UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Aspects of the ecology of black and grizzly bears in coastal British Columbia Lloyd, Kevin Alexander 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1979_A6_7 L56.pdf [ 12.16MB ]
Metadata
JSON: 831-1.0075117.json
JSON-LD: 831-1.0075117-ld.json
RDF/XML (Pretty): 831-1.0075117-rdf.xml
RDF/JSON: 831-1.0075117-rdf.json
Turtle: 831-1.0075117-turtle.txt
N-Triples: 831-1.0075117-rdf-ntriples.txt
Original Record: 831-1.0075117-source.json
Full Text
831-1.0075117-fulltext.txt
Citation
831-1.0075117.ris

Full Text

ASPECTS OF THE ECOLOGY OF BLACK AND GRIZZLY BEARS IN COASTAL BRITISH COLUMBIA KEVIN ALEXANDER LLOYD B.Sc. (Hons.), U n i v e r s i t y o f B r i t i s h Columbia, 1975 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE GF MASTER OF SCIENCE THE FACULTY OF GRADUATE STUDIES {DEPARTMENT OF FORESTRY) We accept t h i s t h e s i s as c o n f e r r i n g t o the r e q u i r e d s t a n d a r d UNIVERSITY OF BRITISH COLUMBIA September, 1979 by i n 1979 In presenting th i s thes is in pa r t i a l fu l f i lment of the requirements for an advanced degree at the Univers i ty of B r i t i s h Columbia, I agree that the L ibrary shal l make it f ree l y ava i lab le for reference and study. I further agree that permission for extensive copying of th is thesis for scho lar ly purposes may be granted by the Head of my Department or by his representat ives. It is understood that copying or pub l i ca t i on of th is thesis for f inanc ia l gain sha l l not be allowed without my writ ten permission. Department of The Univers i ty of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 pate flr^r 3 i i ABSTRACT This study was conducted to i d e n t i f y a s p e c t s of the ecology of the g r i z z l y bear (Ursus aretos) and black bear (Orsus americanus) i n c o a s t a l B r i t i s h Columbia f o r both r e s e a r c h and management purposes. Information on the f e e d i n g ecology and h a b i t a t use of black and g r i z z l y bears was c o l l e c t e d during f i e l d s t u d i e s conducted i n 1976 and 1977. T r a i l s were cut i n t o the study area and s y s t e m a t i c a l l y t r a v e l l e d to c o l l e c t s c a t s and other s i g n . Bears were trapped and subseguently monitored with t e l e m e t r y . The study of black and g r i z z l y bear movements was c o n s t r a i n e d by the l o g i s t i c d i f f i c u l t i e s of the coast. F i v e g r i z z l i e s were l o c a t e d a t o t a l of 36 times and f o u r black bears a t o t a l of 42 times. E x t e n s i v e o v e r l a p i n the use of space o c c u r r e d . Movement between watersheds i n c o a s t a l B r i t i s h Columbia o c c u r s , but the extent of t r a v e l i s unknown. Marking behaviour of bears on t r e e s and on the ground was d e s c r i b e d . No r e l i a b l e method was found to d i s t i n g u i s h i n d i v i d u a l bears from other bears using t h e i r t r a c k s . Two c r i t e r i a were found which separate the t r a c k s of g r i z z l i e s from those of b l a c k bears. The toes i n g r i z z l y t r a c k s are e i t h e r very c l o s e together or j o i n e d , whereas the t o e s i n black bear t r a c k s are separate. A l e s s r e l i a b l e c r i t e r i a i s t h a t the f i f t h toe i n a g r i z z l y t r a c k does not r e g i s t e r below the m i d l i n e of the other f o u r t o e s , whereas i n a b l a c k bear i t does.. Scats c o l l e c t e d from May through September averaged 88 percent vegetable matter and 12 percent salmon (Qncorhynchus sp.) and i n s e c t s . The bears i n the study area consumed 21 d i f f e r e n t r e c o g n i z a b l e foods. The bulk of the i i i d i e t came from e i g h t of these foods: sedge (Carex sp.)» l a d y f e r n (Athyrium f i l i x - f e m i n a ) , spiny wood f e r n ( D r y o p t e r i s a u s t r i a e a) , h u c k l e b e r r y (Vaccinium sp.) , salmonberry (Rubus g p e c t a b i l i s ) , d e v i l ' s c l u b (Oglopanax horridum) , i n s e c t s , and salmon. The s p r i n g and e a r l y summer d i e t c o n s i s t e d of sedge, herbs and f e r n s , and the c u r r e n t year growth of shrubs. F r u i t s and salmon were used e x t e n s i v e l y i n August and September. As the green bear foods mature, the l e v e l s of crude p r o t e i n , crude f a t , s o l u b l e carbohydrates, and moisture content decreased, while crude f i b r e i n c r e a s e d and gross energy and t o t a l ash remained c o n s t a n t . . For salmonberry, d e v i l ' s c l u b , and h u c k l e b e r r y , the f i b r e : p r o t e i n r a t i o was lower i n the p a r t of the p l a n t which the animal consumed than i n t h a t which i t d i d not consume. As the b e r r i e s matured, the l e v e l s of crude p r o t e i n and crude f i b r e decreased, and the l e v e l s of crude f a t , s o l u b l e carbohydrate, and moisture content i n c r e a s e d . A simple model was presented which d i s c u s s e s the e n e r g e t i c importance of salmon and b e r r i e s t o the c o a s t a l g r i z z l y bear. The v e g e t a t i o n i n the study area was grouped i n t o types and the bear foods i n these types were d e s c r i b e d . The i m p l i c a t i o n s of the r e s u l t s of t h i s study to the f u t u r e management of bears on the coast of B r i t i s h Columbia were d i s c u s s e d . i v TABLE OF CONTENTS-ABSTRACT i i L i s t Of Tables v i i i L i s t Of F i g u r e s i x Acknowledgements x i i CHAPTER 1 - I n t r o d u c t i o n 1 CHAPTER 2 - The Study Area 4 2.1. L o c a t i o n 4 2.2. Topography 4 2. 3. V e g e t a t i o n And Climate 4 2. 4. H i s t o r y 7 CHAPTER 3 - Movements And H a b i t a t Use 9 3.1. I n t r o d u c t i o n 9 3. 2. Methods 10 3.2.1. Trapping And Immobilizing Bears 10 3.2.2. Tagging And Monitoring Bears 11 3.2.3. Daybed Records 12 3.2.4.. Measurement Of Bear Food A v a i l a b i l i t y And Typing Of H a b i t a t 12 3. 3. R e s u l t s 15 3.3.1. Movements Of Bears - , 15 3.3.1.1. G r i z z l y Bears 15 3.3.1.2. Black Bears 20 3.3.1.3. I n t e r - v a l l e y Movement 26 3.3.2. Importance Of Vegetation Communities As Sources Of Bear Food 27 3.3.3. Resting Cover 28 3.4. D i s c u s s i o n 32 CHAPTER 4 - Marking Behaviour . ... 36 4. 1. I n t r o d u c t i o n . 36 4.2. Methods 38 4. 3. R e s u l t s 40 4.3.1. D e s c r i p t i o n Of Bear Marking Trees 40 4.3.2. S e l e c t i o n Of Marking Trees By Bears ... 43 4.3.3. Frequency Of Use Of Trees By Bears .... 43 4.3.4. D i s t r i b u t i o n And Abundance Of Bear Trees 46 4.3.5. Ground Marking Behaviour 48 4.4. D i s c u s s i o n 49 CHAPTER 5 - The Use Of Tracks In The I d e n t i f i c a t i o n And Census Of Bears - 53 5. 1. I n t r o d u c t i o n 53 5.2.. Methods 55 5.3. R e s u l t s • •-• 57 5.4. D i s c u s s i o n 65 CHAPTER 6 - Food Habits 67 6.1. I n t r o d u c t i o n 67 6.2. Methods 69 6.2.1. Scat C o l l e c t i o n 69 6.2.2. Scat A n a l y s i s 70 6.2.3. Bear Food C o l l e c t i o n 71 6.2.4. N u t r i e n t Analyses 71 6.3. R e s u l t s 72 6.3.1. Seasonal Use Of Food 72 6.3.1.1. Spring And E a r l y Summer 73 v i 6.3.1.2. Summer And F a l l 78 6.3.2. N u t r i e n t C h a r a c t e r i s t i c s Of Bear Foods 82 6.3.2.1. Overview Of Re s u l t s 82 6.3.2.2- N u t r i e n t Content Of Bear Foods 89 6.3.3. Food A v a i l a b i l i t y 93 6.4. D i s c u s s i o n 93 6.4.1. Comparison Of Food Habits With Other Areas 93 6.4.2. I m p l i c a t i o n s Of H i b e r n a t i o n To Feeding Ecology . 99 6.4.2.1. I n t r o d u c t i o n - — ... 99 6.4.2.2. The Model 101 6.4.2.3. I m p l i c a t i o n s Of The Model 104 CHAPTER 7 - Adaptation Of Bears To Energy A v a i l a b i l i t y .... 108 CHAPTER 8 - Management Recommendations 113 LITERATURE CITED 119 Appendix I: L i s t of common and l a t i n names used i n t h e s i s 129 Appendix I I : L i s t of s p e c i e s found i n the Ahnuhati watershed during 1976 and 1977 . 131 Appendix I I I : Seasonal s h i f t s by the use of foods i n Ahnuhati black and g r i z z l y bears during 1976 and 1977 .... 136 Appendix IV: N u t r i e n t values of bear foods by season .... 141 Appendix V: Example of determination of net energy from the energy a v a i l a b l e i n coho salmon 148 v i i Appendix VI: Body measures and i m m o b i l i z a t i o n p a r t i c u l a r s f o r bears captured i n the Ahnuhati during 1976 and 1977 149 Appendix VII: Frequency and percent cover of understory s p e c i e s i n 14 plant communities i n the Ahnuhati watershed, 1977 150 v i i i LIST OF TABLES Table 1: A v a i l a b i l i t y of bear food i n the Ahnuhati watershed, 1977 29 Table 2: C h a r a c t e r i s t i c s of t r e e s marked by bears i n the Ahnuhati watershed ........................... 42 Table 3: Frequency of occurrence o f markinq by t r e e s p e c i e s among 18 bear t r e e s i n the Ahnuhati watershed 44 Table 4: C h a r a c t e r i s t i c s of g r i z z l y and black bear paws 58 Table 5: Frequency of occurrence of two paw c h a r a c t e r i s t i c s which d i s t i n g u i s h black bears from g r i z z l y bears 61 Table 6: The r a t i o of n a i l l e n g t h t o forpad width as a d i s t i n g u i s h i n g c h a r a c t e r i s t i c of bear t r a c k s 64 i x LIST OF FIGURES F i g u r e 1: The study area 5 F i g u r e 2: The upper Ahnuhati River 6 F i g u r e 3: L o c a t i o n s of a d u l t female g r i z z l y bear No. 21 and her t h r e e cubs during 1977 i n the Ahnuhati watershed 16 F i g u r e 4: L o c a t i o n s of a d u l t female g r i z z l y bear No. 7P d u r i n g 1977 i n the Ahnuhati watershed ..................................... 17 F i g u r e 5: L o c a t i o n s of a d u l t female g r i z z l y bear No. 7C and her cub d u r i n g 1977 i n the Ahnuhati watershed - 18 F i g u r e 6: L o c a t i o n s of a d u l t male g r i z z l y bear No. 12/22 during 1976 and 1977 i n the Ahnuhati watershed ... 19 F i g u r e 7: L o c a t i o n s of s i g h t i n g s of unmarked bears i n the Ahnuhati watershed during 1976 and 1977 21 F i g u r e 8: L o c a t i o n s of subadult female black bear No. 20 d u r i n g 1976 and 1977 i n the Ahnuhati watershed 22 F i g u r e 9: L o c a t i o n s of subadult female black bear No. 18 d u r i n g 1976 and 1977 i n the Ahnuhati watershed 23 F i g u r e 10: L o c a t i o n s of a d u l t male black bear No. 19/23 during 1976 i n the Ahnuhati watershed 24 X F i g u r e 11: L o c a t i o n s of subadult male black bear No. 4 during 1977 i n the Ahnuhati watershed 25 F i g u r e 12: V e g e t a t i o n communities i n the v a l l e y bottom of the Ahnuhati watershed map ^vv pocket Fi g u r e 13: D i s t r i b u t i o n of c o n c e n t r a t i o n s of spawning salmon and s u b a l p i n e sedge meadows i n the Ahnuhati watershed during 1976 and 1977 ........ 30 Fi g u r e 14: A bear-caused s c a r on an Amabilis f i r i n the Ahnuhati study area 41 F i g u r e 15: Frequency d i s t r i b u t i o n of s i z e c l a s s e s of bear marking t r e e s at the time of marking 45 F i g u r e 16: D i s t r i b u t i o n of bear marking t r e e s i n the Ahnuhati watershed 47 F i g u r e 17: Parameters of bear t r a c k s which were measured and a sample data c o l l e c t i o n sheet 56 Fi g u r e 18: Two f e a t u r e s which d i s t i n g u i s h black from g r i z z l y bear forepaws 62 F i g u r e 19: Seasonal s h i f t s i n the use of food by b l a c k and g r i z z l y bears i n the Ahnuhati study area, 1976 74 F i g u r e 20: Seasonal s h i f t s i n the use of food by b l a c k and g r i z z l y bears i n the Ahnuhati study area, 1977 76 x i F i g u r e 21: Seasonal s h i f t s i n the n u t r i e n t c o n c e n t r a t i o n s of salmonberry (Rubus -s p e c t a b i l i s ) . . . .... 83 F i g u r e 2 2: Seasonal s h i f t s i n the n u t r i e n t c o n c e n t r a t i o n s of combined samples of lady f e r n (Athyrium f i l i x - f emina) and spiny wood f e r n ( D r y o p t e r i s a u s t r i a c a ) 84 F i g u r e 23: Seasonal s h i f t s i n the n u t r i e n t c o n c e n t r a t i o n s of d e v i l ' s c l u b (Q£lo£anax h o r r i d urn) 85 F i g u r e 24: Seasonal s h i f t s i n the n u t r i e n t c o n c e n t r a t i o n s of skunk cabbage (Lysic h i t u m americanum) 86 F i g u r e 2 5: Seasonal s h i f t s i n the n u t r i e n t c o n c e n t r a t i o n s of combined samples of h u c k l e b e r r y (Vaccinium o y a l i f o l i u m and V. alaskaense) 87 F i g u r e 26: Seasonal s h i f t s i n the n u t r i e n t c o n c e n t r a t i o n s of sedge (Carex sp.) - 88 F i g u r e 27: Comparison of c l a s s e s of bear foods i n the Ahnuhati with e x i s t i n g s t u d i e s of food h a b i t s of bears i n c o a s t a l ecosystems 94 F i g u r e 28: Reduction of n u t r i e n t s a v a i l a b l e i n food i n t o the net energy f o r f a t pr o d u c t i o n ........ 105 x i i ACKNOWLEDGEMENTS I t i s with pleasure t h a t I acknowledge the many people who have a s s i s t e d with t h i s study. I would f i r s t l i k e to thank my s u p e r v i s o r . Dr. Fred B u n n e l l , f o r h i s generous a s s i s t a n c e and support i n a l l phases of t h i s study. I g r a t e f u l l y acknowledge the a s s i s t a n c e provided by my committee members: Drs. A l l a n Chambers, D a r y l l Hebert, Chuck J o n k e l , and David Shackleton. Funding, equipment, and t r a n s p o r t a t i o n were provided by the B.C. F i s h and W i l d l i f e Branch, B r i t i s h Columbia F o r e s t Products, the U n i v e r s i t y of B r i t i s h Columbia, and the Canadian W i l d l i f e S e r v i c e . Funds f o r l a b a n a l y s i s were provided by Grant Hazelwood of the B.C. Parks Branch and David Shackleton of U.B.C. I a p p r e c i a t e the f i e l d a s s i s t a n c e t h a t I r e c e i v e d from Rick E l l i s , Susan F l e c k , D a r y l l Hebert, Bob Kosovic, Dan Lay, S a l l y Leigh-Spencer, Murray Shunter, and Barney Smith. Bud Smith, Graham T u r n b u l l , and L a r r y Johnson of the B.C. F i s h and W i l d l i f e Branch provided v a l u a b l e l o g i s t i c support to f i e l d crews. Dr. Dick Beames p a t i e n t l y d i r e c t e d me i n t o r e l e v a n t areas of the domestic animal l i t e r a t u r e . Dr. Steven Herrero and David Hamer provided u s e f u l c r i t i c i s m of Chapter 6. I am g r a t e f u l to Alton Harestad f o r h i s generous a s s i s t a n c e i n i n t e r p r e t i n g the data. Ms. C a t h i Lowe typed the t h e s i s and to her I am g r a t e f u l . I would l i k e to thank Fred B u n n e l l , Rick E l l i s , Susan F l e c k , and D a r y l l Hebert f o r the moral support and x i i i f a i t h which they provided throughout t h i s study. Above a l l , I would l i k e to thank Susan Fleck who c h e e r f u l l y j o i n e d i n a l l phases of the study and c o n t r i b u t e d many v a l u a b l e o b s e r v a t i o n s . I am g r a t e f u l f o r the many hours of her l a b work and f i g u r e d r a f t i n g . She was a c o n g e n i a l companion d u r i n g the long months of our l i f e i n the r a i n f o r e s t when c o n d i t i o n s were f r e q u e n t l y f a r from i d e a l . T h i s study i s as much hers as i t i s mine. 1 CHAPTER 1 - INTRODUCTION Through the ages, the g r i z z l y b e a r 1 has occupied a s p e c i a l p l a c e i n Man's mind and, as technology takes us f a r t h e r i n t o an a r t i f i c i a l world, the g r i z z l y bear w i l l p e r s i s t as a v a l u a b l e symbol of a l l t h a t i s w i l d , i f i t s ecology and management are c a r e f u l l y c o n s i d e r e d now (Herrero 1970, 1976; Martinka 1971, 1976; Kurten 1976; Jonkel and Servheen 1977). The h i s t o r y of the e c o l o g i c a l r e l a t i o n s h i p between men and bears has been marked with c o n f l i c t ( S t o r e r and T e v i s 1955). People at the l o c a l , p r o v i n c i a l , n a t i o n a l , and i n t e r n a t i o n a l l e v e l p r e s e n t l y are concerned f o r the f u t u r e of t h i s s p e c i e s (Cowan 1972). Bear re s e a r c h has been ongoing f o r more than a century but only r e c e n t l y has i t focused on the impacts of human development (see f o r example J o n k e l 1977 and 1978, Smith 1978). I f e f f e c t i v e management i s to occur, then i n f o r m a t i o n i s needed on the p o t e n t i a l impact of v a r i o u s types of development on bear p o p u l a t i ons. General e c o l o g i c a l p a t t e r n s of black and g r i z z l y bears are c o n s i s t e n t over wide g e o g r a p h i c a l areas. However, p a r t i c u l a r a s pects of t h e i r ecology vary (compare Bunnell and T a i t 1978, Craighead et a l . 1974, Pearson 1975, Nagy and R u s s e l l 1978, and Glenn and M i l l e r 1977). i Common and l a t i n names are given i n Appendix I. 2 In the c o a s t a l ecosystems of B r i t i s h Columbia, i n f o r m a t i o n on the b a s i c ecology of black and g r i z z l y bears i s l a c k i n g . T h i s t h e s i s p r e s e n t s a study which was i n i t i a t e d i n March of 1976. F i e l d work was done during the p e r i o d s May t o September, October, and December of 1976; March and May t o October of 1977. The primary o b j e c t i v e s were t o d e s c r i b e the food h a b i t s , h a b i t a t use, and movements of black and g r i z z l y bears i n c o a s t a l B r i t i s h Columbia. The major emphasis was on food h a b i t s and f e e d i n g ecology. The s e p a r a t i o n of bear s i g n i n the f i e l d and marking behaviour of bears a l s o are d i s c u s s e d . T h i s i n f o r m a t i o n , together with t h a t of Smith (1978), provide a p r e l i m i n a r y b a s i s f o r management d e c i s i o n s . This study examined aspects of both black and g r i z z l y bear ecology but the emphasis from the o u t s e t was on g r i z z l y bears, p r i m a r i l y because they appear more s e n s i t i v e to d i s t u r b a n c e . Information was c o l l e c t e d on black bears because, i n c o a s t a l B.C., they are an i n t e g r a l p a r t of the ecology of g r i z z l y bears. As the study progressed, i t s scope narrowed i n response to b a s i c l i m i t a t i o n s of working i n c o a s t a l h a b i t a t s . R a p i d l y f l u c t u a t i n g r i v e r water l e v e l s , dense r a i n f o r e s t , and rugged topography r e s t r i c t e d our m o b i l i t y . The r e s u l t s are l i m i t e d to the p e r i o d of May t o September (1976, 1977) f o r the Ahnuhati watershed o n l y . The r e s u l t s presented i n t h i s t h e s i s can be expected to vary between seasons, between years, and between c o a s t a l watersheds as c o n d i t i o n s change. 3 The reader i s i n t r o d u c e d to s p e c i f i c a s p e c t s and s p e c i f i c o b j e c t i v e s of t h i s study a t the beginning of each chapter. 4 CHAPTER 2 - THE STUDY AREA 2-1. L o c a t i o n The study was concentrated w i t h i n the Ahnuhati River v a l l e y which flows i n a s o u t h - e a s t e r l y d i r e c t i o n i n t o Knight I n l e t , B r i t i s h Columbia ( l o n g i t u d e 50° 33«; l a t i t u d e 126° 30»). Knight I n l e t i s l o c a t e d 320 km north of Vancouver and extends approximately 112 km i n l a n d . The Ahnuhati R i v e r empties i n t o Knight I n l e t 88 km i n l a n d ( F i g . 1) . 2.2. Topography The Ahnuhati R i v e r watershed, l i k e many i n the coast range, i s rugged. E l e v a t i o n s range from 50 t o 2386 m. The v a l l e y i s deep, narrow, and f l a t bottomed and l a r g e rocky outcrops are common ( F i g . 2). The f u l l , average r e l i e f i s r e a l i z e d i n l e s s than a k i l o m e t e r of h o r i z o n t a l d i s t a n c e p e r p e n d i c u l a r to the r i v e r and thus most v a l l e y w a l l s cannot be f r e e climbed. The i n f l u e n c e of g l a c i a t i o n on topography i s apparent and i s d e s c r i b e d by R u s s e l l (1974). 2.3. Vegetation and c l i m a t e The study area l i e s w i t h i n the c o a s t a l western hemlock and the mountain hemlock zones of K r a j i n a (1965). V a r i a t i o n s i n v e g e t a t i o n are a s s o c i a t e d with d i f f e r e n c e s i n landforms, drainage, and e l e v a t i o n . The p l a n t s , mammals, b i r d s , and f i s h encountered i n the study area are l i s t e d i n Appendix I I . The 5 F i g u r e 2: T h e u p p e r A h n u h a t i r i v e r 7 c l i m a t e i s humid throughout the year and annual p r e c i p i t a t i o n v a r i e s from 152 cm i n most low e l e v a t i o n areas t o 432 cm at high a l t i t u d e s (Weiss pers. comm.). The average mean temperature v a r i e s between 7 and 9°C with maximum temperatures approaching 38°C and minimums approaching -28°C (Weiss pers. comm.). The f r o s t f r e e p e r i o d v a r i e s between one month ( J u l y ) , to four months (June through September). 2.4. H i s t o r y These comments are paraphrased from Smith (1978). While no q u a n t i t a t i v e k i l l s t a t i s t i c s are a v a i l a b l e f o r g r i z z l y bears i n Knight I n l e t u n t i l a f t e r 1960, present bear p o p u l a t i o n s i n t h i s area probably have been i n f l u e n c e d by hunting. P r i o r to 1930, i t appears t h a t g r i z z l i e s were not k i l l e d i n l a r g e numbers i n Knight I n l e t . W. Gibbons (pers. comm. to B. Smith) observed t h a t bear hunting i n c r e a s e d i n the 1930's due to the i n c r e a s e s i n l o g g i n g , i n homesteaders i n the Campbell River area, and i n guided American and European hunters. E x p l o i t a t i o n of the I n l e t bears i n c r e a s e d d u r i n g the 1940's and 1950's and a marked change i n bear-man r e l a t i o n s h i p s o c c u r r e d . S p e c i f i c a l l y , timber and salmon h a r v e s t i n g i n c r e a s e d , with an a s s o c i a t e d i n c r e a s e i n shore-based l o g g i n g camps and f l o a t i n g f i s h c a n n e r i e s (L. Darke pers. comm. t o B. Smith). Refuse a t these s i t e s a t t r a c t e d bears, many o f which probably were shot. C o n c u r r e n t l y , bears were k i l l e d f o r s p o r t . While i t i s not p o s s i b l e t o est i m a t e the sport k i l l , i t appears high as W. Gibbons r e p o r t e d k i l l i n g "over a hundred" g r i z z l i e s over a 10 year p e r i o d and s t a t e d t h a t many of the 4 0 men i n the upper Knight I n l e t area a t t h i s time a l s o 8 k i l l e d l a r g e numbers of g r i z z l i e s . The g r i z z l i e s of Knight I n l e t may have s u s t a i n e d heavy m o r t a l i t y d u r i n g the l a s t 40 years although i t i s u n l i k e l y t h a t bears r e s i d e n t i n the Ahnuhati were v u l n e r a b l e t o the same degree as those r e s i d e n t i n the head of the I n l e t . Since 1960, the l e g a l k i l l of bears i n the I n l e t has hot been l a r g e (Hebert pers. comm.). 9 CHAPTER 3 - MOVEMENTS AND HABITAT USE 3-1. I n t r o d u c t i o n While the movements of bears have been documented f o r s e v e r a l i n t e r i o r ecosystems (see f o r example Pearson 1975, Craighead 1976, Nagy and R u s s e l l 1978, Jon k e l 1978), data on movements i n c o a s t a l ecosystems are l i m i t e d . The c o n t i n u i n g expansion of l o g g i n g and i t s a s s o c i a t e d a c t i v i t i e s i n c o a s t a l B r i t i s h Columbia has been viewed by many as a t h r e a t t o the s u r v i v a l of the c o a s t a l ecotype of the g r i z z l y bear (see R u s s e l l 1974). To understand and e v a l u a t e the p o t e n t i a l impact of lo g g i n g on g r i z z l y h a b i t a t , i n f o r m a t i o n i s needed on g r i z z l y h a b i t a t requirements and the e x t e n t of n a t u r a l movements of t h i s s p e c i e s . I t i s not p o s s i b l e , f o r example, to assess the r e l a t i v e impact of d i f f e r e n t c l e a r c u t s i z e s on g r i z z l i e s without f i r s t knowing what p r o p o r t i o n of t h e i r home ranges t h e c l e a r c u t s r e p r e s e n t . In t h i s chapter, I present p r e l i m i n a r y i n f o r m a t i o n on the c o a s t a l movements and migration of marked bears and t h e i r h a b i t a t requirements f o r r e s t i n g and f e e d i n g . H a b i t a t requirements f o r r e p r o d u c t i o n and denning are not t r e a t e d . S p e c i f i c o b j e c t i v e s of the movements and h a b i t a t use study were: 1. t o document the n a t u r a l movements of black and g r i z z l y bears i n c o a s t a l B r i t i s h Columbia 2. t o d e s c r i b e c o a s t a l h a b i t a t i n terms of the a v a i l a b i l i t y of bear food 10 3. to d e s c r i b e the h a b i t a t s e l e c t e d by c o a s t a l black and g r i z z l y bears f o r r e s t i n g 3.2. Methods 3.2.1. Trapping and i m m o b i l i z i n g bears The A l d r i c h f o o t snare was used i n both cubby and t r a i l s e t s as d e s c r i b e d by J o n k e l and Cowan (1971) and Flowers (1977) to capture f i v e g r i z z l y and f o u r black bears. One g r i z z l y and one black bear were r e c a p t u r e d . F i f t y - e i g h t percent of a l l f i e l d hours were spent c u t t i n g t r a i l s and t r a p p i n g bears. The average t r a p success was 88 t r a p n i g h t s per capture where one t r a p n i g h t i s one snare s e t f o r one 24 hour p e r i o d . Bears were not i n j u r e d beyond s m a l l l a c e r a t i o n s on the snared paw. Bears were immobilized with e i t h e r M99 (Etorphine h y d r o c h l o r i d e ) or Sernylan ( P h e n c y c l i d i n e h y d r o c h l o r i d e ) using a 5 cc d a r t f i r e d from a Cap-chur gun (Palmer Chemical and Equipment Co., D o u g l a s v i l l e , G e o r g i a ) . Body weights were estimated p r i o r to i m m o b i l i z a t i o n and e i t h e r M99 or Sernylan was administered a t a dose of 1 mg per 45 kg body weight, or 35 mg per kg body weight, r e s p e c t i v e l y . The a n t a g o n i s t M 50-50 (Diprenorphine h y d r o c h l o r i d e ) was administered a t a dose of 2 mg per 45 kg to r e v i v e bears immobilized with M99. P e n i c i l l i n and Azium (Dexamethalsone 21-phosphate) were r o u t i n e l y a d m i n i s t e r e d to reduce the p o s s i b i l i t y of i n f e c t i o n and trauma. These drugs were g i v e n e i t h e r subcutaneously or i n t r a m u s c u l a r i l y with d i s p o s a b l e p l a s t i c s y r i n g e s f i t t e d with 20 gauge needles. I m m o b i l i z a t i o n data f o r each capture are given i n Appendix VI. 11 3-2.2. Tagging and monitoring bears Bears were f i t t e d with l i t h i u m powered r a d i o - t r a n s m i t t e r s mounted on wide nylon webbing (Model LP-2280-MD, W i l d l i f e M a t e r i a l s , I n c . , Carbondale, I l l i n o i s 62901). Bears removed these c o l l a r s on t h r e e o c c a s i o n s and on three other o c c a s i o n s the t r a n s m i t t e r s f a i l e d s h o r t l y a f t e r i n s t a l l a t i o n . T r a n s m i t t e r - c o l l a r s were r i v e t e d or b o l t e d i n place and a 15 cm l e n g t h of c o l o u r e d , 3 cm wide Tiger-web nylon webbing was attached with an ear tag t o the base of the ear. Body measurements and weights a r e i n c l u d e d i n Appendix VI. Not a l l measures were recorded f o r a l l bears. Radio-instrumented bears were t r a c k e d both from the ground and the a i r with a model TRX-24 ra d i o r e c e i v e r ( W i l d l i f e M a t e r i a l s ) . Both n u l l and Model 23 Hy-Gain t h r e e element Yagi antennas were used f o r mobile t r a c k i n g . An 11 element Yagi antenna (Cushcraft Communications) was mounted on a 7 m aluminum pole and i n s t a l l e d at base camp to determine whether a bear was upstream or downstream of camp. Mon i t o r i n g from the ground was both d i f f i c u l t and time consuming because the bears moved g r e a t e r d i s t a n c e s than I was capable of moving and because the numerous rock c l i f f s r e f l e c t e d r a d i o - s i g n a l s and gave u n r e l i a b l e r e s u l t s . A e r i a l t r a c k i n g overcame these problems, but c o s t s r e s t r i c t e d the time a v a i l a b l e t o l e s s than three hours per month. 