Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Early results of the Douglas-fir cooperative progency test Bartram, Victor Cameron 1978

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1978_A6_7 B37.pdf [ 5.08MB ]
Metadata
JSON: 831-1.0075299.json
JSON-LD: 831-1.0075299-ld.json
RDF/XML (Pretty): 831-1.0075299-rdf.xml
RDF/JSON: 831-1.0075299-rdf.json
Turtle: 831-1.0075299-turtle.txt
N-Triples: 831-1.0075299-rdf-ntriples.txt
Original Record: 831-1.0075299-source.json
Full Text
831-1.0075299-fulltext.txt
Citation
831-1.0075299.ris

Full Text

EARLY  R E S U L T S : OF  THE  DOUGLAS'-FIR  COOPERATIVE.PROGENY  TEST  by VICTOR- CAMERON B A R T RAM B.S.P., U n i v e r s i t y , o f B r i t i s h  Columbia,  1973  A T H E S I S : SUBMITTED, I N P A R T I A L F U L F I L L M E N T THE  R E Q U I R E M E N T S FOR  THE: DEGREE. OF  M A S T E R OF. S C I E N C E  in THE  FACULTY:,: OF  GRADUATE. S T U D I E S  (Forestry)  We  accept to  this  thesis  the required  THE: U N I V E R S I T Y ; O F -  October, *  ©  *  ass c o n f o r m i n g  standard  BRITISH'COLUMBIA 1977  •  Victor  Cameron  Bartram,  19 77  OF  In presenting this thesis in partial  fulfilment of the requirements for  an advanced degree at the University of B r i t i s h Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives.  It  is understood that copying or publication  of this thesis for financial gain shall not be allowed without my written permission.  Department of  FORESTRY  The University of B r i t i s h Columbia 2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5  OCTOBER M, 1977  ABSTRACT  In 1969, a c o o p e r a t i v e progeny t e s t o f D o u g l a s - f i r , Pseudotsuqa menzies-ii (Mirb.)  Franco,  was i n i t i a t e d t o  e v a l u a t e t h e growth performance o f progeny from s e l e c t e d plus t r e e s . Using h e i g h t data measured i n 19 75, i t i s shown t h a t t h e mean h e i g h t o f p l u s t r e e progeny i s s i g n i f i c a n t l y g r e a t e r than  the mean h e i g h t o f the c o n t r o l progeny.  Much  of t h i s g a i n may, however, be due t o the h e t e r o t i c e f f e c t of c r o s s i n g p a r e n t s from a l l o p a t r i c  populations.  The b r e e d -  i n g v a l u e o f i n d i v i d u a l p l u s t r e e s showed a wide range o f variation.  T h i s range was markedly reduced  extreme p l u s t r e e parents  were  when t h e few  excluded.  An i n v e s t i g a t i o n o f p o s s i b l e geographic  trends  showed t h a t i n o n l y one i n s t a n c e d i d the progeny o f p a r e n t s of s i m i l a r o r i g i n perform cluded  comparably.  I t i s t h e r e f o r e con-  t h a t , over t h e range o f p l u s t r e e s e l e c t i o n ,  o r i g i n i s ; o f l i t t l e , importance i n d e t e r m i n i n g  geographic  breeding  value. Initial  juvenile-mature  d a t a demonstrated t h a t  n u r s e r y h e i g h t i n 1969 and 19 70 was s i g n i f i c a n t l y c o r r e l a t e d with p l a n t a t i o n h e i g h t i n 19 75.  As expected,  19 73 and 19 74  iii plantation  h e i g h t s were h i g h l y c o r r e l a t e d  An attempt t o p r e d i c t actions  w i t h 19 75 h e i g h t .  genotype x environment i n t e r -  from the l a t i t u d i n a l and l o n g i t u d i n a l d i s p l a c e m e n t  of the progeny from t h e i r p l u s t r e e p a r e n t s proved unsuccessful.  Other v a r i a b l e s  must t h e r e f o r e  be c o n s i d e r e d be-  f o r e : progeny performance a t a s p e c i f i c l o c a t i o n can be successfully  predicted.  iv  TABLE OF CONTENTS  Page ABSTRACT  i i  LIST OF TABLES LIST OF FIGURES ACKNOWLEDGEMENT  vi viii ix  INTRODUCTION  1  LITERATURE REVIEW . . . . . A. Q u a n t i t a t i v e Genetics, B. Progeny T e s t i n g . C. L e a s t Squares A n a l y s i s (1) Q u a l i t a t i v e independent v a r i a b l e s (Analysis o f Variance) (2) Q u a n t i t a t i v e independent v a r i a b l e s ( M u l t i p l e Regression) . . . . (3) Q u a l i t a t i v e and q u a n t i t a t i v e independent v a r i a b l e s (4) Assumptions a l l o w i n g v a l i d s t a t i s t i c a l inference  4 4 7 9  13  MATERIALS  14  METHODS A. B.  Data C o l l e c t i o n and P r o c e s s i n g L e a s t Squares A n a l y s e s (1) A n a l y s i s o f t r e e h e i g h t and c o n d i t i o n of f a m i l y types and p l a n t a t i o n s . . . . (2) A n a l y s i s o f parent performance i n 19 75, ( i ) h a l f - s i b parents ( i i ) f u l l - s i b parents (3) J u v e n i l e - " m a t u r e " c o r r e l a t i o n s ( i ) n u r s e r y performance ( i i ) p l a n t a t i o n performance,(4) I n t e r p r e t a t i o n o f genotype x environment i n t e r a c t i o n s . . . . . . .  10 12 12  20 20 21 21 22 22 23 25 25 26 26  V  Page C  Computer Programs  28  RESULTS AND DISCUSSION . 29 A. T r e e Height and C o n d i t i o n o f F a m i l y Types and P l a n t a t i o n s 29 (1) Tree h e i g h t i n 1973, 1974 and 1975 . . . . 29 (2) Tree c o n d i t i o n i n 19 75 33 B. Parent Performance 35 (1) Height o f progeny from h a l f - s i b p a r e n t s i n 19 75, . . 35 (2) Height o f progeny from f u l l - s i b p a r e n t s i n 1975 42 ( i ) maternal GCA i n 19 75 43 ( i i ) p a t e r n a l GCA. i n 19 75 .45 (3) M a t e r n a l e f f e c t s i n 19 75 47 C. Problems i n t h e F a m i l y Type, P l a n t a t i o n and Parent A n a l y s e s 49 D. J u v e n i l e - " M a t u r e " C o r r e l a t i o n s 50 (1) N u r s e r y measurements 50 (2) E a r l y p l a n t a t i o n measurements 52 E. I n t e r p r e t a t i o n o f Genotype x Environment Interactions . . . . . 54 F. H e r i t a b i l i t y Estimation 55 CONCLUSIONS AND RECOMMENDATIONS  57  SUMMARY  60  LITERATURE CITED  61  APPENDICES  64  vi  LIST OF TABLES  Table 1.  Page R e s u l t s o f the 1968 p a r t i a l c r o s s i n g program  diallel 15  2.  The t h r e e p l a n t a t i o n s o f t h e Coope r a t i v e Progeny T e s t  17  3.  A n a l y s i s o f v a r i a n c e o f f a m i l y type and p l a n t a t i o n h e i g h t i n 19,73.  30  A n a l y s i s of. v a r i a n c e o f f a m i l y type and p l a n t a t i o n h e i g h t i n 19 74  30  A n a l y s i s o f v a r i a n c e o f f a m i l y type and p l a n t a t i o n h e i g h t i n 19 75. . .  30  Mean h e i g h t i n c e n t i m e t r e s o f f a m i l y type i n 1973, 19 74 and 19 75  31  Mean p l a n t a t i o n h e i g h t i n c e n t i m e t r e s i n 1973, 1974 and 1975  34  Number o f t r e e s i n c l u d e d i n the f a m i l y type and p l a n t a t i o n a n a l y s i s  36  Summary o f t r e e c o n d i t i o n i n 19 75 p e r plantation . . . . . . . .  36  Analysis of variance of family height i n 19 75  37  Mean 19 75 h e i g h t i n c e n t i m e t r e s o f h a l f s i b f a m i l i e s from o p e n - p o l l i n a t e d p l u s trees  38  Mean 1975 h e i g h t i n c e n t i m e t r e s o f h a l f s i b f a m i l i e s from o p e n - p o l l i n a t e d c l o n e banks  40  4. 5. 6. 7. 8. 9. 10. 11.  12.  r  vii  Table 13. 14. 15. 16. 17. 18.  19. 20.  Page A n a l y s i s o f v a r i a n c e of maternal p a t e r n a l GGA i n 19 75 GCA i n c e n t i m e t r e s o f maternal i n 19 75  and 413  parents 44 ,  GCA i n c e n t i m e t r e s o f p a t e r n a l p a r e n t s i n 19 75  46  M a t e r n a l eff.ects i n c e n t i m e t r e s d u r i n g 19 75 . . . . . . . . . . .  48  Reciprocal cross differences i n c e n t i — metres during.: 19 75  48  C o r r e l a t i o n o f 19 75 f a m i l y h e i g h t w i t h 1969 and 19 70^ f a m i l y measurements i n the n u r s e r y  51  C o r r e l a t i o n of 19 75 tree, h e i g h t w i t h 1974 and 1973 t r e e h e i g h t s . . . .  53  Summary o f genotype., x environment interaction analysis  55  viii.  LIST. OF FIGURES  Figure 1. 2.  Page F a m i l y p o s i t i o n w i t h i n each p l a n t a t i o n —subsection 1  18  F a m i l y p o s i t i o n w i t h i n each p l a n t a t i o n —subsection 2  19  ix  ACKNOWLEDGEMENT  The; author would f i r s t  l i k e to< express h i s s i n c e r e ;  thanks t o Dr. 0. S z i k l a i , P r o f e s s o r o f F o r e s t r y , f o r h i s encouragement and h e l p f u l a d v i c e throughout t h i s The  author i s a l s o i n d e b t e d  study.  to: Dr. A. Kozak, P r o f e s s -  o r o f F o r e s t r y ; Dr. C. Hornby, A s s o c i a t e P r o f e s s o r o f H o r t iculture Science  and Dr. R. P e t e r s o n ,  A s s i s t a n t Professor o f Animal  f o r t h e i r comments; and c r i t i c i s m s . S p e c i a l thanks a r e due to: B r i t i s h Columbia F o r e s t  P r o d u c t s L t d . , Crown Z e l l e r b a c h Canada L t d . and T a h s i s Co. Ltd.  f o r measuring the. progeny h e i g h t s .  i s most  Their  assistance  appreciated:. Acknowledgement i s a l s o made t o the- N a t i o n a l  Research  Council f o r the f i n a n c i a l assistance offered during the l a s t y e a r o f t h e author's s t u d i e s . F i n a l l y , t h e a u t h o r would l i k e t o thank h i s E l a i n e , f o r h e r u n d e r s t a n d i n g and;great a s s i s t a n c e the c o m p l e t i o n o f t h i s  study.  wife, during  1 EARLY RESULTS OF THE  DOUGLAS-FIR  COOPERATIVE PROGENY TEST  INTRODUCTION The  program f o r the g e n e t i c improvement of  f i r , . Psejod^tsu^a  men^ie_sii  (Mirb.) Franco, began on the  of B r i t i s h Columbia i n 1956. seed was Service and  causing  Douglas-  A shortage of h i g h  elevation  concern w i t h i n the B r i t i s h Columbia  (B.C.F.S.).  The  d e c i s i o n was  Forest  t h e r e f o r e made to s e l e c t  v e g e t a t i v e l y propagate s u p e r i o r phenotypes o r p l u s  i n c l o n a l seed o r c h a r d s . used to p r o v i d e estation  trees  These seed o r c h a r d s would then  be  h i g h q u a l i t y seed s u i t a b l e f o r f u t u r e r e f o r -  (Orr-Ewing, 1958;  The  coast  Heaman, 1967).  s e l e c t i o n work p r o g r e s s e d  because of l i m i t e d r e s o u r c e s However, the f o r m a t i o n  s l o w l y i n 195 7 and  (Orr-Ewing and  Sziklai,  of the Plus Tree Board  1958  1960).  (subsequently  the Tree Improvement Board of the Tree Farm F o r e s t r y Committee) in was  1959  proved t o be of g r e a t a s s i s t a n c e .  composed of both the F e d e r a l  major c o a s t a l companies and  and  This  organization  P r o v i n c i a l Forest  the U n i v e r s i t y of B r i t i s h  (U.B.C.).  The  coordinate  t r e e improvement a c t i v i t i e s and  Services, Columbia  o b j e c t i v e s of t h i s o r g a n i z a t i o n were: 1) 2) to  to  stimulate  2  i n t e r e s t i n t r e e s e l e c t i o n and seed oxchard F l u s Tree Weeks were o r g a n i z e d  establishment.  from 1 9 5 9 t o 1 9 6 5  i n d u s t r i a l f o r e s t e r s o f s e l e c t i o n c r i t e r i a . , thus independent company s e l e c t i o n  and  By 1 9 6 7 ,  progressed  a t o t a l o f 4 1 4 p l u s trees: had been chosen  the s e l e c t i o n o b j e c t i v e s were c o n s i d e r e d  filled  allowing  programs.  In t h i s c o o p e r a t i v e atmosphere the work rapidly.  to inform  a t t h i s times.  largely  ful-  The m a j o r i t y o f these t r e e s had a l s o  been v e g e t a t i v e l y p r e s e r v e d .  I n t e r e s t t h e r e f o r e turned  towards progeny t e s t i n g o f the s e l e c t e d t r e e s t o e v a l u a t e t h e i r breeding  potential.  In the s p r i n g o f 1 9 6 8 , f l o w e r i n g was; observed  when a c o n s i d e r a b l e amount o f  on s e v e r a l company clone: banks, a  p a r t i a l d i a l l e l c r o s s i n g program was completed The C o o p e r a t i v e  (Sziklai,  1 9 7 1 ) .  Progeny T e s t was i n i t i a t e d when seedlotss  c o l l e c t e d from t h i s c r o s s i n g program and from o p e n - p o l l i n a t e d ^ p l u s t r e e o r t e t s and c l o n e s were sown i n the s p r i n g o f 1 9 6 9 . The  s e e d l i n g s were r a i s e d i n t h e n u r s e r y f o r two y e a r s and  then o u t p l a n t e d  a t t h r e e t e s t s i t e s on Vancouver I s l a n d .  the autumn o f 1 9 7 5 each t r e e was: measured f o r t o t a l and  In  1 9 7 5 height  h e i g h t growth i n each o f 1 9 7 5 and 1 9 7 4 . Using t h e data c o l l e c t e d from t h i s progeny t e s t , t h e  o b j e c t i v e s o f t h i s t h e s i s were t o : 1 . E v a l u a t e t h e e a r l y phenotypic p l u s t r e e progenies  performance o f the  by comparing t h e i r h e i g h t t o t h e h e i g h t  o f t h e c o n t r o l progenies  i n 19 73,  1 9 7 4 and 1 9 7 5 . ,  Such an  3 evaluation can  be  allow  an  e x p e c t e d .from p l u s 2.  trees  would  Estimate  tree  of t h e i r  3.  Examine i n i t i a l  4.  Attempt  of the early  potential  progeny  that  of  specific  plus  i n 19 7 5 .  juvenile-mature  to interpret  gains  selection.  the breeding  from the height  interactions.  assessment  genotype  x  correlations. environment  4  LITERATURE:, REVIEW, A..  Quantitative Genetics Only a b r i e f review o f q u a n t i t a t i v e g e n e t i c s i s g i v e n .  Those f u r t h e r i n t e r e s t e d are r e f e r r e d t o Lush (1958), F a l c o n e r (I960);, Stonecypher  (1966)., Namkoong et a l .  (1966), Sprague (1967), Mather and J i n k s and Wright  (1945), L e r n e r  (1971), G i l b e r t  (1973)  (19 76),.  Q u a n t i t a t i v e g e n e t i c s r e f e r s t o the g e n e t i c a i of; those t r a i t s which  e x h i b i t continuous v a r i a t i o n .  analysis The  theory  s t a t e s t h a t many genes c o n t r i b u t e t o the p h e n o t y p i c e x p r e s s i o n of a c o n t i n u o u s t r a i t .  The c o n t r i b u t i o n o f each gene i s sub-  j e c t t o the i n f l u e n c e of::  1) o.ther genes and  2),* the  environment.  The n a t u r e o f t h i s gene a c t i o n makes? the i d e n t i f i c a t i o n s p e c i f i c genes i m p o s s i b l e .  Thus genotypes  cannot be  i d e n t i f i e d ; and:; b r e e d i n g v a l u e s must be e s t i m a t e d from 1  of  accurately pheno-  t y p i c measurements o r i n d i c e s . The t h e o r y o f q u a n t i t a t i v e g e n e t i c s o u t l i n e s  several  phenotypic i n d i c e s which can be measured t o e v a l u a t e an i n d i v i d u a l ' s breeding value.  The author w i l l i n t r o d u c e two  o f these i n d i c e s which a r e commonly used i n f o r e s t  tree  T h e o r e t i c a l l y , the b r e e d i n g v a l u e o f an i n d i v i d u a l i s the sum o f the average e f f e c t s o f a l l i t s genes which a f f e c t the c o n t i n u o u s t r a i t . B r e e d i n g v a l u e s are most a c c u r a t e l y e s t i m a t e d from mean progeny performance ( F a l c o n e r , 1960).  