Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Modelling and mapping trophic overlap between fisheries and the world’s seabirds Karpouzi, Vasiliki S. 2005

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_2005-0499.pdf [ 12.79MB ]
Metadata
JSON: 831-1.0074880.json
JSON-LD: 831-1.0074880-ld.json
RDF/XML (Pretty): 831-1.0074880-rdf.xml
RDF/JSON: 831-1.0074880-rdf.json
Turtle: 831-1.0074880-turtle.txt
N-Triples: 831-1.0074880-rdf-ntriples.txt
Original Record: 831-1.0074880-source.json
Full Text
831-1.0074880-fulltext.txt
Citation
831-1.0074880.ris

Full Text

Modelling and mapping trophic overlap between fisheries and the world's seabirds by Vasiliki S. Karpouzi B .Sc , Aristotle University of Thessaloniki, 2001 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE F A C U L T Y OF G R A D U A T E STUDIES (Zoology) THE UNIVERSITY OF BRITISH C O L U M B I A May, 2005 © Vasiliki S. Karpouzi, 2005 Abstract Seabird food consumption may reveal the potential for competition between seabirds and fisheries. I ndeed, coexistence of foraging seabirds and operating fisheries inevitably results in interactions, one of which is competition for the same resources. I used GIS-based modelling at a scale of 30-min spatial cells to: (a) map the foraging distribution of seabirds; (b) predict their annual food consumption rates in a spatially-explicit manner; and (c) estimate a spatially-explicit seabird - fisheries overlap index. Information on the population size, diet composition and foraging attributes of 351 species of seabirds was compiled into a Microsoft Access database. Trophic levels, expressing the position of seabirds in the marine ecosystem, were estimated for each species using diet composition data. Global annual food consumption by seabirds was estimated to be 96.4 million tonnes (95% CI: 78.0 to 114.7 million tonnes), compared to a total catch of nearly 120 million tonnes by all fisheries. Kr i l l and cephalopods comprised over 58% of the overall food consumed and fishes most of the remainder. The families Procellariidae (albatrosses, petrels, shearwaters, etc.) and Spheniscidae (penguins) were responsible for more than 54% of the overall food consumption. Mapping the foraging distribution of seabirds revealed that, areas near New Zealand, the eastern coast of Australia, and the sub-Antarctic islands have high seabird species richness. Hawaii and the Caribbean were the only areas north of the equator with high species richness. Temperate and polar regions supported high densities of seabirds, and most food extracted by seabirds originated there. In addition, maps of the annual food consumption rates revealed that most of the food consumed by seabirds was extracted from offshore waters rather than nearshore ones, and from areas where overlap between seabirds and fisheries was low. M y trophic overlap maps identified 'hotspots' of highest potential for conflict between fisheries and seabirds. Thus, this study may provide useful insight when developing management approaches to manage marine conservation areas. ii Table of Contents ABSTRACT ii TABLE OF CONTENTS iii LIST OF TABLES iv LIST OF FIGURES vi ACKNOWLEDGEMENTS viii CHAPTER 1: GENERAL INTRODUCTION 1 1.1. Introduction 1 1.2. Seabirds in the spotlight of scientific research 3 1.3. Geographic Information Systems (GIS) as a research tool 7 CHAPTER 2 : METHODOLOGY 9 2.1. Seabird species 9 2.2. Trophic Levels ( T L ) 10 2.3. Daily Food Intake (DFI) 12 2.4. Mapping seabirds' foraging distribution using GIS 15 2.5. The spatially-explicit seabird - fishery overlap index 19 CHAPTER 3 : RESULTS 2 0 3.1. Seabirds' global population size 20 3.2. Trophic levels of the world's seabirds 23 3.3. Spatially-explicit foraging distribution of seabirds 26 3.4. Global estimates of total annual food consumption of seabirds 28 3.5. Spatially-explicit annual food consumption of seabirds 29 3.6. Spatially-explicit trophic overlap between seabirds and fisheries 30 3.6a. Spatially-explicit trophic overlap between Procellariidae and fisheries 33 3.6b. Spatially-explicit trophic overlap between Spheniscidae and fisheries 35 CHAPTER 4 : DISCUSSION 3 7 4.1. The trophic position of the world's seabirds 37 4.2. Global estimates of total annual food consumption of seabirds 38 Biases and Limitations 39 4.3. Maps of the food consumption of seabirds and overlap with fisheries 41 4.4. Implications for conservation and management 43 4.5. Conclusions 44 LITERATURE CITED 4 7 APPENDIX A 8 9 iii List of Tables T A B L E 2.1. 9 Orders and families of seabird species included in the study. T A B L E 2.2. 12 Order-specific allometric equations to calculate Basal and Field Metabolic Rates. T A B L E 2.3. 13 Food groups used to express standardized diet composition data of seabirds. APPENDIX TABLES 89 T A B L E 1. 89 List of seabird species included in the study. T A B L E 2. 96 International legal instruments established since the early 1970s to protect seabirds' nesting habitat and reverse seabird population declines. T A B L E 3. 97 Percentage of weight or volume contribution of food groups in the diet of seabird species breeding in the Arctic. T A B L E 4. 100 Percentage of weight or volume contribution of food groups in the diet of seabird species breeding in the Antarctic and on Sub-Antarctic Islands. T A B L E 5. 109 Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the Indian Ocean. T A B L E 6. Ill Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the Mediterranean Sea. T A B L E 7. 112 Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the North Atlantic Ocean. T A B L E 8. 118 iv Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the North Pacific Ocean. T A B L E 9. 132 Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the South Atlantic Ocean. T A B L E 10. 135 Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the South Pacific Ocean. T A B L E 11. 141 Energy Density of forage prey known to occur in the diets of seabirds. T A B L E 12. 144 Mean trophic levels (TL) of the world's seabirds. List of Figures FIGURE 2.1. 16 Areas of the world for which a seabird population size estimate was available. FIGURE 3.1. 20 Decline in the overall population size (in billions of individuals) of the world's seabirds (1950-2003). FIGURE 3.2. 21 Percentage contribution to the global seabird abundance (in number of individuals) of each family for the 1950s and the 1990s. FIGURE 3.3. 22 Percentage contribution to the global seabird biomass of each family for the 1950s and the 1990s. FIGURE 3.4. 23 Histogram of all trophic levels (TL) of 351 seabird species considered in the study. FIGURE 3.5. 24 Box - Whisker Plot of Trophic Levels (TL) of seabird species by family. FIGURE 3.6. 25 Box - Whisker Plot of the Trophic Level (TL) values of seabird species by foraging habitat. FIGURE 3.7. 27 Map of predicted foraging distribution of seabird species during an average year in the 1990s. FIGURE 3.8. 28 Percentage contribution of food groups to the estimated annual global food consumption of all seabird species combined. FIGURE 3.9. 29 Map of predicted global food consumption rate (in tonnes per km 2) of all seabirds combined for an average year in the 1990s. FIGURE 3.10. 31 vi Map of estimated trophic overlap between all seabirds and fisheries for an average year in the 1950s, 1970s, and 1990s. FIGURE 3.11. 32 Proportion of food consumed by seabirds in the 1990s by areas of overlap with fisheries. FIGURE 3.12. 33 Map of predicted global food consumption rate of seabirds of the Procellariidae family for an average year in the 1990s. FIGURE 3.13. 34 Map of estimated trophic overlap between seabirds of the Procellariidae family and fisheries for an average year in the 1950s, 1970s, and 1990s. FIGURE 3.14. 35 Map of predicted global food consumption rate (in tonnes per km 2) of seabirds of the Spheniscidae family for an average year in the 1990s. FIGURE 3.15. 36 Map of estimated trophic overlap between seabirds of the Spheniscidae family and fisheries for an average year in the 1950s, 1970s, and 1990s. vii Acknowledgements I wish to first and foremost thank my supervisor Dr. Daniel Pauly for his support, guidance, and patience, as well as for trusting me with such a demanding project. Many thanks to my supervisory committee, Ken Morgan and Dr. Jamie Smith for their assistance throughout my study. I also wish to acknowledge the contributions of many members of the 'Sea Around Us' Project, foremost Dr. Reg Watson, for all the time he sacrificed in modelling and mapping everything I asked for. Without his patience, this work would have never been completed. Many thanks, also, to Dr. Vi l ly Christensen for valuable input and suggestions. Many thanks to Janice Doyle and Allison Barnes, my two favourite graduate secretaries, and to Rosalie and Gerry for saving my database and thesis, when my computer could no longer put up with me. A big hug to all those people who made my life look brighter during difficult times, when this thesis felt it was never going to reach an end. Thank you Yvette, Deng, Telmo, Yajie, Colette, Sheila, Chiara, Denise, Sylvie, for listening and being there for me. Kristin, for your guidance at the beginning of this project. Jean, Pablo, Marta, Simone, Robyn, Chris, Bob H. , Bob L. , Robby, Nathan, Lyne, for the great times inside and outside the Fisheries Centre. M y friends in Greece, Ntoli, Voula, Litsa, Dimitris, for reminding me nearly every day how much they love me. M y supervisor and friend, Dr. Kostas Stergiou, whom I hold responsible for vi i i all the 'brain-washing' that the Fisheries Centre is heaven on earth, and for sending me all the way to the other side of the planet, because he believed I could pull it through. Finally, the biggest Thank You to my family, my father Stavros, my mother Kaiti, and my sister Tina, for s upporting and e ncouraging myd ecision toe ome t o C anada, t heir financial s upport throughout my studies, and their unrestricted, unconditional love and support. ix C H A P T E R 1: GENERAL INTRODUCTION 1.1. INTRODUCTION Seabirds rely on land (e.g. coastal areas, estuaries, oceanic islands) for breeding, yet thus seek their food at sea, either nearshore or offshore (Schreiber and Burger, 2002). Life at sea poses great challenges and feeding on marine resources requires seabirds to adapt physiologically to high salt loads (e.g. they use salt glands to control salt balance; Schreiber and Burger, 2002). Seabirds also use atmospheric features like wind speed and direction (Spear and Ainley, 1997), to allow them to forage over vast areas (e.g. albatrosses in the Southern Ocean; Weimerskirch et al, 2000). Seabirds p ossess a great n umber o f b iological a ttributes t o a dapt t o t he highly h eterogeneous marine environment. As a result, they have developed foraging techniques (e.g. surface seizing in contrast with deep pursuit diving), in order to exploit .marine prey within different parts of the water column. These methods result in trophic segregation among species (Harper et al, 1985). Also, differentiation in morphology (e.g. different size, and shape of the bill and wings) improves prey handling techniques and feeding efficiency (Smith and Skulason, 1996). Lastly, body form and foot shape and position of marine birds influence the way they swim and dive (Watanuki et al, 2003). Different foraging styles occur from polar to tropical environments. Tropical seabirds tend to range widely in order to make optimal use of less productive tropical waters (Ballance and Pitman, 1999). In contrast, polar species dive deep in pursuit of their prey (e.g. the Emperor penguin has a diving depth of up to 500 m; Kirkwood and Robertson, 1997). The life-history characteristics of seabirds differ from those of most land birds. In particular, they are long-lived with life spans well in excess of 30 years (e.g. Fischer, 1975). Delayed maturity is 1 common (e.g. up to ten years of age in the Yellow-nosed albatross; Cuthbert et al, 2003), clutch sizes are small (see Table 5.1 in Weimerskirch, 2002), and chick-rearing periods are long. For example, the Southern royal albatross takes six months to rear its chick (Waugh et al., 1997). A further attribute that distinguishes seabirds is colonial breeding, which occurs in more than 96% of species (Coulson, 2002). Seabirds have been exploited throughout human history (e.g. Serjeantson, 1997; Simeone and Navarro, 2002). They continue to be harvested for food (commercial, subsistence, and recreational; e.g. Blanchard, 1994; Chardine and Mendenhall, 1998), cultural and spiritual reasons (e.g. Denlinger and Wohl, 2001; Aaltola and Oksanen, 2002), and ornamentation (e.g. feathers; e.g. Chardine and Mendenhall, 1998). Avian extinctions have followed in the wake of human exploration and settlement. Over-harvesting of the Great auk (Pinguinus impennis, Alcidae) led to its extinction from the Eastern Coast of Canada and the United States in 1844 (Allen, 1876; Halliday, 1978), as well as globally a few years later. Human consumption has driven other seabird species to extinction in the last 200 years (e.g. Pallas's cormorant, Phalacrocorax perspicillatus; Greenway, 1967), and continues to be a major factor in seabird population declines (Burger and Gochfeld, 1994). Many seabird populations have become endangered owing to the rapid increase of human impacts on marine ecosystems. Impacts include direct effects (e.g. hunting, and egg collection) and indirect ones. Common indirect effects include: guano collecting, tourism, introduction of non-native animal species, pollution, and commercial fishing. These effects alter and/or destroy the habitat and deplete the birds' food resources. In the 2003 I U C N Red List of Threatened Species (www.redlist.org), 17 seabird species are critically endangered, 25 endangered and 31 2 near threatened (Appendix Table 1). The rest are either vulnerable or at low risk (57 and 210 species respectively; Appendix Table 1). Several conventions and agreements for the protection of biodiversity have been signed since the early 1970s (Appendix Table 2). Some of these provide legal protection of wetlands to protect the breeding habitat mainly of shorebirds (e.g. the Ramsar Convention on Wetlands of International Importance; Appendix Table 2). Others aim to reverse bird population declines (e.g. CITES, CCAMLR; Appendix Table 2). However, these conventions are not well-focused on seabirds. As a result, only eight of >300 seabird species (i.e., the Jackass and Humboldt penguins, the Short-tailed albatross, the Dalmatian pelican, Abbott's booby, the Christmas Island frigatebird, the Brown-headed Gull, and the Relict gull) are listed under CITES. 1.2. SEABIRDS IN THE SPOTLIGHT OF SCIENTIFIC RESEARCH Seabirds have been in the spotlight of scientific research for many decades. Early ornithological studies focused mainly on the: (a) breeding biology (e.g. studies on the incubation, laying and fledging periods of seabirds, chick growth, and adult survival; Ealey, 1954a; Rand, 1960; Rice and Kenyon, 1962); (b) ecology (e.g. nesting habitat; Mougin, 1968); (c) behaviour (e.g. Warham, 1974; Diamond, 1975); and (d) diet composition of seabirds (e.g. Hartley and Fisher, 1936; Young, 1963). Recently, developments in technology and techniques allowed ornithologists to study: (a) sizes and status of seabird populations (e.g. Croxall et al, 1984; Croxall, 1991); (b) energy requirements of seabirds (e.g. Nagy et al, 1984; Salamolard and Weimerskirch, 1993); (c) foraging behaviour and performance (e.g. Trivelpiece et al., 1986; Wilson et al, 1986; Trathan et al, 1998); (d) the effect of weather on seabird ecology (e.g. Murray et al, 2002); (e) the effect of hydrography on distribution at sea (e.g. Garthe, 1997; Weichler et al, 2004). 3 The recent broadening of research in marine ornithology followed the realisation that large top predators play a key role in marine food webs. Seabirds are abundant and conspicuous and can indicate ecological impacts of oceanographic changes, such as El Nino Southern Oscillation (ENSO) events (e.g. Weimerskirch et al, 2003). They also may signal changes in the condition and availability of prey (e.g. Kitaysky et al, 2000; Springer et al., 1986; Croxall et al., 1988a; Montevecchi, 1993; Barrett and Krasnov, 1996; Bryant et al, 1999). The latter result implies that fluctuating prey availability influences seabird biology directly. For example, reproductive performance (Sydeman et al., 2001), adult survivorship (Jones et al., 2002), breeding success (Uttley et al, 1994a), colony attendance (Simeone et al, 2002), and prey switching (Crawford, 1998), all can cause seabird population changes. However, it has been acknowledged (e.g. Cairns, 1992) that seabirds may also provide useful information about the condition and availability of prey stocks (e.g. Springer et al, 1986; Croxall et al, 1988a; Montevecchi, 1993; Barrett and Krasnov, 1996; Bryant et al, 1999; Kitaysky et al, 2000) as well as the general state of marine ecosystems. Hence, seabirds are useful indicators of change in marine ecosystems (e.g. Cairns, 1987; Adams et al, 1992; Crawford et al, 1992; Montevecchi, 1993; Cherel and Weimerskirch, 1995; Montevecchi and Myers, 1995). Several authors have attempted to determine the trophic role of seabirds in marine food webs, by estimating the amount of food they consume, and have discussed possible interactions between seabirds and fisheries. These studies have been focused on only one (e.g. Williams, 1991; Lorentsen et al, 1998; Rodhouse et al, 1998; Bunce, 2001) or a few seabird species breeding at one location (e.g. Croxall and Prince, 1987; Woehler and Green, 1992; Guinet et al, 1996; Croll and Tershy, 1998; Green et al, 1998a; Goldsworthy et al, 2001; Barrett et al, 2002; Huettmann, 2003). Efforts to estimate food consumption on larger spatial scales (e.g. within a large marine 4 ecosystem, throughout an ocean basin) have been sporadic and focused on a single species (e.g. Woehler, 1995). Brooke (2004) was the first author to tackle the issue of seabird food consumption on a global scale; his study includes most seabird species. He estimated an annual food consumption of 70 million tonnes for the world's oceans. Interactions between fisheries and seabirds have also received considerable attention (e.g. Furness, 1982; Montevecchi, 2002). Interactions can be direct or indirect, and may have positive or negative consequences. Direct interactions include the entanglement of seabirds in fishing gear. This form of interaction causes increased mortality, because seabirds are dragged underwater and drowned while trying to feed on bait or on fish caught by the gear (Moore and Jennings, 2000). Human exploitation of marine resources has provided an increased opportunity for some seabirds to take advantage of prey that would otherwise be unavailable to them. In this case, prey is being scavenged from commercial fishing vessels, or is provided as discards. This form of interaction results in increases in the population size of seabirds (e.g. Furness et al., 1988; Votier et al., 2004); however, seabird populations rely heavily on the fate and future of fisheries. R eduction i n d iscarding b y fisheries a ppears t o b e h aving s erious i mpacts one ntire seabird communities (Reeves and Furness, 2002). Another form of interaction between fisheries and seabirds results from sharing the same resource. Trophic overlap represents the extent to which two consumers overlap in the exploitation of the same resource in the same area (Hurlbert, 1978). Although trophic overlap describes a more neutral form of interaction, it is an indicator of potential competition (Hurlbert, 1978). In this case, competition occurs only when a resource is limited. Modern fisheries selectively remove large quantities of biomass from marine ecosystems (e.g. Pauly and Christensen, 1995). Their vast expansion worldwide in the last decades has resulted in massive 5 collapses of fish stocks (Pauly et al, 2002), overexploitation of high trophic level prey and a worrisome trend to continually fish down the food web (Pauly et al., 1998). As a result, industrialized modern fisheries have been considered to negatively impact seabirds, because they deplete resources that would otherwise be available as food to them. Potential competition between seabirds and fisheries for the same prey species has been given considerable attention (e.g. Ashmole, 1971; Furness, 1982; Furness and Birkhead, 1984; Montevecchi, 2002; Cowx, 2003); however, few attempts have actually quantified this competition. Duffy and Schneider (1994) proposed a hierarchical approach to assess competition between seabirds and fisheries. The use of Horn's (1966) modification of Morisita's (1959) index was proposed for the assessment of trophic overlap (Duffy and Schneider, 1994). In addition, competition can be assessed by comparing the amount of food consumed by seabirds, with: (i) fisheries catch ('Schaefer ratio'; e.g. Briggs and Chu, 1987); (ii) stock biomass ('Evans ratio'; e.g. Bailey and Hislop, 1978); (iii) primary production ('Wiens ratio'; e.g. Bourne, 1983); and (iv) re-supply ('Bourne ratio'; e.g. Duffy and Schneider, 1994). Trophic overlap has been estimated between the penguin population and the krill fisheries in the South Shetland Islands (Ichii et al, 1996; Croll and Tershy, 1998). Goldsworfhy et al. (2001) used a percentage similarity index (% PSI; Schoener, 1970) to assess overlap between the seabird populations and the Patagonian toothfish fishery around Macquarie Island (Goldsworthy et al, 2001). The overlap with the commercial fishery was very low (Goldsworthy et al, 2001). Recently, the impacts of fisheries on other large marine vertebrates have been studied at a global scale. Kaschner (2004) used a modification of Horn's ratio to estimate the global trophic overlap between marine mammals and fisheries. She developed marine mammal distribution maps and compared those with the global maps of fisheries catches developed by Watson et al (2004), in 6 the 'Sea Around Us' Project (SAUP; www.seaaroundus. org) at the University of British Columbia (UBC, Vancouver, C anada). S he f ound 1 ow o verlap b etween marine m ammals and fisheries a 11 he global sc ale (Kaschner, 2 004; K aschner and P auly, 2 004). M oreover, A ndrew Read's group at Duke University (Durham, NC, USA) is creating digital databases of marine mammals, seabirds and sea turtle distributions and abundances, as part of the "Ocean Biogeographic Information System" (OBIS; http://seamap.env.duke.edu). One of their goals is the study of potential impacts of fisheries on threatened species. In this case, they use satellite telemetry data to examine seabird movements in relation to longline fishing operations (Hyrenbach and Dotson, 2003; Read et al, 2005). 1.3. GEOGRAPHIC INFORMATION SYSTEMS (GIS) AS A RESEARCH TOOL Fisheries have dramatically expanded in the last few decades (Pauly et al., 1998, 2003; Myers and Worm, 2003) and now extract from the world's oceans well over 120 million tonnes of resources annually (Pauly et al, 2002). Consequently, global fishing operations reduce populations of target and non-target species and alter food web function and ecosystem structure (Moore and Jennings, 2000; Jennings et al, 2001). In order to quantify these impacts, these processes must be analyzed at a large scale. To date, fisheries assessment approaches have used time series analyses to study the variability of target species over time. These approaches, however, o ften f ail t o d etect v ariability i n s pace. T his i s w hy m aps h ave b een p roposed a s a complementary tool for fisheries science (Pauly et al, 2003). They help to make the necessary transition towards ecosystem-based management. In order to improve the spatial precision of fisheries catch data, a method has been developed by the SAUP to disaggregate existing fisheries statistics into a grid system of 30-minute (longitude and latitude) spatial cells (www.seaaroundus.org). There are over 180,000 cells in the world's 7 oceans. Each cell contains information of the geographical distribution of taxa represented in the fisheries catches, as well as known fishing access arrangements (Watson et al., 2004). As my focus was the global interactions between fisheries and seabirds, I used a GIS-based modelling approach and the same spatial grid of 30-min cells. These choices allowed me to interface with the approach of Watson et al. (2004), and address three goals, to: (a) map the foraging distribution of seabirds; (b) estimate seabird food consumption rates per cell; and (c) compare the latter with the spatially disaggregated fisheries catches database of the SAUP to obtain an estimate of a seabird - fisheries overlap index per cell. 8 C H A P T E R 2: M E T H O D O L O G Y 2.1. SEABIRD SPECIES I compiled information on 351 marine bird species (listed in Appendix Table 1) in a Microsoft Access database. These species belonged to four orders and 14 families, which are summarized in Table 2.1. Of these, 334 species are traditionally considered to be seabirds. I also included 17 species of sea ducks (Table 2.1 and Appendix Table 1). These consist of birds that breed inland, yet winter at sea nearshore and prey upon small fish and invertebrates that occur along the coast. I gathered data from the following databases: (a) Aquatic Sciences and Fisheries Abstracts (ASFA); (b) Web of Science, Institute for Scientific Information (ISI); and (c) Biosciences Information Service (BIOSIS) of Biological Abstracts. These cover peer-reviewed journals and T A B L E 2.1. Orders and families of seabird species included in the study. N : number of species. Order Family N Names Charadriiformes Alcidae 23 Alcids Laridae 97 Gulls, terns, noddies Stercorariidae 7 Skuas Pelecaniformes Fregatidae 5 Frigatebirds Pelecanidae 8 Pelicans Phaethontidae 3 Tropicbirds Phalacrocoracidae 38 Cormorants Sulidae 10 Gannets, boobies Procellariiformes Diomedeidae 22 Albatrosses Hydrobatidae 20 Storm petrels Pelecanoididae 4 Diving petrels Procellariidae 80 Petrels, prions, shearwaters, fulmars Sphenisciformes Spheniscidae 17 Penguins Anseriformes Anatidae 17 Sea ducks 9 grey literature sources. Information was also extracted from the following online databases: (a) Avibase - the world bird database (http://www.bsceoc.org/avibase/avibase.jsp?pg=home&lang =EN); (b) the United Nations Environment Programme (UNEP) - World Conservation Monitoring Centre Species Database (http://www.unep-wcmc.org/right.htm); (c) BirdLife International (www.birdlife.net); (d) the National Audubon Society (www.audubon.org) Christmas Bird Count (http://www.audubon.org/bird/cbc/ index.html); (e) the Birds of North America Online (http://bna.birds.cornell.edu/BNA/); and (d) Wetlands International (www.wetlands.org). 2.2. TROPHIC LEVELS (TL) A diet composition matrix was created that contained information on the feeding habits of the world's seabirds. The matrix contained percentages of weight or volume of a particular prey species or prey taxon in the diet of the predator. Quantitative diet information was tabulated by seabird species, study area and year (Appendix Tables 3-10). The following additional information was encoded: (a) technique used for foraging (i.e., dipping, surface seizing, plunge diving, deep pursuit diving, scavenging and kleptoparasitism); (b) maximum foraging depth (in m); (c) maximum foraging distance from colony (i.e., nearshore, <1 km; coastal, <10 km; shelf <200 km; pelagic, >200 km); and (d) morphometric characteristics (i.e., length of bill, tarsus and wing; in mm). The diet matrix was used to calculate fractional TL values for each seabird species. I used TrophLab software (Pauly et al., 2000) to estimate trophic levels of seabirds by considering the trophic levels of the full array of prey items in the diet of seabirds. TrophLab estimates TL (and its standard error, SE) from: (a) quantitative diet composition data, expressed as percentage of weight or volume contribution of the prey in the diet of the predator; or (b) qualitative diet 10 composition data (i.e., the prey items known to occur in the diet). The latter is useful when diet composition is expressed using qualitative indices that assess how much a particular item contributes to the diet of a given species (e.g. numerical contribution and mainly frequency of occurrence of prey) (Pauly et al., 2000). Trophic Levels (TL) express the position of organisms within the food webs that describe marine ecosystems (Pauly and Christensen, 1995, 2000; Pauly et al, 1998; Pauly and Palomares, 2000). The definition of T L for any consumer species i is (Pauly and Christensen, 2000): T L ^ l + X D C ^ T L j ...1) j=i where TLj is the fractional trophic level of prey j , DQj represents the fraction of j in the diet of i and G is the total number of prey species. The T L takes values between 2.0, for herbivores/detrivores, and 5.0, for carnivores (Pauly et al., 1998; Pauly and Palomares, 2000). TrophLab also estimates an omnivory index (i.e., OI; the extent to which a species feeds on more than one trophic level) as: O l i ^ Z C T L j - T L ^ D C i j ...2) OI equals zero when a predator feeds on prey of the same TL and increases with the variety of prey's TL. The square root of OI is the SE of T L (Christensen and Pauly, 1992). Diet composition data (% gravimetric abundance) were available for 174 seabird species. For these species, T L and SE values were estimated using the quantitative routine of TrophLab. For the remaining species, T L was estimated from the list of prey items in the diet using the 'qualitative routine' of TrophLab. Fish-eating seabirds were assumed to prey upon juvenile prey individuals, whose T L was taken from FishBase online (www.fishbase.org), when available. For 11 the rest of the prey items known to occur in the diet of seabirds, the default TL value of TrophLab was used. 2.3. DAILY FOOD INTAKE (DFI) Information needed to estimate the seabirds' DFI, and hence their annual food consumption, included: (a) body mass (m; in g) of seabirds species taken from Dunning (1993) and Schreiber and Burger (2002), unless body mass data were available per breeding location, (b) Basal and Field Metabolic Rates [BMR and FMR respectively estimated using order-specific allometric equations from Ellis and Gabrielsen (2002); in kJ/day; Table 2.2]. BMR and FMR were used to estimate energy requirements (ER) of seabirds in the non-breeding and breeding season respectively. (c) The matrix of standardized diet composition (see below); and (d) population sizes of breeding seabirds (see below). T A B L E 2.2. Order-specific allometric equations [from Ellis and Gabrielsen (2002)] were used to calculate Basal and Field Metabolic Rates (BMR and FMR respectively; in kJ/day), which were assumed to represent energy requirements of seabirds for the non-breeding and breeding season respectively, m: body mass (in g). Order BMR FMR Charadriiformes BMR=2.149-mu-804 FMR=11.49-mu'"8 Pelecaniformes BMR=1.392-m0823 FMR=3.90-m0-8717 Procellariiformes BMR=2.763-m0726 FMR=22.06-m0594 Sphenisciformes BMR=1.775-m0'768 FMR=21.33-m0-626 All seabirds1 BMR=3.201-m0719 FMR=16.69-m0 6 5 1 1 BMR and FMR for Anseriformes were calculated using the general allometric equation for all seabirds combined (Ellis and Gabrielsen, 2002). 12 T A B L E 2.3. Food groups used to express standardized diet composition data, calculate annual food consumption rates, and assess the trophic overlap between seabirds and fisheries on a global scale. Food groups were compiled based on the taxonomic groups represented in the 'Sea Around Us' Project database. Food Group Taxa included Perch-like Perciformes, Anarhichadidae, Mugilidae, Labridae, Apogonidae, Diplodus sp., Scomber japonicus, S. scombrus, Emmelichthys nitidus nitidus, Seriolella brama, Dicentrarchus labrax, Pagellus acarne, Lithognathus mormyrus, Pomatomus saltator, Thyrsites atun Gadids Boreogadus saida, Gadus morhua, G. macrocephalus, Macruronus novaezelandiae, M. magellanicus, Pseudophycis bachus, Micromesistius poutassou, M. australis, Pollachius virens, Merluccius sp., Theragra chalcogramma, Eleginus gracilis, Pleurogrammus monopterygius, P. azonus Beloniformes Belone belone belone, Scomberesox saurus saurus, S. s. scombroides, Cololabis saira Scorpaeniformes Cottidae, Prionotus sp., Trigla sp. Flatfish Pleuronectidae, Reinhardtius hippoglossoides, Solea sp. Anchovies Engraulis encrasicolus, E. australis, E. anchoita, E. capensis, E. japonicus, E. mordax, E. ringens Atherinidae Silversides Carangidae Decapterus sp., Trachurus declivis, T. mediterraneus, T. trachurus, T. symmetricus Channichthyidae Crocodile icefishes Clupeidae Clupea harengus, C. pallasii, Sardinops sagax, Etrumeus teres, E. whiteheadi, Sardina pilchardus, Sprattus sprattus Osmeridae Smelts Exocoetidae Flyingfishes Macrouridae Grenadiers Myctophidae Electrona antarctica, Gymnoscopelus nicholsi, Lampanyctus sp., Lampichthys sp. Nototheniidae Notothenia rossii, N. coriiceps, N. nybelini, Gobionotothen gibberifrons, Lepidonotothen squamifrons, Pleuragramma antarcticum, Dissostichus eleginoides, D. mawsoni Synodontidae Lizardfishes Ammodytes Ammodytes hexapterus, A. americanus, A. marinus Capelin Mallotus villosus Goatfish Upeneus sp. Oncorhynchus Oncorhynchus sp. Sebastes Redfishes Fish Other, not included in the above food groups Cephalopods Teuthida, Kondakovia longimana, Loligo sp., Illex sp. Decapods Shrimps, prawns, Brachyura Krill Euphausia superba, E. crystallorophias, Meganyctiphanes norvegica, Thysanoessa sp. 13 Consumption by seabirds was specified by 25 food groups (see Table 2.3 for description). Food groups were compiled based on the taxonomic groups represented in the SAUP database (Table 2.3). Population sizes were expressed as breeding pairs (bp). The following equations accounted for non- and pre-breeders present in colonies as follows: (a) for single-egg laying species (bpx0.6)+(bpx0.7); and (b) for multi-egg laying species (bpx0.6)+(bpxl.O) (ICES, 2000). These calculations assume that non-breeders comprise 30% of the breeding population and that the fledging success of single-egg and multi-egg clutch species is 0.7 and 1.0 chicks/pair respectively (Cairns et al., 1991). A bioenergetic model created by the ICES Working Group on Seabird Ecology (ICES, 2000) was employed to estimate DFI: E R : 1 j=i Where DFIj denotes daily food intake for each seabird species i , ERj is the energy requirements for each i , DCy is the fraction of food item j in the diet of each i , EDj is the mean energy density of each prey j (Appendix Table 11). AEj is the mean food assimilation efficiency for each i , and G the total number of food groups (Table 2.3) encountered in the diet of each breeding population. ERj for the breeding season was calculated using the F M R allometric equations (Table 2.2). During the non-breeding season, ERj was considered equal to 2.5 * B M R (ICES, 2000; Table 2.2). The length of the breeding season was assumed equal to incubation period + time from hatching to leaving the nest or burrow + 20 days (Cramp, 1985). AE; was assumed equal to 75% (Gabrielsen, 1994; ICES, 2000; Barrett et al, 2002), unless species-specific 14 information was found in the literature. EDj values were available either at the species-appendix Table 11) or taxon-level (Appendix Table 11) for prey items. Total food consumption was estimated per spatial cell, based on the seabird density of each cell (see below). 2.4. MAPPING SEABIRDS' FORAGING DISTRIBUTION USING GIS Oceanographic features at sea influence seabird distribution and marine physical processes explain some of the variation in seabird numbers (e.g. Davoren, 2000; Fauchald, et al, 2000; Hyrenbach et al., 2002). These studies rely on the concept that global oceanic circulation patterns influence prey availability and abundance strongly (Wolanski and Hammer, 1988; Mann and Lazier, 1996; Longhurst, 1998). Thus, these areas of high food concentration attract many foraging seabirds (Shealer, 2002). However, seabirds include species with several foraging attributes, which are inevitably influenced by different oceanographic processes occurring at different scales (Hunt and Schneider, 1987). Data on seabirds' global breeding distribution, and demography were compiled and tabulated per species, year and breeding location (i.e., the country where the species breeds; Fig. 2.1), henceforth referred to as 'breeding population'. Each breeding location was assigned a population size (i.e., the number of individuals breeding corrected for non-breeders and immature individuals), for each breeding species, and original census year. The population size table covered the years from 1950 to 2003. For years when population sizes were not available, data were interpolated, assuming a linear relationship between the available datapoints. Data were also extrapolated from the first available datapoint back to 1950, as well as from the last available datapoint to 2003, assuming no change in the population size. This generates a conservative bias, an item to which I shall return. 