12 Bears were l o c a t e d by t r a p p i n g , s i g h t i n g , or t r i a n g u l a t i o n using f i v e r a d i o - l o c a t i o n s or more. The l o c a t i o n data are not t r e a t e d i n a d e t a i l e d f a s h i o n because of the s m a l l sample s i z e and because attempts t o l o c a t e r a d i o - c o l l a r e d bears were o f t e n u n s u c c e s s f u l and the whereabouts of bears were t h e r e f o r e unknown. 3.2.3. Daybed records The l o c a t i o n , date, a s s o c i a t e d s i g n , canopy c l o s u r e , h a b i t a t type, s u b s t r a t e , and d i s t a n c e from feeding s i g n were recorded f o r daybeds encountered during the study. 3.2.4. Measurement of bear food a v a i l a b i l i t y and t y p i n g of h a b i t a t Understory and non-forested areas were sampled using nested c i r c u l a r p l o t s which had a common ce n t e r . The s p e c i e s composition of each sampling s i t e was de r i v e d from a c i r c u l a r p l o t with a r a d i u s of 5.6 m and an area of 100 m2. The average height of each s p e c i e s was recorded and t h i s h e i g h t was used to determine which p l o t s i z e would be used to es t i m a t e percent cover f o r t h a t p a r t i c u l a r s p e c i e s : Height c l a s s Radius Area 0.0 - 0.49 m 1.8 m 10 m2 0.5 - 1.49 m 2.5 m 20 m2 1.5 - 2.99 m 3.5 m 40 m2 3.0 - 4.99 m 5.0 m 80 m2 13 5.0 + m 5.6 m 100 m2 The percent cover recorded f o r each s p e c i e s was a v i s u a l e s timate. At each s i t e , the f o l l o w i n g were recorded - l o c a t i o n , s l o p e , a s p e c t , t e r r a i n , micro-topography, moisture regime, s t o n i n e s s , percent crown c l o s u r e , percent t o t a l v e g e t a t i v e cover, and any a s s o c i a t e d bear a c t i v i t y ( i . e . evidence of fe e d i n g , s c a t , bed, t r e e , and t r a i l ) . U s u a l l y the bears only consumed a s p e c i f i c p a r t of each food s p e c i e s . I f a food p l a n t occurred a t a s i t e , then the e d i b l e p a r t s of the plant were counted. The s i z e of the area from which these p a r t s were recorded was dependent on the h e i g h t c l a s s of the food p l a n t s concerned. Samples of bear foods were c o l l e c t e d , counted, and weighed. Bear food counts were not obtained when foods were senescent (e.g. no b e r r i e s i n September p l o t s ) . Average percent cover and frequency of occurrence were c a l c u l a t e d f o r a l l s p e c i e s i n each v e g e t a t i o n type. Sampling was c o n f i n e d to areas of the v a l l e y bottoms of the Ahnuhati and Tanockteuch r i v e r s . One s u b a l p i n e s i d e - v a l l e y was sampled, but no r e p l i c a t e p l o t s were obtained. To c h a r a c t e r i z e v e g e t a t i o n t y p e s , p l o t s with s i m i l a r understory were grouped t o g e t h e r . These groupings were t e s t e d f o r s i m i l a r i t y using Motyka's s i m i l a r i t y index (ISMO) (Mueller-Dombois and E l l e n b e r g 1974): ISMO = (2 MW/MA + MB) 100 Where MW i s the sum of the s m a l l e s t percent cover value of s p e c i e s common to p l o t s A and B, MA i s the sum of percent cover values from p l o t A, and MB i s the sum of percent cover values 14 from p l o t B. P l o t s with ISMO > 50 were assigned t o the same v e g e t a t i o n communities. Vegetation communities (types) were mapped a t a s c a l e of 2.5 cm t o 20 1 m using 46 by 46 cm enlargements of 20 c h a i n to the i n c h a i r photos. Supplementary i n f o r m a t i o n from f i e l d notes a s s i s t e d the d e l i n e a t i o n of borders between v e g e t a t i o n communities. The area of each community was determined with a g r i d o v e r l a y . The communities i n Table 1 and Appendix VII are l a b e l l e d with i n t e g e r s . Those types with the p r e f i x 11M" are mixes which are composed p r i m a r i l y of the types i n d i c a t e d by the i n t e g e r s f o l l o w i n g the p r e f i x (e.g. M6-7 i s a mix composed p r i m a r i l y of communities 6 and 7 ) . The f o l l o w i n g procedure was used to d e r i v e an estimate (Hx), of the kg/ha of bear food (x) which occurred i n each h a b i t a t type: K K H x = ( . ^ B i / A i)(.2 1 A ^ 10,000 C/D i K2 Where: A = percent cover of bear food (x) i n p l o t K = number of p l o t s c o n t a i n i n g bear food (x) i n the h a b i t a t type B = number of p l a n t p a r t s (e.g. shoots, b e r r i e s ) counted i n each p l o t C = wet weight (kg) of one p l a n t part D = area (m2) of one p l o t 15 3. 3. . R e s u l t s 3.3.1. Movements of bears 3.3.1.1. G r i z z l y bears I l o c a t e d t h r e e i n d i v i d u a l g r i z z l y bears and two f a m i l y groups a t o t a l of 35 times ( F i g s . 3 to 6). Adult female g r i z z l y bear No. 20 was captured on J u l y 31 1977 and not l o c a t e d again. Adult female g r i z z l y bear No. 21 was captured with her three cubs on J u l y 28 1977 and l o c a t e d e i g h t times d u r i n g August and September. The g r e a t e s t d i s t a n c e between her l o c a t i o n p o i n t s was 9 km ( F i g . 3). Adult female g r i z z l y bear No. 7P was captured on June 10 1977 at a lowland sedge meadow s i t e . Adult male No. 12/22 was with her at the t r a p s i t e and, s i n c e the capture date was w i t h i n the breeding season d e s c r i b e d elsewhere (see f o r example Hensel e t a l . 1969), male 12/22 was b e l i e v e d t o be 7P's mate. Female No. 7P was l o c a t e d f i v e times during J u l y through September ( F i g . 4) . An i n t e n s i v e a e r i a l search f o r t h i s bear on August 20 f a i l e d t o l o c a t e her i n the Ahnuhati and Tanockteuch watersheds. Since her r a d i o was f u n c t i o n i n g both before and a f t e r t h i s date, she probably was not i n the watershed. Thus, the d i s t a n c e between l o c a t i o n s i n F i g u r e 4 probably underestimates her a c t u a l movement. Adult female g r i z z l y No. 7C was captured with her cub on August 3 1977 and was l o c a t e d f i v e times d u r i n g August and September of 1977 ( F i g . 5) . 16 F i g u r e . 3 : L o c a t i o n s o f a d u l t f e m a l e g r i z z l y b e a r N o . 21 a n d h e r t h r e e c u b s d u r i n g 1977 i n t h e A h n u h a t i w a t e r s h e d . C c a p t u r e s i t e • A u g u s t v camp A S e p t e m b e r 17 F i g u r e 4 : L o c a t i o n s o f a d u l t f e m a l e g r i z z l y b e a r N o . 7P d u r i n g 1977 i n t h e A h n u h a t i w a t e r s h e d . C c a p t u r e s i t e ^ J u n e v camp © J u l y ' • A u g u s t A S e p t e m b e r 18 v camp A S e p t e m b e r F i g u r e 6 : L o c a t i o n s o f a d u l t m a l e g r i z z l y b e a r N o . 1 2 / 2 2 d u r i n g 1976 a n d 1977 i n t h e A h n u h a t i w a t e r s h e d . C c a p t u r e s i t e A J u n e v camp ® J u l y • A u g u s t 20 Adult male g r i z z l y bear No. 12/22 was captured on June 24 1976 and again on August 5 1976. T h i s bear was never l o c a t e d s u c c e s s f u l l y by r a d i o - t r a c k i n g , but 13 l o c a t i o n s were o b t a i n e d f o r 1976 and 1977 from s i g h t i n g s , h i s c h a r a c t e r i s t i c t r a c k s , and t r a p l o c a t i o n s ( F i g . 6). The movements of a l l of the g r i z z l y bears overlapped each other ( F i g s . 3 t o 6). The t r a p i n f o r m a t i o n showed t h a t nine g r i z z l i e s (counting cubs) were using the i n t e n s i v e study area. In a d d i t i o n , t h r e e other a d u l t g r i z z l i e s were known to share the i n t e n s i v e study area ( F i g . 7) . 3.3.1.2. Black bears I l o c a t e d four black bears a t o t a l of 41 times ( F i g s . 8 to 11). Female black bear No. 20 (probably a subadult) was captured i n J u l y of 1976 and l o c a t e d on 13 o c c a s i o n s i n 1976 and 1977 ( F i g . 8 ) . A second b l a c k bear accompanied No. 20 at the t r a p s i t e and l e f t the area at our approach. The area of No. 20*3 den was l o c a t e d w i t h i n a 4 ha area on March 19 1977. She l e f t the den s h o r t l y t h e r e a f t e r . Female black bear No. 18 (probably a subadult) a l s o was captured i n J u l y of 1976 and was l o c a t e d on nine subsequent o c c a s i o n s ( F i g . 9). She removed her c o l l a r i n J u l y of 1977. Adult male black bear No. 19/23 was captured i n June of 1976 and again i n J u l y of 1976. During t h i s p e r i o d , 19/23 removed h i s c o l l a r . He was r e f i t t e d with a second c o l l a r and l o c a t e d 11 times ( F i g . 10). T h i s bear was not l o c a t e d a f t e r August of 1976 and h i s c o l l a r probably malfunctioned. Subadult black bear 21 F i g u r e 7 : L o c a t i o n s o f s i g h t i n g s o f u n m a r k e d b e a r s i n t h e A h n u h a t i w a t e r s h e d d u r i n g 1976 a n d 1977. © g r i z z l y b e a r O b l a c k b e a r v camp 22 F i g u r e 8 : L o c a t i o n s o f s u b a d u l t f e m a l e b l a c k b e a r N o . 20 d u r i n g 1976 a n d 1977 i n t h e A h n u h a t i w a t e r s h e d . C c a p t u r e s i t e s May • camp A J u n e p r o b a b l e d e n s i t e © J u l y M a r c h ' 1 9 7 7 • A u g u s t A S e p t e m b e r 23 C c a p t u r e s i t e v camp A J u n e © J u l y • A u g u s t F i g u r e 1 0 : L o c a t i o n s o f a d u l t m a l e b l a c k b e a r N o . 1 9 / 2 3 d u r i n g 1976 i n t h e A h n u h a t i w a t e r s h e d . C c a p t u r e s i t e A J u n e v camp © J u l y • A u g u s t 25 26 No. 4 was captured i n J u l y of 1976 and l o c a t e d on s i x o c c a s i o n s i n the c o n f i n e d area shown i n F i g u r e 11. The l o c a t i o n s of the fo u r black bears overlapped each other as w e l l as the l o c a t i o n s of the g r i z z l i e s ( F i g s . 3 to 10). Although s e v e r a l other black bears were s i g h t e d ( F i g . 7), they c o u l d not be separated r e l i a b l y s i n c e they were e n t i r e l y black i n c o l o u r ; the c o l o u r phase p r e d i c t e d by Cowan (1938). 3.3.1.3. I n t e r - v a l l e y movement Se v e r a l o b s e r v a t i o n s suggest t h a t g r i z z l y bears move between watersheds i n the Knight I n l e t area. On A p r i l 26 1976, the t r a c k s o f an a d u l t g r i z z l y bear were l o c a t e d i n the Kakweiken watershed and followed f o r 5 km with a h e l i c o p t e r over the height o f land i n t o the Kwalate watershed where the animal was s i g h t e d , thereby confirming i n t e r - v a l l e y movement- On J u l y 3 1977, an a d u l t g r i z z l y bear was observed i n a hanging v a l l e y of the Ahnuhati. On J u l y 4, i t s t r a c k s were followed up t o the height o f l a n d . The t r a c k s were melting and d i f f i c u l t t o f o l l o w but, at l a s t o b s e r v a t i o n , were heading towards H i l l s Creek, a s m a l l watershed e a s t of the Ahnuhati R i v e r . . On August 20 1977, a d u l t female g r i z z l y No. 7P a p p a r e n t l y was not present i n the watershed. . F u r t h e r i n d i r e c t evidence f o r i n t e r - v a l l e y movement i s the decrease i n g r i z z l y bear t r a c k s i n Sim River d u r i n g August (Smith 1978), and the corresponding i n c r e a s e i n g r i z z l y t r a c k s i n the Ahnuhati at t h i s time. One p o s s i b l e i n t e r p r e t a t i o n of t h i s i s t h a t the Sim R i v e r g r i z z l i e s are moving t o the Ahnuhati R i v e r f o r the l a r g e salmon run. The 27 salmon run i n Sim River i s s m a l l , and s i l t y water i n the main r i v e r l i m i t s the bears to c l e a r - f l o w i n g t r i b u t a r i e s (Smith pe r s . comm.). While the f o r e g o i n g suggests t h a t i n t e r - v a l l e y movement does occur, the extent of t h i s movement i s not known. At the time of f i n a l w r i t i n g , an a d u l t male g r i z z l y bear f i t t e d with a c o l l a r i n August 1978 near base camp i n the Ahnuhati was l o c a t e d near the mouth of Sim Creek, 11 km east of the Ahnuhati. Female No. 21 (and, presumably, her three cubs) was l o c a t e d i n the Kwalate watershed, 4 km west of the Ahnuhati (Langin and Leigh-Spencer, pers. comm.).. 3.3.2. Importance of v e g e t a t i o n communities as sources of bear food Sign of bear use was found i n a l l 15 p l a n t communities re c o g n i z e d i n the v a l l e y bottom of the Ahnuhati. These communities are d e s c r i b e d i n Appendix V I I . The r e l a t i v e importance of these communities as sources of bear food can be assessed on a seasonal b a s i s i n two ways: (i) by ranking the communities a c c o r d i n g to r e l a t i v e abundance of bear foods i n them (kg bear food/ha), and ( i i ) by ranking the communities i n p r o p o r t i o n to the t o t a l amount of food i n t h a t type i n the study area (kg) (Table 1). The f i r s t method g i v e s an i d e a which community i s most " p r o f i t a b l e " f o r a bear to fo r a g e i n . .The second method r e v e a l s the r e l a t i v e c o n t r i b u t i o n of the communities t o the t o t a l supply of a v a i l a b l e bear food, and i s probably more meaningful from the p e r s p e c t i v e of h a b i t a t p r o t e c t i o n . 28 The a b s o l u t e values of these two rankings are shown by h a b i t a t type (Table 1). The f o u r most p r o f i t a b l e communities f o r a bear to forage i n during s p r i n g a r e , i n descending o r d e r : 1, M5-6-7, M6, and 6. The d i s t r i b u t i o n of the 15 communities i n the Ahnuhati i s shown i n F i g u r e 12. The f o u r communities which c o n t r i b u t e the l a r g e s t biomass of s p r i n g bear food a r e , i n descending o r d e r : M5-6-7, 9, 1, and 6 ( F i g . 12, map pocket). During the time that bears are f o r a g i n g on b e r r i e s , the f o u r most p r o f i t a b l e h a b i t a t types t o forage i n are, i n descending order: M6-7, 7, M7, and M5-7 (Table 1, F i g . 12). The four p l a n t communities which c o n t r i b u t e the l a r g e s t amount of b e r r i e s a r e , i n descending order: 9, M5, M5-6-7, and M7. The areas of high c o n c e n t r a t i o n of spawning salmon are shown i n F i g u r e 13. These areas were f i s h e d h e a v i l y by bears as evidenced by the abundant salmon c a r c a s s e s and a s s o c i a t e d t r a c k s and daybeds. The d i s t r i b u t i o n of s u b a l p i n e sedge and grass areas i s shown a l s o i n F i g u r e 13. 3.3.3. R e s t i n g cover T h i r t y - s e v e n bear daybeds were examined i n the Ahnuhati R i v e r . Canopy c l o s u r e of 26 beds averaged 59.4 percent (range 0 to 100). S i x t e e n beds had g r e a t e r than 80 percent canopy c l o s u r e . A l l beds l o c a t e d during r a i n y weather had 80 percent crown c l o s u r e or higher and the bedding m a t e r i a l was much d r i e r than the surrounding area, suggesting t h a t bears seek refuge from heavy r a i n s . Frame (1974) observed t h a t black bears at Olson Creek l e f t the areas where they were f e e d i n g on salmon and Table 1. A v a i l a b i l i t y of bear food in the Ahnuhati watershed, 1977. A l l values are kilograms per hectare unless noted otherwise. Plant community type number Food species 1 2 3 4 5 6 7 8 9 H5 1 m M7 M5-7 M6-7 H5-6-7 2.14ha 1.29ha U.19ha 26.8ha 76.5ha 20.0ha 32.5ha 0.81ha 30.0ha 33.0ha 3.9ha 36.0ha 12.6ha 3.8ha 50. 3ha Total 1 (kg) 2 shoots of salmonberry t r t r t r 87.0 286.0 (16.0) 459.0 6.4 46.9 147.0 121.0 90.4 84.4 36,605 leaves of devil's club 15.6 786.0 13.0 (15.6) 2.6 96.0 360.0 210.0 15.6 286.0 (223.0) 30,829 sedge 8900.0 19,046 berries of salmonberry t r 2.2 224.0 (16.6) 54.3 6.7 15.0 (163.0) 126.0 (166.0) 59.3 13,803 skunk cabbage 62.4 1131.0 442.0 13,438 spiny wood fern 69.0 18.0 21.8 (35.6) 10.5 (67.4) (73.0) 97.9 (75.0) (5.4) 7,927 lady fern 3.4 20.3 t r 3.2 21.0 24.8 192.0 118.0 6.3 18.8 SN SN (54.3) 5,489 berries of devil's club 5.0 101.0 3.1 (2.4) 0.7 7.8 48.0 54.0 2.4 55.7 (50.3) 5,155 berries of Alaska huckleberry 30.0. 45.8 (41.9) t r 5.6 t r 7.0 4,730 leaves of Alaska huckleberry t r t r 5.9 53.0 t r (4.8) t r 6.4 t r 6.5 4,620 berries of t a l l blue huckleberry * 18.0 0.6 (14.4) t r 0.4 t r t r 2.0 1,491 leaves of t a l l blue huckleberry t r t r 14.0 t r (12.1) t r t r t r t r t r 1.6 1.152 berries of stink currant t r t r 10.2 0.5 7.0 t r t r t r 2.1 536 Total 3(kg) 19.137 1.485 12,808 17,105 20,520 18,629 237 19,248 4,412 1,908 14,796 4.724 1,642 8,194 Rank .3 13 15 7 5 1 4 14 2 10 11 6 9 12 8 Sample size (N) 4 3 1 1 5 3 8 est. • 6 est. 3 est. 1 est. est. t r = trace * 1 = (kg of food x area of type) not separated from Alaska huckleberry SN = plants senescent. est. = estimates 2 » s c i e n t i f i c names given in Appendix I 3 = ( kg of food) x area of type F i g u r e 1 3 : D i s t r i b u t i o n o f c o n c e n t r a t i o n s o f s p a w n i n g s a l m o n a n d s u b a l p i n e s e d g e meadows i n t h e A h n u h a t i w a t e r s h e d d u r i n g 1976 a n d 1 9 7 7 . S p a w n i n g s a l m o n S u b a l p i n e s e d g e meadow * Camp 31 sought the cover of mature f o r e s t during heavy r a i n s . The daybeds used by bears p r i o r t o the salmon run d i f f e r e d i n s e v e r a l r e s p e c t s from those used duri n g the salmon run. The e i g h t daybeds l o c a t e d p r i o r t o the salmon run were s i t u a t e d i n mature c o n i f e r o u s f o r e s t and were more than 150 m from the r i v e r . These daybeds were on the u p h i l l side of l a r g e c o n i f e r s , i n the r e l a t i v e l y f l a t area formed by the t r e e r o o t s . Bedding s u b s t r a t e was e i t h e r needles of c o n i f e r s or f e r n s and mosses. T h i s m a t e r i a l o f t e n was scraped to one s i d e and the bear a p p a r e n t l y l a y on the exposed s o i l . A l l e i g h t of the daybeds had l a r g e accumulations of s c a t s a s s o c i a t e d with them, sug g e s t i n g repeated use. In c o n t r a s t , the 29 daybeds l o c a t e d during the salmon run were s i t u a t e d i n both mature c o n i f e r o u s and deciduous f o r e s t w i t h i n 150 m of the r i v e r . The understory a s s o c i a t e d with the beds was u s u a l l y t h i c k e t s of salmonberry. The bedding s u b s t r a t e of these beds was sand i n 12 cases, needles of c o n i f e r s and s o i l i n seven cases, and was not recorded i n 10 cases. Accumulations of scats were never observed with these beds. Beds monitored on a p e r i o d i c b a s i s were never re-used. Daybeds t y p i c a l l y measured about 1 m long by 1.3 m wide by 60 cm deep. The g r e a t e s t d i s t a n c e observed from daybeds to s i g n of bear feeding was 30 m. 32 3. 4. D i s c u s s i o n With the e x c e p t i o n of movements to subalpine sedge meadows, bears i n the Ahnuhati were c o n f i n e d t o v a l l e y bottoms. E x t e n s i v e o v e r l a p i n the use of space occurred among bears, with 13 known g r i z z l i e s ( i n c l u d i n g cubs) and f i v e known black bears u s i n g the same v a l l e y bottom area. Although o v e r l a p occurs i n other areas, no o v e r l a p among bears as great as t h a t o f the Ahnuhati has been observed, other than a t conc e n t r a t e d food sources such as salmon a t McNeil River (Stonorov and Stokes 1972) , e l k c a l v e s i n Yellowstone (Cole 1972), o r sedge meadows on Kodiak I s l a n d (Atwell et a l . 1977). Nagy and R u s s e l l (1978) found f o u r female g r i z z l i e s and two males whose home ranges overlapped i n the Swan h i l l s . T h e i r data suggested t h a t s e v e r a l black bears were a l s o u sing the area. The g r e a t e s t o v e r l a p t h a t Pearson (1975) observed was among f i v e a d u l t male and two a d u l t female g r i z z l i e s which shared a very s m a l l p r o p o r t i o n of t h e i r home ranges.. Perhaps the o v e r l a p observed i n the Ahnuhati i s due i n pa r t t o the d i s t r i b u t i o n of food, s i n c e movements to the t o p o g r a p h i c a l l y i s o l a t e d sedge meadows n e c e s s a r i l y i n v o l v e long movements along v a l l e y bottoms ( F i g . 13). I have s u f f i c i e n t data to o f f e r only a p r e l i m i n a r y estimate of the home range of g r i z z l y bears i n c o a s t a l B r i t i s h Columbia. C i r c u m s t a n t i a l evidence c i t e d e a r l i e r suggests t h a t i n t e r - v a l l e y movement occurs i n c o a s t a l B.C. and t h a t salmon spawning areas i n the Ahnuhati, and r i v e r s l i k e i t , may be used by g r i z z l y bears from nearby v a l l e y s . The g r e a t e s t d i s t a n c e between r a d i o -l o c a t i o n s observed i n the Ahnuhati was 9 km f o r an a d u l t female 33 g r i z z l y bear ( F i g - 3). Topography c o n f i n e s bears to the v a l l e y -bottom and thus home ranges are l i k e l y e l l i p t i c a l or r e c t a n g u l a r . The 9 km movement co u l d be c o n s i d e r e d as the le n g t h of a r e c t a n g u l a r home range whose width i s the width of the v a l l e y f l o o r (0.5 km). Male home ranges, as computed from p u b l i s h e d data, a re 1.5 t o 2.1 times the area of female home ranges (Pearson 1975, Pearson and Nolan 1976, Nagy and R u s s e l l 1978, and R u s s e l l et a l . 1978). Thus, one would p r e d i c t t h a t the minimum l e n g t h of an a d u l t male's r e c t a n g u l a r home range, which has a width of 0.5 km, would be 13.5 to 18.0 km. Thus, the home range of a g r i z z l y bear i n the Ahnuhati probably i n c l u d e s p o r t i o n s of adjacent watersheds. A s i g n i f i c a n t p o r t i o n of the movements of bears i n the Ahnuhati may be r e l a t e d t o the d i s t r i b u t i o n , abundance, and phenology of the major food s p e c i e s . Amstrup and Beecham (1976) and Reynolds and Beecham (1977) suggest t h a t the movements and h a b i t a t s e l e c t i o n of black bears i n Idaho are governed p r i m a r i l y by the phenology of key food p l a n t s . Berns and Hensel (1972) and K i s t c h i n s k i (1972) noted t h a t v a r i a t i o n s i n salmon spawning times appear t o have a marked i n f l u e n c e on the migratory h a b i t s of brown bears i n c o a s t a l areas. The s u b a l p i n e sedge meadows appear t o be important f o r bears during summer, as the bears t r a v e l over extremely rugged t e r r a i n to reach these areas and they appear t o spend c o n s i d e r a b l e time i n them. These s i t e s are p o s s i b l y l a t e s u c c e s s i o n a l stages of su b a l p i n e l a k e s . A t w e l l et a l . (1977) found an almost e x c l u s i v e p r e f e r e n c e f o r sedge (Carex macrochaeta) as the primary food of brown bears on Kodiak I s l a n d . They found t h a t brown bears reached d e n s i t i e s i n su b a l p i n e meadows of 2.6 bears per km2 during a 5 to 6 week p e r i o d . The r e l a t i v e importance of the v a r i o u s p l a n t communities as sources of bear food has p o t e n t i a l management i m p l i c a t i o n s . While the a c t u a l importance of p l a n t communities to bears i n s p r i n g i s not w e l l understood, the d e t r i m e n t a l impact of f u t u r e development c o u l d be reduced by c o n s i d e r i n g t h e i r r e l a t i v e value as food sources and p r e s e r v i n g the most v a l u a b l e communities . Subalpine sedge meadows are not v u l n e r a b l e to l o g g i n g because of t h e i r t o p o g r a p h i c a l i s o l a t i o n . However, the impact of any proposed mining on these s i t e s should be c o n s i d e r e d c a r e f u l l y . C i r c u m s t a n t i a l evidence c i t e d e a r l i e r suggests t h a t salmon spawning areas i n the Ahnuhati may be used by g r i z z l y bears from surrounding v a l l e y s . Known g r i z z l y bear p o p u l a t i o n s occur i n the Kwalate, Kakweiken, Sim, K l i n a k l i n i , and F r a n k l i n watersheds (pers. obs. and Leigh-Spencer and Hebert pers. comm.). G r i z z l i e s from these areas have the p h y s i c a l c a p a b i l i t y t o move to the Ahnuhati (Hebert unpubl. d a t a ) . Disturbance of the salmon run c o u l d t h e r e f o r e a f f e c t not only the g r i z z l i e s of the Ahnuhati by lo w e r i n g p r o d u c t i v i t y and i n c r e a s i n g m o r t a l i t y but a l s o the bears of adjacent watersheds. Thus, development i n the Ahnuhati, and areas l i k e i t , should c o n s i d e r c a r e f u l l y the p o t e n t i a l impacts on the salmon resource. Development should be c a r e f u l l y c o n t r o l l e d , and a c t i v e development not occur d u r i n g the salmon run u n l e s s i t i s l o c a t e d more than 2 km from the salmon spawning areas shown i n F i g u r e 13. 35 I t appears t h a t bears p r e f e r mature timber f o r daybed s i t e s during the p e r i o d p r i o r to the salmon run. Probably the most important f u n c t i o n of these s i t e s i s s h e l t e r from heavy r a i n s . The extent to which s e r a i stages c o u l d serve t h i s f u n c t i o n i s not known. 36 CHAPTER 4 - MARKING BEHAVIOUR 4.1. I n t r o d u c t i o n The behaviour of p h y s i c a l and chemical marking of o b j e c t s i n t h e i r h a b i t a t i s widespread among mammals. Most of the w e l l -known examples are among mammals t h a t possess obvious glands which produce scent during marking (e.g. beaver, marten, ground s q u i r r e l s , and mongooses, B o u r l i e r e 1970; badgers, Burkhardt et a l . 1967). E i s e n b e r g (1966) s t a t e d that many, i f not a l l of the C a r n i v o r a e x h i b i t marking behaviour. In the Ursidae, marking behaviour has been recognized s i n c e a t l e a s t the e a r l y 1900's ( M i l l s 1919). The major d i f f e r e n c e i n the marking behaviour of bears i s t h a t they apparently l a c k e x t e r n a l scent glands (Davis 1964). L i k e the l i o n (Rudnai 1973), i t i s p o s s i b l e t h a t they transmit a g e n e r a l i z e d scent from t h e i r body. The c h a r a c t e r i s t i c bear "odour" i s w e l l known to people who have handled bears. Meyer-Holzapfel (1957) s t a t e d t h a t mechanical marking of t r e e s by bears o f t e n was accompanied by an o d i f e r o u s marking when the bear r e l e a s e d u r i n e while rubbing a t r e e (as f i r s t observed by Hediger [1946] i n the Basle Z o o l o g i c a l Gardens) . Lindemann (1954) d e s c r i b e d t h i s type of o d i f e r o u s mark f o r the brown bear i n the Carpathian Mountains. These bears wallowed i n urine-drenched d i r t and then rubbed t h e i r backs a g a i n s t t r e e s . Many of the c e r v i d s a l s o e x h i b i t t h i s behaviour (Muller-Schwarze 1974) . 