Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Comparative study of nutrient cycling in the subalpine mountain hemlock zone of British Columbia Krumlik, Jiri George 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1979_A1 K79.pdf [ 8.47MB ]
Metadata
JSON: 831-1.0075133.json
JSON-LD: 831-1.0075133-ld.json
RDF/XML (Pretty): 831-1.0075133-rdf.xml
RDF/JSON: 831-1.0075133-rdf.json
Turtle: 831-1.0075133-turtle.txt
N-Triples: 831-1.0075133-rdf-ntriples.txt
Original Record: 831-1.0075133-source.json
Full Text
831-1.0075133-fulltext.txt
Citation
831-1.0075133.ris

Full Text

COMPARATIVE STUDY OF NUTRIENT CYCLING IN THE SUBALPINE MOUNTAIN HEMLOCK ZONE OF BRITISH COLUMBIA by GEORGE J I R I KRUMLIK D i p l . Eng. F o r e s t r y , Prague U n i v e r s i t y of A g r i c u l t u r e , 1964 M. Sc. U n i v e r s i t y of B r i t i s h Columbia, 1974 A THESIS SUBMITTED IN THE REQUIREMENTS DOCTOR OF PARTIAL FULFILLMENT OF FOR THE DEGREE OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF FORESTRY We accept t h i s t h e s i s as conforming to the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1979 © George J i r i K r u m l i k , 197 9 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I ag ree tha t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r ag ree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook Place Vancouver, Canada V6T 1WS ABSTRACT T h i s study was undertaken to compare the o v e r s t o r y above-ground biomass, net prim a r y p r o d u c t i o n , and n u t r i e n t c y c l e i n t h r e e common types of s u b a l p i n e c o a s t a l f o r e s t s near Vancouver, B.C. Canada. Twelve sample p l o t s , r e p r e s e n t i n g t h r e e p l a n t a s s o c i a t i o n s of d i f f e r e n t m o i s t u r e regime, were e s t a b l i s h e d a l o n g an e l e v a t i o n t r a n s e c t . The f o l l o w i n g parameters were dete r m i n e d on each p l o t : o v e r s t o r y l i t t e r f a l l biomass and i t s m a c r o n u t r i e n t c o n t e n t , o v e r s t o r y t h r o u g h f a l l volume and i t s m a c r o n u t r i e n t c o n t e n t , above-ground t r e e biomass and i t s m a c r o n u t r i e n t c o n t e n t , t r e e b o l e wood i n c r e m e n t , annual net pr i m a r y p r o d u c t i o n and i t s m a c r o n u t r i e n t c o n t e n t , mean depth of f o r e s t f l o o r and i t s biomass. The q u a n t i t y of m a c r o n u t r i e n t s s u p p l i e d i n i n c i d e n t p r e c i p i t a t i o n was measured i n t h r e e f o r e s t openings i n the v i c i n i t y of the sample p l o t s . L i t t e r f a l l was sampled f o r 24 months, w h i l e t h r o u g h f a l l and i n c i d e n t p r e c i p i t a t i o n were sampled d u r i n g the summers of thr e e c o n s e c u t i v e y e a r s . Diameter increment f o r the l a s t 20 y e a r s was measured on increment c o r e s o b t a i n e d from 95 randomly s e l e c t e d t r e e s . Increment of t r e e b o l e s was c a l c u l a t e d from a l l o m e t r i c volume e q u a t i o n s and combined w i t h data on l i t t e r p r o d u c t i o n to p r o v i d e the e s t i m a t e of net pr i m a r y p r o d u c t i o n . D i s t r i b u t i o n of biomass and m a c r o n u t r i e n t s i n the above-ground t r e e l a y e r was c a l c u l a t e d by l o g a r i t h m i c e q u a t i o n s prepared i n a p r e l i m i n a r y s tudy . Sample p l o t s ranged i n e l e v a t i o n from 1250 to 1450 m. Tree co v e r c o n s i s t e d of mountain hemlock and P a c i f i c s i l v e r f i r i n - i i -v a r i o u s p r o p o r t i o n s w i t h some y e l l o w - c e d a r at the top and some we s t e r n hemlock at the bottom of the e l e v a t i o n t r a n s e c t . Mean age of t r e e s on the sample p l o t s ranged from 2 95 to 440 y e a r s . The above-ground t r e e s t a n d i n g biomass on the sample p l o t s was 389-731 t / h a , w i t h the l a r g e s t volumes on the mesic s i t e s . The annual net p r i m a r y p r o d u c t i o n was 1.77-3.35 t / h a . The biomass of o v e r s t o r y above-ground l i t t e r f a l l was 1.48-3.02 t / ( h a * a ) ; the amount of m a c r o n u t r i e n t s i n l i t t e r f a l l was 24-41 k g / ( h a * a ) . The l a r g e s t l i t t e r p r o d u c t i o n was on mesic s i t e s . There was a c o n s i d e r a b l e amount of e p i p h y t i c l i c h e n s i n the l i t t e r f a l l (71-426 kg//(ha*a)). The amount of n i t r o g e n i n i n c i d e n t p r e c i p i t a t i o n was g r e a t e r than i n t h r o u g h f a l l , i n d i c a t i n g t h a t the t r e e canopy e x t r a c t e d n i t r o g e n from r a i n w a t e r . More than 1 kg/ha of n i t r o g e n was e x t r a c t e d from r a i n w a t e r d u r i n g the summer sampling p e r i o d . In c o n t r a s t , up to 3 kg/ha of p o t a s s i u m , 1 kg/ha of c a l c i u m and 10 kg/ha of s u l p h u r were l e a c h e d from the t r e e canopy d u r i n g the 13 weeks summer sampling p e r i o d . I t i s p o s s i b l e t h a t the h i g h v a l u e f o r s u l p h u r r e f l e c t s the presence of a p u l p m i l l about 20 km southwest of the study a r e a . The r e s u l t s of the study were used to t e s t the h y p o t h e s i s t h a t d i f f e r e n c e s i n p h y t o s o c i o l o g i c a l c h a r a c t e r i s t i c s o c c u r r i n g on a t o p o g r a p h i c sequence a l o n g r e l a t i v e l y s h o r t e l e v a t i o n t r a n s e c t s are accompanied by s u f f i c i e n t l y l a r g e changes i n p a t t e r n s of ecosystem f u n c t i o n to d i s t i n g u i s h these s i t e s on a f u n c t i o n a l b a s i s . A n a l y s i s of the data supported t h i s hypo t h e s i s . - i i i -TABLE OF CONTENTS Page A b s t r a c t i L i st of Tables v i L i s t of F i g u r e s v i i i L i s t of Appendices x i Acknowledgements x i i Chapter 1. INTRODUCTION 1 1.1 O b j e c t i v e s 2 1.2 Design of the study 5 1.3 U n i t s used i n the t h e s i s 7 Chapter 2. LITERATURE REVIEW 8 2.1 Net pri m a r y p r o d u c t i o n of f o r e s t 11 ecosystems 2.2 Turnover of n u t r i e n t s i n l i t t e r f a l l 16 and t h r o u g h f a l l i n f o r e s t ecosystems 2.2.1 L i t t e r p r o d u c t i o n 16 2.2.2 T h r o u g h f a l l 20 2.2.3 Stemflow 24 2.2.4 T o t a l r e t u r n to the f o r e s t 24 f l o o r 2.3 Input of n u t r i e n t s to f o r e s t eocsystems 25 2.4 I n t e r n a l c y c l i n g : the t r a n s f e r of 26 n u t r i e n t s w i t h i n t r e e biomass CHAPTER 3. DESCRIPTION OF STUDY AREA 29 3.1 L o c a t i o n and d e s c r i p t i o n of sample 29 p l o t s 3.1.1 Paul Ridge p l o t s 29 3.1.2 Mamquam p l o t s 32 3.2 C l i m a t e 33 - i v -Page 3.3 Geology and s o i l 36 3.3.1. Geology and s o i l parent 36 m a t e r i a l 3.3.2. S o i l 40 3.4 V e g e t a t i o n 40 Chapter 4. METHODS 58 4.1 F i e l d s a m p l i n g 58 4.1.1 P l o t a rea 58 4.1.2 Tree m e n s u r a t i o n 59 4.1.3 O v e r s t o r y l i t t e r f a l l 60 4.1.4 O v e r s t o r y t h r o u g h f a l l 61 4.1.5 I n c i d e n t p r e c i p i t a t i o n 64 4.1.6 F o l i a r c h e m i s t r y 64 4.2 L a b o r a t o r y a n a l y s e s 65 4.2.1 Tree increment 65 4.2.2 L i t t e r f a l l 65 4.2.3 T h r o u g h f a l l and i n c i d e n t 68 p r e c i p i t a t i o n 4.2.4 F o l i a r c h e m i s t r y 69 4.3 Data p r o c e s s i n g and s t a t i s t i c a l 69 a n a l y s e s 4.3.1 Tree m e n s u r a t i o n 69 4.3.2 Biomass n u t r i e n t c o n t e n t 73 4.3.3 Net above-ground pr i m a r y p r o d u c t i o n 73 4.3.4 O v e r s t o r y l i t t e r f a l l 76 4.3.5 N u t r i e n t c o n t e n t of t h r o u g h f a l l 77 and i n c i d e n t p r e c i p i t a t i o n 4.3.6 S t a t i s t i c a l comparison of study 77 s i t e s V Page Chapter 5. RESULTS AND DISCUSSION 78 5.1 Tree s t a n d i n g biomass and n u t r i e n t 78 con t e n t 5.2 E s t i m a t e of the annual above-ground net 87 pri m a r y p r o d u c t i o n and n u t r i e n t uptake i n net p r i m a r y p r o d u c t i o n 5.3 L i t t e r p r o d u c t i o n and i t s n u t r i e n t 97 con t e n t 5.3.1. The biomass of l i t t e r f a l l 97 5.3.2. C o m p o s i t i o n of l i t t e r f a l l 100 5.3.3. N u t r i e n t c o n c e n t r a t i o n s 102 5.3.4. M a c r o n u t r i e n t c o n t e n t of 106 l i t t e r f a l l 5.3.5. Comparison of l i t t e r f a l l 109 among p l a n t a s s o c i a t i o n s 5.4 F o r e s t f l o o r biomass 115 5.5 T h r o u g h f a l l and at m o s p h e r i c 118 p r e c i p i t a t i o n 5.6 Comparison of the b i o g e o c h e m i c a l 123 c h a r a c t e r of the f o u r s i t e s 5.7 D i s c u s s i o n 132 Chapter 6. THE CHARACTER OF NUTRIENT CYCLING IN COASTAL 135 SUBALPINE FOREST AS REPRESENTED IN THE STUDY AREA Chapter 7. THE USEFULNESS OF NUTRIENT CYCLING STUDIES IN 140 FOREST MANAGEMENT Chapter 8. SUMMARY OF RESULTS 144 Chapter 9. CONCLUSIONS 147 L i t e r a t u r e C i t e d 150 Appendices 164 - v i -Table 2.1. Table 2.2. T a b l e 2.3. Table 2.4. T a b l e 2.5. Table 2.6. T a b l e 2.7. Table 2.8. Table 2.9. Table 2.10. T a b l e 2.11. T a b l e 3.1. T a b l e 3.2. T a b l e 3.3. LIST OF TABLES Comparison of the v a l u e s of above-ground biomass determined d i r e c t l y and by c a l c u l a t i o n f o r a c l e a r - f e l l e d p l o t i n Khao Chan r a i n f o r e s t , Southern T h a i l a n d . (Ogawa et a1. 1965). Mean annual l i t t e r p r o d u c t i o n of some f o r e s t stands i n the P a c i f i c Northwest area of the USA and Canada. Annual n u t r i e n t q u a n t i t i e s r e t u r n e d to the f o r e s t f l o o r i n l i t t e r f a l l by some P a c i f i c Northwest f o r e s t stands and some oth e r f o r e s t s t a n d s . Average v a l u e s i n kg/ha of the n u t r i e n t s i n the i n c i d e n t r a i n f a l l and i n the r a i n w a t e r under a p l a s t i c n e t . Volume and c a t i o n i c c o n c e n t r a t i o n s of p r e c i p i t a t i o n c a p t u r e d by open buckets and f o l i a r i n t e r c e p t i o n c o l l e c t o r s . D e p o s i t i o n of f i v e c a t i o n s c a p t u r e d by open and f o l i a r c o l l e c t o r s . C o n c e n t r a t i o n s of m a c r o n u t r i e n t s i n t h r o u g h f a l l , Mean annual amount of elements i n t h r o u g h f a l l . T o t a l r e t u r n of elements to the f o r e s t f l o o r . C o n c e n t r a t i o n s of m a c r o n u t r i e n t s i n i n c i d e n t r a i n f a l l . Mean annual amount of c h e m i c a l elements i n i n c i d e n t r a i n f a l l . Chemical a n a l y s e s of d a c i t e d e b r i s from Diamond Head, G a r i b a l d i Park and of q u a r t z d i o r i t e from the v i c i n i t y of Cheakamus s t a t i o n , n o r t h of Squamish. M i n e r a l c o m p o s i t i o n of d a c i t e d e b r i s from Diamond Head, G a r i b a l d i Park and of q u a r t z d i o r i t e from the v i c i n i t y of Cheakamus s t a t i o n , n o r t h of Squamish. Mean and maximum t r e e d i a m e t e r , h e i g h t , b a s a l a r e a , and t i m b e r volume f o r 12 sample p l o t s . Page 14 18 18 21 22 22 23 23 25 27 27 38 39 42 T a b l e 3.4. Some b a s i c s t a t i s t i c s f o r the sample p l o t s 43 - v i i -Table 3.5. T a b l e 3.6. Table 4.1. Table 4.2 Table 5.1. Table 5.2. T a b l e 5.3. Table 5.4. Table 5.5. Table 5.6. Table 5.7. Table 5.8. Table 5.9. Table 5.10. P l a n t s p e c i e s on the sample p l o t s and s p e c i e s r a t i n g s . Gross volume of t i m b e r i n t h r e e p l a n t a s s o c i a t i o n s . Biomass of t r e e stemwood c a l c u l a t e d by two s e t s of l o g a r i t h m i c e q u a t i o n s . Mean c o n c e n t r a t i o n s of m a c r o n u t r i e n t s i n biomass components of sampled mountain hemlock and P a c i f i c s i l v e r f i r on Mamquam p l o t . Mean annual net volume increment and p e r i o d i c annual net volume increment of t r e e stemwood. I m m o b i l i z a t i o n of m a c r o n u t r i e n t s i n the p e r i o d i c annual net increment of stemwood. Cur r e n t annual net p r i m a r y p r o d u c t i o n (NPP), r a t i o of NPP to b a s a l area and the uptake of m a c r o n u t r i e n t s i n NPP. Annual biomass and n u t r i e n t c o n t e n t of l i t t e r f a l l . S t a t i s t i c s of f o l i a g e l i t t e r f a l l . C o n c e n t r a t i o n s of m a c r o n u t r i e n t s and ash i n summer and w i n t e r l i t t e r f a l l . Homogeneity of l e a f l i t t e r f a l l on sample p l o t s from the same p l a n t a s s o c i a t i o n . Homogeneous s e t s of l e a f l i t t e r f a l l from d i f f e r e n t p l a n t a s s o c i a t i o n s . F o r e s t f l o o r biomass. Ten-point s c a l e of n u m e r i c a l i n d i c e s of b i o g e o c h e m i c a l parameters of ecosystems ( R o d i n and B a z i l e v i c h , 1967). C l a s s i f i c a t i o n of the study ecosystem types a c c o r d i n g to the 10 p o i n t - s c a l e c l a s s i f i c a t i o n system of Rodin and B a z i l e v i c h ( 1967) . Page 46-47 48 74 75 90 95 98 101 103 113 114 117 124 125 T a b l e 5.11. C l a s s i f i c a t i o n of some o t h e r P a c i f i c 126 Northwest f o r e s t s i t e s . - v i i i -LIST OF FIGURES Page F i g . 1 .1. Diagram showing the l o c a t i o n of the p l a n t a s s o c i a t i o n s t h a t were s t u d i e d a l o n g the e l e v a t i o n t r a n s e c t . 6 F i g . 2 .1 . A v i s u a l model of p o o l s and pathways of m i n e r a l c y c l i n g i n a f o r e s t ecosystem. 9-10 F i g . 3 .1 . L o c a t i o n of PX, PM , and PH s a m p l i n g areas on P a u l Ridge. 30 F i g . 3 .2. Topographic l o c a t i o n of sample p l o t s . 31 F i g . 3 .3. Q u a n t i t y of a t m o s p h e r i c p r e c i p i t a t i o n on P a u l Ridge d u r i n g the p e r i o d of August 1975 to February 1977. 35 F i g . 3 .4. Mean monthly temperatures below the f o r e s t canopy on PX, PM, and PH s i t e s ( i n °C) between August 1975 and F e b r u a r y 1977. 35 F i g . 3 .5. X e r i c s i t e — p l o t PX1. 49 F i g . 3 .6. X e r i c s i t e — p l o t PX2. 50 F i g . 3 .7. X e r i c s i t e — p l o t PX 3. 50 F i g . 3 .8. Mesic s i t e — p l o t PM1. 51 F i g . 3 .9. Mesic s i t e — p l o t PM1. 51 F i g . 3 .10 . Mesic s i t e — p l o t PM2. 52 F i g . 3 .11. Mesic s i t e — p l o t PM3. 52 F i g . 3 .12 . Mesic s i t e — p l o t M2. 53 F i g . 3 .13. Mesic s i t e - - p l o t M3. 53 F i g . 3 .14 . H y g r i c s i t e — p l o t PHI. 54 F i g . 3 .15. H y g r i c s i t e — p l o t PHI. 54 F i g . 3 .16 . H y g r i c s i t e — p l o t PH2. 55 F i g . 3 .17 . C l i m a t i c s t a t i o n on the h y g r i c s i t e . 55 F i g . 3 .18 . P a i r of l i t t e r and t h r o u g h f a l l c o l l e c t o r s . 56 F i g . 3 .19. L i t t e r c o l l e c t o r damaged by snow we i g h t . 56 F i g . 3 . 20. Rain c o l l e c t o r s on the open r i d g e . 57 F i g . 3 .21. T h r o u g h f a l l c o l l e c t o r . 57 Page F i g . 5 .1. D i s t r i b u t i o n of above-ground t r e e biomass on sample p l o t s . 80 F i g . 5 .2. D i s t r i b u t i o n of n i t r o g e n i n the above-ground t r e e blomas s. 80 F i g . 5 .3. D i s t r i b u t i o n of phosphorus i n the above-ground t r e e b i oma s s. 81 F i g . 5 .4. D i s t r i b u t i o n of potassium i n the above-ground t r e e biomas s. 81 F i g . 5 .5. D i s t r i b u t i o n of c a l c i u m i n the above-ground t r e e biomas s. 82 F i g . 5 .6. D i s t r i b u t i o n of magnesium i n the above-ground t r e e biomas s. 82 F i g . 5 .7. R e l a t i o n s h i p between t r e e growth and t r e e age. 91 F i g . 5 .8. P e r i o d i c annual wood increment on sample p l o t s . 91 F i g . 5 .9. Mean annual wood increment on sample p l o t s . 92 F i g . 5 .10. Mean stand age of sample p l o t s . 92 F i g . 5 .11. Comparison between annual net pri m a r y p r o d u c t i o n and the r a t i o NPP/BA. 96 F i g . 5 .12 . R e l a t i o n s h i p between stand age, g r o s s p r o d u c t i o n , s tand r e s p i r a t i o n , and net p r o d u c t i o n . 96 F i g . 5 .13 . T o t a l annual above-ground l i t t e r f a l l and annual l e a f l i t t e r f a l l biomass on sample p l o t s 99 F i g . 5 .14 . R e l a t i o n s h i p between above-ground t r e e biomass and l i t t e r f a l l biomass. 99 F i g . 5 .15 . Percentage of ash elements i n f o l i a g e l i t t e r f a l l . 105 F i g . 5 .16 . Q u a n t i t y of n i t r o g e n i n l i t t e r f a l l . 105 F i g . 5 .17. Q u a n t i t y of phosphorus i n l i t t e r f a l l . 107 F i g . 5 .18 . Q u a n t i t y of potassium i n l i t t e r f a l l . 107 F i g . 5 .19. Q u a n t i t y of c a l c i u m i n l i t t e r f a l l . 108 F i g . 5 .20. Q u a n t i t y of magnesium i n l i t t e r f a l l . 108 - x -Page F i g . 5.21. The r a t i o of l i t t e r f a l l b i o i a s s / b a s a l a r e a . 110 F i g . 5.22. Q u a n t i t y of t h r o u g h f a l l and n u t r i e n t s i n 119 t h r o u g h f a l l d u r i n g the summer of 1975. F i g . 5.23. Q u a n t i t y of t h r o u g h f a l l and n u t r i e n t s i n 119 t h r o u g h f a l l d u r i n g the summer of 1976. F i g . 5.24. R e l a t i o n s h i p among x e r i c , mesic and h y g r i c 129 s i t e s : a l o c a l c l a s s i f i c a t i o n s c a l e . - x i -LIST OF APPENDICES Page APPENDIX 1: P l a n t s p e c i e s l i s t . 164 APPENDIX 2: Rock specimens from sample p l o t s . 16.8 APPENDIX 3: Diameter, h e i g h t and t i m b e r volume of t r e e s 171 on sample p l o t s . APPENDIX 4: N u t r i e n t c o n c e n t r a t i o n s i n f o l i a g e . 1.73 APPENDIX 5: D i s t r i b u t i o n of biomass and m a c r o n u t r i e n t s 178 i n the above-ground t r e e components on the sample p l o t s . APPENDIX 6: Age and wood volume increment of sampled 187 t r e e s . APPENDIX 7: Annual biomass of l i t t e r f a l l and n u t r i e n t 18.9 c o n t e n t of l i t t e r f a l l . APPENDIX 8: Q u a n t i t y of c h e m i c a l elements i n t h r o u g h f a l l 194 and i n c i d e n t p r e c i p i t a t i o n . APPENDIX 9: L o c a t i o n of sample p l o t s . „19'6': - x i i -ACKNOWLEDGEMENTS I would l i k e to thank the chairman of my s u p e r v i s o r y committee, Dr. J . P. Kimmins f o r p r o v i d i n g the o p p o r t u n i t y to un d e r t a k e t h i s p r o j e c t and f o r h i s g u i d a n c e , a d v i c e and c r i t i c a l r e v i e w ; Drs. V. J . K r a j i n a , K. K l i n k a and R. C. Brooke f o r h e l p w i t h s i t e s e l e c t i o n , p l a n t s p e c i e s and p l a n t a s s o c i a t i o n s i d e n t i f i c a t i o n ; D rs. J . Demaerschalk and A. Kozak f o r t h e i r a d v i c e i n s t a t i s t i c a l a n a l y s e s ; Drs. T. M. B a l l a r d and L. M. L a v k u l i c h f o r t h e i r a d v i c e and c r i t i c a l r e v i e w ; Mr. Min Tsze and Ms. Heather S h e l l f o r t h e i r a s s i s t a n c e i n c h e m i c a l a n a l y s e s of samples; Ms. Susan Phelps and Mrs. Eva Germann f o r t h e i r a s s i s t a n c e i n computer programming; Ms. L o r i Lemmen f o r drawing graphs and t y p i n g . I a p p r e c i a t e the a s s o c i a t i o n w i t h , and the h e l p r e c e i v e d from, my f e l l o w graduate s t u d e n t s i n the course of s t u d y , e s p e c i a l l y John Y a r i e and Fred N u s z d o r f e r . Most of a l l , I thank my w i f e K a r i n f o r her p a t i e n c e , encouragement and moral support i n a l l stages of t h i s p r o j e c t . The r e s e a r c h g r a n t from B.C.F.S. P r o d u c t i v i t y Committee to Dr. J . P. Kimmins made t h i s p r o j e c t p o s s i b l e . - 1 -CHAPTER 1 INTRODUCTION Wi t h the e x c e p t i o n of o c c a s i o n a l n a t u r a l d i s a s t e r s such as f i r e , windthrow, l a n d s l i d e and i n s e c t k i l l , the h i g h - e l e v a t i o n f o r e s t s i n the s u b a l p i n e r e g i o n s of c o a s t a l B r i t i s h Columbia have remained r e l a t i v e l y u n d i s t u r b e d u n t i l r e c e n t l y . However, l o g g i n g a c t i v i t i e s i n these f o r e s t s have i n c r e a s e d s u b s t a n t i a l l y over the past two decades, and i n many p l a c e s the f o r e s t has been c l e a r c u t r i g h t up to the t i m b e r l i n e . In some r e g i o n s h a r v e s t i n g of c o a s t a l s u b a l p i n e f o r e s t s has a l r e a d y o c c u r r e d on a l a r g e s c a l e . C l e a r c u t s c o v e r i n g many square m i l e s have appeared i n many p l a c e s . R e l a t i v e l y l i t t l e i s known about s u b a l p i n e f o r e s t ecosystems i n B r i t i s h Columbia: t h e i r s t a b i l i t y , r e s i l i e n c e , and s u i t a b i l i t y f o r c o n v e r s i o n to managed, p r o d u c t i v e f o r e s t s . D e s c r i p t i v e s t u d i e s of these f o r e s t s have been r e p o r t e d by K r a j i n a (1959, 1965) and h i s s t u d e n t s P e t e r s o n (1964) and Brooke (1965, 1966, 1969), c u l m i n a t i n g i n a t r e a t i s e on the s u b a l p i n e p l a n t communities of sou t h w e s t e r n c o a s t a l B r i t i s h Columbia ( B r o o k e , P e t e r s o n and K r a j i n a 1970). However, p r o d u c t i v i t y and b i o g e o c h e m i c a l c y c l i n g of elements were not s t u d i e d and the r e i s a p a u c i t y of t h i s type of i n f o r m a t i o n i n the l i t e r a t a u r e . L arge areas of the c o a s t a l s u b a l p i n e f o r e s t s of B r i t i s h Columbia a r e i n a mature to over-mature s t a g e ; t r e e ages o f 500 y e a r s or more are not uncommon. The timber volume i n some cases - 2 -may be over 1000 m 3/ha, t r e e h e i g h t over 50 m and t r e e d i ameter at b r e a s t h e i g h t between 1 and 1.5 m. A p p a r e n t l y many of these ecosystems have not been a l t e r e d by any d r a s t i c changes f o r hundreds of y e a r s . Many are i n a steady s t a t e ( o r a p p r o a c h i n g i t ) i n which the c h a r a c t e r i s t i c s of the ecosystem are e i t h e r not changing or t h e i r r a t e of change i s too slow to be measured. The l i m i t e d g e o g r a p h i c e x t e n t of these ecosystems, the l a c k of data about t h e i r dynamics, t h e i r a p p a r e n t l y i n c r e a s i n g economic importance i n a w o r l d t h a t i s demanding more and more f i b e r and the ample evidence t h a t c o n v e n t i o n a l , l o w - e l e v a t i o n approaches to h a r v e s t i n g and management f r e q u e n t l y have produced l e s s than d e s i r a b l e consequences l e d to the study r e p o r t e d i n t h i s t h e s i s . The study was one component of a broader i n v e s t i g a t i o n , the r e s u l t s of which w i l l be r e p o r t e d elsewhere ( e . g . Y a r i e 1978 , N u s z d o r f e r 1979 , Kimmins e_t a_l. i n p r e p a r a t i o n ) . 1.1. O b j e c t i v e s The main o b j e c t i v e s of t h i s study were: 1. To q u a n t i f y the most i m p o r t a n t n u t r i e n t pathways of the o v e r s t o r y b i o g e o c h e m i c a l c y c l e ( S w i t z e r and Nelson 1972) ( s u c h as m i n e r a l uptake by net p r i m a r y p r o d u c t i o n and m i n e r a l elements r e t u r n e d w i t h above-ground l i t t e r f a l l and t h r o u g h f a l l ) i n u n d i s t u r b e d and mature types of the t h r e e most widespread p l a n t a s s o c i a t i o n s i n the S u b a l p i n e Mountain Hemlock Zone ( K r a j i n a 1965) i n the v i c i n i t y of Vancouver, B r i t i s h Columbia. N u t r i e n t dynamics r e s u l t i n g from annual r o o t m o r t a l i t y were not i n c l u d e d i n the s t u d y . 2. To e s t i m a t e the i n p u t of n u t r i e n t s by at m o s p h e r i c f a l l o u t to these p l a n t a s s o c i a t i o n s . 3. To e s t i m a t e the net pri m a r y p r o d u c t i v i t y and t r u e i ncrement of t r e e s i n these p l a n t a s s o c i a t i o n s . 4. To t e s t the h y p o t h e s i s t h a t d i f f e r e n c e s i n p l a n t s p e c i e s c o m p o s i t i o n (as r e f l e c t e d i n b i o g e o c l i m a t i c c l a s s i f i c a t i o n of s u b a l p i n e f o r e s t ecosystems proposed by Brooke ^_t a_l. , 1970) among thr e e s i t e s l o c a t e d on a s h o r t e l e v a t i o n t r a n s e c t are accompanied by s u f f i c i e n t l y l a r g e changes i n p a t t e r n s of ecosystem f u n c t i o n to d i s t i n g u i s h these s i t e s on a f u n c t i o n a l b a s i s . 5. To t e s t the h y p o t h e s i s t h a t the same p l a n t a s s o c i a t i o n ( s e n s u Brooke _e_t a_l. , 1970) o c c u r r i n g on two d i f f e r e n t p a r e n t m a t e r i a l s cannot be d i s t i n g u i s h e d by d i f f e r e n t p a t t e r n s of ecosystem f u n c t i o n ( a t l e a s t f o r the parameters measured). In o t h e r words, i d e n t i c a l p l a n t a s s o c i a t i o n s have i d e n t i c a l or v e r y s i m i l a r p a t t e r n s of ecosystem f u n c t i o n , independent of some e n v i r o n m e n t a l d i f f e r e n c e s between them. 6. To t e s t the h y p o t h e s i s t h a t the f u n c t i o n a l c l a s s i f i c a t i o n of worl d ecosystems proposed by Rodin and B a z i l e v i c h (1967) can a l s o be u s e f u l l y a p p l i e d on a l o c a l s c a l e , i n c l a s s i f y i n g the p l a n t a s s o c i a t i o n s a l o n g a t o p o g r a p h i c t r a n s e c t w i t h i n one b i o g e o c 1 i m a t i c zone ( S u b a l p i n e Mountain Hemlock Zone). - 4 -To f u l f i l these o b j e c t i v e s the f o l l o w i n g major s t e p s were under t a k e n : 1. Three p l a n t a s s o c i a t i o n s were i d e n t i f i e d ( p r i m a r i l y by t h e i r p l a n t s p e c i e s c o m p o s i t i o n ) and sample p l o t s were e s t a b l i s h e d a l o n g an e l e v a t i o n t r a n s e c t ( F i g . 1.1). These t h r e e p l a n t a s s o c i a t i o n s had s o i l s d e r i v e d from p a r e n t m a t e r i a l of v o l c a n i c o r i g i n . One of the p l a n t a s s o c i a t i o n s was r e p l i c a t e d on a d i f f e r e n t g e o l o g i c m a t e r i a l ( p l u t o n i c ) g i v i n g a f o u r t h study s i t e . 2. A d e t a i l e d d e s c r i p t i o n of the sample p l o t s was made, which i n c l u d e d t h e i r s i z e , a l i s t of p l a n t s p e c i e s and m e n s u r a t i o n a l data (dbh, h e i g h t and crown l e n g t h ) f o r a l l t r e e s on the sample p l o t s . 3. Increment c o r e s were taken to d etermine age and dbh i n c rement f o r a s e l e c t e d sample of t r e e s on the sample p l o t s . 4. Volume, biomass, and n u t r i e n t c o n t e n t were c a l c u l a t e d f o r a l l s t a n d i n g t r e e s on the sample p l o t s . 5. Tree b o l e volume increment of s t a n d i n g t r e e s and i m m o b i l i z a t i o n of m i n e r a l elements i n t h i s increment were c a l c u l a t e d . 6. Tree l i t t e r f a l l and t h r o u g h f a l l were monitored f o r 24 months. The r e s u l t i n g data were p r o c e s s e d to y i e l d e s t i m a t e s of the biomass of annual l i t t e r f a l l and the amount of n u t r i e n t s t r a n s f e r r e d a n n u a l l y by t h r o u g h f a l l and l i t t e r f a l l . 7. Net p r i m a r y p r o d u c t i o n and the n u t r i e n t c o ntent of net p r i m a r y p r o d u c t i o n were c a l c u l a t e d . 8. The f o u r sample s i t e s were then, c h a r a c t e r i z e d and compared i n terms of l i t t e r biomass, q u a n t i t y , of m i n e r a l elements w i t h i n l i t t e r , and t h r o u g h f a l l . 1.2. D e s i g n of the stu d y Four sample s i t e s were s e l e c t e d to r e p r e s e n t the t h r e e p l a n t a s s o c i a t i o n s ( K r a j i n a 1969). Three of the s i t e s were o r d e r e d a l o n g the t o p o g r a p h i c sequence i n such a way t h a t t h e y d i f f e r e d i n the f o l l o w i n g e n v i r o n m e n t a l p a r a m e t e r s : 1. e l e v a t i o n (1250 - 1450 m) 2. l e n g t h of snow d u r a t i o n (3 to 4 weeks d i f f e r e n c e from bottom to top of the sequence) 3. hy g r o t o p e ( x e r i c to h y g r i c ) The s o i l p a r e n t m a t e r i a l of, the f o u r t h s i t e d i f f e r e d from t h a t of the o t h e r t h r e e . T h i s d e s i g n can be r e p r e s e n t e d d i a g r a m a t i c a l l y as f o i l o w s : Name of E l e v a t i o n S i t e QJ 6 0 c T 3 trj •H pi 6 0 C i-H O r H CO CO PL, •a c CD o CO 4-1 o o o CU CO c CO CO OJ u 4-1 4-1 •H CO c o a) •H CD 4J u cO J- > H 0J i H OJ PX (1450 m a . s . l . ) Mamquam sample s i t e on d i f f e r e n t p a r e n t m a t e r i a l o o o m a . s . l . ) M (1400 m a . s . l . ) o o o PH (1250 m a . s . l . ) sample p l o t I sample s i t e PX s i t e PH s i t e PM & M s i t e s A - T m i as I F i g u r e 1.1. X e r i c s i t e Mesic s i t e Hygric s i t e Diagram showing the l o c a t i o n of the plant a s s o c i a t i o n s . t h a t were studied along the el e v a t i o n transect. V - Tm A - Tm 0 - Tp Vaccinio-Tsugetum mertensianae (Brooke e_t a l . 1970) Abieto-Tsugeturn mertensianae (Brooke et, a l . 1970) Oplopanaco-Thujetum p l i c a t a e (Brooke e_t a l . 1970) - 7 -1.3 U n i t s used i n the t h e s i s A l l r e s u l t s i n t h i s t h e s i s are r e p o r t e d i n m e t r i c u n i t s . The r e s u l t s from o l d e r p u b l i c a t i o n s i n Chapter 2 - L i t e r a t u r e r e v i e w , were c o n v e r t e d to m e t r i c u n i t s . The nomenclature of u n i t s f o l l o w s N a t i o n a l Standard of Canada (1976) and S e l e c t e d m e t r i c u n i t s and c o n v e r s i o n f a c t o r s f o r Canadian f o r e s t r y ( 1 9 7 4 ) . A l l u n i t s used throughout t h i s t h e s i s and t h e i r c o n v e r s i o n to B r i t i s h u n i t s a re d e f i n e d i n these two p u b l i c a t i o n s . - 8 -CHAPTER 2 LITERATURE REVIEW The f i r s t p u b l i s h e d d i s c u s s i o n of the exchange of m i n e r a l elements between s o i l and p l a n t biomass was perhaps t h a t of L i e b i g ( 1 8 4 0 ) . T h i s was f o l l o w e d d u r i n g the second h a l f of the 1 9 t h c e n t u r y by s e v e r a l o t h e r r e s e a r c h e r s who s t u d i e d the uptake of ash elements by p l a n t s . Perhaps the most i m p o r t a n t papers from t h a t p e r i o d came from Ebermayer (1876, 1882) and Weber (1876, 1881). The subsequent development of s t u d i e s on n u t r i e n t t u r n o v e r i s w e l l reviewed by Rodin and B a z i l e v i c h ( 1 9 6 7 ) . D u r i n g the l a s t decade a g r e a t number of p u b l i c a t i o n s concerned w i t h the c y c l e of c h e m i c a l elements i n b i o l o g i c a l systems have appeared. However, r e l a t i v e l y few of these have been concerned w i t h the e n t i r e n u t r i e n t c y c l e of a f o r e s t ecosystem ( e . g . Duvigneaud and Denaeyer-DeSmet 1967 , Cole e_t a 1. 1967 , C u r l i n 1971, G e s s e l e_t a l . 1973 , S w i t z e r and Nelson 1972 , Johnson and R i s e r 1974, Malkonen 1974, Turner and S i n g e r 1975, F o s t e r and M o r r i s o n 1976). Most s t u d e n t s of f o r e s t b i o g e o c h e m i s t r y have l i m i t e d t h e i r s t u d i e s to o n l y one or a few ecosystem compartments or pathways of n u t r i e n t t r a n s f e r . The r e a s o n f o r t h i s l i m i t a t i o n i s e a s i l y u nderstood i f one c o n s i d e r s the c o m p l e x i t y of the n u t r i e n t c y c l e i n a f o r e s t ecosystem, as shown i n the n u t r i e n t c y c l i n g f l o w diagram p r e s e n t e d i n F i g u r e 2.1. There are 10 major compartments and 24 pathways i n t h i s model. To q u a n t i f y a l l these pathways and compartments i s a f o r m i d a b l e t a s k even f o r a l a r g e and e x p e r i e n c e d group of r e s e a r c h e r s . - 9 -F i g u r e 2.1. A v i s u a l model of p o o l s and pathways of m i n e r a l c y c l i n g i n a f o r e s t ecosystem. ( m o d i f i e d a f t e r G e s s e l et a l . 1973) Key to the t r a n s f e r s i n the e l e m e n t a l c y c l i n g f l o w diagram, ( m o d i f i e d a f t e r Turner 1975) 1. Atmospheric i n p u t s , p h y s i c a l ( e . g . , p r e c i p i t a t i o n , N - f i x a t i o n , p o l l u t i o n , f e r t i l i z a t i o n , e t c . ) . 2. Ion a b s o r p t i o n and/or i n t e r c e p t i o n by the a e r i a l p o r t i o n of the pri m a r y p r o d u c e r . 3. L i t t e r f a l l . 4. St emf1ow. 5. Leaf wa s h . 6. B i o l o g i c a l N - f i x a t i o n . 7. Ion i n p u t from the atmosphere. 8. Ion i m m o b i l i z a t i o n . 9. Decomposer d e a t h . 10. Organic matter consumption by decomposers. 11. Ion m i n e r a l i z a t i o n by the decomposers. 12. D i r e c t i o n r e l e a s e from the o r g a n i c m a t t e r . 13. Held to i o n exchange s i t e s ( b o t h m i n e r a l and o r g a n i c ) . 14. Release from i o n exchange s i t e s ( b o t h m i n e r a l and o r g a n i c ) . 15. Organic t r a n s p o r t from the f o r e s t f l o o r to s u r f a c e m i n e r a l s o i l by l e a c h i n g and organisms. 16. Organic t r a n s p o r t w i t h i n the s o i l p r i m a r i l y by o r g a n i c c o l l o i d a l l e a c h i n g . 17. Root s l o u g h i n g . 18. Uptake by p r i m a r y p r o d u c e r s . 19. Ion f i x a t i o n and p r e c i p i t a t i o n . 20. M i n e r a l w e a t h e r i n g . 21. S u r f a c e e r o s i o n . 22. O v erland f l o w . 23. Deep seepage. 24. Drainage l o s s . 25. Drainage out of ecosystem. P R EC I P I TA T ION E C O S Y S T E M POS ITION A BOVE G R O U N D FOREST FLOOR SURFACE SOI L SUB SURFACE SOI L 18 < X O O O O 17 ORGANIC REACTIONS PRIMARY PRODUCER — » t 4 5 r Sr N. FIXERS FOREST FLOOR 15 DECOM-_LQ—J POSERS - L L _L2l JJL SOIL SURFACE f ORGANIC M. _LQ_ D E C O M - r POSERS 1 1 16 .12. _L8_ SOIL (DEEP) ORGANIC M. 10 DECOM-| POSERS 1 1 12 FIXATION POLLUTION PHYSICAL REACTIONS E T C . O V E R L A N D F L O W _L2_ J 4 EXCHANGE SITES 19 _13_ 14 E X C H A N G E SITES 22-JL4. 20 19 1 3 14 E X C H A N G E SITES J J L _L4_ 20 DEEP SEEPAGE 23 21 2 2 MINERALS Hi. MINERALS 24 24 o I DRAINAGE 25 - 11 -My study was concerned w i t h net p r i m a r y p r o d u c t i o n , l i t t e r f a l l , t h r o u g h f a l l , i n p u t from the atmosphere and n u t r i e n t r e l o c a t i o n w i t h i n f o l i a g e i n s u b a l p i n e f o r e s t ecosystems. The l i t e r a t u r e r e v i e w i s t h e r e f o r e l i m i t e d to p u b l i c a t i o n s r e l e v a n t to these t o p i c s . 2.1. Net p r i m a r y p r o d u c t i o n of f o r e s t ecosystems The methods f o r e s t i m a t i n g net p r i m a r y p r o d u c t i o n of f o r e s t ecosystems are summarized by Newbould ( 1 9 6 7 ) , W h i t t a k e r and Woodwell ( 1 9 7 1 ) , W h i t t a k e r and Marks ( 1 9 7 5 ) , and Chapman ( 1 9 7 6 ) . There are two major methods. In the f i r s t , the biomass of the community must be e s t i m a t e d t w i c e ( a t times t ^ and t2) w i t h s u f f i c i e n t a c c u r a c y to a s s u r e a r e l i a b l e e s t i m a t e of the biomass increment AB. P l a n t l o s s e s by death and shedding (L) and to consumer organisms (G) must be e s t i m a t e d f o r the same time p e r i o d , and then the net p r i m a r y p r o d u c t i o n (Pn) can be c a l c u l a t e d as: P n = AB + L + G In the second method, p l a n t s are measured o n l y once ( a t the end of the growing s e a s o n ) . S e p a r a t i o n of the biomass i n t o c u r r e n t year organs and o l d e r p a r t s and stem a n a l y s i s of p e r e n n i a l stem and branch biomass y i e l d s e s t i m a t e s of the amount of biomass formed over the past y e a r . The apparent growth increment (B 2N) i n t h i s procedure c o r r e s p o n d s to (Pn-LN-GN) where: LN - l i t t e r from newly formed biomass GN - l o s s through consumption by h e t e r o t r o p h i c o r g a n i s m s , from newly formed biomass B 2 - biomass of a p l a n t community at t ime t 2 ( = t 1 + A t ) - 12 -The net p r o d u c t i o n i s then e s t i m a t e d : Pn = B 2N + LN + GN B 2N a l o n e would be an u n d e r e s t i m a t e of the r e a l net p r o d u c t i o n , whereas (B 2+L+G) would be an o v e r e s t i m a t e (Newbould 1967). Most s t u d i e s of the net prim a r y p r o d u c t i v i t y of f o r e s t s are based on d i r e c t measurements of s i z e s and weights of p l a n t s and p l a n t p a r t s (Newbould 1967, W h i t t a k e r and Woodwell 1971). There a r e at l e a s t t h r e e methods of s y n t h e s i z i n g such measurements i n t o p r o d u c t i o n e s t i m a t e s : mean-tree, p r o d u c t i o n r a t i o , and r e g r e s s i o n a n a l y s i s ( W h i t t a k e r and Marks 1975). The r e g r e s s i o n a n a l y s i s approach i s most o f t e n used and g i v e s the most a c c u r a t e r e s u l t s . In t h i s method some r e a d i l y measured parameter such as stem diameter or t r e e h e i g h t i s c o r r e l a t e d w i t h the biomass of v a r i o u s t r e e components ( t r e e b o l e , b a r k , b r a n c h e s , f o l i a g e ) as w e l l as the whole t r e e biomass. These r e l a t i o n s h i p s are then used i n c o m b i n a t i o n w i t h a p p r o p r i a t e m e n s u r a t i o n a l data to c a l c u l a t e the biomass and p r o d u c t i o n of the whole f o r e s t s t a n d . A model t h a t has been w i d e l y employed i n the r e g r e s s i o n a n a l y s i s approach i s based upon the law of a l l o m e t r i c growth: l o g Y = a + b l o g X Where: Y = weight of the s t a n d i n g c r o p , or some component of the s t a n d i n g crop or p r o d u c t i o n X = some r e a d i l y measured parameter of the s t a n d i n g c r o p a and b are c o n s t a n t s . T h i s type of e x p r e s s i o n has been used to r e l a t e measurements such as b a s a l a r e a , diameter at b r e a s t h e i g h t (dbh) or h e i g h t to w e i g h t , volume or p r o d u c i t o n ( O v i n g t o n and Madgwick 1959, - 13 -W h i t t a k e r and Woodwell 1968, Satoo 1970, Turner and S i n g e r 1975, and o t h e r s ) . In some cases (Yoda 1968, K r u m l i k 1974, Madgwick and Satoo 19 75 , Gholz e_t a_l. 1 976 , and o t h e r s ) a more s a t i s f a c t o r y e s t i m a t e can be o b t a i n e d by i n c l u d i n g measurements of both diameter and h e i g h t i n the r e g r e s s i o n : l o g Y = a + b l o g (D 2H) I f the e s t i m a t e of the t o t a l s t a n d i n g crop i s o b t a i n e d from an a l l o m e t r i c r e g r e s s i o n by t a k i n g the sum of the a n t i l o g s of the p r e d i c t e d v a l u e s f o r the i n d i v i d u a l s , i t w i l l be b i a s e d and g i v e an u n d e r e s t i m a t e of the t r u e v a l u e . B a s k e r v i l l e (1972) and Mountford and Bunce (1973) suggest m u l t i p l i c a t i o n by a f a c t o r 2 / e s 2 to c o r r e c t f o r t h i s b i a s : y = e ($= 6 2/2) ( B a s k e r v i l l e 1972) where y = the e s t i m a t e d mean i n a r i t h m e t i c u n i t s of the (skewed) Y d i s t r i b u t i o n 6 2 = sample v a r i a n c e of the l o g a r i t h m i c e q u a t i o n o r W = es2/2 | e a + b x (Mountford and Bunce 1973) i = 1 6 X ± where W = t o t a l s t a n d i n g crop S2 = es t i m a t e d v a r i a n c e about the r e g r e s s i o n l i n e . x = some r e a d i l y measured parameter of the s t a n d i n g c r o p . a and b are c o n s t a n t s . The e q u a t i o n s of B a s k e r v i l l e (1972) and Mountford and Bunce (1973) have i d e n t i c a l meaning even though they are w r i t t e n i n d i f f e r e n t terms. - 14 -K l r a and S h i d e i (1967) g i v e an example of the a c c u r a c y of biomass e s t i m a t i o n o b t a i n e d by the a l l o m e t r i c method i n comparison w i t h the d i r e c t d e t e r m i n a t i o n of biomass ( i . e . w e i g h i n g , p h y s i c a l s i z e measurements, e t c . ) . ( T a b l e 2.1). V a l u e s o b t a i n e d by the a l l o m e t r i c method are v e r y c l o s e to the v a l u e s determined d i r e c t l y ; the d i f f e r e n c e v a r i e s from -4.5% to +11.5%. Table 2.1. Comparison of the v a l u e s of above-ground biomass det e r m i n e d d i r e c t l y and by c a l c u l a t i o n f o r a c l e a r - f e l l e d p l o t (10 x 40 m) i n Khao Chon r a i n f o r e s t , Southern T h a i l a n d (Ogawa e_t a_l. 1965) T o t a l T o t a l Leaf area Stem Branch wood Leaf shoot i n d e x t/ha t/ha t/ha t/ha t/ha ha/ha Determined d i r e c t l y 292 104 396 7.8 404 10.7 C a l c u l a t e d 279 116 395 8.2 403 11.2 R e l a t i v e e r r o r % -4.5 11.5 -0.25 5.1 -0.15 4.7 The annual net primary p r o d u c t i o n i n f u l l y formed biogeocoenoses (30-80 y e a r s o l d ) i n the c o n i f e r o u s and mixed f o r e s t subzone of the S o v i e t Union v a r i e s between 7 and 20, t/ha ( R o d i n and B a z i l e v i c h 1967). In the warm temperate r e g i o n s of the Japanese A r c h i p e l a g o the annual net p r i m a r y p r o d u c t i o n of b r o a d l e a f e v e r g r e e n f o r e s t s ranges between 10 and 30 t/ha of dry m a t t e r , w i t h the h i g h e s t f r e q u e n c y at 15-20 t/ha ( K i r a and S h i d e i 1967). Pine f o r e s t s have a somewhat lower r a t e , w i t h a peak - 15 -at 10-15 t / ( h a * a ) , w h i l e deciduous b r o a d l e a f f o r e s t s i n the c o o l temperate zone have the lowest net p r o d u c t i o n , at o n l y 5-10 t / ( h a * a ) . C o n i f e r o u s f o r e s t s i n s u b a r c t i c and s u b a l p i n e r e g i o n s have a h i g h e r p r o d u c t i o n w i t h a peak of 10-15 t / ( h a * a ) ( K i r a and S h i d e i 1967 , Tadaki e_t a_l_. 