5  improvement. The  first  and s i m p l e s t phenotypic index o f an i n d i v i d -  u a l ' s b r e e d i n g v a l u e i s i t s own performance. that in  those i n d i v i d u a l s which e x h i b i t  I t i s assumed  phenotypic  superiority  a p o p u l a t i o n a l s o possess a h i g h f r e q u e n c y o f  genes.  I f these s u p e r i o r  individuals  mated, t h e i r progeny would r e c e i v e  are selected  these s u p e r i o r  superior and i n t e r genes.  Mean  progeny performance should then surpass t h e mean performance of t h e p o p u l a t i o n from which t h e p a r e n t s were Selection  based s o l e l y on t h e phenotypic performance o f i n d i v i d -  u a l s i n t h e p o p u l a t i o n i s termed i n d i v i d u a l 19 74).  selected.  I f the selected  mating t h e term, The  individuals  mass s e l e c t i o n  selection  (Ledig,  a r e grouped en masse f o r  i s often  used  (Falconer,  second p h e n o t y p i c i n d e x o f an i n d i v i d u a l ' s  1960).  breeding  v a l u e commonly used i n f o r e s t t r e e improvement i s t h e mean performance o f t h a t  individual's  family.  This~index  often  g i v e s a more a c c u r a t e e s t i m a t e o f b r e e d i n g v a l u e because  entire  f a m i l i e s which express phenotypic s u p e r i o r i t y a r e more l i k e l y to be g e n e t i c a l l y individuals. family The  superior  Selection  than s i n g l e , p h e n o t y p i c a l l y  o f i n d i v i d u a l s based on t h e i r mean  performance i s termed f a m i l y  value of family  s i z e and l i t t l e  superior  selection  (Wright, 1976).  s e l e c t i o n i s dependent on a l a r g e  environmental v a r i a t i o n among f a m i l i e s  family (Falconer,  1960). 2  As noted by L e d i g (19 74);, l i t t l e o r no f a m i l y i n f o r m a t i o n i s a v a i l a b l e i n natural f o r e s t stands. T h u s f a m i l y s e l e c t i o n i n f o r e s t t r e e improvement i s dependent on t h e c r e a t i o n o f f a m i l i e s through progeny t e s t i n g .  6  When s u p e r i o r i n d i v i d u a l s a r e s e l e c t e d a c c o r d i n g t o t h e i r own performance ( i n d i v i d u a l Falconer  s e l e c t i o n ) and i n t e r m a t e d ,  (1960) g i v e s t h e f o l l o w i n g formula  t o prredict t h e  response t o s e l e c t i o n o r g e n e t i c gain ( A G ) :  The  ( I ). i s the mean s u p e r i o r i t y of t h e  selection intensity  s e l e c t e d i n d i v i d u a l s above t h e p o p u l a t i o n mean. The a d d i t i v e 2 v a r i a n c e ( C T ) i s t h e amount o f phenotypic v a r i a t i o n i n t h e A  p o p u l a t i o n a t t r i b u t a b l e t o a d d i t i v e gene a c t i o n . 2 values i n the formula, and  (J  p  and  The f i n a l  ' a r e t h e standard t  deviation  v a r i a n c e o f t h e phenotyp.es i n t h e p o p u l a t i o n from which  the. parents The  were s e l e c t e d . f r a c t i o n off t h e a d d i t i v e v a r i a n c e over t h e phenotypic 2  2  v a r i a n c e : ( Cf ^ /(J^ ^  *-  ne a  b°  v e  g e n e t i c g a i n formula  h e r i t a b i l i t y i n t h e narrow sense (Snyder, 19 72).  i s termed  This  value  i s most e a s i l y i n t e r p r e t e d as t h e r e g r e s s i o n c o e f f i c i e n t o f the expected g e n e t i c g a i n on t h e s e l e c t i o n attempted et  a l . , 1966).  Thus, t h e g r e a t e r t h e h e r i t a b i l i t y ,  (Namkoong the greater  the; g e n e t i c g a i n t h a t can be expected a t a c o n s t a n t s e l e c t i o n intensity. P r e d i c t i o n o f response f o l l o w i n g f a m i l y s e l e c t i o n i s also possible. Pirchner  The r e a d e r r i s r e f e r r e d t o F a l c o n e r  (1969) f o r s p e c i f i c g e n e t i c g a i n  formulae.  (1960) and  7  B.  Progeny T e s t i n g Progeny t e s t i n g i s a form of f a m i l y s e l e c t i o n i n  which the p a r e n t s are s e l e c t e d a c c o r d i n g to the performanceof t h e i r o f f s p r i n g  (Snyder,  19 72; F a l c o n e r , 1960).  The  prime  advantage o f progeny t e s t i n g i s i t s power to a c c u r a t e l y e s t i m a t e p a r e n t a l b r e e d i n g v a l u e s f o r t r a i t s o f low Lush (1945) a t t r i b u t e s t h i s power t o the laws o f each o f f s p r i n g r e p r e s e n t s an independent  sampling—  e s t i m a t e of p a r e n t a l  b r e e d i n g v a l u e p l u s the e f f e c t s o f gene i n t e r a c t i o n environmental all  deviation.  environmental  heritability.  and  As the number of progeny i n c r e a s e s ,  e f f e c t s and most gene i n t e r a c t i o n  effects  c a n c e l , y i e l d i n g a r e l i a b l e e s t i m a t e of p a r e n t a l b r e e d i n g v a l u e . Peterson  (1970) s u b s t a n t i a t e s t h i s concept  with a path  diagram.  A c c o r d i n g t o t h i s model, the g r e a t e r the number of progeny, the h i g h e r the c o r r e l a t i o n between progeny mean and p a r e n t a l breeding value. Sprague (1966) d i v i d e s prorgeny t e s t i n g i n t o two 1) h a l f - s i b — o n e known parent and  2) f u l l - s i b — t w o  groups:  known p a r e n t s .  These groups are o u t l i n e d i n the f o l l o w i n g paragraphs. The h a l f - s i b progeny t e s t g e n e r a l l y assumes t h a t the known parents c o n t r i b u t e e q u a l l y and progeny performance.  un-  t h e r e f o r e do not i n f l u e n c e  I f t h i s assumption  progeny e x p e r i e n c e s i m i l a r environments,  i s t r u e , and  the  progeny performance i s  i n f l u e n c e d o n l y by the known p a r e n t ' s b r e e d i n g v a l u e p l u s some  8 of  i t s e p i s t a t i c gene i n t e r a c t i o n  (Pirchner,  1969)  The f u l l - s i b progeny t e s t a l l o w s a more p r e c i s e  inter-  p r e t a t i o n of progeny performance than the h a l f - s i b t e s t the  c o n t r i b u t i o n o f both p a r e n t s can be e v a l u a t e d .  because  Generally,  a model i s assumed which c o n t a i n s both a maternal and a p a t e r n a l e f f e c t p l u s an i n t e r a c t i o n parents ( G i l b e r t , particular  1967).  e f f e c t between the two  In p l a n t b r e e d i n g the e f f e c t o f a  p a r e n t p l u s o n e - h a l f o f the g e n e r a l mean i s termed  t h a t p a r e n t ' s G e n e r a l Combining A b i l i t y a c t i o n e f f e c t o f two p a r t i c u l a r Specific  Combining A b i l i t y  (GCA).  The  p a r e n t s i s termed  (SCA), ( F a l c o n e r ,  their  1960).  L e r n e r (1950) d i s c u s s e s a problem which may r e s u l t s o f both the f u l l -  inter-  b i a s the  and h a l f - s i b progeny t e s t .  I f the  progeny o f each p a r e n t e x p e r i e n c e unequal environments, the e v a l u a t i o n o f p a r e n t a l b r e e d i n g v a l u e s from the mean o f t h e i r progeny i s not s t r i c t l y v a l i d .  Mather and J i n k s  (1971)  t h a t proper e x p e r i m e n t a l d e s i g n should a l l e v i a t e t h i s i n plant  state  problem  breeding.  The a d d i t i o n a l problem o f a lengthened g e n e r a t i o n i n t e r v a l , which accompanies ( F a l c o n e r , 1960; until  progeny t e s t i n g ,  P i r c h n e r , 1969).  has been  P a r e n t s cannot be  r e l i a b l e progeny i n f o r m a t i o n becomes a v a i l a b l e ,  r e d u c i n g g e n e t i c g a i n per u n i t  time.  discussed selected thus  Namkoonq e t a l . (1966)  compare r a t e s o f g a i n between mass s e l e c t e d and progeny t e s t e d seed o r c h a r d s .  They c o n c l u d e d t h a t no one b r e e d i n g system i s  9 s u p e r i o r over d i f f e r e n t combinations o f h e r i t a b i l i t y  and  selection intensity. The  progeny t e s t has  become an i n t e g r a l p a r t of f o r e s t  t r e e improvement f o r t h r e e main r e a s o n s . f o r e s t t r e e t r a i t s vary c o n t i n u o u s l y .  F i r s t l y , almost a l l  Thus, some phenotypic  i n d e x i s r e q u i r e d to e s t i m a t e b r e e d i n g v a l u e s . accurate  e s t i m a t e s of b r e e d i n g v a l u e  provided  Secondly, by the  progeny  t e s t are o f t e n d e s i r a b l e because an i n d i v i d u a l ' s own i s not  performance  always a good i n d i c a t o r of i t s b r e e d i n g v a l u e .  (1974) s u b s t a n t i a t e s published  the  Ledig  t h i s p o i n t when he notes t h a t , based  information,  parent-offspring h e r i t a b i l i t i e s  than 0.5  f o r most t r a i t s and  traits.  T h i r d l y , those organisms c a p a b l e of p r o d u c i n g  numbers of progeny are b e s t  p r o b a b l y below 0.2  are  less  f o r growth large  s u i t e d f o r progeny t e s t i n g .  p r o l i f i c n a t u r e of most t r e e s p e c i e s  on  undoubtedly  The  influences  the p o p u l a r i t y o f the progeny t e s t i n f o r e s t t r e e improvement.  C.  Least  Squares A n a l y s i s  Least  squares t e c h n i q u e s are used e x t e n s i v e l y i n  g e n e t i c a l a n a l y s i s o f t r a i t s which v a r y c o n t i n u o u s l y 1960; use  Harvey, 1966).  The  author has  t h e r e f o r e made  o f l e a s t squares a n a l y s i s i n t h i s study and  shall  the  (Falconer, considerable briefly  review t h i s t o p i c . Searle  (1966), u s i n g m a t r i x n o t a t i o n ,  shows t h a t l e a s t  squares a n a l y s i s minimizes the v a r i a t i o n i n the v a r i a b l e which i s not e x p l a i n e d dent p r e d i c t i v e v a r i a b l e s .  response  by v a r i a t i o n i n the  indepen-  Basically, a partial derivative  10 is  d e r i v e d f o r each independent  A\ system o f s o - c a l l e d  v a r i a b l e and equated  t o z e r o . -.  "normal e q u a t i o n s " r e s u l t s which, when  s o l v e d with m a t r i x i n v e r s i o n , y i e l d s a s e t o f l e a s t  squares  coefficients. L e a s t squares a n a l y s i s can be d i v i d e d i n t o t h r e e c a t e g o r i e s a c c o r d i n g t o the n a t u r e o f the independent a b l e s used i n t h e model. (1)  These c a t e g o r i e s w i l l now be o u t l i n e d .  Q u a l i t a t i v e independent  variables  (Analysis of Variance)  Many s t a t i s t i c s t e x t s d i s c u s s q u a l i t a t i v e v a r i a b l e s under t h e heading 1969;  H i c k s , 1964).  in  independent  " A n a l y s i s o f V a r i a n c e " (Dixon and Massey,  L e v e l s o f treatments and i n t e r a c t i o n s a r e  e i t h e r p r e s e n t o r absent and a r e t h e r e f o r e coded variables.  vari-  u s i n g dummy  Commonly, the r e s t r i c t i o n t h a t t h e d e v i a t i o n s w i t h -  a f a c t o r o r i n t e r a c t i o n sum t o z e r o i s imposed t o prevent  the i n v e r s i o n o f a s i n g u l a r m a t r i x .  This r e s t r i c t i o n i s  l o g i c a l because A n a l y s i s o f V a r i a n c e (ANOVA) models .are g e n e r a l l y expressed i n d e v i a t i o n s from t h e g e n e r a l mean (Harvey,  19,66).  The c o m p l e x i t y o f a n a l y s i s and i n t e r p -  r e t a t i o n o f models with q u a l i t a t i v e independent  variables  depends p r i m a r i l y on the e x p e r i m e n t a l d e s i g n and the number o f o b s e r v a t i o n s per c e l l . p r e s e n t no problem cell. of  Designs with no c r o s s e d f a c t o r s  (nested)  r e g a r d l e s s o f the number o f o b s e r v a t i o n s per  However, the c o m p l e x i t y o f a n a l y s i s and i n t e r p r e t a t i o n  experimental designs with crossed f a c t o r s  (factorial) i s  11  dependent on the f r e q u e n c y o f o b s e r v a t i o n s An  equal number o f o b s e r v a t i o n s  per c e l l .  per c e l l  (balanced  design) i n a f a c t o r i a l experiment i s h i g h l y d e s i r a b l e ( L i , 1964).  The l e a s t squares s o l u t i o n , g e n e r a l l y  r e q u i r i n g matrix  i n v e r s i o n , reduces t o simple sums and sums o f squares c a l culations.  In a d d i t i o n , t h e c o n t r i b u t i o n o f each f a c t o r can  be d i r e c t l y a s s e s s e d because each f a c t o r ' s c o n t r i b u t i o n i s unique t o the model.  A l s o , a l l treatment l e v e l s w i t h i n a  f a c t o r r e c e i v e the same c o n t r i b u t i o n from o t h e r f a c t o r s i n the  experiment.  Thus, mean d i f f e r e n c e s among t h e l e v e l s o f  a f a c t o r can be a t t r i b u t e d s o l e l y t o t h a t Unequal numbers o f o b s e r v a t i o n s  factor.  per c e l l  (unbalanced  d e s i g n ) i n a f a c t o r i a l experiment cause problems. computer s o l u t i o n i s r e q u i r e d  f o r most models.  First, a  Second, the  v a r i a t i o n i n the dependent v a r i a b l e t h a t can be a t t r i b u t e d to a f a c t o r i s ambiguous because i t depends when t h e f a c t o r i s e n t e r e d i n t o the model ( G i l b e r t , 19 73; 1973).  O v e r a l l and S p i e g e l  handle t h i s problem.  K e r l i n g e r and Pedhazur,  (1969) suggest t h r e e  T h e i r most c o n s e r v a t i v e  procedures t o  approach i s to~  note t h e c o n t r i b u t i o n o f a f a c t o r when i t i s e n t e r e d l a s t the model.  into  T h i r d , t h e comparison o f means i n an unbalanced  design i s less p r e c i s e .  One can never be sure i f two l e v e l s  o f a f a c t o r d i f f e r because o f a r e a l d i f f e r e n c e o r because o f an unequal i n p u t from the o t h e r f a c t o r s i n the model ( G i l b e r t , 1973).  12 (2)  Quantitative  independent  variables  (Multiple  Regression)  The l e a s t squares a n a l y s i s o f models composed s o l e l y of q u a n t i t a t i v e  variables  heading of " M u l t i p l e  i s often  discussed  Regression" (Searle,  under the  1966).  In such  models the l e v e l o f a treatment i s s p e c i f i e d by the measured value of a continuous v a r i a b l e . The main d i f f i c u l t i e s with m u l t i p l e  regression  a n a l y s i s are analogous t o the problems o f the unbalanced factorial  experiment d i s c u s s e d  previously.  As noted by L i  (1964), the v a r i a t i o n a t t r i b u t a b l e t o an independent is  ambiguous i f i t i s c o r r e l a t e d with o t h e r independent  variables.  I f entered f i r s t  i n t o the model i t w i l l  more v a r i a t i o n than i f e n t e r e d l a s t .  One  variable's contribution  regression  the most c o n s e r v a t i v e (1969) f o r f a c t o r i a l  i n a multiple  called  explain  procedure to t e s t a i s s i m i l a r to  procedure suggested by O v e r a l l and experiments.  