i t . The number of days spent i n a p a r t i c u l a r u n i t was c a l c u l a t e d as the t o t a l o f h a l f the number o f days s i n c e the p r e v i o u s l o c a t i o n p l u s h a l f t he number o f days t o the subsequent l o c a t i o n . Bear-day t o t a l s and l o c a t i o n f r e q u e n c i e s were c o n t r a s t e d w i t h a v a i l a b l e area summaries by a FORTRAN program adapted from Woods e t a l . ( i n p r e p . ) . The u n d e r l y i n g assumption o f t h i s technique i s t h a t i n the absence o f a c t i v e s e l e c t i o n , h a b i t a t s would be used i n p r o p o r t i o n t o t h e i r a v a i l a b i l i t y . The program c a l c u l a t e s a c h i - s q u a r e s t a t i s t i c as a t e s t o f d i f f e r e n c e between h a b i t a t type use and a v a i l a b i l i t y w i t h i n a home range (Neu e t a l . 1974). Confidence i n t e r v a l s o f expected use are produced u s i n g B o n f e r r o n i Z - s t a t i s t i c s and compared t o the observed data. When use v a l u e s were o u t s i d e the c o n f i d e n c e i n t e r v a l s ( i . e . d i s p r o p o r t i o n a t e t o the a v a i l a b l e a r e a ) , s e l e c t i o n was i m p l i e d . P r e f e r e n c e v a l u e s (e.g., Hanley 1984) were a l s o c a l c u l a t e d (by d i v i d i n g the percentage use by percentage a v a i l a b i l i t y ) . Large d e v i a t i o n s from a v a l u e o f 1.0 a l s o imply t h a t h a b i t a t s e l e c t i o n o c c u r r e d . Seventy-two u s e / a v a i l a b i l i t y t e s t s were completed. The l a r g e number o f t e s t s were a r e s u l t o f u s i n g nine home ranges ( f i v e s e a s o n a l , t h r e e annual, one m u l t i - a n n u a l ) , two bears (numbers 08 and 25), two methods of home range d e t e r m i n a t i o n (MCP and harmonic moment c o n t o u r ) , and two i n d i c e s o f bear use ( l o c a t i o n frequency and bea r - d a y s ) . RESULTS H a b i t a t C l a s s i f i c a t i o n and Mapping In the lower Kimsquit v a l l e y , the t r a n s i t i o n a l western h e m l o c k - D o u g l a s - f i r (CWHh3) v a r i a n t covers an area of 44.5 km* and extends from sea l e v e l t o 400-500 m e l e v a t i o n (Yole e t a l . 1982). The e a s t e r n wetter t r a n s i t i o n a l (CWHi3) v a r i a n t o c c u p i e s an e l e v a t i o n a l band between the CWHh3 and the Mountain Hemlock zone and covers 49.5 km 2. On n o r t h and e a s t a s p e c t s , the CWHi3 begins above 400 m and extends up t o 760 m. On south and west a s p e c t s , i t begins above 500 m and extends t o 910 m (Clement 1984a). The c o a s t a l f o r e s t e d (MHd) subzone (41.1 km 2), l o c a t e d above the CWHi3, may extend up t o 1200 m. The c o a s t a l p a r k l a n d (MHdp) subzone i s found s c a t t e r e d over 7.3 km 2 above the MHd, b e g i n n i n g a t approximately 800 m ( F i g u r e 1). F i f t e e n c l i m a x f o r e s t and t h r e e s u b a l p i n e ecosystem a s s o c i a t i o n s , and s i x n o n - f o r e s t d i s c l i m a x e s were i d e n t i f i e d and d e s c r i b e d i n the lower Kimsquit (Table 3). One hundred and t e n d i f f e r e n t h a b i t a t types were mapped, r e f l e c t i n g the l a r g e number o f p o t e n t i a l combinations of these 24 a s s o c i a t i o n s and d i s c l i m a x e s , 8 s u c c e s s i o n a l stages, and 19 v a r i a t i o n s . However, many h a b i t a t types o c c u r r e d i n f r e q u e n t l y and covered s m a l l areas. Rare h a b i t a t types, such as s m a l l w i l d f i r e burns and r e - v e g e t a t e d low e l e v a t i o n l a n d s l i d e s , are i n c l u d e d . Twenty-eight h a b i t a t types 19 5 0 5 | I—t i i—\ = < Kilometers Figure I. MAP OF FORESTED BIOGEOCLIMATIC SUBZONES OF THE KIMSQUIT RIVER VALLEY T a b l e 3. B i o g e o c l i m a t i c v a r i a n t s , ecosystem a s s o c i a t i o n s , n o n - f o r e s t e d wetlands, d i s c l i m a x communities, and v a r i a t i o n s i n the Kimsquit R i v e r , B.C. B i o g e o c l i m a t i c Ecosystem a s s o c i a t i o n , N o n - f o r e s t e d V a r i a t i o n S u b z o n e / V a r i a n t wetland, or D i s c l i m a x Number Name Number Name CWHh3 01 Zonal hemlock - ( D o u g l a s - f i r ) V a c c i n i u m - moss CWHh3 CWHh3 02 Dry D o u g l a s - f i r - pine -s a l a l - Ple u r o z i u m - l i c h e n 03 Submesic - hemlock - moss CWHh3 CWHh3 04 05 Oak f e r n - moss D e v i l ' s c l u b f e r n CWHh3 06 F l o o d p l a i n spruce -d e v i l ' s c l u b CWHh3 CWHh3 CWHh3 07 Skunk cabbage swamps 08 N o n - f o r e s t e d wetlands 09 Avalanche t r a c k s and rock s l i d e s Herb A m a b i l i s f i r Nudum R h y t i d i o p s i s robusta V a c c i n i u m D o u g l a s - f i r V a c c i n i u m s a l a l D o u g l a s - f i r Nudum sword f e r n 1. Cottonwood - spruce - salmonberry -d e v i l ' s c l u b 2. A l d e r - salmonberry - e l d e r b e r r y 3. A l d e r - salmonberry (pole s a p l i n g ) 4. Salmonberry - t h i m b l e b e r r y - l a d y f e r n -shrub 1. Cottonwood - spruce - salmonberry -d e v i l ' s c l u b 2. Cottonwood - d e v i l ' s c l u b - salmonberry 3. Cottonwood - a l d e r - salmonberry -d e v i l ' s c l u b 4. A l d e r - salmonberry - e l d e r b e r r y 5. A l d e r - salmonberry (pole s a p l i n g ) 6. A l d e r - grass 7. Salmonberry - t h i m b l e b e r r y - lady f e r n -shrub 8. A l d e r - w i l l o w - f i r e w e e d - Rhacomitrium-g r a v e l / s a n d b a r 9. Cottonwood - a l d e r - t w i n b e r r y (young s e r a i ) 10. Spruce - cottonwood - t h i m b l e b e r r y -d e v i l ' s c l u b ( p o l e s a p l i n g / y o u n g s e r a i ) T a b l e 3. ( c o n t i n u e d ) B i o g e o c l i m a t i c Ecosystem a s s o c i a t i o n . N o n - f o r e s t e d S u b z o n e / V a r i a n t wetland, or D i s c l i m a x Number Name CWHi3 01 Zonal mountain hemlock -A m a b i l i s f i r - Vaccinium - moss CWHi3 02 Submesic mountain hemlock -(Am a b i l i s f i r - Vaccinium - moss CWHi3 03 Moist hemlock - A m a b i l i s f i r -Vaccinium - f e r n CWHi3 04 Lady f e r n CWHi3 05 D e v i l ' s c l u b - f e r n - l e a f y moss CWHi3 06 F l o o d p l a i n spruce - d e v i l ' s c l u b CWHi3 07 Skunk cabbage swamps CWHi3 08 S i t k a mountain a l d e r - lady f e r n avalanche t r a c k CWHi3 09 Sedge fen MHd 01 Zonal mountain hemlock -Vaccinium - moss MHd 02 Submesic mountain hemlock - moss MHd 03 Subhygric mountain hemlock - la d y f e r n - S i t k a v a l e r i a n MHd 04 Sedge - Sphagnum wetland MHd 05 S i t k a mountain a l d e r - willow -S i t k a v a l e r i a n avalanche t r a c k MHdp 01 Zonal mountain hemlock -Cassiope - C l a d i n a MHdp 02 Submesic mountain heather -Cassiope MHdp 03 Subhygric copperbush -S i t k a v a l e r i a n - Sphagnum covered more than 100 h e c t a r e s each. Together, they accounted f o r 89% of the 142.4 km 2 v e g e t a t e d area. The lower v a l l e y c l a s s i f i c a t i o n was based on a n a l y s i s o f data c o l l e c t e d a t 134 l o c a t i o n s . H a b i t a t type d e f i n i t i o n f o r the e n t i r e study area was from data c o l l e c t e d a t 200 p l o t s . Approximately 55% of the 351 d i g i t i z e d polygons i n the CWHh3 were f i e l d checked a t l e a s t once (Banner e t a l . 1986), whereas o n l y about 10% of 693 polygons i n the CWHi3, MHd, and MHdp were v i s i t e d . Fourteen Bear H a b i t a t U n i t s were d e r i v e d from the h a b i t a t type c l a s s i f i c a t i o n (Table 4 ) . Use p a t t e r n s o f c o l l a r e d bears i n d i c a t e d t h a t s t r a t i f i c a t i o n a t the h a b i t a t t y p e l e v e l was not always u s e f u l . In many cases, s e l e c t i o n appeared t o be a f u n c t i o n o f more g e n e r a l i z e d a t t r i b u t e s than those used t o c h a r a c t e r i z e the h a b i t a t t y p e s . For example, c o l l a r e d bears d i d not appear t o d i s c r i m i n a t e among avalanche chute h a b i t a t t ypes. Although these chutes o c c u r r e d a t d i f f e r e n t e l e v a t i o n s , shrub-dominated chutes i n the CWHh3 v a r i a n t (h3 09 a s s o c i a t i o n ) had s i m i l a r s p e c i e s c o m p o s i t i o n t o those i n the CWHi3 (i308 a s s o c i a t i o n ) . T h i s a v a i l a b i l i t y o f s i m i l a r food s p e c i e s may c o n t r i b u t e t o the apparent l a c k o f d i s c r i m i n a t i o n by c o l l a r e d animals. Four BHUs are commercial f o r e s t : s i d e h i l l and bench cl i m a x and old-growth f o r e s t , f l o o d p l a i n c limax and o l d -growth f o r e s t , skunk cabbage swamps, and submesic f o r e s t s . Each o f thes e BHUs had v e r y d i f f e r e n t v a l u e s as bear h a b i t a t and commercial timber. T a b l e 4. C o a s t a l g r i z z l y Bear H a b i t a t U n i t s (BHUs) i n the Kimsquit R i v e r , B.C. Name Acronym D e s c r i p t i o n Non-vegetated NV i n c l u d e s h i g h e l e v a t i o n rock and i c e , r i v e r sandbars, r o a d s , and 1-2 year o l d c u t o v e r s E s t u a r y EY beach f r i n g e , backshore and i n t e r t i d a l zones near the r i v e r mouth Avalanche chute AC d i s c l i m a x snow avalanche t r a c k s and v a l l e y s i d e s l o p e e a r l y s e r a i h a b i t a t types Mountain hemlock MH a l l f o r e s t e d h a b i t a t s i n the Mountain Hemlock Zone S u b a l p i n e p a r k l a n d SA mostly h i g h e l e v a t i o n krummholz and p a r k l a n d t y p e s , i n c l u d e s some oth e r a l p i n e h a b i t a t s Dry shore p i n e PL very d r y , low e l e v a t i o n rocky k n o l l s dominated by shore p i n e Sedge fens SF i n c l u d e s low and high e l e v a t i o n sedge-dominated bogs, f e n s , and o t h e r n o n - f o r e s t e d wetlands Skunk cabbage swamps s s 1 v a r i o u s o v e r s t o r y s p e c i e s , o r g a n i c s o i l s , h i g h water t a b l e , and h i g h cover of skunk cabbage S i d e h i l l and bench c l i m a x and old-growth f o r e s t s s o 1 a ' c a t c h - a l l ' u n i t which i n c l u d e s a l l mesic to s u b h y g r i c c o n i f e r o u s f o r e s t types not on the r i v e r f l o o d p l a i n Submesic f o r e s t s SM 1 d r i e r f o r e s t s commonly found on the lower e l e v a t i o n s i d e s l o p e s , d i f f e r e n t i a t e d from the SO by the l a c k of a m a b i l i s f i r F l o o d p l a i n c l i m a x and old-growth f o r e s t s FO 1 S i t k a spruce and other v a l l e y bottom c o n i f e r o u s f o r e s t s w i t h a l l u v i a l s o i l s ; may occur on creek fans F l o o d p l a i n s e r a i f o r e s t s FF e q u i v a l e n t s i t e c h a r a c t e r i s t i c s to the FO but dominated by p o l e s a p l i n g to mature climax b l a c k cottonwood or red a l d e r f o r e s t s F l o o d p l a i n s e r a i n o n - f o r e s t FS e a r l y s e r a i p i o n e e r herb and shrub h a b i t a t s on r e c e n t l y f l o o d e d r i v e r sandbars Logged LG a l l c u t o v e r s between the ages of 2 and 5 y e a r s ; c o u l d a l s o be d e s c r i b e d as s e r a i types of f o r e s t e d BHUs i f s i t e d i s t u r b a n c e not e x c e s s i v e Commercial f o r e s t Capture and M o n i t o r i n g Twenty g r i z z l y bears were captured, equipped w i t h r a d i o - t r a n s m i t t e r s and monitored f o r v a r i o u s p e r i o d s between A p r i l , 1982 and September 1987. Most of the h a b i t a t use i n f o r m a t i o n was c o l l e c t e d from two r e s i d e n t , a d u l t females. Bear 08 was f i r s t c a p tured as a 13-year-old on 17 May 1982. She was accompanied by two male y e a r l i n g s ; by 3 0 June 1983 she was a l o n e . Bear 08 d i d not have cubs i n 1984 or 1985, but produced t h r e e i n 1986. Bear 25 was f i r s t c a p t u r e d as a 1 6 - y e a r - o l d on 8 J u l y 1982. She was accompanied by one female and one male y e a r l i n g . She d i d not produce cubs i n 1984 but emerged from her den i n May 1985 w i t h one cub-of-t h e - y e a r . C o n c l u s i o n s reached from t r a c k i n g the two a d u l t females were supported by data c o l l e c t e d d u r i n g the m o n i t o r i n g o f o t h e r study animals (Table 5). S p e c i f i c a l l y , bear 50 (a s u b a d u l t female), bear 53 (a subadult male), and bear 54 (an a d u l t male) were l o c a t e d f r e q u e n t l y enough i n seasons 5 and 6 t o p r o v i d e comparative h a b i t a t use data. Although not r e p o r t e d here, h a b i t a t use by o t h e r c o l l a r e d bears was g e n e r a l l y c o n s i s t e n t w i t h t h a t of the i n t e n s i v e l y monitored animals ( A r c h i b a l d e t a l . 1985). Schedules of m o n i t o r i n g v a r i e d w i t h annual f i e l d p r i o r i t i e s ( A r c h i b a l d and Hamilton 1983, A r c h i b a l d e t a l . 1985, Hamilton e t a l . 1986), s t a f f i n g , and the a v a i l a b i l i t y o f f u n d i n g f o r a e r i a l r e l o c a t i o n f l i g h t s . The h i g h e s t T a b l e 5. S e a s o n a l , annual, and m u l t i - a n n u a l home range s i z e s of r a d i o - c o l l a r e d g r i z z l y b e ars i n the Kimsquit R i v e r , B.C. Bear Home range^ Number of l o c a t i o n s Minimum convex 2 2 : polygon (km ) 2 Harmonic moment contour o u t l i n e (km ) OS season 2 19 23 . 2 0 . 4 08 season 3 28 29 . 6 1 .6 08 season 4 50 8 . 5 11 .3 08 season 5 72 2 . 9 4 . 7 08 season 6 51 4 . 2 4 .9 08 1983 90 22 . 7 11 .9 08 1984 64 21. 0 13 . 3 08 1985 61 23 . 2 13 . 8 08 multi-annua1 (reduced) 236 30 . 4 32 . 4 08 multi-annua1 (100% ) 236 85 . 5 25 season 2 28 5. 5 3 . 9 25 season 3 25 6 . 2 3 . 6 25 season 4 67 12 . 5 7 . 5 25 season 5 58 4 . 5 6 .1 25 season 6 55 4 . 1 4 . 1 25 1983 82 10 . 9 13 . 2 25 1984 86 9 . 2 11 . 0 25 1985 62 8 . 7 7 . 1 25 multi-annua1 (reduced) 241 25 . 3 17 .6 25 m u l t i - a n n u a l (100%) 241 59 . 6 50 season 5 13 2 . 8 50 season 6 17 6 . 3 53 season 5 13 1. 8 53 season 6 15 2 . 9 54 season 5 16 8 . 4 54 season 6 14 0 . 