1970). Evergreen f o r e s t s , whether c o n i f e r o u s or b r o a d l e a f , a p p a r e n t l y are more p r o d u c t i v e than deciduous f o r e s t s . The net primary p r o d u c t i o n of f o r e s t s of the P a c i f i c Northwest f a l l s w i t h i n the range i n d i c a t e d by K i r a and S h i d e i (1967) and by Rodin and B a z i l e v i c h ( 1 9 6 7 ) . P l a n t communities dominated by 450 y e a r - o l d D o u g l a s - f i r * i n the c o o l - t e m p e r a t e w e s t e r n hemlock f o r e s t zone of western Oregon had above-ground net p r i m a r y p r o d u c t i o n from 6.3 to 10.1 t / ( h a ' a ) ( G r i e r and Logan, 1977). Comparable v a l u e s were 10.3 t / ( h a * a ) f o r a 100-120 y e a r - o l d western h e m l o c k - S i t k a spruce stand i n the S i t k a s p ruce zone, 12.7 t / ( h a * a ) f o r a 90-110 y e a r - o l d D o u g 1 a s - f i r - w e s t e r n hemlock stand i n the western hemlock zone, and 13.0 t / ( h a * a ) f o r a 100-130 y e a r - o l d n o b l e f i r - D o u g 1 a s - f i r s t a n d i n the P a c i f i c s i l v e r f i r zone of western Oregon ( F u j i m o r i et a l . 1976). The a b s o l u t e amount of net p r i m a r y p r o d u c t i o n v a r i e s i n r e l a t i o n to the age, q u a l i t y and s t o c k i n g of the f o r e s t s tand a l s o i n r e l a t i o n to b i o g e o c 1 i m a t i c and l o c a l e c o l o g i c a l c o n d i t i o n s . The maximum net p r i m a r y p r o d u c t i o n of c o n i f e r s u s u a l l y o c c u r s between the ages of 40 and 70 y e a r s . The * L a t i n names of p l a n t s p e c i e s are i n Appendix 1. - 16 -p r o p o r t i o n of net pri m a r y p r o d u c t i o n t h a t goes i n t o f o l i a g e remains f a i r l y s t a b l e at a p p r o x i m a t e l y 38-45% (Rodin and B a z i l e v i c h 1967) . 2.2 Turnover of n u t r i e n t s i n l i t t e r f a l l and t h r o u g h f a l l i n  f o r e s t ecosystems A g r e a t number of s t u d i e s have examined n u t r i e n t t u r n o v e r i n l i t t e r f a l l and t h r o u g h f a l l . Comprehensive reviews of l i t t e r f a l l s t u d i e s were p u b l i s h e d by V i r o ( 1 9 5 5 ) , Bray and Gorham ( 1 9 6 4 ) , and Rodin and B a z i l e v i c h ( 1 9 6 7 ) . Comprehensive reviews of t h r o u g h f a l l and f o l i a r l e a c h i n g have been p r e s e n t e d by Rodin and B a z i l e v i c h (1967) and by Tukey ( 1 9 7 0 ) , r e s p e c t i v e l y . 2.2.1. L i t t e r p r o d u c t i o n Most of the l i t t e r f a l l s t u d i e s have been undertaken i n f o r e s t s l o c a t e d i n low and medium e l e v a t i o n (under 1000 m) (Bray and Gorham 1964). Few s t u d i e s have been conducted on l i t t e r f a l l i n s u b a l p i n e f o r e s t s at h i g h e l e v a t i o n s . Annual above-ground l i t t e r p r o d u c t i o n ranges from 1 t / ( h a * a ) i n a r c t i c - a l p i n e f o r e s t s to 11 t/(ha*a) i n e q u a t o r i a l f o r e s t s ( B r a y and Gorham 1964). Rodin and B a z i l e v i c h (1967) r e p o r t e d v a l u e s of t o t a l l i t t e r f a l l f o r c o n i f e r o u s f o r e s t s i n c o o l temperate r e g i o n s of between 2 and 7 t / ( h a ' a ) . Some r e c e n t v a l u e s f o r l i t t e r f a l l i n the P a c i f i c Northwest appear to be i n c l o s e agreement w i t h t h i s range ( T a b l e 2.2). The amount of l i t t e r f a l l depends on stand c o m p o s i t i o n , age, c l i m a t e , n u t r i e n t s t a t u s and s i l v i c u l t u r a 1 treatment ( B r a y and Gorham 1964), but i s not dependent on the amount of s t a n d i n g t r e e biomass (Rod i n and - 17 -B a s i l e v l c h 1967) and may not be dependent on the s u c c e s s i o n a l s t a g e of the f o r e s t (Hurd 1971). In the m a j o r i t y of mature f o r e s t s of the n o r t h e r n c o n i f e r o u s r e g i o n the biomass of t o t a l l i t t e r f a l l i s e q u a l to 1.5-2% of p e r e n n i a l p l a n t biomass (Rodin and B a z i l e v i c h 1967). This p r o p o r t i o n i s i n c r e a s e d up to 9% i n young f o r e s t p l a n t a t i o n s and v a r i e s between 5 and 10% i n mountain pine f o r e s t s (Rodin and B a z i l e v i c h 1967). A d i s t i n c t r e l a t i o n s h i p may be e s t a b l i s h e d between the q u a n t i t i e s of l i t t e r f a l l , net p r i m a r y p r o d u c t i o n , and the green p a r t of the biomass ( R o d i n and B a z i l e v i c h 1967). There i s the p o s s i b i l i t y t h a t above-ground l i t t e r f a l l might se r v e as a s i m p l e and c o n v e n i e n t index to net pr i m a r y p r o d u c t i o n (Bray and Gorham 1964). The p r o p o r t i o n of d i f f e r e n t l i t t e r f a l l components v a r i e s g r e a t l y from p l a c e to p l a c e . R e s u l t s of e i g h t s t u d i e s , reviewed by Bray and Gorham (1964) i n d i c a t e d t h a t l e a f m a t e r i a l c o n t r i b u t e d 60-76% of l i t t e r , branches 12-15%, bark 1-14%, and f r u i t 1-7%. A c c o r d i n g to Rodin and B a z i l e v i c h ( 1 9 6 7 ) , the green p a r t s account f o r 40-50%, p e r e n n i a l above ground p a r t s f o r 30-40%, and r o o t s 5-20%. R e t u r n of 11 n u t r i e n t elements w i t h l i t t e r f a l l i n c o n i f e r o u s and mixed f o r e s t v a r i e s w i d e l y , between 40 and 230 kg/(ha*a) (R o d i n and B a z i l e v i c h 1967). Table 2.3 g i v e s some v a l u e s f o r n u t r i e n t s r e t u r n e d to the f o r e s t f l o o r i n l i t t e r f a l l i n the P a c i f i c Northwest of U.S.A. and Canada. - 18 -Table 2.2. Mean annual l i t t e r production of some forest stands i n the P a c i f i c northwest area of the U.S.A. and Canada Author Location Altitude m Age (approx.) ForeBt type L i t t e r f a l l kg/(ha.a) Tarrant et a l . 1951 P a c i f i c s i l v e r f i r western hemlock 1772* 1048 + Cole et a l . .1967 Washington 210 36 Douglas-fir 3112 Hurd 1971 southeast Alaska western hemlock/ Sitka spruce 2941 Abee and Lavender 1972 Oregon 610 975 1311 4-50 450 450 western hemlock western hemlock/ P a c i f i c s i l v e r f i r P a c i f i c s i l v e r f i r 5131 4530 6916 Kimmins 1975 B r i t i s h Columbia 100 90 Douglas-fir/ # western hemlock-salal 3906 # -moss 4589, -swordfern 5142 Turner and Singer 1975 Washington 1200 175 P a c i f i c s i l v e r f i r / western hemlock 3017 * Amount of l i t t e r f a l l was stated f o r a 24 month period, and interpolated for a 12 month period + needle l i t t e r f a l l only Table 2.3. Annual nutrient, quantities returned to the forest f l o o r i n l i t t e r f a l l by some P a c i f i c Northwest forest stands (kg/(ha-a)) and some other forest stands Altitude Age m N P K Ca Mg Author 22.2 2.1 4.3 16.2 1.0 Tarrant et a l . 19511 8.1 1.1 2.0 6.3 0.7 Tarrant et a l . 1951 2 36 210 13.6 0.2 2.7 11.1 3.5 Cole et a l . 1967 3 457 21.9 3.9 6.4 71.5 1.1 Abee and Lavender 1972 762 32.7 5.6 9.8 63.1 1.1 Abee and Lavender 1972 175 1200 16.3 2.0 7.3 39.7 2.3 Turner and Singer 1975 15.1 1.0 4.0 10.0 2.0 Chandler 1943 4 36.0 2.6 3.5 32.3 4.6 Chandler 1 9 4 3 5 - - 4.7 17.8 2.0 Grier and Cole 1 9 7 2 6 P a c i f i c s i l v e r f i r , foliage l i t t e r only Western hemlock, fo l i a g e l i t t e r only The Kg value i s from Turner and Singer (1975) Hemlock, fo l i a g e only, Hew York State Balsam f i r , f o l i a g e only, Hew York State l o c a t i o n Washington State, Other locations as i n Table 2.2. - 19 -The gr e e n , a n n u a l l y - a l i e n a t e d p a r t s of p l a n t s c o n t a i n the g r e a t e s t p r o p o r t i o n of the m i n e r a l elements (up to 90%) i n the above-ground l i t t e r f a l l . Because the m i n e r a l elements of the green p a r t s make such a s i g n i f i c a n t c o n t r i b u t i o n to l i t t e r f a l l , the b a s i c f e a t u r e s of the r e t u r n of m i n e r a l elements to the s o i l may be a s s e s s e d from data f o r the l e a f l i t t e r f a l l a l o n e w i t h o u t p a r t i c u l a r l o s s of a c c u r a c y (Ro d i n and B a z i l e v i c h 1967). L i t t e r f a l l i s unevenly d i s t r i b u t e d throughout the y e a r . In c o n i f e r o u s f o r e s t s of the c o o l temperate zone, most of the l i t t e r f a l l s d u r i n g autumn and w i n t e r . Abee and Lavender (1972) observed i n the o l d D o u g l a s - f i r stands i n Oregon t h a t the needle c a s t was g r e a t e s t i n the f a l l , d e c r e a s e d d u r i n g the w i n t e r , and g r a d u a l l y i n c r e a s e d d u r i n g s p r i n g . Methods f o r the e s t i m a t i o n of l i t t e r p r o d u c t i o n are d i s c u s s e d by Newbould ( 1 9 6 7 ) , Medwecka-Kornas ( 1 9 6 8 ) , and Chapman ( 1 9 7 6 ) . Medwecka-Kornas (1968) s u g g e s t s c i r c u l a r t r a p s and p l o t s t o d e c rease the edge e f f e c t . The s i z e and shape of the l i t t e r t r a p s used by d i f f e r e n t i n v e s t i g a t o r s has v a r i e d g r e a t l y . Most i n v e s t i g a t o r s have used square l i t t e r t r a p s of v a r y i n g s i z e : 1 . 22 x 1 . 22 m (4 x 4 f t ) were used by Chandler ( 1943); 0.61 x 0.61 m (2 x 2 f t ) by Owen (19 5 4 ) ; 0.457 x 0.457 m (18 x 18 i n . ) by Cole e_t a_l. ( 1967), G r i e r e_t al_. ( 1972) and Turner and S i n g e r ( 1975); 0. 508 x 0.508 m (20 x 20 i n . ) by Abee and Lavender ( 1 9 7 2 ) ; 0.5 x 0.5 m by Cromack and Monk ( 1 9 7 5 ) , and 1 x 1 m by Johnson and R i s s e r (1974) and by Kimmins ( 1 9 7 5 ) . R e c t a n g u l a r t r a p s 0.305 x 0. 61 m (1 x 2 f t ) were used by Hurd ( 1 9 7 1 ) , and c i r c u l a r t r a p s w i t h a diameter of 0.53 m were used by Gosz e_t a l . ( 1972) . - 20 -2.2.2. T h r o u g h f a l l L e a c h i n g i s d e f i n e d as the removal of substances from p l a n t s by the a c t i o n of aqueous s o l u t i o n s , such as r a i n , dew, m i s t , and fog (Tukey 1970). T h r o u g h f a l l (crownwash) i s the s o l u t i o n t h a t has passed through the canopy of the s t a n d ; hence, i t s n u t r i e n t c o n t e n t i s the sum of i n p u t by p r e c i p i t a t i o n p l u s n u t r i e n t s l e a c h e d from the canopy ( l e a v e s and t w i g s ) and/or the removal of dust and t r e e o r g a n i c matter from the s u r f a c e ( T u r n e r 1975). Loss from the s o l u t i o n may occur by f o l i a r r e - a b s o r p t i o n (Rapp c i t . by Turner 1975 , C a r l i s l e e_t al_. 1966). Not a l l the r a i n w a t e r t h a t f a l l s on t r e e crowns reaches the f o r e s t f l o o r . P a r t of i t e v a p o r a t e s from the f o l i a g e , branches and t r e e t r u n k s . T his phenomenon i s c a l l e d i n t e r c e p t i o n . The p r o p o r t i o n of r a i n w a t e r l o s t by i n t e r c e p t i o n depends on the t r e e s p e c i e s , t r e e age, d e n s i t y , amount of r a i n f a l l , and wind v e l o c i t y , and may account f o r up to 80% of the r a i n f a l l i n the case of young dense c o n i f e r o u s stands and s m a l l amounts of p r e c i p i t a t i o n ( O v i n g t o n 1954). A summary of r a i n f a l l i n t e r c e p t i o n f o r c e r t a i n c o n i f e r s i n North America was prepared by Helvey (1971) and i n England by Ovington ( 1 9 5 4 ) , w h i l e Hoover (1971) d i s c u s s e d the snow i n t e r c e p t i o n and r e d i s t r i b u t i o n i n the f o r e s t . A m a t h e m a t i c a l model f o r p r e d i c t i n g r a i n f a l l i n t e r c e p t i o n i n f o r e s t s was developed by R u t t e r et_ aj.. ( 1975 ) . Tree c a n o p i e s f u n c t i o n a l s o as a f i l t e r to c a t c h dust and a e r o s o l s , and on foggy days vapor condenses on f o l i a g e and t w i g s and d r i p s t o the f o r e s t f l o o r . The amount of r a i n w a t e r and n u t r i e n t s under a set of p l a s t i c n e t s and i n an open c o l l e c t o r were compared by N i h l g a r d ( 1 9 7 0 ) . He found t h a t i n s p i t e of - 2 1 -a p p r o x i m a t e l y e q u a l amounts of r a i n w a t e r , the c o n c e n t r a t i o n of n u t r i e n t s , and t h e r e f o r e the amount of n u t r i e n t s , was much h i g h e r i n the r a i n w a t e r under the p l a s t i c n e t s than i n the i n c i d e n t r a i n f a l l ( T a b l e 2.4.) Tab l e 2.4. Average v a l u e s i n kg/ha ( s a m p l i n g p e r i o d 8 months) of the n u t r i e n t s i n the i n c i d e n t r a i n f a l l (1) and i n the r a i n w a t e r under a p l a s t i c net (2) ( N i h l g a r d 1970) Prec i p . q u a n t i t y N P S K Ca Mg 1 276 2.13 19 2.2 0.29 0.99 0.20 2 291 5.17 72 8.4 1.00 5.47 1.60 Another experiment of t h i s k i n d was undertaken by S c h l e s i n g e r and R e i n e r s ( 1 9 7 4 ) . T h e i r apparatus c o n s i s t e d of p a i r s of p o l y p r o p y l e n e b u c k e t s . One bucket of each p a i r c o n t a i n e d p l a s t i c a r t i f i c i a l f o l i a g e s e l e c t e d to s t r u c t u r a l l y resemble balsam f i r (Ab i e s balsamea ( L . ) M i l l . ) . The r e s u l t s of t h i s experiment are summarized i n Tables 2.5 and 2.6. The d i v i s i o n of t h r o u g h f a l l n u t r i e n t s between s u r f a c e wash and a c t u a l l e a c h i n g s t i l l remains unanswered. A few examples of the c o n c e n t r a t i o n of c h e m i c a l elements i n t h r o u g h f a l l are g i v e n i n Table 2.7. Some common v a l u e s f o r the amount of c h e m i c a l elements r e a c h i n g the f o r e s t f l o o r i n the t h r o u g h f a l l are p r e s e n t e d i n Table 2.8. - 22 -Table 2.5 Volume (mL) and c a t i o n i c c o n c e n t r a t i o n s (mg/L) of p r e c i p i t a t i o n c a p t u r e d by open buckets and f o l i a r i n t e r c e p t i o n c o l l e c t o r s at 1372 m on Mt. M o o s i l a u k e , N.H. ( S c h l e s i n g e r and R e i n e r s 1974) C o l l e c t o r Volume Ca Mg Na K open f o l i a r 6 821 30 558 0.21 0.39 0.06 0.08 0.19 0.20 0.11 0.15 Table 2.6 D e p o s i t i o n of f i v e c a t i o n s i n yg/day c a p t u r e d by open and f o l i a r c o l l e c t o r s a t 1372 m on Mt. M o o s i l a u k e . C o l l e c t o r s were mounted f o r p e r i o d s of a week at monthly i n t e r v a l s from December through August ( S c h l e s i n g e r and R e i n e r s 1974) C o l l e c t o r Ca Mg Na K open 20 6 18 11 f o l i a r 166 36 88 63 Some a s p e c t s of t h r o u g h f a l l s a m p l i n g are d i s c u s s e d by Kimmins ( 1 9 7 3 ) , such as the v a r i a b i l i t y of volume and c a t i o n c o n c e n t r a t i o n among t h r o u g h f a l l samples, d i f f e r e n t methods of t h r o u g h f a l l s a m p l i n g , and the i n f l u e c n e of the l e n g t h of the c o l l e c t i o n p e r i o d on the data v a r i a b i l i t y . He c o n c l u d e d t h a t the use of f i x e d c o l l e c t o r s i n heterogenous f o r e s t s r e s u l t s i n h i g h s p a t i a l v a r i a n c e of t h r o u g h f a l l parameters; t h e r e f o r e , e x c e s s i v e l y l a r g e numbers of c o l l e c t o r s a re r e q u i r e d to o b t a i n - 23 -Table 2.7. C o n c e n t r a t i o n s of m a c r o n u t r i e n t s i n t h r o u g h f a l l (mg/L) N P K Ca Mg Reference - 0.12 6.3 4.0 Tamm 1951 0. 0 . 2 05-1.0 0.18 0.2-42 1.1 .8 1. 0-128.8 0 0.4 .5-12.5 Madgwick and Ovington 1959 0.18 Abee 1973 1 ^ P a c i f i c s i l v e r f i r average f o r 2 y e a r s . s t and at e l e v a t i o n of 1311 m. Values are Table 2.8. Mean annual kg/(ha«a)) amount of elements i n t h r o u g h f a l l ( i n N P K Ca Mg Reference - - 22.6 24.1 8.8 Madgwick and Ovington 1959 8 . 8 1.3 28.1 17.2 9.4 C a r l i s l e e_t a l _ . 1966 8.5 0.1 9.9 9.0 3.0 N i h l g a r d 1970 10. 6 0.6 26.9 7.0 2.0 Eaton et a_l. 1973 1. 5 0.3 10.7 3.5 - Cole e_t a l . 1967 3.4 2 . 7 21.7 4.4 2.1 Abee and Lavender 1972 1.3 0 .1 11.5 5.4 2.1 Turner and S i n g e r 1975 - - 7 . 8 6.1 1. 3 Kimmins 1975 1 - - 19.5 12 . 2 3.7 Kimmins 1975 2 1s a l a l p l o t , the l o w e s t t h r o u g h f a l l v a l u e g i v e n ^ s a l m o n b e r r y p l o t , the h i g h e s t t h r o u g h f a l l v a l u e g i v e n - 24 -r e a s o n a b l y a c c u r a t e and p r e c i s e d a t a . The number of c o l l e c t o r s may be reduced u s i n g the " r o v i n g c o l l e c t o r method". The major problem of t h i s method and i t s reduced number of c o l l e c t o r s i s t h a t w h i l e i t may r e s u l t i n s m a l l s t a n d a r d e r r o r s as compared w i t h the f i x e d c o l l e c t o r method, i t may be a s s o c i a t e d w i t h l e s s a c c u r a t e e s t i m a t e s of the means. 2.2.3. Stemflow Stemflow i s the s o l u t i o n t h a t i s c h a n n e l l e d down from the branches ot the stem and then f l o w s down the b o l e of the t r e e . The n u t r i e n t c o n t e n t of stemflow i s thus d e r i v e d from i n c i d e n t p r e c i p i t a t i o n , crown wash, and the washing of the t r e e t r u n k . The p r o p o r t i o n of n u t r i e n t s d e p o s i t e d on the f o r e s t f l o o r by st e m f l o w i s u s u a l l y , but not a l w a y s , s m a l l . N u t r i e n t s i n stemflow accounted f o r 1-4% of the t o t a l i n the study of F o s t e r and G e s s e l ( 1 9 7 2 ) , 5-10% of the t h r o u g h f a l l i n the study of Eaton e t a1 . ( 1973), and 5-30% of the t h r o u g h f a l l , depending upon the n u t r i e n t , i n the study of Abee and Lavender ( 1 9 7 2 ) . Stemflow i s g e n e r a l l y a minor p a r t of the r e t u r n to the f o r e s t f l o o r , but i t s importance v a r i e s w i t h the s p e c i e s and the age of the s t a n d . Stemflow i s u s u a l l y h i g h e r i n n u t r i e n t c o n c e n t r a t i o n than t h r o u g h f a l l (Turner 1975). 2.2.4 T o t a l r e t u r n to the f o r e s t f l o o r The t o t a l r e t u r n of c h e m i c a l elements to the f o r e s t f l o o r i s the sum of l i t t e r f a l l , t h r o u g h f a l l , and stemflow. Examples f o r the P a c i f i c Northwest are g i v e n i n Table 2.9. - 25 -Table 2.9 T o t a l r e t u r n of elements to the f o r e s t f l o o r ( l i t t e r f a l l , t h r o u g h f a l l , and stemflow, where s t u d i e d ) i n kg/(ha*a) N P K Ca Mg Reference 16 . 4 0.6 15 . 8 18.5 — Cole _et al. 1967 30 . 7 7.5 29.8 71.7 3.2 Abee and Lavender 1972 17 . 6 2.1 18.8 45.1 4.4 Turner and S i n g e r 1975 2. 3 Input of nut r i e n t s to f o r e s t e c osy s t ems There are s e v e r a l d i f f e r e n t sources of i n p u t of n u t r i e n t s to an ecosystem, such as wet p r e c i p i t a t i o n and dry a t m o s p h e r i c f a l l o u t , the l a t e r a l movement of n u t r i e n t s t h rough the s o i l from a d j a c e n t a r e a s , n i t r o g e n f i x a t i o n , f a u n a l m i g r a t i o n , and the w e a t h e r i n g of s o i l m i n e r a l s . In t h i s s t u d y , o n l y the i n p u t s i n p r e c i p i t a t i o n and atmospheric f a l l o u t were c o n s i d e r e d . A comprehensive r e v i e w of the c o m p o s i t i o n of a t m o s p h e r i c p r e c i p i t a t i o n was p u b l i s h e d by E r i c k s o n (1952 and 1955). The i n p u t of n u t r i e n t s t h rough b u l k f a l l o u t i s v e r y s i g n i f i c a n t . In a study done i n E n g l a n d , C a r l i s l e e_t a_l. ( 1967 ) c a l c u l a t e d t h a t r a i n f a l l n u t r i e n t s would more than r e p l a c e the m a c r o n u t r i e n t s i n stems of oak on woodland managed on 12 y e a r s ' r o t a t i o n . T h is may not be the case i n a l l ecosystems, s i n c e the i n p u t to the f o r e s t ecosystem s t u d i e d by C a r l i s l e e_t a_l. ( 1967) i s c o n s i d e r a b l y h i g h e r than average v a l u e s f o r the P a c i f i c Northwest ( C o l e et a l . 1967, Turner and S i n g e r 1975, Zeman 1973, F e l l e r 1975, Kimmins - 26 -1975) ( T a b l e 2.11). But even i n the areas w i t h low v a l u e s of a e r i a l n u t r i e n t i n p u t , these n u t r i e n t s r e p r e s e n t a s i g n i f i c a n t p r o p o r t i o n of elements i m m o b i l i z e d a n n u a l l y w i t h i n t r e e biomass. Some v a l u e s of the c o n c e n t r a t i o n of m a c r o n u t r i e n t s i n i n c i d e n t a l r a i n f a l l are g i v e n i n Table 2.10. The mean amount of m a c r o n u t r i e n t s s u p p l i e d by the i n c i d e n t a l r a i n f a l l a n n u a l l y can be found i n Table 2.11. These f i g u r e s are p r o b a b l y u n d e r e s t i m a t e s s i n c e samples d i d not i n c l u d e dust and a e r o s o l s (see pages 22-23, Tables 2.4, 2.5, and 2.6). 2.4 I n t e r n a l c y c l i n g : the t r a n s f e r of n u t r i e n t s w i t h i n t r e e  biomas s R e d i s t r i b u t i o n and r e c y c l i n g of m i n e r a l elements w i t h i n p l a n t biomass have been observed and d e s c r i b e d by s e v e r a l r e s e a r c h e r s ( S w i t z e r and Nelson 1972, Johnson and R i s e r 1974, Malkonen 1974, Turner 1975, Turner and S i n g e r 1975). S w i t z e r and N e l s o n (1972) proposed the term " b i o c h e m i c a l c y c l e " f o r t h i s i n t e r n a l t r a n s f e r of n u t r i e n t s . N u t r i e n t s are t r a n s f e r r e d from o l d e r to younger t i s s u e . T h i s t r a n s f e r i s a p p a r e n t l y g r e a t e s t when n u t r i e n t s are p o t e n t i a l l y l i m i t i n g to growth. Turner (1975) found t h a t w i t h i n c r e a s i n g stand age and f o r e s t f l o o r a c c u m u l a t i o n an i n c r e a s i n g p r o p o r t i o n of annual growth n u t r i e n t requirement was b e i n g s u p p l i e d through i n t e r n a l r e d i s t r i b u t i o n . A 2 2 - y e a r - o l d D o u g l a s - f i r stand had a f o r e s t f l o o r biomass of 20.5 t / h a , and about 70% and 85% of the annual N and P r e q u i r e m e n t s , r e s p e c t i v e l y , were taken from the s o i l . The remainder was s u p p l i e d by r e d i s t r i b u t i o n . In the 9 5 - y e a r - o l d D o u g l a s - f i r stand - 27 -Table 2.10. C o n c e n t r a t i o n s of r a i n f a l l (mg/L) m a c r o n u t r i e n t s i n i n c i d e n t N P K Ca Mg Reference ~ 0.11 0.21 0.06 S c h l e n s i n g e r and R e i n e r s 1974 - 0.04 0.3 0.5 - Tamm 1951 - - 0.5 2.7 0.22 P a t e r s o n 1975 0.61 - - - - T a b a t a b a i and L a f l e n 1976 - 0. 05-0.5 0.05-3.5 0.2-9.8 0.5-0.9 Madgwick and Ovington 1959 0.09 - 0.06 0.2 0.06 F e l l e r 1975 0. 07 0.01 0.02 0.21 0.06 Zeman 1973 Table 2.11. Mean annual amount r a i n f a l l ( kg/(ha*a of c h e m i c a l elements i n i n c i d e n t )) N P K Ca Mg Reference 9. 5 0.4 3.0 7.3 4.6 C a r l i s l e e_t a l . 1966 9.1 0.4 3.9 12.5 5.4 C a r l i s l e e_t a_l. 1967 - - 2.8 10.7 4.2 Madgwick and Ovington 1959 8.2 0.07 1.9 3.5 0.9 N i h l g a r d 1970 1. 8 0. 05 0.4 0.9 0.2 Eaton e_t _ a l . 1973 1 6.2 - - - - T a b a t a b a i and L a f l e n 1976 1 .1 x * 0.8 2.8 - Cole e_t aJL. 1967 1 . 3 0.4 0.8 0.6 0.1 Turner and S i n g e r 1975 - - 1.1 3.7 0.7 Kimmins 1975 1.7 0.4 0.9 7 . 2 2.2 Zeman 1973 5.2 1.3 4.8 1.3 F e l l e r 1975 T- f o r the p e r i o d of June 1 to October 28 , 1 969 * t r a c e - 28 -the f o r e s t f l o o r biomass was 80.7 t / h a , and 42% and 62% of the annual N and P r e q u i r e m e n t s , r e s p e c t i v e l y , were o b t a i n e d from the s o i l , the remainder b e i n g s u p p l i e d by r e d i s t r i b u t i o n (Turner 1975). N u t r i e n t r e d i s t r i b u t i o n seems to be r e l a t e d to n u t r i e n t a v a i l a b i l i t y r a t h e r than t r e e age. Turner (1975) a l t e r e d the p a t t e r n s of n i t r o g e n r e d i s t r i b u t i o n by changing i t s a v a i l a b i l i t y . R e d i s t r i b u t i o n was i n c r e a s e d by n i t r o g e n s t r e s s c r e a t e d a f t e r a s a w d u s t - s u c r o s e m i x t u r e was added to the f o r e s t f l o o r . On the o t h e r hand, urea ( 4 6 % N) f e r t i l i z a t i o n reduced r e d i s t r i b u t i o n . I n t e r n a l n u t r i e n t c y c l i n g d e serves thorough study to e l u c i d a t e i t s r o l e i n f o r e s t p r o d u c t i v i t y . - 29 CHAPTER 3 DESCRIPTION OF STUDY AREA 3.1. L o c a t i o n and d e s c r i p t i o n of sample p l o t s The study a r e a i s l o c a t e d i n s o u t h w e s t e r n c o a s t a l B r i t i s h Columbia, about 55 km n o r t h of Vancouver and 10-14 km east of Squamish. Twelve sample p l o t s were e s t a b l i s h e d , d i v i d e d between two major l o c a l i t i e s . One group (9 sample p l o t s ) was l o c a t e d on P a u l Ridge i n the extreme s o u t h w e s t e r n c o r n e r of the G a r i b a l d i P r o v i n c i a l Park (Appendix 9 ) . These p l o t s were on an e l e v a t i o n t r a n s e c t a p p r o x i m a t e l y 1.5 km l o n g which was l o c a t e d on a west f a c i n g s l o p e ( F i g . 3.1.). The second group (3 p l o t s ) was l o c a t e d about 8.5 km s o u t h e a s t from the f i r s t group, j u s t s o u th of the G a r i b a l d i P r o v i n c i a l Park boundary, on the east boundary of McMi 1 1 a n - B l o e d e l t i m b e r l e a s e no. 3068. The a rea i s about 3 km n o r t h of Mamquam R i v e r and 4 km east of Skookum Creek (Appendix 9 ) . The s i z e of the p l o t s was a p p r o x i m a t e l y 0.1 ha ( e x a c t s i z e of p l o t s i s g i v e n i n Table 3.4). 3.1.1. P a u l Ridge P l o t s The f i r s t group of p l o t s i s r e f e r r e d to as the P - p l o t s ( f r o m P a u l R i d g e ) . The n i n e P - p l o t s were i n t h r e e groups of t h r e e , each group b e i n g i n a d i f f e r e n t p l a n t a s s o c i a t i o n (see s e c t i o n 3.4 - V e g e t a t i o n ) . These were l o c a t e d a l o n g an e l e v a t i o n t r a n s e c t and d i f f e r e d i n m o i s t u r e regime or hygrotope ( s e n s u K r a j i n a 1 9 6 9). Sample p l o t s of the h i g h e s t s a m p l i n g area were l o c a t e d on s m a l l r i d g e s ; the s o i l was t h e r e f o r e w e l l d r a i n e d . Sample p l o t s of the medium e l e v a t i o n area were l o c a t e d on r e l a t i v e l y f l a t t e r r a i n w i t h m o d e r a t e l y w e l l d r a i n e d s o i l and - 30 -F i g . 3.1. L o c a t i o n of PX, PM and PH s a m p l i n g a r e a s on P a u l Ridge - 3 1 -P X - p l o t s v e r t i c a l s e c t i o n r P X 3 P M - p l o t s P H - p l o t s F i g u r e 3 . 2 . Topographic l o c a t i o n o f sample p l o t s . - 32 -w i t h o u t the i n f l u e n c e o f s e e p a g e . Sample p l o t s a t the bottom of t h e e l e v a t i o n t r a n s e c t were l o c a t e d on the l o w e r p o r t i o n o f a s l o p e . The s o i l w h i c h was r a t h e r p o o r l y d r a i n e d , r e c e i v e d s e e p a g e water from the upper p a r t o f the s l o p e . T h e r e was a v e r y s i m i l a r t y p e o f s o i l p a r e n t m a t e r i a l t h r o u g h o u t the whole e l e v a t i o n t r a n s e c t . The t h r e e p l o t s a t the top o f the e l e v a t i o n t r a n s e c t were 1450 m above sea l e v e l ; t h e y a r e r e f e r r e d to as PX1, PX2 and PX3 (X s t a n d s f o r x e r i c , but the h y g r o t o p e can be c h a r a c t e r i z e d as s u b x e r i c to s u b m e s i c r a t h e r t h a n x e r i c , s e n s u K r a j i n a 1 9 6 9 ) . The t h r e e p l o t s on the c e n t r a l p a r t o f the t r a n s e c t were 1375 m above s e a l e v e l ; t h e y a r e r e f e r r e d to as PM1, PM2 and PM3 (M s t a n d s f o r m e s i c h y g r o t o p e ) . The t h r e e p l o t s at the bottom of the t r a n s e c t (1250 m above sea l e v e l ) a r e r e f e r r e d to as PHI, PH2 and PH3 (H s t a n d s f o r h y g r i c h y g r o t o p e ) . The g e o g r a p h y and p h y s i o g r a p h y o f s o u t h w e s t e r n G a r i b a l d i P a r k a r e d e s c r i b e d i n d e t a i l by Brooke e_t a_l. ( 1 9 7 0 ) . The t o p o g r a p h y o f i n d i v i d u a l sample p l o t s i s d e p i c t e d i n F i g u r e s 1.1 and 3.2. The maximum d i s t a n c e between two p l o t s w i t h i n one p l a n t a s s o c i a t i o n was 200 m; most p l o t s were 20-50 m a p a r t . 3.1.2 Mamquam p l o t s T h i s group o f t h r e e p l o t s i s r e f e r e d to as the M - p l o t s (Mamquam). The s t u d y a r e a c o r r e s p o n d s to the m i d d l e p a r t of the P a u l R i d g e e l e v a t i o n t r a n s e c t i n v e g e t a t i o n c o m p o s i t i o n , e l e v a t i o n (1400 m), h y g r o t o p e and snow d u r a t i o n . I t was l o c a t e d on a d i f f e r e n t s o i l p a r e n t m a t e r i a l ( s e e s e c t i o n 3.3.1. o f t h i s c h a p t e r ) . The maximum d i s t a n c e between p l o t s i s 165 m. - 3 3 -3.2 C l i m a t e The c l i m a t e of the S u b a l p i n e Mountain Hemlock Zone, where the study area i s l o c a t e d , has been d e s c r i b e d by Brooke, P e t e r s o n and K r a j i n a (1970) and by K r a j i n a (1959 and 1965). The c h a r a c t e r i s t i c f e a t u r e s are h i g h p r e c i p i t a t i o n , m a i n l y i n the form of snow d u r i n g w i n t e r , p r o l o n g e d a c c u m u l a t i o n of heavy snow cover (up to 7 m of snow w i t h snow cover l a s t i n g as l o n g as 10 months per y e a r ) , f r e q u e n t heavy fog (low c l o u d ) d u r i n g f a l l and w i n t e r , s h o r t c o o l summers w i t h maximum mean monthly temperature between 10 and 15° C, l o n g w i n t e r s w i t h minimum mean monthly temperature between -2 and -6° C and the l o w e s t temperature r a r e l y below -15° C due to the warming e f f e c t of the ocean. There i s a c h a r a c t e r i s t i c dry season d u r i n g summer, u s u a l l y i n J u l y or August. Four weather s t a t i o n s were e s t a b l i s h e d w i t h i n the study area i n J u l y 1975 and c l i m a t i c data were o b t a i n e d f o r a p e r i o d of 24 months; o n l y 19 months of data were a v a i l a b l e (August 1975 to F e b r u a r y 1977) at the time of w r i t i n g . The weather s t a t i o n s were l o c a t e d as f o l l o w s : 1. F o r e s t m i c r o c l i m a t i c s t a t i o n on P l o t PX1 at 1450 m 2. F o r e s t m i c r o c l i m a t i c s t a t i o n on P l o t PM1 at 1375 m 3. F o r e s t m i c r o c l i m a t i c s t a t i o n on P l o t PHI at 1250 m 4. C l e a r c u t c l i m a t i c s t a t i o n at 1100 m, a p p r o x i m a t e l y 1 km SW from the P H - p l o t s . The weather s t a t i o n s on p l o t s PX1, PM1 , and PHI measured and r e c o r d e d a i r temperature and h u m i d i t y under the t r e e canopy, a p p r o x i m a t e l y 2 m above the ground. The weather s t a t i o n on the c l e a r - c u t r e c o r d e d a i r temperature and h u m i d i t y i n the open a r e a , - 34 -a l s o a p p r o x i m a t e l y 2 m above the ground. Measurements were o b t a i n e d throughout the y e a r , w i t h i n s t r u m e n t s b e i n g e l e v a t e d d u r i n g the w i n t e r to m a i n t a i n them above the snow pack. The r a i n gauge w i t h a n t i f r e e z e added d u r i n g the f r o s t p e r i o d , was l o c a t e d at the c l e a r c u t c l i m a t i c s t a t i o n . There was no weather s t a t i o n on the Mamquam s i t e because of e x t r e m e l y d i f f i c u l t a c c e s s d u r i n g w i n t e r months. The d i s t r i b u t i o n of p r e c i p i t a t i o n on Paul Ridge i s summarized i n F i g . 3.3. The h i g h e s t monthly p r e c i p i t a t i o n o c c u r r e d i n l a t e f a l l / e a r l y w i n t e r (October to December) m a i n l y i n the form of r a i n . The t o t a l water e q u i v a l e n t of p r e c i p i t a t i o n from October 1, 1975 to September 30, 1976 was 2668 mm ( 1 0 5 . 0 4 " ) . The mean monthly temperatures c a l c u l a t e d from the r e c o r d s of the t h r e e f o r e s t m i c r o c l i m a t i c s t a t i o n s are p r e s e n t e d i n F i g u r e 3.4. A l l t h r e e s i t e s have v e r y s i m i l a r temperature regimes a l t h o u g h the mesic s i t e seems to be s l i g h t l y warmer d u r i n g summer and the x e r i c s i t e ( t h e h i g h e s t i n e l e v a t i o n ) s l i g h t l y c o o l e r d u r i n g w i n t e r than the o t h e r two s i t e s . T h is c o r r e s p o n d s w i t h the o b s e r v a t i o n on snowmelt. During the 3 y e a r s when the snowmelt was observed (1974, 1975 and 1976) the h y g r i c p l o t s were the f i r s t ones to be snow f r e e (by the end of J u n e ) , f o l l o w e d by mesic and x e r i c s i t e s , where snow p e r s i s t e d t i l l the end of J u l y . In the w i n t e r of 1975-76 t h e r e was an e x c e p t i o n a l l y heavy snow a c c u m u l a t i o n and a l a t e snowmelt. The f i r s t snow appeared on October 5, 1975 w h i l e c o n t i n u o u s snow cover developed between October 14 and 18 and p e r s i s t e d t i l l August 1976. There were - 35 -100 -j . . . A 10 0 -1 * I O H P it rs Q u a n t i t y of a t m o s p h e r i c p r e c i p i t a t i o n ( i n mm) on P a u l Ridge d u r i n g the p e r i o d of August 1975 to F e b r u a r y 1977. I O M O ] I M A i * J J « 1 O H J J T un j j ifrr Mean monthly t e m p e r a t u r e s below the f o r e s t canopy on PX, PM and PH s i t e s ( i n °C) between August 1975 and F e b r u a r y 1977. - 36 -s t i l l a few snow patches on the PX p l o t s and on the Mamquam s i t e on August 21, 1976. The snow-free p e r i o d i n 1976 was v e r y b r i e f ; the f i r s t snow a g a i n appeared on October 5. The area i s u s u a l l y snow-free f o r 3-41/2 months on the PH p l o t s and f o r about 3 months on the PX p l o t s . The mean monthly r e l a t i v e h u m i d i t y beneath the f o r e s t canopy was between 70 and 80% throughout most of the y e a r . The r e l a t i v e h u m i d i t y on the PM and PH p l o t s was almost i d e n t i c a l and on PX plots i t was 3-5% l o w e r . 3.3. Geology and s o i l 3.3.1. Geology and s o i l p a r e n t m a t e r i a l The geology of the area has been d e s c r i b e d by Roddick (1965) and Mathews (1957, 1958). A c c o r d i n g to Roddick (1965), about 80% of the area i s u n d e r l a i n by p l u t o n i c r o c k s which e n g u l f pendants of v o l c a n i c , metamorphic and sedimentary r o c k s . Quaternary v o l c a n i c rock types i n the G a r i b a l d i a r e a r e s t on a f o u n d a t i o n of Cretaceous q u a r t z d i o r i t e s , m e t a v o l c a n i c and metasedimentary r o c k s . The v o l c a n i c s i n c l u d e l a r g e l y d a c i t e r o c k s a s s o c i a t e d w i t h a n d e s i t e s and b a s a l t s . The p l a g i o c l a s e s of many of the d i o r i -t es are somewhat more c a l c i c than those of b a s a l t s , and o r t h o p y r o x -ene i s the most common m a f i c m i n e r a l of the d a c i t e s (Mathews 1957). Two s o i l p i t s were dug on each of the sample p l o t s . S e v e r a l r o c k s from the C - h o r i z o n were c o l l e c t e d and i d e n t i f i e d by Dr. W. R. Danner, Department of G e o l o g i c a l S c i e n c e s , U n i v e r s i t y of B r i t -i s h Columbia. His r e p o r t w i t h a b r i e f d i s c u s s i o n i s i n c l u d e d - 37 -as Appendix 2. Only a b r i e f summary i s g i v e n here. The r o c k s c o l l e c t e d on the 12 sample p l o t s appear to belong to at l e a s t f o u r groups ( o r d e r e d a c c o r d i n g to abundance): 1. G a r i b a l d i v o l c a n i c f l o w r o c k s which are m o s t l y d a c i t e . 2. Rounded coa r s e g r a i n e d h o r n b l e n d e - q u a r t z d i o r i t e s . 3. A few dense and heavy p o r p h y r i t i c rocks which may be p a r t s of dense G a r i b a l d i f l o w s . 4. A few dark green s c h i s t o s e r o c k s which may r e p r e s e n t metamorphosed o l d e r v o l c a n i c r o c k s . The s o i l on the Mamquam p l o t s seems to be d e r i v e d m a i n l y from q u a r t z d i o r i t e . The predominant type of r o c k s on the P a u l Ridge p l o t s appears to be a grey G a r i b a l d i d a c i t e of v o l c a n i c o r i g i n w i t h some i n t e r m i x e d q u a r t z d i o r i t e , p o r p h y r y , f e l d s p a r , and s c h i s t . The m i x t u r e of v a r i o u s r o c k types i n the C - h o r i z o n i s t y p i c a l f o r t r a n s p o r t e d s o i l parent m a t e r i a l : g l a c i a l t i l l i n t h i s c a s e . Mathews (1958b) g i v e s the f o l l o w i n g c h e m i c a l a n a l y s i s of d a c i t e d e b r i s from Diamond Head, G a r i b a l d i Park and of q u a r t z d i o r i t e from the v i c i n i t y of Cheakamus s t a t i o n , n o r t h of Squamish ( T a b l e 3.1). - 38 -Table 3.1. Chemical a n a l y s i s of d a c i t e d e b r i s from Diamond Head, G a r i b a l d i Park and of q u a r t z d i o r i t e from the v i c i n i t y of Cheakamus s t a t i o n , n o r t h of Squamish (Mathews 1958a,b) L o c a t i o n Diamond Head Cheakamus s t a t i o n P e r cent P e r c e n t Chemical C o m p o s i t i o n C o m p o s i t i o n S i 0 2 63 . 94 65 . 29 A 1 2 0 3 16 . 48 16.86 Fe 203 3.38 1.96 FeO 1.29 2.24 T i 0 2 0.46 0.46 MnO 0.23 0.14 CaO 5.38 5.18 MgO 2.53 2.06 K 20 1. 42 1.12 Na 20 3. 64 3.18 H 20 (-105° C) 0.16 0.12 H 20 (+105° C) 0. 98 1. 43 C 0 2 N i l N i l P205 0.09 0.17 Sum 99. 98 100.21 - 39 -The m i n e r a l c o m p o s i t i o n of d a c i t e d e b r i s and q u a r t z d i o r i t e from the same l o c a t i o n s i s i n Table 3.2. Table 3.2. M i n e r a l c o m p o s i t i o n of d a c i t e d e b r i s form Diamond Head, G a r i b a l d i Park and of q u a r t z d i o r i t e from the v i c i n i t y of Cheakamus s t a t i o n , n o r t h of Squamish (Mathews 1958a,b) L o c a t i o n M i n e r a l Diamond Head Percent Compo s i t i o n Cheakamus s t a t i o n P e r c e n t Compo s i t i o n Quar t z 22 . 67 27.93 O r t h o c l a s e 8.39 6.62 A l b i t e 30 . 78 26.89 A n o r t h i t e 24.44 24.58 Co rundum - 1.41 Di ops i d e 1.29 -Hyper st hene 5. 70 7.13 Magme t i t e 3.58 2.84 I l m e n i te 0.87 0.87 Apa t i t e 0.21 0.39 H 20 + 0.98 1.43 H 20- 0.16 0.12 Hema t i t e 0.91 -The r o c k s a n a l y z e d by Mathews (1958a,b) were not o b t a i n e d from the sample p l o t s , but from a r e a s o n a b l y c l o s e l o c a l i t y . I t i s assumed t h a t the c o m p o s i t i o n of d a c i t e and q u a r t z d i o r i t e from the sample p l o t s would not d i f f e r g r e a t l y from the a n a l y s e s g i v e n by Mathews (1958a,b). I t i s p r o b a b l e , t h e r e f o r e , t h a t the - 40 -c h e m i s t r y of parent m a t e r i a l on Mamquam p l o t s and P a u l Ridge p l o t s i s f a i r l y s i m i l a r . The s l i g h t d i f f e r e n c e i n m i n e r a l c o m p o s i t i o n would p r o b a b l y r e s u l t i n s l i g h t l y f a s t e r w e a t h e r i n g on Paul Ridge p l o t s , because of lower amount of q u a r t z , absence of corundum and h i g h e r amount of more r e a d i l y weathered m i n e r a l s ( a l b i t e , o r t h o c l a s e ) . 