15 Furthermore, the number of foraging seabirds was estimated per cell, using for each breeding population, the following information: (a) population size for each year, from 1950 to 2003; (b) maximum foraging range (i.e., distance flown away from the colony in search of food); and (c) distribution maps of forage prey available by the SAUP (www.seaaroundus.org). Prey distribution maps are constructed using previously published distribution maps, which are adapted to the SAUP polygon format (www.seaaroundus.org). These maps are further refined based on absence in the records of some FAO statistical areas, as well as additional factors (e.g. latitude and depth ranges, distance from shore, and some critical habitats). A l l 351 species were assigned a distribution, defined by the northernmost and southernmost latitude for each. The species were then divided into four groups, according to the distance they fly from their colony to feed. The following groups emerged: (a) nearshore species that forage FIGURE 2.1. Areas of the world for which at least one seabird population size estimate was available. 16 within 1 km from shore. This group comprises of some species of cormorants, gulls, terns, pelicans, seaducks, and some alcids. (b) Coastal species that fly up to 10 km from shore to find food. This group includes mainly species of cormorants, gulls, terns and seaducks, as well as some alcids. (c) Seabirds species of the continental shelf that forage within 200 km from land. This group contains some storm petrels and shearwaters, Crested penguins, alcids, and larger-bodied gulls and cormorants. Each breeding population was assumed to disperse evenly from the colony in a 11 directions. The probability of occurrence was assumed to d ecrease linearly with distance from land, to zero at the maximum reported foraging range. In addition, seabird distribution was further constrained by the distribution of the prey occurring in the diet of the avian predator. Group (d) comprised of pelagic species that forage in deeper, offshore waters at distances >200 km. This group includes pelagic, deep-diving penguins, as well as albatrosses, prions, petrels, some shearwaters, and storm petrels. Several parameters to define pelagic foraging habitats and the at-sea distribution of far-ranging seabirds have been used in the literature (e.g. Rodhouse, 1989; Rodhouse et al, 1996; Hyrenbach et al, 2002; Ainley et al, 2005): (a) Sea Surface Temperature (SST) and (b) Sea Surface Salinity (SSS) - in general, lower SST and higher SSS indicate well-mixed water masses that generate frontal systems; (c) Seafloor depth - differences in bathymetry assist in the mixing of the water column, during oceanic circulation; and (d) Chlorophyll concentration (Chi a). In oligotrophic waters, Chi a is < 0.1 mg m" , while in enriched waters, Chi a is > l m g m " 3 (Longhurst, 1998). Nel et al (2001) recently correlated satellite-tracked Grey-headed albatross movements with weekly satellite-derived Sea Surface Height Anomaly (SSHA) data. SSHA denotes the variable height of the sea surface above or below the baseline figure of the Earth (definition available from http://sealevel.ipl.nasa.gov/glossary.html). SSHA represents a statistical measure of 17 temporal variations in major current systems (Park and Gamberoni, 1995). Indeed, positive and negative SSHA (sensu warm and cold eddies) may contain elevated stocks of potential prey that attract far-ranging, pelagic seabirds (Nel et al, 2001). Group d was further divided into three sub-groups: (i) species that fly to distances >200 km to feed. However, the probability of occurrence decreases linearly to zero at the maximum reported foraging range, (ii) Species, whose probability of occurrence was described by a trapezoidal probability distribution (i.e., occurrence was assumed to be uniformly highest within a threshold distance from the breeding colony, and then to decrease linearly to zero at the maximum reported foraging range), (iii) Twelve species of the genus Puffinus (i.e., Little, Buller's, Flesh-footed, Pink-footed, Greater, Sooty, Hutton's, Christmas, Newell's, Wedge-tailed, Manx and Short-tailed s hearwaters). T hese s pecies b reed i n a reas o f t he S outhwest Pacific a nd S outh A tlantic Oceans. At the end of the breeding season they migrate to feed and winter in the waters of the North Pacific and the North Atlantic Oceans (e.g. Ogi et al, 1980; Guzman and Myres, 1983; Briggs and Chu, 1986; Camphuysen, 1995; Spear and Ainley, 1999; Gould et al, 1997, 1998; Ito, 2002). On occasion, shearwaters form flocks and feed with surface-schooling tunas (Ashmole and Ashmole, 1967; Au and Pitman, 1986, 1988; Au, 1991). These seabirds benefit when tunas drive prey closer to the surface, where they can be reached by surface divers. Such foraging behaviour has been documented, for instance, for Wedge-tailed shearwaters that feed with Yellowfin {Thunnus albacares) and less frequently with Skipjack tunas (Katsuwonus pelamis) in' the Eastern Tropical Pacific Ocean (Au and Pitman, 1986, 1988; Au, 1991). The same habit is also shown by Greater shearwaters that feed with tunas in the Atlantic Ocean (Clua and Grosvalet, 2001). Hence, in order to map the foraging distribution of the twelve species of transequatorial 18 shearwaters, I assumed that their distribution matched that o f three species o f schooling tuna (Yellowfin, Thunnus albacares; Southern bluefin, Thunnus maccoyii; and Northern bluefin, Thunnus thynnus; available online at www.seaaroundus.orgl. 2.5. THE SPATIALLY-EXPLICIT SEABIRD - FISHERY OVERLAP INDEX In order to assess conflicts between seabirds and fisheries, I estimated a trophic overlap index a, that uses the amounts of prey taken jointly by seabirds and fisheries. I used the indices of Morisita (1959) and Horn (1966), as modified by Kaschner (2004). She applied a weighting factor, to measure the importance of spatial cell of either very low seabird food consumption rates and/or very low fisheries catches. Thus, the trophic overlap index was as follows: G °= a M H *ipQr*PCf) ...4) M /=1 a takes values from 0 to 1, with 0 indicating no overlap and 1 complete overlap; pij is the proportion of a food group j to the total amount of food taken by a seabird i ; pfj is the proportion of j in the catch of the fishery f; G and H denote the number of food groups taken by i , and comprise the catch of the fishery f respectively; pQj and pCf denote the proportion of food taken by i and the proportion of food caught by f at each cell, a was quantified on a global scale and was allocated to each spatial cell, using seabird densities for each cell and the disaggregated fisheries catches from the SAUP (www.seaaroundus.org; Watson et al, 2004). 19 C H A P T E R 3: RESULTS 3.1. SEABIRDS' GLOBAL POPULATION SIZE The total seabird population decreased from 1.076 billion individuals (95% CI 1.052 - 1.102) in 1950 to 0.922 billions individuals (95% CI 0.893 - 0.868) in 2003. Confidence intervals for the piecewise regression (Fig. 3.1) were calculated using the statistical package NCSS (Hintze, 2004). The slope was -0.0004 (P<0.01; Fig. 3.1), up to 1970, after which the slope increased by an order of magnitude to -0.0054 (PO.01; Fig. 3.1). FIGURE 3.1. Decline in the overall population size (in billions of individuals) of the world's seabirds (1950-2003). (Fitted piecewise regression model: bi=0.0004, b2=0.0054, J=1970; 1^=0.967, P<0.01). 20 The family Procellariidae was the most abundant one throughout (Fig. 3.2). However, its contribution to the total declined from 41.7% in the 1950s to 32.5% in the 1990s (PO.05; Fig. 3.2). The families Procellariidae, Alcidae, Laridae, and Spheniscidae were responsible for more than 85% of the total at both times (Fig. 3.2). In addition, the proportional losses of Procellariids were roughly balanced by the gains in alcids, larids and penguins (Fig. 3.2). Differences between mean abundances for the 1950s and the 1990s were not statistically significant (ANOVA; P>0.05) for the families Anatidae, Fregatidae, Phaethontidae, and Spheniscidae. 50 r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 F a m i l y FIGURE 3.2. Percentage contribution to the global seabird abundance (in number of individuals) of each family for the 1950s (black bars) and the 1990s (grey bars). 1: Procellariidae, 2: Alcidae, 3: Laridae, 4: Spheniscidae, 5: Hydrobatidae, 6: Pelecanoididae, 7: Diomedeidae, 8: Phalacrocoracidae, 9: Sulidae, 10: Anatidae, 11: Fregatidae, 12: Stercorariidae, 13: Pelecanidae, 14: Phaethontidae. 21 Although penguins are only the fourth most numerous family, they made up > 50% of seabird biomass, for both the 1950s and the 1990s (Fig. 3.3). Their % contribution biomass increased from 52.5% in the 1950s to 57% in the 1990s (Fig. 3.3). However, this increased was not statistically significant (t-test; P>0.05; Fig. 3.3). Procellariidae were second-ranked in biomass (Fig. 3.3). However, their biomass declined from 21.0% in the 1950s to 15.8% in the 1990s (t-test; P<0.05; Fig. 3.3). Differences between mean abundances for the 1950s and the 1990s were not statistically significant (ANOVA; P>0.05) for the families Spheniscidae, Diomedeidae, Anatidae, and Phaethontidae. 80 r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 F a m i l y FIGURE 33. Percentage contribution to the global seabird biomass (in tonnes) of each family for the 1950s (black bars) and the 1990s (grey bars). 1: Spheniscidae, 2: Procellariidae, 3: Alcidae, 4: Laridae, 5: Diomedeidae, 6: Phalacrocoracidae, 7: Sulidae, 8: Anatidae, 9: Pelecanoididae, 10: Pelecanidae, 11: Fregatidae, 12: Hydrobatidae, 13: Stercorariidae, 14: Phaethontidae. 22 3.2. TROPHIC LEVELS OF THE WORLD'S SEABIRDS The estimated TLs ranged from 2.81 for the California gull to 4.75 for the Brown skua (mean TL = 4.03; 95% CI 3.99-4.07; Table 12). For 216 out of 351 species (61.5%), T L was based only on one dataset (i.e., species-specific diet composition data analysed for a specific breeding colony and year) (Table 12). Furthermore, for 177 out of these, food habits used to estimate the TLs, were expressed qualitatively. Good analyses of stomach contents have been studied throughout the breeding range for the Cape gannet (40 datasets), the Thick-billed murre (41 datasets), the Atlantic puffin and the Common murre (48 datasets each), and the Black-legged kittiwake (57 datasets) (Table 12). 100 80 60 5 40 E 20 Diet consists of copepods and other small crustaceans 3.44(0.21) Diet consists mainly of fish and squid 4.21 (0.24) 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 Trophic Level FIGURE 3.4. Histogram of all trophic levels of 351 seabird species considered in the study. The mean (left) and the standard deviation (right, in parentheses) for the two functional groups identified are also shown. 23 The frequency distribution of TLs displayed two modes, at 3.3-3.5 and 4.1-4.3 (Fig. 3.4). These modes correspond to two functional groups: (A) seabirds in the diet of which copepods and other crustaceans (e.g. euphausiids, amphipods) dominate; and (B) seabirds that feed mainly on fish and cephalopods, but include smaller invertebrates in their diet. Group A included penguins and alcids that target krill and other crustaceans, diving petrels that feed on copepods, sea ducks that feed mainly on bivalves, and storm petrels that feed on amphipods (Fig. 3.5). Group B consisted of the majority of the species and included the offshore pelagic foragers of the family Procellariidae, the fish-targeting penguins, as well as skuas, which prey upon other seabirds and small terrestrial mammals (Fig. 3.5). Between-group analysis of variance indicated statistically significant differences between mean TL of families (ANOVA, iRU.05O),(k-i),(N-k)=26.3, P<0.05; Zar, 1999). Alcidae (23, 306) Anatidae (17, 24) Diomedeidae (22, 60) . CEEh Fregatidae (5, 8) H T ~ r -Hydrobatidae (20,36) , 1 , | | £ Laridae (97,272) i 1 «| | (0 Pelecanidae (8,8) _- | , |-1 U- Pelecanoididae (4,13) . Phaethontidae (3,4) * m Phalacrocoracidae (38,107) . C E O * Procellariidae (80,192) 1 ——I • I Spheniscidae (17,166) 1 1 !• ~T Stercorariidae (7, 46) 1 —I !• Sulidae (10, 74) • 1 •! I-* • 1 • Trophic Level FIGURE 3.5. Trophic Levels of seabird families. The central box covers 50% of the data, the whiskers extend to the minimum and maximum values of the data, the vertical line in the box is the median and the black dot is the mean. Numbers in parentheses indicate number of species (left) and number of datasets (right) per family. 24 T L varied across foraging habitats (nearshore, coastal, shelf, pelagic). Between-group analysis of variance revealed statistically significant differences of the mean T L per habitat type (ANOVA, ^o.05(i),(k-i),(N-k)=9.3, P<0.05). I also detected two homogenous groups: (a) nearshore and coastal seabirds, with a mean TL (±SE) of 3.83 (±0.55) and 3.92 (±0.58) respectively (Fig. 3.6); and (b) pelagic seabirds and those that feed over the continental shelf, with mean TL (±SE) of 4.14 (±0.50) and 4.06 (±0.51) respectively (Fisher's Least Significant Difference; Zar, 1999; Fig. 3.6). Coastal (63) S Nearshore (52) _Q _g Pelagic (115) Shelf (121) 2 3 4 5 Trophic Level FIGURE 3.6. Trophic Levels of seabird species by foraging habitat. Conventions as in Figure 3.5. Numbers in parentheses indicate number of species per foraging habitat. 25 3.3. SPA TIALLY-EXPLICIT FORAGING DISTRIBUTION OF SEABIRDS Figure 3.7 shows the predicted foraging distribution of all seabirds combined, based on information on the distance seabirds fly away from their breeding site to feed, and information on the distribution of prey items encountered in their diet. Areas near New Zealand, the eastern coast of Australia, and the sub-Antarctic islands are characterized by the highest number of foraging seabird species in the world (Fig. 3.7.a). Hawaii and the Caribbean are the only areas north of the equator with high numbers of foraging species (Fig. 3.7.a). The temperate and polar regions of the northern hemisphere have the lowest number of foraging species (Fig. 3.7.a). However, these areas are characterized by high seabird densities (i.e., number of seabirds foraging per km 2 ; Fig. 3.7.b). High seabird densities occur as well around New Zealand and the Patagonian Shelf, the Antarctic continent, the sub-Antarctic islands, and the islands of the South Pacific (Fig. 3.7.b). 26 (a) N o f s p e c i e s _ _ • >50 • 1 <50 <40 <35 • • 1 <30 — <25 • • <20 < 15 < 10 <5 O # S e a b i r d d e n s i t y ( 1 0 6 N k m - 2 ) Q >0.60 <0.60 <0.50 <0.40 <0.30 <0.20 <0.15 <0.10 <0.05 <0.02 FIGURE 3.7. Map of predicted foraging distribution of seabird species during an average year in the 1990s, expressed in: (a) number (N) of seabird species per spatial cell; and (b) number (N) of individuals per km 2 . 27 3.4. GLOBAL ESTIMATES OF TOTAL ANNUAL FOOD CONSUMPTION OF SEABIRDS The estimated annual global food consumption of all seabird species combined was 96.4 million tonnes. Kri l l and cephalopods comprised more than 58% of the overall food consumption (krill: 37.8%, cephalopods: 20.5%; Fig. 3.8). Fish for which no catch is reported (i.e., not listed in Table 2.2) and myctophids were the second and third ranked prey consumed by seabirds (Fig. 3.8). Following Brooke (2004), I assumed a coefficient of variation of 50% for population size; global food consumption therefore ranged from 78.0 to 114.7 million t. The most abundant Procellariidae and Spheniscidae were responsible for more than 54% of the overall food consumption. Ammodytes 4.0% 20.5% FIGURE 3.8. Percentage contribution of food groups in the estimated annual global food consumption of all seabird species combined. Food groups described in Table 2.2. Other fish: contains Anchovies (1.4%), Clupeidae (1.1%), Sebastes (0.7%), Carangidae (0.5%), Goatfish (0.4%), Perch-like (0.2%), Flatfish (0.2%), Beloniformes (0.1%), Scorpaeniformes (0.1), Channichthyidae (0.1%), Osmeridae, Atherinidae, Synodontidae, Oncorhynchus and Macrouridae (<0.05% each). 28 3.5. SPATIALLY-EXPLICIT ANNUAL FOOD CONSUMPTION OF SEABIRDS Mapping of food consumption rates of all seabirds combined (Fig. 3.9) revealed that a considerable amount of food is consumed by seabirds over the continental shelves (e.g. along the western and eastern coasts of South America; the Northwest Pacific Ocean - Okhotsk Sea and the Sea of Japan; and the continental shelves of the North Atlantic Ocean; Fig. 3.9). However, most of the food is taken from offshore areas (e.g. offshore waters of the Southwest Pacific and the Southern Ocean; Fig. 3.9). In addition, most of the food consumed by seabirds is taken from temperate and polar regions of the world (Fig. 3.9), where seabirds forage in greater densities. In the southern hemisphere, these areas coincide with areas where prey, such as the Antarctic krill, squid, and the mesopelagic fish of the families Nototheniidae and Myctophidae, are abundant (e.g. Rodhouse et al, 1996; Lascara et al, 1999; Duhamel et al, 2000). In the northern hemisphere, most feeding occurs in areas that depict the distributions of prey, such as capelin, sand lance, and herring (e.g. the waters of the North Atlantic; Fig. 3.9). FIGURE 3.9. Map of predicted global food consumption rate (in tonnes-km^-year"1) of all seabirds combined for an average year in the 1990s. 29 3.6. SPATIALLY-EXPLICIT TROPHIC OVERLAP BETWEEN SEABIRDS AND FISHERIES Mapping of the overlap between all seabirds and fisheries on a global scale revealed that it mostly occurs in the temperate waters of the northern hemisphere (Fig. 3.10). In the North Atlantic, 'hotspots' of high overlap were present throughout the shelf areas of Europe. However, overlap increased across decades in the offshore waters of the Norwegian Sea (Fig. 3.10). Trophic overlap increased through time along the continental shelf of West Africa (fig. 3.10). In the North Pacific, high overlap was estimated for the Asian shelves; it too increased across decades (Fig. 3.10). In the Bering Sea, overlap was highest in the 1990s (Fig. 3.10). Temporal comparisons oftrophic overlap r evealed d eclines i n areas, s uch as H awaii, N orthwest P acific Ocean, the west and east coast of Canada and the United States of America, and in the Barents Sea (Fig. 3.10). In the southern hemisphere, trophic overlap between seabirds and fisheries increased in the productive waters of the Humboldt Current from the 1950s to the 1990s (Fig. 3.10). New Zealand was characterized by very high overlap, particularly in the 1990s (Fig. 3.10). The Patagonian Shelf and the waters around the Antarctic Peninsula were of high relative importance both in the 1970s and 1990s, with no overlap displayed for the 1950s (Fig. 3.10). The last result is probably c aused by the poor quality of the data in the SAUP database on fisheries catches from the Southern Ocean and the Antarctic Continent for the 1950s. 30 (a) m (b) (c) •I ; * < O v e r l a p >0.60 <0.60 <0.50 <0.40 <0.30 <0.25 <0.20 <0.15 <0.10 <0.05 '4 i FIGURE 3.10. Map of estimated trophic overlap between all seabirds and fisheries for an average year of the: (a) 1950s; (b) 1970s; and (c) 1990s. 31 T r o p h i c O v e r l a p 0 0.2 0.4 0.6 0.8 1 1.0E+00 • 1.0E-12 L FIGURE 3.11. Proportion of food consumed by seabirds in the 1990s by areas of overlap with fisheries. I calculated the proportion of food consumption by areas of overlap with fisheries. Logarithmic transformation of the y-axis was required, because the proportion of food consumed in cells with overlap > 0.3 was very close to 0. In the 1990s, < 1% of all food taken by seabirds was consumed in areas of high spatial overlap with commercial fisheries (Fig. 3.11). In other words, most of the food consumed by seabirds originated from areas where overlap is very low (Fig. 3.11). 32 3.6a. SPA TIALL Y-EXPLICIT TROPHIC OVERLAP BETWEEN PROCELLARIIDAE AND FISHERIES Procellariidae contributed the highest number of individuals to the overall seabird abundance (Fig. 3.2). For this family, the model predicted for an average year in the 1990s high food intake rates in the temperate and polar waters of the world (Fig. 3.12). In the southern hemisphere, most of the food consumed appears to be taken from offshore waters in the Southern Ocean, the South Atlantic and the South Pacific (Fig. 3.12). In the northern hemisphere, high food consumption rates were predicted for the continental shelves and offshore waters of the Northeast Atlantic, the Asian shelves, and the Bering Sea (Fig. 3.12). Temporal comparisons of trophic overlap between the Procellariidae and fisheries (Fig. 3.13) revealed similar patterns as those for all seabirds combined (Fig. 3.10). Areas where trophic overlap appears to have increased since the 1950s include the Patagonian Shelf, the waters around New Zealand and the Campbell Plateau, the productive waters of the Humboldt Current, as well as the coast of West Africa (Fig. 3.13). Moreover, the North Atlantic, Northwest Pacific, and the Bering Sea appear to be 'hotspot' areas of high overlap between the Procellariids and fisheries since the 1950s (Fig. 3.13). of the family Procellariidae for an average year in the 1990s. 33 (a) I JK (b) (c) •i * O v e r l a p 0 >0.60 <0.60 <0.50 <0.40 <0.30 <0.25 <0.20 <0.15 <0.10 <0.05 FIGURE 3.13. Map of estimated trophic overlap between seabirds of the family Procellariidae and fisheries for an average year of the: (a) 1950s; (b) 1970s; and (c) 1990s. 34 3.6b. SPA TIALL Y-EXPLICIT TROPHIC O VERLAP BETWEEN SPHENISCIDAE AND FISHERIES Penguins comprised more than 50% of the overall seabird biomass (Fig. 3.3). They are distributed only within the Southern Ocean, except for the Galapagos Penguin. For an average year in the 1990s, food consumed by penguins was taken mostly along the Antarctic Continent and around the sub-Antarctic islands (Fig. 3.14). There was also some consumption on the Patagonian Shelf, and the waters off the coast of South Chile (Fig. 3.14). Overlap estimates between foraging penguins and fisheries were high off the Falkland Islands and the Patagonian Shelf (Fig. 3.15). Indeed, these areas are key foraging grounds for the Gentoo, Rockhopper, and Magellanic penguins. Trophic overlap has declined from the 1970s to the 1990s along the Antarctic coast, but has increased slightly in the waters off the sub-Antarctic Islands and the Patagonian Shelf (Fig. 3.15). The apparent increase in overlap around Antarctica from the 1950s to the 1970s probably reflects poor fisheries catch data in the SAUP database for the 1950s. F e e d i n g t - k n r 2 - y r 1 <0.2 FIGURE 3.14. Map of predicted global food consumption rate (in tonnes4xm'2-year"1) of seabirds of the family Spheniscidae for an average year in the 1990s. 35 (a) (b) O v e r l a p (c) • *3f \ FIGURE 3.15. Map of estimated trophic overlap between seabirds of the family Spheniscidae and fisheries for an average year of the: (a) 1950s; (b) 1970s; and (c) 1990s. 3 6 C H A P T E R 4: DISCUSSION 4.1. THE TROPHIC POSITION OF THE WORLD'S SEABIRDS My study is the first attempt to estimate fractional trophic levels (TL), using all available diet composition data (Appendix Tables 3-10) of seabirds on a global scale. These fractional estimates take into account both the diet composition of the predator and the mean TL of the prey, weighted by the contributions of the different food items (Pauly and Christensen, 2000). Thus, fractional TLs differ numerically from the integer TLs used so far (e.g. Knox, 1970; Sanger, 1987a), which are too imprecise and inaccurate for analysis (Pauly and Christensen, 2000). Sanger (1987a) compiled diet composition data for 19 species of seabirds from a large geographic area, s eabirds oftheGulfofA laska a nd t he A leutian C hain. H owever, h e u sed a nominal food chain to assign TLs to prey organisms occurring in the diet of seabirds (see his/her Table 10.1, Sanger, 1987a). Sanger's (1987a) method provides a more qualitative description of trophic structure of marine ecosystems than when fractional TLs are used. Inspection of frequency distribution of fractional TLs suggested two functional groups of seabirds (Fig. 3.4). The first group of species feed mainly on copepods, other small crustaceans (e.g. amphipods, isopods, mysids), and other marine invertebrates (e.g. bivalves, gastropods, polychaetes). However, most seabird species belonged to the second functional group (Fig. 3.4). These top avian predators target mainly fish and cephalopods, however, their diet also includes smaller invertebrates. TLs of seabirds also varied with their foraging habitat (Fig. 3.6). Top avian predators tend to feed away from the coast (i.e., over the continental shelf and in offshore waters; Fig. 3.6). Therefore, prey of higher TL, which are usually targeted by commercial fisheries, are consumed by top predatory seabird species in areas where overlap with fisheries is very low (Fig. 3.11). 37 The trophic groups identified in Fig. 3.4 are provisional and subject to revision, in terms of mean TL and range. More quantitative information is required, especially for those seabird species represented with only one dataset (Appendix Table 12). Fractional TLs correlate closely with TL estimates based on stable isotope ratios (Kline and Pauly, 1998). Thus, my assessment of the trophic position of seabirds in marine ecosystems may be enriched with available stable isotope fractional TLs (e.g. Hobson, 1990, 1991; Hobson and Welch, 1992; Hobson et al, 1994) and analyzed further. Stable isotope studies are particularly useful when diet composition data are lacking. They can replace conventional techniques particularly in the case of seabird species listed as vulnerable or endangered. Moreover, they can be used further for analysing trophic segregation (e.g. Bocher et al, 2000; Forero and Hobson, 2003) among seabirds. They also allow accurate evaluations of temporal and geographic variation in seabird TLs (e.g. Hobson and Clark, 1992), as well as the reconstruction of the diets of avian predators (e.g. Hobson and Montevecchi, 1991; Hobson, 1995). 4.2. GLOBAL ESTIMATES OF TOTAL ANNUAL FOOD CONSUMPTION OF SEABIRDS My maps of food consumption rates for all seabirds of the world allowed me to quantify trophic overlap between seabirds and fisheries on a global scale. However, previous publications have quantified regional food consumption by seabirds (e.g. North Atlantic: Cairns et al, 1991; Lilliendahl and Solmundsson, 1997; Barrett et al, 2002; South Pacific: Muck and Pauly, 1987; Southern Ocean: Adams et al, 1993; Cooper and Woehler, 1994; Woehler, 1997). Brooke (2004) was the first to give a global estimate of food consumption. My estimate of worldwide consumption was about 30% higher (96.4 million t) than Brooke's (2004; 69.8 million t). This is probably because I included more seabird species (351) than did Brooke (309). Moreover, Brooke (2004) assumes conservatively one non-breeder per breeding pair to estimate global 38 population size. As a result, his estimate of population size was 0.7 billion individuals vs. 0.9 billion individuals estimated here. However, Brooke (2004) agrees that a 'liberal' global population estimate (i.e., breeding pairs multiplied by five for longer-lived species and by four for other groups) is plausible. My global food consumption estimate was similar to that provided by Brooke's (2004), when he uses his 'liberal' global estimate. BIASES AND LIMITA TIONS Uncertainty associated with the parameters of the food consumption model may result in values that differ from the model's estimate. Error is associated with both the metabolic parameters used in bioenergetic models (e.g. Furness, 1978) and the population size estimates (Goldsworthy et al, 2001; Brooke, 2004). In particular, the energy requirements of seabirds fluctuate seasonally, because the energetic costs of various stages in the life cycle of mature seabirds differ (e.g. Furness, 1978; Koteja, 1991; Ellis and Gabrielsen, 2002). This is why energy demands of seabirds were estimated here using BMR and FMR for the breeding and the non-breeding season respectively. However, BMR and FMR values were estimated using allometric equations (Table 2.1), which may generate bias in the model's predictions. Good empirical measurements of FMRs (e.g. with the use of Doubly-Labelled Water; DLW; Davis et al, 1989; Uttley et al, 1994b; Golet et al, 2000) measure energy consumption of free-living animals and give estimates with an accuracy of ± 7% (Nagy, 1989; Nagy et al, 1999). Sensitivity analysis that compares inputs of the metabolic parameters that are derived from either equations (Table 2.1) or empirical DLW experiments may help to evaluate the robustness of the model output in the future. Quantitative diet composition data were available for nearly half of the 351 seabird species. For 177 of the species included here, diet composition was assumed to be the same as for the same species breeding at a different location, or the same as another congeneric species. Other sources 39 of error may include differences in the energy density of prey, attributed to differences in the relative status (i.e., size, age, and reproductive state) and/or seasonal or geographical differences and influences. Martensson et al. (1996) determine that revision of prey calorific density used to estimate the food consumption of minke whales in the Northeast Atlantic, result in food consumption estimates that vary by 10-15% (translating to c. 300,000 tonnes of food). Therefore accurate measures of prey energy density for a range of species are important in generating more accurate model predictions (Tierney et al., 2002). Sensitivity analysis of the input parameters (Goldsworthy et ah, 2001; Brooke, 2004) has indicated that bioenergetic models are primarily sensitive to changes in the population parameters. Indeed, larger uncertainties relate to the population size estimates. Few population time series span from early 1950s to the present. Three examples here are the Guanay cormorant, the Peruvian booby, and the Peruvian pelican of Peru; all were counted from 1953 to 2000 (Jahncke, 1998; Crawford and Jahncke, 1999; Sueyoshi, 2000). Changes in population size estimates with time (Fig. 3.1) suggested a breakpoint in the year 1970. Before 1970, more than 95% of population estimates used were extrapolated, using the assumption of no change in population size. After 1970, more data on seabird population sizes became available (i.e., the percentage of interpolated population estimates decreased to 86%). Nevertheless, sensitivity analysis is required to assess the error generated from the lack of population size data as well as the assumption of no trend when extrapolating population sizes. When I assumed a coefficient of variation of 50% in the population sizes as Brooke (2004) did, 95% confidence intervals provided food consumption estimates that ranged from 78.0 to 114.7 million t. Although these confidence intervals are large, they suggest that seabirds around the world consume significant quantities of marine resources that are 70 - 95 % of to the total fisheries catch (i.e., nearly over 120 million t. of resources annually; Pauly et al., 2002). 40 4.3. MAPS OF THE FOOD CONSUMPTION OF SEABIRDS AND OVERLAP WITH FISHERIES Chown et al. (1998) first explored global patterns of species richness, and compiled data on the breeding locations and foraging/wintering distributions for 108 Procellariiform species. The waters around New Zealand, the sub-Antarctic islands of the Southern Ocean, and Hawaii, hold the largest number of Procellariiform species (Chown et al, 1988). The same pattern also applied to all seabird species combined (Fig. 3.7.a). These areas of high species richness comprise biodiversity 'hotspots'. Maps of seabird foraging densities showed that the polar waters of the globe hold the highest seabird densities (Fig. 3.7.b). They also represent areas where the most food is taken by seabirds (Fig. 3.10). Study of seabird food consumption is often directed towards potential competition between seabirds and fisheries (e.g. Furness, 1982, 2002; Furness and Ainley, 1984; Wright, 1996; Croll and Tershy, 1998; Green et al, 1998a; Bunce, 2001; Goldsworthy et al, 2001). Indeed, foraging seabirds and some fisheries inevitably interact (review in Montevecchi, 2002). Three main effects of fisheries on seabirds are (Moore and Jennings, 2000): (a) consumption of and dependence on fisheries discards (e.g. Votier et al, 2004); (b) increased mortality from entanglement in fishing gear (e.g. Melvin and Parrish, 2001); and (c) competition for the same prey targeted by the fisheries for human consumption (e.g. Furness, 2002). Here, I quantified the potential for competition that results from seabirds feeding on and fisheries targeting the same resources, by measuring a trophic overlap index (see section 2.5 for methods and review by Krebs, 1999). However, for seabird populations that rely heavily on discards (e.g. Votier et al, 2004), discards were considered as a separate food group and thus not included in the overlap calculations. Other indirect competition for food (cascading effects) was also not 41 taken into account. Therefore, where type (a) interactions between seabirds and fisheries are frequent (e.g. the North Sea; Garthe et al, 1996; the Mediterranean Sea; Oro and Ruiz, 1997), overlap was underestimated. Seabird entanglement in fishing gear has been a major conservation concern in recent years (e.g. Croxall and Prince, 1 996; Williams and Capdeville, 1 996; Bergin, 1 997; Melvin and Parrish, 2001). Increased mortality due to type (b) interactions usually results from seabirds being hooked or entangled, dragged underwater and drowned while trying to feed on bait or on fish caught by longline gear. In net fisheries, birds are caught and drowned in the nets while diving in pursuit of their prey (Moore and Jennings, 2000). Such interactions cannot be quantified as outlined in section 2.5 here. Thus competition between seabirds and fisheries is underestimated where type (b) interactions are prevalent. Mortality from fishing gear has been blamed for population declines in several endangered seabird species (e.g. Wandering albatross; Cherel and Weimerskirch, 1996; White-chinned petrel, Weimerskirch et al., 1999; Grey-headed albatross; Nel et al, 2000; Tristan albatross; Cuthbert et al, 2005). Indeed, where longlining is a dominant harvest method, very low or no trophic overlap was predicted (Figs. 3.10, 3.13 and 3.15). Key studies here include interactions between seabirds and longlining, for instance, for Patagonian toothfish in the Southern Ocean (South Georgia: Croxall and Prince, 1996; Kerguelen and Crozet archipelagos: Williams and Capdeville, 1996), for bluefin tuna in the Southern Indian Ocean (Nel et al, 2000); and for swordfish in the Hawaiian archipelago (Cousins et al, 2000). Nevertheless, with the use of simple bioenergetic and foraging distribution models, I assessed at a global scale trophic overlap between seabirds and fisheries. This issue has been raised by scientists but has been quantified only in few regional studies. My maps have identified areas where overlap is highest. These maps have also identified areas where seabirds should be given 42 considerable attention when addressing issues of species conservation and ecosystem-based management. 4.4. IMPLICATIONS FOR CONSERVATION AND MANAGEMENT Trophic overlap between fisheries and top predators has been only recently quantified spatially at a global scale and for the case of marine mammals (Kaschner, 2004; Kaschner and Pauly, 2004; Watson et al, 2004). Kaschner (2004) has developed maps of marine mammal distributions and quantified spatial overlap. Overall, the overlap between marine mammals and fisheries is low (Kaschner, 2004). However, Kaschner (2004) identified certain areas of the world where overlap is highest (Kaschner, 2004). L ikewise in seabirds, only a small amount of food consumed by them comes from areas where fisheries operate (Figs. 3.10 and 3.11). In other words, most catches are taken from areas where only a small fraction of the world's seabird population forages (Fig. 3.11). My model predicted 'hotspots' of spatial overlap in the same areas where others have noted the potential for competition between seabirds and fisheries. These areas either have high seabird densities (e.g. the North Atlantic; Fig. 3.7.b.), or a large number of abundant seabird species (e.g. the Patagonian shelf and the Campbell Plateau; Figs.3.7.a.). In particular, in the North Atlantic fisheries of capelin and sandeel are expanding to provide raw material for agricultural and aquaculture feed (Carscadden et al, 2001; Huntington et al, 2004). Capelin and sandeel dominate the diet of many seabird populations breeding in the North Atlantic (Carscadden et al, 2002; Davorenand Montevecchi, 2003). As a result, depletion of stocks may lead to conflict between seabirds and fisheries. Similarly on the Patagonian shelf, squid stocks have been maximally exploited and probably overfished (Csirke, 1987). Published maps of the distribution of effort for squid fisheries (Rodhouse et al, 2000), as well as maps produced for this study (Fig. 43 3.10, 3.13 and 3.15) show substantial apparent overlap with the seabirds that forage in the area (Gremillet et al, 2000; Rodhouse et al, 2000; Croxall and Wood, 2002). A major task currently facing the scientific community is developing new tools and approaches to conservation and management. The open oceans are poorly known, though intensively exploited (e.g. Myers and Worm, 2003; Pauly et al, 2005). They are a challenge to those interested in protecting marine biodiversity. There is broad consensus that existing global criteria for identifying Important Bird Areas (IBAs) can be adapted and applied to marine ecosystems. BirdLife International pioneered IBAs for terrestrial ecosystems since the 1 980s (http://www. birdlife.org.uk/action/science/sites/). In particular, there is a need to establish IBAs for seabird species listed on the IUCN Red List (Appendix Table 1; BirdLife International, 2004). Marine IBAs may provide useful criteria for the establishment of High Seas Marine Protected Areas for conserving biodiversity (Gjerke and Breide, 2003; BirdLife International, 2004). M y maps identified areas of high conservation concern, by revealing where high species richness and seabird density are high. In addition, the food consumption and trophic overlap maps shown here may shed light to a threat to seabird populations worldwide. The principal threat is the potential for competition for the same resources between seabirds and fisheries. 