UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Hillslope hydrology in the Rennell Sound area of the Queen Charlotte Islands Tyler, John Dawes 1995

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_1995-0078.pdf [ 6.02MB ]
Metadata
JSON: 831-1.0075188.json
JSON-LD: 831-1.0075188-ld.json
RDF/XML (Pretty): 831-1.0075188-rdf.xml
RDF/JSON: 831-1.0075188-rdf.json
Turtle: 831-1.0075188-turtle.txt
N-Triples: 831-1.0075188-rdf-ntriples.txt
Original Record: 831-1.0075188-source.json
Full Text
831-1.0075188-fulltext.txt
Citation
831-1.0075188.ris

Full Text

HILLSLOPE HYDROLOGY IN THE RENNELL SOUND AREA OF THE QUEEN CHARLOTTE ISLANDS  by  JOHN DAWES TYLER  B.Sc. Lewis and Clark College, 1987  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE  in  THE FACULTY OF GRADUATE STUDIES (Faculty of Forestry)  We a c c e p t t h i s t h e s i s as conforming t o the r e q u i r e d s t a n d a r d s  THE UNIVERSITY OF BRITISH COLUMBIA January 12th, 1995 © John Dawes Tyler 1995  In  presenting  degree  this  at the  thesis  in  University of  partial  fulfilment  of  of  department  this or  thesis for by  his  or  scholarly purposes may be her  representatives.  permission.  The University of British Columbia Vancouver, Canada  (2/88)  for  an advanced  Library shall make  it  agree that permission for extensive  It  publication of this thesis for financial gain shall not  DE-6  requirements  British Columbia, 1 agree that the  freely available for reference and study. I further copying  the  is  granted  by the  understood  that  head of copying  my or  be allowed without my written  ABSTRACT  T h i s experiment was  designed  t o study the h y d r o l o g i c  response of three f i r s t order watersheds to the inputs of p r e c i p i t a t i o n , e s p e c i a l l y those inputs r e c e i v e d during storm events. The study was  conducted i n the Gregory Creek  watershed i n the Rennell Sound area of the Queen C h a r l o t t e Islands. There were s i x data c o l l e c t i o n s i t e s , two three sub-basins. Groundwater l e v e l s and  i n each of  surface flow were  monitored over an 82 day p e r i o d from November 26th, 1991 February 15th,  1992.  to  P r e c i p i t a t i o n data were c o l l e c t e d over a  40 day p e r i o d from November 26th, 1991  t o January 4th  1992.  The data were analyzed by comparing p r e c i p i t a t i o n data t o groundwater l e v e l s and s u r f a c e flow u s i n g t i m e - s e r i e s and regression analysis.  Storm p r e c i p i t a t i o n was  groundwater l e v e l s and s u r f a c e flow  compared t o  ( f o r the same time as  the  storm event). I n c l u d i n g antecedent p r e c i p i t a t i o n i n t h i s analysis  d i d not i n c r e a s e the number of s i g n i f i c a n t  regressions  relationships.  Time-series a n a l y s i s  r e v e a l e d strong  correlations  between groundwater l e v e l s at w e l l s w i t h i n the same s i t e . two  The  s i t e s i n watershed number one produced more s i g n i f i c a n t  r e l a t i o n s between storm p r e c i p i t a t i o n and groundwater response than watersheds two and three when analyzed time-series  analysis.  using  The watershed that produced s i g n i f i c a n t r e s u l t s t i m e - s e r i e s a n a l y s i s d i d not produce s i g n i f i c a n t results. Alternatively,  regression  one watershed which d i d not produce  s i g n i f i c a n t time-series results regression  using  d i d produce s i g n i f i c a n t  results.  Mean groundwater l e v e l changes during storm events were s i g n i f i c a n t l y g r e a t e r a t t h e upper s i t e i n one watershed, t h e lower s i t e i n another and i n c o n s i s t e n t i n the t h i r d . There was a wide range i n the mean time t o peak f o r a l l s i t e s during storm events (5.6 h r - 12.1 h r ) , but the d i f f e r e n c e s were not s t a t i s t i c a l l y  significant.  An a n a l y s i s o f covariance i n d i c a t e d that t h e r e was n o t a common r e g r e s s i o n equation that d e f i n e d the r e l a t i o n o f changes i n groundwater l e v e l s o r time t o peak during storm events f o r a l l three watersheds i n t h e study. I t i s hypothesized that the d i f f e r e n c e s between s i t e s and watersheds may be a r e s u l t o f i n d i v i d u a l geologic characteristics location.  differences i n  a t each s i t e and instrument  TABLE  OF  CONTENTS  ABSTRACT  i i  TABLE OF CONTENTS  iv  LIST OF TABLES  ix  LIST OF FIGURES  xi  1 INTRODUCTION  1  1.1 Objectives  2  2 LITERATURE REVIEW  4  2.1 I n t r o d u c t i o n To The L i t e r a t u r e Review  4  2.2 H i l l s l o p e H y d r o l o g i c a l C y c l e s  4  2.3 Runoff Processes  8  2.4 Groundwater F l u c t u a t i o n s  13  2.5 Peak Flows  19  2.6 Mass Wasting  19  3 STUDY AREA  22  3.1 I n t r o d u c t i o n  22  3.2 Geology and Physiography  22  3.3 Climate  26  3 .4 v e g e t a t i o n  27  3.5 S i t e D e s c r i p t i o n  29  iv  4 METHODS  34  4.1 Instrumentation  34  4.2 D e s c r i p t i o n Of The Data C o l l e c t e d  37  4.3 S t a t i s t i c a l Tests Performed On The Data  39  4.3.1 Time-series A n a l y s i s  42  4.3.2  45  Regression A n a l y s i s 4.3.2.1 Storm R i s e And P r e c i p i t a t i o n Analysis  46  4.3.2.2 Storm R i s e And Time To Peak Analysis  47  4.3.3 A n a l y s i s Of Covariance 4.3.4  47  Student-Newman-Keuls M u l t i p l e Range Test Of Means  48  5 RESULTS  49  5.1 Time-Series A n a l y s i s  49  5.1.1 Within S i t e Comparisons 5.1.2  Comparing The 40 Day  49  Precipitation  Record To Groundwater And Surface Flow Response 5.1.3  50  Comparisons Of Storm P r e c i p i t a t i o n And Groundwater And Surface Flow Response  51  5.2 Storm Rise And P r e c i p i t a t i o n  52  5.3 Storm R i s e . A n a l y s i s  55  v  5.3.1 Storm R i s e Comparisons Between The Upper And Lower S i t e s In The Same Watershed  55  5.3.1.1 Watershed #1  55  5.3.1.2 Watershed #2  55  5.3.1.3 Watershed #3  59  5.3.2 A n a l y s i s Of Covariance  Between  Storm Rise At The Upper And Lower S i t e s I n Each Watershed, And Between Watersheds  60  5.3.3 Mean Storm Rise Comparisons Between The Upper And Lower S i t e s I n The Same Watershed  60  5.3.3.1 Watershed #1  60  5.3.3.2 Watershed #2  61  5.3.3.3 Watershed #3  62  5.4 Time To Peak A n a l y s i s  62  5.4.1 Time To Peak Comparisons Between The Upper And Lower Slope S i t e s I n The Same Watershed  62  5.4.2.2 Watershed #2  62  5.4.2.2 watershed #2  63  5.4.1.3 watershed #3  63  vi  5.4.2 A n a l y s i s Of Covariance Between Time To Peak At The Upper And Lower S i t e s In Each Watershed, And Between Watersheds  64  5.4.3 Mean Time To Peak Comparisons Between The Upper And Lower S i t e s In The Same Watershed  64  5.4.3.1 Watershed #1  64  5.4.3.2 Watershed #2  65  5.4.3.3 Watershed #3  65  5.5 P r e c i p i t a t i o n A n a l y s i s  66  5.5.1 Comparison of A.E.S. and Gregory Creek P r e c i p i t a t i o n Records  6 SUMMARY AND DISCUSSION  66  69  6.1 Summary  69  6.2 D i s c u s s i o n of Results  70  6.3 Recommendations  74  REFERENCES  77  APPENDIX l . Hourly Groundwater, Surface Flow and P r e c i p i t a t i o n Data Graphed By S i t e  82  APPENDIX 2. Hourly Groundwater L e v e l s By S i t e And Storm  92  vii  APPENDIX 3. Storm R i s e During E l e v e n Storm Events In Meters  104  APPENDIX 4. Time To Peak F o r Storm Events In Hours  106  APPENDIX 5. Peak P r e c i p i t a t i o n I n t e n s i t y C o r r e l a t e d With Peak Groundwater L e v e l , Surface Flow and Quick Flow  108  APPENDIX 6. Results Of Covariance A n a l y s i s For Storm R i s e  112  APPENDIX 7. Results Of Covariance A n a l y s i s For Time To Peak  115  APPENDIX 8. Cross C o r r e l a t i o n Of Storm P r e c i p i t a t i o n and Quick Flow and Groundwater Response  viii  118  LIST  OF TABLES  TABLE  5.1.1.  PAGE  Cross C o r r e l a t i o n Of Hourly Groundwater L e v e l s Within S i t e s A, B and C  5.1.2.  50  Cross C o r r e l a t i o n Between The 40 Day P r e c i p i t a t i o n Record And Groundwater And Surface Flow Response  51  5.2.1.  Regressions Of Storm R i s e And P r e c i p i t a t i o n  53  5.2.2.  Regressions Of Storm Rise And P r e c i p i t a t i o n Plus Antecedent P r e c i p i t a t i o n  5.3.1.1.  Regressions Of Storm R i s e Between The Upper And Lower S i t e s In The Same Watershed  5.3.3.  61  Regressions Of Time To Peak Between The Upper And Lower S i t e s In The Same Watershed  5.4.3.  59  S t a t i s t i c a l S i g n i f i c a n c e Of D i f f e r e n c e s I n Mean Storm Rise  5.4.1.  54  63  S t a t i s t i c a l S i g n i f i c a n c e Of D i f f e r e n c e In Mean Time To Peak  65  ix  5.5.1. C o e f f i c i e n t s Of Determination For Regressions Of M i t c h e l l I n l e t , Sandspit A i r p o r t And Sewell I n l e t P r e c i p i t a t i o n On Gregory Creek P r e c i p i t a t i o n , Lagged Hourly  67  APPENDIX 2. Hourly Groundwater L e v e l s By S i t e And Storm  92  APPENDIX 3. Storm Rise During Eleven Storm Events In Meters  104  APPENDIX 4. Time To Peak For Storm Events In Hours  APPENDIX 5. Peak P r e c i p i t a t i o n I n t e n s i t y  106  Correlated  With Peak Groundwater L e v e l , Surface Flow and Quick Flow  108  APPENDIX 6. Results Of' Covariance A n a l y s i s For Storm R i s e  112  APPENDIX 7. Results Of Covariance A n a l y s i s For Time To Peak  115  APPENDIX 8. Cross C o r r e l a t i o n Of Storm P r e c i p i t a t i o n and Quick Flow and Groundwater Response  x  118  LIST  OF FIGURES  FIGURE  PAGE  1.  Map o f  Rennell  2.  Map o f  the  physiographic  3.  Map o f  the  spatial  the  Sound and G r e g o r y Creek  regions  variation  Queen C h a r l o t t e  of  of  23  Graham I s l a n d  precipitation  in  Islands  4.  T o p o g r a p h i c map o f  5.  Legend f o r  Figure 4  6.  Diagram of  slope profile,  the  28  study  area  30  31  w a t e r s h e d #1  sites  A and D  7.  32  Diagram of  slope  profile,  w a t e r s h e d #2  sites  B and E  8.  24  32  Diagram of  slope  w a t e r s h e d #3  profile,  sites  C and F  33  9.  Map o f  instrument  10.  Diagram,  location  Illustrating  by  site  Storm Rise  xi  and watershed  and Time t o  Peak  35  40  11.  Map  12.  Diagram of a Correlogram  13.  Regression of storm r i s e watershed #1 A 2  14.  17.  sites  and D  56  sites  and E  57  sites  and E  57  and  sites 58  P  Regression of time t o peak watershed #3 C 2  19.  56  Regression of storm r i s e watershed #3 C 2  18.  sites  and D  Regression time t o peak watershed #2 B2  41  44  Regression of storm r i s e watershed #2 B2  16.  Stations  Regression of time t o peak watershed #1 A 2  15.  of Atmospheric Environment  sites  and F  58  Regression r e s u l t s of M i t c h e l l I n l e t , Sandspit a i r p o r t and Sewell I n l e t p r e c i p i t a t i o n h o u r l y with Gregory Creek p r e c i p i t a t i o n  xii  lagged 68  APPENDIX  1. Hourly Groundwater, Surface Flow and P r e c i p i t a t i o n Data Graphed By S i t e  xiii  82  1  INTRODUCTION  T h i s study was conducted  i n t h e Gregory Creek watershed  i n the Rennell Sound area on the West coast of the Queen C h a r l o t t e I s l a n d s . Much of t h i s area i s s t e e p l y s l o p i n g , g e o l o g i c a l l y a c t i v e and the processes of e r o s i o n and mass movement a r e ongoing. The Rennell Sound area i s h e a v i l y f o r e s t e d w i t h h e a l t h y and economically v a l u a b l e stands of climax f o r e s t . The area a l s o supports a v a r i e t y of e c o l o g i c a l l y v a l u a b l e p l a n t s and animals. A problem f a c i n g management agencies and f o r e s t operators i s how t o access t h i s r i c h timber resource without compromising c u r r e n t and f u t u r e f o r e s t and f i s h e r i e s p r o d u c t i v i t y . Experience has shown that f o r e s t h a r v e s t i n g may have a negative impact  on the hydrology of small watersheds. Some of  the c h a r a c t e r i s t i c s common t o areas h e a v i l y impacted by f o r e s t h a r v e s t i n g i n c l u d e : steep slopes, shallow m i n e r a l covering bedrock, and l a r g e amounts of annual  soil  precipitation  (Carr, 1983). Timber removal changes the timing, q u a n t i t y and q u a l i t y of water produced by a watershed. Harvesting may cause the water t a b l e t o r i s e and t o t a l stream discharge and peak stream flows t o i n c r e a s e (Golding, 1987; Troendle, 1987). The geomorphic processes of e r o s i o n and mass movement are o f t e n a c c e l e r a t e d f o l l o w i n g logging i n t h e Rennell Sound area  (Schwab, 1983) . L a n d s l i d e s and d e b r i s t o r r e n t s can  r e s u l t , which may have a negative impact on stream  1  channels  and c r i t i c a l f i s h h a b i t a t  (Wilford and Schwab, 1982;  Carr,  1983). T h i s study was  undertaken as p a r t of the F i s h / F o r e s t r y  i n t e r a c t i o n Program (FFIP). T h i s m u l t i - d i s c i p l i n a r y research program was  created i n 1981  to study f i s h / f o r e s t r y i s s u e s i n  the Queen C h a r l o t t e Islands, s p e c i f i c a l l y the Rennell Sound area. The program was s t a r t e d f o l l o w i n g a s e r i e s of major winter storms i n 197 8 that t r i g g e r e d l a n d s l i d e s over much of the Queen C h a r l o t t e Islands f o r e s t l a n d base. O r i g i n a t i n g on steep slopes, many of the s l i d e s deposited tonnes of d e b r i s i n streams and on v a l l e y f l a t s . The events r a i s e d p r i v a t e and p u b l i c concerns over logging p r a c t i c e s on the Islands and prompted the establishment of the 5-year program. O v e r a l l o b j e c t i v e s of FFIP were: • to study the extent and s e v e r i t y of mass wasting and t o assess i t s impacts on f i s h h a b i t a t and f o r e s t sites. • to i n v e s t i g a t e the f e a s i b i l i t y of r e h a b i l i t a t i n g streams and f o r e s t s i t e s damaged by l a n d s l i d e s . • to assess a l t e r n a t i v e s i l v i c u l t u r a l treatments f o r maintaining the improving slope s t a b i l i t y . • t o i n v e s t i g a t e the f e a s i b i l i t y and success of u s i n g a l t e r n a t i v e logging methods, i n c l u d i n g s k y l i n e s and h e l i c o p t e r s , and by logging planning t o reduce logging r e l a t e d f a i l u r e s . (Hogan and Schwab, 1990, p . i i i ) .  1.1  Objectives  Because i t has been proven that f o r e s t h a r v e s t i n g  may  have a negative impact on the hydrology of a watershed by a l t e r i n g the timing, i n c r e a s i n g the quantity, and  decreasing  the q u a l i t y of water produced by the watershed, e f f o r t s are  2  being taken t o f i n d l e s s d e t r i m e n t a l forms of timber and removal. One  harvest  a l t e r n a t i v e being explored i n the Rennell  Sound area of the Queen C h a r l o t t e Islands i s h e l i c o p t e r l o g g i n g . In comparison t o more conventional methods of  timber  harvest and removal, h e l i c o p t e r logging does not r e q u i r e extensive road b u i l d i n g or the use of cable y a r d i n g . The o r i g i n a l o b j e c t i v e of t h i s p r o j e c t was  t o compare  the response of groundwater l e v e l s , and stream discharge t o the inputs of p r e c i p i t a t i o n , before and a f t e r timber and removal. Two  harvest  types of y a r d i n g systems and two amounts of  timber removal were t o be compared. F a i l u r e of monitoring equipment during the second year of t h i s p r o j e c t l e f t an incomplete  data record, making  comparative a n a l y s i s between years impossible. Consequently, the o b j e c t i v e of t h i s p r o j e c t became a comparison of groundwater response and s u r f a c e flow t o inputs of p r e c i p i t a t i o n i n three f i r s t - o r d e r watersheds. Groundwater and surface flow data were c o l l e c t e d over an 82 day p e r i o d , from November 26th 1991  t o February  15th 1992.  Precipitation  data were c o l l e c t e d over a 40 day p e r i o d from November 26th 1991  t o January 5th  1992.  3  2  LITERATURE  21 .  REVIEW  Introduction To L i t e r a t u r e Review  T h i s l i t e r a t u r e review addresses the t o p i c s of runoff processes, groundwater l e v e l s , h i l l s l o p e h y d r o l o g i c a l c y c l e s , peak flow, and mass wasting. Previous work done i n these areas provides a good background f o r addressing the o b j e c t i v e s and research questions of t h i s p r o j e c t .  22 .  H i l l s l o p e Hydrological Cycles  H i l l s l o p e hydrology i s concerned with the p a r t i t i o n of precipitation  as i t passes through v e g e t a t i o n and s o i l as  e i t h e r overland flow o r subsurface flow. There a r e many routes water may t r a v e l , each d e l a y i n g the flow t o d i f f e r e n t extents. A knowledge of t h e r e l e v a n t mechanisms i n v o l v e d i n the process i s important t o understanding h i l l s l o p e  hydrology  (Kirkby, 1988). S i x t y one years ago Horton o u t l i n e d i n f u l l the c l a s s i c model of h i l l s l o p e hydrology i n terms of h i s i n f i l t r a t i o n theory of r u n o f f . C e n t r a l t o h i s theory was t h e i d e a that the s o i l s u r f a c e a c t s as a s i e v e which separates r a i n f a l l i n t o two b a s i c components, overland flow and groundwater flow (Chorley, 1978). Advances i n the f i e l d , of h i l l s l o p e hydrology i n the l a s t twenty f i v e years have tended t o sever many of the t r a d i t i o n a l l i n k s between overland flow and t h e u n i t  4  hydrograph, and have tended t o promote the idea that i n f i l t r a t i o n c a p a c i t y i s seldom a l i m i t i n g f a c t o r as promoted by Horton (Hewlett, L u l l and Reinhart, 1969). Recent models of h i l l s l o p e hydrology tend t o take i n t o account more complex i n t e r a c t i o n s than those of the past, but there i s s t i l l a need t o respond t o the v a r i e t y of c l i m a t i c responses, the s p a t i a l v a r i a b i l i t y on and beneath the surface, and the r o l e of seepage macropores and pipes which c a l l i n t o question whether h i l l s l o p e s can be t r e a t e d as Darcian flow systems (Kirkby, 1988). I t i s apparent that a runoff model that takes adequate account of the work which has been completed s i n c e the i n t r o d u c t i o n of Horton"s c l a s s i c work has not y e t been introduced, but i s s t i l l awaited (Chorley, 197 8). S o i l can be viewed as a matrix f o r the movement and storage of water. I t can be d e f i n e d as a heterogeneous c o l l e c t i o n of fragments of i n o r g a n i c matter of v a r i o u s s i z e s and m i n e r a l o g i c composition, as w e l l as organic m a t e r i a l s , air  and water (Knapp, 1978). The s t r u c t u r a l u n i t s of a s o i l  may vary i n s i z e and i n t e r n a l composition due t o a number of f a c t o r s , i n c l u d i n g , most importantly, p a r t i c l e s i z e d i s t r i b u t i o n or t e x t u r e . S o i l s which are uniform i n t h e i r storage and t r a n s m i s s i o n of water should be viewed as an exception, and not the standard (Knapp, 1978). Summarizing the work on uniform s o i l s l a b models, t h e o r e t i c a l c o n s i d e r a t i o n s , l a b o r a t o r y and computer a s s i s t e d models r e v e a l f i v e s i g n i f i c a n t p o i n t s :  5  1)  A f t e r drainage the moisture content of the slope i s highest a t the base and p r o g r e s s i v e l y lower towards the top. Moisture d e f i c i t s are thus lowest a t the slope base where f u r t h e r i n f i l t r a t i o n w i l l cause s a t u r a t i o n (and hence overland flow) most quickly.  2)  The t h i n n e r the s o i l the smaller the / sum r e q u i r e d t o s a t i s f y the moisture d e f i c i t i&s -01) and cause s a t u r a t i o n . The t h i n n e s t s o i l s , however, tend t o be at the top of a h i l l s i d e where slopes are convex and conducive t o r a p i d drainage (shedding s i t e s ) .  3)  S t r a t i f i e d s o i l s d r a i n d i f f e r e n t l y than those w i t h uniform s o i l p r o p e r t i e s . An impeding l a y e r can cause a r e s t r i c t i o n i n water d i s t r i b u t i o n r e s u l t i n g i n the development of temporary water t a b l e s w i t h i n the s o i l . These perched water t a b l e s may g i v e r i s e t o more r a p i d s a t u r a t e d c o n d i t i o n s at the s u r f a c e and i n i t i a t e overland flow.  4)  I n f i l t r a t i o n occurs a t a l l p o i n t s on a h i l l s i d e where the moisture content i s l e s s than the s a t u r a t i o n v a l u e .  