3.3.2. S o i l S o i l s of the s o u t h w e s t e r n c o r n e r of G a r i b a l d i P r o v i n c i a l Park were d e s c r i b e d by Brooke (1966) and by Brooke, P e t e r s o n and K r a j i n a ( 1970) . On each of the 12 sample p l o t s two s o i l p i t s were dug. S o i l p r o f i l e s were d e s c r i b e d and s o i l samples were a n a l y z e d by Kimmins, Watt and S t a t h e r s i n 1974 ( u n p u b l i s h e d d a t a ) . 3.4 Vegetat i o n The v e g e t a t i o n of the S u b a l p i n e Mountain Hemlock Zone was d e s c r i b e d by P e t e r s o n ( 1 9 6 4 ) , Brooke ( 1 9 6 6 ) , and Brooke, P e t e r s o n and K r a j i n a ( 1 9 7 0 ) . S t u d i e s concerned w i t h s u c c e s s i o n a l dynamics of the s u b a l p i n e v e g e t a t i o n were done by B r i n k (1959, 1964). The t r e e l a y e r on a l l sample p l o t s c o n s i s t e d of mountain hemlock and P a c i f i c s i l v e r f i r , the p r o p o r t i o n of each s p e c i e s v a r y i n g from p l o t to p l o t . In a d d i t i o n t h e r e was some y e l l o w cedar on PX1 and PX2 and some red cedar on PHI. P H - p l o t s had a m i x t u r e of mountain and western hemlock and t h e i r h y b r i d s ( T a b l e 3.5). A summary of the m e n s u r a t i o n a l data from the p l o t s i s p r e s e n t e d i n T a b l e s 3.3 and 3.4 and i n Appendix 3. Trees on a l l sample p l o t s can be c h a r a c t e r i z e d as mature to overmature, w i t h - 4 1 -the mean age per p l o t r a n g i n g from 295 to 440 y e a r s (Appendix 6 ) . The maximum age measured was 620 y e a r s . The mean t r e e h e i g h t was s m a l l e s t on the PX1 p l o t , ( o n l y 12 m). The t a l l e s t t r e e s were on the PH2 p l o t , where mean t r e e h e i g h t was 36.2 m; the t a l l e s t t r e e on t h i s p l o t measured 53.5 m ( T a b l e 3.3). The s m a l l e s t mean t r e e diameter was on the PX2 p l o t (27.9 cm), w h i l e the l a r g e s t mean diameter was on the Ml p l o t (67 cm); the b i g g e s t t r e e on t h i s p l o t had a diameter of 141 cm. The timbe r volume of the mean t r e e v a r i e d from 0.48 m^  on p l o t PX2 to 6.43 m^  on p l o t PH2 ( T a b l e 3.3). The timb e r volume per h e c t a r e ranged from 523 m^  on p l o t PX1 to 1354 m^  on p l o t M l . The number of t r e e s per h e c t a r e v a r i e d from 180 on p l o t PH2 to 1275 on p l o t PX2 ( T a b l e 3.4). The d i a m e t e r , h e i g h t , and volume of the mean t r e e f o r each t r e e s p e c i e s on each sample p l o t i s g i v e n i n Appendix 3. The p r o p o r t i o n of i n d i v i d u a l t r e e s p e c i e s on each sample p l o t i s p r e s e n t e d on Table 3.4. On p l o t s PX1 and PX2 t h e r e was a h i g h e r p r o p o r t i o n of mountain hemlock than P a c i f i c s i l v e r f i r i n terms of both stems per h e c t a r e and timber volume per h e c t a r e . There was a l s o a s m a l l p r o p o r t i o n of y e l l o w cedar on these two p l o t s . P l o t PX3 had a h i g h e r p r o p o r t i o n of P a c i f i c s i l v e r f i r i n terms of stems per h e c t a r e , but the hemlock t r e e s were of l a r g e r d i m e n s i o n s and t h e r e f o r e they c o n t r i b u t e d the b u l k of the timber volume per h e c t a r e . P l o t s PM1 and PM2 had a h i g h e r p r o p o r t i o n of mountain hemlock than P a c i f i c s i l v e r f i r i n terms of stems per h e c t a r e and timber volume per h e c t a r e . On the p l o t PM3, as w e l l as on a l l PH and M p l o t s , P a c i f i c s i l v e r f i r dominated mountain hemlock both i n terms of stems per h e c t a r e and volume. - 42 -Table 3.3. Mean and maximum tree diameter, height, basal area, and timber volume for 12 sample p l o t s . Plot D (cm) H (m) BA (m 2) VOL (m3) 1 PX1 PX2 PX3 PM1 PK2 PK3 PH1 PH2 PK3 KK1 KM 2 KM 3 169 116 52 64 48 33 45 25 34 29 28 25 28.1 5.6 27.9 7.6 43.5 7.9 44.9 15.0 45.9 18.0 55.9 15.2 45.9 13.2 66.1 23.9 t'.2.7 15.5 67.0 24.6 62.2 25.4 65.2 35.6 ( uzT 7 4 . 7 5 ( 1 .1) 7 0 . 9 ( 3 . 5 ) 99.1 ( 1 . 9 ) 76 .5 ( 2 . 1 ) 7 5 . 9 ( 3 . 7 ) 8 8 . 4 ( 3 . 3 ) 9 6 . 0 I 5 . 0 ) 1 1 0 . 0 ( 3 . 7 ) 114 .3 ( 5 . 3 ) 141 .0 ( 4 . 1 ) 1 0 9 . 5 ( 4 . 8 ) 1 1 9 . 9 11 .9 2 . 0 1 3 . 2 2 . 0 17 .0 3 . 0 24 .3 6 . 0 25 .6 1 0 . 0 2 9 . 6 6 . 0 2 6 . 4 5 . 5 3 6 . 2 9 . 0 3 3 . 2 6 . 0 3 0 . 9 1 3 . 5 30 .6 11 .0 3 0 . 2 1 5 . 0 ( 0 . 5 ) 24 .5 ( 0 . 5 ) 23 .5 ( 1-1) 3 1 . 0 ( 1 . 0 ) 3 5 . 0 ( 1 . 0 ) 3 4 . 5 ( 2 . 0 ) 4 3 . 0 ( 1 . 9 ) 5 2 . 0 ( 2 . 8 ) 5 3 . 5 ( 1 . 0 ) 4 8 . 0 ( 1-5) 4 4 . 0 ( 2 . 0 ) 4 4 . 5 ( 1 .7) 4 5 . 0 0.081 (0.006) 0.002 0.438 0.073 (0.006) 0.005 0 . 3 9 4 0 . 1 9 7 (0.027) 0.005 0.771 0.177 (0.014) 0.018 0.459 0.182 (0.015) 0.026 0.453 0.281 (0.030) 0.018 0.614 0.202 (0 . 0 2 7 ) 0.014 0.724 0 . 3 9 0 (0.051) 0.045 0.950 0.344 (0.038) 0 . 0 1 9 1.026 0.413 (0.065) 0.048 1 .561 0.339 (0.040) 0.051 0.941 0.377 (0.057) 0 . 0 9 9 1.129 0.514 (0.049) 0 . 0 0 3 3 . 3 2 5 0.478 (0.046) 0.004 2.854 1.588 (0.237) 0 . 0 0 9 7.814 1.888 (0 . 1 6 9 ) 0.053 5.470 2.034 (0 . 1 9 9 ) 0 . 1 19 5.041 3.875 (0.460) 0.054 9.201 2.782 (0.433) 0.031 10.980 6.433 (0 . 9 9 1 ) 0.232 16.588 4.801 (0.575) 0.052 12 .930 5.276 (0.852) 0 . 2 9 0 19.507 4.589 (0.644) 0.238 12.050 4.699 (0.701) 0.627 12.247 Mean (SE)| Kin Max J 1 Estimated using B.C.F.S. equations H BA VOL number of trees on sample p l o t diameter at breast height tree height basal area at breast height t o t a l timber volume - 43 -T a b l e 3.4. Some b a s i c s t a t i s t i c s f o r the sample p l o t s Ko. o f t r e e s on a P l o t Area Timber Volume^ B a s a l Area p l o t (stem/ha) P l o t SP p e r s p e c i e s * t o t a l (ha) by ( . s p e c i e s n 5/ha) p l o t t o t a l (m 5/ha) ( r ^ / h a ) PX1 H PF YC 512 452 54 50 45 5 1018 0.166 436 62 25 523 82.5 PX2 H PF YC 813 418 44 64 33 3 1275 0 . 0 9 1 457 132 20 609 93.1 PX3 H PF 190 330 36 64 520 0 . 1 0 0 480 346 826 102.4 PK1 H PF 463 210 69 31 673 0 . 0 9 5 855 417 1272 119.2 PK2 H PF 276 . 181 60 40 457 0 . 1 0 5 500 430 930 83.2 PK3 H PF 38 273 12 88 311 0.106 206 1000 1206 8 7 . 5 PH1 H PF 92 227 29 71 319 0.141 199 689 888 64.5 PH2 H PF 43 137 24 76 180 0 . 1 3 9 319 838 1157 70.1 PH3 H PF 56 134 29 71 190 0 . 1 7 9 239 673 912 65.3 KM1 H PF 71 186 28 72 257 0 . 1 1 3 552 802 1354 106.0 Y.Y.2 H PF 116 134 46 54 250 0 . 1 1 2 368 779 1147 84.7 MM 3 H PF 3 5 181 16 84 216 0 . 1 1 6 238 775 1013 81.2 1 E s t i m a t e d u s i n g B.C.F.S. volume e q u a t i o n s SP - £ £ t 3 > « & » l o e ] t on PH p l o t s a l s o w e s t e r n hemlock and h y b r i d s . PF - P a c i f i c s i l v e r f i r YC - y e l l o w - c e d a r - 44 -The abundance/cover and v i g o r of p l a n t s p e c i e s i n the u n d e r s t o r y l a y e r i s p r e s e n t e d i n Table 3.5. P l a n t community sa m p l i n g f o l l o w e d the s t a n d a r d r e l e v e method as d e s c r i b e d by Mueller-Dombois and E l l e n b e r g ( 1974) and Brooke e_t a_l. ( 1970). The u n d e r s t o r y l a y e r was best developed on the PH p l o t s and l e a s t developed on the M - p l o t s . PH p l o t s a l s o had the h i g h e s t d i v e r s i t y of p l a n t s p e c i e s p r e s e n t i n the u n d e r s t o r y l a y e r . On PX p l o t s the u n d e r s t o r y l a y e r was dominated by Rhododendron  a 1 b i f1orum* and Vacc i n i u m s p e c i e s , w i t h coverage around 80-90%. On PM p l o t s the u n d e r s t o r y l a y e r was dominated by V a c c i n i u m s p e c i e s and by Rubus pedatus , w i t h coverage around 40-50%. The M - p l o t s had a p o o r l y developed u n d e r s t o r y l a y e r dominated by V a c c i n i u m s p e c i e s , w i t h coverage between 30 and 40%. PH p l o t s had a w e l l developed u n d e r s t o r y l a y e r w i t h coverage between 90 and 100%; the c h a r a c t e r i s t i c s p e c i e s were Vacc i n i u m membranaceum, _V. a l a s k a e n s e and _V . o v a l i f o 1 ium , Rubus pedatus , Ve r a t rum v i r i d e , St reptopus a m p l e x i f o 1 i u s , T i a r e l l a u n i f o l i a t a , V i o l a g l a b e l l a , V a l e r i a n a s i t c h e n s i s , Gymnocarpium d r y o p t e r i s , D r y o p t e r i s  a u s t r i a c a , and At hy r ium f i l i x - f e m i n a . In a d d i t i o n to these s p e c i e s t h e r e were S t r e p t o p u s roseus on the PHI and PH2 p l o t s , S t r e p t o p u s s t r e p t o p o i d e s and C l i n t o n i a un i f1o ra on the PH3 p l o t and Oplopanax hor r i d u m on the PH2 and PH3 p l o t s . Only the most abundant bryophytes and l i c h e n s were i d e n t i f i e d and l i s t e d . The same procedure was f o l l o w e d f o r e p i p h y t e s ; a number of e p i p h y t i c s p e c i e s were p r e s e n t on the s amp1e p l o t s . * See Appendix 1 f o r l i s t of p l a n t s p e c i e s . - 45 -A l e c t o r i a spp. and Hypogymnia spp. were the most abundant, but P t i 1 i d ium c a l i f o r n i c um and some s p e c i e s of Us nea were a l s o p r e s e n t . Brooke, P e t e r s o n and K r a j i n a (1970) d e s c r i b e d two subzones and 13 p l a n t a s s o c i a t i o n s w i t h i n the S u b a l p i n e Mountain Hemlock Zone. I f t h e i r system f o r c l a s s i f y i n g p l a n t a s s o c i a t i o n s i s a p p l i e d to the sample p l o t s d e s c r i b e d i n t h i s s t u d y , then the PX p l o t s are most s i m i l a r to the p l a n t a s s o c i a t i o n V a c c i n i o (membranacei)-Tsugetum mertensianae of the P a r k l a n d subzone (Brooke e_t a_l. 1970), PM and M p l o t s are most s i m i l a r to the A b i e t o ( amabi1is)-Tsugetum mertensianae p l a n t a s s o c i a t i o n , v a r i a n t a b a i e t o - t s u g e t o s u m m e r t e n s i a n a e of the F o r e s t subzone, and the PH p l o t s are most s i m i l a r to the Oplopanaco-Thuj etum p l i c a t a e p l a n t a s s o c i a t i o n , a b i e t e t o s u m a m a b i l i s s u b a s s o c i a t i o n of the F o r e s t subzone. Brooke ^_t al. ( 1970) c l a s s i f i e d the V a c c i n i o (membranacei)-Tsuget um mertensianae as a submesic h a b i t a t , A b i e t o ( a m a b i l i s ) - T s u g e t u m m e r t e n s i a n a e as m e s i c , and Oplopanaco-Thujetum p l i c a t a e as a h y g r i c h a b i t a t w i t h temporary seepage i n f l u e n c e . These hygrotope d e s i g n a t i o n s appear to be a p p r o p r i a t e f o r the c o r r e s p o n d i n g sample p l o t s . - 4.6 -Table 3.5. Plant species on the sample plots and species ratings Layer Species PX1 PX2 . PX3 . PMl PM2 PM3 Ml M2 M3 PHI PH2 PH3 Abies amabilis 5.1 6. 2 7.2 7 . 3 7.3 8.3 8.3 7.3 8.3 8.2 8.3 8.3 Tsuga mertensiana 9.2 8. 2 8.2 8.3 8.3 6.3 6.3 7 . 3 5 . 3 >6 2 } 6 3 >6 3 Tsuga heterophylla } 6 . 2 Thuja plicata + .2 Chamaecyparis nootkatensis + .2 +. 2 Rhododendron albiflorum 9.2 8. 2 9.2 + .1 3.2 Vaceinium membranaceum 5.2 6. 2 5.2 6.3 6.3 7.3 2.2 2.2 3.2 4.3 3.3 2 . 3 Vaceinium alaskaense 4.2 4. 2 3.2 3.3 4 . 3 3.3 + .1 +.1 +.2 2.3 3.3 2 . 3 Vaceinium ovalifolium 4.2 3. 2 2.2 4 . 3 4 . 3 4.3 + .1 + .1 + .2 3.3 3 . 3 2 . 3 Vaceinium deliclosum 3.2 4. 2 2.2 Sorbus sitchensis + . 1 + .1 1.1 3.2 2.2 2.2 + .2 Abies amabilis 2.+ 2. 1 1.1 1.1 5.2 3.1 2.1 4.2 1.2 3.2 3 . 3 Tsuga mertensiana 1.+ 1. 1 1.1 3.1 3.2 3.1 1.1 1.2 1.2 ) , 2 ? 2 . 2 Tsuga heterophylla 1.2 ) - ) Chamaecyparis nootkatensis 1.+ + . 1 Sambucus pubens + .2 + .2 Ribes bracteosum 2 . 3 2.3 1.3 Oplopanax horridum 3.3 5 . 3 Vaceinium parvifolium 2.1 + .1 Phyllodoce empetriformis 1.1 4. 1 3.2 Cassiope mertensiana + . 1 + .1 Rubus pedatus 3.1 5 . 2 5.2 4.2 7.3 4 . 3 3.3 4 . 3 Pyrola secunda 1.1 3. 1 1.2 2.2 + .3 Veratrum viride + .2 + .2 1.2 3.3 3 . 3 3.3 Streptopus streptopoides + .2 +.+ 3.3 Athyrium filix-femina + .2 + .2 3 . 3 3.3 3 . 3 Luzula parviflora + .2 Streptopus amplexifolius +.2 3 . 3 2 . 3 3.3 Dryopteris austriaca + .2 3 . 3 3.3 3.3 Blechnum spicant + .2 + .1 Streptopus roseus 3.2 3.3 T i a r e l l a u n i f o l i a t a 4 . 3 3.3 3.3 Viola glabella 3.2 2 . 3 2.2 Valeriana sitchensis 3.3 2 . 3 2.2 Rubus spectabilis 2 . 3 1.2 3.3 Osmorhiza chllensis 1.2 Abies amabilis 3.2 1.2 Tsuga mertensiana 1.2 Gymnocarpium dryopteris 2 . 3 4 . 3 3.3 Listera cordata 1.2 Cinna l a t i f o l i a + .2 Caltha leptosepala + .2 Clintonia uniflora 2.2 Chamaecyparis nootkatensis + .1 +. 1 + .2 Dicranum scoparium 8.2 9. 2 9.2 8.2 8.2 5.2 4.2 3.2 3.2 Rhytidiopsis robusta 4.2 3. 2 3.2 2.2 3.2 2.2 1.2 + .2 + .2 1.3 3.2 3.2 Pleurozium schreberi 1.2 1. 2 + .2 Dicranum fuscescens 2.2 1. 2 + .2 + .2 3.3 3.2 3.2 Rhytidiadelphus loreus + .2 + . 2 + .2 Bazzania spp. + .2 Cladonia b e l l i d i f l o r a + .1 + . 1 + .2 Brachythecium spp. +. 2 Lophozia spp. +. 2 Rhytidiadelphus squarrosus 3.3 2.2 Mnium spp. 1.3 Lepidozia reptans 1.3 Rhizomnium nudum 2.2 2.2 Rhizomnium magnlfolium 2.2 2.2 Pohlia nutans 2.2 2.2 Plagiothecium undulatum 2.2 1.2 Hypnum spp. 1.2 Plagiothecium denticulatum 2.2 2.1 Ptilidium californicum 1.2 Alectoria spp. 5.2 5. ,2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 Hypogymnia spp. 4.2 4. ,2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 Boletus spp. 1.3 1. .3 + .2 +.3 +.3 + .3 + .3 + .3 +.3 + .2 + .2 + .2 - 47 -Table 3.5, c o n t i n u e d . S p e c i e s r a t i n g s used i n Table 3.5 ( a f t e r Brooke et a l . 1970) Sp e c i e s r a t i n g s f o r i n d i v i d u a l p l o t s are based on the D o m i n - K r a j i n a s c a l e (see K r a j i n a 1933) and are g i v e n by two f i g u r e s ( e . g . 1.2) t h a t r e p r e s e n t s p e c i e s s i g n i f i c a n c e and v i g o r , r e s p e c t i v e l y . S p e c i e s s i g n i f i c a n c e (combined s c a l e f o r abundance and dominance): + Ve r y 1 Spar 2 Ve ry 3 Scat p l o t 4 Of te 5 Of te 6 Any p l o t 7 Any p l o t 8 Any p l o t 9 Any p l o t V i g o r r a t i n g s (from P e t e r s o n 1964): 0 V i g o r n i l ( p l a n t dead) + V i g o r poor 1 V i g o r f a i r 2 V i g o r good 3 V i g o r e x c e l l e n t P l o t s a re arranged h o r i z o n t a l l y i n the t a b l e s by d e c r e a s i n g e l e v a t i o n from l e f t to r i g h t . S p e c i e s are arranged v e r t i c a l l y i n t o 5 l a y e r s : A l a y e r — t r e e s B l a y e r — s h r u b s and woody p l a n t s 30 cm to 2 m i n h e i g h t C l a y e r - - h e r b a c e o u s p l a n t s and s m a l l woody p l a n t s l e s s than 30 cm i n h e i g h t D l a y e r — b r y o p h y t e s and l i c h e n s E l a y e r - - e p i p h y t e s - 48 -Table 3 . 6 . Gross volume of timber (m'/ha) in three plant associations. Plant association M.h. P.s.f. Volume of Y.c. timber (,m'/ha) W.h. W.r.c. Sun lVaccinio-Tsugetum mertensianae 3001 , (210-363r 1 1 3 ( 25-311) 4 7 (23-69) — 4 7 0 3 (309-522) h Abieto-Tsugetum mertensianae 6 2 5 (405-770) 2 7 8 ( 1 2 6 - 7 4 5 ) 20 ( 0 - 8 1 ) — 9 2 4 ( 7 5 4 - 1 1 5 0 ) 'Oplopanaco-Thujetum plicatae 129 ( 0-321) 2 8 4 ( 38-477) 489 ( 1 3 5 - 1 3 4 0 ) 2 3 (0-83) 10984 (801-1977) PX-plots 458 ( 4 3 6 - 4 8 0 ) 1 8 0 ( 62-346) 15 I 0 - 2 5 ) — — 653 (523 - 8 2 6 ) PM-plots 5 2 0 (206-855) 6 1 6 (417 - 1 0 0 0 ) 1136 (930-1272) M- plots 386 (238-552) 785 (755 - 8 0 2 ) — — 1171 (1013-1354) PH-plots 2525 (199-319) 733 (673-838) — 986 (888-1157) ? Mean i Range of volume ; Includes minor species ' May include some Douglas fir and Sitka spruce ^ Hybrids of mountain and western hemlock * From Brooke e_t al. 1970 - 41 -F i g u r e 3 . 5 . : X e r i c s i t e - p l o t PX1. Note the arcount o f e p i p h y t i c l i c h e n s on t r e e s . - so -F i g u r e 3 . 7 . : X e r i c s i t e - p l o t PX3 — SI — F i g u r e 3.9. : Mesic s i t e - p l o t PM1 - 5 A -F i g u r e 3 . 1 1 . : M e s i c s i t e - p l o t PM3 -53-Figure 3.12.: Mesic s i t e - p l o t M2. P i c t u r e taken on July 2 , 1 9 7 2 . Note the amount of l i t t e r on top of the snow cover. F i g u r e 3 . 1 5 . : K y g r i c s i t e - p l o t PH1 . The h e r b l a y e r i s w e l l d e v e l o p e d . Figure 3.16.: Hygric s i t e - p l o t PH2. D e v i l ' s club and l a d y f e r n a r e a b u n d a n t o n t h i s s i t e . F i g u r e 3 . 1 7 . : C l i m a t i c s t a t i o n o n h y g r i c s i t e . F i g u r e 3 .19 . : L i t t e r c o l l e c t o r damaged by snow w e i g h t . - s i -- 58 -CHAPTER 4  METHODS 4.1 F i e l d s a m p l i n g The f o l l o w i n g parameters were determined or samples were c o l l e c t e d i n the f i e l d : - s i z e of sampl i n g p l o t s f o r the purpose of c o n v e r t i n g a l l measurements o b t a i n e d per p l o t i n t o u n i t s per h e c t a r e . - dbh, h e i g h t and crown l e n g t h of t r e e s on the sample p l o t s to c a l c u l a t e timber volume and above ground t r e e biomass. - increment cores to determine t r e e age and annual dbh i n c remen t . - o v e r s t o r y l i t t e r f a l l to e s t i m a t e net pr i m a r y p r o d u c t i o n and n u t r i e n t t u r n o v e r . - t h r o u g h f a l l to e s t i m a t e n u t r i e n t t u r n o v e r . - i n c i d e n t p r e c i p i t a t i o n to e s t i m a t e i n p u t of n u t r i e n t s to an e c o s y s t em. - f o l i a g e to determine f o l i a r c h e m i s t r y f o r the purpose of comparing f o l i a r n u t r i e n t c o n c e n t r a t i o n between Paul Ridge and Mamquam sample l o c a t i o n s . 4.1.1. P l o t a rea The a rea of each sample p l o t was measured u s i n g a t r a n s i t (USHIKATA, model TRACON S25). Each p l o t was d i v i d e d i n b a s i c g e o m e t r i c f i g u r e s ( e . g . t r i a n g l e , s q u a r e , or r e c t a n g l e ) the dim e n s i o n s of which were measured, and used to c a l c u l a t e the t o t a l a r ea of the p l o t . - 59 -4.1.2. Tree m e n s u r a t i o n A l l t r e e s on the sample p l o t s were numbered, and t h e i r dbh, h e i g h t and crown l e n g t h were measured. A s t e e l dbh tape was used f o r measuring d i a m e t e r , which was taken at 1.3 m above the ground. Tree h e i g h t and crown l e n g t h s were measured w i t h a RELASKOP. A l l t r e e s on the sample p l o t s g r e a t e r than 5.08 cm (2 i n c h e s ) were ranked a c c o r d i n g to t h e i r dbh i n t o 10.16 cm (4 i n c h ) dbh c l a s s e s . At the b e g i n n i n g I i n t e n d e d to take at l e a s t one increment core per dbh c l a s s f o r each t r e e s p e c i e s p r e s e n t on a p l o t i n o r d e r to c a l c u l a t e t o t a l stem i n c r e m e n t . However, t h i s s t r a t i f i e d s ampling d e s i g n was changed to a random s a m p l i n g d e s i g n . Many of the l a r g e r d i ameter t r e e s had r o t t e n c o r e s , t h e r e f o r e the i n c r e a s e i n the a c c u r a c y of the t r e e age e s t i m a t e which would have been o b t a i n e d by s t r a t i f i e d s ampling would have been l o s t due to i n c o m p l e t e c o r e s . I d i d not c o n s i d e r i t w o r t h w h i l e to spend more e f f o r t to o b t a i n more a c c u r a t e e s t i m a t e s of dbh increment u n l e s s I c o u l d get s i m i l a r e s t i m a t e s f o r the d e c r e a s e of t i m b e r volume due to decay of t r e e c o r e s and t r e e m o r t a l i t y . Tree m o r t a l i t y and decay were not accounted f o r and c o n s e q u e n t l y the i n c r e a s e i n t r e e b o l e volume i s o v e r e s t i m a t e d . On p l o t s w i t h g r e a t e r dbh v a r i a b i l i t y , a l a r g e r number of t r e e s was sampled than on p l o t s w i t h r a t h e r u n i f o r m dbh. The two major t r e e s p e c i e s (mountain hemlock and P a c i f i c s i l v e r f i r ) were sampled i n p r o p o r t i o n to t h e i r number of stems on the p l o t s . Increment c o r e s were taken from 23 t r e e s on PX p l o t s , 24 on PM p l o t s , 26 on PH p l o t s , and 19 on M - p l o t s f o r a t o t a l of 92. - 60 -4.1.3. O v e r s t o r y l i t t e r f a l l Ten or 11 l i t t e r f a l l c o l l e c t o r s were d i s t r i b u t e d randomly on each p l o t , and each was p a i r e d w i t h a t h r o u g h f a l l c o l l e c t o r l o c a t e d nearby ( F i g . 3.18). Thus, t h e r e were a p p r o x i m a t e l y 30 l i t t e r f a l l and 30 t h r o u g h f a l l c o l l e c t o r s per s i t e type f o r a t o t a l of 120 c o l l e c t o r s of each type i n the e n t i r e s t u d y . The wooden s i d e s of the 1 x 1 m l i t t e r f a l l c o l l e c t o r s were 15 cm h i g h , and the bottom of the c o l l e c t o r was made of 1 mm n y l o n mesh. C o l l e c t o r s were o r i e n t e d as c l o s e to h o r i z o n t a l as p o s s i b l e . The number of l i t t e r f a l l and t h r o u g h f a l l c o l l e c t o r s i s l a r g e r than the number of c o l l e c t o r s used by most o t h e r r e s e a r c h e r s . Abee and Lavender (1972) used 8 l i t t e r f a l l and 4 t h r o u g h f a l l c o l l e c t o r s per p l o t of a s i z e 0.20 ha. Johnson and R i s s e r (1974) used 10 l i t t e r f a l l and 10 t h r o u g h f a l l c o l l e c t o r s per p l o t of a s i z e 0.01 ha; Turner (1974) used 4 l i t t e r f a l l and 3 t h r o u g h f a l l c o l l e c t o r s per p l o t of a s i z e 0.045 ha, and Malkonen (1977) used 8 l i t t e r f a l l c o l l e c t o r s per p l o t of a s i z e 0.16 ha. L i t t e r c o l l e c t o r s were i n s t a l l e d at the b e g i n n i n g of September 1974. The f i r s t l i t t e r c o l l e c t i o n was made at the end of t h a t month f o l l o w e d by c o l l e c t i o n s i n J u l y 1975, September 1975, J u l y 1976, and September 1976. The reason f o r making o n l y two c o l l e c t i o n s per c a l e n d a r year was the v e r y l o n g snow d u r a t i o n , from the b e g i n n i n g of October t i l l the m i d d l e of J u l y , and the p a u c i t y of l i t t e r f a l l d u r i n g J u l y and August. L i t t e r was c o l l e c t e d i m m e d i a t e l y a f t e r snowmelt and j u s t b e f o r e the f i r s t s n o w f a l l . Each w i n t e r a number of l i t t e r c o l l e c t o r s were e x t e n s i v e l y damaged by the weight of the snow pack which, i t was - 6 1 -e s t i m a t e d , c o u l d have been as much as 2t/m 2. The weight and movement of the snowpack deformed many of the c o l l e c t o r s and a l t e r e d t h e i r o r i e n t a t i o n which r e s u l t s i n a s l i g h t u n d e r e s t i m a t i o n of the amount of l i t t e r c o l l e c t e d . The p r o l o n g e d s t o r a g e of l i t t e r i n the snowpack causes a f u r t h e r u n d e r e s t i m a t e because of l e a c h i n g and d e c o m p o s i t i o n . C o n s e q u e n t l y , an attempt was made to e s t i m a t e the amount of d e c o m p o s i t i o n and l e a c h i n g of m i n e r a l elements out of l i t t e r i n c o r p o r a t e d i n snow. In w i n t e r , l i t t e r of known c o m p o s i t i o n was e n c l o s e d i n l i t t e r b a g s , which were p e r i o d i c a l l y p l a c e d on the s u r f a c e of the snow l a y e r . These l i t t e r b a g s were p r o g r e s s i v e l y i n c o r p o r a t e d i n t o the snowpack d u r i n g the p e r i o d of snow a c c u m u l a t i o n and s u b s e q u e n t l y exposed on the snow s u r f a c e d u r i n g the p e r i o d of snowmelt. This work was u n f o r t u n a t e l y done i n c o l l a b o r a t i o n w i t h a graduate s t u d e n t who i n the middl e of h i s p r o j e c t suddenly d e p a r t e d , and the r e s u l t s were l o s t . The p r e l i m i n a r y r e s u l t s i n d i c a t e d t h a t the l i t t e r weight may decrease by a p p r o x i m a t e l y 10% and g r e a t q u a n t i t i e s of some m i n e r a l e l e m e n t s , p a r t i c u l a r l y p o t a s s i u m , may be l o s t by l e a c h i n g d u r i n g the w i n t e r . This problem s h o u l d be s t u d i e d i n the f u t u r e ; the p a r t i a l r e s u l t s o b t a i n e d c l e a r l y i n d i c a t e t h a t the d e c o m p o s i t i o n o f l i t t e r s t a r t s when l i t t e r i s i n c o r p o r a t e d i n t o the snow l a y e r , b e f o r e i t reaches the f o r e s t f l o o r . 4.1.4. O v e r s t o r y t h r o u g h f a l l The t h r o u g h f a l l c o l l e c t o r s c o n s i s t e d of 12.70 cm (5 i n c h e s ) d i a m e t e r p l a s t i c f u n n e l s l e a d i n g i n t o 4.5 L p l a s t i c b o t t l e s ( F i g . 3.21). A plug of g l a s s wool was p l a c e d i n the f u n n e l to prevent - 62 -l a r g e r p a r t i c l e s from e n t e r i n g the c o l l e c t o r , and to reduce m i c r o b i a l a c t i v i t y a few drops of c h l o r o f o r m were p l a c e d i n t o each c o l l e c t o r . Each c o l l e c t o r was f i x e d on a wooden p o l e by rubber bands i n such a way t h a t the f u n n e l edge was at l e a s t 50 cm above the ground to prevent c o n t a m i n a t i o n by p a r t i c l e s s p l a s h i n g from the f o r e s t f l o o r . The f u n n e l s were above the u n d e r s t o r y v e g e t a t i o n so t h a t they d i d not c o l l e c t u n d e r s t o r y t h r o u g h f a l l . C o l l e c t o r s were emptied a f t e r each major r a i n storm d u r i n g the snow-free p e r i o d . However, as mentioned i n Chapter 3.2, the summer i n the study area i s c h a r a c t e r i s t i c a l l y d r y , and the t o t a l number of c o l l e c t i o n s was r a t h e r s m a l l : two c o l l e c t i o n s i n the f a l l of 1974, f i v e i n the summer of 1975 and two i n the summer of 1976. An attempt was made to m o n i t o r w i n t e r t h r o u g h f a l l . As mentioned i n Chapter 3.2, most of the annual p r e c i p i t a t i o n o c c u r s d u r i n g November and December as a m i x t u r e of r a i n and snow w i t h t e m p e r a t u r e s f l u c t u a t i n g around 0° C. This p e r i o d was c o n s i d e r e d i m p o r t a n t f o r e v a l u a t i n g t h r o u g h f a l l s i g n i f i c a n c e . Two c o l l e c t o r d e s i g n s were t e s t e d . The f i r s t type was a m o d i f i c a t i o n of an e x i s t i n g summer c o l l e c t o r : the f u n n e l was taped i n a h o r i z o n t a l p o s i t i o n to the upper end of a 2.4 m (8 f o o t ) l o n g bamboo pol e t h a t was support e d by a s t u r d y wooden peg. I t was connected by p l a s t i c t u b i n g to a p l a s t i c b o t t l e on the ground. The e l e v a t i o n o f the f u n n e l was to m a i n t a i n i t above the l e v e l of the snow, w i t h the hope t h a t the b o t t l e would be p r o g r e s s i v e l y r a i s e d on the p o l e as the snow depth i n c r e a s e d . This s t r a t e g y was r e a s o n a b l y s u c c e s s f u l u n t i l t emperatures dropped below zero when - 63 -some of the b o t t l e s were r u p t u r e d by the f r e e z i n g water, and some of the f u n n e l s were crushed by heavy b l o c k s of snow s l i d i n g o f f t r e e b r a n c h e s . F l u c t u a t i o n s of temperature about the f r e e z i n g p o i n t r e s u l t e d i n a c c u m u l a t i o n of a l t e r n a t i n g l a y e r s of snow and i c e out of which i t was v i r t u a l l y i m p o s s i b l e to d i g the b o t t l e s . When the snow had melted i n J u l y 1975 , most of the p l a s t i c c o l l e c t o r s were crushed and d e s t r o y e d by the weight of the snow and most of the bamboo p o l e s were broken by snow creep ( F i g . 3.16) . When i t became obvious i n January 1975 t h a t t h i s c o l l e c t i o n s t r a t e g y was a f a i l u r e , a second type was t e s t e d , c o n s i s t i n g of s t u r d y p l a s t i c b u c kets hanging on ropes between t r e e s . Two of th e s e c o l l e c t o r s were t e s t e d on each of the Pa u l Ridge p l o t s . U n f o r t u n a t e l y t h i s c o l l e c t o r d i d not g i v e s a t i s f a c t o r y r e s u l t s e i t h e r . Because i t had no f i l t e r i t c o l l e c t e d l i t t e r f a l l as w e l l as t h r o u g h f a l l . When the samples were a n a l y z e d i t was found t h a t the c o n c e n t r a t i o n of elements i n the t h r o u g h f a l l was v e r y c l o s e l y r e l a t e d to the amount of l i t t e r c o l l e c t e d w i t h the t h r o u g h f a l l . In o t h e r words, c o n c e n t r a t i o n was l a r g e l y determined by the amount of n u t r i e n t s l e a c h e d out of l i t t e r f a l l . The d i f f i c u l t y i n d e s i g n i n g a good w i n t e r c o l l e c t o r t o g e t h e r w i t h d i f f i c u l t a ccess d u r i n g w i n t e r months r e s u l t e d i n the abandonment of attempts to measure t h r o u g h f a l l d u r i n g the w i n t e r , 1975-76. Only summer t h r o u g h f a l l was measured. Stemflow was not s t ud i e d . - 64 -4.1.5. I n c i d e n t p r e c i p i t a t i o n To determine the amount of n u t r i e n t s d e p o s i t e d by i n c i d e n t p r e c i p i t a t i o n the same type of c o l l e c t o r was used as f o r t h r o u g h f a l l ( F i g . 3.20). The i n c i d e n t p r e c i p i t a t i o n was sampled at t h r e e l o c a t i o n s : an open r i d g e i n the v i c i n i t y of PX p l o t s and c l e a r - c u t s i n the v i c i n i t y of PH p l o t s and M p l o t s . In September 1974 two c o l l e c t o r s were e s t a b l i s h e d at each of these l o c a t i o n s . However, a f t e r the f i r s t two c o l l e c t i o n s d u r i n g the f a l l of 1974 i t became obvious t h a t due to a l a r g e b e t w e e n - c o l 1 e c t o r v a r i a t i o n i n c o n c e n t r a t i o n of e l e m e n t s , two c o l l e c t o r s were not s u f f i c i e n t to g i v e r e a s o n a b l e r e s u l t s . C o n s e q u e n t l y , i n J u l y 1975 the number of c o l l e c t o r s was i n c r e a s e d to s i x per l o c a l i t y , and t h i s number was used through the r e s t of the sampling p e r i o d . The i n c i d e n t r a i n f a l l was c o l l e c t e d on the same dates as the t h r o u g h f a l l . 4.1.6. F o l i a r c h e m i s t r y To determine the c o n c e n t r a t i o n of n u t r i e n t s i n f o l i a g e of d i f f e r e n t ages, n e e d l e s were sampled from the l o w e s t l i v i n g b ranch of two t r e e s on each of the P a u l Ridge p l o t s . The same t r e e s were sampled i n 1975 (August and September) and i n 1976 (September) . - 65 -4.2. L a b o r a t o r y a n a l y s e s 4.2.1. Tree increment The increment cores were measured on an ADDO-X dendrochronometer. Whenever p o s s i b l e , d i a m e t e r increment f o r the l a s t 20 y e a r s and the t o t a l number of annual r i n g s were measured. 4.2.2. L i t t e r f a l l L i t t e r was a i r d r i e d and s o r t e d i n t o s i x c a t e g o r i e s : 1. f o l i a g e 2. e p i p h y t i c l i c h e n s 3. t w i g s and branches 4. seeds and cones 5. u n d e r s t o r y l i t t e r ( m a i n l y l e a v e s from Vacc i n i u m spp. s hrub s) 6. o t h e r p l a n t l i t t e r ( s u c h as wood and bark from t r e e b o l e s , e t c . ) Each l i t t e r c a t e g o r y was then weighed, and ground i n a Wiley m i l l to pass a #40 mesh. U n d e r s t o r y l i t t e r was e x c l u d e d s i n c e t h i s t r a n s f e r pathway was s t u d i e d by Y a r i e ( 1 9 7 8 ) . Samples were s e a l e d i n p o l y e t h y l e n e bags to await c h e m i c a l a n a l y s e s . In l i t t e r c o l l e c t i o n s number 1 and 2 (September 1974 and J u l y 1975) f o l i a g e l i t t e r from each l i t t e r c o l l e c t o r was a n a l y z e d s e p a r a t e l y to g i v e e s t i m a t e s of sample v a r i a b i l i t y . E p i p h y t i c l i c h e n s , t w i g s and b r a n c h e s , seeds and cones, and o t h e r p l a n t l i t t e r were b u l k e d w i t h i n each sample p l o t , and one sample per p l o t s was taken f o r c h e m i c a l a n a l y s e s . In l i t t e r c o l l e c t i o n s 3, - 66 -4, and 5, (September 1975, and J u l y and September 1976) f o l i a g e l i t t e r was a l s o b u l k e d , and o n l y one sample of f o l i a g e per p l o t was a n a l y z e d . The b u l k i n g of samples f o r c h e m i c a l a n a l y s e s was n e c e s s a r y to reduce the number of a n a l y s e s performed; i n f o r m a t i o n on the v a r i a b i l i t y of c o n c e n t r a t i o n of elements had to be s a c r i f i c e d . The d i f f e r e n c e between a i r - d r y and oven dry (105° C) m o i s t u r e c o n t e n t was determined on 70 randomly s e l e c t e d samples and found to be an average of 8.87% (SE + 0.11%). A p p r o p r i a t e c o r r e c t i o n s were made to the n u t r i e n t c o n c e n t r a t i o n d a t a . The c o n t e n t of m a c r o n u t r i e n t s (N, P, K, Ca, Mg) was det e r m i n e d i n a l l samples or b u l k e d samples. The ash c o n t e n t was dete r m i n e d f o r the l i t t e r s et number 1 o n l y (September 1974). The method used f o r d e t e r m i n i n g N and P c o n t e n t was a m o d i f i e d K j e l d a h l d i g e s t i o n (Twine and W i l l i a m s , 1971) u s i n g s e l e n i u m as a c a t a l y s t w i t h subsequent a n a l y s i s f o r N and P u s i n g a T e c h n i c o n A u t o - A n a l y z e r . Between 0.15 and 0.25 g of sample was added to a b o i l i n g tube c o n t a i n i n g 5 mL of d i g e s t i o n m i x t u r e and s e l e n i z e d Hengar g r a n u l e s to f a c i l i t a t e even b o i l i n g . The tubes were p l a c e d i n a 77-place h e a t i n g b l o c k and d i g e s t e d at 80-100° C f o r 12 h, then s l o w l y r a i s e d to the b o i l i n g temperature (about 330° C, W i l l i a m s and Twine, 1967) of the d i g e s t i o n m i x t u r e and h e l d t h e r e u n t i l c o m p l e t e l y c o l o u r l e s s and t r a n s p a r e n t ( o v e r n i g h t ) . G l a s s b a l l s p l a c e d over the mouths of the tubes a c t e d as r e f l u x c o n d e n s e r s , washing u n d i g e s t e d m a t e r i a l s p a t t e r e d on to the w a l l s of the tube back down i n t o the d i g e s t i o n m i x t u r e . When the d i g e s t s were c o o l they were d i l u t e d to 100 mL w i t h d e i o n i z e d d i s t i l l e d water and l e f t to stand o v e r n i g h t to permit - 67 -s e t t l i n g of any u n d i g e s t e d s o l i d s . The s u p e r n a t a n t d i g e s t a t e was decanted i n t o p l a s t i c b o t t l e s to await a n a l y s i s . N i t r o g e n was d e t e r m i n e d u s i n g an ammonia c a r t r i d g e of a Technicon A u t o - A n a l y z e r , which makes use of the B e r t h e l o t r e a c t i o n ( r e a c t i o n of ammonia w i t h sodium phenate and sodium h y p o c h l o r i t e to y i e l d a blue i n d o p h e n o l complex t h a t i s q u a n t i f i e d i n a c o l o r i m e t e r ) . Phosphorus was determined u s i n g an ortho-phosphate c a r t r i d g e of a Technicon A u t o - A n a l y z e r . This i n v o l v e s f o r m a t i o n of a reduced phosphomolybdate complex, which i s q u a n t i f i e d i n a c o l o r i m e t e r . A n a l y s i s f o r K, Ca , and Mg was conducted on a V a r i a n T e c h t r o n Atomic A b s o r p t i o n Spectophotometer (Model AA5) f o l l o w i n g d r y - a s h i n g . One gram of sample was weighed i n t o a s i l i c a c r u c i b l e and ashed i n a m u f f l e f u r n a c e at about 200° C f o r 11/2-2 h, f o l l o w e d by 475° C ± 5° C f o r 12 h. The weight of ash f o r each sample was determined and then taken up i n 5 mL o f 20% H C l . A f u r t h e r 15 mL of h y d r o c h l o r i c a c i d was then added, and the c r u c i b l e heated on a sand bath to f a c i l i t a t e s o l u t i o n . The c o n t e n t of the c r u c i b l e was then t r a n s f e r r e d to a v o l u m e t r i c f l a s k , made up to 100 mL, and t r a n s f e r r e d to a p l a s t i c b o t t l e f o r s t o r a g e p r i o r to a n a l y s i s . An a i r - a c e t y l e n e flame was used f o r d e t e r m i n a t i o n s of K and Mg, w h i l e an a c e t y l e n e - n i t r o u s o x i d e flame was used f o r d e t e r m i n a t i o n of Ca. Because t h e r e are a number of i n t e r f e r e n c e s p o s s i b l e i n the method used, the f o l l o w i n g i n v e s t i g a t i o n s were unde r t a k e n : 1. To check the i n f l u e n c e of pyrophosphates and h y d r a t e d s i l i c a on d e t e r m i n a t i o n of Ca , Mg , and K, 28 samples were p r o c e s s e d as f o l l o w s ( A l l a n , 1969). The ash o b t a i n e d from the - 68 -m u f f l e f u r n a c e was d i s s o l v e d i n 5 mL of 20% HCl and s l o w l y taken to dryness on a sand h e a t e r ( t o h y d r o l y z e the pyrophosphates and t o d e h y d r a t e the s i l i c a ) . T h i s o p e r a t i o n was r e p e a t e d w i t h a f u r t h e r 5 mL of 20% H C l . The r e s i d u e was then d i s s o l v e d i n 20 mL of 20% H C l , and a n a l y z e d as b e f o r e . No s i g n i f i c a n t d i f f e r e n c e s were found between the c o n c e n t r a t i o n s of Ca , Mg, and K o b t a i n e d by t h i s method and those o b t a i n e d by the b a s i c method, which was t h e r e f o r e used throughout the s t u d y . 2. To determine the c h e m i c a l i n t e r f e r e n c e of phosphorus, two r e l e a s i n g agents were t e s t e d : s t r o n t i u m c h l o r i d e and lanthanum c h l o r i d e , the former at 3000 ppm and the l a t t e r at 10000 ppm ( D a v i d , 1960). No s i g n i f i c a n t d i f f e r e n c e was found i n the c o n c e n t r a t i o n of Ca and Mg u s i n g e i t h e r of these r e l e a s i n g agents compared to the b a s i c method, which was t h e r e f o r e used throughout the st udy . The f i r s t 100 samples of Ca were a n a l y z e d i n both and a c e t y l e n e - a i r flame and a a c e t y l e n e - n i t r o u s o x i d e f l a m e . The l a t t e r gave c o n s i d e r a b l y h i g h e r r e a d i n g s because of more complete i o n i z a t i o n i n a h o t t e r f l a m e , and i t was t h e r e f o r e used throughout the s t u d y . 4.2.3. T h r o u g h f a l l and i n c i d e n t p r e c i p i t a t i o n T h r o u g h f a l l and i n c i d e n t r a i n f a l l samples were s t o r e d f r o z e n p r i o r to a n a l y s e s . Samples were a n a l y z e d f o r ammonia (NH4 +) n i t r o g e n , n i t r a t e (NO3 -) n i t r o g e n , phosphate (PO^-2) phosphorus, and s u l p h a t e (SO4-2) s u l p h u r on a T e c h n i c o n Au t o - A n a l y z e r u s i n g s t a n d a r d methods d e s c r i b e d i n the Te c h n i c o n A u t o - A n a l y z e r Methodology. A n a l y s e s f o r p o t a s s i u m , c a l c i u m , and magnesium were conducted on a V a r i a n Techtron Atomic - 69 -A b s o r p t i o n Spectrophotometer (Model AA5). An a i r - a c e t y l e n e flame was used f o r d e t e r m i n a t i o n of K and Mg c o n c e n t r a t i o n s , w h i l e an a c e t y l e n e - n i t r o u s o x i d e flame f o r d e t e r m i n i n g Ca c o n c e n t r a t i o n s . 4.2.4. F o l i a r c h e m i s t r y The green f o l i a g e sampled from the lowest l i v i n g branch f o r the purpose of d e t e r m i n i n g f o l i a g e n u t r i e n t c o n c e n t r a t i o n was s e p a r a t e d i n t o t h r e e c a t e g o r i e s on P a c i f i c s i l v e r f i r : c u r r e n t f o l i a g e , p r e v i o u s y e a r ' s f o l i a g e , and f o l i a g e o l d e r than 1 y e a r . On mountain hemlock o n l y two c a t e g o r i e s were d i s t i n g u i s h e d : c u r r e n t f o l i a g e and f o l i a g e from p r e v i o u s year and o l d e r . The a n a l y s e s f o r n u t r i e n t c o n t e n t were performed i n the same way as f o r the l i t t e r . 