37 Wright (1909) maintained t h a t the marking of t r e e s by bears served a t e r r i t o r i a l f u n c t i o n , but t h i s has been denied (Holzworth 1930, K r o t t and K r o t t 1963). M i l l s (1919) doubted t h a t marking t r e e s i n d i c a t e d the l i m i t s of a d i s t r i c t or t h a t , when they were l o c a t e d at a g r e a t e r h e i g h t , they commanded r e s p e c t f o r the r e s i d e n t bear and scared o f f any i n t r u d e r who co u l d not reach higher. He regarded marking t r e e s as "p l a c e s of o r i e n t a t i o n " . Murie (1954) suggested t h a t such t r e e s might be s i g n p o s t s , such as scent posts of the Canidae, or that they were merely a convenient place f o r comfortable rubbing and s t r e t c h i n g . Cahalane (1947) b e l i e v e d t h a t bears were plagued with i n s e c t s and with the i r r i t a t i o n s caused by shedding the winter coat and that t h i s i r r i t a t i o n s t i m u l a t e d rubbing. Ground marking which produces a s e r i e s o f depressions of bear s t e p s along bear t r a i l s and i n a s s o c i a t i o n with marking t r e e s has been documented as one of the marking behaviours of g r i z z l y bears (Martinka pers. comm., Jonkel pers. comm., Holzworth 1930, Day 1957). Such marks have been regarded as the r e s u l t of some type of r i t u a l i s t i c "pacing" whereby bears c o n s i s t e n t l y step i n the same p l a c e s , e v e n t u a l l y r e s u l t i n g i n a s e r i e s of depressions along a t r a i l . The Ahnuhati data show t h a t a s i n g l e v i s i t by a bear i s s u f f i c i e n t t o c r e a t e a s e r i e s of ground marks. I c o l l e c t e d i n f o r m a t i o n on both the marking of t r e e s and ground marking dur i n g the 1976 and 1977 f i e l d seasons. The data do not pro v i d e a l a r g e base from which new hypotheses can be de r i v e d , but they do provide f u r t h e r d e s c r i p t i o n of t h i s 38 behaviour. F i n a l i n t e r p r e t a t i o n of the f u n c t i o n of marking w i l l r e s t on c o n t r o l l e d experimentation (Eisenberg 1966). The data presented are o f f e r e d as a background f o r such study. S p e c i f i c o b j e c t i v e s of the study of marking behaviour were: 1. to d e s c r i b e the manner i n which bears use h a b i t a t f o r marking 2. to d e s c r i b e the c h a r a c t e r i s t i c s of t r e e s s e l e c t e d by bears f o r marking 3. t o document the d i s t r i b u t i o n of t r e e s marked by bears. 4.2. Methods During i n i t i a l r econnaissance and e x p l o r a t i o n of the study area i n 1976, I noted the l o c a t i o n of 43 bear marked t r e e s . During subsequent syst e m a t i c t r a v e l over the area, I reco r d e d any new occurrences of v i s i b l e marking. The s i z e and number of ground marks were measured, and t h e i r l o c a t i o n and p r o x i m i t y to other bear s i g n recorded. To r e c o r d bear v i s i t s , sand s u b s t r a t e s were e s t a b l i s h e d a t the bases of s e v e r a l marking t r e e s . The low frequency of f r e s h p h y s i c a l marks and the abundance of marked t r e e s suggested t h a t bears were marking t r e e s more f r e q u e n t l y than suggested by the p h y s i c a l evidence alone. Sections of f i s h i n g l i n e were fa s t e n e d a c r o s s the s c a r on s e v e r a l t r e e s . One end of the l i n e was t i e d to a s h o r t n a i l , the l i n e s t r e t c h e d a c r o s s the s c a r , and then pasted i n t o place with p i t c h from the t r e e . Bears t h a t rubbed a g a i n s t the t r e e d i s l o d g e d the l i n e . 39 S e v e r a l c h a r a c t e r i s t i c s were measured f o r 24 marked t r e e s . The age of the t r e e was estimated by counting the annual growth r i n g s on c o r e s e x t r a c t e d 1.3 m above ground. Ages were not c o r r e c t e d f o r the d i f f e r e n c e i n age between t h i s height and the t r u e age. I estimated the age of the s c a r on the marking t r e e by the d i f f e r e n c e between the e s timated age and the number of r i n g s on a second core taken at a comparable he i g h t on the s c a r . I determined the s i z e of the t r e e at the time t h a t i t was marked by r e c o r d i n g the l e n g t h of the second c o r e . I a l s o recorded the diameter at 1.3 m (dbh) , the dimensions of the s c a r , and i t s h e i g h t . To e v a l u a t e the n u l l hypothesis t h a t bears use t r e e s p e c i e s f o r marking i n p r o p o r t i o n to t h e i r occurrence w i t h i n the f o r e s t , I recorded the s p e c i e s of 20 t r e e s f o r each of 18 s i t e s . Species of t r e e s of s i m i l a r s i z e or l a r g e r than the marking t r e e i t s e l f were recorded. I s e l e c t e d 10 t r e e s i n each d i r e c t i o n along the t r a i l which were not more than 4 m from the t r a i l c e n t e r . The expected frequency of marked t r e e s i n Table 3 was c a l c u l a t e d by a p p l y i n g the mean t r e e s p e c i e s a v a i l a b i l i t y of 18 s i t e s (Table 2) to the 18 marked t r e e s . I t was not p o s s i b l e t o evaluate the n u l l hypothesis t h a t bears use t r e e s i z e s i n p r o p o r t i o n to t h e i r occurrence w i t h i n the f o r e s t because of the d i f f e r e n t i a l growth r a t e s among t r e e s p e c i e s . 40 4.3. R e s u l t s 4.3.1. D e s c r i p t i o n of bear marking t r e e s F i g u r e 14 shows bear tr e e No. 5, an Amabilis f i r , which was v i s i t e d by bears s e v e r a l times d u r i n g the study. T h i s t r e e was f i r s t s c a r r e d about 1950 and the cambium had not grown back over the scar i n 1977. The scar f a c e s the t r a i l (foreground of F i g . 14) . A l l of the s c a r s which I examined were s i m i l a r to those of bear t r e e No. 5 i n t h a t the bark had been removed, the i n n e r cambium was s t i l l exposed, and the mark faced the t r a i l . O b s e r v ations of a f r e s h l y marked t r e e i n d i c a t e d that the bear f i r s t rubbed i t s muddy pelage a g a i n s t the s c a r , then l i c k e d the s c a r . Bears t h a t rub a g a i n s t marking t r e e s f r e q u e n t l y leave both guard and underhair imbedded i n the p i t c h . The t o t a l amount o f h a i r l e f t was small i n a l l t r e e s examined. Some t r e e s were clawed, but d i d not show a measurable s c a r . Bear t r e e No. 5 was the l a r g e s t t r e e examined (66 cm dbh), about twice the diameter of other marking t r e e s (Table 2). As r e p o r t e d by S c h a f f e r (1971) i n Montana, a l l of the marking t r e e s had s t r a i g h t t r u n k s with few branches p r o t r u d i n g below 1.5 m above the ground. The mean age of t r e e s used by bears f o r marking was 79 years (range 48 t o 117 years) (Table 2). The mean age of the f i r s t t r e e s c a r r i n g was 20 years (range 5 t o 38 y e a r s ) . Mean s i z e of the l a r g e s t scar on the t r e e s was 970 cm 2 (range 10-3850 cm 2) and the mean height of the highest marks on the t r e e s was 139 cm (range 60 t o 238 cm) (Table 2 ) . 41 Table 2. C h a r a c t e r i s t i c s of trees marked by bears 1n the Ahnuhati watershed. i ree reference number Scar age (years) Tree age (years) DBH At time of marking (cm) DBH (1977) (cm) Tree species Proportion of trees i n the area that were the same species as the marked tree Largest scar dimensions Area 2 (cm) (cm ) Highest point of s c a r r i n g • (cm) X . Range 19.7 5-38 79.4 48-117 22.6 6.5-44 36 9-66.2 N/A N/A 1 14 48 30.0 A -- — 2 _ _ A — 3 29 66 • 32.4 A 20 • — 4 29 59 45.0 A 70 . -— 5 24 80 44.0 66.2 A 35 — 6 38 114 22.6 30.6 H 60 — 7 13 86 18.0 21.0 A 55 — 8 25 92 21.0 34.4 A 55 36x90 3150 140 9 17 60 7.0 9.0 A 40 9x25 225 140 10 - 60x10 . 600 — 13 5 65 A 40 60x30 180 60 14 100 A 2' 5 — 15 21 86 6.5 A 45 2x5 • 10 200 16 20 100 23.0 52.5 A 20 . 10x3 30 120 17 N/A 117 N/A 38.0 A 20 no scar N/A N/A IS 21 54 24.0 31.0 A 75 50x8 400 N/A 19 N/A 49 N/A ' 62.5 A 20 no scar N/A N/A 20 • N/A 80 N/A 16.0 A 20 no scar N/A N/A 21 N/A 94 N/A 25.0 A 70 no scar N/A N/A 22 A — 38x7.5 285 N/A 23 15 94 N/A 36.0 A 55 no scar N/A N/A 24 5 64. 38.0 43.0 A 30 110x35 3850 N/A 970 10-3850 139 60-238 A = Amabills f i r DBH = diameter at breast height N/A » not a p p l i c a b l e ro 43 4-3.2- S e l e c t i o n of marking t r e e s by bears Sample s i z e s i n the f o l l o w i n g a n a l y s i s vary because I d i d not r e c o r d a l l types of measurements f o r a l l of the marked t r e e s i n Table 2. Twenty of 21 t r e e s marked by bears were a m a b i l i s f i r (Table 3). Of 17 a m a b i l i s f i r , 11 were chosen when t h i s s p e c i e s r epresented l e s s than 50 percent of the t r e e s a v a i l a b l e . Table 4 summarizes the frequency of occurrence of marking by t r e e s p e c i e s among 18 bear t r e e s . The a v a i l a b l e t r e e s i n c l u d e d a m a b i l i s f i r , western hemlock, s i t k a spruce, and o c c a s i o n a l l y western red cedar. The frequency of marking of a m a b i l i s f i r was s i g n i f i c a n t l y higher (p<-05, Table 3) than the frequency of marking of western hemlock and s i t k a spruce combined. I t h e r e f o r e r e j e c t the n u l l hypothesis t h a t the t r e e s p e c i e s i n my study area were used f o r marking by bears i n p r o p o r t i o n t o t h e i r occurrence w i t h i n the f o r e s t , and accept the r e s e a r c h hypothesis t h a t a m a b i l i s f i r are s e l e c t e d f o r and are p r e f e r r e d by bears f o r marking. The estimated mean diameter of the marking t r e e s at the time of s c a r r i n g was 23 cm dbh (range 6.5-44.0 cm). Figure 15 shows the frequency d i s t r i b u t i o n of s i z e c l a s s e s of bear marking t r e e s i n the study area at the time they were marked. Of the t r e e s marked, 63 percent were between 15 and 25 cm dbh when marked. 4.3-3. Frequency of use of t r e e s by bears I observed nine i n s t a n c e s of f r e s h marking i n 1976 and nine i n s t a n c e s i n 1977. I b e l i e v e t h a t bears rub t r e e s more f r e q u e n t l y than these data i n d i c a t e . The 11 marks recorded 44 T a b l e 3 : F r e q u e n c y o f o c c u r r e n c e o f m a r k i n g by t r e e s p e c i e s among 18 b e a r t r e e s i n t h e A h n u h a t i w a t e r s h e d . o b s e r v e d e x p e c t e d A m a b i l i s f i r 17 8 o t h e r s p e c i e s ( W e s t e r n h e m l o c k , S i t k a s p r u c e , 1 10 W e s t e r n r e d c e d a r ) % Z = 1 8 . 2 3 > % ^ . 0 5 d f = 1 , 3 . 8 4 45 5-| HI 4 UJ oc h-3-u_ O cc 2-LU CO 3 1-z 5 10 15 20 25 30 35 40 45 SIZE CLASS-dbh (cm) F i g u r e 1 5 : F r e q u e n c y d i s t r i b u t i o n o f s i z e c l a s s e s o f b e a r m a r k i n g t r e e s a t t h e t i m e o f m a r k i n g 46 p r i o r t o J u l y 6 1977 were p h y s i c a l marks e a s i l y v i s i b l e to the naked eye. On June 10 and June 17 1977, three bears passed by bear t r e e No. 5 l e a v i n g t r a c k s i n the prepared s u b s t r a t e . Nothing i n the s i g n of t h e i r passing suggested that they had marked the t r e e i n any way. I t was a t t h i s time t h a t monofilament f i s h i n g l i n e was attached t o bear t r e e No. 5. On J u l y 6 1977 a black bear passed by bear tr e e No. 5. Nothing i n i t s t r a c k s suggested t h a t i t had marked the t r e e . However, the f i s h i n g l i n e had been d i s l o d g e d , suggesting marking behaviour. I concluded t h a t bears may be marking t r e e s more f r e q u e n t l y than t h e i r t r a c k s alone would i n d i c a t e . During the p e r i o d May to August 1976 and May to J u l y 1977, I observed 11 i n s t a n c e s of f r e s h p h y s i c a l marking by bears. Between J u l y 1 and August 5 1977, however, while employing the f i s h i n g l i n e method, I observed seven i n s t a n c e s of f r e s h marking of t r e e s by bears, none of which showed p h y s i c a l s i g n of having been marked. These o b s e r v a t i o n s suggest t h a t bears o f t e n rub a g a i n s t marking t r e e s but do not do any f u r t h e r p h y s i c a l damage. 4.3.4. D i s t r i b u t i o n and abundance of bear t r e e s The d i s t r i b u t i o n of 43 bear marking t r e e s observed dur i n g the s p r i n g and summer of 1976 i s shown i n F i g u r e 16. I examined a l l of the 2.2 km2 area o u t l i n e d i n F i g u r e 16. I a l s o examined surrounding higher e l e v a t i o n areas but found very few marked t r e e s . The d e n s i t y of bear marking t r e e s i n the area enclosed by the polygon i s 20 per km2. F i g u r e 16: D i s t r i b u t i o n o f bear marking t r e e s i n the Ahnuhati w a t e r s h e d 4^ -4 48 F i g u r e 16 shows t h a t the bear marking t r e e s are l a r g e l y confined to the water-courses i n the v a l l e y bottom. The Ahnuhati r i v e r v a l l e y i s narrow and s t e e p - s i d e d . While t h e r e are t r e e s on the s l o p e s of the v a l l e y , the extreme steepness and rock c l i f f areas mean th a t most of the bear a c t i v i t y i s c o n f i n e d to the v a l l e y bottom areas (Chapter 3). Thus, the d i s t r i b u t i o n of bear marking t r e e s shown i n F i g u r e 16 does not i n d i c a t e t h a t bear t r e e s a l s o would be c o n f i n e d to watercourses i n areas which are l e s s r e s t r i c t e d by topography. For purpose of f u t u r e comparison with areas which are t o p o g r a p h i c a l l y s i m i l a r , the d e n s i t y of bear t r e e s i n the polygon of F i g u r e 16 a l s o can be d e s c r i b e d as 3.4 bear marking t r e e s per l i n e a r km of major watercourse. Almost a l l of the 43 bear t r e e s observed were l o c a t e d w i t h i n 2 m of t h e c e n t e r of d e f i n i t e , a c t i v e bear t r a i l s . 4.3.5. Ground marking behaviour I f i r s t recorded t h i s behaviour i n a s s o c i a t i o n with a t r a p s i t e which a bear e v i d e n t l y had d i s t u r b e d . Ten meters from the t r a p , t h e r e were f i v e smooth, muddy patches arranged i n the approximate p a t t e r n of a bear's g a i t . The n a t u r a l ground cover of moss was scraped away and no s i g n of a t r a c k or n a i l marks c o u l d be d i s c e r n e d i n the d e p r e s s i o n . I attempted to i m i t a t e one of the marks and found t h a t i t r e q u i r e d s e v e r a l swipes to remove enough s u r f a c e v e g e t a t i o n to produce a s i m i l a r i m p r e s s i o n , s u g g e s t i n g t h a t the bear must have d e l i b e r a t e l y formed each mark. I a l s o had to smooth over my mark to remove enough s c r a p e s and o b t a i n a s a t i s f a c t o r y d u p l i c a t e . 49 In g e n e r a l , ground marks were e l l i p t i c a l , with t h e i r major a x i s p a r a l l e l t o the d i r e c t i o n of the t r a i l (18-25 cm by 15 cm). The number of marks i n a s i n g l e s e r i e s ranged from 5 t o 16, while as many as 23 were noted i n c l o s e p r o x i m i t y to each o t h e r . Most marks observed were a s s o c i a t e d with d i s t u r b e d t r a p s i t e s , f i s h i n g s i t e s , daybeds, and marking t r e e s . A few marks, however, were not a s s o c i a t e d c l e a r l y with any other bear s i g n . Within t h r e e weeks, many ground marks along bear t r a i l s had been r e - c o l o n i z e d by mosses and looked l i k e the t r a i l steps d e s c r i b e d by Martinka and J o n k e l (pers. comm.). These steps were so spaced t h a t a human c o u l d comfortably walk i n them. The depressions were 2.5 to 7.5 cm below the surrounding s o i l . On two o c c a s i o n s I found that ground marks had been subsequently re-marked by bears. 4.4. D i s c u s s i o n Marking of both t r e e s and ground appears t o be a widespread and common behaviour of bears i n the w i l d . T h i s study showed th a t both black and g r i z z l y bears marked t r e e s i n the c o a s t a l r a i n f o r e s t and, of the t r e e s a v a i l a b l e , the bears p r e f e r r e d a m a b i l i s f i r . S c h a f f e r (1971) noted t h a t bears used l o d g e p o l e pine i n G l a c i e r N a t i o n a l Park, Montana, but he thought t h i s r e f l e c t e d f o r e s t composition r a t h e r than bear preference. 50 The mean height of the highest part of the marks which I examined was 139 cm. I f the marks f u n c t i o n as o l f a c t o r y communication, use of an o b j e c t l o c a t e d above the f o r e s t f l o o r would f a c i l i t a t e d i s s e m i n a t i o n of scent. Peters and Mech (1975: 631), i n t h e i r study of scent marking i n wolves, noted: " D e p o s i t i n g u r i n e w e l l above ground, on a snowbank or t r e e , f o r example, f a c i l i t a t e s d i s p e r s a l of odor by wind, i n c r e a s e s the e v a p o r a t i n g surface as the u r i n e t r i c k l e s downward, and minimizes chances t h a t the mark may be covered by snow or washed away by r a i n . " I t i s p o s s i b l e t h a t the use of a m a b i l i s f i r by bears may be due to some c h a r a c t e r i s t i c of t h i s s p e c i e s which f a c i l i t a t e s the d i s s e m i n a t i o n and/or r e t e n t i o n of scent. My r e s u l t s i n d i c a t e t h a t , d u r i n g the season of the salmon run, t r e e s are marked as f r e q u e n t l y as once i n every 5 days, and p o s s i b l y more o f t e n . S c h a f f e r (1971) found t h a t 15 marking t r e e s were used 73 times by bears between June 13 and September 23, or once every 1.4 days on average. The d e n s i t y of bear marking t r e e s was 20 per km 2 i n the area s t u d i e d . The high c o n c e n t r a t i o n of marking t r e e s c o i n c i d e s with an area of e x t e n s i v e overlap among bears i n t h e i r use of h a b i t a t (Chapter 6). Eudnai (1973) noted t h a t " v o c a l communication serves as a means of c o n t a c t f o r animals separated i n space, w h i l s t o l f a c t o r y communication may serve to t r a n s m i t messages between i n d i v i d u a l separated i n time". Perhaps bears can determine the time elapsed s i n c e another i n d i v i d u a l has passed a marking t r e e . P e t e r s and Mech (1975) suggested t h a t , at the border of t h e i r t e r r i t o r y , wolves t h a t examine scent marks probably can t e l l approximately when other wolf packs have passed through the area. 51 During the 1976 f i e l d season, I found f o u r i n s t a n c e s of ground marking behaviour i n 90 f i e l d days p r i o r to the salmon run. During 30 days of the run, I found 20 i n s t a n c e s of ground marking behaviour. Stonorov and Stokes (1972) noted t h a t meetings between strange i n d i v i d u a l s was one of four s i t u a t i o n s which r e l e a s e d i n t r a s p e c i f i c a g g r e s s i o n among the g r i z z l i e s f i s h i n g at McNeil River i n A l a s k a . During the salmon run, many of the daybeds were s i t u a t e d next t o apparently i d e a l f i s h i n g s i t e s . G r i z z l y bears r e l y e x t e n s i v e l y on t h e i r a u d i t o r y and o l f a c t o r y senses f o r environmental cues (Jonkel pers. comm.). Good f i s h i n g s i t e s were f r e q u e n t l y a s s o c i a t e d with s w i f t water areas which generated both a high l e v e l of background n o i s e and u n p r e d i c t a b l e wind c u r r e n t s . On s e v e r a l o c c a s i o n s , we approached t o w i t h i n a few meters of g r i z z l i e s s l e e p i n g or f i s h i n g near the r i v e r . Thus, i n the absence of the usual communication s i g n a l s , ground marking behaviour c o u l d reduce the p o s s i b i l i t y of both i n t r a - and i n t e r s p e c i f i c s t r i f e by warning other bears of the presence of s l e e p i n g or f i s h i n g i d i v i d u a l s . The high i n c i d e n c e of ground marking noted during the salmon run probably i s r e l a t e d t o the high c o n c e n t r a t i o n of bears f e e d i n g on the same r e s o u r c e . I suggest t h a t t r e e marking by bears f u n c t i o n s i n o l f a c t o r y communication, while ground marking f u n c t i o n s as v i s u a l and perhaps t a c t i l e communication and, i n some s i t u a t i o n s , may s u b s t i t u t e f o r o l f a c t o r y and a u d i t o r y cues where environmental c o n d i t i o n s preclude the use of these s i g n a l s . T h i s marking and the message i t conveys may serve to space animals i n areas with a high resource c o n c e n t r a t i o n of resources such as food. I t may a l s o serve to a d v e r t i s e the 52 presence of p o t e n t i a l mates. Understanding of the f u n c t i o n of marking by bears must await r i g o r o u s f i e l d work as w e l l as experimental manipulation. 53 CHAPTER 5 - THE USE OF TRACKS IN THE IDENTIFICATION AND CENSUS OF BEARS 5.1. I n t r o d u c t i o n The l i m i t e d v i s i b i l i t y of mammals i n densely vegetated ecosystems and the expense of s o p h i s t i c a t e d t e l e m e t r y systems p l a c e a premium on the development of simple, i n d i r e c t , f i e l d techniques which w i l l enable r e s e a r c h e r s to determine something of the d i s t r i b u t i o n , abundance, and a c t i v i t y of s p e c i e s i n such systems. One area of obvious p o t e n t i a l i s the use of mammal t r a c k s . I f i n d i v i d u a l animals c o u l d be i d e n t i f i e d by t h e i r t r a c k c h a r a c t e r i s t i c s , then s u b s t r a t e s which r e g i s t e r t r a c k s c o u l d be e s t a b l i s h e d i n p r o p o r t i o n t o the occurrence o f the v a r i o u s h a b i t a t s and a q u a n t i t a t i v e estimate of the use of these areas could be obtained. P e r i o d i c monitoring of r i v e r systems with a p p r o p r i a t e s u b s t r a t e s c o u l d y i e l d both minimum numbers and po p u l a t i o n t r e n d . Further, i n cases of sympatric s p e c i e s l e a v i n g s i m i l a r s i g n , such as black and g r i z z l y bears, r e l i a b l e c r i t e r i a which d i s t i n g u i s h the t r a c k s of these two s p e c i e s would be v a l u a b l e i n the i n t e r p r e t a t i o n of s i g n of t h e i r a c t i v i t y . K l e i n (1959) s t a t e d that the use of t r a c k s t o census g r i z z l y bears was an u n r e l i a b l e technique. Edwards and Green (1959) assessed the value of t r a c k s as a census technique f o r g r i z z l y bears near the Atnarko R i v e r , a t r i b u t a r y of the B e l l a Coola R i v e r , B r i t i s h Columbia. These workers measured t r a c k s i n sand and mud along the r i v e r banks as we l l as i n prepared s u b s t r a t e s s i t u a t e d on f o r e s t t r a i l s . They measured 14 parameters of the 54 forepaw impression from 124 t r a c k s - They a l s o measured s u c c e s s i v e p r i n t s of the same bear to determine the v a r i a t i o n w i t h i n the t r a c k of a s i n g l e i n d i v i d u a l . They concluded t h a t t r a c k measurements were not u s e f u l and t h a t a smooth frequency curve c o u l d be c o n s t r u c t e d , f o r any of the t r a c k parameters, which d i d not show any s i g n i f i c a n t i r r e g u l a r i t i e s a t t r i b u t a b l e to i n d i v i d u a l s . They s t a t e d t h a t the technique might have merit where bears are s c a r c e . P i e k e l e k and Burton (1975) found t h a t a composite f o o t measurement sum obtained from a t r a c k i n l i g h t dust was about 10 percent l e s s than the t r u e sum. They commented that t r a c k measurements might be used to d e r i v e rough e s t i m a t e s of p o p u l a t i o n composition. The use of t r a c k s as an index to the weight of i n d i v i d u a l bears i n the f i e l d has a l s o been attempted. Cherry and P e l t o n (1976) found a strong c o r r e l a t i o n between forepad width and body weight i n Tennessee black bears s m a l l e r than 50 kg i n body weight. They judged the equations d e r i v e d from t h e i r data to be inadequate f o r p r e d i c t i n g the weight of bears l a r g e r than 70 kg because of the wide range of weights a t the 95 percent l e v e l of c o n f i d e n c e . However, P i e k e l e k and Burton (1975) found a s t r o n g p o s i t i v e c o r r e l a t i o n between a composite of i n d i v i d u a l paw measurements and body weight over a range of 15 to 180 kg f o r black bears i n northern C a l i f o r n i a . Best (1977) d e r i v e d an equation p r e d i c t i n g body weight from f o o t measures of 16 w i l d -caught p o l a r bears weighing 67-397 kg with a standard e r r o r of the estimate of 48 kg. 55 While v a r i o u s s u b j e c t i v e c r i t e r i a have been used to separate the t r a c k s of b l a c k and g r i z z l y bears (see f o r example Murie 1954, S c h a f f e r 1971), t h e r e has been no r i g o r o u s comparison of c h a r a c t e r i s t i c s of the t r a c k s of the two s p e c i e s . I used s i z e and morphology as two c l a s s e s of t r a c k c h a r a c t e r i s t i c s with which I r e - e v a l u a t e d the p o t e n t i a l of i d e n t i f i c a t i o n of i n d i v i d u a l bears and d i s t i n c t i o n between s p e c i e s . The p r e v i o u s work of Edwards and Green (1959) was conducted over a wide area and d i d not adequately e v a l u a t e the a p p l i c a t i o n of t r a c k i n f o r m a t i o n t o a l i m i t e d area where bears occurred at high d e n s i t i e s . I a l s o used t r a c k s as s u p p o r t i v e data fo r bear l o c a t i o n s determined by telemetry. S p e c i f i c o b j e c t i v e s of the study of bear t r a c k s were: 1. to determine i f t r a c k c h a r a c t e r i s t i c s permit s e p a r a t i o n of black bears from g r i z z l y bears 2. to determine i f t r a c k c h a r a c t e r i s t i c s permit s e p a r a t i o n of i n d i v i d u a l bears wi t h i n a s p e c i e s . 5.2. Methods Twenty-two t r a c k c h a r a c t e r i s t i c s of 19 2 t r a c k s and 10 trapped animals were measured and recorded. F i g u r e 17 d i s p l a y s the parameters which I measured and the manner i n which they were recorded. E a r l y i n the f i e l d work, I found t h a t t r a c k s i n dry, l o o s e sand and i n snow were h i g h l y v a r i a b l e and I subsequently i g n o r e d t r a c k s observed i n these s u b s t r a t e s . I c o n s i d e r e d wet mud and wet sand to be c o n s i s t e n t i n t h e i r " t r a c k - r e c o r d i n g " a b i l i t y . L i k e Edwards and Green (1959), I e s t a b l i s h e d s u b s t r a t e s which 56 Date ID Reason Foot TL N-S TL T-S PW PL WA TP Jpaco Toej Below th 2 3 4 5 Jpaco Toej Below L Comment Location Substrate W N F i g u r e 17: P a r a m e t e r s o f b e a r t r a c k s w h i c h w e r e m e a s u r e d a n d a s d a t a s h e e t 57 would re c o r d t r a c k s , i n a d d i t i o n t o those which I encountered i n areas of s u i t a b l e s u b s t r a t e s . 