5)  On a r e a l h i l l s i d e these p a t t e r n s of response w i l l be a f f e c t e d by v a r i a b i l i t y i n s o i l depth, s o i l h y d r a u l i c p r o p e r t i e s and s l o p e . . . the movement of water i s determined by pressure (suction) and g r a v i t y g r a d i e n t s . H i l l s i d e s are normally convex-concave i n p r o f i l e . Because the top of the upper convex s e c t i o n and the base of the lower concave slopes are the l e a s t steep p a r t s of the h i l l s i d e , r e - d i s t r i b u t i o n w i l l be slowest a t these p o i n t s and moisture contents w i l l a t t a i n h i g h values before other sloped r e g i o n s . . . The tendency towards an i n c r e a s e i n f i n e s on the lower slope reduces t h e i r p e r m e a b i l i t y and promotes ponding of water and consequently overland flow a t higher l e v e l s on the h i l l s i d e . (Knapp, 197 8)  1  1  I n f i l t r a t i o n rate  2  Volumetric moisture content  6  Subsurface flow p l a y s an important r o l e i n h i l l s l o p e hydrology. Understanding how  water flows w i t h i n the  soil  gives a b e t t e r understanding of the processes a t work and the system as a whole. During a rainstorm, a t l e a s t some of the water enters the s o i l and p e r c o l a t e s downwards, r a i s i n g  soil  moisture content as i t goes. Unless the r a t e of i n f i l t r a t i o n exceeds the c a p a c i t y of the s o i l , t h i s p e r c o l a t i n g water doesn't produce l a t e r a l flow. There may be  localized  s a t u r a t e d flow down root channels, animal burrows o r down shrinkage cracks (Whipkey and Kirkby, 197 8). As water flows i n t o the s o i l ,  it  passes through a s e r i e s of s t o r e s that  d e l a y i t f o r d i f f e r e n t amounts of time depending on the i n d i v i d u a l c h a r a c t e r i s t i c s of each. The b a s i n hydrograph  is  l i k e l y t o r e f l e c t the response time of the slowest s t o r e (Whipkey and Kirkby, 1978). The p o s i t i o n of a measurement s i t e on a h i l l s l o p e or an instrument w i t h i n a measurement s i t e i s l i k e l y t o have a major e f f e c t on the amount of subsurface flow which i s observed. Important  f a c t o r s i n f l u e n c i n g the amount of  subsurface flow which i s observed i n c l u d e d i s t a n c e from the d i v i d e and gradient of the s l o p e . Both the slope p r o f i l e convexity or c o n c a v i t y and the convergence or divergence of flow l i n e s i n f l u e n c e flow r a t e s (Whipkey and Kirkby, 197 8). The f o l l o w i n g s e c t i o n s present more d e t a i l e d reviews of s t u d i e s which have examined s p e c i f i c components of the h i l l s o p e h y d r o l o g i c a l c y c l e , namely runoff, groundwater f l u c t u a t i o n s and peak flows.  7  2.3 Runoff Processes  Most researchers w i l l agree that there a r e two components of streamflow, quick flow and base flow. These can be d e f i n e d i n terms of t h e i r time of turnover (input t o output). The immediate response of streamflow t o p r e c i p i t a t i o n i n d i c a t e s that a t l e a s t some p r e c i p i t a t i o n takes a r a p i d route t o the stream channel  (quick flow), and  as demonstrated by continuous flow during extended d r y periods, t h e r e a r e other routes that d e l i v e r water t o the stream channel over extended time p e r i o d s (base flow)  (Ward,  1984) . These components can be f u r t h e r d e f i n e d i n terms of the flowpaths that p r e c i p i t a t i o n w i l l take t o the stream channel. Some of these paths may take l e s s time than o t h e r s . P r e c i p i t a t i o n may a r r i v e i n the stream channel by 1)  falling  d i r e c t l y onto the channel surface, 2) overland flow, 3) shallow subsurface flow (through flow) and 4) deep subsurface flow (groundwater  flow)  (Ward, 1984).  Beven (1983) suggested that t h e current g e n e r a t i o n of p h y s i c a l l y based models of p r e c i p i t a t i o n and runoff a r e inadequate because they a r e not good d e s c r i p t o r s of t h e runoff process, except under s p e c i a l circumstances. H i s work on runoff generation suggests that the s p a t i a l v a r i a b i l i t y of s o i l c h a r a c t e r i s t i c s , and the p h y s i c a l c h a r a c t e r i s t i c s of i n d i v i d u a l b a s i n s make i t p a r t i c u l a r l y d i f f i c u l t t o apply p h y s i c a l l y based models of hydrology t o what has been  8  observed i n the f i e l d . These d i f f i c u l t i e s are compounded by the f a c t that every b a s i n i s c o n s t a n t l y changing over time, a f a c t that i s not o f t e n recognized i n current h y d r o l o g i c a l research. Runoff does not n e c e s s a r i l y occur over an e n t i r e drainage b a s i n during a storm, but i n s t e a d i t may  occur over  p a r t s of a b a s i n during a storm, that i s , anywhere that r a i n f a l l i n t e n s i t y exceeds the i n f i l t r a t i o n c a p a c i t y of the s o i l . T h i s l e d Betson and Marius partial-area  concept.  (1964) t o develop the  T h i s model attempts t o d e s c r i b e how  volumes of overland flow may vary with storm s i z e , and the f a c t o r s a f f e c t i n g i n f i l t r a t i o n  intensity,  (Dunne and Leopold,  197 8) . In areas that have h i g h i n f i l t r a t i o n r a t e s , the s o i l c h a r a c t e r i s t i c s a f f e c t the runoff p a t t e r n s . There a r e some assumptions  that can be made about areas that have these  characteristics. First,  s o i l moisture content w i l l i n c r e a s e  with d i s t a n c e downslope; near the base of the slope the s o i l moisture content w i l l be comparatively higher than a t the upper slope, and as rainwater i n f i l t r a t e s water w i l l soon be d i s p l a c e d i n t o the s a t u r a t e d zone. Secondly, as the water t a b l e r i s e s i t w i l l extend as a wedge from the base of the slope upwards as the amount of water e n t e r i n g the s o i l increases. Hewlett created the variable  source  area concept of  watershed r u n o f f . I t i s e s s e n t i a l l y the same as Betson's p a r t i a l - a r e a concept, but Hewlett seems t o have r e c e i v e d the  9  c r e d i t f o r developing the theory which i s now  recognized as  one of the most important advances i n modern hydrology.  This  model s t a t e s that most of the time, only p a r t of a watershed i s a c t i v e l y generating runoff i n response to p r e c i p i t a t i o n or snowmelt. The s i z e of the area which i s generating runoff grows during r a i n storm events o r snowmelt, and s h r i n k s i n s i z e a f t e r inputs are reduced. T h i s i s s a t u r a t i o n overland flow from depressions and low l y i n g areas, and not  Hortonian  overland flow (Hewlett and Hibbert, 1967). P r i o r t o a storm event, or a f t e r a long dry s p e l l ,  water  i s not evenly d i s t r i b u t e d across the watershed. Instead i t i s c o l l e c t e d i n c e r t a i n areas, such as the stream channel o r the near stream zone which may  be saturated. When p r e c i p i t a t i o n  begins these high water content areas w i l l i n i t i a l l y c o n t r i b u t e to channel i n f l o w . As p r e c i p i t a t i o n enters the system s o i l s begin t o wet up and detention and r e t e n t i o n storage are recharged. Once these storages are f i l l e d ,  then  water w i l l begin t o c o n t r i b u t e to the channel flow. I f the i n f i l t r a t i o n c a p a c i t y of the s o i l i s exceeded, then overland flow w i l l occur, but i n f o r e s t e d s o i l s the  infiltration  c a p a c i t y i s r a r e l y o r never exceeded. Thus the Horton (1933) overland flow model i s of l i m i t e d u t i l i t y . Overland  flow  tends t o occur r a t h e r i n areas where the s o i l i s saturated, i.e.,  the area nearest the stream channel  ( S a t t e r l u n d and  Adams, 1992). As a storm continues, a l a r g e r area i s a b l e t o c o n t r i b u t e t o r u n o f f . The stream channel expands as ephemeral  10  channels become a c t i v e . In a d d i t i o n , the s o i l mantle  may-  begin y i e l d i n g subsurface drainage as even l a r g e r p o r t i o n s of the moisture r e t e n t i o n c a p a c i t y are s a t i s f i e d . When a storm ends t h i s process reverses as areas c o n t r i b u t i n g t o stream flow begin t o s h r i n k (Satterlund and Adams, 1992). Dunne and Black (197 0)  i n v e s t i g a t e d runoff p r o d u c t i o n i n  permeable s o i l s . T h e i r f i n d i n g s were c o n s i s t e n t with those of Betson's p a r t i a l - a r e a concept. They found that  significant  amounts of storm runoff were produced from small areas of h i l l s l o p e s where the water t a b l e was a t or near the s u r f a c e . The a b i l i t y of an area t o produce storm runoff depended on the area's a b i l i t y t o generate s a t u r a t i o n overland flow from these areas. The i n f i l t r a t i o n c a p a c i t y of the s o i l was exceeded as a r e s u l t of p r e c i p i t a t i o n , even though  not  storms  with h i g h r e t u r n p e r i o d s were monitored during t h e i r study. Freeze (1972) c r e a t e d a d e t e r m i n i s t i c mathematical model to p r e d i c t runoff from r a i n f a l l events on upstream areas. T h i s model p r o v i d e d t h e o r e t i c a l support f o r the runoffgenerating mechanisms from f i r s t - o r d e r upstream sources which had been observed i n the f i e l d by Ragan (1968) and Betson and Marius  (1964). Ragan's and Dunne's observations supported the  partial-area concept  concept  of Betson and the variable  source  of Hewlett.  One of the more recent models d e f i n i n g the r e l a t i o n s h i p between p r e c i p i t a t i o n and runoff i n humid regions was c r e a t e d by de V r i e s and Chow (1978). They s t u d i e d the h y d r o l o g i c behavior of a West Coast f o r e s t e d mountain s o i l during the  11  wetting and d r a i n i n g phases from simulated  rainfall.  The  r e s u l t s suggested that water flowing through the s o i l was  profile  d i v i d e d between that f o l l o w i n g root channels ( i . e . ,  macropores) and that f o l l o w i n g the s o i l matrix. The  soil  authors  a l s o showed that water flow i s much slower through the  soil  matrix than through macropores, and that i f the f o r e s t  floor  i s d i s t u r b e d on a watershed-wide scale, the r e s u l t may  be  i n c r e a s e i n the l a g time between r a i n f a l l  and  an  the  corresponding streamflow because p r e f e r r e d pathways have been closed,  i . e . , root channels are d i s r u p t e d or c l o s e d o f f . They  a l s o suggested that a decrease i n peak flow might occur, f o l l o w i n g a disturbance  of the f o r e s t f l o o r , because water  would tend t o enter temporary storage i n the s o i l matrix, flow through the s o i l  (at a slower rate) i n s t e a d of  and  following  the more conductive macropores. Working with the model that de V r i e s and Chow had e s t a b l i s h e d , Cheng (1988) produced r e s u l t s that support these o r i g i n a l f i n d i n g s . He  c h a r a c t e r i z e d the m a j o r i t y  of  watersheds i n southwestern B r i t i s h Columbia as having shallow h i g h l y permeable s o i l s . . Considering  rainfall  intensities,  s o i l c h a r a c t e r i s t i c s , hydrographs a n a l y s i s and observations,  field  Cheng (1988) concluded that r a p i d subsurface  flow through macropores i s the dominant c o n t r i b u t i n g f a c t o r t o stormflow i n f o r e s t e d areas of southwest B r i t i s h Columbia. Wilson e t a l . (1990) a l s o determined that subsurface flow from h i l l s l o p e s would f o l l o w macro- and mesopores (large  12  pores) i n preference  to the s o i l matrix during  stormflow  generation. There are many models that t r y to e x p l a i n the r e l a t i o n s h i p between p r e c i p i t a t i o n and r u n o f f . A few of them are mentioned above. As these models have developed over time they have become more adept at d e f i n i n g the runoff processes i n steep f o r e s t e d basins, and have improved runoff predictions.  2.4  Groundwater Fluctuations  Since t h i s t h e s i s i s concerned p r i m a r i l y with the  timing  of groundwater f l u c t u a t i o n s i n steep f o r e s t e d t e r r a i n , i t i s appropriate  t o review b r i e f l y some of the l i t e r a t u r e which  has addressed t h i s t o p i c . A number of s t u d i e s have been conducted to determine  how  v e g e t a t i o n removal or m o d i f i c a t i o n a f f e c t s s o i l water content i n f o r e s t e d areas. Research conducted i n the i n t e r i o r West of Washington State i n d i c a t e s that removal or m o d i f i c a t i o n of c o n i f e r v e g e t a t i o n r e s u l t s i n increased s o i l water content, and  leads to increased streamflow (Klock,  1981). Klock  suggests that as p r e c i p i t a t i o n l e v e l s increase,  the  o p p o r t u n i t i e s f o r g r e a t e r water y i e l d g e n e r a l l y i n c r e a s e  as  w e l l . Because v e g e t a t i o n type i s g e n e r a l l y a r e f l e c t i o n of moisture a v a i l a b i l i t y through p r e c i p i t a t i o n , there i s g e n e r a l l y a strong r e l a t i o n s h i p between water y i e l d response and vegetation removal and v e g e t a t i o n  13  type.  I t has been demonstrated t h a t conversion from ponderosa p i n e f o r e s t t o nonforest v e g e t a t i o n r e s u l t e d i n i n c r e a s e d s o i l water content  (Herring, 1970; Orr, 1968). Greater  i n c r e a s e s i n s o i l water content have been documented a f t e r t r e e removal i n the Douglas-fir/ponderosa Washington State  p i n e f o r e s t s of  (Klock and Helvey, 1976) and sugar pine  f o r e s t s i n the C a l i f o r n i a n S i e r r a Nevada range  (Ziemer,  1968). The g r e a t e s t increases i n s o i l water content f o l l o w i n g f o r e s t removal occurred f o r a c l e a r c u t grand  fir/Engelmann  spruce f o r e s t i n northeast Oregon (Klock and Lopushinsky, 1980) . The processes that have caused observable changes i n water y i e l d from small b a s i n s a r e l i k e l y t o produce changes i n l a r g e r watersheds too. There i s evidence that water y i e l d increased i n watersheds over 7 00 km harvesting  2  following forest  (Berndt and Swank, 197 0) and i n s e c t damage  (Bethlamy, 1974). J u s t as f o r e s t removal has been documented t o cause i n c r e a s e d s o i l water content and y i e l d ,  so has  r e f o r e s t a t i o n been documented t o cause reductions i n water yield  (Schneider and Ayer, 1961). Guillerme  (1980) i n v e s t i g a t i n g the e f f e c t s of  d e f o r e s t a t i o n on the groundwater regime from a h i s t o r i c a l p e r s p e c t i v e suggested  that much of the research t h a t had been  conducted i n the United States and elsewhere had used r e l a t i v e l y short term observations, t h a t i s 30 years o r l e s s . From the p e r s p e c t i v e of current h y d r o l o g i c research, a 30year observation p e r i o d i s thought of as a long time.  14  Guillerme contended that the m a j o r i t y of research has not l e d t o coherent r e s u l t s concerning the e f f e c t s of d e f o r e s t a t i o n on the water regime because of the short time frame. Using h i s t o r i c a l and a r c h e o l o g i c a l evidence, he showed that major d e f o r e s t a t i o n during the Middle Ages i n Europe had no r e a l e f f e c t on lowering groundwater t a b l e s  {Guillerme, 1980) .  Guillerme's study presents a compelling argument f o r i n c r e a s i n g the p e r i o d of observation used i n current research, but i t does not account f o r many of the short-term changes i n groundwater l e v e l s that have been documented i n western North America, e s p e c i a l l y those that can l e a d t o p o t e n t i a l l y I r r e v e r s i b l e environmental impacts. In f o r e s t e d areas of c o a s t a l B r i t i s h Columbia and the northwestern United States, i n c r e a s i n g groundwater l e v e l s i n environmentally s e n s i t i v e areas may i n c r e a s e the p o t e n t i a l f o r l a n d s l i d e s , s i n c e the decrease i n s o i l strength caused by water t a b l e r i s e seems t o be the dominant cause of f a i l u r e s . In a study conducted i n the Carnation Creek Experimental Watershed on the west coast of Vancouver Island, Hetherington (1982) found that groundwater l e v e l s i n the a l l u v i a l v a l l e y bottom increased s i g n i f i c a n t l y a f t e r f o r e s t h a r v e s t i n g i n the lower p o r t i o n of the watershed. Further s i g n i f i c a n t groundwater Increases r e s u l t e d from logging and s c a r i f y i n g i n surrounding areas. The groundwater l e v e l increases were a t t r i b u t e d mainly t o reduced t r a n s p i r a t i o n and i n t e r c e p t i o n losses a f t e r forest harvesting.  15  Other f i n d i n g s by the same author i n c l u d e the documentation of lower t r a n s i e n t peak groundwater l e v e l s during rainstorms  at one h i l l s l o p e s i t e below a road,  and  higher t r a n s i e n t groundwater peaks i n an area above a  road,  f o l l o w i n g road c o n s t r u c t i o n and f o r e s t h a r v e s t i n g (Hetherington, but may  1987). These r e s u l t s may  seem c o n t r a d i c t o r y ,  be explained by the d i s r u p t i o n of flow patterns which  r e s u l t from the road c o n s t r u c t i o n . Reduced groundwater l e v e l s below the road may  be a t t r i b u t e d to reduced inputs from areas  above the road, because of i n t e r c e p t i o n of upslope c o n t r i b u t i o n s by road drainage d i t c h e s . Groundwater l e v e l s above the road may  have Increased as a r e s u l t of c o l l a p s i n g  of subsurface macropores during logging or yarding, water t o back up i n the  causing  slope.  Harr and McCorrison (1979) noted that the subject of timber h a r v e s t i n g and i t s e f f e c t on storm runoff remains a c o n t r o v e r s i a l t o p i c i n the P a c i f i c Northwest of the States because i t i s u n c e r t a i n whether h a r v e s t i n g  United  negatively  a f f e c t s a watershed's storm runoff p a t t e r n s . Harr and McCorrison report t h a t i n one  study storm runoff decreased  f o l l o w i n g timber harvest because the subsurface  channel  network d e l i v e r i n g runoff may' have been c l o s e d o f f as a r e s u l t of h a r v e s t i n g . C l o s i n g these channels f o r c e s storm runoff t o f o l l o w a slower route of d e l i v e r y than the subsurface macropore network. T h i s c o n c l u s i o n supports t h a t of de V r i e s and Chow (197 8) who  16  a l s o suggested a s h i f t of  flow from root and macropore channels t o the s o i l matrix, caused by a c l o s u r e of macropore pathways. In a d d i t i o n t o s t u d i e s of the e f f e c t s of f o r e s t  removal  are those which have examined the r o l e of b a s i n morphology on the flow of water. Beven (197 8) reported that the h y d r o l o g i c response of convergent headwater and divergent s i d e s l o p e areas i n b r o a d l y homogeneous b a s i n s may be  significantly  d i f f e r e n t . The d i f f e r e n c e s i n subsurface flow regime l a r g e l y be a t t r i b u t e d t o flow convergence  may  i n t o a network of  minor channels i n the headwater areas. These networks transmit s u r f a c e flow r a p i d l y and e f f i c i e n t l y . By  comparison,  the s i d e s l o p e areas do not u s u a l l y have these networks, thereby causing s u r f a c e water t o be r e t a i n e d longer. The delays may be long enough t o a l l o w s u r f a c e water t o r e i n f i l t r a t e b e f o r e reaching a channel, even i f the r a i n f a l l has ended. A study comparing the a f f e c t s of f o r e s t cover types on groundwater l e v e l s was Forest i n Michigan  conducted i n the Udel Experimental  (Urie, 197 6). There are three i n t e r e s t i n g  r e s u l t s from t h i s study: 1)  Groundwater l e v e l s i n deep  a q u i f e r s that are remote from sources of evaporative d e p l e t i o n are c l o s e l y r e l a t e d t o the cumulative water y i e l d . The cumulative water y i e l d i s computed from annual data. 2)  climatic  Shallow water t a b l e s are most s u s c e p t i b l e t o  recharge from current p r e c i p i t a t i o n and are a l s o s t r o n g l y r e l a t e d t o annual p r e c i p i t a t i o n c y c l e s . 3) y i e l d was  compared by cover type i t was  17  When the water  found that there was  a c o n s i s t e n t l y h i g h e r water y i e l d under deciduous hardwood f o r e s t s than under c o n i f e r o u s f o r e s t s . In c o a s t a l Alaska, two steep f o r e s t e d h i l l s l o p e depressions were monitored during storm events ( S i d l e , The r a p i d response of groundwater  to p r e c i p i t a t i o n  g r e a t e r than could be p r e d i c t e d by v e r t i c a l  1984).  