Spiegel  The v a r i a b l e i s e n t e r e d  l a s t i n t o the model and i t s c o n t r i b u t i o n  (3)  variable  t e s t e d by the so-  " P a r t i a l - F " t e s t ( L i , 1964).  Q u a l i t a t i v e and q u a n t i t a t i v e  independent  variables  L e a s t squares a n a l y s i s o f models with both q u a l i t a t i v e and q u a n t i t a t i v e multiple  independent  regression  v a r i a b l e s combines ANOVA and  procedures.  The importance o f any  variable,  d i s c r e t e o r c o n t i n u o u s , i s commonly determined by n o t i n g i t s contribution  when e n t e r e d l a s t i n t o : t h e  model.  The  significance  13 of  t h i s c o n t r i b u t i o n is ; then t e s t e d by the same ;  t e s t used i n m u l t i p l e r e g r e s s i o n ( L i , 1964;  "Partial-F"  K e r l i n g e r and  Pedhazur, 19 73). (4)  Assumptions  allowing v a l i d s t a t i s t i c a l  The c o e f f i c i e n t s are  d e r i v e d from l e a s t  inference squares a n a l y s i s  s t a t i s t i c s which v a r y from sample t o sample.  To v a l i d l y  t e s t hypotheses c o n t a i n i n g t h e s e c o e f f i c i e n t s : o r t o i n f e r p o p u l a t i o n parameters, E i (1964) l i s t s the f o l l o w i n g  five  assumptions:. 1.  The u n e x p l a i n e d v a r i a t i o n  v a r i a b l e i s normally 2.  about the  dependent  about the  dependent  distributed  The u n e x p l a i n e d v a r i a t i o n  v a r i a b l e has a c o n s t a n t v a r i a n c e 3.  The r e g r e s s i o n o f the dependent  variable i s linear  on each o f the: independent v a r i a b l e s } 4.  The samples a r e drawn a t random  5.  The: independent v a r i a b l e s remain c o n s t a n t f o r a l l  samples The v a l i d i t y o f t h e s e assumptions was  t e s t e d i n the  squares a n a l y s e s performed i n t h i s s t u d y . violations  are d i s c u s s e d .  Specific  least assumption  V  14  . MATERIALS  The  m a t e r i a l s o f t h i s study c o n s i s t o f d a t a  l e c t e d from the C o o p e r a t i v e  Progeny T e s t .  l a y o u t o f t h i s progeny t e s t w i l l  col-  The h i s t o r y and  t h e r e f o r e be d e s c r i b e d i n  this section. A h i g h frequency  o f r e p r o d u c t i v e buds i n the e a r l y  s p r i n g o f 1968 r e s u l t e d i n t h e d e c i s i o n t o begin a p a r t i a l d i a l l e l c r o s s i n g program wiithin f o u r company c l o n e banks. A t o t a l o f 21,034 f i l l e d 244 s u c c e s s f u l c r o s s e s  seeds was e x t r a c t e d from the: cones o f  (Table 1).  Of these c r o s s e s , 55 were  u l t i m a t e l y i n c l u d e d i n the progeny t e s t  (54 f u l l - s i b  and:one polymix f a m i l y ) because: they c o n t a i n e d number o f f i l l e d in  seeds.  The p a r t i a l d i a l l e l  families  a sufficient  scheme i s shown  Appendix I . In a d d i t i o n t o these f u l l - s i b : f a m i l i e s , 36 h a l f - s i b  f a m i l i e s - w e r e i n c l u d e d from o p e n - p o l l i n a t e d seed  collections.  Of these f a m i l i e s , 21 were from the: o r i g i n a l o r t e t s and 15 3  were from g r a f t e d c l o n e s o f p l u s t r e e s . f a m i l i e s were i n c l u d e d — s e v e n and  F i n a l l y , nine c o n t r o l  from randomly s e l e c t e d s e e d l o t s  two from bare r o o t p l a n t i n g s t o c k .  Thus, a t o t a l o f 100  f a m i l i e s comprised t h i s progeny t e s t . Subsequently, h a l f - s i b f a m i l i e s from plus- t r e e s w i l l be termed h a l f - s i b s ( p . t . ) and h a l f - s i b f a m i l i e s from c l o n e banks termed h a l f - s i b s ( c . b . ) .  T a b l e 1.  R e s u l t s o f the 1968 p a r t i a l  Company  Location  d i a l l e l c r o s s i n g program.  Number o f crosses  Number o f cones (C.)  Empty  Number o f seed Filled(F) Total(T)  T/C  F/C  138  2492  Courtenay  33  465  6093  9939  16032  B r i t i s h Columbia F o r e s t Products  Caycuse  53  392  6569  2983  9552  24.4  7.6  Rayonier Canada Ltd.  Gordon River  20  206  3701  1899  5600  27.2  9.2  244  3555  T a h s i s Co. L t d .  Gold  Crown Z e l l e r b a c h Canada L t d .  River  Total Source: a  S z i k l a i (19 71)  T h i s number was  estimated.  6213  21034  2.5  a  34.5 21.3  5.9  16 Following  1969 s p r i n g g e r m i n a t i o n - - s u r v i v a l ,  o f bud s e t t i n g , e p i c o t y l l e n g t h and t o t a l h e i g h t f o r each f a m i l y i n August. were completed by r e s e a r c h students  These o b s e r v a t i o n s  (Sziklai,  19 71).  s e e d l i n g s were t r a n s p l a n t e d mean f a m i l y h e i g h t sample o f n i n e  were t a b u l a t e d  and measurements  a s s o c i a t e s and undergraduate  at the F a c u l t y of F o r e s t r y  personnel  phenology  (U.B.C ) and B.C.F.S.  I n the s p r i n g o f 19 70, the i n t o J i f f y - p o t s and i n t h e autumn  was measured from a randomly s e l e c t e d  s e e d l i n g s per f a m i l y ((Sigurdson,  Outplanting  of the seedlings  t i o n s l i s t e d i n Table  1971).  (1+1) a t t h e t h r e e  2 commenced d u r i n g  the s p r i n g of  at a 3.05 by 3.05 metre (10 by 10 foot): s p a c i n g .  planta19.71  As planned,  each f a m i l y was r e p l i c a t e d 16 t o 18 times per p l a n t a t i o n i n single-tree plots.  I n i t i a l l y the t r e e s were t o be p l a n t e d i n  l o n g narrow r e p l i c a t i o n s c o n s i s t i n g o f a s i n g l e row o f 100 trees.  However, t h e shape o f t h e l a n d a l l o c a t e d t o t h e p r o j e c t  f o r c e d the p a r t i t i o n o f each r e p l i c a t i o n i n t o two s e c t i o n s . The  a l l o c a t i o n o f f a m i l i e s i n the p l a n t a t i o n s was  they were p l a n t e d by  seven a c r o s s  i n a s c e n d i n g :.numerical  replications.  order  systematic—  and  staggered  An i l l u s t r a t i o n o f t h e f i n a l  f a m i l y l a y o u t w i t h i n each o f t h e t h r e e p l a n t a t i o n s i s shown i n Figures  1 and 2.  Table 2.  The  t h r e e p l a n t a t i o n s o f the C o o p e r a t i v e Progeny T e s t .  Company  T a h s i s Co.  Ltd.  Location  Gold  River  Elevation (metres)  Latitude  Longitude  49°  57'  126°  07'  335  Crown Z e l l e r b a c h . Canada L t d . (C.Z.)  Courtenay  49°  41'  125°  10'  455  B r i t i s h Columbia F o r e s t Products  Caycuse  48°  48»  124°  33'  425  (B.C.F;P.)  18 Figure  1.  Family p o s i t i o n within subsectiori' 1 4  each  plantation  !A  1 1 UL 77 £ 1] . 1 .7m i  «  1 4 ' io s-  II  t  u  7 I  i* » l  it =•5 11  iiil ^* 4° "•7 41  *t  S-2  *7  *7  S3  It  H  3; +o >t  *1 3ff  41  1  ii It i f 3| '7 U40 11 2=,- 32 11 2.o 26 33 H >*b 3+ Ho  *7  S-1  «  S-o it  s-l »/ 5» s-2 ts-  S3  *T (b  7«  IS ?! 56 4<f s-l sS *t 5* SI »!• S"2 =7 >7 !3 V 41 S") t. i » 3+ n V *4 11 ss- n 2f 3s 1*2 > >t •*3 4? st tj  bi-  44 ?o  '7  4s" s-l  55  T) •tl  H  HO  is  VI 4!  34  4i  +7 S3  -J? 43 To 4s-  Si-  ii  7!  lt  71 1? 4 U |00 3-  to  tt  (I  (2 61  17 1>  7  1  t  (4  I  7  Si  If  3  S  S3 lo  1t  tt11  17  fo 71  n  1 [ 1" 10 t  11  st  13 11  7  u  tl  1»  1 13  2.  10 15  7t-  12 ! !  lOo li- 1  7« 7b  13 »?  lt  1  71 77 1» 11 3 il 72 7! is 11 V 4 12 7i  71  U  74-  !.  l?  7t  2  U  «?  '<(• i l .  S  1? it  2}  71 7S S4 11  SI  4  Iff IS  23  n  18  $•  if  li 15  f-j  b  II  il t*s» is  loo  7  75  74<>1  71  »' «l  4!  7i- «*  6/  It SJ  SS  si  » t 7o 71 S1- lo ts- 71 7J SS 1l  Sf  tb  7« If  to  t7  13  «t  li  So s;  1)  s4 t| tS 7+ •SI 3! « t* 61 7S s» » l 03 7» 7t 4s 1» *7 t4 71 17 S4 ll *J ts- 72 7« iss- 12 tt 73 1? 7!  «  74  I  24 20 Iff » l 2t  2i I 2  2S  2  1  17 12  •5 4-  if up  10 It M 11 '7 23 So 11 11 =t 31  t  '3  /  7  14  S  s-  11 12  I  '?  it  1> 2 ! IS16 1 1 It 10 n 11 1»  ') 1*  i  21  1 17  1«  !  20  3  77 S3  I  ll  t 1 7  V  •  It  \3 18  5i 100  i  14-  y  ft  5X n-  1  1t  ts" 72  tt  3)  SpacLng 10'xlO'  1  7i 71 ?s- 7i U  61! 7s- 11  63  J(  7i 7>  «  So si  H  ls-  'J  V  3J  IS  S4 to  42 41 s-t  33  i«  sy  b  ti  lt  58  34  i-S  62 1  4-1 48  51  71 77  7b  lo  1% 74 il  Jo-  2+  «i 11  bj t4  *7  »•  +?  42 4  *3 So 3t  *l >7 22 2 j  %>  7 s- S»  *I  2( 32  n  u  It  fci *1  61 •7 7I|. 2« 3s 42 s-r t2 is 7S*1 36 *3 1-7 ts '1 7t 'I 44 5-0 7 bf 7» 77 5/ 3! 4s s-l ts- 71 U 41  13 ;H *|  Ai S XIII tiy 5 5 7J to St 14 T/ i f t< t i 14- il 11 loo  21  14- a. li"  iZ  t'4 6" <-/  s  II  IZ  3+  2t -X. 4-2 'M n *3 5» >r 41 S-o 71 3S 44 SI K 2s." J2 >f Us- S-2 *0 » t 33 4o ui s> lt  ? '•«•  "  1 c  li- 11 iS  ,i|»7  lo  C  IS  '1 >7 S3 20 2-S *l  >1  't  21  30  "J  31  IS i4  32.  •A  iS 3! 33 13 20 2t 31il tl 7s- 81 St 1s- 1 f 14 21 7 3S it. V 4j 43 M *t u 6? 7t *f •It 2 1 IS 2t 2j ^t 4/ 4* 4-0 03 7« 77 51 1. 77 ) 10 It =3 *) 3? 41 "7 11 '1 21*. 4s 51 s< ti- Tl 7S s*- 'II tt 31 ts- 7-2 7? S is- 31 +l i i 1J 'M S 11 i US f| i-") to u '5 V it '13 I" b 13 '1 at >l .1 '/ 7*- SI ! / 1»- i 1 "* 20 »1 •*)IW ut 4» » ( 75- Si 8! 1s ? i iy » l 25 3t 41 41 *> U HI S-o St W 6| 7fc SJ SJ ib 1 It 22 4o  4t  41 H-7 ST  Co  k  !  71- « »  f?  •14 ISO  t  7  '1  2  ;  1  Source:  Sziklai,(1971).  E i g h t e e n r e p l i c a t i o n s were i n c l u d e d 'plantation.  i n the Courtenay  19  Family p o s i t i o n within —subsection  2  51 M t4 1° T7 34 1* 1] 4- i». '1 -> »  »' f t "1  c  f  f« (,? II 1! « ' l l  sr)  I-)  St  to  tt n  6  t|  '?  s»  1»  (7  IJ |i» 1  13  If  ts  1* .'  5  if  15  t»  I?  Is  1  i  'I  u  It-  7)  » tl If  It S" <l H  71 ft  '»  it 15 It 1(, 5 te it 2j -<J Jt 4» *» i*  W 1/  77  is  *8  ^  u  i| 17 M-  y  12  (• tt Ii Tl St l l 11  t  11 i j  61 67 1* t« S) I f  7  If  V  i)i  I"  «« 68  7s  Jl !J li- 1 . 5  ii  tl  U  U  tt  7° 17 83 l  «1 It f  i  tt I  sr  1  1)  »)  t  >j  S3  US  S»  s*  >} «> I t  "J " Ei  5>~ 4i +3 Si tl  :**  I'  »• 3f. H **1  E  7  "  »l >/ 1 si si 6}  U 4  11  It y 15 lit  » 3S Hit t> SJ  Jl. 3<  2"  >i) « i rt>  37  3»  lS «  •> I" i7 *»  11  «t 1) Is H  »i  l¥ 2j i t » "I 1  tf l l n  ,  B  i| ^ >• )| * si t) In-  I)  20 i t  3> »} ul s i t. tt"  Jl  >7 1* ''  7 •« »l 7 )4 *. *7 ») ti tt  t1  75- ii  Ij Is- i  1  u  "  7e  76 Si «? Ii  )  ll  1 ) >)  II 77 St i« 17 t  l»  '"I ^ 3» >) M >• fl kt '1  1* 15 <r 11 1? s-  i| i | >* * 11 \  73 7f «t l i 1f t  ii ')  7+  <» SI 1)  It  a  3  7  !<•  If I  is- $1 if  13.  i f 3j 4f 41 cif fcj 17  >J  78  1  « l J  IS  ll 17 <f "  . _ 7? JS-  U  il'  i t =1 S"l  «t <)) 11  II ?1 H I" 7  U ti  u  1  i  s?  u  2  1 ' It  ti  t  4-» ul i j t, tt 7*  i l 25 3S- 41 t l 3C d i  t|  »1  t)  1»  1t  U  2  2| '1 . 31-  t  22  5  I  f  I'  ll 1)  11 11  IS  IS  41 47 St  3s  IVS  7  1  2  IU  21  7  If  21 2 )  3S 4 i  It  23 70  5t 4) 6-0 St  *  IS  I I S ii  (7  ts It l» ?|  1  2S 2t  JJ  7  5  37  V  47  S3- U  (t 11  (,J> (7  IS"  13 SJ J  Tt  V «1  «1 l t It 1r  1l 1t 71 Tl » 12 If 72 i i vi} n  fl C7 t* 1» -17 13  *V s » ' " ' c s ?|  m s)  Vi!  £> 5  »1  tt  I  ?  3  Replications Sziklai  13 ?l St  al 53 m uf lit tl (•/ 7f so JJ 13  17 •21 31 11  t. H  H  <•  'it 2  It  !» SS-  >« tj 63 7« '* 1 H » 5| 3$ W Sr| fj H 7/ 77 » 1« ul s-i P ) ts 1» IS tt 1| 'I »t » 2o -7 33 it. u| s-3 t> tt 13 7![ ?J 12-  IIIS  V V '>  SS  12  > 37 4<f  t i 1?  n  tV 1« 7» 83 ts- 71 t )  ll 23 2-] 3t 4.) HI yt 62 67 .') i t  In  IS  t> 7t >l t5 '? .77- «»  2C 2t >J to 4t 5-3 51  1 It  11  t/ 7? So  62  2  15  J  J? H »* *1 lr 13 7!  lo '1 3 >. ?7 4.3 sr. s t : Jr 1i IJ 4 11 IJ 2+ 3| 75 <W SH 12 31 2,7 4.5- s-i n tt 12 ^ t  7 17  f  72 27  li  7J  sii SJ t> 71 71  » J > M « l *1 t  15  W  «7 13 l«°  '1  *3 4^ st fcz 7» 7S  J7  1317^ S3 1+ 2. 27 H  t  7.  SS tt II  4> M Si 0| tT" 7<f.  -55"  '7 24. 1|  C 12  18  fl *7 ts-  «J "  g lit 2j 2S 3<|. H( V SS- 60 4 !  ft IS !  n  *> «? W H HT  li  32 3}  77 9> If U 3 10 ' it 25 30 j  i  *1  t; ic  H  :  "1 s»  3J  tl '1 V- 4» 41 s)  t2  t7 73 !»  1  t-°  *7  t£ 1> 1« W <|i 18  i  51  Ji IS "1 f ,  *V  ri  St  i  each  a  ( 1 9 7 1 ) .  S fi i ! S  plantation  20  METHODS A.  Data C o l l e c t i o n and P r o c e s s i n q The  f i r s t coordinated  e f f o r t t o measure f a m i l y  performance w i t h i n the p l a n t a t i o n s began d u r i n g o f 19 75.  Company personnel  19 75 h e i g h t  and h e i g h t  measured each t r e e f o r t o t a l  growth i n each o f 19 75 and 19 74.  c o n d i t i o n was a l s o noted a t t h i s time a c c o r d i n g sification  the autumn  Tree  t o the c l a s -  given i n Appendix V I .  A p r e l i m i n a r y examination o f t h e d a t a  showed t h a t an  a p p r e c i a b l e number o f t r e e s were i n poor c o n d i t i o n browsed and/or f o r k e d ) .  I t was t h e r e f o r e decided  (eg. severely to include  o n l y those t r e e s t h a t were h e a l t h y o r s l i g h t l y damaged classification l e a s t squares  (tree  2 o r 3 i n Appendix VT) i n a l l t h e subsequent analyses.  An attempt was made i n t h i s study t o d e f i n e m i c r o s i t e s ox b l o c k s  :  w i t h i n each p l a n t a t i o n .  uniform  However, the  r e s u l t s o f t h i s work were abandoned because the b l o c k s  proved  to be too s m a l l , o f t e n c o n t a i n i n g o n l y a few o f the 100 f a m i l i e s . I t was: t h e r e f o r e decided  t h a t o n l y two l a r g e b l o c k s  d e f i n e d i n each p l a n t a t i o n — t h e Figures  illustrated in  1 and 2. Even with  64,  two s u b s e c t i o n s  would be  such l a r g e b l o c k s , F a m i l i e s 3, 22, 29, 30, 51,  81, 82 and 92 were not r e p r e s e n t e d  i n each b l o c k because a l l  f a m i l y members were dead o r i n poor c o n d i t i o n i n one o f the b l o c k s .  21 This created  an " e m p t y - c e l l "  s i t u a t i o n t h a t was d i f f i c u l t  t o handle with t h e computer program a v a i l a b l e . when a f a m i l y possessed no h e a l t h y p a r t i c u l a r block, those i n i t i a l l y  Therefore,  representatives  t h e author accepted t h e t a l l e s t  in a tree of  excluded because o f poor c o n d i t i o n .  4  B.  Least  Squares A n a l y s e s  (1) A n a l y s i s o f t r e e h e i g h t and c o n d i t i o n o f f a m i l y and p l a n t a t i o n s The  100 f a m i l i e s were grouped i n t o the f o u r  t y p e s i n c l u d e d i n t h i s progeny t e s t — f u l l - s i b , (c.b.), h a l f - s i b  ( p . t . ) and c o n t r o l .  during  these t h r e e The  half-sib  19 74 and 19 75.  In  o f each p l a n t a t i o n was e s t i m a t e d  years.  f o l l o w i n g ANOVA-model was assumed::  Y. = JUL. ljkm A* where  family  The mean h e i g h t o f  each group was then e s t i m a t e d f o r 19 73, a d d i t i o n , t h e mean h e i g h t  types  +.  F. + P . + FP. . + B .. + FB., , . + e , . I j I J k(j) ik(j) mdjk).  