4.5. CONCLUSIONS I compiled information on population sizes, diet composition, and foraging behaviour for 351 seabird species. I used this data to estimate the annual food consumption of the world's seabirds and to assess the spatially-explicit degree of trophic overlap between foraging seabirds and fisheries. 44 I compiled diet composition data of all seabirds of the world to assess their trophic position in marine ecosystems. Two trophic groups of seabirds were identified here. The first group included seabird species that feed mainly on krill and other marine invertebrates (amphipods, isopods, gastropods, polychaetes). The second group included most predatory seabirds that target fish and cephalopods, but that also include smaller invertebrates in their diet. I estimated that global population size decreased from 1.076 billion individuals (95% CI 1.052 -1.102) for 1950 to 0.922 billions individuals (95% CI 0.893 - 0.868) for 2003. This estimate however is compromised by poor data coverage before 1970. The family Procellariidae included the most individuals; while, penguins made up to 50% of the world's seabird biomass. Global annual food consumption by seabirds was estimated to be 96.4 million tonnes (95% CI: 78.0 to 114.7), compared to a total catch of nearly 120 million tonnes by all fisheries. Krill and cephalopods comprised more that 58% of the overall food consumption (krill: 37.8%, cephalopods: 20.5%). The families Procellariidae and Spheniscidae were responsible for more than 54% of overall consumption. Based on the distances seabirds fly from their breeding site to feed, and distribution of prey items in their diet, maps were produced to predict foraging distribution of nearly all seabirds. The maps revealed that areas near New Zealand, the east coast of Australia, and the sub-Antarctic islands, hold the highest number of foraging seabird species. Hawaii and the Caribbean are the only areas north of the equator where high numbers of species forage. The polar and temperate waters of the world are where seabirds extract most food. In addition, maps of the annual food consumption rates revealed that most food consumption is from offshore 45 waters, and from areas where overlap is low. Maps of trophic overlap identified 'hotspots' of higher potential conflict. Those areas should be the initial focus of conservation and management actions. In addition, my maps identified areas of high species richness and seabird density. Particularly, these biodiversity' hotspots' may promote the establishment of marine I mportant Bird Areas and/or High Seas Marine Protected Areas for the conservation of threatened species. 46 LITERATURE CITED Aaltola, E., and Oksanen, M., 2002. Species conservation and minority rights: the case of springtime bird hunting in Aland. Environmental Values 11 (4), 443-460. Adams, N.J., 1982. Subantarctic skua prey remains as an aid for rapidly assessing the status of burrowing petrels at Prince Edward Island. Cormorant 10 (2), 97-102. Adams, N.J., and Brown, C.R., 1989. Dietary differentiation and trophic relationships in the sub-Antarctic penguin community at Marion Island. Marine Ecology Progress Series 57, 249-258. Adams, N.J., and Klages, N.T.W., 1989. Temporal variation in the diet of the Gentoo penguin Pygoscelis papua at sub-Antarctic Marion Island. Colonial Waterbirds 12 (1), 30-36. Adams, N.J., and Klages, N.T.W., 1999. Foraging effort and prey choice in Cape gannets. South African Journal of Marine Science 21, 157-163. Adams, N.J., Moloney, C , and Navarro, R., 1993. Estimated food consumption by penguins at the Prince Edward Islands. Antarctic Science 5 (3), 245-252. Adams, N.J., Seddon, P.J. and van Heezik, Y.M., 1992. Monitoring of seabirds in the Benguela upwelling s ystem: c an se abirds b e u sed a s i ndicators a nd p redictions o f c hange i n t he marine environment? South African Journal of Marine Science 12, 959-974. Addis, P., and Cau, A., 1997. Impact of the feeding habits of the Great cormorant Phalacrocorax carbo sinensis on the lagoon fish-stocks in central-western Sardinia. Avocetta 21, 180-187. Ainley, D.G., Anderson, D.W., and Kelly, P.R., 1981. Feeding ecology of marine cormorants in Southwestern North America. Condor 83 (2), 120-131. Ainley, D.G., Ribic, C.A., and Fraser, W.R., 1992. Does prey preference affect habitat choice in Antarctic seabirds? Marine Ecology Progress Series 90, 207-221. Ainley, D.G., Spear, L.B., Tynan, C.T., Barth, J.A., Pierce, S.D., Ford, R.G., and Cowles, T.J., 2005. Physical and biological variables affecting seabird distributions during the upwelling season of the Northern California Current. Deep-Sea Research II 52 (1-2), 123-143. Ainley, D.G., Wilson, P.R., Barton, K.J., Ballard, G., Nur, N., and Karl, B., 1998. Diet and foraging effort of Adelie penguins in relation to pack-ice conditions in the southern Ross Sea. Polar Biology 20 (5), 311 -319. Allen, J.A., 1876. The extinction of the Great auk at the Funk Islands. American Naturalist 10 (1),48. 47 Anker-Nilssen, T., 1987. The breeding performance of puffins Fratercula arctica oh Rost, northern Norway in 1979-1985. Fauna Norvegica Series C 10, 21 -3 8. Anker-Nilssen, T., and Nygard, T., 1987. Notes on the food choice of adult and young guillemots Uria aalge during post-breeding migration in Central Norway. Fauna Norvegica Series C 10, 53-56. Anker-Nilssen, T., Bakken, V., Strom, H., Golovkin, A.N., Bianki, V.V., and Tatarinkova, LP., (Eds.), 2000. The status of marine birds breeding in the Barents Sea region. Rapport Nr. 113. Norsk Polarinstitutt, Troms0, Norway. 213 pp. Arata, J., and Xavier, J.C., 2003. The diet of Black-browed albatrosses at the Diego Ramirez Islands, Chile. Polar Biology 26 (10), 638-647. Arnould, J.P.Y., and Whitehead, M.D., 1991. The diet of Antarctic petrels, Cape petrels and Southern fulmars rearing chicks in Prydz Bay. Antarctic Science 3 (1), 19-27. Ashmole, N.P., 1963. The biology of the wideawake or Sooty tern Sterna fuscata on Ascension Island. Ibis 103 (3), 318-364. Ashmole, N.P., 1971. Seabird ecology and the marine environment, pp. 223-287. In: D.S. Farner, and J.R. King (Eds.), Avian Biology, vol. 1. Academic Press, New York, USA. Ashmole, N.P., and Ashmole, M.J., 1967. Comparative feeding ecology of seabirds of a tropical oceanic island. Bulletin of Peabody Museum of Natural History 24, 1-131. Athanassopoulos, Th., Zogaris, S., and Papandropoulos, D., 2003. Lagoon fisheries management and fish-eating birds: the case of Ambrakikos. Proceedings of the 11th Panhellenic Conference of Ichthyologists, pp. 231 -234. Au, D.W., 1991. Polyspecific nature of tuna schools: Shark, dolphin, and seabird associations. Fishery Bulletin 89 (3), 343-354. Au, D.W., and Pitman, R.L., 1986. Seabird interactions with dolphins and tuna in the Eastern Tropical Pacific. Condor 88 (3), 304-317. Au, D.W., and Pitman, R.L., 1988. Seabird relationships with tropical tunas and dolphins, pp. 174-212. In: J. Burger (Ed.), Seabirds and Other Marine Vertebrates. Competition, Predation, and Other Interactions. Columbia University Press, New York. Bailey, R.S., and Hislop, J.R.G., 1978. The effects of fisheries on seabirds in the north-east Atlantic. Ibis 120 (1), 104-105. Baird, P.A., 1983. Terns {Sterna spp.). pp. 204-234. In: P.A. Baird, and P.J. Gould (Eds.), The breeding biology and feeding ecology of marine birds in the Gulf of Alaska, US Fish and Wildlife Service, NOAA, OCSEAP Final Report, No. 45. Baker, S.C., and Barbraud, C , 2001. Foods of the South polar skua Catharacta maccormicki at Ardery Island, Windmill Islands, Antarctica. Polar Biology 24 (1), 59-61. 48 Ballance, L.T., and Pitman, R.L., 1999. Foraging ecology of tropical seabirds. pp. 2057-2071. In: N.J. Adams, and R.H. Slotow (Eds.), Proceedings of the 22nd International Ornithological Congress, Durban. Johannesburg: BirdLife South Africa. Barrera-Oro, E.R., and Casaux, R.J., 1996. Fish as diet of the Blue-eyed shag, Phalacrocorax atriceps bransfieldensis at Half-moon Island, South Shetland Islands. Cybium 20 (1), 37-45. Barrett, R.T., 2002. Atlantic puffin Fratercula arctica and Common guillemot Uria aalge chick diet and growth as indicators of fish stocks in the Barents Sea. Marine Ecology Progress Series 230, 275-287. Barrett, R.T., and Anker-Nilssen, T., 1997. Egg-laying, chick growth and food of Black guillemots Cepphus grylle in North Norway. Fauna Norvegica Series C 20, 69-79. Barrett, R.T., and Furness, R.W., 1990. The prey and diving depths of seabirds on Homey, North Norway after a decrease in the Barents Sea capelin stocks. Ornis Scandinavica 21 (3), 179-186. Barrett, R.T., and Krasnov, Y.V., 1996. Recent responses to changes in stocks of prey species by seabirds in the southern Barents Sea. ICES Journal of Marine Science 53 (4), 713-722. Barrett, R.T., and Rikardsen, F., 1992. Chick growth, fledging periods and adult mass loss of Atlantic puffins Fratercula arctica during years of prolonged food stress. Colonial Waterbirds 15(1), 24-32. Barrett, R.T., Anker-Nilssen, T., Gabrielsen, G.W., and Chapdelaine, G., 2002. Food consumption by seabirds in Norwegian waters. ICES Journal of Marine Science 59 (1), 43-47. Barrett, R.T., Anker-Nilssen, T., Rikardsen, F., Valde, K., Rov, N , and Vader, W., 1987. The food, growth and fledging success of Norwegian puffin chicks Fratercula arctica in 1980-1983. Ornis Scandinavica 18 (2), 73-83. Barrett, R.T., Bakken, V., and Krasnov, J.V., 1997. The diets of Common and Brunnich's guillemots Uria aalge and U. lomvia in the Barents Sea region. Polar Research 16 (2), 73-84. Beaman, M.A.S., 1978. The feeding and population ecology of the Great black-backed gull in northern Scotland. Ibis 120 (1), 126-127. Bedard, J., 1969. Feeding of the Least, Crested, and Parakeet auklets around St. Lawrence Island, Alaska. Canadian Journal of Zoology 47, 1025-1050. Bergin, A., 1997. Albatross and longlining - managing seabird bycatch. Marine Policy 21 (1), 63-72. 49 Beron, M.P., Coria, N.R., and Favero, M., 2002. Monitoreo de la dieta p ost-reproductiva del Pinguino Papua (Pygoscelis papua) en Isla Laurie (Orcadas del Sur, Antartida): periodo 1997-1999. Ornitologia Neotropical 13 (4), 413-422. Berrow, S.D., and Croxall, J.P., 1999. The diet of White-chinned petrels Procellaria aequinoctialis, Linnaeus 1758, in years of contrasting prey availability at South Georgia. Antarctic Science 11 (3), 283-292. Berruti, A., Underhill, L.G., Shelton, P.A., Moloney, C , and Crawford, R.J.M., 1993. Seasonal and interannual variation in the diet of two colonies of the Cape gannet (Morns capensis) between 1977-78 and 1989. Colonial Waterbirds 16 (2), 158-175. Bertram, D.F., 2001. Seabirds reflect changes in ocean climate, pp. 201-202. In: V. Alexander, A.S. Bychkov, P. Livingston, and S. McKinnell (Eds.), Impact of Climate Variability on Observation and Prediction of Ecosystem and Biodiversity Changes in the North Pacific. PICES Report. Vol. 18. Bevan, R.M., Butler, P.J., Woakes, A.J., and Boyd, I.L., 2002. The energetics of Gentoo penguins, Pygoscelis papua, during the breeding season. Functional Ecology 16 (2), 175-190. Bingham, M., 1995. Population status of penguin species in the Falkland Islands. Penguin Conservation 8 (1), 14-19. BirdLife International, 2004. Tracking ocean wanderers: the global distribution of albatrosses and petrels. Results from the Global Procellariiform Tracking Workshop, 1-5 September, 2003, Gordon's Bay, South Africa. BirdLife International, Cambridge, UK. 100 pp. Birkhead, T.R., 1976. Effects of sea conditions on rates at which guillemots feed chicks. British Birds 69, 490-492. Birkhead, T.R., and Nettleship, D.N., 1987. Ecological relationships between Common murres, Uria aalge, and Thick-billed murres, Uria lomvia, at the Gannet Islands, Labrador. III. Feeding ecology of the young. Canadian Journal of Zoology 65 (7), 1638-1649. Blaber, S.J.M., and Wassenberg, T.J., 1989. Feeding ecology of the piscivorous birds Phalacrocorax varius, P. melanoleucos and Sterna bergii in Moreton Bay, Australia: diets and dependence on trawler discards. Marine Ecology 101 (1), 1-10. Blaber, S J.M., Milton, D.A., Smith, G.C., and Farmer, M.J., 1995. Trawl discards in the diets of tropical seabirds of the northern Great Barrier Reef, Australia. Marine Ecology Progress Series 127,1-13. Blackwell, B.F., Krohn, W.B., and Allen, R.B., 1995. Foods of nestling Double-crested cormorants in Penobscot Bay, Maine, USA: temporal and spatial comparisons. Colonial Waterbirds 18 (2), 199-208. Blanchard, K.A., 1994. Culture and seabird conservation: the north shore of the Gulf of St. Lawrence, Canada, pp. 294-310. In: D.N. Nettleship, J. Burger, and M. Gochfeld (Eds.), 50 Seabirds on islands: threats, case studies and action plans. BirdLife International, Cambridge, UK. Blankley, W.O., 1981. Marine food of Kelp gulls, Lesser sheathbills and Imperial cormorants at Marion Island (subantarctic). Cormorant 9 (2), 77-84. Bocher, P., Cherel, Y., and Hobson, K.A., 2000. Complete trophic segregation between South Georgia and Common diving petrels during breeding at lies Kerguelen. Marine Ecology Progress Series 208, 249-264. Bocher, P., Cherel, Y., Labat, J.-P., Mayzaud, P., Razouls, S., and Jouventin, P., 2001. Amphipod-based food web: Themisto gaudichaudii caught in nets and by seabirds in Kerguelen waters, southern Indian Ocean. Marine Ecology Progress Series 223, 261-276. Boekelheide, R.J., 1 980. Arctic terns: breeding ecology and sea-ice relationships on an arctic barrier island. MSc. Thesis, University of California, Davis, California, USA. Bogliani, G., Fasola, M., Canova, L., and Saino, N., 1990. Food and foraging rhythm of a specialized Gull-billed tern population Gelochelidon nilotica. Ethology, Ecology and Evolution 2 (2), 175-181. Bosch, M., Oro, D., Cantos, F.J., and Zabala, M., 2000. Short-term effects of culling on the ecology and population dynamics of the Yellow-legged gull. Journal of Applied Ecology 37 (2), 369-385. Bost, C. A., Zorn, T., Le Maho, Y., and Duhamel, G., 2002. Feeding of diving predators and diel vertical migration of prey: King penguins' diet versus trawl sampling at Kerguelen Islands. Marine Ecology Progress Series 227, 51-61. Bourne, W.R.P., 1983. Birds, fish and offal in the North Sea. Marine Pollution Bulletin 14 (8), 294-296. Bowen, W.D., Lawson, J., and Beck, B., 1993. Seasonal and geographic variation in the species composition and size of prey consumed by grey seals (Halichoerus grypus) on the Scotian Shelf. Canadian Journal of Fisheries and Aquatic Sciences 50 (8), 1768-1778. Bradstreet, M.S.W., 1982. Pelagic feeding ecology of Dovekies (Alle alle) in Lancaster Sound and western Baffin Bay. Arctic 35 (1), 126-140. Braune, B.M., and Gaskin, D.E., 1982. Feeding ecology of nonbreeding populations of larids off Deer Island, New Brunswick. Auk 99 (1), 67-76. Briggs, K.T, and Chu, E.W., 1986. Sooty shearwaters off California: distribution, abundance and habitat use. Condor 88 (3), 355-364. Briggs, K.T., and Chu, E.W., 1987. Trophic relationships and food requirements of California seabirds: updating models of trophic impact, pp. 279-304. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. 51 Brooke, M. de L., 2004. The food consumption of the world's seabirds. Biology Letters 271 (supplement 4), S246-S248. Brothers, N.P., 1985. Breeding biology, diet and morphometries of the King shag, Phalacrocorax albiventer purpurascens, at Macquarie Island. Australian Wildlife Research 12 (1), 81-94. Brown, C.R., Klages, N.T., and Adams, N.J., 1990. Short and medium-term variation in the diets of penguins at Marion Island. South African Journal of Antarctic Research 20 (1), 13-20. Brown, R.G.B., and Nettleship, D.N., 1984. Capelin and seabirds in the northwest Atlantic, pp. 184-194. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Brown, R.G.B., Barker, S.P., Gaskin, D.E., and Sandeman, M.R., 1981. The foods of Great and Sooty shearwaters Puffinus gravis and P. griseus in Eastern Canadian Waters. Ibis 123 (1), 19-30. Bryant, R., Jones, I.L., and Hipmer, J.M., 1999. Responses to changes in prey availability by Common murres and Thick-billed murres at the Gannet Islands, Labrador. Canadian Journal of Zoology 77 (8), 1278-1287. Bunce, A.,. 2001. Prey consumption of Australasian gannets (Morus serrator) breeding in Port Phillip Bay, southeast Australia, and potential overlap with commercial fisheries. ICES Journal of Marine Science 58 (4), 904-915. Burger, A.E., and Cooper, J., 1984. The effects of fisheries on seabirds in South Africa and Namibia, pp. 150-160. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Burger, A.E., and Powell, D.W., 1990. Diving depths and diet of Cassin's auklet at Reef Island, British Columbia. Canadian Journal of Zoology 68 (7), 1572-1577. Burger, A .E., W ilson, R .P., Garnier, D., and W ilson, M .-P.T., 1993. D iving d epths, diet, and underwater foraging of Rhinoceros auklets in British Columbia. Canadian Journal of Zoology 71 (12), 2528-2540. Burger, J., and Gochfeld, M., 1994. Predation and effects of humans on island-nesting seabirds. pp. 39-67. In: D.N. Nettleship, J. Burger, and M. Gochfeld (Eds.), Seabirds on Islands: Threats, Case Studies and Action Plans. Birdlife Conservation Series no. 1. Birdlife International, Cambridge, UK. Bustnes, J.O., Asheim, M., Bjorn, T.H., Gabrielsen, H., and Systad, G.H., 2000. The diet of Steller's eiders wintering in Varangerfjord, Northern Norway. Wilson Bulletin 112 (1), 8-13. 52 Byrd, G.V., Williams, J.C., Artukhin, Y.B., and Vyatkin, P.S., 1997. Trends in populations of Red-legged kittiwake Rissa brevirostris, a Bering Sea endemic. Bird Conservation International 7,167-180. Cairns, D.K., 1987. Seabirds as indicators of marine food supplies. Biological Oceanography 5 (4), 261-271. Cairns, D.K., 1992. Bridging the gap between ornithology and fisheries science: use of seabird data in stock assessment models. Condor 94 (4), 811-824. Cairns, D.K., Chapdelaine, G., and Montevecchi, W.A., 1991. Prey exploitation by seabirds in the Gulf of St. Lawrence. Canadian Special Publication of Fisheries and Aquatic Sciences 113, 277-291. Calixto-Albarran, I., and Osorno, J.-L., 2000. The diet of the Magnificent frigatebird during chick rearing. Condor 102 (3), 569-576. Camphuysen, K. (C.J.), 1995. Sooty and Manx shearwaters in the southern North Sea: an offshore perspective. Limosa 68, 1-9. Carscadden, J.E., Frank, K.T., and Leggett, W.C., 2001. Ecosystem changes and the effects on capelin (Mallotus villosus), a major forage species. Canadian Journal of Fisheries and Aquatic Sciences 58 (1), 73-85. Carscadden, J.E., Montevecchi, W.A., Davoren, G.K., and Nakashima, B.S., 2002. Trophic relationships among capelin (Mallotus villosus) and seabirds in a changing ecosystem. ICES Journal of Marine Science 59 (5), 1027-1033. Casaux, R.J., and Barrera-Oro, E.R., 1993. The diet of the Blue-eyed shag, Phalacrocorax atriceps bransfieldensis feeding in the Bransfield Strait. Antarctic Science 5 (4), 335-338. Casaux, R., and Ramon, A., 2002. The diet of the South Georgia shag Phalacrocorax georgianus at South Orkney Islands in five consecutive years. Polar Biology 25 (8), 557-561. Casaux, R., Baroni, A., and Barrera-Oro, E., 2002. Fish in the diet of the Antarctic shag at four colonies on the Danco Coast, Antarctic Peninsula. Antarctic Science 14 (1), 32-36. Casaux, R., Coria, N., and Barrera-Oro, E., 1997. Fish in the diet of the Antarctic shag Phalacrocorax bransfieldensis at Laurie Island, South Orkney Islands. Polar Biology 18 (3), 219-222. Casaux, R., Favero, M., Silva, P., and Baroni, A., 2001. Sex differences in diving depths and diet of Antarctic shags at the South Shetland Islands. Journal of Field Ornithology 72 (1), 22-29. Chardine, J., and Mendenhall, V., 1998. Human disturbance at Arctic seabird colonies. CAFF Technical Report No. 2,27 pp. 53 Chaurand, T., and Weimerskirch, H., 1994. The regular alternation of short and long foraging trips in the Blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a pelagic seabird. Journal of Animal Ecology 63 (2), 275-282. Cheng, Z.-Q., 1990. Behavior of nesting Black-tailed gulls (Larus crassirostris). Colonial Waterbirds 13 (2), 103-107. Cherel, Y., and Ridoux, V., 1992. Prey species and nutritive value of food fed during summer to King penguin Aptenodytes patagonica chicks at Possession Island, Crozet Archipelago. Ibis 134 (2), 118-127. Cherel, Y., and Weimerskirch, H., 1995. Seabirds as indicators of marine resources: Black-browed albatrosses feeding on ommastrephid squids in Kerguelen waters. Marine Ecology Progress Series 129, 295-300. Cherel, Y., and Weimerskirch, H., 1996. Interactions between longline vessels and seabirds in Kerguelen waters and a method to reduce seabird mortality. Biological Conservation 75 (1), 63-70. Cherel, Y., Bocher, P., De Broyer, C , and Hobson, K.A., 2002c. Food and feeding ecology of the sympatric Thin-billed Pachyptila belcheri and Antarctic P. desolata prions at lies Kerguelen, Southern Indian Ocean. Marine Ecology Progress Series 228, 263-281. Cherel, Y., Bocher, P., Trouve, C , and Weimerskirch, H., 2002b. Diet and feeding ecology of Blue petrels Halobaena caerulea at lies Kerguelen, Southern Indian Ocean. Marine Ecology Progress Series 228, 283-299. Cherel, Y., Putz, K., and Hobson, K.A., 2002d. Summer diet of King penguins {Aptenodytes patagonicus) at the Falkland Islands, southern Atlantic Ocean. Polar Biology 25 (12), 898-906. Cherel, Y., Weimerskirch, H., and Trouve, C , 2000. Food and feeding ecology of the neritic-slope forager Black-browed albatross and its relationships with commercial fisheries in Kerguelen waters. Marine Ecology Progress Series 207,183-199. Cherel, Y., Weimerskirch, H., and Trouve, C , 2002a. Dietary evidence for spatial foraging segregation in sympatric albatrosses (Diomedea spp.) rearing chicks at lies Nuageuses, Kerguelen. Marine Biology 141 (6), 1117-1129. Chiaradia, A., Costalunga, A., and Kerry, K., 2003. The diet of Little penguins (Eudyptula minor) at Phillip Island, Victoria, in the absence of a major prey - pilchard (Sardinops sagax). Emu 103 (1), 43-48. Chiaradia, A., Dann, P., Jessop, R., and Collins, P., 2002. The diet of Crested tern (Sterna bergii) chicks on Phillip Island, Victoria, Australia. Emu 102 (4), 367-371. Christensen, V., and Pauly, D., 1992. The ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61 (3-4), 169-185. 54 Chown, S.L., Gaston, K.J., and Williams, P.H., 1998. Global patterns in species richness of pelagic seabirds: the Procellariiformes. Ecography 21 (4), 342-350. Chu, E.W., 1984. Sooty shearwaters off California: diet and energy gain. pp. 64-71. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Clarke, J., Manly, B., Kerry, K., Gardner, H., Franchi, E., Corsolini, S., and Focardi, S., 1998. Sex differences in Adelie penguin foraging strategies. Polar Biology 20 (4), 248-258. Clausen, A., and Piitz, K., 2003. Winter diet and foraging range of Gentoo penguins (Pygoscelis papua) from Kidney Cove, Falkland Islands. Polar Biology 26 (1), 32-40. Clua, E., and Grosvalet, F., 2001. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquatic Living Resources 14 (1), 11-18. Cooper, J., 1986. Diving patterns of cormorants Phalacrocoracidae. Ibis 128 (4), 562-570. Cooper, J., and Klages, N .T.W., 1995. The diets and dietary segregation of Sooty a Ibatrosses (Phoebetria spp.) at subantarctic Marion Island. Antarctic Science 7 (1), 15-23. Cooper, J., and Woehler, E.J., 1994. Consumption of Antarctic krill (Euphausia superba) by seabirds during summer in the Prydz Bay region, Antarctica, pp. 247-260. In: S.Z. El-Sayed (Ed.), Southern Ocean Ecology: the BIOMASS perspective. Cambridge University Press, Cambridge, UK. Cooper, J., Fourie, A., and Klages, N.T.W., 1992b. The diet of the White-chinned petrel Procellaria aequinoctialis at Sub-antarctic Marion Island. Marine Ornithology 20 (1), 17-24. Cooper, J., Henley, S.R., and Klages, N.T.W., 1992a. The diet of the Wandering albatross Diomedea exulans at Subantarctic Marion Island. Polar Biology 12 (5), 477-484. Cooper, W., 1992. Rockhopper penguins at the Auckland Islands. Notornis 39 (1), 66-67. Copello, S., and Favero, M . , 2001. Foraging ecology of Olrog's gull Larus atlanticus in Mar Chiquita Lagoon (Buenos Aires, Argentina): are there age-related differences? Bird Conservation International 11 (3), 175-188. Coria, N., Libertelli, M., Casaux, R., and Darrieu, C , 2000. Inter-annual variation in the autumn diet of the Gentoo penguin at Laurie Island, Antarctica. Waterbirds 23 (3), 511-517. Coria, N.R., Soave, G.E., and Montalti, D., 1997. Diet of Cape petrel Daption capense during the post-hatching period at Laurie Island, South Orkney Islands, Antarctica. Polar Biology 18 (4), 236-239. 55 Coria, N.R., Spairani, H., Vivequin, S., and Fontana, R., 1995. Diet of Adelie penguins Pygoscelis adeliae during the post-hatching period at Esperanza Bay, Antarctica, 1987/88. Polar Biology 15 (4), 415-418. Costa, L., 1984. Alimentation de la pagaza piconegra (Gelochelidon nilotica) en las marismas del Guadalquivir. Donana, Acta Vertebrata 11 (2), 185-195. Cottam, C , 1939. Food habits of North American diving ducks. Technical Bulletin, Vol. 643. US Department of Agriculture, Washington, DC, USA. Coulson, J.C., 2002. Colonial breeding in seabirds. pp. 87-113. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA. Cousins, K.L., Dalzell, P., and Gilman, E., 2000. Managing pelagic longline-albatross interactions in the North Pacific Ocean. Marine Ornithology 28 (2), 159-174. Cowx, I.G., (Ed.), 2003. Interactions between fish and birds: Implications for management. Blackwell Science Ltd. Oxford, UK. 376 pp. Cramp, S., (Ed.), 1985. Birds of the Western Palearctic. Vol. 1. Oxford University Press, Oxford, UK. 960 pp. Crawford, R.J.M., 1998. Responses of African penguins to regime changes of sardine and anchovy in the Benguela system. South African Journal of Marine Science 19, 355-364. Crawford, R.J.M., and Dyer, B.M., 1995. Responses by four seabird species to a fluctuating availability of Cape Anchovy Engraulis capensis off South Africa. Ibis 137 (3), 329-339. Crawford, R.J.M., and Jahncke, J., 1999. Comparison of trends in abundance of guano-producing seabirds in Peru and Southern Africa. South African Journal of Marine Science 21, 145-156. Crawford, R.J.M., Cruickshank, R.A., Shelton, P.A., and Kruger, I., 1985. Partitioning of a goby resource amongst four avian predators and evidence for altered trophic flow in the pelagic community of an intense, perennial upwelling system. South African Journal of Marine Science 3, 215-228. Crawford, R.J.M., Underbill, L.G., Raubenheimer, C M . , Dyer, B.M., and Martin, J. 1992. Top predators in the Benguela ecosystem - implications of their trophic position. South African Journal of Marine Science 12, 675-687. Crawford, R.J.M., Underbill, L.G., Shannon, L.V., Lluch-Belda, D., Siegfried, W.R., and Villacastin-Herero, C.A., 1991. An empirical investigation of trans-oceanic linkages between areas of high abundance of sardine, pp. 319-332. In: T. Kawasaki, S. Tanaka, Y. Toba, and A. Taniguchi (Eds.), Long-term variability of pelagic fish populations and their environment. Pergamon Press, Tokyo, Japan. 56 Croll, D.A., and Tershy, B.R., 1998. Penguins, fur seals, and fishing: prey requirements and potential competition in the South Shetland Islands, Antarctica. Polar Biology 19 (6), 365-374. Croxall, J.P., 1991. Seabirds. Status and Conservation: A Supplement. ICBP Technical Publication No. 11, Cambridge, UK. 308 pp. Croxall, J.P., and Furse, J.R., 1980. Food of Chinstrap penguins Pygoscelis antarctica and Macaroni penguins Eudyptes chrysolophus at Elephant Island Group, South Shetland Islands. Ibis 122 (2), 237-245 Croxall, J.P., and Prince, P.A., 1980. The food of Gentoo penguins Pygoscelis papua and Macaroni penguins Eudyptes chrysolophus at South Georgia. Ibis 122 (2), 245-253. Croxall, J.P., and Prince, P.A., 1981. A preliminary assessment of the impact of seabirds on marine resources at South Georgia. Colloque sur les Ecosystemes Subantarctiques 51, 501-509. Croxall, J.P., and Prince, P.A., 1987. Seabirds as predators on marine resources, especially krill, at South Georgia, pp. 347-368. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. Croxall, J.P., and Prince, P.A., 1996. Potential interactions between Wandering albatrosses and longline fisheries for Patagonian toothfish at South Georgia. CCAMLR Science 3, 101-110. Croxall, J.P., and Wood, A.G., 2002. The importance of the Patagonian Shelf for top predator species breeding at South Georgia. Aquatic Conservation: Marine and Freshwater Ecosystems 12 (1), 101-118. Croxall, J.P., Davis, R.W., and O'Connell, M.J., 1988b. Diving patterns in relation to diet of Gentoo and Macaroni penguins at South Georgia. Condor 90 (1), 157-167. Croxall, J.P., Evans, P.G.H., and Schreiber, R.W., (Eds.), 1984. Status and Conservation of the World's Seabirds. ICBP Technical Publication No. 2, Cambridge, UK. 778 pp. Croxall, J.P., Hall, A.J., Hill, H.J., North, A.W., and Rodhouse, P.G., 1995. The food and feeding ecology of the White-chinned petrel Procellaria aequinoctialis at South Georgia. Journal of Zoology London 237,133-150. Croxall, J.P., Prince, P. A., Baird, A., and Ward, P., 1985. The diet of the Southern Rockhopper penguin Eudyptes chrysocome chrysocome at Beauchene Island, Falkland Islands. Journal of Zoology London 206, 485-496. Croxall, J.P., Prince, P.A., Rothery, P., and Wood, A.G., 1988a. Population changes and Antarctic seabird populations. Science 297 (5586), 1510-1514. Csirke, J., 1987. The Patagonian fishery resources and the offshore fisheries in the Southwest Atlantic. FAO Fisheries Technical Paper 286. 75 pp. 57 Cullen, J.M., Montague, T.L., and Hull, C , 1992. Food of Little penguins Eudyptula minor in Victoria: comparison of three localities between 1985 and 1988. Emu 91,318-341. Cummins, K.W., and Wuycheck, J.C., 1971. Caloric equivalents for investigations in ecological energetics. Internationale Vereinigung fur Theoretische und Angewandte Limnologie, No. 18, E. Schweizerbart Science Publishers, Stuttgart, Germany. 158 pp. Cuthbert, R., Hilton, G., Ryan, P., and Tuck, G.N., 2005. At-sea distribution of breeding Tristan albatross Diomedea dabbenena and potential interactions with pelagic longline fishing in the South Atlantic Ocean. Biological Conservation 121 (3), 345-355. Cuthbert, R., Ryan, P.G., Cooper, J., and Hilton, G., 2003. Demography and population trends of the Atlantic yellow-nosed albatross. Condor 105 (3), 439-452. Davis, N.D., Myers, K.W., and Ishida, Y., 1998. Caloric value of high-seas salmon prey organisms and simulated salmon ocean growth and prey consumption. North Pacific Anadromous Fish Commission Bulletin 1, 146-162. Davis, R.W., Croxall, J.P., and O'Connell, M.J., 1989. The reproductive energetics of Gentoo (Pygoscelis papua) and M acaroni (Eudyptes chrysolophus) penguins at S outh Georgia. Journal of Animal Ecology 58 (1), 59-74. Davoren, G.K., 2000. Variability in foraging in response to changing prey distributions in Rhinoceros auklets. Marine Ecology Progress Series 198, 283-291. Davoren, G.K., and Montevecchi, W.A., 2003. Signals from seabirds indicate changing biology of capelin stocks. Marine Ecology Progress Series 258, 253-261. Day, R.H., Kuletz, D.J., and Nigro, D.A., 1999. Kittlitz's murrelet (Brachyramphus brevirostris). In.A.Poole, and G. Gill (Eds.), The Birds o f North America. No. 435. The Birds of North America, Inc., Philadelphia, PA, USA. Day, R.H., Stenhouse, I.J., and Gilchrist, H.G., 2001. Sabine's gull (Xema sabini). In: A. Poole, and G. Gill (Eds.), The Birds of North America. Vol. 593. The Birds of North America, Inc., Philadelphia, PA, USA. de Korte, J., and Wattel, J., 1988. Food and breeding success of the Long-tailed skua at Scoresby Sund, Northeast Greenland. Ardea 76 (1), 27-41. Decker, M.B., Hunt, G.L. Jr, and Byrd, G.V. Jr, 1995. The relationships among sea-surface temperature, the abundance of juvenile walleye pollock (Theragra chalcogramma), and the reproductive performance and diets of seabirds at the Pribilof Islands, southeastern Bering Sea. In: R.J. Beamish (Ed.), Climate change and northern fish populations. Canadian Special Publication of Fisheries and Aquatic Sciences 121, 425-437. DeGange, A.R., and Sanger, G.A., 1987. Marine birds, pp. 479-524. In: D.W. Hood, and S.T. Zimmerman (Eds.), The Gulf of Alaska. US Department of Commerce, Springfield, VA, USA. 58 Denlinger, L., and Wohl, K., (Eds.), 2001. Seabird harvest regimes in the Circumpolar Nations. CAFF Technical Report No. 9, 52 pp. Diamond, A.W., 1974. The Red-footed booby on Aldabra Atoll, Indian Ocean. Ardea 62 (3-4), 196-218. Diamond, A.W., 1975. Biology and behaviour of frigatebirds Fregata spp. on Aldabra Atoll. Ibis 117 (3), 302-323. Diamond, A.W., 1983. Feeding overlap in some tropical and temperate seabird communities. Studies in\ Avian Biology 8, 24-46 Divoky, G.J., 1984. The pelagic and nearshore birds of the Alaskan Beaufort Sea: biomass and trophies, pp. 417-437. In: P.W. Barnes, D.M. Scheil, and E. Reimnitz (Eds.), The Alaskan Beaufort Sea: ecosystems and environments. Academic Press, Inc., Orlando, FL, USA. Dorward, D.F., 1962. Comparative biology of the White booby and the Brown booby Sula spp. at Ascension. Ibis 103, 174-219. Dorward, D.F., 1963. The Fairy tern Gygis alba on Ascension Island. Ibis 103, 365-378. Duffy, D.C., and Schneider, D.C., 1994. Seabird-fishery interactions: a manager's guide, pp. 26-38. In: D.N. Nettleship, J. Burger, and M. Gochfeld (Eds.), Seabirds on islands. Birdlife Conservation Series no. 1. Birdlife International, Cambridge, UK. Duhamel, G., Koubbi, P., and Ravier, C , 2000. Day and night mesopelagic fish assemblages off the Kerguelen Islands (Southern Ocean). Polar Biology 23 (2), 106-112. Dunlop, J.N., 1997. Foraging range, marine habitat and diet of Bridled terns breeding in western Australia. Corella 21 (3), 77-82. Dunn, E.H., 1975. Caloric intake of nesting Double-crested cormorants. Auk 92 (3), 553-565. Dunnet, G.M., Furness, R.W., Tasker, M.L., and Becker, P.H., 1990. Seabird ecology in the North Sea. Netherlands Journal of Sea Research 26 (2-4), 387-425. Dunning, J.B., 1993. CRC handbook of avian body masses. CRC Press, Florida, USA. 371 pp. Ealey, E.H.M., 1954a. Ecological notes on the birds of Heard Island. Emu 54, 91-112. Ealey, E.H.M., 1954b. Analysis of stomach contents of some Heard Island birds. Emu 54, 204-210. Ellis, H.I., and Gabrielsen, G.W., 2002. Energetics of free-ranging seabirds. pp. 359-407. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA. 59 Emison, W.B., 1968. Feeding preferences of the Adelie penguin at Cape Crozier, Ross Island, pp. 191-212. In: O.L. Jr Austin (Ed.), Antarctic Bird Studies. Antarctic Research Series, American Geophysical Union, Washington DC, USA Endo, Y., Asari, H., Watanuki, Y., Kato, A., Kuroki, M., and Nishikawa, J., 2002. Biological characteristics of euphausiids preyed upon by Adelie penguins in relation to sea-ice conditions in Lutzow-Holm Bay, Antarctica. Polar Biology 25 (12), 730-738. Erikstad, K.E., 1990. Winter diets of four seabird species in the Barents Sea after a crash in the capelin stock. Polar Biology 10, 619-627. Erwin, R.M., Eyler, T.B., Hatfield, J.S., and McGary, S., 1998. Diet of nestling Gull-billed terns in coastal Virginia. Colonial Waterbirds 21 (3), 323-327. Espitalier-Noel, G., Adams, N.J., and Klages, N.T., 1988. Diet of the Imperial cormorant Phalacrocorax atriceps at sub-Antarctic Marion Island. Emu 88, 43-46. Fauchald, P., Erikstad, K.E., and Skarsfjord, H., 2000. Scale-dependent predator-prey interactions: the hierarchical spatial distribution of seabirds and prey. Ecology 81 (3), 773-783. Favero, M., and Silva, M.P., 1998. How important are pelagic preys for the Kelp gull during chick-rearing at the South Shetland Islands? Polar Biology 19 (1), 32-36. Favero, M., Bo, M.S., Silva, M.P., and Garcia-Mata, C , 2000. Food and feeding biology of the South American tern during the nonbreeding season. Waterbirds 23 (1), 125-129. Favero, M . , Casaux, R., B arrera-Oro, E . , and Coria, N. , 1 998. The diet o f the Antarctic shag during summer at Nelson Island, Antarctica. Condor 100 (1), 112-118. Ferretti, V., Soave, G.E., Casaux, R., and Coria, N.R., 2001. Diet of the Snow petrel Pagodroma nivea at Laurie Island, Antarctica, during the 1997/98 breeding season. Marine Ornithology 29 (2), 71-73. Fischer, H.I., 1975. Longevity of the Laysan albatross, Diomedea immutabilis. Bird Banding 46 (1), 1-6. Fischer, J.B., and Griffin, C.R., 2000. Feeding behavior and food habits of wintering Harlequin ducks at Shemya Island, Alaska. Wilson Bulletin 112 (3), 318-325. Forero, M.G., and Hobson, K.A., 2003. Using stable isotopes of nitrogen and carbon to study seabird ecology: applications in the Mediterranean seabird community. Scientia Marina 67 (supplement 2), 23-32. Foy, R.J., and Norcross, B.L., 1999. Spatial and temporal variability in the diet of juvenile Pacific herring (Clupea pallasi) in Prince William Sound, Alaska. Canadian Journal of Zoology 11 (5), 697-706. Fraser, M.W., 1984. Foods of Subantarctic skuas on Inaccessible Island. Ostrich 55 (4), 192-195. 