UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Aesthetic and engineering analysis of Alouette River crossing Pasicnyk, Vladimir 1976

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
[if-you-see-this-DO-NOT-CLICK]
UBC_1976_A6 P38.pdf [ 11.34MB ]
Metadata
JSON: 1.0075320.json
JSON-LD: 1.0075320+ld.json
RDF/XML (Pretty): 1.0075320.xml
RDF/JSON: 1.0075320+rdf.json
Turtle: 1.0075320+rdf-turtle.txt
N-Triples: 1.0075320+rdf-ntriples.txt
Original Record: 1.0075320 +original-record.json
Full Text
1.0075320.txt
Citation
1.0075320.ris

Full Text

AESTHETIC AND ENGINEERING ANALYSIS OF ALOUETTE RIVER CROSSING  by  VLADIMIR PASICNYK, P.Eng. F o r . Eng., Czech T e c h n i c a l U n i v e r s i t y i n Prague, C z e c h o s l o v a k i a , 1955  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF FORESTRY  i n the Department of Forestry  We a c c e p t t h i s t h e s i s as conforming to t h e r e q u i r e d s t a n d a r d .  THE UNIVERSITY OF BRITISH COLUMBIA April,  @  1976  V l a d i m i r P a s i c n y k , 1976  In presenting  this  thesis  an advanced d e g r e e the L i b r a r y further  the U n i v e r s i t y  s h a l l make i t  of B r i t i s h  purposes  representatives. for  of the  requirements  Columbia,  freely available for reference  agree that permission for extensive  scholarly  thesis  at  i n partial fulfilment  thesis  may b e g r a n t e d b y t h e H e a d o f my D e p a r t m e n t It  financial  i s understood  g a i n s h a l l n o t b e a l l o w e d w i t h o u t my w r i t t e n  Forestry  The U n i v e r s i t y o f B r i t i s h Vancouver, B . C .  Columbia  I for  or by h i s  t h a t copying or p u b l i c a t i o n of  Vladimir Pasicnyk  that  and s t u d y .  copying of this  permiss i o n .  Faculty of  I agree  for  this  ABSTRACT  This  thesis  d e a l s w i t h b r i d g e d e s i g n as  r o a d d e s i g n and l a y o u t . and a r e ,  i n many c a s e s ,  nating s e l e c t i o n of regard  Bridges frequently  to  a prominent  the  an i m p o r t a n t  dominate  f e a t u r e of  the  requirements,  is  and r a i l w a y s ,  landscape.  t y p e o f b r i d g e and m a t e r i a l  t e c h n i c a l and a e s t h e t i c  roads  p a r t of  Discrimi-  to be u s e d , therefore  having  essential.  Road c o n s t r u c t i o n and b r i d g e d e s i g n a r e b o t h a p p l i e d a r t s  in  and s h o u l d b e c o n s i d e r e d a s  sequence.  aesthetic overall  few  and e n g i n e e r i n g  no a t t e m p t h a s b e e n made t o  economic a n a l y s e s the  or d e t a i l s  engineering  are  types  of bridges  their  of  t h e new b r i d g e a c r o s s t a k e n as  showing that  include to  indicate appro-  c a l c u l a t i o n s and s k e t c h e s  are  evaluated  the A l o u e t t e R i v e r a t  a particular  thoughtful  enhance the  and d i s c u s s e d  their  case s t u d y ,  the  the  U.B.C.  analyses  s e l e c t i o n of both b r i d g e  landscape,  Engineers should blend harmonious  the  p r i n c i p l e s and t o d e m o n s t r a t e  a c c o r d a n c e w i t h modern e n v i r o n m e n t a l r e q u i r e m e n t s .  is  toward  of  a  included.  of  not only  is directed  of c o n s t r u c t i o n ; however,  dimensions o f b r i d g e components,  Various  ing  aspects,  thesis  planning  this  bridges  Forest  the  S i n c e the main t h r u s t of  the b a s i c n a t u r e of priate  such throughout  landscaping,  but  also  ii  terms  The d e s i g n Research  of t h i s  cross-  and l o c a t i o n c a n  improve route  t a l e n t s w i t h n a t u r e s o as  landscape.  in  conditions. to create  a  T A B L E OF CONTENTS  ABSTRACT  i i  T A B L E OF CONTENTS  .  i i i  L I S T OF FIGURES  v  ACKNOWLEDGEMENT  ix  Chapter  I -  INTRODUCTION  1  1.1  Method o f Study o f F o r e s t B r i d g e A c r o s s River 1.2 I n t r o d u c t i o n to A e s t h e t i c s 1.3 Elements of A e s t h e t i c s 1.3.1 B a s i c Concepts 1.3.2 Dominance, Elements 1.3.2.1 Form 1.3.2.2 Line 1.3.2.3 Colour 1.3.2.4 Texture 1.3.3 Dominance P r i n c i p l e s 1.3.4 Variable Factors 1.4 Structural Aesthetics  Chapter  II -  A N A L Y S I S OF BRIDGE A E S T H E T I C S  Alouette .  . .  .  .  2.1 Roadway a n d G u a r d r a i l 2.1.1 Roadway . . . 2.1.2 Guardrail 2.2 Supporting Structure 2.2.1 Beams 2.2.2 Arches 2.2.3 Suspension Structure 2.3 P i e r s and Abutments 2.4 B r i d g e Heads Chapter  III -  D I F F E R E N T TYPES OF BRIDGES I N MAIN LANDSCAPE FORMS  3.1 F l a t Country 3.1.1 Concrete Arch Bridge 3.1.2 Howe-truss Bridge 3.1.3 Suspension Bridge 3.2 Hilly Terrain 3.3 Mountainous Country 3.4 River Crossing i i i  1 3 4 4 4 5 5 5 5 5 6 7 11 12 12 21 24 28 30 34 36 39 42 44 44 45 45 4.5 4t> 46  Page Chapter  IV -  ANALYSIS OF ALOUETTE RIVER CROSSING  D e s c r i p t i o n of the Landscape Area and Alouette River Crossing 4.2 Present S i t u a t i o n 4.3 Proposed Alignment of the Route 4.4 E n g i n e e r i n g C a l c u l a t i o n s on Proposed Types of B r i d g e s . . . . . . 4.5 Material 4.6 A e s t h e t i c A n a l y s i s of C o n s i d e r e d Types of Bridges. 4.6.1 S i n g l e Beam B r i d g e 4.6.2 Single Strutframe Bridge . . . 4.6.3 Double S t r u t f r a m e B r i d g e 4.6.4 Three-hinged A r c h B r i d g e 4.6.5 C a n t i l e v e r e d Beam B r i d g e 4.6.6 Suspension B r i d g e  50  4.1  Chapter  V -  SUMMARY AND CONCLUSIONS  BIBLIOGRAPHY  50 51 52 53 54 55 55 55 57 57 59 59 64 66  APPENDICES I  - Present S i t u a t i o n Design S p e c i f i c a t i o n s V e r t i c a l & H o r i z o n t a l Alignment  II  - Simple  III  - Continuous Beam (Two E a u a l Spans) S i n g l e Strutframe Bridge  IV  V  Beam B r i d g e  68 75  87  - Continuous Beam - Three Spans Double S t r u t f r a m e B r i d g e Three-hinged A r c h B r i d g e  101  - C a n t i l e v e r e d Beam B r i d g e  114  iv  L I S T OF FIGURES Figure  Page  1.  Old bridge i n Florence, I t a l y  9  2.  Bridge i n a natural  9  3.  Roadway-above  13  4.  H a l f - s u n k roadway  13  5.  Roadway-below  13  6.  Side view of  7.  Three d i m e n s i o n a l (perspective)  8.  F u l l concrete  9.  Railway bridge with  setting  the b r i d g e  - Japanese Garden  (shape)  14 view of  the b r i d g e  (form)14  a r c h and g u a r d r a i l extended  15  piers  15  10.  G e n e r a l v i e w of a b r i d g e w i t h h a l f - s u n k roadway  17  11.  U p p e r and l o w e r v i e w o f a b r i d g e w i t h roadway  17  12.  Inside view of bridge w i t h structure  13.  Sidewalks outside  14.  Change of  15.  A l t e r n a t i v e s o l u t i o n of  16.  Light  17.  I n t e r f e r e n c e of extended p i e r s  the  half-sunk  sidewalks within  the 18  the main s t r u c t u r e  p o s i t i o n of  the  18  roadway  20  c h a n g i n g p o s i t i o n of roadway  .  looking guardrail t h e r o a d w a y and  solution for  the  g u a r d r a i l by 22  Proper  19.  Lions Gate Bridge - proper  20.  P r o p e r l o c a t i o n of the c a b l e to the g u a r d r a i l with suspension bridge Improper l o c a t i o n of guardrail.  . 20 22  18.  21.  a  t h e u n b r o k e n roadway and g u a r d r a i l  the  balance  cable  to  of  a structure  roadway  the  . . .  . 23 23  and 25  roadway  and 25  v  Figure  Page  22.  Improper b a l a n c e between beam and a r c h  27  23.  Improper b a l a n c e between beam and a r c h  27  24.  D i f f e r e n t s o l u t i o n s o f t r u s s b r i d g e arrangement  25.  A e s t h e t i c a l l y s u i t a b l e d i f f e r e n t shapes o f the beams .  31  26.  F i x e d end a r c h b r i d g e  33  27.  Two-hinged a r c h b r i d g e  33  28.  Three-hinged  33  29.  Elliptic  30.  New type of s u s p e n s i o n b r i d g e  35  31.  King truss  35  32.  Queen t r u s s  37  33.  Reverse k i n g t r u s s  37  34.  Trussed  37  35.  B r i d g e head a t L i o n s Gate B r i d g e  40  36.  S t r i k i n g suspension  bridge structure  41  37.  P r o p o r t i o n a l i t y o f L i o n s Gate B r i d g e  41  38.  Neighbourhood of b r i d g e s - proper  43  39.  C l o s e and d i s t a n t o b j e c t observance - non homogenous appearance  43  40.  H i g h a r c h b r i d g e i n mountainous t e r r a i n  47  41.  Beam b r i d g e i n mountainous t e r r a i n  47  42.  T u n n e l i n g of the stream  48  43.  Tunneling  48  44.  Simple  45.  Asymmetrical  full  . . .  arch b r i d g e arch  29  35  girder bridge  solution  o f the stream  beam b r i d g e  56  single strutframe bridge vi  56  Figure  Page  46.  Symmetrical  single strutframe bridge  47.  Symmetrical  double  48.  Asymmetrical  49.  Symmetrical  50.  C a n t i l e v e r e d beam b r i d g e  60  51.  Simple  suspension bridge  60  52.  Simple  beam b r i d g e  53.  Single strutframe bridge  61  54.  Double s t r u t f r a m e b r i d g e  62  55.  Symmetrical  56.  Asymmetrical  57.  C a n t i l e v e r e d beam b r i d g e  63  58.  A e r i a l p i c t u r e of s o u t h e r n p a r t o f U.B.C. Research Forest with bridge l o c a t i o n  69  59.  View of the p r e s e n t b r i d g e from t h e south bank . . . .  70  60.  S i d e view o f the b r i d g e and v a l l e y from the e a s t  70  61.  D e t a i l of south abutment  71  62.  D e s i g n v e h i c l e - 50 t o n 5 a x l e t r u c k  71  63.  P l a n of proposed alignment  73  64.  P r o f i l e o f proposed alignment  74  65.  Arrangement of roadway w i t h wheel guards and guardrails  82  Two e q u a l spans continuous lines  beam moment i n f l u e n c e 90  Two e q u a l spans continuous lines  beam shear i n f l u e n c e  66.  67.  . . . .  56  strutframe bridge  three-hinged three-hinged  58  arch bridge arch bridge  58 . . .  58  .  three-hinged  arch bridge  three-hinged  vii  61  62  arch bridge  63  . . .  92  Figure  Page  68.  Three span c o n t i n u o u s beam moment  69.  Three span c o n t i n u o u s beam shear i n f l u e n c e l i n e s  70.  Graphical  71.  Cantilevered  s o l u t i o n of f o r c e s beam b r i d g e  i n three-hinged  - profile  viii  influence lines.  arch  . . 104  . . . 106 . .  I l l 130  ACKNOWLEDGEMENT  I wish Professor  my s i n c e r e  thanks  L . A d a m o v i c h , whose u n d e r s t a n d i n g  me t o f i n i s h advisor,  to express  this  thesis.  I  also wish  Professor A . S . Michell,  University  of  the  to  t o my a d v i s o r ,  guidance allowed  t h a n k my f o r m e r  Faculty of  Forestry,  o f T o r o n t o , who k i n d l y h e l p e d me t o u n d e r s t a n d  b a s i c p r i n c i p l e s of Canadian  ix  forestry.  the  1  Chapter  I  INTRODUCTION  Method of  1.1  study  of  the  forest  bridge  The c h r o n o l o g i c a l sequence o f (a)  the  Alouette  study  The c o l l e c t i o n o f i n f o r m a t i o n c o n t a i n i n g the  requirements (b)  and the  conditions  F i e l d work - d e t a i l e d  including  elevations  in relation  (c)  O f f i c e w o r k on the  (d)  The d e t e r m i n a t i o n l o c a t i o n of  vertical (e)  governing future  stadia  of the  site  the  across  r o a d and b r i d g e ,  to s u r r o u n d i n g  the  survey of the  is  follows:  present  situational  improvement; present  location  and p h o t o g r a p h i n g  the  landscape;  d e t a i l e d p l a n of the b r i d g e and p l o t t i n g o f  approaches  as  River  the  site  and  approaches;  selected bridge site  i n p l a n and p r o f i l e ,  and  w i t h h o r i z o n t a l and  alignment;  E v a l u a t i o n of the  landscape  type  and e n v i r o n m e n t  of  the  bridge  site; (f)  S e l e c t i o n of d i f f e r e n t  engineering (g) and (h) to  requirements  S e l e c t i o n of to  the b r i d g e  types  and  types the  of bridges  of m a t e r i a l most  the  the  suitable  to  the  environment  type;  considered m a t e r i a l ,  appearance of  to  environment;  The l o c a t i n g o f bank a b u t m e n t s the  most s u i t a b l e  bridge;  and i n t e r m e d i a t e  environmental  supports  requirements,  and  according  overall  2  (i)  Engineering calculations  selected  types of bridges  of  the  dimensions  i n accordance  of  the main p a r t s  of  the  w i t h CSA-S6 D e s i g n of Highway  Bridges"*"; (j)  Bill  of m a t e r i a l s  for  the main elements  of  the  selected  types  of  bridges; (d) point  E v a l u a t i o n of  the  of view, g i v i n g  recommendation  of  analyzed  types of bridges  consideration  the most  suitable  to  economics  from the and  the  aesthetic final  type.  C a n a d i a n S t a n d a r d s A s s o c i a t i o n , D e s i g n o f H i g h w a y B r i d g e s , CSA S t a n d a r d S 6 - 1 9 6 6 , May 1966 ( O t t a w a , C a n a d a : C a n a d i a n S t a n d a r d s A s s o c i a t i o n , 1966) .  3  1.2  Introduction Basic  an o b j e c t natural  to  Aesthetics  aesthetic  or landscape.  aesthetic  and e x p e r i e n c e  t o e v e r y o n e who  K n o w l e d g e and e d u c a t i o n ,  feeling  extends  feeling is natural  through  this  explanation of aesthetics  still  comprehension further.  however,  (of  Newby  2  the  observes  elevate  this  aesthetics)  summarized Munro's  3  v e r y c l e a r l y by s a y i n g :  " I f we e x p r e s s v i s u a l p e r c e p t i o n o f a l a n d s c a p e as a n a e s t h e t i c e x p e r i e n c e , i t could take t h i s g e n e r a l e q u a t i o n form suggested b y Thomas M u n r o ( 1 1 ) : AE = PO + CP + E C . T h e a e s t h e t i c e x p e r i e n c e ( A E ) t h u s i s t h e sum o f r e l a t i o n s h i p s b e t w e e n t h e p e r c e i v e d o b j e c t or landscape (PO), the c h a r a c t e r i s t i c s of the p e r c e i v e r ( C P ) , and t h e e n v i r o n m e n t a l c o n d i t i o n s o r c i r c u m s t a n c e s (EC) a t t h e t i m e o f e x p o s u r e . The p e r c e i v e d o b j e c t o r l a n d s c a p e i n c l u d e s e x i s t i n g , s u g g e s t e d and a n t i c i p a t e d q u a l i t i e s , c u l t u r a l and h i s t o r i c a l m e a n i n g s , and f o r m a l a r r a n g e m e n t s i n s p a t i a l , t e m p o r a l , c a u s a l , a n d o t h e r modes o f o r g a n i z a t i o n . The c h a r a c t e r i s t i c s of the p e r c e i v e r i n v o l v e s t a b l e , permanent, or s l o w l y c h a n g i n g t r a i t s s u c h as s e x , p h y s i q u e , i n t e l l i g e n c e , p e r s o n a l i t y , s t a g e o f m a t u r a t i o n , s p e c i a l a p t i t u d e s , f a m i l i a l b a c k g r o u n d , and e d u c a t i o n ; a l s o i n v o l v e d are t r a n s i t o r y , r a p i d l y changing t r a i t s s u c h as m o o d , i n t e r e s t , e x p o s u r e t o s o c i a l t r e n d s o r f a d s , and t h e a c t i v i t y o f t h e moment. F i n a l l y the e n v i r o n m e n t a l c o n d i t i o n s or circumstances s u r r o u n d i n g the i n t e r a c t i o n i n c l u d e such t h i n g s as p h y s i c a l l o c a t i o n , p r e s e n c e o f o t h e r p e o p l e , o t h e r p e r c e p t u a l s t i m u l i , and t h e p h y s i c a l and c u l t u r a l e n v i r o n m e n t . "  Section  F . L . Newby, M a n - N a t u r e - B e a u t y : A r e s e a r c h d i l e m m a . P a p e r . 26, X I V I U F R O - K o n g r e s s , Munchen, Germany, 1967. p . 452.  T. Munro, Toward s c i e n c e i n a e s t h e t i c s . L i b e r a l A r t P r e s s , 1956). p. 27. 3  (New Y o r k ,  Vol. VI,  N . Y . : The  4  1.3  Elements of  Aesthetics  B a s i c elements  o f a n a l y s i s have been s e t  tate evaluation of aesthetics  and as  a result,  i n order  improve  to  facili-  landscape  4 management  .  1.3.1  Basic  1.3.2  Dominance Elements  1.3.3  Dominance P r i n c i p l e s  1.3.4  Variable  Basic  1.3.1  They have been grouped Concepts  Factors  Concepts  B a s i c concepts for  simplification  the  g o v e r n i n g dominant Basic  rich  landscapes  deal with  into  subgroups  as  desirable  istics  landscape,  by the  provision  1.3.2  Dominance Elements  which are  forms,  divided  according  to  a l l o f them a r e  object-  a s i g n i f i c a n t guideline i n determining i n landscape.  