was  infiltration,  suggesting that r a p i d i n t e r f l o w was o c c u r r i n g through a discontinuous network of s o i l macropores and subsurface p i p e s . The groundwater  peaks o c c u r r e d simultaneously i n the  upper and lower p a r t s of the h i l l s l o p e . The two most i n f l u e n t i a l c l l m a t o l o g l c a l v a r i a b l e s a f f e c t i n g the groundwater  response were determined t o be r a i n f a l l  Intensity  and antecedent s o i l moisture. Pierson (1980) found that r a i n f a l l ,  catchment  area and  antecedent s o i l moisture e x p l a i n over 90% of the v a r i a n c e i n p i e z o m e t r i c response w i t h i n a h i l l s l o p e In the Oregon Coast Range. But t h e r e were pronounced d i f f e r e n c e s i n the response between adjacent h i l l s l o p e depressions. The authors suggest s e v e r a l p o s s i b l e reasons f o r these d i f f e r e n c e s ; one, although the  importance of the catchment's  shape and topography i s  u n c l e a r i t may have an i n f l u e n c e on the r e s u l t s ; two,  soil  water may be bypassing the s o i l through p r e f e r r e d pathways such as root channels o r bedrock f r a c t u r e s ; three, the s o i l s from the depressions may have d i f f e r e n t water r e t e n t i o n capacities.  18  2.5 Peak Flows  I t i s d i f f i c u l t t o g e n e r a l i z e about peak flows f o l l o w i n g s i l v i c u l t u r a l treatments, because there i s such a broad  range  of o p i n i o n i n the l i t e r a t u r e . E x a c t l y how  site  an i n d i v i d u a l  responds t o a given treatment depends on a v a r i e t y of f a c t o r s i n c l u d i n g the i n d i v i d u a l c h a r a c t e r i s t i c s of the s i t e and the type of treatment. Peak flows have been r e p o r t e d t o i n c r e a s e by up t o 250% i n the eastern U n i t e d States f o l l o w i n g timber removal  (Pierce  e t . a l . , 1970). I t has a l s o been reported that peak flows decreased f o l l o w i n g timber removal i n both Oregon and Columbia  (Cheng, e t . a l . , 1975;  Harr, and McCorison,  British 1979).  The decreases were 22% and 32% r e s p e c t i v e l y . Cheng, e t . a l . , (1975) concluded that the decrease i n peak flow f o l l o w i n g logging c o u l d be a t t r i b u t e d t o s e a l i n g of the channel network which had p r e v i o u s l y t r a n s m i t t e d water r a p i d l y f o l l o w i n g storms. Without the subsurface channels, water would be f o r c e d t o f o l l o w slower routes through the s o i l matrix a f t e r l o g g i n g .  2.6 Mass Wasting  Mass wasting i n c l u d e s l a n d s l i d e s and d e b r i s flows and i s a dominant geomorphic process i n the 'Rennell Sound area. Four types of mass wasting have been documented as common i n steep f o r e s t e d t e r r a i n of the Queen C h a r l o t t e I s l a n d s : 1)  19  debris  s l i d e s , 2)  debris avalanches, 3)  debris flows and 4)  debris  torrents. The d i s t i n c t i o n between d e b r i s s l i d e s and d e b r i s avalanches i s one of water content,  s l i d e s being d r i e r and  l e s s mobile than avalanches. The same i s t r u e of d e b r i s  flows  versus debris t o r r e n t s , with the t o r r e n t s being the wetter (Wilford and Schwab, 1982). Thus there a r e two primary types of movement i n the study area: d e b r i s s l i d e s and d e b r i s flows. S l i d e s a r e u s u a l l y t r i g g e r e d on steep slopes by water t a b l e r i s e during intense rainstorms. These s l i d e s then enter channels, and then become f l u i d l z e d as d e b r i s flows. Removal of timber has been c i t e d as a c o n t r i b u t o r y cause of mass movement, p r i m a r i l y because of root strength reduction, but perhaps s e c o n d a r i l y because of increases i n groundwater levels. The causes of mass wasting can be c a t e g o r i z e d as e i t h e r i n t e r n a l o r e x t e r n a l t o the s o i l . E x t e r n a l changes i n c l u d e seismic a c t i v i t y , slope undercutting,  or r a i n f a l l . Internal  c o n d i t i o n s Include piez'ometrlc head increase increased pore-water pressures In s o i l cohesion  causing  and a corresponding  reduction  {Swanston, 1967), o r slow r e d u c t i o n i n s o i l  s t r e n g t h from f a c t o r s such as root decay f o l l o w i n g logging. Pore-water pressure may reduce the f r i c t i o n a l r e s i s t a n c e o f s o i l by reducing  i t s e f f e c t i v e weight. As groundwater l e v e l s  r i s e , pore-water pressure and the p r o b a b i l i t y of mass wasting both increase.  20  The  roots of p l a n t s p l a y a v i t a l r o l e i n maintaining the  shear s t r e n g t h of s o i l mantles, e s p e c i a l l y i n steep f o r e s t e d terrain  (Ziemer and Swanston, 1977). Roots c o n t r i b u t e t o the  s t a b i l i t y of s o i l s by anchoring  the s o i l v e r t i c a l l y i n t o  cracks i n the bedrock. Roots a l s o provide l a t e r a l strength by t y i n g the s o i l together.  I f v e g e t a t i o n i s removed, roots  begin t o decay. As roots decay they loose t h e i r t e n s i l e s t r e n g t h and the shear strength of the s o i l i s reduced {Ziemer and Swanston, 1977). The  r e s u l t s of t h i s p r o j e c t may have a p p l i c a t i o n s t o the  g e o t e c h n i c a l a t t r i b u t e s of f o r e s t t e r r a i n which has been o r i s being considered f o r h a r v e s t i n g . I f f o r e s t operations a r e p r o p e r l y planned much of t h e mass wasting t h a t r e s u l t s from road c o n s t r u c t i o n and maintenance can be avoided o r reduced (Wilford and Schwab, 1982). A model designed t o a c c u r a t e l y p r e d i c t the occurrence of l a n d s l i d e s as a r e s u l t of storm events would be a u s e f u l t o o l , e s p e c i a l l y i f i t could be a p p l i e d t o pre- and postlogging c o n d i t i o n s . T h i s type of model could be developed t o a s s i s t i n the avoidance of unnecessary o r unforeseen mass wasting occurrences.  To c a l i b r a t e t h i s type of model, i t  would be necessary t o monitor groundwater f l u c t u a t i o n s during storm events with known inputs of p r e c i p i t a t i o n . The data c o l l e c t e d f o r t h i s p r o j e c t could provide u s e f u l i n s i g h t i n t o the f u t u r e development of such a model.  21  3  STUDY  AREA  3.1 Introduction  The Queen C h a r l o t t e Islands a r e an a r c h i p e l a g o of approximately  150 i s l a n d s , l o c a t e d o f f the northwestern  coast  of B r i t i s h Colombia. The two l a r g e s t i s l a n d s a r e Moresby t o the south and Graham t o the north two  ( f i g . 1). Together these  i s l a n d s comprise most of the 9,940 km  2  land mass (Carr,  1983). Rennell Sound i s l o c a t e d on the southwestern t i p of Graham I s l a n d and i s bordered by the Queen C h a r l o t t e Range on the east and the P a c i f i c Ocean on the west. Gregory Creek flows westward from the mountain d i v i d e towards the ocean. I t shares many topographic and g e o l o g i c s i m i l a r i t i e s with other v a l l e y s i n t h e Rennell Sound area. The three f i r s t - o r d e r watersheds s t u d i e d i n t h i s p r o j e c t a r e l o c a t e d i n Gregory Creek watershed.  3.2 Geology and Physiography  Graham I s l a n d i s d i v i d e d i n t o three d i s t i n c t physiographic regions  ( f i g . 2),  the Queen C h a r l o t t e Lowlands,  the Skidegate Plateau and the Queen C h a r l o t t e Range  (Alley  and Thomson, 1978). Rennell Sound d e f i n e s the southwestern boundary of the Skidegate Plateau where i t a b r u p t l y ends i n a steep slope that i s b e l i e v e d t o be p a r t of the LouscooneRennell F a u l t system (Sutherland Brown, 1968).  22  23  The bedrock geology of the Queen C h a r l o t t e Islands  has  been described, o u t l i n e d and mapped i n the report by Sutherland Brown (1968). Most of Rennell Sound i s composed of v o l c a n i c flows and p y r o c l a s t i c rock, u n d e r l a i n by bedded limestone and a r g i l l i t e  (Schwab, 1983). The Gregory Creek  v a l l e y i s u n d e r l a i n p r i m a r i l y by T e r t i a r y v o l c a n i c bedrock of the Masset Formation (Sutherland Brown, 1968). Bedrock exposures are r a r e on open slopes, but occur most o f t e n i n I n c i s e d g u l l i e s and at g u l l y headwalls. The Queen C h a r l o t t e s were h e a v i l y g l a c i a t e d during P l e i s t o c e n e epoch. During the most recent phase, the  the  Fraser  G l a c i a t i o n , g l a c i e r s grew i n the Queen C h a r l o t t e Ranges forming an i c e cap i n excess of 900 m t h i c k . Ice then flowed outward from the mountain range i n a l l d i r e c t i o n s  (Sutherland  Brown and Nasmith, 1962). In Rennell Sound, i c e probably terminated  i n the ocean as an i c e s h e l f (Maynard, 1991).  Glacial t i l l  and colluvium are the two most common  s u r f i c i a l m a t e r i a l s i n the Gregory Creek study area. The  till  has a sandy s i l t texture, a t t a i n s a depth of 3 m i n mid-slope areas and i s probably  t h i c k e r than 3 m on the lower slopes.  The colluvium c o n s i s t s of small angular rock fragments i n a s i l t y matrix.  I t i s the dominant s u r f i c i a l m a t e r i a l on most  of the steep s i d e w a l l s of g u l l i e s , and most d e p o s i t s are l e s s than 1 m t h i c k (Maynard, 1991) . In the post g l a c i a l p e r i o d , the processes  of mass  movement and e r o s i o n have been very a c t i v e i n the study area, e s p e c i a l l y along g u l l y s i d e w a l l s , and headwalls. The  25  lower  toe slopes i n the study area comprise d e b r i s that has been eroded from the upper slopes. T r a n s p o r t a t i o n of m a t e r i a l takes p l a c e mainly i n g u l l i e s . There i s r e l a t i v e l y evidence  little  of recent open-slope land s l i d i n g . However,  considerable evidence  e x i s t s of h i s t o r i c a l d e b r i s flows  r e c u r r e n t s i d e s l o p e sloughing along g u l l i e s  and  (Maynard, 1991).  Seismic a c t i v i t y a l s o i n f l u e n c e s slope s t a b i l i t y i n t h i s r e g i o n . From 1899  t o 1974,  there were 1268  recorded on Graham i s l a n d . One measured 8.0  seismic events  earthquake i n August  1949  on the R i c h t e r s c a l e . Earthquakes have been  i d e n t i f i e d as t r i g g e r s f o r some bedrock s l i d e s , d e b r i s avalanches and d e b r i s - s l i d e s ( A l l e y and Thomson, 197 8).  3.3  Climate  The Queen C h a r l o t t e Islands are one of the wettest  and  windiest places i n Canada. The climate i s c h a r a c t e r i z e d by c o o l summers and m i l d winters. Moderated by the waters of the North P a c i f i c , the i s l a n d s do not experience  extreme seasonal  temperature change. On average there are 200  days per  with measurable p r e c i p i t a t i o n  year  (Calder and Taylor, 1968).  The m a j o r i t y of h i g h winds and heavy p r e c i p i t a t i o n  occur  during f a l l and winter storms. October and November are the wettest months. Wind speeds of up to 190 km/h  are r a r e , but  have been recorded on the west coast of the i s l a n d s . There i s a l a r g e d i f f e r e n c e between annual p r e c i p i t a t i o n on the east and west coasts of the Islands. T h i s  26  occurs  because the Queen C h a r l o t t e Range i n t e r r u p t s t h e predominantly e a s t e r l y movement of weather systems across the i s l a n d s . O r o g r a p h i c a l l y enhanced p r e c i p i t a t i o n , e s p e c i a l l y on the west coast, r e s u l t s as these systems a r e f o r c e d t o r i s e . T h i s causes r e g i o n a l d i f f e r e n c e s i n average annual p r e c i p i t a t i o n ranging from 1,100 mm on the east coast t o 4,300 mm on the west coast of t h e i s l a n d s  ( f i g . 3) . Annual  p r e c i p i t a t i o n on some of t h e western slopes has been estimated t o be 5,000-7,600 mm  3.4  ( A l l e y and Thomson, 1978).  Vegetation  There a r e f o u r b i o g e o c l l m a t i c zones i n the Queen C h a r l o t t e s : the Coastal Western Hemlock zone (CWH), the Coastal-CedarPine-Hemlock zone (CCPH), the Mountain Hemlock zone  (MH), and  the A l p i n e Tundra zone (AT). The study area i s l o c a t e d i n the Coastal Western Hemlock zone (Meidinger and Pojar, 1991). Some areas of the C h a r l o t t e s s t i l l r e t a i n a h i g h percentage of old-growth f o r e s t  (Carr, 1983). Before harvest i n the  summer of 1992, t h e Gregory Creek cutblock contained a h e a l t h y stand of old-growth f o r e s t . The primary c o n i f e r o u s species i n the Rennell Sound area and t h e Gregory Creek study area a r e S i t k a Spruce (Picea (Thuja plicata)  sitchensis),  and western hemlock  a l d e r (Alnus rubra)  western r e d cedar  (Tsuga heterophylla)  I s the dominant deciduous s p e c i e s .  27  . Red  GRAHAM ISLAND  PACIFIC  OCEAN  MORESBY ISLAND  MEAN ANNUAL TOTAL PRECIPfTATlON 1260-1370 mm/yr.  ZONE 1: ZONE 2 : ZONE 3 : ZONE 4 :  m  |  1665-1765 mm/yr. 132  W  2035-222S mrtvyr. >3665 mm/yr  (Ranges correspond to the 9 5 % confidence limit; zones are located approximately: climate station locations are shown in Figure 1).  F i g u r e 3. Map o f t h e s p a t i a l v a r i a t i o n o f p r e c i p i t a t i o n i n t h e Queen C h a r l o t t e I s l a n d s 28  (Hogan a n d Schwab, 1990)  3.5  Site Description  The study area i s approximately 90 ha i n s i z e , i s s t e e p l y s l o p i n g , exceeding 7 0% i n some l o c a t i o n s , and i s c h a r a c t e r i z e d by deeply i n c i s e d g u l l i e s  (Maynard, 1991). The  upper boundary of the area i s 325 m above sea l e v e l , and i s a l s o the d i v i d e between Gregory Creek and Bonanza Creek watershed t o the north. The lower boundary i s 55 m above sea l e v e l and i s d e f i n e d by a logging road ( f i g . 4,  5). The three  f i r s t - o r d e r watersheds s t u d i e d f o r t h i s p r o j e c t are diagrammed i n f i g u r e 4 . Watersheds watershed #3  #1 and #2  are f i f t y - f i v e meters apart,  i s 255 m t o the east of watershed #2.  The  relief  d i f f e r e n c e i s 200 m between the two measurement s i t e s i n watershed #1,  210 m between the two s i t e s i n watershed #2  42 m i n watershed #3.  Three diagrams i l l u s t r a t e the slope  p r o f i l e s and slope angles ( f i g . 6,  7,  8). The slope of  watershed #1  i s 26* top t o bottom, 31° between s i t e s ,  watershed #2  30" top t o bottom, 32° between s i t e s and  watershed #3  23° top t o bottom, 18° between s i t e s .  29  and  o  «-»-»  0  cr C9  al  U J  *— uj  /-v  O  l  1  ~ ~  <-> u. o < co ? or u . u . ' _ )  (T66T  •  2 #8 S» 3 u  Oil  1a  JT.2 °  C  9g  .s  0  w  73  .1  00  t3  JO j3  o  c y  s .2  0  V O  c o S o  9- oo o -o  ^! 'C  <j  " 2 c R o  v.  •'a o E -a  aE  §1 E =  ill  C O  15  3  g  2  E g  I?  is?  i  73 > e o 8 •*  y =>  5? 8 s 3 '•§ "2  i l l  j |  i< £ ffl o TPi  ** °  -II 8  2 'S  sis  > "O -C O C w => C  c X c  O =3 <J g v» O  cu3  J=  .a  o  E >,  o  III i Z u u u  u  2  *3  5.3  •c  a  vi  1 "8 5  8.  o b c .2 O  U  a  o  VI  5  v>  8  t3  >  3  c o E E  v  O  *g sanSfj  'p-ieu/few) I a a n B T j a o j pueBeq  sa  ?1  o E '  • s s'ji M M VI >  §  3  ao.  c  o  0 o U  >  01  8.  •- z "! 5 6  S  1  2  3  s* 1  9  g  < E  5.3  •c  a  jD  JO  00  00  a. a  C  2  ao o  2 CO  >-  JL  .1  8-  «  S  ° oo .£ c  Vi  w  s  3  .5 - 2.  s . 5 x §  o  a. 2«  *-*  a 00  CM'  mbol seal  z o  >•>  s  c o O c  S  J=  %  » g-J  >- 2 p d.  JW C  S  3  v  •£  'vi "S c v. "g  o  dra\  less han  Pol gon  >•  XT  c 2  oo > E .5  S ™ oo c  H  E  •e  ro  J oo P u  00  8  _V1  00  O0  vi <X  .S  1  °  ! M .2 o o  > a.  Watershed #2,  S i t e s B and E  Slope Angle, Top to Bottom = Slope Angle, S i t e to S i t e =  30' 32*  fl •H  fl o  •H  V  $ CD  H W  Horizontal distance i n m Figure 7. Diagram of slope p r o f i l e , watershed #2 s i t e s B and  E  LO to  Watershed #1,  S i t e s A and D  Slope Angle, Top to Bottom = Slope'Angle,  S i t e to S i t e =  c  26'  •ri  31'  fl 0 •rl 4->  £  CD H W  Horizontal distance i n m Figure 6. Diagram of slope p r o f i l e , watershed s i t e s A and  D  #1  ui ux uox^-eAaia 00C  OSZ  00Z  OST  OOT  4  METHODS  4*1  Two  Instrumentation  data c o l l e c t i o n s i t e s were e s t a b l i s h e d w i t h i n each  watershed. One  s i t e was  l o c a t e d upslope near the watershed  boundary, the other downslope j u s t above the g u l l y d e b r i s fan. The v a r i a b l e s monitored i n t h i s p r o j e c t were p r e c i p i t a t i o n , groundwater l e v e l s , and s u r f a c e r u n o f f . S i x Unidata dataloggers  (one at each s i t e ) were programmed t o  c o l l e c t information every hour. The information was  s t o r e d on  dataloggers then down-loaded t o a lap-top computer. A f t e r the information had been extracted, the dataloggers were reprogrammed. Equipment was f a l l of 1991. 26th,  i n s t a l l e d during the summer and  A l l s i x s i t e s were o p e r a t i o n a l by November  1991. The three upslope s i t e s , A, B, and C, i n watersheds 1, 2  and 3, r e s p e c t i v e l y , had three groundwater w e l l s each. They were p l a c e d across the g u l l y headwalls t o provide coverage. One  datalogger  spatial  s e r v i c e d each group of three w e l l s .  The groundwater w e l l s at s i t e A were approximately 10 m apart at s i t e B and 6 m apart at s i t e C  4 m apart,  ( f i g u r e 9).  Groundwater l e v e l s were a l s o monitored at each of the lower slope s i t e s . Groundwater w e l l s were l o c a t e d on  the  r i d g e adjacent to each g u l l y . P r e c i p i t a t i o n and s u r f a c e flow were monitored at s i t e D only. One of the lower slope s i t e s . 3 4  datalogger  s e r v i c e d each  35  Groundwater w e l l s were e s t a b l i s h e d by d r i l l i n g holes t o an approximate depth of 1 m. The holes were dug u s i n g a hand auger with a 20 cm diameter b i t . Next, a s e c t i o n of  10-cm  diameter PVC tubing was  The  tubing was  p l a c e d i n each of the h o l e s .  s l o t t e d on the sides and open on the bottom t o  allow f o r the unimpeded flow of water. A f t e r the p i p e  was  i n s t a l l e d , the holes were b a c k - f i l l e d with the l o c a l s o i l . Unidata capacitance s t i c k was p l a c e d i n each of the PVC  A  tubes  t o r e g i s t e r changes i n water l e v e l on a continuous b a s i s . Capacitance s t i c k s measure the r e s i s t a n c e t o an e l e c t r i c a l s i g n a l sent by a transducer and r e c e i v e d by a conductor. As the amount of water between the transducer and the conductor changes, the r e s i s t a n c e a l s o v a r i e s . The amount of r e s i s t a n c e i s t r a n s l a t e d i n t o a depth by  software  programmed i n t o the datalogger. T h i s i n f o r m a t i o n i s recorded and s t o r e d i n the datalogger. Capacitance s t i c k s are considered to be accurate t o w i t h i n ± 1% of t h e i r t o t a l range. Since the capacitance s t i c k s are 1 m i n length, the i s therefore t 1  cm.  A plywood v-notch weir was s i t e D.  i n s t a l l e d i n the g u l l y a t  The stage, or depth of water behind the weir  measured using a capacitance s t i c k . The weir was from a 4' x 8' sheet of 1.5 deep was  accuracy  was  constructed  cm plywood:. A 90° v-notch,  40  cm  cut i n the center of top edge of the plywood sheet.  A carpenter's framing square was  attached t o the v-notch,  p r o v i d i n g a uniform c r o s s - s e c t i o n a l shape.  36  To prevent water from seeping under and around the weir, a p l a s t i c p o l y e t h y l e n e sheet was attached t o the weir, and extended three meters upslope. The p l a s t i c was attached t o the weir with s t a p l e s , and h e l d i n p l a c e upslope u s i n g rocks and stakes. E v e n t u a l l y , sediment moving downslope covered the ponding b a s i n and helped keep the sheeting i n p l a c e . P r e c i p i t a t i o n was measured u s i n g a Texas E l e c t r o n i c s t i p p i n g bucket r a i n gauge a t s i t e D . The p r e c i p i t a t i o n r e c o r d was  i n f l u e n c e d by i n t e r c e p t i o n . Although the gauge was  l o c a t e d i n a r e l a t i v e l y open area, an unknown percentage of p r e c i p i t a t i o n was  i n t e r c e p t e d by the f o r e s t canopy. However,  the p r e c i p i t a t i o n data c o l l e c t e d provides a reasonable estimate of p r e c i p i t a t i o n input at s i t e D . but the l e v e l of accuracy has not been determined. In t h i s study i t i s assumed that the p r e c i p i t a t i o n at s i t e D i s r e p r e s e n t a t i v e of that f a l l i n g over a l l three of the watersheds monitored.  4.2 D e s c r i p t i o n of the data C o l l e c t e d  Groundwater and s u r f a c e flow data were c o l l e c t e d at the study s i t e over a p e r i o d of 82 days, from November 26th, 1991,  t o February 15th, 1992.  