Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Improved forest harvest planning : integration of transportation analysis with a management unit cut.. 1980

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1980_A6_7 Y35.pdf [ 8.94MB ]
Metadata
JSON: 1.0075134.json
JSON-LD: 1.0075134+ld.json
RDF/XML (Pretty): 1.0075134.xml
RDF/JSON: 1.0075134+rdf.json
Turtle: 1.0075134+rdf-turtle.txt
N-Triples: 1.0075134+rdf-ntriples.txt
Citation
1.0075134.ris

Full Text

IMPROVED FOREST HARVEST PLANNING - INTEGRATION OF TRANSPORTATION ANALYSIS WITH A MANAGEMENT- UNIT CUT SCHEDULING MODEL by Michael M. Yamada B.S.F., U n i v e r s i t y of B r i t i s h Columbia, 1974, A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n THE FACULTY OF GRADUATE STUDIES Department of F o r e s t r y We accept t h i s t h e s i s as conforming t o the r e g u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA September 1980 © M i c h a e l M. Yamada, 1980 In presenting this thesis in partial fulfilment of the requirements fo r an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying o f t h i s t h e s i s for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or p u b l i c a t i o n o f this thesis for financial gain shall not be allowed without my written permission. Department of F o r e s t r y The University of British Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 Date October 1 5 , 19 80 i i ABSTRACT F o r e s t harvest planning i n v o l v e s determining, i n time and p l a c e , the flow of timber t o be generated from ths f o r e s t r e s o u r c e . . E x i s t i n g planning models have addressed the.temporal a s p e c t s of timber supply.. However, the: s p a t i a l aspects of timber supply p l a n n i n g , p a r t i c u l a r l y at the management u n i t l e v e l , have p r i n c i p a l l y been i g n o r e d . T h i s study presents.an a n a l y t i c a l framework f o r examining the t r a n s p o r t a t i o n system of a management u n i t , i t s i n t e r r e l a t i o n s h i p with the timber base, and the impacts on s t r a t e g i c h a r v e s t p l a n n i n g . The: t r a n s p o r t a t i o n system i s evaluated through network a n a l y s i s technigues. Routing s t r a t e g i e s from the stand to the m i l l are examined. The.costs of primary access development and log t r a n s p o r t are i n t e g r a t e d with the f o r e s t i n v e n t o r y , p r o v i d i n g a more complete assessment of timber value. Homogeneous stand aggregations and a s s o c i a t e d y i e l d p r o j e c t i o n s , p e r t i n e n t t o management u n i t p l a n n i n g , are formed using f a c t o r and c l u s t e r a n a l y s i s . Dynamic programming al l o w s o p t i m a l a l l o c a t i o n s of the stand groupings across s t r a t i f i c a t i o n s which recognize t r a n s p o r t and a c c e s s i b i l i t y c o s t s . . The r e s u l t i n g timber c l a s s e s are coupled with management p r e s c r i p t i o n s and evaluated through a cut s c h e d u l i n g model. Report generation c a p a b i l i t i e s then allow i n t e r p r e t a t i o n of the h a r v e s t s c h e d u l i n g r e s u l t s i n terms of not only the timber i i i c l a s s e s , but i n the s p a t i a l context of the i n d i v i d u a l stands. The methodology i s a p p l i e d to a B r i t i s h Columbia P u b l i c Sustained Y i e l d U n i t . The u s e f u l n e s s of the system i s demonstrated through analyses which: 1) i d e n t i f y road development and t r a n s p o r t c o s t s , 2) e v a l u a t e a l t e r n a t i v e wood flow p a t t e r n s , 3) i d e n t i f y the volume flow p o t e n t i a l of the u n i t , 4) i d e n t i f y the d o l l a r flow p o t e n t i a l of the u n i t , and 5) i l l u s t r a t e the c o n t r i b u t i o n of i n t e g r a t i n g the t r a n s p o r t a t i o n system i n the s c h e d u l i n g of h a r v e s t s . . i v TABLE OF CONTENTS Abstract ................ . . i i Table Of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i v L i s t Of F i g u r e s v i L i s t 3f Tables v i i Acknowledgements v i i i 1 . . I n t r o d u c t i o n . . . . 1 1 . 1 F o r e s t Harvest Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 . 2 L e v e l s Of F o r e s t Planning ......................... 4 2 . , F o r e s t Planning Models . . . . . . . 7 2 . 1 Aspects Of Models . . 7 2 . 2 A Review Of Mangement Unit Planning Models ......... 8 3 . . Problem A n a l y s i s . . . . . . . . . . . o . . . . . . . . . . . . . . . . . . . . . . . . o . 1 4 3 . 1 Harvest Scheduling - Background 1 5 3 . 2 Harvest Scheduling - Need For An A l t e r n a t i v e ...... 1 7 4 . , Model Components . 2 1 4 . 1 F o r e s t Subsystem 2 3 4 . 2 T r a n s p o r t a t i o n Subsystem .......................... 2 5 4 . 2 . 1 D e r i v a t i o n Of T r a n s p o r t a t i o n Costs . . . . . . . . . . 2 6 4 . 2 . 2 Network A n a l y s i s 2 8 4 . 2 . 3 Log T r a n s p o r t a t i o n Based On Minimum Routing . 3 3 4 . 3 S t a t e V a r i a b l e Subsystem 3 7 4 . 3 . 1 I n i t i a l S t a t e V a r i a b l e s 3 9 4 . 3 . 2 Data A n a l y s i s 4 2 4 . 4 Cut Scheduling Subsystem . . . 4 4 4 . 5 Report Subsystem 4 9 5 . . An A p p l i c a t i o n To Management U n i t Harvest Planning . . . . 5 1 6 . . A n a l y s i s And D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 6 . 1 T r a n s p o r t a t i o n Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 V 6.2 Cut Scheduling 69 6.2.1 Case 1: Volume-Optimization - Long Term vs. Short Term 70 6.2.2 Case 2: Economic O p t i m i z a t i o n - Volume vs. Value ............................ 75 6.2.3 Case 3: Economic O p t i m i z a t i o n - With T r a n s p o r t a t i o n vs. ,Without ................. 80 7., Co n c l u s i o n s ...........................................38 BIBLIOGRAPHY . 90 APPENDIX I - D i j k s t r a ' s Shortest Route Algorithm 93 APPENDIX I I - Land C l a s s e s Of The Westlake PSYO* ...?6 APPENDIX I I I - P r e s c r i b e d Stand Treatments' For The Westlake PSYO .103 APPENDIX IV - Management Reports On Stands Of The Westlake PSYO 108 APPENDIX V - Stand Economics Report On Mature Stands ....112 APPENDIX VI - F a c t o r A n a l y s i s R e s u l t s ................... 120 APPENDIX VII - Volume And Value Y i e l d C l a s s e s From C l u s t e r A n a l y s i s ........................127 APPENDIX VIII - T r a n s p o r t a t i o n Economics By Compartment For The Westlake PSYO ..133 APPENDIX IX - T r a n s p o r t a t i o n A n a l y s i s R e s u l t s For An I s l e P i e r r e A p p r a i s a l Point - Stand 057 ......135 APPENDIX X - Summary Of Cut Scheduling Results - Case 1 .137 APPENDIX XI - Species Harvest By Timber C l a s s - Case 1 ..138 APPENDIX XII - Summary Of Cut Scheduling R e s u l t s - Case 2 14 1 APPENDIX XIII - Summary Of Cut Scheduling R e s u l t s - case 3 14 2 v i LIST OF FIGURES 1. L e v e l s of f o r e s t planning ...5 2. Components of the TRftCS system ....................22 3.. Examples of graph s t r u c t u r e s 29 4,, Components of the s t a t e v a r i a b l e subsystem ........38 5. BCFS volume over age curve ....40 6. „ Road network of the Westlake PSYU ................. 55 7.. Example of wood flow a n a l y s i s 68 8., Comparison of volume flow - Case 1 .73 9., Comparison of s p e c i e s flow i n decade 1 - Case 1 ...74 13.. Comparison of volume flow - Case 2 ............... 11 11. Comparison of s p e c i e s flow i n decade 1 - Case 2 ..78 12. . Comparison of volume flow - Case 3 ..83 13. Comparison of s p e c i e s flow i n decade 1 - Case 3 ..85 v i i LIST OF TABLES 1. Age c l a s s d i s t r i b u t i o n of the Westlake PSYO v i a ASAP ...52 2.. B a s i c access c o s t data ....54 3. Road segment r e p o r t .....56 4.,. Stand d i s t r i b u t i o n a c r o s s a c c e s s i b i l i t y c l a s s e s ...60 5.. Timber c l a s s d i s t r i b u t i o n a c r o s s a c c e s s i b i l i t y c l a s s e s ..61 6.. Minimum r o u t i n g d i s t a n c e s and p o l i c i e s ............64 7.. Stand access r e p o r t ............................... 66 8.. D i f f e r e n c e s i n timber c l a s s e s scheduled f o r harvest i n decade 1 - Case 2 80 9. Comparison of stands h a r v e s t a b l e i n decade 1 w i t h i n Compartment 20 - Case 3 ...86 \ r i i i ACKNOWLEDGEMENTS I would l i k e to thank Dr. D» H. Wi l l i a m s , s u p e r v i s o r , f o r h i s continued a s s i s t a n c e and p a t i e n c e throughout my graduate program. I would a l s o l i k e to thank Mr. G. G. Young f o r h i s guidance and c o u n s e l during my u n i v e r s i t y s t u d i e s . A p p r e c i a t i o n i s a l s o extended to Dr. D. Reimer f o r p a r t i c i p a t i n g on my committee and reviewing the t e x t . F i n a l l y , I would l i k e to acknowledge the cooperation of the B r i t i s h Columbia F o r e s t S e r v i c e , Resource Planning D i v i s i o n i n a l l o w i n g me to address the t o p i c of t h i s t h e s i s . . 1 1. INTRODUCTION The: s c h e d u l i n g of timber harvests w i t h i n a f o r e s t management u n i t has f a r reaching conseguences. , E n v i r o n m e n t a l l y , the r a t e of har v e s t a f f e c t s the long term a b i l i t y of the land to produce both timber and non-timber b e n f i t s . E conomically, h a r v e s t i n g r a t e s a f f e c t i n d u s t r i a l o p e r a t i n g s t r a t e g i e s . More than ever, m i l l and market expansions are :contingent on the continued a v a i l a b i l i t y of timber s u p p l i e s . D e c i s i o n s a f f e c t i n g the flow of timber, d e s p i t e t h e i r c r i t i c a l n a ture, cannot always be d e f e r r e d u n t i l complete i n f o r n a t i o n i s at hand.. B r i t i s h Columbia has a v a l u a b l e timber r e s o u r c e , and an i n d u s t r y developed f o r i t s u t i l i z a t i o n . Harvest s c h e d u l i n g can, however, be improved by planning.. Harvest p l a n n i n g i n v o l v e s not only the timber base, but a l s o i t s i n t e r r e l a t i o n s h i p with the t r a n s p o r t a t i o n network, a c c e s s i b i l i t y and l o g , h a u l i n g reguirements are key f a c t o r s which must be considered i n the s c h e d u l i n g of wood flows. T h i s t h e s i s p r e s e n t s a q u a n t i t a t i v e , a n a l y t i c a l methodology f o r harvest planning at the management u n i t l e v e l . The system developed i n t e g r a t e s t r a n s p o r t a t i o n c o n s i d e r a t i o n s to improve cut s c h e d u l i n g d e c i s i o n s . . 2 1.1 F o r e s t Harvest Planning Planning i s any a c t i v i t y designed t o provide e f f i c i e n t , c o n t r o l l e d courses of a c t i o n d i r e c t e d at a c h i e v i n g some i d e n t i f i e d end., I t i s a continuous a c t i v i t y , and as such must be f l e x i b l e and dynamic. P l a n n i n g a l l o w s assessment of change i n economic, b i o l o g i c a l and s o c i a l c o n d i t i o n s . . I t f a c i l i t a t e s c o n s i d e r a t i o n of a l t e r n a t i v e s and r e s o l u t i o n of c o n f l i c t s , thereby g u i d i n g d e c i s i o n making. Hence, planning i s the foundation f o r e f f i c i e n t management. F o r e s t h a r v e s t planning encompasses those a c t i v i t i e s desigaed to provide e f f i c i e n t , c o n t r o l l e d s t r a t e g i e s f o r s c h e d u l i n g timber flows. The s t r a t e g i e s are d i r e c t e d at a c h i e v i n g s p e c i f i e d wood q u a n t i t y and q u a l i t y o b j e c t i v e s , as well as a l l o w i n g the i n t e g r a t i o n of other resource uses. The main o b j e c t i v e from a government standpoint i s volume y i e l d c o n t r o l . . In c o n t r a s t , the:main o b j e c t i v e of an i n d u s t r i a l f i r m i s t h e : g e n e r a t i o n of cash flow and p r o f i t , i . e . value y i e l d c o n t r o l . However, the need f o r an assured raw m a t e r i a l supply provides f o r a c o n s o l i d a t i o n of the two o b j e c t i v e s . Economics p l a y s a fundamental r o l e i n the planning process. S c a r c i t y , i n t u r n , p l a y s a fundamental r o l e i n the economic process. Economics i s concerned with the e f f i c i e n t a l l o c a t i o n of s c a r c e r e s o u r c e s so as to optimize a s p e c i f i e d o b j e c t i v e . , I f r e s o u r c e s were not scarce, then there would b e . l i t t l e need f o r e f f i c i e n t a l l o c a t i o n . Without need f o r e f f i c i e n t a l l o c a t i o n s t here would be l i t t l e need f o r p l a n n i n g . Hence, the concepts of s c a r c i t y and economics are;fundamental to planning. 3 S c a r c i t y has a l s o played a fundamental r o l e i n f o r e s t h a r v e s t p l a n n i n g . . The e a r l y stages of t h e . f o r e s t i n d u s t r y i n B r i t i s h Columbia, and North America i n g e n e r a l , were marked by an overabundance of f o r e s t e d l a n d s . The most a c c e s s i b l e , best g u a l i t y stands were.harvested. Timber of i n f e r i o r s p e c i e s , s i z e and q u a l i t y was not c u t . . Sush h a r v e s t i n g a c t i v i t i e s have been c o n s i d e r e d w a s t e f u l e x p l o i t a t i o n s , r e s u l t i n g from a l a c k of planning. However i n economic terms, such " e x p l o t a t i o n s " were r a t i o n a l a c t i o n s . In the:face of excess timber s u p p l i e s , there was l i t t l e need f o r e f f i c i e n t a l l o c a t i o n of timber r e s o u r c e s , and thus no need f o r planning. As excess i n v e n t o r i e s are d e p l e t e d , the i s s u e of s c a r c i t y develops. Reduced timber s u p p l i e s f o r c e h a r v e s t i n g a c t i v i t i e s to the margins. . Smaller diameter, lower g u a l i t y stands are: harvested a t the i n t e n s i v e : margins. More: d i s t a n t , l e s s a c c e s s i b l e stands are harvested at the e x t e n s i v e margins.. At these margins the need f o r e f f i c i e n t a l l o c a t i o n of resources becomes c r i t i c a l t o v i a b l e o p e r a t i o n . The m a j o r i t y of the i n d u s t r y i s c u r r e n t l y f a c i n g o p e r a t i o n s at the margins.. At the same time, there i s ever i n c r e a s i n g pressure f o r the p r o d u c t i o n of a v a r i e t y of goods and s e r v i c e s from the f o r e s t land base. The f o r e s t i n d u s t r y i s now aware of the n e c e s s i t y f o r proper planning to i n t e g r a t e timber supply needs with other f o r e s t land uses. 4 1.2 L e v e l s Of F o r e s t Planning The B r i t i s h Columbia F o r e s t S e r v i c e (BCFS), the p u b l i c agency r e s p o n s i b l e f o r management of some 95% of B r i t i s h Columbia's f o r e s t l a n d s , r e c o g n i z e s f i v e l e v e l s of f o r e s t l a n d planning (Figure 1) : 1) the p r o v i n c i a l l e v e l , 2) the r e g i o n a l l e v e l , 3) the management u n i t l e v e l - P u b l i c Sustained Y i e l d U nits (PSYU) and Tree Farm L i c e n c e s (TFL) , 4) the watershed l e v e l , and 5) the o p e r a t i o n a l u n i t / c u t block l e v e l . . These p l a n n i n g l e v e l s p rovide a framework f o r l i n k i n g p h i l o s o p h i c a l p o l i c i e s t o a c t u a l , o n - s i t e o p e r a t i o n s . . At the higher l e v e l s , the planning h o r i z o n i s longer and the o b j e c t i v e s ace more broadly s t a t e d . . Conversely, at the lower p l a n n i n g l e v e l s the hor i z o n i s more:immediate and the: o b j e c t i v e s more p r e c i s e l y d e f i n e d . Williams (1976) noted the i n t e r r e l a t i o n s h i p s that e x i s t w i t h i n the planning framework. D e c i s i o n s at any p a r t i c u l a r l e v e l c o n s t r a i n the a c t i v i t i e s of n e i g h b o r i n g l e v e l s . For example, i f the o b j e c t i v e at the: r e g i o n a l l e v e l i s to develop the timber r e s o u r c e , then a corr e s p o n d i n g i n d u s t r i a l i n f r a s t r u c t u r e must be e s t a b l i s h e d . r A s u i t a b l e h a r v e s t i n g schedule would have t o be developed a t the management u n i t l e v e l , s u b j e c t to the i n d u s t r i a l needs.. A c t i v i t i e s would i n v o l v e : e v a l u a t i o n of land use p o t e n t i a l s , i n c l u d i n g assessment of the :inventory and t r a n s p o r t a t i o n system. The h a r v e s t s c h e d u l i n g s t r a t e g y determined would then d i r e c t the Operational Unit Level 6 development of watersheds.. T h i s example i s a s i m p l i f i c a t i o n of the a c t u a l process.. F a c t o r s such as p u b l i c v a l u e s and p o l i t i c a l i s s u e s a l s o enter i n t o the pl a n n i n g picture.,. N e v e r t h e l e s s , the m u l t i - l e v e l planning framework f a c i l i t a t e s c o o r d i n a t i o n of the planning e f f o r t w i t h i n a temporal and s p a t i a l continuum.. The: purpose of t h i s t h e s i s i s to provide a methodology f o r e x p l i c i t l y i n t e g r a t i n g t r a n s p o r t a t i o n c o n s i d e r a t i o n s i n t o management u n i t l e v e l h arvest p l a n n i n g . . A computer modelling systen i s presented which i n c o r p o r a t e s the e f f e c t s of l o g t r a n s p o r t and primary access development with the f o r e s t i n v e n t o r y , thereby p r o v i d i n g a more complete assessment of timber v a l u e . T h i s improved v a l u a t i o n , coupled with other management i n f o r m a t i o n i s then assembled and e v a l u a t e ! through a cut s c h e d u l i n g model. The r e s u l t i s improved long term and short term f o r e s t harvest planning. The f o l l o w i n g chapter reviews the development of p e r t i n e n t h a r v e s t planning models. . A problem a n a l y s i s of harvest s c h e d u l i n g i s then presented.. Next, the methodology used i n the study i s d e s c r i b e d , f o l l o w e d by i t s a p p l i c a t i o n to an a c t u a l f o r e s t management u n i t i n B r i t i s h Columbia.. 7 2. . FOREST PLANNING MODELS - 2. 1 Aspects Of Models Models have been developed to f a c i l i t a t e e f f e c t i v e , comprehensive f o r e s t land planning. They are an outgrowth of i a c r e a s i n g management demands. More data, f a s t e r response time and the e v a l u a t i o n of a l t e r n a t i v e s , a l l under l i m i t e d manpower, t y p i f y today's planning environment. Models s i m p l i f y the complex nature of problems to a manageable degree.. The r e a l problem i s reduced to an a b s t r a c t i o n . Only those f a c t o r s i d e n t i f i e d as s i g n i f i c a n t are r e p r e s e n t e d , with l e s s c r i t i c a l d e t a i l s i g n o r e d . The a b s t r a c t i o n i s then analyzed, t y p i c a l l y with the a i d of a computer. However, s i n c e the a c t u a l problem i s not f u l l y r e p r e s e n t e d absolute answers do not r e s u l t . A major l i m i t a t i o n of planning models i s t h a t the a c t u a l planning process i s not a w e l l d e f i n e d a c t i v i t y . . Conseguently, v a l i d a t i n g a model a g a i n s t present p r a c t i c e s i s very d i f f i c u l t . Models and the modelling process, n e v e r t h e l e s s , do o f f e r numerous advantages. The model f o r m u l a t i o n stage can r e v e a l s i g n i f i c a n t f a c t o r s which may otherwise be obscured by normal a n a l y s i s . . A model when p r o p e r l y formulated provides the c a p a b i l i t y f o r o b j e c t i v e assessments on a r e p r o d u c i b l e b a s i s . F u r t h e r , a model p r o v i d e s a framework around which management knowledge and experience can be q u a n t i t a t i v e l y expressed and 8 e x p l i c i t l y i n c o r p o r a t e d i n the p l a n n i n g process. The.computerization of models has provided the a b i l i t y to evaluate many f a c t o r s on a dynamic b a s i s , with g r e a t e r speed and e f f i c i e n c y than p o s s i b l e under manual procedures. Such improvements have enabled the e v a l u a t i o n of new a l t e r n a t i v e s . The end r e s u l t i s improved u t i l i z a t i o n of data and a r e d u c t i o n i n t h e . u n c e r t a i n t y around which d e c i s i o n s are:made., 2.2 k Review Of Hangement Unit Planning Models One.of the f i r s t p u b l i s h e d e f f o r t s which in t r o d u c e d the use of computerized models f o r f o r e s t harvest s c h e d u l i n g was by C u r t i s (1962). He a p p l i e d L i n e a r Programming (LP) i n the cut s c h e d u l i n g of southern pine stands to maximize both volume and revenue p r o d u c t i o n . . The a p p l i c a t i o n , however, considered a planning h o r i z o n of only one r o t a t i o n and was s p e c i f i c to one f o r e s t company. Loucks (1964) extended the a p p l i c a t i o n of LP to cut s c h e d u l i n g by developing a more g e n e r a l model d i r e c t e d at s u s t a i n e d y i e l d management. His f o r m u l a t i o n i n c l u d e d a c a p a b i l i t y to c o n s i d e r a v a r i e t y of management and s i l v i c u l t u r a l a l t e r n a t i v e s . . Leak (1964) used LP to examine the- maximum al l o w a b l e y i e l d s generated from a s e r i e s of f i n a l c u t s and t h i n n i n g s over a s i n g l e r o t a t i o n . He considered harvest a l t e r n a t i v e s which y i e l d e d equal a r e a s , as w e l l as equal volumes. Kidd e t a l . . (1966) i n c o r p o r a t e d b i o l o g i c a l f a c t o r s of 9 s i t e and age with s i l v i c u l t u r a l a l t e r n a t i v e s over a f i v e - p e r i o d h o r i z o n i n using LP f o r f o r e s t r e g u l a t i o n . L i t t s c h w a g e r and Tcneng (1967) i n t r o d u c e d LP decomposition techniques f o r s o l v i n g l a r g e s c a l e v e r s i o n s of the e a r l i e r formulated harvest s c h e d u l i n g problems. The technique of s o l v i n g a s e r i e s of s m a l l e r subproblems was found to be u s e f u l f o r scheduling c u t s over a l a r g e number of f o r e s t compartments. Bare and Norman (1969) i n t r o d u c e d the a p p l i c a t i o n of Integer Programming (IP) to harvest s c h e d u l i n g . . T h e i r f o r m u l a t i o n i n c l u d e d the s c h e d u l i n g of both stands and e n t i r e compartments. P r e v i o u s LP a p p l i c a t i o n s had r e s u l t e d i n n o n - i n t e g r a l s o l u t i o n s . Through IP, harvest schedules can be found which preserve the i n t e g r i t y of e x i s t i n g f o r e s t stands. However, the l a c k of an e f f i c i e n t a l g o r i t h m g r e a t l y l i m i t s the a p p l i c a t i o n of IP to s c h e d u l i n g problems of r e a l i s t i c p r o p o r t i o n s . , Walker (1974) combined the economic concepts of supply and demand with the f o r e s t i n v e n t o r y to determine:rates of h a r v e s t . His model, named the Economic Harvest Optimizer (ECHO), maximizes present net v a l u e . . The s o l u t i o n s t r a t e g y employed equates the marginal net revenue d e r i v e d from h a r v e s t i n g f o r each time p e r i o d . ECHO i n c o r p o r a t e s downward s l o p i n g demand curve r e l a t i o n s h i p s where timber p r i c e v a r i e s i n v e r s e l y with the volume har v e s t e d . T h i s r e l a t i o n s h i p was not c h a r a c t e r i s t i c of previous models. Also u n l i k e past approaches, s u s t a i n e d y i e l d or volume flow c o n s t r a i n t s were not imposed.. Instead, Walker c r i t i c i z e d the c r i t e r i o n of s u s t a i n e d y i e l d f o r determining o p t i m a l economic harvest l e v e l s . 10 Johnson (1976) pursued the s i g n i f i c a n c e of a downward s l o p i n g demand curve on harvest s c h e d u l i n g and value maximization using a q u a d r a t i c programming f o r m u l a t i o n . He demonstrated, cont r a r y to popular b e l i e f , that value o p t i m i z a t i o n could be achieved by r e s t r i c t i n g volume harvested. Under a p r i c e responsive s i t u a t i o n , the market mechanism w i l l a c t to c o n s t r a i n volume:flow. Hence, proper c o n s i d e r a t i o n of the p r i c e e l a s t i c i t y of demand allows achievement of optimal economic a l l o c a t i o n s , not p o s s i b l e under imposed s u s t a i n e d y i e l d c o n s t r a i n t s . Hrubes and Savon (1976) demonstrated t h a t a downward s l o p i n g demand curve c o u l d be i n c o r p o r a t e d i n t o LP f o r m u l a t i o n s by using separable programming i n s i t u a t i o n s where volume harvested can a f f e c t stumpage p r i c e s . C l u t t e r (1968) presented a more complete computerized f o r e s t management planning system. The system i n c l u d e d an a p p r a i s a l s i m u l a t o r i n c o n j u n c t i o n with an LP h a r v e s t scheduler and r e p o r t w r i t e r . . The s i m u l a t o r c a l c u l a t e d volume and value y i e l d s generated by a l t e r n a t i v e c l e a r c u t t i n g p o l i c i e s f o r each c u t t i n g area. The c u t scheduler then s e l e c t e d that s e t of a l t e r n a t i v e s which maximized present net worth s u b j e c t to c e r t a i n s p e c i f i e d volume flow and area c o n s t r a i n t s . . His system, M a x - M i l l i o n , has been adopted as an o p e r a t i o n a l t o o l f o r management planning of southern pine f o r e s t s by a number of companies (Ware and C l u t t e r 1971). The Timber Resource A l l o c a t i o n Method (RAM) i s an LP timber planning system developed by Navon (1971) f o r the United States F o r e s t S e r v i c e (USFS).. T h i s system i s s i m i l a r i n concept to 11 M a x - M i l l i o n . I t takes a f o r a s t i n v e n t o r y and a set of a l t e r n a t e management p r e s c r i p t i o n s f o r each f o r e s t type and determines the optimal h a r v e s t schedule according to e i t h e r a volume, revenue or cost o b j e c t i v e . The long range planning h o r i z o n (up to 350 years) and c u r r e n t o p e r a t i o n a l use on a number o f United S t a t e s N a t i o n a l F o r e s t s d i s t i n g u i s h Timber RAM from p r e v i o u s s c h e d u l i n g models. .. In f a c t , a USFS review (Mass, 1974) of computerized planning systems recommended t h a t Timber RAM be used f o r a l l o w a b l e cut c a l c u l a t i o n s and long range v o l u m e . p r e d i c t i o n s 1 . . The Resource C a p a b i l i t y System (RCS, Mass 1974) i s a m u l t i p l e resource planning t o o l . Forage, sedimentation, r e c r e a t i o n a l v i s i t o r days, as w e l l as timber, are products c o n s i d e r e d from the t o t a l land base. LP i s used to schedule the mix of resource a c t i v i t i e s f o r a given management u n i t . . The primary b e n e f i t from RCS i s a g u a n t i t a t i v e means of e v a l u a t i n g a l t e r n a t i v e land use combinations.. However, RCS has l i m i t e d a p p l i c a b i l i t y f o r timber p l a n n i n g . The model i s not w e l l s t r u c t u r e d f o r e v a l u a t i n g d e t a i l e d timber management a l t e r n a t i v e s and i s only capable of h a n d l i n g e i g h t time p e r i o d s . Fowler (1978) d i s c u s s e d the need f o r e s t i m a t i n g the impact of f o r e s t management d e c i s i o n s on broader socio-economic f a c t o r s of a r e g i o n . He presented a system of submodels to address t h i s need. In a d d i t i o n t o an LP cut s c h e d u l i n g model, he added: 1) a f o r e s t measurement s i m u l a t o r , *Further d e t a i l s of Timber RAM w i l l be covered i n subseguent chapt e r s . r 12 2) an economic i n p u t / o u t p u t model, 3) an employment e s t i m a t i o n model, and 4) a tax p r o j e c t i o n c a l c u l a t o r . T h i s system enables one. to t r a c e a given schedule:of timber flows through to i t s impact on l e v e l s of gross r e g i o n a l product, employment and t a x e s . E x t e n s i o n s to harvest s c h e d u l i n g models appeared i n the planning of f o r e s t roads. Odendahl (1975) reviewed s e v e r a l of the p l a n n i n g models used by the USFS f o r f o r e s t t r a n s p o r t a t i o n a n a l y s i s . . The most p e r t i n e n t of the models d i s c u s s e d , the: Timber T r a n s p o r t model, was designed f o r a n a l y z i n g m o d i f i c a t i o n s to an e x i s t i n g road network which l i n k s harvest areas to m i l l s . , T h i s model i s a c t u a l l y a system c o n s i s t i n g of a route generator, matrix generator, an LP/IP o p t i m i z e r and a r e p o r t w r i t e r . T r a f f i c a l l o c a t i o n s and assignments are produced based on the o p t i m i z a t i o n o f e i t h e r a c o s t or revenue o b j e c t i v e . . The Timber Transport model i s p a r t i c u l a r l y u s e f u l f o r examining t r a f f i c volumes, f o r c o s t i n g a l t e r n a t i v e .route flows, and f o r a s s e s s i n g a d d i t i o n s , improvements or d e l e t i o n s to the road network.. Navon (1975) presented two models f o r f o r e s t t r a n s p o r t a t i o n p l a n n i n g . The f i r s t model addressed s h o r t run a n a l y s e s of up to f i v e y e a r s . I t was assumed i n the s h o r t run t h a t both volume and l o c a t i o n of harvest were known, with the planning problem reduced to determining the minimum c o s t s t r a t e g y of h a u l i n g and road c o n s t r u c t i o n a c t i v i t i e s . The second model addressed long term p l a n n i n g . A d e t a i l e d d i s c u s s i o n i s presented by Weintraub and Navon (1976).. The long term model i n c l u d e d timber management a c t i v i t i e s as well as h a u l i n g and road c o n s t r u c t i o n 13 a c t i v i t i e s . The problem was to f i n d t h a t combination of a c t i v i t i e s which would optimize an economic o b j e c t i v e , e i t h e r minimum c o s t s or maximum revenues. Both the s h o r t and Long run models use a mixed i n t e g e r l i n e a r programming f o r m u l a t i o n . . Road c o n s t r u c t i o n a c t i v i t i e s were modelled as i n t e g e r v a r i a b l e s with s i l v i c u l t u r a l and h a u l i n g a c t i v i t i e s as continuous v a r i a b l e s . As with most IP problems, the number of i n t e g e r v a r i a b l e s must be l i m i t e d to keep the problem within s o l v a b l e dimensions.. A p r o g r e s s i o n i n the.development of f o r e s t h arvest planning models has become apparent upon reviewing the l i t e r a t u r e . I n i t i a l l y , a p p l i c a t i o n s emphasized the b i o l o g i c a l a s p e c t s of growth and volume y i e l d , p a r t i c u l a r l y i n the context of a s u s t a i n e d y i e l d philosophy. Models then began to p l a c e more focus on the bio-economic a s p e c t s of harvest p l a n n i n g . . From there the modelling e f f o r t has been c h a r a c t e r i z e d by the development of systems of models r a t h e r than a s i n g l e model to address f o r e s t h a r v e s t p l a n n i n g . We are now at the stage where ex t e n s i o n s t o previous models are being developed (Williams, 1976).. The focus i s on improving and combining e x i s t i n g t o o l s , r a t h e r than on developing e n t i r e l y new technigues or models.. 