5.3. R e s u l t s While I expected o v e r l a p i n the t r a c k c h a r a c t e r i s t i c s of young i n d i v i d u a l s , I operated i n i t i a l l y on the premise t h a t t h e r e would be a s u f f i c i e n t d i f f e r e n c e i n the t r a c k s to separate i n d i v i d u a l a d u l t s . Table 4 summarizes the paw c h a r a c t e r i s t i c s of 11 known g r i z z l y bears and f i v e known black bears. I found t h a t i t was p o s s i b l e t o d i s t i n g u i s h broad c l a s s e s of i n d i v i d u a l s , but i t was not p o s s i b l e t o d i s t i n g u i s h i n d i v i d u a l s from t h e i r t r a c k s alone. The f i r s t three g r i z z l i e s i n Table 4 are a d u l t females t h a t were trapped, two of which had cubs at s i d e , c o n f i r m i n g t h e i r m a t u r i t y . The t r a c k s of these i n d i v i d u a l s are almost i d e n t i c a l (e.g. standard d e v i a t i o n (s) of forepad widths = .38 cm. Table 4 ) . These measurements were taken on widely separated o c c a s i o n s , by d i f f e r e n t r e s e a r c h e r s , and without knowledge of e a r l i e r t r a c k data and they can, t h e r e f o r e , be considered f r e e of b i a s . The f i r s t two black bears i n Table 4 are trapped, subadult females. Again, comparison of the data w i t h i n forepaws and w i t h i n hindpaws shows very s i m i l a r measurements (e.g. standard d e v i a t i o n (s) of forepad widths = 0.14 cm, Table 4). The s i m i l a r i t y of the f o r e -and hindpaws of the three female g r i z z l i e s and the two female black.bears o b v i o u s l y precludes s e p a r a t i o n of i n d i v i d u a l s w i t h i n s p e c i e s on the b a s i s of t h e i r t r a c k s i n the f i e l d . 58 Table 4. C h a r a c t e r i s t i c s of g r i z z l y and black bear paws ( A l l parameters measured 1n cm and described i n Figure 17). TL ID Foot N-S TL N-S PW PL WATP G 7P G 21WC G 7WC Standard F devia-t i o n ( s ) H • Space tb th 16 12 13 12.7 L 4.2 4.0 4.2 4.2 3.7 W 2.8 2.9 2.6 2.8 2.5 N 3.7 4.5 4.9 4.8 9.0. 22.-5 20.5 11 15.8 12 17.0 12.1 13.2 7.2 12.3 L 4.0 4.2 3.7 3.6 3.0-W 2.5 2.4 2.6 2.5 2.5 N 2.2 2.4 2.2 2/0 2.4 L 4.2 4.0 4.3 4.0 3.6 W 3.0 2.7 2.8 2.6 2.5 N 4.0 4.4 4.5 4.5 4.0 24.2 22.2 12.5 17.0 12.0 L 4.0 4.2 4.1 3.9 3.0 W 3.0 2.8 2.5 2.5 2.2 N 2.0 2.2 2.0 2.0 2.0 17.0 12.0 13.0 7.4 12.4 L 4.0 4.5 4.1 4.3 3.5' W 3.0 3.0 2.9 3.0 2.4 N 4.4 5.0 5.0 5.0 4.0 23.3 21.0 12.4 16.0 11.9 L 3.5'4.0 4.0 4.0 3.5 W 3.0 2.6 2.5 2.5 2.0 N 2.5 3.0 2.5 2.3 2.2 0.5 1.37 0.26 1.0 0.38 0.80 0.20 0.57 0.94 0.20 G 12/22 LF 19.1 13.7 18.1 7.6 17. X X LH 25.1 22.6 15.9 17.5 18.4 G cub of LF 9.0 6.5 7.0 3.4 7.4 G 21WC "• X X LH 13.0 12.0 6.5 9.3 7.0 X X G 20 LF 14.5 10.5 11.0 5.2 10.2 X X RH 21.0 20.0 10.0 14.5 10.3 X 0 L 6.4 6.4 5.72 5.72 5.1 W 3.8 3.5 3.2 3.8 3.5 N 5.1 6.4 6.1 5.7 5.1 L 5.72 5.72 5.1 4.78 3.8. W 3.7 3.8 3.5 3.7 3.5 N 2.24 224 224 2.54 2.9 '• L 2.7 2.7 2.5 2.3 1.7 W 1.4 1.5 1.5 1.5 1.3 N 1.7 2.0 2.1 2.0 1.6 L 2.2 2.3 2.3 2.0 2.0 W 1.4 1.5 1.4 1.3 1.2 N 0.9 1.0 1.0 1.0 1.0. L 3.1 3.1 3.0 3.0 2.8 W 2.0 2.2 2.1 2.2 1.9 N 1.5 1.5 1.5 1.8 2.0 L 3.0 2.6 2.7 2.1 2.3 W 2.0 2.0 2.0 1.8 1.5 N 1.5 1.5 1.5 1.8 2.0 L 4.2 3.8 W 3.1 2.5 — N 3.1 5.7 4.6 4.5 — L 4.0 4.0 3.6 3.9 2.9 W -1.9 2.2 2.3 2.3 2.2 N 2.2 2.6 2.5 2.3 — L 3.8 3.5 W — 2.7 N 4.5 5.1 5.7 5.1 4:4 L -W N 2.5 2.5 2.5 2.5 1.9 G Sunkist RF 19.2 14.0 12.2 7.3 12.5 RH 23.5 20.2 12.7 18.5 12.7 G Sighting LF 16.5 11.4 13.34 5.72 13.34 1 X X G Sighting RH 26.7 25.4 15.9 20.3 15.9 2 X X X •> no G = g r i z z l y y e s 59 Table 4. (continued) TL TL ID Foot N-S N-S PW •PL WATP Space tb th 2 3 4 5 G Shardik RF 19.0 14.1 14.0 7.9 12.7 X X L u N 4, 2, .0 .9 4 2 .4 .5 4. 2. 5, .1 .7 .1 4.1 3.8 2.5 2.5 RH 26.3 22.9 . 13.0 18.1 13.3 x x L W N 1, .7 2 .9 4. 3. .9 A 2.9 2.5 G" Sheba LF 17.8 13.7 12.8 6.4 12.9 X X L W N 3. 2. 8 9 3. 2. 8 9 3.8 2.9 4.1 3.8 3.7 3.0 2.5 LH 25.4 22.9 13.3 17.0 13.2 X X L W N 3. 2. 8 7 3. 3. 8 2 4. 2. 2. 0 9 5 3.8 3.8 2.9 2.5 B 18 LF 11.0 8.2 9.0 4.5 10.1 0 0 L W N 2. 2. 2. ,8 .0 .2 2. 2. 3, .9 .0 .0 3. 2. 2. .0 .0 .8 2.8 2.2 2.1 1.7 2.7 2.0 LH . . . . 16.7 8.8' 12.2 9.3 0 0 L W N 2. 2. .7 ,0 2. 1. 2. .5 .8 .0 2. 1. 1. ,6 .6 .9 2.5 2.0 1.7 1.6 2.1 1.3 B 20 RF . . . . 9.6 9.2 4.9 10.1 0 0 L W N 3. 1. 2. ,0 ,9 .9 3, 1. 3. .0 .8 .1 3. 1. 3. .2 .8 .2 3.0 2.0 2.0 1.5 3.2 2.5 • LH . . . . 16.0 9.3 5.5 12.2 9.1 0 0 L W N 2. 1. 1. ,7 6 .9 2.1 2.9 2.5 2.0 155 1.551.7 1.6 . 2.0 1.9 1.8 1.5 B 19/23 LF 14.6 11.3 12.7 6.35 16.0 0 0 L W N 3. 2. 2. .8 .7 .9 4.14 4.45 4.14 2.9 254 254 3.3 254 3.3 3.3 3.2 254 B 4 RF n.o 9.1 8.2 4.6 8.7 0 X L W N 2. 1. 2. .5 .6 .7 2, 1. 2, .9 .8 .6 2. 1. 2. .8 .7 .6 2.8 2.3 1.8 1.5 2.8 2.5 RH 16.8' 15.5 8.2 4.5 11.5 8.3 0 0 L W . N 2, 1. 1. .2 .2 .8 2, 1. 1, .5 .3 .9 2.3 1.5 1.8 2.1 1.9 1.5 1.4 1.7 1.4 B Terrace LF 16.9 16.0 8.7 5.0 8.8 0 0 Not recorded B Sighting LF 10.5 7.9 9.0 4.2 9.6 0 0 Not recorded X • no B = b l a c k 0 = yes 60 Large a d u l t g r i z z l y bear t r a c k s were r e a d i l y d i s t i n g u i s h e d from a l l other bears by t h e i r l a r g e s i z e . We had fre q u e n t debates as to the s p e c i f i c s t a t u s of s m a l l e r t r a c k s , however. I looked, t h e r e f o r e , f o r d i s t i n q u i s h i n g c h a r a c t e r i s t i c s which were independent of the animal's s i z e . I compared the 22 t r a c k c h a r a c t e r i s t i c s of a group of 11 known g r i z z l y bears and f i v e known black bears and found two c h a r a c t e r i s t i c s which were s i g n i f i c a n t l y d i f f e r e n t between these groups. Table 5 compares the freguency of the f i f t h toe being below the m i d l i n e of the other f o u r toes as w e l l as the frequency of the toes being separate from each other i n the forepaws and the hindpaws of both black and g r i z z l y bears. These c h a r a c t e r s are i l l u s t r a t e d i n F i g u r e 18. A l l of the 11 g r i z z l y bear forepaws had f i f t h t o e s which were even with the m i d l i n e of the other four toes while f i v e of the s i x black bears had f i f t h toes which were below the m i d l i n e of the other f o u r t o e s . There i s a s i g n i f i c a n t d i f f e r e n c e (p = .001) between black and g r i z z l y bears i n t h i s t r a c k c h a r a c t e r i s t i c (Table 5). Ten of the 11 g r i z z l y bear hindpaws had f i f t h toes which were even with the other f o u r t o e s . T h i s i s s i g n i f i c a n t l y d i f f e r e n t (p = .004) from the f o u r black bears which had f i f t h t o e s which were below the m i d l i n e o f the other toes (Table 5). The second c h a r a c t e r i s t i c i n which black and g r i z z l y bear paws d i f f e r e d i s the presence or absence of a space between the t o e s . A l l of the 11 g r i z z l y bear forepaws had t o e s which were j o i n e d , while a l l of the s i x bl a c k bears had toes which were separate from each other (Table 5). The d i f f e r e n c e between black and g r i z z l y bears i n t h i s t r a c k c h a r a c t e r i s t i c i s h i q h l y 61 T a b l e 5 . F r e q u e n c y o f o c c u r r e n c e o f t w o paw c h a r a c t e r i s t i c s w h i c h d i s t i n g u i s h b l a c k b e a r s f r o m g r i z z l y b e a r s . F i s h e r s e x a c t P r o b a b i l i t y C h a r a c t e r G r i z z l y B e a r B l a c k b e a r S i e g e l ( 1 9 5 6 ) F i f t h t o e r e l a t i v e t o m i d d l e o f o t h e r f o u r t o e s f o r e p a w s : e v e n b e l o w h i n d p a w s : e v e n b e l o w S e p a r a t i o n o f t o e s f o r e p a w s : j o i n e d s e p a r a t e h i n d p a w s : j o i n e d s e p a r a t e 11 1 p = .001 0 5 10 0 p = . 0 0 4 -1 4 11 0 p = .001 0 6 11 0 p = . 0 0 7 0 4 u r e 1 8 : Two f e a t u r e s w h i c h d i s t i n g u i s h b l a c k f r o m g r i z z l y b e a r f o r e p a w s 1) s p a c e b e t w e e n t o e s a n d 2) t o e b e l o w m i d l i n e o f o t h e r f o u r t o e s 63 s i g n i f i c a n t (p = .001). A l l of the 11 hindpaws of the g r i z z l y bears had toes which were j o i n e d . T h i s i s s i g n i f i c a n t l y d i f f e r e n t (p = .007) from the four black bears, a l l of which had toes which were separate from each other (Table 5). Of the 11 g r i z z l y bears examined f o r f u s i o n among the to e s , seven were a d u l t s , t h r e e were subadults, and one was a cub. While l i m i t e d , these data do i n d i c a t e t h a t t h i s t r a c k c h a r a c t e r i s t i c i s independent of the s i z e of the animal. The f o r e g o i n g r e s u l t s i n d i c a t e t h a t the t r a c k s of black and g r i z z l y bears can be r e l i a b l y separated on the b a s i s of two c h a r a c t e r i s t i c s . G r i z z l y bears have f i f t h toes which are even with the m i d l i n e of the other four t o e s , and which are j o i n e d to one another ( F i g . 18). T h i s f e a t u r e occurs on both the f o r e -and hindpaws of a d u l t s and j u v e n i l e s . Black bears, on the other hand, have f i f t h toes which are below the m i d l i n e of the other four t o e s , and which are separate from one another ( F i g . 18). While e x c e p t i o n s t o t h i s d i f f e r e n c e occur i n the "toe-below" c h a r a c t e r i s t i c , there are no exceptions i n the "toe s e p a r a t e " c h a r a c t e r i s t i c . I t has a l s o been claimed f o r two bears of i d e n t i c a l paw s i z e , a g r i z z l y bear would have longer claws on the f o r e f e e t than a black bear. Table 6 shows the pad width, claw l e n g t h on the t h i r d t o e , and the r a t i o between these c h a r a c t e r s on the forepaws of e i g h t g r i z z l y bears and f i v e black bears. I f the data p o i n t f o r the g r i z z l y bear cub i s excluded, then t h e r e i s no o v e r l a p between the claw l e n g t h s of the g r i z z l i e s (4.2-6.1 cm) and those of the black bears (2.6-3.3 cm). T h i s d i f f e r e n c e i s not independent of the pad width, which can be c o n s i d e r e d an 6 4 T a b l e 6 . The r a t i o o f n a i l l e n g t h t o f o r e p a d w i d t h as a d i s t i n g u i s h i n g c h a r a c t e r i s t i c o f b e a r t r a c k s . B e a r ID F o o t Pad w i d t h (cm) C l a w l e n g t h (cm) The r a t i o o f r i a i l l e n g t h t o f o r e p a d w i d t h G 7P G 21WC G c u b o f G 20 G 7WC G 1 2 / 2 2 S u n k i s t s i g h t i n g S i g h t i n g 21 RF LF LF LF LF LF RF LF 13 1 3 . 2 7 . 0 1 1 . 0 1 3 . 0 1 8 . 1 1 2 . 2 1 3 . 3 4 . 9 0 . 3 7 7 4 . 5 0 . 3 4 1 2 . 1 0 . 3 0 0 4 . 2 0 . 3 8 2 5 . 0 0 . 3 8 5 6 . 1 0 . 3 3 8 4 . 6 . 0 . 3 7 7 5 . 7 0 . 4 2 9 X = 0 . 3 6 6 r a n g e 0 . 3 0 0 - 0 . 4 2 9 B l 4 B l 1 9 / 2 3 B l 18 B l 20 T e r r a c e RF LF LF RF RF 8 . 2 1 2 . 7 9 . 0 9 . 2 8 . 7 2 . 6 3 . 3 2 . 8 3 . 2 3 . 0 X 0 . 3 1 7 0 . 2 6 0 0 . 3 1 1 0 . 3 4 8 0 . 3 4 5 0 . 3 1 6 r a n g e 0 . 2 6 0 - 0 . 3 4 8 65 index to the animal's body s i z e , as there i s c o n s i d e r a b l e o v e r l a p between the r a t i o of claw l e n g t h t o pad width of the g r i z z l y bears (range 0.300-0-429, x = 0.366) and those of the black bears (range 0. 260-0.348, x = 0.316). I t i s p o s s i b l e , however, t h a t the low frequency of a d u l t s i n the black bear data b i a s t h i s c o n c l u s i o n because of d i f f e r e n t i a l growth p a t t e r n s among the s t r u c t u r a l components of bear paws. The s i n g l e a d u l t black bear (pad width = 12.7 cm) has a claw l e n g t h of 3.3 cm whch i s a f u l l centimeter (25 percent) s h o r t e r than g r i z z l i e s with comparable pad widths (claw l e n g t h s = 4.9, 4.5, 5.0, and 4.6 cm). 5.4. D i s c u s s i o n The f a c t t h a t t h r e e o f the 11 g r i z z l y bears that were examined had v i r t u a l l y i d e n t i c a l paw c h a r a c t e r i s t i c s i n d i c a t e s t h at i n d i v i d u a l bears cannot be d i s t i n g u i s h e d r e l i a b l y on the b a s i s of t h i s c h a r a c t e r i s t i c alone. Thus, census techniques which r e l y e x c l u s i v e l y on the measurement of t r a c k s produce nothinq more than absolute minimum numbers. I concur with the c o n c l u s i o n of Edwards and Green (1959) t h a t the use of t r a c k s to census g r i z z l y bears i s r e s t r i c t e d t o areas where bears are s c a r c e . The high v a r i a b i l i t y of t r a c k impressions on sand bars composed of dry, loose sand, combined with the s t r i k i n g s i m i l a r i t y we found i n the t r a c k s of i n d i v i d u a l g r i z z l i e s , i n d i c a t e s t h a t census surveys of the simple " r i v e r d r i f t " type would be fraught with e r r o r . 66 I t i s p o s s i b l e that i n d i v i d u a l bears could be marked with a d i s t i n g u i s h i n g c h a r a c t e r i s t i c which would r e g i s t e r i n the i m p r e s s i o n . A l l of the methods which I c o n s i d e r e d have drawbacks, however. Since bear claw impressions are f r e q u e n t l y absent from t h e i r t r a c k s , c l i p p i n g of the n a i l s would not be a r e l i a b l e technique. While toe c l i p p i n g probably would serve to d i s t i n g u i s h i n d i v i d u a l s , i t has the s e r i o u s l i m i t a t i o n of a c t i n g as a s i t e f o r i n f e c t i o n which c o u l d r e s u l t i n death. I t i s u n l i k e l y t h a t m a t e r i a l added to the paw would p e r s i s t s i n c e the a g g r a v a t i o n i t caused the bear probably would r e s u l t i n i t s removal. Again, t i s s u e damage i n c u r r e d as a r e s u l t of attachment would expose the animal to i n f e c t i o n . Branding or c u t t i n g of the pad would not be u s e f u l s i n c e such a mark could f i l l with mud and would heal e v e n t u a l l y . I concur with others t h a t the use of t r a c k s to d i s t i n g u i s h i n d i v i d u a l bears i s a technique with l i m i t e d census a p p l i c a t i o n . Track measurements are u s e f u l , however, when p e r f e c t t r a c k impressions are combined with other i n f o r m a t i o n such as t e l e m e t r y l o c a t i o n s or automatic camera r e c o r d i n g systems (Smith 1978). Tracks were found to be u s e f u l f o r the s e p a r a t i o n of black and g r i z z l y bears when p e r f e c t t r a c k impressions were a v a i l a b l e . Of the two d i s t i n g u i s h i n g c h a r a c t e r i s t i c s found, I c o n s i d e r the "space" c h a r a c t e r to be more r e l i a b l e than the "toe below" c h a r a c t e r i s t i c , as there are d i f f i c u l t i e s i n a s s e s s i n g the l a t t e r c h a r a c t e r o b j e c t i v e l y . On l a r g e r bears, s i z e and the l e n g t h - o f - c l a w s from the toes were r e l i a b l e . 67 CHAPTER 6 - FOOD HABITS 6.1. I n t r o d u c t i o n One of the b a s i c p r e r e q u i s i t e s to understanding the ecology of a mammal s p e c i e s i s an ac c u r a t e d e s c r i p t i o n of i t s food h a b i t s . Many aspects of a s p e c i e s l i f e h i s t o r y s t r a t e g y (such as i t s d i s t r i b u t i o n and abundance i n space and time) can only be understood f u l l y when they are r e l a t e d to the p r o p e r t i e s of the foods used by the animal. Information i s needed not only on the food s p e c i e s consumed but a l s o on t h e i r r e l a t i v e importance, n u t r i t i o n a l v a l u e , d i s t r i b u t i o n , and abundance. The food h a b i t s o f bears have been broadly known f o r more than a century. Recent s t u d i e s have r e f i n e d our concept of t h e i r omnivorous nature and documented v a r i a t i o n s a s s o c i a t e d with g e o g r a p h i c a l areas. Food h a b i t s of g r i z z l y bears have been assessed f o r the southwestern Yukon T e r r i t o r y (Pearson 1975), f o r Yellowstone N a t i o n a l Park (Mealey 1975), G l a c i e r N a t i o n a l Park, Montana (Martinka 1972), the i n t e r i o r o f B r i t i s h Columbia (Mundy 1963, Hamer 1974, L l o y d and F l e c k 1977), A l b e r t a (Hamer et a l . 1977, Nagy and R u s s e l l 1978), the i n t e r i o r mountains of Alaska (Murie 1944), northern Montana (Jonkel 1978), Kodiak I s l a n d (Clark 1957), and the Alaskan peninsula ( C h a t e l a i n 1950), as well as s e v e r a l areas i n Europe and Russia (see f o r example Zunino and Herrero 1972, Haglund 1968, and K i s t c h i n s k i 1972). Study o f the black bear has documented food h a b i t s which are very s i m i l a r t o those of the g r i z z l y bear. Among other a r e a s , food h a b i t s of the black bear have been determined i n Montana 68 ( T i s c h 1961), i n t e r i o r Alaska (Hatler 1972), and c o a s t a l Washington (Poelker and H a r t w e l l 1973). Re c e n t l y , Beeraan and P e l t o n (1977) have a t t r i b u t e d the p r o d u c t i v i t y , bear-human i n t e r a c t i o n s , home range, and movement p a t t e r n s of black bears i n the Smoky Mountains to t h e i r food h a b i t s . The a v a i l a b l e food h a b i t s data f o r c o a s t a l North American black and g r i z z l y bears are incomplete and l a r g e geographic areas have not been s t u d i e d (see C h a t e l a i n 1950, C l a r k 1957, Poelker and H a r t w e l l 1973, R u s s e l l 1974, Berns et a l . 1977, and A t w e l l e t a l . 1977). This study of food h a b i t s was c o n s t r a i n e d by other a s p e c t s of the p r o j e c t . I d i d not sample e a r l y i n the s p r i n g , nor l a t e i n the f a l l , p r i m a r i l y because of the e f f o r t r e q u i r e d to t r a v e l to the study area at those times. S p e c i f i c o b j e c t i v e s of the food h a b i t ' s study were: 1. t o g u a n t i f y the seasonal use of food by black and g r i z z l y bears i n c o a s t a l B r i t i s h Columbia, 2. to i d e n t i f y r e l a t i o n s h i p s of food q u a l i t y and a v a i l a b i l i t y to i t s use by bears, and 3. to r e l a t e the two preceding o b j e c t i v e s to c u r r e n t understanding of bear f e e d i n g ecology as i t i s d e s c r i b e d i n the l i t e r a t u r e . There are two p o t e n t i a l l i m i t a t i o n s to the d e s c r i p t i o n of the seasonal use of food presented here. F i r s t , t h e r e does not appear t o be any r e l i a b l e method t o separate s c a t s of black and g r i z z l y bears, and s i n c e the s p e c i e s were sympatric i n the study area, I have had t o assume t h a t t h e i r food h a b i t s were s i m i l a r . The data of Smith (1978) i n d i c a t e that t h i s assumption i s v a l i d . 69 The data presented thus c o n s i s t of a combined sample of the foods used by both g r i z z l y bears and b l a c k bears. Second, i t i s not p o s s i b l e t o c o l l e c t s u f f i c i e n t s c a t samples to t r e a t s t a t i s t i c a l l y the observed s h i f t s i n the p r o p o r t i o n s of foods used. For example, using the method of Hanson and G r a y b i l l (1956), 72 s c a t s would have been necessary t o be c e r t a i n t h a t 95 percent of the observed volumes a c t u a l l y d i f f e r e d by l e s s than 10 percent from the t r u e values f o r the sample p e r i o d of May 1977. I c o l l e c t e d nine s c a t s f o r t h i s p e r i o d and i t would not have been p o s s i b l e t o c o l l e c t more than 30. Thus, the i n f o r m a t i o n presented i s l i m i t e d to a sketch of the a c t u a l s i t u a t i o n . 6.2. Methods 6.2.1. Scat c o l l e c t i o n The c o l l e c t i o n , a n a l y s i s , and p r e s e n t a t i o n of food h a b i t s data f o l l o w s the methods of T i s c h (1961) and H u s s e l l (1971). We c o l l e c t e d f r e s h bear droppings and determined t h e i r c o ntents w i t h i n a month of c o l l e c t i o n . Since we s y s t e m a t i c a l l y t r a v e l l e d through the study area, droppings c o u l d be aged and c o l l e c t e d w i t h i n a week of t h e i r d e p o s i t i o n . The date, age, and l o c a t i o n of the s c a t were recorded with a f e l t pen on p l a s t i c , Z i p l o c (Trademark) c o l l e c t i o n bags. 70 6.2.2. Scat a n a l y s i s The food h a b i t s were s t u d i e d by examining s c a t s . H a t l e r (1972) found t h a t s c a t a n a l y s i s i s a r e l i a b l e index to the r e l a t i v e consumption of most foods by bears. P r i o r t o a n a l y s i s , droppings were soaked i n water to s o f t e n them, to mix the components evenly, and t o remove s o l u b l e m a t e r i a l . To remove excess water, the s c a t s were s t r a i n e d through a k i t c h e n s i e v e . The s t r a i n e d s c a t was spread out i n an enamel d i s s e c t i o n t r a y gridded with moveable monofilament f i s h i n g l i n e . Ten subsamples were taken from the t r a y a c c o r d i n g to g r i d l o c a t i o n s generated from a random number t a b l e . Subsamples were placed i n a P e t r i d i s h which had 10 predetermined p o i n t s on i t . P l a n t fragments l y i n g on these p o i n t s : were i d e n t i f i e d with an e i g h t power d i s s e c t i n g microscope. Plant samples from the study area were c o l l e c t e d f o r comparison with the p l a n t fragments observed i n the droppings. I d e n t i f y i n g c h a r a c t e r i s t i c s of the p l a n t fragments were photographed and are recorded i n a separate r e p o r t (Fleck e t a l . 1977). The formulae used t o c a l c u l a t e volume (1), frequency (2), importance value (3), and r e l a t i v e importance value (4) are as f o l l o w s : Volume (%) = £ volumes of food item/# of s c a t s x 100 (1) Frequency (%) = E # s c a t s with food item/* of s c a t s x 100 (2) Importance Value (IV) = I % volume x % frequency/100 (3) 71 Percent Importance Value = £ IV of one food i t e m / IV (4) of a l l food items x 100 6.2.3. Bear food c o l l e c t i o n R e p r e s e n t a t i v e samples o f bear foods i d e n t i f i e d i n the droppings were c o l l e c t e d and d r i e d a t 50°C w i t h i n 4 days of c o l l e c t i o n and s t o r e d f o r f u t u r e n u t r i e n t a n a l y s i s . The magnitude of v a r i a t i o n between s i t e s was e x p l o r e d by r e p l i c a t i n g p l a n t samples from f o u r l i g h t and moisture regimes: dry-open canopy, d r y - c l o s e d canopy, wet-open canopy, and wet-closed canopy. A l l s i t e s were i d e n t i c a l i n t h e i r e l e v a t i o n and aspect. Where p o s s i b l e , samples were c o l l e c t e d on the day f o l l o w i n g a r a i n shower to reduce p o s s i b l e v a r i a t i o n i n n u t r i e n t content due to l e a c h i n g . At each s i t e I c o l l e c t e d 180 to 250 g (wet) samples of the bear foods. A l i n e was chosen whose endpoints represented the maximum d i f f e r e n c e i n a v a i l a b l e l i g h t and moisture within a s i t e and composite samples were c o l l e c t e d along t h i s l i n e . The samples were placed i n p l a s t i c bags and t r a n s f e r r e d t o d u f f e l bags which were kept c o o l during t r a n s i t to U.B.C. 6.2-4. N u t r i e n t analyses The f o l l o w i n g n u t r i e n t s were estimated f o r each of the food samples c o l l e c t e d : moisture content, t o t a l ash, crude f a t , crude f i b r e (ADF) , crude p r o t e i n , s o l u b l e carbohydrates (NFE) , and gross energy. A l l samples were i n i t i a l l y d r i e d t o constant weight at 50°C. With the e x c e p t i o n of samples used f o r 72 d e t e r m i n a t i o n of moisture content, t o t a l ash, and gross energy; sample m a t e r i a l was not d r i e d any f u r t h e r . The n u t r i e n t a n a l y s i s was done at U.B.C. and f o l l o w e d the standard techniques of proximate a n a l y s i s (AOAC 1970) with the f o l l o w i n q e x c e p t i o n s : crude f i b r e content was determined by the a c i d - d e t e r g e n t - f i b r e (ADF) method of Van Soest and Wine (1967) as m o d i f i e d by Waldern (1971); Crude f a t content was estimated with the G o l d f i s c h technique (AOAC 1970). The c o n c e n t r a t i o n of the elements Ca, Mg, and K i n the r o o t s and i n the l e a v e s of skunk cabbage were determined from a one gram sample. The sample was burned to ash at 475° C i n a muffle f u r n a c e f o r f o u r hours. The r e s u l t a n t ash was d i s s o l v e d i n 7.5 ml of hot, 20 percent HCL. T h i s s o l u t i o n was then d i l u t e d t o 100 ml with d i s t i l l e d water and s t o r e d i n a p o l y e t h y l e n e b o t t l e u n t i l the c a t i o n c o n c e n t r a t i o n s were determined with a V a r i a n -Techtron Atomic Absorption Spectrophotometer. 6.3. R e s u l t s 6.3.1. Seasonal use of food Droppings c o l l e c t e d from May through September i n 1976 and 1977 averaged 60 percent vegetable matter, 25 percent f r u i t , 15 percent salmon, and t r a c e q u a n t i t i e s of i n s e c t s . The bears i n the study area consumed 21 d i f f e r e n t r e c o g n i z a b l e foods. The bulk of the d i e t came from e i g h t of these foods: sedge, l a d y f e r n , s p i n y wood f e r n , h u c k l e b e r r y , salmonberry, d e v i l ' s c l u b , i n s e c t s , and salmon. The s p r i n g and e a r l y summer d i e t c o n s i s t e d of sedge, herbs and f e r n s , and the c u r r e n t year's 73 growth of shrubs. F r u i t s and salmon were used e x t e n s i v e l y i n August and September. F i g u r e s 19 and 20 i l l u s t r a t e s e a s o n a l changes i n r e l a t i v e importance value of major foods. The frequency of occurrence, mean volume, importance value, and r e l a t i v e importance value of a l l food items i d e n t i f i e d i n the droppings of Ahnuhati black and g r i z z l y bears i n 1976 and 1977 are shown i n Appendix I I I . The use of food can be d i v i d e d i n t o two major p e r i o d s : (1) s p r i n g and e a r l y summer (May to June), and (2) summer and f a l l ( July to September) . 6.3.1.1. Spring and e a r l y summer During t h i s p e r i o d , the d i e t was composed of f i v e major foods: (1) sedge (33.3 percent I V ) , (2) shoots of salmonberry (25.9 p e r c e n t I V ) , (3) l e a v e s of d e v i l ' s c l u b (19.9 percent I V ) , (4) l a d y f e r n and spiny wood f e r n (15.2 percent I V ) , and (5) l e a v e s of huckleberry (3.2 percent IV) (App. I I I ) . The s p r i n g d i e t of c o a s t a l black and g r i z z l y bears thus c o n s i s t e d e n t i r e l y of green v e g e t a t i o n . The r e c e s s i o n of snow cover and p a t t e r n of greenup i n the e a r l y s p r i n g d i c t a t e d the a v a i l a b i l i t y of those foods bears used f i r s t . In l a t e A p r i l of 1976, f o r example, sedge and f e r n were not a v a i l a b l e to f o r a g i n g bears. As the snow receded and sedge developed, there was a corresponding i n c r e a s e i n the p r o p o r t i o n of v a l l e y bottom sedge i n the d i e t . 