4.3. Data p r o c e s s i n g and s t a t i s t i c a l a n a l y s e s 4.3.1. Tree m e n s u r a t i o n The timber volumes on the sample p l o t s were c a l c u l a t e d u s i n g B.C. F o r e s t S e r v i c e (1976) volume e q u a t i o n s f o r Vancouver F o r e s t I n v e n t o r y Zone (Zone C ) . The volume e q u a t i o n s g i v e gross volume i n c u b i c metres f o r the e n t i r e stem, i n s i d e bark, i n c l u d i n g stump and top when d.b.h. and h e i g h t are measured i n m e t r i c u n i t s . The p o i n t of d.b.h. measurement must be 1.3 metres above g e r m i n a t i o n p o i n t . The e q u a t i o n : l o g V = -4.337451 + 1.783500 l o g D + 1.120230 l o g H was used f o r computing the timber volume of mountain hemlock and - 70 -w estern Hemlock t r e e s . The e q u a t i o n : l o g V = -4.226202 + 1.782960 l o g D + 1.103820 l o g H was used f o r computing the timber volume of P a c i f i c s i l v e r f i r t r e e s . E q u a t i o n : l o g V = -4.187127 + 1.777360 l o g D + 1.032990 l o g H was used f o r computing the timber volume of y e l l o w cedar t r e e s . In these e q u a t i o n s V i s the volume of wood i n the t r e e b o l e i n c u b i c m e t r e s , D i s diameter at b r e a s t h e i g h t i n c e n t i m e t r e s , and H i s t r e e h e i g h t i n metres. Timber volume of a l l t r e e s on a sample p l o t was c a l c u l a t e d by summing volumes of i n d i v i d u a l t r e e s . A timber volume per h e c t a r e was then c a l c u l a t e d by m u l t i p l y i n g the timber volume on a p l o t by the r e c i p r o c a l of the p l o t a r e a . Biomass of t r e e s on the sample p l o t s was c a l c u l a t e d a c c o r d i n g to e q u a t i o n s from my M.Sc. t h e s i s ( K r u m l i k 1974). Biomass of i n d i v i d u a l t r e e components ( b o l e wood, ba r k , s m a l l b r a n c h e s , b i g b r a n c h e s , t w i g s , and f o l i a g e ) was c a l c u l a t e d as a dependent v a r i a b l e from a l l o m e t r i c e q u a t i o n s u s i n g t r e e dbh, h e i g h t , and crown l e n g t h as independent v a r i a b l e s . I n d i v i d u a l t r e e biomass was c a l c u l a t e d as the sum of t r e e components, w h i l e p l o t biomass was c a l c u l a t e d as the sum of i n d i v i d u a l t r e e b i oma s s . - 71 -A l l o m e t r i c e q u a t i o n s used to c a l c u l a t e the biomass of t r e e components of hemlock t r e e s were: l o g WOOD = 2.3195 + 0.7455 l o g D 2H + 0.0007769/2 l o g BARK = 3.1089 + 1.0388 l o g BA + 0.001017/2 l o g BIGBRAN = 2.8004 + 3.0744 l o g D + 0.001083/2 l o g SMBRAN = 1.2410 + 0.0008643 l o g DCL 2 + 0.008636/2 l o g TWFO = 0.8851 + 1.5576 l o g D 2H - 0.0362 D 2H + 0.0003567/2 l o g TW = -1.2724 + 1.1630 l o g DCL 2 + 0.0002752/2 l o g FO = 0.5980 + 1.7174 l o g D 2H - 0.0447 D 2H + 0.0008062/2 A l l o m e t r i c e q u a t i o n s used to c a l c u l a t e the biomass of P a c i f i c s i l v e r f i r t r e e s were: l o g WOOD = 2.0472 + 0.9526 l o g D 2H + 0.001184/2 l o g BARK = 1.3455 + 0.9669 l o g D 2H + 0.01133/2 l o g BIGBRAN = 2.6654 + 2.4928 l o g D + 0.02003/2 l o g SMBRAN = 0.8615 + 0.7597 l o g D'CL = 0.003452/2 l o g TWFO = 0.8787 + 1.0376 l o g D'CL + 0.003293/2 Meanings of a b b r e v i a t i o n s i n these e q u a t i o n s a r e : WOOD - biomass of t r e e b o l e wood BARK - biomass of t r e e b o l e bark BIGBRAN - biomass of b i g bra n c h e s , d i a m e t e r of a branch i s over 2.54 cm (1 i n c h ) SMBRAN - biomass of s m a l l b r a n c h e s , d i a m e t e r of a branch i s 0.64 - 2.54 cm (1/4 - 1 i n c h ) TW - biomass of t w i g s , d i a m e t e r i s s m a l l e r than 0.64 cm (1/4 of an i n c h ) FO - biomass of f o l i a g e TWFO - biomass of t w i g s and f o l i a g e t o g e t h e r - 72 -Biomass of a t r e e b o l e was c a l c u l a t e d as the sum of wood biomass and bark biomass. Biomass of a t r e e crown was c a l c u l a t e d as the sum of s m a l l and b i g branches biomass and tw i g s and f o l i a g e biomass. Biomass of a whole t r e e was the sum of t r e e b o l e biomass and t r e e crown biomass. For hemlock, biomass of t w i g s and biomass of f o l i a g e were c a l c u l a t e d s e p a r a t e l y . For P a c i f i c s i l v e r f i r , o n l y the combined biomass of t w i g s and f o l i a g e was c a l c u l a t e d . A l l of the above l o g a r i t h m i c e q u a t i o n s i n c l u d e the c o r r e c t i o n f a c t o r G^/2—sample v a r i a n c e of the l o g a r i t h m i c e q u a t i o n d i v i d e d by 2 ( B a s k e r v i l l e , 1972) as the l a s t f i g u r e of t he equat i o n . Biomass of t r e e b o l e wood c a l c u l a t e d by the above l i s t e d e q u a t i o n s was compared w i t h biomass c a l c u l a t e d by the B.C. F o r e s t S e r v i c e t i m b e r volume e q u a t i o n s ( T a b l e 4.1). The volume of t r e e b o l e wood o b t a i n e d by these e q u a t i o n s was m u l t i p l i e d by wood s p e c i f i c g r a v i t y : 0.41 g/cm 3 f o r hemlock, 0.36 g/cm 3 f o r P a c i f i c s i l v e r f i r , and 0.42 g/cm 3 f o r y e l l o w cedar ( F o r e s t r y Handbook of B.C., 1971, pp. 716-717). On 10 out of 12 sample p l o t s biomass of t r e e b o l e wood c a l c u l a t e d by B.C. F o r e s t S e r v i c e volume e q u a t i o n s was l a r g e r than biomass c a l c u l a t e d by l o g a r i t h m i c e q u a t i o n s of K r u m l i k ( 1 9 7 4 ) . The l a r g e s t d i f f e r e n c e s were around 20%. Biomass c a l c u l a t e d by the B.C.F.S. volume e q u a t i o n s i n c l u d e s stumps which accounts f o r a p p r o x i a m t e l y 4% of the t o t a l . - 73 -4.3.2. Biomass n u t r i e n t c o n t e n t The amount of m a c r o n u t r i e n t s i m m o b i l i z e d w i t h i n the above-ground s t a n d i n g t r e e biomass was e s t i m a t e d by m u l t i p l y i n g the biomass of each p a r t i c u l a r t r e e component by the mean c o n c e n t r a t i o n of a p a r t i c u l a r m a c r o n u t r i e n t i n t h a t component, u s i n g data from K r u m l i k (1974) ( T a b l e 4.2). 4.3.3. Net above-ground p r i m a r y p r o d u c t i o n Annual net pri m a r y p r o d u c t i o n was c a l c u l a t e d as the sum of annual wood increment and annual l i t t e r p r o d u c t i o n . The assumption was made t h a t the biomass of crowns of mature and overmature t r e e s on sample p l o t s i s i n a steady s t a t e ; Turner (1975, pp. 113) c o n f i r m e d t h a t the crown and f o l i a g e biomass of mature t r e e s i s i n a steady s t a t e . The annual wood increment was c a l c u l a t e d as f o l l o w s . The d i f f e r e n c e between pr e s e n t dbh and dbh 20 y e a r s ago was measured on increment c o r e s o b t a i n e d from bored t r e e s on each p l o t . I t was assumed t h a t the h e i g h t growth d u r i n g the p e r i o d of the l a s t 20 ye a r s was n e g l i g i b l e . P resent wood volume and wood volume 20 y e a r s ago was then c a l c u l a t e d f o r sampled t r e e s u s i n g the B.C. F o r e s t S e r v i c e volume e q u a t i o n s . A mean wood volume increment f o r sampled t r e e s was c a l c u l a t e d , then m u l t i p l i e d by the number of t r e e s per h e c t a r e and d i v i d e d by 20 ( p e r i o d f o r which increment was measured), to o b t a i n annual wood volume increment per h e c t a r e . The annual p e r i o d i c increment of wood volume was m u l t i p l i e d by wood s p e c i f i c g r a v i t y of a p a r t i c u l a r t r e e s p e c i e s to e s t i m a t e stemwood biomass i n c r e m e n t . - 74 -Table 4 . 1 . Bionnss of tree stem wood calculated by two sets of logarithmic equations. Biomass 1 was obtained by my logarithmic equations (Krumlik 1 9 7 4 ) . Biomnss 2 was obtained by B.C. Forest Service equations ( 1 9 7 6 ) . Data in tonnes/hectare Tree Biomass 1 Biomass 2 Difference Plot Sp. . t/ha t/ha t/ha K.h. 2 2 4 . 5 px 1 2 0 : * Sum 2 4 4 . 8 K.h. 2 5 2 . 6 P s f 4 2 . 1 PX 2 Sum 294.8 K.h. 1 9 9 . 8 PX 3 P.s.f. 1 1 2 . 3 Sum 3 1 2 . 1 K.h. 3 6 1 . 6 PM 1 P.s.f. 1 3 0 . 5 Sum 4 9 2 . 1 K.h. 2 1 3 . 4 PH 2 P.s.f. 1 3 3 . 6 Sum 3 4 7 . 1 K.h. 6 8 . 8 PK 3 ' P.s.f. 3 0 9 . 9 Sum 3 7 8 . 7 K.h. 7 5 . 6 PH 1 P.s.f. 2 1 1 . 2 Sum 2 8 6 . 8 K.h. 8 3 . 3 PH 2 P.s.f. 2 5 5 . 3 Sura 3 3 8 . 6 K.h. 8 7 . 4 PH 3 P.s.f. 2 0 6 . 8 Sum . 2 9 4 . 3 K.h. 1 7 6 . 1 KK 1 P.s.f. 2 5 1 . 7 Sum 4 2 7 . 8 1 3 6 . 3 KM 2 P.s.f. 2 4 4 . 9 Sum 3 8 1 . 2 K-h- 80.3 m 3 P.s.f. 243.2 Sum 3 2 3 . 5 H 4 1 2 1 . 8 1 7 8 . 8 + 4 5 . 7 2 2 . 3 - 2 . 0 1 0 . 5 -2 1 1 . 6 • 3 3 . 2 1 8 7 . 4 + 6 5 . 2 4 7 . 5 - 5 . 4 8 . 4 -2 4 3 . 3 + 5 1 . 5 1 9 6 . 8 + 3 . 0 1 2 4 . 6 - 1 2 . 3 3 2 1 . 4 - 9 . 3 3 5 0 . 6 + 1 1 . 0 1 5 0 . r - 1 9 . 6 5 0 0 . 7 - 8 . 6 2 0 5 . 0 + 8 . 4 1 5 4 . 8 - 2 1 . 2 3 5 9 . 8 - 1 2 . 7 8 4 . 5 - 1 5 . 7 3 6 0 . 0 - 5 0 . 1 4 4 4 . 5 - 6 5 . 8 8 1 . 6 - 6 . 0 2 4 8 . 0 - 3 6 . 8 3 2 9 . 6 - 4 2 . 8 1 3 0 . 8 - 4 7 . 5 3 0 1 . 7 - 4 6 . 4 4 3 2 . 5 - 9 3 . 9 9 8 . 0 - 1 0 . 6 2 4 2 . 3 - 3 5 . 5 3 4 0 . 3 - 4 6 . 0 2 2 6 . 3 - 5 0 . 2 2 8 8 . 7 - 3 7 . 0 5 1 5 . 0 - 8 7 . 2 1 5 0 . 9 - 1 4 . 6 2 8 0 . 4 - 3 5 . 5 4 3 1 . 3 - 5 0 . 1 9 7 . 6 - 1 7 . 3 279.O - 3 5 . 8 3 7 6 . 6 - 5 3 . 1 tJL 4 5 0 6 . 6 - 3 8 4 . 8 Biomass 1 — calculated by logarithmic equations of Krumlik ( 1 9 7 4 ) Biomass 2—volumes of wood calculated by B.C. Forest Service volume equations were multiplied by wood specific gravity. Included biomass of stumps which represents approximately AH of the total. Table 4.2. Mean c o n c e n t r a t i o n s ( i n p e r c e n t ) of m a c r o n u t r i e n t s i n biomass components of sampled mountain hemlock and P a c i f i c s i l v e r f i r on Mamquam p l o t ( K r u m l i k 1974) Tr ee c omponent M. N .h. P.S.F. M. p ,h. P. s.f . K M.h. P. s . f . M. Ca ,h. P. s . f . M. Mg ,h. P. s . f Wood 0. .05 0. ,05 0. ,02 0. ,01 0. ,07 0. ,06 0. .07 0. ,06 0. ,02 0. , 01 Bark 0. .18 0. .24 0. . 06 0. .04 0. . 09 0. .13 0. .31 0. ,49 0. , 02 0. , 03 Bi g Branches 0 , .12 0 , .15 0. ,03 0. ,02 0. ,07 0. ,09 0 , .16 0. .31 0. ,02 0. , 02 Small Branches 0. .17 0. .22 0. .04 0, .03 0. . 09 0. .12 0. .18 0. ,29 0. , 03 0. , 03 Twigs + F o l i a g e 0. ,74 0 , .10 0. ,33 0. ,44 0. ,07 Twigs 0. .38 0. . 06 0. .16 0. .18 0. ,04 F o l i a g e 0. , 85 0 , .11 0. ,30 0. .31 0. ,08 - 76 -N u t r i e n t uptake by above-ground net pr i m a r y p r o d u c t i o n was c a l c u l a t e d as the sum of the amount of n u t r i e n t s i m m o b i l i z e d i n the increment of wood and amount of n u t r i e n t s r e t u r n e d i n l i t t e r f a l l . To e s t i m a t e the i n c r e a s e i n the amount of i m m o b i l i z e d n u t r i e n t s , the annual biomass increment of wood was m u l t i p l i e d by the c o n c e n t r a t i o n of a p a r t i c u l a r element i n stemwood ( T a b l e 4.2.). 4.3.4. O v e r s t o r y l i t t e r f a l l Biomass of l i t t e r per 10 m2 and the c o n c e n t r a t i o n of elements i n the l i t t e r were o b t a i n e d f o r each of the f i v e l i t t e r c o l l e c t i o n s made d u r i n g the s t u d y . For the biomass of f o l i a g e l i t t e r and the amount of n u t r i e n t s r e c y c l e d i n f o l i a g e l i t t e r , mean, s t a n d a r d e r r o r of the mean, and c o n f i d e n c e l i m i t s were c a l c u l a t e d . For o t h e r l i t t e r components, which were b u l k e d w i t h i n p l o t s no measure of v a r i a b i l i t y i s a v a i l a b l e . To c a l c u l a t e the biomass of l i t t e r and the amount of n u t r i e n t s r e c y c l e d i n l i t t e r per y e a r , a l l f i v e c o l l e c t i o n s were summed, and the r e s u l t i n g v a l u e was d i v i d e d by 2. This c o n s t i t u t e s a s m a l l o v e r e s t i m a t e of l i t t e r , s i n c e the whole samp l i n g p e r i o d was 2 y e a r s and 2 weeks. I t was not p o s s i b l e to c a l c u l a t e the v a r i a b i l i t y of f o l i a g e l i t t e r n u t r i e n t c o n t e n t f o r the whole sa m p l i n g p e r i o d . In the f i r s t two c o l l e c t i o n s , e v e r y f o l i a g e l i t t e r sample was a n a l y z e d . In the f o l l o w i n g t h r e e c o l l e c t i o n s , f o l i a g e samples were b u l k e d f o r c h e m i c a l a n a l y s e s . Because the s o u r c e s of v a r i a b i l i t y were not c o n s i s t e n t f o r a l l c o l l e c t i o n p e r i o d s , c o n f i d e n c e l i m i t s were c a l c u l a t e d s e p a r a t e l y f o r l i t t e r - 77 -c o l l e c t i o n s one and two and f o r c o l l e c t i o n s t h r e e , f o u r and f i v e . 4.3.5. Nut r i e n t c o n t e n t o f t h r o u g h f a l l and i n c i d e n t  p r e c i p i t a t i o n The amount of n u t r i e n t s r e t u r n e d i n the snow-free p e r i o d t h r o u g h f a l l was c a l c u l a t e d f o r 1974, 1975, and 1976. I t was not p o s s i b l e to c a l c u l a t e the annual r e t u r n because t h r o u g h f a l l was not sampled d u r i n g w i n t e r . The i n p u t of n u t r i e n t s i n i n c i d e n t p r e c i p i t a t i o n was a l s o c a l c u l a t e d f o r summer sampling p e r i o d s o n l y . Leaf wash was c a l c u l a t e d as a d i f f e r e n c e between t h r o u g h f a l l and i n c i d e n t p r e c i p i t a t i o n . A e r o s o l i n t e r c e p t o r s were no t us ed. 4.3.6. S t a t i s t i c a l comparison of study s i t e s One-way a n a l y s i s of v a r i a n c e was used to compare mean dbh, t r e e h e i g h t , stem wood volume, f o l i a g e l i t t e r biomass, and n u t r i e n t r e t u r n i n l i t t e r f a l l among sampling p l o t s and among the f o u r s i t e - t y p e s . Duncan's M u l t i p l e Range Test was used to group means i n t o homogeneous groups. B a r t l e t t ' s t e s t was used to t e s t t h e e q u a l i t y of v a r i a n c e s of d i f f e r e n t samples. S i n c e the number of samples per p l o t f o r l i t t e r f a l l and t h r o u g h f a l l i s e q u a l or almost e q u a l (10 or 11 s a m p l e s ) , the F r a t i o i s i n s e n s i t v e to d e p a r t u r e s from the assumption of e q u a l v a r i a n c e s ( W a l p o l e , 1971) . - 78 -CHAPTER 5 RESULTS AND DISCUSSION 5.1. Tree s t a n d i n g biomass and n u t r i e n t c o n t e n t As a l r e a d y mentioned i n Chapter 4.3., l o g a r i t h m i c r e g r e s s i o n e q u a t i o n s from my M.Sc. t h e s i s ( K r u m l i k 1974) were used to c a l c u l a t e t r e e s t a n d i n g biomass on the sample p l o t s . These e q u a t i o n s were d e r i v e d from a v e r y s m a l l number of d e s t r u c t i v e l y sampled t r e e s at the Mamquam p l o t (5 mountain hemlocks, 7 P a c i f i c s i l v e r f i r s ) . In orde r to check on the r e l i a b i l i t y of these e q u a t i o n s , the biomass of stem wood was a l s o c a l c u l a t e d u s i n g B.C. F o r e s t S e r v i c e (1976) e q u a t i o n s f o r hemlock ( w e s t e r n and mountain) and P a c i f i c s i l v e r f i r (Chapter 4.3.1, Table 4.1). The F o r e s t S e r v i c e e q u a t i o n s f o r hemlock gave lower v a l u e s on f i v e p l o t s and h i g h e r v a l u e s on seven p l o t s i n comparison to the r e s u l t s from my e q u a t i o n s f o r mountain hemlock; the d i f f e r e n c e was more than 10% on two of the former (PX1: 25%, PX2: 35%) and on f i v e of the l a t t e r p l o t s ( t h e two l a r g e s t d e v i a t i o n s were PH2: 36% and M l : 2 2 % ) . B.C. F o r e s t S e r v i c e e q u a t i o n s are f o r both w e s t e r n and mountain hemlock. Trees at h i g h e l e v a t i o n s have g r e a t e r t a p e r . E q u a t i o n s d e r i v e d p r i m a r i l y from lower and middle e l e v a t i o n s may t h e r e f o r e be l e s s a c c u r a t e f o r h i g h e l e v a t i o n t r e e s . The stem wood biomass of P a c i f i c s i l v e r f i r c a l c u l a t e d by the B.C. F o r e s t S e r v i c e e q u a t i o n s was h i g h e r on a l l 12 p l o t s compared w i t h the r e s u l t s from my e q u a t i o n s . On 10 p l o t s the d i f f e r e n c e was l a r g e r than 10%; the l a r g e s t d i f f e r e n c e was 15.5% ( p l o t PH2). - 79 -The wood biomass of the whole p l o t c a l c u l a t e d by the B.C. F o r e s t S e r v i c e e q u a t i o n s was lower on 2 p l o t s and h i g h e r on 10 p l o t s , than e s t i m a t e s from my e q u a t i o n s . On 3 p l o t s the d i f f e r e n c e was l e s s than 10%, on 7 p l o t s the d i f f e r e n c e was between 10 and 20%, and on 2 p l o t s the d i f f e r e n c e was h i g h e r than 20% (PX2: 21%, PH2: 2 2 % ) . The s t a n d a r d e r r o r of B.C. F o r e s t S e r v i c e volume e q u a t i o n s i s 13% f o r hemlock, and 10% f o r P a c i f i c s i l v e r f i r . I f i t i s assumed t h a t the B.C. F o r e s t S e r v i c e e q u a t i o n s are c o r r e c t , the wood biomass was o v e r e s t i m a t e d by more than 13% on two p l o t s , and u n d e r e s t i m a t e d by more than 13% on 5 p l o t s u t i l i z i n g my e q u a t i o n s . I t i s v e r y d i f f i c u l t to determine which set of e q u a t i o n s i s c l o s e r to the t r u t h . My e q u a t i o n s are d e r i v e d from a l i m i t e d number of t r e e s i n t h i s p a r t i c u l a r a r e a , whereas the B.C. F o r e s t S e r v i c e e q u a t i o n s are d e r i v e d from many hundreds of sampled t r e e s i n v a r i o u s e l e v a t i o n s i n south c o a s t a l B.C. E q u a t i o n s used f o r c a l c u l a t i n g biomass of t r e e s on sample p l o t s may s l i g h t l y u n d e r e s t i m a t e wood biomass. Since wood biomass r e p r e s e n t s the b i g g e s t p r o p o r t i o n of the above-ground t r e e biomass, t h i s means t h a t the above-ground biomass may be s l i g h t l y u n d e r e s t i m a t e d on most p l o t s . There i s o n l y a v e r y s m a l l p r o b a b i l i t y t h a t the t r e e biomass data are o v e r e s t i m a t e d except on p l o t s PX1 and PX2 ( T a b l e 4.1). To v e r i f y the data on m a c r o n u t r i e n t d i s t r i b u t i o n i n the above-ground t r e e biomass, the f o l i a g e c o n c e n t r a t i o n s o b t a i n e d on the Mamquam p l o t ( T a b l e 4.2) were compared w i t h f o l i a g e c o n c e n t r a t i o n s on Paul Ridge p l o t s . The m a c r o n u t r i e n t c o n c e n t r a t i o n of wood and bark, of a p a r t i c u l a r s p e c i e s i s f a i r l y - 80 -t / h a „ » 0 29 39 S3 T w i g t & F o l i a g e B r a n c h e I B a r k 1 2 3 1 2 3 1 2 3 1 2 3 P X P M P H M Figure 5.1• Distribution of above-ground tree biomass on sample plots (t/ha). 1 2 3 p x I 2 3 P M 1 2 3 P H 3 8 3 T w f g t & F o l i a g e B r a n c h e s l 2 3 M Figure 5.2. Distribution of nitrogen in the above-ground tree biomass (kg/ha). - 81 -k g / h o 3 0 3 » I 3 3 P X i t a i a 101 1 1 1 1 0 7 3 3 3 3 3 4 1 3 1 3 1 t 3 3 3 S 3 0 4 3 3 6 3 6 1 3 3 P M I 3 3 P H 3 0 T w i g i & F o l i a g e B r a n c h e i B a r k I 3 3 Figure 5.3. Distribution of phosphorus in the above-ground tree biomass (kg/ha). k 9 / h o A A R 40 0- n 8 9 8 7 5 9 3 2? , _ 3 0 0- 5 1 4 2 3 2 1 0 0 2 0 0- 7 6 8 6 t o o - 1 6 9 2 0 2 20 7 < 3 8 i t s 3 7 3 7 4 3 7 ? 7 7 7 3 4 1 3 9 4 0 7 7 9 0 8 3 1 S 0 3 I \ 1 6 3 T w i g i & F o l i o g e B r a n c h e i B a r k ?igure 5 . 4 . Distribution of potassium in the above-ground tree biomass (kg/ha). - 8 2 -k g / S o .»0| 6 9 »7 °, 113 7 a i i , g 9 T w i g i & F o 11 o g e I K 203307 1 2 3 331 230234 I 2 3 1 8 0 31 1 185 I 2 3 274243 303 1 2 3 Figure 5.5. Distribution of calcium in the above-ground tree biomass (kg/ha). k g / h o 1 0 0 1 Cl fi 30 n r\ 1 <t t 3 1 2 1 4 9 1 9 2 2 1 7 5 5 * 7 5 1 3 P X R O R ft 1 6 R 1 1 7 1 6 1 0 1 0 1 0 3 1 17 1 9 4 3 3 6 3 8 3 P M 3 P H 3 3 M T w i g I & F o l i o g c B r o n c h e t B a r k Figure 5.6. Distribution of magnesium in the above-ground tree biomass (kg/ha). - 83 -c o n s t a n t a t v a r i o u s l o c a t i o n s , but the f o l i a g e c o n c e n t r a t i o n i s v e r y p r o n e to change. I t was t h e r e f o r e assumed t h a t i f f o l i a g e m a c r o n u t r i e n t c o n c e n t r a t i o n s were s i m i l a r then the m a c r o n u t r i e n t c o n c e n t r a t i o n s of wood and ba r k were s i m i l a r too ( M o r r i s o n , 1 9 7 4 ) . The f o l i a r c o n c e n t r a t i o n s of sampled t r e e s on the P - p l o t s a r e summarized i n A p p e n d i x 4. I t must be e m p h a s i z e d t h a t the f o l i a g e samples were o b t a i n e d from the l o w e s t l i v i n g b r a n c h . I f th e m a c r o n u t r i e n t c o n c e n t r a t i o n s of hemlock f o l i a g e on the Mamquam p l o t and the P a u l R i d g e p l o t s a r e compared, t h e y a p p e a r t o be f a i r l y s i m i l a r on the PX and PM p l o t s and s l i g h t l y h i g h e r on the PH p l o t s . I t t h e r e f o r e a p p e a r s r e a s o n a b l e to use the m a c r o n u t r i e n t c o n c e n t r a t i o n s from the Mamquam p l o t s f o r c a l c u l a t i n g m a c r o n u t r i e n t d i s t r i b u t i o n on the P a u l R i d g e p l o t s . The a b o v e - g r o u n d t r e e biomass d i s t r i b u t i o n and the m a c r o n u t r i e n t d i s t r i b u t i o n i n the a b o v e - g r o u n d t r e e biomass on 12 sample p l o t s a r e summarized i n F i g u r e s 5.1 - 5.6. More d e t a i l e d d a t a on m a c r o n u t r i e n t d i s t r i b u t i o n by t r e e components and t r e e s p e c i e s a r e i n A p p e n d i x 5. The wood of t r e e b o l e s a c c o u n t s f o r the l a r g e s t p r o p o r t i o n o f the a b o v e - g r o u n d t r e e b iomass and f o l i a g e and t w i g s f o r the s m a l l e s t p r o p o r t i o n , r e f l e c t i n g the ad v a n c e d age o f the s t a n d . M a c r o n u t r i e n t d i s t r i b u t i o n shows a d i f f e r e n t p a t t e r n . Twigs and f o l i a g e and t r e e b o l e b a r k c o n t a i n the l a r g e s t p r o p o r t i o n o f n i t r o g e n , f o l l o w e d by wood and b r a n c h e s . Wood and ba r k c o n t a i n t h e l a r g e s t p r o p o r t i o n o f p h o s p h o r u s , f o l l o w e d by t w i g s and f o l i a g e , and then b r a n c h e s . Wood c o n t a i n s the l a r g e s t p r o p o r t i o n o f p o t a s s i u m and magnesium, f o l l o w e d by b a r k , t w i g s - 84 -and f o l i a g e , and branches. Bark c o n t a i n s the l a r g e s t p r o p o r t i o n of c a l c i u m , f o l l o w e d by wood, b r a n c h e s , and twigs w i t h f o l i a g e . The q u a n i t i t y of above-ground t r e e biomass and i t s m a c r o n u t r i e n t c o n t e n t are comparable w i t h r e s u l t s of o t h e r a u t h o r s . Turner and S i n g e r (1975) measured the biomass and n u t r i e n t c o n t e n t of 1 7 5 - y e a r - o l d P a c i f i c s i l v e r f i r and mountain hemlock f o r e s t at an e l e v a t i o n of 1200 m i n the Cascade Mountains of Washington s t a t e . The t o t a l above-ground t r e e biomass of 465 t c o n t a i n e d 345 kg N, 63 kg P, 956 kg K, 1013 kg Ca, and 157 kg Mg. Turner ( 1975) r e p o r t e d the above-ground t r e e biomass of 9 5 - y e a r - o l d n a t u r a l l y r e g e n e r a t e d D o u g l a s - f i r f o r e s t at an e l e v a t i o n of 210 m to be 348 t , and i t s m a c r o n u t r i e n t content to be 445 kg N, 80 kg P, 254 kg K, 333 kg Ca and 58 kg Mg. Hanley (1976) q u a n t i f i e d the above-ground t r e e biomass of f o r e s t s of n o r t h e r n Idaho. A 1 0 3 - y e a r - o l d grand f i r - P a c h i s t i m a f o r e s t (4 s t a n d s ) had a biomass of 326 to 578 t / h a . A 100-110-year-old w e s t e r n h e m l o c k - P a c h i s t i m a f o r e s t (3 s t a n d s ) had a biomass of 306-368 t / h a , w h i l e a 2 5 0 - y e a r - o l d stand of the same f o r e s t had a biomass of 341 t / h a . S t u d y i n g the biomass of f o r e s t s of E a s t e r n N e p a l , Yoda (1968) found t h a t the above-ground t r e e biomass of a Tsuga dumosa f o r e s t growing at 2760 m was 629 t / h a , t h a t of an A b i e s s p e c t a b i l i s - T s u g a dumosa f o r e s t at 2920 m was 503 t / h a , and t h a t of A b i e s s p e c t a b i l i s f o r e s t s at 3120, 3280, 3420 and 3530 m e l e v a t i o n was 496 t / h a , 399 t / h a , 420 t / h a , and 336 t/ha r e s p e c t i v e l y . I f we use the 1 0 - p o i n t s c a l e of Rodin and B a z i l e v i c h (1967) which c l a s s i f i e s ecosystems a c c o r d i n g to t h e i r p r o d u c t i v i t y and n u t r i e n t t u r n o v e r , the above-ground biomass of t r e e s on the - 85 -sample p l o t s would q u a l i f y f o r c l a s s 9 to 10 (Bg-io). S i m i l a r l y , the p l o t s c o u l d be c l a s s i f i e d a c c o r d i n g to the amount of n u t r i e n t s i m m o b i l i z e d w i t h i n the above-ground t r e e biomass as b 6 - 7 -The timber volume on the sample p l o t s i s c l o s e to or h i g h e r than the upper l i m i t g i v e n f o r the a p p r o p r i a t e p l a n t a s s o c i a t i o n s by Brooke e_t £l_. (1970) ( T a b l e 3.6). The t h r e e PX p l o t s , which were c l a s s i f i e d as examples of the Vac c i n i o - T s u g e t u m mertensianae p l a n t a s s o c i a t i o n , have timber volumes of 523, 609, and 826 m 3 / h a ; Brooke e t a 1. (1970) g i v e a mean timber volume of 4 70 m 3/ha and an upper l i m i t of 533 m 3/ha. The PM and M p l o t s , w h ich were a l l c l a s s i f i e d as the Abieto-Tsugetum mertensianae p l a n t a s s o c i a t i o n , have timber volumes of 1272, 930, 1206 m 3/ha (PM p l o t s ) and 1354 , 1147 , and 1013 m 3/ha (M p l o t s ) ; Brooke e_t a1. (1970) g i v e a mean timber volume of 924 m 3 / h a and an upper l i m i t of 1150 m 3/ha. The PH p l o t s , which were c l a s s i f i e d as examples of the Oplopanaco-Thujetum p l i c a t a e p l a n t a s s o c i a t i o n , have t i m b e r volumes of 888, 1157, and 912 m 3 / h a; Brooke et a l . (1970) g i v e a mean timber volume of 1098 m 3/ha and a range of 801-1977 m 3/ha. Turner (1975) s t u d i e d the i n c r e a s e i n above-ground t r e e biomass w i t h age. He found a v e r y good c o r r e l a t i o n between wood and crown biomass and stand age; I found v i r t u a l l y no such c o r r e l a t i o n . However, the age of stands s t u d i e d by Turner (1974) was from 9 to 95 y e a r s , a time p e r i o d of r a p i d biomass i n c r e a s e . The age of my stands was from 295 to 434 y e a r s (Appendix 6 ) , a time p e r i o d of very s m a l l biomass change. I n d i v i d u a l t r e e biomass i s v e r y c l o s e l y c o r r e l a t e d to t r e e - 86 -d i a m e t e r , h e i g h t and stem wood volume. T h e r e f o r e , r a t h e r than t r y i n g to use s t a t i s t i c a l a n a l y s e s to compare the biomass on the sample p l o t s , mean t r e e dbh, h e i g h t and stem wood volume were compared. One-way a n a l y s i s of v a r i a n c e and Duncan's m u l t i p l e range t e s t were used to compare mean dbh, t r e e h e i g h t and stem wood volume and to group means i n t o homogeneous s e t s . The a n a l y s e s were done i n two s t a g e s . F i r s t l y , the e q u a l i t y of mean dbh, h e i g h t and stem wood volume among the t h r e e p l o t s r e p r e s e n t i n g one ecosystem type were t e s t e d . S e condly, the e q u a l i t y of means between d i f f e r e n t ecosystem types were t e s t e d . The r e s u l t s of the f i r s t a n a l y s i s a r e : DBH H VOL PX PM PH M ( 1 , 2 ) ( 3 ) ( 1 , 2 ) ( 3 ) ( 1 ) ( 2 , 3 ) (1,2,3) ( 1 , 2 , ) ( 3 ) (1,2,3) ( D ( 2 , 3 ) (1,2,3) ( 1 , 2 ) ( 3 ) ( 1 , 2 ) ( 3 ) ( 1 ) ( 2 ) ( 3 ) (1,2,3) P l o t PX3 has a mean dbh, t r e e h e i g h t and stem wood volume t h a t a re s i g n i f i c a n t l y d i f f e r e n t (p<5%) from PX1 and PX2 which a r e s i m i l a r to each o t h e r . P l o t PM3 d i f f e r s s i g n i f i c a n t l y from p l o t s PM1 and PM2 i n mean dbh and stem wood volume, but not i n h e i g h t . P l o t PHI d i f f e r s from p l o t s PH2 and PH3 i n both mean dbh and h e i g h t and t h r e e PH p l o t s d i f f e r from each o t h e r i n mean stem wood volume. Only the M p l o t s are homogeneous i n both terms. - 87 -The r e s u l t s of the second a n a l y s i s a r e : D (PX) (PM) (PH) (M) H (PX) (PM) (M,PH) VOL (PX) (PM) (PH,M) Each p l a n t a s s o c i a t i o n ( r e p r e s e n t e d by a group of t h r e e p l o t s ) has a s t a t i s t i c a l l y s i g n i f i c a n t l y d i f f e r e n t (p<5%) mean d i a m e t e r , t r e e h e i g h t and stem wood volume, w i t h the e x c e p t i o n of the M and PH p l o t s , where the mean t r e e h e i g h t and stem wood volume are s t a t i s t i c a l l y s i m i l a r (p<5%). 5.2. E s t i m a t e of the annual above-ground net p r i m a r y p r o d u c t i o n  and n u t r i e n t uptake i n net p r i m a r y p r o d u c t i o n . Annual net p r i m a r y p r o d u c t i o n was c a l c u l a t e d as the sum of a n n u a l stemwood increment and annual l i t t e r f a l l biomass (Chapter 4.3.3). This was done under the assumption t h a t the crown biomass i s i n a steady s t a t e . The increment of t r e e b o l e bark was not taken i n t o a c c o u n t . The l i t t e r f a l l i n c l u d e d some l a r g e branches t h a t were used to e s t i m a t e branch biomass t u r n o v e r . The e s t i m a t e of b o l e wood increment i s based on a l i m i t e d number of sampled t r e e s . From each sampled t r e e o n l y one increment core was t a k e n , which means t h a t the t r e e b o l e increment was e s t i m a t e d o n l y i n one d i r e c t i o n . No attempt was made to e s t i m a t e t r e e m o r t a l i t y or decrease i n wood biomass r e s u l t i n g from i n t e r n a l stem decay or l o s s of p l a n t biomass by g r a z i n g . - 88 -The e s t i m a t e of annual net p r i m a r y p r o d u c t i o n p r e s e n t e d here i s based m a i n l y on above-ground l i t t e r f a l l , which i s c o n s i d e r e d by a number of r e s e a r c h e r s to be the major component and a good i n d i c a t o r of above-ground net p r i m a r y p r o d u c t i o n i n mature f o r e s t s ( B r a y and Gorham 1964, Rodin and B a z i l e v i c h 1967). Other components of net p r i m a r y p r o d u c t i o n were sampled l e s s e x t e n s i v e l y . The p e r i o d i c increment of wood f o r the l a s t 20 y e a r s and the age of sampled t r e e s are summarized i n Appendix 6. Due to the s m a l l number of sampled t r e e s the s t a n d a r d e r r o r of the mean age and volume increment i s r a t h e r l a r g e . The mean annual net volume increment and the p e r i o d i c annual net volume increment ( c a l c u l a t e d from the increment of the l a s t 20 y e a r s ) of the t r e e stemwood and the q u a n t i t y of m a c r o n u t r i e n t s i m m o b i l i z e d a n n u a l l y i n the stemwood biomass increment are summarized i n Table 5.1. I t i s w o r t h w h i l e to compare mean annual net increment w i t h p e r i o d i c annual net increment f o r i n d i v i d u a l p l o t s . A l l except the PX p l o t s show c o n s i d e r a b l e s m a l l e r p e r i o d i c annual net increment than mean annual net i n c r e m e n t . T h i s means t h a t the i n c r e a s e of wood volume d u r i n g the l a s t 20 y e a r s i s c o n s i d e r a b l y slower than the average wood volume i n c r e a s e d u r i n g the l i f e of the stand f o r a l l p l o t s except the PX p l o t s , on which the p e r i o d i c annual net increment i s a p p r o x i m a t e l y e q u a l to ( p l o t s PX1 and 3) or even b i g g e r than ( p l o t s PX2) the mean annual i n c r e m e n t . This i s s u r p r i s i n g c o n s i d e r i n g t h a t the mean age of t r e e s on the PX p l o t s i s around 350 y e a r s . F i g u r e 5.7 h e l p s to u n d e r s t a n d the r e l a t i o n s h i p between mean annual and p e r i o d i c annual i n c r e m e n t . PX p l o t s at - 89 -the age of about 350 y e a r s are s t i l l i n the p e r i o d of maximum growth. I c o n s i d e r t h i s to be a ve r y i n t e r e s t i n g d i s c o v e r y t h a t d e s e r v e s more d e t a i l e d study i n the f u t u r e . Trees on PX p l o t s seem to mature slower than on o t h e r p l o t s ; t h e i r growth curve i s l e s s s t e ep and t h e i r net growth more p r o l o n g e d . The v a r i a t i o n i n p e r i o d i c annual wood increment and mean annual wood increment on the d i f f e r e n t sample p l o t s i s shown i n F i g u r e s 5.8 and 5.9, and the r e l a t i o n s h i p between age on d i f f e r e n t sample p l o t s i n F i g u r e 5.10. Table 5.1. Mean annual net volume increment and p e r i o d i c annual net volume increment (a per i o d of the l a s t 20 years) of tree stemwood. Immobilization of macronutrients i n the p e r i o d i c annual net increment of stemwood. Mean annual P e r i o d i c annual net volume net volume P e r i o d i c annual net increment increment increment Biomass N P K Ca Mg m 3/(ha*a) m 3/(ha'a) t/(ha'a) Kg/(ha'a)— PX1 1. , 46 1. , 6 0. , 6 0. , 3 0. 1 0. , 4 0. , 4 0. ,1 PX2 1. 77 2. ,2 0. 9 0. ,4 0. 1 0. ,6 0. ,6 0. ,1 PX3 2. ,25 2 . 1 0. , 8 0. ,4 0. 1 0. , 5 0. , 5 0. ,1 PX 1. ,83 2. . 0 0. , 8 0. , 4 0. 1 0. , 5 0. , 5 0. ,1 PM1 3. , 74 1. .1 0. , 4 0. , 2 0. 1 0. .3 0. , 3 0. ,1 PM2 3 . ,16 1. ,6 0. , 6 0. ,3 0. 1 0. ,4 0. ,4 0. , 1 PM3 2. ,78 1. . 3 0. , 5 0. , 2 0. 1 0. , 3 0. , 3 0. .1 PM 3. ,23 1, . 3 0. , 5 0. , 2 0. 1 0. . 3 0. , 3 0. ,1 PHI 3. . 01 0. . 8 0. , 3 0. , 2 0. 05 0. . 2 0. , 2 0. . 05 PH2 2. ,73 1 , .1 0. ,4 0. ,2 0. 1 0. .3 0. ,3 0, . 1 PH3 2. . 64 0, . 8 0. . 3 0. , 2 0. 04 0. . 2 0. , 2 0. . 04 PH 2. .79 0, . 9 0. .4 0. , 2 0. 05 0. . 2 0. , 2 0. . 05 Ml 3. . 21 1, . 9 0. . 7 0. ,4 0. 1 0. . 5 0. , 5 0. .1 M2 2. ,75 1. .3 0. ,5 0. .2 0. 1 0. .3 0. .3 0, .1 M3 2, . 63 1. . 5 0. . 5 0. . 3 0. 1 0. . 4 0. . 4 0, .1 M 2. . 86 1, . 6 0. .6 0. . 3 0. 1 0. . 4 0. . 4 0. .1 - 91 -W o o d V o l u m e A g e Figure 5.7. Relationship between tree growth and tree age. At time periodic annual increment is larger than mean annual increment; at time these two increments are equal; at time Tj mean annual increment is larger than periodic annual increment. PX plots are at time T2. or to the left of it; all other plots are to the right of T 2 " ~ i i i i 1 f X P M M P H Ecolyi lem Grodienl of increaiing toil moillure Figure 5.8. periodic annual wood increment on sample plots f,t/(ha.a))—continuous line and the ratio of periodic annual wood increment/BA—dashed line. 92 -— i — P X E c o s y s t e m T y p e s G r o d i e n t of i n c r e a s i n g s o i l m o i s t u r e Figure 5.9. Mean annual wood increment on sample plots. P H E c o s y s t e m T y p e C r o d i e n t of i n c r e a s i n g s o i l m o i s t u r e Figure 5.10. Mean stand age of sample plots. - 93 -The c u r r e n t annual net p r i m a r y p r o d u c t i o n (NPP) and the n u t r i e n t uptake by NPP are summarized i n Table 5.2. The NPP i n tonnes per h e c t a r e may not be the best e x p r e s s i o n of p r o d u c t i v i t y s i n c e the d e n s i t y of t r e e s on d i f f e r e n t p l o t s i n e v i t a b l y was not e q u a l . I t h e r e f o r e used the r a t i o of NPP to b a s a l area (NPP kg/BA m.2). These two e x p r e s s i o n s of p r o d u c t i o n are compared i n F i g u r e 5.11. The NPP on the l e s s d e n s e l y s t o c k e d PH p l o t s i s s m a l l e r i n a b s o l u t e terms ( t / h a ) than the o t h e r p l o t s , whereas the r a t i o of NPP/BA i s eq u a l on PM, M, and PH p l o t s and d e c r e a s e s on PX p l o t s . I t seems to me t h a t the r a t i o NPP/BA i s a more m e a n i n g f u l e x p r e s s i o n of p r o d u c t i v i t y f o r the purpose of comparing d i f f e r e n t sample p l o t s w i t h unequal s t o c k i n g . The e s t i m a t e d above-ground NPP i n the s t u d i e d area (1.77-3.35 t/ha) i s c o n s i d e r a b l y lower than o t h e r p u b l i s h e d r e s u l t s . A c c o r d i n g to Rodin and B a z i l e v i c h ( 1 9 6 7 ) , the annual above-ground net pri m a r y p r o d u c t i o n i n f u l l y formed ecosystems (30-80 y e a r s o l d ) i n the c o n i f e r o u s and mixed f o r e s t subzone v a r i e s between 7 and 20 t / h a . A c c o r d i n g to K i r a and S h i d e i ( 1 9 6 7 ) , most of the c o n i f e r o u s f o r e s t s i n s u b a r c t i c and s u b a l p i n e r e g i o n s have an annual p r o d u c t i v i t y of 10-15 t / h a . They found o n l y a v e r y s m a l l number of these f o r e s t s to have a p r o d u c t i v i t y of l e s s than 5 t / h a . K i r a and S h i d e i (1967) a l s o d i s c u s s the r e l a t i o n s h i p between s t a n d age and gross p r o d u c t i o n , stand r e s p i r a t i o n and net p r o d u c t i o n . Gross p r o d u c t i o n i n c r e a s e s r a p i d l y e a r l y i n the l i f e of a s t a n d , reaches a peak, and l e v e l s o f f . R e s p i r a t i o n i n c r e a s e s more s t e a d i l y and more g r a d u a l l y from youth to o l d age and approaches the l e v e l of gross p r o d u c t i o n o n l y at an advanced - 94 -age. The d i f f e r e n c e between gross p r o d u c t i o n and r e s p i r a t i o n ( n e t p r o d u c t i o n ) has the g r e a t e s t v a l u e at i n t e r m e d i a t e s t a n d ages (40-70 y e a r s ) at the time when gross p r o d u c t i o n reaches i t s peak and s t a r t s l e v e l i n g o f f . From t h i s p o i n t on, stand r e s p i r a t i o n g r a d u a l l y approaches the l e v e l of gross p r o d u c t i o n , and net p r o d u c t i o n d e c r e a s e s . The r e l a t i o n s h i p i s e x p r e s s e d i n F i g u r e 5.12. The advanced age of the s t u d i e d stands i s p r o b a b l y the main reason f o r the v e r y low annual net p r i m a r y p r o d u c t i o n . On the 1 0 - p o i n t net p r o d u c t i v i t y c l a s s i f i c a t i o n s c a l e of Rodin and B a z i l e v i c h , PX and PH p l o t s can be d e s c r i b e d as P2, and PM and M p l o t s as P3. A l l sample p l o t s can be d e s c r i b e d as u^ a c c o r d i n g to the m i n e r a l uptake by net p r i m a r y p r o d u c t i o n . - 95 -T a b l e 5.2. C u r r e n t a n n u a l net p r i m a r y p r o d u c t i o n ( t / h a ) , r a t i o o f net p r i m a r y p r o d u c t i o n to b a s a l a r e a (kg/m 2) and the u p t a k e o f m a c r o n u t r i e n t s i n N.P.P. ( k g / h a ) . P l o t NPP ( t / h a ) NPP ( k g / h a ) * B.A. (m^/ha) (kg/m 2) N P K - ( Xr cr / T - i a ' S Ca Mg K g / na ; PX1 2.13 26 8. 08 1. 00 1.83 12.25 1. 29 PX2 2.39 26 8.46 1.21 1.77 11.21 1 . 11 PX3 2.20 21 8.86 0.97 1.76 11. 38 0. 85 PX 2.24 24 8.47 1. 06 1. 79 11 . 61 1. 08 PM1 3 . 08 26 14 . 30 1. 90 2.59 15. 64 1. 77 PM2 3.05 37 14.12 1.92 2. 72 14.16 1. 62 PM3 2.73 31 15.27 1. 77 2.35 16 . 62 1. 08 FM 2.95 31 14. 56 1.86 2.55 15.47 1. 49 PHI 1 .77 27 8.82 0.94 1.25 11. 97 0. 84 PH2 2.09 30 11. 80 1.01 1.64 13.77 0. 86 PH3 1. 86 28 11. 91 1.31 1.49 13. 52 0. 80 PH 1. 91 28 10.84 1.09 1.46 13. 09 0. 83 Ml 3.35 32 16.77 2. 03 2.35 16. 52 1. 07 M2 2.45 29 14.22 1.76 2.19 12.92 0. 92 M3 2.67 33 15 . 32 1. 79 2.28 13.82 0. 97 M 2.82 31 15 . 44 1.86 2.27 14.42 0. 