9 Seasons as i n Ta b l e 2. Minimum convex polygon o u t l i n e s do not c o n t a i n a l l home range p o i n t s u n l e s s n o t e d . O u t l i e r p o i n t s have been removed. to p r i o r i t y i n 1982 was t o capture a r e p r e s e n t a t i v e sample of r e s i d e n t g r i z z l y b e ars; a l l r e l o c a t i o n s were made d u r i n g weekly f l i g h t s . Regular ground m o n i t o r i n g , began i n June 1983 ( d a i l y ) , and continued d u r i n g the 1984 and 1985 f i e l d seasons (24-hour). Seasons C o l l a r e d g r i z z l i e s appeared t o respond t o the a v a i l a b i l i t y o f p r e f e r r e d foods (Hamilton and B u n n e l l 1987). Movements were c o r r e l a t e d w i t h changing food p l a n t phenology and the t i m i n g o f salmon spawning. Although the broad h a b i t a t use p a t t e r n s remained the same among y e a r s , annual v a r i a t i o n i n c l i m a t e and food a v a i l a b i l i t y r e s u l t e d i n changes i n the onset and d u r a t i o n o f seasons (Table 2 ) . In season 1, the e a r l y s p r i n g , o n l y a few l o c a t i o n s were c o l l e c t e d . Most c o l l a r e d bears were s t i l l i n t h e i r dens, snowmelt was f a r from complete, and o n l y a v e r y few h a b i t a t s had begun t o green-up. In season 2, bears f i r s t f e d on sedges (Carex spp.) a t the e s t u a r y (BHU=EY), then l a t e r used the sedge fens (SF), o t h e r n o n - f o r e s t e d wetlands, and skunk cabbage ( L y s i c h i t o n americanum) swamps (SS). Bears appeared l e t h a r g i c and bedded f r e q u e n t l y i n s i d e h i l l old-growth (SO) and submesic f o r e s t s (SM). The onset o f season 3 corresponded t o the snowmelt on the h i g h e l e v a t i o n avalanche chutes. C o l l a r e d g r i z z l y bears l e f t the v a l l e y bottom, began t o feed on the emerging chute v e g e t a t i o n , and o f t e n s l e p t on open snow patches d u r i n g hot weather. As v a l l e y - b o t t o m b e r r i e s became a v a i l a b l e they r e t u r n e d t o the f l o o d p l a i n s e r a i f o r e s t s (FF), and f l o o d p l a i n c limax and old-growth f o r e s t s (FO). In season 4, the c o l l a r e d bears f e d on a v a r i e t y of f l o o d p l a i n b e r r y s p e c i e s (Hamilton and B u n n e l l 1987) and o f t e n bedded i n f e e d i n g h a b i t a t s . Late i n the season they l e f t the f l o o d p l a i n t o f e e d on Vaccinium spp. i n the SO. During seasons 5 and 6, salmon a v a i l a b i l i t y and abundance appeared t o determine h a b i t a t s e l e c t i o n (BHUs FO, FF, F S ) . S e v e r a l l a t e r i p e n i n g b e r r y s p e c i e s remained important u n t i l l a t e August and c o n s i d e r a b l e skunk cabbage use was observed i n September (BHU=SS). In season 7, o n l y a few l o c a t i o n s were c o l l e c t e d . Very l i t t l e salmon was a v a i l a b l e and bears began moving t o h i g h e r e l e v a t i o n s . Denning began near the end of October (season 8), and was most o f t e n a t , or c l o s e t o , the MH/CWH zonal boundary. Home Range and H a b i t a t U s e / A v a i l a b i l i t y Seasonal d e f i n i t i o n s p r o v i d e d a means of comparing movements and h a b i t a t a v a i l a b i l i t y w i t h i n the non-denning p e r i o d . Data c o l l e c t e d f o r the same season among ye a r s were combined t o c a l c u l a t e s easonal home ranges: sample s i z e s were too s m a l l t o a l l o w comparisons among years f o r the same season. A t o t a l o f 18 (multi-annual, annual, and seasonal) home ranges were determined f o r bears 08 and 25, nine from each of the MCP and harmonic moment techniques ( F i g u r e 2, 28 Figure 2. Multi-annual minimum convex polygon and harmonic moment contour home range outlines for bears 08 and 25, Kimsquit River, B.C., 1982-1985. 29 T a b l e 5 ) . The season 5 and 6 MCP home ranges of bears 50, 53, and 54 were s i m i l a r t o those of the two a d u l t females. Home range s i z e decreased d r a m a t i c a l l y d u r i n g t h i s p e r i o d , when spawning salmon were a v a i l a b l e . The data-bases f o r examining h a b i t a t use were f r e q u e n c i e s o f l o c a t i o n o f c o l l a r e d bears by h a b i t a t and es t i m a t e s o f time spent (bear-days) i n each type. Because they were i n f l u e n c e d by non-uniform ground t e l e m e t r y coverage, l o c a t i o n f r e q u e n c i e s were not always c o n s i s t e n t w i t h bear-day t o t a l s . For example, bear 25 was l o c a t e d i n the h i g h e l e v a t i o n S i t k a mountain a l d e r - Willow - S i t k a v a l e r i a n (MHd05C) avalanche chute u n i t o n l y t w i c e i n the a c t i v e seasons (<1%). However, t h i s u n i t accounted f o r 6.4% of her a c t i v e season bear-days. Although bear-day t o t a l s f o r some h a b i t a t s suggest t h a t v i s i t s are of l o n g d u r a t i o n , the e l a p s e d time between c o n s e c u t i v e l o c a t i o n s may i n f l u e n c e r e s u l t s . The bear-day method may a s s i g n t oo much weight t o an i n f r e q u e n t l y used h a b i t a t when the i n t e r v a l between l o c a t i o n s i s l o n g . S i m i l a r l y , h a b i t a t s w i t h many l o c a t i o n s of s h o r t d u r a t i o n may be o v e r - r e p r e s e n t e d i n the frequency sample. Bear 08 spent approximately 30.5%, and bear 25 about 2 3%, of the non-denning p e r i o d i n p o t e n t i a l l y commercial f o r e s t s (BHUs: SM, SO, and FO) ( F i g u r e s 3 and 4). Bears 50, 53, and 54 spent an average of 14% of season 5 and 6 i n these BHUs, compared t o 24.5% (bear 08) and 17.5% (bear 25) f o r the same seasons. Floodplain oldgrowth 63.5 days 8.41% .Floodplain serai forested 2 7 3 days 36.16% Figure 3. Bear 08 active season beardays by BHU, 1982-1985. aCommercial forest BHUs Floodplain serai non-forested 45 days 5 . 9 6 % Avalanche 141 days 18.68% chute Other 70 days 9 . 2 7 % Submesic forest 66. 5 days 8 . 8 % Sidehill oldgrowth 96 days 12.72 % Floodplain oldgrowth 91.5 days 1 2 . 8 3 % Floodplain serai forested 2 9 3 . 5 days 41 .16% Floodplain serai non-forested 64 .5 days 9 . 0 5 % Avalanche chute 9 0 . 5 days 12 .69 % Other 6 9 . 5 days 9 . 7 5 % Subalpine forest 5 5 days 7 .71% Sidehill oldgrowth 48 .5 days 6 . 8 0 % Figure 4 . Bear 25 active season beordays by BHU, 1982 -1985. 'Commercial forest BHUs C o l l a r e d bears used f l o o d p l a i n s e r a i f o r e s t s (BHU FF) h e a v i l y d u r i n g the l a t e summer and e a r l y f a l l , r e f l e c t i n g the a v a i l a b i l i t y o f salmon and l a t e r i p e n i n g b e r r i e s . I f market demands f o r cottonwood fPopulus b a l s a m i f e r a spp. t r i c h o c a r p a ) were t o i n c r e a s e , f i g u r e s noted f o r commercial h a b i t a t use would be much h i g h e r ; a l a r g e p r o p o r t i o n o f the FF i s mature, cottonwood-dominated f o r e s t . The s e a s o n a l importance of r i v e r f l o o d p l a i n h a b i t a t s i s most obvious a t the f i n e r l e v e l s o f h a b i t a t c l a s s i f i c a t i o n . A l l s e r a i stages and v a r i a t i o n s o f the F l o o d p l a i n S i t k a s p r u c e - d e v i l ' s c l u b ecosystem a s s o c i a t i o n (CWHh306) were h e a v i l y used by c o l l a r e d bears. F o r t y - s e v e n p e r c e n t (N=107) of bear 08's a c t i v e season l o c a t i o n s and 40% of her bear-days were i n t h i s a s s o c i a t i o n . Bear 25 was found 162 times (67%) and spent 56% of her a c t i v e season i n the same a s s o c i a t i o n . Commercial f l o o d p l a i n climax and old-growth f o r e s t s (FO) were used d i s p r o p o r t i o n a t e l y (p_<.01) more than a v a i l a b l e i n 10 home ranges t e s t e d f o r bears 08 and 25. (Table 6 ) . Of the member h a b i t a t types of the FO, the o l d -growth stage of the F l o o d p l a i n S i t k a s p r u c e - d e v i l ' s c l u b a s s o c i a t i o n (CWHh3 06H) was s i g n i f i c a n t (p_<01) i n 8 t e s t s . T a b l e 6. Frequency of s i g n i f i c a n t l y g r e a t e r (p<.01) use of Bear H a b i t a t U n i t s than expected from a v a i l a b i l i t y i n 18 home ranges of two r a d i o - c o l l a r e d a d u l t female g r i z z l y bears i n the Kimsq u i t R i v e r , B.C., 1982-1985. Index of bear use Home range method Bear H a b i t a t U n i t Frequency MCP Frequency Harmonic moment contour Bea r-days MCP Bea r-days Harmonic moment contour E s t u a r y 0 0 1 0 Avalanche Chute Mountain Hemlock Sedge Fen Skunk Cabbage Swamps S i d e h i l l Climax & F l o o d p l a i n Climax & Old-growth Old-growth F l o o d p l a i n S e r a i F o r e s t e d 11 10 11 F l o o d p l a i n S e r a i N o n - f o r e s t e d 10 Seventy-two u s e / a v a i l a b i l i t y t e s t s were conducted, one f o r each of 9 home ranges (5 s e a s o n a l , 3 a n n u a l , 1 m u l t i - a n n u a l ) , 2 b e a r s , 2 i n d i c e s of h a b i t a t use (frequency of l o c a t i o n and b e a r d a y s ) , and 2 home range a n a l y s i s t e c h n i q u e s (minimum convex po l y g o n and harmonic moment c o n t o u r ) . Management P r e s c r i p t i o n s E x i s t i n g f o r e s t management p r e s c r i p t i o n s f o r the Kimsquit watershed ( M i n i s t r y o f F o r e s t s and Lands 1984) were based on t h e ecosystem a s s o c i a t i o n c l a s s i f i c a t i o n of Y o l e e t a l . (1982). T h e r e f o r e , some i n t e r p r e t a t i o n s were g e n e r a l i z e d when the ecosystem a s s o c i a t i o n s were amalgamated i n t o Bear H a b i t a t U n i t s (Table 7 ) . The bear management p r e s c r i p t i o n s g i v e n i n Ta b l e 7 are supported by s i g n i f i c a n t u s e / a v a i l a b i l i t y s t a t i s t i c s f o r 3 of the 4 commercially f o r e s t e d BHUs (Table 6). Although u s e / a v a i l a b i l i t y a n a l y s i s d i d not i n d i c a t e t h a t Submesic F o r e s t s (SM) were p r e f e r r e d g r i z z l y h a b i t a t , s p e c i a l measures are l i k e l y r e q u i r e d t o ensure t h a t some of t h i s BHU i s a v a i l a b l e f o r bedding. Both c o l l a r e d animals spent a c o n s i d e r a b l e amount of season 2 i n the SM (31% and 9% of season 2 bear-days f o r bears 08 and 25, r e s p e c t i v e l y ) and bedding was the most f r e q u e n t l y r e c o r d e d a c t i v i t y d u r i n g the a c t i v e p e r i o d (4 of 7 s i t e i n v e s t i g a t i o n s ) . T a b l e 1. Management p r e s c r i p t i o n s f o r commercial f o r e s t g r i z z l y Bear H a b i t a t U n i t s i n the K i m s q u i t R i v e r , B.C. Bear H a b i t a t U n i t F o r e s t Management P r e s c r i p t i o n s Proposed Bear Management P r e s c r i p t i o n s S i d e h i l l and bench c l i m a x and o l d -growth f o r e s t s (SO) Submesic f o r e s t s (SM) C l e a r c u t l o g g i n g . D i s t u r b a n c e s h o u l d be minimized on s t e e p c o l l u v i a l s o i l s . B u r n i n g u s e f u l on f o l o s o l i c s i t e s to reduce o r g a n i c matter. D o u g l a s - f i r p r e f e r r e d s p e c i e s to p l a n t . B r u s h i n g and weeding u s u a l l y not r e q u i r e d , however, l a r g e r stock s h o u l d be used on r i c h e r s i t e s . S p a c i n g may be r e q u i r e d . Members of t h i s group are e x c e l l e n t c a n d i d a t e s f o r i n t e n s i v e f o r e s t r y ; o f f e r i n g many management o p t i o n s with r e l a t i v e l y few c o n s t r a i n t s . Small c l e a r c u t s are p r e f e r a b l e f o r the r e g e n e r a t i o n of D o u g l a s - f i r . D i s t u r b a n c e s h o u l d be minimized to ensure r e t e n t i o n of s o i l o r g a n i c matter. D o u g l a s - f i r p r e f e r r e d s p e c i e s to p l a n t . Wide s p a c i n g w i l l minimize c o m p e t i t i o n f o r s o i l m o i s t u r e . P r e v a i l i n g m o isture d e f i c i t throughout the growing season makes t h i s group u n s u i t a b l e f o r i n t e n s i v e f o r e s t r y . High u t i l i z a t i o n s t a n d a r d s w i l l minimize d e b r i s i n a r e a s where b u r n i n g i s not p a r t of s i t e t r e a t m e n t . Where p r e s c r i b e d f i r e i s used, hot burns s h o u l d be a v o i d e d to minimize damage to V a c c i n i u m r o o t s . S p a c i n g throughout r o t a t i o n u n t i l m a t u r i t y may promote u n d e r s t o r y food s p e c i e s growth. However, e x c e s s i v e d e b r i s may p r e v e n t f o o d p l a n t growth and bear a c c e s s . P r i m a r i l y a bedding u n i t , c l e a r c u t l o g g i n g i s not c o m p a t i b l e with the maintenance of bear h a b i t a t v a l u e . However, i f s i t e d i s t u r b a n c e i s minimized, and wide s p a c i n g u t i l i z e d , s i t e v a l u e s may be enhanced as the n e a r l y open-canopy f o r e s t matures. Small c l e a r c u t s p r e f e r r e d . Skunk cabbage swamps (SS) S e l e c t i v e l o g g i n g may be u s e f u l where t h e r e are only a few merchantable stems per h e c t a r e . Otherwise c l e a r c u t . D i s t u r b a n c e , e s p e c i a l l y to s m a l l ( d r i e r ) hummocks, must be minimized to m a i n t a i n s i t e p r o d u c t i v i t y . Water t a b l e w i l l r i s e with e x c e s s i v e d i s t u r b a n c e . Western r e d -cedar p r e f e r r e d s p e c i e s f o r p l a n t i n g . Weeding not l i k e l y r e q u i r e d when r e g e n e r a t i n g redcedar Some p o t e n t i a l f o r i n t e n s i v e f o r e s t r y i f s i t e d r a i n i n g c o s t - e f f e c t i v e . High p o t e n t i a l f o r c o n f l i c t between r e s o u r c e s , as c l e a r c u t l o g g i n g not c o m p a t i b l e w i t h maintenance of bear f o o d p r o d u c t i v i t y . S e l e c t i v e l o g g i n g w i l l m a i n t a i n the shading important f o r skunk cabbage and p r o v i d e v i s u a l c o v e r . Any l o w e r i n g of the water t a b l e may r e s u l t i n l o s s of a major f o o d . Small l e a v e s t r i p s not recommended as blowdown haz a r d h i g h . Non-merchantable t r e e s l e f t s t a n d i n g a f t e r h a r v e s t s h o u l d be w i n d f i r m . F l o o d p l a i n c l i m a x and o l d - g r o w t h f o r e s t s (FO) C l e a r c u t l o g g i n g . E x c e s s i v e d i s t u r b a n c e w i l l i n c r e a s e the growth and v i g o u r of competing weed s p e c i e s and i n c r e a s e the r i s k of e r o s i o n . F e l l i n g and y a r d i n g should be completed i n 1 season, p r e f e r a b l y / d u r i n g the d r i e s t p a r t of the y e a r . S i t k a spruce p r e f e r r e d s p e c i e s to p l a n t a l t h o u g h a m a b i l i s f i r , western redcedar and western hemlock are a c c e p t a b l e on d r i e r s i t e s i n t h i s group. I t i s i m p e r a t i v e to p l a n t as. soon as p o s s i b l e a f t e r l o g g i n g to minimize brush c o m p e t i t i o n . R e g a r d l e s s , weeding w i l l l i k e l y be r e q u i r e d . F u t h e r s i t e d i s t u r b a n c e (e.g. e r o s i o n ) and brush h a z a r d make t h i s group a poor c a n d i d a t e f o r i n t e n s i v e f o r e s t r y . High p o t e n t i a l f o r c o n f l i c t between r e s o u r c e s , p a r t i c u l a r l y when i n p r o x i m i t y to salmon spawning (bear f e e d i n g ) a r e a s . Coho r e a r i n g areas are o f t e n v a l u a b l e s p r i n g f e e d i n g h a b i t a t s . High b e r r y p r o d u c t i o n i n o l d - g r o w t h by s h a d e - t o l e r a n t s p e c i e s can be r e p l a c e d by l i g h t - s e e k i n g shrub f r u i t a f t e r c l e a r c u t t i n g i f d e f o l i a n t h e r b i c i d e s not a p p l i e d . Large drop i n bear food p r o d u c t i o n i f c o n i f e r o u s canopy c l o s e s at 15-20 y e a r s may be o f f s e t by s p a c i n g . Maintenance of bedding h a b i t a t v a l u e not c o m p a t i b l e w i t h i n t e n s i v e s i l v i c u l t u r e . Timber a l l o c a t i o n d e c i s i o n s s h o u l d be based on c o n s i d e r a t i o n of the amount and l o c a t i o n of e q u i v a l e n t v a l u e h a b i t a t i n the v i c i n i t y . 