also  of necessary  Dominance elements  degree of v i s u a l  of landscape  landscape,  also include v a r i e t y , which deals with  and s e r v e s is  characteristic  elements.  concepts  how much v a r i e t y  Although  into:  D e v i a t i o n s from  included i n basic  resources  for  i n c l u d e form,  usually present,  concepts,  a nation's  line,  characterare  caused  economy.  c o l o u r and  e a c h one e x e r t s  a  texture. differing  power o r d o m i n a n c y .  U . S . Department of A g r i c u l t u r e , N a t i o n a l F o r e s t Landscape Management, F e b . 1973, V o l . I ( W a s h i n g t o n , D . C : Government P r i n t i n g O f f i c e , 1973) . p . 2 - 1 3 .  5  1.3.2.1  Form The mass o f a n o b j e c t ,  appears u n i f i e d is the  called  i s d e f i n e d as " f o r m " .  "shape"  term "form"  1.3.2.2  or of a combination of o b j e c t s ,  but  I n two d i m e n s i o n a l p i c t u r e s  s i n c e most l a n d s c a p e o b j e c t s  i s more o f t e n  anything  that  is  three dimensional,  used.  i s a p o i n t t h a t has been extended,  arranged  considered separately  i n a row o r a s e q u e n c e .  or i t  c a n make up t h e  can a l s o be  the  shorelines,  t i m b e r l i n e s , avalanche paths,  1.3.2.3  A line  it  can be  can be  s i l h o u e t t e of a form.  i n t e r s e c t i o n o f two p l a n e s .  It  A l l t h e s e may b e f o u n d i n  vegetative boundaries,  etc.  Colour E v e n when t h e o b j e c t s  often  are  it  Line Since a l i n e  colour  t'.iat  enables depends  cause d i s t a n t colours  us  to d i f f e r e n t i a t e  on t h e  p o s i t i o n of  between  form,  them.  the o b s e r v e r .  line  This  and  texture,  c o l o u r dominance  D u s t and  c o l o u r s t o become m u t e d b y a b l u i s h h a z e ,  remain strong  1.3.2.4  have i d e n t i c a l  moisture while  foreground  and d o m i n a n t .  Texture Distance varies  patterns  the  dominancy of t e x t u r e .  a r e d o m i n a n t when v i e w i n g  feet,  however, major branches  while  entire  groups o f  trees  a tree  from  a distance  become d o m i n a n t a t are  the  (For example, o f a few  a few h u n d r e d  dominant t e x t u r e  at  leaf  feet,  a distance  a few m i l e s . ) 1.3.3  Dominance P r i n c i p l e s The v i s u a l  dominancy of form,  line,  c o l o u r and  texture  are  of  6  affected  by s i x b a s i c p r i n c i p l e s , w h i c h a r e :  convergence,  c o - d o m i n a n c e and  Great while contrasts At  times,  it  demand.  with  creating  beneficial, that  contrasts  but  can stand  little  sharp  then  are  the  up t o  immediately apparent  contrasts object  all  simply  i n the n a t u r a l  axis,  observers,  cannot  environment  close s c r u t i n y which i t s is  precedence  be  seen.  can be  introduced  prominence  p r o b a b l y the most  and b l e n d i n g s h o u l d t a k e  cases where o n l y a mediocre c o n t r a s t is  effect,  to  i n q u e s t i o n must be so w e l l  The q u e s t i o n o f c o n t r a s t  bridge design,  sequence,  enframement.  o r no v i s u a l  the  contrast,  will  significant  over contrast  can be a c h i e v e d or where  in  in  contrast  undesirable.  1.3.4  Variable  Factors  Dominance elements c a n be c o n s i d e r e d as more o r light, scale  atmospheric and t i m e .  time at which severe  are  also affected  less  subjective.  c o n d i t i o n s , season,  They h e l p  to judge  the  to  They i n c l u d e :  distance,  i d e n t i f y the most  potential visual  and s e n s i t i v e c o n d i t i o n s  by v a r i a b l e f a c t o r s  possible.  observer's critical  impact, under  which  motion, position,  l o c a t i o n or the  most  7  1.4  Structural  Aesthetics  Bridge design is therefore,  time,  for  each b r i d g e ,  Temporary b r i d g e s , s h o u l d be  questionable; even a f t e r purposes  like hiking,  hunting,  a New A r c h i t e c t u r e " ^ , d e f i n e s t h a t an e n g i n e e r  to serve  design  it  i s to  a  short  for  However, even t h i s might ba  t e m p o r a r y b r i d g e s may s e r v e primary function i s  should,  An adequate type o f  designed  considered exceptions.  their  and  no m a t t e r w h a t p u r p o s e  explicitly  for  over,  long periods  usually for  of  time  recreational  etc.  Le C o r b u s i e r , a r c h i t e c t  saying  to a r c h i t e c t u r e  be c o n s i d e r e d an a p p l i e d a r t .  s h o u l d be s e l e c t e d serve.  closely allied  and p a i n t e r ,  engineering  applies  i n h i s book "Towards  aesthetics  economic l a w s ,  and b e a u t y  by  and c a l c u l a t i o n s  to  a c h i e v e and c r e a t e h a r m o n y , w h e n h e w o r k s i n a c c o r d a n c e w i t h laws.  C a l c u l a t i o n s , which  with which in  turn,  the  engineer  come f r o m n a t u r a l  creates  communicates w i t h  the  the  l a w s , p r o v i d e the  resulting architecture  observer  through harmony. "We u s e s t o n e ,  concrete,  that  a l l is  This  a l l has  construction. on m e , . I  We e m p h a s i z e t h e w o r k .  f e e l h a p p y and  construction  (I)  say:  It  is beautiful.  5  (Paris:  and  wood,  a question of a big  influence  H e r e we h a v e  a  art."  To s u m m a r i z e L e C o r b u s i e r ' s e x p r e s s i o n s , beauty  tools  He s e p a r a t e s  c o n s t r u c t i o n from a r t i s t i c work by s a y i n g : we b u i l d h o u s e s a n d p a l a c e s ,  these  o f an e n g i n e e r i n g s t r u c t u r e  lies in its  L e C o r b u s i e r , V e r s Une A r c h i t e c t u r e Vincent,  Freal  & C i e . , 1958).  p.  80.  we c a n s a y  harmony,  ("Towards  its  that  the  balance.  a New A r c h i t e c t u r e " ) ,  8  The b a l a n c e and w i t h  then has  the It  applied  surrounding  followed,  is very subjective.  however,  bridge  generally  seems t h a t  in cities  is  the  by the  simpler  type outside the  type  (a)  has (c)  of road  I n most  road, (b)  the  stressed  the  or  intended  scenic values  bridge but  also  is  and  general  the  actually  architecture  - whi]  A sketch immediately bridge  d e p e n d i n g more on  landscape.  the most  expensive part  over  type of  the  -  t h o s e who l o o k a t  been  the  location.  s i z e and  it  dimensions.  extensively  features;  i.e.  sidewalks,  also.  proportions,  design i n order  road  of  transportation  has  ancillary  to be c o n s i d e r e d  material,  2),  S e l e c t i o n of a proper  more c o n s i d e r a t i o n ,  are  type of  1 and  photographs,  i d e a of multipurpose roads  b a s i c p r i n c i p l e s of aesthetic the  in cities  t e c h n i c a l requirements  The b r i d g e s t r u c t u r e ,  who u s e  -  (Figures  i s u s u a l l y more c o m p l e x .  environment.  p a r k i n g a r e a s and so o n , h a v e (d)  type of b r i d g e  the b r i d g e and t h e its  everybody.  architectural  country  is naturally prevalent  dictate  so the  i n the  since bridges  The f u n c t i o n o f  Recently,  the  an a c c e p t a b l e  o r h i g h w a y and. t h e  cases,  serve,  than  c i t i e s requires  the b r i d g e s i t e  to  the  to s a t i s f y  basic p r i n c i p l e s , which i f  the d e s i g n e d b r i d g e onto  shows a n y d i s c o r d w i t h  even  appreciation.  rural locations  or p l o t t i n g  itself,  of each a r t ,  is difficult  surrounding architecture  solution for  study,  It  selecting  the main reason b e i n g t h a t dictated  structure  that c r i t i c i s m  accepted  can provide v i s u a l It  the  landscape.  s h o u l d be p o i n t e d o u t  art,  There a r e ,  to be c o n s i d e r e d w i t h i n  etc.,  to please it.  must not  follow only  some  those  Figure 2 - Bridge i n a natural - Japanese Garden.  setting.  10  A very unique  and  complex a n a l y s i s  of bridge  aesthetics  has  6 been done by P a c h o l i k i n European  cities,  bridges  are  included.  in  paper under  this  applicability  .  Although his  analysis  some comments a b o u t The p r i n c i p l e s  analysis  i s used  i n the  of b r i d g e Alouette  the  of  deals mostly with  out-of-city  some o f h i s  aesthetics,  River Crossing  and A m e r i c a n  ideas  and  bridges  its  are  discussed  practical  study.  L . P a c h o l i k , E s t e t i k a M o s t n i c h Staveb ( " A e s t h e t i c s of B r i d g e S t r u c t u r e s " ) ( P r a g u e : U s t a v p r o Ucebne Pomucky P r u m y s l o v y c h a O d b o r n y c h S k o l v P r a z e , 1 9 4 6 ) . p . 26 - 8 4 .  11  Chapter  II  A N A L Y S I S OF BRIDGE A E S T H E T I C S  Aesthetics In  general,  aesthetics,  w i t h harmony,  large bridges  However, the  purpose  roads,  depend  Each b r i d g e has  below.  R o a d w a y and  2.2  Supporting  2.3  Piers  2.4  Bridge  is  Changing the  suppressed  structure  and  expected.  on o b s e r v i n g  elements  on m u l t i -  Obviously,  the  distance.  which have  to be d e s i g n e d  in  guardrails structure abutments  element sequence  by a l e s s e r  one,  to be a e s t h e t i c a l l y  i.e.  spans are  under-  heads  This d i v i s i o n sequence,  a r e more r e a d i l y  importance'*'.  2.1  Each higher  four  balance.  structural  same p r i n c i p l e s a p p l y t o s m a l l b r i d g e s  of o b s e r v a t i o n w i l l  of  i n analyzing  and a r g u m e n t s  w h e r e v e r y few l a r g e  a c e r t a i n sequence  and h a r m o n y d e a l s w i t h  have been used  s i n c e t h e s e examples  stood.  effect  deals  is  i s dominant of  importance,  this  causes  destroyed  logical,  roadway i s most  to  i.e.  the  others  it  which  are  i f a higher  element  natural balance  and t h e b e a u t y  since  important  the  i s based  because  it  to be  of  the  lost.  on f u n c t i o n a l  has  the main  ^ L . P a c h o l i k , E s t e t i k a M o s t n i c h Staveb ( " A e s t h e t i c s of B r i d g e S t r u c t u r e s " ) ( P r a g u e : U s t a v p r o Ucebne Pomucky P r u m y s l o v y c h a O d b o r n y c h S k o l v P r a z e , 1946). p. 65.  12 function, allows  w h i l e the  the  according the  supporting  roadway  to be  carried  obstruction  and so  are  not u s u a l l y d i v i d e d i n t o  to  the  roadway  the  p o s i t i o n of  the  nomenclature  used  that  i n the  and s u p p o r t i n g  of  this  on.  groups  structure.  positioning, Figures text  it  Since  3, A a n d 5  paper.  guardrail  The purpose traffic  safely It  However,  it  over  of  the b r i d g e  an o b s t r u c t i o n  is difficult has  selected  extremely  Sometimes case of concrete  structures.  the  of  A common f a i l i n g resulting  s t r u c t u r e up t o  common p i t f a l l ,  well-designed  itself  its  side  the  is  upper  Continuity to  is neglected,  three  steel  the  especially  trusses  the  in  o r some w o o d e n  l a c k of d e f i n i t i o n o f l o w e r edge o f  the  guardrails  is v i s u a l l y breaking  the  roadway  the  the  directly involved.  edge o f  g u a r d r a i l by e x t e n d i n g  The  view, especially,  i n a u n i f o r m i t y from the the  roadway  main f u n c t i o n .  perspective  usually  road).  continuous  on the  v i e w ( F i g u r e 6) and  road  the  artistically.  p o s s i b l e by a  The emphasis  beam o r a r c h b r i d g e s ,  supporting Another  the roadway  because of  I n the  emphasis  parts,  r o u t e and  deep v a l l e y , a n o t h e r  l i n e or highway i s  structural  the  an u n b a l a n c e d - l o o k i n g s t r u c t u r e .  dimensional view (Figure 7 ) . road  transfer  (river,  guardrail.  m a i n l y to  c o n t i n u i t y w i t h the  to  as much as  important  of c o n t i n u i t y c r e a t e s  roadway a p p l i e s  is  to express  to be emphasized  and a p r o p e r l y  appearance i s lack  place because  Roadway  2.1.1  line  the  second  I n Canada, b r i d g e s  Roadway and  2.1  the  over  e v a l u a t i o n h a s b e e n made f o r  clarify  of  structure holds  piers  up  to  the  (Figure  the the 8).  and  an  otherwise  top  of  the  Figure  3 -  Roadway-above.  .Figure 4 - H a l f - s u n k  Figure  5 -  roadway >  Rondway-below.  Figure  Figure  7 -  6 -  Throe  S i d e v i e w of  dimensional  the  bridge  (shape).  (perspective)  view of  the  bridge  (form).  I  15  16  guardrail  or h i g h e r  guardrail  i n the Other  supporting  (Figure 9).  piers types  structure  but  This  statically this  of v i s u a l l y intersects  c a n be f o u n d , o f c o u r s e ,  serves  m a i n l y to anchor  i s not  suppressed  necessary.  roadways o c c u r when  the roadway.  w i t h a l l types  the  This  of h a l f  type of  detraction  sunk roadway b r i d g e s  can be c l e a r l y d e f i n e d by w a t c h i n g the upper  and l o w e r o u t l i n e  of  is  the b r i d g e .  (Figures  The i m p r e s s i o n t h e n o b t a i n e d  10 and  as  the  other  later). that  is  tool  for  therefore,  two t y p e s  S e l e c t i o n of  depends  almost  T h e r e i s one more e f f e c t the  (contours)  two s e p a r a t e  of roadway a r e  structures  concerned  a n d r o a d w a y - b e l o w ) , t h e r e a r e b a s i c a l l y no  w i t h roadway a e s t h e t i c s . structure,  of  and  11).  As f a r (roadway-above  the  effect  supporting  e n t i r e l y on the  landscape  (see  w h i c h s h o u l d be mentioned h e r e  of g u a r d r a i l s .  u n d e r l i n i n g the  the p r e f e r a b l e  problems  S i n c e the  guardrail is  f u n c t i o n a l ' importance of  be used more e f f e c t i v e l y on r o a d w a y - a b o v e b r i d g e s  the  an  and  efficient  roadway,  it  can  than on roadway-below  bridges. The i n s i d e v i e w of often  and y e t  i t has been  the b r i d g e has  found t h a t  especially  steel  c l o s e d frame  on d r i v i n g  or w a l k i n g persons  structures,  have  (Figure 12).  feeling  than  an u n o b s t r u c t e d  similar  t o one w h i c h p e o p l e have w h i l e d r i v i n g  different  with  i n mind  that  the  reinforced concrete  very  of roadway-below b r i d g e s , a depressive  v i e w and  to w a l k or d r i v e i n an i r o n b o x .  s h o u l d be k e p t  considered  influence  Psychologically,  for  slightly  to p r e f e r  some t y p e s  natural  It  people  not been  an open  The l a t t e r in a  it  is  air  feeling  is  tunnel.  psychological effect bridges  quite  since  there i s  is a  1  17  Upper  contour  Lower  contour  Figure  11 -  U p p e r and l o w e r v i e w o f  a bridge with  a half-sunk  roadway.  Figure  13 - S i d e w a l k s  o u t s i d e the main  structure.  19  different  arrangement  arrangement locating This  of diagonals  c a n be found f o r  the  sidewalks outside  i s also safer  for  the  either  inside view.  avoided, other  as  of  road, from  Preferably,  roadway. of  the  not  is  Vancouver,  sloping  c a n be  Particularly proportions  arises,  the  be  i n s i d e view a n a l y s i s ,  is  the w i d t h  The w i d t h o f  u p o n t h e number o f l a n e s  These types height  of s t r u c t u r e  and l e n g t h ) ,  the  leading are  a g i v e n speed  (Lions  Gate  on  Bridge,  may a p p e a r  and a l s o  in  to  overall keep  structures.  i n roadway emphasis,  where the  question of  s u s p e n s i o n b r i d g e seems t o b e a  convenient  (Figure 19). Sometimes a change  below arrangement increment  (Figure 14, i n overhead  from 15)  the  roadway-above  to  the  roadway-  and b a c k a g a i n i s n e c e s s a r y  clearance.  Such a change  the  unpleasant.  H o w e v e r , i t w o u l d be an e x p e n s i v e p r o p o s i t i o n t o such  to  f r o m o n e end o f t h e b r i d g e t o  s i n c e t h e maximum c a p a c i t y f o r  for  13).  