99 * kg of a n n u a l net p r i m a r y p r o d u c t i o n per 1 m 2 o f b a s a l a r e a - 96 -N P P l / h o O - Or -O G r a d i e n t of i n c r e a s i n g s o i l m o i s t u r e N P P / B A kg im 1 Ec osy s tern T y p e Figure 5.11. Comparison between annual net primary production (t/ha)—continuous line and the ratio net primary production/ basal area (kg/ra2)—dashed line. S t ' o n d A g e Figure 5.12. Relationship between stand age, gross production, stand respiration, and net production (after Kira and Shidei, 1967). - 97 -5.3 L i t t e r p r o d u c t i o n and i t s n u t r i e n t c o n t e n t 5.3.1. The biomass of l i t t e r f a l l The biomass and m a c r o n u t r i e n t c o n t e n t of annual l i t t e r f a l l measured on the twelve p l o t s are summarized i n Table 5.3, Appendix 7, and F i g u r e 5.13. The l a r g e s t amount of l i t t e r f a l l o c c u r r e d on the mesic s i t e s [2.82 t / ( h a * a ) (PM p l o t s ) and 2.44 t / ( h a * a ) (M p l o t s ) ] w h i l e the x e r i c and h y g r i c s i t e s (PX and PH p l o t s ) both produced a s u b s t a n t i a l l y s m a l l e r q u a n t i t y of l i t t e r f a l l [1*67 t / ( h a - a ) ] . The amount of l i t t e r f a l l on the sample p l o t s i s comparable to the r e s u l t s i n the l i t e r a t u r e . Rodin and B a z i l e v i c h (1967) g i v e a range of 2-7 t / ( h a * a ) f o r c o o l temperate f o r e s t s . They s t a t e (pp.52) t h a t (presumably w i t h i n broad l i m i t s ) the amount of l i t t e r f a l l i s not dependent on p l a n t biomass; t h i s i s not i n agreement w i t h my r e s u l t s . F i g u r e 5.14 shows the r e l a t i o n s h i p between above-ground t r e e biomass and the amount of l i t t e r f a l l on the study p l o t s . The r e l a t i o n s h i p can be e x p r e s s e d by the l i n e a r r e g r e s s i o n e q u a t i o n : y = -31.94 + 4.24x where, y = amount of l i t t e r f a l l i n kg/(ha*a) x = amount of above-ground t r e e biomass i n t/ha The c o e f f i c i e n t of d e t e r m i n a t i o n i s r ^ = 0.58 ( r = 0.76). The d i s c r e p a n c y between my r e s u l t s and Rodin and B a z i l e v i c h (1967) may or may not be due to the f a c t t h a t t h e i r data r e p r e s e n t a broad spectrum of f o r e s t stands w h i l e my data are l i m i t e d to a s m a l l g e o g r a p h i c area and narrow growth c o n d i t i o n s . - 98 -Table 5.3.Annual biomass of l i t t e r f a l l . a n d nutrient content of l i t t e r f a l l (in kg/ha) Element L i t t e r PX PM PH M component kg/(ha. a) N 1* 6.51 11.59 8.65 12.00 2 1.47 2.76 0.99 2.35 3 1.32 2.45 1.53 2.59 4 0.24 0.28 0.37 0.55 ' SUM 9.54 17.07 11.54 17.49 P 1 0.79 1.49 0.85 1.43 2 0.16 0.32 0.11 0.27 3 0.13 0.27 0.15 0.'28 4 0.02 0.03 0.03 0.05 SUM 1.10 2.11 1.14 2.04 K 1 1.13 1.94 1.03 1.60 2 0.26 0.45 0.14 0.39 3 0.14 0.27 0.18 0.26 4 0.01 0.02 0.03 0.04 SUM 1.54 2.68 1.37 2.29 Ca 1 9.71 12.62 10.31 10.51 2 0.84 1.17 0.61 0.94 3 1.19 2.12 2.08 2.52 4 0.21 0.41 0.48 1.01 SUM 11.95 16.32 13.47 14.99 Mg 1 0.89 1.26 0.66 0.72 2 0.10 0.17 0.05 0.13 3 0.07 0.14 0.10 0.14 4 0.01 0.02 0.02 0.03 SUM 1.06 1.58 0.83 1.02 Biomass 1 1125 1833 1107 1454 2 213 373 112 272 3 285 546 380 594 4 42 67 71 122 SUM 1666 2819 1670 2442 * 1-foliage 2- epiphytic lichens 3- twigs and branches 4- other l i t t e r - 99 -k g / l h o d 4 0 0 0 2 0 0 0 10 0 0 I , , , , P X P M M P H P l o t . Figure 5.13. Total annual above-ground litterfall (+) and annual leaf litterfall (x) biomass on sample plots. 300 600 700 biomoil Figure 5.14. Relationship between above-ground tree biomass and litterfall biomass. - 100 -A c c o r d i n g to Bray and Gorham ( 1 9 6 4 ) , l i t t e r f a l l of c o o l temperate f o r e s t s averages 3.5 t / ( h a * a ) . The l i t t e r f a l l data from the P a c i f i c Northwest, which are summarized i n Table 2.2, has a range of 1 . 05 - 6. 92 t / ( h a * a ) . The l i t t e r f a l l on the study p l o t s i s w e l l w i t h i n t h i s range. A c c o r d i n g to Rodin and B a z i l e v i c h ' s (1967) 10 p o i n t s c a l e , the l i t t e r f a l l of the stands would be c l a s s i f i e d as L2-3 ( T a b l e 5.10). 5.3.2. C o m p o s i t i o n of l i t t e r f a l l L i t t e r f a l l was s o r t e d i n t o the f o l l o w i n g l i t t e r components: f o l i a g e , e p i p h y t i c l i c h e n s , t w i g s and branches and o t h e r l i t t e r . F o l i a g e made up most of the l i t t e r f a l l on a l l s i t e s : from 57 to 72%. Twigs and branches made up the second l a r g e s t p o r t i o n f o l l o w e d by e p i p h y t i c l i c h e n s , and oth e r l i t t e r . E p i p h y t i c l i c h e n s c o n s t i t u t e d a s i g n i f i c a n t p r o p o r t i o n of annual l i t t e r f a l l ; t h e i r l i t t e r f a l l biomass ranged from 71 to 426 k g / ( h a * a ) , r e p r e s e n t i n g 5 to 16% of t o t a l l i t t e r f a l l biomass. The p r o p o r t i o n of v a r i o u s l i t t e r components on d i f f e r e n t p l o t s was s i m i l a r . The mean, s t a n d a r d e r r o r of the mean, and 95% c o n f i d e n c e l i m i t s of f o l i a g e l i t t e r f a l l biomass and m a c r o n u t r i e n t c o n t e n t are summarized i n Table 5.4. Since f o l i a g e l i t t e r f a l l from each c o l l e c t o r was a n a l y s e d s e p a r a t e l y from l i t t e r c o l l e c t i o n s 1 and 2, and was bu l k e d from c o l l e c t i o n s 3, 4, and 5, i t was not p o s s i b l e to c a l c u l a t e c o n f i d e n c e l i m i t s f o r the whole sampling p e r i o d of 24 months. The c o n f i d e n c e l i m i t s were t h e r e f o r e c a l c u l a t e d f o r c o l l e c t i o n s 1 and 2 combined, and 3, 4, and 5 combined. The c o n f i d e n c e l i m i t s of o t h e r l i t t e r f a l l components were not determined because these components were b u l k e d i n t o one sample per p l o t . - 101 -Table 5.4. Statistics of foliage litterfall (.mean, standard error of the mean and 5 % confidence limits) for collections 1+2 (set 1) and 3+4+5 I, set 2). For further explanation see text. PLOT SET Biomass N P K Ca Mg . kg/ha PXl 1 943 (93) 4.96 (0.60) 0.60 (0.07) 1.01 (0.11) 9.19 (1.38) 0.95 (0.07) 733-1152* 3.60-6.32 0.45-0.75 0.76-1.25 6.07-12.31 0.79-1.11 2 1393 (176) 7.54 (1.03) 0.91 (0.12) 1.51 (0.19) 11.98(1.51) 1.28 (0.16) 944-1792 5.22-9.86 0.64-1.18 1.07-1.95 8.57-15.40 0.92-1.65 1045 (176) 5.51( 0.80) 0.79 (0.12) 0.87 (0.13) 8.76(1.23) 0.88 (0.17) 648-1443 3.70-7.3.1 0.51-1.07 0.59-1.15 5.98-11.53 0.50-1.26 1249 (122) 6.95 (0.79) 1.01 (0.10) 1.17 (0.11) 9.79 (0.87) 0.91 (0.09) 973-1524 5.17-8.73 0.77-1.24 0.92-1.42 7.81-11.87 0.72-1.10 PX3 1 973(289) 6.25 (1.73) 0.64 (0.18) 0.97 (0.29) 9.26 (3.61) 0.65 (0.14) 319-1627 2.33-10.16 0.24-1.05 0.32-1.62 1.08-17.43 0.32-0.97 2 1150 (197) 7.87(1.34) 0.81 (0.14) 1.23 (0.22) 9.27 (1.61) 0.68 (0.12) 704-1596 4.85-10.90 0.50-1.12 0.74-1.71 5.63-12.91 0.42-0.94 1908 (132) 9.90 (0.71) 1.40 (0.08) 1.90 (0.15) 10.50 (1.03) 1.60 (0.16) 1615-2201 8.27-1.14 1.20-1.57 1.52-2.20 8.26-12.84 1.22-1.95 2064 (109) 12.00(0.68) 1.60 (0.09) 2.20 (0.11) 14.90 (0.76) 1.50 (0.08) 1822-2307 10.49-13.53 1.41-1.81 ' 1.92-2.41 13.18-16.55 1.32-1.67 1668(130) 9.00 (0.64) 1.30 (0.11) 1.60 (0.14) 9.00 (0.88) 1.30 (0.14) 1379-1958 7.54-10.40 1.06-1.56 1.32-1.95 7.06-10.98 0.97-1.62 2077 (120) 13.40(0.80) 1.80 (0.10) 2.50 (0.14) 13.90 (0.77) 1.50 (0.09) 1809-2344 11.60-15.17 1.56-2.03 2.18-2.80 12.14-15.59 1.25-1.65 PM3 . 1 1439(177) 9.80 (1.14) 1.10 (0.13) ' 1.40 (0.20) 13.10 (1.74) 0.80 (0.10) 1043-1834 7.23-12.31 0.79-1.37 0.94-1.79 9.22-16.98 0.54-0.98 2 1838 (193) 15 .60 (1.69) 1.80 (0.19) 2.10 (0.22) 16.30 (1.70) 1.00 (0.10) 1408-2269 11.79-19.32 1.35-2.21 1.62-2.61 12.54-20.11 0.74-1.18 PHI 1 796(120) 5. 98 (0.99) 0.57 (0.10) 0.81 (0.14) 7.27 (1.29) 0.75 (0.32) 525-1067 3. 74- 8.22 0.35-0.80 0.49-1.13 4.34-10.20 0.03-1.47 2 990 (147) 7. 59 (1.26) 0.89 (0.26) 0.95 (0.13) 9.96 (1.49) 0.55 (0.08) 658-1323 4. 75-10.43 0.31-1.48 0.65-1.24 6.59-13.33 0.37-0.72 PH2 1 1121(113) 8. 23 (0.79) 0.76(0.07) 0.92 (0.09) 9.54 (0.96) 0.64 (0.09) 864-1377 6. 45-10.01 0.59-0.92 0.72-1.13 7.37-11.71 0.44-0.83 2 1292 (99) 10. 55(0.76) 0.76(0.06) 1.21(0.09) 12.52 (0.93) 0.71 (0.06) 1069-1515 8. 81-12.28 0.63-0.89 1.01-1.41 10.41-14.64 .0.58-0.84 PH3 1143-U53) 798-1489 1299 (98) 1077-1521 9.08 (1.13) 6.53-11.64 10.5 (0.76) 8.79-12.21 0.98(0.13) 0.67-1.28 1.16(0.08)• 0.97-1.35 1.06(0.14) 0.75-1.36 1.21(0.09) • 1.01-1.42 9.28(1.11) 6.77-11.79 13.28 (0.98) 11.06-15.49 0.65(0.11) 0.41-0.89 0.68 (0.06) 0.56-0.81 1348 (128) 1074-1621 1700 (230) 1189-2212 9.80 (0.97) 7.58-11.93 16.60(1.96) 12.18-20.94 1.20 (0.11) 0.93-1.42 2.00(0.23) 1.46-2.49 1.40 (0.11) 1.12-1.62 1.70(0.22) 1.24-2.24 9.90 (1.48) 6.59-13.20 14.70 (2.02) 10.23-19.24 0.70 (0.05) 0.57-0.81 0.80 (0.11) 0.61-1.08 MM2 1 1267 (83) 9.30(0.86) 1.10 (0.09) 1.40(0.09) 8.10 (1.05) 0.60(0.03) 1082-1452 7.42-11.27 0.94-1.34 1.19-1.60 •.5.81-10.47 0.56-0.71 '2 1604 (83) 13.40(0.79) 1.70 (0.09) 1.90 (0.10) 12.40 (0.66) 0.80(0.04) 1418-1789 11.61-15.12. .1.45-1.86 1.63-2.10 10.94-13.90 0.71-0.89 MM 3 1 1193 (73) 9.50 (0.74) 1.10 (0.08) 1.30 (0.10) 8.10(0.59) 0.60 (0.05) 1029-1356 7.84-11.13 0.90-1.26 1.06-1.51 6.75-9.36 0.48-0.72 2 1611(146) 13.50 (1.28) 1.60 (0.15) 2.00 (0.16) 12.90(1.15) 0.80 (0.07) 1285-1938 10.66-16.38 1.24-1.89 1.58-2.32 10.37-15.51 0.62-0.92 Set 1 - L i t t e r Collection one and two, September 1974 and July 1975. Set 2 - L i t t e r Collection three, four and five, September 1975 and July and September 1976. * mean (SE) 95% confidence l i m i t . - 102 -Leaf l i t t e r f a l l makes up 53 to 90% of the t o t a l l i t t e r f a l l a c c o r d i n g to Rodin and B a z i l e v i c h ( 1 9 6 7 ) , or 60-76% a c c o r d i n g to Bray and Gorham (1 9 6 4 ) . This compares w e l l w i t h the 57-72% observed on the study p l o t s . The q u a n t i t y of l e a f l i t t e r f a l l of c o o l temperate f o r e s t s i s r e p o r t e d to average 2.5 t / ( h a * a ) (Bray and Gorham, 1964) which i s a p p r e c i a b l y h i g h e r than the volumes o b t a i n e d i n t h i s s t u d y . The r e l a t i o n s h i p between t o t a l l i t t e r f a l l and l e a f l i t t e r f a l l on the sample p l o t s can be e x p r e s s e d by the l i n e a r r e g r e s s i o n e q u a t i o n : y = 129.51 + 0.58x where, y = weight of l e a f l i t t e r f a l l i n kg x = weight of t o t a l l i t t e r f a l l i n kg The c o e f f i c i e n t of d e t e r m i n a t i o n i s r ^ = 0.92 ( r = 0.96), i n d i c a t i n g a good c o r r e l a t i o n between the q u a n t i t y of l e a f l i t t e r f a l l and t o t a l l i t t e r f a l l . 5.3.3. N u t r i e n t c o n c e n t r a t i o n s The c o n c e n t r a t i o n s of m a c r o n u t r i e n t s and ash i n summer and w i n t e r l i t t e r f a l l are g i v e n i n Table 5.5. Data f o r one p l o t o n l y from each group of p l o t s are p r e s e n t e d , s i n c e the m a c r o n u t r i e n t c o n c e n t r a t i o n s were v e r y s i m i l a r w i t h i n the same p l a n t a s s o c i a t i o n . The ash c o n t e n t was determined o n l y f o r c o l l e c t i o n one. F o l i a g e l i t t e r f a l l had a c o n s i d e r a b l y h i g h e r c o n c e n t r a t i o n of n i t r o g e n and phosphorus i n w i n t e r than i n summer, due to the h i g h e r p r o p o r t i o n of green l e a f l i t t e r f a l l i n the w i n t e r : the r e s u l t of wind and snowbreak. There i s a l s o a p o s s i b i l i t y t h a t the c o n c e n t r a t i o n of N and P i n snow b u r i e d l i t t e r i s a l t e r e d by the i n v a s i o n of f u n g i and a l g a e . Potassium e x h i b i t e d the o p p o s i t e t r e n d , p r o b a b l y because of - 103 -T a b l e 5.5. C o n c e n t r a t i o n o f m a c r o n u t r i e n t s and ash i n summer and w i n t e r l i t t e r f a l l ( i n p e r c e n t ) . Collection 1, September 1974. 1 1 2 PLOT L.C. M P K Ca Ca Mg Ash PX1 1 .323(. ,008)J .053(.002) .134(.011) .696(.063) .970(.057) .137(. 005) 3. 407(.144) 2 .635 .060 .179 .142 .312 .0AA 2. 629 3 .A66 .041 .049 .153 .267 .017 2. .288 4 .368 .030 .047 .438 .602 .023 2. .846 PM1 1 .332(, .010) .070(.003) .119(.003) .546(.022) * .116(. 004) 2. 756(.079) 2 .681 .082 .196 .166 * .044 1. ,714 3 .598 .069 .085 .197 * .033 1. ,203 4 .553 .055 .074 .920 * .033 3. .067 PHI 1 .561(, .049) .048(.004) .146(.015) .973(.054) * .062(. 002) 3. ,A17(.150) 2 .786 .085 .182 .317 * .040 2. ,403 3 A .392 .050 - - * - -Ml 1 .488( .026) .069(.002) .125(.005) .603(.033) * .072(. 001) A. .854(.086) 2 .626 .091 .274 :iA2 * .034 3. .284 3 .3A0 .030 .039 .306 * .014 3. .172 A .A50 .041 .094 .3A7 * .033 3. .668 Collection 2, July 1975 PX1 1 .69A(. .018) .O72(.0O2) .083(. ,003) .564(. ,075) .91K.055) .075( .003) 3. 925(.202! 2 .835 .074 .113 .272 .588 .052 2. 941 3 .375 .032 .032 .247 .384 .018 1. 536 A .587 .047 .035 .449 .723 .024 2. 739 PM1 1 .631(. .017) .075(.002) .083(. .002) .565(. ,028) .878(.038) .063( .003) * 2 .761 .085 .107 .279 .525 .053 * 3 .461 .045 .043 .317 .437 .024 * A .633 .048 .033 .454 .596 .021 * PHI 1 .785( .014) .076(.003) .088(, .003) .835(. .048) 1.121 (.048) .053 (.002) * 2 .909 .087 .119 .318 .613 .053 * 3 .311 .026 .033 .427 .504 .025 * A .403 .033 .038 .707 .855 .027 * Ml 1 .791 (.031) .092 (.003) .101 (.006) .630 (.051) .878 (.049) .048 (.001) * 2 .781 .088 .105 .258 .466 .043 * 3 .293 .031 .026 .367 .422 .022 * 4 .397 .036 .025 .898 1.008 .022 * 1 L . C . - l i t t e r component 1 - foliage 2 - epiphytic lichens 3 - twigs and branches , 4 - other l i t t e r Ca 2 determined by acetylene - a i r flame Ca determined by acetylene - nitrous oxide flame 2 mean (se o f the mean) s.e. d e t e r m i n e d f o r l e a f l i t t e r f a l l o n l y , o t h e r components o f the l i t t e r f a l l were b u l k e d . - q u a n t i t y o f sample too s m a l l t o p e r m i t a n a l y s i s , • m i s s i n g d a t a - 104 -l e a c h i n g d u r i n g the p e r i o d of snowmelt. Magnesium shows the same p a t t e r n as p o t a s s i u m , p o s s i b l y f o r the same reason. The c o n c e n t r a t i o n of c a l c i u m remained s i m i l a r i n both summer and w i n t e r 1 i t t e r f a l l . The c o n c e n t r a t i o n of n i t r o g e n , phosphorus and potassium i n e p i p h y t i c l i c h e n l i t t e r f a l l was h i g h e r than i n f o l i a g e l i t t e r f a l l t hroughout the y e a r . C o n c e n t r a t i o n s were h i g h e r i n the w i n t e r than i n the summer, but the reason f o r t h i s i s not known. Since e p i p h y t i c l i c h e n s seem to p l a y a s i g n i f i c a n t r o l e i n the n u t r i e n t t u r n o v e r , e s p e c i a l l y i n the t u r n o v e r of n i t r o g e n , they should be s t u d i e d i n more d e t a i l . The amount of ash i n the l e a f l i t t e r f a l l was determined f o r c o l l e c t i o n one o n l y . C o n c e n t r a t i o n s on d i f f e r e n t sample p l o t s are compared i n F i g u r e 5.15. There was c o n s i d e r a b l e v a r i a t i o n among sample p l o t s . The mean ash c o n t e n t i n l e a f l i t t e r f a l l i s almost e qua 1 on the M and PH p l o t s . The s m a l l e s t v a l u e was o b t a i n e d f o r the PM p l o t s . Rodin and B a z i l e v i c h (1967) g i v e a range from 0.5 to 5% f o r v a r i o u s types of c o n i f e r o u s f o r e s t s i n the n o r t h e r n temperate zone. The data from t h i s study f a l l i n t o the upper h a l f of t h i s range. The ash c o n c e n t r a t i o n can be d e s c r i b e d as ^ -^-5 on the 10 p o i n t c l a s s i f i c a t i o n s c a l e of Rodin and B a z i l e v i c h ( 1967) . A c c o r d i n g to Rodin and B a z i l e v i c h (1967) the c o n c e n t r a t i o n of n i t r o g e n i n l e a f l i t t e r f a l l v a r i e s w i t h i n c o m p a r a t i v e l y narrow l i m i t s f o r a l l types of c o n i f e r s t a n d s , between 0.4 and 1.3%. The da t a from t h i s study f a l l i n t o the lower h a l f of t h i s range, between 0.3 and 0.8%. - 105 -'/. O f D t h P X P M M P H p l o l i Figure 5.15. Percentage of ash elements in foliage litterfall on sample plots. Figure 5.16. Quantity of nitrogen in litterfall on Bample plots. - 106 -5.3.4 M a c r o n u t r i e n t c o n t e n t of l i t t e r f a l l The q u a n t i t y o f N + P + K + Ca + Mg r e t u r n e d w i t h l i t t e r f a l l ranged from 24 to 41 kg/(ha*a) and was p r o p o r t i o n a l t o the l i t t e r f a l l biomass. Calcium was the most abundant element on PX and PH p l o t s , w h i l e n i t r o g e n was predominant on PM and M p l o t s ( T a b l e 5.3). The q u a n t i t y of m a c r o n u t r i e n t s i n l i t t e r f a l l on i n v e s t i g a t e d s i t e s are compared i n F i g u r e s 5.16 - 5.20. The q u a n t i t y of m a c r o n u t r i e n t s r e t u r n e d w i t h l i t t e r f a l l on PX and PH p l o t s was s i m i l a r : 25 and 28 k g / ( h a * a ) , r e s p e c t i v e l y . The q u a n t i t y r e t u r n e d on PM and M p l o t s was a l s o s i m i l a r : 40 and 38 k g / ( k g * a ) , r e s p e c t i v e l y . F o l i a g e l i t t e r f a l l c o n t a i n e d the l a r g e s t p o r t i o n of the f i v e m a c r o n u t r i e n t s . Twigs and branches c o n t a i n the second l a r g e s t p o r t i o n of c a l c i u m w h i l e the second l a r g e s t p o r t i o n of the o t h e r f i v e m a c r o n u t r i e n t s i s e i t h e r w i t h i n e p i p h y t i c l i c h e n s or t w i g s and branches. Seven to 19% of the n i t r o g e n r e a c h i n g the f o r e s t f l o o r i n l i t t e r f a l l i s i n e p i p h y t i c l i c h e n s which as n o t e d , a l s o c o n s t i t u t e 5 to 16% of the l i t t e r f a l l biomass. The e p i p h y t i c l i c h e n s r e p r e s e n t e d , on average, 15% of the n i t r o g e n r e a c h i n g the f o r e s t f l o o r i n l i t t e r f a l l on the x e r i c s i t e (PX p l o t s ) , 16 and 13% on the mesic s i t e s (PM and M p l o t s , r e s p e c t i v e l y ) , and 9% on the h y g r i c s i t e (PH p l o t s ) . R e t u r n of m i n e r a l elements w i t h l i t t e r f a l l i s r e p o r t e d to v a r y between 40 and 230 kg/(ha*a) (Rodin and B a z i l e v i c h , 1967). Data on the amount of m i n e r a l elements r e t u r n e d w i t h l i t t e r f a l l i n the P a c i f i c Northwest are i n Table 2.3 (page 1 9 ) . Values f o r the study p l o t s are s i m i l a r to the l o w e s t v a l u e g i v e n by Rodin and B a z i l e v i c h (1967) and are comparable w i t h some of the lower - 107 -- 108 -Figure 5.20. Quantity of magnesium i n l i t t e r f a l l on sample p l o t s . - 109 -v a l u e s from o t h e r s i t e s i n the P a c i f i c Northwest. Return of n i t r o g e n i n l i t t e r f a l l on the study p l o t s i s s i m i l a r to the lower end of the r e p o r t e d range of 13 to 116 kg/(ha*a) (Rodin and B a z i l e v i c h , 1967). On the 10 p o i n t c l a s s i f i c a t i o n s c a l e of Rodin and B a z i l e v i c h ( 1 9 6 7 ) , the amount of m i n e r a l elements r e t u r n e d w i t h l i t t e r f a l l can be d e s c r i b e d as r j ( T a b l e 5.10). 5.3.5. Comparison of l i t t e r f a l l among p l a n t a s s o c i a t i o n s Q u a n t i t i e s of annual l i t t e r f a l l biomass on the study s i t e s a r e compared i n F i g u r e 5.13. The a b s o l u t e weight of l i t t e r f a l l ( i n t/ha) i s not n e c e s s a r i l y the best method f o r comparing the study p l o t s because of v a r i a t i o n i n t r e e d e n s i t i e s between p l o t s and because t h e r e i s a r e l a t i o n s h i p between amount of biomass and l i t t e r f a l l . I t h e r e f o r e used the r a t i o between l i t t e r f a l l and b a s a l area ( F i g u r e 5.21). However, t h i s t r a n s f o r m a t i o n of l i t t e r f a l l data d i d not produce any major change i n the r a t i n g of the p l o t s (compare F i g u r e s 5.13 and 5.21). Bonnevie-Svendsen and Gjems (1957) and Crosby (1961) (from Bray and Gorham, 1964) have shown a d i s t i n c t c o r r e l a t i o n between annual l i t t e r f a l l and b a s a l a r e a , w i t h v a l u e s of 70 to 75 kg/m 2. In t h i s study the l i t t e r f a l l v a l u e s were 14 to 34 kg/m 2 of b a s a l a r e a , and t h e r e i s a v e r y weak c o r r e l a t i o n ( r 2 = 0.28) between l i t t e r f a l l and b a s a l a r e a , expessed by the l i n e a r r e g r e s s i o n e q u a t i o n : y = 651.88 + 17.29x where, y = weight of the l i t t e r f a l l i n kg/ha x = b a s a l area m 2 / h a - 110 -L i t t e r f a I l / B A kg I \\ a j m 2 / h a 3 4 3 0 2 6 2 2 1 8 1 4 P X P M I M — i — P H P l o t s F i g u r e 5.21. The r a t i o o f l i t t e r f a l l b i o m a s s / b a s a l a r e a . L i t t e r f a l l b iomass--kg/ha B a s a l area--m2/ha - I l l -One-way a n a l y s i s of v a r i a n c e and Duncan's m u l t i p l e range t e s t were used to compare the mean q u a n t i t y of l e a f l i t t e r f a l l and the amount of m a c r o n u t r i e n t s w i t h i n l e a f l i t t e r f a l l and to group p l o t s t o g e t h e r i n t o homogeneous groups. Because of d i f f e r e n t s o u r c e s of v a r i a t i o n i n l i t t e r f a l l c o l l e c t i o n s (1 + 2) and ( 3 + 4 + 5 ) (see c h a p t e r 4.3.4), the s t a t i s t i c a l a n a l y s i s had to be run s e p a r a t e l y f o r these two groups. The homogeneity of p l o t s w i t h i n the same p l a n t a s s o c i a t i o n was t e s t e d f i r s t ( T a b l e 5.6). The o n l y h e t e r o g e n e i t y i n the PM p l o t s throughout the e n t i r e p e r i o d was the amount of magnesium i n l e a f l i t t e r f a l l which d i f f e r e d i n PM3. The o t h e r d i f f e r e n c e s among p l o t s of the same p l a n t a s s o c i a t i o n occured i n o n l y one of the two c o l l e c t i o n p e r i o d s . Only i n two cases i s more than one element nonhomogeneous: c a l c i u m and magnesium on PM p l o t s and phosphorus and c a l c i u m on PH p l o t s . We can t h e r e f o r e c o n c l u d e t h a t p l o t s r e p r e s e n t i n g each p l a n t a s s o c i a t i o n are e s s e n t i a l l y homogeneous i n terms of l e a f l i t t e r f a l l biomass and m a c r o n u t r i e n t s r e t u r n e d w i t h l e a f l i t t e r f a l l . T a b l e 5.7 shows ecosystems o r d e r e d i n t o homogeneous groups a c c o r d i n g to t h e i r l e a f l i t t e r f a l l biomass and i t s m a c r o n u t r i e n t c o n t e n t . In terms of biomass, the PX and PH s i t e s are not s i g n i f i c a n t l y d i f f e r e n t , w h i l e the M and PM s i t e s are s i g n i f i c a n t l y d i f f e r e n t from each o t h e r and from the PX and PH s i t e s . In terms of q u a n t i t y of n i t r o g e n r e t u r n e d w i t h l i t t e r f a l l , the. M and PM s i t e s are not s i g n i f i c a n t l y d i f f e r e n t , w h i l e the PX and PH s i t e s are s i g n i f i c a n t l y d i f f e r e n t from each o t h e r and from the M and PM s i t e s as w e l l . S i m i l a r i n t e r p r e t a t i o n s can be made f o r the o t h e r elements. s - 112 -In 12 t e s t e d d i f f e r e n c e s among the st u d i e d s i t e s i n l e a f l i t t e r f a l l biomass and amount of macronutrients returned with l e a f l i t t e r f a l l , the PX and PH p l o t s were not d i f f e r e n t 8 times, M and PM p l o t s 5 times, M and PH p l t o s 4 times, and M and PX p l o t s twice. PX and PM p l o t s and PM and PH p l o t s were always s i g n i f i c a n t l y d i f f e r e n t . Table 5 . 6 . Homogeneity of l e a f l i t t e r f a l l on sample p l o t s from the same plant a s s o c i a t i o n . (Duncan's mul t i p l e range t e s t ) . ' L i t t e r f a l l C o l l e c t i o n Leaf C o l l e c t i o n # (1+2) L i t t e r f a l l Parameter PX PM PH biomass *1 -x-C o l l e c t i o n # ( 3 + 4 + 5 ) PX PM PH N * ( i,2)(2,3r * I K •x- •X-Ca (2,1)(3) ( 1 ) ( . 3 j 2 ) (3,2)(1) Mt (3)(2,1) * (3,2)(1) (3)(2,1) 1 * = - a l l p l o t s of the same plant a s s o c i a t i o n are homogeneous 2 P l o t s i n parentheses represents homogeneous group . - 114 -T a b l e 5.7. Homogeneous s e t s of l e a f l i t t e r f a l l (Duncan's m u l t i p l e range t e s t ) from d i f f e r e n t p l a n t a s s o c i a t i o n s . L i t t e r f a l l c o l l e c t i o n L e a f L i t t e r f a l l P a r a m e t e r C o l l e c t i o n # (1+2) C o l l e c t i o n # (3+4+5) biomass PX PH M PM* PH PX M PM N PX PH M PM PX PH PM M P PX PH M PM PX PH PM M K PH PX M PM PH PX M PM Ca PX PH M PM PX PH M PM Mg M PH PX PM PH M PX PM * P l o t s a r e o r d e r e d a c c o r d i n g to i n c r e a s i n g q u a n t i t y from l e f t t o r i g h t P l o t s j o i n e d by a l i n e a r e n o t s i g n i f i c a n t l y d i f f e r e n t a t p<0.05: i n t e r r u p t i o n o f the l i n e i n d i c a t e s s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e between p l a n t a s s o c i a t i o n s . - 115 -5.4. F o r e s t f l o o r biomass Depth, b u l k d e n s i t y , and biomass of the f o r e s t f l o o r on the sample p l o t s are summarized i n Table 5.8. The f o r e s t f l o o r on a l l sample p l o t s was r a t h e r t h i c k , w i t h mean depths v a r y i n g from 5.5 cm to 12.7 cm. The mean b u l k d e n s i t y of the f o r e s t f l o o r ranged from 0.13-0.18 g/cm 3, h i g h e r than the b u l k d e n s i t y u s u a l l y quoted i n l i t e r a t u r e — 0 . 1 3 g/cm 3. The h i g h e r b u l k d e n s i t y i s the r e s u l t of snow co m p a c t i o n , a l a r g e p r o p o r t i o n of woody m a t e r i a l , and the f a c t t h a t r o o t s s m a l l e r than 0.64 cm (1/4 i n c h ) were i n c l u d e d as f o r e s t f l o o r . On June 7 , 1975 I took 10 snow c o r e s f o r the purpose of d e t e r m i n g snow s p e c i f i c g r a v i t y , snow d e p t h , and snow w e i g h t . I sampled only on the PX p l o t s and a d j a c e n t areas because at lower e l e v a t i o n s most of the snow had a l r e a d y m e l t e d . The average snow depth was s t i l l 144 cm (S.E. 12.5 cm), the snow b u l k d e n s i t y was 0.464 g/cm 3 (S.E. 0.017) (range 0.37-0.55 g/cm 3), and the average weight of snow cover was 668 kg/m 2. E a r l y i n the s p r i n g , when snow cover i s c o n s i d e r a b l y deeper (on some p l a c e s up to 4 m) the snow weight i s much g r e a t e r . The weight of the snow l a y e r makes the f o r e s t f l o o r v e r y compacted. The d u r a t i o n of snow c o v e r , 8-9 months a year i n the s t u d i e d a r e a , i s a l s o an i m p o r t a n t f a c t o r d e t e r m i n i n g slow dec ompo s i t i on. The biomass of f o r e s t f l o o r i s c o n s i d e r a b l y h i g h e r than o t h e r d a t a i n the l i t e r a t u r e : 88-190 t / h a . Rodin and B a z i l e v i c h (1967) g i v e an average weight of f o r e s t f l o o r f o r c o n i f e r o u s f o r e s t s of 10-50 t / h a . Turner and S i n g e r (1975) found the biomass of the f o r e s t f l o o r under a 1 7 5 - y e a r - o l d P a c i f i c s i l v e r - 116 -f i r - m o u n t a i n hemlock stand at an e l e v a t i o n of 1200 m i n Washington s t a t e to be 53.5 t / h a . I t i s not known whether f o r e s t f l o o r biomass i n the s t u d i e d a r e a i s i n a steady s t a t e or whether i t i s s t i l l i n c r e a s i n g . I f we assume t h a t the f o r e s t f l o o r biomass i s i n a steady s t a t e , then we can c a l c u l a t e the decay r a t e as a p r o p o r t i o n between l i t t e r f a l l and f o r e s t f l o o r biomass. The e s t i m a t e d decay r a t e * f o r the p l o t s ranges from 31 to 123 years ( T a b l e 5.10), i n d i c a t i n g an e x t r e m e l y slow r a t e of l i t t e r d e c o m p o s i t i o n . I t has to be r e a l i z e d , however, t h a t we c o n s i d e r o n l y t r e e l i t t e r f a l l , not the u n d e r s t o r y l i t t e r f a l l , and t h e r e f o r e the decay r a t e i s o v e r e s t i m a t e d . Y a r i e (1978) found the r e l a t i v e c o n t r i b u t i o n of u n d e r s t o r y l i t t e r to the t o t a l l i t t e r f a l l d u r i n g the growing season to be 28%, 11%, and 26% on h y g r i c , mesic and x e r i c s i t e s r e s p e c t i v e l y . The decay r a t e o v e r e s t i m a t i o n i s t h e r e f o r e s m a l l e r on mesic s i t e s w i t h l e s s u n d e r s t o r y v e g e t a t i o n and l a r g e r on h y g r i c and x e r i c s i t e s w i t h heavy u n d e r s t o r y v e g e t a t i o n . The r o o t l i t t e r was not c o n s i d e r e d e i t h e r , i t s c o n s i d e r a t i o n would f u r t h e r reduce p r e s e n t e d decay r a t e s . The q u a n t i t y of o r g a n i c m a tter of the f o r e s t f l o o r f u n c t i o n s as a s i n k f o r n u t r i e n t s and i m m o b i l i z e s g r e a t q u a n t i t i e s of n u t r i t i o n a l elements f o r a l o n g p e r i o d of t i m e . A c c o r d i n g to Rodin and B a z i l e v i c h ' s (1967) 10 p o i n t s c a l e , the f o r e s t f l o o r biomass of these s i t e s would be " c l a s s i f i e d as F 9 _ 1 0 ( T a b l e 5.10). * decay r a t e i s a r a t i o between f o r e s t f l o o r biomass and l i t t e r b iomas s. - 117 -Table 5.8. F o r e s t f l o o r biomass on 12 sample p l o t s . * 1 LFH PLOT n LFH depths i n cm LFH b u l k d e n s i t y biomass mean (S.E.) g/cm 3, mean (S.E.) t/ha PX1 13 8.98 (1.96) 0.17 (0.01) 1 5 3 * 2 PX2 8 8.00 (0.96) 0.15 (0.01) 120 PX3 6 7.12 (0.70) 0.16 (0.01) 114 PM1 14 8.94 (1.04) 0.18 (0.01) 161 PM2 12 5.51 (0.73) 0.16 (0.01) 88 PM3 9 8.31 (1.29) 0.16 (0.01) 133 PHI 7 12.66 (1.69) 0.15 (0.01) 190 PH2 10 10.73 (2.00) 0.14 (0.01) 150 PH3 10 11.16 (1.53) 0.13 (0.01) 145 M - p l o t s * 30 9.09 (1.15) 0.18 (0.01) 164 n number of samples per p l o t SE s t a n d a r d e r r o r of the mean *1 data on f o r e s t f l o o r depth and f o r e s t f l o o r b u l k d e n s i t y were p r o v i d e d by Dr. J.P. Kimmins. *2 i n c l u d e s s m a l l r o o t s up to diameter of 0.64 cm (1/4 i n c h ) *3 M - p l o t s were sampled t o g e t h e r as a group - 118 -5.5 T h r o u g h f a l l and a t m o s p h e r i c p r e c i p i t a t i o n As a l r e a d y mentioned i n Chapter 4, s e c t i o n s 1.4 and 1.5, t h r o u g h f a l l and atmospheric p r e c i p i t a t i o n were sampled o n l y d u r i n g the l a t e summer of 1974 and d u r i n g the summers of 1975 and 1976 . The data f o r a t m o s p h e r i c p r e c i p i t a t i o n from 1974 are of d o u b t f u l v a l u e s i n c e o n l y two c o l l e c t o r s were used, and the data from a l l t h r e e open sampling s i t e s v a r i e d e x c e s s i v e l y . The mean q u a n t i t i e s of t h r o u g h f a l l and a t m o s p h e r i c p r e c i p i t a t i o n and the a s s o c i a t e d n u t r i e n t c o n t e n t are p r e s e n t e d i n F i g u r e 5.22 and 5.23. Q u a n t i t i e s f o r i n d i v i d u a l p l o t s are summarized i n Appendix 8. Comparison of the data f o r i n c i d e n t p r e c i p i t a t i o n and t h r o u g h f a l l does not i n d i c a t e t h a t a g r e a t amount of water i s i n t e r c e p t e d i n t r e e crowns. On some p l o t s the t h r o u g h f a l l c o l l e c t e d under t r e e s exceeded the p r e c i p i t a t i o n c o l l e c t e d i n the open. S c h l e s i n g e r and R e i n e r s (1974) found that a c o n v e n t i o n a l open r a i n c o l l e c t o r r e c e i v e d o n l y 1/5 of the amount t h a t c o l l e c t e d when s i m u l a t e d t r e e f o l i a g e was p l a c e d above the c o l l e c t o r (see Chapter 2, s e c t i o n 2.2). T h e i r data suggest t h a t i n areas of h i g h wind and f r e q u e n t exposure to c l o u d s or f o g , as i n the montane areas of New England, measurements of t o t a l p r e c i p i t a t i o n and e l e m e n t a l d e p o s i t i o n r e q u i r e an e v a l u a t i o n of i n t e r c e p t i o n . The same may h o l d t r u e on the study p l o t s . The s i m p l e f u n n e l type c o l l e c t o r s i n the open may g r o s s l y u n d e r e s t i m a t e the amount of a t m o s p h e r i c p r e c i p i t a t i o n . They do not c o l l e c t f o g , which impacts on t r e e f o l i a g e and d r i p s i n t o the c o l l e c t o r s under the t r e e canopy. The r a i n i s a l s o o f t e n accompanied by wind, which may a l s o r e s u l t i n an u n d e r e s t i m a t i o n k g / ha Figure 5 . 2 2 . Quantity of throughfall and nutrients in throughfall during the 3ummer of 1 9 7 5 . ( 1 3 weeks sampling period). 0 plots - collectors in open area k g / ha , P,S, K.Ca .Mg Figure 5 .23. Quantity of throughfall and nutrients in throughfall during the summer of 1976. (8 woeka sampling period). 0 plots - collectors ln open area - 120 -by the open c o l l e c t o r . The s a m p l i n g method does not permit one to draw c o n c l u s i o n s about the d i f f e r e n c e i n the amount of water c o l l e c t e d i n the open under the t r e e canopy. The r e l a t i v e amount of n u t r i e n t s i n the t h r o u g h f a l l and r a i n w a t e r on d i f f e r e n t p l o t s and i n the open i s v e r y s i m i l a r d u r i n g the summers of 1975 and 1976 ( F i g u r e s 5.22 and 5.23). The amount of n i t r o g e n i s h i g h e s t i n the open, w i t h much s m a l l e r q u a n t i t y of N (both N O 3 and N H 4 + ) i n t h r o u g h f a l l . T h i s r e f l e c t s the a b i l i t y of t r e e c a n o p i e s to e x t r a c t n i t r o g e n from r a i n w a t e r as r e p o r t e d by C a r l i s l e e_t ' a_l. ( 1967) f o r an oak woodland i n England. My data i n d i c a t e t h a t t h e r e may be over 1 kg/ha of n i t r a t e n i t r o g e n e x t r a c t e d from the r a i n w a t e r by the t r e e canopy on some of the sample p l o t s d u r i n g the 13-week s a m p l i n g p e r i o d of summer 1975: a c o n s i d e r a b l e amount i n terms of t r e e n u t r i t i o n . However, t h i s study does not i n d i c a t e whether the n i t r o g e n uptake o c c u r s from p r e c i p i t a t i o n whenever i t f a l l s as r a i n or o n l y d u r i n g the summer. The data do not i n d i c a t e the r e l a t i v e importance of f o l i a g e and e p i p h y t e s . I f e e l these q u e s t i o n s s h o u l d be answered i n f u t u r e s t u d i e s , s i n c e n i t r o g e n i s thought to be the most c r i t i c a l n u t r i e n t element i n d e t e r m i n i n g the p r o d u c t i v i t y of these ecosystems. The q u a n t i t y of phosphorus i n r a i n w a t e r i s v e r y s m a l l , and the q u a n t i t y i n t h r o u g h f a l l seems to be even s m a l l e r , i n d i c a t i n g a p o s s i b l e e x t r a c t i o n of P by the t r e e canopy. However, the e v i d e n c e i s not c o n c l u s i v e because the c o n c e n t r a t i o n of P i n many samples was below the d e t e c t i o n l i m i t of the a n a l y t i c a l equipment. The o n l y c o n c l u s i o n t h a t can be drawn s a f e l y i s t h a t the q u a n t i t y of phosphorus i n a t m o s p h e r i c p r e c i p i t a t i o n and i n - 121 -t h r o u g h f a l l i s n o r m a l l y n e g l i g i b l e i n the study a r e a . The q u a n t i t y of potassium and c a l c i u m i n t h r o u g h f a l l i s much g r e a t e r than i n r a i n w a t e r , i n d i c a t i n g s t r o n g l e a c h i n g of these two e l e m e n t s , p a r t i c u l a r l y p o t a s s i u m . This i s i n agreement w i t h o t h e r s t u d i e s on n u t r i e n t l e a c h i n g (see Chapter 2, s e t s 2.2 and 2.3). Potassium i s known as one of the two most r e a d i l y l e a c h a b l e elements ( p o t a s s i u m and sodium). Up to 3 kg/ha of K and 1 kg/ha of Ca were l e a c h e d from the t r e e canopy d u r i n g the 13-week sa m p l i n g p e r i o d of summer 1975. The amount of K i n r a i n f a l l was a p p r o x i m a t l y 0.3 kg/ha, and the amount of Ca was c l o s e to 2 kg/ha. The q u a n t i t y of magnesium i n the t h r o u g h f a l l was o n l y s l i g h t l y h i g h e r than i n r a i n f a l l . The amount of Mg l e a c h e d from t r e e crowns was 0.0-0.2 kg/ha d u r i n g the summer of 1975. A c c o r d i n g to Tukey ( 1 9 7 0 ) , Mg i s an element l e a c h e d i n moderate q u a n t i t i e s (1-10% of l e a f n u t r i e n t c o n t e n t ) . However, i n t h i s s t udy Mg d i d not seem to be v e r y r e a d i l y l e a c h e d . The amount of Mg s u p p l i e d by r a i n w a t e r was a p p r o x i m a t e l y 0.4 kg/ha d u r i n g s umme r 19 7 5 . The q u a n t i t y of s u l p h u r was almost 3 kg/ha i n r a i n w a t e r and up to 13 kg/ha i n t h r o u g h f a l l d u r i n g the 13-week sampl i n g p e r i o d of summer 1975. E r i k s s o n (1952) g i v e s v a l u e s of S i n p u t i n r a i n w a t e r as low as 2.7 kg/(ha*a) i n r u r a l R u s s i a (Smolensk) and as h i g h as 234 kg/(ha*a) i n Chicago, USA. His data i n d i c a t e a c l o s e c o r r e l a t i o n between the amount of S i n a t m o s p h e r i c p r e c i p i t a t i o n and the amount of i n d u s t r y i n the a r e a . I s u s p e c t t h a t most of the s u l p h u r i n p u t to the p l o t s o r i g i n a t e s from a p u l p m i l l l o c a t e d j u s t s o u t h of Squamish, B.C. - 122 -Not n e c e s s a r i l y a l l s u l p h u r i n t h r o u g h f a l l i s l e a c h e d from f o l i a g e and o t h e r components of t r e e crowns. A g r e a t p r o p o r t i o n of t h i s S may o r i g i n a t e from crown wash. P a r t i c l e s of dust c o n t a i n i n g s u l p h u r may adhere to crowns and be washed o f f by r a i n . The same may be t r u e f o r o t h e r e l e m e n t s , f o r example K and Ca, the o r i g i n of which may be dust from l o g g i n g r o a d s . However, the data o b t a i n e d i n t h i s study do not p r o v i d e an adequate b a s i s f o r an e s t i m a t e of the p r o p o r t i o n s of elements t h a t o r i g i n a t e from l e a c h i n g and crown washing. Future s t u d i e s must answer t h i s q u e s t i o n . I t i s v e r y d i f f i c u l t to make a more e x t e n s i v e comparison between the d a t a o b t a i n e d i n t h i s study and data of o t h e r r e s e a r c h e r s . R e l i a b l e data o b t a i n e d i n t h i s study are f o r 13-week and 8-week p e r i o d s of summers 1975 and 1976, r e s p e c t i v e l y . The m a j o r i t y of p u b l i c a t i o n s g i v e data f o r the whole y e a r . As f a r as comparison of d i f f e r e n t ecosystems goes, the data o b t a i n e d i n d i c a t e t h a t the PM and M p l o t s have the g r e a t e s t q u a n t i t y of K, Ca, and S i n t h r o u g h f a l l and are more e f f i c i e n t i n a b s o r p t i o n of N from r a i n w a t e r than the o t h e r p l o t s d u r i n g the p e r i o d f o r which data are a v a i l a b l e . - 123 -5.6 Comparison of the b i o g e o c h e m i c a l c h a r a c t e r of the f o u r  s i t e s The v a r i o u s b i o g e o c h e m i c a l parameters d i s c u s s e d above f o r the study p l o t s and the p l a n t a s s o c i a t i o n s they r e p r e s e n t were ranked a c c o r d i n g to the t e n - p o i n t b i o g e o c h e m i c a l c l a s s i f i c a t i o n s c a l e of Rodin and B a z i l e v i c h (1967) ( T a b l e 5.9). The s c a l e v a l u e s are summarized i n Table 5.10. I t i s i m p o r t a n t to remember t h a t o n l y the above-ground t r e e biomass and i t s n u t r i e n t dynamics were s t u d i e d and t h a t data p r e s e n t e d i n Table 5.10 do not a d e q u a t e l y d e s c r i b e the e n t i r e b i o g e o c h e m i c a l c h a r a c t e r i s t i c s of e i t h e r the t r e e component or the e n t i r e p l a n t community. Rodin and B a z i l e v i c h (1967) s e l e c t e d f i v e r e l a t i o n s h i p s as a b a s i s f o r c h a r a c t e r i z i n g major p a t t e r n s of ecosystem f u n c t i o n . There were: 1. Predominant m i n e r a l element i n l i t t e r f a l l 2. S t a n d i n g crop biomass of the v e g e t a t i o n 3. Q u a n t i t y of annual l i t t e r p r o d u c t i o n 4. L i t t e r decay r a t e 5. Ash c o n t e n t of l i t t e r f a l l These f i v e c h a r a c t e r i s t i c s were used as the b a s i s f o r t h e i r proposed c l a s s i f i c a t i o n of w o r l d v e g e t a t i o n , which i n v o l v e s 14 v e g e t a t i o n t y p e s , 12 type groups and 9 type c l a s s e s . The a c c u m u l a t i o n of above-ground t r e e biomass was v e r y h i g h on the i n v e s t i g a t e d s i t e s . PM p l o t s , M p l o t s ( w i t h e x c e p t i o n of M3) and p l o t PX3 q u a l i f y f o r the h i g h e s t c l a s s ( o v e r 500 t/ha) of the c l a s s i f i c a t i o n s y s t e m — B ^ g * With the e x c e p t i o n of PX1 w hich i s B3 (301-400 t / h a ) , the r e s t of the sample p l o t s can be - 124 -Table 5 . 9 . Ten-point scale of numerical indices of biogeochemical parameters of ecosystems. (Rodin and Bazilevich, 1967). scale number Biomass (cntr/ha)* B Net primary production (cntr/ha) P Organic part Litter fall (cntr/ha) L True increment (cntr/ha) I Forest Floor (cntr/ha) F Decay rate 1) 10 <25 26-50 51-125 126-250 2 5 1 - 5 0 0 5 0 1 - 1 5 0 0 1 5 0 1 - 3 0 0 0 3 0 0 1 - 4 0 0 0 4 0 0 1 - 5 0 0 0 5000 and above <10 11-25 26-41- 3 61-80 81-100 101-150 Very poorly produc-tive Poorly produc-tive Medium produc-tive 1 5 1 - 3 0 0 ? H I ^ L V 5 0 1 . 