60 Freeman, A.N.D., 1998. Diet of Westland petrels Procellaria westlandica: the importance of fisheries waste during chick-rearing. Emu 98, 36-43. Freeman, A.N.D., and Wilson, K.-J., 2002. Westland petrels and hoki fishery waste: opportunistic use of a readily available resource? Notornis 49 (3), 139-144. Furness, R.W., 1978. Energy requirements of seabird communities: a bioenergetics model. Journal of Animal Ecology Al (1), 39-53. Furness, R.W., 1982. Competition between fisheries and seabird communities. Advances in Marine Biology 20, 225-307. Furness, R.W., 2002. Management implications of interactions between fisheries and sandeel-dependent seabirds in the North Sea. ICES Journal of Marine Science 59 (2), 261-269. Furness, R.W., and Ainley, D.G., 1984. Threats to seabird populations presented by commercial fisheries, pp. 701-708. In: J.P. Croxall, P.G.H. Evans, and R.W. Schreiber (Eds.), Status and Conservation of the World's Seabirds. ICBP Technical Publication, No. 2. Cambridge, UK. Furness, R.W., and Birkhead, T.R., 1984. Seabird colony distributions suggest competition for food supply during the breeding season. Nature 311 (5987), 655-656. Furness, R.W., and Cooper, J., 1982. Interactions between breeding seabird and pelagic fish populations in the Southern Benguela Region. Marine Ecology Progress Series 8, 243-250. Furness, R.W., and Todd, C M . , 1984. Diets and feeding of fulmars Fulmarus glacialis during the breeding season: a comparison between St Kilda and Shetland colonies. Ibis 126 (3), 379-387. Furness, R.W., Hudson, A.V., and Ensor, K. , 1 988. Interactions between scavenging seabirds and commercial fisheries around the British Isles, pp. 240-268. In: J., Burger (Ed.), Seabirds and other marine vertebrates: Competition, predation and other interactions. Columbia University Press, Cambridge, UK. Gabrielsen, G.W., 1994. Energy expenditure in arctic seabirds. PhD Thesis. Department of Arctic Biology, University of Tromse, Norway. 166 pp. Gabrielson, I.N., and Jewett, S.G., 1940. Birds of Oregon. Oregon State College, Corvallis, OR, USA. 650 pp. Gales, R., and Green, B., 1990. The annual energetics cycle of Little penguins (Eudyptula minor). Ecology 71 (6), 2297-2312. Gales, N.J., Klages, N.T.W., Williams, R., and Woehler, E.J., 1990. The diet of the Emperor penguin, Aptenodytes forsteri, in Amanda Bay, Princess Elizabeth Land, Antarctica. Antarctic Science 2 (1), 23-28. 61 Gandini, P.A., Frere, E., Pettovello, A.D., and Cedrola, P.V., 1999. Interaction between Magellanic penguins and shrimp fisheries in Patagonia, Argentina. Condor 101 (4), 783-789. Garcia-Godos, I., Goya, E., and Jahncke, J., 2002. The diet of Markham's storm petrel Oceanodroma markhami on the Central Coast of Peru. Marine Ornithology 30 (2), 77-83. Garthe, S., 1997. Influence of hydrography, fishing activity, and colony location on summer seabird distribution in the south-eastern North Sea. ICES Journal of Marine Science 54 (4), 566-577. Garthe, S., Camphuysen, K. (C.J.), and Furness, R.W., 1996. Amounts of discards by commercial fisheries and their significance as food for seabirds in the North Sea. Marine Ecology Progress Series 136 (1-3), 1-11 Gaston, A.J., 1985. The diet of Thick-billed murre chicks in the Eastern Canadian Arctic. Auk 102(4), 727-734. Gaston, A.J., Carter, H.R., and Sealy, S.G., 1993. Winter ecology and diet of Ancient murrelets off Victoria, British Columbia. Canadian Journal of Zoology 71 (1), 64-70. Gibbs, H.L., Latta, S.C., and Gibbs, J.P., 1987. Effects of the 1982-83 El Nino event on Blue-footed and Masked booby populations on Isla Daphne Major, Galapagos. Condor 89 (2), 440-442. Gjerke, K.M., and Breide, C , 2003. Towards a strategy for High Seas Marine Protected Areas. Proceedings of thelUCN, WCPA and WWF Experts Workshop on High Seas Marine Protected Areas, 15-17 January 2003, Malaga, Spain. IUCN, Gland, Switzerland. 80pp. Goldsworthy, S.D., He, X., Tuck, G.N., Lewis, M., and Williams, R., 2001. Trophic interactions between the Patagonian toothfish, its fishery, and seals and seabirds around Macquarie Island. Marine Ecology Progress Series 218, 283-302. Golet, G.H., Irons, D.B., and Costa, D.P., 2000. Energy costs of chick rearing in Black-legged kittiwakes (Rissa tridactyla). Canadian Journal of Zoology 78 (6), 982-991. Golubova, E.Yu., 2002. The state of food resources and reproductive success of Tufted and Horned puffins in the Northern Sea of Okhotsk. Russian Journal of Ecology 33 (5), 356-365. Gonzalez-Solis, J., Oro, D., Jover, L., Ruiz, X., and Pedrocchi, C , 1997b. Trophic niche width and overlap of two sympatric gulls in the southwestern Mediterranean. Oecologia 112 (1), 75-80. Gonzalez-Solis, J., Oro, D., Pedrocchi, V., Jover, L., and Ruiz, X., 1997a. Bias associated with diet samples in Audouin's gulls. Condor 99 (3), 773-779. 62 Gotmark, F., 1984. Food and foraging in five European Larus gulls in the breeding season: a comparative review. Ornis Fennica 61 (1), 9-18. Goudie, R.I., and Ankney, C.D., 1986. Body size, activity budgets, and diets of sea ducks wintering in Newfoundland. Ecology 67 (6), 1475-1482. Gould, P., Ostrom, P., and Walker, W., 1997. Food of Flesh-footed shearwaters Puffinns carneipes associated with high-seas driftnets in the Central North Pacific Ocean. Emu 97 (2), 168-173. Gould, P., Ostrom, P., and Walker, W., 1998. Foods of Buller's shearwaters (Puffinus bulleri) associated with driffnet fisheries in the central North Pacific Ocean. Notornis 45 (2), 81-93. Gould, P., Ostrom, P., and Walker, W., 2000. Foods, trophic relationships, and migration of Sooty and Short-tailed shearwaters associated with squid and large-mesh driftnet fisheries in the North Pacific Ocean. Waterbirds 23 (2), 165-186. Goutner, V., 1986. Distribution, status and conservation of the Mediterranean gull (Larus melanocephalus) in Greece, pp. 431-447. In: MEDMARAVIS and X. Monbailliu (Eds.), Mediterranean Marine Avifauana. Population Studies and Conservation. NATO ASI Series, Vol. G12, Springer Verlag, Berlin, Germany. Goutner, V., Papakostas, G., and Economidis, P.S., 1997. Diet and growth of Great cormorant (Phalacrocorax carbo) nestlings in a Mediterranean estuarine environment (Axios Delta, Greece). Israel Journal of Zoology 43 (2), 133-148. Granadeiro, J.P., Monteiro, L.R., Silva, M.G., and Furness, R.W., 2002. Diet of Common terns in the Azores, Northeast Atlantic. Waterbirds 25 (2), 149-155. Green, K., 1986. Food of the Cape pigeon (Daption capense) from Princess Elizabeth Land, East Antarctica. Notornis 33 (3), 151-154. Green, K., and Johnstone, G.W., 1988. Changes in the diet of Adelie penguins breeding in East Antarctica. Australian Wildlife Research 15 (2), 103-110. Green, K., Slip, D.J., and Moore, G.J., 1998a. The take of fish species by seabirds and marine mammals in the Australian Fisheries Zone around Heard Island: the potential for competition with a commercial fishery. Polar Biology 20 (4), 273-280. Green, K., Williams, R. and Green, M.G., 1998b. Foraging ecology and diving behaviour of Macaroni penguins Eudyptes chrysolophus at Heard Island. Marine Ornithology 26 (1-2), 27-34. Greenway, J.C., 1967. Extinct and Vanishing Birds of the World. Dover Publications, New York, USA. 520 pp. 63 Gremillet, D., 1997. Catch per unit effort, foraging efficiency, and parental investment in breeding Great cormorants (Phalacrocorax carbo carbo). ICES Journal of Marine Science 54 (4), 635-644. Gremillet, D., Argentin, G., Schutle, B., and Culik, B.M., 1998. Flexible foraging techniques in breeding cormorants Phalacrocorax carbo and Shags Phalacrocorax aristotelis: benthic or pelagic feeding? Ibis 140 (1), 113-119. Gremillet, D., Wilson, R.P., Wanless, S., and Chater, T., 2000. Black-browed albatross, international fisheries and the Patagonian Shelf. Marine Ecology Progress Series 195, 269-280. Griffiths, A.M., 1983. Factors affecting the distribution of the Snow petrel (Pagodroma nivea) and the Antarctic petrel (Thalassoica antarctica). Ardea 71 (2), 145-150. Guillen, V., 1990. Alimentation del pelicano o alcatraz (Pelecanus thagus) en la isla Macabi. Boletin de Lima 67, 85-88. Guillet, A., and Furness, R.W., 1985. Energy requirements of a Great white pelican (Pelecanus onocrotalus) population and its impact on fish stocks. Journal of Zoology London 205, 573-583. Guinet, C , Cherel, Y., Ridoux, V., and Jouventin, P., 1996. Consumption of marine resources by seabirds and seals in Crozet and Kerguelen waters: changes in relation to consumer biomass 1962-85. Antarctic Science 8 (1), 23-30. Guzman, J.R., and Myres, M.T., 1983. The occurrence of shearwaters (Puffinus spp.) off the west coast of Canada. Canadian Journal of Zoology 61 (9), 2064-2077. Hall, C.S., Kress, S.W., and Griffin, C.R., 2000. Composition, spatial and temporal variation of Common and Arctic tern chick diets in the Gulf of Maine. Waterbirds 23 (3), 430-439. Halliday, T., 1978. Vanishing birds: their natural history and conservation. Holt, Rinehart, and Winston, New York, USA. 296 pp. Hamer, K.C., Furness, R.W., and Caldow, R.W.G., 1991. The effects of changes in food availability on the breeding ecology of Great skuas Catharacta skua in Shetland. Journal of Zoology London 223,175-188. Hamer, K.C., Thompson, D.R., Rundle, A.J., Lewis, S.A., and Stewart, F.M., 1994. Mesopelagic fish eaten by Yellow-legged herring gulls Larus argentatus atlantis in the Azores. Seabird 16, 30-33. Harper, P.C., 1983. Biology of the Buller's shearwater (Puffinus bulleri) at the Poor Knights Islands, New Zealand. Notornis 30,299-318. Harper, P.C., Croxall, J.P., and Cooper, J., 1985. A guide to foraging methods used by marine birds in Antarctic and subantarctic seas. BIOMASS Handbook 24, 1-22. 64 Harris, J.G.K., and Last, P.R., 1982. Diet of juvenile Crested terns, Sterna bergii, on Lachlan Island. Tasmanian Naturalist 69, 2-3. Harris, M.P., 1970. Breeding ecology of the Swallow-tailed gull, Creagrus furcatus. Auk 87 (2), 215-243. Harris, M.P., and Riddiford, N.J., 1989. The food of some young seabirds on Fair Isle in 1986-88. Scottish Birds 15,119-125. Harris, M.P., and Wanless, S., 1995. The food consumption of young Common murres (Uria aalge) in the wild. Colonial Waterbirds 18 (2), 209-213. Harris, M.P., and Wanless, S., 1997. Breeding success, diet, and brood neglect in the kittiwake (Rissa tridactyla) over an 11-year period. ICES Journal of Marine Science 54 (4), 615-623. Harrison, C.S., Hida, T.S., and Seki, M.P., 1984. The diet of the Brown booby Sula leucogaster and Masked booby Sula dactylatra on Rose Atoll, Samoa. Ibis 126 (4), 588-590. Harrison, N.M., 1990. Diets in relation to prey resources. Gelatinous zooplankton in the diet of the Parakeet auklet: comparisons with other auklets. Studies in Avian Biology 14, 114-124. Hartley, C.H., and Fisher, J., 1936. The marine foods of birds in an inland fjord region in West Spitzbergen. Part 2. Birds. Journal of Animal Ecology 5 (2), 370-389. Hashimoto, H., 1993. Winter feeding of Thick-billed murres in coastal waters off the Shakotan Peninsula, Hokkaido. Journal ofYamashina Institute of Ornithology 25, 166-173. Hatch, S.A., 1984. Nestling diet and feeding rates of Rhinoceros auklets in Alaska, pp. 106-115. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Hatch, S.A., and Sanger, G.A., 1992. Puffins as samplers of juvenile pollock and other forage fish in the Gulf of Alaska. Marine Ecology Progress Series 80, 1-14. Hatchwell, B.J., 1991. The feeding ecology of young guillemots Uria aalge on Skomer Island, Wales. Ibis 133 (2), 153-161. Hayes, D.L., and Kuletz, K.J., 1997. Decline of Pigeon guillemot populations in Prince William Sound, Alaska, and apparent changes in distribution and abundance of their prey. Proceedings of the International Symposium of the Role of Forage Fishes in Marine Ecosystems, University of Alaska Sea Grant College Program, AK-SG-97-01. pp. 699-702. Hedd, A., and Gales, R., 2001. The diet of Shy albatrosses (Thalassarche cauta) at Albatross Island, Tasmania. Journal of Zoology London 253, 69-90. 65 Hedd, A. , Ryder, J.L., Cowen, L .L . , and Bertram, D.F., 2002. Inter-annual variation in the diet, provisioning and growth of Cassin's auklet at Triangle Island, British Columbia: responses to variation in ocean climate. Marine Ecology Progress Series 229, 221-232. Hemmings, A.D. , 1984. Aspects of the breeding biology of McCormick's skua Catharacta maccormicki at Signy Island, South Orkney Islands. British Antarctic Survey Bulletin 65, 65-79. Hilton, G .M. , Houston, D . C , and Furness, R.W., 1998. Which components of diet quality affect retention time of digesta in seabirds? Functional Ecology 12 (6), 929-939. Hindell, M.A . , 1988a. The diet of the King penguin Aptenodytes patagonicus at Macquarie Island. Ibis 130 (2), 193-203. Hindell, M.A. , 1988b. The diet of the Rockhopper penguin Eudyptes chrysocome at Macquarie Island. Emu 88,227-233. Hindell, M.A . , 1989. The diet of Gentoo penguins Pygoscelis papua at Macquarie Island: winter and early breeding season. Emu 89, 71-78. Hintze, J., 2004. NCSS and PASS. Number Cruncher Statistical Systems. Kaysville, Utah, USA. www.ncss.com. Hislop, J.R.G., and Harris, M.P., 1985. Recent changes in the food of young puffins Fratercula arctica on the Isle of May in relation to fish stocks. Ibis 127 (2), 234-239. Hobson, K . A . , 1990. Stable isotope analysis of Marbled murrelets: evidence for freshwater feeding and determination of trophic level. Condor 92 (4), 897-903. Hobson, K . A . , 1991. Stable isotopic determinations of the trophic relationships of seabirds: Preliminary investigations of alcids from coastal British Columbia, pp. 16-20. In: W.A. Montevecchi, and A J . Gaston (Eds.), Studies of High-latitude Seabirds. 1. Behavioural, Energetic, and Oceanographic Aspects of Seabird Feeding Ecology. Occasional paper No. 68. Canadian Wildlife Service. Ottawa, Canada. Hobson, K . A . , 1995. Reconstructing avian diets using stable-carbon and nitrogen isotope analysis of egg components: patterns of isotopic fractionation and turnover. Condor 97 (3), 752-762. Hobson, K . A . , and Clark, R.G., 1992. Assessing avain diets using stable isotopes I: turnover of 1 3 C in tissues. Condor 94 (1), 181-188. Hobson, K . A . , and Montevecchi, W.A., 1991. Stable isotope determinations of trophic relationships of Great auks. Oecologia 87 (4), 528-531. Hobson, K . A . , and Welch, H.E., 1992. Determination of trophic relationships within a high Arctic marine food web using 813C and 815N analysis. Marine Ecology Progress Series 84,9-18. 66 Hobson, K.A., Piatt, J.F., and Pitocchelli, J., 1994. Using stable isotopes to determine seabird trophic relationships. Journal of Animal Ecology 63 (4), 786-798. Horn, H.S., 1966. Measurement of 'overlap' in comparative ecological studies. American Naturalist 100 (914), 419-424. Home, R.S.C., 1985. Diet of Royal and Rockhopper penguins at Macquarie Island. Emu 85,150-156. Hull, C.L., 1999. Comparison of the diets of breeding Royal {Eudyptes schlegeli) and Rockhopper (Eudyptes chrysocome) penguins on Macquarie Island over three years. Journal of Zoology London 247, 507-529. Hunt, G.L. Jr, and Butler, J.L., 1980. Reproductive ecology of Western gulls and Xantus' murrelets with respect to food resources in the Southern California Bight. CalCOFI Report 16, 62-67. Hunt, G.L. Jr, and Schneider, D.C., 1987. Scale-dependent processes in the physical and biological environment of marine birds, pp. 7-41. In: J.P. Croxall (Ed.), Seabirds: Feeding ecology and Role in Marine Ecosystems. Cambridge University Press, Cambridge, UK. Hunt, G.L. Jr, Baduini, C , and Jahncke, J., 2002. Diets of Short-tailed shearwaters in the southeastern Bering Sea. Deep-Sea Research II49 (26), 6147-6156. Hunt, G.L. Jr, Russell, R.W., Coyle, K.O., and Weingartner, T., 1998. Comparative foraging ecology of planktivorous auklets in relation to ocean physics and prey availability. Marine Ecology Progress Series 167, 241-259. Hunter, S., 1983. The food and feeding ecology of the Giant petrels Macronectes halli and M. giganteus at South Georgia. Journal of Zoology London 200, 521-538. Hunter, S., 1985. The role of Giant petrels in the Southern Ocean Ecosystem, pp. 534-542. In: W.R. Siegfried, P.R. Condy, and R.M. Laws (Eds.), Antarctic nutrient cycles and food webs. Springer Verlag, Berlin, Germany. Hunter, S., and Brooke, de L.M., 1992. The diet of Giant petrels Macronectes spp. at Marion Island, Southern Indian Ocean. Colonial Waterbirds 15 (1), 56-65. Hunter, S., and Klages, N.T.W., 1989. The diet of Grey-headed albatrosses Diomedea chrysostoma at the Prince Edward Islands. South African Journal of Antarctic Research 19(1), 31-33. Huntington, T., Frid, C , Banks, R., Scott, C , and Paramor, O., 2004. Assessment of the sustainability of industrial fisheries producing fish meal and fish oil. Final Report to the Royal Society for the Protection of Birds by Poseidon Aquatic Resource Management Ltd. and The University of Newcastle-upon-Tyne, Hampshire, UK. 105 pp. 67 Huettmarin, F., 2003. Estimates of abundance, biomass and prey consumption for selected seabird species for the eastern and western Scotian Shelf, 1966-1992. Department of Fisheries and Oceans Report, Ottawa, Canada. 34 pp. Hyrenbach, K.D. , and Dotson, R.C., 2003. Assessing the susceptibility of female Black-footed albatross (Phoebastria nigripes) to longline fisheries during the post-breeding dispersal: an integrated approach. Biological Conservation 112 (3), 391-404. Hyrenbach, K.D. , Fernandez, P., and Anderson, D.J., 2002. Oceanographic habitats of two sympatric North Pacific albatrosses during the breeding season. Marine Ecology Progress Series 233, 283-301. Hurlbert, S.H., 1978. The measurement of niche overlap and some relatives. Ecology 59 (1), 67-77. ICES, 2000. Report of the Working Group on Seabird Ecology. ICES C M 2000/C: 04, 72 pp. Available online at http://www.ices.dk/reports/occ/2000/. Ichii, T., N aganobou, M . , and O gishima, T., 1996. C ompetition b etween t he kr i l l fishery and penguins in the South Shetland Islands. Polar Biology 16 (1), 63-70. Imber, M.J. , 1981. Diets of Storm petrels Pelagodroma and Garrodia and of prions Pachyptila (Procellariiform.es). pp. 63-88. In: J. Cooper (Ed.), Proceedings o f the Symposium on Birds of the Sea and Shore, 1979. African Seabird Group, Cape Town, South Africa. Ito, S., 2002. Foraging areas of Short-tailed shearwaters during their northward migration along the Pacific coast of northern Japan. Ornithological Science 1 (2), 159-162. Jablonski, B. , 1985. The diet of penguins on King George Island, South Shetland Islands. Acta Zoologica Cracoviensia 29 (8), 117-186. Jablonski, B. , 1995. Distribution, abundance and biology of the Antarctic tern Sterna vittata Gmelin, 1789 on King George Island (South Shetland Islands). Acta Zoologica Cracoviensia 38 (3), 399-460. Jackson, S., 1988. Diets of the White-chinned petrel and Sooty shearwater in the Southern Benguela Region, South Africa. Condor 90 (1), 20-28. Jahncke, J., 1998. Las poblaciones de aves guaneras y sus relaciones con la abundancia de anchoveta y la ocurrencia de eventos E l Niflo en el Mar Peruano. Boletin del Insituto del Mar del Peru 17(1-2), 1-13. Jahncke, J., and Goya, E., 2000. Responses of three booby species to E l Nino 1997-1998. Waterbirds 23 (1), 102-108. Jahncke, J., Garcia-Godos, A. , and Goya, E., 1997. Diet of Guanay cormorants Leucocarbo bougainvillii, Peruvian boobies Sula variegata and other birds of Peruvian coast, April and May 1997. Informe del Instituto del Mar del Peru 126, 75-86. 68 Jahncke, J., Garcia-Godos, A., and Goya, E., 1999. The diet of the Peruvian diving petrel at la Vieja and San Gallan, Peru. Journal of Field Ornithology 70 (1), 71-79. James, G.D., and Stahl, J.-C., 2000. Diet of southern Buller's albatross {Diomedea bulleri bulleri) and the importance of fishery discards during chick rearing. New Zealand Journal of Marine and Freshwater Research 34 (3), 435-454. Jennings, S., Kaiser, M.J., and Reynolds, J.D., 2001. Marine Fisheries Ecology. Blackwell Science, Oxford, UK. 417 pp. Johansen, R., Barrett, R.T., and Pedersen, T., 2001. Foraging strategies of Great cormorants Phalacrocorax carbo carbo wintering north of the Arctic Circle. Bird Study 48, 59-67. Johnstone, G.W., 1977. Comparative feeding ecology of the Giant petrels Macronectes giganteus (Gmelin) and M. halli (Mathews), pp. 647-668. In: G.A. Llano (Ed.), Adaptations within Antarctic Ecosystems. Gulf Publishers Co., Houston, TX, USA. Jones, I.L., Hunter, F.M., and Robertson, G.J., 2002. Annual adult survival of Least auklets (Aves, Alcidae) varies with large-scale climatic conditions of the North Pacific Ocean. Oecologia 133 (1), 38-44. Jouventin, P., Martinez, J., and Roux, J.P., 1989. Breeding biology and current status of the Amsterdam island albatross Diomedea amsterdamensis. Ibis 131 (2), 171-182. Kaschner, K., 2004. Modelling and mapping resource overlap between marine mammals and fisheries o n a global s cale. P hD T hesis, D epartment o f Zoology, University o f British Columbia, Vancouver, Canada. 225 pp. Kaschner, K., and Pauly, D. 2004. Competition between marine mammals and fisheries: food for thought. Report for the Humane Society, Washington, DC, USA. 28 pp. Kato, A., Watanuki, Y., and Naito, Y., 2001. Foraging and breeding performance of Japanese cormorants in relation to prey type. Ecological Research 16 (4), 745-758. Kato, A., Watanuki, Y., and Naito, Y., 2003. Annual and seasonal changes in foraging site and diving behavior in Adelie penguins. Polar Biology 26 (6), 389-395. Kato, A., Williams, T.D., Barton, T.R., and Rodwell, S., 1989. Short-term variation in the winter diet of Gentoo penguins Pygoscelis papua at South Georgia during July 1989. Marine Ornithology 19 (1), 31-38. Kent, S., Seddon, J., Robertson, G., and Wienecke, B.C., 1998. Diet of Adelie penguins Pygoscelis adeliae at Shirley Island, East Antarctica, January 1992. Marine Ornithology 26 (2), 7-10. Kirkham, I.R., 1986. Comparative foraging and breeding habits of Arctic and Common terns. PhD Thesis, Dalhousie University, Halifax, NS, Canada. 69 Kirkwood, R., 2001. Emperor penguin (Aptenodytes forsteri) foraging ecology. ANARE Report 144, 164 pp. Kirkwood, R., and Robertson, G., 1997. The foraging ecology of female Emperor penguins in winter. Ecological Monographs 67 (2), 155-176. Kitaysky, A.S., Hunt, G.L. Jr, Flint, E.N., Rubega, M.A., and Decker, M.B., 2000. Resource allocation in breeding seabirds: Responses to fluctuations in their food supply. Marine Ecology Progress Series 206, 283-296. Klages, N.T.W., 1989. Food and feeding ecology of Emperor penguins in the Weddell Sea. Polar Biology 9 (6), 385-390. Klages, N.T.W., and Cooper, J., 1997. Diet of the Atlantic petrel Pterodroma incerta during breeding at South Atlantic Gough Island. Marine Ornithology 25 (1-2), 13-16. Klages, N.T.W., Gales, R.P., and Pemberton, D., 1989. Dietary segregation of Macaroni and Rockhopper penguins at Heard Island. Australian Wildlife Research 16 (6), 599-604. Klages, N.T.W., Gales, R.P., and Pemberton, D., 1990a. The stomach content of Antarctic petrels Thalassoica antarctica feeding young chicks at Scullin Monolith, Mawson Coast, Antarctica. Polar Biology 10 (8), 545-547. Klages, N.T.W., Nel, D.C, and Cooper, J., 1995. Stomach contents of a Grey-backed storm petrel Garrodia nereis from Subantarctic Marion Island. Marine Ornithology 23 (2), 163-164. Klages, N.T.W., Pemberton, D., and Gales, R.P., 2000b. The diets of King and Gentoo penguins at Heard Island. Australian Wildlife Research 17 (1), 53-60. Klages, N.T.W., Willis, A.B., and Ross, C.J.B., 1992. Variability in the diet of the Cape gannet at Bird Island, Algoa Bay, South Africa. South African Journal of Marine Science 12, 761-771. Kline, T., and Pauly, D., 1998. Cross-validation of trophic level estimates from a mass-balance model of Prince William Sound using 1 5 N/i 4 N data. pp. 693-702. In: F. Funk, T.J. Quinn II, J. Heifetz, J.N. Ianelli, J;E. Powers, J.F. Schweigert, PJ. Sullivan, and C.-I. Zhang (Eds.), Fishery Stock Assessment Models. Lowell Wakefield Fisheries Symposium Series, No. 15. University of Alaska Sea Grant AK-SG-98-01, Fairbanks, AK, USA. Knox, G.A., 1970. Antarctic marine ecosystems, pp. 69-96. In: M.W. Holdgate (Ed.), Antarctic Ecology. Vol. 1. Academic Press, London, UK. Koehl, P.S., Rothe, T.C., and Derksen, D.V., 1982. Winter food habits of Barrow's goldeneyes in southeast Alaska, pp. 1-5. In: D.N. Nettleship, G .A. Sanger, and P.F. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. US Fish and Wildlife Service, Washington, DC, USA. 70 Kondratyev, A.V., 1999. Foraging strategies and habitat use of sea ducks breeding in northeast Russia, pp. 52-59. In: R.I. Goudie, M.R. Petersen, and G.J. Robertson (Eds.), Behaviour and ecology of sea ducks. Occasional Paper, Vol. 100. Canadian Wildlife Service, Ottawa, Canada. Koteja, P., 1991. On the relation between basal and field metabolic rates in birds and mammals. Functional Ecology 5 (1), 56-64. Krebs, C.J., 1999. Ecological Methodology. 2nd Edition. Addison Wesley Educational Publishers, Benjamin/Cummings, California, USA. 620 pp. LaCock, G.D., Hecht, T., and Klages, N., 1984. The winter diet of Gentoo penguins at Marion Island. Ostrich 55 (2), 188-191. Lance, B.K., and Roby, D.D., 1998. Diet and postnatal growth in Red-legged and Black-legged kittiwakes: an interspecies comparison. Colonial Waterbirds 21 (3), 375-387. Lascara, C M . , Hofmann, E.E., Ross, R.M., and Quentin, L.B., 1999. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. Deep-Sea Research Part I- Oceanographic Research Papers 46 (6), 951-984. Lee, D.S., 1995. The pelagic ecology of Manx shearwaters Puffinus puffinus off the Southeastern United States of America. Marine Ornithology 23 (2), 107-119. Leopold, M.F., and van Damme, C.J.G., 2003. Great cormorants Phalacrocorax carbo and polychaetes: can worms be a major prey of a piscivorous seabird? Marine Ornithology 31 (1), 83-87. Leschner, L.L., 1976. The breeding biology of the Rhinoceros auklet on Destruction Island. MSc Thesis, University of Washington, Seattle, USA. Lilliendahl, K., and Solmundsson, J., 1997. An estimate of summer food consumption of six seabird species in Iceland. ICES Journal of Marine Science 54 (4), 624-630. Lishman, G.S., 1985. The food and feeding ecology of Adelie penguins {Pygoscelis adeliae) and Chinstrap penguins (P. antarctica) at Signy Island, South Orkney Islands. Journal of Zoology London 205, 245-263. Litzow, M.A., Piatt, J.F., Abookire, A.A., and Robards, M.D., 2004. Energy density and variability in abundance of Pigeon guillemot prey: support for the quality-variability trade-off hypothesis. Journal of Animal Ecology 73 (6), 1149-1156. Litzow, M.A., Piatt, J.F., and Figurski, J.D., 1998. Hermit crabs in the diet of Pigeon guillemots at Kachemak Bay, Alaska. Colonial Waterbirds 21 (2), 242-244. Longhurst, A., 1998. Ecological Geography of the Sea. Academic Press, San Diego, CA, USA. 398 pp. 71 Lorentsen, S.-H., and Anker-Nilssen, T., 1999. Diet of Common murres wintering in the Northern Skagerrak during 1988-1990: variation with sex, age and season. Waterbirds 22 (1), 80-89. Lorentsen, S.-H., Klages, N., and R0v, N., 1998. Diet and prey consumption of Antarctic petrels Thalassoica antarctica at Svarthamaren, Dronning Maud Land, and at sea outside the colony. Polar Biology 19 (6), 414-420. Lyngs, P., and Durinck, J., 1998. Diet of guillemots Uria aalge in the central Baltic Sea. Dansk Ornitologisk Forenings Tidsskrift 92 (2), 197-200. Lynnes, A .S., R eid, K. , and C roxall, J. P., 2 004. D iet and r eproductive su ccess o f A delie and Chinstrap penguins: linking response of predators to prey population dynamics. Polar Biology 21 (9), 544-554. Lynnes, A.S., Reid, K., Croxall, J.P., and Trathan, P.N., 2002. Conflict or co-existence? Foraging distribution and competition for prey between Adelie and Chinstrap penguins. Marine Biology 141 (6), 1165-1174. Malacalza, V.E., Bertellotti, N.M., and Poretti, T.I., 1997. Variation e stacional de la dieta de Phalacrocorax magellanicus (Aves: Phalacrocoracidae) en Punta Loma, (Chubut, Argentina). Neotropica 43 (109-110), 35-37. Malacalza, V., Poretti, T.I., and Bertellotti, N.M., 1994. La dieta de Phalacrocorax albiventer en Punta Leon (Chubut, Argentina) durante la temporada reproductiva. Ornitologia Neotropical 5, 91-97. Mann, K.H., and Lazier, J.R.N., 1996. Dynamics of Marine Ecosystems: Biological - Physical Interactions in the Oceans. Second Edition. Blackwell Science, Inc., Cambridge, MA, USA. 394 pp. Martensson, P.E., Gotaas, A.R.L., Nordoy, E.S., and Blix, A.S., 1996. Seasonal changes in energy density of prey of northeast Atlantic seals and whales. Marine Mammal Science 12,635-640. Mauco, L., Favero, M., and Bo, M.S., 2001. Food and feeding biology of the Common tern during the nonbreeding season in Samborombon Bay, Buenos Aires, Argentina. Waterbirds 24 (1), 89-96. McGinnis, T., and Emslie, S., 2001. The foraging ecology of Royal and Sandwich terns in North Carolina, USA. Waterbirds 24 (3), 361-370. McLachlan, A., Wooldridge, T., and Schramm, M.K.M., 1980. Seasonal abundance, biomass and feeding of shore birds on sandy beaches in the Eastern Cape, South Africa. Ostrich 51 (1), 44-52. Mellink, E., Dominguez, J., and Luecano, J., 2001. Diet of eastern Pacific Brown boobies Sula leucogaster brewsteri on Isla San Jorge, North-eastern Gulf of California, and an April 72 comparison with diets in the middle Gulf of California. Marine Ornithology 29 (1), 23-28. Melvin, E.F., and Parrish, J.K., (Eds.), 2001. Seabird bycatch: trends, roadblocks, and solutions. University of Alaska Sea Grant AK-SG-01-01, Fairbanks, AK, USA. 206 pp. Merilees, W., 1984. Some notes on the foods of the Dominican gull at Macquarie Island. Tasmanian Naturalist 79, 5-6. Milchev, B., Kodjabashev, N., Sivkov, Y., and Chobanov, D., 2004. Post-breeding season diet of the Mediterranean gull Larus melanocephalus at the Bulgarian Black Sea coast. Atlantic Seabirds 6 (2), 65-78. Moncorps, S., Chapuis, J.-L., Haubreux, D., and Bretagnolle, V., 1997. Diet of the Brown skua Catharacta skua lonnbergi on the Kerguelen archipelago: comparisons between techniques and between islands. Polar Biology 19 (1), 9-16. Montague, T.L., Cullen, J.M., and Fitzherbert, K., 1986. The diet of the Short-tailed shearwater Puffinus tenuirostris during its breeding season. Emu 86, 207-213. Montevecchi, W.A., 1993. Birds as indicators of change in marine prey stocks, pp. 217-266. In: R.W. Furness, and J.J.D. Greenwood (Eds.), Birds as monitors of Environmental Change. Chapman & Hall, London, UK. Montevecchi, W.A., 2002. Interactions between fisheries and seabirds. pp. 527-556. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series, CRC Press, USA. Montevecchi, W.A., and Myers, R.A., 1995. Prey harvests of seabirds reflect pelagic fish and squid abundance on multiple spatial and temporal scales. Marine Ecology Progress Series 117, 1-9. Montevecchi, W.A., Cairns, D.K., and Myers, R.A., 2002. Predation on marine-phase Atlantic salmon (Salmo salar) by gannets (Morus bassanus) in the Northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences 59 (4), 602-612. Moore, G., and Jennings, S., (Eds.), 2000. Commercial fishing: the wider ecological impacts. The British Ecological Society, Ecological Issues Series. Blackwell Science Ltd. Oxford, UK. 66 pp. Moore, G.J., Robertson, G., and Wienecke, B., 1998. Food requirements of breeding King penguins at Heard Island and potential overlap with commercial fisheries. Polar Biology 20 (5), 293-302. Moore, P.J., and Wakelin, M.D., 1997. Diet of the Yellow-eyed penguin Megadyptes antipodes, South Island, New Zealand, 1991-1993. Marine Ornithology 25 (1), 17-29. Morisita, M., 1959. Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science, Kyushu University, Series E (Biology) 3, 65-80. 73 Morrison, M.L., Shanley, E. Jr, and Slack, R.D., 1977. The food of nestling Olivaceous cormorants. Southwestern Naturalist 22, 321-326. Mougin, J.-L., 1968. Etude ecologique de quatre especes de petrels antarctiques de petrels antarctiques. L'Oiseau et la Revue Francaise d'Ornithologie 38,1-52. Muck, P., and Pauly D., 1987. Monthly anchoveta consumption of guano birds, 1953 to 1982. pp. 219-233. In: D. Pauly, and I., Tsukayama (Eds.), The Peruvian anchoveta and its upwelling ecosystem: three decades of change. ICLARM Studies and Reviews 15. JJvIARPE and ICLARM, Manilla, Philippines. Mukherjee, A.K., 1976. Food habits of waterbirds of the Sundarban 24 Parganas District, West Bengal. Part 6. Journal of the Bombay Natural History Society 73 (3), 482-486. Mund, M.J., and Miller, G.D., 1995. Diet of the South polar skua Catharacta maccormicki at Cape Bird, Ross Island, Antarctica. Polar Biology 15 (6), 453-455. Murray, M.D., Nicholls, D.G., Butcher, E., and Moors, P.J., 2002. How Wandering albatrosses use weather systems to fly long distances. 1. An analytical method and its application to flights in the Tasman Sea. Emu 102 (4), 377-385. Myers, R.A., and Worm, B., 2003. Rapid worldwide depletion of predatory fish communities. Nature 423 (6937), 280-283. Nagy, K.A., 1989. Doubly-labelled water studies of vertebrate physiological ecology, pp. 270-287. In: P.W. Rundell, J.R. Ehleringer, J.R., and K.A. Nagy (Eds.), Stable isotopes in ecological research. Springer Verlag, Berlin, Germany. Nagy, K.A., and Obst, B.S., 1992. Food and energy requirements of Adelie penguins {Pygoscelis adeliae) on the Antarctic Peninsula. Physiological Zoology 65 (6), 1271-1284. Nagy, K.A., Girard, I.A., and Brown, T.K., 1999. Energetics of free-ranging mammals, reptiles, and birds. Annual Review of Nutrition 19, 247-277. Nagy, K.A., Siegfried, W.R., and Wilson, R.P., 1984. Energy utilization by free-ranging Jackass penguins, Spheniscus demersus. Ecology 65 (5), 1648-1655. Nel, D .C, Lutjeharms, J.R.E., Pakhomov, E.A., Ansorge, I.J., Ryan, P.G., and Klages, N.T.W., 2001. Exploitation of mesoscale oceanographic features by Grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Marine Ecology Progress Series 217, 15-26. Nel, D .C, Nel, J.L., Ryan, P.G., Klages, N.T.W., Wilson, R.P., and Robertson, G., 2000. Foraging ecology of Grey-headed mollymawks at Marion Island, southern Indian Ocean, in relation to longline fishing activity. Biological Conservation 96 (2), 219-231. 7 4 Nicol, S., 1993. A comparison of Antarctic petrel (Thalassoica antarcticd) diets with net samples of Antarctic krill {Euphausia superba) taken from the Prydz Bay region. Polar Biology 13 (6), 399-403. Norman, F.L, arid Ward, S.J., 1990. Foods of the South polar skua at Hope Island, Rauer Group, East Antarctica. Polar Biology 10 (7), 489-493. Offredo, C , and Ridoux, V., 1986: The diet of Emperor penguins Aptenodytes forsteri in Adelie Land, Antarctica. Ibis 128 (3), 409-413. Ogi, H., 1980. The pelagic feeding ecology of Thick-billed murres in the North Pacific, March-June. Bulletin of the Faculty of Fisheries Hokkaido University 31 (1), 50-72. Ogi, H., 1984. Feeding ecology of the Sooty shearwater in the western subarctic North Pacific Ocean, pp. 7 8-84. In: D .N. N ettleship, G .A. S anger, and P .A. S pringer ( Eds.), M arine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Ogi, H., and Hamanaka, T., 1982. The feeding ecology of Uria lomvia in the Northwestern Bering Sea Region. Journal ofYamashina Institute of Ornithology 14, 270-280. Ogi, H . , and T sujita, T., 1973. P reliminary examination o f s tomach c ontents o f m urres (Uria spp.) from the eastern Bering Sea and Bristol Bay, June-August, 1970 and 1971. Japanese Journal of Ecology 23 (5), 201-209. Ogi, H., Kubodera, T., and Nakamura, K., 1980. The pelagic feeding ecology of the Short-tailed shearwater Puffinus tenuirostris in the Subarctic Pacific Region. Journal of Yamashina Institute of Ornithology 12 (3), 157-181. Ogi, H., Tanaka, H., and Tsujita, T., 1985. The distribution and feeding ecology of murres in the Northwestern Bering Sea. Journal ofYamashina Institute of Ornithology 17,44-56. Ojowski, U., Eidtmann, C , Furness, R.W., andGarthe, S., 2000. Diet and nest attendance of incubating and chick-rearing Northern fulmars (Fulmarus glacialis) in Shetland. Marine Biology 139 (6), 1193-1200. Oro, D., and Ruiz, X., 1997. Exploitation of trawler discards by breeding seabirds in the north-western Mediterranean: differences between the Ebro Delta and the Balearic Islands areas. ICES Journal of Marine Science 54 (4), 695-707. Palmer, R.S., 1962. Handbook of North American birds. Vol. 1. Yale University Press, New Haven, CT, USA. Park, Y.H., and Gamberoni, E., 1995. Large-scale circulation and its variability in the South Indian Ocean from TOPEX/POSEIDON altimetry. Journal of Geophysical Research 100 (CI2), 24911-24929. Paulin, CD. , 1975. Feeding of the Adelie penguin Pygoscelis adeliae. Mauri Ora 3, 27-30. 