along  steep sloping should  p r e c a l c u l a t e d f o r unbroken t r a f f i c  proportionality  the  but  roadway the b e t t e r .  of proportion ( i n w i d t h ,  structure  (Figure  L o n g and v e r y e x p e n s i v e s t r u c t u r e s  B . C . , Figure 19).  appearance.  of  i n the  l a r g e l y dependent  narrower,  by  straight;  Slight  of on-coming t r a f f i c  least  road or highway.  the b r i d g e i s  be o u t  p r o f i l e s h o u l d be  s l o p e d t o o n e end'.  The w i d e r t h e  course,  sometimes  the  there i s limited v i s i b i l i t y  but  structure  t h e roadway s h o u l d a l s o be c o n s i d e r e d  and a sudden a p p e a r a n c e  the  o r wood c l o s e d f r a m e  the b r i d g e i s a c c e p t a b l e ,  Last,  substitute  the main s u p p o r t i n g s t r u c t u r e  h o r i z o n t a l or s l i g h t l y  b o t h ends o f  A  the,pedestrian.  The p r o f i l e o f with  steel  and w i n d b r a c i n g .  because  can r e a d i l y  Figure  15 - A l t e r n a t i v e  solution  of  changing  position  of  roadway.  21  affect  the  solving  aesthetic  this  a p p e a r a n c e and  problem from the  few p o s s i b i l i t i e s i s the  river with  the  to set  the  i m p r e s s i o n of extended is  point  abutments, the  s o l u t i o n m i g h t seem a b i t of  unbroken roadway l i n e .  is  to be e x p e c t e d ,  the  of view.  One o f  Of c o u r s e ,  since different  spans  across short  spans g i v e  the  f u n c t i o n a l appearance of  the  it  (Figures fully  14,  15).  corresponds  some f l e x i b i l i t y  circumstances  impressions  the  while maintaining  Since short  approaches  clumsy but  different  l i m i t e d means o f  one o r m o r e l o n g and d o m i n a n t  roadway-above.  i n harmony w i t h  might b r i n g out  aesthetic  roadway-below arrangement,  spans on banks w i t h  bridge  there are very  about  the  This with  the  i n this  (e.g.  theory  solution  landscape)  same t y p e  of  cons t r u e t i o n . 2.1.2  Guardrail As mentioned b e f o r e ,  and a e s t h e t i c the  accessory  of  the  f u n c t i o n a l appearance of  above b r i d g e s . traffic  S i n c e the  visually,  supporting  the  structure  the  guardrail is  an i m p o r t a n t  roadway because i t h e l p s  the  roadway,  f u n c t i o n of  the  especially with guardrail is  to the  the  is  the  roadway.  effect  concrete  and  the  different  the  also  roadway-  to  direct  unbroken h a n d r a i l l i n e  (of  F i g u r e s 9 a n d 17 d o n o t  g u a r d r a i l never  m a t e r i a l and/or  follow  ( F i g u r e 8)  way ( F i g u r e s  colours  the  properly.  guardrail) , this  rule  is  and,  16 and 1 8 ) .  also very  The most parallel  and  ( w h i c h s h o u l d be a v o i d e d ) .  looks l i g h t  i n some o t h e r  the  roadway.  of a broken g u a r d r a i l  be a r t i c u l a t e d  emphasize  c o n s t r u c t i o n s h o u l d be l i g h t i n c o m p a r i s o n to  T h e r e a r e many w a y s o f u s i n g g u a r d r a i l s efficient  to  constructive  demonstrate A  therefore, The u s e  effective.  full should of  F i g u r e 17 -  I n t e r f e r e n c e o f t h e r o a d w a y and g u a r d r a i l by extended p i e r s .  the  23  24  The c o n s t r u c t i o n m a t e r i a l does nature,  but  different  S t o n e and w o o d , o r whereas,  types  concrete  w o o d - s t e e l or  combination  is  but  a l s o from  for  pedestrians  i n s i d e the b r i d g e , and d r i v e r s .  as  the  extended  not  support  as d e t r a c t i n g  but  otherwise in Figures  the  the  that  20 a n d  2.2  the best  expect,  the  i.e.  only  for  outside  appearance safety  Short posts  i n the  do n o t  this  the  act  they  type  same way  are uniformly  outside view  divided,  appearance  support.  g u a r d r a i l on the  suspension  by s u p p o r t i n g  The d i f f e r e n t  effects  cables,  are  shown  aesthetic  results  the  (Figure 18),  n a t u r a l beauty  the  for  the roadway  suspension  since  and  ( F i g u r e 19)  they a l l o w  clear  lines  o f an u n b r o k e n r o a d w a y .  Structure  which determines express  A wood-concrete  the h e a v i e r  generally obtained with  The s u p p o r t i n g  to  combinations,  21.  express  Supporting  i n harmony.  to c r e a t e a f e e l i n g of  of an extended  roadway-above b r i d g e s  which best  same  For very high bridges,  continuity is disrupted.  g u a r d r a i l are  and t h e  preferable.  g u a r d r a i l s h o u l d n o t be i n t e r s e c t e d  I n summary, the  less  i t has  Furthermore,  as  the  known t o be good  on F i g u r e 1 7 , b e c a u s e  of supports.  to be o f  kind.  T h e same c r i t e r i a a p p l y t o bridge,  are  are  need  i f u s e d , must be  g u a r d r a i l i s judged not  g u a r d r a i l i s recommended.  is  and s t e e l ,  stone-steel  of  regardless  of m a t e r i a l ,  probably the worst  Since the  not  structure  the beauty  strength,  is  the  of a b r i d g e .  which  the  s u p p o r t i n g elements  eyes  not  n e x t most \ s i g n i f i c a n t  element  The s u p p o r t i n g s t r u c t u r e of onlookers s u b c o n s c i o u s l y  o n l y have  to be s t r o n g  enough  has  25  Figure  21 -  Improper l o c a t i o n of the c a b l e t h e r o a d w a y and g u a r d r a i l .  to  26  according strong.  to This  supporting between of  static  and d y n a m i c c a l c u l a t i o n s , b u t  requirement  elements  is  always f u l f i l l e d ,  (beam and a r c h )  t h e s e two e l e m e n t s  bridges  not  is  they  share the  the most  a l s o have  look  e s p e c i a l l y w h e n two  strength.  important  to  A proper  factor  i n the  ratio  aesthetics  ( F i g u r e s 22 a n d 23) . There are  three basic  aesthetically  suitable  behind  They  them.  and a l l o f  Beams  2.2.2  Arches  2.2.3  Suspension  of these have  t h e r o a d w a y and t h e  of supporting structure  them h a v e  which  thousands of years  are  of  history  As mentioned  before,  are:  2.2.1  All  types  structure to have c l e a r  supporting structure  the harmony o f b o t h i s  contours. should not  t a k e n away a n d t h e  intersect,  clearness  of  the  otherwise  contours  is  spoiled. C o n t o u r s make t h e b e a u t y engineering structures' The b r i d g e  is  expressive. it  remains  contours  The b r i d g e  is  unattractive  thin  as  includes  been d e a l t  and v i c e v e r s a  the  p r o f i l e of  with  earlier.  (Figures  those of  the  are  contours  strong  22 and  bridges.  correct  and  Otherwise  offending.  other  the  civil  i m p o r t a n t as  two m a i n c o n t o u r s :  l o o k i n g roadway w i t h  and no o t h e r  t h e n p e r c e i v e d and a p p r e c i a t e d .  and e v e n  performed by the roadway,  way h a s  are  immediately impressive i f  The b r i d g e has  sometimes  of bridges,  by the  the It  and l o w e r .  supporting  piers.  One  structure  The i m p o r t a n c e o f  would be a m i s t a k e  (thick)  23).  upper  looking  By r e f e r r i n g  is  which the  road-  to d e s i g n a  supporting  structure  t o and u t i l i z i n g  the  Figure  22 -  I m p r o p e r b a l a n c e b e t w e e n beam a n d  arch.  Figure  23 -  I m p r o p e r b a l a n c e b e t w e e n beam a n d  arch.  28  three basic lines  types  of s u p p o r t i n g s t r u c t u r e s  above,  c a n more r e a d i l y be e l i m i n a t e d f r o m b r i d g e d e s i g n .  and s u s p e n s i o n s y s t e m s fallen  tree,  over  a r c h and l i a n a s  -  After  through  i n the  incorrect  Beams,  of the  second h a l f  of  two t r e e s b e n t  a  to form  an  bridge.  the  the  last  architecture  c e n t u r y as  out unnatural  t i m e , we c a n f o l l o w  of  bridges  a new  and sometimes  natural  lines  in  in  one hand and n a t u r a l  aesthetic  the  architectural  unnecessary structures.  " s e c e s s i o n " was o v e r , o n e n o t i c e d a s l o w c o m e b a c k i n  economy o n t h e  arches,  p a s t , whereby  T h e i n d u s t r i a l r e v o l u t i o n , w h i c h was r e f l e c t e d  Up t o t h a t this  a beam;  can be found between  "secession" - brought  lines.  precedents  s e r v e d as  formed a s u s p e n s i o n  and b u i l d i n g s . architecture  have n a t u r a l  a river,  Analogies  trend  mentioned  f e e l i n g on  architecture the  other. 2.2.1  Beams Straight  contours  whether  t h e y b e s i m p l e beams  (Figure  24 ( b ) ) .  are or  preferable straight  Different heights  of  may b e u s e d o n m u l t i p l e s p a n b r i d g e s On t h e  c o n t r a r y , beams  haunches span.  (batters)  graded  unfinished  with  a r e more e m p h a t i c t h a n  structure  ( F i g u r e 24  I n a roadway-above with a natural  t h e beams  i n height,  disconnected  effect.  tops,  types  t r u s s e s of long span  do n o t  A c o n t i n u o u s beam i s p r e f e r a b l e  Upper s t r a p s ,  i n the v a r i o u s  of  bridges  ( F i g u r e 25 ( b ) )  interfere  with  this  which principle.  a c c o r d i n g to span l e n g t h , the  same h e i g h t  with  o f beam i n  t o a s i m p l e beam i n e a c h g i v e the  beams  impression of  each  span.  an  (a)).  t r u s s beam,  the  ends t e r m i n a t e  in  However, i n a roadway-below t r u s s beam,  abutments if  the  29  (a)  D i s c o n n e c t e d upper  (b)  N a t u r a l appearance of  (c)  Figure  Border p i e r s  24 - D i f f e r e n t  with  straps.  roadway-above  truss.  roadway-below.  solutions  of  truss bridge  arrangement.  30  t r u s s has  a v e r t i c a l member,  it  or p a r t i a l l y o b l i q u e ends o f of  construction  beams a r e  ( F i g u r e 25  moment;  i.e.  is  not  aesthetically  at  the  supports,  at  the  support.  depth  of  designed  improve the  and  Border  look of  across  to  the  the  this  type  shapes of  the  r e l a t i v e maximum  length  of  i n the c e n t e r .  S i n c e one e x p e c t s  s u c h a beam g i v e s  piers  (c).  according  t h e beam o c c u r s  pleasing.  feeling  the  entire  This  effect  v i s u a l l y to  that  it will  see  fail  strength in  shear  Arches The a r c h b e l o n g s  category  than  the  above b r i d g e s , As mentioned ness has  beam.  before,  to  the  proper  are  not  Arches are  as  a support  balance  between  truss  usually constructed  pleasing  a t h i n c r o w n and c o n s i d e r a b l y structure,  multiply-indeterminate  considered.  the  arch  structure.  and beam type  thick-  of  arch  sensitive  a c c o r d i n g to e q u i l i b r i u m p o l y -  the most  s u c h as  roadway-  obtrusive.  Aesthetically,  influences  i n the  a r c h e s seem t o b e l e s s  l i n e s , which vary w i t h d i f f e r e n t  of a safe  valuable  appearance i n the whole  g o n s o r moment  feeling  more  T h i s a p p l i e s m a i n l y to a s o l i d  while steel as  aesthetically  serving  a most n a t u r a l  to be c o n s i d e r e d .  they  a higher,  The a r c h ,  creates  (wood and c o n c r e t e ) since  (b)  applying a constant stress  The l a r g e s t  and f o r c e f u l .  Aesthetically suitable  25 ( a ) ,  beams a r e  beam.  2.2.2  diagonal  (a)).  shown o n p i c t u r e s Sometimes  the  looks hard  is  fixed  thicker butts but  as  and r e q u i r e s  shrinkage  the  and  arches.  end p a r a b o l i c  (Figure 26).  a structural careful  types of  type  it  calculations  temperature changes have  It is  arch  gives  the  statically  since to  with  be  other  31 1  32  The t w o - h i n g e d It  is  thicker  at  the  a r c h has  crown than  i m p r e s s i o n o f s t a b i l i t y as since  it  is  carefully  the  the  at  opposite  the  fixed  butts  it  and,  l o o k i n g and  27).  g i v e the  The d e s i g n  structure;  can appear smooth  (Figure  and does n o t  end a r c h .  only a simply-indeterminate  designed,  appearance  if  same  is  simpler  it  is  aesthetically  pleasing. The t h r e e - h i n g e d difficult used  for  to  concrete  structurally short  accept  arch  from the  aesthetic point  (Figure 28).  since  it  is  spans v i s u a l l y p l e a s i n g  for  roadway-above.  the roadway a  and  t h i c k roadway  that the  the arch  creates the  beam i s  the  arch  carrying If  been  the  thicknesses  the  forgotten  a r c h has (Figure  The s h a p e o f  relative  If  it  holding  is the  actually arch  the  the  arch  roadway,  together.  the is and  most  now  rarely  to  design  simplest  structure,  and  roadway-below  the  proper  for  can c r e a t e that  the  interchanged, as  between  arrangements  there i s  been b u i l t  bridges  balance  roadway-above  are  impression no n e e d it  for  then  a monument  and  22).  arch  too  is  thick,  that  the  Equal thickness  supporting  the  obtained.  can be c r e a t e d  below arrangements.  that  the  and a t h i n a r c h  Similar v i s u a l effects  thickness.  In  is  t h e w h o l e l o a d and  impression that  roadway has  the  can be a p p l i e d f o r  thickness.  ( w i t h beam)  can be  important  probably  o f v i e w and i s  i s , however,  contours  The most  (Figure 23). the  It  is  a s t a t i c a l l y determined  T h e same p r i n c i p l e s as  i n a long span  be a v o i d e d s i n c e  the  structure  roadway w i t h the  beam a p p e a r s m o r e o b v i o u s ,  w i t h improper  not it  as  roadway-  important  as  can g i v e the  roadway  of arch  is  a l l this  impression  only a  and roadway  appears undermined, creating  the  chord should  while a  the  consequent  Figure  Figure  26 -  Fixed  end a r c h  28 - T h r e e - h i n g e d  bridge.  arch  bridge.  34  lack of balance. structure.  The t o t a l  The b e s t  than roadway. to d e t r a c t  p r o p o r t i o n would  from  the  When t h e  arches  are  nating  eye they  of  ratio  and 1/500.  show t h e  and t h e  roadway  (Figure 29).  reasons  but  types  with  either  should not  not  curves,  a r c h and t h e  span  i s not n o t i c e a b l e . because  to  the  disadvantage  discrimi-  Common r a t i o s  chord are between a ratio as  used  because  of  full  is  Flat  the  the designer.  were sometimes  ( F i g u r e 20)  roadway.  be c r o s s e d by t h e  it  loses  the  provides  the beauty  An important  c a b l e and t h e  curve.  so as  1/250  1/1000. arch  for  with  statical  t h e y make  the  thicker.  l a r g e a d i s t a n c e between  cable  the  i n Rome, h a s  The v e r t i c a l c o n n e c t o r s  s u i t a b l e because  arch  Structure  element.  the  of  l e n g t h of  arches  roadway c o u p l e d w i t h  cable.  between  the  thicker  than simple  of b r i d g e s were designed  Elliptic  roadway  Suspension  continuous  of  and s k i l l  they have an a e s t h e t i c  and t h e  the  of  difference  known a r c h ,  A suspension bridge  of  look better  the h e i g h t  the  ability  square  The f l a t t e s t Some o l d e r  2.2.3  is high,  of a heavy  lines.  u s u a l l y more a d m i r e d t h a n h i g h a r c h e s ,  the h e i g h t  piers  i n general  r a t i o between  that  s h o u l d be p r o p o r t i o n a t e  i m p r e s s i o n o f smooth  e s p e c i a l l y when t h e  is  seem t o b e a s l i g h t l y  The v e r t i c a l c o n n e c t o r s  P a r a b o l i c curves  small.  i m p r e s s i o n of such a b r i d g e  cable  are  of  the  the  impression of  thin natural  t h i n and do n o t  consideration is  the  (Figure 21).  c a b l e and  On t h e  the  natural  interfere  the  other  the roadway i s not  p r o p o r t i o n and  curves  proper  As d i s c u s s e d e a r l i e r ,  a  distance guardrail hand,  too  aesthetically  appearance  of  the  1  Figure  31 - K i n g  truss.  