5 0 0 j produc->500 Very highly produc-tive i 10 11-25 26-35 36-45 46-75 76-100 101-125 125-225 226-400 >400 <0.5 0.6-1 2-10 11-15 16-25 26-35 36-50 51-65 66-80 >80 1-5 6-25 26-75 76-125 126-250 251-400 401-600 601-1000 > 1000 > 5 0 ") Stag-? 1 - 5 0 ( nant 16-20 11-15 6-10 1.6-5 0.8-1.5> 0.3-0.7J 0.1-0.2-< 0.1 Very retar-ded Retarded Inten-sive Very inten-sive cntr = metric centner = 100 kg Table 5.9. (con't). Ten-point scale of numerical indices of biogeochemical parameters of ecosystems. (Rodin and Bazilevich, 1967). Mineral elements Scale number Accumulation in plant biomass (kg/ha) b Uptake by n.p.p. (kg/ha) u Returned with litter fall (kg/ha) r Retained by true . increment (kg/ha) x Contained in forest floor (kg/ha) f Kean ash content of litterfall {%) A 1 2 <50 50-100 <50 51-100 <50 51-100 1 . 1 - 5 < 50 50-100 > 1 . 5 ^ ) 1.6-2.0 / Low 3 4 101-150 201-500 101-150 151-250 101-150 151-225 6-25 26-45 101-200 2 0 1 - 3 0 0 2 . 1 - 2 . 5 7 2.6-5.5-j Medium 5 6 7 501-1000 1001-2000 2 0 0 1 - 3 0 0 0 251-350 351-500 501-800 226-300 301-500 5 0 1 - 7 0 0 46-80 81-125 126-200 3 0 1 - 7 5 0 7 5 1 - 2 0 0 0 2 0 0 1 - 5 0 0 0 3.6-5.0J 5 . 1-6 . 5 1 6.6-8.0 / Elevat 8 - 9 3 0 0 1 - 5 0 0 0 5001-10000 801-1500 1501-5000 7 0 1 - 1 3 0 0 1301-5600 2 0 1 - 3 0 0 501-600 5 0 0 1 - 1 0 0 0 0 10001-25000 8.1-9.5 ") 9.6-12.0J High 10 >10000 >5000 >5600 >600 7 2 5 0 0 0 > 12.0 ^, Very high ed Table 5.10. Classification of the study ecosystem types according to the 10 point-scale classification system of Rodin and Bazilevich (1967) Mineral elements Returned Retained Mean ash Uptake with by true content of by NPP litterfall increment litterfall Four main indices of u kg/ha r' kg/ha x kg/ha A % vegetata. type PX1 B8 389 P2 2.13 L2 1.74 X 3 0.64 . P10 1 5 3 D1 88 B 6 1 5 7 2 u1 24 r. 26 x2 1.36 A4 3.4 B8I2D1A4 PX2 B 9 458 P2 2 . 3 9 L2 1.78 h 0.90 F10 120 D1 6 7 B 6 1845 U- 24 r1 25 x2 1.87 A 5 3.8 B 9 L2 D1 A 5 PX3 B10 510 P2 2.20 L2 1 .48 0.82 F10 114 D1 7 7 b7 2 1 7 7 u1 24 r1 24 X2 1.71 A 5 3.6 B10L2D1A5 PM1 B10 7 3 1 P3. 3.08 L3 3.02 h 0.42 P10 1.61 D1 53 B 7 2931 u1 36 r. 40 X 1 0.87 A4 2.8 B10L3D1A4 PM2 B10 511 P3 3.05 L3 2.87 J3 0.61 P 9 88 D2 31 B 7 2052 U1 3 5 r. 38 x2 1 .26 A4 2.8 B10 L 3 D 2 A 4 PM3 B10 550 P3 2.73 L3 2.57 h 0 . 4 9 P10 133 D1 52 B 7 2282 u. 37 . r1 41 x2 1 .02 A 5 ' 4.4 B10 L 3 D 1 A 5 PH1 B 9 4 1 9 P2 1.77 L2 1.54 h 0.31 P10 190 D1 123 b6 1759 u1 24 r- 24 x1 0.65 A4 3.4 B 9 L 2 D 1 A 4 PH2 B 9 482 P2 2.09 L2 1 .77 0 . 4 5 P10 150 D1 85 b6 1 9 5 4 U 1 29 r1 30 x1 0 . 9 4 A 5 4 . 5 B 9 L 2 D 1 A 5 PH3 B9 435 P2 1.86 L2 1.71 R 3 0 . 2 9 F10 145 D1 85 b6 1803 u1 29 r1 31 x1 0.61 A 5 4.6 B 9 ^ 2 B 1 A 5 M1 B10 652 P3 3.35 L3 2.84 *3 0.72 F10 164 D1 58 B 7 2655 U. 3 9 r1 40 x2 1 .52 A 5 4.9 B10 L 3 D 1 A 5 M2 B10 556 P3 2.45 L2 2.24 h 0.48 F10 164 D1 7 3 B 7 2286 U 1 32 r. 35 x1 1.00 A5 4.0 B10 L 2 D 1 A 5 M 3 B 9 486 P3 2 . 6 7 L2 2.44 h 0.55 F10 164 D1 6 7 b6 1989 u1 34 r. 38 x 2 1.13 A5 3 . 6 B 9 L 2 D 1 A 5 Accumulat. Above-ground in plant Tree Litter- True Forest Decay biomass Biomass NPP fall incr. Floor Rate Plot B t/ha P t/ha L t/ha I t/ha F t/ha D years b kg/ha - 126 -Table 5.11. Classification of some other Pacific northwest forest sites. Reference Organic part Forest Biomass (B) t/ha NPP t/ha Litterfall t/ha True increment (I) t/ha Floor b i o m a B B (F) t/ha Decay rate (B) years Turner and -Singer 1975 464.8 f.Bg) - 3.0 IL3) - 53.5 IF8) 17.8 (D5) Grier and _ Logan 718.0 (B1Q) 8.0 (P5) 4.3 (L4) -3.7 51.2 (F8) 241.0 (F1Q)* 11.9 (D4) 56.0 (D.)* Table 5.11. (.con't). Mineral elements Accumulation in plant biomass (kg/ha) b Uptake by n.p.p. (kg/ha) u Returned with litter fall (kg/ha) r Retained by true increment (kg/ha) x Contained in floor (kg/ha) f Mean ash content of litterfall (%) A 2805 (b?) 68.5 (u2) 71.B (r2) -1494 (f6) -175 year old forest 450 year old forest includes fallen logs - 127 -d e s c r i b e d as B9 (401-500 t/ha of b i o m a s s ) . A c c o r d i n g to the amount of accumulated m a c r o n u t r i e n t s i n the above-ground t r e e s t a n d i n g biomass, the, PM and M p l o t s ( w i t h e x c e p t i o n of M3) and PX3 p l o t can be d e s c r i b e d as b7 (2001-3000 k g / h a ) , w h i l e a l l oth e r p l o t s q u a l i f i e d f o r bfc (1001-2000 k g / h a ) . Net p r i m a r y p r o d u c t i o n of the study p l o t s was not e x c e s s i v e l y l a r g e , p r o b a b l y because of t h e i r advanced age. The PM and M p l o t s can be d e s c r i b e d as P 3 and the PX and PH p l o t s as P2« The uptake of m i n e r a l elements i n net pri m a r y p r o d u c t i o n belongs to the lowe s t c a t e g o r y of the c l a s s i f i c a t i o n system on a l l the study p l o t s - u j . The biomass of l i t t e r f a l l on the PM p l o t s and p l o t Ml can be c l a s s i f i e d as L3 and as L£ on a l l o t h e r p l o t s . The amount of m a c r o n u t r i e n t s r e t u r n e d w i t h t h i s l i t t e r f a l l was low on a l l p l o t s , which q u a l i f i e d as r j a c c o r d i n g to the t e n - p o i n t s c a l e . Mean ash c o n t e n t of 1 ea f -1 i 11 e r f a 11 was v e r y v a r i a b l e on the sample p l o t s and can be c l a s s i f i e d as A4_5 a c c o r d i n g to the t e n - p o i n t c l a s s i f i c a t i o n system. The t r u e increment of the above-ground t r e e biomass ( i n c r e m e n t of t r e e - b o l e wood i n the case of t h i s s t u d y ) on a l l p l o t s was c l a s s i f i e d as I3 a c c o r d i n g to the t e n - p o i n t c l a s s i f i c a t i o n s c a l e . The q u a n t i t y of m a c r o n u t r i e n t s r e t a i n e d by t h i s increment was low: the f i r s t or second c l a s s of the t e n - p o i n t c l a s s i f i c a t i o n system, x j _ 2 . The biomass of f o r e s t f l o o r on a l l p l o t s was v e r y l a r g e and a l l p l o t s except PM2 q u a l i f y f o r the h i g h e s t of the ten c l a s s e s , F J Q . PM2 belongs to F 9 . The decay r a t e can be d e s c r i b e d - 128 -as s t a g n a n t and on a l l p l o t s but P M 2 i t i s c l a s s i f i e d as D i on the t e n - p o i n t s c a l e ; P M 2 i s c l a s s i f i e d as T>2~ However, some o t h e r p l o t s may be t r a n s f e r r e d to D 2 or h i g h e r c l a s s when u n d e r s t o r y above-ground l i t t e r and roo t l i t t e r i s c o n s i d e r e d . The c l a s s e s as proposed by Rodin and B a z i l e v i c h (1967) i n the t e n - p o i n t s c a l e c l a s s i f i c a t i o n system of world v e g e t a t i o n are too broad to r e f l e c t d i f f e r e n c e s among p l a n t a s s o c i a t i o n s on the e l e v a t i o n t r a n s e c t l o c a t e d i n one b i o g e o c 1 i m a t i c zone (sensu K r a j i n a 1965). Some d i f f e r e n c e s between the 3 p l a n t a s s o c i a t i o n s a r e r e f l e c t e d i n c l a s s i f i c a t i o n of biomass B9_^g, net pr i m a r y p r o d u c t i v i t y P 2 - 3 , l i t t e r f a l l biomass L 2 - 3 , i m m o b i l i z a t i o n of m a c r o n u t r i e n t s i n p l a n t biomass bg_7 and mean ash c o n t e n t of l e a f l i t t e r f a l l A^_5. However, t h i s v a r i a t i o n i s too s m a l l to support the s u g g e s t i o n t h a t t h i s c l a s s i f i c a t i o n can be used f o r l o c a l purposes i n i t s p r e s e n t s t a g e of development. The p l a n t a s s o c i a t i o n s of the S u b a l p i n e Mountain Hemlock Zone ( K r a j i n a 1965) can be d e s c r i b e d a c c o r d i n g to Rodin and B a z i l e v i c h (1967) as f o l l o w s : PM and M s i t e s as c a 1 c i c - n i t r i c ( n i t r o g e n predominates i n 1 i t t e r f a l l ) . PX and PH s i t e s as n i t r i c - c a l c i c ( c a l c i u m predominates i n l i t t e r f a l l ) . A l l f o u r i n v e s t i g a t e d s i t e s have: h i g h a c c u m u l a t i o n of biomass, comparable to biomass of t r o p i c a l r a i n f o r e s t as d e s c r i b e d i n Rodin and B a z i l e v i c h ' s (1967) system; poor p r o d u c t i o n of l i t t e r f a l l , comparable to the p r o d u c t i o n of t u n d r a and t a i g a ( p o o r spruce f o r e s t ) i n Rodin and B a z i l e v i c h ' s (1967) system; Figure 5.2/1. Relationship among xeric, mesic and hygric sites: a local classification scale. Mineral elements Above-ground Tree BiomasB NPP B t/ha P t/ha 730 700 670 WO 610 580 550 520 490 460 430 400 PM -TT -PX -PH 3.4 3.2 3.0 2.8 2.6 2.4 H ("PM M" 2.0 -1.8 -Litter1 True fall incr. L t/ha I t/ha 3.1 -, 2.9 2.7 2-5 H 2.3 2.1 ^ •Tu 1-7^ 1.5 'PM •TT 0.8 -| 0.7 0.6 4 i-Ti 2.2 - f K 1.9 J 0.5 - p * 1 100 J 0.4 -| 0.3 Forest Floor F t/ha Accumulation in plant biomass. Decay rate D years Uptake by NPP kg/ha 0 kg/ha Returned with litter fall 1 r kg/ha Retained by true Increment X kg/ha 190 180 -170 -160 -150 UO 130 120 -\ 110 -PH 90 -80 -•PH PM 120 -j 110 -100 -. 90 -80 -70 -60 -50 -40 -30 -•PH •PX •M" •PM 3000 -| 2800 2600 2400 2200 2000 1800 1600 J-PM PX FH 40 38 -36 4-PM -M 34 32 30 23 26 24 -l-PX r-PH 40 38 36 34 32 30 28 -( .26 24 J •FM •PH •PX „ 1.7 4 1.6 1.5 1.4 -1.3 -1.2 1.1 1.0 0.9 0.8 A 0.7 -PX •PM •PH Mean ash content of litterfall 5.0 -, 4.8 -4.«. -4.4 -4.2 -4.0 -3.8 3.*-3.4 3-2 3.0 H 2.8 l-PH-M •FX •PM ho 1 Total above jround litterfall, includes epiphyte - 130 -ve r y slow d e c o m p o s i t i o n of l i t t e r ( s t a g n a n t decay r a t e ) , comparable to the decay r a t e of t u n d r a i n Rodin and B a z i l e v i c h 1 s (1967) system; medium amount of ash i n l i t t e r f a l l , comparable to ash c o n t e n t of b i r c h f o r e s t i n t a i g a zone i n Rodin and B a z i l e v i c h ' s (1967) system. These f o r e s t s i t e s do not compare w e l l w i t h any s i n g l e v e g e t a t i o n type proposed by Rodin and B a z i l e v i c h ( 1 9 6 7 ) . I t may t h e r e f o r e be a p p r o p r i a t e to propose the a d d i t i o n of another v e g e t a t i o n type to the Rodin and B a z i l e v i c h (1967) c l a s s i f i c a t i o n : the s u b a l p i n e c o n i f e r o u s f o r e s t w i t h almost e q u a l amount of N and Ca i n the l i t t e r f a l l , medium ash ( A ^ _ 5 ) , h i g h a c c u m u l a t i o n of biomass (Bg_^Q), poor l i t t e r p r o d u c t i o n ( L 2 - 3 ) , and stagnant decay r a t e ( D j ) . R e s u l t s from o t h e r f o r e s t s i t e s from the P a c i f i c Northwest are i n Table 5.11. U n f o r t u n a t e l y the amount of i n f o r m a t i o n a v a i l a b l e on t h i s type of f o r e s t i s very l i m i t e d . The t r e e s i t e s a l o n g the e l e v a t i o n t r a n s e c t show s t a t i s t i c a l l y d i f f e r e n t t r e e dbh, t r e e h e i g h t , l i t t e r p r o d u c t i o n and amount of m a c r o n u t r i e n t s r e c y c l e d i n l i t t e r f a l l . There i s a l s o c o n s i d e r a b l e d i f f e r e n c e i n p e r i o d i c annual wood increment and i n mean annual wood increment but these d i f f e r e n c e s were not t e s t e d s t a t i s t i c a l l y . The f o u r t h s i t e , which i n p l a n t s p e c i e s c o m p o s i t i o n i s s i m i l a r to the m i d d l e s i t e on the e l e v a t i o n t r a n s e c t , i s a l s o most s i m i l a r to the l a t t e r i n a m a j o r i t y of the ecosystem parameters examined ( F i g u r e 5.24). F i g u r e 5.24 a l s o i n d i c a t e s t h a t PX and PH s i t e s bear c e r t a i n s i m i l a r i t i e s to each o t h e r . The s u b a l p i n e f o r e s t s i t e s t h a t were i n v e s t i g a t e d can be - 131 -s e p a r a t e d a c c o r d i n g to t h e i r p a t t e r n s of ecosystem f u n c t i o n . I f the c l a s s e s used by Rodin and B a z i l e v i c h (1967) are narrowed, a h y p o t h e t i c a l c l a s s i f i c a t i o n based on the data o b t a i n e d i n t h i s study can be proposed to d i s t i n g u i s h mesic ecosystems from x e r i c and hyg r i c . The mesic ecosystems i n t h i s study are c a l c i c - n i t r i c ( n i t r o g e n predominates i n l i t t e r f a l l ) , w i t h above-ground t r e e s t a n d i n g biomass 490-730 t / h a , above-ground t r e e l i t t e r p r o d u c t i o n 2.2 - 3.1 t / ( h a ' a ) , N, P, K, Ca, Mg a c c u m u l a t i o n i n above-ground t r e e biomass 2 000 - 2 700 kg/ha, and N, P, K, Ca , Mg r e t u r n e d w i t h above-ground t r e e l i t t e r f a l l 32 - 41 k g / ( h a * a ) . The l i t t e r decay r a t e , based on the above-ground t r e e l i t t e r f a l l i s 30 - 70 y e a r s . The x e r i c and h y g r i c s i t e s i n t h i s study are n i t r i c - c a l c i c ( c a l c i u m predominates i n l i t t e r f a l l ) , w i t h above-ground t r e e s t a n d i n g biomass 390 - 500 t / h a , above-ground t r e e l i t t e r p r o d u c t i o n 1.5 - 1.8 t / ( h a * a ) , N, P, K, Ca , Mg a c c u m u l a t i o n i n above-ground t r e e biomass 1 600 - 2 200 kg/ha, and N, P, K, Ca , Mg r e t u r n e d w i t h above-ground t r e e l i t t e r f a l l 24 - 29 k g / ( h a * a ) . The l i t t e r decay r a t e (based on the above-ground t r e e l i t t e r f a l l ) i s 65 - 90 y e a r s on x e r i c s i t e s and 85 - 120 y e a r s on h y g r i c s i t e s . The ash c o n t e n t of t r e e l i t t e r f a l l i s too broad (2.8 - 4.4% on mesic s i t e s , 3.4 - 4.6% on h y g r i c s i t e s ) to be e f f e c t i v e l y used f o r d i s t i n g u i s h i n g s i t e s . The t r u e increment (PAI) and amount of N, P, K, Ca, and Mg i m m o b i l i z e d i n i t c l e a r l y s e p a r a t e s the x e r i c and h y g r i c s i t e s . The q u e s t i o n whether some s i m i l a r i t y between x e r i c and h y g r i c - 132 -s i t e s i s r e a l or merely the r e s u l t of the parameters t h a t were measured d e s e r v e s the a t t e n t i o n of f u t u r e r e s e a r c h s t u d i e s . A g r e a t e r amount of data i s needed to run s t a t i s t i c a l a n a l y s e s ( e . g . p r i n c i p a l component a n a l y s i s ) to answer t h i s q u e s t i o n . F i g u r e 5.24 i s not advanced as a proposed new c l a s s i f i c a t i o n of the s u b a l p i n e f o r e s t ecosystems i n B r i t i s h Columbia. I n s u f f i c i e n t data are a v a i l a b l e on the r e g i o n a l v a r i a t i o n i n b i o g e o c h e m i c a l parameters w i t h i n t h i s e c o l o g i c a l zone to permit such a p r o p o s a l at t h i s t i m e . However, F i g u r e 5.24 c o u l d form the b a s i s f o r such a c l a s s i f i c a t i o n i n the f u t u r e when the type of study r e p o r t e d i n t h i s t h e s i s had been r e p l i c a t e d elsewhere i n the S u b a l p i n e Mountain Hemlock Zone. 5.7. D i s c u s s i o n Many s u b a l p i n e f o r e s t ecosystems have a l a r g e amount of s t a n d i n g t i m b e r , o f t e n of h i g h q u a l i t y . The f o r e s t i n d u s t r y i s h i g h l y i n t e r e s t e d i n u t i l i z i n g t h i s r e s o u r c e , yet v e r y l i t t l e i s known about the f u n c t i o n of these ecosystems. I t was a g o a l of t h i s study to p r o v i d e i n f o r m a t i o n on some im p o r t a n t parameters of ecosystem f u n c t i o n , p a r t i c u l a r l y on above-ground t r e e l i t t e r f a l l , the amount of major m a c r o n u t r i e n t s (N, P, K, Ca, Mg) r e c y c l e d i n t h i s l i t t e r f a l l and amount of major m a c r o n u t r i e n t s r e c y c l e d i n t h r o u g h f a l l . Two hypotheses were t e s t e d : 1. d i f f e r e n c e s i n p l a n t s p e c i e s c o m p o s i t i o n among th r e e s i t e s l o c a t e d on a t o p o g r a p h i c sequence a l o n g a s h o r t e l e v a t i o n t r a n s e c t are accompanied by s u f f i c i e n t l y l a r g e d i f f e r e n c e s i n p a t t e r n s of ecosystem f u n c t i o n to d i s t i n g u i s h these s i t e s on a f u n c t i o n a l b a s i s . - 133 -2 . the same p l a n t a s s o c i a t i o n o c c u r r i n g on two d i f f e r e n t p a r e n t m a t e r i a l s cannot be d i s t i n g u i s h e d by d i f f e r e n t p a t t e r n s of ecosystem f u n c t i o n . The r e s u l t s of t h i s study show t h a t the d i f f e r e n c e i n s p e c i e s c o m p o s i t i o n among s i t e s l o c a t e d on a s h o r t e l e v a t i o n t r a n s e c t ( t h e same c l i m a t i c c l i m a x t r e e s p e c i e s are p r e s e n t , i n d i f f e r e n t p r o p o r t i o n and w i t h d i f f e r e n t u n d e r s t o r y s p e c i e s c o m p o s i t i o n ) i s accompanied by s u f f i c i e n t l y l a r g e changes i n p a t t e r n s of ecosystem f u n c t i o n to d i s t i n g u i s h these s i t e s . The d i f f e r e n c e s were v a r i f i e d by s t a t i s t i c a l a n a l y s e s . The two mesic s i t e s belong to the same p l a n t a s s o c i a t i o n but are l o c a t e d on two k i n d s of s o i l parent m a t e r i a l ( q u a r t z d i o r i t e and d a c i t e ) . They were ve r y s i m i l a r to each o t h e r i n a m a j o r i t y o f i n v e s t i g a t e d p arameters. However, s t a t i s t i c a l t e s t s r e v e a l e d s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e s between these two s i t e s i n dbh, t r e e h e i g h t , weight of annual above-ground l i t t e r f a l l and amount of some m a c r o n u t r i e n t s (K, Mg, and Ca d u r i n g p a r t of the sam p l i n g p e r i o d ) r e c y c l e d i n above-ground l i t t e r f a l l . T h is d i f f e r e n c e was much s m a l l e r than the d i f f e r e n c e between mesic and x e r i c and mesic and h y g r i c s i t e s . I t can t h e r e f o r e be concl u d e d t h a t t h e r e were some s t a t i s t i c a l l y d e t e c t a b l e d i f f e r e n c e s i n b i o c h e m i c a l c y c l e s between one p l a n t a s s o c i a t i o n growing on two d i f f e r e n t t ypes of parent m a t e r i a l , but t h a t these d i f f e r e n c e s were of l e s s e r magnitude than d i f f e r e n c e s between two p l a n t a s s o c i a t i o n s . The p o s s i b i l i t y t h a t the d i f f e r e n c e s between the two mesic s i t e s r e f l e c t f a c t o r s o t h e r than or i n a d d i t i o n to d i f f e r e n c e s i n s o i l parent m a t e r i a l cannot be d i s c a r d e d . - 134 -The x e r i c and h y g r i c s i t e s e x h i b i t s i m i l a r p a t t e r n s of f u n c t i o n ( e . g . s t a n d i n g t r e e biomass, amount of above-ground t r e e l i t t e r f a l l ) , but they d i f f e r i n parameters such as t r u e increment ( P A I ) and the amount of n u t r i e n t s i m m o b i l i z e d i n i t . Future r e s e a r c h s hould answer the q u e s t i o n of whether t h i s s i m i l a r i t y i s s i g n i f i c a n t or merely c o i n c i d e n t a l . The r e s u l t s i n d i c a t e t h a t a p l a n t a s s o c i a t i o n ( K l i n k a , 1976) i s not a c o m p l e t e l y homogeneous u n i t i n terms of ecosystem f u n c t i o n . S o i l p r o p e r t i e s and parent m a t e r i a l have to be c o n s i d e r e d i n d i s t i n g u i s h i n g f u n c t i o n a l l y homogeneous u n i t s , ecosystem type or biogeocoenose ( K l i n k a , 1976). The q u e s t i o n was posed e a r l i e r as to whether the b i o g e o c h e m i c a l c l a s s i f i c a t i o n of w o r l d ecosystems proposed by Rodin and B a z i l e v i c h (1967) c o u l d be a p p l i e d to the d i f f e r e n t i a t i o n of the study s i t e s . The c l a s s i f i c a t i o n was found to be too broad to d i s c r i m i n a t e among the d i f f e r e n t s i t e s . However, as shown above i t i s p o s s i b l e to produce a c l a s s i f i c a t i o n s c a l e (based on the same p r i n c i p l e s as the s c a l e of Rodin and B a z i l e v i c h , 1967, but w i t h narrower c l a s s e s ) to c l a s s i f y the s u b a l p i n e s i t e s a c c o r d i n g to t h e i r p a t t e r n of f u n c t i o n . Such a c l a s s i f i c a t i o n w i l l become i n c r e a s i n g l y u s e f u l as the gap between w o r l d demand f o r and w o r l d s u p p l y of f o r e s t p r o d u c t s c o n t i n u e s to widen and as i n t e n s i v e f o r e s t management i s extended i n t o s u b a l p i n e f o r e s t a r e a s . - 135 -CHAPTER 6 THE CHARACTER OF NUTRIENT CYCLING IN COASTAL SUBALPINE  FOREST AS REPRESENTED IN THE STUDY AREA An attempt i s made i n t h i s c h a p t e r to e x p l a i n the unique com-b i n a t i o n of b i o g e o c h e m i c a l c h a r a c t e r i s t i c s observed on the study s i t e s , i n c l u d i n g h i g h t r e e s t a n d i n g biomass, low l t t e r f a l l biomass, low uptake of n u t r i e n t s by NPP and low r e u r n of n u t r i e n t s w i t h l i t t e r f a l l . The e x p l a n a t i o n advanced i s c o n s i s t e n t w i t h the r e s u l t s o b t a i n e d i n t h i s study but i s not d e r i v e d e n t i r e l y from the data r e p o r t e d h e r e i n . G e n e r a l f i e l d o b s e r v a t i o n s and the r e s u l t s and o b s e r v a t i o n s of o t h e r i n v e s t i g a t o r s who have worked i n the study area are a l s o i n c o r p o r a t e d i n the e x p l a n a t i o n . I t s h o u l d be .noted t h a t the suggested e x p l a n a t i o n i s s p e c u l a t i v e i n n a t u r e . I t i s p r e s e n t e d more as a source of t e s t a b l e h y p o t h e s i s f o r f u t u r e r e -s e a r c h than as a w e l l documented axiom. The c l i m a t e i n the study a r e a i s m i l d and wet as a r e s u l t of the p r o x i m i t y of the P a c i f i c Ocean to the west of the study a r e a and. the g e n e r a l w e s t e r l y f l o w of weather systems. B e f o r e the onset of w i n t e r the s o i l becomes t h o r o u g h l y moistened by the heavy autumn r a i n s . T his r e c h a r g i n g of s o i l m o i s t u r e i s augmented by the c h a r -a c t e r i s t i c f l u c t u a t i n g autumnal temperatures which r e s u l t i n the m e l t i n g of the f i r s t few s n o w f a l l s . The ground i s s u b s e q u e n t l y covered by snow u s u a l l y as e a r l y as mid-October. T h i s i s p r i o r to the onset of u n i n t e r r u p t e d f r e e z i n g t e m p e r a t u r e s which do not begin b e f o r e mid-December to January, by which time the s o i l i s covered by about one meter of snow. The a c c u m u l a t i n g snow-pack i n s u l a t e s - 136 -the s o i l s u f f i c i e n t l y to prevent f r e e z i n g throughout the w i n t e r . Snow-packs of up to 5m are not uncommon, and the snowpack g e n e r a l l y keeps i n c r e a s i n g i n depth u n t i l l a t e March. Snowmelt s t a r t s i n A p r i l , but i s g r a d u a l so t h a t snow cover under the canopy of the f o r e s t u s u a l l y l a s t s u n t i l m i d - J u l y . As a r e s u l t of these c l i m a t i c c o n d i t i o n s t r e e r o o t s e x p e r i -ence u n f r o z e n and g e n e r a l l y m oist s o i l throughout the y e a r . Except f o r a b r i e f p e r i o d i n J u l y or August on areas w i t h r a p i d l y d r a i n e d s o i l s the t r e e s are not thought to e x p e r i e n c e s u f f i c i e n t m o i s t u r e s t r e s s to s i g n i f i c a n t l y a f f e c t t h e i r growth. Thus, the r o o t s are i n a r e a s o n a b l y f a v o r a b l e environment as f a r as water i s concerned f o r much of the y e a r . The young s o i l which o r i g i n a t e s from g l a c i a l p a r e n t m a t e r i a l u s u a l l y c o n t a i n s a s u f f i c i e n t amount of m i n e r a l n u t r i e n t s f o r t r e e growth. However, r o o t metabolism and the a b i l i t y of r o o t s to absorb n u t r i e n t s may be s i g n i f i c a n t l y l i m i t e d by low s o i l t e m perature which under snow cover i s j u s t above f r e e z i n g p o i n t . Because the s o i l i s u n f r o z e n , slow but s i g n i f i c a n t d e c o m p o s i t i o n a c t i v i t y t a k e s p l a c e throughout much of the 8 - 9 snowy months. Slow d e c o m p o s i t i o n r e -s u l t s i n slow r e l e a s e of n i t r o g e n . In the study area n i t r o g e n i s p r o b a b l y the most - l i m i t i n g m a c r o n u t r i e n t element. T h i c k , wet, a c i d , and year round u n f r o z e n f o r e s t f l o o r i s an e x c e l l e n t growth medium f o r f u n g i . There i s a heavy mat of f u n g a l hyphae i n the LFH l a y e r w i t h numerous attachments to f i n e r o o t s and i t appears t h a t t h e s e f u n g i are a c t i v e beneath the snow i n w i n t e r . I t i s thought t h a t t h e s e m y c o r r h i z a l f u n g i p l a y a v i t a l r o l e i n t r e e n u t r i t i o n , p a r t i c u l a r l y i n n i t r o g e n uptake. - 137 -Daytime a i r temperatures are above f r e e z i n g p o i n t f o r approx-i m a t e l y s i x months of the y e a r : from m i d - A p r i l u n t i l mid-October. P h o t o s y n t h e s i s w i l l be a c t i v e throughout t h i s p e r i o d because of the l a c k of m o i s t u r e s t r e s s and i t w i l l a l s o occur during the f r e q u e n t warm s p e l l s t h a t occur r e g u l a r l y throughout the w i n t e r . D u r i n g the f i r s t h a l f of t h i s time p e r i o d ( u n t i l m i d - J u l y ) , the t r e e s are growing i n s o i l which i s v e r y wet, but c o l d (around 0°C), because the water i s d e r i v e d from m e l t i n g snow. I t i s thought t h a t n u t r i e n t a v a i l a b i l i t y i s l i m i t e d d u r i n g t h i s p e r i o d because of slow decompo-s i t i o n i n the c o l d , e x c e s s i v e l y wet f o r e s t f l o o r . How have the t r e e s i n the study area adapted to these c o n d i -t i o n s ? F o l i a g e i s r e t a i n e d f o r an average of 15-20 y e a r s , and some green, a p p a r e n t l y f u n c t i o n a l n e e d l e s of 31 y e a r s of age have been found (Kimmins, p e r s o n a l communication). Only a s m a l l p o r t i o n of f o l i a g e i s shed and replaced a n n u a l l y . By d i v i d i n g f o l i a g e i n t o a l a r g e number of age c l a s s e s , o n l y a s m a l l biomass i s changed each year and o n l y a s m a l l biomass of new f o l i a g e must be c r e a t e d . I n -t e r n a l c y c l i n g of n u t r i e n t s such as n i t r o g e n and phosphorus from old to young f o l i a g e p r i o r to a b c i s i o n f u r t h e r reduces the l o s s of nu-t r i e n t s from t r e e s v i a l i t t e r f a l l . The l a r g e biomass t h a t i s c h a r -a c t e r i s t i c of these f o r e s t s r e t a i n s a l a r g e p o o l of n u t r i e n t s which are then a v a i l a b l e f o r i n t e r n a l r e c y c l i n g w i t h i n f o l i a g e and p r ob-a b l y a l s o w i t h i n stem, branches and r o o t system. The c o m b i n a t i o n of l o n g needle r e t e n t i o n and e f f i c i e n t i n t e r -n a l c y c l i n g e nables the t r e e s i n the study a r e a to o p e r a t e w i t h low uptake of n u t r i e n t s from the s o i l . Thus, a l a r g e t r e e biomass r e -t a i n i n g a c o n s i d e r a b l e amount of n u t r i e n t s , l o n g f o l i a g e r e t e n t i o n , - 138 -i n t e r n a l n u t r i e n t r e d i s t r i b u t i o n w i t h i n f o l i a g e and p r o b a b l y a l s o w i t h i n the bark and wood, low l o s s of n u t r i e n t s i n l i t t e r f a l l and the apparent a b i l i t y of t r e e crowns to e x t r a c t n i t r o g e n from r a i n -water p e r m i t the t r e e to a c h i e v e i t s NPP w i t h a s m a l l uptake of n u t r i e n t s from the s o i l . T h i s uptake o c c u r s i n what might be con-s i d e r e d a s o i l environment t h a t i s not conducive to n u t r i e n t uptake: i t o c c u r s because of the l a r g e amount of m y c o r r h i z a l f u n g i t h a t are a p p a r e n t l y a b l e to decompose o r g a n i c m atter i n the f o r e s t f l o o r a l b e i t s l o w l y , throughout most of the y e a r . The c e n t r a l p a r t of the e l e v a t i o n t r a n s e c t , the mesic p l o t s , have the most f a v o r a b l e growth c o n d i t i o n s . The snow d u r a t i o n i s s l i g h t l y s h o r t e r t h e r e than on the PX p l o t s , and a p p r o x i m a t e l y the same as on the PH p l o t s . The s o i l i s moderately w e l l d r a i n e d , but the t h i c k f o r e s t f l o o r and r e l a t i v e l y f l a t t e r r a i n r e t a i n s enough m o i s t u r e t h a t t r e e s do not s u f f e r from m o i s t u r e s t r e s s d u r i n g the s h o r t summer dry p e r i o d . Tree biomass and l i t t e r f a l l are h i g h e r on t h i s s i t e than on the x e r i c or h y g r i c s i t e s . S i n c e s o i l m o i s t u r e and s o i l a e r a t i o n a re b a l a n c e d , t r e e s are capable of u t i l i z i n g s o l a r energy more e f f i c i e n t l y than on PX or PH p l o t s and thus have a f a s t e r n u t r i e n t c y c l e . At the top of the e l e v a t i o n t r a n s e c t , the PX p l o t s are l o c a t e d on s m a l l r i d g e s . The snow d u r a t i o n i n t h i s a r ea i s so l o n g t h a t t r e e s are a b l e to e s t a b l i s h themselves o n l y on e l e v a t e d t e r r a i n which becomes f r e e of snow e a r l i e r than the lower d e p r e s s i o n s . The s o i l i s r a p i d l y d r a i n e d and t r e e s may s u f f e r some m o i s t u r e s t r e s s d u r i n g s h o r t dry summer p e r i o d s . As a r e s u l t , t r e e biomass on these s i t e s i s s m a l l e r than on e i t h e r of the o t h e r two s i t e s and t h i s i s - 139 -accompanied by a s m a l l amount of l i t t e r f a l l and slow t r e e growth. The deep and p r o l o n g e d snow cover has an adverse e f f e c t on young t r e e s t h a t are not yet as t a l l as the maximum depth of snowpack. I t i s not u n u s u a l i n t h i s a r ea to f i n d a t r e e 100 to 150 y e a r s o l d and o n l y 2-3m h i g h . Once the t r e e s get t h e i r crowns above the snow-pack, t h e i r growth r a t e i n c r e a s e s c o n s i d e r a b l y . This may be a p a r -t i a l e x p l a n a t i o n of the almost e q u a l mean annual i n c r e m e n t and p e r -i o d i c annual increment i n t r e e s as o l d as 350 y e a r s . At the bottom of the e l e v a t i o n t r a n s e c t , the PH p l o t s are l o c a t e d a t the f o o t of a steep s l o p e . Seepage water from r a i n and m e l t i n g snow keeps the f o r e s t f l o o r and m i n e r a l s o i l s a t u r a t e d t hroughout most of the y e a r . The t r e e s are growing mainly on minor t o p o g r a p h i c emniences where c o n d i t i o n s are more f a v o r a b l e f o r r o o t growth. The t r e e d e n s i t y . i s g e n e r a l l y low and i n d i v i d u a l t r e e s i z e i s v e r y v a r i a b l e . Tree s i z e i s l a r g e r than on the PM and PX p l o t s . Because t r e e d e n s i t y i s s m a l l e r , t o t a l t r e e biomass per h e c t a r e i s s m a l l e r than on the mesic p l o t s ; i t i s v e r y s i m i l a r to the biomass of the x e r i c s i t e s where t r e e s are s m a l l but p r e s e n t i n l a r g e num-b e r s . L i t t e r f a l l biomass f o l l o w s the same t r e n d . Decay of the f o r e s t f l o o r on the PH p l o t s i s v e r y slow because of the e x c e s s i v e wetness and as a r e s u l t the f o r e s t f l o o r i s deeper here than on the o t h e r s i t e s . The s i m i l a r i t y between the PX and PH p l o t s i n t r e e biomass, biomass of l i t t e r f a l l and l i t t e r f a l l m a c r o n u t r i e n t c o n t e n t does not i n d i c a t e an e c o l o g i c a l s i m i l a r i t y between these s i t e s . I t merely r e f l e c t s the r e c i p r o c a l r e l a t i o n s h i p between t r e e s i z e and number of t r e e s per u n i t of a r e a . - 140 -CHAPTER 7  THE USEFULNESS OF NUTRIENT  CYCLING STUDIES IN FOREST MANAGEMENT There are s e v e r a l p o s s i b l e a p p l i c a t i o n s of the knowledge of n u t r i e n t c y c l i n g i n f o r e s t management. Such knowledge can be used i n the c l a s s i f i c a t i o n of f o r e s t ecosystems, i n the e v a l u a t i o n of f o r e s t p r o d u c t i v i t y and i n the p r e d i c t i o n of the response of eco-systems to f o r e s t management. R e c e n t l y a number of p u b l i c a t i o n s have appeared which d e a l w i t h the r e l a t i o n s h i p between ecosystem s t a b i l i t y and n u t r i e n t c y c l i n g c h a r a c t e r i s t i c s . Knowledge of f o r -e s t b i o g e o c h e m i s t r y may prove to be u s e f u l i n e v a l u a t i n g ecosystem s t a b i l i t y . T h i s c h a p t e r p r e s e n t s a very b r i e f r e v i e w of the l i t e r -a t u r e on these t o p i c s and an e v a l u a t i o n of the impact t h a t l o g g i n g may have on the i n v e s t i g a t e d s i t e s and t h e i r p o t e n t i a l a b i l i t y to r e c o v e r . "The c h e m i c a l elements of which p l a n t s a re composed are i n -v o l v e d i n i n t e r m e s h i n g and m u t u a l l y dependent c y c l e s of uptake and r e t u r n to the environment. Knowledge of these c y c l e s i s i m p o r t a n t not o n l y to the s c i e n t i f i c u n d e r s t a n d i n g of the f a c t o r s which d e t e r -mine the c h a r a c t e r of v e g e t a t i o n but a l s o to the e f f e c t i v e use of f o r e s t , p a s t u r e and w i l d e r n e s s which i s becoming an i n c r e a s i n g p r a c -t i c a l n e c e s s i t y under p r e s e n t c o n d i t i o n s " (Rodin and B a z i l e v i c h , 196 7). Sukachev (1944) o u t l i n e d the importance of b i o l o g i c a l , b i o -c h e m i c a l and geochemical c y c l e s of elements i n g e n e t i c c l a s s i f i -c a t i o n s of f o r e s t ecosystems. R e c e n t l y Rodin and B a z i l e v i c h (1967) proposed a c l a s s i f i c a t i o n of b i o l o g i c a l c y c l e s of elements. They e v a l u a t e d the importance of knowledge of n u t r i e n t c y c l e s and t h e i r c l a s s i f i c a t i o n by the f o l l o w i n g s t a t e m e n t : "Once the types of b i o l o g i c a l c y c l e s have been - 141 -c l a s s i f i e d i n d e t a i l f o r a l l s t e p s i n the h i e r a r c h i c a l l a d d e r , we s h a l l have the most i m p o r t a n t of c r i t e r i a f o r u n d e r s t a n d i n g the b i o g e o c o e n s i s as a c y b e r n e t i c system and we s h a l l be a b l e to see how a b i o g e o c o e n o s i s might be m a n i p u l a t e d so as to y i e l d maximum p r o d u c t i v i t y of o r g a n i c m a t t e r . " "A r e c u r r e n t theme i n e c o l o g i c a l l i t e r a t u r e i s t h a t ecosystem s t a b i l i t y i s r e l a t e d to n u t r i e n t - c y c 1 i n g c h a r a c t e r i s t i c s . Odum (1969) suggested t h a t the c l o s i n g of n u t r i e n t c y c l e s through ecosystem development c o n t r i b u t e s to i n c r e a s e d s t a b i l i t y . Pomeroy (1970) r e l a t e d the s t a b i l i t y of s e v e r a l ecosystem types to e l e m e n t a l s t a n d i n g crops and t u r n o v e r t i m e s , biomass and p r o d u c t i v i t y . Jordan et_ _al_. ( 1972) examined ecosystem s t a b i l i t y i n r e l a t i o n to models of f o r e s t n u t r i e n t c y c l e s . " (Webster e_t a_l. 1975). They concl u d e d t h a t i n f o r e s t I ecosystems where m i n e r a l r e c y c l i n g r a t e s are h i g h r e l a t i v e to i n p u t and output r a t e s , the systems have a low r e l a t i v e s t a b i l i t y . I f the r a t e of element i n p u t i n t o a f o r e s t system i s h i g h e r than the r e c y c l i n g r a t e , the s t a b i l i t y of t h a t system w i l l be h i g h . Webster e_t a_l. (1975) i n v e s t i g a t e d r e l a t i o n s between o b s e r v a b l e c h a r a c t e r i s t i c s of n u t r i e n t c y c l e s and the s y s t e m - l e v e l concept of s t a b i l i t y . T h e i r r e s u l t s i n d i c a t e t h a t r e s i s t a n c e , the a b i l i t y of an ecosystem to r e s i s t d i s p l a c e m e n t , i s r e l a t e d to l a r g e s t o r a g e , l o n g t u r n o v e r times and l a r g e amounts of r e c y c l i n g . R e s i l i e n c e , the a b i l i t y of an ecosystem to r e t u r n ( a t a c e r t a i n r a t e ) to a r e f e r e n c e s t a t e once d i s p l a c e d , i s r e l a t e d to r a p i d t u r n o v e r and r e c y c l i n g r a t e s . - 142 -The f o u r s i t e s i n v e s t i g a t e d i n the S u b a l p i n e Mountain Hemlock Zone e x h i b i t l a r g e biomass s t o r a g e and slow t u r n o v e r . T h i s i n d i c a t e s t h a t they most p r o b a b l y have h i g h r e s i s t a n c e and low r e s i l i e n c e . In p r a c t i c e , t h i s means t h a t these ecosystems can s u c c e s s f u l l y r e s i s t the p e r t u r b a t i v e f o r c e s of t h e i r e n v ironment. The advanced age of these stands and l a c k of c h a r c o a l i n the f o r e s t f l o o r s u p p o r t s t h i s h y p o t h e s i s . When t r e e biomass i s removed by l o g g i n g and the f o r e s t f l o o r i s p a r t i a l l y o r c o m p l e t e l y d e s t r o y e d by the combined a c t i o n of y a r d i n g , s l a s h b u r n i n g and e r o s i o n , the l a r g e biomass and n u t r i e n t s t o r a g e i s to a g r e a t e r or l e s s e r e x t e n t l o s t . The h i g h r e s i s t a n c e of the ecosystem i s d e s t r o y e d . In p r a c t i c e t h i s i s o f t e n accompanied by e x c e s s i v e l o s s of n u t r i e n t s by l e a c h i n g , s o i l e r o s i o n and on some steep s l o p e s by s o i l mass w a s t i n g . The slow t u r n o v e r and r e c y c l i n g r a t e s i n d i c a t e low r e s i l i e n c e . The v e r y slow r e g e n e r a t i o n observed on a c l e a r c u t a d j a c e n t to M p l o t s i s c o n s i s t e n t w i t h t h i s h y p o t h e s i s ; these s i t e s would need a l o n g e r time to r e t u r n to t h e i r p r e v i o u s s t a g e , a " c l i m a x " f o r e s t , than the low e l e v a t i o n f o r e s t . To p r o v i d e more s p e c i f i c answers on the impact of l o g g i n g on the n u t r i e n t c y c l i n g of the i n v e s t i g a t e d s i t e s , data on b i o c h e m c i a l , b i o g e o c h e m i c a l and geoch e m i c a l c y c l e s ( S w i t z e r and Ne l s o n 1972, Duvigneaud and Denaeyer-De Smet 1975) of d i s t u r b e d , m a t u r i n g and mature ecosystems are needed. T h i s study was concerned p r e d o m i n a n t l y w i t h c e r t a i n a s p e c t s of the b i o g e o c h e m i c a l c y c l e of overmature ecosystems and does not p r o v i d e s u f f i c i e n t data w i t h which to p r e d i c t the consequences of f o r e s t management. A s i m u l a t i o n model of n u t r i e n t c y c l i n g - 14 3 -c a l i b r a t e d and v a l i d a t e d w i t h a f a r l a r g e r body of i n f o r m a t i o n than i s p r e s e n t l y a v a i l a b l e would be n e c e s s a r y to p r o v i d e s p e c i f i c answers on the impact of management p r a c t i c e s . The t o p i c of ecosystem a n a l y s e s i s beyond the scope of t h i s s t u d y , but i t i s hoped t h a t the data p r o v i d e d here w i l l be i n c o r p o r a t e d i n such f u t u r e a n a l y s e s of s u b a l p i n e f o r e s t ecosystems. The b r i e f l i t e r a t u r e r e v i e w p r e s e n t e d above i n d i c a t e s t h r e e major areas where n u t r i e n t c y c l i n g s t u d i e s may c o n t r i b u t e s i g n i f i c a n t l y to f o r e s t management: 1. The development of a f u n c t i o n a l f o r e s t ecosystem c l a s s i f i c a t i o n which t o g e t h e r w i t h b i o g e o c 1 i m a t i c ecosystem c l a s s i f i c a t i o n would enable f o r e s t managers to make improved s i t e s p e c i f i c t r e a tment d e c i s i o n s ; 2. The p r o v i s i o n of b a s i c data f o r ecosystem a n a l y s e s d i r e c t e d toward the i n c r e a s e of f o r e s t p r o d u c t i v i t y by e n s u r i n g o p t i m a l s u p p l y of e s s e n t i a l p l a n t n u t r i e n t s r e q u i r e d f o r t r e e growth; 3. The p r o v i s i o n of i n f o r m a t i o n f o r a n a l y s i s of f o r e s t ecosystem s t a b i l i t y i n r e l a t i o n to n u t r i e n t c y c l i n g c h a r a c t e r i s t i c s . B e t t e r u n d e r s t a n d i n g of s t a b i l i t y would enable f o r e s t managers to p r e d i c t more a c c u r a t e l y the b e h a v i o u r of the system a f t e r major d i s t u r b a n c e such as l o g g i n g or f i r e . I would l i k e to c o n c l u d e t h i s c h a p t e r w i t h the statement of Duvigneaud and Denaeyer-De Smet (1 9 7 5 ) : " M i n e r a l c y c l i n g appears to be one of the best and e a s i e s t ways to c h a r a c t e r i z e the g e n e r a l metabolism and f u n c t i o n i n g of ecosystems, but many years a r e s t i l l r e q u i r e d ( s e v e r a l IBP or SCOPE programs) to o b t a i n s u f f i c i e n t data to make v a l u a b l e models and p r e d i c t i o n s . " - 144 -CHAPTER 8  SUMMARY OF RESULTS 1. The range of l i t t e r f a l l biomass on 12 study p l o t s was found to be from 1.48 to 3.02 t / ( h a * a ) . The p r o d u c t i o n of l i t t e r on mesic s i t e s was c o n s i d e r a b l y h i g h e r than on x e r i c or h y g r i c s i t e s . 