1 a f t e r B.C. M i n i s t r y of F o r e s t s and Lands (1984). U) U l DISCUSSION The summaries of c o a s t a l g r i z z l y bear frequency o f h a b i t a t use, i n d i c e s o f time spent per h a b i t a t (bear-days), and comparisons o f use and a v a i l a b i l i t y were used t o i d e n t i f y p o t e n t i a l l y c r i t i c a l h a b i t a t s (e.g., Schneegas and F r o u n f e l k e r 1977). The r e l a t i v e m e r i t s and d i f f i c u l t i e s a s s o c i a t e d w i t h m o n i t o r i n g so few bears have been d i s c u s s e d by Hamer and Herr e r o (1983). In the Kimsquit, emphasis was p l a c e d on c o l l e c t i n g d e t a i l e d i n f o r m a t i o n from a s m a l l sample of r e s i d e n t bears and e x t r a p o l a t i n g from i t . Removing o u t l i e r l o c a t i o n s p r i o r t o mapping the home ranges o f c o l l a r e d bears improved the accuracy and p r e c i s i o n of d e t e r m i n i n g h a b i t a t a v a i l a b i l i t y ; bounding a v a i l a b i l i t y w i t h the reduced o u t l i n e s i n c r e a s e d c o n f i d e n c e t h a t a l l h a b i t a t s w i t h i n the home range were t r u l y a v a i l a b l e . C o l l a r e d bears v i s i t e d most of the area w i t h i n the reduced o u t l i n e s a t some time d u r i n g the study. U s i n g two d i f f e r e n t methods of home range a n a l y s i s a l s o improved the l i k e l i h o o d o f a c c u r a t e l y d e t e r m i n i n g a v a i l a b i l i t y . N e i t h e r the MCP o r harmonic mean techn i q u e s are f r e e o f b i a s (Kenward 1987). As o p e r a t i o n a l t o o l s f o r the i n t e r p r e t a t i o n o f l o c a t i o n data, they were u s e f u l as i n d i c e s , r a t h e r than a b s o l u t e measures of a v a i l a b l e h a b i t a t . Although l i m i t e d by the assumptions i n h e r e n t i n the technique ( A l l d r e d g e and R a t t i 1986), u s e / a v a i l a b i l i t y comparisons demonstrate h a b i t a t s t h a t r e c e i v e animal use d i s p r o p o r t i o n a t e t o t h e i r a v a i l a b i l i t y w i t h i n s e l e c t e d home r a n g e s . When s m a l l o r r a r e u n i t s o f low o v e r a l l a r e a c o v e r a g e d e m o n s t r a t e s i g n i f i c a n c e ( e . g . , f o r a number o f a n i m a l s o r s e v e r a l home ranges o f t h e same a n i m a l ) , i t s u g g e s t s t h a t t h e s e h a b i t a t s d e s e r v e s p e c i a l c o n s i d e r a t i o n i n f o r e s t management (e. g . , S t e v e n t o n and M a j o r 1982). R e g a r d l e s s o f w h i c h h a b i t a t s were i d e n t i f i e d as b e i n g c r i t i c a l , a h a b i t a t c l a s s i f i c a t i o n t h a t c o u l d e x t r a p o l a t e r e s e a r c h r e s u l t s i n t o management recommendations was r e q u i r e d . F o r e s t management i s a l r e a d y c o u p l e d t o such a c l a s s i f i c a t i o n i n B r i t i s h Columbia. The B i o g e o c l i m a t i c E cosystem C l a s s i f i c a t i o n system i s amenable t o e x t r a p o l a t i o n o f i n t e n s i v e r e s e a r c h o v e r an e x t e n s i v e a r e a . F o r example, t h e m i d c o a s t d r i e r t r a n s i t i o n a l subzone (CWHh - Banner e t a l . 1986) and i t s v a r i a n t s a r e common t h r o u g h o u t m i d c o a s t a l B.C. R e s u l t s o f g r i z z l y b e a r h a b i t a t use i n v e s t i g a t i o n s i n t h e K i m s q u i t w i l l be most a p p l i c a b l e t o o t h e r w a t e r s h e d s i n t h e CWHh3 v a r i a n t . Recommendations w i l l be l e s s r e l i a b l y a p p l i e d i n t h e rem a i n d e r o f t h e CWHh subzone. However, s i n c e v a r i a n t s r e f l e c t f u r t h e r d i f f e r e n c e s i n r e g i o n a l c l i m a t e t h a n what i s c o n s i d e r e d t y p i c a l f o r t h a t subzone (e . g . , d r i e r , w e t t e r , s n o w i e r , warmer; P o j a r e t a l . 1987), p r e s c r i p t i o n s can be p r e p a r e d t o r e f l e c t t h e s e d i f f e r e n c e s . F o r i n s t a n c e , i n a d r i e r , warmer v a r i a n t , h a b i t a t s u sed by b e a r s f o r b e d d i n g d u r i n g h o t weather may be more i m p o r t a n t t h a n o b s e r v e d i n t h e CWHh3. B i o g e o c l i m a t i c zones a r e formed by g r o u p i n g subzones. To d e t e r m i n e t h e g e o g r a p h i c v a r i a b i l i t y o f BHU d e f i n i t i o n , s e a s o n a l h a b i t a t use p a t t e r n s , season d e f i n i t i o n , and key h a b i t a t s , i n f o r m a t i o n i s be i n g c o l l e c t e d i n s e v e r a l watersheds r e p r e s e n t i n g o t h e r subzones of the CWH and MH zones (Hamilton e t a l . 1986). Data w i l l be compared w i t h e a r l i e r s t u d i e s ( R u s s e l l 1974, Wray and Hebert 1975, Smith 1978, L l o y d 1979) and Kimsquit r e s u l t s . E x i s t i n g management p r e s c r i p t i o n s w i l l be r e f i n e d o r new ones developed. G r i z z l y bears have a p p a r e n t l y enhanced t h e i r f i t n e s s by e v o l v i n g m o r p h o l o g i c a l a d a p t a t i o n s t o h e r b i v o r y , w h i l e r e t a i n i n g p h y s i o l o g i c a l a d a p t a t i o n s t o c a r n i v o r y (Bunnell and Hamilton 1983). To meet the requirements imposed by t h i s s t r a t e g y and l o c a t e s u i t a b l e denning h a b i t a t , they make use o f a wide v a r i e t y o f environments t h a t can be d e s c r i b e d as a h a b i t a t mosaic (see Hamer 1985, Wielgus 1986). In the p a s t , the BEC system has been p r i m a r i l y o r i e n t e d t o the i d e n t i f i c a t i o n and c l a s s i f i c a t i o n o f commercial f o r e s t s ; o n l y some o f the h a b i t a t mosaic used by c o a s t a l g r i z z l y bears has r e c e i v e d a t t e n t i o n . The amount and d i s t r i b u t i o n o f important n o n - f o r e s t e d h a b i t a t s such as avalanche chutes, wetlands, and young f l o o d p l a i n s e r a i types i s c r i t i c a l t o the assessment of timber h a r v e s t impacts on h a b i t a t c a p a b i l i t y . I t i s p o s s i b l e t h a t g r i z z l i e s can compensate f o r the a l i e n a t i o n o r a l t e r a t i o n o f a p r e f e r r e d commercial type by u s i n g these h a b i t a t s as a l t e r n a t i v e s . The r e c e n t l y o u t l i n e d concepts of s i t e and s e r a i a s s o c i a t i o n s (Pojar e t a l . 1987) a l l o w c l a s s i f i c a t i o n o f p o t e n t i a l s u b s t i t u t e s . The proposed s i t e c l a s s i f i c a t i o n h i e r a r c h y o f the BEC system w i l l p r o v i d e a d d i t i o n a l f l e x i b i l i t y i n o r g a n i z i n g c o a s t a l g r i z z l y bear h a b i t a t s . S i t e a s s o c i a t i o n s ( s i t e s t h a t have the same or e q u i v a l e n t p h y s i c a l p r o p e r t i e s and the same v e g e t a t i o n p o t e n t i a l ) can occur a c r o s s subzones. For example, i t appears t h a t f l o o d p l a i n s e r a i h a b i t a t s are p r i m a r i l y i n f l u e n c e d by a l l u v i a l p r o c e s s e s , r a t h e r than r e g i o n a l c l i m a t e . As a r e s u l t , s i m i l a r p l a n t a s s o c i a t i o n s can be found throughout the CWH on a c t i v e f l o o d p l a i n s . A lthough c o n f i r m a t i o n i s r e q u i r e d , some important g r i z z l y h a b i t a t s , such as these f l o o d p l a i n types, e s t u a r i e s , o r skunk cabbage swamps, may be u b i q u i t o u s ; the Kimsquit i s perhaps more t y p i c a l o f c o a s t a l B.C. than i n i t i a l l y a n t i c i p a t e d . The s i t e h i e r a r c h y o f the BEC w i l l a l s o f a c i l i t a t e the c l a s s i f i c a t i o n and study o f s e r a i ecosystems r e s u l t i n g from timber h a r v e s t ( K l i n k a e t a l . 1985). Although not used i n d i s p r o p o r t i o n t o t h e i r a v a i l a b i l i t y , r a d i o - c o l l a r e d bears i n the Kimsquit f e d on b e r r i e s i n r e c e n t l y logged c l e a r c u t s . F r u i t - b e a r i n g shrubs began producing b e r r i e s 2 t o 3 years a f t e r l o g g i n g v a l l e y - b o t t o m f o r e s t s . Work i n southeast A l a s k a suggests t h a t s i m i l a r h a b i t a t s experience a r a p i d r e d u c t i o n i n u n d e r s t o r y biomass about 25 ye a r s a f t e r l o g g i n g , a c o n d i t i o n t h a t may p e r s i s t f o r another 125 ye a r s i f t he s i t e i s not managed (Alaback 1984). The need f o r a c l a s s i f i c a t i o n t o d e s c r i b e r e g e n e r a t i n g c u t o v e r s i n terms of age c l a s s and bear food p r o d u c t i v i t y i s e s p e c i a l l y c r i t i c a l f o r watersheds t h a t are t a r g e t e d f o r second-pass o p e r a t i o n s . The removal of any remaining climax or old-growth f o r e s t s c o u l d then be weighed a g a i n s t t h e l o c a l a v a i l a b i l i t y o f f r u i t - p r o d u c i n g , shrub-dominated logged areas and the abundance of l e s s p r o d u c t i v e second-growth. Such a c l a s s i f i c a t i o n would a l s o h e l p determine the p o t e n t i a l impact of i n t e n s i v e s i l v i c u l t u r a l a c t i v i t i e s such as weeding o r s i t e c o n v e r s i o n w i t h h e r b i c i d e s . E v e n t u a l l y , a timber h a r v e s t / b e a r h a b i t a t c a p a b i l i t y model, i t e r a t i v e over time, (e.g. Brody and Stone 1987) c o u l d be produced. D i f f e r e n t f o r e s t management s c e n a r i o s c o u l d be developed and weighed a g a i n s t p o t e n t i a l impacts on g r i z z l y bear h a b i t a t c a p a b i l i t y . I f such a model was coupled w i t h i n f o r m a t i o n on bear avoidance of roads ( A r c h i b a l d e t a l . 1987) or o t h e r a c t i v i t i e s (e.g., b l a s t i n g ) , and est i m a t e s of m o r t a l i t y r i s k s , i t would p a r a l l e l the Cumulative E f f e c t s Model produced f o r the Yellowstone g r i z z l y bear (Weaver e t a l . 1986). The u t i l i t y o f the BEC system i s f u r t h e r demonstrated by r e g r o u p i n g the taxonomic u n i t s ( i n t h i s study: ecosystem a s s o c i a t i o n s , d i s c l i m a x e s , v a r i a t i o n s , s u c c e s s i o n a l s tages, and landforms) i n t o i n t e r p r e t i v e c l a s s e s a c c o r d i n g t o t h e i r v a l u e f o r a s p e c i f i c purpose (Pojar e t a l . 1987). When t h i s purpose i s f o r e s t management, u n i t s can be grouped a c c o r d i n g t o t h e i r response t o d i f f e r e n t f o r e s t p r a c t i c e s (e.g., the s i t e u n i t s o f K l i n k a e t a l . 1984) . An advantage of amalgamated u n i t s i s t h e i r r e l a t i v e ease of mapping ( K l i n k a 41 e t a l . 1980). For a n a l y s i s and demonstration, t a x a d e s c r i b e d i n the Kimsquit were amalgamated on the b a s i s o f bear h a b i t a t uniqueness, v a l u e , and f o r e s t p r a c t i c e response. For most u n i t s , the t h r e e c r i t e r i a d i d not c o n f l i c t . However, some s i d e h i l l and bench climax and old-growth stands (SO) have d i f f e r e n t f o r e s t r y p r e s c r i p t i o n s (B.C. M i n i s t r y o f F o r e s t s 1984). G r i z z l y bear use (Hamilton e t a l . 1986) and food v a l u e i n f o r m a t i o n , i n d i c a t e d t h a t bears d i d not p e r c e i v e the member ty p e s o f the SO as d i s c r e t e ; as a r e s u l t , q u i t e d i f f e r e n t h a b i t a t s were amalgamated. For t h i s BHU, the g e n e r a l i z e d p r e s c r i p t i o n s (Table 7) should be supplemented w i t h ecosystem (B.C. M i n i s t r y o f F o r e s t s and Lands 1984) or s i t e u n i t - s p e c i f i c i n f o r m a t i o n ( K l i n k a e t a l 1984, Green e t a l . 1984). F l o o d p l a i n climax and old-growth f o r e s t s were used i n p r o p o r t i o n s g r e a t e r than i n d i c a t e d by home range a v a i l a b i l i t y (Table 6) i n 10 home ranges, 5 from each o f bears 08 and 25. The s i g n i f i c a n t r e s u l t s f o r t h e FO are unevenly d i s t r i b u t e d among the two methods of home range d e t e r m i n a t i o n and two i n d i c e s o f h a b i t a t use (frequency and bea r - d a y s ) . The d i f f e r e n t techniques p r o v i d e d i f f e r e n t i n s i g h t s ; c o l l e c t i v e l y they imply t h a t the FO i s c r i t i c a l h a b i t a t f o r c o a s t a l g r i z z l y bears. The d i s t r i b u t i o n o f g r i z z l y bear a c t i v i t y r e c o r d s i n the old-growth s e r a i stage o f the F l o o d p l a i n S i t k a s p ruce-d e v i l ' s c l u b a s s o c i a t i o n , a member of the FO BHU, were 42 n e a r l y even among bedding (33%), f e e d i n g (37%), and t r a v e l (27%), s u g g e s t i n g t h a t a v a r i e t y of l i f e r e q u i s i t e s are met i n t h i s h a b i t a t . Kimsquit data i n d i c a t e t h a t f e e d i n g and t r a v e l a c t i v i t y may r e t u r n t o near p r e - l o g g i n g l e v e l s 2 t o 3 y e a r s a f t e r c l e a r c u t t i n g . Bedding a c t i v i t y does not appear t o r e c o v e r t o former l e v e l s i n the s h o r t term. Proposed bear h a b i t a t management p r e s c r i p t i o n s (Table 7) f o r the FO are c o n s e r v a t i v e , s i n c e the degree of compensation f o r a l t e r a t i o n of t h i s h a b i t a t i s unknown. The i n f l u e n c e s of l o g g i n g and s i l v i c u l t u r e on c o a s t a l g r i z z l y h a b i t a t c a p a b i l i t y f a l l i n t o two major c a t e g o r i e s ; those t h a t a f f e c t p r o d u c t i v i t y or use o f c r i t i c a l h a b i t a t , and those t h a t a f f e c t the e n t i r e range of h a b i t a t requirements. T a b l e 7 p a r t l y addresses both concerns. Of the f o u r commercial f o r e s t BHUs, o n l y two, (Skunk cabbage swamps and F l o o d p l a i n climax and old-growth f o r e s t s ) are c r i t i c a l h a b i t a t . However, Tab l e 7 does not address perhaps the most important i s s u e : How much area of c r i t i c a l and non-c r i t i c a l h a b i t a t i s r e q u i r e d , and what should be the d i s t r i b u t i o n of these h a b i t a t s a c r o s s the landscape? Logging has the p o t e n t i a l t o reduce the c a p a b i l i t y of a c o a s t a l watershed t o support g r i z z l y bears by s i m p l i f y i n g the o r i g i n a l h a b i t a t mosaic. Second growth f o r e s t s ( e s p e c i a l l y p l a n t a t i o n s ) , l a c k the d i v e r s i t y of stand age, s t r u c t u r e , and f u n c t i o n t h a t c h a r a c t e r i z e mature and over-mature stands. As w i t h f i s h e r i e s v a l u e s , c o n s i d e r a t i o n must be g i v e n t o the t o t a l area and d i s t r i b u t i o n of timber h a r v e s t e d and s i l v i c u l t u r a l a c t i v i t y i n a watershed over a g i v e n p e r i o d o f time. S u c c e s s f u l implementation of i n t e g r a t e d g r i z z l y bear and f o r e s t management depends on an acknowledgement by r e s o u r c e managers t h a t these concerns may supercede s i t e - s p e c i f i c i s s u e s . R e g a r d l e s s o f the c o r r e c t mix of types, or amount r e q u i r e d , the o r i g i n a l h a b i t a t d i v e r s i t y must be maintained or i m i t a t e d through management t o keep g r i z z l y h a b i t a t c a p a b i l i t y c o n s t a n t . There must be adequate amounts of a l l s e a s o n a l l y important h a b i t a t s and access t o them must be u n r e s t r i c t e d . The h i g h economic v a l u e of commercial f o r e s t stands i n c o a s t a l B r i t i s h Columbia (Ainscough 1979) and the o u t s t a n d i n g c a p a b i l i t y of c o a s t a l watersheds t o support g r i z z l y bears have l e d t o the requirement f o r more i n t e g r a t e d f o r e s t management. Although the form o f the p r o d u c t s t o be developed from r e s e a r c h i n the Kimsquit v a l l e y has not been f i n a l i z e d , the BEC system w i l l be the framework f o r h a b i t a t c l a s s i f i c a t i o n , e v a l u a t i o n , and management p r e s c r i p t i o n s . The BEC system has the f l e x i b i l i t y t o c l a s s i f y a l l types of c o a s t a l g r i z z l y h a b i t a t from d i s c l i m a x avalanche chutes t o r e c e n t c u t o v e r s and mature commercial f o r e s t s . T h i s f l e x i b i l i t y i s coupled t o a proven h i s t o r y o f u s i n g the BEC system t o maximize the e f f i c a c y o f v a r i o u s f o r e s t h a r v e s t and s i l v i c u l t u r a l t e c h n i q u e s . Merging h a b i t a t management c o n s i d e r a t i o n s t o the BEC system w i l l h e l p ensure c o n t i n u e d presence of g r i z z l y bears throughout t h e i r h i s t o r i c range i n coastal B.C., while not unduly r e s t r i c t i n g i n d u s t r i a l forest development. 