74 F i g u r e 19: S e a s o n a l s h i f t s i n t h e use o f f o o d by b l a c k and g r i z z l y b e a r s i n t h e A h n u h a t i s t u d y a r e a , 1976 f ^ n j l a d y f e r n and s p i n y wood f e r n ^ sedge s h o o t s o f s a l m o n b e r r y W s h o o t s o f d e v i l ' s c l u b l e a v e s o f t a l l b l u e h u c k l e b e r r y and a l a s k a n h u c k l e b e r r y b e r r i e s o f t a l l b l u e h u c k l e b e r r y and a l a s k a n h u c k l e b e r r y b e r r i e s o f s a l m o n b e r r y b e r r i e s o f d e v i l ' s c l u b skunk cabbage salmon u n i d e n t i f i e d Percent Importance Value 76 F i g u r e 2 0 : S e a s o n a l s h i f t s i n t h e u s e o f f o o d by b l a c k a n d g r i z z l y b e a r s i n t h e A h n u h a t i s t u d y a r e a , 1977 l a d y f e r n a n d s p i n y wood f e r n s e d g e s h o o t s o f s a l m o n b e r r y s h o o t s o f d e v i l ' s c l u b l e a v e s o f t a l l b l u e h u c k l e b e r r y a n d a l a s k a n h u c k l e b e r r y b e r r i e s o f t a l l b l u e h u c k l e b e r r y a n d a l a s k a n h u c k l e b e r r y b e r r i e s o f s a l m o n b e r r y b e r r i e s o f d e v i l ' s c l u b b e r r i e s o f s t i n k c u r r a n t s k u n k c a b b a g e s a l m o n s a n d a n d g r a v e l u n i d e n t i f i e d 78 When l a d y f e r n and sp i n y wood f e r n f i r s t develop, they occur i n patches i n a c u r l e d form ( f i d d l e h e a d s ) . The e n t i r e above ground p o r t i o n o f the p l a n t i s consumed a t t h i s time. The f e r n develops and u n f o l d s by the end of June at which time the bears remove o n l y the upper 20 cm of the p l a n t . Bears consume the newly developing shoots of salmonberry during s p r i n g and e a r l y summer. These occur w i t h i n 50 cm of the base o f the s t a l k . D e v i l ' s c l u b begins i t s annual development with an u n f o l d i n g of new l e a f m a t e r i a l at the top of the s t a l k . Sign of f e e d i n g on t h i s p l a n t by bears i s very v i s i b l e . The animals p u l l down the d e v i l ' s club stems, which may be as high as three metres, and b i t e o f f the green top. Although skunk cabbage i s not a major food i n the annual d i e t of bears, s i g n of feeding on t h i s food i s common. I t i s one of the f i r s t p l a n t s i n the herbaceous cover to develop. Bears d i g up t h i s p l a n t and consume the white p o r t i o n of the root above the rhizomes and d i s c a r d the green p o r t i o n of the p l a n t . 6.3.1.2. Summer and f a l l During t h i s p e r i o d , 17 d i f f e r e n t foods were reco g n i z e d i n the d i e t , 12 of which occur a t g r e a t e r than t r a c e q u a n t i t i e s (App. I I I ) . Of these 12, nine occur at importance value l e v e l s which a r e q r e a t e r than t h r e e percent: (1) b e r r i e s of huckleberry (24.4 percent I V ) , (2) salmon (20.1 percent I V ) , (3) b e r r i e s of salmonberry (10.8 percent IV) , (4) l a d y f e r n and 79 spiny wood f e r n (8-9 percent I V ) , (5) sedge (8.9 percent I V ) , (6) b e r r i e s of d e v i l ' s c l u b (5.5 percent I V ) , (7) b e r r i e s of s t i n k c u r r a n t (5.5 percent I V ) , (8) l e a v e s of d e v i l ' s c l u b (4.8 percent I V ) , and (9) leaves of salmonberry (3.9 percent I V ) . Thus, as the b e r r i e s r i p e n and the salmon e n t e r the r i v e r , the bears i n the study area switch from a s p r i n g d i e t of green v e g e t a t i o n t o a summer d i e t of b e r r i e s and salmon. The 1977 data show t h a t the use of b e r r i e s covered a two month p e r i o d ; beginning i n l a t e June and ending i n l a t e August ( F i g . 20). During the i n i t i a l p art of the salmon run, bears consumed a l l of c a p t u r e d salmon with the e x c e p t i o n of the g i l l c o v e r s , t a i l , and sperm sacs. As the season progressed, bears became more s e l e c t i v e and o c c a s i o n a l l y k i l l e d salmon without consuming them. Meehan (1961) and Gard (1971) r e p o r t s i m i l a r o b s e r v a t i o n s . Bears e i t h e r consumed salmon at the capture s i t e or c a r r i e d them o f f i n t o adjacent t h i c k e t s . I o c c a s i o n a l l y found daybeds of bears which had many salmon c a r c a s s e s with them. While the dense v e g e t a t i o n g e n e r a l l y prevented o b s e r v a t i o n of bears, we were able t o observe two black bears f e e d i n g on salmon. T h i s provided i n s i g h t i n t o the supply of salmon to bears. In the f i r s t i n s t a n c e , a s m a l l black bear (approx. 50 kg) was observed with a l a r g e chum salmon (8 kg) on a sand-bar. The bear had d i f f i c u l t y dragging the salmon i n t o the adjacent t h i c k e t . On the second o c c a s i o n , B. Smith f o l l o w e d an a d u l t black bear which disappeared from view f o r 20 seconds and when i t was s i g h t e d next, i t was h o l d i n g a salmon i n i t s jaws. The s m a l l s i z e of the f i r s t bear and the wide d i s p e r s i o n of spawning 80 h a b i t a t i n the Ahnuhati suggests t h a t spawning salmon are a v a i l a b l e to any s i z e of bear i n the v a l l e y . The apparent ease with which the second bear captured salmon, and the d i f f i c u l t y which pursued salmon experienced i n shallow water support t h i s c o n c l u s i o n . Frame (1974) commented t h a t p e r i o d i c f l o o d s of Olsen Creek probably decreased the f i s h i n g e f f i c i e n c y of bears s i n c e the l a r g e flow of s i l t - l a d e n water both washed the salmon downstream and h i d them from view of bears. P e r i o d i c f l o o d s were a l s o common i n the Ahnuhati, and d u r i n g the f l o o d the f i s h i n g e f f i c i e n c y of bears probably decreased. The f l o o d s u l t i m a t e l y l e d t o g r e a t e r feeding e f f i c i e n c y because they permitted the salmon access to s m a l l s i d e channels and streams of the r i v e r . As the water l e v e l s dropped, salmon f r e q u e n t l y became trapped i n these c h a n n e l s . During 1976, F e d e r a l F i s h e r i e s estimated t h a t 100,000 pink and chum salmon entered the Ahnuhati R i v e r (Darke, pers. comm.). The chum salmon began spawning on August 1 and the pinks d i d not enter the spawning h a b i t a t u n t i l two weeks l a t e r . T h i s run of salmon was of r e c o r d s i z e . The 1977 salmon run was l e s s than one f i f t h the s i z e of the 1976 run. The t i m i n g , d u r a t i o n , and s i z e of p r e v i o u s runs i s given by R u s s e l l (1974). While there are s e v e r a l e x i s t i n g s t u d i e s of bear p r e d a t i o n on salmon (Meehan 1961, Gard 1971, Frame 1974), there are no records of bears fe e d i n g on eggs deposited by salmon i n g r a v e l redds. On October 21 and 22, 1976 I c o l l e c t e d evidence of bears feeding on salmon eggs i n the g r a v e l beds of the Ahnuhati. Low water l e v e l s at t h i s time exposed redds formed by spawning 81 salmon i n August and September. I n t e r s t i t i a l water l e v e l s i n the g r a v e l were c l o s e to the a i r - w a t e r i n t e r f a c e of the g r a v e l bar at the time of examination. Although I d i d not observe any bears i n the act of f e e d i n g at these redds, I d i d observe two g r i z z l i e s and s e v e r a l s e t s of t r a c k s of both b l a c k and g r i z z l y bears at the d i s t u r b e d redds. From c u r s o r y examination of e i g h t droppings, the contents averaged 85 percent g r a v e l and 15 percent salmon f l e s h by volume. The l a r g e amount of g r a v e l consumed suggests t h a t the bears were a b l e to d e t e c t salmon eggs i n the r i v e r beds, but were not a b l e to i s o l a t e the eggs e f f e c t i v e l y from the surrounding g r a v e l . The f a c t t h a t no eggs were detected i n the droppings suggests t h a t the eggs are very d i g e s t i b l e to bears. Mealey (1975) found the proximate content of t r o u t eggs to be 68.5 percent dry matter (pdm) crude p r o t e i n , 14.6 pdm crude f a t , 0.11 pdm crude f i b r e , 12.0 pdm s o l u b l e carbohydrate, and 4.8 pdm t o t a l m i n e r a l s . . He observed a minimum apparent d i g e s t i b i l i t y of 70.3 percent. Salmon eggs are thus of s i g n i f i c a n t p o t e n t i a l food value, but may be d i f f i c u l t t o o b t a i n from g r a v e l b a r s . During 1976 I d i d not observe a s i n g l e i n s t a n c e of bears f e e d i n g on wasps or bees at t h e i r n e s t s . In 1977 I observed the f e e d i n g s i g n of bears on 24 wasp and 3 bee n e s t s . A l l of these n e s t s were i n the ground or i n f a l l e n wood. The nests i n the ground were f r e q u e n t l y a s s o c i a t e d with the r o o t s of t r e e s . S e v e r a l nests contained developinq l a r v a e . Some of the nests were d i s t u r b e d by bears on more than one o c c a s i o n . I t was not c l e a r how the bears detected the n e s t s . 82 6.3.2. N u t r i e n t C h a r a c t e r i s t i c s of Bear Foods 6.3-2-1. Overview of r e s u l t s The l e v e l s of crude p r o t e i n , crude f i b r e , gross energy, crude f a t , s o l u b l e carbohydrates, ash, f i b r e : p r o t e i n r a t i o , and moisture content are shown by c o l l e c t i o n date f o r each bear food sampled i n the study area ( F i g s . 21 through 26). The l e v e l s shown i n the f i g u r e s are the mean values of the samples taken from s i t e s of v a r y i n g l i g h t and moisture regimes (see Methods). The a c t u a l values are t a b u l a t e d i n Appendix IV and, i n g e n e r a l , t h e r e i s l i t t l e v a r i a t i o n between s i t e s . The number of s i t e s sampled vary with each s p e c i e s s i n c e not a l l s p e c i e s o c c u r r e d at a l l s i t e s . The number of samples w i t h i n s p e c i e s o c c a s i o n a l l y vary because of l a b e l and sample l o s s . T y p i c a l l y , however, the values p l o t t e d i n the f i g u r e s are the mean of f o u r s i t e s . In g e n e r a l , as the 'green' bear foods mature, the l e v e l s of crude p r o t e i n , crude f a t , s o l u b l e carbohydrates, and moisture content decrease while crude f i b r e i n c r e a s e s ; and energy and t o t a l ash remain constant ( F i g s . 21, 23, 25, and 26). For salmonberry, d e v i l ' s c l u b , and h uckleberry, the f i b r e : p r o t e i n r a t i o i s much lower i n t h a t p a r t of the plant which the animal consumes than i n the p a r t which i s not consumed (Figs. 20, 22, 24). As the b e r r i e s mature, the l e v e l s of crude p r o t e i n and crude f i b r e decrease, and the l e v e l s of crude f a t , s o l u b l e carbohydrates, and moisture content i n c r e a s e ( F i g s . 21 and 25) . 83 E ?-30-Z UJ h=20"i O 0C Q - - I O - J UJ Q £ O Q- — e • M A S 6H o < o ^ 2H s ^ 6 0 - ] • UJ 4 0 -UJ Q O E •a a. 20-B- • B M 6H < 4H UJ Q 2 D e O 13 " J A s 60-E Q.40-UJ u . z 20- a- -2» &20-I H O 6. 10H UJ M A A S •I 20-10H UJ § &100-O 80H S 60-I H 40-Z UJ 20-O e D--O- G •6= I J o ©. •e A F i g u r e 2 1 : S e a s o n a l s h i f t s i n t h e n u t r i e n t c o n c e n t r a t i o n s o f s a l m o n -b e r r y (Rubus speatabilis) s new s h o o t s A b e r r i e s e d i b l e p o r t i o n o f p l a n t pdm p e r c e n t d r y m a t t e r o l e a v e s s t a l k • — i n e d i b l e p o r t i o n o f p l a n t 84 E xs P-30-UJ h= 20-O e a, 10-UJ o O ^ 4H < o ^ 2H 60-E Q.40-I UJ y_ _ _ z20-g20-, o EC UJ CO M ~T~ J J L A n r J J L A I J J L J L A E ^60-• UJ 40-EQ UJ Q £E O E •o a • UJ o EC O 20-6H M •I 20-Q. "X. < 10-UJ BE Sioo-, O 80 2 60-| £ 40~> UJ 20-O EE UJ a, M J L A J J L A I J J L A J J L A F i g u r e 22: S e a s o n a l s h i f t s i n t h e n u t r i e n t c o n c e n t r a t i o n s o f c o m b i n e d s a m p l e s o f l a d y f e r n {Athyvium filix-femina) a n d s p i n y wood f e r n (Dryopteris austriaoa) f r o n d e d i b l e p o r t i o n o f p l a n t pdm p e r c e n t d r y m a t t e r 85 E -o Q-30-LU [Z20-O ee a-10-UJ Q 3 CC O • H • 6H > 4-< O ^ 2-A A I 60-Q. • CC 40-UJ CQ 20 H UJ Q 3 ce o E a r -UJ a CC o 6-2 4-• B J A 60H E E.40-UJ u. 20-• 20-1 o S, 10 UJ £0 U . ~ r A A E •o a. • 2 : < 20-1<H Q- Q- • UJ 1 1 1 CC 3 M 1 J 1 A £ 100-1 (St O 80- B- ^ —© S 60- ~~ •& - a Z 4 0 " UJ 20-O fl£ | | I UJ a. fvl J A F i g u r e 2 3 : S e a s o n a l s h i f t s i n t h e n u t r i e n t c o n c e n t r a t i o n s o f d e v i l ' s c l u b {Oplopanax horvidum) < §|gj new s h o o t s e d i b l e p o r t i o n o f p l a n t pdm p e V c e n t d r y m a t t e r • • s t a l k i n e d i b l e p o r t i o n o f p l a n t 86 E T3 «<3oH z m H-20-) O cc Q-10 LU Q cc O (3 < o * 2-4 T J JL A S T" M JL A 20-"I 60H a S 40-| eg u. UJ Q £ O E a i H < JL A 6H LU DC O JL A I S T S 6 0 E Q - 4 0 H LU (JL Z 2 0 -~r J JL A L U 2 0 - | o &. ioH \ EC LU m LU I JL A E •o o. 2 0 -X w ioH LU £E S 1 0 0 n 6 8 0 " 5 60-t 40-z LU 20-O E LU a. JL A T JL A F i g u r e 2 4 : S e a s o n a l s h i f t s i n t h e n u t r i e n t c o n c e n t r a t i o n s o f s k u n k c a b b a g e {Lysichitijm amevioanum) © L_j l o w e r s t a l k e d i b l e p o r t i o n o f p l a n t pdm p e r c e n t d r y m a t t e r • l e a v e s i n e d i b l e p o r t i o n o f p l a n t 87 E T3 Q.30-I 1= £20-O CC a. 1<H UJ Q 3 CC O O J 4-< O * 2-J ~r A —A 0 A 6CH E Q . 4 0 -UJ ^ 2 0 -• 2 ° -H O ct 10-CC UJ GQ T J A A •§ 20-a 1 x CO 10H UJ EC 3 H 1 0 0 -o 8 ° -S 60-H 40H Z UJ 2 0 a CC UJ fiL iVl A A F i g u r e 2 5 : S e a s o n a l s h i f t s i n t h e n u t r i e n t c o n c e n t r a t i o n s o f c o m b i n e d s a m p l e s o f t a l l b l u e h u c k l e b e r r y {Vaccinivm ovalifoliwn) a n d a l a s k a n h u c k l e b e r r y (v. alaskaense) §H new s h o o t s A b e r r i e s e d i b l e p o r t i o n o f p l a n t pdm p e r c e n t d r y m a t t e r l e a v e s i n e d i b l e p o r t i o n o f p l a n t 88 E -a °-3<H SS £20H O tr a. 10H UJ Q 3 CC o M 6-4-O * 2-60H E Q . 4 0 H • UJ 20-5 2 0 ^ o a. ioH CC UJ M n—:— i r J JL A -®- ® 1 1 1 r M J JL A T J JL A JL A E Q. 60 • CC UJ 40H 63 w < 20-H 6H UJ Q 3 CC O E •a a i H if 4 UJ Q 2 3 CC o E •5 20-a M 10H UJ CC 3 S1 0 0-> O 8 0 S 60H K- 40-UJ 20-O CC UJ &, M ©-JL A — © r J JL A - © -JL •o-A JL A F i g u r e 2 6 : S e a s o n a l s h i f t s i n t h e n u t r i e n t c o n c e n t r a t i o n s o f s e d g e (Carex s p . ) pdm l e a f p e r c e n t d r y m a t t e r e d i b l e p o r t i o n o f p l a n t 89 6.3.2.2. N u t r i e n t content of bear foods I sampled t h r e e p a r t s of salmonberry f o r t h e i r n u t r i e n t content; the shoots and t h e i r l e a v e s , other l e a v e s and f l o w e r s , and the b e r r i e s . Crude p r o t e i n i n the shoots of salmonberry dur i n g Hay i s c l o s e t o 25 percent of the dry matter (pdm) and i s probably higher e a r l i e r i n the s p r i n g . Crude p r o t e i n l e v e l s decrease to 10 pdm i n August. The constancy of the gross energy values a t 4.5 k c a l s per gram f o r a l l foods ( F i g s . 20 to 25) s t r o n g l y suggest t h a t the value of 5.5 f o r the August sample of the shoots of salmonberry and the value of 6.5 f o r the August sample of skunk cabbage are i n e r r o r . I n September, new shoots develop on the salmonberry p l a n t with crude p r o t e i n l e v e l s of 21 pdm and these are consumed by bears. Scat a n a l y s e s showed t h a t bears d i d not consume the l e a v e s and flowers of salmonberry. These p a r t s of the p l a n t may r e p r e s e n t a more n u t r i t i o u s food on a per gram b a s i s s i n c e the l e v e l s of crude p r o t e i n , crude f a t , and s o l u b l e carbohydrates are higher and crude f i b r e i s lower during June and August than the corresponding v a l u e s f o r the shoots ( F i g . 21). However, the l e a v e s and f l o w e r s o b v i o u s l y c o n s t i t u t e d a f a r lower biomass than the shoots and, t h e r e f o r e , may r e q u i r e a higher handling time. Bears do not consume the s t a l k of salmonberry and, as expected, the n u t r i e n t a n a l y s i s shows t h a t the s t a l k s are very f i b r o u s and low i n n u t r i e n t s ( F i g . 21) . 90 Mature salmonberries have comparatively low crude f i b r e l e v e l s (19-25 pdm), high s o l u b l e , carbohydrate l e v e l s (46-58 pdm) , and high moisture content (84-86 percent) ( F i g . 21.) . The i r h i g h net n u t r i e n t value probably o f f s e t s the c o s t s of h a n d l i n g . Ladyfern and sp i n y wood f e r n a re the two f e r n s used by bears i n the study area, although deer f e r n , bracken f e r n , and oak f e r n are a l s o common throughout the study a r e a , and sword f e r n i s common on the most x e r i c s i t e s . Ladyfern and spiny wood f e r n e x h i b i t the h i g h e s t crude p r o t e i n l e v e l s of the s p r i n g foods which I examined (35 pdm) ( F i g . 22). These two f e r n s as well as sedge are i n t e r e s t i n g i n t h e i r low f i b r e : p r o t e i n r a t i o (< 2) throughout the season ( F i g s . 22 and 26). The f e r n s are the o n l y food which appear i n the d i e t of bears throughout the p e r i o d I sampled, although the f a l l l e v e l s are low. Perhaps t h i s use. i s a r e f l e c t i o n of t h e i r r e l a t i v e l y constant food value and a v a i l a b i l i t y . S tudies by Roc h e l l e (pers. comm.) show average crude p r o t e i n values o f 20.5 and 9.9 pdm f o r deer f e r n f o r the May to June and J u l y to September periods r e s p e c t i v e l y on Vancouver I s l a n d . Average crude f i b r e l e v e l s were 50.4 and 74.7 pdm f o r these same pe r i o d s ( f i b r e : p r o t e i n r a t i o s are thus 2.5 and 7.5). R o c h e l l e a l s o found average crude p r o t e i n v a l u e s of 17.9 and 10.3 pdm f o r sword f e r n f o r the above p e r i o d s , and average crude f i b r e l e v e l s of 53.8 and 55.5 pdm f o r f i b r e : p r o t e i n r a t i o s of 3.0 and 5.4 f o r the May to June and J u l y t o September p e r i o d s . The f a c t t h a t bears do not consume deer f e r n and sword f e r n may be due to t h e i r high f i b r e : p r o t e i n r a t i o s . 91 The l e a v e s of d e v i l ' s c l u b were consumed by bears, while the s t a l k was not ( F i g . 23). The l e v e l of crude p r o t e i n was higher i n the l e a v e s than i n the s t a l k d u r i n g a l l seasons sampled ( F i g . 23). The f i b r e : p r o t e i n r a t i o was much higher i n the s t a l k (12-15) than i n the le a v e s (1-3). The l e v e l s of s o l u b l e carbohydrate and crude f a t do not d i f f e r between the l e a v e s and the s t a l k . T o t a l ash and moisture content both appear to be higher i n the l e a v e s than i n the s t a l k . The use of skunk cabbage by bears i s i n t e r e s t i n g s i n c e the animals are h i g h l y s e l e c t i v e i n the choice o f the r o o t over other p a r t s of the p l a n t . Bears use t h i s food throughout the season at low volumes. There are no apparent d i f f e r e n c e s between n u t r i e n t content of the t u b e r s and the l e a v e s as determined by proximate a n a l y s i s ( F i g ^ 24). There are a l s o no apparent d i f f e r e n c e s i n the l e v e l s of Mg, Ca, and K (App. I V ) . The s h i f t s i n n u t r i e n t composition of green p a r t s of hu c k l e b e r r y f o l l o w s the p a t t e r n o u t l i n e d f o r salmonberry and d e v i l ' s c l u b ( F i g . 25). I sampled t h r e e p a r t s of h u c k l e b e r r y f o r t h e i r n u t r i e n t content; (1) the newly growing stem and i t s l e a v e s , (2) other l e a v e s , and (3) b e r r i e s . Crude p r o t e i n l e v e l s i n the newly growing stem are about 20 percent of the dry matter during May, and are probably higher e a r l y i n the s p r i n g . Crude p r o t e i n l e v e l s decreased s h a r p l y by June ( F i g . 25 ) and are not consumed by bears a f t e r t h i s time. Crude p r o t e i n i n the other l e a v e s i s s l i g h t l y lower and does not decrease to the same extent as i n the newly growing stem d u r i n g June and August. The l e a v e s a r e consumed c o i n c i d e n t a l t o b e r r i e s d u r i n g the summer ( F i g . 19) . 92 Green h u c k l e b e r r i e s had high l e v e l s of crude p r o t e i n (19 pdm) and crude f i b r e (35 pdm) , and lower l e v e l s of crude f a t (2.5 pdm), s o l u b l e carbohydrates (35 pdm), and moisture (82 percent) than the corresponding values f o r mature b e r r i e s ( F i g . 25). Ripe h u c k l e b e r r i e s have low l e v e l s of crude p r o t e i n (6-8 pdm) and crude f i b r e (15 pdm), but comparatively high l e v e l s of crude f a t (11 pdm), s o l u b l e carbohydrates (NFE) (65 pdm) , and moisture (82 percent) ( F i g . 25) . Mealey (1975) found s i m i l a r v a l u e s f o r r i p e Vaccinium scopariurn i n Yellowstone (crude p r o t e i n , 9.7 pdm; ether e x t r a c t , 6.1 pdm; f i b r e (ADF), 13.9 pdm; NFE, 67.8 pdm; and t o t a l ash, 2.8 pdm). Hamer et a l . (1977) found a crude p r o t e i n l e v e l of 6.1 pdm and a f i b r e l e v e l of 24.8 pdm f o r r i p e , t a l l b l u e h u c k l e b e r r i e s i n Banff N a t i o n a l Park. During Hay the crude p r o t e i n and crude f i b r e l e v e l s of sedge are c l o s e t o 24 pdm ( F i g . 26, App. IV) . As the season progresses, crude p r o t e i n decreases s l i g h t l y and crude f i b r e i n c r e a s e s s l i g h t l y ( F i g . 26). S o l u b l e carbohydrates remain r e l a t i v e l y c o n s t a n t at about 40 pdm throughout the season. The n u t r i e n t v a l u e s f o r coho salmon are i n c l u d e d i n Appendix IV, s i n c e I sampled them at only one time. The mean n u t r i e n t values f o r two coho females were 73.2 pdm crude p r o t e i n , 7.95 pdm s o l u b l e carbohydrates, 5.6 pdm crude f i b r e , 4.99 k c a l s gross energy, 10.84 pdm t o t a l ash, and 70.3 percent moisture. 93 6.3.3. Food a v a i l a b i l i t y The amount of bear food a v a i l a b l e per h a b i t a t type v a r i e d from zero t o 274 kg per hectare (Table 1). The food a v a i l a b i l i t y data a p p l i e s to the p e r i o d s i n F i g u r e s 19 and 20 during which each food was eaten by bears. The order of o v e r a l l abundance of bear foods i n the study area i s shown i n Table 1. Apart from salmon, salmonberry was the most abundant bear food (396.2 k g ) r while b e r r i e s of s t i n k c u r r a n t were the l e a s t abundant (4.3 kg). These f i g u r e s are only e s t i m a t e s s i n c e the sample s i z e s are very low. The p l a n t foods consumed by bears are common i n the understory of the Ahnuhati watershed (Table D -6.4. D i s c u s s i o n 6.4.1. Comparison of food h a b i t s with other areas To compare the observed seasonal food use to e x i s t i n g i n f o r m a t i o n I have reworked the data of Poelker and H a r t w e l l (1973), C l a r k (1957), and Mealey (1975) ( F i g . 27). To a i d comparison, the i n d i v i d u a l food s p e c i e s have been lumped i n t o 12 c l a s s e s as f o l l o w s : 94 F i g u r e 2 7 . " C o m p a r s i o n o f c l a s s e s o f b e a r f o o d s i n t h e A h n u h a t i w i t h e x i s t i n g s t u d i e s o f f o o d h a b i t s o f b e a r s i n c o a s t a l e c o s y s t e m s . . 1 g r a s s e s , s e d g e s , a n d h o r s e t a i 1 2 h e r b s a n d f e r n s • 3 g r e e n s h r u b m a t e r i a l 4 f r u i t s 5 f i s h 6 s m a l l mammals 7 l a r g e mammals 8 u n i d e n t i f i e d a n d t r a c e f o o d s 9 i n s e c t s : 11 10 f u n g u s wood f i b r e 12 n u t s >100n LU > LU DC 50 H 1 2 1 2 8 J u n e J u l y - A u g u s t M e a l e y ( 1 9 7 5 ) - l a k e e c o n o m y >100~f LU > < LU 50H 1 2 6 7 1 2 6 8 9 A p r i l - J u n e J u l y - S e p t e m b e r M e a l e y ( 1 9 7 5 ) - v a l l e y p l a t e a u e c o n o m y >100-| LU > LU 50H r — r r - i 1 2 6 7 1 2 8 J u n e J u l y - S e p t e m b e r M e a l e y ( 1 9 7 5 ) - m o u n t a i n economy N = 105 g r i z z l y b e a r s c a t s 1 6 7 8 10 O c t o b e r - N o v e m b e r N = 340 g r i z z l y b e a r s c a t s 12_ 2 O c t o b e r .N = 170 g r i z z l y b e a r s c a t s 12 > 100-1 u > P 50-< UJ £C J Z L ZlZL 1 2 3 6 8 11 4 8 9 10 1 2 6 8 10 A p r i l - J u n e J u l y - S e p t e m b e r P o e l k e r a n d H a r t w e l l ( 1 9 7 3 ) O c t o b e r - N o v e m b e r 2 8 8 b l a c k b e a r s t o m a c h s >100i UJ > < U J 50-1 2 3 4 8 May - J u n e T h i s s t u d y i — r 1 2 3 4 5 8 J u l y - S e p t e m b e r J.].§„.t?J^.?.L.^D^...3D..^Jj...bear„..§.?.S.t;.?.., >100i UJ > < UJ 50-1 2 4 5 J u l y - O c t o b e r C l a r k ( 1 9 5 7 ) 140 g r i z z l y b e a r s c a t s CD > 100 - 1 > LU 50-1 2 7 8 1 2 7 TpTiT"-' 1 'june Hamer e t a l . ( 1 9 7 8 ) 2 7 J u l y - S e p t e m b e r O c t o b e r - N o v e m b e r N = 105 g r i z z l y b e a r s c a t s 1 2 8 1 2 4 8 9 May - J u n e L l o y d a n d F l e c k ( 1 9 7 7 ) J u l y - A u g u s t 130 b l a c k a n d g r i z z l y b e a r s c a t s to 98 C l a s s Food Type 1 2 3 4 5 6 7 8 9 10 11 12 gra s s e s , sedges, and h o r s e t a i l herbs and f e r n s green shrub m a t e r i a l f r u i t s f i s h s m a l l mammals l a r g e mammals u n i d e n t i f i e d and t r a c e foods i n s e c t s fungus wood f i b r e nuts A l l of the foods r e p o r t e d by T i s c h (1961), Mealey (1975), C l a r k (1957), Hamer et a l . (1977), and Ll o y d and Fleck (1977) f i t i n t o the above c l a s s e s . The comparison of foods used among study areas shows t h a t while the r e l a t i v e l e v e l s o f some foods are s i m i l a r , t h e r e are d i f f e r e n c e s which are due l a r g e l y t o v a r i a t i o n s of the a v a i l a b i l i t y of food r a t h e r than t o v a r i a t i o n s i n the p r e f e r e n c e of bears ( F i g . 27). For example, the data from the Ahnuhati show hi g h use of shrubs and b e r r i e s , whereas g r i z z l i e s f e e d i n g i n Mealey's (1975) "l a k e economy" do not use these food c l a s s e s ( F i g . 27) s i n c e shrubs do not occur commonly i n the p l a n t communities of the " l a k e economy" (Mealey 1975). The l a c k of f r u i t i n the " l a k e economy" may account i n a compensatory f a s h i o n f o r the higher use of f i s h (50 percent IV) i n Yellowstone as compared with the Ahnuhati (30 percent IV) . C l a r k (19 57) found a much lower l e v e l of use of salmon i n the J u l y - O c t o b e r d i e t on Kodiak I s l a n d than I found i n the Ahnuhati July-September d i e t ( F i g . 27). This i s due probably t o the d u r a t i o n and ti m i n g of the run of sockeye salmon i n C l a r i s area ( l a t e September-October) when compared with my study area 99 (August-October). Since salmon are not a v a i l a b l e at the same time as b e r r i e s are r i p e , b e r r i e s are probably a more important energy source on the Kodiak I s l a n d than they are i n the Ahnuhati watershe d. Poelker and H a r t w e l l (1973) observed s i g n i f i c a n t use of i n s e c t s and fungus which d i d not appear at s i g n i f i c a n t l e v e l s i n the d i e t of Ahnuhati bears. T h i s may be a r e a l d i f f e r e n c e , or i t may be r e l a t e d t o the f a c t t h at Poelker and H a r t w e l l (1973) sampled stomachs, and s i n c e these foods are probably h i g h l y d i g e s t i b l e they may be under-represented i n s c a t s . I d i d not observe any s i g n of bears f e e d i n g on e i t h e r mushrooms or bracket fungus, although they were common i n the study a r e a . 