UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Mechanical seed extraction of lodgepole pine MacAulay, James Donald 1975-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
UBC_1975_A1 M32_8.pdf [ 18.75MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0075314.json
JSON-LD: 1.0075314+ld.json
RDF/XML (Pretty): 1.0075314.xml
RDF/JSON: 1.0075314+rdf.json
Turtle: 1.0075314+rdf-turtle.txt
N-Triples: 1.0075314+rdf-ntriples.txt
Original Record: 1.0075314 +original-record.json
Full Text
1.0075314.txt
Citation
1.0075314.ris

Full Text

MECHANICAL SEED EXTRACTION OF LODGEPOLE PINE  by  JAMES DONALD MACAULAY,  P.ENG.  B.S.A. U n i v e r s i t y o f Guelph, 1965 M.Sc.  University  o f Guelph, 1967  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the FACULTY OF FORESTRY  We a c c e p t t h i s t h e s i s the r e q u i r e d s t a n d a r d  as c o n f o r m i n g  to  THE UNIVERSITY OF BRITISH COLUMBIA May, 1975  -6  In p r e s e n t i n g t h i s  thesis  in p a r t i a l  fulfilment of  the requirements f o r  an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, the I  Library shall  f u r t h e r agree t h a t p e r m i s s i o n  for  for  r e f e r e n c e and  f o r e x t e n s i v e copying o f t h i s  that  study. thesis  s c h o l a r l y purposes may be granted by the Head of my Department or  by h i s of  make i t f r e e l y a v a i l a b l e  I agree  representatives.  this  thesis  It  is understood that copying o r p u b l i c a t i o n  f o r f i n a n c i a l gain s h a l l  not be allowed without my  written permission.  Department of A g r i c u l t u r a l The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada  Date  May  22 .  1975  Engineering  Columbia  and F a c u l t y  of Forestry  ABSTRACT Seed e x t r a c t i o n  from  (Pinus c o n t o r t a v a r . l a t i f o l i a identify affect  Englem.) was  the p h y s i c a l p r o p e r t i e s  seed  e x t r a c t i o n by b o t h  - t e c h n i q u e s and a basis  serotinous lodgepole pine  and  characteristics  to  which  drying  This information provided  f o r systematic design of s p e c i f i c  f o r a portable continuous  investigated  conventional k i l n  by m e c h a n i c a l means.  cones  flow mechanical  processing tools seed  extraction  system. Cone s c a l e d e f l e c t i o n was effect  on  seed r e l e a s e  c o n t e n t upon s c a l e sequent  was  stress  thermal Two  seed  most s u i t a b l e calibrated  and  core b o r i n g , thus  of  moisture sub-  i s discussed. i n h o t w a t e r and  hot  serotinous seals  gas  without  flow f l a s h heating s e a l breaking  tested.  A  flame  seal breaker  o p e r a t i o n , and  this  on b o t h young and w e a t h e r e d  Mechanical but  effect  damage.  f o r commercial  f o r use  effective,  release  continuous  t o o l s were d e s i g n e d  The  r e l a x a t i o n d u r i n g s t o r a g e and  h e a t i n g o f cones  found t o e f f e c t i v e l y  incurring  was  i s reported.  r e d u c t i o n i n seed r e l e a s e Flash  c h a r a c t e r i z e d and i t s  seed e x t r a c t i o n  asymmetrical resulting  cones  tool  proved was  cones.  by c o n e c o r e prevented  i n c o n s i d e r a b l e seed  removal  accurate destruction.  Seed e x t r a c t i o n by t h r e s h i n g first on  and s e c o n d g e n e r a t i o n  lodgepole  hemlock. values and  pine,  Further  a l s o was threshing  Douglas f i r , study  i s recommended  o f t h e many b i o l o g i c a l  operating  white  effective. t o o l s was  Testing of c a r r i e d out  s p r u c e and w e s t e r n to identify  t h e optimum  v a r i a b l e s , machine v a r i a b l e s  c o n d i t i o n s which a f f e c t  cone  threshing.  iii.  TABLE OF  PAGE  CONTENTS  ABSTRACT TABLE OF  i n  CONTENTS  L I S T OF TABLES  vi  L I S T OF FIGURES  ix  TERMINOLOGY  xiii  ACKNOWLEDGEMENTS  xvii  I  1  INTRODUCTION  3  II  CURRENT SEED EXTRACTION  III  OBJECTIVE  7  IV  SYSTEMATIC DESIGN PROCEDURE  8  V  COMPARISON OF KILN AND MECHANICAL SYSTEMS PART  {Pky^icai. VI  VII  TECHNIQUES  EXTRACTION  12  ONE  Ph.opzKtA.z& o£ Zodgzpotz  plnz  conzA)  PHYSICAL PROPERTIES AFFECTING MECHANIZATION OF SEED EXTRACTION  16  1. 2. 3. 4. 5. 6. 7. 8. 9.  16 17 20 22 22 24 26 28 29  Fruiting S e r o t i n o u s Cone S c a l e S e a l s S c a l e Opening Mechanism Cone O p e n i n g a t M a t u r i t y R e s i s t a n c e t o T h e r m a l Damage R e s i s t a n c e t o M e c h a n i c a l Damage S t r e s s R e l a x a t i o n o f Cone S c a l e s Thermal P r o p e r t i e s D r y i n g Rate  PRELIMINARY INVESTIGATIONS  31  1. 2. 3.  31 32 32  I d e n t i f i c a t i o n and D e s c r i p t i o n o f C o n e s Preparation of Material D e g r e e o f S e r o t i n y o f Cone S e e d L o t  iv.  TABLE OF VII  CONTENTS  PAGE  PRELIMINARY INVESTIGATIONS 4. 5. 6. 7.  VIII  (Continued)  V i a b i l i t y o f S e e d s by L o c a t i o n i n t h e Cone V i a b i l i t y o f S e e d s and E a s e o f E x t r a c t i o n V i a b i l i t y o f K i l n T r e a t e d Seeds Moisture Content  INVESTIGATION OF 1. 2. 3. 4. 5. 6. 7. 8.  (Continued)  PHYSICAL PROPERTIES OF  CONES  E q u i l i b r i u m Moisture Content Melting Point Determination for S e r o t i n o u s Bonds Scale D e f l e c t i o n vs. Moisture Content S c a l e D e f l e c t i o n o f S t r e s s R e l a x e d Cones D e g r e e o f Seed R e l e a s e W i t h R e s p e c t to Scale D e f l e c t i o n Hot Water S e a l B r e a k i n g Flame Treatment S e a l B r e a k i n g M o i s t u r e C o n t e n t on S e a l B r e a k i n g Effectiveness PART  34 37 38 40 41 41 43 45 49 52 54 58 60  TWO  [Veve£opmcnt o£ V*h.oce-6&Zng lool&) IX  PROPOSED MECHANICAL EXTRACTION SYSTEM  65  X  DEVELOPMENT OF  67  1. 2. 3. 4. 5. XI  SEROTINOUS SEAL BREAKING TOOL  Preliminary Analysis Heat T r a n s f e r A n a l y s i s o f F l a s h Heated Cones Hot W a t e r Immersing T o o l Flame T r e a t i n g T o o l C a l i b r a t i o n o f Flame T r e a t i n g S e a l B r e a k e r  DEVELOPMENT OF MECHANICAL CONIFER SEED EXTRACTION TOOL 1. 2. 3. 4.  A l t e r n a t i v e Methods E x t r a c t i o n by Cone A b r a s i o n E x t r a c t i o n by C o r e B o r i n g E x t r a c t i o n by T h r e s h i n g  67 69 80 84 90 94 94 95 97 103  V. TABLE OF CONTENTS XI  (Continued)  DEVELOPMENT OF MECHANICAL CONIFER SEED EXTRACTION TOOL ( C o n t i n u e d ) (i) (ii) (iii) (iv) (v) (vi)  PAGE .  Analysis F i r s t Prototype Tool , Testing Second G e n e r a t i o n P r o t o t y p e Testing T h r e s h i n g Performance on O t h e r Species  103 107 109 115 117 122  PART THREE (Conc.JLn6A.OYi6  XII  CONCLUSIONS 1. 2. 3.  XIII  and Re.comrmndatA.on6)  P h y s i c a l Properties of Lodgepole Pine Cones Which A f f e c t Seed E x t r a c t i o n Development o f S e a l B r e a k i n g T o o l Development o f M e c h a n i c a l C o n i f e r Seed Extracting Tool  RECOMMENDATIONS  126 126 128 128 131  LITERATURE CITED  134  APPENDIX  139  A  vi.  L I S T OF TABLES PAGE  TABLE I II III IV V VI  VII  '  Seed v i a b i l i t y  by l o c a t i o n  36  i n cone  Germination percent f o r ease o f extraction test Scale d e f l e c t i o n angle a t various moisture contents  38 cone 48  E f f e c t o f h o t w a t e r immersion o n cone opening and seed v i a b i l i t y  57  E f f e c t o f f l a m e t r e a t m e n t on c o n e o p e n i n g and seed v i a b i l i t y  61  Seal breaking results contents  63  Simple c o r r e l a t i o n cone g e o m e t r y  a t three moisture  among v a r i a b l e s o f 99  TABLES IN APPENDIX A A-1  Number o f s e e d s p e r c o n e , by l o c a t i o n  A-2  Viability  A-3  E q u i l i b r i u m m o i s t u r e c o n t e n t (wet b a s i s ) of cones o v e r s a t u r a t e d s a l t s o l u t i o n f o r 30 d a y s  143  A-4  Cone s c a l e r e l e a s e t e m p e r a t u r e  144  A-5  Maximum c o n e 21.2% MC  145  A-6 A-7  A-8 A-9  o f oven d r i e d  cones  •  140 142  s c a l e a n g l e s o f cones a t  Maximum c o n e s c a l e a n g l e s o f c o n e s a t 17.4% MC  146  Maximum cone 13.5% MC  scale  147  Maximum cone 9.5% MC  scale  Maximum c o n e 7.5% MC  scale  a n g l e s o f cones a t  angles o f cones a t 148 a n g l e s o f cones a t 149  vii. PAGE  TABLE A-10  A-ll A-12  A-13  A-14  A-15 A-16 A-17  A-18 A-19  Maximum c o n e s c a l e 4.8% MC  a n g l e s o f cones a t 150  Maximum c o n e s c a l e a n g l e s o f c o n e s oven d r y  151  Maximum s c a l e a n g l e o f c o n e s s t o r e d s i x months a t 11.2% MC (wb) u n s e a l e d and d r i e d t o 9.9% MC  152  Maximum s c a l e a n g l e o f c o n e s s t o r e d s i x months a t 11.2% MC (wb) u n s e a l e d , r e w e t t e d a n d d r i e d t o 11.1% MC (wb)  153  Maximum s c a l e a n g l e o f c o n e s s t o r e d s i x months a t 11.2% MC (wb), u n s e a l e d , r e w e t t e d and d r i e d t o oven d r y  154  Maximum c o n e s c a l e seed r e l e a s e t e s t  angles f o r f i r s t 155  Maximum c o n e s c a l e seed r e l e a s e t e s t  angles f o r second  Maximum c o n e s c a l e seed r e l e a s e t e s t  angles f o r t h i r d  Maximum c o n e s c a l e seed r e l e a s e t e s t  angles f o r fourth  156 157 158  Degree o f s e r o t i n o u s s e a l b r e a k i n g i n C l a s s I (young) c o n e s b y f l a m e t r e a t m e n t  159  Degree o f s e r o t i n o u s s e a l b r e a k i n g i n C l a s s I I weathered cones by flame t r e a t m e n t  161  Geometric v a r i a b l e s a f f e c t i n g core b o r i n g o f l o d g e p o l e p i n e cones  163  A-22  Results of threshing tests pine  164  A-23  R e s u l t s o f improved lodgepole pine  A-20 A-21  A-24  on l o d g e p o l e  t h r e s h e r t e s t s on  Lodgepole p i n e seeds r e c o v e r e d c o n c a v e s f r o m 100 c o n e s  167 through '  168  •a  Lodgepole p i n e seeds r e c o v e r e d through s i e v e f r o m 100 c o n e s Results fir  of threshing  t e s t s on  Douglas  Results spruce  of threshing  t e s t s on  white  Results of threshing hemlock  t e s t s on  western  ix.  L I S T OF  FIGURES  FIGURE  PAGE  1.  Steps  2.  D e f i n i n g the  3.  Flow c h a r t s comparing s e p a r a t e k i l n d r y i n g andtumbling to mobile mechanical e x t r a c t i o n .  14  Cross s e c t i o n of t y p i c a l cones l o c a t i o n of serotinous seal  33  4.  i n the  systematic design procedure  9  alternative processes  10  showing <  5.  L o c a t i o n o f s e r o t i n o u s s e a l s on a b a x i a l and a d a x i a l s u r f a c e s o f t y p i c a l c o n e scales  33  T y p i c a l p a r t i a l l y opened cones from c o m m e r c i a l l y c o l l e c t e d cone l o t s  35  7.  Technique cones  35  8.  Curve of germination p e r c e n t w i t h treatment t i m e f o r c o n e s i n 1 4 0 F (60°C) o v e n  39  Containers f o r equilibrium moisture determination  42  6.  f o r manual opening  of  sealed  G  9. 10.  11. 12. 13.  14. 15.  content  E q u i l i b r i u m moisture content during drying o f l o d g e p o l e p i n e cones  42  Apparatus f o r d e t e r m i n a t i o n of s e a l temperatures  44  melting  Cones p r e p a r e d f o r s c a l e d e f l e c t i o n measurement b e f o r e and a f t e r o p e n i n g Alignment surface  of c r o s s h a i r w i t h ground  scale 46  Apparatus f o r m e a s u r i n g cone d e f l e c t i o n angles Maximum s c a l e a n g l e v s . moisture content  ^4,6  scale 46  equilibrium 48  Cones s h o w i n g t y p i c a l d e g r e e o f o p e n i n g when u n s e a l e d and b r o u g h t t o 10% M.C. a f t e r one month o f s t o r a g e a t i n d i c a t e d moisture contents C r o s s s e c t i o n o f open s t r e s s n o n - s t r e s s r e l a x e d cones Seed e x t r a c t i o n  v s . cone s c a l e  Hot w a t e r i m m e r s i o n Cone d r y i n g  r e l a x e d and. angle  apparatus  racks  Flame t r e a t i n g  apparatus  S e a l b r e a k i n g by c r u s h i n g Dimensional analysis  d a t a o f cone f o r h e a t  Prototype hot water s e a l breaking View o f s e a l b r e a k e r d r i v e mechanisms Prototype  flame  View o f flame mechanism  tool  showing h e a t i n g  treating  treater  transfer  seal  showing  and  breaker drive  Curve o f exhaust temperature v s . p r e s s u r e f o r flame t r e a t i n g s e a l  fuel breaker  V i a b i l i t y v s . treatment time f o r flame t r e a t e r o p e r a t i n g a t 1 0 0 0 ° F (538°C) Flame t r e a t e r c a l i b r a t i o n c u r v e s f o r c o m p l e t e s e a l b r e a k i n g o f c l a s s I (young) l o d g e p o l e p i n e cones Flame t r e a t e r c a l i b r a t i o n c u r v e s f o r complete s e a l b r e a k i n g o f c l a s s I I (weathered) l o d g e p o l e p i n e c o n e s Cone a b r a s i o n t o o l Geometric v a r i a b l e s o f cones i n f l u e n c i n g s e e d e x t r a c t i o n by r e m o v a l o f c o n e c o r e  xi.  FIGURE 34.  PAGE Cross section of  typical  cones  showing  d e g r e e o f asymmetry  •  101  35.  Cone b o r i n g  tool  101  36.  Cross s e c t i o n of bored cones  101  37.  B o r e d and  101  38.  Schematic diagram of  39.  Cylinder  and  concaves of  40.  Cylinder  and  concaves i n s t a l l e d  41.  Threshing  42.  Assembled p r o t o t y p e  43.  Scalping sieve with p a r t i a l l y threshed cones P a r t i a l l y t h r e s h e d c o n e s a f t e r two p a s s e s  110  with  110  44.  unsealed  cones  t o o l with  t h r e s h i n g machine threshing  tool  i n frame  104 108 108  p l e n u m chamber  108-  cone t h r e s h e r  110  c y l i n d e r speed of  2000 f t / m i n .  45.  Material passing  46.  Air-screen  47.  T y p i c a l damaged and a p p a r e n t l y undamaged s e e d s e x t r a c t e d by t h r e s h i n g V i a b l e seed r e c o v e r y r a t e vs. c y l i n d e r speed f o r l o d g e p o l e p i n e cones  114  I n t e r n a l components cushioning material  116  48. 49.  through  scalping sieve  seed c l e a n e r  112  112  showing l o c a t i o n o f  50.  D e t a i l of  51.  L o c a t i o n of d e c e l e r a t i o n c u r t a i n i n plenum chamber  116  Curves o f seed r e c o v e r y vs. c y l i n d e r speed f o r l o d g e p o l e p i n e e x t r a c t e d by t h e rubberized threshing tool  .119  52.  cushion  112  material  on  concaves  116  Accumulated v i a b l e seed a t 15% m o i s t u r e c o n t e n t c y l i n d e r speed  r e c o v e r y from cones a t 2000 f t / m i n  Seed r e c o v e r y by t h r e s h i n g o f f i r , s p r u c e , and h e m l o c k c o n e s  Xiii.  TERMINOLOGY  ABAXIAL - p e r t a i n i n g t o t h e r e g i o n its central axis. ADAXIAL - p e r t a i n i n g t o t h a t its central axis.  region  o f an o b j e c t o f an o b j e c t  remote  from  a t o r near  APOPHYSIS - t h e p r o m i n e n t p o r t i o n o r e x t e r n a l l y v i s i b l e r e g i o n o f a cone s c a l e . BIOT NUMBER - d i m e n s i o n l e s s h e a t t r a n s f e r f u n c t i o n , the r a t i o o f i n t e r n a l t o e x t e r n a l thermal  tip  relating resistance.  CASE HARDENING - t h e p r o c e s s o f i m p a r t i n g h a r d , b r i t t l e c h a r a c t e r i s t i c s t o t h e o u t h e r s u r f a c e o f an i t e m , a s i n t h e c a r b u r i z i n g and q u e n c h i n g o f s t e e l . Term a l s o used t o d e s c r i b e development o f r e s i d u a l s t r e s s e s i n wood a f t e r k i l n d r y i n g . CELLULOSE MICROFIBRILS - f i b r i l s o f c e l l u l o s e e x i s t i n g i n t h e c e l l w a l l s o f p l a n t m a t e r i a l , and b e i n g l a r g e l y r e s p o n s i b l e f o r t h e form and s t r u c t u r a l mechanics of the c e l l . CONE AXIS - t h e c e n t r a l a x i s o f t h e c o n i c a l p r o f i l e d e s c r i b i n g the o u t e r s u r f a c e o f t h e c o n i f e r cones under study. CONE CORE AXIS - t h e c e n t r a l a x i s o f t h e c o n i c a l p r o f i l e d e s c r i b i n g t h e woody s t r u c t u r e o f a c o n i f e r c o n e to which the scales are attached. CONE SCALE DEFLECTION ANGLE - t h e a n g l e t h r o u g h w h i c h a c o n e s c a l e d e f l e c t s from i t s c l o s e d p o s i t i o n d u r i n g drying. The a n g l e i s m e a s u r e d a t t h e t i p o f t h e scale. The a v e r a g e maximum s c a l e d e f l e c t i o n a n g l e /'for a c o n e i s t h e a v e r a g e o f t h e a n g l e s o f a number o f s c a l e s which a r e l o c a t e d i n a band around t h e c o n e a t a p o i n t where s c a l e d e f l e c t i o n i s g r e a t e s t . CYLINDER AND CONCAVE ASSEMBLY - a s e e d e x t r a c t i n g t o o l u s e d t o s e p a r a t e a g r i c u l t u r a l seeds from t h e seed supporting portion of plants. The a p p a r a t u s c o n s i s t s o f a r e v o l v i n g c y l i n d e r h a v i n g a number o f t r a n s v e r s e r u b - b a r s a n d a s t a t i o n a r y member, b e t w e e n w h i c h t h e seed c o n t a i n i n g m a t e r i a l i s passed d u r i n g threshing.  xiv. EQUILIBRIUM MOISTURE CONTENT - t h a t m o i s t u r e c o n t e n t o f a hygroscopic m a t e r i a l a t which the m o i s t u r e w i t h i n that material i s i n equilibrium with the moisture i n the surrounding a i r . EXTRACTION  (SEED) - t h e r e m o v a l conifer trees.  o f seeds  from t h e cones o f  FLASH HEATING - t h e b r i e f e x p o s u r e o f s e r o t i n o u s c o n e s t o very h i g h temperatures f o r t h e purpose o f m e l t i n g t h e r e s i n o u s bond h o l d i n g t h e cone s c a l e s i n a closed position. FOURIER NUMBER - d i m e n s i o n l e s s h e a t t r a n s f e r f u n c t i o n r e l a t i n g the t h e r m a l d i f f u s i v i t y and h e a t t r a n s f e r time t o body geometry. GERMINATION PERCENT - p e r c e n t o f a g i v e n number o f s e e d s producing normal germinants w i t h i n a g i v e n p e r i o d o f t i m e u n d e r optimum c o n d i t i o n s . May b e e x p r e s s e d as a p e r c e n t a g e o f t o t a l s e e d , o r a s a p e r c e n t a g e of f i l l e d seed. GERMINATIVE CAPACITY - t h e p e r c e n t o f s e e d s i n a g i v e n s a m p l e producing normal germinants, i r r e s p e c t i v e o f time. U s u a l l y c o n s i d e r e d t o be t h e t o t a l o f g e r m i n a t e d seed p l u s a l l ungerminated seeds s t i l l sound a t t h e end o f th.e t e s t p e r i o d . HYGROSCOPIC - p e r t a i n i n g t o t h e a b i l i t y o f a m a t e r i a l t o imbibe water from t h e atmosphere. MECHANICAL  SEED DAMAGE - damage c a u s e d b y t h e o c c u r r e n c e o f s t r e s s e s i n a seed which exceed t h e y i e l d s t r e n g t h of the t i s s u e s i n v o l v e d .  MOISTURE CONTENT - t h e amount o f w a t e r r e t a i n e d b y a h y g r o s c o p i c m a t e r i a l , e x p r e s s e d as a p e r c e n t a g e , by w e i g h t o f t h e t o t a l d r y m a t t e r o.f t h e m a t e r i a l ( d r y b a s i s ) o r o f t h e t o t a l d r y m a t t e r p l u s w a t e r (wet basis). NORMAL GERMINANT - g e r m i n a n t whose s t r u c t u r e s a p p e a r n o r m a l once i t s development h a s p r o d u c e d a r a d i c l e e q u a l i n length t o t h a t o f t h e seed. PEDUNCLE  - t h e woody c o n n e c t i v e s t r u c t u r e w h i c h cone t o t h e t r e e b r a n c h .  attaches a  XV. RELATIVE HUMIDITY - t h e r a t i o , e x p r e s s e d a s a p e r c e n t a g e , o f the p a r t i a l p r e s s u r e o f w a t e r v a p o r o f an a i r - v a p o r mixture t o the pressure o f saturated water vapor.at t h e same d r y b u l b t e m p e r a t u r e . RHEOLOGY - t h e s t u d y o f t h e m e c h a n i c a l p r o p e r t i e s o f m a t e r i a l s w h i c h r e s u l t i n d e f o r m a t i o n and f l o w o f a m a t e r i a l . SCLERENCHYMA - t h a t t i s s u e w i t h i n p l a n t s t r u c t u r e whose p r i m a r y r o l e i s t o p r o v i d e s t r e n g t h and m e c h a n i c a l s u p p o r t f o r t h e p l a n t body. SEAL BREAKING - t h e b r e a k i n g o f t h e r e s i n o u s b o n d s w h i c h s e a l the s c a l e s o f s e r o t i n o u s c o n i f e r cones i n a c l o s e d position. SEROTINY - a t e r m u s e d t o d e s c r i b e t h e c o n d i t i o n o f c o n i f e r cones i n which the s c a l e s a r e s e a l e d i n a c l o s e d p o s i t i o n b y a r e s i n o u s bond between t h e o v e r l a p p i n g surfaces. Cones h a v i n g t h i s c h a r a c t e r i s t i c a r e r e f e r r e d t o as " s e r o t i n o u s c o n e s " o r " c l o s e d c o n e s " . SHORE HARDNESS - an i n d e x i n d i c a t i n g t h e h a r d n e s s , o r resistance to penetration of a material. Determined by m e a s u r i n g t h e r e b o u n d o f a diamond t i p p e d t o o l w h i c h i s d r o p p e d o n t o t h e s u r f a c e t o be e v a l u a t e d . STRESS RELAXATION - t h e d e c a y o f s t r e s s w i t h t i m e when a material i s subjected to a constant s t r a i n . THERMAL CONDUCTIVITY - a c o e f f i c i e n t e x p r e s s i n g a p r o p o r t i o n a l i t y between h e a t f l u x and t e m p e r a t u r e g r a d i e n t ., w i t h i n a m e d i a which, t r a n s m i t s t h e r m a l e n e r g y b y conduction. THERMAL D I F F U S I V I T Y - a h e a t t r a n s f e r p a r a m e t e r d e f i n i n g t h e r a t i o of the thermal c o n d u c t i v i t y t o the thermal /capacitance o f a m a t e r i a l . THERMAL SEAL BREAKING - t h e o p e n i n g , o r b r e a k i n g o f t h e s e r o t i n o u s b o n d o n s e a l e d c o n e s by t h e a p p l i c a t i o n of heat. TOOL - t h e s p e c i f i c o p e r a t i o n a l d e v i c e w h i c h p e r f o r m s t h e b a s i c f u n c t i o n i n a p r o c e s s o r machine. TRANSIENT HEAT FLOW - u n s t e a d y h e a t f l o w d u r i n g t i o n a l p e r i o d b e f o r e and a f t e r s t e a d y flow. -  the t r a n s i state heat  xvi.  UMBO - t h e c e n t r a l p r o t u b e r a n c e o r s p i k e on t h e a b a x i a l s i d e o f t h e t i p o f t h e cone s c a l e o f c e r t a i n c o n i f e r species. UNIT SURFACE CONDUCTANCE - t h e h e a t t r a n s f e r c o e f f i c i e n t c o m b i n i n g t h e e f f e c t s o f h e a t f l o w by c o n v e c t i o n and r a d i a t i o n b e t w e e n a s u r f a c e a n d a f l u i d . VAPOR PRESSURE DIFFERENTIAL - t h e d i f f e r e n c e b e t w e e n t h e vapor p r e s s u r e o f water c o n t a i n e d i n a m a t e r i a l a t a g i v e n temperature and t h e p a r t i a l vapor p r e s s u r e existing i n surrounding a i r . VIABILITY  - t h e p e r c e n t a g e o f a group o f seeds e x p e c t e d t o be c a p a b l e o f p r o d u c i n g n o r m a l g e r m i n a n t s u n d e r optimum c o n d i t i o n s .  VISCO E L A S T I C MATERIAL - a m a t e r i a l d i s p l a y i n g l i q u i d - l i k e and s o l i d - l i k e c h a r a c t e r i s t i c s w h i c h r e s u l t i n the s t r e s s - s t r a i n r e l a t i o n s h i p w i t h i n the m a t e r i a l b e i n g d e p e n d e n t upon t h e r a t e o f d e f o r m a t i o n . WET  BULB TEMPERATURE - f o r p r a c t i c a l p u r p o s e s i s c o n s i d e r e d t o be t h e a d i a b a t i c s a t u r a t i o n t e m p e r a t u r e o f water i n the a i r . I t i s the lowest temperature i n d i c a t e d b y a m o i s t e n e d t h e r m o m e t e r when e v a p o r a t i o n takes place i n a current of a i r .  xvii.  ACKNOWLEDGEMENTS  The  author wishes  t o express h i s s i n c e r e  apprecia-  t i o n to Dr. E.O. Nyborg f o r h i s i n s p i r a t i o n and c o n t i n u i n g guidance throughout  t h i s i n v e s t i g a t i o n , and t o Dr. N.C.  Franz f o r c o o r d i n a t i n g  t h i s i n t e r d i s c i p l i n a r y program between  the Department o f A g r i c u l t u r a l E n g i n e e r i n g  and t h e F a c u l t y  of F o r e s t r y . The author a l s o wishes  to express h i s thanks to  Dr. P.G. Haddock, Dr. 0. S z i k l a i , and P r o f e s s o r E.L. Watson f o r t h e i r i n t e r e s t i n the i n v e s t i g a t i o n and t o Mr. J . K o n i s h i and Miss M. H e n r i c h , B.C. F o r e s t S e r v i c e , f o r t h e i r technical  assistance. Thanks i s extended  to Mrs. E. Stewart  f o r typing  of the manuscripts. The  author wishes  B r i t i s h Columbia  to express h i s g r a t i t u d e t o t h e  F o r e s t S e r v i c e , whose f i n a n c i a l  made t h i s study p o s s i b l e .  assistance  I.  INTRODUCTION  Present techniques f o r the c o l l e c t i o n of c o n i f e r  seeds  for reforestation  and e x t r a c t i o n  a r e expensive and time  c o n s u m i n g due t o t h e e x t e n s i v e u s e o f m a n u a l o p e r a t i o n s . transporting  o f b u l k y seed b e a r i n g cones  to central, extractories  further  The  over long d i s t a n c e s  adds t o t h e h i g h c o s t o f t h e  seed. Conventional conifer  seed e x t r a c t o r i e s  form o f l a r g e permanent i n s t a l l a t i o n s dried,  and e x t r a c t e d by t u m b l i n g .  extractories treatment. such  of extracted It  extraction operating Further,  and o p e r a t i n g c o s t s o f  i s apparent that e x t r a c t i o n  system,  and t h a t  the extractor  f o r conifer  tation  of the p r i n c i p l e  appears  c o s t s c a n be  reduced  shipping  at regional  costs  c a n be r e d u c e d b y  cone c o l l e c t i o n mechanical  stations. extraction  s e e d c a n be d e v e l o p e d t h r o u g h t h e a d a p of threshing,  as i s used  f o r extraction  adaptation of threshing  to conifer  seed  of a g r i c u l t u r a l The  small  continuous flow mechanical  i t i s probable that a portable  system  of  for kiln  seed.  t h e use o f an e f f i c i e n t ,  tion  capital  are k i l n  The c a p a c i t y o f t h e s e  i n s t a l l a t i o n s must b e a b s o r b e d b y a r e l a t i v e l y  quantity  by  i n which cones  i s l i m i t e d due t o t h e t i m e r e q u i r e d Thus t h e l a r g e  take the  seeds.  simple f o r the soft-coned species.  the hard-coned  s p e c i e s may be more d i f f i c u l t ,  extrac-  Threshing while the  2.  greatest  c h a l l e n g e w o u l d a p p e a r t o be  hard-coned  species, having  the  cone s c a l e s t o g e t h e r  for  use  in British  s y s t e m must be It  capable  operate  on  latifolia extract  this  reason,  of  Englem).  cone c r o p h a r v e s t e d  To  be  the  bond  suitable  a l l three types  of  cones. operate  adjusted  to  cones. i n v e s t i g a t i o n of the  seeds d e a l t w i t h  confined to lodgepole  g r o u p , and  Northwest.  of handling  types  the  seed e x t r a c t i o n  t h e h a r d - c o n e d g r o u p , c a n be  of c o n i f e r  been l a r g e l y  i n a closed position.  t h a t a t h r e s h i n g system which can  the other For  extraction  on  e x t r a c t i o n of  s e r o t i n o u s s c a l e s e a l s , which  Columbia, a mechanical  i s a l s o apparent  successfully  the  pine  This species f a l l s  in this  mechanical  report  has  (Pinus c o n t o r t a i n the d i f f i c u l t  c o n s t i t u t e s a s i g n i f i c a n t p o r t i o n of f o r r e f o r e s t a t i o n purposes  i n the  var. to the  Pacific  II.  CURRENT SEED EXTRACTION TECHNIQUES  Virtually currently  i n use  tumbling.  a l l conifer  o p e r a t e on  seed e x t r a c t i o n  the p r i n c i p l e  D r y i n g o f the cones  causes  free  after Kiln  extractories  installations forms: dried  and may  (i) Separate in thin  tumbling  be  l a y e r s on  and  and  stationary  after  deflection shakes  the  taken p l a c e . large,  permanent  i n t o t h e two  following  racks i n the k i l n  the d r y i n g  t u m b l i n g , where  treatment.  the cones  are  and  ( i i ) Com-  a r e tumbled  during  treatment. is strictly  on a b a t c h  basis  systems u s i n g s e p a r a t e o p e r a t i o n s , w h i l e systems u s i n g  simultaneous o r on  t r e a t m e n t may  a continuous  the system  trolled  o p e r a t e e i t h e r on  and  treatment  a c c o r d i n g t o t h e cone s p e c i e s .  through  into  reduce  caused  cone d r y i n g  rate  d u r a t i o n are  I n some  steam, o r water m i s t , i s i n j e c t e d  temperatures.  pass  basis,  rate.  temperatures  the r a p i d  a batch  f l o w b a s i s where t h e c o n e s  a t a steady  'Kiln  air  and  t u m b l i n g , where t h e c o n e s  P r o c e s s i n g o f t h e cones in  has  classified  drying  treatment  are g e n e r a l l y  drying  i s performed  bined drying kiln  scale deflection  of k i l n  the outward  o f t h e cone s c a l e s , w h i l e t h e t u m b l i n g seeds  systems  the k i l n by  con-  installations, i n order to  the h i g h dry  bulb  Without kiln-tumbling  extraction  the  seeds  for  the extraction  less  r e g a r d f o r economic c o n s i d e r a t i o n s , t h e  required  i s effective  of the soft-coned species. o f seeds  satisfactory.  viability  system  This  believed  i n extracting  The u s e o f t h i s  o f t h e hard^-coned  technique  s p e c i e s has been  i s due c h i e f l y t o t h e r e d u c e d  t o be c a u s e d b y t h e h i g h k i l n  t o u n s e a l t h e cones, and t h e poor  seed  temperatures  r e c o v e r y o f seeds  caused by t h e i n c o m p l e t e cone s c a l e d e f l e c t i o n  frequently  encountered. A l t h o u g h many r e p o r t s o u t l i n e and  operation of k i l n  little for  conclusive  extraction  i n detail  systems  ( 7 , 9, 4 1 , 4 3 ) *  information i s available  and t h e f a c t o r s  affecting  the design  on t h e t e c h n i q u e s  seed e x t r a c t i o n o f s e r o t i n o u s  cones. The  use o f h i g h temperature  e x t r a c t i o n was o u t l i n e d a drying  c a n withstand', and t h e l o w e s t  that w i l l  content w i t h i n a kiln of  d r y t h e seeds  the desired  temperature  o f 170°F  30% h a d b e e n f o u n d s a f e  c o n e s when t r e a t e d  *  i n 1941 by R i e t z  f o rconifer  ( 4 1 ) . He  schedule u s i n g the h i g h e s t temperature  green cones humidity  kilns  which the  storage moisture  He r e p o r t e d t h a t  (76.7°C) and a r e l a t i v e f o r jack pine  recommended  relative  to the desired  drying period.  (Pinus  humidity  banksiana)  f o r 5 t o 6 hours.  Numbers i n p a r e n t h e s e s r e f e r the L i t e r a t u r e C i t e d .  seed  to references l i s t e d i n  Baldwin  (7) i n 1942 i n d i c a t e d  optimum m o i s t u r e c o n t e n t o f s e e d s tance  to elevated  temperatures,  that  f o r both  t h e r e i s an  s t o r a g e and  a n d recommended t h e l o w e s t  d r y i n g temperature  and t h e s h o r t e s t t r e a t m e n t time which  yield  seed r e l e a s e by t h e cones.  satisfactory  described  several designs f o r k i l n  equipment, b u t noted t h a t the  range  of drying  resis-  drying  He  will  also  and e x t r a c t i n g  t h e r e was c o n s i d e r a b l e l a t i t u d e i n  conditions  recommended  f o r optimum seed,  extraction. Edwards for  extraction  t u r e o f 140°F  o f l o d g e p o l e p i n e o f 6 t o 8 hours  temperatures  a s h i g h a s 160°F  f o ri n i t i a l  temperatures  tempera-  (71°C) f o r  t o complete  from  at  He a l s o r e p o r t e d t h a t  l o d g e p o l e p i n e cones  drying, o f such cones  resulted  He  before the higher cone  (47) 1973, r e p o r t e d t h a t  extracted  (43).  2 0 ° t o 3 0 ° lower would be  d r y i n g o f damp c o n e s  are applied  Wang  60°C.  at a  c o n e s were r e p o r t e d i n 1971 b y S c h u b e r t  n o t e d , however, t h a t t e m p e r a t u r e s used  treatment  (60°C).  Kiln serotinous  (18) i n 1955 recommended a k i l n  after  opening. seeds  are commercially  a 16 h o u r  treatment  r e w e t t i n g and a d d i t i o n a l  i n further  kiln  s e e d s b e i n g removed  from t h e cones, b u t t h a t t h e s e had a reduced g e r m i n a b i l i t y as compared w i t h t h e s e e d s Pitkin a combination k i l n  from t h e f i r s t  kiln  treatment.  (39) i n 1961 r e p o r t e d t h e d e v e l o p m e n t and e x t r a c t o r  i n which  t h e cones  of  were  tumbled this  during the k i l n  combination  elevated by  temperature  the cone,  without  i s that  drying process. the seeds  of the k i l n  Brisbin  (37)  as t h e y a r e  severe heat  r e d u c i n g the q u a n t i t y of seed N y b o r g and  advantage  a r e removed f r o m  as s o o n  hence r e c e i v e a l e s s  The  viability  Their  due  They p r o p o s e d  the released  treatment  recovered. ,  i n 1973  investigated  h e a t t r a n s f e r mechanism o f t h e f l a s h h e a t i n g o f p i n e cones.  of  report expressed concern  the  lodgepole  for reduction i n  t o t h e r m a l s e e d damage d u r i n g k i l n  treatments.  a t e c h n i q u e o f f l a s h h e a t i n g o f s e r o t i n o u s cones  w h e r e b y t h e r e s i n o u s b o n d c o u l d be b r o k e n  by m e l t i n g , w i t h o u t  exposing  Experimental  the  seeds  to h i g h temperatures.  c o n f i r m e d t h a t the cone s c a l e s o f l o d g e p o l e p i n e cones r e l e a s e d by 300°F  o f the cones  to a i r at  they found  so t r e a t e d was  the pre-treatment  t h a t the temperature  r a i s e d by approximately  temperatures  of the  cones.  can  be  approximately  (149°C) f o r a p e r i o d o f a p p r o x i m a t e l y 15  Furthermore, cones  exposure  results  seconds.  of the 15°F  seeds  (8°C)  in  above  III. The alternate tions  object  methods o f  this project  conifer  the  goal  of  of  capable of handling placed  on  the The  project  are  A.  To  seed  of  modifica-  Because of  from s e r o t i n o u s  lodgepole  the  cones,  system was  pine.  i n v e s t i g a t i o n of  this  follows:  investigate of  and  p a r t i c u l a r emphasis  s p e c i f i c areas of  as  investigate  a mechanical e x t r a c t i o n  a l l species,  extraction  to  techniques.  extracting  achieving  was  seed e x t r a c t i o n  to e x i s t i n g seed e x t r a c t i o n  added d i f f i c u l t i e s and  of  OBJECTIVE  the  the  physical  and  mechanical  cones o f PinUs c o n t o r t a  Englem,  (lodgepole pine)  var.  f o r the  properties  latifolia  purpose  of  identifying: (i)  the  f a c t o r s which i n f l u e n c e from s e r o t i n o u s  (ii)  the  the  To  design, of  e f f e c t of various  f a b r i c a t e and  a portable  extraction  cones;  seed  cone  treatment  viability.  t e s t the  continuous  system.  in  cones;  t e c h n i q u e s on B.  extraction  f a c t o r s which a f f e c t s e a l r e l e a s e serotinous  (iii)  seed  p r i n c i p a l components  flow mechanical  seed  8.  IV. The  SYSTEMATIC DESIGN PROCEDURE  d e s i g n and  development  study  f o l l o w s t h a t u s e d by P e r s s o n  (36),  and  toward  t h e d e s i g n and  schematically The  at  two  testing The  of a machine system  steps of t h i s  systematic procedure  levels.  In the f i r s t  2) o f p o s s i b l e  initial  and  final  is initially  sequences  and p r o d u c t , and  tional and  i s then s e l e c t e d  other pertinent  i s a n a l y z e d i n terms  In  tool  carried flow  individual  on  the  basis  of machine second  treatment d e v i c e , or  of i t s function  and o p e r a t i n g  tool  analysis  i n the process are  complete  opera-  determined  i s undertaken. involving  the p r o c e s s i n g of  i n f o r m a t i o n on t h e  step i n t h i s procedure  i s therefore  physical-  available.  the  determina-  tion  of the e n g i n e e r i n g p r o p e r t i e s necessary t o complete  tool  analysis.  individual  tools  out  charts  the  In the  and m e c h a n i c a l p r o p e r t i e s o f t h e p r o d u c t i s n o t third  are out-  limitations  criteria.  most d e s i g n p r o j e c t s  biological materials,  The  handle  i n p u t c o n d i t i o n s , o u t p u t c o n d i t i o n s and  requirements of each  preliminary  to  c o n d i t i o n s of the product are c o n s t r u c t e d .  phase o f the p r o c e d u r e , each  The  Shikaze  oriented  o f o p e r a t i o n between  economic c o n s i d e r a t i o n s , m e c h a n i c a l  principle.  and  procedure  level of analysis,  The m o s t a p p r o p r i a t e s e q u e n c e  "tool"  and N y b o r g  in this  i n F i g u r e 1.  (Figure  of  (38)  t a k e s t h e form o f a s y s t e m a t i c p r o c e d u r e  biological materials. lined  procedure used  This  allows the mathematical  o f t h e p r o c e s s t o be  models of  completed.  the  the  ANALYSIS OF PROCESS  ANALYSIS OF TOOLS  r ANALYSIS OF PRODUCT  f MATHEMATICAL MODELS OF TOOLS  f DESIGN AND TESTING 0F TOOLS  t DESIGN OF CONTROL AND POWER  1 SYNTHESIS OF MACHINE  EVALUATION OF MACHINE  Figure  1.  Steps  i n systematic  design  procedure.  10.  FINAL CONDITION  INITIAL CONDITION  MACHINE SYSTEM  TOOL 1  _j—i  TOOL 3  TOOL 2  ALTERNATE MACHINE SYSTEM —~-  TOOL 8  Figure  Defining  2 The  design, tools  the a l t e r n a t i v e processes  step  i n the procedure i n v o l v e s the  f a b r i c a t i o n , t e s t i n g and c a l i b r a t i o n o f t h e i n d i v i d u a l  o f t h e proposed machine system.  progressive of  fourth  TOOL 10  TOOL 9  redesigning  t o o l performance  This  of individual tools  step  includes the  f o r optimization  as i s f o u n d n e c e s s a r y by t h e t e s t i n g  procedures. The individual  final  step  involves  t o o l s i n t o t h e m a c h i n e , and p r o v i d i n g  mechanisms a n d power s y s t e m s r e q u i r e m e n t s and m a t e r i a l field  tested  durability.  the i n c o r p o r a t i o n  to evaluate  appropriate  properties.  of the  the c o n t r o l  to the operational  The m a c h i n e i s t h e n  i t s f u n c t i o n a l p e r f o r m a n c e and  11.  The undertaken  research project  following this  outlined  i n this  r e p o r t was  general design procedure.  Although  the magnitude o f the development o f a complete c o n i f e r extraction  system capable  beyond t h e scope o f t h i s and  o f h a n d l i n g s e r o t i n o u s cones i s research project,  d e v e l o p m e n t work r e p o r t e d h e r e  to the o u t l i n e d The report,  which a f f e c t mechanical  for breaking flow t o o l cones.  were o r g a n i z e d  according  m a j o r p o r t i o n o f t h e work d e a l t w i t h  and m e c h a n i c a l  work i s l i m i t e d  the investigations  procedure.  therefore, deals with  physical  seed  the i n v e s t i g a t i o n  of the  properties o f lodgepole pine seed  extraction.  t h e s e r o t i n o u s cone s c a l e  cones  The m a c h i n e  t o the development o f a continuous  f o r mechanical  i n this  seals,  flow  and a  e x t r a c t i o n o f seeds from  design tool  continuous  the unsealed  12.  • V.  COMPARISON OF  . As  noted e a r l i e r ,  reforestation  purposes  after  efficiency  they reach the  achieved  extraction  involved  i n converting  collection  the  the  cost  from the  ties  of  cones  filled  large  of  cost  and  of  a  kiln  tumbling  cones a t the  treatments  c h a r a c t e r i s t i c of  capital  required  regional  the  nursery. kiln  extrac-  t i m e s w h i c h the. c o n e s Kiln  from m e c h a n i c a l e x t r a c t i o n because  waiting  of k i l n  period  investment  to  24  for  hours per  the  batch.  seed i s f u r t h e r  large q u a n t i t i e s of extractory,  i n storage  type of  I  required  extracted  stations to  for this  system  steps  seeds a t the  l a r g e number o f  transporting  collection  be  mechanization.  unit operations  w h i c h commonly r u n s f r o m 12 The  the  most n o t a b l e  o f the  large  s t a t i o n can  c o m p a r i s o n i s b a s e d on  seed  varies greatly  length  drying,  by  processing  for  improve-  h a n d l e d , most o f which, a r e m a n u a l l y p e r f o r m e d .  extraction of  to the  flow; m e c h a n i c a l s e e d e x t r a c t i o n  The  s y s t e m shown, i s t h e  must be  and  s t a t i o n i n t o semi c l e a n e d The  seed  A considerable  separate drying  a continuous 3.  the  of  tree  in part,  r e g i o n a l cone c o l l e c t i o n  comparison of  shown i n F i g u r e  ting  of handling  system u s i n g  to those of  procurement of  employed.  t h r o u g h a modest l e v e l A  is  the  MECHANICAL EXTRACTION  i s e x p e n s i v e , due  number o f m a n u a l o p e r a t i o n s ment i n t h e  KILN AND SYSTEMS  and  operation.  bulky as  raised material  well  processing  as  by  facili-  13.  A p o r t a b l e mechanical e x t r a c t i o n system one  exemplified  i n Figure  3 differs  systems i n b o t h i t s o p e r a t i n g operation. the  In t h i s  case,  seeds are The  l o c a t i o n and  i t s method  s t a t i o n s , and  transported  most n o t a b l e  from t h a t  only  the  ability  to process  feature of a continuous  c o n e s on  of out  at  semi-  point.  mechanical e x t r a c t i o n system i s i t s h i g h p r o d u c t i o n The  the  extraction  seed e x t r a c t i o n i s c a r r i e d  r e g i o n a l cone c o l l e c t i o n  cleaned  from k i l n  s u c h as  a continuous  flow  flow capacity.  basis  enables  i  this  relatively  production It  s m a l l p o r t a b l e p i e c e o f equipment t o have  capacity equivalent  to a l a r g e commercial  i s anticipated that a portable  capacity  i n the The  order  o f one  continuous  handling  bushel  flow  s y s t e m makes i t p a r t i c u l a r l y  cone t h r e s h e r of cones per  processing  extractory.  c o u l d have  the  materials  systems which g r e a t l y reduce the manual l a b o u r  require-  ment . The costs achieved exemplified lodgepole  magnitude o f by  savings  in transportation  e x t r a c t i o n of seed at r e g i o n a l depots i s  i n that  pine  the  fact  that approximately  cones y i e l d  one  pound o f  220  seeds.  a  minute.  p e r f o r m e d by  s u i t e d t o automated  a  pounds  of  14MECHANICAL EXTRACTION  KILN EXTRACTION  CONVEY CONES TO EXTRACTOR  LOAD TRUCK  TRANSPORT CONES TO EXTRACTORY  METER INTO EXTRACTOR  UNLOAD TRUCK  STORE  EXTRACT  CONES  CLEAN  TRANSPORT SEEDS TO NURSERY  CONVEY TO KILN  i  SPREAD ON nRYTisrr;  R A C K S  DRY CONES  CONVEY TO TUMBLER METER INTO TUMBLER  *  I n i t i a l conditions —cones at r e g i o n a l depot  *•*  Final conditions — clean seeds a t n u r s e r y  EXTRACT  CLEAN  TRANSPORT SEEDS TO NURSERY  Figure  3.  Flow c h a r t s comparing s e p a r a t e k i l n d r y i n g and tumbling e x t r a c t i o n t o mobile mechanical e x t r a c t i o n .  P A R T  P H Y S I C A L  L  O N E  P R O P E R T I E S  O D G E P O L E  P I N E  O F  C O N E S  16.  VI  PHYSICAL PROPERTIES AND CHARACTERISTICS WHICH A F F E C T MECHANIZATION OF SEED EXTRACTION Over the p a s t f i f t y  America  has  grown f r o m a few  where many m i l l i o n s year i n B r i t i s h  During t h i s gained tion  of conifer  of  plantations  point each  alone..  factors  affecting  been  the  f o r r e f o r e s t a t i o n purposes.  producOnly  a  o f i n f o r m a t i o n h a s , however, been r e p o r t e d on  r e c o v e r e d seed  influence  seed e x t r a c t i o n  and  the  quality  (35).  A review of the l i t e r a t u r e and  to a  time a w e a l t h o f knowledge has  seedlings  f a c t o r s which  properties  i n North  a r e s p e n t on r e f o r e s t a t i o n  i n t h e t e c h n i q u e s f o r and  small quantity the  isolated  of d o l l a r s  Columbia  years r e f o r e s t a t i o n  c h a r a c t e r i s t i c s which  dealing with affect  the  the e x t r a c t i o n  of  l o d g e p o l e p i n e i s summarized. 1.  Fruiting The  r e q u i r e two  female  seed b e a r i n g cones  of lodgepole pine  years to develop to maturity.  the  f l o w e r i s d e v e l o p e d , and  the  development  the  f a l l o f the second y e a r , m a t u r a t i o n o f the cones  their  seeds has The  sulting  pollination  In the f i r s t  takes place, while  of the o v a r y begins i n the second y e a r .  been completed opening  dispersal  year  By  and  (44).  o f the cones  at this  o f seed i s dependent  time  and  the r e -  upon t h e p r e s e n c e  of  17.  s e r o t i n o u s s e a l s on the cone s c a l e s  (12).  Unsealed or  s e r o t i n o u s cones open a c c o r d i n g t o t h e i r m o i s t u r e dispense  most o f t h e i r seed i m m e d i a t e l y  non-  content  and  w h i l e s e a l e d cones  remain on the t r e e , and can r e t a i n t h e i r seeds f o r many y e a r s w i t h l i t t l e r e d u c t i o n i n seed v i a b i l i t y The  ( 1 , 14,  magnitude o f a n n u a l seed c r o p s o f  15). lodgepole  pine i s h i g h l y v a r i a b l e , but the a b i l i t y t o r e t a i n v i a b l e seeds i n s e r o t i n o u s cones on the t r e e e n s u r e s t h a t a o f seed i s a v a i l a b l e a t a l l times natural regeneration.  The  source  f o r cone h a r v e s t i n g o r f o r  number o f cones on a mature t r e e  v a r i e s from a few hundred t o a few thousand ( 1 6 ) , and  the  average number o f seeds p e r cone i s f r e q u e n t l y i n e x c e s s o f f o r t y seeds 2.  (12).  S e r o t i n o u s Cone S c a l e Lotan  Seals  (29) r e p o r t e d t h a t the term " s e r o t i n o u s " i s  used t o d e f i n e the c o n d i t i o n o f the cones o f c e r t a i n c o n i f e r s p e c i e s on  which the s c a l e s are bonded t o g e t h e r by a  s e a l l o c a t e d near the t i p of the s c a l e s .  The  resinous  term i s d e r i v e d  from the L a t i n s e r u s , meaning l a t e , and r e f e r s t o t h e  fact  t h a t the b o n d i n g o f the s c a l e o c c u r s  l a t e i n the development  o f the cones, j u s t p r i o r t o the f u l l  maturation.  This c h a r a c t e r i s t i c i s reported s e v e r a l s p e c i e s of P i n u s , i n c l u d i n g : P. b a n k s i a n a , and P.  (8,46) t o - o c c u r i n  Pinus c o n t o r t a ,  P. s e r o t i n a , P. r i g i d a , P. r a d i a t a , P.  atteniiata.  clausa,  18.  The lodgepole but  pine not only w i t h  also with  a tree  serotinous characteristic  (29).  serotinous  trees w i t h i n a stand Crossley  (14)  high  seed  temperatures  rapid  breaks  the  variety,  cone t o cone  on  non-  seeds i n almost  every  s e r o t i n o u s cones r e q u i r e exposure  i n o r d e r t o b r e a k t h e s e a l s and  characteristic  by w i l d the  open and  p l a y s a major r o l e  initiate  fire.  release a bountiful  serotinous  and  identify  cones w i l l  o f the  fire  those which are not after  consumed,  the  fire  the be  s t u d i e d the  f a c t o r s which determine  sealed.  Both chemical  the  controlling  the p o s s i b i l i t y  the.flexural  whether o r not  and  anatomical  factor. of the  thirty  The temperature  of  f o r c e s o f the  was  times  opening  the  that seal breaking  took  He  determined  s e r o t i n o u s bonds i s s t r e n g t h of the  o f s e a l e d c o n e s by  r e p o r t e d in•1910. by  analyses  seals being  cone s c a l e s .  flexural  the  H i s work d i d ,  scale  f o r c e r e q u i r e d to break t y p i c a l  approximately  characteristics  non-serotinous: lodgepole p i n e cones i n o r d e r  however, r u l e o u t  indicated  the heat  supply o f seed  ( 2 9 ) , i n 1970,  failed t o i d e n t i f y  the  case,  been  (29). Lotan  b r o k e n by  In t h i s  i n the  p i n e i n a r e a s w h i c h have  s e a l s o f the c o n e s and  passed  that  from  and  r e p o r t e d t h a t open o r  r e g e n e r a t i o n of Lodgepole  ravaged  to  location  dispersal. This  has  and  c o n e s r e l e a s e some o f t h e i r  month o f the y e a r , w h i l e to  geographic  varies within  raising  Clements  (12)  the  scales.  cone  who  p l a c e at temperatures  of  19.  45°C  t o 50°C. Cameron  which  (11) i n 1953 m e a s u r e d  s i x cones o f lodgepole  f o u n d a r a n g e f r o m 44.5°C He a l s o m e a s u r e d  pine  melting  o f 45.3°C.  t e m p e r a t u r e o f an e t h e r  extraction  area  (45) f o u n d , i n 1969, t h a t  was t h e l o w e s t t e m p e r a t u r e a t w h i c h  pine  s c a l e s and  a l l cone  f o r t h e two t e s t s . 140°F  scales of  (13) i n 1956 s t u d i e d t h e o p e n i n g o f  cones under t h e i n f l u e n c e o f s o l a r r a d i a t i o n .  f o u n d t h a t a i r t e m p e r a t u r e s up to. 3.5 f e e t above of  80°F  (26.7°C)  serotinous radiation  could  Hebb pond  result  seals provided  that direct  lodgepole  bond  lodgeHe  t h e ground  heating  t o break  sunlight or reflected  could  add a d d i t i o n a l h e a t .  treatment of serotinous  cones t o break t h e  o f t h e s c a l e s h a s b e e n p r o p o s e d i n a few i n s t a n c e s .  (24) i n 1954, r e p o r t e d pine  i n sufficient  f r o m some n e a r b y s u r f a c e Special  resinous  (60°C)  open. Crossley  pole  o f cone  t e m p e r a t u r e s o f 45°C and 46°C  Thompson  p i n e would  i n a water b a t h and a mean v a l u e  o f m a t e r i a l removed f r o m t h e b o n d obtained  opened  t o 49°C, w i t h  the melting  the temperature a t  after  complete opening o f t h e cones o f  a s a c k f u l o f t h e c o n e s were p l a c e d  of b o i l i n g water  f o r "a moment".  The e f f e c t  i h a tank  on s e e d  viability  was n o t r e p o r t e d . Meseman recovery the  cones  from j a c k p i n e  and c e r t a i n o t h e r  improved species  seed by  i n a s o l u t i o n c o n s i s t i n g o f one p a r t J a v e x  chlorite bleaching was h e l d  (32) i n 1973, r e p o r t e d  s o l u t i o n ) t o 20 p a r t s w a t e r .  a t a t e m p e r a t u r e o f 150°F  (65.5°C)  submerging (hypo-  The s o l u t i o n  a n d c o n e s were  20.  treated  f o r 1 t o 2 minutes,  145°F f o r 6 t o 12 h o u r s . of t h i s  temperatures that  cones  viability.  (10) i n 1960 s t u d i e d  on t h e c o n e s  and seeds  up t o 1 3 0 0 ° F  Nyborg and B r i s b i n thermal gradient w i t h i n  was  the effects  of jack pine.  opened i n a m a t t e r o f seconds  oven a t temperatures  a blast  t h e y were d r i e d a t  No r e f e r e n c e was made t o t h e e f f e c t  t r e a t m e n t on s e e d Beaufait  a f t e r which  of hot a i r .  required  t o break  of high  He  found  when p l a c e d i n a n  (704°C).  (37) i n 1974, e v a l u a t e d t h e  l o d g e p o l e p i n e cones b r i e f l y  They found t h a t  15 s e c o n d s  t h e s e a l s o f cones  h e a t e d by  o f treatment  s u b j e c t e d t o an a i r  blast  o f 312°F  (155°C), and t h a t t h e temperature  seeds  a t t h e t i m e o f s e a l r e l e a s e was 1 4 ° F ( 7 . 8 ° C ) .  mathematical  t r a n s i e n t heat  flow a n a l y s i s  temperatures  f o r such t r e a t m e n t s c o u l d be f a i r l y  rise  indicated  of the A  that  seed  accurately  estimated. 3.  S c a l e Opening The  and  Mechanism  o p e n i n g mechanism o f t h e s c a l e s o f c o n i f e r  t h e r e l a t i o n s h i p between s c a l e d e f l e c t i o n  c o n t e n t has been d i s c u s s e d i n t h e l i t e r a t u r e investigators  with  of several  s p e c i e s , , none h a v e d e a l t  reports  specifically  lodgepole pine. Harlow, Cote  cell  and cone m o i s t u r e  (17, 19, 21, 26, 3 3 ) . A l t h o u g h t h e s e  have d e a l t w i t h s e v e r a l  cones,  structure  and Day ( 2 1 ) , i n 1964, s t u d i e d t h e  o f t h e cone s c a l e t i s s u e  and  r e p o r t e d t h a t cone s c a l e s  The  inner or abaxial  layer  of five  species of pine,  a r e made up o f two d i s t i n c t  i s made up o f wood f i b r e s  which  layers.  21.  e x t e n d from t h e cone a x i s , w h i l e t h e o u t e r o r a d a x i a l l a y e r i s made up o f s h o r t r e c t a n g u l a r t h i c k w a l l e d c e l l s .  They found  that during d r y i n g , the f i b r o u s t i s s u e displayed n e g l i g i b l e lengthwise  s h r i n k a g e , w h i l e t h e o u t e r t i s s u e s h r a n k , upon  d r y i n g , from  10 t o 36 p e r c e n t ,  depending upon t h e s p e c i e s .  A comprehensive s t u d y o f t h i s was conducted by A l l e n and Wardrop  mechanism  (3) i n 196 4, and d e a l t w i t h  the o p e n i n g and s h e d d i n g o f f e m a l e cones o f P i n u s r a d i a t a . I n order t o e x p l a i n the hygroscopic  mechanism o f t h e a d a x i a l  v a s c u l a r t i s s u e and the a b a x i a l s c l e r e n c h y m a t i s s u e o f t h e cone s c a l e , t h e y s t u d i e d t h e s e t i s s u e s by means o f e l e c t r o n microscopy.  They found t h a t i n t h e v a s c u l a r t i s s u e s , t h e  c e l l u l o s e m i c r o f i b r i l s , w h i c h make up t h e s t r u c t u r a l p o r t i o n o f the c e l l w a l l s , a r e o r i e n t e d l a r g e l y i n l i n e w i t h t h e l o n g i t u d i n a l axis of the scale.  I n t h e s c l e r e n c h y m a t i s s u e s , however,  the m a j o r i t y o f t h e m i c r o f i b r i l s o f t h e i n d i v i d u a l c e l l s a r e oriented p a r a l l e l t o the transverse axis of the s c a l e s . reported that since shrinkage i n a d i r e c t i o n perpendicular  They  of c e l l wall material i s greatest  t o the d i r e c t i o n of m i c r o f i b r i l  o r i e n t a t i o n , the d i f f e r e n t i a l shrinkage  during drying  ofthe  two l a y e r s o f cone s c a l e s can be e x p l a i n e d i n terms o f t h e p r e d o m i n a n t o r i e n t a t i o n o f t h e m i c r o f i b r i l s w i t h i n t h e s e two tissues.  The l o n g i t u d i n a l s h r i n k a g e  during drying of the  v a s c u l a r t i s s u e o f t h e cone s c a l e s measured i n t h i s i n v e s t i g a t i o n was r e p o r t e d t o be 1.5%, w h i l e t h a t o f t h e s c l e r e n c h y m a  tissue 4.  o f t h e same s c a l e s was  found  t o be  Cone O p e n i n g a t M a t u r i t y The  conifer  opening  species  o f the seed b e a r i n g cones  i s • attributed  o f t h e cone s c a l e Allen physiology shedding  (3, 21,  anatomy o f t h e c o n e s  of Pinus  that  complete, t h e m o i s t u r e  e s t a b l i s h e d by  until  o p e n i n g , and  radiata,  subsequent  examined  cones  t h e w a t e r economy o f t h e o v e r a l l  from the branch  d e p e n d e n t upon a t m o s p h e r i c its  moisture  5.  R e s i s t a n c e to Thermal  the  of r e s i n  into  develops  which i n h i b i t s the cone.  cone  was  tree.  Upon  i n the  tissue  t h e movement  This isolation  l e a v e s the cone t o  be  c o n d i t i o n s f o r the e s t a b l i s h m e n t of  Damage  many r e f e r e n c e s  have b e e n made throughout, t h e which c o n i f e r  (2, 7,  literature  seeds  can  10,  13,  41,  47)  r e g a r d i n g t h e maximum  tolerate,  little  detail  b e e n p r o v i d e d w i t h r e s p e c t t o t h e t y p e and d u r a t i o n o f  treatment  of  content.  Although  has  the  the  the development o f the  the cone from i t s s o u r c e o f m o i s t u r e  temperature  and  content of f r u i t i n g  t h e b a s e o f t h e cone p e d u n c l e  of moisture  studied  stage.  m a t u r a t i o n , however, a b a r r i e r at  sclerenchyma  They d e f i n e d f o u r s t a g e s i n t h e  i n each  They found  the a b a x i a l  ( 3 ) , i n 196 4,  o f cone m a t u r a t i o n and  m a t u r a t i o n o f the cones  and  shrinkage  30).  and Wardrop  o f the s c a l e s .  o f most  to the d i f f e r e n t i a l  between t h e a d a x i a l v a s c u l a r t i s s u e  was  15%.  referred  to.  Additionally,  r e s e a r c h e r s have  the  shown  little  c o n c u r r e n c e on t h e s a f e l i m i t  t r e a t m e n t o f seeds.  f o r h i g h temperature  Most a u t h o r s d e a l i n g w i t h t h i s a s p e c t  have c i t e d a s i n g l e - m o r t a l i t y - t e m p e r a t u r e f o r v a r i o u s s p e c i e s , w i t h no r e f e r e n c e t o seed m o i s t u r e c o n t e n t o r d u r a t i o n o f h i g h temperature t r e a t m e n t .  Research on a g r i c u l -  t u r a l seeds has shown, however, t h a t t h e l e t h a l  temperature  f o r seeds i s dependent upon b o t h m o i s t u r e c o n t e n t and d u r a t i o n of h e a t i n g . Allen  (2) i n 195 7 r e p o r t e d t h a t Douglas f i r seed  which had been p r e c u r e d showed no i l l e f f e c t when k i l n a t 122°F  (50°C) b u t a t 140°F  or more were o b s e r v e d .  dried  (60°C) l o s s e s i n v i a b i l i t y o f 20%  Immature cones showed heavy  losses  when d r i e d a t 122°F a f t e r p r e c u r i n g , and a t 104°F (40°C) when p l a c e d i n t o t h e k i l n i n a green s t a t e . Woodforde and Lawton (52) found i n 1965 t h a t t r e a t ments o f one hour d u r a t i o n a t t e m p e r a t u r e s as low as 47°C initiated  d e p r e s s i o n o f t h e g e r m i n a t i o n o f c a r r o t seeds.  t h r e s h o l d temperature was r e p o r t e d t o be s l i g h t l y  This  r a i s e d as  seed m o i s t u r e c o n t e n t was reduced t o a p p r o x i m a t e l y 12%. B e a u f a i t (10) i n 1960 s t u d i e d h i g h t e m p e r a t u r e t r e a t m e n t f o r t h e purpose o f b r e a k i n g t h e s e r o t i n o u s s e a l s o f j a c k p i n e cones.  He r e p o r t e d t h a t when cones were t r e a t e d  a t 1300°F (704°C) t h e seeds i n cones w h i c h i g n i t e d d i d n o t remain v i a b l e b u t t h a t t h e seeds i n cones w h i c h d i d n o t i g n i t e e x h i b i t e d very l i t t l e reduction i n germinative capacity.  Watson in  sealed  (60°C)  containers.  i n 1965 He  f o r 6 hrs caused  c o n t e n t was less  (48)  than  reduction  found t h a t  complete  above 15% w.b.,  9%,  a temperature  the r a t e  initial  after  that  a period  capacity  was  f o u n d t o be  140°F  i f moisture  content  f o r 10 h o u r s  work i n 1970,  the r e d u c t i o n  data reported  seed s p e c i e s .  He  relationship  Watson  by  He  which  and  was  t o o k on  rate  caused  (49)  was no  a  reported  logarithmic  a t a slow  confirmed t h i s  of germination  the f a c t  "initiation  content  r e l a t i o n s h i p by  other investigators using that  other  the concept  of  o f damage" a r e i l l  the  of the l o s s of v i a b i l i t y  rate  of loss of germination  upon s e e d m o i s t u r e  d i d not r e f l e c t  rate i n  a more r a p i d  rapid reduction  dependent  also c l a r i f i e d  " k i l l i n g temperature" terms  The  to i n i t i a t e  treatment temperature.  replotting  6.  o f 140°F  of treatment.  the time  defined  loss of v i a b i l i t y  p h a s e o f t r e a t m e n t , and  and  a  of  o f l o s s o f g e r m i n a t i o n c a p a c i t y was  capacity  and  a temperature  o f wheat  i n germination.  function o f t i m e , and the  the h e a t i n g  but i f the m o i s t u r e  Continuing this that  studied  time-temperature  of  seeds.  R e s i s t a n c e t o M e c h a n i c a l Damage M e c h a n i c a l damage i n s e e d s  (34)  t o be  due  e i t h e r to external  dynamic c o n d i t i o n s  cause  forces  or to i n t e r n a l forces  i n moisture or temperature. which  i s reported  damage t o s e e d s  The  forces  generally  under  by  static  c a u s e d by  Mohsenin or  changes  of external  a r i s e from t h e  origin various  25.  handling  treatments  cleaning  processes.  employed  Damage f r o m of v i a b i l i t y  i n the h a r v e s t i n g , s e p a r a t i n g and  external  occurs e i t h e r  f o r c e s which r e s u l t s  in  i n the form o f a b r a s i o n o f the  c o a t d u r i n g h a n d l i n g , o r as r u p t u r e o f t h e s e e d c o a t the i n t e r n a l f o r c e s may  seed  be The  has  b e e n shown  Each  seed  s t r u c t u r e by  either  static  ability (34)  excessive stresses.  or  to r e s i s t mechanical  an optimum m o i s t u r e  failure.  