Equipment f a i l u r e has l e f t  an  incomplete p r e c i p i t a t i o n record, however p r e c i p i t a t i o n data were c o l l e c t e d a t the s i t e from November 26th t o January 4th, over a 40 day p e r i o d . A l l the data have been graphed by and watershed  (Appendix  1).  37  site  A v i s u a l i n s p e c t i o n of a l l the data, groundwater, surface flow and the p r e c i p i t a t i o n i n d i c a t e s that the  three  groundwater w e l l s w i t h i n s i t e s A and B t r a c k c o n s i s t e n t l y with each other. The r i s e and f a l l of the groundwater l e v e l s are w e l l synchronized.  Two  of the three groundwater w e l l s at  s i t e C t r a c k c o n s i s t e n t l y with each other, but the t h i r d does not f o l l o w the same p a t t e r n . Observing the data i n g r a p h i c a l form allows the  reader  t o see the temporal r e l a t i o n s h i p between p r e c i p i t a t i o n and groundwater and s u r f a c e flow responses (Appendix l ) .  There  are c l e a r l y d e f i n e d groundwater and surface flow responses t o the inputs of p r e c i p i t a t i o n . T h i s i s e s p e c i a l l y n o t i c e a b l e i n watershed #1,  s i t e s A and D .  For the purposes of an i n i t i a l a n a l y s i s of these times e r i e s , s i x storm events were s e l e c t e d from the p r e c i p i t a t i o n record, on the b a s i s of two c l e a r l y separable  criteria. First,  storms had to be  from one another i n the p r e c i p i t a t i o n  record. Secondly, the storms had t o be l a r g e enough t o cause s i g n i f i c a n t groundwater and surface flow responses. For the purposes of the r e g r e s s i o n a n a l y s i s reported i n the next chapter,  eleven storm events were i d e n t i f i e d from  the groundwater r e c o r d over the e n t i r e study p e r i o d . I t  was  not p o s s i b l e to use the p r e c i p i t a t i o n record because i t was incomplete, and covered o n l y one h a l f of the e n t i r e studyperiod. Two  measures were i d e n t i f i e d t o describe and analyze  eleven storms i d e n t i f i e d f o r the r e g r e s s i o n a n a l y s i s , they  38  the  were: storm r i s e and time t o peak. the change i n groundwater  Storm r i s e was  l e v e l from the onset of  r i s e t o the peak of groundwater  calculated  groundwater  r i s e . Time t o peak was  d e f i n e d as the time from onset of groundwater peak of groundwater  d e f i n e d as  r i s e t o the  r i s e . Storm r i s e and time t o peak were  f o r each instrument across the study area, and a l l  of the eleven storm events  (Appendix 2, 3, 4). F i g u r e 10  provides an i l l u s t r a t i o n of how  storm r i s e and time t o peak  were determined u s i n g the data i n a g r a p h i c a l form. Since p r e c i p i t a t i o n data were a v a i l a b l e f o r o n l y h a l f the  study p e r i o d  (Nov. 26th - Jan. 4th) a search was  conducted f o r an o f f - s i t e source of p r e c i p i t a t i o n data t o span the p e r i o d of m i s s i n g data. D a i l y t o t a l  precipitation  records from M i t c h e l l I n l e t , Sewell I n l e t and Sandspit a i r p o r t were obtained from Atmospheric Environment Environment  Services,  Canada ( f i g . 11). To adjust f o r d i f f e r e n c e s i n  l o c a t i o n , a time l a g procedure was  used.  4.3 S t a t i s t i c a l Tests Performed On The Data  The data were analyzed t o determine the between 1) p r e c i p i t a t i o n and groundwater  relationship  response,  p r e c i p i t a t i o n and s u r f a c e flow response, 2) storm p r e c i p i t a t i o n and groundwater  response, storm p r e c i p i t a t i o n  and surface flow response. The groundwater  and s u r f a c e flow  data were a l s o analyzed independently of p r e c i p i t a t i o n . Comparisons  were made between s i t e s i n the same watershed,  39  40  F i g u r e 11. Map of the Atmospheric Environment 41  Stations  and between the three watersheds. Four types of  statistical  t e s t s were used i n the data a n a l y s i s .  1) Time-series a n a l y s i s 2)  Regression a n a l y s i s  3)  A n a l y s i s of covariance  4) Student-Newman-Keuls M u l t i p l e Range Test Of Means  4.3.1  Time-Series Analysis  Given that t h i s study i n v o l v e s long sequences of h o u r l y data on p r e c i p i t a t i o n , groundwater and surface flow, s e r i e s a n a l y s i s was  time-  used i n i t i a l l y as an e x p l o r a t o r y data  analysis tool. The o b j e c t i v e of time s e r i e s a n a l y s i s i n t h i s p r o j e c t was  to i d e n t i f y and d e s c r i b e v a r i a t i o n s and trends i n the  p r e c i p i t a t i o n , groundwater and s u r f a c e flow data. S p e c i f i c a l l y , i t was  used t o determine i f there was  observable phase r e l a t i o n s h i p between p r e c i p i t a t i o n  an and  groundwater response, p r e c i p i t a t i o n and surface flow response,  and between the groundwater data. The a n a l y s i s was  conducted by cross c o r r e l a t i n g the h o u r l y p r e c i p i t a t i o n , groundwater and s u r f a c e flow and l a g g i n g them on an h o u r l y b a s i s . The g r e a t e s t l a g c o r r e l a t i o n c o e f f i c i e n t  identified  the best f i t between the two time s e r i e s and l a g time.  42  An important guide t o the p r o p e r t i e s of time s e r i e s a n a l y s i s i s p r o v i d e d by a s e r i e s of sample a u t o c o r r e l a t i o n c o e f f i c i e n t s . The a u t o c o r r e l a t i o n c o e f f i c i e n t s measure the c o r r e l a t i o n between observations that are d i f f e r e n t d i s t a n c e s apart  ( C h a t f i e l d , 197 8). In t h i s study, observations are  separated by time, measured i n hours. The correlogram i s an a i d t o i n t e r p r e t i n g the a u t o c o r r e l a t i o n c o e f f i c i e n t s . I t i s a graph i n which the c o r r e l a t i o n c o e f f i c i e n t r  L  i s plotted  against the l a g time L , i n hours. F i g u r e 12 i s a sample correlogram. The t i m e - s e r i e s a n a l y s i s was Comparisons  conducted i n t h r e e phases.  were made between: 1) the three  groundwater  records w i t h i n s i t e s A , B and C ( f o r the 82 days that data were c o l l e c t e d ) , 2) p r e c i p i t a t i o n and groundwater  response  over the 40 day p e r i o d f o r which p r e c i p i t a t i o n data were a v a i l a b l e , and 3) storm p r e c i p i t a t i o n storm events) and groundwater  (from s i x s e l e c t e d  response and storm  p r e c i p i t a t i o n and surface flow response. The r e l a t i o n s h i p between p r e c i p i t a t i o n and s u r f a c e flow was determined u s i n g streamflow data c o l l e c t e d a t the weir. The storm hydrographs f o r each of the s i x storm events were separated i n t o two components: base flow and quick flow. Base flow was d e f i n e d as the amount of antecedent s u r f a c e flow preceding the onset of p r e c i p i t a t i o n during each of the s i x well-separated storm events. Quick flow was d e f i n e d as the amount of storm r i s e r e s u l t i n g from a storm event, and was  43  c a l c u l a t e d by  44  s u b t r a c t i n g the base flow component from each of t h e storm hydrographs. Quick flow i s t h e same as storm r i s e as d e f i n e d e a r l i e r . Quantifying the r e l a t i o n s h i p between storm p r e c i p i t a t i o n and quick flow response might provide a b e t t e r i n d i c a t i o n of a watershed's response t o the inputs of p r e c i p i t a t i o n without the i n f l u e n c e of base flow from previous p r e c i p i t a t i o n events.  4.3.2  Regression  Regression Analysis  a n a l y s i s was used t o q u a n t i f y the  r e l a t i o n s h i p between the p r e c i p i t a t i o n , groundwater and surface flow data i n t h i s p r o j e c t . I n r e g r e s s i o n a n a l y s i s , the r e g r e s s i o n equation d e f i n e s the average amount of change i n the dependent v a r i a b l e which corresponds t o a u n i t change i n the independent v a r i a b l e (Riggs, 1968). When t h i s r e l a t i o n s h i p has been e s t a b l i s h e d , r e g r e s s i o n a n a l y s i s can be used as a p r e d i c t i v e t o o l t o determine, f o r example, t h e amount of surface flow o r groundwater response f o r a given input of p r e c i p i t a t i o n . There i s a problem with u s i n g r e g r e s s i o n a n a l y s i s t o analyze t i m e - s e r i e s data because r e g r e s s i o n a n a l y s i s r e q u i r e s that t h e observations  f o r each v a r i a b l e be independent of one  another. A common c h a r a c t e r i s t i c of t i m e - s e r i e s data i s t h e existence of a non-random element, producing  a dependence  between observations. T h i s phenomenon i s r e f e r r e d t o as s e r i a l c o r r e l a t i o n (Riggs, 1968). S e r i a l c o r r e l a t i o n causes  45  s i g n i f i c a n c e t e s t s and analysis  to be  confidence i n t e r v a l s of the  i n v a l i d because the u s u a l estimates of  variances of the r e g r e s s i o n c o e f f i c i e n t s are underestimated  regression  (Marshall, e t . al.,  in  Because the data i n t h i s p r o j e c t s e r i e s , i n d i v i d u a l h o u r l y values may  often  press). were c o l l e c t e d as timebe  influenced  by  c o r r e l a t i o n . Even i f s e r i a l c o r r e l a t i o n i s a concern, r e g r e s s i o n equations are  s t i l l good estimates of  r e l a t i o n s h i p between the v a r i a b l e s f o r d e s c r i p t i v e purposes, and  not  the  serial the  the  as long as they are used to t e s t l e v e l s of  significance.  4.3.2.1 Storm Rise and To determine how  storm r i s e was  p r e c i p i t a t i o n , storm r i s e and using regression analysis p r e c i p i t a t i o n data was Appendix 2,  3 and  4.  Precipitation related  Analysis to  p r e c i p i t a t i o n were compared  f o r the 40 day p e r i o d f o r which  a v a i l a b l e . Storm data are presented i n  Storm r i s e was  a l s o compared t o  antecedent p r e c i p i t a t i o n u s i n g p r e c i p i t a t i o n data from two,  three, and  one,  f o u r hours preceding the onset of groundwater  r i s e i n the a n a l y s i s .  The  i n d i c a t e whether i n c l u d i n g  r e s u l t s of the l a t t e r  analysis  antecedent p r e c i p i t a t i o n  the r e l a t i o n s h i p between storm r i s e and  improves  precipitation.  Analyses were performed on the data records from s i x instruments, one area  from each of the  ( A 2 , B 2 , C 2 , D,  E and  F).  46  s i x s i t e s across the  study  4.3.2.2 Storm Rise And Time To Peak  Analysis  Storm r i s e and time t o peak comparisons were made between the upper and lower s i t e s i n each of the three watersheds u s i n g r e g r e s s i o n a n a l y s i s . The watersheds were analyzed i n d i v i d u a l l y and a l s o compared t o each other. The r e s u l t s of t h i s a n a l y s i s i n d i c a t e s how the storm r i s e and time t o peak values a r e r e l a t e d between s i t e s i n t h e same watershed and between watersheds.  4.3.3  Analysis of Covariance  A n a l y s i s of covariance was used t o determine whether a common r e g r e s s i o n equation c o u l d be used t o d e s c r i b e the r e l a t i o n s of storm r i s e and time t o peak between t h e upper and lower s i t e s i n each watershed, and between the three watersheds. A n a l y s i s of covariance i n c l u d e s concepts from a n a l y s i s of v a r i a n c e and r e g r e s s i o n a n a l y s i s . The a n a l y s i s of covariance i s made on d e v i a t i o n s from r e g r e s s i o n r a t h e r than on means. The t e s t i n v o l v e s the sum of squares of d e v i a t i o n s from a r e g r e s s i o n d e f i n e d by a l l p o i n t s p l o t t e d about t h e i r own means, and the sum of squares of d e v i a t i o n s from an overall regression l i n e  (Riggs, 1968).  Covariance i s used t o determine whether two ranges of data move together. There a r e three p o s s i b l e r e s u l t s : one, l a r g e values of one data s e t a r e r e l a t e d t o l a r g e v a l u e s of another data s e t ( p o s i t i v e covariance), two, l a r g e values of one data s e t a r e r e l a t e d t o small values of another data s e t  47  (negative covariance), o r three, the values i n both data are u n r e l a t e d  sets  (covariance near z e r o ) .  For t h i s p r o j e c t , a n a l y s i s of covariance was used t o determine i f a common r e g r e s s i o n could be used t o d e s c r i b e the r e l a t i o n s between the upper and lower s i t e s i n each watershed, and between the three watersheds. By p o o l i n g the data from w i t h i n the three upper s i t e s and comparing i t t o the lower s i t e i n each watershed, the sample s i z e was increased. I t i s p o s s i b l e that an a n a l y s i s of covariance produce a s i g n i f i c a n t r e s u l t ,  even when i n d i v i d u a l  r e l a t i o n s between the same s i t e s  regression  (upper and lower) a r e non-  s i g n i f i c a n t because of the increased sample  4.3.4  will  size.  Student-Newman-Keuls Multiple Range Test Of Means  The Student-Newman-Keuls m u l t i p l e range t e s t of means was used t o compare mean values of storm r i s e and time t o peak, t o determine how each s i t e responded t o the inputs ,of precipitation.  T h i s a n a l y s i s was used t o compare the mean  storm r i s e and time t o peak values f o r the upper and lower s i t e s i n each watershed, and f o r the three watersheds.  48  5  RESULTS 5.1  Time-Series A n a l y s i s  5.1.1 Within Site Comparisons  When the three groundwater w e l l s from s i t e s A and B were cross c o r r e l a t e d w i t h each other, lagging them on an hourlyb a s i s , the highest c o r r e l a t i o n c o e f f i c i e n t s were produced when a 0 hour l a g was used f o r a l l comparisons. These r e s u l t s i n d i c a t e that groundwater l e v e l s w i t h i n these two s i t e s respond s i m i l a r l y , and a t approximately the same time as each other (Table 5.1.1). The groundwater l e v e l s from the three groundwater w e l l s a t s i t e C are not as homogenous as they are at s i t e s A and B. Results of the cross c o r r e l a t i o n a n a l y s i s of the three groundwater l e v e l s from s i t e C i n d i c a t e that groundwater w e l l s C2 and C3 are v e r y s i m i l a r t o each other, but the groundwater l e v e l s over time at groundwater w e l l C l are s i m i l a r t o C2 o r C3  (Table 5.1.1).  Because the three groundwater records from w i t h i n each of s i t e s A and B are so s i m i l a r , they have been averaged f o r use i n the f o l l o w i n g t i m e - s e r i e s a n a l y s i s . The data from groundwater w e l l C l have been disregarded as an o u t l i e r , and the data from groundwater w e l l s C2 and C3 have been averaged f o r the: purpose of f u r t h e r t i m e - s e r i e s a n a l y s i s .  49  Table 5.1.1  Cross Correlation Of Hourly Groundwater Levels Within Sites A, B and C  Comparison  Al Al A2 BI BI B2 Cl Cl C2  to A2 to A3 to A3 to B2 to B3 to B3 to C2 to C3 to C3  Correlation  Coefficient  .997 .997 .999 .991 .982 .990 .524 .527 .914  Lag  in Hours  Significance Level t critical = 2.92 a= 0.05, df = 2  0 hrs 0 hrs 0 hrs 0 hrs 0 hrs 0 hrs -1 hrs -2 hrs 0 hrs  574.1 574.1 984.3 327.9 230.4 31 1.3 27.3 27.5 99.8  5.1.2 Comparing The 40 Day Precipitation Record To Groundwater And Surface Flow Response  Hourly p r e c i p i t a t i o n was cross c o r r e l a t e d w i t h the h o u r l y groundwater and s u r f a c e flow over t h e 40 day p e r i o d that p r e c i p i t a t i o n data were a v a i l a b l e . A l l s i t e s produce significant correlations  of groundwater l e v e l s and surface  flow with p r e c i p i t a t i o n a t the 0.05 l e v e l  {Table 5.1.2).  S i t e s A and D i n watershed #1 produce t h e i r g r e a t e s t c o r r e l a t i o n c o e f f i c i e n t s when a 9 and 8 h r l a g a r e used, respectively.  S i t e s E and F i n watershed #3 have t h e i r  highest c o r r e l a t i o n f o r l a g times of 7 and 6 hours respectively  {Table 5.1.2).  5 0  Table 5.1.2  Comparison  Cross Correlation Between The 40 Day Precipitation Record And Groundwater And Surface Flow Response Correlation  Ppt and A Ppt and B Ppt and C Ppt and D Ppt and E Ppt and F Ppt and Weir  5.1.3  Coefficient  0.699 -0.700 -0.450 0.476 0.405 0.675 0.120  Lag  in Hours Significance Level t critical = 2.92 a = 0.05, df = 2 9 T 1  8 7 6 2  28.2 30.7 14.1 1 7.0 1 3.9 28.7 3.8  Comparisons Of Storm Precipitation And Groundwater And Surface Flow Response  The  r e l a t i o n s h i p s between storm p r e c i p i t a t i o n and  groundwater and surface flow response were analyzed u s i n g t i m e - s e r i e s a n a l y s i s . S i x storms were i d e n t i f i e d from the p r e c i p i t a t i o n record. Hourly groundwater and s u r f a c e flow were cross c o r r e l a t e d with storm p r e c i p i t a t i o n data from s i x storms i d e n t i f i e d f o r the same time p e r i o d  (Appendix 8 ) . The  r e s u l t s of t h i s a n a l y s i s have been compiled i n Appendix 5. Groundwater response t o p r e c i p i t a t i o n a t s i t e s A and D i n watershed #1 was s i g n i f i c a n t f o r three out of the s i x storms (Appendix 5 ) . The l a g times between s i t e s A (4.3 hr) and D (3.3 hr) were w i t h i n one hour of each other f o r a l l storms except one, when t h e l a g time was two hours. There were s i g n i f i c a n t r e s u l t s between groundwater response and  51  p r e c i p i t a t i o n a t s i t e s B and E f o r two  storms each. Both  s i t e s produced s i g n i f i c a n t r e s u l t s when r e l a t e d to storm and they had a s i m i l a r l a g time of 13 h r s  #1,  (Appendix 5).  There were no s i g n i f i c a n t r e s u l t s from s i t e C i n watershed #3,  but three storms produced s i g n i f i c a n t  a t s i t e F , with r e l a t i v e l y short l a g times of 2,  results  1 and 4 h r s .  The surface flow storm hydrographs f o r a l l s i x storms were separated i n t o t h e i r base flow and quick flow components. Surface flow (base flow + quick flow) and quick flow data were cross c o r r e l a t e d with p r e c i p i t a t i o n data. I t was  anticipated  the  storm  that the  relationship  between quick flow and p r e c i p i t a t i o n would be stronger than surface flow and p r e c i p i t a t i o n , but the r e s u l t s of both were almost i d e n t i c a l (Appendix 5). None of the r e s u l t s were significant.  5.2 Storm Rise and Precipitation  The r e l a t i o n s h i p between storm r i s e and p r e c i p i t a t i o n was  quantified  storm  u s i n g r e g r e s s i o n a n a l y s i s . When  the groundwater records from s i t e s A , B and C were analyzed using time-series analysis,  i t was  found that the v a r i a t i o n  between the three groundwater w e l l s at s i t e s A and B , and groundwater w e l l s at C2 and C3 c o r r e l a t e d  so w e l l with each  other t h a t one groundwater r e c o r d could be s e l e c t e d  from each  s i t e t o use as a r e p r e s e n t a t i v e of the s i t e ' s groundwater record  (Table 5.1.1). Groundwater w e l l s A 2 , B2 and C2 were  52  the  chosen as the r e p r e s e n t a t i v e s f o r s i t e s  A , B and C . S i t e s D ,  E and P only have one groundwater w e l l . When the storm r i s e from s i t e s A and F a r e regressed against the p r e c i p i t a t i o n record, they produce s i g n i f i c a n t r e s u l t s a t the 0.05 l e v e l . Regressions of storm r i s e from sites B , C , D  and E and p r e c i p i t a t i o n do not produce  s i g n i f i c a n t r e s u l t s a t the 0.05 l e v e l  Table  5.2.1  Site  A2 B2 C2 D E F  (Table 5.2.1).  Regressions Of Storm Rise and Precipitation Intercept  Slope  (m)  (m/m)  0.361 0.132 0.048 0.032 0.666 0.030  0.003 0.001 0.001 0.001 -0.006 0.001  A regression analysis  R Squared  0.591 • 0.124 0.175 0.112 0.044 0.595  P  S. E.  0.026 0.392 0.302 0.418 0.620 0.025  0.035 0.049 0.023 0.029 0.185 0.527  of storm r i s e on storm  p r e c i p i t a t i o n p l u s antecedent p r e c i p i t a t i o n was conducted. I t was a n t i c i p a t e d one,  that i n c l u d i n g  antecedent p r e c i p i t a t i o n from  two, three and f o u r hours b e f o r e t h e onset of  groundwater r i s e i n the a n a l y s i s would strengthen t h e r e l a t i o n s h i p between storm r i s e and p r e c i p i t a t i o n  (Table  5.2.2) . The  r e l a t i o n between storm r i s e and storm p r e c i p i t a t i o n  p l u s antecedent p r e c i p i t a t i o n i s s i g n i f i c a n t a t s i t e s A and  53  Table 5.2.2  Site + Hour  A2 A2 A2 A2 A2 B2 B2 B2 B2 B2 C2 C2 C2 C2 C2 D D D D D E E E E E F F F F F  1  + 0 + 1 + 2 + 3 + 4 + 0 + 1 + 2 + 3 + 4 + 0 + 1 + 2 + 3 + 4 + 0 + 1 + 2 + 3 + 4 + 0 + 1 + 2 + 3 + 4 +G + 1 + 2 + 3 + 4  Regressions Of Storm Rise on Precipitation Plus Antecedent Precipitation Intercept  Slope  R Squared  P  S. E.  (m)  (m/m)  0.361 0.353 0.348  0.003 0.004 0.004  0.591 0.661 0.701  0.026 0.014 0.009  0.035 0.032 0.030  0.004  0.722  0.008  0.029  0.340 0.132 0.131  0.004 0.001 0.001  0.007 0.392 0.379  0.029 0.049 0.048  0. 127  0.001  0.340  0.048  0.125 0.124 0.048 0046 0.043 0.042  0.001 0.001 0.001 0.001 0.001 0.001  0.722 0.124 0.131 0.7 52 0.144 0.148 0.175 0.216 0.272 0.291  0.043  0.1 10  0.293  0.032  0.112 0.7 30 0.119 0.116 0.111  0.048 0.048 0.023 0.022 0.022 0.021 0.02 1 0.029  0.381  0.029  0.033 0.034 0.034  0.001 0.00 7 0.000 0.001 0.001  0.354 0.347 0.302 0.246 0.185 0.167 0. 7 66 0.418 0.403 0.409 0.419  0.029 0.029 0.029  0.666  -0.006  0.044  0.620  0.185  0.650 0.618 0.590 0.564  -0.004 -0.000 0.001 0.003  0.018 0.000 0.006 0.027  0.750 0.967 0.860 0.700  0.187 0.189 0.189 0.186  0.030  0.001  0.595  0.025  0.527  0.029 0.030 0.029 0.029  0.001 0.001 0.001 0.001  0.584 0.568 0.555 0.553  0.027 0.031 0.034 0.035  0.017 0.017 0.017 0.017  0.343  1  0.03 1  Values In i t a l i c s a r e f o r regressions s i g n i f i c a n t a t p = 0.05.  54  F  (Table 5.2.2). The three upper slope s i t e s produce h i g h e r  coefficients  of determination when two t o f o u r hours of  antecedent p r e c i p i t a t i o n are i n c l u d e d . The lower slope s i t e s produce higher c o e f f i c i e n t s  of determination without any, o r  with j u s t one hour of antecedent p r e c i p i t a t i o n .  None of the  n o n - s i g n i f i c a n t r e l a t i o n s h i p s from the previous a n a l y s i s become s i g n i f i c a n t w i t h the a d d i t i o n of antecedent precipitation.  5.3  Storm Rise A n a l y s i s  5.3.1  Storm R i s e Comparisons Between The Upper And Lower S i t e s In The Same Watershed  Storm r i s e a t the upper s i t e s was compared t o storm r i s e from the lower s i t e s i n the same watershed. The r e g r e s s i o n s of storm r i s e and time t o peak have been graphed by watershed i n f i g u r e s 13 through 18.  5.3.1.1 Watershed #1 None of the r e g r e s s i o n s between storm r i s e at s i t e A and s i t e D were s i g n i f i c a n t a t the 0.05  level  (Table  5.3.1.1).  5.3.1.2 Watershed #2 None of the r e g r e s s i o n s between storm r i s e at s i t e B and s i t e E were s i g n i f i c a n t a t the 0.05  55  level  (Table  5.3.1.1).  0.3  0.5  0.7  Site D (mm) Figure 13. Regression of storm r i s e watershed  #1  s i t e s A2 and D  17.5 Figure 14. R e g r e s s i o n of time t o peak watershed S i t e s A 2 and D  56  #1  0.25  0.2  0.15«  0.1-  -|  1  0.3  1  1  1  0.4  1  1  0.5  0.6  r  1  1  0.7  1 0.8  Site E (mm) F i g u r e 15. Regression of storm r i s e watershed  #2  s i t e s B2 and E 201  :  17.515-  -  ...  12.5-  ""  107.5«  52.5 J 2.5  «...-, 5  , 7.5  f  10  12.5  15  Site E hrs. F i g u r e 16. Regression of time t o peak watershed s i t e s B2 and E  57  #2  0.65 0.6 0.55  il  0.5  CM  o  © 0.45 CO  0.4  0.03  - 0.05  0.07  Site F (mm)  0.09  #3  Figure 17. Regression of storm r i s e watershed s i t e s C2 and F  25.  :  :  20-]  2.5  •  7.5  12.5 Site F hrs.  17.5  F i g u r e 18. Regression of time t o peak watershed s i t e s C2 and F  58  #3  Table 5.3.T.T  Comparison  Regressions Of Storm Rise Between The Upper And Lower Sites In The Same Watershed Slope  Intercept  .(m/'m)  (m)  -0.194 -0.139 -0.127  R Squared  P  S. E.  0.574 0.467 0.376  0.124 0.095 0.130  0.289 0.356 0.277  0.114 0.094 0.073  -0.010 0.013 -0.028  0.178 0.134 0.128  0.001 0.002 0.021  0.924 0.886 0.670  0.059 0.049 0.042  0.946 3.748 5.320  0.008 0.400 0.059  0.573 0.876 0.744  0.007 0.000 0.001  0.019 0.034 0.075  Watershed #1 AT to D A2 to D A3 to D Watershed #2 B1 to E B2 to E B3 to E Watershed #3 Cl to F C2 to F C3 to F  5.3.1.3 Watershed #3 A l l regressions between storm r i s e a t s i t e C and s i t e P were s i g n i f i c a n t determination  a t the 0.05 l e v e l . The c o e f f i c i e n t s of  f o r these r e g r e s s i o n equations range from 0.573  (Cl/F) t o 0.876 (C2/F) (Table 5.3.1.1).  59  5.3.2 Analysis Of Covariance Between Storm Rise At The Upper And Lower Site In Each Watershed, And Between The Three Watersheds  An a n a l y s i s of covariance was used t o determine i f a common r e g r e s s i o n equation c o u l d d e s c r i b e the r e l a t i o n s of storm r i s e between the upper and lower s i t e s i n each watershed and between the t h r e e watersheds  (Appendix 6).  The a n a l y s i s of covariance i n d i c a t e s that the slopes of the r e g r e s s i o n equations d e f i n i n g the r e l a t i o n s between storm r i s e a t the upper and lower s i t e s i n each watershed a r e s i m i l a r , but the i n t e r c e p t s are d i f f e r e n t . The slopes and i n t e r c e p t s of the r e g r e s s i o n s comparing the t h r e e watersheds were both d i f f e r e n t . Therefore a s i n g l e r e g r e s s i o n cannot d e f i n e the r e l a t i o n s h i p between storm r i s e a t the upper and the lower s i t e s f o r a l l t h r e e watersheds  sites  (Appendix 6 ) .  5.3.3 Mean Storm Rise Comparisons Between The Upper And Lower Sites In The Same Watershed  5.3.3.1 Watershed #2 The average mean storm r i s e f o r eleven storms from the three groundwater w e l l s a t upper s i t e A i s g r e a t e r than a t lower s i t e D. The mean storm r i s e from A l and A2 i s g r e a t e r than a t s i t e D, although not s t a t i s t i c a l l y so. A3 and D are equal (Table 5.3.3).  60  There a r e no s t a t i s t i c a l d i f f e r e n c e s between the mean storm r i s e from groundwater w e l l s A2, A3 and t h e mean storm r i s e from the groundwater w e l l a t s i t e D. The mean storm r i s e at groundwater w e l l A l was s i g n i f i c a n t l y g r e a t e r than mean storm r i s e from s i t e D, a t the 0 . 0 5 l e v e l  (Table 5 . 3 . 3 ) .  Table 5.3.3 Statistical Significance Of Differences In Mean Storm Rise* Location  Site  Mean Storm Rise In m  Upper Upper Upper Lower Lower Upper Upper Upper Lower Upper Upper Upper Lower  Al  0.51  A2  0.42  A3  0.33  Dp Dw  0.33  BI B2  0.17  B3  0:12  E Cl  0.59 0.07  C2  0.47  C3  0.39  Fl  0.06  a  b b  c c c e  0.04 0.14  d d d  e e  d  e  d  e  a b b  c  * Means with the same letter are not significantly different at the 5% level of probability by the Student-Newman-Keuls Multiple Range Test of means.  5.3.3.2 Watershed #2 The mean storm r i s e from a l l three groundwater w e l l s a t s i t e B was s i g n i f i c a n t l y  smaller a t the 0 . 0 5 l e v e l than the  mean storm r i s e a t the groundwater w e l l a t s i t e E . S i t e E had the g r e a t e s t mean storm r i s e of a l l groundwater w e l l s i n t h e study area, 0 . 5 9 m. The mean r i s e between the three  61  groundwater w e l l s a t s i t e B were t i g h t l y grouped, ranging from 0.14 m t o 0.17 m (Table  5.3.3).  5.3.3.3 Watershed #3 The mean storm r i s e from the three groundwater w e l l s a t upper s i t e C was g r e a t e r than the mean storm r i s e from the groundwater w e l l a t lower s i t e F (Table  5.3.3).  The mean storm r i s e of groundwater w e l l s C2 and C3 was s i g n i f i c a n t l y g r e a t e r a t t h e 0.05 l e v e l than the mean storm r i s e from s i t e s F and C l (Table 5 . 3 . 3 ) . The mean storm r i s e from groundwater w e l l C l (0.07 m) was s t a t i s t i c a l l y no d i f f e r e n t than t h e mean storm r i s e from s i t e F (0.06 m) . The mean storm r i s e values a t groundwater w e l l C l and F a r e very c l o s e t o each other, 0.07 m and 0.06 m r e s p e c t i v e l y  (Table  5 * 3 • 3). •  5.4  Time To Peak A n a l y s i s  5.4.1  Time To Peak Comparisons Between The Upper And Lower Sites In The Same Watershed  5.4.1.1 Watershed #1 A l l regressions of time t o peak between the upper (A) and lower" s i t e s  (D) i n watershed #1 were s i g n i f i c a n t  at the  0.05 l e v e l . The c o e f f i c i e n t s of determination range from  0.400 (Al/D) t o 0.619 (A2/D) (Table 5 . 4 . 1 ) .  62  Table 5.4.1 Regressions Of Time To Peak Between The Upper and Lower Sites in The Same Watershed Comparison  R Squared  P*  S. E.  7.851 7.564 6.450  0.400 0.619 0.473  0.037 0.004 0.019  1.926 1.543 2.810  0.090 0.032 0.060  8.863 8.915 8.575  0.004 0.000 0.002  0.861 0.951 0.909  5.225 5.258 5.318  0.602 0.661 0.409  3.344 0.466 3.076  0.396 0.356 0.390  0.038 0.053 0.040  3.483 4.163 2.400  Slope  Intercept  (hr./hr.)  (hr.)  0.336 0.420 0.569  Watershed #1 AT to D A2 to D A3 to D Watershed #2 BI to E B2 to E B3 to E Watershed #3 Cl to F C2 to F C3 to F  * Probabilities  l i s t e d t o three decimal p l a c e s only.  5.4.1.2 Watershed #2 None of the r e g r e s s i o n s of time t o peak between the upper and lower s i t e s B and E i n watershed #2 were s i g n i f i c a n t a t the 0.05 l e v e l  (Table 5.4.1).  5.4.1.3 Watershed #3 Two (Cl/P and C3/F) out of t h e three time t o peak regressions between s i t e s C and P i n watershed #3 were s i g n i f i c a n t a t the 0.05 l e v e l  63  (Table 5.4.1). The c o e f f i c i e n t s  of determination were t i g h t l y grouped, ranging from 0.356 t o 0.396 (Table 5.4.1).  5.4.2 Analysis Of Covariance Between Time To Peak At The Upper And Lower Site In Each Watershed and Between The Three Watersheds  An a n a l y s i s of covariance i n d i c a t e d that the slopes and i n t e r c e p t s of t h e r e g r e s s i o n equations d e f i n i n g t h e r e l a t i o n s h i p s of time t o peak between upper and lower  sites  i n the same watershed were s i m i l a r t o each other. The a n a l y s i s of covariance comparing the r e g r e s s i o n equations from each of the watersheds i n d i c a t e d t h a t t h e slopes of t h e equations were s i m i l a r but the i n t e r c e p t s were d i f f e r e n t . Therefore there i s not a common r e g r e s s i o n equation that d e f i n e s the r e l a t i o n s h i p between time t o peak a t t h e upper and lower s i t e s f o r a l l three watersheds (Appendix 7 ) .  5.4.3 Mean Time To Peak Comparisons Between The Upper And Lower Sites In The Same Watershed  5.4.3.1 Watershed #1 Upper s i t e A had g r e a t e r mean time t o peak values f o r a l l three groundwater w e l l s (11.2 - 12.1 hr) than a t t h e lower s i t e D (9.9 h r ) , although t h e d i f f e r e n c e s were not s i g n i f i c a n t a t the 0.05 l e v e l  64  (Table 5.4.3).  Table 5.4.3  Statistical Significance Of Difference In Mean Time To Peak Location  Site  Upper Upper Upper Lower Lower Upper Upper Upper Lower Upper Upper Upper Lower  Al A2 A3 Dp Dw BI B2 B3 E Cl C2 C3 Fl  Mean Time To Peak In Hrs 11.2 11.7 12.1 9.9 6.5 9.4 9.1 8.9 5.6 10.5 8.3 7.9 11.8  a a a a a a a a a a a a  c c c c c c c c c  * Means with the same letter are not significantly different at the 5% level of probability by the Student-Newman-Keuls Multiple Range Test of means  5.4.3.2 Watershed #2 A l l three groundwater w e l l s a t the upper s i t e B had g r e a t e r mean time t o peak values  (8.9 - 9.4 hr) than a t the  lower s i t e E (5.6 h r ) , although not s i g n i f i c a n t l y so a t the 0.05 l e v e l  (Table 5 . 4 . 3 ) .  5.4.3.3 Watershed #3 The mean time t o peak was g r e a t e r a t lower s i t e P (11.8 hr)  than i t was a t upper s i t e s C (7.9 - 10.5 h r ) ,  not  s i g n i f i c a n t l y so a t the 0.05 l e v e l  65  although  (Table 5 . 4 . 3 ) .  5.5  Precipitation  Analysis  5.5.1 Comparisons of A.E.S. and Gregory Creek Precipitation Records  Because o n - s i t e p r e c i p i t a t i o n data was c o l l e c t e d f o r only h a l f of the study p e r i o d , an attempt was made t o f i n d an alternative  source of p r e c i p i t a t i o n data t o use as a r e l a t i v e  p r e c i p i t a t i o n index. The p r e c i p i t a t i o n records from three A.E.S. s t a t i o n s  l o c a t e d a t M i t c h e l l I n l e t , Sewell I n l e t and  Sandspit a i r p o r t were regressed against Gregory Creek p r e c i p i t a t i o n records f o r the same time p e r i o d . The a n a l y s i s  indicates  that the M i t c h e l l  Inlet  p r e c i p i t a t i o n records were most s i m i l a r t o those from Gregory Creek. The best r e s u l t s were achieved by adding a two hour l a g t o the M i t c h e l l I n l e t data b e f o r e r e g r e s s i n g i t a g a i n s t Gregory Creek data  (Table 5.5.1). The c o e f f i c i e n t of  determination r e s u l t i n g from t h i s r e g r e s s i o n was 0.695 ( f i g . 19). With only 7 0% of the v a r i a n c e between the two p r e c i p i t a t i o n records accounted  f o r by the r e g r e s s i o n , i t was  decided that the M i t c h e l l I n l e t p r e c i p i t a t i o n r e c o r d would not provide an adequate index f o r the p e r i o d that GregoryCreek p r e c i p i t a t i o n data was not a v a i l a b l e .  66  Table 5.5.1  Coefficients of Determination for Regressions of Mitchell Inlet, Sandspit airport and Sewell Inlet Precipitation on Gregory Creek Precipitation, Lagged Hourly Lag Time  M I.  Sspit  Sewell  Coefficients of Determination hrs -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5  m  m  0.391 0.459 0.522 0.574 0.621 0.659 0.681 0.684  0.562 0.577 0.564 0.536 0.465 0.419 0.378 0.334 0.290 0.238 0.172 0.153 0.116 0.086 0.059 0.036  0.695 0.686 0.671 0.636  67  m  0.249 0.307 0.360 0.401 0.441 0.419  0.494 0.494 0.494  0.489 0.483 0.462  CD CL  CD CO  Ss  2  - 9 I  CD  o  o  o  x i - c o  cvj  o  o  uoiieujiujaiarj  o jo  luaioiiiaoo  68  o  o  6 Summary and D i s c u s s i o n 6.1 Summary  Time s e r i e s a n a l y s i s of h o u r l y groundwater l e v e l s w i t h i n each of the upper s i t e s showed s i g n i f i c a n t c o r r e l a t i o n s f o r a l l nine analyses w i t h 0 h r l a g time f o r seven comparisons and 1 and 2 h r lags f o r the other two. Time s e r i e s showed s i g n i f i c a n t c o r r e l a t i o n s levels,  analysis  between h o u r l y groundwater  lagged by 6 - 9 hr, and h o u r l y p r e c i p i t a t i o n  f o r four  (1 upper, 3 lower) of the s i x s i t e s . A s i m i l a r a n a l y s i s f o r s i x storms showed s i g n i f i c a n t c o r r e l a t i o n s  between  groundwater storm r i s e , lagged by I - 13 hr, and storm precipitation  f o r only 14 (6 upper, 8 lower) of t h e 36 storm  by s i t e combinations. Mean storm r i s e and time t o peak f o r eleven storms were not  consistently  g r e a t e r o r l e s s a t upper s i t e s than a t lower  s i t e s on the three watersheds. Only f o r two of the s i x s i t e s , the upper s i t e on watershed #1 and the lower on watershed #3, was the r e g r e s s i o n of groundwater storm r i s e on storm (including  antecedent p r e c i p i t a t i o n )  precipitation  significant.  Regressions of storm r i s e a t the upper s i t e s on storm r i s e a t the lower s i t e s were s i g n i f i c a n t l y d i f f e r e n t between watersheds and between s i t e s on the same watershed.  69  6.2 Discussion of Results  Sidle  (1984) monitored groundwater  forested h i l l s l o p e s  levels  In two steep,  during storm events i n c o a s t a l A l a s k a and  found that groundwater peaks occurred simultaneously i n t h e upper and lower s i t e s of each watershed. In t h i s study, however, s i t e s A and D do not respond t o t h e inputs of storm precipitation correlation  simultaneously, but the r e s u l t  a n a l y s i s were v e r y s i m i l a r .  from t h e cross  S i t e D responded on  average sooner than s i t e A. These response times might be explained by t h e n o t i o n that a f t e r drainage, moisture content I s highest a t the base of a slope (Knapp, 1978). With the new inputs of new precipitation, the  the groundwater  l e v e l s might respond sooner a t  lower slopes than a t t h e upper slopes because they  c o n t a i n more antecedent moisture than the upper Based on the r e s u l t s Sidle,  of other s t u d i e s  sites.  (Pierson, 1980;  1984), i t might be reasonable t o expect that lower  s i t e s would have g r e a t e r amounts of storm r i s e than the upper s i t e s , because the lower s i t e may be r e c e i v i n g inputs from more sources than t h e upper s i t e s . These sources i n c l u d e precipitation,  surface flow and subsurface storm flow from a  l a r g e r surface area than a t the upper  sites.  The mean storm r i s e between t h e upper and lower s i t e s i n each watershed i n d i c a t e that watersheds #1 and #3 have g r e a t e r mean storm r i s e a t the upper s i t e s , and watershed #2 has a g r e a t e r mean storm r i s e a t t h e lower s i t e . However t h i s  7 0  finding, does not support the arguments proposed by  either  Pierson o r S i d l e . The  d i f f e r e n c e s between r e g r e s s i o n r e s u l t s from  comparisons of upper and lower s i t e s i n each of the watersheds may A,  B and C .  three  be explained by the r e l a t i v e l o c a t i o n of  S i t e s A and B are l o c a t e d about 55 m apart  sites in  adjacent g u l l i e s i n the northwestern s e c t o r of the studyc l o s e t o the upper boundary. S i t e C i s l o c a t e d at  area,  approximately midslope on the eastern boundary of the 255 m from s i t e A .  area,  study  S i t e s A and B might share more  s i m i l a r i t i e s between the two  s i t e s than e i t h e r of them does  with s i t e C . Pierson  (1980) reported that 90% o f piezometric  w i t h i n a s i t e was  explained by r a i n f a l l and antecedent  moisture c o n d i t i o n s . The depressions was  response soil  response between adjacent h i l l s l o p e  s i g n i f i c a n t l y d i f f e r e n t . These d i f f e r e n c e s  were explained by d i f f e r e n c e s i n water r e t e n t i o n of the The  d i f f e r e n c e s i n the groundwater response of adjacent  g u l l i e s i n t h i s study may gradient,  soil.  be explained by d i f f e r e n c e s i n : 1)  2) l o c a t i o n of instruments, 3)  topographic  c h a r a c t e r i s t i c s of i n d i v i d u a l watersheds, 4) water bypassing the s o i l matrix by using p r e f e r r e d pathways such as channels, macropores or cracks  root  i n the f r a c t u r e d bedrock, o r  5) d i f f e r e n c e s i n s o i l - w a t e r r e t e n t i o n c a p a c i t i e s of  the  soils. Three f a c t o r s i n f l u e n c i n g observations and  of groundwater  surface flow i n t h i s study are: 1) the l o c a t i o n of  71  the  instruments,  2) topographic  and 3) water bypassing  c h a r a c t e r i s t i c s of each watershed  the s o i l matrix. A combination of  these f a c t o r s may provide p o s s i b l e explanations f o r the r e s u l t s of t h i s  study.  Another f a c t o r which may cause d i f f i c u l t y i n e x p l a i n i n g the r e s u l t s of t h i s study i s s c a l e . I n l a r g e watersheds ( i . e . , hundreds o r thousands of h e c t a r e s ) , the i n d i v i d u a l d i f f e r e n c e s between f i r s t - o r d e r watersheds tend t o cancel each other out when h y d r o l o g i c a l responses a r e examined. By comparison, i n small basins i n d i v i d u a l l o c a l d i f f e r e n c e s i n s o i l c h a r a c t e r i s t i c s and slope exert a much stronger i n f l u e n c e on h y d r o l o g i c a l responses. l o c a t i o n of instruments  Thus the p r e c i s e  becomes c r i t i c a l s i n c e l o c a l  v a r i a t i o n s i n b a s i n c h a r a c t e r i s t i c s exert a r e l a t i v e l y l a r g e r i n f l u e n c e than i n l a r g e r b a s i n s . The t i m e - s e r i e s and the means a n a l y s i s a r e both d e s c r i p t i v e t o o l s , d e t a i l i n g how the s i t e s and watersheds behave. Regression by comparison provides a p r e d i c t i v e t o o l f o r a n a l y z i n g data. Regression was used t o determine i f the v a r i a t i o n i n the independent v a r i a b l e s , p r e c i p i t a t i o n and groundwater l e v e l s , could e x p l a i n the v a r i a t i o n i n the dependent v a r i a b l e s , groundwater and surface flow. I have looked a t the general response of the watersheds (groundwater and s u r f a c e flow) using the t i m e - s e r i e s and r e g r e s s i o n analyses. The t i m e - s e r i e s has provided a good d e s c r i p t i o n of how the watersheds respond t o the inputs of p r e c i p i t a t i o n , and how w e l l groundwater l e v e l s w i t h i n a s i t e  72  and s i t e s w i t h i n a watershed c o r r e l a t e with one another. I t has not been p o s s i b l e to o b t a i n c o n s i s t e n t p r e d i c t i v e r e s u l t s u s i n g r e g r e s s i o n a n a l y s i s . Consistent p r e d i c t i v e r e s u l t s could have been used t o c r e a t e a heterogeneous model t o determine how  these watersheds work, and p r e d i c t how  would behave given a d e f i n e d set of  they  circumstances.  