Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Improved forest harvest planning : integration of transportation analysis with a management unit cut.. Yamada, Michael M. 1980

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1980_A6_7 Y35.pdf [ 8.94MB ]
Metadata
JSON: 1.0075134.json
JSON-LD: 1.0075134+ld.json
RDF/XML (Pretty): 1.0075134.xml
RDF/JSON: 1.0075134+rdf.json
Turtle: 1.0075134+rdf-turtle.txt
N-Triples: 1.0075134+rdf-ntriples.txt
Original Record: 1.0075134 +original-record.json
Full Text
1.0075134.txt
Citation
1.0075134.ris

Full Text

IMPROVED FOREST HARVEST -  PLANNING  INTEGRATION OF TRANSPORTATION  ANALYSIS  WITH A MANAGEMENT- UNIT CUT SCHEDULING MODEL by  Michael B.S.F., U n i v e r s i t y  M.  Yamada  of B r i t i s h  C o l u m b i a , 1974,  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department o f F o r e s t r y  We a c c e p t  this thesis the r e g u i r e d  as conforming t o standard  THE UNIVERSITY OF BRITISH September ©Michael  M.  COLUMBIA  1980  Yamada, 1980  In presenting this thesis in partial fulfilment of the requirements f o r an advanced degree at the University of B r i t i s h Columbia, I agree that the Library shall make it freely available for r e f e r e n c e and s t u d y . I further agree that permission for extensive copying o f t h i s  thesis  for scholarly purposes may be granted by the Head of my Department or by his representatives.  It  is understood that c o p y i n g o r p u b l i c a t i o n  o f this thesis for financial gain shall not be allowed without my written permission.  Department of  Forestry  The University of B r i t i s h Columbia 2 0 7 5 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5  Date  O c t o b e r 1 5 , 19 80  ii  ABSTRACT  Forest place,  harvest  t h e flow  resource..  of  of timber  timber  supply  analytical  system  strategic  planning.  analysis mill log  a r e examined. transport  providing  optimal  stand  which  The r e s u l t i n g  prescriptions  forest  the.temporal aspects  is  and  of unit  from  of primary with  aggregations  the stand  of  the  recognize timber  and e v a l u a t e d  unit  generation  capabilities  harvest  scheduling results i n  to  the  value. associated  yield  are  formed  Dynamic programming  allows  groupings  transport  and  c l a s s e s are coupled  Report  network  inventory,  planning,  stand  through  on  d e v e l o p m e n t and  forest  and  its  impacts  through  access  the  examining unit,  the  evaluated  strategies  analysis.  for  management  assessment o f timber  and c l u s t e r  stratifications costs..  system  integrated  allocations  ths  t h e management  framework  base,  p e r t i n e n t t o management  factor  at  a  timber  Routing  a more c o m p l e t e  projections,  of  The.costs  are  Homogeneous  using  the  transportation technigues.  from  been i g n o r e d .  with  The:  i n t i m e and  the: s p a t i a l  particularly  interrelationship harvest  generated  However,  presents.an  transportation  be  models have a d d r e s s e d  supply..  planning,  study  involves determining,  to  planning  have p r i n c i p a l l y  This the  timber  Existing  aspects  level,  planning  a  cut  then  allow  terms  of  across  accessibility with  management  scheduling  interpretation not  only  the  model. of the timber  iii  classes, The Sustained  but i n the s p a t i a l c o n t e x t methodology Yield  demonstrated 1)  is  Unit.  applied The  through analyses i d e n t i f y road  2) e v a l u a t e  of the i n d i v i d u a l to a B r i t i s h  usefulness  of  stands.  Columbia  the  Public  system  is  which:  development  alternative  and t r a n s p o r t  wood f l o w  costs,  patterns,  3) i d e n t i f y t h e volume f l o w  p o t e n t i a l of the  unit,  4)  p o t e n t i a l of the  unit,  and  integrating  the  5)  i d e n t i f y the d o l l a r illustrate  the  transportation harvests. .  flow  contribution system  in  of the  scheduling  of  iv  TABLE OF  Abstract Table  CONTENTS  ................  Of  Contents  List  Of  Figures  List  3f  Tables  . . i i  .........................................iv vi vii  Acknowledgements  viii  1. . I n t r o d u c t i o n  2 . ,  . ..  1.1  Forest  Harvest Planning  1.2  Levels  Of  Forest 2.1  Forest  Planning  A s p e c t s Of  4.,  Problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  Planning  ......................... 4  Models  . . . . . . . 7  . . 7  Models  2 . 2 A Review Of 3 . .  Mangement  Analysis  Unit  . . . . . . . . . . . o .  Planning  Harvest  Scheduling  - Background  3.2  Harvest  Scheduling  - Need F o r  4.1  M o d e l s ......... 8  . . . . . . . . . . .  3.1  Model  .1  An  .  .  .  .  .  .  .  .  .  .  .  o  .  14  15 A l t e r n a t i v e ...... 1 7 . 2 1  Components  Forest  .  2 3  Subsystem  4 . 2 T r a n s p o r t a t i o n Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 4 . 2 . 1 D e r i v a t i o n Of T r a n s p o r t a t i o n C o s t s . . . . . . . . . . 2 6 4 . 2 . 2 Network A n a l y s i s 2 8 4 . 2 . 3 Log T r a n s p o r t a t i o n Based On Minimum R o u t i n g . 3 3 4.3  State 4.3.1  V a r i a b l e Subsystem I n i t i a l State Variables  3 7 3 9  4 . 3 . 2  Data  4 2  4.4  Cut  4.5  Report  5 . .  An  6..  Analysis 6 . 1  Analysis  Scheduling  . . . 4 4  Subsystem  4 9  Subsystem  Application And  To  Management U n i t  Discussion  Transportation  Harvest  Planning  . . . . 5 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3  Planning  . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 3  V  6.2  Cut S c h e d u l i n g 6.2.1 Case 1: V o l u m e - O p t i m i z a t i o n - Long Term v s . S h o r t Term 6.2.2 C a s e 2: Economic O p t i m i z a t i o n Volume v s . V a l u e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.3 Case 3: Economic O p t i m i z a t i o n - W i t h Transportation v s . ,Without . . . . . . . . . . . . . . . . .  7., C o n c l u s i o n s  APPENDIX I I APPENDIX APPENDIX  III IV  V  APPENDIX  VI  APPENDIX V I I APPENDIX  VIII  APPENDIX  IX  - Dijkstra's - Land  Shortest  Route  Algorithm  C l a s s e s Of The W e s t l a k e PSYO*  X  APPENDIX  XI  APPENDIX  XII  APPENDIX  XIII  80  93 ...?6  - P r e s c r i b e d S t a n d Treatments' F o r The W e s t l a k e PSYO  .103  - Management R e p o r t s On S t a n d s Of The  - Stand Economics - Factor  108 R e p o r t On Mature  Analysis Results  S t a n d s ....112  . . . . . . . . . . . . . . . . . . . 120  - Volume And V a l u e Y i e l d C l a s s e s From C l u s t e r A n a l y s i s ........................127 - T r a n s p o r t a t i o n E c o n o m i c s By Compartment F o r The W e s t l a k e PSYO ..133 - Transportation Pierre  APPENDIX  75  . 90  W e s t l a k e PSYO APPENDIX  70  ...........................................38  BIBLIOGRAPHY APPENDIX I  69  - Summary - Species  Analysis Results  Appraisal Point  Of Cut S c h e d u l i n g Harvest  F o r An  Isle  - S t a n d 057 ......135 Results  - Case  By T i m b e r C l a s s - Case  - Summary Of C u t S c h e d u l i n g R e s u l t s - Case 2 - Summary Of C u t S c h e d u l i n g R e s u l t s - case 3  1 .137 1 ..138  14 1 14 2  vi  LIST OF  FIGURES  1.  Levels of forest  planning  ...5  2.  Components o f t h e TRftCS system  3..  Examples  4,,  Components o f t h e s t a t e v a r i a b l e s u b s y s t e m  5.  BCFS volume  ....................22  of graph s t r u c t u r e s  ........38  o v e r age c u r v e  6. „ Road n e t w o r k  ....40  of t h e W e s t l a k e PSYU . . . . . . . . . . . . . . . . . 55  7..  Example  o f wood f l o w  8.,  Comparison  o f volume  9.,  Comparison  of s p e c i e s flow  analysis flow  13..  Comparison  o f volume  11.  Comparison  of species  - Case  flow flow  12. . C o m p a r i s o n  o f volume  13.  of s p e c i e s flow  Comparison  29  flow  68 1  i n decade - Case  1 - Case  1  ...74  2 . . . . . . . . . . . . . . . 11  i n decade - Case  .73  1 - Case 2  3  i n decade  ..78 ..83  1 - Case  3  ..85  vii  L I S T OF TABLES  1.  Age c l a s s d i s t r i b u t i o n  o f t h e W e s t l a k e PSYO v i a  ASAP 2..  Basic  3.  Road  4.,. S t a n d 5..  ...52 access  segment  cost  data  ....54  report  distribution  .....56 across  Timber c l a s s d i s t r i b u t i o n  a c c e s s i b i l i t y c l a s s e s ...60 across  accessibility  classes 6..  Minimum r o u t i n g  ..61 distances  and p o l i c i e s  ............64  7.. S t a n d a c c e s s r e p o r t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.. D i f f e r e n c e s i n t i m b e r c l a s s e s s c h e d u l e d f o r h a r v e s t i n decade 1 - Case 2 80 9. Comparison o f s t a n d s h a r v e s t a b l e i n decade 1 w i t h i n Compartment 20 - Case 3 ...86  \riii  ACKNOWLEDGEMENTS  I his  would  like  continued  t o thank Dr. D» H. W i l l i a m s ,  assistance  and p a t i e n c e  supervisor, f o r  t h r o u g h o u t my g r a d u a t e  program. I and  would a l s o l i k e  counsel  extended  during  Appreciation  i s also  the text.  Finally,  allowing  my u n i v e r s i t y s t u d i e s .  t o Dr. D. Reimer f o r p a r t i c i p a t i n g on my committee and  reviewing  British  t o t h a n k Mr. G. G. Young f o r h i s g u i d a n c e  I would l i k e  Columbia F o r e s t  t o acknowledge  the cooperation  S e r v i c e , Resource Planning  me t o a d d r e s s t h e t o p i c o f t h i s t h e s i s . .  o f the  Divisioni n  1  1.  INTRODUCTION The:  scheduling  management u n i t the  both  harvesting than  continued  affects  timber  mill  and  availability  nature,  non-timber  market  cannot  always  i s a t hand.. B r i t i s h  resource,  and  Harvest  scheduling  Harvest also  an  This  developed cut  More  are :contingent  on t h e  be  timber,  deferred  Columbia  developed  with  for  integrates  a t t h e management u n i t  scheduling decisions..  timber  planning..  timber  base,  a r e key f a c t o r s  but  which  flows.  a quantitative, analytical  transportation  complete  t r a n s p o r t a t i o n network,  i n t h e s c h e d u l i n g o f wood  planning  until  their  i t s utilization.  by  the  the  despite  has a v a l u a b l e  and l o g , h a u l i n g r e g u i r e m e n t s  thesis presents  harvest  of  i n v o l v e s not o n l y  i t s interrelationship  must be c o n s i d e r e d  strategies.  c a n , however, be i m p r o v e d  planning  accessibility  for  industry  Economically,  supplies.  flow  infornation  forest  of the land to  benfits.  operating  a  Environmentally,  ability  expansions  of timber the  within  conseguences. ,  industrial  Decisions affecting critical  harvests  t h e l o n g term  and  rates affect  ever,  timber  has f a r r e a c h i n g  rate of harvest  produce  of  level.  methodology The  system  c o n s i d e r a t i o n s t o improve  2  1.1  F o r e s t Harvest  Planning controlled  in  i s any  activity  courses  identified be  Planning  end.,  flexible  of  dynamic.  economic, b i o l o g i c a l  thereby  of  guiding  foundation  desigaed  and  decision  to  scheduling  social  controlled  flows.  The  the  and  integration government  of cash  However,  process.  flow  the need  scarce resources were not  efficient there  of  are  quality  of other  and  so  and  be  assured two  is  the  objectives,  Without  need  the  volume  as The  yield  industrial  material  at  firm yield  supply  planning  process.  in  economic  the  efficient  a specified  for efficient  to  allocation  objective., If  would b e . l i t t l e  need f o r p l a n n i n g .  economics are;fundamental  uses.  i . e . value raw  role  with  there  for  directed  is  i n the  fundamental  then  activities  objectives.  role  as t o o p t i m i z e  scarce,  little  conflicts,  resource  profit,  f o r an  i s concerned  allocation.  would  scarcity  plays a  Economics  change  strategies  standpoint  f o r a c o n s o l i d a t i o n of the  in turn,  of  must  facilitates  those  strategies  Economics p l a y s a fundamental  resources  It  In c o n t r a s t , t h e : m a i n o b j e c t i v e of an  control.  such  planning  efficient,  allowing  of  Hence,  provide  the:generation  as  resolution  encompasses  well  Scarcity,  and  some  management.  wood q u a n t i t y  provides  achieving  conditions..  planning  main o b j e c t i v e from a  efficient,  a l l o w s assessment  making.  specified  is  at  harvest  timber  control..  provide  activity,  and  achieving as  to  directed  Planning  alternatives  for efficient  Forest  action  I t i s a continuous  and  consideration  designed  Hence, t h e planning.  need  for  allocations concepts  of  3  Scarcity harvest British an  planning..  stands  quality  little  and  thus As  accessible  stands  becomes c r i t i c a l The at  the  pressure from the  to  timber of  depleted,  diameter,  a lack  supplies,  timber  the  of  were there  resources,  i s s u e of  harvesting lower  for  at the  efficient  allocation  scarcity  activities  guality  extensive  harvested  stands  distant,  are: less  margins..  At  of  resources  industry i s currently facing  operations  viable operation.  At  the  forest  land base.  n e c e s s i t y f o r proper other  been  "explotations"  are  production  needs with  size  have  from  More:  f o r the  the  species,  i n t e n s i v e : margins.  o f the  margins..  resulting  supplies force  Smaller  need  majority  most a c c e s s i b l e , b e s t  of i n f e r i o r  allocation  by  planning.  timber  the  margins the  The  of excess  i n v e n t o r i e s are  margins. . at  exploitations,  forest  marked  harvesting a c t i v i t i e s  In t h e : f a c e  Reduced  in  i n g e n e r a l , were  i n economic terms, such  need f o r  role  of t h e . f o r e s t industry i n  Timber  c u t . . Sush  for e f f i c i e n t  excess  harvested  these  need  no  develops. the  not  actions.  was  early stages  were.harvested.  was  fundamental  of f o r e s t e d lands.  However  rational  a  North America  wasteful  planning.  played  The  C o l u m b i a , and  considered  to  also  overabundance  guality and  has  forest  same t i m e , of a v a r i e t y The  forest  planning land  there  uses.  to  i s ever i n c r e a s i n g  o f goods industry  integrate  and i s now timber  services aware  of  supply  4  1.2 L e v e l s The agency  Of F o r e s t  Planning  British  Columbia  responsible  for  Columbia's planning  forest  (Figure  Forest  management  lands,  of  recognizes  2) t h e r e g i o n a l  some  five  Units  levels  unit level  ace  more  levels  level,  that  levels.  harvesting unit  Activities  would  The  to  harvest  level  develop  the  at the lower  planning  the: objectives  more  the i n t e r r e l a t i o n s h i p s  c o n s t r a i n the a c t i v i t i e s the  timber  objective resource,  would have t o be d e v e l o p e d  subject  strategy  the  and t h e o b j e c t i v e s  at  to  the of  industrial land  the:  then a  i n f r a s t r u c t u r e must be e s t a b l i s h e d .  of the :inventory  scheduling  At  framework.  involve: evaluation  assessment  for linking  operations..  (1976) n o t e d  schedule  level,  (TFL) ,  framework  and  F o r example, i f  industrial  management  including  Williams  Yield  level. .  i s longer  i s more:immediate  is  a  Conversely,  a t any p a r t i c u l a r  level  corresponding suitable  horizon  within the planning  of n e i g h b o r i n g regional  provide  stated..  defined.  Decisions  land  and  to actual, on-site  the planning  broadly  exist  levels  policies  the horizon  precisely  of f o r e s t  (PSYU) and T r e e Farm L i c e n c e s  planning  levels,  British  - P u b l i c Sustained  5) t h e o p e r a t i o n a l u n i t / c u t b l o c k  higher  of  level,  4) t h e w a t e r s h e d  philosophical  95%  level,  t h e management  These  (BCFS), t h e p u b l i c  1) :  1) t h e p r o v i n c i a l  3)  Service  r  A  a t the needs..  use p o t e n t i a l s ,  and t r a n s p o r t a t i o n s y s t e m .  determined  would  then  d i r e c t the  Operational Unit Level  6  development the  o f w a t e r s h e d s . . T h i s example i s a s i m p l i f i c a t i o n  a c t u a l process..  issues  a l s o enter  multi-level planning  into  planning  effort  The:  Factors  the planning  framework  purpose o f t h i s integrating  management  unit  is  transport  timber  thereby  scheduling  short  term The  harvest  model.  forest  harvest  i s then  study  i s  described,  forest  management  reviews A  presented..  unit  the  log  forest  assessment  coupled  with  and e v a l u a t e !  improved  of  long  of  other  through a term  and  planning.  models. .  scheduling  assembled i s  with  into  modelling  effects  complete  valuation,  The r e s u l t  following chapter planning  more  improved  i n f o r m a t i o n i s then  a methodology f o r  the  development  a  the  continuum..  p l a n n i n g . . A computer  access  of  considerations  incorporates  providing  This  and s p a t i a l  transportation  which  political  coordination  t h e s i s i s to provide  harvest  primary  value.  management cut  presented and  inventory,  level  and  picture.,. Nevertheless, the  facilitates  within a temporal  explicitly  systen  such a s p u b l i c v a l u e s  of  the development of p e r t i n e n t  problem  analysis  N e x t , t h e methodology  followed in British  of used  harvest i n the  by i t s a p p l i c a t i o n t o an a c t u a l Columbia..  7  2. . FOREST PLANNING MODELS -  2. 1 A s p e c t s  Of  Models  Models  have  comprehensive iacreasing and  the  typify  been  forest  land  planning  simplify  manageable  Only  represented,  i s then  computer.  However,  represented  absolute  A major  validating  The  factors  the  since  the  modelling  which  capability  for  model  when  objective  a model p r o v i d e s and  is  reduced  not  as  time  experience  may  details  the  problem  aid  is  The of  not  that  the  a  fully  p r a c t i c e s i s very  difficult.  nevertheless,  do  stage  otherwise  obscured  be  formulated  a s s e s s m e n t s on a framework  actual  Conseguently,  formulation  be  an are  ignored.  with  models i s  properly  can  to  a  result.  process,  model  to  significant  a well defined a c t i v i t y . .  significant A  problem  actual  of p l a n n i n g  The  analysis..  of  manpower,  problems  typically  a n s w e r s do  i s not  factors  response  of  identified  a model a g a i n s t p r e s e n t  and  faster  outgrowth  nature  critical  numerous a d v a n t a g e s .  knowledge  real  analyzed,  limitation  process  an  a l l under l i m i t e d  complex  less  abstraction  planning  the  those  with  They a r e  effective,  environment.  degree..  abstraction.  facilitate  More d a t a ,  e v a l u a t i o n of a l t e r n a t i v e s ,  Models  Further,  to  planning.  management demands.  today's  Models  developed  can by  offer reveal normal  provides  the  a reproducible basis.  around  which  quantitatively  management  expressed  and  8  explicitly  incorporated  i n the  The.computerization evaluate  o f models has  many f a c t o r s on  efficiency  than  in  2.2  end  result  possible  k Review Of  the  evaluation  new  of data  of southern  production..  planning  horizon  Planning  and Such  alternatives. and  a reduction  Models  forest  which  harvest  pine  stands  The  application,  only  to  speed  procedures.  of  utilization  ability  greater  introduced  one  to  (LP)  maximize b o t h  rotation  use  was  by  i n the  cut  volume  however,  and  the  scheduling  a p p l i e d L i n e a r Programming  revenue  forest  manual  published e f f o r t s  He  of  provided  which d e c i s i o n s are:made.,  models f o r  (1962).  scheduling  around  first  computerized  Curtis  the  Hangement U n i t  One.of t h e of  under  i s improved  the.uncertainty  process.  a dynamic b a s i s , w i t h  i m p r o v e m e n t s have e n a b l e d The  planning  was  and  considered  specific  a  to  one  to  cut  company.  Loucks scheduling  (1964) by  sustained capability  developing  yield  a  the more  management.  to consider a v a r i e t y  alternatives..  Leak  allowable  yields  thinnings  over  alternatives volumes.  extended  Kidd  (1964) generated  a  which  single yielded  application general His  of  used from  LP a  LP  model  directed  formulation  management and  rotation. equal  of  to  He  the-  of f i n a l  maximum cuts  considered  areas,  as  a  silvicultural  examine  series  e t a l . . (1966) i n c o r p o r a t e d  included  at  well  biological  and  harvest as  equal  factors  of  9  site  and  horizon  age  with  i n using  Tcneng  silvicultural  LP  for  forest  (1967) i n t r o d u c e d  large  scale  scheduling smaller  versions  subproblems  was  Integer  included  found to  compartments. non-integral  (IP)  solutions.  which  preserve  However, t h e  l a c k of  application  of  IP  to  solving  a  harvest  series  useful for scheduling  the  of cuts  scheduling. .  of  stands  both  applications  integrity  efficient  application  harvest  Through IP,  to  for solving  formulated  introduced  LP  the  an  be  scheduling  Previous  of  and  compartments.  (1969)  the  Littschwager  earlier  technique  Norman  Programming  formulation  the  number o f f o r e s t  and  regulation.  a five-period  decomposition techniques of  The  Bare  found  LP  problems.  over a l a r g e  a l t e r n a t i v e s over  harvest  had  scheduling  Their entire  resulted  schedules  of existing  algorithm  and  can  forest  greatly  problems  in be  stands.  limits of  of  the  realistic  proportions., Walker demand His  (1974) combined  with  model,  maximizes  the  forest  the  inventory  the  Economic  present  net  value..  The  revenue  derived  marginal  each  time  period.  curve  r e l a t i o n s h i p s where t i m b e r  volume h a r v e s t e d .  or  models.  volume f l o w  criticized optimal  the  net  ECHO  This  Harvest  incorporates  c o n s t r a i n t s were n o t  economic h a r v e s t  levels.  and  harvest.  Optimizer  (ECHO), employed  from  harvesting  downward  sloping  for  demand  p r i c e v a r i e s i n v e r s e l y with  Also u n l i k e past  of  of  solution strategy  r e l a t i o n s h i p was  criterion  of s u p p l y  to determine:rates  named  equates the  previous  economic c o n c e p t s  not  characteristic  approaches, sustained imposed..  sustained  yield  Instead, for  the of  yield Walker  determining  10  Johnson sloping  (1976)  demand  maximization  pursued curve  using  demonstrated, optimization  a  on  be  act  c o n s t r a i n volume:flow.  price  economic  responsive  elasticity  allocations,  constraints. downward  Hrubes  sloping  formulations  by  volume h a r v e s t e d Clutter forest  can  separable affect  (1968)  simulator  and  w r i t e r . . The  generated  by  cutting  area.  cut  alternatives certain  which  specified  Max-Million, management companies  simulator  (Ware and  of  of  optimal  sustained  yield  that  a  into  LP  in situations  where  complete  The with  computerized  system  an  LP  included  harvest volume  then  selected  present and  area  adopted  as  southern  net  scheduler and  set  of  subject  to  c o n s t r a i n t s . . His an  operational  pine  f o r e s t s by  value  f o r each  that  worth  an  system,  tool a number  for of  C l u t t e r 1971).  The  Timber  Resource  planning  system  developed  Service  (USFS)..  Forest  of  incorporated  calculated  scheduler  been  will  consideration  alternative clearcutting policies  maximized  planning  more  system.  volume f l o w  has  a  in conjunction  yields  mechanism  demonstrated  programming  presented  appraisal  value  harvested.  achievement  be  He  stumpage p r i c e s .  planning  The  could  value  that  market  (1976)  curve  and  volume  under imposed  Savon  demand  management  report  possible  downward  formulation.  proper  demand a l l o w s  and  using  the  Hence,  a  belief,  restricting  situation,  of not  programming  by  of  scheduling  popular  achieved  a  the  harvest  to  Under to  price  significance  quadratic  contrary could  the  A l l o c a t i o n Method by  Navon  This  (RAM)  i s an  (1971) f o r the  system  is similar  LP  United  timber States  i n concept  to  11  Max-Million.  I t takes  a forast  inventory  management p r e s c r i p t i o n s f o r each optimal or  harvest  cost  years)  schedule  objective.  and  National  current  according  The  long  fact,  m o d e l s . ..  In  planning  systems  allowable  c u t c a l c u l a t i o n s and  resource  recreational considered mix  of  primary  from  the  resource  total  land for  structured  for  alternatives Fowler of f o r e s t  use  land  base.  LP  planning.  In  presented  a d d i t i o n t o an 1)  a forest  details r  of  i s used  LP  The  broader  RAM  used  for  is  are  a  products  to schedule  of  model  has  is  timber  the The  evaluating limited  not  well  management  e i g h t time  periods.  the  socio-economic  impact factors  o f submodels t o a d d r e s s  cut scheduling  Timber  scheduling  sedimentation,  t h e need f o r e s t i m a t i n g  measurement  States  1974)  However, RCS  of handling  a system  350  management u n i t . .  detailed  capable  to  computerized  Mass  i s a g u a n t i t a t i v e means  evaluating  (up  be  timber,  for a given  combinations..  i s only  RAM  Forage, as  (1978) d i s c u s s e d  He  (RCS,  well  timber  revenue  1  tool.  management d e c i s i o n s on  a region.  *Further chapters.  and  RCS  of  the  range v o l u m e . p r e d i c t i o n s . .  as  activities  b e n e f i t from  applicability  need.  days,  horizon  1974)  Timber  System  planning  visitor  alternative  of  Capability  long  volume,  from p r e v i o u s  (Mass,  that  determines  a number o f U n i t e d  RAM  USFS r e v i e w  recommended  Resource  multiple  a  Timber  and a  range p l a n n i n g on  a s e t of a l t e r n a t e  type  to e i t h e r  o p e r a t i o n a l use  Forests distinguish  The  forest  and  model, he  this  added:  simulator,  will  be  covered  in  subseguent  12  2)  an  economic i n p u t / o u t p u t  3)  an  employment e s t i m a t i o n m o d e l ,  4)  a tax  projection  system  enables  one.  to  flows  through  t o i t s impact  on  and  of  analysis.. Timber to  an  This  roads.  models used The  most  road  by  was  models  the  USFS f o r of  designed  appeared  (1975) r e v i e w e d forest  the  an  LP/IP  optimizer  Traffic  allocations  and  assignments are produced  model i s p a r t i c u l a r l y  volumes,  for costing  additions, Navon planning. years.  and  location  road term and  first  useful  for  I t was of  construction planning.  two  assumed  generator, writer.  based  on  The  examining  Timber traffic  for assessing  network..  i n the  s h o r t run a n a l y s e s of  s h o r t run  that  up  activities.  (1976)..  The as  The  second  volume  planning  problem  model a d d r e s s e d  d i s c u s s i o n i s presented long  term  model  w e l l a s h a u l i n g and  to  both  t h e minimum c o s t s t r a t e g y o f h a u l i n g  A detailed  the  models f o r f o r e s t t r a n s p o r t a t i o n  h a r v e s t were known, w i t h t h e  management a c t i v i t i e s  mills. ,  report  revenue o b j e c t i v e . .  