optimum m o i s t u r e basis  f o r most  are s o f t  and  G r e g g e t a l . (20)  content l i e s  of b i o l o g i c a l m a t e r i a l s ,  it  to five  i s under s t a t i c The  forest  tree  b e t w e e n 10  content.  easily  incur  are hard  indicate and  plastic and  that  this  16 p e r c e n t  wet  seeds.  Mohsenin a l s o  damage, i s up  damage  content f o r handling.  d e f o r m a t i o n , w h i l e b e l o w t h e optimum t h e s e e d s incur b r i t t l e  These  dynamic.  o f seeds  Above t h e optimum, t h e s e e d s  seed  and/or  t o be v e r y d e p e n d e n t upon m o i s t u r e  s p e c i e s has  loss  reported that and  the m e c h a n i c a l  hence the r e s i s t a n c e  loading  treatment  than  conditions.  seeds which are k i l n (17).  damage i n c u r r e d  e x t r a c t e d i s from  a l s o be  the  incurred  of the  during other  by  action  T h i s i s m o s t s e v e r e on  s p e c i e s whose s e e d w i n g s a r e an i n t e g r a l p a r t M e c h a n i c a l damage may  mechanical  times g r e a t e r under dynamic l o a d i n g  main s o u r c e o f m e c h a n i c a l  of the dewinging  to  strength  seed  those coat.  treatments,  including  extraction  by t u m b l i n g  and m o s t o t h e r  cleaning  operations. The still  susceptibility  contained  i n t h e i r c o n e s was i n v e s t i g a t e d  Lyle  and G i l m o r e  pine  (Pinus  in  t o m e c h a n i c a l damage o f s e e d s i n 1958 b y  (31).who w o r k e d w i t h r i p e c o n e s o f l o b l o l l y  taeda).  They  found t h a t  as l o n g  as seeds  t h e i r o r i g i n a l p o s i t i o n i n s i d e c o n e s , any a c t i o n  crushing  remained  short of  t h e cones d i d n o t a f f e c t t h e g e r m i n a t i o n p e r c e n t  of-the  seeds. The extracted a  by t h r e s h i n g  function  threshing  susceptibility  t o m e c h a n i c a l damage o f s e e d s  i s reported  o f t h e seed m o i s t u r e  b y B a i n e r e t a l (6) t o b e  content, the p e r i p h e r a l  c y l i n d e r speed, and t h e c o n f i g u r a t i o n  of  t h e c y l i n d e r and c o n c a v e s . .  at  low c y l i n d e r s p e e d s , b u t t h e t h r e s h i n g  also  reduced a t lower speeds.  and adjustment  Damage i s l o w e s t effectiveness i s  They a l s o s t a t e  that  there  a p p e a r s t o be a n optimum r u b - b a r a n d c o n c a v e c o n f i g u r a t i o n f o r each s p e c i e s , a n d reduces  that  t h e use o f r u b b e r c o v e r e d  t h e amount o f s e e d damage u n d e r a g i v e n  surfaces setof  conditions. 7.  Stress  Relaxation Baldwin  o f Cone  (7) i n 19 42  s e e d s o f some c o n e s w h i c h deflection is  during  most p r e v a l e n t  kiln  Scales described  the poor release o f  i s c a u s e d by i n a d e q u a t e c o n e  drying.  i n serotinous  He r e p o r t e d  that  this  cones which have d r i e d  scale condition prior  to k i l n  e x t r a c t i o n , and t e r m e d t h e c o n d i t i o n  To  improve seed y i e l d  be  soaked  ing  hardening".  o f t h e s e c o n e s he recommended t h a t  term  "case h a r d e n i n g "  as u s e d i n t h e a b o v e  i s not compatible with the use o f t h i s  the surface  term i n d e s c r i b -  h a r d e n i n g t r e a t m e n t o f m e t a l components o r t h e  d e v e l o p m e n t o f r e s i d u a l s t r e s s e s w i t h i n wood d u r i n g (34). 32,  The c o n d i t i o n d e s c r i b e d  47) i s more a c c u r a t e l y  identified  is  defined  strain  caused  relaxation in a  material  o r deformation undergo a decay  time. The  classical  study o f rheology i n d i c a t e s t h a t .  stress r e l a x a t i o n takes place and  Stress  (34) as t h e p r o c e s s w h e r e b y s t r e s s e s t o a constant  (29,  as a c o n d i t i o n  s t r e s s r e l a x a t i o n i n t h e cone s c a l e s .  subjected  drying  by B a l d w i n a n d o t h e r s  by  with  they  i n w a t e r , t h e n d r i e d o n c e more i n t h e k i l n . The  context  "case  that v i r t u a l l y  only  i n viscoelastic  a l l biological materials  fall  materials  into  this  classification. The serotinous moisture  process of stress relaxation i n the scales of  cones t a k e s p l a c e  content which causes s t r e s s e s w i t h i n  These s t r e s s e s serotinous  bond t h e s c a l e s a r e h e l d  stressed  the scales.  a c t t o open t h e s c a l e s , b u t b e c a u s e o f t h e  hence remain i n a s t r e s s e d this  w h i l e t h e cones have a low  condition,  i n t h e c l o s e d p o s i t i o n and  condition.  While cones a r e h e l d i n  t h e cone s c a l e m a t e r i a l  deforms and  28.  the  scale  result  deflecting stresses  of t h i s process i s that  undergone a s t r e s s to  their full  8.  Thermal  relaxation  within  the scale.  whose s c a l e  are unable  The  t i s s u e has  to deflect  outward  are broken.  Properties thermal properties  b a n k s i a n a were i n v e s t i g a t e d  old,  cones  extend a f t e r the seals  The  Their  diminish  i n 1961  o f t h e cones  by L e e a n d B e a u f a i t  work was c a r r i e d o u t o n y o u n g c o n e s and on o l d c o n e s  of Pinus (28).  one a n d two y e a r s  over t h r e e years o l d , which  had a  m o i s t u r e c o n t e n t o f 6% + 1% wet b a s i s . . Using a c y l i n d r i c a l thermal conductivity  shell  analysis,  o f y o u n g and o l d c o n e s  0.123  a n d 0.114  BTU's p e r h o u r ,  plate  analysis,  the thermal conductivity  f o u n d t o be c o n e s was  0.113.  foot,  t o be  degree  F.  respectively, Using a t h i n  o f young cones  The t h e r m a l d i f f u s i v i t y  f o u n d t o be  they found the  was  o f young and o l d  0.0073 and 0.0090 s q u a r e f e e t p e r h o u r  respectively. The  heat t r a n s f e r  N y b o r g and B r i s b i n  analysis  c a r r i e d o u t i n 1973  (37) on t h e f l a s h h e a t i n g o f l o d g e p o l e  p i n e c o n e s was done u s i n g a t h e r m a l c o n d u c t i v i t y BTU's p e r h o u r ,  foot,  degree  0.005 s q u a r e f e e t p e r h o u r . f l a s h h e a t i n g determined correlate well  by  of  0.07  F, and a t h e r m a l d i f f u s i v i t y o f The t e m p e r a t u r e  by t h i s a n a l y s i s  w i t h measured seed  was  o f seeds d u r i n g found t o  temperatures.  29.  9.  Drying  Rate The  functions,  kiln  treatment  namely t o b r e a k  cone s c a l e s t o cause of  the  of  t h e r e s i n o u s bonds  n  d  to dry  o u t w a r d d e f l e c t i o n and  or  reported i n Chapter  the  two  the  release  140°F  I I , k i l n temperatures  (60°C) a r e f r e q u e n t l y  used  s e r o t i n o u s cones, w h i l e temperatures  used  f o r non-serotinous cones.  bulb  temperatures,  t h e wet  up  in  f o r the  extraction  to t h i s  value  In a d d i t i o n  bulb temperature  f r e q u e n t l y e l e v a t e d by t h e i n j e c t i o n (41,  a  serves  seeds. As  excess  their  o f s e r o t i n o u s cones  to elevated dry of k i l n  air is  o f steam o r w a t e r m i s t  47). The  elevation  p o i n t which e f f e c t s  of the dry bulb temperature  s e a l breakage  to a  i s a necessary step i n  s e e d e x t r a c t i o n by  t h e c o n v e n t i o n a l k i l n ^ t u m b l e r method.  Once s e a l b r e a k a g e  has  in  been a c h i e v e d , however,  t h e o r d e r o f 1 4 0 ° F a r e no  factory  cone d r y i n g The  in  are  practice  o r d e r t o reduce  the heated  kiln  seed q u a l i t y  c a n be  and  temperatures  l o n g e r r e q u i r e d because  a c h i e v e d a t much l o w e r  of adding water vapor  the d r y i n g r a t e  from  temperatures.  to the k i l n a i r  that established  a i r i s inconsistent with effective energy  satis-  by  drying,  economy.  A s t u d y o f t h e mass t r a n s f e r p r o c e s s w h e r e b y w a t e r i s moved f r o m reveals  that  a hygroscopic material the d r y i n g  magnitude o f the vapor material  and  rate  into  i s solely  t h e a i r (25,  d e p e n d e n t upon  pressure d i f f e r e n t i a l  the immediately  adjacent a i r .  40) the  between t h e  wet  In o t h e r words,  30.  the d r y i n g o f cones  i s dependent  upon t h e d i f f e r e n t i a l i n  v a p o r p r e s s u r e between t h e water w i t h i n  t h e m a t e r i a l and t h e  vapor p r e s s u r e o f t h e a i r i n t h e boundary t h e wet cone into  surface.  the k i l n  boundary  The e f f e c t  a i ri s to increase  layer  of injecting  water  vapor  the vapor p r e s s u r e i n the  adjacent t o the cones.  The same e f f e c t  a c h i e v e d e i t h e r by r e d u c i n g t h e v e l o c i t y which  layer surrounding  c a n be  o f a i r over t h e cones  reduces the vapor p r e s s u r e g r a d i e n t a t t h e s u r f a c e o f  the cones  o r by r e d u c i n g t h e d r y b u l b temperature  in  the k i l n .  The l a t t e r  it  reduces t h e danger  i s c l e a r l y more d e s i r a b l e  because  o f t h e r m a l damage t o t h e s e e d , and  also reduces the quantity It  of the a i r  of heat  required.  c a n be s e e n t h a t t h e m o s t s u i t a b l e c o n e  drying  p r o c e s s i s a c h i e v e d by k e e p i n g t h e wet b u l b t e m p e r a t u r e low, the a i r c i r c u l a t i o n dry b u l b temperature be  r a t e h i g h , and by m i n i m a l r a i s i n g of the k i l n  a c h i e v e d by e l i m i n a t i n g  the r a t e o f a i r exchange, ture only  sufficiently  air.  These  the i n j e c t i o n and b y r a i s i n g  of the  conditions can  o f water,  increasing  the dry bulb  t o p r o v i d e an a c c e p t a b l e r a t e  tempera-  of drying  In t h e case o f s e r o t i n o u s c o n e s , t h e b r e a k i n g o f the s e a l s p r i o r  to kiln  high temperatures w i t h i n bulb temperature breaking resulting  treatment eliminates the k i l n .  of the k i l n  t h e need f o r  Alternatively,  c a n be l o w e r e d as s o o n  i s a c h i e v e d so t h a t e x c e s s i v e d r y i n g s e e d damage a r e a v o i d e d .  rates  the dry as s e a l and t h e  31.  VII.  PRELIMINARY INVESTIGATIONS  A number o f p r e l i m i n a r y t e s t s were c a r r i e d out  on  lodgepole p i n e cones i n o r d e r t o determine c e r t a i n b a s i c p h y s i c a l p r o p e r t i e s and c h a r a c t e r i s t i c s .  These d a t a were  u t i l i z e d i n the development of subsequent t e s t i n g programs and procedures.  These p r e l i m i n a r y s t u d i e s are d i s c u s s e d  i n d i v i d u a l l y below. 1.  I d e n t i f i c a t i o n and D e s c r i p t i o n o f Cones A l l t e s t s were conducted  lodgepole p i n e  on cones o f  interior  (Pinus c o n t o r t a v a r . l a t i f o l i a Engleni) which  were i d e n t i f i e d by the B r i t i s h Columbia F o r e s t S e r v i c e seed l o t c l a s s i f i c a t i o n as Nelson The  3-3.  cones were o b t a i n e d from a commercially  harves  t e d seed l o t and thus were a r e p r e s e n t a t i v e sample of the typ o f cones o f t h i s s p e c i e s which would be processed by a commercial seed e x t r a c t o r y . The 0.75  cones v a r i e d i n l e n g t h from  i n (1.9 cm)  t o 2 i n (5.1 cm)  and had an o v e r a l l  p r o f i l e v a r y i n g between approximately appearance o f the cones was d e s c r i p t i o n presented c o l l e c t i n g guide  approximately  25 and  conical  65 degrees.  The  c o n s i s t e n t w i t h the g r a p h i c  i n the B.C.F.S. lodgepole p i n e cone  (4).  A c r o s s - s e c t i o n a l view o f t h r e e t y p i c a l cones i s shown i n F i g u r e 4, and the l o c a t i o n o f the s e r o t i n o u s cone  scale seals i s i d e n t i f i e d .  F i g u r e 5 shows a view o f the  a d a x i a l and a b a x i a l s u r f a c e s o f t y p i c a l cone s c a l e s . 2.  Preparation of Material The cones used f o r a l l t e s t s were c o l l e c t e d d u r i n g  the f a l l o f 1973, and were d r i e d on outdoor r a c k s t o a m o i s t u r e content of approximately 25% wet b a s i s .  The cones were then  mixed t o ensure u n i f o r m i t y o f samples f o r subsequent t e s t i n g . The m i x i n g t e c h n i q u e c o n s i s t e d o f l a y e r i n g  approxi-  mately 15 b u s h e l s o f cones i n t o a l a r g e p i l e and s h o v e l l i n g them over i n t o a new p i l e by l i f t i n g cones from t h e s i d e o f the o r i g i n a l p i l e and l a y e r i n g them a c r o s s the t o p o f the hew pile.  T h i s l a y e r i n g p r o c e s s was repeated seven t i m e s , a f t e r  which, cones meeting the C l a s s 1 s p e c i f i c a t i o n s o f the B.C. F o r e s t S e r v i c e i o d g e p o l e P i n e Cone C o l l e c t i n g Guide sorted out.  C l a s s 1 cones c o n s i s t o f those cones m a t u r i n g i n  the y e a r o f h a r v e s t , and h a v i n g a l l s c a l e s s e a l e d . f o r subsequent t e s t i n g were then p l a c e d i n s e a l e d and s t o r e d a t 34°F 3.  (4) were  The cones containers  (1°C).  Degree o f S e r b t i n y o f Cone Seed L o t The degree o f s e r o t i n y o f the cones under study was  determined a t the time o f cone s o r t i n g by s e l e c t i n g , a sample of the cones and c l a s s i f y i n g them a c c o r d i n g t o t h e i r of s e r o t i n y .  These cones were grouped i n t o :  a l l o f t h e i r s c a l e s open,  condition  ( i ) cones h a v i n g  ( i i ) cones h a v i n g a p o r t i o n of t h e i r  33.  F i g u r e 5.  L o c a t i o n of s e r o t i n o u s s e a l s on a b a x i a l (above) and a d a x i a l s u r f a c e s of t y p i c a l cone s c a l e s .  34.  scales  o p e n , and  (iii)  the c l o s e d p o s i t i o n . shown.in  Figure  cones h a v i n g a l l t h e i r A group  scales  sealed i n  o f t y p i c a l p a r t i a l l y opened cones i s  6.  Of the 425 centage o f cones  cones  falling  i n t h e sample e v a l u a t e d ,  into  e a c h g r o u p was  the p e r -  f o u n d t o be  as  follows: (i)  Cones f u l l y  (ii)  Cones p a r t i a l l y  (iii)  Cones f u l l y  The  unsealed  2.2%  unsealed  1.2%  sealed  96.6%  cones used f o r a l l subsequent t e s t i n g  p r o j e c t were p r e s o r t e d  and o n l y  completely sealed  i n this  cones were  studied. 4.  Viability  o f Seeds by L o c a t i o n  To i d e n t i f y cones, extract  a control and  shown i n F i g u r e  collected  g r o u p o f 100  o f seeds from  c o n e s was  e x t r a c t i o n was  scales  serotinous  the v i a b i l i t y  untreated  m a n u a l l y opened t o  count a l l seeds i n the cones. The  individual  i n t h e Cone  7.  a c c o m p l i s h e d by  from the cones u s i n g As e a c h s c a l e was  s e a l and p e e l e d b a c k ,  removing  side-cutting  pliers  as  broken free o f the  the seeds thus exposed  were  for testing. D u r i n g t h e e x t r a c t i o n p r o c e s s t h e s e e d s were  separated  into  the cone.  The  toward  three groups, a c c o r d i n g t h r e e g r o u p s were  to t h e i r p o s i t i o n i n  ( i ) those seeds  t h e base o r p e d u n c l e end o f t h e cone,  originating  i n the c e n t r a l p o r t i o n  originating  ( i i ) those  of the seed b e a r i n g  region  35.  F i g u r e 6.  T y p i c a l p a r t i a l l y opened cones from c o m m e r c i a l l y c o l l e c t e d cone l o t s .  F i g u r e 7.  Technieque f o r manual opening of s e a l e d cones.  36. of  the cone,  cone. to  The  and  (iii)  division  those o r i g i n a t i n g  p o i n t b e t w e e n g r o u p s was  provide proportions of the t o t a l  mately  25%,  e a c h cone  50%  near the t i p of the  and  25%  going into  arbitrarily  seed q u a n t i t i e s  respectively.  The  t h e t h r e e g r o u p s was  of  chosen  approxi-  number o f s e e d s  from  r e c o r d e d and i s  * reported  i n T a b l e A-1 The  was  i n the  viability  Appendix.  o f seeds from each o f t h e s e groups  s u b s e q u e n t l y d e t e r m i n e d , and t h e g e r m i n a t i o n p e r c e n t  g r o u p was  obtained. The  T h e s e d a t a a r e shown i n T a b l e 1.  results  of this  test  indicate  h i g h e r percentage of seeds a t the e x t r e m i t i e s bearing region essentially the  f o r each  o f these cones  that a  o f the seed  a r e empty, b u t f i l l e d  t h e same g e r m i n a t i o n p e r c e n t  slightly  s e e d show  i n the three regions of  cones.  TABLE 1.  SEED V I A B I L I T Y  BY  LOCATION IN CONE  Lower Total  Seeds  % o f Seeds  592 Filled  Number o f F i l l e d % Filled Normal  Mid  Seed P r o d u c i n g Germinants  Number o f V i a b l e  Seeds  % T o t a l Seed P r o d u c i n g Normal Germinants Number o f V i a b l e  1076  Seeds/Cone  Weighted Average Germination P e r c e n t f o r ' T o t a l Sample  Total  724  2392  88.0%  79.3%  84.1%  947  574  91.2%  90. 9%  91.6%  448  861  526  75.5%  80.0%  72.6%  4.5  8.6  5.3  83.0% Seeds  Tip  491 .  — —  91 for 76 . 6 % f o r  T a b l e s whose numbers a r e p r e f i x e d A p p e n d i x A.  by  2012 91.1% 1835 76.7% 18.4  f i l l e d Seed "rotal Seed  the l e t t e r  A appear i n  37. 5.  V i a b i l i t y o f Seeds The  pine was or  s e e d s and  w i t h Respect t o Ease  relationship  The  purpose  n o t t h e more d i f f i c u l t  than the e a s i l y  In  extracted  this  test,  extraction  t h i r t y seconds  (96°C).  The  f o u r days  the e a s i l y  seeds. light with  Those  Lodgepole  seal breaking  a lower  whether  viability  seeds.  a p p r o x i m a t e l y two  hundred  (T°C)  class  and were  having a temperature o f  c o n e s were t h e n d r i e d  immersed  205°F  a t room t e m p e r a t u r e f o r  individually  treated  to  removed s e e d s , t h e n t h e d i f f i c u l t  s e e d s w h i c h were removed f r o m t h e i r  extract to  extract  cone by  t a p s on t h e t i p end o f t h e open c o n e , w h i l e i t was the s c a l e s  extracted  seeds.  o p e n i n g downwards, were c o n s i d e r e d Those  the s c a l e s  easily  after  this  d i f f i c u l t - t o - e x t r a c t seeds,  and were r e c o v e r e d by m a n u a l l y d i s s e c t i n g tearing  five held  t o be  seeds r e m a i n i n g i n t h e cones  t r e a t m e n t were c o n s i d e r e d t o be  individually  1  extracted.  E a c h cone was first  of  to determine  t o remove s e e d s h a d  i n water  and m a n u a l l y  after  o f t h i s was  c o n e s were removed f r o m s t o r a g e a t 34°F for  Extraction  between the v i a b i l i t y  the ease o f t h e i r  investigated.  of  the cones  f r o m t h e cone  by  to free  the  seeds. The  l i g h t tapping  treatment used i n t h i s  test  extracted  approximately t h r e e - q u a r t e r s of the t o t a l seed  t a i n e d by  the cones.  the  tapping  The  seeds r e m a i n i n g i n the cones  con-  after  t r e a t m e n t were f o u n d t o be m a i n l y c o n c e n t r a t e d i n  38.  the  lower  o r b a s a l end The  indicate  of the  results  seed  of t h i s  test,  of f i l l e d  seed,  germination percent of the f i l l e d  with  centrated test  and  shown i n T a b l e  found  TABLE I I  the  a slightly  seeds.  e x t r a c t e d seeds have a lower  concurs  as  t h a t the e a s y - t o - e x t r a c t seeds o f Lodgepole  a h i g h e r percentage  easily  b e a r i n g r e g i o n of the  r e g i o n of the  II  pine  have  higher t h a t the  filled  seeds tend  con-  previous  seeds. EASE OF  % of F i l l e d Seeds i n Sample  EXTRACTION TEST  % Germination of f i l l e d Seeds  % Ctermination of T o t a l Seeds  Easily Extracted Seed  83.8  98.7  82.7  Difficult Extract  70.1  93.2  65.3  6.  to Seed  Viability  of K i l n  Treated  Seeds  order  to assess  the  In seed  to thermal  viability treated  of  o u t on  of Lodgepole  to temperatures  s e r o t i n o u s cones,  seeds r e c o v e r e d  140°F _ 3°  commonly u s e d  was  Groups o f cones h a v i n g  of  an  used  from  initial  oven.  extraction  preliminary investigation.  moisture  were o v e n treated f o r p e r i o d s r a n g i n g  cones  (60°C + 1.5°) c o r r e s - ,  f o r the k i l n  for this  pine  extraction,  f o r v a r i o u s p e r i o d s i n a constant temperature A temperature  ponding  sensitivity  damage d u r i n g c o n v e n t i o n a l k i l n  t e s t s were c a r r i e d  less  seeds  t o be  c o n e s where t h e  a h i g h e r p o r t i o n o f empty GERMINATION PERCENT FOR  fact  p o r t i o n of  observation that these  i n t h e lower  The  cones.  from  content 4 to  72  o f 23% hrs.  w.b.  39.  The i n T a b l e A-2 treatment  germination  i n A p p e n d i x A,  time The  tion  percdnt  a moisture  p e r c e n t o f these groups are t a b u l a t e d the p l o t of v i a b i l i t y  i s shown i n F i g u r e results  i s not  of t h i s  t o 72  test  wet  against  8. indicate  a p p r e c i a b l y reduced  c o n t e n t o f 25%  f o r p e r i o d s up  and  by  t h a t seed  germina-  d r y i n g cones  from  basis i n a non-circulating  hours.  100 _  <D  o u  80  CD  ft  CJ O -rH 4-> rd  a  eu  •rl  60  40  0)  0  20  20  40  60  80  100  Treatment Time Hrs.  Figure  8.  Curve of germination p e r c e n t w i t h treatment t i m e f o r c o n e s d r i e d i n a 140°F (6QOC) o v e n .  oven  40.  7.  Moisture  Content All  throughout  this  cone m o i s t u r e  were d r i e d  Moisture  Chemists  contents  by w e i g h t  Content  received  o f 135°C. which  a c c o r d i n g t o the f o l l o w i n g equation:  (wet b a s i s ) =  average  Moxsture • . X 100%. Matter + Moisture  o v e r a l l moisture  f o r t e s t i n g was  c o n e s were i m m e d i a t e l y  by t h e  a r e r e p o r t e d on a wet b a s i s ,  Dry The  o u t a c c o r d i n g to,  ( 5 ) , where t h e s a m p l e s  f o r two h o u r s a t a t e m p e r a t u r e  determined  made  f o r p l a n t m a t e r i a l s recommended  of Agricultural  Moisture is  determinations  i n v e s t i g a t i o n were c a r r i e d  t h e method o f a n a l y s i s Association  content  approximately  c o n t e n t o f cones  25% wet b a s i s .  These  s t o r e d i n s e a l e d c o n t a i n e r s , hence a l l  s u b s e q u e n t t e s t s were c o n d u c t e d c o n t e n t was very c l o s e t o t h i s  on c o n e s whose  value.  initial  moisture  41.  VIII.  INVESTIGATIONS CONDUCTED ON PHYSICAL PROPERTIES OF CONES Eight  the  i n v e s t i g a t i o n s were c o n d u c t e d t o d e t e r m i n e  physical properties  influential  and c h a r a c t e r i s t i c s c o n s i d e r e d  i n the extraction  o f lodgepole pine cones.  are  d e t a i l e d i n d i v i d u a l l y below.  1.  Equilibrium The  determined ties  equilibrium moisture  f r o m 11.3% t o 100%.  (Figure  The relative  specific  humidity  drying  was  D e t e r m i n a t i o n s were made b y p l a c i n g salt  9) a n d a l l o w i n g  for thirty  content during  o v e r a range o f r e l a t i v e humidi-  a number o f c o n e s o v e r s a t u r a t e d  temperature  These  M o i s t u r e C o n t e n t o f Cones  at several points  containers  t o be  solutions  them t o s t a n d  days t o a c h i e v e s a l t s used  f o r each  i n sealed a t room  equilibrium.  and t h e r e p o r t e d  equilibrium  (50) a r e a s f o l l o w s :  B a r i u m c h l o r i d e 90.2% Ammonium  c h l o r i d e 78%  Ammonium n i t r a t e 61% Sodium i o d i d e 39% Potassium acetate Lithium Distilled  chloride  23% 11.3%.  w a t e r was u s e d t o e s t a b l i s h a r e l a t i v e h u m i d i t y o f  100%. Prior serotinous  t o being placed  s e a l s were b r o k e n b y i m m e r s i n g  water f o r approximately open, thus e x p o s i n g more r a p i d  i n the sealed  20 s e c o n d s .  a greater  surface  exchange o f m o i s t u r e .  This  chambers, t h e  t h e cones i n b o i l i n g allowed  area,  t h e cones t o  and p e r m i t t i n g  a  F i g u r e 9.  C o n t a i n e r s f o r e q u i l i b r i u m moisture determination. The e q u i l i b r i u m moisture  d r y i n g i s shown i n T a b l e A-3 i n F i g u r e 10 below.  The  content  content of cones d u r i n g  i n the Appendix and i s p l o t t e d  range of v a l u e s determined,  and  the  shape of the d r y i n g curve f o r these cones i s t y p i c a l of most biological materials.  •  5-i  •H  +WJ cn (C  •H O  S  JQ  -P  |  •H U Xi - P -H C rH (1) •H 4-> 0 tr  0  w U 20 F i g u r e 10.  40 60 80 % R e l a t i v e Humidity  100  E q u i l i b r i u m moisture content d u r i n g d r y i n g of lodgepole pine cones.  43.  2.  Melting Point Determination The  breaking  of the  cones c l o s e d i s e s s e n t i a l extraction  requires k i l n  for Serotinous  r e s i n o u s bond h o l d i n g  f o r seed  extraction.  temperatures  high  so h i g h  as  to to  cause  seeds.  The seals  not  serotinous  Conventional  sufficiently  cause m e l t i n g o f t h e bond m a t e r i a l , b u t damage t o t h e  Bonds  melting p o i n t temperature of the  of lodgepole  pine  c o n e s , assumed t o be  at which s c a l e s e p a r a t i o n takes cones, harvested  i n the year  cones a x i a l l y .  One  glass  j a r w h i c h was  bath,  as  the  determined.  p a r t o f e a c h c o n e was  shown i n F i g u r e  Young  and  o l d we're s t u d i e d .  t e s t e d were c u t i n two  immersed  temperature  i n which they matured,  weathered cones s e v e r a l y e a r s Cones t o be  p l a c e , was  serotinous  Sixty  sawing  the  placed i n a closed  i n a constant  11.  by  temperature  c o n e s f r o m e a c h age  water class  were t e s t e d . The  c o n e h a l v e s were a l l o w e d  temperature with  t h e b a t h w a t e r , and  to detect scale separation. seal  s e p a r a t i o n on  bearing  and  Cone h a l v e s w h i c h h a d  the m a j o r i t y of the  were removed and  the  c o n e s were t h e n  was  i n c r e a s e d by  of the  were i n d i v i d u a l l y  out  on  tests.  counted.  r e t u r n e d t o the bath  approximately  0.5°C.  The and  the jars  the  seed  seal  melting  containing  temperature  This process  three to f o u r hour i n t e r v a l s  examined  undergone  s c a l e s i n the  r e g i o n were c o n s i d e r e d , t o h a v e r e a c h e d  temperature  carried  to reach e q u i l i b r i u m  f o r the  was duration  44.  F i g u r e 11.  Apparatus f o r determinat i o n of seal melting temperatures.  The number o f cones whose s c a l e s were r e l e a s e d a t each t e s t temperature i s shown i n Table A-4.  The r e s u l t s  of these t e s t s i n d i c a t e a r e l a t i v e l y wide range o f temperat u r e s over which the s e a l s are broken.  The mean temperature  a t which new cones opened was found t o be 52.5°C w i t h a standard d e v i a t i o n o f + 5.7°C.  The mean temperature a t which  o l d cones opened was found t o be 54.5°C w i t h a standard d e v i a t i o n o f + 5.8°C.  45.  3.  Scale  Deflection The  evaluating  cones.  the  d e f l e c t i o n a f t e r cone o p e n i n g  t h e maximum s c a l e  The c o n e s c a l e  observing  t i p o f t h e cone s c a l e s  plane c u t i n t o  p r i o r t o s e a l breakage. a flat  surface  The r e f e r -  on t h e umbo  t o be m e a s u r e d .  Cones t o b e s t u d i e d p i n w h i c h was i n s e r t e d cone c o r e .  This  the  of the f l a t  cutting  studied  d e f l e c t i o n a n g l e s on i n d i v i d u a l  the angular o r i e n t a t i o n of a reference  each s c a l e  was  a n g l e s were measured, by o p t i c a l l y  e n c e p l a n e was made b y g r i n d i n g of  Content  r e l a t i o n s h i p between m o i s t u r e c o n t e n t and t h e  a n g l e o f cone s c a l e by  Angle v s . Moisture  into a small  p i n served  measuring o f the s c a l e  were f i t t e d  w i t h an a l i g n m e n t  hole d r i l l e d  into the  as t h e a n g u l a r r e f e r e n c e  surface  on t h e s e a l e d  f o r both  cones, and t h e  d e f l e c t i o n a n g l e o f t h e opened  cones.  Figure  12 shows t y p i c a l c o n e s p r e p a r e d i n t h i s way, b o t h  before  and a f t e r s c a l e The  detecting fitted the  scale  flat  deflection.  surface  on t h e s c a l e  umbos u s e d f o r  d e f l e c t i o n was c u t b y means o f a t a b l e  with a side  cutting  grinding  wheel.  a l i g n m e n t p i n was h e l d  parallel  t o the cutting  a machine t o o l h o l d e r .  The umbo o f a l l s u i t a b l e  l o c a t e d around t h e mid p o i n t surfaced  During  saw  cutting, f a c e by  scales  o f t h e c o n e s u n d e r s t u d y were  i n t h i s manner. The  shown i n F i g u r e  a p p a r a t u s used t o measure s c a l e 14 a n d c o n s i s t s  of a modified  angles i s drafting  machine  Figure  12.  Figure  Cones prepared f o r scale deflection measurement b e f o r e and a f t e r o p e n i n g .  14.  Figure  Apparatus f o r measuring d e f l e c t i o n angles.  13.  cone  Alignment of cross hair with ground s c a l e surface.  scale  and is  a b i n o c u l a r microscope. replaced with  pin  and  orients  a "vee-block" the a x i s  h a i r of the microscope the  zero p o s i t i o n .  machine v e r n i e r rotated each  t h e h e a d and  the  Scale deflection  angles can,  deflection  the g r e a t e s t d e f l e c t i o n  on  that  i n a band around  were c h o s e n the  G r o u p s o f s i x t e e n c o n e s were u s e d Cones f o r s c a l e  in  drafting are  their  t o t h e wet  as  shown be  cone i n  five  s e a l s broken  to  cone. after  nine The  the  f o r each  by h o t w a t e r  cones  test.  removed treatment.  above, t h e y were  basis equilibrium moisture  this  cone near i t s  a n g l e measurement w e r e  t h e method d e s c r i b e d i n S e c t i o n 1,  brought  cross  i n t h i s way,  angle of the  o p e n e d , and were l o c a t e d  By  the  datum r e p o r t e d t o r e p r e s e n t e a c h  s t o r a g e and  alignment  degree.  purpose  from  from  cross hair,  s c a l e s measured f o r t h i s  midpoint.  