35  36  A new type o f r e l a t i v e l y has  been d e v e l o p e d r e c e n t l y .  s h o r t span s u s p e n s i o n  Instead  construction  of a continuous arch,  the cables  are anchored i n the beam ( F i g u r e 30).  B a s i c a l l y , i t i s a very d e l i c a t e  l o o k i n g s t r u c t u r e and can be used w i t h  great  effect.  I t i s also r e l a t i v e l y  inexpensive  Other types o f b r i d g e s  t e c h n i c a l and a e s t h e t i c  and s i m p l e  to c o n s t r u c t .  such as k i n g and queen  trusses  ( F i g u r e s 31 and 3 2 ) , even i f e c o n o m i c a l , do n o t g e n e r a l l y c o r r e s p o n d to the a e s t h e t i c p r i n c i p l e s which a r e covered i n t h i s paper. basic  t y p i c a l l y - f u n c t i o n a l engineering  to c o n s t r u c t .  s t r u c t u r e s , simple  They a r e t o d e s i g n and  They have been o f t e n used e s p e c i a l l y i n the p a s t b u t  they always take away from the harmony o f t h e l a n d s c a p e i n some way. Comments about the r e v e r s e d  s t e e l t r u s s e s can be compared t o e a r l i e r  comments about t h e beam which i s d e s i g n e d a c c o r d i n g These s t r u c t u r e s have an u n n a t u r a l  t o t h e moment  line.  appearance and g i v e the f e e l i n g  that  they c o u l d b r e a k c l o s e to the s u p p o r t . Inverse the same n e g a t i v e  strutframe  above i f c a b l e s  p a r t s , b u t even they cannot be c o n s i d e r e d  as  a e s t h e t i c a l l y s u i t a b l e s t r u c t u r e s s i n c e they do not f o l l o w t h e  described  2.3  ( F i g u r e s 33 and 34) do n o t have  e f f e c t as those which a r e d e s c r i b e d  are used f o r t e n s i o n e d fully  structures  a e s t h e t i c p r i n c i p l e s of s u p p o r t i n g  elements.  P i e r s and Abutments C h i e f l y because o f i t s f u n c t i o n , a p i e r o r abutment i s an  independent element which a c t s as a complex u n i t . d e s i g n e d as a s i n g l e column or w a l l , t h e r e gives  the f e e l i n g  I f a support i s  i s a l a c k of c o m p l e x i t y  t h a t more of the same elements a r e r e q u i r e d  which  since i t "  Figure  34 - T r u s s e d  girder  bridge.  38  should also whether  act  as  as  an enframement.  infill  at  the  supporting structure  to  An i m p o r t a n t While the  ends o f a r c h e s the  are  preferable  the  the  i n f l u e n c e of water.  supports  piers  are  or  the  fluency of can be at  because  and g i v e t h e they have  bridge type, of  the the  is  from  the  material.  concrete  important  that  of c o n s t r u c t i o n ,  The o n l y  ends o f Solid  a straight  or  they  stone  resist  extensions  o f the  pier  long piers  and  to  of  the  that  not  extension of  emphasize  the  bridge  s h o u l d be b u i l t s l o p e d to w i d e n at  instability.  c a r e f u l l y according to  f i l l  should  acceptable  v e r t i c l e prism appears  to be d e s i g n e d  height  the  the b r i d g e ,  f e e l i n g of u n c e r t a i n t y  they are  From the  the  to support,  the aesthetic  selected and  the  type  banks. Sometimes  they have  i m p r e s s i o n to keep the and h e i g h t abutments the  load  e s p e c i a l l y i n deep v a l l e y s where h i g h  roadway.  and m o n u m e n t a l i t y .  i n steps,  point,  since i t  has been mentioned p r e v i o u s l y t h a t  abutments  top  the  necessary. It  entrance  transfer  i n rows,  regarding selection of  I n some t y p e s  c a n b e o f wood o r s t e e l ,  the  to  are b u i l t  can be o f v a r i o u s m a t e r i a l s ,  piers  disturb  or  piers  footing.  question arises  superstructure for  Therefore,  of abutment. gives  environment  better  the  construction  than w i t h  lighter  b a l a n c e between  The u s e o f n a t u r a l  same e f f e c t ,  to use d i v i d e d  since air  proper  t o be m a s s i v e and a l s o s h o u l d g i v e a m a s s i v e  pure  however i t  concrete  bank abutments and a i r y - l o o k i n g  the  type of  outcrops  for  interferes  facing.  the  bridge  heavy  less  Sometimes  with it  is  ( F i g u r e 6 and 7) w h i c h make and w h i c h  and l i g h t c a n a l s o b e c o n s i d e r e d a s  can be v e r y  the  acceptable  construction material.  39  This  applies  e s p e c i a l l y when d i v i d e d  l o n g and h i g h f i l l  2.4  in flat  bank abutments a r e  to  eliminate  valleys.  B r i d g e Heads A p p r o a c h e s s h o u l d a l w a y s be marked  i n order  to warn the d r i v e r  of  means o f a c c o m p l i s h i n g t h i s , The r o a d w a y - b e l o w b r i d g e striking  in itself  additional bridge pile  used  element  i s needed  piers,  can be used  direct British  the  posts w i t h (Figures  24  to  the  (c),  w h i l e a proper  35 a n d 3 6 ) .  by w i d e n i n g the  traffic  onto  Columbia.  the  roadway,  (Figures  multi-purpose  are  Such approaches  17 and 1 8 ) .  bridges.  types  with  and s i m i l a r  the  is  no  announcing  Monumentality, i f use  the  the means  required, of  land-  of approaches,  which  used  bridges  interfere  i n high vegetation Therefore  arrangement.  B r i d g e heads on  status,  sometimes  do n o t  different  d r i v e r so t h a t  means o f  approaches  F u n c t i o n a l brow-log or s i m i l a r  manner  i s above ground l e v e l ,  approaching  come r e p r e s e n t a t i o n a l  There are  roadway  roadway-above b r i d g e s .  s i n c e no a c t u a l m o n u m e n t a l i t y needed  upon the  construction, which  i s necessary,  with  oncoming b r i d g e .  depending  and o b v i o u s  can a l s o be o b t a i n e d scaping.  the  i n some a p p r o p r i a t e  on f o r e s t  in  aesthetically,  (forest)  these approaches  cover  type  c a n be u s e d  is for  F i g u r e 35 -  B r i d g e head  at  L i o n s Gate  Brid  Figure  37 - P r o p o r t i o n a l i t y  of L i o n s Gate  Bridge.  42  Chapter  III  D I F F E R E N T TYPES OF BRIDGES I N MAIN LANDSCAPE FORMS  A bridge surroundings,  is  a building  may i m p r o v e o r mar  from f o r m e r l y mentioned of  various  authors  in general,  the  ground  portation ship  (proper  is  it  landscape.  It  (rocks,  sand,  balance with  type—its  offers  natural  c a n be s t a t e d  type of  terrain  low v e g e t a t i o n ,  connecting road  (Figures  distant  view of  a refreshing  the  experiences  (flat,  hilly,  forest),  type  on e i t h e r  38 and 39)  side),  and so o n . and v i c e  b r i d g e s h o u l d not be  v i s u a l moment  both  that,  shape, p r o p o r t i o n s ,  i n f l u e n c e d by p o s s i b l e r i v e r c r o s s i n g s  The f a r since  in its  1 2 3 4 ( A d a m o v i c h , N e w t o n , L o r e n z and P a c h o l i k )  d i r e c t l y on t h e  cover  which,  a e s t h e t i c p r i n c i p l e s and f r o m t h e  to n e i g h b o u r i n g b r i d g e s  location  the  s e l e c t i o n of a b r i d g e  material—depends ous),  element  to l o n g d i s t a n c e  and  mountainof  trans-  relation-  The r o a d versa. neglected, travellers.  L . Adamovich, F o r e s t T r a n s p o r t a t i o n . Course at the F a c u l t y of F o r e s t r y , U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , B . C . 1972 - 1 9 7 3 . x  2 N . T . Newton, D e s i g n on the Land U n i v e r s i t y - P r e s s , 1 9 7 3 ) . P- 2 - 1 7 .  (Cambridge, M a s s . : Harvard  3 E . H . H . L o r e n z , T r a s s i e r u n g und G e s t a l t u n g v o n S t r a s s e n u r v j A u t o Bahnen ( ' ' L a y o u t a n d D e s i g n o f S t r e e t s and H i g h w a y s " ) (Wiesbaden und B e r l i n B a u m v e r l a g , 1 9 7 1 ) . p . 23 - 5 2 . 4 L . P a c h o l i k , E s t e t i k a Mostnich Staveb ( " A e s t h e t i c s of B r i d g e Structures") ( P r a g u e : U s t a v p r o U c e b n e Pomucky P r u m y s l o v y c h a O d b o r n y c . h S k o l v P r a z e , 1 9 4 6 ) . p . 13 - 3 4 .  F i g u r e 38 - N e i g h b o u r h o o d o f b r i d g e s  F i g u r e 39 - C l o s e and d i s t a n t o b j e c t homogenous a p p e a r a n c e .  - proper s o l u t i o n .  observance -  non  44  In  order  to s a t i s f y  have to be c o n s i d e r e d . bridge  a l l the r e q u i r e m e n t s ,  The b e s t g r o u n d s  many  alternatives  f o r j u d g i n g the most  t y p e come f r o m g r o u n d p h o t o g r a m m e t r y ,  p l o t t i n g the  appropriate  different 5 6  types w i t h photographic p i c t u r e s  t a k e n from d i f f e r e n t  Sometimes even a s k e t c h on the p h o t o g r a p h i c p i c t u r e shown o n F i g u r e s 54 t o 3.1  Flat  (beam o r f l a t  principles,  adapt  that f l a t  arch w i t h roadway-above  themselves b e t t e r  country requires  as  flat  (Figure 3)), while  to mountainous  country.  to  change a monotonous,  some d o m i n a n t e l e m e n t  i n order  to  flat  type  high  These  h o w e v e r , h a v e v a r i a t i o n s and t h e most s i g n i f i c a n t one  the need or d e s i r e  building  sufficient  59.  i s g e n e r a l l y accepted  arch bridges  from  is  '  Country It  bridges  points or angles  arises  c o u n t r y s i d e by  improve the  landscape  appearance. In 3.1.1  such cases,  Concrete Arch A concrete  be v e r y e f f e c t i v e , instance,  o f b r i d g e s may b e  considered:  Bridge a r c h b r i d g e , w i t h a r o a d w a y - b e l o w ( F i g u r e 3)  e s p e c i a l l y i n low v e g e t a t i o n ground c o v e r .  one must keep  aesthetically  s e v e r a l types  i n mind  the f a c t  that  a series  In  of arches  would this is  not  pleasing.  E . H . H . L o r e n z , T r a s s i e r u n g u n d G e s t a l t u n g v o n S t r a s s e n und A u t o Bahnen ( " L a y o u t and D e s i g n of S t r e e t s and H i g h w a y s " ) (Wiesbaden und B e r l i n B a u m v e r l a g , 1 9 7 1 ) . p . 72 - 7 5 . ^ L . P a c h o l i k , E s t e t i k a M o s t n i c h Staveb ( " A e s t h e t i c s of B r i d g e Structures") ( P r a g u e : U s t a v p r o Ucebne Pomucky P r u m y s l o v y c h a O d b o r n y c h S k o l v P r a z e , 1 9 4 6 ) . p . 13 - 3 4 .  45  3.1.2  Howe-truss  Bridge  A straight i t s monumental suitable  3.1.3  looking  from the  background,  steel  truss  o r wooden  end p i l l a r s ,  has  the  side view only i f  the  r i v e r or  otherwise  they  act  as  the  of  with  looking  sky i s  in  the  elements.  Suspension Bridge  selves  look very  and s t e e l . recent  and  impressive), offers  its  outcome  i n France after  effect  i n order  the  type of bridge  c o m b i n a t i o n of  suspension bridges  and  effective.  It  (chain bridges with stone towers,  cope w i t h  the  shortage of s t e e l . supports  themconcrete  is  quite  was  first  following e.g.  Budapest,  T h e same b a l a n c e d  (Figure  37).  Terrain Hilly  and r o l l i n g  least  demanding when i t  countryside structure  used between  terrain with  fits  well  i f local is  two v a l l e y s , w h e r e  and a n e n v i r o n m e n t a l u n b a l a n c e W i t h some e x c e p t i o n s , because the  side  comes  its to  changing ground  choice of bridge  is usually very colourful  suspension bridge which  bracing.  (which i n  Second World War, a p p a r e n t l y  may b e o b t a i n e d b y u s i n g s t e e l  Hilly  t o be  to  the  supports  a pleasing  is very e f f i c i e n t  middle European patterns Hungary)  concrete  This pleasing combination with  introduced  the  bridge,  disadvantage  disturbing  A suspension bridge, with  3.2  (Howe-truss)  forces  are  type  and,  type.  of  except  therefore,  dominating elements  This  any t y p e  considered  seems  should not  become  suppressed  results. bridges  of v e h i c l e s  S i t u a t i o n s , where  conditions  dominating the  and a l m o s t  cover  s h o u l d be b u i l t  i n curves  two s e g m e n t  require  bridges  straight,  additional  d i v i d e d by a  lateral  short  be  46  straight  r o a d , are r e q u i r e d s h o u l d be avoided  be r e v i s e d .  and  the whole r o u t e  Such an arrangement i s not o n l y e x p e n s i v e ,  aesthetically To  but  should  also  unpleasing. improve the d i s t a n t view of the b r i d g e and  i m p r e s s i v e , the curves  on both  to make i t more  s i d e s of the b r i d g e s h o u l d be so l o c a t e d  that t r a v e l l e r s ,  en r o u t e , w i l l be a b l e to admire the beauty of the b r i d g e  c o n s t r u c t i o n and  i t s environmental  effect.  Sometimes symmetry i s c o n s i d e r e d v e r y important odd  number of spans i s p r e f e r r e d .  b r i d g e s and  roadway-above ( F i g u r e 3) than w i t h any  Where o t h e r types are concerned, t h i s requirement.  Mountainous  i n order  These b r i d g e s  i n harmony w i t h  even beam b r i d g e s may l o c a t e d and  (beam type)  3.4  adapt i t s e l f  to  cut o f f the view of  the a r c h b r i d g e s are not as  the landscape  ( F i g u r e 40).  the  forceful  However,  be used i n mountainous a r e a s , when p r o p e r l y  c a r e f u l l y designed,  e i t h e r as c o n t r a s t i n g v i s u a l  or where the p o s i t i o n of the b r i d g e i s low (Figure  o t h e r type of b r i d g e s .  balance.  i n g e n e r a l , does not  l o o k too f o r c e f u l w h i l e  appear to be  arch  Country  beam type b r i d g e s .  and  with  an  supplementary arrangements can e l i m i n a t e  to keep proper  Mountainous c o u n t r y ,  v a l l e y s and  then  However, symmetry of the l o n g d i v i d e d bank abutments  i s always n e c e s s a r y  3.3  T h i s i s more important  and  elements  i n r e l a t i o n to the background  41).  River Crossing Tunneling  is basically  or choking  environmental  the f l o w , as shown i n F i g u r e s 42 and  i n t e r f e r e n c e , and  s h o u l d be a v o i d e d .  If  43,  F i g u r e 40 - H i g h a r c h b r i d g e i n m o u n t a i n o u s  F i g u r e 4 1 - Beam b r i d g e i n m o u n t a i n o u s  terrain.  terrain.  Figure  43 - T u n n e l i n g  of the  stream.  49  the  c a n t i l e v e r beam i s u s e d ,  and  it  c o u l d be used  interference  i n the  for  then  longer  flow of  t h e b e n d i n g moment v a l u e s  spans  the r i v e r .  beam a n d c a n t i l e v e r e d beam e f f e c t Alouette River, River  i s not  aesthetic  v a l u e to  type of b r i d g e fill.  which follows  c h o k e d by t h e the  intermediate  environment  also  for  its  or  supports,  case,  the  type of bridge rather  detrimental  bridge structure  case study of Even i f  the  Alouette  that uses  beam'  of i t s  adverse  on f i s h  life.  effect  (Figure  Tunneling  on the  landscape  The u s e o f a  as m e n t i o n e d b e f o r e ,  the  the  can be  individual  than heavy bank s u p p o r t s .  effect  but,  the  tunneling effect  may b e a q u e s t i o n o f e c o n o m i c s  costs)  the  opens up t h e v i e w w h i l e d i m i n i s h i n g  the A l o u e t t e R i v e r  l e v e r e d beam o r h i g h f i l l  chapter.  no simple  i s h i g h e r when a c a n t i l e v e r e d  s h o u l d be a v o i d e d not o n l y because but  i n the  the  i n t r o d u c t i o n of a h i g h bank s u p p o r t ,  e l i m i n a t e d by d e s i g n i n g the 15)  next  lower  Then, there i s  A comparison between  can be seen  i n the  i s used s i n c e i t  A p a r t from  i n general.  are  (either side  cantif i l l  effects  s h o u l d n e v e r be o v e r l o o k e d . In structure  summary,  i t may b e s t a t e d  c a n be s e l e c t e d  for  any p a r t i c u l a r  proportionality  and b a l a n c e ,  b a c k g r o u n d , has  to be c o n s i d e r e d  of  environmental  aesthetics.  that  with  the  any b a s i c  type of  countryside.  