Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Modelling and mapping trophic overlap between fisheries and the world’s seabirds Karpouzi, Vasiliki S. 2005

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_2005-0499.pdf [ 12.79MB ]
Metadata
JSON: 831-1.0074880.json
JSON-LD: 831-1.0074880-ld.json
RDF/XML (Pretty): 831-1.0074880-rdf.xml
RDF/JSON: 831-1.0074880-rdf.json
Turtle: 831-1.0074880-turtle.txt
N-Triples: 831-1.0074880-rdf-ntriples.txt
Original Record: 831-1.0074880-source.json
Full Text
831-1.0074880-fulltext.txt
Citation
831-1.0074880.ris

Full Text

Modelling and mapping trophic overlap between fisheries and the world's seabirds  by  Vasiliki S. Karpouzi B . S c , Aristotle University of Thessaloniki, 2001  A THESIS SUBMITTED IN P A R T I A L F U L F I L M E N T OF THE REQUIREMENTS FOR THE D E G R E E OF  M A S T E R OF SCIENCE  in  T H E F A C U L T Y OF G R A D U A T E STUDIES (Zoology)  THE UNIVERSITY OF BRITISH C O L U M B I A  May, 2005 © Vasiliki S. Karpouzi, 2005  Abstract Seabird food consumption may reveal the potential for competition between seabirds and fisheries. I ndeed, coexistence of foraging seabirds and operating fisheries inevitably results in interactions, one of which is competition for the same resources. I used GIS-based modelling at a scale of 30-min spatial cells to: (a) map the foraging distribution of seabirds; (b) predict their annual food consumption rates in a spatially-explicit manner; and (c) estimate a spatially-explicit seabird - fisheries overlap index. Information on the population size, diet composition and foraging attributes of 351 species of seabirds was compiled into a Microsoft Access database. Trophic levels, expressing the position of seabirds in the marine ecosystem, were estimated for each species using diet composition data. Global annual food consumption by seabirds was estimated to be 96.4 million tonnes (95% CI: 78.0 to 114.7 million tonnes), compared to a total catch of nearly 120 million tonnes by all fisheries. Krill and cephalopods comprised over 58% of the overall food consumed and fishes most of the remainder. The families Procellariidae (albatrosses, petrels, shearwaters, etc.) and Spheniscidae (penguins) were responsible for more than 54% of the overall food consumption. Mapping the foraging distribution of seabirds revealed that, areas near New Zealand, the eastern coast of Australia, and the sub-Antarctic islands have high seabird species richness. Hawaii and the Caribbean were the only areas north of the equator with high species richness. Temperate and polar regions supported high densities of seabirds, and most food extracted by seabirds originated there. In addition, maps of the annual food consumption rates revealed that most of the food consumed by seabirds was extracted from offshore waters rather than nearshore ones, and from areas where overlap between seabirds and fisheries was low. M y trophic overlap maps identified 'hotspots' of highest potential for conflict between fisheries and seabirds. Thus, this study may provide useful insight when developing management approaches to manage marine conservation areas.  ii  Table of Contents ABSTRACT  ii  T A B L E OF CONTENTS  iii  LIST OF TABLES  iv  LIST OF FIGURES  vi  ACKNOWLEDGEMENTS CHAPTER 1: GENERAL INTRODUCTION 1.1. Introduction 1.2. Seabirds in the spotlight of scientific research 1.3. Geographic Information Systems (GIS) as a research tool CHAPTER 2 : M E T H O D O L O G Y 2.1. Seabird species 2.2. Trophic Levels ( T L ) 2.3. Daily Food Intake (DFI) 2.4. Mapping seabirds' foraging distribution using GIS 2.5. The spatially-explicit seabird - fishery overlap index  viii 1 1 3 7 9 9 10 12 15 19  CHAPTER 3 : RESULTS 3.1. Seabirds' global population size 3.2. Trophic levels of the world's seabirds 3.3. Spatially-explicit foraging distribution of seabirds 3.4. Global estimates of total annual food consumption of seabirds 3.5. Spatially-explicit annual food consumption of seabirds 3.6. Spatially-explicit trophic overlap between seabirds and fisheries 3.6a. Spatially-explicit trophic overlap between Procellariidae and fisheries 3.6b. Spatially-explicit trophic overlap between Spheniscidae and fisheries  2 0 20 23 26 28 29 30 33 35  CHAPTER 4 : DISCUSSION 4.1. The trophic position of the world's seabirds 4.2. Global estimates of total annual food consumption of seabirds Biases and Limitations 4.3. Maps of the food consumption of seabirds and overlap with fisheries 4.4. Implications for conservation and management 4.5. Conclusions  3 7 37 38 39 41 43 44  LITERATURE CITED  4 7  APPENDIX A  8 9  iii  List of Tables T A B L E 2.1.  9  Orders and families of seabird species included in the study. T A B L E 2.2.  12  Order-specific allometric equations to calculate Basal and Field Metabolic Rates. T A B L E 2.3.  13  Food groups used to express standardized diet composition data of seabirds. APPENDIX T A B L E S  89  T A B L E 1.  89  List of seabird species included in the study. T A B L E 2.  96  International legal instruments established since the early 1970s to protect seabirds' nesting habitat and reverse seabird population declines. T A B L E 3.  97  Percentage of weight or volume contribution of food groups in the diet of seabird species breeding in the Arctic. T A B L E 4.  100  Percentage of weight or volume contribution of food groups in the diet of seabird species breeding in the Antarctic and on Sub-Antarctic Islands. T A B L E 5.  109  Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the Indian Ocean. T A B L E 6.  Ill  Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the Mediterranean Sea. T A B L E 7.  112  Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the North Atlantic Ocean. T A B L E 8.  118  iv  Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the North Pacific Ocean. T A B L E 9.  132  Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the South Atlantic Ocean. T A B L E 10.  135  Percentage of weight or volume contribution of food groups in the diet of seabird species breeding around the South Pacific Ocean. T A B L E 11.  141  Energy Density of forage prey known to occur in the diets of seabirds. T A B L E 12.  Mean trophic levels (TL) of the world's seabirds.  144  List of Figures FIGURE 2.1.  16  Areas of the world for which a seabird population size estimate was available. FIGURE 3.1.  20  Decline in the overall population size (in billions of individuals) of the world's seabirds (1950-2003). FIGURE 3.2.  21  Percentage contribution to the global seabird abundance (in number of individuals) of each family for the 1950s and the 1990s. FIGURE 3.3.  22  Percentage contribution to the global seabird biomass of each family for the 1950s and the 1990s. FIGURE 3.4.  23  Histogram of all trophic levels (TL) of 351 seabird species considered in the study. FIGURE 3.5.  24  Box - Whisker Plot of Trophic Levels (TL) of seabird species by family. FIGURE 3.6.  25  Box - Whisker Plot of the Trophic Level (TL) values of seabird species by foraging habitat. FIGURE 3.7.  27  Map of predicted foraging distribution of seabird species during an average year in the 1990s. FIGURE 3.8.  28  Percentage contribution of food groups to the estimated annual global food consumption of all seabird species combined. FIGURE 3.9.  29  Map of predicted global food consumption rate (in tonnes per km ) of all seabirds combined for an average year in the 1990s. 2  FIGURE 3.10.  31  vi  Map of estimated trophic overlap between all seabirds and fisheries for an average year in the 1950s, 1970s, and 1990s. FIGURE 3.11.  32  Proportion of food consumed by seabirds in the 1990s by areas of overlap with fisheries. FIGURE 3.12.  33  Map of predicted global food consumption rate of seabirds of the Procellariidae family for an average year in the 1990s. FIGURE 3.13.  34  Map of estimated trophic overlap between seabirds of the Procellariidae family and fisheries for an average year in the 1950s, 1970s, and 1990s. FIGURE 3.14.  35  Map of predicted global food consumption rate (in tonnes per km ) of seabirds of the Spheniscidae family for an average year in the 1990s. 2  FIGURE 3.15.  36  Map of estimated trophic overlap between seabirds of the Spheniscidae family and fisheries for an average year in the 1950s, 1970s, and 1990s.  vii  Acknowledgements  I wish to first and foremost thank my supervisor Dr. Daniel Pauly for his support, guidance, and patience, as well as for trusting me with such a demanding project. Many thanks to my supervisory committee, Ken Morgan and Dr. Jamie Smith for their assistance throughout my study.  I also wish to acknowledge the contributions of many members of the 'Sea Around Us' Project, foremost Dr. Reg Watson, for all the time he sacrificed in modelling and mapping everything I asked for. Without his patience, this work would have never been completed. Many thanks, also, to Dr. Villy Christensen for valuable input and suggestions.  Many thanks to Janice Doyle and Allison Barnes, my two favourite graduate secretaries, and to Rosalie and Gerry for saving my database and thesis, when my computer could no longer put up with me.  A big hug to all those people who made my life look brighter during difficult times, when this thesis felt it was never going to reach an end. Thank you Yvette, Deng, Telmo, Yajie, Colette, Sheila, Chiara, Denise, Sylvie, for listening and being there for me. Kristin, for your guidance at the beginning of this project. Jean, Pablo, Marta, Simone, Robyn, Chris, Bob H., Bob L., Robby, Nathan, Lyne, for the great times inside and outside the Fisheries Centre.  M y friends in Greece, Ntoli, Voula, Litsa, Dimitris, for reminding me nearly every day how much they love me. M y supervisor and friend, Dr. Kostas Stergiou, whom I hold responsible for  viii  all the 'brain-washing' that the Fisheries Centre is heaven on earth, and for sending me all the way to the other side of the planet, because he believed I could pull it through.  Finally, the biggest Thank You to my family, my father Stavros, my mother Kaiti, and my sister Tina, for s upporting and e ncouraging myd ecision toe ome t o C anada, t heir financial s upport throughout my studies, and their unrestricted, unconditional love and support.  ix  C H A P T E R 1: G E N E R A L INTRODUCTION  1.1.  INTRODUCTION  Seabirds rely on land (e.g. coastal areas, estuaries, oceanic islands) for breeding, yet thus seek their food at sea, either nearshore or offshore (Schreiber and Burger, 2002). Life at sea poses great challenges and feeding on marine resources requires seabirds to adapt physiologically to high salt loads (e.g. they use salt glands to control salt balance; Schreiber and Burger, 2002). Seabirds also use atmospheric features like wind speed and direction (Spear and Ainley, 1997), to allow them to forage over vast areas (e.g. albatrosses in the Southern Ocean; Weimerskirch et al, 2000).  Seabirds p ossess a great n umber o f b iological a ttributes t o a dapt t o t he highly h eterogeneous marine environment. As a result, they have developed foraging techniques (e.g. surface seizing in contrast with deep pursuit diving), in order to exploit .marine prey within different parts of the water column. These methods result in trophic segregation among species (Harper et al, 1985). Also, differentiation in morphology (e.g. different size, and shape of the bill and wings) improves prey handling techniques and feeding efficiency (Smith and Skulason, 1996). Lastly, body form and foot shape and position of marine birds influence the way they swim and dive (Watanuki et al, 2003). Different foraging styles occur from polar to tropical environments. Tropical seabirds tend to range widely in order to make optimal use of less productive tropical waters (Ballance and Pitman, 1999). In contrast, polar species dive deep in pursuit of their prey (e.g. the Emperor penguin has a diving depth of up to 500 m; Kirkwood and Robertson, 1997).  The life-history characteristics of seabirds differ from those of most land birds. In particular, they are long-lived with life spans well in excess of 30 years (e.g. Fischer, 1975). Delayed maturity is  1  common (e.g. up to ten years of age in the Yellow-nosed albatross; Cuthbert et al, 2003), clutch sizes are small (see Table 5.1 in Weimerskirch, 2002), and chick-rearing periods are long. For example, the Southern royal albatross takes six months to rear its chick (Waugh et al., 1997). A further attribute that distinguishes seabirds is colonial breeding, which occurs in more than 96% of species (Coulson, 2002).  Seabirds have been exploited throughout human history (e.g. Serjeantson, 1997; Simeone and Navarro, 2002). They continue to be harvested for food (commercial, subsistence, and recreational; e.g. Blanchard, 1994; Chardine and Mendenhall, 1998), cultural and spiritual reasons (e.g. Denlinger and Wohl, 2001; Aaltola and Oksanen, 2002), and ornamentation (e.g. feathers; e.g. Chardine and Mendenhall, 1998). Avian extinctions have followed in the wake of human exploration and settlement. Over-harvesting of the Great auk (Pinguinus impennis, Alcidae) led to its extinction from the Eastern Coast of Canada and the United States in 1844 (Allen, 1876; Halliday, 1978), as well as globally a few years later. Human consumption has driven other seabird species to extinction in the last 200 years (e.g. Pallas's cormorant, Phalacrocorax perspicillatus; Greenway, 1967), and continues to be a major factor in seabird population declines (Burger and Gochfeld, 1994).  Many seabird populations have become endangered owing to the rapid increase of human impacts on marine ecosystems. Impacts include direct effects (e.g. hunting, and egg collection) and indirect ones. Common indirect effects include: guano collecting, tourism, introduction of non-native animal species, pollution, and commercial fishing. These effects alter and/or destroy the habitat and deplete the birds' food resources. In the 2003 I U C N Red List of Threatened Species (www.redlist.org), 17 seabird species are critically endangered, 25 endangered and 31  2  near threatened (Appendix Table 1). The rest are either vulnerable or at low risk (57 and 210 species respectively; Appendix Table 1).  Several conventions and agreements for the protection of biodiversity have been signed since the early 1970s (Appendix Table 2). Some of these provide legal protection of wetlands to protect the breeding habitat mainly of shorebirds (e.g. the Ramsar Convention on Wetlands of International Importance; Appendix Table 2). Others aim to reverse bird population declines (e.g. CITES, CCAMLR; Appendix Table 2). However, these conventions are not well-focused on seabirds. As a result, only eight of >300 seabird species (i.e., the Jackass and Humboldt penguins, the Short-tailed albatross, the Dalmatian pelican, Abbott's booby, the Christmas Island frigatebird, the Brown-headed Gull, and the Relict gull) are listed under CITES.  1.2. SEABIRDS  IN THE SPOTLIGHT  OF SCIENTIFIC  RESEARCH  Seabirds have been in the spotlight of scientific research for many decades. Early ornithological studies focused mainly on the: (a) breeding biology (e.g. studies on the incubation, laying and fledging periods of seabirds, chick growth, and adult survival; Ealey, 1954a; Rand, 1960; Rice and Kenyon, 1962); (b) ecology (e.g. nesting habitat; Mougin, 1968); (c) behaviour (e.g. Warham, 1974; Diamond, 1975); and (d) diet composition of seabirds (e.g. Hartley and Fisher, 1936; Young,  1963). Recently, developments  in technology  and techniques  allowed  ornithologists to study: (a) sizes and status of seabird populations (e.g. Croxall et al, 1984; Croxall, 1991); (b) energy requirements of seabirds (e.g. Nagy et al, 1984; Salamolard and Weimerskirch, 1993); (c) foraging behaviour and performance (e.g. Trivelpiece et al., 1986; Wilson et al, 1986; Trathan et al, 1998); (d) the effect of weather on seabird ecology (e.g. Murray et al, 2002); (e) the effect of hydrography on distribution at sea (e.g. Garthe, 1997; Weichler et al, 2004). 3  The recent broadening of research in marine ornithology followed the realisation that large top predators play a key role in marine food webs. Seabirds are abundant and conspicuous and can indicate ecological impacts of oceanographic changes, such as El Nino Southern Oscillation (ENSO) events (e.g. Weimerskirch et al, 2003). They also may signal changes in the condition and availability of prey (e.g. Kitaysky et al, 2000; Springer et al., 1986; Croxall et al., 1988a; Montevecchi, 1993; Barrett and Krasnov, 1996; Bryant et al, 1999). The latter result implies that fluctuating prey availability influences seabird biology directly. For example, reproductive performance (Sydeman et al., 2001), adult survivorship (Jones et al., 2002), breeding success (Uttley et al, 1994a), colony attendance (Simeone et al, 2002), and prey switching (Crawford, 1998), all can cause seabird population changes. However, it has been acknowledged (e.g. Cairns, 1992) that seabirds may also provide useful information about the condition and availability of prey stocks (e.g. Springer et al, 1986; Croxall et al, 1988a; Montevecchi, 1993; Barrett and Krasnov, 1996; Bryant et al, 1999; Kitaysky et al, 2000) as well as the general state of marine ecosystems. Hence, seabirds are useful indicators of change in marine ecosystems (e.g. Cairns, 1987; Adams et al, 1992; Crawford et al, 1992; Montevecchi, 1993; Cherel and Weimerskirch, 1995; Montevecchi and Myers, 1995).  Several authors have attempted to determine the trophic role of seabirds in marine food webs, by estimating the amount of food they consume, and have discussed possible interactions between seabirds and fisheries. These studies have been focused on only one (e.g. Williams, 1991; Lorentsen et al, 1998; Rodhouse et al, 1998; Bunce, 2001) or a few seabird species breeding at one location (e.g. Croxall and Prince, 1987; Woehler and Green, 1992; Guinet et al, 1996; Croll and Tershy, 1998; Green et al, 1998a; Goldsworthy et al, 2001; Barrett et al, 2002; Huettmann, 2003). Efforts to estimate food consumption on larger spatial scales (e.g. within a large marine  4  ecosystem, throughout an ocean basin) have been sporadic and focused on a single species (e.g. Woehler, 1995). Brooke (2004) was the first author to tackle the issue of seabird food consumption on a global scale; his study includes most seabird species. He estimated an annual food consumption of 70 million tonnes for the world's oceans.  Interactions between fisheries and seabirds have also received considerable attention (e.g. Furness, 1982; Montevecchi, 2002). Interactions can be direct or indirect, and may have positive or negative consequences. Direct interactions include the entanglement of seabirds in fishing gear. This form of interaction causes increased mortality, because seabirds are dragged underwater and drowned while trying to feed on bait or on fish caught by the gear (Moore and Jennings, 2000). Human exploitation of marine resources has provided an increased opportunity for some seabirds to take advantage of prey that would otherwise be unavailable to them. In this case, prey is being scavenged from commercialfishingvessels, or is provided as discards. This form of interaction results in increases in the population size of seabirds (e.g. Furness et al., 1988; Votier et al., 2004); however, seabird populations rely heavily on the fate and future of fisheries. R eduction i n d iscarding b y fisheries a ppears t o b e h aving s erious i mpacts one ntire seabird communities (Reeves and Furness, 2002).  Another form of interaction between fisheries and seabirds results from sharing the same resource. Trophic overlap represents the extent to which two consumers overlap in the exploitation of the same resource in the same area (Hurlbert, 1978). Although trophic overlap describes a more neutral form of interaction, it is an indicator of potential competition (Hurlbert, 1978). In this case, competition occurs only when a resource is limited. Modern fisheries selectively remove large quantities of biomass from marine ecosystems (e.g. Pauly and Christensen, 1995). Their vast expansion worldwide in the last decades has resulted in massive  5  collapses of fish stocks (Pauly et al, 2002), overexploitation of high trophic level prey and a worrisome trend to continually fish down the food web (Pauly et al., 1998). As a result, industrialized modern fisheries have been considered to negatively impact seabirds, because they deplete resources that would otherwise be available as food to them.  Potential competition between seabirds andfisheriesfor the same prey species has been given considerable attention (e.g. Ashmole, 1971; Furness, 1982; Furness and Birkhead, 1984; Montevecchi, 2002; Cowx, 2003); however, few attempts have actually quantified this competition. Duffy and Schneider (1994) proposed a hierarchical approach to assess competition between seabirds and fisheries. The use of Horn's (1966) modification of Morisita's (1959) index was proposed for the assessment of trophic overlap (Duffy and Schneider, 1994). In addition, competition can be assessed by comparing the amount of food consumed by seabirds, with: (i)fisheriescatch ('Schaefer ratio'; e.g. Briggs and Chu, 1987); (ii) stock biomass ('Evans ratio'; e.g. Bailey and Hislop, 1978); (iii) primary production ('Wiens ratio'; e.g. Bourne, 1983); and (iv) re-supply ('Bourne ratio'; e.g. Duffy and Schneider, 1994). Trophic overlap has been estimated between the penguin population and the krill fisheries in the South Shetland Islands (Ichii et al, 1996; Croll and Tershy, 1998). Goldsworfhy et al. (2001) used a percentage similarity index (% PSI; Schoener, 1970) to assess overlap between the seabird populations and the Patagonian toothfish fishery around Macquarie Island (Goldsworthy et al, 2001). The overlap with the commercialfisherywas very low (Goldsworthy et al, 2001).  Recently, the impacts offisherieson other large marine vertebrates have been studied at a global scale. Kaschner (2004) used a modification of Horn's ratio to estimate the global trophic overlap between marine mammals andfisheries.She developed marine mammal distribution maps and compared those with the global maps of fisheries catches developed by Watson et al (2004), in  6  the 'Sea Around Us' Project (SAUP; www.seaaroundus. org) at the University of British Columbia ( U B C , Vancouver, C anada). S he f ound 1 ow o verlap b etween marine m ammals and fisheries a 11 he global sc ale (Kaschner, 2 004; K aschner and P auly, 2 004). M oreover, A ndrew Read's group at Duke University (Durham, N C , USA) is creating digital databases of marine mammals, seabirds and sea turtle distributions and abundances, as part of the "Ocean Biogeographic Information System" (OBIS; http://seamap.env.duke.edu). One of their goals is the study of potential impacts of fisheries on threatened species. In this case, they use satellite telemetry data to examine seabird movements in relation to longline fishing operations (Hyrenbach and Dotson, 2003; Read et al, 2005).  1.3.  GEOGRAPHIC  INFORMATION  SYSTEMS  (GIS)  AS A RESEARCH  TOOL  Fisheries have dramatically expanded in the last few decades (Pauly et al., 1998, 2003; Myers and Worm, 2003) and now extract from the world's oceans well over 120 million tonnes of resources annually (Pauly et al,  2002). Consequently, global fishing operations reduce  populations of target and non-target species and alter food web function and ecosystem structure (Moore and Jennings, 2000; Jennings et al, 2001). In order to quantify these impacts, these processes must be analyzed at a large scale. To date, fisheries assessment approaches have used time series analyses to study the variability of target species over time. These approaches, however, o ften f ail t o d etect v ariability i n s pace. T his i s w hy m aps h ave b een p roposed a s a complementary tool for fisheries science (Pauly et al, 2003). They help to make the necessary transition towards ecosystem-based management.  In order to improve the spatial precision of fisheries catch data, a method has been developed by the S A U P to disaggregate existing fisheries statistics into a grid system of 30-minute (longitude and latitude) spatial cells (www.seaaroundus.org). There are over 180,000 cells in the world's 7  oceans. Each cell contains information of the geographical distribution of taxa represented in the fisheries catches, as well as known fishing access arrangements (Watson et al., 2004). As my focus was the global interactions betweenfisheriesand seabirds, I used a GIS-based modelling approach and the same spatial grid of 30-min cells. These choices allowed me to interface with the approach of Watson et al. (2004), and address three goals, to: (a) map the foraging distribution of seabirds; (b) estimate seabird food consumption rates per cell; and (c) compare the latter with the spatially disaggregated fisheries catches database of the SAUP to obtain an estimate of a seabird - fisheries overlap index per cell.  8  C H A P T E R 2: M E T H O D O L O G Y  2.1.  SEABIRD  SPECIES  I compiled information on 351 marine bird species (listed in Appendix Table 1) in a Microsoft Access database. These species belonged to four orders and 14 families, which are summarized in Table 2.1. O f these, 334 species are traditionally considered to be seabirds. I also included 17 species of sea ducks (Table 2.1 and Appendix Table 1). These consist of birds that breed inland, yet winter at sea nearshore and prey upon small fish and invertebrates that occur along the coast.  I gathered data from the following databases: (a) Aquatic Sciences and Fisheries Abstracts (ASFA); (b) Web of Science, Institute for Scientific Information (ISI); and (c) Biosciences Information Service (BIOSIS) of Biological Abstracts. These cover peer-reviewed journals and  TABLE  2.1. Orders and families of seabird species included in the study. N : number of species.  Order Charadriiformes  Pelecaniformes  Procellariiformes  Sphenisciformes Anseriformes  Family Alcidae Laridae Stercorariidae Fregatidae Pelecanidae Phaethontidae Phalacrocoracidae Sulidae Diomedeidae Hydrobatidae Pelecanoididae Procellariidae Spheniscidae Anatidae  N 23 97 7 5 8 3 38 10 22 20 4 80 17 17  Names Alcids Gulls, terns, noddies Skuas Frigatebirds Pelicans Tropicbirds Cormorants Gannets, boobies Albatrosses Storm petrels Diving petrels Petrels, prions, shearwaters, fulmars Penguins Sea ducks  9  grey literature sources. Information was also extracted from the following online databases: (a) Avibase - the world bird database (http://www.bsceoc.org/avibase/avibase.jsp?pg=home&lang =EN);  (b) the United Nations Environment Programme (UNEP) - World Conservation  Monitoring Centre Species Database  (http://www.unep-wcmc.org/right.htm); (c) BirdLife  International (www.birdlife.net); (d) the National Audubon Society (www.audubon.org) Christmas Bird Count (http://www.audubon.org/bird/cbc/ index.html); (e) the Birds of North America  Online  (http://bna.birds.cornell.edu/BNA/); and  (d)  Wetlands  International  (www.wetlands.org).  2.2.  TROPHIC LEVELS  (TL)  A diet composition matrix was created that contained information on the feeding habits of the world's seabirds. The matrix contained percentages of weight or volume of a particular prey species or prey taxon in the diet of the predator. Quantitative diet information was tabulated by seabird species, study area and year (Appendix Tables 3-10). The following additional information was encoded: (a) technique used for foraging (i.e., dipping, surface seizing, plunge diving, deep pursuit diving, scavenging and kleptoparasitism); (b) maximum foraging depth (in m); (c) maximum foraging distance from colony (i.e., nearshore, <1 km; coastal, <10 km; shelf <200 km; pelagic, >200 km); and (d) morphometric characteristics (i.e., length of bill, tarsus and wing; in mm).  The diet matrix was used to calculate fractional T L values for each seabird species. I used TrophLab software (Pauly et al., 2000) to estimate trophic levels of seabirds by considering the trophic levels of the full array of prey items in the diet of seabirds. TrophLab estimates T L (and its standard error, SE) from: (a) quantitative diet composition data, expressed as percentage of weight or volume contribution of the prey in the diet of the predator; or (b) qualitative diet  10  composition data (i.e., the prey items known to occur in the diet). The latter is useful when diet composition is expressed using qualitative indices that assess how much a particular item contributes to the diet of a given species (e.g. numerical contribution and mainly frequency of occurrence of prey) (Pauly et al., 2000).  