to the  a t t a c h e d cone  t o the microscope  the average  scales having  o f the cone p a r a l l e l  the  when t h e d r a f t i n g m a c h i n e h e a d was  measured t o the n e a r e s t  s t u d y was  clamp w h i c h g r i p s  machine  t h e edge v i e w o f t h e g r o u n d s u r f a c e o f  scale, parallel  The  s c a l e of the d r a f t i n g  Scale angles are read  after  to o r i e n t  i n F i g u r e 13.  The  contents  then shown  i n Table I I I . The each moisture a r e summarized  maximum s c a l e d e f l e c t i o n  data f o r cones  c o n t e n t a r e shown i n T a b l e s A-5 i n Table  I I I , and  plotted  to A - l l .  i n Figure  15.  at These  48.  From F i g u r e 15 i t i s a p p a r e n t scale deflection wet  o f open l o d g e p o l e p i n e cones o c c u r s  basis moisture  content  i s reduced  S e a l e d cones i n t h i s moisture tend  that the onset of as t h e  below a p p r o x i m a t e l y  25%.  range a c q u i r e s t r e s s e s which  t o open t h e s c a l e s .  TABLE I I I .  SCALE DEFLECTION ANGLE AT VARIOUS MOISTURE CONTENTS  Equilibrium Moisture Content.,. Wet B a s i s .  A v e r a g e Maximum Cone S c a l e D e f l e c t i o n Angle  28.3%  0°  21.2%  8.5°  +  3.8°  + 50.0° +  7.8°  31.7°  17.4% 13.5%  9.4°  9.5%  62.6° + 11.5°  7.5%  71.8°  4.8%  86.6° + 13.1°  Equilibrium Moisture 15.  + 12.8°  97.0° + 15.7°  Oven D r y  Figure  CONE  Maximum content  Content  (%)  scale angle v s . e q u i l i b r i u m moisture f o r n o n - s t r e s s r e l a x e d cones.  4.  Scale  D e f l e c t i o n Angles o f Stress Stress  serotinous  r e l a x a t i o n occurs  cones w h i l e  R e l a x e d Cones  i n the scales  of  t h e cones a r e a t a m o i s t u r e  sealed  content  which would cause outward s c a l e d e f l e c t i o n i f t h e  serotinous  seals  i n lodge-  pole wet  d i d not restrain  s u c h movement.  d e g r e e t o w h i c h cone s c a l e d e f l e c t i o n i s  c o n e s shown were s t o r e d  i s illustrated  wet  form o f s c a l e  cross  t i o n was  c o n e s shown i n F i g u r e  effect  investigated  For this  broken u n t i l  relaxed  and  17 i n d i c a t e s t h e  and t h e w i d t h o f t h e s e e d e x i t i n g p a t h  o f s t r e s s r e l a x a t i o n on s c a l e by s t u d y i n g  condition  c o n e s whose  f o r a period  deflec-  scales  were  o f one month.  s t u d y , c o n e s were p r e p a r e d  measurement a s d e s c r i b e d  test  by h o t  conditions.  i n a stressed .  s e c t i o n a l view o f s t r e s s  flexure  cones i n both The  not  s e a l s were r e l e a s e d  basis.  non-stress relaxed  kept  16.  t h e y were b r o u g h t t o a m o i s t u r e c o n t e n t o f a p p r o x i m a t e l y  The  for  i n Figure  f o r one month a t t h e m o i s t u r e  c o n t e n t s n o t e d , and a f t e r t h e i r  10%  25%  basis.  i m p a i r e d by s t r e s s r e l a x a t i o n  air,  occurs  p i n e cones a t m o i s t u r e c o n t e n t s below a p p r o x i m a t e l y  The  The  This  f o r scale  above, b u t t h e s e r o t i n o u s  seals  t h e end o f t h e s t r e s s r e l a x a t i o n p e r i o d .  g r o u p o f t w e n t y c o n e s was  angle were A  allowed t o dry t o approximately  50.  §#*§##$ &Z  11%  F i g u r e 16.  (7Z  2,5 £  Z8%  S/Z  Cones showing t y p i c a l degree of opening when unsealed and brought to 10% M.C. a f t e r one month of storage a t i n d i c a t e d moisture contents.  »i|inpp|Hii|iiii|iiii|iiii|iiii|iiii|iiii|ini|ini|iiii S t r e s s Relaxed F i g u r e 17.  ZIZ  »i/pipiiinrfiii|fH  Not S t r e s s Relaxed  Cross s e c t i o n of t y p i c a l open s t r e s s and n o n - s t r e s s r e l a x e d cones.  relaxed  51.  10%  moisture  c o n t e n t , wet b a s i s ,  month a t t h i s m o i s t u r e  content.  four  days d u r i n g which  maximum s c a l e content  d e f l e c t i o n took  order t o determine  i n scale  place.  The  t h e permanence o f t h e  d e f l e c t i o n caused  was made t o r e v i v e  cones d e s c r i b e d  above.  of the e a r l i e r  the scale  by s t r e s s  flexing ability  t o dry t o a moisture  test.  The maximum s c a l e  a n g l e s were a g a i n m e a s u r e d , a n d t h e m o i s t u r e Finally, deflection  the e f f e c t of stress  and i t s e l i m i n a t i o n  a t t h e oven d r y c o n d i t i o n . treatments  were s u b s e q u e n t l y  angles  of the  content  close  deflection  content  relaxation  determined. on s c a l e  b y r e w e t t i n g , was e v a l u a t e d  The c o n e s f r o m oven d r i e d  t h e above two  a t 105°C, and t h e  o n c e more m e a s u r e d .  The treatments  r e l a x a t i o n , an  The c o n e s were s o a k e d i n w a t e r f o r  s i x h o u r s a n d were a l l o w e d  scale  t o stand  determined.  reduction  to that  scale  a n d were a l l o w e d  treated  d e f l e c t i o n a n g l e s were m e a s u r e d , a n d t h e m o i s t u r e  In  attempt  f o r one  The c o n e s were t h e n  with h o t a i r t o break the s c a l e s , for  a n d was s t o r e d  scale  d e f l e c t i o n data  f o r t h e above  three  a r e r e p o r t e d i n T a b l e s A - 1 2 , A - 1 3 , a n d A-14  respectively. The stress tent  relaxed  mean v a l u e o f maximum s c a l e c o n e s was f o u n d  o f 9.9% w e t b a s i s .  This  deflection of the  t o be 2 0 . 3 ° a t a m o i s t u r e  compares t o d e f l e c t i o n o f  con-  approximately  60° f o r c o n e s  a t t h e same m o i s t u r e  which d i d n o t undergo s t r e s s The  effect  relaxation.  o f rewetting these s t r e s s  was t o p e r m i t them t o d e f l e c t when t h e y were r e d r i e d basis.  the average results  deflection  are plotted  respectively. tion  reduces  cones,  t o an a v e r a g e  t o a moisture  When t h e s e c o n e s  were d r i e d  t o an o v e n d r y c o n d i t i o n ,  the opening  i t i s apparent ability  ability  discussed e a r l i e r ,  influences from  cones  at ing  several moisture  prepared  o f twenty  to Scale  Deflection  o f cone  This relationship seeds  from  scale  was  was o f cones  d r y i n g , and i d e n i f y -  angle a t each cones  a group  point.  removed f r o m  storage  f o r s c a l e a n g l e measurement a s d e s c r i b e d a b o v e .  T h e y were t h e n t r e a t e d w i t h h o t a i r t o r e l e a s e seals,  completely  o f seeds w h i c h c a n be  during t h e i r  t h e mean s c a l e d e f l e c t i o n A group  and  levels  relaxa-  cones.  t h e degree  by t u m b l i n g . the free  stress  c a n be a l m o s t  the percentage  e v a l u a t e d by e x t r a c t i n g  that  of sealed lodgepole pine  D e g r e e o f Seed R e l e a s e w i t h R e s p e c t  extracted  These  i n F i g u r e 15 a s p o i n t s R l , R2, a n d R3  and t h a t t h e o p e n i n g  deflection  cones  angle o f 62.6°  a n g l e was f o u n d t o b e 9 3 . 6 ° .  From t h i s ,  As  relaxed  c o n t e n t o f 11.1% w e t  r e s t o r e d by r e w e t t i n g o f t h e a f f e c t e d 5.  content but  and were a l l o w e d t o p a r t i a l l y  the resinous  d r y u n d e r room  conditions.  The seeds were then e x t r a c t e d by t a p p i n g t h e i n v e r t e d cones f i v e t i m e s i n t o a t r a y , and t h e cone s c a l e d e f l e c t i o n a n g l e s were i m m e d i a t e l y measured. moisture contents.  T h i s p r o c e s s was r e p e a t e d a t f o u r  The f i n a l measurements were made on oven  d r y cones, and t h e r e m a i n i n g seeds were removed from t h e cones. The maximum cone s c a l e d e f l e c t i o n d a t a , and t h e number o f seeds r e c o v e r e d a t each p o i n t a r e r e p o r t e d i n T a b l e s A-15,  t o A-18. The r e s u l t s o f t h i s t e s t are p l o t t e d i n F i g u r e 18  which shows t h e c u m u l a t i v e p e r c e n t a g e o f t o t a l seed e x t r a c t e d a g a i n s t t h e maximum s c a l e a n g l e .  easily  From t h i s  plot,  i t c a n be seen t h a t maximum s c a l e a n g l e s o f a p p r o x i m a t e l y 100° are r e q u i r e d i n o r d e r t o a c h i e v e complete seed e x t r a c t i o n by a m i l d tumbling treatment.  100  I  H  CO  I  80 60 40 20  -  20  F i g u r e 18,  40  _L  JL  60  80  100  Cone Scale Angle (Degrees) Seed e x t r a c t i o n v s . cone s c a l e a n g l e .  54.  6.  Hot Water S e a l B r e a k i n g The b r e a k i n g  pine  scale  seals  c o n e s by means o f m o m e n t a r i l y i m m e r s i n g  w a t e r was (i)  of serotinous  investigated  the e f f e c t i v e n e s s  f r o m two  lodgepole  the cones  p o i n t s o f view.  i n achieving  of  These  s e a l b r e a k a g e , and  i n hot were (ii)  the  e x t e n t o f t h e r m a l damage t o t h e s e e d s a s r e v e a l e d by r e d u c e d seed  viability. Hot water  i m m e r s i o n was  g r o u p s o f one h u n d r e d  cones, contained  water h e a t e d i n a steam k e t t l e . 19 was water  carried  c o v e r e d so t h a t  o u t by  submerging  i n a mesh b a s k e t , i n  The b a s k e t , shown i n F i g u r e  t h e c o n e s w e r e f o r c e d down i n t o  f o r complete immersion.  the  C o n t i n u o u s movement o f t h e  submerged b a s k e t e n s u r e d t h a t t h e c o n e s were s u r r o u n d e d by water a t tank temperature. At  t h e end o f t h e s p e c i f i e d  c o n e s were l i f t e d  from the water  a  The  draining  bottom  rack.  drying  w h i c h was  held  racks  a  circulating All  of  varied  (Figure  20)  (22.2°C)  and  56%.  i n an a i r c o n d i t i o n e d  D r y i n g was  o  o (96.1 C+  f r o m 10 t o 120  seconds.  t h e c o n e s was  F + 2  34°F  room  and h a v i n g a r e l a t i v e h u m i d i t y  t e s t s were c a r r i e d o  onto  i n i n d i v i d u a l mesh  a i d e d by t h e u s e o f  f a n w h i c h moved t h e a i r o v e r t h e d r y i n g  t e m p e r a t u r e o f 205 was  immediately s p i l l e d  c o n e s were d r i e d  a t 72°F  r a n g i n g b e t w e e n 44%  and  treatment time, the  out using water  at a  o 1 ) , and i m m e r s i o n The  initial  (1°C) and t h e i n i t i a l  racks.  time  temperature  cone m o i s t u r e  55.  F i g u r e 20.  Cone d r y i n g r a c k s .  content  f o r t h e s e t e s t s was After  e a c h cone was of  t h e cone  drying  clearly  scales,  25%  until  ± 3%, wet  the degree  e v i d e n t by  basis. of s e a l breaking.on  the open o r c l o s e d  t h e c o n e s were s o r t e d  into  the  position following  classifications: (i)  Fully  opened  —cones  seed b e a r i n g (ii)  Partially the  (iii)  Fully  closed  a l l scale  seals  —  c o n e s on w h i c h o n l y a p o r t i o n  i n t h e s e e d b e a r i n g r e g i o n were  —  cones  on w h i c h  no  scale  seals  s e e d b e a r i n g r e g i o n o f t h e cone were All ted  first  by  seeds  from opened  tapping,  in  this  filled the of  t h i s r e p o r t which  seeds p r o d u c i n g normal The  viability  results  germinants.  a viability  20  being  o f t h e cone  o f the seeds so t r e a t e d  s e c o n d s , o r more r e s u l t e d completely unsealed.  i n the  seeds  from  each  The  d a t a used f o r  i n Section VII  o f 91.2%  (4)  of the  germinants.  From T a b l e IV i t c a n be of  the s c a l e s  as t h e p e r c e n t a g e o f  t e s t were t h o s e r e p o r t e d indicated  i n the  report.  reported  seeds p r o d u c i n g normal  control i n this  filled  was  broken.  broken.  removing  G e r m i n a t i o n t e s t s were c o n d u c t e d on the v i a b i l i t y  of  c o n e s were s u b s e q u e n t l y e x t r a c -  t h e n by m a n u a l l y  manner d e s c r i b e d e a r l i e r  group, and  i n the  r e g i o n o f t h e cone were b r o k e n .  opened  scales  i n which  opening t e s t s  the  a r e shown i n T a b l e IV. seen t h a t immersion  i n o v e r 90%  Longer  and  of the  times  cones  t r e a t m e n t o f cones  d i d not  TABLE I V .  EFFECT  Inmersion Time Seconds  *  OF HOT WATER IMMERSION ON CONE OPENING AND SEED V I A B I L I T Y  Cones Fully Closed  Cones Partially Opened  Cones Fully Opened  Viability  Seed  *  10  35  33  32  95.2%  15  15  28  57  96. 8%  20  2  8  90  9 8.2%  25  2  5  93  97.0%  27.5  2  9  89  97.5%  30  2  4  94  98.0%  40  2  3  95  97.5%  60  1  2  97  90.0%  120  0  0  100  0%  E x p r e s s e d as % o f f i l l e d  IMMERSION  seed producing normal germinants  CONDITIONS:  Water  Temperature  : 205°F :  ± 2°F (96.1°C  Initial  Cone T e m p e r a t u r e  34°F  Initial  Cone M o i s t u r e C o n t e n t : 25% ± 2%  (1 C) P  (w.b.)  ± 1°C)  58.  significantly reduction  improve  s e a l breakage  without i n c u r r i n g  in viability. From T a b l e IV, i t c a n a l s o be  viability  showed no  c o n t r o l group tion.  The  viability  a 60  in  water  seen t h a t  appreciable deviation  f o r a l l t r e a t m e n t s up  received 205°F  a  was  slightly  seconds  seed  from t h a t o f the  t o 40  seconds  i n dura-  lower f o r those cones  second t r e a t m e n t , b u t immersion f o r 120  the  resulted  which  of sealed  i n complete  cones  seed  mortality. 7.  Flame Treatment The  cones  Seal Breaking  breaking of the serotinous  t h r o u g h an open f l a m e was  of hot water  immersion  from the p o i n t  s e a l s by p a s s i n g  investigated.  As  i n the  t r e a t m e n t , f l a m e t r e a t i n g was  case  studied  o f view o f s e a l b r e a k i n g e f f e c t i v e n e s s  and  t h e r m a l s e e d damage. The to  a p p a r a t u s shown i n F i g u r e  flame t r e a t  inclined  tube  consisted inclined  cones  by c a u s i n g them t o t u m b l e  i n t o which  of a four  a f l a m e was  chute d i r e c t e d manually metered a collecting  end  of the  tube.  oriented  cones  down an  forty into  The  H e a t was  to direct  apparatus  tube which degrees. the upper  s c r e e n g a t h e r e d the cones  emerged f r o m t h e l o w e r e n d . t o r c h w h i c h was  and  constructed  introduced.  inch diameter i n s u l a t e d  a t a n g l e s between t h i r t y  t h e t u b e and  21 was  s u p p l i e d by  i t s flame i n t o  a  was A  feed  end  of  as  they  propane  the  lower  59.  Temperatures maintaining delivered point  to the t o r c h .  thermocouple  ment c o n d i t i o n s .  The  d u r i n g the v a r i o u s  range  removal  of  inclination  d u r a t i o n was and  o f the tube. were  After  uniformity  an  of  at this  f r o m 900°F  controlled thirty  and  treat-  point  (482°C)  to  reaching  Treatment  The  to  racks to a i r dry.  o u t on  groups  o f 100  m o i s t u r e c o n t e n t o f 25%  temperature  o f the seeds  o f cone  angle  After  m o i s t u r e c o n t e n t , the cones  carried  results  i n T a b l e V.  addition  from four  i n the previous s e c t i o n o f t h i s  an i n i t i a l  an i n i t i a l  viability  times  i n t h e same manner as were t h e h o t w a t e r  T e s t i n g was  and had  the  the  the flame t r e a t m e n t , t h e cones were a l l o w e d  as d e s c r i b e d  had  f e e t by  varying  used.  a p p r o x i m a t e l y 10%  evaluated  by  a l s o by v a r y i n g t h e  c o o l and p l a c e d on mesh b o t t o m e d  degree  monitored with  to ensure  of pipe sections,  twelve seconds  which  being  o f the tube a t a  of temperatures  l e n g t h between f i f t e e n  cones  fuel  by  (732°C).  or  ted  temperature  t r e a t m e n t s was  Treatment  to  The  f r o m t h e l o w e r e n d was  iron-constantan  tube  t h e t u b e were c o n t r o l l e d  a c o n s t a n t gas p r e s s u r e o f t h e  s i x feet  1350°F  within  o f 34°F  o f t h e cone treated  immersed report. cones  ± 2% wet  basis,  (1°C).  opening  1  tests  and  i n the flame tube  From t h e t a b l e ,  were  i t c a n be  are presen-  seen t h a t  opening achieved i n c r e a s e d w i t h  the  the  increasing  60.  F i g u r e 21.  Flame t r e a t i n g  apparatus.  flame treatment i n t e n s i t y , and t h a t complete accomplished by a treatment a t 6.5 temperature  of 1280°F  seconds  s e a l breaking  was  at a reference  (693°C).  From the t a b l e , i t can a l s o be seen t h a t the seed v i a b i l i t y d i d not s u f f e r an a p p r e c i a b l e r e d u c t i o n by treatment severe enough t o e f f e c t complete 8.  seal  flame  breakage.  E f f e c t of M o i s t u r e Content on S e a l Breaking E f f e c t i v e n e s s E x p e r i e n c e from the above f l a s h h e a t i n g t e s t s  suggests t h a t cone moisture content i n f l u e n c e s the e f f e c t i v e n e s s  61.  TABLE V.  *  EFFECT OF FLAME TREATMENT ON CONE OPENING AND SEED VIABILITY  Average Treatment Time Seconds  Flame Tube Reference Temp. °F  Cones Fully Closed  4.5  1155  75  12  13  **  5.0  1280  66  16  18  93.9%  5.5  1195  28  24  48  97.3%  7.5  1160  35  10  55  98.0%  5.1  1345  8  15  77  95.6%  6.5  1252  0  6  94  94.9%  6.5  1280  0  o  100  93.4%  Cones Partially Opened  Cones Fully Opened  Seed Viability  E x p r e s s e d as % o f f i l l e d seeds p r o d u c i n g n o r m a l germinants  ** I n s u f f i c i e n t  seeds r e l e a s e d f o r v i a b i l i t y d e t e r m i n a t i o n  TREATMENT CONDITIONS: I n i t i a l Cone Temperature  : 34°F (1°C)  I n i t i a l Cone M o i s t u r e C o n t e n t : 25% ± 2% (w.b.)  *  of heat treatment f o r the purpose scale  the degree  of stress within  the s c a l e s  outward  which  stresses  at this  time would  no  hence the r e s i n  be  l o n g e r be  effect  to spring  tending to  c o u l d not re-bond  of a s p e c i f i c  The  The  effect  of  deflecting  as f o l l o w s :  to raise  t h e bond  them.  i n v e s t i g a t e d by e v a l u a t i n g  s e a l b r e a k i n g t r e a t m e n t on  o f 100  one  g r o u p was  dried  soaked  a t room t e m p e r a t u r e  t e n t o f a p p r o x i m a t e l y 10% wet  cones levels  i n water  basis,  and  f o r 24  basis,  the t h i r d  con-  group  was M.C.  basis. Each group  of  the  to a moisture  t r e a t e d a s t h e y came f r o m s t o r a g e a t a p p r o x i m a t e l y 25% wet  the  c o n e s were p r e p a r e d f o r s e a l  t h e m o i s t u r e c o n t e n t above 30% w e t  s e c o n d g r o u p was  this  stress.  Three groups breaking  such  of  at d i f f e r e n t moisture contents, thus having d i f f e r e n t of scale  time  slightly  result  of the r e s i n ,  deflect  a t the  the s c a l e s  i s melted.  was  i n c o n t a c t w i t h e a c h o t h e r , and  T h i s phenomenon was effectiveness  scales  i s melted.  t h a t upon r e s o l i d i f i c a t i o n  s u r f a c e s would  this  i s p r e s e n t i n the s c a l e s  apart while the r e s i n o u s s e a l be  t o cause  t h e cone  the r e s i n o u s s e a l i n g m a t e r i a l  hours  cone  seals. The mechanism b e l i e v e d  would  of breaking serotinous  34°F  205°F  (1°C)  and was  (96.1°C).  were c l a s s i f i e d described  o f c o n e s was immersed  After into  in earlier  drying  brought to a  f o r 27.5  seconds  temperature i n water  a t room t e m p e r a t u r e ,  t h e t h r e e c a t e g o r i e s o f cone tests.  the  at  cones  opening  ,  63.  The r e s u l t s o f t h i s t e s t aire shown i n Table VI and i n d i c a t e t h a t s e a l breakage e f f e c t i v e n e s s f o r a g i v e n heat treatment i n c r e a s e s w i t h a decrease i n cone moisture content. TABLE V I .  1.  2.  SEAL BREAKING RESULTS AT THREE MOISTURE CONTENTS  Cones heat t r e a t e d a t moisture c o n t e n t i n excess o f 3 0 % wet b a s i s : F u l l y opened  32%  P a r t i a l l y opened  54%  Closed  14%  Cones heat t r e a t e d a t moisture c o n t e n t o f a p p r o x i mately 2 5 % wet b a s i s : F u l l y opened P a r t i a l l y opened Closed  3.  89% • 9% 2%  Cones heat t r e a t e d a t moisture content o f a p p r o x i mately 1 0 % wet b a s i s : F u l l y opened  9 8%  P a r t i a l l y opened  2%  Closed  0%  .  64.  P A R T  D E V E L O P M E N T  OF  TWO  P R O C E S S I N G  T O O L S  IX.  PROPOSED MECHANICAL EXTRACTION  The  second  phase o f t h i s  systematic design, f a b r i c a t i o n , conifer  seed e x t r a c t i o n  project  and  system.  involves  testing  The  SYSTEM  of a  proposed  the  mechanical  system  consists  o f a p o r t a b l e machine which o p e r a t e s a t the r e g i o n a l collection cones  on  stations  t o m e c h a n i c a l l y s e p a r a t e seeds  a continuous  efficient  flow  The  purpose  and  e c o n o m i c a l means o f c o n i f e r  of this  system  a lower  transportation  of large quantities  system it  extractories. was  of (a)  specific  operating principle  of  system  Must p r o v i d e a h i g h seed  M u s t be  M u s t be  to  this  flow charts  extraction  operational requirements,  comparing  were p r e s e n t e d .  as l i s t e d  extrac-  o f a number below:  r e c o v e r y r a t e w i t h minimum  damage.  capable of e x t r a c t i n g non-serotinous  seed  from both s e r o t i n o u s  cones.  capable of operating s a t i s f a c t o r i l y  over (d)  The  o f waste cone m a t e r i a l  e q u i p m e n t i s d e p e n d e n t upon t h e a c h i e v e m e n t  and (c)  extraction  s u c c e s s f u l development o f the proposed  seed (b)  seed  l a b o u r i n p u t and w h i c h e l i m i n a t e s t h e  with a conventional k i l n  tion  i s t o p r o v i d e a more  d e s c r i b e d i n C h a p t e r V and  The  from  basis.  which r e q u i r e s  central  seed  a r e a s o n a b l e range  of moisture  Must p r o v i d e a p r o d u c t i o n r a t e economic o p e r a t i o n o f the  on  cones  content.  commensurate w i t h system.  the  (e)  Must o p e r a t e w i t h a minimum manpower  input.  (f)  M u s t be e a s i l y  t r a n s p o r t e d on a l i g h t  (g)  M u s t be e a s i l y  s e t up a n d t a k e n down a t e a c h o p e r a t i n g  duty  truck.  site. (h)  Must h a v e a s i m p l e , d u r a b l e d e s i g n s o t h a t are  minimized  in  the f i e l d .  The the  and t h e machine i s easy  findings  of the preliminary  physical properties  discussed,  indicate  that the serotinous scale  damage t o t h e s e e d s . to  by f l a s h  full  mechanical  s e e d damage.  The  reduce  For this  b r e a k i n g p r o c e s s was i n c l u d e d  of  undoubtedly  and hence w i l l  mechanical e x t r a c t i o n  seals  heating, with  sections of this  little prior  to achieve  the l i k e l i h o o d of  reason a thermal  seal  i n the design o f the proposed  system.  d e v e l o p m e n t o f e a c h o f t h e two p r i m a r y  t h e proposed  of this  reduce the  of the mechanical treatment required  extraction,  as p r e v i o u s l y  The b r e a k i n g o f s e r o t i n o u s s e a l s  mechanical e x t r a c t i o n w i l l  severity  to service  investigations of  o f lodgepole pine cones,  s p e c i e s c a n be e a s i l y b r o k e n  breakdowns  extraction report.  system  i s detailed  tools  i n the following  67. X.  1.  DEVELOPMENT OF  Preliminary  SEROTINOUS SEAL BREAKING TOOL  Analysis  Experience from t h e of  study of  the  physical  l o d g e p o l e p i n e cones i n d i c a t e d t h a t b r e a k i n g  s e a l s would s i g n i f i c a n t l y  reduce the  degree of  treatment necessary to mechanically e x t r a c t cones.  A d d i t i o n a l l y , the  device  can  the  conventional  Study of the cones a l s o a closed  of  the  p o s i t i o n can  s e a l and  by  crushing  and  be  b r o k e n by  analysis  seeds of  such  breaking  of  serotinous  process. of  serotinous  the  cone  scales  both mechanical  resinous  of  bonding  fracture  material.  of mechanical s e a l  breaking  flash heating  is  below.  can  be  the  exceed the  Crushing  a c h i e v e d by bonds t o  yield  of  this  of  the  at  several  be  c a r r i e d out  crushing tapered  Mechanical f r a c t u r i n g of  slightly  fail  as  s t r e s s of  crushing  a r e s u l t of  the  the  applied  a f t e r the  periphery  c o n e has  scale thereby  which  The  deflection  evenly over the  Furthermore, crushing  around the  cones  stresses  bond m a t e r i a l .  a c t i o n must be  cone.  points  —  moisture content, i n order t o scales.  the  the  extraction  serotinous  severity  extraction  bonds h o l d i n g  of  the  effective seal  t h e r m a l s e a l b r e a k i n g by  (i)  causing  kiln  the  melting  A preliminary  seals  an  physical properties  indicated that  in  outlined  of  r e s u l t i n more e f f i c i e n t  cones u s i n g  by  use  properties  of  must be  the  length  applied  c o n e and  must  been d r i e d t o a f a i r l y  ensure the  release  of  low  a l l cone  68.  The was  e f f e c t i v e n e s s o f s e a l b r e a k i n g by  quantitatively  with  e v a l u a t e d by  a hydraulic press  range o f m o i s t u r e  as  to achieve  required in  severe  10%  M.C.  to o r i e n t  this  complexity  individual  and  the  used  basis,  the p o s s i b i l i t y  seeds,  necessary  treatment  at  harvested  cones  Furthermore,  of seed  damage,  and  renders  the  low  cones further  o f t h i s , method.  Flash heating —  treatment  the use  however,  t o t h e wide range cone s i z e  has  has  Breaking  of serotinous s e a l s  traditionally  f o r the purpose of e x t r a c t i n g  the p a s t , t h i s  completely  damaged t h e  provide this  unsuitable.  a p p l i c a t i o n of heat  d r y i n g by  wet  o f automated equipment  i n commercially  suitability (ii)  by  M.C.  Cones  or three p o i n t s  r a t e i n h e r e n t i n a system which t r e a t s  individually, the  deflection  scales.  c o n e s and  operating principle  reduce  a p p l i e d a t two  c r u s h i n g , which probably  which e x i s t s  production  a  i n a l l cones t e s t e d ,  b a s i s were a l m o s t  Cones a b o v e 20%  several angular p o s i t i o n s , profile  achieved  wet  o r d e r t o open most o f t h e The  Cones h a v i n g  i n c r e a s e d , the degree of  a small deflection  around the cones.  cones  s e a l breakage i n c r e a s e d s h a r p l y .  below a p p r o x i m a t e l y o p e n e d by  method  c o n t e n t s were t e s t e d .  as c o n e m o i s t u r e  required  c r u s h i n g a number o f  shown i n F i g u r e 22.  S e a l b r e a k a g e was but  this  seed  from  b e e n t h e method such  cones.  been employed d u r i n g normal  of higher k i l n  temperatures.  In kiln  F i g u r e 22.  S e a l b r e a k i n g by c r u s h i n g .  F l a s h h e a t i n g o f cones f o r the purpose o f b r e a k i n g the s e a l s o f lodgepole p i n e cones was i n v e s t i g a t e d i n p a r t one of  this report.  Based on the i n f o r m a t i o n and experience  gained from t h a t study, two p r o t o t y p e s e a l b r e a k i n g t o o l s were fabricated for testing. The p r o t o t y p e t o o l s designed were a h o t water immersing d e v i c e , and a flame t r e a t i n g d e v i c e . t o o l s were designed f o r continuous  Both of these  flow o p e r a t i o n and were  used t o e v a l u a t e the s u i t a b i l i t y of t h e i r r e s p e c t i v e performance for  use i n a p o r t a b l e mechanical  and  f o r use w i t h p r e s e n t k i l n e x t r a c t i o n The  c o n i f e r seed e x t r a c t i o n system facilities.  a n a l y s i s , d e s i g n and t e s t i n g of these two  p r o t o t y p e f l a s h h e a t i n g t o o l s i s d e s c r i b e d below. 2.  Heat T r a n s f e r A n a l y s i s of F l a s h Heated Cones In  cones,  order t o e v a l u a t e the f l a s h h e a t i n g process o f  a heat t r a n s f e r a n a l y s i s was c a r r i e d out t o i d e n t i f y  the thermal g r a d i e n t s w i t h i n resulting  i n t e r n a l temperatures The  tures that  f l a s h heated  concept  f o r the purpose rapid  cones  during the process.  of flash  heating with very high  o f s e a l b r e a k i n g i s based  ture.  the seeds  This situation  position  of the seals  relatively  exposed  maximum  temperature  the heat  source.  after  achieve  regions which  initial  tempera-  of the r e l a t i v e  and t h e s e e d s w i t h i n  i s , however, a t t a i n e d  thermal energy end  i s p o s s i b l e because  low t h e r m a l c o n d u c t i v i t y The  from  a r e h e a t e d much a b o v e t h e i r  tempera-  on t h e p r i n c i p l e  h e a t i n g o f t h e o u t e r r e g i o n o f t h e cone w i l l  melting of the resinous seal before the c e n t r a l contain  and t h e  the cone,  and t h e  o f t h e cone s c a l e  tissues.  t o which t h e seeds a r e t h e cones  T h i s occurs because  have been  removed  the high l e v e l of  p r e s e n t i n t h e o u t e r r e g i o n s o f t h e cone a t t h e  o f t h e h e a t i n g p e r i o d moves t h r o u g h  equilibrium  conditions.  immediately  upon e m e r g i n g  f r o m h e a t t r e a t m e n t , much o f t h i s  energy w i l l  be d i s s i p a t e d  t o t h e s u r r o u n d i n g s , so t h a t t h e  effect  I f t h e cones  t h e cone t o e s t a b l i s h  are subjected to cooling  o f t h e i n w a r d m o v i n g wave o f h e a t w i l l  appreciable  further  i n c r e a s e i n t h e seed  A quantitative c e s s was c a r r i e d t r a n s i e n t heat convection,  analysis  o u t by employing  flow i n stationary  temperature.  o f t h i s heat t r a n s f e r  pro-  the techniques used f o r systems w h i c h a r e h e a t e d by  and w h i c h have h i g h i n t e r n a l  These t e c h n i q u e s a r e o u t l i n e d by K r e i t h Choi (42).  n o t cause  temperature  gradients.  (27) , Rohsenow a n d  The relationship  analysis  among  temperature gradient, the  ratio  a ratio in  analysis  conditions  the functional  defining the  a functional relationship  describing  thermal r e s i s t a n c e s , and  t o thermal energy v e l o c i t y  Due t o t h e c o m p l e x n a t u r e o f t h e s e r e l a t i o n i s c a r r i e d out using  have been f o r m u l a t e d  graphical  f o r c e r t a i n geometric  o f homogenity, u n i f o r m i t y  solutions  shapes under  and a c c u r a t e l y  which ideal  known  properties. The  by  a dimensionless r a t i o  r e l a t i n g time o f h e a t i n g  material  of defining  o f i n t e r n a l and e x t e r n a l  the material.  ships,  consists  r e l a t i o n s h i p of these c h a r a c t e r i s t i c s i s given  the following  equation: T - TCO  Y  T - T. o  x  = f (Bi, FO, L ).  CO  More s p e c i f i c a l l y  where:  (1)  this i s hL ••• a t f (k ' 2 L  x L)  Y  =  Y  =  d i m e n s i o n l e s s r a t i o o f t h e change o f i n t e r n a l e n e r g y due t o h e a t i n g , w i t h r e l a t i o n t o the stored i n t e r n a l energy.  =  t e m p e r a t u r e o f any p o i n t  (2)  a t time t .  72. =  temperature  =  initial  h  =  unit  L  =  characteristic  k  =  thermal  conductivity  a  =  thermal  diffusivity  t  =  time  x  =  dimension o f l e n g t h , l o c a t i n g under study  Bi  =  B i o t number, d i m e n s i o n l e s s h e a t ratio .  Fo  =  F o u r i e r number, d i m e n s i o n l e s s  T  Q  of surrounding  temperature  Graphical solutions prepared  for ideal  infinite  cylinders,  shapes,  dimension  o f body o f body  o f m a t e r i a l o f body o f m a t e r i a l o f body  the p o i n t transfer  time  ratio.  t o these r e l a t i o n s h i p s  including  In order t o apply t h i s assumptions  sphere,  slabs,  infinite  have  been  slabs,  e t c . (27, 4 2 ) .  technique  to the f l a s h  heating  a r e made:  - S e a l e d c o n e s c a n be a n a l y z e d as a n cylinder having  (radius)  from b e g i n n i n g o f p r o c e s s  semi i n f i n i t e  o f cones t h e f o l l o w i n g  o f body  s u r f a c e conductance  measured  fluid.  a diameter  the cone a t t h e p o i n t under  infinite  equal to that of study.  - S e a l e d c o n e s a r e homogeneous h a v i n g  uniform  physical properties within the r e g i o n of the cone u n d e r  study.  - The h e a t o f f u s i o n o f t h e r e s i n o u s s e a l i s negligible.  - The f i l m c o e f f i c i e n t  (unit surface  conductances)  remains c o n s t a n t . - The f l u i d , i n t o w h i c h t h e cones a r e immersed maintains a constant temperature. - Heat i s t r a n s m i t t e d t o t h e cones by c o n v e c t i o n only. The h e a t t r a n s f e r a n a l y s i s c a r r i e d o u t was based on the average d i m e n s i o n a l d a t a t a k e n from a number o f cones cons i d e r e d t o r e p r e s e n t t h e t y p i c a l s i z e and shape o f cones the cone l o t under s t u d y .  from  The d a t a used a r e l i s t e d below and  shown i n F i g u r e 2 3 . Cone l e n g t h 1.65 i n . ( 4 . 2 cm) Maximum d i a m e t e r .70 i n . ( 1 . 8 cm) Diameter a t t o p o f seed b e a r i n g r e g i o n .42 i n . ( 1 . 1 cm) Diameter a t base o f seed b e a r i n g r e g i o n .70 i n . ( 1 . 8 cm) S e a l depth .060 i n . ( 0 . 1 5 cm) Depth o f seed . 1 4 0 i n . ( 0 . 3 6 cm)  Figure 23.  Dimensional data of cone for heat transfer analysis.  The  thermal properties  a n a l y s i s was t h a t  reported  f o r cones used f o r t h i s  by L e e a n d B e a u f a i t  c o n e s o f P i n u s b a n k s i a n a , and a r e a s Thermal  conductivity  k  (28) f o r y o u n g  follows:  =  0.123 BTU/hr f t  F°  2 Thermal d x f f u s i v i t y The  unit surface  gas,  =  0.0073 f t / h r .  conductance f o r cones  b a s e d on t y p i c a l v a l u e s  i n h o t water  f o r comparable  conditions (42),  was assumed t o b e , r e s p e c t i v e l y , 100 BTU/hr f t 2 20 BTU/hr f t  resinous  heated in  p o i n t , w h i c h was e a r l i e r  first  determined  s e r i e s o f c a l c u l a t i o n s was made t o  the conditions  when n e w l y m a t u r e d  a t 205°F  cones a r e f l a s h  t e m p e r a t u r e o f 34°F  (1°C) b y  of  the seed bearing  as  follows: 1 Bi  region  k  =  _ "  h r r fb r o  ratio,  °  T (.15") T  immersion  (96.1°C).  Using dimensional data f o r conditions  Position  a t the  (126°F).  f r o m an i n i t i a l  water  were c a r r i e d o u t t o d e t e r m i n e t h e  t o r a i s e the temperature o f the m a t e r i a l  The identify  F ° , and  F .  seal to i t s melting  t o be 5 2 . 5 ° C  2  n  Calculations time r e q u i r e d  and h o t  _ ~  a t the t i p  o f t h e cone, the c a l c u l a t i o n s a r e  .123 X 12 100 X .21  "  -  .150 .210  "~  -714  0  /  0  - T . oo  - T  i  _ -  From t h e g r a p h i c a l  126 - 205 34 - 205 " solutions  A  c  n  -  4  6  2  (27, 42) f o r h e a t  transfer  75.  in  an i n f i n i t e  This,  cylinder,  i n turn,  required  enables the c a l c u l a t i o n  to bring r  4t  a F o u r i e r Number o f .14 i s i d e n t i f i e d .  the seals 2 O  =  F  o —  O  The  2  X  .14  .0073 X 144 =  21.1  temperature  -  =  r.r.r-o-7 0  0  5  8  7  h  i s determined  t o which seeds  as  r  S  seconds located  t h e s e e d b e a r i n g r e g i o n w o u l d be h e a t e d a f t e r treatment  time t  t o the m e l t i n g temperature. .21  =  o f the immersion  a t the t i pof  21.1  seconds  follows: r  Position  ratio  f o r seeds,  = *  =  .333  o Using the curves of the g r a p h i c a l t r a n s f e r in' an i n f i n i t e a temperature is  ratio  cylinder  o f .78.  solution  a g a i n , and t h e s e d a t a  From t h i s ,  the seed  of heat indicate:  temperature  found t o be: T,(seed) =  .78  =  .78  Using out t o determine  v  (To  - TOO'T ) cT o +  (34 - 205) + 205 = 71.6°F  (22.0°C).  t h e same a n a l y s i s ,  c a l c u l a t i o n s were  carried  the time r e q u i r e d  t o melt the s e a l s  at the  lower o r peduncle end o f t h e seed b e a r i n g r e g i o n o f t h e cone. T h e s e a r e shown  below:  1_ Bi  _  k_ h r o  .123 X 12 100 X .35  o ~ o  _ -  .29 735  r  _ _  '  8  3  .  -U4^  76.  The  g r a p h i c a l heat t r a n s f e r data i n d i c a t e  a  Fourier  time t o b r i n g  t o the  Number o f .09. The melting  i n this  region  temperature i s : r t  F  2  =  O  2 .35 X .09 mncv ~>n -i j n m ? v 1 / 1 / 1 " .0105 h r s = 37.7 s e c o n d s  O  —  =  =  a The of  the seals  .0073 X 144  temperature  o f seeds  at this  l o c a t i o n a t t h e end  37.7 s e c o n d s i s f o u n d as f o l l o w s : r (seed) _ .21 _ — — — — . D r .35 o c  This  gives  i n d i c a t e s a temperature  a seed temperature T  , seed  As  =  .70  (T - T ) + T o °° °°  =  .70  (34 - 205) + 205 = 8 5 . 3 ° F =  a r e s u l t of the longer  i n the lower r e g i o n  seeds  i n the t i p region previously  i n the t i p region as  which  T_ o f :  seals  temperature  r a t i o o f .70  time r e q u i r e d  o f t h e cone,  t o melt the  the temperature o f  o f t h e cone w i l l calculated.  (29.6°C).  be h e a t e d a b o v e t h e  The t e m p e r a t u r e  a f t e r t r e a t m e n t f o r 37.7 s e c o n d s  o f seeds i s found  follows:  Ii r  =  -  s  0 7 0  .070 .21  r  .333  o F  = °  a  =  t  r o  2  .0073 X 37.7 X 144 .21  2  X  3600  _  2  4  g  This turn,  gives  indicates  a seed temperature o f :  (seed)  T  a t e m p e r a t u r e r a t i o o f .42 w h i c h , i n  = .42  (34 - 205) + 205 = 1 3 3 . 2 ° F  A second s e r i e s  of calculations  was c a r r i e d o u t t o  d e t e r m i n e t h e same s e e d t e m p e r a t u r e s u n d e r flash heating  i n a i r a t 1000°F  These 1 Bi Position  calculations  _  k h r  ratio r  of  .070.  a r e shown b e l o w :  126 - 1000 34 - 1000  T  =  from t h e r e f e r e n c e s  This,  .351  .„ .150 .210  _  ( . 1 5 " ) " °° T - T o °°  Data  of  nr  s  T  the conditions  (538°C).  .123 X 12 20 X .21  Q  (56.2°C)  i n turn,  =  .714  =  .907  indicate  a Fourier  Number  gives a treatment time o f :  2 t  =  r  °  F  ° =  -21  a  r  2  X .070  =  .0073 X 144 =  10.6  ,  U  U  ^  4  n  r  s  seconds  Seed t e m p e r a t u r e a t t h i s p o i n t  i s calculated  as  follows: Position  ratio r  n  s r  _  n  n  . 070 .210  *  o The .97 w h i c h ,  graphical  i n turn,  data i n d i c a t e  a temperature r a t i o o f  g i v e s a seed temperature o f :  78.  seed  T  The the  cone  *  =  9 7  (  3  ~  4  time t o b r i n g  to the melting  1  0  0  0  )  1000 = 63.0°F  +  the seals  temperature  (17.2°C)  i n the lower r e g i o n o f  i s calculated i n a similar  fashion: 1__ Bi  _  ^  =  r  T  o  _k h r  _  .123 X 12 20 X .35  =  .83  o  m  .35  ( . 3 5 " ) " °° T - T o  126 - 1000 _ 34 - 1000  T  =  q  n  7  00  This  i n d i c a t e s a F o u r i e r Number  a seal breaking 2  F  o  2 .25 X .04 .0073 X 144"  =  =  seconds  from t h i s T  seals as  temperature  seconds.  o f seeds  at this point  a f t e r 16.7  s —r o  r  =  .21, '  =  the temperature  , seed  The cone  16.7  .' .°°46hrs-.  o f t r e a t m e n t i s f o u n d by t h e f o l l o w i n g : 1 Bi  and  gives  time t o f :  - r o ~a  The  o f .04, w h i c h  =  .96  F  o  ratio,  =  .04  i s .96, t h u s :  (34 - 1000) + 1000 = 7 2 . 6 ° F . ,  temperature  o f seeds  a f t e r t h e 16.7 s e c o n d s i n the lower r e g i o n  follows:  .6, '  1  i n the t i p region  of treatment required  o f t h e cone  i s similarly  (22.6°C) — o f the  t o melt the determined  From t h i s  the temperature  temperature  ratio  i s .92  seed  =  "  Treatment  9 2  (  3  ~  4  times  1  0  0  0  )  +  e x p e r i m e n t a l l y and seed  temperatures  all  0  0  temperatures  1H-3°F  =  (44.1°C  the above a n a l y s e s ,  t i m e s w h i c h were of t h i s  determined  report.  are i n the g e n e r a l range  above c a l c u l a t i o n s  Brisbin  of  (37).  indicate  the  suitability  f l a s h h e a t i n g f o r s e a l breaking of s e r o t i n o u s cones. probability,  w o u l d be for  0  r e p o r t e d i n P a r t One  m e a s u r e d by N y b o r g and The  1  c a l c u l a t e d by  correspond w e l l with the treatment  of  seed  of: T  Calculated  which g i v e s a  less  the a c t u a l h e a t i n g o f seeds  s e v e r e t h a n t h a t p r e d i c t e d by  the reasons  outlined  I t was o u t , when i n f a c t are covered w i t h i n over the other.  these  cones  Most seeds  t h e c o n e by  three or four  Thus t h e s e e d s  layers,  each  calculations  a r e homogeneous  they are not.  a uniform layer  cones  below.  assumed t h a t  h e a t by  i n the  In  are not  s e p a r a t e d by  an  a i r gap.  of lodgepole pine scales,  sheltered  o f woody t i s s u e ,  b u t by  The  through-  lying  from  external  three or  overall  one  four  thermal  80.  conductance f o r e be actual  between t h e s e e d and  lower than t h a t used seed temperatures  the cone s u r f a c e would t h e r e -  i n the c a l c u l a t i o n s ,  w o u l d be  hence  lower than the  the  calculated  values. I t was  also  assumed i n t h e c a s e o f f l a m e h e a t i n g  that  h e a t was  tion  only, while i n fact,  well.  The  t o cause  imparted t o the s u r f a c e of the cones  result  of t h i s  a more r a p i d  of the cone, which, gradient within t h e r e f o r e be  heat  i s t r a n s m i t t e d by  additional  transfer  f u r t h e r reduced  radiation  of thermal energy  The  convec-  heat t r a n s f e r would  i n t u r n , would cause  the cone.  by  actual  to the  a steeper  be surface  temperature  seed temperature  from the c a l c u l a t e d  as  would  values at  the  time o f s e a l m e l t i n g . The  temperatures  and  heat treatment times  determined  a b o v e a r e c o n s i d e r e d t o be w e l l w i t h i n t h e a c c e p t a b l e l i m i t s for  a continuous flow system  damage t o t h e s e e d s . be  c o n s i d e r e d t o be  breaking 3.  Hot  The  and  from  thermal  p r o c e s s o f f l a s h h e a t i n g can  an a c c e p t a b l e and  the s e r o t i n o u s s e a l s  efficient  of Lodgepole  pine  method  therefore of  cones.  W a t e r Immersion T o o l A p r o t o t y p e hot water  and  f o r freedom  fabricated  immersion  t o o l was  designed  i n order to evaluate t h i s process f o r thermal  s e a l b r e a k i n g of s e r o t i n o u s cones. The suitable  operational  requirements  of a s e a l b r e a k i n g  f o r operation i n conjunction with a mechanical  tool  seed  81.  extraction  system o r f o r use w i t h c o n v e n t i o n a l k i l n  are  below.  listed  extraction  - O p e r a t e on a c o n t i n u o u s b a s i s . - Possess adequate - Be  production  capacity.  portable.  - O p e r a t e w i t h a minimum o f l a b o u r - Exhibit - Be The  efficient  adjustable hot water  date the v a r i o u s  immersion  characteristics  the range of water  at which t h i s  tool  could  utilization.  i n treatment duration.  w h i c h were d e t e r m i n e d i n p a r t respect,  fuel  input.  t o o l was  d e s i g n e d t o accommo-  and p r o p e r t i e s  one  of this  of the  report.  In  included  o p e r a t e was  the a b i l i t y  designed to coincide  to handle both sealed  immersing  consists  compartments immersed  d e s i g n o f the immersion of a  and u n s e a l e d  buoyancy  capability  revolving  drum h a v i n g  i n a tank of heated water. just  above  averted  of the  chosen  for fabrica-  several is partially  cones a r e f e d i n t o line,  and a s  down i n t o t h e w a t e r .  o f t h e c o n e s h o l d s them up during  The  the water  the cones a r e c a r r i e d  compartments,  tool  a r o u n d i t s p e r i p h e r y and w h i c h  t h e s e compartments revolves,  transport  The  tool. The  tion  of a positive  with  tests.  c o n e s , and t h e r m a l damage f r o m e x c e s s i v e t r e a t m e n t was by t h e i n c l u s i o n  this  t e m p e r a t u r e and t r e a t m e n t t i m e s  t h e optimum c o n d i t i o n s d e t e r m i n e d by t h e i m m e r s i o n design  cones  submergence.  t h e drum The  against the w a l l of the As  e a c h compartment  emerges  82. from are  t h e w a t e r an e l e v a t i n g lifted  chute  t o a p o i n t where t h e y  supports  the cones u n t i l  a r e dumped i n t o  the  they  delivery  chute. A f e e d h o p p e r and porated  d e v i c e was  i n t o the d e s i g n of the e x p e r i m e n t a l  to i d e n t i f y continuous  d r i v e n by  also  apparatus  the performance c h a r a c t e r i s t i c s  of the  incor-  i n order  tool  under  flow operation. The  is  a metering  i m m e r s i n g drum i s e l e c t r i c a l l y  a variable  c o n t r o l l e d by  speed  d r i v e mechanism.  a d j u s t i n g the  wheel i s d r i v e n .  The  speed  p o w e r e d and  Immersion  a t which the  is  time  immersion  f e e d auger i s c h a i n d r i v e n by  a  separate  motor. Water i n the temperature  by  i s monitored tank.  The  enclosing  electrical  by  exposed  insulating  evaporative  at a t y p i c a l  i n the  the  temperature  centre of  are i n s u l a t e d  the  and  an  revolving  cooling.  carried  out  commercial seed  i s shown w i t h  and  on  l a b o r a t o r y and  e v a l u a t i o n of t h i s prototype  identified  the  p r o t o t y p e h o t water immersion t o o l  s e a l breaking d e v i c e , both  tool  the  drum c o v e r removed i n F i g u r e s 24  tions existing  uniform  while  the upper r e g i o n o f the  E x t e n s i v e t e s t i n g was  A qualitative  at a  h e a t i n g elements,  s u r f a c e s of the tank  chamber c o v e r s  The  i s maintained  a thermocouple l o c a t e d near  drum i n o r d e r t o r e d u c e  its  tank  the  25. immersion  under  condi-  extraction plant. seal  breaking  following points:  - A h o t water immersing for  tool  i s an  the breaking o f s c a l e  effective  seal  device  of serotinous  Figure  Figure  24.  25.  Prototype tool.  hot water s e a l  breaking  View o f s e a l b r e a k e r showing h e a t i n g and d r i v e mechanisms.  84.  cones. - Cones whose s e a l s a r e b r o k e n w i t h a moderate d r y i n g p r o c e s s  before  of e i t h e r mechanical or k i l n effectively  i s high  require  other  phases  e x t r a c t i o n can  be c a r r i e d o u t .  - The e n e r g y r e q u i r e m e n t tool  hot water  of this  type  of seal  due t o e v a p o r a t i v e  breaking  cooling of  t h e m a c h i n e components a n d t h e l o s s  of hot  liquid. - Cones h a v i n g w.b.  a moisture  content  i n excess  o f 25%  p o s e o p e r a t i o n a l p r o b l e m s due t o t h e i r  tendency t o sink i n the h e a t i n g - A hot water s e a l breaking  water.  t o o l has a l o n g  start  up  t i m e due t o t h e l a r g e mass o f w a t e r a n d components w h i c h o p e r a t e  at elevated  tempera-  tures . Problems o f f r e e z i n g e x i s t hot  water s e a l breaking  during winter The  tool  has  results  serotinous  4.  i n an u n h e a t e d  location  o f t h e above e v a l u a t i o n i n d i c a t e t h a t a performs e f f e c t i v e l y  seal breaking  a number o f d i s a d v a n t a g e s  commercial  shutdown when a  operation.  hot water immersing d e v i c e flow  i s used  during  tool,  as a  but that t h i s  which reduce  continuous  type  of tool  its suitability for  operation.  Flame T r e a t i n g The  Tool  designing  and f a b r i c a t i o n  o f an a l t e r n a t e  seal  85.  breaking t o o l ,  which  flash  t a k e n as an a l t e r n a t i v e The  tool  as w e l l .  The  characteristics part  one  of t h i s  of t h i s  breaker  requirements stated  tool.  f o r the hot  apply t o the d e s i g n of the flame  of serotinous r e p o r t , was  c o n e s , w h i c h was similarly  water  treating  i n f o r m a t i o n on t h e p h y s i c a l p r o p e r t i e s  and  determined i n  utilized  operating principle  i n the design  o f the flame t r e a t i n g  i s . t h a t o f t u m b l i n g the cones w i t h i n  i n t o which  on a 10  design of t h i s  i s a four turn  single  are located into  auger.flight  inches i n length,  pitch  i s attached to the w a l l  extended  a horizontal  tube  prototype f l a s h heater i s based  i n c h d i a m e t e r t u b e , 30  baffles  seal  a flame i s i n t r o d u c e d . The  flight  immersion  under-  tool. The  which  i n a f l a m e , was  t o the hot water  operational  s e a l b r e a k e r , above,  h e a t s cones  auger  flight.  o f t h e t u b e , and  at several points  The  the cones  The  of  three  flame  inch  deflecting  along the f l i g h t  the r e g i o n o f the tube a x i s . i s to transport  inside  and  purpose  of the  t h r o u g h t h e t u b e as i t  rotates. The  ends o f t h e t u b e  end p l a t e s w h i c h pulleys.  a r e c a p p e d w i t h 14  s u p p o r t t h e t u b e by  At the c e n t r e of the p l a t e  resting  i s 3 i n c h diameter h o l e through which  into  t h e t u b e , and  exit  end  is  exhaust  o f t h e tube has  i n t r o d u c e d , but which  gases escape.  a similar  on t h e  on t h e i n l e t  tube  inch  drive  end  the cones The  plate  a t one  point  of the are fed  on  hole through which  i s extended  diameter  the the  t o the  flame  86.  circumference o f the tube t o p r o v i d e a d i s c h a r g e p o r t f o r treated  cones  as shown i n F i g u r e  The which  26.  f l a m e t u b e i s s u p p o r t e d by f o u r d r i v i n g  a r e a t t a c h e d t o two p o w e r e d s h a f t s h e l d  attached  t o t h e frame a t e i t h e r  a r e d i v e n by a v a r i a b l e  side  i n bearings  of the tube.  These  speed e l e c t r i c motor thus a t a l l speeds  over a range  seconds p e r r e v o l u t i o n  t o one s e c o n d p e r r e v o l u t i o n .  t r e a t m e n t t i m e c a n be c o n t r o l l e d  to f o r t y  over a range  a r e metered  b y a n a u g e r and a r e d i r e c t e d  by a c h u t e .  The c o n e s  as t h e y t u m b l e tube.  against  into  are propelled the s p i r a l  The t u m b l i n g a c t i o n  from  four  also  the f l a s h  cones  are discharged  which  carries  flight  inside  hour propane  Temperatures  to the hot  a discharge chute container.  i t s flame d i r e c t l y  within located  p o r t where t h e e x h a u s t g a s e s  are discharged. This  27.  into the  the f l a s h heater are monitored  by t h e u s e o f a t h e r m o c o u p l e  of Figure  Treated  t o t h e t o o l by a 190,000 BTU p e r  t o r c h which d e l i v e r s  tube.  tube  the revolving  from t h e f l a m e .  from the tube i n t o  i s supplied  tool  serves t o ensure t h a t a l l  them t o a c o n v e y o r o r s u i t a b l e  Heat  heating  through the flame  s u r f a c e o f t h e t u b e and t h e h o t g a s e s  detail  In t h i s  out of the feed  s u r f a c e s o f t h e cones r e c e i v e u n i f o r m exposure  treating  from t e n  seconds. Cones t o be t r e a t e d  hopper  shafts  permitting  t h e drum t o be r o t a t e d  way  pulleys  just  The drum t e m p e r a t u r e  inside  t h e cone  inlet  i s shown i n t h e  i s controlled  by  87.  D e t a i l o f t o r c h and discharge chute.  F i g u r e 26.  Prototype flame t r e a t i n g s e a l breaker.  88.  regulating loss  the p r e s s u r e of f u e l d e l i v e r e d  i s r e d u c e d by  a layer  surface of the t r e a t i n g Preliminary conditions  The  t e s t i n g was  carried  seal  ting  i n terms  i s plotted  p o r t , was  i n Figure  temperature  o f 1000°F  as t h e p e r c e n t a g e seeds  plotted  i n Figure  performance following  (1°C) was (538°C).  of f i l l e d  from cones  The  o f 34°F  treated  o f gas  studied.  in  The  28.  e f f e c t o f t r e a t m e n t t i m e on  temperature  the  of f u e l pressure f o r the  h a v i n g a m o i s t u r e c o n t e n t o f 12.5%  initial  of  breaker.  temperature  The  the o u t e r  out u n d e r : l a b o r a t o r y  e f f e c t o f f u e l p r e s s u r e on t e m p e r a t u r e  prototype t o o l  cones  on  Heat  tube.  t u b e , as m e a s u r e d a t t h e e x h a u s t  c u r v e o f gas  of  of asbestos i n s u l a t i o n  to i d e n t i f y the o p e r a t i n g c h a r a c t e r i s t i c s  flame t r e a t i n g  the  t o the nozzle.  seed v i a b i l i t y wet  basis,  and  an  determined, f o r an The  viability,  seeds p r o d u c i n g normal f o r p e r i o d s up  t o 100  of  opera-  expressed germinants,  seconds  is  29.  results  of the q u a l i t a t i v e  evaluation  of t h i s prototype f l a s h heating t o o l  of  the  indicate  the  conclusions: - A flame t r e a t i n g  t o o l p r o v i d e s an e f f e c t i v e  and  v e r s a t i l e method o f f l a s h h e a t i n g s e r o t i n o u s cones  f o r the purpose  - A flame t r e a t i n g  tool  of seal breaking.  for seal  number o f a d v a n t a g e s  b r e a k i n g has  over the hot water  a tool.  89.  i 5  ,  I  I  10  15  1  20  F u e l Pressure (psi) FIGURE 28.  Exhaust temperature v s . f u e l p r e s s u r e f o r flame t r e a t i n g s e a l b r e a k e r .  100  80 CD  o u  CD  PA  C O -P fd C  60  •H  40 L  •H  e u  CD O  20  20  40  60  80  Treatment Time, (seconds) FIGURE 29.  V i a b i l i t y v s . treatment time f o r flame t r e a t e r o p e r a t i n g w i t h an e x h a u s t t e m p e r a t u r e o f 1 0 0 0 ° F (538°C)  100  9G.  These no  are:  cone  lower weight,  drying  required,  quicker no  t r e a t m e n t , more e f f i c i e n t —  The  fire  h a z a r d p o s e d by  cones  heat  treatment. cones  lost  a flame t r e a t i n g  tool i s  other  from the cones  Under n o r m a l  during  utilization.  low, p a r t i c u l a r l y i f n e e d l e s and material are scalped  startup,  prior  operating  to  conditions  a r e n o t i g n i t e d by t h e t r e a t m e n t ,  and  o n l y when t r e a t m e n t t i m e i s more t h a n 25 30 s e c o n d s  does  t h e p i t c h on h e a v i l y  c o n e s become i g n i t e d . extinguish treatment 5.  Calibration  treating was  seal  undertaken  content  Seal  breaking t o o l , detailed f o r the purpose  quickly from  the  Breaker of  flame  c a l i b r a t i o n of t h i s  of predicting  t h e optimum  tool treat-  conditions.  t o o l was  f o r fresh  coated  tube.  of the s a t i s f a c t o r y performance  ment f o r s p e c i f i c cone The  flames  t h e m s e l v e s upon emerging  o f Flame T r e a t i n g  In view  Such  to  class  c a l i b r a t e d , o v e r a range I c o n e s and  of moisture  f o r o l d weathered  class  • I I I cones. All treater 65°F at  c a l i b r a t i o n was  o p e r a t i n g under  and  70°F  (18°C  and  t h e e x h a u s t p o r t was  11°C).  ambient 21°C).  carried  out w i t h the  temperature The  gas  flame  conditions  temperature,  m a i n t a i n e d a t 1000°F  ± 20°F  between as m e a s u r e d  (538°C  ±  The 34°F  initial  ( 1 ° C ) , and t h e c a l i b r a t i o n  which had been ranging  conditioned  f r o m 9%  tool  was  t e s t s were c o n d u c t e d on  cones  t o a number o f m o i s t u r e c o n t e n t s  t o 32% wet  each c l a s s i f i c a t i o n the  temperature o f a l l cones t r e a t e d  basis.  Groups  o f 100  cones  from  and m o i s t u r e c o n t e n t were p r o c e s s e d  f o r t r e a t m e n t t i m e s o f 5, 10, 15, 20,  25 and  by  30  seconds. After ture  so t h a t  t r e a t m e n t , cones were d r i e d  t h e d e g r e e o f s e a l b r e a k i n g on e a c h was  e v i d e n t b y t h e open o r c l o s e d p o s i t i o n The (i)  c o n e s were t h e n s o r t e d Fully  The young  are  data  o f t h e cone  u n s e a l e d , and  earlier  i n this  from these t e s t s  c o n e s i n T a b l e s A-19  and  shown i n F i g u r e s  30 and  31.  cone  clearly  of (iii)  Not  report.  are  reported  A-20,  Curves showing t h e p e r c e n t o f cones  s e a l b r e a k a g e i n e a c h o f t h e two  tempera-  scales.  the c l a s s i f i c a t i o n s  reported  calibration  and w e a t h e r e d  respectively. full  into  unsealed, ( i i ) P a r t i a l l y  u n s e a l e d , w h i c h have been  for  a t room  achieving  classifications,  FULLY OPENED  Flame Treatment Duration (seconds) FIGURE 30.  Flame t r e a t e r c a l i b r a t i o n curves f o r complete seal breaking o f Class I (young) Lodgepole Pine cones.  FULLY  OPENED  vo Flame Treatment Duration (seconds) FIGURE.31.  Flame t r e a t e r c a l i b r a t i o n curves f o r complete s e a l breaking of Class I I I (weathered) Lodgepole pine cones.  XI.  1.  DEVELOPMENT OF MECHANICAL CONIFER SEED EXTRACTING TOOL.  Alternative The  tion  system  Methods  development  i s dependent  of a mechanical conifer  tool.  importance of t h i s  i n t h e d e s i g n and  Chapters  type of t o o l  seed e x t r a c t i o n  I and V o f t h i s  (i)  function  s y s t e m was  tool  scales  extraction,  ( i i ) t h e r e m o v a l by b o r i n g  under  and a r e d u c e d k i l n  operation discussed i n  consideration.  treatment f o r seed or d r i l l i n g  c e n t r a l woody c o r e o f t h e c o n e s w h i c h w o u l d t o a mass o f f r e e  s c a l e s mixed  threshing of entire agricultural  and  the removal by a b r a s i o n o f the o u t e r r e g i o n s  o f t h e cone  for  an  o p e r a t i n g p r i n c i p l e s were p r o p o s e d  f o r the design of the e x t r a c t i o n are:  The  of  report.  Three a l t e r n a t i v e  These  extrac-  upon t h e s u c c e s s f u l d e v e l o p m e n t  e f f e c t i v e mechanical e x t r a c t i o n  of a portable conifer  seed  cones  of the  reduce the  w i t h the seed,  (iii)  i n a manner s i m i l a r  cones  the  to that  used  crops.  In e a c h o f t h e above p r o c e s s e s , t h e f u n c t i o n o f t h e extraction within  tool  the cone.  i s to release  the seeds from t h e i r  A subsequent t o o l  the task of s e p a r a t i n g  tumbling  (i) requires extraction,  to perform  t h e seed from t h e cone d e b r i s .  o f t h e s e p r o c e s s e s must a l s o be Process  i s required  position  a kiln  supplemented  drying  and p r o c e s s  Each  with heat treatment.  t r e a t m e n t and  ( i i )requires  subsequent  a heat  treating  process  t o break, t h e s e r o t i n o u s  process  (iii)  the  s e a l s a f t e r b o r i n g , and  appears t o r e q u i r e a heat  s e r o t i n o u s bonds p r i o r  treatment  t o break  to threshing.  E a c h o f t h e a b o v e e x t r a c t i o n methods was by  preliminary testing.  was d e v e l o p e d  into  The m o s t p r o m i s i n g  a first  E x t r a c t i o n b y Cone The  treatment  region  i s not intended  shown i n F i g u r e  abrasion  t h e cone  p o r t i o n and t h e s e r o t i n o u s  t o achieve  seed  kiln  bond  extraction i n i t s e l f ,  a s a means t o r e d u c e k i l n  speed t h e c o n v e n t i o n a l The  testing.  o f c o n i f e r cones by a b r a d i n g  t o remove t h e o u t e r  i s proposed  t o extensive  prototype,  Abrasion  scales  but  extraction tool  and a second g e n e r a t i o n  e a c h o f w h i c h was s u b j e c t e d 2.  evaluated  treatment  and t o  extraction process.  t o o l used t o e v a l u a t e  this  concept i s  32, a n d c o n s i s t s o f a s t a t i o n a r y a n d a r o t a t i n g  c o n c a v e d i s k mounted one above t h e o t h e r  o n a common a x i s .  Cones a r e i n t r o d u c e d b e t w e e n t h e d i s k s t h r o u g h a hole  a t the centre of the stationary disk.  As t h e o u t e r  portion  o f t h e c o n e s c a l e s a r e a b r a d e d away, t h e c o n e s move r a d i a l l y outward  from t h e c e n t r e  cones a r e reduced the  o f t h e two c o n c a v e s u r f a c e s .  to a size  When t h e  d e t e r m i n e d by t h e d i s t a n c e between  disks at their periphery,  t h e cones a r e d i s c h a r g e d  radially  from between t h e d i s k s . After  treatment  from t h e remaining  by t h i s  tool,  t h e seeds a r e e x t r a c t e d  cone m a t e r i a l by t h e c o n v e n t i o n a l  kiln  Figure  e x t r a c t i o n process.  32.  