Y. l j k m = t r e e h e i g3h t  w  v  v  i n 1973, 1974 7 and 1975, »  ju^ = l e a s t square mean, F  i  = f a m i l y type e f f e c t o f t h e i  th Pj = p l a n t a t i o n e f f e c t o f t h e j  family  type,  plantation,  4 Variance/components were n o t c a l c u l a t e d i n t h e l e a s t squares a n a l y s e s because o f time l i m i t a t i o n s and t h e c o m p l e x i t y o f such c a l c u l a t i o n s i n t h i s l a r g e experiment.  22 FP^^ k(j)  =  ik(j)  =  B  F B  = f a m i l y type x p l a n t a t i o n i n t e r a c t i o n , klock within farn  i- -Y 1  x  plantation  effect,  block/plantation interaction,  e ,. v - residual mdjk) Only those t r e e s deemed i n s a t i s f a c t o r y c o n d i t i o n were included  i n the a n a l y s i s .  The number o f t r e e s  included  per f a m i l y type and p l a n t a t i o n t h e r e f o r e o f f e r e d a second . approach  i n which t o e v a l u a t e f a m i l y types and  C h i - s q u a r e t e s t s were performed  t o t e s t the s i g n i f i c a n c e o f  d i f f e r e n c e s i n : 1) the number of t r e e s i n c l u d e d type and  2) the number of t r e e s i n c l u d e d  independence of these two  plantations.  f a c t o r s was  per  family  per p l a n t a t i o n .  The  a l s o t e s t e d with a  4x3 c o n t i n g e n c y t a b l e . ^ g (2)  A n a l y s i s of parent performance  i n 19 75.  ( i ) h a l f - s i b parents. The  same ANOVA model used i n the f a m i l y type and  t i o n a n a l y s i s was sib families. mean 1975  planta-  a g a i n run to e v a l u a t e p a r e n t s of the h a l f -  T h i s time, however, a l e a s t squares e s t i m a t e of  h e i g h t was o b t a i n e d f o r each o f the f a m i l i e s i n the 7 progeny t e s t . I t was assumed t h a t f a m i l y x b l o c k w i t h i n 5 The r e a d e r i s r e f e r e d t o Dixon and Massey (1969) f o r a d i s c u s s i o n of c o n t i n g e n c y t a b l e s , g In t h i s study the performance of a p a r e n t ' s progeny i s assumed t o denote the performance of that, p a r e n t . 7 F a m i l y 100 was dropped from t h i s a n a l y s i s because of computer program l i m i t a t i o n s .  plantation interaction  ^  F B  i] (j)) c  e q u a l l e d z e r o , so t h a t the  model would reduce? t o a s i z e e n a b l i n g a n a l y s i s with t h e e x i s t i n g computer program. each o f  Assuming an equal p o l l e n c o n t r i b u t i o n i n  thei h a l f - s i b  f a m i l i e s , r a n k i n g o f t h e known p a r e n t s  a c c o r d i n g t o mean f a m i l y h e i g h t would a l l o w a comparison o f parental breeding value.  O b v i o u s l y , the average  breeding  of  p o l l e n from a n a t u r a l f o r e s t stand s h o u l d d i f f e r  of  p o l l e n from a p l u s t r e e c l o n e bank.  value  from t h a t  The known p a r e n t s were  t h e r e f o r e compared s e p a r a t e l y , a c c o r d i n g t o whether t h e unknown parent o r i g i n a t e d from a n a t u r a l stand o r a c l o n e bank. (ii) full-sib  parents  The e v a l u a t i o n o f p a r e n t s from f u l l - s i b c r o s s e s demands a model which s e p a r a t e s f a m i l y performance i n t o maternal and paternal effects. Y. ., ljkmn where  =  The f o l l o w i n g ANOVA model was assumed:  F.  x  + M'.. + j  P,  k  +  FP.,  ik  +  MP..  jk  + B + e ., m(k) n(ijkm) v  Y. ., , 1 j kmn = t r e e h e i g h t i n 19 75 ' F^  = maternal  GCA o f the i  maternal  = p a t e r n a l GCA o f the j P  K  . FP.,  paternal parent,  = p l a n t a t i o n e f f e c t o f the k = maternal  parent,  plantation,  x plantation  interaction,  M P J ^ . =• p a t e r n a l x p l a n t a t i o n  interaction,  B m(k). = b l o c k w i t h i n ^ plantation  effect, 1  e n (/. i j., k m )x = r e s i d u a l S p e c i f i c Combining A b i l i t y was not e v a l u a t e d because the  24  computer program c o u l d not handle  t h e empty c e l l s o f t h e  p a r t i a l d i a l l e l c r o s s i n g d e s i g n (Appendix I ) .  In  both t h e f u l l - s i b and h a l f - s i b parent a n a l y s e s the  p a r e n t s were f i r s t all  ranked  a c c o r d i n g to mean performance a c r o s s  three, p l a n t a t i o n s ^ i n 1975.  Next, t h e p a r e n t s were  s t r a t i f i e d i n t o t h e 13 zones d e f i n e d by t h e U.B.C. p l u s ' t r e e l o c a t i o n map g i v e n i n Appendix I V . determine gether. of  The o b j e c t i v e was t o  i f t h e parents from a p a r t i c u l a r r e g i o n ranked t o I f so, geographic  o x i g i n would o f f e r some p r e d i c t i o n  parental breeding value. The  19 75 t o t a l h e i g h t o f t h e p a r e n t s was next  w i t h i n each p l a n t a t i o n .  The f i r s t  those p a r e n t s which performed plantations.  examined  o b j e c t i v e was t o determine  c o n s i s t e n t l y i n each o f t h e t h r e e  Mean d e v i a t i o n o f parent performance among  p l a n t a t i o n s was used t o determine  these parents.  The second  o b j e c t i v e was t o f i n d those p a r e n t s w i t h i n each f a m i l y typewhich performed tion.  above t h e i r f a m i l y type mean i n e v e r y p l a n t a -  These parents would be most p r o m i s i n g because they  possess genotypes c a p a b l e o f v i g o r o u s growth i n d i f f e r e n t environments. of  The t h i r d o b j e c t i v e was t o note extreme examples  genotype x environment  interaction.  25 (3) J u v e n i l e - " m a t u r e " The  correlations  Q  a n a l y s i s o f j u v e n i l e - " m a t u r e " c o r r e l a t i o n was  d i v i d e d i n t o two; s e c t i o n s a c c o r d i n g t o t h e two types o f d a t a available:: 1. 19 70.,  F a m i l y performance i n the: n u r s e r y d u r i n g 1969 and  Thils d a t a , p r e s e n t e d by Sigurdson  ((19 71):, was; o b t a i n e d  from a random sample o f n i n e o b s e r v a t i o n s per f a m i l y . 2.  I n d i v i d u a l tree: performance i n 1973, 1974 and 1975  based on the 19 75 h e i g h t and growth measurements. e l e v e n t r e e s per f a m i l y i n each p l a n t a t i o n was satisfactory condition (tree c l a s s i f i c a t i o n VI) and i n c l u d e d i n t h i s ( i ) nursery The  deemed: i n  2 o r 3 i n Appendix  analysis.  performance  f o l l o w i n g m u l t i p l e r e g r e s s i o n modei was assumed:  Y = bQ + b^X^ + b X 2  where  A mean o f  2  + b-jX^ + e  Y = l e a s t squares mean f a m i l y h e i g h t i n a l l t h r e e p l a n t a t i o n s (19 75), X^ = mean f a m i l y e p i c o t y l l e n g t h X  2  = mean f a m i l y h y p o c o t y l l e n g t h  X  3  = mean f a m i l y h e i g h t  ((1969), (1969),  (1970),  e =•• r e s i d u a l Sigurdson  (19 71)  l i s t s n u r s e r y measurements f o r 73 o f t h e 100  f a m i l i e s - i n c l u d e d i n t h i s progeny t e s t .  The r e s u l t s o f t h i s  a n a l y s i s a r e t h e r e f o r e based on these. 73. f a m i l i e s . g  The word "mature" i s put i n q u o t a t i o n marks because t h e h e i g h t o f D o u g l a s - f i r t r e e s l e s s than f i v e y e a r s a f t e r p l a n t i n g i s n o t a mature measurement.  26 (ii)  plantation  The  performance  f o l l o w i n g model was assumed t o a n a l y z e t h e  h e i g h t d a t a taken from each t r e e i n t h e progeny t e s t : Y = b» + b^X.. +; b„X~ + b_X_ +. b„X. + b^X.. + 0 11 22 33 4 4 55 b X 6  where  X  3  6  +  b X 7  Y = 19 75 t r e e  ?  +  e  height,  'XI  = 19 74 t r e e  height,  X  =• 19 73 t r e e  height,  , X  2  4  =  dummy v a r i a b l e s  X ,X ,X_ = dummy v a r i a b l e s plantation, 5  g  signifying plantation, s i g n i f y i n g block  within  e = residual The  dummy v a r i a b l e s X^ through X^ were i n c l u d e d  i n this  a n a l y s i s t o remove apparent c o r r e l a t i o n s i n t r e e h e i g h t over the  t h r e e y e a r s produced by b l o c k and p l a n t a t i o n  similarities.  In both t h e j u v e n i l e - " m a t u r e " a n a l y s e s , d i f f e r e n t c o m b i n a t i o n s o f independent v a r i a b l e s were used t o determine those v a r i a b l e s which e x p l a i n e d height.  t h e most v a r i a t i o n i n 19 75 2  The m u l t i p l e c o e f f i c i e n t o f d e t e r m i n a t i o n  used t o compare t h e c o n t r i b u t i o n (4) I n t e r p r e t a t i o n  (R ) was  of the d i f f e r e n t v a r i a b l e s .  o f genotype x environment  interactions  In an attempt t o i n t e r p r e t genotype x environment i n t e r a c t i o n s , i t was h y p o t h e s i z e d t h a t t h e d i s t a n c e  separating  progeny from t h e i r p a r e n t s would i n f l u e n c e progeny ance.  perform-  The. g r e a t e r the distance:, the g r e a t e r the chance o f  environmental  change and  poor progeny performance through  a  l a c k of a d a p t a t i o n . To t e s t t h i s h y p o t h e s i s the f o l l o w i n g model  was  assumed: Y = b where  Q  + b^X^  + ^>2 2 X  +  b  3 3 X  +  e  Y = progeny x p l a n t a t i o n i n t e r a c t i o n i n 19 75, X^ = l a t i t u d i n a l d i s t a n c e s e p a r a t i n g the progeny from t h e i r p a r e n t s , = l o n g i t u d i n a l d i s t a n c e s e p a r a t i n g the: progeny from t h e i r p a r e n t s , X^ = dummy v a r i a b l e s i g n i f y i n g i f progeny and are l o c a t e d i n d i f f e r e n t geographic seed  parents zones,  e = residual The  dependent v a r i a b l e i n t h i s model was  o b t a i n e d from:  1) the p r e v i o u s f u l l - s i b parent performance a n a l y s i s  and  2) the p r e v i o u s h a l f - s i b p a r e n t performance a n a l y s i s . parent was  r e p r e s e n t e d i n o n l y one o f t h e s e two  would c o n t r i b u t e t h r e e o b s e r v a t i o n s — o n e of the t h r e e p l a n t a t i o n s . r e p r e s e n t e d i n both f u l l -  groups, i t  o b s e r v a t i o n f o r each  In c a s e s where p a r e n t s were and h a l f - s i b f a m i l i e s , the  t i o n s from both were i n c l u d e d f o r t h a t parent i n t h i s The  If a  observaanalysi  d i s t a n c e s s e p a r a t i n g the progeny from t h e i r p a r e n t s were  measured from the U.B.C. p l u s t r e e l o c a t i o n map  (Appendix  IV)  28 No attempt t o e v a l u a t e e l e v a t i o n a l d i f f e r e n c e s between p a r e n t s and progeny was made, p r i m a r i l y because a l l t h r e e were near the same e l e v a t i o n  C.  (Table 2 ) .  Computer Programs Three computer  are  plantations  listed 1.  programs were used i n t h i s s t u d y .  They  as f o l l o w s : UBC B M D 1 0 V — t h i s program  U.B.C. Computing  Centre.  i s a v a i l a b l e at the  I t was used i n t h e a n a l y s i s o f  f a m i l y t y p e , p l a n t a t i o n and parent performance. 2.  MREG—this program  F o r e s t r y , U.B.C.  i s a v a i l a b l e a t the F a c u l t y o f  I t was used i n the a n a l y s i s o f j u v e n i l e -  "mature" c o r r e l a t i o n and genotype x environment i n t e r a c t i o n . 3.  P L O T — t h i s program i s a l s o a v a i l a b l e a t the  Faculty of Forestry.  I t was used t o p l o t t h e dependent  var-  i a b l e s on each o f the q u a n t i t a t i v e independent v a r i a b l e s t o check the assumption o f l i n e a r i t y .  29  RESULTS AND DISCUSSION  A.  Tree Height and C o n d i t i o n  (1) Tree h e i g h t The  i n 19 73,  o f F a m i l y Types and P l a n t a t i o n s  19 74 and 19 75  ANOVA r e s u l t s summarized i n T a b l e s 3,4 and 5  ill-  u s t r a t e t h a t a l l f a c t o r s i n the model except f a m i l y type x b l o c k / p l a n t a t i o n were h i g h l y s i g n i f i c a n t i n each o f the t h r e e 9 y e a r s (oc= .01).  Thus i t i s c o n c l u d e d t h a t f a m i l y type and  p l a n t a t i o n d i f f e r e n c e s e x i s t e d i n the progeny t e s t d u r i n g 1974  and 1975.  19 73,  The f i n d i n g t h a t f a m i l i e s d i d not s i g n i f i c a n t l y  i n t e r a c t with blocks  (©<= .01) i s o f importance.  a t e s t h a t the w i t h i n - b l o c k  This  indic-  s i t e v a r i a t i o n i s r e l a t i v e l y homo-  geneous. The height 1974  ranking  of the four f a m i l y types according  t o mean  over a l l p l a n t a t i o n s remained c o n s i s t e n t d u r i n g 1973,  and 1975 (Table  6 ) . The Duncan M u l t i p l e Range T e s t  s t r a t e d t h a t a l l means d i f f e r e d from each o t h e r  during  demon-  19 73  A l p h a (o<) i s used i n the t e x t t o denote t h e s i g n i f icance l e v e l . In the t a b l e s the author has marked a l l Fs t a t i s t i c s as f o l l o w s : 1. ** ( s i g n i f i c a n t a t t h e .01 p r o b a b i l i t y l e v e l ) 2. * ( s i g n i f i c a n t a t the .05- p r o b a b i l i t y l e v e l ) 3. N.S. ( s i g n i f i c a n t a t g r e a t e r than the .05 probability level) v  T a b l e 3.  A n a l y s i s o f variance, o f f a m i l y type and p l a n t a t i o n h e i g h t i n 19 73  Source o f V a r i a t i o n F a m i l y type (F) P l a n t a t i o n (PX Block/Plantation ExP Fx(B/P) Residual  T a b l e 4*  (B/P)  DF 3 2 3 6 9 3 ,,329  Analysis: of variance t i o n h e i g h t i n 19 74  Source o f V a r i a t i o n F a m i l y type ( E l P l a n t a t i o n (P) Block/Plantation ExP Ex(B/P) Residual  tB/PX  MS" 21 ,,959..00' 5,4 78.10 1,,9 70. 40 868.20 652..80 281.10  F 78.12** 19.49** 7.01** 3V09** 2.32*  o f family, t y p e and p l a n t a  DF  MS  3 2 3 6 9 3,329  34 , 412 ..00 37,185 ..00 2,683.60 1,,95 7.6© 974.60 568.10 ;  F 60.5 7** 65.46** 4*72:** 3.44** 1.72 N..S.  T a b l e 5.. A n a l y s i s - o f variance: o f f a m i l y type and pXantiat i o n h e i g h t i n 19 75  Source o f V a r i a t i o n F a m i l y type ( F l P l a n t a t i o n (P) Block/Plantation ExP Fx(B/P) Residual  (B/P)  DF' 3 2 3 6 9 3,329  MS:  60, .140. .00) 139,510..00: 8 079.40; 4,804.50 2,422.10 1,234.50, r  F' 48.72** 113. .01** 6.54** 3.-89** 1.96*  and  19 74 (cX = . 0 5 ) .  and  half-sib  i U  However, i n 19 75,  the c o n t r o l f a m i l i e s  ( p . t . ) f a m i l i e s were not s i g n i f i c a n t l y d i f f e r e n t  ( o< = .05). The use o f t h i s m u l t i p l e range t e s t t o s e p a r a t e f a m i l y type means which were c a l c u l a t e d a c r o s s  a l l plantations,  i s not s t r i c t l y v a l i d because f a m i l y type i n t e r a c t e d with plantation.  However, the h e i g h t  o f each f a m i l y type i n each  p l a n t a t i o n was c a l c u l a t e d t o determine the a c t u a l magnitude o f the f a m i l y type x p l a n t a t i o n i n t e r a c t i o n s .  