However,  immediate surroundings  i n order  to f u l f i l l  the  bridge  and  the  requirements  50  Chapter IV  A N A L Y S I S OF ALOUETTE R I V E R  The are  g e n e r a l p r i n c i p l e s discussed i n the  a p p l i e d i n design comparisons of  River.  For this  particular case,  the  t o show t h e s u i t a b i l i t y  of each.  scale  ( 1 i n c h = 30 f e e t ) ,  purposes  for  s e l e c t i n g the most s u i t a b l e Basically,  new b r i d g e a c r o s s  Individual of v i s u a l  c o n s i d e r e d w e r e 80 f e e t  types  ( c a n t i l e v e r e d and s u s p e n s i o n )  l o n g , between  each  4.1  The  two h i g h  of the d i f f e r e n t  height  Most of  supports,  to aid  of supports  the  but  160 f e e t  the L a n d s c a p e A r e a and A l o u e t t e R i v e r  area of the U . B . C .  Research Forest  forest.  this  a path of continuous r a p i d s ,  area,  follows  As f o r  the  the mountainous  the b r i d g e from irregular  drawn  a supplementary  c o v e r e d by a m i x e d  I,  are  in  two  total  on each  solution  case.  D e s c r i p t i o n of  canyon.  the A l o u e t t e  c o m p a r i s o n and t o  were c o n s i d e r e d f o r  bank c a n be s e e n on the d r a w i n g s a l o n g w i t h for  types  two b r i d g e l e n g t h s w e r e c o n s i d e r e d .  The d i s a d v a n t a g e s  aesthetics  one.  types  length.  chapters on  s e v e r a l types have been s e l e c t e d  order  in  CROSSING  The f a s t  flowing  is basically  Alouette River, embanked b y a  landscaping of a p a r t i c u l a r area, t y p e has  to be c o n s i d e r e d , s i n c e  the n o r t h e r n p a r t o f  topography  the  i n the b a c k g r o u n d .  Crossing hilly, which  crosses  rocky  marked i n Appendix  the main view of  approach road has The m o u n t a i n o u s  a rugged,  landscape  is  51  underlined far  by t h e  distance  4. 2  to  Present  appearance  of  the n o r t h of  (see  Forest.  the  bridge.  Appendix I) Until  forms a n a t u r a l b o r d e r between  and t h e m a i n w e s t e r n p a r t  now t h e  eastern  a r e a has  an i n c r e a s e  i n logging  is  River  of is  the  eastern  area  and the  economically l o c a t e d at  location  of  the U . B . C .  purposes.  almost  present  Research  However, i n the  a n d some o f  to  the  near  geographical  river  the  a e r i a l photograph the  stringers  Alouette  crossing.  The  i n Appendix  Because the  crib  Director  t h e F o r e s t h a s d e c i d e d t o h a v e a new b r i d g e b u i l t  of  eastern  amount o f  bridge across  the s h o r t e s t  the b r i d g e i s marked on the abutments  the  expected.  The e x i s t i n g a p p r o a c h l e a d s center  of  seen a l i m i t e d  l o g g i n g w h i l e many p l o t s s e r v e r e s e a r c h future  the  Situation  The A l o u e t t e R i v e r area  the d o m i n a t i n g Mount B l a n s h a r d i n  have r o t t e d ,  I.  the  i n the  same  place. The p r e s e n t  l a y o u t of  t h e new h a u l i n g t r u c k s , curve than section  the o l d e r  south of  stability  types.  the  river  paper  these,  introduces  supplemented  be u s e f u l  approach road i s substandard  shown i n F i g u r e 6 4 , r e q u i r e a b i g g e r I n a d d i t i o n , the does  18% s l o p e o f  n o t meet p r o p e r  safety  the  since radius  road  requirements,  road  and v e h i c l e m e c h a n i c s . A s no f i n a l  this  as  the  i n this  d e c i s i o n about  a new b r i d g e h a s y e t b e e n  some i d e a s  its  for  p o s s i b l e d e s i g n and  by c a l c u l a t i o n s and a e s t h e t i c  or o t h e r  similar  cases.  made,  materials;  a n a l y s i s , may p r o v e  to  52  In important visitors  4.3  the  analysis, visual  additional intangible value, from a l l p a r t s of  the  world.  Proposed Alignment of  the  Route  The b a s i c obtained  data  for  alignment of  the  i n Appendix I . horizontal  s i d e of  designed.  truck  e a c h end o f  speed  of  river.  trucks  (50 f e e t ) ,  i n order  a smooth p r o f i l e , with slope  a 3% s l o p e , changes.  elimination  of  of  north  is  an  frequented  shown o n t h e has been  side,  as  the  of  a straight  running surface  of  obtained  for  lengths  the  on  the  been  section,  has been  the  allowed  i n the  grade has been  for  earth  been  curve.  partly  work.  the b r i d g e has  t r a n s i t i o n curves were  The m a i n b e n e f i t  profile  a l l o w s a maximum 25 m . p . h .  road  costs  p l a n and  50 f o o t  a 6% s u p e r e l e v a t i o n the  were  considered  shown i n A p p e n d i x I ,  river,  by  verical  a s p i r a l c u r v e has  T h e new a l i g n m e n t  and p a r a b o l i c  the  as  on the b r i d g e ,  to a v o i d e x c e s s i v e  the  area  as  t h e h o r i z o n t a l and  100 f e e t  i n that section with  At both sides maintained  of  On t h e  the b r i d g e .  considered  survey.  s p i r a l t r a n s i t i o n curves  To a v o i d s i d e f o r c e s  l e n g t h o f one at  redesigned  A minimum r a d i u s  the  the  and s t a d i a  present s i t u a t i o n ,  road has been  curve, with  since  been  t h e b r i d g e d e s i g n and r o a d a l i g n m e n t  by t e r r a i n reconnaissance To i m p r o v e t h e  south  q u a l i t y has  To  obtain  designed  introduced  in  the  from s u c h an a l i g n m e n t  is  the  18% g r a d e b e t w e e n s t a t i o n s  5+50  and 7 + 0 0  (Appendix  I). An a l t e r n a t e was c o n s i d e r e d w i t h at  both  ends of  the  solution involving  a shorter  transition  curve  p o s s i b i l i t y of providing additional short  the b r i d g e  and the  e l i m i n a t i o n of heavy abutments  spans and  53  extreme  fill  smaller  and  behind the  them.  In this  aesthetics  of  case,  abutments  t h e beam b r i d g e w o u l d  c o u l d b e much  improve.  E n g i n e e r i n g C a l c u l a t i o n s on Proposed Types of B r i d g e s  4.4  Different  types  design comparison. feet,  the b r i d g e  other  bridge  of glulaminated bridges  S i n c e the  i s on the  types"*".  l e n g t h o f 160 f e e t  d i s t a n c e between  I n a d d i t i o n two t y p e s  have been  the main b r i d g e elements. purposes  appearance  of  the  and f o r  as  aesthetic  is  preliminary cost  of bridges w i t h  i n the  appendices  overall  are  limited  the  to  dimensions overall  estimate.  each type of b r i d g e i s  listed in  the  follows:  (b)  strutframe  (c)  double strutframe  (d)  three-hinged  (e)  c a n t i l e v e r e d beam  (two e q u a l span c o n t i n u o u s  of  its  arch with  aesthetic  beam)  (three span continuous  S u s p e n s i o n b r i d g e has  beam)  three span continuous  not been c o n s i d e r e d  for  i m p r o p r i e t y i n the  given  beam)  comparative landscape.  R e s u l t s were o b t a i n e d by a n a l y t i c a l c a l c u l a t i o n s and by  "*" I . Forestry,  80  s i m p l e beam and  comparison of s t r u c t u r a l balance,  s i m p l e beam  use of graphs  for  analyzed.  (a)  d e s i g n because  the  T h e s e c a l c u l a t i o n s show o n l y  The c a l c u l a t i o n f o r appendices  have been s e l e c t e d  the m a i n abutments  economic b o r d e r l i n e of  The c a l c u l a t i o n s p r e s e n t e d  for  the  (e.g.  influence  lines).  B a r b e r , F o r e s t T r a n s p o r t a t i o n . Course at U n i v e r s i t y o f T o r o n t o . 1969 - 1 9 7 0 .  the F a c u l t y of  the  54  In most  suited  the  final  chapter,  the  s e l e c t i o n of  i s made b y b a l a n c i n g t h e  the  type of  technical, aesthetic  bridge  and  economic  requirements.  4.5  Material To f i n d  technical, it  has  out whether  aesthetic  to be c h o s e n s i m u l t a n e o u s l y w i t h  mainly because of  its  costs  in B.C.  short  span b r i d g e s lengths  afforded  by t h e  The r e q u i r e d  form of  the  the  balance,  bridge. been  n a t u r a l beauty  log stringers,  and c r o s s - s e c t i o n selected  material  span, which cannot  of the  i n acceptable  the b r i d g e has  t e c h n i c a l advantages, to  the b r i d g e meets  chosen  and  reasonable  which are w i d e l y used  i n B . C . , g l u l a m i n a t e d beams c a n b e o b t a i n e d  a v a i l a b l e through  channeling  the  timber m a t e r i a l f o r  As opposed  range of  for  and e c o n o m i c r e q u i r e m e n t s  Glulaminated  is  the m a t e r i a l  the  use of  r i v e r often  dimensions.  The g r e a t e r  a l l o w s more l o a d p e r  be o b t a i n e d by u s e  g l u l a m i n a t e d beam s o  seen beneath  i n a wide  strength  smaller  of l o g  on  dimension.  stringers,  that  the  logging bridges  re-  can  be  avoided. H i g h e r d u r a b i l i t y may b e o b t a i n e d b y u s i n g for  laminates.  more r e s i s t a n t  Treatment to r o t  of  this material  than pressure  treated  i s more e f f i c i e n t  treated  l o g s o r sawn  material and  therefore  timber  material. Due t o material  the  d u r i n g the  shape of  t h e beams  construction  is  m a n i p u l a t i o n of  s i m p l e r and f a s t e r  stringers.  The e c o n o m i c a d v a n t a g e o f  c a n be seen  also  i n using higher  f  glulaminated  than  choosing glulaminated  strength  lumber  (e.g.  that  of  log  material  Douglas F i r )  for  55  the more exposed l a m i n a t e s o f the beam, w h i l e l e s s exposed can be made of lower s t r e n g t h lumber  (e.g. P i n e ) .  Thus the chosen  m a t e r i a l f o r the case i n q u e s t i o n has s a t i s f a c t o r i l y above r e q u i r e m e n t s .  laminates  fulfilled  a l l the  C o n c r e t e abutments f o r the b r i d g e would be based  on t h e s o l i d r o c k y f o u n d a t i o n ( b a s i s ) on e i t h e r s i d e o f the r i v e r . To a v o i d u n p l e a s a n t wood-concrete c o m b i n a t i o n , r o c k r i p - r a p of abutments would be used.  4.6  A e s t h e t i c A n a l y s i s of C o n s i d e r e d Types of B r i d g e s  4.6.1  Simple Beam B r i d g e The  s i m p l e beam b r i d g e ( F i g u r e s 44 and 52) i s b a l a n c e d ,  according to s t r u c t u r a l a e s t h e t i c s . i n Appendix I I . for  t h i s designed  valley  E n g i n e e r i n g c a l c u l a t i o n s a r e shown  I t does not l o o k a e s t h e t i c a l l y s u i t a b l e , however, c r o s s i n g , s i n c e i t i s not i n harmony w i t h t h e r o c k y  i n t h e background.  I t c u t s the view of t h e v a l l e y  and i s not  as i m p r e s s i v e an e n g i n e e r i n g s t r u c t u r e because o f the h i g h f i l l banks. one, 4.6.2  on the  S i n c e t h e new b r i d g e i s d e s i g n e d on a h i g h e r l e v e l than the o l d  the n e g a t i v e i m p r e s s i o n would be a m p l i f i e d . S i n g l e Strutframe Bridge The  s i n g l e s t r u t f r a m e b r i d g e ( F i g u r e 45) has been d e s i g n e d  u s i n g two s i n g l e spans. each a t a d i f f e r e n t  The c o n t i n u o u s beam i s s u p p o r t e d by two s t r u t s ,  a n g l e w i t h the roadway.  are shown i n Appendix I I I . the s u p p o r t i n g elements  Engineering calculations  T h i s type i s a e s t h e t i c a l l y b a l a n c e d because  a r e almost  of the same depth as the beams b u t the  asymmetry of the s t r u t s i s a e s t h e t i c a l l y u n a c c e p t a b l e . b a s i s of the s t r u t s a t the same d i s t a n c e from 53), making i t s y m m e t r i c a l , g r e a t l y improves  S e t t i n g the  the roadway ( F i g u r e 46 and the appearance o f t h i s  type  56  F i g u r e 44 - Simple beam b r i d g e .  F i g u r e 45 - A s y m m e t r i c a l s i n g l e s t r u t f r a m e  F i g u r e 46 - Symmetrical s i n g l e s t r u t f r a m e  bridge.  bridge.  57  of  bridge.  softens 4.6.3  It  the  also  fits  straight  i n better with  lines  Double Strutframe  of  the  a three-span  inner  continuous  span l e n g t h  is  simple  surroundings  because  it  beam.  Bridge  The d o u b l e s t r u t f r a m e as  the  bridge  beam.  (Figures  47 and  54)  is  designed  E x t e r n a l spans have e q u a l l e n g t h  = 0.75  as recommended  i n various  and  textbooks  2 3 on s t a t i c s  '  .  The d o u b l e s t r u t f r a m e  provide a comparison i n elements, between type  it  and t h e  i s more p l e a s i n g struts  soften  logical 4.6.4  than  the  and l i g h t e r  the  arrangement,  in  appearance  The d o u b l e  i n appearance.  The o v e r a l l  because the  the beam,  a  t  the  steeper  and  to  strut concept  shorter  same t i m e p r o d u c i n g a  structurally.  Three-hinged Arch Bridge  continuous  beam i s u s e d  The a p p e a r a n c e o f different  have  of  show t h e d i f f e r e n c e  (Appendix I V ) .  single strut  rigidity  The t h r e e - h i n g e d  the  and to  single strutframe  l o o k s more b a l a n c e d  b r i d g e was c a l c u l a t e d m a i n l y  the  this  level  same e f f e c t  both supporting  arch bridge  i n the  same manner  type of b r i d g e  of arch bases as w i t h  elements  the  f u n c t i o n of both of  of  of  the  arch  is  i s not  as  49 a n d 55) w i t h  the  48 and 5 6 ) .  two-hinged arch.  them. set  double  has  It  seems t h a t  according to  bridge.  by  The smooth  a good e f f e c t  For a e s t h e t i c  a  strutframe  only s l i g h t l y affected  (Figures  ( a r c h and beam)  the d i f f e r e n t both parts  (Figures  lines  dividing  on e m p h a s i z i n g  reasons,  the  depth  t h e moment d i a g r a m ,  as  is  2 L . Adamovich, E r d e s z e t i H i d e p t e s , ( " L e c t u r e s on F o r e s t B r i d g e s " ) (Sopron, Hungary: U n i v e r s i t y of Sopron, 1949). p. 44. (Mimeographed.) 3 Z . B a z a n t , F . K l o k n e r , and J . K o l a r , S t a t i k a S t a v e b n i c h K o n s t r u k t , ("Statics of C i v i l Engineering Structures") (Prague: Ceska M a t i c e T e c h n i c k a , 1930).  58  Figure  49 -  Symmetrical  three-hinged  arch  bridge.  59  customary.  Maximum d e p t h  i s maintained  throughout  The r a t i o b e t w e e n b o t h s u p p o r t i n g e l e m e n t s of  structural  4.6.5  same e f f e c t  in cutting  However, the  results  aesthetic  i n the  p o i n t of v i e w ,  t h e b r i d g e seems t o Suspension  viewing  this  its  this  area  on a e s t h e t i c s on the  it  is  area  as w e l l  principles .  type of b r i d g e above the 53).  fundamentally  the  the  s i n g l e beam and h e a v y  fills  p r o j e c t i n g a sense of From a  slender  light contrasting  structurally  looking  effect,  piers,  this  type of  best.  ( F i g u r e 51)  T h i s becomes v e r y a p p a r e n t  normally creates  (Figure  as  its  does  the  is  landscapes,  properly balanced,  fit  this  as m e n t i o n e d  dominating effect,  i n other  g u a r d r a i l as  not  area  i n the  aesthetichapter  when t r a v e l l i n g d o w n h i l l  a l s o would not be e c o n o m i c a l l y j u s t i f i e d f o r  anchored  as  (Appendix V ) .  too dominant a s t r u c t u r e ,  approach road, where  structure  line  the  arch.  Bridge  The s u s p e n s i o n b r i d g e c a l l y because  the v a l l e y  design, with  With  fit  ( F i g u r e 50) h a s  the h i g h abutments  engineering design  perfectly balanced.  4.6.6  the v i e w o f  e l i m i n a t i o n of  i n a much g r e a t e r  "lightness"  this  with  the  C a n t i l e v e r e d Beam B r i d g e  bridge.  is  corresponds  top of  aesthetics.  T h e c a n t i l e v e r e d beam b r i d g e the  the  which  is lost.  this  case  This  study.  especially i f  shown o n t h e  this  alternative  the  type of type Otherwise  cables  drawn i n  are full  3 Figure  51 -  Simple suspension  bridge.  F i g u r e 53 -  Single strutframe  bridge.  Figure  54 - D o u b l e s t r u t f r a m e  Figure  55 -  Symmetrical  bridge.  