45 THE ROLE OF FOOD IN HABITAT USE BY COASTAL GRIZZLY BEARS INTRODUCTION S e v e r a l r e s e a r c h e r s have i n v e s t i g a t e d the f o r a g i n g s t r a t e g i e s of g r i z z l y bears and have performed proximate a n a l y s i s on s e l e c t e d food items ( L l o y d 1979, Mealy 1980, Sizemore 1980, Craighead e t a l . 1982, Hamer arid H e r r e r o 1983, Hamer 1985). D e s p i t e these e f f o r t s , r e l a t i v e l y l i t t l e i n f o r m a t i o n i s a v a i l a b l e on the r e l a t i o n s h i p between food q u a n t i t y o r q u a l i t y (energy or p r o t e i n c ontent and apparent d i g e s t i b i l i t y ) and seasonal movements by bears. D e f i n i n g food q u a l i t y u s i n g simple i n d i c e s of t o t a l d i g e s t i b l e energy o r p r o t e i n i s p o t e n t i a l l y m i s l e a d i n g because some foods may be chosen f o r v i t a m i n s or m i n e r a l s (Hamer and H e r r e r o 1983). S i m i l a r l y , some foods may be avoided because of the presence of p r o t e c t i v e or d e f e n s i v e agents (Robbins 1983). D e s p i t e t h e s e l i m i t a t i o n s , by r e g u l a r l y m o n i t o r i n g a c i d d e t e r g e n t f i b r e , crude p r o t e i n , and g r o s s energy l e v e l s of known g r i z z l y bear foods a t permanent p l o t s and by s e e k i n g c o r r e l a t i o n s between t i m i n g of use and l e v e l s of these n u t r i e n t s , we may be a b l e t o e x p l a i n why bears s h i f t from one food t o another (Hamer and Herrero 1983) . By n o t i n g where these foods occur, i t a l s o may be p o s s i b l e t o c o r r e l a t e h a b i t a t s h i f t s w i t h food a v a i l a b i l i t y . A seasonal model of h a b i t a t use c o u l d a s s i s t both p o p u l a t i o n and h a b i t a t management. A primary o b j e c t i v e of the C o a s t a l G r i z z l y P r o j e c t was t o determine s e a s o n a l h a b i t a t requirements. A 3-part s t r a t e g y o f h a b i t a t c l a s s i f i c a t i o n , mapping, and e v a l u a t i o n was developed t o meet t h i s o b j e c t i v e (Hamilton and A r c h i b a l d 1986). The Kimsquit study area, a salmon-producing watershed i n a mountainous area of m i d c o a s t a l B r i t i s h Columbia, o f f e r e d a good o p p o r t u n i t y t o t e s t hypotheses r e g a r d i n g t h e r o l e of forage i n h a b i t a t use. G r i z z l y bear home ranges i n t h i s area were r e l a t i v e l y s m a l l , a l l o w i n g good access t o f e e d i n g areas. For most of the a c t i v e season, bears c o n f i n e d t h e i r a c t i v i t i e s t o the r i v e r f l o o d p l a i n , where t e l e m e t r y accuracy was h i g h and where evidence o f bears was e a s i l y found. The n u l l h y p o t h e s i s was t h a t movements between h a b i t a t types by c o a s t a l g r i z z l y bears were not a s s o c i a t e d w i t h food q u a l i t y o r a v a i l a b i l i t y ( q u a n t i t y and t i m i n g ) ; t h a t i s , t h e r e were no c o r r e l a t i o n s among forage n u t r i e n t l e v e l s , a v a i l a b l e biomass, and apparent use of h a b i t a t or food r e s o u r c e s . The a l t e r n a t i v e h y p o t h e s i s was t h a t c o a s t a l g r i z z l y bears c o n c e n t r a t e d t h e i r a c t i v i t i e s i n h a b i t a t types w i t h abundant, a v a i l a b l e , h i g h l y d i g e s t i b l e foods of h i g h n u t r i e n t v a l u e , i n c l u d i n g salmon (Oncorhynchus spp.). More s p e c i f i c a l l y , except when consuming salmon, c o a s t a l g r i z z l y bears c o n c e n t r a t e d use i n those h a b i t a t types where p l a n t phenology ensured h i g h e r q u a l i t y food and food abundance was g r e a t e r than i n o t h e r a v a i l a b l e h a b i t a t s . W i t h i n these h a b i t a t s , c o a s t a l g r i z z l y bears would most f r e q u e n t l y s e l e c t s e a s o n a l p l a n t foods w i t h the h i g h e s t q u a l i t y and/or the g r e a t e s t abundance of a v a i l a b l e food r e s o u r c e s . E a r l i e r r e s u l t s (Hamilton and B u n n e l l 1987) suggested t h a t one i n t e n s i v e l y monitored a d u l t female was p o s s i b l y f o r a g i n g o p t i m a l l y and the o t h e r s a t i s f i c i n g , or simply attempting t o s u r v i v e (Bunnell and G i l l i n g h a m 1985). T e s t s r e l a t i n g bear movement t o forage q u a l i t y and q u a n t i t y were p r e s e n t e d o n l y f o r the b e r r y season; r e p o r t e d f i t n e s s (cub p r o d u c t i o n ) was t o October 1985. T h i s s e c t i o n summarizes r e s u l t s f o r a l l a c t i v e seasons and expands on the methods o u t l i n e d i n Hamilton and B u n n e l l (1987). A l s o i n c l u d e d are r e s u l t s of t e s t i n g the above hypotheses a t the more g e n e r a l i z e d l e v e l o f h a b i t a t c l a s s i f i c a t i o n (BHUs) and examination of the r o l e o f salmon i n d e t e r m i n i n g movements. L i m i t a t i o n s of the methods used are compared t o t r a d i t i o n a l means of e v a l u a t i n g h a b i t a t , and a p o s s i b l e e x p l a n a t i o n of the p a t t e r n s observed i s g i v e n . A d e s c r i p t i o n of the study area and g e n e r a l f i e l d methods were g i v e n i n S e c t i o n 2. METHODS S i t e and Forage I n v e s t i g a t i o n s Radio l o c a t i o n s guided s i t e i n v e s t i g a t i o n s . I n v e s t i g a t i o n s were conducted i n areas o f r e c e n t g r i z z l y bear a c t i v i t y t o i d e n t i f y and e v a l u a t e h a b i t a t c h a r a c t e r i s t i c s p o t e n t i a l l y important i n de t e r m i n i n g movements between, and use of, s p e c i f i c h a b i t a t types (Hamilton e t a l . 1986, Hamilton and B u n n e l l 1987) . L o c a t i o n s having an u n c e r t a i n t y area o f l e s s than 1 ha were i n v e s t i g a t e d a f t e r the bear l e f t the v i c i n i t y . A c t i v i t y i n f o r m a t i o n was re c o r d e d i f the exact s i t e and date o f use c o u l d be confirmed and i f the bear r e s p o n s i b l e was d e f i n i t e l y a g r i z z l y . Track c h a r a c t e r i s t i c s ( L l o y d 1979) and h a i r c o l o u r , t h i c k n e s s and l e n g t h were used t o c o n f i r m s p e c i e s i d e n t i f i c a t i o n . When p o s s i b l e , a c t i v i t i e s were a s s i g n e d t o known bears. D i r e c t v i s u a l o b s e r v a t i o n s , p e r i o d i c checks i n areas of t r a d i t i o n a l g r i z z l y bear use and chance encounters w i t h g r i z z l y bear s i g n a l s o p r o v i d e d r e c o r d s o f a c t i v i t y . S i t e i n v e s t i g a t i o n s were conducted from 1983-85. I n f o r m a t i o n c o l l e c t e d i n c l u d e d s e c u r i t y cover v a l u e and d i s t a n c e t o an opening; s o i l type and canopy cover of t r e e s , shrubs, and herbs; and age of s i g n and bed measurements (Hamilton and A r c h i b a l d 1986). A c t i v i t i e s were c l a s s i f i e d as f e e d i n g , bedding, t r e e marking, t r a i l marking, t r a v e l l i n g , and o t h e r . T y p i c a l l y , more than one a c t i v i t y was r e c o r d e d a t each s i t e . In 1983 and 1984, p l a n t s p e c i e s l i s t s were completed a t v e r i f i e d g r i z z l y bear f e e d i n g , bedding, and marking s i t e s . P e r c e nt ground cover, h e i g h t c l a s s , d i s t r i b u t i o n , and v i g o u r were r e c o r d e d f o r each s p e c i e s i n a 20 X 20 m p l o t (N=3 09). Food a v a i l a b i l i t y was a l s o estimated a t 205 r e f e r e n c e p l o t s sampled d u r i n g h a b i t a t c l a s s i f i c a t i o n and mapping (Banner e t a l . 1986, Clement 1984a). Prominence v a l u e s o f food s p e c i e s a t these s i t e s formed the b a s i s f o r food q u a n t i t y r a n k i n g s . Prominence v a l u e s are the average p e r c e n t ground cover of a s p e c i e s m u l t i p l i e d by the square r o o t of i t s p e r c e n t frequency o f occurrence a c r o s s a l l sample p l o t s w i t h i n a p a r t i c u l a r h a b i t a t type (Banner e t a l . 1986). By u s i n g average p e r c e n t cover and frequency of occurrence, i n d i c e s of p l a n t biomass d e r i v e d are more a c c u r a t e than would be c a l c u l a t e d by a s i n g l e measure. For example, equal prominence v a l u e s f o r two h a b i t a t types would be c a l c u l a t e d f o r a s p e c i e s w i t h an average of 50% cover i n 50% of the sample p l o t s i n one h a b i t a t type and 35% cover i n 100% of the p l o t s i n the o t h e r . For f r u i t - p r o d u c i n g shrubs, b e r r y abundance was e s t i m a t e d from the percentage of f r u i t - b e a r i n g stems and the average abundance (high=3, medium=2, or low=l) of b e r r i e s p e r stem. I n d i c e s f o r b e r r y seasons (4 and 5, T a b l e 2) were o b t a i n e d by m u l t i p l y i n g the two b e r r y measures and a v e r a g i n g the s p e c i e s t o t a l s by h a b i t a t . 50 Where f e e d i n g a c t i v i t y was v e r i f i e d , food s p e c i e s were l i s t e d i n o r d e r of e s t i m a t e d volume consumed and c l a s s i f i e d by p h e n o l o g i c a l stage (Dierschke 1972). In 1984, t h r e e t y p es o f food samples were c o l l e c t e d f o r n u t r i e n t a n a l y s e s : remains of what the bear had consumed, a mimic o f what the bear had s e l e c t e d , and a second mimic c o l l e c t e d up t o 1 month l a t e r a t the same s i t e . Permanent p l o t s were a l s o e s t a b l i s h e d i n 18 d i f f e r e n t h a b i t a t types t o sample food s p e c i e s . P l o t s were v i s i t e d once i n each of seasons 2 through 7 t o monitor phenology, estimate food abundance, and c o l l e c t samples of a l l known food p l a n t p a r t s f o r n u t r i e n t a n a l y s e s . Food samples c o l l e c t e d f o r n u t r i e n t c ontent d e t e r m i n a t i o n were f r o z e n i n 750 ml p l a s t i c bags and submitted t o the A g r i c u l t u r e Canada Research Branch L a b o r a t o r y f o r a n a l y s i s . L a b o r a t o r y t e c h n i q u e s f o l l o w e d accepted standards o f proximate a n a l y s i s (AOAC 1980) f o r d e t e r m i n i n g crude p r o t e i n , (6.25 X K j e l d a h l n i t r o g e n ) and g r o s s energy content. A c i d d e t e r g e n t f i b r e c ontent (Waldern 1971) was used as an i n d i c a t o r of r e l a t i v e f o r a g e d i g e s t i b i l i t y (Bunnell and Hamilton 1983). To s i m p l i f y comparison o f the n u t r i e n t l e v e l s w i t h i n a s p e c i e s , t h r e e r a t i o s of n u t r i t i o n a l v a l u e were d e r i v e d : p r o t e i n , energy, and summed energy and p r o t e i n averages were each d i v i d e d by the average ADF. R a t i o s were c a l c u l a t e d f o r each season and the e n t i r e a c t i v e p e r i o d ( i . e . , o v e r a l l ) . Food s p e c i e s n u t r i e n t r a t i o s were m u l t i p l i e d by prominence v a l u e s t o g i v e combined q u a l i t y / q u a n t i t y i n d i c e s f o r each h a b i t a t type and BHU. In seasons 4 and 5, b e r r y abundance averages were added t o the prominence v a l u e s b e f o r e m u l t i p l i c a t i o n . Seasonal and o v e r a l l forage v a l u e s f o r each h a b i t a t and BHU were o b t a i n e d by summing, r e s p e c t i v e l y , the prominence v a l u e s and the t h r e e combined q u a l i t y / q u a n t i t y i n d i c e s f o r each a v a i l a b l e food s p e c i e s p r e s e n t i n t h a t u n i t . These f o u r t o t a l s are not a b s o l u t e measures. They were used as r e l a t i v e v a l u e s t h a t c o u l d be compared t o g r i z z l y bear use a f t e r r a n k i n g . Hypotheses r e g a r d i n g the r o l e o f forage i n h a b i t a t and BHU use were t e s t e d by comparing the f o u r ranks o f forage v a l u e w i t h two ranks o f observed use: frequency and bear-days ( S e c t i o n 2 ) . Rank t e s t s were conducted f o r a l l h a b i t a t s and BHUs used and f o r h a b i t a t s and BHUs used f o r f e e d i n g on a sea s o n a l and m u l t i - a n n u a l b a s i s . Independent t e s t s were conducted t o h e l p determine the r o l e o f q u a l i t y and q u a n t i t y on seasonal food use w i t h i n h a b i t a t s . For each of seasons 2 t o 6, seven ranks were a s s i g n e d t o a v a i l a b l e p l a n t foods. Ranks were g i v e n t o each of the t h r e e n u t r i e n t r a t i o s , the prominence v a l u e s , and the t h r e e combined q u a l i t y / q u a n t i t y i n d i c e s without c o n s i d e r i n g h a b i t a t o r BHU. Hypotheses were t e s t e d by comparing frequency o f use ranks w i t h the seven food v a l u e ranks. To examine the r o l e o f spawning salmon i n de t e r m i n i n g g r i z z l y bear movements, salmon a v a i l a b i l i t y and abundance were e s t i m a t e d f o r each of 158 map polygons used by two i n t e n s i v e l y monitored a d u l t females. S i x c a t e g o r i e s r a n g i n g from h i g h a v a i l a b i l i t y and h i g h abundance t o zero were used i n the r a t i n g system. S t a t i s t i c a l A n a l y s i s Data from t e l e m e t r y , s i t e i n v e s t i g a t i o n s , v e g e t a t i o n p l o t s , and n u t r i e n t d e t e r m i n a t i o n were analyzed w i t h SAS (SAS I n s t i t u t e Inc. 1985). Summary s t a t i s t i c s were c a l c u l a t e d f o r continuous v a r i a b l e s . Nonparametric t e c h n i q u e s a l s o were used because c a t e g o r i c a l v a r i a b l e s i n frequency summaries were not normally d i s t r i b u t e d and s c a l e s of measurement were o r d i n a l , r a t h e r than r a t i o o r i n t e r v a l . The Friedman s i n g l e - f a c t o r a n a l y s i s o f v a r i a n c e by ranks was used t o t e s t f o r s i g n i f i c a n t d i f f e r e n c e s between bears i n h a b i t a t s used f o r f e e d i n g , and food s p e c i e s consumed. Use and v a l u e r a n k i n g s were compared u s i n g Spearman's rank c o r r e l a t i o n c o e f f i c i e n t s . Two way contingency t a b l e s and c h i - s q u a r e t e s t s were used t o compare the d i s t r i b u t i o n o f bear l o c a t i o n s by salmon a b u n d a n c e / a v a i l a b i l i t y c l a s s e s d u r i n g and not d u r i n g salmon spawning. RESULTS M o n i t o r i n g Most of the i n t e n s i v e h a b i t a t use i n f o r m a t i o n was c o l l e c t e d from two r e s i d e n t a d u l t females. They were monitored f o r 1238 and 1196 days (bear 08 and 25, r e s p e c t i v e l y ) from A p r i l 1982 t o October 1985 and had m u l t i -annual minimum convex polygon home ranges of 85 km 2 (N=236) and 60 km 2 (N=241). Data are not r e p o r t e d f o r 1986 because bear 25's c o l l a r f a i l e d by J u l y 14 of t h a t y e a r and m o n i t o r i n g o f bear 08 was d u r i n g the daytime o n l y . Of bear 08's l o c a t i o n s , 142 were o b t a i n e d from ground t e l e m e t r y and confirmed by evidence (sign) seen d u r i n g s i t e i n v e s t i g a t i o n s ; the remaining 94 l o c a t i o n s were o b t a i n e d from a e r i a l surveys, d i r e c t v i s u a l o b s e r v a t i o n s , and ca p t u r e . For bear 25, 165 ground t e l e m e t r y l o c a t i o n s were supported by s i t e i n v e s t i g a t i o n s and an a d d i t i o n a l 76 l o c a t i o n s were from a e r i a l surveys, d i r e c t v i s u a l o b s e r v a t i o n s , and cap t u r e . S i t e I n v e s t i g a t i o n and D i e t Movement summaries and p e r c e n t bear-day comparisons (Tables 8 and 9) show seasonal s h i f t s i n BHUs used by bears 08 and 25. S i t e i n v e s t i g a t i o n s p r o v i d e d a more i n t e n s i v e means o f examining use and h a b i t a t c h a r a c t e r i s t i c s and T a b l e 8. P e r c e n t bear-days by BHU f o r bear 08, Kimsquit R i v e r , B.C., 1982-1985. A c t i v e Bear H a b i t a t U n i t Season seasons A l l (BHU) T&2 3 4" 5" I 7 8~ o n l y seasons Logged 5 9 2 . 