These c a l c u l a t i o n s  showed t h a t : 1) a l l f a m i l y t y p e s t h a t were  significantly  d i f f e r e n t i n T a b l e 6 ranked the same i n each p l a n t a t i o n and 2) d i f f e r e n c e s among f a m i l y types were n e a r l y c o n s i s t e n t i n each p l a n t a t i o n . Test  Therefore,  i t i s b e l i e v e d t h a t t h e s e Duncan  r e s u l t s are r e a l i s t i c .  T a b l e 6.  Mean h e i g h t i n c e n t i m e t r e s 19 74 and 19 75 19 73  F a m i l y Type  Half-sib Full-sib Half-sib Control  (c.b.) (p.t.)  o f f a m i l y type i n 19 73,  19 74  19 75  Mean Height (cm.)  Duncan Test  Mean Height (cm.)  Duncan Test  52.58 48.16 41.34 35.40  1 ' 1  76.46 70.39 61.04 56.29  1  a  \ 1  a  1 I 1  Mean Height (cm.) 109.40 101.30 88.14 84.12  Duncan Test a  1 1  F a m i l y types b r a c k e t e d by the same l i n e a r e not s i g n i f i c a n t l y d i f f e r e n t a t t h e 0.05 p r o b a b i l i t y l e v e l .  the  Subsequently, the Duncan M u l t i p l e Range T e s t i s termed Duncan T e s t .  32  In t h e o r y , those f a m i l i e s with two p l u s t r e e (the f u l l - s i b s and presumably the h a l f - s i b s first.  Half-sib  parents, control (c.b.)  (p.t.) f a m i l i e s , p o l l i n a t e d  ( c . b . ) ) should  rank  by u n s e l e c t e d  should rank i n t e r m e d i a t e l y , f o l l o w e d l a s t l y by t h e families.  The r a n k i n g o f the f u l l - s i b s and h a l f - s i b s  above the c o n t r o l s was most encouraging  the above t h e o r y .  and s u b s t a n t i a t e s  I t i s s u r p r i s i n g t h a t the h a l f - s i b  f a m i l i e s performed s i g n i f i c a n t l y above the f u l l - s i b R o s s i b l y , t h e i r g r e a t e r mean h e i g h t was a t t r i b u t a b l e average p a r e n t a l b r e e d i n g sibs'.  parents  families. t o an  v a l u e which exceeded t h a t o f the f u l l -  The v a l i d i t y o f t h i s t h e o r y i s d i f f i c u l t  because o n l y f o u r o f the 15 known h a l f - s i b (c.b.) were r e p l i c a t e d  (c.b.)  as f u l l - s i b parents-.  t o determine parents  The mean b r e e d i n g  value  of these f o u r d i d not exceed the f u l l - s i b parent mean, t e n d i n g to d i s p r o v e the above The  theory.  1975 h e i g h t performance o f the h a l f - s i b s  ( p . t . ) was  d i s a p p o i n t i n g when compared t o t h a t o f the f u l l - s i b s and h a l f sibs  (c.b.).  Hybrid vigour o f f e r s a p o s s i b l e explanation o f  t h i s h e i g h t performance d i f f e r e n c e . and  The means of the f u l l - s i b  h a l f - s i b (c.b.) f a m i l i e s have r e s u l t e d  individuals families  from the c r o s s i n g o f  from a l l o p a t r i c p o p u l a t i o n s ; whereas, the h a l f - s i b  ( p . t . ) were d e r i v e d from sympatric  populations.  Assuming t h a t no e p i s t a s i s e x i s t s , t h i s h e t e r o t i c be  attributable  e f f e c t would  to:. 1) d i r e c t i o n a l dominance and 2) d i f f e r i n g  gene f r e q u e n c i e s  among p o p u l a t i o n s  (Falconer,  1960).  A d d i t i o n a l evidence o f h y b r i d v i g o u r has been demons t r a t e d i n a r a c i a l c r o s s i n g program o f D o u g l a s - f i r conducted by  the B.C.F.S..  During 1968, 13 B r i t i s h Columbia p l u s  trees  were used as both seed and p o l l e n p a r e n t s i n a c r o s s i n g program which i n c l u d e d c r o s s e s  with p o l l e n p a r e n t s from  Washington, Oregon and C a l i f o r n i a .  A f t e r two y e a r s  nursery  growth, 11 o f the 13 p l u s t r e e s produced r a c i a l c r o s s  progenies  s i g n i f i c a n t l y t a l l e r than the p r o g e n i e s from t h e same parent crossed  with o t h e r The  T a b l e 7. tions.  B.C. p l u s t r e e s  mean h e i g h t During 19 73,  In 19 74,  (Orr-Ewing; 1971, 1973).  of the three p l a n t a t i o n s i s given i n little  d i f f e r e n c e e x i s t e d among  growth i n the Caycuse and T a h s i s  surpassed the growth i n t h e Courtenay p l a n t a t i o n . 19 75, growth i n t h e T a h s i s comparable. plantation  planta-  plantations During  and Courtenay p l a n t a t i o n s was  However, the dramatic growth o f t h e Caycuse (40 cm.) was r e f l e c t e d i n i t s h e i g h t s u p e r i o r i t y  a t the end o f t h e 19 75 growing season. (2) Tree c o n d i t i o n i n 19 75 The  number o f h e a l t h y  trees included  squares a n a l y s i s i s shown a c c o r d i n g t i o n i n T a b l e 8.  I t i s evident  t o f a m i l y type and p l a n t a -  that the h a l f - s i b  f u l l - s i b f a m i l i e s possessed a h i g h e r than the h a l f - s i b  i n the l e a s t  (c.b.) and  f r a c t i o n of healthy  trees  ( p . t . ) and c o n t r o l fam-i-l-i-es. A C h i - s q u a r e  34 Table  7.  Mean p l a n t a t i o n h e i g h t 1973, 1974 and 1975  1973 Plantation  Mean Height (cm.) 46.00 46.00 41.12  Caycuse Gold J R i v e r Courtenay Mean Y e a r l y Height (cm.)  19 74  Duncan Test a  I 44.3 7  i n centimetres i n  1  Mean Height (cm.) 71.93 68.59 57.61  1975  Duncan Test a  i  i  i  Mean Height (cm.) 112.70 92.20 82.29  66.04  Duncan Test a  1 1 1 i  95.73  P l a n t a t i o n s b r a c k e t e d by t h e same l i n e a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t t h e 0.05 p r o b a b i l i t y l e v e l . analysis  showed these f a m i l y  significant  type d i f f e r e n c e s were h i g h l y .z 11 ( X = 33.83, d . f . = 3 ) . I t can t h e r e f o r e be  c o n c l u d e d t h a t , as o f 1975, t h e h a l f - s i b (c.b.) and f u l l - s i b f a m i l i e s possessed a h i g h e r f r a c t i o n o f t r e e s i n s a t i s f a c t o r y condition.  These r e s u l t s would i n d i c a t e t h a t improved  s u r v i v a l and h e a l t h two p l u s  tree  The differences  tree  can be expected o f f a m i l i e s o r i g i n a t i n g , from  parents.  second C h i - s q u a r e a n a l y s i s demonstrated i n the number o f t r e e s i n c l u d e d  A l l Chi-square c a l c u l a t i o n s i n t h i s shown i n Appendix V.  that  per p l a n t a t i o n  s e c t i o n as  35 were a l s o h i g h l y s i g n i f i c a n t ("X= i n v e s t i g a t e these p l a n t a t i o n  106.75, d . f . = 2 ) .  differences  further, tree  t i o n was p a r t i t i o n e d i n t o the f o u r c l a s s e s No g r e a t  To condi-  g i v e n i n T a b l e 9.  d i f f e r e n c e was i n d i c a t e d i n the 'percent dead' o r  •percent other* columns. •percent f o r k e d  However, the d i f f e r e n c e s  o r browsed' column were l a r g e .  percentage o f f o r k e d  The  was the o n l y  planta-  this  s i t e f e n c e d t o prevent deer browsing.  These r e s u l t s demonstrate t h a t f e n c i n g of i n c r e a s i n g  small  o r browsed t r e e s i n t h e C o u r t e n a y  t i o n was undoubtedly a t t r i b u t a b l e t o the f a c t t h a t plantation  i n the  i s an e f f e c t i v e method  progeny t e s t s u r v i v a l and v i g o u r on Vancouver  Island. The  c a l c u l a t e d C h i - s q u a r e s t a t i s t i c o f t h e 3x4  contingency table i n v o l v i n g family not  types and p l a n t a t i o n s  s i g n i f i c a n t (y*= 8.60, d . f . = 6 ) .  I t can t h e r e f o r e  was be  c o n c l u d e d t h a t these two f a c t o r s were independent i n 19 75 ( i . e . the e f f e c t o f f a m i l y three  B.  type was c o n s i s t e n t  within  e a c h of the  plantations).  Parent Performance  (1) Height o f progeny from h a l f - s i b p a r e n t s i n 19 75 The  a n a l y s i s o f h e i g h t performance f o r each o f t h e  f a m i l i e s i n the progeny t e s t demonstrated t h a t a l l f a c t o r s i n the model were h i g h l y  s i g n i f i c a n t i n 1975 (Table 1 0 ) .  36  Table 8 .  Number oft t r e e s i n c l u d e d plantation  analysis  1  i n t h e f a m i l y type and  r  Fami]Ly Type Plantation  Half-sib, F u l l - s i b H a l f - s i b C o n t r o l (c.b.) (p>t.)  Gold  189/256  666/864  175/33:6  0.738  0.771  0.521  241/288  810/972  278/378  127/162  0.836  0.83X  0 . 735  0.784  150/256  4 74/864  138/336  66/144  0.586  0.549  0.411  River  Courtenay  Caycuse  Number per: 5 8 0 / 8 0 0 F a m i l y Type 0 . 7 2 5 c e l l key:  82/144 0.569  0.458  1 9 5 0 / 2 700: 5 9 1 / 1 0 5 0 0.722 0.563  number o f t r e e s included  /  Number p e r Plantation  275/450 •:o.6ii  1112/1600 0.695 1456/1800 0.809 828/1600 0.518 3396/5000 0.679  t o t a l number o f trees planted  f r a c t i o n o f ..trees included r  Table 9 .  Summary o f t r e e c o n d i t i o n  Plantation  % Trees Satisfactory  i n 1 9 7 5 per plantation,.  % Trees Dead  %, T r e e s % Trees Forked and/or o t h e r Browsed  Gold R i v e r Courtenay Caycuse  69.5 80.9 51.8  18.4 13.3 23.5  11.2 1.6 21.9  0.9 4.2 2.8  Mean %  6.7.4  18.4  11.6  2.6  37 T a b l e 10.  Analysis of variance  DF  Source o f V a r i a t i o n  MS  98 2 3 196 3 ,079  F a m i l y (F) P l a n t a t i o n (E) Block/(P) FxP Residual  The  of family height  i n 1975  F  5 ,690.40 129,460.00 23/827.00 1,861.70 1,121.20  5.08** 115.47**= 21.25** 1.66**  p r e d i c t e d means f o r each o f t h e 99 f a m i l i e s a r e p r e -  sented i n Appendix I I .  The means f o r the t h r e e  were comparable t o the p r e v i o u s  f a m i l y type and p l a n t a t i o n  a n a l y s i s and a r e t h e r e f o r e n o t p r e s e n t e d The  ranking  of h a l f - s i b  t o mean 19 75 f a m i l y h e i g h t a s u b s t a n t i a l height family  (parent  again.  (p.t.) family parents  according  over a l l p l a n t a t i o n s , demonstrated  range (Table  11).  The h i g h e s t  ranked  223) was 101.03 cm. as compared t o 54.41 cm.  from t h e lowest ranked f a m i l y however, f e l l  plantations  (parent  w i t h i n a 20 cm. range.  445).  Most means,  The Duncan T e s t  12 f i v e groups o f s t a t i s t i c a l l y s i m i l a r means. I n v e s t i g a t i o n o f parent performance w i t h i n p l a n t a t i o n s demonstrated t h a t t h e h i g h e r more v a r i a b l e among p l a n t a t i o n s .  produced  each o f the  ranked p a r e n t s were  F o r example, the mean  _ T h i s t e s t i s not s t r i c t l y v a l i d because the f a m i l i e s i n t e r a c t e d w i t h the p l a n t a t i o n s . I t i s however accepted because o f t h e l a r g e number o f means i n t h i s a n a l y s i s .  T a b l e 11.  Family  Mean 19 75 h e i g h t i n c e n t i m e t r e s o f h a l f - s i b f a m i l i e s from o p e n - p o l l i n a t e d plus t r e e s . ^  Matearnal Parent  Region  1  93 . 91 87 84 94 85 82. 90 79 80 95 78 81 89 92 83 88 . 96 97 86 98 Mean  223* 172 114* 70* 224* 76 63 165 34 43 95 28 49 162 177 69 153 158 351 96 445  11 8 8 13 11 6 7 12 12 7 13 13 8 12 6 12 13 8 7 13 9  Number Mean Height Giver Mean per P l a n t a t i o n (cm.) of A l l Plantations Progeny (cm.) ^ a Mean Dune an Gold Courtenay Caycuse Mean Test River Plantation Deviation 41 33 31 42 36 2-3 26 19 34 29 33 3!0 18 35 27 22 31 27 28 10 19  101.03 97.36 96.35 96.25 93 .14 /92.55 91.29 90.47 89.93 89.57 88.94 88.22 87.21 82.58 81.83 79.07 78.59 77.02 75.50 68.07 54.41  84.78 70.75 86.41 94.02 82.22 77.26 71.94 88..4 5 77.62 96.28 76.06 80.00 67.94 79.20 104.88 73. 74 83.75 57.89 66.81 78.00 51.61  86.95 76.66 83.81 79.85 84.94 76.81 80.33 68.22 78.8.4 84.78 75.06 89 ..29 81.97 70.98 67.31 77.37 73.38 60.62 51.26 55.17 66.15  131.38 144.51 118.84 114.89 112..25 123.58 121.61 114.75 113.31 87.66 115.12 95.35 111.72 9 7.59 73.30 86.11 78.64 112.56 108.44 71.05 45.50  85.68  78.55  74.78  103.72  J  20.23 31.49 14.99 12.42 12.47 20:69 20.21 16.18 15.59 4.47 17.45 5.47 16.34 10.00 15 . 3 7 4.69 3.47 23.69 21.96 8.60 7.82 :  Parents b r a c k e t e d by t h e same l i n e a r e not s i g n i f i c a n t l y d i f f e r e n t a t t h e 0.05 probability level. •Parent which performed above t h e h a l f - s i b ( p . t . ) mean i n each p l a n t a t i o n .  d e v i a t i o n o f t h e t o p n i n e p a r e n t s a l l exceeded 12 cm.; whereas, the mean d e v i a t i o n o f s e v e r a l o f t h e lower p a r e n t s was l e s s than 8 cm.  The h i g h e r ranked  can t h e r e f o r e be expected  parents over a l l p l a n t a t i o n s  t o be more v a r i a b l e among  plantations. Parents 223,114,70 and 224 belonged performed  above t h e h a l f - s i b  t o f a m i l i e s which  ( p . t . ) mean i n every  plantation.  \  The in  author b e l i e v e s t h a t t h e s e parents a r e t h e most p r o m i s i n g t h i s f a m i l y t y p e , because they show a c o n s i s t e n t l y good  h e i g h t performance i n each p l a n t a t i o n . 172  ranked  second  Interestingly,  according to o v e r a l l plantation  parent  performance;  however, i t was n o t i n c l u d e d i n the above group because i t performed  below t h e h a l f - s i b  ( p . t . ) mean a t Gold R i v e r .  Parent 177 o f f e r e d a s t r i k i n g example o f p a r e n t x plantation interaction.  I t ranked  first  i n t h e Gold R i v e r  p l a n t a t i o n — 8 cm. above t h e next p e r f o r m e r .  Y e t , i t s poor  performance i n t h e o t h e r two p l a n t a t i o n s r e s u l t e d i n a low overall  ranking. The r a n k i n g o f p a r e n t s o f h a l f - s i b  (c.b.)  families,  a c c o r d i n g t o mean f a m i l y h e i g h t over a l l p l a n t a t i o n s , a g a i n demonstrated a wide range o f p a r e n t a l performance ( T a b l e 1 2 ) . The  Duncan T e s t s e p a r a t e d t h e means i n t o f o u r groups o f 13  s t a t i s t i c a l l y s i m i l a r means. l ^ T h i s t e s t i s n o t s t r i c t l y v a l i d because f a m i l i e s i n t e r a c t e d with p l a n t a t i o n s .  Table-12.  Family  55 56 59 60 58 70 63 68 57 62 65 67 69 61 66 64  b  Me an 1975 h e i g h t i n c e n t i m e t r e s o f h a l f — s i b f a m i l i e s c l o n e banks  Maternal Parent  36* 55 36* 45 134 356 93 226 110 166 208 220 235 160 215 207  Region Number n-F  Progeny  12 6 13 7 3 13 13 3 8 7 1 6 1 8 1 1  40 39 41 39 38 30 40 33 42 37 33 40 38 38 29 24  Mean  Mean Height Over A l l Plantations (cm.) Mean  Dunean Test  a  from o p e n — p o l l i n a t e d  Mean Height per P l a n t a t i o n (cm.)  Gold River  126.17 118.93 116.92 116.28 115.47 113.82 113.13 113.09 106.73 105.97 105.36 105.19 104.63 93.26 92.11 76.91  131.74 100.03 109.32 101.92 95.50 120.98 130.56. 139.45 83.53 114.86 98.89 99.09 95.08 96.62 97.47 73.31  10 7.75  105.52  Courtenay  Caycuse  108.25 110.56 97.32 103.27 94.15 83.92 87.50 84.61 91.75 86.22 100.62 92.95 105.08, 79.91 87.58 87.69  138.53 146.20 144.12 143.64 156.76 136.55 121.32 115.22 144.92 116.86 116,58 123.53 113.73 103.26 91/29 69.72  93.84  123.89  P a r e n t s b r a c k e t e d by t h e same l i n e are not s i g n i f i c a n t l y d i f f e r e n t probability level. F a m i l y 55 was n o t an o p e n - p o l l i n a t e d f a m i l y — i t Parent which performed  above the h a l f - s i b  Mean Plantation Deviation 11.95 18.18 18.13 18.24 27.53 19.92 17.08 18.99 25.46 13.18 7.48' 12.23 6.37 8.90 3.57 7.19  a t t h e 0.05  was a h a l f - s i b polymix f a m i l y .  (c.b.) mean i n each  plantation.  41  The h i g h e r ranked  p a r e n t s a g a i n tended  t o be more  v a r i a b l e among p l a n t a t i o n s than t h e lower ranked One e x c e p t i o n was parent  parents.  36 ( F a m i l y 55) which ranked  highest  over a l l p l a n t a t i o n s and a l s o e x h i b i t e d a low mean p l a n t a t i o n deviation.  T h i s i n d i v i d u a l was- a l s o t h e parent o f the: o n l y  two  families  ( F a m i l y 55 and 59) which performed  sib  (c.b.) mean i n each p l a n t a t i o n .  Parent  above t h e h a l f -  36 t h e r e f o r e appears  t o be t h e most p r o m i s i n g i n d i v i d u a l o f t h i s f a m i l y type a t t h i s . time. No s t r i k i n g examples o f parent x p l a n t a t i o n a c t i o n were: noted w i t h i n t h i s h a l f - s i b  inter-  group.  I t should: be s t r e s s e d t h a t , when r a n k i n g t h e maternal p a r e n t s o f the: o p e n - p o l l i n a t e d f a m i l i e s , an equal p a t e r n a l c o n t r i b u t i o n was assumed because t h e p o l l e n p a r e n t s were unknown. T h i s assumption  i s p r o b a b l y v i o l a t e d when seed i s c o l l e c t e d  from plus; t r e e s because o f provenance d i f f e r e n c e s between populations.  I n a d d i t i o n , seed f o r t h e h a l f - s i b  (c.b.): f a m i l i e s  was c o l l e c t e d from f o u r d i f f e r e n t c l o n e banks and t h e p a t e r n a l c o n t r i b u t i o n would have t h e r e f o r e p r o b a b l y d i f f e r e d among these f a m i l i e s . assumption  However, i t i s b e l i e v e d t h a t t h e s i m p l i f y i n g  o f an equal p o l l e n c o n t r i b u t i o n i s r e q u i r e d u n t i l  p r e c i s e e s t i m a t e s o f mean p o l l e n parent b r e e d i n g v a l u e s a r e o b t a i n e d f o r t h e s p e c i f i c provenances and c l o n e banks t h a t c o n t r i b u t e d p o l l e n t o t h i s pro:geny t e s t .  No d e f i n i t e geographic  t r e n d s were d e t e c t e d which  i n f l u e n c e d p a r e n t performance i n e i t h e r o f the" h a l f - s i b In  g e n e r a l , the best and worst ranked p a r e n t s were spread  throughout t h e g e o g r a p h i c range o f p l u s t r e e s e l e c t i o n . r a t h e r poor performance o f t h o s e h a l f - s i b r e g i o n 1 i n Appendix IV was noteworthy.  which appears t o be g e n e t i c a l l y At  The  (c.b.,) p a r e n t s from These t r e e s were from  a m a r g i n a l D o u g l a s - f i r p o p u l a t i o n on n o r t h e r n Vancouver  to  groups.  Island  inferior.  t h i s e a r l y stage o f t h e progeny t e s t i t i s d i f f i c u l t  make recommendations c o n c e r n i n g t h e r o g u i n g o f p a r e n t s based  on t h e h e i g h t o f t h e i r h a l f - s i b f a m i l i e s .  P r o b a b l y , o n l y those  p a r e n t s t h a t performed p o o r l y i n each o f t h e t h r e e c o u l d be s a f e l y e x c l u d e d a t t h i s time ( i e . h a l f - s i b p a r e n t s 445 and 96; h a l f - s i b  (p.t.)  (c.b.) p a r e n t s 207 and 215).  (2) Height of progeny from f u l l - s i b When a l l 54 f u l l - s i b  plantations  p a r e n t s i n 19 75  f a m i l i e s were i n c l u d e d i n t h e  a n a l y s i s a s i n g u l a r m a t r i x . r e s u l t e d and t h e a n a l y s i s was impossible.  F u r t h e r i n v e s t i g a t i o n showed t h a t t h e presence o f  six  families  (38, 39, 43, 45, 46 and 47) was r e s p o n s i b l e f o r  the  h i g h c o r r e l a t i o n , and these f a m i l i e s were t h e r e f o r e ex-  c l u d e d from t h e a n a l y s i s . The ANOVA summary i n T a b l e 13 demonstrates t h a t a l l main e f f e c t s were h i g h l y s i g n i f i c a n t  ( c x = .01).  However, o f the  p a r e n t x p l a n t a t i o n i n t e r a c t i o n s , o n l y the maternal i n t e r a c t i o n was s i g n i f i c a n t  (oC - .05).  I t i s therefore concluded that the  p a t e r n a l p a r e n t s performed c o n s i s t e n t l y w i t h i n each  plantation.  43 T a b l e 13.  A n a l y s i s o f v a r i a n c e o f maternal and p a t e r n a l GCA i n 19 75  DF  Source o f V a r i a t i o n M a t e r n a l GCA (P) P a t e r n a l GCA (M) P l a n t a t i o n (P) B l o c k / (P) FxP MxP Residual  26 12 2 3 52 24 1,620  MS 3,733.70 5,903.30 5,055.40 15,435.00 ' 1,571.30 1,287.00 1,173.40  P 3.18** 5.03** 4.31** 13.15** 1.34* 1.10 N.S.  ( i ) maternal GCA i n 19 75 A l t h o u g h the maternal GCA ranged from 30.48 cm. (parent 61) t o 68.13 cm. (parent 125), t h e Duncan T e s t produced o n l y t h r e e homogeneous groups o f means ( T a b l e 1 4 ) . One o f these groups i n c l u d e d the lowest 25 o f t h e t o t a l  27 maternal  4. parent s . 14  Parents 125, 162, 60 and 118 performed above t h e mean maternal GCA i n each p l a n t a t i o n .  These f o u r p a r e n t s a l s o  ranked  w i t h i n t h e t o p f i v e p a r e n t s a c c o r d i n g t o GCA over a l l p l a n t a tions.  A l t h o u g h t h e o v e r a l l GCA r a n k i n g o f parent 62 i s h i g h ,  i t s poor performance  i n the Courtenay p l a n t a t i o n  d i s q u a l i f i e d i t from t h i s  (3 7.02 cm.)  group.  Examples o f parent x p l a n t a t i o n i n t e r a c t i o n  show t h a t  p a r e n t s 35 and 63 both ranked h i g h i n the Gold R i v e r and low i n the more s o u t h e r l y Caycuse  environment.  environment  Conversely,  parent 145 was low ranked a t Gold R i v e r and mid ranked a t Caycuse. —  T h i s Duncan T e s t i s n o t s t r i c t l y v a l i d because of s i g n i f i c a n t maternal p a r e n t x p l a n t a t i o n i n t e r a c t i o n .  Table-14. Maternal Parent  GCA i n c e n t i m e t r e s - o f maternal parentss i n 1975  8 12 3 7 8 11 10  125* 162* 60* 62 118* 196 82 167 87 175 224 36 233 25 114 35 223 55 153 28 172 63 45 232 160 145 61 Mean  GCA Over A l l Number P l a n t a t i o n s (cm.) a of GCA Duncan Progeny Test  Region  1  13 8 11 13 7 12 8 12 11 ;6 13 13 8 7 7 3 8 8 8  J  45 42 80 47 180 84 ' 94 40 43 20 46 125 36 24 39 42 43 112 112 72 74 30 112 36 91 35 38  68.13 66.61 63.31 59.68 5 7.23 53.66 53.041 50^50  m  50. 49.91 48.97 48.66 46.99 46.49 46.41 41.87 41.56 40.29 40.^8 7 40.. 72 38.68 35.22 33.34 32.61 31.35 3:i. 28 30.48 46.29  GCA p e r P l a n t a t i o n (cm.) Gold Courtenay River 84.20 58. 76 73.36 60.99 50.23 43.28 50.21 39.-10 46.64 43.93 58.60 56il0 52.56 54. 77 43.61 65.62 44.24 35.78 34.04 46.60 2 7..66 57.43 39.62 39.92 40.45 11.84 49.07 48.54  50.55 43.06 57.16 3^7.02 54.69 31.01 33.81 33.62 49.11 32.24 47.38 46.55 49.11 30.39 51. 74 41.86 32. 78 40.47 43.80 29 . 70; 39.19 33.27 35.64 42.95 25.84 30.01 32.33 39.90  Mean GCA devi a t i o n among plantations 69.64 11.72 20.94 98.04 59.38 6.71 15.11 81.03 6.3 7 66.79 86.69 22.02 14. 71 75.10 78.78 18 .,85 54.34 2.87 73.56 15. 77 40.96 6.41 4.96 43.33 39.31 5.12 10.74 54.32 43.85 3.56 15.80 18.24 5.85 47.65 3.01 44.62 44. 73 4.54 45.87 7.35 7.34 4.9 .18 14.81 14.96 5.72 24.77 11.77 14.96. 27.77 6.06 13.81 5 2.00 13.64 10.00 50.44  Caycuse  cL  P a r e n t s b r a c k e t e d by t h e same l i n e a r e not s i g n i f i c a n t l y d i f f e r e n t a t t h e 0.05 probability level. •Parent which performed above the mean maternal GCA i n each p l a n t a t i o n .  ^  45 (ii)  p a t e r n a l GCA The  i n 19 75  Duncan T e s t showed f i v e s e t s o f  s i m i l a r p a t e r n a l GCA s i m i l a r GCA  means ( T a b l e 15).  The  statisticallylowest group o f  v a l u e s c o n t a i n e d o n l y s i x of the t o t a l  13 v a l u e s ;  a s i t u a t i o n e a s i e r t o i n t e r p r e t than the Duncan T e s t for  the maternal  GCA  means.  T h i s s i t u a t i o n was  a t t r i b u t a b l e t o a l a r g e r average nal  results  undoubtedly  number o f progeny per p a t e r -  parent. An i n v e s t i g a t i o n of p a t e r n a l GCA  had no  statistical  i n t e r a c t i o n was  p a t e r n a l GCA  b a s i s because t h e p a t e r n a l GCA  not s i g n i f i c a n t .  that f o u r parents  w i t h i n each  (118, 45,  plantation  A b r i e f examination  28 and  i n each p l a n t a t i o n .  x  plantation  92)  performed  showed  above the mean  These f o u r were a l s o  w i t h i n the top r a n k i n g f o u r p a r e n t s a c c o r d i n g to GCA  found  over a l l  plantations.  As with the h a l f - s i b p a r e n t s , no d e f i n i t e t r e n d s were noted which i n f l u e n c e d f u l l - s i b  parent  ance over a l l p l a n t a t i o n s . A good example was from r e g i o n 8 (Appendix of  both the maternal  geographic  the  parents  IV) which occured a t the top and  and p a t e r n a l GCA  full-sib  on the GCA*. r e s u l t s i s d i f f i c u l t a t t h i s  stage o f the progeny t e s t . parent should be excluded showed the lowest ranked  The  bottom  rankings.  As with the h a l f - s i b p a r e n t s , the r o g u i n g of p a r e n t s based  perform-  early  author b e l i e v e s t h a t no  maternal  a t t h i s time because the Duncan T e s t parent  (61) to be s t a t i s t i c a l l y  similar  T a b l e 1 5 . GCA i n c e n t i m e t r e s o f p a t e r n a l parents i n 19 75  Paternal Parent  Region  8 7 13 13 3 12 13 6 3 7 6 8 13  118* 45* 28* 92* 60 35 70 157 134 63 177 175 133  Mean  Numberof Progeny  258 468 157 108 37 187 238 35 36 36 60 76 51  GCA Over A l l P l a n t a t i o n s (cm.) GCA  Duncan 'Test  GCA per P l a n t a t i o n  Gold River  Courtenay  64.sses.98 5 8 . 5 3 •54.16' 51.07 49.80 47.27 44.19 44.06 44.00 36.47 32.39 15.63  64.15 67.94 56.33 49.84 59.76 37.47 52.26 42.12 37.69 48.38 47.16 37.20 38.11  49.86 48.07 49.18 44.55 35.71 30.14 45.07 42.71 37.64 35.35 • 33.16 35.78 32.93  46.63  49.11  40.01  3  (cm.)  Caycuse  Mean GCA devi a t i o n among plantations  7 9 . 73 75.95 70.08 68.09 5 7.74 81.79 44.48 47.74 56.86 48.30 29.08 24.18 -24.15  10.10 10.61 7.70 9.29 10.24 21.33 3.33 2.37 8.53 5,78 7.13 5.47 26.52  b  50.76  P a r e n t s b r a c k e t e d by the same l i n e a r e not s i g n i f i c a n t l y d i f f e r e n t a t t h e 0 . 0 5 probability level. a  •Parent which performed squares  above the mean p a t e r n a l GCA i n each p l a n t a t i o n .  The presence o f a n e g a t i v e GCA value i s n o t uncommon analysis.  i n t h i s type o f l e a s t  47 t o the t h i r d r a n k i n g parent ( 6 0 ) .  Of the p a t e r n a l p a r e n t s ,  the author f e e l s t h a t o n l y the lowest r a n k i n g parent  (133)  c o u l d s a f e l y be excluded a t t h i s time, because i t performed poorly within a l l three plantations.  (3) M a t e r n a l e f f e c t s i n  1975  S i x p a r e n t s c o n t r i b u t e d both male and female gametes i n the c r o s s i n g d e s i g n (Appendix e s t i m a t e was  I).  In these s i x c a s e s a  o b t a i n e d f o r both p o l l e n and egg  contribution,  thus a l l o w i n g an i n v e s t i g a t i o n of maternal e f f e c t .  Table  demonstrates t h a t a t r e n d towards a n e g a t i v e maternal was  p r e s e n t i n 1975.  Parent 45 o f f e r e d the most  example of a lower maternal c o n t r i b u t i o n  GCA  (-30.64  16  effect  striking cm.).  The t h r e e r e c i p r o c a l c r o s s e s shown i n T a b l e  17  a l l o w e d the t e s t of a d i f f e r i n g maternal c o n t r i b u t i o n .  Two  c r o s s e s were s i g n i f i c a n t l y d i f f e r e n t  lower  ( Oc = 0.05).  maternal c o n t r i b u t i o n of p a r e n t 45 was f o r these s i g n i f i c a n t The  The  undoubtedly r e s p o n s i b l e  differences.  s m a l l number of p a r e n t s r e p l i c a t e d i n both  sexes  prevent one from drawing d e f i n i t e c o n c l u s i o n s c o n c e r n i n g maternal e f f e c t s i n D o u g l a s - f i r .  The author b e l i e v e s , however,  t h a t the n e g a t i v e t r e n d s evidenced here warrant investigation.  further  48  T a b l e 16. - M a t e r n a l e f f e c t s ; i n c e n t i m e t r e s d u r i n g 1975  Parent  Maternal GCA (cm.).  Paternal GCA (cm.)  Maternal Effect (cm.)  45 118 60 28 35 63  33i. 34 5 7.23 635. 31 40.72: 41.87 35.22  63.98 64.58 51.07 58.53 49.80 44.00  -30.64 - 7.35 12.81 -17.81 - 7.93 - 8.78  T a b l e 17.  118 118 28  21.93** 1.54 N..S. 1.45 N.S. 4.82* 1.59 N.S. 1.98 N.S.  Reciprocal cross differences i n centimetres d u r i n g 19 75.  Par ent A  F  Family B 63 45 45  AxB  Height  (cm.) BxA  101.29 126.97 10:6.17  (cm.)  99.81 94 ..21 91.16  Difference (cm.) 1.48 32.76 15.01  F 0.03 N.S. 18.82**^ 4.01*  49 C.  Problems i n the F a m i l y Type, P l a n t a t i o n and Analyses Two  tical  Earent  of the f i v e assumptions which a l l o w v a l i d  i n f e r e n c e were v i o l a t e d i n the f a m i l y t y p e ,  and parent a n a l y s e s .  These two  statis-  plantation  v i o l a t i o n s concern  the normal  d i s t r i b u t i o n of the u n e x p l a i n e d o r r e s i d u a l v a r i a t i o n and  the  a l l o c a t i o n o f the f a m i l i e s w i t h i n the p l a n t a t i o n s . The  d i s t r i b u t i o n of the w i t h i n c e l l  examined by randomly s e l e c t i n g two  variation  was  f a m i l i e s from each p l a n t a -  t i o n and c o n s t r u c t i n g a h i s t o g r a m h e i g h t f o r each f a m i l y . These d i s t r i b u t i o n s are drawn i n Appendix I I I .  In most c a s e s  the d i s t r i b u t i o n s d i d not f o l l o w the c l a s s i c b e l l - s h a p e d c u r v e . The  extreme performers As Wright  were o f t e n too f r e q u e n t . ^ 1  (19 75) n o t e s , the s y s t e m a t i c a l l o c a t i o n  f a m i l i e s w i t h i n the p l a n t a t i o n s c o u l d c r e a t e problems.  of Envir-  onmental s i t e c o n d i t i o n s tend t o be c o r r e l a t e d a c r o s s c o n t i g uous plots..  T h e r e f o r e , f a m i l i e s always a d j a c e n t i n t h i s  s y s t e m a t i c d e s i g n should e x p e r i e n c e h i g h e r environmental r e l a t i o n s than those f u r t h e r a p a r t .  As a r e s u l t ,  cor-  differences  between f a m i l y means become confounded with environmental In  a d d i t i o n t o these assumption  BMD10V computer program p r e s e n t e d two  v i o l a t i o n s , the problems.  effects.  UBC  Firstly, i t  ^ A B a r t l e t t ' s T e s t of 25 randomly chosen f a m i l i e s was a l s o performed. T h i s t e s t was unable to d e t e c t unequal w i t h i n c e l l v a r i a n c e (oc= .05).  