2. Leaf l i t t e r f a l l was from 57 to 72% of the t o t a l l i t t e r f a l l ; e p i p h y t i c l i c h e n l i t t e r f a l l was from 5 to 16% of the t o t a l l i t t e r f a l l . 3. The biomass of e p i p h y t i c l i c h e n l i t t e r f a l l was from 71 to 426 kg/(ha*a) c o n t a i n i n g a q u a n t i t y of n i t r o g e n of between 0.64 and 2.87 k g / ( h a * a ) . This amount r e p r e s e n t s 7 to 19% of n i t r o g e n r e a c h i n g the f o r e s t f l o o r i n the form of l i t t e r f a l l . The amount of n i t r o g e n r e t u r n e d to the f o r e s t f l o o r i n e p i p h y t i c l i c h e n l i t t e r f a l l i s e q u i v a l e n t to the amount of n i t r o g e n r e t u r n e d i n twigs and branches l i t t e r f a l l ; i t i s the second l a r g e s t amount of N a f t e r l e a f l i t t e r f a l l . 4. The c o n c e n t r a t i o n of N, P and K i n e p i p h y t i c l i c h e n 1 i t t e r f a l l was h i g h e r than i n f o l i a g e l i t t e r f a l l throughout the y e a r . 5. The q u a n t i t y of m a c r o n u t r i e n t s r e t u r n e d to the f o r e s t f l o o r i n l i t t e r f a l l was 24 to 41 k g / ( h a * a ) . The l a r g e s t q u a n t i t i e s of n u t r i e n t s were r e t u r n e d on mesic s i t e s , w i t h s m a l l e r q u a n t i t i e s on the x e r i c and h y g r i c s i t e s . 6. C o n c e n t r a t i o n s of N and P were h i g h e s t i n w i n t e r l i t t e r f a l l ; c o n c e n t r a t i o n s of K and Mg were h i g h e s t i n summer l i t t e r f a l l . C o n c e n t r a t i o n of Ca was f a i r l y s i m i l a r i n summer and w i n t e r l i t t e r f a l l . - 1 4 5 -7. T h r o u g h f a l l and a t m o s p h e r i c p r e c i p i t a t i o n were sampled o n l y d u r i n g summer. The w i n t e r c o l l e c t i o n s were u n s u c c e s s f u l , t h e r e f o r e no w i n t e r data were c o l l e c t e d . 8. The q u a n t i t y of n i t r o g e n was h i g h e r i n a t m o s p h e r i c p r e c i p i t a t i o n than i n t h r o u g h f a l l . T h is i n d i c a t e s a removal of n i t r o g e n from r a i n water by some component of the t r e e canopy. On some sample p l o t s over 1 kg/ha of N was removed from r a i n water d u r i n g the 13 week summer sampl i n g p e r i o d . Mesic s i t e s seem to be more e f f i c i e n t i n a b s o r b i n g n i t r o g e n from r a i n water than x e r i c and h y g r i c s i t e s . 9. The r e s u l t s i n d i c a t e t h a t on mesic s i t e s l a r g e r q u a n t i t i e s of K, Ca and S are c y c l e d i n t h r o u g h f a l l than on x e r i c o r hyg r i c s i t e s . 10. Potassium was found to be the most r e a d i l y l e a c h a b l e element. The second most r e a d i l y l e a c h a b l e element was c a l c i u m . 11. The mean depth of the f o r e s t f l o o r on the study p l o t s ranged from 5.5 to 12.7 cm. The weight of f o r e s t f l o o r o r g a n i c m a t t e r ranged from 88 to 190 t / h a . The g r e a t amount of accumulated o r g a n i c matter i n d i c a t e s v e r y slow d e c o m p o s i t i o n and slow r e l e a s e of n u t r i e n t s . 12. The amount of above-ground t r e e s t a n d i n g biomass on the sample p l o t s ranged from 389 to 731 t / h a . The v a l u e s were l a r g e r on mesic s i t e s than on x e r i c or h y g r i c s i t e s , even though t r e e ages were comparable. 13. F o l i a g e , t w i g s and branches accounted f o r r e l a t i v e l y s m a l l p r o p o r t i o n s of biomass, yet they accounted f o r c o n s i d e r a b l e p r o p o r t i o n s of m a c r o n u t r i e n t s , p a r t i c u l a r l y n i t r o g e n . - 146 -14. The range of mean annual net increment of above-ground t r e e stem wood was e s t i m a t e d to be from 1.46 m 3/(ha*a) to 3.74 m 3 / ( h a * a ) . The range of p e r i o d i c annual net increment (based on l a s t 20 y e a r s ) of above-ground t r e e stem wood was e s t i m a t e d to be from 0.8 m 3/(ha*a) to 2.2 m 3 / ( h a * a ) . 15. P e r i o d i c annual increment was s m a l l e r than mean annual increment on a l l s i t e s but x e r i c . Trees on the x e r i c s i t e , at the age of 350 y e a r s , s t i l l have a p e r i o d i c annual increment e q u a l to or l a r g e r than the mean annual i n c r e m e n t . This i n d i c a t e s t h a t the l a r g e s t timber p r o d u c t i o n on x e r i c s i t e s i s a t t a i n e d at a h i g h e r age than on mesic and h y g r i c s i t e s . 16. The annual net primary p r o d u c t i o n was e s t i m a t e d to be from 1.77 to 3.35 t / h a . This i s r a t h e r low i n comparison to the p r o d u c t i o n of o t h e r s u b a l p i n e f o r e s t s . The advanced age of the study f o r e s t s i s most p r o b a b l y the main reason f o r the low p r o d u c t i o n . - 1 47 -CHAPTER 9 CONCLUSIONS 1. The d i f f e r e n c e i n s p e c i e s c o m p o s i t i o n among thr e e p l a n t a s s o c i a t i o n s l o c a t e d on a s h o r t e l e v a t i o n t r a n s e c t wa s accompanied by s u f f i c i e n t l y l a r g e changes i n p r o d u c t i v i t y and n u t r i e n t c y c l i n g to s e p a r a t e these s i t e s . T h i s i m p l i e s t h a t by i d e n t i f y i n g f o r e s t s i t e s a c c o r d i n g to t h e i r p h y t o s o c i o l o g i c a l c h a r a c t e r i s t i c s , one can i d e n t i f y s i t e s w i t h d i f f e r e n t p a t t e r n s of n u t r i e n t uptake and c y c l i n g . 2. One p l a n t a s s o c i a t i o n growing on two d i f f e r e n t p a r e n t m a t e r i a l s showed s t a t i s t i c a l l y d i f f e r e n t p a t t e r n s of biomass p r o d u c t i o n and n u t r i e n t c y c l i n g . T h i s s u g g e s t s t h a t the p l a n t a s s o c i a t i o n i s not a f u n c t i o n a l l y homogeneous u n i t . S o i l p r o p e r t i e s and parent m a t e r i a l have to be i n c l u d e d when d i s t i n g u i s h i n g between f u n c t i o n a l l y homogeneous u n i t s - ecosystem t y p e s or biogeocoenoses . 3. The c 1 a s s i f i c a i t o n s c a l e of world ecosystems proposed by R o d i n and B a z i l e v i c h (1967) was found to be i n s u f f i c i e n t l y s e n s i t i v e to s e p a r a t e p l a n t a s s o c i a t i o n s of one b i o g e o c 1 i m a t i c zone. I t would be p o s s i b l e to s e p a r a t e these p l a n t a s s o c i a t i o n s i f the s c a l e were r e d e s i g n e d to have narrower c l a s s e s . 4. The i n v e s t i g a t e d f o r e s t s i t e s do not compare w e l l w i t h any s i n g l e v e g e t a t i o n type proposed by Rodin and B a z i l e v i c h ( 1 9 6 7 ) . I t may t h e r e f o r e be a p p r o p r i a t e to propose the a d d i t i o n of a n o ther v e g e t a t i o n type to the Rodin and B a z i l e v i c h (1967) c l a s s i f i c a t i o n : the s u b a l p i n e c o n i f e r o u s f o r e s t w i t h almost e q u a l amounts of N and Ca i n the l i t t e r f a l l , medium ash c o n t e n t , - 148 -h i g h a c c u m u l a t i o n of b i o m a s s , poor l i t t e r p r o d u c t i o n , and s t a g n a n t d e c a y r a t e . 5. T r e e s on x e r i c s i t e s a p p e a r to be s t i l l i n the p e r i o d of maximum growth a t the age o f about 350 y e a r s , w h i l e m e s i c and h y g r i c s i t e s a r e w e l l p a s t t h e i r p e r i o d o f maximum g r o w t h . X e r i c s i t e s seem to mature more s l o w l y t h a n o t h e r p l o t s ; t h e i r g r o w t h c u r v e i s l e s s s t e e p and t h e i r net growth more p r o l o n g e d . T h i s i s an i n t e r e s t i n g f i n d i n g t h a t d e s e r v e s the a t t e n t i o n o f f u u t u r e r e s e a r c h . 6. The r e s u l t s o f t h i s s t u d y i n d i c a t e the e x i s t e n c e o f c o r r e l a t i o n between a b o v e - g r o u n d t r e e s t a n d i n g biomass and l i t t e r f a l l b i o m a s s . T h i s i s c o n t r a d i c t o r y t o r e s u l t s o f some o t h e r p u b l i c a t i o n s , s u c h as R o d i n and B a z i l e v i c h ( 1 9 6 7 ) . 7. E p i p h y t i c l i c h e n s a r e an i m p o r t a n t component o f l i t t e r f a l l s i n c e t h e y c o n t a i n a l a r g e p r o p o r t i o n of the m a c r o n u t r i e n t s r e a c h i n g the f o r e s t f l o o r i n the form of l i t t e r . The r o l e o f e p i p h y t i c l i c h e n s i n t r e e n u t r i t i o n s h o u l d be f u r t h e r s t ud i e d . 8. The t r e e canopy was f o u n d to have an a b i l i t y to remove n i t r o g e n from p r e c i p i t a t i o n . I t i s not known whether t h i s phenomenon o c c u r s o n l y d u r i n g summer or d u r i n g wet w i n t e r months as w e l l . The mechanism o f n i t r o g e n a b s o r p t i o n i s not u n d e r s t o o d e i t h e r . S i n c e N i s c o n s i d e r e d to be the most l i m i t i n g n u t r i e n t t o t r e e g r o w t h i n the i n v e s t i g a t e d a r e a , the phenomenon of N a b s o r p t i o n from r a i n water by the t r e e canopy s h o u l d be an o b j e c t o f f u t u r e r e s e a r c h s t u d i e s . 9. The h i g h biomass s t o r a g e and s l o w n u t r i e n t t u r n o v e r o f t h e i n v e s t i g a t e d f o r e s t e c o s y s t e m s i s c o n s i d e r e d i n the l i g h t o f - 149 -some r e c e n t p u b l i c a t i o n s to be an i n d i c a t o r of h i g h r e s i s t a n c e and low r e s i l i e n c e . T h is t h e o r y i s i n agreement w i t h the g r e a t age of the t r e e s , the l a c k of c h a r c o a l and slow r e g e n e r a t i o n of l o g g e d stands i n the v i c i n i t y of the i n v e s t i g a t e d a r e a . - 150 -LITERATURE CITED Abee, A. 1973. N u t r i e n t c y c l i n g under 4 5 0 - y e a r - o l d D o u g l a s - f i r s t a n d s . M.Sc. T h e s i s , Oregon S t a t e U n i v e r s i t y , C o r v a l l i s . Abee, A. and D. Lavender. 1972. N u t r i e n t c y c l i n g i n t h r o u g h f a l l and l i t t e r f a l l i n 4 5 0 - y e a r - o l d D o u g l a s - f i r s t a n d s . P r o c e e d i n g s : Research on C o n i f e r o u s F o r e s t Ecosystems - A Symposium. B e l l i n g h a m , Washington. March 23-24, 1972. A l l a n , J.E. 1969. The p r e p a r a t i o n of a g r i c u l t u r a l samples f o r a n a l y s i s by atomic a b s o r p t i o n s p e c t r o s c o p y . V a r i a n A e r o g r a p h , C a l i f o r n i a , U.S.A. B a s k e r v i l l e , G.L. 1972. Use of l o g a r i t h m i c r e g r e s s i o n i n the e s t i m a t i o n of p l a n t biomass. Can. J o u r n a l of F o r e s t R e s e a r c h , 2:49-53. B.C. F o r e s t S e r v i c e . 1976. Whole stem c u b i c metre volume e q u a t i o n s and t a b l e s . C e n t i m e t r e d i a m e t r e c l a s s m e r c h a n t a b l e volume f a c t o r s . F o r e s t I n v e n t o r y D i v i s i o n , B.C. F o r e s t S e r v i c e . Dept. of F o r e s t s . Bonnevie-Svendsen, C. and 0. Gjems. 1957. Amount and c h e m i c a l c o m p o s i t i o n of the l i t t e r from l a r c h , beech, Norway spruce and Scots pine stands and i t s e f f e c t on the s o i l . Medd. Norske S k o g s f o r s o k s v . 48:111-174. B r a y , J.R. and E. Gorham. 1964. L i t t e r p r o d u c t i o n i n f o r e s t s of the w o r l d . Advan. E c o l . Res. 2:101-157. Academic P r e s s . B r i n k , V.C. 1959. A d i r e c t i o n a l change i n the s u b a l p i n e f o r e s t - h e a t h ecotone i n G a r i b a l d i P ark, B r i t i s h Columbia. E c o l o g y 40:10-16. - 151 -B r i n k , V.C. 1964. P l a n t e s t a b l i s h m e n t i n the h i g h s n o w f a l l a l p i n e and s u b a l p i n e r e g i o n s of B r i t i s h Columbia. Ecology 45: 431-438. Brooke, R.C. 1965. The S u b a l p i n e Mountain Hemlock Zone. P a r t 2: Ecotopes and b i o g e o c o e n o t i c u n i t s . E c o l . of Western N. America 1:79-101. Brooke, R.C. 1966. V e g e t a t i o n - e n v i r o n m e n t a l r e l a t i o n s h i p s of S u b a l p i n e Mountain Hemlock Zone ecosystems. Ph.D. T h e s i s , Dep. of Botany, Univ. of B r i t i s h Columbia, Vancouver, B.C. 225 p. App. 110 p. Brooke, R.C. 1969. Some responses of c o n i f e r and shrub s p e c i e s t o snow r e l e a s e i n the S u b a l p i n e Mountain Hemlock Zone. X I : I n t e r n . Bot. Congress, S e a t t l e , Wash, A b s t r . p.22. Brooke, R.C, E.B. P e t e r s o n and V . J . K r a j i n a . 1970 . The S u b a l p i n e Mountain Hemlock Zone. E c o l . of Western N. America 2(2):147-349. C a r l i s l e , A., A.H.F. Brown and E . J . White. 1966. The o r g a n i c m a t t e r and n u t r i e n t elements i n the p r e c i p i t a t i o n beneath a s e s s i l e oak (Quercus pe t roea) canopy. J o u r n a l of Ecology 54:87-98. C a r l i s l e , A.A., H.G. Brown and E . J . White. 1967. The n u t r i e n t c o n t e n t of r a i n f a l l and i t s r o l e i n the f o r e s t n u t r i e n t c y c l e . 14th Congress of I n t e r n a t i o n a l Union of F o r e s t r y R e s e a r c h O r g a n i z a t i o n s , Munich. P a r t 2, Sec. 21, p. 145-158. C h a n d l e r , R.F. J r . 1943. Amount and m i n e r a l n u t r i e n t c o ntent of f r e s h l y f a l l e n n e e dle l i t t e r of some of n o r t h e a s t e r n c o n i f e r s . P r o c . of S o i l S c i e n c e Soc. of Amer. 8:409-411. - 15 2 -Chapman, S.B. 1976. P r o d u c t i o n e c o l o g y and n u t r i e n t budgets. Chapter 4 i n Methods i n P l a n t E c o l o g y , S.B. Chapman ( e d i t o r ) , B l a c k w e l l S c i e n t i f i c P u b l i c a t i o n s . C o l e , D.W., S.P. G e s s e l and S.F. R i c e . 1967. D i s t r i b u t i o n and c y c l i n g of n i t r o g e n , phosphorus, potassium and c a l c i u m i n a second-growth D o u g l a s - f i r ecosystem. Symposium of P r i m a r y P r o d u c t i v i t y and M i n e r a l C y c l i n g i n N a t u r a l Ecosystems. E c o l . Soc. of America, American A s s o c i a t i o n f o r the Advancement of S c i e n c e , 13th annual meeting, New York C i t y . P u b l i s h e d by U n i v e r s i t y of Maine P r e s s . Cromack, K. J r . , and C D . Monk. 1975. L i t t e r p r o d u c t i o n , d e c o m p o s i t i o n and n u t r i e n t c y c l i n g i n a mixed hardwood watershed and white pine watershed. I n : M i n e r a l C y c l i n g i n S o u t h e a s t e r n Ecosystems. U.S. Energy Research and Development A d m i n i s t r a t i o n . pp. 609-624. Crosb y , J.S. 1961. L i t t e r and d u f f f u e l i n s h o r t l e a f pine s t a n d s i n Southeast M i s s o u r i . Tech. Pap. Cent. S t . F o r . Exp. S t a . 178, 10 pp. C u r l i n , J.W. 1971. N u t r i e n t c y c l i n g as a f a c t o r i n s i t e p r o d u c t i v i t y and f o r e s t f e r t i l i z a t i o n . Tree Growth and F o r e s t S o i l . Ed.: Ch. T. Youngberg and Ch. B. Davey, C o r v a l l i s , Oregon S t a t e Univ. P r e s s . D a v i d , J.D. 1960. The d e t e r m i n a t i o n of exchangeable Na, K, Ca, Mg i n s o i l s by atomic a b s o r p t i o n s p e c t r o p h o t o m e t r y . A n a l y s t 85 : 495-503. - 153 -Duvigneaud, P. and S. Denaeyer-De Smet . 1967 . Biomasses, p r o d u c t i v i t y and m i n e r a l c y c l i n g i n deciduous mixed f o r e s t i n B elgium. Symposium on P r i m a r y P r o d u c t i v i t y and M i n e r a l C y c l i n g i n N a t u r a l Ecosytems. E c o l o g i c a l S o c i e t y of A m e r i c a . American A s s o c i a t i o n f o r the Advancement of S c i e n c e , 13th annual m e e t i n g , New York C i t y . P u b l i s h e d by the U n i v e r i s t y of Maine P r e s s . Duvigneaud, P. and S. Denaeyer-De Smet. 1975. M i n e r a l c y c l i n g i n t e r r e s t r i a l ecosystems. P r o c e e d i n g s of a symposium on The P r o d u c t i v i t y of World Ecosystems, Aug. 31-Sept. 1, 1972, IBP, S e a t t l e , Wa. P u b l i s h e d by the N a t i o n a l Academy of S c i e n c e s , Washington, D.C. E a t o n , J.S., G.E. L i k e n s and F.H. Bormann. 1973. T h r o u g h f a l l and stemflow c h e m i s t r y i n a n o r t h e r n hardwood f o r e s t . J . E c o l . 61:495-508. Ebermayer, E. 1976. Die gesamte Lehre von der W a l d s t r e u . B e r l i n . Ebermayer, E. 1882. Chemie der P f l a n z e n . B e r l i n . E r i k s s o n , E. 1952. C o m p o s i t i o n of a t m o s p h e r i c p r e c i p i t a t i o n . 1: N i t r o g e n compounds. T e l l u s 4(3):215-232. E r i k s s o n , E. 1952. Comp o s i t i o n of a t m o s p h e r i c p r e c i p i t a t i o n . 2: S u l f u r , c h l o r i d e , i o d i n e compounds. B i b l i o g r a p h y . T e l l u s 4(4):280-303. E r i k s s o n , E. 1955. A i r b o r n s a l t s and the c h e m i c a l c o m p o s i t i o n of r i v e r w a t e r s . T e l l u s 7(2):243-250. F e l l e r , M.C. 1975. E f f e c t s of c l e a r c u t t i n g on stream water c h e m i s t r y . Ph.D. T h e s i s , U n i v e r s i t y of B r i t i s h Columbia, Vancouver, Canada. - 154 -F o r e s t r y Handbook f o r B r i t i s h Columbia, T h i r d E d i t i o n . 1971. The f o r e s t C l u b , U n i v e r s i t y of B r i t i s h Columbia. F o s t e r , N.W. and S.P. G e s s e l . 1972. The n a t u r a l a d d i t i o n of N; K; Ca to a P i n u s banks i a n a Lamb, f o r e s t f l o o r . Can. J o u r n a l of F o r e s t Research 2(4):448-455. F o s t e r , N.W. and I.K. M o r r i s o n . 1976. D i s t r i b u t i o n and c y c l i n g of n u t r i e n t s i n a n a t u r a l P i nus banks i a n a ecosystem. E c o l o g y 57:110-120. F u j i m o r i , T., S. Kawanabe, H. S a i t o , C C . G r i e r and T. S h i d e i . 1976. Biomass and net p r i m a r y p r o d u c t i o n i n f o r e s t s of t h r e e major v e g e t a t i o n zones of the n o r t h w e s t e r n U n i t e d S t a t e s . Jap. For. Soc. 58(10):360-373. G e s s e l , S.P., D.W. Cole and J . Turner. 1973. E l e m e n t a l c y c l i n g and even-age f o r e s t management. I n : R.K. Hermann and D.P. Lavender (eds.) Even-age management, p. 179-198. Symp. P r o c . Oregon S t a t e U n i v e r s i t y , C o r v a l l i s . G h o l z , H.L. , F.K. F i t z and R.H. Waring. 1976 . Leaf a r e a d i f f e r e n c e s a s s o c i a t e d w i t h o l d - g r o w t h f o r e s t communities i n the Western Oregon Cascades. Can. J o u r n a l of F o r e s t R esearch 6(1):49-57. Gosz, J.R., G.E. L i k e n s and F.H. Bormann. 1972. N u t r i e n t c o n t e n t of l i t t e r f a l l on the Hubbard Brook E x p e r i m e n t a l F o r e s t , New Hampshire. Ecology 53(5):769-784. G r i e r , C C . and D.W. C o l e . 1972. E l e m e n t a l t r a n s p o r t changes o c c u r r i n g d u r i n g development of a second-growth D o u g l a s - f i r ecosystem. P r o c e e d i n g s : Research on C o n i f e r o u s F o r e s t Ecosystems - A Symposium. B e l l i n g h a m , Washington, March 23-24, 1972. - 155 -G r l e r , C.C. and R.S. Logan. 1977. Old growth Pseudotsuga  menz i e s i i communities of a western Oregon watershed: Biomass d i s t r i b u t i o n and p r o d u c t i o n budgets. E c o l o g i c a l Monographs 47:373-400. H a n l e y , D.P. 1976. Tree biomass and p r o d u c t i v i t y e s t i m a t e d f o r t h r e e h a b i t a t types of n o r t h e r n Idaho. Univ. of Idaho, Mo sc ow , Idaho. H e l v e y , J.D. 1971. A summary of r a i n f a l l i n t e r c e p t i o n by c e r t a i n c o n i f e r s of n o r t h A merica. B i o l o g i c a l E f f e c t s i n the H y d r o l o g i c a l C y c l e . U.S.D.A. F o r e s t S e r v i c e . T h i r d I n t e r n a t i o n a l Seminar f o r Hydrology P r o f e s s o r s , P r o c e e d i n g s - Purdue U n i v e r s i t y , I n d i a n a , 1971. H i t c h c o c k , C.L., A. C r o n q u i s t , M. Ownbey and J.W. Thompson. 1969. V a s c u l a r p l a n t s of the P a c i f i c Northwest. P a r t 1 ( 1 9 6 9 ) , V a s c u l a r cryptogams, gymnosperms and monocotyledons. P a r t 2 ( 1 9 6 4 ) , S a l i c a c e a e to S a x i f r a g a c e a e . P a r t 3 ( 1 9 6 1 ) , S a x i f r a g a c e a e to E r i c a c e a e . P a r t 4 ( 1 9 5 9 ) , E r i c a c e a e through Campanulaceae. P a r t 5 ( 1 9 5 5 ) , Compositae. Univ. Washington P r e s s , S e a t t l e , Wash. Hoover, M.D. 1971. Snow i n t e r c e p t i o n and r e d i s t r i b u t i o n i n the f o r e s t . P r o c . I n t . Semin. H y d r o l . P r o f . (W. L a f a y e t t e , I n d i a n a , J u l y , 1971) 3:114-122. Hurd, R.M. 1971. Annual t r e e - l i t t e r p r o d u c t i o n by s u c c e s s i o n a l f o r e s t s t a n d s , Juneau A l a s k a . Ecology 52(5):881-884. Johnson, F.L. and P.G. R i s s e r . 1974. Biomass, annual net p r i m a r y p r o d u c t i o n , and dynamics of s i x m a t e r i a l elements i n a post o a k - b l a c k j a c k oak f o r e s t . Ecology 55( 6) : 1246-1258 . - 156 -Jo r d a n , F., J.R. K l i n e and D.S. S a s s c e r . 1972. R e l a t i v e s t a b i l i t y of m i n e r a l c y c l e s i n f o r e s t ecosystems. Am e r . N a t u r . 106:237-253. Kimmins, J.P. 1973. Some s t a t i s t i c a l a s p e c t s of sampl i n g t h r o u g h f a l l p r e c i p i t a t i o n i n n u t r i e n t c y c l i n g s t u d i e s i n B r i t i s h Columbia c o a s t a l f o r e s t s . Ecology 54(5):1008-1019. Kimmins, J.P. 1975. Comparative b i o c h e m i s t r y of l i t t e r f a l l and f o l i a r l e a c h i n g a l o n g t o p o g r a p h i c sequence of f o r e s t ecosystem t y p e s . Paper p r e s e n t e d to X I I I n t e r n a t i o n a l B o t a n i c a l Congress, L e n i n g r a d . J u l y , 1975. K i r a , T. and T. S h i d e i . 1967. Primary p r o d u c t i o n and t u r n o v e r of o r g a n i c m a t t e r i n d i f f e r e n t f o r e s t ecosystems of the we s t e r n P a c i f i c . Jap. J . of Ecology 17(2):70-87. K l i n k a , K. 1976. Ecosystem u n i t s , t h e i r c l a s s i f i c a t i o n , i n t e r p r e t a t i o n , and mapping i n the U n i v e r s i t y of B.C. Rese a r c h F o r e s t . Ph.D. T h e s i s , U n i v e r s i t y of B r i t i s h C o lumbia, Vancouver, Canada. K r a j i n a , V .J. 1933 . Die Pf1 a n z e n g e s e 1 1 s c h a f t e n des Ml y n i c a - T a 1 e s i n den Vysoke T a t r y (Hohe T a t r a ) . M i t Besonderer B e r u c k s i c h t i g u n g der o k o l o g i s c h e n Verha 1 t n i s s e . Bot C e n t r a l b l . , B e i h . Abt. 2, 50:744-957, 51:1-244. K r a j i n a , V .J. 1959. B i o c l i m a t i c zones i n B r i t i s h Columbia. U.B.C. B o t a n i c a l S e r i e s No. 1:1-47. K r a j i n a , V . J . 1965. B i o g e o c 1 i m a t i c zones and c l a s s i f i c a t i o n s of B r i t i s h Columbia. E c o l . of Western N. Amer. 1:1-17. K r a j i n a , V .J. 1969. Ecology of f o r e s t t r e e s i n B r i t i s h C olumbia. E c o l . of Western N. Amer. 2(1):1-146. - 157 -K r u m l i k , G.J. 1974. Biomass and n u t r i e n t d i s t r i b u t i o n i n two o l d growth f o r e s t ecosystems i n south c o a s t a l B r i t i s h C olumbia. M.Sc. T h e s i s , Univ. of B r i t i s h Columbia, Vancouver. 87 p. L i e b i g , J . 1840. Die o r g a n i s c h e Chemie i n i h r e r Anvendung vor A g r i c u l t u r und P h y s i o l o g i e . Braunschweig. Madgwick, H.A.I. and J.D. O v i n g t o n . 1959. The c h e m i c a l c o m p o s i t i o n of p r e c i p i t a t i o n i n a d j a c e n t f o r e s t and open p l o t s . F o r e s t r y 3 2 ( l ) : 1 4 - 2 2 . Madgwick, H.A.I. and T. Satoo. 1975. On e s t i m a t i n g the aboveground weig h t s of t r e e s t a n d s . Ecology 56( 6):1446-1450 . Malkonen, E. 1977. Annual p r i m a r y p r o d u c t i o n and n u t r i e n t c y c l e i n a b i r c h s t a n d . Communicationes I n s t i t u t i F o r e s t a l l s F e n n i a e . Malkonen, E. 1974. Annual p r i m a r y p r o d u c t i o n and n u t r i e n t c y c l e i n some Scots pine s t a n d s . Ph.D. T h e s i s , Univ. of H e l s i n k i , F i n l a n d . Mathews, W.H. 1957. P e t r o l o g y of q u a t e r n a r y v o l c a n i c s of the Mount G a r i b a l d i map a r e a , southwestern B r i t i s h Columbia. Am. J . S c i . 255:400-415. Mathews, W.H. 1958. Geology of the Mount G a r i b a l d i map a r e a , s o u t h w e s t e r n B r i t i s h Columbia, Canada. P a r t 1: Igneous and metamorphic r o c k s . P a r t 2: Geomorphology and q u a t e r n a r y v o l c a n i c s . B u l l . G e o l . Soc. Amer. 69:161-178, 179-198. Medwecka-Kornas, A. 1970. L i t t e r p r o d u c t i o n . I n : Methods of Study i n S o i l E c o l o g y . P r o c . UNESCO/IBP Sympos. P a r i s 1967. pp 139-143. J . P h i l l i p s o n , e d i t o r . - 1.5 8 -M o r r i s o n , I.K. 1974. M i n e r a l n u t r i t i o n of c o n i f e r s w i t h s p e c i a l r e f e r e n c e to n u t r i e n t s t a t u s i n t e r p r e t a t i o n : a r e v i e w of l i t e r a t u r e . Dep. E n v i r o n , Can. Fo r . Ser. Pub. No. 1343. M o u n t f o r d , M.D. and R.G.H. Bunce. 1973. R e g r e s s i o n s a m p l i n g w i t h a l l o m e t r i c a l l y r e l a t e d v a r i a b l e s , w i t h p a r t i c u l a r r e f e r e n c e to p r o d u c t i o n s t u d i e s . F o r e s t r y 46:203-212. M u e l l e r - D o m b o i s , D. and H. E l l e n b e r g . 1974. Aims and methods of v e g e t a t i o n e c o l o g y . John Wiley and Sons. N a t i o n a l Standard of Canada. Canadian M e t r i c P r a c t i c e Guide. P r e p a r e d by Canadian Standards A s s o c i a t i o n , 1976. CAN3-Z234.1-76. Newbould, P.J. 1967. Methods f o r e s t i m a t i n g the p r i m a r y p r o d u c t i o n of f o r e s t s . IBP Handbook No. 2. B l a c k w e l l S c i e n t i f i c P u b l i c a t i o n s . N i h l g a r d , B. 1970. P r e c i p i t a t i o n , i t s c h e m i c a l c o m p o s i t i o n and e f f e c t on s o i l water i n a beech and spruce f o r e s t i n south Sweden. Oikos 21:208-217. N u s z d o r f e r , F.C. 1979. ( T h e s i s i n p r e p a r a t i o n ) . M.Sc. T h e s i s , U n i v . of B r i t i s h Columbia, Vancouver, Canada. Odum, E.P. 1969. The s t r a t e g y of ecosystem development. S c i e n c e 164:262-270. Ogawa, H. , K. Yoda, K. Ogino and T. K i r a . 1965 . Comparative e o c l o g i c a l s t u d i e s on t h r e e main types of f o r e s t v e g e t a t i o n i n T h a i l a n d . 2: P l a n t biomass. Nature and L i f e i n S.E. A s i s 4:49-80. O t t o , G.F. and T. A h t i . 1967. L i c h e n s of B r i t i s h Columbia, p r e l i m i n a r y c h e c k l i s t . Dep. of Botany, Univ. of B r i t i s h C olumbia, Vancouver, Canada (mimeo). - 1 5 9-O v i n g t o n , J.D. 1954. A comparison of r a i n f a l l i n d i f f e r e n t woodlands. F o r e s t r y 27:41-53. O v i n g t o n , J.D. and H.A.I. Madgwick. 1959. D i s t r i b u t i o n of o r g a n i c matter and p l a n t n u t r i e n t s i n a p l a n t a t i o n of Scots p i n e . F o r e s t S c i . 5: 344-355. Owen, T.H. 1954. O b s e r v a t i o n on the monthly l i t t e r f a l l and n u t r i e n t c o ntent of S i t k a spruce l i t t e r . F o r e s t r y 27:7-15. P a t t e r s o n , D.T. 1975. N u t r i e n t r e t u r n i n the stemflow and t h r o u g h f a l l of i n d i v i d u a l t r e e s i n the Piedmont deciduous f o r e s t . I n : M i n e r a l C y c l i n g i n S o u t h e a s t e r n Ecosystems. U.S. Energy Research and Development A d m i n i s t r a t i o n . P e t e r s o n , E.B. 1964. P l a n t a s s o c i a t i o n s i n the S u b a l p i n e Mountain Hemlock Zone i n s o u t h e r n B r i t i s h Columbia. Ph.D. T h e s i s , Dep. of Botany, Univ. of B r i t i s h Columbia, Vancouver, Canada. P h i r i , M.A.R. 1973. The n u t r i e n t s t a t u s of two h i g h e l e v a t i o n f o r e s t s o i l s and i m p l i c a t i o n s f o r some f o r e s t management p r a c t i c e s . B. Sc. F. T h e s i s , F a c u l t y of F o r e s t r y , U n i v . of B r i t i s h Columbia, Vancouver, Canada. Pomeroy, L.R. 1970. The s t r a t e g y of m i n e r a l c y c l i n g . Ann. Rev. E c o l . S y s t . 1:171-190. R o d d i c k , J.A. 1965. Vancouver N o r t h , C o q u i t l a m and P i t t Lake map a r e a s , B r i t i s h Columbia w i t h s p e c i a l emphasis on the e v o l u t i o n of the p l u t o n i c r o c k s . Canada, Dep. of Mines and Tech. Surveys, G e o l . Survey of Canada. Memoir 335. 276 p. R o d i n , L.E. and N.I. B a z i l e v i c h . 1967. P r o d u c t i o n and m i n e r a l c y c l i n g i n t e r r e s t r i a l v e g e t a t i o n . T r a n s l a t i o n from R u s s i a n , O l i v e r and Boyd. - 1 6 0 -R u t t e r , A . J . , A . J . Morton and P.C. Robins . 1975. A p r e d i c t i v e model of r a i n f a l l i n t e r c e p t i o n i n f o r e s t s . J . Appl E c o l . 12:367-380 Satoo, T. 1970. A s y n t h e s i s of s t u d i e s by the h a r v e s t method: P r i m a r y p r o d u c t i o n r e l a t i o n s i n the temperate deciduous f o r e s t s i n Japan. I n : A n a l y s e s of Temperate F o r e s t Ecosystems, D.E. R e i c h l e , Ed. E c o l o g i c a l S t u d i e s 1:55-72. New York. S p r i n g e r - V e r l a g . S c h l e s i n g e r , W.H. and W.A. R e i n e r s . 1974. D e p o s i t i o n of water and c a t i o n s on a r t i f i c i a l f o l i a r c o l l e c t o r s i n f i r krumholz of New England mountains. Ecology 55:378-386. S c h o f i e l d , W.B. 1969a. A c h e c k l i s t of H e p a t i c a e and A n t h o c e r o t a e of B r i t i s h Columbia. S y e s i s 1(1968 ) :157-162 . S c h o f i e l d , W.B. 1969b. A s e l e c t i v e l y a n n o t a t e d c h e c k l i s t of B r i t i s h Columbia mosses. S y e s i s 1(1968 ) :163-175 . S e l e c t e d m e t r i c ( S I ) u n i t s and c o n v e r s i o n f a c t o r s f o r Canadian f o r e s t r y . Environment Canada, F o r e s t r y S e r v i c e , 1974. Sukachev, V.N. 1944. P r i n c i p l e s of g e n e t i c c l a s s i f i c a t i o n i n b i o g e o c o e n o l o g y . Z h u r n a l obshch. b i o . 5( 4) :213-227 . Mo s k v a . S w i t z e r , G.L. and L.E. N e l s o n . 1972. N u t r i e n t a c c u m u l a t i o n and c y c l i n g i n l o b l o l l y p i n e ( P i n u s t a eda L) p l a n t a t i o n ecosystems: The f i r s t twenty y e a r s . Proc. S o i l Soc. of Amer. 36(1 ):143-147 . T a b a t a b a i , M.A. and J.M. L a f t e n . 1976. N u t r i e n t c o n t e n t of p r e c i p i t a t i o n over Iowa. P r o c e e d i n g s of the F i r s t I n t e r n a t i o n a l Symposium on A c i d P r e c i p i t a t i o n and the F o r e s t Ecosystem. U.S.D.A. F o r e s t S e r v i c e G e n e r a l T e c h n i c a l Report NE-23 . T a d a k i , Y., K. H a t i y a , K. T o c h i a k i , H. M i y a u c h i and V. Matsuda. 1970. P r i m a r y p r o d u c t i v i t y of Ab i e s v e i t c h i i f o r e s t s i n the s u b a l p i n e zone of Mt . F u j i . B u l l . Gov. F o r . Exp. S t n . Tokyo 229:1-22. Tamm, C.O. 1951. Removal of p l a n t n u t r i e n t s from t r e e crowns by r a i n . P h y s i o l . P l a n t . 4:184-188. T a r r a n t , R.F., L.A. Is a a c and R.F. Ch a n d l e r , J r . 1951. O b s e r v a t i o n s on l i t t e r f a l l and f o l i a g e n u t r i e n t c o n t e n t of some P a c i f i c Northwest t r e e s p e c i e s . J . F o r . 49(12):914-915. Tukey, H. B. J r . 1970 . The l e a c h i n g of substances from p l a n t s . Annual Review of P l a n t P h y s i o l o g y 21:305-323. T u r n e r , J . 1975. N u t r i e n t c y c l i n g i n a D o u g l a s - f i r ecosystem w i t h r e s p e c t to age and n u t r i e n t s t a t u s . Ph.D. T h e s i s , U n i v . of Washington. T u r n e r , J . and M.J. S i n g e r . 1975. N u t r i e n t d i s t r i b u t i o n and c y c l i n g i n a s u b a l p i n e c o n i f e r o u s f o r e s t ecosystem. J . A p p l . E c o l . 13:295-301. Twine, J.R. and C.H. W i l l i a m s . 1971. The d e t e r m i n a t i o n of phosphorus i n K j e l d a h l d i g e s t of p l a n t m a t e r i a l by au t o m a t i c a n a l y s i s . Comm. i n S o i l S c i e n c e and P l a n t A n a l y s i s 2(6) :485-489 . V i r o , P . J . 1955. I n v e s t i g a t i o n s on f o r e s t l i t t e r . Commun. I n s t . F o r e s t Fenniae 4 5 ( 6 ) : l - 6 5 . W a l p o l e , R.E. 1968. I n t r o d u c t i o n to S t a t i s t i c s . The M a c m i l l a n Comp any Weber, R. 1876. B e i t r a g e zur agronomischen S t a t i k des Waldbaues. 1-4. F o r s t . B l . , V 5. Weber, E. 1881. V e r g l e i c h e n d e Untersuchungen liber d i e Auspuche der Weistanne und F i c h t e an d i e M i n e r a l e s c h e n N a h r s t o f f e der Bodens. A l l g . F o r s t . - u. J o g d z t g . 5 7 ( 1 ) . Webster, J.R., J.B. Waide and C B . Pat e n . 1975. N u t r i e n t r e c y c l i n g and the s t a b i l i t y of ecosystems. I n : M i n e r a l C y c l i n g i n S o u t h e a s t e r n Ecosystems, Ed: F.G. H o w e l l , J.B. G e n t r y , M.H. Smith. U.S. Energy Research and Development A d m i n i s t r a t i o n , O f f i c e of P u b l i c A f f a i r s , T e c h n i c a l I n f o r m a t i o n C e n t r e . W h i t t a k e r , R.H. and G.M. Woodwell. 1968. Dimension and p r o d u c t i o n r e l a t i o n s of t r e e s and shrubs i n the Brookhaven F o r e s t , New York. J . Ecology 5 6 ( l ) : l - 2 5 . W h i t t a k e r , R.H. and G.M. Woodwell. 1971. Measurement of net pri m a r y p r o d u c t i o n of f o r e s t . I n : P r o d u c t i v i t y of F o r e s t Ecosystems: P r o c . B r u s s e l s Symp. 1969, P. Duvigneaud, ed. Eco l o g y and C o n s e r v a t i o n 5:159-175. P a r i s : UNESCO. W h i t t a k e r , R.H. and P.L. Marks. 1975. Methods of a s s e s s i n g t e r r e s t r i a l p r o d u c t i v i t y . I n : Pri m a r y P r o d u c t i v i t y of the B i o s p h e r e , e d i t e d by H. L i e t h and R.H. W h i t t a k e r . S p r i n g e r - V e r l a g , New York, I n c . W i l l i a m s , C H . and J.R. Twine. 1967. D e t e r m i n a t i o n of n i t r o g e n , s u l p h u r , phosphorus, p o t a s s i u m , sodium, c a l c i u m , and magnesium i n p l a n t m a t e r i a l by a u t o m a t i c a n a l y s i s . A u s t r a l i a Commonwealth S c i e n t i f i c and I n d u s t r i a l Research O r g a n i z a t i o n . D i v i s i o n of P l a n t I n d u s t r y T e c h n i c a l Paper No. 24. - 163 -Y a r i e , J . 1978. The r o l e of u n d e r s t o r y v e g e t a t i o n i n the n u t r i e n t c y c l e of f o r e s t e d ecosystems i n the Mountain Hemlock B i o g e o c 1 i m a t i c Zone. Ph.D. T h e s i s , Univ. of B r i t i s h C o lumbia, Vancouver, Canada. Yoda, K. 1968. A p r e l i m i n a r y survey of the f o r e s t v e g e t a t i o n of e a s t e r n N e p a l . 3: P l a n t biomass i n the sample p l o t s chosen from d i f f e r e n t v e g e t a t i o n zones. J . of the C o l l e g e of A r t s and S c i e n c e s , Chibo U n i v e r s i t y , 5( 2) : 277-302 . Zeman, L . J . 1973. Chemistry of t r o p o s p h e r i c f a l l o u t and s t r e a m f l o w i n a s m a l l mountainous watershed near Vancouver, B r i t i s h Columbia. Ph.D. T h e s i s , F a c u l t y of F o r e s t r y , U n i v . of B r i t i s h Columbia, Vancouver, Canada. - 164 -APPENDIX 1 P l a n t S p e c i e s L i s t Nomenclature of the v a s c u l a r p l a n t s f o l l o w s H i t c h c o c k ^_t a l . (1 9 6 9 ) , S c h o f i e l d (1969 a and b) f o r mosses and Otto and A h t i (1967) f o r l i c h e n s . - 165 -TREES Abies amabilis (Dougl.) Forbes P a c i f i c s i l v e r f i r Chamaecyparis nootkatensis (D. Don) Spach yellow cedar Thuja plicata D. Don red cedar Tsuga heterophylla (Raf.) Sarg. western hemlock Tsuga mertensiana (Bong.) Carr. mountain hemlock SHRUBS Oplopanax horridum (J.E. Smith) Miq. devils club Rhododendron albiflorum Hook. white rhododendron Ribes bracteosum Dougl. s t i n k currant Sambucus pubens Michx. red-berry Elder Sorbus sitchensis Roemer s i t k a mountain-ash Vaceinium alaskaense Howeil Alaska blueberry V. deliciosum Piper Cascade b i l b e r r y V. membranaceum Dougl. ex Hook mountain bi l b e r r y V. ovalifolium Smith oval-leaved blueberry V. parvifolium Smith red huckleberry HERBS, SMALL SHRUBS, AND FERNS Athyrium filix-femina (L.) Roth. lady-fern Blechnum spicant (L.) With. deer-fern Caltha leptosepala DC. white marsh marigold Cassiope mertensiana (Bong.) G. Don. white heather Clintonia unifldra (S chult.) Kunth. queen's cup Cinna latifolia (Trevir.) Griseb. - 16 6 -Dryopteris austriaca (Jacq.) Woynar ex Schinz & T h e l l . spiny wood-fern Gymnocarpium. dryopteris (L.) Newm. oak fern Listera eordata (L.) R. Br. Luzula parviflora (Ehrh.) Desv. Osmorhiza chilensis H. & A. Phyllodoce empetriformis (Sm.) D. Don red heather Pyrola secunda L. wintergreen Rubus pedatus J.E. Smith t r a i l i n g rubus R. spectdbilis Pursh salmonberry Streptopus amplexifolius (L.) DC. twisted s t a l k S. roseus Michx. S. streptopoides (Ledeb.) F. & R. Tiarella unifoliata Hook. ' foam flower Valeriana sitchensis Bong. mountain valerian Veratrum viride A i t . Indian hellebore Viola glabella Nutt. yellow v i o l e t BRYOPHYTES BaBzania denudata (Torr) Trev. Brachytheeivon spp. Dicranum fuscescens Turn. D. scoparium Hedw. Hypnum spp. Lepidozia reptans (L.) Dumortv. Lophozia spp. Mnium spp. Plagiotheoium denticulatum (Hedw.) B.S.G. P. undulatum (Hedw.) B.S.G. - 167 -Pleurozium sahreberi (Brid.) M i t t . Pohlia nutans (Hedw.) Lindb. Ptilidium califomiaum (Aust) Underv. & Cook Rhizomnium magnifolium (Horik.) Kop. R. nudum ( B r i t t . & Williams) Koponen Rhytidiadelphus loreus (Hedw.) Warnst. R. squarrosus (Hedw.) Warnst. Rhytidiopsis robusta (Hook.) Broth. LICHENS Alectoria spp. Cladonia bellidiflora (Ach.) Schaer. Hypogymnia spp. Usnea spp. - 168 -APPENDIX 2 Rock Specimens From Sample P l o t s - 169 -Examination of rocks from Paul Ridge near Squamish MM-1: Weathered f o l i a t e d quartz d i o r i t e ; one specimen of f i n e r grained dark d i o r i t e . MM-2: Weathered foliaged quartz d i o r i t e . MM-3: Weathered quartz d i o r i t e and hornblende d i o r i t e . PH-1: 7 specimens of hard green micaceous f o l i a t e d quartz d i o r i t e 1 hard feldspar porphyry possibly of Garibaldi volcanic rock o r i g i n 1 green schist; 5 Garibaldi volcanics (Dacite). PH-2: 4 hard f o l i a t e d quartz d i o r i t e ; one greenschist, remainder G a r i b a l d i volcanic rocks (Dacite). PH-3: 1 quartz d i o r i t e , 3 dense porphyritic rocks which may be G a r i b a l d i volcanic rocks. PM-1: 4 hard quartz d i o r i t e f o l i a t e d and micaceous; one greenschist; remainder pink and blue grey Garibaldi dacite, some with weathered rinds indicating they are from older flows. PM-2: 1 green schi s t ; one quartz d i o r i t e , remainder Garibaldi volcanic rocks (Dacite). i PM-3: Mostly Garibaldi volcanic rocks pink and grey dacites; 2 feldspar porphyrys one greenish and one black. PX-1: 13 hard quartz d i o r i t e ; 1 porphyry, remainder pink and blue grey dacite. PX-2: 2 hard quartz d i o r i t e , 2 green porphyry, remainder Garibaldi volcanic rocks (Dacite). PX-3: 2 Hornblende quartz d i o r i t e , remainder Garibaldi volcanic rocks (Dacite). - 170 -DISCUSSION: The rock appear to belong to at least four groups: Most are Garibaldi volcanic flow rocks which are mostly dacite. They are pink and blue grey i n colour and usually quite angular and r e l a t i v e l y easy to break. Next i n abundance are rounded coarse grained hornblende-quartz d i o r i t e s . These are f o l i a t e d and partly micaceous. They are hard and often d i f f i c u l t to break. Some are fine grained and much darker i n colour than the coarse grained v a r i e t i e s . They are probably older Mesozoic i n age. Next are a few dense and heavy porphyritic rocks which may be parts of dense Garibaldi flows. They are fresh but very hard. Last l y are a few dark green schistose rocks which may represent metamorphosed older volcanic rocks into which the older dio r i t e s were intruded. W.R. Danner Dept. of Geological Sciences - 171 -APPENDIX 3 Diameter, Height Volume of Trees on and Timber Sample P l o t s - 1 7 2 -A p p e n d i x 3 . D i a m e t e r , h e i g h t * n d t i m b e r volume o f t r e e s on 12 *ampIt p l i r i o t SP D (cm) 11 i VOL ( - ' ) PX1 H 65 50 37 .8 13 .7 -( 1 . 