5 1 . 5 S u b a l p i n e f o r e s t 36 14.0 Dry shore p i n e 24 1. .5 1 . 0 Submesic f o r e s t 31 12 1 2 14 26 9 . 0 15.5 E s t u a r y 5 1. . 0 0 . 5 Sedge fens 1 1 1 0 . 5 0 . 5 F l o o d p l a i n s e r a i f o r e s t 11 7 41 64 52 55 36 . . 0 22.0 Skunk cabbage swamps 3 3 2 1 . 5 1 . 0 Avalanche chutes 21 56 18 18 . . 5 11.0 F l o o d p l a i n old-growth 2 20 13 8 8 . 5 5 . 0 S u b a l p i n e p a r k l a n d 6 1 . 0 0 . 5 F l o o d p l a i n s e r a i n o n - f o r e s t e d 3 2 9 15 7 6 . 0 4 . 0 S i d e h i l l o ld-growth 32 8 5 3 22 38 13 . .0 23.0 Non—vegetated 1 4 1 1 . 0 0 . 5 Days monitored 123 161 132 146 152 41 483 755 1238 Table 9. P e r c e n t bear-days by BHU f o r bear 25, Kimsquit R i v e r , B.C., 1982-1985. A c t i v e Bear H a b i t a t U n i t Season seasons A l l (BHU) 1&2 3 4 5 <5 7 8 o n l y seasons Logged 1 2 0 . 5 0 . 5 S u b a l p i n e f o r e s t 45 100 7 . 5 45.0 Submesic f o r e s t 9 1 4 2 3 . 0 2 . 0 E s t u a r y 7 1 1 . 5 1 . 0 Sedge fens 3 3 2 1 1 . 5 1 . 0 F l o o d p l a i n s e r a i f o r e s t 3 4 51 57 69 72 41 , . 0 24 . 5 Skunk cabbage swamps 4 2 3 1 2 , . 0 1 . 0 Avalanche chutes 4 59 10 1 12 , . 5 7 . 5 F l o o d p l a i n old-growth 14 4 16 22 10 8 13 . .0 7 . 5 S u b a l p i n e p a r k l a n d 5 1 . 0 0.5 F l o o d p l a i n s e r a i n o n - f o r e s t e d 3 2 7 15 17 5 9 . 0 5 . 0 S i d e h i l l old-growth 15 12 7 15 7 . 0 4 . 0 Non-vegetated 1 1 0 , . 5 0 . 5 Days mo n i t o r e d 122 120 132 146 152 41 483 713 1196 cn e v a l u a t i n g why these s h i f t s occur. Feeding a c t i v i t y was r e c o r d e d a t 182 s i t e i n v e s t i g a t i o n s o f bears 08 and 25. Feeding was examined i n 10 BHUs, 9 of which were used by both bears (Table 10). Rankings of the t h r e e BHUs most o f t e n f e d i n were the same f o r each bear. Although f e e d i n g i n lower ranked BHUs d i f f e r e d , ranks were g e n e r a l l y s i m i l a r between bears (r s=0.67, p_<0.05). However, d i f f e r e n c e s between bears were s i g n i f i c a n t a t the h a b i t a t type l e v e l o f c l a s s i f i c a t i o n . A lthough f e e d i n g a c t i v i t y was recorded i n 29 h a b i t a t s , o n l y 21 were used by both c o l l a r e d animals. Most r e c o r d s of f e e d i n g a c t i v i t y were recorded i n seasons 4, 5, and 6 (89% f o r bear 08, 82% f o r bear 25) because s i t e i n v e s t i g a t i o n s were dependent on ground t e l e m e t r y . During these seasons, bear a c t i v i t y i s c o n c e n t r a t e d on the f l o o d p l a i n where accuracy of ground t e l e m e t r y i s h i g h e r . Of 38 g r i z z l y bear foods a v a i l a b l e i n the Kimsquit (Table 11), bears 08 and 25 used a t l e a s t 27 (22 p l a n t s p e c i e s ) a t s i t e i n v e s t i g a t i o n s . A n a l y s i s of bear 08 and 25's s c a t s (Dibb 1984) d i d not d i s c l o s e any a d d i t i o n a l foods (N=113). Seven s p e c i e s used 10 times or more made up 74% of food use (N=271) reco r d e d a t s i t e i n v e s t i g a t i o n s : salmon, d e v i l ' s c l u b , r e d e l d e r b e r r y , skunk cabbage, salmonberry, s m a l l - f l o w e r e d b u l r u s h , and cow-parsnip. T a b l e 10. Comparison of f e e d i n g frequency and ranks by Bear H a b i t a t U n i t and season f o r two a d u l t female g r i z z l y b e a r s , K i m s q u i t R i v e r , B.C., 1982-1985. Bear H a b i t a t U n i t Number of Seasons Feeding Frequency F e e d i n g Rank Bear 08 Bear 25 Bear 08 Bear 25 Bear 08 Bear 25 E s t u a r y 1 2 1 5 9 . 0 5.0 Avalanche chute 1 1 1 2 9 . 0 7.5 Sedge Fens 2 4 2 6 7 . 0 4.0 Skunk cabbage swamps 3 3 4 4 5 . 0 6.0 S i d e h i l l and bench climax and old-growth f o r e s t s 2 1 3 1 6 . 0 9 . 0 Submesic f o r e s t s 1 0 1 0 9 . 0 10.0 F l o o d p l a i n c l i m a x and old-growth f o r e s t s 4 4 13 15 2 . 0 2.0 F l o o d p l a i n s e r a i f o r e s t s 5 5 37 53 1 . 0 1.0 F l o o d p l a i n s e r a i n o n - f o r e s t 2 3 9 14 3 , . 5 3.0 Logged 2 2 9 2 3 . 5 7.5 T o t a l 80 102 T a b l e 11. G r i z z l y bear foods i n the Kimsq u i t R i v e r , B.C., 1982-1985. S c i e n t i f i c name Common name P a r t s consumed P l a n t s A n g e l i c a g e n u f l e x a  A t h y r i u m f i l i x - f e m i n a  Ca rex s l t c h e n s i s C i c u t a d o u g l a s i i Cornus s o r i c e a j D r y o p t e n s a s s i m i l i s  E quisetum spp. Heracleum sphondy1ium  L o n i c e r a i n v o l u c r a t a  Lupinus nootkatens i s  L y s i c h T t o n americanum  Malus f u s c a  Oplopanax h o r r i d u s  Osmorhiza c h i l e n s i s Poaceae Ribes bracteosum R • l a c u s t r e R . l a x i f l o r u m 2 Rosa a c i c u l a T i s Rubus~idaeus R. p a r v i f l o r u s R • s p e c t a b i l i s Sambucus racenosa S c i r p u s m icroca rpus V a c c i n i u m a l a s k a e n s e V. membranaceum vT o v a l i f o l i u m " V . pa r v i f o l mm Ve r a t rum virT3e Viburnum edule K n e e l i n g a n g e l i c a Lady f e r n S i t k a sedge Water-hemlock R e d - o s i e r dogwood Spiny wood-fern H o r s e t a i l s Cow-pa r s n i p Black t w i n b e r r y Nootka l u p i n e Skunk cabbage P a c i f i c c rab apple D e v i l ' s c l u b S w e e t - c i c e l y Grasses S t i n k c u r r a n t Black gooseberry T r a i l i n g b l a c k c u r r a n t P r i c k l y rose Red r a s p b e r r y T h i m b l e b e r r y Salmonberry Red e l d e r b e r r y S m a l l - f l o w e r e d b u l r u s h A l a s k a n b l u e b e r r y Blue h u c k l e b e r r y O v a l - l e a v e d b l u e b e r r y Red h u c k l e b e r r y I n d i a n f a l s e h e l l e b o r e Highbush c r a n b e r r y Roots, stems, and l e a v e s Pinnae Blades Stems and l e a v e s B e r r i e s Pinnae A l l ? A l l B e r r i e s Roots Leaf base F r u i t L e a f , stems, and b e r r i e s Roots Blades B e r r i e s B e r r i e s B e r r i e s Hips B e r r i e s B e r r i e s Shoots , B e r r i e s Blades B e r r i e s Be r r i e s B e r r i e s B e r r i e s Stems B e r r i e s l e a v e s , and b e r r i e s I n s e c t s V e s p i d a e Bombus spp. Cedopte ra spp. F o r m i c i d a e Wasps Honeybees B e e t l e s Ants Larvae Larvae Larvae La rvae F i s h Oncorhynchus gorbuscha  0. k e t a 0. nerka Pink salmon Chum salmon Sockeye salmon A l l A l l A l l Mammals A l c e s a l c e s Moose F l e s h V e r i f i e d by s c a t a n a l y s i s , f e e d i n g s i g n , and v i s u a l o b s e r v a t i o n . -Not v e r i f i e d i n Kimsquit R i v e r but known g r i z z l y f o o d elsewhere on B.C. c o a s t . CO Forage A v a i l a b i l i t y G r i z z l y bear food prominence v a l u e s were c a l c u l a t e d from a t o t a l o f 309 use and 205 c l a s s i f i c a t i o n p l o t s . A t o t a l o f 698 r e c o r d s were o b t a i n e d f o r 67 h a b i t a t s , 13 BHUs, and 27 p o t e n t i a l food s p e c i e s . Although o n l y 22 p l a n t foods were v e r i f i e d a t bears 08 and 25's s i t e i n v e s t i g a t i o n s , f i v e a d d i t i o n a l s p e c i e s were i n c l u d e d i n the prominence v a l u e c a l c u l a t i o n s (Table 11). Spiny wood-fern, and p r i c k l y r o s e have been confirmed as g r i z z l y bear foods elsewhere on the B.C. c o a s t (e.g. L l o y d 1979). Nootka l u p i n e , t h i m b l e b e r r y , and I n d i a n h e l l e b o r e were v e r i f i e d as g r i z z l y foods i n the Kimsquit by o t h e r c o l l a r e d animals, g r i z z l y s c a t a n a l y s i s , o r v i s u a l o b s e r v a t i o n . Food d i s t r i b u t i o n among h a b i t a t s (N=110) v a r i e d from more u b i q u i t o u s s p e c i e s (e.g. l a d y fern) t o t y p e - s p e c i f i c s (e.g. water-hemlock, Table 12). Standard d e v i a t i o n s o f prominence v a l u e s were g e n e r a l l y l a r g e , i n d i c a t i n g t h a t food s p e c i e s cover and presence a c r o s s h a b i t a t s v a r i e d from o c c a s i o n a l , low cover t o common, h i g h cover. Dry matter, p r o t e i n , and a c i d d e t e r g e n t f i b r e c ontent were determined f o r 349 samples c o l l e c t e d i n 1984. Gross energy content was measured f o r 86 of these. Ranks of t h r e e n u t r i e n t r a t i o s used as g r i z z l y food q u a l i t y i n d i c e s were s i g n i f i c a n t l y d i f f e r e n t (Table 12). Skunk cabbage p r o t e i n T a b l e 12. Comparison of s p e c i e s h a b i t a t d i s t r i b u t i o n , prominence g r i z z l y bear food s p e c i e s determined i n the Kimsquit R i v e r , B.C., ranks, and 3 ranks of n u t r i e n t q u a l i t y r a t i o s f o r 1982-1985. Rank S p e c i e s P a r t Number of H a b i t a t s Prominence Protein/ADF Ene rgy/ADF ( P r o t e i n + Energy) ADF Veratrum v i r i d e f o l i a g e 18 15 1 • 11 1 L y s i c h i t o n americanum p e t i o l e 14 8 2 10 2 L o n i c e r a i n v o l u c r a t a b e r r i e s 24 12 4 3 3 Rubus p a r v i f l o r u s b e r r i e s 36 5 3 8 4 Sambucus racemjsa b e r r i e s 33 7 5 6 5 Cornus s e r i c e a b e r r i e s 35 6 11 2 6 S c i r p u s m icrocarpus f o l i a g e 9 17 8 14 7 Carex s i t c h e n s i s f o l i a g e 5 16 7 16 8 A n g e l i c a g e n u f l e x a r o o t s 11 20 18 1 9 Oplopanax h o r r i d u s b e r r i e s 39 2 14 5 10 A t h y r i u m f i l i x - f e m i n a f o l i a g e 47 3 6 22 11 Poaceae ^ f o l i a g e 19 9 9 19 12 Ribes bracteosum b e r r i e s 27 10 15 9 13 Rubus idaeus b e r r i e s 15 19 13 13 14 Rubus s p e c t a b i ^ i s be r r i es 43 1 10 20 15 V a c c i n i u m spp.~ b e r r i e s 44 4 19 7 16 Lupinus n o o t k a t e n s i s r o o t s 4 23 17 1 17 Heracleum sphondylium r o o t s 15 14 16 8 18 D r y o p t e r i s a s s i m i l i s f o l i a g e 38 11 12 21 19 Osmorhiza c h i l j n s i s Viburnum edule r o o t s 20 21 20 12 20 b e r r i e s 33 13 22 4 21 Equisetum arvense f o l i a g e 23 18 21 24 22 Rosa a c i c u l a r i s h i p s 14 22 24 17 23 C i c u t a d o u g l a s i i f o l i a g e 2 24 23 23 24 L a t e - r i p e n i n g b e r r y s p e c i e s - a v a i l a b l e i n season 5 o n l y . I n c l u d e s 4 s p e c i e s : Vaccinium a l a s k a e n s e , V. membranaceum, V. o v a l i f o l i u m , V. p a r v i f o l i u m . O 61 l e v e l s were h i g h e r i n the e a r l y and l a t e seasons than i n seasons 4 and 5 (F i g u r e 5 ) . N u t r i e n t content averages were c a l c u l a t e d f o r the p e r i o d of a v a i l a b i l i t y f o r a s p e c i f i c p l a n t p a r t . Sample s i z e s o f t e n were too s m a l l t o r e l y on sea s o n a l n u t r i e n t content v a l u e s d u r i n g r a t i o c a l c u l a t i o n . Food s p e c i e s v e g e t a t i v e and g e n e r a t i v e phenology r e c o r d e d d u r i n g s i t e i n v e s t i g a t i o n s and h a b i t a t c l a s s i f i c a t i o n (N=3202) was used as a measure o f p l a n t p a r t a v a i l a b i l i t y . Although the study animals p r i m a r i l y used young stem and f o l i a r m a t e r i a l and b e r r i e s , some p l a n t s were chosen a t more advanced p h e n o l o g i c a l stages. Green b e r r i e s of d e v i l 1 s c l u b were chosen i n l a t e season 3, the o n l y f r u i t consumed b e f o r e r i p e n i n g . Two major groups of b e r r i e s were r e c o g n i z e d on the b a s i s of phenology: e a r l y r i p e n i n g (June 15-July 15) and l a t e r i p e n i n g ( J u l y 15-August 15) (Table 12). E a r l y - r i p e n i n g s p e c i e s were i n c l u d e d i n season 4 and 5 food ranks w h i l e the l a t e s p e c i e s were i n c l u d e d i n season 5 ranks o n l y . Very few b e r r i e s were a v a i l a b l e a f t e r September 7 (Season 6 ) . B e r r y abundance data (N=727) by s p e c i e s and h a b i t a t were used t o supplement food a v a i l a b i l i t y ranks. F r u i t -p r o d u c i n g shrub prominence v a l u e s were inadequate s i n c e presence and cover d i d not i n d i c a t e the amount of f r u i t a v a i l a b l e . Frequency of use (from site Investigations) 30 -4 20 - f % Protein and Acid Detergent Fibre 10 -f n = 7 Bearing dry fruit Bearing ripe fruit Beoring green fruit Shortly before flowering Blossom buds strongly swolle Blossom buds recognizable a> o *-(0 o o 'o> o o c a> c CL CO > a> c Q> 2 3 4 5 6 7 S E A S O N Figure 5. Percent protein and acid detergent fibre, generative phenology and seasonal frequency of use of Lysichiton americanum by two adult female grizzly bears, Kimsquit River, B.C. 1982-1985. Without blossom buds Hypothesis T e s t i n g Rank t e s t i n g between c o l l a r e d g r i z z l y bear movements and p l a n t food q u a n t i t y , and combined q u a l i t y and q u a n t i t y r a t i n g s g e n e r a l l y d i d not r e s u l t i n s i g n i f i c a n t c o r r e l a t i o n s a t the lower, h a b i t a t type l e v e l o f c l a s s i f i c a t i o n . C o r r e l a t i o n s were sought f o r s i x home ranges o f bears 08 and 25: seasons 2-6 and m u l t i - a n n u a l . For a l l h a b i t a t s , and f e e d i n g h a b i t a t s , s i g n i f i c a n t c o r r e l a t i o n s were found i n o n l y 3 o f the 12 home ranges examined (bear 08: season 4, bear 25: season 4 and m u l t i - a n n u a l , p<.05). In season 4, bears 08 and 25 appeared t o behave d i f f e r e n t l y (Table 13). Bear 0 8 1 s o v e r a l l movements d u r i n g t h i s season were c o r r e l a t e d w i t h forage ranks ( f i v e r s r a n g i n g from 0.46 t o 0.61) but her apparent f e e d i n g h a b i t a t use was not. Bear 25's f e e d i n g h a b i t a t use was s t r o n g l y c o r r e l a t e d w i t h forage ranks ( f o u r r s from 0.84 t o 0.87). Movements and f e e d i n g u n i t use were b e t t e r c o r r e l a t e d w i t h f o r a g e ranks a t the h i g h e r , BHU l e v e l o f c l a s s i f i c a t i o n (7 o f 12 home ranges examined, Ta b l e 13). For a l l BHUs used, and a l l BHUs used f o r f e e d i n g i n the seasons 2 t o 6 and m u l t i - a n n u a l home ranges, the season 2, season 4, and m u l t i - a n n u a l c o r r e l a t i o n s were s i g n i f i c a n t f o r both bears. Although some d i f f e r e n c e s were apparent between bears, when a l l (multi-annual) l o c a t i o n s and f e e d i n g events were c o n s i d e r e d , rank t e s t s were c o n s i s t e n t l y s i g n i f i c a n t (24 of 24 t e s t s , r s from 0.58 t o 0.83, p_<.05) . T a b l e 13. Number of s i g n i f i c a n t rank c o r r e l a t i o n c o e f f i c i e n t s between f o r a g e and use, and t o t a l number of a v a i l a b l e , used, and f e e d i n g h a b i t a t s , w i t h i n 6 home ranges of 2 a d u l t female g r i z z l y b e a r s , K i m s q u i t R i v e r , B.C., 1982-1985. A l l H a b i t a t s and BHUs used F e e d i n g H a b i t a t s and BHUs Bear number/ home range Numbe r of h a b i t a t s a v a i l a b l e Number of h a b i t a t s used Number of s i g n i f i c a n t c o r r e l a t i o n s j (8 p o s s i b l e ) Number of h a b i t a t s used f o r f e e d i n g Numbe r of s i g n i f i c a n t c o r r e l a t i o n s ^ (4 p o s s i b l e ) H a b i t a t s (N=110 ) 08 season 4 60 21 5 13 0 25 season 4 64 24 1 13 4 25 m u l t i - a n n u a l 80 37 0 23 1 Bear H a b i t a t U n i t s (N=14) 08 season 2 08 season 4 13 11 6 8 0 8 4 5 4 0 08 m u l t i — a n n u a l 14 13 8 10 4 25 season 2 13 9 0 6 4 25 season 4 12 9 5 5 1 25 season 6 10 6 8 6 4 25 m u l t i - a n n u a l 14 12 8 9 4 Reduced minimum convex polygon home ranges, seasons 2-6 and m u l t i - a n n u a l (Table 5, Hamilton et a l . 