three-hinged  arch  bridge.  F i g u r e 57 -  C a n t i l e v e r e d beam  bridge.  64  Chapter  V  SUMMARY AND CONCLUSION  Upon c o m p l e t i o n of aesthetic for  this  the A l o u e t t e R i v e r  p o i n t o f v i e w two t y p e s particular  case,  of b r i d g e s  namely,  the  Crossing study,  can be c o n s i d e r e d  a r c h b r i d g e and t h e  from  the  appropriate  cantilevered  beam b r i d g e . The a r c h b r i d g e w i t h r o a d w a y - a b o v e appearance w i t h arch seating they appear the  t h i s mountainous  partly  eliminates  area.  the  It  rocky surroundings  is  negative  i n b r i d g e s w i t h s i m p l e beam. and e l i m i n a t e s  l o o k s v e r y n e a t and b l e n d s s t r u c t u r a l l y b a l a n c e d and  effect  of h i g h abutments  Natural rock rip-rap f i t s  the u n n a t u r a l  look of pure  in the  as into  concrete  facing. On t h e o t h e r contrasting landscape  effect  structure  and i s ,  therefore,  it  C o n s t r u c t i o n w o u l d be f a s t e r  with  a  slightly  the mountainous  type would,  underlines  most  technical point  demanding because o f  considered.  interfere  s i m p l e beam b r i d g e  perfectly balanced,  From t h e be l e a s t  c a n t i l e v e r e d beam b r i d g e h a s  w h i c h does not  i n t h e way t h e  structurally ing  hand,  but  the beauty  of  type of  since i t the  is  engineer-  favourable.  o f v i e w c a n t i l e v e r e d beam b r i d g e  t h e s m a l l a b u t m e n t s and and s i m p l e r  than w i t h  the  the minimum other  types  would fill.  65  Economically, because of  are  as  preliminary estimates  bridge  Double strutframe A r c h beam b r i d g e Cantilevered  i n appendices,  fill  costs  of  material. individual  (Appendix I I )  $108,262  (Appendix I I I )  $130,711  bridge  $127,174  (Appendix IV)  (Appendix IV)  beam b r i d g e  I n summary, most s u p e r i o r  a b u t m e n t s and e a r t h  feasible  follows:  S i m p l e beam b r i d g e Strutframe  c a n t i l e v e r e d beam b r i d g e i s m o s t  the b i g s a v i n g on c o n c r e t e As per  types  the  from  b e recommended f o r  the  $114,592  ( A p p e n d i x V)  $101,557  c a n t i l e v e r e d beam b r i d g e  e a c h p o i n t o f v i e w and the A l o u e t t e R i v e r  therefore  Crossing.  appears would,  to be  the  undoubtedly,  66  BIBLIOGFAPHY  Adamovich, L . Geometric design standards of f o r e s t roads: An a e s t h e t i c view. 8th Canadian Roadside Conference Papers. U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B . C . 1971. . Forest Transportation. Course at the F a c u l t y of F o r e s t r y , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B . C . 1972-73. . Erdeszeti Hideptes. Mimeographed bridges. Sopron, Hungary. 1949.  lectures  on  Barber,  J.  Bazant,  Z . , K l o k n e r , F . and K o l a r , J . Statika Stavebnich Konstrukct, Technicky Pruvodce No. 4, Ceska M a t i c e Technicka, Praha, Czechoslovakia. 1931.  Bechyne,  Forest Transportation. Course at the F a c u l t y o f U n i v e r s i t y of T o r o n t o , O n t a r i o . 1969-70.  forest  Forestry,  S . and K o l a r , J . Mostni S t a v i t e l s t v i , Technicky Pruvodce No. XI Ceska M a t i c e T e c h n i c k a , Praha, C z e c h o s l o v a k i a . 1930.  E i c h n e r , H . The meaning of ' g o o d ' i n a e s t h e t i c j u d g e m e n t . Journal of A e s t h e t i c s . V o l . 3_(4) . 1963. Hepburn,  R.W. A e s t h e t i c a p p r e c i a t i o n of n a t u r e . Aesthetics. V o l . 3.(3). 1963.  Le C o r b u s i e r . V e r s une A r c h i t e c t u r e . ("Towards Vincent, Freal & C i e . , Paris. 1958.  British  British Journal  of  a New A r c h i t e c t u r e " ) .  Lorenz,  E.H.H. T r a s s i e r u n g und G e s t a l t u n g v o n S t r a s s e n u n d A u t o B a h n e n . Baumverlag. W i e s b a d e n und B e r l i n . 1971.  Merger,  J.  Meyer,  Projektovani Mestskych Komunikaci. Statni Nakladetelstvi. Technicke L i t e r a t u r y , Praha, Czechoslovakia. 1956.  F.  R o u t e s u r v e y i n g and d e s i g n . Fourth e d i t i o n . International T e x t b o o k Company, S c r a n t o n , P e n n s y l v a n i a . 1 9 7 1 .  Michalos,  J . and W i l s o n , E . N . S t r u c t u r a l m e c h a n i c s and a n a l y s i s . The M a c M i l l a n Company, C o l l i e r - M a c M i l l a n Canada L t d . , T o r o n t o , Ontario. 1969.  Munro, T.  Toward s c i e n c e York.  New Y o r k ,  in aesthetics.  The L i b e r a l A r t P r e s s ,  1956.  N . Y . American I n s t i t u t e of S t e e l C o n s t r u c t i o n . Construction. Fifth edition. 1951.  Steel  New  67  Newby, F . L . M a n - N a t u r e - B e a u t y : A r e s e a r c h d i l e m m a . XIV. Munchen, Germany, p a p e r s . V o l . V I , S e c t i o n 26. N e w t o n , N . T . D e s i g n on the P r e s s , Cambridge,  land. The B e l k n a p P r e s s Massachusetts. 1973.  of Harvard  Ottawa,  Canada. Canadian I n s t i t u t e of Timber C o n s t r u c t i o n . Construction. 1963.  Ottawa,  Canada.  Ottawa,  Canada. Laminated Timber Manual. 1972.  Design of highway b r i d g e s .  IUFRO-Kongress, 1967. University  Timber  CSA S t a n d a r d s S6 -  I n s t i t u t e of Canada.  Timber  1966. Design  Pacholik,  L. E s t e t i k a M o s t n i c h Staveb ( " A e s t h e t i c s of B r i d g e S t r u c t u r e s " ) . U s t a v P r o Ucebne Pomucky P r u m y s l o v y c h a Odbornych S k o l v P r a z e . Prague. 1946.  Ronai,  Mechanika I Mernoki Kar.  F.  Scofield,  Simonds,  U.S.A.  (Statika). 1966.  Erdeszeti  es  Faipari Egyetein  W . F . and O ' B r i e n , W . H . M o d e r n t i m b e r e n g i n e e r i n g . S o u t h e r n P i n e A s s o c i a t i o n , New O r l e a n s , L o u i s i a n a .  Faipari  Fifth 1963.  edition.  J.O. Landscape a r c h i t e c t u r e , the shaping of man's n a t u r a l environment. M c G r a w - H i l l B o o k Company I n c . , New Y o r k . 1961. N a t i o n a l Lumber M a n u f a c t u r e r s A s s o c i a t i o n . Prepared by Timber E n g i n e e r i n g Company. T i m b e r d e s i g n and c o n s t r u c t i o n handbook. F . W . Dodge C o r p o r a t i o n , New Y o r k . 1956.  Vancouver,  Canada. Forestry  The F o r e s t C l u b , U n i v e r s i t y o f B r i t i s h C o l u m b i a . Handbook f o r B r i t i s h C o l u m b i a . Third edition. 1971.  Washington, D . C , U.S.A. Timber C o n s t r u c t i o n Manual. Prepared by American I n s t i t u t e of Timber C o n s t r u c t i o n . J o h n W i l e y and S o n s , I n c . , New Y o r k . 1966. Washington, D . C , U . S . A . U . S . Dept. of A g r i c u l t u r e , Feb. 1973. National F o r e s t L a n d s c a p e Management. Vol. I. U . S . Government P f i n t i n p riff i c e , Washington, D . C . 1973.  APPENDIX  Present Design Vertical  I  Situation  Specifications  & Horizontal  Alignment  F i g u r e 58 - A e r i a l p i c t u r e o f s o u t h e r n p a r t of U . B . C . Research Forest w i t h bridge location. - S c a l e 1" = 1 , 0 9 0 f e e t .  70  Figure  60 -  S i d e view of the from the e a s t .  b r i d g e and  valley  Figure  62 - D e s i g n v e h i c l e  -  50 t o n  5 axle  truck.  72  DESIGN  One l a n e b r i d g e Total  length:  SPECIFICATIONS  w i t h w h e e l g u a r d s and (a)  1 span  (b)  3 spans -  Total width:  16  ft.  Clear width:  14  ft.  Design v e h i c l e :  50 t o n  -  80  ft.  40 -  5 axle  guardrails.  80 -  40  on-highway  ft.  truck"*"  (Figure  62)  Material: Running deck  3" u n t r e a t e d 4" t r e a t e d  Ties  8" x 6"  Stringers:  (on edge)  pine  D. -  fir  12" c c .  Glulaminated D.  treated  D.  fir  fir 2  Allowable stresses of Douglas  the  design  F i r - wet  material  service  conditions  Bending Longitudinal  to  Cost estimates recorded  of  are  145  psi  1,200  psi  1,400  psi  305  psi  1,690,000  psi  grain  combined w i t h bending  Compression perpendicular Modulus of  psi  shear  Compression p a r a l l e l Compression  1,900  elasticity  to g r a i n  based on a v e r a g e c o n s t r u c t i o n  and m a t e r i a l  costs  i n T a k l a L o g g i n g Company L t d . , P r i n c e G e o r g e , B . C .  "*" F o r e s t r y H a n d b o o k f o r B r i t i s h C o l u m b i a , The F o r e s t B r i t i s h C o l u m b i a , 1971 ( V a n c o u v e r , C a n a d a ) . p. 676.  Club,  University  2 Timber C o n s t r u c t i o n : (Ottawa, Canada), p. 13.  Canadian I n s t i t u t e of Timber C o n s t r u c t i o n ,  1963  ^}  H-  CO  l-t  o OJ  1 -d  c-  i—  (-•  3  1  z> O  r.  c*  —  ' 0  •3 r. =Ci  f-;  o o  QCJ  Zl  ro 3  rr  i;  o CO  74  F i g u r e , r.4 - P r o f i l e  of  proponed  alignment.  APPENDIX  II  S i m p l e Beam B r i  76  S I M P L E BEAM BRIDGE  STRINGERS: Dead l o a d  calculation:  Running planks  Ties  treated  3" x 14'  (48  lbs./cu.ft.)  168 l b s . / I n . f t .  untreated  4" x 14'  (58  lbs./cu.ft.)  270  lbs./In.ft.  309  lbs./In.ft.  6" x 8" x 1 6 '  Stringer  (58 l b s . / c u . f t . )  -  interior  212  lbs./ln.ft.  -  exterior  160  lbs./ln.ft.  Diaphragms  8 3/4" 5 (3)  x 63" 4  ,  0  g  (130 1  4  Interior  98  =  Q  0  W h e e l g u a r d s and g u a r d r a i l s Total:  lbs./cu.ft.)  (one  side)  Exterior  +33)  M  max  calculation:  = ^ ! L  lbs./ln.ft.  494  lbs./ln.ft.  384  lbs./ln.ft.  stringer  (28 + 45 + 52 + 160 + 17 + 82) load  82  stringer  (56 + 90 + 103 + 2 1 2  Live  lbs./ln.ft.  - P  L P x = — r  e  L T  e  r  50 t o n s = 1 0 0 k i p s  = R  L - P  L T  e L T  2R x = 40 /  n  x = 37.9 M  = max  1  Q  °  20 x 20 + 20 x 16 - 4 x 25 z z-rz 2 x 100  20 x 10  . . , = 4 0 - 2 . 1  ft.  il ' ) 7 9  80  2 300 = 1 , 7 9 5 '  -  300 = 1 , 4 9 5  ft.  kiDS  1  77  Interior stringer: Distribution factor Unbalanced l o a d M  = 0.65 .494  =  factor  =  .  2  f t . kips  395.2 f t . k i p s  8  M , Total  1.0  .65  (1,495) = 971.8  (80)  TJL  -| =  1  = 1,367.0 f t . k i p s  Sreq - 1  3  6  ^1,900 U - ° 1  2  n  0  )  ° 8>634 i n / 3 750  h o l e s f o r rods  in. 3  = 9,384 i n .  "Total  t a b l e s : 14 1/4" x 63"; S = 9,426.4 i n . '  From TDM  2  Check f o r shear  stresses:  L/4 = 20 f t . 3d = 15.75  f t . — > governs  £4.2S'  I  ie.*'  iff.o' \->.c\,  M >5-7S'  -1  I  -A I  V  •y'_ 10(24.25) + 25(40.25 + 44.25) + 20(60.25 + 64.25) max  V_  = 0.65  Li JJ  V  DL  V  -*  =  Total 1,5  f  v  =  For  =  g  80  9A  (60.56) =  (  8  0  = 39.36 k i p s = 19.76  )  kips  2  =  5  9  "  1  2  k i  P  S  lll'l ^ = 98.8 psi < 125 psi 2  by / . o  interior  • O.K.  s t r i n g e r s use 14 1/4" x 63" x  82'  p. 29. D e s i g n of highway b r i d g e s : CSA S t a n d a r d s S6, 1966 (Ottawa, Canada) 2  Timber Design Manual: Laminated Timber I n s t i t u t e of Canada,  (Ottawa, Canada), p. 25.  1972  k  Check f o r Position  bearing: of  load '. /ff'  4o'  - /  \<*-,  \*\  J.  72,  R Interior  = 10(40)  LL stringer: R = 0.65 R, "DL  + 2 5 ( 5 6 +60) 80  (80,250)  WL ^ 494  (80)  A = ' H = 236 in. ^otal  71  + 2 0 ( 7 6 + 80)  2  2  3  b = 12.25 i n . ; a = 19.25 i n . bearing plates caps  Exterior  12 1 / 4 "  x 20" or  12" x 20" x 16'  stringer: Eccentricity  2  ft.  p.  A"  A  "A" 1  by e c c e n t r i c  rivet: 2(7.5)  2(7.5)  2  +  2(2.5)  ( 0 . 2 5 + 0.12)W = 0.37 W  2  = 80.25 k i p s  = 52,162  lbs.  = 19,760  lbs.  = 71,922  lbs.  79  M  = 1,495(.37)  = 553.2 f t .  kips  i-iLi  "DL M Total =  S  S  2  " ' = 860.4 f t . 3  2  l  p  kips 3 i  in.  = 0.37(60.56)  1-5(37,760) = —_;_ \  Check f o r  . = 84 p s x D /  J  exterior  *  700 i n .  •384(80) 2  For  n  3  3  3  > O.K.  stresses:  V max  o//.  s  10 3 / 4 " x 6 3 " ; S = 7 1 1 1 . 1 i n .  shear  = 0.37  DL  v  k  = 6,134  Check f o r T T  t  _  Total  LL  f  =  3  f r  7  holes  F r o m TDM t a b l e s :  V  0  _ 860.4(12,000) 1,900  req  S  •384(80) 8  stringers  <  = 22.40  kips  = 15.36  kips  37.76  kips  . . < 125 p s i 1  0  use  c  . _ >O.K. v  10 3 / 4 " x 6 3 " x 8 2 '  bearing:  Rj^ = 0.37(80.25)  = 29,692  lbs.  = 15__360 l b s . Krotal  A req  4  5  >  0  2  l  - ^ 2 1 2 " 147.7 i n .  b  s  -  2  305  b = 10.75 i n . ; a = 13.74 bearing plates caps  5  in.  10 3 / 4 " x 1 4 " o r  1 2 " x 20" x 1 8 ' — > 0 . K .  3 Timber Design Manual: (Ottawa, Canada), p. 24.  Laminated Timber I n s t i t u t e  of Canada,  1972  80  Check f o r  ( F r o m TDM t a b l e s  )  3 4 5PL ., • 5wL ., n384 E I A n384 E I A  A A  deflection:  =  -1.6*(3-4(f) );K  K,  2  A T  DL  Li Li  =1.0  I  O -34  j,  t  , \  "  K  A  ,  L  18 80  6  = 1 2  / (  , , 1 8 . 2. 80 >  0  ~  3  4 (  }  =  1.007  =  1.549  - it - I > 6  3  4(  )2  *A " f < " I > 3  4( )2  =  1.594  A(|§) ) =  1.304  =  1.144  3  K  = 1.6 25 (3 4 80  A  %  =  1  5  -  6  i <  3  -  2  4  (  f  ,5(10,000)(80 A  l  A  4 x 384(1.69) 2  +  3  =  )  2  )  x 12)  1  5 ( 2 5 , 0 0 0 ) ( 8 0 x 12) 10  4 x 384(1.69)  7  =  Q  o  .  e  ^  3  _ ^  ^  (296,931) 3  ^  =  Q  ,  2  8  l  0.79  Timber Design Manual: p.  127 -  n <  n  <  10°(296,931)  LL  Canada),  0  10 (296,931)  5 ( 2 0 , 0 0 0 ) (80 x 1 2 )  (Ottawa,  0  6  4 x 384(1.69)  4  <  Laminated Timber I n s t i t u t e  128.  in.  of C a n a d a ,  197 2  I  .  81  = 0.790 i n . LL ,  5 ( 7 3 . 2 ) ( 8 0 x 12) 4 x 384(1.69)10  4 1  . o 0  0  .  0  ,  8  0  6  i  ,  n  (296,931)  = 1.596 i n . < 1.6—> O . K .  A T o t a l  L 600  "ALL  80 x 12 . , = 1.6 600  . xn.  RUNNING P L A N K S : 2 layers  3" u n t r e a t e d 4" treated  Wheel load  D.  fir  (considering unbalanced load)  Distribution Acting  pine  load  factor  = 3.608 M  \  '  i  Ties  shear  12"  =  1  ,  Check f o r f  3 c  1  Design p.  29.  =  5  * 125 1  ,  = 4.51 f t .  -A^Il^ooi,  4 1  .  6 2 l n  kips r  .3  1,300  c c .  10(3.608)(5-2.5)(2.5/.66)  2 =  9L(2 + ( x / d ) )  req  = 3.608(1.25)  stresses:  9(5.0)(2 +  2  A  kips  kips  req  _ 10P(L - x) ( x / d )  y  max  s  6" x 8" o n e d g e ,  Check f o r  = 16.25  y^r = ~ r = 0.222 4.5 4.5  5  0.222(16.25)  -j,  = 0.65(25)  7  2  = 20.7  2  i n .  2  2 =  ±  ?  2  2  ^  (2.5/.66) ) 2  < 48 i n .  2  >0.K.  bearing:  » °8 _ 5 6 x 12 6  0  p  s  i  < 280 p s i  1  of highway b r i d g e s :  >0.K.  v  CSA S t a n d a r d s  S 6 , 1966  (Ottawa,  Canada).  82  /G-0"  2'  3-  k  Figure  65 -  Arrangement  of roadway w i t h w h e e l guards  and  guardrails  83  ABUTMENTS: North  Abutment Soil  back  f i l l  Pack course G =  sand  -  135 l b s . / - - . u . f t .  32°30'  -X\  Additional  p r e s s u r e from  calculated >  height  0 K  P 6  11  Total  Resultant overfill wall  acting s o i l  of earth is  too  =  90,000  V  =  18.68  pressure is  zero  Earth pressure r, i wh P = R = k —  T,  6 = 1.00  R = 0.302  1  3  c o n s i d e r i n g wet  x  1  8  -  s  18.68 = 7 , 1 0 0 ••  >  Moments a c t i n g  r  6  for  4  =  k  axles  90,000 , = — ' _ = 621 135 0  n  = 1.69  Friction soil  cos  6 -v  cos  +*  6 = 0.8434  6  R  the  cu.ft.  angle  soil  conditions.  /  j  cos  2  -  cos  -  cos  2  2  cos  ; k = 1 x  2  .463 1.537  =  0.302  of  abutment  p r e s s u r e around  point A.  soil:  44,100  against  1  ft.  between  = 7,100lbs/In.ft.  Moment f r o m p r e s s u r e o f M  + 20 x 2 0  calculation:  ; cos  5  lbs.  w . soil 77^  k  c o n s i d e r e d h o r i z o n t a l as  . ; k = cos  2  soil  P  400  substitution  ft.  s m a l l to be c o n s i d e r e d .  was c o n s i d e r e d  CO s  is  of  = 2 x 25  max  s ws = "h" for  for  truck  soil  lb.ft.  and  of concrete  8 4  Weight of  components:  w.^ = 4 . 5 x 1 0 . 7 5  x 0.15  2  = 3 x 6.25  x 0.15  = 2.81  kips  w  3  = - | x 4.5 x 10.75  x 0.15  = 3.63  , . kips  0  W  "  x 6.75  = 49.00  ft.  kips  = 21.08  ft.  kips  ft.  kips  M  2  = 2.81  x 7.5  M  3  = 3.63  x 3.0  =  10.89  x 5.25  =  23.1  L o c a t i o n of r e s u l t a n t "Total  ft.  = 104.07 f t .  M ., Total  "  104.07 x  Total  = 7.26  = 4.4  M  s  44.1  " lftof "  Therefore  "  3  W  =  '  3  2  Total  1  8  '  0  9  k  l  p  S  kips kips  i n footing  bottom  -  d i s t a n c e from A  ( x )  16.8(x) f  t  resultant  kips  w  70,240 , , w, = — t - , — = 4 . 