14 3. PROBLEM ANALYSIS The: problem a n a l y s i s process b a s i c a l l y i n v o l v e s the i d e n t i f i c a t i o n of; the d e c i s i o n maker, the o b j e c t i v e , and the a l t e r n a t i v e s a v a i l a b l e t o s a t i s f y the o b j e c t i v e . . Among the a l t e r n a t i v e s there has to be doubt as to which i s best. C o n s t r a i n t s a f f e c t i n g the a l t e r n a t i v e - o b j e c t i v e r e l a t i o n s h i p must a l s o be i d e n t i f i e d w i t h i n the problem environment.. The e x i s t e n c e of a problem would not be c l e a r l y recognized i f any of the above components were not i d e n t i f i e d . The d e c i s i o n makers to which t h i s t h e s i s i s d i r e c t e d are the f o r e s t managers who plan h a r v e s t s at the management u n i t l e v e l . . Included i n t h i s group are both government managers r e s p o n s i b l e f o r PSYU's, and i n d u s t r i a l managers r e s p o n s i b l e f o r TFL•s.. The b a s i c o b j e c t i v e of the f o r e s t manager, i n regards to h a r v e s t p l a n n i n g at the management u n i t l e v e l , i s to schedule the h a r v e s t of the supply of timber over time i n an optimal manner. . The d e s i r a b i l i t y of p o s s i b l e c u t t i n g schedules i s measured i n terms of volume and value flow, g i v i n g due c o n s i d e r a t i o n to non-timber r e s o u r c e s . Harvest s c h e d u l i n g encompasses the determination of: 1) the cut l e v e l , 2) the time p e r i o d f o r h a r v e s t , 3) the s p e c i e s composition of the cut, and 4) the p o s s i b l e areas of harvest. S e v e r a l a l t e r n a t i v e s e x i s t i n a d d r e s s i n g the f o u r aspects of h a r v e s t p l a n n i n g . Planning time reguirements and the a b i l i t y 15 to e v a l u a t e a v a r i e t y of s c e n a r i o s are measures by which a l t e r n a t i v e harvest r e g u l a t i o n methods can be judged. . Two p a r t i c u l a r a l t e r n a t i v e s are considered below; the present and h i s t o r i c a l method of determining harvest schedules, and a new approach which has gained c o n s i d e r a b l e a t t e n t i o n . 3.1 Harvest Scheduling - Background The h i s t o r i c a l approach to h a r v e s t s c h e d u l i n g has been based on b i o l o g i c a l y i e l d c r i t e r i a . Cut r e g u l a t i o n p o l i c i e s were n o n - e x i s t e n t i n B r i t i s h Columbia p r i o r t o 1947.. In the e a r l y 1950's s u s t a i n e d y i e l d r e g u l a t i o n s ware i n s t i t u t e d to determine annual a l l o w a b l e cut l e v e l s as a r e s u l t of the second Boyal Commission o f I n g u i r y r e l a t e d to B r i t i s h Columbia f o r e s t r e s o u r c e s . The e a r l y attempts at determining h a r v e s t l e v e l s were based on the H a n z l i k formula (Hanzlik, 1922).. T h i s formula was designed f o r the r e g u l a t i o n of mature and over-mature f o r e s t s . . The b a s i c form of H a n z l i k ' s formula i s shown below: Volume of Mature Mean Annual Annual Allowable Cut = +• Increment Rot a t i o n Age . of Immature Subsequently, harvest l e v e l s were determined by a more d e t a i l e d computational procedure designed to maximize mean annual increments of growth. In t h i s p r o c e s s , l o c a l i z e d estimates of growth and y i e l d are obtained from the timber i n v e n t o r y of the management u n i t i n g u e s t i o n . . Such estimates 16 p r o v i d e the b a s i s f o r determining t o t a l y i e l d s and annual y i e l d s of mature and immature, f o r e s t t y pes. The: annual y i e l d s r e p r e s e n t a cut l e v e l which maximizes the r a t e of p h y s i c a l p r o d u c t i o n from the f o r e s t base.. A b i o l o g i c a l l y optimal r o t a t i o n age f o r each f o r e s t type i s then determined by d i v i d i n g the t o t a l y i e l d by the annual y i e l d . An i t e r a t i v e procedure c a l l e d an "area/volume allotment check" i s then c a r r i e d out to v e r i f y the c o m p a t i b i l i t y of the s p e c i f i e d r o t a t i o n age with the t a b u l a t e d annual c u t . I f necessary the annual harvest l e v e l i s adj u s t e d so t h a t the time peri o d i n which to harvest a l l age c l a s s e s corresponds to the optimal r o t a t i o n . . complete d e t a i l s of the BCFS annual allowable cut c a l c u l a t i o n can be found i n a p o l i c y paper (Haley, 1975) from the most recent Royal Commission i n t o f o r e s t r e s o u r c e s 2 . A number of a d m i n i s t r a t i v e adjustments are subsequently made to the i n d i c a t e d a l l o w a b l e cut l e v e l t o r e f l e c t volume l o s s e s due to land a l i e n a t i o n s f o r non-timber uses, f i r e s , roads, r e g e n e r a t i o n d e l a y s and other s i l v i c u l t u r a l and h a r v e s t i n g induced l o s s e s . The net r e s u l t i s an a d m i n i s t r a t i v e l y approved cut l e v e l f o r a one year p e r i o d f o r the management u n i t of concern.. The above procedure has been used f o r determining annual harvest l e v e l s f o r both PSYU's and TFL•s.. The d e t e r m i n a t i o n of the remaining s c h e d u l i n g aspects of 2 P e a r s e , P.H., 1976.. Timber R i g h t s And Forest P o l i c y , Report Of The Royal Commission On For e s t Resources 1 7 what and where to harvest have a l s o been based on volume c r i t e r i a . From the government viewpoint, assignment of c u t t i n g p r i o r i t i e s to stand types based on an increment g a i n philosophy has i d e n t i f i e d what s p e c i e s to h a r v e s t . High p r i o r i t y i s given to those stands which, when r e p l a c e d , r e s u l t i n g r e a t e r growth. These p r i o r i t i z e d stand types are then i d e n t i f i e d on the i n v e n t o r y type map showing p o t e n t i a l harvest a r e a s . From the i n d u s t r i a l viewpoint, product marketing requirements are becoming i n c r e a s i n g l y p r e v a l e n t i n d i c t a t i n g s p e c i e s flow from the h a r v e s t . . P o t e n t i a l h a r v e s t areas which w i l l c o n t r i b u t e to the d e s i r e d s p e c i e s mix are again i d e n t i f i e d on the i n v e n t o r y type map. 3.2 Harvest Scheduling - Need For An A l t e r n a t i v e There are s e v e r a l disadvantages to the harvest planning approach d e s c r i b e d above.. Foremost i s the l a c k of economic c o n s i d e r a t i o n s i n the e s t a b l i s h m e n t of harvest r e g u l a t i o n at the management u n i t l e v e l . . The r a t e of timber h a r v e s t i n g has been determined so as to maximize b i o l o g i c a l p r o d u c t i v i t y , and not n e c e s s a r i l y economic or s o c i a l r e t u r n s . Economic as w e l l as b i o l o g i c a l assessment of the management un i t w i l l p r ovide an improved b a s i s f o r c u t s c h e d u l i n g . In p a r t i c u l a r , the need e x i s t s f o r the economic f a c t o r s r e g a r d i n g s p e c i e s flow and h a r v e s t area a c c e s s i b i l i t y t o be e x p l i c i t l y i n t e g r a t e d i n the d e t e r m i n a t i o n of the r a t e of h a r v e s t . . R e c e n t l y , the formal 18 i n c o r p o r a t i o n of economic a n a l y s i s with b i o l o g i c a l a n a l y s i s was evidenced on one of the N a t i o n a l F o r e s t s i n C a l i f o r n i a ( C r a i g , 1979)., This study demonstrated t h a t departures from a s t r i c t even flow s u s t a i n e d y i e l d approach r e s u l t e d i n o p p o r t u n i t i e s f o r i n c r e a s e d l e v e l s of harvest, revenues and jobs without a d v e r s e l y a f f e c t i n g the long term b i o l o g i c a l c a p a c i t y of the management u n i t . . & second disadvantage:of present harvest s c h e d u l i n g methods i s the l i m i t e d o p p o r t u n i t y f o r a s s e s s i n g a l t e r n a t i v e s . . The need e x i s t s f o r a s s e s s i n g the impacts of p o s s i b l e : c u r r e n t d e c i s i o n s over a l o n g range h o r i z o n . Previous planning methods d i d not f a c i l i t a t e a n a l y s i s of a spectrum of harvest schedules i n a t i m e l y manner, a d e f i c i e n c y l a r g e l y a r e s u l t of the manual process o f a l l o w a b l e cut d e t e r m i n a t i o n . A t h i r d major disadvantage i s the absence of t r a n s p o r t a t i o n c o n s i d e r a t i o n s i n determining timber flows f o r a management u n i t . The s e l e c t i o n and timing of h a r v e s t s are: p r i n c i p a l l y a f u n c t i o n of the timber v a l u e , i t s l o c a t i o n and i t s a c c e s s i b i l i t y . . Not only does the t r a n s p o r t a t i o n network re p r e s e n t a major p h y s i c a l c o n s t r a i n t i n terms of access, but i t r e p r e s e n t s a major expense. . Roads represent approximately 20% of the c a p i t a l investment of a h a r v e s t i n g o p e r a t i o n i n B r i t i s h Columbia, with the c o s t s of c o n s t r u c t i o n not uncommonly exceeding $70,000 per m i l e : ($43 ,497/kilometre). S u b s t a n t i a l s a v i n g s can be r e a l i z e d through t h o u g h t f u l i n t e g r a t i o n of c u t t i n g schedules with h a u l i n g and c o n s t r u c t i o n a c t i v i t i e s . . The i n t e g r a t i o n of timber planning and t r a n s p o r t a t i o n planning systems was endorsed i n a review of OSFS p l a n n i n g 19 systems by Weisz and Carder (1975). In t h i s regard, Weintraub and Navon (1976) s t a t e : "The s e q u e n t i a l non-integrated approach leads to s u b o p t i m i z a t i o n on two counts: 1) the wrong set of h a r v e s t areas may be made a c c e s s i b l e , and 2) the c h o i c e : of p e r i o d of access t o each node (harvest area) may not be o p t i m a l " In other words, t r a n s p o r t a t i o n - r e l a t e d a c t i v i t i e s are major d e c i s i o n v a r i a b l e s i n harvest p l a n n i n g and should be given due c o n s i d e r a t i o n along with s i l v i c u l t u r a l a c t i v i t i e s . S r e a t e r demand f o r other r e s o u r c e s has f o r c e d a l i e n a t i o n s from the timber base. These:supply-reducing pressures, coupled with the i n c r e a s i n g demand f o r wood products have s u b s t a n t i a l l y i n c r e a s e d raw m a t e r i a l c o s t s to the f o r e s t i n d u s t r y . , Such changes i n the p h y s i c a l and economic environment only accentuate the d e f i c i e n c i e s of past h a r v e s t p l a n n i n g p r a c t i c e s . . The l a t e s t Royal Commission i n t o B r i t i s h Columbia f o r e s t r e s o u r c e s , the new F o r e s t Act and the accompanying r e g u l a t i o n s are evidence t h a t f o r e s t p o l i c y must be dynamic. Changes must be:made to keep i n step with economic and s o c i a l needs. Change i s now a p p r o p r i a t e i n the r e g u l a t i o n of h a r v e s t s . . The t r a d i t i o n a l concepts and b a s i s f o r h a r v e s t s c h e d u l i n g are no longer adequate or a p p l i c a b l e t o c u r r e n t planning needs. The a l t e r n a t i v e method presented i n t h i s t h e s i s to address the d e f i c i e n c i e s i d e n t i f i e d above i s the T r a n s p o r t a t i o n A n a l y s i s - C u t Scheduling (TR ACS) system. TRACS makes use of resource i n v e n t o r y c o m p i l a t i o n s and management p r e s c r i p t i o n s to p r o v i d e growth, y i e l d , cost and revenue data f o r h a r v e s t 20 schedule d e t e r m i n a t i o n . Long range impacts of a v a r i e t y of management s t r a t e g i e s on both a volume and value'.basis can be ev a l u a t e d . . Furthermore, TRAZS all o w s i n i t s e v a l u a t i o n s the e x p l i c i t c o n s i d e r a t i o n of stand a c c e s s i b i l i t y i n terms of road c o n s t r u c t i o n and l o g t r a n s p o r t . The r e s u l t i s a harvest planning system which i n t e g r a t e s t r a n s p o r t a t i o n i n the b i o l o g i c a l and economic e v a l u a t i o n of c u t t i n g schedules f o r a management u n i t . , 21 4. MODEL COMPONENTS Th i s t h e s i s expands the e f f e c t i v e n e s s of e x i s t i n g management u n i t l e v e l harvest planning t o o l s . In doing so, the TRACS system methodology draws l a r g e l y from the components of the Computer A s s i s t e d Resource Planning (CARP) system (Williams £i §.i»r 1975)., CARP was developed f o r the BCFS as a prototype h a r v e s t planning system. The o r i g i n a l methodology has been extended by developing a t r a n s p o r t a t i o n modelling subsystem. The r e s u l t s from t h i s t r a n s p o r t a t i o n subsystem are subsequently i n c o r p o r a t e d i n cut schedule d e t e r m i n a t i o n . The f l o w c h a r t i n Fi g u r e 2 o u t l i n e s the b a s i c a n a l y t i c a l s t r u c t u r e of the TRACS system. The f o l l o w i n g f i v e major subsystems are presented: 1) the Forest subsystem, 2) the T r a n s p o r t a t i o n subsystem, 3) the State V a r i a b l e subsystem, 4) the Cut Scheduling subsystem, and 5) the Report subsystem. 22 Figure 2. Components of the TPACS System State Variable Subsystem Cut Scheduling Subsystem Report Subsystem On-line data storage j J Processing C 7 Hardcopy reporting 23 4 . 1 F o r e s t Subsystem M l methods of determining h a r v e s t l e v e l s f i r s t r e q u i r e an i n v e n t o r y of the p h y s i c a l r e s o u r c e s of the management u n i t . T y p i c a l l y a map o v e r l a y system pro v i d e s the f o u n d a t i o n f o r c o m p i l i n g i n f o r m a t i o n on the supply of resources a v a i l a b l e . The o v e r l a y s would i n c l u d e v e g e t a t i o n type and land c l a s s i f i c a t i o n as a minimum.. The type map p r o v i d e s i n f o r m a t i o n on s p e c i e s , age, s i t e : and timber y i e l d . The land c l a s s i f i c a t i o n map provides i n f o r m a t i o n on s o i l s , landform, parent m a t e r i a l and drainage c h a r a c t e r i s t i c s . The o v e r l a y process d e l i n e a t e s d i s t i n c t land u n i t s f o r which area and p r o d u c t i v e , c a p a b i l i t y can be i d e n t i f i e d . A l l corresponding i n f o r m a t i o n i s compiled as a t t r i b u t e s of these p h y s i c a l geographic u n i t s . . Land use plans and management p r e s c r i p t i o n s r e l a t e d t o t h e . i d e n t i f i e d land u n i t s accompany the p h y s i c a l resource i n f o r m a t i o n . Ose s u i t a b i l i t y and p r e s c r i b e d treatments are d e r i v e d as a f u n c t i o n of l o c a l knowledge and s o i l - l a n d f o r m c h a r a c t e r i s t i c s , and provide the b a s i s f o r c o s t e s t i m a t i o n . Those areas having p r o d u c t i v e f o r e s t cover form the b a s i c "stand" u n i t . Stands r e p r e s e n t the f i n e s t l e v e l of r e s o l u t i o n f o r u n i t p l a n n i n g . For each stand, the f o l l o w i n g a t t r i b u t e s comprise the data base: 1) stand number 2) compartment number 3) geographic l o c a t i o n 4 ) s p e c i e s type 24 5) l a n d c l a s s 6) age c l a s s 7) s i t e c l a s s 8) area 9) net volume per u n i t area 10) designated use(s) 11) h a r v e s t i n g method 12) season of h a r v e s t 13) e a r l i e s t and l a t e s t h arvest e n t r i e s 14) expected s i t e p r e p a r a t i o n 15) expected r e g e n e r a t i o n M l of the above i n f o r m a t i o n i s assembled and maintained on a computerized data management and r e t r i e v a l system. A computerized data base serves three b a s i c f u n c t i o n s . F i r s t l y , i t p r o v i d e s r a p i d answers to on-demand user q u e r i e s . , Secondly, i t p r o v i d e s f o r generation of s t a n d a r d i z e d management r e p o r t s . T h i r d l y , i t p r o v i d e s f o r the generation of b a s i c data f o r f u r t h e r a n a l y s i s . As mentioned, the stand i n v e n t o r y p r o v i d e s an i n d i c a t i o n of p r o d u c t i v e c a p a b i l i t y of the l a n d . . The BCFS d e r i v e s l o c a l i z e d estimates of timber growth and y i e l d through sampling. These estimates r e f l e c t average volume p r o d u c t i o n per area to a given u t i l i z a t i o n standard, l e s s deductions f o r decay.. The y i e l d s are presented i n g r a p h i c a l form i n which volumes are p l o t t e d a g a i n s t age by s p e c i e s type, geographic l o c a t i o n and s i t e . . These BCFS Volume/Age Curves (VAC) are a rudimentary form of a whole s t a n d - d i s t a n c e independent growth model. The.VAC's provide the 25 b a s i s f o r the standard annual a l l o w a b l e cut c a l c u l a t i o n procedure., The same b a s i s f o r growth and y i e l d p r o j e c t i o n i s used i n t h i s t h e s i s because of a v a i l a b i l i t y and a l s o t o demonstrate how the same data can be u t i l i z e d to generate more i n f o r m a t i o n t o a i d management. 4.2 T r a n s p o r t a t i o n Subsystem As p r e v i o u s l y d i s c u s s e d , the t r a n s p o r t a t i o n system r e p r e s e n t s major d e c i s i o n v a r i a b l e s i n f o r e s t harvest p l a n n i n g . The importance of t r a n s p o r t a t i o n c o n s i d e r a t i o n s has been evidenced i n a study by H e r r i c k (1976). He found t h a t h a u l i n g d i s t a n c e i s one of the most c r i t i c a l determinants of s u c c e s s f u l l o g g i n g o p e r a t i o n s . R e l i a b l e estimates of the c o s t s of moving logs from the l a n d i n g t o the manufacturing p l a n t are r e g u i r e d f o r proper stand v a l u a t i o n . . However, models f o r e v a l u a t i n g such c o s t s have not been long e s t a b l i s h e d i n f o r e s t r y . TRACS al l o w s f o r the ge n e r a t i o n and e v a l u a t i o n of t r a n s p o r t a t i o n - r e l a t e d c o s t s . The t r a n s p o r t a t i o n subsystem presents a procedure f o r d e r i v i n g c o s t e s t i m a t e s f o r t r u c k t r a n s p o r t based on a minimum r o u t i n g network a n a l y s i s technique. 26 4.2.1 D e r i v a t i o n Of T r a n s p o r t a t i o n Costs Two main f a c t o r s a f f e c t the estimate of t r a n s p o r t a t i o n c o s t s f o r a given stand: 1) the t r a n s p o r t a t i o n network, both e x i s t i n g and proposed, and 2) the l o c a t i o n of the f o r e s t stand i n r e l a t i o n to both the network and the manufacturing p l a n t . . The t y p i c a l f o r e s t road network can be c h a r a c t e r i z e d by two a t t r i b u t e s ; road c l a s s and, type of haul ( i . e . on vs. o f f highway h a u l ) . These two c h a r a c t e r i s t i c s determine the g u a l i t y of the road network and the type of t r a n s p o r t medium which u t i l i z e s the network.. Road c l a s s e s r e l a t e t o the design and c a p a b i l i t y standards i n terms of maximum al l o w a b l e v e h i c l e speeds and t r a f f i c c o n c e n t r a t i o n s f o r the: road.. They are s i g n i f i c a n t as they d i r e c t l y a f f e c t " c y c l e " times f o r t r a v e l from l a n d i n g to m i l l and back to l a n d i n g . . The type of h a u l i n g medium permissable, e i t h e r on-highway or off-highway t r u c k s , i s a l s o a s i g n i f i c a n t f a c t o r . . T h i s c h a r a c t e r i s t i c d i r e c t l y a f f e c t s a l l o w a b l e load l i m i t s and truck speeds. More s p e c i f i c a l l y , c o s t estimates f o r t r u c k t r a n s p o r t , i n d o l l a r s per u n i t volume, are a f u n c t i o n of fo u r components: 1) d i s t a n c e 2) speed 3) machine r a t e s 4) l o a d s i z e Distance d i v i d e d by allowable truck speed, loaded and unloaded, provide c y c l e times. . Cycle times a p p l i e d a g a i n s t machine r a t e s 27 f o r l o g g i n g t r u c k s y i e l d c o s t s f o r l o g t r a n s p o r t i n s t r i c t d o l l a r terms. T h i s c o s t whan d i v i d e d by load s i z e generates l o g h a u l i n g c o s t i n d o l l a r s per u n i t volume of wood., The d e r i v a t i o n can be summarized as f o l l o w s : 1) Distance/average Speed = C y c l e Time (miles) (miles/hour) (hours) 2) C y c l e Time X Machine Rates = Cost (hours) ($/hour) ($) 3) Cost/Load S i z e = T r a n s p o r t a t i o n Cost ($) (cunits) ($/cunit) Thus, h a u l i n g d i s t a n c e i s the i n i t i a l f a c t o r which c o n t r i b u t e s towards t r a n s p o r t a t i o n c o s t d e r i v a t i o n . D i s t a n c e s from the stand to the road network and through the network to the m i l l are r e q u i r e d . . Network a n a l y s i s p r o v i d e s a means f o r determining the necessary h a u l i n g d i s t a n c e s and f a c i l i t a t e s the assessment of h a u l i n g s t r a t e g i e s . The f o l l o w i n g s e c t i o n d e f i n e s some b a s i c terminology which w i l l be introduced i n the d i s c u s s i o n o f minimum r o u t i n g and i t s a p p l i c a t i o n to stand v a l u a t i o n . 28 4.2.2 Network a n a l y s i s a b a s i c c h a r a c t e r i s t i c of graphs and networks i s t h e i r c o m b i n a t o r i a l nature. . a graph i s a c o l l e c t i o n of nodes j o i n e d by a c o l l e c t i o n of a r c s . Graphs d e f i n e purely s t r u c t u r a l r e l a t i o n s h i p s . a network i s a graph c o n t a i n i n g i n a d d i t i o n , flow, d i s t a n c e or some other measurable a t t r i b u t e a s s o c i a t e d with the member ar c s and/or nodes. Thus, networks provide g u a n t i t a t i v e d e s c r i p t i o n s as w e l l as d e f i n i n g s t r u c t u r e . . In mathematical n o t a t i o n , the s e t of nodes can be r e p r e s e n t e d by N = {i I i = 1,...,n}, and the. set of a r c s r e p resented by a = { ( i , j) or ( j , i ) | iSN, j&N} . Given the above two s e t s , a graph can be d e f i n e d as the set G = {N,a'} where A'sa. Extending the n o t a t i o n , node a t t r i b u t e s can be r e p r e s e n t e d by B = [ b t | i&N}. r S i m i l a r i l y , arc a t t r i b u t e s can be r e p resented by C = [ c ( i , j ) and/or c ( j , i ) | (i,j)&A}._ Given these a d d i t i o n a l s e t s , a network can be d e f i n e d as the s e t W = {N,a',B, C'} where C'cC (A») . a number of other "graph-network" terms a l s o r e g u i r e d e f i n i t i o n . a "branch" i s an arc together with i t s c o r r e s p o n d i n g end nodes. If a l l branches are unordered, where a r c ( i , j ) = a r c ( j , i ) , then the graph, G, i s " u n d i r e c t e d " . C o n v e r s e l y , i f the branches are ordered y i e l d i n g some sense of d i r e c t i o n between the nodes (where arc ( i , j ) # a r c ( j , i ) ), then the graph, G, i s s a i d to be " d i r e c t e d " . . a "source" node i s o r i e n t e d such that a r c s lead away from i t , whereas a " s i n k " node i s one:in which arcs are d i r e c t e d towards i t . . F i g u r e 3 p r e s e n t s examples of both an u n d i r e c t e d and a d i r e c t e d graph. Figure 3 . Examples of Graph Structures 29 30 Corresponding set d e f i n i t i o n s accompany the diagrammatic r e p r e s e n t a t i o n s . Note a l s o , i n t e r s e c t i o n s occur only at nodes, not where a r c s are shown to c r o s s each other.. The "degree" or "order" of a node i s the number of a r c s i n c i d e n t upon i t . A node.of degree 1 i s an extreme p o i n t 3 , and i t s c o r r e s p o n d i n g a r c i s a t e r m i n a l a r c . F u r t h e r , a r c s are d e f i n e d to be adjacent i f they are i n c i d e n t on a common node. Completing the terminology, a "path" i s a s e r i e s of ordered, adjacent branches l e a d i n g from a given node i t o another node j such t h a t each i n t e r v e n i n g node i s encountered j u s t once. A path i n i t i a t i n g and t e r m i n a t i n g at the same node i s c a l l e d a " c y c l e " or "loop". Conversely, an a c y c l i c path i s r e f e r r e d to as a "simple path".. A graph, G, i s "connected" i f there e x i s t s at l e a s t one path connecting any two nodes i and j , where i&N and j&N and i # j . As a f i n a l term, a "subgraph" of G i s t h a t subset of nodes, N'sN t o g e t h e r with the a p p r o p r i a t e subset of i n c i d e n t a r c s , A'aA. The Shortest Route problem i n v o l v e s f i n d i n g the f e a s i b l e path of minimum d i s t a n c e from a p a r t i c u l a r source node: to a p a r t i c u l a r sink node. The problem i s c h a r a c t e r i z e d by a d i r e c t e d graph, G = (N, A). , The node s e t , N = ( i | i=1,... ,n) , can be p a r t i t i o n e d i n t o three subsets: 1) N, = source nodes, 2) N 2 = i n t e r m e d i a t e nodes, and 3However the converse i s not t r u e . . I t i s not necessary f o r an extreme p o i n t to be a node.of degree 1. 31 3) N3 = s i n k nodes The a r c s e t , A = C(i/j)|i&N,j&N} where A > n-1, connects every p a i r o f nodes. . There, e x i s t s a set of a t t r i b u t e s , C = [C ( i , j ) | ( i , j) &A} , a s s o c i a t e d with each arc between nodes i and j . . The f e a s i b l e path between nodes i and j can ba represented by x Lj . . The f o l l o w i n g a d d i t i o n a l c o n d i t i o n s a l s o hold: 1) the a r c a t t r i b u t e s c L j need not be symmetric, i . e . c "Lj / c j i , 2) the a t t r i b u t e s cLj are non-negative, i.e.. , C y > 0 , 3) the value of an a t t r i b u t e from a nodeito i t s e l f i s zero, i . e . c ^ = 0 t and 4) where no a r c e x i s t s between any p a r t i c u l a r p a i r of nodes, the a t t r i b u t e c y- i s assumed t o be i n f i n i t e . Siven the above s p e c i f i c a t i o n s , the Shortest Route problem can formulated as f o l l o w s : MIN Z = E E cu xi} i j J J s u b j e c t to : 1-1 f o r i&N, , where N, = {1} 0 f o r i&N 2 , where N 2 = {2,...,n-1} 1 f o r i&N 3 , where N3 = [n} i i ) Xy- > 0 f o r a l l i The o b j e c t i v e i s to f i n d the route which minimizes the t o t a l 32 d i s t a n c e t r a v e l l e d from a s p e c i f i e d source to a s p e c i f i e d s i n k . The f i r s t set of c o n s t r a i n t s s p e c i f y that only a s i n g l e u n i t flows out of the source (N, ) and i n t o the sink (N 3) , while: flow i s conserved at the i n t e r m e d i a t e nodes ( N z ) . . The second c o n s t r a i n t s t a t e s a l l flows are to be p o s i t i v e . In the usual case, the a r c a t t r i b u t e s , c L j , represent d i s t a n c e s between r e s p e c t i v e nodes.. However, the arc a t t r i b u t e s need not be r e s t r i c t e d t o d i s t a n c e . They may be times, f o r determination of the minimum d u r a t i o n route, or p r o b a b i l i t i e s of d e l a y s , f o r d e t e r m i n a t i o n of the most r e l i a b l e r o u t e , or the a t t r i b u t e s may be c o s t s , f o r determination of the minimum c o s t route.. Note that as with most problems the optimal value ( i . e . the minimum dist a n c e ) i s not of key concern, but i t i s r a t h e r the d e c i s i o n s t r a t e g y y i e l d i n g o p t i m a l i t y ( i . e . . t h e minimum route) which i s of primary importance. C l o s e l y a s s o c i a t e d with the b a s i c Shortest Route problem i s the d e t e r m i n a t i o n of the s h o r t e s t path between a s e l e c t e d sink and a l l other nodes. As Elmaghraby (1970) p o i n t s out, almost a l l a l g o r i t h m s t h a t s o l v e the- b a s i c one source to one s i n k problem, a l s o s o l v e the a l l sources to one s i n k problem.. The a l l sources-one s i n k S h o r t e s t Route problem i s the one of p a r t i c u l a r i n t e r e s t . . The a l g o r i t h m considered to be most e f f i c i e n t i n determining the s h o r t e s t path between a s p e c i f i e d p a i r of nodes i s a t r e e method developed by D i j k s t r a (1959).. The method i s a permanent l a b e l l i n g , i t e r a t i v e process i n which the d i s t a n c e from a p a r t i c u l a r source: node, 1, to every other node, i , (i=2,...,k,...,n) i s determined i n ascending order u n t i l the 33 s p e c i f i e d s i n k nods, k f has been processed, or u n t i l a l l other nodes have processed. The: a l g o r i t h m i s capable of handl i n g non-symmetric a r c l e n g t h s an! both p o s i t i v e or negative arc a t t r i b u t e s . . A d e t a i l e d d e s c r i p t i o n o f D i j k s t r a ' s a l g o r i t h m i s presented i n Appendix I. 4.2.3 Log T r a n s p o r t a t i o n Based On Minimum Routing The f o r e s t road system of a management u n i t can be represented i n d i g i t a l form.. Two-dimensional s p a t i a l r e l a t i o n s h i p s of the road network can be captured from a map through a process of d i g i t i z a t i o n * . Road segments can be d e l i n e a t e d on the b a s i s of road c l a s s , road s t a t u s and h a u l type. In other words, road segments rep r e s e n t s e c t i o n s of road of uniform c h a r a c t e r i s t i c s . Lengths of the i n d i v i d u a l road segments can be computed d i r e c t l y from the d i g i t i z e d data. E m p i r i c a l l y observed c y c l e times from c e n t r e s of a c t i v e o p e r a t i o n can be s u p p l i e d along with the road system., These c y c l e times, combined with c u r r e n t machine r e n t a l r a t e s and average l o a d volumes, provide t r a n s p o r t a t i o n c o s t s per volume of l o g . D i s t a n c e s from the a c t i v e o perations t o m i l l i n g s i t e s allow g e n e r a t i o n of haul c o s t s i n d o l l a r s per c u n i t per mile d i g i t i z a t i o n i s the process o f r e c o r d i n g x and y c o o r d i n a t e values r e l a t i v e to a predefined base o r i g i n * The r e c o r d i n g of a s e r i e s of c o o r d i n a t e p a i r s enables the geographic l o c a t i o n of such f e a t u r e s as roads to be n u m e r i c a l l y represented. 