75 Pauly, D . , and Christensen, V . , 1995. Primary preduction required to sustain global fisheries. Nature 31A (6519), 255-257. Pauly, D., and Christensen, V. , 2000. Trophic levels of fishes, p. 181. In: R. Froese, and D. Pauly (Eds.), FishBase 2000: Concepts, design and data sources. I C L A R M , Manila. Pauly, D., and Palomares, M.L . , 2000. Approaches for dealing with three sources of bias when studying the fishing down marine food web phenomenon, pp. 61-66. In: F. Briand (Ed.), Fishing down the Mediterranean food webs? CIESM Workshop Series 12. Pauly, D., Alder, J., Bennett, E., Christensen, V . , Tyedmers, P., and Watson, R., 2003. The future of fisheries. Science 302 (5649), 1359-1361. Pauly, D., Christensen, V . , Dalsgaard, J., Froese, R., and Torres, F. Jr, 1998. Fishing down marine food webs. Science 219 (5352), 860-863. Pauly, D., Christensen, V. , Guenette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R., and Zeller, D., 2002. Towards sustainability in world fisheries. Nature 418 (6898), 689-695. Pauly, D., Froese, R., Sa-a, P.S., Palomares, M.L . , Christensen, V . , and Rius, J., 2000. TrophLab manual. I C L A R M , Manila. Available online at http://filaman.uni-kiel.de/Download/ index.htm. Pauly, D., Watson, R., and Alder, J., 2005. Global trends in world fisheries: impacts on marine ecosystems and food security. Philosophical Transactions: Biological Sciences 360 (1453), 5-12. Payne, M.R., and Prince, P. A. , 1979. Identification and breeding biology of the Diving petrels Pelecanoides georgicus and P. urinatrix exsul at South Georgia. New Zealand Journal of Zoology 6 (2), 299-318. Pearson, T.H., 1968. The feeding biology of seabird species breeding on the Fame Islands, Northumberland. Journal of Animal Ecology 37 (3), 521-552. Pedersen, C.-E., and Falk, K. , 2001. Chick diet of Dovekies Alle alle in Northwest Greenland. Polar Biology 24 (1), 53-58. Perez, M.A . , 1994. Calorimetry measurements of energy value of some Alaskan fishes and squids. N O A A Technical Memorandum NMFS-AFSC-32, 32 pp. Peters, J.L., 1934. Checklist of Birds of the World. Vol . 2. Harvard University Press, Cambridge, M A , USA. Peters, J.L., 1979. Checklist of Birds of the World. Vol . 1. Second Edition. Harvard University Press, Cambridge, M A , USA. 76 Phillips, R.A., Petersen, M.K., Lilliendahl, K., Sohnundsson, J., Hamer, K.C., Camphuysen, C.J., and Zonfrillo, B., 1999. Diet of the Northern fulmar Fulmarus glacialis: reliance on commercial fisheries? Marine Biology 135 (1), 159-170. Phillips, R.A., Phalan, B., and Forster, LP., 2004. Diet and long-term changes in population size and productivity of Brown skuas Catharacta antarctica lonnbergi at Bird Island, South Georgia. Polar Biology 27 (9), 555-561. Piatt, J.F., and Kitaysky, A.S., 2002. Horned puffin (Fratercula corniculata). In: A. Poole, and F. Gill (Eds.), The Birds of North America. Inc., Philadelphia, USA. 28 pp. Piatt, J.F., Roberts, B.D., Lidster, W.W., Wells, J.L., and Hatch, S.A., 1990. Effects of human disturbance on breeding Least and Crested auklets at St. Lawrence Island, Alaska. Auk 107 (2), 342-350. Pilon, C , Burton, J., and McNeil, R., 1983. Summer food of the Great and Double-crested cormorants on the Magdalen Islands, Quebec. Canadian Journal of Zoology 61 (12), 2733-2739. Prince, P. A., 1980. The food and feeding ecology of Blue petrel (Halobaena caerulea) and Dove prion {Pachyptila desolata). Journal of Zoology London 190, 59-76. Prince, P.A., 1985. Population and energetic aspects of the relationship between Black-browed and Grey-headed albatrosses and the Southern Ocean marine environment, pp. 473-477. In: W.R. Siegfried, P.R. Condy, and R.M. Laws (Eds.), Antarctic nutrient cycles and food webs. Springer Verlag, Berlin, Germany. Prince, P.A., and Copestake, P.G., 1990. Diet and aspects of Fairy prions breeding at South Georgia. Notornis 37 (1), 59-69. Prince, P.A., and Morgan, R.A., 1987. Diet and feeding ecology of Procellariiformes. pp. 135-171. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. Puddicombe, R.A., and Johnstone, G.W., 1988. The breeding season diet of Adelie penguins at the Vestfold Hills, East Antarctica. Hydrobiologia 165,239-253. Punta, G.E., Saravia, J.R.C., and Yorio, P.M., 1993. The diet and foraging behaviour of two Patagonian cormorants. Marine Ornithology 21 (1), 27-36. Ptttz, K., Ingham, R.J., Smith, J.G., and Croxall, J.P., 2001. Population trends, breeding success and diet composition of Gentoo Pygoscelis papua, Magellanic Spheniscus magellanicus and Rockhopper Eudyptes chrysocome penguins in the Falkland Islands. Polar Biology 24(11), 793-807. Raclot, T., Groscolas, R., and Cherel, Y., 1998. Fatty acid evidence for the importance of myctophid fishes in the diet of King penguins, Aptenodytes patagonicus. Marine Biology 132 (3), 523-533, 77 Rail, J.-F., and Chapdelaine, G., 1998. Food of Double-crested cormorants, Phalacrocorax auritus, in the Gulf and Estuary of the St. Lawrence River, Quebec, Canada. Canadian Journal of Zoology 76 (4), 635-643. Ramos, J.A., Sola, E., and Monteiro, L.R., 1995. Prey delivered to Roseate tern chicks in the Azores. Journal of Field Ornithology 69 (3), 419-429. Ramos, J. A., S ola, E . , Porteiro, F .M., and Monteiro, L.R., 1998. Prey o f Yellow-legged gull, Roseate tern and Common tern in the Azores. Seabird 20, 31-40. Rand, R.W., 1960. The biology of guano-producing seabirds. The distribution, abundance and feeding habits of the Cape penguin, Spheniscus demersus, off the South-Western Coast of the Cape Province. Commerce and Industry, International Report 41, 3-28. Randall, R.M., and Randall, B.M., 1978. Diet of Roseate terns during the breeding season at St Croix Island, AlgoaBay. Cormorant 5, 4-10. Read, A., Crowder, L., Halpin, P., Best, B., Freeman, S., Hyrenbach, D., and Spoerri, C , 2005. OBIS-SEAMAP: Mapping the global distribution of marine mammals, seabirds and turtles. Proceeding of the 4th World Fisheries Congress, Vancouver 2-6 M ay, 2004. In press. Reeves, S.A., and Furness, R.W., 2002. Net Loss - Seabird Gain? Implications of fisheries management for seabirds scavenging discards in the Northern North Sea. The Royal Society for the Protection of Birds, Sandy, UK. 74 pp. Reid, K., Croxall, J.P., Edwards, T.M., Hill, H.J., and Prince, P.A., 1997. Diet and feeding ecology of the Diving petrels Pelecanoides georgicus and P. urinatrix at South Georgia. Polar Biology 17 (1), 17-24. Reid, K., Croxall, J.P., and Prince, P.A., 1996. The fish diet of Black-browed albatross Diomedea melanophris and Grey-headed albatross D. chrysostoma at South Georgia. Polar Biology 16 (7), 469-477. Reinhardt, K., 1997. Food and feeding of Antarctic skua chicks Catharacta antarctica lonnbergi and C. maccormicki. Journal fur Ornithologie 138 (2), 199-213. Rexende, M.A., 1987. Comportamento associativo de Fregata magnificens (Fregatidae, Aves) e Sula leucogaster (Sulidae, Aves) no litoral centro-norte do estado de Sao Paulo. Boletim do Instituto Oceanografico, Sao Paulo 35 (1), 1-5. Rice, D.W., and Kenyon, K.W., 1962. Breeding cycles and behavior of Laysan and Black-footed albatrosses. Auk 79 (4), 517-567. Ridoux, V., 1994. The diets and dietary segregation of seabirds at the Subantarctic Crozet Islands. Marine Ornithology 22 (1), 1-192. Ridoux, V., and Offredo, C , 1989. The diets of five summer breeding seabirds in Adelie Land, Antarctica. Polar Biology 9 (3), 137-145. 7 8 Robert, M . , and Cloutier, L.,2001. Summer.food habits of Harlequin ducks in eastern North America. Wilson Bulletin 113 (1), 78-84. Robertson, D.A., 1992. Diet of the Australasian gannet Morus serrator (G.R. Gray) around New Zealand. New Zealand Journal of Ecology 16 (2), 77-81. Robertson, G., Williams, R., Green, K., and Robertson, L., 1994. Diet composition of Emperor penguin chicks Aptenodytes forsteri at two Mawson Coast colonies, Antarctica. Ibis 136 (1), 19-31. Robertson, I., 1974. The food of nesting Double-crested and Pelagic cormorants at Mandarte Island, British Columbia, with notes on feeding ecology. Condor 76 (3), 346-348. Robinson, S.A., and Hindell, M.A., 1996. Foraging ecology of Gentoo penguins Pygoscelis papua at Macquarie Island during the period of chick care. Ibis 138 (4), 722-731. Roby, D.D., 1991. Diet and postnatal energetics in convergent taxa of plankton-feeding seabirds. Auk 10S (I), 131-146. Rodhouse, P.G., 1989. Cephalopods in the diet of Wandering albatrosses and sea-surface temperatures at the Sub-Antarctic Front. Scientia Marina 53 (2-3), 277-281. Rodhouse, P.G., Elvidge, CD. , and Trathan, P.N., 2000. Remote sensing of the global light fishing fleet: an analysis of interactions with oceanography, other fisheries and predators. Advances in Marine Biology 39, 261-303. Rodhouse, P.G., Olsson, O., Anker-Nilssen, P., and Murray, A.W.A., 1998. Cephalopod predation by the King penguin Aptenodytes patagonicus from South Georgia. Marine Ecology Progress Series 168,13-19. Rodhouse, P.G., Prince, P.A., Trathan, P.N., Hatfield, E.M.C, Watkins, J.L., Bone, D.G., Murphy, E.J., and White, M.G., 1996. Cephalopods and mesoscale oceanography at the Antarctic Polar Front: satellite tracked predators locate pelagic trophic interactions. Marine Ecology Progress Series 136, 37-50. Rodway, M.S., and Montevecchi, W.A., 1996. Sampling methods for assessing the diets of Atlantic puffin chicks. Marine Ecology Progress Series 144, 41-55. Ropert-Coudert, Y., Kato, A., Bost, C-A., Rodary, D., Sato, K., Le Maho, Y., and Naito, Y., 2002. Do Adelie penguins modify their foraging behaviour in pursuit of different prey? Marine Biology 140 (3), 647-652. Ross, R.K., 1976. A comparison of the feeding and nesting requirements of the Great cormorant (Phalacrocorax carbo L.) and Double-crested cormorant (P. auritus Lesson) in Nova Scotia. Proceedings of the Nova Scotian Institute of Science 27,114-132. 79 Russell, R.W., Harrison, N.M., and Hunt, G.L. Jr, 1999. Foraging at a front: hydrography, zooplankton, and avian planktivory in the northern Bering Sea. Marine Ecology Progress Series 182, 77-93. Safina, C., Wagner, R.H., Witting, D.A., and Smith, K.J., 1990. Prey delivered to Roseate and Common tern chicks: composition and temporal variability. Journal of Field Ornithology 61 (3), 331-338. Sagar, P.M., Miskelly, C M . , Sagar, J.L., and Tennyson, A.J.D., 2003. Population size, breeding, and annual cycle of the New Zealand Antarctic tern (Sterna vittata bethunei) at the Snares Islands. Notornis 50 (1), 36-42. Salamolard, M., and Weimerskirch, H., 1993. Relationship between foraging effort and energy requirement throughout the breeding season in the Wandering albatross. Functional Ecology 7 (6), 643-652. Sanger, G.A., 1986. Diets and food web relationships of seabirds in the Gulf of Alaska and adjacent marine regions. Environmental Assessment of the Alaskan Continental Shelf, Final Report Principal Investigation, Biological Studies. 45, 631-771. Sanger, G.A., 1987a. Trophic levels and trophic relationships of seabirds in the Gulf of Alaska, pp. 229-257. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. Sanger, G.A., 1987b. Winter diets of Common murres and Marbled murrelets in Kachemak Bay, Alaska. Condor 89 (2), 426-430 Sara, M., 1993. Feeding habits of Cory's shearwater (Calonectris diomedea) in the Central Mediterranean Sea. pp. 213-220. In: J.S. Aguilar, X. Monbailliu, and A.M. Paterson (Eds.), Status and conservation of seabirds. Ecogeography and Mediterranean Action Plan. Proceedings of the 2nd Mediterranean Seabird Symposium. MEDMARAVIS, GOB and SEO, Madrid, Spain. Sara, M., and Baccetti, N., 1993. Food habits of the Great cormorant (Phalacrocorax carbo sinensis) on a shoal (Secche Delia Meloria) in the Tyrrhenian Sea. pp. 221-227. In: J.S. Aguilar, X. Monbailliu, and A.M. Paterson (Eds.), Status and conservation of seabirds. Ecogeography and Mediterranean Action Plan. Proceedings of the 2nd Mediterranean Seabird Symposium. MEDMARAVIS, GOB and SEO, Madrid, Spain. Schoener, T.W., 1970. Non-synchronous spatial overlap of lizards in patchy habitats. Ecology 51 (3), 408-418. Schramm, M., 1983. The breeding biologies of the petrels Pterodroma macroptera, P. brevirostris and P. mollis at Marion Island. Emu 83, 75-81. Schreiber, E.A., and Burger, J., (Eds.), 2002. Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA. 722 pp. 80 Scolaro, J.A., and Bodano, L.A., 1986. Diet of the Magellanic penguin Spheniscus magellanicus during the chick-rearing period at Punta Clara, Argentina. Cormorant 13 (2), 91-97. Scolaro, J.A., Wilson, R.P., Laurenti, S., Kierspel, M., Gallelli, H., and Upton, J.A., 1999. Feeding preferences of the Magellanic penguin over its breeding range in Argentina. Waterbirds 22 (1), 104-110. Sealy, S.G., 1975. Feeding ecology of the Ancient and Marbled murrelets near Langara Island, British Columbia. Canadian Journal of Zoology 53 (4), 418-433. Seki, M.P., and Harrison, C.S., 1989. Feeding ecology of two subtropical seabird species at French Frigate Shoals, Hawaii. Bulletin of Marine Science 45 (1), 52-67. Serjeantson, D., 1997. Subsistence and symbol: the interpretation of bird remains in archaeology. International Journal of Osteoarchaeology 7 (4), 255-259. Shealer, D.A., 1995. Comparative foraging ecology of Roseate and Sandwich terns in Puerto Rico and its relation to breeding performance. PhD Thesis, Rutgers University, New Brunswick, NJ, Canada. Shealer, D.A., 2002. Foraging behavior and food of seabirds. pp. 137-177. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA. Simeone, A., and Navarro, X., 2002. Human exploitation of seabirds in coastal southern Chile during the mid-Holocene. Revista Chilena de Historia Natural 75 (2), 423-431. Simeone, A., Araya, B., Bernal, M., Diebold, E.N., Grzybowski, K., Michaels, M., Teare, J.A., Wallace, R.S., and Willis, M.J., 2002. Oceanographic and climatic factors influencing breeding and colony attendance patterns of Humboldt Penguins Spheniscus humboldti in central Chile. Marine Ecology Progress Series 227,43-50. Smith, G.C., 1990. Factors influencing egg laying and feeding in Black-naped terns Sterna sumatrana. Emu 90, 88-96. Smith, T .B., and Skulason, S., 1996. E volutionary significance o f resource polymorphisms in fishes, amphibians, and birds. Annual Review of Ecology and Systematics 27 (1), 111-113. Soave, G.E., Coria, N.R., and Montalti, D., 1996. Diet of the Pintado petrel Daption capense during the late incubation and chick-rearing periods at Laurie Island, South Orkney Islands, Antarctica, January-February 1995. Marine Ornithology 24 (6), 35-37. Spaans, A.L., 1971. On the feeding ecology of the Herring gull Larus argentatus Pont, in the Northern part of the Netherlands. Ardea 59 (3-4), 98-188. Spear, L.B., and Ainley, D.G., 1999. Migration routes of Sooty shearwaters in the Pacific Ocean. Condor 101 (2), 205-218. 81 Spear, L.B., and Ainley, D.G., 1997. Flight speed of seabirds in relation to wind speed and direction. Ibis 139 (2), 234-251. Spivak, E.D., and Sanchez, N., 1992. Prey selection by Larus belcheri atlanticus in Mar Chiquita lagoon, Buenos Aires, Argentina: a possible explanation for its discontinuous distribution. Revista Chilena de Historia Natural 65, 209-220. Springer, A.M., and Roseneau, D.G., 1985. Copepod-based food webs: auklets and oceanography in the Bering Sea. Marine Ecology Progress Series 21, 229-237. Springer, A.M., Murphy, E.C., Roseneau, D.G., McRoy, CP., and Cooper, B.A., 1987. The paradox of pelagic food webs in the northern Bering Sea-I. Seabird food habits. Continental Shelf Research 7 (8), 895-911. Springer, A.M., Piatt, J.F., and Van Vliet, G., 1996. Seabirds as proxies of marine habitats and food webs in the western Aleutian Arc. Fisheries Oceanography 5 (1), 45-55. Springer, A.M., Roseneau, D.G., Lloyd, D.S., McRoy, CP., and Murphy, E . C , 1986. Seabird responses to the fluctuating prey availability in the eastern Bering Sea. Marine Ecology Progress Series 32, 1-12. Springer, A.M., Roseneau, D.G., Murphy, E . C , and Springer, M.I., 1984. Environmental controls of marine food webs: food habits of seabirds in the Eastern Chukchi Sea. Canadian Journal of Fisheries and Aquatic Sciences 41 (8), 1202-1215. Stahl, J. - C , and Mougin, J. -L., 1 986. La segregation alimentaire chez 1 e Skua subantarctique Stercorarius skua lonnbergi dans l'archipel Crozet. L'Oiseau et la Revue Frangaise d'Ornithologie 56 (2), 193-208. Steele, W.K., and Klages, N.T., 1986. Diet of the Blue petrel at sub-Antarctic Marion Island. South African Journal of Zoology 21 (3), 253-256. Stott, R.S., and Olson, D.P., 1973. Food-habitat relationship of sea ducks on the New Hampshire coastline. Ecology 54 (5), 996-1007. Sueyoshi, E.G. 2000. Abundance of guano birds and its relation with fishery of Peruvian anchoveta from 1953 to 1999. Boletin dellnstituto del Mar del Peru 19 (1-2), 125-131. Surman, C , Moran, M., Burbidge, A., Wooller, R., and Gaughan, D., 2002. Identification and conservation of food fish for Abrolhos seabirds. Final Report for Project 9709. National Heritage Trust, Department of Fisheries, Government of Western Australia. 91 pp. Swann, R.L., Harris, M.P., and Aiton, D.G., 1991. The diet of some young seabirds on Canna, 1981-90. Seabird 13, 54-58. Sydeman, W.J., Hester, M.M., Thayer, J.A., Gress, F., Martin, P., and Buffa, J., 2001. Climate change, reproductive performance and diet composition of marine birds in the southern California Current system, 1969-1997. Progress in Oceanography 49 (1-4), 309-329. 82 Sydeman, W.J., Hobson, K.A., Pyle, P., and McLaren, E.B., 1997. Trophic relationships among seabirds in Central California: combined stable isotope and conventional dietary approach. Condor 99 (2), 327-336. Takahashi, A., Kuroki, M., Niizuma, Y., Kato, A., Saitoh, S., and Watanuki, Y., 2001. Importance of the Japanese anchovy (Engraulis japonicus) to breeding Rhinoceros auklets (Cerorhinca monocerata) on Teuri Island, Sea of Japan. Marine Biology 139 (2), 361-371. Thomas, G., 1982. The food and feeding ecology of the Light-mantled sooty albatross at South Georgia. Emu 82, 92-100. Thompson, K.R., 1993. Variation in Magellanic penguin Spheniscus magellanicus diet in the Falkland Islands. Marine Ornithology 21 (1), 57-67. Thompson, D.R., Lilliendahl, K., Solmundsson, J., Furness, R.W., Waldron, S., and Phillips, R.A., 1999. Trophic relationships among six species of Icelandic seabirds as determined through stable isotope analysis. Condor 101 (4), 898-903. Threlfall, W., 1968. The food of three species of gulls in Newfoundland. Canadian Field Naturalist 82, 176-180. Tierney, M., Hindell, M.A., and Goldsworthy, S., 2002. Energy content of mesopelagic fish from Macquarie Island. Antarctic Science 14 (3), 225-230. Tovar, H., and Guillen, V., 1988. Comportamiento alimenticio del piquero (Sula variegata), ave guanera peruana. Boletin de Lima 60, 85-90. Tovar Serpa, H., and Galarza Minaya, N., 1983. Cambios en el regimen alimentario del Guanay (Phalacrocorax bougainvillii (Lesson)). Boletin deLima 35, 85-91. Trathan, P.N., Murphy, E.J., Croxall, J.P., and Everson, I., 1998. Use of at-sea distribution data to derive potential foraging ranges of Macaroni penguins during the breeding season. Marine Ecology Progress Series 169, 263-275. Tremblay, Y., and Cherel, Y., 1999. Synchronous underwater foraging behaviour in penguins. Condor 101 (1), 179-185. Tremblay, Y., and Cherel, Y., 2000. Benthic and pelagic dives: a new foraging behaviour in Rockhopper Penguins. Marine Ecology Progress Series 204, 257-267. Trivelpiece, W.Z., Bengston, J.L., Trivelpiece, S.G., and Volkman, N.J., 1986. Foraging behavior of Gentoo and Chinstrap penguins as determined by new radiotelemetry techniques. Journal of Zoology London 103 (4), 777-781. Uttley, J., Tatner, P., and Monaghan, P.T., 1994b. Measuring the daily energy expenditure of free-living Arctic terns (Sterna paradisaea). Auk 111 (2), 453-459. 83 Uttley, J.D., Walton, P., Monaghan, P., and Austin, G., 1994a. The effects of food abundance on breeding performance and adult time budgets of guillemots Uria aalge. Ibis 136 (2), 205-213. Vader, W., Barrett, R.T., Erikstad, K.E., and Strann, K.-B., 1990. Differential responses of Common and Thick-billed murres to a crash in the capelin stock in the Southern Barents Sea. Studies in Avian Biology 14, 175-180. van der Winden, J., Nyame, S.K., Ntiarrioa-Baidu, Y., and Gordon, C , 2002. Black terns in Ghana, October 2000. Results of an exploratory survey for future Black tern studies in coastal wetlands. Final Report. Center for African Wetlands, University of Ghana, Legon, Accra, Ghana. 61 pp. van Eerden, M.R., and Munsterman, M.J., 1986. Importance of the Mediterranean for wintering cormorants Phalacrocorax carbo sinensis, pp. 123-141. In: MEDMARAVIS and X. Monbailliu (Eds.), Mediterranean Marine Avifauana. Population Studies and Conservation. NATO ASI Series, Vol. G12, Springer Verlag, Berlin, Germany. van Heezik, Y., 1988. Diet of Adelie penguins during the incubation period at Cape Bird, Ross Island, Antarctica. Notornis 35 (1), 23-26. van Heezik, Y., 1990. Seasonal, geographical, and age-related variations in the diet of the Yellow-eyed penguin (Megadyptes antipodes). New Zealand Journal of Zoology 17, 201-212. van Heezik, Y.M., 1989. Diet of the Fiordland crested penguin during the post-guard phase of chick growth. Notornis 36, 151-156. van Pelt, T.I., Piatt, J.F., Lance, B.K., and Roby, D.D., 1997. Proximate composition and energy density of some North Pacific forage fishes. Comparative Biochemistry and Physiology 118 (A4), 1393-1398. Vargas, J.M., Antunez, A., and Blasco, M., 1978. Comportamiento reproductivo y alimentario de la pagaza piconegra {Gelochelidon nilotica L.) en la laguna de Fuente Piedra de Malaga. Ardeola 24, 227-231. Velando, A., and Marquez, J.C., 2002. Predation risk and nest-site selection in the Inca Tern. Canadian Journal of Zoology 80 (6), 1117-1123. Vermeer, K., 1979. Nesting requirements, food and breeding distribution of Rhinoceros auklets, Cerorhinca monocerata, and Tufted puffins, Lunda cirrhata. Ardea 67, 101-110. Vermeer, K., 1981. Food and populations of Surf scoters in British Columbia. Wildfowl 32, 107-116. Vermeer, K., 1982. Comparison of the diet of the Glaucous-winged gull on the east and west coasts of Vancouver Island. Murrelet 63, 80-85. 84 Verrneer, K., 1985. A five-year summary (1978-1982) of the nestling diet of Cassin's auklets in British Columbia. Canadian Technical Report of Hydrography and Ocean Sciences No. 56. 15 pp. Verrneer, K., 1992. The diet of birds as a tool for monitoring the biological environment, pp. 41-50. In: K. Verrneer, R.W. Butler, and K.H. Morgan (Eds.), The ecology, status, and conservation of marine and shoreline birds on the west coast of Vancouver Island. No. 75. Canadian Wildlife Service, Occasional Paper, Ottawa, Canada. Verrneer, K., and Westrheim, S.J., 1984. Fish changes in diets of nestling Rhinoceros auklets and their implications, pp. 96-105. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Verrneer, K., Sealy, S.G., and Sanger, G.A., 1987. Feeding e cology of Alcidae in the eastern North Pacific Ocean, pp. 189-227. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. Volkman, N.J., Presler, P., and Trivelpiece, W., 1980. Diets of Pygoscelid penguins at King George Island, Antarctica. Condor 82 (4), 373-378. Votier, S.C., Bearhop, S., MacCormick, A., Ratcliffe, N., and Furness, R.W., 2003. Assessing the diet of Great skuas, Catharacta skua, using five different techniques. Polar Biology 26 (1), 20-26. Votier, S.C., Furness, R.W., Bearhop, S., Crane, J.E., Caldow, R.W.G., Catry, P., Ensor, K., Hamer, K.C., Hudson, A.V., Kalmbach, E., Klomp, N.I., Pfeiffer, S. Phillips, R.A., Prieto, I., and Thompson, D.R., 2004. Changes in fisheries discard rates and seabird communities. Nature 427 (6976), 727-730. Wang, Z.P., and Norman, F.I., 1993. Foods of the South polar skua Catharacta maccormicki in the eastern Larsemann Hills, Princess Elizabeth Land, East Antarctica. Polar Biology 13 (4), 255-262. Wanless, S., 1984. The growth and food of young gannets Sula bassana on Ailsa Craig. Seabird 7, 62-70. Wanless, S., Harris, M.P., and Morris, J.A., 1992. Diving behaviour and diet of the Blue-eyed shag at South Georgia. Polar Biology 12 (8), 713-719. Warham, J., 1974. The breeding biology and behaviour of the Snares crested penguin. Journal of the Royal Society of New Zealand 4 (1), 63-108. Watanuki, Y., 1984. Food intake and pellet of Black-tailed gull Larus crassirostris. Journal of Yamashina Institute of Ornithology'16, 168-169. Watanuki, Y., 1988. Regional difference in the diet of Slaty-backed gulls breeding around Hokkaido. Journal of the Yamashina Institute of Ornithology 20, 71-81. 85 Watanuki, Y., 1989. Sex and individual variations in the diet of Slaty-backed gulls breeding on Teuri Island, Hokkaido. Japanese Journal of Ornithology 38, 1-13. Watanuki, Y., Kato, A., Mori, Y., and Naito, Y., 1993. Diving performance of Adelie penguins in relation to food availability in fast sea-ice areas: comparison between years. Journal of Animal Ecology 62 (4), 634-646. Watanuki, Y., Nizuma, Y., Gabrielsen, G.W., Sato, K., and Naito, Y., 2003. Stroke and glide of wing-propelled divers: deep diving seabirds adjust surge frequency to buoyancy change with depth. Proceedings of the Royal Society of London, Biological Sciences 270 (1514), 483-488. Watson, R., Kitchingman, A., Gelchu, A., and Pauly, D., 2004. Mapping global fisheries: sharpening our focus. Fish and Fisheries 5 (2), 168-177. Waugh, S.M., Sagar, P.M., and Paull, D., 1997. Laying dates, breeding success and annual breeding of Southern royal albatrosses Diomedea epomorpha epomorpha at Campbell Island during 1964-1969. Emu 97 (3), 194-199. Waugh, S.M., Weimerskirch, H , Cherel, Y., Shankar, U., Prince, P.A., and Sagar, P.M., 1999. Exploitation of the marine environment by two sympatric albatrosses in the Pacific Southern Ocean. Marine Ecology Progress Series 177, 243-254. Weichler, T., Garthe, S., Luna-Jorquera, G., and Moraga, J., 2004. Seabird distribution on the Humboldt Current in northern Chile in relation to hydrography, productivity, and fisheries. ICES Journal of Marine Science 60 (1), 148-154. Weimerskirch, H., 2002. Seabird demography and its relationship with the marine environment, pp. 115-135. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA. Weimerskirch, H., and Stahl, J.-C, 1988. The breeding and feeding ecology of the Kerguelen tern Sterna virgata. Ornis Scandinavica 19 (3), 199-204. Weimerskirch, H., Catard, A., Prince, P.A., Cherel, Y., and Croxall, J.P., 1999. Foraging White-chinned petrels Procellaria aequinoctialis at risk: from the tropics to Antarctica. Biological Conservation 87 (2), 273-275. Weimerskirch, H., Cherel, Y., Cuenot-Chaillet, F., and Ridoux, V., 1997. Alternative foraging strategies and resource allocation by male and female Wandering albatrosses. Ecology 78 (7), 2051-2063. Weimerskirch, H., Guionnet, T., Martin, J., Shaffer, S.A., and Costa, D.P., 2000. Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proceedings of the Royal Society of London, Biological Sciences 267 (1455), 1869-1874. Weimerskirch, H., Inchausti, P., Guinet, C , and Barbraud, C , 2003. Trends in bird and seal populations as indicators of a system shift in the Southern Ocean. Antarctic Science 15 (2), 249-256. 86 Weimerskirch, H., Jouventin, P., and Stahl, J.-C, 1986. Comparative ecology of the six albatross species breeding on the Crozet Islands. Ibis 128 (2), 195-213. Weslawski, J.M., Koszteyn, J., Kwasniewski, S., Stempniewicz, L., and Malinga, M., 1999. Summer food resources of the Little auk, Alle alle (L.) in the European Arctic seas. Polish Polar Research 20 (4), 387-403. Wienecke, B.C., Lawless, R., Rodary, D., Bost, C.-A., Thompson, R., Pauly, T., Robertson, G., Kerry, K.R., and Le Maho, Y., 2000. Adelie penguin foraging behaviour and krill abundance along the Wilkes and Adelie land coasts, Antarctica. Deep-Sea Research II47 (12-13), 2573-2587. Wienecke, B.C., Wooller, R.D., and Klomp, N.I., 1995. The ecology and management of Little penguins on Penguin Island, Western Island, pp. 440-467. In: P. Dann, I. Norman, and P. Reilly (Eds.), The Penguins: Ecology and Management. Surrey Beatty & Sons Pty Ltd, Australia. Wilhelm, S.I., Robertson, G.J., Taylor, P.A., Gilliland, S.G., and Pinsent, D.L., 2003. Stomach contents of breeding Common murres caught in gillnets off Newfoundland. Waterbirds 26 (3), 376-378. Williams, J.C., Fischer, J., and Palmer, A., 2001. Biological monitoring at Buldir Island, Alaska in 1998: Summary appendices. US Fish and Wildlife S ervice Report AMNWR 99/03. 132 pp. Williams, R., and Capdeville, D., 1996. Seabird interactions with trawl and longline fisheries for Dissostichus eleginoides and Champsocephalus gunnari. CCAMLR Science 3, 93-99. Williams, T.D., 1991. Foraging ecology and diet of Gentoo penguins Pygoscelis papua at South Georgia during winter and an assessment of the winter prey consumption. Ibis 133 (1), 3-13. Wilson, R.P., Grant, W.S., and Duffy, D . C , 1986. Recording devices on free-ranging marine animals: does measurement affect foraging performance? Ecology 67 (4), 1091-1093. Wilson, R.P., Hustler, K., Ryan, P.G., Burger, A.E., and Noeldeke, E.C., 1992. Diving birds in cold water: do Archimedes and Boyle determine energetic costs? American Naturalist 140(2), 179-200. Wilson, R.P., Wilson, M.-P., Duffy, D.C., Araya, B.M., and Klages, N , 1989. Diving behaviour and prey of the Humboldt penguin (Spheniscus humboldti). Journal fur Ornithologie 130 (1), 75-79. Wingham, E.J., 1985. Food and feeding range of the Australasian gannet Morus serrator (Gray). Emu 85,231-239. Winkler, D.W., 1996. California gull {Larus californicus). In: A. Poole, and F. Gill (Eds.), The Birds of North America. Vol. 259. The Birds of North America Inc., Philadelphia, USA. 87 Woehler, E.J., 1995. Consumption of Southern Ocean marine resources by penguins, pp. 266-294. In: P. Dann, I. Norman, and P. Reilly (Eds.), The Penguins: Ecology and Management. Surrey Beatty & Sons Pty Ltd, Australia. Woehler, E.J., 1997. Seabird abundance, biomass and prey consumption within Prydz Bay, Antarctica, 1980/1981-1992/1993. Polar Biology 17 (4), 371-383. Woehler, E.J., and Green, K., 1992. Consumption of marine resources by seabirds and seals at Heard Island and the McDonald Islands. Polar Biology 12 (6-7), 659-665. Wolanski, E., and Hammer, W.M. 1988. Topographically controlled front and their biological influence. Science 241 (4862), 177-181. Wright, P.J., 1996. Is there a conflict between sandeel fisheries and seabirds? A case study at Shetland, pp. 154-165. In: S.P.R. Greenstreet, and M.L. Tasker (Eds.), Aquatic Predators and their Prey. Fishing News Books, Blackwell Science, Oxford, UK. Xavier, J.C., Croxall, J.P., Trathan, P.N., and Wood, A.G., 2003. Feeding strategies and diets of breeding Grey-headed and Wandering albatrosses at South Georgia. Marine Biology 143 (2), 221-232. Xavier, J.C., Trathan, P.N., Croxall, J.P., Wood, A.G., Podesta, G., and Rodhouse, P.G., 2004. Foraging ecology and interactions with fisheries of Wandering albatrosses (Diomedea exulans) breeding at South Georgia. Fisheries Oceanography 13 (5), 287-349. Young, E . C , 1963. Feeding habits of the South polar skua Catharacta maccormicki. Ibis 105, 301-318. Zar, J.H., 1999. Biostatistical Analysis. 4th Edition. Prentice Hall, Inc. New Jersey, USA. 929 pp. Zavalaga, C.B., and Paredes, R., 1999. Foraging behaviour and diet of the Guanay cormorant. South African Journal of Marine Science 21, 251-258. Zotier, R., 1990. Breeding ecology of the White-headed petrel Pterodroma lessoni on the Kerguelen Islands. Ibis 132 (4), 525-534. 88 Appendix A T A B L E 1. List of seabird species included in the study. Classification followed by Peters (1934, 1979). Status: Population status as listed in the 2003 IUCN Red List of Threatened Species (www.redlist.org; LC: Least Concern; LR: Low Risk; DD: Data Deficient; VU: Vulnerable; NT: Near Threatened; EN: Endangered; CR: Critically Endangered). Species Author Common Name Code Status Charadriiformes Alcidae Aethia cristatella (Pallas, 1769) Crested auklet 001 LC Aethia pusilla (Pallas, 1811) Least auklet 002 LC Aethia pygmaea (Gmelin, 1789) Whiskered auklet 003 LC A lea torda Linnaeus, 1758 Razorbill 004 LC Alle alle (Linnaeus, 1758) Dovekie 005 LC Brachyramphus brevirostris (Vigors, 1829) Kittlitz's murrelet 006 CR Brachyramphus marmoratus (Gmelin, 1789) Marbled murrelet 007 VU Brachyramphus perdix (Pallas, 1811) Long-billed murrelet 008 NT Cepphus carbo Pallas, 1811 Spectacled guillemot 009 LC Cepphus columba Pallas, 1811 Pigeon guillemot 010 LC Cepphus grylle (Linnaeus, 1758) Black guillemot 011 LC Cerorhinca monocerata (Pallas, 1811) Rhinoceros auklet 012 LC Aethia psittacula (Pallas, 1769) Parakeet auklet 013 LC Endomychura craveri (Salvadori, 1865) Craveri's murrelet 014 VU Endomychura hypoleuca (Xantusde Vesey, 1860) Xantus' murrelet 015 VU Fratercula arctica (Linnaeus, 1758) Atlantic puffin 016 LC Fratercula cirrhata (Pallas, 1769) Tufted puffin 017 LC Fratercula corniculata (Naumann, 1821) Horned puffin 018 LC Ptychoramphus aleuticus (Pallas, 1811) Cassin's auklet 019 LC Synthliboramphus antiquus (Gmelin, 1789) Ancient murrelet 020 LC Synthliboramphus wumizusume (Temminck, 1835) Japanese murrelet 021 VU Uria aalge (Pontoppidan, 1763) Common murre 022 LC Uria lomvia (Linnaeus, 1758) Thick-billed murre 023 LC Laridae Anous minutus Boie, 1844 Black noddy 024 LC Anous minutus tenuirostris (Temminck, 1823) Lesser noddy 025 LC Anous stolidus (Linnaeus, 1758) Brown noddy 026 LC Chlidonias albostriatus (Gray, 1845) Black-fronted tern 027 EN Chlidonias hybridus (Pallas, 1811) Whiskered tern 028 LC Chlidonias leucopterus (Temminck, 1815) White-winged tern 029 LC Chlidonias niger (Linnaeus, 1758) Black tern 030 LC Creagrus furcatus (Neboux, 1846) Swallow-tailed gull 031 LC Gygis alba (Sparrman, 1786) White tern 032 LC Gygis microrhyncha Saunders, 1876 Lesser white tern 033 LC Larosterna inca (Lesson, 1827) Inca tern 034 NT Larus argentatus Pontoppidan, 1763 Herring gull 035 LC Larus armenicus Buturlin, 1934 Armenian gull 036 LC Larus atlanticus Olrog, 1958 Olrog's gull 037 VU Larus atricilla Linnaeus, 1758 Laughing gull 038 LC Larus audouinii Payraudeau, 1826 Audouin's gull 039 NT Larus belcheri Vigors, 1829 Band-tailed gull 040 LC Larus brunnicephalus Jerdon, 1840 Brown-headed gull 041 LC Larus bulleri Hutton, 1871 Black-billed gull 042 VU Larus cachinnans Pallas, 1811 Yellow-legged gull 043 LC Larus californicus Lawrence, 1854 California gull 044 LC Larus canus Linnaeus, 1758 Common gull 045 LC Larus cirrocephalus Vieillot, 1818 Grey-headed gull 046 LC Larus crassirostris Vieillot, 1818 Black-tailed gull 047 LC continued 89 T A B L E 1. continued Species Author Common Name Code Status Larus delawarensis Ord, 1815 Ring-billed gull 048 LC Larus dominicanus Lichtenstein, 1823 Kelp gull 049 LC Larus fuliginosus Gould, 1841 Lava gull 050 VU LarusJuscus Linnaeus, 1758 Lesser black-backed gull 051 LC Larus genei Breme, 1839 Slender-billed gull 052 LC Larus glaucescens Naumann, 1840 Glaucous-winged gull 053 LC Larus glaucoides Meyer, 1822 Iceland gull 054 LC Larus glaucoides thayeri Brooks, 1915 Thayer's gull 055 LC Larus hartlaubii Bruch, 1853 Hartlaub's gull 056 LC Larus heermanni Cassin, 1852 Heermann's gull 057 NT Larus hemprichi Bruch, 1853 Sooty gull 058 LC Larus hyperboreus Gunnerus, 1767 Glaucous gull 059 LC Larus ichthyaetus Pallas, 1773 Great black-headed gull 060 LC Larus leucophthalmus Temminck, 1825 White-eyed gull 061 NT Larus livens Dwight, 1919 Yellow-footed gull 062 LC Larus maculipennis Lichtenstein, 1823 Brown-hooded gull 063 LC Larus marinus Linnaeus, 1758 Great black-backed gull 064 LC Larus melanocephalus Temminck, 1820 Mediterranean gull 065 LC Larus minutus Pallas, 1776 Little gull 066 LC Larus modestus Tschudi, 1843 Gray gull 067 LC Larus novaehollandiae Stephens, 1826 Silver gull 068 LC Larus occidentalis Audubon, 1839 Western gull 069 LC Larus paciflcus Latham, 1802 Pacific gull 070 LC Larus Philadelphia (Ord, 1815) Bonaparte's gull 071 LC Larus pipixcan Wagler, 1831 Franklin's gull 072 LC Larus relictus Lonnberg, 1931 Relict gull 073 VU Larus ridibundus Linnaeus, 1766 Common black-headed gull 074 LC Larus saundersi (Swinhoe, 1871) Saunder's gull 075 VU Larus schistisagus Stejneger, 1884 Slaty-backed gull 076 LC Larus scopulinus Forster, 1844 Red-billed gull 077 LC Larus scoresbii Traill, 1823 Dolphin gull 078 LC Larus serranus Tschudi, 1844 Andean gull 079 LC Pagophila eburnea (Phipps, 1774) Ivory gull 080 LC Phaetusa simplex (Gmelin, 1789) Large-billed tern 081 LC Procelsterna albivitta Bonaparte, 1856 Gray noddy 082 Procelsterna cerulea (Bennett, 1840) Blue noddy 083 LC Rhodostethia rosea (MacGillivray, 1824) Ross's gull 084 LC Rissa brevirostris (Bruch, 1853) Red-legged kittiwake 085 VU Rissa tridactyla (Linnaeus, 1758) Black-legged kittiwake 086 LC Sterna acuticauda . Gray, 1831 Black-bellied tern 087 NT Sterna albifrons Pallas, 1764 Little tern 088 LC Sterna aleutica Baird, 1869 Aleutian tern 089 LC Sterna anaethetus Scopoli, 1786 Bridled tern 090 LC Sterna antillarum (Lesson, 1847) Least tern 091 LC Sterna aurantia Gray, 1831 River tern 092 LC Sterna balaenarum (Strickland, 1852) Damara tern 093 NT Sterna bengalensis Lesson, 1831 Lesser crested tern 094 LC Sterna bergii Lichtenstein, 1823 Crested tern 095 LC Sterna bernsteini Schlegel, 1863 Chinese crested tern 096 CR Sterna caspia Pallas, 1770 Caspian tern 097 LC Sterna dougallii Montagu, 1813 Roseate tern 098 LC Sterna elegans Gambel, 1849 Elegant tern 099 NT Sterna forsteri Nuttall, 1834 Forster's tern 100 LC Sterna fuscata Linnaeus, 1766 Sooty tern 101 LC Sterna hirundinacea Lesson, 1831 South American tern 102 LC continued 90 T A B L E 1 . continued Species Author Common Name Code Status Sterna hirundo Linnaeus, 1758 Common tern 103 LC Sterna lorata Philippi & Landbeck, 1861 Peruvian tern 104 NT Sterna lunata Peale, 1848 Gray-backed tern 105 LC Sterna maxima Boddaert, 1783 Royal tern 106 LC Sterna nereis (Gould, 1843) Fairy tern 107 LC Sterna nilotica Gmelin, 1789 Gull-billed tern 108 LC Sterna paradisaea Pontoppidan, 1763 Arctic tern 109 LC Sterna repressa Hartert, 1916 White-cheeked tem 110 LC Sterna sandvicensis acuflavida Latham, 1787 Sandwich tern 111 LC Sterna sandvicensis eurygnatha Cayenne tern 112 Sterna saundersi Hume, 1877 Saunder's tern 113 LC Sterna striata Gmelin, 1789 White-fronted tern 114 LC Sterna sumatrana Raffles, 1822 Black-naped tem 115 LC Sterna superciliaris Vieillot, 1819 Yellow-billed tern 116 LC Sterna trudeaui Audubon, 1838 Trudeau's tern 117 LC Sterna virgata Cabanis, 1875 Kerguelen tern 118 NT Sterna vittata Gmelin, 1789 Antarctic tern 119 EN Xema sabini (Sabine, 1819) Sabine's gull 120 LC Stercorariidae Catharacta antarctica (Lesson, 1831) Brown skua 121 LC Catharacta chilensis (Bonaparte, 1857) Chilean skua 122 LC Catharacta maccormicki (Saunders, 1893) South polar skua 123 LC Catharacta pomarinus (Temminck, 1815) Pomarine jaeger 124 LC Catharacta skua Brunnich, 1764 Great skua 125 LC Stercorarius longicaudus Vieillot, 1819 Long-tailed jaeger 126 LC Stercorarius parasiticus (Linnaeus, 1758) Parasitic jaeger 127 LC Pelecaniformes Fregatidae Fregata andrewsi Mathews, 1914 Christmas Island frigatebird 128 CR Fregata aquila (Linnaeus, 1758) Ascension frigatebird 129 VU Fregata ariel (Gray, 1845) Lesser frigatebird 130 LC Fregata magnifwens Mathews, 1914 Magnificent frigatebird 131 LC Fregata minor (Gmelin, 1789) Great frigatebird 132 LC Pelecanidae Pelecanus conspicillatus Temminck, 1824 Australian pelican 133 LC Pelecanus crispus Bruch, 1832 Dalmatian pelican 134 VU Pelecanus erythrorhynchos Gmelin, 1789 American white pelican 135 LC Pelecanus occidentalis Linnaeus, 1766 Brown pelican 136 LC Pelecanus occidentalis thagus Molina, 1782 Peruvian pelican 137 LC Pelecanus onocrotalus Linnaeus, 1758 Great white pelican 138 LC Pelecanus philippensis Gmelin, 1789 Spot-billed pelican 139 VU Pelecanus rufescens Gmelin, 1789 Pink-backed pelican 140 LC Phaethontidae Phaethon aethereus Linnaeus, 1758 Red-billed tropicbird 141 LC Phaethon lepturus Daudin, 1802 White-tailed tropicbird 142 LC Phaethon rubricauda Boddaert, 1783 Red-tailed tropicbird 143 LC Phalacrocoracidae Compsohalieus fuscescens (Vieillot, 1817) Black-faced cormorant 144 LC Compsohalieus harrisi Rothschild, 1898 Flightless cormorant 145 EN Compsohalieus neglectus (Wahlberg, 1855) Bank cormorant 146 EN Compsohalieus penicillatus (Brandt, 1837) Brandt's cormorant 147 LC Euleucocarbo carunculatus (Gmelin, 1789) New Zealand king shag 148 VU Euleucocarbo chalconotus (Gray, 1845) Stewart Island shag 149 VU Euleucocarbo colensoi Buller, 1888 Auckland Island shag 150 VU Euleucocarbo onslowi Forbes, 1893 Chatham Island shag 151 EN Euleucocarbo ranfurlyi Ogilvie-Grant, 1901 Bounty Island shag 152 VU Hypoleucos auritus (Lesson, 1831) Double-crested cormorant 153 LC continued 91 T A B L E 1. continued Species Author Common Name Code Status Hypoleucos brasiliensis (Gmelin, 1789) Neotropic cormorant 154 LC Hypoleucos fuscicollis<- Stephens, 1826 v Indian cormorant 155 LC Hypoleucos sulcirostris (Brandt, 1837) ' \ Little black cormorant 156 LC Hypoleucos varius (Gmelin, 1789) Pied cormorant 157 LC Leucocarbo bougainvillii (Lesson, 1837) Guanay cormorant 158 NT Leucocarbo capensis (Span-man, 1788) Cape cormorant 159 NT Leucocarbo nigrogularis Ogilvie-Grant & Forbes, 1899 Socotra cormorant 160 VU Microcarbo africanus (Gmelin, 1789) Long-tailed cormorant 161 LC Microcarbo coronatus (Wahlberg, 1855) Crowned cormorant 162 NT Microcarbo melanoleucos (Vieillot, 1817) Little pied cormorant 163 LC Microcarbo niger (Vieillot, 1817) Little cormorant 164 LC Microcarbo pygmaeus (Pallas, 1773) Pygmy cormorant 165 NT Nesocarbo campbelli (Filhol, 1878) Campbell shag 166 VU Notocarbo atriceps King, 1828 Imperial shag 167 LC Notocarbo bransfieldensis Murphy, 1936 Antarctic shag 168 Notocarbo georgianus Lonnberg, 1906 South Georgia shag 169 Notocarbo verrucosus (Cabanis, 1875) Kerguelen shag 170 Phalacrocorax albiventer King cormorant 171 Phalacrocorax capillatus (Temminck & Schlegel, 1850) Japanese cormorant 172 LC Phalacrocorax carbo (Linnaeus, 1758) Great cormorant 173 LC Phalacrocorax purpurascens Macquarie shag 174 Strictocarbo aristotelis (Linnaeus, 1761) European shag 175 LC Strictocarbo featherstoni Buller, 1873 Pitt Island shag 176 VU Strictocarbo gaimardi (Lesson & Garnot, 1828) Red-legged cormorant 177 NT Strictocarbo magellanicus (Gmelin, 1789) Rock cormorant 178 LC Strictocarbo pelagicus Pallas, 1811 Pelagic cormorant 179 LC Strictocarbo punctatus (Sparrman, 1786) Spotted shag 180 LC Strictocarbo urile (Gmelin, 1789) Red-faced cormorant 181 LC Sulidae Morus serrator (Gray, 1843) Australasian gannet 182 LC Morus bassanus (Linnaeus, 1758) Northern gannet 183 LC Morus capensis (Lichtenstein, 1823) Cape gannet 184 VU Sula abbotti Ridgway, 1893 Abbott's booby 185 CR Sula dactylatra Lesson, 1831 Masked booby 186 LC Sula granti Rothschild, 1902 Nazca booby 187 LC Sula leucogaster (Boddaert, 1783) Brown booby 188 LC Sula nebouxii Milne-Edwards, 1882 Blue-footed booby 189 LC Sula sula (Linnaeus, 1766) Red-footed booby 190 LC Sula variegata (Tschudi, 1843) Peruvian booby 191 LC Procellariiformes Diomedeidae Diomedea amsterdamensis Roux,ef o7., 1983 Amsterdam albatross 192 CR Diomedea antipodensis Robertson & Warham, 1992 Antipodean albatross 193 VU Diomedea dabbenena Mathews, 1929 Tristan albatross 194 EN Diomedea epomophora Lesson, 1825 Southern royal albatross 195 VU Diomedea exulans Linnaeus, 1758 Wandering albatross 196 VU Diomedea gibsoni Gibson's albatross 197 VU Diomedea sanfordi Murphy, 1917 Northern royal albatross 198 EN Phoebastria albatrus (Pallas, 1769) Short-tailed albatross 199 VU Phoebastria immutabilis (Rothschild, 1893) Laysan albatross 200 VU Phoebastria irrorata Salvin, 1883 Waved albatross 201 VU Phoebastria nigripes (Audubon, 1839) Black-footed albatross 202 EN Thalassarche bulleri Rothschild, 1893 Buller's albatross 203 VU Thalassarche carteri (Rothschild, 1903) Indian yellow-nosed albatross 204 EN Thalassarche cauta (Gould, 1841) Shy albatross 205 NT Thalassarche chlororhynchos (Gmelin, 1789) Yellow-nosed albatross 206 EN continued 92 T A B L E 1. continued Species Author Common Name Code Status Thalassarche chrysostoma (Forster, 1785) Grey-headed albatross 207 VU Thalassarche eremita Murphy, 1930 Chatham albatross 208 CR Thalassarche impavida Mathews, 1912 Campbell albatross 209 VU Thalassarche melanophris (Temminck, 1828) Black-browed albatross 210 EN Thalassarche salvini (Rothschild, 1893) Salvin's albatross 211 VU Phoebetria fusca (Hilsenberg, 1822) Sooty albatross 212 EN Phoebetria palpebrata (Forster, 1785) Light-mantled albatross 213 NT Hydrobatidae Fregetta grallaria (Vieillot, 1818) White-bellied storm petrel 214 LC Fregetta tropica (Gould, 1844) Black-bellied storm petrel 215 LC Garrodia nereis (Gould, 1841) Grey-backed storm petrel 216 LC Halocyptena microsoma Coues, 1864 Least storm petrel 217 LC Hydrobates pelagicus (Linnaeus, 1758) European storm petrel 218 LC Nesofregetta fuliginosa (Gmelin, 1789) White-throated storm petrel 219 VU Oceanites gracilis (Elliot, 1859) White-vented storm petrel 220 DD Oceanites oceanicus (Kuhl, 1820) Wilson's storm petrel 221 LC Oceanodroma castro (Harcourt, 1851) Madeiran storm petrel 222 LC Oceanodroma Jurcata (Gmelin, 1789) Fork-tailed storm petrel 223 LC Oceanodroma homochroa (Coues, 1864) Ashy storm petrel 224 EN Oceanodroma hornbyi (Gray, 1854) Hornby's storm petrel 225 DD Oceanodroma leucorhoa (Vieillot, 1818) Leach's storm petrel 226 LC Oceanodroma markhami (Salvin, 1883) Markham's storm petrel 227 DD Oceanodroma matsudairae Kuroda, 1922 Matsudaira's storm petrel 228 DD Oceanodroma melania (Bonaparte, 1854) Black storm petrel 229 LC Oceanodroma monorhis (Swinhoe, 1867) Swinhoe's storm petrel 230 LC Oceanodroma tethys (Bonaparte, 1852) Wedge-rumped storm petrel 231 LC Oceanodroma tristrami Salvin, 1896 Tristram's storm petrel 232 NT Pelagodroma marina (Latham, 1790) White-faced storm petrel 233 LC Pelecanoididae Pelecanoides garnotii (Lesson, 1828) Peruvian diving petrel 234 EN Pelecanoides georgicus Murphy & Harper, 1916 South Georgia diving petrel 235 LC Pelecanoides magellani (Mathews, 1912) Magellanic diving petrel 236 LC Pelecanoides urinatrix (Gmelin, 1789) Common diving petrel 237 LC Procellariidae Bulweria bulwerii (Jardine and Selby, 1828) Bulwer's petrel 238 LC Bulweria fallax Jouanin, 1955 Jouanin's petrel 239 NT Calonectris diomedea (Scopoli, 1769) Cory's shearwater 240 LC Calonectris edwardsii (Oustalet, 1883) Cape Verde shearwater 241 NT Calonectris leucomelas (Temminck, 1835) Streaked shearwater 242 LC Daption capense (Linnaeus, 1758) Cape petrel 243 LC Fulmarus glacialis (Linnaeus, 1761) Northern fulmar 244 LC Fulmarus glacialoides (Smith, 1840) Southern fulmar 245 LC Halobaena caerulea (Gmelin, 1789) Blue petrel 246 LC Lugensa brevirostris (Lesson, 1831) Kerguelen petrel 247 LC Macronectes giganteus (Gmelin, 1789) Southern giant petrel 248 VU Macronectes halli Mathews, 1912 Northern giant petrel 249 NT Pachyptila belcheri (Mathews, 1912) Thin-billed prion 250 LC Pachyptila crassirostris (Mathews, 1912) Fulmar prion 251 LC Pachyptila desolata ^ (Gmelin, 1789) ' Antarctic prion 252 LC Pachyptila salvini (Mathews, 1912) Salvin's prion 253 LC Pachyptila turtur (Kuhl, 1820) Fairy prion 254 LC Pachyptila vittata (Forster, 1777) Broad-billed prion 255 LC Pagodroma nivea (Forster, 1777) Snow petrel 256 LC Procellaria aequinoctialis Linnaeus, 1758 White-chinned petrel 257 VU Procellaria cinerea Gmelin,. 1789 Grey petrel 258 NT Procellaria consipicillata Gould, 1844 Spectacled petrel 259 CR continued 93 T A B L E 1. continued Species Author Common Name Code Status Procellaria parkinsoni Gray, 1862 Parkinson's petrel 260 VU Procellaria westlandica Falla, 1946 Westland petrel 261 VU Pseudobulweria aterrima (Bonaparte, 1856) Mascarene petrel 262 CR Pseudobulweria becki (Murphy, 1928) Beck's petrel 263 CR Pseudobulweria macgillivrayi (Gray, 1860) Fiji petrel 264 CR Pseudobulweria rostrata (Peale, 1848) Tahiti petrel 265 NT Pterodroma alba (Gmelin, 1789) Phoenix petrel 266 EN Pterodroma arminjoniana (Giglioli & Salvadori, 1869) Trindade petrel 267 VU Pterodroma atrata Mathews, 1912 Henderson petrel 268 EN Pterodroma axillaris (Salvin, 1893) Chatham Island petrel 269 CR Pterodroma baraui (Jouanin, 1964) Barau's petrel 270 EN Pterodroma brevipes (Peale, 1848) Collared petrel 271 LC Pterodroma cahow (Nichols & Mowbray, 1916) Bermuda petrel 272 EN Pterodroma caribbaea Carte, 1866 Jamaica petrel 273 CR Pterodroma cervicalis (Salvin, 1891) White-necked petrel 274 VU Pterodroma cookii (Gray, 1843) Cook's petrel 275 EN Pterodroma defdippiana (Giglioli & Salvadori, 1869) De Filippi's petrel 276 VU Pterodroma externa (Salvin, 1875) Juan Fernandez petrel 277 VU Pterodroma feae (Salvadori, 1899) Cape Verde petrel 278 NT Pterodroma hasitata (Kuhl, 1820) Black-capped petrel 279 EN Pterodroma heraldica (Salvin, 1888) Herald petrel 280 LC Pterodroma hypoleuca (Salvin, 1888) Bonin petrel 281 LC Pterodroma incerta (Schlegel, 1863) Atlantic petrel 282 VU Pterodroma inexpectata (Forster, 1844) Mottled petrel 283 NT Pterodroma lessonii . (Garnot, 1826) White-headed petrel 284 LC Pterodroma leucoptera (Gould, 1844) Gould's petrel 285 VU Pterodroma longirostris (Stejneger, 1893) Stejneger's petrel 286 VU Pterodroma macroptera (Smith, 1840) Great-winged petrel 287 LC Pterodroma madeira Mathews, 1934 Madeira petrel 288 CR Pterodroma magentae (Giglioli & Salvadori, 1869) Magenta petrel 289 CR Pterodroma mollis (Gould, 1844) Soft-plumaged petrel 290 LC Pterodroma neglecta (Schlegel, 1863) Kermadec petrel 291 LC Pterodroma nigripennis (Rothschild, 1893) Black-winged petrel 292 LC Pterodroma phaeopygia (Salvin, 1876) Galapagos petrel 293 CR Pterodroma pycrofti Falla, 1933 Pycroft's petrel 294 VU Pterodroma sandwichensis (Ridgway, 1884) Hawaiian dark-rumped petrel 295 VU Pterodroma solandri (Gould, 1844) Providence petrel 296 VU Pterodroma ultima Murphy, 1949 Murphy's petrel 297 NT Puffinus assimilis Gould, 1838 Little shearwater 298 LC Puffinus auricularis Townsend, 1890 Townsend's shearwater 299 CR Puffinus bulleri Salvin, 1888 Buller's shearwater 300 VU Puffinus cameipes Gould, 1844 Flesh-footed shearwater 301 LC Puffinus creatopus Coues, 1864 Pink-footed shearwater 302 VU Puffinus gavia (Forster, 1844) Fluttering shearwater 303 LC Puffinus gravis (O'Reilly, 1818) Greater shearwater 304 LC Puffinus griseus (Gmelin, 1789) Sooty shearwater 305 NT Puffinus heinrothi Reichenow, 1919 Heinroth's shearwater 306 VU Puffinus huttoni Mathews, 1912 Hutton's shearwater 307 EN Puffinus therminieri Lesson, 1839 Audubon's shearwater 308 LC Puffinus mauretanicus Lowe, 1921 Balearic shearwater 309 CR Puffinus nativitatis Streets, 1877 Christmas shearwater 310 LC Puffinus newelli Henshaw, 1900 Newell's shearwater 311 EN Puffinus opisthomelas Coues, 1864 Black-vented shearwater 312 NT Puffinus pacificus (Gmelin, 1789) Wedge-tailed shearwater 313 LC Puffinus puffinus (Brunnich, 1764) Manx shearwater 314 LC Puffinus tenuirostris (Temminck, 1835) Short-tailed shearwater 315 LC continued 94 T A B L E 1. concluded Species Author Common Name Code Status Puffinus yelkouan (Acerbi, 1827) Levantine shearwater 316 LC Thalassoica antarctica (Gmelin, 1789) Antarctic petrel 317 LC Sphenisciformes Spheniscidae Aptenodytes forsteri Gray, 1844 Emperor penguin 318 LC Aptenodytes patagonicus Miller, 1778 King penguin 319 LC Eudyptes chrysocome (Forster, 1781) Rockhopper penguin 320 VU Eudyptes chrysolophus (Brandt, 1837) Macaroni penguin 321 VU Eudyptes pachyrhynchus Gray, 1845 Fiordland penguin 322 VU Eudyptes robustus Oliver, 1953 Snares penguin 323 VU Eudyptes schlegeli Finsch, 1876 Royal penguin 324 VU Eudyptes sclateri Buller, 1888 Erect-crested penguin 325 EN Eudyptula minor (Forster, 1781) Blue penguin 326 LC Megadyptes antipodes (Hombron & Jacquinot, 1841) Yellow-eyed penguin 327 EN Pygoscelis adeliae (Hombron & Jacquinot, 1841) Ad-lie penguin 328 LC Pygoscelis antarctica (Forster, 1781) Chinstrap penguin 329 LC Pygoscelis papua (Forster, 1781) Gentoo penguin 330 NT Spheniscus demersus (Linnaeus, 1758) Jackass penguin 331 VU Spheniscus humboldti Meyen, 1834 Humboldt penguin 332 VU Spheniscus magellanicus (Forster, 1781) Magellanic penguin 333 NT Spheniscus mendiculus Sundevall, 1871 Galapagos penguin 334 EN Anseriformes Anatidae Bucephala albeola (Linnaeus, 1758) Bufflehead 335 LC Bucephala clangula (Linnaeus, 1758) Common goldeneye 336 LC Bucephala islandica (Gmelin, 1789) Barrow's goldeneye 337 LC Clangula hyemalis (Linnaeus, 1758) Long-tailed duck 338 LC Histrionicus histrionicus (Linnaeus, 1758) Harlequin duck 339 LC Melanitta fusca (Linnaeus, 1758) White-winged scoter 340 LC Melanitta nigra (Linnaeus, 1758) Black scoter 341 LC Melanitta perspicillata (Linnaeus, 1758) Surf scoter 342 LC Mergus serrator Linnaeus, 1758 Red-breasted merganser 343 LC Polysticta stelleri (Pallas, 1769) Steller's eider 344 LC Somateria fischeri (Brandt, 1847) Spectacled eider 345 LC Somateria mollissima (Linnaeus, 1758) Common eider 346 LC Somateria spectabilis (Linnaeus, 1758) King eider 347 LC Tachyeres brachypterus (Latham, 1790) Falkland steamerduck 348 LC Tachyeres leucocephalus Humphrey & Thompson, 1981 Chubut steamerduck 349 NT Tachyeres patachonicus (King, 1831) Flying steamerduck 350 LC Tachyeres pteneres (Forster, 1844) Flightless steamerduck 351 LC 95 T A B L E 2. International legal instruments established since the early 1970s to protect seabirds' nesting habitat and reverse seabird population declines. Treaty title Year signed Objective,/ Ramsar Convention on Wetlands of International Importance 1971 Conservation and wise use of all wetlands through local, regional and national actions and international cooperation,, as a contribution towards achieving sustainable development throughout the world. Treaty, title v Year signed Objective Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) 1973 To protect endangered species from over-exploitation by means of a system of import/export permits. Treaty title , Year Signed >: Objective Convention on Migratory Species of Wild Animals (CMS) 1979 To protect those species of wild animals which migrate across or outside national boundaries. Treaty title Year Signed ; Description 1 Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) 1980 Conservation of Antarctic marine living resources, with conservation being defined to include rational use. Treaty title Year Signed ,' Objective;;/.".,,'/', United Nations Convention on the Law of the Sea (UNCLOS) 1982 To consider the effects of fishing operations on species associated with or dependent upon harvested species in order to maintain or restore populations of such associated or dependent species above levels at which their reproduction may become seriously threatened. Treaty title Yeair Signed Objective/ Convention on Biological Diversity (CBD) 1992 To conserve biodiversity, promote the sustainable use of its components, and encourage equitable sharing of the benefits arising out of the utilization of genetic resources. Treaty title Year Signed ' Objective IUCN Resolution of Incidental Mortality of Seabirds in Longline Fisheries 1995 The Resolution calls on States and regional fisheries organizations to take measures to reduce the incidental mortality of seabirds in longline fishing operations and also calls for further study and educational efforts. Treaty title ; V ; Year Signed Objective International Plan of Action for Reducing Incidental Catch of Seabirds in Longline Fisheries (IPOA-SEABIRDS) 1999 To reduce the incidental catch of seabirds in longline fisheries where this occurs. ! Treaty title Year Signed Objective \ Agreement on the Conservation of Albatrosses and Petrels (ACAP) 2001 To stop or reverse population declines by coordinating action between Range States to mitigate known threats to Albatross and Petrel populations. Conservation measures to be implemented include research and monitoring, reducing of incidental mortality in fisheries, eradicating of non-native species at breeding sites and reducing of disturbances, habitat loss and pollution. T A B L E 3. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding in the Arctic. Species: Codes as in Table 1 of the Appendix. Capel: Capelin; Gad: Gadids; Flatf: Flatfish; Amm: Ammodytes sp.; Seb: Sebastes sp.; Clu: Clupeidae; Perch: Perch-like; Scorp: Scorpaeniformes; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes polychaetes, insects, plants, offal. Species Area Year Capel Gad Flatf Amm Seb Clu Perch Scorp Fish Ceph Dec Cru Krill Cop Other Ref 004 Barents S. 1989 76.0 24.0 1 005 Baffin Bay 1980 100.0 2 005 Baffin Bay 1998 1.3 3.7 20.4 0.2 74.4 3 005 Greenland W 1998 1.3 5.8 17.1 74.5 1.3 3 005 Svalbard 1994 22.0 5.0 69.0 4 005 Svalbard 1995 20.0 80.0 4 011 NWTerritories 1976 98.5 1.5 5 016 Barents S. 1967 29.0 71.0 6 016 Barents S. 1980 76.0 21.0 1.0 2.0 7 016 Barents S. 1981 37.0 63.0 7 016 Barents S. 1982 74.0 26.0 7 016 Barents S. 1983 27.0 68.0 5.0 7 016 Barents S. 1987 25.0 67.0 8.0 7 016 Barents S. 1989 75.0 15.0 4.0 6.0 1 016 Barents S. 1990 46.0 2.0 47.0 5.0 7 016 Barents S. 1991 30.0 5.0 64.0 1.0 7 016 Barents S. 1992 - 20.0 25.0 26.0 29.0 7 016 Barents S. 1993 , 39.0 19.0 41.0 1.0 7 016 Barents S. 1994 25.0 13.0 42.0 3.0 15.0 2.0 7 016 Barents S. 1995 16.0 33.0 30.0 7.0 12.0 2.0 7 016 Barents S. 1996 14.0 49.0 35.0 2.0 7 016 Barents S. 1997 30.0 22.0 35.0 7.0 5.0 1.0 7 016 Barents S. 1998 23.0 14.0 7.0 4.0 52.0 7 016 Barents S. 1999 13.0 10.0 59.0 18.0 7 016 Barents S. 2000 26.0 47.0 22.0 5.0 7 022 Barents S. 1935 13.0 53.0 20.0 14.0 8 022 Barents S. 1938 2.0 80.0 18.0 8 022 Barents S. 1939 45.0 5.0 40.0 10.0 8 022 Barents S. 1947 41.0 13.0 4.0 42.0 8 022 Barents S. 1948 30.0 33.0 37.0 8 022 Barents S. 1949 20.0 35.0 10.0 35.0 8 022 Barents S. 1983 97.0 2.0 1.0 9 022 Barents S. 1989 96.0 4.0 1 022 Chukchi S. 1979 10.0 59.0 19.0 11.0 1.0 10 continued 97 T A B L E 3. continued Species Area Year Capel Gad Flatf Amm Seb Clu Perch Scorp Fish Ceph Dec Cru Krill Cop Other Ref 022 Chukchi S. 1980 6.0 53.0 4.0 34.0 1.0 1.0 1.0 10 023 Barents S. 1938 3.0 86.0 8.0 3.0 6 023 Barents S . 1983 42.0 28.0 8 023 Barents S. 1987 96.2 3.8 11 023 Barents S. 1989 93.0 7.0 1 023 Barents S . 1990 59.0 36.0 5.0 8 023 Barents S . 1991 57.0 35.0 8.0 8 023 Barents S. 1992 100.0 8 023 Barents S. 1993 45.0 16.0 39.0 8 023 Barents S. 1994 14.0 81.0 ' 5.0 8 023 Bjorruaya 1988 42.0 16.0 9.0 6.0 27.0 8 023 Bjarneya 1989 32.0 15.0 19.0 34.0 8 023 Bjorruzrya 1991 75.0 3.0 8.0 5.0 3.0 6.0 8 023 Bjornoya 1993 78.0 13.0 3.0 3.0 3.0 8 023 Bj0rn0ya 1995 34.0 3.0 11.0 17.0 35.0 8 023 Chukchi S. 1979 10.0 43.0 3.0 8.0 26.0 2.0 2.0 5.0 1.0 10 023 Chukchi S . 1980 1.0 51.0 1.0 27.0 12.0 1.0 1.0 3.0 2.0 1.0 10 023 Franz Josef L. 1993 93.0 7.0 6 023 N W Territories 1976 90.6 9.4 5 023 N W Territories 1982 6.6 51.6 1.9 2.9 20.4 16.6 12 023 Novaya Zemlya 1934 12.0 73.0 10.0 5.0 8 023 Novaya Zemlya 1942 3.0 95.0 2.0 8 023 Novaya Zemlya 1947 2.0 95.0 3.0 8 023 Novaya Zemlya 1948 66.0 17.0 15.0 2.0 8 023 Novaya Zemlya 1949 83.0 2.0 6.0 9.0 8 023 Novaya Zemlya 1950 3.0 43.0 7.0 10.0 37.0 8 023 Svalbard 1992 99.0 1.0 6 045 Barents S . 1995 30.0 40.0 30.0 13 059 Barents S. 1987 80.0 20.0 11 080 Svalbard 1984 75.0 25.0 6 086 Barents S . 1949 20.0 20.0 10.0 20.0 10.0 10.0 10.0 6 086 Barents S. 1980 91.1 8.9 14 086 Barents S. 1981 54.4 4.6 41.0 14 086 Barents S. 1983 92.4 1.6 3.0 3.0 14 086 Barents S . 1985 65.3 6.3 25.3 3.1 14 086 Barents S . 1987 79.6 20.4 11 086 Barents S. 1988 83.5 16.5 14 continued 98 T A B L E 3. concluded Species Area Year Capel Gad Flatf Amm Seb Clu Perch Scorp Fish Ceph Dec Cru Krill Cop Other Ref 086 Barents S. 1989 71.0 25.0 4.0 1 086 Barents S. r 1990 60.8 2.5 3.0 32.9 0.8 14 086 Barents S. 1992 49.4 1.3 43.0 6.3 14 086 Barents S. 1993 4.5 92.4 3.1 14 086 Barents S. 1994 0.8 91.1 8.1 14 086 Chukchi S. 1979 10.0 63.0 23.0 1.0 3.0 10 086 Chukchi S. 1980 3.0 38.0 35.0 1.0 1.0 1.0 11.0 7.0 3.0 10 086 Svalbard 1984 90.0 10.0 6 109 Beaufort S. 1976 39.0 18.0 43.0 15 109 Beaufort S. 1980 64.0 1.0 35.0 16 109 Franz Josef T 1993 21.0 75.0 4.0 6 120 L. Beaufort S. 1980 67.0 17.0 16.0 17 126 Greenland N 1985 8.0 2.0 90.0 18 127 Barents S. 1949 23.0 20.0 10.0 47.0 6 127 Barents S. 1992 36.0 36.0 28.0 6 175 Barents S. 1989 44.0 56.0 1 175 Barents S. 1990 50.0 50.0 6 245 Barents S. 1987 67.6 21.8 10.6 11 245 Barents S. 1999 87.0 12.5 0.5 6 245 Franz Josef T 1993 51.0 42.0 7.0 19 345 L , . E Siberian S. 1998 100.0 20 347 E Siberian S. 1998 74.4 25.6 20 (1) Barrett and Furness (1990); (2) Bradstreet (1982); (3) Pedersen and Falk (2001); (4) Weslawski et al. (1999); (5) Gaston et al. (1993); (6) Anker-Nilssen et al. (2000); (7) Barrett (2002); (8) Barrett et al. (1997); (9) Vader et al. (1990); (10) Springer et al. (1984); (11) Erikstad (1990); (12) Gaston (1985); (13) ICES (2000); (14) Barrett and Krasnov (1996); (15) Boekelheide (1980); (16) Divoky (1984); (17) Day et al. (2001); (18) de Korte and Wattel (1988); (19) Phillips et al. (1999); (20) Kondratyev (1999). 99 T A B L E 4. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding in the Antarctic and on Sub-Antarctic Islands. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Noto: Nototheniidae; Macr: Macrouridae; Chan: Channichthyidae; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes seabird and marine mammal carrion, polychaetes, insects, plants, offal. Species Area Year Fish Myct Noto Macr Chan Ceph Dec Cru Cop Krill Other Ref 049 Macquarie I. 1983 2.7 1.7 6.4 89.2 1 049 S Shetland I. 1996 1.0 1.0 6.1 10.0 2.9 79.0 2 109 Weddell S. 1988 98.0 1.0 1.0 3 119 S Shetland I. 1981 19.3 30.4 50.3 4 119 Crozet I. 1982 33.1 29.5 37.4 5 119 Weddell S. 1988 98.0 2.0 3 121 Antarctic Pen. 1978 10.8 89.2 6 121 Antarctic Pen. 1981 8.0 20.0 72.0 6 121 Crozet I. 1981 0.3 1.1 0.4 98.2 7 121 Kerguelen I. 1994 100.0 8 121 S Shetland I. 1994 1.8 0.9 17.4 79.9 9 121 S Georgia 2001 100.0 10 121 S Georgia 2002 100.0 10. 121 S Georgia 2003 100.0 •M0 123 Antarctic Pen. 1978 70.8 6.2 23.0 6 123 Antarctic Pen. 1981 74.0 12.0 14.0 . 6 123 Prince Edward I. 1982 100.0 11 123 S Orkney I. 1983 12 123 Prydz Bay 1989 100.0 13 123 Prydz Bay 1990 2.6 97.4 14 123 Prydz Bay 1991 100.0 15 123 Ross S. 1992 74.3 16 123 S Shetland I. 1994 32.5 7.4 5.4 4.7 9 123 S Shetland I. 1995 36.9 2.9 0.4 9.8 9 123 Wilkes L. 1996 100.0 17 167 Prince Edward I. 1980 22.0 56.0 1.0 10.0 11.0 18 167 Prince Edward I. 1985 13.7 0.7 7.1 18.8 2.8 19 167 Crozet 1. 1981 6.7 75.4 3.7 0.2 14.0 20 167 S Georgia 1990 95.0 5.0 21 168 Antarctic Pen. 1998 7.1 83.4 3.8 5.7 22 168 S Orkney 1. 1995 4.8 92.2 2.0 1.0 23 168 S Shetland 1. 1991 28.6 70.1 0.1 1.2 24 168 S Shetland 1. 1993 5.5 85.9 1.1 7.5 25 168 S Shetland I. 1995 17.8 80.0 1.9 0.3 26 continued 100 T A B L E 4. continued Species Area Year Fish Myct Noto Macr Chan Ceph Dec Cru Cop Krill Other Ref 168 S Shetland I. 1997 14.9 85.1 27 169 S Orkney I. 1995 35.6 60.9 0.3 1.6 1.6 28 169 S Orkney I. 1996 34.6 58.5 3.0 3.7 28 169 S Orkney I. 1997 14.2 78.0 0.3 5.6 1.9 28 169 S Orkney I. 1998 25.8 67.4 5.0 1.8 28 169 S Orkney I. 1999 8.4 82.9 6.8 1.9 28 174 Macquarie I. 1979 8.3 91.7 29 196 Crozet I. 1981 14.9 76.7 0.1 8.3 18 196 Crozet I. . 1982 34.7 65.3 30 196 Crozet I. 1992 3.6 22.1 74.3 31 196 Prince Edward I. 1989 36.5 58.6 0.1 4.8 32 196 S Georgia 1977 10.0 80.0 10.0 33 196 S Georgia 1999 3.4 44.3 3.8 1.6 42.1 4.8 34 196 S Georgia 2000 10.9 34.3 0.4 32.0 0.2 12.3 9.9 35 206 Crozet I. 1981 58.2 38.0 3.8 18 206 Crozet I. 1982 76.4 23.6 30 206 Kerguelen I. 1994 84.5 12.8 2.7 36 207 Campbell I. 1997 2.2 97.8 37 207 Crozet I. 1981 89.3 5.3 5.4 18 207 Crozet I. 1982 50.6 37.8 1.9 9.7 30 207 Kerguelen I. 1994 3.6 0.2 10.4 55.4 0.4 1.0 13.8 36 207 Prince Edward I. 1987 29.0 29.0 34.2 3.0 4.8 38 207 Prince Edward I. 1988 20.0 39.0 32.0 3.0 3.0 3.0 39 207 S Georgia 1976 34.0 49.0 17.0 40 207 S Georgia 1982 35.0 49.0 16.0 41 207 S Georgia 1986 10.9 1.2 1.5 70.5 15.9 42 207 S Georgia 1996 44.9 0.8 0.2 14.5 37.3 2.3 42 207 S Georgia 2000 6.4 15.9 0.2 0.4 76.0 1.1 35 210 Campbell I. 1997 96.5 3.5 37 210 Crozet I. 1982 57.7 25.6 16.7 30 210 Kerguelen I. 1994 8.5 39.1 37.4 15.0 36 210 Kerguelen I. 1995 33.4 30.0 15.5 0.2 0.1 9.2 43 210 Macquarie I. 1999 15.0 65.0 5.0 15.0 44 210 S Georgia 1976 37.0 21.0 42.0 40 210 S Georgia 1982 39.0 21.0 40.0 41 210 S Georgia 1986 12.6 2.0 14.9 31.1 39.4 42 210 S Georgia 1994 63.9 0.1 8.4 22.9 4.7 42 212 Crozet I. 1981 1.7 3.8 40.5 0.4 2.0 0.4 51.2 18 continued 101 T A B L E 4. continued Species Area Year Fish Myct Noto Macr Chan Ceph Dec Cru Cop Krill Other Ref 212 Crozet I. 1982 13.9 69.7 2.5 13.9 30 212 Prince Edward I. 1990 33.1 41.8 0.4 24.7 45 213 Crozet I. 1981 10.9 56.3 0.3 1.0 14.8 16.7 18 213 Crozet I. 1982 16.4 50.5 19.2 13.9 30 213 Prince Edward I. 1990 45.7 33.9 3.9 16.5 45 213 S Georgia 1978 2.3 66.8 0.4 30.5 46 213 S Georgia 1980 10.9 45.5 39.5 4.1 45 215 Crozet I. 1981 35.2 10.1 28.1 25.7 0.9 18 215 Weddell S. 1988 73.0 4.0 23.0 3 216 Antipodes I. 1978 100.0 47 216 Crozet I. 1981 1.6 1.6 96.8 18 216 Prince Edward I. 1974 100.0 47 216 Prince Edward I. 1994 100.0 48 221 Adelie L. 1982 39.0 9.0 3.0 37.0 12.0 49 221 Crozet I. 1982 11.9 14.9 4.9 55.7 12.6 18 221 S Georgia 1977 5.0 95.0 33 221 S Georgia 1985 28.3 1.9 37.2 0.5 30.3 1.8 50 221 Weddell S. 1988 96.0 3.0 1.0 3 235 Crozet I. 1981 0.1 19.7 80.2 18 235 Kerguelen I. 1997 1.0 5.9 10.9 81.2 51 235 S Georgia 1974 4.0 20.0 76.0 52 235 S Georgia 1982 5.6 3.5 90.9 53 235 S Georgia 1986 5.0 19.2 75.8 54 235 S Georgia 1987 5.5 47.8 46.7 54 237 Crozet I. 1981 51.1 0.1 48.6 0.2 18 237 Kerguelen I. 1997 0.2 90.7 9.1 51 237 S Georgia 1974 17.0 68.0 15.0 52 237 S Georgia 1982 0.9 21 78.1 53 237 S Georgia 1987 _ 10.8 71.3 17.9 54 243 Adelie L. 1982 29.0 64.0 7.0 49 243 Crozet I. 1981 2.0 2.0 11.6 5.6 33.8 45.0 18 243 Prydz Bay 1984 23.4 0.7 75.9 55 243 Prydz Bay 1988 13.8 0.5 0.2 85.5 56 243 Ross S. 1982 97.0 3.0 49 243 S Georgia 1974 0.9 0.9 0.6 8.8 31.5 57.3 57 243 S Orkney I. 1995 1.8 1.0 97.2 58 243 S Orkney I. 1996 63.6 35.8 0.6 59 243 S Shetland I. 1996 33.8 0.5 65.7 60 continued 102 T A B L E 4. continued Species Area Year Fish Myct Noto Macr Chan Ceph Dec Cru Cop Krill Other Ref 243 Weddell S. 1988 16.0 19.0 2.0 1.0 9.0 3 245 Adelie L. 1982 63.2 64.0 20.0 49 245 Prydz Bay 1988 0.4 0.2 36.2 56 245 Ross S. 1982 94.0 6.0 49 245 Weddell S. 1988 40.0 53.0 4.0 1.0 2.0 3 246 Crozet I. 1981 5.6 4.7 27.2 7.1 21.3 32.3 1.8 18 246 Kerguelen I. 1990 33.0 2.8 33.7 30.5 61 246 Kerguelen I. 1998 43.2 13.6 2.1 4.8 16.5 0.1 16.0 3.7 62 246 Prince Edward I. 1980 21.2 15.7 14.7 44.8 3.6 63 246 S Georgia 1974 3.9 3.9 0.7 3.9 7.7 1.3 78.6 57 246 Weddell S. 1988 90.0 9.0 1.0 3 247 Crozet I. 1981 0.1 0.2 6.0 38.1 33.1 22.5 18 247 Prince Edward I. 1980 6.0 70.2 23.8 64 247 Weddell S. 1988 64.0 24.0 11.0 1.0 3 248 Adelie L. 1984 5.0 1.0 1.0 10.0 83.0 65 248 Crozet I. 1981 5.9 4.7 89.4 18 248 Macquarie I. 1971 1.0 11.0 4.0 84.0 66 248 Prince Edward I. 1987 3.0 4.0 93.0 67 248 Prydz Bay 1985 13.3 3.3 83.4 55 248 S Georgia 1980 1.0 2.0 1.0 96.0 68 248 S Georgia 1981 1.0 1.0 21.0 77.0 68 248 S Georgia 1984 1.0 1.0 21.0 77.0 65 248 S Orkney I. 1984 1.0 4.0 27.0 68.0 65 249 Crozet I. 1981 1.4 0.1 98.5 18 249 Macquarie I. 1971 2.0 24.0 2.0 72.0 66 249 Prince Edward I. 1987 6.0 12.0 82.0 67 249 S Georgia 1980 1.0 10.0 1.0 4.0 84.0 68 249 S Georgia 1981 3.0 2.0 22.0 73.0 68 249 S Georgia 1984 3.0 2.0 22.0 73.0 65 250 Kerguelen I. 1935 100.0 47 250 Kerguelen I. 1950 100.0 47 250 Kerguelen I. 1995 1.2 0.9 73.6 24.3 69 250 Kerguelen I. 1996 1.6 1.7 73.6 23.1 69 250 Kerguelen I. 1997 3.0 5.3 44.3 47.4 69 252 Kerguelen I. 1950 100.0 47 252 Kerguelen I. 1995 4.8 1.3 31.9 62.0 69 252 Kerguelen I. 1996 6.2 5.5 86.4 1.9 69 252 Kerguelen I. 1997 4.9 2.9 79.4 12.8 69 continued 103 T A B L E 4. continued Species Area Year Fish Myct Noto Macr Chan Ceph Dec Cru Cop Krill Other Ref 252 S Georgia 1974 1.6 0.6 8.7 31.7 57.4 54 252 S Georgia 1975 1.8 0.6 8.1 31.9 57.6 57 252 S Georgia 1986 18.6 4.9 9.8 9.3 57.4 54 252 S Georgia 1991 2.2 30.1 55.7 12.0 54 252 S Georgia 1992 2.2 2.2 95.6 54 252 S Georgia 1994 2.4 1.1 16.7 16.7 1.1 54 252 Weddell S. 1988 91.0 6.0 1.0 2.0 3 253 Crozet I. 1981 2.2 3.5 59.4 14.9 12.6 7.4 18 253 Prince Edward I. 1985 41.9 13.9 33.0 11.2 70 254 Antipodes I. 1978 50.0 50.0 47 254 Crozet I. 1981 4.6 63.1 1.5 30.8 18 254 S Georgia 1983 2.7 1.3 15.1 4.0 76.9 71 256 Adelie L. 1982 95.0 2.0 2.0 1.0 49 256 Bouvet I. 1980 52.5 15.0 32.5 72 256 Ross S. 1982 63.0 37.0 49 256 Ross S. 1982 66.0 34.0 49 256 S Georgia 1977 10.0 10.0 80.0 33 256 S Orkney I. 1998 90.3 1.4 8.3 73 256 Weddell S. 1988 92.0 1.0 7.0 3 257 Crozet I. 1981 43.6 0.4 10.7 24.7 1.0 2.0 13.3 4.3 18 257 Prince Edward I. 1991 56.3 17.0 14.9 11.8 74 257 S Georgia 1977 24.0 47.0 29.0 33 257 S Georgia 1986 1.4 17.2 14.5 18.5 0.4 0.2 47.4 0.4 75 257 S Georgia 1996 3.4 21.1 14.4 18.6 1.3 41.2 76 257 S Georgia 1998 6.3 7.4 15.1 25.4 3.1 0.6 42.1 76 257 Weddell S. 1988 26.0 61.0 3.0 10.0 3 258 Crozet I. 1981 27.8 70.4 0.3 0.1 L4 18 284 Kerguelen I. 1987 37.0 48.0 15.0 77 287 Crozet I. 1981 4.2 63.7 17.0 11.9 3.2 18 287 Prince Edward I. 1980 4.2 89.5 6.3 64 290 Crozet I. 1981 15.7 39.2 38.6 6.5 18 290 Prince Edward I. 1980 1.4 89.0 9.6 64 317 Bouvet I. 1980 43.1 9.8 47.1 72 317 W Queen Maud L. 1994 28.8 4.5 66.7 78 317 Prydz Bay 1987 37.2 50.0 12.8 79 317 Prydz Bay 1988 77.5 0.2 22.3 56 317 Prydz Bay 1991 100.0 80 317 Ross S. 1982 96.0 4.0 49 continued 104 T A B L E 4. continued iecies Area Year Fish Myct Noto Macr Chan Ceph Dec Cru Cop Krill Other Ref 317 Weddell S. 1988 66.0 23.0 10.0 1.0 3 318 Adelie L. 1982 95.0 81 318 Antarctic Pen. 1993 18.0 9.0 3.0 70.0 82 318 Prydz Bay 1986 2.1 86.9 7.9 2.7 0.3 0.1 83 318 Prydz Bay 1988 7.8 28.0 7.2 57.0 84 318 Ross S. 1993 6.0 18.0 3.0 3.0 70.0 85 318 Weddell S. 1986 38.1 9.8 2.1 50.0 86 318 Weddell S. 1988 :. 1.0 99.0 3 319 Crozet I. 1981 2.2 90.2 7.6 18 319 Crozet I. 1987 1.4 98.1 0.5 87 319 Crozet I. 1991 99.6 0.4 88 319 Kerguelen I. 1995 : 37.7 62.3 89 319 . Macquarie I. 1985 5.0 92.8 2.2 90 319 McDonald I. 1987 95.0 3.4 1.0 0.6 91 319 McDonald I. s( 1992 17.1 51.2 3.3 28.4 92 319 Prince Edward I. * 1985 69.0 31.0 93 319 Prince Edward I. 1988 0.2 86.2 0.2 13.4 94 319 S Georgia 1977 30.0 70.0 49 319 S Georgia 1994 97.0 3.0 95 320 Crozet I. 1981 0.9 10.5 0.1 17.2 2.4 68.8 0.1 18 320 Kerguelen I. 1996 51.1 31.8 17.1 96 320 Kerguelen I. 2000 0.3 0.2 0.2 32.2 1.5 65.6 97 320 Macquarie I. 1981 16.0 8.0 4.0 72.0 98 320 Macquarie I. 1985 3.7 23.1 1.8 1.7 0.3 69.4 99 320 Macquarie I. 1994 11.2 2.0 3.1 0.3 83.4 100 320 Macquarie I. 1995 38.7 5.4 2.8 53.1 100 320 McDonald I. 1950 100.0 101 320 McDonald I. 1987 7.0 1.0 1.2 1.8 89.0 102 320 Prince Edward I. 1984 3.0 5.0 46.0 46.0 93 320 Prince Edward I. 1985 14.0 5.0 41.0 40.0 93 321 Prince Edward I. 1988 13.9 0.1 3.3 0.6 80.4 1.7 94 321 Crozet I. 1981 0.8 27.9 9.8 0.2 20.5 . 40.3 0.5 18 321 McDonald I. 1987 20.0 3.2 0.1 6.7 70.0 102 321 McDonald I. 1992 41.0 0.4 37.0 21.6 103 321 Prince Edward I. 1984 5.0 8.0 29.0 29.0 29.0 93 321 Prince Edward I. 1985 25.0 13.0 42.0 20.0 93 321 Prince Edward I. 1988 24.6 0.2 13.3 7.6 54.3 94 321 S Georgia 1977 2.0 98.0 104 continued 105 T A B L E 4. continued Species Area Year Fish Myct Noto Macr Chan Ceph Dec Cru Cop Krill Other Ref 321 S Georgia 1985 4.0 2.0 94.0 105 321 S Shetland I. 1971 25.0 75.0 106 324 Macquarie I. 1981 58.3 23.5 4.5 13.7 98 324 Macquarie I. 1985 3.6 41.2 0.9 3.0 51.3 107 324 Macquarie I. 1994 50.2 2.3 1.5 46.0 100 324 Macquarie I. 1995 78.4 0.3 7.4 13.9 100 328 Adelie L. 1982 18.0 3.0 79.0 49 328 Adelie L. 1996 30.0 70.0 108 328 Adelie L. 1997 31.9 68.1 69 328 Antarctic Pen. 1984 100.0 109 328 E Queen Maud L. 1989 14.9 16.4 1.1 67.6 110 328 E Queen Maud L. 1990 27.1 14.4 0.7 57.8 110 328 E Queen Maud L. 1991 19.3 4.7 3.5 72.5 110 328 E Queen Maud L. 1996 48.1 0.2 51.7 111 328 E Queen Maud L. 1997 47.2 5.6 47.2 111 328 E Queen Maud L. 1998 37.1 0.5 62.4 112 328 Enderby L. 1988 3.8 0.1 96.1 113 328 Prydz Bay 1983 22.0 10.0 2.0 66.0 114 328 Ross S. 1966 39.0 1.0 60.0 115 328 Ross S. 1974 44.0 10.0 46.0 116 328 Ross S. 1985 3.0 97.0 117 328 Ross S. 1992 65.0 7.2 27.8 118 328 Ross S. 1993 30.1 1.2 10.5 58.2 118 328 Ross S. 1994 21.7 0.1 0.7 77.5 118 328 Ross S. 1995 8.6 6.0 85.4 118 328 Ross S. 1996 75.0 12.2 12.8 118 328 Ross S. 1997 65.3 34.7 119 328 S Orkney I. 1981 1.4 0.3 98.3 120 328 S Orkney I. 1982 0.4 0.5 99.1 120 328 S Orkney I. 1997 100.0 121 328 S Orkney I. 1998 0.1 99.9 121 328 S Orkney I. 1999 0.3 0.1 99.6 121 328 S Orkney I. 2000 1.1 98.9 122 328 S Orkney I. 2001 0.3 99.7 122 328 S Shetland I. 1978 0.1 0.3 99.6 123 328 S Shetland I. 1981 7.0 5.4 14.9 72.7 124 328 S Shetland I. 1988 0.4 1.0 0.1 98.5 113 328 Weddell S. 1988 14.0 54.0 4.0 28.0 3 continued 106 T A B L E 4. continued Species Area Year Fish Myct Noto Macr Chan Ceph Dec Cru Cop Krill Other Ref 328 Wilkes L. 1985 5.6 21.4 70.2 125 328 Wilkes L. 1992 48.7 0.3 2.7 48.3 126 328 Wilkes L. 1996 30.0 70.0 108 329 S Georgia 1977 100.0 33 329 S Orkney I. 1981 2.9 0.1 97.0 120 329 S Orkney I. 1982 0.1 0.1 99.8 120 329 S Orkney I. 1997 0.2 99.8 121 329 S Orkney I. 1998 100.0 121 329 S Orkney I. 1999 0.1 99.9 121 329 S Orkney I. 2000 0.2 99.8 122 329 S Orkney I. 2001 0.1 99.9 121 329 S Shetland I. 1971 4.0 96.0 107 329 S Shetland I. 1978 0.3 0.1 99.6 123 329 S Shetland I. 1981 34.9 9.1 17.8 38.2 124 330 Crozet I. 1981 7.1 19.8 17.0 1.9 0.5 0.1 53.6 18 330 Crozet I. 1982 7.0 5.1 7.0 0.5 80.4 18 330 Macquarie I. 1985 9.5 40.5 35.8 14.2 127 330 Macquarie I. 1994 17.4 21.6 50.9 9.9 0.1 0.1 128 330 McDonald I. 1987 60.0 15.5 15.0 1.7 3.8 4.0 91 ' '330 Prince Edward I. 1982 70.0 30.0 129 330 Prince Edward I. 1985 5.3 48.2 2.1 6.0 38.4 130 330 Prince Edward I. 1988 0.3 8.4 35.0 10.0 2.1 21.9 22.3 94 330 S Georgia 1977 33.0 67.0 104 330 S Georgia 1985 34.0 66.0 105 330 S Georgia 1989 12.6 44.5 42.9 131 330 S Georgia 1992 50.0 50.0 132 330 S Georgia 1993 16.0 84.0 132 330 S Orkney I. 1993 2.6 66.9 2.0 4.3 24.2 133 330 S Orkney I. 1995 14.9 3.4 81.7 133 330 S Orkney I. 1996 0.2 0.3 38.4 0.7 60.4 133 330 S Orkney I. 1997 37.2 0.2 0.1 62.5 134 330 S Orkney I. 1998 16.4 0.1 83.5 134 continued 107 T A B L E 4. concluded Species Area Year Fish Myct Noto Macr Chan Ceph Dec Cru Cop Krill Other Ref 330 S Orkney I. 1999 0.2 6.9 0.5 92.4 134 330 S Shetland I. 1978 15.4 0.1 84.5 123 330 S Shetland I. 1981 48.6 0.5 10.5 40.4 124 (1) Merilees (1984); (2) Favero and Silva (1998); (3) Furness (1978); (4) Weimerskirch and Stahl (1988); (5) Jablonski (1995); (6) Furness and Cooper (1982);. (7) Stahl and Mougin (1986); (8) Moncorps et al. (1997); (9) Phillips et al. (2004); (10) Reinhardt (1997); (11) Adams (1982); (12) Norman and Ward (1990); (13) Wang and Norman (1993); (14) Ainley et al. (1992); (15) Mund and Miller (1995); (16) Hemmings (1984); (17) Baker and Barbraud (2001); (18) Ridoux (1994); (19) Blankley (1981); (20) Espitalier-Noel et al. (1988); (21) Wanless et al. (1992); (22) Casaux et al. (2002); (23) Casaux et al. (1997); (24) Casaux and " Barrera-Oro (1993); (25) Barrera-Oro and Casuax (1996); (26) Favero et al. (1998); (27) Casaux et al. (2001); (28) Casaux and Ramon (2002); (29) Brothers (1985); (30) Weimerskirch et al. (1986); (31) Weimerskirch et al. (1997); (32) Cooper et al. (1992a); (33) Croxall and Prince (1981); (34) Xavier et al. (2004); (35) Xavier et al. (2003); (36) Cherel et al. (2002a); (37) Waugh et al. (1999); (38) Hunter and Klages (1989); (39) Nel et al. (2000); (40) Hedd and Gales (2001); (41) Prince (1985); (42) Reid et al. (1996); (43) Cherel et al. (2000); (44) Goldsworthy et al. (2001); (45) Cooper and Klages (1995); (46) Thomas (1982); (47) Imber (1981); (48) Klages et al. (1995); (49) Ridoux and Offredo (1989); (50) Wilson et al. (1992); (51) Bocher et al. (2000); (52) Payne and Prince (1979); (53) Roby (1991); (54) Reid et al. (1997); (55) Green (1986); (56) Arnould and Whitehead (1991); (57) Prince (1980); (58) Soave et al. (1996); (59) Coria etal. (1997); (60) Jouventin etal. (1989); (61) Chaurand and Weimerskirch (1994); (62) Cherel etal. (2002b); (63) Steele and Klages (1986); (64) Schramm (1983); (65) Hunter (1985); (66) Johnstone (1977); (67) Hunter and Brooke (1992); (68) Hunter (1983); (69) Ropert-Coudert et al. (2002); (70) Cherel et al. (2002c); (71) Prince and Copestake (1990); (72) Griffiths (1983); (73) Ferretti et al. (2001); (74) Cooper et al. (1992b); (75) Croxall et al. (1995); (76) Berrow and Croxall (1999); (77) Zotier (1990); (78) Lorentsen et al. (1998); (79) Klages et al. (1990a); (80) Nicol (1993); (81) Ofrredo and Ridoux (1986); (82) Kirkwood and Robertson (1997); (83) Gales et al. (1990); (84) Robertson et al. (1994); (85) Kirkwood (2001); (86) Klages (1989); (87) Cherel and Ridoux (1992); (88) Raclot et al. (1998); (89) Bost et al. (2002); (90) Hindell (1988a); (91) Klages et al. (1990b); (92) Moore et al. (1998); (93) Brown et al. (1990); (94) Adams and Brown (1989); (95) Rodhouse et al. (1998); (96) Bocher et al. (2001); (97) Tremblay and Cherel (2000); (98) Home (1985); (99) Hindell (1988b); (100) Hull (1999); (101) Ealey (1954b); (102) Klages et al. (1989); (103) Green et al. (1998b); (104) Croxall and Prince (1980); (105) Davis et al. (1989); (106) Croxall et al. (1988b); (107) Croxall and Furse (1980); (108) Wienecke et al. (2000); (109) Nagy and Obst (1992); (110) Watanuki et al. (1993); (111) Kato et al. (2003); (112) Endo et al. (2002); (113) Coria et al. (1995); (114) Puddicombe and Johnstone (1988); (115) Emison (1968); (116) Paulin (1975); (117) van Heezik (1988); (118) Clarke et al. (1998); (119) Ainley et al. (1998); (120) Lishman (1985); (121) Lynnes et al. (2004); (122) Lynnes et al. (2002); (123) Volkman et al. (1980); (124) Jablonski (1985); (125) Green and Johnstone (1988); (126) Kent et al. (1998); (127) Hindell (1989); (128) Robinson and Hindell (1996); (129) LaCock et al. (1984); (130) Adams and Klages (1989); (131) Kato et al. (1989); (132) Bevan et al. (2002); (133) Coria et al. (2000); (134) Beron et al. (2002). 