model a d d r e s s e d  to determining  Navon  a  a l t e r n a t i v e . r o u t e f l o w s , and  (1975) p r e s e n t e d  five  reduced  and  improvements or d e l e t i o n s t o t h e r o a d  The  transportation  of a route  generator,  Transport  several of  harvest areas to  matrix  a c o s t or  the  models d i s c u s s e d , t h e :  a system c o n s i s t i n g  of either  in  for analyzing modifications  network which l i n k s  model i s a c t u a l l y  optimization  timber  of gross r e g i o n a l product,  Odendahl  pertinent  T r a n s p o r t model, existing  levels  to h a r v e s t s c h e d u l i n g  forest  the p l a n n i n g  t r a c e a given schedule:of  taxes.  Extensions planning  and  calculator.  This  employment  model,  by  long  Weintraub  included road  and  timber  construction  13  activities. activities minimum models  The  problem  w h i c h would  use  a mixed  As  with  be  limited  find  an  integer linear  and  most IP to  keep t h e  has  Initially,  focus  on  there  the  become  apparent  volume  yield  development  the  philosophy. bio-economic  modelling of  forest  effort  integer variables as c o n t i n u o u s  harvest  to  1 9 7 6 ) . . The  focus  rather  on  i s on  of f o r e s t  the  Models then aspects has  in  the  began  are  aspects  being  improving  and  combining  of a  place  more  a single  the  model  to  where  (Williams,  existing or  From  by  stage  developed  technigues  of  context  planning..  at the  are  new  planning  characterized  now  must  literature.  to  of harvest  been  We  the  biological  particularly  entirely  harvest  reviewing  models  developing  variables.  dimensions..  planning.  previous  with  within solvable  upon  run  f o r m u l a t i o n . . Road  s y s t e m s o f models r a t h e r t h a n  extensions  than  yield,  Long  variables  i n the.development  of  either  number o f i n t e g e r  a p p l i c a t i o n s emphasized  and  sustained  problem  s h o r t and  programming as  combination  objective,  B o t h the  activities  p r o b l e m s , the  that  economic  were m o d e l l e d  hauling  A progression  address  optimize  activities  silvicultural  growth  to  c o s t s o r maximum r e v e n u e s .  construction  models  was  tools,  models..  14  3.  PROBLEM The:  ANALYSIS problem  identification alternatives  analysis  of;  process  t h e d e c i s i o n maker, t h e  available  satisfy  to  be  there  Constraints  affecting  the  must a l s o be  identified  within  the  of a problem  above components The  the  has  to  alternatives  existence  decision  forest  level..  responsible  in  the  not  were not makers  as  to  clearly  which t h i s  plan harvests this  and  the  o b j e c t i v e . . Among  problem  be  the  which  is  the  best.  relationship  environment.. recognized  The  i f any  of  identified.  to  f o r PSYU's, and  objective,  the  doubt  involves  alternative-objective  would  managers who  Included  basically  group  thesis  at  the  are both  industrial  i s directed management  government  are unit  managers  managers r e s p o n s i b l e  for  TFL•s.. The harvest the  basic  objective  p l a n n i n g at the  harvest  manner. . The measured  of  in  terms to  encompasses the  the  forest  management u n i t supply  desirability  consideration  of  of  possible  volume  non-timber  determination  and  over  is time  cutting  value  resources.  to  schedule  i n an  optimal  schedules  flow, Harvest  to  giving  is due  scheduling  of:  the  cut  2)  the  time  3)  the s p e c i e s c o m p o s i t i o n  4)  the  level, period f o r harvest,  p o s s i b l e areas  alternatives  planning.  manager, i n r e g a r d s  level,  of timber  1)  Several of h a r v e s t  the  of  of  exist  Planning  o f the  cut,  and  harvest.  in addressing  time  reguirements  the and  four  aspects  the  ability  15  to  evaluate  a  alternative particular  3.1  method  The on  early  1950's  determine Boyal  resources.  The  were b a s e d on was  designed  forests..  approach  The  to  yield  sustained  the  Columbia  the  cut  Cut  detailed annual  increments  estimates  of  of  growth  i n v e n t o r y of the  and  scheduling Cut  and  a  new  to  In  the to  forest  harvest  levels  ( H a n z l i k , 1922).. T h i s  formula  determining  of  mature  formula  +•  levels  Age .  were  procedure  yield  this  are in  over-mature  to  by  a  more  maximize  mean  process,  obtained  guestion..  below:  Mean A n n u a l Increment of Immature  determined  designed In  and  i s shown  Mature  =  management u n i t  1947..  ware i n s t i t u t e d  to B r i t i s h  of H a n z l i k ' s  and  been  Columbia  at  growth.  has  regulation policies  as a r e s u l t  related  formula  harvest  computational  present  second  Rotation Subsequently,  Two  of the  Volume o f Annual Allowable  which  judged. .  schedules,  prior  levels  regulation  b a s i c form  the  regulations  attempts  Hanzlik  for  harvest  criteria.  of Inguiry  early  be  below;  harvest  yield  allowable  Commission  can  by  Background  in British  annual  measures  considerable attention.  -  biological  were n o n - e x i s t e n t  methods  determining  Scheduling  are  are considered  gained  historical  scenarios  regulation  of  w h i c h has  Harvest  based  harvest  of  alternatives  historical approach  variety  localized  from t h e Such  timber  estimates  16  provide the b a s i s  f o r determining t o t a l  of  immature,  mature  represent  and  a cut l e v e l  production  from  rotation  f o r each  age  the t o t a l called verify  yield  an  maximizes  forest forest  types.  base..  and  The:  the A  rate  yield.  An  the c o m p a t i b i l i t y  of the s p e c i f i e d  rotation  classes  corresponds BCFS a n n u a l  policy  paper  period  t o the  i n which  to  by  dividing procedure  carried age  out  to  with  1975)  harvest  optimal rotation..  allowable cut c a l c u l a t i o n  (Haley,  optimal  the  I f necessary the annual harvest l e v e l  the time  o f the  physical  iterative i s then  so t h a t  yields yields  biologically  allotment check"  adjusted  of  type i s then determined  the annual  annual c u t .  annual annual  "area/volume  tabulated  into  which  the  by  forest  yields  from  all  complete  can  age  details  be f o u n d  t h e most r e c e n t R o y a l  is  in  a  Commission  forest resources . 2  A  number  made t o t h e  of  administrative  indicated  losses  due  roads,  regeneration  harvesting  to  allowable  land  cut  alienations delays  induced  and  losses. cut l e v e l  adjustments level for  other The  the  management  unit  f o r a one  used  f o r determining annual h a r v e s t l e v e l s  The  volume  uses,  fires,  silvicultural net  approved  subsequently  reflect  non-timber  administratively  of concern..  to  are  above  result year  is  an  period  procedure  f o r both  and  for  has  been  PSYU's  and  TFL•s.. The  determination  of  t h e r e m a i n i n g s c h e d u l i n g a s p e c t s of  P e a r s e , P.H., 1976.. Timber R i g h t s And F o r e s t The R o y a l Commission On F o r e s t R e s o u r c e s 2  Policy,  Report  Of  1 7  what and  where  criteria.  to  to stand  identified those  These  industrial becoming  b a s e d on  map  stand  types  showing  viewpoint,  an  potential  on  volume  assignment of  cutting  then  are  again  philosophy i s given  i n greater  growth.  identified  on  the  From  the  requirements  are  harvest  areas.  marketing  areas  gain  High p r i o r i t y  increasingly prevalent in dictating Potential harvest  based  increment  are  product  t h e d e s i r e d s p e c i e s mix  3.2  been  w h i c h , when r e p l a c e d , r e s u l t  harvest..  type  also  government v i e w p o i n t , types  prioritized type  have  what s p e c i e s t o h a r v e s t .  stands  inventory  the  harvest  From t h e  priorities has  to  species  which w i l l  identified  on  flow  from  contribute to the  inventory  map.  Harvest There  approach  Scheduling are  management  harvest  An A l t e r n a t i v e  disadvantages  establishment  level..  The  so a s t o maximize  necessarily biological  i n the  unit  determined  exists  several  For  d e s c r i b e d above.. Foremost  considerations  improved  - Need  economic  or  basis  f o r the area  determination  for  cut  economic  rate  of  the  biological  factors  of  t o be  of  economic  r e g u l a t i o n at  h a r v e s t i n g has  unit  will  explicitly  been not  well  provide  In p a r t i c u l a r , species  the  and  Economic as  regarding  harvest. .  planning  productivity,  returns.  management  harvest  lack  harvest  scheduling.  accessibility of the  is  r a t e of timber  social  assessment of the  to the  as an  the  need  flow  and  i n t e g r a t e d i n the  Recently,  the  formal  18  incorporation evidenced 1979)., even  on  o f economic a n a l y s i s with one  This  flow  of  the  study  National Forests in  demonstrated  sustained yield  increased  levels  affecting  the  term  resulted  r e v e n u e s and  biological  analysis  California  that departures  approach  of harvest,  long  biological  was  (Craig,  from  a  strict  in opportunities for  jobs without  capacity  of  adversely  the  management  unit. . & second is  the  limited  exists over  disadvantage:of  for  opportunity  impacts  a l o n g range h o r i z o n .  timely  analysis  of allowable  A third  The  function  in  of  accessibility.. represent  a  capital  only  does  investment  did  not  schedules  in a  of  the  manual  of t r a n s p o r t a t i o n  flows  f o r a management  are:  its  the  principally  location  and  transportation  exceeding  $70,000  per  mile:  be  schedules  realized with  integration systems  was  of  construction  not  ($43 , 4 9 7 / k i l o m e t r e ) .  through  thoughtful  in  uncommonly Substantial  construction activities. .  of  planning  endorsed  in  a  review  20%  British  integration  and  its  but i t  h a u l i n g and timber  a  network  approximately  of a h a r v e s t i n g o p e r a t i o n  costs  can  need  absence  major e x p e n s e . . Roads r e p r e s e n t  the  planning  result  harvests  value,  with  The  timber  t i m i n g of  Columbia,  cutting  The  a major p h y s i c a l c o n s t r a i n t i n terms o f a c c e s s ,  represents  savings  a  i s the  timber  Not  methods  determination.  and  the  methods  of harvest  largely  determining  selection  planning  spectrum  major d i s a d v a n t a g e  considerations  of the  a  cut  scheduling  of p o s s i b l e : c u r r e n t d e c i s i o n s  Previous  manner, a d e f i c i e n c y  process  unit.  of  harvest  for assessing alternatives..  a s s e s s i n g the  facilitate  present  of  transportation of  OSFS  planning  19  systems and  by W e i s z and  Navon  (1976)  "The  other  consideration Sreater the  along  with s i l v i c u l t u r a l  base.  raw  Act  forest step  with  basis  and  policy  the  into  should  has  the  to  must be  Columbia  social  a p p l i c a b l e to current planning  deficiencies  Scheduling  resource  inventory  provide  growth,  yield,  cost  only  accentuate The  resources, are  latest the  evidence  new that  be:made t o keep i n  longer  appropriate concepts adequate  and or  needs.  above  (TR ACS)  compilations  coupled  i n d u s t r y . , Such  traditional  no  method p r e s e n t e d  identified  due  substantially  Change i s now  are  given  alienations  practices..  forest  h a r v e s t s . . The  scheduling  alternative  forest  C h a n g e s must  needs.  be  major  pressures, have  regulations  dynamic.  of  the  planning  accompanying  harvest  Analysis-Cut  to  are  forced  economic environment  British  e c o n o m i c and  for  leads  activities.  resources  costs  p h y s i c a l and  regulation  The  and  These:supply-reducing  material  Commission  Forest  the  planning  d e f i c i e n c i e s of past harvest  Royal  Weintraub  activities  i n c r e a s i n g demand f o r wood p r o d u c t s  changes i n the  in  in harvest  demand f o r o t h e r  timber  increased  the  transportation-related  variables  the  regard,  state:  words,  decision  with  In t h i s  t h e wrong s e t of h a r v e s t areas may be made a c c e s s i b l e , and the c h o i c e : of p e r i o d o f a c c e s s t o each node ( h a r v e s t area) may not be o p t i m a l "  2)  from  (1975).  sequential non-integrated approach s u b o p t i m i z a t i o n on two c o u n t s : 1)  In  Carder  and and  in this is  system.  thesis  the  address  Transportation makes use  of  management p r e s c r i p t i o n s  to  revenue  TRACS  to  data  for  harvest  20  schedule  determination.  Long  management  strategies  evaluated..  F u r t h e r m o r e , TRAZS a l l o w s  explicit  on  range  consideration  construction  and  log  planning  system  biological  and e c o n o m i c  management  unit. ,  both  of  a  variety  of  a volume and v a l u e ' . b a s i s c a n be  of stand transport.  which  impacts  in  i t s evaluations  accessibility The  integrates  i n terms of road  result  is  a  transportation  evaluation of cutting  the  schedules  harvest in  the  for  a  21  4.  MODEL COMPONENTS  This  thesis  management u n i t TRACS  system  expands  level  the  harvest  methodology  planning  Computer A s s i s t e d R e s o u r c e  £i  §.i»r  extended The  Planning  1975)., CARP was d e v e l o p e d planning by  results  from  incorporated The  system.  The  developing this  a  the  in  of  TRACS  subsystems  are presented: 1) t h e F o r e s t  In doing  so, the  (CARP) system  (Williams  f o r t h e BCFS as a p r o t o t y p e  original  methodology  has  are  been  subsystem. subsequently  determination. 2 outlines the basic  system.  The  following  subsystem,  2)  the T r a n s p o r t a t i o n  subsystem,  3)  the State  subsystem,  Variable  4) t h e C u t S c h e d u l i n g 5) t h e R e p o r t  existing  t r a n s p o r t a t i o n modelling  Figure  structure  of  from t h e components o f  t r a n s p o r t a t i o n subsystem  i n c u t schedule  flowchart  tools.  draws l a r g e l y  the  harvest  effectiveness  s u b s y s t e m , and  subsystem.  analytical five  major  22  Figure 2.  Components o f the TPACS System  State Variable Subsystem  Cut Scheduling Subsystem  Report Subsystem On-line data storage  j  C7  J Processing  Hardcopy reporting  23  4. 1 Forest  Ml  Subsystem  methods o f d e t e r m i n i n g  inventory  of the  Typically  a  compiling overlays as  a  age,  physical  map  on  the  site:  provides  and  The  type  timber  information  drainage  of  and  provides The  soils,  first  the  an  unit.  foundation  for  available.  The  land  classification  information  land  require  management  resources  type  yield. on  the  provides  supply  map  levels  of  system  would i n c l u d e v e g e t a t i o n  minimum..  on  species,  classification  landform, parent  map  material  and  characteristics.  The which  resources  overlay  information  harvest  overlay  area  and  corresponding physical  process  delineates  productive,  information  geographic  distinct  capability  i s compiled  units..  Land  as use  prescriptions related to t h e . i d e n t i f i e d physical  resource  treatments  are  soil-landform  information. derived  as  Ose a  characteristics,  can  be  land  units  for  identified.  All  attributes plans  and  these  management  l a n d u n i t s accompany  suitability  and  f u n c t i o n of l o c a l and  of  provide  the  prescribed  knowledge  basis  the  and  for  cost  the  basic  estimation. Those "stand" for  unit.  unit  comprise  areas  having  Stands r e p r e s e n t  planning. the  productive  data  For  finest  each s t a n d ,  base:  1)  stand  number  2)  compartment  3)  geographic l o c a t i o n  4)  species  type  the  forest  number  the  cover level  form of  resolution  following attributes  24  Ml a  5)  land  6)  age  7)  site  8)  area  9)  net  it  class  volume  harvesting  method  12)  season  13)  earliest  and  14)  expected  site  15)  expected  regeneration  data  harvest latest  harvest  entries  preparation  rapid  management  base s e r v e s  and  three  for generation  i t provides  for  maintained  on  system.  A  retrieval  user  generation  Firstly,  queries.,  of standardized  the  and  basic functions.  a n s w e r s t o on-demand  Secondly,  management r e p o r t s . of  basic  data  for  analysis. mentioned, the capability  estimates  of timber  estimates  reflect  utilization presented by  of  above i n f o r m a t i o n i s a s s e m b l e d  data  provides  productive  age  area  11)  provides  As  unit  use(s)  computerized  further  per  designated  of the  Thirdly,  class  10)  computerized it  class  of the  growth and  standard,  l a n d . . The yield  less  deductions  i n g r a p h i c a l f o r m i n which  Curves  stand-distance  p r o v i d e s an  geographic  through  (VAC)  independent  are  a  growth  per  area  volumes a r e and  form  These  to a  given  yields  plotted  site..  rudimentary model.  The  of  localized  sampling.  f o r decay..  location  indication  BCFS d e r i v e s  a v e r a g e volume p r o d u c t i o n  species type,  Volume/Age  stand i n v e n t o r y  are  against  These  BCFS  of a  whole  The.VAC's p r o v i d e  the  25  basis  for  procedure., used  in  the  The same b a s i s  this  thesis  d e m o n s t r a t e how information  The  allowable  f o r g r o w t h and  because  of  can be u t i l i z e d  discussed,  of  the  transportation  distance  i s one o f t h e most c r i t i c a l  and  also  generate  is to more  transportation  by H e r r i c k  harvest  considerations  (1976).  He f o u n d  system planning.  has  that  been  hauling  determinants of s u c c e s s f u l  operations.  Reliable  estimates  of t h e c o s t s  t o the manufacturing  valuation. . long  generation  However,  estimates  in  and e v a l u a t i o n subsystem  f o r truck technique.  plant  of  moving  are reguired  models f o r e v a l u a t i n g  established  transportation  analysis  to  variables i n forest  i n a study  been  projection  availability  evidenced  landing  yield  calculation  Subsystem  major d e c i s i o n  importance  logging  cut  t o a i d management.  previously  represents  annual  the same d a t a  4.2 T r a n s p o r t a t i o n  As  standard  forestry.  logs  f o r proper  such  TRACS  from  costs  allows  transport  a procedure  f o r the  for deriving  b a s e d on a minimum r o u t i n g  stand  have n o t  of t r a n s p o r t a t i o n - r e l a t e d c o s t s .  presents  the  The cost  network  26  4.2.1  Derivation Two  costs  main  Of T r a n s p o r t a t i o n factors  f o r a given 1)  affect  Costs  the  estimate  of  transportation  stand:  the  transportation  network,  both  existing  and  p r o p o s e d , and 2)  the  location  both The t y p i c a l attributes; highway of  the road  utilizes capability speeds  and  also  allowable More dollars  load  haul  plant..  ( i . e . on  transport  classes of  for  medium  times  1)  distance  2)  speed  3) machine  and  They a r e  for  travel  type of  hauling  or off-highway  trucks,  factor.. This c h a r a c t e r i s t i c directly  cost  which  vehicle  the: road..  "cycle"  e i t h e r on-highway  p e r u n i t volume,  two  vs. o f f  allowable  and back t o l a n d i n g . . The  specifically,  by  r e l a t e t o the design  maximum  affect  l i m i t s and t r u c k  4) l o a d  of  concentrations  to m i l l  a significant  type  terms  as they d i r e c t l y  medium p e r m i s s a b l e ,  of  to  c h a r a c t e r i s t i c s determine the g u a l i t y  Road  in  traffic  type  the  network..  landing  in relation  network c a n be c h a r a c t e r i z e d  and,  T h e s e two  standards  significant from  class  network and  the  the f o r e s t stand  the network and t h e m a n u f a c t u r i n g  f o r e s t road  road  haul).  of  is  affects  speeds. estimates f o r truck  are a function  of four  transport, i n  components:  rates  size  Distance  divided  by a l l o w a b l e  provide  c y c l e times. . Cycle  truck  speed, loaded  times applied  against  and  unloaded,  machine  rates  27  for  logging  dollar  terms.  hauling can  cost  log  transport  whan d i v i d e d by l o a d  size  3)  Cost/Load Size = T r a n s p o r t a t i o n ($) (cunits) ($/cunit)  basic  discussion  hauling  distance  i s  the  towards t r a n s p o r t a t i o n c o s t t o t h e road  valuation.  the necessary of hauling  initial  minimum  factor  derivation.  which  Distances  network and t h r o u g h t h e n e t w o r k t o  hauling  strategies.  terminology of  generates l o g  Cost  a r e r e q u i r e d . . Network a n a l y s i s p r o v i d e s  assessment  strict  as follows:  C y c l e Time X Machine R a t e s = C o s t (hours) ($/hour) ($)  stand  in  p e r u n i t volume o f wood., The d e r i v a t i o n  2)  determining  some  in dollars  for  Distance/average Speed = C y c l e Time (miles) (miles/hour) (hours)  the mill  costs  1)  contributes  the  yield  This cost  be summarized  Thus,  from  trucks  which routing  distances  a  means  and f a c i l i t a t e s t h e  The f o l l o w i n g s e c t i o n  will and  be  for  introduced  defines in  the  i t s a p p l i c a t i o n to stand  28  4.2.2  Network a basic  analysis c h a r a c t e r i s t i c of  combinatorial by  a  nature. .  collection  of  relationships. flow,  distance  with  the  or  In  arcs.  some arcs  by  represented sets,  A'sa.  by  N  Extending  represented  by  represented these  by  [b | t  C =  additional  {N,a',B, C'} a  [c(i,j)  sets,  of  definition.  a  nodes.  arc  arc  (j,i),  (i,j)  =  C o n v e r s e l y , i f the  is  examples  set  as  structural in  addition, associated  the  the.  j&N} . G  node  Similarily,  be  nodes  and  set  provide  structure..  of  1,...,n},  be  of  arcs  set  Given =  can  the  arc  above  {N,a'}  attributes  where can  be  a t t r i b u t e s can  |  (i,j)&A}._  defined  G,  is  such that which of  "graph-network"  then  nodes  arcs are an  an  terms  arc  as  the  the  graph,  ordered  be  Given set  W =  lead  be  away from  directed undirected  unordered, G,  is  ( i , j ) # arc  "directed"..  reguire with  where  sense  ( j , i ) ),  towards i t . . F i g u r e a  of then  a " s o u r c e " node i s  i t , whereas a " s i n k "  and  its  "undirected".  y i e l d i n g some  (where a r c to  also  together  I f a l l branches are  said  arcs  both  is  b r a n c h e s are  between t h e  graph,  one:in  the  and/or c ( j , i )  "branch"  end  oriented  joined  attribute  defining  a network can  other  corresponding  the  of nodes  purely  as  notation, r  their  Thus, networks  ( j , i ) | iSN,  i&N}.  is  where C'cC (A») .  number  direction  i =  defined  the  B =  nodes.  well  { ( i , j ) or be  define  measurable  as  {i I  a graph can  networks  a graph c o n t a i n i n g  notation,  =  a =  is  and/or  descriptions  represented  Graphs  other  mathematical  and  a graph i s a c o l l e c t i o n  network  member  guantitative  two  a  graphs  node  3 presents  directed  graph.  29  Figure 3 .  Examples o f Graph S t r u c t u r e s  30  Corresponding  set  representations. not  Note a l s o ,  incident its  intersections  "degree"  or  "order"  upon i t .  A node.of  corresponding arc i s a  defined  to  Completing  be  branches  such  each  that  path  as  or  "loop".  a "simple least  and  one  j&N  subset  and  connecting  i # j.  o f n o d e s , N'sN  incident  arcs,  The path  path  o f minimum  directed  3  arc.  Further,  is  a  on  arcs  a common  series  of  G,  any  a final  are node.  ordered,  just  node  once.  acyclic  path  is  i s "connected" two  nodes i  term,  referred  i f there  and  j,  a "subgraph"  together with the  appropriate  j A  a t t h e same node i s c a l l e d  partitioned  problem  d i s t a n c e from  sink  graph,  Route  node. G =  into  a  The  (N, A). , The three  involves finding  particular problem  a to  exists  where  i&N  of G i s t h a t subset  the  of  feasible  node:  characterized  node s e t , N =  to  a  by  a  ( i | i = 1 , . . . ,n) , can  subsets:  1) N,  = source  2) N  = i n t e r m e d i a t e nodes,  2  is  source  nodes, and  H o w e v e r t h e c o n v e r s e i s n o t t r u e . . I t i s not e x t r e m e p o i n t t o be a n o d e . o f d e g r e e 1. 3  number o f a r c s  A'aA.  Shortest  particular  As  nodes,  other..  encountered  terminating  A graph,  only at  a g i v e n node i t o a n o t h e r  C o n v e r s e l y , an  path"..  diagrammatic  1 i s an e x t r e m e p o i n t , and  a "path"  l e a d i n g from  and  occur  are i n c i d e n t  i n t e r v e n i n g node i s  initiating  "cycle"  degree  terminal  the t e r m i n o l o g y ,  the  o f a node i s the  a d j a c e n t i f they  adjacent  be  accompany  where a r c s a r e shown t o c r o s s each The  at  definitions  necessary  for  an  31  3) N The  arc set,  pair  of  = sink  3  A =  nodes  C ( i / j ) | i & N , j & N } where A > n-1,  nodes. .  There, e x i s t s  [C ( i , j ) | ( i , j ) &A} , a s s o c i a t e d j.. by  The  feasible  with  set  each  of  every  attributes,  a r c between  C  nodes i  = and  p a t h between n o d e s i and j can ba r e p r e s e n t e d  x j . . The f o l l o w i n g  additional  L  1) t h e a r c i.e.  attributes  c "j L  the value zero,  cj  also  c j  not  L  need  hold: be  symmetric,  o f an a t t r i b u t e  > 0 ,  from a n o d e i t o i t s e l f i s  0 t and  =  4) where no a r c e x i s t s the  i.e.. , C y  are non-negative,  L  i.e. c^  nodes,  conditions  / cji ,  2) t h e a t t r i b u t e s 3)  a  connects  between any p a r t i c u l a r p a i r  attribute  c y-  i s  assumed  to  of be  infinite. Siven can  t h e above s p e c i f i c a t i o n s , t h e S h o r t e s t  formulated  as  problem  follows:  MIN Z =  subject  Route  E E cuJ i j  to :  x J  i}  1  -1 f o r i&N, , where N, = {1}  ii)  The  objective  0 f o r i & N , where N  2  =  1 f o r i&N , where N  3  = [n}  2  Xy-  > 0 for a l l i  is  to  find  the route  3  which  {2,...,n-1}  minimizes the t o t a l  32  distance The  travelled  first  flows is  set  out  of  a specified  constraint  at  (N, ) and  the  arc  attributes,  respective  n o d e s . . However,  restricted  to distance.  the  minimum  be  costs,  that  as  for  with  distance) strategy  a s s o c i a t e d with  also  of the  particular  As  that  need  not  be  for determination  of  of d e l a y s , f o r attributes  may  minimum c o s t r o u t e . .  Note  ( i . e . the  minimum  i t i s r a t h e r the  decision  minimum r o u t e )  which  is  sink  b a s i c S h o r t e s t Route problem  s h o r t e s t path  Elmaghraby the-  Shortest  between a s e l e c t e d  (1970) basic  a l l sources  algorithm the  considered  s h o r t e s t path  a t r e e method d e v e l o p e d  from  usual  one  t o one  Route  points  out,  source  sink  problem  is  sink  almost  to one  sink  problem..  The  is  the  one  of  interest..  determining  permanent  the  solve  s o l v e the  sources-one  The  (i.e..the  the  importance.  algorithms  all  In  second  d i s t a n c e s between  value  but  The  z  r o u t e , or the  concern,  optimality  a l l o t h e r nodes.  problem,  is  most r e l i a b l e  o f key  (N ). .  probabilities  optimal  determination  all  or  most p r o b l e m s t h e  yielding  Closely  and  be t i m e s ,  of the  not  flow  3  attributes  determination  is  of p r i m a r y  the  of the  route,  (N ) , w h i l e :  positive.  