Cone a b r a s i o n  Abraded cones do not, however, r e q u i r e  long a d r y i n g time, and breaking  tool.  as  the high temperatures used f o r s e a l  are a l s o unnecessary. Preliminary  i n v e s t i g a t i o n of t h i s t e c h n i q u e i n d i c a t e d  t h a t t h i s t o o l d i d not meet the o p e r a t i o n a l requirements of the proposed mechanical c o n i f e r seed e x t r a c t i n g t o o l . f a i l u r e was  due  t o the f a c t t h a t a f t e r treatment, cones  r e q u i r e d a c e r t a i n p e r i o d of d r y i n g , f o l l o w e d by v i b r a t i o n p r o c e s s i n order reduction  This  t o e x t r a c t the seeds.  still  a tumbling Also,  or  the  i n k i l n treatment achieved did not appear t o outweigh  the e x t r a h a n d l i n g  r e q u i r e d to abrade the cones p r i o r t o  A d d i t i o n a l l y , t h e s u c c e s s f u l development of the f l a s h heater f o r breaking  the  reduced the u t i l i t y of t h i s  flame t r e a t i n g  s e a l s of s e r o t i n o u s  tool.  drying.  cones f u r t h e r  97.  3.  Extraction The  by C o r e  Boring  function  remove t h e woody c o r e  of a core boring  from s e a l e d s e r o t i n o u s  of the removal of the core all  cone s c a l e s  extracting  tool  cones.  The  i s t o remove t h e s t r u c t u r e  are attached,  thereby causing  i s to purpose  t o which  t h e cone  scales  -  t o h a v e no means o f r e m a i n i n g a t t a c h e d t o one a n o t h e r o n c e t h e serotinous  seals are released. When t h e s e a l s  a r e b r o k e n by c r u s h i n g o r  flash  h e a t i n g , b o r e d c o n e s a r e r e d u c e d t o an a c c u m u l a t i o n o f cone s c a l e s , the  amongst w h i c h t h e s e e d s a r e m i x e d .  individual  Separation of  s e e d s f r o m t h e cone s c a l e d e b r i s w o u l d be e f f e c t e d b y  ventional  scalping The  and s e e d c l e a n i n g  feasibility  of t h i s  g a t e d by a n a l y z i n g t h e geometry cones.  A g r o u p o f c o n e s was  of v a r i a b i l i t y characterize  techniques.  t e c h n i q u e was  first  investi-  o f a sample o f l o d g e p o l e  studied  con^  pine  t o determine the range  o f a number o f g e o m e t r i c v a r i a b l e s w h i c h w o u l d  t h e shape and s i z e  of cones.  These v a r i a b l e s  were  d e t e r m i n e d by m e a s u r i n g a g r o u p o f c o n e s w h i c h had b e e n c u t through the l o n g i t u d i n a l as i s shown i n F i g u r e identify holding  axis  deepest p o i n t The schematically  of both the c u t t i n g  as w e l l as t h e r e l a t i v e of the core removing  position  3 3 -, and a r e r e p o r t e d  shows t h e s i m p l e  i n order to  tool  and t h e  of each a t the  cone v a r i a b l e s w h i c h were s t u d i e d i n Figure  view  operation  correlation  are  i n Table  The d a t a o f T a b l e A-21 a r e summarized which a l s o  sectional  3.4. T h e s e d a t a were r e q u i r e d  t h e s h a p e and s i z e tool,  to provide a cross  identified A-21.  i n Table VII  coefficients  among t h e  98.  g e o m e t r i c v a r i a b l e s under s t u d y . From  the  data, i t i s evident that there i s a large  range i n cone p r o f i l e a n g l e s  (0) and c o r e p r o f i l e a n g l e s  (0)  w i t h i n a g i v e n seed l o t . T h i s , a l o n g w i t h t h e wide range o f cone dimensions  i n d i c a t e s t h a t a l a r g e number o f b o r i n g t o o l s  and c u t t i n g depths a r e r e q u i r e d t o remove t h e c o r e o f a l l cones w i t h o u t damaging t h e nearby  seeds.  The  low degree o f symmetry  i n t h e cones f u r t h e r h i n d e r s t h e m e c h a n i z a t i o n o f t h i s o p e r a t i o n . The c o r r e l a t i o n c o e f f i c i e n t s o f T a b l e V I I a l s o i n d i c a t e  that  t h e r e i s no s i m p l e c o m b i n a t i o n o f t h e s e v a r i a b l e s w h i c h would reduce t h e c o m p l e x i t y o f t h e m e c h a n i z i n g  F i g u r e 33.  of t h i s operation.  Geometric v a r i a b l e s o f cones i n f l u e n c i n g e x t r a c t i o n by removal o f cone c o r e .  seed  TABLE V I I .  SIMPLE CORRELATION AMONG VARIABLES  OF CONE GEOMETRY  (Sample S i z e - 60 C o n e s ) Cone Length L in.  Cone Angle 9  Core Angle 0^  Core T i p to Core Apex B in.  Core Axis to Cone Axis a  Core Core Axis Edge Misalign- t o ment Seed <£° Cin.  Mean Value  1.396  37.9  25.5  .966  6.9  4.0  .034  Std. Dev.  ±.245  ±11.4  ±8.4  ±.301  ±4.1  ±9.4  ±.011  Cone Length  1.00  Cone Angle  -.32  1.00  Core Angle  -.25  .57  1.00  T i p t o Apex  .57  -.71  -.36  1.00  Core t o Cone Axis  .24  .20  .35  -.02  Core Axis Misalign.  .22  .08  -.02  -.02  Core Edge to Seed  .07  -.05  .05  .8  Preliininary i n v e s t i g a t i o n tics  o f a core  core  r e g i o n o f s e v e r a l groups  cutting lathe, in  tools.  removing  1.00 , .15  1.00  -.20  -.07  of the operating  t o o l was c a r r i e d  1.00  characteris-  o u t by d r i l l i n g t h e  o f c o n e s u s i n g a number  of tapered  T h i s was done b y o p e r a t i n g t h e c u t t e r s i n a  and h o l d i n g i n d i v i d u a l  cones  i n t h e lathe, chuck  a s shown  F i g u r e 35. In the c u t t i n g process,  profile  angle considered  cone c o r e  a t o o l was c h o s e n h a v i n g  a  t o be n e a r t o t h a t o f t h e a p e x o f t h e  and i t was g u i d e d t o c u t a s c l o s e a s p o s s i b l e t o t h e  100.  centre of the reached The  cone c o r e  axis.  the p o i n t estimated  cones,  which at t h i s  serotinous  The  t o be  t o o l was the  t i p of the  p o i n t were s t i l l  s e a l s , were t h e n  stopped  removed f r o m  when i t  core  tissue.  h e l d t o g e t h e r by the  the  c h u c k jaws f o r  evaluation. The e v a l a u t e d by central  e f f e c t i v e n e s s of t h i s  axis,  Figure  as  shown i n F i g u r e 36,  virtually  without  the  cones b e i n g  The  cutter  symmetrical  and  cutting  depth  w h i l e t h e use of the  by  i n s p e c t i n g these  seal breaking  t o remove c o n e c o r e s by completely  a s i g n i f i c a n t p o r t i o n of the  wide angled angle  received thermal  attempts  no  the p r o c e s s . in  they  and  the  as  -  shown  37. The  in  was  i n s p e c t i n g s e a l e d c o n e s w h i c h were c u t t h r o u g h  cone h a l v e s a f t e r in  core b o r i n g process  scale  achieved  cones, tool.  and  resulted  to free  scales  seeds b e i n g d e s t r o y e d  complete c o r e  in  removal  only  i n cones which were b o r e d  with  In the  o f c u t were t h e  symmetrical  factors  o f the wide angle t o o l tissue  reduced  boring  taking with  cones the  controlling  a  tool  seed  damage,  removed t h e c o r e  and  i t a large portion of  the  part  seeds. The alignment  of the c u t t e r with  of asymmetrical case,  the core  cones which o c c u r  even the p r o p e r  achieve of the  biggest problem i n core  tool  angle  complete core removal, seeds.  The  incomplete  r e m o v a l was, a x i s of the  in this and  and  species.  c u t t i n g depth  however,  l a r g e number In did  frequently destroyed  removal of the core  the  this not a portion  r e s u l t e d :'  F i g u r e 34.  F i g u r e 36.  Cross s e c t i o n of t y p i c a l cones showing degree of asymmetry.  Cross s e c t i o n of bored cones.  Figure37.  Bored and uns e a l e d cones.  102.  in only seed  partial  release  Figure  fragmentation  after  seal breaking.  c o n e and  This  hence  partial  c o n d i t i o n i s shown i n  37. The  qualitative  sealed Lodgepole pine the  of the  following -  e v a l u a t i o n of seed e x t r a c t i o n of  c o n e s by  removing the  cone c o r e s  indicates  conclusions: Seed e x t r a c t i o n c a n the  core  - The  achieved  t i s s u e of  does not simple  be  lend  cones, but  itself  portable  by r e m o v a l , o f .... -  to the  design  pre-sorting  collected of the  c o n e s a r e b o r e d by the  appropriate  order and  size  cones  of  a  found i n  necessitates  cones t o ensure t h a t a l l a s u i t a b l e c u t t e r and  depth. This  to achieve  complete  i s necessary  scale  to in  separation  to minimize seed d e s t r u c t i o n .  - Thermal breaking c a n n o t be  of the  serotinous  performed p r i o r  seals of  to boring  cone w o u l d d i s i n t e g r a t e d u r i n g causing  damage t o t h e  breakingjafter boring must be  protected  seeds are  not  through the be  technique  seed e x t r a c t i o n system.  w i d e r a n g e o f cone s h a p e and commercially  this  flash  seeds.  During  heat  exposed to h i g h  bore h o l e s .  heated while  so  seal of  cones  that  the  temperatures  Thus c o n e s  tumbling,  the  boring,  t h e b a s a l end  from the  as  cones  but  cannot must  be  103.  - The  treated while  o r i e n t e d to p r o t e c t the  region  cone.  of  the  complexity  of  an  automated machine  capable of meeting the result  basal  system  above c r i t e r i a  in prohibitive i n i t i a l  and  would  operating  costs. - The  production  r a t e o f an  employing t h i s be  low,  cones  due  extraction  system  type of e x t r a c t i o n t o o l  t o the  necessity of treating  individually.  I t i s estimated  highly  automated system o f t h i s  handle  f r o m 20  to  would  30  cones per  type tool,  that  a  could per  minute. 4.  E x t r a c t i o n by (i)  Analysis The  p o s e d as  Threshing  an  e x t r a c t i o n of  adaption  of  the  c o n i f e r s e e d s by  t e c h n i q u e w h i c h has  t o e x t r a c t seeds from a g r i c u l t u r a l s e e d by material  threshing  separating  separated  which,  crops.  in  concaves or  from the  other  most c a s e s , i s an The  layout  of  The  the m a n i p u l a t i o n  between a r e v o l v i n g t h r e s h i n g  stationary then  involves  threshing  s y s t e m i s shown s c h e m a t i c a l l y  of  seed  grates.  The  of  bearing a set  f r e e seeds  of are  a s u b s e q u e n t mechanism  a i r - s c r e e n seed  cleaner.  agricultural  i n Figure  pro-  been used .  extraction  c y l i n d e r and.:  m a t e r i a l by  a typical  long  is  38.  The  t h r e s h i n g •• diagram  :  •  shows.  104.  both the  extracting tool  combined  i n t o what i s t r a d i t i o n a l l y The  tool  function of  f u n c t i o n of the  of the  the  returned  threshing;  separating  directly; t o the  into:  separating  c y l i n d e r and  tool  ( i i i )fine material  ( i v ) seeds combined w i t h  the  seeds. The  operation  of  concaves seeds  i s to  machine.  extracting  from  separate  their  the  material  extracting tool  smaller  in size  which  for re-  than the  of debris  seeds,  similar to  a c o n i f e r seed t h r e s h e r above.  output  m a t e r i a l which i s  threshed  a quantity  s i m i l a r to that described  Extraction of  would  Tailings  38.  Schematic diagram of  threshing  machine.  be  serotinous  Debris  Figure  are  protective plant tissue.  (i) coarse  entrance of the  t o o l which  termed a t h r e s h i n g  (ii) partially  and  very  seed  l o c a t i o n i n the  extracting tool  discharged is  the  i n a t h r e s h i n g machine i s t o f r e e the  attachment t o and/or The  and  10 5.  cones, using tion fed  prior  this  to threshing,  directly  would while  content  figuration,  would be  cylinder velocity,  type o f m a t e r i a l t o be  of m a t e r i a l , a r c length o f concave,  number, and m a t e r i a l  o f concave s u r f a c e s ,  location  species  of deceleration  feed  opera-  i n the analysis o f c y l i n d e r -  seed e x t r a c t i n g t o o l s i n c l u d e :  moisture  a seal breaking  tool.  variables involved  c y l i n d e r t o concave c l e a r a n c e ,  size  include  the soft-cone  into the threshing  The concave  system,  extracted, con-  of c y l i n d e r rub bars,  type and  r a t e and v e l o c i t y , t y p e and  surfaces.  T h e a n a l y s i s o f many o f  t h e s e v a r i a b l e s i s e m p i r i c a l , - a n d a l l o f them i n v o l v e a d e g r e e of  subjective  evaluation.  Although l i t t l e  i s known o f t h e u s e o f t h i s  of e x t r a c t i o n f o r c o n i f e r seeds, a v a s t q u a n t i t y has  been p u b l i s h e d  threshing. threshing literature seeds  on t h e e x t r a c t i o n o f a g r i c u l t u r a l  Obviously  dealing with  crop  with  extracted  concaves t h r e s h i n g  rice,  significant of other  information seeds by  the classical i s the  crops.  and r e p l a n t i n g o f v i r t u a l l y  the exception  of f r u i t  The every  crops i s c y l i n d e r and  mechanism. list  (51) i s :  c l o v e r , timothy,  turnips.  but equally  b y means o f a c o n v e n t i o n a l  A partial threshing  has d e a l t w i t h  the threshing  f o r both consumption  presently  by  much o f t h i s  of grain crops,  agricultural  of  method  of the crops  whose s e e d s a r e e x t r a c t e d  c e r e a l grains, corn, alfalfa,  rape,  flax,  peas,  beans,  carrots, lettuce,  106.  Bainer  e t a l . (6) d e s c r i b e d t h e e x t r a c t i o n p r o c e s s  of a t h r e s h i n g c y l i n d e r cylinder  a s one d e p e n d i n g upon i m p a c t  b a r upon t h e s e e d  c o n t a i n i n g capsule which  i n the shattering of the capsule  and t h e f r e e i n g  from t h e p r o t e c t i v e c o v e r i n g m a t e r i a l . obtained and  by t h e r u b b i n g  passed  through  of the results  o f t h e seed  Further threshing i s  a c t i o n as t h e m a t e r i a l i s a c c e l e r a t e d  t h e c l e a r a n c e between t h e c y l i n d e r  and t h e  concave. The  effectiveness of threshing i s stated  a function of the following:  cylinder  cylinder-concave design,  of crop, moisture  crop,  type  and r a t e o f f e e d o f m a t e r i a l .  (6) t o be  speed, concave  clearance,  content of  F o r each crop,  there i s  an optimum p o i n t f o r e a c h o f t h e s e v a r i a b l e s w h i c h w i l l  result o  in  a maximum s e e d  recovery  and minimum s e e d  Hawthorne and P o l l a r d construction  of vegetable, with  rubber  (23) i n 1954 d e s c r i b e d t h e  o f an a l l p u r p o s e c y l i n d e r  t o o l w h i c h was c a p a b l e  concaves p o s i t i o n  and c o n c a v e t h r e s h i n g  o f e x t r a c t i n g t h e seeds o f a wide  f l o w e r and g r a i n c r o p s .  covered  damage.  raspbars  are e a s i l y  The t h r e s h e r  and c o n c a v e s ,  range  i s designed  and t h e s p e e d and  adjustable to operate  over  a wide  range o f s e t t i n g s . The charged in  removal o f t h e seeds from t h e cone d e b r i s  dis-  from t h e t h r e s h e r i n v o l v e s t h e use o f a c l e a n i n g  tool  the flow path  tools  for this  o f the e x t r a c t i o n systems.  f u n c t i o n are commercially  A wide range o f  available  (22) and  107.  are r e a d i l y  adaptable  to the proposed  conifer  seed  extraction  system. (ii)  First  prototype  A prototype laboratory  tool  cone t h r e s h i n g t o o l was  investigation  of the e x t r a c t i o n  designed  of c o n i f e r  for  seeds  by t h r e s h i n g . The tool  are the  diameter is  components o f t h e p r o t o t y p e  t h r e s h i n g c y l i n d e r and  i n F i g u r e 39. six one-inch  key  The  cylinder  high rub-bars  concaves which are  i s s i x inches i n width, mounted on  The  concave s e t i s c o n s t r u c t e d of V  s t e e l b a r s mounted a t 7/8"  spacing over  150°  3/16"  the  of the c y l i n d e r .  The  fabrication,  assembled  an  retaining  l e n g t h o f the concaves are spaced  During  top of the  arc of rods  a t 3/8"  rub-bars x  approximately  running  and  into a  t h e p l e n u m chamber i n F i g u r e 41 was  separates p a r t i a l l y further  t h e c y l i n d e r was  The  single  through  threshed  treatment.  operated  scalping  cones f o r t h e i r Threshed  c o l l e c t e d below the t h e c o n c a v e s was  assembled p r o t o t y p e  shown added  the m a t e r i a l coming o f f the  T h i s chamber h o l d s a m a n u a l l y  passing  through  intervals.  a l l c o n c a v e p a r t s were w e l d e d  p r o v i d e a means t o c o l l e c t  and  1"  unit.  F i g u r e 40,  input  has  The  T h e s e components a r e mounted i n a f r a m e a s in  shown  and  i t s periphery.  o f the c y l i n d e r measured a t t h e  ten inches.  extracting  cylinder.  s i e v e which  return to  the  material passing  scalping  collected  to  through  sieve, while  i n a separate  c o n e t h r e s h e r i s shown i n F i g u r e  that  pan. 42.  108.  Figure  41.  Threshing tool with plenum chamber.  109. The  threshing cylinder  is belt  d r i v e n and  p o w e r e d by  a v a r i a b l e speed e l e c t r i c motor which i s  of d r i v i n g  the  per minute  (2438 m e t e r s p e r  cylinder  A uniform by  an  inclined  achieved  by  below the  a feed gate  (iii)  generation prototype  r e l e a s e d by  hopper.  a pneumatic b a l l  as  shown i n F i g u r e  c o n e t h r e s h i n g t o o l was  c o n e s whose c o n e s c a l e s h a d  moisture  treating. contents  of  8.5,  4300 f e e t p e r m i n u t e  and  1310  each pass through  in  the  on  the  thresher.  For  this  series  as n e c e s s a r y , up  to a t o t a l  At high  this  speeds  reduce the  15.8,  the  some s e e d s s t i l l  of  treatment  c o n e s i n two  f r o m an  of t e s t s ,  701,  cone  achieved fragments  t o be  rethreshed  agricultural  through  sufficient  or three passes,  remained u n e x t r a c t e d  854,  t h e m a t e r i a l was  f i v e passes was  100  2300,  threshing i s usually  tailings  to  19.9  1800,  (548,  s c a l p i n g s i e v e were r e t u r n e d the  first  respectively.  the e x t r a c t i n g t o o l ,  same manner as  of the  been p r e v i o u s l y  speeds o f  meters per minute)  Because o n l y p a r t i a l  retained  mounted  42.  confined  12.8,  2800, 3300, 3800, and  in  vibrator  Groups o f a p p r o x i m a t e l y  using cylinder  1158,  i s provided  testing  p e r c e n t were t h r e s h e d  1006,  feet  Uniformity of flow i s  discussed e a r l i e r ,  f l a s h heat  cones h a v i n g  8000  Testing  For reasons  pine  and  and  trough  to  capable  minute).  feed r a t e f o r t e s t batches  feed chute  delivery  lodgepole  a t p e r i p h e r a l s p e e d s up  is  but  to  the  cylinder.  completely  a t low  w i t h i n cone  returned  speeds,  particles.  110,  F i g u r e 42.  Assembled prototype cone thresher.  gure 43. S c a l p i n g s i e v e with p a r t i a l l y threshed cones.  i  F i g u r e 44. P a r t i a l l y threshed cones a f t e r two passes with c y l i n d e r speed of 2000 f t . / m i n .  111.  The c o n d i t i o n o f p a r t i a l l y t h r e s h e d cones i s e x e m p l i f i e d i n F i g u r e 44 which shows cone fragments from 20 cones r e t a i n e d by the s c a l p i n g s i e v e a f t e r two passes a t a c y l i n d e r speed o f 2000 f t / m i n .  F i g u r e 45 shows t y p i c a l m a t e r i a l  p a s s i n g through the s i e v e under the same c o n d i t i o n s . A f t e r e x t r a c t i o n , the mixture o f cone d e b r i s and. seeds was s e p a r a t e d u s i n g the a i r - s c r e e n c l e a n e r shown i n F i g u r e 46.  In the f i r s t c l e a n i n g treatment, the l a r g e p a r t i c l e s  were s c a l p e d u s i n g a number 11 round h o l e s i e v e w i t h no a i r f l o w . The r e m a i n i n g seed mixture was p r o c e s s e d a g a i n u s i n g a number 8 round h o l e s i e v e and a number 6 X 27 screen.  The f i n a l  was then hand s o r t e d u s i n g a s p a t u l a and smooth t a b l e  material  surface  t o s e p a r a t e those seeds which showed no v i s i b l e m e c h a n i c a l damage from t h e damaged seed as shown i n F i g u r e 47. The sound seeds from each t e s t were weighed  after  d r y i n g , and sample counts taken t o determine the number o f seeds r e c o v e r e d from each group o f cones.  A l l cone m a t e r i a l  from each t e s t was a l s o r e t a i n e d , d r i e d and weighed f o r c a l c u l a t i o n purposes. Germination t e s t s were then conducted on r e p r e s e n t a t i v e samples o f u n s t r a t i f i e d seeds from each t e s t .  The  g e r m i n a t i o n p e r c e n t was r e p o r t e d as tha percentage o f t o t a l  seeds  p r o d u c i n g normal germinants h a v i n g r a d i c l e s a t l e a s t t w i c e the l e n g t h o f the seed. Cones i n the c o n t r o l group were e x t r a c t e d by f l a s h h e a t i n g t o break the s e a l s , d r y i n g f o r s e v e r a l days a t room  112.  Figure  45.  Figure  Figure  47.  Material scalping  46.  passing sieve.  Air-screen cleaner.  through  seed  T y p i c a l damaged and a p p a r e n t l y e x t r a c t e d by t h r e s h i n g .  undamaged  seeds  113.  temperature  and  the  g r o u p were t r e a t e d by  control  s c r e e n seed  shaking  i n a mesh b o t t o m e d c o n t a i n e r .  Seeds i n  p a s s i n g them t h r o u g h  the a i r -  cleaner i n order to eliminate v a r i a b i l i t y  caused  by  cleaning. The in  T a b l e A-22.  data obtained A n a l y s i s was  averagec.number o f v i a b l e the expected treatment  the  carried  a t each moisture sum  cone fragments a f t e r  setting as t h e  content.  five  passes  moisture and  of t e s t s  reduced  and  i n these  t h e number o f  From t h i s ,  the  and  two in  seeds  percentage  thresher at the  determined  the v i a b l e  f o r the  o p e r a t i n g speeds are  i n Figure  48.  The  t h a t the unbroken  high, but  seeds remained  and  recovery r a t e determined  indicate  reasonably  and  one  i s reported  rate.  contents  are p l o t t e d  the  each t h r e s h i n g  difference  the prototype  o f t h r e s h e r v a r i a b l e s was  The  The  reported  o f t h e number o f s e e d s r e m a i n i n g  s e e d s r e c o v e r e d by  recovery  out t o determine  s e e d s r e c o v e r e d by  damaged i n t h e e x t r a c t i o n p r o c e s s . of v i a b l e  above t e s t i n g a r e  seeds c o n t a i n e d i n each cone,  number o f v i a b l e  numbers r e p r e s e n t s t h e the  from  shown i n T a b l e  results seed  of t h i s  extraction  that i n t e r n a l mechanical  seed  recovery rate.  The  the o v e r a l l  recovery rate.  particularly  important  a t low  of e x t r a c t i o n per pass  and  rate  This factor  the degree of seed  series was  greatly  t h a t some  of f i v e  s p e e d s where b o t h  A-22  first  damage  fact  i n c o n e f r a g e m e n t s a t t h e end  a l s o reduced  various  the  passes, is degree  damage i s  low.  114. 30 h  >i M <D > O U CD tf  20  CD  -h  MOISTURE CONTENT (w.b.)  :  CD  W  10  CD  19.9%  Xi  rci •H >  Xl5.8% 12.8% 8.5% 1000  Figure  48.  are  48 a l s o  a t t h e lower  low.  shows that v i a b l e  cylinder  The b e s t m o i s t u r e  speeds,  content  Although prototype  was g a i n e d  this and  appears  tests  on t h e  a r e low, much i n f o r m a t i o n  c o n c e r n i n g t h e d e s i g n and performance o f t h i s  type  ' The  from  forces  basis.  the recovery r a t e s of these  cone t h r e s h i n g t o o l  recovery i s  for extraction  of t o o l .  gained  seed  where t h e i m p a c t  t o be i n t h e r a n g e o f 12 t o 20 p e r c e n t wet  first  5000  V i a b l e seed r e c o v e r y r a t e i n , l o d g e p o l e p i n e for f i r s t prototype thresher. Figure  highest  2000 3000 4000 Cylinder Speed (ft/min)  results  of these  them i n d i c a t e  extraction tool much l o w e r  seed  operation of this  tests  that further  can r e s u l t damage.  and t h e e x p e r i e n c e developmental  i n higher  The f a c t  seed  work on  recovery  rates  t h a t the f u n c t i o n a l  p r o t o t y p e meets a l l t h e o t h e r o p e r a t i o n a l  115.  requirements extraction  necessary  tool  holds  f o r a portable mechanical s i m i l a r promise  development of the proposed (iv)  extraction  seed  successful  system,  Second g e n e r a t i o n p r o t o t y p e B a s e d on  tests,  of the  conifer  the  information gained  from  a number o f m o d i f i c a t i o n s were c a r r i e d  design of the o r i g i n a l  the  out  above  on  prototype threshing t o o l .  the  The  chief  g o a l o f t h e s e m o d i f i c a t i o n s was  t h e r e d u c t i o n o f damage t o  extracted  with the  seeds  by  their  impact  internal  contact  areas  of the t h r e s h e r . This i o n  s e e d p r o t e c t i o n was  o f c u s h i o n i n g m a t e r i a l on  i n contact with the threshed inner in  p r o v i d e d by  a l l internal  seeds.  s u r f a c e s o f t h e t o p p l a t e and  having  For t h i s purpose, feed-end  a Shore hardness  leading  s u r f a c e s of the c y l i n d e r  natural  rubber  p r o c e s s was  having  used  installat-  s u r f a c e s coming  plate,  F i g u r e 49, were c o v e r e d w i t h a o n e - e i g h t h  of n a t u r a l rubber  the  shown  thick  layer The  r u b b a r s were c o v e r e d  with  t o bond a l l r u b b e r  40  as  t o 45.  a Shore hardness  of  inch  the  o f 70.  to the  A  vulcanizing  s u r f a c e s they  covered. The t o the concaves  c u s h i o n i n g , shown i n F i g u r e 50, a s s e m b l y by  plastisol material,  and  A cylinder was  also  d i p p i n g t h e component  curing  t o a Shore hardness  s t r i p p e r b a r , w h i c h was  added t o r e d u c e  was  the r e c i r c u l a t i o n  applied  in a  vinyl  o f 70  rubber  of m a t e r i a l  to  75.  coated, around  116.  F i g u r e 49. I n t e r n a l components showing l o c a t i o n of cushioning m a t e r i a l .  F i g u r e 51.  L o c a t i o n of d e c e l e r a t i o n c u r t a i n i n plenum chamber.  117.  the c y l i n d e r .  This  i s also  shown i n F i g u r e  A rubber d e c l e r a t i o n housing  so as t o i n t e r c e p t  between the c y l i n d e r Figure acts  51,  and  i s hung j u s t  c u r t a i n was  (v)  added  concaves.  This  curtain,  and d r o p  bar,  i t onto  Testing  of t h i s  outlined  second g e n e r a t i o n t h r e s h i n g  A m o d i f i e d t e s t i n g p r o c e d u r e was  used  of experience gained i n the e a r l i e r T e s t s were c o n d u c t e d o n c o n e s  Based end  the h i g h e s t  on t h e f i n d i n g  of the operating  2000, 2400 and  recovery rates that  tests. and  20%  i n the e a r l i e r  speeds  (487, 609,  meters  per minute  ) r e s p e c t i v e l y , were c h o s e n  series  of tests.  G r o u p s o f 100  In o r d e r t o ensure f r a g m e n t s were r e c y c l e d t h r e s h i n g was  achieved.  complete  extraction  fragments.  1600,  and  853  second test.  a l l cone complete  I n t h e c a s e o f t h e low s p e e d  reduce the l a s t  low  f o r each  through the thresher u n t i l  p a s s e s were r e q u i r e d  cone  of  f o r the  c o n e s were u s e d  ment, upwards o f f i f t e e n few  732,  which  tests.  t h e peak r e c o v e r y i s a t t h e  2800 f e e t p e r m i n u t e  was  to take  a t 15%  speed range, o p e r a t i n g  above,  tool  m o i s t u r e c o n t e n t , c o r r e s p o n d i n g t o the m o i s t u r e range produced  and  sieve,  the performance  advantage  from  shown i n  t o the rear of the s t r i p p i n g  Upon c o m p l e t i o n o f t h e m o d i f i c a t i o n s  tested.  to the  the path of m a t e r i a l e x i t i n g  t o slow the h i g h v e l o c i t y m a t e r i a l ,  the s c a l p i n g  49.  treat-  i n order to  118.°  S e p a r a t i o n o f the seeds carried  out under  f r o m t h e cone  t h e same c o n d i t i o n s  as t h e e a r l i e r  In the f i n a l  cleaning,  the m a t e r i a l  over a manually o s c i l l a t e d  w h i c h was  slightly  seeds t r a v e l l e d  t h e hand s o r t i n g was  inclined.  In t h i s  down t h e i n c l i n e  debris  tests.  r e p l a c e d by  cloth  covered  and  s o o n e r t h a n t h e cone  were m i x e d  with the debris  f r o m one  group  p e r c e n t s were c o r r e l a t e d ;  The  results  of these t e s t s  the recovery rates  i n Figure  t h e number o f  the viable  tool.  are t a b u l a t e d  are p l o t t e d  i t c a n be  f o r the f i r s t  moisture contents tested  clearly  the  o u t on s e e d s and  i n Table  against peripheral  tool  s e e n t h a t maximum r e c o v e r y  f o r L o d g e p o l e p i n e i s much h i g h e r f o r t h e s e c o n d  t h r e s h e r t h a n i t was two  group  52.  From t h e f i g u r e rate  have been  of threshed cones,  to give  s e e d s p e r c o n e r e c o v e r e d by t h e e x t r a c t i n g  speed  samples,  seeds.  germination  and  After a l l  t h e same t r e a t m e n t g i v e n  G e r m i n a t i o n t e s t s were c a r r i e d  A-23  fragments,  the c l e a n i n g p r o c e s s , seeds from the c o n t r o l  and w e r e r e - s e p a r a t e d u s i n g threshed  round  seed c o u n t e r .  I n o r d e r t o a c c o u n t f o r s e e d s w h i c h may during  surface  o b v i o u s l y damaged s e e d s were removed f r o m t h e  t h e s e e d s were c o u n t e d on an e l e c t r o n i c  lost  passing  p r o c e s s t h e smooth  and t h e l a t t e r were removed f r o m t h e c l o t h by vacuum. debris  was  shown t o be t h e 15.5%  prototype.  The  generation  better  of the  i n the rubberized thresher i s value.  The  optimum c y l i n d e r  speed  119.  for  the conditions tested  minute.  These f i g u r e s  der speed series  i s i n the range  o f 2000 f t p e r  f o r optimum m o i s t u r e  c o n t e n t and  correspond w e l l with those determined  cylin-  i n the e a r l i e r  of tests.  100 90 80  *  7 0  u CD  60  > O  o  CD PJ  CD CD  U3  50  40  CD  iH  fd  30 20% M.C.  •H  > 20  10 J  500  100  1500  2000  L  2500  Cylinder Speed (feet per minute)  Figure  52.  