Trophic Levels (TL) express the position of organisms within the food webs that describe marine ecosystems (Pauly and Christensen, 1995, 2000; Pauly et al, 1998; Pauly and Palomares, 2000). The definition of T L for any consumer species i is (Pauly and Christensen, 2000): T L ^ l +XDC^TLj  ...1)  j=i  where TLj is the fractional trophic level of prey j , DQj represents the fraction of j in the diet of i and G is the total number of prey species. The T L takes values between 2.0, for herbivores/detrivores, and 5.0, for carnivores (Pauly et al., 1998; Pauly and Palomares, 2000). TrophLab also estimates an omnivory index (i.e., OI; the extent to which a species feeds on more than one trophic level) as:  Oli^ZCTLj-TL^DCij  ...2)  OI equals zero when a predator feeds on prey of the same T L and increases with the variety of prey's TL. The square root of OI is the SE of T L (Christensen and Pauly, 1992).  Diet composition data (% gravimetric abundance) were available for 174 seabird species. For these species, T L and SE values were estimated using the quantitative routine of TrophLab. For the remaining species, T L was estimated from the list of prey items in the diet using the 'qualitative routine' of TrophLab. Fish-eating seabirds were assumed to prey upon juvenile prey individuals, whose T L was taken from FishBase online (www.fishbase.org), when available. For  11  the rest of the prey items known to occur in the diet of seabirds, the default TL value of TrophLab was used.  2.3. DAILY  FOOD INTAKE  (DFI)  Information needed to estimate the seabirds' DFI, and hence their annual food consumption, included: (a) body mass (m; in g) of seabirds species takenfromDunning (1993) and Schreiber and Burger (2002), unless body mass data were available per breeding location, (b) Basal and Field Metabolic Rates [BMR and FMR respectively estimated using order-specific allometric equations from Ellis and Gabrielsen (2002); in kJ/day; Table 2.2]. BMR and FMR were used to estimate energy requirements (ER) of seabirds in the non-breeding and breeding season respectively. (c) The matrix of standardized diet composition (see below); and (d) population sizes of breeding seabirds (see below).  Order-specific allometric equations [from Ellis and Gabrielsen (2002)] were used to calculate Basal and Field Metabolic Rates (BMR and FMR respectively; in kJ/day), which were assumed to represent energy requirements of seabirds for the non-breeding and breeding season respectively, m: body mass (in g). T A B L E 2.2.  FMR  Order  BMR  Charadriiformes  BMR=2.149-m u  804  FMR=11.49-m '"  Pelecaniformes  BMR=1.392-m  0823  FMR=3.90-m -  Procellariiformes  BMR=2.763-m  Sphenisciformes  BMR=1.775-m '  FMR=21.33-m -  All seabirds  BMR=3.201-m  FMR=16.69-m  1  0726  0 768  0719  u  0  8  8717  FMR=22.06-m 0  0594  626  06 5 1  BMR and FMR for Anseriformes were calculated using the general allometric equation for all seabirds combined (Ellis and Gabrielsen, 2002). 1  12  Food groups used to express standardized diet composition data, calculate annual food consumption rates, and assess the trophic overlap between seabirds and fisheries on a global scale. Food groups were compiled based on the taxonomic groups represented in the 'Sea Around Us' Project database.  T A B L E 2.3.  Food Group Perch-like  Taxa included Perciformes, Anarhichadidae, Mugilidae, Labridae, Apogonidae, Diplodus sp., Scomber japonicus, S. scombrus, Emmelichthys nitidus nitidus, Seriolella brama, Dicentrarchus labrax, Pagellus acarne, Lithognathus mormyrus, Pomatomus saltator, Thyrsites atun Gadids Boreogadus saida, Gadus morhua, G. macrocephalus, Macruronus novaezelandiae, M. magellanicus, Pseudophycis bachus, Micromesistius poutassou, M. australis, Pollachius virens, Merluccius sp., Theragra chalcogramma, Eleginus gracilis, Pleurogrammus monopterygius, P. azonus Beloniformes Belone belone belone, Scomberesox saurus saurus, S. s. scombroides, Cololabis saira Scorpaeniformes Cottidae, Prionotus sp., Trigla sp. Flatfish Pleuronectidae, Reinhardtius hippoglossoides, Solea sp. Engraulis encrasicolus, E. australis, E. anchoita, E. capensis, E. japonicus, Anchovies E. mordax, E. ringens Atherinidae Silversides Decapterus sp., Trachurus declivis, T. mediterraneus, T. trachurus, T. Carangidae symmetricus Channichthyidae Crocodile icefishes Clupea harengus, C. pallasii, Sardinops sagax, Etrumeus teres, E. Clupeidae whiteheadi, Sardina pilchardus, Sprattus sprattus Osmeridae Smelts Flyingfishes Exocoetidae Grenadiers Macrouridae Myctophidae Electrona antarctica, Gymnoscopelus nicholsi, Lampanyctus sp., Lampichthys sp. Notothenia rossii, N. coriiceps, N. nybelini, Gobionotothen gibberifrons, Nototheniidae Lepidonotothen squamifrons, Pleuragramma antarcticum, Dissostichus eleginoides, D. mawsoni Synodontidae Lizardfishes Ammodytes hexapterus, A. americanus, A. marinus Ammodytes Capelin Mallotus villosus Goatfish Upeneus sp. Oncorhynchus Oncorhynchus sp. Redfishes Sebastes Other, not included in the above food groups Fish Teuthida, Kondakovia longimana, Loligo sp., Illex sp. Cephalopods Shrimps, prawns, Brachyura Decapods Euphausia superba, E. crystallorophias, Meganyctiphanes norvegica, Krill Thysanoessa sp.  13  Consumption by seabirds was specified by 25 food groups (see Table 2.3 for description). Food groups were compiled based on the taxonomic groups represented in the SAUP database (Table 2.3).  Population sizes were expressed as breeding pairs (bp). The following equations accounted for non- and pre-breeders present in colonies as follows: (a) for single-egg laying species (bpx0.6)+(bpx0.7); and (b) for multi-egg laying species (bpx0.6)+(bpxl.O) (ICES, 2000). These calculations assume that non-breeders comprise 30% of the breeding population and that the fledging success of single-egg and multi-egg clutch species is 0.7 and 1.0 chicks/pair respectively (Cairns et al., 1991).  A bioenergetic model created by the ICES Working Group on Seabird Ecology (ICES, 2000) was employed to estimate DFI: ER:  1  j=i  Where DFIj denotes daily food intake for each seabird species i , ERj is the energy requirements for each i, DCy is the fraction of food item j in the diet of each i, EDj is the mean energy density of each prey j (Appendix Table 11). AEj is the mean food assimilation efficiency for each i, and G the total number of food groups (Table 2.3) encountered in the diet of each breeding population. ERj for the breeding season was calculated using the F M R allometric equations (Table 2.2). During the non-breeding season, ERj was considered equal to 2.5 * B M R (ICES, 2000; Table 2.2). The length of the breeding season was assumed equal to incubation period + time from hatching to leaving the nest or burrow + 20 days (Cramp, 1985). A E ; was assumed equal to 75% (Gabrielsen, 1994; ICES, 2000; Barrett et al, 2002), unless species-specific  14  information was found in the literature. EDj values were available either at the speciesappendix Table 11) or taxon-level (Appendix Table 11) for prey items. Total food consumption was estimated per spatial cell, based on the seabird density of each cell (see below).  2.4.  MAPPING  SEABIRDS'  FORAGING  DISTRIBUTION  USING  GIS  Oceanographic features at sea influence seabird distribution and marine physical processes explain some of the variation in seabird numbers (e.g. Davoren, 2000; Fauchald, et al, 2000; Hyrenbach et al., 2002). These studies rely on the concept that global oceanic circulation patterns influence prey availability and abundance strongly (Wolanski and Hammer, 1988; Mann and Lazier, 1996; Longhurst, 1998). Thus, these areas of high food concentration attract many foraging seabirds (Shealer, 2002). However, seabirds include species with several foraging attributes, which are inevitably influenced by different oceanographic processes occurring at different scales (Hunt and Schneider, 1987).  Data on seabirds' global breeding distribution, and demography were compiled and tabulated per species, year and breeding location (i.e., the country where the species breeds; Fig. 2.1), henceforth referred to as 'breeding population'. Each breeding location was assigned a population size (i.e., the number of individuals breeding corrected for non-breeders and immature individuals), for each breeding species, and original census year. The population size table covered the years from 1950 to 2003. For years when population sizes were not available, data were interpolated, assuming a linear relationship between the available datapoints. Data were also extrapolated from the first available datapoint back to 1950, as well as from the last available datapoint to 2003, assuming no change in the population size. This generates a conservative bias, an item to which I shall return.  15  Furthermore, the number of foraging seabirds was estimated per cell, using for each breeding population, the following information: (a) population size for each year, from 1950 to 2003; (b) maximum foraging range (i.e., distance flown away from the colony in search of food); and (c) distribution maps of forage prey available by the S A U P (www.seaaroundus.org). Prey distribution maps are constructed using previously published distribution maps, which are adapted to the SAUP polygon format (www.seaaroundus.org). These maps are further refined based on absence in the records of some F A O statistical areas, as well as additional factors (e.g. latitude and depth ranges, distance from shore, and some critical habitats).  A l l 351 species were assigned a distribution, defined by the northernmost and southernmost latitude for each. The species were then divided into four groups, according to the distance they fly from their colony to feed. The following groups emerged: (a) nearshore species that forage  2.1. Areas of the world for which at least one seabird population size estimate was available.  FIGURE  16  within 1 km from shore. This group comprises of some species of cormorants, gulls, terns, pelicans, seaducks, and some alcids. (b) Coastal species that fly up to 10 km from shore to find food. This group includes mainly species of cormorants, gulls, terns and seaducks, as well as some alcids. (c) Seabirds species of the continental shelf that forage within 200 km from land. This group contains some storm petrels and shearwaters, Crested penguins, alcids, and largerbodied gulls and cormorants. Each breeding population was assumed to disperse evenly from the colony in a 11 directions. The probability of occurrence was assumed to d ecrease linearly with distance from land, to zero at the maximum reported foraging range. In addition, seabird distribution was further constrained by the distribution of the prey occurring in the diet of the avian predator. Group (d) comprised of pelagic species that forage in deeper, offshore waters at distances >200 km. This group includes pelagic, deep-diving penguins, as well as albatrosses, prions, petrels, some shearwaters, and storm petrels.  Several parameters to define pelagic foraging habitats and the at-sea distribution of far-ranging seabirds have been used in the literature (e.g. Rodhouse, 1989; Rodhouse et al, 1996; Hyrenbach et al, 2002; Ainley et al, 2005): (a) Sea Surface Temperature (SST) and (b) Sea Surface Salinity (SSS) - in general, lower SST and higher SSS indicate well-mixed water masses that generate frontal systems; (c) Seafloor depth - differences in bathymetry assist in the mixing of the water column, during oceanic circulation; and (d) Chlorophyll concentration (Chi a). In oligotrophic waters, Chi a is < 0.1 mg m" , while in enriched waters, Chi a is > l m g m "  3  (Longhurst, 1998).  Nel et al (2001) recently correlated satellite-tracked Grey-headed albatross movements with weekly satellite-derived Sea Surface Height Anomaly (SSHA) data. SSHA denotes the variable height of the sea surface above or below the baseline figure of the Earth (definition available from http://sealevel.ipl.nasa.gov/glossary.html). SSHA represents a statistical measure of 17  temporal variations in major current systems (Park and Gamberoni, 1995). Indeed, positive and negative SSHA (sensu warm and cold eddies) may contain elevated stocks of potential prey that attract far-ranging, pelagic seabirds (Nel et al, 2001).  Group d was further divided into three sub-groups: (i) species that fly to distances >200 km to feed. However, the probability of occurrence decreases linearly to zero at the maximum reported foraging range, (ii) Species, whose probability of occurrence was described by a trapezoidal probability distribution (i.e., occurrence was assumed to be uniformly highest within a threshold distancefromthe breeding colony, and then to decrease linearly to zero at the maximum reported foraging range), (iii) Twelve species of the genus Puffinus (i.e., Little, Buller's, Flesh-footed, Pink-footed, Greater, Sooty, Hutton's, Christmas, Newell's, Wedge-tailed, Manx and Shorttailed s hearwaters). T hese s pecies b reed i n a reas o f t he S outhwest Pacific a nd S outh A tlantic Oceans. At the end of the breeding season they migrate to feed and winter in the waters of the North Pacific and the North Atlantic Oceans (e.g. Ogi et al, 1980; Guzman and Myres, 1983; Briggs and Chu, 1986; Camphuysen, 1995; Spear and Ainley, 1999; Gould et al, 1997, 1998; Ito, 2002).  On occasion, shearwaters form flocks and feed with surface-schooling tunas (Ashmole and Ashmole, 1967; Au and Pitman, 1986, 1988; Au, 1991). These seabirds benefit when tunas drive prey closer to the surface, where they can be reached by surface divers. Such foraging behaviour has been documented, for instance, for Wedge-tailed shearwaters that feed with Yellowfin {Thunnus albacares) and less frequently with Skipjack tunas (Katsuwonus pelamis) in' the Eastern Tropical Pacific Ocean (Au and Pitman, 1986, 1988; Au, 1991). The same habit is also shown by Greater shearwaters that feed with tunas in the Atlantic Ocean (Clua and Grosvalet, 2001). Hence, in order to map the foraging distribution of the twelve species of transequatorial  18  shearwaters, I assumed that their distribution matched that o f three species o f schooling tuna (Yellowfin, Thunnus albacares; Southern bluefin, Thunnus maccoyii; and Northern bluefin, Thunnus thynnus; available online at www.seaaroundus.orgl.  2.5.  THE SPATIALLY-EXPLICIT  SEABIRD  - FISHERY  OVERLAP  INDEX  In order to assess conflicts between seabirds and fisheries, I estimated a trophic overlap index a, that uses the amounts of prey taken jointly by seabirds and fisheries. I used the indices of Morisita (1959) and Horn (1966), as modified by Kaschner (2004). She applied a weighting factor, to measure the importance of spatial cell of either very low seabird food consumption rates and/or very low fisheries catches. Thus, the trophic overlap index was as follows: G  °=  a M  M  H  *ipQr*PC ) f  ...4)  /=1  a takes values from 0 to 1, with 0 indicating no overlap and 1 complete overlap; pij is the proportion of a food group j to the total amount of food taken by a seabird i ; pfj is the proportion of j in the catch of the fishery f; G and H denote the number of food groups taken by i , and comprise the catch of the fishery f respectively; pQj and pCf denote the proportion of food taken by i and the proportion of food caught by f at each cell, a was quantified on a global scale and was allocated to each spatial cell, using seabird densities for each cell and the disaggregated fisheries catches from the SAUP (www.seaaroundus.org; Watson et al, 2004).  19  C H A P T E R 3: RESULTS  3.1. SEABIRDS'  GLOBAL  POPULATION  SIZE  The total seabird population decreased from 1.076 billion individuals (95% CI 1.052 - 1.102) in 1950 to 0.922 billions individuals (95% CI 0.893 - 0.868) in 2003. Confidence intervals for the piecewise regression (Fig. 3.1) were calculated using the statistical package NCSS (Hintze, 2004). The slope was -0.0004 (P<0.01; Fig. 3.1), up to 1970, after which the slope increased by an order of magnitude to -0.0054 (PO.01; Fig. 3.1).  Decline in the overall population size (in billions of individuals) of the world's seabirds (1950-2003). (Fitted piecewise regression model: bi=0.0004, b =0.0054, J=1970; 1^=0.967, P<0.01).  FIGURE 3.1.  2  20  The family Procellariidae was the most abundant one throughout (Fig. 3.2). However, its contribution to the total declined from 41.7% in the 1950s to 32.5% in the 1990s (PO.05; Fig. 3.2). The families Procellariidae, Alcidae, Laridae, and Spheniscidae were responsible for more than 85% of the total at both times (Fig. 3.2). In addition, the proportional losses of Procellariids were roughly balanced by the gains in alcids, larids and penguins (Fig. 3.2). Differences between mean abundances for the 1950s and the 1990s were not statistically significant ( A N O V A ; P>0.05) for the families Anatidae, Fregatidae, Phaethontidae, and Spheniscidae. 50  r  1  2  3  4  5  6  7  8  9  10  11  12  13  14  Family 3.2. Percentage contribution to the global seabird abundance (in number of individuals) of each family for the 1950s (black bars) and the 1990s (grey bars). 1: Procellariidae, 2: Alcidae, 3: Laridae, 4: Spheniscidae, 5: Hydrobatidae, 6: Pelecanoididae, 7: Diomedeidae, 8: Phalacrocoracidae, 9: Sulidae, 10: Anatidae, 11: Fregatidae, 12: Stercorariidae, 13: Pelecanidae, 14: Phaethontidae.  FIGURE  21  Although penguins are only the fourth most numerous family, they made up > 50% of seabird biomass, for both the 1950s and the 1990s (Fig. 3.3). Their % contribution biomass increased from 52.5% in the 1950s to 57% in the 1990s (Fig. 3.3). However, this increased was not statistically significant (t-test; P>0.05; Fig. 3.3). Procellariidae were second-ranked in biomass (Fig. 3.3). However, their biomass declined from 21.0% in the 1950s to 15.8% in the 1990s (ttest; P<0.05; Fig. 3.3). Differences between mean abundances for the 1950s and the 1990s were not statistically significant ( A N O V A ; P>0.05) for the families Spheniscidae, Diomedeidae, Anatidae, and Phaethontidae.  80  r  1  2  3  4  5  6  7  8  9  10  11  12  13  14  Family 33. Percentage contribution to the global seabird biomass (in tonnes) of each family for the 1950s (black bars) and the 1990s (grey bars). 1: Spheniscidae, 2: Procellariidae, 3: Alcidae, 4: Laridae, 5: Diomedeidae, 6: Phalacrocoracidae, 7: Sulidae, 8: Anatidae, 9: Pelecanoididae, 10: Pelecanidae, 11: Fregatidae, 12: Hydrobatidae, 13: Stercorariidae, 14: Phaethontidae.  FIGURE  22  3.2.  TROPHIC  LEVELS  OF THE  WORLD'S  SEABIRDS  The estimated TLs ranged from 2.81 for the California gull to 4.75 for the Brown skua (mean T L = 4.03; 95% CI 3.99-4.07; Table 12). For 216 out of 351 species (61.5%), T L was based only on one dataset (i.e., species-specific diet composition data analysed for a specific breeding colony and year) (Table 12). Furthermore, for 177 out of these, food habits used to estimate the TLs, were expressed qualitatively. Good analyses of stomach contents have been studied throughout the breeding range for the Cape gannet (40 datasets), the Thick-billed murre (41 datasets), the Atlantic puffin and the Common murre (48 datasets each), and the Black-legged kittiwake (57 datasets) (Table 12).  100 Diet consists mainly of fish and squid 4.21 (0.24)  80  60  Diet consists of copepods and other small crustaceans 3.44(0.21)  5  40  E 20  2.8  3.0  3.2  3.4  3.6  3.8  4.0  4.2  4.4  4.6  4.8  5.0  Trophic Level Histogram of all trophic levels of 351 seabird species considered in the study. The mean (left) and the standard deviation (right, in parentheses) for the two functional groups identified are also shown.  FIGURE 3.4.  23  The frequency distribution of TLs displayed two modes, at 3.3-3.5 and 4.1-4.3 (Fig. 3.4). These modes correspond to two functional groups: (A) seabirds in the diet of which copepods and other crustaceans (e.g. euphausiids, amphipods) dominate; and (B) seabirds that feed mainly on fish and cephalopods, but include smaller invertebrates in their diet. Group A included penguins and alcids that target krill and other crustaceans, diving petrels that feed on copepods, sea ducks that feed mainly on bivalves, and storm petrels that feed on amphipods (Fig. 3.5). Group B consisted of the majority of the species and included the offshore pelagic foragers of the family Procellariidae, the fish-targeting penguins, as well as skuas, which prey upon other seabirds and small terrestrial mammals (Fig. 3.5). Between-group analysis of variance indicated statistically significant differences between mean TL of families (ANOVA, i .05O),(k-i),(N-k) 26.3, P<0.05; R  =  U  Zar, 1999).  Alcidae (23, 306) Anatidae (17, 24) Diomedeidae (22, 60)  .  Fregatidae (5, 8) Hydrobatidae (20,36)  £ (0 U-  ,  Laridae (97,272)  CEEh  1  ,  i  HT~r| |  1 «|  Pelecanidae (8,8) Pelecanoididae (4,13) Phaethontidae (3,4) Phalacrocoracidae (38,107) Procellariidae (80,192)  _-| .  .  1  Spheniscidae (17,166) Stercorariidae (7, 46) Sulidae (10, 74)  1  1  CEO*  ——I  •I  1  ~T —I ! • 1 • ! I-  !• •  •  |-1 * m  1  *  | ,  •  Trophic Level Trophic Levels of seabird families. The central box covers 50% of the data, the whiskers extend to the minimum and maximum values of the data, the vertical line in the box is the median and the black dot is the mean. Numbers in parentheses indicate number of species (left) and number of datasets (right) per family.  FIGURE 3.5.  24  T L varied across foraging habitats (nearshore, coastal, shelf, pelagic). Between-group analysis of variance revealed statistically significant differences of the mean T L per habitat type ( A N O V A , ^o.05(i),(k-i),(N-k) 9.3, =  P<0.05). I also detected two homogenous groups: (a) nearshore and coastal  seabirds, with a mean T L (±SE) of 3.83 (±0.55) and 3.92 (±0.58) respectively (Fig. 3.6); and (b) pelagic seabirds and those that feed over the continental shelf, with mean T L (±SE) of 4.14 (±0.50) and 4.06 (±0.51) respectively (Fisher's Least Significant Difference; Zar, 1999; Fig. 3.6).  Coastal (63) S  Nearshore (52)  _g  Pelagic (115)  _Q  Shelf (121) 2  3  4  5  Trophic Level 3.6. Trophic Levels of seabird species by foraging habitat. Conventions as in Figure 3.5. Numbers in parentheses indicate number of species per foraging habitat.  FIGURE  25  3.3.  SPA TIALLY-EXPLICIT  FORAGING  DISTRIBUTION  OF  SEABIRDS  Figure 3.7 shows the predicted foraging distribution of all seabirds combined, based on information on the distance seabirds fly away from their breeding site to feed, and information on the distribution of prey items encountered in their diet. Areas near New Zealand, the eastern coast of Australia, and the sub-Antarctic islands are characterized by the highest number of foraging seabird species in the world (Fig. 3.7.a). Hawaii and the Caribbean are the only areas north of the equator with high numbers of foraging species (Fig. 3.7.a). The temperate and polar regions of the northern hemisphere have the lowest number of foraging species (Fig. 3.7.a). However, these areas are characterized by high seabird densities (i.e., number of seabirds foraging per km ; Fig. 3.7.b). High seabird densities occur as well around New Zealand and the 2  Patagonian Shelf, the Antarctic continent, the sub-Antarctic islands, and the islands of the South Pacific (Fig. 3.7.b).  26  (a) N of species __•  >50 • 1 <50 <40 <35 • • 1 <30 — <25 •• <20 < 15 < 10 <5  Seabird density (10 Nkm- ) 6  # O  Q  2  >0.60 <0.60 <0.50 <0.40 <0.30 <0.20 <0.15 <0.10 <0.05 <0.02  3.7. Map of predicted foraging distribution of seabird species during an average year in the 1990s, expressed in: (a) number (N) of seabird species per spatial cell; and (b) number (N) of individuals per km .  FIGURE  2  27  3.4. GLOBAL  ESTIMATES  OF TOTAL ANNUAL  FOOD CONSUMPTION  OF  SEABIRDS  The estimated annual global food consumption of all seabird species combined was 96.4 million tonnes. Krill and cephalopods comprised more than 58% of the overall food consumption (krill: 37.8%, cephalopods: 20.5%; Fig. 3.8). Fish for which no catch is reported (i.e., not listed in Table 2.2) and myctophids were the second and third ranked prey consumed by seabirds (Fig. 3.8). Following Brooke (2004), I assumed a coefficient of variation of 50% for population size; global food consumption therefore ranged from 78.0 to 114.7 million t. The most abundant Procellariidae and Spheniscidae were responsible for more than 54% of the overall food consumption. Ammodytes 4.0%  20.5%  3.8. Percentage contribution of food groups in the estimated annual global food consumption of all seabird species combined. Food groups described in Table 2.2. Other fish: contains Anchovies (1.4%), Clupeidae (1.1%), Sebastes (0.7%), Carangidae (0.5%), Goatfish (0.4%), Perch-like (0.2%), Flatfish (0.2%), Beloniformes (0.1%), Scorpaeniformes (0.1), Channichthyidae (0.1%), Osmeridae, Atherinidae, Synodontidae, Oncorhynchus and Macrouridae (<0.05% each).  FIGURE  28  3.5. SPATIALLY-EXPLICIT  ANNUAL  FOOD CONSUMPTION  OF  SEABIRDS  Mapping of food consumption rates of all seabirds combined (Fig. 3.9) revealed that a considerable amount of food is consumed by seabirds over the continental shelves (e.g. along the western and eastern coasts of South America; the Northwest Pacific Ocean - Okhotsk Sea and the Sea of Japan; and the continental shelves of the North Atlantic Ocean; Fig. 3.9). However, most of the food is taken from offshore areas (e.g. offshore waters of the Southwest Pacific and the Southern Ocean; Fig. 3.9). In addition, most of the food consumed by seabirds is taken from temperate and polar regions of the world (Fig. 3.9), where seabirds forage in greater densities. In the southern hemisphere, these areas coincide with areas where prey, such as the Antarctic krill, squid, and the mesopelagic fish of the families Nototheniidae and Myctophidae, are abundant (e.g. Rodhouse et al,  1996; Lascara et al, 1999; Duhamel et al, 2000). In the northern  hemisphere, most feeding occurs in areas that depict the distributions of prey, such as capelin, sand lance, and herring (e.g. the waters of the North Atlantic; Fig. 3.9).  3.9. Map of predicted global food consumption rate (in tonnes-km^-year" ) of all seabirds combined for an average year in the 1990s.  FIGURE  1  29  3.6. SPATIALLY-EXPLICIT  TROPHIC OVERLAP  BETWEEN  SEABIRDS  AND  FISHERIES  Mapping of the overlap between all seabirds and fisheries on a global scale revealed that it mostly occurs in the temperate waters of the northern hemisphere (Fig. 3.10). In the North Atlantic, 'hotspots' of high overlap were present throughout the shelf areas of Europe. However, overlap increased across decades in the offshore waters of the Norwegian Sea (Fig. 3.10). Trophic overlap increased through time along the continental shelf of West Africa (fig. 3.10). In the North Pacific, high overlap was estimated for the Asian shelves; it too increased across decades (Fig. 3.10). In the Bering Sea, overlap was highest in the 1990s (Fig. 3.10). Temporal comparisons oftrophic overlap r evealed d eclines i n areas, s uch as H awaii, N orthwest P acific Ocean, the west and east coast of Canada and the United States of America, and in the Barents Sea (Fig. 3.10).  In the southern hemisphere, trophic overlap between seabirds and fisheries increased in the productive waters of the Humboldt Current from the 1950s to the 1990s (Fig. 3.10). New Zealand was characterized by very high overlap, particularly in the 1990s (Fig. 3.10). The Patagonian Shelf and the waters around the Antarctic Peninsula were of high relative importance both in the 1970s and 1990s, with no overlap displayed for the 1950s (Fig. 3.10). The last result is probably c aused by the poor quality of the data in the S A U P database on fisheries catches from the Southern Ocean and the Antarctic Continent for the 1950s.  30  (a)  m  (b)  Overlap >0.60 <0.60 <0.50 <0.40 <0.30 <0.25 <0.20 <0.15 <0.10 <0.05  •I  (c)  ;*  '4  <  i  3.10. Map of estimated trophic overlap between all seabirds and fisheries for an average year of the: (a) 1950s; (b) 1970s; and (c) 1990s.  FIGURE  31  Trophic 0  0.2  0.4  Overlap 0.6  0.8  1  1.0E+00 •  1.0E-12  L  Proportion of food consumed by seabirds in the 1990s by areas of overlap with fisheries.  FIGURE 3.11.  I calculated the proportion of food consumption by areas of overlap with fisheries. Logarithmic transformation of the y-axis was required, because the proportion of food consumed in cells with overlap > 0.3 was very close to 0. In the 1990s, < 1% of all food taken by seabirds was consumed in areas of high spatial overlap with commercial fisheries (Fig. 3.11). In other words, most of the food consumed by seabirds originated from areas where overlap is very low (Fig. 3.11).  32  3.6a. SPA TIALL Y-EXPLICIT  TROPHIC OVERLAP  BETWEEN  PROCELLARIIDAE  AND  FISHERIES  Procellariidae contributed the highest number of individuals to the overall seabird abundance (Fig. 3.2). For this family, the model predicted for an average year in the 1990s high food intake rates in the temperate and polar waters of the world (Fig. 3.12). In the southern hemisphere, most of the food consumed appears to be taken from offshore waters in the Southern Ocean, the South Atlantic and the South Pacific (Fig. 3.12). In the northern hemisphere, high food consumption rates were predicted for the continental shelves and offshore waters of the Northeast Atlantic, the Asian shelves, and the Bering Sea (Fig. 3.12). Temporal comparisons of trophic overlap between the Procellariidae and fisheries (Fig. 3.13) revealed similar patterns as those for all seabirds combined (Fig. 3.10). Areas where trophic overlap appears to have increased since the 1950s include the Patagonian Shelf, the waters around New Zealand and the Campbell Plateau, the productive waters of the Humboldt Current, as well as the coast of West Africa (Fig. 3.13). Moreover, the North Atlantic, Northwest Pacific, and the Bering Sea appear to be 'hotspot' areas of high overlap between the Procellariids and fisheries since the 1950s (Fig. 3.13).  