34 ($/cubic m e t r e / k i l o m e t r e ) . These c o s t i n g s from observed o p e r a t i o n s can then be used as the b a s i s f o r e s t a b l i s h i n g h a u l i n g c o s t zones.. Within a p a r t i c u l a r zone, the t r a n s p o r t a t i o n cost f o r a given stand can be d e r i v e d by m u l t i p l y i n g the distance from stand to the m i l l by the r e s p e c t i v e d o l l a r s per c u n i t per mile ($/cubic metre/kilometre) f i g u r e . . A l t e r n a t i v e l y , d i s t a n c e to a pre-determined l o c a t i o n f o r - o s t a p p r a i s a l purposes could take the p l a c e of the m i l l s i t e . The d i s t a n c e from a stand to the m i l l or p o i n t of a p p r a i s a l i n v o l v e s two components. The f i r s t component i s the d i s t a n c e from the stand to the access road. The c o o r d i n a t e l o c a t i o n of each stand i s captured through d i g i t i z a t i o n of a v i s u a l c e n t r o i d . The s e l e c t i o n of an access road f o r a p a r t i c u l a r stand i s based s o l e l y on l i n e a r d i s t a n c e . In other words, the c l o s e s t road w i l l be accessed., Pythagorus' Theorem i s used to determine t h i s l i n e a r d i s t a n c e . This approach i s a s i m p l i f i c a t i o n i n a t l e a s t two r e s p e c t s . . F i r s t , the d i s t a n c e w i l l be underestimated, since i n most cases the path of access from a stand to the road w i l l not be l i n e a r . . Second, no regard i s given to topography which may hinder access of the c l o s e s t road.. N e v e r t h e l e s s , to f a c i l i t a t e an estimate.of the f i r s t d i s t a n c e component i t i s assumed t h a t the nearest road w i l l be accessed. . The second component i s the d i s t a n c e from the point on the access road through the:road system to the point of a p p r a i s a l . . The c r i t e r i o n employed i n s e l e c t i o n of the route i s one of minimum d i s t a n c e . D i j k s t r a ' s a l g o r i t h m , d i s c u s s e d i n S e c t i o n 35 4.2.2, i s used i n determining t h i s second d i s t a n c e component.. The f o r e s t road system can be represented as an u n d i r e c t e d , symmetric network 5.. The node s e t , N = (i|i=1,2,...,n}, becomes the p o i n t s of the road c l a s s t r a n s i t i o n s (and road segment end p o i n t s ) . The corresponding arc s e t , A = [ ( i r j ) I i&N* j&N) i s the road segments themselves with d i s t a n c e as the q u a n t i t a t i v e a t t r i b u t e s cLj , of i n t e r e s t . The source nodes i , i&N, , are the geo-coordinate c e n t r o i d s of the f o r e s t stands.. The sink node j , j&N 3 i s the point of a p p r a i s a l , u s u a l l y a s p e c i f i e d m i l l s i t e . . Thus, the s i t u a t i o n i s formulated as a minimum r o u t i n g problem i n v o l v i n g m u l t i p l e sources and one s i n k . . The o b j e c t i v e i s to minimize the d i s t a n c e t r a v e l l e d i n proceeding from a source n o d e i , through the network to s i n k node j . The d e c i s i o n i s to determine the r o u t i n g s t r a t e g y , x^j , which y i e l d s minimum t o t a l d i s t a n c e t r a v e l l e d . The approach of using D i j k s t r a ' s a l g o r i t h m i n c o n j u n c t i o n with d i g i t i z e d data i s unique r e l a t i v e to a p p l i c a t i o n s reviewed i n t h e : l i t e r a t u r e . The d i s t i n g u i s h i n g f e a t u r e i o f t h i s approach i s t h a t as p a r t of the process of determining minimum d i s t a n c e s and r o u t i n g s , the precedence r e l a t i o n s h i p s of the network are c o n s t r u c t e d . . Node:and arc r e l a t i o n s h i p s of the road system are assembled and maintained from the i n i t i a l d i g i t a l r e p r e s e n t a t i o n s , and are not e x p r e s s l y i d e n t i f i e d . , Cost estimates f o r primary road development can a l s o be SAlthough d i s t a n c e s are symmetric, t r a v e l times may not be. However, the s i m p l i f y i n g assumption i s that c y c l e times are d i r e c t l y r e l a t e d t o d i s t a n c e . . 36 g e n e r a t e d b y t h e t r a n s p o r t a t i o n s u b s y s t e m . L e n g t h s o f p r o p o s e d m a i n r o a d s , b y r o a d c l a s s , w i t h i n t h e . n e t w o r k a r e d e t e r m i n e d b y t h e s u b s y s t e m . . T h e s e d i s t a n c e s , when c o m b i n e d w i t h c o n s t r u c t i o n c o s t s f o r g i v e n c o n d i t i o n s o f t e r r a i n , p a r e n t m a t e r i a l a n d r o a d s t a n d a r d , y i e l d a c o s t e s t i m a t e f o r t h e p r o p o s e d r o a d d e v e l o p m e n t . T h e c o n s t r u c t i o n c o s t s a r e t h e n p r o p o r t i o n e d a m o n g t h e t i m b e r v o l u m e o f t h e s t a n d s w h i c h w i l l u s e t h e p r o p o s e d r o a d f o r a c c e s s . r T h e r e s u l t i s a n a d d i t i o n a l p a r u n i t v o l u m e c o s t e s t i m a t e r e f l e c t i n g a c c e s s d e v e l o p m e n t . A f u r t h e r u s e : o f t h e s u b s y s t e m i s f o r e v a l u a t i n g r o a d c l a s s s e l e c t i o n s f o r p r o p o s e d c o n s t r u c t i o n o r u p g r a d i n g . T r a d e o f f s b e t w e e n t h e e x t r a c o s t s f o r d e v e l o p i n g b e t t e r c l a s s r o a d s v e r s u s t h e e s t i m a t e d s a v i n g s i n t r a n s p o r t a t i o n c o s t s c a n b e e x a m i n e d . T h e t r a n s p o r t a t i o n s u b s y s t e m c a n a l s o b e e m p l o y e d o n a s t a n d a l o n e b a s i s f o r e v a l u a t i n g a l t e r n a t i v e wood f l o w p a t t e r n s f r o m s t a n d h o l d i n g s t o m i l l c o m p l e x e s . R o u t i n g s t r a t e g i e s b o t h w i t h i n a n d b e t w e e n m a n a g e m e n t u n i t s c a n b e e x a m i n e d . I m p a c t s o f f l u c t u a t i o n s i n u n i t c o s t s f o r t r a n s p o r t a t i o n a n d r o a d c o n s t r u c t i o n c a n b e a s s e s s e d . F o r e x a m p l e , f o r e c a s t e d f u e l p r i c e i n c r e a s e s , s u g g e s t e d p r a c t i c e s o f e n d h a u l i n g a n d o t h e r s u c h c o n s i d e r a t i o n s c o u l d be e v a l u a t e d . T o s u m m a r i z e , t h e t r a n s p o r t a t i o n s u b s y s t e m p r o v i d e s t h e c a p a b i l i t y f o r g e n e r a t i n g b o t h t r a n s p o r t a t i o n a n d p r i m a r y r o a d c o n s t r u c t i o n c o s t e s t i m a t e s f o r s t a n d a c c e s s . . T h a e s t i m a t e s p r o v i d e a m o r e c o m p r e h e n s i v e a s s e s s m e n t o f s t a n d v a l u e . . T h i s i m p r o v e d a p p r a i s a l c a n be u s e d a s t h e . b a s i s f o r i n d e p e n d e n t a n a l y s i s o r c a n c o n t r i b u t e t o t h e o v e r a l l s c h e d u l i n g o f t i m b e r h a r v e s t s a t t h e m a n a g e m e n t u n i t l e v e l . . 37 4.3 State V a r i a b l e Subsystem Resource managers are-being f o r c e d to d e a l with a d i v e r s e and ever i n c r e a s i n g data base. Under such c o n d i t i o n s , the e f f i c i e n t u t i l i z a t i o n of data becomes a s i g n i f i c a n t concern. The degree and extent to which data should c o n t r i b u t e to planning must be i d e n t i f i e d f o r r a t i o n a l a n a l y s i s to take p l a c e . The i s s u e i s one of data r e s o l u t i o n . The r e g u i r e d l e v e l of r e s o l u t i o n i s very much connected with the concepts of planning l e v e l s . . For r e g i o n a l p l a n n i n g only broad, i n c i s i v e parameters need be c o n s i d e r e d . . C o n v e r s e l y , f o r cut block planning very d e t a i l e d data are necessary. Between these two l i m i t s i s a wide range i n l e v e l s of data r e s o l u t i o n . . The user should be a b l e to s e l e c t a l e v e l a p p r o p r i a t e t o t h e . p l a n n i n g needs. T h i s s e c t i o n d e s c r i b e s a methodology which allows base data, i n the form of v a r i a b l e s which d e s c r i b e the s t a t e of the r e s o u r c e , to be : s y n t h e s i z e d to v a r y i n g l e v e l s of r e s o l u t i o n . . In t h i s study, data are transformed i n t o i n f o r m a t i o n p e r t i n e n t to management u n i t l e v e l h arvest p l a n n i n g . . The:components o f the s t a t e v a r i a b l e subsystem of TRACS are o u t l i n e d i n Figure 4. Figure 4. Components of the State Variable Subsystem Factor Analysis Cluster Analysis Dynamic Programming Timber Classes & Yield Classes 39 4.3.1 I n i t i a l S t a t e V a r i a b l e s T h e f i n e s t l e v e l o f d a t a t h u s f a r h a s b e e n t h e s t a n d , c h a r a c t e r i z e d by s p e c i e s t y p e , p r o d u c t i v e c a p a c i t y a n d m a n a g e m e n t p r e s c r i p t i o n s . . H o w e v e r , f o r p o l i c y d e c i s i o n s c o n c e r n i n g h a r v e s t s c h e d u l i n g a t t h e m a n a g e m e n t u n i t l e v e l a b r o a d e r l e v e l o f r e s o l u t i o n i s a p p r o p r i a t e . G r o u p i n g s o f s t a n d s o r " t i m b e r c l a s s e s " c a n b e d e r i v e d w h i c h a r e h o m o g e n e o u s w i t h r e s p e c t t o t h e i r r e s p o n s e t o m a n a g e m e n t t r e a t m e n t s . S i n c e c u t s c h e d u l i n g d e c i s i o n s a r e b a s e d o n y i e l d a t t r i b u t e s , t h e : c o n d i t i o n o r s t a t e o f e a c h s t a n d c a n be r e f l e c t e d b y v o l u m e a n d v a l u e y i e l d s . A n y c o n s o l i d a t i o n o f s t a n d s s h o u l d b e b a s e d o n s i m i l a r i t i e s i n t h e s e y i e l d c h a r a c t e r i s t i c s . . T h i s n e c e s s i t a t e s d e t e r m i n i n g t h e v o l u m e a n d v a l u e y i e l d s f o r i n d i v i d u a l s t a n d s , f o r b o t h t h e p r e s e n t a n d t h e f u t u r e . S u c h y i e l d s r e p r e s e n t t h e s e t o f i n i t i a l s t a t e v a r i a b l e s . .. C u r r e n t v o l u m e p e r a r e a e s t i m a t e s f o r m a t u r e a n d o v e r - m a t u r e s t a n d s a r e d e r i v e d f r o m t h e t y p e : m a p , w i t h c u r r e n t s t a n d s t o c k i n g u s e d t o a d j u s t f u t u r e v o l u m e y i e l d s p r o j e c t e d b y t h e B C F S V A C ' s . . An e x a m p l e o f a VAC i s p r e s e n t e d i n F i g u r e 5. , T h e c u r v e i d e n t i f i e s v o l u m e y i e l d s w h i c h c a n b e : e x p e c t e d o v e r t i m e f r o m l o g d e p o l e p i n e ( P i n u s c o n t o r t a D o u g l . ) s t a n d s o f m e d i u m s i t e q u a l i t y . Y i e l d s f r o m i m m a t u r e s t a n d s a r e d e r i v e d d i r e c t l y f r o m t h e V A C ' s , a s s u m i n g s t a n d m a n a g e m e n t w i l l r e s u l t i n n e c e s s a r y s t o c k i n g c o n d i t i o n s f o r t h e c o r r e s p o n d i n g v o l u m e f l o w . . E s t i m a t e s o f s t a n d v a l u e a r e o b t a i n e d f r o m a s i m u l a t i o n o f Figure 5. BCFS Volume Over Age Curve * > o o l Zone 4 Volume/Age Curves 9.1"+ and 13.1"+ D.B.H. For Growth Type 12 - P i Medium Site AGE IN YEARS the BCFS I n t e r i o r End Product A p p r a i s a l System,, Inventory c r u i s e s to i n d u s t r i a l standards provide c o m p i l a t i o n s of stand volume by l o g grade. R e c o v e r i e s i n terms of lumber and ch i p s f o r a r e p r e s e n t a t i v e m i l l are used t o generate end product o u t t u r n s . Corresponding market p r i c e s f o r the products p r o v i d e gross revenue f o r the stand. Such revenue estimates are d e r i v e d f o r each stand as a f u n c t i o n of age, s i t e : a n d s p e c i e s type. Ha r v e s t i n g c o s t s , i n c l u d i n g f e l l i n g , bucking, s k i d d i n g and l o a d i n g , f o r each stand are d e r i v e d as a f u n c t i o n of age, volume, s p e c i e s type, s o i l - l a n d f o r m c l a s s and management p r e s c r i p t i o n . Area c o s t s f o r l a n d i n g c o n s t r u c t i o n , s k i d road c o n s t r u c t i o n and s i t e p r e p a r a t i o n are a l s o i n c l u d e d i n the stand a p p r a i s a l . These c o s t s together with the c o s t s derived from the t r a n s p o r t a t i o n subsystem are then s u b t r a c t e d from the gross revenue f i g u r e s , r e s u l t i n g i n net value estimates f o r timber d e l i v e r e d to the m i l l . P r o j e c t i o n s of stand value over time are generated on the b a s i s of the volume y i e l d s p r o j e c t e d from the VAC s. , 42 4.3.2 Data A n a l y s i s The i n i t i a l s t a t e v a r i a b l e s o f each stand provide:the b a s i s f o r g e n e r a t i n g timber c l a s s e s . Data a n a l y s i s t e c h n i q u e s 6 p r o v i d e the c a p a b i l i t y f o r reducing data s e t s to manageable dimensions while minimizing the l o s s i n i n f o r m a t i o n . F a c t o r a n a l y s i s i s performed on the o r i g i n a l stand y i e l d c h a r a c t e r i s t i c s which transforms the v a r i a b l e s t o an orthogonal, normalized s t a t e space. B a s i c a l l y , the procedure i n v o l v e s f i r s t an e x t r a c t i o n of the p r i n c i p a l components of the input v a r i a b l e s . . These components are then r o t a t e d to d e l i n e a t e u n d e r l y i n g dimensions of the i n p u t v a r i a b l e s . . An orthogonal r o t a t i o n reduces the.amount of i n t e r - c o r r e l a t i o n that may e x i s t . In simple terms, independent f a c t o r s which c o n t a i n the essence of the o r i g i n a l s t a t e v a r i a b l e s are e x t r a c t e d to y i e l d a s m a l l e r set o f stand a t t r i b u t e s . This step e l i m i n a t e s redundant i n f o r m a t i o n which may b i a s the ge n e r a t i o n of timber c l a s s e s . . Next, stands are aggregated i n t o timber c l a s s e s based on the f a c t o r s e x t r a c t e d above. C l u s t e r a n a l y s i s i s employed to perform the aggregations. I t i s a d e s c r i p t i v e , s t a t i s t i c a l technique whose s u c c e s s f u l a p p l i c a t i o n r e l i e s oh the e x i s t e n c e of i n h e r e n t n a t u r a l groupings. Groups are formed s e q u e n t i a l l y so as to minimize the t o t a l v a r i a t i o n i n the f a c t o r values among each stand member. The process begins with each stand as an 6 0 t h e r s have b e t t e r covered the computational d e t a i l s of the techniques to be di s c u s s e d (Ward, 1963; Gower, 1967; Veldman,1967). 43 i n d i v i d u a l g r o u p . G r o u p i n g s a r e m a d e , o n e a t a t i m e , u n t i l e v e n t u a l l y a l l s t a n d s a r e m e m b e r s o f o n e g r o u p . . A t e a c h s t e p t h e d e c i s i o n t o c o m b i n e p a r t i c u l a r s t a n d s o r g r o u p s o f s t a n d s i s b a s e d o n t h e m i n i m i z a t i o n o f t h e i n c r e a s e i n t o t a l i n t r a - g r o u p v a r i a t i o n . . E x a m i n a t i o n o f t h e v a r i a n c e s a s s o c i a t e d w i t h e a c h s u c c e s s i v e g r o u p i n g l e v e l may i n d i c a t e a p a r t i c u l a r n u m b e r o f g r o u p s w o r t h y o f c o n s i d e r a t i o n . R e d u c t i o n t o t h e n e x t l o w e r l e v e l may r e s u l t i n a s u b s t a n t i a l l y l a r g e . i n c r e a s e i n e r r o r . T y p i c a l l y t h e r e a r e . a n u m b e r o f s i g n i f i c a n t e r r o r i n c r e a s e s . T h e d e t e r m i n a t i o n o f s i g n i f i c a n c e i s m a i n l y s u b j e c t i v e a n d d e p e n d e n t o n t h e u s e r ' s o b j e c t i v e . I f m i n i m i z i n g l o s s i n i n f o r m a t i o n i s o f p r i m e . c o n c e r n , t h e n t h e g r o u p i n g l e v e l t h a t e x i s t s p r i o r t o t h e f i r s t s u b s t a n t i a l i n c r e a s e i n e r r o r s h o u l d b e s e l e c t e d . I f h o w e v e r , a p a r t i c u l a r r a n g e o f g r o u p i n g l e v e l s i s o f i n t e r e s t , t h e n t h e e r r o r i n c r e a s e s o n l y w i t h i n t h a t r a n g e s h o u l d b e e x a m i n e d . . A n e x t e n s i o n t o t h e c l u s t e r i n g p r o c e s s h a s b e e n d e v e l o p e d w h e r e : s p e c i a l g u a l i t a t i v e : a t t r i b u t e s c a n b e u s e d t o s e g r e g a t e s t a n d s i n d e t e r m i n i n g t i m b e r g r o u p i n g s . A d y n a m i c p r o g r a m m i n g f o r m u l a t i o n i s u s e d t o a l l o c a t e : g r o u p i n g l e v e l s a m o n g t h e s t r a t i f i c a t i o n s i n an o p t i m a l m a n n e r . A p a p e r by W i l l i a m s a n d Y a m a d a (1975) d e s c r i b e s t h e : p r o c e d u r e i n d e t a i l w i t h a n a p p l i c a t i o n w h i c h p r e s e r v e s s p e c i e s t y p e w i t h i n t h e t i m b e r c l a s s g r o u p i n g s . . T h e n e t r e s u l t o f t h e d a t a a n a l y s i s s u b s y s t e m i s t h e f o r m a t i o n o f t i m b e r c l a s s e s w h i c h h a v e s i m i l a r s i l v i c u l t u r a 1 a n d e c o n o m i c y i e l d c h a r a c t e r i s t i c s . . T h e s a m e p r o c e s s i s a p p l i e d t o t h e y i e l d s o v e r t i m e t o f o r m c o n c i s e c l a s s e s f o r v o l u m e a n d 44 value p r o j e c t i o n s . The. r e s u l t i n g timber c l a s s e s and y i e l d c l a s s e s are the s t a t e v a r i a b l e s which are used as in p u t f o r ha r v e s t schedule d e t e r m i n a t i o n . 4.4 Cut Scheduling Subsystem The TRACS system schedules timber harvests based on the LP model, Timber RAM.. Other papers have d e s c r i b e d the Timber RAM model i n d e t a i l (Hennes et a l . , 1971; Navon, 1971). The major asp e c t s of the model w i l l be reviewed here.. Timber RAM was developed by the OSFS f o r f o r m u l a t i n g long range timber management plans. The model has the c a p a b i l i t y f o r c o n s i d e r i n g p l a n n i n g horizons of up to 35 decades.. Such long range: h o r i z o n s allow assessment o f the f u t u r e i m p l i c a t i o n s of short term d e c i s i o n s . Given an i n v e n t o r y of timber c l a s s e s and a set of management p r e s c r i p t i o n s and responses, RAM w i l l determine a c u t t i n g schedule t h a t optimizes a s p e c i f i e d o b j e c t i v e s u b j e c t to s p e c i f i e d c o n s t r a i n t s . . The o b j e c t i v e s may be:to maximize volume production, maximize discounted value p r o d u c t i o n or minimize discounted c o s t s over any number of deca d e s 7 . Various c o n s t r a i n t s on p e r i o d i c l e v e l s of volume, revenue, c o s t s and f o r e s t a c c e s s i b i l i t y can be s p e c i f i e d . . The r e s u l t i n g schedules i n d i c a t e the area of each timber c l a s s c u t , 7 T h e : f i r s t planning p e r i o d can be s p l i t i n t o two 5 year p e r i o d s H5 and the corresponding flow of volume, c o s t s and revenues generated f o r each decade of the planning h o r i z o n . , T h e : a c t i v i t i e s to be scheduled represent a sequence of management treatments f o r each timber c l a s s over the span of the planning p e r i o d . The timber c l a s s e s and the volume and value y i e l d c l a s s e s generated from the s t a t e v a r i a b l e , subsystem are used to formulate RAM a c t i v i t i e s . . An example.of a sequence of management treatments may be to c l e a r c u t employing an 80-year r o t a t i o n with precommercial t h i n n i n g at 20 years.. One corresp o n d i n g timber c l a s s a c t i v i t y would be t o c l e a r c u t and regenerate i n decade two, precommercial t h i n i n decade:four and c l e a r c u t and regenerate again i n decade t e n , r e p e a t i n g the sequence over the planning h o r i z o n . Hence, a c t i v i t i e s can d i f f e r not only i n the type of treatment but a l s o i n the timing of treatments.. In t h i s way a multitude of timber c l a s s a c t i v i t i e s can be generated and evaluated with Timber RAH.. There are three major types of c o n s t r a i n t s which can be imposed on timber c l a s s a c t i v i t i e s : 1) area and a c c e s s i b i l i t y c o n s t r a i n t s , 2) p e r i o d c o n s t r a i n t s , and 3) harvest c o n t r o l and r e g u l a t i o n c o n s t r a i n t s . Area c o n s t r a i n t s r e s t r i c t the maximum area a v a i l a b l e f o r management of any timber c l a s s . A l t e r n a t i v e l y the t o t a l area to be managed of each timber c l a s s can be c o n t r o l l e d . A c c e s s i b i l i t y c o n s t r a i n t s r e s t r i c t the area of each timber c l a s s a c c e s s i b l e during t h e . f i r s t f i v e p l a n n i n g p e r i o d s . C o n s t r a i n t s on minimum a c c e p t a b l e l e v e l s of volume or revenue, or maximum 46 a c c e p t a b l e l e v e l s o f c o s t s c a n a l s o b e s p e c i f i e d f o r a n y p e r i o d i n t h e p l a n n i n g h o r i z o n . H a r v e s t c o n t r o l c o n s t r a i n t s c a n b e u s e d t o c o n t r o l v o l u m e f l o w 8 d u r i n g t h e c o n v e r s i o n p e r i o d . H a r v e s t r e g u l a t i o n c o n s t r a i n t s c a n b e u s e d t o r e g u l a t e v o l u m e f l o w d u r i n g t h e p o s t c o n v e r s i o n p e r i o d . T h e c o n v e r s i o n p e r i o d i s t h a t s p a n i n w h i c h o l d g r o w t h i s l i g u i d a t e d , w i t h t h e p o s t c o n v e r s i o n b e i n g t h a t p e r i o d i n w h i c h s e c o n d g r o w t h m a n a g e m e n t i s i n e f f e c t . . D u r i n g t h e c o n v e r s i o n p e r i o d t h r e e t y p e s o f h a r v e s t c o n t r o l c a n b e i m p l e m e n t e d : 1) a r b i t r a r y c o n t r o l , w h e r e h a r v e s t l e v e l s a r e r e s t r i c t e d t o a b s o l u t e u p p e r a n d l o w e r l i m i t s 9 2) s e g u e n t i a l c o n t r o l , w h e r e u p p e r a n d l o w e r l i m i t s o n h a r v e s t s a r e r e s t r i c t e d t o a p e r c e n t a g e o f t h e h a r v e s t s p e c i f i e d i n t h e p r e c e d i n g p e r i o d . , T h i s a l l o w s s m o o t h t r a n s i t i o n s i n d e c a d e h a r v e s t s . 3) c o n v e n t i o n a l c o n t r o l , w h e r e h a r v e s t l e v e l s a r e r e s t r i c t e d t o a p e r c e n t a g e r a n g e a r o u n d t h e a v e r a g e . h a r v e s t l e v e l o f t h e c o n v e r s i o n p e r i o d . D u r i n g t h e p o s t c o n v e r s i o n p e r i o d c o n v e n t i o n a l c o n t r o l i s u s e d t o r e g u l a t e h a r v e s t l e v e l s . T h e o p t i m a l s c h e d u l i n g o f t i m b e r c l a s s h a r v e s t s w h i c h 8 T h e o p t i o n a l s o e x i s t s t o r e g u l a t e t h e a r e a h a r v e s t e d r a t h e r t h a n v o l u m e . ' A r b i t r a r y c o n t r o l i s t h e s a m e a s i n s t i t u t i n g p e r i o d i c v o l u m e c o n s t r a i n t s . 47 s a t i s f y t h e i m p o s e d c o n s t r a i n t s i s f o u n d u s i n g L P . . G e n e r a l l y , a l l o c a t i o n d e c i s i o n s a r e b a s e d on a s e r i e s o f e v a l u a t i o n s u n d e r a v a r i e t y o f c o n s t r a i n t s a n d o b j e c t i v e s , n o t s o l e l y o n a s p e c i f i c o p t i m a l s i t u a t i o n . . T h e : u n d e r l y i n g b e n e f i t o f T i m b e r HAM r e s t s i n i t s a b i l i t y t o e x a m i n e a l t e r n a t i v e p o l i c i e s . . S u c h a l t e r n a t i v e s a r e f o r m u l a t e d by v a r y i n g o b j e c t i v e s , a c t i v i t i e s a n d / o r c o n s t r a i n t c o m b i n a t i o n s . D i f f e r e n t o b j e c t i v e s c a n b e s p e c i f i e d b y c h a n g i n g t h e p l a n n i n g h o r i z o n , d i s c o u n t r a t e o r o u t p u t c r i t e r i a ( i . e . v o l u m e v e r s u s r e v e n u e ) . A c t i v i t i e s c a n b e a l t e r e d by m a n i p u l a t i n g r o t a t i o n a g e s o r s i l v i c u l t u r a l t r e a t m e n t s . , S i m i l a r i l y c o n s t r a i n t s c a n b e c h a n g e d , f o r e x a m p l e , by v a r y i n g v o l u m e f l o w r e g u i r e m e n t s o r l a n d a c c e s s i b i l i t y a l l o w a n c e s . E v a l u a t i o n o f s u c h c h a n g e s p r o v i d e s n o t o n l y a n i n d i c a t i o n o f d e s i r a b l e s t r a t e g i e s , b u t a l s o a n i n d i c a t i o n o f t h e s t a b i l i t y o f v a r i o u s m a n a g e m e n t p o l i c i e s . T o s u m m a r i z e , T i m b e r RA3 p r o v i d e s : 1) a s c h e d u l e o f t i m b e r c l a s s e s t o b e . c u t w i t h t h e c o r r e s p o n d i n g v o l u m e a n d v a l u e f l o w s p e r d e c a d e , 2) a n e s t i m a t e o f t h e p r o d u c t i v e c a p a b i l i t y o f a m a n a g e m e n t u n i t i n t e r m s o f b o t h v o l u m e a n d v a l u e , 3) a m e a n s o f e v a l u a t i n g i m p a c t s o f a l t e r n a t i v e : m a n a g e m e n t p o l i c i e s , 4) a f r a m e w o r k i n w h i c h t o a s s e m b l e a n d u t i l i z e a c o m p r e h e n s i v e f o r e s t d a t a b a s e , a n d 5) a n a s s e s s m e n t o f t h e o p p o r t u n i t y c o s t s o f n o n - t i m b e r l a n d u s e s a n d a l i e n a t i o n s 48 There a r e . a l s o s e v e r a l disadvantages of Timber RAM, and LP i n g e n e r a l . F i r s t , the model i s d e t e r m i n i s t i c with no allowance f o r r i s k . A l l s p e c i f i e d a c t i v i t i e s must be implemented f o r the i n d i c a t e d r e s u l t s to hold.. Second, a l l v a r i a b l e s are c o n t i n u o u s . Hence, any even age s t r u c t u r e t h a t e x i s t s w i t h i n timber c l a s s e s or stands may be v i o l a t e d . . T h i r d , a l l r e l a t i o n s h i p s are l i n e a r . . Changes i n responses that may occur a t v a r y i n g r a t e s cannot be r e f l e c t e d 1 0 . This i s a p a r t i c u l a r disadvantage where economies (or diseconomies) of s c a l e , or downward s l o p i n g demand hold.. F u r t h e r disadvantages i n h e r e n t i n the Timber RAH model i t s e l f have been presented by Chappelle et a l . . ( 1 976). Timber RAM n e v e r t h e l e s s p r o v i d e s a means of addressing the h a r v e s t s c h e d u l i n g problem. I t has proven t o be a very u s e f u l t o o l f o r p r o v i d i n g g u i d e l i n e s i n the planning of management u n i t timber h a r v e s t s . l°Separable programming techniques can be employed to r e f l e c t n o n - l i n e a r i t i e s . . 