Curves o f seed r e c o v e r y v s . c y l i n d e r speed f o r L o d g e p o l e p i n e e x t r a c t e d by t h e r u b b e r i z e d threshing tool.  3000  120.  The in  of these tests  the seed r e c o v e r y r a t e  of only of  results  one  o f t h e t h r e s h e r by  I t i s therefore  d e v e l o p m e n t a l work w i t h t h i s effectiveness  A  the  affect  modification  the  apparent t h a t  performance additional  and o t h e r v a r i a b l e s w h i c h  c a n be e x p e c t e d t o r e s u l t  improvements i n the r a t e o f v i a b l e seed t h r e s h i n g  improvement  ;  o f t h e many v a r i a b l e s w h i c h  such a machine.  threshing  show a m a r k e d  i n further  seed r e c o v e r y from  further  t e s t was  carried  o u t on t h e s e c o n d  For t h i s  test,  a g r o u p o f 100  under  t h e optimum t h r e s h i n g  tent,  and a c y l i n d e r  through the concaves The  and  moisture con-  f t / m i n as d e t e r m i n e d  each r e g i o n of the t h r e s h e r The p a s s was group.  sieve  cone fragments  t h e s e e d s were c o l l e c t e d  after  earlier.  seeds  through the s c a l p i n g  u n t h r e s h e d c o n e s and  t h e n r e t h r e s h e d n i n e t i m e s and  tool.  studied  c o n e s were p a s s e d t h r o u g h t h e t h r e s h e r , and t h e  were c o l l e c t e d .  were from  each pass.  number o f s e e d s f r o m e a c h r e g i o n  after  each  r e c o r d e d , and g e r m i n a t i o n p e r c e n t s d e t e r m i n e d f o r e a c h From t h e d a t a , t h e number o f v i a b l e  f r o m t h e c o n c a v e s and was  c o n e s was  c o n d i t i o n s o f 15.0%  s p e e d o f 2 000  proto-  extraction  achieved w i t h successive passes through the t h r e s h i n g  passing  conifer  tools.  type i n o r d e r t o a s s e s s the degree o f seed  The  affect  d e t e r m i n e d , and  from the s c a l p e r  i s reported  C u m u l a t i v e c u r v e s showing recovered  sieve  seeds r e c o v e r e d after  i n T a b l e s A-24  the p o r t i o n  and  each  pass  A-25.  of t o t a l viable  t h r o u g h t h e c o n c a v e s and t h r o u g h t h e s i e v e ,  seeds f o r each  successive pass, are p l o t t e d  i n F i g u r e 53.  T h e s e c u r v e s show t h a t are pf  less  recovered through the concaves, the viable  seeds  than h a l f  and t h a t  recovered are extracted  o f the seeds  a p p r o x i m a t e l y 95% i n the f i r s t  four  .  passes through the thresher. The viability  d a t a o f T a b l e s A-24 and A25 a l s o  r a t e o f seeds e x t r a c t e d  significantly  show t h a t t h e  i n a c e r t a i n pass  i snot  r e d u c e d by s u c c e s s i v e p a s s e s t h r o u g h t h e t h r e s h e r .  I 1  ' 2  , I 3  I  i  i  4  5  6  t  7  i  I  I  8  9  10  Number o f Successive Passes  Figure  53.  Accumulated v i a b l e seed r e c o v e r y from cones a t 15% m o i s t u r e c o n t e n t t h r e s h e d a t a c y l i n d e r s p e e d o f 2000 f t / m i n u t e .  122.  (vi)  T h r e s h i n g P e r f o r m a n c e on O t h e r  Species  The p e r f o r m a n c e o f t h e s e c o n d g e n e r a t i o n t o o l was  a l s o e v a l u a t e d by e x t r a c t i n g  species: white  Douglas  spruce  (Tsuga h e t e r o p h y 1 1 a fied  (Moench) V o s s ) ) ,  (Raf.) S a r g . ) ) .  b y t h e B.C. F o r e s t S e r v i c e  N7-3,  and N2 2-5  cones o f t h e f o l l o w i n g  f i r (Pseudotsuga men.ziesii  (Picea glauca  These  (Mirb.) F r a n c o ) ) , and w e s t e r n hemlock  c o n e s were  s e e d l o t numbers  a s 0.1-2,  a t two m o i s t u r e  One m o i s t u r e l e v e l was w h e r e t h e c o n e s were  d r y e n o u g h t o s h e d s e e d s , t h e o t h e r , where t h e c o n e s wet e n o u g h t o r e m a i n c l o s e d . t o o l was  identi-  respectively.  T e s t s were c o n d u c t e d on e a c h s p e c i e s contents.  threshing  o u t at. f i v e  cylinder  c o n e s were r e p r o c e s s e d u n t i l  were  The c o n c a v e s o f t h e t h r e s h i n g  s e t a t one a r b i t r a r y p o s i t i o n  were c a r r i e d  just  f o r the tests  which  speeds.  Partially  t h r e s h i n g was  complete.  extracted  S e p a r a t i o n o f t h e seeds from t h e cone d e b r i s carried  out using  p i n e above, s i z e were  t h e same t e c h n i q u e s a s u s e d f o r l o d g e p o l e .  except that  sieve  sizes  s h a k i n g i n a mesh b o t t o m  were m i x e d  a p p r o p r i a t e t o each  with the debris  separated using  g r o u p were e x t r a c t e d b y  container.  was  These  control  t h e same t e c h n i q u e s a s t h e t h r e s h e d  s e e d s , a n d t h e number d e t e r m i n e d . T h i s was  drying seeds  from a group o f cones and t h e n r e -  G e r m i n a t i o n t e s t s were c a r r i e d of  seed  used. Seeds i n t h e c o n t r o l  and  was  of viable  seeds.  o u t on e a c h  seeds r e c o v e r e d  compared t o t h e number  group  i n each  of viable  test seeds  123.  recovered  from the c o n t r o l  group  i n order  to determine the  percent  recovery. The  d a t a from t h e t e s t s  c o n e s a r e shown i n T a b l e s A-26, rates  of recovery  plotted  against  of viable  cylinder  A-27  on f i r , s p r u c e and a n d A-28  hemlock  respectively.  The  seed f o r each group o f t e s t s i s  speed i n F i g u r e  100  54.  ~ •— -— —  Douglas F i r  ...........  Spruce Hemlock  80  V V MOISTURE CONTENT  V  >1  U  \ll.5% \ \ \ \  CD  > O  O  60  CD « CD CD CO CD  V  «*£1.6%  40  " \  Xi rd  •H  >  .^24.3%  \  \ \ \ ~  V*».  V  20  •o  .*28.4% !4.4%  1000  2000  3000  4000  5000  Cylinder Speed (feet per minute) Figure  54.  Seed r e c o v e r y by t h r e s h i n g hemlock c o n e s .  o f f i r , s p r u c e and  124.  The  curves  o f F i g u r e 54 i n d i c a t e  recovery rate f o r the p a r t i c u l a r used 11.5%  i n these  at t h i s  content.  moisture  content  a maximum s e e d  above  at a cylinder  a l s o e v i d e n t from the p a r t i c u l a r these  speed  The c u r v e  o f 150 0  indicate  o f 80%. i n spruce  t h a t o f h e m l o c k was b e l o w 20%.  the curves  was It is  t h a t t h e maximum r e c o v e r y r a t e f o r  t h r e s h e r c o n f i g u r a t i o n and a d j u s t m e n t  t e s t s was a c h i e v e d  ft/minute  d i d , however,  maximum r e c o v e r y r a t e a c h i e v e d  40%, w h i l e  variables  Douglas f i r cones, a t  recovery r a t e i n excess  The  seed  Unfortunately the results o f the test  were d e s t r o y e d d u r i n g c l e a n i n g .  slightly  condition of thresher  t e s t s was a c h i e v e d w i t h  moisture  that the best  at cylinder  used i n  s p e e d s b e t w e e n 2000 a n d 3000  f e e t p e r minute. The seed  extraction  results  o f these t e s t s  indicate  that  satisfactory  c a n be a c h i e v e d b y t h r e s h i n g o n c e t h e optimum  c o n d i t i o n o f e a c h o f t h e many v a r i a b l e s o f m a c h i n e p a r a m e t e r s a n d b i o l o g i c a l material conditions are i d e n t i f i e d .  P A R T  T H R E E  C O N C L U S I O N S  A N D  R E C O M M E N D A T  I  O N S  126.  XII  The outlined 1.  CONCLUSIONS  conclusions arising  i n this  from  report are l i s t e d  i n p o i n t form  P h y s i c a l P r o p e r t i e s o f Lodgepole A f f e c t Seed E x t r a c t i o n -  the investigations  P i n e Cones w h i c h  Seeds l o c a t e d i n t h e e x t r e m i t i e s o f t h e seed region of lodgepole pine higher percentage from  c o n e s have a  o f empty s e e d s ,  bearing  slightly  but f i l l e d  percent.  Seeds w h i c h a r e e a s i l y  e x t r a c t e d by t u m b l i n g  have a h i g h e r p o r t i o n o f f i l l e d w h i c h a r e more d i f f i c u l t A decline i n germination  tend t o  seeds than  those  to extract.  percent  i s initiated  within  h o u r s i n seeds o f wet cones w h i c h a r e s l o w l y in The  seeds  a l l r e g i o n s o f t h e cones have e s s e n t i a l l y t h e  same g e r m i n a t i o n  -  below.  a non-circulating kiln  e q u i l i b r i u m moisture lodgepole  a t 140°F  (60°C).  content, during drying, of  p i n e cones has been d e t e r m i n e d  characteristic  dried  i s consistent with  and t h e  that of other  hygroscopic b i o l o g i c a l materials. The  mean t e m p e r a t u r e  a t which the s e r o t i n o u s s e a l s o f  young cones o f l o d g e p o l e 5 2 . 5 1 ° C + 5.7°C. at The  O l d weathered cones a r e opened  a mean t e m p e r a t u r e  angle  pine a r e broken i s  o f 54.50°C ± 5.8°C.  t o which the s c a l e s of lodgepole pine  open upon d r y i n g , a f t e r  cones  s e a l b r e a k i n g , has been  127.  determined, ship with moisture The  and i s a p p r o x i m a t e l y  cone m o i s t u r e content  content  a linear  relation-  i n the range o f  b e l o w 25% wet b a s i s .  s c a l e s o f l o d g e p o l e p i n e cones undergo a p r o c e s s of  stress  r e l a x a t i o n when t h e y  are held at moisture  c o n t e n t s b e l o w 25% wet b a s i s w h i l e sealed  i n the closed position.  experience angle  this  process  t o which t h e i r  given moisture  suffer  after  a reduction i nthe open f o r any  their  Cones w h i c h have u n d e r g o n e a s t r e s s can if  r e c o v e r most o f t h e i r t h e i r moisture  content  scales are  Cones w h i c h  scales w i l l  content  their  s e a l s are broken.  relaxation  scale deflecting i s raised  process ability  to a high  level  before redrying. The  portion of t o t a l be  easily  e x t r a c t e d by t u m b l i n g  diminishing is The  seeds c o n t a i n e d by cones w h i c h c a n  r a t e as t h e a n g l e  i n c r e a s e d beyond  increases at a  of scale  60° by d r y i n g .  serotinous seal of lodgepole pine b r o k e n by f l a s h in  heating i n either  a flame, without  deflection  c o n e s c a n be hot water, o r  c a u s i n g a r e d u c t i o n i n seed  viability. Complete heat  s e a l b r e a k a g e c a n be a c h i e v e d w i t h treatment  i f t h e cones a r e a t a  c o n t e n t b e l o w 25% wet b a s i s , stresses  separate  material  i s melted.  a mild  moisture  so t h a t s c a l e  flexing  t h e s c a l e s when t h e s e a l i n g  128.  Development o f S e a l B r e a k i n g Mechanical  s e a l b r e a k i n g c a n be  process, but to continuous -  this  technique  effective  flash  method o f o p e n i n g  to continuous  Seed temperatures  does n o t  a crushing  lend  itself  h e a t i n g c o n e s i s an cones which  lends  flow commercial o p e r a t i o n .  w i t h i n c o n e s s o t r e a t e d c a n be .  predicted with reasonable A continuous  a c h i e v e d by  flow commercial o p e r a t i o n .  T h e r m a l s e a l b r e a k i n g by  itself  Tool  accuracy.  flow hot water f l a s h h e a t i n g t o o l  s e a l b r e a k i n g was  developed  effectively,  but  had  which reduce  its suitability  and  certain  found  to  for  operate  disadvantages f o r commercial  operation. -  A continuous for  flow flame  treating  s e a l b r e a k i n g was  operate suitable  effectively. tool  found  flash  developed  and  heating found  T h i s d e v i c e was f o r opening  to  t h e most  s e r o t i n o u s cones  under c o m m e r c i a l o p e r a t i n g c o n d i t i o n s and calibrated two  over  a range o f m o i s t u r e  classes of lodgepole pine  Development o f M e c h a n i c a l -  Mechanical  reduce  was  contents  C o n i f e r Seed E x t r a c t i n g  kiln  for  cones.  abrasion of the outer p o r t i o n of  cones w i l l  tool  treatment  f o r seed  Tool  serotinous extraction  129.  purposes, for  b u t does n o t appear s u i t a b l e  as a  tool  commercial o p e r a t i o n .  S e e d e x t r a c t i o n by t h e r e m o v a l o f t h e c o r e o f s e r o t i n o u s c o n e s i s an e f f e c t i v e  a l t e r n a t i v e , but the high  d e g r e e o f asymmetry o f t h e c o n e s o f l o d g e p o l e causes tool  e x t e n s i v e seed  damage when t h e c o r e  c u t s b e y o n d t h e woody c o r e .  pine  boring  This occurs  when  the b o r i n g t o o l , which can a u t o m a t i c a l l y a l i g n itself  only with  profile, not -  t h e a x i s o f t h e e x t e r n a l cone  i s operated  concentric with  The e x t r a c t i o n  on c o n e s whose woody c o r e i s t h e e x t e r n a l cone  of conifer  acceptable alternative  s e e d by t h r e s h i n g i s an i n terms o f t h e d e s i g n o f  a mechanized seed h a n d l i n g system. second  profile.  A first  generation conifer threshing tool  developed  and t e s t e d .  optimization  With a l i m i t e d  and  was  degree of  o f machine v a r i a b l e s , v i a b l e  seed  r e c o v e r y r a t e s a s h i g h a s 44% w e r e a c h i e v e d this  t o o l on u n s e a l e d  Further developmental expected Preliminary threshing spruce  to raise  this  lodgepole pine work on t h i s figure  t e s t s performed tool  with  cones.  tool  c a n be  significantly. this  prototype  on c o n e s o f D o u g l a s f i r ,  and w e s t e r n  with  hemlock, i n d i c a t e  white  t h a t the  130.  optimum c o n d i t i o n  o f t h e many m a c h i n e and  v a r i a b l e s which a f f e c t threshing f o r each i n d i v i d u a l s p e c i e s .  must be  material determined  131.  XIII  RECOMMENDATIONS  Recommendations of the on  this  investigation  f o r the a p p l i c a t i o n o f the findings  t o t h e commercial  serotinous conifer  seed e x t r a c t i o n o f  s p e c i e s , as w e l l as g e n e r a l  t h e development o f a mechanized c o n i f e r  system  are l i s t e d  w h i c h a r e t o be e x t r a c t e d b y k i l n  and t u m b l i n g  s h o u l d be s t o r e d  temperatures, a t a moisture 25% wet b a s i s of  stress  cones  i n t h e cone  ; It  the occurrence  scales.  w h i c h a r e t o be k i l n e x t r a c t e d  s h o u l d n o t be a l l o w e d t o d r y b e l o w unless they  a t low  content, o f a p p r o x i m a t e l y  i n order t o minimize  relaxation  Non-serotinous  25%  extraction  below:  S e r o t i n o u s cones drying  seed  comments  approximately  are i n c o n t a i n e r s which permit  deflection  of the scales.  relaxation  o c c u r s i n n o n - s e r o t i n o u s cones  are  b u t whose c o n e s c a l e s a r e p r e v e n t e d  dried,  from d e f l e c t i n g i s recommended to  complete  flame of  tool  kiln  which  fully. that  f u r t h e r work be c a r r i e d o u t  flash  heater f o r the seal  s e r o t i n o u s cones.  tional  stress  t h e development o f t h e d e s i g n o f a  treating  valuable  T h i s i s because  free  T h i s machine w i l l  f o r seal breaking p r i o r  treatment,  as w e l l  as  breaking be a  t o conven-  f o rfuture  -.  development  o f a mechanized  conifer  seed  extraction  system. The  following  design features  a r e recommended f o r  inclusion  i n the d e s i g n o f subsequent  ©  f l a m e t u b e h a v i n g l a r g e r d i a m e t e r and  Longer at  ®  l e a s t double run conveying  machines:  flights.  Hopper f e e d i n g and m e t e r i n g s y s t e m b a s e d  on  vibration. ®  Double  enclosure over flame tube  heat  losses.  It  i s recommended  to  d e t e r m i n e t h e optimum c o n d i t i o n s  that  further  and m a t e r i a l v a r i a b l e s w h i c h of The  ®  s t u d y be c a r r i e d o u t  affect  o f t h e machine the t h r e s h i n g  cones. following  parameters  avenues t o improved a  t o reduce  a r e s u g g e s t e d as  threshing  possible  performance.  A s t u d y o f c o n e and s e e d m o r p h o l o g y a n d p h y s i o l o g y to  identify  to  reduce mechanical seed  The u t i l i z a t i o n  the c h a r a c t e r i s t i c s  of a larger  o f , a n d means  damage.  threshing  d i a m e t e r , and t h e r e s u l t i n g  cylinder  greater  concave  length. ©  Experimentation with shorter,  closer  cylinder  rub-bars, including  cylinder  and c o n c a v e s .  spaced  spike  tooth  133.  ©  Experimentation and  ®  with  alternate  concave  designs,  settings.  Investigation seeds out  of a i r a s s i s t e d t r a n s p o r t of the area of the  of  cylinder.  134.  LITERATURE CITED  1.  Ackerman, R.F. 1966, E f f e c t o f s t o r a g e i n s l a s h on q u a l i t y and q u a n t i t y o f Lodgepole P i n e seeds a v a i l a b l e f o r r e g e n e r a t i o n . Canada Dept. F o r . & R u r a l Development, A l b e r t a / T e r . Reg. F o r e s t Res. Lab. I n f . Rep. A-K-3, 22 pp.  2.  A l l e n , G.S. 1957. " B e t t e r H a n d l i n g o f a S c a r c e Commodity". B.C. Lumberman, 41, 32-36.  3.  A l l e n , R. and Wardrop, A. 1964. "The Opening and Shedding Mechanism o f Female Cones o f P i n u s r a d i a t a " . A u s t . J . Botany 12, 125.  4.  Anon. 1972. I n t e r i o r Lodgepole P i n e Cone C o l l e c t i o n G u i d e . B.C. F o r e s t S e r v i c e P u b l i c a t i o n B.61, V i c t o r i a , B.C.  5.  A s s o c i a t i o n o f O f f i c i a l A g r i c u l t u r a l . C h e m i s t s . 1960. O f f i c i a l Methods o f A n a l y s i s . 9 t h ed,, W a s h i n g t o n , D.C.  6.  B a i n e r y R., Kepner, R.A. and B a r g e r , E.L. 1965. P r i n c i p l e s o f Farm M a c h i n e r y . John W i l e y & Sons P r e s s , New Y o r k .  7.  B a l d w i n , H.I. 1942. F o r e s t Tree Seeds o f t h e N o r t h Temperate Regions w i t h S p e c i a l R e f e r e n c e t o N o r t h A m e r i c a . C h r o n i c a B o t a n i c a Co., Waltham, Mass.  8.  B a r t o n , L.V. 1967. B i b l i o g r a p h y o f Seeds. U n i v e r s i t y P r e s s , New York.  9.  B a t e s , C.G. 1930. P r o d u c t i o n , E x t r a c t i o n and G e r m i n a t i o n o f Lodgepole P i n e Seed. T e c h n i c a l B u l l e t i n , U.S.. Department o f A g r i c u l t u r e No. 191.  Columbia  10.  B e a u f a i t , W.R. 1960. "Some e f f e c t s o f h i g h t e m p e r a t u r e s on t h e cones and seeds o f Jack P i n e " . F o r e s t S c i . 6(30) .  11.  Cameron, H. 19 53. M e l t i n g P o i n t o f t h e . B o n d i n g M a t e r i a l i n Lodgepole P i n e and Jack P i n e Cones. S i l v i c u l t u r e L e a f l e t , D i v . o f F o r e s t R e s e a r c h , Canada Dept. o f Resources & Development, Ottawa.  12.  Clements, F.E. 1910. The L i f e H i s t o r y o f L o d g e p o l e Burn F o r e s t s . USDA F o r e s t S e r v i c e , B u l l . No. 79, Washington, D.C.  135.  13.  C r o s s l e y , D . I . 1955. L o d g e p o l e P i n e S t u d i e s a t t h e S t r a c h a n E x p e r i m e n t a l B l o c k i n A l b e r t a . Canada D e p t . NA & NR, F o r e s t r y B r a n c h , F o r e s t R e s e a r c h D i v i s i o n , T e c h n i c a l N o t e No. 19.  14.  C r o s s l e y , D . I . 1955. The P r o d u c t i o n and D i s p o s a l o f L o d g e p o l e P i n e S e e d , C a n a d a D e p t . NA & NR F o r e s t r y Branch, F o r e s t Research D i v i s i o n , T e c h n i c a l Note No. 25.  15.  C r o s s l e y , D . I . 1955. " V i a b i l i t y o f t h e Seed o f L o d g e p o l e P i n e a f t e r 20 Y e a r s i n A r t i f i c i a l S t o r a g e " , F o r e s t r y C h r o n i c l e , V o l . 31, No. 3. pp 250.  16.  C r o s s l e y , D . I . 1956. F r u i t i n g H a b i t s o f L o d g e p o l e P i n e . C a n a d a D e p t . NA & NR, F o r e s t r y B r a n c h , F o r e s t R e s e a r c h D i v i s i o n , T e c h n i c a l N o t e No. 35.  17.  D a r b y , S.P. 1956. " G e o r g i a ' s New D e w i n g e r " , J o u r n a l o f F o r e s t r y , V o l . 54, No. 9, pp 579.  18.  E d w a r d s , M.V. Contorta".  19.  F i e l d i n g , J.M. 1947. P i n u s r a d i a t a S t u d i e s . B u l l e t i n No. 29, Commonwealth F o r e s t r y T i m b e r B u r e a u .  20.  G r e g g , B.R., Law, A.G., V i r d i , S.S. and B a l i s , J . S . 1970. S e e d P r o c e s s i n g . A g e n c y f o r I n t e r n a t i o n a l Development,A v i o n P r i n t e r s , New D e l h i , I n d i a .  21.  H a r l o w , W.M., C o t e , W.A. and Day, A.C. 1964. "The O p e n i n g M e c h a n i s m o f P i n e Cone S c a l e s " . Journal of Forestry V o l . 62, pp 538.  22.  Harmond, J . E . , B r a n d e n b u r g , N.R. a n d K l e i n , L.M. 1968. M e c h a n i c a l Seed C l e a n i n g and H a n d l i n g , USDA A g r i c . Res.. S e r v . A g r i c u l t u r a l Handbook No. 354, W a s h i n g t o n , D.C.  23.  H a w t h o r n , L.R. and P o l l a r d , L.H. 1954. V e g e t a b l e a n d F l o w e r S e e d P r o d u c t i o n , The B l a k i s t o n Co., I n c . , New York.  24.  Hebb, E.A. 1954. "How t o Open Pond P i n e C o n e s " . o f F o r e s t r y , V o l . 52, No. 10, pp 770.  25.  H e n d e r s o n , S.M. a n d P e r r y , R.L. 1966. A g r i c u l t u r a l P r o c e s s E n g i n e e r i n g , 2nd e d . , Edwards P u b l i s h i n g C o . , M i c h i g a n , U.S.A.  1955. "Summary o f I n f o r m a t i o n on P i n u s F o r e s t r y A b s t r a c t s , V o l . 16, No. 1, p p . 3 .  Journal  136.  K o z l o w s k i , T.T. 1962. A c a d e m i c P r e s s , New  Growth and York.  Development o f  Trees.  K r e i t h , F. 1973. P r i n c i p l e s o f Heat T r a n s f e r , 3rd I n t e r t e x t E d u c a t i o n a l P u b l i s h e r s , New York. Lee,  L . and B e a u f a i t , W.R. 1961. D i f f u s i v i t y o f Cones o f P i n u s 8, M i c h i g a n C o l l e g e o f M i n i n g Michigan.  ed.  T h e r m a l C o n d u c t i v i t y and Banksiana. Tech. B u l l . and T e c h n o l o g y , H o u g h t o n ,  Lotan, J.E. 1970. "Cone S e r o t i n y i n P i n u s C o n t o r t a " . Ph.D. t h e s i s , U n i v e r s i t y o f M i c h i g a n , Ann A r b o r , Michigan. L u c k w i l l , L.C. and C u t t i n g , C,V. 1970. "Physiology of Tree Crops". P r o c e e d i n g s o f C o n f e r e n c e on T r e e C r o p s Academic P r e s s , London. L y l e , E.S. and G i l m o r e , A.R. 1958. "The E f f e c t o f Rough H a n d l i n g o f L a b l o l l y P i n e C o n e s on Seed G e r m i n a t i o n , J . F o r e s t r y , v.56, 8. Meseman, W.T. 1973. "Hot W a t e r and J a v e x E n h a n c e P i n e Spruce Seed E x t r a c t i o n " . Tree P l a n t e r s Notes. M i r o v , N.T. 1967. New York.  The  Genus P i n u s .  :  The  Ronald  Press  and Co.,  M o h s e n i n , N.N. 1970. P h y s i c a l P r o p e r t i e s o f P l a n t and A n i m a l M a t e r i a l s . V o l . 1, G o r d o n & B r e a c h S c i e n c e P u b l i s h e r s , New York. N a r s t e d , B., N y b o r g , E . , S z i k l a i , 0. "Automatic O n - l i n e D e t e c t i o n o f V i a b l e C o n i f e r Seed". CSAE P a p e r No. 72-319, C h a r l o t t e t o w n , P . E . I . , J u n e 1972. N y b o r g , E.O. and S h a k a z e , G., 1974- "Development of High Capacity P r e c i s i o n S e e d i n g L o a d i n g and H a n d l i n g E q u i p m e n t f o r C o n t a i n e r N u r s e r i e s " . Proceedings of the North A m e r i c a n C o n t a i n e r i z e d F o r e s t T r e e S e e d l i n g Symposium, Denver, C o l o r a d o . N y b o r g , E.O. and B r i s b i n , P.E. 19 73. "Conditioning of L o d g e p o l e P i n e Cones f o r Seed E x t r a c t i o n " . CSAE P a p e r No. 73-311, p r e s e n t e d t o A n n u a l M e e t i n g , V i c t o r i a , B.C.  137. P e r s s o n , S.P.E. 1969.. "An E n g i n e e r i n g A n a l y s i s o f Mushroom H a r v e s t i n g " . P a p e r No. 69-828, A m e r i c a n Society of A g r i c u l t u r a l Engineering, S t . Joseph, Michigan. P i t k i n , F.H. 1961. " C o m b i n a t i o n Cone K i l n T r e e P l a n t e r s ' N o t e s , No. 48.  and  Extractor"  R i c h e y , C.B. ( E d i t o r ) . 1961. A g r i c u l t u r a l Engineers Handbook, M c G r a w - H i l l Book Co., New Y o r k . R i e t z , R.C. 1941. K i l n D e s i g n and D e v e l o p m e n t o f S c h e d u l e s f o r E x t r a c t i n g Seeds f r o m C o n e s . U.S.D.A. T e c h . B u l l . No. 773, W a s h i n g t o n . D.B. Rohsenow, W.M. a n d C h o i , H. 1961. H e a t Mass and Momentum T r a n s f e r , P r e n t i c e H a l l I n c . , E n g l e w o o d C l i f f s , New J e r s e y . S c h u b e r t , G.H. and Adams, R.S. 1971. Reforestation P r a c t i c e s for; C o n i f e r s i n C a l i f o r n i a . Publication Div. o f F o r e s t r y , S t a t e o f C a l i f o r n i a , Sacramento. S m i t h e r s , L.A. 1961. L o d g e p o l e P i n e i n A l b e r t a . Can. D e p t . o f F o r e s t r y , B u l l e t i n 127, Queen's P r i n t e r , Ottawa. Thompson, R.E. 1969. " R e l a t i o n s h i p o f s e e d y i e l d and v i a b i l i t y t o t h e age o f o o n e s o f L o d g e p o l e P i n e " . U n i v e r s i t y o f Mass. M a s t e r ' s T h e s i s , 72 pp. U.S.  Forest Service. 1948. Wood P l a n t S e e d M a n u a l . U.S. D e p t . o f A g r i c u l t u r e , F o r e s t S e r v i c e , M i s c . P u b l i c a t i o n No. 654.  Wang, B.S.P. 1973. " C o l l e c t i n g , P r o c e s s i n g and S t o r i n g T r e e Seed f o r R e s e a r c h Use". I.U.F.R.O. P r o c e e d i n g s o f Symposium oh S e e d P r o c e s s i n g , V o l . 1, P a p e r No.17, B e r g e n , Norway. Watson, E.L. 1965. " E f f e c t o f H e a t on t h e G e r m i n a t i o n o f Wheat", P a p e r p r e s e n t e d a t t h e 1965 A n n u a l M e e t i n g P a c i f i c Northwest Region, American S o c i e t y of A g r i c u l t u r a l E n g i n e e r s , Moscow, I d a h o . W a t s o n , E . L . 1970. " E f f e c t o f H e a t T r e a t m e n t Upon t h e G e r m i n a t i o n o f Wheat". Can. J . o f P l a n t S c i e n c e , V o l . 50, 107. W e x l e r , A. and W i l d h a c k , W.A. (Editors). 1965. Humidity and M o i s t u r e Measurement and C o n t r o l , V o l . 3, R e i n h o l d P u b l i s h i n g C o r p . , New Y o r k .  138 51.  Wheeler, W.A. and H i l l , D.D. 1959. G r a s s l a n d Seeds. Van N o s t r a n d Co. I n e . , P r i n c e t o n , New J e r s e y .  52.  Woodforde, J . and Lawton, P . J . 1965. "The D r y i n g o f Seeds". J . o f A g r i c . Eng. R e s e a r c h , V o l . 10, 283  139.  A P P E N D I X  A  140.  TABLE A-1. Basal Region  4 0 4 8 11 9 16 6 9 5 4 11 4 13 2 13 6 5 4 7 10 9 4 3 8 4 5 7 8 6 3  Central Region  8 5 5 14 16 17 8 10 9 10 12 12 io 16 5 13 15 8 6 7 16 10 4 17 4 7 6 15 11 11 10  Upper Region  7 2 5 6 6 12 7 5 6 5 6 3 2 10 7 9 4 4 6 15 22 5 0 10 2 6 2 11 6 13 6  NUMBER OF SEEDS PER CONE, BY LOCATION Total Seeds/Cone  19 7 14 28 33 38 31 21 24 20 22 26 16 39 14 35 25 17 16 29 48 24 8 30 14 17 13 33 25 30 19  Basal Region  17 10 3 7 3 8 5 4 8 6 1 9 1 3 13 9 5 0 4 5 7 6 6 6 5 7 7 5 5 5 16  Central Region  15 14 14 . 10 4 14 12 11 14 8 12 13 12 13 11 13 13 8 10 15 18 12 11 13 10 11 14 15 6 11 23  Upper Region  21 6 18 7 2 4 1 5 12 4 4 3 2 6 4 10 8 6 11 6 15 4 10 5 3 9 10 11 3 13 25  Total Seeds/Cone  53 30 35 24 9 26 18 20 34 18 17 25 15 22 28 32 26 14 25 26 40 22 27 24 18 27 31 31 14 29 64  141. TABLE A-1 ( C o n t i n u e d )  Basal Region  Central Region  Upper Region  Total Seeds/Cone  Basal Region  Central Region  Upper Region  Total Seeds/Cone  0  6  3  19  7  9  15  31  2  13  5  20  5  4  1  10  6  5  4  15  7  17  10  34  2  10  13  25  6  14  4  24  4  9  10  23  10  22  43  2  8  3  13  4  5  11 8  10  12  10  32 .  2  6  5  13  6  14  7  27  5  12  7  24  2.  7  3  12  7  9  2  18  0  5  2  7  5  17  4  26  2  11  17  30  5  6  6  17  7  8  13  28  5  15  6  26  4  6  4  14  6  10  8  24  7  6  24  3  8  10  21  5  11 10  6  21  7  13  3  23  6  10  8  24  9  11  3  23  6  5  1  12  5  21  11  38  5  7  11  23  5  14  15  34  6  5  8  19  3  5  2  10  TOTAL  592  1076  724  2392  AVERAGE SEEDS PER CONE  5.9  10.8  7.2  23.9  PERCENT. OF TOTAL SEEDS  25%  45%  30%  GERMINATION % OF GROUP  .91.2%  90.9%  91.6%  AVERAGE GERMINATION % OF ALL SEEDS  91.21%  17  142.  TABLE A-2  V I A B I L I T Y OF OVEN DRIED CONES  Initial  cone c o n d i t i o n s 34°F  Oven t e m p e r a t u r e  140°F  ( 2 ° C ) , 23% MC  (w.b.).  ± 3°F (60°C ± 1 . 5 ° C ) .  Open a i r movement b y c o n v e c t i o n o n l y .  Germination % of Filled Seed  Sample Number  Treatment Time i n Hours  1  4  87%  2  8  93%  3  12  91%  4  16  92%  5  20  92%  6  24  94%  7  36  95%  8  48  97%  9  72  93%  0  143. TABLE A-3  Salt Solution Equilibrium R H @ 72°F  INDIVIDUAL  EQUILIBRIUM MOISTURE CONTENT (WET B A S I S ) OF CONES OVER SATURATED SALT SOLUTIONS AFTER 30 DAYS  Distilled Water  Barium Ammonium Ammonium Chloride Chloride N i t r a t e  Lithium Chloride  100%  90.2%  78.0%  61.0%  27.88  22.14  17.89  13.21  9,51  7.70  4.67  27.81  21.95  16, 93  13.55  9,59  7.28  4.96  27.97  20.58  17.66  13.61  9,91  7.56  4.81  26.35  21.29  17.87  13,13  9.80  7.56  4.85  29.79  20.51  17,46  13.50  9,64  7.39  4.84  29.89  20.12  17.18  13,34  9.64  7.43  4.60  21.82  16.89  13,94  9.65  7.45  4.76  22.85  17.64  13,35  9.47  7.21  4.71  20.95  16.82  13.55  9.50  7.33  4.92  20.92  16.80  13,45  9.54  7.59  4.86  20.98  17.37  13,08  8.03  7.32  4.87  20.73  17.53  13.62  9.74  7.38  5.01  21.35  17,59  13.09  9.21  7.36  4.60  21.44  17.44  13,64  10.18  7,27  4.78  21.68  17.96  13,43  9.52  7.78  4.72  13.78  9.48  7.56  4.98  13.45% +0.25  9.52% +0.45  7.45% +0.16  4.81%  CONE MOISTURE CONTENTS  20.72 Mean Equb'm Moisture Content  Sodium Potassium Iodide Acetate  28.28% +1.35  21.23% +0.73  17.40% +0.39  39.0%  23.0%  11.3%  -0.13  144. TABLE A-4  CONE SCALE RELEASE TEMPERATURES  Bath Temp °C  Number of New Cones Opened  Number of Old Cones Opened  Bath Temp cc  Number o f New Cones Opened  42.3  1  1  52.6  1  0  43.1  2  2  52.8  2  1  43.2  1  1  53.3  1  0  43.8  2  0  53.4  3  1  44.5  3  2  54.1  4  1  44.8  0  1  54.3  2  2  45.1  1  1  54.7  1  1  45.4  0  1  54.8  0  3  45.7  2  1  55.0  0  0  46.0  0  1  55.5  0  1 .  46. 