The t i m e - s e r i e s a n a l y s i s shows g e n e r a l l y small l a g time between p r e c i p i t a t i o n inputs and groundwater and s u r f a c e responses, c o n s i s t e n t with the r e s u l t s from other f o r e s t e d s t u d i e s . The  shortness  flow  steepland  of l a g time i s of some  s i g n i f i c a n c e i n any f u t u r e attempt t o model runoff  and  groundwater l e v e l f l u c t u a t i o n s from known p r e c i p i t a t i o n inputs. I t seems that once a small g u l l y b a s i n i s  fully  saturated, a f t e r the f i r s t of the f a l l storms have recharged s o i l moisture, basins respond very r a p i d l y t o f u r t h e r p r e c i p i t a t i o n i n p u t s . Therefore,  during the most  critical  periods of high groundwater l e v e l s and highest r u n o f f , i t may not be necessary t o i n c l u d e long sequences of antecedent p r e c i p i t a t i o n data i n such a model, i n other words, the "hydrologic memory" of f i r s t - o r d e r watersheds i s very  short.  T h i s i s t o be expected i n areas of steep, r a p i d l y d r a i n i n g s o i l s , such as c h a r a c t e r i z e the three study watersheds.  73  6.3  Recommendations  To o b t a i n a b e t t e r understanding  of the p h y s i c a l  r e l a t i o n s between h i l l s l o p e h y d r o l o g i c processes a t the study s i t e , i t may be necessary t o monitor more v a r i a b l e s than were s t u d i e d f o r t h i s p r o j e c t , or to study the v a r i a b l e s that were monitored  i n a d i f f e r e n t manner. In t h i s p r o j e c t s i t e  s e l e c t i o n was  based on f o r e s t h a r v e s t i n g p l a n s . S i t e s were  chosen i n areas that were going t o r e c e i v e d i f f e r e n t types of f o r e s t harvest treatment. A l t e r n a t i v e l y , s i t e s e l e c t i o n c o u l d have been based on a set of c r i t e r i a to determine areas most s u i t a b l e f o r monitoring a given v a r i a b l e . These c r i t e r i a would change depending on which v a r i a b l e was  t o be  monitored.  For example, a s e r i e s of auger h o l e t e s t s of h y d r a u l i c c o n d u c t i v i t y would have r e v e a l e d whether or not the s o i l a t a w e l l s i t e was  u n u s u a l l y conductive, or not, r e l a t i v e to the  average p e r m e a b i l i t y of a slope. I t must be recognized that the best approach i s not always a f e a s i b l e one, and o f t e n a compromise must be accepted. In t h i s study there was  no time a v a i l a b l e f o r p i l o t  s t u d i e s p r i o r t o the i n s t a l l a t i o n of groundwater w e l l s . Whipkey and Kirkby (1978) have shown t h a t s i t e s e l e c t i o n i s a c r i t i c a l f a c t o r i n determining the outcome of a h i l l s l o p e h y d r o l o g i c experiment. Three s p e c i f i c recommendations f o r t h i s p r o j e c t are: 1) the l o c a t i o n of the groundwater w e l l s i n the  lower  s i t e s i n each of the t h r e e watersheds should have been i n  74  l o c a t i o n s more comparable with the l o c a t i o n s used at  the  upper s i t e s i n the same watershed. Because the groundwater w e l l s i n the lower s i t e s i n t h i s p r o j e c t were l o c a t e d near the h y d r o l o g i c d i v i d e of the watersheds (sideslope of  the  g u l l i e s ) i t appears that the downslope movement of water w i t h i n each of the three g u l l i e s was  not adequately  monitored. I f the instrument i n s t a l l a t i o n w i t h i n the lower s i t e s i n each g u l l y d i d not allow f o r the monitoring of downslope movement of water, t h i s could have adversely a f f e c t e d the r e s u l t s of the s t a t i s t i c a l a n a l y s i s . 2)  the p r e c i p i t a t i o n data c o l l e c t e d i n t h i s p r o j e c t  Inadequate. The  e n t i r e p r e c i p i t a t i o n record only spans a  was. 40  day time p e r i o d . Although there were o r i g i n a l l y three t i p p i n g bucket r a i n gauges l o c a t e d at the study s i t e , only one o p e r a t i o n a l f o r any  was  length of time. For f u t u r e p r o j e c t s i t  would be h e l p f u l i f more emphasis were placed on c o l l e c t i o n of p r e c i p i t a t i o n data. One way  the  of a c h i e v i n g  this  would be the I n s t a l l a t i o n of a d d i t i o n a l gauges t o guard against instrument  malfunction.  3) i t i s h i g h l y recommended that s o i l samples be taken at  each of the monitoring s i t e s , and p r e f e r a b l y at each of  the instrument i n s t a l l a t i o n s . S o i l samples could y i e l d important information about the h y d r a u l i c c o n d u c t i v i t y of  the  s o i l , which i n t u r n could provide v a l u a b l e i n s i g h t i n t o the processes of h i l l s l o p e hydrology. Despite the shortcomings of t h i s p r o j e c t noted above, with respect t o p e r i o d of record and p a u c i t y of s i t e s ,  75  the  data r e c o r d i s regarded as v a l u a b l e i n d e f i n i n g the gross h y d r o l o g i c behavior of f i r s t - o r d e r watersheds. There a r e s t i l l very few data a t t h i s small s c a l e i n c o a s t a l B r i t i s h Columbia, as any l i t e r a t u r e search w i l l q u i c k l y r e v e a l . The study has t h e r e f o r e p r o v i d e d some p r e l i m i n a r y data on h y d r o l o g i c processes which can be used t o complement the much l a r g e r h y d r o l o g i c data base a v a i l a b l e from watersheds g r e a t e r than 1 km  2  i n size.  76  REFERENCES A l l e y , N. F., and B. Thomson. 197 8. Aspects of Environmental Geology, Parts of Graham I s l a n d , Queen C h a r l o t t e I s l a n d s . B.C. M i n i s t r y of Environment, Resource A n a l y s i s Branch, B u l l e t i n No.2., V i c t o r i a , B.C. Berndt, H.W., and G.W. Swank. 1970. Forest Land Use and Streamflow i n C e n t r a l Oregon. USDA Forest S e r v i c e Research Paper PNW-93, 15 p. Bethlahmy, N., 1974. More Streamflow A f t e r a Bark B e e t l e Epidemic. J o u r n a l of Hydrology. 23: 185-189. Betson, R.P., and J.B. Marius. 1964. Source Areas of Storm Runoff. Water Resources Research. 5(3): 574-582. Beven, K. 197 8. The Hydrologic Response of Headwater and Sideslope Areas. H y d r o l o g i c a l S c i e n c e s - B u l l e t i n . 23 (4): 419-437. Beven, K. 1983. Surface Water Hydrology - Runoff Generation And Basin S t r u c t u r e . Reviews of Geophysics and Space Physics, 21(3): 721-730. Calder, J.A., and R . L i T a y l o r . 1968. F l o r a of the Queen C h a r l o t t e I s l a n d s - P a r t 1. Ottawa, Canada. Carr, W.W. 1983. Watershed R e h a b i l i t a t i o n Options f o r Disturbed Slopes on the Queen C h a r l o t t e I s l a n d s . F i s h F o r e s t r y I n t e r a c t i o n Program, Working Paper. B.C. Min. of F o r e s t r y , B.C. Min. of Environment, Canada Dept. of F i s h e r i e s and Oceans. V i c t o r i a , B.C. C h a t f i e l d , C. 1989. The A n a l y s i s of Time S e r i e s ; An I n t r o d u c t i o n . Chapman and H a l l , New York. Cheng, J.D. 1988. Subsurface Storm Flow i n the H i g h l y Permeable Forested Watersheds of Southwestern B r i t i s h Columbia. J o u r n a l of Contaminant Hydrology, 3: 171-191. Cheng, J.D., and T.A. Black, J . de V r i e s , R.P. W i l l i n g t o n , and B.C. Goodell. 1975. The E v a l u a t i o n of I n i t i a l Changes i n Peak Streamflow Following Logging of a Watershed on the West Coast of Canada. I n t . Assoc. S c i . Hydrol. Publ. 117: 475-486. Chorley, R.J., 1978. The H i l l s l o p e H y d r o l o g i c a l C y c l e . In H i l l s l o p e Hydrology. John Wiley and Sons, Toronto, pp. 1-41.  77  de V r i e s , J . , and T.L. Chow. 1978. Hydrologic Behavior of a Mountain S o i l i n C o a s t a l B r i t i s h Columbia. Water Resources Research, 14(5): 935-942. Dunne, T., and L.B. Leopold. 197 8. Water i n Environmental Planning. W.H. Freeman and Company, San F r a n c i s c o , Ca. 818 p. Dunne, T., and R.D. Black. 197 0. An Experimental I n v e s t i g a t i o n of Runoff Production i n Permeable S o i l s . Water Resources Research, 6(2): 478- 490. Freeze, A.R. 1972. Role of Flow i n Generating Surface Runoff 2. Upstream Source Areas. Water Resources Research 8(5): 1272-1283. Golding, D.L. 1987. Changes i n Streamflow Peaks F o l l o w i n g Timber Harvest of a C o a s t a l B r i t i s h Columbia Watershed. Forest Hydrology and Watershed Management. Proceedings of the Vancouver Symposium IAHS Publ. 167: 509-517. G u i l l e r m e A. 1980. The I n f l u e n c e of D e f o r e s t a t i o n on Groundwater i n Temperate Zones: an H i s t o r i c a l P e r s p e c t i v e . Proceedings of the H e l s i n k i Symposium IAHSAISH Publ. 130: 75-79. Harr, R.D., and F.M. McCorison. 1979. I n i t i a l E f f e c t s of Clearcut Logging on S i z e and Timing of Peak Flows i n a Small Watershed i n Western Oregon. Water Resources Research, 15(1): 90-94. Herring, H.G. 197 0. S o i l Moisture Trends Under Three D i f f e r e n t Cover C o n d i t i o n s . USDA Forest S e r v i c e Research Note PNW-114, 8 p. Hetherington, E.D. 1982. E f f e c t s of Forest H a r v e s t i n g on the Hydrologic regime of Carnation Creek Experimental Watershed: a P r e l i m i n a r y Assessment. In: Canadian Hydrology Symposium 82: e d i t e d by Healey and Wallace, 247-267. Hetherington, E.D. 1987. Carnation Creek Canada - Review of a West Coast F i s h / F o r e s t r y Watershed Impact P r o j e c t . Forest Hydrology and Watershed Management, Proceedings of the Vancouver Symposium, IAHS-AISH Publ. 167: 531538. Hetherington, E.D. 1987. The Importance of F o r e s t s i n the Hydrologic Regime. In: Canadian Aquatic Resources, Department of F i s h e r i e s and Oceans. Ottawa: 179-211.  78  Hewlett, J.D., and A.R. H i b b e r t . 1967. F a c t o r s A f f e c t i n g t h e Response of Small Watersheds t o P r e c i p i t a t i o n i n Humid Areas. Proceedings of the I n t e r n a t i o n a l Symposium on Forest Hydrology, Pennsylvania S t a t e U n i v e r s i t y , U n i v e r s i t y Park: e d i t e d by Sopper and L u l l , pp. 275-290. Hewlett, J.D., H.W. L u l l , and K.G. Reinhart. 1969. I n Defence of Experimental Watersheds. Water Res. Res., 5(1): 306316. Hogan, D.L., and J.W. Schwab. 1990. P r e c i p i t a t i o n and Runoff C h a r a c t e r i s t i c s , Queen C h a r l o t t e I s l a n d s . Min. of Forests, V i c t o r i a , B.C. Horton, R.E. 1933. The Role Of I n f i l t r a t i o n I n The H y d r o l o g i c Cycle. Eos Trans. AGU, 14: 446-460. Kirkby, M., 1988. H i l l s l o p e Runoff Processes and Models. Journal of Hydrology 100: 315-339. Klock, G.O., 1981. S o i l Water R e l a t i o n s and t h e H y d r o l o g i c Response of Watersheds. Proc. I n t e r i o r West Watershed Management Conf., A p r i l 8-10, 1980: 139-143. Klock, G.O., and J.D. Helvey. 1976. Soil-Water Trends Following W i l d f i r e on the E n t i a t Experimental F o r e s t . Proc. 15th T a l l Timber F i r e Ecology Conference, USDA Forest S e r v i c e , P o r t l a n d Ore., p. 193-200. Klock, G.O., and W. Lopushinsky. 1980. S o i l Water Trends Following C l e a r c u t Logging i n t h e Oregon Blue Mountains. USDA Forest s e r v i c e Research Note PNW-361, 8 p. Knapp, B.J., 1978. I n f i l t r a t i o n and Storage of S o i l Water. H i l l s l o p e Hydrology. John Wiley and Sons, Toronto: 4272. M a r s h a l l , P., T. S z i k s z a i , V. LeMay, and A. Kozak. T e s t i n g the D i s t r i b u t i o n a l Assumptions of Least Squares L i n e a r Regression. F o r e s t r y C h r o n i c l e , i n Press. Maynard, D. 1991. T e r r a i n C l a s s i f i c a t i o n , T e r r a i n S t a b i l i t y and S o i l Disturbance: CP 495, Block 2, Gregory Creek, Queen C h a r l o t t e I s l a n d s . A Report Prepared For, Research Branch, Min. of F o r e s t s , V i c t o r i a , B.C., Canada. 41 p. Meidinger, D.V. and J . Pojar ( e d i t o r s ) . 1991. Ecosystems of B r i t i s h Columbia. S p e c i a l Report S e r i e s 6, B.C. Min. F o r e s t s , V i c t o r i a , B.C. 330 p.  79  Orr, H. K., 1968. S o i l - M o i s t u r e Trends A f t e r Thinning and C l e a r c u t t i n g i n a Second-Growth Ponderosa Pine Stand i n the Black H i l l s . USDA Forest S e r v i c e Research Note RM99, 8 p. P i e r c e , R.S., J.W. Hornbeck, G. E. Likens, and F.H. Borman. 197 0. E f f e c t of E l i m i n a t i o n Of Vegetation on Stream Water Q u a l i t y and Quantity. I n t . Assoc. S c i . Hydrol. Publ. 96: 311-328. Pierson, T. 1980. Piezometric Response to Rainstorms i n Forested H i l l s l o p e Drainage Depressions. J o u r n a l of Hydrology, 19: 1-10. Ragan, R.M., 1968. An Experimental I n v e s t i g a t i o n of P a r t i a l Area C o n t r i b u t i o n s . Internat. Assoc. S c i . Hydrology, Symposium of Bern, P u b l i c a t i o n 76: 241-249 Riggs H.C. 1968. Some S t a t i s t i c a l Tools i n Hydrology. Techniques of Water-Resources I n v e s t i g a t i o n s of the United States G e o l o g i c a l Survey. United States Department of the I n t e r i o r , Wash. D.C. Satterlund, D.R., and P.W. Adams. 1992. Wildland Watershed Management. Second E d i t i o n . John Wiley & SOns, Inc., Toronto, 436 p. Schneider, J . , and G.R. Ayer. 1961. E f f e c t of R e f o r e s t a t i o n on Streamflow i n C e n t r a l New York. US Geol. Surv. Watersupply Paper, 1602:61 p. Schwab, J.W. 1983. Mass Wasting: October-November 1978 Storm, Rennell Sound, Queen C h a r l o t t e Islands, Min. of F o r e s t s , B r i t i s h Columbia, Research Note, 91: 1-23. S i d l e , R.C. 1984. Shallow Groundwater F l u c t u a t i o n s i n Unstable H i l l s l o p e s of C o a s t a l Alaska. Z e i t s c h r i f t Fur Gletscherkunde, U n i v e r s i t a t s v e r l a g Wagner, Innsbruck, 20: 79-95. Sutherland Brown, A., 1968. Geology of the Queen C h a r l o t t e I s l a n d s ; B r i t i s h Columbia. Dept. Mines P e t r o l . Resour., B u l l . 54. Sutherland Brown, A., and H.W. Nasmith. 1962. The G l a c i a t i o n of the Queen C h a r l o t t e Islands, Canadian F i e l d N a t u r a l i s t , 76: 209-219. Swanston, D.N. 1967. Soil-Water Piezometry i n a Southeast Alaska L a n d s l i d e Area. Res. Pap. PNW-68. P o r t l a n d OR: U.S. Dept. of A g r i c u l t u r e , Forest Service, P a c i f i c Northwest and Range Experiment S t a t i o n , 17 p.  8 0  Troendle, C A . 1987. E f f e c t s of C l e a r c u t t i n g on Streamf low Generating Processes From a Subalpine Forest Slope. Proceedings of the Vancouver Symposium, IAHS Publ. 167: 545-552. U r i e , D.H. 1976. Groundwater D i f f e r e n c e s on Pine and Hardwood Forests of t h e U d e l l Experimental Forest i n Michigan. USDA Forest S e r v i c e Research Paper NC-145, 12 p. Ward, R.C. 1984. On The Response To P r e c i p i t a t i o n Of Headwater Streams I n Humid Areas. J o u r n a l of Hydrology, 74: 171-189. Whipkey, R.Z., and M.J. Kirkby, 197 8. Flow Within t h e S o i l . In, H i l l s l o p e Hydrology. John Wiley and Sons, Toronto: 120-144. W i l f o r d , D.J., and J.W. Schwab. 1982. S o i l Mass Movements i n the Rennell Sound Area, Queen C h a r l o t t e Islands, B r i t i s h Columbia. Canadian Hydrology Symposium: A s s o c i a t e Committee on Hydrology N a t i o n a l Research C o u n c i l of Canada, 41: 521-541. Wilson, G.V., P.M J a r d i n e , R.J. Luxmoore, and J.R. Jones. 1990. Hydrology of a Forested H i l l s l o p e During Storm Events. Geoderma, 46: 119-138. Ziemer, R.R., 1968. S o i l Moisture D e p l e t i o n Patterns Around S c a t t e r e d Trees. USDA Forest S e r v i c e Research Note PSW166, 13 p. Ziemer, R.R. and Swanston, D.N., 1977. Root Strength Changes A f t e r Logging i n Southeast Alaska. USDA Forest S e r v i c e Research Note, PNW-306, 10 p.  81  APPENDIX  1  Hourly Groundwater, Surface Flow and P r e c i p i t a t i o n Data Graphed By S i t e  82  Groundwater L e v e l s i n  co  LTI  X  Q  9* cr  a> 3  Oi  &  CD  H H-  CO  P>  0. »< CO Ml  8 to  ft O  Groundwater Levels i n meters  APPENDIX  2  Hourly Groundwater Levels By S i t e And Storm  92  CM C j O O ^ «— ( O r - M r r - r - M ( \ l r O ( J - l f ) ( J ) | s .  CMCMCMCMCMCMCMCMCM O  O  O  O  O  O  O  O  O  cncnt—cnoooN-^-ro m c M \ t - c M c r > o ^ i - c M « O * - C 0 L n T j - C j 0 t j 0 < j 0 0 0 6  6  0  6  0  0  6  0  6  cnromNtONLnr-crin L O C j D r ^ o r ^ < X ) ( \ j ' ^ - ' ^ - L r ) 0 0 0 « — c N j ^ t u o L O L o m  CO  « - <£> « t  to  N co  CM CM  O  cn o o  q O O O r - r - r -  6 66666 6 C M \t"  CJO  CM O  « -  O  O  <— CM  C M O  C M  C O  c> d> d> d> CM  fs.  i£> <J) r - IT)  O  O  O  «— CM  CD  LO  0 0 c o r o CM r f  6 666 66 c  o  r  o  ^  t  n  N  .  c  n  o  *  -  6 6 6 6 6 6 6 6 O  O  O  O  O  O  O  r - C M C M t j O c n « —  O  «—  O O  O  O  C  O M  C  O M  C  O  6 6 6 6 6 6 6 6 6 6 6 6 O «—  O O O O O O O O O O C M O O t O O C M C M O C M ^ t - L O  L n i J O i n u o c j O t D c j o t o t D c j o t D  6 6 6 6 6 6 6 6 6 6 6 O  O  O  O  O  O  O  O  O  O  O  O  O O C D O O t D O l J O ' ^ C O ' ^ - N . I ^ - O O r t - T | - l / " > l i O t j O < j O t O C j O t j O t j O t j O < j O  6 6 6 6 6 6 6 6 6 6 6 6 ir)Ci5N.tjOCjOCjOrv»tjO  C MN -  0 0  C M C M C M C M C M C M C M C O L D L n L O  '  t  c  o  o  '  t  ^  t  t  t  c  n  '  -  w  t  B  O O f f l O O O O O O N t f l l f l l «—  «—  C M C M C M C M C M C M C O l i O L n i i O  6 6 6 6 6 6 6 6 6 6 6 6 moifficriocTicncopooo C M C M C M C M C M C M C M N - I O C M C M « - r - r - « - r - r - , - r \ 4 U " > t j 0 < j 0  od>cid>c5d>c6d>d>d>d> c j o o c ^ c ^ c o o c o o o i n c n c j o c j o c ^ c n c ^ c j o c o c o c j o  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C M C O r - t —  c O C T ) 0 ^ c M c o o ^ r M r o M u o c j O N - o o c r > o « — « - « - C M C M C M C M O O O O O O O O O O « - « — -  C  J  I  C  D  C  n  c  D  C  D  C  n  O  O  O  O  O  O  O  O  O  O  O  O  O  O  oJNN(\iNNmcnrommromcncoromcnfom  C O  00 CD CD CD  CM  C M  CM  CM  CM  d  d  d  d  d  C D  CNJ  LO CO CD d  N-  o  C D  LO 00 d d C D  LO C D C D LO LO d d d d 00 m LO d  d d d ro LO i n CO CO CD 00 CO i n d d d d m o CD CD in d d d d 00 o CD i n cn CM CD CD Id d d d s  o o o o o LO CD CD CO i n LO LO CD CD  d  d  d  d  o o LO o  o o  o o CO  o  o  o  o  o  o  o  d  i n CD CD CD d d d d d o  in m o m CD CD CD N . o  o  N o ^ m N <- N N N CO L O CD CD CD CD CD d d d d d d  <- c o c o  t  CO  d  C M C O C D T — » — h - r ^ c o  oocDinm'srrj-cD COCOLOCDCDCDCOCO  <5<5<5d>cic>cid> ODr^^j-cocomcoco fOTj-woocosNcn CMCMCOCDCOCOCOCO  d><6d>c5d>cScSd>  O O O O O L O L O O O O O  d d i n i n c M o d d d d o o  o o  o o  o o  o o  o o  o o  o o  o o  o o  C D O « - C M C O O « - C M C O T J r - N N N N O O O O O  CDCDCDCDCDCDCDCDCDCD O O O O O * —  * - « — » — «—  c o c o c o c o r o o o o o o  « — r - « — i — i— C M C M C M C M C M  cC  ^cnu->cDcDrv-«-cNJOcoc\JCD^-cocNj C N J O O O O C O L O C D f ^ O O C D C D O O ' — *— CNJ CNJCNJC\JCN]C\)CslCvJCNlCNJCNJCOCOCOCOCO  d d d d d d d d d d d d d d d tr> O  b  O N CO  5  Q  _ b  u  CQ CM CQ  CO CO  < CNJ  <  Q.  