of the family Procellariidae for an average year in the 1990s.  33  (a) JK I  (b) Overlap >0.60 <0.60 <0.50 <0.40 <0.30 <0.25 <0.20 <0.15 <0.10 <0.05 •i *  (c)  0  Map of estimated trophic overlap between seabirds of the family Procellariidae and fisheries for an average year of the: (a) 1950s; (b) 1970s; and (c) 1990s.  FIGURE 3.13.  34  3.6b. SPA TIALL Y-EXPLICIT  TROPHIC O VERLAP  BETWEEN  SPHENISCIDAE  AND  FISHERIES  Penguins comprised more than 50% of the overall seabird biomass (Fig. 3.3). They are distributed only within the Southern Ocean, except for the Galapagos Penguin. For an average year in the 1990s, food consumed by penguins was taken mostly along the Antarctic Continent and around the sub-Antarctic islands (Fig. 3.14). There was also some consumption on the Patagonian Shelf, and the waters off the coast of South Chile (Fig. 3.14). Overlap estimates between foraging penguins and fisheries were high off the Falkland Islands and the Patagonian Shelf (Fig. 3.15). Indeed, these areas are key foraging grounds for the Gentoo, Rockhopper, and Magellanic penguins. Trophic overlap has declined from the 1970s to the 1990s along the Antarctic coast, but has increased slightly in the waters off the sub-Antarctic Islands and the Patagonian Shelf (Fig. 3.15). The apparent increase in overlap around Antarctica from the 1950s to the 1970s probably reflects poor fisheries catch data in the SAUP database for the 1950s.  F e e d i n g t-knr -yr 2  1  <0.2  Map of predicted global food consumption rate (in tonnes4xm' -year" ) of seabirds of the family Spheniscidae for an average year in the 1990s.  FIGURE 3.14.  2  1  35  (a)  (b) Overlap  (c)  • *3f \  Map of estimated trophic overlap between seabirds of the family Spheniscidae and fisheries for an average year of the: (a) 1950s; (b) 1970s; and (c) 1990s.  FIGURE 3.15.  36  C H A P T E R 4:  DISCUSSION  4.1. THE TROPHIC POSITION  OF THE WORLD'S  SEABIRDS  My study is the first attempt to estimatefractionaltrophic levels (TL), using all available diet composition data (Appendix Tables 3-10) of seabirds on a global scale. These fractional estimates take into account both the diet composition of the predator and the mean TL of the prey, weighted by the contributions of the different food items (Pauly and Christensen, 2000). Thus,fractionalTLs differ numerically from the integer TLs used so far (e.g. Knox, 1970; Sanger, 1987a), which are too imprecise and inaccurate for analysis (Pauly and Christensen, 2000). Sanger (1987a) compiled diet composition data for 19 species of seabirds from a large geographic area, s eabirds oftheGulfofA laska a nd t he A leutian C hain. H owever, h e u sed a nominal food chain to assign TLs to prey organisms occurring in the diet of seabirds (see his/her Table 10.1, Sanger, 1987a). Sanger's (1987a) method provides a more qualitative description of trophic structure of marine ecosystems than whenfractionalTLs are used.  Inspection of frequency distribution of fractional TLs suggested two functional groups of seabirds (Fig. 3.4). Thefirstgroup of species feed mainly on copepods, other small crustaceans (e.g. amphipods, isopods, mysids), and other marine invertebrates (e.g. bivalves, gastropods, polychaetes). However, most seabird species belonged to the second functional group (Fig. 3.4). These top avian predators target mainly fish and cephalopods, however, their diet also includes smaller invertebrates. TLs of seabirds also varied with their foraging habitat (Fig. 3.6). Top avian predators tend to feed awayfromthe coast (i.e., over the continental shelf and in offshore waters; Fig. 3.6). Therefore, prey of higher TL, which are usually targeted by commercialfisheries,are consumed by top predatory seabird species in areas where overlap withfisheriesis very low (Fig. 3.11). 37  The trophic groups identified in Fig. 3.4 are provisional and subject to revision, in terms of mean TL and range. More quantitative information is required, especially for those seabird species represented with only one dataset (Appendix Table 12). Fractional TLs correlate closely with TL estimates based on stable isotope ratios (Kline and Pauly, 1998). Thus, my assessment of the trophic position of seabirds in marine ecosystems may be enriched with available stable isotope fractional TLs (e.g. Hobson, 1990, 1991; Hobson and Welch, 1992; Hobson et al, 1994) and analyzed further. Stable isotope studies are particularly useful when diet composition data are lacking. They can replace conventional techniques particularly in the case of seabird species listed as vulnerable or endangered. Moreover, they can be used further for analysing trophic segregation (e.g. Bocher et al, 2000; Forero and Hobson, 2003) among seabirds. They also allow accurate evaluations of temporal and geographic variation in seabird TLs (e.g. Hobson and Clark, 1992), as well as the reconstruction of the diets of avian predators (e.g. Hobson and Montevecchi, 1991; Hobson, 1995).  4.2. GLOBAL  ESTIMATES  OF TOTAL ANNUAL  FOOD CONSUMPTION  OF  SEABIRDS  My maps of food consumption rates for all seabirds of the world allowed me to quantify trophic overlap between seabirds and fisheries on a global scale. However, previous publications have quantified regional food consumption by seabirds (e.g. North Atlantic: Cairns et al, 1991; Lilliendahl and Solmundsson, 1997; Barrett et al, 2002; South Pacific: Muck and Pauly, 1987; Southern Ocean: Adams et al, 1993; Cooper and Woehler, 1994; Woehler, 1997). Brooke (2004) was the first to give a global estimate of food consumption. My estimate of worldwide consumption was about 30% higher (96.4 million t) than Brooke's (2004; 69.8 million t). This is probably because I included more seabird species (351) than did Brooke (309). Moreover, Brooke (2004) assumes conservatively one non-breeder per breeding pair to estimate global  38  population size. As a result, his estimate of population size was 0.7 billion individuals vs. 0.9 billion individuals estimated here. However, Brooke (2004) agrees that a 'liberal' global population estimate (i.e., breeding pairs multiplied by five for longer-lived species and by four for other groups) is plausible. My global food consumption estimate was similar to that provided by Brooke's (2004), when he uses his 'liberal' global estimate.  BIASES AND LIMITA TIONS  Uncertainty associated with the parameters of the food consumption model may result in values that differ from the model's estimate. Error is associated with both the metabolic parameters used in bioenergetic models (e.g. Furness, 1978) and the population size estimates (Goldsworthy et al, 2001; Brooke, 2004). In particular, the energy requirements of seabirds fluctuate seasonally, because the energetic costs of various stages in the life cycle of mature seabirds differ (e.g. Furness, 1978; Koteja, 1991; Ellis and Gabrielsen, 2002). This is why energy demands of seabirds were estimated here using BMR and FMR for the breeding and the non-breeding season respectively. However, BMR and FMR values were estimated using allometric equations (Table 2.1), which may generate bias in the model's predictions. Good empirical measurements of FMRs (e.g. with the use of Doubly-Labelled Water; DLW; Davis et al, 1989; Uttley et al, 1994b; Golet et al, 2000) measure energy consumption offree-livinganimals and give estimates with an accuracy of ± 7% (Nagy, 1989; Nagy et al, 1999). Sensitivity analysis that compares inputs of the metabolic parameters that are derivedfromeither equations (Table 2.1) or empirical DLW experiments may help to evaluate the robustness of the model output in the future.  Quantitative diet composition data were available for nearly half of the 351 seabird species. For 177 of the species included here, diet composition was assumed to be the same as for the same species breeding at a different location, or the same as another congeneric species. Other sources 39  of error may include differences in the energy density of prey, attributed to differences in the relative status (i.e., size, age, and reproductive state) and/or seasonal or geographical differences and influences. Martensson et al. (1996) determine that revision of prey calorific density used to estimate the food consumption of minke whales in the Northeast Atlantic, result in food consumption estimates that vary by 10-15% (translating to c. 300,000 tonnes of food). Therefore accurate measures of prey energy density for a range of species are important in generating more accurate model predictions (Tierney et al., 2002).  Sensitivity analysis of the input parameters (Goldsworthy et ah, 2001; Brooke, 2004) has indicated that bioenergetic models are primarily sensitive to changes in the population parameters. Indeed, larger uncertainties relate to the population size estimates. Few population time series spanfromearly 1950s to the present. Three examples here are the Guanay cormorant, the Peruvian booby, and the Peruvian pelican of Peru; all were counted from 1953 to 2000 (Jahncke, 1998; Crawford and Jahncke, 1999; Sueyoshi, 2000). Changes in population size estimates with time (Fig. 3.1) suggested a breakpoint in the year 1970. Before 1970, more than 95% of population estimates used were extrapolated, using the assumption of no change in population size. After 1970, more data on seabird population sizes became available (i.e., the percentage of interpolated population estimates decreased to 86%). Nevertheless, sensitivity analysis is required to assess the error generatedfromthe lack of population size data as well as the assumption of no trend when extrapolating population sizes. When I assumed a coefficient of variation of 50% in the population sizes as Brooke (2004) did, 95% confidence intervals provided food consumption estimates that rangedfrom78.0 to 114.7 million t. Although these confidence intervals are large, they suggest that seabirds around the world consume significant quantities of marine resources that are 70 - 95 % of to the total fisheries catch (i.e., nearly over 120 million t. of resources annually; Pauly et al., 2002). 40  4.3. MAPS  OF THE FOOD CONSUMPTION  OF SEABIRDS  AND OVERLAP  WITH  FISHERIES  Chown et al. (1998)firstexplored global patterns of species richness, and compiled data on the breeding locations and foraging/wintering distributions for 108 Procellariiform species. The waters around New Zealand, the sub-Antarctic islands of the Southern Ocean, and Hawaii, hold the largest number of Procellariiform species (Chown et al, 1988). The same pattern also applied to all seabird species combined (Fig. 3.7.a). These areas of high species richness comprise biodiversity 'hotspots'. Maps of seabird foraging densities showed that the polar waters of the globe hold the highest seabird densities (Fig. 3.7.b). They also represent areas where the most food is taken by seabirds (Fig. 3.10).  Study of seabird food consumption is often directed towards potential competition between seabirds andfisheries(e.g. Furness, 1982, 2002; Furness and Ainley, 1984; Wright, 1996; Croll and Tershy, 1998; Green et al, 1998a; Bunce, 2001; Goldsworthy et al, 2001). Indeed, foraging seabirds and some fisheries inevitably interact (review in Montevecchi, 2002). Three main effects of fisheries on seabirds are (Moore and Jennings, 2000): (a) consumption of and dependence on fisheries discards (e.g. Votier et al, 2004); (b) increased mortality from entanglement in fishing gear (e.g. Melvin and Parrish, 2001); and (c) competition for the same prey targeted by the fisheries for human consumption (e.g. Furness, 2002).  Here, I quantified the potential for competition that resultsfromseabirds feeding on and fisheries targeting the same resources, by measuring a trophic overlap index (see section 2.5 for methods and review by Krebs, 1999). However, for seabird populations that rely heavily on discards (e.g. Votier et al, 2004), discards were considered as a separate food group and thus not included in the overlap calculations. Other indirect competition for food (cascading effects) was also not 41  taken into account. Therefore, where type (a) interactions between seabirds and fisheries are frequent (e.g. the North Sea; Garthe et al, 1996; the Mediterranean Sea; Oro and Ruiz, 1997), overlap was underestimated.  Seabird entanglement in fishing gear has been a major conservation concern in recent years (e.g. Croxall and Prince, 1 996; Williams and Capdeville, 1 996; Bergin, 1 997; Melvin and Parrish, 2001). Increased mortality due to type (b) interactions usually results from seabirds being hooked or entangled, dragged underwater and drowned while trying to feed on bait or on fish caught by longline gear. In netfisheries,birds are caught and drowned in the nets while diving in pursuit of their prey (Moore and Jennings, 2000). Such interactions cannot be quantified as outlined in section 2.5 here. Thus competition between seabirds andfisheriesis underestimated where type (b) interactions are prevalent. Mortality from fishing gear has been blamed for population declines in several endangered seabird species (e.g. Wandering albatross; Cherel and Weimerskirch, 1996; White-chinned petrel, Weimerskirch et al., 1999; Grey-headed albatross; Nel et al, 2000; Tristan albatross; Cuthbert et al, 2005). Indeed, where longlining is a dominant harvest method, very low or no trophic overlap was predicted (Figs. 3.10, 3.13 and 3.15). Key studies here include interactions between seabirds and longlining, for instance, for Patagonian toothfish in the Southern Ocean (South Georgia: Croxall and Prince, 1996; Kerguelen and Crozet archipelagos: Williams and Capdeville, 1996), for bluefin tuna in the Southern Indian Ocean (Nel et al, 2000); and for swordfish in the Hawaiian archipelago (Cousins et al, 2000).  Nevertheless, with the use of simple bioenergetic and foraging distribution models, I assessed at a global scale trophic overlap between seabirds andfisheries.This issue has been raised by scientists but has been quantified only in few regional studies. My maps have identified areas where overlap is highest. These maps have also identified areas where seabirds should be given 42  considerable attention when addressing issues of species conservation and ecosystem-based management.  4.4. IMPLICATIONS  FOR CONSERVATION  AND  MANAGEMENT  Trophic overlap between fisheries and top predators has been only recently quantified spatially at a global scale and for the case of marine mammals (Kaschner, 2004; Kaschner and Pauly, 2004; Watson et al, 2004). Kaschner (2004) has developed maps of marine mammal distributions and quantified spatial overlap. Overall, the overlap between marine mammals and fisheries is low (Kaschner, 2004). However, Kaschner (2004) identified certain areas of the world where overlap is highest (Kaschner, 2004). L ikewise in seabirds, only a small amount of food consumed by them comes from areas where fisheries operate (Figs. 3.10 and 3.11). In other words, most catches are taken from areas where only a small fraction of the world's seabird population forages (Fig. 3.11).  My model predicted 'hotspots' of spatial overlap in the same areas where others have noted the potential for competition between seabirds andfisheries.These areas either have high seabird densities (e.g. the North Atlantic; Fig. 3.7.b.), or a large number of abundant seabird species (e.g. the Patagonian shelf and the Campbell Plateau; Figs.3.7.a.). In particular, in the North Atlantic fisheries of capelin and sandeel are expanding to provide raw material for agricultural and aquaculture feed (Carscadden et al, 2001; Huntington et al, 2004). Capelin and sandeel dominate the diet of many seabird populations breeding in the North Atlantic (Carscadden et al, 2002; Davorenand Montevecchi, 2003). As a result, depletion of stocks may lead to conflict between seabirds and fisheries. Similarly on the Patagonian shelf, squid stocks have been maximally exploited and probably overfished (Csirke, 1987). Published maps of the distribution of effort for squidfisheries(Rodhouse et al, 2000), as well as maps produced for this study (Fig.  43  3.10, 3.13 and 3.15) show substantial apparent overlap with the seabirds that forage in the area (Gremillet et al, 2000; Rodhouse et al, 2000; Croxall and Wood, 2002).  A major task currently facing the scientific community is developing new tools and approaches to conservation and management. The open oceans are poorly known, though intensively exploited (e.g. Myers and Worm, 2003; Pauly et al, 2005). They are a challenge to those interested in protecting marine biodiversity. There is broad consensus that existing global criteria for identifying Important Bird Areas (IBAs) can be adapted and applied to marine ecosystems. BirdLife International pioneered IBAs for terrestrial ecosystems since the 1 980s (http://www. birdlife.org.uk/action/science/sites/). In particular, there is a need to establish IBAs for seabird species listed on the I U C N Red List (Appendix Table 1; BirdLife International, 2004). Marine IBAs may provide useful criteria for the establishment of High Seas Marine Protected Areas for conserving biodiversity (Gjerke and Breide, 2003; BirdLife International, 2004). M y maps identified areas of high conservation concern, by revealing where high species richness and seabird density are high. In addition, the food consumption and trophic overlap maps shown here may shed light to a threat to seabird populations worldwide. The principal threat is the potential for competition for the same resources between seabirds and fisheries.  4.5.  CONCLUSIONS  I compiled information on population sizes, diet composition, and foraging behaviour for 351 seabird species. I used this data to estimate the annual food consumption of the world's seabirds and to assess the spatially-explicit degree of trophic overlap between foraging seabirds and fisheries.  44  I compiled diet composition data of all seabirds of the world to assess their trophic position in marine ecosystems. Two trophic groups of seabirds were identified here. The first group included seabird species that feed mainly on krill and other marine invertebrates (amphipods, isopods, gastropods, polychaetes). The second group included most predatory seabirds that target fish and cephalopods, but that also include smaller invertebrates in their diet.  I estimated that global population size decreased from 1.076 billion individuals (95% CI 1.052 1.102) for 1950 to 0.922 billions individuals (95% CI 0.893 - 0.868) for 2003. This estimate however is compromised by poor data coverage before 1970. The family Procellariidae included the most individuals; while, penguins made up to 50% of the world's seabird biomass.  Global annual food consumption by seabirds was estimated to be 96.4 million tonnes (95% CI: 78.0 to 114.7), compared to a total catch of nearly 120 million tonnes by allfisheries.Krill and cephalopods comprised more that 58% of the overall food consumption (krill: 37.8%, cephalopods: 20.5%). The families Procellariidae and Spheniscidae were responsible for more than 54% of overall consumption.  Based on the distances seabirdsflyfromtheir breeding site to feed, and distribution of prey items in their diet, maps were produced to predict foraging distribution of nearly all seabirds. The maps revealed that areas near New Zealand, the east coast of Australia, and the sub-Antarctic islands, hold the highest number of foraging seabird species. Hawaii and the Caribbean are the only areas north of the equator where high numbers of species forage.  The polar and temperate waters of the world are where seabirds extract most food. In addition, maps of the annual food consumption rates revealed that most food consumption isfromoffshore 45  waters, and from areas where overlap is low. Maps of trophic overlap identified 'hotspots' of higher potential conflict. Those areas should be the initial focus of conservation and management actions. In addition, my maps identified areas of high species richness and seabird density. Particularly, these biodiversity' hotspots' may promote the establishment of marine I mportant Bird Areas and/or High Seas Marine Protected Areas for the conservation of threatened species.  46  LITERATURE CITED  Aaltola, E., and Oksanen, M . , 2002. Species conservation and minority rights: the case of springtime bird hunting in Aland. Environmental Values 11 (4), 443-460. Adams, N.J., 1982. Subantarctic skua prey remains as an aid for rapidly assessing the status of burrowing petrels at Prince Edward Island. Cormorant 10 (2), 97-102. Adams, N.J., and Brown, C.R., 1989. Dietary differentiation and trophic relationships in the subAntarctic penguin community at Marion Island. Marine Ecology Progress Series 57, 249258. Adams, N.J., and Klages, N.T.W., 1989. Temporal variation in the diet of the Gentoo penguin Pygoscelis papua at sub-Antarctic Marion Island. Colonial Waterbirds 12 (1), 30-36. Adams, N.J., and Klages, N.T.W., 1999. Foraging effort and prey choice in Cape gannets. South African Journal of Marine Science 21, 157-163. Adams, N.J., Moloney, C , and Navarro, R., 1993. Estimated food consumption by penguins at the Prince Edward Islands. Antarctic Science 5 (3), 245-252. Adams, N.J., Seddon, P.J. and van Heezik, Y.M., 1992. Monitoring of seabirds in the Benguela upwelling s ystem: c an se abirds b e u sed a s i ndicators a nd p redictions o f c hange i n t he marine environment? South African Journal of Marine Science 12, 959-974. Addis, P., and Cau, A., 1997. Impact of the feeding habits of the Great cormorant Phalacrocorax carbo sinensis on the lagoon fish-stocks in central-western Sardinia. Avocetta 21, 180187. Ainley, D.G., Anderson, D.W., and Kelly, P.R., 1981. Feeding ecology of marine cormorants in Southwestern North America. Condor 83 (2), 120-131. Ainley, D.G., Ribic, C.A., and Fraser, W.R., 1992. Does prey preference affect habitat choice in Antarctic seabirds? Marine Ecology Progress Series 90, 207-221. Ainley, D.G., Spear, L.B., Tynan, C.T., Barth, J.A., Pierce, S.D., Ford, R.G., and Cowles, T.J., 2005. Physical and biological variables affecting seabird distributions during the upwelling season of the Northern California Current. Deep-Sea Research II 52 (1-2), 123-143. Ainley, D.G., Wilson, P.R., Barton, K.J., Ballard, G., Nur, N., and Karl, B., 1998. Diet and foraging effort of Adelie penguins in relation to pack-ice conditions in the southern Ross Sea. Polar Biology 20 (5), 311 -319. Allen, J.A., 1876. The extinction of the Great auk at the Funk Islands. American Naturalist 10 (1),48.  47  Anker-Nilssen, T., 1987. The breeding performance of puffins Fratercula arctica oh Rost, northern Norway in 1979-1985. Fauna Norvegica Series C 10, 21 -3 8. Anker-Nilssen, T., and Nygard, T., 1987. Notes on the food choice of adult and young guillemots Uria aalge during post-breeding migration in Central Norway. Fauna Norvegica Series C 10, 53-56. Anker-Nilssen, T., Bakken, V., Strom, H., Golovkin, A.N., Bianki, V.V., and Tatarinkova, LP., (Eds.), 2000. The status of marine birds breeding in the Barents Sea region. Rapport Nr. 113. Norsk Polarinstitutt, Troms0, Norway. 213 pp. Arata, J., and Xavier, J.C., 2003. The diet of Black-browed albatrosses at the Diego Ramirez Islands, Chile. Polar Biology 26 (10), 638-647. Arnould, J.P.Y., and Whitehead, M.D., 1991. The diet of Antarctic petrels, Cape petrels and Southern fulmars rearing chicks in Prydz Bay. Antarctic Science 3 (1), 19-27. Ashmole, N.P., 1963. The biology of the wideawake or Sooty tern Sterna fuscata on Ascension Island. Ibis 103 (3), 318-364. Ashmole, N.P., 1971. Seabird ecology and the marine environment, pp. 223-287. In: D.S. Farner, and J.R. King (Eds.), Avian Biology, vol. 1. Academic Press, New York, USA. Ashmole, N.P., and Ashmole, M.J., 1967. Comparative feeding ecology of seabirds of a tropical oceanic island. Bulletin of Peabody Museum of Natural History 24, 1-131. Athanassopoulos, Th., Zogaris, S., and Papandropoulos, D., 2003. Lagoonfisheriesmanagement and fish-eating birds: the case of Ambrakikos. Proceedings of the 11 Panhellenic Conference of Ichthyologists, pp. 231 -234. th  Au, D.W., 1991. Polyspecific nature of tuna schools: Shark, dolphin, and seabird associations. Fishery Bulletin 89 (3), 343-354. Au, D.W., and Pitman, R.L., 1986. Seabird interactions with dolphins and tuna in the Eastern Tropical Pacific. Condor 88 (3), 304-317. Au, D.W., and Pitman, R.L., 1988. Seabird relationships with tropical tunas and dolphins, pp. 174-212. In: J. Burger (Ed.), Seabirds and Other Marine Vertebrates. Competition, Predation, and Other Interactions. Columbia University Press, New York. Bailey, R.S., and Hislop, J.R.G., 1978. The effects of fisheries on seabirds in the north-east Atlantic. Ibis 120 (1), 104-105. Baird, P.A., 1983. Terns {Sterna spp.). pp. 204-234. In: P.A. Baird, and P.J. Gould (Eds.), The breeding biology and feeding ecology of marine birds in the Gulf of Alaska, US Fish and Wildlife Service, NOAA, OCSEAP Final Report, No. 45. Baker, S.C., and Barbraud, C , 2001. Foods of the South polar skua Catharacta maccormicki at Ardery Island, Windmill Islands, Antarctica. Polar Biology 24 (1), 59-61. 48  Ballance, L.T., and Pitman, R.L., 1999. Foraging ecology of tropical seabirds. pp. 2057-2071. In: N.J. Adams, and R.H. Slotow (Eds.), Proceedings of the 22 International Ornithological Congress, Durban. Johannesburg: BirdLife South Africa. nd  Barrera-Oro, E.R., and Casaux, R.J., 1996. Fish as diet of the Blue-eyed shag, Phalacrocorax atriceps bransfieldensis at Half-moon Island, South Shetland Islands. Cybium 20 (1), 3745. Barrett, R.T., 2002. Atlantic puffin Fratercula arctica and Common guillemot Uria aalge chick diet and growth as indicators of fish stocks in the Barents Sea. Marine Ecology Progress Series 230, 275-287. Barrett, R.T., and Anker-Nilssen, T., 1997. Egg-laying, chick growth and food of Black guillemots Cepphus grylle in North Norway. Fauna Norvegica Series C 20, 69-79. Barrett, R.T., and Furness, R.W., 1990. The prey and diving depths of seabirds on Homey, North Norway after a decrease in the Barents Sea capelin stocks. Ornis Scandinavica 21 (3), 179-186. Barrett, R.T., and Krasnov, Y.V., 1996. Recent responses to changes in stocks of prey species by seabirds in the southern Barents Sea. ICES Journal of Marine Science 53 (4), 713-722. Barrett, R.T., and Rikardsen, F., 1992. Chick growth, fledging periods and adult mass loss of Atlantic puffins Fratercula arctica during years of prolonged food stress. Colonial Waterbirds 15(1), 24-32. Barrett, R.T., Anker-Nilssen, T., Gabrielsen, G.W., and Chapdelaine, G., 2002. Food consumption by seabirds in Norwegian waters. ICES Journal of Marine Science 59 (1), 43-47. Barrett, R.T., Anker-Nilssen, T., Rikardsen, F., Valde, K., Rov, N , and Vader, W., 1987. The food, growth and fledging success of Norwegian puffin chicks Fratercula arctica in 1980-1983. Ornis Scandinavica 18 (2), 73-83. Barrett, R.T., Bakken, V., and Krasnov, J.V., 1997. The diets of Common and Brunnich's guillemots Uria aalge and U. lomvia in the Barents Sea region. Polar Research 16 (2), 73-84. Beaman, M.A.S., 1978. The feeding and population ecology of the Great black-backed gull in northern Scotland. Ibis 120 (1), 126-127. Bedard, J., 1969. Feeding of the Least, Crested, and Parakeet auklets around St. Lawrence Island, Alaska. Canadian Journal of Zoology 47, 1025-1050. Bergin, A., 1997. Albatross and longlining - managing seabird bycatch. Marine Policy 21 (1), 63-72.  