50 was  not  programmed, to p r i n t the i n v e r s e m a t r i x which would  one  to e s t i m a t e the  coefficients  sampling e r r o r about the  (the p r e d i c t e d  means);.  I t was  l e a s t squares therefore  t o t e s t a d d i t i o n a l hypotheses c o n c e r n i n g the once the computer a n a l y s i s had full GCA only  impossible  impossible: means  Secondly, a  i n t e r p r e t a t i o n of n o n s i g n i f i c a n t f a c t o r s (e.g.  paternal  because the  program  e n t e r e d each f a c t o r l a s t i n t o the:, model when d e t e r m i n i n g  i t s contribution.  I t could  therefore  not  be determined i f the  f a c t o r remained n o n s i g n i f i c a n t i f e n t e r e d  D.  predicted  been completed.  x p l a n t a t i o n i n t e r a c t i o n ) was  allow  earlier.  Juvenile-"Mature" Correlations  (1) N u r s e r y measurements As  shown i n T a b l e 18,  the t h r e e  f a m i l y measurements  i n the n u r s e r y combined to e x p l a i n a s i g n i f i c a n t amount o f the  v a r i a t i o n i n 1975  family height  F t e s t indicated that  1970  height  (R  and  each added a s i g n i f i c a n t c o n t r i b u t i o n 1969  hypocotyl length  was  not  2  = .397).  1969  The  epicotyl  ( oC ~ .01).  significant.  Partiallength  However,  The:, n o n s i g n i f i c a n c e  of h y p o c o t y l l e n g t h i s f u r t h e r demonstrated by  the  small  2 drop i n R  (.397  to  .363)  from the maximum model.  when t h i s v a r i a b l e was The  r e l a t i v e l y large  excluded  contribution  51  Table  18.  C o r r e l a t i o n o f 1975 f a m i l y h e i g h t with and  19 70. f a m i l y measurements i n the: n u r s e r y  2  Variable(s)  R  Maximum model 1969 e p i c o t y l -entered -entered  1969  contribution  Eartial-F  0.39751 l e n g t h (X > 1  first last  0. 230.3 7* * 0.0.7569**'  8.7**  0.03354 N.S. 0.0.1946 N.S..  2.2 N.S.  1969 h y p o c o t y l l e n g t h ( X ) 2  -entered -entered  first last  1970 t o t a l h e i g h t -entered -entered  (X ) 3  first last  19 70 t o t a l h e i g h t + 1969 e p i c o t y l l e n g t h  0.29375** 0.13626**  15.6 * •  0.36397**  41. 7**  """The l e a s t squares e q u a t i o n was as f o l l o w s : Y = 50.614 + 0.547 X - 1.384 X + 0.114 X + e. E x c l u d i n g a  2  3  1969 h y p o c o t y l l e n g t h the e q u a t i o n became, Y = 29.649 + 0.526 X^ + 0.113 X + e. The: dependent v a r i a b l e Y was 3  measured i n c e n t i m e t r e s . measured i n m i l l i m e t r e s .  A l l independent v a r i a b l e s were  o f e p i c o t y l l e n g t h was s u r p r i s i n g , s i n c e t h i s measurement was r e c o r d e d author  l e s s than f o u r months a f t e r g e r m i n a t i o n .  believes epicotyl  The  l e n g t h i s t h e r e f o r e worthy o f f u t u r e  c o n s i d e r a t i o n when o l d e r o r mature data becomes a v a i l a b l e . Family  s e l e c t i o n , based: o n l y on these t h r e e  measurements, i s i n a d v i s a b l e .  nursery  Assuming the c o r r e l a t i o n be-  tween the f a m i l y measurements i n t h e n u r s e r y and i n t h e 2 p l a n t a t i o n remains a t thxs l e v e l i n t h e f u t u r e , the R  figure  i l l u s t r a t e s t h a t o n l y 40 p e r c e n t o f t h e v a r i a t i o n i n t h e mature t r a i t can be e x p l a i n e d . nursery  Therefore^, s e l e c t i o n a t the  stage c o u l d o n l y produce 40 p e r c e n t o f t h e g e n e t i c  g a i n p o s s i b l e from s e l e c t i o n a t m a t u r i t y . (2) E a r l y p l a n t a t i o n measurements The  l e a s t squares a n a l y s i s summarized i n T a b l e 19,  demonstrated t h a t 19 75 t r e e h e i g h t was h i g h l y c o r r e l a t e d with  1974 and 1973 t r e e h e i g h t s  (R  2  = .926).  The P a r t i a l -  F t e s t s i n d i c a t e d t h a t a l l f a c t o r s i n t h e model were icant  (<X = .01). The v a r i a b l e t h a t e x p l a i n e d by f a r the  g r e a t e s t amount o f v a r i a t i o n i n 19 75 h e i g h t was 19 74  high  signif-  height.  The c o r r e l a t i o n between 19 74 and 19 73 h e i g h t s was 2 (R = .817). T h i s high c o r r e l a t i o n was evidenced by 2  the l a r g e drop xn R  c o n t r i b u t x o n when e x t h e r v a r i a b l e was  e n t e r e d i n t o the model once the o t h e r was p r e s e n t  (Table 19).  53. T a b l e 19.  C o r r e l a t i o n o f 19 75 t r e e h e i g h t with 19 74 and 1973 t r e e h e i g h t s  1  2  Variable(s)  R  Partial-F  contribution  Maximum model  0.92616**  19 74 t r e e h e i g h t (X > 1  -entered f i r s t -entered a f t e r block and p l a n t a t i o n -entered l a s t  0.88712** 0.81747* * 0.23930* *•  11008.7**  19 73 tree, h e i g h t (x^). -entered f i r s t -entered a f t e r block and p l a n t a t i o n -entered l a s t  0.63026**  19 74 + 19 73 t r e e h e i g h t -entered f i r s t -entered l a s t Plantation -entered -entered Block  0.59227** 0.0.1410**  648.5**  0.90536** 0.83037**  38200.8**  0.08155** 0.01935**  890.2**  0.02089** 0.000631**  28.1**  (X ,X ) 3  4  first last  (X ,X ,X ):; 5  -entered -entered  6  ?  first last  The l e a s t squares e q u a t i o n was as follows:Y = 5.002 + 1.785 X - 0.611 X - 6.855 X - 0 . 5 6 1 X a  + 1.266 X  5  + 0.045 x  2  6  3  + 1.249 X  + e.  ?  4  A l l v a r i a b l e s were:  measured i n c e n t i m e t r e s . The dummy v a r i a b l e s were coded, x Gold R i v e r Courtenay Caycuse  block block block block block block  1 2 1 2 1 2  3  1 1 0 0 -1 -1  X  4  X  5  0. 1 0 -1 1 0 1 0 -1 0 —1 0  X  6  0 0 1 -1 0 0  x  y  0 0 0 0 1 -1  54  The  e f f o r t to remove apparent c o r r e l a t i o n s between  the h e i g h t v a r i a b l e s : caused by b l o c k and  plantation  sim-  2 ilarities age  proved worthwhile.  The  R  v a l u e s dropped an  o f s i x p e r c e n t once the c o n t r i b u t i o n  t i o n s was  removed.  aver-  of blocks- and  T h e r e f o r e , an important source of  plantavaria-  t i o n , t h a t would have produced o v e r e s t i m a t e s of c o r r e l a t i o n among the h e i g h t v a r i a b l e s , has  been removed i n t h i s model.  From these r e s u l t s i t can h e i g h t gave a good e s t i m a t e of the will  E.  be c o n c l u d e d t h a t  19 75 h e i g h t .  19 74  Therefore, i f  previous year's height i s a v a i l a b l e , other j u v e n i l e p r o b a b l y add  Interpretation The  little  i n the  model.  of Genotype x Environment  r e s u l t s : i n T a b l e 20  data  Interactions:  show t h a t the; attempt  i n t e r p r e t genotype x environment i n t e r a c t i o n was:  to  unsuccessful  because- the: combined c o n t r i b u t i o n o f a l l f a c t o r s i n the. model was  not  s i g n i f i c a n t (oc=  separating  .05).  Both geographic  distance  progeny from t h e i r p a r e n t s and. t r a n s f e r  seed zones t h e r e f o r e  appear of l i t t l e  progeny performance at a g i v e n Wright  value f o r  across  predicting  location.  (1975) a n t i c i p a t e d  t h a t attempts t o i n t e r p r e t  genotype x environment i n t e r a c t i o n would be u n s u c c e s s f u l . s t a t e d t h a t he has  r a r e l y been able  to i n t e r p r e t t h i s i n t e r -  a c t i o n s u c c e s s f u l l y i n c a s e s where the located: within  150  He  m i l e s of each o t h e r .  plantations  have been  55  Table. 20.  Summary o f genotype x environment i n t e r a c t i o n analysis;  2  V a r i a b l e s (s).  R  Maximum model Latitudinal distance Longitudinal distance Seed zone t r a n s f e r  F.  Heritability  Contribution 0.0.05 20 0.00491 0.00112 0.00009  Partial-F 0.338 0.788 0.056 0.002  N.S. N.S. N..S'. N.S.  Estimation  No attempt was made i n t h i s study t o derive; h e r i t a b i l i t y e s t i m a t e s from t h e w i t h i n - f a m i l y c o r r e l a t i o n s i n t h i s progeny t e s t . future i n t e r e s t .  Work i n t h i s a r e a i s undoubtedly o f  However, t h e author b e l i e v e s t h a t t h e  f o l l o w i n g problems c o u l d b i a s h e r i t a b i l i t y  estimates.  F i r s t l y , t h e o b j e c t i v e s o f t h i s progeny t e s t were to evaluate  t h e growth performance o f progeny from s e l e c t e d '  plus t r e e s , not to estimate genetic abilities.  parameters and h e r i t -  The p a r e n t s were t h e r e f o r e  selected only  the phenotypic extremes i n the p o p u l a t i o n tree selection c r i t e r i a .  s e t by t h e p l u s  As a r e s u l t , t h e p a r e n t s o f t h i s  progeny t e s t would b e p h e n o t y p i c a l l y ,  and l i k e l y g e n e t i c a l l y ,  more s i m i l a r than a random sample o f p a r e n t s . t i o n among t h e f u l l -  from  In t u r n v a r i a -  and h a l f - s i b f a m i l i e s would be reduced  and  heritability  underestimated..  Secondly, t h e a d d i t i v e v a r i a n c e open-pollinated  c a l c u l a t e d from  h a l f - s i b f a m i l i e s would l i k e l y be biased"  upward (Namkoong, 1966; Stonecypher, 1966).  This i s  p r i m a r i l y a t t r i b u t a b l e t o the f a c t t h a t p r o x i m a l l y trees are l i k e l y to repeatedly nal  parent.  p o l l i n a t e t h e known mater-  The progeny would t h e r e f o r e c o n t a i n  t i o n a l l i k e n e s s due t o i n b r e e d i n g be o v e r e s t i m a t e d . geny t e s t should  located"  an a d d i -  and h e r i t a b i l i t i e s  Estimates of h e r i t a b i l i t y  i n this  would pro-  t h e r e f o r e be r e s t r i c t e d t o c a l c u l a t i o n s  involving f u l l - s i b families. T h i r d l y , the s y s t e m a t i c  a l l o c a t i o n of f a m i l i e s  w i t h i n the p l a n t a t i o n s c o u l d b i a s h e r i t a b i l i t y  estimates.  Each f a m i l y , o r t r e e with s i n g l e - t r e e p l o t s , i s surrounded by t h e same common core o f f a m i l i e s .  The t r e e s o f each  f a m i l y therefore experience s i m i l a r competition  which  i n c r e a s e w i t h i n - f a m i l y c o r r e l a t i o n s and h e r i t a b i l i t y mates.  Mather and J i n k s  esti-  (1971) discuss^ t h e importance o f  r a n d o m i z a t i o n i n experiments designed t o e s t i m a t e parameters.  should  genetic  They recommend t h a t r a n d o m i z a t i o n be employed  from the time o f seed g e r m i n a t i o n . 1 6  F a l c o n e r (1960) n o t e s t h a t t h i s argument does not a p p l y t o p a r e n t - o f f s p r i n g r e g r e s s i o n s . . The v a r i a n c e among parents' i s reduced t o t h e same extent as t h e p a r e n t - o f f s p r i n g covariance. Thus, the s l o p e o f t h e r e g r e s s i o n l i n e and h e r i t a b i l i t y remain u n a l t e r e d .  57  CONCLUSIONS AND RECOMMENDATIONS  The  c o n c l u s i o n s drawn from t h i s work a r e summarized  1.  The e x c e l l e n t performance o f t h e f u l l - s i b  below:  and  families,  t h e h a l f - s i b f a m i l i e s from c l o n e banks, demonstrates t h a t  meaningful e a r l y g e n e t i c gains a r e p o s s i b l e from t h e g e n e t i c manipulation 2.  of Douglas-fir. The poor e a r l y performance o f t h e h a l f - s i b f a m i l i e s  from o;pen-pollinated  plus t r e e s , i n d i c a t e s that l i t t l e  genetic  g a i n can i n i t i a l l y be expected from c r o s s i n g s between t r e e s from sympatric 3. parents these  populations.  D i f f e r e n c e s among both t h e h a l f - s i b and f u l l - s i b  were s i g n i f i c a n t .  two groups should 4.  Therefore,  further selection within  produce a d d i t i o n a l g e n e t i c  N u r s e r y measurements were s i g n i f i c a n t l y  gain. correl-  a t e d with h e i g h t performance a f t e r seven growing seasons. These measurements a r e t h e r e f o r e worthy o f f u t u r e c o n s i d e r a t i o n when o l d e r data i s a v a i l a b l e . 5.  I n o n l y one c a s e d i d t h e parents  from t h e same  geographic area rank c l o s e l y i n progeny performance a c r o s s a l l plantations.  Thus, t h e geographic l o c a t i o n o f a p l u s t r e e  offers l i t t l e  i n d i c a t i o n o f i t s breeding  from progeny t e s t i n g remain  important.  v a l u e and t h e r e s u l t s  58 6.. The geographic d i s t a n c e  which s e p a r a t e s progeny  from t h e i r parents? i s ; n o t c o r r e l a t e d : w i t h progeny h e i g h t i n each; p l a n t a t i o n T h e r e f o r e , ,  otherr f a c t o r s : must be: i n v e s t i -  gated! before: one can s u c c e s s f u l l y p r e d i c t progeny/ performance at a. s p e c i f i c l o c a t i o n .  The  author * s: recommendations; concerning:; f u t u r e  manage-  ment and a n a l y s i s o f thx's progeny t e s t are: as follows;;: 1., future  A l l trees  should: be: c l e a r l y tagged t o prevent:  i d e n t i f i c a t i o n problems.  Many of: t h e o r i g i n a l stakes  are; now l o s t o r damaged: and; f u t u r e p r o b a b l y become more d i f f i c u l t  t r e e measurement w i l l  ifc no a c t i o n i s taken a t p r e -  sent. 2.  T h i n n i n g s h o u l d be undertaken as: soon as; c o m p e t i -  t i o n begins; t o a f f e c t : t r e e : v i g o u r . mize: a d d i t i o n a l w i t h i n - f a m i l y systematic 3.  This: would h o p e f u l l y  mini-  c o r r e l a t i o n s c a u s e d by t h e  design. The larger b l o c k s used t o remove t h e w i t h i n  t i o n v a r i a t i o n i n t h i s ; a n a l y s i s ; were; note s a t i s f a c t o r y . a n a l y s e s s h o u l d make: a more r e a l i s t i c  plantaFuture  attempt t o remove s i t e  variation 4.  A s t a n d a r d form f o r a s s e s s i n g  should be used i n t h e future;..  tree  performance  A form d i r e c t l y r e a d a b l e by  keypunchers; would minimize t r a n s c r i p t i o n e r r o r s .  59 5*. The g r e a t importance o f j u v e n i l e - m a t u r e  cor-  r e l a t i o n i n tree-, improvement work makes i t e s s e n t i a l t h a t f u l l ' , and a c c u r a t e  juvenile recorders  be m a i n t a i n e d .  from t h e 19 75 p l a n t a t i o n measurement should stared: f o r f u t u r e use..  therefore  Records be  60  SUMMARY The author b e l i e v e s t h a t two f i n d i n g s i n t h i s s t u d y e s p e c i a l l y demonstrate t h e v a l u e o f t h i s progeny  test.  F i r s t l y , the low performance o f some p l u s t r e e p r o g e n i e s show t h a t p l u s t r e e s e l e c t i o n , based s o l e l y on i n d i v i d u a l phenotypic v a l u e s , i s not a r e l i a b l e i n d i c a t o r o f p a r e n t a l breeding value.  