6.4.2. I m p l i c a t i o n s of h i b e r n a t i o n t o f e e d i n g ecology 6.4.2.1. I n t r o d u c t i o n In the f o l l o w i n g s e c t i o n , I d i s c u s s the i m p l i c a t i o n s of body s i z e , h i b e r n a t i o n , and seasonal supply of n u t r i e n t s t o the n u t r i t i o n of g r i z z l y bears, using a simple model t o e v a l u a t e food supply i n terms of d a i l y energy demand. The essence of the argument i s based on evidence t h a t bears have evolved p h y s i o l o g i c a l a d a p t a t i o n s whereby the m a j o r i t y of t h e i r annual energy i s a s s i m i l a t e d during a s h o r t p e r i o d when abundant, high q u a l i t y food i s a v a i l a b l e . The c r i t i c a l p e r i o d f o r energy a s s i m i l a t i o n i n the annual b i o e n e r g e t i c p e r i o d i s suggested t o be between mid-summer and the f a l l immergence t o the den. 100 In the e v o l u t i o n a r y h i s t o r y of the U r s i d a e , i n d i v i d u a l s which c o u l d take advantage of a s e a s o n a l abundance of high q u a l i t y food would have i n c r e a s e d s u r v i v a l and f i t n e s s and come to dominate the po p u l a t i o n numbers. The three areas of evidence which suggest t h a t such a d a p t a t i o n has taken p l a c e are sea s o n a l weight changes, seasonal d e f e c a t i o n r a t e s , and seasonal hyperphagia. Jonkel and Cowan (1971) found t h a t l a t e summer was g e n e r a l l y the p e r i o d of g r e a t e s t weight g a i n among black bears i n Montana. They found t h a t black bears u s u a l l y reached t h e i r lowest weights i n l a t e June or e a r l y J u l y i n s p i t e of t h e i r e x t e n s i v e consumption of f o r b s and grass e s . T h i s suggests t h a t the energy sources a v a i l a b l e i n s p r i n g were not s u f f i c i e n t to maintain energy balance and thus, animals had to draw on body reserves i n order t o s u r v i v e . Pearson (1975) noted t h a t g r i z z l y bears i n the southwestern Yukon d i d not add f a t r a p i d l y u n t i l a f t e r J u l y . Roth (1977) found c l e a r seasonal d i f f e r e n c e s i n d e f e c a t i o n r a t e s of c a p t i v e brown bears i n S w i t z e r l a n d , with low values o f two s c a t s per day from November through June and higher v a l u e s i n the remaining months, with a d i s t i n c t peak of seven s c a t s per day i n August. Nelson (1973, 1978) noted hyperphagia among two American black bears and a Himalayan black bear i n l a t e summer. Black and g r i z z l y bears i n North America t y p i c a l l y h i b e r n a t e (sensu Folk 1978) f o r pa r t of the year, the l e n g t h of time apparently v a r y i n g with l a t i t u d e and annual snow accumulation (Craighead and Craighead 1972, L e n t f e r e t a l . 1972). Bears are able t o s u r v i v e h i b e r n a t i o n by lowering t h e i r metabolic demand and by m o b i l i z i n g f a t r e s e r v e s (Folk 1967, Folk et a l . 1972, 101 Nelson 1 973),. These f a t r e s e r v e s are produced d u r i n g the a c t i v e season of the year and t h e i r p r o d u c t i o n r e g u i r e s energy i n t a k e above normal requirements f o r growth, maintenance, and r e p r o d u c t i o n . In g e n e r a l , energy from food i s both more d i f f i c u l t to e x t r a c t and l e s s abundant i n s p r i n g and e a r l y summer than i n mid-summer and f a l l . The s p r i n g foods have a lower c a l o r i c d e n s i t y and higher moisture content (App. IV) and t h e i r crude f i b r e content makes them l e s s d i g e s t i b l e than the autumn foods. J u s t et a l . (1976) and Whittemore and E l s l e y (1976) found an i n v e r s e r e l a t i o n s h i p between crude f i b r e i n t a k e and d i g e s t i b i l i t y i n swine. Bears would t h e r e f o r e need more food on a dry weight b a s i s during s p r i n g , and because of the high e r moisture content, the e q u i v a l e n t wet weiqht would be bulky. Mealey (1975) and Hamer et a l . (1977) a l s o suggested t h a t the food sources of mid-summer and f a l l are o f h i g h e r q u a l i t y than those of s p r i n q and e a r l y summer. While we d i d not estimate the biomass of salmon, the abundance and d e n s i t y of t h i s food supply o b v i o u s l y exceeds a l l ot h e r s . Since the salmon runs begin i n August, the mid-summer to f a l l p e r i o d i s a l s o one of higher food abundance. 6. 4. 2. 2. The Model The f i r s t assumption i s t h a t the b a s a l metabolic r a t e (BMR) of a bear does not depart s i g n i f i c a n t l y from K l e i b e r ' s (1961) formula: BMR = 70 W (kg) (4) 102 then the BMR of a 200 kg g r i z z l y bear i s 3.7 megacalories per day. The second assumption i s t h a t an a c t i v e mammal r e q u i r e s 2.5 times i t s BMR i n order t o maintain energy balance (Gessaman 1973) . Data are not a v a i l a b l e on the a c t u a l metabolic l e v e l of h i b e r n a t i n g bears (Folk 1978). D n f o r t u n a t e l y , without i n f o r m a t i o n on oxygen consumption, i t i s not p o s s i b l e to use the r e s p i r a t o r y q u o t i e n t s given by Nelson et a l . (1973) as a s u b s t i t u t e v a r i a b l e f o r metabolic l e v e l . The a v a i l a b l e i n f o r m a t i o n on the body temperature, and on heart and r e s p i r a t o r y r a t e s suggest t h a t the metabolism of a h i b e r n a t i n g bear i s l e s s than BMR. I have assumed t h a t during h i b e r n a t i o n the metabolic demand of a bear i s below b a s a l metabolism and, f o r d i s c u s s i o n purposes, approximates 0.85 BMR. The f i r s t q u e s t i o n I examine i s , "Could the s p r i n g foods provide s u f f i c i e n t energy to o f f s e t 25 percent of the c o s t s of h i b e r n a t i o n , i n a d d i t i o n t o the requirements f o r maintenance, qrowth, and r e p r o d u c t i o n ? " The data on weight g a i n c i t e d e a r l i e r suggests t h a t t h i s does not occur but i t i s important f o r t h i s d i s c u s s i o n to e s t a b l i s h whether i t i s t h e o r e t i c a l l y p o s s i b l e . I f h i b e r n a t i o n by g r i z z l i e s i n c o a s t a l B.C. g e n e r a l l y i n c l u d e s the 120 day p e r i o d of December 1 to March 31 (Leigh-Spencer and Hebert pers. comm.), then the energy r e q u i r e d per day (EPD) f o r the 60 day p e r i o d of May and June can be determined: EPD = 2.5 BMR + 0.25 [0.85 BMR (120 days) ]/60 (5) a 200 kg bear would thus r e q u i r e 10.8 megacalories per day 10 3 dur i n g t h i s p e r i o d . The mean c a l o r i c d e n s i t y f o r l a d y f e r n , sedge, shoots of salmonberry, and d e v i l ' s club i s 4.56 kcals/gm, and the mean moisture content i s 86 percent (App. IV). I f we approximate d i g e s t i b i l i t y at 70 percent (Whittemore and E l s l e y 1976) then the 200 kg bear would r e q u i r e approximately 24 kg (wet) of t h i s food f o r each 24 hour p e r i o d . Best (1977) found r a t e s of passage f o r s e a l meat i n p o l a r bears t o be 17 t o 24 hours and c i t e d evidence from Hunt and Stubbs (1975) that r a t e of passage i s u n a f f e c t e d by bulk. He a l s o assumed t h a t a bear's stomach c a p a c i t y was 15 to 20 percent of i t s body weight. The domestic swine l i t e r a t u r e does not i n c l u d e stomach c a p a c i t y measures. I f these e s t i m a t i o n s are v a l i d , then i t does appear p o s s i b l e f o r a bear to o f f s e t approximately 25 percent of the e n e r g e t i c c o s t s of h i b e r n a t i o n by using energy from i t s s p r i n g food. G r i z z l y bears i n the Ahnuhati must a s s i m i l a t e , t h e r e f o r e , a minimum of 75 percent of t h e i r e n e r g e t i c requirements d u r i n g the 90 day p e r i o d between J u l y and October. The energy r e q u i r e d per day (EPD) f o r t h i s p e r i o d can be determined: EPD = 2.5 BMR + 0.75 [0.85 BMR (120 days) ]/90 (6) A 200 kg g r i z z l y would thus r e q u i r e 12.5 megacalories per day during t h i s p e r i o d . 104 6.4.2.3. I m p l i c a t i o n s of the model Consider how a bear might manage to a s s i m i l a t e t h i s d a i l y energy requirement from the food sources a v a i l a b l e . Acknowledging the foods a v a i l a b l e during the J u l y to October p e r i o d ( F i g . 20), and using f a t c o n v e r s i o n e f f i c i e n c i e s f o r v a r i o u s n u t r i e n t s which have been observed among swine, one can estimate the amount of food r e q u i r e d t o meet the energy demands of Equation 6. The p r o p o r t i o n s of foods which make up the J u l y t o October d i e t , as c a l c u l a t e d from the data of t h i s c h a p t e r , are salmon (39.9 p e r c e n t ) , b e r r i e s (31.4 p e r c e n t ) , shoots of salmonberry (8.4 p e r c e n t ) , sedge (8.3 p e r c e n t ) , l a d y f e r n and spiny wood f e r n (5.5 p e r c e n t ) , and skunk cabbage (3.0 p e r c e n t ) . Since d i g e s t i b i l i t y i s known c u r r e n t l y o n l y f o r salmon and b e r r i e s (Hamilton 1978) I can c o n s i d e r f u l l y only the r e l a t i v e value of these foods. These r e l a t i v e v a l u e s are of some i n t e r e s t s i n c e C l a r k (1957), Berns e t a l . (1977), and o t h e r s have observed g r i z z l y bears l e a v i n g areas with abundant salmon t o seek b e r r i e s . Cursory examination of the a v a i l a b l e n u t r i e n t s i n these foods suggests t h a t salmon should be of g r e a t e r value than b e r r i e s (App. IV). In f a c t , t h i s i s not the case. To e s t i m a t e the r e l a t i v e value of salmon and b e r r i e s , I have reduced the n u t r i e n t s which I measured i n the food a c c o r d i n g to the s t e p s of the a s s i m i l a t i o n process as shown i n F i g u r e 28. The r e l a t i v e e f f i c i e n c i e s of F i n g e r l i n g (1914) shown i n F i g u r e 28 are those f o r • the conversion of n u t r i e n t s i n t o body f a t . Since both swine and bears are omnivorous monogastrics, the Q u a n t i t y o f n u t r i e n t s o b s e r v e d i n f o o d e n e r g y i n f e c e s e n e r g y l o s t t o u r i n e ( 0 . 9 k c a l / g p r o t e i n c a t a -b o l i z e d ( K l e i b e r 1 9 6 1 ) ) e n e r g y l o s t i n m e t h a n e p r o d u c t i o n ( f o r s w i n e -1 . 0 2 k c a l / g CHO ( B r e i r e m 1 9 3 9 ) ) h e a t o f d i g e s t i o n a p p a r e n t d i g e s t i b i l i t y o f g r o s s e n e r g y ( h u c k l e b e r r i e s - 8 8 . 4 7 ; s a l m o n - 8 7 . 5 7 ( H a m i l t o n 1 9 7 8 ) ) m e t a b o l i z a b l e E f f i c i e n c i e s f o r 1 9 1 4 ) -f a t 9 3 p e r c e n t s t a r c h 8 3 p e r c e n t p r o t e i n 74 p e r c e n t s u c r o s e 72 p e r c e n t e n e r g y -s w i n e ( F i n g e r l i n e t e n e r g y u r e 2 8 : R e d u c t i o n o f n u t r i e n t s a v a i l a b l e i n f o o d i n t o t h e n e t e n e r g y f o r f a t p r o d u c t i o n . 106 corresponding e f f i c i e n c i e s of bears probably do not depart markedly from these v a l u e s . The n u t r i e n t a n a l y s i s showed t h a t mature h u c k l e b e r r i e s c o n s i s t e d of 6.7 pdm crude p r o t e i n , 65.1 pdm s o l u b l e carbohydrates, and 10.8 pdm crude f a t . Barker e t a l . found t h a t the reducing sugar l e v e l s i n lowbush b l u e b e r r y averaged 7.6 pdm. On t h i s b a s i s , I have p a r t i t i o n e d the s o l u b l e carbohydrate value i n t o 57.5 pdm carbohydrate and 7.6 pdm sugar. The n u t r i e n t a n a l y s i s of two female coho salmon averaged 73.2 pdm crude p r o t e i n , 7.95 pdm s o l u b l e carbohydrates, and 5.6 pdm crude f a t . Using the preceding scheme of r e d u c t i o n of the n u t r i e n t value o f the food t o an estimate of i t s net energy, h u c k l e b e r r i e s are worth 2.8, salmonberries are worth 2.5, and salmon i s worth 2.8 k c a l per g dry matter f o r the production of body f a t . A worked example i s d i s p l a y e d i n Appendix V. The e n e r g e t i c c o s t s of h a n d l i n g b e r r i e s are o b v i o u s l y g r e a t e r than the c o s t s of handling salmon. Why then do bears consume b e r r i e s as well? Berns and Hensel (1972) and L e n t f e r (pers. comm.) observed bears t r a v e l l i n g s e v e r a l k i l o m e t e r s away from salmon streams t o forage f o r b e r r i e s . Perhaps the high carbohydrate content of b e r r i e s ( F i g . 25) provide a source of " q u i c k " energy f o r the c o n v e r s i o n of p r o t e i n from salmon to body f a t . The accumulation of body f a t i n domestic swine i s known to be r e l a t e d t o the i n t a k e r a t i o of p r o t e i n t o energy (Ehrensvard et a l . 1976, E l s l e y 1976, Whittemore and E l s l e y 1976). B e r r i e s may a l s o enhance the d i g e s t i o n of salmon or provide v i t a m i n s and minerals which do not occur i n salmon. 107 We can now c o n s i d e r how much of these foods a bear would need t o consume to s a t i s f y i t s d a i l y energy demand d u r i n g the J u l y t o October p e r i o d . Assuming t h a t the shoots of salmonberry, sedge, f e r n , and skunk cabbage (which together make up, on average, 30 percent IV f o r the July-October period) c o n t r i b u t e 15 percent of the d a i l y energy requirement of 12.5 megacalories (mgakal). And f u r t h e r , assuming t h a t of the remaining 10.6 megacalories, 75 percent i s d e r i v e d from salmon, which has an average value of 848 k c a l per kg wet weight (App. V) , and 25 percent from b e r r i e s , which have an average value of 577 k c a l per kg wet weight, then to meet i t s d a i l y energy demand which i n c l u d e s both the energy r e q u i r e d f o r a c t i v i t y and the enerqy r e q u i r e d f o r storaqe f o r h i b e r n a t i o n , a 200 kq g r i z z l y would r e q u i r e 9.2 kq of salmon and 4.5 kg of b e r r i e s per day. Such i n t a k e would represent 5 pink salmon and 9400 b e r r i e s which, a c c o r d i n g to our o b s e r v a t i o n s , c o u l d be c o l l e c t e d i n 9 hours of f o r a g i n g . Thus, i t does appear p o s s i b l e f o r a bear t o gain the weight re q u i r e d f o r h i b e r n a t i o n during the period of J u l y t o October. The broader i m p l i c a t i o n s of t h i s t o the ecology and management of bears are d i s c u s s e d i n the f o l l o w i n g chapter. 108 CHAPTER 7 - ADAPTATION OF BEARS TO ENERGY AVAILABILITY Bears are a s u c c e s s f u l , cosmopolitan f a m i l y i n which the b a s i c O r s i d theme i s expressed i n forms and s t r a t e g i e s which a p p a r e n t l y r e p r e s e n t v a r i o u s responses to d i f f e r e n t environments. They do not have the d i g e s t i v e c a p a b i l i t i e s of ruminants and they are not e f f e c t i v e p r e d a t o r s (Meyer-Holzapfel 1957, C u r r y - L i n d a h l 1972, Herrero 1978). They can e x p l o i t l a r g e mammals at only those times when they are h i g h l y v u l n e r a b l e (Craighead and Craighead 1972, Mysterud 1975), and can only e x p l o i t p l a n t m a t e r i a l e f f e c t i v e l y when i t has a low f i b r e content, a high moisture content, and a high d i g e s t i b i l i t y ( t h i s study, Mealey 1975, Hamer et a l . 1977). These food sources tend to be h i g h l y seasonal i n t h e i r occurrence. Bears s u r v i v e i n s e a s o n a l l y v a r i a b l e environments only because they can take advantage of the r e s t r i c t e d a v a i l a b i l i t y of abundant food through hyperphagic energy i n t a k e (Nelson 1973, 1978) and subsequent h i b e r n a t i o n (Folk 1967). The r e p r o d u c t i v e performance of bears, i n p a r t i c u l a r female bears, has been r e l a t e d c l o s e l y to t h e i r n u t r i t i o n a l c o n d i t i o n (Jonkel and Cowan 1971, Roqers 1977, Bunnell and T a i t 1 978). I t f o l l o w s that i n d i v i d u a l s which are best adapted to a s s i m i l a t e energy and produce f a t r e s e r v e s e s s e n t i a l f o r winter s u r v i v a l w i l l have the h i g h e s t f i t n e s s (sensu Orians 1969). 109 This k i n d of deduction permits e v a l u a t i o n of the c h a r a c t e r i s t i c s of the l i f e h i s t o r y s t r a t e g y of the Ursidae i n terms of t h e i r f i t n e s s . This process i s a u s e f u l c o n c e p t u a l t o o l , but r e g u i r e s an enormous amount of data t o t r e a t q u a n t i t a t i v e l y (Schoener 1971, Pyke et a l . 1977). In t h i s chapter, I show how the d i s t r i b u t i o n of bears, t h e i r markinq behavior, and t h e i r m i q r a t i o n c o u l d be i n f l u e n c e d by topoqraphy and the d i s t r i b u t i o n and abundance of food. Bears i n the Ahnuhati are concentrated i n time and space during the salmon run. As suggested i n Chapter 6, t h i s p e r i o d of the year i s c r i t i c a l i n terms o f energy a s s i m i l a t i o n . Bears which f a i l t o gain s u f f i c i e n t f a t r e s e r v e s probably w i l l d i e (Nelson 1973) or have reduced r e p r o d u c t i v e output (Rogers 1976). I n d i r e c t evidence shows that ground s g u i r r e l s which do not possess adequate f a t r e s e r v e s d i e during h i b e r n a t i o n (Morton 1975, Armitage e t a l . 1976, G a l s t e r and Morrison 1976). Any aspects of the bears' l i f e s t y l e which i n t e r f e r e s with t h e i r a s s i m i l a t i o n of energy during the c r i t i c a l p e r i o d would be s e l e c t e d a g a i n s t . The topography of the Ahnuhati r e s u l t s i n a high p r o b a b i l i t y of encounter among bears and, d u r i n g the salmon run i n p a r t i c u l a r , t h e r e e x i s t s the p o t e n t i a l of f r e q u e n t a q g r e s s i v e i n t e r a c t i o n s which would be expensive e n e r g e t i c a l l y . The topography i n f l u e n c e s movement of bears and thus the p r o b a b i l i t y of c o n t a c t among bears i n two major ways: (1) The v a l l e y w a lls approach v e r t i c a l i n many areas and the r i d g e l i n e along the v a l l e y i s i n t e r r u p t e d by numerous t r i b u t a r y creeks of the Ahnuhati (Chapter 2, F i g . 2 ) . Movement along the watershed i s 110 thus c o n f i n e d to e l e v a t i o n s below 700 m; and (2) entry to the watershed by bears from surrounding watersheds i s p o s s i b l e only i n a l i m i t e d number of p l a c e s . To reach feeding areas such as spawning channels and sedge meadows, bears must e n t e r the watershed at one of these p o i n t s , descend to the v a l l e y bottom, and t r a v e l along the bottom t o the f e e d i n g s i t e s . I f t h e r e were a means of communication which would reduce the p r o b a b i l i t y of i n t e r a c t i o n s , then i t would be s e l e c t e d f o r . Bear marking t r e e s c o u l d serve as s c e n t p o s t s which reduce the p r o b a b i l i t y of contact. . As p r e v i o u s l y noted, the dense v e g e t a t i o n and noisy r i v e r , with i t s v a r i a b l e wind c u r r e n t s , c o n s t r a i n the communication pathways a v a i l a b l e t o l a r g e , s o l i t a r y mammals. As Rogers {1977, p.99) noted, " i n c a r n i v o r e s , scent g e n e r a l l y i s b e l i e v e d t o be of s p e c i a l importance i n the avoidance of encounters t h a t c o u l d be mutually damaging (Leyhausen and Wolff 1959, Hornocker 1969, Eaton 1970, E i s e n b e r g and Kleiman 1972, Ewer 1968, Mykytowycz 1974, P e t e r s and Mech 1 975).." In areas where s e a s o n a l c o n c e n t r a t i o n s of food are more clumped, or have a l e s s dense v e g e t a t i o n cover than the Ahnuhati ( F i g . 13), dominance h i e r a r c h i e s , e s t a b l i s h e d through i n d i v i d u a l i n t e r a c t i o n reduce the number and degree of i n t e r a c t i o n s , (Craighead and Craighead 1972, Stonorov and Stokes 1972, Rogers 1976). I t i s p o s s i b l e t h a t dominance h i e r a r c h i e s could a l s o be e s t a b l i s h e d with marking t r e e s . I n t e r v a l l e y movement or m i g r a t i o n (sensu Berns and Hensel 1972) can a l s o be viewed i n terms of i n d i v i d u a l f i t n e s s . I cannot g i v e a q u a n t i t a t i v e estimate of the r e l a t i v e d i f f e r e n c e i n net energy a v a i l a b l e i n a d i e t with salmon vs. a d i e t without salmon, because t h e r e are no data on the r e l a t i v e a b i l i t y of the 111 bears to gather d i f f e r e n t foods. S p e c i f i c a l l y , data are l a c k i n g on s e a r c h i n g time per food item, handling time per food item, consumption time, r a t e of passage through d i g e s t i v e system, stomach c a p a c i t y , p a l a t a b i l i t y , and d i g e s t i b i l i t y . I t i s reasonable t o assume, however, t h a t a d i e t with salmon would be b e t t e r f o r f a t pro d u c t i o n than a d i e t without salmon because of the comparatively low handl i n g time r e q u i r e d to capture salmon, and because of the "packaging" of the energy (high c a l o r i c d e n s i t y on a wet weight b a s i s ) . In terms of the bears' annual b i o e n e r g e t i c budget, and thus f i t n e s s , i t i s probably w e l l worthwhile m i g r a t i n g t o a r i v e r which has a l a r g e salmon run. I f Bunnell and T a i t (1978) and Herrero (1978) are c o r r e c t i n t h e i r i n f e r e n c e t h a t the s e l e c t i v e advantages of s e x u a l dimorphism i n bears are: 1) to al l o w the animal to t r a v e l widely and thus encounter more p o t e n t i a l mates, and 2) t o provide c o m p e t i t i v e advantage to l a r g e r animals i n d i s p u t e s over mates. then males which t r a v e l l e d between v a l l e y s and which became l a r g e r would be more s u c c e s s f u l at breeding. Females which migrated between v a l l e y s would have an enhanced r e p r o d u c t i v e a b i l i t y , through a higher n u t r i t i o n a l plane. The o v e r l a p between i n d i v i d u a l a c t i v i t y areas and the pa t t e r n of s p a t i a l use can be r e l a t e d t o food abundance and thus to f i t n e s s ( a f t e r Schoener 1971, Pyke et a l . 1977). In some areas, home ranges of black and/or g r i z z l y bears are comparatively d i s c r e t e , p a r t i c u l a r l y among females (Jonkel and Cowan 1971, Poelker and H a r t w e l l 1973, Pearson 1975, Sogers 112 1976). Bunnell and T a i t (1978) and Bunnell (pers. comm.) p r e d i c t t h a t d i s c r e t e ranges (or t e r r i t o r i e s ) should occur where resou r c e s are p r e d i c t a b l e and homogenous. While data on resource abundance and d i s t r i b u t i o n are incomplete i n the above s t u d i e s , the p r e d i c t i o n of Bunnell and T a i t (1978) appears to be g e n e r a l l y t r u e . In other areas, home ranges of black and g r i z z l y bears o v e r l a p e x t e n s i v e l y (Lindzey and Meslow 1977, Craighead 1976, Berns e t a l . 1978) . Reynolds and Beecham (1978) a t t r i b u t e d the o v e r l a p they observed among black bears i n Idaho to patchy and u n p r e d i c t a b l e forage p r o d u c t i o n . To p r e d i c t the s p a t i a l use p a t t e r n of a bear i n an area, one c o u l d order a l l a v a i l a b l e food patches a c c o r d i n g to t h e i r net energy/feeding time (MacArthur and Pianka 1966, Schoener 1971) and then compare t h i s with the patch d i s t r i b u t i o n i n the f i e l d . The f i r s t ranked patch should be the f i r s t c h o i c e of the animal p r o v i d i n g t h a t other e c o l o g i c a l f a c t o r s (e.g. predation) do not i n t e r f e r e d i s p r o p o r t i o n a t e l y with use of that type. Although I do not have q u a n t i t a t i v e measurements of a l l of the data r e q u i r e d f o r t h i s a n a l y s i s during the p e r i o d of the salmon run, salmon spawning streams would be the optimal c h o i c e . The salmon used by g r i z z l i e s i n the Ahnuhati are a v a i l a b l e only at the a c t u a l spawning s i t e s and these occur i n clumps throughout the lower 11 km of the r i v e r ( F i g . 13). The e x t e n s i v e o v e r l a p i n the use of space between i n d i v i d u a l s i n the Ahnuhati r i v e r can thus be c o n s i d e r e d an a d a p t i v e response to the patchy d i s t r i b u t i o n of t h e i r most c r i t i c a l food. 113 CHAPTER 8 - MANAGEMENT RECOMMENDATIONS Bears s u r v i v e as l a r g e omnivores, i n p a r t due to the adap t a t i o n of h i b e r n a t i o n . As d i s c u s s e d i n the preceding s e c t i o n , the s t o r e d energy needed f o r h i b e r n a t i o n p l a c e s l a r g e e n e r g e t i c demands on the animal during the a c t i v e season. Throughout t h e i r e v o l u t i o n , bears which were a b l e t o e f f e c t i v e l y l o c a t e c o n c e n t r a t i o n s of high q u a l i t y food were probably s e l e c t e d f o r and t h e i r numbers came to dominate the bear p o p u l a t i on. In r e l a t i v e l y r ecent g e o l o g i c time, garbage dumps of man have been added as a source of concentrated food i n the environment of bears. While the n u t r i t i o n a l q u a l i t y of the components of garbage dumps has not been q u a n t i f i e d , t h i s q u a l i t y may r i v a l n a t u r a l food sources, p a r t i c u l a r l y i n years o f crop f a i l u r e , or be e s p e c i a l l y important during seasons when n a t u r a l foods are s c a r c e . Not onl y do bears possess a d a p t a t i o n s to l o c a t e these sources, but they are a l s o capable of r e l o c a t i n g them. The c o n c e n t r a t i o n s of bears which occur at garbage dumps appear t o be c o n s i s t e n t with the f e e d i n g ecology of the f a m i l y Orsidae. I t i s p r e d i c t a b l e that r e l o c a t i o n of bears w i l l have only l i m i t e d success as a management t o o l s i n c e bears are c l e a r l y capable of r e t u r n i n g l a r g e d i s t a n c e s over some of the most rugged t e r r a i n i n the world (Hebert unpubl. d a t a ) . The l i m i t e d success of d e t e r r e n t s a l s o i s p r e d i c t a b l e s i n c e bears t o l e r a t e a p p a r e n t l y adverse c o n d i t i o n s to o b t a i n n a t u r a l foods. T h i s 114 suggests a high motivation t o o b t a i n food, a motivation which man has not been a b l e t o remove with a wide range of d e t e r r e n t s . I suggest that the most e f f e c t i v e way of r e d u c i n g bear use of garbage dumps, and the a s s o c i a t e d bear-human problems, i s to t r e a t the garbage (e.g. burning and b u r i a l ) , r a t h e r than t r e a t i n g the bears. G r i z z l y bears migrate between c o a s t a l v a l l e y s , probably i n response to the d i s t r i b u t i o n of spawning salmon. The exact routes used have not been i d e n t i f i e d , but c o u l d be important f o r h a b i t a t p r o t e c t i o n . The annual migration of bears to the Ahnuhati f o r salmon suggests that c o a s t a l watersheds with l a r g e salmon runs may feed bears from surrounding watersheds as w e l l as r e s i d e n t bears. Watersheds l i k e the Ahnuhati may warrant, t h e r e f o r e , s p e c i a l c o n s i d e r a t i o n f o r management of both the l a n d and people. The g r i z z l y i s a s p e c i e s which i s s e n s i t i v e t o d i s t u r b a n c e of the n a t u r a l ecosystem (see f o r example St o r e r and T e v i s 1955, Cowan 1972, Herrero 1976, Jonkel 1978). I f the present p a t t e r n of resource development i n c o a s t a l B r i t i s h Columbia c o n t i n u e s i n d e f i n i t e l y , then the g r i z z l y bear probably w i l l not s u r v i v e as a n a t i v e s p e c i e s except i n park areas. The g r i z z l y bear must r e c e i v e s p e c i a l c o n s i d e r a t i o n i f i t i s t o s u r v i v e . Some s p e c i f i c management recommendations which have developed d u r i n g the course of my study are: 1) The F i s h and W i l d l i f e Branch should determine the demand f o r g r i z z l y bears i n c o a s t a l B r i t i s h Columbia and decide which areas should be maintained as high d e n s i t y g r i z z l y bear areas. These 115 areas should r e c e i v e s p e c i a l management c o n s i d e r a t i o n such as those o u t l i n e d i n 3) below. 