108 T A B L E 5. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the Indian Ocean. Species: Codes as in Table 1 of the Appendix. Clu: Clupeidae; Anch: Anchovies; Bel: Beloniformes; Gad: Gadids; Exoc: Exocoetidae; Goat: Goatfish; Caran: Carangidae; Perch: Perch-like; Ather: Atherinidae; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Other: includes seabird and marine mammal carrion, polychaetes, insects, offal. >pecies Area Year Clu Anch Bel Gad Exoc Goat Caran Perch Ather Fish Ceph Dec Cru Krill Other Ref 025 Abrolhos 1998 10.1 0.4 17.1 0.5 68.3 2.0 0.2 0.5 0.9 1 025 Abrolhos 1999 0.4 0.1 27.8 0.7 67.9 2.2 0.4 0.4 0.1 1 025 Abrolhos 2000 13.8 20.3 3.8 57.9 2.2 0.1 0.3 1.6 1 025 Seychelles 1967 1.2 94.5 4.3 2 026 Abrolhos 1998 4.9 0.2 1.3 0.8 77.2 15.2 0.4 1 026 Abrolhos 1999 0.1 0.1 0.3 0.5 93.2 5.3 0.1 0.4 1 026 Abrolhos 2000 5.8 0.2 1.3 3.0 69.4 19.9 0.2 0.2 1 026 Seychelles 1967 37.8 22.9 39.3 2 028 Bay of Bengal 1960 20.0 80.0 3 032 Seychelles 1967 32.7 9.5 13.0 13.8 31.0 2 090 Penguin I. 1996 27.1 25.0 34.0 0.1 11.7 2.1 4 090 Seychelles 1967 1.9 89.3 4.8 4.0 4.0 2 095 Abrolhos 1998 3.1 92.5 1.3 2.8 0.3 1 095 Abrolhos 1999 4.3 0.1 0.7 88.7 2.3 3.9 1 095 Abrolhos 2000 3.2 1.9 89.6 1.3 2.9 0.3 1 095 Tasmania 1982 4.5 4.5 63.7 098 Abrolhos 1998 1.6 4.0 0.3 90.5 1.9 1.7 1 098 Abrolhos 1999 6.7 91.8 1 098 Abrolhos 2000 a- 16.7 83.3 1 101 Abrolhos 1998 0.3 4.7 1.5 14.8 72.7 1.2 0.1 0.1 4.6 1 101 Abrolhos 1999 1.1 11.3 1.7 29.2 52.9 0.3 3.5 1 101 Abrolhos 2000 1.4 2.2 11.2 83.0 2.2 1 130 Seychelles 1967 33.0 56.0 11.0 6 132 Seychelles 1967 42.0 45.0 13.0 6 142 Seychelles 1967 51.8 21.6 15.6 11.0 2 143 Seychelles 1967 3.1 82.6 14.3 2 164 Bay of Bengal 1960 91.1 8.9 8.0 3 184 Agulhas Current 1979 52.3 25.1 15.6 1.3 5.0 0.7 7 184 Agulhas Current 1980 22.3 15.2 54.6 3.3 3.4 1.2 7 184 Agulhas Current 1981 14.4 49.7 30.5 2.3 1.7 1.4 7 184 Agulhas Current 1982 21.4 56.9 12.8 0.8 7.2 0.9 7 184 Agulhas Current 1983 51.0 21.9 6.8 2.1 16.9 1.3 7 184 Agulhas Current 1984 27.9 21.8 12.9 8.6 28.1 0.7 7 184 Agulhas Current 1985 34.0 17.8 20.9 14.5 12.1 0.7 7 continued 109 T A B L E 5. concluded Species Area Year Clu Anch Bel Gad Exoc Goat Caran Perch Ather Fish Ceph Dec Cru Krill Other Ref 184 Agulhas Current 1986 47.0 15.5 27.5 1.8 8.0 0.2 7 184 Agulhas Current 1987 27.6 23.3 34.3 7.0 6.7 1.1 7 184 Agulhas Current 1988 18.7 20.9 37.9 7.9 13.5 1.1 7 184 Agulhas Current 1989 17.7 4.4 39.0 3.8 21.5 13.6 7 184 Agulhas Current 1990 50.0 16.3 14.4 4.1 13.2 2.0 7 184 Agulhas Current 1995 61.1 18.1 20.8 8 190 Seychelles 1968 29.0 50.0 21.0 9 204 Albatross I. 1990 20.0 10.0 10.0 15.0 10.0 5.0 30.0 10 205 Tasmania 1998 9.1 64.8 15.1 10.2 0.1 0.7 11 313 Abrolhos 1998 1.7 0.8 26.9 70.6 1 313 Abrolhos 1999 0.5 0.7 6.4 40.1 52.2 0.1 1 313 Abrolhos 2000 34.1 65.9 1 320 Amsterdam I. 1995 3.4 5.7 10.0 55.9 25.0 12 326 Albatross I. 1986 34.6 34.5 27.5 3.4 13 326 W Australia 1986 8.8 75.0 1.5 14.7 14.7 14 326 W Australia 1989 8.8 55.9 18.4 16.9 16.9 14 326 W Australia 1997 17.0 25.0 42.0 13.0 3.0 15 (1) Surman et al. (2002); (2) Diamond (1983); (3) Mukherjee (1976); (4) Dunlop (1997); (5) Harris and Last (1982); (6) Diamond (1975); (7) Klages et al. (1992); (8) Adams and Klages (1999); (9) Diamond (1974); (10) Crawford et al. (1991); (11) Hedd and Gales (2001); (12) Tremblay and Cherel (1999); (13) Gales and Green (1990); (14) Wienecke et al. (1995); (15) Chiaradia et al. (2003). 110 T A B L E 6. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the Mediterranean Sea. Species: Codes as in Table 1 of the Appendix. Clu: Clupeidae; Anch: Anchovies; Perch: Perch-like; Caran: Carangidae; Scorp: Scorpaeniformes; Flat: Flatfish; Bel: Beloniformes; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Other: includes seabird and marine mammal carrion, polychaetes, insects, offal, refuse. pecies Area Year Clu Anch Ather Perch Caran Scorp Flat Bel Fish Ceph Dec Cru Cop Other Ref 039 Chafarinas I. 1994 41.9 2.6 39.6 2.3 13.9 1 039 Chafarinas I. 1995 49.1 2.3 45.5 3.4 2.0 2 039 Spain N E 1994 34.1 19.1 12.8 34.0 1 043 Chafarinas I. 1995 35.9 29.8 5.4 0.4 28.5 2 043 Spain N E 1992 5.9 23.2 1.4 69.5 3 043 Spain N E 1994 15.2 12.1 72.7 3 043 Spain N E 1995 6.8 6.0 0.4 86.8 3 043 Spain N E 1996 13.5 24.8 0.7 61.0 3 065 Black S. 2001 20.5 79.5 4 065 Greece N 1984 5.2 0.4 0.9 11.3 2.8 1.0 61.1 3.2 1.2 12.9 5 108 Italy W 1983 7.0 7.0 7.7 78.3 6 108 Spain SE 1976 • • • . 0.3 99.7 7 173 France M E D 1985 4.0 60.0 36.0 8 173 Greece N 1993 4.0 0.1 22.9 2.4 4.5 59.5 6.6 9 173 Greece N 1994 8.7 54.4 7.3 2.8 23.6 3.2 9 173 Greece W 2002 71.7 28.3 10 173 Italy W 1988 83.7 9.4 6.9 11 173 Sardinia 1991 1.9 90.6 1.6 5.9 12 173 Sardinia 1992 1.7 13.2 85.0 0.1 12 173 Tunisia 1985 75.0 25.0 8 240 Malta 1987 1.5 1.1 8.4 35.6 26.7 26.7 13 (1) Gonzalez-Solis et al. (1997a); (2) Gonzalez-Solis et al. (1997b); (3) Bosch et al. (2000); (4) Milchev et al. (2004); (5) Goutner (1986); (6) Bogliani et al. (1990); (7) Vargas et al. (1978); (8) van Eerden and Munsterman (1986); (9) Goutner et al. (1997); (10) Athanassopoulos et al. (2003); (11) Sara and Baccetti (1993); (12) Addis and Cau (1997); (13) Sara (1993). I l l T A B L E 7. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the North Atlantic Ocean. Species: Codes as in Table 1 of the Appendix. Clu: Clupeidae; Anch: Anchovies; Cape: Capelin; Oepe: Osmerus eperlanus; Gad: Gadids; Amm: Ammodytes sp., Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes seabird and marine mammal carrion, polychaetes, insects, offal, refuse. Species Area Year Clu Anch Cape Oepe Gad Amm Fish Ceph Dec Cru Krill Cop Other Ref 004 Iceland 1995 41.0 56.0 1.0 2.0 1 004 Iceland 1997 48.5 29.5 22.0 2 004 Quebec 1990 45.0 45.0 10.0 3 004 Scotland W 1989 100.0 4 004 Shetland I. 1986 100.0 5 004 Shetland I. 1987 3.0 97.0 5 004 Shetland I. 1988 25.0 75.0 6 004 Shetland I. 1989 100.0 5 011 N Norway 1996 98.3 1.7 7 011 Quebec 1990 8.5 90.4 1.1 3 011 Shetland I. 1970 17.0 83.0 5 011 Shetland I. 1987 37.0 63.0 5 011 Shetland I. 1988 63.0 37.0 6 011 Shetland I. 1989 2.0 98.0 5 016 England E 1963 13.0 80.0 7.0 8 016 Iceland 1995 35.5 44.0 7.5 13.0 1 016 Iceland 1997 49.5 32.5 18.0 2 016 Newfoundland-Labrador 1994 82.6 12.8 2.6 1.0 1.0 9 016 N Norway 1982 4.9 4.4 13.8 32.8 37.7 6.4 10 016 N Norway 1983 20.5 13.8 15.6 30.4 18.3 1.4 11 016 N Norway 1985 27.0 43.0 13.0 15.0 2.0 12 016 N Norway 1986 25.9 9.8 15.8 24.5 24.0 10 016 N Norway 1987 26.8 18.2 10.0 40.3 4.7 10 016 Quebec 1990 45.0 45.0 10.0 3 016 Scotland W 1973 8.8 87.5 3.7 13 016 Scotland W 1974 47.5 50.0 2.5 13 016 Scotland W 1975 85.0 12.5 2.5 13 016 Scotland W 1976 55.0 37.5 7.5 13 016 Scotiand W 1977 66.2 30.0 3.8 13 016 Scotland W 1978 59.5 37.5 3.0 13 016 Scotland W 1979 22.5 75.0 2.5 13 016 Scotland W 1980 25.0 75.0 13 016 Scotland W 1981 32.5 67.5 13 016 Scotland W 1982 12.5 60.0 27.5 13 continued 112 T A B L E 7. continued Species Area Year Clu Anch Cape Oepe Gad Amm Fish Ceph Dec Cru Krill Cop Other Ref 016 Shetland I. 1974 25.0 75.0 6 016 Shetland I. 1975 10.0 77.0 13.0 6 016 Shetland I. 1976 3.0 94.0 3.0 6 016 Shetland I. 1977 4.0 1.0 94.0 1.0 6 016 Shetland I. 1986 2.0 96.0 2.0 6 016 Shetland I. 1987 100.0 6 016 Shetland I. 1988 5.0 51.0 42.0 2.0 6 022 Baltic S. 1996 93.0 1.0 6.0 14 022 England E 1963 30.0 58.0 12.0 8 022 Iceland 1995 44.0 49.0 4.5 2.5 1 022 Iceland 1997 55.0 25.0 20.0 2 022 Newfoundland-Labrador 1977 92.9 2.2 4.9 15 022 Newfoundland-Labrador 1978 94.2 2.9 2.9 15 022 Newfoundland-Labrador 1982 78.2 0.7 1.3 19.8 1.3 16 022 Newfoundland-Labrador 1983 75.0 25.0 17 022 Newfoundland-Labrador 2002 99.6 0.4 18 022 SW Norway 1985 100.0 19 022 SW Norway 1990 46.0 53.5 0.5 20 022 Quebec 1990 45.0 45.0 10.0 3 022 Scotland E 1992 18.7 81.1 0.2 21 022 Scotland W 1990 36.0 38.0 26.0 4 022 Shetland I. 1986 4.0 96.0 5 022 Shetland I. 1987 100.0 5 022 Shetland I. 1988 99.0 1.0 6 022 Shetland I. 1989 99.0 1.0 5 022 Shetland I. 1990 82.0 18.0 22 022 Shetland I. 1991 80.0 20.0 22 022 Wales 1974 100.0 23 022 Wales 1975 99.0 1.0 24 022 Wales 1985 65.4 33.5 0.7 0.4 24 022 Wales 1986 81.1 18.3 0.5 0.1 24 022 Wales 1987 79.0 21.0 24 023 Iceland 1997 59.5 22.5 18.0 2 023 Newfoundland-Labrador 1978 93.1 5.9 1.0 15 023 Newfoundland-Labrador 1982 22.0 4.2 73.8 16 023 Newfoundland-Labrador 1983 30.0 70.0 17 035 Azores 1989 89.4 0.8 0.2 9.6 25 continued 113 T A B L E 7. continued Species Area Year Clu Anch Cape Oepe Gad Amm Fish Ceph Dec Cru Krill Cop Other Ref 035 Holland 1964 53.0 11.0 36.0 26 035 Newfoundland-Labrador 1967 22.8 0.1 77.1 27 035 Newfoundland-Labrador 1976 34.5 5.7 0.8 59.0 15 035 Newfoundland-Labrador 1977 26.5 6.2 14.5 52.8 15 035 Newfoundland-Labrador 1978 30.8 3.8 10.1 55.3 15 035 Quebec 1990 50.0 50.0 3 043 Azores 1996 94.8 5.2 28 048 Quebec 1990 35.0 65.0 3 051 England E 1963 11.0 14.0 52.0 23.0 8 064 Newfoundland-Labrador 1967 34.0 66.0 27 064 Quebec 1990 50.0 50.0 3 064 Scotland E 1975 79.0 21.0 29 066 England E 1964 21.9 78.1 30 066 Sweden 1980 84.7 15.3 30 071 NewBrunswick 1978 46.9 0.4 51.5 1.2 31 071 NewBrunswick 1979 5.3 1.3 86.7 6.7 31 071 NewBrunswick 1982 88.0 7.0 5.0 32 086 England E 1963 22.0 56.0 21.0 1.0 8 086 Iceland 1995 61.0 31.0 4.5 3.5 1 086 Iceland 1997 54.0 29.0 17.0 2 086 Newfoundland-Labrador 1967 41.1 1.8 57.1 27 086 Newfoundland-Labrador 1970 40.8 18.9 2.0 0.3 1.4 36.6 15 086 Quebec 1990 35.0 35.0 25.0 5.0 3 086 Scotland E 1986 98.0 2.0 33 086 Scotland E 1987 3.0 95.0 2.0 33 086 Scotland E 1988 6.0 94.0 33 086 Scotland E 1989 5.0 95.0 33 086 Scotland E 1990 7.0 86.0 7.0 33 086 Scotland E 1991 20.0 50.0 30.0 33 086 Scotland E 1992 39.0 61.0 33 086 Scotland E 1993 10.0 63.0 2.0 25.0 33 086 Scotland E 1994 12.0 84.0 4.0 33 086 Scotland E 1995 10.0 86.0 2.0 2.0 33 086 Scotland E 1996 16.0 81.0 3.0 33 086 Scotland W 1990 61.0 39.0 4 086 Shetland I. 1986 100.0 5 086 Shetland I. 1987 100.0 5 086 Shetland I. 1988 94.0 6.0 6 continued 114 T A B L E 7. continued Species Area Year Clu Anch Cape Oepe Gad Amm Fish Ceph Dec Cru Krill Cop Other Ref 086 Shetland I. 1989 78.0 22.0 5 098 Azores 1995 100.0 34 098 Azores 1996 100.0 28 098 N E U S 1987 6.8 72.6 20.6 35 103 Azores 1994 99.6 0.4 36 103 Azores 1996 100.0 28 103 England E 1963 10.0 68.0 21.0 1.0 8 103 N E U S 1987 11.4 35.5 47.3 0.1 2.7 0.6 2.4 35 103 N E U S 1998 44.0 6.0 46.0 4.0 36 103 NewBrunswick 1978 100.0 31 103 NewBrunswick 1979 100.0 31 103 Quebec 1990 22.0 42.0 36.0 3 103 Nova Scotia 1983 23.0 6.0 12.0 5.0 39.0 15.0 37 106 SE US 1998 9.0 91.0 38 108 Denmark 1975 9.3 17.0 73.7 39 108 Iberian 1982 72.8 27.2 40 108 N E U S 1995 32.0 53.0 15.0 41 108 N E U S 1996 14.0 69.0 17.0 41 109 England E 1963 63.0 22.0 10.0 3.0 2.0 42 109 N E U S 1997 17.0 2.0 2.0 45.0 31.0 3.0 43 109 NewBrunswick 1978 10.7 89.3 31 109 NewBrunswick 1979 28.7 71.1 0.2 31 109 Quebec 1990 8.0 51.0 41.0 3 109 Nova Scotia 1983 57.0 3.0 14.0 15.0 5.0 6.0 37 111 England E 1963 24.0 62.0 12.0 1.0 1.0 8 111 Puerto Rico 1993 100.0 44 125 Shetland I. 1974 91.0 9.0 45 125 Shetland I. 1975 70.0 28.0 2.0 45 125 Shetland I. 1976 86.0 14.0 45 125 Shetland I. 1977 86.0 14.0 45 125 Shetland I. 1978 72.0 24.0 4.0 45 125 Shetland I. 1979 74.0 24.0 2.0 45 125 Shetland I. 1980 68.0 28.0 4.0 45 125 Shetland I. 1981 88.0 6.0 6.0 45 125 Shetland I. 1982 95.0 5.0 45 125 Shetland I. 1983 96.0 2.0 2.0 45 125 Shetland I. 1984 61.0 33.0 6.0 45 125 Shetland I. 1985 62.0 33.0 5.0 45 continued 115 T A B L E 7. continued Species Area Year Clu Anch Cape Oepe Gad Amm Fish Ceph Dec Cru Krill Cop Other Ref 125 Shetland I. 1986 66.0 30.0 4.0 45 125 Shetland I. 4987 56.0 42.0 2.0 45 125 Shetland I. 1988 5.0 77.0 18.0 45 125 Shetland I. 1989 14.0 76.0 10.0 45 125 Shetland I. 1994 3.1 47.9 49.0 46 125 Shetland I. 1996 9.9 43.4 0.1 46.6 46 125 Shetland I. 2000 0.7 64.4 34.9 47 136 G. Mexico 1960 99.7 0.3 48 153 N E U S 1993 13.5 0.9 80.7 4.9 49 153 Quebec 1978 13.3 38.1 48.5 0.1 50 153 Quebec 1994 3.7 33.5 62.7 0.1 51 153 Quebec 1995 1.0 1.8 62.2 34.6 0.4 51 153 Quebec 1996 5.8 47.9 28.4 17.8 0.1 51 153 Nova Scotia 1971 0.2 34.5 65.3 52 173 England E 1963 1.0 98.0 1.0 8 173 France 1995 21.0 79.0 53 173 France 1998 100.0 54 173 Germany 1999 0.5 20.5 61.8 17.2 55 173 N Norway 1997 97.0 3.0 56 173 Quebec 1978 0.3 30.6 69.1 50 173 Quebec 1990 0.2 30.6 69.2 3 173 Nova Scotia 1971 0.2 29.3 70.5 52 175 England E 1963 44.0 56.0 8 175 France 1995 87.0 13.0 53 175 Iberian 1996 2.6 37.0 60.4 54 175 Scotland W 1989 58.0 42.0 55 175 Scotland W 1990 3.0 78.0 19.0 4 175 Shetland I. 1986 100.0 5 175 Shetland I. 1987 100.0 5 175 Shetland I. 1988 93.0 7.0 6 175 Shetland I. 1989 100.0 5 183 Newfoundland-Labrador 1978 11.0 . 20.0 52.0 17.0 56 183 N Norway 1986 57.0 41.0 2.0 57 183 Quebec 1990 0.9 37.5 60.5 1.1 3 183 Scotland W 1975 1.1 98.9 58 183 Scotland W 1976 100.0 58 226 Quebec 1990 76.0 24.0 3 244 Iceland 1997 18.8 6.0 20.8 14.6 9.4 15.8 5.6 3.0 6.0 59 continued 116 T A B L E 7. concluded pecies Area Year Clu Anch Cape Oepe Gad Amm Fish Ceph Dec Cru Krill Cop Other Ref 244 Scotland W 1981 20.0 20.0 0.3 2.5 40.7 16.5 60 244 Shetland I. 1986 4.0 96.0 6 244 Shetland I. 1987 29.0 71.0 6 244 Shetland I. 1988 3.0 97.0 6 244 Shetland I. 1989 4.0 17.0 79.0 6 244 Shetland I. 1999 15.0 1.0 59.0 5.1 19.9 61 304 Nova Scotia 1974 20.1 45.6 26.9 7.4 62 304 Nova Scotia 1975 8.3 89.6 0.3 1.8 62 305 Nova Scotia 1974 33.0 64.0 3.0 62 314 N E U S 1989 60.0 40.0 63 335 N E U S 1969 82.4 13.2 4.4 64 336 N E U S 1969 15.9 29.6 54.5 64 338 N E U S 1969 31.0 3.0 66.0 64 339 Newfoundland-Labrador 1999 100.0 65 343 N E U S 1969 100.0 64 344 N Norway 1998 13.0 87.0 66 346 N E U S 1935 6.9 93.1 67 346 Newfoundland-Labrador 1985 1.3 2.1 96.6 68 (1) Lilliendahl and Solmundsson (1997); (2) Thompson et al. (1999); (3) Cairns et al. (1991); (4) Swann et al. (1991); (5) van Heezik (1989); (6) Harris and Riddiford (1989); (7) Barrett and Anker-Nilssen (1997); (8) Dunnet et al. (1990); (9) Rodway and Montevecchi (1996); (10) Barrett and Rikardsen (1992); (11) Barrett et al. (1987); (12) Anker-Nilssen (1987); (13) Hislop and Harris (1985); (14) Lyngs and Durinck (1998); (15) Brown and Nettleship (1984); (16) Birkhead and Nettleship (1987); (17) Vader et al. (1990); (18) Wilhelm et al. (2003); (19) Anker-Nilssen and Nygard (1987); (20) Lorentsen and Anker-Nilssen (1999); (21) Harris and Wanless (1995); (22) Uttley et al. (1994); (23) Birkhead (1976); (24) Hatchwell (1991); (25) Hamer et al. (1994); (26) Spaans (1971); (27) Threlfall (1968); (28) Ramos et al. (1998); (29) Beaman (1978); (30) Gotmark (1984); (31) Braune and Gaskin (1982); (32) Cooper (1986); (33) Harris and Wanless (1997); (34) Ramos et al. (1995); (35) Safina et al. (1990); (36) Granadeiro et al. (2002); (37) Kirkham (1986); (38) McGinnis and Emslie (2001); (39) Bogliani et al. (1990); (40) Costa (1984); (41) Erwin et al. (1998); (42) Pearson (1968); (43) Hall et al. (2000); (44) Shealer (1995); (46) Hamer et al. (1991); (47) Votier et al. (2003); (48) Palmer (1962); (49) Blackwell et al. (1995); (50) Pilon et al. (1983); (51) Rail and Chapdelaine (1998); (52) Ross (1976); (53) Gremillet et al. (1998); (54) Gremillet (1997); (55) Leopold and van Damme (2003); (56) Johansen et al. (2001); (57) Anker-Nilssen et al. (2000); (58) Wanless (1984); (59) Phillips et al. (1999); (60) Furness and Todd (1984); (61) Ojowski et al. (2000); (62) Brown et al. (1981); (63) Lee (1995); (64) Stott and Olson (1973); (65) Robert and Cloutier (2001); (66) Bustnes et al. (2000); (67) Cottam (1939); (68) Goudie and Ankey (1986). 117 T A B L E 8. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the North Pacific Ocean. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Clup: Clupeidae; Anch: Anchovies; Ammo: Ammodytes sp.; Cape: Capelin; Caran: Carangidae; Osme: Osmeridae; Gad: Gadids; Belon: Beloniformes; Onco: Oncorhynchus spp.; Flat: Flatfish; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes molluscs, echinoderms, polychaetes, insects, and offal. Species Area Year Myct Clup Anch Ammo Cape Caran Osme Gad Belon Seba Onco Flat Fish 001 Buldirl . 1993 001 Buldir I. 1994 001 Buldirl . 1995 0.3 001 Buldirl . 1996 0.1 001 Buldir I. 1997 001 Buldirl . 1998 001 E Bering S. 1986 001 E Bering S. 1987 001 G. Alaska 1964 001 G . Alaska 1965 001 Pribilofl. 1980 002 Buldirl . 1994 0.1 002 Buldirl . 1995 2.8 002 Buldirl . 1996 002 Buldirl . 1997 1.3 002 Buldirl . 1998 002 E Bering S. 1966 002 E Bering S. 1976 002 E Bering S. 1978 002 E Bering S. 1981 002 E Bering S. 1982 002 E Bering S. 1983 002 E Bering S. 1986 1.5 1.4 002 E Bering S. 1987 0.1 002 G. Alaska 1964 002 G. Alaska 1965 002 Pribilofl. 1982 003 Buldir I. 1993 003 Buldir I. 1994 003 Buldirl. 1995 003 Buldirl . 1996 003 Buldirl . 1997 003 Buldirl . 1998 continued 118 T A B L E 8. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the North Pacific Ocean. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Clup: Clupeidae; Anch: Anchovies; Ammo: Ammodytes sp.; Cape: Capelin; Caran: Carangidae; Osme: Osmeridae; Gad: Gadids; Belon: Beloniformes; Onco: Oncorhynchus spp.; Flat: Flatfish; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes molluscs, echinoderms, polychaetes, insects, and offal. Species . Area Year Ceph Dec C r u Kri l l Cop Other Reference 001 Buldirl . 1993 100.0 Williams etal. (2001) 001 Buldirl . 1994 2.6 6.3 35.2 55.9 Williams era/. (2001) 001 Buldirl . 1995 0.2 3.2 3.7 50.9 41.7 Williams etal. (2001) 001 Buldirl . 1996 0.1 1.0 0.4 59.6 20.3 Williams etal. (2001) 001 Buldir I. 1997 0.4 1.2 49.3 38.8 Williams etal. (2001) 001 Buldir I. 1998 0.2 97.9 50.5 Williams etal. (2001) 001 E Bering S. 1986 4.0 2.4 7.0 Harrison (1990) 001 E Bering S. 1987 0.1 0.3 52.9 1.7 Piatt etal. (1990) 001 G. Alaska 1964 21.9 75.8 25.2 Bedard(1969) 001 G. Alaska 1965 3.0 16.2 70.0 5.0 Bedard(1969) 001 Pribilofl. 1980 30.0 89.0 Verrneer etal. (1987) 002 Buldirl . 1994 12.4 10.8 1.5 75.3 0.6 Williams etal. (2001) 002 Buldirl . 1995 7.0 4.9 6.7 78.5 5.3 Williams etal. (2001) 002 Buldir I. 1996 0.6 0.7 5.4 91.7 0.3 Williams etal. (2001) 002 Buldir 1. 1997 2.6 3.0 3.5 83.3 4.4 Williams etal. (2001) 002 Buldir I. 1998 0.2 2.7. 7.0 93.4 0.2 Williams etal. (2001) 002 E Bering S. 1966 6.0 10.0 1.0 75.0 2.0 Springer and Roseneau (1985) 002 E Bering S. 1976 2.0 1.0 1.0 96.0 Springer and Roseneau (1985) 002 E Bering S. 1978 5.0 9.0 0.9 84.0 Springer and Roseneau (1985) 002 E Bering S. 1981 2.0 9.0 1.0 87.0 1.0 Springer and Roseneau (1985) 002 E Bering S. 1982 5.0 5.0 1.0 89.0 Springer and Roseneau (1985) 002 E Bering S. 1983 12.0 3.0 2.0 84.0 Springer and Roseneau (1985) 002 E Bering S. 1986 3.1 8.6 19.5 80.0 Harrison (1990) 002 E Bering S. 1987 0.1 1.2 1.5 8.4 96.2 Piatt etal. (1990) 002 G. Alaska 1964 10.0 10.0 1.6 71.6 Bedard(1969) 002 G. Alaska 1965 15.5 7.6 5.4 75.3 Bedard(1969) 002 Pribilofl. 1982 2.8 0.8 94.8 Roby(1991) 003 Buldirl . 1994 3.6 8.4 42.5 45.3 0.2 Williams etal. (2001) 003 Buldir I. 1994 3.6 8.4. 42.5 45.3 0.2 Williams etal. (2001) 003 Buldir I. 1995 3.6 1.8 18.5 75.4 0.7 Williams et al. (2001) 003 Buldir I. 1996 0.1 0.6 23.6 75.4 0.3 Williams etal. (2001) 003 Buldir I. 1997 3.7 1.4 0.6 92.2 2.1 Williams etal. (2001) 003 Buldirl . 1998 0.1 0.7 8.6 90.4 0.2 Williams etal. (2001) continued 119 T A B L E 8. continued jecies Area Year Myct Clup Anch Ammo Cape Caran Osme Gad Belon Seba Onco Flat Fish 006 Aleutian I. 1989 100.0 006 E Bering S. 1985 20.0 25.0 25.0 006 G. Alaska 1990 97.2 2.8 006 G. Alaska 1996 80.2 8.0 11.8 007 Aleutian I. 1989 4.4 51.5 007 British Columbia 1972 67.0 6.0 007 British Columbia 1990 71.3 007 G. Alaska 1978 18.5 51.8 0.2 8.4 007 G. Alaska 1980 59.0 19.0 007 G. Alaska 1990 93.6 6.4 007 G. Alaska 1996 81.0 13.9 0.5 4.6 010 G. Alaska 1979 60.3 1.8 0.5 0.5 36.9 010 G. Alaska 1980 39.7 7.1 0.6 0.6 52.0 010 G. Alaska 1981 17.6 25.0 2.2 5.0 5.0 45.2 010 G. Alaska 1987 19.7 26.1 45.6 010 G. Alaska 1989 25.0 14.7 27.9 0.5 0.5 31.4 010 G. Alaska 1990 2.2 11.8 19.1 4.0 4.0 58.9 010 G. Alaska 1994 1.8 10.3 36.8 0.6 0.6 49.9 010 G. Alaska 1995 11.8 10.3 8.8 1.8 1.8 65.5 010 G. Alaska 1996 3.0 17.6 11.8 1.5 1.5 64.6 012 British Columbia 1976 1.8 3.7 90.7 2.4 012 British Columbia 1977 8.1 44.2 36.8 4.5 2.6 012 British Columbia 1978 24.2 17.7 13.5 12.2 2.9 26.6 012 British Columbia 1979 17.9 53.9 19.4 1.4 4.3 012 British Columbia 1980 49.6 31.1 0.6 12.8 1.4 012 British Columbia 1986 7.5 2.5 35.6 11.4 14.3 8.6 12.3 6.5 012 British Columbia 1987 12.5 45.9 22.7 18.3 0.6 012 British Columbia 1988 16.9 52.7 22.9 1.7 5.8 012 British Columbia 1989 44.7 30.2 18.3 6.8 012 G. Alaska 1979 74.8 22.4 2.3 012 G. Alaska 1985 21.0 61.0 17.0 012 Hokkaido 1984 24.8 46.3 22.0 6.9 012 Hokkaido 1985 25.1 2.3 30.9 6.3 35.4 012 Hokkaido 1987 19.0 2.4 44.8 29.0 4.8 012 Hokkaido 1992 31.2 56.0 12.8 012 Hokkaido 1993 60.2 30.5 9.3 012 Hokkaido 1994 95.5 4.5 012 Hokkaido 1995 50.0 25.0 25.0 continued 120 T A B L E 8. continued Species Area Year Ceph Dec Cru Kri l l Cop Other Reference 006 Aleutian I. 1989 Day etal. (1999) 006 E Bering S. 1985 30.0 Vermeer etal. (1987) 006 G. Alaska 1990 Bay etal. (1999) 006 G. Alaska 1996 Day etal. (1999) 007 Aleutian I. 1989 44.1 Day etal. (1999) 007 British Columbia 1972 27.0 Sealy(1975) 007 British Columbia 1990 28.7 Vermeer (1992) 007 G. Alaska 1978 9.3 11.8 Sanger (1987b) 007 G. Alaska 1980 6.0 16.0 Vermeer etal. (1987) 007 G. Alaska 1990 Day etal. (1999) 007 G. Alaska 1996 Day etal. (1999) 010 G. Alaska 1979 Hayes and Kuletz (1997) 010 G. Alaska 1980 Hayes and Kuletz (1997) 010 G. Alaska 1981 Hayes and Kuletz (1997) 010 G. Alaska 1987 8.6 Litzower al. (1998) 010 G. Alaska 1989 Hayes and Kuletz (1997) 010 G. Alaska 1990 Hayes and Kuletz (1997) 010 G. Alaska 1994 Hayes and Kuletz (1997) 010 G. Alaska 1995 Hayes and Kuletz (1997) 010 G. Alaska 1996 Hayes and Kuletz (1997) 012 British Columbia 1976 1.4 Vermeer and Westrheim (1984) 012 British Columbia 1977 3.8 Vermeer and Westrheim (1984) 012 British" Columbia 1978 2.9 Vermeer and Westrheim (1984) 012 British Columbia 1979 3.1 Vermeer and Westrheim (1984) 012 British Columbia 1980 4.5 Vermeer and Westrheim (1984) 012 British Columbia 1986 1.3 Burger et al. (1993) 012 British Columbia 1987 Burger etal. (1993) 012 British Columbia 1988 Burger et al. (1993) 012 British Columbia 1989 Burger et al. (1993) 012 G. Alaska 1979 0.5 Hatch (1984) 012 G. Alaska 1985 1.0 Vermeer et al. (1987) 012 Hokkaido 1984 Bertram (2001) 012 Hokkaido 1985 Bertram (2001) 012 Hokkaido 1987 Bertram (2001) 012 Hokkaido 1992 Bertram (2001) 012 Hokkaido 1993 Bertram (2001) 012 Hokkaido 1994 Bertram (2001) 012 Hokkaido 1995 Bertram (2001) continued 121 T A B L E 8. continued Species Area Year Myct Clup Anch Ammo Cape Caran Osme Gad Belon Seba Onco Flat Fish 012 Hokkaido 1996 53.2 32.9 13.9 012 Hokkaido 1997 15.2 27.6 54.8 012 Hokkaido 1998 88.4 8.8 2.4 2.8 012 Hokkaido 1999 68.2 12.7 19.1 012 Hokkaido 2000 77.1 22.9 012 Japan 1994 92.7 6.0 1.0 0.3 012 Japan 1995 49.7 24.5 25.8 012 Japan 1996 42.7 38.0 0.4 16.9 1.8 012 Japan 1997 15.7 24.6 51.9 2.0 0.8 012 Japan 1998 86.1 7.9 0.5 0.4 3.2 1.3 0.2 012 Washington 1974 21.0 58.0 6.0 15.0 012 Washington 1975 4.0 28.0 33.0 35.0 013 Aleutian I. 1996 0.6 4.7 0.3 1.5 013 Buldir I. 1993 013 Buldir I. 1994 013 Buldirl. 1995 013 Buldir I. 1996 013 Buldir I. 1997 013 E Bering S. 1986 9.0 013 Pribilofl. 1980 33.7 016 Okhotsk S. 1987 54.3 21.1 2.3 2.1 2.1 1.6 13.4 2.9 016 Okhotsk S. 1988 6.9 79.1 3.6 0.3 1.3 1.9 1.1 5.6 016 Okhotsk S. 1999 38.3 35.6 7.0 15.0 017 British Columbia 1977 59.8 25.2 7.8 2.6 017 British Columbia 1978 44.9 10.0 3.6 39.0 017 Buldir I. 1988 57.3 3.2 9.6 017 Buldir I. 1989 11.7 2.7 55.4 017 Buldir I. 1991 0.1 7.8 82.8 0.3 017 Buldir I. 1992 15.4 41.3 017 Buldir I. 1994 2.4 0.2 4.1 0.1 38.1 017 Buldir I. 1996 0.4 53.8 017 Buldir I. 1997 15.6 1.5 10.6 017 Buldir I. 1998 5.6 0.2 46.4 0.2 35.6 017 G. Alaska 1979 47.1 4.4 22.3 24.0 017 G. Alaska 1987 41.5 21.6 19.1 4.7 0.1 0.1 10.1 017 G. Alaska 1995 22.0 5.0 13.0 56.0 017 Okhotsk S. 1987 14.2 37.9 2.6 13.6 0.4 15.9 11.0 4.1 017 Okhotsk S. 1988 26.3 46.5 6.2 3.3 0.9 5.5 1.6 8.4 continued 122 T A B L E 8. continued Species Area Year Ceph Dec C r u Kri l l Cop Other Reference 012 Hokkaido 1996 Bertram (2001) 012 Hokkaido 1997 Bertram (2001) 012 Hokkaido 1998 Bertram (2001) 012 Hokkaido 1999 Bertram (2001) 012 Hokkaido 2000 Bertram (2001) 012 Japan 1994 Takahashi etal. (2001) 012 Japan 1995 Takahashi era/. (2001) 012 Japan 1996 0.2 Takahashi et al. (2001) 012 Japan 1997 5.0 Takahashi etal. (2001) 012 Japan 1998 0.4 Takahashi et al. (2001) 012 Washington 1974 Leschner(1976) 012 Washington 1975 Leschner(1976) 013 Aleutian I. 1996 10.8 1.9 11.2 11.2 57.8 Hunt etal. (1998) 013 Buldir I. 1993 1.4 33.8 0.1 64.7 Williams etal. (2001) 013 Buldir I. 1994 37.2 62.8 Williams etal. (2001) 013 Buldir I. 1995 0.1 5.3 37.2 57.4 Williams etal. (2001) 013 Buldir I. 1996 1.3 9.5 89.2 Williams etal. (2001) 013 Buldir I. 1997 49.2 50.8 Williams et al. (2001) 013 E Bering S. 1986 1.0 47.0 28.0 15.0 Harrison (1990) 013 Pribilofl. 1980 36.3 30.0 Verrneer etal. (1987) 016 Okhotsk S. 1987 0.2 Golubova (2002) 016 Okhotsk S. 1988 0.2 Golubova (2002) 016 Okhotsk S. 1999 Golubova (2002) 017 British Columbia 1977 4.6 Verrneer (1979) 017 British Columbia 1978 2.5 Verrneer (1979) 017 Buldir I. 1988 29.9 Williams et al. (2001) 017 Buldir I. 1989 30.2 Williams etal. (2001) 017 Buldirl . 1991 9.0 Williams et al. (2001) 017 Buldir I. 1992 43.3 Williams et al. (2001) 017 Buldir I. 1994 55.1 Williams etal. (2001) 017 Buldir I. 1996 45.8 Williams e/a/. (2001) 017 Buldir I. 1997 72.3 Williams etal. (2001) 017 Buldir I. 1998 11.4 0.6 Williams etal. (2001) 017 G. Alaska 1979 2.2 Hatch (1984) 017 G. Alaska 1987 2.4 0.1 0.3 Hatch and Sanger (1992) 017 G. Alaska 1995 4.0 Piatt etal. (1990) 017 Okhotsk S. 1987 0.3 Golubova (2002) 017 Okhotsk S. 1988 1.1 0.2 Golubova (2002) continued 123 TABLE 8. continued Species Area Year Myct Clup Anch Ammo Cape Caran Osme Gad Belon Seba Onco Flat Fish 017 Okhotsk S. 1990 17.6 1.9 23.5 3.9 45.4 3.9 1.9 017 Okhotsk S. 1999 82.6 13.3 0.2 0.2 0.3 3.3 018 Aleutian I. 1987 86.3 2.9 4.3 6.5 018 Aleutian I. 1994 32.1 25.0 28.6 14.3 018 Aleutian I. 1998 8.8 50.3 3.3 018 Buldir I. 1975 42.3 44.2 018 Buldir I. 1988 2.5 75.7 1.9 1.1 7.8 018 Buldir I. 1989 22.1 5.4 42.1 018 Buldir I. 1991 64.2 5.9 17.1 018 Buldir I. 1994 4.4 2.0 64.7 018 Buldir I. 1996 34.0 018 Buldir I. 1998 018 G. Alaska 1977 54.7 36.5 6.0 2.8 018 G. Alaska 1979 98.9 0.7 0.4 018 G. Alaska 1987 90.1 2.3 1.2 6.4 018 G. Alaska 1994 68.1 1.7 13.6 16.6 018 G. Alaska 1998 94.1 2.0 3.8 018 G. Alaska 1999 40.6 0.2 38.5 0.8 018 Okhotsk S. 1988 58.7 5.1 4.8 30.8 018 Pribilofl. 1984 26.0 26.1 019 British Columbia 1978 1.2 1.0 2.0 019 British Columbia 1979 5.8 5.0 11.6 019 British Columbia 1980 4.8 3.0 9.6 019 British Columbia 1981 7.3 6.0 14.6 019 British Columbia 1982 2.2 2.0 4.0 019 British Columbia 1987 48.7 019 British Columbia 1988 67.9 019 British Columbia 1996 2.1 019 British Columbia 1997 30.2 019 British Columbia 1998 15.0 15.0 14.5 019 British Columbia 1999 9.4 020 British Columbia 1979 5.0 020 G. Alaska 1970 22.0 23.0 022 Anadyr G. 1973 19.4 022 Bering S. 1971 24.8 24.7 24.7 022 E Bering S. 1978 42.0 55.0 3.0 022 E Bering S. 1980 8.0 90.0 2.0 022 E Bering S. 1981 84.0 16.0 continued 124 TABLE 8. continued Species Area Year Ceph Dec Cru Krill Cop Other Reference 017 Okhotsk S. 1990 1.9 Golubova (2002) 017 Okhotsk S. 1999 0.1 Golubova (2002) 018 Aleutian I. 1987 Piatt and Kitaysky (2002) 018 Aleutian I. 1994 Piatt and Kitaysky (2002) 018 Aleutian I. 1998 33.4 0.8 3.4 Piatt and Kitaysky (2002) 018 Buldir I. 1975 13.5 Piatt and Kitaysky (2002) 018 Buldir I. 1988 11.0 Williams etal. (2001) 018 Buldir I. 1989 30.4 Williams etal. (2001) 018 Buldir I. 1991 12.8 Piatt and Kitaysky (2002) 018 Buldirl. 1994 28.9 Williams etal. (2001) 018 Buldir I. 1996 66.0 Williams etal. (2001) 018 Buldir I. 1998 Williams etal. (2001) 018 G. Alaska 1977 Piatt and Kitaysky (2002) 018 G. Alaska 1979 Piatt and Kitaysky (2002) 018 G. Alaska 1987 Piatt and Kitaysky (2002) 018 G. Alaska 1994 Piatt and Kitaysky (2002) 018 G. Alaska 1998 0.1 Piatt and Kitaysky (2002) 018 G. Alaska 1999 19.4 Piatt and Kitaysky (2002) 018 Okhotsk S. 1988 0.3 - 0.3 Piatt and Kitaysky (2002) 018 Pribilofl. 1984 47.5 0.4 Piatt and Kitaysky (2002) 019 British Columbia 1978 4.4 6.6 33.3 51.5 Verrneer (1985) 019 British Columbia 1979 6.5 0.7 19.6 50.3 0.5 Verrneer (1985) 019 British Columbia 1980 0.5 5.3 0.9 25.5 50.4 Verrneer (1985) 019 British Columbia 1981 0.8 0.7 0.6 33.0 37.0 Verrneer (1985) 019 British Columbia 1982 0.9 2.0 0.6 56.0 32.3 Verrneer (1985) 019 British Columbia 1987 2.0 17.2 32.1 Burger and Powell (1990) 019 British Columbia 1988 7.7 0.8 23.6 Burger and Powell (1990) 019 British Columbia 1996 4.9 1.7 61.5 29.8 Heddetal. (2002) 019 British Columbia 1997 1.3 0.1 6.8 61.6 Redd etal. (2002) 019 British Columbia 1998 3.2 7.2 10.2 34.9 Hedd etal. (2002) 019 British Columbia 1999 3.8 1.1 30.0 55.7 Hedd etal. (2002) 020 British Columbia 1979 95.0 Gaston etal. (1993) 020 G. Alaska 1970 55.0 Verrneer etal. (1987) 022 Anadyr G. 1973 0.1 0.2 47.2 33.1 Ogietal. (1985) 022 Bering S. 1971 8.1 17.7 Ogi and Tsujita (1973) 022 E Bering S. 1978 Springer et al. (1987) 022 E Bering S. 1980 Springer et al. (1987) 022 E Bering S. 1981 Springer et al. (1987) continued 125 TABLE 8. continued Species Area Year Myct Clup Anch Ammo Cape Caran Osme Gad Belon Seba Onco Flat Fish 022 E Bering S. 1982 90.0 10.0 022 E Bering S. 1984 55.0 1.0 2.0 39.0 1.0 2.0 022 G. Alaska 1978 5.3 0.1 2.5 5.2 3.8 022 G. Alaska 1980 27.0 37.0 16.0 022 Pribilofl. 1982 3.0 90.0 6.0 1.0 022 Pribilofl. 1983 14.0 83.0 3.0 023 Aleutian I. 1973 24.6 023 Anadyr G. 1973 6.5 023 Bering S. 1971 24.8 24.7 24.7 023 G. Alaska 1980 19.0 10.0 11.0 023 Hokkaido 1980 100.0 023 Kurile I. 1973 98.3 023 Okhotsk S. 1973 43.0 43.0 023 Pribilofl. 1982 63.0 16.0 21.0 023 Pribilofl. 1983 2.0 2.0 90.0 2.0 4.0 023 N Pacific 1973 25.8 047 Hokkaido 1984 85.0 15.0 047 Hokkaido 1985 52.5 37.5 7.5 047 Hokkaido 1987 61.4 35.0 047 Hokkaido 1992 14.0 86.0 047 Hokkaido 1993 0.5 99.5 047 Hokkaido 1994 76.3 23.7 047 Hokkaido 1995 0.5 99.5 047 Hokkaido 1996 7.5 92.5 047 Hokkaido 1997 100.0 047 Hokkaido 1998 53.8 43.6 047 Hokkaido 1999 25.0 75.0 047 Hokkaido 2000 31.6 68.4 047 Japan 1983 17.4 50.9 047 Yellow S. 1982 43.5 053 British Columbia 1980 18.0 28.0 46.0 076 Hokkaido 1984 7.4 0.6 6.0 36.5 076 Hokkaido 1985 63.5 076 Japan 1986 50.1 085 Buldir I. 1989 39.7 18.1 085 Buldir I. 1991 48.4 085 Buldir I. 1992 78.0 085 Buldir I. 1993 86.2 1.3 continued 126 TABLE 8. continued Species Area Year Ceph Dec Cru Kri l l Cop Other Reference 022 E Bering S. 1982 Springer et al. (1987) 022 E Bering S. 1984 Springer al. (1987) 022 G. Alaska 1978 31.9 51.2 Sanger (1987b) 022 G. Alaska 1980 5.0 10.0 5.0 Vermeer etal. (1987) 022 Pribilofl. 1982 Springer al. (1986) 022 Pribilofl. 1983 Springer et al. (1986) 023 Aleutian I. 1973 75.4 Ogi (1980) 023 Anadyr G. 1973 0.1 0.1 86.0 7.3 Ogi and Hamanaka (1982) 023 Bering S. 1971 8.1 17.7 Ogi and Tsujita (1973) 023 G. Alaska 1980 29.0 13.0 18.0 Vermeer etal. (1987) 023 Hokkaido 1980 Hashimoto (1993) 023 Kurile I. 1973 1.7 Ogi (1980) 023 Okhotsk S. 1973 14.0 Ogi (1980) 023 Pribilofl. 1982 Springer et al. (1986) 023 Pribilofl. 1983 Springer et al. (1986) 023 N Pacific 1973 66.4 7.8 Ogi (1980) 047 Hokkaido 1984 Bertram (2001) 047 Hokkaido 1985 2.5 Bertram (2001) 047 Hokkaido 1987 3.6 Bertram (2001) 047 Hokkaido 1992 Bertram (2001) 047 Hokkaido 1993 Bertram (2001) 047 Hokkaido 1994 Bertram (2001) 047 Hokkaido 1995 Bertram (2001) 047 Hokkaido 1996 Bertram (2001) 047 Hokkaido 1997 Bertram (2001) 047 Hokkaido 1998 2.6 Bertram (2001) 047 Hokkaido 1999 Bertram (2001) 047 Hokkaido 2000 Bertram (2001) 047 Japan 1983 5.8 25.9 Watanuki (1984) 047 Yellow S. 1982 16.5 24.0 16.0 Cheng(1990) 053 British Columbia 1980 4.1 3.9 Vermeer (1982) 076 Hokkaido 1984 2.5 0.4 46.6 Watanuki (1988) 076 Hokkaido 1985 5.3 31.2 Watanuki (1989) 076 Japan 1986 2.5 10.9 0.4 36.1 Watanuki (1988) 085 Buldir I. 1989 39.4 2.8 Springer etal. (1996) 085 Buldir I. 1991 35.0 2.9 12.2 1.5 Williams et al. (2001) 085 Buldir I. 1992 2.1 17.9 2.0 Williams et al. (2001) 085 Buldir I. 1993 5.8 1.1 5.6 Williams et al. (2001) continued 127 TABLE 8. continued Area Year Myct Clup Anch Ammo Cape Caran Osme Gad Belon Seba Onco Flat Fish 085 Buldir I. 1994 89.1 085 Buldir I. 1995 98.3 085 Buldir I. 1996 32.9 085 Buldirl . 1997 91.3 085 Buldir I. 1998 79.1 10.5 085 Pribilofl. 1993 79.1 3.1 10.6 086 Aleutian I. 1989 17.1 63.7 6.1 086 Buldir I. 1989 15.6 11.7 6.9 086 Buldir I. 1991 086 Buldirl . 1992 3.2 086 Buldir I. 1993 100.0 086 Buldir I. 1994 086 Buldirl . 1995 83.6 086 Buldir I. 1996 67.3 086 Buldir I. 1997 13.4 086 Buldir I. 1998 14.5 086 E Bering S. 1978 71.0 29.0 086 E Bering S. 1980 50.0 50.0 086 E Bering S. 1981 31.0 69.0 086 E Bering S. 1982 68.0 32.0 086 E Bering S. 1983 27.0 73.0 1.0 086 E Bering S. 1984 68.0 32.0 2.0 086 Pribilofl. 1975 1.0 2.0 88.0 086 Pribilofl. 1982 100.0 086 Pribilofl. 1983 20.0 80.0 086 Pribilofl. 1993 8.3 27.9 49.4 49.4 089 Aleutian I. 1985 12.0 7.0 12.0 6.0 109 G. Alaska 1978 18.0 34.0 12.0 30.0 147 British Columbia 1980 86.7 13.3 153 British Columbia 1971 2.7 0.1 4.6 91.7 172 Japan 1992 2.0 41.5 40.0 0.9 172 Japan 1993 5.0 17.5 63.5 16.5 172 Japan 1994 30.5 35.0 27.5 7.5 6.5 172 Japan 1995 5.0 28.0 3.1.0 4.0 3.0 179 Aleutian I. 1980 26.7 33.4 29.0 7.0 26.7 179 British Columbia 1971 18.9 74.3 179 G. Alaska 1985 85.8 2.0 10.1 179 Oregon 1940 94.0 continued 128 TABLE 8. continued Species Area Year Ceph Dec C r u Kri l l Cop Other Reference 085 Buldir I. 1994 8.3 2.6 Williams etal. (2001) 085 Buldir I. 1995 1.7 Williams etal. (2001) 085 Buldir I. 1996 33.7 0.8 32.6 Williams etal. (2001) 085 Buldir I. 1997 8.6 0.1 Williams etal. (2001) 085 Buldirl . 1998 7.5 0.8 2.1 Williams etal. (2001) 085 Pribilofl. 1993 2.8 4.4 Lance and Roby (1998) 086 Aleutian I. 1989 0.3 2.1 10.7 Springer etal. (1996) 086 Buldirl . 1989 25.0 5.6 34.2 1.0 Springer etal. (1996) 086 Buldirl . 1991 100.0 Williams et al. (2001) 086 Buldir I. 1992 34.1 0.3 37.9 22.1 2.4 Williams etal. (2001) 086 Buldir I. 1993 Williams etal. (2001) 086 Buldir I. 1994 26.4 4.9 68.7 Williams etal. (2001) 086 Buldir I. 1995 2.3 11.8 2.3 Williams etal. (2001) 086 Buldir I. 1996 22.4 0.7 9.6 Williams etal. (2001) 086 Buldir I. 1997 26.2 30.2 30.2 Williams etal. (2001) 086 Buldir I. 1998 0.3 77.0 8.2 Williams etal. (2001) 086 E Bering S. 1978 Springer et al. (1987) 086 E Bering S. 1980 Springer et al. (1987) 086 E Bering S. 1981 Springer et al. (1987) 086 E Bering S. 1982 Springer et al. (1987) 086 E Bering S. 1983 Springer et al. (1987) 086 E Bering S. 1984 Springer et al. (1987) 086 Pribilofl. 1975 2.0 1.0 Decker et al. (1995) 086 Pribilofl. 1982 Springer et al. (1986) 086 Pribilofl. 1983 Springer et al. (1986) 086 Pribilofl. 