arc  may  unit  sink  nodes  sink.  only a s i n g l e  represent  L  the  to a s p e c i f i e d  that  the  t o be  c j ,  They  duration  determination  into  intermediate  s t a t e s a l l f l o w s are  the  source  constraints specify  of the source  conserved  case,  from  labelling,  a particular  (i=2,...,k,...,n)  be  most  efficient  between a s p e c i f i e d Dijkstra  iterative  source: is  by  to  node,  determined  (1959)..  process 1,  to in  The  pair  ascending  nodes  method i s  i n which t h e every  of  in  other order  a  distance node,  i ,  until  the  33  specified nodes  s i n k nods, k  have  has been p r o c e s s e d ,  f  processed.  The: a l g o r i t h m  non-symmetric a r c l e n g t h s an! attributes.. presented  A  detailed  both  forest  represented  a  delineated  road  in  relationships  of  description  system  digital  uniform  o f the road  process  of  negative  Lengths  cycle  with  Distances  from t h e  generation  of  captured Road  arc  current  can  of  from  status  map  c a n be  and  individual  the d i g i t i z e d  the  a  haul  s e c t i o n s of road  the  from  be  spatial  segments  road  times  with  road  data.  centres of a c t i v e  road  system.,  machine r e n t a l  These  r a t e s and  t r a n s p o r t a t i o n c o s t s p e r volume o f  active  haul  from  unit  Two-dimensional  segments r e p r e s e n t  directly  observed  combined  management  class,  c a n be s u p p l i e d a l o n g  times,  a  digitization*.  average l o a d volumes, p r o v i d e  allow  or  Routing  network c a n be  characteristics.  Empirically  log.  of  on t h e b a s i s of r o a d  segments c a n be computed  cycle  of handling  of Dijkstra's algorithm i s  form..  I n o t h e r words, r o a d  operation  i s capable  i n Appendix I .  The  type.  a l l other  positive  4.2.3 Log T r a n s p o r t a t i o n Based On Minimum  through  or u n t i l  operations  costs i n dollars  to  milling  per c u n i t  sites  per mile  digitization i s the process o f r e c o r d i n g x and y c o o r d i n a t e v a l u e s r e l a t i v e t o a p r e d e f i n e d base o r i g i n * The r e c o r d i n g o f a s e r i e s o f coordinate p a i r s enables the geographic location of s u c h f e a t u r e s a s r o a d s t o be n u m e r i c a l l y r e p r e s e n t e d .  34  ($/cubic  metre/kilometre).  operations hauling  can  then  cost  figure.. for  cost  the  respective  for  per  a  appraisal  as  the a  given from  cunit  Alternatively,  costings  Within  distance  dollars  -ost  used  zones..  transportation multiplying  be  These  purposes  particular stand  mile  distance to  observed  basis for establishing  stand  per  from  can  to  be  the  the  by  by  the  metre/kilometre)  pre-determined  could take  the  derived  mill  ($/cubic  a  zone,  location  p l a c e of the  mill  site. The  d i s t a n c e from  involves  two  from  the  each  stand  components.  is  captured  The  i s based  closest  road  determine  solely will  this  be  from is  on  be  at  a stand to the  road..  Nevertheless,  distance  The  least  or p o i n t o f  an  access  road In  to  may  of  the  an  particular words,  the  is  the  path  of  of  the  estimate.of  component i t i s assumed t h a t t h e n e a r e s t  a  access regard closest  the  road  to  distance  S e c o n d , no  hinder access  of  visual  approach  linear..  facilitate  a  for a  respects.. F i r s t ,  be  distance  Theorem i s used  This  s i n c e i n most c a s e s  which  the  other  Pythagorus'  not  appraisal  coordinate location  distance.  two  will  is  digitization  distance.  road  to topography  of  mill  component  road.  accessed.,  underestimated,  given  first  linear  linear in  the  through  selection  simplification will  The  to  s t a n d t o the a c c e s s  centroid. stand  a stand  first  will  be  p o i n t on  the  accessed. . The access The  second  road  component i s the  through  criterion  the:road  employed  minimum d i s t a n c e .  in  Dijkstra's  d i s t a n c e from  system  to the  selection algorithm,  point  of  the  the of  appraisal..  route  discussed  in  i s one  of  Section  35  4.2.2, i s u s e d The  forest  symmetric the  is  3  site..  involving  to minimize  source is  nodei,  in  The  through the  (and  and  network  I i&N*  r  the  end  j&N)  is  quantitative  nodes i , i&N, , a r e  as one  travelled  becomes  segment  [(i j)  The  usually  i s formulated  the  road  stands..  appraisal,  distance  undirected,  (i|i=1,2,...,n},  source  forest  an  sink  a specified  a  minimum  the node mill  routing  s i n k . . The o b j e c t i v e  in  proceeding  t o s i n k node j .  r o u t i n g s t r a t e g y , x^j , which  The  yields  from  a  decision minimum  distance travelled. The  with  of  as  d i s t a n c e as  multiple sources  the  to d e t e r m i n e  total  point  Thus, the s i t u a t i o n  problem  with  c e n t r o i d s of the  the  represented  arc set, A =  interest.  L  be  d i s t a n c e component..  transitions  corresponding  c j , of  geo-coordinate j&N  class  segments t h e m s e l v e s  attributes  second  node s e t , N =  5  The  this  s y s t e m can  p o i n t s of t h e r o a d  the road  is  road  n e t w o r k . . The  points).  j,  i n determining  approach o f using D i j k s t r a ' s  digitized  data  the:literature.  i s unique The  t h a t as p a r t o f t h e  and  r o u t i n g s , the precedence  constructed.. assembled  Node:and  and  representations, Cost  process  estimates  featureiof  of determining  r e l a t i o n s h i p s of  a r e not for  from  primary  conjunction  this  reviewed approach  minimum d i s t a n c e s the  of the  the  expressly  in  to a p p l i c a t i o n s  arc r e l a t i o n s h i p s  maintained and  relative  distinguishing  is  algorithm  network  road  system  initial  are are  digital  identified.,  road  d e v e l o p m e n t can  SAlthough distances are symmetric, travel However, t h e s i m p l i f y i n g a s s u m p t i o n is that d i r e c t l y related to distance..  times cycle  also  may n o t times  be  be. are  36  generated main the  by  roads,  the by  subsystem.  costs  for  road  .  the  timber  for  access.  a  The  The  of  r e f l e c t i n g  subsystem  is  for  construction  or  in  developing  better  basis  from  stand  holdings between  fluctuations  in  construction  can  such  for  increases,  summarize,  c a p a b i l i t y  for  construction provide improved  a  the  more  appraisal  A  among  the  proposed  road  volume  cost  further  use:of  for the  the  proposed  extra  estimated  alternative  units  be  wood  Routing  can  for  costs  savings  be  employed flow  examined.  example,  of  end  both  Impacts and  and  of  road  forecasted  hauling  a  patterns  strategies  transportation For  on  fuel other  evaluated.  both  be  proportioned  also  complexes.  subsystem  transportation  estimates  can  road  unit  the  transportation  comprehensive  proposed  between  can  practices be  road  selections  versus  assessed.  could  construction and  use  par  by  examined.  costs  generating cost  class  subsystem  suggested  considerations To  be  management  be  w i l l  with  material  then  Tradeoffs  mill  unit  are  proposed  determined  the  development.  evaluating to  for  additional  roads  can  parent  of  are  combined  which  road  class  costs  alone  price  an  access  transportation  and  costs  stands is  when  t e r r a i n ,  upgrading.  stand  within  the  Lengths  the.network  estimate  evaluating  transportation The  of  cost  result  estimate  for  within  construction  volume  r  subsystem.  distances,  conditions  yield  development.  class,  These  given  standard,  transportation  for  stand  assessment used  analysis  or  can  contribute  to  the  harvests  at  the  management  unit  as  of  access. stand  the.basis  o v e r a l l  l e v e l . .  and  provides primary  .  Tha  scheduling  road  estimates  value.. for  the  This  independent of  timber  37  4.3  State  V a r i a b l e Subsystem  Resource and  ever  increasing  efficient The  The  and  i s s u e i s one  reguired  with  the  only  broad,  for  cut  concepts  Between t h e s e resolution.. appropriate This data,  this  state  data unit  are  contribute  i s very For  place.  wide be  much  connected  regional  planning  data  are  necessary.  range  in  levels  of  able  to  select  a  data level  needs. a  methodology  which  allows  o f v a r i a b l e s which d e s c r i b e t h e to varying  transformed  level  to  considered. . Conversely,  detailed  should  t o be : s y n t h e s i z e d  study,  management  form  levels. .  is a  to the.planning  the  the  concern.  a n a l y s i s t o take  resolution  very  section describes  in  resource,  user  should  for rational  of  planning  The  data  p a r a m e t e r s need be  limits  conditions,  becomes a s i g n i f i c a n t  which  of planning  two  such  a diverse  resolution.  level  incisive  block  to  data  Under  data  identified of  f o r c e d t o d e a l with  base.  of  extent  must be  The  are-being  data  utilization  degree  planning  managers  harvest  into  levels  of  information  planning..  base  state of  resolution..  the In  pertinent  to  The:components o f  the  v a r i a b l e s u b s y s t e m o f TRACS a r e o u t l i n e d i n F i g u r e  4.  Figure 4.  Components o f the State Variable Subsystem  Factor Analysis  Cluster Analysis  Dynamic Programming  Timber Classes & Yield Classes  39  I n i t i a l  4.3.1  The  State  finest  Variables  l e v e l  characterized  by  of  data  species  management  prescriptions..  concerning  harvest  broader  l e v e l  of  Groupings which  are  management on  yield  stands  treatments.  by  should  c h a r a c t e r i s t i c s . . value  yields  future.  for  with  and  cut  the  stand,  capacity  policy  management  classes" to  and  decisions unit  or  state  yields.  based  on  This  necessitates  can  l e v e l  a  of  each  Any  are  stand  to based  can  consolidation in  determining  represent  derived  response  decisions  s i m i l a r i t i e s  stands,  be  t h e i r  scheduling  be  yields  the  respect  value  individual  Such  for  "timber  Since  been  appropriate.  the:condition  volume  has  productive  at  is  or  homogeneous  attributes,  reflected  type,  scheduling  stands  far  However,  resolution  of  thus  these  the  for  both  the  the  set  of  of yield  volume  present  be  and  and  i n i t i a l  the  state  v a r i a b l e s . .. Current over-mature stand  BCFS  The  curve  time  .  to An  i d e n t i f i e s  quality.  from  necessary  the  area  adjust  of  a  is  yields  for  with  can  be:  in  current  Dougl.)  will  corresponding  5. ,  over  stands  are  management  by  Figure  expected  stands  the  and  projected  presented  immature stand  mature  type:map,  contorta  assuming  conditions  for  volume  which  (Pinus from  the  VAC  yields  pine  VAC's,  from  future  example  Yields  stocking  estimates  derived  volume  logdepole  site  d i r e c t l y  are  used  VAC's.  from  medium  per  stands  stocking  the  in  volume  of  derived result volume  flow.. Estimates  of  stand  value  are  obtained  from  a  simulation  of  Figure 5.  BCFS Volume Over Age Curve  Zone 4 Volume/Age Curves 9.1"+ and 13.1"+ D.B.H. For Growth Type 12 - P i Medium S i t e *>ool  AGE  IN  YEARS  the  BCFS  Interior  cruises  to  End  industrial  volume by l o g g r a d e . for  a  gross for  Corresponding  mill  stand  Harvesting loading, volume,  costs, for  construction appraisal.  a  Area and s i t e  bucking,  derived  soil-landform  as  chips product provide  resulting  and  with  then in  and  management  f o r landing construction, skid  preparation are also  are  skidding  type.  a f u n c t i o n of age,  class  road  i n c l u d e d i n the stand  t h e c o s t s d e r i v e d from t h e  subtracted net value  delivered  to the m i l l .  generated  on t h e b a s i s o f t h e volume y i e l d s  V A C s. ,  end  f o r the products  felling,  are  costs  subsystem  figures,  t o generate  and  Such r e v e n u e e s t i m a t e s a r e d e r i v e d  These c o s t s t o g e t h e r  transportation  used  lumber  f u n c t i o n o f age, s i t e : a n d s p e c i e s  stand  type,  Inventory  p r o v i d e c o m p i l a t i o n s of stand  market p r i c e s  including  each  species  prescription.  revenue  as  System,,  i n terms o f  are  revenue f o r the stand. each  Appraisal  standards  Recoveries  representative  outturns.  Product  P r o j e c t i o n s of stand  from  estimates value  the  f o r timber  over  projected  gross  time are from  the  42  4.3.2  Data A n a l y s i s The  for  initial  state  generating  variables  timber  provide the capability dimensions  while minimizing  the loss  analysis  extraction  variables. .  rotation In of set  stand  technique  so  rotated  are  aggregated  into  An  Cluster analysis It  is  t h a t may  n a t u r a l groupings. the t o t a l  The p r o c e s s  begins  a smaller  classes. . on  i s  to  oh  employed  each  the computational (Ward, 1963;  statistical  the  i n the f a c t o r with  essence  c l a s s e s based  Groups a r e formed  variation  exist.  redundant  a descriptive, relies  input  orthogonal  eliminates  timber  first  to delineate  are extracted to y i e l d  whose s u c c e s s f u l a p p l i c a t i o n  member.  the  which c o n t a i n t h e  step  yield  involves  of  variables..  factors  stand  t o an o r t h o g o n a l ,  may b i a s t h e g e n e r a t i o n o f t i m b e r  0thers have better covered techniques t o be discussed Veldman,1967). 6  then  input  This  aggregations.  as t o m i n i m i z e  each s t a n d  the variables  are  variables  manageable  on t h e o r i g i n a l  components  independent  6  in information.  principal  of the  basis  techniques  to  the procedure  e x t r a c t e d above.  inherent  sets  Basically,  attributes.  stands  the  analysis  data  performed  components  state  which  factors  perform  the  provide:the  the.amount o f i n t e r - c o r r e l a t i o n  terms,  Next,  of  These  reduces  information  the  of  the o r i g i n a l of  space.  dimensions  simple  is  which t r a n s f o r m s  state  underlying  Data  reducing  characteristics  an  classes.  for  Factor  normalized  o f each s t a n d  existence  sequentially values stand  details Gower,  among as  an  of the 1967;  43  individual  group.  eventually the  a l l  decision  based  on  Groupings  stands  to  the  are  combine  Examination  successive  grouping  groups  worthy  level  may  Typically The  of  result  are.a  information  is  of  exists  to  the  be is  selected. of  If  interest,  should  be  An  extension  in  is  (1975)  application groupings.  formation economic the  error  to  each  step  of  then  stands  with  next  .increase error  range  of  only  lower  in  error.  subjective  in  of  increases.  grouping  increase  each  number  minimizing  the  is  intra-group  the  mainly  increases  t h e c l u s t e r i n g  gualitative:attributes  used  s t r a t i f i c a t i o n s  The  to  determining  formulation  Yamada  the  At  particular  If  particular  until  loss level  error  in that  should  grouping  within  and  levels  that  range  examined..  where:special stands  then  a  a  is  substantial  time,  t o t a l  significant  prime.concern,  however,  in  large  objective.  .  a  groups  Reduction  of  at  associated  indicate  significance  f i r s t  or  increase  substantially  user's  one  group.  variances  may  number  of  the  prior  a  one  stands  the  the  l e v e l  in  determination on  of  of  made,  of  particular  consideration.  there  dependent  members  minimization  variation..  are  timber  to  in  an  which  optimal the:  preserves  can  be  groupings.  allocate:  describes  process  A  A  procedure type  been  developed  to  segregate  used  dynamic  grouping  manner.  species  has  programming  levels  paper in  by  among Williams  d e t a i l  within  the  the and  with  timber  an class  . net of  result timber  yield  yields  of  the  classes  data  which  c h a r a c t e r i s t i c s . .  over  time  to  form  analysis  have The  similar  subsystem  is  the  silvicultura1  and  same  process  is  concise  classes  for  applied  to  volume  and  44  value  projections.  classes  are  harvest  the  schedule  state  model, model  range  short a  term  set  was d e v e l o p e d  planning  range: horizons  horizons  allow  decisions.  of  cutting  Given  7  minimize  Various  revenue,  costs  resulting  schedules  7  The:first  schedule  volume  1971).  The  LP RAM  major  long  Such  long  classes  responses,  optimizes  a  and  RAM  will  specified  c o n s t r a i n t s . . The o b j e c t i v e s may maximize  discounted  c o n s t r a i n t s on  costs  periodic  and f o r e s t a c c e s s i b i l i t y  planning  the Timber  decades..  and  that  production,  indicate  on t h e  o f the future i m p l i c a t i o n s of  prescriptions  subject to specified  decades .  based  an i n v e n t o r y o f t i m b e r  objective  or  as i n p u t f o r  here..  o f up t o 35  a  production  yield  by t h e OSFS f o r f o r m u l a t i n g  assessment  management  maximize  and  The model has t h e c a p a b i l i t y f o r  determine  be:to  harvests  be r e v i e w e d  management p l a n s .  considering  timber  (Hennes e t a l . , 1971; Navon,  RAM  timber  which a r e used  O t h e r p a p e r s have d e s c r i b e d  o f t h e model w i l l  Timber  classes  Subsystem  RAM..  in detail  aspects  variables  TRACS s y s t e m s c h e d u l e s Timber  timber  determination.  4.4 C u t S c h e d u l i n g  The  The. r e s u l t i n g  the area  discounted over  any number o f  levels  of  volume,  c a n be s p e c i f i e d . .  o f each timber  p e r i o d c a n be s p l i t  value  class  i n t o two 5 y e a r  The  cut,  periods  H5  and  the  corresponding  generated  f o r each  planning  t o be  treatments period.  yield  classes  used  to  generated RAM  management  treatments  rotation  with  differ of  over  from  revenues  a  class  t h e span o f t h e  the state  class  the  In  again  this  are three  in  at be  thin  decade  horizon.  of treatment way  a  subsystem  employing  would  of  are  20 to  an  80-year  years..  One  clearcut  and  i n d e c a d e : f o u r and  ten, repeating Hence,  and e v a l u a t e d w i t h  the  a c t i v i t i e s can  but a l s o  multitude  major t y p e s o f  on t i m b e r c l a s s  sequence  An e x a m p l e . o f a s e q u e n c e o f  thinning  activity  planning  over  variable,  may be t o c l e a r c u t  can be g e n e r a t e d  There  and  c l a s s e s and t h e volume and v a l u e  activities..  not only i n the type  activities  costs  represent  i n decade two, p r e c o m m e r c i a l  treatments..  imposed  timber  and r e g e n e r a t e  sequence  timber  precommercial  corresponding timber  clearcut  volume,  scheduled  f o r each  The  formulate  regenerate  of  decade o f t h e p l a n n i n g h o r i z o n . ,  The:activities management  flow  i n the  timing  timber  class  of  Timber  constraints  RAH..  which  can  be  activities:  1) a r e a and a c c e s s i b i l i t y  constraints,  2) p e r i o d c o n s t r a i n t s , and 3) h a r v e s t c o n t r o l Area management be  constraints  of  Accessibility accessible on  minimum  constraints.  restrict  t h e maximum  class.  Alternatively  o f any t i m b e r  managed  and r e g u l a t i o n  each  constraints  timber restrict  during t h e . f i r s t acceptable levels  five  class  can  area a v a i l a b l e f o r the t o t a l be  t h e area of each planning periods.  o f volume o r  revenue,  area t o  controlled. timber  class  Constraints or  maximum  46  acceptable in  the  levels  planning  Harvest flow  constraints conversion old  period the  in  the can  be  period.  growth  is  which  costs  can  also  be  specified  can  be  used  for  any  period  horizon.  control  during  8  of  constraints conversion used The  to  regulate  conversion  liguidated, second  conversion  period.  with  growth  period  period  types  flow  is  post  management  three  control  Harvest  volume  the  to  span  conversion  is  of  regulation  during  that  in  volume  the in  which  being  e f f e c t . .  harvest  post  that  During  control  can  be  implemented: 1)  arbitrary  control,  restricted 2)  seguential  absolute  c o n t r o l ,  harvests  are  harvest  specified  allows 3)  to  to  a  average.harvest  to  the  regulate The  The than 8  post  conversion  harvest  optimal  option volume.  also  ' A r b i t r a r y control constraints.  percentage  a  lower  preceding i n  decade  9  limits  on  of  the  period.,  This  harvests.  harvest  levels  are  range  around  the  percentage the  are  l i m i t s  to  the  of  lower  and  where  l e v e l  period  and  levels  upper  transitions  control,  restricted  During  where  in  harvest  upper  r e s t r i c t e d  smooth  conventional  where  conversion  conventional  control  period. is  used  harvests  which  levels. scheduling  exists  is  to  the  of  timber  regulate  same  as  the  class  area  i n s t i t u t i n g  harvested  rather  periodic  volume  47  satisfy  the  imposed  allocation a  decisions  variety  of  optimal  HAM  in  rests  i t s  alternatives  output altered  a b i l i t y  are  by  (i.e.  volume  the  To  desirable of  various  summarize, 1)  a  schedule  an  versus  be  changed,  such  provides  changes  for  land  also  be  rate  or  can  be  example,  a c c e s s i b i l i t y not  an  only  an  indication  of  p o l i c i e s .  provides:  timber  estimate  but  can  s i l v i c u l t u r a l  or  RA3  management  A c t i v i t i e s or  Such  a c t i v i t i e s  discount  ages  a  Timber  p o l i c i e s . .  horizon,  can  on  of  objectives  revenue).  under  solely  benefit  reguirements  corresponding 2)  not  objectives,  Different  planning  Generally,  evaluations  alternative  varying  management  of  of  The : u n d e r l y i n g  strategies,  Timber  LP..  objectives,  constraints  of  using  series  rotation  flow  Evaluation  s t a b i l i t y  a  by  the  volume  by  of  on  combinations.  Similarily  indication  .  formulated  treatments.,  allowances.  found  examine  manipulating  varying  is  and  to  changing  c r i t e r i a by  based  situation.  constraint  specified  are  constraints  s p e c i f i c  and/or  constraints  classes  volume of  unit  and  the in  to  value  be.  flows  productive terms  cut  of  with  per  decade,  capability both  the  of  volume  a  and  value, 3)  a  means  of  management 4)  a  framework  evaluating  an  in  which  to  forest  assessment  non-timber  of  alternative:  p o l i c i e s ,  comprehensive 5)  impacts  land  of uses  assemble  data the and  base,  and  u t i l i z e  a  and  opportunity alienations  costs  of  48  There in  are.also  general.  for  First,  risk.  indicated  results  classes  varying  the  or are  where  disadvantages  activities  any stands  must  Second,  even age may  T i m b e r RAM,  be  all  be  reflected  economies  (or  .  This  RAH  model i t s e l f  have been  RAM  nevertheless  provides  for  the are  within  Third, that  is  a  diseconomies)  Further  allowance  exists  violated..  1 0  LP  variables  structure that  be  no  and  implemented  l i n e a r . . Changes i n r e s p o n s e s  s l o p i n g demand h o l d . .  Timber  of  model i s d e t e r m i n i s t i c w i t h  hold..  r a t e s cannot  disadvantage downward  to  Hence,  relationships at  the  A l l specified  continuous. timber  several  all  may  occur  particular scale,  or  disadvantages inherent  in  presented  et  by  of  Chappelle  a l . . ( 1 976). Timber harvest tool  scheduling  for providing  timber  problem. guidelines  I t has i n the  addressing  p r o v e n t o be planning  of  a very  the useful  management  unit  harvests.  ° S e p a r a b l e programming non-linearities.. l  a means o f  techniques  can  be  employed  to  reflect  49  4,5 R e p o r t  Each The  Subsystem  subsystem  forest  o f TRACS  subsystem  has  allows  report  for  the  generation generation  management r e p o r t s . . The t r a n s p o r t a t i o n s u b s y s t e m network, each  and  stand  stand  are  access  by  results.  However, t h e r e p o r t i n g f a c i l i t i e s  which  T i m b e r RAH  yields  planning  economics of  be  timber  can  value  of  other All  of  can  also  a variety A  detailed  f o r each t i m b e r and  area)  c l a s s the  the  resulting  f o r each  report of  harvest  decade i n  the  resulting  on t h e same b a s i s . . Summary  volume be  and  value  generated.  flow A  reports  across a l l  graph o f h a r v e s t The  the o b j e c t i v e , the average long r u n s u s t a i n a b l e  yield  plan  i s a particularly  statistics reported  The i n a b i l i t y  relating  allow  are a l s o  u s e f u l output  reported.  by Timber RAM  to relate  harvest  schedules  a r e i n terms  the harvest  a s a s e r i o u s drawback  been d e v e l o p e d  reports  of r e p o r t s  feature.  identified  Reports  concerning  d i s c u s s i o n here..  schedule. listing  subsystem.  directly  generates  A corresponding  levels  time  results  classes..  have  brief  and p e r u n i t  be g e n e r a t e d  classes  volumes o v e r  been  generated,  horizon.  the p e r i o d i c  and  model i t s e l f  (in total  road  i n the discussion of  t o be managed by t h e s e l e c t e d a c t i v i t y  volume: the  can  reports  variable  be c i t e d  plans deserve  d e s c r i b e the optimal c u t  schedule area  scheduling  will  state  of  The.  reports  the  Examples  the.harvest  of standard  d e s c r i p t i o n s . . Economic v a l u a t i o n s o f  reported  such  features..  interpretation  timber  p l a n t o s t a n d s has  (Chappelle  e t a l . , 1976)..  to identifiable  t o augment t h e t i m b e r  of  class  of the cut schedule.  stand  units  r e p o r t s . . These in  a  spatial  50  context  for  implications management  the  management  unit.  of scheduling r e s u l t s  Recognition  is  necessary  the  reports  identify  members o f t h e t i m b e r  c l a s s e s which a r e t o  particular  decade..  The s p e c i e s t y p e ,  class,  and volumes  area  species composition generated.  An stand  stand  comprise first  report  option  for  exists  locations.  data.  In this  the s p e c i f i e d  step  watershed  realistic  the which  This  towards  level  stand  be  in  linking  harvested  stands  decade  feature  the  is  stands  unit  age  also  plotting  of  only  as a p a r t o f the  cut are i d e n t i f i e d . , management  is  facilitated  recorded  a  a r e r e p o r t e d . . ft harvest  allows  manner, p o t e n t i a l  decade  planning.  the individual  soil-landform class,  of the candidate  where g e o g r a p h i c c o o r d i n a t e s h a v e been basic  for  assessments.  Specifically,  candidate  of the s p a t i a l  which  This  harvest  could  is  the  plans to  51  5. .  APPLICATION The  unit,  of B r i t i s h  with  and  the  white  three  map  Columbia..  identified class  can  stand  be  found  Nineteen  (Moench)  are  Appendix listed  based  different  I I I . . From  i n Section  information  land  third  production,  information.  land  c l a s s and  the.above  4.1  together  with  of  each  use..  growth type  are  land  wildlife, A total  treatments  treatment  were  identified  grazing,  stand  The  classes  overlay  deferred  information  were c o m p i l e d  of  provided  resulted.. Prescribed  on  basis  A s o i l - l a n d f o r m map  r e c r e a t i o n , a g r i c u l t u r e and  which  the  containing  The  overlay  lodgepole  inventory  fisheries,  accompanied the  on  i n Appendix I I .  