2) C o a s t a l watersheds which support l a r g e runs of salmon have a s p e c i a l s i g n i f i c a n c e i n the ecology of g r i z z l y bears. From a bear management p e r s p e c t i v e , these r i v e r s should a) be i d e n t i f i e d b) have t h e i r past chronology of salmon runs compiled c) be surveyed during the salmon run and c l a s s i f i e d by degree of bear use ( l i g h t , medium, heavy) 3) S p e c i a l management c o n s i d e r a t i o n should be preceded by an a e r i a l and ground reconnaissance of the area concerned.. The a p p r o p r i a t e management a c t i o n s f o r each area should be e s t a b l i s h e d by the Regional W i l d l i f e B i o l o g i s t , the Re g i o n a l H a b i t a t P r o t e c t i o n B i o l o g i s t , and t h e i r s t a f f . . Some suggestions f o r s p e c i a l management c o n s i d e r a t i o n s a r e : a) i d e n t i f i c a t i o n and p r o t e c t i o n of i n t e r - v a l l e y m i g r a t i o n routes b) m i n i m i z a t i o n of human-caused d i s t u r b a n c e during the p e r i o d of the salmon run. Energy a s s i m i l a t i o n by bears at t h i s time i s c r i t i c a l and i n t e r f e r e n c e c o u l d r e s u l t i n a s i g n i f i c a n t r e d u c t i o n i n body f a t re s e r v e s with conseguent m o r t a l i t y i n winter. Managers might c o n s i d e r the f o l l o w i n g a c t i o n s : i ) c u r t a i l unnecessary v e h i c l e a c t i v i t y near streams d u r i n g the salmon run i i ) maintain b u f f e r s t r i p s of mature cover along 116 streamsides. The p o s s i b i l i t y of blowdown i n wind prone areas should be accounted f o r i n the s i z e of the b u f f e r s t r i p s , i i i ) post s i g n s which inform the p u b l i c of nearby g r i z z l y bear a c t i v i t y and e s t a b l i s h r u l e s of conduct i n the area. c) maintain c o r r i d o r s of timber which provide cover f o r v e r t i c a l access by bears from the salmon spawning areas t o the s i d e s of the v a l l e y * These s t r i p s should occur a t l e a s t every k i l o m e t e r along the r i v e r and be a t l e a s t 1 c h a i n i n width. Timber i n these s t r i p s should be at l e a s t 15 m t a l l . In c o a s t a l B r i t i s h Columbia, open p i t garbage dumps should abandoned as a means of r e f u s e d i s p o s a l . a) Garbage should be burned i n s e l f - c o n t a i n e d i n c i n e r a t o r s t o which bear access i s not p o s s i b l e . In high d e n s i t y g r i z z l y bear a r e a s , these i n c i n e r a t o r s should be compulsory. I f t h e i r c o s t t o s m a l l o p e r a t o r s i s p r o h i b i t i v e , then they should be s u b s i d i z e d by the government. b) In areas where human settlement i s being e s t a b l i s h e d , use of i n c i n e r a t o r s must c o i n c i d e with the onset of a l l garbage d i s p o s a l . I nterim open p i t dumps which w i l l r e s u l t i n an i n i t i a l a s s o c i a t i o n by the bears of man with food should not be perm i t t e d . 117 5) I l l e g a l k i l l of g r i z z l y bears, which does not occur f o r apparent s e l f defence reasons, should be d e t e r r e d with much s t i f f e r p e n a l t i e s than those which p r e s e n t l y e x i s t . A l l p a r t s of bears k i l l e d f o r s e l f defence should a u t o m a t i c a l l y become government property. 6) Human sett l e m e n t should not occur w i t h i n 2 km of salmon spawning channels u n l e s s the F i s h and W i l d l i f e Branch and F o r e s t S e r v i c e e x p l i c i t l y permit i t . 7) During the salmon run, over n i g h t camping should not be permitted w i t h i n 2 km of salmon spawning channels. 8) A s t r i p of t r e e cover should be maintained as a v i s u a l screen i n areas where roads are adj a c e n t t o known feeding areas, such as sedge meadows l i k e those of the Sim and K l i n a k l i n i e s t u a r i e s , or such as snowslides. 9) The s p a t i a l and temporal cut p a t t e r n w i t h i n s p e c i a l management areas should r e c o g n i z e t h a t the 15 to 40 year o l d second growth f o r e s t i s probably o f very low p r o d u c t i v i t y to bears. 10) In s p e c i a l management areas, c o n t r o l of road access during the hunting season should be an o p t i o n open to the F i s h and W i l d l i f e Branch and road a l t e r a t i o n which l i m i t s access should be the r e s p o n s i b i l i t y of the l o g g i n g c o n t r a c t o r s concerned. 118 11) F u r t h e r study of the i n f l u e n c e of c l e a r c u t t i n g on g r i z z l y bears i s e s s e n t i a l . The work i n i t i a t e d by B.C. Fore s t Products i n R i v e r s I n l e t provides an i d e a l experimental s i t u a t i o n . T h i s work should be supported and cont i n u e d . 119 LITERATURE CITED Amstrup, S.C. and J . Beecham. 1976. A c t i v i t y p a t t e r n s of r a d i o - c o l l a r e d b l ack bears i n Idaho- J . W i l d l . Manage. 40(2) : 340-348. Armitage, K.B., J.F. Dowhower, and G.E. Svendsen. 1976. Seasonal changes i n weights of marmots. Am. M i d i . Nat. 96: 36-51. A s s o c i a t i o n of O f f i c i a l A g r i c u l t u r e Chemists (AOAC). 1970. O f f i c i a l methods of a n a l y s i s . 11th ed., Washington, D.C. A t w e l l , G., D. Boone, J . Gustafson, and V.D. Berns. In p r e s s . Brown bear summer a l p i n e h a b i t a t requirements on the Kodiak N a t i o n a l W i l d l i f e Refuqe i n Proceedinqs of the 4th I n t e r n a t i o n a l Conf. on Bear Research and Management. C.J. Martinka, ed., K a l i s p e l l , Montana 1977. Barker, W.G., F.A. Wood, and W.B. C o l l i n s . 1963. Sugar l e v e l s i n f r u i t s of the lowbush b l u e b e r r y estimated a t f o u r p h y s i o l o g i c a l ages. Nature 198: 4882. Beeman, L.E. and M. P e l t o n . In press. Seasonal foods and food ecology of the black bear i n the Smoky Mountains i n 4th I n t e r n a t i o n a l Conf. on Bear Research and Management. C.J. Martinka, ed. K a l i s p e l l , Montana. 1977,. Berns, V.D. and R.J. Hensel. 1972. R a d i o - t r a c k i n g brown bears on Kodiak I s l a n d . Pp. 19-25 i n S. Herrero, ed. Bears -t h e i r b i o l o g y and management. IOCN New S e r i e s No. 23, Morges, S w i t z e r l a n d . Berns, V.D., G.C. A t w e l l , and D.L. Boone. In p r e s s . F a l l brown bear h a b i t a t use and movements of Karluk Lake on Kodiak I s l a n d . In C.J. Martinka, ed. Bears - t h e i r b i o l o g y and management. Best, R. 1977. E c o l o g i c a l a s p e c t s of p o l a r bear n u t r i t i o n . Pp. 203-211 i n R.L. P h i l i p s and C.J. J o n k e l , eds. Proceedings of the 1975 Predator Symposium June 16-19, 197 5. Montana F o r e s t and Conservation Experiment S t a t i o n , M i s s o u l a . i x + 268 pp. B o u l i e r e , F. 1954. The n a t u r a l h i s t o r y of mammals, 1970 t r a n s l a t i o n from French. A l f r e d A. Knopf, New York. x x i + 387 pp. Breirem, K. 1939. Der Energieumsatz b e i den Schweinen. Tierernahrung 11: 487-528 c i t e d by K l e i b e r (1961). Bunnell, F.L. and D.E.N. T a i t . 1978. Population dynamics of bears and t h e i r i m p l i c a t i o n s . Proc. of I n t . Conf. on Pop. Dynamics of Large Mammals, May 1978, Logan, Utah. 120 Burkhardt, D., W. S c h l e i d t , and H. A l t u e r . 1966. S i g n a l s i n the animal world, 1967 t r a n s l a t i o n of S i g n a l e i n der T i e r w e l t . McGraw-Hill, New York. 150 pp. Cahalane, V. 1947. The bears - black bear. Pp. 134-143 i n Mammals of North America. The MacMillan Co., New York. 578 pp. C i t e d by S h a f f e r (1971). C h a t e l a i n , E.F. 1950. Bear-moose r e l a t i o n s h i p s on the Kenai P e n i n s u l a . Trans. N. Am. W i l d l . Conf. 15: 224-234. Cherry, J.S. and M.E. P e l t o n . 1976. R e l a t i o n s h i p s between body measurements and weight of the black bear. J . Tenn. Acac. S c i . 51 (1): 32-34. C l a r k , W.K. 1957. Seasonal food h a b i t s of the Kodiak bear. Trans. N. Am. W i l d l . Conf. 22: 145-151.. Cole, G.F. 1972. G r i z z l y bear - e l k r e l a t i o n s h i p s i n Yellowstone N a t i o n a l Park. J . W i l d l . Manage. 36(2): 556-561. Cowan, I . McT. 1938. Geographic d i s t r i b u t i o n of c o l o r phases of the red fox and black bear i n the P a c i f i c Northwest. J . Mammal. 19 (2): 202-206. Cowan, I . McT. 1972. Status and c o n s e r v a t i o n of bears of the world — 1970. Pp. .343-346 i n S. Herrero, ed. Bears -t h e i r b i o l o g y and management. IUCN New S e r i e s No. 23, Morges, S w i t z e r l a n d . Craighead, F.C. J r . 1976. G r i z z l y bear ranges and movement as determined by r a d i o t r a c k i n g . Pp. 97^-109 i n M.R. P e l t o n , J.W. L e n t f e r , and G.E. F o l k , eds. Bears - t h e i r b i o l o g y and management IUCN New S e r i e s No- 40, Morges, S w i t z e r l a n d . Craighead, F . C , J r . and J . J . Craighead. 1972.. Data on g r i z z l y bear denning a c t i v i t i e s and behaviour obtained by using w i l d l i f e t e l e m e t r y . Pp. 84-106 i n S. Herrero, ed. Bears -t h e i r b i o l o g y and management IUCN New S e r i e s No. 23, Morges, S w i t z e r l a n d . Craighead, J . J . , J.R. Varney, and F.C. Craighead, J r . 1974. A p o p u l a t i o n a n a l y s i s o f the Yellowstone g r i z z l y bears. Montana F o r e s t and Con s e r v a t i o n Experiment S t a t i o n , School of F o r e s t r y , U n i v e r s i t y of Montana, M i s s o u l a , B u l l . No. 40. 20 pp. C u r r y - L i n d a h l , K. 1972. The brown bear (Ursus a r e t o s L.) i n Europe: d e c l i n e , present d i s t r i b u t i o n , b i o l o g y , and ecology. Pp. 74-81 i n S. Herrero, ed. Bears - t h e i r b i o l o g y and management. IUCN New S e r i e s No. 23, Morges, S w i t z e r l a n d . Darke, L. Pers. comm. Canadian F e d e r a l F i s h e r i e s patrolman. Knight I n l e t , B.C. 121 Davis, D.D. 1964. The giant panda, a morphological study of e v o l u t i o n a r y mechanisms. F i e l d i a n a Zool. Mem., V o l . 3. Chicago Nat. H i s t . Mus. 339 pp. Day, B. 1957. G r i z z l i e s i n t h e i r backyard. J u l i a n Messner Inc. , New York. 224 pp. Eaton, R.L. 1970. Group i n t e r a c t i o n s , s p a c i n g , and t e r r i t o r i a l i t y i n cheetahs. Z. T i e r p s y c h o l . 27: 481-491. Edwards, R.Y. and D.E- Green. 1959. The measurement of t r a c k s t o census g r i z z l y bears. Murrelet 40(2): 14-16. Ehrensvard, Y., F. Berschauer, K.H. Menke, E. Rogdakis, and G. Sturm. 1976. E f f e c t of r a t i o n composition on plasma i n the growing p i g . Pp. 85-88 i n M. Vermorel, ed. Energy metabolism of farm animals. EAAP P u b l i c a t i o n No. 19. G. de Bussac, Clermont-Ferrand, x v i + 364 pp. Eis e n b e r g , J.F. 1966. The s o c i a l o r g a n i z a t i o n of mammals. Handbuch der Zo o l o g i e , p a r t 10, 8(26): 1-92. B e r l i n : De Gruyter. E i s e n b e r g , J.F. and D.G. Kleiman. 1972. O l f a c t o r y communication i n mammals. Ann. Rev. E c o l . Syst. 3: 1-32. E l s l e y , F.W.H. 1976. P r o t e i n n u t r i t i o n i n the breeding sow. Pp. 353-367 i n Cole, D.J. A., K.N. Boorman, P.J. B u t t e r y , D. Lewis, R.J. Neale, and H. Swan. 1976. P r o t e i n metabolism and n u t r i t i o n . European A s s o c i a t i o n f o r Animal P r o d u c t i o n P u b l . No. 16. Butterworths, London. 0 + 515 pp. Ewer, R.F. 1968. Ethology of mammals. Plenum Press. New York. 418 pp. C i t e d by Rogers (1977). F i n g e r l i n g , . 1914. C i t e d by K l e i b e r (1961) but not r e f e r e n c e d . F l e c k , S., K. L l o y d , and B. Smith. 1977. Some d i s t i n g u i s h i n g c h a r a c t e r i s t i c s of plant p a r t s found i n c o a s t a l bear droppings. B.C. F i s h and W i l d l i f e Branch Rept., Nanaimo. 10 pp. Flowers, R. 1977. The a r t and technique of s n a r i n g bears. Washington F o r e s t P r o t e c t i o n A s s o c i a t i o n , S e a t t l e . 37 pp. F o l k , G.E. 1967. P h y s i o l o g i c a l a d a p t a t i o n s of s u b a r c t i c bears under winter den c o n d i t i o n s Pp. 78-85 i n K. F i s h e r and F. South, eds. Mammalian H i b e r n a t i o n I I I : Proc. o f the T h i r d I n t . Symp., Sept. 13-16, 1975. F o l k , G. E., J r . , M. F o l k , and J . J . Minor. 1972. P h y s i o l o g i c a l c o n d i t i o n of three s p e c i e s of bears i n winter dens. Pp. 107-124 i n S. Herrero, ed. Bears - t h e i r b i o l o g y and management. IITCN New S e r i e s 23, Morges, S w i t z e r l a n d . 122 Frame, G.W. 1974. Black bear p r e d a t i o n on salmon at Olsen Creek, A l a s k a . Z. T i e r p s y c h o l . 35:23-28. Gard, R. 1971; Brown bear p r e d a t i o n on sockeye salmon a t Karluk Lake, Alaska. J . W i l d l . Manage..35(2): 193-204. Gessaman, J.A. 1973. Methods of e s t i m a t i n g energy c o s t of f r e e e x i s t e n c e . Pp. 3-31 i n J.A. Gessaman, ed. E c o l o g i c a l e n e r g e t i c s of homeotherms: a view compatible with e c o l o g i c a l modeling. . V o l . 20. Utah State Univ. P r e s s , Logan. 155 pp. Glenn, L.P. and L.H. M i l l e r . In press. Seasonal movements of an Alaskan p e n i n s u l a brown bear p o p u l a t i o n . In-C.J. Martinka, ed. Bears - t h e i r b i o l o g y and management. Haglund, B. 1968. Winter h a b i t s of the bear (Ursus a r c t o s L.) and the wolf (Canis lupus L.) as r e v e a l e d by t r a c k i n g i n the snow. V i l t r e v y 5(6f: 213-361. Hamer, D., S. Herrero, and R.T. O g i l v i e . 1977. E c o l o g i c a l s t u d i e s of the Banff N a t i o n a l Park g r i z z l y bear: Cuthead Wigmore Region, 1976. Parks Canada Contract WR-34-76. 239 PP-Hamer, J.D.W. 1974. D i s t r i b u t i o n , abundance, and management i m p l i c a t i o n s of the g r i z z l y bear and mountain c a r i b o u i n the Mountain Creek watershed of G l a c i e r N a t i o n a l Park, B.C. Unpubl. M.Sc. T h e s i s , Univ. of Calgary, C a l g a r y , A l b e r t a . 164 pp. Hanson, W.R. and F. G r a y b i l l . 1956. Sample s i z e i n f o o d - h a b i t s a n a l y s i s . J . W i l d l . Manage. 20: 64-68. H a t l e r , D.F. 1972. Food h a b i t s of black bears i n i n t e r i o r Alaska. Can. F i e l d Nat. 86(2): 17-31 I l l u s . Hebert, D.M. Pers. comm. Re g i o n a l w i l d l i f e b i o l o g i s t . F i s h and W i l d l i f e Branch, Nanaimo, B.C. Hediger, H. 1946. Raum-zeit system der t i e r e (Area-time system of a n i m a l s ) . Schweiz, Z. Psychol. 5: 241. C i t e d by Meyer-H o l z a p f e l (1957). Hensel, R.J., W.A. Troyer, and A.W. E r i c k s o n . 1969. Reproduction i n the female brown bear. J . W i l d l . Manage. 33(2): 357-365. Herrero, S. 1970.. Man and the g r i z z l y bear (past, p r esent, but f u t u r e ? ) . B i o s c i e n c e 20 (1): 1148-1153. Herrero, S. 1976. C o n f l i c t s between man and g r i z z l y bears i n the N a t i o n a l Parks of North America. Pp. 121-145 i n M.. P e l t o n , J.W. L e n t f e r , and G.E. Folk, eds. Bears - t h e i r b i o l o g y and management. 123 Herrero, S- 1978. A comparison of some f e a t u r e s of the e v o l u t i o n , ecology, and behavior of black and g r i z z l y brown bears. C a r n i v o r e 1(1): 7-17. Holzworth, J . M. 1930. The w i l d g r i z z l i e s of Alaska. G.P. Putnam's Sons, New York. x x i + 417 pp. Hornocker, M.G. 1969. Winter t e r r i t o r i a l i t y i n mountain l i o n s . J. . W i l d l . Manage. 33: 457-464. Hunt, J.N. and D.F. Stubbs. 1975. The volume and energy content of meat as determinants of g a s t r i c emptying. J . P h y s i o l . (London) 245(1) : 209-225. J o n k e l , C.J. pers. comm. Dept. of F o r e s t r y , U n i v e r s i t y of Montana, M i s s o u l a 59801. J o n k e l , C.J. 1977. Annual r e p o r t - border g r i z z l y p r o j e c t , 1976. School of F o r e s t r y , U n i v e r s i t y of Montana. No. 2. J o n k e l , C.J. 1978. Annual Beport - border g r i z z l y p r o j e c t . School of F o r e s t r y , U n i v e r s i t y of Montana. No. 3. 134 pp. J o n k e l , C.J. and I . McT. Cowan. 1971. The black bear i n the s p r u c e - f i r f o r e s t . W i l d l . Monog. 27: 1-57. J o n k e l , C.J. and C.W. Servheen. 1977. Bears and people: A w i l d e r n e s s c h a l l e n g e . Western Wildlands. 4 ( 2 ) : 22-25. J u s t , A., O.K. Easmussen, and H.L. Hansen. 1976. F a c t o r s i n f l u e n c i n g the d i g e s t i b i l i t y and e f f i c i e n c y of u t i l i z a t i o n of m e t a b o l i z a b l e energy (ME) i n d i e t s of growing p i g s . Pp. 289-292 i n M. Vermorel, ed. EAAP Pub. No. 19. K l e i b e r , M. 1961. The f i r e of l i f e . John Wiley and Sons, New York. x x i i + 454 pp. K l e i n , D.E. 1959. Track d i f f e r e n t i a t i o n f o r censusing bear p o p u l a t i o n s . J . W i l d l . Manage. 23 (3): 36 1-363. K i s t c h i n s k i i , A.A. 1972. L i f e h i s t o r y of the brown bear (Ursus a r c t o s L.) i n n o r t h e a s t e r n S i b e r i a . Pp..67-73 i n S. Herrero, ed. Bears - t h e i r b i o l o g y and management. IUCN New S e r i e s P u b l . 23. K r a j i n a , V.J. 1965. The b i o g e o c l i m a t i c zones and c l a s s i f i c a t i o n of B r i t i s h Columbia. E c o l . Western N. America 1: 1-17. K r o t t , P. and G. K r o t t . 1963. Zun v e r h a l t e n des braunbaren (Ursus a r c t o s L. 1758) i n den Alpen. . Z. T i e r p s y c h o l . 20: 160-206. C i t e d by Eisenberg (1966). Kurten, B. 1976. The cave bear s t o r y . L i f e and death of a vanished animal. Columbia Univ. Press, New York. 163 pp. 124 Langin, H. pers. comm. W i l d l i f e T e c h n i c i a n , B.C. F i s h and W i l d l i f e Branch, Nanaimo. Leigh-Spencer, S. pers. comm. B i o l o g i s t , B.C. F o r e s t Products, Box 130, C r o f t o n , B.C. VOE 1R0. L e n t f e r , J . pers- comm. B i o l o g i s t . Alaska Dept. of F i s h and Game, Juneau, Alaska. 99801. L e n t f e r , J.W., R.J. Hensel, L.H. M i l l e r , L.P. Glenn, and V.D. Berns. 1972. Remarks on denning h a b i t s of Alaska brown bears. Pp. 125-132 i n S. Herrero, ed. Bears - t h e i r b i o l o g y and management. Leyhausen, P. and R. Wolff. 1959. Das r e v i e r e i n e r hauskatze. Z . . T i e r p s y c h o l 16: 666-670. C i t e d by Rogers (1977). Lindemann, W. 1954. Braunbaren (Brown b e a r s ) . Saugetier Kundl M i t t . (Mammalogy B u l l e t i n ) 2,1. Lindzey, F.G. and E.C. Meslow. 1977. Po p u l a t i o n c h a r a c t e r i s t i c s of black bers on an i s l a n d i n Washington. J . W i l d l . Manage. 41 (3) : 408-412. L l o y d , K.A- and S. F l e c k . 1977. Some aspects of the ecology of bl a c k and g r i z z l y bears i n southeastern B.C. B.C. F i s h and W i l d l i f e Branch Report, Cranbrook, B.C. 55 pp. MacArthur, R.H. and E.R. Pianka. 1966. On opt i m a l use of a patchy environment. Am. Nat. 100: 603-609.. Martinka, C.J. Pers. comm. Research b i o l o g i s t . G l a c i e r N a t i o n a l Park, Montana. Martinka, C.J. 1971. Status and management of g r i z z l y bears i n G l a c i e r N a t i o n a l Park, Montana. Trans. N. Am. W i l d l . Nat. Resource Conf. 36: 312-322. Martinka, C.J. 1972. Ha b i t a t r e l a t i o n s h i p s of g r i z z l y bears i n G l a c i e r N a t i o n a l Park, Montana. N a t i o n a l Park Serv. Unpubl. manuscript. 19 pp. Martina, C.J. 1976. E c o l o g i c a l r o l e and management of g r i z z l y bears i n G l a c i e r N a t i o n a l Park, Montana. Pp. 147-156 i n M.R. P e l t o n , J.W. L e n t f e r , and G.E. Folk, eds. Bears -t h e i r b i o l o g y and management. Mealey, S.P. 1975. The n a t u r a l food h a b i t s of f r e e ranging g r i z z l y bears i n Yellowstone N a t i o n a l Park, 1973-1974. Unpubl. . M. Sc. T h e s i s , Montana State U n i v e r s i t y , Bozeman, Montana. 158 pp. Meehan, W.R. 1961. Observations on fe e d i n g h a b i t s and behaviour of g r i z z l y bears. Am. M i d i . Nat. 65(2): 409-412. 125 Meyer-Holzapfel, M. 1957. Dem v e r h a l t e n der Baren (Ursidae) . Handbuch der Zoo l o g i e V I I I 10(17): 1-28. M i l l s , E.A. 1919.. The g r i z z l y . The R i v e r s i d e P r e s s , Cambridge, New York. 289 pp. Morrison, P. and W. G a l s t e r . 1975. Patterns of h i b e r n a t i o n i n the A r c t i c ground s g u i r r e l . Can. J . Zool. 53: 1345-1355. Morton, M.L. 1975. Seasonal c y c l e s of body weights and l i p i d s i n B e l d i n g ground s q u i r r e l s . B u l l . S. C a l i f . Acad. S c i . 74: 128-143. Mueller-Dombois, D. and H. E l l e n b e r g . 1974. Aims and methods of v e g e t a t i o n ecology. John Wiley and Sons, New York. xx + 547 pp. Muller-Schwarze, D; 1974. S o c i a l f u n c t i o n s of v a r i o u s scent glands i n c e r t a i n ungulates and the problems encountered i n experimental s t u d i e s of scent communication. Pp. 107-114 i n V o l . 1. The behaviour of ungulates and i t s r e l a t i o n to management. IUCN Publ. New S e r i e s 24. Morges, S w i t z e r l a n d . Mundy, K.R.D. 1963. Ecology of the g r i z z l y bear (Ursus a r c t p s L.) i n G l a c i e r N a t i o n a l Park, B r i t i s h Columbia. M.Sc. T h e s i s , Univ. of A l b e r t a , Edmonton. 103 pp. Murie, A. 1944. The wolves of Mount McKinley. Fauna of the n a t i o n a l parks of the United S t a t e s . Fauna S e r i e s No. 5, U.S. Govt. P r i n t i n g O f f i c e , Washington, D.C. 238 pp. Murie, 0. 1954. A f i e l d guide to animal t r a c k s . Houghton M i f f l i n Co., Boston- 374 pp. Mykytowycz, R. 1974. Odor i n the spacing behavior of mammals. Pp. 327-343 i n M.C. B i r c h , ed. Pheremones. American E l s e v i e r P u b l i s h i n g Co., Inc. New York. 495 pp. Mysterud,, I . 1975. Sheep k i l l i n g and feed i n g behavior of the brown bear (Ursus arctps) i n T r y s i l , south Norway 1973. Norw. J . Zoo l . 23: 243-260. Nagy, J.A. and R.H. R u s s e l l . 1978. E c o l o g i c a l s t u d i e s of the b o r e a l f o r e s t g r i z z l y bear (Ursus a r c t p s L . ) . Annual r e p o r t f o r 1977. Canadian W i l d l i f e S e r v i c e . 72 pp. Nelson, R.A. 1973. Winter s l e e p i n the black bear. Mayo C l i n . Proc. 48: 433:437. Nelson, R.A. 1978. Urea metabolism i n the h i b e r n a t i n g black bear. Kidney I n t e r n a t i o n a l 13 Supplement 8: 177-179. Nelson, R.A., H.W. Waliver, J.D. Jones, R.D. E l l e f s o n , and P.E. Zollman. 1973. Metabolism of bears b e f o r e , during, and a f t e r winter s l e e p . Am. J . Phys. 224 (2): 491-496. 126 Oria n s , G.H. 1969. On the e v o l u t i o n of mating systems i n b i r d s and mammals. Am. Nat. 103: 589-603. Pearson, A.M.. 1975.. The northern i n t e r i o r g r i z z l y bear Ursus a r c t o s L.. Can. W i l d l . Ser. Rept. Ser. No. 34, Ottawa. 86 pp . T Pearson, A.M. and J.W. Nolan. 1976. The ecology of the g r i z z l y bear (Ursus a r c t o s 1.) i n Jasper N a t i o n a l Park — Report f o r 1975. UnpuEl. CWS Rept. No. 25-76. 15 pp. Pe t e r s , R.P. and L.D. Mech. 1975. Scent marking i n wolves. American S c i e n t i s t 63: 628-637. P i e k e l e k , W. and T.S. Burton.. 1975. A black bear p o p u l a t i o n study i n northern C a l i f o r n i a . C a l i f . F i s h and Game 61(1): 4-2 5. Poelker, R.J. and H.D- H a r t w e l l . 1973. Black bear of Washington. Washington State Game Dept. B i o l . B u l l . No. 14, Olympia, Washington. 180 pp. Pyke, G. H. , H. R. .Pulliam, and E.L. Charnov. 1977. Optimal f o r a g i n g : a s e l e c t i v e review of theory and t e s t s . Quart. Rev. B i o l . 52 (2): 137-154. Reynolds, H. and J . J . Beecham. 1978. Home range a c t i v i t i e s and r e p r o d u c t i o n of black bears i n we s t - c e n t r a l Idaho. In C.J. Martinka, ed. 4th I n t e r n a t i o n a l conf. on bear research and management. K a l i s p e l l , Montana. R o c h e l l e , J . Pers. Comm. W i l d l i f e b i o l o g i s t , Weyerhaeuser L t d . , C e n t r a l i a , Washington. Roth, H. 0. In press. D e f e c a t i o n r a t e s of c a p t i v e brown bears. In Proceedings of the 4th I n t e r n a t i o n a l Conference on Bear Research and Management. . C.J. Martinka, ed. K a l i s p e l l , Montana, 1977. Rogers, L.L. 1976. E f f e c t s of mast and berry crop f a i l u r e s on s u r v i v a l , growth, and r e p r o d u c t i v e success of black bears. Trans. N. Am. W i l d l . and Nat. Res. Conf. 41: 431-438. Rogers, L.L. 1977. S o c i a l r e l a t i o n s h i p s , movements, and p o p u l a t i o n dynamics of black bears i n no r t h e a s t e r n Minnesota. Unpubl. Ph.D. T h e s i s . U n i v e r s i t y of Minnesota. 203 pp. Rudnai, J.A. 1973. The s o c i a l l i f e of the l i o n . Medical and T e c h n i c a l P u b l i s h i n g Company L t d . , London. 122 pp. R u s s e l l , D. 1974. G r i z z l y bear - mountain goat i n v e s t i g a t i o n s i n Knight I n l e t . B.C. F i s h and W i l d l i f e Branch P r o j e c t , Nanaimo. 92 pp. 127 R u s s e l l , R-H. 1971. Summer and autumn food h a b i t s of i s l a n d and mainland p o p u l a t i o n s of p o l a r bears - a comparative study. M.Sc. T h e s i s , Univ. o f A l b e r t a , Edmonton. v i + 87 pp. R u s s e l l , R.H., J.W. Nolan, N.A. Woody, and 6. Anderson. 1978. Ecology of g r i z z l y bears i n Jasper N a t i o n a l Park. (In pr e p . ) . S c h a f f e r , S.C. 1971. Some e c o l o g i c a l r e l a t i o n s h i p s of g r i z z l y bears and black bears of the Apgar Mountains i n G l a c i e r N a t i o n a l Park, Montana. Unpubl. M.Sc. T h e s i s , Univ. of Montana. i x + 133 pp. Schoener, T. 1971. Theory of fe e d i n g s t r a t e g i e s . Ann. Rev. E c o l . Syst. 11: 369-404. Shackleton, D.M. pers. comm. Asst. P r o f e s s o r , Dept. Animal Scie n c e , UBC, Vancouver, V6T 1W5. S i e g e l , S. 1956. Nonparametric s t a t i s t i c s f o r the b e h a v i o r a l s c i e n c e s . McGraw-Hill, New York. x v i i + 312 pp. Smith, B. 1978. P r e l i m i n a r y i n v e s t i g a t i o n s i n t o black and g r i z z l y bear responses t o c o a s t a l l o g g i n g . Unpubl. B.Sc. T h e s i s , Simon F r a s e r U n i v e r s i t y , Vancouver. 70 pp. Smith, G.W. pers. comm. with photographs. W i l d l i f e t e c h n i c i a n and c o n s e r v a t i o n o f f i c e r , B.C. F i s h and W i l d l i f e Branch, Nanaimo. Stonorov, D. and A.W. Stokes. 1972. S o c i a l behaviour of the Alaska brown bear. Pp. 232-242 i n S. Herrer o , ed. Bears -t h e i r b i o l o g y and management. IUCN New S e r i e s No. 23, Morges, S w i t z e r l a n d . S t o r e r , T.I. and L.P. T e v i s . 1955. C a l i f o r n i a g r i z z l y . U n i v e r s i t y of C a l i f o r n i a Press, Berkeley and Cambridge U n i v e r s i t y P r e s s , London. 335 pp. T i s c h , E. 1961. Seasonal food h a b i t s of the black bear i n the W h i t e f i s h Range of northern Montana. M.Sc. T h e s i s , Univ. of Montana, Missoula, i x + 108 pp.. Van Soest, P.J. and R.H. Wine. 1967. Use of detergents i n the a n a l y s i s of f i b r o u s f e e d s . IV. The determination of p l a n t c e l l w a l l c o n s t i t u e n t s . J . Assn. O f f . Anal. Chem. 50: 50. Waldern, D.E. 1971. A r a p i d m i c r o d i g e s t i o n procedure f o r n e u t r a l and a c i d detergent f i b r e . Can. J . Anim. S c i . 