Other more a c c u r a t e indices:, such as mean  progeny performance, a r e t h e r e f o r e r e q u i r e d t o a c h i e v e maximum g e n e t i c g a i n s from each c y c l e o f s e l e c t i o n .  Secondly, the  e x c e l l e n t performance o f c r o s s e s between c l o n e s o f geographically  s e p a r a t e d p l u s t r e e s demonstrates t h e importance o f  h e t e r o s i s t o j u v e n i l e h e i g h t growth. to  I f t h i s trend continues  m a t u r i t y , h y b r i d seed c o l l e c t e d from clone?banks and seed  o r c h a r d s , would possess a d d i t i o n a l g e n e t i c s u p e r i o r i t y o v e r seed c o l l e c t e d from s u p e r i o r phenotypes:; i n n a t u r a l stands o r seed p r o d u c t i o n a r e a s . When one c o n s i d e r s t h e i n c r e a s i n g demands on B r i t i s h Columbia's f o r e s t r e s o u r c e s , progeny t e s t r e s u l t s - s u c h as these become t r u l y v a l u a b l e t o f u t u r e f o r e s t management i n this  province.  61  LITERATURE CITED  Dixon, W. J., and Massey, F. J . , 1969. Introduction to Statistical Analysis. 3rd ed. McGraw-Hill Book Co., New York. 638pp. F a l c o n e r , D. S., 1960. Genetics. The  Introduction to Q u a n t i t a t i v e Ronald P r e s s , New York. 365pp.  G i l b e r t , N., 1967. A d d i t i v e combining a b i l i t i e s f i t t e d to plant breeding data. B i o m e t r i c s 23: 45-49. , 19 73. Biometrical Interpretation. Press, Oxford. 125pp.  Clarendon  Harvey, W. R., 1960. L e a s t - s q u a r e s A n a l y s i s of Data. ARS H-4, U.S.D.A. 157pp. Heaman, J . C , 1967. A Review o f the P l u s Tree S e l e c t i o n Program f o r Douglas F i r i n C o a s t a l B r i t i s h Columbia. B.C.F.S. Research Note No. 44. H i c k s , C. R.,. 1964. Fundamental Concepts i n the Design of , Experiments. H o l t , R i n e h a r t and Winston, New York. 293 pp. K e r l i n g e r , F. N. and Pedhazur, E. J . , 1973. Regression i n B e h a v i o r a l Research. and Winston, New York. 5 34 pp.  Multiple Holt, Rinehart  L e d i g , T., 1974 An a n a l y s i s of methods f o r s e l e c t i o n of t r e e s from w i l d s t a n d s . F o r e s t S c i e n c e 20: 2-16. Lerner,  I . M., 1950. Improvement. and  Li,  P o p u l a t i o n G e n e t i c s and Animal Cambridge U n i v e r s i t y P r e s s . 342pp.  _, 1958. The Genetic B a s i s of S e l e c t i o n . Sons, New York. 298 pp.  Wiley  J . C , 1964. S t a t i s t i c a l I n f e r e n c e I I (The m u l t i p l e r e g r e s s i o n and i t s r a m i f i c a t i o n s ) . Edwards,Brothers I n c . , Ann A r b o r . 5 75pp.  62  Lush, J . I I . , 1945. Animal B r e e d i n g E l a n s . Iowa S t a t e U n i v e r s i t y P r e s s . Ames, Iowa. 443 pp. Mather, K. and J i n k s , J . L., 1971. B i o m e t r d c a l G e n e t i c s . 2nd ed. C o r n e l l U n i v e r s i t y P r e s s . 382 pp. Namkoong, G. 1966. I n b r e e d i n g e f f e c t s on e s t i m a t i o n o f genetic additive variance. F o r e s t S c i e n c e 12: 8-13. Namkoong, G. , Snyder, E:.B. and Stonecypher, R.W., 1966. H e r i t a b i l i t y and g a i n concepts? f o r e v a l u a t i n g b r e e d i n g systems such as s e e d l i n g oxchards. S i l v a e G e n e t i c a 15: 76-84. Orr-Ewing, A. L. , 1958. Plus?-tree s e l e c t i o n f o r Douglas F i r Seed O r c h a r d . B.C.F.-Si. Research Review. 33pp. , 19 7.1. I n t e r - and I n t r a s p e c i f i c C r o s s e s w i t h i n t h e Genus Eseudotsuga. B.C.F".S. Research Review. 14-17.pp. , 19 73. I n t e r - and I n t r a s p e c i f i c C r o s s e s w i t h i n the Genus Pseudotsuqa. B.C.F.S. Research Review, p. 21. . Orr-Ewing, A. L . and S z i k l a i , 0., 1960. P l u s - t r e e S e l e c t i o n f o r Douglas F i r Steed O r c h a r d s . B.C.F.S. Research Review. 26-27 pp. O v e r a l l , J . E. and S p i e g e l , B, K., 1969. C o n c e r n i n g least: squares a n a l y s i s o f e x p e r i m e n t a l d a t a . P s y c h o l o g i c a l B u l l e t i n 72: 311-322. P e t e r s o n , R., 1970. Animal Breeding Notes. Mimeograph. U n i v e r s i t y o f B r i t i s h Columbia. 160 pp. P i r c h n e r , F., 1969. P o p u l a t i o n G e n e t i c s i n Animal B r e e d i n g . T r a n s l a t e d by P i r c h n e r and K r o s i g k . Freeman and Co;.., San F r a n c i s c o . 274 pp. S e a r l e , S.R., 1966. M a t r i x A l g e b r a f o r t h e B i o l o g i c a l Sciences. John W i l e y and Sons, New York. 296 pp. S i g u r d s o n , L. C. , 1971. E a r l y progeny t e s t r e s i t s o f Douglas-fir. KiS.F. t h e s i s . Faculty of Forestry, U.B'.C. 30 pp. and Appendix. Snyder, E. B., 1972. G l o s s a r y f o r F o r e s t Tree Improvement Workers. Revised ed. U.S.D.'.A., F o r e s t S e r v i c e , Southern F o r e s t Experiment S t a t i o n . 22 pp.  63 Sprague, G. F., 1967. Q u a n t i t a t i v e G e n e t i c s of P l a n t Improvement. P l a n t Breeding A Symposium h e l d at Iowa, E d i t o r K. J . F r e y . Iowa S t a t e U n i v e r s i t y P r e s s . Ames, Iowa. 430 pp. Stonecypher, R. W., 1966. E s t i m a t e s of G e n e t i c and Environmental V a r i a n c e s and C o v a r i a n c e s i n a N a t u r a l P o p u l a t i o n of L o b l o l l y Pine (Pinus Taeda L . ) . T e c h n i c a l B u l l e t i n No. 5, Southlands Experiment Forest. Woodlands Department, I n t e r n a t i o n a l Paper Co., B a i n b r i d g e , G e o r g i a . 167 pp. S z i k l a i , 0. Working Plan of C o o p e r a t i v e Progeny T e s t of Douglas-Fir. Unpublished i n f o r m a t i o n r e p o r t , 19 71. U n i v e r s i t y of B r i t i s h Columbia. Wright, J . W. Correspondence with Dr. 0. S z i k l a i , P r o f e s s o r , U n i v e r s i t y of B r i t i s h Columbia. 23 September, 1975. , 19 76. I n t r o d u c t i o n to F o r e s t Academic P r e s s , New York. 463 pp.  Genetics.  64  Appendix I .  F a m i l y numbers o f t h e p a r t i a l d i a l l e l c r o s s .  1  .28 35 36 45 60 63 70 92 118 133 134 15 7 175 177 213 220 353 25  31  28  48  35  49  14  36 45  15 33  55  1  6a  2  61  19  21  20.  22  .':  10  36 44  50  62  53  63  11  82  42  41  87  40  54  114'  3  118  4  125  5  8  9  12  13  145 34 153 37 160  51  16  23  17  24  162  26  16.7  27  172  18  25  175  29  176  39  181  43  196  28  215  30  32  -  38  218  46  223? 35 224  52  232  6  233  7  281  47  45  356 1  Source*  The: numbers: i n the margins s i g n i f y the plus tree 3 thin S z i k l a i t l f 71 5 Y s i g n i f y the f u l l - s i b family. b  t  h  e  b o d  Appendix; II..  Family  1 2 35 4 5 6, 7/ 8 9 10 1112 13 14 15 16: 17 18 19 20 21 22 23 24 25 26 27  Summary of, 19 75 f a m i l y h e i g h t s i n c e n t i m e t r e s  Origin  c.z;. ti it  II  II. H  II. ti ti it it tt ti ti it ti tt II tt it ti i n it i f  B.CF'.J?. ti  Maternal Parent  Paternal Parent  55 60. 1.14 118 125 232 233 118! 118 55 63: 1.18 118 28 36. 153 160 172 36 45. 36. 45 153' 160 172 162 16:7?  45 45 45 45 45 45 45 63 92 118 118 134 175 45 45 45 45 45 92 92 118 118 118 118 118 70 70  :  Mean Height Across A l l P l a n t a t i o n s : (cm.) 114.38 125.59 110.51 126.97/ 13 2..15 96.62 111-04: 101.29 106.7.3 100;. 86 99.81. 101.22. 86..09 10.6.17 107.9 7 108.23 92.88 95.82 102.83 92.65 118 ..9 9 94 ..21 - 105 ..88 9 5..63 10.9.48 113.89 97495  Mean Height p e r P l a n t a t i o n (cm.) Gold River  Courtenay  116.74 136.70: 109.20 125.87 149.69 105.4 7' 118.20 96.21 86.80 87.98 118.97' 85.10 82.20 111.90 109.15 101..58 96..60 90. 75 111..09 90.14 123.52 9 1.28 105 .38 111.76 91.63 108.39 , 89.23  103.77 112.44 106.42 .105.84 105.26 97.65 103.81 96.62 109.05 95.34 89 . 75 98.94 9'7-. 75 88.45' 107:. 76 98.501 75.58 89.22 94.58 86.363 100.08 96.5 7? 100•JO 82.63 101.29 94 . 75 85.31  :  Caycuse:  122.63 127.63 115.88 148.61 141.50 86.74 111 ..13" 111^04 124..36 119.25 90.71 119^.61 78.30 118.16" 107.01 124.59 106.46 107.83 102.80 101.46 133.44 94,78 111.46 92.50 135.54 13 8.55 119.31 1  :  Appendix I I .  Continued  Mean Height p e r P l a n t a t i o n (cm.) -  Family  28 29 30 31 3?2 33; 34 353:6 37 38 39 40; 41 42 43 44; 45 46 47 48 49 50 51 52 53 54  Origin  B.C.F.P. it ii II II  ti II  tt IK  ti  Tansis it  ir it it II  it it ti  Rayonier II  it it ti it  Maternal Parent;  196 175 . 196 25 196 45J 145 223 55 1531 215 176 82 82: 82 181 60 281 218 356 28 35 . 6i: 160 224 62 87  Paternal Parent  70 133 1331 175 175; 28 28 28 15 7 28 355 36 177 70 60 36 177 220 220 , 213 35 35 35 35 35 70 70  Mean Height Across A l l P1 a n t a t i o n s (cm.)  97.91 65.50 69.40 78.93 93.11. 91.16 89.91 103.16 87.48 100.28 80.38 96.55 85.51 102.99 104.24 102.90 102.07 101.61 109 .19 106.60 89.09 94.74 80.3.0; 82.29 98.71 106.92 977.46  Gold River 89.36 79.33 79.02 89.50 85-.24: 1021.0.4 65.87 101.24 78.35 76.47 78.6 7 93.22' 90.50 104.02 107.70 100.29 120.25 116.55 107.35 107.32 82.32 103.67 84V08 73.89 93.48 110.66 102.88  Courtenay/  83.31 71.80 7.0.56 72.80 72.70 87.91 85.81 91.57 92.81 105.59 72.38 74.93 74.52 84.89 76.1484 .95 96.25 84 .02 100.11 974,73 61.81 81.62 69.10 67.24 84 .14 88.72 94.77  Caycuse  121.07 45.39 58.61 74.50 121.39 83.54 118.077 116.68 91.29 118.77 90.10 121..50 91.50 120.07 128.87 123.44 89.53 104.24 120.11 114.76 123.12 98.94 87. 73 105.75 118.52 121.39 94.77  Appendix; I I , .  Family  55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70; 71 72 73 74 75 76 77 78 79 80 81  Continued;  Origin  Maternal Parent  Tan s i s ; C.Z.. t! tl  llr It  '  II It it  Tahsis it II ti it it  i.i-  c z . II  Rayonier B.C.-P.P. Tahs-is ;  36 55 110 134 26 45 160166 93 207 20.8 215 220 226 235 356 unknown  unknown  tt  tt  i f  tt it it  ti ti  II.  "  it  B.C.F. S  Paternal Parent  28 34 43 49  Mean Height Across A l l P l a n t a t i o n s (cm.)  (  126.17 118.93 106.73 115.47 116.92 116.28 93.26 105-977 113.13 76.91 105.36 9 2..11 105.1.9 113.09 104.63 113.84 89.88 88.59 70:.34 78.80 86.37 81..23 91.63 88.22 89.93 89.57 87.21  Mean Height p e r P l a n t a t i o n (cm.) Gold River  Courtenay  131.74 100.03 83.53 95.50 109.32 101.92 96.62 114.86 130.56 73.31 98.89 9 7 . 4 7/ 99.09 139.45 95.08 120.98 97.57 99.54 71.74 68.48 94.07 71.27 71.38 8 0 . 0 0 -' 77.62 9 63.. 2 8 67.94  108.25 110.56 91.75 94.15 97.32 103.27 79.91 86.22 87.50 877.69 100.62 87.58 92.95 84.61 105,08 83.92 67.16 65.42 62.91 64.39 67.13 76.23 84.25 89.29 78.84 84.78 81.97  Caycuise  138.53 146.20 144.92 156.76 144.12 143.64 103.26 116.86 121.32 69.72 116.58 91.29 123.5 3 115.22 113.73 136.55 104.92 100.83 76.39 103.54 97.92 96.20 124.27 95.35 113.31 87.66 111.72  Appendix  Family  82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99  IX.« Continued:  Origins  B . C.:F . S .  "  Itr II-  " II  b.r.  Maternal!. Pa rent-  es 69 70 76 96 114 153 162165 172 1.777 223 224 95 158 351 445: unknown  signifies s p r i n g ; p l a n t i n g ; stoeJc.  Paternal Parent  unknown It!  ir tt-  in in  II  Mean Height Across A l l P l a n t a t i o n s (cm.).  91.29 79.07 96.25 92.55 68.0:7 96.35 78.59 82.58 90.47 977.36 81.83 101.03 93.14 88.94 77.02 75.50 54.41 81.72  Mean Height; p e r P l a n t a t i o n (cm.). Gold River 71.94 7 3~. 74 9 4 ..02 7,7.26 78.00 86.41 8 3 . 75 79.20 88.45 70.75 104.88 84.78 82 . 2 2 7 6 . 06 57.89 66:.81 51.61 79.60  Courtenay  Caycuse  80.33 77.37 79.85 76.81 55.17 83.81 73.38 70.98 68.22 76.66  121.61 86.11 114.89 123.58 71.05 118.84 78.64 97.59 114.75 144.51  677.31  86.95 84.94 75.65 60.62 51.26 66.15 70.94  73.3a  131.3B 112.25 115.12: 112.56 108.44 45.50* 94.63  a 27+0 bare root, f a m i l y which; was selected: from each company's  Appendix I I I . . D i s t r i b u t i o n o f the w i t h i n c e l l v a r i a t i o n two randomly s e l e c t e d f a m i l i e s from each plantation  60  80  100  120  1975  tree height  65  140  85  160  85 1975  105  (cm.)  105  19 75 t r e e h e i g h t  65  180  125  tree height  125 (cm.)  145 (cm.)'  200  220  Appendix I I I . Continued  55  75  95  115  1975  tree height  75  95  1975  tree height  45  65  135  155  (cm.)  ue cy  4 c  0)  3 2 1 0 115  135  155  175  (cm.)  4  re ue  u c  3 2  o*  1 0 1975  85  105  tree height  125 (cm.)  145  Appendix I V .  U n i v e r s i t y o f B r i t i s h Columbia p l u s t r e e l o c a t i o n  Source: F o r e s t r y  302 l e c t u r e notes- (1966)  map  72 Appendix  1.  V.  C h i - s q u a r e a n a l y s e s o f t r e e c o n d i t i o n among; f a m i l y types;, and p l a n t a t i o n s  Chi-square^ c a l c u l a t i o n f o r f a m i l y type  Family/ Type:  Observed  (OX  differences  ExpectedL CE).  Fulll-sib H a l f - s i b . (c.b..) H a l f - s i b (p.t.) Control  1950; 580 591 275  1833.84 543.3:6 713.16 305 ..64  Total  3396  3396.00  a  (0-E.X /E. 2  7.36 2.47 , 20.93 3..07 X=  33.83  l  b  The; expected, numbers o f trees; were c a l c u l a t e d from; the number o f t r e e s p l a n t e d w i t h i n f a m i l y type times mean s u r v i v a l o f a l l f a m i l y types (0..6792X. 1  V  = 11.34, d . f .• = 3  A..01  2.  Chi«-square: c a l c u l a t i o n f o r  plantation differences  Plantation  Ob served! (0)  Gold R i v e r Courtenay Caycuse  1112 1456; 828  1086.72. 1222.56 1086.72  Total  3396  3396.00  Expected"; ( E )  A  (O-E;) /E 2  0.59 44;. 5 7 61.59 J= 2  106.75  b  ^ h e expected, numbers o f t r e e s were; c a l c u l a t e d from t h e number o f t r e e s planted: w i t h i n p l a n t a t i o n t i m e s mean s u r v i v a l i n a l l p l a n t a t i o n s (0.6792);. b  ^jbi  =  9  -  2 1  » ' d  , f # =  2  73  Appendix V.  3.  Continued  Contingency t a b l e c a l c u l a t i o n t o determine i f f a m i l y type and p l a n t a t i o n e f f e c t s are independent  Plantation Gold  F a m i l y Type  River  Full-sib Half-sib Half-sib Control Full-sib Half-sib Half-sib Control Full-sib Half-sib Half-sib Control  Courtenay  Caycuse  Observed(OX Expected (E)  (c.b.) (p.t.) (c.b.X (P, t e ) (c.b.) (p.t.)  666 189 175 82 810 241 2 78 12 7 4 74 150 138 66 3396  Total /  X^  0 1  = 16.81, d . f . =  (plantations  (0--E)) /E 2  63B.51 189.91 193.52 90.04 836.04 248.67 25 3.39 117.90 475.44 141.41 144.10 6 7.. 05 3:356.o  1.18 0.00 1.77 0.71 0.81 0.24 2.39 0.70 0.00 0.52 o:.26 0.02  ;  X = 8.60 z  - 1)* (family (  a  types - 1)  74  AppendxxVT..  Tree c o n d i t i o n c l a s s i f i c a t i o n study.  Class  used i n  this  1  Tree  Condition  0  Dead or  1  Weak—probably w i l l survive  not  2  Slightly  forked  3  Healthy  4  Weak and  5  Badly browsed  6  Badly  7  Badly f o r k e d and chlorotic  8  Data not  9  Poor m i c r o s i t e  missing  browsed o r  damaged  forked browsed;  understandable  Those t r e e s c l a s s i f i e d as 2 or 3 were i n c l u d e d i n the l e a s t squares a n a l y s e s .  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0075299/manifest

Comment

Related Items