units  being  forest  42  use  stand  Montane  Voss).  delineated  desigaated  2,441  the  600,000  Descriptions  of t i m b e r  of  unit i s approximately  W e s t l a k e PSYU.  i n terms  in  I t i s i n the  overlay..  part  central  f o r e s t c o v e r map  overlay. f o r the  situated  commercial species  u n i t s were  the:first  a  the  (Picea glauca  A  PSYU,  is  The  PLANNINS  a c t u a l f o r e s t management  Westlake  in size..  principal  overlays.  second  The  t o an  District,  spruce  types provided  applied  PSYU.  Forest  Individual  the  was  (242,803 h e c t a r e s )  region pine  Westlake  George  interior acres  MANAGEMENT - UNIT HARVEST  TRACS s y s t e m  the  Prince  TO  of  also  seguences detailed in  the.fifteen attributes  f o r each s t a n d . . T h i s  BCFS VAC's p r o v i d e d  the  stand  initial  data  base. A computerized  data  management  system  iiASAP, an acronym for As Soon As C o m p u v i s o r I n c . , I t h a c a , New York.  called  Possible,  ASAP  1 1  i s a product  was  of  52  used  f o r s t o r a g e and r e t r i e v a l  example  o f the guery c a p a b i l i t y  shown i n T a b l e  Table  o f the Westlake  data  base. .  from a c o m p u t e r i z e d d a t a  An  base i s  1.  1.. Age C l a s s  Distribution  Of The W e s t l a k e . PSYO" V i a ASAP  Run 2 12/13/79 page 1 Output 1 Summary a g e d i s t Regt 1 Task 1 L i n e 19 244 1 r e c o r d s s e l e c t e d  ********************************************* Age c l a s s d i s t r i b u t i o n by volume and a r e a *********************** ******************  Age Class  Total Volume ( c f )  Total Acreage  0-20 Y r s  25  26729  21-40 Y r s  64510  97004  41-60 Y r s  263672  51504  61-80 Y r s  830337  1 17307  8 1-100 Y r s  1553442  152105  101-120 Y r s  929724  49893  121-140 Y r s  764107  22513  141-250 Y r s  692530  31200  250+ Y r s  4000  466  Other  14480  51351  Subtotal  5116827  600072  The  table  shows  the  results  from a r e q u e s t  f o r t h e age  53  class  distribution  across have  a l l 2,441 a  of the  years  volume  flow  in  map  road  and  six  primary  Westlake  and  access  of road  In  between  addition  60  to  guery IV  can  stand.  of a c t i v e  to three  and  continuous  W e s t l a k e PSYO was areas  not  greatest  shown i n Appendix  obtained operation  s e t s of h a u l i n g  development  separate  networks l e a d  to  an  Isle  precedence  were d i g i t i z e d  relationships  subsystem..  the  The  costs., Table  of 46  primary  Pierre  mill..  The  numerals  2  represent  description road  of  in  its class,  d e v e l o p m e n t , i f any.  Table: length, haul  road  network  while  in  the  There.are  the  6.  individual  to the  third  Two  nodes  The road  in of  leads the  large,  segments.  generated  during  o f t h e r o a d segments w i t h i n t h e  3. node  cost  Figure  the  of  management u n i t . .  mills,  the  n e t w o r k c o n s t r u c t i o n . . A summary shown  attribute  node n e t w o r k c o n s t r u c t e d and  s m a l l e r numerals correspond  is  the  access roads.  networks w i t h i n the  t o P r i n c e Seorge  with  e s t a b l i s h e d through  forest  r e l a t i o n s h i p s a r e shown  underscored  status,  The  scheduling for  gave r i s e  roads  precedence  PSYO c o n s i s t s  three  network  stands  those  volume  W e s t l a k e PSYO d o e s  d e s c r i p t i o n s of each  data  sets  present  classes.,  apparent.  network of t h e  The  and  b a s i c a c c e s s - r e l a t e d c o s t s f o r t h e u n i t . ..  transportation  The  from  harvest  detailed  supplied.  information  fact  directly  age  E m p i r i c a l c o s t i n g s from  zones  The  are  Hence,  giving  form.  shows t h e  area  The  of  management r e p o r t s as  forest  were a l s o cost  age.  area  unit.  distribution  i s not  generated, The  both  of the  volume:and  of  capability, be  stands  balanced  portion 130  i n terms of  For  each  precedence zone  road  there  is a  relationships,  assignment  and  cost for  T a b l e 2.  Basic Access Cost  Data  COST  OATA  SUNMAftV  TRANSPORTATION  ZONE  $/CUNlT/NlLE  1  0.22  2  0.18  3  0.15  4  0.0  s  o.o  6  0.0  7  0.0  8  0.0  9  0.0  10  0.0  R0A0  )  COSTS  DEVELOPMENT  COSTS  ROAO C L A S S  S/NILE  1  6S000.00  2  50000.00  3  40000.00  •  33000.00  5  12000.00  6  8000.00  Table RD. •  1 2 3 4 9 6 T 8 9 10 11 12 13 14 19 1* IT 18 19 20 21 22 23 24 29 2k 2T 28 29 30 31 32 33 34 39 36 3T 38 39 •0 •1 42 43 44 43 46  RO. LENCTH INILESt 13.94 3.22 1.36 1.69 1.49 1.10 3.22 T.61 3.03 2.16 6.08 2.87 6.63 9.66 12.73 6. 09 7.09 1.61 3.14 3.61 6.80 4.33 2.13 2.70 9.21 6.24 7.41 2.12 1.T9 2.49 3.28 18.22 19.32 3.20 2.39 1.37 1.92 2.76 4.77 4.26 8.09 4.04 10.33 2.96 4.94 4.48  3.  R  ° * ° SEGMENT REPORT  1ST NODE  2ND NODE  ROAD STATUS  1 3 4 3 6 5 7 T 10 9 12 11 14 13 16 13 18 17 20 20 22 23 24 24 27 27 29 30 31 32 33 34 34 36 37 37 40 41 42 43 44 49 46 47 46 48  2 2 3 3 3 7 8 9 9 11 11 13 13 13 19 17 17 19 19 21 21 24 29 26 24 28 27 29 29 31 31 20 39 37 38 39 34 40 41 40 41 44 34 46 48 2  ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMY •EXISTING ON-HMV i EXISTING ON-HMV.EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING OFF-HMV, EXISTING OFF-HMVi EXISTING OFF-HMV, EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV,EXISTING ON-HMV EXISTING ON-HMV EXISTING ON-HMV EXISTING ON-HMV EXISTING ON-HMV EXISTING ON-HMV EXISTING OFF-HMV EXISTING ON-HMV EXISTING OFF-HMV EXISTING OFF-HMV .EXISTING OFF-HMV , EXISTING OFF-HMV EXISTING OFF-HMV .EXISTING OFF-HMV EXISTING OFF-HMV PROPOSED OFF-HMV .EXISTING •FF-HMV .PROPOSED ON-HMV .EXISTING ON-HMV EXISTING ON-HMV ,EXISTING ON-HMV .EXISTING  ROJID CL*kSS  HAUL COST ZONE  I 9  I 1 1 1 1 I 1 1 1 1 1 1 1 1 1 i i l l i l l i l 2 2 2 2  I 5 3 & 3 1 3 1 3 3 4 4 4 k 6 6 &  2 * .' • 1 3 3 3 3 1 1 1 1 1 1 1 1 1 1  k  I i i  i I k i I i  i  > . I  i  ^ i i > \ t s > • . J  DEVELOPMENT COST I t )  140629.00 133204.79  Ul  a*  57  For  each  stand  representative appraisal.. from ail  of  networks Not  estimate  its  of the  assure  only  will  be  based  road  developed,  then  costs r e f l e c t stands  primary  directly  The  the  Such s t a n d s  the  hectares)  in  (231),  those  as  point  closest  generated,  minimum  route  access  costs of  road across  but  that  distance to  the  proposed  construction by  of  f o r each  requires a  road  d e v e l o p m e n t , and  size  left  stands  Stands  eliminated..  hectares)  the  volume a c c e s s e d  of  to  This  the  road  contribute  (12)..  the  be  I f stand  total  base  analysis..  and  by  the  cost  are  t h a t r o a d . ,• Such  are  assigned  to  the  involved..  initial  variable  to  networks, p r o c e s s i n g  estimate on  point.  over  relative  i s accessed  an  appraisal  distributed  transportation  a t r a n s p o r t a t i o n cost estimate  respective t o be  a  p o s s i b l e road  will  will  is  location  S i n c e each s t a n d  among one  stand..  there  which  was  reduced  would  not  productive: capacity included those  (213),  those  classified 1985  as  stands  less  the b a s i s f o r h a r v e s t  the  state  than as  unit  ten  were  acres  (4  "non-productive"  sufficiently  comprising  to  significantly  of  classified "not  prior  573, 840  restocked"  acres  p l a n n i n g w i t h i n the  (232, 217 Westlake  PSYO. . For were  each o f t h e  generated.  future:volume  and  1985  The.  state  volume per  unit  volume  were  of the  volumes  and  values  a r e a and state  twenty  initial  state  variables represented  economic y i e l d s  Current  two  stands,  t o be d e r i v e d from current  net  value  v a r i a b l e s of each  describing  each  stand  at  variables  present each per  and  stand. unit  stand..  Future  twenty  year  58  intervals, eighteen  from  state  40  t o 200  y e a r s o f age  derived  from  involved  e s t i m a t i o n of the  related  costs  Appendix  V displays  the  a  stand  of  Westlake  derivation  correlated  stand  based  in yields  stands  in  behind  1%  over Each  over  the  s e t of s t a t e or  timber  20  were . p r e - s t r a t i f i e d  such  and  road  a stratification  accounting f o r stand  Stands  with s i m i l a r  original  Two  another  span.  The  value  yield.  then  could and  the  aggregation classes  costs..  The  demonstrate  the  i n cut  schedule  a c c e s s c o s t s were deemed  access c h a r a c t e r i s t i c s .  be  to derive  accessibility  access  two  remaining  used  to the  to  state  factors  yields,  development was  for  of i n f o r m a t i o n .  of f a c t o r s  Prior  into  state  the:  while  v a r i a b l e s was classes.  t o the  which accounted  time,  time  stands  report..  loss  pair  mill.  mature  reduction i n  a  the  the  on t h e i n i t i a l  w i t h c u r r e n t volume and  of e x p l i c i t y  similar  to  analysis results. .  yield  transportation  determination., have  minus  component  r e p r e s e n t the r a t e o f change.in  reduced  on  performed  resulted  volume  to  groupings  rationale impact  only  correlated  process,  then  with v a l u e over t i m e .  range  This  v a l u e i s i t e m i z e d i n the  p r e s e n t s the f a c t o r  interpreted  values  for the:  were  appraisal  9955 o f t h e i n f o r m a t i o n r e p r e s e n t e d by t h e  with  correlated  factor  report  Values The  available:  I n o t h e r words, a f o u r - f o l d  VI  absolute  wood  market  orthogonal factors resulted  space  Appendix  the  VAC's..  simulation».  product  the.appraisal  a n a l y s i s was  approximately  variable  end  BCFS  PSYO.. T h e : c o n t r i b u t i o n o f each  variables. . Five  variables.  the  appraisal  making  of stand  Factor  remaining  variables.  V o l u m e s were d e r i v e d from  of  p r o v i d e d the  Accessibilty  costs  to  ranged  59  from  $0.10/cunit  ($4.94/cubic  (  $0.04/cubic  metre).  established  for  distribution  of  accessibility  metre)  Fourteen  the  1985  provided  Table  a c r o s s the  the  $ 14.00/cunit  accessibility  stands.  the stands  to  initial  4  classes  were  presents  the  14 c l a s s e s . . basis  for  Thus,  stand  timber  class  formation.. The  cluster-dynamic  reducing Cluster  the  The.  original  a n a l y s i s was  determine  stand  optimal  considering  programming 1985  stands  performed  on  aggregations  number  of  programming., The  determination  each  strata  strata.  classes This data  The  across  Cluster value  smaller,  yield  of  of  the by the  from  error  was  in  further  yield  information  classes  l o s s of  less  a  2%  were than  state  within  the  factors  1 2  .  to  strata. strata  using  dynamic  timber  classes  r e p r e s e n t a t i o n of  u l t i m a t e number o f  timber  stands  to  100  5.  timber  aggregation. employed t o r e d u c e 100  timber  Fifteen  loss  in  generated 1%.  area  Tables  the  volume  classes  volume y i e l d  with  a  to  a  classes  information..  Thirty  corresponding  of t h e : r e s u l t i n g  A l e v e l of 100 c l a s s e s r e f l e c t s a Timber RAM t h e maximum number o f t i m b e r c l a s s e s a l l o w e d . . 1 2  classes  each  found  number of  1985  more: manageable subset.„ only  timber  employed i n  c l a s s e s i s shown i n T a b l e  p r o j e c t i o n s f o r the  with  five  c l a s s e s was  accessibility  analysis  were g e n e r a t e d economic  distribution  i n a 23%  100  classes  weighted  reduction process  classes resulted  and  was  the  the  timber  accessibility  each  to  was  w i t h i n each a c c e s s i b i l i t y  all  within  approach  restriction  yield  on  60  T a b l e 4.  Stand  Accessibility Class 1  Distribution  Access Cost ($/CCF) 0  2  1.01  3  2.01  4  2.51  5  3.01  6  3.51  7  4.01  8  4.51  9  5.01  10  6.01  11  6.61  12  7.01  13  8.01  14  11.01  TOTAL  Across A c c e s s i b i l i t y Classes  - 1.00 - 2.00 - 2.50 - 3.00 - 3.50 - 4.00 - 4.50 - 5.00 - 6.00 - 6.60 - 7.00 - 8. 00 - 11.00 14.00  Stand Frequency  % of TOtc Stai  145  7  181  9  114  6  153  8  142  7  130  7  92  5  165  8  180  9  138  7  184  9  169  9  167  8  25  1  1985  100  Table  5.  Timber C l a s s  Accessibility Class  D i s t r i b u t i o n Across A c c e s s i b i l i t y  % Area Representation  Stand Frequency  Classes  # o f Timber C l a s s e s Formed  Intra-class Clustering E r r o r (%)  Total Inter-class Error ( A r e a - w e i g h t e d %)  1  4  145  6  31.1  1.2  2  9  181  10  19.1  1.7  3  9  114  6  26.5  2.4  4  8  153  6  22.7  1.8  5  7  142  6  31.5  2.2  6  7  130  8  18.8  1.3  7  5  92  6  30.2  1.5  8  11  165  11  14.5  1.6  9  10  180  10  18.9  1.9  10  7  138  7  26.7  1.9  11  5  184  7  25.9  1.3  12  7  169  8  21.4  1.5  13  10  167  8  19.9  2.0  14  1  25  1  100.0  1.0  TOTAL  100  1,985  100  23.3  62  classes The used  a r e shown timber  i n Appendix V I I .  classes  i n cut schedule  and y i e l d  classes  thus  formed  d e t e r m i n a t i o n f o r the Westlake  ware  PSYO.  then  63  6. „ ANALYSIS  6.1  &ND  DISCOSSION  Transportation Fundamental  was  generated  statistics road  and  This  other  the  road  was  point,  routings  of  given  road  Westlake  s u b s y s t e m . ..  class,  characteristics  length were  based  on  i . e . given  minimum  a  to  proposed  determine  selected  distance  Basic  identified.  i n t h e . t r a n s p o r t a t i o n subsystem  strategies,  of  PSYO  appraisal  were . i d e n t i f i e d  for  entire unit. An  to the  example of 46  outlined (sink)  the.optimal  primary access i n Table  in  Pierre  the  mill..  appraisal  6..  So  the  sequentially  decoded.  travel  finally  optimal  minimum to  The  route.  t o node 35,  network o f the nodes  The  and  and  segments o f  distances  the  i s specified  as  pertaining  Westlake the  in travelling distance  is  optimal  bracketed Thus, from  from  1  node  49.00  1 the  node  to  the (78.9  strategy  optimal  t o node 46, In  identified  is  Isle  miles  routing  the:appraisal point. are  t o an  v a l u e . s p e c i f i e s the  t o node 48,  distance  PSYO  a p p r a i s a l node  a p p r a i s a l l o c a t i o n leads  corresponding  node;2, t h e n  routings  routings  minimum  The  to  This  f o r example,  node  node i n t h e  road  Node 35  table.  kilometres).  and  for the  transportation  network  used  routing  is  network i n f o r m a t i o n  length  optimal  the  road from  on  data  Planning  is next  route  t o node  34,  manner  the  this for  the  road  management u n i t . possessing  large  values  (99999.00  and  9999)  Table  6.  Minimum R o u t i n g  D i s t a n c e s and P o l i c i e s  ROAD NETWORK REPORT  NODE OF APPRAISAL : 35 MINIMUM DISTANCE IN MILES, (AND ROUTING) TO NAP NODES:  1  2  3  4  5  6  7  8  9  10  0: :  49.00 (2)  35.06 ( 48)  38.28 ( 2)  39.63 ( 3)  39.93 I 3)  41.42 C 51  41.03 I 51  +4.25 I 71  48.65 I 71  51.68 ( 91  10: :  50.81 (9)  56.89 I 11)  50.04 ( 15)  56.67 I 13)  44.38 ( 17)  57.11 I 151  38.29 I 191  45.38 I 17J  36.68 ( 20»  33.54 I 341  20: :  37.15 ( 20)  43.95 99999.00 99999.00 99999.00 99999.00 99999.00 99999.00 99999.00 99999.00 I 211 199991 (99991 199991 (9999) (9999) (9999) (9999) 19999)  30: 99999.00 99999.00 99999.00 (9999) (9999) (9999)  15.32 ( 35)  (  40:  28.04 ( 41)  32.08 ( 44)  19.99 (40)  24.76 ( 41)  21.49 ( 40)  0.0 99999.00 99999.00 99999.00 99999.00 0) (9999) (9999) 19999) (9999) 25.64 I 34)  28.60 ( 46)  30.58 I 44)  17.23 I 341  65  indicate Travel the  the  unit  l a r g e values i n d i c a t e  costs  routings,  were d e t e r m i n e d  sample there  of one  o r more s e p a r a t e  of  f o r each  is a description  the  location  can  (based  minimum d i s t a n c e t o  of the  be  on  road  the  specified  the  proposed  roads  particular located  the  results  i n Compartment  good  site.  It  spruce  a distance  of  of  specified  P r i n c e Seorge  kilometres), $3.33/cunit  stand. .  which  of  from  Region age  yield  The  The  8  distance  pointer),  the  and  the  f e a t u r e of costs for  of  i s placed 57th  the  those  Westlake  access  point i s  road  the  37.85  (057)  and per  of acre  i s road  kilometres) from  one  PSYO. . The  4700 c u b i c f e e t  distance  of  on  stand  (141-160 y r s . )  (2.24  appraisal  metre)  focus  of the  nearest  miles  its  involved.  i s the  class  46,  from  stand  the  to  miles  the  (60.91  i n a t r a n s p o r t a t i o n c o s t of  f o r the s t a n d . .  c o s t s f o r the  a low  $9.10/cunit  60  stand  with a p r o p o r t i o n i n g  stands  in turn r e s u l t s  ($2.94/cubic  transportation  whole r a n g e d high  the  1.39  development  This stand  type,  cubic metres/hectare)..  the  the  appraisal  additional  in detail,  has a volume  centroid  the  20,  F o r each  A  characteristics,  of  together  volume from  s t a n d , 20057160.  i s a white  being  of road  i n t h e networlc,  stand  (329  generation  An  stands.  centroid),  node  is  examine  7..  (with a c o r r e s p o n d i n g  analysis  To  Westlake  i n Table  i t s visual  transportation cost.  the  1985  found  corresponding  c o s t s over  associated transportation  of i t s q u a l i t a t i v e  nearest access  Hence,  infeasible routings.. d i s t a n c e s and  the r e s u l t s  geographic  such  sub-networks.  between nodes of s e p a r a t e n e t w o r k s i s i m p o s s i b l e . .  Minimum  to  consists  stands  of $ 5 . 7 0 / c u n i t  In  perspective,  i n Compartment  ($2.01/cubic  ($3.21/ c u b i c metre) w i t h  the  20  metre) average  as to  a a  being  Table 7. STANO NO.  8002160 8003160 8036160 8069160 8033160 8001160 8064160 10001160 10029160 10098160 11034160 11013160 11043160 12001160 12096160 14068160 14038160 14128160 14062160 14122160 19110160 19034160 19I2T160 16013160 16073160 16049160 16046160 17093160 17033160 17020160 17001160 17002160 17040160 17019160 17031160 17032160 18039160 18101160 18001160 18089160 18022160 18073160 18074160 18040160 19033160 19014160 19001160 19049160 20097160 20096160  TTPE  S s COTO F F F F F S F F SF S  s  SF FS  s  SF S F F F F S S F PL FLS PL S  s s  s F F S s F s F  S s  F F F  PLF S F  AGE  SITE  SLC USE  8 8 8  1 1 2  8 8  2 2  8 8 8 8 8 8 8  1 1 2 1 2 2  8 8 8 8 8  1 1 1 1 1  9 4 9 4 9  1 1 2 2 1  8 8  1 1  7 4  1 1  8 8 8 8  1 1 1 1  4 4 4 6  2 1 1 1  8 8 8  1 1 1  4 4  2 1 4 . 1  8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  2 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2  4 12 12 7 4 9 4 7 4 4 7 18 7 4 19 19 15.  S  8  4 4  4 4 4 1  9  1 1 1  9 4  1 1  9 4 9 1  1 3 3 4 1 1 1  2 1 1 3 6 3 2 1 1 1 6 1 1 1 2 1 1  STAND  CENTROID LOCATION IN LAT-LONG. 9331.17 9339.43 9327.89 9331.43 9328.63 3332.93 9331.77 9339.98 3339.41 9341.48 9346.46 9339.77 9340.99 9341.33 5342.27 9333.79 9338.49 9336.33 9300.00 9336.41 9336.96 9330.80 93 36 . 43 9337.38 9339.39 9339.46 9337.41 9330.68 5329.23 5331.66 5332.46 5330.66 5329.80 5330.00 3329.77 5329.63 5327.06 5324.73 5330.30 3324.80 5324.39 5323.89 5325.03 5325.50 5321.05 5321.05 5325.25 5300.00 5323.35 5322.05  12292.33 12292.20 12242.27 12242.60 12242.80 12290.23 12243.33 12301.79 12306.08 12309.48 12314.71 12313.30 12312.62 12329.99 12329.41 12313.80 12312.73 12319.60 12300.00 12316.70 12304.73 12309.36 1 2 304 . 93 12304.32 12293.93 12294.77 12304.02 12256.46 12254.38 12254.50 12256.13 12254.89 12257.23 12257.23 12257.46 12254.63 12308.20 12304.39 12305.33 12306.60 12304.63 12306.80 12303.80 12305.46 12305.27 12306.39 12307.96 12300.00 12316.46 12317.27  ACCESS  REPORT  01 ST. TO NEAREST R D . INILESI 0.69 0.51 7.36 7.10 6.97 2.33 6.47 0.32 0.96 2.30 2.31 1.32 0.66 2.34 3.39 0.69 2.40 1.90 20.77 1.00 1.11 1.93 1.02 0.40 1.91 1.09 0.32 1.71 0.97 0.21 1.04 0.82 1.69 1.69 1.53 0.51 1.68 0. 72 1.42 0.63 1.05 0.82 0. 73 0.49 0.91 0.29 0.90 20.77 1.39 1.63  RO.  NO. 01 ST. TO NAP HAUL COST INILESI U/CUNIT) 19 17 19 17 19 17 17 21 22 24 26 27 25 31 91 32 27 27 3 17 32 13 32 21 17 18 21 19 19 19 19 19 14 14 14 19 44 9 13 9 9 9 9 9 8 8 44 3 46 42  14.30 8.62 24.74 19.81 24.34 11.04 19.17 9.49 7.49 6.19 14.87 9.93 6.37 22.16 29.21 17.37 11.09 13.76 90.90 14.17 10.72 21.93 10.97 13.71 4.03 2.09 13.93 14.89 16.47 12.72 9.89 14.00 14.99 13.66 14.39 16.19 34.79 21.22 18.81 22.00 21.99 22.29 20.81 20.98 29.18 25.70 35.15 50.90 37.85 39.75  1.19 1.90 9.44 3.48 9.36 2.49 3.34 2.08 1.69 1.36 2.68 1.79 1.19 3.99 4.18 9.82 t.00 2.48 2.86 2.99 2.96 4.74 2.99 3.02 0.89 0.46 9.00 9.28 3.62 2.80 2.18 3.08 3.20 3.00 3.17 3.39 7.69 4.67 4.14 4.84 4.74 4.90 4.98 4.62 9.94 9.69 7.73 6.85 8.33 8.75  ROAD DEVEL OFMI COST It/CUNI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.73  67  $7.67/cunit can  be  ($2.71/cubic matce).  found  i n Appendix  A comparison exemplifies evaluation  the of  analysis  locations.  area  To  (Isle  the  miles  Pierre Pierre.  economic  stand  057  was  consideration  more  cost  than  could  selected  to  given  doubles be  to  seen  have  that  serious  the.two  7.  metre)  would  f o r stand  i n Compartment $4.37/cunit  20  alternative  routings,  a  cost log  A  be  057.. as  a  a on  by  point of  to  results  of a p p r a i s a l  hauling  the  to  is  Prince the  the  Isle Isle  of  $1.30/cunit  the  results for  transportation metre)  31.97  $7.03/cunit  B represents  examining  and stand  was  transport  savings  whole  ($1.54/cubic  distances  represents  point  milling  attention  appraisal  r e s u l t s show t h a t  there  was  the  point  appraisal  appraisal  additional analysis  turning  of  the  of  an  new  is  costs  a l t e r n a t i v e points  Appraisal while  to  yielding  057  to  an  Again  A comparison  harvests  alternative  w i t h new  metre).  of  transportation  site  t o the  kilometres)  location  from  planning  flows  computed.  l o c a t i o n . . The  stands  i n the  Hence, i t can  appraisal  distance  location,  ($0.46/cubic  ranged  was  costs  shown i n F i g u r e  the  node o f  transport  stand  wood  to another m i l l  (51.45  George  metre).  i n t e r e s t i n the of  Pierre)  ($2.48/cubic from  of  A new  transportation 057,  cost  examine t h e . e f f e c t s on  logs  performed. site  for  W i t h due  transportation  effects  directing  total  cost  cost  consequences.  Another possible  of  results  transportation  transportation  metre)..  cost,  with  harvesting  ($5. 7 0 / c u b i c  devoid  management  The  ($2.75/cubic  $16. 1 3 / c u n i t  cost  s i g n i f i c a n c e of  transportation  compartmental  VIII..  harvesting  a stand.  $7.80/cunit to  of  Detailed  to  costs  $7.77/cunit  89  69  ($2.7 * / c u b i c  metre)  ($2.24/cubic  metre).  1  found  i n Appendix  with  now  assess  above example transport appraisal  IX.  With a l l  the  effects  wood from  based  stand can  then  stand  on  be  stands  Cut  be  being  much  i n Compartment  the  point  minimum r o u t e  can  be  equal,  a  mills In  the  more: e c o n o m i c a l  to  20  to the  of  appraisal,  can  be  alternative  transportation  generated  f o r any  Such t r a n s p o r t a t i o n  more, c o m p l e t e  were  scheduled  model.. The subsystem  100  were  treatments  regeneration  or p l a n t i n g  preparation  as  timber  for  r e v e n u e s and economic  given  costings  harvest cost  assessment  of  t h e W e s t l a k e PSYO u s i n g  the  forest each  units  timber  within five such  p r e s c r i b e d by  economic  c l a s s e s formed  strategies,  activities  scarification,  for  the  clear-cutting  30  things  057  value..  Silvieultural simple  stand  Scheduling  Timber RAM variable  for  B.  to provide a  harvest  $6.35/cunit  of t r a n s p o r t a t i o n c o s t s .  i n c o r p o r a t e d with stand  Harvests  The  other  w i t h i n t h e . manage ment unit...  estimates  6.2  results  i t would a p p e a r t o  location  being  l o g t r a n s p o r t to s e v e r a l a l t e r n a t i v e  Thus f o r a s p e c i f i e d costs  average  Detailed  manager c o n t e m p l a t i n g can  the  yield  as  from  to  class  with years slash  be  and  scheduled.  either of  burning  of  natural  harvest..  15  state  consisted  management, were a l s o  projections  the:  or  Site drag  included.  volume  yield  70  projections  shown i n Appendix  from  the  first  harvest All  various  harvesting  f o r each t i m b e r  evaluations  100-year  conversion  seguential  decade was harvest to  level  within The.  10%  to vary  of the  unit..  of the  cut  three  Case Case  for  the  years) stands  be  of the  t o 200  c u t . . For  of  harvests  in  of  350  period  the:first  the  were  a  current  constrained  decade. were used  in  term  vs..short  - volume v s . -  term  value  with  transportation  without  of  the long  for  Term harvests  term  term  (200  Harvesting  clear-cutting  years  from  - Long Term v s . , S h o r t  i m p l i c a t i o n s of s c h e d u l i n g  o f age,  immature s t a n d s , span  harvest  +250%  - long  Optimization  evaluated  allowed  conversion  on  evaluations:  1: Volume O p t i m i z a t i o n 1  the  the  decision.  horizon  management p a r a m e t e r s  Economic O p t i m i z a t i o n Economic  to  of  were: based  planning  preceding  2)  volume p r o d u c t i o n .  sixty-year  -50%  returns  timing  primary  The  Subseguent  s e t s of  maximization  d e c a d e s up  from  Volume O p t i m i z a t i o n  vs.  6.2.1  control.  The  PSYU  a total  1)  3)  the  Westlake  above b a s i c h a r v e s t  the:following  was  constrained during  harvest  allowed  class  f o r the  was  were used t o g e n e r a t e  alternatives.  p e r i o d , with  y e a r s . . Volume f l o w using  VII  a first  at  years)  vs.,short  alternatives  for  a n y t i m e w i t h i n the which time  clear-cutting entry  the:stand  was  of either  allowed 20  years  (30  mature  first  six  had  to  during prior  a to  7 1  culmination  of  mean a n n u a l i n c r e m e n t o r  previously  described  sequential  60  years  of  age..  The  volume c o n t r o l c o n s t r a i n t s  were  employed. Two  RAM  r u n s were made. . T h e : o b j e c t i v e  to m a x i m i z e volume o v e r  a 200-year  scheduled  decade y i e l d e d  i n the  million  cubic  during  the  resulting  metres). first  long  cunits  (5. 18  PSYU. .  This  management  million level  over  being  171.2  million  cubic  be  in  (84,95 1  metres),  million  was  The  cut  cunits  revenue  (7.31  generated  dollars.  was  The  1.83  million  decade f o r the  Westlake  as  representing  the  Westlake under c l e a r - c u t t i n g  Appendix  vs. a r  cubic  In  to  maximize  The  volume  decade t o t a l l e d with  the  long  1.83  run  net  cunits revenue  sustained  million  A summary of  scheduled  million  corresponding  The  decade.  2.88  volume  yield  cunits the  (5.18  results  can  X. maximizing  volume  200-year  sacrificing  period  (849,510  other  metres)  management u n i t .  was  period.  approximately  300,000 c u n i t s  decade.  run  dollars.  m e t r e s ) per  comparison,  appreciably the  again  term)  second  first  million  was  first  the  cubic  average  additional  the  a 30-year p l a n n i n g  in  million  (short  for  net  run  seguences..  (8.16  In  viewed  first  million  average  metres) p e r  the  period.,  2.58  156.2  yield  be  potential  harvest  found  totalled  cubic  can  planning  corresponding  sustained  o b j e c t i v e of the  production for  The  decade  run  silvicultural  The  first  of  words,  can  be  the  long  This  over  a  (long cubic  an  30-year  term) g e n e r a t e s  metres)  annually  range p r o d u c t i v e  i s eguivalent  during  a d d i t i o n a l 30,000  harvested  to  period  an  an the  cunits without  capability  additional  of 1.5  72  million  dollars  per  year  in  net  revenue  which  could  be  shown  in  years  the  maximization  is  generated. A  comparison  Figure  8.  The  scheduled  schedule Total  50  more  million  cubic  million  increased metres)  by  cases  about  a  100  years  cubic  the  common  the  )..  volume  perpetual  harvest  level  under  is  term  the  for  the  (111.19  short  term  million  (2.39  cunits  harvest million  is cubic  Nevertheless,  yield  shown  term  deficiencies.  overall  cunits  run.  long  cunits  38.422  maximization.  as  the  e a r l i e r  the  sustained  long  million  harvest  844,000  40  maximization  39.266  Thus,  the  for  the  is  f i r s t  for  approximately  metres  term  level  volume  total  is  the  volume:  for  term  The  decade  harvest  approximately  period  long  term  compensates long  per  during  the  approximately  under  both  than  is  same  that  higher  metres).  the  shows  flows  short  under  period  for  (108.80  to  volume  under  than  harvest  200-year  run  12%  from  the  graph  harvest  approximately However,  of  for  average the  in  s t a b i l i z e s  post  conversion  flow  resulting  f i r s t  decade.for  period. . Figure from the  the two  9  stands runs.  maximization d i s t r i b u t i o n M f i z i s s i i with  the  under  The is  on  Franco),  primarily volume:  white  primarily  the  11%  species  harvest  incremental  approximately  term 18%  effect  primarily  is  balance long  the  available:for  (Mirb.).  Douglas-fir, balance  shows  volume  20%  for  pine..  w h i t e :s p r u c e ,  57%  the  short The  Douglas-fir  is  A  species  lodgepole  The  pine  pine  d i s t r i b u t i o n  approximately  lodgepole  species.  term  (Pseudqtsuga  65%  species.  maximization  hardwoods  the  lodgepole.  hardwood  spruce,  in  with  complete.summary  21% the by  Figure 8.  Canparison o f Volume Flow - Case 1  Conversion  Period  Post Conversion Period  3ooo4 M •  x Long term volume max. • Short term volume max.  ^ 2500-4O  ^ 2000-f Long run sustained y i e l d average  O  ^ /3oo-t  -I5  10 TIME  IN  OECADCS  rS  74  Figure 9.  Comparison o f Species Flow i n Decade 1 - Case 1 (Ref.  Appendix XE)  *5oo  2485  2.000  0 /48*  Short term volume naximization  /BOO  IOOO  TTS U>1  \ 5/*  5©o  FIR  I SPRUCE  I  S P E C I E S PINE  Long term volume maximization  130  ISO  m OTHER  75  timber found  class in  of  the  Appendix  In  183,000  the  lodgepone  pine,  species..  Further,  years  the  term  analytical provided  6.2.2  for  the  of l o n g  20%  2  than  The described  Douglas-fir,  the  same  net  revenue  of  volume run  the  of net  with  long  over of  used t o r e f l e c t Consequently,  be  15%  value  only  Of  this  will  spruce  and  system  like  to  yearly be  5%  over  TRACS,  60% other  the  adversely  management u n i t . .  next  affect  Without the  the  insight  obtain.  - Volume v s . . V a l u e  i m p l i c a t i o n s of s c h e d u l i n g r e v e n u e as  the  opposed  to  volume o b j e c t i v e o v e r  6.2.1,  term  200  the  approximately  year..  not  timber  harvests  maximization  production.  Section of  can  overall  volume h a r v e s t e d  the  be.difficult  the  average  period w i l l  a  was  used  to  volume p r o d u c t i o n .  c o n d i t i o n s , was  optimization  the  a longer  evaluated  in  runs  distribution  Economic O p t i m i z a t i o n  RAM  optimization  species  p r o d u c t i v i t y of  maximization term  two  i n d i c a t e that PSYO s h o u l d  maximizing  above would  Case  Westlake  capability  C a s e 2:  runs  approximate  rather  long  the  (518,201 c u b i c metres) p e r  production  30  these,  f o r the  cunits  for  XI.  summary,  productivity  species harvest  made w i t h  years.  the  This  production..  present  value  of  revenues generated  200  the  Another run,  under  during  maximizing  represented  A discount future  as  represent  o b j e c t i v e of run  years,  r a t e of  revenue the  first  the 8%  was  streams. 30  or  so  76  years  were o f The  175.5 for  net  long  generated  significance.  revenue  million the  The  any  generated  dollars, term  over  corresponding  net  million  dollars.  first  decade  was  cubic was  in  2.86  per  Appendix  decade.  for  the  of  Figure  two  10  runs. . A s i m i l a r 9  levels  exhibited..  are  higher  f o r volume r u n . .  earlier  maximization for harvest  (8. ,10  million  long  run  cunits  (7.31  in  cubic  average  million  can  be  the  million  yield  (5.18  results  was  million  sustained  cunits  cubic  found  under  value  conversion  period.  conversion  period  to  first  levels  maximization  around the  in  is  strategy  in  the.  11.  volume  timber  than  that  decades,  the  flow  of the results  much  revenue.  during  during  the  levels  out  l e v e l f o r both  The  to  For  rations  volume  species distribution  decade:  liquidated  stabilizes  harvest  d e c a d e i s shown i n F i g u r e  Differences  five  to capture:increased  Increased  a common  shown f o r s h o r t term  per  maximization..  The.excess i n v e n t o r y  generate  first  a r e much lower  Volume p r o d u c t i o n  A comparison of  the  value  volume:maximization  inventory  o f volume f l o w s  During  under  decades h a r v e s t  In c o n t r a s t , t h e  those  dollars.  p a t t e r n o f volume h a r v e s t s  is  shown  to  200.4 m i l l i o n  2.58  d i s p l a y s a comparison  five  the  revenue  volume  A summary o f t h e  next  excess  net  cunits  million  dollars  XII.  Figure  harvest  the  totalled  million  The  volume s c h e d u l e d  with  1.83  was  decade  156.2  run..  under  million  Once a g a i n  approximately  metres)  The  comparison  metres).  production  revenue  first  with  200-year p e r i o d  179.3  metres),  the  i n comparison  volume  the  during  the  the the post  runs.  harvest  in  are  similar  for  harvest  maximization..  c l a s s e s scheduled  Figure 10.  Comparison of Volume Flow - Case 2 Conversion  Period  Post Conversion Period  3ax4  X  M  « Volume maximization  •  • Value maximization  •  ^ eooo4 Long run sustained y i e l d average  'SooA  to 7"//W£-  IN  PEC A  DCS  78  Figure 1 1 .  Comparison o f Species Flow i n Decade 1 - Case 2  20oo X> Volume maximization  1 ^  /5oo  tooo  :a  II 723  -J  o  5oo  FIR  SPRUCE  zap /a6  PINE  S P E C I E S  OTHER  Value maximization  79  during  the f i r s t  generally under  decade  support  are  shown  the e a r l y  harvested greater  under  T h e r e i s an  incremental value  return  in  optimization. area  volume  maximization. .  Here  the  incremental  almost  12  the  Westlake  decade,  is  Further,  results PSYO,  indicate based  approximately  value-based  1.93 m i l l i o n  cubic  dollars  Case vs. Case  3:  the stands  stands  with  priority  under  return  averages over  those  annually  the  economic  harvest  million  from  dollars  planning generates (during the f i r s t any s i g n i f i c a n t  potential the  per  first year.  an a d d i t i o n a l  decade)  over  a  d i f f e r e n c e ; i n the  of t h e u n i t .  Economic  Optimization  -  With  Transportation  3  evaluated  the  consguences  of  recognizing  and t r a n s p o r t a t i o n i n t h e s c h e d u l i n g o f management  harvests. The  Section PSYU  $11/acre  Without  accessibility unit  are given  that the  17.55  harvest  range p r o d u c t i v i t y  6.2.3  of  metres/hectare)  on  volume-based s t r a t e g y , without long  of  stands  under value o p t i m i z a t i o n .  Hence, t h e s e of  (84  valued  Conversely,  unit  harvested  The. r e s u l t s  favor  per  cunits/acre  8..  average  yields  stands  volume  Table:  harvest of the higher  an e c o n o m i c o b j e c t i v e . .  ($27.18/hectare)  in  Timber 6.2.2  RAM  run  was compared  performed  which with  maximized  value  a p r e v i o u s r u n on  under t h e BCFS CARP  production i n the: Westlake  system.. The.generation  of a  T a b l e 8.  Differences  Timber Class  Major Species  i n Timber  Classes Scheduled  Age a t Harvest  Volume CCF/acre  Value $/acre  f o r H a r v e s t i n Decade 1 - C a s e 2 Volume MCCF  :. Run Acres  009  Spruce  120  46.12  65.80  6  135  021  Spruce  120  46.12  65.80  72  1,570  90  32.11  57.02  248  7,731  036  Pine/ Pine-Spruce  063  Spruce  120  46.12  65.80  155  3,355  069  Cottonwood  150  70.19  18.65  4  50  100  45.62  57.08  140  3,073  081  Pine  083  Pine-Spruce  110  11.30  48.69  2  144  096  Pine/ Pine-Spruce  120  58.62  53.65  78  1,337  705  17,395  Total Average  116  44.53  54.06  Value MCCF  Max. Run Acres  002  Pine  90  28.40  62.65  270  9,495  006  Fir  90  14.11  76.60  4  252  90  28.40  58.43  350  12,321  150  22.38  73.71  3  133  130  47.10  66.17  105  2,225  110  55.44  55.54  21  379  753  24,805  010  Pine/ Pine-Spruce  034 056  Fir Spruce-Fir  076  Pine Total Average  110  32.63  65.52  81  harvest  schedule  consideration only  loaded  development mill  timber in  of  into  TRACS  class  grouped  together  differed  mill.  value  based  from  on  stand  and v a l u e The  yield  classes  revenue  were  to  years..  for  both  13%  of  network  o f the r e s u l t i n g was  incorporated  not o n l y  stand,  In other  w o r d s , s t a n d s f o r CARP were  similarities harvesting  groupings  but  a f f e c t e d the  of each  an 8% d i s c o u n t period  100 y e a r s ,  in  also  volume  costs  runs.  The . c u t  Each  previous  affected  yields  up t o t h e l a n d i n g .  delivered cost classes  and 24  resulted  i n 100  recognition  t h e parameters f o r both  f o r the  for  old  growth  and r e g u l a t i o n first  decade  horizon  10-year  was  level..  The  of  loosely cut l e v e l  d e c a d e ' s c u t had t o be  cut  was  constraints  -50% and +250% o f t h e c u r r e n t subsequent  planning  stands  scheduling  RAM  maximize  over a 200-year  a total  the  to  classes..  rate)  with  and  f o r TRACS which were b a s e d on  volume c o n t r o l  t o be w i t h i n  the  the e x i s t i n g road  The o b j e c t i v e o f e a c h r u n was t o  Seguential  imposed. .  constrained  to road  c l a s s e s , as  and t r a n s p o r t a t i o n ,  be  the. logs  was g i v e n  t h e above d i f f e r e n c e s r e s u l t i n g from  (with  any  encompassed  in  r u n r e s u l t e d i n 89 t i m b e r  p e r i o d . . The c o n v e r s i o n  250  resulted  or stratification  and 30 e c o n o m i c y i e l d  r u n s were i d e n t i c a l .  of  valuation  y i e l d s which i n c l u d e d  CARP  accessibility  specified  devoid  c l a s s e s , whereas t h e TRACS system  Other than  net  costs  formation. .  volume.yields  of  proximity.to  y i e l d s which i n c l u d e d  timber  was  system.. These d i f f e r e n c e s  timber  economic  which  accessibility  and p r o j e c t e d  the  activities  hauling  present  This  run  l o c a t i o n , . Stand  reguirements,  classes  value  CARP  a t the l a n d i n g . . No c o n s i d e r a t i o n  sites,  the  this  stand  those harvesting  being  or  for  within  harvesting  82  alternatives simple  f o r each timber  clearcutting-regeneration  clearcutting starting  was a l l o w e d  from  clearcutting age  c l a s s consisted  60  The  to take  first  was a l l o w e d  or  increment.  the  20  years  sequence. place  decade. within  prior  objective  within For  a sixty-year  TRACS-based  run  was  classes,  of  mean  transportation  years..  d o l l a r s , whereas t h e : v a l u e  Summary o f t h e r e s u l t s c a n be f o u n d costs  annual  f o r t h e CARP-based  approximately  200.4  in  resulted  span  span s t a r t i n g from  culmination  value  of a  classes,  immature:  a sixty-year  to  function  267.2 m i l l i o n  the  F o r mature  H a r v e s t s became:mandatory a t an age o f 200  approximately  ignoring  of the timing  f o r the  million  Appendix  r u n was  dollars.  XIII.  Hence,  i n a 33% o v e r s t a t e m e n t o f  e c o n o m i c p o t e n t i a l of t h e management u n i t  over  the:planning  horizon. A comparison shown  in  Figure  considerations, the.  o f t h e volume f l o w  first  12.  The  resulted  80 y e a r s .  CARP  r e s u l t i n g from each r u n i s run,  lacking  i n an 18% g r e a t e r  This  harvest  conversion  in  run sustained  figure.  The  long  CARP r u n was 1.76 m i l l i o n compared for  with  1.83  the.TRACS r u n .  cunits  million  reveals  million  d o l l a r s , a s compared w i t h  decade  i s 3.4 m i l l i o n c u n i t s  CARP r u n v e r s u s  2.9 m i l l i o n  yield  harvested  (9.6 m i l l i o n  cunits  (8.2  as  shown  average f o r the metres)  cubic  for  as  metres)  the  first  the CARP r u n i s 162.6  119.4 m i l l i o n  volume  during  was r e a l i z e d  cubic  results  t h e n e t r e v e n u e from  The : c o r r e s p o n d i n g  level  level  (5.18 m i l l i o n  o f the  decade  TRACS r u n .  that  harvest  (4.98 m i l l i o n  cunits  Examination  harvest  volume i n c r e m e n t  t o t h e d e t r i m e n t o f the p o s t the  transportation  cubic  million  d o l l a r s from t h e in  the  metres) cubic  first  f o r the metres)  Figure 12.  Comparison o f Volume Flow - Case 3 Conversion  „ * •  x  Period  Post Conversion Period  Value maximization with transportation • Value maximization without transportation  Z9CO-+  Long run sustained y i e l d average  X — —  \  X.  H  IS  5 77Af£*  /V  P£CAP£S  84  for  the  TRACS  ran.  considerations revenue is  than  TRACS 32%  presents  from  and  the  CARP less  run.  run  of  can  be  in  f i r s t  decade.  f i r s t  the  road  In  The  of for  there  the  net  volume  than  more than  d i s t r i b u t i o n 36%  for  61%  in  f i r s t  shown  the  the  lodgepole  the  and  for  CARP  pine  for  flow  Douglas-fir  the  lodgepole  distribution  spruce,  species  harvest  is  available  spruce,  class,  9  attribute  area  is  network..  a c c e s s i b i l i t y . .  The  l i s t s A  addition,  the:appraisal  the  a c c e s s i b i l i t y  evidenced  sub-unit,  Table  The  pine  further  particular  soil-landform  comparison  r e f l e c t i n g  PSYU.  stand.,  more  more  run  with  TRACS  pine  is the  run  with  is the  species..  Westlake the  transportation  generates  harvests  that  13%  effect  one  also  reveals  species.  other  considerations within  but  only  available  27%  Douglas-fir,  The  not  r e f l e c t i n g  stands  S p e c i f i c a l l y ,  other  remainder  a  lodgepole  Douglas-fir,  remainder 22%  13  The  spruce,  exists  not  accessible.  Figure  decade.  by  scheduling  actually  currently  resulting  the  Hence,  the  stands  volume  two  positional  the  distance  second  a t t r i b u t e ,  serves  as  an  the  major  are  the  are  an  distance:from indicator  of  60  of  the  harvest  species,  given  as  results  for  stand  serves  the  Region  attributes  from  attribute  20,  available  yield  This  location,  of  transportation  examining  Compartment  description and  by  and  for  age, each  i d e n t i f i e d . centroid  to  indicator  of  the  to  stand  transportation  reguirements. The candidate distance  results  from  stands, to  the  both  the  TRACS  run  the.distance  appraisal  point  are  showed to  a  more  that  primary  from  the  access  favorable  than  l i s t  of  road  and  for  the  85  Figure 13. Comparison o f Species Flow i n Decade 1 - Case 3  1995  &ooo  //Q3  /ooo  -J  o Boo  I  Majcimization without transportation  / /  /5oo  UJ  Maximization with transportation  \  I  917  \ 4/3  SPRUCE  FIR  1 PINE  S P E C I E S  /93  OTHER  Table  9.  Comparison o f Stands H a r v e s t a b l e  Stand No.  Species  20007 20013 20018 20025 20029 20033 20050 20056 20057 20058 20059 20061 20064 20066 20075 20076 20077 20078 20080 20081 20086 20090 20092 20099 20103 20116 20117 20128 20129 20130 20137  PI PI PI PI PI S PI F S F PIS PIS F S PIS S F PI F S S F F S PI F S S PIS PI PI  Age (Years)  90 90 70 70 90 90 70 150 150 130 130 110 110 90 130 130 130 110 110 90 130 110 90 130 70 110 110 130 130 110 70  SoilLand Class  17 17 18 18 8 8 8 15 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 7 7 7 7 7 7 7 7  TOTAL AVERAGE - w e i g h t e d by  i n Decade 1 w i t h i n Compartment 20  Transportation Dist. D i s t . to Acres Volume to road Appraisal (M cunits) (miles) (miles) 215 43 498 140 39 23 68  7.2 1.5 15.9 4.5 1.4 1.2 2.2  0.5 0.2 0.4 0.5 0.2 0.2 0.1  Without Transportation Dist. D i s t . to Acres Volume bo road Appraisal (M cunits) (miles) (miles)  24.6 24.9 30.5 31.1 24.3 24.7 25.5  45 40  3.0 1.9  0.8 0.4  32.9 27 .6  220  7.0  0.2  25.4  89 175  5.9 5.6  0.6 0.6  25.7 25.8  1595 volume  57.3 0.4  27.6  19 17 632 346 37 320 330 272 26 52 45 40 17 42 104 14 10  1.1 0.8 28.1 17.0 1.3 13.9 17.1 13.3 1.7 2.3 3.0 1.9 0.9 0.9 4.5 0.6 0.2  1.6 1.4 0.2 3.5 2.0 3.0 1.6 3.6 3.7 0.9 0.8 0.4 2.5 2.0 3.4 3.9 0.2  33.7 32.0 30.8 32.5 28.9 27.7 28.7 30.7 29.9 28.7 32.9 27.6 29.6 28.9 28.5 31.0 5.7  44 21 216 109  2.6 1.3 4.8 5.3  2.5 0.1 0.3 3.5  27.2 27.6 27 .0 6.7  2713  122.6 2.0  28.9  87  CARP r u n . . kilometres) stands,  of  the  main r o a d  stands  up t o 4 m i l e s  network a r e s e l e c t e d f o r  average d i s t a n c e being The:stands the. the that  entire road  unit  1.3 m i l e s  kilometres)  significant  average  in  impact  away f r o m t h e  CARP  i n the f i r s t  The. s t a n d s  (2.1 k i l o m e t r e s ) haul  distance  Stand  the  40% c l o s e r t o also  shows  stands  to  the  selected  from  more than  f o r t h e TRACS r u n ,  being  28.9  (44.4 k i l o m e t r e s )  t h e CARP r u n  miles  (46.5  respectively..  a n l t r a n s p o r t a t i o n c o n s i d e r a t i o n s have  the value  location  the a p p r a i s a l p o i n t or harvest  across  considering transportation,  on t h e s c h e d u l i n g o f s t a n d s and  run, the  decade  The t a b l e  yield  f o r harvest.„ The  a r e both  W e s t l a k e PSYU i n t h e a b s e n c e o f p r o p e r  management u n i t  the  In  (3.2 k i l o m e t r e s ) . . .  without  and 27.6 m i l e s  accessible  location.. and  harvest  a v e r a g e d i s t a n c e from  Hence, a c c e s s i b i l i t y  the  (6.4 k i l o m e t r e s )  f o r harvest  harvests  location.  the  kilometres)..  were.on t h e a v e r a g e a p p r o x i m a t e l y  i n a greater  averaged  volume,  (0.6  network under t h e TRACS s y s t e m .  appraisal  with  scheduled  scheduling  results  2 miles  (1.6  i s w i t h i n a mile  n e t w o r k . . The a v e r a g e a c r o s s a l l  w e i g h t e d by volume, i s 0.4 m i l e s  comparison, road  Under t h e TRACS r u n , e a c h s t a n d  accounting  i n relation  t o both  mill  must  planning..  site  overstated f o r  be  of  the road  stand network  integrated  in  88  7. . CONCLUSIONS Planning however,  models  allow  management  capability planning  a  of  both  the  of  yields This  supply  needs.  when,  harvest  thesis  has  planning  scheduling  into  timber  TRACS b e g i n s timber  yields  Next,  a  level.  tools.  Alternative  performed  stand  access  for  each  and e n d - p r o d u c t  stand pricing  t o t h e volume and  a  Transportation  to  i n v e n t o r y , from can  subsystem log  be  of  which  determined.  relates  hauling  An e c o n o m i c  based  existing  unit..  the road  reguirements.  f l o w s c a n be e v a l u a t e d , w i t h  identified.  time  and e c o n o m i c a s p e c t s o f  potential  and  flows over  extension  resource  modelling  as a w h o l e .  f o r harvest planning at  h a r v e s t s f o r a management  stand-to-mill  strategies  province  well-being  i n t e g r a t e s a c c e s s i b i l i t y and  silvicultural  with a p h y s i c a l  the  stands.  TRACS i s an  the  transportation  to the  TRACS,  The system  in  encompasses t h e q u a n t i t a t i v e  designed  and s i l v i c u l t u r a l  t o primary  the  forest  system  analytical  decision-making..  where, r e l a t i v e  presented  exploring the  uncertainty  t h e : c o n t r o l o f timber  and  provide  improved  i s critical and  They  for  i s better  This control  Scheduling  transportation  mill  firm  The  reduces  of timber  what  management u n i t  routing  models  t o be d e r i v e d from  Analysis-Cut  network  by  planning concerns  aspects  the  framework  actions.  industrial  meet s u p p l y  value  proposed  answer.. They do,  alternatives. .  environment.. T h e i r e s u l t  Harvest to  of  quantitative  provided  A continued of  provide the t o t a l  evaluation  with  consequences  never  valuation  optimal is  then  on d e l i v e r e d  wood c o s t s t o t h e  lumber  chips.  and  At  this  89  point, value  the  management  unit  information yielding  i n v e n t o r y c o n t a i n s both  an i m p r o v e d  reflection  volume and  of the  timber  resource. Data were  analysis  techniques  i n c o r p o r a t e d w i t h dynamic  aggregations  or  timber  of  appropriate  Projections  classes.  timber  class  was t h e n  to schedule  value  for  yields  to  stands.  The actual  utility  o f t h e TRACS  British  presented  have e v a l u a t e d  strategies. management  The  has  of  volume  and  explicit  flow  economic  identified.  excluding  harvest  related  In  transportation  planning  T h e TRACS  results  such  heeds.  The n e t r e s u l t  unit  harvest  planning.  system  planning. to RAH  the model The  the results  into  the havests  back  The  on  a  analyses  and v a l u e potential  flow of the  addition,  the  considerations  i n  significant. can  recognition of accessibility  reguirements..  a  harvest..  management u n i t . .  alternative  been  unit  has been demonstrated  p l a n n i n g h a v e b e e n s h o w n t o be  Relevant through  forest  silvicultural  unit  consequences harvest  Columbia  system  were  The Timber  transformed  g r a p h s and t a b l e s which  classes,  responses,  classes for  understandable the original  timber  stand  corresponding  a l s o formed..  finally  analysis  generate  management  the:timber  f e a t u r e s o f TRACS  to  These  and  value  c o m p o n e n t s were  used  reporting  delineation  o f volume and  and c l u s t e r  programming  homogeneous i n r e s p e c t t o volume more  factor  only  achieved  and t r a n s p o r t a t i o n  has been developed  i s a means  be  to  f o r improved  facilitate management  90  BIBLIOGRAPHY I. . BCFS ,  1975.. F o r e s t R e s o u r c e P l a n n i n g I n B r i t i s h Columbia.. B r i e f sub. t o Royal Comm. on F o r . R e s . by B.C. F o r . S e r v . , N e l s o n B.C. 31 pp..  2..  B a r e , B..B. and E. L . Norman 1969. Programming In Forest P r o b l e m s . Purdue Univ., B u l l . . 8 4 7 7 pp.  An E v a l u a t i o n Of I n t e g e r Production Scheduling A g r i c . .Expt. . S t a . ,Res. .  3.,  C h a p p e l l e , D. E . , M. Hang and R. C. M i l e y . . 1 9 7 6 . . E v a l u a t i o n Of Timber RAM As A F o r e s t Management Planning Model. . J . . o f F o r . . 5 p..288-293  4... C l u t t e r , J . „ L • 1968. Max-Million - A Computerized F o r e s t Management P l a n n i n g System. S c h . F o r . . R e s . , O n i v . Ga.. 6 1 pp. 5.  Craig,  G. A. 1979. OSFS T r i e s E c o n o m i c A n a l y s i s Timber S a l e L e v e l s . F o r . I n d . 8, p. .30-31  In Planning  6.. C u r t i s , F. H..1962.. L i n e a r Programming The Management Of F o r e s t P r o p e r t y . J . o f F o r . .60, p. ,611-616 7..  A  Dijkstra, E. W. 1959 A Note On Two P r o b l e m s I n C o n n e x i o n W i t h G r a p h s , N u m e r i s c h e M a t h e m a t i k , 1, p. 269-271  8.. D r e y f u s , S..1969. An A p p r a i s a l Of Some A l g o r i t h m s , J . ORSA, 17, p . 395-412  Shortest  Path  9.. E l m a g h a r a b y , S. .E. , 1970. . Some Network M o d e l s I n Management Science. L e c t u r e Notes I n 0. R. and Math..Systems, 29, Edited By M. Beckmann and H..P. . K u n g i , S p r i n g e r - V e r l a g , New York 10.  Eisner, G.H., M. R . . T r a v i s , and P.,H.,Kourtz 1975. Dynamic Programming S u b r o u t i n e s Based On The D i j k s t r a A l g o r i t h m F o r F i n d i n g Minimum C o s t P a t h s In Directed N e t w o r k s . . I n f o r m a t i o n R e p o r t FF-X-51, 16 pp.,  II. . Fowler, K. S..1978. Toward A More. I n t e g r a t e d T i m b e r M o d e l . . F o r . . S c i . . 24 (4) p. .434-443  Regional  12.. Gower, J . C..1967.. A C o m p a r i s o n Of Some Methods Of C l u s t e r Analysis. B i o m e t r i c s 23, p..623-637 13. . H a l e y , D. . 1975. . R e g u l a t i o n Of The Rate Of Timber Harvesting In B r i t i s h Columbia.„Policy Background P a p e r , R o y a l Comm..On F o r . R e s o u r c e s , V i c t o r i a , B.C. 40 pp.  91  14.. H a n z l i k , E . J . 1922 Determination Of The A n n u a l Cut On A Sustained Yield Basis For Virgin American F o r e s t s . . J . o f F o r . . 20(6) 15.  Hennes, L. C. , M. J . I r v i n g and D. I.,Navon 1971., F o r e s t Control Regulation ... a C o m p a r i s o n Of Traditional Methods And A l t e r n a t i v e s . .USDA F o r . ,Serv. .Res. . Note PSW-231 10 pp.  16..  H e r r i c k , 0. W..1976.. Key I n d i c a t o r s Of S u c c e s s f u l Logging Jobs In The Northeast, N. E. .For. .Exp. .. S t a . , Upper D a r b y , Pa..USDA F o r . .Serv. .Res. ,Pap. , NE-352 5 pp..  17.. H r u b e s , R. . J . .and D. I . Navon 1976. . A p p l i c a t i o n Of Linear Programming To Downward Sloping Demand P r o b l e m s I n Timber P r o d u c t i o n . . U S D A F o r . S e r v . . R e s . Note PSW-315 6 pp. 18.. J o h n s o n , K. N. . 1976. Conversion Period.  Optimizing Timber S a l e s D u r i n g Can. . J . o f F o r . . R e s . . 6 6 pp.  The  19..  Kidd,  W. .E., E. F. .Thompson, and P. H. Hoepner. 1966. . Forest Regulation By Linear Programming - a Case S t u d y . . J . .of F o r . .64 p. .611-613  23..  Leak,  W..B. .1964. Estimating Maximum Allowable Timber Yields By Linear Programming. USDA For.,Ser.,Paper NE-17 9 pp. .  21.  L i t t s c h w a g e r , J . M..and T. H . T c h e n g 1967.. S o l u t i o n Of A Large Scale Forest Scheduling Problem By Linear Programming D e c o m p o s t i o n . J . o f F o r . . 6 2 p..644-649  22.  L o u c k s , D.,P. 1964.. The Development Of An O p t i m a l For Sustained Yield Management..J..of p..485-490  J  Program For.,62  23. . Mass - Management Sciences S t a f f . 1974. , Analysis Of Computer Support Systems For Multifunctional P l a n n i n g - Report 1. USDA PSW F o r . and Range Expt. Sta. , Berkley, C a l i f . 216 pp.,. 24..  Navon, D..I., 1971. Timber RAM... a Long Range P l a n n i n g Method For Commercial Timber Lands Under M u l t i p l e - Use Management..USDA F o r . S e r v . .Res. .Pap. PSW-70 22 pp.  25..  Navon, D. I . .1975. . S h o r t Run And Long Run Models For Planning Forest T r a n s p o r t a t i o n . .Proc. .Soc. Amer. . F o r . . Systems Analysis Working Group. , A t h e n s , Ga. .p. .300-312  -  92  26.  Ddendahl, W. F. 1975.. Transportation Analysis And Modelling For Forest Resource Management..Proc., Soc. . Amer. . F o r . Systems Analysis Working Group. A t h e n s , S a . p. 233-242  27..  Veldman, D. J . 1967.. Fortran Behavioral Sciences, Holt, York  28..  Walker, J . L. .1974. . ECHO - An Economic Optimization M o d e l . P r o c . ,West. .For. . C o n f . , 23 pp.,  29..  