3 9 4 16  M  = 7.26  ' l i e s w i t h i n middle  1/3  —>-0.K.  kips  85  South Abutment Same c o n d i t i o n s  as f o r N o r t h  Abutment. A d d i t i o n a l p r e s s u r e from tr':ck =  • 7S z.o'  2 ft. T o t a l h = 26 f t . Earth  pressure:  P = 0.302 x M  1  3  3  X  2  2  6  2 = 13.7 k i p s  . = 13.7 x ^ ~ = 119.2 f t . k i p s soil 3  Weight components: w.. = 4.5 x 17.75 x 0.15 = 11.98 k i p s w I  2  = 3.0 x 6.25 x 0.15 = 2.81 k i p s 8.5 x 17.75  I4.s-  e.s\  w, =  W  x 0.15 = 11.32 k i p s  70,240 16  - 4.39  = 30.5 k i p s  Total  1^ = 11.98 x 10.75 = 128.78 f t . k i p s M  2  = 2.81 x 11.5  =  32.34 f t . k i p s  M  3  = 11.32 x 5.66  =  64.05 f t . k i p s  =  40.61 f t . k i p s  M. = 4.39 x 9.25 4 "Total "soil  x =  = 266.22 f t . k i p s = 119.2 f t . k i p s  266.22 - 1.1.9.2 = 4.82 f t . > 4.33 f t . 30.5  kips  O.K.  86  B I L L OF MAIN MATERIAL AND P R E L I M I N A R Y  Running  deck  (untreated) (treated)  Ties  82  ( 8 " x 6" x  Guardrail  3" x 14'  4" x 16'  x  x  82'  82'  16')  (untreated)  5')  (treated)  ESTIMATE  = 3 , 4 4 4 fbm @ $ 2 3 0 / M f b m  = $  792  = 4 , 5 9 2 fbm C? $ 3 4 0 / M f b m  = $  1,561  = 5 , 2 4 8 fbm @ $ 3 8 0 / M f b m = $  1,994  1 , 4 4 0 fbm @ $ 2 6 0 / M f b m = $  659  2 x 10  ( 8 " x 8" x  2 (82'  x 6" x  8")  656  fbm  2 (82'  x 4" x  8")  437  fbm  Total Wheel guard  COST  2 (82'  =  = x 10" x  12")  =  2 , 5 3 3 fbm 1 , 6 4 0 fbm @ $ 3 8 0 / M f b m = $  623  $  5,629  Total  =•  Stringers:  Interior  2 (14  1/4"  x 63" x  82')  Exterior  2 (10  3/4"  x 63" x  82')  D i a p h r a g m s 15  (6 3 / 4 "  x 60" x  =  5')  Total  1,023 c u . f t . 772  cu. f t.  210  cu.ft.  2,005 c u . f t . @  Concrete  $ 27  $54,135  Abutments  North Abutment: —  (4.5  x 10.75)  + (3 x  6.25) +  South Abutment:  (4.5  x 17.75)  + (3 x  6.25)  Total  ( 4  5  I 1  1  1  0  7  ' '  7  7  5  5  )  16 =  55. 1  cu.yd.  )  16 =  103 . 2  cu.yd  =  158 . 3  cu.yd  @ $250 = $ 3 9 , 5 7 5 Total  f i l l  Total  for  2,741 simple  CCY -  CCY = 4,056 L C Y 1  2  beam b r i d g e  Compacted  LCY - L o o s e  cubic  cubic  @ $2.20  $ 8.923 = $108,262  yards  yards  APPENDIX  Continuous Single  III  Beam (Two E q u a l S Strutframe  Bridge  88  >  CONTINUOUS  TWO EQUAL  SPANS: Conditions  for  design °  the  theorem  truck of  M  max  arc  the  50 t o n .  same as  t h r e e moments u s i n g = (P.y. + P y  11  11 9  (Figures  s i n g l e beam c a l c u l a t i o n s .  of  influence PJ,) n l  9  8  Superposition has  for  Find M (negative max  A AT"  occurs)  BEAM  the  67) w e r e  g o v e r n i n g when the  height  also  truck  T h r e e moment  i n w h i c h t h e maximum moment  Values used  by A d a m o v i c h . of  the  beam i s has  for  influence  N e g a t i v e moment  1  (between supports)  designed.  to be  For  lines is changing  found.  equation.  y  A  2?  A  L  x  + 2M  R  P ,1 "1* a  1  T  Adamovich  (L  x  + L ) + M 2  % "V  L,  ^  M  to  L  (position  same h e i g h t  p o s i t i v e moment  according  A  calculated  always  positive)  lines.  b e e n f o u n d b y t r i a l and e r r o r .  66 a n d  and/or  Solve  c  L  = 1/4  2  P  2  K r d o s z o t i U1d£iit£5..  b  2  (^  (L  + «  2 2  -  ("Lectures  2  L ^ )  -  c / )  on F o r e s t  Bridges")  >  89  S i n c e L.. = L _ and w , = w „ and M , = 0, M = 0. 1 2 1 2 A c Dead l o a d  M  moment.  = - 1/8  max  Live load  M  max  wL  2  moment. Pa E [ — (L  -  4L  Superposition  of  the  "  a )]  design  Pc - E[—  vehicle  4' /'  -  c  (Appendix  )] I).  T>  7> t  (L  /£•'  x  • i0.s'\  ./. / .  X P  P  M  l  =  3  P  2  = P  in s x  =  4  2  0  k  i  p  s  = 25  kips  = 10  kips  (live) -  -  [(0.084 + 0.066)  0 . 0 6 3 x 10]  20 +  40 = - 3 2 9 . 2  (0.080 + 0.092) ft.  kips  25 +  r e 66 - Two e q u a l s p a n s (Values p l o t t e d  c o n t i n u o u s beam moment I n f l u e n c e on d o c l i e s o f e a c h s p a n ) .  lines.  91  Distribution is  the  same as  Interior  of  the  l o a d between  interior  calculated  for  s i m p l e beam b r i d g e  and e x t e r i o r  (Appendix  stringers  II).  stringer: M._ = LL Dead  .65 M = max  .65  (329.2)  ties  M  kips  249 p . l . f .  or  lbs./cu.ft.  Stringers  84 p . l . f .  or  lbs./cu.ft.  Diaphragms  16 p . l . f .  or  lbs./cu.ft.  349 p . l . f .  or  lbs./cu.ft.  = -  72.80  ft.  k i ps  = -286.78  ft.  kips  Total = -  L  ft.  load. D e c k and  M_  = -213.98  1/8  wL  = -  1/8  (.349)(40)  Total  S  req  286.76(12,000) 1,900  _  in.  3  10 3 / 4 " x 3 3 " ; S = 1 , 9 5 1 . 1 i n . ; A «= 3 5 4 . 8 3  Check f o r Dead  shear  i n .  2  stresses:  load. 2  Using V D  tabulated  coefficients  f r o m TC .  = . 2 1 9 wL = . 2 1 9  (.349)  80 = 6 . 1 1  kips  = . 3 1 5 wL = . 3 1 5  (.349)  80 = 8 . 7 9  kips  Live Using  load. shear  influence  lines  calculated  by Adamovich  3  (Figure  2 Timber C o n s t r u c t i o n : Canadian I n s t i t u t e of Timber C o n s t r u c t i o n , (Ottawa, Canada), p. 115. 3 L . A d a m o v i c h , E r d e s z e t i H i d e p t e s , ( " L e c t u r e s on F o r e s t B r i d g e s " ) (Sopron, Hungary: U n i v e r s i t y of Sopron. 1949). p. 44. (Mimeographed.)  1963  66)  93  S u p e r p o s i t i o n of d e s i g n v e h i c l e has been c o n s i d e r e d s e p a r a t e l y f o r o u t e r and i n t e r m e d i a t e s u p p o r t s .  ~7k /-  •4o'  V  A  = (1.00 + .88) 20 + (.42 + .31) 25 = 55.85 k i p s £ 4 '  '<S~'  I  A  —  y.  -7~  V  B  /<r'  = (.79 +  y  .87) 20 + (.99 + .95) 25 + (.56) 10 = 87.30 k i p s  Shear f o r i n t e r i o r  stringer.  V = .65 x 87.30 = 56.745 k i p s G o v e r n i n g shear o c c u r s a t R ^ . V V  D L  =  L L  = 56.745 k i p s  Total  V  8.790 k i p s  "  6  5  '  5  3  3  k  fv . 1 . 5 V  i  p  S  1.5(65.535) m§x  = —35Z-8  n x A  =  is  7  P  7  s i  >  1  4  5  P  s i  f o r c e s are governing  beam, w h i l s t w i t h  Try: 14 1/4" x 49 1/2"; A = 705.4 i n . ; w = 162 p . l . f . 2  D L  = .315 (432) 80 = 10,886 l b s -  V j = (as per above) = 56,745 l b s . V  Total  » 67,631 l b s  factor  over  the s i m p l e beam the s i t u a t i o n  opposite.  V  •N.G.  0  As p e r the c a l c u l a t i o n , shear the moment w i t h c o n t i n u o u s  2  94  f  =  1  ,  .r  For  5  ^ ; / u 5.4 7  6  3  interior  Exterior Dead  1  )  = 143.8  stringers  p s i < 145 p s i  use  14 1 / 4 "  ties  125 p . l . f .  82'.  Handrail  = 1/8  L  and w h e e l  (.317)(40)  p.l.f.  8  p.l.f.  82  p.l.f.  317  p.l.g.  M. = .37 XL  guard  =  2  (M ) = .37 max  T  (329.2)  "Total req  ,  8  5  ;  ^ ° ° 1,900 2  of  x 49 1 / 2 " ;  Check f o r = .315  T  >  Q  For equal height 8 3/4"  63.4  ft.  kips  = 121.8  ft.  kips —  " 1  shear  -  1,169  in.  stringers  (as c a l c u l a t e d f o r s i m p l e beam b r i d g e , A p p e n d i x I I )  102  Diaphragms  V_  x  load.  Stringers  s  x 49 1 / 2 "  stringer:  D e c k and  M_  -+0.K.  1  8  '  5  2  f  t  -  k  ±  p  S  3  choose:  S = 3,573.3 i n . ; A = 433.1 3  at  (317)  in.  2  reaction B:  80  =  7,988  lbs.  = 32,301  lbs.  = 40,289  lbs.  JjJ_i V  = .37  LL T T  (V ) = 0.37 max  (87,300)  V_ . iotal f  1.5(40,289) v  =  ^  ]_—  1  . , =  '5  psi  < 145  n  .  _.  n  psi—>0,  K.  Reactions: Dead  load  - using  tabulated  coefficients  4 f r o m TC .  4 1963  Timber (Ottawa,  C o n s t r u c t i o n : Canadian Canada), p. 115.  I n s t i t u t e of Timber  Construction,  9.5  R. = . 2 1 9 wL A R_  = . 6 2 5 wL  Live approximate  load -  s i n c e shear  equal reactions,  stresses  values  of V  caused  max  at  by moving l o a d  A = R , and V  are B =  at  max  A  L J3  (governs). R_  - Interior  stringer:  =  R_  L  «65 (  v m a x  )  = .625(.432)(80)  Vtal Exterior  stringer:  TL  r  = .37  (V  L  )  = .625(.317)(80)  "Total Check f o r  kips  = 21.60  kips  -  78.34  kips  = 32.30  kips  = 15.85  kips  max  LL R_  56.74  =  =  A  8  '  1  5  k  i  p  S  bearing:  A r e q = lH° «= 257 i n . = 14 1/4" x 18" 305 I n t e r i o78 r  stringer:  Exterior  stringer:  A  req  =  'll° 305  h8  = 158 i n .  Cross-element 19 1 / 2 "  with  elements  2  2  = 8 3/4" x  18.1"—^governs  i n the m i d d l e span w i l l  b e g l u l a m beam 10 3 / 4 "  positioned horizontally.  Struts: Solved  as  long simple columns .  L o a d i n g on s t r u t s with  previously calculated  considered  equally distributed  in  regard  eccentricity.  Timber C o n s t r u c t i o n : Canadian I n s t i t u t e (Ottawa, Canada), p. 117.  5  1963  5  of Timber C o n s t r u c t i o n ,  x  4"'  /  A  3, 0  ^ 5 '  Graphical  solution:  < »  L.  «/-  2  = /(38)  L„ = / ( 3 8 ) J  - <? .  2  2  Interior  (10.12)  - 39.32  ft.  f  (17.12)  = 41.68  ft.—^governs  stringer:  Slenderness L„  +  ratio:  4 1 . 6 8 x 12 =  —ib~?7b~~  ., =  4 6  '  _  0  5 3  a K = .641 / E / F c = .641 /  f -  (j)  req  =  (M90,ooo) _ (46.53)  2  P' A  2 7 4  1,690,OOP"- 22.27 < 1,400  73,200 =  213.9  o n  n  213.9  =  n  2  ... . 2 342 i n .  3  >  9  p s i  I  To d  . mm  =10  obtain  slendcrness  r a t i o K > 50 g l u l a m i n a t e d  member o f  3/4" has t o be used, Use:  10 3/4" x 33" x 40' and 42'  w = 83.8 p . l . f . ; A = 354.8 i n .  3  S = 1,951.1 i n . ;  R  = R C  3  > 342 i n .  Dead l o a d r e a c t i o n s  2  —>  O.K.  :  = .219 wL' = .219 (1.44) (80) = 25.2 k i p s = 1.59  kips/ln.ft.  A  Rg = .625 wL = .625 (1.44) (80)  = 72.0 k i p s = 4.50  kips/ln.ft.  RpOl) = 98.8 k i p s  = 6.18  kips/ln.ft.  R (V) = 25.6 k i p s  = 1.60  kips/ln.ft.  R^H)  = 98.8 k i p s  = 6.18  kips/ln.ft.  RJJ(V) = 45.5 k i p s  = 2.84  kips/ln.ft.  From g r a p h i c a l  solution:  ])  1963  97  Timber (Ottawa,  Construefion: Canadian Canada), p. 115.  Institute  of  Timber  Construction,  98  '  N o r t h Abutment M  soil  = 44.1 f t . (as c a l c u l a t e d i n Appendix I I )  4  0  Weight of components: w  = 3.0(17.0)(0.15) =  7.65  kips/ln.ft,  2.70  kips/ln.ft.  =  .68  kips/ln.ft.  =  1.59  kips/ln.ft.  =  6.18  kips/ln.ft.  =  1.60  kips/ln.ft,  = 20.06  kips/ln.ft.  \ w  2  = 1.5(12.0)(0.15) =  w  3  = 1.5(3.0)(0.15)  0 W  4  w  -V  7.S-  5  =  R  -  A ^(H)  /  w, Total ^  = 7.65(6.0) = 45.90 f t . k i p s  M  2  = 2.7(3.75) = 10.12 f t . k i p s  M  3  = .68(1.5)  =  1.02  f t . kips  M. = 1.59(4.0) = 4  6.36  f t . kips  M  5  = 6.18(1.5) =  9.27  f t . kips  M  £  = 1.6(1.5)  2.40 f t . k i p s  6  75.08 f t . k i p s  otal  *w -  M  otal  - ~^7 5  20.06  soil  = 2.74  75.08 - 20.06 = 55.02 f t . k i p s f t . > 2.5 f t .  > O.K  99  1  South  Abutment ., soil  M  » 119.2  Weight  AS-  «4  of  ft.  kips  components:  = 10.0(24.0)(.15)  = 36.00  kips/ln.ft.  = 1.5(17.0)(.15)  =  3.82  kips/ln.ft.  = 3.0(1.5)(.15)  =  0.68  kips/ln.ft.  1.59  kips/ln.ft.  6.18  kips/ln.ft.  2.84  kips/In.ft.  51.11  kips/ln.ft.  -\-  w M  3  u),  2  w. = R 4 c  4  —v /4.s  -X-  = 36.0(9.5)  = 342.0 =  M  2  = 3.82(3.75)  M  3  =  M  4  =1.59(4.0)  M  5  =  .68(1.5) =  6.18(1.5)  ft.  w,T o t a l kips  14.32  ft.  kips  1.02  ft.  kips  6.36  ft.  kips  9.27  ft.  kips  4.26  M, = 2.84(1.5) o  =  ft.  kips  "To t a l  = 377.23 f t .  kips  Total  soil  = 377.23 -  258.03 = 5.05 51.11  ft.>  119.2  4.83  ft.  = 258.03 f t . >0.K.  kips  100  B I L L OF MAIN MATERIAL AND PRELIMINARY  Running deck, Stringers:  ties,  wheel guard 2 (14  Exterior  2 (8 3 / 4 " x 49 1 / 2 "  Struts  ESTIMATE  and g u a r d r a i l  Interior  =  803  cu.ft.  =  493  cu.ft.  =  158  cu.ft.  x 33" x 42')  =  413  cu.ft.  4 ( 1 0 3 / 4 " x 3 3 " x 40*)  =  394  cu.ft.  (6 3 / 4 " x 3 0 " x 5 ' )  =  127  cu.ft.  8 3/4"  =  29  cu.ft.  Diaphragms  15  1/4"  COST  18  Cross element  x 82') x 82')  (6 3 / 4 " x 4 5 " x 5 ' )  4 (10 3 / 4 "  Diaphragms  x 49 1 / 2 "  x 30" x 16'  Total  2,417  cu.ft.  = $  5,629  @ $27 = $  65,259  Abutments North Abutment:  ([3 x 17] +  South Abutment:  ( [ 1 0 x 24] +  Total  Total  f i l l  Total  for  (From A p p e n d i x I I ) strutframe bridge  [ 1 . 5 x 12] + [ 1 . 5 x 3 ] ) [ 1 . 5 x 17] +  [1.5 x 3])  16  =  43.6  cu.yd.  16 = 1 6 0 . 0  cu.yd.  = 304.6  cu.yd. (? $ 2 5 0 = $  50,900  = $  8.923  =  $130,711  APPENDIX I V  Continuous  Beam - T h r e e Sp  Double Strutframe  Bridge  Three-hinged Arch  Bridge  102  CONTINUOUS BEAM THREE  SPANS: L  l  =  L  3'  L  2  =  0  ,  7  5L  l '  D e a d l o a d moment. M  A 1 L  +  2 M  B  ( L  1  +  '  V  +  M  C  L  1 0 1 . 8 0 M_ + 2 1 . 8 0 M  M_ = 6 4 . 6 -  2  21.80  + 2M  C  (L  2  0.214 M  4  W  (  L  1  3  +  L  2  3  = -1/4 w ( L -  3  M  0.214  = -64.6 -  M_ = - 6 4 . 6 M  B  Mg = - 8 2 . 2 f t . M_ = - 6 4 . 6 -  B  ( 6 4 . 6 - 0 . 2 1 4 M^)  13.8 + 0.0458 M  = -78.4 f t .  )  =  =  + L  M„ + 1 0 1 . 8 M„ = - 6 , 5 7 0  0.214 M  .954  /  c  3  M_ = - 6 4 . 6 -  B  1  c  + L ) 4-  6,570 21.8 " 101.80 " 101.80  C  =  = 1/4(750)(35,000)  _ 6,570 21.80 101.80 ~ 101.80  B  M_L  2  f i  kips  kips  0.214 x 82.2 = - 8 2 . 2 f t .  kips  3 3  )  103  Live load M  max  According  to influence l i n e s (Figure 68).  Superposition of the design v e h i c l e .  "A  A~  = - [(0.085 + 0.086) 25 + (0.063 + 0.067) x 20 M max - 0.012 x 1 0 ) L = [4.27 + 2.60 - 0.12] x 21.80 = -147.1 f t . kips 2  Live M = -147.1 f t . kips max Dead M = max  -82.2 f t . kips  = -229.3 f t . kips  tal  Interior stringer: M = .65 (229.3) = 149.04 f t . kips max r  req  s  =  -? <"' °> 1,900  U 9  4  0 0  - 941 i n .  3  -3 approximately = 300 i n .  S, , holes  8 3/4" x 30"; w = 62.0 p . l . f . ; A = 262.5 i n . ; 2  S = 1,312.5 i n .  3  > 1,241 i n . — » 0 . K . 3  Exterior s t r i n g e r : M = .37(229.3) = 84.84 f t . kips max s  req  =  S holes 5"  x  8  A  -  8  4  '° 1,900 (  2  0  q  0  )  • 535 i n .  3  3 approximately = 200 i n .  30";  w  =  35.4  p . l . f . ;  S = 750.0 > 735 i n .  A  =  150.0  -••O.K.  in. ; 2  Figure  68 -  T h r e e s p a n c o n t i n u o u s beam moment (Value:; p l o t t e d  on d e c i l e s o f  influence  each span) .  lines.  105  Shear  and  reactions , 1  A  A  X  <*A  ^A  . £ / . & ' • '  Z - So-o '  - •  D = A = .1606  x w x L = 10.0  kips  B,  x w x L = 13.1  kips  B  .  = .2180  =  (L )  .183  x w x L =  11.0  /•  w = .75 L  = 80  kips/ft. ft.  kips  2  R  C  =  Live  \  - \ L  load  ^  (L )  -  = V 24.1  Check f o r Interior V = 0.65 =  2 -  =  4  2  influence  of  the  _.. i  max  1951  B  1  k  i  p  lines,  design  S  Figure  69).  vehicle. I  t(0.37 +  v  +  /  A  t f  )  (using  Superposition -/  ±  .55) D  L  20 +  A  I  (.98  *A +  .99)  + V = 13.1 + 79.0 LL T T  + 79.0 shear  = 103.1  kips  -59/' 25 + 0 . 1 4 = 92.1  x 10]  kips  = 103,100  = 79  kips  = 92,000  lbs.  lbs.  stresses.*  stringer: V = 0.65(92,000) max  1.5(59,800) >o'o i 223.1  =  402 p s i  = 59.8  . ^ .._ > 145 p s i  S t e e l Construction: American I n s t i t u t e (New Y o r k , N . Y . , U . S . A . ) . p . 3 8 3 .  kips v  —*N.G.  of  Steel  Construction,  106  F i g u r e 69  -  T h r e e s p a n c o n t i n u o u s beam s h e a r (Values  plotted  on d e c i l e s o f  influence  each span) .  lines.  107  •  Use: 14 1 / 4 " f  v  1.5(59,800)  =—  A  Exterior V = 0.37 f  v =  w = 146 p . l . f . ;  x 43 1 / 2 " ;  S = 4,494.1 i n . ; A = 619.9 3  in.  ... , , ... . _ „ 1 4 4 . 7 p s i < 145 p s i —» O . K .  =  stringer: V = .37(92,000) max  = 34.04  kips  . • M r 4 0 0 . 4 p s i > 145 p s i — > N . G .  1.5(34,040) _27 5 — =  Use: 8 3/4" f  t i o n of  v  =  x 43.5";  w = 89.9  1.5(34,040) oor, r— 3oU. o solved  Forces  i n columns  eccentric  rivet  ... „ 134.2 p s i  =  Struts:  p.l.f.;  as  3  < 145 p s i  long simple considered  i n Appendix  S = 2,759.5 i n . ; A = 380.6  equally  n v —>0.K.  •  columns  2  .  distributed  as  per  calcula-  II.  .'30./K  7} =  7^* < S ' o . / <  r:  Compression: C = .37(258) K"=  .641  = 95.46  /i_x / FC  Slenderness  GC  kips -  .641  69  * ^ 1,400  * f 4 = 1.0  22.27  ratio:  Cr = ¥ = - 2 ^ ^ = 41.14 t. a fc>. / _>  1963  X'  *  < 50 a n d  Timber C o n s t r u c t i o n : Canadian (Ottawa, Canada), p. 117.  > K  Institute  i n .  