49 4,5 Report Subsystem Each subsystem of TRACS has r e p o r t generation f e a t u r e s . . The f o r e s t subsystem allows f o r the generation of standard management r e p o r t s . . The t r a n s p o r t a t i o n subsystem r e p o r t s road network, and stand access d e s c r i p t i o n s . . Economic v a l u a t i o n s of each stand are reported by the s t a t e v a r i a b l e subsystem. Examples of such r e p o r t s w i l l be c i t e d i n the d i s c u s s i o n of r e s u l t s . However, the r e p o r t i n g f a c i l i t i e s d i r e c t l y concerning the.harvest s c h e d u l i n g plans deserve b r i e f d i s c u s s i o n here.. The. Timber RAH model i t s e l f generates a v a r i e t y of r e p o r t s which d e s c r i b e the optimal c u t schedule. A d e t a i l e d harvest schedule can be generated, l i s t i n g f o r each timber c l a s s the area t o be managed by the s e l e c t e d a c t i v i t y and the r e s u l t i n g volume: y i e l d s (in t o t a l and per u n i t area) f o r each decade i n the p l a n n i n g h o r i z o n . A corresponding report of the r e s u l t i n g economics can be generated on the same b a s i s . . Summary r e p o r t s of the p e r i o d i c l e v e l s of volume and value flow a c r o s s a l l timber c l a s s e s can a l s o be generated. A graph of har v e s t volumes over time i s a p a r t i c u l a r l y u s e f u l output f e a t u r e . The value o f the o b j e c t i v e , the average long run s u s t a i n a b l e y i e l d and other plan s t a t i s t i c s are a l s o r e p o r t e d . A l l r e s u l t s r e p o r t e d by Timber RAM are i n terms of timber c l a s s e s . . The i n a b i l i t y to r e l a t e the harvest plan to stands has been i d e n t i f i e d as a s e r i o u s drawback (Chappelle et a l . , 1976).. Reports r e l a t i n g h a r v e s t schedules to i d e n t i f i a b l e stand u n i t s have been developed to augment the timber c l a s s r e p o r t s . . These r e p o r t s allow i n t e r p r e t a t i o n of the cut schedule. i n a s p a t i a l 50 context f o r the management u n i t . R ecognition of the s p a t i a l i m p l i c a t i o n s of sc h e d u l i n g r e s u l t s i s necessary f o r r e a l i s t i c management assessments. S p e c i f i c a l l y , the r e p o r t s i d e n t i f y the i n d i v i d u a l stand members of the timber c l a s s e s which are to be harvested i n a p a r t i c u l a r decade.. The s p e c i e s type, s o i l - l a n d f o r m c l a s s , age c l a s s , area and volumes of the candidate stands are re p o r t e d . . ft s p e c i e s composition r e p o r t f o r the decade ha r v e s t i s a l s o generated. An option e x i s t s which allows the p l o t t i n g of candidate stand l o c a t i o n s . T h i s f e a t u r e i s f a c i l i t a t e d only where geographic c o o r d i n a t e s have been recorded as a p a r t of the b a s i c stand data. In t h i s manner, p o t e n t i a l stands which could comprise the s p e c i f i e d decade cut are i d e n t i f i e d . , This i s the f i r s t s tep towards l i n k i n g management u n i t h a r v e s t plans t o watershed l e v e l p l a n n i n g . 51 5. . APPLICATION TO MANAGEMENT - UNIT HARVEST PLANNINS The TRACS system was a p p l i e d to an a c t u a l f o r e s t management u n i t , the Westlake PSYU. The Westlake PSYU, a part of the P r i n c e George F o r e s t D i s t r i c t , i s s i t u a t e d i n the c e n t r a l i n t e r i o r of B r i t i s h Columbia.. The u n i t i s approximately 600,000 acres (242,803 hectares) i n s i z e . . I t i s i n the Montane f o r e s t region with the p r i n c i p a l commercial s p e c i e s being lodgepole pine and white spruce (Picea glauca (Moench) Voss). I n d i v i d u a l stand u n i t s were d e l i n e a t e d on the b a s i s of three map o v e r l a y s . A f o r e s t cover map c o n t a i n i n g 42 i n v e n t o r y types provided t h e : f i r s t o v e r l a y . . A s o i l - l a n d f o r m map provided the second o v e r l a y . Nineteen d i f f e r e n t land c l a s s e s were i d e n t i f i e d f o r the Westlake PSYU. D e s c r i p t i o n s of each lan d c l a s s can be found i n Appendix I I . The t h i r d overlay i d e n t i f i e d d e s i g a a t e d use i n terms of timber p r o d u c t i o n , g r a z i n g , w i l d l i f e , f i s h e r i e s , r e c r e a t i o n , a g r i c u l t u r e and d e f e r r e d use.. A t o t a l of 2,441 stand u n i t s r e s u l t e d . . P r e s c r i b e d stand treatments a l s o accompanied the overlay i n f o r m a t i o n . The treatment seguences which are based on land c l a s s and growth type are d e t a i l e d i n Appendix I I I . . From the.above i n f o r m a t i o n t h e . f i f t e e n a t t r i b u t e s l i s t e d i n S e c t i o n 4.1 were compiled f o r each stand. . This stand i n f o r m a t i o n together with BCFS VAC's provided the i n i t i a l data base. A computerized data management system c a l l e d ASAP 1 1 was iiASAP, an acronym f o r As Soon As P o s s i b l e , i s a product of Compuvisor Inc., I t h a c a , New York. 52 used f o r st o r a g e and r e t r i e v a l of the Westlake data base. . An example of the guery c a p a b i l i t y from a computerized data base i s shown i n Table 1. Table 1.. Age C l a s s D i s t r i b u t i o n Of The Westlake. PSYO" Via ASAP Run 2 12/13/79 page 1 Output 1 Summary a g e d i s t Regt 1 Task 1 L i n e 19 244 1 records s e l e c t e d ********************************************* Age c l a s s d i s t r i b u t i o n by volume and area *********************** ****************** Age Clas s 0-20 Yrs 21-40 Yrs 41-60 Yrs 61-80 Yrs 8 1-100 Yrs 101-120 Yrs 121-140 Yrs 141-250 Yrs 250+ Yrs Other S u b t o t a l T o t a l Volume (cf) 25 64510 263672 830337 1553442 929724 764107 692530 4000 14480 5116827 T o t a l Acreage 26729 97004 51504 1 17307 152105 49893 22513 31200 466 51351 600072 The t a b l e shows the r e s u l t s from a request f o r the age 53 c l a s s d i s t r i b u t i o n i n terms of both area and present volume across a l l 2,441 stands of the u n i t . The Westlake PSYO does not have a balanced d i s t r i b u t i o n of age c l a s s e s . , The g r e a t e s t p o r t i o n of the volume:and area are from stands between 60 and 130 years of age. Hence, harvest s c h e d u l i n g f o r continuous volume flow i s not d i r e c t l y apparent. In a d d i t i o n to guery c a p a b i l i t y , management r e p o r t s as those shown i n Appendix IV can be generated, g i v i n g d e t a i l e d d e s c r i p t i o n s of each stand. The f o r e s t road network of the Westlake PSYO was obtained i n map form. E m p i r i c a l c o s t i n g s from areas of a c t i v e o p e r a t i o n were a l s o s u p p l i e d . The data gave r i s e to three s e t s of h a u l i n g cost zones and s i x s e t s of road development c o s t s . , Table 2 shows the b a s i c a c c e s s - r e l a t e d c o s t s f o r the u n i t . .. The primary access roads were d i g i t i z e d with the a t t r i b u t e i n f o r m a t i o n and precedence r e l a t i o n s h i p s e s t a b l i s h e d through the t r a n s p o r t a t i o n subsystem.. The f o r e s t road network of the Westlake PSYO c o n s i s t s of 46 primary access roads. There.are i n f a c t t h r e e separate networks w i t h i n the management u n i t . . Two of the networks l e a d to P r i n c e Seorge m i l l s , while the t h i r d l e a d s to an I s l e P i e r r e m i l l . . The node network c o n s t r u c t e d and the precedence r e l a t i o n s h i p s are shown i n F i g u r e 6. The l a r g e , underscored numerals represent the i n d i v i d u a l road segments. The s m a l l e r numerals correspond to the nodes generated during network c o n s t r u c t i o n . . A summary of the road segments w i t h i n the network i s shown i n Table: 3. For each road there i s a d e s c r i p t i o n of i t s l e n g t h , node precedence r e l a t i o n s h i p s , s t a t u s , road c l a s s , haul cost zone assignment and c o s t f o r development, i f any. Table 2. B a s i c Access Cost Data COST OATA SUNMAftV TRANSPORTATION COSTS ZONE $ / C U N l T / N l L E 1 0 . 2 2 2 0 . 1 8 3 0 . 1 5 4 0 . 0 s o.o 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 0 10 0 . 0 R0A0 DEVELOPMENT COSTS ROAO CLASS S /N ILE 1 6 S 0 0 0 . 0 0 2 5 0 0 0 0 . 0 0 3 4 0 0 0 0 . 0 0 • 3 3 0 0 0 . 0 0 5 1 2 0 0 0 . 0 0 6 8 0 0 0 . 0 0 )  Table 3 . R ° * ° SEGMENT REPORT RD. • RO. LENCTH INILESt 1ST NODE 2ND NODE ROAD STATUS ROJ CL* ID HAUL COST DEVELOPMENT kSS ZONE COST I t ) 1 13.94 1 2 ON-HMV, EXISTING k I 2 3.22 3 2 ON-HMV, EXISTING I 1 3 1.36 4 3 ON-HMV, EXISTING i 1 4 1.69 3 3 ON-HMV, EXISTING i 1 9 1.49 6 3 ON-HMV, EXISTING i 1 6 1.10 5 7 ON-HMV, EXISTING I I T 3.22 7 8 ON-HMV, EXISTING k 1 8 T.61 T 9 ON-HMV, EXISTING i 1 9 3.03 10 9 ON-HMV, EXISTING I 1 10 2.16 9 11 ON-HMY • EXISTING i 1 11 6.08 12 11 ON-HMV i EXISTING i 1 12 2.87 11 13 ON-HMV. EXISTING > 1 13 6.63 14 13 ON-HMV, EXISTING . 1 14 9.66 13 13 ON-HMV, EXISTING I 1 19 12.73 16 19 ON-HMV, EXISTING i 1 1* 6. 09 13 17 ON-HMV, EXISTING ^ i IT 7.09 18 17 ON-HMV, EXISTING i i 18 1.61 17 19 ON-HMV, EXISTING i l 19 3.14 20 19 OFF-HMV, EXISTING > l 20 3.61 20 21 OFF-HMVi EXISTING \ i 21 6.80 22 21 OFF-HMV, EXISTING t l 22 4.33 23 24 ON-HMV, EXISTING s l 23 2.13 24 29 ON-HMV, EXISTING > i 24 2.70 24 26 ON-HMV, EXISTING • l 29 9.21 27 24 ON-HMV, EXISTING . 2 2k 6.24 27 28 ON-HMV EXISTING J 2 2T 7.41 29 27 ON-HMV EXISTING I 2 28 2.12 30 29 ON-HMV EXISTING 9 2 29 1.T9 31 29 ON-HMV EXISTING 30 2.49 32 31 ON-HMV EXISTING I 2 31 3.28 33 31 ON-HMV EXISTING 5 * . ' • 32 18.22 34 20 OFF-HMV EXISTING 3 1 33 19.32 34 39 ON-HMV EXISTING & 3 34 3.20 36 37 OFF-HMV EXISTING 3 3 39 2.39 37 38 OFF-HMV .EXISTING 1 3 36 1.37 37 39 OFF-HMV , EXISTING 3 3 3T 1.92 40 34 OFF-HMV EXISTING 1 1 38 2.76 41 40 OFF-HMV .EXISTING 3 1 39 4.77 42 41 OFF-HMV EXISTING 3 1 • 0 4.26 43 40 OFF-HMV PROPOSED 4 1 140629.00 • 1 8.09 44 41 OFF-HMV .EXISTING 4 1 42 4.04 49 44 •FF-HMV .PROPOSED 4 1 133204.79 43 10.33 46 34 ON-HMV .EXISTING k 1 44 2.96 47 46 ON-HMV EXISTING 6 1 43 4.94 46 48 ON-HMV ,EXISTING 6 1 46 4.48 48 2 ON-HMV .EXISTING & 1 Ul a* 57 For each stand there i s a t r a n s p o r t a t i o n c o s t r e p r e s e n t a t i v e of i t s l o c a t i o n r e l a t i v e to the p o i n t of a p p r a i s a l . . Since each stand i s accessed by the c l o s e s t road from among one of the p o s s i b l e road networks, p r o c e s s i n g a c r o s s a i l networks w i l l assure a t r a n s p o r t a t i o n cost estimate f o r each stand.. Not only w i l l an estimate be generated, but that estimate w i l l be based on the minimum route distance to the r e s p e c t i v e a p p r a i s a l p o i n t . I f stand access r e q u i r e s a proposed road to be developed, then the c o s t s of road c o n s t r u c t i o n are d i s t r i b u t e d over the t o t a l volume accessed by t h a t road. ,• Such c o s t s r e f l e c t primary road development, and are assigned to the stands d i r e c t l y i n v o l v e d . . The i n i t i a l base of stands was reduced p r i o r to s t a t e v a r i a b l e a n a l y s i s . . Stands which would not s i g n i f i c a n t l y c o n t r i b u t e to the p r o d u c t i v e : c a p a c i t y of the u n i t were e l i m i n a t e d . . Such stands i n c l u d e d those l e s s than ten a c r e s (4 hectares) i n s i z e (213), those c l a s s i f i e d as "non-productive" (231), and those c l a s s i f i e d as "not s u f f i c i e n t l y r e s t o c k e d " (12).. T h i s l e f t 1985 stands comprising 573, 840 acres (232, 217 hectares) as the b a s i s f o r h a r v e s t planning w i t h i n the Westlake PSYO. . For each of the 1985 stands, twenty i n i t i a l s t a t e v a r i a b l e s were generated. The. s t a t e v a r i a b l e s represented present and future:volume and economic y i e l d s to be d e r i v e d from each stand. Current volume per u n i t area and c u r r e n t net value per u n i t volume were two of the s t a t e v a r i a b l e s of each stand.. Future volumes and values d e s c r i b i n g each stand at twenty year 58 i n t e r v a l s , from 40 to 200 years of age provided the remaining eighteen s t a t e v a r i a b l e s . Volumes were d e r i v e d from the BCFS VAC's.. Values were d e r i v e d from a stand a p p r a i s a l simulation». The a p p r a i s a l i n v o l v e d e s t i m a t i o n of the end product market v a l u e s minus the r e l a t e d c o s t s of making the wood a v a i l a b l e : to the m i l l . Appendix V d i s p l a y s t h e . a p p r a i s a l r e p o r t f o r the: mature stands of the Westlake PSYO.. T h e : c o n t r i b u t i o n of each component to the d e r i v a t i o n of stand value i s i t e m i z e d i n the r e p o r t . . F a c t o r a n a l y s i s was then performed on the i n i t i a l 20 s t a t e v a r i a b l e s . . F i v e orthogonal f a c t o r s r e s u l t e d which accounted f o r approximately 9955 of the i n f o r m a t i o n represented by the o r i g i n a l v a r i a b l e s . In other words, a f o u r - f o l d r e d u c t i o n i n the: s t a t e v a r i a b l e space only r e s u l t e d i n a 1% l o s s of i n f o r m a t i o n . Appendix VI presents the f a c t o r a n a l y s i s r e s u l t s . . Two f a c t o r s c o r r e l a t e d with volume y i e l d over time, while another two c o r r e l a t e d with value over time. Each p a i r of f a c t o r s c ould be i n t e r p r e t e d to r e p r e s e n t the r a t e of change.in y i e l d s , and the absolute range i n y i e l d s over the time span. The remaining f a c t o r c o r r e l a t e d with c u r r e n t volume and value y i e l d . T h i s reduced s e t of s t a t e v a r i a b l e s was then used to d e r i v e stand groupings or timber c l a s s e s . P r i o r to the aggregation process, stands were . p r e - s t r a t i f i e d i n t o a c c e s s i b i l i t y c l a s s e s based on t r a n s p o r t a t i o n and road development c o s t s . . The r a t i o n a l e behind such a s t r a t i f i c a t i o n was t o demonstrate the impact of e x p l i c i t y accounting f o r stand access i n cut schedule d e t e r m i n a t i o n . , Stands with s i m i l a r access c o s t s were deemed to have s i m i l a r access c h a r a c t e r i s t i c s . A c c e s s i b i l t y c o s t s ranged 59 from $0.10/cunit ( $0.04/cubic metre) to $ 14.00/cunit ($4.94/cubic metre). Fourteen a c c e s s i b i l i t y c l a s s e s were e s t a b l i s h e d f o r the 1985 stands. Table 4 presents the d i s t r i b u t i o n of the stands a c r o s s the 14 c l a s s e s . . Thus, stand a c c e s s i b i l i t y provided the i n i t i a l b a s i s f o r timber c l a s s f o r m a t i o n . . The cluster-dynamic programming approach was employed i n reducing the o r i g i n a l 1985 stands to 100 timber c l a s s e s 1 2 . C l u s t e r a n a l y s i s was performed on the f i v e s t a t e f a c t o r s to determine stand aggregations w i t h i n each a c c e s s i b i l i t y s t r a t a . The. o p t i m a l number of timber c l a s s e s w i t h i n each s t r a t a c o n s i d e r i n g a l l a c c e s s i b i l i t y c l a s s e s was found using dynamic programming., The determination of the number of timber c l a s s e s within each s t r a t a was weighted by the area r e p r e s e n t a t i o n of each s t r a t a . The d i s t r i b u t i o n of the ultimate number of timber c l a s s e s across the a c c e s s i b i l i t y c l a s s e s i s shown i n Table 5. T h i s data r e d u c t i o n process from 1985 stands to 100 timber c l a s s e s r e s u l t e d i n a 23% e r r o r i n a g g r e g a t i o n . C l u s t e r a n a l y s i s was f u r t h e r employed to reduce the volume and value y i e l d p r o j e c t i o n s f o r the 100 timber c l a s s e s to a s m a l l e r , more: manageable subset.„ F i f t e e n volume y i e l d c l a s s e s were generated with only a 2% l o s s i n i n f o r m a t i o n . . T h i r t y economic y i e l d c l a s s e s were generated with a corresponding i n f o r m a t i o n l o s s of l e s s than 1%. Tables of t h e : r e s u l t i n g y i e l d 1 2 A l e v e l of 100 c l a s s e s r e f l e c t s a Timber RAM r e s t r i c t i o n on the maximum number of timber c l a s s e s allowed. . 60 T a b l e 4. Stand D i s t r i b u t i o n A c ross A c c e s s i b i l i t y C l a s s e s % o f A c c e s s i b i l i t y C l a s s Access Cost ($/CCF) Stand Frequency TOtc Stai 1 0 - 1.00 145 7 2 1.01 - 2.00 181 9 3 2.01 - 2.50 114 6 4 2.51 - 3.00 153 8 5 3.01 - 3.50 142 7 6 3.51 - 4.00 130 7 7 4.01 - 4.50 92 5 8 4.51 - 5.00 165 8 9 5.01 - 6.00 180 9 10 6.01 - 6.60 138 7 11 6.61 - 7.00 184 9 12 7.01 - 8. 00 169 9 13 8.01 -11.00 167 8 14 11.01 14.00 25 1 TOTAL 1985 100 Table 5. Timber C l a s s D i s t r i b u t i o n Across A c c e s s i b i l i t y C l a s s e s I n t r a - c l a s s T o t a l A c c e s s i b i l i t y % Area Stand # of Timber C l u s t e r i n g I n t e r - c l a s s E r r o r C l a s s Representation Frequency C l a s s e s Formed E r r o r (%) (Area-weighted %) 1 4 145 6 31.1 1.2 2 9 181 10 19.1 1.7 3 9 114 6 26.5 2.4 4 8 153 6 22.7 1.8 5 7 142 6 31.5 2.2 6 7 130 8 18.8 1.3 7 5 92 6 30.2 1.5 8 11 165 11 14.5 1.6 9 10 180 10 18.9 1.9 10 7 138 7 26.7 1.9 11 5 184 7 25.9 1.3 12 7 169 8 21.4 1.5 13 10 167 8 19.9 2.0 14 1 25 1 100.0 1.0 TOTAL 100 1,985 100 23.3 62 c l a s s e s are shown i n Appendix VII. The timber c l a s s e s and y i e l d c l a s s e s thus formed ware then used i n cut schedule determination f o r the Westlake PSYO. 63 6. „ ANALYSIS &ND DISCOSSION 6.1 T r a n s p o r t a t i o n Planning Fundamental road network i n f o r m a t i o n f o r the Westlake PSYO was generated from the t r a n s p o r t a t i o n subsystem. .  B a s i c s t a t i s t i c s on l e n g t h of given road c l a s s , l e n g t h of proposed road and other road network c h a r a c t e r i s t i c s were i d e n t i f i e d . T h i s data was used i n t h e . t r a n s p o r t a t i o n subsystem to determine optimal r o u t i n g s t r a t e g i e s , i . e . given a s e l e c t e d a p p r a i s a l p o i n t , r o u t i n g s based on minimum d i s t a n c e were . i d e n t i f i e d f o r the e n t i r e u n i t . An example of the.optimal r o u t i n g s and d i s t a n c e s p e r t a i n i n g to the 46 primary access road segments of the Westlake PSYO i s o u t l i n e d i n Table 6.. Node 35 i s s p e c i f i e d as the a p p r a i s a l node (sink) i n the t a b l e . T h i s a p p r a i s a l l o c a t i o n leads to an I s l e P i e r r e m i l l . . So f o r example, i n t r a v e l l i n g from node 1 to the a p p r a i s a l node the minimum d i s t a n c e i s 49.00 miles (78.9 k i l o m e t r e s ) . The corresponding o p t i m a l r o u t i n g s t r a t e g y i s s e q u e n t i a l l y decoded. The bracketed v a l u e . s p e c i f i e s the next node i n the minimum route. Thus, from node 1 the optimal route i s to t r a v e l to node;2, then to node 48, t o node 46, to node 34, and f i n a l l y to node 35, t h e : a p p r a i s a l p o i n t . In t h i s manner the o p t i m a l r o u t i n g s and d i s t a n c e are i d e n t i f i e d f o r the road network of the management u n i t . The nodes possessing l a r g e values (99999.00 and 9999) Table 6. Minimum Routing Distances and P o l i c i e s ROAD NETWORK REPORT NODE OF APPRAISAL : 35 6 7 8 9 10 41.42 41.03 +4.25 48.65 51.68 C 51 I 51 I 71 I 71 ( 91 57.11 38.29 45.38 36.68 33.54 I 151 I 191 I 17J ( 20» I 341 20: 37.15 43.95 99999.00 99999.00 99999.00 99999.00 99999.00 99999.00 99999.00 99999.00 : ( 20) I 211 199991 (99991 199991 (9999) (9999) (9999) (9999) 19999) 30: 99999.00 99999.00 99999.00 15.32 0.0 99999.00 99999.00 99999.00 99999.00 17.23 (9999) (9999) (9999) ( 35) ( 0) (9999) (9999) 19999) (9999) I 341 40: 19.99 24.76 21.49 28.04 32.08 25.64 28.60 30.58 (40) ( 41) ( 40) ( 41) ( 44) I 34) ( 46) I 44) MINIMUM DISTANCE IN MILES, (AND ROUTING) TO NAP NODES: 1 2 3 4 5 0: 49.00 35.06 38.28 39.63 39.93 : ( 2 ) ( 48) ( 2) ( 3) I 3) 10: 50.81 56.89 50.04 56.67 44.38 : ( 9 ) I 11) ( 15) I 13) ( 17) 65 i n d i c a t e the u n i t c o n s i s t s of one or more separate sub-networks. T r a v e l between nodes of separate networks i s i m p o s s i b l e . . Hence, the l a r g e values i n d i c a t e i n f e a s i b l e r o u t i n g s . . Minimum r o u t i n g s , d i s t a n c e s and a s s o c i a t e d t r a n s p o r t a t i o n c o s t s were determined f o r each of the 1985 Westlake stands. A sample of the r e s u l t s can be found i n Table 7.. For each stand there i s a d e s c r i p t i o n of i t s q u a l i t a t i v e c h a r a c t e r i s t i c s , i t s geographic l o c a t i o n (based on i t s v i s u a l c e n t r o i d ) , the d i s t a n c e to the nearest access road (with a corresponding p o i n t e r ) , the minimum d i s t a n c e to the s p e c i f i e d node of a p p r a i s a l and the corresponding t r a n s p o r t a t i o n c o s t . An a d d i t i o n a l f e a t u r e of the a n a l y s i s i s the generation of road development c o s t s f o r those proposed roads i n the networlc, together with a p r o p o r t i o n i n g of such c o s t s over the volume from the stands i n v o l v e d . To examine the r e s u l t s i n d e t a i l , focus i s placed on one p a r t i c u l a r stand, 20057160. This stand i s the 57th stand (057) l o c a t e d i n Compartment 20, Region 60 of the Westlake PSYO. . The stand i s a white spruce type, age c l a s s 8 (141-160 yrs.) and of good s i t e . I t has a volume y i e l d of 4700 c u b i c f e e t per acre (329 c u b i c m e t r e s / h e c t a r e ) . . The nearest access road i s road 46, being a d i s t a n c e of 1.39 miles (2.24 kilometres) from the c e n t r o i d of the stand. . The d i s t a n c e from the stand to the s p e c i f i e d P r i n c e Seorge a p p r a i s a l p o i n t i s 37.85 miles (60.91 k i l o m e t r e s ) , which i n turn r e s u l t s i n a t r a n s p o r t a t i o n c o s t of $3.33/cunit ($2.94/cubic metre) f o r the stand.. In p e r s p e c t i v e , the t r a n s p o r t a t i o n c o s t s f o r the stands i n Compartment 20 as a whole ranged from a low of $5.70/cunit ($2.01/cubic metre) to a high of $9.10/cunit ($3.21/ cu b i c metre) with the average being Table 7. STAND ACCESS REPORT STANO NO. TTPE AGE SITE SLC USE CENTROID LOCATION 01 ST. TO NEAREST RD. RO. NO. 01 ST. TO NAP HAUL COST ROAD DEVEL OFMI IN LAT-LONG. INILESI INILESI U/CUNIT) COST It/CUNI 8002160 8 1 4 1 9331.17 12292.33 0.69 19 14.30 1.19 0.0 8003160 S 8 1 4 1 9339.43 12292.20 0.51 17 8.62 1.90 0.0 8036160 s 8 2 9 1 9327.89 12242.27 7.36 19 24.74 9.44 0.0 8069160 COTO 9331.43 12242.60 7.10 17 19.81 3.48 0.0 8033160 F 8 2 9 1 9328.63 12242.80 6.97 19 24.34 9.36 0.0 8001160 F 8 2 4 1 3332.93 12290.23 2.33 17 11.04 2.49 0.0 8064160 F 9331.77 12243.33 6.47 17 19.17 3.34 0 .0 10001160 F 8 1 4 1 9339.98 12301.79 0.32 21 9.49 2.08 0.0 10029160 F 8 1 4 3 3339.41 12306.08 0.96 22 7.49 1.69 0.0 10098160 S 8 2 9 3 9341.48 12309.48 2.30 24 6.19 1.36 0.0 11034160 F 8 1 4 4 9346.46 12314.71 2.31 26 14.87 2.68 0.0 11013160 F 8 2 4 1 9339.77 12313.30 1.32 27 9.93 1.79 0.0 11043160 SF 8 2 9 1 9340.99 12312.62 0.66 25 6.37 1.19 0.0 12001160 S 8 1 1 1 9341.33 12329.99 2.34 31 22.16 3.99 0.0 12096160 s 5342.27 12329.41 3.39 91 29.21 4.18 0.0 14068160 SF 8 1 9 1 9333.79 12313.80 0.69 32 17.37 9.82 0.0 14038160 FS 8 1 4 1 9338.49 12312.73 2.40 27 11.09 t.00 0.0 14128160 s 8 1 9 2 9336.33 12319.60 1.90 27 13.76 2.48 0.0 14062160 SF 8 1 4 2 9300.00 12300.00 20.77 3 90.90 2.86 0.0 14122160 S 8 1 9 1 9336.41 12316.70 1.00 17 14.17 2.99 0.0 19110160 F 9336.96 12304.73 1.11 32 10.72 2.96 0.0 19034160 F 8 1 7 1 9330.80 12309.36 1.93 13 21.93 4.74 0 .0 19I2T160 F 8 1 4 1 93 36 . 43 1 2 304 . 93 1.02 32 10.97 2.99 0 .0 16013160 F 9337.38 12304.32 0.40 21 13.71 3.02 0 .0 16073160 S 8 1 4 2 9339.39 12293.93 1.91 17 4.03 0.89 0.0 16049160 S 8 1 4 1 9339.46 12294.77 1.09 18 2.09 0.46 0.0 16046160 F 8 1 4 1 9337.41 12304.02 0.32 21 13.93 9.00 0.0 17093160 PL 8 1 6 1 9330.68 12256.46 1.71 19 14.89 9.28 0.0 17033160 FLS 5329.23 12254.38 0.97 19 16.47 3.62 0.0 17020160 PL 8 1 4 2 5331.66 12254.50 0.21 19 12.72 2.80 0.0 17001160 S 8 1 4 1 5332.46 12256.13 1.04 19 9.89 2.18 0.0 17002160 8 1 4 . 1 5330.66 12254.89 0.82 19 14.00 3.08 0.0 17040160 s 5329.80 12257.23 1.69 14 14.99 3.20 0.0 17019160 s 8 2 4 2 5330.00 12257.23 1.69 14 13.66 3.00 0.0 17031160 s 8 2 12 1 3329.77 12257.46 1.53 14 14.39 3.17 0.0 17032160 F 8 2 12 1 5329.63 12254.63 0.51 19 16.19 3.39 0.0 18039160 F 8 1 7 3 5327.06 12308.20 1.68 44 34.79 7.69 0.0 18101160 S 8 1 4 6 5324.73 12304.39 0. 72 9 21.22 4.67 0.0 18001160 s 8 1 9 3 5330.30 12305.33 1.42 13 18.81 4.14 0.0 18089160 F 8 1 4 2 3324.80 12306.60 0.63 9 22.00 4.84 0.0 18022160 s 8 1 7 1 5324.39 12304.63 1.05 9 21.99 4.74 0.0 18073160 F 8 1 4 1 5323.89 12306.80 0.82 9 22.29 4.90 0.0 18074160 S 8 1 4 1 5325.03 12303.80 0. 73 9 20.81 4.98 0.0 18040160 s 8 2 7 6 5325.50 12305.46 0.49 9 20.98 4.62 0.0 19033160 F 8 1 18 1 5321.05 12305.27 0.91 8 29.18 9.94 0.0 19014160 F 8 1 7 1 5321.05 12306.39 0.29 8 25.70 9.69 0.0 19001160 F 8 1 4 1 5325.25 12307.96 0.90 44 35.15 7.73 0.0 19049160 PLF 8 1 19 2 5300.00 12300.00 20.77 3 50.90 6.85 0.0 20097160 S S 1 19 1 5323.35 12316.46 1.39 46 37.85 8.33 0.0 20096160 F 8 2 15. 1 5322.05 12317.27 1.63 42 39.75 8.75 1.73 67 $7.67/cunit ($2.71/cubic matce). D e t a i l e d compartmental r e s u l t s can be found i n Appendix V I I I . . A comparison of h a r v e s t i n g cost with t r a n s p o r t a t i o n c o s t e x e m p l i f i e s the s i g n i f i c a n c e of t r a n s p o r t a t i o n i n the economic e v a l u a t i o n of a stand. The h a r v e s t i n g cost f o r stand 057 was $7.80/cunit ($2.75/cubic metre).. With due c o n s i d e r a t i o n given to t r a n s p o r t a t i o n c o s t , t o t a l c o s t more than doubles to $16. 13/cunit ($5. 70/cubic metre). Hence, i t can be seen t h a t a n a l y s i s devoid of t r a n s p o r t a t i o n cost could have s e r i o u s management consequences. Another area of i n t e r e s t i n the planning of harvests i s the p o s s i b l e e f f e c t s of wood flows to a l t e r n a t i v e a p p r a i s a l l o c a t i o n s . To examine t h e . e f f e c t s on t r a n s p o r t a t i o n c o s t s of d i r e c t i n g l o g s to another m i l l s i t e an a d d i t i o n a l a n a l y s i s was performed. A new node of a p p r a i s a l to an a l t e r n a t i v e m i l l i n g s i t e ( I s l e P i e r r e ) was s e l e c t e d with new r o u t i n g s , d i s t a n c e s and t r a n s p o r t a t i o n c o s t s computed. Again t u r n i n g a t t e n t i o n to stand 057, the t r a n s p o r t d i s t a n c e to the new a p p r a i s a l point was 31.97 miles (51.45 kilometres) y i e l d i n g a c o s t of $7.03/cunit ($2.48/cubic metre). A comparison of the l o g t r a n s p o r t r e s u l t s from stand 057 to the.two a l t e r n a t i v e p o i n t s of a p p r a i s a l i s shown i n F i g u r e 7. A p p r a i s a l p o i n t A r e p r e s e n t s the P r i n c e George l o c a t i o n , while a p p r a i s a l p o i n t B r e p r e s e n t s the I s l e P i e r r e l o c a t i o n . . The r e s u l t s show that by h a u l i n g to the I s l e P i e r r e . l o c a t i o n there would be a savings of $1.30/cunit ($0.46/cubic metre) f o r stand 057.. on examining the r e s u l t s f o r the stands i n Compartment 20 as a whole t r a n s p o r t a t i o n c o s t s ranged from $4.37/cunit ($1.54/cubic metre) to $7.77/cunit 89 69 ($2.71* / c u b i c metre) with the average being $6.35/cunit ($2.24/cubic metre). D e t a i l e d r e s u l t s f o r stand 057 can be found i n Appendix IX. With a l l other t h i n g s being equal, a manager contemplating l o g t r a n s p o r t to s e v e r a l a l t e r n a t i v e m i l l s can now assess the e f f e c t s of t r a n s p o r t a t i o n c o s t s . In the above example i t would appear to be much more: economical to t r a n s p o r t wood from stands i n Compartment 20 to the a l t e r n a t i v e a p p r a i s a l l o c a t i o n B. Thus f o r a s p e c i f i e d p o i n t of a p p r a i s a l , t r a n s p o r t a t i o n c o s t s based on the minimum route can be generated f o r any given stand w i t h i n the . manage ment unit... Such t r a n s p o r t a t i o n c o s t i n g s can then be i n c o r p o r a t e d with stand revenues and h a r v e s t c o s t e s t i m a t e s to provide a more, complete economic assessment of stand harvest v a l u e . . 