Ward,  J . H. 1963 Objective p. , 236-244  33..  Ware,  G. 0..and J . l . . C l u t t e r . 1971.. A Mathematical Programming System For The Management Of I n d u s t r i a l F o r e s t s . . F o r . , S c i . 1 7 (4) p. . 428-445  31.  Weintraub, A..and D..Navon 1976., A Forest Management Planning Model Integrating Silvicultural And Transportation A c t i v i t i e s . . Man..Sci..22 (12) p..1299-1309  Programming For R i n e h a r t and W i n s t o n ,  Hierarchical Grouping Function, Amer. S t a t .  The New  Harvest Spokane  To Optimize Assoc. J . .  An 58  32. . W e i s z , R. N„ and R. C a r d e r . . 1975. Development Of Land Ose Planning And Transportation Planning Systems For National Forest Management: A Status O v e r v i e w . . P r o c . Soc. Amer. F o r . . S y s t e m s Analysis W o r k i n g G r o u p . A t h e n s , 3 a . p . 87-104 33.  Williams D. H.. 1976.. I n t e g r a t i n g Stand F o r e s t M o d e l s F o r D e c i s i o n A n a l y s i s . . P h . D . . T h e s i s , F a c u l t y Of F o r e s t r y , Dniv.,of B r i t . Col. 175 pp. .  34..  W i l l i a m s , D. H..and M. Yamada. For Land Management Models, p. 532-538  35..  Williams, D. .H., J . .C. M c P h a l e n , S. M. Smith, M. . M. Yamada and G. ,G. Young 1975. . Computer Assisted Resource Planning: An overview of The CARP P r o j e c t . . O n p u b . . Rep., B.C. F o r . S e r v . 30 pp.  1976., C l u s t e r A n a l y s i s Can. . J . F o r . . Res. 6  93  Dijkstra»s  The.algorithm  Shortest  considers  be a member o f one o f t h r e e 1)  SET I = S ,  + S  w  Route  t h e nodes  Algorithm  and a r c s  possible sets  o f a network  a t any g i v e n  to  instance:  AJ  This i s t h e s e t o f p e r m a n e n t l y l a b e l l e d nodes and a r c s . . The s e t i n c l u d e s a l l those: nodes, S^, , and arcs, S , , which a r e a p a r t o f a known minimum p a t h . Nodes and t h e i r c o r r e s p o n d i n g a r c s w i l l be added to this s e t i n ascending o r d e r o f path l e n g t h from t h e source. A  2)  SET I I = 5  * S  NZ  A 1  T h i s i s t h e s e t of t e m p o r a r i l y labelled nodes arcs. The s e t i n c l u d e s a l l t h o s e nodes, S „ r a r c s , SAZ. , which a r e c a n d i d a t e s f o r i n c l u s i o n in I. A l l nodes i n SJIJZ are connected to a t l e a s t node i n S . F u r t h e r , e a c h node i n S ^ has one o n l y one a r c i n S leading to i t . Z  v /  and and Set one and  Al  3)  SET I I I = s*, +  S  A 3  T h i s i s t h e s e t o f u n l a b e l l e d nodes and a r c s . . The s e t i n c l u d e s a l l t h o s e n o d e s , S^, , and a r c s S which have n o t been r e j e c t e d . A 3  Initially, Set and  a l l nodes  III, i.e. S^ j&S^j}..  steps:  =  and a r c s  a r e u n l a b e l l e d and members o f  [ i | i = 1 , 2 , . . . ,n} and S^  The a l g o r i t h m  a  =  then proceeds through  [a(i,j) the  | iSS^g  following  94  Step  1) The ( i . e . S^, zero.  Step  2) Consider a l l arcs connecting the node just t r a n s f e r r e d t o S^,, w i t h any o f the o t h e r nodes i n or S^3. Two p o s s i b i l i t i e s arise in this temporary l a b e l l i n g process: Case  source = [1})  node, 1, i s put in node set I, and g i v e n a permanent l a b e l v a l u e of  1: i & S , j&S^ , a(i,j)&S If any o f the new n o d e s , j , t o be c o n s i d e r e d a r e i n S , then check to see i f the corresponding new arc, a(i,j) y i e l d s a s h o r t e r path d i s t a n c e from the s o u r c e t o node j than t h e p r e v i o u s arc. If arc a(i,j) yields a s h o r t e r d i s t a n c e , then place a ( i , j ) i n S and r e j e c t t h e : p r e v i o u s arc in S . If however, a ( i , j ) y i e l d s an e q u a l or l o n g e r path, then r e j e c t a ( i , j ) . . v /  / > 3  v t  Al  4 t  Case 2: i&S*,, , j & S , a ( i , j ) & S * I f any o f the new n o d e s , j , i s i n Syyj p l a c e node j i n St/z, and p l a c e t h e c o r r e s p o n d i n g a r c , a ( i , j ) in S . v 3  3  A i  Step  3) Restricting c o n s i d e r a t i o n of a r c s t o 5 and t o 4i/ e v e r y node j i n S^/z has one and only one path connecting to the source node, 1. A s s o c i a t e d with each path i s a d i s t a n c e . The node j (j&S^) having the shortest d i s t a n c e from t h e s o u r c e i s t r a n s f e r r e d from S ^ to S , with the corresponding arc a(i,j) (i&S/v/, j&S vz.) transferred to S,,, . . T h i s s t e p i s t h e permanent l a b e l l i n g p r o c e s s . AI  s  N 1  Step  4) I f a l l nodes (or the specified sink) transferred t o S ,, then s t o p . . O t h e r w i s e , 2 and c o n t i n u e p r o c e s s i n g . ,  have: go t o  M  If an  N  the node  must be  an  e x a c t l y N-1  the  source  times.  o p e r a t i o n s are needed additional  permanent  labels.  updating  and  approximately basis  from  network i s d e s i r e d , t h e n  executed  elementary with  s h o r t e s t path  Dreyfus  N(N-1)/2  A further  indexing 3N  2  (1969)  iterative  During assign  comparisons  (N-1)  the  elementary  to  the  t o a l l o t h e r nodes  node  2  the  procedure  temporary necessary  Hence,  that Dijkstra's  N(N-1) labels,  to  assign  needed a  o p e r a t i o n s are r e q u i r e d . .  states  of  minimization  comparisons are list.  been step  total On  algorithm  for of this  i s the  95  most  efficient  support other  in  around.  assessing  algorithms  Eisner,  et  Dijkstra's  investigated.  a l . (1975) algorithm  offers  as s u p e r i o r  further t o two  96  a£PENDIX_II  Land C l a s s e s Of The W e s t l a k e PSYO* ( S o u r c e : BCFS - P r i n c e G e o r g e , 1974)  Land, C l a s s  I  Parent  Soil  M a t e r i a l : Sandy loam and loam textured colluvium and/or till deposits overlying basic bedrock. Loam and c l a y loam textured glacial t i l l .  Series:  Topography: Drainage: Comments:  a mixture of C l u c u l z Very steeply very h i l l y .  and Twain..  sloping  Ranges f r o m i m p e r f e c t l y  and s t r o n g l y  to r a p i d l y  rolling  or  drained..  Liable t o damage by skidding and erosion. Susceptible to f r o s t heaving.. S o i l s often s h a l l o w and r o c k y w i t h m o i s t u r e limitations to regeneration.  LandClass II Parent  Soil  Material: Sandy loam and loam t e x t u r e d colluvium and/or till deposits overlying basic bedrock.. Loam and c l a y loam textured glacial t i l l .  S e r i e s : a m i x t u r e o f 60% Oona and 40% Twain.  T o p o g r a p h y : Very s t e e p l y well  s l o p i n g and s t r o n g l y  Drainage:  Moderately  to rapidly  Comments:  L i a b l e t o damage by s k i d d i n g  rolling..  drained. and  erosion..  Land c l a s s ; I I I :  Parent  M a t e r i a l : A b l a t i o n t i l l d e p o s i t s o r g r a v e l l y outwash and valley train deposits overlain with  97  loamy sand, capping. Soil  S e r i e s : A mixture  Topography: Gently  to  D r a i n a g e : Ranges f r o m Comments:  Soil  of  sand  60%  and  s a n d y loam  Cobb and  40%  textured  Ramsey.  moderately r o l l i n g . , imperfect  to  rapid..  moisture limitations F e r t i l i t y sometimes low.  to  regeneration.  i^£d_Class_IV Parent  Soil  Material: Loam and c l a y loam t e x t u r e d g l a c i a l t i l l deposits; intermittent surface modification w i t h sandy loam t e x t u r e s . . R o l l i n g and hilly drumlinized till plain l a n d f o r m s . . These may be combined w i t h gravelly outwash and valley train deposits o v e r l a i n w i t h loamy sand and sandy loam t e x t u r e d c a p p i n g . .  S e r i e s : Deserter  or  mainly  Deserter.,  T o p o g r a p h y : Sometimes s t e e p l y s l o p i n g r o l l i n g and h i l l y . Drainage:  Mostly imperfectly drainage.on the  Comments: S u s c e p t i b l e Land C l a s s  hilly,  usually  to well drained with r a p i d g r a v e l l y outwash d e p o s i t s . .  t o some f r o s t  heaving..  V  Parent  Soil  and  Material: Heavy clay textured glacio-lacustrine deposits.. Some silt loam to s i l t y loam textured g l a c i o - l a c u s t r i n e deposits.  S e r i e s : Pineview or  Topography: Ondulating D r a i n a g e : Ranges from Comments:  Land.Class Parent  to  80%  Pineview  and  20%  Berman.  strongly r o l l i n g . ,  imperfect  to  moderately  well.  Susceptible to frost heaving. Logging increase compaction and e r o s i o n and stream s i l t a t i o n .  may cause  VI Material: Sphagnic moss, s e d g e , and hydrophytic vegetation.  associated  98  Soil  S e r i e s : A m i x t u r e o f C h i e f and  Topography:  Depressional  to  Moxley..  nearly  lavel  or  gently  ponds  often  undulating. D r a i n a g e : Very Comments:  poor. .  Filled in areas of lakes and supporting black spruce. .  Land _ C l a s s _VII Parent  Soil  Material: Mainly clay textured g l a c i o - l a c u s t r i n e d e p o s i t s . . Some variable textured fluvial deposits and silt loam t o s i l t y c l a y loam textured g l a c i o - l a c u s t r i n e . d e p o s i t s .  S e r i e s : Mainly and  Vanierhoof,  with  some S t e l l a k o ,  Berman  Bednesti.  T o p o g r a p h y : Ranges from  nearly  level  to strongly  rolling..  Drainage:  Ranges from imperfectly to rapid, with the majority moderately well to well drained.. Comments: S u s c e p t i b l e t o f r o s t h e a v i n g . . L o g g i n g r e s u l t s i n l o s s of s o i l s t r u c t u r e , i n c r e a s e d compaction and a r o s i o n y i e l d i n g s t r e a m s e d i m e n t a t i o n . . Land C l a s s  VIII  Parent  Soil  Material: Variable textured f l u v i a l deposits.. inclusions of sphagnic moss, sedge associated hydrophytic vegetation. ,  S e r i e s : Mainly  Topography: Nearly Drainage:  S t e l l a k o , with level  Ranges from  Comments: L o g g i n g may Land C l a s s Parent  to  very  some M o x l e y and  Small and  Chief.  undulating. poor t o r a p i d . ,  cause stream  sedimentation..  IX Material: Loam and c l a y loam t e x t u r e d g l a c i a l t i l l d e p o s i t s . . R o l l i n g , h i l l y , s t r o n g l y to very steeply sloping till plain land forms between approximately 3500 to 4500 feet elevation. . Also sandy loam textured colluvium and/or till deposits overlying b a s i c bedrock..  99  Soil  S e r i e s : A mixture  o f 70% Twain ana 30% Oona. .  Topography: Very s t e e p l y Drainage: Moderately Comments:  sloping.  well.  Frost heaving and g e n e r a l l y c o n d i t i o n s f o r growth. .  poor  climatic  Land C l a s s X Parent  Soil  Material: Sandy loam and loamy sand textured ablation till deposits; clay textured glacio-lacustrine deposits; some loam and clay loam textured g l a c i a l t i l l deposits; some i n c l u s i o n o f s p h a g n i c moss, sedge and a s s o c i a t e d h y d r o p h y t i c vegetation.„.  S e r i e s : & mixture of C r y s t a l , Moxley and C h i e f ; Beaverly.  Topography:  Ranges  from  gently  Cobb, D e s e r t e r ; C r y s t a l , Crystal and deserter; undulating  to  strongly  rolling. D r a i n a g e : Ranges from Comments:  The  very  poor t o w e l l  areas of non-organic robust. .  drained..  origin  a r e s t a b l e and  Land C l a s s ^XI Parent  Soil  M a t e r i a l : G r a v e l l y outwash and v a l l e y t r a i n o v e r l a i n with loamy sand, sand and sandy loam textured capping. S i l t loam t o s i l t y c l a y loam textured glacio-lacustrine deposits. Gravelly and sandy esker deposits with variable i n t e r s t r a t i f i e d loamy sand, sand and sandy loam. Sandy outwash and d e l t a i c deposits..  S e r i e s : A mixture  o f M i x , Berman, R o a r i n g ,  Mapes, Sax ton Topography: Gently  undulating  Giscombe,  and D e s e r t e r . . to g e n t l y  rolling.,  D r a i n a g e : Ranges f r o m m o d e r a t e l y w e l l t o r a p i d l y d r a i n e d . Comments: Generally stable, l o g g i n g on t h e . f i n e t e x t u r e d glacio-lacustrine deposits results i n some e r o s i o n and s t r e a m s i l t a t i o n .  100  Land  Class  XII  Parent  Material:  Sandy  loam  and/or t i l l bedrock. S o i l  Series:  Topography: Drainage:  A  mixture  H i l l y  Ranges  Comments:  to  very  from  Shallow  of  well  and  Land  Class  Decker,  loam  textured  colluvium  overlying  Deserters  and  acidic  Ormond.,  h i l l y . to  rocky  can occur erosion.  and  deposits  rapidly  drained.  soils..  Significant  as  a  result  of  s o i l  loss  skidding  and  XIII  Parent  Soil  Material: S i l t loam to s i l t y clay loam textured glacio-lacustrine deposits., Heavy clay textured glacio-lacustrine deposits. Series:  A  mixture  of  Berman,  Pineview,  Siscome  and  Fraser. Topography:  undulating poorly  to  moderately  Ranges  Comments:  Susceptible to frost heaving.. may occur after logging slopes.  well  r o l l i n g . .  drained. Stream on the  s i l t a t i o n steeper  XIV  Parent  S o i l  from  to  Drainage:  Land -Class  Material: Gravelly and sandy esker deposits with variable i n t e r - s t r a t i f i e d loamy sand, sand and sandy loam. Some i n c l u s i o n o f s e d g e and associated hydrophytic vegetation.  Series:  Topography:  Land  Gently  A  mixture  Ranges  Drainage:  Rapid  Comments:  Mineral  Class Parent  on  from  of  nearly  mineral s o i l s  Roaring  and  level  soils,  droughty  Chief.. to  very and  of  strongly poor low  on  r o l l i n g . organic.  f e r t i l i t y . .  XV Material: Loam a n d deposits;  c l a y loam t e x t u r e d glacial t i l l intermittent surface modification  10 1  w i t h sandy loam t e x t u r e s . . R o l l i n g and h i l l y drumlinized till plain land form. Some beach deposits o f loamy sand and sandy textures. Soil  Series:  Mainly  Barrett  T o p o g r a p h y : Ranges from  w i t h some K l u c k  undulating  to  D r a i n a g e : Ranges f r o m i m p e r f e c t l y Comments: G e n e r a l l y Land C l a s s  stable  and  and C r y s t a l . .  hilly..  to r a p i d l y  drained.  robust.  XVI  P a r e n t M a t e r i a l : Loam t o c l a y loam textured glacial till deposits; intermittent surface modification w i t h sandy loam t e x t u r e s . . S t e e p land till land forms. Sandy loam and loam t e x t u r e d colluvium and/or till deposits overlying b a s i c bedrock.. Soil  Series:  A m i x t u r e o f T e l e g r a p h and Drmond. .  Topography: Strongly  rolling  D r a i n a g e : Ranges from Comments: C l i m a t i c  and  moderately  conditions  hilly. well  to rapidly  f o r growth  drained.  are poor..  kand _ C 1 a s s _ X V I I Parent  Material:  Gravel  and sand  esker  and kame  deposits;  hummocky.. Soil  Series:  A mixture  Topography: Gently  of Morice, Guniza  undulating  to moderately  D r a i n a g e : Ranges f r o m r a p i d t o w e l l Comments: H i g h Land  Class  rolling.  drained. .  p r o b a b i l i t y o f damage from  slash  burning. .  XVIII  Parent  Soil  and Ramsey..  M a t e r i a l : Sandy outwash and v a l l e y t e r r a c e deposits overlain with f i n e r s a n d s and loamy s a n d s . Some d e p o s i t i o n a l c l a y s t r a t a .  Series:  Topography:  M a i n l y C o t t o n w o o d , w i t h some Ranges  from  gently  Blackwater.  undulating  to  strongly  102  rolling. Drainage:  Rapid to well imperfectly  Comments: H i g h  probability  d r a i n e d , but m o d e r a t e l y w e l l t o d r a i n e d where c l a y s t r a t a o c c u r . o f damage from  slash  burning..  Land C l a s s XIX Parent  Soil  M a t e r i a l : Sandy outwash and v a l l e y t e r r a c e deposits overlain with f i n e r s a n d s and loamy s a n d s . S o m e . d e p o s i t i o n a l c l a y s t r a t a . . S i l t loam t o s i l t y c l a y loam textured glacio-lacustrine deposits. Series:  Topography: Drainage: Comments:  A mixture of Blackwater, and C o t t o n w o o d . Ranges from rolling.  Ranges f r o m  gently  Beaverly,  undulating  imperfectly to rapidly  to  Bednesti  strongly  drained. .  Broadcast burning acceptable:on t h e : l a c u s t r i n e deposits. Otherwise a high probability of damage from s l a s h b u r n i n g . .  APPEMDIX_III  Prescribed  Stand  Treatments  F o r The W e s t l a k e  PSYU  TREATMENT SEQUENCES  Next Crop  S = Skidder W = Winter D = Drag Scarify  N - Natural Regen.  Species  C = Cat  P = Plant  Method o f Falling  Tree Extracted As  Extracted By  Number  H = hand  T = tree length  Species  M = Mech  F = F u l l tree  S n i p , saw L = Log or length feller-buncher  Either  S = Spruce + F  C = Clean l o g  P = Pine + F D = Decid. All  Note:  Site Prep.  Regen. Method  LC/GT  When t h e r e a r e o p t i o n a l o p e r a t i o n s , the frequency o f occurrence i s g i v e n as a percent. L i n k o p e r a t i o n s a r e o b l i g a t o r y sequences. N* - I f n o t c l e a n l y logged, knock down s l a s h with chain.  Season  S = Summer B = B r o a d c a s t burn W = Windrow N = No (N*)  treatment  Land C l a s s and Growth Type  Method of Felling  Tree Extracted As  All (Twain)  H  T  ' II  All  = I  III  All  M  I  Extracted By  All  M 7 H 3  V  S  H  V  P+D  M  VI VII  No S  Site Preparation  Regeneration Method  Subsequent Crop  C 6 4  W  N  N  P I (F)  C  S  F  S  S 7 — W 3  N* D  N  PI  S 8 C 2  W 5 S 5  D N  N  PI  C 5 5  W  B  F  S 6  W 8  T  C 4  S 2  D  T  S 6 C 4  W 7 3  B  (fert. problem) IV  Season  F  T  S (F)  S  B+W —  P  S (F)  N  P I (S)  logging H  s  W + B  S (F)  Land C l a s s and Growth Type  VII  VIII  P  D (Cottonw.)  Method of Felling  Tree Extracted As  Extracted By  M  T F  S 7 C 3  H  Season  W  S  7 3  Site Preparation  Regeneration Method  B+W 6 D 4 --  S (F) P I (S) Residual  C 7 S 3  W  N  C 5 S 5  W  B (Brush prob.)  Subsequent Crop  Cot.  (20 ac)  VIII  IX  S (+P) A l l  H  Topography  = I & II  (Twain)  Wide f l u c t u a t i o n s i n X.  X  A l l  = III  XI  A l l  = X = III  XII  A l l  S 5 C 5  H  Important  X may need more c a t and more w i n t e r t h a n I I I  W  %  = V  XIII XIV  All  H 7 M 3  PI  N D i f slope <  20%  (2 s e c t i o n s ) D 7 N 3  N  PI  Land C l a s s and Growth Type  XV  All  XVI  XVII XVIII A l l  XIV  Method of Felling  Tree Extracted As  M  F  S  S 6 W 4  N D  N  PI  F  S  S 7  N  N  PI  W 3  D  Extracted By  Season  Site Preparation  Regeneration Method  Subsequent Crop  = I  = XIV M  = VII  (2  way)  APPENDIX IV  Management R e p o r t s On S t a n d s Of The W e s t l a k e  PSYO  REGION CONPT. STANO NO. • • « • • • ••••*• *••**»•*•  SOIL-LAND **»»»«**»  USE CLASS ••*»*««*«  POT. USE *••••«*•  T l i i E R SPP. **••**•*••*  CLASS  •**••  EXP. REGEN.  STOCKING  SITE  **•••*•• •»•»  ACREAGE  VOL.IMCFI  •••••••••  PLISFI  G  16  2154  S  SFB  N  14  616  NONE  PLS  PLISFI  N  14  2228  FORESTRY  NONE  SF  SF  G  151  4700  FORESTRY  NONE  FS  FSPL  N  132  3700  140  4000  60  16  14065160  4  OEFERRED  NONE  60  16  14066160  4  DEFERRED  NONE  60  16  1406T160  4  DEFERRED  60  16  14068160  5  60  16  14069160  5  PL  60  14  14070160  5  FORESTRY  NONE  PLS  PLS  N  60  14  14071160  5  FORESTRY  NONE  PL  PLFCSI  H  132  0  60  14  14072160  5  FORESTRY  NONE  PL  PLIAFI  P  1876  140  60  14  14073160  5  FORESTRY  NONE  S  P  11  60  60  14  14074160  5  FORESTRY  NONE  PL  P  186  300  60  14  14075160  5  FORESTRY  NONE  PL  PLISFI  G  1428  1828  60  14  14076160  5  FORESTRY  NONE  S  SPL  P  37  285  N  65  1150  S  60  14  14077160  5  FORESTRY  NONE  DEC ID  60  14  14078160  5  FORESTRY  NONE  PLS  PLISFI  G  75  3019  60  14  14079160  5  FORESTRY  NONE  FS  FISI  N  47  2681  60  14  14080160  5  FORE STRY  NONE  S  N  42  731  60  14  14081160  5  FORESTRY  NONE  NP  163  0  60  14  14082160  5  UNGULATE  NONE  F  FIPLSI  N  86  2750  60  14  14083160  5  UNGULATE  NONE  PL  PLIAFI  P  80  140  60  14  14084160  5  UNGULATE  NONE  PL  PLIASI  P  6  300  60  14  14085160  5  UNGULATE  NONE  S  DEC ID  P  6  616  PLISFI  P  86  830  PLISFI  G  37  3019  P  10  0  60  14  14086160  5  UNGULATE  NONE  PL  60  14  14087160  5  UNGULATE  NONE  PLS  60  14  14088160  5  UNGULATE  NONE  LOGGED  60  14  14089160  6  FORESTRY  NONE  S  T  S  G  131  5200  60  14  14090160  6  FORESTRY  NONE  PL  2  PL  N  113  550  60  14  14091160  6  FORESTRY  NONE  S  2  N  13  875  5  REGION CONPT. STANO NO. * * * * * * •••••• ••*••*•••  E . HARV. YR. *****•**•*••  L. HARV. VR.  OF HARVEST OPERATION TYPE • ••*•*•*•••• SEASON •••••••••••**»*•, •••••*••*••»*«  SITE PREPARATION •*••*•****••*•••  REGENERATION  ***•«••*•„•  40  14  14065160  601  60  SUMMER  FULL TREE SKIO  NONE  NAT  60  14  14066160  601  80  SUM. OR WIN.  FULL TREE SKIO  NONE  NAT  60  14  14067160  601  60  SUMMER  FULL TREE SKIO  NONE  NAT  60  14  14068160  600  20  WINTER  FULL TREE CLEAN LOG  NONE  NAT  60  14  14069160  600  20  WINTER  LOP AND SCATTER  NONE  NAT  60  14  14070160  600  20  60  14  140TU60  601  100  60  14  140T2160  601  60  14  14073160  60  14  60  WINTER  FULL TREE SKIO  DRAG SCARIFY  NAT  SUN. OR WIN.  FULL TREE SKIO  0RA6 SCARIFY  NAT  80  WINTER  FULL TREE SKIO  DRAG SCARIFY  NAT  601  100  WINTER  FULL TREE SKID  COMPLETE SLASHBURN  PLT  14074160  601  60  WINTER  FULL TREE SKIO  DRAG SCARIFY  NAT  14  1407S160  601  60  WINTER  FULL TREE SKIO  ORAG SCARIFY  NAT  60  14  14076160  601  100  WINTER  SELECTION CLEAN LOG  NONE  NAT  60  14  14077160  60  NONE  PROTECTION FOREST  NONE  60  14  14078160  601  40  WINTER  FULL TREE SKIO  ORAG SCARIFY  NAT  60  14  14079160  601  60  SUM. OR WIN.  FULL TREE SKIO  NONE  NAT  60  14  14080160  601  80  WINTER  SELECTION CLEAN LOG  NONE  NAT  60  14  14081160  NONE  NONE  NONE  60  14  14082160  601  40  WINTER  FULL TREE CLEAN LOG  NONE  NAT  60  14  14083160  601  80  WINTER  FULL TREE SKIO  ORAG SCARIFY  NAT  60  14  14084160  601  60  WINTER  FULL TREE CLEAN LOG  NONE  NAT  60  14  14085160  60  NONE  PROTECTION FOREST  NONE  60  14  14086160  601  60  WINTER  FULL TREE SKIO  ORAG SCARIFY  NAT  60  14  14087160  601  40  WINTER  FULL TREE SKIO  ORAG SCARIFY  NAT  60  14  14088160  60  NONE  PROTECTION  60  14  14089160  600  40  WINTER  SELECTION FULL TREE  NONE  NAT  60  14  14090160  601  80  WINTER  FULL TREE SKIO  NONE  NAT  60  14  14091160  60  NONE  PROTECTION FOREST  NONE  FOREST  NONE  STA NO f 14038160 14099160 14060160 14061160 14062160 14063160 14064160 14065160 14066160 14067160 14068160 14069160 14070160 14071160 14072160 14073160 14074160 14075160 14076160 14077160 14078160 14079160 14080160 14081160 14082160 14083160 14084160 14085160 14086160 14087160 14088160 14089160 14090160 14091160 14092160 14093160 14094160 14095160 14096160 14097160 14098160 14099160 14100160 14101160 14102160 14103160 14104160 14105160 14106160 14107160 14108160 14109160 14110160 14111160 14112160 14113160  C—TYPE B F LOGGED NP SF PLS PL PL S PLS SF FS PLS PL PL S PL PL S OECIO PLS FS S NP • F PL PL DEC ID PL PLS LOGGED S PL S PL S B NP PL PL OECIO LOGGED NP F PL PL PL OECIO PL LOGGED NP PL PL OECIO PL DEC ID  SL  AGE  4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 3 5 5 9  6 6  9 5 5 S 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  8 6 5 4 5 5 8 7 4 1 2 2 3 4 4 4 5  9 6 7 2 3 3 4 5 7 2 3 6 1 2 3  USE S I T E F F F F D  0 0  D D D F F F F F F  f F F F F F F F  U U u  U u  U  u F F F F F F F F F F F F  7 5 1 2 3 4  U  5  G G G G G  3 3  u  U  u u u u u  VOL AREA .  N M G  325 249  G G G G M  520 400 355 215 61 222 470 370 400  H G  n N N P P P G P N G N  n N p p p p G P G N N N N N N P P G  14 6 30 182 28 115 301 268 73 275 14 30 41 83 301 520 59 87 139 347 344  14 80  N G H P P G G  275 290  G P N G P  290 14 40 121 80  14 80 215  6 20 1047 212 21 284 449 16 14 14 151 132 140 132 1874 11 186 1428 37 69 75 47 42 163 86 80 6 6 86 37 10 131 119 13 7 10 5 356 8 21 15 112 10 19 86 67 248 26 15 81 45 8 27 13 9 18  SEAS  SITE OP PREP REG S P E C I E S  M S  LAS FTS F TS  NAT NAT NAT  SF FS PLFS  H S S  LAS FTS FTS FTS FTS FTS FCL LAS FTS OS FTS DS FTS OS F T S CSB FTS DS FTS OS SCL PRT FTS DS FTS SCL  NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT PLT NAT NAT NAT  SF PLISt PLISFI PLISFI SFB PLISFI SF FSPL PLS PLFISI PLIAFI S  NAT NAT NAT  PLISFI FISI S  DS  NAT NAT NAT  FIPLS) PLIAFI PLIASI  OS OS  NAT NAT  PLISFI PLISFI  NAT NAT  S PL  S M M  FCL FTS FCL PRT FTS FTS PUT SFT FTS PRT FTS FTS LAS  NAT NAT NAT  PL SIPLI BS  H H H H  FTS FTS FTS FTS  NAT NAT NAT NAT  PL PL APL PLISFI  H M M M H M H  LAS FTS FTS FTS FTS FTS FTS  NAT NAT NAT NAT NAT NAT NAT  FS PLIAS) PL PL APL PLIFI PLISFI  M M  FTS FTS PRT FTS PRT  NAT NAT  PLIASI PL  NAT  PL  • s  • s H  M H  • W M M H H H  • M  M H H M M H H  H  DS  DS  OS  PLISFI SPL  . .  LOGPRICE /HCF  HARVEST COST/MCF  FORESTRY COST/MCF  ROAOINC COST/MCF  . . COORDINATES  APPENDIX_V  Stand  Economics  Report  On  Mature  Stands  WESTLAKE  PSYU -  STAND APPRAISAL FOR STATE  VARIABLE  SUBSYSTEM  PACE  «»*»••*»»#••**»••»»•***«»•*»*•••*•*•*«**«»*»*»•»*•***«****•**•*********»*****  35  STAND ECONOMICS REPORT  STANO NO.  24139160 26035160 24069155 24131160 26155160 24095160 240T4160 240TS160 24015155 25006160 25061160 25007160 25057160 25056160 25064160 25043160 25065160 25075160 25074160 25067160 39003160 43009160 43004160 43010160 43001160 53002155 53013155 53007155 76008155 76003155 77006155 77044155 77045155 77038155 77037155 77005155 9043160 9007160 9023160 9038160 9029160 6001160 6011160 8004160 8035160 8066160 8021160 10069160 10130160 10067160  AGE S I T E  12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14 14  2 2 2 2 2 2  G-TYPE  P! P DEC P  VOLUME S T O C K . CCF/AC P C T .  36.00 37.50 38.60 44.00 36.00 36.00 36.00 44.00 44.00 43.00 44.00 43.00 31.90 36.00 36.00 37.30 11.00 21.50 11.00 21.50 40.00 32.00 36.00 36.00 36.00 36.00 13.00 13.00 35.60 35.60 40.00 35.60 40.00 40.00 35.60 35.60 50.50 8.00 8.00 44.00 44.00 52.00 29.00 64.10 53.40 24.60 26.20 47.00 44.00 47.00  0.95 0.95 l.Oi 1.14 0.93 0.93 0.95 1.08 1.16 0.75 0.77 I.11 0.81 0.93 0.95 0.95 0.51 0.90 0.51 0.90 0.73 0.56 0.93 0.93 0.93 0.61 0.60 0.60 0.62 0.62 0.70 0.62 0.70 0 . 70 0.62 0.94 0.92 0.19 0.19 1.12 1.62 0 . 95 0 . 53 1.03 1.30 0.B1 0 . 64 1. LI 1.12 1.11  SELL P R . t/CCF  70.03 7 5 . 52 87.45 59.17 59.17 59.17 70.03 73.76 70.03 69.59 74.55 74.55 75.52 5 9 . 17 70.03 75.52 71.55 77.61 71.55 77.61 70.03 69.59 59.17 59.17 59.17 69.59 71.55 71.55 69.59 69.59 70.03 6 9 . 59 70.03 70.03 6 9 . 59 70.03 75.52 75.52 75.52 87.45 87.45 75.52 75.52 65.20 67.12 32.36 67.12 75.52 87.45 75.52  F - B COST t/CCF  2.55 3.48 2.86 2.59 2.59 2.59 2.55 2.94 2.55 2.55 2.64 2.64 3.03 2.59 3.49 3.03 4.83 4.66 4.83 4.66 2.87 2.55 3.56 2.59 3.18 2.55 4.55 4.55 2.55 3.50 2.59 3.50 3.51 3.51 3.50 2.55 3.39 6.42 6.42 2.86 2.86 4.30 3.48 2.74 2.55 2.56 2.87 4.34 2.86 4.34  SKID COST AREA COST t/CCF t/CCF  4.05 5.73 3.22 4.78 4.19 4.19 4.05 4.47 4.05 5.45 3.66 5.00 4.66 4.19 4.90 4.66 5.03 4.91 5.03 4.91 5.13 4.05 6.24 4.19 8.59 4.05 5.03 5.03 4.05 4.90 4.19 4.90 5.03 5.03 4.90 4.05 5.40 6.69 6.69 4.17 4.17 6.69 5.40 4.67 5.28 5.43 4.67 6. 16 3.48 6.69  0.38 0.63 0.43 0.24 0 . 38 0.55 0.55 3.45 0.45 0.70 0.31 0.70 0.43 0.38 1.13 0.36 3.69 1.89 3.69 1.89 0.59 0.62 0.75 0.55 0.47 0.38 3.13 3. 13 0 . 38 1.14 0.34 1.14 1.02 1.02 1.14 0.38 0.47 3.5S 3.58 3.65 0.65 0.55 0.32 0 . 37 0.54 1.17 0.90 0.64 0.24 0.61  HARV.COST t/CCF  HAUL COST t/CCF  6.98 9.84 6.51 7.61 7.16 7.33 7.15 7.86 7.05 8.70 6.61 8.34 8.12 7.16 9.53 8.05 13.55 11.46 13.55 11.46 8.58 7.22 10.55 7.33 12.23 6.98 12.70 12.70 6.99 9.55 7. 12 9.55 9.55 9.55 9.55 6.99 9.26 16.69 16.69 7.68 7.68 11.54 9.69 7.78 8.37 9 . 15 8.45 11.15 6.58 11.64  0.50 5.09 7.98 0.84 0.54 0.63 0.56 5.33 6.89 6.05 6.12 6.76 7.85 7.81 7.90 6.99 7.90 7.67 8.41 7.91 2.71 6.75 6.59 6.77 6.78 8.58 8.32 8.61 10.32 10.31 9.73 8.54 9.99 9.95 8.57 9.51 2.63 1.63 1.57 1.26 1.26 2. 13 2.10 4.02 5.74 5. 52 4 . 