49  Beron, M.P., Coria, N.R., and Favero, M., 2002. Monitoreo de la dieta p ost-reproductiva del Pinguino Papua (Pygoscelis papua) en Isla Laurie (Orcadas del Sur, Antartida): periodo 1997-1999. Ornitologia Neotropical 13 (4), 413-422. Berrow, S.D., and Croxall, J.P., 1999. The diet of White-chinned petrels Procellaria aequinoctialis, Linnaeus 1758, in years of contrasting prey availability at South Georgia. Antarctic Science 11 (3), 283-292. Berruti, A., Underhill, L.G., Shelton, P.A., Moloney, C , and Crawford, R.J.M., 1993. Seasonal and interannual variation in the diet of two colonies of the Cape gannet (Morns capensis) between 1977-78 and 1989. Colonial Waterbirds 16 (2), 158-175. Bertram, D.F., 2001. Seabirds reflect changes in ocean climate, pp. 201-202. In: V. Alexander, A.S. Bychkov, P. Livingston, and S. McKinnell (Eds.), Impact of Climate Variability on Observation and Prediction of Ecosystem and Biodiversity Changes in the North Pacific. PICES Report. Vol. 18. Bevan, R.M., Butler, P.J., Woakes, A.J., and Boyd, I.L., 2002. The energetics of Gentoo penguins, Pygoscelis papua, during the breeding season. Functional Ecology 16 (2), 175190. Bingham, M . , 1995. Population status of penguin species in the Falkland Islands. Penguin Conservation 8 (1), 14-19. BirdLife International, 2004. Tracking ocean wanderers: the global distribution of albatrosses and petrels. Results from the Global Procellariiform Tracking Workshop, 1-5 September, 2003, Gordon's Bay, South Africa. BirdLife International, Cambridge, UK. 100 pp. Birkhead, T.R., 1976. Effects of sea conditions on rates at which guillemots feed chicks. British Birds 69, 490-492. Birkhead, T.R., and Nettleship, D.N., 1987. Ecological relationships between Common murres, Uria aalge, and Thick-billed murres, Uria lomvia, at the Gannet Islands, Labrador. III. Feeding ecology of the young. Canadian Journal of Zoology 65 (7), 1638-1649. Blaber, S.J.M., and Wassenberg, T.J., 1989. Feeding ecology of the piscivorous birds Phalacrocorax varius, P. melanoleucos and Sterna bergii in Moreton Bay, Australia: diets and dependence on trawler discards. Marine Ecology 101 (1), 1-10. Blaber, S J.M., Milton, D.A., Smith, G.C., and Farmer, M.J., 1995. Trawl discards in the diets of tropical seabirds of the northern Great Barrier Reef, Australia. Marine Ecology Progress Series 127,1-13. Blackwell, B.F., Krohn, W.B., and Allen, R.B., 1995. Foods of nestling Double-crested cormorants in Penobscot Bay, Maine, USA: temporal and spatial comparisons. Colonial Waterbirds 18 (2), 199-208. Blanchard, K.A., 1994. Culture and seabird conservation: the north shore of the Gulf of St. Lawrence, Canada, pp. 294-310. In: D.N. Nettleship, J. Burger, and M. Gochfeld (Eds.), 50  Seabirds on islands: threats, case studies and action plans. BirdLife International, Cambridge, UK. Blankley, W.O., 1981. Marine food of Kelp gulls, Lesser sheathbills and Imperial cormorants at Marion Island (subantarctic). Cormorant 9 (2), 77-84. Bocher, P., Cherel, Y., and Hobson, K.A., 2000. Complete trophic segregation between South Georgia and Common diving petrels during breeding at lies Kerguelen. Marine Ecology Progress Series 208, 249-264. Bocher, P., Cherel, Y., Labat, J.-P., Mayzaud, P., Razouls, S., and Jouventin, P., 2001. Amphipod-based food web: Themisto gaudichaudii caught in nets and by seabirds in Kerguelen waters, southern Indian Ocean. Marine Ecology Progress Series 223, 261-276. Boekelheide, R.J., 1 980. Arctic terns: breeding ecology and sea-ice relationships on an arctic barrier island. MSc. Thesis, University of California, Davis, California, USA. Bogliani, G., Fasola, M . , Canova, L., and Saino, N., 1990. Food and foraging rhythm of a specialized Gull-billed tern population Gelochelidon nilotica. Ethology, Ecology and Evolution 2 (2), 175-181. Bosch, M., Oro, D., Cantos, F.J., and Zabala, M., 2000. Short-term effects of culling on the ecology and population dynamics of the Yellow-legged gull. Journal of Applied Ecology 37 (2), 369-385. Bost, C. A., Zorn, T., Le Maho, Y., and Duhamel, G., 2002. Feeding of diving predators and diel vertical migration of prey: King penguins' diet versus trawl sampling at Kerguelen Islands. Marine Ecology Progress Series 227, 51-61. Bourne, W.R.P., 1983. Birds, fish and offal in the North Sea. Marine Pollution Bulletin 14 (8), 294-296. Bowen, W.D., Lawson, J., and Beck, B., 1993. Seasonal and geographic variation in the species composition and size of prey consumed by grey seals (Halichoerus grypus) on the Scotian Shelf. Canadian Journal of Fisheries and Aquatic Sciences 50 (8), 1768-1778. Bradstreet, M.S.W., 1982. Pelagic feeding ecology of Dovekies (Alle alle) in Lancaster Sound and western Baffin Bay. Arctic 35 (1), 126-140. Braune, B.M., and Gaskin, D.E., 1982. Feeding ecology of nonbreeding populations of larids off Deer Island, New Brunswick. Auk 99 (1), 67-76. Briggs, K.T, and Chu, E.W., 1986. Sooty shearwaters off California: distribution, abundance and habitat use. Condor 88 (3), 355-364. Briggs, K.T., and Chu, E.W., 1987. Trophic relationships and food requirements of California seabirds: updating models of trophic impact, pp. 279-304. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. 51  Brooke, M. de L., 2004. The food consumption of the world's seabirds. Biology Letters 271 (supplement 4), S246-S248. Brothers, N.P., 1985. Breeding biology, diet and morphometries of the King shag, Phalacrocorax albiventer purpurascens, at Macquarie Island. Australian Wildlife Research 12 (1), 81-94. Brown, C.R., Klages, N.T., and Adams, N.J., 1990. Short and medium-term variation in the diets of penguins at Marion Island. South African Journal of Antarctic Research 20 (1), 13-20. Brown, R.G.B., and Nettleship, D.N., 1984. Capelin and seabirds in the northwest Atlantic, pp. 184-194. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Brown, R.G.B., Barker, S.P., Gaskin, D.E., and Sandeman, M.R., 1981. The foods of Great and Sooty shearwaters Puffinus gravis and P. griseus in Eastern Canadian Waters. Ibis 123 (1), 19-30. Bryant, R., Jones, I.L., and Hipmer, J.M., 1999. Responses to changes in prey availability by Common murres and Thick-billed murres at the Gannet Islands, Labrador. Canadian Journal of Zoology 77 (8), 1278-1287. Bunce, A.,. 2001. Prey consumption of Australasian gannets (Morus serrator) breeding in Port Phillip Bay, southeast Australia, and potential overlap with commercial fisheries. ICES Journal of Marine Science 58 (4), 904-915. Burger, A.E., and Cooper, J., 1984. The effects offisherieson seabirds in South Africa and Namibia, pp. 150-160. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Burger, A.E., and Powell, D.W., 1990. Diving depths and diet of Cassin's auklet at Reef Island, British Columbia. Canadian Journal of Zoology 68 (7), 1572-1577. Burger, A .E., W ilson, R .P., Garnier, D., and W ilson, M .-P.T., 1993. D iving d epths, diet, and underwater foraging of Rhinoceros auklets in British Columbia. Canadian Journal of Zoology 71 (12), 2528-2540. Burger, J., and Gochfeld, M., 1994. Predation and effects of humans on island-nesting seabirds. pp. 39-67. In: D.N. Nettleship, J. Burger, and M . Gochfeld (Eds.), Seabirds on Islands: Threats, Case Studies and Action Plans. Birdlife Conservation Series no. 1. Birdlife International, Cambridge, UK. Bustnes, J.O., Asheim, M., Bjorn, T.H., Gabrielsen, H., and Systad, G.H., 2000. The diet of Steller's eiders wintering in Varangerfjord, Northern Norway. Wilson Bulletin 112 (1), 813.  52  Byrd, G.V., Williams, J.C., Artukhin, Y.B., and Vyatkin, P.S., 1997. Trends in populations of Red-legged kittiwake Rissa brevirostris, a Bering Sea endemic. Bird Conservation International 7,167-180. Cairns, D.K., 1987. Seabirds as indicators of marine food supplies. Biological Oceanography 5 (4), 261-271. Cairns, D.K., 1992. Bridging the gap between ornithology and fisheries science: use of seabird data in stock assessment models. Condor 94 (4), 811-824. Cairns, D.K., Chapdelaine, G., and Montevecchi, W.A., 1991. Prey exploitation by seabirds in the Gulf of St. Lawrence. Canadian Special Publication of Fisheries and Aquatic Sciences 113, 277-291. Calixto-Albarran, I., and Osorno, J.-L., 2000. The diet of the Magnificent frigatebird during chick rearing. Condor 102 (3), 569-576. Camphuysen, K. (C.J.), 1995. Sooty and Manx shearwaters in the southern North Sea: an offshore perspective. Limosa 68, 1-9. Carscadden, J.E., Frank, K.T., and Leggett, W.C., 2001. Ecosystem changes and the effects on capelin (Mallotus villosus), a major forage species. Canadian Journal of Fisheries and Aquatic Sciences 58 (1), 73-85. Carscadden, J.E., Montevecchi, W.A., Davoren, G.K., and Nakashima, B.S., 2002. Trophic relationships among capelin (Mallotus villosus) and seabirds in a changing ecosystem. ICES Journal of Marine Science 59 (5), 1027-1033. Casaux, R.J., and Barrera-Oro, E.R., 1993. The diet of the Blue-eyed shag, Phalacrocorax atriceps bransfieldensis feeding in the Bransfield Strait. Antarctic Science 5 (4), 335-338. Casaux, R., and Ramon, A., 2002. The diet of the South Georgia shag Phalacrocorax georgianus at South Orkney Islands in five consecutive years. Polar Biology 25 (8), 557-561. Casaux, R., Baroni, A., and Barrera-Oro, E., 2002. Fish in the diet of the Antarctic shag at four colonies on the Danco Coast, Antarctic Peninsula. Antarctic Science 14 (1), 32-36. Casaux, R., Coria, N., and Barrera-Oro, E., 1997. Fish in the diet of the Antarctic shag Phalacrocorax bransfieldensis at Laurie Island, South Orkney Islands. Polar Biology 18 (3), 219-222. Casaux, R., Favero, M., Silva, P., and Baroni, A., 2001. Sex differences in diving depths and diet of Antarctic shags at the South Shetland Islands. Journal of Field Ornithology 72 (1), 2229. Chardine, J., and Mendenhall, V., 1998. Human disturbance at Arctic seabird colonies. CAFF Technical Report No. 2,27 pp.  53  Chaurand, T., and Weimerskirch, H., 1994. The regular alternation of short and long foraging trips in the Blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a pelagic seabird. Journal of Animal Ecology 63 (2), 275-282. Cheng, Z.-Q., 1990. Behavior of nesting Black-tailed gulls (Larus crassirostris). Colonial Waterbirds 13 (2), 103-107. Cherel, Y., and Ridoux, V., 1992. Prey species and nutritive value of food fed during summer to King penguin Aptenodytes patagonica chicks at Possession Island, Crozet Archipelago. Ibis 134 (2), 118-127. Cherel, Y., and Weimerskirch, H., 1995. Seabirds as indicators of marine resources: Blackbrowed albatrosses feeding on ommastrephid squids in Kerguelen waters. Marine Ecology Progress Series 129, 295-300. Cherel, Y., and Weimerskirch, H., 1996. Interactions between longline vessels and seabirds in Kerguelen waters and a method to reduce seabird mortality. Biological Conservation 75 (1), 63-70. Cherel, Y., Bocher, P., De Broyer, C , and Hobson, K.A., 2002c. Food and feeding ecology of the sympatric Thin-billed Pachyptila belcheri and Antarctic P. desolata prions at lies Kerguelen, Southern Indian Ocean. Marine Ecology Progress Series 228, 263-281. Cherel, Y., Bocher, P., Trouve, C , and Weimerskirch, H., 2002b. Diet and feeding ecology of Blue petrels Halobaena caerulea at lies Kerguelen, Southern Indian Ocean. Marine Ecology Progress Series 228, 283-299. Cherel, Y., Putz, K., and Hobson, K.A., 2002d. Summer diet of King penguins {Aptenodytes patagonicus) at the Falkland Islands, southern Atlantic Ocean. Polar Biology 25 (12), 898-906. Cherel, Y., Weimerskirch, H., and Trouve, C , 2000. Food and feeding ecology of the neriticslope forager Black-browed albatross and its relationships with commercial fisheries in Kerguelen waters. Marine Ecology Progress Series 207,183-199. Cherel, Y., Weimerskirch, H., and Trouve, C , 2002a. Dietary evidence for spatial foraging segregation in sympatric albatrosses (Diomedea spp.) rearing chicks at lies Nuageuses, Kerguelen. Marine Biology 141 (6), 1117-1129. Chiaradia, A., Costalunga, A., and Kerry, K., 2003. The diet of Little penguins (Eudyptula minor) at Phillip Island, Victoria, in the absence of a major prey - pilchard (Sardinops sagax). Emu 103 (1), 43-48. Chiaradia, A., Dann, P., Jessop, R., and Collins, P., 2002. The diet of Crested tern (Sterna bergii) chicks on Phillip Island, Victoria, Australia. Emu 102 (4), 367-371. Christensen, V., and Pauly, D., 1992. The ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61 (34), 169-185. 54  Chown, S.L., Gaston, K.J., and Williams, P.H., 1998. Global patterns in speciesrichnessof pelagic seabirds: the Procellariiformes. Ecography 21 (4), 342-350. Chu, E.W., 1984. Sooty shearwaters off California: diet and energy gain. pp. 64-71. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Clarke, J., Manly, B., Kerry, K., Gardner, H., Franchi, E., Corsolini, S., and Focardi, S., 1998. Sex differences in Adelie penguin foraging strategies. Polar Biology 20 (4), 248-258. Clausen, A., and Piitz, K., 2003. Winter diet and foraging range of Gentoo penguins (Pygoscelis papua) from Kidney Cove, Falkland Islands. Polar Biology 26 (1), 32-40. Clua, E., and Grosvalet, F., 2001. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquatic Living Resources 14 (1), 11-18. Cooper, J., 1986. Diving patterns of cormorants Phalacrocoracidae. Ibis 128 (4), 562-570. Cooper, J., and Klages, N .T.W., 1995. The diets and dietary segregation of Sooty a Ibatrosses (Phoebetria spp.) at subantarctic Marion Island. Antarctic Science 7 (1), 15-23. Cooper, J., and Woehler, E.J., 1994. Consumption of Antarctic krill (Euphausia superba) by seabirds during summer in the Prydz Bay region, Antarctica, pp. 247-260. In: S.Z. ElSayed (Ed.), Southern Ocean Ecology: the BIOMASS perspective. Cambridge University Press, Cambridge, UK. Cooper, J., Fourie, A., and Klages, N.T.W., 1992b. The diet of the White-chinned petrel Procellaria aequinoctialis at Sub-antarctic Marion Island. Marine Ornithology 20 (1), 17-24. Cooper, J., Henley, S.R., and Klages, N.T.W., 1992a. The diet of the Wandering albatross Diomedea exulans at Subantarctic Marion Island. Polar Biology 12 (5), 477-484. Cooper, W., 1992. Rockhopper penguins at the Auckland Islands. Notornis 39 (1), 66-67. Copello, S., and Favero, M . , 2001. Foraging ecology of Olrog's gull Larus atlanticus in Mar Chiquita Lagoon (Buenos Aires, Argentina): are there age-related differences? Bird Conservation International 11 (3), 175-188. Coria, N., Libertelli, M., Casaux, R., and Darrieu, C , 2000. Inter-annual variation in the autumn diet of the Gentoo penguin at Laurie Island, Antarctica. Waterbirds 23 (3), 511-517. Coria, N.R., Soave, G.E., and Montalti, D., 1997. Diet of Cape petrel Daption capense during the post-hatching period at Laurie Island, South Orkney Islands, Antarctica. Polar Biology 18 (4), 236-239.  55  Coria, N.R., Spairani, H., Vivequin, S., and Fontana, R., 1995. Diet of Adelie penguins Pygoscelis adeliae during the post-hatching period at Esperanza Bay, Antarctica, 1987/88. Polar Biology 15 (4), 415-418. Costa, L., 1984. Alimentation de la pagaza piconegra (Gelochelidon nilotica) en las marismas del Guadalquivir. Donana, Acta Vertebrata 11 (2), 185-195. Cottam, C , 1939. Food habits of North American diving ducks. Technical Bulletin, Vol. 643. US Department of Agriculture, Washington, DC, USA. Coulson, J.C., 2002. Colonial breeding in seabirds. pp. 87-113. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA. Cousins, K.L., Dalzell, P., and Gilman, E., 2000. Managing pelagic longline-albatross interactions in the North Pacific Ocean. Marine Ornithology 28 (2), 159-174. Cowx, I.G., (Ed.), 2003. Interactions between fish and birds: Implications for management. Blackwell Science Ltd. Oxford, UK. 376 pp. Cramp, S., (Ed.), 1985. Birds of the Western Palearctic. Vol. 1. Oxford University Press, Oxford, UK. 960 pp. Crawford, R.J.M., 1998. Responses of African penguins to regime changes of sardine and anchovy in the Benguela system. South African Journal of Marine Science 19, 355-364. Crawford, R.J.M., and Dyer, B.M., 1995. Responses by four seabird species to a fluctuating availability of Cape Anchovy Engraulis capensis off South Africa. Ibis 137 (3), 329-339. Crawford, R.J.M., and Jahncke, J., 1999. Comparison of trends in abundance of guano-producing seabirds in Peru and Southern Africa. South African Journal of Marine Science 21, 145156. Crawford, R.J.M., Cruickshank, R.A., Shelton, P.A., and Kruger, I., 1985. Partitioning of a goby resource amongst four avian predators and evidence for altered trophic flow in the pelagic community of an intense, perennial upwelling system. South African Journal of Marine Science 3, 215-228. Crawford, R.J.M., Underbill, L.G., Raubenheimer, C M . , Dyer, B.M., and Martin, J. 1992. Top predators in the Benguela ecosystem - implications of their trophic position. South African Journal ofMarine Science 12, 675-687. Crawford, R.J.M., Underbill, L.G., Shannon, L.V., Lluch-Belda, D., Siegfried, W.R., and Villacastin-Herero, C.A., 1991. An empirical investigation of trans-oceanic linkages between areas of high abundance of sardine, pp. 319-332. In: T. Kawasaki, S. Tanaka, Y. Toba, and A. Taniguchi (Eds.), Long-term variability of pelagic fish populations and their environment. Pergamon Press, Tokyo, Japan.  56  Croll, D.A., and Tershy, B.R., 1998. Penguins, fur seals, and fishing: prey requirements and potential competition in the South Shetland Islands, Antarctica. Polar Biology 19 (6), 365-374. Croxall, J.P., 1991. Seabirds. Status and Conservation: A Supplement. ICBP Technical Publication No. 11, Cambridge, UK. 308 pp. Croxall, J.P., and Furse, J.R., 1980. Food of Chinstrap penguins Pygoscelis antarctica and Macaroni penguins Eudyptes chrysolophus at Elephant Island Group, South Shetland Islands. Ibis 122 (2), 237-245 Croxall, J.P., and Prince, P.A., 1980. The food of Gentoo penguins Pygoscelis papua and Macaroni penguins Eudyptes chrysolophus at South Georgia. Ibis 122 (2), 245-253. Croxall, J.P., and Prince, P.A., 1981. A preliminary assessment of the impact of seabirds on marine resources at South Georgia. Colloque sur les Ecosystemes Subantarctiques 51, 501-509. Croxall, J.P., and Prince, P.A., 1987. Seabirds as predators on marine resources, especially krill, at South Georgia, pp. 347-368. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. Croxall, J.P., and Prince, P.A., 1996. Potential interactions between Wandering albatrosses and longline fisheries for Patagonian toothfish at South Georgia. CCAMLR Science 3, 101110. Croxall, J.P., and Wood, A.G., 2002. The importance of the Patagonian Shelf for top predator species breeding at South Georgia. Aquatic Conservation: Marine and Freshwater Ecosystems 12 (1), 101-118. Croxall, J.P., Davis, R.W., and O'Connell, M.J., 1988b. Diving patterns in relation to diet of Gentoo and Macaroni penguins at South Georgia. Condor 90 (1), 157-167. Croxall, J.P., Evans, P.G.H., and Schreiber, R.W., (Eds.), 1984. Status and Conservation of the World's Seabirds. ICBP Technical Publication No. 2, Cambridge, UK. 778 pp. Croxall, J.P., Hall, A.J., Hill, H.J., North, A.W., and Rodhouse, P.G., 1995. The food and feeding ecology of the White-chinned petrel Procellaria aequinoctialis at South Georgia. Journal of Zoology London 237,133-150. Croxall, J.P., Prince, P. A., Baird, A., and Ward, P., 1985. The diet of the Southern Rockhopper penguin Eudyptes chrysocome chrysocome at Beauchene Island, Falkland Islands. Journal of Zoology London 206, 485-496. Croxall, J.P., Prince, P.A., Rothery, P., and Wood, A.G., 1988a. Population changes and Antarctic seabird populations. Science 297 (5586), 1510-1514. Csirke, J., 1987. The Patagonian fishery resources and the offshore fisheries in the Southwest Atlantic. FAO Fisheries Technical Paper 286. 75 pp. 57  Cullen, J.M., Montague, T.L., and Hull, C , 1992. Food of Little penguins Eudyptula minor in Victoria: comparison of three localities between 1985 and 1988. Emu 91,318-341. Cummins, K.W., and Wuycheck, J.C., 1971. Caloric equivalents for investigations in ecological energetics. Internationale Vereinigung fur Theoretische und Angewandte Limnologie, No. 18, E. Schweizerbart Science Publishers, Stuttgart, Germany. 158 pp. Cuthbert, R., Hilton, G., Ryan, P., and Tuck, G.N., 2005. At-sea distribution of breeding Tristan albatross Diomedea dabbenena and potential interactions with pelagic longlinefishingin the South Atlantic Ocean. Biological Conservation 121 (3), 345-355. Cuthbert, R., Ryan, P.G., Cooper, J., and Hilton, G., 2003. Demography and population trends of the Atlantic yellow-nosed albatross. Condor 105 (3), 439-452. Davis, N.D., Myers, K.W., and Ishida, Y., 1998. Caloric value of high-seas salmon prey organisms and simulated salmon ocean growth and prey consumption. North Pacific Anadromous Fish Commission Bulletin 1, 146-162. Davis, R.W., Croxall, J.P., and O'Connell, M.J., 1989. The reproductive energetics of Gentoo (Pygoscelis papua) and M acaroni (Eudyptes chrysolophus) penguins at S outh Georgia. Journal of Animal Ecology 58 (1), 59-74. Davoren, G.K., 2000. Variability in foraging in response to changing prey distributions in Rhinoceros auklets. Marine Ecology Progress Series 198, 283-291. Davoren, G.K., and Montevecchi, W.A., 2003. Signals from seabirds indicate changing biology of capelin stocks. Marine Ecology Progress Series 258, 253-261. Day, R.H., Kuletz, D.J., and Nigro, D.A., 1999. Kittlitz's murrelet (Brachyramphus brevirostris). In.A.Poole, and G . Gill (Eds.), The Birds o f North America. No. 435. The Birds of North America, Inc., Philadelphia, PA, USA. Day, R.H., Stenhouse, I.J., and Gilchrist, H.G., 2001. Sabine's gull (Xema sabini). In: A. Poole, and G. Gill (Eds.), The Birds of North America. Vol. 593. The Birds of North America, Inc., Philadelphia, PA, USA. de Korte, J., and Wattel, J., 1988. Food and breeding success of the Long-tailed skua at Scoresby Sund, Northeast Greenland. Ardea 76 (1), 27-41. Decker, M.B., Hunt, G.L. Jr, and Byrd, G.V. Jr, 1995. The relationships among sea-surface temperature, the abundance of juvenile walleye pollock (Theragra chalcogramma), and the reproductive performance and diets of seabirds at the Pribilof Islands, southeastern Bering Sea. In: R.J. Beamish (Ed.), Climate change and northern fish populations. Canadian Special Publication of Fisheries and Aquatic Sciences 121, 425-437. DeGange, A.R., and Sanger, G.A., 1987. Marine birds, pp. 479-524. In: D.W. Hood, and S.T. Zimmerman (Eds.), The Gulf of Alaska. US Department of Commerce, Springfield, VA, USA. 58  Denlinger, L., and Wohl, K., (Eds.), 2001. Seabird harvest regimes in the Circumpolar Nations. CAFF Technical Report No. 9, 52 pp. Diamond, A.W., 1974. The Red-footed booby on Aldabra Atoll, Indian Ocean. Ardea 62 (3-4), 196-218. Diamond, A.W., 1975. Biology and behaviour offrigatebirdsFregata spp. on Aldabra Atoll. Ibis 117 (3), 302-323. Diamond, A.W., 1983. Feeding overlap in some tropical and temperate seabird communities. Studies in\ Avian Biology 8, 24-46 Divoky, G.J., 1984. The pelagic and nearshore birds of the Alaskan Beaufort Sea: biomass and trophies, pp. 417-437. In: P.W. Barnes, D.M. Scheil, and E. Reimnitz (Eds.), The Alaskan Beaufort Sea: ecosystems and environments. Academic Press, Inc., Orlando, FL, USA. Dorward, D.F., 1962. Comparative biology of the White booby and the Brown booby Sula spp. at Ascension. Ibis 103, 174-219. Dorward, D.F., 1963. The Fairy tern Gygis alba on Ascension Island. Ibis 103, 365-378. Duffy, D.C., and Schneider, D.C., 1994. Seabird-fishery interactions: a manager's guide, pp. 2638. In: D.N. Nettleship, J. Burger, and M. Gochfeld (Eds.), Seabirds on islands. Birdlife Conservation Series no. 1. Birdlife International, Cambridge, UK. Duhamel, G., Koubbi, P., and Ravier, C , 2000. Day and night mesopelagic fish assemblages off the Kerguelen Islands (Southern Ocean). Polar Biology 23 (2), 106-112. Dunlop, J.N., 1997. Foraging range, marine habitat and diet of Bridled terns breeding in western Australia. Corella 21 (3), 77-82. Dunn, E.H., 1975. Caloric intake of nesting Double-crested cormorants. Auk 92 (3), 553-565. Dunnet, G.M., Furness, R.W., Tasker, M.L., and Becker, P.H., 1990. Seabird ecology in the North Sea. Netherlands Journal of Sea Research 26 (2-4), 387-425. Dunning, J.B., 1993. CRC handbook of avian body masses. CRC Press, Florida, USA. 371 pp. Ealey, E.H.M., 1954a. Ecological notes on the birds of Heard Island. Emu 54, 91-112. Ealey, E.H.M., 1954b. Analysis of stomach contents of some Heard Island birds. Emu 54, 204210. Ellis, H.I., and Gabrielsen, G.W., 2002. Energetics offree-rangingseabirds. pp. 359-407. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA.  59  Emison, W.B., 1968. Feeding preferences of the Adelie penguin at Cape Crozier, Ross Island, pp. 191-212. In: O.L. Jr Austin (Ed.), Antarctic Bird Studies. Antarctic Research Series, American Geophysical Union, Washington DC, USA Endo, Y., Asari, H., Watanuki, Y., Kato, A., Kuroki, M., and Nishikawa, J., 2002. Biological characteristics of euphausiids preyed upon by Adelie penguins in relation to sea-ice conditions in Lutzow-Holm Bay, Antarctica. Polar Biology 25 (12), 730-738. Erikstad, K.E., 1990. Winter diets of four seabird species in the Barents Sea after a crash in the capelin stock. Polar Biology 10, 619-627. Erwin, R.M., Eyler, T.B., Hatfield, J.S., and McGary, S., 1998. Diet of nestling Gull-billed terns in coastal Virginia. Colonial Waterbirds 21 (3), 323-327. Espitalier-Noel, G., Adams, N.J., and Klages, N.T., 1988. Diet of the Imperial cormorant Phalacrocorax atriceps at sub-Antarctic Marion Island. Emu 88, 43-46. Fauchald, P., Erikstad, K.E., and Skarsfjord, H., 2000. Scale-dependent predator-prey interactions: the hierarchical spatial distribution of seabirds and prey. Ecology 81 (3), 773-783. Favero, M., and Silva, M.P., 1998. How important are pelagic preys for the Kelp gull during chick-rearing at the South Shetland Islands? Polar Biology 19 (1), 32-36. Favero, M., Bo, M.S., Silva, M.P., and Garcia-Mata, C , 2000. Food and feeding biology of the South American tern during the nonbreeding season. Waterbirds 23 (1), 125-129. Favero, M . , Casaux, R., B arrera-Oro, E . , and Coria, N . , 1 998. The diet o f the Antarctic shag during summer at Nelson Island, Antarctica. Condor 100 (1), 112-118. Ferretti, V., Soave, G.E., Casaux, R., and Coria, N.R., 2001. Diet of the Snow petrel Pagodroma nivea at Laurie Island, Antarctica, during the 1997/98 breeding season. Marine Ornithology 29 (2), 71-73. Fischer, H.I., 1975. Longevity of the Laysan albatross, Diomedea immutabilis. Bird Banding 46 (1), 1-6. Fischer, J.B., and Griffin, C.R., 2000. Feeding behavior and food habits of wintering Harlequin ducks at Shemya Island, Alaska. Wilson Bulletin 112 (3), 318-325. Forero, M.G., and Hobson, K.A., 2003. Using stable isotopes of nitrogen and carbon to study seabird ecology: applications in the Mediterranean seabird community. Scientia Marina 67 (supplement 2), 23-32. Foy, R.J., and Norcross, B.L., 1999. Spatial and temporal variability in the diet of juvenile Pacific herring (Clupea pallasi) in Prince William Sound, Alaska. Canadian Journal of Zoology 11 (5), 697-706. Fraser, M.W., 1984. Foods of Subantarctic skuas on Inaccessible Island. Ostrich 55 (4), 192-195. 60  Freeman, A.N.D., 1998. Diet of Westland petrels Procellaria westlandica: the importance of fisheries waste during chick-rearing. Emu 98, 36-43. Freeman, A.N.D., and Wilson, K.-J., 2002. Westland petrels and hoki fishery waste: opportunistic use of a readily available resource? Notornis 49 (3), 139-144. Furness, R.W., 1978. Energy requirements of seabird communities: a bioenergetics model. Journal of Animal Ecology Al (1), 39-53. Furness, R.W., 1982. Competition between fisheries and seabird communities. Advances in Marine Biology 20, 225-307. Furness, R.W., 2002. Management implications of interactions between fisheries and sandeeldependent seabirds in the North Sea. ICES Journal of Marine Science 59 (2), 261-269. Furness, R.W., and Ainley, D.G., 1984. Threats to seabird populations presented by commercial fisheries, pp. 701-708. In: J.P. Croxall, P.G.H. Evans, and R.W. Schreiber (Eds.), Status and Conservation of the World's Seabirds. ICBP Technical Publication, No. 2. Cambridge, UK. Furness, R.W., and Birkhead, T.R., 1984. Seabird colony distributions suggest competition for food supply during the breeding season. Nature 311 (5987), 655-656. Furness, R.W., and Cooper, J., 1982. Interactions between breeding seabird and pelagic fish populations in the Southern Benguela Region. Marine Ecology Progress Series 8, 243250. Furness, R.W., and Todd, C M . , 1984. Diets and feeding of fulmars Fulmarus glacialis during the breeding season: a comparison between St Kilda and Shetland colonies. Ibis 126 (3), 379-387. Furness, R.W., Hudson, A.V., and Ensor, K., 1 988. Interactions between scavenging seabirds and commercial fisheries around the British Isles, pp. 240-268. In: J., Burger (Ed.), Seabirds and other marine vertebrates: Competition, predation and other interactions. Columbia University Press, Cambridge, UK. Gabrielsen, G.W., 1994. Energy expenditure in arctic seabirds. PhD Thesis. Department of Arctic Biology, University of Tromse, Norway. 166 pp. Gabrielson, I.N., and Jewett, S.G., 1940. Birds of Oregon. Oregon State College, Corvallis, OR, USA. 650 pp. Gales, R., and Green, B., 1990. The annual energetics cycle of Little penguins (Eudyptula minor). Ecology 71 (6), 2297-2312. Gales, N.J., Klages, N.T.W., Williams, R., and Woehler, E.J., 1990. The diet of the Emperor penguin, Aptenodytes forsteri, in Amanda Bay, Princess Elizabeth Land, Antarctica. Antarctic Science 2 (1), 23-28. 61  Gandini, P.A., Frere, E., Pettovello, A.D., and Cedrola, P.V., 1999. Interaction between Magellanic penguins and shrimpfisheriesin Patagonia, Argentina. Condor 101 (4), 783789. Garcia-Godos, I., Goya, E., and Jahncke, J., 2002. The diet of Markham's storm petrel Oceanodroma markhami on the Central Coast of Peru. Marine Ornithology 30 (2), 77-83. Garthe, S., 1997. Influence of hydrography, fishing activity, and colony location on summer seabird distribution in the south-eastern North Sea. ICES Journal of Marine Science 54 (4), 566-577. Garthe, S., Camphuysen, K. (C.J.), and Furness, R.W., 1996. Amounts of discards by commercialfisheriesand their significance as food for seabirds in the North Sea. Marine Ecology Progress Series 136 (1-3), 1-11 Gaston, A.J., 1985. The diet of Thick-billed murre chicks in the Eastern Canadian Arctic. Auk 102(4), 727-734. Gaston, A.J., Carter, H.R., and Sealy, S.G., 1993. Winter ecology and diet of Ancient murrelets off Victoria, British Columbia. Canadian Journal of Zoology 71 (1), 64-70. Gibbs, H.L., Latta, S.C., and Gibbs, J.P., 1987. Effects of the 1982-83 El Nino event on Bluefooted and Masked booby populations on Isla Daphne Major, Galapagos. Condor 89 (2), 440-442. Gjerke, K.M., and Breide, C , 2003. Towards a strategy for High Seas Marine Protected Areas. Proceedings of thelUCN, WCPA and WWF Experts Workshop on High Seas Marine Protected Areas, 15-17 January 2003, Malaga, Spain. IUCN, Gland, Switzerland. 