6.2 Cut Scheduling Harvests were scheduled f o r the Westlake PSYO using the Timber RAM model.. The 100 timber c l a s s e s formed from the: s t a t e v a r i a b l e subsystem were the f o r e s t u n i t s to be scheduled. S i l v i e u l t u r a l treatments f o r each timber c l a s s c o n s i s t e d of simple c l e a r - c u t t i n g s t r a t e g i e s , with e i t h e r n a t u r a l r e g e n e r a t i o n or p l a n t i n g w i t h i n f i v e years of harvest.. S i t e p r e p a r a t i o n a c t i v i t i e s such as s l a s h burning or drag s c a r i f i c a t i o n , as p r e s c r i b e d by management, were a l s o i n c l u d e d . The 30 economic y i e l d p r o j e c t i o n s and 15 volume y i e l d 70 p r o j e c t i o n s shown i n Appendix VII were used to generate r e t u r n s from the v a r i o u s h a r v e s t i n g a l t e r n a t i v e s . The timing of the f i r s t h a rvest f o r each timber c l a s s was the primary d e c i s i o n . A l l e v a l u a t i o n s f o r the Westlake PSYU were: based on a 100-year conversion p e r i o d , with a t o t a l planning horizon o f 350 years. . Volume flow was c o n s t r a i n e d during the c o n v e r s i o n p e r i o d using s e g u e n t i a l harvest c o n t r o l . The h a r v e s t i n t h e : f i r s t decade was allowed to vary from -50% to +250% of the c u r r e n t h a r v e s t l e v e l of the u n i t . . Subseguent harvests were c o n s t r a i n e d to w i t h i n 10% of the cut of the preceding decade. The. above b a s i c harvest management parameters were used i n t h e : f o l l o w i n g three s e t s of e v a l u a t i o n s : 1) Volume O p t i m i z a t i o n - long term v s . . s h o r t term 2) Economic O p t i m i z a t i o n - volume vs. value 3) Economic O p t i m i z a t i o n - with t r a n s p o r t a t i o n vs. without 6.2.1 Case 1: Volume O p t i m i z a t i o n - Long Term vs.,Short Term Case 1 evaluated the i m p l i c a t i o n s of s c h e d u l i n g h a r v e s t s f o r the maximization of long term (200 years) v s . , s h o r t term (30 years) volume p r o d u c t i o n . H a r v e s t i n g a l t e r n a t i v e s f o r mature stands allowed f o r c l e a r - c u t t i n g anytime w i t h i n the f i r s t s i x decades up to 200 years of age, at which time the:stand had to be c u t . . For immature stands, c l e a r - c u t t i n g was allowed d u r i n g a s i x t y - y e a r span from a f i r s t entry of e i t h e r 20 years p r i o r t o 7 1 c u l m i n a t i o n of mean annual increment or 60 years of age.. The p r e v i o u s l y d e s c r i b e d s e q u e n t i a l volume c o n t r o l c o n s t r a i n t s were employed. Two RAM runs were made. . T h e : o b j e c t i v e of the f i r s t run was to maximize volume over a 200-year planning p e r i o d . , The cut scheduled i n the f i r s t decade y i e l d e d 2.58 m i l l i o n c u n i t s (7.31 m i l l i o n cubic metres). The corresponding net revenue generated during the f i r s t decade t o t a l l e d 156.2 m i l l i o n d o l l a r s . The r e s u l t i n g long run s u s t a i n e d y i e l d average was 1.83 m i l l i o n c u n i t s (5. 18 m i l l i o n cubic metres) per decade f o r the Westlake PSYU. . T h i s l e v e l can be viewed as r e p r e s e n t i n g the s i l v i c u l t u r a l p o t e n t i a l f o r the Westlake under c l e a r - c u t t i n g management seguences.. The o b j e c t i v e of the second run was to maximize volume pr o d u c t i o n over a 30-year planning p e r i o d . The volume scheduled f o r h a r v e s t i n the f i r s t decade t o t a l l e d 2.88 m i l l i o n c u n i t s (8.16 m i l l i o n c u b i c metres), with the corresponding net revenue being 171.2 m i l l i o n d o l l a r s . The long run s u s t a i n e d y i e l d average was again approximately 1.83 m i l l i o n c u n i t s (5.18 m i l l i o n cubic metres) per decade. A summary of the r e s u l t s can be found i n Appendix X. In comparison, maximizing volume over a 30-year p e r i o d (short term) vs. r a 200-year perio d (long term) generates an a d d i t i o n a l 300,000 c u n i t s (849,510 c u b i c metres) during the f i r s t decade. In other words, an a d d i t i o n a l 30,000 c u n i t s (84,95 1 c u b i c metres) can be harvested annually without a p p r e c i a b l y s a c r i f i c i n g the long range p r o d u c t i v e c a p a b i l i t y of the management u n i t . T h i s i s e g u i v a l e n t to an a d d i t i o n a l 1.5 72 m i l l i o n d o l l a r s p e r y e a r i n n e t r e v e n u e w h i c h c o u l d b e g e n e r a t e d . A c o m p a r i s o n o f t h e v o l u m e f l o w s p e r d e c a d e i s s h o w n i n F i g u r e 8 . T h e g r a p h s h o w s t h a t d u r i n g t h e f i r s t 40 y e a r s t h e s c h e d u l e d h a r v e s t u n d e r s h o r t t e r m v o l u m e : m a x i m i z a t i o n i s a p p r o x i m a t e l y 12% h i g h e r t h a n t h e l e v e l f o r t h e l o n g t e r m r u n . H o w e v e r , f r o m 50 t o 100 y e a r s t h e h a r v e s t f o r t h e l o n g t e r m s c h e d u l e m o r e t h a n c o m p e n s a t e s f o r t h e e a r l i e r d e f i c i e n c i e s . T o t a l h a r v e s t u n d e r l o n g t e r m v o l u m e m a x i m i z a t i o n f o r t h e 2 0 0 - y e a r p e r i o d i s a p p r o x i m a t e l y 3 9 . 2 6 6 m i l l i o n c u n i t s ( 1 1 1 . 1 9 m i l l i o n c u b i c m e t r e s ) . T h e t o t a l h a r v e s t u n d e r t h e s h o r t t e r m r u n f o r t h e s a m e p e r i o d i s a p p r o x i m a t e l y 3 8 . 4 2 2 m i l l i o n c u n i t s ( 1 0 8 . 8 0 m i l l i o n c u b i c m e t r e s ) . . T h u s , t h e o v e r a l l h a r v e s t i s i n c r e a s e d b y a p p r o x i m a t e l y 8 4 4 , 0 0 0 c u n i t s ( 2 . 3 9 m i l l i o n c u b i c m e t r e s ) u n d e r l o n g t e r m v o l u m e m a x i m i z a t i o n . N e v e r t h e l e s s , i n b o t h c a s e s t h e p e r p e t u a l s u s t a i n e d y i e l d a v e r a g e s t a b i l i z e s a b o u t a common h a r v e s t l e v e l a s i s s h o w n f o r t h e p o s t c o n v e r s i o n p e r i o d . . F i g u r e 9 s h o w s t h e e f f e c t o n t h e s p e c i e s f l o w r e s u l t i n g f r o m t h e s t a n d s a v a i l a b l e : f o r h a r v e s t i n t h e f i r s t d e c a d e . f o r t h e t w o r u n s . T h e i n c r e m e n t a l v o l u m e f o r t h e s h o r t t e r m m a x i m i z a t i o n i s p r i m a r i l y l o d g e p o l e . p i n e . . T h e s p e c i e s d i s t r i b u t i o n i s a p p r o x i m a t e l y 2 0 % D o u g l a s - f i r ( P s e u d q t s u g a M f i z i s s i i ( M i r b . ) . F r a n c o ) , 1 1 % w h i t e : s p r u c e , 6 5 % l o d g e p o l e p i n e w i t h t h e b a l a n c e p r i m a r i l y h a r d w o o d s p e c i e s . T h e d i s t r i b u t i o n u n d e r l o n g t e r m v o l u m e : m a x i m i z a t i o n i s a p p r o x i m a t e l y 2 1 % D o u g l a s - f i r , 18% w h i t e s p r u c e , 5 7 % l o d g e p o l e p i n e w i t h t h e b a l a n c e p r i m a r i l y h a r d w o o d s s p e c i e s . A c o m p l e t e . s u m m a r y b y Figure 8. Canparison of Volume Flow - Case 1 3ooo4 ^ 2500-4- O ^ 2000-f O ^ /3oo-t Conversion Period M x Long term volume max. • • Short term volume max. -I- Post Conversion Period Long run sustained y i e l d average 5 10 TIME IN OECADCS rS 74 Figure 9. Comparison of Species Flow i n Decade 1 - Case 1 (Ref. Appendix XE) *5oo 2.000 /BOO IOOO 5©o TTS U>1 \ FIR 5/* I SPRUCE /48* 2485 I PINE 0 Long term volume maximization Short term volume naximization 130 ISO m OTHER S P E C I E S 75 timber c l a s s of the s p e c i e s h a r v e s t f o r the two runs can be found i n Appendix XI. In summary, these, runs i n d i c a t e that the o v e r a l l timber p r o d u c t i v i t y f o r the Westlake PSYO should average approximately 183,000 c u n i t s (518,201 c u b i c metres) per year.. Of t h i s y e a r l y p r o d u c t i o n the approximate s p e c i e s d i s t r i b u t i o n w i l l be 60% lodgepone pine, 20% D o u g l a s - f i r , 15% spruce and 5% other s p e c i e s . . F u r t h e r , maximizing the volume harvested over the next 30 years r a t h e r than a longer p e r i o d w i l l not a d v e r s e l y a f f e c t the long term p r o d u c t i v i t y of the management u n i t . . Without the a n a l y t i c a l c a p a b i l i t y of a system l i k e TRACS, the i n s i g h t provided above would b e . d i f f i c u l t t o o b t a i n . 6.2.2 Case 2: Economic O p t i m i z a t i o n - Volume vs. . Value Case 2 evaluated the i m p l i c a t i o n s of s c h e d u l i n g h a r v e s t s f o r the maximization of net revenue as opposed to maximization of long term volume production. The RAM run with the volume o b j e c t i v e over 200 years, as d e s c r i b e d i n S e c t i o n 6.2.1, was used to represent the o p t i m i z a t i o n of long term volume p r o d u c t i o n . Another run, under the same c o n d i t i o n s , was made with the o b j e c t i v e of maximizing net revenue over 200 y e a r s . This run represented the o p t i m i z a t i o n of value p r o d u c t i o n . . A d i s c o u n t r a t e of 8% was used to r e f l e c t the present value of f u t u r e revenue streams. Consequently, only revenues generated during the f i r s t 30 or so 76 years were of any s i g n i f i c a n c e . The net revenue generated during the f i r s t decade t o t a l l e d 175.5 m i l l i o n d o l l a r s , i n comparison with 156.2 m i l l i o n d o l l a r s f o r the long term volume production run.. The net revenue generated over the 200-year p e r i o d was 200.4 m i l l i o n d o l l a r s . The corresponding net revenue under volume maximization was 179.3 m i l l i o n d o l l a r s . The volume scheduled f o r harvest i n the f i r s t decade was 2.86 m i l l i o n c u n i t s (8. ,10 m i l l i o n c u b i c metres), i n comparison with 2.58 m i l l i o n c u n i t s (7.31 m i l l i o n c u b i c metres). Once again the long run s u s t a i n e d y i e l d average was approximately 1.83 m i l l i o n c u n i t s (5.18 m i l l i o n cubic metres) per decade. A summary of the r e s u l t s can be found i n Appendix XII. F i g u r e 10 d i s p l a y s a comparison of volume flows per decade: f o r the two runs. . A s i m i l a r p a t t e r n o f volume h a r v e s t s to t h a t of F i g u r e 9 i s e x h i b i t e d . . During the f i r s t f i v e decades, ha r v e s t l e v e l s are higher under value maximization.. For the next f i v e decades ha r v e s t l e v e l s are much lower than the l e v e l s shown f o r volume run.. The.excess i n v e n t o r y i s l i q u i d a t e d much e a r l i e r under value maximization to c a p t u r e : i n c r e a s e d revenue. In c o n t r a s t , the volume:maximization s t r a t e g y r a t i o n s out the excess i n v e n t o r y to generate Increased volume flow d u r i n g the c o n v e r s i o n p e r i o d . Volume pr o d u c t i o n s t a b i l i z e s during the post c o n v e r s i o n p e r i o d around a common harvest l e v e l f o r both runs. A comparison of the s p e c i e s d i s t r i b u t i o n of the h a r v e s t i n the f i r s t decade i s shown i n F i g u r e 11. The r e s u l t s are s i m i l a r to those shown f o r s h o r t term volume maximization.. D i f f e r e n c e s i n the. timber c l a s s e s scheduled f o r harvest Figure 10. Comparison of Volume Flow - Case 2 3ax4 ^ eooo4 'SooA Conversion Period M « Volume maximization • • Value maximization X • Post Conversion Period Long run sustained y i e l d average to 7"//W£- IN PEC A DCS 78 Figure 11. Comparison of Species Flow i n Decade 1 - Case 2 20oo :a -J o /5oo tooo 5oo 723 I FIR I SPRUCE 1 PINE X> Volume maximization ^ Value maximization zap /a6 OTHER S P E C I E S 79 during the f i r s t decade are shown i n Table: 8.. The. r e s u l t s g e n e r a l l y support the e a r l y h a r v e s t of the higher valued stands under an economic o b j e c t i v e . . There i s an average of $11/acre ($27.18/hectare) incremental r e t u r n i n favor of the stands harvested under value o p t i m i z a t i o n . Conversely, stands with g r e a t e r volume y i e l d s per u n i t area are given p r i o r i t y under volume maximization. . Here the incremental r e t u r n averages almost 12 c u n i t s / a c r e (84 c u b i c metres/hectare) over those stands h a r v e s t e d under value o p t i m i z a t i o n . Hence, these r e s u l t s i n d i c a t e that the economic p o t e n t i a l of the Westlake PSYO, based on the harvest from the f i r s t decade, i s approximately 17.55 m i l l i o n d o l l a r s per year. F u r t h e r , value-based h a r v e s t p l a n n i n g generates an a d d i t i o n a l 1.93 m i l l i o n d o l l a r s annually (during the f i r s t decade) over a volume-based s t r a t e g y , without any s i g n i f i c a n t d i f f e r e n c e ; i n the long range p r o d u c t i v i t y of the u n i t . 6.2.3 Case 3: Economic O p t i m i z a t i o n - With T r a n s p o r t a t i o n vs. Without Case 3 evaluated the consguences of r e c o g n i z i n g a c c e s s i b i l i t y and t r a n s p o r t a t i o n i n the s c h e d u l i n g of management uni t h a r v e s t s . The Timber RAM run which maximized value production i n S e c t i o n 6.2.2 was compared with a pr e v i o u s run on the: Westlake PSYU performed under the BCFS CARP system.. The.generation of a Table 8. D i f f e r e n c e s i n Timber C l a s s e s Scheduled f o r Harvest i n Decade 1 - Case 2 Timber Major Age a t C l a s s Species Harvest 009 Spruce 120 021 Spruce 120 036 P i n e / 90 Pine-Spruce 063 Spruce 120 069 Cottonwood 150 081 Pine 100 083 Pine-Spruce 110 096 P i n e / 120 Pine-Spruce T o t a l Average 116 002 Pine 90 006 F i r 90 010 P i n e / 90 Pine-Spruce 034 F i r 150 056 S p r u c e - F i r 130 076 Pine 110 T o t a l Average 110 Volume Value Volume CCF/acre $/acre MCCF 46.12 65.80 6 46.12 65.80 72 32.11 57.02 248 46.12 65.80 155 70.19 18.65 4 45.62 57.08 140 11.30 48.69 2 58.62 53.65 78 705 44.53 54.06 28.40 62.65 14.11 76.60 28.40 58.43 22.38 73.71 47.10 66.17 55.44 55.54 32.63 65.52 :. Run Value Max. Run Acres MCCF Acres 135 1,570 7,731 3,355 50 3,073 144 1,337 17,395 270 9,495 4 252 350 12,321 3 133 105 2,225 21 379 753 24,805 81 h a r v e s t schedule f o r t h i s CARP run was devoid of any c o n s i d e r a t i o n of stand l o c a t i o n , . Stand v a l u a t i o n encompassed only those h a r v e s t i n g a c t i v i t i e s which r e s u l t e d i n the. l o g s being loaded at the l a n d i n g . . No c o n s i d e r a t i o n was given to road development reguirements, p r o x i m i t y . t o the e x i s t i n g road network or m i l l s i t e s , h a u l i n g c o s t s o r s t r a t i f i c a t i o n of the r e s u l t i n g timber c l a s s e s i n t o a c c e s s i b i l i t y c l a s s e s , as was i n c o r p o r a t e d i n the TRACS system.. These d i f f e r e n c e s not only a f f e c t e d the present and p r o j e c t e d value of each st a n d , but a l s o a f f e c t e d timber c l a s s formation. . In other words, stands f o r CARP were grouped together based on s i m i l a r i t i e s i n volume y i e l d s and value y i e l d s which i n c l u d e d h a r v e s t i n g c o s t s up to the l a n d i n g . This d i f f e r e d from stand groupings f o r TRACS which were based on volume.yields and value y i e l d s which i n c l u d e d d e l i v e r e d c o s t to the m i l l . The CARP run r e s u l t e d i n 89 timber c l a s s e s and 24 economic y i e l d c l a s s e s , whereas the TRACS system r e s u l t e d i n 100 timber c l a s s e s and 30 economic y i e l d c l a s s e s . . Other than the above d i f f e r e n c e s r e s u l t i n g from r e c o g n i t i o n of a c c e s s i b i l i t y and t r a n s p o r t a t i o n , the parameters f o r both RAM runs were i d e n t i c a l . The o b j e c t i v e of each run was to maximize net revenue (with an 8% d i s c o u n t rate) over a 200-year planning p e r i o d . . The conversion p e r i o d f o r the old growth stands was s p e c i f i e d t o be 100 years, with a t o t a l s c h e d u l i n g h o r i z o n of 250 y e a r s . . S e g u e n t i a l volume c o n t r o l and r e g u l a t i o n c o n s t r a i n t s were imposed. . The . cut f o r the f i r s t decade was l o o s e l y c o n s t r a i n e d t o be wi t h i n -50% and +250% of the c u r r e n t cut l e v e l f o r both runs. Each subsequent decade's cut had to be w i t h i n 13% of the pre v i o u s 10-year cut l e v e l . . The h a r v e s t i n g 82 a l t e r n a t i v e s f o r each timber c l a s s c o n s i s t e d of the timing of a simple c l e a r c u t t i n g - r e g e n e r a t i o n sequence. For mature c l a s s e s , c l e a r c u t t i n g was allowed to take plac e w i t h i n a s i x t y - y e a r span s t a r t i n g from the f i r s t decade. For immature: c l a s s e s , c l e a r c u t t i n g was allowed w i t h i n a s i x t y - y e a r span s t a r t i n g from age 60 or 20 years p r i o r to cu l m i n a t i o n of mean annual increment. Harvests became:mandatory a t an age of 200 years.. The o b j e c t i v e f u n c t i o n value f o r the CARP-based run was approximately 267.2 m i l l i o n d o l l a r s , whereas the:value f o r the TRACS-based run was approximately 200.4 m i l l i o n d o l l a r s . Summary o f the r e s u l t s can be found i n Appendix X I I I . Hence, i g n o r i n g t r a n s p o r t a t i o n c o s t s r e s u l t e d i n a 33% overstatement of the economic p o t e n t i a l of the management un i t over the : p l a n n i n g h o r i z o n . A comparison of the volume flow r e s u l t i n g from each run i s shown i n F i g u r e 12. The CARP run, l a c k i n g t r a n s p o r t a t i o n c o n s i d e r a t i o n s , r e s u l t e d i n an 18% g r e a t e r harvest l e v e l d u r i n g the. f i r s t 80 years. T h i s harvest volume increment was r e a l i z e d to the detriment of the post co n v e r s i o n harvest l e v e l as shown i n the f i g u r e . The long run s u s t a i n e d y i e l d average f o r the CARP run was 1.76 m i l l i o n c u n i t s (4.98 m i l l i o n c u b i c metres) as compared with 1.83 m i l l i o n c u n i t s (5.18 m i l l i o n c u b i c metres) f o r the.TRACS run. Examination o f the r e s u l t s f o r the f i r s t decade r e v e a l s t h a t the net revenue from the CARP run i s 162.6 m i l l i o n d o l l a r s , as compared with 119.4 m i l l i o n d o l l a r s from the TRACS run. The :corresponding volume harvested i n the f i r s t decade i s 3.4 m i l l i o n c u n i t s (9.6 m i l l i o n cubic metres) f o r the CARP run versus 2.9 m i l l i o n c u n i t s (8.2 m i l l i o n c u b i c metres) Figure 12. Comparison of Volume Flow - Case 3 Z9CO-+ Conversion Period „ Value maximization * x with transportation • • Value maximization without transportation X — — X. \ H 5 77Af£* /V P £ C A P £ S Post Conversion Period Long run sustained y i e l d average IS 84 f o r t h e T R A C S r a n . H e n c e , by n o t r e f l e c t i n g t r a n s p o r t a t i o n c o n s i d e r a t i o n s t h e s c h e d u l i n g n o t o n l y g e n e r a t e s m o r e n e t r e v e n u e t h a n a c t u a l l y e x i s t s b u t a l s o h a r v e s t s m o r e v o l u m e t h a n i s c u r r e n t l y a c c e s s i b l e . F i g u r e 13 p r e s e n t s a c o m p a r i s o n o f t h e s p e c i e s f l o w r e s u l t i n g f r o m t h e s t a n d s a v a i l a b l e f o r h a r v e s t i n t h e f i r s t d e c a d e . T h e C A R P r u n r e v e a l s t h a t t h e r e i s m o r e D o u g l a s - f i r a n d s p r u c e , a n d l e s s l o d g e p o l e p i n e a v a i l a b l e t h a n s h o w n f o r t h e T R A C S r u n . S p e c i f i c a l l y , t h e d i s t r i b u t i o n f o r t h e CARP r u n i s 32% D o u g l a s - f i r , 2 7 % s p r u c e , 3 6 % l o d g e p o l e p i n e w i t h t h e r e m a i n d e r o t h e r s p e c i e s . T h e d i s t r i b u t i o n f o r t h e T R A C S r u n i s 2 2 % D o u g l a s - f i r , 1 3 % s p r u c e , 6 1 % l o d g e p o l e p i n e w i t h t h e r e m a i n d e r o t h e r s p e c i e s . . T h e e f f e c t o f r e f l e c t i n g a c c e s s i b i l i t y a n d t r a n s p o r t a t i o n c o n s i d e r a t i o n s c a n b e f u r t h e r e v i d e n c e d b y e x a m i n i n g t h e r e s u l t s w i t h i n o n e p a r t i c u l a r s u b - u n i t , C o m p a r t m e n t 2 0 , R e g i o n 60 o f t h e W e s t l a k e P S Y U . T a b l e 9 l i s t s t h e s t a n d s a v a i l a b l e f o r h a r v e s t i n t h e f i r s t d e c a d e . A d e s c r i p t i o n o f t h e m a j o r s p e c i e s , a g e , s o i l - l a n d f o r m c l a s s , a r e a a n d v o l u m e y i e l d a r e g i v e n f o r e a c h s t a n d . , I n a d d i t i o n , t w o p o s i t i o n a l a t t r i b u t e s a r e i d e n t i f i e d . T h e f i r s t a t t r i b u t e i s t h e d i s t a n c e f r o m t h e s t a n d c e n t r o i d t o t h e r o a d n e t w o r k . . T h i s a t t r i b u t e s e r v e s a s a n i n d i c a t o r o f a c c e s s i b i l i t y . . T h e s e c o n d a t t r i b u t e , d i s t a n c e : f r o m t h e s t a n d t o t h e : a p p r a i s a l l o c a t i o n , s e r v e s a s a n i n d i c a t o r o f t r a n s p o r t a t i o n r e g u i r e m e n t s . T h e r e s u l t s f r o m t h e T R A C S r u n s h o w e d t h a t f r o m t h e l i s t o f c a n d i d a t e s t a n d s , b o t h t h e . d i s t a n c e t o a p r i m a r y a c c e s s r o a d a n d d i s t a n c e t o t h e a p p r a i s a l p o i n t a r e m o r e f a v o r a b l e t h a n f o r t h e 85 Figure 13. Comparison of Species Flow i n Decade 1 - Case 3 &ooo 1995 /5oo //Q3 UJ -J o /ooo \ Boo I FIR 917 4/3 \ SPRUCE / / I 1 PINE Maximization with transportation Majcimization without transportation /93 OTHER S P E C I E S T a b l e 9. Comparison o f Stands Harvestable i n Decade 1 w i t h i n Compartment 20 S o i l - Transportation Without Transportation Stand Species Age Land Dist. Dist. to Dist. Dist. to No. (Years) Class Acres Volume to road Appraisal Acres Volume bo road Appraisal (M cunits) (miles) (miles) (M cunits) (miles) (miles) 20007 PI 90 17 215 7.2 0.5 24.6 20013 PI 90 17 43 1.5 0.2 24.9 20018 PI 70 18 498 15.9 0.4 30.5 20025 PI 70 18 140 4.5 0.5 31.1 20029 PI 90 8 39 1.4 0.2 24.3 20033 S 90 8 23 1.2 0.2 24.7 20050 PI 70 8 68 2.2 0.1 25.5 20056 F 150 15 19 1.1 1.6 33.7 20057 S 150 15 17 0.8 1.4 32.0 20058 F 130 15 632 28.1 0.2 30.8 20059 PIS 130 15 346 17.0 3.5 32.5 20061 PIS 110 15 37 1.3 2.0 28.9 20064 F 110 15 320 13.9 3.0 27.7 20066 S 90 15 330 17.1 1.6 28.7 20075 PIS 130 15 272 13.3 3.6 30.7 20076 S 130 15 26 1.7 3.7 29.9 20077 F 130 15 52 2.3 0.9 28.7 20078 PI 110 15 45 3.0 0.8 32.9 45 3.0 0.8 32.9 20080 F 110 15 40 1.9 0.4 27 .6 40 1.9 0.4 27.6 20081 S 90 15 17 0.9 2.5 29.6 20086 S 130 7 42 0.9 2.0 28.9 20090 F 110 7 104 4.5 3.4 28.5 20092 F 90 7 14 0.6 3.9 31.0 20099 S 130 7 10 0.2 0.2 5.7 20103 PI 70 7 220 7.0 0.2 25.4 20116 F 110 7 44 2.6 2.5 27.2 20117 S 110 7 21 1.3 0.1 27.6 20128 S 130 7 216 4.8 0.3 27 .0 20129 PIS 130 7 109 5.3 3.5 6.7 20130 PI 110 7 89 5.9 0.6 25.7 20137 PI 70 7 175 5.6 0.6 25.8 TOTAL 1595 57.3 2713 122.6 AVERAGE - weighted by volume 0.4 27.6 2.0 28.9 87 CARP run.. Under the TRACS run, each stand i s w i t h i n a mile (1.6 kilo m e t r e s ) of the main road network.. The average a c r o s s a l l stands, weighted by volume, i s 0.4 miles (0.6 k i l o m e t r e s ) . . In comparison, stands up t o 4 miles (6.4 kilometres) away from the road network are s e l e c t e d f o r harvest i n the CARP run, the average d i s t a n c e being 2 miles (3.2 kilometres)... The:stands scheduled f o r harvest i n the f i r s t decade across the. e n t i r e u n i t were.on the average approximately 40% c l o s e r t o the road network under the TRACS system. The t a b l e a l s o shows that s c h e d u l i n g h a r v e s t s without c o n s i d e r i n g t r a n s p o r t a t i o n , r e s u l t s i n a gr e a t e r average d i s t a n c e from the stands to the a p p r a i s a l l o c a t i o n . The. stands s e l e c t e d from the CARP run averaged 1.3 miles (2.1 kilometres) more than f o r the TRACS run, with the average haul d i s t a n c e being 28.9 miles (46.5 kil o m e t r e s ) and 27.6 miles (44.4 kilometres) r e s p e c t i v e l y . . Hence, a c c e s s i b i l i t y anl t r a n s p o r t a t i o n c o n s i d e r a t i o n s have s i g n i f i c a n t impact on t h e s c h e d u l i n g of stands f o r harvest.„ The volume, a c c e s s i b l e and the value y i e l d are both o v e r s t a t e d f o r the Westlake PSYU i n the absence of proper accounting of stand l o c a t i o n . . Stand l o c a t i o n i n r e l a t i o n t o both the road network and the a p p r a i s a l p o i n t or m i l l s i t e must be i n t e g r a t e d i n management u n i t harvest planning.. 88 7. . CONCLUSIONS Planning models never provide the t o t a l answer.. They do, however, allow e v a l u a t i o n of a l t e r n a t i v e s . . They provide management with a q u a n t i t a t i v e framework f o r e x p l o r i n g the consequences of proposed a c t i o n s . The improved a n a l y t i c a l c a p a b i l i t y provided by models reduces u n c e r t a i n t y i n the planning environment.. T h e i r e s u l t i s b e t t e r decision-making.. A continued supply of timber i s c r i t i c a l to the w e l l - b e i n g of both the i n d u s t r i a l f i r m and the province as a whole. Harvest p l a n n i n g concerns t h e : c o n t r o l o f timber flows over time to meet supply needs. This c o n t r o l encompasses the q u a n t i t a t i v e a s p e c t s of when, what and where, r e l a t i v e t o the volume and value y i e l d s to be d e r i v e d from f o r e s t stands. T h i s t h e s i s has presented TRACS, a T r a n s p o r t a t i o n A n a l y s i s - C u t Scheduling system designed f o r h a r v e s t planning at the management u n i t l e v e l . TRACS i s an extension to e x i s t i n g harvest planning t o o l s . The system i n t e g r a t e s a c c e s s i b i l i t y and t r a n s p o r t a t i o n i n t o the s i l v i c u l t u r a l and economic aspects of s c h e d u l i n g timber h a r v e s t s f o r a management u n i t . . TRACS begins with a p h y s i c a l resource i n v e n t o r y , from which timber y i e l d s and s i l v i c u l t u r a l p o t e n t i a l can be determined. Next, a t r a n s p o r t a t i o n modelling subsystem r e l a t e s the road network to primary stand access and l o g haul i n g reguirements. A l t e r n a t i v e s t a n d - t o - m i l l flows can be e v a l u a t e d , with optimal r o u t i n g s t r a t e g i e s i d e n t i f i e d . An economic v a l u a t i o n i s then performed f o r each stand based on d e l i v e r e d wood c o s t s t o the m i l l and end-product p r i c i n g of lumber and c h i p s . At t h i s 89 p o i n t , t h e management u n i t i n v e n t o r y c o n t a i n s b o t h volume and v a l u e i n f o r m a t i o n y i e l d i n g an i m p r o v e d r e f l e c t i o n o f t h e t i m b e r r e s o u r c e . D a t a a n a l y s i s t e c h n i q u e s o f f a c t o r a n d c l u s t e r a n a l y s i s were i n c o r p o r a t e d w i t h d y n a m i c p r o g r a m m i n g t o g e n e r a t e s t a n d a g g r e g a t i o n s o r t i m b e r c l a s s e s . These t i m b e r c l a s s e s , homogeneous i n r e s p e c t t o volume and v a l u e r e s p o n s e s , were a more a p p r o p r i a t e d e l i n e a t i o n f o r management u n i t p l a n n i n g . P r o j e c t i o n s o f volume and v a l u e y i e l d s c o r r e s p o n d i n g t o t h e t i m b e r c l a s s c o m p o n e n t s were a l s o f o r m e d . . The T i m b e r RAH model was t h e n u s e d t o s c h e d u l e t h e : t i m b e r c l a s s e s f o r h a r v e s t . . The r e p o r t i n g f e a t u r e s o f TRACS f i n a l l y t r a n s f o r m e d t h e r e s u l t s i n t o u n d e r s t a n d a b l e g r a p h s and t a b l e s w h i c h r e l a t e d t h e h a v e s t s b a c k t o t h e o r i g i n a l s t a n d s . The u t i l i t y o f t h e TRACS s y s t e m h a s been d e m o n s t r a t e d on a a c t u a l B r i t i s h C o l u m b i a f o r e s t management u n i t . . The a n a l y s e s p r e s e n t e d h a v e e v a l u a t e d a l t e r n a t i v e volume f l o w and v a l u e f l o w s t r a t e g i e s . The s i l v i c u l t u r a l and e c o n o m i c p o t e n t i a l o f t h e management u n i t h a s been i d e n t i f i e d . I n a d d i t i o n , t h e c o n s e q u e n c e s o f e x c l u d i n g t r a n s p o r t a t i o n c o n s i d e r a t i o n s i n h a r v e s t p l a n n i n g h a v e been shown t o be s i g n i f i c a n t . R e l e v a n t h a r v e s t p l a n n i n g r e s u l t s c a n o n l y be a c h i e v e d t h r o u g h e x p l i c i t r e c o g n i t i o n o f a c c e s s i b i l i t y and t r a n s p o r t a t i o n r e g u i r e m e n t s . . The TRACS s y s t e m h a s been d e v e l o p e d t o f a c i l i t a t e s u c h h e e d s . The n e t r e s u l t i s a means f o r i m p r o v e d management u n i t h a r v e s t p l a n n i n g . 90 BIBLIOGRAPHY I. . BCFS , 1975.. Forest Resource Planning In B r i t i s h Columbia.. B r i e f sub. to Royal Comm. on For. Res. by B.C. F o r . S e r v . , Nelson B.C. 31 pp.. 2.. Bare, B..B. and E. L. Norman 1969. An E v a l u a t i o n Of Inte g e r Programming In F o r e s t Production Scheduling Problems. Purdue Univ., A g r i c . .Expt. .Sta. ,Res. . Bull..847 7 pp. 3., C h a p p e l l e , D. E., M. Hang and R. C. Miley..1976.. E v a l u a t i o n Of Timber RAM As A F o r e s t Management Planning Model. . J..of For.. 5 p..288-293 4... C l u t t e r , J . „ L • 1968. Max-M i l l i o n - A Computerized F o r e s t Management Planning System. Sch. For..Res., Oniv. Ga.. 6 1 pp. 5. C r a i g , G. A. 1979. OSFS T r i e s Economic A n a l y s i s In Planning Timber S a l e L e v e l s . For. Ind. 8, p. .30-31 6.. C u r t i s , F. H..1962.. L i n e a r Programming The Management Of A F o r e s t P r o p e r t y . J . of For. .60, p. ,611-616 7.. D i j k s t r a , E. W. 1959 A Note On Two Problems In Connexion With Graphs, Numerische Mathematik, 1, p. 269-271 8.. Dreyfus, S..1969. An A p p r a i s a l Of Some Shortest Path Algorithms, J . ORSA, 17, p. 395-412 9.. Elmagharaby, S. .E. , 1970. . Some Network Models In Management Science. Lecture Notes In 0. R. and Math..Systems, 29, E d i t e d By M. Beckmann and H..P. .Kungi, S p r i n g e r - V e r l a g , New York 10. E i s n e r , G.H., M. R . . T r a v i s , and P.,H.,Kourtz 1975. Dynamic Programming Subroutines Based On The D i j k s t r a A lgorithm For F i n d i n g Minimum Cost Paths In D i r e c t e d Networks.. Information Report FF-X-51, 16 pp., I I. . Fowler, K. S..1978. Toward A More. In t e g r a t e d Regional Timber Model. . For. . S c i . . 