16 0.92 0.39 1.43  RO O E V . NET t/CCF t/CCF  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.73 1.73 1.73 0.0 0.0 0.0 1.73 0.0 0.0 1.73 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0 0.0  62.54 60.59 72.96 50.72 51.47 51.22 62.32 60.57 56.09 54.84 61.82 59.45 59.56 44.20 52.61 60.47 50.11 58.48 49.59 58.24 58.73 55.61 42.03 45.07 40.16 52.29 48.80 48.51 52.28 49.73 53.17 49.77 50.49 50.53 49.74 53.53 63.63 57.20 57.27 7B.5I 78.51 61.84 63.72 53.40 53.01 17.68 54.51 63.45 80.48 62.45  VALUE t/ACRE  2251.58 2272.16 2816.26 2231.50 1852.92 1843.76 2243.51 2665.21 2467.82 2358.05 2720.02 2556.23 1899.84 1591.30 1893.79 2267.80 551.16 1257.27 545.52 1252.12 2349.29 1779.63 1513.20 1622.53 1445.90 1882.35 634.34 630.64 1861.12 1770.34 2126.98 1771.73 2019.46 2021.31 1770.57 1905.59 3213.48 457.62 458.12 3454.49 3454.36 3215.89 1867.90 3422.76 2830.87 435.03 1428.03 2982.25 3541 . 0 4 2935.26  WESTLAKE PSYU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM  PAGE  36  STAND ECONOMICS REPORT STAND NO. AGE SITE G-TYPE  10030160 10059160 10109160 10042160 10002160 10140160 10003160 10018160 11062160 11015160 11014160 11044160 12057140 12002160 12058160 14032160 14089160 14001160 14040160 14101160 14022160 14039160 14069160 14123160 14082160 15128160 15013160 15129160 15035160 15058160 16075160 16027160 16 0 74160 16047160 16048160 17003160 18057160 18056160 18090160 19047160 19034160 19046160 19015160 19066160 20111160 20076160 20045160 20058160 20128160 20059160  14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14  2 2 2 2 I 2 2 4II I  ,I .I I  ,I ,» I I  iI  ;I ;I ;! <I  it  i! 2! 1 1 2! 2' 2! 1 1 1 1 2> 1 1 I I 1 1 1 2  1  1 1 2  2  2 2  F S F S PLS F SF PLS S FS PLS PLS PLS S S FS S  s  SF F SF PLS FS F F PLS S S S S S PLS PLS PLS F PL F S F PLS F S F PLS PLF S S F S PLS  VOLUME STOCK. CCF/AC PCT. 68.00 47.00 44.00 47.00 24.00 44.00 50.00 24.00 56.00 56.00 49.00 49.00 49.00 45.00 35.00 44.50 52.00 8.00 40.00 27.50 42.00 49.00 37.00 27.20 27.50 57.60 15.00 35.00 39.00 47.40 52.00 48.70 49.00 49.00 44.30 64.10 68.00 45.00 27.00 32.30 44.40 36.00 32.90 28.00 57.60 65.50 22.00 44.50 22.20 49.00  1.73  a  1. 1.12 1.11 0.58 1.12 1.30 0.58 1.02 0.91 1.18 1.18 0.81 1.06 0.81 0.75 0.95 0.19 1.04 0.70 1.09 1.18 0.81 0.69 0.70 0.95 0.27 0.83 0.92 1.12 0.95 0.80 0.81 0.81 1.12 1.01 1.34 1.06 0.69 0.5) 0.87 0.65 0 . 84 0.67 0.95 1. 19 0.52  1.1)  0.52 1. 18  SELL PR. I/CCF 87.45 75.52 87.45 75.52 71.55 87.45 77.61 71.55 75.52 86.34 71.55 71.55 71.74 75.52 75.52 86.34 75.52 75. 52 77.61 87.45 77.61 71.55 81.29 87.45 87.45 71.74 75.52 75.52 75.52 75.52 75.52 71.74 71.74 71.74 87.45 6 5.20 87.45 75.52 87.45 71.74 87. 45 75.52 87.45 71.55 74.55 75.52 75.52 87. 45 75.52 71.55  F-B COST SKID COST AREA COST $/CCF J/CCF $/CCF 3.28 4.J4 2.86 4.34 2.94 2.86 3.26 2.94 4.28 3.34 2.81 2.58 2.58 4.36 2.99 2.88 3.78 6.42 3.29 2.86 2.93 2.81 2.88 4.69 2.86 2.79 5.25 3.44 4.43 4.34 3.38 3.04 2.81 2.81 3.33 2.74 2.86 4.36 3.41 2.58 2.86 2.99 2.86 3.65 2.64 2.99 4.83 2.86 4.82 2.58  3.73 6.69 4.17 6.69 4.81 3.48 4.66 4.81 6.69 3.93 4.81 5.43 3.89 5.40 4.35 3.65 9.33 5.40 4.66 4.10 4.33 4.81 4.41 3.77 4.17 4.81 6.69 5.40 6.16 6.16 5.40 8.19 4.81 4.81 3.73 4.67 4.10 6.16 3.73 3.89 2.99 4.35 4.10 4.76 4.68 4.35 6.69 2.99 6.16 3.89  0.35 0.61 0.65 0.61 0.98 0.24 0.47 0.98 0.48 0.42 0.48 0.58 0.40 0.90 0.56 0.24 0.32 5.08 0.59 1.10 0.25 0.48 0.77 1.49 1.04 0.41 1.91 0.68 0.78 0.64 0.45 0.35 0.48 0.48 0.54 0.37 0.44 0.67 0.88 0.43 0.37 0.38 0.92 1.45 0.52 0.21 1.23 0. 31 1.36 0.28  HARV.CUST $/CCF  HAUL COST t/CCF  7.36  1.70 1.39 0.26 1.16 2.92 0 . 31 2.71 3.01 2.53 2.38 1.23 1.04 3.96 3.91 4.37 1.92 2.22 3.66 2.12 2.86 1.88 1.20 2.37 2.83 3.44 3.33 3.95 2.99 3.01 4.90 0.89 0.94 0. 79 1.00 1.26 2.51 4.06 4.47 4.93 6.85 5.75 6.85 7.47 6.85 6. 54 7.90 7.67 8.08 7.28 8.47  11.64 7.68  11.64  8.74 6.58 8.40 8. 74 11.45 7.69  8.11  8.60 6.88 10.67 7.90 6.77 13.43 16.90 8.55 8.06 7.51 8.11 8.07 9.95 8.07 8.02 13.85 9.52 11.37  11.14  9.24 11.57 8.11 8.11 7.59 7.78 7.41  11.19  8.02 6.91 6.23 7.72 7.88 9.86 7.84 7.55 12. 75 6.16 12. 34 6.76  RO DEV. NET VALUE »/CCF $/CCF S/ACRE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0  78.39 62.49 79.51 62.72 59.90 80.56 66.50 59.80 61.54 76.28 62.22 61.91 60.90 60.95 63.24 77.65 59.87 54.96 66.95 76.53 68.22 62.24 70.B3 74.67 75.93 60.40 57.72 63.01 61.14 59.49 65.38 59.22 62.84 62.63 78.60 54.91 75.99 59.85 74.50 57.98 75.48 60.95 72.10 54.84 60.17 60.07 55.04 73.21 55.90 56.32  5330.70 2936.87 3498.45 2947.73 1437.53 3544.58 3325.12 1435.30 3446.29 4271.54 3048.58 3033.74 2983.94 2742.72 2213.51 3455.55 3113.13 439.70 2677.89 2104.64 2865.23 3049.93 2621.48 2030.97 2088.20 3478.78 865.84 2205.36 2384.59 2819.61 3400.00 2884.21 3079.25 3069.00 3458.32 3519.76 5167.03 2693.44 2011.62 1855.37 3351.11 2194.21 2372.18 1535.45 3465.97 3934.78 1210.81 3257.98 1241.00 2759.84  WESTLAKE PSVU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM  PAGE  37  »********+****•*•**•********************************************************************************************************»**»*:* STAND ECONOMICS REPORT STAND NO. AGE SITE G-TYPE  20086160 20079160 20099160 20077160 20129160 21009199 21099199 21001199 21024160 21044199 21026160 21038160 21023160 21029159 21012160 21049160 21098160 21099160 21093160 22086160 22032159 22094160 22011199 22018160 22009160 22012199 22006160 22008199 22004199 22024160 22119160 22093160 22038160 22114160 22067160 22102160 22009155 22034159 22009155 23039199 23012160 23099160 23017160 23043160 23049155 23070160 23004155 23030155 23168160 23030160  16 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14  2  2 2  2 2 1 1 1 1 1 1 1 1 1 1  t2  J 3 1 1 1 1 1 1 1 1 1 1 2 2  2 2 2 2  2 3 3 3 1 1 1 1 1 1 1 1 1 1 1  s  PLS S F PLS F F F PL F FS SPL PLS SPL PLS S SF S PLS SPL PL SPL F S FS S PLS PLF PL SF FPL S F FPL F SPL PL S PLS PL PLS F S F S s PL PL F S  VOLUME STOCK. CCF/AC PCT. 22.20 49.00 22.20 44.50 49.00 61.99 61.90 61.90 26.00 61.90 92.00 92.00 60.00 69.40 60.00 69.00 69.00 69.00 19.00 92.00 93.40 92.00 44.40 92.00 43.00 92.00 49.00 93.40 . 93.40 47.00 48.00 47.00 27.00 37.00 62.00 92.00 10.80 10.80 10.80 64.10 63.00 44.00 95.00 44.00 52.10 65.90 64.10 64.10 44.00 15.00  0.92 1.18 0.52 1.13 1.18 1.22 1.22 1.22 0.42 1.22 0.88 0.91 0.99 1.15 0.9? 1.18 1.69 1.53 0.81 0.96 0. 86 0.96 0.87 0.99 0.73 0.98 0.81 0.88 0.86 1.22 1.04 1.11 0.69 0.89 1.98 9.74 0.50 0.41 0.46 1.03 1.04 0.87 1.09 0.87 0.95 1.19 1.03 1.03 0.87 0.27  SELL PR.  t/CCF 75.92 71.55 75. 52 87.45 71.55 87.45 87.45 87.45 65.20 87.45 86.34 73.76 71.74 73.76 71.74 75.92 77.61 79.92 71.95 73.76 69.20 73.76 87.49 79. 32 86.34 79.92 71.74 74.55 69.20 77.61 82.29 79.52 87.45 82.29 87. 45 70.09 70.28 75.52 71.55 65.20 71.74 87.45 75.52 87.45 75.52 75.52 65.20 65.20 87.45 75.52  F-B COST SKID COST AREA COST */CCF t/CCF t/CCF 4.82 2.58 4.82 2.86 2.58 3.29 2.86 3.29 2.55 2.86 2.88 4.12 2.58 3.71 2.58 4.23 3.64 3.85 3.99 4.36 2.76 4.36 3.32 3.38 3.37 3.46 2.81 2.82 2.76 4.97 2.85 4.34 2.86 4.59 2.86 4.36 3.20 3.82 3.25 2.93 3.25 2.86 3.38 3.79 2.99  4.23 2.74 2.93 2.86 4.35  6.16 3.89 6. 16 2.99 5.27 3.73 4.10 3.73 3.77 2.99 3.14 5.00 3.89 3.86 3.89 5.40 3.46 4.05 4. 76 6.20 4.67 6.20 3.73 5.40 3.93 5.40 4.81 4.25 4.67 5.72 3.18 6.16 4.17 4.01 4.10 6.20 4.67 5.40 4.81 7.99  4.76 4.10 5.40 6.38 4.35 6.16 4.67 7.99 2.99  9.33  1.36 0.28 1.36 0.31 0.62 0.38 0.46 0.38 0.53 0.27 0.26 0.78 0.23 0.35 0.23 0.63 0.35 0.35 2.14 0.85 0.44 0.85 0.53 0.45 0.55 0.74 0.48 0.44 0.44 0.61 0.28 0.64 1.06 1.10 0.49 0.85 2.19 2.19 2.19 0.26 0.65 0.69 0.43 0.38 0.38 0.47 0.37 0.26 0. 31 1.12  HARV.COST  HAUL COST  12.34 6.76 12.34 6. 16 8.47 7.40 7.42 7.40 6.84 6.12 6.28 9.91 6.71 7.91 6.71 10.25 7.49 8.29 10.89 11.42 7.87 11.42 7.39 9.24 T.89 9.60 8.11 7.51 7.87 10.40 6.32 11.15 8.09 9.70 7.45 11.42 10.06 11.42 10.25 11.18 8.66 7.65 9.21 10.56 7. 72 10. 85 7.78 11. 18 6.16 14.80  7.67 8.08 7.00 7.64 8.07 7.66 7.18 7.69 7.28 6.98 7.97 8.61 8.53 6.98 7.78 8.38 8.09 7.78 8.29 3.94 4.17 3.96 5.03 2.74 2.05 6.65 2.50 3.24 4.32 3.61 5.62 4.67 3.26 6.61 5.55 5.45 4.72 4.35 3.56 4.29 4.60 6.34 3.24 6.64 6.02 6.85 4.56 4.26 6.81 6.69  t/CCF  t/CCF  RO DEV.  t/CCF 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.73 1.73 1.73 0.0 1.73 1.73 1.73 1.73 1.73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  NET VALUE  t/CCF  55.44 56.71 56.18 73.65 55.01 72.39 72.84 72.36 51.08 74.39 70.36 53.51 34.77 58.86 55.52 55.16 69.34 37.79 90.64 98.41 93.16 96.36 74.83 63.94 76.44 99.27 61.13 63.80 93.01 63.60 70.36 39.70 76.10 65.98 74.45 53.23 55.50 59.75 57.74 49.73 58.48 73.46 63.07 70.25 61.78 57.82 52.86 49. 76 74.48 54.03  t/ACRE  1290.81 2778.84 1247.23 3277.34 2699.92 4480.80 4508.88 4479.28 1328.11 4602.07 3658.77 2782.48 3286.27 3849.71 3331.09 3585.11 3921.88 3753.99 962.16 1869.11 2838.49 1803.69 3322.98 3303.97 3287.06 1896.74 2999.44 3406.95 2830.78 2989.23 3377.10 2806.06 2054.66 2441.44 4615.77 1703.30 599.42 645.31 623.63 3187.82 3684.23 3232.45 3468.79 3090.99 3218.97 3758.49 3388.11 3189.81 3277.15 810.49  WESTLAKE PSYU - STAND APPRAISAL FOR  STATE VARIABLE SUBSYSTEM  PACE  38  ********************************************************************************************************************************** STAND ECONOMICS REPORT STAND NO. ASE SITE G-TYPE  23152160 23020155 23003160 230*5155 23149160 23150160 24038155 24106160 24003160 24075155 24088160 24002160 24137160 24112160 24138160 24073160 24013160 24037155 24032160 24130160 24072160 25040160 25004160 25005160 25059160 25022160 25054160 25053160 25073160 39002160 43008160 53001155 53006155 53012155 76007155 76002155 76006155 77019155 77002155 77043155 77004155 77036155 77003155 77034155 77035155 9037160 8054160 8020160 8063160 8019160  14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 16 16 16 16 16  I 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 2 1 1 1 3 3 1 1 1 1 I 1 1 1 1 2 2 3 1 1 1 1  S PL S ACON SF PL PL SPL S F PLF PLF SPL FS PLF PLF FS F FS FS SPL FS PLF SPL PL S PLS S PLS SF PLS SPL PLS PLS S S PLS PLS PL PLS SPL SPL PLS PL PLS F PL PL S S  VOLUME STOCK CCF/AC PCT. 25.00 26.20 45.00 18.50 44.00 26.00 64.00 50.00 45.00 61.90 58.00 61.00 52.00 44.50 58.00 58.00 44.50 40.00 35.00 45.00 45.00 44.00 58.00 56.00 22.60 56.00 32.00 36.00 28.00 47.00 49.00 65.00 11.00 11.00 65.00 22.00 64.00 64.10 32.00 64.00 50.60 65.40 64.00 30.00 64.00 19.50 58.00 58.00 49.00 49.00  0.45 0.64 1.06 0.56 1.14 0.63 1.03 0. 88 0.82 1.22 0.95 1.00 0.91 0.75 0.95 0.95 0.98 1.02 0.77 0.99 1.05 0.75 0.95 0.98 0.36 1.02 0.53 0.65 0.67 0.91 0.81 1.14 0.47 0.47 1.18 0.40 1.05 1.06 0.52 1.05 0.89 1.15 1.05 0. 73 1.54 0.6S 0.B9 0.89 0.87 0.87  SELL PR.  t/CCF 75.52 67. 12 75.52 64.72 77.61 67.12 65.20 73.76 75.52 87.45 74.55 74.55 73.76 86.34 74.55 74.55 81.29 87. 45 81.29 81.29 70.09 86.34 74.55 73.76 65.20 75.52 71.74 75. 52 71.55 77.61 71.74 73.76 71.55 71.55 75.52 75.52 71.74 71.74 65.20 71. 74 73. 76 73.76 71.74 67.12 71.55 87.45 70.79 70.79 75.52 75.52  F-B COST SKID COST AREA CD  t/CCF 2.99 2.87 4.36 2.58 2.93 2.55 2.55 2.93 4.36 2.86 2.64 3.19 2.93 2.88 2.64 2.64 3.37 2.86 3.41 2.88 2.93 2.88 2.64 4.10 2.55 4.28 2.58 2.99 3.65 3.27 2.58 2.93 4.75 4.75 2.99 4.83 2.58 2.58 2.55 3.25 2.93 4.04 2.58 3.53 3.25 2.86 2.91 2.73 4.2 5 3.35  RV.COST  HAUL COST  RD DEV.  t/CCF  t/CCF  t/CCF  t/CCF  t/CCF  4.35 4.67 5.40 3.48 3.76 3.77 3.77 4.75 5.40 2.99 3.40 4.26 4.16 3.65 3.40 3.40 3.93 2.99 3.93 3.65 4.16 3.14 4.68 5.74 3.77 6.16 3.89 4.35 4.76 4.66 3.89 4.16 4. 76 4.76 4.35 5.40 3.89 3.89 3.77 4. 76 4.16 5.00 3.89 4.64 4.76 4.09 7.64 4.43 6.64 5.51  0.55 0.90 0.93 1.07 0.31 0.53 0.26 0.21 0.90 0.27 0.34 0.67 0.26 0.24 0.24 0.34 0.53 0.41 0.58 9.24 0.44 0.31 0.52 0.54 0.60 0.54 0.43 0.38 1.45 0.50 0.40 0.21 3.69 3.69 0.21 1.85 0.21 0.21 0.43 0.63 0.27 0.62 0.21 1.35 0.63 1.47. 0.29 0.41 0.58 0.48  7.88 8.45 10.67 7.13 7.00 6.84 6.58 7.89 10.67 6.12 6.38 8.12 7.35 6.77 6.27 6.38 7.83 6.27 8.01 6.77 7.53 6.33 7.84 10.37 6.92 10.98 6.91 7.72 9.86 8.44 6.88 7.30 13.21 13.21 7.55 12.07 6.69 6.69 6. 75 8.64 7.36 9.67 6.69 9.53 8.64 8.42 10.84 7.57 11.48 9.34  5.66 4.26 3.24 6.01 5.59 6.89 6.46 6.30 3.89 6.49 5.23 4.92 4.82 0.84 1.05 5.38 0.81 7.57 0.91 4.45 3.91 7.29 6.40 6.83 7.60 6.76 8.04 6.35 8.03 2.69 3.95 8.64 8.63 8.33 10.34 10.31 10.01 9.74 9.29 9.89 9.75 9.88 8.67 9. 56 9.45 1.19 3.51 3.24 3.57 1.83  0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.54 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.73 1.73 1.73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  NET VALUE  t/CCF 61.98 54.41 61.61 51.58 65.02 53.39 52.16 52.03 60.96 74.84 62.94 61.51 61.59 78.73 67.23 62.79 72.65 73.61 72.37 70.07 58.65 72.72 60.32 56.56 50.68 57.78 56.79 61.45 53.66 66.49 60.90 56.09 47.97 48.28 57.63 53.13 55.04 55.31 49.17 53.21 56.65 54.21 56.37 48.03 53.46 77.84 56.44 59.98 60.47 64.35  t/ACRE 1549.47 1425.62 2772.64 954.32 2861.02 1388.06 3338.26 2601.31 2743.24 4632.42 3650.42 3751.93 3202.56 3503.70 3899.19 3641.69 3232.84 2944.28 2533.08 3153.12 2639.47 3199.77 3498.32 3167.43 1145.42 3235.77 1817.23 2212.24 1S02.47 3124.85 2984.21 3645.92 527.71 531.08 3745.76 1168.95 3522.58 3545.24 1573.35 3405.13 2866.66 3545.57 3607.96 1440.83 3421.31 1517.98 3273.45 3478.92 2962.90 3153.12  WESTLAKE PSYU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM «»»•*••»*•**••»**»#»••»***•*•»••****»*****•**»«**»»«  PAGE  19  STANO ECONONICS REPORT STAND NO. AGE SITE G-TYPE  •OMUO aoosiso 8034160 S065160 6033160 8001160 8064160 10001160 10029160 10038160 11034160 11013160 11043160 12001160 12056160 14068160 14038160 14128160 14062160 14122160 15110160 15034160 15127160 16013160 16073160 16045160 16046160 17053160 17033160 17020160 17001160 17002160 17040160 17019160 17031160 17032160 18055160 18101160 18001160 18089160 18022160 18073160 18074160 18040160 19033160 19014160 19001160 19045160 20057160 20056160  16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  COTO  VOLUME STOCK. CCF/AC PCT. 64.90 49.00 44.80 51.50 38.40 38.40 38.40 38.00 38.00 47.00 57.00 40.00 55.00 47.00 47.00 47.00 52.00 49.00 52.00 49.00 38.40 44.00 38.40 38.40 30.00 30.00 38.00 44.50 49.20 44.50 70.30 64.90 49.20 55.00 49.20 38.40 38.40 49.00 47.00 38.00 29.00 50.00 57.00 2 0.00 46.50 38.00 38.00 57.00 47.00 59.00  1.00 0.87 1.02 1.61 0.93 0. 93 0.93 0. 73 0.73 1.07 1.10 0.96 1.39 0.83 0.83 0.89 0.83 0.87 0.98 0.87 0.74 0.85 0.74 0.76 0.53 0.53 0.73 0.68 0.79 0.68 1.2V 1.09 1.12 1.26 1.12 0.93 0.74 0.87 0.83 0. 73 0.31 0.97 1.01 0.46 0.90 0.73 0. 73 0.91 0.83 1.42  SELL PR. */CCF 70.79 75.52 75.52 32.36 85.37 85.37 85.37 87.17 87.17 73.52 87.17 85.37 77.61 75.52 75. 52 75. 33 88.03 75.52 75.33 75. 52 87. 17 87.17 87.17 87. 17 75.52 75.52 87.17 70. 79 72.82 70.79 75.52 70. 79 75.52 75.52 75.52 85.37 87.17 73.52 75.52 87. 17 75.52 87.17 75.52 75.52 87. 17 87.17 87. 17 74. 55 75.52 85. 37  F-B COST SKID COST AREA COST J/CCF */CCF J/CCF 2.72 3.35 4.29 2.65 2.86 3.33 2.86 3.34 3.14 4.27 3.28 3.33 3.95 4.27 2.96 4.01 3.34 4.25 3.23 4.25 4.45 2.86 3.33 4.45 3.42 3.42 3.34 2.97 3.28 2.76 3.31 2.72 4.25 3.33 4.25 4.43 2.86 3.35 4.27 3.34 4.53 3.30 3.33 4.84 2.86 2.86 3.34 2.64 2.96 2.86  4.43 5. 51 6.64 6.27 4.09 3.80 4.09 3.80 3.80 6.64 3.80 3.80 5.42 5.34 4.55 5.42 3.69 5.34 4.41 5.34 3.47 4.09 3.80 3.47 5.51 5.51 1.80 7.64 4.27 4.41 5.51 4.43 5.06 5.51 5.06 3.47 4.09 5.51 6.64 3.80 6. 16 3. 80 5.51 6.16 1.20 4.09 3.80 3.21 4.55 3.20  0.16 0.48 0.64 0.56 0.75 9.62 0.75 0.62 0.62 0.61 0.41 0.59 0.52 0.86 0.42 0.51 0.45 0.93 0.45 0.81 1.45 0.69 0.62 1.45 0.79 0.79 0.62 0.38 1.11 0.51 9.14 0.16 l.ll 0.43 1.13 1.45 0.79 0.48 0.61 0.62 1.04 0.47 0.41 1.51 0. 36 0.80 3.62 0.24 0.29 0.23  HARV.COST S/CCF 7.52 9.34 11.57 9.47 7.70 7.75 7.70 7.76 7.76 11.52 7.50 7.72 9.89 10.47 7.93 10.04 7.48 10.42 8.10 10.42 9.36 7.64 7.75 9.36 9.72 9.72 7.76 10.99 8.68 7.72 9.15 7.52 10.44 9.27 10.44 9.36 7.74 9.34 11.52 7.76 11.74 7.57 9.25 12.52 6.42 7. 75 7. 76 6.09 7.80 6.29  HAUL COST */CCF 3.19 1.90 5.44 3.48 5.36 2.43 3.34 2.08 1.63 1.36 2.68 1.79 1.15 3.99 4.18 3.82 2.00 2.48 2.86 2.55 2.36 4.74 2.33 3.02 0.89 0.46 3.00 3.28 3.62 2.80 2.18 3.08 3.20 3.00 3.17 3.55 7.65 4.67 4.14 4.84 4.74 4.90 4.58 4.62 5.54 5.65 7.73 6.85 8.33 8.75  RD DEV. NET VALUE 3/CCF i/CCF »/ACRE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.73  60.09 64.29 58.51 19.41 72.32 75.20 74.34 77.34 77.78 62.64 77.00 73.87 66.57 61.06 63.41 61.46 78.55 62.62 64.38 62.55 73.45 74.79 77.10 74.79 64.91 65.34 76.42 56.53 60.52 60.27 64. 19 60.20 61.88 63.24 61.91 72.46 71.78 61.51 59.86 74.57 59.04 74.71 61.69 58.38 75.21 73.77 71.68 61.61 59.39 68.60  3899.75 3190.04 2621.10 999.52 2777.19 2887.63 2854.65 2938.77 2955.67 2944.01 4388.93 3034.81 3661.39 2869.64 2980.28 2888.73 4084.81 3068.42 3347.96 3064.81 2897.18 3290.94 2960.33 2 871.95 1947.40 1960.16 2903.77 2515.45 2977.43 2682.05 4312.54 3906.90 3044.45 3478.44 3046.21 2782.39 2756.51 3014.19 2813.44 2833.85 1712.13 3735.32 3516.24 1167.68 3497.31 2803.14 2721.91 3511.94 2791.35 4047.40  WESTLAKE PSYU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM  PAGE  40  STAND ECONOMICS REPORT STAND NO. AGE SITE G-TYPE  VOLUME STOCK. CCF/AC PCT.  SELL PR. t/CCF  21011155 21053155 21024155 21037160 21023155 21054155 21028155 21006160 21011160 21001160 21048160 21023160 22052160 22003155 22023160 22001155 22002159 22029155 22030159 22031159 22118160 22004160 22062199 22006199 29139160 23 029199 23019199 29069160 23167160 23094160 23001199 23092160 23046199 23002199 23069155 23003155 23044155 23066155 23043155 23038155 23016160 23002160 23018155 23148160 23001160 23011160 24001155 24025160 24005155 24014155  46.20 46.20 70.30 42.00 46.20 70.30 46.20 47.00 49.00 47.00 42.00 49.00 49.00. 58.00 47.00 48.00 66.20 66.20 49.00 53.00 47.00 64.00 7.70 7.70 38.00 58.00 64.90 47.00 38.00 66.00 49.00 60.00 68.70 38.40 68.70 64.90 49.00 44.80 66.20 38.40 4 7.00 23.00 38.40 38.00 32.00 23.00 46.50 49.00 54.60 39. 70  87.17 87.17 75.52 75.52 87.17 75.52 87. 17 75.52 75.52 75.52 75. 52 75.52 87.17 70.79 75.33 75. 52 87.17 87.17 75.52 70.79 77.61 82.41 75.52 75. 52 87.17 70. 79 70.79 75. 52 87.17 87. 17 75.52 87. 17 32.36 87.17 87.17 70.79 75.52 75.52 87. 17 85.37 75.52 85.37 85.37 77.61 75.52 87.45 87. 17 76. 18 87. 17 87. 17  16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  COTD  SP  0.89 0.89 1.2t 0.74 0.89 1.24 0.89 1.07 1.12 1.07 0.96 1.12 0.95 0.89 0.89 0.85 1.28 1.28 0.87 0.82 1.19 1.33 0.28 0.23 0. 73 3.89 1.00 0.83 0.73 1.28 0.87 1.16 2.83 0.74 1.33 1.00 0.87 0.79 1.28 0.93 1.07 0.55 0.93 0. 96 1. 15 0.73 0.93 0.85 I.OS 0. 77  F-B COST SKIO COST AREA COST */CCF $/CCF l/CCF 2.86 2.86 3.78 4.32 3.91 4.13 3.91 3.75 2.96 3.75 4.32 2.96 2. 86 2.73 4.31 3.35 3.27 3.27 3.35 2.74 2.91 3.31 5.05 4.00 2.86 2.91 2.72 4.27 2.86 2.86 3.35 2.86 2.65 3.33 2.86 2.72 2.96 2.96 2.86 3.81 3.35 4.79 3.33 2.91 4.47 4.79 4.35 3.26 4.29 2.86  3.20 4.09 4.25 5.34 2.90 6.64 2.90 9.03 4.55 9.03 5.34 4.55 4.09 4.43 5.42 5.51 3.80 3.80 5.51 4.43 3.54 3.69 9.03 5.51 3.20 7.64 4.43 6.16 3.20 4.09 5.51 4.09 4.65 3.80 3.20 4.43 4.55 4.55 3.20 5.87 5.51 3.66 3.80 3.54 5.34 3.66 4.39 4.84 4.39 3.20  0.43 0.62 0.34 0.97 0.52 0.43 0.49 0.36 0.28 0.36 0.97 0.28 0.62 0.41 0.61 0.49 0.36 0.36 0.48 0.45 0.29 0.37 2.IS 3.07 0.52 0.29 0.36 0.64 0.36 0.46 0.48 0.50 0.29 0.62 0.29 0.36 0.40 0.44 0.30 0.44 0.50 1.77 0.62 0.36 1.27 1.77 0.58 0.48 0.50 0.50  HARV.COST */CCF  HAUL COST S/CCF  6.49 7.57 8.37 10.63 7.33 11.20 7.30 13.13 7.79 13.13 10.63 7.79 7.57 7.57 10.04 9.35 7.42 7.42 9.34 7.62 6.74 7.38 16.26 12.58 6.58 10.84 7.52 11.08 6.42 7.41 9.34 7.46 7.59 7.75 6.35 7.52 7.91 7.95 6.36 10.12 9.36 10.22 7.75 6.81 11.08 10.22 9.32 8.59 9. 17 6.56  7.09 6.99 6.98 8.14 7.15 6.98 6.99 7.95 7.99 7.75 8.31 8.41 6.03 4.59 3.63 4.63 5.23 5.39 5.19 5.28 4.92 4.49 5.03 4.72 3.83 4.49 4.42 6.91 3.76 6.18 5.44 5.76 5.77 5.18 5.75 4.47 5.55 5.78 5.68 5.58 3.01 4.53 5.53 5.37 3.57 3.33 6. 81 5.30 6.81 6.73  RO DEV. NET VALUE S/CCF t/CCF t/ACRE 0.0 0.0 0. 0 1. 73 0.0 0.0 0.0 0.0 1.73 0.0 1.73 1.73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  73.59 72.61 60.16 55.02 72.68 57.34 72.88 54.44 58.00 56.64 54.85 57.59 73.57 58.64 61.65 61.54 74.52 74.36 60.99 57.90 65.95 70.55 54.23 58.22 76.76 55.47 58.86 57.53 76.99 73.58 60.74 73.95 19.00 74.25 75.07 58.80 62.05 61.79 T5.13 69.67 63.15 70.62 72.10 65.44 60.87 73.90 71.04 62.29 71.18 73.88  3399.79 3354.65 4229.55 2310.80 3358.04 4030.88 3367.19 2558.69 2842.08 2568.11 2303.70 2821.86 3604.92 3400.97 2897.62 2953.79 4933.33 4922.36 2988.74 3068.66 3099.50 4514.97 417.58 448.31 2916.97 3217.07 3819.71 2704.03 2925.44 4856.35 2976.33 4437.17 1305.55 2851.04 5157.47 3816.42 3040.53 2 768.09 4973.61 2675.24 2968.06 1624.21 2768.69 2486.58 1947.89 1699.73 3303.30 3052.18 3886.63 2932.97  WESTLAKE  PSYU  -  STAND  APPRAISAL  FOR  STATE  VARIABLE  SUBSYSTEM  p» c G  *••»••**»•*••••••*•»••*»******•****»*»*»»*»*»***»»»***••*»*******«*»•**«****** STAND  STAND  NO.  AGE  SITE  G-TYPE  VOLUME CCF/AC  2*931160 2*081155  16  1  16 16  1 1  16  STOCK. PIT.  62.00  0. 99  SF  46.50 49.00  0.90 0.92  1  PLF  46.50  16 16  1 1  F  16  2*098155  FS F  SELL  PR.  t/CCF  ECONOMICS  F-B COST */:CF  *.  REPORT  SKIO  COST  t/CCF  AREA  COST  t/CCF  HARV.COST  t/CCF  HAUL  COST  t/CCF  RD  DEV.  t/CCF  NET t/CCF  VALUE t/ACRE  88.03 87.17  3.32  3.69  0.38  7.39  5.41  2.86  3.20  0.36  4664.48  6. 52  75.33  3.24  0.0 0. 0  75.23  6.42  4.41  0.49  74.23  3451.68  8.13  0.74  5.46  74.55  2.64  0.0  0.29  61.74  3025.28  6. 14  43.60  0.84  0.91  87.17  2.86  3.21 4.09  0.66  67.50  3138.65  F  46.50  0.9)  6.97  87.17  2.86  3.20  0.42  7.61 6.49  0.0 0.0  72.59  3164.87  1  F  52.00  1.09  7.07  87.  0.0  2.86  0.32  3423.03  16  1  6.38  38.00  6.72  0.73  87.17  2.86  1  7.71  52.00  1.09  87.17  2.86  3.20  0.75 0.32  3851.41  16  72.34  2748.79  2*057155  16  1  6.38  7.13 6.40  0.0 0.0  74.07  2*036155  F F  3.20 4.09  73.61  F  49.00  0.95  87.  0.0  2.86  74.39  3868.07  6.40  FS  46.50  0.97  7.04  82.41  0.0  4.45  3.20 4.49  0.34  2*062 1 6 0 16  73.73  0.58  3612.90  F  59.00  1.42  0.0  2.86  9.52 6.29  0. 84  85.37  72.06  3350.65  8.78  1.73  68.57  4045.65  6.38 6.55  7.70  0.0  71.30  3707.43  24012160 2*136160 2*089155 2*023155 2*087155  2*068155  16  2*105160  16  2*15*160  16  2*071160  16  2*111160  16  2*09*160  16  2 2 2 2 2 2 2 2  2*001160  16  9  FS  25039160  16  1  FS PLF FPL FS  2*026155  16  25052160  16  1  25003160  16  25016160  16 16  2 2  39001160  1  17  17  3.20  0.23  F  52.00  1.25  85.37  2.86  3.20  0.32  FS  46.50 46.50  0. 97 0.97  82.41  2.88  3.45  0.23  0 . 91  82.41  0.0  74.95  3485.36  73.50  0.29 9.37  0.85  1.21  2.97 3.92  6.14  54.00  2.88 2.91  0.0  75.43  3507.56  7.20  3.95  FS  46.50  0.97  B2.41  0.0  2.88  62.34  3.45  3366.49  6.55  0.87  SPL  47.00  1.05  0.0  73.50  2.91  74.99  3.92  0.23 0.42  3487.03  7.26  3.85  25.00  0.75  0.0  62.39  84.60  2932.21  4.82  3.73  1.53  10.18  4.46  49.00  0.0  69.96  88.03  174B.96  0.28  6. 12  6.32  0.0  75.59  74.55  2.88 2.64  2.97  57.00  0.78 0.91  3704.04  3.21  0.24  6.09  6.78  52.00  1.07  0.0  61.69  3516.27  83.29  2.85  4.11  0.58  7.55  6.65  0.0  69.10  38.00  0.79  3593.07  82.41  2.88  4.06  7.73  67.78  2575.78  7.50  6.90 2.78  0.0  3.80 4.84  0.80 0.41  0.0  75.89  4382.73  0.48  8.59  5.61  0.0  61.98  3036.87  1.73 0.0  54.85  2331.09  70.65  2684.64  FS SPL  F  57.00  1.10  87.17  3.28  46012160  16  1  SPL  49.00  0.85  3.26  16 16  2  76.18  53010155 76005155  S F  42.50  0.97  75.52  0.96  10.61  0.73  87.17  4.32 2.86  5.34  38.00  3.20  0.36  6.42  77001155  16  1  8.33 10. 10  0.22  6.48  770*7155 77033155  16  8.99  0.0  57.35  3498.49  3.20 4.41  0.36  6.42  8.43  0.0  70.52  3279.38  0.33  9.23  77055155  16  77066155  16  2 2 2 2  3.67  10005160  18  1  10072160  18  2  10032160 EXECUTION  18  2  tSIG  16  1  TERMINATED  PLS F  61.00  0. 98  72.82  46.50  85.37  SF  49.00  1.12 1.24  2.58 2.86  77.61  4.00  9.32  2893.60  46.50  0.0  59.05  F  1.12  8 5 . 37  2.86  3.20  0 . 36  6. 42  8.63  0.0  70.32  F  3270.06  46.50 10.00  1.12 0.17  85.37  2.86  3.20  0.36  6.42  8.41  0.0  70.55  3280.45  3.72  4.64  2.36  10.72  1.91  0.0  61.13  611.30  10.00  0.2)  73.76 70.28  2.55  4.66  3.02  10.24  1.47  0.0  58.57  585.73  73.76  3.72  4. 64  2.36  10. 72  1.61  0. 0  61.43  614.34  SPL PL  SPL 10.00 0.22 12:04:01 T• 2 3 . 7 0 6  RC«0  $13.47  APPENDIX  Factor  Analysis  VI  Results  '—  - FACTOR ANALYSIS - REVISED JAN.  8, 1975  _JtME. PROGRAM WILL ATTEMPT TO ACQUIRE •••••FACTOR ANALYSIS ON 20 T Y P E  ISLAND STATE VARIABLES OF THE WESTLAKE psru  - --  *•••* <  - - IA4,10X,F5.2,10X,F8.2,18X,9( IX, F 5 . 2 l t 7 X . 9 l l X .F6.2I1  INPUT FORMAT  IA4.10X.8F8.3)  OUTPUT FORMAT ..  NUMBER OF VARIABLES MAX.  ITERATIONS FOR  COPMUNALITIFS  MAX.  ITERATIONS FOR  ROTATION  20 1 50  MAXIMUM NUMBER OF FACTORS TO BE EXTRACTED LOWER LIMIT ON  8 0.10000  EIGENVALUES  UPPER LIMIT ON REFERENCE AXIS CCRRELATIONS THE CORRELATION  MATRIX IS FORMEC  DIAGONAL ELEMENTS VARIHAX  . ....  2 PAGE(S 1 OF MEMORY TO P U N THIS PROBLEM  ROTATION  0.95000  .-  -  -  —  •—  ARE UNALTERED IS PERFORMED  VARIABLE NAMES ARE REAO IN CASE IDENTIFICATION IS REAO WITH EACH CASE 1985  NUMBER OF CASES VARIABLE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  VOL NOW VAL NOW VOL340 VOLS60 V0L380 V0LB100 V0LS120 V0L»140 V0L3163 VOLaiSO VOL3200 VAL340 VAL360 VAL380 VALSIOO VALS120 VAL3140 VAL3160 VALS180  MEAN 23.637 1347.7 7.4104 16.041 24.C55 30.481 34.584 37.194 36.591 35.341 39.476 46.340 48.406 51.737 52.611 53.756 53. 582 55.575 55.6e6  ST.DEV. 18.129 1184.5 4.7313 7.6736 9.6 387 11.011 11.915 12.535 12.915 13.138 13.211 17.453 15.428 14.658 14.102 14.627 14.501 14.372 14.417  "VARTANCE  S T . D E V . OF THE MEAN  MINIMUM  328.670 0.140299E*07 22.3854 58.8847 92.9038 121.241 141.966 157.135 166.ROb 172.602 174.520 304.594 238.038 21<..853 216.151 213.940 210.286 206.557 207.850  0.40691 26.586 U.13619 0 . 17223 6.21634 3.24714 0 . 26743 0.28136 0.28988 0.29488 0.29651 0.39172 0.34629 0.32903 0.32999 0.32830 0.3i548 0 . 3*258 0.32359  0.0 -51.850 0.33030 1.4000 2.8003 4.2003 5.1700 5.713J 5 .9800 6.0800 6.3833 0.0 2.4703 8.3933 9.8100 9.9403 10.033 10.060 10.393  MAXIMUM 70.303 5330.7 30.15J 46. 730 64.000 71.2 20 72.50J 71.793 75.26J 77. OJJ 7 7. 5 83 76.95J 78.37J 79.170 79.850 8 0 . 2 70 80.5t>J 80.65J 80. 5 10  T  OBSEWATTONS " 1985.0 1985.0 1985.0 1985.0 1985.3" 1985.0 1905.0 19P5. 0 1985.0 1985.0 1985.0 1985.0 1985.0 1985.0 1985.0 1985.0 1985.0 1985.0 1985.0  SUM 46919.  o.26752E*o7  14710. 31841. 47749. 60504. 68648. 7J830. 76604. 78091. 78 363. 91985. 96085. 0.10270F*06 0.10443E»06 0.10670E»06 0 . 10636F»06 O.U032F»06 0.11354E+36  CORRELATION  >  '  MATRIX  HITH  INITIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  VOL NOW VAL NON VOL340 V0L860 VOL380 VOL3100 VOL3120 V0L3140 V0L3160 V0L3180 VOL3200 VAL340 VAL360 VAL380 VAL3100 VAL3120 VAL3140 VAL3160 VAL3160 VAL3200  1 VOL NOW 1.0000 0.56134 0.70019 0.73942 0.72223 0.68139 0.66034 0.64777 0.64366 0.63948 0.63734 0.44926 0.42065 0.37204 0.37204 0.34585 0.33935 0.33768 0.32992 0.33015  9 10 11 12 13 16 15 16 17 18 19 20  V0L8160 VOL3180 VOL8200 VAL340 VAL360 VAL380 VAL3100 VAL3120 VAL3140 VAL3160 VAL3180 VAL3200  9 VOL3160 1.0000 0.99905 0.9S616 0.54723 0.44028 0.37755 0.41521 0.36243 0.35297 0.38243 0.37384 0.37063  17 18 19 20  VAL3140 VAL3160 VAL3180 VAL3200  17 VAL3140 1.0000 0.58591 0.58859 0.98857  COMMUNAL ITY  2 VAL NOW  ESTIMATES ON THE  3 V0L340  4  DIAGONAL  V0L360  5 VOL380  6  VOL 310 0  7 VOLS 120  8  VOL«140  1.0300 0.74511 0.15220 0.72201 0.67404 0.64806 0.63122 0.62845 0.62789 0.62760 0.58170 0.57957 0.53754 0.53580 0.51455 0.51140 0.50107 0.49630 0.49683  1.0000 0.95301 0.88170 0.80335 0.75660 0 . 72504 0.70922 0.70005 0.69240 0.56655 0.52952 0.45870 0.45436 0.42496 0.43832 6.41503 0.41145 0.41095  1.0000 0.97927 0.93124 0.89694 0.87242 0 . 8 5 792 0.84641 0.8361 7 0.58483 0.53121 0.44026 0.44593 0.40240 0.42710 6.41352 0.40489 0 . 