5 ) 74 .7 15.5 3, -( 0 . 6 ) 2 4 . 5 0 . 8 5 1 0 . 0 2 6 ( 0 . 0 7 8 ) - 3 . 3 2 5 PF 75 45 16.9 5.6 -( 1 . 0 ) 4 5 . 2 7 . 7 2 . 0 -( 0 . 5 ) 20.5 0 . 1 3 8 0 . 0 0 3 ( 0 . 0 2 2 ) - 0 . 8 5 7 YC 9 5 29.2 7.6 -( 3 . 4 ) 41.9 13.5 4 . 0 -( 1 . 4 ) 17 .5 0 . 465 0 . 0 1 0 ( 0 . 0 9 6 ) - 0 . 9 2 8 P l o t 169 28.1 5 . 6 -25 .7 ( 1 . 2 ) 7 4 . 7 30 .4 11.9 2 . 0 11 .0 - ( 0 . 5 ) 2 4 . 5 12 .9 0 . 3 1 4 0 . 0 0 3 0 . 4 1 8 ( 0 . 0 4 9 ) - 3 .325 0 . 6 1 0 FX2 U 74 64 30 .7 8.9 -( 1 . 5 ) 70.9 14 .1 3 . 0 - ( 0 . 6 ) 23.0 0 . 5 6 2 0 . 0 0 8 ( 0 . 0 6 3 ) - 2 .854 PF 38 33 22 .6 7 .6 -( 1 . 6 ) 4 5 . 5 11 .1 2 . 0 -( 0 . 9 ) 2 3 . 5 0 . 3 1 5 0 . 0 0 4 ( 0 . 0 5 6 ) - 1 .595 YC 4 3 27 .0 14.2 -( 4 . 3 ) 3 2 . 5 1 5 . 4 7 . 0 -( 3 . 0 ) 2 1 . 0 0 . 4 5 8 0 . 0 5 4 ( 0 . 1 4 4 ) - 0 . 7 3 5 P l o t 116 27 .9 7.6 -25 .7 ( 1 . 1 ) 70 .9 30 .2 13 .2 2 . 0 12.1 -( 0 . 3 ) 2 3 . 5 14 .2 0 . 4 7 8 0.004 0 . 3 8 7 ( 0 . 0 4 6 ) - 2 . 8 5 4 -0 . 5 6 8 PX3 H 19 36 60 .5 19 .8 -( 5 . 3 ) 9 9 . 1 2 0 . 5 7 .S - ( 1 . 4 ) 3 1 . 0 2 . 5 2 B 0 . 1 1 4 (0.464) - 7 .214 -PF 33 64 33.7 7.9 -( 3 . 6 ) 8 2 . 0 1 5 . 0 3 . 0 - ( 1 . 4 ) 2 7 . 0 1 .047 0 . 0 0 9 ( 0 . 2 1 4 ) - 4 . 4 6 2 P l o t 52 43 .5 7.9 -36 .6 ( 3 . 5 ) 9 9 . 1 5 0 . 5 1 7 . 0 3 . 0 1 4 . 8 -( 1 . 1 ) 3 1 . 0 19 .2 1 .588 0 . 0 0 9 1 .113 ( 0 . 2 3 7 ) - 7.614 2 . 0 6 3 PX P l o t s 337 30 .4 5 . 6 -28.6 ( 0 . 9 ) 9 9 . 1 3 2 . 3 1 3 . 1 2 . 0 1 2 . 4 -( 0 . 4 ) 3 1 . 0 13 .9 0 . 6 6 7 0 . 0 0 3 C . 5 6 6 ( 0 . 0 5 1 ) - 7 .814 0 . 7 6 8 HI U 44 69 45 .2 17 .8 -( 2 . 4 ) 70.9 2 4 . 1 6 . 0 -( 1 . 2 ) 3 4 . 0 1 .845 0 . 0 6 3 ( 0 . 1 9 8 ) - 4 . 6 1 2 PF 20 31 4 4 . 3 15.0 -( 3 . 5 ) 7 6 . 5 2 4 . 5 6 .5 -( 1 . 6 ) 3 5 . 0 1 .983 0 . 0 5 3 ( 0 . 3 2 9 ) - 5 . 470 P l o t 64 44.9 15.0 -41 .0 (1.9) 7 6 . 5 4 8 . 8 2 4 . 3 6 . 0 2 2 . 3 - ( 1 . 0 ) 3 5 . 0 2 6 . 2 1 .888 0 . 0 5 3 1.550 ( 0 . 1 6 9 ) - 5 . 470 2 . 2 2 7 PM2 B 29 60 45 .0 18.3 -( 2 . 7 ) 75.9 24.9 10.5 -( 1 . 3 ) 3 2 . 5 1 .811 0 . 1 3 3 (0 .231 ) - 5 .041 PF 19 40 47 .4 18 .0 -( 3 . 4 ) 6 9 . 6 26.6 1 0 . 0 -( 1 . 6 ) 3 4 . 5 2 . 3 7 5 0 . 1 1 9 ( 0 . 3 5 0 ) - 4 . 9 5 7 P l o t 48 45.9 18.0 -41 .7 (2.1) 75.9 5 0 . 2 25.6 1 0 . 0 2 3 . 5 -( 1 . 0 ) 3 4 . 5 2 7 . 6 2 . 0 3 4 0 . 1 1 9 1.634 ( 0 . 1 9 9 ) - 5 .041 4 . 8 1 2 PK3 U 4 12 67 .4 17.0 -(16.9) 8 8 . 4 2 9 . 5 6 . 0 -( 8 . 1 ) 4 3 . 0 5 . 4 7 2 0 . 0 5 4 ( 1 . 9 4 8 ) - 5 . 2 0 1 PF 29 88 5 4 . 3 15.2 -( 3 . 6 ) 8 0 . 8 29.6 7 .5 -( 2 . 0 ) 4 2 . 5 3, 654 0 . 0 6 4 ( 0 . 4 5 3 ) - 7 .878 P l o t 33 55.9 15.2 -4 B . 3 ( 3 . 7 ) 88 .4 6 3 . 5 2 9 . 6 6 . 0 2 5 . 6 - ( 2 . 0 ) 4 3 . 0 3 3 . 6 3 . 3 7 5 0 . 0 5 4 2 .937 ( 0 . 4 6 0 ) - 9 .201 4 . S 1 2 PM P l o t s 145 4 7 . 8 15 .0 -44.9 ( 1 . 4 ) 88 .4 5 0 . 6 2 5 . 9 6 . 0 2 4 . 5 -( 0 . 7 ) 4 3 . 0 2 7 . 3 2 .389 0 . 0 5 3 • 2 .076 ( 0 . 1 5 8 ) - 9 .201 2 .702 mean (SE) n w i n - max I 951 c o n f . lisdt P l o t SP D (cn) K (ra) VOL ( » ' ) PHI H 13 29 4 3 . 1 13 .2 ( 6 . 7 ) - 9 0 . 9 22 .2 5 .5 -( 3 . 1 ) 4 0 . 0 2 .158 0 . 0 3 1 . (0 .792) - 8 .675 ' PF 32 71 4 7 . 0 14 .5 ( 3 . 7 ) - 9 6 . 0 28 .1 5 . 5 -( 2 . 3 ) 5 2 . 0 3 .036 0 . 0 4 2 ( 0 . 5 1 9 ) - 1 0 . 9 3 0 P l o t 45 4 5 . 9 13 .2 3 9 . 3 ( 3 . 3 ) - 9 6 . 0 5 2 . 4 26 .4 5 . 5 2 2 . 6 -( 1 . 9 ) 3 2 . 0 30 .2 2 .782 0 .031 1.909 (0 .433 ) - 1 0 . 9 8 0 3 . 6 5 6 . PH2 11 6 24 78 .2 39 .4 ( 1 1 . 4 ) - 1 1 0 . 0 3 5 . 7 17.5 -( 5 . 7 ) 4 9 . 0 . 7 .393 o'.794 (2 .281 ) - 1 5 , 7 2 7 PF 19 76 6 2 . 3 2 3 . 9 ( 5 . 4 ) - 1 0 1 . 6 3 6 . 3 9 . 0 -( 3 . 4 ) 5 3 . 5 6 .130 0 .232 (1 .116 ) - 1 6 . 5 8 8 P l o t 25 6 6 . 1 2 3 . 9 5 5 . 8 ( 5 . 0 ) - 1 1 0 . 0 76 .4 36 .2 9 . 0 3 0 . 3 -( 2 . 8 ) 5 3 . 5 4 2 . 0 6 .433 0 .232 4 .387 (0 .991) - 1 6 . 5 8 8 8.479 PH3 H . 10 29 6 8 . 4 2 9 . 7 ( 7 . 7 ) - 1 1 4 . 3 2 9 . 8 17 .0 -( 2 . 7 ) 4 2 . 0 4 . 2 7 5 0 . 4 6 6 (0 .842 ) - 8 .962 PF 24 71 6 0 . 3 15 .5 ( 4 . 1 ) - 9 4 . 5 3 4 . 8 6 .0 -( 2 . 2 ) 48 . 0 5 . 020 0 .052 (0 .741 ) - 1 2 . 9 3 0 ? l o t 34 6 2 . 7 15 .5 5 5 . 1 ( 3 . 7 ) - 1 1 4 . 3 7 0 . 2 3 3 . 3 6 . C 29 .7 -(1.8) 48 .0 3 7 . 0 4 .801 0 .052 3 .630 (0 .575) - 1 2 . 9 3 0 5 .971 PH P l o t s 104 5 6 . 2 13 .2 5 1 . 5 ( 2 . 4 ) - 1 1 4 . 3 . 6 0 . 9 31 .0 5 . 5 2 8 . 5 -( 1 . 3 ) 5 3 . 5 3 3 . 5 4 .320 0 .031 3 . 5 6 3 (0 .381 ) - 1 6 . 5 8 8 5 .076 KM1 H 8 28 85 .9 4 1 . 9 ( 1 3 . 2 ) - 1 4 1 . 0 32 .4 26 .0 -( 1 - 9 ) 4 0 . 0 7 .795 1.384 ( 2 . 2 7 7 ) - 1 9 . 5 0 7 PF 2 ! 72 5 9 . 8 2 4 . 5 ( 4 . 6 ) - 9 9 . 6 3 0 . 3 13 .5 -( 2 . 0 ) 4 4 . 0 4 . 3 1 7 0 . 2 9 0 ( 0 . 7 3 9 ) - 1 2 . 5 7 2 P l o t 29 6 7 . 0 2 4 . 6 5 6 . 2 ( 5 . 3 ) - 1 4 1 . 0 7 7 . 3 30 .9 13 .5 2 7 . 8 -( 1 . 5 ) 4 4 . 0 3 3 . 9 5 .276 0 .290 3 .530 ( 0 . 8 5 2 ) - 1 9 . 5 0 7 7.022 KM2 H _!3 46 PF 15 54 5 4 . 8 2 5 . 4 ( 5 . 6 ) - 75 .4 2 7 . 1 11 .0 -( 3 . 3 ) 4 2 . 0 3 .175 0 . 2 3 8 (0 .687) - 6 .755 6 8 . 5 3 3 . 3 ( 5 . 6 ) - 1 0 9 . 5 33 .6 15 .5 -( 2 . 3 ) 4 4 . 5 5 .814 0 . 5 7 8 ( 0 . 9 5 4 ) - 1 2 . 0 5 0 P l o t 28 6 2 . 2 25.4 5 3 . 8 ( 4 . 1 ) - 1 0 9 . 5 7 0 . 6 30 .6 11 .0 2 6 . 4 -( 2 . 0 ) 4 4 . 5 3 4 . 8 4 .589 0 . 2 3 8 3 .268 (0 .644 ) - 1 2 . 0 5 0 5 .909 MH3 H 4 16 8 8 . 5 3 8 . 6 ( 1 8 . 9 ) - 1 1 9 . 9 28 .7 19 .5 -( 3 . 7 ) 3 5 . 0 6 .894 0 .866 (2 .311 ) - 1 1 . 6 4 2 PF 21 84 6 0 . 7 3 5 . 6 ( 4 . 1 ) - 1 0 5 . 9 30 .5 15 .0 -( 2 . 0 ) 4 5 . 0 4 .281 0 .627 ( 0 . 7 0 4 ) - 1 2 . 2 4 7 P l o t 25 6 5 . 2 35 .6 5 5 . 3 ( 4 . 8 ) - 1 1 9 . 9 7 5 . 1 30 .2 15 .0 2 6 . 7 -( 1 . 7 ) 4 5 . 0 3 3 . 8 4 . 6 9 9 0 .627 3 .251 (0 .701 ) - 1 2 . 7 4 7 6 .146 B l P l o t s 82 6 4 . 8 2 4 . 6 5 9 . 4 ( 2 . 7 ) - 1 4 1 . 0 70 .2 3 0 . 6 11 .0 2 8 . 6 -( 1 . 0 ) 4 5 . 0 3 2 . 6 4 . 8 6 5 0 .238 4 . 0 1 8 (0 .426 ) - 1 9 . 5 0 7 5 . 7 1 3 - 173 -APPENDIX 4 Nu t r 1 e n t C o n c e n t r a t i o n i n F o l i a g e - 174 -Appendix 4. N u t r i e n t c o n c e n t r a t i o n i n f o l i a g e As mentioned i n Chapter 4, S e c t i o n 1.6, f o l i a g e was sampled from the l o w e s t l i v i n g branch o n l y . F o l i a g e was sampled t h r e e t i m e s d u r i n g the summer of 1975 to determine the changes d u r i n g the growing p e r i o d . Samples of f o l i a g e o b t a i n e d i n September 1976 were s e p a r a t e d as f o l l o w s i n o r d e r to o b t a i n i n f o r m a t i o n on change of n u t r i e n t c o n c e n t r a t i o n w i t h age of f o l i a g e . F o l i a g e of mountain hemlock was s e p a r a t e d i n t o two c a t e g o r i e s , c u r r e n t f o l i a g e and one or more ye a r s o l d . F o l i a g e of P a c i f i c s i l v e r f i r was s e p a r a t e d i n t o t h r e e c a t e g o r i e s , c u r r e n t f o l i a g e , one year o l d ( l a s t y e a r ) , and two or more ye a r s o l d . The decrease of f o l i a r c o n c e n t r a t i o n of N, P, and K and the i n c r e a s e of c o n c e n t r a t i o n of Ca w i t h age of f o l i a g e i s i n agreement w i t h the l i t e r a t u r e ( M o r r i s o n 1974). The c o n c e n t r a t i o n d e c r e a s e i n d i c a t e d an i n t e r n a l r e d i s t r i b u t i o n of N and P from o l d e r to younger f o l i a g e . Due to the d i f f i c u l t i e s of o b t a i n i n g f o l i a g e samples ( l a r g e s i z e of s t a n d i n g t r e e s and the r e s t r i c t i o n on c u t t i n g t r e e s down i n the P r o v i n c i a l park where most of the study was conducted) the data o b t a i n e d are too l i m i t e d to draw more s p e c i f i c c o n c l u s i o n s . More d e t a i l e d s t u d i e s of t h i s type a r e being conducted by o t h e r r e s e a r c h e r s i n v o l v e d i n the s u b a l p i n e f o r e s t r e s e a r c h p r o j e c t . The data appended were used i n t h i s t h e s i s to ensure t h a t biomass c o n c e n t r a t i o n o b t a i n e d i n a p r e v i o u s study from the M p l o t s c o u l d l e g i t i m a t e l y be used to a p p l y to the P p l o t s . - 175. -Appendix 4: N u t r i e n t g r a d i e n t i n f o l i a g e P x - p l o t s y Age of f o l i a g e P l o t SP N P K Ca Mg Ash Year 1 Date D M Y PX1 M.h. 0.88 0.16 0.48 0.75 0.13 2. 74 C 31 07 75 0.91 0.17 0.42 1.06 0.21 3.62 C 01 09 75 0.95 0. 17 0.55 0.92 0.16 3.50 C 20 10 75 0.80 0.15 0.35 0.97 0.16 3.19 C 02 09 76 PX1 P.s.f. 1.37 0.23 _ _ _ _ * C 31 07 75 1.01 0.16 0.77 0.60 0.09 2.85 C 01 09 75 0.94 0.15 0.88 0.46 0.09 2.84 C 20 10 75 0.97 0.19 0.93 0.38 0.07 2.58 C 02 09 76 0.75 . 0.08 0.44 1.03 0.08 3.50 1 02 09 76 0,72 0.08 0.31 1.10 0.08 3.06 2+ 02 09 76 PX2 M.h. 0.79 0.17 0.77 0.28 0.06 2.19 C 31 07 75 0.80 0.18 0.55 0.59 0.10 2.95 . C 01 09 75 0.91 0.20 . , 0.56 0.51 0.13 2.85 . C 20 10 75 0.99 0.18 0.77 0.21 0.06 2.08 C 02 09 76 0.70 0.14 ' 0.44 0.61" 0.06 2.51 1 + 02 09 76 PX2 P.s.f. 1.45 0.26 0.94 0.53 0.12 3.07 C 31 07 75 0.91 0.18 0.66 0.43 0.13 2.41 C 01 09 75 0.93 0.18 0.85 0.53 0.13 2.85 C 20 10 75 1.06 0.20 0.68 0.43 0.09 2.30 C 02 09 76 0.98 0.13 0.42 0.96 0.14 3.19 1 02 09 76 0.80 0.10 0.36 1.0-7 .0.13 3.27 2+ 02 09 76 PX3 ' M.h. 1.17 0.20 0.61 0.32 0.08 2.18 C 31 07 75 0.84 0.12 0.41 0.62 0.09 2.62 C 01 09 75 0.95 0.15 0.53 0.51 0.09 2.19 C 20 10 75 1.09 0.20 0.66 0.21 0.06 1.77 C 02 09 76 0.78 0.10 0.35 0.58 0.07 2.08 1+ 02 09 76 PX3 P.s.f. 1.50 0.22 0.94 0.42 0.08 2.74 c 31 07 75 1.01 0.15 0.66 0.46 0.08 2.20 c 01 09 75 1.04 0.18 0.88 0.49 0.09 2.96 c 20 10 75 1.16 0.21 0.88 0.20 0.06 1.97 c 02 09 76 0.82 0.12 0.70 0.43 0.07 2.30 1 02 09 76 0.77 0.08 0.42 0.71 0.05 2.41 2+ 02 09 76 C = current f o l i a g e 1 = one year old 2+ = two years old and older i n s u f f i c i e n t q u a n t i t y o f sample to p e r f o r m a l l a n a l y s e s . - 176 -Appendix 4. ( c o n t ' d ) N u t r i e n t g r a d i e n t i n f o l i a g e PM-plots Age of P l o t SP N P % K Ca Mg Ash f o l i a g e Year 1 Date PM1 M.h. 1.13 0.20 0. 88 0.25 0.07 2.41 C 31 07 75 0.83 0.14 0.66 0.48 0.09 2.6 3. C 01 09 75 0. 82 0.15. 0. 74 0.49 0.09 2.73 C 24 10 75 0.95 0.19 0.77 0.20 0.05 1.98 C 02 09 7 6 0. 79 0.11 0.42 0.61 0.09 2. 52 1 + 02 09 76 P.s. f .* PM2 M.h. 1.35 0.22 0. 87 0.38 0.10 2 . 62 C 31 07 75 1.08 0.18 0.61 0.77 0.16 3.39 c 01 09 75 1 . 00 0.17 0.72 0.44 0.11 2.19 c 24 10 75 1.17 0.21 0.89 0.24 0.08 4.69 c 02 09 76 1. 01 0.17 0. 55 0.73 0.14 3.29 1+ 02 09 76 PM2 P.s. f . 1.73 0.28 1.31 0.35 0.09 3.18 c 31 07 75 1. 08 0.19 1. 05 0.40 0.09 2.73 c 01 09 75 1.02 0.21 1 .18 0.41 0.08 3.29 c 24 10 75 1 . 08 0.21 0.83 0.28 0. 07 1. 65 c 02 09 76 0.96 0.13 0.57 0.63 0.07 2.65 1 02 09 76 0. 89 0.11 0.35 0.79 0.07 3.18 2 + 0 2 09 76 PM3 P.s. f . 1.75 0.29 1.14 0.36 0.09 2.95 c 31 07 75 1. 09 0.21 0.92 0.39 0.08 2.73 c 01 09 75 1.10 0.23 0.88 0.41 0.08 2.51 c 24 10 75 1. 30 0.23 0.89 0.27 0.07 2.41 c 02 09 76 1.02 0.15 0.46 0.55 0.07 2. 40 1 02 09 76 0. 89 0.14 0.46 0.57 0. 06 2.63 2 + 02 09 76 M.h.* 1 C = c u r r e n t f o l i a g e 1 = one year o l d 2+ = two y e a r s o l d and o l d e r * no s u i t a b l e t r e e f o r s a m p l i n g was a v a i l a b l e on the p l o t . - 177 -Ap p e n d 1 x 4 . ( c o n t ' d ) N u t r i e n t g r a d i e n t i n f o l l a g e P H - p l o t s Age of % f o l i a g e P l o t SP N P K Ca Mg Ash Year * Da te PHI M.h. 1.22 0.17 0.83 0.2 5 0.07 2.30 C 31 07 . 75 1.08 0.11 0.50 0,63 0.07 2.51 01 09 75 1.24 0.19 0.79 0.16 0. 06 1. 97 c 02 • 09 76 0.90 0.10 0.44 0.41 0.09 i.96 1+ 02- 09 76 PHI P.s. f . 1.10 0.21 0. 90 0.41 0. C8 2. 52 c 01 09 75 1.02 0.20 1.03 0.36 0.08 2.85 c •2 0. 10 75 1 .25 0.25 1.10 0.24 0.07 2. 63 c 02 09 76 0.80 0.15 0.42 0.27 0.05 2.19 l 02 09 76 0. 81 0.12 0.44 0.7 9 0 . 07 2.63 2+ 02 . , 0 S 76 PH2 M.h. 1.41 0.13 0.53 0.55 0.10 2.52 c 31 07 75 1.25 0.12 0.46 0. 60 0.10 2. 62 c 01 09 75 1.28 0.12 0.54 0.75 0.10 2.73 c 20 10 75 1.54 0. 22 0. 8-8 0.34 0.09 2. 52 c 02 09 76 1.23 0.11 0.43 0.59 0.08 2.19 1+ 02 09 76 PH2 P.s. f . 1.74 0.25 1.17 0.44 0.10 3.28 c 31 07 75 0.9 6 0.16 1 .10 0.36 0.0 9 2.96 c 01 09 75 1.11 0.19 1.07 0.41 0.10 2. 95 c 2 0 10 75 1.28 0.23 1.14 0.25 0.07 2. 73 c 02 0.9 '76 1.00 0.13 0.74 0. 42 0. 07 2.17 1 02' 09 76 0.91 0.11 0.48 0.79 0.08 2.63 2 + 02 0 9 7 6 PH3 M.h. 1.28 0.19 0. 66 C.44 0. 09 2.30 C 31 .07 75 1.22 0.17 0.61 0.53 0.11 2.94 c 01 09 75 1.29 0.18 0. 68 0.56 0.10 2. 74 c 20 10 75 1.40 0.25 0.8 7 0.24 0.10 3.05 c 02 09 76 1. 06 0.18 0.56 0. 52 0.13 2.30 1+ 02 0? 76 PH3 P.s. f . 1.85 0.31 1.42 0.49 0.10 3.83 c 31 07 75 1. 22 0.21 1. 05 0,48 0. 08 3. 06 c 01 09 75 1.07 0.22 1.18 0.49 0.08 3.17 c 20 10 75 1.47 0.25 1.01 0.34 0. 07 2. 52 c 02 09 7 6 1.02 0.15 0-59 0.65 0.07 2.18 1 02 0 9 7.6 0. 94 0.14 0.48 0.82 0.07 2. 40 2 + 02 09 76 1 C = c u r r e n t f o l i a g e .1 = one year o l d 2+ = two y e a r s o l d and o l d e r - 178 -APPENDIX 5 D i s t r i b u t i o n Above-ground of Biomass and M a c r o n u t r i e n t s Tree Components on the Sample i n the P l o t s -17 9 -A b b r e v i a t i o n s used i n Appendix 5: SP - t r e e s p e c i e s PLOT - sample p l o t WOOD - t r e e b o l e wood BARK - t r e e b o l e bark BRAN 1 - branches of diameter over 1 i n c h (2.54 cm) BRAN 2 - branches of d i a m e t e r 1/4 - 1 i n c h (0.64 - 2.54 cm) TWIG - t w i g s , d i ameter s m a l l e r than 1/4 i n c h (0.64 cm) FOLI - f o l i a g e , n e edles TWFO - twigs and f o l i a g e t o g e t h e r TRUNK - t r e e t r u n k , b o l e wood and bark CROWN - t r e e crown, b r a n c h e s , t w i g s and f o l i a g e TREE - above ground p a r t of a t r e e M.h. - mountain hemlock P . s . f . - P a c i f i c s i l v e r f i r - 180 -Appendix 5. Dis t r ibut ion-of biomass by component and species on the sample plots (in t /ha) . SP/PLOT . WOOD BARK . BRAN 1 BRAN 2 TWFO TWIG FOLI TRUNK CROWN TREE M.h 224 .46 78.51 23.81 9 .04 . 17.47 4.11 10.40 302.97 50. 32 353.29 P . S . f . 20 .29 4.07 3 .80 3 .42 4.14 - - 24 .36 11. 36 35.72 PX1 244 .75 82 .58 27 .61 12.46 21.61 - - 327.33 61. 68 389.01 M.h 252.63 83 .02 23.33 14 .34 16.34 4.07 9.46 335 .66 52. 02 387.66 P . S . f . 42.12 8 .53 6 .65 5 .25 7.44 - - 50 .65 19. 34 70.00 PX2 294, .75 91 .55 29.98 19 .59 23.78 - - 386 .31 71. 36 457.66 M.h. 199, .80 77. .46 36 .84 3 .36 16.84 4.86 9.91 277 .26 57. 04 334.30 P . S . £ . 112 .28 23.19 17. .62 8.04 14.86 - - 135 .47 40. 52 175.98 PX3 312, .08 100, .65 54 .46 11 .40 31.70 - - 412.73 97. 56 510.28 M.h 361, .57 100, .67 34 .80 8 .18 33.67 8.43 20.36 462.25 76.65 538.89 P . S . f . 130, .51 27, .04 15, .91 6 .61 12.47 - - 157.55 34. 99 192.54 PM1 492, .08 127.71 50. .71 14 .79 .46.14 - - 619 .80 111. 64 731.43 M.h 213.44 58, .37 19, .73 4 .88 19.66 3.81 .11.88 271 .81 44. 27 316.08 P . S . . £ . 133, .65 27. .74 15, .61 6 .15 11.76 - - 161 .39 33. 49 194.90 PM2 347. .09 86, .11 35, .34 11 .03 31.42 - - 433 .20 77. 76 510.98 M.h 68.78 20, .08 10, .63 0 .67 3.83 2.14 2.00 86 .87 15. 13 104.00 P . S . . f . 309. .91 64. .78 34.64 11 .75 24.92 - - 374, .69 71. 33 446.02 PM3 378.69 84. .86 45. .27 12 .42 28.75 - - 463, .56 86. 46 550.02 M.h, 75.62 21. ,25 9.00 1 .63 4.95 2.50 2.77 96.87 15. 56 112.43 P . S . . f . 211. ,23 44. ,15 22.44 9 .09 19.50 - - 255.38 51. 02 306.40 PHI 286. .85 65. .40 31. .44 10.7 2 24.45 - - 352.25 66. 58 418.83 M.h. 83, .31 21. .98 12. .59 0 .63 2.53 5.09 1.24 105, .29 15. 76 121.04 P . S , . f . 255. ,30 53. ,83 24. .73 7 .81 18.80 - - 309. .13 51. 33 360.46 PH2 338. .61 75. ,81 37. .32 8.44 21.33 - - - 414, .42 67. 09 481.50 M.h, 87. ,44 28, .65 15. .18 0 .99 6.30 3.11 3.56 116. .08 22.47 138.56 P . S . f . 206. .85 43. .44 21. .55 7 .35 17.13 - - 250, .29 46. 03 296.32 PH3 294. .29 72. .09 36. .73 8 .34 23.43 - - 366. .37 68. 50 434.88 M.h, 176. .07 61. .15 42. .93 1 .25 5.65 7.04 2.94 237, .22 49. 83 287.04 P . S , . £ . 251. .73 52. ,79 29. .76 9, .37 20.99 - - 304, .52 60. 12 364.65 MM1 427. .80 113. .94 72.69 10 .62 26.64 - - 541. .74 109.95 651.69 M.h, 136. .30 37. .90 15. .82 2.05 11.00 5.10 6.31 174. .21 28.87 203.07 P . S , • f . 244. 92 51. ,54 28. .98 8.27 19.57 - - 296. .46 56 .83 353.29 MM2 381. ,22 89. 44 44. ,80 10 .32 30.57 - - 470. .67 85 .70 556.36 M.h, 80. ,28 30. .84 21.07 0, .61 2.95 1.48 1.45 111. .12 24 .63 135.75 P . S , .1. 243. ,19 50. .97 28. .96 8.60 18.49 - - 294. ,16 56 .05 350.21 MM3 323. ,47 81. .81 50. .03 9 .21 21.44 - - 405. .28 80 .68 485.96 - 181 -Appendix 5. D i s t r i b u t i o n of nitrogen by component and species on the sample plots (In kg/ha). SP/PLOT WOOD BARK BRAN 1 BRAN 2 TWFO TWIG FOLI TRUNK CROWN TREE M.h. 112 .23 141 .32 28 .57 15.37 104 .02 15.62 88.40 253 .55 147.96 401.51 P . s . f . 10 .15 9.77 5 .70 7.52 30 .64 - - 19 .92 43 .86 63.78 PX1 122.38 151 .09 34 .27 22.89 134 .66 - - 273.47 191 .82 465.29 M.h. 126 .32 149.44 28.00 24.38 95 .88 15.47 80.41 275.76 148 .26 424.02 P . s . f . 21 .06 20.47 9 .98 11.55 55 .06 - - 41.56 76 .59 118.12 PX2 147 .38 169.91 37 .98 35.93 150.94 - - 317 .29 224 .85 542.14 M.h. 99.90 139 .43 44 .21 5.71 102 .71 18.47 84.24 239 .33 152 .63 391.96 P . s . f . 56 .14 55.66 26 .43 17.69 109 .96 - - 111 .80 154.08 265.88 PX3 156.04 195 .09 70 .64 23.40 212 .67 - - 351 .13 306 .71 657.84 M.h. 180.79 181 .21 41, .76 13.91 205 .09 32.03 173.06 362 .00 260.76 622.76 P . s . f . 65.26 64 .90 23.87 14.54 92 .28 - - 130 .16 130 .69 260.85 PM1 246 .05 246 .11 65, .63 28.45 297, .37 - - 492 .16 391 .45 883.61 M.h. 106 .72 105.07 23, .68 8.30 115, .46 14.48 100.98 211 .79 147 .44 359.23 P . s . f . 66.83 66. .58 23, .42 13.53 87. .02 _ - 133.41 123 .97 257.38 PM2 173. .55 171 .65 47. .10 21.83 202. .48 - - 345 .20 271 .41 616.61 M.h. 34, .39 36. .14 12, .76 1.14 25. .13 B.13 17.00 70, .53 39 .03 109.56 P . s . f . 154, .96 155, .47 51. .96 25.85 184. ,41 - - 310, .43 262. .22 572.65 PM3 189, .35 191. .61 64. .72 26.99 209. .54 - - 380, .96 301 .25 682.21 M.h. 37, .81 38. .25 10. .80 2.77 33. .05 9.50 23.55 76, .06 46. .62 122.68 P . s . f . 105. .62 105. .96 33. .66 20.00 144. .30 • - - 211. ,58 197. .96 409.54 PHI 143. .43 144. .21 44. .46 22.77 17.7. .35 - - 287, .64 244. .58 532.22 M.h. 41. .66 39. .56 15. .11 1.07 29. .88 19.34 10.54 81. .22 46. .06 127.28 P . s . f . 127. .65 129.19 37.10 17.18 139. .12 . - - 256. .84 193.40 450.24 PH2 169. .31 168. .75 52. .21 18.25 169. .00 - - 338. ,06 239.46 577.52 M.h. 43. 72 51. 57 18. 22 1.68 42.08 11.82 30.26 95. .29 61. .98 157.27 P . s . f . 103. .43 104. ,26 32. 33 16.17 126. 76 - - 207. .69 175. .26 382.95 PH3 147. 15 155. ,83 50. 55 17.85 168. 84 - - 302. .98 237. .24 540.22 M.h. 88. .04 110. 07 51. 52 2.13 51. 74 26.75 24.99 198. .11 105. .39 303.50 P . s . f . 125. ,87 126. ,70 44. 64 20.61 155. 33 - - 252. .57 220. .58 473.15 MM1 213. 91 236. 77 96. 16 22.74 207. 07 - - 450.68 325. .97 776.65 M.h. 68. 15 68. 22 18. 98 3.49 73. 02 19.38 53.64 136. 37 95. .49 231.86 P . s . f . 122. 46 123. 70 43. 47 18.19 144. 82 - - 246. .16 206. .48 452.64 MM2 190. 61 191. 92 62. 45 21.68 217.84 - - 382.53 301. .97 684.50 M.h. 40. 14 55. 51 25. 28 1.04 17. 95 5.62 12.33 95. ,65 44. 27 139.92 P . s . f . 121. 60 122. 33 43. 44 18.92 136.83 - - 243.93 199. 19 443.12 MM 3 161. 74 17-7. 84 68.72 19.96 154. 78 - - 339. 58 243. 46 583.04 - 18 2 -Appendix 5. D i s t r i b u t i o n of phosphorus by component and species on the sample plots ( in kg/ha) . SP/PLOT WOOD BARK BRAN 1 BEAN 2 TWFO TWIG FOLI TRUNK CROWN TREE M.h 44 .89 47 .11 7.14 3.62 13.91 2.47 11.44 92.00 24 .67 116.67 P . S . f . 2 .03 1.63 0.76 1.03 4 .14 - _ 3.66 5 .93 9.59 PX1 46 .92 48 .74 7.90 4.65 18 .05 - - 95.66 30 .60 126.26 M.h 50 .53 49 .81 7.00 5.74 12 .85 2.44 10.41 100.34 25 .59 125.93 P . S .1. 4 .21 3 .41 1.33 1.57 7 .44 - - 7.62 10 .34 17.96 PX2 54 .74 53 .22 8.33 7.31 20 .29 - - 107.96 35.93 143.89 M.h 39.96 46 .48 11.05 1.34 13 .B2 2.92 10.90 86.44 26.21 112.65 P . S . . f . 11 .23 9 .28 3.52 2.41 14 .86 - - 20.51. 20 .79 41.30 PX3 51 .19 55 .76 14.57 3.75 28 .68 - - 106.95 47 .00 153.95 M.h, 72 .31 60 .40 10.44 3.27 27 .46 5.06 22.40 132.71 41.17 173.88 P . S . , f . 13 .05 10 .82 3.18 1.98 12.47 - - 23.87 17 .63 41.50 PM1 85 .36 71 .22 13.62 5.25 39 .93 - - 156.58 58 .80 215.38 M.h. 42, .69 35 .02 5.92 1.95 15.36 2.29 13.07 77.71 23 .23 100.94 P . S . f . 13 .36 11. .10 3.12 1.84 11, .76 - - 24.46 16, .72 41.18 PM2 56 .05 46.12 9.04 3.79 27, .12 - - 102.17 39, .95 142.12 M.h. 13, .76 12. .05 3.19 0.27 3. .48 1.28 2.20 25.Bl 6. .94 32.75 P . S . .£. 30, .99 25.91 6.93 3.52 24, .92 - - 56.90 35. .37 92.27 PM3 44, .75 37. .96 10.12 3.79 28, .40 - 82.71 42. .31 125.02 M.h. 15. .12 12.75 2.70 0.65 4. .55 1.50 3.05 27.87 7. .90 35.77 P . S . f . 21. .12 17. .66 4.49 2.73 19. ,50 - - 38.78 26. ,72 65.50 PHI 36.24 30.41 7.19 3.38 24.05 - - 66.65 34. 62 101.27 M.h. 16. .66 13. .19 3.78 0.25 4.41 3.05 1.36 29.85 8. .44 38.29 P . S . £. 25. .53 21. .53 4.95 2.34 18. .80 - - 47.06 26.09 73.15 PH2 42. .19 34. ,72 8.73 2.59 23. ,21 - - 76.91 34. .53 111.44 M.h. 17. 49 17. .19 4.55 0.40 5. .79 1.87 3.92 34.68 10. 74 45.42 P . S . £. 20. .68 17. 38 4.31 2.20 17. .13 - - 38.06 23. ,64 61.70 PH3 38. .17 34. 57 8.86 2.60 22. 92 - - 72.74 34. 38 107.12 M.h. 35. .21 36.69 12.88 0.50 7. 45 4.22 3.23 71.90 20. 83 92.73 P . S . f . 25. .17 21. 12 5.95 2.81 . 20. 99 - - 46.29 29. 75 76.04 MM1 60. 38 57. 81 18.83 3.31 28. 44 - - 118.19 50. 58 168.77 M.h. 27. 26 22. 74 4.75 0.82 10. 00 3.06 6.94 50.00 15. 57 65.57 P . S . f . 24.49 20.62 5.80 2.48 19. 57 - - 45.11 27. 85 72.96 MM 2 51. 75 43. 36 10.55 3.30 29. 57 - - 95.11 43.42 138.53 M.h. 16. 06 18. 50 6.32 0.24 2. 48 0.89 1.59 34.56 9. 04 43.60 P . S . f . 24. 32 20. 39 5.79 2.58 18.49 - - 44.71 26.86 71.57 MM3 40. 38 38.89 12.11 2.82 20.97 - - 79.27 35. 90 115.17 - 183 -Appendix 5. D i s t r i b u t i o n of potassium by component and species on the sample plots ( in kg/ha) , SP/PLOT WOOD BARK BRAN 1 BRAN 2 TWFO TWIC FOLI TRUNK CROWN TREE M.h. 157.12 70 .66 16.67 8.14 37.78 6.58 31.20 227, .78 62 .59 290.37 P . s . f . 12 .17 5 .29 3.42 4.10 13.66 - - 17.46 21. .18 38.64 PX1 169 .29 75 .95 20.09 • 12.24 51.44 - - 245, .24 83 .77 329.01 M.h. 176 .84 74 .72 16.33 12.91 34.89 6.51 28.38 251 .56 64 .13 315.69 P . s . f . 25 .27 11.09 5.98 6.30 24.55 - - 36, .36 36 .83 73.19 PX2 202.11 85 .81 22.31 19.21 59.44 - - 287, .92 100 .96 388.88 M.h. 139 .86 69 .71 25.79 3.02 37.51 7.78 29.73 209, .57 66 .32 275.89 P . s . f . 67. .37 30 .15 15.86 9.65 49.04 - - 97.52 74 .55 172.07 PX3 207 .23 99 .86 41.65 12.67 86.55 - - 307.09 140 .87 447.96 M.h. 253.10 90 .60 24.36 7.36 74.57 13.49 61.08 343 .70 106.29 449.99 P . s . f . 78 .31 35.15 14.32 7.93 41.15 - - 113 .46 63 .40 176.86 PM1 331 .41 125 .75 38.68 15.29 115.72 - - 457 .16 169 .69 626.85 M.h. 149.41 52 .53 13.81 4.39 41.74 6.10 35.64 201 .94 59 .94 261.88 P . s . f . 80 .19 36 .06 14.05 7.38 3B.81 - - 116 .25 60.24 176.49 PM2 229 .60 88 .59 27.B6 11.77 80.55' - - 318.19 120 .18 438.37 M.h. 48 .15 18 .07 7.44 ' 0.60 9.42 . 3.42 6.00 66.22 17 .46 83.68 P . s . f . 185 .95 84 .21 31.18 14.10 82.24 - 270 .16 127 .52 397.68 PM3 234 .10 102 .28 38.62 14.70 91.66 - - 336 .38 144 .98 481.36 M.h. 52.93 19 .12 6.30 1.47 12.31 4.00 8.31 72 .05 20 .08 92.13 P . s . f . 126 .74 57 .39 20.20 10.91 64.35 - - ' 184 .13 95 .46 279.59 PHI 179 .67 76 .51 26.50 12.38 76.66 - - 256 .18 115 .54 371.72 M.h. 58 .32 19 .78 8.81 0.57 11.86 8.14 3.72 78 .10 21 .24 99.34 P . s . f . 153 .18 69 .98 22.26 9.37 62.04 - - 223 .16 93 .67 316.83 PH2 211 .50 89 .76 31.07 9.94 73.90 - - 301 .26 114 .91 416.17 M.h. 61 .21 25 .78 10.63 0.89 15.66 4.98 10.68 86 .99 27 .18 114.17 P . s . f . 124 .11 56.47 19.39 8.82 56.53 - - 180 .58 84 .74 265.32 PH3 185 .32 82 .25 30.02 9.71 72.19 - - 267 .57 111.92 379.49 M.h. 123 .25 55 .03 30.05 1.12 20.08 11.26 8.82 178 .28 51 .25 229.53 P . s . f . 151 .04 68.63 26.78 11.24 69.27 - - 219 .67 107 .29 326.96 MM1 274 .29 123 .66 56.83 12.36 89.35 - - 397 .95 158 .54 556.49 M.h. 95 .41 34 .11 11.07 1.84 27.09 8.16 18.93 129 .52 40 .00 169.52 P . s . f . 146 .95 67 .00 26.08 9.92 64.58 - - 213 .95 100 .58 314.53 MM2 242 .36 101 .11 37.15 11.76 91.67 - - 343 .47 140 .58 484.05 M.h. 56 .20 27 .76 14.75 0.55 6.72 2.37 4.35 83 .96 22 .02 105.98 P . s . f . 145 .91 66 .26 26.06 10.32 61.02 - - 212.17 97 .40 309.57 MM3 202 .11 94 .02 40.81 10.87 67.74 - - 296 .13 119 .42 415.55 - 184 -Appendix 5. D i s t r i b u t i o n of calcium by component and species on the sample plots (in kg/ha). SP/PLOT HOOD BARK BRAN 1 BRAN 2 TWFO TWIG F0LI TRUNK CROWN TREE M.h 157.12 243.38 38 .01 16 .27 39 .64 7.40 32.24 400 .50 93 .92 494.42 P . S . f . 12.17 19.94 11 .78 9.92 18 .22 - - 32.11 39.92 72.03 PX1 169.29 263.32 49.79 26.19 57 .86 - - 432.61 133.84 566.45 H.h 176.84 257.36 37.33 25 .81 36 .66 7.33 29.33 434 .20 99 .80 534.00 P . S .£. 25.27 41.80 20 .61 15.22 32 .74 - - 67.-07 68 .57 135.64 PX2 202.11 299.16 57 .94 41.03 69 .40 - - 501 .27 168 .37 669.64 M.h 139.86 240.13 58 .94 6.05 39 .47 8.75 30.72 379.99 104 .46 484.45 P . S . f . 67.37 113.63 54 .62 23.32 65 .38 - - 181 .00 143.32 324.32 PX3 207.23 353.76 113.56 29 .37 104 .85 - - 560 .99 247 .78 808.77 M.h, 253.10 312.08 55 .68 14 .72 78.29 15.17 63.12 565.18 148 .69 713.87 P . S . .{. 78.31 132.50 49 .32 19 .17 54.87 - - 210 .81 123.36 334.17 PM1 331.41 444.58 105 .00 33 .89 133.16 - - 775 .99 272.05 1048.04 M.h, 149.41 180.95 31.57 8 .78 43.69 6.86 36.83 330 .36 84 .04 414.40 P . S . . f . 80.19 135.93 48 .39 17 .83 51, .74 - - 216.12 117, .96 334.08 PM2 229.60 316.88 79.96 26, .61 95, .43 - - 546.48 202, .00 748.48 M.h. 48.15 62.25 17, .01 1, .21 10.05 3.85 6.20 110 .40 2B, .27 138.67 P . S . , f . 185.95 317.42 107, .38 34 .07 109, .65 - - 503 .37 251, .10 754.47 PM3 234 .10 379.67 124, .39 35, .28 119. .70 - - 613 .77 279. .37 893.14 M.h. 52.93 65.87 14.40 2. .93 13, .09 4.50 8.59 118. .80 30. .42 149.22 P . S . . f . 126.74 216.33 69. ,56 26.36 85. .80 - - 343, .07 181. .72 524.79 PHI 179.67 282.20 83, .96 29.29 98. .89 - - 461. .87 212. .14 , 674.01 M.h. 58.32 68.14 20. ,14 1. .13 13. .00 9.16 3.84 126, .46 34. ,27 160.73 P . S . f . 153.18 263.77 76. ,66 22. .65 82. ,72 - - 416. .95 182. .03 598.98 PH2 211.50 331.91 96. ,80 23. .78 95. ,72 - - 543, .41 216. .30 759.71 M.h. 61.21 88.81 24. ,29 1. ,78 16. ,64 5.60 11.04 150. .02 42. ,71 192.73 P . S . f . 124.11 212.86 66. ,80 21. .31 75. .37 - - 336. .97 163. .48 500.45 PH3 185.32 301.67 91. ,09 23. .09 92. ,01 - - 486. .99 206.19 693.18 M.h. 123.25 189.56 68. ,69 2. .25 21. .78 12.67 9.11 312. .81 92. ,72 405.53 P . S . , f . 151.04 258.67 92. ,26 27. .17 92. 36 - - 409. .71 211. ,79 621.50 MM1 274.29 448.23 160. 95 29. ,42 114; ,14 - - 722. .52 304. ,51 1027.03 M.h. 95.41 117.49 25. 31 3. ,69 2B. 74 9.18 19.56 212. ,90 57. 74 270.64 P . S . f . 146.95 252.55 89. 84 23. 98 86. 11 - - 399. .50 199. 93 599.43 MM2 242.36 370.04 115. 15 27.67 114. 85 - 612. ,40 257. 67 870.07 M.h. 56.20 95.60 33.71 1. 10 7. 15 2.66 4.49 151. 80 41.96 193.76 P . S . f . 145.91 249.75 89. 78 24. 94 81. 36 - - 395. .66 196. 08 591.74 MM3 202.11 345.35 123. 49 26.04 88.51 - - 547. 46 238. 04 785.50 - 185. -Appendix 5. D i s t r i b u t i o n of magnesium by components and species on the sample plots ( in kg/ha) . SP/PLOT WOOD BARK BRAN 1 BRAN 2 TWFO TWIG FOLI TRUNK CROWN TREE M.h 44 .89 15.70 4.76 2.71 9.96 1.64 8.32 60.59 17 .43 78.02 P . S . f . 2 .03 1.22 0.76 1.03 2.90 - . _ 3.25 4.69 7.94 PX1 46.92 16.92 5.52 3.74 12.86 - - 63 .84 22 .12 85.96 M.h 50 .53 16.60 4.67 4.30 9.20 1.63 7.57 67 .13 18 .17 85.30 P . S . f . 4 .21 2.56 1.33 1.57 5.21 - _ 6 .77 8 .11 14.88 PX2 54 .74 19.16 6.00 5.87 14.41 - - 73 .90 26 .28 100.18 M.h 39 .96 15.49 7.37 1.01 9.87 1.94 7.93 55 .45 18 .25 73.70 P . S , . f . 11.23 6.96 3.52 2.41 10.40 - _ 18 .19 16 .33 34.52 PX3 51 .19 22.45 10.89 3.42 20.27 • - - 73 .64 34 .58 108.22 M.h, 72 .31 20.13 6.96 2.45 19.66 3.37 16.29 92 .44 29.07 121.51 P . S • f . 13 .05 8.11 3.18 1.98 8.73 - - 21 .16 13 .89 35.05 PM1 85 .36 28.24 10.14 4.43 28.39 - - 113.60 42 .96 156.56 M.h. 42, .69 11.67 3.95 1.46 11.02 1.52 9.50 54 .36 16 .43 70.79 P . S . . f . 13, .36 8.32 3.12 1.84 8.23 - - 21 .68 13 .19 34 .87 PM2 56, .05 19.99 7.07 3.30 19.25 - - 76 .04 29 .62 105.66 M.h. 13, .76 4.02 2.13 0.20 2.46 0.86 1.60 17 .78 4 .79 22.57 P . S . , f . 30. .99 19.43 6.93 3.52 17.44 - - 50 .42 27 .89 78.31 PM3 44. .75 23.45 9.06 3.72 19.90 - - 68, .20 32 .68 100.88 M.h. 15. .12 4.25 1.80 . 0.49 3.22 1.00 2.22 19, .37 5. .51 24 .88 P . S . , f . 21. ,12 13.24 4.49 2.73 13.65 - - 34. .36 20. .87 55.23 PHI 36. .24 17.49 6.29 3.22 16.87 - - 53.73 26, .38 80.11 M.h. 16. 66 4.40 2.52 0.19 3.03 2.04 0.99 21. ,06 5, .74 26.80 P . S . . f . 25. .53 16.15 4.95 2.34 13.16 - - 41. .68 20, .45 62.13 PH2 42. 19 20.55 7.47 2.53 16.19 - - 62. .74 26.19 88.93 M.h. 17. ,49 5.73 3.04 0.30 4.09 1.24 2.85 ' 23. .22 7. .43 30.65 P . S . f . 20. 68 13.03 4.31 2.20 11.99 - - 33. ,71 18. ,50 52.21 PH3 38. 17 18.76 7.35 2.50 16.08 - - 56. 93 25. ,93 82.86 M.h. 35. ,21 12.23 8.59 0.37 5.17 2.82 2.35 47. 44 14.13 61.57 P . S . f . 25. 17 15.84 5.95 2.81 14.69 - - 41. 01 23. 45 64.46 MM1 60. 38 28.07 14.54 3.18 19.86 - - 88. 45 37. 58 126.03 M.h. 27. 26 7.58 3.16 0.61 7.09 2.04 5.05 34. 84 10.86 45.70 P . S . 1. 24.49 15.46 5.80 2.48 13.70 - - 39. 95 21. ,98 61.93 MM2 51. 75 23.04 8.96 3.09 20.79 - - 74. 79 32. 84 107.63 M.h. 16. 06 6.17 4.21 0.18 1.75 0.59 1.16 22. 23 6.14 28.37 P . S . 1. 24. 32 15.29 5.79 2.58 12.94 - - 39. 61 21. 31 60.92 MM3 40. 38 21.46 10.00 2.76 14.69 - - 61. 84 27. 45 89.29 - 186 -Appendix 5. D i s t r i b u t i o n of biomass and 1 I, P, K, Ca, , and Mg between mountain hemlock and P a c i f i c s i l v e r f i r on i n v e s t i g a t e d s i t e s ( i n percent) Lot Species Biomass N P K Ca Mg PX1 M.h. 90.8 86.3 92.4 88.3 87.3 90.8 P.s.f. 9.2 13.7 7.6 11.7 12.7 9.2 PX2 M.h. 84.7 78.2 87.5 81.2 79. 7 85.1 P.s.f. 15.3 21.8 12.5 18.8 20.3 14.8 PX3 M.h. 65.5 59.6 73.2 61.6 59.9 68.1 P.s.f. 34.5 40.4 26.8 38.4 40.1 31.9 PX M.h. 79.2 73.1 83.8 75.6 74.0 80.5 P.s.f. 20.8 26.9 16.2 24.4 26.0 19.5 PM1 M.h. 73.7 70.5 80.7 71.8 68.1 77.6 P.s.f. 26.3 29.5 19.3 28.2 31.9 22.4 PM2 M.h. 61.9 58.3 71.0 59.7 55.4 67.0 P.s.f. 38.1 41.7 29.0 40.3 44.6 • 33.0 PM3 M.h. 18.9 16.1 26.2 17.4 15.5 22.4 P.s.f. 81.1 8 3.9 73.8 82.6 84.5 77.6 PM M.h. 53.5 50.0 63.7 51.4 47.1 59.2 P.s.f. 46.5 50.0 36.3 48.6 52.9 40.8 Ml M.h. 44.0 39.1 54.9 41.2 39.5 48.9 P.s.f. 56.0 60.9 45.1 58.8 .60.5 51.1 M2 M.h. 36.5 33.9 47.3 35.0 31.1 42.5 P.s.f. 63.5 66.1 5.2.7 65.0 68.9 57.5 M3 M.h. 27.9 24.0 37.9 25.5 24.7 31.8 P.s.f. 72.1 76.0 62.1 74.5 75.3 68.2 M M.h. 36.9 33.0 47.8 34.7 32.4 42.0 P.s.f. 63.1 67.0 52.2 65.3 67.6 58.0 PHI M.h. 26.8 23.1 35.3 24.8 22.1 31.1 P.s.f. 73.2 76.9 64.7 75.2 77.9 68.9 PH2 M.h. 25.1 22.0 34.4 23.9 21.2 30.1 P.s.f. 74.9 78.0 65.6 76.1 78.8 69.9 PH3 M.h. 31.9 29.1 42.4 30.1 27.8 37.0 P.s.f. 68.1 70.9 57.6 69.9 72.2 63.0 PH M.h. 27.9 24.7 37.4 26.2 23.6 32.7 P.s.f. 72.1 75.3 62.6 73.8 76.4 67.3 N A T I O N A L T O P O G R A P H I C SYSTEM 1:250,000 C A N A D A FIRST EDITION SHEET 92 G T h e d e c l i n a t i o n of t h e c o m p a s s n e e d l e a t a n y p l a c e a l o n g a r e d l i n e is t h e d e c l i n a t i o n g i v e n o n t h a t r e d l i n e . A t o t h e r p l a c e s t h e d e c l i n a -t i o n i s b e t w e e n t h o s e g i v e n o n t h e n e i g h b o u r i n g r e d l i n e s ; t h u s at I N P l s t f m a r k e d A , t h e d e c l i n a t i o n is b e t w e e n 2 3 ° 3 0 ' E a n d 24 0 0 ' E. T h e d e c l i n a t i o n o l t h e c o m p a s s n e e d l e is d e c r e a s i n g 2 . 8 m i n u t e s a n n u a l l y . VANCOUVER 92G EDITION 1 - 1 8 7. -APPENDIX 6 Age and Wood Volume Increment of Sampled Trees - 1 88 -Appendix 6. Age and wood volume increment of sampled t r e e B (based on 92 trees). Plot n* Age (years) Mean (SE) Timber volume increment per sampled tree , Mean (SE) m-5/(tree-20 years) Timber volume increment: m3/(ha-20 years) Mean (SE) 9556 conf. l imits PA1 5 358 (46) 0.0309 (0.0143) 1018 31.46 0 (14.56) 68.89 PX2 8 344 (43) 0.0344 (0.0133) 1275 43.86 4.75 -(16.96) 82.97 PX3 10 367 (53) 0.0812 (0.0197) 520 42.22 19.41 - (10.24) 65.03 PT 23 356 0.0488 938 39.18 PM1 8 340 (36) 0.0515 (.0.0125) 673 21.20 1.81 -(8.41) 40.59 Pd2 7 294 (22) 0.0678 (0.0206) 457 30.98 8.73 -(9.41) 53.23 PH3 9 434 (44) 0.0849 (0.0421) 311 26.40 0 (13.09) 56.01 PM 24 356 0.0614 480 26.19 PH1 12 295 (36) 0.0516 (0.0130) 319 16.46 7.42 -(4.15) 25.50 PH2 7 424 (77) 0.1254 (0.0442) 180 22.57 3.74 -(7.96) 41.40 PH3 7 346 (57) 0.0817 (0.0273) 190 15.52 3.25 -(5.19) 27.79 26 355 0.0862 230 18.18 K1 8 422 (28) 0.1481 (0.0307) 257 38.06 19.87 - (7.89) 56.25 H2 7 417 (17) 0.1027 (0.0360) 250 25.67 4.39 -(9.00) 46.96 113 4 385 (19) 0.1350 (0.0623) 216 29.16 0 (13.46) 66.52 IT 19 408 0.1286 241 30.96 * n - no. of sampled trees per p l o t **N - no. of trees per hectare on the pl o t - 189 -APPENDIX 7 Annual Biomass of N u t r i e n t Content L i t t e r f a l l and of L i t t e r f a l l - 190 -Appendix 7. Annual biomass of l i t t e r f a l l and nutrient content of l i t t e r f a l l (in kg/ha) - PX-plots. * Element L.C. PX1 PX2 PX3 0 PX plots N 1 6.25 6.23 7.06 6.51 2 1.67 1.84 0.89 1.47 3 1.33 1.66 0.96 1.32 4 0.19 0.11 0.43 0.24 SUM 9.43 9.84 . 9.34 9.54 P 1 0.76 0.90 0.73 0.79 2 0.17 0.22 0.08 0.16 3 0.12 0.17 0.09 0.13 4 0.02 0.01 0.04 0.02 SUM 1.06 1.29 0.93 1.10 K 1 1.26 1.02 1.10 1.13 2 0.29 0.36 0.13 0.26 3 0.14 0.16 0.11 0.14 4 0.02 0.01 0.02 0.01 SUM 1.70 1.55 1.35 1.54 Ca 1 10.59 9.27 9.26 9.71 2 0.95 1.03 0.56 0.84 3 1.04 1.24 1.29 1.19 4 0.21 0.12 0.29 0.21 SUM 12.78 11.65 11.40 11.95 Mg 1 1.12 0.90 0.66 0.89 2 0.11 0.13 0.05 0.10 3 0.06 0.08 0.06 0.07 4 0.01 0.01 0.01 0.01 SUM 1.29 1.12 0.78 1.06 Biomass 1 1168 1147 1062 1125 2 249 289 102 213 3 280 326 250 285 4 39 20 67 42 SUM 1737 1781 1480 1666 L . C . - l i t t e r component 1 - f o l i a g e 2 - epiphytic lichens 3 - twigs and branches 4 - other l i t t e r - 191 -Appendix 7 (con't.). Annual biomass of l i t t e r f a l l and nutrient content of l i t t e r f a l l ( i n kg/ha) -PM-plots Element L.C * PM1 PM2 PM3 0 PM plots K.g/ (.na.a; -N 1 10.93 11.18 12.66 11.59 2 2.76 2.77 2.74 2.76 3 2.85 2.35 2.14 2.45 4 0.30 0.30 0.22 0.28 SUM 16.85 16.59 17.77 17.07 P 1 1.50 1.55 1.43 1.49 2 0.31 0.35 0.31 0.32 3 0.31 0.25 0.25 0.27 4 0.03 ' 0.03 0.02 0.03 SUM 2.15 2.18 2.01 2.11 K 1 2.01 2.06 1.74 1.94 2 0.42 0.54 0.40 0.45 3 0.29 0.25 0.27 0.27 4 0.02 0.02 0.02 0.02 SUM 2.74 2.87 2.43 2.68 Ca 1 12.82 11.42 13.60 12.62 2 1.16 1.14 1.21 1.17 3 2.23 1.75 2.39 2.12 4 0.32 0.60 0.31 0.41 SUM 16.53 14.91 17.51 16.32 Mg 1 1.54 1.37 0.86 1.26 2 0.17 0.18 0.15 0.17 3 0.16 0.13 0.13 0.14 4 0.01 0.02 0.01 0.02 SUM 1.88 1.71 1.16 1.58 Biomass 1 1986 1873 1638 1833 2 357 426 335 373 3 624 492 523 546 4 50 75 77 67 SUM 3017 2866 2572 2819 L . C . - l i t t e r components 1 - fol i a g e 2 - epiphytic lichens 3 - twigs and branches 4 - other l i t t e r - 192 -Appendix 7 (con't.). Annual biomass of l i t t e r f a l l and nutrient content of l i t t e r f a l l . ( i n kg/ha) Element L . C * Ml M2 M3 0 M plots K g / (,na. aji N 1 13.16 11.36 11.50 12.00 2 1.74 2.42 2.87 2.35 3 2.51 2.31 2.95 2.59 4 0.75 0.31 0.59 0.55 SUM 18.15 16.40 17.92 17.49 P 1 1.58 1.40 1.32 1.43 2 0.19 0.28 0.34 0.27 3 0.26 0.26 0.33 0.28 4 0.07 0.03 0.06 0.05 SUM 2.11 1.97 2.05 2.04 K 1 1.56 1.63 1.62 1.60 2 0.28 0.43 0.46 0.39 3 0.26 0.23 0.29 0.26 4 0.06 0.02 0.04 0.04 SUM 2.16 2.31 2.39 2.29 Ca 1 11.65 9.93 9.96 10.51 2 0.72 0.89 1.23 0.94 3 2.92 2.13 2.52 2.52 4 1.48 0.56 0.99 1.01 SUM 16.77 13.50 14.70 14.99 Mg 1 0.77 0.72 0.69 0.72 2 0.09 0.14 0.15 0.13 3 0.15 0.11 0.16 0.14 4 0.04 0.02 0.02 0.03 SUM 1.05 0.99 1.02 1.02 Biomass 1 1524 1435 1402 1454 2 217 278 320 272 3 703 458 621 594 4 198 69 98 122 SUM 2642 2240 2441 2442 L . C . - l i t t e r components 1 - foliage 2 - epiphytic lichens 3 - twigs and branches 4 - other l i t t e r - 193 -Appendix 7 . (con't.).. Annual biomass of l i t t e r f a l l and nutrient content of l i t t e r f a l l ( in kg/ha) - PH - p l o t s . Element L.C* PHI PH2 PH3 0 PH plots kg/"(ha.a) N 1 6.78 9.39 9.79 8.65 2 0.64 1.19 1.14 0.99 3 1.63 1.83 1.12 1.53 4 0.26 0.13 0.71 0.37 SUM 9.31 12.54 12.76 11.54 P 1 0.73 0.76 1.07 0.85 2 0.06 0.12 0.15 0.11 3 0.14 0.17 0.13 0.15 4 0.02 0.01 0.07 0.03 SUM 0.95 1.06 1.41 1.14 K 1 0.88 1.07 1.14 1.03 2 0.09 0.14 0.20 0.14 3 0.15 0.27 0.12 0.18 4 0.02 0.01 0.04 0.03 SUM . 1.14 1.49 1.50 1.37 Ca 1 8.61 11.03 11.28 10.31 2 0.42 0.67 0.74 0.61 3 2.70 2.23 1.30 2.08 4 0.46 0.22 0.75 0.48 SUM 12.19 14.15 14.07 13.47 Mg 1 0.65 0.67 0.67 0.66 2 0.04 0.06 0.06 0.05 3 0.12 0.11 0.06 0.10 4 0.02 0.01 0.03 0.02 SUM 0.82 0.85 0.82 0.83 Biomass 1 893 1207 1221 1107 2 71 124 141 112 3 520 405 214 380 4 51 33 129 71 SUM 1535 1768 1706 1670 2 - epiphytic lichens 3 - twigs and branches 4 - other l i t t e r - 194 -APPENDIX 8 Qua nt i t y roughf a l l of Chemical Elements i n and I n c i d e n t P r e c i p i t a t i o n - 195 -A p p e n d i x 8 . Q u a n t i t y o f l l i r o u j i h f a l l i . n d i i u t r i o n t a i n t h r o u g h f a l l . T o t a l PLUT SKT MH 4-M H O j - H I n o r g a n i c N P O 4 - P k g / h a K C a KB H 2 q * t/li .n PX1 1 2 3 O.Ol 0.02 0.07 0.32 0.01 0.08 0.04 0.01 0.01 0.00* 2.19 8.64 3.94 0.55 1.13 0.56 0.69 1.82 0.89 0.21 0.44 0.28 813 3841 2300 PX2 1 2 3 0.22 0.03 0.16 0.29 0.17 0.38 0.20 0.14 0.03 0.00 3.11 9.78 3.25 1.42 0.99 0.53 0.68 2.05 0.84 0.18 0.47 0.25 909 3988 2476 PX3 1 2 3 0.03 0.06 0.11 0.22 0.20 0.14 0.26 0.02 0.01 0.00 2.50 9.89 3.81 0.70 1.57 0.92 0.56 1.90 0.82 0.14 0.33 0.19 1057 4640 3042 PM1 1 2 3 0.07 0.00 0.10 0.04 0.00 0.16 0.00 0.06 0.02 0.02 4.22 11.33 5.64 1.37 2.88 2.02 0.88 2.62 1.19 0.22 0.56 0.36 1009 3850 2420 I'M 2 1 2 3 0.01 0.00 0.06 0.03 0.00 0.07 0.00 0.06 0.05 0.02 4.88 13.88 5.98 1.45 3.70 2.37 1.01 3.31 1.29 0.23 0.64 0.33 1212 4190 2663 PH3 1 2 3 0.11 0.02 0.10 0.10 0.00 0.21 0.02 0.03 0.04 0.01 3.80 13.16 4.59 1.44 3.52 1.94 0.77 2.95 1.21 0.17 0.52 0.24 1068 4720 2722 PHI 1 2 3 0.01 0.07 0.10 0.16 0.13 0.11 0.19 0.03 0.05 0.00 2.55 7.08 2.42 0.85 1.74 1.04 0.58 1.60 0.78 0.09 0.27 0.13 1126 3426 2340 PH2 1 2 3 0.01 0.02 0.12 0.06 0.06 0.12 0.08 0.02 0.04 0.00 3.32 9.28 3.45 1.15 2.71 1.49 0.77 2.22 0.90 0.15 0.38 0.20 1249 4067 2471 PH3 1 2 3 0.01 0.01 0.08 0.06 0.02 0.09 0.03 0.02 0.08 0.02 2.99 7.48 2.87 0.84 2.14 1.58 0.78 1.73 0.94 0.12 0.30 0.17 1267 3280 2581 Ml 1 2 3 0.01 0.03 0.07 0.07 0.04 0.08 0.08 0.06 0.06 0.02 3.82 13.35 4.09 0.83 3.05 2.12 1.82 2.82 1.11 0.16 0.46 0.21 1654 5398 2080 M2 1 2 3 0.03 0.01 0.07 0.04 0.03 0.10 0.04 0.05 0.04 0.02 3.62 13.35 4.48 0.87 2.97 2.23 1.98 3.43 1.06 0.16 0.57 0.21 1488 5176 2095 M3 1 2 3 0.01 0.01 0.05 0.01 0.01 0.07 0.01 0.05 0.03 0.01 3.44 13.02 3.90 0.83 2.83 1.77 1.42 3.45 0.99 0.13 0.55 0.19 1467 4874 1944 Appendix 8 . Quantity of aer ial water precipitation and nutrients in precipitat ion. Total inorganic P L O T S E T KIL4-N f i O j - N N PO4-P S0 4 - S K C a K g H20*« • k g / h a t / h a , mm PXO 1 0.03 0 .23 0.26 0.00 0. 75 0.10 0.44 0. 14 824 2 - 1. .40 - 0.00 3. 76 0.29 2.61 0. 62 4478 3 0.07 0, .56 0.63 0.00 1. 54 0.14 0.27 0. 09 2693 PHO 1 0.04 0. .63 0.67 0.00 1. 43 0.11 0.88 0. 17 2019 2 - 1. .24 - 0.05 2. 21 0.40 1.63 0. 33 4639 3 0.21 0. 38 0.59 0.05 1. 80 0.15 0.78 0. 15 2810 MO 1 0.06 0. 53 0.58 0.01 1. 35 0.43 1.83 0. 30 1105 2 - 1. 08 - 0.03 4. 24 0.25 1.26 0. 27 4360 3 0.23 0. 60 0.84 0.08 1. 96 0.23 0.46 0. 08 2339 Set 1 - late summer 1974, collection 1-2 11 weeks sampling period. Set 2 - summer 1975, collections 5-8, 13 weeks sampling period. Set 3 - summer 1976, collections 10-11, 8 weeks sampling period. below detection l imit * 824 t/ha of HP0 = 82.4 mm of precipitation - 19 6 -APPENDIX 9 L o c a t i o n of Sample P l o t s 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0075133/manifest

Comment

Related Items