1986). E i g h t t e s t s conducted f o r each of 12 home ranges (6 per bear) u s i n g 2 ranks of bear use ( f r e q u e n c y of l o c a t i o n , beardays) and 4 ranks of f o r a g e v a l u e . Four t e s t s conducted f o r each of 12 home ranges (6 per bear) u s i n g the rank of f e e d i n g f r e q u e n c y and 4 ranks of f o r a g e v a l u e . No apparent p a t t e r n s were observed i n the numbers o f s i g n i f i c a n t Spearman's rank c o r r e l a t i o n c o e f f i c i e n t s d e r i v e d from t h e t h r e e measures o f bear use ( f requency o f l o c a t i o n , b e a r - d a y s , f r equency o f f e e d i n g by h a b i t a t ) o r t h e f o u r i n d i c e s o f f o r a ge v a l u e (prominence v a l u e , combined prominence and p r o t e i n / A D F , combined prominence and energy/ADF, combined prominence, p r o t e i n and energy /ADF) . S i g n i f i c a n t r e s u l t s were e v e n l y d i s t r i b u t e d among t h e v a r i o u s p a i r e d ranks o f bear use and f o rage q u a l i t y / q u a n t i t y . T e s t s conducted t o determine i f s ea sona l p l a n t food c h o i c e s (N=271) were c o r r e l a t e d w i t h q u a l i t y , q u a n t i t y , o r combined q u a l i t y / q u a n t i t y ranks i n d e p e n d e n t l y o f h a b i t a t t ype o r BHU, i n d i c a t e d t h a t bea r s d i d not c o n t i n u o u s l y seek foods o f t h e h i g h e s t q u a n t i t y and /o r n u t r i e n t v a l u e . Ve ry few s i g n i f i c a n t c o r r e l a t i o n s were found (7 o f 70 t e s t s ) . However, s i g n i f i c a n t c o r r e l a t i o n was found f o r t h e foods s e l e c t e d by bo th bea r s i n season 4 (5 o f 14 t e s t s , r s from 0.63 t o 0.70, p<.05) and by bea r 08 i n season 2 (2 o f 14 t e s t s , bo th r s = 0 . 8 2 , p_<.05). The d i s t r i b u t i o n s o f bear s 08 and 2 5 ' s movement by map po l ygon r a t e d f o r salmon a v a i l a b i l i t y and abundance were s i g n i f i c a n t l y d i f f e r e n t d u r i n g and o u t s i d e o f salmon spawning. R e s u l t s were s i g n i f i c a n t (p_<.001) f o r seasons 5 and 6 s e p a r a t e l y and when combined: X 2 =30.6 f o r bea r 08 (d.f.=4) and X 2 =18.6 f o r bear 25 (d . f .=4 ) . A n a l y s i s i n d i c a t e d t h a t t h e a d u l t females were more l i k e l y t o be found i n a h i g h or medium-rated polygon d u r i n g spawning than a t o t h e r times d u r i n g the a c t i v e season. DISCUSSION Numerous s t u d i e s r e v e a l dramatic seasonal s h i f t s i n the d i e t o f g r i z z l y bears. Such s h i f t s are thought t o r e s u l t from attempts t o maximize the net r a t e of energy i n t a k e by s e l e c t i n g h i g h l y d i g e s t i b l e forage (Bunnell and Hamilton 1983) . Although they have r e t a i n e d the a b i l i t y t o d i g e s t meat e f f i c i e n t l y , g r i z z l y bears have a p p a r e n t l y e v o l v e d o n l y l i m i t e d c a p a b i l i t y t o d i g e s t coarse v e g e t a t i v e f o r a g e . T h i s c o n s t r a i n e d d i g e s t i v e e f f i c i e n c y , t o g e t h e r w i t h the need f o r r a p i d weight g a i n imposed by denning (Ramsay and Dunbrack 1986) , has caused s e v e r a l authors t o s p e c u l a t e t h a t g r i z z l y bear h a b i t a t s e l e c t i o n i s r e l a t e d t o the q u a l i t y and q u a n t i t y o f a v a i l a b l e forage ( L l o y d 1979, Mealey 1980, Sizemore 1980, Stelmock 1981, Craighead e t a l . 1982, Hamer and H e r r e r o 1983, Hamer 1985, Wielgus 1986, Hadden e t a l . 1987) . P a t t e r n s o f h a b i t a t use observed ( S e c t i o n 2, T a b l e s 8 and 9) were not e n t i r e l y c o n s i s t e n t w i t h o t h e r s t u d i e s o f c o a s t a l g r i z z l y bear ecology. Most d i f f e r e n c e s c o u l d be a t t r i b u t e d t o v a r i a t i o n i n a v a i l a b l e h a b i t a t s , physiography, and r e g i o n a l c l i m a t e . For example, the h e a v i l y used a l p i n e Carex macrochaeta-Forb Meadow community d e s c r i b e d by A t w e l l e t a l . (1980), and the c o a s t a l p l a i n o f Glenn and M i l l e r (1980), have no p a r a l l e l s i n m i d c o a s t a l B r i t i s h Columbia. Although not c o a s t a l , brown bears i n s o u t h c e n t r a l A l a s k a ( N e l c h i n a Basin) feed on salmon streams and alo n g r i p a r i a n 68 c o r r i d o r s ( M i l l e r 1984) a p p a r e n t l y consuming d e v i l ' s c l u b . A l t h o u g h more s i m i l a r , o b s e r v e d p a t t e r n s i n s o u t h e a s t A l a s k a (Schoen and B e i e r 1986) a r e a l s o u n l i k e t h o s e r e c o r d e d i n t h i s s t u d y . A v a l a n c h e c h u t e s a r e u s e d as f o r a g e a r e a s f o r a number o f b e r r y s p e c i e s (McCarthy 1986), a b e h a v i o u r r a r e l y o b s e r v e d i n t h e K i m s q u i t . Most s i m i l a r i t i e s a r e found w i t h L l o y d (1979) who s t u d i e d g r i z z l y and b l a c k b e a r h a b i t a t use i n K n i g h t I n l e t , a p p r o x i m a t e l y 23 0 km s o u t h . However, L l o y d n o t e d t h a t b e a r s i n h i s a r e a appeared t o make c o n s i d e r a b l e use o f s u b a l p i n e sedge meadows d u r i n g t h e summer, a h a b i t a t n o t w i d e l y a v a i l a b l e i n t h e K i m s q u i t . Food h a b i t s a l s o appear t o d i f f e r among s t u d i e s . From t h e N e l c h i n a B a s i n s o u t h , d i f f e r e n c e s appear t o be more r e l a t e d t o p r o p o r t i o n s o f t h e d i e t made up by v a r i o u s s p e c i e s , r a t h e r t h a n t h e f o r a g e s p e c i e s t h e m s e l v e s ( c f . T a b l e 11 o f t h i s s t u d y w i t h Appendix 3 i n L l o y d 1979). A t y p i c a l c o a s t a l g r i z z l y appears t o b a l a n c e some g r a z i n g (e.g. Carex spp., Ecruisetum spp., f e r n s ) and d i g g i n g (skunk cabbage, cow-parsnip) w i t h e x t e n s i v e b e r r y use ( d e v i l ' s c l u b , s a l m o n b e r r y , V a c c i n i u m s p p . ) . Throughout t h e c o a s t , P a c i f i c salmon p l a y an i m p o r t a n t r o l e i n t h e a n n u a l movements and f o o d h a b i t a t s o f g r i z z l y b e a r s . A l t h o u g h A t w e l l e t a l . (1980) s u g g e s t e d t h a t movements t o salmon streams a r e m e r e l y a r e s u l t o f b e a r s l e a v i n g a l p i n e f e e d i n g h a b i t a t s t o seek a l t e r n a t i v e s t o d e c l i n i n g f o o d p a l a t a b i l i t y , most a u t h o r s agree t h a t b e a r s d e l i b e r a t e l y migrate t o spawning areas. In t h i s study, c o l l a r e d g r i z z l y bears d i s p l a y e d remarkable c o n s i s t e n c y between y e a r s i n f i s h i n g l o c a t i o n f i d e l i t y , and t i m i n g and ex t e n t o f salmon use ( A r c h i b a l d e t a l . 1985). In a d d i t i o n t o the s i g n i f i c a n t d i f f e r e n c e s i n map polygon use by salmon r a t i n g shown by the a d u l t females, t h e i r season 5 and 6 home ranges were l e s s than 4.5 km 2 (Hamilton e t a l . 1986). The average d i s t a n c e t o spawning channels from v e r i f i e d ground l o c a t i o n s was a l s o s i g n i f i c a n t l y l e s s i n seasons 5 and 6 than i n o t h e r seasons (mean=155 m v s . 246 m), f u r t h e r i n d i c a t i n g s e l e c t i o n f o r areas of salmon a v a i l a b i l i t y . Observed d i f f e r e n c e s between bears i n BHUs chosen f o r f e e d i n g (Table 10) and h a b i t a t s used (Hamilton e t a l . 1986) were l i k e l y a r e s u l t of s e v e r a l f a c t o r s , i n c l u d i n g home range h a b i t a t a v a i l a b i l i t y ( S e c t i o n 2 ) . Bear 08 roamed much more w i d e l y than bear 25, and her o v e r a l l home range was 43% l a r g e r . Some d i f f e r e n c e s may be r e l a t e d t o poor ground access t o some of the h a b i t a t types and BHUs. V e r i f i e d s i g n was found a t 142 s i t e s (80 feeding) a f t e r 530 ground t e l e m e t r y c l o s u r e s (27%) f o r bear 08 and 165 s i t e s (102 feeding) a f t e r 505 ground c l o s u r e s (33%) f o r bear 25. Athough Hamilton and Bu n n e l l (1987) r e p o r t e d t h a t bear 08 had lower f i t n e s s , she produced t h r e e cubs i n 1986 t h a t s u r v i v e d a t l e a s t u n t i l September 1987. Apparen t l y , d i f f e r e n t f o r a g i n g s t r a t e g i e s have not t r a n s l a t e d i n t o v a r y i n g degrees o f f i t n e s s as was suggested. Hamilton and B u n n e l l (1987) d i d not c o n s i d e r a l l h a b i t a t s used, BHUs, or m u l t i - a n n u a l data. R e s u l t s of h y p o t h e s i s t e s t i n g were pr e s e n t e d f o r the f e e d i n g h a b i t a t s of season 4 o n l y . C u r r e n t a n a l y s e s (Table 12) i n d i c a t e the o v e r a l l f e e d i n g p a t t e r n s were s i m i l a r f o r both bears a t the BHU l e v e l o f c l a s s i f i c a t i o n . Although the season 4 f e e d i n g h a b i t a t s chosen by bear 08 were not c o r r e l a t e d w i t h forage rank, her o v e r a l l movements by h a b i t a t type d u r i n g t h a t season were (5 s i g n i f i c a n t out of a p o s s i b l e 8 c o e f f i c i e n t s , T a b l e 13). R e s u l t s may be due t o s m a l l e r sample s i z e s f o r bear 08 than 25 (25 v s . 34 f e e d i n g e v e n t s ) . For a l l h a b i t a t s used by both bears d u r i n g season 4 (berry p r o d u c t i o n , no salmon), i f s i g n i f i c a n c e l e v e l s are r e l a x e d t o p_<0.1, 14 of 16 p o s s i b l e c o r r e l a t i o n c o e f f i c i e n t s are s i g n i f i c a n t (7 per b e a r ) . Evidence suggests t h a t g e n e r a l seasonal movements were a s s o c i a t e d w i t h f o r a g e rank of h a b i t a t type o n l y d u r i n g t h i s season. A number of e x p l a n a t i o n s are p o s s i b l e . U n l i k e o t h e r g r i z z l y p o p u l a t i o n s (e.g., Pearson 1975, Hamer 1985), c o a s t a l g r i z z l y bears have a wide c h o i c e o f b e r r y s p e c i e s ( i n t h i s study, 11 v e r i f i e d , 2 s u s p e c t e d ) . F r u i t - p r o d u c i n g shrubs grow i n many h a b i t a t types, r e s u l t i n g i n a d i s t r i b u t i o n o f p l a n t food a v a i l a b i l i t y u n p a r a l l e l e d a t any o t h e r time o f the year. Use a l s o was observed i n more h a b i t a t s (23 f o r each bear) than o t h e r seasons. Combined be d d i n g / f e e d i n g s i t e s were observed more f r e q u e n t l y i n season 4 than i n o t h e r seasons, i n d i c a t i n g t h a t bears d i d not l e a v e f e e d i n g h a b i t a t types t o meet r e s t i n g cover requirements as o f t e n as i n oth e r seasons. With more bedding o p t i o n s , more food per h a b i t a t , and l e s s use of non-food h a b i t a t s , movements between h a b i t a t s were a p p a r e n t l y c o r r e l a t e d w i t h f e e d i n g o p p o r t u n i t i e s d u r i n g the b e r r y season. General movements between BHUs i n season 4 a l s o appear t o be c o r r e l a t e d w i t h forage rank (13 s i g n i f i c a n t c o e f f i c i e n t s o f 16 p o s s i b l e f o r both bears, T a b l e 13). The apparent l a c k o f c o r r e l a t i o n between season 4 forage ranks and BHUs used f o r f e e d i n g (1 s i g n i f i c a n t c o e f f i c i e n t , bear 25, T a b l e 13) may be a f u n c t i o n o f the r a n k i n g p r o c e s s . Evidence o f f e e d i n g was found i n o n l y 5 of 12 BHUs used by both b e a r s . Non-feeding u n i t s were each a s s i g n e d the same low rank, thus r e d u c i n g the l i k e l i h o o d t h a t use and a v a i l a b i l i t y would match. Ground access t o some b e r r y -p r o d u c i n g BHUs (e.g. SO) i s l i m i t e d , and may have r e s u l t e d i n fewer o p p o r t u n i t i e s t o v e r i f y f e e d i n g events d u r i n g season 4. As w e l l , g r i z z l y use of some b e r r y s p e c i e s (e.g. Vaccinium spp.) can be d i f f i c u l t t o v e r i f y without v i s u a l o b s e r v a t i o n s . The c o n s i s t e n t r e s u l t s between bears f o r BHU use d u r i n g season 2 ( m i d - A p r i l t o l a t e May) can be e x p l a i n e d by food d i s t r i b u t i o n and cover requirements i n the s p r i n g . H a b i t a t and food o p t i o n s are l i m i t e d t o a few s p e c i e s and BHUs, i n c r e a s i n g the l i k e l i h o o d o f c o r r e l a t i o n between f e e d i n g frequency and forage v a l u e . The l a c k o f c o r r e l a t i o n between o v e r a l l use and forage rank i s l i k e l y a r e s u l t o f s p e c i f i c cover requirements. Bears appeared l e t h a r g i c post-denning and o f t e n s l e p t f o r l o n g p e r i o d s o f time i n the SO and SM BHUs, where no food was a v a i l a b l e . The most c o n v i n c i n g data used t o r e j e c t t h e major h y p o t h e s i s are those f o r the m u l t i - a n n u a l home ranges c l a s s i f i e d a t the g e n e r a l Bear H a b i t a t U n i t l e v e l . Twenty-f o u r o f twenty-four t e s t s demonstrated a s i g n i f i c a n t c o r r e l a t i o n between forage v a l u e and use ranks. A t t h i s g r o s s h a b i t a t l e v e l , the two i n t e n s i v e l y monitored females a p p a r e n t l y moved about t h e i r m u l t i - a n n u a l home ranges p r i m a r i l y i n response t o forage a v a i l a b i l i t y . The most f r e q u e n t l y s e l e c t e d and lon g e s t - u s e d BHUs were those w i t h the h i g h e s t f o r a g e ranks. Although t h i s evidence appears overwhelming, c o r r e l a t i o n alone does not demonstrate c a u s a t i o n . R e s u l t s should a l s o be c o n s i d e r e d i n terms of the p o s s i b l e shortcomings o f the methods used i n r a n k i n g and the assumptions behind them. Forage ranks by h a b i t a t and BHU were c a l c u l a t e d on the b a s i s o f summed s p e c i e s prominence and n u t r i e n t r a t i o / p r o m i n e n c e v a l u e combinations. P l a n t food s p e c i e s were i n c l u d e d i n the rank