4 0 4 24  1.0000 0 . 9 8 4 76 3.96556 0.94923 0.93843 3.92860 0.91853 0.59311 0.52012 0.43428 0.45192 0.40320 0.42050 0.42176 0.41115 0.41U46  1.0000 0.99552 0.98732 0.98041 0.97332 0.96451 0.58782 0.49671 0.41928 0.45160 0.39913 0.40390 0.41996 0.40830 0.40769  1.0000 0.99770 0.99405 0.98935 0.98257 0.56947 0.46932 0.39801 0.43458 0.38181 0.37908 0.4024 7 0.39058 0.39011  1.0000 0.99896 0.99623 0.99155 0.55045 0.44514 0.37787 0.41536 0.36248 0.35592 0.38313 0.37123 0.37091  10 VOL3180  11  12 V A L 3 4 0  13 V A L 3 6 0  14 V A L 3 8 0  15 V A L 3 1 0 0  16  1.0000 0.59894 0.54775 0.44066 0.38143 0.41963 0.36743 0.35531 0.38546 0 . 3 7464 0 . 3 7456  1.0000 0.54247 0.43595 0.37925 6.41687 0.36486 0.35147 0.38155 0.37137 0.37143  1.0000 0.93441 0.91010 0.90450 0.88951 0.88700 0.90604 0.90436 0.90405  1.0000 0.96855 0.94086 0.94109 0.97792 0.96193 0.96358 0.96361  1.0000 6.96298 0.98298 0.98599 0.98982 0.99219 0.99221  1.0000 0.97629 0.94903 C.96850 0.96874 0.96855  1.0000 0.96819 0.98087 0.98252 0.98260  18 VAL3160  19 V A L 3 1 8 0  20  1.0000 0.59871 C.59860  1 .0000 0.99992  V0L3233  VAL3120  VAL3200  1.0000  sun OF SQUARES  91.689 OF OFF DIAGONAL E L E M E N T S ' MEAN OF SQUAPFS OF OFF DIAGONAL ELF ME M S = 0 . 2 4 1 2 9 SQUARE ROOT OF MEAN OF SQUARES OF OFF CI AGONAL E L E M E N T S '  0.49121  EIGENVALUES 13.353 0.76567E-02 CUMULATIVE 0.66767 0.99959  4.8831 0.36242E-02  0.99859 0.29308E-02  PROPORTION OF TOTAL 0.91182 0.99977  0.44807 0 . 11B56E-02  0.11590 0.36499E-03  0.81387E-01 0.13261E-33  0.42399E-01 3.61443E-04  0 . 32316E-31 3.23237F-J4  0.15498E-01 0.11182F-04  0.13468E-01 3.32 787P-35  0.98995 0.99999  0.99402 1.0000  0.99614 1.0000  3.99775 1.0000  0.99853 I.OOOO  0.99920 1 .0000  VARIANCE  0.S6175 0.99991  0.98415 0.99997  PER CENT OF TOTAL VARIANCE 66.76684 6.03828 TINE  FOR I N I T I A L  24.41530 0.01812  ACCOUNTED FOR BY EACH FACTOR 4.99293 6.01465  2.24034 0.00593  FACTOR-LOAD 1NGS-MATR I » IS  TIME FOR ACCURACY CHECK  IS  0.14E-01  0.57949 0.00182  0.9036E-01  SECONDS  0.65505E-06  0.4U68E-06  ERROR BOUNDS FOR EIGENVECTORS 0.88703E-05 0.96892E-05 0 . 5 1 3 4 6 E - 0 5  0.39441E-C5  0.24787E-05  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  VOL NOW VAL NOW V0L340 VOL960 VOL380 VOLB100 VOL a120 VOL8140 VOLS 160 voLaieo VOLa200 VAL840 VALa60 VALaeo VALalOO VALai20 VAL3140 VAL3160 VALaiao VALa200  0.21200 0.00031  0.161S8 0.03312  0.07749 0.00006  0.06734 3.00332  '  SECONDS.  Faann BOUNDS FHR F I C F N V A . U F S 0.37567E-04 0.18819E-04 0.14133E-05  VARIABLE  0.40693 0.OJU51  OP IG I r. At COMMLNALITV  EST IMATEO CCHMUNAL1TY  FINAL COMMUNAL 1TY  1.0000 l.COOO 1.0000 l.OCOO l.CCOO 1.0000 l.CCOO 1.0000 l.COOO l.COOO 1.0000 l.CCOO 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  u.99126 0.99027 0.98504 0.99583 0.99173 0.99373 0.99746 0.99950 0.99938 0.99665 0.99032 0.99574 0.97270 0.99097 0.95786 0.97938 0.98372 0.99409 0.99666 0.99668  20.000  20.000  19.799  1.0000  1.0000  0.98995  SUM OF COMMUNAL I T I E S MEAN COMMUNAL I TV  p—•  J  MATRIX OF RESIDUALS WITH UNIQUENESSES  1 VOL NOH 2 VAL NCW 3 VOL340 • V0L360 5 V0L380 6 V0L3100 V0L3120 S V0L3140 9 VOL3160 10 V O L S 1 8 0 11 V O L 3 2 0 0 12 V A L 3 4 0 13 V A L 3 6 0 14 V A L 3 8 0 15 V A L 3 1 0 0 16 V A L 3 1 2 0 17 V A L 3 1 4 0 18 V A L 3 1 6 0 19 V A L 3 1 6 0 20 V A L 3 2 0 0  1 VOL NOW 0.E7174E-02 -0.91295E-02 -0.35534E-02 O.21908E-O2 0.33746E-02 0.28821E-02 0.160B6E-02 0.57583E-03 -0.86503E-03 -0.266C6E-02 -0.62044E-02 -0.1171BE-02 -0.32913E-03 0.S8578E-O3 -0.26389E-02 -0.59319E-03 0.27643F-03 0.23719E-02 0.16393E-02 0.14593E-02  9 10 11 12 13 14 19 16 17 18 19 20  VOL3160 V0L3180 V0L3200 VAL340 VAL360 VAL380 VAL3100 VAL3120 VAL3140 VAL3160 VAL3180 VAL3200  9 V0L3160 0.6201SE-03 0.125UE-02 0.19608E-02 0.50547E-03 -0.31036E-03 0.10221E-02 -0.59869E-03 0.31492E-03 -0.60348E-03 -0.31338E-03 -0.10749E-03 -0.56243E-04  17 18 19 20  VAL3140 VAL3160 VAL3180 VAL3200  IT VAL3140 0.16284E-01 0.33255E-03 0.U655E-O2 0.U843E-02  '  FACTOR-LOAOINGS MATRIX  ON THE DIAGONAL  2 VAL NOW 0.97333E 0.27814E -0.20159E -6.2B839E -0.237C4E -0.12977E -0.49829E 0.76016E 0.23713E 0.36B06E 0.84226E 0.10206E -0.13457E 0.13569E -0.66988E 0.79160E -0.19416E -0.12883E -0.11126E  -02 -02 -02 -02 -02 -02 -03 -03 -02 -02 -03 -02 -02 -02 -04 -03 -02 -02 -02  10 V0L31 80 0.33483E -02 0 . 5 5 8 8 6 E -02 0.13548F-02 - 0 . 7 8 1 3 7 E -03 0.17191E -02 0.31433E -04 0 . 1 0 6 0 7 E -02 - 0 . 1 3 0 9 6 E -02 - 0 . 1 5 5 3 4 E -02 - 0 . 5 5 9 2 IE - 0 3 -C.40027E -0 3  18  VAL3160  JI.59091E-02 0.34282E-02 0.33186E-02  BEFORE  3  V0L340  0 . 1 4 9 6 4 E - 01 - 0 . 7 0 9 8 6 E - 02 - 0 . 1 0 6 2 8 E - 01 - 0 . 7 3 5 3 0 E - 02 - 0 . 3 4 4 5 4 E - 02 - 0 . 4 4 1 6 7 E - 03 0 . 2 2 8 1 5 E - 02 0 . 5 6 B 1 8 E - 02 0 . 8 8 0 6 2 E - 02 0 . 5 8 3 5 2 E - 02 - 0 . 1 0 5 2 8 E - 01 0 . 1 6 3 8 6 E - 02 0 . 6 4 6 8 5 E - 02 0 . 7 1 1 8 7 E - 02 - 6 . e 6 7 4 8 E - 02" - 0 . 1 6 7 6 5 E - 02 - 0 . 4 4 2 0 8 E - 03 - 0 . 2 7 3 1 6 E - 03  11  V0L3200  0.96840E-02 0.18987E-02 -0.54873E-03 0.28835E-02 0.16374E-03 0 . 10644E-02 -0.16332E-02 -0.26963E-02 -0.10381E-02 - 0 . 76 08 7 E - 0 3  4  VOL360  5  V O L i B0  0.68814 0.77691 C.78140 0.e4C09  0.86155 0.85693  V0Lai20  12 V A L 3 4 0  13 V A L 3 6 0  14 VAL 3 80  15 V A L 8 1 0 0  0.42621E-02 -0.10082E-01 0.79175E-03 0.4249 3E-02 0.63927E-02 -0.59421E-02 0 . 2 7 1 5 7E-04 0.18968E-04 0.11253E-04  0.27299E-01 -0.19754E-02 -0.11358E-01 -0.12980E-01 0.1530OE-01 - 0 . 2 8 0 75E-02 -0.17267E-02 -0.15377E-02  0 . 9 0 3 1 7 E - 02 - 0 . 9 0 0 3 5 E - 02 - 0 . 1 2 9 0 3 E - 03 - 0 . 29686 E- 0 . 1 2 0 5 9 E - 03 0 . 8 0 5 2 6 E - 03 0 . 8 4 8 9 7 E - 03  0.42141E-01 0.105 35E-01 -6.17065f-61 -0.58688E-02 -0.62411E-02 -0.643336-02  19 VAL3180  20  0.33350E-02 0.32544E-02  0.33249E-02  -0.57664 -0.56269 -0.28778 -0.14138 -0.76976E-03 0.12286  7  0.82735E -02 0 . 5 9 7 4 0 E -02 0.28231E -02 0.23999E -03 - 0 . 1 8 9 3 3 E -02 -0.46165E -02 -0.72878E -02 - 0 . 3 1 7 4 1 E -02 0.40560E -02 - 0 . 9 5 0 2 9 E -03 - 0 . 3 0 8 0 0 E -02 - 0 . 3 8 1 0 6 E -02 0.43482E -02 0 . 18554E - 0 2 0.73969E -03 0.54278E -03  VAL3200  ROTATION  -0.34108 -0.17475 -0.32948 -0.43995 -0.47837 -0.49319  vOLaioo  0 . 4 1 6 7 7 E - 02 0 . 5 1 9 9 5 E - 02 0 . 2 7 5 7 5 E - 02 0 . 8 9 6 8 2 E - 03 - 0 . 9 6 2 1 7 E - 04 - 0 . 1 0 0 8 3 E - 02 - 0 . 2 4 7 9 8 E - 02 - 0 . 3 5 3 3 5 E - 02 - 0 . 2 5 0 6 OE- 02 0 . 3 9 2 7 7 E - 02 - 0 . 1 8 3 5 1 E - 03 - 0 . 1 8 0 3 5 E - 02 - 0 . 3 0 7 7 9 E - 02 6 . 2 7 6 3 7 E - 02 0 . 1 0 5 0 2 E - 02 0 . 1 4 9 5 1 E - 03 0 . 9 6 2 8 5 E - 04  FACTOR 1 VARIABLE 1 VOL NOW 2 VAL NOW 3 V0L34Q 4 V0L360 5 VOL380 6 V0L3100  6  0.26138 0.19868 -0.42557 - 0 . 2 7b54 -0.14351 -0.32329E-01  -0.2378OE-01 0.67334E-02 0.44416F-01 0 . 74704E - 0 2 D.46521E-02 0.45682E-02  0 . 6 2 6 8 0 E - 02 0 . 3 7 0 8 3 P - 02 0 . 7 6 8 3 0 E - 03 - 0 . 1 7 8 0 7 E - 02 - 0 . 44308 E- 02 - 0 . 7 4 9 0 2 E - 02 - 0 . 1 7 6 9 8 E - 02 0 . 1 2 8 3 1 E - 02 -0.29491E-02 - 0 . 2 3 3 4 0 E - 03 - 0 . 1 4 4 5 5 E - 02 0 . 2 4 2 3 0 E - 02 0 . 1 7 5 7 8 E - 02 0 . 7 7 0 2 5 E - 03 0 . 5 6 5 7 8 E - 03  03  0.25378E0.75542E-0.90764E-0.25737E-0.46286E-0.75978E0.33243E-0.l9S64f -0.13928E-0.92232E0.91475E0.10693E0.46679E0.J3557F!  02 63 03 02 02 03 03  ti  03 04 03 02 03 63  8  V0L3140  3 . 4 9 5 0 T E - 03 - 0 . 3 1 6 9 5 E - 04 - 0 . 5 9 0 1 1 E - 03 - 0 . 1 2 3 4 0 E - 02 - 0 . 2 1 4 5 4 E - 03 0 . 3 6 6 3 6 E - 03 - 6 . 30764E- 03 - 0 . 7 9 3 7 3 E - 03 0 . 1 3 0 0 0 E - 03 0 . 2 8 8 6 7 E - 03 ' 0 . 3 6 9 5 2 E - 03 0 . 1 3 5 6 0 E - 03 0 . 11035E- 03  16  VAL3120  0.20625E-01 -6. U327E-01 -0.43844E-02 -0.42151E-02 -0.4i816E-02  ,  VOL.1120 VOLJ140 V0L3160 V0Lai80 VOLa200 VALa40 VAL360 VALiSO VALaiOO VAL8120 VALS140 V*Lai60 19 V A L 3 1 8 0 20 VALa200 7 8 9 10 11 12 13 14 15 16 17  0.E4072 0.62412 C.62C18 C.61895 0.81366 C.88098 0.E5565 0.61855 0.82445 0.7S645 0.80074 0.81124 0.80539  19  SUM OF  0.17626 0.20413 0.21464 0.22091 0.22115 0.574156-01 -0.19613E-01 -0.39091E-02 0.36006E-J1 0.19805E-01 0.77114E-0i 0.5e669t-01 0.54986fc-01 0.544B7E-01  -0.5L841 - 0 . 52245 -0.51961 -0.51231 -0.5107C 0.34944 0.46086 0.56565 0.J2393 0.57860 0.5ei65 0.57462 0.58553 0.58576  0.60519  SQUARED FACTOR-LOADINGS DIVIDED BY 0.24663 0.67445  ORTHOGONAL  ITERATION 0 1 2 3  0.32675E-01 -0.753B4E-01 0.10273 0.12063 0. 13521 -0.41089E-01 -0.64189E-01 - 0 . 3 0 9 8 7E-0i! 0.33432E-01 0.30497E-01 -0.2964 7E-01 0.29bl6E-01 0.24539E-01 0.2590BE-01  SUM OF COMMUNAL I T I E S 0.50436E-01 0.22631E-01  0.50682E-02 0.46892E-02 0.77856E-J2 0.12450E-01 0.16<!19E-01 -0.30417 -0.69493E-01 0.30B75E-01 0.32755E-01 0.73902E-01 0.57235E-01 0.38203E-01 0.39298E-01 0.397O8E-01  <  • -  -  —  ...  0 . 5 8 5 3 7E -02  ROTATION  SIMPLICITY  CRITERION -0.45S74 -7.7960 -7.8022 -7.8022  TINE FOR ROTATION  IS  0.2832E-01  ROTATED FACTOR-LOADINGS  MATRIX  FACTOR 1 VARIABLE 1 VOL NOW 2 VAL NOW 3 V0La40 4 VOL360 5 VOLaSO 6 VOLS 100 T V0Lai20 8 V0L3140 9 VOLS 160 10 V O L a i B O 11 V O L a 2 0 0 12 V A L « 4 0 13 V A L S 6 0 14 V A L a S O J5_VALalOO 16 V A L a i 2 0 17 V A L a i 4 0 18 V A L a i 6 0 19 V A i a i e o 20 V A L a 2 0 0 SUM OF SQUARED  -0.16961 -0.35260 -0.26161 -0.23314 -0.23223 -0.22939 -0.21224 -0.19338 -0.19392 -0.19917 -0.l56?e -0.65019 -0.92716 -0.56779 -0.945C8 -C.56690 -C.56873 -0.57501 -0.57870 -C.57672  SECONDS  2  3 -0.83842 -0.80010 -0.34573 -0.30849 -0.24841 -0.18417 -0.16042 -0.15015 -0.14987 -0.14968 -0.15328 -0.12528 -0.15058 -0.13478 - 0 . 12004 -0.11843 -0.10662 -0.69319E-01 -0.87268E-01 -0.88123E-01  0.5C079 0.45265 0.62007 0 . 76903 0.68344 0.53800 C.95875 0.56859 0.96913 0.96663 0.96293 0.37109 0.24412 0.17367 0.22129 6 . 16214 0.15427 0 . 16604 17344 17304  FACTOR-LOADINGS OIVIDEO 0.44108 0.41428  BY  4  5  0.91678E-01 0.14449 0.64230 0.4 7179 0.30768 0.16391 0.84817E-01 0.34750E-01 0.53295E-02 -O.13B34E-01 -U.28031E-01 0.98471E-01 0.14569 0.77270E-01 0.34225E-01 0.36848E-01 0.95281E-01 0.24090E-01 0.28373E-01 0.27257E-01  -0.19123E-01 0.40995E-02 -0.49246E-02 -0.33852E-01 -0.28889F-01 -0.21920E-01 -0.16746E-01 -0.13857E-01 -0.88033E-02 -0.29037E-02 0.20333E-02 -0.33138 -0.9785 7E-01 0.73705E-02 0.11385E-01 0.53010E-01 0.32146E-01 0.16705E-01 0.17601E- 01 0.18117E- 01  SUM OF COMMUNAL I T I E S 0.9544bE-01 0.42735E-01  0.64530E-02  ho  MATRIX OF CORRELATIONS OF FACTORS WITH VARIABLES. VARIABLES ARE REORDERED ACCORDING TO HIGHEST CORRELATION WITH A FACTOR. FACTOR 1 VARIABLE 12 VAL340 13_VAL360 15 VAL3100 16 VAL3120 16 VALaSO 17 VAL3140 18 VAL3160 19 VAL8180 20 VAL3200 9 8 10 11 T 6 5 4  VOL3160 VOL3140 VOL3180 V0La200 VOL3120 VOL8100 V0L380 V0L360  -0.85019 ^0.92716 -6.94508 -C.S6690 -0.56779 -C.96873 -0.57501 jHO.S7870_ - 0 . 5 78 72 ******** - 0 . 1 9 392 -0.19338 -C.15517 -0.19698 -0.21224 -0.22939 -0.23223 -0.23314  2 VAL MOM 1 VOL NOW  -0.35260_ -0.16961  3 V0L340  -0.26161  0.37109 0.24412 0.22129 0.16214 0.17367 0.15427 0.18604 _0.17344 6.17304 •*••*•** 0.96913 0.56859 0.56663 0.96293 0.55875 0.53800 0.B8344 0.78903 **•*•*•• 0.45265 0.50079 0.62007  -0.12528 -0.15058 -0.12004 -0.11843 -0.134/8 -0. 10662 -0.B9319E-01 _-0. 87268E-01 -6.88123E-01 -0.14987 -0.15015 -0.14968 -0.15328 -0.16042 -0.18417 -0.24841 -0.30849 •**•••** ^0.80010 -0.83842 ******** -0.34573  0.98471E-01 0.14569 0.34225E-01 0.36848E-01 0.7727OE-O1 0.95281E-01 0.24090E-01 0.283 73E-01 0.2 7257E-01  -0.33138 -0.97857E-01 0. H 3 8 5 F - 0 1 0.53010F-01 0.73705E-02 0.32146E-01 0.16705E-01 0.17601E-01 0.18117E-01  0.53295E-02 0.34750E-01 -0.13834E-01 -0.28031E-01 6.84817E-01 0.16391 0.30788 0.47179  -0.88033E-02 -0. 13857E-01 -0.29O37F-02 0.20333E-02 -0.16746E-01 -0.21920E-01 -0.28889E-01 -0.33B52E-01  0.14449 0.91678E-01 ******** 0.64230  0.40995E-02 -0.19123E-01  *»»»»***  ******** ********  SUM OF SQUARED F ACTOR-LCADIMGS DIVIDED BY SUM OF COMMUNAL IT IES 0.44108 0.41428 0.95448E-01 0.42735E-01  -0.49246E-02  0.64530E-02  REGRESSION COEFFICIENTS FOR FACTOR SCORES FACTOR 1 VARIABLE 1 VOL NON 2 VAL NOW 3 V0La40 4 V0L360 5 voLaso 6 VOLS100 7 VOLal20 8 V0L3140 9 VOL «)160 10 VOLaiBO 11 VOL 3200 12 VAL340 13 VAL360 14 V A L 3 8 0 15 V A L 3 1 0 0 16 V A L 3 1 2 0 17 V A L 3 1 4 0 18 V A L 3 1 6 0 19 V A L 3 1 6 0  0.65893E-01 0.27321E-01 0.36172E-01 0.22988F-01 0.58785E-01 -0.13566E-01 0.52214E-01 0.0 0.0 C.39076E-01  ""o.o  -0.48789F-01 -0.10215 -0.13259 - 0 . 12774 -0.14376 -0.13589 -0.14030 -0.2782S  -0.83960E-01 -0.11401 -0.57135E-01 0.17539 -0.73450E-CI 0.12190 0.36319 0.0 0.0 0.66511 o.c -0.3C8P5E-C1 -0.60369E-01 -0.11205E-01 -0.56356E-C2 -0.2t654F-01 -0.1721CF-C1 0.56296E-02 - 0 . 5128 7 E - 0 1  -0.75377 -0.68219 0.80654E-01 0.14050 0.29777E-01 0.85045E-01 0.19740 0.0 0.0 0.19681 0.0 0.77869E-02 0.14283E-01 0.15862E-01 0.12177E-01 0.72592E-02 0.510641-01 0.41283E-01 0.64936E-01  -0.34574 -0.18956 1.065 7 0.43151 0.55866 0.59506E-03 -0.24686 0.0 0.0 -0.98837 0.0 - 0 . 10910 0.11488 -0.39411E-02 -0.64786E-01 -0.17-.18E-01 0.73321F-O1 -0.77385E-01 -0.6334&E-01  -0.15961 0.92376E-01 0.2BB71 0.13599 -0.15694 0.18325 - 0 . 5 0 0 4 1E-01 0.0 0.0 0.43771 0.0 - 2 . 6 2 73 -0.61065 0.27798 0.28056 0 . 6 3 82 9 0.48543 0.33670 0.66941  .  NO ON  127  APPENDIX V I I  Volume  And V a l u e Y i e l d  Classes  From C l u s t e r  Analysis  >  AGE Ii Ni - Y i R nS j *.  _____  1 1  SI3S3S1  ___  1  -  -  - -  • -  WEtGHTED VOLUME Y T E I O C L A S S E S IN ^ CCF/ACRE ^ • ' »-»v »-  4  5 tssriassssss  6  ssssssssiBtr  _ _ _ — — —  7  8  SS StSSS—'SSSSSCSSSSSSSS  9 10 SSSSSS8SS9s a z v s s c s s i  20 J  0.92  0.00  0.11  0.0  0.18  0.02  2.27  0.36  0.00  0.00  •0!  12.69  6.59  4.34  1.51  2. 10  5. 16  17.78  2.70  8.06  10.88  60!  22.63  15.54  9.98  5.63  5.01  12.05  29.56  6.49  18.47  27.40  80:  29.55  24.57  15.44  tl.*8  7.96  19. 13  37.66  10.55  28.22  41.65  lOOt  34.20  32.24  19.78  16.65  10.37  25.20  42.89  13.97  35.99  52.26  120:  37.02  37.02  22.75  19.74  12.22  29.05  46.12  16.68  41.10  58.62  140!  —3-B.T4  40.02  24. T6  21.76  13.43  31. 49  48.07  18.43  44.43  62.59  160:  39.63  41.65  25.79  22.99  14.03  32.82  49.24  19.33  46.35  64.68  180J  40.09  42.52  26.34  23. 73  14.31  33.55  50.01  19.89  47.32  65.45  200!  40.23  42.64  26.53  23.97  14.43  33. 70  50.20  20. 13  47.55  65.19  ho 00  *  >  WEIGHTED VOLUME Y I E L D IN CCF/ACRE  AGE IN Y R S . —  13  14  15  0.28  1.10  5. 75  2.43  21.23  8.63  ?8.74  20.29  11 20:  0.0  40:  9.30  60S  23.11  4 6 . 7 0 "  16.70  43.75  35.73  80:  35.71  63.96  23.12  53.65  46.43  100:  45.62  71.18  27.73  59.40  53.61  120:  51.60  ~3d.7l  62.91  58.02  1*0:  55.32  71.61  32.71  64.83  60.73  160:  57.28  68.77  34.03  66.11  62.12  180:  58.13  65.09  34.90  6 7 . 07  62.87  60.01  35.33  66.74  63.16  58.01 200: EXECUTION TERMINATED $3.36. T - 1 1 . 3 7 OR » 1 7  SSTG  $3.45T  "  CLASSES  t  AGE  WEIGHTED  I N YRS.  1  2  3  4  ECONOMIC Y I E L D C L A S S E S I N t/CCF  5  6  ttllltltltktimflflslEHBltre  20:  0.0  0.0  40t  5E.77  •5.07  601  59.82  BOi  7  8  9  0.0  10 • SltUHUII  t==««r MS: e x e a t s  0.0  0.0  0.0  0.0  0.0  0.0  0.0  8.09  37.63  6.65  34.52  53.54  62.06  71.93  56.94  55.51  15.06  46.94  71.80  46.63  53.98  6 3.70  73.79  59.36  62.08  57.07  18.20  57.28  75.81  14.26  55.87  64. s r -  '4.89  59.3V  loot  63.23  5S.79  19.79  54.75  77.39  51.88  56.93  6 5.43  75.70  61.43  1201  63.96  59.34  20.50  56.63  78.19  56.28  57.69  6 5.80  76.18  61.68  140i  63.65  59.62  21.15  60.26  78.70  58.05  58.68  66. 54  76. 73  62.59  160t  64.66  62.44  21.57  60.90  78.75  58.88  60.85  66.40  75.81  63.03  leot  65.27  «1.96  21.90  61.19  79.01  59.03  60.97  66.77  76.66  62.73  ZOOt  €5.47  ti. 14  22.1 5  61.41  79.21  59.25  61.15  67.00  76.80  63. 1 0  (O j  O  f  WEIGHTED ECONOMIC YIELD CLASSES IN S/CCF  AGE IN YRS.  11  12  13  14  15  16  17  18  19  20  3:s::=z3is  -SCBCSS-CS3CS1I3CSZSS  20!  0.6  0.(3  0.0  0.0  0.0  0.0  0.0  0.0  U.U  U.U  AO!  23.85  •2.44  13.78  38.88  6.76  51.77  0.0  50.64  17.82  11. 70  60:  71.99  51.57  38.53  43.31  12.78  50.10  60.78  48.41  18.42  34.82  80:  75.46  55.76  54.53  56.30  15.70  55.18  68.77  53. 52  18.57  51. 53  100!  76.68  «8.28  50.23  50.34  17.19  57.08  71.47  55.18  18.62  47.26  120:  77.64  58.75  57.71  58.11  17.82  57.75  72.74  5 5.90  18.64  54.82  140:  78.15  56.66  58.57  58.45  18.44  55.20  73.53  53.46  18.63  55. BZ  160:  78.31  60.38  58.98  56. 86  18.84  59.42  73.90  57.62  18.65  56.26  ISO:  78.63  60.33  59.30  59.08  19.14  59.26  74. 27  5 7.50  18.64  56.58  200:  78.86  tC. 51  59.53  59.26  19.38  59.44  74.55  57.67  18.62  56. 80  1  >  AGE IN YRS.  WEIGHTED ECONOMIC YIELD CLASSES IN t/CCF  :  .  23  24  25  26  27  28  0.0  0.0  0.0  6.0  0.0  0.0  0.0  16.74  50. CI  70.15  25.02  4.10  66.26  6.06  45.91  S.78  52. 35  60:  66.92  47.87  71.40  37.16  10.31  67.71  36.82  44.84  45.14  54.23  SO:  70.54  72.26  49.04  13. IS  68.60  45. T6  49.29  52.00  b4. 84  1001  72.01  •3.14  72.91  45.21  14.65  69.14  47.56  51.27  54.59  54.63  120:  72.52  53.65  73.29  51.38  15.27  69.88  49.82  52.17  55.98  56,35  140:  73.  23  !2.45  73.58  52.11.  15.68  70.31  50.55  50.63  56.72  56.91  160:  73.26  56.06  73.16  52. 50  16.27  70.25  51.00  5 3.62  57.17  57.93  180:  73.50  55.83  73.57  52.79  16.57  70.48  51.25  53. 71  57.45  57.33  73.67  53.00  16.80  70.64  51.40  53.86  5 7.64  57. 52  21  22  20:  0.0  AO:  •tsttssstsssss  73.66 55.57 EXECUTICr. TERMINATEC $3.80, T-11.83 CR -130 S3.86T 200:  *SIG  essss»* =  =  29  30  0.0  0.0  == 3 3s=s z a s s x z a a u  133  APPENDIX -VIII  Transportation  E c o n o m i c s By Compartment  For The:Westlake  PSYO  COMPARTMENT REPORT ARTMENT  9 6 8 10 11 14 15 16 18 19 20 21 22 23 23 24 24 12 17 22 25 39 44 76 77 21 40 43 46 53 27  REGION  • OF STANDS  60 60 60 60 60 60 60 60 60 60 60 55 60 60 55 60 55 60 60 55 60 60 60 55 55 60 60 60 60 55 55  38 17 65 133 64 100  0 1 5 0 0 17  62 92 59 113 58  1.63 2.03 3.04 1.69 2.09 2.86 2.80  0 24 17 28  151 64  8 5  84 95 54 70 68 15 12 11 64 65 4 12 10  2 0 3 15  4.82 6.85 7.67 6.98 4.48 4.47 5.25 4.22 7.05 4.10 2.51 4.72 6.76 2.91 6.59 10.13 9.35 7.99  126  123  140  12  4  * OF UNLOCATABLE STANDS  1 4  1  1  3  0  0 0 0 0  0 0 0 0 0  AVERAGE HAUL COST ($/CCF»  1.06  3.34  6.42 5.94 8.49 10.45  MIN. HAUL MAX. HAUL COST <$/CCFI COST U/CCF) 0.83 1.83 0.86 0.10 0.77 1.20 1.57 0.30 3.38 4.38 5.70 6.25 2.05 2.85 4.26 0.03 6.20 2.13 1.36 2.88 6.05 2.69 6.43 9.96 8.21 6.99 3.29 3.95 5.61 8.32 10.31  2.63 2.38 5.88 4.22 2.75 4.40 5.00 3.25 7.91 8.06 9. 10 7.69 6.71 6.93 6.42 6.45 8.90 6.73 3.62 6.84 8.41 3.06 6.77 10.34 10.31 8.97 3.35 6.89 6.17 8.64 10.56  AVERAGE DEV. COST 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.21 0.0  1.21  0.25 0.0  0.0  0.0 0.0 0.0 0.0 0.0 0.01 1.04 0.0 0. 0 0.0 1.73 0.0  135  APPENDIX  Transportation  IX  A n a l y s i s R e s u l t s For P o i n t - Stand  An I s l e 057  Pierre  Appraisal  WESTLAKE  PSYU  -  TRANSPORTATION NETWORK ANALYSIS  TYPE  STAND N O .  TYPE  AGE  SITE  SLC  1  •owiu a  C E N T R 0 I O LOCATION IN L A T - L O N G .  5331.17 5335.43 5327.89 5331.43 5328.63 5332.93 5331.77 5339.98 5339.41 5341.48 5346.46 5339.77 5340.59 5341.33 5342.27 5333.75 3338.45 9336.33 5300.00 5336.41 5336.96 5930.80 9336.43 9337.38 5339.35 53)9.46 9337.41 5330.48 9329.23 5331.66 5)32.46 5330.66 5)29.80 5330.00 5)29.77 5329.6) 5327.06 5)24.7) 5330.30 5324.80 5324.39 5325.89 5325.03 5325.90 5321.05 5321.05 5325.25  •002160 8003160 •034160 •065160 COTD •033160 •001160 8064160 10001160 10029160 10098160 11034160 11013160 11043160 12001160 12096160 14068160 1403*160 141201*0 14062160 141221*0 19110160 190341*0 1S12T160 16013160 160T3160 16049160 1604*160 17033160 17033160 17020160 17001160 17002160 17040160 17019160 17031160 17032 1 6 0 18055160 18101160 18001160 18089160 18022160 18073160 19074160 18040160 19033160 19014160 19001160 19045160  I 300*7.60  USE  T T  TT  12252.33 12252.20 12242.27 12242.60 12242.80 12250.23 12243.33 12301.75 12306.08 12305.48 12314.71 12313.30 12312.62 12325.59 12)25.41 12313.80 12312.73 12315.60 12300.00 12316.70 12304.73 12)09.36 12304.53 12304.32 12233.9) 12254.77 12304.02 12256.46 12254.38 12254.50 12256.19 12254.89 12257.2) 12257.2) 12257.46 12254.6) 12)08.20 12)04.39 12)05.33 12306.60 12304.63 12306.80 12303.80 12305.46 12305.27 12306.39 12307.96  5300.00 12300.00 5323.35 5*22.05  12316.46 I23l?.2»  'A6E  42  ISLAND REPORT  OIST.  TO NEAREST R D . INILESI  0.69  0.51 7.36 7.10 6.97 2.3) 6.47  0.32  0.96 2.30 2.31 1.32 0.66 2.34 3.39 0.69 2.40 1.50 20.77 1.00 1.11 1.53 1.02 0.40 1.51 1.09 0.32 1.71 0.57 0.21 1.04 0.82 1.69 1.69 1.53 0.51 1.68 0.72 1.42 0.63 1.05 0.82 0.73 0.49 0.51 0.25  0.50  20.77 1 1Q 1• 1.63  R D . NO. O I S T . TO NAP INILESI  19 IT 19 IT 19 17 IT 21 22 24  2*  2T 29 31 31 32 27 27 3 27 32 13 32 21 IT 18 21 19 19 19 19 19 1* 14 14 15 44 9 13 9 9 9 9 9  •  8 44  42  si.ia 45.)0 61.41  92.40  41.02 47.71 51.85 39.85 7.4) 6.19 14.87 9.93 6.37 22.16 23.21 20.69 11.09 13.76 60.41 14.17 28.18 98.20 28.15 44.11 40.T0 30.77 44.03 91.97 93.19 49.40 46.97 90.67 91.23 90.33 91.07 52.02 28.71 51.47 99.49 92.29 91.80 92.90 91.06 51.2) 42.89 41.85 29.10 60.41 31.97 33.71  HAUL COST IS/CUNITI  11.26 9.96 13.51 11.99 13.42 10.90 11.41  a. 77 1.6) 1.3*  2.60 1.79 1.19 3.99 4.18 4.99  2.00 2.48 19.29 2.99 6.20 12.30 6.19 9.70 8.9*  a. 93 9.69 11.34 11.69 10.87 10.24 11.19 11.27 11.07 11.23 11.62 6.32 11.32 12.21 11.49 11.40 11.99 11.23 11.27 9.43 9.21 6.40 D.29  7.0)  7.42  ROAD D E V E L O P RENT COST I t / C U N I T I  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0  O.Q 0.0 1 l.TS '  OJ  137  APPENDIX  Summary Of C u t S c h e d u l i n g  X  R e s u l t s - Case 1  Long_Term Objective  Short  Term  maximize volume o v e r 200 y r s .  maximize volume o v e r 30 y r s .  Objective value a t 30 y e a r s :  6,978.3  7,802. 3 MCCF  Objective value a t 200 y e a r s :  39,265. 6 MCCF  Long r u n s u s t a i n e d y i e l d average:  1,831.9  MCCF/decade  Volume h a r v e s t e d i n d e c a d e 1:  2,575.0  MCCF  Net  revenue i n d e c a d e 1:  $106.3  MCCF  MM  38,422.1  1,831.9  MCCF  MCCF/decade  2,879. ,1 MCCF  $116.5 MM  138  APPENDIX_XI  Species  Harvest  By Timber C l a s s - C a s e . 1  SPECIES BREAKDOWN OF HARVEST I N OECAOE 1 - CASE I t  TIMBER CLASS  F  C  H  B  s  PW  CV VOLUME  7 9  0.33 18.28  0.0 0.0  0.0 0.0  0.27  7.87  0.0  IN  0.0  PL  LONG TERN  PV  L  0.0  0.0  CT  0  NB  BI 1 m»m*M  A  PA  mm I S M I U O 1  N C C F 3.94  0.03  0.0  0.0  0.13  0.30  0.0  0.0  1.97  6 . 01  0.0  2.90  154.43  0.0  0.0  32.13  0.0  0.0  0.70  0.0  0.0  0.0  5.27  0.0  0.0  0.09  0.0  0.0  1.84  1.40  0.0  14  17.69  0.0  0.0  0.84  5.74  1*  7.IS  0.0  0.0  O.OS  0.37  0.0  0.0  0.35  0.0  0.0  0.0  0.0  0.0  0.19  0.13  0.0  21  30.98  0.0  0.0  1.61  83.61  0.0  0.0  18.73  0.0  0.0  0.43  0.0  0.0  1.32  3.67  0.0  30  22.06  0.0  0.0  3.51  40.39  0.0  0.0  370.15  0.0  0.0  2.49  0.0  0.0  1.99  7.03  0.0  3*  20.12  0.0  0.0  4.18  38.52  0.0  0.0  282.43  0.0  0.0  2.66  0.0  0.0  2.24  3.81  0.0  49  10.32  0.0  0.0  0.52  6.04  0.0  0.0  126.38  0.0  0.0  0.26  0.0  0.0  0.44  1.2*  0.0  94  27.99  0.0  0.0  1.70  18.51  0.0  0.0  185.97  0.0  0.0  1.19  0.0  0.0  2.79  3.29  0.0  63  96.96  0.0  0.0  3.41  60.44  0.0  0.0  26.79  0.0  0.0  1.10  0.0  0.0  2.40  4.11  0.0  0.0  0.0  0.10  0.0  0.0  0.8*  0.07  0.0  47  13.24  0.0  0.0  0.28  3.91  0.0  0.0  81.92  64  84.32  0.0  0.0  0.58  4.39  0.0  0.0  4.14  0.0  0.0  0.0  0.0  0.0  1.74  1.99  0.0  69  0.0  0.0  0.0  0.0  0.14  0.0  0.0  0.0  0.0  0.0  3.37  0.0  0.0  0.0  •.0  0.0  79  99.68  0.0  0.0  0.74  12.43  0.0  0.0  6.08  0.0  0.0  0.02  0.0  0.0  2.02  2.90  0.0  •1  19.29  0.0  0.0  0.49  6.17  0.0  0.0  112.19  0.0  0.0  0.24  0.0  0.0  1.44  1.3*  0.0  •3  0.14  0.0  0.0  0.04  0.28  0.0  0.0  1.06  0.0  0.0  0.03  0.0  0.0  0.02  0.09  0.0  91.09  0.0  0.0  0.63  4.7C  0.0  0.0  4.49  0.0  0.0  0.0  0.0  0.0  1.88  1.47  0.0  32.76  0.0  0.0  9.01  69.69  0.0  0.0  421.97  0.0  0.0  4.99  0.0  0.0  4.11  11.91  0.0  «* TOTALS* X l  408.09 20.7  0.0 0.0  0.0 0.0  30.32 913.59  1.0  17.9  0.0 0.0  0.0 1 6 8 4 . 0 1 0.0  57.4  0.0 0.0  0.0 0.0  19.99 0.7  0.0 0.0  0.0 0.0  27.1* 0.4  M.T*  0.0 0.0  «3  SPECIES BREAKDOWN Of HARVEST IN OECAOE 1 - CASE 11 SHORT TERN  CV  TIMBER CLASS  PM  VOLUME IN  PL MCCF  MB  CT  PV aaa a  PA  Bl  • • • • • • 1  T  0.3)  0.0  0.0  0.27  7.87  0.0  0.0  3.94  0.0  0.0  0.03  0.0  0.0  0.13  0.30  0.0  1*  11.69  0.0  0.0  0.84  5.74  0.0  0.0  5.27  0.0  0.0  0.09  0.0  0.0  1.34  1.40  0.0  14  T.13  0.0  0.0  0.05  0.37  0.0  0.0  0.39  0.0  0.0  0.0  0.0  0.0  0.15  0.13  0.0  30  22.06  0.0  O.O  3.51  40.39  0.0  0.0  370.15  0.0  0.0  2.43  0.0  0.0  1.95  7.03  0.0  34  2.60  0.0  0.0  0.02  0.13  0.0  0.0  0.13  0.0  0.0  0.0  0.0  0.0  0.09  0.09  0.0  3*  20.12  0.0  0.0  4.18  38.52  0.0  0.0  282.43  0.0  0.0  2.66  0.0  0.0  2.24  S.31  0.0  49  10.32  0.0  0.0  0.52  6.04  0.0  0.0  126.33  0.0  0.0  0.26  0.0  0.0  0.43  1.29  0.0  34  21.99  0.0  0.0  1.70  18.51  0.0  0.0  189.97  0.0  0.0  1.13  0.0  0.0  2.79  3.29  0.0  9*  49.31  0.0  0.0  1.41  40.64  0.0  0.0  12.69  0.0  0.0  0.39  0.0  0.0  3.63  2.49  0.0  2.40  4.11  0.0  43  96.34  0.0  0.0  3.41  60.44  0.0  0.0  26.79  0.0  0.0  L.IO  0.0  0.0  47  13.24  0.0  0.0  0.28  3.91  0.0  0.0  81.92  0.0  0.0  0.10  0.0  0.0  0.09  0.37  0.0  43  •4.32  0.0  0.0  0.58  4.35  0.0  0.0  4.16  0.0  0.0  0.0  0.0  0.0  1.74  1.99  0.0  49  0.0  0.0  0.0  0.0  0.14  0.0  0.0  0.0  0.0  0.0  3.37  0.0  0.0  0. 0  0.0  0.0  TS  95.68  0.0  0.0  0.74  12.43  0.0  0.0  6.03  0.0  0.0  0.02  0.0  0.0  2.02  2.30  0.0  M  12.09  0.0  0.0  0.92  16.56  0.0  0.0  9.49  0.0  0.0  0.05  0.0  0.0  1. M  1.00  0.0  1.64  1.39  0.0  •1  19.29  0.0  0.0  0.45  6.17  0.0  0.0  112.19  0.0  o.o :  0.24  0.0  0.0  33  0.14  0.0  0.0  0.04  0.28  0.0  0.0  1.06  0.0  0.0  0.03  0.0  0.0  0. 02  0.05  0.0  •3  91.09  0.0  0.0  0.63  4.7C  0.0  0.0  4.49  0.0  0.0  0.0  0.0  0.0  1. M  1.47  0.0  92  95.82  0.0  0.0  6.18  91.59  0.0  0.0  829.23  0.0  0.0  3.32  0.0  0.0  4.35  12.99  0.0  94  32.76  0.0  0.0  9.01  65.69  0.0  0.0  421.97  0.0  0.0  6.93  0.0  0.0  4.11  11.99  0.0  TOTALS*  I l  775.15 20.2  0.0 0.0  0.0 0.0  34.74 424.47 0.9  11.1  0.0 0.0  0.0 2484.65 0.0  64.8  0.0 0.0  0.0 0.0  22.63 0.6  0.0 0.0  0.0 0.0  32.23  40.39  0.3  1.4  0.0 0.0  141  APPENDIX_XII  Summary Of C u t S c h e d u l i n g  Results  Volume Objective:  - Case 2  Value  maximize volume o v e r 200 y r s .  maximize v a l u e o v e r 200 y r s .  Objective value a t 200 y e a r s :  $179.3  $200.4  Volume.production a t 200 y e a r s :  39, 265. 6 MCCF  Long r u n s u s t a i n e d y i e l d average:  1,831.9 MCCF/decade  Volume h a r v e s t e d i n decade 1:  2,575.0 MCCF  2,864. 3 MCCF  Net r e v e n u e i n d e c a d e 1:  $106.3  $119.4  MM  MM  MM  38,385. 3 MCCF  1,831.9  MM  MCZF/decade  142  APPENDIX  XIII  Summary Of C u t S c h e d u l i n g  Results  TRACS Objective  - Case 3  CARP  maximize v a l u e o v e r 200 y r s .  maximize v a l u e o v e r 200 y r s .  Objective value a t 200 y e a r s :  $200.4 MM  $267.2  Volume p r o d u c t i o n a t 200 y e a r s :  38,385. 3 MCCF  40,4 71. 2 MCCF  Long r u n s u s t a i n e d y i e l d average:  1,831.9  MCCF/decade  Volume h a r v e s t e d i n decade 1:  2,864.3  MCCF  Net r e v e n u e i n d e c a d e 1:  $1 19.4 MM  MM  1,755.7  MCCF/decade  3,442. 4 MCCF  $162.6 MM  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 11 2
Russia 5 0
United States 5 0
Japan 4 0
Iran 1 0
City Views Downloads
Saint Petersburg 5 0
Tokyo 4 0
Ashburn 4 0
Hangzhou 3 0
Zhengzhou 2 0
Shenzhen 2 2
Shanghai 2 0
Beijing 2 0
Buffalo 1 0
Mashhad 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0075134/manifest

Comment

Related Items