4  1  0  55.6  1  1  46.5  2  0  56.3  1  3  47.0  1  0  56.8  0  3  47.1  0  0  57.0  1  0  Al .1  0  2  57.5  0  4  48.3  0  0  57.6  0  1  48.4  0  0  58.0  1  2  48.9  0  0  58.1  3  1  49.2  o  o  58 .7  1  2  49.7  1  0  59.2  4  3  49.9  2  0  59.3  1  2  50.5  2  1  59.7  1  2  50.6  0  0  60.1  0  2  51.0  0  1  60.4  1  2  51.1  1  1  61.2  2  3  51.8  0  0  61.6  1  1  51.9  5  1  62.5  1  1  Number o f Old Cones Opened  Mean T e m p e r a t u r e  52.51°C  54.50°C  Std. Deviation  ± 5 . 7 °C  ± 5 . 8 °C  Number o f Cones  60  60  TABLE  MAXIMUM CONE SCALE ANGLES OF CONES 21.2% M.C. (w.b.)  A-5  (In D e g r e e s ) Cone No.  12  13  11  9  4  4  6  15  8  11  11  9  8.5  10  5  20.5  5.5  14.5  17  11.5  6  7  8  20  8  13  2.5  10.5  11  2  4  8.5  18.5  7  11  5.5  9.0  9  4.5  4  7  19.5  8  13.5  18  7  11.5  6  6.5  10  9  8.5  14  4.5  7  6  4.5. 15.5  10  12  4  4.5  5.5  3  8  8  6  3.5  2  8.5  9.5  5  2  5  12  15.5  12  9 9.5  9  3  4  14.5  7.5  4  2  7  5.5  4.5  7 12  8  9  8  9  10.5  11.5  Mean Value  9.86 11.78 5.00  5.93 5.28  4.50 11.78  Std. Deviation  1.60  2.98 1.05  2.73 2.12  2.10  10  3  9.5  10.5  9  6  TJ  1 if a  15  16  11  5  2  14  10  4  1  16.5  8.5  Or  3.33  10.57  7.29  5.64  7.57  5.5  1.09  3.18  2.46  2.09  0.71  OVERALL AVERAGE SCALE DEFLECTION 8.54° + 3.79°  18.28 7.25 11.86 1.98 0.99  1.99  TABLE A-6  MAXIMUM CONE SCALE ANGLES OF CONES AT 17.4% M.C. (w.b.) (In  Cone No.  Mean Value Std. Deviation  1  2  .3  44.5  38  51.5  47  30  43.5  39.5  4  Degrees)  . .5 . ..6.  . .7 .: .. 8 . . 9  25  32  22  33.5  23  30  31  24  21  34  31  51  31..5  34.5  25  29  31  26.5  24.5  30  28.5  34  31  48.5  35  33  35  29.5  39  25.5  22  25  26  29  27  cu.  22  26.5  d  24  22  25.5  29.5  32.5  24  10  11  12  45  30  47  35  42  32  23.5  31  24.5  22  17  26  45  39  54  33  34.5  24  34  34  24.5  30  28  21  33  50.5  33  36  32  31  31  28  30.5  27.5  19.5  28  53  32  34  26  30  26  27  21  31.29 26,50  26.57 24,07 23,28  45.00  33.93 50.78  1.27 ' 4. 83  2.43  33.50 35.14 28,00 30.08 1.50  3.27  4.93  3.81  OVERALL AVERAGE SCALE  4.78  2.17  3.94  4.14  3.46  13  TS  o a.  14  15  16  To c  & at  rH  28.71 27.36 4.96  3.55  DEFLECTION 31 .73° + 7,78°  (71  TABLE A-7  MAXIMUM CONE SCALE ANGLES OF CONES AT 13.5% M.C. (w.b.) (In d e g r e e s )  Cone No.  1  2  3  4  5  6  7  67  55  42  38  45  78  41  49..5  43  59.5  59  65  54  46.5  36.5  52  68  61  45..5  44  60.5  59  57  51  35  51  45.5  53  51..5  47  60  58.5  43  30  50  60  53  46  77  54  32  26  56. 5  69  57  71  54  42  33  47  71  64. 5  58  50  41  45  8  9  11  12 :13  14  15  54  54  43.5  64  48.5  42  49.5  54  64  42  43  55  41  50.5  51.5  35.5  44  44.5  40  40  61.5  54  47  38  50.5  39  35  52  51.5  32  50  42  44  59  51  38  10  Mean Value Std. Deviation  66. 85 55.78 43.78 34.21 49. 42 65.25 52.21 44.,78 2.00  A  1  33. 5  oor  71. 5  i  36  6.38  5.05  4.56 11. 26  6.26  4.72  3..83  42.0 4.44  56.71 5,42  56.5 7.84  OVERALL AVERAGE SCALE DEFLECTION 49.97° + 9.42°  16  i  OJ  rH  •8  42.42  41. 5 48.12  7.84  6. 731 5.28  TABLE A-8  MAXIMUM CONE SCALE ANGLES OF CONES AT 9.5% M.C. (w.b.) (In d e g r e e s )  Cone No.  1  2  3  4  5  6  7  8  74.5  70  58.5  6.85  49  58.5  89.5  75.5  65  52  45  75  49  65.5  62  48  57  62  88  57  59  72.5  65.5  70  58  35.5  64.5  50  68.5  61.5  43  58  60  76  52  68.5  63  61  72  60.5  34  71  49  67.5  62.5  67  7  1  48  72.5  54  66  50.5  70  69.5  52  34  71.5  52  68  58 64  9  10  11  12  13  14  74.5  71.5 64  59.5  61  60  84  67  61.5  33  66  54  56  73  68  52.5  58.5  72.5  76  75  58  41  63  53  64  70  65  58.5  Mean Value  64.36  65.78 58.59 76.25 54.64 60.25 68.86 72.99 69.54 57.00 37.08 72.31 51.17 65.59  Std. Deviation  13.2  6.1  6.2  8.4  3.8  74  3.0  12.4  69  8.2  3.13  81.5  4.1  4.8  8.2  OVERALL AVERAGE SCALE DEFLECTION 62.57° + 11.5°  15  70  2.1  4.7  61.60 2.2  16  TABLE A-9  MAXIMUM CONE SCALE ANGLES '. OF CONES AT 7.5% M.C. (w.b.)  (In d e g r e e s ) Cone No.  1  2  3  99.5  57.5  4  5  6  7  8  64.5  67  83  82  58  81  104.5  66  64  79  61  85  60  70  87  94.5  59.5  72  88  48  88  62  71  91  69  67  87.5  55  98  69  85.5  93.5  61  69.5  74  58  88.5  89  59  69.5  69  59  92  58  56  69.5  94.57  61.43  66.07  76.28 60.67 90.07 66. 28 77.21 98.30  4.81  4.38  5.29  102.5  Mean Value Std. Deviation  8.76 11.84  9  11  12  74  72.5  51.5  63  65  57  79.5  76  62  61  69  57.5 70.5  103  74  66.5  54  69  66  71.5 68  95  70  72  49  56  72  71  60.5  69  77.5 102  59  75.5  49  64  71  63  75.5  99.5  78  76.5  73  79  66  67  57  89.5  68  79  79  78  63  55  6.45  6.85  5.44  7.29  10  72.64 74.21 6.88  4.27  53.10 5.39  13  14  15  16 56.5  62.60 67. 42 63.14 64.1 4.72  3.31 6.86 7.:  OVERALL AVERAGE SCALE DEFLECTION 71.79° + 12.82°  vo  TABLE  A-10  MAXIMUM CONE SCALE ANGLES OF CONES AT 4.8% M.C.  (w.b.)  (In degrees) Cone No.  1  2  3  91  106  72.5  83  122  77  82.5  116.5  84  87  93  117  84  92  121.5  89.5  118  4  5  79  79  94.5  105.5 76  6  7  8  9  88.5  68  74  74.5  99  73  82  80  87  73  91  84  80  95.5  87.5  70  81.5  89  76 . 121  84.5  90  83  82.5  92.5  79.5  88  75.5  91  10  11  12  13  14  15  16  97.5  94  114  81.5  87  85  80  107.5 86.5  86  109.5  79.5  91  80  77  90.5  80.5  131  78.5  90.5  77  81  94  85  91.5  95  71  79  74  88.5  69  79  79.5  79.5  106.5  70  74.5  76  75  74.5  69  88  74  87.5  103.5  84.5  75.5  76  92  78  69  95.5  94  75  83.5  87  81.5  79.28  82.14  4.96  6.07  Mean Value Std. . . . Deviation  88.50 116.83 81.21 4.60  5.78  5.62  87.93 78.7192.71 85.57 70.14 8.47 2\94 14.76 7.91  2.03 1  88.92 86.93 87.57 109.92 77.14 83.00 11.81 8.41 6.00  12.14  OVERALL AVERAGE SCALE DEFLECTION 86.59° + 13.09°  5.38  6.84  TABLE A - l l  Cone No.  MAXIMUM CONE SCALE ANGLE OF CONES OVEN DRY  1  2  3  4  5  6  7  8  9  10  11  12  13  14  IS  16  17  18  19  20  88.0  106.0  7S.0  82.0  108.0  89.0  111.0  82.5  127.0  96.5  76.5  91.0  84.0  108.5  88.5  74.0  132.0  90.0  103.0  87.5  103.5  128.0  87.0  126.0  105.0  90.5  110.0  77.5  122.0  106.0  70.0  76.0  90.0  97.5  83.5  88.0  128.5  96.0  94.5  9S.5  89.5  125.0  87.0  112.0  108.0  97.0  112.0  95.5  117.0  104.0  62.5  76.0  89.0  102.0  81.0  88.0  121.0  98.0  90.0  86.0  89.0  125.0  86.5  117.0  115.5  83.0  107.0  97.0  109.5  102,0  66.5  77.5  88.5  99.5  81.5  84.0  117.0  101.0  107.0  93.0  84.5  107.0  87.0  113.0  107.0  81.0  122.5  109.0  101.5  94.S  79.5  66.5  87.0  99.0  79.0  85.5  110.5  106.0  101.5  93.5  87.5  101.0  76.5  112.0  107.0  85.0  123.0 ' 104.0  107.0  98.5  71.0  71.S  94.5  105.0  79.0  90.5  123.0  97.0  113.0  92.0  95.0  125.0  81.0  116.0  107.0  93.0  117.0  115.0  103.5  68.0  76.5  102.0  93.0  72.5  83.0  127.0  93.5  109.0  88.0  100.71  70.57  76.43  90.71  100.64  80.71  84.71 122.71  4.27  5.83  7.49  5.90  5.08  4.99  102.0  Mean Value Std. Deviation  91.00 116.71 6.35  11.47  82.85 111.14 108.21 5.32  13.74  3.36  88.36 114.64 5.71  6.29  95.36 114.14 11.49  8.82  MEAN SCALE ANGLE 9 7 . 0 2 ° + 1 5 . 6 8 °  5.38  7.34  97.36 102.57 5.15  8.11  90.3 3.33  TABLE A-12  MAXIMUM SCALE ANGLES OF CONES STORED SIX MONTHS AT 11.2% M.C. (w.b.), UNSEALED AND DRIED TO 9.9* M.C. ( S t r e s s Relaxed Cones)  Cone No.  1 22.0  2 13.0  3  4  S  6  7  8  9  14.0  20.0  17.5  18.5  19.5  '20.0  23.0  10 14.5  11  12  13  14  15  16  17  18  19  20  20.0  22.5  24.5  24.5  29.0  25.0  18.0  18.0  17.0  29.5  21.0  13.0  13.0  19.5  15.0  18.5  23.0  17.5  20.0  14.0  20.0  20.0  22.5  25.0  24.0  27.0  19.5  19.0  27.0  32.0  21.0  12.0  12.5  11.5  17.0  17.0  19.5  20.0  23.0  10.5  22.5  19.0  19.5  21.S  24.5  20.5  18.0  20.0  24.0  37.0  20.0  8.0  16.0  19.5  17.0  17.0  23.0  20.0  23.5  14.0  19.0  30.0  18.0  26.0  12.5  27.0  21.5  37.0 36.5  23.0  16.5  l  19.5  11.0  15.5  16.0  19.0  18.0  23.0  19.0  23.5  14,0  25,0  17.0  18,0  26.0  18.0  26.0  13.0  25.0  21.5  20.0  12.0  16.0  15.0  19.0  18.0  20.5  23.0  25.0  14.0  24.0  18.0  17.5  27.0  18.0  24.0  14.0  22.5  20.5  33.0  20.0  11.5  19.5  16.0  19.0  18.0  18.0  24.0  21.0  15,0  24.5  17.5  23.0  28.0  21.0  21.0  14.0  30.5  19.5  32.5  MEAN SCALE ANGLE 20.28° + 5.35°  153.  TABLE A-13  MAXIMUM SCALE ANGLES OF CONES STORED SIX MONTHS AT 11.2% M.C. (w.b.) UNSEALED, REWETTED AND DRIED TO 11.1% M.C. (w.b.) (Stress Relaxed Cones)  Cone No.  1  2  3  4  5  6  52.0  61.0  57.0  53,0  62.5  66.0  51.5  65.0  58.0  54.5  63.0  50.5  61.0  54.0  60,0  53.0  61.0  57.0  51.5  64.5  50.0 46.0  7  8  9  10  64.0  63.0  78.0  58.0  66.0  61.0  70.0  89.0  59.5  61,5  72,0  60.5  79.5  88.5  53.5  60,0  65.5  61.5  62,5  78.0  83,0  55.0  56.5  64.0  65,0  64,0  70,5  64.0  70.5  53.5  59.0  55.0  62.0  71,0  64,5  62,5  65,0  72.0  56.5  61.0  49,0  62.0  66.0  70.0  62.0  62.5  71.5  64.0  MEAN SCALE ANGLE 62.63° + 8.66°  TABLE A-14  MAXIMUM SCALE ANGLES OF CONES STORED SIX MONTHS AT 11.2* M.C. (w.b.) UNSEALED, REWETTED AND  DRIED TO OVEN  DRY  ( S t r e s s Relaxed Cones) Cone No.  1 57.5  2  3  90.0  80.5  4  5  6  87.0 107.5 113.0 97.0  7 99,5  8  9  84.5 119.5  10  11  85.0  96.0  97.5 100.5  12  13  14  15  96.5 101.0 101.5 104.0  99.0 102.0  16  17  90.5  89.5  18  19  95.5 102.5  20 99.0  72.0  89.0  84.0  87.0  96.5 101.0  83.0 102.0  84,5  86.0  91.0  91.0  94.5 114.0 105.0  65.0  95.5  87.0  85.5 102.0  98.5  97.S  92,5 102.0  87,0  90.0 100,5  97.5  96.5  94.5  87.0  87.5  92.0 113.0 102.0  66.0  86.5  86.0  83.5  91.5  85.0  92.0  89.0  88.0  98.5 105,5  96.5  85.5  88.5  87.0 122.0 106.0  85.5  92.0  95.5  99,5  68.0  86.0  86.0  91.0 102.0 104.0  79.5 106.0  96,0  88.0  84.0 102.0 100.5 100.5 100.0  92.0  64.0  86.0  79.5  89.5  98.5  85.0  99,5  96,5  89.0  81.0 102.0 100.S 100.0 108.0  90.0 100.5  92.S 110.0  70.5  88.5  80.0 -85.5  96.0 108.0  99.0  94.5  96,5  87.0  80,0  93.0  90.0 117.0 101.0  96.0  MEAN SCALE ANGLE 93.64° + 10.65°  99.0 100.0  99,5  96,5  93.5  86.5 114.0 103.0 99.0  TABLE A-15  MAXIMUM CONE SCALE ANGLES FOR FIRST SEED RELEASE TEST  Cone No.  10 50.0 50.0 49.5 43.5 40.5 45.0 45.0  36.0 33.5 41.0 46.0 46.0 46.0 45.0  47.0 43.0 41.0 44.0 45.0 42.0 42.0  35.0  33.0  42.0  42.5  46.5  37.0  29.0  36.0  38.0  55.0  48,0  39.0  30.0  30,0  37.5  50.0  41,5  37.S  39.0  45.0  32.0  57.5  44.5  41.5  35.0  34.0  38.0  45.0  46.0  36.0  33.0  37.0  36,0  50.5  43.5  31,0  29.0  33.0  39.5  47.5  52.0  39.5  11  12  13  14  IS  16  27,0 37.0  34.5 31.0 34.0 . 32.0  69.0 76.0  51.5 55.0  42.5 40.5  31.5 37.5  43,0 42.0 40.0 37,0 37.0  34,0 32,0 31.0 34.0 31.0 36,0 34.0 '31.0 32.0 33.0  75,0 69.0 67,0 67,0 47.5  57,5 53.5 50,0 41.0 41.5  37,5 34,0 36.5 35.5 38.0  37,5 34.0 32.0 35,0 34.0  MEAN SCALE ANGLE 42.00° + 9.20° Number of Seeds Released this Test  226  Cumulative number of Seeds Released  226  Cumulative percentage of total Seeds Released SOS  17  18  19  20  39.0 50.0 36.0 48.0 44.5 47.0 33.5 49.5 45,5 50.0 47.0 49.0 46.5  47.0 45,0 45.0 40.0 39.0  36.5 35,0 37.0 29.0 42.5  54.0 51.5 •51.5 53.5 46.0  TABLE A-16  Cone No.  MAXIMUM CONE SCALE ANGLES FOR SECOND SEED RELEASE TEST  1  2  3  4  5  6  7  8  9  10  11  12  13  14  IS  16  17  18  19  20  62.5  60.5  54.0  42.0  44.5  48.0  66.0  57.0  46.5  48.0  41.0  45.0  88.5 66.5  39.0  50.0  66.S 60.0  52.0 73.5  69.5  58.5  56.0  38.5  41.5  49.5  80.0  70.0  46.5  47.0  38.0  48.0  77.5 65.5  56.0  52,0  80.5 46.0  65.0 58.5  63.0 71.5 72.0 70.0 70.0  53.0 45.0 63.0 61.S 64.S  62.0 65.0 62.0 62.0 58.S  47.0 39.5 39. S 48.0 44.5  44.0 45.0 33.5 57.5 50.0  52.0 53.0 59.0 59.5 65.0  79,0 67.0 60.0 70.0 64.0  60,0 47.0 64.0 65.0 67,0  45.0 35,0 45.0 42.0 43.0  45.0 44.5 45.0 40.0 41.0  41,0 40.0 44.0 46.0 47.0  44.5 49.0 55.0 44.0 47,5  74.5 74.5 90.0 90.0 87.5  52.0 54.0 51.0 46.0 48.0  53.0 48.0 45.5 45.0 50.0  74.5 65.0 72.0 74.0 78.5  50.0 45.0 33.0 .48.0 58.5  54.5 64.0 75.5 76.5 75.0  57.0 63.0 57.5 65.5 60.0  72.5 70.0 67.0 71.0 73.0  MEAN SCALE ANGLE 56.97° + 12.85° Number of Seeds Released this Test Cumulative number of Seeds Released  93 319  Cumulative percentage of total Seeds Released 70.3%  Ln  TABLE A-17  Cone No.  MAXIMUM CONE SCALE ANGLES FOR' THIRD SEED RELEASE TEST  1  2  3  4  5  fi  7  8  9  10  11  12  13  14  IS  16  17  18  19  20  89.0  76.0  84.5  58.0  54.0  59.5  94.0  71.0  60,0  59.5  57.0  66,5  98.0  88.0  61.5  56.5  89.5  74.0  68.0 81.0  83.5 84.0  71.5 70.0  85.5 80.0  66.0 51,0  64.5 63,0  67.0 72.0  96.0 93,0  71.0 67.5  60,5 58.0  64.5 62,5  55,0 54.0  72,5 74,0  103,5 89.0  86.5 90.0  59.0 60.0  66.5 65.5  79.0 85.5  73.0 80.0  64.0 81.0 74.0 81.5  88.0 88.5 78.0 86,0  74.5 77.0 75.0 76.0  86.0 72.0 80.0 76.5  62.0 60.0 S8.0 56.0  60.0 61.0 68.0 67,5  77.0 82.0 73.5 83.5  84.5 84.5 91.0 98.0  76.5 73,0 74,0 71.0  61,0 57,0 54,0 59.S  59,0 54,5 56.0 55,0  50,0 52.5 55,0 62.0  74,0 77,0 72,0 67.5  87.6 82.5 93,5 93,5 105.0 91.0 105.0 81,0  65,0 55.0 56.5 60.0  67.0 64.0 60.0 63,0  86.0 84.5 90.0 89.5  75.0 75.0 76.0 72.0  62.5 63.0 73.0 81.0  MEAN SCALE ANCLE 73,10° + 12,92° Number of Seeds Released this Test Cumulative number of Seeds Released Cumulative percentage of total Seeds Released  65 384 84.84  84.0 79.5 85.0 84.0  TABLE  Cone No.  A-18  1 120.S  MAXIMUM CONE SCALE ANGLES FOR FOURTH SEED RELEASE TEST  2 112.0  122.0 110.5 122.0 109.5 11S.0 101.5 122.5 99.5 122.0 102.5 122.0 97.0  3 97.0 109.0 109.0  4 73.0  100.0 112.0 110.0  87.5 85.0 85.5 83.0 87.5  108.0  89.0  5  6  7 •  8.  97.5 117.5 83.0 95.0 81.0 95.5 125.0 94.5 89.0 106.0 126.0 87.0 92.0 118,0 126.0 109,0 91.0 124.5 124.0 96,0 98.5 123.0 124.0 93,0 93.0 103,0 124,0 89.0  9  10  87,0 95,0 83,5 94,0 83,0 91.0 88,0 84,0 85,0 ' 90,5 88,0 92,0 84,0 100.0  11  12  13  14  91.0 99,0 124.0 119,0 97,5 131,0 124,0 95,0 91,0 99,0 126,0 113.5 86,5 103,0 117.0 114.0 81,0 116,0 121,0 117.0 91,0 116,0 126,0 112.0 85,0 104,0 125.0 124,0  .15  16  17  88.0 84.0 117.0 99.0 101.0 134.0 96.5 98.5 138.0 89.0 92.5 138.0 93.5 85.0 126.0 97.0 92.0 115.0 89.5 84.0 115.0  18  19  108.5  105.0  111.0  107.0 107.0 104.0 104.5 101.5 107.0  115.5  113.0  105.0 101.0 102.0 91.5 107.0  112.0 113.0 108.0 102.0 110.0  20 •  MEAN SCALE-ANGLE 103.86° + 13.60° Number of Seeds Released this  Test  69  Cumulative number of Seeds Released 453 Cumulative percentage of total Seeds Released 1004  H  159. TABLE A-19  DEGREE OF SEROTINOUS SEAL BREAKING IN CLASS I (YOUNG) CONES BY FLAME TREATMENT  Sample Number  Treatment Time  Number of Cones Reiraining Sealed  Number of Cones Partially Unsealed  8.26% MOISTURE  CONTENT  Number of Cones Fully Unsealed  IA  5 sec  62  22  16  IB  10 s e c  0  2  98  IC  15 s e c  0  0  100  ID  20 s e c  0  0  100  IE  25 s e c  0  0  100  IF  30 s e c  10.7% MOISTURE  CONTENT  2A  5 sec  71  18  11  2B  10 s e c  3  12  85  2C  15 s e c  0  1  99  2D  20 s e c  0  2  98  2E  25 s e c  0  0  100  2F  30 s e c  16.71% MOISTURE  CONTENT  3A  5 sec  98  1  1  3B  10 s e c  9  26  65  3C  15 s e c  1  5  94  3D  20 s e c  0  2  98  3E  25 s e c  0  0  100  3F  30 s e c  20'. 7 3% MOISTURE  CONTENT  4A  5 sec  100  0  0  4B  10 s e c  63  12  25  4C  15 s e c  5  16  79  4D  20 s e c  0  1  99  4E  25 s e c  0  1  99  4F  30 s e c  0  0  100  160. TABLE A-19 ( C o n t i n u e d )  Sample Number  Treatment Time  Number of Cones Rernaining Sealed 21.78% MOISTURE  Number of Cones Partially Unsealed  Number of Cones Fully Unsealed  CONTENT  5A  5 sec  5B  10 s e c  74  16  10  5C  15 s e c  14  20  66  5D  20 s e c  1  8  91  5E  25 s e c  0  0  100  5F  30 s e c  0  0  100  25.13% MOISTURE  CONTENT  6A  5 sec  6B  10 s e c  95  1  4  6C  15 s e c  63  10  27  6D  20 s e c  12  8  80  6E  25 s e c  0  1  99  6F  30 s e c  0  0  100  27.82% MOISTURE  CONTENT:  7A  5 sec  7B  10 s e c  100  0  0  7C  15 s e c  92  6  2  7D  20 s e c  34  12  54  7E  25 s e c  3  5  92  7F  30 s e c  0  4  96  31.2 0% MOISTURE  CONTENT  8A  5 sec  -  -  ;  8B  10 s e c  99  1  0  8C  15 s e c  97  3  0  8D  20 s e c  61  10  29  8E  25 s e c  5  11  84  8F  30 s e c  7  4  89  161. TABLE  Sample Number  A-20 D E G R E E OF S E R O T I N O U S S E A L B R E A K I N G I N CLASS I I I WEATHERED CONES B Y F L A M E TREATMENT  Number  Treatment Time  o f Cones Remaining Sealed 8% M O I S T U R E  Number• of Cones Partially Unsealed  Number of Cones Fully Unsealed  CONTENT  10A  5 sec  24  23  53  10B  10 s e c  0  8  92  IOC  15 s e c  0  1  99  10D  20 s e c  0  0  100  10E  25 s e c  0  0  100  10F  30 s e c  11%  MOISTURE  CONTENT  11A  5 sec  63  25  12  11B  10 s e c  18  26  56  11C  15 s e c  0  8  92  11D  20 s e c  0  1  99  HE  25 s e c  0  0  100  11F  30 s e c  r-  13%  MOISTURE  •  -  CONTENT  12A  5 sec  86  11  3  12B  10 s e c  22  34  44  12C  15 s e c  0  9  91  12D  20 s e c  0  2  98  12E  25 s e c  0  0  100  12F  30 s e c  0  0  100  16% MOISTURE  CONTENT  13A  5 sec  95  5  0  13B  10 s e c  40  36  24  13C  15 s e c  6  19  75  13D  20 s e c  1  11  88  13E  25 s e c  0  6  94  13F  30 s e c  0  1  99  162. TABLE  Sample Number  A-20  (Continued)  Treatment Time  Number of Cones Remaining Sealed 19% MOISTURE  Number of Cones Partially unsealed  Number o f Cones Fully Unsealed  CONTENT  14A  5 sec  96  4  0  14B  10 s e c  68  25  7  14C  15 s e c  8  20  72  14D  20 s e c  0  6  94  14E  25 s e c  0  4  96  14F  30 s e c  0  1  99  22% MOISTURE  CONTENT  15A  5 sec  15B  10 s e c  92  8  0  15C  15 s e c  49  28  23  15D  20 s e c  1  16  83  15E  25 s e c  3  11  86  15F  30 s e c  0  6  94  24% MOISTURE  CONTENT  16A  . 5 sec  16B  10 s e c  90  7  3  16C  15 s e c  53  32  15  16D  20 s e c  2  18  80  16E  25 s e c  2  14  84  16F  30 s e c  0  5  95  28% MOISTURE  CONTENT  17A  5 sec  17B  10 s e c  97  3  0  17C  15 s e c  90  8  2  17D  20 s e c  16  28  56  17E  25 s e c  12  24  64  17F  30 s e c  3  15  82  163.  TABLE A-21  Cone Length A Inches  GEOMETRIC V A R I A B L E S AFFECTING CORE BORING OF LODGEPOLE PINE CONES.* .  O v e r a l l Core Cone Angle Angle 0°  Core T i p t o Core A x i s t o Cone Apex Cone A x i s B Angle o Inches a 11 .73  Core A x i s Misalignment  Core Edge t o Seed C Inches  1.75  49  0° 28  1. 57  28  19  .99  4  1.67  39  21  .77  8  1.42  33  22  .90  6  .020  1.27  35  18  .84  10  .035  1. 51  32  28  .98  7  .025  1.70  43  26  .73  10  .035  1. 52  36  17  .98  4  .040  1.42  40  15  .80  8  1.37  25  14  1,21  0  .045  1.42  36  22  ,98  7 ..  .025  1.35  34  25  •1.00  1  .035  1.38  35  21  .88  8  .035  1.26  39  30  .80  3  1.06  51  30  . 59  7  .030  1.08  57  39  .77  2  .035  1. 63  49  32  .78  7  1.71  50  22  .80  5  .035  1.17  61  37  .60  11  .030  1.45  52  27  1.00  9  .050  1. 01  37  20  1, 05  0  .030  1. 63  57  44  . 72  14  20  .045  1.43  26  13  1. 28  3  .7  .040  1.31  43  31  .86  0  1.51  27  19  1.22  5  1. 52  31  23  1.29  4  .040  1. 58  24  23  1,26  6  .030  *  Geometric v a r i a b l e s a r e defined i n Figure 33.  .035 .030 28  10  8  26  .035  .030  .030  .030  .040 10  . .025  TABLE A-21 (Continued)  Cone Length A Inches  Overall Core Cone Angle Angle .  2.03 2.06 1.58 1.30 1.31 1.38 1.48 1.37 .96 1.18 1.15 .98 1.39 1.46 1.51 1.19 1.13 .92 1.64 1.33 ' 1.21 1.35 .1.21  e° 27 26 31 52 30 36 25 27 47 50 64 44 31 24 19 26 32 57 38 29 34 52 24  1.396 ±.24  37.9 ±11.4  Core Tip to Cone Apex  B  0°  Inches  24 19 23 27 38 24 37 32 32 42 32 46 15 27 17 20 12 28 16 24 24 35 13  1.77 1.84 1.26 .67 1.12 .88 1,23 .96 .48 .64 ,63 .75 ,91 1,37 1.83 .96 .86 .62 1.01 1.16 .94 .84 .69  25.5 ±8.4  .966 ±.30  Core Axis to Core Axis Core Edge Cone Axis Misalign- to Seed Angle ment C o Inches 3° a  12 12 13 11 18 9 9 15 7 3 8 5 7• 7 •." 1 .4 4 13 3 10 6 10 0  6.9 ±4.2  25 38  30  4.0 ±9.4  .055 .050 .045 .045 ,035 .035 .035 .025 ,025 .035 ,030 .040 .020 .030 ,035 ,025 .030 .030 ,050 .040. .050 .035 .040  .034 ±.011  TABLE A-22  RESULTS OF THRESHING TESTS ON LODGEPOLE PINE CONES ( F i r s t Prototype)  Sample No.  *  Cone M.C. % wb  Cyl. Speed ft/min  Dry Wt. of Cone g.  No. of Cones  Wt. of Whole Seed  Wt. of No. of Seeds/ Whole 100 Seeds Cones g.  Germ'n % (of Total)  No. Viable Seeds Per Cone  Recovery % *  4  8.5  1800  600.5  125.5  1.3613  1.0847  489  36.5  1.43  8.3%  5  8.5  2300  535.5  111.9  1.7431  1.5577  439  38.9  1.53  9.1%  6  8.5  2800  515.6  107.8  1.3513  1.2535  327  35.7  1.08  6.4%  7  8.5  3300  560.3  117.1  1.0600  .9488  256  36.1  .80  4.8%  7A  8.5  3800  536.1  112.0  1.2217  1.0908  321  17.0  .49  2.9%  7B  8.5  4300  555.4  116.0  .7670  .6872  200  20.5  .35  2.1%  8  12.8  1800  507.8  106.1  1.8859  1.7774  576  46.3  2.51  15.0%  9  12.8  2300  535.5  111.9  1.8842  1.6838  636  42.7  2.43  14.5%  10  12.8  2800  559.5  116.9  1.7392  1.4877  608  27.1  1.41  8.4%  11  12.8  3300  480.2  100.4  1.9040  1.8964  624  22.7  1.41  8.4%  11A  12.8  3800  515.3  107.7  .9420  .8746  340  25.3  .80  8.4%  LIB  12.8  4300  573.5  119.8  .8600  .7178  303  21.6  .55  3*3%  Viable seeds recovered, expressed as percentage of viable seeds i n control.  TABLE A-22 (Continued) Sample No.  Cone M.C. % wb  Cyl. Speed ft/min  Dry Wt. of Cone  12  15.8  1800  462.8  13  15.8  2300  14  15.8  15  No. of Cones  Wt. of Whole Seed g-  Wt. of Seeds/ 100 Cones q  No. of Whole Seeds  Germ'n % (of Total)  No.Viable Seeds Per Cone  96.7  1.8370  1.8996  587  38.7  2.34  14.0%  521.9  109.0  2.4400  2.2385  831  26.7  2.04  12.2%  2800  593.5  124.0  2.2008  1.7748  729  40.0  2.35  14.0%  15.8  3300  633.6  132.4  1.7022  1.2850  591  27.8  1.24  7.4%  15A  15.8  3800  579.8  121.2  1.1171  .9217  380  28.3  .89  5.3%  15B  15.8  4300  588.7  123.0  1.5347  1.2477  575  23.3  1.09  6.5%  16  19.9  1800  590.4  123.4  2.0560  1.6661  696  44.3  2.50  14.9%  17  19.9  2300  389.5  81.4  1.5541  1.9092  540  33.9  2.25  13.4%  18  19.9  2800  649.0  135.7  1.9288  1.4217  657  43.8  2.13  12.7%  19  19.9  3300  622.1-  130.0  .9580  .7369  442  50.5  1.33  7.9%  19A  19.9  3800  562.1  117.5  1.7557  1.4942  618  41.7  2.19  13.0%  CONTROL  100  2129  89.3%;  Recovery % *  19.01  V i a b l e seeds r e c o v e r e d , expressed as a percentage o f v i a b l e seeds i n c o n t r o l .  167. TABLE A-23  Test No.  Cyl. Speed ft/min  LODGEPOLE  PINE SEED RECOVERY FROM THRESHER (Second P r o t o t y p e )  Moisture Content % w.b.  No. Seeds Recovered  % Filled  No. o f Germ. % Filled (of Seeds Filled Seeds)  RUBBERIZED  No. Good Seeds Recovered  Recove o, *  1  1600  15.5  1230  89  1094  61  668  39.8%  2  2000  15.5  1403  90  1263  59  745  44.4%  3  2400  15.5  1171  91  1066  49.5  527  31.4%  4  2800  15.5  1271  87  1106  55  608  36.2%  5  1600  20.0  970  95  922  40.5  373  22.2%  6  2000  20.0  978  94  919  41  377  22.4%  7  2400  20.0  796  93  740  43  318  18.9%  8  2800  20.0  758  89  675  30  202  12.0%  2074  91  1887  89  1679  CONTROL  V i a b l e seeds r e c o v e r e d expressed seeds c o n t a i n e d by c o n t r o l .  as a p e r c e n t a g e  of viable  168.  TABLE A-24  No.  LODGEPOLE PINE SEEDS RECOVERED THROUGH CONCAVES FROM 10 0 CONES  Recovered  Filled  Filled Seeds  ( f Filled Seed) 0  Viable Viable Seeds Recovered Recovered - by concaves -  Viable Recovered (Concaves & Sieve)  1  297  91  270  46  124  26.8  13.2  2  569  93  529  41  217  46.8  23.1  3  221  92  203  33  67  14.4  7.1  4  99  89  88  27  24  5.2  2.6  5  44  90  40  38  15  3.2  1.6  6  18  90  16  13  2  .4  .2  7  8  88  7  38  3  .6  .3  8  8  88  7  60  4  .8  .4  9  5  100  5  0  0  0  0  10  0  -  TOTAL  1165  39.1%  456  100.0%  48.5%  169.  TABLE A-25  Pass No.  LODGEPOLE PINE SEEDS RECOVERED FROM 10 0 CONES  No.of Seeds % Recovered F i l l e d  No. o f Filled Seeds  Germ. % (of Filled Seeds)  THROUGH  No. of Viable Seeds Recovered  SIEVE  % of Viable Recovered by Sieve  % Total Viable Recovered (Concaves & Sieve)  1  484  88  426  36  153  31.5  16.3  2  513  95  487  37  180  37.1  19.1  3  292  89  260  32  82  16.9  8.7  4  131  82  107  35  38  7.8  4.0  5  54  90  49  24  12  2.5  1.2  6  24  92  22  20  4  •8  .4  7  18  88  16  36  6  1.2  .6  8  15  93  14  40  6  1.2  •6  9  9  100  9  33  3  .6  .3  10  4  100  4  25  1  .2  .1  TOTAL  1 3  94  34.8  485  100.0%  51.5%  TABLE A-26  DATA FROM THRESHING OF DOUGLAS FIR CONES No.Seeds Wt. of Wt. of in Debris Clean Sample Seed in Sample g. g.  No. of % Seeds F i l l e d Seed  Cyl Speed ft/min  Cone Wb. of M.C. Uncleaned % wb Seed • g.  F-l  1500  11.5  F-2  2500  11.5 7.1954  .3784  60  .0745  6.0118 953  66  35  220  82.7%  F-3  3500  11.5  7.8325  .4200  60  .1368  5.9081  844  55.5  22  103  38.7%  F-4  4500  11.5  6.0582  .4854  63  .2430  4.0312  524  40  22.5  47  17.7%  F-5  5500  11.5  3.7438  .3600  61  .1158  2.8326  480  63.5  13  39  14.7%  F-6  1500  24.3  7.9290  .4432  58  .2581  5.0109  655  80  16  84  31.6%  F-7  2500  24.3  7.9176  .4476  58  .1562  5.8694  761  74  13  73  27.4%  F-8  3500  24.3  6.1868  .4466  55  .3186  3.6109  445  73  13  42  15.8%  F-9  4500  24.3  4.5265  .4346  54  .2500  2.8735  357  79  14  39  14.7%  F-10  5500  24.3  5.8110  .4328  58  .3353  3.2907  436  73  23  8.6%  Wt. of Seed Sample g.  SAMPLE  CONTROL  Germ.% of Filled Seed  No. of Viable Seeds Recovered  Recover % *  DEST R 0 Y E D  1618  . 37.5%  7.5 44%  266  Sample Size - 100 cones. *  V i a b l e seeds recovered expressed as percentage o f v i a b l e seeds contained by c o n t r o l  TABLE A-27  DATA FROM THRESHING OF WHITE SPRUCE CONES  Cyl. Speed ft/rain  Cone Wt.of Wt.of MC Unclean Seed %(wb) Seed Sample gg.  S-l  1500  21.6  5.4552  .1259  67  .6394  S-2  2500  21.6  6.2669  .1068  69  S-3  3500  21.6  6.1492  .1412  S-4  4500  21.6  4.7788  S-5  5500  21.6  S-6  1500  S-7  No. of Wt. of Wt. of Seeds Debris Clean in Sample i n Sample Seed g.  No. of Seeds  % Filled Seed  4.1550  2211  79.5  29  510  24.6%  .0439  4.4316  2884  89.5  35  903  43.6%  87  .1290  3.2134  1979  91.5  30  543  26.2%  .1353  83  .0716  3.1250  1917  88.5  34  577  27.9%  4.3230  .1182  81  .1052  2.2873  1567  87.0  30  409  19.8%  28.4  4.7324  .1672  90  .1010  2.9503  1588  89.0  23  325  15.7%  2500  28.4  4.9200  .0977  60  .0846  2.6368  1619  88.5  16  229  11.1%  S-8  3500  28.4  6.5427  .1428  83  .1300  3.4248  1990  85.0  10  169  8.2%  S-9  4500  28.4  6.9434  .0993  61  .1078  3.3292  2045  86.0  20  352  17.0%  S-10  5500  28.4  4.6170  .1040  57  .1049  2.2985  1259  82.0  18  186  9.0%  5.1928  .0350  50  7418  36.0%  77.5%  CONTROL  Germ. % . No.Viable of F i l l e d Seeds Recovery Seed Recovered % *  2069  Sample Size = 100 cones. *  V i a b l e seeds recovered expressed as percentage o f v i a b l e seeds contained by c o n t r o l  TABLE A-28  DATA FROM THRESHING OF WESTERN HEMLOCK  Cyl, Speed ft/min  Cone Wt. of Wt. of MC Unclean Seed %(wb) Seed Sample g. • g.  H-1  1500  24.4  1.2567  .0955  50  .0430  .8665  1173  87  19.5  198.1  9.8%  H-2  2500  24.4  1.4717  .1017  51  .0379  1.1119  1279  80  15  153  7.6%  H-3  3500  24.4  1.5130  .1171  59  .0242  1.2538  1052  88  7.5  69  3.4%  H-4  4500  24.4  1.5472  .1007  52  .0524  1.0176  946  78.  2.6  19  .9%  H-5  5500  24.4  1.7846  .1050  52  .0543  1.1763  768  85  6.0  39  1.9%  H-6  1500  30.4  2.2484  .1065  55  .0500  1.5300  970  80  5.6  43  2.1%  H-7  2500  30.4  3.0877  .1120  56  .0696  1.9043  146  80  6.9  61  3.0%  H-8  3500  30.4  2.1250  .1318  65  .0611  1.4519  915  78  6.4  46  2.3%  H-9  4500  30.4  2.3137  .1000  55  .0610  1.4371  989  72.5  .7  5  .3%  H-10  5500  30.4  2.0070  .1191  63  .1072  1.0562  664  82  3.7  20  1.0%  6.4946  .1142  54  .0080  6.069  3029  CONTROL  Wt. of Wt. of No.of Debris Clean Seeds in Sample in Sample Seed g. g.  No. of % GermV %". No.Viable Seeds F i l l e d of Filled Seeds Recovery 9Seed Seed % Recovered o * r  79.5%  83.5%  2011  Sample Size = 200 cones. V i a b l e seeds r e c o v e r e d expressed as percentage o f v i a b l e seeds contained by c o n t r o l  ro  PUBLICATIONS M a c A u l a y , J.D. and W.K. Bilanski. "Mechanical P r o p e r t i e s A f f e c t i n g Leaf Loss i n B i r d s f o o t T r e f o i l " . Trans. o f ASAE, V o l . 11, No. 4, 1968. M a c A u l a y , J.D. "The A g r i c u l t u r a l E n g i n e e r i n t h e F o r e s t Industry", Canadian A g r i c u l t u r a l Engineering J o u r n a l V o l . 12, No. 1, 197 0. M a c A u l a y , J.D. "Low D e n s i t y , R i g i d P o l y r e r e t h a n Foam as an I n t e g r a t e d I n s u l a t i o n - W e a t h e r P r o t e c t i v e C o v e r i n g f o r A g r i c u l t u r a l B u i l d i n g s " , Paper p r e s e n t e d t o F a l l Meeting, Acadia Section,.American S o c i e t y of A g r i c u l t u r a l Engineers, October, 1971. M a c A u l a y , J.D. " P h y s i c a l P r o p e r t i e s o f Low D e n s i t y R i g i d P o l y u r e t h a n e F o a m " . I n f o r m a t i o n B u l l e t i n No. 1, D e p t . o f B i o - R e s o u r c e s E n g i n e e r i n g , Nova S c o t i a T e c h n i c a l C o l l e g e , H a l i f a x , N . S . ' ^ O c t o b e r , 1972. M a c A u l a y , J.D; " F a c t o r s A f f e c t i n g T r a c t i o n and F l o t a t i o n o f Farm E q u i p m e n t , I n f o r m a t i o n B u l l e t i n g No. 2, D e p t . o f B i o - R e s o u r c e s E n g i n e e r i n g , Nova S c o t i a T e c h n i c a l C o l l e g e , H a l i f a x , N.S., May, 197 3. M a c A u l a y , J.D. "Development o f a Seed C o v e r i n g Technique for Early Planting of Cereals". P a p e r No. 73-316, p r e s e n t e d t o A n n u a l M e e t i n g of. C a n a d i a n S o c i e t y o f A g r i c u l t u r a l E n g i n e e r s , V i c t o r i a , B.C., A u g u s t , 197 3 M a c A u l a y , E.O. N y b o r g and J . M e t z g e r . "Development o f T h e r m a l S e a l B r e a k i n g T e c h n i q u e s f o r Seed R e l e a s e of S e r o t i n o u s C o n i f e r Cones". P a p e r No. 74-506, presented to Annual Meeting of Canadian S o c i e t y of A g r i c u l t u r a l E n g i n e e r s , Quebec, P.Q., A u g u s t , 1974.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Country Views Downloads
United States 20 0
Japan 19 0
Canada 12 0
China 6 8
India 3 0
United Kingdom 1 0
France 1 7
Ecuador 1 0
Portugal 1 0
City Views Downloads
Tokyo 19 0
Unknown 16 25
Ashburn 8 0
Shenzhen 5 8
Mountain View 3 0
Redmond 3 0
Shillong 2 0
Waterford 1 0
Prince Albert 1 0
Beijing 1 0
Kundan 1 0
Seattle 1 0
Pasadena 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0075314/manifest

Comment

Related Items