c a l c u l a t i o n s i f they were judged t o be s e a s o n a l l y " a v a i l a b l e " both p h e n o l o g i c a l l y and on the b a s i s o f supposed d i g e s t i b i l i t y ( i . e . i n v e r s e o f A c i d Detergent F i b r e content; B u n n e l l and Hamilton 1983). For example, f r u i t s p e c i e s v a l u e s were not i n c l u d e d f o r any seasons except 4 and 5, and the shoots o f salmonberry and d e v i l ' s c l u b were c o n s i d e r e d too f i b r o u s a f t e r season 3 t o 73 be included i n the cal c u l a t i o n s . The nutrient summaries f o r ber r i e s are p o t e n t i a l l y misleading since the non-digestible seeds were not separated before analysis. E x p l i c i t assumptions were that use of an area represented s e l e c t i o n and that time spent i n an area was proportional to i t s value to an i n d i v i d u a l . Both assumptions may be incorrect. As well, habitat a v a i l a b i l i t y was not taken into account i n the ranking process. Ranks were assigned without consideration of the t o t a l area, v a r i a t i o n of unit si z e , l o c ation within home ranges, or juxtaposition to other habitats. Such factors may be important i f g r i z z l y bears s e l e c t groups rather than i n d i v i d u a l habitats, or the costs of t r a v e l l i n g to a high forage value habitat distant from the home range a c t i v i t y centre outweigh the benefits. An underlying assumption i s that bears were s e l e c t i n g habitats at a l e v e l that was imitated by the c l a s s i f i c a t i o n . Further, i t was assumed that key habitat elements could be i d e n t i f i e d , and the r e l a t i v e value of these elements could be assigned and used to t e s t hypotheses regarding s e l e c t i o n . Both l e v e l s of c l a s s i f i c a t i o n assumed that units varied enough i n the key element (in t h i s case forage composition) to be perceived d i f f e r e n t l y by g r i z z l y bears. I t appears that t h i s was not true for most units at the f i n e r (habitat type) l e v e l of c l a s s i f i c a t i o n . By imposing seasonal d e f i n i t i o n s on habitat use, assumptions were also made about how g r i z z l y bears perceived t i m e . S e a s o n a l changes were a c t u a l l y more g r a d u a l t h a n acknowledged i n t h e d e f i n i t i o n s . O ther t h a n f o r t h e w e l l -d e f i n e d p e r i o d s o f b e r r y and salmon a v a i l a b i l i t y , i t may be t h a t t h e d e f i n i t i o n s (and t h u s t h e g r o u p i n g s o f h a b i t a t s w i t h i n them) were a r t i f i c i a l . R e g a r d l e s s , g r i z z l y b e a r h a b i t a t e v a l u a t i o n must c o n s i d e r t h e l e n g t h o f t i m e t h a t h a b i t a t s r e m a i n a t t r a c t i v e (e.g. FO and FS v s . AC, T a b l e 1 0 ) . U n i t s t h a t meet a number o f l i f e r e q u i s i t e s and remain a t t r a c t i v e on a m u l t i - s e a s o n b a s i s s h o u l d be a s s i g n e d t h e h i g h e s t v a l u e s . The c o n c e p t s o f s e a s o n a l e q u i t a b i l i t y (Weaver e t a l . 1986) among h a b i t a t s and h a b i t a t e q u i v a l e n c y have n o t been i n v e s t i g a t e d t o any degree f o r g r i z z l y b e a r s . E q u i v a l e n c y becomes c r i t i c a l when d i s c u s s i n g h a b i t a t l o s s o r a l i e n a t i o n . F o r example, can g r i z z l y b e a r s compensate f o r t h e l o s s o f a s p e c i f i c h a b i t a t t y p e by making more use o f a l e s s p r e f e r r e d b u t s u f f i c i e n t a l t e r n a t i v e ? The i d e a o f " s a t i s f i c i n g " may h e l p a d d r e s s h a b i t a t e q u i v a l e n c y . I n t h i s s t u d y , i t may be p o s s i b l e t h a t n e i t h e r b e a r i s o p t i m i z i n g b u t b o t h may be s a t i s f i c i n g , o r a t t e m p t i n g m e r e l y t o s u r v i v e . S a t i s f i c i n g models i n v e s t i g a t e d e c i s i o n r u l e s where t h e a n i m a l ' s o b j e c t i v e i s n o t t o maximize o r m i n i m i z e some q u a n t i t y b u t t o s u r v i v e ( B u n n e l l and G i l l i n g h a m 1985). S a t i s f i c i n g w h i l e f o r a g i n g i s analogous t o t h e e x i s t e n t i a l game o f S l o b o d k i n (1964), i n w h i c h f u l f i l l i n g t h e g o a l means s t a y i n g i n t h e game. An a n i m a l a d a p t i n g such an a pproach a c t s n o t t o o p t i m i z e i t s c h o i c e o f f e e d i n g h a b i t a t o r d i e t but t o s t a y a l i v e . I t may be a b l e t o s t a y a l i v e and reproduce without o p t i m i z i n g any s i n g l e v a r i a b l e . Hamer (1985) noted a number of f a c t o r s o t h e r than the a v a i l a b i l i t y o f p r e f e r r e d foods t h a t may i n f l u e n c e a g r i z z l y bear's movements and c h o i c e o f h a b i t a t : l e a r n e d f a m i l y t r a d i t i o n s , r e p r o d u c t i v e processes, defense o r e x p l o r a t i o n o f home range, use o f cover, o r re s o u r c e p a r t i t i o n i n g between sex and age c l a s s e s (see a l s o Wielgus 1986 and D a r l i n g 1987). Human d i s t u r b a n c e may a l s o have been a f a c t o r i n the Kimsquit ( A r c h i b a l d e t a l . 1987). B u n n e l l and G i l l i n g h a m (1985) noted t h a t the complexity o f most w i l d h e r b i v o r e environments makes i t n e a r l y i m p o s s i b l e t o s e l e c t the v a r i a b l e t o be o p t i m i z e d and t h a t s a t i s f i c i n g does not evade the problem. Some m i n i m a l l y s a t i s f a c t o r y t h r e s h o l d s must s t i l l be s e t . To determine these t h r e s h o l d s adequately f o r use i n g r i z z l y bear management, r e s e a r c h e r s f a c e an enormous c h a l l e n g e . As the c o m p e t i t i o n between g r i z z l y bears and humans f o r h a b i t a t and r e s o u r c e s c o n t i n u e s , r e c e n t e f f o r t s have focused on q u a n t i f y i n g the r e l a t i o n s h i p between bears and t h e i r p h y s i c a l environment (e.g., t h i s study, Weaver e t a l . 1986, Hadden e t a l . 1987). S o c i a l r e l a t i o n s h i p s , which p l a y an extremely important r o l e i n b l a c k bear ecology (Rogers 1987), have been l a r g e l y i g n o r e d . I f the i n f o r m a t i o n base f o r management d e c i s i o n s i s t o evolv e , f u t u r e r e s e a r c h must address the t r a d i t i o n a l g r i z z l y bear study dilemma: how t o gather sound data on the d e t a i l s o f g r i z z l y e c ology i n t e n s i v e l y enough t o t e s t s p e c i f i c hypotheses (e.g. h a b i t a t equivalency) y e t e x t e n s i v e l y enough t o make r e s u l t s a p p l i c a b l e a c r o s s sex and age c l a s s e s , a n n u a l l y v a r y i n g food s u p p l i e s , s e a s o n a l l y dynamic p o p u l a t i o n d e n s i t i e s , and a wide v a r i e t y o f f o r a g i n g s t r a t e g i e s . In t h e i r review of optimal f o r a g i n g t h e o r y f o r l a r g e h e r b i v o r e s , B u n n e l l and G i l l i n g h a m (1985) conclude t h a t t h i s t h e o r y has two major l i m i t a t i o n s : observer d i f f i c u l t i e s i n e s t a b l i s h i n g c o n s t r a i n t s f o r o p t i m a l i t y , and animals not needing t o be o p t i m a l . The g r e a t e s t v a l u e of p o s i t i n g an o p t i m a l s o l u t i o n may be i t s a b i l i t y t o a c t as a w e l l - d e f i n e d n u l l h y p o t h e s i s . In t h i s study, the h y p o t h e s i s was r e j e c t e d f o r most se a s o n a l home ranges but accepted when a l l l o c a t i o n s were c l a s s i f i e d a t a g e n e r a l i z e d h a b i t a t ( i . e . , BHU) l e v e l . With the e x c e p t i o n o f the e a r l i e s t and b e r r y seasons, the l a c k o f c o r r e l a t i o n s between forage v a l u e s and movements and food v a l u e and use are l i k e l y f u n c t i o n s o f food a v a i l a b i l i t y . I t appears t h a t c o a s t a l g r i z z l y bears do not c o n t i n u a l l y o p t i m i z e t h e i r m i c r o - h a b i t a t use s i n c e a v a r i e t y of foods are a v a i l a b l e i n a mosaic of h a b i t a t s . R e s u l t s , however, do i n d i c a t e t h a t w h i l e food a c q u i s i t i o n may not always be the primary i n f l u e n c e on s e l e c t i o n , s u c c e s s f u l l i f e - s t r a t e g i e s i n v o l v e u t i l i z i n g , a t l e a s t a t a gr o s s l e v e l of s t r a t i f i c a t i o n , f o o d - r i c h environments. 77 SUMMARY 1) The B i o g e o c l i m a t i c Ecosystem C l a s s i f i c a t i o n system was m o d i f i e d t o i n c l u d e s e r a i and d i s c l i m a x communities i n the Kimsquit R i v e r study area. The h a b i t a t c l a s s i f i c a t i o n developed allowed the i d e n t i f i c a t i o n of c r i t i c a l g r i z z l y bear h a b i t a t s u s i n g s e v e r a l t e c h n i q u e s . U s e / a v a i l a b i l i t y s t a t i s t i c s , frequency of l o c a t i o n and time spent per h a b i t a t , and an i n v e s t i g a t i o n of the r o l e o f forage i n d e t e r m i n i n g h a b i t a t use were based on the m o d i f i e d c l a s s i f i c a t i o n . 2) U s e / a v a i l a b i l i t y s t a t i s t i c s , and frequency and bear-day summaries i n d i c a t e t h a t r i v e r f l o o d p l a i n h a b i t a t types and BHUs are the most h e a v i l y used d u r i n g the a c t i v e season. Commercially f o r e s t e d f l o o d p l a i n h a b i t a t s and skunk cabbage swamps r e q u i r e s p e c i a l c o n s i d e r a t i o n d u r i n g l o g g i n g development p l a n n i n g . 3) Movements and f e e d i n g behaviour of two a d u l t female g r i z z l y bears were g e n e r a l l y not c o r r e l a t e d w i t h f o r a g e v a l u e s a t the f i n e r ( h a b i t a t type) l e v e l of the c l a s s i f i c a t i o n . However, a t the broader (Bear H a b i t a t U n i t ) l e v e l , c o n s i s t e n t c o r r e l a t i o n s suggest t h a t food does p l a y an important r o l e i n d e t e r m i n i n g movements and bear f i t n e s s . 4 ) The u t i l i t y o f the BEC system was demonstrated by the 78 i n t e r p r e t i v e c l a s s i f i c a t i o n o f B e a r H a b i t a t U n i t s . T h e e c o l o g i c a l l y b a s e d h a b i t a t t y p e s w e r e g r o u p e d a s B H U s i f c o l l a r e d b e a r s d i d n o t a p p e a r t o r e g a r d t h e m a s u n i q u e . T h i s r e s u l t e d i n a s u b s t a n t i a l r e d u c t i o n i n t h e n u m b e r o f d i s t i n c t u n i t s t o a t o t a l s u i t a b l e f o r m a n a g e m e n t , a n d s h o w e d t h e u s e f u l n e s s o f a s p e c i e s - s p e c i f i c c l a s s i f i c a t i o n . D e t a i l e d i n f o r m a t i o n o n h a b i t a t u s e ( e . g . , f o r a l l b e h a v i o u r s , n o t j u s t f e e d i n g ) w a s a l s o i m p o r t a n t i n d e v e l o p i n g t h e BHU c l a s s i f i c a t i o n . A BHU may b e c r i t i c a l l y i m p o r t a n t o n l y d u r i n g a s p e c i f i c s e a s o n , o r f o r a s i n g l e l i f e r e q u i s i t e . 5) T h e i n t e r p r e t i v e c l a s s i f i c a t i o n a l s o s e r v e d a s a f r a m e w o r k f o r i n t e g r a t e d b e a r a n d f o r e s t m a n a g e m e n t p r e s c r i p t i o n s . T h e b i o g e o c l i m a t i c h i e r a r c h y o f t h e B E C s y s t e m w i l l a l l o w t h e e x t r a p o l a t i o n o f t h e i n t e r p r e t i v e c l a s s i f i c a t i o n t o w a t e r s h e d s l a c k i n g d e t a i l e d e c o l o g i c a l m a p s . W i t h i n t h e f l e x i b l e s t r u c t u r e o f t h e B E C s y s t e m , B e a r H a b i t a t U n i t s c a n b e i d e n t i f i e d a n d i n t e g r a t e d m a n a g e m e n t p r e s c r i p t i o n s d e v e l o p e d t h r o u g h o u t t h e r a n g e o f t h e c o a s t a l g r i z z l y . REFERENCES CITED Ainscough, G.L. 1979. The dragons and the St. Georges of the c o a s t a l f o r e s t . Pages 77-103 i n A.H.J Dorcey, ed. C o a s t a l r e s o u r c e s i n the f u t u r e o f B.C. Westwater Res. Centre, Vancouver, B.C. 123pp. Alaback, P.B. 1984. Secondary s u c c e s s i o n f o l l o w i n g l o g g i n g i n t he S i t k a spruce - western hemlock f o r e s t s o f southeast A l a s k a : I m p l i c a t i o n s f o r w i l d l i f e management. Gen. Tech. Rep. PNW-173 U.S.D.A. For. Serv., P a c i f i c Northwest For. and Range Exp. S t a . , P o r t l a n d , Oregon. 26pp. A l l d r e d g e , J.R., and J.T. R a t t i . 1986. Comparison o f some s t a t i s t i c a l t e c h n i q u e s f o r a n a l y s i s of r e s o u r c e s e l e c t i o n . J . W i l d l . Manage. 50 (1):157-165. Armleder, H.M., R.J. Dawson, and R.N. Thompson. 1986. Handbook f o r timber and mule deer management co-o r d i n a t i o n on w i n t e r ranges i n the Cariboo F o r e s t Region. B.C. M i n i s t r y o f For. and Lands, Land Manage. Handb. No. 13. 98pp. A r c h i b a l d , W.R. 1983. Problem a n a l y s i s : g r i z z l y bears and c o a s t a l development w i t h p a r t i c u l a r r e f e r e n c e t o i n t e n s i v e f o r e s t r y . B.C. M i n i s t r y o f E n v i r o n . , F i s h and W i l d l . Branch, B u l l . No. B-26. 24pp. A r c h i b a l d , W.R., and A.N. Hamilton 1983. Working p l a n . C o a s t a l g r i z z l y r e s e a r c h p r o j e c t . B.C. M i n i s t r y o f E n v i r o n . W i l d l . Working Rep. No. WR-15, M i n i s t r y o f For., W i l d l . Hab. Res. Rep. No. WHR-2. 29pp. A r c h i b a l d , W.R., A.N. Hamilton, and E.C. L o f r o t h . 1985. Progress r e p o r t - yea r 3, working p l a n - yea r 4. C o a s t a l g r i z z l y r e s e a r c h p r o j e c t . B.C. M i n i s t r y o f E n v i r o n . , W i l d l . Working Rep. No. WR-17, M i n i s t r y o f For., W i l d l . Hab. Res. Rep. No. WHR-22. 62pp. A r c h i b a l d , W.R., R. E l l i s , and A.N. Hamilton. 1987. Responses o f g r i z z l y bears t o l o g g i n g t r u c k t r a f f i c i n the Kimsquit R i v e r v a l l e y , B r i t i s h Columbia. I n t . Conf. Bear Res. and Manage. 7:251-257. A s s o c i a t i o n o f O f f i c i a l A n a l y t i c a l Chemists (AOAC). 1980. O f f i c i a l methods of a n a l y s i s , 13th ed. AOAC, Washington, D.C. 1018pp. A t w e l l , G., D.L. Boone, J . Gustafson, and V.D. Berns. 1980. Brown bear summer use of a l p i n e h a b i t a t on the Kodiak N a t i o n a l W i l d l i f e Refuge. I n t . Conf. Bear Res. and Manage. 4:297-305. Banner, A. 1985. Ecosystem c l a s s i f i c a t i o n and mapping i n the C o a s t a l Western Hemlock Zone,Mid-Coast D r i e r T r a n s i t i o n a l Subzone (CWHh), Kimsquit R i v e r v a l l e y , B r i t i s h Columbia. B.C. M i n i s t r y o f For.and Lands, Res. Sec t . , Smithers, B.C. 100pp. Banner, A., J . P o j a r , R. Trowbridge, and A.N. Hamilton. 1986. G r i z z l y bear h a b i t a t i n the Kimsquit R i v e r v a l l e y , C o a s t a l B r i t i s h Columbia: c l a s s i f i c a t i o n , d e s c r i p t i o n and mapping. Pages 36-49 i n : G.P. Con t r e r a s and K.E. Evans, eds. Proceedings: g r i z z l y bear h a b i t a t symposium. Gen. Tech. Rep. INT-207. U.S.D.A. For. Serv., Intermountain Res. S t a . , Ogden, Utah. 252pp. B r i t i s h Columbia M i n i s t r y o f F o r e s t s and Lands. 1984. I n t e g r a t e d r e s o u r c e management p l a n f o r the Kimsquit watershed. V i c t o r i a . 