51: 67. Weiss, J . pers. comm. Pl a n t e c o l o g i s t and a e r i a l p h o t o g r a m i t i s t . B.C. F o r e s t Products L t d . , 1050 W. Pender St. , Vancouver, B.C. 128 Whittemore, C.T. and F.W.H. E l s l e y . 1976. P r a c t i c a l p i g n u t r i t i o n . Farming Press L t d . , S u f f o l k . 0 + 90 pp. Wright, W.H. 1909. The g r i z z l y bear. C h a r l e s S c r i b n e r ' s Sons, New York. 268 pp. Zunino, F. and S. Herrero. 1972. The s t a t u s of the brown bear (Orsus a r c t o s ) i n Abruzzo N a t i o n a l Park, I t a l y , 1971. B i o l . Cons. .4: 263-272. A p p e n d i x I . L a t i n names f o r common names u s e d i n t h e ( i n t h e o r d e r i n w h i c h t h e y a p p e a r ) C h a p t e r 1 g r i z z l y b e a r b l a c k b e a r C h a p t e r 3 s a l m o n -s a l m o n b e r r y s e d g e e l k C h a p t e r 4 b e a v e r m a r t e n g r o u n d s q u i r r e l s m o n g o o s e s b a d g e r l i o n a m a b i l i s f i r w e s t e r n h e m l o c k s i t k a s p r u c e r e d c e d a r l o d g e p o l e p i n e w o l f C h a D t e r 5 i p o l a r b e a r C h a p t e r 6 l a d y f e r n s p i n y wood f e r n h u c k l e b e r r y d e v i 1 1 s c l u b Ursus arctos Ursus americanus Onaorhynchus s p . Rubus s p e c t a b i l i s Carex s p . Cervus canadensis Castor canadensis Martes americana Spermophilus s p . Herpestes s p . Taxidea taxus Panthera leo Abies amabilis Tsuga heterophylla Picea sitchensis Thuja p l i c a t a Pinus contorta Canis lupus Ursus maritimus Athyrium f i l i x - f e m i n a Dryopteris austriaca Vacciniwn s p . Oplopanax horridum s k u n k c a b b a g e s t i n k c u r r a n t t a l l b l u e h u c k l e b e r r y a l a s k a n h u c k l e b e r r y chum s a l m o n p i n k s a l m o n t r o u t w a s p s b e e s d e e r f e r n b r a c k e n f e r n oak f e r n s w o r d f e r n c o h o s a l m o n h o r s e t a i 1 s o c k e y e s a l m o n s w i ne l o w b u s h b l u e b e r r y H i m a l a y a n b l a c k b e a r Lysiahitum americanum Ribes braoteosum Vaocinium ovali.foti.um Vaocinium alaskaense Onaorhynchus keta Onaorhynchus gorbuscha Salmo a l a r k i Vespidae Apidae Blechnum spiaant Pteridium aquilinum Gymnocarpium dryopteris Polystiahwn munitum Onaorhynchus kisutah Equisetum s p . Onaorhynchus nerka Suidae Vaocinium scoparium Selenarctos thibetanus A p p e n d i x I I . L i s t o f s p e c i e s f o u n d i n t h e A h n u h a t i w a t e r s h e d d u r i n g 1976 a n d 1977 P l a n t s p e c i e s A . C o n i f e r o u s t r e e s Tsuga heterophylla Abies amabilis Pioea sitahensis Thuja p l i a a t a Abies lasioaarpa Picea engelmannii Tsuga mertensiana Chamaeayparis nootkatensis Taxus b r e v i f o l i a D e c i d u o u s t r e e s Alnus rubra Alnus sinuata Populus trichoaarpa S a l i x s p . Acer maorophyllum Pyrus fusoa U p r i g h t s h r u b s Vacainium alaskaense Vaooinium o v a l i f o l i u m Vacainium parvifolium Vaooinium membranaoeum Cornus s t o l o n i f e r a Oplopanax horridum Menziesia ferruginea Spiraea douglasii Rubus s p e o t a b i l i s Rubus p a r v i f l o r u s Ribes braoteosum Sambuous raoemosa Sorbus sitahensis Cladothamnus p y r o l i f i o r u s Viburnum edule Rosa s p . 132 C r e e p i n g s h r u b s Rubus pedatus Vacainium uliginosum Vacainium ovatum Gaultheria hispidula H e r b s Urtica dioica Oxyria digyna S t e l l a r i a longifolia Aotaea rubra Aquilegia formosa Coptis a s p l e n i f o l i a Montia s i b i r i c a Trautvetteria oarolinensis Achlys t r i p h y l l a Dioentra formosa Saxifraga ferruginea Tellima grandiflorum T i a r e l l a u n i f o l i a t a Tiarella' t r i f o l i a t a Heuchera micrantha Aruncus Sylvester Geum maorophyllum 'Potentilla glandulosa Sanguisorba sitahensis Viola palustre Viola g l a b e l l a Ciroaea alpina Epilobium angustifolium Epilobium alpinum Epilobium watsonii Cassiope mertensiana Phyllodoce g l a n d u l i f l o r a Phyllodoce empetriformis Heracleum lanatum Oenanthe sarmentosa Osmorhiza c h i l e n s i s Cornus canadensis Pyrola u n i f l o r a • Pyrola secunda Pyrola s p . Chimaphila umbellata Monotropa uni f l o r a T r i e n t a l i s a r a t i c a Menyanthes trifoliata Nephrophyllidium c r i s t a - g a l l i Romanzoffia sitahensis Prunella vulgaris C a s t i l l e g a miniata Mimulus tilingii Mimulus guttatus Mimulus lewisii Penstemon davidsonii Penstemon serrulatus Galium boreale Galium cymosum Valeriana scouleri Campanula r o t u n d i f o l i a Pinguicula vulgaris A c h i l l e a m i l l e f o l i u m Anaphalis margaritaoea Prenanthes alata Senecio t r i a n g u l a r i s Lysiahitum americanum C l i n t o n i a u n i f l o r a Erythronium revolutum L i l i u m columbianum Maianthemum dilatum Angelica s p . Aster s p . Disporum s p . Fragaria s p . Car ex s i t c h e n s i s Equisetum s p . Lyoopodium s p . F e r n s Adiantum pedatum Athyrium - f i lix-femina Blechnwn spicant Cryptogramma arispa Smilacina racemosa Smilacina s t e l l a t a Streptopus amplexifolius Streptopus roseus Trillium ovatum Veratrum v i r i d e C o r a l l o r h i z a maculata Goody era o b l o n g i f o l i a Habenaria saccata F r i t t i l a r i a s p . Lupinus s p . Sedum s p . Carex miaroptera S e l a g i n e l l a s p . Dryopteris austriaoa Gymnocarpium dryopteris Polystichum muni turn Pteridium aquilinum B . B i r d s p e c i e s h a r l e q u i n d u c k common m e r g a n s e r r e d - t a i l e d hawk b a l d e a g l e A m e r i c a n k e s t r e l b l u e g r o u s e w h i t e - t a i l e d p t a r m i g a n g r e a t b l u e h e r o n mew g u l l b a n d - t a i l e d p i g e o n u n i d e n t i f i e d owl b l a c k s w i f t r u f o u s h u m m i n g b i r d b e l t e d k i n g f i s h e r common f l i c k e r y e l l o w b e l l i e d s a p s u c k e r ( r e d h a i r y w o o d p e c k e r o l i v e - s i d e d f l y c a t c h e r w e s t e r n wood pewee" v i o l e t g r e e n s w a l l o w S t e l l e r ' s j a y N o r t h w e s t e r n c r o w r a v e n b l a c k - c a p p e d c h i c k a d e e c h e s t n u t b a c k e d c h i c k a d e e r e d - b r e a s t e d n u t h a t c h b r o w n c r e e p e r d i p p e r w i n t e r w r e n r o b i n v a r i e d t h r u s h Histrionicus h i s t r i o n i c u s Mevgus merganser Buteo jamaicensis Haliaeetus leucocephalus Falco sparverius Dendrogapus obscurus Lagopus leuaurus Ardea herodias Larus oanus Columba fas data Cypseloides niger Selasphorus rufus Megaceryle aloyon Colaptes s p . r a c e )Sphyrapicus varius ruber Dendrooopos v i l l o s u s N u t t a l l o r n i s . b o r e a l i s Contopus sordidulus Taahycineta thalassina Cyanocitta s t e l l e r i Corvus oaurinus Corvus aorax Varus a t r i a a p i l l u s Parus rufesaens S i t t a canadensis Certhia f a m i l i a r i s Cinelus mexicanus Troglodytes troglodytes Turdus migratorius Ixoreus naevius S w a i n s o n ' s t h r u s h h e r m i t t h r u s h r u b y - c r o w n e d k i n g l e t g o l d e n - c r o w n e d k i n g l e t c e d a r w a x w i n g W i l s o n ' s w a r b l e r A u d u b o n w a r b l e r b l a c k - t h r o a t e d g r a y w a r b l e r w e s t e r n t a n a g e r b l a c k - h e a d e d g r o s b e a k p i n e s i s k i n s o n g s p a r r o w O r e g o n j u n c o C . A n i m a l s p e c i e s w a n d e r i n g s h r e w D o u g l a s s q u i r r e l b e a v e r w h i t e - f o o t e d d e e r m o u s e w o l f A m e r i c a n b l a c k b e a r g r i z z l y b e a r m a r t e n w o l v e r i n e c o u g a r b l a c k t a i l d e e r m o u n t a i n g o a t Hylocichla ustulata Hyloeichla guttata Regulus calendula^ Regulus satrapa Bombycilia cedrorum Wilsonia pusilla : Dendroica auduboni Dendroica nigrescens. Piranga ludoviciana Pheucticus melanocephalus Spinus pinus Melospiza melodia Junco oreganus Sovex vagrans Tamiasoiurus douglasi Castor canadensis Peromyscus maniculatus Canis lupus Ursus americanus Ursus arctos Martes americana Gulo luscus Felis concolor Odocoileus hemionus Orearrmus americanus Appendix I I I . Seasonal s h i f t s i n use of foods by Ahnuhati black and g r i z z l y bears durir.g 1976. Food Species H A Y •31 1 0 U N E -30 1-15 16- -15 16-f V IV % f V IV % f V IV % f V IV % h o r s e t a i l 0.08 1.9 1.5 t r ladyfern and spiny wood fern 0.93 27.6 25.8 34.8 0.77 6.2 4.8 6.0 0.78 21.0 16.0 22.0 sedge 0.60 18.0 10.8 14.6 0.57 9.2 4.3 5.2 1.7 20.0 13.4 18.0 skunk cabbage 0.13 4.0 0.52 0.7 0.22 11.0 2-3 3.0 leaves of huckleberry 0.8 12.3 9.9 13.0 0.62 7.3 4.5 5.4 0.22 2.2 0.49 1.0 shoots of salmonberry 0.73 0.15 11.0 14.8 1.0 50.8 50.8 61.4 0.89 25.0 22.3 31.0 leaves of d e v i l ' s club 0.87 16.0 13.9 18.7 0.85 21.2 18.0 21.7 0.89 20.0 17.8 25.0 cow parsnip 0.11 1.2 1.3 t r chocolate l i l y b erries of• huckleberry berries of salmonberry berries of d e v i l ' s club berries of stink currant other berries ants wasps and bees other insects salmon manma1 h a i r sand, gra v e l , or d i r t unknown Sample s i z e (H) = 15 0.33 6.6 2.2 2.9 13 t r t r t r t r . t r 0.11 0.77 0.09 t r OJ cn Appendix I I ! . Seasonal s h i f t s i n use of foods by Ahnuhati black and g r i z z l y bears during 1976 (cont'd). Food species ho r s e t a i l ladyfern and spiny wood fern sedge skunk cabbage leaves of huckleberry shoots of salmonberry 1 eaves of d e v i l ' s club cow parsnip chocolate l i l y berries of huckleberry berries of salmonberry berries of d e v i l ' s club berries of stink currant other berries ants wasps and bees other insects salmon mammal h a i r sand, gr a v e l , or d i r t unknown Sample s i z e (N) = 1 J U L Y -31 1-A U G U S T 16-31 -15 16- •15 f V IV % f V IV % f . V IV i f V IV % . . . . . . . . 0.5 1.3 . 0.63 1.0 0.8 28.0 22.4 26.0 0.89 25.0 22.3 32.0 0.56 11.7 6.5 11.0 t r t r t r t r 0.8 14.0 11.2 13.0 0.66 17.5 11.6 17.0 0.8 2.8 0.2 t r 0.4 8.0 3.2 4.0 0.56 4.0 2.2 3.0 t r t r t r t r t r t r t r t r 0.22 1.5 0.33 t r 0.22 1.11 0.24 t r 0.25 1.3 0.33 t r 1.0 17.0 17.0 20.0 0.22 7.0 1.5 2.0 t r t r t r t r • 1.0 32.0 32.0 37.0 0.33 1.5 0.5 1.0 -----—  — — . . . . 0.78 37.0 28.9 41.0 0.78 28.3 22.0 39.0 0.25 16.3 4.1 7.0 0.56 4.5 2.5 4.0 0.66 15.6 10.3 18.0 0.75 6.3 4.7 6.0 t r 0.5 t r t r 0.33 33.1 1.0 2.0 0.5 5.0 2.5 3.0 t r 0.5 t r t r .—-0.33 1.11 0.37 t r • 0.44 36.0 16.0 28.0 1.0 63.0 63.0 80.0 0.2 21.0 0.22 t r , . 0.2 6.0 3.0 4.0 10 Appendix I I I . (cont'd) Seasonal s h i f t s i n use of food by Ahnuhati black and g r i z z l y bears during 1977. Food species 1-15 H A Y IV % 16-31 IV % 1-15 J U N E IV. f 16-30 IV ho r s e t a i l lady fern and spiny wood fern sedge skunk cabbage leaves of huckleberry shoots of salmonberry leaves of d e v i l ' s club cow parsnip chocolate l i l y berries of huckleberry berries of salmonberry berries of d e v i l ' s club berries of s t i n k currant other berries ants wasps and bees other insects salmon mammal hai r sand, gra v e l , or d i r t unknown Sample s i z e (N) = 0.8 0.8 0.4 0.8 1.0 — 1.0 14.80 11.80 14.0 36.28 28.80 33.0 0.80 0.32 0.3 17.80 30.80 14.30 30.80 17.0 36.0 0.75 0.75 0.50 1.00 1.00 1.0 17.75 13.30 15.0 20.30 15.20 17.0 0.50 0.25 . 0.3 49.80 11.75 0.14 0.86 ( 0.71 13.10 49.80 55.0 11.75 13.0 0.71 0.71 0.14 0.14 0.12 0.2 9.30 12.0 0.86 47.60 40.90 53.0 0.29 1.29 0.37 0.5 17.60 18.90 0.14 0.14 12.50 13.40 0.14. 0.29 0.04 0.02 0.02 0.14 0.14 0.02 16.3 18.3 t r t r t r t r 0.2 10.8 2.2 3.0 0.2 3.2 6.4 1.0 1.0 53.6 53.1 76.0 0.4 26.4 10.6 15.0 0.6 0.2 0.2 5.0 3.0 0.2 0.8 0.04 0.16 4.0 t r t r Appendix I I I . (Cont'd) Seasonal s h i f t s i n use of food by Ahnuhati black and g r i z z l y bears during 1977. J U L Y Food species chocolate l i l y 1-15 IV h o r s e t a i l 0. 11 0. 44 0. 05 t r ladyfern and spiny wood fern 0. 33 0. 44 0. 15 t r sedge 0. .44 9. 33 4. 10 6.0 skunk cabbage 0. .22 5. .11 1. 12 2.0 leaves of huckleberry 0. ,33 2. .80 0. 92 1.0 shouts of salmonberry 0. .78 7. .30 57. 00 9.0 leaves of d e v i l ' s club 0. .11 2. .80 3. 10 t r cow parsnip 0, .11 1. .90 2. ,10 t r 16--31 f V IV % 0.17 0.33 0.06 t r 0.33 0.50 0.17 0.2 0.67 14.30 9.50 11.0 0.50 2.50 0.13 t r 0.83 4.17 3.50 4.0 0.33 0.83 0.27 t r 0.17 0.33 0.06 t r berries of huckleberry 0.89 36.00 32.00 50.0 1.00 38.20 38.70 44.0 berries of salmonberry 0.89 18.00 16.40 26.0 1.00 22.80 22.80 26.0 berries of d e v i l ' s club 0.44 1.89 0.83 1.0 0.83 14.17 11.80 14.0 berries of s t i n k currant 0.11 0.33 0.04 t r other berries 0.11 0.30 0.33 t r _  ants t r wasps and bees 0.44 1.11 0.49 t r 0.33 0.33 0.11 t r other insects salmon --•-- — — - — mammal hai r 0.11 7.56 0.83 0.60 sand, g r a v e l , or d i r t 0.11 0.89 0.10 t r — unknown 0.22 0.22 0.05 t r ' -—- — — — — Sample s i z e (N) = 9 6 A U G- U S T 1-15 16--31 f V IV * f V IV 2 0.2 0.4 0.08 t r 0.2 0.4 0.08 t r 5.0 2.0 1.0 2.0 0.4 19.6 7.80 12.0 0.5 11.0 5.8 12.0 • 0.6 8.6 5.20 8.0 1.0 3.8 3.80 6.0 — 0.5 0.5 0.25 t r 1.0 14.2 14.20 21.0 0.5 0.5 0.25 t r 0.2 1.8 0.36 1.0 0.5 0.5 2.50 5.0 1.0 7.2 7.20 11.0 0.5 3.5 1.80 4.0 0.8 33.4 26.70 4.0 0.5 3.5 1.80 4.0 0.5 2.5 1.30 3.0 0.21 t r t r t r 0.20 9.4 .. 1.90 3.0 0.5 50.0 25.00 0.5 0.5 0.21 10.50 2 0.21 CD Appendix I I I . (Cont'd) Seasonal s h i f t s i n use of food by Ahnuhati black and g r i z z l y bears during 1977. Food species S E P T E M B E R 0 c T 0 B E R 31 1-15 16-30 1-15 16-f V IV % f V IV % f V IV % f V IV % h o r s e t a i l 0.8 t r t r t r 0.8 2.0 1.60 2.0 —'. 0.5 1.0 0.5 t r ladyfern and spiny wood fern 0.6 1.8 1.08 1.0' 0.8 8.6 6.90 7.0 1.0 35.5 35.5 52.0 sedge 0.2 5.2 1.04 1.0 0.8 6.4 5.12 5.0 0.5 3.0 1.5 2.0 skunk cabbage 0.4 t r t r t r 0.4 0.2 0.08 t r leaves of huckleberry 0.8 1.2 0.95 1.0 1.0 4.6 4.60 5.0 shoots of salmonberry 0.4 t r t r t r 0.4 0.8 0.32 t r leaves of d e v i l ' s club .... —.. cow parsnip ---- , —-chocolate l i l y • berries of huckleberry 0.2 0.8 0.16 t r .... berries of salmonberry 0.6 0.4 0.24 t r - - -— berries of d e v i l ' s club 0.2 t r t r t r .... berries of s t i n k currant 0.2 0.67 0.13 t r 0.4 0.2 0.08 t r other berries . ants . —— wasps and bees 0.2 0.78 0.28 t r C.4 0.2 0.08 t r .... —. other insects ' salmon 1.0 61.20 61.20 0.66 1.0 62.4 62.40 66.0 .0.5 33.5 16.8 25.0 mammal hai r .... 0.2 1.0 0.20 t r • - • 0.5 12.5 6.3 9.0 sand, gravel, or d i r t 1.0 28.60 28.60 0.31 1.0 12.5 12.50 13.0 • 0.5 12.5 6.3 9.0 unknown 0.2 t r t r -— • .0.5 14.5 7.3 11.0 Sample s i z e (N) = 5 5 0 2 o 141 A p p e n d i x I V . N u t r i e n t v a l u e s o f b e a r f o o d s A b b r e v i a t i o n s -DO = d r y , o p e n c a n o p y DC = d r y , c l o s e d c a n o p y WO = w e t , o p e n c a n o p y WC = w e t , c l o s e d c a n o p y pdm = p e r c e n t d r y m a t t e r CHO = c a r b o h y d r a t e s A) Devil's club: (1) leaves (eaten). 0 ) (2) (3) Sample S i t e Crude p r o t e i n Soluble Crude f a t Data r e f . no. c h a r a c t e r i s t i c s (pdm) CHO (pdm) (pdm) H 47 DO 33.38 17.82 . 4.19 54 DC 25.44 22.14 5.98' 31 WD 24.75 33.71 2.19 X 27.85 24:55 4.12 J 76 WC 14.25 38.81 2.31 74 DO 16.25 39.28 2.06 91 WD 9.63 53.98 2.07 73 DC . 18.88 33.62 1.89 X 14.80 41.43 2.08 A 99 00 11.00 24.28 2.84 16 WC 14.13 40.87 • 2.09 18 WD 9.94 47.68 2.27 X 11.69 37.61 2.40 A) Devil's club : (2) s t a l k (not eaten). M 48 DO 6.19 27.19 3.79 33 DC 3.32 28.38 5.37 29 WD 3.38 30.06 3.34 X 4.30 28.54 4.17 J 83 DO 3.69 35.65 3.17 67 DC 4.25 29.03 3.56 95 WC 3.44 30.10 3.97 62 WD 3.69 43.23 2.42 X 3.77 34.50 3.28 (4) Crude f i b e r (pdm) (5) Gross energy (Kcals/g) 30.06 36.64 28.62 4.505 31.77 4.505 36.11 32.19 26.24 4.506 36.96(34.0) 4.383 32.83 4.440 51.98 32.29 - 4.300 29.76 4.405 38.01 4.3525 58.26 59.64 59.91 4.661 59.27 4.661 54.64 ' 60.43 4.60 60.17 47.70 55.70 4.60 (6) Minerals (pdm) 9.21 • 9.80 10.73 9.90 8.52 10.22 8.08 8.65 8.87 9.90 10.62 10.35 10.29 (7) F i b r e : p r o t e i n r a t i o 0.90 1.44 1.16 1.17 53 98 73 96 2.30 4.73 2.29 2.99 3.34 (8) Moisture content (*) 88.98 93.21 90.79 91.00 85.50 87.56 80.27 88.29 85.42 82.37 84.13 78.60 81.60 4.57 9.40 76.80 3.29 17.96 .75.08 3.31 17.72 92.05 3.72 15.03 81.30 2.85 14.80 63.10 2.73 14.20 2.32 17.49 2.96 12.93 2.72 14.86 63.10 (1) (2) B ) V a c c i n i u m : (4) b e r r i e s ( . e a t e n ) . M 49 DO 18.94 43.71 50 WC 19.13 36.69 51 WC 15.69 44.16 52 DC 20.32 36.31 I 18.50 40.22 U 105 WO 8.56 61.50 103 DO 8.63 63.02 n o a l . 11.00 61.55 o v . 6.13 67.25 X 8.58 63.30 A 113 WD- 5.94 65.67 114 DO 6.50 65.16 115 DC 6.44 64.84 115 DO 7.75 64.83 X 6.66 65.13 C ) C o m b i n e d s a m p l e o f L a d y f e r n a n d S p i n y w o o d f e r n . M 27 DO 37.56 29.47 46 WC 36.30 9.29 30 WD 32.44 19.03 X 35.43 19.26 J 63 DO 17.00 36.58 78 DC 18.06 37.24 77 WC 22.25 35.74 94 WD 22.31 33.77 X 19.90 35.80 J L 24 DO 22.56 24.59 (3) (4) (5) (6) (7) (8) 2.13 31.79 3.43 1.68 82.00 3.30 36.74 4.89 4.14 1.92 80.00 2.80 34.08 4.89 3.27 2.17 84.00 2.45 37.37 3.55 1.84 82.00 2.67 35.00 4.89 3.60 1.90 82.00 12.79 14.80 2.35 1.73 88.10 10.71 15.32 5.00 2.32 1.78 85.50 10.13 14.99(15.26) 2.33 1.36 87.30 10.32 14.00 2.30 2.28 89.50 10.99 14.78 5.00 2.33 1.79 87.60 11.19(8.93) 14.88(15.43) 4.90 2.32(2.36) 2.50 90.70 10.11 15.83 2.40 2.44 87.70 11.57 14.70 4.90 2.45 2.28 88.20 10.33 14.98 2.11 1.90 88.10 10.80 15.10 4.90 2.32 2.28 88.70 1.70 22.10(22.71 ) 4.52 10.90 0.59 91.40 2.15 44.40 7.86 1.22 92.50 1.86 36.38 10.29 1.12 92.05 1.90 34.29 4.52 9.68 0.977 92.00 1.49 35.85 4.60 9.08 2.11 84.58 2.27(2.82) 33,58 8.85(8.94) 1.86 82.17 1.79 33.10 7.12 1.49 83.20 4.65 32.50 6.77 1.46 80.98 2.55 33.76 4.60 7.96 1.73 82.70 2.29 42.44 4.66 8.02 1.90 0 ) (2) A 97 DO 17.06 23.17 103 DC 14.00 39.71 102 WC 16.19 35.18 5 WO 16.13 25.20 X 15.85 30.81 D) Salmonberry: (1) shoots (eaten). M 55. DO 25.69 39.86 57 DC 26.19 38.12 53 . WC 29.69 39.41 44 WD 16.94 50.17 X 24.63 41.89 J 65 DO 14.75 30.25 87 DC 14.44 35.04 81 WC 15.13 32.45 89 WD 11.94 27.11 X 14.07 31.20 A 4 DO 8.56 32.23 12 DC 9.13 31.11 5 WC 13.38 26.27 8 . WD 7.00 32.72 X 9.52 30.60 S 38 T 21.10 31.88 °) Salmonberry: (2) s t a l k (not eaten). M 43 DO 4.88 25.61 56 DC 5.06 24.47 61 WC 4.63 23.79 X 4.86 24.60 (3) (4) (5) ' (6) (7) (8) 2.12 43.03 4.50 11.89(11.71)2.52 76.80 2.79 34.29 9.21(9.22) 2.45 79.75 1.74 40.02 6.87 2.47 71.20 2.46(2.60) 45.29 10.95 2.80 75.70 2.28 40.66 4.50 9.73 2.56 75.90 4.40 23.56 6.49 0.92 91.17 1.32 29.09(31.17) 4.59 5.28 1.11 92.33 2.25 23.06 ----- ' 5.59(5.77) 0.78 93.21 1.24 25.72 5.93 1.52 88.36 2.30 •25.35 4.59 5.83 1.08 91.27 1.58 48.78 4.64 3.30 1.49 43.20 4.39 5.83 2.99 1.06 46.02 5.34 3.04 65.35 1.70 54.46 4.79 4.56 81.16 1.46 48.10 4.39 5.15 3.50 73.30 2.39(2.30) 51.93 7.03 4.89 6.10 1.53 ' 53.41 4.44 4.82 5.85 66.74 1.48 53.09(51.72) 7.17 5.78(5.79) 3.97 72.59 1.14(1.51) 55.15 4.40 3.99 7.88 63.03 1.64 53.40 5.76 4.87 5.95 67.50 2.26(2.36) 34.94 4.35 9.82 1.66 1.24 66,87 1.40 13.70 . 59.16 1.35 67.44 4.80 1.68 13.32 61.42 2.32(1.91) 68.12 1.14 14.70 62.41 1.64 67.50 4.80 1.41 13.90 61.00 (1) 84 DO 4.00 72 DC 3.94 66 WC 4.75 X 3.17 100 DO 3.56 11 DC 3.69(3.94) 19 WC 14.06 40 WD 3.56 X 3.60 Salmonberry: (3) leaves (possibly eaten). 45 DO 19.56 26 DC 22.69 59 WC 25.80 28 WD . 18.00 X 21.50 93 DO 13.69 75 DC 19.81 79 WC 22.63 92 WD 15.38 X 19.13 14 DO 11.13 1 DC 11.80(14.0) 3 WC 22.38 41 WD 12.50 X 14.45 (2) (3) (4) (5) 27.79 0.89 65 .36 27.21 0.39 66 .72 4.60 27.28 1.30 65 .68 27.43 0.86 65.92 4.60 35.37 1.43 58 .15 32.06 1.28 61 .31 4.47 17.97 0.78(1.45) 64 .79 34.20 1.69 58.74(59.44) 33.88 1.47 59, .40 4.47 47.61 1.82 25.00 38.54 1.96(2.04) 29. .86 4.50 33.65 2.61 30. .94 50.66 0.69(1.79) 26. .97 4.47 42.62 1.77 28. .19 4.49 51.90 2.59 20. 35 41.63 2.33 28. 66 4.47 36.33 2.57 31. 39 49.53 2.73 26. 71 44.85 2.56 26. 78 4.47 36.57 3.13 43. 75 4.40 43.71 3.21(3.61) 32. 79 4.30 38.89 2.80 31. 04 4.46 53.88 2.36 24. 62 43.26 2.88 33. 10 4.39 (6) . (7) • (8) 1.96(2.13) 16.34 59.79 1.74 ' 16.90 61.69 0.99 13.80 61.20 1.56 15.68 60.90 1.49 16.33 43.28 1.66 16.60 46.65 2.40 4.60 60.86 1.81 16.50 51.60 1.65 16.50 47.20 6.01 1.27 83.45 6.95 1.32 88.01 7.00 1.20 81.26 3.68 1.50 85.77 5.91 1.33 84.60 6.47 1.10 71.80 7.57 1.45 .78.15 7.08 1.39 78.92 5.65 1.74 67.00 6.69 1.42 74.00 5.42 3.93 64.42 8.49 2.78 70.80 9.00 1.39 77.37 6.64 1.97 65.77 7.39 2.52 69.60 0 ) (2) D) Salmonberry: (4) b e r r i e s . J 107 WO 10. .75 58.81 109 DO 12 .94 57.29 X 11. .85 58.10 A 112 WO 12. .88 45.66 E) Skunk cabbage : (1) root (eaten). M 34 WC 15. .25 35.52 J 85 WD' 13. .13 36.15 '70 WC 18. .33 29.72 X 15. .73 32.94 JL 23 WD 13. .88 45.68 A 105 WO 20. .56 28.51 7 WC 20: ,38 . 19.17 X 20. 47 23.84 S 22 WC 20.69 43.99 37 WC 24. 63 40.74 21 WC 19.38 46.30 X 21. 57 43.68 E) Skunk cabbage : (2) leaves (not eaten). M 35 WC 23. 56 37.08 J 82 WC 20. 69 34.08 71 WD 12. 50 43.60 X 16. 60 ' 38.84 (3) (4) (5) (6) (7) (8) 8.95 18.60 2.89 1.73 85.20 8.28(7.32) 18.43(18.60) 4.94 3.06 1.42 86.50 8.62 18.52 4.94 2.93 1.58 85.90 13.82 25.52 2.12 1.98 83.50 2.42 31.14 4.098 15.67(16.10) 2 .04 95. .80 2.68 33.62(33.10) 14.42 2 .56 93. .16 1.53(1, .97) 32.52 3.90 17.90(18.30) 1 .77 95, ,20 2.105 33.07 3.90 16.16 2, .17 94, ,20 2.070 25.71 4.10 12.66 1, .85 1.280 32.42 17.23 1, .58 88, ,21 1.56(1, .58) 35.75 6.57 23.14 1, .75 91. ,23 1.42 34.10 6.57 20.19 1. .67 89. ,70 2.18 19.45 4.143 13.69 0. .94 3.25 18.81 12.57 0, .764 3.0(3.79) 19.59(20.32) 11.73 .1, .01 2.81 19.28 4.143 12.66 0.905 2.90 24.57 . 4.46 11.89 1. .04 92. ,50 2.50 22.55 3.90 20.18 1. ,09 93. 84 1.83 26.12 15.95 2. .01 93. 50 2.17 24.34 3.90 18.07 1. ,55 . 93. 70 (1) (2) A 15 WC 19.10 30.80 13 WD 18.00 27.70 X 18.55 29.30 E) Skunk cabbage: (3) minerals. Mg Ca M WC r o o t 0.13 0.68 WC 1 eaves 0.143 0.60 J WC r o o t 0.11 0.93 WC leaves 0.14 1.0 A WC r o o t 0.174 1.1 . WC leaves 0.167 1.24 F) Sedge M 32 WO 21.06 44.02 . 25 WD 26.81 39.52 X 23.94 41.80 J 88 WD 16.81 35.23 J L 39 WO 14.25 41.65 A 42 WO 15.30 40.46 G) Two female coho A 72.04 7.95 A 74.31 A 73.20 7.95 (3) 3.02 3.51 (4) 28.79 32.48 (5) -.00 1.89 (6) 18.26 18.32 (7) 1.51 1.80 (8) 90.84 91.55 3.27 30.64 3.95 18.30 1.66 91.20 K 7.2 5.2 8.6 10.4 6.8 7.1 2.07 30.22 4.680 1.61 24.44 4.55 1.84 27.33 4.62 1.16(2.01) 37.69 4.62 1.57 37.13 4.67 1.12(2.20) 34.65 4.59 4.95 4.886 6.19 • 5.109 5.60 4.998 2.63 1.16 69.32 8.62 0.91 71.80 5.63 1.04 70.60 5.67 2.24 72.61 5.40 2.61 8.47 2.26 71.16 10.84 62.57 10.84 78.02 10.84 70.30 A p p e n d i x V . E x a m p l e o f d e t e r m i n a t i o n o f n e t e n e r g y f r o m t h e e n e r g y a v a i l a b l e i n c o h o s a l m o n . s o l u b l e c a r b o h y d r a t e s c r u d e p r o t e i n (pdm) P r o x i m a t e a n a l y s i s o f two f e m a l e c o h o s s h o w e d : 1 . r e d u c e a c c o r d i n g d i g e s t i b i l i t y o f g r o s s e n e r g y ( 8 7 . 6 p e r c e n t ; H a m i l t o n 1 9 7 8 ) . 2 . e n e r g y l o s t t o u r i n e ( 0 . 9 k c a l / g ; K l e i b e r 1 9 6 1 ) . 3 . e n e r g y l o s t t o m e t h a n e p r o d u c t i o n ( 1 . 0 2 k c a l / g CHO; B r e i r e m 1 9 3 9 ) . 4 . c a l o r i c e q u i v a l e n t s ( K l e i b e r 1 9 6 1 ) . 5 . a m o u n t o f e n e r g y p r e s e n t 6 . d e l e t e v a l u e s o f 2 . a n d 3 . 7 . e f f i c i e n c i e s o f c o n v e r s i o n t o f a t ( F i n g e r l i n g 1 9 1 8 ) . 8 . n e t e n e r g y p e r 100 g d r y m a t t e r 9 . c a l o r i c d e n s i t y 7 3 . 2 ( . 8 7 6 ) 7 3 . 2 = 6 4 . 1 5 7 . 7 5 . 7 k c a l / g 3 6 5 . 4 k c a l 3 0 7 . 7 k c a l 0 . 7 4 2 2 7 . 7 k c a l (pdm) 7 . 9 5 7 . 0 1 7 . 1 4 4 . 0 2 8 . 0 2 0 . 9 0 . 8 3 1 4 . 4 c r u d e f a t (pdm) 5 . 6 4 . 0 moi s t u r e c o n t e n t (pdm) 7 0 . 3 9 . 5 3 8 . 0 3 8 . 0 0 . 9 3 3 5 . 0 = 2 8 0 . 1 k c a l 2 . 8 k c a l / g d r y m a t t e r o r 8 4 8 k c a l / k g w e t w e i g h t pdm = p e r c e n t d r y m a t t e r Appendix VI. Body measures and immobilization p a r t i c u l a r s for bears captured i n the Ahnuhati during 1976 and 1977. Bear • ID No. Species Sex Age Weight (kg) Drug used Absolute dose (mg) Relative dose (mg/kg) Induction (min) Time ur.conc. (hrs) Capt. date . - Scars Total length (cm) Neck ' g i r t h (cm) Chest g i r t h (cm) Width 1 ear: (cm 19/23 B M • 7.5 125 E H99 4.2 0.034 8 3 19/6/76 no 68 second capture •Sern. 165 1.3 12 4.3 12/22 G M — 250 E M99 5.0 0.02 6 4.0 24/6/76 2 fresh 176 168 — 32 1 second capture M99 4.8 0.02 11 2.0 2 fresh 20B B F 2 E 59 E M99 2.0 0.034 6 — no 142 53 no 12 18 B F 2 E 59 E Sern. 180 R 3.1 35 4.5 no 140 55 115 12 7P G F — no" H99 4.0 0.04 5 1.1 no 179 160 103 19 21 G F — 113 M sern. 205 R 1.8 34 4.5 + no 151 59 107 19 21-A G H 0.5 14 E M99 1.0 0.07 4 0.75 no 83 30 46 10 20G G F — 64 H Sern. 130 R 2.0 9 — no 134 35 83 14 7C G F •— 144» M99 4.0 0.03 4 2.5 no 197 61 114 22 4 B M — 48 M Sern. 60 1.3 10 4.0 no 130 38 79 10 E = estimated H = measured R = r e p e t i t i v e dose Appendix V I I . Frequency and percent cover of understory species i n 15 plant communities i n the Ahnuhati watershed, 1977. Area Sample s i z e (N) Plant species 1 _ 2.14 2 1.29 Plant community type number 3 _ 11.2 M5 H5 M7 M5-7 H6-7 M5-6-7 26.8 76.5 2.02 32.5 0.81 30 1 33 3.9 36 12.6 3.8 50.3 Est. Est. Cavex sp. Species of Graminae Lyaichitum americanum Viola palustre Oenanthe sarmentosa Splvighnum sp. Vaocinium alaskaense Vaocinium ovalifolium Vaocinium ovation Dryopteris oustriaca Blechnwn spicant Athyrium filix-femina Streptopus roseus Rubus pedatwn Corr.us canadensis Clintonia uniflora Menziesia ferruginea Tiarella uniflora Oplopanax korridum Rubus speotabilis Viola glabella Circaea alp-ina Ribes braoteosum Sambucus racemosa Trautvetteria -carolinsnsiB Streptopus amplexifolius f PC f PC f PC f PC f PC f PC f PC f PC f PC f PC f PC f PC f PC f PC f PC 100 87 67 6 100 2.6 100 16 100 6 100 69.3 50 75 3.3 100 2.7 50 t r 67 0.7 75 49 33 9.3 55 78 20.2 5 t r 6.7 25 t r 67 t r t r 13 100 41.1 22 0.1 14 t r 100 37.5 33 t r t r 0.4 13.7 25 t r 33 t r t r 40 67 100 11.9 0.1 67 1.7 44 0.1 10 29 0.6 100 50 t r t r 33 33 0.7 t r 0 15 t r 12.7 4.6 t r t r 67 7.7 33 2.7 78 45 71 5.5 50 2.0 67 10.3 15 • t r 0.7 5.0 0 0 78 3.3 33 t r 11 0.1 50 2.0 33 1.3 1.1 50 0.5 67 43 33 23.3 44 4.2 50 100 10.2 33 t r SN SN 9.5 0 56 1.2 33 t r 44 0.6 . 0 14 1.1 50 4.0 67 16 8 0.6 67 0.7 2 100 12.2 33 2.7 0 5.0 50 0.8 33 t r t r 100 78 2.4 0.1 33 t r 11 0.1 50 50 t r 0.5 0 0.3 0.1 50 t r 33 t r 2 78 2.0 33 t r 14 t r 15 0.1 50 t r 33 t r t r '67 1.8 100 19 100 4.2 0 29 1.9 100 3 100 10.3 8 18 9.2 8.3 56 2.0 100 84.3 89 2.6 2 71 0.6 100 t r 100 4.3 25 2 34 29.6 25 t r 100 2.7 44 0.6 100 3 100 75.7 5 100 66.9 100 8 100 34.3 55 38 44.5 26.4 25 t r 11 0.1 100 0.1 78 0.4 0 14 t r 67 1 0.5 0.2 67 0.3 67 2.7 89 1.7 t r 71 0.6 100 t r 8 4.0 1.5 33 t r 11 t r 33 10 78 2.6 57 3.7 50 t r 0 t r 4.2 11 0.3 67 t r 67 0.6 0 86 2.3 100 t r 67 0.3 8 4.2 0.3 75 t r 33 t r 33 t r 78 44 2.4 0.2 29 2.3 50 t r 67 67 13 t r . 6.5 t r 0.8 • 0.1 frequency PC percent cover t r trace SN = senescent Appendix VII. (Cont'd). Plant species cover In subalpine meadow of Sunkist Va l l e y , Ahnuhati 1977 (see Figure 13). Percent Plant species Frequency r o v e r Carex sp. •100 37.8 Valeriana saouleri 8.4 Veratrwn vivide 100 25.5 Sanguisorba eitaheneis 25 7.0 Species of Gra'minae 50 . 2.5 Epilobium alpinum 25 1.25 Bevacleum lanatwn 75 3.5 Ribea bracteoswn 25 1.0 Rubus speatabilie 25 6.0 Athyviwi filix-femina 75 5.0 Epilobium anguQtifolium 75 0.63 Streptopue roseus 25 1.25 TrautvetteHa oarolinsneia 25 0.63 Others 75 F i g u r e 1 2 : V e g e t a t i o n c o m i t i e s i n t h e v a l l e y b o t t o m o f t h e A h n u h a t i i t 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0075117/manifest

Comment

Related Items