24 (4) p. .434-443 12.. Gower, J . C..1967.. A Comparison Of Some Methods Of C l u s t e r A n a l y s i s . B i o m e t r i c s 23, p..623-637 13. . Haley, D. . 1975. . Regulation Of The Rate Of Timber Ha r v e s t i n g In B r i t i s h Columbia.„Policy Background Paper, Royal Comm..On For. Resources, V i c t o r i a , B.C. 40 pp. 9 1 14.. H a n z l i k , E. J . 1922 Determination Of The Annual Cut On A Sustained Y i e l d B a s i s For V i r g i n American F o r e s t s . . J . of For. . 20(6) 15. Hennes, L. C. , M. J . I r v i n g and D. I.,Navon 1971., F o r e s t C o n t r o l Regulation ... a Comparison Of T r a d i t i o n a l Methods And A l t e r n a t i v e s . .USDA For. ,Serv. .Res. . Note PSW-231 10 pp. 16.. H e r r i c k , 0. W..1976.. Key I n d i c a t o r s Of S u c c e s s f u l Logging Jobs In The Northeast, N. E. .For. .Exp. .. Sta. , Upper Darby, Pa..USDA For. .Serv. .Res. ,Pap. , NE-352 5 pp.. 17.. Hrubes, R. .J. .and D. I. Navon 1976. . A p p l i c a t i o n Of L i n e a r Programming To Downward S l o p i n g Demand Problems In Timber Production..USDA For. Serv..Res. Note PSW-315 6 pp. 18.. Johnson, K. N. . 1976. O p t i m i z i n g Timber Sales During The Conversion P e r i o d . Can. . J . of For..Res..6 6 pp. 19.. Kidd, W. .E., E. F. .Thompson, and P. H. J Hoepner. 1966. . F o r e s t Regulation By L i n e a r Programming - a Case Study. .J. .of For. .64 p. .611-613 23.. Leak, W..B. .1964. E s t i m a t i n g Maximum Allowable Timber Y i e l d s By L i n e a r Programming. USDA For.,Ser.,Paper NE-17 9 pp. . 21. L i t t s c h w a g e r , J . M..and T. H.Tcheng 1967.. S o l u t i o n Of A Large Scale F o r e s t Scheduling Problem By L i n e a r Programming Decompostion. J . of For..62 p..644-649 22. Loucks, D.,P. 1964.. The Development Of An Optimal Program For Sustained Y i e l d Management..J..of For.,62 p..485-490 23. . Mass - Management Sciences S t a f f . 1974. , A n a l y s i s Of Computer Support Systems For M u l t i f u n c t i o n a l Planning - Report 1. USDA PSW For. and Range Expt. Sta. , B e r k l e y , C a l i f . 216 pp.,. 24.. Navon, D..I., 1971. Timber RAM... a Long Range Planning Method For Commercial Timber Lands Under M u l t i p l e - Use Management..USDA For. Serv. .Res. .Pap. PSW-70 22 pp. 25.. Navon, D. I. .1975. . Short Run And Long Run Models For Planning F o r e s t T r a n s p o r t a t i o n . .Proc. .Soc. Amer. . For. . Systems A n a l y s i s Working Group. , Athens, - Ga. .p. .300-312 92 26. Ddendahl, W. F. 1975.. T r a n s p o r t a t i o n A n a l y s i s And M o d e l l i n g For F o r e s t Resource Management..Proc., Soc. . Amer. . For. Systems A n a l y s i s Working Group. Athens, Sa. p. 233-242 27.. Veldman, D. J . 1967.. F o r t r a n Programming For The B e h a v i o r a l S c i e n c e s , H o l t , Rinehart and Winston, New York 28.. Walker, J. L. .1974. . ECHO - An Economic Harvest O p t i m i z a t i o n Model. Proc. ,West. .For. . Conf., Spokane 23 pp., 29.. Ward, J . H. 1963 H i e r a r c h i c a l Grouping To Optimize An O b j e c t i v e F u n c t i o n , Amer. S t a t . Assoc. J . . 58 p. , 236-244 33.. Ware, G. 0..and J . l . . C l u t t e r . 1971.. A Mathematical Programming System For The Management Of I n d u s t r i a l F o r e s t s . . For. , S c i . 1 7 (4) p. . 428-445 31. Weintraub, A..and D..Navon 1976., A F o r e s t Management Planning Model I n t e g r a t i n g S i l v i c u l t u r a l And T r a n s p o r t a t i o n A c t i v i t i e s . . Man..Sci..22 (12) p..1299-1309 32. . Weisz, R. N„ and R. Carder. . 1975. Development Of Land Ose Planning And T r a n s p o r t a t i o n Planning Systems For N a t i o n a l F o r e s t Management: A Status Overview..Proc. Soc. Amer. For..Systems A n a l y s i s Working Group. Athens, 3a. p. 87-104 33. Williams D. H.. 1976.. I n t e g r a t i n g Stand F o r e s t Models For D e c i s i o n A n a l y s i s . . P h . D..Thesis, F a c u l t y Of F o r e s t r y , Dniv.,of B r i t . C o l . 175 pp. . 34.. W i l l i a m s , D. H..and M. Yamada. 1976., C l u s t e r A n a l y s i s For Land Management Models, Can. . J . For. . Res. 6 p. 532-538 35.. W i l l i a m s , D. .H., J. .C. McPhalen, S. M. Smith, M. . M. Yamada and G. ,G. Young 1975. . Computer A s s i s t e d Resource Pl a n n i n g : An overview of The CARP Project..Onpub.. Rep., B.C. For. Serv. 30 pp. 93 Dijkstra»s Short e s t Route Algorithm The.algorithm c o n s i d e r s the nodes and ar c s of a network to be a member of one of three p o s s i b l e s e t s at any given i n s t a n c e : 1) SET I = Sw, + S A J T h i s i s the set of permanently l a b e l l e d nodes and a r c s . . The set i n c l u d e s a l l those: nodes, S^, , and a r c s , S A, , which are a pa r t of a known minimum path. Nodes and t h e i r corresponding arcs w i l l be added t o t h i s set i n ascending order of path length from the source. 2) SET I I = 5NZ * S A 1 T h i s i s the s e t of t e m p o r a r i l y l a b e l l e d nodes and a r c s . The s e t i n c l u d e s a l l those nodes, S „ Z r and a r c s , SAZ. , which are candidates f o r i n c l u s i o n i n Set I. A l l nodes i n S J I J Z are connected to at l e a s t one node i n S v / . F u r t h e r , each node i n S ^ has one and only one a r c i n SAl l e a d i n g to i t . 3) SET I I I = s*, + S A 3 This i s the s e t of u n l a b e l l e d nodes and a r c s . . The s e t i n c l u d e s a l l those nodes, S^, , and a r c s S A 3 which have not been r e j e c t e d . I n i t i a l l y , a l l nodes and arcs are u n l a b e l l e d and members of Set I I I , i . e . S ^ = [ i | i=1,2,.. . ,n} and S^a = [ a ( i , j ) | iSS^g and j&S^j}.. The al g o r i t h m then proceeds through the f o l l o w i n g s t e p s : 94 Step 1) The source node, 1, i s put i n node set I, ( i . e . S^, = [1}) and given a permanent l a b e l value of zero. Step 2) Consider a l l a r c s connecting the node j u s t t r a n s f e r r e d t o S^,, with any of the other nodes i n or S^3. Two p o s s i b i l i t i e s a r i s e i n t h i s temporary l a b e l l i n g process: Case 1: i & S v / , j & S ^ , a ( i , j ) & S / > 3 I f any of the new nodes, j , to be c o n s i d e r e d are i n S v t , then check to see i f the corresponding new a r c , a ( i , j ) y i e l d s a s h o r t e r path d i s t a n c e from the source to node j than the previous a r c . I f a r c a ( i , j ) y i e l d s a s h o r t e r d i s t a n c e , then pla c e a ( i , j ) i n SAl and r e j e c t the: previous arc i n S 4 t . I f however, a ( i , j ) y i e l d s an equal or l o n g e r path, then r e j e c t a ( i , j ) . . Case 2: i&S*,, , j & S v 3 , a ( i , j ) & S * 3 I f any of the new nodes, j , i s i n Syyj p l a c e node j i n St/z, and place the corresponding a r c , a ( i , j ) i n S A i . Step 3) R e s t r i c t i n g c o n s i d e r a t i o n of a r c s to 5AI and to s 4 i / every node j i n Ŝ /z has one and only one path connecting to the source node, 1. A s s o c i a t e d with each path i s a d i s t a n c e . The node j ( j & S ^ ) having the s h o r t e s t d i s t a n c e from the source i s t r a n s f e r r e d from S ^ t o S N 1 , with the corresponding arc a ( i , j ) (i&S/v/, j&S vz.) t r a n s f e r r e d to S,,, . . T h i s step i s the permanent l a b e l l i n g process. Step 4) I f a l l nodes (or the s p e c i f i e d sink) have: been t r a n s f e r r e d to SM,, then stop.. Otherwise, go to step 2 and continue p r o c e s s i n g . , I f the s h o r t e s t path from the source to a l l other nodes of an N node network i s d e s i r e d , then the i t e r a t i v e m i n i m i z a t i o n must be executed e x a c t l y N-1 times. During the procedure N(N-1) elementary o p e r a t i o n s are needed to a s s i g n temporary l a b e l s , with an a d d i t i o n a l N(N-1)/2 comparisons necessary to a s s i g n permanent l a b e l s . A f u r t h e r (N-1) 2 comparisons are needed f o r updating and indexing the node l i s t . Hence, a t o t a l of approximately 3N 2 elementary o p e r a t i o n s are r e q u i r e d . . On t h i s b a s i s Dreyfus (1969) s t a t e s t h a t D i j k s t r a ' s algorithm i s the 95 most e f f i c i e n t around. E i s n e r , e t a l . (1975) o f f e r s f u r t h e r support i n a s s e s s i n g D i j k s t r a ' s a l g o r i t h m as s u p e r i o r to two other a l g o r i t h m s i n v e s t i g a t e d . 96 a£PENDIX_II Land C l a s s e s Of The Westlake PSYO* (Source: BCFS - P r i n c e George, 1974) Land, C l a s s I Parent M a t e r i a l : Sandy loam and loam t e x t u r e d c o l l u v i u m and/or t i l l d e p o s i t s o v e r l y i n g b a s i c bedrock. Loam and c l a y loam t e x t u r e d g l a c i a l t i l l . S o i l S e r i e s : a mixture of C l u c u l z and Twain.. Topography: Very s t e e p l y s l o p i n g and s t r o n g l y r o l l i n g or very h i l l y . Drainage: Ranges from i m p e r f e c t l y to r a p i d l y drained.. Comments: L i a b l e to damage by s k i d d i n g and e r o s i o n . S u s c e p t i b l e to f r o s t heaving.. S o i l s o f t e n shallow and rocky with moisture l i m i t a t i o n s t o r e g e n e r a t i o n . L a n d C l a s s II Parent M a t e r i a l : Sandy loam and loam t e x t u r e d c o l l u v i u m and/or t i l l d e p o s i t s o v e r l y i n g b a s i c bedrock.. Loam and c l a y loam t e x t u r e d g l a c i a l t i l l . S o i l S e r i e s : a mixture of 60% Oona and 40% Twain. Topography: Very s t e e p l y s l o p i n g and s t r o n g l y r o l l i n g . . Drainage: Moderately w e l l to r a p i d l y d r a i n e d . Comments: L i a b l e to damage by s k i d d i n g and e r o s i o n . . Land : c l a s s ; I I I Parent M a t e r i a l : A b l a t i o n t i l l d e p o s i t s or g r a v e l l y outwash and v a l l e y t r a i n d e p o s i t s o v e r l a i n with 97 loamy sand, sand and sandy loam t e x t u r e d capping. S o i l S e r i e s : A mixture of 60% Cobb and 40% Ramsey. Topography: Gently to moderately r o l l i n g . , Drainage: Ranges from i m p e r f e c t to r a p i d . . Comments: S o i l moisture l i m i t a t i o n s to r e g e n e r a t i o n . F e r t i l i t y sometimes low. i^£d_Class_IV Parent M a t e r i a l : Loam and c l a y loam t e x t u r e d g l a c i a l t i l l d e p o s i t s ; i n t e r m i t t e n t s u r f a c e m o d i f i c a t i o n with sandy loam t e x t u r e s . . R o l l i n g and h i l l y d r u m l i n i z e d t i l l p l a i n land forms.. These may be combined with g r a v e l l y outwash and v a l l e y t r a i n d e p o s i t s o v e r l a i n with loamy sand and sandy loam textured capping. . S o i l S e r i e s : Deserter or mainly Deserter., Topography: Sometimes s t e e p l y s l o p i n g and h i l l y , u s u a l l y r o l l i n g and h i l l y . Drainage: Mostly i m p e r f e c t l y to well drained with r a p i d drainage.on the g r a v e l l y outwash d e p o s i t s . . Comments: S u s c e p t i b l e to some f r o s t heaving.. Land C l a s s V Parent M a t e r i a l : Heavy c l a y textured g l a c i o - l a c u s t r i n e d e p o s i t s . . Some s i l t loam t o s i l t y loam textured g l a c i o - l a c u s t r i n e d e p o s i t s . S o i l S e r i e s : Pineview or 80% Pineview and 20% Berman. Topography: Ondulating to s t r o n g l y r o l l i n g . , Drainage: Ranges from i m p e r f e c t to moderately w e l l . Comments: S u s c e p t i b l e to f r o s t heaving. Logging may i n c r e a s e compaction and e r o s i o n and cause stream s i l t a t i o n . Land.Class VI Parent M a t e r i a l : Sphagnic moss, sedge, and a s s o c i a t e d hydrophytic v e g e t a t i o n . 98 S o i l S e r i e s : A mixture of C h i e f and Moxley.. Topography: D e p r e s s i o n a l to n e a r l y l a v e l or g e n t l y u n d u l a t i n g . Drainage: Very poor. . Comments: F i l l e d i n areas of lakes and ponds o f t e n supporting black spruce. . Land _Class _VII Parent M a t e r i a l : Mainly c l a y textured g l a c i o - l a c u s t r i n e d e p o s i t s . . Some v a r i a b l e t e x t u r e d f l u v i a l d e p o s i t s and s i l t loam to s i l t y c l a y loam textured g l a c i o - l a c u s t r i n e . d e p o s i t s . S o i l S e r i e s : Mainly Vanierhoof, with some S t e l l a k o , Berman and B e d n e s t i . Topography: Ranges from n e a r l y l e v e l t o s t r o n g l y r o l l i n g . . Drainage: Ranges from i m p e r f e c t l y to r a p i d , with the majority moderately well to w e l l d r a i n e d . . Comments: S u s c e p t i b l e t o f r o s t heaving. . Logging r e s u l t s i n l o s s of s o i l s t r u c t u r e , i n c r e a s e d compaction and a r o s i o n y i e l d i n g stream sedimentation. . Land C l a s s VIII Parent M a t e r i a l : V a r i a b l e t e x t u r e d f l u v i a l d e p o s i t s . . Small i n c l u s i o n s of sphagnic moss, sedge and a s s o c i a t e d h y d r o p h y t i c v e g e t a t i o n . , S o i l S e r i e s : Mainly S t e l l a k o , with some Moxley and C h i e f . Topography: Nearly l e v e l to u n d u l a t i n g . Drainage: Ranges from very poor to r a p i d . , Comments: Logging may cause stream sedimentation.. Land C l a s s IX Parent M a t e r i a l : Loam and c l a y loam tex t u r e d g l a c i a l t i l l d e p o s i t s . . R o l l i n g , h i l l y , s t r o n g l y to very s t e e p l y s l o p i n g t i l l p l a i n land forms between approximately 3500 t o 4500 f e e t e l e v a t i o n . . Also sandy loam t e x t u r e d c o l l u v i u m and/or t i l l d e p o s i t s o v e r l y i n g b a s i c bedrock.. 99 S o i l S e r i e s : A mixture of 70% Twain ana 30% Oona. . Topography: Very s t e e p l y s l o p i n g . Drainage: Moderately w e l l . Comments: F r o s t heaving and g e n e r a l l y poor c l i m a t i c c o n d i t i o n s f o r growth. . Land C l a s s X Parent M a t e r i a l : Sandy loam and loamy sand t e x t u r e d a b l a t i o n t i l l d e p o s i t s ; c l a y t e x t u r e d g l a c i o - l a c u s t r i n e d e p o s i t s ; some loam and c l a y loam t e x t u r e d g l a c i a l t i l l d e p o s i t s ; some i n c l u s i o n of sphagnic moss, sedge and a s s o c i a t e d h y d r o p h y t i c vegetation.„. S o i l S e r i e s : & mixture of C r y s t a l , Cobb, Deserter; C r y s t a l , Moxley and C h i e f ; C r y s t a l and d e s e r t e r ; Beaverly. Topography: Ranges from g e n t l y undulating to s t r o n g l y r o l l i n g . Drainage: Ranges from very poor to well d r a i n e d . . Comments: The areas of non-organic o r i g i n are s t a b l e and robust. . Land C l a s s ̂ XI Parent M a t e r i a l : G r a v e l l y outwash and v a l l e y t r a i n o v e r l a i n with loamy sand, sand and sandy loam textured capping. S i l t loam to s i l t y c l a y loam tex t u r e d g l a c i o - l a c u s t r i n e d e p o s i t s . G r a v e l l y and sandy esker d e p o s i t s with v a r i a b l e i n t e r s t r a t i f i e d loamy sand, sand and sandy loam. Sandy outwash and d e l t a i c d e p o s i t s . . S o i l S e r i e s : A mixture of M i x , Berman, Roaring, Giscombe, Mapes, Sax ton and De s e r t e r . . Topography: Gently undulating to g e n t l y r o l l i n g . , Drainage: Ranges from moderately w e l l t o r a p i d l y d r a i n e d . Comments: G e n e r a l l y s t a b l e , l o g g i n g on t h e . f i n e textured g l a c i o - l a c u s t r i n e d e p o s i t s r e s u l t s i n some e r o s i o n and stream s i l t a t i o n . 1 0 0 L a n d C l a s s X I I P a r e n t M a t e r i a l : S a n d y l o a m a n d l o a m t e x t u r e d c o l l u v i u m a n d / o r t i l l d e p o s i t s o v e r l y i n g a c i d i c b e d r o c k . S o i l S e r i e s : A m i x t u r e o f D e c k e r , D e s e r t e r s a n d O r m o n d . , T o p o g r a p h y : H i l l y t o v e r y h i l l y . D r a i n a g e : R a n g e s f r o m w e l l t o r a p i d l y d r a i n e d . C o m m e n t s : S h a l l o w a n d r o c k y s o i l s . . S i g n i f i c a n t s o i l l o s s c a n o c c u r a s a r e s u l t o f s k i d d i n g a n d e r o s i o n . L a n d C l a s s X I I I P a r e n t M a t e r i a l : S i l t l o a m t o s i l t y c l a y l o a m t e x t u r e d g l a c i o - l a c u s t r i n e d e p o s i t s . , H e a v y c l a y t e x t u r e d g l a c i o - l a c u s t r i n e d e p o s i t s . S o i l S e r i e s : A m i x t u r e o f B e r m a n , P i n e v i e w , S i s c o m e a n d F r a s e r . T o p o g r a p h y : G e n t l y u n d u l a t i n g t o m o d e r a t e l y r o l l i n g . . D r a i n a g e : R a n g e s f r o m p o o r l y t o w e l l d r a i n e d . C o m m e n t s : S u s c e p t i b l e t o f r o s t h e a v i n g . . S t r e a m s i l t a t i o n may o c c u r a f t e r l o g g i n g o n t h e s t e e p e r s l o p e s . L a n d - C l a s s X I V P a r e n t M a t e r i a l : G r a v e l l y a n d s a n d y e s k e r d e p o s i t s w i t h v a r i a b l e i n t e r - s t r a t i f i e d l o a m y s a n d , s a n d a n d s a n d y l o a m . Some i n c l u s i o n o f s e d g e a n d a s s o c i a t e d h y d r o p h y t i c v e g e t a t i o n . S o i l S e r i e s : A m i x t u r e o f R o a r i n g a n d C h i e f . . T o p o g r a p h y : R a n g e s f r o m n e a r l y l e v e l t o s t r o n g l y r o l l i n g . D r a i n a g e : R a p i d o n m i n e r a l s o i l s , v e r y p o o r o n o r g a n i c . C o m m e n t s : M i n e r a l s o i l s d r o u g h t y a n d o f l o w f e r t i l i t y . . L a n d C l a s s XV P a r e n t M a t e r i a l : Loam a n d c l a y l o a m t e x t u r e d g l a c i a l t i l l d e p o s i t s ; i n t e r m i t t e n t s u r f a c e m o d i f i c a t i o n 10 1 with sandy loam t e x t u r e s . . R o l l i n g and h i l l y d r u m l i n i z e d t i l l p l a i n land form. Some beach d e p o s i t s of loamy sand and sandy t e x t u r e s . S o i l S e r i e s : Mainly B a r r e t t with some Kluck and C r y s t a l . . Topography: Ranges from u n d u l a t i n g to h i l l y . . Drainage: Ranges from i m p e r f e c t l y to r a p i d l y d r a i n e d . Comments: G e n e r a l l y s t a b l e and robust . Land C l a s s XVI Parent M a t e r i a l : Loam to clay loam tex t u r e d g l a c i a l t i l l d e p o s i t s ; i n t e r m i t t e n t s u r f a c e m o d i f i c a t i o n with sandy loam t e x t u r e s . . Steep land t i l l l a nd forms. Sandy loam and loam t e x t u r e d c o l l u v i u m and/or t i l l d e p o s i t s o v e r l y i n g b a s i c bedrock.. S o i l S e r i e s : A mixture of Telegraph and Drmond. . Topography: Strongly r o l l i n g and h i l l y . Drainage: Ranges from moderately w e l l to r a p i d l y d r a i n e d . Comments: C l i m a t i c c o n d i t i o n s f o r growth are poor.. kand _C1ass_XVII Parent M a t e r i a l : Gravel and sand esker and kame d e p o s i t s ; hummocky.. S o i l S e r i e s : A mixture of Morice, Guniza and Ramsey.. Topography: Gently u n d u l a t i n g to moderately r o l l i n g . Drainage: Ranges from r a p i d to w e l l drained. . Comments: High p r o b a b i l i t y of damage from s l a s h burning. . Land C l a s s XVIII Parent M a t e r i a l : Sandy outwash and v a l l e y t e r r a c e d e p o s i t s o v e r l a i n with f i n e r sands and loamy sands. Some d e p o s i t i o n a l c l a y s t r a t a . S o i l S e r i e s : Mainly Cottonwood, with some Blackwater. Topography: Ranges from gently u n d u l a t i n g to s t r o n g l y 102 r o l l i n g . Drainage: Rapid t o w e l l d r a i n e d , but moderately w e l l t o i m p e r f e c t l y drained where c l a y s t r a t a occur. Comments: High p r o b a b i l i t y of damage from s l a s h burning.. Land C l a s s XIX Parent M a t e r i a l : Sandy outwash and v a l l e y t e r r a c e d e p o s i t s o v e r l a i n with f i n e r sands and loamy sands. Some.depositional c l a y s t r a t a . . S i l t loam to s i l t y c l a y loam t e x t u r e d g l a c i o - l a c u s t r i n e d e p o s i t s . S o i l S e r i e s : A mixture of Blackwater, Beaverly, Bednesti and Cottonwood. Topography: Ranges from g e n t l y u n d u l a t i n g to s t r o n g l y r o l l i n g . Drainage: Ranges from i m p e r f e c t l y to r a p i d l y drained. . Comments: Broadcast burning acceptable:on t h e : l a c u s t r i n e d e p o s i t s . Otherwise a high p r o b a b i l i t y of damage from s l a s h burning.. APPEMDIX_III P r e s c r i b e d Stand Treatments For The Westlake PSYU TREATMENT SEQUENCES LC/GT Method of F a l l i n g Tree Extracted As Extracted By Season S i t e Prep. Regen. Method Next Crop Number Species E i t h e r H = hand T = tree length M = Mech F = F u l l tree S = Spruce + F P = Pine + F D = Decid. A l l Snip, saw L = Log or length feller-buncher C = Clean log S = Skidder W = Winter D = Drag N - Natural S c a r i f y Regen. Species C = Cat S = Summer B = Broadcast burn W = Windrow N = No treatment (N*) P = Plant Note: When there are optional operations, the frequency of occurrence i s given as a percent. Link operations are obligatory sequences. N* - I f not cleanly logged, knock down slash with chain. Land C l a s s and Growth Type Method of F e l l i n g Tree Extracted As Ext r a c t e d By I A l l H (Twain) ' I I A l l = I I I I A l l M IV A l l M 7 H 3 V S H V P+D M VI No logging V I I S H T C 6 C S 4 F S ( f e r t . problem) F S 8 C 2 T C 5 S 5 F S 6 T C 4 T S 6 C 4 Season S i t e Regeneration Subsequent Pr e p a r a t i o n Method Crop W N N PI (F) S 7 — N* W 3 D W 5 D S 5 N N N PI PI W B S (F) W 8 B+W S 2 D — W 7 B s 3 W + B P S (F) N PI (S) S (F) Land Cl a s s Method Tree and o f Extracted Extracted Season S i t e Regeneration Subsequent Growth Type F e l l i n g As By Pr e p a r a t i o n Method Crop V I I P M T F S 7 C 3 W 7 B+W 6 S 3 D 4 -- S (F) PI (S) V I I I D H (Cottonw.) (20 ac) C 7 S 3 W N Residual Cot. V I I I S (+P) H C 5 S 5 W B (Brush prob.) IX A l l = I & I I (Twain) Topography Important X A l l = I I I Wide f l u c t u a t i o n s i n X. X may need more cat and more w i n t e r than I I I XI A l l = X = I I I X I I A l l H S 5 C 5 W N D i f slope % < 20% PI X I I I = V (2 sections) XIV A l l H 7 M 3 D 7 N 3 N PI Land Cl a s s Method Tree and o f Ex t r a c t e d E x t r a c t e d Season S i t e Regeneration Subsequent Growth Type F e l l i n g As By P r e p a r a t i o n Method Crop XV A l l M F S S 6 N N PI W 4 D XVI = I XVII = XIV XVIII A l l M F S S 7 N N PI W 3 D XIV = V I I (2 way) APPENDIX IV Management Reports On Stands Of The Westlake PSYO REGION CONPT. STANO NO. SOIL-LAND USE CLASS POT. USE TliiER SPP. ••«••• ••••*• *••**»•*• **»»»«**» ••*»*««*« *••••«*• **••**•*••* 60 16 14065160 4 OEFERRED NONE PL 60 16 14066160 4 DEFERRED NONE S 60 16 1406T160 4 DEFERRED NONE PLS 60 16 14068160 5 FORESTRY NONE SF 60 16 14069160 5 FORESTRY NONE FS 60 14 14070160 5 FORESTRY NONE PLS 60 14 14071160 5 FORESTRY NONE PL 60 14 14072160 5 FORESTRY NONE PL 60 14 14073160 5 FORESTRY NONE S 60 14 14074160 5 FORESTRY NONE PL 60 14 14075160 5 FORESTRY NONE PL 60 14 14076160 5 FORESTRY NONE S 60 14 14077160 5 FORESTRY NONE DEC ID 60 14 14078160 5 FORESTRY NONE PLS 60 14 14079160 5 FORESTRY NONE FS 60 14 14080160 5 FORE STRY NONE S 60 14 14081160 5 FORESTRY NONE NP 60 14 14082160 5 UNGULATE NONE F 60 14 14083160 5 UNGULATE NONE PL 60 14 14084160 5 UNGULATE NONE PL 60 14 14085160 5 UNGULATE NONE DEC ID 60 14 14086160 5 UNGULATE NONE PL 60 14 14087160 5 UNGULATE NONE PLS 60 14 14088160 5 UNGULATE NONE LOGGED 60 14 14089160 6 FORESTRY NONE S 60 14 14090160 6 FORESTRY NONE PL 60 14 14091160 6 FORESTRY NONE S CLASS EXP. REGEN. STOCKING SITE ACREAGE VOL.IMCFI •**•• **•••*•• •»•» ••••••••• PLISFI G 16 2154 SFB N 14 616 PLISFI N 14 2228 SF G 151 4700 FSPL N 132 3700 PLS N 140 4000 PLFCSI H 132 0 PLIAFI P 1876 140 S P 11 60 P 186 300 PLISFI G 1428 1828 SPL P 37 285 N 65 1150 PLISFI G 75 3019 FISI N 47 2681 S N 42 731 163 0 FIPLSI N 86 2750 PLIAFI P 80 140 PLIASI P 6 300 P 6 616 PLISFI P 86 830 5 PLISFI G 37 3019 P 10 0 T S G 131 5200 2 PL N 113 550 2 N 13 875 REGION CONPT. STANO NO. E. HARV. YR. * * * * * * • ••••• •• *•• *••• * * * * * • * * • * • • 40 14 14065160 601 60 14 14066160 601 60 14 14067160 601 60 14 14068160 600 60 14 14069160 600 60 14 14070160 600 60 14 140TU60 601 60 14 140T2160 601 60 14 14073160 601 60 14 14074160 601 60 14 1407S160 601 60 14 14076160 601 60 14 14077160 60 60 14 14078160 601 60 14 14079160 601 60 14 14080160 601 60 14 14081160 60 14 14082160 601 60 14 14083160 601 60 14 14084160 601 60 14 14085160 60 60 14 14086160 601 60 14 14087160 601 60 14 14088160 60 60 14 14089160 600 60 14 14090160 601 60 14 14091160 60 L. HARV. VR. SEASON OF HARVEST OPERATION TYPE SITE PREPARATION REGENERATION • ••*•*•*•••• •••••••••••**»*•, •••••*••*••»*« •*••*•****••*••• ***•«••*•„• 60 SUMMER FULL TREE SKIO NONE NAT 80 SUM. OR WIN. FULL TREE SKIO NONE NAT 60 SUMMER FULL TREE SKIO NONE NAT 20 WINTER FULL TREE CLEAN LOG NONE NAT 20 WINTER LOP AND SCATTER NONE NAT 20 WINTER FULL TREE SKIO DRAG SCARIFY NAT 100 SUN. OR WIN. FULL TREE SKIO 0RA6 SCARIFY NAT 80 WINTER FULL TREE SKIO DRAG SCARIFY NAT 100 WINTER FULL TREE SKID COMPLETE SLASHBURN PLT 60 WINTER FULL TREE SKIO DRAG SCARIFY NAT 60 WINTER FULL TREE SKIO ORAG SCARIFY NAT 100 WINTER SELECTION CLEAN LOG NONE NAT NONE PROTECTION FOREST NONE 40 WINTER FULL TREE SKIO ORAG SCARIFY NAT 60 SUM. OR WIN. FULL TREE SKIO NONE NAT 80 WINTER SELECTION CLEAN LOG NONE NAT NONE NONE NONE 40 WINTER FULL TREE CLEAN LOG NONE NAT 80 WINTER FULL TREE SKIO ORAG SCARIFY NAT 60 WINTER FULL TREE CLEAN LOG NONE NAT NONE PROTECTION FOREST NONE 60 WINTER FULL TREE SKIO ORAG SCARIFY NAT 40 WINTER FULL TREE SKIO ORAG SCARIFY NAT NONE PROTECTION FOREST NONE 40 WINTER SELECTION FULL TREE NONE NAT 80 WINTER FULL TREE SKIO NONE NAT NONE PROTECTION FOREST NONE SITE . LOGPRICE HARVEST FORESTRY ROAOINC . STA NO f C—TYPE SL AGE USE SITE VOL AREA . SEAS OP PREP REG SPECIES . / H C F COST/MCF COST/MCF COST/MCF . COORDINATES 14038160 B 4 6 F N 325 6 M LAS NAT SF 14099160 F 4 6 F M 249 20 S FTS DS NAT FS 14060160 LOGGED 4 F G 1047 • F TS NAT PLFS 14061160 NP 4 F 212 14062160 SF 4 8 D G 520 21 H LAS NAT SF 14063160 PLS 4 6 0 G 400 284 S FTS NAT P L I S t 14064160 PL 4 5 0 G 355 449 S FTS NAT PL ISF I 14065160 PL 4 4 D G 215 16 s FTS NAT P L I S F I 14066160 S 4 5 D M 61 14 • F T S NAT SFB 14067160 P L S 4 5 D H 222 14 s FTS NAT PL ISF I 14068160 SF 5 8 F G 470 151 H FCL NAT SF 14069160 F S 5 7 F n 370 132 M L A S NAT FSPL 14070160 P L S 5 4 F N 400 140 H FTS OS NAT PLS 14071160 PL 5 1 F N 132 • F T S DS NAT PLF IS I 14072160 PL 5 2 F P 14 1874 W FTS OS NAT PL IAF I 14073160 S 5 2 F P 6 11 M F T S CSB PLT S 14074160 PL 5 3 f P 30 186 M FTS DS NAT 14075160 PL 5 4 F G 182 1428 H F T S OS NAT PL ISF I 14076160 S 5 4 F P 28 37 H SCL NAT SPL 14077160 OECIO 5 4 F N 115 69 PRT 14078160 PLS 3 5 F G 301 75 H FTS DS NAT PL ISF I 14079160 F S 5 9 F N 268 47 • FTS NAT F IS I 14080160 S 5 6 F n 73 42 M SCL NAT S 14081160 NP 9 F 163 14082160 • F 9 7 U N 275 86 M F C L NAT F I P L S ) 14083160 PL 5 2 U p 14 80 H F T S DS NAT PL IAF I 14084160 PL 5 3 u p 30 6 H F C L NAT PL IASI 14085160 DEC ID S 3 U p 41 6 PRT 14086160 PL 5 4 u p 83 86 M FTS OS NAT PL ISF I 14087160 P L S 5 5 U G 301 37 M FTS OS NAT PL ISF I 14088160 LOGGED 5 u P 10 PUT 14089160 S 6 7 F G 520 131 H SFT NAT S 14090160 PL 6 2 F N 59 119 H FTS NAT PL 14091160 S 6 F N 87 13 PRT 14092160 PL 6 3 F N 139 7 S F T S NAT PL 14093160 S 6 F N 347 10 M FTS NAT S IPLI 14094160 B 6 6 F N 344 5 M LAS NAT BS 14095160 NP 6 F 356 14096160 PL 7 1 F N 8 H FTS NAT PL 14097160 PL 7 2 F P 14 21 H FTS NAT PL 14098160 OECIO 7 3 F P 80 15 H FTS NAT APL 14099160 LOGGED 7 F G 112 H FTS NAT PL ISF I 14100160 NP 7 F 10 14101160 F 7 7 U N 275 19 H LAS NAT FS 14102160 PL 7 5 u G 290 86 M FTS NAT P L I A S ) 14103160 PL 7 1 U H 67 M F T S NAT PL 14104160 PL 7 2 u P 14 248 M FTS NAT PL 14105160 OECIO 7 3 u P 80 26 H FTS NAT APL 14106160 PL 7 4 u G 215 15 M F T S DS NAT P L I F I 14107160 LOGGED 7 u G 81 H FTS NAT PL ISF I 14108160 NP 7 u 45 14109160 PL 7 5 G G 290 8 M FTS NAT PL IAS I 14110160 PL 7 G P 14 27 M FTS NAT PL 14111160 OECIO 7 3 G N 40 13 PRT 14112160 PL 7 G G 121 9 H F T S OS NAT PL 14113160 DEC ID 7 3 G P 80 18 PRT APPENDIX_V Stand Economics Report On Mature Stands WESTLAKE PSYU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM PACE 35 «»*»••*»»#••**»••»»•***«»•*»*•••*•*•*«**«»*»*»•»*•***«****•**•*********»***** STAND ECONOMICS REPORT STANO NO. AGE S ITE G-TYPE VOLUME STOCK. CCF/AC PCT. SELL PR. t /CCF F -B COST SKID COST AREA COST t / C C F t /CCF t /CCF HARV.COST t /CCF HAUL COST t /CCF RO OEV. t / C C F NET VALUE t / C C F t /ACRE 24139160 12 26035160 12 24069155 12 24131160 12 26155160 12 24095160 12 240T4160 12 240TS160 12 24015155 12 25006160 12 25061160 12 25007160 12 25057160 12 25056160 12 25064160 12 25043160 12 25065160 12 25075160 12 25074160 12 25067160 12 39003160 12 43009160 12 43004160 12 43010160 12 43001160 12 53002155 12 53013155 12 53007155 12 76008155 12 76003155 12 77006155 12 77044155 12 77045155 12 77038155 12 77037155 12 77005155 12 9043160 14 9007160 14 9023160 14 9038160 14 9029160 14 6001160 14 6011160 14 8004160 14 8035160 14 8066160 14 8021160 14 10069160 14 10130160 14 10067160 14 P! 2 P 2 DEC 2 P 2 2 2 3 6 . 0 0 3 7 . 5 0 38 .60 4 4 . 0 0 3 6 . 0 0 36 .00 3 6 . 0 0 4 4 . 0 0 44 .00 43 .00 4 4 . 0 0 43 .00 3 1 . 9 0 3 6 . 0 0 3 6 . 0 0 3 7 . 3 0 1 1 . 0 0 2 1 . 5 0 11.00 2 1 . 5 0 40 .00 32 .00 3 6 . 0 0 3 6 . 0 0 36 .00 3 6 . 0 0 13 .00 13 .00 3 5 . 6 0 35 .60 4 0 . 0 0 35 .60 4 0 . 0 0 40 .00 35 .60 3 5 . 6 0 5 0 . 5 0 8.00 8.00 4 4 . 0 0 44 .00 5 2 . 0 0 2 9 . 0 0 6 4 . 1 0 5 3 . 4 0 24 .60 26 .20 47 .00 4 4 . 