E  <L) 4-»  C3 Q  «— «— CD CD  -  r-  T- T-  C  CDCOCOCDCNJLnOCDCOCDh-CD i — CO I - CO «— N - «— 0 « — LO CD CD 0 0 » — CNJrfrj-LOLOLOrJ-'^LO  _  c N j h - ^ i - m c n c N j c o c o c o c o c o o ^ C O r - c o r o N i n S N O O C O O D  b  s  d d d d d d d d d d d d  oocom'ftninuiininintn d d d d d d d d d d d d N . «— co oo co co « — cT>coiv-r^«— U l CO N 00 <- T j r r f L O L O L O C D C O C O C O C O C O N N N N N N N d d d d d d d d d d d d  ooooo  e-  LO CO CD LO LO LO LO CD  b  d d d d d  o ooooo n- I - o co  _ b  L O  L O  _ b  s  L O  L O  co co co  o o o o o  _  _ b  L O  d d d d d d CO ^t" CD « - CD LO LO LO CO CD  b  _ b  0_  O O -  d d d d d d d d d  b C O  s  d d d d d d d d d d d d d d d «— C D N - f —  fc  _  CM  odd  r ~COCOCDLOCOTrCOLOCDi *-«--CvJO^r C D S r - N r J - S M O r o m C O N C O C D r •t'tininwincocDCDcococococON s  Q. O  CNJ  d d d d d  r-COr—  IX-t^LOLOCNjT—  LOCOr--'-  LOCOis-cocococvir-cocorr^-Ln CNJCNJCNJCOCOrtLOCOCDCOCDCDCO d d d d d d d d d d d d d 'tOcocococMNmcncoLoooco OOOOOCD-— COCOLOCON-r^CO <— C N J C N J C O C N J ^ L O C D C O C D C O C O C O d d d d d d d d d d d d d LOCDCDCDr-rt-CDLOOCNjTl-OOCO  CNjcNjcNicocoooTfr^-cDO«-«-co t - r - r - M c j r o i n c c c o N S N N  E E  coco«-cocococooococoin«-coLocooo dcsicvi^^T^d^cMcvJcUcocNJcoTi-"^-"  J2 .C  O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C D O ' — C N J C O ^ l - L O C O N - C O C D O ' — CNJCOO O ' - ' - ' - ' - ' - ' - ' - ' — •-'-OJCNJCNJCNJO cfio^cnaicncno^cTio^cnaioio^cncjicT) CNJCNJCNJC>JCNJ(%JCNJCNJCMCMCNJCNJ(NJCNJCNJCNJ  O O O O O O O O O O O O O O O O CNJCNJCNJCNJCNJCNJCNJCvJCMOJOJCNJCNJCNJCNJCNJ  95  r— r— LO CO r— 00 C MCMCM LO LO LO LO LO to N - I - 00 00 00 O J C M C M C M C M C M C M C M C M C M CMCM O O o O o o O O O o O O N. Tf  — t  T—  s  O to O 00  T f O O t O L O L O t O t ^ - C O T f C M O «— O N - L O C M C O L O N - O " — CM m t O m C O N C D N N O O C O C O  C MCM O O SCDCDCDCDCDQCDCDCDCD  CO 00 o CDI - C DCO LOcn LO ro00 CO CO 00 t C I- D M CD N -LOCOCDto COto C toDto C to L O L O o oo o O O o o O o O O C M CMCMCMCMCMCMCMCMCM <- o O o o O O O O O O o oo o o oo o O O o CO I - T— ICMCO I - CO CM CO T f to 00 o LO T f o C M C O L O O O O O O o o «— C MCO o o oo o6 6 d d d d LO LOto L OCDCDC MI - to T f CMI 00 T f N . cn t 00 - N— to I - o o <— O O O o «— •«— «— C MCMco T f O O O o o od 6 d d d d NN - »— T— LO LO OOo CMo 00 co to I - N - I - I - I - on O i— , — N. C O Ito C OCDCDCDCOCDCDto CD o o O O O OO d d d d d d o o o o o o o 00 o cn o i— C MT f LOto L O to to CDco o o o o o o o o o oO Oo o cn r- O O C M LO O to LtoO CO L O CD I D C s  s  s  s  s  s  s  s  s  s  s  s  s  0  0 0 0 0  0  r- r- CM CM CM I- I - I- I- Is  s  s  s  s  CD CD CD CD CD  0  O O O O O O O O «- O ^ I - <x> to co to co to to CO s  LO LO CM  CD CD CD CD CD CD CD s CD  00 o O C M 00 I N . cn cn o 00 C MT f  CM CMCM  oo  COO T f o o  cn  co to O O O O O O O O O O Tf CM L O CO L O cn T f co o O C M CD O T f LO T f O LO C oo MCM r-r- CM r- CO CM CM CO O COCD CO T f in to C CM CMo o d d O O O O O O LO CO T f O C O L O CO N - CO I CM d d I - CO «— I - CO T f T f T f T f 00 C O L O I O co to to O O ro O to O O O O O O O O O d  COCO T f L O C D CO L O  d  s  s  s  r-«5C0COCOqcO00r-(OOCOlOC0CCCOC0CO(CCO00  CO d  00 d  O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O T f L O C O N - O O C D O « —  *- «- t- i - r-  C M C O O ' —  CMCOTfLOCON-OOCnO'—  CMCO  r-CMCMCMCMOOOOOOOOOO'-«-«-«—  c7>cDor)CT)CDcDCDCDOTcjicncj)CDCDcncT>aio^ T f T f T f T f T f T f T f T f T f T f L O L O L O l / j U O L O L O L O L O L O L O L O L O L O  O O O O O O O O O O O O O O O O O O O O O O O O  CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM  Lncr>airv.LO<j)coN-T-cx>o  CMCMCMCMCMCMCMCMCMCMCM d d o ^ d d d o o o d  CD <d" CO CD O r -  m oo o d d lOrt-N^tDNcnmcriroi^ o»— c o o s o j i o i n i n i D S O  ininLncnmcocococococo  d d d d d d d d d d d m  co co  CM  d d i D O N O ^ w c n m o «-CM^CD«-CMCDin<— O O O O * —  «— «— CvJCO  d d d d d d d d d  C M C O C D C D C M C D C M C D ^ -  r - r - t - C O f J ) W 0 0 N M O O O O r - N M C n t  d d d d d d d d d i -incDCDro«—OOCMCMOO s  ^ m i O i n C D N S 0 0 O < (HCDCDCDCJOCOCOCDNN O  o  O  o o o o o o o o o  CD I - CO i n i n m CD CD d d d d s  o o o o  I - I - in I m i n CO co d d d d s  s  s  o o o o CO I - I - o m m CD I s  s  s  d  o CM i n t — CM CM CO CO d d d I - in 00 co «— CM CM  — I  s  CM CM CO  o  CD  d CM 00 CM  d CD Ico  d CD 00 "3-  s  •<fr  d d d CD CM CM CO CD CD r—* * — o CO i n CO CD CD CD d d d d d CD LO I - I 00 CO CO CM CD i n CO CD CO CO s  s  o o o o o o o o o o o LOCOCMCM«— LO00<— I ^ L O O O CMCD«— «— ^ - I - O t - C D L O C D «-f-CMCMCOTfCDCDCDCDCO s  s  dcid><5d><5<6dSd>d>  c o o o c o i n o o o o o o c o c o p oo co oo co o d ^ ' c M C M C M C M C s i c M C M ^ ^ ^ d d d  o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o CNJCO^-mCDI -OOCDO«-CMCOTt-mCD 0 0 0 0 0 0 0 0 - - « - « - « - * - « - r s  CDCDCDCDCDCDCDCDCDCDCDCDCDCDCD 000O0O00CO0OOO0O0O0O0O0O0O0O0O  o o o o o o o o o o o o o o o  CMCMCMCMCMCMCMCMCMCMCMCNJCMCMCM  97  il-  CD CO CM O to CO CO CM CO d d ro LO LO CO N.  to r o I - r— «— LO LO LO CO co h- I - I - I CM CM CM CM CM CM CM CM CM CM CM CM CM CM O o o O O O o O o O O O o o o o o CM CM cn LO CO d d r - LO CO CO to O CO 00 I - CO cn co LO to N- I - I - I - CO cn cn TT T f T f T f T f T f T f T f T f T f T f LO LO LO in d d d d d d d d d d d d d d d CO CO T f o r o cn I CO 00 cn r o T f LO r— o o o r— d d d d d d d r- T f o Tf to T f LO r— CM CM 00 CM CO LO 00 o co to 00 CM CM CM CM o o o o O d d d d d d o o o o d d LO CO CO cn CO T f Tf I to to to to r - LO 00 CM T i - to I - 00 cn cn cn CD r- to oo cn _ CM CM COCO LO I CM CM CO CO CO E q o q o o O o o o o o o o o <6ocS<6(5c5c5cSd><6cScS tooOTfTfoooocMtOTfr-r-Locnco c n o o o o o o « - ' - c M c o c o c o c o T f LOtOtOtOtOtOCOtOtOlOtOCOtOCOtO d d d d d d d d d d d d d d d o o o o o o o o o o o o o o o o r-COCOTfTfTfCOTfLOLOtON.N.COT-tO LOLOLOLOLOLOLOLOLOLOLOLOLOLOCOtO d d d d d d o o o d d o d d d o o o o o o o o o o o o o o o o o OCMrOCOCOCOCMCOTfLON-OOOON-COOO LOLOLOLOLOLOLOLOLOLOLOLOLOLOtOCO d d d d d d d d d d d d d d d d O O O O O O O O O O O O O O O O 00«-«-CMr-r-0<MCOLON.OOOOtOTfrTfLOLOLOLOLOLOLOLOLOLOLOLOLOtON. —  ea. Q  ro ro r o co CO I s  Tf  Tf  Tf  Tf  s  s  Tf  s  T—  Tf  s  s  s  «—  s  s  T  s  Q ro  — I  «—  «—  «—  s  . —  s  CM  O  CO CQ  CQ  s  CO  <  . —  N-r-N-r- ON-N-LOTfNtON-tON-cnroLotooOTf CMCMCMCMCMCOCOCOCOTf O O O O O O O o o o T f oo T f T f cn00 CM CD LO I o O o O CO cn CM CM T f CM CM CM CM CM CMCM CO CO CO T f s  CM <  c  C g  a a. a> E  i—  d dd>d <5 d> <6 <6 LO CD CM CO CD CD 00 CM CM CM CO tO r o I CM CM d> <5 d> Sd cSd s  to 00 CM d  d to o CO d  IO o LO o o  LO d d o 00 o T f LO d d  CD to LO o co co LO d co o to d  CM CM cn cn LO LO O O 00 to O to to d d cn I CO T f to to d d  CM O CO cn oo oo LO LO LO O o o  s  E c O O C O C O C O l O r O t O C D C O L O l O CO 00 to CO CO o CO LO CO CO o CO CO o d "-' CM CM CM d d o d d  8 oo  . . O O O O O O O O O O O O o o o ^ O O O O O O O O O O O O o o o x c c s o o c n o > - c M n < t w i o s 00 cn o CM CM  o o CM CO CM CM  o O O O o o O O o o CM CO T f o o o o O o  o o LO o  o o tO o  o o o o I - CO o o s  cDcncDoncncnoncncDcncDcncDcDcncDcDCDcDcncDcDc^ T f T f T f T f T f T f T f T f T f T f T f T f T f T f T f T f T f T f LO LO LO LO LO LO LO LO LO  a  C M C M C M C M C M C M C M C M C M C M C M C M CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM  98  O't'l-'-cncOUIOODtDCOlflOCDtDCDO't M W M t o m i D s c n c n o o O ' - O O O ' - ' c\ic\jcNjcNjcNjcNjcNjcMCNjcocncncococococioco  S<5d>Scicid>dddSc><S(DC>d>cid CO I - NCT> LO CNJ O OO 0 0 o d d s  •-COCOCOCOCslCOCvJI^COCD^N.N.LnCNJ'Sj-  r ^ C 0 « - 0 0 C O 0 0 C 0 0 0 C O C D i n c O C O C O f s _ 0 0 C r j 0 0 « — «— ^ C O C O C D C O C D C O C D C D C O C O C D C D  CD «— CO  CO 0 0 » - •— C O . —  tx_  <X3NN00r-^-^f(Y)^|-iO  0 0 0 O ' - ' - « - - » - ' - « cidd>cid>dcid>d>d>  W r - O N O I O  «— CO O LO CD 0 0 O O CNJ CO LO L O d d d d d d CNJ CD I - LO N . s  «— « — C D C O CNJ CNJ O O CNJ LO CO C O  Q <6 (6 c> <5 (5  co oo CNJ I—  LO cr> «— L O r--0Q«— C N J C O L O C O N - N LOLOCDCDCDCOCDCOCO s  d>(6cid><6d>dcic6 O O O O O O O O O O O O O O O  r o ^ f o j ^ r r f T j - M T f ^ - ^ i n T } - co cc O LOLnCDCDCOCDCDCOCDCDCDCDCDCON-  O O O O O O O O O O O O O O O MLnfocotccDTtNscocoininNco L O L O C D C D C D C O C O C O C D C O C O C O C O C O r -  <5<D<5c5<DGC><5<5<5<5cic5c5c> O O O O O O O O O O O O O O O r-LOLOcT)cncDcooocr>cncnco»-cn tniniDCDCflCOCDNNCDCDtflCONN  d d d d d d d d d d d d d d d iocncnioco^j-cNjco«— C D C O C O L O mLOLomcococnN-inco^-'tLO CNJCVCMCNJCNJCOrOTfCDCDCDCDCO  d d d d d d d d d d d d d ^ 0 0 C N J C O 0 0 O L 0 C 0 r - C N J t - L 0 « — CNl  O O C O C I I O O O O t m S O O N N S O D  T - . — r-r-.— CNJOOOO^tCDCOCOCOCO  <5<5<6<5d>S<6cicici<o<5<5d> LOCDCNJCDLOCOCOOCDCNJLO  CNJCNJOOm«-0«-0<NJCNJ «-«-coco«tN-rN-fv.r-.N-r-  d d d d d d d d d d d CO<OOOLOCOO<X)T—  o > — O O L O C O O O * —  coco c o p  d^CNJr^cJcOLOCOCOuS^COmCOCOCO o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o r-cocDO^cNjc^o^eNjcorfLocor-c»OTO^cNjco r - r - ^ M N N N O O O O O O O O O O r r - r r . CDCT>C7)CDCr)COcr>C7)CDCX>CDCOC^ c j I C J K n c J i c r i f f l O I O O O O O O O O O O O O O O  »— *— «~~ r— r— CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJ CNJCNJCNJCNJCNJCMCNJCMCNJCNJCNJCNJCMCNJCM T —  * —  99  T f I - LO I - LO CD I - LO CO t o o CM CM CO T f LO LO co I - I - 00 CD CM CM CM CM CM CM CM CM CM CM CM s  s  s  s  s  d  o  o  O O O O O O o O co o CO T f T f  CM CD CO I - CM CD 00 O CO co CM CM T f s  O O o  O O O  CM oo o CD r— LO o CD O CD COLO I - CD CO T f T f LO co CO CO s  o  o  O O o Tf o  O O  CD  i—  CO CO  d  d  d  o  r—  CO  o  o  O  «—  CM CD I CD t o CM CO T f «—  d  d  d  d  i—  Tf  r—  s  d  CM CD CO CM I -  d  o  s  (—  o  «—  co  LO  d  d  d  d  CD I LO LO CO o T f t o t o T f T f LO co CO CO I - CO 00 CD CD o LO LO LO LO LO LO LO LO LO LO t o  00 o to O O o o o o o o o o o o O O O O O O O O O O s  s  t D O O C D r - T f L O r - T f L O N .  LOLniotototototototo  d><6<6ocSd><6<6<5d> O O O O O O O O O O CD CO O C J I O CO CO CO 00 r L O L O t O C O l O C O t O C O C O h -  LO I LO LO  o o O O O o o o o O O o 00 o T f CD o 1— LO t o t o t o I - I -  o o o o o o cn V T f to I - I -  d  d  d  o  o o  s  d  s  s  d  d  s  d  d  LO CM LO CD I - CO LO LO CvJ T f CM to CM LO CM CM CO CO CO CO T f LO  00 o to  I - I - LO CM CM CO CO t o t o  d  d  d  d s  d  d  d  d  d  d  d  d  s  d  s  s  d  d  T f LO t o t o LO 00 on LO , — CD CO CO I - o 00 CM o t o CO LO LO t o CM CO CM CO T f LO t o t o t o t o «— s  d  d  d  d  d  d  d  d  d  d  d  LO t o CO o CvJ CO 00 CO I CM — to CM 00 I - 00 t o 1— CM CM CM CvJ co LO t o  to to o 00 00 CD to to to O O O O O O O O O O o s  O 00 00 CM  <—  o o  o o  o o  o o  CO CO CO «—  o o  to T—  CO  00  r— CO CO  CM CO CM CM CO CM CO  o o  o o  o o  o o  o o  o o  o  o  o o o o o o  C O T f L O t O l - C O C D O ' — CMCOTfLOCO 0 0 0 0 0 0 0 < - r - r - r - ^ r - r s  CDCDCDCDCDCDCDCDCDCDCDCDCDCD C O C O C J C O C O C O C O C O C O C O C O C O C O C O  CMCMCMCMCMCMCMCMCMCMCMCMCMCM CMCMCMCMCMCMCMCMCMCMCMCMCMCM  100  I s  cn •—  COO CO C MCMco O O o  CO I CO LO t o co CvJ Cvl CvJ  CM C M O o  O  s  o  f—  I s  00 i —  CO  o o o  C oOCO «—  Tf CMCD00 COO CO LOL O L O o o O o  CM  CO  I - LO CvJ s  o o  «—  o  COCOCO LO  I—  *—  r—  »—  «—  r—  d d d d 00 I s  O  LO  O  No  cn o •—  d d  I s  co  Tf  N-  LO  COTCMf LTOf «—  C ON LO L O  to  dd d d d d  r— cn r~ CO CO L O L O C O CO CO CO L O  o o d d  LO  CO  co T f oC oO CMCO t o  dd d d d d  CD CO CO CO  CO 00 I - 00 L O LO L O L O L O L O L O « - LO  o o o o  s  oo  ot o  I s  LO  CM C O to to  o o o o oo o o o o LO 00 o LO t—  CO t o t o  d d d d o o o oo cn LO  C MCO CD 00 CO CO CO oo od  o o o o oo O LO O oCO CCO to I - I t—  s  o  o o o  s  o  O O O O f O v O O t M v O N LO N - 00 I - CD 1— « — f— CM CO CvJ CO co C O L O CO CD t o t o s  o o o oo  oo o o  CMCOCDN.CDTfoON.CDCO t— t T f co t o 1— T f T f L O CO Cvl CvJ CO CO C O L O t o t o t o t o O O O O O O O O O O L O Cvl O CD L O L O CM CO T f Tf  T f o c n c v j c v i N - o o o o c n <— CO CvJ C O L O  CO t o t o t o  o o o o oo o o o o  <<<<<<<<<<< Z Z Z Z Z Z Z Z Z Z Z  o o  CO  O O O o o O O O O O T f L O CO I -  oo o o o  oo o oo o  o  O O O O O O O O O O  CO CO CDCM CM CM CM CM CM Cvl CvJ C VJCM CMCM CMCMCM CM cn cn cn CD CD CD CD CD CD CD CD 00 00 00 00 00 00 00 C O00 00 00 o O O O o o o o oo o s  101  CO CM CD  CD CO CO «— T— CM CO m co CM CM CM CM CM CM CM  O  O O d d o o d c o L O c o c o r ^ o c o c o  mcoooomNNf c o o « — o o e o r f c o r f  0  rf I LO S CM CM CM I O O r f CD s  6 666 CO CO CO CO rf rf rf t— «— «— rf  666 CD .—  0  CO N - LO CM LO «— CM CM CM 00  O *— O  6O O O O CM CO CM 1— CD CO O CO T f  606  CO CO CO CO r f m CD I L O in LO LO s  6 66 6 o 000 in  6  CO c o  o  LO U*) CD  o 006 in  O O O O co  in  0 o CD CD CD  o d d d o  000000 CO rf  t—  m  CO «— CO LO CD CD CO  000666  L O C O C D L O C D r - CO00 LO CD 00 CD IS. CD LO 0 0 CMCMCMCOCOCOCOCO  d d d d d d d d  O0 O M CM CO M < - LO •-CMCMCOCOCOCOCO  66666666 in I - CM * f 00 c o r f s  CM L O CO CO N - CD •— « - «— CM CM CM CM CO  d d d d d d d <<<<<<<<<<< z z z z z z ' ^ z z z z 00000000000 00000000000 m^fincoKcocnO'-cMco O O O O O O O * - - - * - ' -  CMCMCMCMCMCMCMCMCMCMCM CDCOCOCDCOOOCDCDCOCOCO r f r f T f r f T f r f r f r f r f r f r f  00000000000  102  O T f T f r ^ l ^ r — LOCn^LOLOLOCDCTlCON(vi<\JN(\i(\irorofoiniiiininir)intO(i)  CMCMCMCMCMCMCMCMCMCMCMCMCVICMCMCM 0 6 6 6 6 6 0 0 6 6 6 6 6 0 6 0  CO CO CO  LO  00 T f O ff) M N N P J CO O CVl CM Tf Tf  LO«— CM o r o CD «— o I Tf T f T f L O LO LO LO LO CO s  COLO00«-COTfCjO00vD  <6<6cS<5c5cSc3c5d> N-N-N-N-N-N-l—  I— I s  0 0 0 0 0 0 0 0 0 ood>cS<5c>ooc>  Tf L Ocn CM CO O T f IO - C r— C M C O<— co CD cn «— *— O O CM CM CM CM 6 6 6 6 <5 <5 <5 c> C M0 ro I - LO I -CM «— M TO O f TC fO ^ L TO f C TC fO O C CMC s  s  s  6 6 cS d> d> d>6  T f T f T f T f T f00 C CMCDCOO IO - C IO - C IO COCO 0 0 CO C00 DCDCDO OOC L O L O L O L O L L O LO LOCO o o o o oLOo LO o L oO oLOo o o o s  s  s  o o o o o o o o o o o o o o o o C O L O C O L O L O O O O < — 0<— < - 0 « — C M T f L O LOLOLOLOLOLOCOCOCOCDCOCOCOCOCOCO  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  CO LO CO LO CO CO T— O CM CM CM T f T f LO CO I— LOLOLOLOLOLOCDCDCDCOCDCOCOCOCOCDCO s  O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O COTfCOLOCOCDCMCMCMTfTfTfLOCOrv-cnO  LOLOLOLOLOLOCDCOCOCOCOCDCDCOCOCDr-  6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 COTfCDr^TfTfCOCMCOCOCOTfOTfTfOO  COr-TfLOOOOOCOOO'—  N - C O O O O O  cMrororororoTfLOLOLOLOLococococo 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Or-TfCMLOCncDOOOOCDTfCMCMr-LO Ol -«-CMTfTfrOCDCDCMOOCDr-rOCO CMCMCOCOOOCOTfTfTfLOLOLOCDtDCO s  r -oo«-ooooocooOTfi -cooocDcDr COOI -N-CD«-r-t -CDCOCDOCOLOCO «-;CMCMCMCMCOTfTfTflOLOtOtOtOCO s  s  s  s  s  6 6 6 6  6  6 6 6 6 6 6 6 6 6 6  <<<<<<<<^<<<<<<<<<<< O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0«— C M C O O ^ C M C O T f L O C O r - C O C n O ' — C M C O T f L O C O C M C M C M C M O O O O O O O O O O « — t - «— r - r - r - r s  CMCMCMCMCOCMCMrMCMCMCMCMCMCMCMCMCMCMCMCMCM  CDCDCnO^OTCDcDCDCncncnCDCncDCDCDCDCDCDCDCD  L O L O L O L O C D C O C D C O C O C D C O C D C O C O C D C O C O C O C O C D C D CMCMCMCMCMCviCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM  O O O O O O O O O O O O O O O O O O O O O  103  APPENDIX  3  Storm Rise During E l e l v e n Storm Events In Meters  104  CD r o 0 0 LO LO LO rf CD r o LO  c n  o  o  o  o  d  d  d  d  ro U  I -  I -  c o  r -  CD CD rf r o I - I c n CM 0 0 LO rf 0 0 LO I - r o I - rf CO  O d  d  d  d  d  a —  (  o  r o  LO CM  I s  rf o  d  00  00  r o  o  o  I -  I -  o  o  o  d  d  d  o  LO rf  oo  00  I -  oo o  00  O O o d d d  LO  d  x—0 0  rf CO c o rf rf L O d d d  s  s  CD LO CO LO  rf  o  o  o  d  d  r o  CD  oo  I -  r o  I CM  d  d  d  O d  CM  CM  00  CM  CM  CO CO  CM 1—  00  CM CO  CD  rf  CD LO  o I -  O I -  CO  d  O d  d  d  d  d  d  CD  rf  i—  o o o  O o d d  d  s  LO rf LO  CM  s  s  s  rf rf  CO  I- rf rf  CM  i—  rf I-  CO  LO  I- C M I- rf O  CD  00  LO  00  CM  o  o  •—  O  O  o  o  O  d  d  d  d d  d  d  d  d  d d  o  o  o  o  o  o  o  o  o  CO «—  o  CO  CD  I -  CD  CM  •—  o  «—  o LO i—  o  CM  >—  o  O  t—  d  d  d  d  d  d  d  d  d  d  d  o  o CO  o  o CO  o i—-  o CD  o  o  o t o  o  o CM  r—  CM  d  d d  d  d  d d  d  o  o  o  o  00  CM  CM  CD r—  o I—  o  CO  d  O d  d  d  CD  00  CD  rf  00  CM  00  o 00  s  o  d  d  d  o  o  o  o  CO  CD  o o CM CM d  CM  «—  d  d  o  o  s  s  O  rf I  I- « — s  LO  rf  CM  <  CD  r o  CM  o rf  CO  r o  r o  CO  r o  d  d  O d  d  d  CM «—•  CO  CM  c o  rf  s  o t—  o CM  <M o  rf I—  f1—  d d  d  I- C O  t o  s  LO  rf  CO  c o T—  r o  d  d d  d  d  00  CD  CD  LO  CO  CO  CM  CO  O LO  r o  r o  d  d  d d  d  d  d  LO  CM  CD  rf  s  o  CO  1— C D I- L O 00 rf rf rf rf rf rf s  rf  d  d  d  d  O O  CD  00  CM  CO  LO  CD  o  LO  o CO  CM LO  I- C M  r o  rf rf  LO  CO  c o LO  LO  LO  00 t—  r o LO  d  d  d  d  d d  d  d  d d  d  CM  CO  rf  LO  I- 0 0  s  LO  E L.  o 4->  d  d  o c o r—  <  d  CD  «—  <  d  o CM  rf  CM  s  CM  s  rf rf LO C M d d d d  03  —  d  CJ) CO  CM  CQ  s  s  rf rf i — LO CT) o r o oo CM r— rf CM CO <— CM CD i o LO CO rf « — (M I — T— r — c o CM LO c o CM d d O d d d d d d d d  ca  (  s  c o  r o  CM  s  r o t o  r o i—  s  a  ,_  rf CO LO I c o CD LO rf O o O O O d d d d O CD  o  LO  5  r o  s  r o  aa  O o d d  CO  s  CD  o  CO  1 0 5  APPENDIX  4  Time To Peak For Storm Events In Hours  106  Q. Q  O  w  m t- t- m  N  5  ro  a  CVJ  i—  oo 00  r—  i—  x—  t—  i—  t—  ^ L o t o r - r f ^ ^ o ^ ^ c o  ca  CO  «-  <  CNI  t—  r—  Q  CO CNJ <j,  03  CNi i —  CO  CNJ QQ CO CO  <  t—  QjCOCNlr-rft—  «—  O j ^ t O  E  k. o to  *->  107  APPENDIX  5  Peak P r e c i p i t a t i o n I n t e n s i t y Correlated With Peak Groundwater Level, Surface Flow and Quick Flow  108  Appendix 5 Peak Precipitation Intensity, Correlated With Peak Groundwater Level, Surface Flow and Quick Flow  Site A  Peak Ppt mm/hr  Storm 1 Storm 2 Storm 3 Storm 4 Storm 5 Storm 6  2.8 6.3 3.6 2.6 6.3 3.3  Site B  Peak Ppt mm/hr  Storm 1 Storm 2 Storm 3 Storm 4 Storm 5 Storm 6  2.8 6.3 3.6 2.6 6.3 3.3  Site C  Peak Ppt mm/hr  Storm 1 Storm 2 Storm 3 Storm 4 Storm 5 Storm 6  2.8 6.3 3.6 2.6 6.3 3.3  Lag in Hours Lag in Hrs  r values  9 0.554 4 0.533 3 0.598 1 0.880 0.587 5 4 0.505 Ave - 4.33 hrs Ave r = 0.610 Lag in Hours Lag in Hrs  r values  0.747 13 5 0.245 1 0,757 7 0.321 0 0.193 12 0.226 Ave =• 6.33 hrs Ave r = 0.416 Lag in Hours Lag in Hrs  r values  6 0.514 6 0.427 3 0.649 7 0.336 1 0.155 12 0.316 Ave - 5.83 hrs Ave r = 0.400  109  Significance Level t critical = 2.92 a = 0.05, df = 2 3.2 1.7 2.1 5.9 3.5 2.1  Significance Level t critical = 2.92 a = 0.05, df = 2 5.4 0.7 3.3 1.1 0.9 0.8  Significance Level t critical = 2.92 a =0.05, df = 2 2.9 1.3 2.4 1.1 0.8 1.2  Appendix 5 , Cont. Peak Precipitation Intensity, Correlated With Peak Groundwater Level, Surface Flow and Quick Flow  Site D  Peak Ppt mm/hr  Storm 1 Storm 2 Storm 3 Storm 4 Storm 5 Storm 6  2.8 6.3 3.6 2.6 6.3 3.3  Site E  Peak Ppt mm/hr  Storm 1 Storm 2 Storm 3 Storm 4 Storm 5 Storm 6  2.8 6.3 3.6 2.6 6.3 3.3  Site F  Peak Ppt mm/hr  Lag in Hours Lag in Hrs  r values  8 0.441 3 0.475 2 0.765 1 0.869 3 0.578 3 0.578 Ave = 3.33 hrs Ave r = 0.617 Lag in Hours Lag in Hrs  r values  13 0.645 2 0.597 5 0.344 9 0.116 10 0.612 7 0.403 Ave = 7.67 hrs Ave r = 0.453 Lag in Hours Lag in Hrs  r values  .  Storm 1 Storm 2 Storm 3 Storm 4 Storm 5 Storm 6  2.8 6.3 3.6 2.6 6.3 3.3  5 0.452 3 0.455 2 0.787 1 0.865 4 0.556 2 0.570 Ave = 2.83 hrs Ave r = 0.614  110  Significance Level t critical = 2.92 a = 005, df = 2 2.4 1.4 3.4 5.6 3.4 2.6  Significance Level t critical = 2.92 g = 0.05, df = 2 4.0 2.0 1.0 0.4 3.7 1.6  Significance Level t critical = 2.92 a = 0.05, df = 2 2.4 1.4 3.6 5.4 3.2 2.5  A p p e n d i x 5, C o n t . Peak Precipitation Intensity, Correlated With Peak Groundwater Level, Surface Flow and Quick Flow D Weir  Peak Ppt mm/hr  Storm T Storm 2 Storm 3 Storm 4 Storm 5 Storm 6  2.8 6.3 3.6 2.6 6.3 3.3  Quick Flow  Peak Ppt mm/hr  Storm 1 Storm 2 Storm 3 Storm 4 Storm 5 Storm 6  2.8 6.3 3.6 2.6 6.3 3.3  Peak Response Lag in Hrs  r values  10 0.294 2 0.591 2 0.716 0 0.609 12 0.424 2 0.517 Ave = 4.67 hrs Ave r = 0.525 Peak Response Lag in Hrs  r values  TO 0.290 2 0.591 2 0.716 0 0.609 12 0.424 2 0.517 Ave = 4.67 hrs Ave r = 0.525  111  Significance Level t critical = 2.92 a = 0.05, df = 2 1.5 1.9 2.9 2.4 2.2 2.2 Significance Level t critical = 2.92 a = 0.05, df = 2 1.5 1.9 2.9 2.4 2.2 2.2  APPENDIX 6  Results Of Covariance Analysis For Storm Rise  112  o ^ o o cn P-l O O O O Ch o o o o o O O O O O  fil <H VO -H I> LO o  TJH  cr,  co  co  o  m CN O <H LO CO CM  CO CO i n S co o CM VO - n c o -H ^ O J O  <  o  o  CO co CM in H o  CO r> CO CO co vo co co T * VO CM i v o cr, o in rH  *c  ro co  CM CM  TO rrj 0  e  TO CD  O  rH rH  u  VO CM IT) cr, vo vo VO OO T J I cn o o O O O • • o o o  CM cn CO cr, rH  O  CM (N H H i n cr, r> r o VD co r o <H VO H o cTi in r> CM O rH O ro r - ( O O O O ro  0  LM  rH  CD  u TO CO CO rH  s  fa CM VD rH CM VO rH CO CO cr, P  o O O  O o O o O o  H CM CO CO r o cr, r o VO r o r - o CTi VD CO co cr, o i n  O  O  O  o  o  MH  TJ CD TO  iM  —  u  CD  O  rH  4-)  CD  flj .CJ  a  ft  faTO£  o  TO •H TO >i  rH  rrj  CD rS CD  O U  §  CO  TO  —  U U  u  CD  0  rH  *  a £ a3 roH  113  o  VO i n 1 i  O i  > CM CD CTi |> T J CTi LO 4-) H CO CO O <H • • O O  CO CO CO cr, CO CO H • • O o  CM CM co O O cr, vo CO CO cr, o o o  CO cr, vo cr, o  CM CM f"r> o i>  o  O  o  LM ro LM VD O  CM CM CO in rH in CM O  o CO 1> ro in vo 00 r- in o o cr, CM CM o T * rH rH o cr, rH o o o o ro  a) t> in 0 ro vo CJ CM O *  O  •  •  *  rH rH  rH  1  O  o  o  1  o  o  ro o i  o  o o o o CM o  1  U  CD ft  ft TJ CD  8  TO  o  rrj H i n > rH  CD  CD CD T J u CD CD rS ft  O  CO t> o r o CO r o T * rH CM o o i n  U rH *  o  i n vo T * in  TO  CD  O  o  T}I  TJ CD  •H  rH  >  o O O  CD r o 3 cr,  H r> r o rH VD in ro O  O O O O  CO co cr, Ch CO T j i vo 1 rj cn C A CD CM rH CO • rH rH  ft  rH rrj -P  O EH  a rrj  - H CM  g TO CD CD  fi C £  TJ CD rH - H rH  Xi  TO  -—  * TO  CD O O O EH O r H r H  r HI CM rH CM rH CM >—  *U  CD  0  rH  CM CM  ro ro  CD  0  a  •H  a o o X  -H  a <D P.  ft **5  TJ & & c*; r±j •d u> \ f to ro co H CQ LO VO O f> CO VO CD CN ^ CN ro CN oa •  I  I I  iH CT\ CO o CN rrj o VD LO rvo 2 cn VD CO O i> -H LO rH o CO MCN rH CN  LO VO LO O VO rH  rH cn CN vo rH  K O O O O O O i i i  CO  nj CD £2 U O tw  to  o  -H 4->  E CD CQ  .Q  O  -P cn CN] cn CN CN - H ON CN cn CN CN fa r> CN r> CN CN • VD CTi VD cn cn > ro ro ro ro ro CD O O o o o  vo r> ro r>  CN  o  4-> O O o o o o CQ o •H CTi VO LO a VO LO ro l> o LT) « t f CO r# ro 00  CN rvo VO r> ro  to VO LO ro cn CN  ro CO o CO CO CN  -H CQ CD U • CQ CD  urrj rrj  4J -H  o oO O O O nj o o o o o o CD o o o o o o £ o cn co cn ro rH o co cn vo ro LO VO rH r# rH rH CQ  CO  CQ  §  CO rH CN O rH •H CN ro cn  o  o  9 CQ  (D  s  CQ CD 4J fTJ •H SH  9  VD  CN CD ro  s • o  0  u o <u CQ CD  CQ rrj CD  e U  o LIH  i> vo cn 00 ^ H H ^ H CN <tf O O rH O O O  LnmLor>r^i>cococo LOLOLOrHrHrHr>I>t> o o o r > r > i > o o o CNCNCNrOrOrOLOLOLO OOOOOOCNCNCN O O O O O O O O O  o^cn rH LO s vCN CN r j CO  cncnH^vorHcovoro OrHLO^r-.CNl^VOVO  CD  rrj CD  u  2  TJ  5H 5H  > 0  CD rH CN rorH CN ro rH CN ro  CD  4-) rd •H  8  114  O O O O O O O  O H  u  §  CD  rHCNrOl>rOHrHLO00  L n ^ n H H H r O ^ h  r^rHH  aO  CQ  U  CD  Pi  > Q) Tj 4J CO  CN  > rH CD vo Tj CN 4-> • CO O  rH  o o o o o O  o ooooo  I  *  CD 4J  rHrHrHCNCNCNCOrOrO  CQ  •n  CD  "5  CQ  CN ro CD rC  CQ  APPENDIX  7  Results Of Covariance A n a l y s i s For Time To Peak  115  cn l> rH >H o CM CM cn o o cn o cn o rH cn o o o o o  r> o co co rH CO O  rH rH O  o o rH co cn S cn -tf CN L O O r>  CO  rH r# VD  a  M  cd  CN  rH  CN  rH  CD  o  CO CO  §  CO CN CN  e  CO  CD U  fa Q  CQ CD  O  1  rrj  rH  MH  OQ •P 03 CD  o  o  o O  o o o o o o  LO ro VO CO  t~- o o o o vo *tf H rH -H C N " t f  o H  o o o o o o  ro r> ro rH  CN CN *tf  LO <tf CN rtf  rrj vo ro r  ro C N •H to rH cn rH rH rH  1  4J  rH rH  rH  $ CQ  rH  ro ro  LD r* VD C N cn CO ro rH LO CO l>  CQ  CD  u  r> ro CN ro CN •rtf ro C N CN CN •tf r* vo cn cn cn 00 vo  > VD l> cn CN Tj r> O 4-) Cn rH CD  >i  I  CO  ro ro  CQ •H CQ  U  o rH CN O LO O  2  O rH VD CN cn ro CN rH LO CO  5  •H EH U O tn  -H  H o o  CD  EH  CD O  ft O o o  <tf  M O 4H  §  r> ro CN rH cn LO H cn o CN H r> rH rH  VO rH  CN  >  o  LM CO CN LM CN ro CD CN LO O -H ro  VO rH CO co cn  VO o  o o  o o o o O O  vo CO CN CO cn o CN  r> LO o VO LO LO rH cn cn rj» ro O o CN C N C N rH O o o o rH  o o  o O o o o o 5H  •a  •H M  CD  o  CD  a rH a  CD  rfl CQ  CD  4H CD  X! CQ  M — O rH 4J Tj (D  u CD a rrj,fl a fa CQ 3  o CQ  •H  CQ  >i rH trj  CD rfl  CQ  u CD  u  .fl  .fl  CD  CD  i  O rH CD * M M M M * cj U Tj CD CD TJ' CD 0 U 3 CD U O H CO CQ 2 rH CQ  a ga a o &a  116  •tf CO 00 ro ro o o CN CN CN CN o o C N CN C N CN ro ro C N C N  cn cn LO rH  rH rrj JJ O EH  4-> CQ fl rrj 4J M M  <3 0  H CN , f l CQ  —  *  *SH  CD  CD  CD O O 0 EH O rH rH  0 rH  6 fi  CQ CD  fl  •?  