1993 2.2 2.5 9.7 Springer etal. (1986) 089 Aleutian I. 1985 11.0 55.0 3.0 Sanger (1986) 109 G. Alaska 1978 6.0 Baird (1983) 147 British Columbia 1980 Ainley etal. (1981) 153 British Columbia 1971 Robertson (1974) 172 Japan 1992 Kato etal. (2001) 172 Japan 1993 Kato era/. (2001) 172 Japan 1994 Kato et al. (2001) 172 Japan 1995 Kato etal. (2001) 179 Aleutian I. 1980 33.3 6.6 Ainley etal. (1981) 179 British Columbia 1971 6.8 Robertson (1974) 179 G. Alaska 1985 2.1 DeGange and Sanger (1987) 179 Oregon 1940 5.0 1.0 Gabrielson and Jewett (1940) continued TABLE 8. concluded Species Area Year Myct Clup Anch Ammo Cape Caran Osme Gad Belon Seba Onco Flat Fish 181 Aleutian I. 1989 96.7 3.3 223 Buldir I. 1996 69.9 223 Buldir I. 1997 74.6 223 Buldir I. 1998 97.6 226 Buldir I. 1996 90.7 226 Buldir I. 1997 97.1 226 Buldir I. 1998 28.1 244 G. Alaska 1985 3.0 300 C Pacific 1991 3.0 71.0 19.5 301 NW Pacific 1991 36.1 27.8 305 Hokkaido 1980 87.8 305 NW Pacific 1990 52.6 315 Aleutian I. 1978 93.5 315 Bering S. 1978 12.6 315 Bering S. 1997 1.5 315 Bering S. 1998 15.0 7.0 315 Bering S. 1999 15.0 21.0 18.0 315 Kurile I. 1978 100.0 315 Okhotsk S. 1978 5.4 315 N Pacific 1978 59.6 315 NW Pacific 1978 49.7 315 NW Pacific 1990 59.4 337 British Columbia 1980 9.1 337 G. Alaska 1980 338 Anadyr G. 1998 339 Aleutian I. 1996 0.9 340 Anadyr G. 1998 341 Anadyr G. 1998 342 British Columbia 1980 346 E Bering S. 1935 1.5 347 G. Alaska 1935 130 TABLE 8. concluded Species Area Year Ceph Dec Cru Kri l l Cop Other Reference 181 Aleutian I. 1989 Springer et al. (1996) 223 Buldir I. 1996 27.5 2.4 0.2 Williams et al. (2001) 223 Buldir I. 1997 12.1 4.7 4.4 4.2 Williams et al. (2001) 223 Buldir I. 1998 1.9 0.5 Williams etal. (2001) 226 Buldir I. 1996 0.7 3.2 5.4 Williams etal. (2001) 226 Buldir I. 1997 1.5 1.4 Williams et al. (2001) 226 Buldir I. 1998 14.0 18.4 38.4 1.1 Williams etal. (2001) 244 G. Alaska 1985 96.0 1.0 DeGange and Sanger (1987) 300 C Pacific 1991 0.9 1.9 3.7 Gould al. (1998) 301 NW Pacific 1991 27.1 9.0 Gould etal. (1997) 305 Hokkaido 1980 7.7 0.3 4.2 Ogi (1984) 305 NW Pacific 1990 38.2 9.2 Gould etal. (2000) 315 Aleutian I. 1978 2.1 4.4 Ogi etal. (1980) 315 Bering S. 1978 0.1 66.8 20.5 Ogi etal. (1980) 315 Bering S. 1997 98.5 Hunt et al. (2002) 315 Bering S. 1998 78.0 Hunter al. (2002) 315 Bering S. 1999 46.0 Hunt etal. (2002) 315 Kurile I. . 1978 Ogi etal. (1980) 315 Okhotsk S. " 1978 11.2 83.4 Ogi et al. (1980) 315 N Pacific 1978 30.6 9.6 0.2 Ogi et al. (1980) 315 NW Pacific 1978 13.9 0.2 17.2 19.0 Ogi et al. (1980) 315 NW Pacific 1990 39.0 1.6 Gould etal. (2000) 337 British Columbia 1980 4.1 86.8 Vermeer (1982) 337 G. Alaska 1980 0.2 99.8 Koehl etal. (1982) 338 Anadyr G. 1998 100.0 Kondratyev (1999) 339 Aleutian I. 1996 4.8 26.3 68.0 Fischer and Griffin (2000) 340 Anadyr G. 1998 100.0 Kondratyev (1999) 341 Anadyr G. 1998 89.7 10.3 Kondratyev (1999) 342 British Columbia 1980 6.5 93.5 Vermeer (1981) 346 E Bering S. 1935 30.7 67.8 Cottam(1939) 347 G. Alaska 1935 18.6 81.4 Cottam(1939) 131 T A B L E 9. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the South Atlantic Ocean. Species: Codes as in Table 1 of the Appendix. Clup: Clupeidae; Anch: Anchovies; Belon: Beloniformes; Perch: Perch-like; Caran: Carangidae; Gad: Gadids; Myct: Myctophidae; Ceph: cephalopods; Dec: Species Area Year Clup Anch Belon Perch Caran Gad Myct Fish Ceph Dec C r u Kri l l Cop Other Ref 030 Ghana 2000 100.0 1 032 Ascension 1959 99.0 1.0 2 037 Argentina 1988 100.0 3 037 Argentina 1999 88.5 11.5 4 049 S Africa E 1978 50.0 50.0 5 095 Benguela 1991 79.0 17.0 4.0 6 095 Benguela 1992 18.0 65.0 6.0 7.0 4.0 6 095 Benguela 1993 3.0 64.0 1.0 1.0 6.0 25.0 6 098 S Africa E 1977 100.0 7 101 Ascension 1959 99.0 1.0 8 102 Argentina 1998 83.7 16.3 9 103 Argentina 1999 91.1 8.9 10 121 Goughl. 1983 100.0 11 131 Brazil E 1986 100.0 12 {' 138 Namibia 1981 100.0 13 146 S Africa W 1980 100.0 14 159 Benguela 1984 1.0 48.0 25.0 25.0 1.0 6 159 Benguela 1985 97.0 0.5 0.5 2.0 6 159 Benguela 1986 50.0 50.0 6 159 Benguela 1987 1.0 99.0 6 159 Benguela 1989 70.0 30.0 6 159 Benguela 1990 70.0 24.0 6.0 6 159 Benguela 1991 37.0 59.0 4.0 6 159 Benguela 1992 21.0 60.0 16.0 3.0 6 159 Namibia 1958 77.0 18.0 3.0 2.0 15 159 Namibia 1979 28.0 1.0 65.0 3.0 3.0 15 159 S Africa W 1954 36.0 32.0 21.0 6.0 5.0 15 159 S Africa W 1955 44.0 19.0 14.0 15.0 8.0 15 159 S Africa W 1956 18.0 12.0 1.0 16.0 28.0 25.0 15 159 S Africa W 1978 30.0 50.0 1.0 10.0 9.0 15 159 S Africa W 1985 0.1 45.7 14.4 3.1 36.3 0.2 0.2 16 167 Patagonia 1992 42.5 30.0 9.8 2.0 15.7 17 171 Argentina 1992 15.3 82.4 2.3 18 178 Argentina 1993 0.6 0.1 90.9 8.4 19 continued 132 TABLE 9 . continued Species Area Year CIup Anch Belon Perch Caran Gad Myct Fish Ceph Dec C r u Kri l l Cop Other Ref 184 Benguela 1983 2.3 27.3 21.2 41.7 7.5 20 184 Benguela 1984 7.6 34.8 15.2 36.4 6.0 20 184 Benguela 1985 15.2 16.7 18.9 44.7 4.5 20 184 Benguela 1986 15.2 16.7 29.5 35.6 3.0 20 184 Benguela 1987 38.6 30.3 15.2 13.6 2.3 20 184 Benguela 1988 43.2 21.2 13.6 18.9 3.1 20 184 Benguela 1989 47.0 10.6 13.6 19.7 9.1 20 184 Benguela 1990 62.9 6.1 6.8 18.9 5.3 20 184 Namibia 1958 85.0 10.0 5.0 15 184 Namibia 1979 1.0 86.0 5.0 4.0 4.0 15 184 S Africa W 1954 44.0 30.0 7.0 18.0 1.0 15 184 S Africa W 1955 62.0 26.0 11.0 1.0 15 184 S Africa W 1956 20.0 25.0 4.0 30.0 11.0 10.0 15 184 S Africa W 1978 10.0 50.0 10.0 4.0 26.0 21 184 S Africa W 1979 6.0 48.5 14.5 1.0 9.5 21.5 21 184 S Africa W 1980 4.5 54.0 18.5 7.5 15.5 21 184 S Africa W 1981 4.5 54.0 15.5 14.0 12.0 21 184 S Africa W 1982 2.0 64.0 9.5 17.0 7.5 21 184 S Africa W 1983 6.0 44.0 16.0 27.5 6.5 21 184 S Africa W 1984 7.5 50.0 10.5 22.0 10.0 21 184 S Africa W 1985 18.0 27.0 19.5 28.0 7.5 21 184 S Africa W 1986 21.0 51.5 13.0 12.5 2.0 21 184 S Africa W 1987 42.5 34.5 12.5 7.0 3.5 21 184 S Africa W 1988 36.5 39.0 10.5 10.5 3.5 21 184 S Africa W 1989 49.0 18.5 10.0 10.5 12.0 21 186 Ascension 1955 100.0 22 188 Ascension 1955 100.0 22 210 Diego Ramirez I. 2000 23 210 Diego Ramirez I. 2001 66.0 2.7 22.9 6.1 2.3 23 210 Diego Ramirez I. 2002 75.9 3.7 2.4 1.9 12.6 3.0 0.5 23 257 Benguela 1985 1.2 20.6 11.8 13.6 52.8 24 282 Gough I. 1990 11.0 86.7 0.9 1.4 25 305 Benguela 1985 33.3 60.7 3.0 3.0 24 319 Falkland I. 2001 97.8 2.2 26 320 Falkland I. 1980 1.9 53.0 6.9 38.2 27 320 Falkland I. 1987 41.3 36.0 22.7 28 320 Falkland I. 1993 1.7 39.0 59.3 28 320 Falkland I. 1994 15.8 1.7 82.5 28 320 Falkland I. 1996 77.3 0.8 21.9 28 continued 133 T A B L E 9. continued Species Area Year Clup Anch Belon Perch Caran Gad Myct Fish Ceph Dec C r u Kri l l Cop Other Ref 320 Falkland I. 1997 74.1 25.9 28 320 Falkland I. 1998 100.0 28 320 Falkland I. 1999 96.4 1.1 2.5 28 330 Falkland I. 1990 20.0 3.0 77.0 29 330 Falkland I. 1991 7.0 7.0 86.0 29 330 Falkland I. 1992 31.0 4.0 65.0 29 330 Falkland I. 1993 41.0 3.0 56.0 29 330 Falkland I. 1994 45.0 7.0 48.0 29 330 Falkland I. 2000 34.0 48.0 18.0 30 331 Benguela 1983 1.6 95.0 1.6 1.8 20 331 Benguela 1984 99.2 0.8 20 331 Benguela 1985 90.2 4.9 4.9 20 331 Benguela 1986 100.0 20 331 Benguela 1987 10.7 86.0 1.6 1.7 20 331 Benguela 1988 4.9 91.0 1.6 2.5 20 331 Benguela 1989 24.6 62.3 4.9 8.2 20 331 Benguela 1990 56.6 18.0 16.4 9.0 20 331 Benguela 1991 95.0 5.0 6 331 Benguela 1992 68.0 22.0 10.0 6 331 Namibia 1958 83.0 6.0 6.0 5.0 15 331 Namibia 1980 11.0 54.0 20.0 15.0 15 331 S Africa W 1954 37.0 2.0 20.0 23.0 9.0 9.0 15 331 S Africa W 1955 49.0 44.0 2.0 2.0 3.0 '.15 331 S Africa W 1978 1.0 84.0 14.0 1.0 15 333 Argentina 1980 51.6 3.1 29.8 15.5 31 333 Argentina 1988 56.9 22.1 19.3 1.7 32 333 Argentina 1997 55.0 8.0 5.0 33 333 Falkland I. 1986 32.0 31.4 66.6 2.0 34 333 Falkland I. 1987 54.8 30.0 15.2 34 333 Falkland I. 1989 2.7 64.5 32.8 34 333 Falkland I. 1990 3.0 64.0 33.0 29 333 Falkland I. 1991 9.0 91.0 29 333 Falkland I. 1992 7.0 93.0 29 333 Falkland I. 1993 38.0 26.0 36.0 29 333 Falkland I. 1994 57.0 43.0 29 (1) Van der Winden et al. (2002); (2) Dorward (1963); (3) Spivak and Sanchez (1992); (4) Copello and Favero (2001); (5) McLachlan et al. (1980); (6) Crawford and Dyer (1995); (7) Randall and Randall (1978); (8) Ashmole (1963); (9) Favero et al. (2000); (10) Mauco et al. (2001); (11) Fraser (1984); (12) Rexende (1987); (13) Guillet and Furness (1985); (14) Crawford et al. (1985); (15) Burger and Cooper (1984); (16) Gibbs et al. (1987); (17) Punta et al. (1993); (18) Malacalza et al. (1994); (19) Malacalza et al. (1997); (20) Adams et al. (1992); (21) Berruti et al. (1993); (22) Dorward (1962); (23) Arata and Xavier (2003); (24) Jackson (1988); (25) Klages and Cooper (1997); (26) Cherel et al. (2002d); (27) Croxall et al. (1985); (28) Piitz et al. (2001); (29) Bingham (1995); (30) Clausen and Piitz (2003); (31) Scolaro and Bodano (1986); (32) Scolaro et al. (1999); (33) Gandini et al. (1999); (34) Thompson (1993). 134 TABLE 10. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the South Pacific Ocean. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Chip: Clupeidae; Anch: Anchovies; Seba: Sebastes sp.; Ammo: Ammodytes sp.; Perch: Perch-like; Goat: Goatfish; Exoc: Exocoetidae; Belon: Beloniformes; Caran: Carangidae; Syno: Synodontidae; Flat: Flatfish; Athe: Atherinidae; Scorp: Scorpaeniformes; Gad: Gadids; Ceph: cephalopods; s, insects, and offal. Belon Caran Syno Flat Athe Scorp 5.3 1.0 40.5 22.3 9.5 4.5 pedes Area Year Myct Clup Anch Seba Ammo Perch Goat Exoc 010 California Bight 1993 61.5 012 California Bight 1993 19.1 37.4 29.6 1.0 019 California Bight 1993 022 California Bight 1993 62.8 31.2 024 Hawaii 1982 30.8 2.0 024 Hawaii 1988 8.4 36.1 7.3 024 Solomon I. 1965 026 Hawaii 1988 29.2 6.6 026 Solomon I. 1965 031 Galapagos 1968 65.0 032 Hawaii 1988 20.1 23.5 034 Peru 1935 100.0 044 California State 1985 069 California Bight 1975 16.0 069 California Bight 1976 24.0 3.0 069 California Bight 1977 3.0 083 Hawaii 1981 9.4 083 Hawaii 1988 14.7 20.9 095 New South Wales 2000 27.0 13.0 095 New South Wales 2001 82.0 095 Queensland 1987 15.0 101 Hawaii 1988 8.1 101 Solomon I. 1965 19.0 105 Hawaii 1988 5.7 10.3 115 Great Barrier Reef 1986 20.0 25.0 119 Snares Islands 1985 130 Great Barrier Reef 1994 9.1 131 Mexico W 1991 132 Hawaii 1988 16.7 60.9 71.1 137 Peru 1987 143 Hawaii 1988 16.0 57.0 36.0 147 California Bight 1993 154 Solomon I. 1975 13.0 6.0 27.2 25.8 40.0 11.0 5.8 15.0 25.0 9.5 12.7 13.0 2.1 20.3 13.7 20.0 continued 135 TABLE 10. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the South Pacific Ocean. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Clup: Clupeidae; Anch: Anchovies; Seba: Sebastes sp.; Ammo: Ammodytes sp.; Perch: Perch-like; Goat: Goatfish; Exoc: Exocoetidae; Belon: Beloniformes; Caran: Carangidae; Syno: Synodontidae; Flat: Flatfish; Athe: Atherinidae; Scorp: Scorpaeniformes; Gad: Gadids; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes molluscs, polychaetes, insects, and offal. Species Area Year Gad Fish Ceph Dec C r u Kri l l Cop Other Reference 010 California Bight 1993 Sydeman al. (1997) 012 California Bight 1993 Sydeman al. (1997) 019 California Bight 1993 Sydeman a/. (1997) 022 California Bight 1993 Sydemanetal. (1997) 024 Hawaii 1982 Seki and Harrison (1989) 024 Hawaii 1988 Harrison (1990) 024 Solomon I. 1965 Ashmole and Ashmole (1967) 026 Hawaii 1988 Harrison (1990) 026 Solomon I. 1965 Ashmole and Ashmole (1967) 031 Galapagos 1968 Harris (1970) 032 Hawaii 1988 Harrison (1990) 034 Peru 1935 Velando and Marquez (2002) 044 California State 1985 Winkler (1996) 069 California Bight 1975 Hunt and Butler (1980) 069 California Bight 1976 Hunt and Butler (1980) 069 California Bight 1977 Hunt and Butler (1980) 083 Hawaii 1981 Bertellotti and Yorio (2000) 083 Hawaii 1988 Harrison (1990) 095 New South Wales 2000 Chiaradia et al. (2002) 095 New South Wales 2001 Chiaradia et al. (2002) 095 Queensland 1987 Blaber and Wassenberg (1989) 101 Hawaii 1988 Harrison (1990) 101 Solomon I. 1965 Ashmole and Ashmole (1967) 105 Hawaii 1988 Harrison (1990) 115 Great Barrier Reef 1986 Smith (1990) 119 Snares Islands 1985 Sagar et al. (2003) 130 Great Barrier Reef 1994 9.1 Blaber et al. (1995) 131 Mexico W 1991 74.6 2.3 0.5 0.4 Calixto-Albarran and Osorno (2000) 132 Hawaii 1988 7.6 8.3 Harrison (1990) 137 Peru 1987 Guillen (1990) 143 Hawaii 1988 33.9 16.4 Harrison (1990) 147 California Bight 1993 7.0 Sydeman et al. (1997) 154 Solomon I. 1975 97.8 2.2 Morrisons al. (1977) continued 136 TABLE 10. continued Species Area Year Myct Clup Anch Seba Ammo Perch Goat Exoc Belon Caran Syno Flat Athe Scorp 157 Queensland 1987 28.1 12.8 158 Peru 1977 65.0 158 Peru 1995 2.0 7.0 158 Peru 1996 39.4 11.0 158 Peru 1997 163 Queensland 1987 10.2 182 New South Wales 1998 20.0 51.0 9.0 182 New Zealand 1979 65.5 6.7 3.2 -. 14.4 182 New Zealand 1980 87.0 4.3 2.6 2.0 182 New Zealand 1981 85.7 5.9 1.4 2.7 182 New Zealand 1983 32.5 22.8 0.1 24.1 7.5 182 Victoria 2000 16.0 9.0 48.0 5.0 186 Great Barrier Reef 1994 56.1 186 Hawaii 1988 56.4 32.9 186 Peru 1996 64.1 10.7 25.2 186 Peru 1997 57.7 186 Peru 1998 0.2 10.7 50.3 21.5 8.3 188 American Samoa 1980 29.3 6.2 18.3 188 Great Barrier Reef 1994 45.5 17.7 188 Hawaii 1988 14.7 28.8 23.0 188 S. Cortes 2000 100.0 • 189 Peru 1996 91.7 1.6 189 Peru 1997 2.9 82.3 2.7 10.1 189 Peru 1998 26.0 4.0 190 Great Barrier Reef 1994 20.5 12.9 190 Hawaii 1982 7.5 1.8 57.4 8.1 190 Hawaii 1988 26.7 12.2 191 Peru 1986 6.3 87.0 0.1 5.2 191 Peru 1996 0.6 97.7 0.2 191 Peru 1997 93.9 0.7 200 Hawaii 1988 5.7 202 Hawaii 1988 60.9 203 Snares I. 1996 203 Snares I. 1997 47.0 203 Solander I. 1997 32.5 216 Chatham I. 1979 227 Peru 1996 4.3 227 Peru 1999 3.4 43.2 continued 137 TABLE 10. continued Species Area Year Pbac Fish Ceph Dec Cru Kri l l Cop Other Reference 157 Queensland 1987 64.1 23.1 Blaber and Wassenberg (1989) 158 Peru 1977 71.9 Tovar Serpa and Galarza Minaya (1983) 158 Peru 1995 28.0 Zavalaga and Paredes (1999) 158 Peru 1996 87.0 Zavalaga and Paredes (1999) 158 Peru 1997 60.6 Jahncke er al. (1997) 163 Queensland 1987 63.1 26.7 Blaber and Wassenberg (1989) 182 New South Wales . 1998 19.0 1.0 Bunce (2001) 182 New Zealand 1979 9.7 0.5 Wingham(1985) 182 New Zealand 1980 3.9 0.2 Wingham(1985) 182 New Zealand 1981 3.7 0.6 Wingham(1985) 182 New Zealand 1983 2.0 6.0 5.0 Robertson (1992) 182 Victoria 2000 18.0 4.0 Bunce (2001) 186 Great Barrier Reef 1994 26.5 17.4 Blaber etal. (1995) 186 Hawaii 1988 7.9 2.8 Harrison (1990) 186 Peru V 1996 Jahncke and Goya (2000) 186 Peru 1997 42.3 Jahnckeera/. (1997) 186 Peru 1998 8.1 0.9 Jahncke and Goya (2000) 188 American Samoa 1980 46.2 Harrison etal. (1984) 188 Great Barrier Reef 1994 27.7 9.1 Blaber etal. (1995) 188 Hawaii 1988 29.6 3.9 Harrison (1990) 188 S. Cortes 2000 Mellinketal. (2001) 189 Peru , 1996 6.7 Jahncke and Goya (2000) 189 Peru 1997 2.0 Jahncke etal. (1997) 189 Peru 1998 70.0 Jahncke and Goya (2000) 190 Great Barrier Reef 1994 21.6 45.0 Blaber etal. (1995) 190 Hawaii 1982 3.0 22.2 Seki and Harrison (1989) 190 Hawaii 1988 32.2 28.9 Harrison (1990) 191 Peru 1986 1.4 Tovar and Guillen (1988) 191 Peru 1996 1.4 0.1 Jahncke and Goya (2000) 191 Peru 1997 5.4 Jahnckeera/. (1997) 200 Hawaii 1988 4.8 78.0 11.5 Harrison (1990) 202 Hawaii 1988 30.8 8.3 Harrison (1990) 203 Snares I. 1996 36.0 3.5 1.5 59.0 James and Stahl (2000) 203 Snares I. 1997 24.0 9.0 2.0 18.0 James and Stahl (2000) 203 Solander I. 1997 23.0 10.5 2.0 32.0 James and Stahl (2000) 216 Chatham I. 1979 0.3 6.9 7.3 85.5 Imber(1981) 227 Peru 1996 26.9 44.4 24.4 Garcia-Godos et al. (2002) 227 Peru 1999 22.4 28.2 2.3 0.5 Garcia-Godos et al. (2002) continued 138 TABLE 10. concluded Species Area Year Myct Clup Anch Seba Ammo Perch Goat Exoc Belon Caran Syno Flat Athe Scorp 9.1 5.1 227 Peru 2000 8.2 232 Hawaii 1988 233 Chatham I. 1980 4.3 234 Peru 1996 6.9 238 Hawaii 1988 30.3 250 New Zealand 1970 251 Bounty I. 1950 254 New Zealand 1973 254 New Zealand 1975 255 Chatham I. 1977 2.3 255 Chatham I. 1980 261 New Zealand 1993 78.8 261 New Zealand 1996 281 Hawaii 1988 30.8 287 New Zealand 1971 28.0 300 New Zealand 1981 305 California Bight 1979 305 California State 1977 310 Hawaii 1988 313 Hawaii 1988 2.9 315 Victoria 1981 322 New Zealand 1984 326 Victoria 1988 327 New Zealand 1986 327 New Zealand 1993 332 Chile S 1985 7.0 44.0 44.0 53.0 17.0 15.7 10.1 14.3 20.0 3.9 26.7 16.0 15.0 15.0 30.0 25.0 2.5 37.5 47.0 139 TABLE 10. continued Species Area Year Gad Fish Ceph Dec C r u Kri l l Cop Other Reference 227 Peru 2000 8.1 83.6 0.1 Garcia-Godos et al. (2002) 232 Hawaii 1988 38.0 52.5 9.5 Harrison (1990) 233 Chatham I. 1980 25.7 6.6 16.6 46.2 0.1 0.5 Imber(1981) 234 Peru 1996 36.1 19.2 28.7 Jahncke et al. (1999) 238 Hawaii 1988 32.4 25.9 6.3 Harrison (1990) 250 New Zealand 1970 0.6 0.3 99.1 Prince and Morgan (1987) 251 Bounty I. 1950 ... 100.0 Imber(1981) 254 New Zealand 1973 0.7 0.3 99.0 Imber(1981) 254 New Zealand 1975 4.0 2.0 94.0 Prince and Morgan (1987) 255 Chatham I. 1977 0.6 1.3 19.8 5.8 70.0 0.2 Imber(1981) 255 Chatham I. 1980 2.3 0.6 1.3' 25.6 70.0 0.2 Prince and Morgan (1987) 261 New Zealand 1993 18.7 2.5 Freeman and Wilson (2002) 261 New Zealand 1996 78.9 18.7 2.4 Freeman (1998) 281 Hawaii 1988 23.7 27.2 11.3 Harrison (1990) 287 New Zealand 1971 58.0 12.0 2.0 Imber(1973) 300 New Zealand 1981 23.4 76.6 Harper (1983) 305 California Bight 1979 4.0 5.0 3.0 Chu(1984) 305 California State 1977 14.0 6.0 10.0 Chu(1984) 310 Hawaii 1988 10.9 49.0 Harrison (1990) 313 Hawaii 1988 12.7 33.2 0.6 Harrison (1990) 315 Victoria 1981 9.0 5.0 5.0 35.0 Montague et al. (1986) 322 New Zealand 1984 1.0 1.0 85.0 13.0 van Heezik (1989) 326 Victoria 1988 27.5 14.2 3.3 Cullene*a/.(1992) 327 New Zealand 1986 38.3 52.1 9.6 van Heezik (1990) 327 New Zealand 1993 7.4 77.9 14.5 0.1 0.1 Moore and Wakelin (1997) 332 ChileS 1985 6.0 7.0 Wilson et al. (1989) 140 TABLE 11. Energy Density (ED; in kJ/g) of forage prey known to occur in the diets of seabirds. P r e y taxon A r e a E D Reference Fish N E U S 4.76 1 Ammodytes hexapterus Gulf of Alaska 5.67 2 Ammodytes marinus North Sea 4.64 3 Ammodytes personalis Japan 5.47 4 Anoplopoma fimbria Gulf of Alaska 2.64 2 Antimora rostrata Macquarie Island 1.26 5 Atheresthes stomias Gulf of Alaska 5.80 6 Bathylagus antarcticus Macquarie Island 3.93 5 Boops boops W Mediterranean 5.94 7 Boreogadus saida Newfoundland 5.89 8 Clupea harengus Scotian Shelf 7.20 9 Clupea pallasi Gulf of Alaska 5.84 10 Deltentosteus quadrimaculatus W Mediterranean 5.81 7 Electrona antarctica Macquarie Island 9.04 11 Electrona carlsbergi Macquarie Island 5.37 11 Electrona subaspera Macquarie Island 7.42 5; 11 Engraulis australis Victoria 5.20 12 Engraulis encrasicolus W Mediterranean 6.67 7 Engraulis japonicus Japan 6.29 4 Gadiculus argenteus argenteus W Mediterranean 6.77 7 Gadus macrocephalus Gulf of Alaska 2.94 2 Gadus morhua Newfoundland 4.09 8 Gadus morhua Scotian Shelf 4.80 13 Gobius niger W Mediterranean 4.81 7 Gymnelus viridis Newfoundland 4.42 8 Gymnocanthus galeatus Gulf of Alaska 5.40 6 Gymnoscopelus braueri Macquarie Island 10.91 11 Gymnoscopelus fraseri Macquarie Island 8.26 11 Gymnoscopelus microlampas Macquarie Island 9.05 5 Hexagrammos stelleri Gulf of Alaska 3.45 10 Hexagrammos spp. Gulf of Alaska - 3.45 2 Hippoglossoides platessoides Scotian Shelf 4.20 13 Hyporhamphus melanochir Victoria 5.70 12 Krefftichthys anderssoni Macquarie Island 8.36 5 Lepidonotothen squamifrons Macquarie Island 5.00 5 Lepidopsetta bilinearis Gulf of Alaska 3.36 10 Leptoclinus maculatus Scotian Shelf 5.90 9 Limanda ferruginea Scotian Shelf 4.50 13 Lumpenus fabricii Gulf of Alaska 4.73 10 Lumpenus maculatus Newfoundland 6.08 8 Macruronus novaezelandiae Albatross Island 6.00 14 Mallotus villosus Gulf of Alaska 4.84 2 Mallotus villosus Newfoundland 7.54 8 Mallotus villosus Scotian Shelf 7.50 13 Melanogrammus aeglefinus Scotian Shelf 5.30 13 Merlangius merlangus North Sea 4.40 3 Merluccius bilinearis Scotian Shelf 6.00 13 Merluccius merluccius W Mediterranean 4.88 7 Micromesistius poutassou W Mediterranean 5.98 7 Myoxocephalus polyacanthocephalus Gulf of Alaska 3.31 10 Ophiodon elongatus Gulf of Alaska 3.98 10 Paradiplospinus gracilis McDonald Islands 4.60 15 Pleuragramma antarcticum McDonald Islands 7.00 15 Pleurogrammus azonus Japan 4.78 4 continued 141 TABLE 11. continued Prey taxon Area E D Reference Pleurogrammus monopterygius Gulf of Alaska 4.02 2 Pollachius virens Scotian Shelf 5.00 13 Protomyctophum spp. Macquarie Island 7.54 7 Salmo salar Newfoundland 4.40 16 Sardina pilchardus W Mediterranean 10.03 7 Sardinella aurita W Mediterranean 6.91 7 Sardinops sagax Victoria 8.60 12 Scomber scombrus Newfoundland 10.30 16 Scomberesox saurus Newfoundland 6.80 16 Sebastes polyspinis Gulf of Alaska 6.10 6 Sebastes spp. Gulf of Alaska 2.97 2 Serranus hepatus W Mediterranean 7.43 7 Sprattus sprattus North Sea 5.85 3 Symphurus nigrescens W Mediterranean 5.81 7 Synchiropus phaethon W Mediterranean 5.38 7 Thaleichthys pacificus Gulf of Alaska 7.70 6 Theragra chalcogramma Gulf of Alaska 2.73 2 Thyrsites atun Victoria 7.10 12 Trematomus eulepidotus McDonald Islands 6.10 15 Trichodon trichodon Gulf of Alaska 3.36 2 Trisopterus minutus W Mediterranean 5.59 7 Zaprora silenus Gulf of Alaska 2.37 2 Callionymidae W Mediterranean 5.34 7 Cottidae N E U S 4.91 6 Gadidae W Mediterranean 5.81 7 Gobiidae W Mediterranean 5.34 7 Myctophidae Gulf of Alaska 8.05 2 Myctophidae Scotian Shelf 3.00 9 Pleuronectidae W Mediterranean 5.28 7 Triglidae W Mediterranean 8.45 7 Cephalopods Squid Newfoundland 4.30 18 Squid Scotian Shelf 4.20 13 Gonatus sp. Macquarie Island 3.78 5 Histioteuthis sp. Macquarie Island 2.65 5 Mastigoteuthis sp. Macquarie Island 1.82 5 Moroteuthis ingens McDonald Islands 5.60 17 Moroteuthis sp. McDonald Islands 1.84 5 Nototddarus gouldi McDonald Islands 2.00 15 Onychoteuthis borealijaponica Gulf of Alaska 6.10 6 Todarodes sp. Macquarie Island 4.01 5 Gonatidae Gulf of Alaska 3.81 2 Bivalves Gulf of Alaska 1.79 19 Gastropods Gulf of Alaska 2.62 19 Mollusks Gulf of Alaska 2.00 19 Cirripedia Gulf of Alaska 3.28 20 Barnacles Gulf of Alaska 2.05 19 Crustaceans Macquarie Island 4.68 5 Crustaceans Scotian Shelf 3.00 9 Amphipods Gulf of Alaska 2.91 19 Amphipods Scotian Shelf 3.00 9 Chaetognaths Gulf of Alaska 0.83 20 Cladocerans Gulf of Alaska 2.51 19 continued 142 TABLE 11. concluded Prey taxon Area E D Reference Crabs Gulf of Alaska 3.79 19 Decapods Gulf of Alaska 3.25 20 Isopods Gulf of Alaska 2.59 20 Ostracods Gulf of Alaska 1.26 20 Euphausiids Gulf of Alaska 3.46 19 Euphausiids Scotian Shelf 3.00 9 Copepods Gulf of Alaska 3.81 19 Eucalanus bungii Bering Sea 2.02 21 Neocalanus cristatus Bering Sea 5.36 21 Neocalanus plumchrus Bering Sea 4.95 21 Polychaetes Gulf of Alaska 1.68 20 Jellyfish Gulf of Alaska 0.60 19 Insects Gulf of Alaska 4.53 19 Oiironornidae Gulf of Alaska 2.22 22 Marine mammals Gulf of Alaska 7.00 19 Seabirds Scotian Shelf 5.93 9 (1) Dunn (1975); (2) van Pelt et al. (1997); (3) Hilton et al. (1998); (4) Takahashi et al. (2001); (5) Goldsworthy et al. (2001); (6) Perez (1994); (7) Byrd et al. (1997); (8) Birkhead and Nettleship (1987); (9) Huettmann (2003); (10) Litzow et al. (2004); (11) Tiemey et al. (2002); (12) Bunce (2001); (13) Bowen et al. (1993); (14) Gales and Green (1990); (15) Moore etal. (1998); (16) Montevecchi etal. (2002); (17) Cherel and Ridoux (1992); (18) Cooper (1992); (19) Davis et al. (1998); (20) Foy and Norcross (1999); (21) Russell et al. (1999); and (22) Cummins and Wuycheck(1971). 143 TABLE 12. Mean trophic levels (TL) of the world's seabirds. N: number of datasets for which diet composition was available for different breeding sites; Min and Max: Minimum and maximum TL respectively; SD: Standard Deviation; SE: Standard Error. TL Species N Mean M in Max SD SE Crested auklet 11 3.17 3.10 3.23 0.04 0.36 Least auklet 16 3.07 3.01 3.12 0.04 0.20 Whiskered auklet 6 3.11 3.02 3.37 0.13 0.24 Razorbill 9 4.03 3.87 4.11 0.07 0.23 Dovekie 7 3.21 3.00 3.81 0.30 0.30 Kittlitz's murrelet 4 4.01 3.79 4.26 0.19 0.28 Marbled murrelet 7 3.87 3.69 3.99 0.11 0.29 Long-billed murrelet 1 4.00 - - - 0.67 Spectacled guillemot 1 3.70 - - - 0.42 Pigeon guillemot 10 4.22 3.52 4.46 0.26 0.55 Black guillemot 7 4.40 4.13 4.50 0.13 0.69 Rhinoceros auklet 31 4.10 3.95 4.66 0.15 0.37 Parakeet auklet 8 3.27 3.04 3.75 0.25 0.33 Craven's murrelet 1 4.30 - - - 0.40 Xantus' murrelet 1 4.50 - - - 0.80 Atlantic puffin 48 4.12 3.85 4.35 0.11 0.30 Tufted puffin 17 4.27 4.08 4.50 0.14 0.44 Homed puffin 18 .4.16 3.96 4.50 0.18 0.40 Cassin's auklet 12 3.44 3.17 4.11 0.30 0.41 Ancient murrelet 2 3.44 3.25 3.63 0.27 0.37 Japanese murrelet 1 4.20 - - - 0.58 Common murre 48 . 4.08 3.49 4.50 0.17 0.30 Thick-billed murre 41 4.17 3.36 4.50 0.20 0.36 Black noddy 3 4.55 4.50 4.64 0.08 0.61 Lesser noddy 4 4.47 4.44 4.49 0.02 0.66 Brown noddy 6 4.44 4.24 4.50 0.10 0.62 Black-fronted tern 1 3.90 - - - 0.64 Whiskered tern 1 3.57 - - - 0.56 White-winged tem 1 3.60 - - - 0.58 Black tern 1 3.43 - - - 0.12 Swallow-tailed gull 2 4.05 3.80 4.30 0.35 0.30 White tern 3 4.40 4.32 4.50 0.09 0.61 Lesser white tem 1 4.00 - - - 0.66 Inca tem 2 3.94 3.68 4.20 0.37 0.38 Herring gull 8 3.67 2.95 4.41 0.45 0.46 Armenian gull 1 3.30 - - - 0.51 Olrog's gull 2 3.46 3.41 3.50 0.06 0.58 Laughing gull 1 3.50 - - - 0.42 Audouin's gull 4 4.12 3.83 4.33 0.21 0.56 Band-tailed gull 1 3.70 - - - 0.64 Brown-headed gull 1 3.30 - - - 0.51 Black-billed gull 1 3.80 - - - 0.58 Yellow-legged gull 6 3.65 3.01 4.47 0.64 0.55 California gull 1 2.81 - - - 0.32 Common gull 2 3.80 3.50 4.10 0.42 0.56 Grey-headed gull 1 3.20 - - - 0.50 Black-tailed gull 14 4.02 3.93 4.37 0.11 0.34 Ring-billed gull 1 3.35 - - - 0.37 Kelp gull 4 3.57 3.40 3.75 0.17 0.54 Lava gull 1 3.40 - - - 0.56 continued 144 TABLE 12. continued TL Species N ' Mean M in Max SD SE Lesser black-backed gull 2 3.98 3.60 4.35 0.53 0.61 Slender-billed gull 1 3.80 - - - 0.59 Glaucous-winged gull 1 4.04 - - - 0.24 Iceland gull 1 3.30 - - - 0.50 Thayer's gull 1 3.60 - - - 0.63 Hartlaub's gull 1 3.40 - - - 0.53 Heermann's gull 1 3.70 - - - 0.62 Sooty gull 1 4.00 - - - 0.65 Glaucous gull 1 4.40 - - - 0.46 Great black-headed gull 1 4.10 - - - 0.61 White-eyed gull 1 3.70 - - - 0.58 Yellow-footed gull 1 3.90 - - - 0.64 Brown-hooded gull 1 3.20 - - - 0.48 Great black-backed gull 3 3.64 3.12 4.15 0.52 0.52 Mediterranean gull 2 3.55 2.64 4.45 1.28 0.56 Little gull 2 4.54 4.54 4.54 0.00 0.62 Gray gull 1 4.00 - - - 0.66 Silver gull 1 3.30 - - - 0.46 Western gull 4.22 4.05 4.43 0.19 0.53 Pacific gull 1 3.40 - - - 0.53 Bonaparte's gull 3.92 3.27 4.35 0.49 0.64 Franklin's gull 1 3.40 - - - 0.45 Relict gull 1 3.40 - - - 0.53 Common black-headed gull 1 3.40 - - - 0.41 Saunder's gull 1 3.90 - - - 0.64 Slaty-backed gull 4.35 4.18 4.48 0.15 0.62 Red-billed gull 1 3.20 - - - 0.50 Dolphin gull 1 3.40 - - - 0.51 Andean gull 1 4.00 - - - 0.67 Ivory gull 1 4.23 - - 0.48 Large-billed tern 1 3.50 - - - 0.50 Gray noddy 1 4.00 - - - 0.57 Blue noddy 4.36 4.30 4.42 0.08 0.59 Ross's gull 1 3.90 - - - 0.64 Red-legged kittiwake 10 4.25 4.05 4.41 0.10 0.42 Black-legged kittiwake 57 4.00 3.17 4.40 0.25 0.32 Black-bellied tern 1 4.00 - - - 0.65 Little tern 1 3.50 - - - 0.47 Aleutian tern 1 3.49 - - - 0.42 Bridled tern 4.25 4.06 4.43 0.26 0.55 Least tern 1 4.50 - - - 0.80 River tern 1 4.00 - - - 0.65 Damara tern 1 4.00 - - - 0.66 Lesser crested tern 1 4.50 - - - 0.80 Crested tern 10 4.25 3.81 4.50 0.24 0.61 Chinese crested tem 1 4.50 - - - 0.80 Caspian tern 1 4.10 - - - 0.55 Roseate tern 4.45 4.16 4.50 0.13 0.73 Elegant tern 1 3.90 - - - 0.47 Forster's tern 1 4.00 - - - 0.25 Sooty tern 6 4.45 4.41 4.50 0.03 0.55 South American tern 1 4.18 - - - 0.58 Common tern 10 4.32 3.86 4.50 0.21 0.65 continued 145 TABLE 12. continued TL Species N Mean M in Max SD SE Peruvian tern 1 4.00 - - - 0.66 Gray-backed tern 1 4.43 - - - 0.73 Royal tern 1 4.49 - - - 0.77 Fairy tern 1 4.00 - - - 0.65 Gull-billed tern 3.79 3.20 4.13 0.34 0.52 Arctic tern 11 3.84 3.34 4.22 0.30 0.45 White-cheeked tern 1 4.00 - - - 0.66 Sandwich tern 4.33 4.15 4.50 0.25 0.58 Cayenne tern 1 4.00 - - - 0.67 Saunder's tern 1 3.70 - - - 0.56 White-fronted tern 1 4.50 - - - 0.80 Black-naped tern 1 4.18 - - - 0.52 Yellow-billed tern 1 4.50 - - - 0.80 Trudeau's tern 1 4.50 - - - 0.80 Kerguelen tern 1 4.00 - - - 0.66 Antarctic tern 4 3.75 3.67 4.14 0.28 0.48 Sabine's gull 2 3.92 3.84 4.00 0.11 0.52 Brown skua 9 4.75 4.39 4.97 0.21 0.25 Chilean skua 1 3.70 - - - 0.49 South polar skua 11 4.44 4.00 4.77 0.35 0.28 Pomarine jaeger 1 4.40 - - - 0.62 Great skua 20 4.29 4.08 4.77 0.20 0.47 Long-tailed jaeger 2 4.27 4.00 4.53 0.37 0.48 Parasitic jaeger 2 4.14 4.11 4.16 0.04 0.25 Christmas Island frigatebird 1 4.30 - - - 0.27 Ascension frigatebird 1 4.50 - - - 0.80 Lesser frigatebird 2 4.41 4.35 4.46 0.08 0.62 Magnificent frigatebird 2 4.52 4.50 4.53 0.02 0.77 Great frigatebird 2 4.23 4.15 4.31 0.11 0.43 Australian pelican 1 3.70 - - - 0.59 Dalmatian pelican 1 4.50 - - - 0.80 American white pelican 1 4.50 - - - 0.80 Brown pelican 1 4.50 - - - 0.80 Peruvian pelican 1 3.82 - - - 0.33 Great white pelican 1 4.50 - - - 0.80 Spot-billed pelican 1 4.20 - - - 0.58 Pink-backed pelican 1 3.80 - - - 0.66 Red-billed tropicbird 1 4.50 - - - 0.61 White-tailed tropicbird 1 4.22 - - - 0.39 Red-tailed tropicbird 4.40 4.31 4.49 0.13 0.63 Black-faced cormorant 1 4.50 - - - 0.80 Flightless cormorant 1 4.50 - - - 0.59 Bank cormorant 1 4.50 - - - 0.80 Brandt's cormorant 4.26 4.20 4.31 0.08 0.45 New Zealand king shag 1 4.50 - - - 0.80 Stewart Island shag 1 4.50 - - - 0.80 Auckland Island shag 1 4.50 - - - 0.80 Chatham Island shag 1 4.40 - - - 0.43 Bounty Island shag 1 4.50 - - - 0.80 Double-crested cormorant 4.33 4.14 4.46 0.12 0.61 Neotropic cormorant 1 4.48 - - - 0.80 Indian cormorant 1 4.50 - - - 0.80 continued 146 TABLE 12. continued TL Species N Mean M in Max SD SE Little black cormorant 1 3.70 - - - 0.58 Pied cormorant 1 4.50 - - - 0.69 Guanay cormorant 5 4.12 3.68 4.48 0.30 0.58 Cape cormorant 15 4.03 3.64 4.37 0.22 0.47 Socotra cormorant 1 4.50 - - - 0.80 Long-tailed cormorant 1 4.50 - - 0.80 Crowned cormorant 1 3.80 - - - 0.64 Little pied cormorant 1 4.50 - - - 0.68 Little cormorant 1 4.41 - - - 0.78 Pygmy cormorant 1 4.50 - - - 0.80 Campbell shag 1 4.50 - - - 0.80 Imperial shag 5 4.22 4.06 4.42 0.14 0.52 Antarctic shag 6 4.40 4.30 4.46 0.07 0.54 South Georgia shag 5 4.38 4.33 4.44 0.05 0.56 Kerguelen shag 1 4.00 - - - 0.66 King cormorant 1 4.44 - - - 0.76 Japanese cormorant 4 4.26 4.14 4.36 0.09 0.57 Great cormorant 16 4.34 4.01 4.50 0.14 0.66 Macquarie shag 1 4.46 - - - 0.53 European shag 11 4.19 4.06 4.35 0.12 0.40 Pitt Island shag 1 4.00 - - - 0.66 Red-legged cormorant 1 3.30 - - - 0.52 Rock cormorant 1 4.50 - - - 0.77 Pelagic cormorant 4 4.17 3.93 4.42 0.24 0.61 Spotted shag 1 4.00 - - - 0.66 Red-faced cormorant 1 3.98 - - - 0.29 Australasian gannet 6 3.86 3.52 4.13 0.30 0.37 Northern gannet 5 4.39 4.26 4.50 0.11 0.63 Cape gannet 40 4.16 3.61 4.61 0.23 0.47 Abbott's booby 1 4.50 - - - 0.61 Masked booby 6 4.16 3.93 4.50 0.20 0.51 Nazca booby 1 4.50 - - - 0.61 Brown booby 5 4.20 3.68 4.50 0.34 0.50 Blue-footed booby 3 3.94 3.75 4.29 0.30 0.48 Red-footed booby 4 4.30 4.20 4.37 0.08 0.47 Peruvian booby 3 3.71 3.69 3.73 0.02 0.31 Amsterdam albatross 1 4.20 - - - 0.59 Antipodean albatross 1 4.50 - - - 0.61 Tristan albatross 1 4.50 - - - 0.61 Southern royal albatross 1 4.00 - - - 0.56 Wandering albatross 7 4.46 4.31 4.52 0.08 0.48 Gibson's albatross 1 4.10 - - - 0.56 Northern royal albatross 1 4.00 - - - 0.57 Short-tailed albatross 1 3.80 - - - 0.31 Laysan albatross 1 4.37 - - - 0.42 Waved albatross 1 4.20 - - - 0.51 Black-footed albatross 1 , 4.15 - - - 0.28 Buller's albatross 3 4.16 3.92 4.35 0.22 0.60 Indian yellow-nosed albatross 2 4.29 4.20 4.38 0.13 0.61 Shy albatross 1 4.50 - - - 0.49 Yellow-nosed albatross 3 4.47 4.45 4.50 0.03 0.71 Grey-headed albatross 11 4.31 3.49 4.52 0.29 0.50 Chatham albatross 1 4.50 - - - 0.55 continued 147 TABLE 12. continued TL Species N Mean Min Max SD SE Campbell albatross 1 3.80 - - - 0.51 Black-browed albatross 12 4.37 3.95 4.56 0.23 0.57 Salvin's albatross 1 4.50 - - - 0.61 Sooty albatross 3 4.55 4.51 4.59 0.04 0.46 Light-mantled albatross 5 4.20 3.97 4.50 0.22 0.48 White-bellied storm petrel 1 4.00 - - - 0.44 Black-bellied storm petrel 2 3.86 3.81 3.90 0.06 0.46 Grey-backed storm petrel 5 3.49 3.47 3.50 0.01 0.50 Least storm petrel 1 3.50 - - - 0.47 European storm petrel 1 3.80 - - - 0.58 White-throated storm petrel 1 4.20 - - - 0.57 White-vented storm petrel 1 4.20 - - - 0.56 Wilson's storm petrel 5 3.63 3.25 4.12 0.36 0.45 Madeiran storm petrel 1 4.20 - - - 0.57 Fork-tailed storm petrel 3 4.23 4.14 4.30 0.08 0.37 Ashy storm petrel 1 4.20 - - - 0.57 Hornby's storm petrel 1 4.20 - - - 0.57 Leach's storm petrel 4 4.06 3.57 4.26 0.33 0.49 Markham's storm petrel 3 4.29 4.11 4.48 0.19 0.49 Matsudaira's storm petrel 1 4.20 - - - 0.57 Black storm petrel 1 4.20 - - - 0.58 Swinhoe's storm petrel 1 . 4.20 - - - 0.58 Wedge-rumped storm petrel 1 3.70 - - - 0.56 Tristram's storm petrel 1 4.41 - - - 0.59 White-faced storm petrel 1 3.65 - - - 0.56 Peruvian diving petrel 1 3.86 - - - 0.60 South Georgia diving petrel 6 3.18 3.11 3.22 0.04 0.38 Magellanic diving petrel 1 3.10 - - - 0.27 Common diving petrel 5 3.16 3.07 3.26 0.09 0.37 Bulwer's petrel 1 4.34 - - - 0.55 Jouanin's petrel 1 3.90 - - - 0.49 Cory's shearwater 1 4.24 - - - 0.59 Cape Verde shearwater 1 4.10 - - - 0.39 Streaked shearwater 1 4.50 - - - 0.61 Cape petrel 10 3.61 3.17 4.46 0.41 0.40 Northern fulmar 11 4.25 3.58 4.49 0.28 0.58 Southern fulmar 4 4.03 3.71 4.42 0.37 0.36 Blue petrel 6 3.75 3.31 4.07 0.27 0.49 Kerguelen petrel 3 3.84 3.18 4.19 0.57 0.42 Southern giant petrel 9 4.61 4.34 4.75 0.16 0.38 Northern giant petrel 6 4.62 4.40 4.76 0.16 0.37 Thin-billed prion 6 3.76 3.29 4.50 0.59 0.47 Fulmar prion 1 3.50 - - - 0.50 Antarctic prion 11 3.33 3.09 4.07 0.27 0.40 Salvin's prion 2 3.57 3.32 3.81 3.57 0.45 Fairy prion 5 3.42 3.21 3.94 0.30 0.49 Broad-billed prion 2 3.12 3.11 3.12 0.01 0.28 Snow petrel 7 3.97 3.46 4.15 0.24 0.38 White-chinned petrel 9 4.02 3.79 4.33 0.20 0.49 Grey petrel 1 4.46 - - - 0.52 Spectacled petrel 1 4.20 - - - 0.62 Parkinson's petrel 1 3.90 - - - 0.47 Westland petrel 2 4.38 4.27 4.48 0.15 0.55 continued 148 TABLE 12. continued TL Species N Mean M i n Max SD SE Mascarene petrel 1 4.20 - - - 0.57 Beck's petrel 1 4.20 - - - 0.57 Fiji petrel 1 4.20 - - - 0.57 Tahiti petrel 1 4.20 - - - 0.57 Phoenix petrel 1 4.30 - - - 0.54 Trindade petrel 1 - 4.30 - - - 0.54 Henderson petrel 1 4.30 - - - 0.54 Chatham Island petrel 1 4.50 - - - 0.61 Barau's petrel 1 4.30 - - 0.54 Collared petrel 1 4.30 - - - 0.54 Bermuda petrel 1 4.30 - - - 0.54 Jamaica petrel 1 4.10 - - - 0.55 White-necked petrel 1 4.50 - - - 0.37 Cook's petrel 1 4.20 - - - 0.57 De Filippi's petrel 1 4.20 - - - 0.57 Juan Fernandez petrel 1 4.20 - - - 0.57 Cape Verde petrel 1 4.20 - - - 0.57 Black-capped petrel 1 4.00 - - - 0.54 Herald petrel 1 3.80 - - - 0.46 Bonin petrel 1 4.32 - - - 0.54 Atlantic petrel 1 4.48 - - - 0.44 Mottled petrel 1 4.10 - - - 0.42 White-headed petrel 1 4.35 - - - 0.58 Gould's petrel 1 4.50 - - - 0.37 Stejneger's petrel 1 4.50 - - - 0.62 Great-winged petrel 4.28 4.15 4.41 0.13 0.40 Madeira petrel 1 4.50 - - - 0.62 Magenta petrel 1 4.20 - - - 0.53 Soft-plumaged petrel 3.95 3.52 4.38 0.61 0.45 Kermadec petrel 1 3.60 - - - 0.44 Black-winged petrel 1 4.10 - - - 0.48 Galapagos petrel 1 4.20 - - - 0.58 Pycroft's petrel 1 4.50 - - - 0.37 Hawaiian dark-rumped petrel 1 4.20 - - - 0.47 Providence petrel 1 4.30 - - - 0.59 Murphy's petrel 1 3.60 - - - 0.44 Little shearwater 1 3.80 - - - 0.59 Townsend's shearwater 1 4.50 - - - 0.37 Buller's shearwater 1 4.04 3.50 4.58 0.76 0.53 Flesh-footed shearwater 1 4.49 - - - 0.55 Pink-footed shearwater 1 3.80 - - - 0.35 Fluttering shearwater 1 4.00 - - - 0.00 Greater shearwater 4.28 4.07 4.48 0.29 0.47 Sooty shearwater 4.29 3.93 4.64 0.27 0.49 Heinroth's shearwater 1 4.20 - - - 0.57 Hutton's shearwater 1 3.80 - - • - 0.62 Audubon's shearwater 1 4.50 - - - 0.61 Balearic shearwater 1 4.40 - - - 0.40 Christmas shearwater 1 4.42 - - - 0.45 Newell's shearwater 1 4.00 - - - 0.54 Black-vented shearwater 1 3.90 - - - 0.27 Wedge-tailed shearwater 4 4.47 4.41 4.50 0.04 0.54 Manx shearwater 2 4.35 4.20 4.50 0.21 0.51 continued 149 TABLE 12. concluded TL Species N Mean M in Max SD SE Short-tailed shearwater 14 3.81 3.21 4.50 0.49 0.54 Levantine shearwater 1 3.80 - - _ 0.34 Antarctic petrel 7 3.93 3.20 4.45 0.42 0.41 Emperor penguin 7 4.03 3.51 4.50 0.44 0.39 King penguin 12 4.28 4.16 4.50 0.14 0.44 Rockhopper penguin 21 3.68 3.21 4.48 0.37 0.50 Macaroni penguin 10 3.50 3.20 3.98 0.24 0.44 Fiordland penguin 1 4.39 - - - 0.42 Snares penguin 1 3.60 - - - 0.48 Royal penguin 4 3.88 3.69 4.07 0.21 0.37 Erect-crested penguin 1 3.70 - - - 0.48 Blue penguin 5 4.20 4.06 4.30 0.09 0.52 Yellow-eyed penguin 2 4.48 4.47 4.49 0.01 0.54 Adelie penguin 35 3.45 3.20 4.04 0.24 0.40 Chinstrap penguin 11 3.26 3.20 3.76 0.17 0.41 Gentoo penguin 27 3.78 3.28 4.32 0.32 0.49 Jackass penguin 15 4.03 3.58 4.32 0.19 0.48 Humboldt penguin 1 4.17 - - - 0.62 Magellanic penguin 12 4.34 4.07 4.50 0.15 0.55 Galapagos penguin 1 4.50 - - - 0.80 Bufflehead 1 3.56 - - - 0.58 Common goldeneye 1 2.84 - - - 0.43 Barrow's goldeneye 3 3.17 3.11 3.30 0.11 0.37 Long-tailed duck 2 3.47 3.43 3.50 0.05 0.53 Harlequin duck 2 3.24 3.20 3.27 0.05 0.46 White-winged scoter 1 3.60 - - - 0.59 Black scoter 1 3.47 - - - 0.49 Surf scoter 1 3.00 - - - 0.31 Red-breasted merganser 1 4.50 - - - 0.80 Steller's eider 1 3.34 - - - 0.53 Spectacled eider 1 3.50 - - - 0.50 Common eider 3 3.20 3.11 3.27 0.08 0.35 King eider : 2 3.31 3.20 3.42 0.16 0.44 Falkland steamerduck l 3.40 * - - 0.45 Chubut steamerduck l 3.40 - - - 0.48 Flying steamerduck l 3.30 - - - 0.42 150 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0074880/manifest

Comment

Related Items