of  Timber  Construction,  2  108  Use s l e n d e r n e s s  factor:  _ 0.274 E _ 0.274(1.69 (C )  = ^ K^,  req  _  6  (41.14)^  Z  C  A  x IQ )  ^  =  348.9 i n .  273.6 =  2  Use: 8 3 / 4 " x 40 1 / 2 " ; A = 354.4 Horizontal  i n .  . A  = 86.95  = L = 20(12) d 8.75  Use  the =  req  3  ;  3  ;  >0.K.  2  86,950 c 273.6  -.o  kips  =27.4  same K 0  > 348.9 i n .  2  S = 2,392.0 i n .  struts:  C = .37(235) C  w = 83.7 p . l . f . ;  =  273.6  ,._ _ . 2 317.8 i n .  =  Use: 8 3 / 4 " x 37 1 / 2 " ; A = 328.1 i n . Check f o r f  ° l  =  8  w = 77.5 p . l . f . ; > 317.8 i n .  2  S = 2,050.8 i n . *0.K.  2  bearing:  328 1 5  =  2  6  5  ,  1  p  s  i  <  3  0  5  p  s  i  — * ° '  K  "  Cross-elements. 6 3/4" x 45"; w = 71.7 p . l . f . ;  S = 2,278.1  i n .  3  ; A = 303.8  in.  109  B I L L OF MAIN MATERIAL AND P R E L I M I N A R Y  Running deck,  ties,  wheel guard  and g u a r d r a i l  Interior  2 (14 1 / 4 "  x 43 1 / 2 "  Exterior  2 (8 3 / 4 " x 43 1 / 2 "  x x  Sloped  8 (8 3 / 4 " x 40 1 / 2 "  Horizontal  struts  (From A p p e n d i x I I )  x  Total  fill  Total  for  (From A p p e n d i x I I I )  (Fromp A p p e n d i x I I ) double strutframe  bridge  61,722  = $  50,900  = $  8,923  590 c u . f t .  30')  142 c u . f t .  5') x  191 c u . f t .  21')  87 c u . f t .  5')  2,286 cu. f t . @ $27  Concrete Abutments  = $  137 c u . f t .  5')  =  Total  5,629  433 c u . f t .  4 (8 3 / 4 " x 37 1 / 2 "  D i a p h r a g m s 12 (6 3 / 4 " x 3 3 " x  = $  706 c u . f t .  82')  (6 3 / 4 " x 3 9 " x  D i a p h r a g m s 18 (6 3 / 4 " x 3 6 " x  ESTIMATE  82')  D i a p h r a g m s 15 struts  COST  =  $127,174  110  THREE-HINGED ARCH  C a l c u l a t i o n of  reactions:  ZMg = V V EM  (76)  D  38.1  = 24.98  D  = 38.1  D  -  (27.1)  + 8.9  (27.1)  = 0  (48.9)  -  h,  (76)  +  (38)  - 38.1  (10.8)  = 0  D  H  H  g  8.9  kips  = - H„ (10.5) = -  M  -  kips  V„ = 1 9 . 3 1 h C £ M D  (48.9)  = V  10.5 H = 51.22  D  E  =  -  5  3  7  -  (at  h  =  H =  6  n = h M  (38)  7  max  411.48 = 0  6  7  6  1  -  38.1  P ) = 24.98 6  -  53/ 7  (10.8)  -  -  9  6  . /D  9  (10.8)  = 51.22 k i p s  6  10.5  M_ 1  -  kips  38.1  = 24.98 M H = T^-= h  (38)  D  H  (38)  D  + 24.98  D  6  (10.5)  = 537.76 f t .  kips  > O.K.  (27.1)  = 676.96 f t .  = 13.22  kips  ft.  = 51.22 k i p s — > O.K. 9.6 = 13.22 -  = Hn = 5 1 . 2 2  9.6 = 3.62  (3.62)  ft.  = 185.3 f t .  kips  = 2,223,600  lb.in.  )  Figure  70 -  G r a p h i c a l s o l u t i o n of three-hinged arch.  forces  in  111  112  Thrust  from  graph T = 54.8  kips  C h e c k f o r b e n d i n g moment and max  thrust:  T  + -4—  b  z  c  i  2,223,600 b x  54,800 bx  2  1,900  -i  "  b = 6.75  in.  Solve for  " ".  6.75 x  45.67 x -  x  -  2  1  r> r\ r-\  1,200  -b t / b 2a  =  x 112  7,022 = 0  2  -  4aC  _ 4 5 . 6 7 ± // ((4455. .6677) ) + 4 ( 6 . 7 5 ) 2 (6.75) 2  Use:  (7,022)  54,800 243 1,200  . 8 0 3 + . 1 8 8 = . 9 9 1 <1 — > 0 . K . Check f o r f  =  v  -  1  shear: ^ ° ° > 243  5  8  Profile  at  Check f o r 5  ?_i?  0 0  "D": thrust;  = 9 7 . 5 p s i < 145 p s i —  O.K.  6 3 / 4 " x 24" from  graph T = 57.0 k i p s  = 352 p s i < 1 , 2 0 0  psi  > O.K.  lo/  Profile  at  Check f o r ,  1.5  f  = 0  v  "B": shear;  (25,000) )  0  o  263.3  6 3/4" x 39" from graph V = 25.0 k i p s .._ . = 1 4 2 . 4 p s i < 145 p s i v  . i  6 3/4" x 36"  2,223,600 1,458 1,900  _  > O.K.  n  '  B I L L OF MAIN MATERIAL AND PRELIMINARY  Running deck, Stringers  ties,  wheel guard  & Diaphragms  (From d o u b l e  guardrail  (From A p p e n d i x  x 77])  =  A55  cu.ft.  x 5')  =  2A  cu.ft.  6 (6 3 / A " x 2 7 " x 5 ' )  =  38  cu.ft.  6 (6 3 / A " x 19 1 / 2 "  =  27  cu.ft.  4  *  3  9  3 (6 3 / A " x 3A 1 / 2 "  x 5')  Total  bridge)  II) cu.ft.  [-  strutframe  ESTIMATE  = 1,276  A r c h beam A (6 3 / A " x Diaphragms  and  COST  = 1,820  cu.ft. @ $27  Concrete  Abutments  Total  fill  Total  for  (From A p p e n d i x  (From A p p e n d i x arch  bridge  II)  III)  APPENDIX V  Cantilevered  Beam  Bridge  115  C A N T I L E V E R E D BEAM  ~2T i  Dead  load  Interior  iS"  calculation  4  SO '  according  to  TC t a b l e s  .  stringer: DL - D e c k i n g  and  ties  (as  calculated  i n App.  II)  Stringers  160 p . l . f .  Diaphragms  34  Total Exterior  249 p . l . f .  443  p.l.f,  stringer:' DL -  Decking  and  ties  125 p . l . f .  Stringers  110 p . l . f .  Diaphragms Guardrail  17 p . l . f . and w h e e l  guards  82 p . l . f .  Total Dead  load  1963  Timber (Ottawa,  334  p.l.f.  moments.  Construction: Canadian C a n a d a ) , p. 110.  Institute  of  Timber  Construction,  116  Interior  stringer: W M,  =  s  h  2  aL  1  ( L  + a  2  2  ) =  ^  2  g  }  2  ((40)  2  - 15(80) + 13.5  M  2  " 2  =  W  3  Exterior  2  ( a L  -  ^  a  2  ( L - 2 a ) = nr " 2  s  <  3  0  " 2(15))  8 0  ft. k i p s  = 138.4  2  stringer: ,334  2 2 V  l  M  8(40)  =  Live  load  Suspended  (  (  .334  M  M  2  4  0  "  )  5  (  8  0  )  +  (  1  5  )  )  = ^ l - (80 - 2 ( 1 5 ) )  2  = 104.4 f t .  moments. beam:  7Z- 100  *•  I  I  A/  I  k k d  = 2J. f e e t  X-  (as  =  1  0  ,  2  f t  (15(80) - (15) ) = -162.8 f t .  4  Q  1  calculated  x = 25 - 2.1 = 2 2 . 0 <= . 2 100 Mmax = 5n ~  i n Appendix  II)  t  3  0  0  =  ft.  0 5 ( 8 0 ) - ( 1 5 ) ) = - 216.0 f t .  = "  2  8  (15) )  748.8 f t .  kips  kips  "  M  P  kips  S  2  2  kips  kips  P o r t i o n of t o t a l l o a d Interior  (as shown i n Appendix I I ) .  stringer: M  = .65 M  LL  M_  = .65(748.8)  max  = 486.7  = ( f o r W = 398 p . l . f . )  L  = 124.3 f t . k i p s  "Total s  req  =  , 611.0 (12,000) 1,900  =  3  f t . kips  5  6  1  -  1  0  f t  -  k  l  p  S  .,3  8  S, _ a p p r o x i m a t e l y = 450 i n . holes  3  10 3/4" x 49 1/2"; A = 532.1 i n . ; W = 126 p . l 2  S = 4,390 i n .  Exterior  3  > 4,308 i n . — » 3  O.K.  stringer: M = .37 M = .37(748.8) = 277.1 f t . k i p s XL max M^  = ( f o r W = 298 p . l . f . )  L  =  M Total c req  S  = 370.2 f t . k i p s  - 370.2(12,000) " 1,900  ^holes  93.1 f t . k i p s  a  D  r  >  r  o  x  i  m  a  t  e  6 3 / 4 " x 49 1 / 2 " ;  l y  _ ~ =  3 2  '  3  3  8  3  n  *  3 400 i n . .  A = 334.1  S = 2,756.0 i n .  i  > 2,738  i n . ; W = 79 p . l . f 2  in. —> 3  O.K.  118  >  Check f o r V  shear  according  stresses;  t o TC t a b l e s  ,  L/Lt  -o— "ztr  i  I  +  V(l)  :  w  " 2LT  n  ( L  +  V(2)  W  n  1  " "217 1  "  WL  aL  2  ( L  +  T  2  a L  +  j. a N 2  2  +  >  3  _2. " ->  2  a  2  V(3)  V(4)  Live  +  W  o ^  /T  load ^ = ^ = 12.5 4 A  ft.  3d = 3(A) = 12 f t . — * /CL'  \/f'  l b  .  i4  i  ;  i.  governs 14'  i X-  (O  V  1  Interior  max  kips  stringer: V  L  L  = .65 (A8.8) = 31.72  V(A)  D L  Total  1963  _ 20(1A + 18) + 25(3A + 38) = A8.8 50  kips  = - ^ p ( 5 0 ) = 9.95  kips  = A1.67  kips  Timber C o n s t r u c t i o n : Canadian ( O t t a w a , C a n a d a ) , p . 110.  Institute  of  Timber  Construction,  119  Exterior  stringer: V  V(4)  Position  D L  V  Total  f  v  Reactions  18.06  kips  = ^?p(50) =  7.45  kips  -  25.51  kips  = .37(48.8) =  T T  -  (for  1 , 5  ..4:_  effect  =  1 0 )  1  1  4  p  s  i  c  1  4  on c a n t i l e v e r e d  / y  P  - ^  °"  K.  I  L J  \  -  68.4  /  —i  yR  c  -  1 0  <  1 0  >  +  2  5  <  2  6  +  3  0  )  +  2  0  (  50  4  6  +  5  0  )  kips  (b)  J  •A ->  L  R  -  s  A o  '  /-  = 20 (26 + 30) + 25(46 + 50) = 70.4 k i p s —> g o v e r n s 50  stringer: R  Exterior  1  beam).  I  Interior  5  (a):  / /  Position  p  5  c  = 0.65(70.4) = 45.76  kips  stringer: R  c  = 0.37(70.4) = 26.05  kips  >  Cantilevered Position  beam -  120  part BC.  (a) Ao  X-  1  i  6  :<J  4o'  R  Position  ,  c  M  -X +  2  » 20(11)  max  5  <  3  0  +  3 A  50  >  +  + 54.8(15)  2 0  <  5 n  >  = 54.8  = 1,042  ft.  k i p c1  kips  (b) * i  59 '  '6  X.  4 G '  B £~o'  X  •fM  Interior  = Pa = 15(70.4)  max  = 1,056  ft.  kips—*• governing p o s i t i o n  stringer: K  = 0.65(1,056)  LL  = M  T  o  t  a  = -686.4  ft.  ( f o r W == 4 2 8 p . l . f . )  = -208.6  l  ,  s  req  S,  , holes  8  9  5  - ^ ^ ° ° ° ) 1,900  -  ft.  kips  = -895.0 f t .  kips  5,652  i n .  a p p r o x i m a t e l y = 700 i n .  10 3 / 4 " x 6 0 " ; A = 645 i n . S = 6,450  i n .  3  > 6,352  kips  2  3  3  ; W = 152  i n .  3  p.l.f.;  —>-0.K.  121  Exterior  stringer:  M_  L  M _  o  t  = 0.37(1,056)  = -390.7  ft.  kips  = ( f o r w = 334 p . l . f . )  = -162.8  ft.  kips  = -553.5  ft.  kips  a  ,  req  s  l  5 5 3  : <"^ 1,900 5  0 0 0  >  -  3,496 i n .  S, , a p p r o x i m a t e l y = 650 i n . holes . 8 3/4" x 60"; A = 525.0 i n . S = 5,250  i n .  3  > 3,496  ( c h o s e n f o r same h e i g h t Check f o r shear Live  3  3  ; W = 124  2  i n .  p.l.f.;  —*O.K.  3  as i n t e r i o r  stringer)  stresses:  load. V  = R of suspended  beam = 7 0 . 4 k i p s  J_JJ_I  Interior  stringer: V  _ 45.76  V(3)_  V  L  kips  -  = 16.4 kips  Total  f v = 1-5(62,160)  Exterior  "  6  1  4  =  "  2  4  1  6  6  p  k  s  i  p  S  . <  stringer: V  V(3)_  V  =26.05  T T  L  Total  = •  3  1  2  (  8  0  )  kips  = 12.48 kips  =  3  8  '  5  3  k  l  p  S  1  4  5  p  s  .  __  > 0 > K <  122  Cantilevered  beam -  part AB.  £/i:Jo' '  l/i --2?'  'Y A  _ 2 0 ( 1 6 + 20)  d  -  x - ^ - d - 2 0 M  Interior  _  L  max  2  25(4)  3.44 - 16.56 f t .  _• P  e  L  - 90(16.56) L "~ 40  2  = 517.02 f t .  kips  stringer: = 0.65(517.02)= M(l) M  S  DL  -  req  336.06 f t .  kips  11.42 f t .  kips  347.48  Total  S. . holes  3  4  7  -  4  ^ - ° ° 1,900 8  0  )  ft.  kips  = 2,194 i n .  a p p r o x i m a t e l y = 300 i n .  10 3 / 4 " x 37 1 / 2 " ; S = 2,519.5  Exterior  =  3  A = 403.1 i n .  i n .  3  > 2,494  :  i n .  ; W = 95.2 'O.K.  3  stringer: M  LL  -37(517.02)  =  = 191.3  ft.  kips  9.1  ft.  kips  200.4  ft.  kips  M.  Total  S r  e  q  = 200.4(12,000) 1,900  S, , holes  = 1,266  a p p r o x i m a t e l y = 250  in  in 3  3  p.l.f.;  123  8 3 / 4 " x 37 1 / 2 " ; S = 2,050.8 (chosen for by Check f o r  A = 328.1 I n . ; W = 77.5  i n .  the  shear  at  > 1,266  i n .  same h e i g h t  as  3  —> O . K .  interior stringer;  R,. A  = 10 f t . ;  \ r .  yy  3d = 9 f t .  ^governs  ••••• |*> ?->  l _ L i _  LL  I  •4C  v  20(7  =  11)  +  25(27  +  311  =  ^  ^  stringer: V  = .65(45.25)  T T  LtLi  V  = 29.41  .  v ( 1 ) d l  kips  - 15g0) + (15)) ^ 2  2  =  1  }  1  ±  J  y  32.53 k i p s  Total  fv Exterior  3  p a r t BC)  L/4  Interior  p.l.f.;  2  ,  5  .  (  3  2  ?  40J.  5  3  1  0  )  -  = 1 2 1 p s i < 145 p s i  —*0.K.  stringer: V  = .37(45.25)  T T  v(i) v  = -3((40)  m  V  D L  2  -  v  =  kips  15(80)  + (15) ) 2  „  2  >  3  A  k  2 ( 4 0 )  19.08  Total 1  f  = 16.74  - ^ 9 , 0 8 0 )  =  8  7  p s i < 145 p s i - O . K .  .  1— p  s  kips  v  width  given  1  124  Reactions: Live  load.  ?= 7<=>.<t  £7  4-  \C  •J9  a ~ is'  R.  =  Pa " P_  =L  1  70.4(15) 40  /T (L.  . \ + a)  , =  -  2  ,/ -  1  X-  , . 4  k  i  70.4(55) = —777^—= 40  to  1  p  S  _ o , . 96.8 kips  0  A':  L*  J—L so'  C  =  2 0 ( 4 9 + 45) , . , „ . . • —50 =37.6 kips  _ 2 5 ( 4 0 + 36) + 1 0 ( 2 0 ) R_ A  Interior  +  Q  37.6(55) 40  _ .  1  U  *  ,  Z  R  1  P  ^  governs  stringer: R_ = . 6 5 ( 1 0 4 . 2 )  Exterior  /  = 67.73  kips  = 38.55  kips  stringer: R_ = . 3 7 ( 1 0 4 . 2 )  3 Dead  load  ( c a l c u l a t i o n a c c o r d i n g t o TC t a b l e s  ). 3  Timber 1963  (Ottawa,  Construction: Canadian I n s t i t u t e Canada),  p.  110.  of Timber C o n s t r u c t i o n ,  125  Interior  2L7  R  A  R  B =  =  l :  ^  (  L  l  i  L  +  2  a L  "  2  a  )  (  i  L  ^  a  +  2 -  L  +  a  )  stringer R  A  ,410 2(40)  =  "  [ ( 4 0 )  1  5  (  8  0  )  +  (  1  5  )  k  i  5  )  =  ]  '  3  2  0  k  i  P  s  41 0  \ Exterior  = 2(to)( >  (  5 5  1 0 5  )  "  1  =  2  -  9  6  0  P  s  stringer: R  A  .310 2(40)  =  2  ?  t ( 4 0 )  5  (  8  0  )  +  (  1  ]  =  2  ,  4  2  k  i  P  s  310  *B Total  2(40)  =  reactions  \  Total reactions  T  o  t  a  )  =  2  2  ,  3  8  k  i  p  s  + 2(2.42)  -  2.14 = 9.10  kips  =  +  = 67.73 + 29.60 = 97.33  kips  stringer:  supports  =  3  8  ,  5  5  ( s o l v e d as  +  2  2  ,  short  3  8  =  6  0  ,  9  3  k  i  p  s  columns).  stringer: A  =  req  Exterior  5  = 2(3.20)  L  l  ^otal  Interior  0  stringer: R  "V"  1  at " B " :  Vtal  Exterior  (  at " A " :  -  Interior  ( 5 5 )  97,330 1,400  2 7  0  in-  B a s e o f c o l u m n 1 2 " x 10 3 / 4 " = 129 i n . stringer: A  req  2  > 70 i n . — > O . K . 2  60,930 .. . 2 = ^—TrTTT = 44 i n . 1,400  Base of  c o l u m n 1 2 " x 8 3 / 4 " = 105 i n .  2  > 44 i n . — > O . K . 2  126  >  CONCRETE- ABUTMENTS: Backfill Abutments is  solid  soil  calculated  conditions  for  R_  -  L  same as  R ^  at  considered  A (see  above).  North  w = 135 p . c . f . ;  K =  .302  T o t a l  p  Icwh  m  Yd* ;  M  \  6),  w  W  w  v-$j7!y//;$yr,}  :  = 47.03 f t .  kips  =  ft.  kips  ,86 f t .  kips  M  3  =  X  1.98  .57(1.5)  "r o t a l  32.40 12.45  M  soil = 2.60  0  +  1  -  7  =  49.87  ft.  49.87  -  ft.  ~ 3  =  1  -  3  7  f  7  -  4  7  -  t  ^  2 =  f  t  -  k  i  8  P  2  components: = 9.90  kips  = 2.0(6.6)(.15)  = 1.98  kips  W  9.10 16.0  .57  kips  3  *DI width  =  = 12.45  kips 17.47  > 2.33  1  .302(.135)(13.7)  w,T o t a l  = 9.9(4.75) = 1.98(1.0)  '  = 5.5(12.0)(.15)  =  0  7.s-  2  2  /  S-.r '  M  _  1  = 3.82 ^  soil  Weight  -y-  2  =  0  :  otal " "rot.-  abutments  Abutment h  ±  Base of  II.  rock. 0 = 32° 30';  H  i n Appendix  ft.  = 32.4  >  ft.  O.K.  kips  "Total  (  x  )  kips  2  s  k  ±  p  s  127  1  South  Abutment h = 13.0 + 1.7 = 14.7 .302M35)(14.7) 2 M  ., soil  =  Weight  2  components:  = 1(2.28)  =  2.28 f t .  kips  M  3  = 1.5(.57) =  .86 f t .  kips  = 61.64 f t .  kips  "T o t a l  MSj , - M _ _ = 61.64 - 21.58 = 40.06 f t . Cotal soil J  1  40.06 = 2.75 f t . 14.55  > 2.67'  O.K.  = 11.70  = 2(7.6)(.15) =  Total  2  kips  0 1  W,  M  = 4.40  2  4.40(14.7) „ ,„ . . Ti - 21.5£ f t . kips 3  w^^ = 6(13) (.15) w  ft.  kips  kips/ln.ft.  2.28  kips/ln.ft.  .57  kips/ln.ft.  14.55  kips/ln.ft.  128  B I L L OF MAIN MATERIAL AND P R E L I M I N A R Y  Running deck,  ties,  wheel guard  and g u a r d r a i l  ll'tl Stringers:  9  COST  ESTIMATE  (From A p p e n d i x I I )  (162 f t . )  = $  C a n t i l e v e r e d beams A r e a o f beams i n p r o f i l e (37  1/2"  + 1/2  x 21')  + 1/2  ( 6 0 ' + 49 1 / 2 " )  Interior  stringers  (37 1 / 2 "  + 60')  15 = 2 1 5 . 3 1  4 (10 3 / 4 " )  20 ft.  2  21.5.31 f t .  2  = 772  cu.ft.  = 628  cu.ft.  ? Exterior  Suspended  stringers  4 (8 3 / 4 " )  215.31 f t .  beams  Interior  stringers  2 ( 1 0 3 / 4 " x 49 1 / 2 "  Exterior  stringers  2 (6 3 / 4 " x 49 1 / 2 "  "V"  x 50')  = 369  cu.ft.  x 50')  = 232  cu.ft.  )  = 30  cu.ft.  =25  cu.ft.  supports  At B Area i n p r o f i l e 1/2  (12" + 30")  9.75 = 17.1  ft.  2  2 Interior  support  2 (10 3 / 4 " x - 1 7 . 1  ft.  Exterior  support  2 (8 3 / 4 " x 1 7 . 1 f t . ) 2  At E Area 1/2  in profile (12" + 40")  Interior  support  Exterior  support  14.75'  = 31.96  ft.  2  2 (10 3 / 4 " x 3 1 . 9 6 f t . ) 2 2 (8 3 / 4 " x 3 1 . 9 6 f t . ) 2  = 57  cu.ft.  = 47  cu.ft.  10,410  129  Diaphragms  24  (6 3 / 4 " x 3 3 " x 5 ' )  = 186  cu.ft.  9 (6 3 / 4 " x 4 5 " x 5 ' )  =  95  cu.ft.  2 (6 3 / 4 " x 5 4 " x 5 ' )  =  25  cu.ft.  Total  = 2,466  Concrete  x 12] + [ 1 . 5 x 6 . 6 ] )  16 = 3 7 . 9  cu.yd.  South Abutment: —  x 13] +  16 = 4 9 . 1  cu.yd.  Foundations  under  ( 1 . 5 x 1.0  ([5.5  [1.5 x 7.6])  fill  Total  for  66,582  @ $250 = $  22,200  = $  2,365  " V " supports  x 16)  2  =  Total Total  (? $27 = $ Abutments  N o r t h A b u t m e n t : ZJJ ( [ 4 . 5  _1 27  cu.ft.  726 CCY = 1 , 0 7 5  LCY @ $ 2 . 2 0  cantilevered bridge  1.8  cu.yd.  = 88.8  cu.yd.  =  $101,557  Figure  7.1 - C a n t ( l e v e r e d <^;.1e  1  I n .  beam n  9ft  hi ft-.  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 22 2
United States 4 2
Canada 2 0
Russia 1 0
City Views Downloads
Beijing 21 0
Ashburn 4 0
Maple Ridge 2 0
Saint Petersburg 1 0
Shenzhen 1 2

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0075320/manifest

Comment

Related Items