80pp. Goldsworthy, S.D., He, X., Tuck, G.N., Lewis, M., and Williams, R., 2001. Trophic interactions between the Patagonian toothfish, its fishery, and seals and seabirds around Macquarie Island. Marine Ecology Progress Series 218, 283-302. Golet, G.H., Irons, D.B., and Costa, D.P., 2000. Energy costs of chick rearing in Black-legged kittiwakes (Rissa tridactyla). Canadian Journal of Zoology 78 (6), 982-991. Golubova, E.Yu., 2002. The state of food resources and reproductive success of Tufted and Horned puffins in the Northern Sea of Okhotsk. Russian Journal of Ecology 33 (5), 356365. Gonzalez-Solis, J., Oro, D., Jover, L., Ruiz, X., and Pedrocchi, C , 1997b. Trophic niche width and overlap of two sympatric gulls in the southwestern Mediterranean. Oecologia 112 (1), 75-80. Gonzalez-Solis, J., Oro, D., Pedrocchi, V., Jover, L., and Ruiz, X., 1997a. Bias associated with diet samples in Audouin's gulls. Condor 99 (3), 773-779.  62  Gotmark, F., 1984. Food and foraging in five European Larus gulls in the breeding season: a comparative review. Ornis Fennica 61 (1), 9-18. Goudie, R.I., and Ankney, C.D., 1986. Body size, activity budgets, and diets of sea ducks wintering in Newfoundland. Ecology 67 (6), 1475-1482. Gould, P., Ostrom, P., and Walker, W., 1997. Food of Flesh-footed shearwaters Puffinns carneipes associated with high-seas driftnets in the Central North Pacific Ocean. Emu 97 (2), 168-173. Gould, P., Ostrom, P., and Walker, W., 1998. Foods of Buller's shearwaters (Puffinus bulleri) associated with driffnet fisheries in the central North Pacific Ocean. Notornis 45 (2), 8193. Gould, P., Ostrom, P., and Walker, W., 2000. Foods, trophic relationships, and migration of Sooty and Short-tailed shearwaters associated with squid and large-mesh driftnet fisheries in the North Pacific Ocean. Waterbirds 23 (2), 165-186. Goutner, V., 1986. Distribution, status and conservation of the Mediterranean gull (Larus melanocephalus) in Greece, pp. 431-447. In: MEDMARAVIS and X. Monbailliu (Eds.), Mediterranean Marine Avifauana. Population Studies and Conservation. NATO ASI Series, Vol. G12, Springer Verlag, Berlin, Germany. Goutner, V., Papakostas, G., and Economidis, P.S., 1997. Diet and growth of Great cormorant (Phalacrocorax carbo) nestlings in a Mediterranean estuarine environment (Axios Delta, Greece). Israel Journal of Zoology 43 (2), 133-148. Granadeiro, J.P., Monteiro, L.R., Silva, M.G., and Furness, R.W., 2002. Diet of Common terns in the Azores, Northeast Atlantic. Waterbirds 25 (2), 149-155. Green, K., 1986. Food of the Cape pigeon (Daption capense)fromPrincess Elizabeth Land, East Antarctica. Notornis 33 (3), 151-154. Green, K., and Johnstone, G.W., 1988. Changes in the diet of Adelie penguins breeding in East Antarctica. Australian Wildlife Research 15 (2), 103-110. Green, K., Slip, D.J., and Moore, G.J., 1998a. The take of fish species by seabirds and marine mammals in the Australian Fisheries Zone around Heard Island: the potential for competition with a commercialfishery.Polar Biology 20 (4), 273-280. Green, K., Williams, R. and Green, M.G., 1998b. Foraging ecology and diving behaviour of Macaroni penguins Eudyptes chrysolophus at Heard Island. Marine Ornithology 26 (1-2), 27-34. Greenway, J.C., 1967. Extinct and Vanishing Birds of the World. Dover Publications, New York, USA. 520 pp.  63  Gremillet, D., 1997. Catch per unit effort, foraging efficiency, and parental investment in breeding Great cormorants (Phalacrocorax carbo carbo). ICES Journal of Marine Science 54 (4), 635-644. Gremillet, D., Argentin, G., Schutle, B., and Culik, B.M., 1998. Flexible foraging techniques in breeding cormorants Phalacrocorax carbo and Shags Phalacrocorax aristotelis: benthic or pelagic feeding? Ibis 140 (1), 113-119. Gremillet, D., Wilson, R.P., Wanless, S., and Chater, T., 2000. Black-browed albatross, international fisheries and the Patagonian Shelf. Marine Ecology Progress Series 195, 269-280. Griffiths, A.M., 1983. Factors affecting the distribution of the Snow petrel (Pagodroma nivea) and the Antarctic petrel (Thalassoica antarctica). Ardea 71 (2), 145-150. Guillen, V., 1990. Alimentation del pelicano o alcatraz (Pelecanus thagus) en la isla Macabi. Boletin de Lima 67, 85-88. Guillet, A., and Furness, R.W., 1985. Energy requirements of a Great white pelican (Pelecanus onocrotalus) population and its impact on fish stocks. Journal of Zoology London 205, 573-583. Guinet, C , Cherel, Y., Ridoux, V., and Jouventin, P., 1996. Consumption of marine resources by seabirds and seals in Crozet and Kerguelen waters: changes in relation to consumer biomass 1962-85. Antarctic Science 8 (1), 23-30. Guzman, J.R., and Myres, M.T., 1983. The occurrence of shearwaters (Puffinus spp.) off the west coast of Canada. Canadian Journal of Zoology 61 (9), 2064-2077. Hall, C.S., Kress, S.W., and Griffin, C.R., 2000. Composition, spatial and temporal variation of Common and Arctic tern chick diets in the Gulf of Maine. Waterbirds 23 (3), 430-439. Halliday, T., 1978. Vanishing birds: their natural history and conservation. Holt, Rinehart, and Winston, New York, USA. 296 pp. Hamer, K.C., Furness, R.W., and Caldow, R.W.G., 1991. The effects of changes in food availability on the breeding ecology of Great skuas Catharacta skua in Shetland. Journal of Zoology London 223,175-188. Hamer, K.C., Thompson, D.R., Rundle, A.J., Lewis, S.A., and Stewart, F.M., 1994. Mesopelagic fish eaten by Yellow-legged herring gulls Larus argentatus atlantis in the Azores. Seabird 16, 30-33. Harper, P.C., 1983. Biology of the Buller's shearwater (Puffinus bulleri) at the Poor Knights Islands, New Zealand. Notornis 30,299-318. Harper, P.C., Croxall, J.P., and Cooper, J., 1985. A guide to foraging methods used by marine birds in Antarctic and subantarctic seas. BIOMASS Handbook 24, 1-22.  64  Harris, J.G.K., and Last, P.R., 1982. Diet of juvenile Crested terns, Sterna bergii, on Lachlan Island. Tasmanian Naturalist 69, 2-3. Harris, M.P., 1970. Breeding ecology of the Swallow-tailed gull, Creagrus furcatus. Auk 87 (2), 215-243. Harris, M.P., and Riddiford, N.J., 1989. The food of some young seabirds on Fair Isle in 198688. Scottish Birds 15,119-125. Harris, M.P., and Wanless, S., 1995. The food consumption of young Common murres (Uria aalge) in the wild. Colonial Waterbirds 18 (2), 209-213. Harris, M.P., and Wanless, S., 1997. Breeding success, diet, and brood neglect in the kittiwake (Rissa tridactyla) over an 11-year period. ICES Journal of Marine Science 54 (4), 615623. Harrison, C.S., Hida, T.S., and Seki, M.P., 1984. The diet of the Brown booby Sula leucogaster and Masked booby Sula dactylatra on Rose Atoll, Samoa. Ibis 126 (4), 588-590. Harrison, N.M., 1990. Diets in relation to prey resources. Gelatinous zooplankton in the diet of the Parakeet auklet: comparisons with other auklets. Studies in Avian Biology 14, 114124. Hartley, C.H., and Fisher, J., 1936. The marine foods of birds in an inland fjord region in West Spitzbergen. Part 2. Birds. Journal ofAnimal Ecology 5 (2), 370-389. Hashimoto, H., 1993. Winter feeding of Thick-billed murres in coastal waters off the Shakotan Peninsula, Hokkaido. Journal ofYamashina Institute of Ornithology 25, 166-173. Hatch, S.A., 1984. Nestling diet and feeding rates of Rhinoceros auklets in Alaska, pp. 106-115. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Hatch, S.A., and Sanger, G.A., 1992. Puffins as samplers of juvenile pollock and other forage fish in the Gulf of Alaska. Marine Ecology Progress Series 80, 1-14. Hatchwell, B.J., 1991. The feeding ecology of young guillemots Uria aalge on Skomer Island, Wales. Ibis 133 (2), 153-161. Hayes, D.L., and Kuletz, K.J., 1997. Decline of Pigeon guillemot populations in Prince William Sound, Alaska, and apparent changes in distribution and abundance of their prey. Proceedings of the International Symposium of the Role of Forage Fishes in Marine Ecosystems, University of Alaska Sea Grant College Program, AK-SG-97-01. pp. 699702. Hedd, A., and Gales, R., 2001. The diet of Shy albatrosses (Thalassarche cauta) at Albatross Island, Tasmania. Journal of Zoology London 253, 69-90.  65  Hedd, A., Ryder, J.L., Cowen, L.L., and Bertram, D.F., 2002. Inter-annual variation in the diet, provisioning and growth of Cassin's auklet at Triangle Island, British Columbia: responses to variation in ocean climate. Marine Ecology Progress Series 229, 221-232. Hemmings, A.D., 1984. Aspects of the breeding biology of McCormick's skua Catharacta maccormicki at Signy Island, South Orkney Islands. British Antarctic Survey Bulletin 65, 65-79. Hilton, G . M . , Houston, D . C , and Furness, R.W., 1998. Which components of diet quality affect retention time of digesta in seabirds? Functional Ecology 12 (6), 929-939. Hindell, M . A . , 1988a. The diet of the King penguin Aptenodytes patagonicus at Macquarie Island. Ibis 130 (2), 193-203. Hindell, M . A . , 1988b. The diet of the Rockhopper penguin Eudyptes chrysocome at Macquarie Island. Emu 88,227-233. Hindell, M . A . , 1989. The diet of Gentoo penguins Pygoscelis papua at Macquarie Island: winter and early breeding season. Emu 89, 71-78. Hintze, J., 2004. NCSS and PASS. Number Cruncher Statistical Systems. Kaysville, Utah, USA. www.ncss.com. Hislop, J.R.G., and Harris, M.P., 1985. Recent changes in the food of young puffins Fratercula arctica on the Isle of May in relation to fish stocks. Ibis 127 (2), 234-239. Hobson, K . A . , 1990. Stable isotope analysis of Marbled murrelets: evidence for freshwater feeding and determination of trophic level. Condor 92 (4), 897-903. Hobson, K . A . , 1991. Stable isotopic determinations of the trophic relationships of seabirds: Preliminary investigations of alcids from coastal British Columbia, pp. 16-20. In: W . A . Montevecchi, and A J . Gaston (Eds.), Studies of High-latitude Seabirds. 1. Behavioural, Energetic, and Oceanographic Aspects of Seabird Feeding Ecology. Occasional paper No. 68. Canadian Wildlife Service. Ottawa, Canada. Hobson, K . A . , 1995. Reconstructing avian diets using stable-carbon and nitrogen isotope analysis of egg components: patterns of isotopic fractionation and turnover. Condor 97 (3), 752-762. Hobson, K . A . , and Clark, R.G., 1992. Assessing avain diets using stable isotopes I: turnover of C in tissues. Condor 94 (1), 181-188. 1 3  Hobson, K . A . , and Montevecchi, W . A . , 1991. Stable isotope determinations of trophic relationships of Great auks. Oecologia 87 (4), 528-531. Hobson, K . A . , and Welch, H.E., 1992. Determination of trophic relationships within a high Arctic marine food web using 813C and 815N analysis. Marine Ecology Progress Series 84,9-18.  66  Hobson, K.A., Piatt, J.F., and Pitocchelli, J., 1994. Using stable isotopes to determine seabird trophic relationships. Journal ofAnimal Ecology 63 (4), 786-798. Horn, H.S., 1966. Measurement of 'overlap' in comparative ecological studies. American Naturalist 100 (914), 419-424. Home, R.S.C., 1985. Diet of Royal and Rockhopper penguins at Macquarie Island. Emu 85,150156. Hull, C.L., 1999. Comparison of the diets of breeding Royal {Eudyptes schlegeli) and Rockhopper (Eudyptes chrysocome) penguins on Macquarie Island over three years. Journal of Zoology London 247, 507-529. Hunt, G.L. Jr, and Butler, J.L., 1980. Reproductive ecology of Western gulls and Xantus' murrelets with respect to food resources in the Southern California Bight. CalCOFI Report 16, 62-67. Hunt, G.L. Jr, and Schneider, D.C., 1987. Scale-dependent processes in the physical and biological environment of marine birds, pp. 7-41. In: J.P. Croxall (Ed.), Seabirds: Feeding ecology and Role in Marine Ecosystems. Cambridge University Press, Cambridge, UK. Hunt, G.L. Jr, Baduini, C , and Jahncke, J., 2002. Diets of Short-tailed shearwaters in the southeastern Bering Sea. Deep-Sea Research II49 (26), 6147-6156. Hunt, G.L. Jr, Russell, R.W., Coyle, K.O., and Weingartner, T., 1998. Comparative foraging ecology of planktivorous auklets in relation to ocean physics and prey availability. Marine Ecology Progress Series 167, 241-259. Hunter, S., 1983. The food and feeding ecology of the Giant petrels Macronectes halli and M. giganteus at South Georgia. Journal of Zoology London 200, 521-538. Hunter, S., 1985. The role of Giant petrels in the Southern Ocean Ecosystem, pp. 534-542. In: W.R. Siegfried, P.R. Condy, and R.M. Laws (Eds.), Antarctic nutrient cycles and food webs. Springer Verlag, Berlin, Germany. Hunter, S., and Brooke, de L.M., 1992. The diet of Giant petrels Macronectes spp. at Marion Island, Southern Indian Ocean. Colonial Waterbirds 15 (1), 56-65. Hunter, S., and Klages, N.T.W., 1989. The diet of Grey-headed albatrosses Diomedea chrysostoma at the Prince Edward Islands. South African Journal of Antarctic Research 19(1), 31-33. Huntington, T., Frid, C , Banks, R., Scott, C , and Paramor, O., 2004. Assessment of the sustainability of industrialfisheriesproducing fish meal and fish oil. Final Report to the Royal Society for the Protection of Birds by Poseidon Aquatic Resource Management Ltd. and The University of Newcastle-upon-Tyne, Hampshire, UK. 105 pp.  67  Huettmarin, F., 2003. Estimates of abundance, biomass and prey consumption for selected seabird species for the eastern and western Scotian Shelf, 1966-1992. Department of Fisheries and Oceans Report, Ottawa, Canada. 34 pp. Hyrenbach, K . D . , and Dotson, R.C., 2003. Assessing the susceptibility of female Black-footed albatross (Phoebastria nigripes) to longline fisheries during the post-breeding dispersal: an integrated approach. Biological Conservation 112 (3), 391-404. Hyrenbach, K.D., Fernandez, P., and Anderson, D.J., 2002. Oceanographic habitats of two sympatric North Pacific albatrosses during the breeding season. Marine Ecology Progress Series 233, 283-301.  Hurlbert, S.H., 1978. The measurement of niche overlap and some relatives. Ecology 59 (1), 6777. ICES, 2000. Report of the Working Group on Seabird Ecology. ICES C M 2000/C: 04, 72 pp. Available online at http://www.ices.dk/reports/occ/2000/. Ichii, T., N aganobou, M . , and O gishima, T., 1996. C ompetition b etween t he krill fishery and penguins in the South Shetland Islands. Polar Biology 16 (1), 63-70. Imber, M.J., 1981. Diets of Storm petrels Pelagodroma and Garrodia and of prions Pachyptila (Procellariiform.es). pp. 63-88. In: J. Cooper (Ed.), Proceedings o f the Symposium on Birds of the Sea and Shore, 1979. African Seabird Group, Cape Town, South Africa. Ito, S., 2002. Foraging areas of Short-tailed shearwaters during their northward migration along the Pacific coast of northern Japan. Ornithological Science 1 (2), 159-162. Jablonski, B . , 1985. The diet of penguins on King George Island, South Shetland Islands. Acta Zoologica Cracoviensia 29 (8), 117-186.  Jablonski, B . , 1995. Distribution, abundance and biology of the Antarctic tern Sterna vittata Gmelin, 1789 on King George Island (South Shetland Islands). Acta Zoologica Cracoviensia 38 (3), 399-460. Jackson, S., 1988. Diets of the White-chinned petrel and Sooty shearwater in the Southern Benguela Region, South Africa. Condor 90 (1), 20-28. Jahncke, J., 1998. Las poblaciones de aves guaneras y sus relaciones con la abundancia de anchoveta y la ocurrencia de eventos E l Niflo en el Mar Peruano. Boletin del Insituto del Mar del Peru 17(1-2), 1-13. Jahncke, J., and Goya, E., 2000. Responses of three booby species to E l Nino 1997-1998. Waterbirds 23 (1), 102-108. Jahncke, J., Garcia-Godos, A . , and Goya, E., 1997. Diet of Guanay cormorants Leucocarbo bougainvillii, Peruvian boobies Sula variegata and other birds of Peruvian coast, April and May 1997. Informe del Instituto del Mar del Peru 126, 75-86.  68  Jahncke, J., Garcia-Godos, A., and Goya, E., 1999. The diet of the Peruvian diving petrel at la Vieja and San Gallan, Peru. Journal of Field Ornithology 70 (1), 71-79. James, G.D., and Stahl, J.-C., 2000. Diet of southern Buller's albatross {Diomedea bulleri bulleri) and the importance of fishery discards during chick rearing. New Zealand Journal of Marine and Freshwater Research 34 (3), 435-454. Jennings, S., Kaiser, M.J., and Reynolds, J.D., 2001. Marine Fisheries Ecology. Blackwell Science, Oxford, UK. 417 pp. Johansen, R., Barrett, R.T., and Pedersen, T., 2001. Foraging strategies of Great cormorants Phalacrocorax carbo carbo wintering north of the Arctic Circle. Bird Study 48, 59-67. Johnstone, G.W., 1977. Comparative feeding ecology of the Giant petrels Macronectes giganteus (Gmelin) and M. halli (Mathews), pp. 647-668. In: G.A. Llano (Ed.), Adaptations within Antarctic Ecosystems. Gulf Publishers Co., Houston, TX, USA. Jones, I.L., Hunter, F.M., and Robertson, G.J., 2002. Annual adult survival of Least auklets (Aves, Alcidae) varies with large-scale climatic conditions of the North Pacific Ocean. Oecologia 133 (1), 38-44. Jouventin, P., Martinez, J., and Roux, J.P., 1989. Breeding biology and current status of the Amsterdam island albatross Diomedea amsterdamensis. Ibis 131 (2), 171-182. Kaschner, K., 2004. Modelling and mapping resource overlap between marine mammals and fisheries o n a global s cale. P hD T hesis, D epartment o f Zoology, University o f British Columbia, Vancouver, Canada. 225 pp. Kaschner, K., and Pauly, D. 2004. Competition between marine mammals andfisheries:food for thought. Report for the Humane Society, Washington, DC, USA. 28 pp. Kato, A., Watanuki, Y., and Naito, Y., 2001. Foraging and breeding performance of Japanese cormorants in relation to prey type. Ecological Research 16 (4), 745-758. Kato, A., Watanuki, Y., and Naito, Y., 2003. Annual and seasonal changes in foraging site and diving behavior in Adelie penguins. Polar Biology 26 (6), 389-395. Kato, A., Williams, T.D., Barton, T.R., and Rodwell, S., 1989. Short-term variation in the winter diet of Gentoo penguins Pygoscelis papua at South Georgia during July 1989. Marine Ornithology 19 (1), 31-38. Kent, S., Seddon, J., Robertson, G., and Wienecke, B.C., 1998. Diet of Adelie penguins Pygoscelis adeliae at Shirley Island, East Antarctica, January 1992. Marine Ornithology 26 (2), 7-10. Kirkham, I.R., 1986. Comparative foraging and breeding habits of Arctic and Common terns. PhD Thesis, Dalhousie University, Halifax, NS, Canada.  69  Kirkwood, R., 2001. Emperor penguin (Aptenodytes forsteri) foraging ecology. ANARE Report 144, 164 pp. Kirkwood, R., and Robertson, G., 1997. The foraging ecology of female Emperor penguins in winter. Ecological Monographs 67 (2), 155-176. Kitaysky, A.S., Hunt, G.L. Jr, Flint, E.N., Rubega, M.A., and Decker, M.B., 2000. Resource allocation in breeding seabirds: Responses tofluctuationsin their food supply. Marine Ecology Progress Series 206, 283-296. Klages, N.T.W., 1989. Food and feeding ecology of Emperor penguins in the Weddell Sea. Polar Biology 9 (6), 385-390. Klages, N.T.W., and Cooper, J., 1997. Diet of the Atlantic petrel Pterodroma incerta during breeding at South Atlantic Gough Island. Marine Ornithology 25 (1-2), 13-16. Klages, N.T.W., Gales, R.P., and Pemberton, D., 1989. Dietary segregation of Macaroni and Rockhopper penguins at Heard Island. Australian Wildlife Research 16 (6), 599-604. Klages, N.T.W., Gales, R.P., and Pemberton, D., 1990a. The stomach content of Antarctic petrels Thalassoica antarctica feeding young chicks at Scullin Monolith, Mawson Coast, Antarctica. Polar Biology 10 (8), 545-547. Klages, N.T.W., Nel, D . C , and Cooper, J., 1995. Stomach contents of a Grey-backed storm petrel Garrodia nereisfromSubantarctic Marion Island. Marine Ornithology 23 (2), 163164. Klages, N.T.W., Pemberton, D., and Gales, R.P., 2000b. The diets of King and Gentoo penguins at Heard Island. Australian Wildlife Research 17 (1), 53-60. Klages, N.T.W., Willis, A.B., and Ross, C.J.B., 1992. Variability in the diet of the Cape gannet at Bird Island, Algoa Bay, South Africa. South African Journal of Marine Science 12, 761-771. Kline, T., and Pauly, D., 1998. Cross-validation of trophic level estimates from a mass-balance model of Prince William Sound using N/i N data. pp. 693-702. In: F. Funk, T.J. Quinn II, J. Heifetz, J.N. Ianelli, J;E. Powers, J.F. Schweigert, PJ. Sullivan, and C.-I. Zhang (Eds.), Fishery Stock Assessment Models. Lowell Wakefield Fisheries Symposium Series, No. 15. University of Alaska Sea Grant AK-SG-98-01, Fairbanks, AK, USA. 15  4  Knox, G.A., 1970. Antarctic marine ecosystems, pp. 69-96. In: M.W. Holdgate (Ed.), Antarctic Ecology. Vol. 1. Academic Press, London, UK. Koehl, P.S., Rothe, T.C., and Derksen, D.V., 1982. Winter food habits of Barrow's goldeneyes in southeast Alaska, pp. 1-5. In: D.N. Nettleship, G .A. Sanger, and P.F. Springer (Eds.), Marine birds: their feeding ecology and commercialfisheriesrelationships. US Fish and Wildlife Service, Washington, DC, USA.  70  Kondratyev, A.V., 1999. Foraging strategies and habitat use of sea ducks breeding in northeast Russia, pp. 52-59. In: R.I. Goudie, M.R. Petersen, and G.J. Robertson (Eds.), Behaviour and ecology of sea ducks. Occasional Paper, Vol. 100. Canadian Wildlife Service, Ottawa, Canada. Koteja, P., 1991. On the relation between basal and field metabolic rates in birds and mammals. Functional Ecology 5 (1), 56-64. Krebs, C.J., 1999. Ecological Methodology. 2 Edition. Addison Wesley Educational Publishers, Benjamin/Cummings, California, USA. 620 pp. nd  LaCock, G.D., Hecht, T., and Klages, N., 1984. The winter diet of Gentoo penguins at Marion Island. Ostrich 55 (2), 188-191. Lance, B.K., and Roby, D.D., 1998. Diet and postnatal growth in Red-legged and Black-legged kittiwakes: an interspecies comparison. Colonial Waterbirds 21 (3), 375-387. Lascara, C M . , Hofmann, E.E., Ross, R.M., and Quentin, L.B., 1999. Seasonal variability in the distribution of Antarctic krill, Euphausia superba, west of the Antarctic Peninsula. DeepSea Research Part I- Oceanographic Research Papers 46 (6), 951-984. Lee, D.S., 1995. The pelagic ecology of Manx shearwaters Puffinus puffinus off the Southeastern United States of America. Marine Ornithology 23 (2), 107-119. Leopold, M.F., and van Damme, C.J.G., 2003. Great cormorants Phalacrocorax carbo and polychaetes: can worms be a major prey of a piscivorous seabird? Marine Ornithology 31 (1), 83-87. Leschner, L.L., 1976. The breeding biology of the Rhinoceros auklet on Destruction Island. MSc Thesis, University of Washington, Seattle, USA. Lilliendahl, K., and Solmundsson, J., 1997. An estimate of summer food consumption of six seabird species in Iceland. ICES Journal of Marine Science 54 (4), 624-630. Lishman, G.S., 1985. The food and feeding ecology of Adelie penguins {Pygoscelis adeliae) and Chinstrap penguins (P. antarctica) at Signy Island, South Orkney Islands. Journal of Zoology London 205, 245-263. Litzow, M.A., Piatt, J.F., Abookire, A.A., and Robards, M.D., 2004. Energy density and variability in abundance of Pigeon guillemot prey: support for the quality-variability trade-off hypothesis. Journal of Animal Ecology 73 (6), 1149-1156. Litzow, M.A., Piatt, J.F., and Figurski, J.D., 1998. Hermit crabs in the diet of Pigeon guillemots at Kachemak Bay, Alaska. Colonial Waterbirds 21 (2), 242-244. Longhurst, A., 1998. Ecological Geography of the Sea. Academic Press, San Diego, CA, USA. 398 pp.  71  Lorentsen, S.-H., and Anker-Nilssen, T., 1999. Diet of Common murres wintering in the Northern Skagerrak during 1988-1990: variation with sex, age and season. Waterbirds 22 (1), 80-89. Lorentsen, S.-H., Klages, N., and R0v, N., 1998. Diet and prey consumption of Antarctic petrels Thalassoica antarctica at Svarthamaren, Dronning Maud Land, and at sea outside the colony. Polar Biology 19 (6), 414-420. Lyngs, P., and Durinck, J., 1998. Diet of guillemots Uria aalge in the central Baltic Sea. Dansk Ornitologisk Forenings Tidsskrift 92 (2), 197-200. Lynnes, A .S., R eid, K., and C roxall, J. P., 2 004. D iet and r eproductive su ccess o f A delie and Chinstrap penguins: linking response of predators to prey population dynamics. Polar Biology 21 (9), 544-554. Lynnes, A.S., Reid, K., Croxall, J.P., and Trathan, P.N., 2002. Conflict or co-existence? Foraging distribution and competition for prey between Adelie and Chinstrap penguins. Marine Biology 141 (6), 1165-1174. Malacalza, V.E., Bertellotti, N.M., and Poretti, T.I., 1997. Variation e stacional de la dieta de Phalacrocorax magellanicus (Aves: Phalacrocoracidae) en Punta Loma, (Chubut, Argentina). Neotropica 43 (109-110), 35-37. Malacalza, V., Poretti, T.I., and Bertellotti, N.M., 1994. La dieta de Phalacrocorax albiventer en Punta Leon (Chubut, Argentina) durante la temporada reproductiva. Ornitologia Neotropical 5, 91-97. Mann, K.H., and Lazier, J.R.N., 1996. Dynamics of Marine Ecosystems: Biological - Physical Interactions in the Oceans. Second Edition. Blackwell Science, Inc., Cambridge, MA, USA. 394 pp. Martensson, P.E., Gotaas, A.R.L., Nordoy, E.S., and Blix, A.S., 1996. Seasonal changes in energy density of prey of northeast Atlantic seals and whales. Marine Mammal Science 12,635-640. Mauco, L., Favero, M., and Bo, M.S., 2001. Food and feeding biology of the Common tern during the nonbreeding season in Samborombon Bay, Buenos Aires, Argentina. Waterbirds 24 (1), 89-96. McGinnis, T., and Emslie, S., 2001. The foraging ecology of Royal and Sandwich terns in North Carolina, USA. Waterbirds 24 (3), 361-370. McLachlan, A., Wooldridge, T., and Schramm, M.K.M., 1980. Seasonal abundance, biomass and feeding of shore birds on sandy beaches in the Eastern Cape, South Africa. Ostrich 51 (1), 44-52. Mellink, E., Dominguez, J., and Luecano, J., 2001. Diet of eastern Pacific Brown boobies Sula leucogaster brewsteri on Isla San Jorge, North-eastern Gulf of California, and an April  72  comparison with diets in the middle Gulf of California. Marine Ornithology 29 (1), 2328. Melvin, E.F., and Parrish, J.K., (Eds.), 2001. Seabird bycatch: trends, roadblocks, and solutions. University of Alaska Sea Grant AK-SG-01-01, Fairbanks, AK, USA. 206 pp. Merilees, W., 1984. Some notes on the foods of the Dominican gull at Macquarie Island. Tasmanian Naturalist 79, 5-6. Milchev, B., Kodjabashev, N., Sivkov, Y., and Chobanov, D., 2004. Post-breeding season diet of the Mediterranean gull Larus melanocephalus at the Bulgarian Black Sea coast. Atlantic Seabirds 6 (2), 65-78. Moncorps, S., Chapuis, J.-L., Haubreux, D., and Bretagnolle, V., 1997. Diet of the Brown skua Catharacta skua lonnbergi on the Kerguelen archipelago: comparisons between techniques and between islands. Polar Biology 19 (1), 9-16. Montague, T.L., Cullen, J.M., and Fitzherbert, K., 1986. The diet of the Short-tailed shearwater Puffinus tenuirostris during its breeding season. Emu 86, 207-213. Montevecchi, W.A., 1993. Birds as indicators of change in marine prey stocks, pp. 217-266. In: R.W. Furness, and J.J.D. Greenwood (Eds.), Birds as monitors of Environmental Change. Chapman & Hall, London, UK. Montevecchi, W.A., 2002. Interactions between fisheries and seabirds. pp. 527-556. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series, CRC Press, USA. Montevecchi, W.A., and Myers, R.A., 1995. Prey harvests of seabirds reflect pelagic fish and squid abundance on multiple spatial and temporal scales. Marine Ecology Progress Series 117, 1-9. Montevecchi, W.A., Cairns, D.K., and Myers, R.A., 2002. Predation on marine-phase Atlantic salmon (Salmo salar) by gannets (Morus bassanus) in the Northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences 59 (4), 602-612. Moore, G., and Jennings, S., (Eds.), 2000. Commercial fishing: the wider ecological impacts. The British Ecological Society, Ecological Issues Series. Blackwell Science Ltd. Oxford, UK. 66 pp. Moore, G.J., Robertson, G., and Wienecke, B., 1998. Food requirements of breeding King penguins at Heard Island and potential overlap with commercial fisheries. Polar Biology 20 (5), 293-302. Moore, P.J., and Wakelin, M.D., 1997. Diet of the Yellow-eyed penguin Megadyptes antipodes, South Island, New Zealand, 1991-1993. Marine Ornithology 25 (1), 17-29. Morisita, M., 1959. Measuring of interspecific association and similarity between communities. Memoirs of the Faculty of Science, Kyushu University, Series E (Biology) 3, 65-80. 73  Morrison, M.L., Shanley, E. Jr, and Slack, R.D., 1977. The food of nestling Olivaceous cormorants. Southwestern Naturalist 22, 321-326. Mougin, J.