112pp. B r i t i s h Columbia M i n i s t r y o f F o r e s t s and Lands. 1986. Deer and e l k h a b i t a t s i n c o a s t a l f o r e s t s o f Southern B r i t i s h Columbia: A handbook f o r f o r e s t and w i l d l i f e managers. A summary of proposed content. IWIFR, V i c t o r i a . 43pp. Brody, A . J . , and J.N. Stone. 1987. An e x p l o r a t o r y model o f the r e l a t i o n s h i p s between timber h a r v e s t and b l a c k bear p o p u l a t i o n dynamics i n a Southern A p p a l a c h i a n f o r e s t . I n t . Conf. Bear Res. and Manage. 7:243-250. B u n n e l l , F.L., and M.P. G i l l i n g h a m . 1985. F o r a g i n g behaviour: dynamics o f d i n i n g out. Pages 53-79 i n R.J. Hudson and R.G. White, eds. B i o e n e r g e t i c s o f w i l d h e r b i v o r e s . CRC Press, Boca Raton, F l o r i d a . 314pp. B u n n e l l , F.L., and A.N. Hamilton. 1983. Forage d i g e s t i b i l i t y and f i t n e s s i n g r i z z l y b ears. I n t . Conf. Bear Res. and Manage. 5:179-185. Clement, C. 1984a. B i o g e o c l i m a t i c u n i t s and ecosystem a s s o c i a t i o n s o f the Kimsquit drainage. B.C. M i n i s t r y o f E n v i r o n . , W i l d l . Working Rep. No. WR-5 and B.C. M i n i s t r y o f For., W i l d l . Hab. Res. Rep. No. WHR-13, V i c t o r i a . 89pp. Clement, C. 1984b. H a b i t a t types o f the Kimsquit R i v e r e s t u a r y . B.C. M i n i s t r y o f E n v i r o n . , W i l d l . Working Rep. No. WR-4, and B.C. M i n i s t r y o f For., W i l d l . Hab. Res. Rep. No. WHR-12, V i c t o r i a . 18pp. 81 Craighead, J . J . , J.S. Sumner, and G.B. Scaggs. 1982. A d e f i n i t i v e system f o r a n a l y s i s of g r i z z l y bear h a b i t a t and o t h e r w i l d e r n e s s r e s o u r c e s . W i l d l i f e - W i l d l a n d s I n s t i t u t e , Monograph 1., M i s s o u l a , Montana. 279pp. D a r l i n g , L.M. 1987. H a b i t a t use by g r i z z l y bear f a m i l y groups i n i n t e r i o r A l a s k a . I n t . Conf. Bear Res. and Manage. 7:169-178. Dibb, A. 1984. Seasonal v a r i a t i o n s i n food h a b i t s of g r i z z l y bears i n the Kimsquit v a l l e y , B.C. B.S. T h e s i s , Univ. of B.C., Vancouver. 44pp. Dier s c h k e , H. 1972. On the r e c o r d i n g and p r e s e n t a t i o n of p h e n o l o g i c a l phenomena i n p l a n t communities. Pages 291-311 i n W. Junk, ed. B a s i c problems and methods i n p h y t o s o c i o l o g y , 1970. I n t . Symp. Veg. S c i . The Hauge, Nether l a n d s . 22pp. Dixon, K.R., and J.A. Chapman. 1980. Harmonic mean measure o f animal a c t i v i t y areas. Ecology 61(5):1040-1045. Flowers, R. 1977. The a r t and technique o f s n a r i n g bears. Wash. For. P r o t e c t i o n Assoc., S e a t t l e . 37pp. Glenn, L.P., and L.H. M i l l e r . 1980. Seasonal movements of an A l a s k a P e n i n s u l a brown bear p o p u l a t i o n . I n t . Conf. Bear Res. and Manage. 4:307-312. Green, R.N., P.J. C o u r t i n , K. K l i n k a , R.J. S l a c o , and C A . Ray. 1984. S i t e d i a g n o s i s , t r e e s p e c i e s s e l e c t i o n , and s l a s h b u r n i n g g u i d e l i n e s f o r the Vancouver F o r e s t Region. B.C. M i n i s t r y of For., Land Manage. Handb. No. 8. 143pp. Hadden, D.A., H. C a r r i l e s , and M.A. Haroldson. 1987. G r i z z l y bear h a b i t a t a n a l y s i s , South Fork F l a t h e a d R i v e r , Montana. On f i l e a t : U.S.D.A., For. Serv., Intermountain Res. S t a . , For. S c i . Lab., M i s s o u l a , Montana. 29pp. Ha e u s s l e r , S., J . P o j a r , B.M. G e i s l e r , D. Yole, and R.M. Annas. 1984. A guide t o the C o a s t a l Western Hemlock Zone, Northern D r i e r Maritime Subzone (CWHf), i n the P r i n c e Rupert F o r e s t Region, B r i t i s h Columbia. B.C. M i n i s t r y of For., Land Manage. Rep. No. 21. 164pp. Hamer, J.D.W. 1985. Feeding ecology of g r i z z l y bears i n the Cascade and Panther v a l l e y s of Banff N a t i o n a l Park, A l b e r t a . Ph.D. D i s s . , Univ. of Calgary, A l b e r t a . 247pp. Hamer, J.D.W., and S. Herr e r o . 1983. E c o l o g i c a l s t u d i e s of the g r i z z l y bear i n Banff N a t i o n a l Park. Parks Canada C o n t r a c t WR 4-80, F i n a l Rep., Ca l g a r y . 303pp. Hamilton, A.N. 1983. Progress r e p o r t - yea r 1. C o a s t a l g r i z z l y r e s e a r c h p r o j e c t . B.C. M i n i s t r y o f E n v i r o n . , W i l d l . Working Rep. No. WR-1 and B.C. M i n i s t r y o f For., W i l d l . Hab. Res. Rep. No. WHR-9, V i c t o r i a . 43pp. Hamilton A.N., and W.R. A r c h i b a l d . 1986. G r i z z l y bear h a b i t a t i n the Kimsquit r i v e r v a l l e y , c o a s t a l B r i t i s h Columbia: e v a l u a t i o n . Pages 50-57 i n : G.P. Cont r e r a s and K.E. Evans, eds. Proceedings: g r i z z l y bear h a b i t a t symposium. Gen. Tech. Rep. INT-207. U.S.D.A. For. Serv., Intermountain Res. S t a . , Ogden, Utah. 252pp. Hamilton A.N., W.R. A r c h i b a l d , and E.C. L o f r o t h . 1986. Progress r e p o r t - Year 4, working p l a n - yea r 5. C o a s t a l g r i z z l y r e s e a r c h p r o j e c t . B.C. M i n i s t r y o f En v i r o n , and Parks, W i l d l . Working Rep. No. WR-22, M i n i s t r y o f For. and Lands, W i l d l . Hab. Res. Rep. No. WHR-26. 92pp. Hamilton A.N., and F.L. B u n n e l l . 1987. Fo r a g i n g s t r a t e g i e s o f c o a s t a l g r i z z l y bears i n the Kimsquit R i v e r v a l l e y , B r i t i s h Columbia. I n t . Conf. Bear Res. and Manage. 7:187-197. Hanley, T.A. 1984. H a b i t a t patches and t h e i r s e l e c t i o n by w a p i t i and b l a c k - t a i l e d deer i n a c o a s t a l montane c o n i f e r o u s f o r e s t . J . A p p l i e d E c o l . 21:423-436. Harcombe, A.P. 1984. W i l d l i f e h a b i t a t handbooks f o r B r i t i s h Columbia: Problem a n a l y s i s . B.C. M i n i s t r y o f En v i r o n . , F i s h and W i l d l . Rep No. R-10, M i n i s t r y o f For., W i l d l . Hab. Res. Rep. No. WHR-8. 23 6pp. Harestad, A.S. 1981. Computer a n a l y s i s o f home range data. B.C. M i n i s t r y o f E n v i r o n . , F i s h and W i l d l . B u l l . No. fi-l l . 25pp. I n s e l b e r g , A.E., K. K l i n k a , and C. Ray. 1982. Ecosystems o f M a c M i l l a n Park on Vancouver I s l a n d . B.C. M i n i s t r y of For., Land Manage. Rep. No. 12. 113pp. Jungen, J.R., and T. Lewis. 1978. The c o a s t mountains and i s l a n d s . Pages 101-120 i n : K.W.G. V a l e n t i n e , P.N. Sprout, T.E. Baker, and L.M. L a v k u l i c h , eds. The s o i l l andscapes o f B r i t i s h Columbia. B.C. M i n i s t r y o f En v i r o n . , Resource A n a l y s i s Branch, V i c t o r i a . 197pp. Kenward, R. 1987. W i l d l i f e r a d i o t a g g i n g : Equiptment, f i e l d t e c h n i q u e s and data a n a l y s i s . Academic Pr e s s , London. 222pp. K l i n k a , K., W.D. van der Horst, F.C. Nuszdorfer, and R.G. Harding. 1980. An ecosystem approach t o a s u b u n i t p l a n . B.C. M i n i s t r y o f For., Land Manage. Rep. No. 5. 118pp. K l i n k a , K., R.N. Green, P.J. C o u r t i n , and F.C. Nusz d o r f e r . 1984. S i t e d i a g n o s i s , t r e e s p e c i e s s e l e c t i o n , and s l a s h b u r n i n g g u i d e l i n e s i n the Vancouver F o r e s t Region. B.C. M i n i s t r y o f For., Land Manage. Rep. No. 25. 180pp. K l i n k a , K, A.M. Sc a g e l , and P.J. C o u r t i n . 1985. C l a s s i f i c a t i o n o f s e r a i f o r e s t ecosystems a t the U n i v e r s i t y o f B r i t i s h Columbia Research F o r e s t . Can. J . For. Res. 15:561-569. K r a j i n a , V . J . 1965. B i o g e o c l i m a t i c zones and biogeocoenoses o f B r i t i s h Columbia. Ecology o f Western North Am. 1:1-17. L l o y d , K.A. 1979. Aspects o f the ecology o f b l a c k and g r i z z l y bears i n B r i t i s h Columbia. M.S. T h e s i s , Univ. o f B.C., Vancouver. 150pp. McCarthy, T. 1986. Summary of 1984 brown bear food h a b i t s . Pages 44-45 i n : J.W. Schoen and L. B e i e r . 1986. Brown bear h a b i t a t p r e f e r e n c e s and brown bear l o g g i n g and mining r e l a t i o n s h i p s i n Southeast A l a s k a . Fed. A i d W i l d l . R e s t o r a t i o n P r o j . W-22-4, Job 4.17R,. A l a s k a Dep. o f F i s h and Game, Juneau, A l a s k a . 45pp. Mealy, S.P. 1980. The n a t u r a l food h a b i t s o f g r i z z l y bears i n Yellowstone N a t i o n a l Park, 1973-74. I n t . Conf. Bear Res. and Manage. 4:281-292. Meidinger, D.V., E. Hamilton, and T. Fleming. 1987. Ecosystem c l a s s i f i c a t i o n program data p r o c e s s i n g system u s e r ' s guide. V e r s i o n 2.0. B.C. M i n i s t r y o f For. and Lands, Res. Rep. RR87006-HQ, V i c t o r i a . 132pp. M i l l e r , S.D. 1984. B i g game s t u d i e s : V o l VI. Bl a c k and brown bear. S u s i t n a h y d r o e l e c t r i c p r o j e c t phase I I . Prog. Rep. A l a s k a Dep. of F i s h and Game, Juneau, A l a s k a . 142pp. Neu, C.W., C R . Byers, and J.M. Peek. 1974. A technique f o r a n a l y s i s o f u t i l i z a t i o n - a v a i l a b i l i t y d a ta. J . W i l d l . Manage. 38(3):541-545. 84 Nyberg, J.B., F.L. B u n n e l l , D.W. Janz, and R.M. E l l i s . 1986. Managing young f o r e s t s as b l a c k - t a i l e d deer w i n t e r ranges. B.C. M i n i s t r y of For. and Lands, Land Manage. Rep. No. 37. 49pp. Pearson, A.M. 1975. The n o r t h e r n i n t e r i o r g r i z z l y bear. Can. W i l d l . Serv. Rep. Ser. No. 34, Ottawa. 86pp. P o j a r , J . (ed.) 1983. F o r e s t ecology. Pages 221-318 i n : S.B. Watts (ed.). F o r e s t r y handbook f o r B r i t i s h Columbia: F o u r t h e d i t i o n . The For. Undergraduate Soc., F a c u l t y o f For., Univ. o f B.C., Vancouver. 611pp. P o j a r , J . 1986. V e g e t a t i o n and ungulate h a b i t a t i n the Gladys Lake E c o l o g i c a l Reserve, n o r t h e r n B r i t i s h Columbia. B.C. M i n i s t r y of For. and Lands, Res. Rep. No. RR85009-PR, Smithers. 99pp. P o j a r , J . , K. K l i n k a , and D.V. Meidinger. 1987. B i o g e o c l i m a t i c ecosystem c l a s s i f i c a t i o n i n B r i t i s h Columbia. For. E c o l . and Manage. 22:119-154. Ramsay, M.A., and R.L. Dunbrack. 1986. P h y s i o l o g i c a l c o n s t r a i n t s on l i f e h i s t o r y phenomena: the example of s m a l l bear cubs a t b i r t h . Am. Nat. 127:735-743. Robbins, C.T. 1983. W i l d l i f e f e e d i n g and n u t r i t i o n . Academic Press, Inc., New York. 343pp. Rogers, L.L. 1987. E f f e c t s of food supply and k i n s h i p on s o c i a l b e h a v i o r , movements, and p o p u l a t i o n growth o f b l a c k bears i n N o r t h e a s t e r n Minnesota. W i l d l . Monogr. 97. 72pp. R u s s e l l , D. 1974. G r i z z l y bear and mountain goat i n v e s t i g a t i o n s i n Knight I n l e t , B.C., summer 1974. B.C. M i n i s t r y o f E n v i r o n . , P r o j . Rep., Nanaimo. 84pp. SAS I n s t i t u e Inc. 1985. User's guide: b a s i c s . V e r s i o n 5 e d i t i o n . SAS I n s t i t u t e Inc., Cary, North C a r o l i n a . 1290pp. Schoen, J.W., and L. B e i e r . 1986. Brown bear h a b i t a t p r e f e r e n c e s and brown bear l o g g i n g and mining r e l a t i o n s h i p s i n Southeast A l a s k a . Fed. A i d W i l d l . R e s t o r a t i o n P r o j . W-22-4, Job 4.17R,. A l a s k a Dep. of F i s h and Game, Juneau, A l a s k a . 45pp. Schneegas, E.R., and C R . F r o u n f e l k e r . 1980. C r i t i c a l h a b i t a t and o t h e r r e s o u r c e programs i n r e l a t i o n t o g r i z z l y bear management. I n t . Conf. Bear Res. and Manage. 4:9-11. 85 Sizemore, D.L. 1980. F o r a g i n g s t r a t e g i e s o f the g r i z z l y bear as r e l a t e d t o e c o l o g i c a l e n e r g e t i c s . M.S. T h e s i s , Univ. of Montana, M i s s o u l a . 67pp. Sl o b o d k i n , L. 1964. The s t r a t e g y of e v o l u t i o n . Am. S c i . 52:342-357. Smith, B.L. 1978. I n v e s t i g a t i o n s i n t o b l a c k and g r i z z l y bear responses t o c o a s t a l l o g g i n g . B.S. T h e s i s , Simon F r a s e r Univ., Burnaby. 85pp. Sondheim, M., T. V o i d , and H. Quesnel. 1983. Data e n t r y procedures f o r ecosystem d e s c r i p t i o n forms. B.C. M i n i s t r y of For., B.C.S.I.S. V o l . No. 2. 61pp. Stelmock, J . J . 1981. Seasonal a c t i v i t i e s and h a b i t a t use p a t t e r n s of brown bears i n D e n a l i N a t i o n a l Park-1980. M.S. T h e s i s , Univ. of A l a s k a , F a i r b a n k s . 118pp. Stevenson, S.K. 1982. A p p l y i n g e c o l o g i c a l c l a s s i f i c a t i o n systems t o w i l d l i f e r e s e a r c h and management. B.C. M i n i s t r y o f For., Res. Rep. IWIFR-3, V i c t o r i a . 151pp. Steventon, J.D., and J.T. Major. 1982. Marten use o f h a b i t a t i n a commercially c l e a r - c u t f o r e s t . J . W i l d l . Manage. 46(1):175-182. Swihart, R.K., and N.A. Slade. 1985. I n f l u e n c e o f sampling i n t e r v a l on e s t i m a t e s of home-range s i z e . J . W i l d l . Manage. 49(4):1019-1025. T a y l o r , R.L., and B. MacBryde. 1977. V a s c u l a r p l a n t s of B r i t i s h Columbia: a d e s c r i p t i v e r e s o u r c e i n v e n t o r y . Tech. B u l l . No. 4, B o t a n i c a l Garden, Univ. of B.C., Vancouver. 754pp. Waldern, D.E. 1971. A r a p i d m i c r o d i g e s t i o n procedure f o r n e u t r a l and a c i d d e t e r g e n t f i b r e . Can. J . Anim. S c i . 51:67 Walmsley, M., G. U t z i g , T. V o i d , D. Moon, and J . van Barneveld. 1980. D e s c r i b i n g ecosystems i n the f i e l d . B.C. M i n i s t r y o f For., Land Manage. Rep. No. 7, B.C. M i n i s t r y of E n v i r o n . , RAB Tech. Paper No. 2, V i c t o r i a . 224pp. Weaver, J . , R. Escano, D. Mattson, T. P u c h l e r z , and D. Despain. 1986. A cumulative e f f e c t s model f o r g r i z z l y bear management i n the Yellowstone ecosystem. Pages 234-246 i n : G.P. Contreras and K.E. Evans, eds. Proceedings: g r i z z l y bear h a b i t a t symposium. Gen Tech. Rep. INT-207. U.S.D.A. For. Serv., Intermountain Res. S t a . , Ogden, Utah. 252pp. Wielgus, R. 1986. H a b i t a t ecology o f the g r i z z l y bear i n the Southern Rocky Mountains o f Canada. MSc. T h e s i s , Univ. o f Idaho, Moscow. 136pp. Winkler, R.D., and R.L. Roth w e l l . 1983. B i o g e o c l i m a t i c c l a s s i f i c a t i o n system f o r h y d r o l o g i c i n t e r p r e t a t i o n s . Can. J . For. Res. 13:1043-1050. Woods, G., 0. Garton, and R. Wadey. i n prep. B o n f e r r o n i u s e / a v a i l a b i l i t y program. B.C. M i n i s t r y o f E n v i r o n , and Parks, V i c t o r i a . Wray, D., and D. Hebert. 1975. P r e l i m i n a r y i n v e s t i g a t i o n s o f the ecology o f the c o a s t a l g r i z z l y bear i n the Ahnuhati R i v e r - Knight I n l e t . B.C. M i n i s t r y o f E n v i r o n . , P r o j e c t Rep., Nanaimo. 80pp. Yole, D., J . P o j a r , and B. Robinson. 1982. P r e l i m i n a r y d r a f t : ecosystem c l a s s i f i c a t i o n o f the C o a s t a l Western Hemlock Zone w i t h i n the Mid-Coast Timber Supply Area. B.C. M i n i s t r y o f For., P r i n c e Rupert For. Region, Smithers. 190pp. Youds, J . , K. Brunt, and D. Becker. 1985. Vancouver I s l a n d R o o s e v e l t e l k / i n t e n s i v e f o r e s t r y i n t e r a c t i o n s : p r o g r e s s r e p o r t 1981-1984. B.C. M i n i s t r y o f For., Res. Rep. IWIFR-21, V i c t o r i a . 71pp. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0075363/manifest

Comment

Related Items