0 0 47.00 0.95 0.95 l . O i 1.14 0.93 0.93 0 .95 1.08 1.16 0.75 0.77 I.11 0.81 0.93 0.95 0.95 0.51 0.90 0.51 0.90 0 .73 0.56 0.93 0.93 0.93 0.61 0 .60 0 .60 0.62 0.62 0 .70 0.62 0 .70 0. 70 0.62 0 .94 0.92 0.19 0.19 1.12 1.62 0. 95 0. 53 1.03 1.30 0.B1 0. 64 1. LI 1.12 1.11 70.03 75. 52 87.45 59.17 59.17 59.17 70.03 73.76 70.03 69.59 74.55 74.55 75.52 59. 17 70.03 75.52 71.55 77.61 71.55 77.61 70.03 69.59 59.17 59.17 59.17 69.59 71.55 71.55 69 .59 69.59 70.03 69. 59 70.03 70.03 69 . 59 70.03 75.52 75.52 75.52 87.45 87.45 75.52 75.52 65.20 67.12 32.36 67.12 75.52 87.45 75.52 2.55 3.48 2.86 2.59 2.59 2.59 2.55 2.94 2.55 2.55 2.64 2.64 3.03 2.59 3.49 3.03 4 .83 4 .66 4.83 4 .66 2.87 2.55 3.56 2.59 3.18 2.55 4 .55 4.55 2.55 3.50 2.59 3.50 3.51 3.51 3.50 2.55 3.39 6.42 6.42 2.86 2.86 4 .30 3.48 2.74 2.55 2.56 2.87 4.34 2.86 4.34 4 .05 5.73 3.22 4.78 4.19 4.19 4.05 4.47 4.05 5.45 3.66 5.00 4.66 4 .19 4.90 4.66 5.03 4.91 5.03 4.91 5.13 4.05 6.24 4.19 8.59 4.05 5.03 5.03 4.05 4.90 4 .19 4.90 5.03 5.03 4.90 4.05 5.40 6.69 6.69 4 .17 4 .17 6.69 5.40 4 .67 5.28 5.43 4 .67 6. 16 3.48 6.69 0 .38 0.63 0 .43 0 .24 0. 38 0 .55 0 .55 3.45 0 .45 0 .70 0.31 0 .70 0 .43 0.38 1.13 0 .36 3.69 1.89 3.69 1.89 0 .59 0 .62 0.75 0.55 0 .47 0.38 3.13 3. 13 0 . 38 1.14 0.34 1.14 1.02 1.02 1.14 0.38 0 .47 3.5S 3.58 3.65 0 .65 0 .55 0.32 0. 37 0 .54 1.17 0 .90 0 .64 0 .24 0.61 6.98 9.84 6.51 7.61 7.16 7.33 7.15 7.86 7.05 8 .70 6.61 8 .34 8.12 7.16 9.53 8.05 13 .55 11.46 13.55 11.46 8.58 7.22 10.55 7.33 12.23 6.98 12.70 12.70 6.99 9.55 7. 12 9 .55 9 .55 9.55 9 .55 6 .99 9.26 16.69 16.69 7.68 7.68 11.54 9.69 7.78 8.37 9 . 15 8.45 11.15 6.58 11.64 0 .50 5.09 7.98 0 .84 0.54 0.63 0.56 5.33 6.89 6.05 6.12 6.76 7.85 7.81 7.90 6.99 7.90 7.67 8.41 7.91 2.71 6.75 6 .59 6.77 6.78 8.58 8.32 8.61 10.32 10.31 9.73 8.54 9 .99 9 .95 8.57 9.51 2.63 1.63 1.57 1.26 1.26 2. 13 2.10 4.02 5.74 5. 52 4. 16 0.92 0.39 1.43 0 . 0 0 . 0 0 .0 0 .0 0 .0 0 .0 0 . 0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1.73 1.73 1.73 0 . 0 0 . 0 0 . 0 1.73 0 . 0 0 . 0 1.73 0 .0 0 . 0 0 . 0 0 . 0 0 .0 0 .0 0. 0 0 . 0 0 .0 0 .0 0 .0 0 . 0 0 . 0 0. 0 0 .0 6 2 . 5 4 6 0 . 5 9 72 .96 5 0 . 7 2 5 1 . 4 7 5 1 . 2 2 6 2 . 3 2 6 0 . 5 7 5 6 . 0 9 5 4 . 8 4 6 1 . 8 2 5 9 . 4 5 5 9 . 5 6 4 4 . 2 0 52.61 6 0 . 4 7 50.11 58 .48 4 9 . 5 9 5 8 . 2 4 5 8 . 7 3 55 .61 4 2 . 0 3 4 5 . 0 7 4 0 . 1 6 5 2 . 2 9 4 8 . 8 0 48.51 52 .28 4 9 . 7 3 5 3 . 1 7 4 9 . 7 7 5 0 . 4 9 5 0 . 5 3 4 9 . 7 4 5 3 . 5 3 6 3 . 6 3 5 7 . 2 0 5 7 . 2 7 7B.5 I 78 .51 6 1 . 8 4 6 3 . 7 2 5 3 . 4 0 53.01 17 .68 54 .51 6 3 . 4 5 80 .48 62 .45 2251.58 2272 .16 2816.26 2231.50 1852.92 1843.76 2243.51 2665.21 2467.82 2358.05 2720.02 2556.23 1899.84 1591.30 1893.79 2267.80 551.16 1257 .27 545.52 1252.12 2349 .29 1779.63 1513.20 1622.53 1445.90 1882.35 634 .34 630.64 1861.12 1770.34 2126.98 1771.73 2019.46 2021.31 1770.57 1905.59 3213.48 457.62 458.12 3454 .49 3454 .36 3215.89 1867.90 3422.76 2830.87 435 .03 1428.03 2982.25 3541 .04 2935 .26 WESTLAKE PSYU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM PAGE 36 STAND ECONOMICS REPORT STAND NO. AGE SITE G-TYPE VOLUME STOCK. SELL PR. F-B COST SKID COST AREA COST HARV.CUST HAUL COST RO DEV. NET VALUE CCF/AC PCT. I/CCF $/CCF J/CCF $/CCF $/CCF t/CCF »/CCF $/CCF S/ACRE 10030160 14 2 F 68 .00 1.73 87.45 3.28 3.73 0.35 7.36 1.70 0.0 78.39 10059160 14 2 S 47.00 1. a 75.52 4.J4 6.69 0.61 11.64 1.39 0.0 62.49 10109160 14 2 F 44.00 1.12 87.45 2.86 4.17 0.65 7.68 0.26 0.0 79.51 10042160 14 2 S 47.00 1.11 75.52 4.34 6.69 0.61 11.64 1.16 0.0 62.72 10002160 14 I PLS 24.00 0.58 71.55 2.94 4.81 0.98 8.74 2.92 0.0 59.90 10140160 14 2 F 44.00 1.12 87.45 2.86 3.48 0.24 6.58 0 . 31 0.0 80.56 10003160 14 2 SF 50.00 1.30 77.61 3.26 4.66 0.47 8.40 2.71 0.0 66.50 10018160 14 4 I PLS 24.00 0.58 71.55 2.94 4.81 0.98 8. 74 3.01 0.0 59.80 11062160 14 I S 56.00 1.02 75.52 4.28 6.69 0.48 11.45 2.53 0.0 61.54 11015160 14 I FS 56.00 0.91 86.34 3.34 3.93 0.42 7.69 2.38 0.0 76.28 11014160 14 , I PLS 49.00 1.18 71.55 2.81 4.81 0.48 8.11 1.23 0.0 62.22 11044160 14 . I PLS 49.00 1.18 71.55 2.58 5.43 0.58 8.60 1.04 0.0 61.91 12057140 14 I PLS 49.00 0.81 71.74 2.58 3.89 0.40 6.88 3.96 0.0 60.90 12002160 14 , I S 45.00 1.06 75.52 4.36 5.40 0.90 10.67 3.91 0.0 60.95 12058160 14 , » S 35.00 0.81 75.52 2.99 4.35 0.56 7.90 4.37 0.0 63.24 14032160 14 I FS 44.50 0.75 86.34 2.88 3.65 0.24 6.77 1.92 0.0 77.65 14089160 14 I S 52.00 0.95 75.52 3.78 9.33 0.32 13.43 2.22 0.0 59.87 14001160 14 i I s 8.00 0.19 75. 52 6.42 5.40 5.08 16.90 3.66 0.0 54.96 14040160 14 ; I SF 40.00 1.04 77.61 3.29 4.66 0.59 8.55 2.12 0.0 66.95 14101160 14 ; I F 27.50 0.70 87.45 2.86 4.10 1.10 8.06 2.86 0.0 76.53 14022160 14 ; ! SF 42.00 1.09 77.61 2.93 4.33 0.25 7.51 1.88 0.0 68.22 14039160 14 < I PLS 49.00 1.18 71.55 2.81 4.81 0.48 8.11 1.20 0.0 62.24 14069160 14 i t FS 37.00 0.81 81.29 2.88 4.41 0.77 8.07 2.37 0.0 70.B3 14123160 14 i ! F 27.20 0.69 87.45 4.69 3.77 1.49 9.95 2.83 0.0 74.67 14082160 14 2 ! F 27.50 0.70 87.45 2.86 4.17 1.04 8.07 3.44 0.0 75.93 15128160 14 1 PLS 57.60 0.95 71.74 2.79 4.81 0.41 8.02 3.33 0.0 60.40 15013160 14 1 S 15.00 0.27 75.52 5.25 6.69 1.91 13.85 3.95 0.0 57.72 15129160 14 2 ! S 35.00 0.83 75.52 3.44 5.40 0.68 9.52 2.99 0.0 63.01 15035160 14 2 ' S 39.00 0.92 75.52 4.43 6.16 0.78 11.37 3.01 0.0 61.14 15058160 14 2 ! S 47.40 1.12 75.52 4.34 6.16 0.64 11.14 4.90 0.0 59.49 16075160 14 1 S 52.00 0.95 75.52 3.38 5.40 0.45 9.24 0.89 0.0 65.38 16027160 14 1 PLS 48.70 0.80 71.74 3.04 8.19 0.35 11.57 0.94 0.0 59.22 16 0 74160 14 1 PLS 49.00 0.81 71.74 2.81 4.81 0.48 8.11 0. 79 0.0 62.84 16047160 14 1 PLS 49.00 0.81 71.74 2.81 4.81 0.48 8.11 1.00 0.0 62.63 16048160 14 2 > F 44.30 1.12 87.45 3.33 3.73 0.54 7.59 1.26 0.0 78.60 17003160 14 1 PL 64.10 1.01 6 5.20 2.74 4.67 0.37 7.78 2.51 0.0 54.91 18057160 14 1 F 68.00 1.34 87.45 2.86 4.10 0.44 7.41 4.06 0.0 75.99 18056160 14 I S 45.00 1.06 75.52 4.36 6.16 0.67 11.19 4.47 0.0 59.85 18090160 14 I F 27.00 0.69 87.45 3.41 3.73 0.88 8.02 4.93 0.0 74.50 19047160 14 1 PLS 32.30 0.5) 71.74 2.58 3.89 0.43 6.91 6.85 0.0 57.98 19034160 14 1 F 44.40 0.87 87. 45 2.86 2.99 0.37 6.23 5.75 0.0 75.48 19046160 14 1 S 36.00 0.65 75.52 2.99 4.35 0.38 7.72 6.85 0.0 60.95 19015160 14 2 F 32.90 0 . 84 87.45 2.86 4.10 0.92 7.88 7.47 0.0 72.10 19066160 14 1 PLS 28.00 0.67 71.55 3.65 4.76 1.45 9.86 6.85 0.0 54.84 20111160 14 1 PLF 57.60 0.95 74.55 2.64 4.68 0.52 7.84 6. 54 0.0 60.17 20076160 14 1 S 65.50 1. 19 75.52 2.99 4.35 0.21 7.55 7.90 0.0 60.07 20045160 14 2 S 22 .00 0.52 75.52 4.83 6.69 1.23 12. 75 7.67 0.07 55.04 20058160 14 2 F 44.50 1.1) 87. 45 2.86 2.99 0. 31 6.16 8.08 0.0 73.21 20128160 14 2 S 22.20 0.52 75.52 4 .82 6.16 1.36 12. 34 7.28 0.0 55.90 20059160 14 2 PLS 49.00 1. 18 71.55 2.58 3.89 0.28 6.76 8.47 0.0 56.32 5330.70 2936.87 3498.45 2947.73 1437.53 3544.58 3325.12 1435.30 3446.29 4271.54 3048.58 3033.74 2983.94 2742.72 2213.51 3455.55 3113.13 439.70 2677.89 2104.64 2865.23 3049.93 2621.48 2030.97 2088.20 3478.78 865.84 2205.36 2384.59 2819.61 3400.00 2884.21 3079.25 3069.00 3458.32 3519.76 5167.03 2693.44 2011.62 1855.37 3351.11 2194.21 2372.18 1535.45 3465.97 3934.78 1210.81 3257.98 1241.00 2759.84 WESTLAKE PSVU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM PAGE 37 »********+****•*•**•********************************************************************************************************»**»*:* STAND ECONOMICS REPORT STAND NO. AGE SITE G-TYPE VOLUME STOCK. SELL PR. F-B COST SKID COST AREA COST CCF/AC PCT. t/CCF t/CCF */CCF t/CCF 20086160 16 2 s 22.20 0.92 75.92 4.82 6.16 1.36 20079160 14 2 PLS 49.00 1.18 71.55 2.58 3.89 0.28 20099160 14 2 S 22.20 0.52 75. 52 4.82 6. 16 1.36 20077160 14 2 F 44.50 1.13 87.45 2.86 2.99 0.31 20129160 14 2 PLS 49.00 1.18 71.55 2.58 5.27 0.62 21009199 14 1 F 61.99 1.22 87.45 3.29 3.73 0.38 21099199 14 1 F 61.90 1.22 87.45 2.86 4.10 0.46 21001199 14 1 F 61.90 1.22 87.45 3.29 3.73 0.38 21024160 14 1 PL 26.00 0.42 65.20 2.55 3.77 0.53 21044199 14 1 F 61.90 1.22 87.45 2.86 2.99 0.27 21026160 14 1 FS 92.00 0.88 86.34 2.88 3.14 0.26 21038160 14 1 SPL 92.00 0.91 73.76 4.12 5.00 0.78 21023160 14 1 PLS 60.00 0.99 71.74 2.58 3.89 0.23 21029159 14 1 SPL 69.40 1.15 73.76 3.71 3.86 0.35 21012160 14 1 PLS 60.00 0.9? 71.74 2.58 3.89 0.23 21049160 14 t S 69.00 1.18 75.92 4.23 5.40 0.63 21098160 14 2 SF 69.00 1.69 77.61 3.64 3.46 0.35 21099160 14 J S 69.00 1.53 79.92 3.85 4.05 0.35 21093160 14 3 PLS 19.00 0.81 71.95 3.99 4. 76 2.14 22086160 14 1 SPL 92.00 0.96 73.76 4.36 6.20 0.85 22032159 14 1 PL 93.40 0. 86 69.20 2.76 4.67 0.44 22094160 14 1 SPL 92.00 0.96 73.76 4.36 6.20 0.85 22011199 14 1 F 44.40 0.87 87.49 3.32 3.73 0.53 22018160 14 1 S 92.00 0.99 79. 32 3.38 5.40 0.45 22009160 14 1 FS 43.00 0.73 86.34 3.37 3.93 0.55 22012199 14 1 S 92.00 0.98 79.92 3.46 5.40 0.74 22006160 14 1 PLS 49.00 0.81 71.74 2.81 4.81 0.48 22008199 14 1 PLF 93.40 0.88 74.55 2.82 4.25 0.44 22004199 14 1 PL . 93.40 0.86 69.20 2.76 4.67 0.44 22024160 14 2 SF 47.00 1.22 77.61 4.97 5.72 0.61 22119160 14 2 FPL 48.00 1.04 82.29 2.85 3.18 0.28 22093160 14 2 S 47.00 1.11 79.52 4.34 6.16 0.64 22038160 14 2 F 27.00 0.69 87.45 2.86 4.17 1.06 22114160 14 2 FPL 37.00 0.89 82.29 4.59 4.01 1.10 22067160 14 2 F 62.00 1.98 87. 45 2.86 4.10 0.49 22102160 14 2 SPL 92.00 9.74 70.09 4.36 6.20 0.85 22009155 14 3 PL 10.80 0.50 70.28 3.20 4.67 2.19 22034159 14 3 S 10.80 0.41 75.52 3.82 5.40 2.19 22009155 14 3 PLS 10.80 0.46 71.55 3.25 4.81 2.19 23039199 14 1 PL 64.10 1.03 65.20 2.93 7.99 0.26 23012160 14 1 PLS 63.00 1.04 71.74 3.25 4.76 0.65 23099160 14 1 F 44.00 0.87 87.45 2.86 4.10 0.69 23017160 14 1 S 95.00 1.09 75.52 3.38 5.40 0.43 23043160 14 1 F 44.00 0.87 87.45 3.79 6.38 0.38 23049155 14 1 S 52.10 0.95 75.52 2.99 4.35 0.38 23070160 14 1 s 65.90 1.19 75.52 4.23 6.16 0.47 23004155 14 1 PL 64.10 1.03 65.20 2.74 4.67 0.37 23030155 14 1 PL 64.10 1.03 65.20 2.93 7.99 0.26 23168160 14 1 F 44.00 0.87 87.45 2.86 2.99 0. 31 23030160 14 1 S 15.00 0.27 75.52 4.35 9.33 1.12 HARV.COST t/CCF HAUL COST t/CCF RO DEV. t/CCF NET VALUE t/CCF t/ACRE 12.34 6.76 12.34 6. 16 8.47 7.40 7.42 7.40 6.84 6.12 6.28 9.91 6.71 7.91 6.71 10.25 7.49 8.29 10.89 11.42 7.87 11.42 7.39 9.24 T.89 9.60 8.11 7.51 7.87 10.40 6.32 11.15 8.09 9.70 7.45 11.42 10.06 11.42 10.25 11.18 8.66 7.65 9.21 10.56 7. 72 10. 85 7.78 11. 18 6.16 14.80 7.67 8.08 7.00 7.64 8.07 7.66 7.18 7.69 7.28 6.98 7.97 8.61 8.53 6.98 7.78 8.38 8.09 7.78 8.29 3.94 4.17 3.96 5.03 2.74 2.05 6.65 2.50 3.24 4.32 3.61 5.62 4.67 3.26 6.61 5.55 5.45 4.72 4.35 3.56 4.29 4.60 6.34 3.24 6.64 6.02 6.85 4.56 4.26 6.81 6.69 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.73 1.73 1.73 0.0 1.73 1.73 1.73 1.73 1.73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.44 56.71 56.18 73.65 55.01 72.39 72.84 72.36 51.08 74.39 70.36 53.51 34.77 58.86 55.52 55.16 69.34 37.79 90.64 98.41 93.16 96.36 74.83 63.94 76.44 99.27 61.13 63.80 93.01 63.60 70.36 39.70 76.10 65.98 74.45 53.23 55.50 59.75 57.74 49.73 58.48 73.46 63.07 70.25 61.78 57.82 52.86 49. 76 74.48 54.03 1290.81 2778.84 1247.23 3277.34 2699.92 4480.80 4508.88 4479.28 1328.11 4602.07 3658.77 2782.48 3286.27 3849.71 3331.09 3585.11 3921.88 3753.99 962.16 1869.11 2838.49 1803.69 3322.98 3303.97 3287.06 1896.74 2999.44 3406.95 2830.78 2989.23 3377.10 2806.06 2054.66 2441.44 4615.77 1703.30 599.42 645.31 623.63 3187.82 3684.23 3232.45 3468.79 3090.99 3218.97 3758.49 3388.11 3189.81 3277.15 810.49 WESTLAKE PSYU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM PACE 38 ********************************************************************************************************************************** STAND NO. ASE SITE G-TYPE VOLUME STOCK CCF/AC PCT. 23152160 14 I S 25.00 0.45 23020155 14 2 PL 26.20 0.64 23003160 14 2 S 45.00 1.06 230*5155 14 2 ACON 18.50 0.56 23149160 14 2 SF 44.00 1.14 23150160 14 2 PL 26.00 0.63 24038155 14 1 PL 64.00 1.03 24106160 14 1 SPL 50.00 0. 88 24003160 14 1 S 45.00 0.82 24075155 14 1 F 61.90 1.22 24088160 14 1 PLF 58.00 0.95 24002160 14 1 PLF 61.00 1.00 24137160 14 1 SPL 52.00 0.91 24112160 14 1 FS 44.50 0.75 24138160 14 1 PLF 58.00 0.95 24073160 14 1 PLF 58.00 0.95 24013160 14 2 FS 44.50 0.98 24037155 14 2 F 40.00 1.02 24032160 14 2 FS 35.00 0.77 24130160 14 2 FS 45.00 0.99 24072160 14 2 SPL 45.00 1.05 25040160 14 1 FS 44.00 0.75 25004160 14 1 PLF 58.00 0.95 25005160 14 1 SPL 56.00 0.98 25059160 14 1 PL 22.60 0.36 25022160 14 1 S 56.00 1.02 25054160 14 1 PLS 32.00 0.53 25053160 14 1 S 36.00 0.65 25073160 14 2 PLS 28.00 0.67 39002160 14 1 SF 47.00 0.91 43008160 14 1 PLS 49.00 0.81 53001155 14 1 SPL 65.00 1.14 53006155 14 3 PLS 11.00 0.47 53012155 14 3 PLS 11.00 0.47 76007155 14 1 S 65.00 1.18 76002155 14 1 S 22.00 0.40 76006155 14 1 PLS 64.00 1.05 77019155 14 1 PLS 64.10 1.06 77002155 14 I PL 32.00 0.52 77043155 14 1 PLS 64.00 1.05 77004155 14 1 SPL 50.60 0.89 77036155 14 1 SPL 65.40 1.15 77003155 14 1 PLS 64.00 1.05 77034155 14 2 PL 30.00 0. 73 77035155 14 2 PLS 64.00 1.54 9037160 16 3 F 19.50 0.6S 8054160 16 1 PL 58.00 0.B9 8020160 16 1 PL 58.00 0.89 8063160 16 1 S 49.00 0.87 8019160 16 1 S 49.00 0.87 STAND ECONOMICS REPORT SELL PR. F-B COST SKID COST AREA CD t/CCF t/CCF t/CCF t/CCF 75.52 2.99 4.35 0.55 67. 12 2.87 4.67 0.90 75.52 4.36 5.40 0.93 64.72 2.58 3.48 1.07 77.61 2.93 3.76 0.31 67.12 2.55 3.77 0.53 65.20 2.55 3.77 0.26 73.76 2.93 4.75 0.21 75.52 4.36 5.40 0.90 87.45 2.86 2.99 0.27 74.55 2.64 3.40 0.34 74.55 3.19 4.26 0.67 73.76 2.93 4.16 0.26 86.34 2.88 3.65 0.24 74.55 2.64 3.40 0.24 74.55 2.64 3.40 0.34 81.29 3.37 3.93 0.53 87. 45 2.86 2.99 0.41 81.29 3.41 3.93 0.58 81.29 2.88 3.65 9.24 70.09 2.93 4.16 0.44 86.34 2.88 3.14 0.31 74.55 2.64 4.68 0.52 73.76 4.10 5.74 0.54 65.20 2.55 3.77 0.60 75.52 4.28 6.16 0.54 71.74 2.58 3.89 0.43 75. 52 2.99 4.35 0.38 71.55 3.65 4.76 1.45 77.61 3.27 4.66 0.50 71.74 2.58 3.89 0.40 73.76 2.93 4.16 0.21 71.55 4.75 4. 76 3.69 71.55 4.75 4.76 3.69 75.52 2.99 4.35 0.21 75.52 4.83 5.40 1.85 71.74 2.58 3.89 0.21 71.74 2.58 3.89 0.21 65.20 2.55 3.77 0.43 71. 74 3.25 4. 76 0.63 73. 76 2.93 4.16 0.27 73.76 4.04 5.00 0.62 71.74 2.58 3.89 0.21 67.12 3.53 4.64 1.35 71.55 3.25 4.76 0.63 87.45 2.86 4.09 1.47. 70.79 2.91 7.64 0.29 70.79 2.73 4.43 0.41 75.52 4.2 5 6.64 0.58 75.52 3.35 5.51 0.48 RV.COST HAUL COST RD DEV. NET VALUE t/CCF t/CCF t/CCF t/CCF t/ACRE 7.88 5.66 0.0 61.98 1549.47 8.45 4.26 0.0 54.41 1425.62 10.67 3.24 0.0 61.61 2772.64 7.13 6.01 0.0 51.58 954.32 7.00 5.59 0.0 65.02 2861.02 6.84 6.89 0.0 53.39 1388.06 6.58 6.46 0.0 52.16 3338.26 7.89 6.30 7.54 52.03 2601.31 10.67 3.89 0.0 60.96 2743.24 6.12 6.49 0.0 74.84 4632.42 6.38 5.23 0.0 62.94 3650.42 8.12 4.92 0.0 61.51 3751.93 7.35 4.82 0.0 61.59 3202.56 6.77 0.84 0.0 78.73 3503.70 6.27 1.05 0.0 67.23 3899.19 6.38 5.38 0.0 62.79 3641.69 7.83 0.81 0.0 72.65 3232.84 6.27 7.57 0.0 73.61 2944.28 8.01 0.91 0.0 72.37 2533.08 6.77 4.45 0.0 70.07 3153.12 7.53 3.91 0.0 58.65 2639.47 6.33 7.29 0.0 72.72 3199.77 7.84 6.40 0.0 60.32 3498.32 10.37 6.83 0.0 56.56 3167.43 6.92 7.60 0.0 50.68 1145.42 10.98 6.76 0.0 57.78 3235.77 6.91 8.04 0.0 56.79 1817.23 7.72 6.35 0.0 61.45 2212.24 9.86 8.03 0.0 53.66 1S02.47 8.44 2.69 0.0 66.49 3124.85 6.88 3.95 0.0 60.90 2984.21 7.30 8.64 1.73 56.09 3645.92 13.21 8.63 1.73 47.97 527.71 13.21 8.33 1.73 48.28 531.08 7.55 10.34 0.0 57.63 3745.76 12.07 10.31 0.0 53.13 1168.95 6.69 10.01 0.0 55.04 3522.58 6.69 9.74 0.0 55.31 3545.24 6. 75 9.29 0.0 49.17 1573.35 8.64 9.89 0.0 53.21 3405.13 7.36 9.75 0.0 56.65 2866.66 9.67 9.88 0.0 54.21 3545.57 6.69 8.67 0.0 56.37 3607.96 9.53 9. 56 0.0 48.03 1440.83 8.64 9.45 0.0 53.46 3421.31 8.42 1.19 0.0 77.84 1517.98 10.84 3.51 0.0 56.44 3273.45 7.57 3.24 0.0 59.98 3478.92 11.48 3.57 0.0 60.47 2962.90 9.34 1.83 0.0 64.35 3153.12 WESTLAKE PSYU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM PAGE 19 «»»•*••»*•**••»**»#»••»***•*•»••****»*****•**»«**»»« STANO ECONONICS REPORT STAND NO. AGE SITE G-TYPE VOLUME STOCK. CCF/AC PCT. SELL PR. */CCF F-B COST SKID COST AREA COST J/CCF */CCF J/CCF HARV.COST S/CCF HAUL COST */CCF RD DEV. 3/CCF NET VALUE i/CCF »/ACRE •OMUO 16 aoosiso 16 8034160 16 S065160 16 6033160 16 8001160 16 8064160 16 10001160 16 10029160 16 10038160 16 11034160 16 11013160 16 11043160 16 12001160 16 12056160 16 14068160 16 14038160 16 14128160 16 14062160 16 14122160 16 15110160 16 15034160 16 15127160 16 16013160 16 16073160 16 16045160 16 16046160 16 17053160 16 17033160 16 17020160 16 17001160 16 17002160 16 17040160 16 17019160 16 17031160 16 17032160 16 18055160 16 18101160 16 18001160 16 18089160 16 18022160 16 18073160 16 18074160 16 18040160 16 19033160 16 19014160 16 19001160 16 19045160 16 20057160 16 20056160 16 COTO 64.90 49.00 44.80 51.50 38.40 38.40 38.40 38.00 38.00 47.00 57.00 40.00 55.00 47.00 47.00 47.00 52.00 49.00 52.00 49.00 38.40 44.00 38.40 38.40 30.00 30.00 38.00 44.50 49.20 44.50 70.30 64.90 49.20 55.00 49.20 38.40 38.40 49.00 47.00 38.00 29.00 50.00 57.00 2 0.00 46.50 38.00 38.00 57.00 47.00 59.00 1.00 0.87 1.02 1.61 0.93 0. 93 0.93 0. 73 0.73 1.07 1.10 0.96 1.39 0.83 0.83 0.89 0.83 0.87 0.98 0.87 0.74 0.85 0.74 0.76 0.53 0.53 0.73 0.68 0.79 0.68 1.2V 1.09 1.12 1.26 1.12 0.93 0.74 0.87 0.83 0. 73 0.31 0.97 1.01 0.46 0.90 0.73 0. 73 0.91 0.83 1.42 70.79 75.52 75.52 32.36 85.37 85.37 85.37 87.17 87.17 73.52 87.17 85.37 77.61 75.52 75. 52 75. 33 88.03 75.52 75.33 75. 52 87. 17 87.17 87.17 87. 17 75.52 75.52 87.17 70. 79 72.82 70.79 75.52 70. 79 75.52 75.52 75.52 85.37 87.17 73.52 75.52 87. 17 75.52 87.17 75.52 75.52 87. 17 87.17 87. 17 74. 55 75.52 85. 37 2.72 3.35 4.29 2.65 2.86 3.33 2.86 3.34 3.14 4.27 3.28 3.33 3.95 4.27 2.96 4.01 3.34 4.25 3.23 4.25 4.45 2.86 3.33 4.45 3.42 3.42 3.34 2.97 3.28 2.76 3.31 2.72 4.25 3.33 4.25 4.43 2.86 3.35 4.27 3.34 4.53 3.30 3.33 4.84 2.86 2.86 3.34 2.64 2.96 2.86 4.43 5. 51 6.64 6.27 4.09 3.80 4.09 3.80 3.80 6.64 3.80 3.80 5.42 5.34 4.55 5.42 3.69 5.34 4.41 5.34 3.47 4.09 3.80 3.47 5.51 5.51 1.80 7.64 4.27 4.41 5.51 4.43 5.06 5.51 5.06 3.47 4.09 5.51 6.64 3.80 6. 16 3. 80 5.51 6.16 1.20 4.09 3.80 3.21 4 . 5 5 3.20 0.16 0.48 0.64 0.56 0.75 9.62 0.75 0.62 0.62 0.61 0.41 0.59 0.52 0.86 0.42 0.51 0.45 0.93 0.45 0.81 1.45 0.69 0.62 1.45 0.79 0.79 0.62 0.38 1.11 0.51 9.14 0.16 l . l l 0.43 1.13 1.45 0.79 0.48 0.61 0.62 1.04 0.47 0.41 1.51 0. 36 0.80 3.62 0.24 0.29 0.23 7.52 9.34 11.57 9.47 7.70 7.75 7.70 7.76 7.76 11.52 7.50 7.72 9.89 10.47 7.93 10.04 7.48 10.42 8.10 10.42 9.36 7.64 7.75 9.36 9.72 9.72 7.76 10.99 8.68 7.72 9.15 7.52 10.44 9.27 10.44 9.36 7.74 9.34 11.52 7.76 11.74 7.57 9.25 12.52 6.42 7. 75 7. 76 6.09 7.80 6.29 3.19 1.90 5.44 3.48 5.36 2.43 3.34 2.08 1.63 1.36 2.68 1.79 1.15 3.99 4.18 3.82 2.00 2.48 2.86 2.55 2.36 4.74 2.33 3.02 0.89 0.46 3.00 3.28 3.62 2.80 2.18 3.08 3.20 3.00 3.17 3.55 7.65 4.67 4.14 4.84 4.74 4.90 4.58 4.62 5.54 5.65 7.73 6.85 8.33 8.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1.73 60.09 64.29 58.51 19.41 72.32 75.20 74.34 77.34 77.78 62.64 77.00 73.87 66.57 61.06 63.41 61.46 78.55 62.62 64.38 62.55 73.45 74.79 77.10 74.79 64.91 65.34 76.42 56.53 60.52 60.27 64. 19 60.20 61.88 63.24 61.91 72.46 71.78 61.51 59.86 74.57 59.04 74.71 61.69 58.38 75.21 73.77 71.68 61.61 59.39 68.60 3899.75 3190.04 2621.10 999.52 2777.19 2887.63 2854.65 2938.77 2955.67 2944.01 4388.93 3034.81 3661.39 2869.64 2980.28 2888.73 4084.81 3068.42 3347.96 3064.81 2897.18 3290.94 2960.33 2 871.95 1947.40 1960.16 2903.77 2515.45 2977.43 2682.05 4312.54 3906.90 3044.45 3478.44 3046.21 2782.39 2756.51 3014.19 2813.44 2833.85 1712.13 3735.32 3516.24 1167.68 3497.31 2803.14 2721.91 3511.94 2791.35 4047.40 WESTLAKE PSYU - STAND APPRAISAL FOR STATE VARIABLE SUBSYSTEM PAGE 40 STAND ECONOMICS REPORT STAND NO. AGE SITE G-TYPE VOLUME STOCK. CCF/AC PCT. SELL PR. t/CCF F-B COST SKIO COST AREA COST */CCF $/CCF l/CCF HARV.COST */CCF HAUL COST S/CCF RO DEV. S/CCF NET VALUE t/CCF t/ACRE 21011155 16 21053155 16 21024155 16 21037160 16 21023155 16 21054155 16 21028155 16 21006160 16 21011160 16 21001160 16 21048160 16 21023160 16 22052160 16 22003155 16 22023160 16 22001155 16 22002159 16 22029155 16 22030159 16 22031159 16 22118160 16 22004160 16 22062199 16 22006199 16 29139160 16 23 029199 16 23019199 16 29069160 16 23167160 16 23094160 16 23001199 16 23092160 16 23046199 16 23002199 16 23069155 16 23003155 16 23044155 23066155 23043155 16 23038155 16 23016160 16 23002160 16 23018155 16 23148160 16 23001160 16 23011160 16 24001155 24025160 24005155 16 24014155 16 16 16 16 16 COTD SP 46.20 46.20 70.30 42.00 46.20 70.30 46.20 47.00 49.00 47.00 42.00 49.00 49.00. 58.00 47.00 48.00 66.20 66.20 49.00 53.00 47.00 64.00 7.70 7.70 38.00 58.00 64.90 47.00 38.00 66.00 49.00 60.00 68.70 38.40 68.70 64.90 49.00 44.80 66.20 38.40 4 7.00 23.00 38.40 38.00 32.00 23.00 46.50 49.00 54.60 39. 70 0.89 0.89 1.2t 0.74 0.89 1.24 0.89 1.07 1.12 1.07 0.96 1.12 0.95 0.89 0.89 0.85 1.28 1.28 0.87 0.82 1.19 1.33 0.28 0.23 0. 73 3.89 1.00 0.83 0.73 1.28 0.87 1.16 2.83 0.74 1.33 1.00 0.87 0.79 1.28 0.93 1.07 0.55 0.93 0. 96 1. 15 0.73 0.93 0.85 I.OS 0. 77 87.17 87.17 75.52 75.52 87.17 75.52 87. 17 75.52 75.52 75.52 75. 52 75.52 87.17 70.79 75.33 75. 52 87.17 87.17 75.52 70.79 77.61 82.41 75.52 75. 52 87.17 70. 79 70.79 75. 52 87.17 87. 17 75.52 87. 17 32.36 87.17 87.17 70.79 75.52 75.52 87. 17 85.37 75.52 85.37 85.37 77.61 75.52 87.45 87. 17 76. 18 87. 17 87. 17 2.86 2.86 3.78 4.32 3.91 4.13 3.91 3.75 2.96 3.75 4.32 2.96 2. 86 2.73 4.31 3.35 3.27 3.27 3.35 2.74 2.91 3.31 5.05 4.00 2.86 2.91 2.72 4.27 2.86 2.86 3.35 2.86 2.65 3.33 2.86 2.72 2.96 2.96 2.86 3.81 3.35 4.79 3.33 2.91 4.47 4.79 4.35 3.26 4.29 2.86 3.20 4.09 4.25 5.34 2.90 6.64 2.90 9.03 4.55 9.03 5.34 4.55 4.09 4.43 5.42 5.51 3.80 3.80 5.51 4.43 3.54 3.69 9.03 5.51 3.20 7.64 4.43 6.16 3.20 4.09 5.51 4.09 4.65 3.80 3.20 4.43 4.55 4.55 3.20 5.87 5.51 3.66 3.80 3.54 5.34 3.66 4.39 4.84 4.39 3.20 0.43 0.62 0.34 0.97 0.52 0.43 0.49 0.36 0.28 0.36 0.97 0.28 0.62 0.41 0.61 0.49 0.36 0.36 0.48 0.45 0.29 0.37 2.IS 3.07 0.52 0.29 0.36 0.64 0.36 0.46 0.48 0.50 0.29 0.62 0.29 0.36 0.40 0.44 0.30 0.44 0.50 1.77 0.62 0.36 1.27 1.77 0.58 0.48 0.50 0.50 6.49 7.57 8.37 10.63 7.33 11.20 7.30 13.13 7.79 13.13 10.63 7.79 7.57 7.57 10.04 9.35 7.42 7.42 9.34 7.62 6.74 7.38 16.26 12.58 6.58 10.84 7.52 11.08 6.42 7.41 9.34 7.46 7.59 7.75 6.35 7.52 7.91 7.95 6.36 10.12 9.36 10.22 7.75 6.81 11.08 10.22 9.32 8.59 9. 17 6.56 7.09 6.99 6.98 8.14 7.15 6.98 6.99 7.95 7.99 7.75 8.31 8.41 6.03 4.59 3.63 4.63 5.23 5.39 5.19 5.28 4.92 4.49 5.03 4.72 3.83 4.49 4.42 6.91 3.76 6.18 5.44 5.76 5.77 5.18 5.75 4.47 5.55 5.78 5.68 5.58 3.01 4.53 5.53 5.37 3.57 3.33 6. 81 5.30 6.81 6.73 0.0 0.0 0. 0 1. 73 0.0 0.0 0.0 0.0 1.73 0.0 1.73 1.73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.59 72.61 60.16 55.02 72.68 57.34 72.88 54.44 58.00 56.64 54.85 57.59 73.57 58.64 61.65 61.54 74.52 74.36 60.99 57.90 65.95 70.55 54.23 58.22 76.76 55.47 58.86 57.53 76.99 73.58 60.74 73.95 19.00 74.25 75.07 58.80 62.05 61.79 T5.13 69.67 63.15 70.62 72.10 65.44 60.87 73.90 71.04 62.29 71.18 73.88 3399.79 3354.65 4229.55 2310.80 3358.04 4030.88 3367.19 2558.69 2842.08 2568.11 2303.70 2821.86 3604.92 3400.97 2897.62 2953.79 4933.33 4922.36 2988.74 3068.66 3099.50 4514.97 417.58 448.31 2916.97 3217.07 3819.71 2704.03 2925.44 4856.35 2976.33 4437.17 1305.55 2851.04 5157.47 3816.42 3040.53 2 768.09 4973.61 2675.24 2968.06 1624.21 2768.69 2486.58 1947.89 1699.73 3303.30 3052.18 3886.63 2932.97 W E S T L A K E P S Y U - S T A N D A P P R A I S A L F O R S T A T E V A R I A B L E S U B S Y S T E M p» Gc * . *••»••**»•*••••••*•»••*»******•****»*»*»»*»*»***»»»***••*»*******«*»•**«****** S T A N D E C O N O M I C S R E P O R T S T A N D N O . A G E S I T E G - T Y P E V O L U M E S T O C K . S E L L P R . F - B C O S T S K I O C O S T A R E A C O S T H A R V . C O S T H A U L C O S T RD D E V . C C F / A C P I T . t / C C F * / : C F t / C C F t / C C F t / C C F t / C C F t / C C F 2 * 9 3 1 1 6 0 1 6 1 F S 6 2 . 0 0 0 . 9 9 8 8 . 0 3 3 . 3 2 3 . 6 9 0 . 3 8 7 . 3 9 5 . 4 1 0 . 0 2 * 0 8 1 1 5 5 1 6 1 F 4 6 . 5 0 0 . 9 0 8 7 . 1 7 2 . 8 6 3 . 2 0 0 . 3 6 6 . 4 2 6 . 5 2 0 . 0 2 4 0 1 2 1 6 0 1 6 1 S F 4 9 . 0 0 0 . 9 2 7 5 . 3 3 3 . 2 4 4 . 4 1 0 . 4 9 8 . 1 3 5 . 4 6 0 . 0 2 * 1 3 6 1 6 0 1 6 1 P L F 4 6 . 5 0 0 . 7 4 7 4 . 5 5 2 . 6 4 3 . 2 1 0 . 2 9 6 . 1 4 0 . 9 1 0 . 0 2 * 0 8 9 1 5 5 1 6 1 F 4 3 . 6 0 0 . 8 4 8 7 . 1 7 2 . 8 6 4 . 0 9 0 . 6 6 7 . 6 1 6 . 9 7 0 . 0 2 * 0 2 3 1 5 5 1 6 1 F 4 6 . 5 0 0 . 9 ) 8 7 . 1 7 2 . 8 6 3 . 2 0 0 . 4 2 6 . 4 9 7 . 0 7 0 . 0 2 * 0 8 7 1 5 5 1 6 1 F 5 2 . 0 0 1 . 0 9 8 7 . 1 7 2 . 8 6 3 . 2 0 0 . 3 2 6 . 3 8 6 . 7 2 0 . 0 2 * 0 9 8 1 5 5 1 6 1 F 3 8 . 0 0 0 . 7 3 8 7 . 1 7 2 . 8 6 4 . 0 9 0 . 7 5 7 . 7 1 7 . 1 3 0 . 0 2 * 0 3 6 1 5 5 1 6 1 F 5 2 . 0 0 1 . 0 9 8 7 . 1 7 2 . 8 6 3 . 2 0 0 . 3 2 6 . 3 8 6 . 4 0 0 . 0 2 * 0 5 7 1 5 5 1 6 1 F 4 9 . 0 0 0 . 9 5 8 7 . 1 7 2 . 8 6 3 . 2 0 0 . 3 4 6 . 4 0 7 . 0 4 0 . 0 2 * 0 6 2 1 6 0 1 6 2 F S 4 6 . 5 0 0 . 9 7 8 2 . 4 1 4 . 4 5 4 . 4 9 0 . 5 8 9 . 5 2 0 . 8 4 0 . 0 2 * 0 2 6 1 5 5 1 6 2 F 5 9 . 0 0 1 . 4 2 8 5 . 3 7 2 . 8 6 3 . 2 0 0 . 2 3 6 . 2 9 8 . 7 8 1 . 7 3 2 * 0 6 8 1 5 5 1 6 2 F 5 2 . 0 0 1 . 2 5 8 5 . 3 7 2 . 8 6 3 . 2 0 0 . 3 2 6 . 3 8 7 . 7 0 0 . 0 2 * 1 0 5 1 6 0 1 6 2 F S 4 6 . 5 0 0 . 9 7 8 2 . 4 1 2 . 8 8 3 . 4 5 0 . 2 3 6 . 5 5 0 . 9 1 0 . 0 2 * 1 5 * 1 6 0 1 6 2 F S 4 6 . 5 0 0 . 9 7 8 2 . 4 1 2 . 8 8 2 . 9 7 0 . 2 9 6 . 1 4 0 . 8 5 0 . 0 2 * 0 7 1 1 6 0 1 6 2 S P L 5 4 . 0 0 1 . 2 1 7 3 . 5 0 2 . 9 1 3 . 9 2 9 . 3 7 7 . 2 0 3 . 9 5 0 . 0 2 * 1 1 1 1 6 0 1 6 2 F S 4 6 . 5 0 0 . 9 7 B 2 . 4 1 2 . 8 8 3 . 4 5 0 . 2 3 6 . 5 5 0 . 8 7 0 . 0 2 * 0 9 * 1 6 0 1 6 2 S P L 4 7 . 0 0 1 . 0 5 7 3 . 5 0 2 . 9 1 3 . 9 2 0 . 4 2 7 . 2 6 3 . 8 5 0 . 0 2 * 0 0 1 1 6 0 1 6 9 F S 2 5 . 0 0 0 . 7 5 8 4 . 6 0 4 . 8 2 3 . 7 3 1 . 5 3 1 0 . 1 8 4 . 4 6 0 . 0 2 5 0 3 9 1 6 0 1 6 1 F S 4 9 . 0 0 0 . 7 8 8 8 . 0 3 2 . 8 8 2 . 9 7 0 . 2 8 6 . 1 2 6 . 3 2 0 . 0 2 5 0 5 2 1 6 0 1 6 1 P L F 5 7 . 0 0 0 . 9 1 7 4 . 5 5 2 . 6 4 3 . 2 1 0 . 2 4 6 . 0 9 6 . 7 8 0 . 0 2 5 0 0 3 1 6 0 1 6 2 F P L 5 2 . 0 0 1 . 0 7 8 3 . 2 9 2 . 8 5 4 . 1 1 0 . 5 8 7 . 5 5 6 . 6 5 0 . 0 2 5 0 1 6 1 6 0 1 6 2 F S 3 8 . 0 0 0 . 7 9 8 2 . 4 1 2 . 8 8 4 . 0 6 0 . 8 0 7 . 7 3 6 . 9 0 0 . 0 3 9 0 0 1 1 6 0 1 6 1 F 5 7 . 0 0 1 . 1 0 8 7 . 1 7 3 . 2 8 3 . 8 0 0 . 4 1 7 . 5 0 2 . 7 8 0 . 0 4 6 0 1 2 1 6 0 1 6 1 S P L 4 9 . 0 0 0 . 8 5 7 6 . 1 8 3 . 2 6 4 . 8 4 0 . 4 8 8 . 5 9 5 . 6 1 0 . 0 5 3 0 1 0 1 5 5 1 6 2 S 4 2 . 5 0 0 . 9 7 7 5 . 5 2 4 . 3 2 5 . 3 4 0 . 9 6 1 0 . 6 1 8 . 3 3 1 . 7 3 7 6 0 0 5 1 5 5 1 6 1 F 3 8 . 0 0 0 . 7 3 8 7 . 1 7 2 . 8 6 3 . 2 0 0 . 3 6 6 . 4 2 1 0 . 1 0 0 . 0 7 7 0 0 1 1 5 5 1 6 1 P L S 6 1 . 0 0 0 . 9 8 7 2 . 8 2 2 . 5 8 3 . 6 7 0 . 2 2 6 . 4 8 8 . 9 9 0 . 0 7 7 0 * 7 1 5 5 1 6 2 F 4 6 . 5 0 1 . 1 2 8 5 . 3 7 2 . 8 6 3 . 2 0 0 . 3 6 6 . 4 2 8 . 4 3 0 . 0 7 7 0 3 3 1 5 5 1 6 2 SF 4 9 . 0 0 1 . 2 4 7 7 . 6 1 4 . 0 0 4 . 4 1 0 . 3 3 9 . 2 3 9 . 3 2 0 . 0 7 7 0 5 5 1 5 5 1 6 2 F 4 6 . 5 0 1 . 1 2 8 5 . 3 7 2 . 8 6 3 . 2 0 0 . 3 6 6 . 4 2 8 . 6 3 0 . 0 7 7 0 6 6 1 5 5 1 6 2 F 4 6 . 5 0 1 . 1 2 8 5 . 3 7 2 . 8 6 3 . 2 0 0 . 3 6 6 . 4 2 8 . 4 1 0 . 0 1 0 0 0 5 1 6 0 1 8 1 S P L 1 0 . 0 0 0 . 1 7 7 3 . 7 6 3 . 7 2 4 . 6 4 2 . 3 6 1 0 . 7 2 1 . 9 1 0 . 0 1 0 0 7 2 1 6 0 1 8 2 P L 1 0 . 0 0 0 . 2 ) 7 0 . 2 8 2 . 5 5 4 . 6 6 3 . 0 2 1 0 . 2 4 1 . 4 7 0 . 0 1 0 0 3 2 1 6 0 1 8 2 S P L 1 0 . 0 0 0 . 2 2 7 3 . 7 6 3 . 7 2 4 . 6 4 2 . 3 6 1 0 . 7 2 1 . 6 1 0 . 0 E X E C U T I O N T E R M I N A T E D 1 2 : 0 4 : 0 1 T • 2 3 . 7 0 6 R C « 0 $ 1 3 . 4 7 N E T V A L U E t / C C F t / A C R E 7 5 . 2 3 7 4 . 2 3 6 1 . 7 4 6 7 . 5 0 7 2 . 5 9 7 3 . 6 1 7 4 . 0 7 7 2 . 3 4 7 4 . 3 9 7 3 . 7 3 7 2 . 0 6 6 8 . 5 7 7 1 . 3 0 7 4 . 9 5 7 5 . 4 3 6 2 . 3 4 7 4 . 9 9 6 2 . 3 9 6 9 . 9 6 7 5 . 5 9 6 1 . 6 9 6 9 . 1 0 6 7 . 7 8 7 5 . 8 9 6 1 . 9 8 5 4 . 8 5 7 0 . 6 5 5 7 . 3 5 7 0 . 5 2 5 9 . 0 5 7 0 . 3 2 7 0 . 5 5 6 1 . 1 3 5 8 . 5 7 6 1 . 4 3 4 6 6 4 . 4 8 3 4 5 1 . 6 8 3 0 2 5 . 2 8 3 1 3 8 . 6 5 3 1 6 4 . 8 7 3 4 2 3 . 0 3 3 8 5 1 . 4 1 2 7 4 8 . 7 9 3 8 6 8 . 0 7 3 6 1 2 . 9 0 3 3 5 0 . 6 5 4 0 4 5 . 6 5 3 7 0 7 . 4 3 3 4 8 5 . 3 6 3 5 0 7 . 5 6 3 3 6 6 . 4 9 3 4 8 7 . 0 3 2 9 3 2 . 2 1 1 7 4 B . 9 6 3 7 0 4 . 0 4 3 5 1 6 . 2 7 3 5 9 3 . 0 7 2 5 7 5 . 7 8 4 3 8 2 . 7 3 3 0 3 6 . 8 7 2 3 3 1 . 0 9 2 6 8 4 . 6 4 3 4 9 8 . 4 9 3 2 7 9 . 3 8 2 8 9 3 . 6 0 3 2 7 0 . 0 6 3 2 8 0 . 4 5 6 1 1 . 3 0 5 8 5 . 7 3 6 1 4 . 3 4 tSIG APPENDIX VI Factor A n a l y s i s R e s u l t s '— - FACTOR ANALYSIS - REVISED JAN. 8, 1975 _JtME. PROGRAM WILL ATTEMPT TO ACQUIRE 2 PAGE(S 1 OF MEMORY TO PUN THIS PROBLEM . .... - - - •••••FACTOR ANALYSIS ON 20 TYPE ISLAND STATE VARIABLES OF THE WESTLAKE psru *•••* INPUT FORMAT - - IA4,10X,F5.2,10X,F8.2,18X,9( IX, F5.2lt7X.9llX .F6.2I1 < OUTPUT FORMAT IA4.10X.8F8.3) NUMBER OF VARIABLES .. 20 MAX. ITERATIONS FOR COPMUNALITIFS 1 MAX. ITERATIONS FOR ROTATION 50 MAXIMUM NUMBER OF FACTORS TO BE EXTRACTED 8 LOWER LIMIT ON EIGENVALUES 0.10000 UPPER LIMIT ON REFERENCE AXIS CCRRELATIONS 0.95000 THE CORRELATION MATRIX IS FORMEC .- - - — •— DIAGONAL ELEMENTS ARE UNALTERED VARIHAX ROTATION IS PERFORMED VARIABLE NAMES ARE REAO IN CASE IDENTIFICATION IS REAO WITH EACH CASE NUMBER OF CASES 1985 ST .DEV . OF SUM VARIABLE MEAN ST.DEV. "VARTANCE THE MEAN MINIMUM MAXIMUM T OBSEWATTONS " 1 VOL NOW 23.637 18.129 328.670 0.40691 0.0 70.303 1985.0 46919. 2 VAL NOW 1347.7 1184.5 0.140299E*07 26.586 -51.850 5330.7 1985.0 o.26752E*o7 3 VOL340 7.4104 4.7313 22.3854 U.13619 0.33030 30.15J 1985.0 14710. 4 VOLS60 16.041 7.6736 58.8847 0. 17223 1.4000 46. 730 1985.0 31841. 5 V0L380 24.C55 9.6 387 92.9038 6.21634 2.8003 64.000 1985.3" 47749. 6 V0LB100 30.481 11.011 121.241 3.24714 4.2003 71.2 20 1985.0 60504. 7 V0LS120 34.584 11.915 141.966 0 . 26743 5.1700 72.50J 1905.0 68648. 8 V0L»140 37.194 12 .535 157.135 0.28136 5.713J 71.793 19P5. 0 7 J 8 3 0 . 9 V0L3163 36.591 12.915 166.ROb 0.28988 5 .9800 75.26J 1985.0 76604. 10 VOLaiSO 35.341 13.138 172.602 0.29488 6.0800 77. OJJ 1985.0 78091. 