-L., 1968. Etude ecologique de quatre especes de petrels antarctiques de petrels antarctiques. L'Oiseau et la Revue Francaise d'Ornithologie 38,1-52. Muck, P., and Pauly D., 1987. Monthly anchoveta consumption of guano birds, 1953 to 1982. pp. 219-233. In: D. Pauly, and I., Tsukayama (Eds.), The Peruvian anchoveta and its upwelling ecosystem: three decades of change. ICLARM Studies and Reviews 15. JJvIARPE and ICLARM, Manilla, Philippines. Mukherjee, A.K., 1976. Food habits of waterbirds of the Sundarban 24 Parganas District, West Bengal. Part 6. Journal of the Bombay Natural History Society 73 (3), 482-486. Mund, M.J., and Miller, G.D., 1995. Diet of the South polar skua Catharacta maccormicki at Cape Bird, Ross Island, Antarctica. Polar Biology 15 (6), 453-455. Murray, M.D., Nicholls, D.G., Butcher, E., and Moors, P.J., 2002. How Wandering albatrosses use weather systems to fly long distances. 1. An analytical method and its application to flights in the Tasman Sea. Emu 102 (4), 377-385. Myers, R.A., and Worm, B., 2003. Rapid worldwide depletion of predatory fish communities. Nature 423 (6937), 280-283. Nagy, K.A., 1989. Doubly-labelled water studies of vertebrate physiological ecology, pp. 270287. In: P.W. Rundell, J.R. Ehleringer, J.R., and K.A. Nagy (Eds.), Stable isotopes in ecological research. Springer Verlag, Berlin, Germany. Nagy, K.A., and Obst, B.S., 1992. Food and energy requirements of Adelie penguins {Pygoscelis adeliae) on the Antarctic Peninsula. Physiological Zoology 65 (6), 1271-1284. Nagy, K.A., Girard, I.A., and Brown, T.K., 1999. Energetics offree-rangingmammals, reptiles, and birds. Annual Review of Nutrition 19, 247-277. Nagy, K.A., Siegfried, W.R., and Wilson, R.P., 1984. Energy utilization byfree-rangingJackass penguins, Spheniscus demersus. Ecology 65 (5), 1648-1655. Nel, D . C , Lutjeharms, J.R.E., Pakhomov, E.A., Ansorge, I.J., Ryan, P.G., and Klages, N.T.W., 2001. Exploitation of mesoscale oceanographic features by Grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean. Marine Ecology Progress Series 217, 15-26. Nel, D . C , Nel, J.L., Ryan, P.G., Klages, N.T.W., Wilson, R.P., and Robertson, G., 2000. Foraging ecology of Grey-headed mollymawks at Marion Island, southern Indian Ocean, in relation to longlinefishingactivity. Biological Conservation 96 (2), 219-231.  74  Nicol, S., 1993. A comparison of Antarctic petrel (Thalassoica antarcticd) diets with net samples of Antarctic krill {Euphausia superba) taken from the Prydz Bay region. Polar Biology 13 (6), 399-403. Norman, F.L, arid Ward, S.J., 1990. Foods of the South polar skua at Hope Island, Rauer Group, East Antarctica. Polar Biology 10 (7), 489-493. Offredo, C , and Ridoux, V., 1986: The diet of Emperor penguins Aptenodytes forsteri in Adelie Land, Antarctica. Ibis 128 (3), 409-413. Ogi, H., 1980. The pelagic feeding ecology of Thick-billed murres in the North Pacific, MarchJune. Bulletin of the Faculty of Fisheries Hokkaido University 31 (1), 50-72. Ogi, H., 1984. Feeding ecology of the Sooty shearwater in the western subarctic North Pacific Ocean, pp. 7 8-84. In: D .N. N ettleship, G .A. S anger, and P .A. S pringer ( Eds.), M arine birds: their feeding ecology and commercialfisheriesrelationships. Minister of Supply and Services Canada, Ottawa, Canada. Ogi, H., and Hamanaka, T., 1982. The feeding ecology of Uria lomvia in the Northwestern Bering Sea Region. Journal ofYamashina Institute of Ornithology 14, 270-280. Ogi, H . , and T sujita, T., 1973. P reliminary examination o f s tomach c ontents o f m urres (Uria spp.) from the eastern Bering Sea and Bristol Bay, June-August, 1970 and 1971. Japanese Journal of Ecology 23 (5), 201-209. Ogi, H., Kubodera, T., and Nakamura, K., 1980. The pelagic feeding ecology of the Short-tailed shearwater Puffinus tenuirostris in the Subarctic Pacific Region. Journal of Yamashina Institute of Ornithology 12 (3), 157-181. Ogi, H., Tanaka, H., and Tsujita, T., 1985. The distribution and feeding ecology of murres in the Northwestern Bering Sea. Journal ofYamashina Institute of Ornithology 17,44-56. Ojowski, U., Eidtmann, C , Furness, R.W., andGarthe, S., 2000. Diet and nest attendance of incubating and chick-rearing Northern fulmars (Fulmarus glacialis) in Shetland. Marine Biology 139 (6), 1193-1200. Oro, D., and Ruiz, X., 1997. Exploitation of trawler discards by breeding seabirds in the northwestern Mediterranean: differences between the Ebro Delta and the Balearic Islands areas. ICES Journal of Marine Science 54 (4), 695-707. Palmer, R.S., 1962. Handbook of North American birds. Vol. 1. Yale University Press, New Haven, CT, USA. Park, Y.H., and Gamberoni, E., 1995. Large-scale circulation and its variability in the South Indian OceanfromTOPEX/POSEIDON altimetry. Journal of Geophysical Research 100 (CI2), 24911-24929. Paulin, C D . , 1975. Feeding of the Adelie penguin Pygoscelis adeliae. Mauri Ora 3, 27-30.  75  Pauly, D . , and Christensen, V . , 1995. Primary preduction required to sustain global fisheries. Nature 31A (6519), 255-257. Pauly, D., and Christensen, V., 2000. Trophic levels of fishes, p. 181. In: R. Froese, and D. Pauly (Eds.), FishBase 2000: Concepts, design and data sources. I C L A R M , Manila. Pauly, D., and Palomares, M . L . , 2000. Approaches for dealing with three sources of bias when studying the fishing down marine food web phenomenon, pp. 61-66. In: F. Briand (Ed.), Fishing down the Mediterranean food webs? CIESM Workshop Series 12. Pauly, D., Alder, J., Bennett, E., Christensen, V., Tyedmers, P., and Watson, R., 2003. The future of fisheries. Science 302 (5649), 1359-1361. Pauly, D., Christensen, V . , Dalsgaard, J., Froese, R., and Torres, F. Jr, 1998. Fishing down marine food webs. Science 219 (5352), 860-863. Pauly, D., Christensen, V., Guenette, S., Pitcher, T.J., Sumaila, U.R., Walters, C.J., Watson, R., and Zeller, D., 2002. Towards sustainability in world fisheries. Nature 418 (6898), 689695. Pauly, D., Froese, R., Sa-a, P.S., Palomares, M . L . , Christensen, V., and Rius, J., 2000. TrophLab manual. I C L A R M , Manila. Available online at http://filaman.uni-kiel.de/Download/ index.htm. Pauly, D., Watson, R., and Alder, J., 2005. Global trends in world fisheries: impacts on marine ecosystems and food security. Philosophical Transactions: Biological Sciences 360 (1453), 5-12. Payne, M.R., and Prince, P. A., 1979. Identification and breeding biology of the Diving petrels Pelecanoides georgicus and P. urinatrix exsul at South Georgia. New Zealand Journal of Zoology 6 (2), 299-318. Pearson, T.H., 1968. The feeding biology of seabird species breeding on the Fame Islands, Northumberland. Journal of Animal Ecology 37 (3), 521-552. Pedersen, C.-E., and Falk, K . , 2001. Chick diet of Dovekies Alle alle in Northwest Greenland. Polar Biology 24 (1), 53-58. Perez, M . A . , 1994. Calorimetry measurements of energy value of some Alaskan fishes and squids. N O A A Technical Memorandum NMFS-AFSC-32, 32 pp. Peters, J.L., 1934. Checklist of Birds of the World. Vol. 2. Harvard University Press, Cambridge, M A , USA. Peters, J.L., 1979. Checklist of Birds of the World. Vol. 1. Second Edition. Harvard University Press, Cambridge, M A , U S A .  76  Phillips, R.A., Petersen, M.K., Lilliendahl, K., Sohnundsson, J., Hamer, K.C., Camphuysen, C.J., and Zonfrillo, B., 1999. Diet of the Northern fulmar Fulmarus glacialis: reliance on commercialfisheries?Marine Biology 135 (1), 159-170. Phillips, R.A., Phalan, B., and Forster, LP., 2004. Diet and long-term changes in population size and productivity of Brown skuas Catharacta antarctica lonnbergi at Bird Island, South Georgia. Polar Biology 27 (9), 555-561. Piatt, J.F., and Kitaysky, A.S., 2002. Horned puffin (Fratercula corniculata). In: A. Poole, and F. Gill (Eds.), The Birds of North America. Inc., Philadelphia, USA. 28 pp. Piatt, J.F., Roberts, B.D., Lidster, W.W., Wells, J.L., and Hatch, S.A., 1990. Effects of human disturbance on breeding Least and Crested auklets at St. Lawrence Island, Alaska. Auk 107 (2), 342-350. Pilon, C , Burton, J., and McNeil, R., 1983. Summer food of the Great and Double-crested cormorants on the Magdalen Islands, Quebec. Canadian Journal of Zoology 61 (12), 2733-2739. Prince, P. A., 1980. The food and feeding ecology of Blue petrel (Halobaena caerulea) and Dove prion {Pachyptila desolata). Journal of Zoology London 190, 59-76. Prince, P.A., 1985. Population and energetic aspects of the relationship between Black-browed and Grey-headed albatrosses and the Southern Ocean marine environment, pp. 473-477. In: W.R. Siegfried, P.R. Condy, and R.M. Laws (Eds.), Antarctic nutrient cycles and food webs. Springer Verlag, Berlin, Germany. Prince, P.A., and Copestake, P.G., 1990. Diet and aspects of Fairy prions breeding at South Georgia. Notornis 37 (1), 59-69. Prince, P.A., and Morgan, R.A., 1987. Diet and feeding ecology of Procellariiformes. pp. 135171. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. Puddicombe, R.A., and Johnstone, G.W., 1988. The breeding season diet of Adelie penguins at the Vestfold Hills, East Antarctica. Hydrobiologia 165,239-253. Punta, G.E., Saravia, J.R.C., and Yorio, P.M., 1993. The diet and foraging behaviour of two Patagonian cormorants. Marine Ornithology 21 (1), 27-36. Ptttz, K., Ingham, R.J., Smith, J.G., and Croxall, J.P., 2001. Population trends, breeding success and diet composition of Gentoo Pygoscelis papua, Magellanic Spheniscus magellanicus and Rockhopper Eudyptes chrysocome penguins in the Falkland Islands. Polar Biology 24(11), 793-807. Raclot, T., Groscolas, R., and Cherel, Y., 1998. Fatty acid evidence for the importance of myctophidfishesin the diet of King penguins, Aptenodytes patagonicus. Marine Biology 132 (3), 523-533,  77  Rail, J.-F., and Chapdelaine, G., 1998. Food of Double-crested cormorants, Phalacrocorax auritus, in the Gulf and Estuary of the St. Lawrence River, Quebec, Canada. Canadian Journal of Zoology 76 (4), 635-643. Ramos, J.A., Sola, E., and Monteiro, L.R., 1995. Prey delivered to Roseate tern chicks in the Azores. Journal of Field Ornithology 69 (3), 419-429. Ramos, J. A., S ola, E . , Porteiro, F .M., and Monteiro, L.R., 1998. Prey o f Yellow-legged gull, Roseate tern and Common tern in the Azores. Seabird 20, 31-40. Rand, R.W., 1960. The biology of guano-producing seabirds. The distribution, abundance and feeding habits of the Cape penguin, Spheniscus demersus, off the South-Western Coast of the Cape Province. Commerce and Industry, International Report 41, 3-28. Randall, R.M., and Randall, B.M., 1978. Diet of Roseate terns during the breeding season at St Croix Island, AlgoaBay. Cormorant 5, 4-10. Read, A., Crowder, L., Halpin, P., Best, B., Freeman, S., Hyrenbach, D., and Spoerri, C , 2005. OBIS-SEAMAP: Mapping the global distribution of marine mammals, seabirds and turtles. Proceeding of the 4 World Fisheries Congress, Vancouver 2-6 M ay, 2004. In press. th  Reeves, S.A., and Furness, R.W., 2002. Net Loss - Seabird Gain? Implications of fisheries management for seabirds scavenging discards in the Northern North Sea. The Royal Society for the Protection of Birds, Sandy, UK. 74 pp. Reid, K., Croxall, J.P., Edwards, T.M., Hill, H.J., and Prince, P.A., 1997. Diet and feeding ecology of the Diving petrels Pelecanoides georgicus and P. urinatrix at South Georgia. Polar Biology 17 (1), 17-24. Reid, K., Croxall, J.P., and Prince, P.A., 1996. The fish diet of Black-browed albatross Diomedea melanophris and Grey-headed albatross D. chrysostoma at South Georgia. Polar Biology 16 (7), 469-477. Reinhardt, K., 1997. Food and feeding of Antarctic skua chicks Catharacta antarctica lonnbergi and C. maccormicki. Journal fur Ornithologie 138 (2), 199-213. Rexende, M.A., 1987. Comportamento associativo de Fregata magnificens (Fregatidae, Aves) e Sula leucogaster (Sulidae, Aves) no litoral centro-norte do estado de Sao Paulo. Boletim do Instituto Oceanografico, Sao Paulo 35 (1), 1-5. Rice, D.W., and Kenyon, K.W., 1962. Breeding cycles and behavior of Laysan and Black-footed albatrosses. Auk 79 (4), 517-567. Ridoux, V., 1994. The diets and dietary segregation of seabirds at the Subantarctic Crozet Islands. Marine Ornithology 22 (1), 1-192. Ridoux, V., and Offredo, C , 1989. The diets of five summer breeding seabirds in Adelie Land, Antarctica. Polar Biology 9 (3), 137-145.  78  Robert, M . , and Cloutier, L.,2001. Summer.food habits of Harlequin ducks in eastern North America. Wilson Bulletin 113 (1), 78-84. Robertson, D.A., 1992. Diet of the Australasian gannet Morus serrator (G.R. Gray) around New Zealand. New Zealand Journal of Ecology 16 (2), 77-81. Robertson, G., Williams, R., Green, K., and Robertson, L., 1994. Diet composition of Emperor penguin chicks Aptenodytes forsteri at two Mawson Coast colonies, Antarctica. Ibis 136 (1), 19-31. Robertson, I., 1974. The food of nesting Double-crested and Pelagic cormorants at Mandarte Island, British Columbia, with notes on feeding ecology. Condor 76 (3), 346-348. Robinson, S.A., and Hindell, M.A., 1996. Foraging ecology of Gentoo penguins Pygoscelis papua at Macquarie Island during the period of chick care. Ibis 138 (4), 722-731. Roby, D.D., 1991. Diet and postnatal energetics in convergent taxa of plankton-feeding seabirds. Auk 10S (I), 131-146. Rodhouse, P.G., 1989. Cephalopods in the diet of Wandering albatrosses and sea-surface temperatures at the Sub-Antarctic Front. Scientia Marina 53 (2-3), 277-281. Rodhouse, P.G., Elvidge, C D . , and Trathan, P.N., 2000. Remote sensing of the global light fishingfleet:an analysis of interactions with oceanography, otherfisheriesand predators. Advances in Marine Biology 39, 261-303. Rodhouse, P.G., Olsson, O., Anker-Nilssen, P., and Murray, A.W.A., 1998. Cephalopod predation by the King penguin Aptenodytes patagonicus from South Georgia. Marine Ecology Progress Series 168,13-19. Rodhouse, P.G., Prince, P.A., Trathan, P.N., Hatfield, E.M.C, Watkins, J.L., Bone, D.G., Murphy, E.J., and White, M.G., 1996. Cephalopods and mesoscale oceanography at the Antarctic Polar Front: satellite tracked predators locate pelagic trophic interactions. Marine Ecology Progress Series 136, 37-50. Rodway, M.S., and Montevecchi, W.A., 1996. Sampling methods for assessing the diets of Atlantic puffin chicks. Marine Ecology Progress Series 144, 41-55. Ropert-Coudert, Y., Kato, A., Bost, C-A., Rodary, D., Sato, K., Le Maho, Y., and Naito, Y., 2002. Do Adelie penguins modify their foraging behaviour in pursuit of different prey? Marine Biology 140 (3), 647-652. Ross, R.K., 1976. A comparison of the feeding and nesting requirements of the Great cormorant (Phalacrocorax carbo L.) and Double-crested cormorant (P. auritus Lesson) in Nova Scotia. Proceedings of the Nova Scotian Institute of Science 27,114-132.  79  Russell, R.W., Harrison, N.M., and Hunt, G.L. Jr, 1999. Foraging at a front: hydrography, zooplankton, and avian planktivory in the northern Bering Sea. Marine Ecology Progress Series 182, 77-93. Safina, C., Wagner, R.H., Witting, D.A., and Smith, K.J., 1990. Prey delivered to Roseate and Common tern chicks: composition and temporal variability. Journal of Field Ornithology 61 (3), 331-338. Sagar, P.M., Miskelly, C M . , Sagar, J.L., and Tennyson, A.J.D., 2003. Population size, breeding, and annual cycle of the New Zealand Antarctic tern (Sterna vittata bethunei) at the Snares Islands. Notornis 50 (1), 36-42. Salamolard, M., and Weimerskirch, H., 1993. Relationship between foraging effort and energy requirement throughout the breeding season in the Wandering albatross. Functional Ecology 7 (6), 643-652. Sanger, G.A., 1986. Diets and food web relationships of seabirds in the Gulf of Alaska and adjacent marine regions. Environmental Assessment of the Alaskan Continental Shelf, Final Report Principal Investigation, Biological Studies. 45, 631-771. Sanger, G.A., 1987a. Trophic levels and trophic relationships of seabirds in the Gulf of Alaska, pp. 229-257. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. Sanger, G.A., 1987b. Winter diets of Common murres and Marbled murrelets in Kachemak Bay, Alaska. Condor 89 (2), 426-430 Sara, M . , 1993. Feeding habits of Cory's shearwater (Calonectris diomedea) in the Central Mediterranean Sea. pp. 213-220. In: J.S. Aguilar, X. Monbailliu, and A.M. Paterson (Eds.), Status and conservation of seabirds. Ecogeography and Mediterranean Action Plan. Proceedings of the 2 Mediterranean Seabird Symposium. MEDMARAVIS, GOB and SEO, Madrid, Spain. nd  Sara, M . , and Baccetti, N., 1993. Food habits of the Great cormorant (Phalacrocorax carbo sinensis) on a shoal (Secche Delia Meloria) in the Tyrrhenian Sea. pp. 221-227. In: J.S. Aguilar, X. Monbailliu, and A.M. Paterson (Eds.), Status and conservation of seabirds. Ecogeography and Mediterranean Action Plan. Proceedings of the 2nd Mediterranean Seabird Symposium. MEDMARAVIS, GOB and SEO, Madrid, Spain. Schoener, T.W., 1970. Non-synchronous spatial overlap of lizards in patchy habitats. Ecology 51 (3), 408-418. Schramm, M . , 1983. The breeding biologies of the petrels Pterodroma macroptera, P. brevirostris and P. mollis at Marion Island. Emu 83, 75-81. Schreiber, E.A., and Burger, J., (Eds.), 2002. Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA. 722 pp.  80  Scolaro, J.A., and Bodano, L.A., 1986. Diet of the Magellanic penguin Spheniscus magellanicus during the chick-rearing period at Punta Clara, Argentina. Cormorant 13 (2), 91-97. Scolaro, J.A., Wilson, R.P., Laurenti, S., Kierspel, M . , Gallelli, H., and Upton, J.A., 1999. Feeding preferences of the Magellanic penguin over its breeding range in Argentina. Waterbirds 22 (1), 104-110. Sealy, S.G., 1975. Feeding ecology of the Ancient and Marbled murrelets near Langara Island, British Columbia. Canadian Journal of Zoology 53 (4), 418-433. Seki, M.P., and Harrison, C.S., 1989. Feeding ecology of two subtropical seabird species at French Frigate Shoals, Hawaii. Bulletin of Marine Science 45 (1), 52-67. Serjeantson, D., 1997. Subsistence and symbol: the interpretation of bird remains in archaeology. International Journal of Osteoarchaeology 7 (4), 255-259. Shealer, D.A., 1995. Comparative foraging ecology of Roseate and Sandwich terns in Puerto Rico and its relation to breeding performance. PhD Thesis, Rutgers University, New Brunswick, NJ, Canada. Shealer, D.A., 2002. Foraging behavior and food of seabirds. pp. 137-177. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA. Simeone, A., and Navarro, X., 2002. Human exploitation of seabirds in coastal southern Chile during the mid-Holocene. Revista Chilena de Historia Natural 75 (2), 423-431. Simeone, A., Araya, B., Bernal, M., Diebold, E.N., Grzybowski, K., Michaels, M., Teare, J.A., Wallace, R.S., and Willis, M.J., 2002. Oceanographic and climatic factors influencing breeding and colony attendance patterns of Humboldt Penguins Spheniscus humboldti in central Chile. Marine Ecology Progress Series 227,43-50. Smith, G.C., 1990. Factors influencing egg laying and feeding in Black-naped terns Sterna sumatrana. Emu 90, 88-96. Smith, T .B., and Skulason, S., 1996. E volutionary significance o f resource polymorphisms in fishes, amphibians, and birds. Annual Review of Ecology and Systematics 27 (1), 111113. Soave, G.E., Coria, N.R., and Montalti, D., 1996. Diet of the Pintado petrel Daption capense during the late incubation and chick-rearing periods at Laurie Island, South Orkney Islands, Antarctica, January-February 1995. Marine Ornithology 24 (6), 35-37. Spaans, A.L., 1971. On the feeding ecology of the Herring gull Larus argentatus Pont, in the Northern part of the Netherlands. Ardea 59 (3-4), 98-188. Spear, L.B., and Ainley, D.G., 1999. Migration routes of Sooty shearwaters in the Pacific Ocean. Condor 101 (2), 205-218.  81  Spear, L.B., and Ainley, D.G., 1997. Flight speed of seabirds in relation to wind speed and direction. Ibis 139 (2), 234-251. Spivak, E.D., and Sanchez, N., 1992. Prey selection by Larus belcheri atlanticus in Mar Chiquita lagoon, Buenos Aires, Argentina: a possible explanation for its discontinuous distribution. Revista Chilena de Historia Natural 65, 209-220. Springer, A . M . , and Roseneau, D.G., 1985. Copepod-based food webs: auklets and oceanography in the Bering Sea. Marine Ecology Progress Series 21, 229-237. Springer, A.M., Murphy, E.C., Roseneau, D.G., McRoy, C P . , and Cooper, B.A., 1987. The paradox of pelagic food webs in the northern Bering Sea-I. Seabird food habits. Continental Shelf Research 7 (8), 895-911. Springer, A.M., Piatt, J.F., and Van Vliet, G., 1996. Seabirds as proxies of marine habitats and food webs in the western Aleutian Arc. Fisheries Oceanography 5 (1), 45-55. Springer, A.M., Roseneau, D.G., Lloyd, D.S., McRoy, CP., and Murphy, E . C , 1986. Seabird responses to thefluctuatingprey availability in the eastern Bering Sea. Marine Ecology Progress Series 32, 1-12. Springer, A.M., Roseneau, D.G., Murphy, E . C , and Springer, M.I., 1984. Environmental controls of marine food webs: food habits of seabirds in the Eastern Chukchi Sea. Canadian Journal of Fisheries and Aquatic Sciences 41 (8), 1202-1215. Stahl, J. - C , and Mougin, J. -L., 1 986. La segregation alimentaire chez 1 e Skua subantarctique Stercorarius skua lonnbergi dans l'archipel Crozet. L'Oiseau et la Revue Frangaise d'Ornithologie 56 (2), 193-208. Steele, W.K., and Klages, N.T., 1986. Diet of the Blue petrel at sub-Antarctic Marion Island. South African Journal of Zoology 21 (3), 253-256. Stott, R.S., and Olson, D.P., 1973. Food-habitat relationship of sea ducks on the New Hampshire coastline. Ecology 54 (5), 996-1007. Sueyoshi, E.G. 2000. Abundance of guano birds and its relation with fishery of Peruvian anchovetafrom1953 to 1999. Boletin dellnstituto del Mar del Peru 19 (1-2), 125-131. Surman, C , Moran, M., Burbidge, A., Wooller, R., and Gaughan, D., 2002. Identification and conservation of food fish for Abrolhos seabirds. Final Report for Project 9709. National Heritage Trust, Department of Fisheries, Government of Western Australia. 91 pp. Swann, R.L., Harris, M.P., and Aiton, D.G., 1991. The diet of some young seabirds on Canna, 1981-90. Seabird 13, 54-58. Sydeman, W.J., Hester, M.M., Thayer, J.A., Gress, F., Martin, P., and Buffa, J., 2001. Climate change, reproductive performance and diet composition of marine birds in the southern California Current system, 1969-1997. Progress in Oceanography 49 (1-4), 309-329.  82  Sydeman, W.J., Hobson, K.A., Pyle, P., and McLaren, E.B., 1997. Trophic relationships among seabirds in Central California: combined stable isotope and conventional dietary approach. Condor 99 (2), 327-336. Takahashi, A., Kuroki, M . , Niizuma, Y., Kato, A., Saitoh, S., and Watanuki, Y., 2001. Importance of the Japanese anchovy (Engraulis japonicus) to breeding Rhinoceros auklets (Cerorhinca monocerata) on Teuri Island, Sea of Japan. Marine Biology 139 (2), 361-371. Thomas, G., 1982. The food and feeding ecology of the Light-mantled sooty albatross at South Georgia. Emu 82, 92-100. Thompson, K.R., 1993. Variation in Magellanic penguin Spheniscus magellanicus diet in the Falkland Islands. Marine Ornithology 21 (1), 57-67. Thompson, D.R., Lilliendahl, K., Solmundsson, J., Furness, R.W., Waldron, S., and Phillips, R.A., 1999. Trophic relationships among six species of Icelandic seabirds as determined through stable isotope analysis. Condor 101 (4), 898-903. Threlfall, W., 1968. The food of three species of gulls in Newfoundland. Canadian Field Naturalist 82, 176-180. Tierney, M., Hindell, M.A., and Goldsworthy, S., 2002. Energy content of mesopelagic fish from Macquarie Island. Antarctic Science 14 (3), 225-230. Tovar, H., and Guillen, V., 1988. Comportamiento alimenticio del piquero (Sula variegata), ave guanera peruana. Boletin de Lima 60, 85-90. Tovar Serpa, H., and Galarza Minaya, N., 1983. Cambios en el regimen alimentario del Guanay (Phalacrocorax bougainvillii (Lesson)). Boletin deLima 35, 85-91. Trathan, P.N., Murphy, E.J., Croxall, J.P., and Everson, I., 1998. Use of at-sea distribution data to derive potential foraging ranges of Macaroni penguins during the breeding season. Marine Ecology Progress Series 169, 263-275. Tremblay, Y., and Cherel, Y., 1999. Synchronous underwater foraging behaviour in penguins. Condor 101 (1), 179-185. Tremblay, Y., and Cherel, Y., 2000. Benthic and pelagic dives: a new foraging behaviour in Rockhopper Penguins. Marine Ecology Progress Series 204, 257-267. Trivelpiece, W.Z., Bengston, J.L., Trivelpiece, S.G., and Volkman, N.J., 1986. Foraging behavior of Gentoo and Chinstrap penguins as determined by new radiotelemetry techniques. Journal of Zoology London 103 (4), 777-781. Uttley, J., Tatner, P., and Monaghan, P.T., 1994b. Measuring the daily energy expenditure of free-living Arctic terns (Sterna paradisaea). Auk 111 (2), 453-459.  83  Uttley, J.D., Walton, P., Monaghan, P., and Austin, G., 1994a. The effects of food abundance on breeding performance and adult time budgets of guillemots Uria aalge. Ibis 136 (2), 205213. Vader, W., Barrett, R.T., Erikstad, K.E., and Strann, K.-B., 1990. Differential responses of Common and Thick-billed murres to a crash in the capelin stock in the Southern Barents Sea. Studies in Avian Biology 14, 175-180. van der Winden, J., Nyame, S.K., Ntiarrioa-Baidu, Y., and Gordon, C , 2002. Black terns in Ghana, October 2000. Results of an exploratory survey for future Black tern studies in coastal wetlands. Final Report. Center for African Wetlands, University of Ghana, Legon, Accra, Ghana. 61 pp. van Eerden, M.R., and Munsterman, M.J., 1986. Importance of the Mediterranean for wintering cormorants Phalacrocorax carbo sinensis, pp. 123-141. In: MEDMARAVIS and X. Monbailliu (Eds.), Mediterranean Marine Avifauana. Population Studies and Conservation. NATO ASI Series, Vol. G12, Springer Verlag, Berlin, Germany. van Heezik, Y., 1988. Diet of Adelie penguins during the incubation period at Cape Bird, Ross Island, Antarctica. Notornis 35 (1), 23-26. van Heezik, Y., 1990. Seasonal, geographical, and age-related variations in the diet of the Yellow-eyed penguin (Megadyptes antipodes). New Zealand Journal of Zoology 17, 201212. van Heezik, Y.M., 1989. Diet of the Fiordland crested penguin during the post-guard phase of chick growth. Notornis 36, 151-156. van Pelt, T.I., Piatt, J.F., Lance, B.K., and Roby, D.D., 1997. Proximate composition and energy density of some North Pacific forage fishes. Comparative Biochemistry and Physiology 118 (A4), 1393-1398. Vargas, J.M., Antunez, A., and Blasco, M., 1978. Comportamiento reproductivo y alimentario de la pagaza piconegra {Gelochelidon nilotica L.) en la laguna de Fuente Piedra de Malaga. Ardeola 24, 227-231. Velando, A., and Marquez, J.C., 2002. Predation risk and nest-site selection in the Inca Tern. Canadian Journal of Zoology 80 (6), 1117-1123. Vermeer, K., 1979. Nesting requirements, food and breeding distribution of Rhinoceros auklets, Cerorhinca monocerata, and Tufted puffins, Lunda cirrhata. Ardea 67, 101-110. Vermeer, K., 1981. Food and populations of Surf scoters in British Columbia. Wildfowl 32, 107116. Vermeer, K., 1982. Comparison of the diet of the Glaucous-winged gull on the east and west coasts of Vancouver Island. Murrelet 63, 80-85.  84  Verrneer, K., 1985. A five-year summary (1978-1982) of the nestling diet of Cassin's auklets in British Columbia. Canadian Technical Report of Hydrography and Ocean Sciences No. 56. 15 pp. Verrneer, K., 1992. The diet of birds as a tool for monitoring the biological environment, pp. 4150. In: K. Verrneer, R.W. Butler, and K.H. Morgan (Eds.), The ecology, status, and conservation of marine and shoreline birds on the west coast of Vancouver Island. No. 75. Canadian Wildlife Service, Occasional Paper, Ottawa, Canada. Verrneer, K., and Westrheim, S.J., 1984. Fish changes in diets of nestling Rhinoceros auklets and their implications, pp. 96-105. In: D.N. Nettleship, G.A. Sanger, and P.A. Springer (Eds.), Marine birds: their feeding ecology and commercial fisheries relationships. Minister of Supply and Services Canada, Ottawa, Canada. Verrneer, K., Sealy, S.G., and Sanger, G.A., 1987. Feeding e cology of Alcidae in the eastern North Pacific Ocean, pp. 189-227. In: J.P. Croxall (Ed.), Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, UK. Volkman, N.J., Presler, P., and Trivelpiece, W., 1980. Diets of Pygoscelid penguins at King George Island, Antarctica. Condor 82 (4), 373-378. Votier, S.C., Bearhop, S., MacCormick, A., Ratcliffe, N., and Furness, R.W., 2003. Assessing the diet of Great skuas, Catharacta skua, using five different techniques. Polar Biology 26 (1), 20-26. Votier, S.C., Furness, R.W., Bearhop, S., Crane, J.E., Caldow, R.W.G., Catry, P., Ensor, K., Hamer, K.C., Hudson, A.V., Kalmbach, E., Klomp, N.I., Pfeiffer, S. Phillips, R.A., Prieto, I., and Thompson, D.R., 2004. Changes in fisheries discard rates and seabird communities. Nature 427 (6976), 727-730. Wang, Z.P., and Norman, F.I., 1993. Foods of the South polar skua Catharacta maccormicki in the eastern Larsemann Hills, Princess Elizabeth Land, East Antarctica. Polar Biology 13 (4), 255-262. Wanless, S., 1984. The growth and food of young gannets Sula bassana on Ailsa Craig. Seabird 7, 62-70. Wanless, S., Harris, M.P., and Morris, J.A., 1992. Diving behaviour and diet of the Blue-eyed shag at South Georgia. Polar Biology 12 (8), 713-719. Warham, J., 1974. The breeding biology and behaviour of the Snares crested penguin. Journal of the Royal Society of New Zealand 4 (1), 63-108. Watanuki, Y., 1984. Food intake and pellet of Black-tailed gull Larus crassirostris. Journal of Yamashina Institute of Ornithology'16, 168-169. Watanuki, Y., 1988. Regional difference in the diet of Slaty-backed gulls breeding around Hokkaido. Journal of the Yamashina Institute of Ornithology 20, 71-81.  