CN  H H  CN  CN  CN CN  ro ro  T>  $  •H  4-> H  O O  p.  3  Ti  PH  X  - r l LT) CO CO CQ CN O CTi  PH •—1 •  CN O  t  CD  PH V O  Ch CN O  I  u  a  PH PH  t>  CO vo O CO  CD  rH MH  CM CM  PH  1  -H  4-J CO  rge  •H  X  C O CO co V D CTi r H O rrj co L D r> r- V D TjH 3 ro cTi C N ch i n ro t i o in ro co ro T j ) vo  rrj  i—1  •H  •  to ro CD i  •  I S  C M  [ >  r- r-  '  PH 4 J ro vo -H  C M  vo co  C O  V D  V D  C O  ro o  rH  r> in  C N  PH r> vo r> vo vo r> i n • CTi  CQ rrj 0  e SH  o CM  > (D  TJ  r H CTi  • •  CM  CT\ H H  C M  rH  C M  4->  -P co r>  o  a o  C O  T#  CTi CTI  r> in r> ro o CM O in vo ro H ro in  VD Ttf  fa ro  CQ  cr,  CT, CTi CT,  rH  O H  O  rQ  O  CQ o rrj o 0 o o  e  o o o o  o o o o  o o o o  r> r> r> o  o o o o  §  CQ  rQ  O  r> ro  ^  o o o o  r> co  rd CQ  CQ  M  CD  p  •  > -H  tn  CQ  CD  >  w rrj rd '  TJ  -P CO  co in cr, in i n  rd CD  &  in  o o o o CM  CQ CD  4->  CM  rrj  CQ  CQ  rQ  A  o o CQ  CQ  CD  CD  P 4J  o fl CD CD O  o ro TJ TJ o co PH  X  o  o co rrH • rH  TJH  Ch r>  *  O  O O CM CM CM 00 CO ro ro ro r> r> rH t> •  •  rH rH H  •  •  rH H  •  ro in r> ro •  ro in r> ro  ro in t> ro  H  rH  •  •  CQ  CQ  0  P  > rH in CD O VD TJ CO O -P vo o CO • • O H  O  > ro  Q) | j fJlrH  V D  -H  M CD CQ  CQ CD  rH  CO •H  4-) -H  CD  O  rH C M  • T5 H  rH  •H  M  rrj CD fl en rrj o CD • £ Ch  ?0 o  iM CQ  CD  M  •  o  •  rH r> T * in T * T * ro o 00 CM 00 o CM rH CT, CTi ro VD VD CM H CO  •  H cr, r> rH  o rH rH Ch Ch Ch CO VD vo rH rH rH  M H  o u  in r> o o ro vo ro ro ro  S  CQ  0 4->  rrj  •H  M M rrj CD  > o 8  U  117  M 0 PH rH CM ro rH CM ro rH CN ro PH  a TJ rrj 0 £4-)  ,—  TJ  CQ  3  TJ rH  •r-> 0  TJ .fl  f< CQ  C M  ro 0 rH rH rH CM CM CM ro ro ro CQ  APPENDIX  8  Cross Correlation Of Storm Precipitation and Quick Flow and Groundwater Response  118  Appendix 8  Storm  #1  C r o s s C o r r e l a t i o n o f Storm Ppt and Quick Flow Response  0 1 2 3 4 5 6 7 8 9  10  11 12 13 14 15  - 1 . 0 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0.0 0.2 0.4 + + + + + - -- - + + --0.052 XX XXX 0.060 0.140 XXXX 0.190 XXXXXX 0.256 XXXXXXX 0.280 XXXXXXXX 0.274 XXXXXXXX XXXXXXXX 0.269 0.282 XXXXXXXX 0.27 5 XXXXXXXX XXXXXXXX 0.294 XXXXXXXX 0.289 0.290 XXXXXXXX 0.259 XXXXXXX xxxxx 0.156 XXX 0.085  0.6  0.8  1.0  C r o s s C o r r e l a t i o n o f Storm Ppt and Groundwater Respone a t S i t e A -1.0 +  0 1 2 3 4 5 6 7 8  -0.557 -0.498 -0.361 -0.159 0.038 0.225 0.364 0.47 0 0.537  10 11 12 13 14 15  0.550 0.506 0.414 0.287 0.114 0.034  9  0.554  -0.8 -0.6 -0.4 -0.2 +~  +  '  +  +  0.0 +  0.2 +  0.4 +  0.6 +  XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXX XXXXX XX XXXXXXX XXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXX XXXXXXXX XXXX XX  119  +  0.8 +  1.0  (Appendix 8, Cont.) Storm #1 C r o s s C o r r e l a t i o n o f Storm Ppt and Groundwater Respone a t S i t e B -1.0 0 1 2 3 4 5 6 7 8 9 10 11 12  -0 .471 -0 .464 -0 .503 -0 .47 3 -0 .446 -0 .344 -0 .242 -0 .117 0 .084 0 .240 0 .444 0 .611 0 .733  13  0 .747  14 15  -0.8 -0.6  -0.4 -0.2  0.0  0.2  0.4  0.6  0  XXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXX xxxxxxxxxxxx XXXXXXXXXX XXXXXXX XXXX XXX XXXXXXX XXXXXXXXXXXX xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXX XXXXXXXXXXXX  0 .543 0 .421  C r o s s C o r r e l a t i o n o f Storm Ppt and Groundwater Respone a t S i t e C -1.0 +  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  -0.383 -0.265 -0.056 0.174 0.402 0.491 0.514 0.411 0.400 0.343 0.298 0.241 0.168 0.081 -0.013 -0.043  -0.8 -0.6 -0.4 -0.2 +  +  +  +  0.0 +  0.2 +  0.4 +  0.6 +  XXXXXXXXXXX XXXXXXXX XX XXXXX XXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXX XXXXXXXX XXXXXXX XXXXX XXX X XX  120  0.8 +  1.0 +  (Appendix 8, Cont.) Storm #1 Cross Correlation of Storm Ppt and Groundwater Response a t S i t e D  -1.0 -0.8 -0.6 -0.4-0.2 0.0 _-  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  +  +  -0.460 - 0.263 -0.086 0.068 0.211 0.317 0.37 3 0.416 0.441 0.425 0.404 0.352 0.309 0.27 3 0.164 0.101  +  _  +  +  0.2 0.4 +  +  _  XXXXXXXXXXXXX XXXXXXXX XXX XXX XXXXXX xxxxxxxxx XXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXX xxxxxxxxx XXXXXXXX XXXXX XXXX  Cross Correlation of Storm Storm Ppt and Groundwater Response at S i t e E  -1.0 -0.8 -0.6 -0.4-0.2 0.0 +  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  - 0.128 -0.106 -0.048 -0.211 - 0.257 -0.350 -0.364 -0.224 -0.058 0.006 0.202 0.369 0.523 0.645 0.531 0.458  +  +  +  +  +  0.2  0.4  0.6  +  +  +  XXXX XXXX XX XXXXXX XXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXX XX X XXXXXX XXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXX  121  0.8 1.0 +  +  (Appendix 8, Cont.) Storm #1 Cross  Correlation  of  Storm  -1.0 -0.8 -0.6 0 1 2 3 4 5  0.452  6 7 8 9 10 11 12 13 14 15  0.450 0.430 0.391 0.318 0.262 0.207 0.160 0.122 0.050 0.014  and  Groundwater  -0.4 -0.2  +  -0.182 0.002 0.167 0.287 0.390  Ppt  +  0.0  +  0.2  +  Response  at  Site  F  0.4  +  +  _  XXXXXX X XXXXX XXXXXXXX XXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXX XXXXXXXX XXXXXX XXXXX XXXX XX X  Storm #2 Cross  Correlation  -1.0  Cross  +  and  Quic  +  Flow  0.0 +  0.2 +  0.4 +  0.6  +  0.8  +  1.0  +  XXXXXX XXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXX XXXXXXX XXXXXXXXXXXXX XXX XXXX  Correlation  +  -0.665 -0.656 - 0 . 2 80 0.319 0.533 0.426 0.216 -0.066 -0.090  Ppt  +  -0.213 0.27 9 0.591 0.568 0.310 -0.226 -0.47 6 -0.065 0.127  -1.0 0 1 2 3 4 5 6 7 8  Storm  -0.8' -0.6 -0.4 -0.2 +  +  0 1 2 3 4 5 6 7 8  of  of  Storm  Ppt  and  -0.8 -0.6 -0.4 -0.2 +  +  +  +  Groundwater  0.0 +  Response  Site  0.2  0.4  0.6  0.8  1.0  +  +  +  +  +  XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXX XXX XXX  122  at  A  (Appendix 8, Cont.) Storm #2 Cross  Correlation -1.0 +  0 1 2 3 4 5 6 7 8  Cross  -0.6  -0.4  ^+  +  +  Correlation  o f Storm  +  0.0 +  0.2 +  0.4 +  -0.8 +  -0.492 -0.439 -0.120 0.125 0.091 0.425 0.427 - 0.07 6 -0.109  Correlation  -0.6 +  Ppt and Groundwater  at  0.6 +  Site  0.8 +  B  1.0 +  Response  -0.4 -0.2 0.0 0.2 0.4 + + + + XXXXXXXXXXXXX XXXXXXXXXXXX XXXX XXXX XXX XXXXXXXXXXXX XXXXXXXXXXXX XXX XXXX  o f Storm  Ppt and Groundwater  123  +  at  +  Site D  0.8 +  C  1.0  +  Response  +  Site  0.8  +  -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 + + + + + -0.690 XXXXXXXXXXXXXXXXXX -0.415 XXXXXXXXXXX 0.136 XXXX 0.475 XXXXXXXXXXXXX 0.390 XXXXXXXXXXX 0.261 XXXXXXXX 0.134 XXXX -0.050 XX -0.063 XXX +  at  0.6  +  +  0 1 2 3 4 5 6 7 8  -0.2  Response  XXXX XXXXX xxxxx XXXX xxxxxx xxxxxxx xxxxx XX XXX  +  Cross  -0.8  Ppt and Groundwater  -0.139 0.176 0.159 0.124 0.184 0.245 0.17 5 -0.027 -0.067  -1.0 0 1 2 3 4 5 6 7 8  o f Storm  1.0 +  (Appendix 8, Cont.) Storm #2  Cross  Correlation  -1.0  Cross  Storm  Ppt  and  Groundwater  -0.8 - 0 . 6 - 0 . 4 - 0 . 2  +  0 1 2 3 4 5 6 7 8  of  +  +  0.040 0.554 0.597 0.409 0.046 -0.434 -0.279 0.07 8 0.052  +  at  Site  0.0  0.2  0.4  0.6  0.8  1.0  +  +  +  +  +  +  +  Correlation  +  of  storm  Ppt  and  Groundwater  +  +  -0.62 0 -0.12 0 0.353 0.455 0.323 0.17 5 0.028 -0.053 -0.028  +  +  0.0 +  Response  0.2 +  0.4 +  at  0.6 +  Site  0.8 +  1.0 +  XXXXXXXXXXXXXXXX XXXX XXXXXXXXXX XXXXXXXXXXXX XXXXXXXXX XXXXX XX XX XX  Storm # 3 Cross  Correlation  of  Storm  Ppt  and  -1.0-0.8-0.6-0.4-0.2 +  0 1 2 3 4 5 6 7 8 9  -0.246 0.322 0.716 0.358 0.338 0.348 -0.100 -0.315 -0.390 -0.205  E  XX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXX XX XXXXXXXXXXXX XXXXXXXX XXX XX  -1.0 -0.8 -0.6 - 0 . 4 - 0 . 2 0 1 2 3 4 5 6 7 8  Response  +  +  +  +  Quic  Flow  0.0 +  0.2 +  0.4 +  0.6 +  0.8 +  XXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXXXXXX XXXXXXXXXX XXX XXXXXXXXX XXXXXXXXXXX XXXXXX  124  1.0 +  F  (Appendix 8, Cont.) Storm #3  Cross C o r r e l a t i o n  0 1 2 3 4 5 6 7 8 9  -1.0 + -0 . 2 3 1 -0 . 101 0 .508 0 .598 0 .034 0 .410 0 .129 -0 .27 5 -0 . 2 2 1 -0 . 3 5 6  o f Storm Ppt and Groundwater Response a t S i t e A  -0.8 +  0 1 2 3 4 5 6 7 8 9  0 1 2 3 4 5 6 7 8 9  -0.4 +  -0.2 +  0.0 +  0.2 +  0.4 +  0.6 +  0.8 +  1.0 +  o f Storm Ppt and Groundwater Response a t S i t e B  -0.8 +  Cross C o r r e l a t i o n -1.0 + -0.128 0.013 0.562 0.649 0.069 0.365 0.059 -0.324 -0.236 -0.343  +  xxxxxxx XXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XX XXXXXXXXXXX XXXX XXXXXXXX xxxxxxx xxxxxxxxxx  Cross C o r r e l a t i o n -1.0 + 0.320 0.757 0.398 0.17 8 0.311 -0.217 -0.304 -0.289 -0.139 0.076  -0.6  -0.6 +  -0.4 +  -0.2  0.0 0.2 0.4 0.6 0.8 + xxxxxxxxx xxxxxxxxxxxxxxxxxxxx XXXXXXXXXXX XXXXX xxxxxxxxx xxxxxx xxxxxxxxx xxxxxxxx XXXX XXX +  +  +  +  1.0  +  +  o f Storm Ppt and Groundwater Response a t S i t e C  -0.8 +  -0.6 +  -0.4 +  -0.2 +  0.0 +  0.2 +  0.4 +  0.6 +  XXXX X XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX XXX XXXXXXXXXX XX XXXXXXXXX XXXXXXX XXXXXXXXXX  125  0.8 +  1.0 +  (Appendix 8, Cont.) Storm #3 Cross C o r r e l a t i o n  o f Storm Ppt and Groundwater Response a t S i t e D  -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 + 0 .007 X 0 .260 XXXXXXX 0 .765 xxxxxxxxxxxxxxxxxxxx 0 .658 xxxxxxxxxxxxxxxxx 0 .224 XXXXXXX 0 .244 XXXXXXX -0 . 1 6 2 XXXXX -0 . 3 7 3 XXXXXXXXXX -0 . 2 9 3 XXXXXXXX -0 . 2 5 1 XXXXXXX +  0 1 2 3 4 5 6 7 8 9  +  +  +  +  +  +  +  1.0  +  +  C r o s s C o r r e l a t i o n o f Storm Ppt and Groundwater Response a t S i t e E -1.0-0.8-0.6-0.4-0.2 +  0 1 2 3 4 5 6 7 8 9  +  -0.213 -0.614 0.102 0.570 0.033 0.344 0.141 -0.103 0.011 -0.235  +  +  0.0 +  0.2 +  0.4 +  0.6 +  0.8 +  1.0 +  XXXXXX XXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXXXX XX XXXXXXXXXX XXXXX XXXX X XXXXXXX  Cross C o r r e l a t i o n  o f Storm Ppt and Groundwater Response a t S i t e F  -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 + -0.088 XXX 0.353 XXXXXXXXXX 0.787 XXXXXXXXXXXXXXXXXXXXX 0.485 XXXXXXXXXXXXX 0 . 2 04 XXXXXX 0.247 XXXXXXX -0.111 XXXX - 0.344 XXXXXXXXXX -0.341 XXXXXXXXXX -0.254 XXXXXXX +  0 1 2 3 4 5 6 7 8 9  +  +  +  +  126  +  +  +  +  +  1.0 +  (Appendix 8, Cont.) Storm #4 Cross  Correlation  o f Storm  Cross  Correlation -1.0  Cross  0 1 2 3 4 5 6 7 8 9 10 11  +  o f Storm  -0.8  +  0 1 2 3 4 5 6 7 8 9 10 11  Flow  -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 + + + + 0.609 xxxxxxxxxxxxxxxx 0.395 XXXXXXXXXXX 0.156 xxxxx -0.082 XXX -0.246 xxxxxxx -0.297 xxxxxxxx -0.266 xxxxxxxx xxxxxx -0.218 xxxxxx -0.189 xxxxx -0.148 -0.122 XXXX -0.053 XX +  0 1 2 3 4 5 6 7 8 9 10 11  Ppt and Quick  -0.6  +  +  Ppt and Groundwater  -0.4  +.  -0.2  +  0 .737 0 .880 0 .727 0 .551 0 .173 -0 . 115 -0 .277 -0 .357 -0 . 4 0 1 -0 . 3 2 6 -0 . 2 7 2 -0 . 2 2 8  0.0  +  -H  0.8  +  1.0  +  Response  +  at  Site A  0.2  0.4  0.6  0.8  1.0  +  +  +  +  +  XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX xxxxxxxxxxxxxxx xxxxx XXXX xxxxxxxx XXXXXXXXXX XXXXXXXXXXX XXXXXXXXX xxxxxxxx xxxxxxx  Correlation -1.0 + -0.757 -0.619 -0.417 -0.196 0.098 0.257 0.315 0.321 0.294 0.249 0.193 0.137  +  o f Storm  -0.8 +  -0.6 +  Ppt and Groundwater  -0.4 +  -0.2 +  0.0 +  0.2 +  0.4 +  XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXX XXXXXX XXX XXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXX XXXXXXX XXXXXX XXXX  127  Response  at  0.6 +  Site  0.8 +  B  1.0 +  (Appendix 8, Cont.) Storm #4 Cross  Correlation  -1.0  2  3 4 5 6  7 8  9 10 11  Cross  Storm  Ppt  and  -0.8 -0.6 -0.4 -0.2  +  0 1  of  +  -0.811 -0.717  - 0.47 8 -0.233 0.077 0.264 0.332  +  +  +  xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXX XXXXXXX  2 3 4 5 6 7 8 9 10 11  Cross  0.336  0.334  0.271 0.210 0.137 Correlation  of  Storm  Ppt  +  +  +  0 .642.  d . 804 0 .598 0 . 197 -o .076 -0 .230 -0 .300 -0 .37 6 -0 .366 -0 .326 -0 .231  Correlation +  0.098  1  - 0 .27 0 -0.490 -0.498  4  -0.326  5 6 7 8  -0.196 -0.096 0.006 0.077  9 10 11  0.4 +  0.6 +  Site  0.8  C  1.0  +  +  and  +  Groundwater  0.0 +  Response  0.2  0.4 +  +  at  0.6 +  Site  0.8  D  1.0  +  +  xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXX XXXXXX XXX XXXXXXX XXXXXXXX XXXXXXXXXX XXXXXXXXXX xxxxxxxxx XXXXXXX  0.869  2 3  0.2 +  at  XXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXX XXXXXX XXXX  of  Storm  Ppt  and  -1.0-0.8-0.6-0.4-0.2 0  Response  XXX  +  0  0.0 +  -1.0-0.8-0.6-0.4-0.2  .1  Groundwater  0.116 0.113  +  +  +  +  Groundwater  0.0 +  +  XXX  XXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXX  XXXXXX XXX X XXX  XXXX XXXX  .'  0.052  XX  128  Response  0.2  0.4 +  at  0.6 +  Site  0.8 +  1.0 +  E  (Appendix 8, Cont.) Storm #4 Cross  Correlation  -1.0  Storm  Ppt  and  -0.8 -0.6 -0.4 -0.2 +.  +  0 1 2 3 4 5 6 7 8 9 10 11  of  +  +  0.668 0.865 0.755 0.578 0.193 - 0.07 8 -0.211 -0.312 - 0 . 3 87 -0.354 -0.328 -0.222  Groundwater  Response  at  Site  0.0  0.2  0.4  0.6  0.8  1.0  +  +  +  +  +  +  +  XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXX XXX XXXXXX XXXXXXXXX XXXXXXXXXXX XXXXXXXXXX XXXXXXXXX XXXXXXX  Storm #5 Cross  Correlation  -1.0 +  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  0.022 -0.057 -0.240 -0.493 -0.688 -0.721 -0.546 -0.272 -0.045 0.129 0.297 0.402 0.424 0.345 0.155 -0.023  of  Storm  Ppt  and  -0.8 -0.6 - 0 . 4 - 0 . 2 +  +  +  +  QuicK  0.0 +  Flow  0.2 +  0.4 +  XX XX XXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXX XX XXXX XXXXXXXX XXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX XXXXX XX  129  0.6 +  0.8 +  1.0 +  F  (Appendix 8, Cont.) Storm #5 Cross  Correlation  of  Storm Ppt  and Groundwater Response  -1.0 -0.8 -0.6 - 0 . 4 - 0 . 2 +  0 1 2 3 4  -0.032 0.144 0.314 0.465. 0.562  6  0.551 0.482 0.425 0.341 0.27 0 0.164 0.097 0.081 0.042 -0.027  5 7  8 9 10 11 12 13 14 15 Cross  +  +  +  +  +  +  of  Storm Ppt  -0.17  2  0.8 +  and Groundwater Response  +  +  +  +  0.193 0.116  15  0.6 +  1.0 +  XXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX XXXXXXXX XXXXX XXX XXX XX XX  Correlation  0.063 -0.089 -0.302 -0.401 -0.414 -0.428 -0.429 -0.413 -0.451 -0.367 -0.267 -0.183 -0.181  0.4 +  xxxxxxxxx  0.587  2 3 4 5 6 7 8 9 10 11 12 13 14  0.2 +  Site A  XX XXXXX  -1.0 -0.8 -0.6 -0.4 -0.2 0 1  0.0  at  0.0 +  0.2 +  XXXXXX XXXX  ' XXX XXX XXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX XXXXXXXX XXXXXX XXXXXX XXXXX  130  0.4 +  0.6 +  at  Site  0.8 +  1.0 +  B  (Appendix 8, Cont.) Storm #5  Cross  Correlation of  Storm Ppt  and  Groundwater  -1.0 -0.8 -0.6 -0.4 -0.2 +  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Cross  + -•  + --  - - H  0.147 0.155 0.077 -0.118 -0.229 -0.209 -0.272 -0.291 -0.391 -0.362 -0.303 -0.214 -0.157 -0.193 -0.212 -0.143  0.0  +  0.6  Site  0.8  C  1.0  XXXXX xxxxx XXX XXXX xxxxxxx xxxxxx xxxxxxxx xxxxxxxx XXXXXXXXXXX XXXXXXXXXX xxxxxxxxx xxxxxx xxxxx xxxxxx xxxxxx xxxxx  Correlation of  0.193 0.387 0.521 0.578 0.558 0.495 0.437 0.364 0.259 0.152 0.100 0.090 0.092 0.081 0.045 -0.017  0.4  at  +  Storm Ppt  and Groundwater  -1.0-0.8-0.6-0.4-0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  0 .2  Response  +  +  +  +  +  131  0.0 +  0.2 +  Response  0.4 +  0.6 +  XXXXXX XXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX XXXXXXX XXXXX XXXX XXX XXX XXX XX X  at  Site  0.8 +  D  1.0 +  (Appendix 8, Cont.) Storm #5  Cross  Correlation  of  Storm Ppt  and Groundwater Response  -1.0-0.8-0.6-0.4-0.2 +  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Cross  +  +  +  +  -0.105 -0.054 0.062 0.213 0.287 0.358 0.393 0.47 0 0.541 0.606 0.612 0.449 0.281 0.135 0.089 -0.040  +  0.2 +  0.4 +  0.6 +  Site  0.8 +  E  1.0 +  XXXX XX XXX xxxxxx xxxxxxxx XXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX XXXX XXX XX  Correlation  of  Storm Ppt  and Groundwater Response  -1.0 -0.8 -0.6 -0.4 -0.2 +  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  0.0  at  +  +  +  +  0.120 0.297 0.429 0.522 0.556 0.543 0.500 0.435 0.349 0.263 0.207 0.147 0.117 0.075 0.017 -0.059  0.0 +  0.2 +  0.4 +  0.6 +  XXXX XXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX xxxxxxxx xxxxxx xxxxx XXXX XXX X XX  132  at  Site  0.8 +  1.0 +  F  (Appendix 8, Cont.) Storm #6  Cross  Correlation  of  Storm  Ppt  and  Quick  -1.0-0.8-0.6-0.4-0.2 +  0 1  0.067 0.365  2  0.517  3 4 5 6 7 8 9 10 11 12 13  0.509 0.490 0.419 0.256 0.07 6 -0.128 -0.139 -0.138 -0.154 -0.182 -0.164  Cross  Correlation  +  -0.035 0.224 0.443 0.559 0.505 0.363 0.295 0.341 0.172 -0.036 -0.152 -0.220 -0.27 5 -0.250  +  +  +  0.0 +  0.2 +  0.4 +  0.6 +  0.8 +  1.0 +  XXX XXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXX XXXXXXX XXX XXXX XXXX XXXX XXXXX XXXXXX XXXXX  -1.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13  +  Flow  of  Storm  Ppt  and  -0.8 -0.6 -0.4 -0.2 +  +  +  +  Groundwater  0.0  0.2  +  +  Response  0.4 +  0.6 +  XX XXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXX XXXXXXXX XXXXXXXXXX XXXXX XX XXXXX XXXXXX XXXXXXXX XXXXXXX  133  at  Site  0.8 +  1.0 +  A  (Appendix 8, Cont.) Storm #6 Cross  Correlation  -1.0 0.082 -0.367 -0.646 -0.432 -0.348 -0.264 -0.108 -0.018 0. 052 -0.032 -0.035 0.123  12  0.226  13  0.203  Cross  0 1 2 3 4 5 6 7 8 9 10 11 12 13  Storm  Ppt  and  -0.8 -0.6 -0.4 -0.2  +  0 1 2 3 4 5 6 7 8 9 10 11  of  Correlation  +  +  +  +  Groundwater  Response  at  Site  0.0  0.2  0.4  0.6  0.8  1.0  +  +  +  +  +  +  B  XXX XXXXXXXXXX xxxxxxxxxxxxxxxxx XXXXXXXXXXXX XXXXXXXXXX XXXXXXXX XXXX X XX XX XX XXXX XXXXXXX xxxxxx  of  Storm  Ppt  and  Groundwater  Response  -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 + + + + + + + + 0.311 XXXXXXXXX - 0.07 3 XXX -0.359 XXXXXXXXXX -0.351 XXXXXXXXXX -0.397 XXXXXXXXXXX -0.410 XXXXXXXXXXX -0.310 XXXXXXXXX -0.37 0 XXXXXXXXXX - 0 . 3 07 XXXXXXXXX -0.145 XXXXX -0.008 . X 0.268 XXXXXXXX 0.316 XXXXXXXXX 0.2 84 XXXXXXXX  134  0.6 +  at  0.8 +  Site  1.0 +  C  (Appendix 8, Cont.) Storm #6 Cross  Correlation -1.0  0 1 2  0.253 0.424 0. 558  3  0.578  4 5 6 7 8 9 10 11 12 13  0.454 0.255 0.098 0. 016 -0.081 -0.146 -0.131 -0.142 -0.167 -0.150  Cross  -0.8  P p t a n d Groundwater  -0.6-0.4-0.2  0.0  0.2  Response 0.4  at  Site  D  at  Site  E  0  XXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXX XXX X XXX XXXXX XXXX XXXXX XXXXX XXXXX  Correlation  o f Storm  Ppt and Groundwater  Response  -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 + + + + + + -0.049 XX -0.005 X 0.345 XXXXXXXXXX 0.507 XXXXXXXXXXXXXX 0.114 XXXX 0.018 X 0.189 XXXXXX 0.403 XXXXXXXXXXX 0.142 XXXXX -0.115 XXXX -0.021 XX 0.008 X -0.163 XXXXX -0.267 XXXXXXXX +  0 1 2 3 4 5 6 7 8 9 10 11 12 13  o f Storm  +  +  135  0.8 +  1.0 +  (Appendix 8, Cont.) Storm #6 Cross  Correlation -1.0 +  0 1 2 3 4 5 6 7 8 9 10 11 12 13  0.157 0.390 0.57 0 0.565. 0.430 0.297 0.214 0.167 0.023 -0.091 -0.132 -0.203 -0.243 -0.204  o f Storm  -0.8 +  -0.6 +  Ppt and Groundwater  -0.4 +  -0.2 +  0.0 +  0.2 +  Response 0.4 +  0.6 +  XXXXX XXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX  xxxxxxxx xxxxxx xxxxx XX XXX XXXX XXXXXX XXXXXXX XXXXXX  136  at  Site  0.8 +  1.0 +  P  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0075188/manifest

Comment

Related Items