11 VOL3200 39.476 13.211 174.520 0.29651 6.3833 7 7. 5 83 1985.0 78 363. 12 VAL340 46.340 17.453 304.594 0.39172 0 . 0 76.95J 1985.0 91985. 13 VAL360 48.406 15.428 238.038 0.34629 2.4703 78.37J 1985.0 96085. 14 VAL380 51.737 14.658 21<..853 0.32903 8.3933 79.170 1985.0 0 . 10270F *06 15 VALSIOO 52.611 14.102 216.151 0.32999 9.8100 79.850 1985.0 0.10443E»06 16 VALS120 53.756 14.627 213.940 0.32830 9.9403 8 0 . 2 70 1985.0 0.10670E»06 17 VAL3140 53. 582 14.501 210.286 0.3i548 10.033 80.5t>J 1985.0 0. 10636F»06 18 VAL3160 55.575 14.372 206.557 0 . 3*258 10.060 80.65J 1985.0 O.U032F»06 19 VALS180 55.6e6 14.417 207.850 0.32359 10.393 80. 5 10 1985.0 0.11354E+36 CORRELATION MATRIX HITH INITIAL COMMUNAL ITY ESTIMATES ON THE DIAGONAL 1 VOL NOW 2 VAL NOW 3 V0L340 4 V0L360 5 VOL380 6 VOL 310 0 7 VOLS 120 8 V O L « 1 4 0 1 VOL NOW 1.0000 > 2 VAL NON 0 .56134 1.0300 ' 3 VOL340 0 .70019 0.74511 1.0000 4 V0L860 0 .73942 0.15220 0.95301 1.0000 5 VOL380 0 .72223 0.72201 0.88170 0.97927 1.0000 6 VOL3100 0.68139 0.67404 0.80335 0.93124 0.984 76 1.0000 7 VOL3120 0 .66034 0.64806 0.75660 0.89694 3.96556 0.99552 1.0000 8 V0L3140 0 .64777 0.63122 0. 72504 0.87242 0.94923 0.98732 0.99770 1.0000 9 V0L3160 0.64366 0.62845 0.70922 0.85 792 0.93843 0.98041 0 .99405 0.99896 10 V0L3180 0 .63948 0.62789 0.70005 0.84641 3.92860 0.97332 0.98935 0.99623 11 VOL3200 0 .63734 0.62760 0.69240 0.8361 7 0.91853 0.96451 0 .98257 0.99155 12 VAL340 0 .44926 0.58170 0.56655 0 .58483 0.59311 0.58782 0.56947 0.55045 13 VAL360 0 .42065 0.57957 0.52952 0.53121 0.52012 0.49671 0.46932 0.44514 14 VAL380 0 .37204 0.53754 0.45870 0.44026 0.43428 0.41928 0.39801 0 .37787 15 VAL3100 0.37204 0.53580 0.45436 0.44593 0.45192 0.45160 0.43458 0 .41536 16 VAL3120 0 .34585 0.51455 0.42496 0 .40240 0 .40320 0.39913 0.38181 0.36248 17 VAL3140 0 .33935 0.51140 0.43832 0.42710 0.42050 0.40390 0 .37908 0 .35592 18 VAL3160 0 .33768 0.50107 6 .41503 6 .41352 0 .42176 0.41996 0.4024 7 0.38313 19 VAL3160 0 .32992 0.49630 0.41145 0.40489 0.41115 0.40830 0.39058 0.37123 20 VAL3200 0 .33015 0.49683 0.41095 0.404 24 0.41U46 0 .40769 0.39011 0.37091 9 VOL3160 10 VOL3180 11 V0L3233 12 VAL340 13 VAL360 14 VAL380 15 VAL3100 16 VAL3120 9 V0L8160 1 .0000 10 VOL3180 0 .99905 1.0000 11 VOL8200 0.9S616 0.59894 1.0000 12 VAL340 0 .54723 0.54775 0 .54247 1.0000 13 VAL360 0 .44028 0.44066 0.43595 0.93441 1.0000 16 VAL380 0 .37755 0.38143 0.37925 0.91010 0.96855 1.0000 15 VAL3100 0 .41521 0.41963 6 . 41687 0.90450 0.94086 6 .96298 1.0000 16 VAL3120 0 .36243 0.36743 0.36486 0.88951 0 .94109 0.98298 0 .97629 1.0000 17 VAL3140 0 .35297 0.35531 0.35147 0.88700 0.97792 0 .98599 0.94903 0 .96819 18 VAL3160 0 .38243 0.38546 0.38155 0.90604 0.96193 0.98982 C.96850 0 .98087 19 VAL3180 0 .37384 0.3 7464 0.37137 0.90436 0.96358 0 .99219 0.96874 0.98252 20 VAL3200 0.37063 0.3 7456 0.37143 0.90405 0.96361 0.99221 0.96855 0.98260 17 VAL3140 18 VAL3160 19 VAL3180 20 VAL3200 17 VAL3140 1.0000 18 VAL3160 0.58591 1.0000 19 VAL3180 0 .58859 0.59871 1 .0000 20 VAL3200 0 .98857 C.59860 0.99992 1.0000 sun OF SQUARES OF OFF DIAGONAL ELEMENTS' 91 .689 MEAN OF SQUAPFS OF OFF DIAGONAL ELF ME M S = 0.24129 SQUARE ROOT OF MEAN OF SQUARES OF OFF CI AGONAL ELEMENTS' 0.49121 EIGENVALUES 13.353 4.8831 0 .99859 0.44807 0.11590 0.81387E-01 0 .42399E-01 0 . 32316E-31 0.15498E-01 0 .13468E-01 0 .76567E -02 0 .36242E-02 0 .29308E -02 0 . 11B56E-02 0 . 36499E-03 0 . 1 3 2 6 1 E - 3 3 3 . 6 1 4 4 3 E - 04 3 . 2 3 2 3 7 F - J 4 0 . 1 1 1 8 2 F - 0 4 3.32 787P-35 CUMULATIVE PROPORTION OF TOTAL VARIANCE 0.66767 0.91182 0.S6175 0.98415 0.98995 0.99402 0.99614 3.99775 0.99853 0.99920 0.99959 0.99977 0 .99991 0.99997 0 .99999 1 .0000 1 .0000 1.0000 I.OOOO 1 .0000 PER CENT OF TOTAL VARIANCE ACCOUNTED FOR BY EACH FACTOR 66.76684 24.41530 4.99293 2.24034 0.57949 0.40693 0.21200 0.161S8 0.07749 0 .06734 6 .03828 0.01812 6 .01465 0.00593 0.00182 0.OJU51 0.00031 0.03312 0.00006 3.00332 TINE FOR INITIAL FACTOR-LOAD 1NGS-MATR I » IS 0.9036E-01 SECONDS ' TIME FOR ACCURACY CHECK IS 0.14E-01 SECONDS. Faann BOUNDS FHR F I C F N V A . U F S 0 .37567E -04 0 .18819E-04 0 .14133E -05 0 .65505E -06 0 . 4 U 6 8 E - 0 6 ERROR BOUNDS FOR EIGENVECTORS 0.88703E-05 0.96892E-05 0 .51346E -05 0 .39441E-C5 0 .24787E -05 VARIABLE OP IG I r. At COMMLNALITV EST IMATEO CCHMUNAL1TY FINAL COMMUNAL 1TY 1 VOL NOW 2 VAL NOW 1.0000 l .COOO 1.0000 1.0000 u.99126 0.99027 3 V0L340 4 VOL960 5 VOL380 1.0000 l.OCOO l.CCOO 1.0000 1.0000 1.0000 0.98504 0 .99583 0.99173 6 VOLB100 7 VOL a120 8 VOL8140 1.0000 l .CCOO 1.0000 1.0000 1.0000 1.0000 0 .99373 0.99746 0.99950 9 VOLS 160 10 v o L a i e o 11 VOLa200 l .COOO l .COOO 1.0000 1.0000 1.0000 1.0000 0.99938 0.99665 0.99032 12 VAL840 13 VALa60 14 VALaeo l .CCOO 1.0000 1.0000 1.0000 1.0000 1.0000 0.99574 0.97270 0.99097 15 VALalOO 16 VALai20 17 VAL3140 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.95786 0.97938 0.98372 18 VAL3160 19 VALaiao 20 VALa200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.99409 0.99666 0.99668 SUM OF COMMUNAL ITIES 20.000 20.000 19.799 MEAN COMMUNAL I TV 1.0000 1.0000 0.98995 p—• J MATRIX OF RESIDUALS WITH UNIQUENESSES ON THE DIAGONAL 1 VOL NOW 2 VAL NOW 3 V0L340 4 VOL360 5 VOL iB 0 6 v O L a i o o 7 V 0 L a i 2 0 8 V0L3140 1 VOL NOH 0 .E7174E -02 2 VAL NCW - 0 . 9 1 2 9 5 E - 0 2 0.97333E -02 3 VOL340 - 0 . 3 5 5 3 4 E - 0 2 0.27814E -02 0 .14964E- 01 • V0L360 O.21908E-O2 -0 .20159E -02 - 0 . 7 0 9 8 6 E - 02 0 .41677E - 02 5 V0L380 0 .33746E-02 -6 .2B839E -02 - 0 . 1 0 6 2 8 E - 01 0 .51995E - 02 0.82735E -02 6 V0L3100 0 .28821E-02 - 0 . 2 3 7 C 4 E -02 - 0 . 7 3 5 3 0 E - 02 0 .27575E - 02 0 .59740E -02 0 . 6 2 6 8 0 E - 02 ' V0L3120 0 .160B6E-02 - 0 . 1 2 9 7 7 E -02 - 0 . 3 4 4 5 4 E - 02 0 . 8 9 6 8 2 E - 03 0.28231E -02 0 .37083P - 02 0 . 2 5 3 7 8 E - 02 S V0L3140 0 .57583E-03 - 0 . 4 9 8 2 9 E -03 - 0 . 4 4 167E- 03 - 0 . 9 6 2 1 7 E - 04 0.23999E -03 0 . 7 6 8 3 0 E - 03 0 . 7 5 5 4 2 E - 63 3.4950TE- 03 9 VOL3160 - 0 . 8 6 5 0 3 E - 0 3 0.76016E -03 0 .22815E- 02 - 0 . 1 0 0 8 3 E - 02 - 0 .18933E -02 - 0 . 1 7 8 0 7 E - 02 - 0 . 9 0 7 6 4 E - 03 - 0 . 3 1 6 9 5 E - 04 10 VOLS180 - 0 . 2 6 6 C 6 E - 0 2 0.23713E -02 0 .56B18E- 02 - 0 . 2 4 7 9 8 E - 02 - 0 . 4 6 1 6 5 E -02 - 0 . 44308 E- 02 - 0 . 2 5 7 3 7 E - 02 - 0 . 5 9 0 1 1 E - 03 11 VOL3200 - 0 . 6 2 0 4 4 E - 0 2 0.36B06E -02 0 .88062E- 02 - 0 . 3 5 3 3 5 E - 02 - 0 . 7 2 8 7 8 E -02 - 0 . 7 4 9 0 2 E - 02 - 0 . 4 6 2 8 6 E - 02 - 0 . 1 2 3 4 0 E - 02 12 VAL340 - 0 . 1 1 7 1 B E - 0 2 0.84226E -03 0 .58352E - 02 - 0 . 2 5 0 6 OE- 02 - 0 . 3 1 7 4 1 E -02 - 0 . 1 7 6 9 8 E - 02 - 0 . 7 5 9 7 8 E - 03 - 0 . 2 1 4 5 4 E - 03 13 VAL360 - 0 . 3 2 9 1 3 E - 0 3 0.10206E -02 - 0 . 1 0 5 2 8 E - 01 0 .39277E - 02 0 .40560E -02 0 . 1 2 8 3 1 E - 02 0 . 3 3 2 4 3 E - 03 0 . 3 6 6 3 6 E - 03 14 VAL380 0.S8578E-O3 - 0 . 1 3 4 5 7 E -02 0 .16386E- 02 - 0 . 1 8 3 5 1 E - 03 - 0 . 9 5 0 2 9 E -03 - 0 . 2 9 4 9 1 E - 0 2 - 0 . l 9 S 6 4 f ! - ti - 6 . 30764E- 03 15 VAL3100 - 0 . 2 6 3 8 9 E - 0 2 0.13569E -02 0 .64685E - 02 - 0 . 1 8 0 3 5 E - 02 - 0 . 3 0 8 0 0 E -02 - 0 . 2 3 3 4 0 E - 03 - 0 . 1 3 9 2 8 E - 03 - 0 . 7 9 3 7 3 E - 03 16 VAL3120 - 0 . 5 9 3 1 9 E - 0 3 - 0 . 6 6 9 8 8 E -04 0 .71187E - 02 - 0 . 3 0 7 7 9 E - 02 - 0 . 3 8 1 0 6 E -02 - 0 . 14455E- 02 - 0 . 9 2 2 3 2 E - 04 0 . 1 3 0 0 0 E - 03 17 VAL3140 0 .27643F -03 0.79160E -03 - 6 . e6748E- 02" 6.2763 7E-02 0 .43482E -02 0 . 2 4 2 3 0 E - 02 0 . 9 1 4 7 5 E - 03 0 . 2 8 8 6 7 E - 03 ' 18 VAL3160 0 .23719E-02 - 0 . 1 9 4 1 6 E -02 - 0 . 1 6 7 6 5 E - 02 0 . 1 0 5 0 2 E - 02 0. 18554E -02 0 . 1 7 5 7 8 E - 02 0 . 1 0 6 9 3 E - 02 0 . 3 6 9 5 2 E - 03 19 VAL3160 0 .16393E -02 - 0 . 1 2 8 8 3 E -02 - 0 . 4 4 2 0 8 E - 03 0 . 1 4 9 5 1 E - 03 0 .73969E -03 0 . 7 7 0 2 5 E - 03 0 . 4 6 6 7 9 E - 03 0 . 1 3 5 6 0 E - 03 20 VAL3200 0 .14593E-02 - 0 . 1 1 1 2 6 E -02 - 0 . 2 7 3 1 6 E - 03 0 . 9 6 2 8 5 E - 04 0 .54278E -03 0 . 5 6 5 7 8 E - 03 0 . J 3 5 5 7 F - 63 0. 11035E- 03 9 V0L3160 10 V0L31 80 11 V0L3200 12 VAL340 13 VAL360 14 VAL 3 80 15 VAL8100 16 VAL3120 9 VOL3160 0 .6201SE-03 10 V0L3180 0 . 1 2 5 U E - 0 2 0.33483E -02 11 V0L3200 0.19608E-02 0.55886E -02 0 .96840E-02 12 VAL340 0 .50547E -03 0 .13548F -02 0 .18987E-02 0 .42621E-02 13 VAL360 - 0 . 3 1 0 3 6 E - 0 3 - 0 . 7 8 1 3 7 E -03 - 0 . 5 4 8 7 3 E - 0 3 - 0 .10082E -01 0 .27299E-01 14 VAL380 0 .10221E-02 0.17191E -02 0.28835E-02 0 .79175E-03 - 0 . 1 9 7 5 4 E - 0 2 0 . 9 0 3 1 7 E - 02 19 VAL3100 - 0 . 5 9 8 6 9 E - 0 3 0.31433E -04 0.16374E-03 0.4249 3E-02 - 0 . 1 1 3 5 8 E - 0 1 - 0 . 9 0 0 3 5 E - 02 0 .42141E -01 16 VAL3120 0 .31492E -03 0.10607E -02 0 . 10644E-02 0 .63927E-02 - 0 . 1 2 9 8 0 E - 0 1 - 0 . 1 2 9 0 3 E - 03 0.105 35E-01 0 .20625E-01 17 VAL3140 - 0 . 6 0 3 4 8 E - 0 3 - 0 . 1 3 0 9 6 E -02 - 0 . 1 6 3 3 2 E - 0 2 - 0 . 5 9 4 2 1 E - 0 2 0.1530OE-01 - 0 . 29686 E-03 - 6 . 1 7 0 6 5 f - 6 1 - 6 . U 3 2 7 E - 0 1 18 VAL3160 - 0 . 3 1 3 3 8 E - 0 3 - 0 . 1 5 5 3 4 E -02 - 0 . 2 6 9 6 3 E - 0 2 0.2715 7E-04 - 0 . 2 8 0 75E-02 - 0 . 1 2 0 5 9 E - 03 - 0 . 5 8 6 8 8 E - 0 2 - 0 . 4 3 8 4 4 E - 0 2 19 VAL3180 - 0 . 1 0 7 4 9 E - 0 3 - 0 . 5 5 9 2 IE -03 - 0 . 1 0 3 8 1 E - 0 2 0 .18968E -04 - 0 . 1 7 2 6 7 E - 0 2 0 .80526E - 03 - 0 . 6 2 4 1 1 E - 0 2 - 0 . 4 2 1 5 1 E - 0 2 20 VAL3200 - 0 . 5 6 2 4 3 E - 0 4 - C . 4 0 0 2 7 E -0 3 - 0 . 76 08 7E-03 0 .11253E-04 - 0 . 1 5 3 7 7 E - 0 2 0 . 8 4 8 9 7 E - 03 - 0 . 6 4 3 3 3 6 - 0 2 - 0 . 4 i 8 1 6 E - 0 2 17 VAL3140 18 VAL3160 19 VAL3180 20 VAL3200 IT VAL3140 0 .16284E-01 0 .33255E -03 0 . U 6 5 5 E - O 2 0 . U 8 4 3 E - 0 2 18 VAL3160 J I .59091E-02 0 .34282E-02 0 .33186E-02 19 VAL3180 0.33350E-02 0.32544E-02 20 VAL3200 0.33249E-02 FACTOR-LOAOINGS MATRIX BEFORE ROTATION VARIABLE FACTOR 1 1 VOL NOW 2 VAL NOW 3 V0L34Q 4 V0L360 5 VOL380 6 V0L3100 0.68814 0.77691 C.78140 0 . e 4 C 0 9 0.86155 0.85693 - 0 . 3 4 1 0 8 - 0 . 1 7 4 7 5 - 0 . 3 2 9 4 8 - 0 . 4 3 9 9 5 - 0 . 4 7 8 3 7 - 0 . 4 9 3 1 9 -0 .57664 -0 .56269 -0 .28778 -0 .14138 0.26138 0.19868 - 0 . 4 2 5 5 7 - 0 . 2 7b54 - 0 . 7 6 9 7 6 E - 0 3 -0 .14351 0.12286 - 0 . 3 2 3 2 9 E - 0 1 -0 .2378OE-01 0 .67334E-02 0 .44416F-01 0. 74704E -02 D.46521E-02 0 .45682E-02 7 VOL.1120 0.E4072 -0.5L841 0.17626 0.32675E-01 0 . 50682E -02 8 VOLJ140 0 .62412 - 0 . 52245 0.20413 -0.753B4E-01 0 .46892E-02 9 V0L3160 C.62C18 -0 .51961 0.21464 0 .10273 0 . 7 7 8 5 6 E - J 2 10 V 0 L a i 8 0 C.61895 -0.51231 0.22091 0.12063 0 .12450E-01 11 VOLa200 0.81366 -0 .5107C 0.22115 0. 13521 0.16<!19E-01 , 12 VALa40 C.88098 0.34944 0.574156-01 -0 .41089E-01 -0 .30417 13 VAL360 0 .E5565 0 .46086 -0 .19613E-01 -0 .64189E-01 -0 .69493E -01 < 14 VAL i SO 0.61855 0 .56565 -0 .39091E-02 - 0 . 3 0 9 8 7E-0i! 0 .30B75E-01 15 VALa iOO 0.82445 0.J2393 0 .36006E-J1 0.33432E-01 0 .32755E-01 16 VAL8120 0.7S645 0.57860 0.19805E-01 0.30497E-01 0 .73902E-01 17 VALS140 0 .80074 0 . 5 e i 6 5 0 . 7 7 1 1 4 E-0i -0.2964 7E-01 0 .57235E-01 19 V * L a i 6 0 0.81124 0 .57462 0.5e669t-01 0.29bl6E - 01 0 .38203E-01 19 VAL3180 0.80539 0.58553 0.54986fc-01 0 .24539E-01 0 .39298E-01 20 VALa200 0.60519 0.58576 0.544B7E-01 0 .2590BE-01 0.397O8E-01 SUM OF SQUARED FACTOR-LOADINGS DIVIDED BY SUM OF COMMUNAL I TIES • - - — ... 0.67445 0.24663 0.50436E-01 0.22631E-01 0.5853 7E -02 ORTHOGONAL ROTATION ITERATION SIMPLICITY CRITERION 0 - 0 . 4 5 S 7 4 1 - 7 . 7 9 6 0 2 - 7 . 8 0 2 2 3 - 7 . 8 0 2 2 TINE FOR ROTATION IS 0 .2832E -01 SECONDS ROTATED FACTOR-LOADINGS MATRIX FACTOR 1 2 3 4 5 VARIABLE 1 VOL NOW -0 .16961 0.5C079 - 0 . 8 3 8 4 2 0 .91678E-01 - 0 . 1 9 1 2 3 E - 0 1 2 VAL NOW - 0 . 3 5 2 6 0 0.45265 - 0 . 8 0 0 1 0 0.14449 0 .40995E-02 3 V0La40 -0 .26161 0.62007 -0.34573 0.64230 -0 .49246E-02 4 VOL360 - 0 . 2 3 3 1 4 0. 76903 - 0 . 3 0 8 4 9 0.4 7179 -0 .33852E-01 5 VOLaSO - 0 . 2 3 2 2 3 0.68344 - 0 . 2 4 8 4 1 0.30768 -0 .28889F-01 6 VOLS 100 - 0 . 2 2 9 3 9 0.53800 -0.18417 0.16391 - 0 . 2 1 9 2 0 E - 0 1 T V 0 L a i 2 0 -0 .21224 C.95875 - 0 . 1 6 0 4 2 0 .84817E-01 - 0 . 1 6 7 4 6 E - 0 1 8 V0L3140 - 0 . 1 9 3 3 8 0.56859 -0 .15015 0 .34750E-01 -0.13857E-01 9 VOLS 160 -0.19392 0.96913 - 0 . 1 4 9 8 7 0 .53295E-02 -0 .88033E-02 10 VOLaiBO -0 .19917 0.96663 -0.14968 -O .13B34E-01 - 0 . 2 9 0 3 7 E - 0 2 11 VOLa200 -0.l56?e 0 .96293 -0 .15328 -U .28031E-01 0 .20333E-02 12 V A L « 4 0 - 0 . 6 5 0 1 9 0.37109 -0 .12528 0 .98471E-01 - 0 . 3 3 1 3 8 13 VALS60 14 VALaSO J5_VALalOO 16 V A L a i 2 0 17 V A L a i 4 0 18 V A L a i 6 0 - 0 .92716 - 0 .56779 -0 .945C8 -C .56690 -C .56873 -0 .57501 0.24412 0.17367 0.22129 6 . 16214 0.15427 0. 16604 -0 .15058 -0 .13478 - 0 . 12004 -0 .11843 -0 .10662 -0 .69319E-01 0.14569 0 .77270E-01 0.34225E-01 0.36848E-01 0.95281E-01 0.24090E-01 19 V A i a i e o 20 VALa200 -0.57870 -C.57672 -0 .9785 7E-01 0 .73705E -02 0 .11385E-01 0 .53010E-01 0 .32146E-01 0 .16705E-01 17344 17304 -0.87268E-01 -0.88123E-01 0.28373E-01 0.27257E-01 0.17601E- 0.18117E- 01 01 SUM OF SQUARED FACTOR-LOADINGS OIVIDEO BY SUM OF COMMUNAL ITIES 0.44108 0.41428 0.9544bE-01 0.42735E-01 0.64530E-02 ho MATRIX OF CORRELATIONS OF FACTORS WITH VARIABLES. VARIABLES ARE REORDERED ACCORDING TO HIGHEST CORRELATION WITH A FACTOR. FACTOR 1 VARIABLE 12 VAL340 13_VAL360 15 VAL3100 16 VAL3120 16 VALaSO -0.85019 ^0.92716 -6.94508 -C.S6690 -0.56779 0.37109 0.24412 0.22129 0.16214 0.17367 -0.12528 -0.15058 -0.12004 -0.11843 -0.134/8 0.98471E-01 0.14569 0.34225E-01 0.36848E-01 0.7727OE-O1 -0.33138 - 0 . 9 7 8 5 7 E - 0 1 0 . H 3 8 5 F - 0 1 0 . 5 3 0 1 0 F - 0 1 0 . 7 3 7 0 5 E - 0 2 17 VAL3140 18 VAL3160 19 VAL8180 20 VAL3200 9 VOL3160 -C.96873 -0 .57501 jHO.S7870_ - 0 . 5 78 72 * * * * * * * * - 0 . 1 9 392 0.15427 0.18604 _0.17344 6.17304 •*••*•** 0.96913 -0. 10662 -0.B9319E-01 _-0. 87268E-01 -6.88123E-01 0 . 9 5 2 8 1 E - 0 1 0 . 2 4 0 9 0 E - 0 1 0 . 2 8 3 7 3 E - 0 1 0 . 2 7 2 5 7 E - 0 1 0 . 3 2 1 4 6 E - 0 1 0 . 1 6 7 0 5 E - 0 1 0 . 1 7 6 0 1 E - 0 1 0 . 1 8 1 1 7 E - 0 1 -0.14987 0.53295E-02 -0.88033E-02 8 VOL3140 10 VOL3180 11 V0La200 T VOL3120 6 VOL8100 5 V0L380 - 0 . 1 9 3 3 8 -C.15517 - 0 . 1 9 6 9 8 - 0 . 2 1 2 2 4 - 0 . 2 2 9 3 9 -0 .23223 0.56859 0.56663 0.96293 0.55875 0.53800 0.B8344 -0.15015 -0.14968 -0.15328 -0.16042 -0.18417 -0.24841 0 . 3 4 7 5 0 E - 0 1 - 0 . 1 3 8 3 4 E - 0 1 - 0 . 2 8 0 3 1 E - 0 1 6 . 8 4 8 1 7 E - 0 1 0 . 1 6 3 9 1 0 . 3 0 7 8 8 - 0 . 1 3 8 5 7 E - 0 1 - 0 . 2 9 O 3 7 F - 0 2 0 . 2 0 3 3 3 E - 0 2 - 0 . 1 6 7 4 6 E - 0 1 - 0 . 2 1 9 2 0 E - 0 1 - 0 . 2 8 8 8 9 E - 0 1 4 V0L360 - 0 . 2 3 3 1 4 2 VAL MOM -0.35260_ 1 VOL NOW -0.16961 3 V0L340 -0.26161 0.78903 **•*•*•• 0.45265 0.50079 0.62007 -0.30849 •**•••** ^0.80010 -0.83842 ******** -0.34573 0 . 4 7 1 7 9 0.14449 0.91678E-01 * * * * * * * * 0.64230 - 0 . 3 3 B 5 2 E - 0 1 0.40995E-02 -0.19123E-01 - 0 . 4 9 2 4 6 E - 0 2 *»»»»*** ******** ******** SUM OF SQUARED F ACTOR-LCADIMGS DIVIDED BY SUM OF COMMUNAL IT IES 0.44108 0.41428 0.95448E-01 0.42735E-01 0 . 6 4 5 3 0 E - 0 2 REGRESSION COEFFICIENTS FOR FACTOR SCORES FACTOR 1 VARIABLE 1 VOL NON 0.65893E-01 -0.83960E-01 -0.75377 -0.34574 -0.15961 2 VAL NOW 0.27321E-01 -0 . 1 1 4 0 1 -0.68219 - 0 . 1 8 9 5 6 0 . 9 2 3 7 6 E - 0 1 3 V0La40 0.36172E-01 -0.57135E-01 0.80654E-01 1 . 065 7 0 . 2 B B 7 1 4 V0L360 0 . 22988F-01 0.17539 0.14050 0 . 4 3 1 5 1 0 . 1 3 5 9 9 5 voLaso 0.58785E-01 -0.73450E-CI 0.29777E-01 0 . 5 5 8 6 6 -0 . 1 5 6 9 4 6 VOLS100 -0.13566E-01 0.12190 0 . 8 5 0 4 5 E - 0 1 0 . 5 9 5 0 6 E - 0 3 0 . 1 8 3 2 5 7 VOLal20 0.52214E-01 0 . 3 6 3 1 9 0.19740 - 0 . 2 4 6 8 6 -0 . 5 004 1E-01 8 V0L3140 0.0 0 .0 0 . 0 0 . 0 0 . 0 9 VOL «)160 0.0 0 . 0 0.0 0.0 0 . 0 10 VOLaiBO C.39076E-01 0 . 6 6 5 1 1 0.19681 -0 . 9 8 8 3 7 0 . 4 3 7 7 1 11 VOL 3200 ""o.o o . c 0.0 0 . 0 0 . 0 12 VAL340 -0.48789F-01 -0.3C8P5E-C1 0 . 7 7 8 6 9 E - 0 2 - 0 . 10910 - 2 . 6 2 73 13 VAL360 -0.10215 - 0 . 6 0 3 6 9 E-01 0.14283E-01 0 . 1 1 4 8 8 - 0 . 6 1 0 6 5 14 V A L 3 8 0 - 0 . 1 3 2 5 9 - 0 . 1 1 2 0 5 E - 0 1 0 . 1 5 8 6 2 E - 0 1 - 0 . 3 9 4 1 1 E - 0 2 0 . 2 7 7 9 8 15 V A L 3 1 0 0 - 0 . 12774 - 0 . 5 6 3 5 6 E - C 2 0 . 1 2 1 7 7 E - 0 1 - 0 . 6 4 7 8 6 E - 0 1 0 . 2 8 0 5 6 16 V A L 3 1 2 0 - 0 . 1 4 3 7 6 - 0 . 2 t 6 5 4 F - 0 1 0 . 7 2 5 9 2 E - 0 2 - 0 . 1 7 - . 1 8 E - 0 1 0 . 6 3 82 9 . 17 V A L 3 1 4 0 - 0 . 1 3 5 8 9 - 0 . 1 7 2 1 C F - C 1 0 . 5 1 0 6 4 1 - 0 1 0 . 7 3 3 2 1 F - O 1 0 . 4 8 5 4 3 18 V A L 3 1 6 0 - 0 . 1 4 0 3 0 0 . 5 6 2 9 6 E - 0 2 0 . 4 1 2 8 3 E - 0 1 - 0 . 7 7 3 8 5 E - 0 1 0 . 3 3 6 7 0 19 V A L 3 1 6 0 - 0 . 2 7 8 2 S - 0 . 5128 7 E - 0 1 0 . 6 4 9 3 6 E - 0 1 - 0 . 6 3 3 4 & E - 0 1 0 . 6 6 9 4 1 NO ON 127 APPENDIX VII Volume And Value Y i e l d C l a s s e s From C l u s t e r A n a l y s i s AGE WEtGHTED VOLUME YTEIO CLASSES IN YRS. IN CCF/ACRE i i - i n j * ^ ̂  • ' »-»v »- _ _ _ — — — > 1 1 _____ _ _ _ SI3S3S1 1 - - - - • - 4 5 t s s r i a s s s s s s 6 s s s s s s s s i B t r 7 8 SS StSSS—'SSSSSCSSSSSSSS 9 SSSSSS8SS9 10 sazvsscssi 20 J 0.92 0.00 0.11 0.0 0.18 0.02 2.27 0.36 0.00 0.00 •0! 12.69 6.59 4.34 1.51 2. 10 5. 16 17.78 2.70 8.06 10.88 60! 22.63 15.54 9.98 5.63 5.01 12.05 29.56 6.49 18.47 27.40 80: 29.55 24.57 15.44 tl.*8 7.96 19. 13 37.66 10.55 28.22 41.65 lOOt 34.20 32.24 19.78 16.65 10.37 25.20 42.89 13.97 35.99 52.26 120: 37.02 37.02 22.75 19.74 12.22 29.05 46.12 16.68 41.10 58.62 140! —3-B.T4 40.02 24. T6 21.76 13.43 31. 49 48.07 18.43 44.43 62.59 160: 39.63 41.65 25.79 22.99 14.03 32.82 49.24 19.33 46.35 64.68 180J 40.09 42.52 26.34 23. 73 14.31 33.55 50.01 19.89 47.32 65.45 200! 40.23 42.64 26.53 23.97 14.43 33. 70 50.20 20. 13 47.55 65.19 ho 00 * AGE IN YRS. WEIGHTED IN VOLUME YIELD CLASSES CCF/ACRE > — 11 13 14 15 2 0 : 0 .0 0.28 1.10 5. 75 2 . 43 4 0 : 9 .30 2 1 . 2 3 8.63 ?8 .74 20 .29 60S 23.11 4 6 . 7 0 " 1 6 . 7 0 43 .75 35 .73 8 0 : 35.71 6 3 . 9 6 23 .12 53.65 4 6 . 4 3 1 0 0 : 45 .62 7 1 . 1 8 27 .73 59 .40 53 .61 120: 51 .60 ~ 3 d . 7 l 62.91 58 .02 1*0: 55.32 7 1 . 6 1 32.71 64.83 6 0 . 7 3 1 6 0 : 57.28 6 8 . 7 7 34 .03 66.11 6 2 . 1 2 1 8 0 : 58.13 6 5 . 0 9 34 .90 " 6 7 . 07 6 2 . 8 7 2 0 0 : 58.01 60 .01 3 5 . 3 3 66 .74 6 3 . 1 6 EXECUTION T - 1 1 . 3 7 OR TERMINATED » 1 7 $ 3 . 3 6 . $3 .45T SSTG t AGE IN YRS. WEIGHTED ECONOMIC YIELD IN t/CCF CLASSES 1 2 ttllltltltktimflflslEHBltre 3 4 5 6 7 8 t==««r MS: exeats 9 10 • SltUHUII 20: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 40t 5E.77 •5.07 8.09 37.63 6.65 34.52 53.54 62.06 71.93 56.94 601 59.82 55.51 15.06 46.94 71.80 46.63 53.98 6 3.70 73.79 59.36 BOi 62.08 57.07 18.20 57.28 75.81 14.26 55.87 64. sr- '4.89 59.3V loot 63.23 5S.79 19.79 54.75 77.39 51.88 56.93 6 5.43 75.70 61.43 1201 63.96 59.34 20.50 56.63 78.19 56.28 57.69 6 5.80 76.18 61.68 140i 63.65 59.62 21.15 60.26 78.70 58.05 58.68 66. 54 76. 73 62.59 160t 64.66 62.44 21.57 60.90 78.75 58.88 60.85 66.40 75.81 63.03 leot 65.27 «1.96 21.90 61.19 79.01 59.03 60.97 66.77 76.66 62.73 ZOOt €5.47 ti. 14 22.1 5 61.41 79.21 59.25 61.15 67.00 76.80 63. 10 (jO O AGE IN YRS. WEIGHTED ECONOMIC YIELD IN S/CCF CLASSES f 11 -SCBCSS-CS3CS1 12 I3CSZSS 13 14 15 16 17 18 19 3:s::=z3is 20 20! 0.6 0.(3 0.0 0.0 0.0 0.0 0.0 0.0 U.U U.U AO! 23.85 •2.44 13.78 38.88 6.76 51.77 0.0 50.64 17.82 11. 70 60: 71.99 51.57 38.53 43.31 12.78 50.10 60.78 48.41 18.42 34.82 80: 75.46 55.76 54.53 56.30 15.70 55.18 68.77 53. 52 18.57 51. 53 100! 76.68 «8.28 50.23 50.34 17.19 57.08 71.47 55.18 18.62 47.26 120: 77.64 58.75 57.71 58.11 17.82 57.75 72.74 5 5.90 18.64 54.82 140: 78.15 56.66 58.57 58.45 18.44 55.20 73.53 53.46 18.63 55. BZ 160: 78.31 60.38 58.98 56. 86 18.84 59.42 73.90 57.62 18.65 56.26 ISO: 78.63 60.33 59.30 59.08 19.14 59.26 74. 27 5 7.50 18.64 56.58 200: 78.86 tC. 51 59.53 59.26 19.38 59.44 74.55 57.67 18.62 56. 80 1 AGE WEIGHTED ECONOMIC YIELD CLASSES IN YRS. IN t/CCF > : . 21 •tsttssstsssss 22 23 essss»* = 24 25 26 27 28 29 = == 3 3 = 30 s s z a s s x z a a u 20: 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 AO: 16.74 50. CI 70.15 25.02 4.10 66.26 6.06 45.91 S.78 52. 35 60: 66.92 47.87 71.40 37.16 10.31 67.71 36.82 44.84 45.14 54.23 S O : 70.54 72.26 49.04 13. IS 68.60 45. T6 49.29 52.00 b4. 84 1001 72.01 •3.14 72.91 45.21 14.65 69.14 47.56 51.27 54.59 54.63 120: 72.52 53.65 73.29 51.38 15.27 69.88 49.82 52.17 55.98 56,35 140: 7 3 . 23 !2.45 73.58 52 .11. 15.68 70.31 50.55 50.63 56.72 56.91 160: 73.26 56.06 73.16 52. 50 16.27 70.25 51.00 5 3.62 57.17 57.93 180: 73.50 55.83 73.57 52.79 16.57 70.48 51.25 53. 71 57.45 57.33 2 0 0 : EXECUTICr. T-11.83 CR 73.66 TERMINATEC -130 $3.80, 55.57 S3.86T 73.67 53.00 16.80 70.64 51.40 53.86 5 7.64 57. 52 *SIG 133 APPENDIX -VIII T r a n s p o r t a t i o n Economics By Compartment For The:Westlake PSYO COMPARTMENT REPORT ARTMENT REGION • OF * OF AVERAGE HAUL MIN. HAUL MAX. HAUL AVERAGE STANDS UNLOCATABLE STANDS COST ($/CCF» COST <$/CCFI COST U/CCF) DEV. COST 9 60 38 0 1.63 0.83 2.63 0.0 6 60 17 1 2.03 1.83 2.38 0.0 8 60 65 5 3.04 0.86 5.88 0.0 10 60 133 0 1.69 0.10 4.22 0.0 11 60 64 0 2.09 0.77 2.75 0.0 14 60 100 17 2.86 1.20 4.40 0.0 15 60 126 1 2.80 1.57 5.00 0.0 16 60 62 4 1.06 0.30 3.25 0.0 18 60 92 0 4.82 3.38 7.91 0.0 19 60 59 24 6.85 4.38 8.06 0.0 20 60 113 17 7.67 5.70 9. 10 0.07 21 55 58 28 6.98 6.25 7.69 0.0 22 60 123 1 4.48 2.05 6.71 0.0 23 60 151 8 4.47 2.85 6.93 0.21 23 55 64 5 5.25 4.26 6.42 0.0 24 60 140 1 4.22 0.03 6.45 1.21 24 55 84 2 7.05 6.20 8.90 0.25 12 60 95 0 4.10 2.13 6.73 0.0 17 60 54 3 2.51 1.36 3.62 0.0 22 55 70 15 4.72 2.88 6.84 0.0 25 60 68 3 6.76 6.05 8.41 0.0 39 60 15 0 2.91 2.69 3.06 0.0 44 60 12 0 6.59 6.43 6.77 0.0 76 55 11 0 10.13 9.96 10.34 0.0 77 55 64 0 9.35 8.21 10.31 0.01 21 60 65 0 7.99 6.99 8.97 1.04 40 60 4 0 3.34 3.29 3.35 0.0 43 60 12 0 6.42 3.95 6.89 0. 0 46 60 10 0 5.94 5.61 6.17 0.0 53 55 12 0 8.49 8.32 8.64 1.73 27 55 4 0 10.45 10.31 10.56 0.0 135 APPENDIX IX T r a n s p o r t a t i o n A n a l y s i s R e s u l t s For An I s l e P i e r r e A p p r a i s a l P o i n t - Stand 057 WESTLAKE PSYU - TRANSPORTATION NETWORK ANALYSIS ' A 6 E 42 TYPE ISLAND REPORT STAND NO. TYPE AGE SITE SLC USE CENTR0IO LOCATION IN LAT-LONG. OIST. TO NEAREST RD. INILESI RD. NO. O I ST . TO NAP IN ILES I HAUL COST IS/CUNITI ROAD DEVELOP RENT COST I t /CUNIT I •002160 8003160 •034160 •065160 COTD •033160 •001160 8064160 10001160 10029160 10098160 11034160 11013160 11043160 12001160 12096160 14068160 1403*160 141201*0 14062160 141221*0 19110160 190341*0 1S12T160 16013160 160T3160 16049160 1604*160 17033160 17033160 17020160 17001160 17002160 17040160 17019160 17031160 17032 1 60 18055160 18101160 18001160 18089160 18022160 18073160 19074160 18040160 19033160 19014160 19001160 19045160 I 300*7.60 1 •owiu a T T T T 5331.17 12252.33 0.69 19 s i . i a 11.26 0.0 5335.43 12252.20 0.51 IT 4 5 . ) 0 9.96 0.0 5327.89 12242.27 7.36 19 61.41 13.51 0.0 5331.43 12242.60 7.10 IT 92.40 11.99 0 . 0 5328.63 12242.80 6.97 19 4 1 . 0 2 13.42 0.0 5332.93 12250.23 2 .3 ) 17 47 .71 10.90 0.0 5331.77 12243.33 6.47 IT 51 .85 11.41 0.0 5339.98 12301.75 0.32 21 3 9 . 8 5 a. 77 0.0 5339.41 12306.08 0.96 22 7 .4 ) 1.6) 0.0 5341.48 12305.48 2.30 24 6 . 1 9 1.3* 0.0 5346.46 12314.71 2.31 2* 14 .87 2.60 0.0 5339.77 12313.30 1.32 2T 9 .93 1.79 0.0 5340.59 12312.62 0 . 6 6 29 6 . 3 7 1.19 0.0 5341 .33 12325.59 2.34 31 2 2 . 1 6 3.99 0.0 5342.27 12)25.41 3.39 31 23 .21 4 .18 0.0 5333.75 12313.80 0 .69 32 2 0 . 6 9 4 . 9 9 0.0 3338 .45 12312.73 2.40 27 11 .09 2.00 0.0 9336.33 12315.60 1.50 27 1 3 . 7 6 2.48 0.0 5300 .00 12300.00 20 .77 3 60 .41 19.29 0.0 5336.41 12316.70 1.00 27 14 .17 2.99 0.0 5336.96 12304.73 1.11 32 2 8 . 1 8 6 .20 0.0 5930.80 12 )09 .36 1.53 13 9 8 . 2 0 12 .30 0.0 9336.43 12304.53 1.02 32 2 8 . 1 5 6 .19 0.0 9337.38 12304.32 0 .40 21 44.11 9.70 0.0 5339 .35 12233.9) 1.51 IT 4 0 . T 0 8 . 9 * 0.0 5 3 ) 9 . 4 6 12254.77 1.09 18 3 0 . 7 7 a. 93 0.0 9337.41 12304.02 0.32 21 4 4 . 0 3 9 .69 0.0 5330.48 12256.46 1.71 19 9 1 . 9 7 11 .34 0.0 9329.23 12254.38 0.57 19 93 .19 11.69 0.0 5331.66 12254.50 0.21 19 4 9 . 4 0 10.87 0.0 5 ) 3 2 . 4 6 12256.19 1.04 19 4 6 . 9 7 10.24 0.0 5 3 3 0 . 6 6 12254.89 0.82 19 9 0 . 6 7 11.19 0.0 5 ) 2 9 . 8 0 12257.2) 1.69 1* 91 .23 11.27 0.0 5330.00 12257.2) 1.69 14 9 0 . 3 3 11.07 0.0 5 ) 2 9 . 7 7 12257.46 1.53 14 9 1 . 0 7 11.23 0.0 5 3 2 9 . 6 ) 1 2 2 5 4 . 6 ) 0.51 15 52 .02 11.62 0.0 5327.06 12)08.20 1.68 44 28 .71 6.32 0.0 5 ) 2 4 . 7 ) 12 )04.39 0.72 9 5 1 . 4 7 11.32 0.0 5330 .30 12)05.33 1.42 13 99 .49 12.21 0.0 5324 .80 12306.60 0 .63 9 9 2 . 2 9 11.49 0.0 5324.39 12304.63 1.05 9 9 1 . 8 0 11.40 0.0 5325.89 12306.80 0.82 9 92 .90 11.99 0.0 5325.03 12303.80 0.73 9 91 .06 11.23 0.0 5325.90 12305 . 46 0.49 9 5 1 . 2 ) 11.27 0 . 0 5321 .05 12305.27 0.51 • 4 2 . 8 9 9.43 0.0 5321 .05 12306.39 0 .25 8 41 .85 9.21 0.0 5325.25 12307.96 0.50 44 2 9 . 1 0 6 . 4 0 0.0 5300.00 12300.00 20 .77 1 1Q 60.41 3 1 . 9 7 D . 2 9 7.0) O.Q 0 . 0 1 5323 .35 12316 . 46 5*22 .05 I 2 3 l ? . 2 » 1 • 1.63 42 3 3 . 7 1 7 . 4 2 l . T S ' OJ 137 APPENDIX X Summary Of Cut Scheduling R e s u l t s - Case 1 Long_Term Short Term O b j e c t i v e maximize volume over 200 y r s . maximize volume over 30 y r s . O b j e c t i v e value at 30 years: 6,978.3 MCCF 7,802. 3 MCCF O b j e c t i v e value at 200 years: 39,265. 6 MCCF 38,422.1 MCCF Long run s u s t a i n e d y i e l d average: 1,831.9 MCCF/decade 1,831.9 MCCF/decade Volume harvested i n decade 1: 2,575.0 MCCF 2,879. ,1 MCCF Net revenue i n decade 1: $106.3 MM $116.5 MM 138 APPENDIX_XI Species Harvest By Timber C l a s s - Case. 1 SPECIES BREAKDOWN OF HARVEST IN OECAOE 1 - CASE I t LONG TERN TIMBER CLASS F C H B s CV PW PL PV L CT 0 NB BI 1 m»m*M mm A I S M I U O 1 PA VOLUME IN N C C F 7 0.33 0.0 0.0 0.27 7.87 0.0 0.0 3.94 0.0 0.0 0 . 0 3 0.0 0 . 0 0.13 0 .30 0 . 0 9 18.28 0.0 0.0 2.90 154.43 0.0 0.0 32.13 0.0 0 .0 0 . 70 0 .0 0 .0 1.97 6. 01 0 .0 14 17.69 0.0 0.0 0.84 5.74 0.0 0.0 5.27 0.0 0 .0 0 . 0 9 0 .0 0 .0 1.84 1.40 0 .0 1* 7.IS 0.0 0.0 O.OS 0.37 0.0 0.0 0.35 0.0 0.0 0 . 0 0 .0 0 . 0 0.19 0 .13 0 . 0 21 30.98 0.0 0.0 1.61 83.61 0.0 0.0 18.73 0.0 0 .0 0 . 43 0 .0 0 . 0 1.32 3 .67 0 .0 30 22.06 0.0 0.0 3.51 40 .39 0.0 0.0 370.15 0.0 0 .0 2 .49 0 .0 0 . 0 1.99 7.03 0 .0 3 * 20.12 0.0 0.0 4.18 38.52 0.0 0.0 282.43 0.0 0 .0 2 .66 0.0 0 .0 2.24 3.81 0 . 0 49 10.32 0.0 0.0 0.52 6.04 0.0 0.0 126.38 0.0 0 .0 0 .26 0 .0 0 .0 0 .44 1.2* 0 .0 94 27.99 0.0 0.0 1.70 18.51 0.0 0.0 185.97 0.0 0 .0 1.19 0 .0 0 . 0 2.79 3.29 0 .0 63 96.96 0.0 0.0 3.41 60.44 0.0 0.0 26.79 0.0 0 . 0 1.10 0 .0 0 .0 2 .40 4.11 0 .0 47 13.24 0.0 0.0 0.28 3.91 0.0 0.0 81.92 0.0 0.0 0 . 1 0 0 .0 0 .0 0 . 8 * 0 .07 0 .0 64 84.32 0.0 0.0 0.58 4.39 0.0 0.0 4.14 0.0 0 . 0 0 . 0 0 .0 0 . 0 1.74 1.99 0 .0 69 0.0 0.0 0.0 0.0 0.14 0.0 0.0 0.0 0.0 0 .0 3.37 0 .0 0 .0 0 . 0 • . 0 0 . 0 79 99.68 0.0 0.0 0.74 12.43 0.0 0.0 6.08 0.0 0 .0 0 .02 0 .0 0 . 0 2 .02 2 .90 0 . 0 •1 19.29 0.0 0.0 0.49 6.17 0.0 0.0 112.19 0.0 0 . 0 0 . 24 0 .0 0 . 0 1.44 1.3* 0 . 0 •3 0.14 0.0 0.0 0.04 0.28 0.0 0.0 1.06 0.0 0 .0 0 . 0 3 0 . 0 0 . 0 0 .02 0 . 09 0 . 0 91.09 0.0 0.0 0.63 4.7C 0.0 0.0 4.49 0.0 0 . 0 0 . 0 0 .0 0 .0 1.88 1.47 0 .0 «* 32.76 0.0 0.0 9.01 69.69 0.0 0.0 421.97 0.0 0 . 0 4.99 0.0 0 . 0 4.11 11.91 0 . 0 TOTALS* 408.09 0.0 0.0 30.32 913.59 0.0 0.0 1684.01 0.0 0 . 0 19 .99 0 .0 0 . 0 2 7 . 1 * M . T * 0 . 0 X l 20.7 0.0 0.0 1.0 17.9 0.0 0.0 57.4 0 .0 0.0 0 . 7 0 .0 0 .0 0 . 4 0 . 0 «3 SPECIES BREAKDOWN Of HARVEST IN OECAOE 1 - CASE 11 SHORT TERN TIMBER CLASS T 1* 14 30 34 3* 49 34 9* 43 47 43 49 TS M •1 33 • 3 92 94 TOTALS* I l 0.3) 11.69 T.13 22.06 2.60 20.12 10.32 21.99 49.31 96.34 13.24 •4.32 0.0 95.68 12.09 19.29 0.14 91.09 95.82 32.76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 775.15 0.0 20.2 0.0 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.27 0.84 0.05 3.51 0.02 4.18 0.52 1.70 1.41 3.41 0.28 0.58 0.0 0.74 0.92 0.45 0.04 0.63 6.18 9.01 7.87 5.74 0.37 40.39 0.13 38.52 6.04 18.51 40.64 60.44 3.91 4.35 0.14 12.43 16.56 6.17 0.28 4.7C 91.59 65.69 CV PM VOLUME IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PL M C C F 3.94 5.27 0.39 370.15 0.13 282.43 126.33 189.97 12.69 26.79 81.92 4.16 0.0 6.03 9.49 112.19 1.06 4.49 829.23 421.97 PV aaa a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.74 424.47 0.0 0.0 2484.65 0.0 0.9 11.1 0.0 0.0 64.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o : 0.0 0.0 0.0 0.0 0.0 0.0 CT • • • • • • 1 0.03 0.09 0.0 2.43 0.0 2.66 0.26 1.13 0.39 L.IO 0.10 0.0 3.37 0.02 0.05 0.24 0.03 0.0 3.32 6.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Bl 0.13 1.34 0.15 1.95 0.09 2.24 0.43 2.79 3.63 2.40 0.09 1.74 0 . 0 2.02 1. M 1.64 0. 02 1. M 4.35 4.11 0.30 1.40 0.13 7.03 0.09 S.31 1.29 3.29 2.49 4.11 0.37 1.99 0.0 2.30 1.00 1.39 0.05 1.47 12.99 11.99 PA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.63 0.0 0.6 0.0 0.0 32.23 40.39 0.0 0.0 0 .3 1.4 0.0 141 APPENDIX_XII Summary Of Cut Scheduling R e s u l t s - Case 2 Volume Value O b j e c t i v e : maximize volume over 200 y r s . maximize value over 200 y r s . O b j e c t i v e value at 200 years: $179.3 MM $200.4 MM Volume.production at 200 years: 39, 265. 6 MCCF 38,385. 3 MCCF Long run s u s t a i n e d y i e l d average: 1,831.9 MCCF/decade 1,831.9 MCZF/decade Volume harvested i n decade 1: 2,575.0 MCCF 2,864. 3 MCCF Net revenue i n decade 1: $106.3 MM $119.4 MM 142 APPENDIX XIII Summary Of Cut Scheduling R e s u l t s - Case 3 TRACS CARP Ob j e c t i v e maximize value over 200 y r s . maximize value over 200 y r s . O b j e c t i v e value a t 200 years: $200.4 MM $267.2 MM Volume p r o d u c t i o n at 200 years: 38,385. 3 MCCF 40,4 71. 2 MCCF Long run s u s t a i n e d y i e l d average: 1,831.9 MCCF/decade 1,755.7 MCCF/decade Volume harvested i n decade 1: 2,864.3 MCCF 3,442. 4 MCCF Net revenue i n decade 1: $1 19.4 MM $162.6 MM

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
Japan 4 0
Iran 1 0
China 1 0
United States 1 0
City Views Downloads
Tokyo 4 0
Mashhad 1 0
Beijing 1 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items