85  Watanuki, Y., 1989. Sex and individual variations in the diet of Slaty-backed gulls breeding on Teuri Island, Hokkaido. Japanese Journal of Ornithology 38, 1-13. Watanuki, Y., Kato, A., Mori, Y., and Naito, Y., 1993. Diving performance of Adelie penguins in relation to food availability in fast sea-ice areas: comparison between years. Journal of Animal Ecology 62 (4), 634-646. Watanuki, Y., Nizuma, Y., Gabrielsen, G.W., Sato, K., and Naito, Y., 2003. Stroke and glide of wing-propelled divers: deep diving seabirds adjust surge frequency to buoyancy change with depth. Proceedings of the Royal Society of London, Biological Sciences 270 (1514), 483-488. Watson, R., Kitchingman, A., Gelchu, A., and Pauly, D., 2004. Mapping global fisheries: sharpening our focus. Fish and Fisheries 5 (2), 168-177. Waugh, S.M., Sagar, P.M., and Paull, D., 1997. Laying dates, breeding success and annual breeding of Southern royal albatrosses Diomedea epomorpha epomorpha at Campbell Island during 1964-1969. Emu 97 (3), 194-199. Waugh, S.M., Weimerskirch, H , Cherel, Y., Shankar, U., Prince, P.A., and Sagar, P.M., 1999. Exploitation of the marine environment by two sympatric albatrosses in the Pacific Southern Ocean. Marine Ecology Progress Series 177, 243-254. Weichler, T., Garthe, S., Luna-Jorquera, G., and Moraga, J., 2004. Seabird distribution on the Humboldt Current in northern Chile in relation to hydrography, productivity, and fisheries. ICES Journal of Marine Science 60 (1), 148-154. Weimerskirch, H., 2002. Seabird demography and its relationship with the marine environment, pp. 115-135. In: E.A. Schreiber, and J. Burger (Eds.), Biology of Marine Birds. CRC Marine Biology Series. CRC Press, USA. Weimerskirch, H., and Stahl, J.-C, 1988. The breeding and feeding ecology of the Kerguelen tern Sterna virgata. Ornis Scandinavica 19 (3), 199-204. Weimerskirch, H., Catard, A., Prince, P.A., Cherel, Y., and Croxall, J.P., 1999. Foraging Whitechinned petrels Procellaria aequinoctialis at risk: from the tropics to Antarctica. Biological Conservation 87 (2), 273-275. Weimerskirch, H., Cherel, Y., Cuenot-Chaillet, F., and Ridoux, V., 1997. Alternative foraging strategies and resource allocation by male and female Wandering albatrosses. Ecology 78 (7), 2051-2063. Weimerskirch, H., Guionnet, T., Martin, J., Shaffer, S.A., and Costa, D.P., 2000. Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proceedings of the Royal Society of London, Biological Sciences 267 (1455), 1869-1874. Weimerskirch, H., Inchausti, P., Guinet, C , and Barbraud, C , 2003. Trends in bird and seal populations as indicators of a system shift in the Southern Ocean. Antarctic Science 15 (2), 249-256. 86  Weimerskirch, H., Jouventin, P., and Stahl, J.-C, 1986. Comparative ecology of the six albatross species breeding on the Crozet Islands. Ibis 128 (2), 195-213. Weslawski, J.M., Koszteyn, J., Kwasniewski, S., Stempniewicz, L., and Malinga, M . , 1999. Summer food resources of the Little auk, Alle alle (L.) in the European Arctic seas. Polish Polar Research 20 (4), 387-403. Wienecke, B.C., Lawless, R., Rodary, D., Bost, C.-A., Thompson, R., Pauly, T., Robertson, G., Kerry, K.R., and Le Maho, Y., 2000. Adelie penguin foraging behaviour and krill abundance along the Wilkes and Adelie land coasts, Antarctica. Deep-Sea Research II47 (12-13), 2573-2587. Wienecke, B.C., Wooller, R.D., and Klomp, N.I., 1995. The ecology and management of Little penguins on Penguin Island, Western Island, pp. 440-467. In: P. Dann, I. Norman, and P. Reilly (Eds.), The Penguins: Ecology and Management. Surrey Beatty & Sons Pty Ltd, Australia. Wilhelm, S.I., Robertson, G.J., Taylor, P.A., Gilliland, S.G., and Pinsent, D.L., 2003. Stomach contents of breeding Common murres caught in gillnets off Newfoundland. Waterbirds 26 (3), 376-378. Williams, J.C., Fischer, J., and Palmer, A., 2001. Biological monitoring at Buldir Island, Alaska in 1998: Summary appendices. US Fish and Wildlife S ervice Report AMNWR 99/03. 132 pp. Williams, R., and Capdeville, D., 1996. Seabird interactions with trawl and longline fisheries for Dissostichus eleginoides and Champsocephalus gunnari. CCAMLR Science 3, 93-99. Williams, T.D., 1991. Foraging ecology and diet of Gentoo penguins Pygoscelis papua at South Georgia during winter and an assessment of the winter prey consumption. Ibis 133 (1), 313. Wilson, R.P., Grant, W.S., and Duffy, D . C , 1986. Recording devices on free-ranging marine animals: does measurement affect foraging performance? Ecology 67 (4), 1091-1093. Wilson, R.P., Hustler, K., Ryan, P.G., Burger, A.E., and Noeldeke, E.C., 1992. Diving birds in cold water: do Archimedes and Boyle determine energetic costs? American Naturalist 140(2), 179-200. Wilson, R.P., Wilson, M.-P., Duffy, D.C., Araya, B.M., and Klages, N , 1989. Diving behaviour and prey of the Humboldt penguin (Spheniscus humboldti). Journal fur Ornithologie 130 (1), 75-79. Wingham, E.J., 1985. Food and feeding range of the Australasian gannet Morus serrator (Gray). Emu 85,231-239. Winkler, D.W., 1996. California gull {Larus californicus). In: A. Poole, and F. Gill (Eds.), The Birds of North America. Vol. 259. The Birds of North America Inc., Philadelphia, USA. 87  Woehler, E.J., 1995. Consumption of Southern Ocean marine resources by penguins, pp. 266294. In: P. Dann, I. Norman, and P. Reilly (Eds.), The Penguins: Ecology and Management. Surrey Beatty & Sons Pty Ltd, Australia. Woehler, E.J., 1997. Seabird abundance, biomass and prey consumption within Prydz Bay, Antarctica, 1980/1981-1992/1993. Polar Biology 17 (4), 371-383. Woehler, E.J., and Green, K., 1992. Consumption of marine resources by seabirds and seals at Heard Island and the McDonald Islands. Polar Biology 12 (6-7), 659-665. Wolanski, E., and Hammer, W.M. 1988. Topographically controlled front and their biological influence. Science 241 (4862), 177-181. Wright, P.J., 1996. Is there a conflict between sandeel fisheries and seabirds? A case study at Shetland, pp. 154-165. In: S.P.R. Greenstreet, and M.L. Tasker (Eds.), Aquatic Predators and their Prey. Fishing News Books, Blackwell Science, Oxford, UK. Xavier, J.C., Croxall, J.P., Trathan, P.N., and Wood, A.G., 2003. Feeding strategies and diets of breeding Grey-headed and Wandering albatrosses at South Georgia. Marine Biology 143 (2), 221-232. Xavier, J.C., Trathan, P.N., Croxall, J.P., Wood, A.G., Podesta, G., and Rodhouse, P.G., 2004. Foraging ecology and interactions with fisheries of Wandering albatrosses (Diomedea exulans) breeding at South Georgia. Fisheries Oceanography 13 (5), 287-349. Young, E . C , 1963. Feeding habits of the South polar skua Catharacta maccormicki. Ibis 105, 301-318. Zar, J.H., 1999. Biostatistical Analysis. 4 Edition. Prentice Hall, Inc. New Jersey, USA. 929 pp. th  Zavalaga, C.B., and Paredes, R., 1999. Foraging behaviour and diet of the Guanay cormorant. South African Journal of Marine Science 21, 251-258. Zotier, R., 1990. Breeding ecology of the White-headed petrel Pterodroma lessoni on the Kerguelen Islands. Ibis 132 (4), 525-534.  88  Appendix A 1. List of seabird species included in the study. Classification followed by Peters (1934, 1979). Status: Population status as listed in the 2003 IUCN Red List of Threatened Species (www.redlist.org; LC: Least Concern; LR: Low Risk; DD: Data Deficient; VU: Vulnerable; NT: Near Threatened; EN: Endangered; CR: Critically Endangered). TABLE  Species Charadriiformes Alcidae Aethia cristatella Aethia pusilla Aethia pygmaea A lea torda Alle alle Brachyramphus brevirostris Brachyramphus marmoratus Brachyramphus perdix Cepphus carbo Cepphus columba Cepphus grylle Cerorhinca monocerata Aethia psittacula Endomychura craveri Endomychura hypoleuca Fratercula arctica Fratercula cirrhata Fratercula corniculata Ptychoramphus aleuticus Synthliboramphus antiquus Synthliboramphus wumizusume Uria aalge Uria lomvia Laridae Anous minutus Anous minutus tenuirostris Anous stolidus Chlidonias albostriatus Chlidonias hybridus Chlidonias leucopterus Chlidonias niger Creagrus furcatus Gygis alba Gygis microrhyncha Larosterna inca Larus argentatus Larus armenicus Larus atlanticus Larus atricilla Larus audouinii Larus belcheri Larus brunnicephalus Larus bulleri Larus cachinnans Larus californicus Larus canus Larus cirrocephalus Larus crassirostris  Author  Common Name  Code  Status  (Pallas, 1769) (Pallas, 1811) (Gmelin, 1789) Linnaeus, 1758 (Linnaeus, 1758) (Vigors, 1829) (Gmelin, 1789) (Pallas, 1811) Pallas, 1811 Pallas, 1811 (Linnaeus, 1758) (Pallas, 1811) (Pallas, 1769) (Salvadori, 1865) (Xantusde Vesey, 1860) (Linnaeus, 1758) (Pallas, 1769) (Naumann, 1821) (Pallas, 1811) (Gmelin, 1789) (Temminck, 1835) (Pontoppidan, 1763) (Linnaeus, 1758)  Crested auklet Least auklet Whiskered auklet Razorbill Dovekie Kittlitz's murrelet Marbled murrelet Long-billed murrelet Spectacled guillemot Pigeon guillemot Black guillemot Rhinoceros auklet Parakeet auklet Craveri's murrelet Xantus' murrelet Atlantic puffin Tufted puffin Horned puffin Cassin's auklet Ancient murrelet Japanese murrelet Common murre Thick-billed murre  001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023  LC LC LC LC LC CR VU NT LC LC LC LC LC VU VU LC LC LC LC LC VU LC LC  Boie, 1844 (Temminck, 1823) (Linnaeus, 1758) (Gray, 1845) (Pallas, 1811) (Temminck, 1815) (Linnaeus, 1758) (Neboux, 1846) (Sparrman, 1786) Saunders, 1876 (Lesson, 1827) Pontoppidan, 1763 Buturlin, 1934 Olrog, 1958 Linnaeus, 1758 Payraudeau, 1826 Vigors, 1829 Jerdon, 1840 Hutton, 1871 Pallas, 1811 Lawrence, 1854 Linnaeus, 1758 Vieillot, 1818 Vieillot, 1818  Black noddy Lesser noddy Brown noddy Black-fronted tern Whiskered tern White-winged tern Black tern Swallow-tailed gull White tern Lesser white tern Inca tern Herring gull Armenian gull Olrog's gull Laughing gull Audouin's gull Band-tailed gull Brown-headed gull Black-billed gull Yellow-legged gull California gull Common gull Grey-headed gull Black-tailed gull  024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047  LC LC LC EN LC LC LC LC LC LC NT LC LC VU LC NT LC LC VU LC LC LC LC LC  continued  89  T A B L E 1.  continued  Species Larus delawarensis Larus dominicanus Larus fuliginosus LarusJuscus Larus genei Larus glaucescens Larus glaucoides Larus glaucoides thayeri Larus hartlaubii Larus heermanni Larus hemprichi Larus hyperboreus Larus ichthyaetus Larus leucophthalmus Larus livens Larus maculipennis Larus marinus Larus melanocephalus Larus minutus Larus modestus Larus novaehollandiae Larus occidentalis Larus paciflcus Larus Philadelphia Larus pipixcan Larus relictus Larus ridibundus Larus saundersi Larus schistisagus Larus scopulinus Larus scoresbii Larus serranus Pagophila eburnea Phaetusa simplex Procelsterna albivitta Procelsterna cerulea Rhodostethia rosea Rissa brevirostris Rissa tridactyla Sterna acuticauda . Sterna albifrons Sterna aleutica Sterna anaethetus Sterna antillarum Sterna aurantia Sterna balaenarum Sterna bengalensis Sterna bergii Sterna bernsteini Sterna caspia Sterna dougallii Sterna elegans Sterna forsteri Sterna fuscata Sterna hirundinacea  Author  Common Name  Ord, 1815 Lichtenstein, 1823 Gould, 1841 Linnaeus, 1758 Breme, 1839 Naumann, 1840 Meyer, 1822 Brooks, 1915 Bruch, 1853 Cassin, 1852 Bruch, 1853 Gunnerus, 1767 Pallas, 1773 Temminck, 1825 Dwight, 1919 Lichtenstein, 1823 Linnaeus, 1758 Temminck, 1820 Pallas, 1776 Tschudi, 1843 Stephens, 1826 Audubon, 1839 Latham, 1802 (Ord, 1815) Wagler, 1831 Lonnberg, 1931 Linnaeus, 1766 (Swinhoe, 1871) Stejneger, 1884 Forster, 1844 Traill, 1823 Tschudi, 1844 (Phipps, 1774) (Gmelin, 1789) Bonaparte, 1856 (Bennett, 1840) (MacGillivray, 1824) (Bruch, 1853) (Linnaeus, 1758) Gray, 1831 Pallas, 1764 Baird, 1869 Scopoli, 1786 (Lesson, 1847) Gray, 1831 (Strickland, 1852) Lesson, 1831 Lichtenstein, 1823 Schlegel, 1863 Pallas, 1770 Montagu, 1813 Gambel, 1849 Nuttall, 1834 Linnaeus, 1766 Lesson, 1831  Ring-billed gull Kelp gull Lava gull Lesser black-backed gull Slender-billed gull Glaucous-winged gull Iceland gull Thayer's gull Hartlaub's gull Heermann's gull Sooty gull Glaucous gull Great black-headed gull White-eyed gull Yellow-footed gull Brown-hooded gull Great black-backed gull Mediterranean gull Little gull Gray gull Silver gull Western gull Pacific gull Bonaparte's gull Franklin's gull Relict gull Common black-headed gull Saunder's gull Slaty-backed gull Red-billed gull Dolphin gull Andean gull Ivory gull Large-billed tern Gray noddy Blue noddy Ross's gull Red-legged kittiwake Black-legged kittiwake Black-bellied tern Little tern Aleutian tern Bridled tern Least tern River tern Damara tern Lesser crested tern Crested tern Chinese crested tern Caspian tern Roseate tern Elegant tern Forster's tern Sooty tern South American tern  Code  048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102  Status  LC LC VU LC LC LC LC LC LC NT LC LC LC NT LC LC LC LC LC LC LC LC LC LC LC VU LC VU LC LC LC LC LC LC LC LC VU LC NT LC LC LC LC LC NT LC LC CR LC LC NT LC LC LC  continued  90  TABLE  1 . continued  Species Sterna hirundo Sterna lorata Sterna lunata Sterna maxima Sterna nereis Sterna nilotica Sterna paradisaea Sterna repressa Sterna sandvicensis acuflavida Sterna sandvicensis eurygnatha Sterna saundersi Sterna striata Sterna sumatrana Sterna superciliaris Sterna trudeaui Sterna virgata Sterna vittata Xema sabini Stercorariidae Catharacta antarctica Catharacta chilensis Catharacta maccormicki Catharacta pomarinus Catharacta skua Stercorarius longicaudus Stercorarius parasiticus Pelecaniformes Fregatidae Fregata andrewsi Fregata aquila Fregata ariel Fregata magnifwens Fregata minor Pelecanidae Pelecanus conspicillatus Pelecanus crispus Pelecanus erythrorhynchos Pelecanus occidentalis Pelecanus occidentalis thagus Pelecanus onocrotalus Pelecanus philippensis Pelecanus rufescens Phaethontidae Phaethon aethereus Phaethon lepturus Phaethon rubricauda Phalacrocoracidae Compsohalieus fuscescens Compsohalieus harrisi Compsohalieus neglectus Compsohalieus penicillatus Euleucocarbo carunculatus Euleucocarbo chalconotus Euleucocarbo colensoi Euleucocarbo onslowi Euleucocarbo ranfurlyi Hypoleucos auritus  Author  Common Name  Linnaeus, 1758 Philippi & Landbeck, 1861 Peale, 1848 Boddaert, 1783 (Gould, 1843) Gmelin, 1789 Pontoppidan, 1763 Hartert, 1916 Latham, 1787  103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120  LC NT LC LC LC LC LC LC LC  Hume, 1877 Gmelin, 1789 Raffles, 1822 Vieillot, 1819 Audubon, 1838 Cabanis, 1875 Gmelin, 1789 (Sabine, 1819)  Common tern Peruvian tern Gray-backed tern Royal tern Fairy tern Gull-billed tern Arctic tern White-cheeked tem Sandwich tern Cayenne tern Saunder's tern White-fronted tern Black-naped tem Yellow-billed tern Trudeau's tern Kerguelen tern Antarctic tern Sabine's gull  Code  Status  (Lesson, 1831) (Bonaparte, 1857) (Saunders, 1893) (Temminck, 1815) Brunnich, 1764 Vieillot, 1819 (Linnaeus, 1758)  Brown skua Chilean skua South polar skua Pomarine jaeger Great skua Long-tailed jaeger Parasitic jaeger  121 122 123 124 125 126 127  LC LC LC LC LC LC LC  Mathews, 1914 (Linnaeus, 1758) (Gray, 1845) Mathews, 1914 (Gmelin, 1789)  Christmas Island frigatebird Ascension frigatebird Lesser frigatebird Magnificent frigatebird Great frigatebird  128 129 130 131 132  CR VU LC LC LC  Temminck, 1824 Bruch, 1832 Gmelin, 1789 Linnaeus, 1766 Molina, 1782 Linnaeus, 1758 Gmelin, 1789 Gmelin, 1789  Australian pelican Dalmatian pelican American white pelican Brown pelican Peruvian pelican Great white pelican Spot-billed pelican Pink-backed pelican  133 134 135 136 137 138 139 140  LC VU LC LC LC LC VU LC  Linnaeus, 1758 Daudin, 1802 Boddaert, 1783  Red-billed tropicbird White-tailed tropicbird Red-tailed tropicbird  141 142 143  LC LC LC  (Vieillot, 1817) Rothschild, 1898 (Wahlberg, 1855) (Brandt, 1837) (Gmelin, 1789) (Gray, 1845) Buller, 1888 Forbes, 1893 Ogilvie-Grant, 1901 (Lesson, 1831)  Black-faced cormorant Flightless cormorant Bank cormorant Brandt's cormorant New Zealand king shag Stewart Island shag Auckland Island shag Chatham Island shag Bounty Island shag Double-crested cormorant  144 145 146 147 148 149 150 151 152 153  LC EN EN LC VU VU VU EN VU LC  LC LC LC LC LC NT EN LC  continued  91  TABLE  1. continued  Species Hypoleucos brasiliensis Hypoleucos fuscicollis<Hypoleucos sulcirostris Hypoleucos varius Leucocarbo bougainvillii Leucocarbo capensis Leucocarbo nigrogularis Microcarbo africanus Microcarbo coronatus Microcarbo melanoleucos Microcarbo niger Microcarbo pygmaeus Nesocarbo campbelli Notocarbo atriceps Notocarbo bransfieldensis Notocarbo georgianus Notocarbo verrucosus Phalacrocorax albiventer Phalacrocorax capillatus Phalacrocorax carbo Phalacrocorax purpurascens Strictocarbo aristotelis Strictocarbo featherstoni Strictocarbo gaimardi Strictocarbo magellanicus Strictocarbo pelagicus Strictocarbo punctatus Strictocarbo urile Sulidae Morus serrator Morus bassanus Morus capensis Sula abbotti Sula dactylatra Sula granti Sula leucogaster Sula nebouxii Sula sula Sula variegata Procellariiformes Diomedeidae Diomedea amsterdamensis Diomedea antipodensis Diomedea dabbenena Diomedea epomophora Diomedea exulans Diomedea gibsoni Diomedea sanfordi Phoebastria albatrus Phoebastria immutabilis Phoebastria irrorata Phoebastria nigripes Thalassarche bulleri Thalassarche carteri Thalassarche cauta Thalassarche chlororhynchos  Common Name  (Gmelin, 1789) Stephens, 1826 (Brandt, 1837) ' \ (Gmelin, 1789) (Lesson, 1837) (Span-man, 1788) Ogilvie-Grant & Forbes, 1899 (Gmelin, 1789) (Wahlberg, 1855) (Vieillot, 1817) (Vieillot, 1817) (Pallas, 1773) (Filhol, 1878) King, 1828 Murphy, 1936 Lonnberg, 1906 (Cabanis, 1875)  154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181  LC LC LC LC NT NT VU LC NT LC LC NT VU LC  (Linnaeus, 1761) Buller, 1873 (Lesson & Garnot, 1828) (Gmelin, 1789) Pallas, 1811 (Sparrman, 1786) (Gmelin, 1789)  Neotropic cormorant Indian cormorant Little black cormorant Pied cormorant Guanay cormorant Cape cormorant Socotra cormorant Long-tailed cormorant Crowned cormorant Little pied cormorant Little cormorant Pygmy cormorant Campbell shag Imperial shag Antarctic shag South Georgia shag Kerguelen shag King cormorant Japanese cormorant Great cormorant Macquarie shag European shag Pitt Island shag Red-legged cormorant Rock cormorant Pelagic cormorant Spotted shag Red-faced cormorant  (Gray, 1843) (Linnaeus, 1758) (Lichtenstein, 1823) Ridgway, 1893 Lesson, 1831 Rothschild, 1902 (Boddaert, 1783) Milne-Edwards, 1882 (Linnaeus, 1766) (Tschudi, 1843)  Australasian gannet Northern gannet Cape gannet Abbott's booby Masked booby Nazca booby Brown booby Blue-footed booby Red-footed booby Peruvian booby  182 183 184 185 186 187 188 189 190 191  LC LC VU CR LC LC LC LC LC LC  Roux,ef o7., 1983 Robertson & Warham, 1992 Mathews, 1929 Lesson, 1825 Linnaeus, 1758  Amsterdam albatross Antipodean albatross Tristan albatross Southern royal albatross Wandering albatross Gibson's albatross Northern royal albatross Short-tailed albatross Laysan albatross Waved albatross Black-footed albatross Buller's albatross Indian yellow-nosed albatross Shy albatross Yellow-nosed albatross  192 193 194 195 196 197 198 199 200 201 202 203 204 205 206  CR VU EN VU VU VU EN VU VU VU EN VU EN NT EN  v  (Temminck & Schlegel, 1850) (Linnaeus, 1758)  Murphy, 1917 (Pallas, 1769) (Rothschild, 1893) Salvin, 1883 (Audubon, 1839) Rothschild, 1893 (Rothschild, 1903) (Gould, 1841) (Gmelin, 1789)  Code  Status  Author  LC LC LC VU NT LC LC LC LC  continued  92  TABLE  1. continued  Species Thalassarche chrysostoma Thalassarche eremita Thalassarche impavida Thalassarche melanophris Thalassarche salvini Phoebetria fusca Phoebetria palpebrata Hydrobatidae Fregetta grallaria Fregetta tropica Garrodia nereis Halocyptena microsoma Hydrobates pelagicus Nesofregetta fuliginosa Oceanites gracilis Oceanites oceanicus Oceanodroma castro Oceanodroma Jurcata Oceanodroma homochroa Oceanodroma hornbyi Oceanodroma leucorhoa Oceanodroma markhami Oceanodroma matsudairae Oceanodroma melania Oceanodroma monorhis Oceanodroma tethys Oceanodroma tristrami Pelagodroma marina Pelecanoididae Pelecanoides garnotii Pelecanoides georgicus Pelecanoides magellani Pelecanoides urinatrix Procellariidae Bulweria bulwerii Bulweria fallax Calonectris diomedea Calonectris edwardsii Calonectris leucomelas Daption capense Fulmarus glacialis Fulmarus glacialoides Halobaena caerulea Lugensa brevirostris Macronectes giganteus Macronectes halli Pachyptila belcheri Pachyptila crassirostris Pachyptila desolata ^ Pachyptila salvini Pachyptila turtur Pachyptila vittata Pagodroma nivea Procellaria aequinoctialis Procellaria cinerea Procellaria consipicillata  Author  Common Name  (Forster, 1785) Murphy, 1930 Mathews, 1912 (Temminck, 1828) (Rothschild, 1893) (Hilsenberg, 1822) (Forster, 1785)  Grey-headed albatross Chatham albatross Campbell albatross Black-browed albatross Salvin's albatross Sooty albatross Light-mantled albatross  207 208 209 210 211 212 213  VU CR VU EN VU EN NT  (Vieillot, 1818) (Gould, 1844) (Gould, 1841) Coues, 1864 (Linnaeus, 1758) (Gmelin, 1789) (Elliot, 1859) (Kuhl, 1820) (Harcourt, 1851) (Gmelin, 1789) (Coues, 1864) (Gray, 1854) (Vieillot, 1818) (Salvin, 1883) Kuroda, 1922 (Bonaparte, 1854) (Swinhoe, 1867) (Bonaparte, 1852) Salvin, 1896 (Latham, 1790)  White-bellied storm petrel Black-bellied storm petrel Grey-backed storm petrel Least storm petrel European storm petrel White-throated storm petrel White-vented storm petrel Wilson's storm petrel Madeiran storm petrel Fork-tailed storm petrel Ashy storm petrel Hornby's storm petrel Leach's storm petrel Markham's storm petrel Matsudaira's storm petrel Black storm petrel Swinhoe's storm petrel Wedge-rumped storm petrel Tristram's storm petrel White-faced storm petrel  214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233  LC LC LC LC LC VU DD LC LC LC EN DD LC DD DD LC LC LC NT LC  (Lesson, 1828) Murphy & Harper, 1916 (Mathews, 1912) (Gmelin, 1789)  Peruvian diving petrel South Georgia diving petrel Magellanic diving petrel Common diving petrel  234 235 236 237  EN LC LC LC  238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259  LC NT LC NT LC LC LC LC LC LC VU NT LC LC LC LC LC LC LC VU NT CR  (Jardine and Selby, 1828) Jouanin, 1955 (Scopoli, 1769) (Oustalet, 1883) (Temminck, 1835) (Linnaeus, 1758) (Linnaeus, 1761) (Smith, 1840) (Gmelin, 1789) (Lesson, 1831) (Gmelin, 1789) Mathews, 1912 (Mathews, 1912) (Mathews, 1912) (Gmelin, 1789) (Mathews, 1912) (Kuhl, 1820) (Forster, 1777) (Forster, 1777) Linnaeus, 1758 Gmelin,. 1789 Gould, 1844  Bulwer's petrel Jouanin's petrel Cory's shearwater Cape Verde shearwater Streaked shearwater Cape petrel Northern fulmar Southern fulmar Blue petrel Kerguelen petrel Southern giant petrel Northern giant petrel Thin-billed prion Fulmar prion ' Antarctic prion Salvin's prion Fairy prion Broad-billed prion Snow petrel White-chinned petrel Grey petrel Spectacled petrel  Code  Status  continued  93  TABLE  1. continued  Author Species Procellaria parkinsoni Gray, 1862 Procellaria westlandica Falla, 1946 Pseudobulweria aterrima (Bonaparte, 1856) (Murphy, 1928) Pseudobulweria becki (Gray, 1860) Pseudobulweria macgillivrayi Pseudobulweria rostrata (Peale, 1848) Pterodroma alba (Gmelin, 1789) Pterodroma arminjoniana (Giglioli & Salvadori, Pterodroma atrata Mathews, 1912 (Salvin, 1893) Pterodroma axillaris Pterodroma baraui (Jouanin, 1964) Pterodroma brevipes (Peale, 1848) Pterodroma cahow (Nichols & Mowbray, Carte, 1866 Pterodroma caribbaea (Salvin, 1891) Pterodroma cervicalis Pterodroma cookii (Gray, 1843) (Giglioli & Salvadori, Pterodroma defdippiana Pterodroma externa (Salvin, 1875) (Salvadori, 1899) Pterodroma feae (Kuhl, 1820) Pterodroma hasitata (Salvin, 1888) Pterodroma heraldica (Salvin, 1888) Pterodroma hypoleuca Pterodroma incerta (Schlegel, 1863) (Forster, 1844) Pterodroma inexpectata . (Garnot, 1826) Pterodroma lessonii (Gould, 1844) Pterodroma leucoptera Pterodroma longirostris (Stejneger, 1893) (Smith, 1840) Pterodroma macroptera Mathews, 1934 Pterodroma madeira (Giglioli & Salvadori, Pterodroma magentae (Gould, 1844) Pterodroma mollis Pterodroma neglecta (Schlegel, 1863) (Rothschild, 1893) Pterodroma nigripennis (Salvin, 1876) Pterodroma phaeopygia Falla, 1933 Pterodroma pycrofti Pterodroma sandwichensis (Ridgway, 1884) (Gould, 1844) Pterodroma solandri Murphy, 1949 Pterodroma ultima Puffinus assimilis Gould, 1838 Townsend, 1890 Puffinus auricularis Salvin, 1888 Puffinus bulleri Gould, 1844 Puffinus cameipes Coues, 1864 Puffinus creatopus (Forster, 1844) Puffinus gavia (O'Reilly, 1818) Puffinus gravis (Gmelin, 1789) Puffinus griseus Reichenow, 1919 Puffinus heinrothi Mathews, 1912 Puffinus huttoni Lesson, 1839 Puffinus therminieri Lowe, 1921 Puffinus mauretanicus Streets, 1877 Puffinus nativitatis Henshaw, 1900 Puffinus newelli Coues, 1864 Puffinus opisthomelas (Gmelin, 1789) Puffinus pacificus (Brunnich, 1764) Puffinus puffinus (Temminck, 1835) Puffinus tenuirostris  Common Name  1869)  1916)  1869)  1869)  Parkinson's petrel Westland petrel Mascarene petrel Beck's petrel Fiji petrel Tahiti petrel Phoenix petrel Trindade petrel Henderson petrel Chatham Island petrel Barau's petrel Collared petrel Bermuda petrel Jamaica petrel White-necked petrel Cook's petrel De Filippi's petrel Juan Fernandez petrel Cape Verde petrel Black-capped petrel Herald petrel Bonin petrel Atlantic petrel Mottled petrel White-headed petrel Gould's petrel Stejneger's petrel Great-winged petrel Madeira petrel Magenta petrel Soft-plumaged petrel Kermadec petrel Black-winged petrel Galapagos petrel Pycroft's petrel Hawaiian dark-rumped petrel Providence petrel Murphy's petrel Little shearwater Townsend's shearwater Buller's shearwater Flesh-footed shearwater Pink-footed shearwater Fluttering shearwater Greater shearwater Sooty shearwater Heinroth's shearwater Hutton's shearwater Audubon's shearwater Balearic shearwater Christmas shearwater Newell's shearwater Black-vented shearwater Wedge-tailed shearwater Manx shearwater Short-tailed shearwater  Code  260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315  Status  VU VU CR CR CR NT EN VU EN CR EN LC EN CR VU EN VU VU NT EN LC LC VU NT LC VU VU LC CR CR LC LC LC CR VU VU VU NT LC CR VU LC VU LC LC NT VU EN LC CR LC EN NT LC LC LC  continued  94  TABLE  1. concluded  Species Puffinus yelkouan Thalassoica antarctica Sphenisciformes Spheniscidae Aptenodytes forsteri Aptenodytes patagonicus Eudyptes chrysocome Eudyptes chrysolophus Eudyptes pachyrhynchus Eudyptes robustus Eudyptes schlegeli Eudyptes sclateri Eudyptula minor Megadyptes antipodes Pygoscelis adeliae Pygoscelis antarctica Pygoscelis papua Spheniscus demersus Spheniscus humboldti Spheniscus magellanicus Spheniscus mendiculus Anseriformes Anatidae Bucephala albeola Bucephala clangula Bucephala islandica Clangula hyemalis Histrionicus histrionicus Melanitta fusca Melanitta nigra Melanitta perspicillata Mergus serrator Polysticta stelleri Somateria fischeri Somateria mollissima Somateria spectabilis Tachyeres brachypterus Tachyeres leucocephalus Tachyeres patachonicus Tachyeres pteneres  Code  Status  Author  Common Name  (Acerbi, 1827) (Gmelin, 1789)  Levantine shearwater Antarctic petrel  316 317  LC LC  Gray, 1844 Miller, 1778 (Forster, 1781) (Brandt, 1837) Gray, 1845 Oliver, 1953 Finsch, 1876 Buller, 1888 (Forster, 1781) (Hombron & Jacquinot, 1841) (Hombron & Jacquinot, 1841) (Forster, 1781) (Forster, 1781) (Linnaeus, 1758) Meyen, 1834 (Forster, 1781) Sundevall, 1871  Emperor penguin King penguin Rockhopper penguin Macaroni penguin Fiordland penguin Snares penguin Royal penguin Erect-crested penguin Blue penguin Yellow-eyed penguin Ad-lie penguin Chinstrap penguin Gentoo penguin Jackass penguin Humboldt penguin Magellanic penguin Galapagos penguin  318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334  LC LC VU VU VU VU VU EN LC EN LC LC NT VU VU NT EN  (Linnaeus, 1758) (Linnaeus, 1758) (Gmelin, 1789) (Linnaeus, 1758) (Linnaeus, 1758) (Linnaeus, 1758) (Linnaeus, 1758) (Linnaeus, 1758) Linnaeus, 1758 (Pallas, 1769) (Brandt, 1847) (Linnaeus, 1758) (Linnaeus, 1758) (Latham, 1790) Humphrey & Thompson, 1981 (King, 1831) (Forster, 1844)  Bufflehead Common goldeneye Barrow's goldeneye Long-tailed duck Harlequin duck White-winged scoter Black scoter Surf scoter Red-breasted merganser Steller's eider Spectacled eider Common eider King eider Falkland steamerduck Chubut steamerduck Flying steamerduck Flightless steamerduck  335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351  LC LC LC LC LC LC LC LC LC LC LC LC LC LC NT LC LC  95  2. International legal instruments established since the early 1970s to protect seabirds' nesting habitat and reverse seabird population declines. Ramsar Convention on Wetlands of International Importance Treaty title 1971 Year signed Conservation and wise use of all wetlands through local, regional and national Objective,/ TABLE  Treaty, title v Year signed Objective Treaty title , Year Signed >: Objective Treaty title Year Signed ; Description Treaty title Year Signed ,' Objective;;/.".,,'/',  Treaty title Yeair Signed Objective/  ; Year Signed Objective ! Treaty title Year Signed Objective \  1979 To protect those species of wild animals which migrate across or outside national boundaries. Convention on the Conservation of Antarctic Marine Living Resources ( C C A M L R ) Conservation of Antarctic marine living resources, with conservation being defined to include rational use. United Nations Convention on the Law of the Sea ( U N C L O S ) 1982 To consider the effects of fishing operations on species associated with or dependent upon harvested species in order to maintain or restore populations of such associated or dependent species above levels at which their reproduction may become seriously threatened. Convention on Biological Diversity (CBD) 1992 To conserve biodiversity, promote the sustainable use of its components, and encourage equitable sharing of the benefits arising out of the utilization of genetic resources. I U C N Resolution of Incidental Mortality of Seabirds in Longline Fisheries  '  Treaty title V ;  To protect endangered species from over-exploitation by means of a system of import/export permits. Convention on Migratory Species of Wild Animals (CMS)  1980  1  Treaty title Year Signed Objective  actions and international cooperation,, as a contribution towards achieving sustainable development throughout the world. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) 1973  1995 The Resolution calls on States and regional fisheries organizations to take measures to reduce the incidental mortality of seabirds in longline fishing operations and also calls for further study and educational efforts. International Plan of Action for Reducing Incidental Catch of Seabirds in Longline Fisheries (IPOA-SEABIRDS) 1999 To reduce the incidental catch of seabirds in longline fisheries where this occurs. Agreement on the Conservation of Albatrosses and Petrels ( A C A P ) 2001 To stop or reverse population declines by coordinating action between Range States to mitigate known threats to Albatross and Petrel populations. Conservation measures to be implemented include research and monitoring, reducing of incidental mortality in fisheries, eradicating of non-native species at breeding sites and reducing of disturbances, habitat loss and pollution.  T A B L E 3. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding in the Arctic. Species: Codes as in Table 1 of the Appendix. Capel: Capelin; Gad: Gadids; Flatf: Flatfish; Amm: Ammodytes sp.; Seb: Sebastes sp.; Clu: Clupeidae; Perch: Perch-like; Scorp: Scorpaeniformes; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes polychaetes, insects, plants, offal. Species Area Year Capel Gad Flatf Amm Seb Clu Perch Scorp Fish Ceph Dec Cru Krill Cop Other Ref 004 005 005 005 005 005 011 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016 022 022 022 022 022 022 022 022 022  Barents S. Baffin Bay Baffin Bay Greenland W Svalbard Svalbard NWTerritories Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Chukchi S.  1989 1980 1998 1998 1994 1995 1976 1967 1980 1981 1982 1983 1987 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 1935 1938 1939 1947 1948 1949 1983 1989 1979  24.0  76.0  3.7 5.8 22.0  1.3 1.3  98.5 76.0 37.0 74.0 27.0 25.0 75.0 46.0 30.0 - 20.0 , 39.0 25.0 16.0 14.0 30.0 23.0 13.0 26.0 13.0 2.0 45.0 41.0 30.0 20.0 97.0 96.0 10.0  15.0 2.0 5.0 25.0 13.0 33.0 49.0 22.0 14.0 10.0 47.0 53.0 5.0 13.0 35.0 2.0 59.0  29.0 21.0 63.0 26.0 68.0 67.0  71.0  47.0 64.0 26.0 19.0 42.0 30.0 35.0 35.0 7.0 59.0 22.0 20.0 80.0 40.0 4.0 33.0 10.0 1.0 4.0 19.0  5.0  20.4 17.1 5.0 20.0 1.5  0.2  100.0 74.4 74.5 69.0 80.0  1.3  2.0  1.0  5.0 8.0 4.0  6.0 1.0  29.0 41.0 3.0 7.0 7.0 4.0 18.0  1.0 15.0 12.0 2.0 5.0  2.0 2.0 1.0 52.0 5.0  14.0 18.0 10.0 42.0 37.0 35.0  11.0  1.0  1 2 3 3 4 4 5 6 7 7 7 7 7 1 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 9 1 10  continued  97  continued Species Area  T A B L E 3. 022 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 023 045 059 080 086 086 086 086 086 086 086  Chukchi S. Barents S. Barents S . Barents S. Barents S. Barents S . Barents S . Barents S. Barents S. Barents S. Bjorruaya Bjarneya Bjorruzrya Bjornoya  Bj0rn0ya Chukchi S. Chukchi S . Franz Josef L. N W Territories N W Territories Novaya Zemlya Novaya Zemlya Novaya Zemlya Novaya Zemlya Novaya Zemlya Novaya Zemlya Svalbard Barents S . Barents S. Svalbard Barents S . Barents S. Barents S. Barents S. Barents S . Barents S . Barents S.  Year 1980 1938 1983 1987 1989 1990 1991 1992 1993 1994 1988 1989 1991 1993 1995 1979 1980 1993 1976 1982 1934 1942 1947 1948 1949 1950 1992 1995 1987 1984 1949 1980 1981 1983 1985 1987 1988  Capel Gad 6.0  53.0 3.0  Flatf Amm 4.0  42.0  6.6 12.0 3.0 2.0  3.0  Clu Perch  1.6 79.6  83.5  1.0  5.0 3.0 7.0 9.4  1.0 2.0  Cop  Other Ref  5.0 8.0  '  39.0 5.0  8.0 3.0 3.0 1.0  8.0 27.0  1.9  2.9 10.0 3.0 15.0 2.0  17.0 7.0  9.0 15.0 5.0 3.0 11.0 26.0 12.0  6.0 19.0 3.0  20.4  16.6 5.0 2.0  6.0 10.0  17.0 2.0 1.0  27.0 34.0 6.0 3.0 35.0 2.0 1.0  1.0  2.0 9.0 37.0 30.0  20.0 91.1 54.4 92.4 65.3  Krill  1.0  3.8  16.0  80.0 75.0 20.0  Cru  3.0  8.0  7.0 36.0 35.0 100.0 16.0 81.0  3.0 13.0 3.0 43.0 51.0 93.0 90.6 51.6 73.0 95.0 95.0 66.0 83.0 43.0 99.0  Scorp Fish Ceph Dec 1.0  34.0 86.0 28.0  96.2 93.0 59.0 57.0 45.0 14.0 42.0 32.0 75.0 78.0 34.0 10.0 1.0  Seb  1.0 40.0  30.0  20.0 25.0 10.0  20.0  4.6 3.0 6.3  25.3  10.0 8.9 41.0  10.0  10.0  3.0 3.1  20.4 16.5  10 6 8 11 1 8 8 8 8 8 8 8 8 8 8 10 10 6 5 12 8 8 8 8 8 8 6 13 11 6 6 14 14 14 14 11 14  continued  98  TABLE  3. concluded  Species Area 086 086 086 086 086 086 086 086 109 109 109  Year Capel Gad Flatf Amm  Barents S. Barents S. Barents S. Barents S. Barents S. Chukchi S. Chukchi S. Svalbard Beaufort S. Beaufort S. Franz Josef r  1989 1990 1992 1993 1994 1979 1980 1984 1976 1980 1993  71.0 60.8 49.4 4.5 10.0 3.0 90.0  Seb  Clu Perch  Scorp  Fish Ceph  Dec  Cru Krill 25.0  2.5  0.8 63.0 38.0  3.0 1.3  32.9 43.0 92.4 91.1  23.0 35.0  1.0  1.0  1.0  0.8 6.3 3.1 8.1 1.0 11.0  21.0  18.0 1.0 75.0  8.0  17.0 2.0  39.0 64.0  7.0 10.0 43.0 35.0  Cop Other Ref 4.0  3.0 3.0  4.0  1 14 14 14 14 10 10 6 15 16 6  T  120 126 127 127 175 175 245 245 245  L.  Beaufort S. Greenland N Barents S. Barents S. Barents S. Barents S. Barents S. Barents S. Franz Josef  1980 1985 1949 1992 1989 1990 1987 1999 1993  67.0 23.0 36.0  20.0 44.0 50.0 67.6 87.0 51.0  16.0 90.0  47.0 28.0  10.0 36.0 56.0 50.0  10.6  21.8  12.5 42.0  0.5 7.0  17 18 6 6 1 6 11 6 19  T  L,.  20 100.0 E Siberian S. 1998 345 74.4 25.6 20 E Siberian S. 1998 347 (1) Barrett and Furness (1990); (2) Bradstreet (1982); (3) Pedersen and Falk (2001); (4) Weslawski et al. (1999); (5) Gaston et al. (1993); (6) Anker-Nilssen et al. (2000); (7) Barrett (2002); (8) Barrett et al. (1997); (9) Vader et al. (1990); (10) Springer et al. (1984); (11) Erikstad (1990); (12) Gaston (1985); (13) ICES (2000); (14) Barrett and Krasnov (1996); (15) Boekelheide (1980); (16) Divoky (1984); (17) Day et al. (2001); (18) de Korte and Wattel (1988); (19) Phillips et al. (1999); (20) Kondratyev (1999).  99  4. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding in the Antarctic and on Sub-Antarctic Islands. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Noto: Nototheniidae; Macr: Macrouridae; Chan: Channichthyidae; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes seabird and marine mammal carrion, polychaetes, insects, plants, offal. Krill Other Ref Chan Ceph Dec Cru Cop Fish Myct Noto Macr Year Area Species TABLE  049 049 109 119 119 119 121 121 121 121 121 121 121 121 123 123 123 123 123 123 123 123 123 123 123 167 167 167 167 168 168 168 168 168  Macquarie I. S Shetland I. Weddell S. S Shetland I. Crozet I. Weddell S. Antarctic Pen. Antarctic Pen. Crozet I. Kerguelen I. S Shetland I. S Georgia S Georgia S Georgia Antarctic Pen. Antarctic Pen. Prince Edward I. S Orkney I. Prydz Bay Prydz Bay Prydz Bay Ross S. S Shetland I. S Shetland I. Wilkes L. Prince Edward I. Prince Edward I. Crozet 1. S Georgia Antarctic Pen. S Orkney 1. S Shetland 1. S Shetland 1. S Shetland I.  1983 1996 1988 1981 1982 1988 1978 1981 1981 1994 1994 2001 2002 2003 1978 1981 1982 1983 1989 1990 1991 1992 1994 1995 1996 1980 1985 1981 1990 1998 1995 1991 1993 1995  2.7 1.0  6.4  1.7 1.0 98.0  10.0  6.1  1.0 30.4 29.5  19.3 33.1  2.9 1.0 50.3  37.4 2.0  98.0 10.8 8.0 0.3  20.0 1.1  0.4 0.9  1.8  17.4  6.2 12.0  70.8 74.0  2.6  7.4 2.9  32.5 36.9 22.0 13.7 6.7 7.1 4.8 28.6 5.5 17.8  89.2 79.0  56.0 0.7 75.4 95.0 83.4 92.2 70.1 85.9 80.0  1.0 7.1  3.8 2.0 0.1 1.1 1.9  10.0 18.8 3.7 5.0  0.2  5.4 0.4  89.2 72.0 98.2 100.0 79.9 100.0 100.0 100.0 23.0 14.0 100.0 100.0 97.4 100.0 74.3 4.7 9.8 100.0 11.0 2.8 14.0 5.7  1.0 1.2 7.5 0.3  1 2 3 4 5 3 6 6 7 8 9 10 10. •M0 6 . 6 11 12 13 14 15 16 9 9 17 18 19 20 21 22 23 24 25 26  continued  100  T A B L E 4. continued  Species 168 169 169 169 169 169 174 196 196 196 196 196 196 196 206 206 206 207 207 207 207 207 207 207 207 207 207 207 210 210 210 210 210 210 210 210 210 212  Area S Shetland I. S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Orkney I. Macquarie I. Crozet I. Crozet I. Crozet I. Prince Edward I. S Georgia S Georgia S Georgia Crozet I. Crozet I. Kerguelen I. Campbell I. Crozet I. Crozet I. Kerguelen I. Prince Edward I. Prince Edward I. S Georgia S Georgia S Georgia S Georgia S Georgia Campbell I. Crozet I. Kerguelen I. Kerguelen I. Macquarie I. S Georgia S Georgia S Georgia S Georgia Crozet I.  Year  Fish  1997 1995 1996 1997 1998 1999 1979 1981 . 1982 1992 1989 1977 1999 2000 1981 1982 1994 1997 1981 1982 1994 1987 1988 1976 1982 1986 1996 2000 1997 1982 1994 1995 1999 1976 1982 1986 1994 1981  14.9 35.6 34.6 14.2 25.8 8.4 8.3 14.9 34.7 3.6 36.5 10.0 3.4 10.9 58.2 76.4 84.5 2.2 50.6 3.6 29.0 20.0 34.0 35.0 10.9 44.9  Myct  Macr  85.1 60.9 58.5 78.0 67.4 82.9 91.7  Chan 0.3 0.3  22.1  44.3 34.3  0.2  3.8 0.4  1.6  10.4 29.0  39.0  1.2 0.8 6.4  96.5 57.7 8.5 33.4 37.0 39.0 12.6 63.9 1.7  Noto  1.5 0.2  14.5  39.1 30.0 15.0  2.0  14.9 0.1 3.8  8.4  Ceph  Dec  Cru  Cop  Krill  1.6 3.7 1.9 1.8 1.9  1.6 3.0 5.6 5.0 6.8 76.7 65.3 74.3 58.6 80.0 42.1 32.0 38.0 23.6 12.8 97.8 89.3 37.8 55.4 34.2 32.0 49.0 49.0 70.5 37.3 15.9 3.5 25.6 37.4 15.5 65.0 21.0 21.0 31.1 22.9 40.5  Other Ref  8.3  0.1  4.8  0.1 10.0 0.2 3.8  12.3  4.8 9.9  2.7  3.0  5.4 1.9 0.4 3.0 3.0  0.2  15.9 2.3 0.4  5.3  0.2 5.0  1.0  9.7 13.8 4.8  3.0 17.0 16.0  76.0  0.1  1.1 16.7 15.0 9.2 15.0  42.0 40.0  0.4  39.4 4.7 2.0  0.4  51.2  27 28 28 28 28 28 29 18 30 31 32 33 34 35 18 30 36 37 18 30 36 38 39 40 41 42 42 35 37 30 36 43 44 40 41 42 42 18  continued  101  4. continued Species Area  TABLE 212 212 213 213 213 213 213 215 215 216 216 216 216 221 221 221 221 221 235 235 235 235 235 235 237 237 237 237 237 243 243 243 243 243 243 243 243 243  Crozet I. Prince Edward Crozet I. Crozet I. Prince Edward S Georgia S Georgia Crozet I. Weddell S. Antipodes I. Crozet I. Prince Edward Prince Edward Adelie L. Crozet I. S Georgia S Georgia Weddell S. Crozet I. Kerguelen I. S Georgia S Georgia S Georgia S Georgia Crozet I. Kerguelen I. S Georgia S Georgia S Georgia Adelie L. Crozet I. Prydz Bay Prydz Bay Ross S. S Georgia S Orkney I. S Orkney I. S Shetland I.  I.  I.  I. I.  Year  Fish  1982 1990 1981 1982 1990 1978 1980 1981 1988 1978 1981 1974 1994 1982 1982 1977 1985 1988 1981 1997 1974 1982 1986 1987 1981 1997 1974 1982 1987 1982 1981 1984 1988 1982 1974 1995 1996 1996  13.9 33.1 10.9 16.4 45.7  Myct  Noto  Macr  Chan  Ceph 69.7 41.8 56.3 50.5 33.9 66.8 45.5 10.1  2.3 10.9 35.2  Dec  Cru  0.3  2.5 0.4 1.0 19.2 3.9  Cop  14.8  0.4  30.5 4.1 25.7  39.5 28.1 4.0  73.0  1.6  1.6  9.0 14.9  3.0 4.9  1.9  37.2  0.5  _  19.7 5.9 4.0 5.6 5.0 5.5 51.1 90.7 17.0 0.9 10.8  10.9 20.0 3.5 19.2 47.8 0.1 9.1 68.0 21 71.3  39.0 11.9 5.0 28.3 96.0 0.1 1.0  0.2  29.0 2.0  2.0 23.4 13.8 0.9 1.8 63.6 33.8  0.9  0.5 97.0 0.6  11.6 0.7 0.2  5.6  8.8 1.0  31.5  0.5  Krill  37.0 55.7 95.0 30.3 3.0 80.2 81.2 76.0 90.9 75.8 46.7 48.6 15.0 78.1 17.9 64.0 33.8 75.9 85.5 3.0 57.3 97.2 35.8 65.7  Other Ref 13.9 24.7 16.7 13.9 16.5  0.9 23.0 100.0 96.8 100.0 100.0 12.0 12.6 1.8 1.0  0.2  7.0 45.0  0.6  30 45 18 30 45 46 45 18 3 47 18 47 48 49 18 33 50 3 18 51 52 53 54 54 18 51 52 53 54 49 18 55 56 49 57 58 59 60  continued  102  4. continued Species Area  TABLE 243 245 245 245 245 246 246 246 246 246 246 247 247 247 248 248 248 248 248 248 248 248 248 249 249 249 249 249 249 250 250 250 250 250 252 252 252 252  Weddell S. Adelie L. Prydz Bay Ross S. Weddell S. Crozet I. Kerguelen I. Kerguelen I. Prince Edward S Georgia Weddell S. Crozet I. Prince Edward Weddell S. Adelie L. Crozet I. Macquarie I. Prince Edward Prydz Bay S Georgia S Georgia S Georgia S Orkney I. Crozet I. Macquarie I. Prince Edward S Georgia S Georgia S Georgia Kerguelen I. Kerguelen I. Kerguelen I. Kerguelen I. Kerguelen I. Kerguelen I. Kerguelen I. Kerguelen I. Kerguelen I.  I.  I.  I.  I.  Year  Fish  1988 1982 1988 1982 1988 1981 1990 1998 1980 1974 1988 1981 1980 1988 1984 1981 1971 1987 1985 1980 1981 1984 1984 1981 1971 1987 1980 1981 1984 1935 1950 1995 1996 1997 1950 1995 1996 1997  16.0  Myct  Noto  Macr  Chan  Ceph  Dec  Cru  19.0  2.0  0.4 94.0 53.0 27.2 2.8 2.1 15.7 0.7  0.2  Cop  63.2  5.6 43.2  0.1  40.0 4.7 33.0 13.6 21.2 3.9 90.0 0.2 6.0 64.0  3.9  1.2 1.6 3.0  6.0 70.2 24.0 1.0 4.7 11.0 4.0 3.3 2.0 1.0 1.0 4.0 1.4 24.0 12.0 10.0 2.0 2.0 100.0 100.0 0.9 1.7 5.3  4.8 6.2 4.9  1.3 5.5 2.9  5.0 5.9 1.0 3.0 13.3 1.0 1.0 1.0 1.0 2.0 6.0 1.0 3.0 3.0  7.1 4.8 3.9 38.1  4.0 21.3 33.7 16.5 14.7 7.7 9.0 33.1 23.8 11.0 1.0  0.1 1.3  Krill 1.0 64.0 36.2 6.0 1.0 32.3 30.5 16.0 44.8 78.6  9.0 20.0  2.0 1.8 3.7 3.6 1.0 22.5  1.0 10.0  4.0  1.0 21.0 21.0 27.0 0.1 2.0 4.0  1.0 22.0  22.0  73.6 73.6 44.3 100.0 31.9 86.4 79.4  Other Ref  24.3 23.1 47.4 62.0 1.9 12.8  83.0 89.4 84.0 93.0 83.4 96.0 77.0 77.0 68.0 98.5 72.0 82.0 84.0 73.0 73.0  3 49 56 49 3 18 61 62 63 57 3 18 64 3 65 18 66 67 55 68 68 65 65 18 66 67 68 68 65 47 47 69 69 69 47 69 69 69  continued  103  4. continued Species Area  TABLE 252 252 252 252 252 252 252 253 253 254 254 254 256 256 256 256 256 256 256 257 257 257 257 257 257 257 258 284 287 287 290 290 317 317 317 317 317 317  S Georgia S Georgia S Georgia S Georgia S Georgia S Georgia Weddell S. Crozet I. Prince Edward I. Antipodes I. Crozet I. S Georgia Adelie L. Bouvet I. Ross S. Ross S. S Georgia S Orkney I. Weddell S. Crozet I. Prince Edward I. S Georgia S Georgia S Georgia S Georgia Weddell S. Crozet I. Kerguelen I. Crozet I. Prince Edward I. Crozet I. Prince Edward I. Bouvet I. W Queen Maud L. Prydz Bay Prydz Bay Prydz Bay Ross S.  Year 1974 1975 1986 1991 1992 1994 1988 1981 1985 1978 1981 1983 1982 1980 1982 1982 1977 1998 1988 1981 1991 1977 1986 1996 1998 1988 1981 1987 1981 1980 1981 1980 1980 1994 1987 1988 1991 1982  Fish  Myct  Noto  1.6 1.8 18.6 2.2  Macr  Chan  Ceph  Dec  0.6 0.6 4.9 2.2 1.1  2.4 91.0  3.5 13.9  2.2 41.9  Cru  Cop  Krill  8.7 8.1 9.8 30.1 2.2 16.7 6.0 59.4 33.0  31.7 31.9 9.3 55.7  57.4 57.6 57.4 12.0 95.6 1.1 1.0 12.6 11.2  16.7 14.9  50.0 4.6 1.3 2.0 15.0 63.0 66.0 10.0  2.7 95.0 52.5  10.0  43.6 24.0 1.4 3.4 6.3  90.3 92.0 0.4 56.3 17.2 21.1 7.4 26.0  10.7  14.5 14.4 15.1  27.8 37.0 4.2 4.2 1.4 43.1 37.2  28.8 50.0 77.5  1.0 24.7 17.0 47.0 18.5 18.6 25.4 61.0 70.4 48.0 63.7 89.5 15.7 89.0 9.8 4.5  63.1 15.1  1.0  0.4 3.1  17.0 39.2  1.4 7.0 2.0 14.9  13.3 11.8 29.0 47.4 41.2 42.1 3.0  0.2 1.3 0.6 0.3 15.0 11.9 6.3 38.6 9.6 47.1 66.7 0.2  96.0  4.0  1.5 76.9 2.0 32.5 37.0 34.0 80.0 8.3  0.1  Other Ref  2.0 7.4 50.0 30.8 1.0  4.3  0.4  10.0 L4  3.2 6.5  12.8 22.3 100.0 4.0  54 57 54 54 54 54 3 18 70 47 18 71 49 72 49 49 33 73 3 18 74 33 75 76 76 3 18 77 18 64 18 64 72 78 79 56 80 49  continued  104  TABLE  iecies  4. continued Area  317 318 318 318 318 318 318 318 319 319 319 319 319 . 319 319 319 319 319 319 320 320 320 320 320 320 320 320 320 320 320 321 321 321 321 321 321 321 321  Year  Weddell S. Adelie L. Antarctic Pen. Prydz Bay Prydz Bay Ross S. Weddell S. Weddell S. Crozet I. Crozet I. Crozet I. Kerguelen I. Macquarie I. McDonald I. McDonald I. s Prince Edward I. * Prince Edward I. S Georgia S Georgia Crozet I. Kerguelen I. Kerguelen I. Macquarie I. Macquarie I. Macquarie I. Macquarie I. McDonald I. McDonald I. Prince Edward I. Prince Edward I. Prince Edward I. Crozet I. McDonald I. McDonald I. Prince Edward I. Prince Edward I. Prince Edward I. S Georgia (  Fish  Myct  1988 1982 1993 2.1 1986 1988 7.8 1993 6.0 1986 1988 :. 2.2 1981 1.4 1987 1991 1995 : 37.7 5.0 1985 1987 1992 17.1 1985 0.2 1988 1977 30.0 1994 1981 0.9 1996 0.3 2000 1981 3.7 1985 1994 1995 1950 1987 1984 1985 1988 1981 0.8 1987 1992 1984 1985 1988 1977  66.0  Noto  97.0 10.5  16.0 23.1 11.2 38.7 7.0 3.0 14.0 13.9 27.9 20.0 41.0 5.0 25.0 24.6  Chan  Ceph  Dec  23.0 95.0 18.0 86.9 28.0 18.0 38.1  1.0 90.2 98.1 99.6 62.3 92.8 95.0 51.2 69.0 86.2  Macr  3.4  9.0 7.9 7.2 3.0  1.0 3.3  0.2  0.1 51.1 0.2  2.2 0.6 28.4 31.0 13.4 70.0 3.0 17.2  8.0 1.7 3.1 2.8  1.0  0.1 3.2 0.4  1.2 5.0 5.0 3.3 9.8 0.1 8.0 13.0 13.3  0.3  70.0 0.1  2.1  70.0 50.0  46.0  29.0  Krill 1.0  100.0 1.8  0.2  Cop  10.0  2.4 31.8 32.2 4.0 0.3 0.3  0.2  1.8 2.0 5.4  0.2 2.0  3.0 2.7 57.0 3.0 9.8 99.0 7.6 0.5 0.4  Cru  41.0 0.6 20.5 6.7 37.0 29.0 42.0 7.6  1.5  68.8 17.1 65.6 72.0 69.4 83.4 53.1 89.0 46.0 40.0 80.4 . 40.3 70.0 21.6 29.0 20.0 54.3 98.0  Other Ref  0.1  1.7 0.5  3 81 82 83 84 85 86 3 18 87 88 89 90 91 92 93 94 49 95 18 96 97 98 99 100 100 101 102 93 93 94 18 102 103 93 93 94 104  continued  105  4. continued Species Area  TABLE 321 321 324 324 324 324 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328 328  S Georgia S Shetland I. Macquarie I. Macquarie I. Macquarie I. Macquarie I. Adelie L. Adelie L. Adelie L. Antarctic Pen. E Queen Maud L. E Queen Maud L. E Queen Maud L. E Queen Maud L. E Queen Maud L. E Queen Maud L. Enderby L. Prydz Bay Ross S. Ross S. Ross S. Ross S. Ross S. Ross S. Ross S. Ross S. Ross S. S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Shetland I. S Shetland I. S Shetland I. Weddell S.  Year 1985 1971 1981 1985 1994 1995 1982 1996 1997 1984 1989 1990 1991 1996 1997 1998 1988 1983 1966 1974 1985 1992 1993 1994 1995 1996 1997 1981 1982 1997 1998 1999 2000 2001 1978 1981 1988 1988  Fish  Myct  Noto  Macr  Chan  Ceph  Dec  Cru 2.0  4.0 25.0 3.6  58.3 41.2 50.2 78.4  0.3 18.0 30.0 31.9 16.4 14.4 4.7 48.1 47.2 37.1 3.8 22.0 39.0 44.0  14.9 27.1 19.3  65.0 30.1 21.7 8.6 75.0 65.3 1.4 0.4 0.1 0.3  0.4 14.0  23.5 3.0 2.3 7.4 3.0  0.9  10.0  1.2 0.1  4.5 1.5  1.1 0.7 3.5 0.2 5.6 0.5 0.1 2.0 1.0 10.0 3.0 7.2 10.5 0.7 6.0 12.2 0.3 0.5  0.1 1.1 0.3 0.1 7.0 1.0  5.4 54.0  0.3 14.9 0.1 4.0  Cop  Krill 94.0 75.0 13.7 51.3 46.0 13.9 79.0 70.0 68.1 100.0 67.6 57.8 72.5 51.7 47.2 62.4 96.1 66.0 60.0 46.0 97.0 27.8 58.2 77.5 85.4 12.8 34.7 98.3 99.1 100.0 99.9 99.6 98.9 99.7 99.6 72.7 98.5 28.0  Other Ref 105 106 98 107 100 100 49 108 69 109 110 110 110 111 111 112 113 114 115 116 117 118 118 118 118 118 119 120 120 121 121 121 122 122 123 124 113 3  continued  106  4. continued Species Area  TABLE 328 328 328 329 329 329 329 329 329 329 329 329 329 329 330 330 330 330 330 ' '330 330 330 330 330 330 330 330 330 330 330 330 330  Wilkes L. Wilkes L. Wilkes L. S Georgia S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Shetland I. S Shetland I. S Shetland I. Crozet I. Crozet I. Macquarie I. Macquarie I. McDonald I. Prince Edward I. Prince Edward I. Prince Edward I. S Georgia S Georgia S Georgia S Georgia S Georgia S Orkney I. S Orkney I. S Orkney I. S Orkney I. S Orkney I.  Year 1985 1992 1996 1977 1981 1982 1997 1998 1999 2000 2001 1971 1978 1981 1981 1982 1985 1994 1987 1982 1985 1988 1977 1985 1989 1992 1993 1993 1995 1996 1997 1998  Fish  Myct  Noto  Macr  Chan  5.6 48.7 30.0  Ceph  Dec  Cru 21.4 2.7  0.3  0.1 0.1  2.9 0.1 0.2 0.1 0.2 0.1 4.0  7.1 7.0 9.5 17.4  0.3  19.8 5.1 40.5 21.6 60.0 5.3 8.4  2.6 0.2  0.3  0.3 34.9 17.0 7.0 35.8 50.9 15.5 70.0 48.2 35.0 33.0 34.0 12.6 50.0 16.0 66.9 14.9 38.4 37.2 16.4  15.0  9.1 1.9 0.5 14.2 9.9 1.7  10.0  2.1 2.1  0.5  0.1 17.8 0.1  Cop  Krill 70.2 48.3 70.0 100.0 97.0 99.8 99.8 100.0 99.9 99.8 99.9 96.0 99.6 38.2 53.6 80.4  0.1 3.8  0.1 4.0  6.0 21.9  38.4 22.3 67.0 66.0 42.9 50.0 84.0 24.2 81.7 60.4 62.5 83.5  30.0  44.5  2.0 0.7 0.2  4.3 3.4 0.1 0.1  Other Ref 125 126 108 33 120 120 121 121 121 122 121 107 123 124 18 18 127 128 91 129 130 94 104 105 131 132 132 133 133 133 134 134  continued  107  4. concluded Species Area  TABLE 330 330 330  S Orkney I. S Shetland I. S Shetland I.  Year 1999 1978 1981  Fish 0.2  Myct  Noto 6.9 15.4 48.6  Macr  Chan  Ceph  Dec  Cru  0.5 0.5  0.1 10.5  Cop  Krill 92.4 84.5 40.4  Other Ref 134 123 124  (1) Merilees (1984); (2) Favero and Silva (1998); (3) Furness (1978); (4) Weimerskirch and Stahl (1988); (5) Jablonski (1995); (6) Furness and Cooper (1982);. (7) Stahl and Mougin (1986); (8) Moncorps et al. (1997); (9) Phillips et al. (2004); (10) Reinhardt (1997); (11) Adams (1982); (12) Norman and Ward (1990); (13) Wang and Norman (1993); (14) Ainley et al. (1992); (15) Mund and Miller (1995); (16) Hemmings (1984); (17) Baker and Barbraud (2001); (18) Ridoux (1994); (19) Blankley (1981); (20) Espitalier-Noel et al. (1988); (21) Wanless et al. (1992); (22) Casaux et al. (2002); (23) Casaux et al. (1997); (24) Casaux and " Barrera-Oro (1993); (25) Barrera-Oro and Casuax (1996); (26) Favero et al. (1998); (27) Casaux et al. (2001); (28) Casaux and Ramon (2002); (29) Brothers (1985); (30) Weimerskirch et al. (1986); (31) Weimerskirch et al. (1997); (32) Cooper et al. (1992a); (33) Croxall and Prince (1981); (34) Xavier et al. (2004); (35) Xavier et al. (2003); (36) Cherel et al. (2002a); (37) Waugh et al. (1999); (38) Hunter and Klages (1989); (39) Nel et al. (2000); (40) Hedd and Gales (2001); (41) Prince (1985); (42) Reid et al. (1996); (43) Cherel et al. (2000); (44) Goldsworthy et al. (2001); (45) Cooper and Klages (1995); (46) Thomas (1982); (47) Imber (1981); (48) Klages et al. (1995); (49) Ridoux and Offredo (1989); (50) Wilson et al. (1992); (51) Bocher et al. (2000); (52) Payne and Prince (1979); (53) Roby (1991); (54) Reid et al. (1997); (55) Green (1986); (56) Arnould and Whitehead (1991); (57) Prince (1980); (58) Soave et al. (1996); (59) Coria etal. (1997); (60) Jouventin etal. (1989); (61) Chaurand and Weimerskirch (1994); (62) Cherel etal. (2002b); (63) Steele and Klages (1986); (64) Schramm (1983); (65) Hunter (1985); (66) Johnstone (1977); (67) Hunter and Brooke (1992); (68) Hunter (1983); (69) Ropert-Coudert et al. (2002); (70) Cherel et al. (2002c); (71) Prince and Copestake (1990); (72) Griffiths (1983); (73) Ferretti et al. (2001); (74) Cooper et al. (1992b); (75) Croxall et al. (1995); (76) Berrow and Croxall (1999); (77) Zotier (1990); (78) Lorentsen et al. (1998); (79) Klages et al. (1990a); (80) Nicol (1993); (81) Ofrredo and Ridoux (1986); (82) Kirkwood and Robertson (1997); (83) Gales et al. (1990); (84) Robertson et al. (1994); (85) Kirkwood (2001); (86) Klages (1989); (87) Cherel and Ridoux (1992); (88) Raclot et al. (1998); (89) Bost et al. (2002); (90) Hindell (1988a); (91) Klages et al. (1990b); (92) Moore et al. (1998); (93) Brown et al. (1990); (94) Adams and Brown (1989); (95) Rodhouse et al. (1998); (96) Bocher et al. (2001); (97) Tremblay and Cherel (2000); (98) Home (1985); (99) Hindell (1988b); (100) Hull (1999); (101) Ealey (1954b); (102) Klages et al. (1989); (103) Green et al. (1998b); (104) Croxall and Prince (1980); (105) Davis et al. (1989); (106) Croxall et al. (1988b); (107) Croxall and Furse (1980); (108) Wienecke et al. (2000); (109) Nagy and Obst (1992); (110) Watanuki et al. (1993); (111) Kato et al. (2003); (112) Endo et al. (2002); (113) Coria et al. (1995); (114) Puddicombe and Johnstone (1988); (115) Emison (1968); (116) Paulin (1975); (117) van Heezik (1988); (118) Clarke et al. (1998); (119) Ainley et al. (1998); (120) Lishman (1985); (121) Lynnes et al. (2004); (122) Lynnes et al. (2002); (123) Volkman et al. (1980); (124) Jablonski (1985); (125) Green and Johnstone (1988); (126) Kent et al. (1998); (127) Hindell (1989); (128) Robinson and Hindell (1996); (129) LaCock et al. (1984); (130) Adams and Klages (1989); (131) Kato et al. (1989); (132) Bevan et al. (2002); (133) Coria et al. (2000); (134) Beron et al. (2002).  108  T A B L E 5. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the Indian Ocean. Species: Codes as in Table 1 of the Appendix. Clu: Clupeidae; Anch: Anchovies; Bel: Beloniformes; Gad: Gadids; Exoc: Exocoetidae; Goat: Goatfish; Caran: Carangidae; Perch: Perch-like; Ather: Atherinidae; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Other: includes seabird and marine mammal carrion, polychaetes, insects, offal. Year Clu Anch Bel Gad Exoc Goat Caran Perch Ather Fish Ceph Dec Cru Krill Other Ref >pecies Area 025 025 025 025 026 026 026 026 028 032 090 090 095 095 095 095 098 098 098 101 101 101 130 132 142 143 164 184 184 184 184 184 184 184  Abrolhos Abrolhos Abrolhos Seychelles Abrolhos Abrolhos Abrolhos Seychelles Bay of Bengal Seychelles Penguin I. Seychelles Abrolhos Abrolhos Abrolhos Tasmania Abrolhos Abrolhos Abrolhos Abrolhos Abrolhos Abrolhos Seychelles Seychelles Seychelles Seychelles Bay of Bengal Agulhas Current Agulhas Current Agulhas Current Agulhas Current Agulhas Current Agulhas Current Agulhas Current  1998 1999 2000 1967 1998 1999 2000 1967 1960 1967 1996 1967 1998 1999 2000 1982 1998 1999 2000 1998 1999 2000 1967 1967 1967 1967 1960 1979 1980 1981 1982 1983 1984 1985  0.4 0.1  10.1 0.4 13.8  1.2 0.2 0.1 0.2 37.8  4.9 0.1 5.8  0.5 0.7 3.8  68.3 67.9 57.9  0.8 0.5 3.0 39.3  77.2 93.2 69.4  9.5 25.0 89.3  13.0  0.1  0.7 1.9  13.8 34.0 4.8 92.5 88.7 89.6 63.7 90.5 91.8 83.3 14.8 29.2 11.2 56.0 45.0 15.6 82.6 91.1 5.0 3.4 1.7 7.2 16.9 28.1 12.1  17.1 27.8 20.3 94.5 1.3 0.3 1.3 22.9  2.0 2.2 2.2 4.3 15.2 5.3 19.9  0.2 0.4 0.1  0.5 0.4 0.3  0.1  0.4 0.2  0.9 0.1 1.6 0.4 0.2 80.0  20.0 32.7 27.1 1.9 3.1 4.3 3.2 4.5 1.6  4.5  a-  0.3 1.1 33.0 42.0 51.8 3.1 52.3 22.3 14.4 21.4 51.0 27.9 34.0  25.1 15.2 49.7 56.9 21.9 21.8 17.8  15.6 54.6 30.5 12.8 6.8 12.9 20.9  4.0 6.7 16.7 4.7 11.3 1.4  0.3  1.5 1.7 2.2  21.6  1.3 3.3 2.3 0.8 2.1 8.6 14.5  31.0 0.1  11.7 4.0  1.3 2.3 1.3  2.8 3.9 2.9  1.9  1.7  72.7 52.9 83.0 11.0 13.0 11.0 14.3  1.2  0.3  0.1 0.3  0.1  4.6 3.5  2.2  8.9 0.7 1.2 1.4 0.9 1.3 0.7 0.7  2.1 4.0 0.3  8.0  1 1 1 2 1 1 1 2 3 2 4 2 1 1 1 1 1 1 1 1 1 6 6 2 2 3 7 7 7 7 7 7 7  continued  109  5. concluded Species Area  TABLE  Year  Clu Anch  Bel  Gad  Exoc Goat Caran Perch Ather Fish Ceph Dec Cru Krill Other Ref  7 0.2 8.0 15.5 27.5 1.8 1986 47.0 184 Agulhas Current 7 6.7 1.1 7.0 34.3 1987 27.6 23.3 184 Agulhas Current 7 13.5 1.1 7.9 18.7 20.9 37.9 1988 Agulhas Current 184 7 21.5 13.6 3.8 4.4 39.0 17.7 1989 184 Agulhas Current 7 13.2 2.0 4.1 14.4 50.0 16.3 1990 Agulhas Current 184 8 20.8 18.1 1995 61.1 184 Agulhas Current 9 50.0 21.0 29.0 1968 Seychelles 190 5.0 30.0 10 15.0 10.0 10.0 10.0 1990 20.0 204 Albatross I. 0.7 11 10.2 0.1 64.8 15.1 9.1 1998 Tasmania 205 1 70.6 26.9 0.8 1998 Abrolhos 1.7 313 0.1 1 52.2 40.1 6.4 0.7 0.5 1999 Abrolhos 313 1 34.1 65.9 2000 Abrolhos 313 25.0 12 3.4 5.7 10.0 55.9 1995 Amsterdam I. 320 3.4 13 27.5 34.5 34.6 1986 Albatross I. 326 14.7 14 1.5 14.7 75.0 1986 8.8 W Australia 326 16.9 14 18.4 16.9 55.9 1989 8.8 W Australia 326 15 13.0 3.0 42.0 25.0 17.0 1997 W Australia 326 (1) Surman et al. (2002); (2) Diamond (1983); (3) Mukherjee (1976); (4) Dunlop (1997); (5) Harris and Last (1982); (6) Diamond (1975); (7) Klages et al. (1992); (8) Adams and Klages (1999); (9) Diamond (1974); (10) Crawford et al. (1991); (11) Hedd and Gales (2001); (12) Tremblay and Cherel (1999); (13) Gales and Green (1990); (14) Wienecke et al. (1995); (15) Chiaradia et al. (2003).  110  6. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the Mediterranean Sea. Species: Codes as in Table 1 of the Appendix. Clu: Clupeidae; Anch: Anchovies; Perch: Perch-like; Caran: Carangidae; Scorp: Scorpaeniformes; Flat: Flatfish; Bel: Beloniformes; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Other: includes seabird and marine mammal carrion, polychaetes, insects, offal, refuse. pecies Area Year Clu Anch Ather Perch Caran Scorp Flat Bel Fish Ceph Dec Cru Cop Other Ref TABLE  13.9 1 39.6 2.3 2.6 Chafarinas I. 1994 41.9 039 2 3.4 2.0 45.5 2.3 49.1 Chafarinas I. 1995 039 1 34.0 19.1 12.8 1994 34.1 Spain N E 039 5.4 0.4 28.5 2 29.8 1995 35.9 Chafarinas I. 043 1.4 3 23.2 69.5 1992 5.9 Spain N E 043 72.7 3 12.1 1994 15.2 Spain N E 043 0.4 3 86.8 6.0 6.8 Spain N E 1995 043 0.7 61.0 3 24.8 13.5 Spain N E 1996 043 4 79.5 20.5 2001 Black S. 065 3.2 1.2 12.9 5 61.1 2.8 1.0 0.4 0.9 11.3 1984 5.2 Greece N 065 78.3 6 7.7 7.0 Italy W 1983 7.0 108 99.7 7 0.3 • ••. Spain SE 1976 108 8 36.0 60.0 4.0 France M E D 1985 173 9 6.6 2.4 4.5 59.5 0.1 22.9 4.0 1993 Greece N 173 3.2 9 2.8 23.6 54.4 7.3 1994 8.7 Greece N 173 10 28.3 71.7 2002 Greece W 173 11 9.4 6.9 83.7 Italy W 1988 173 12 90.6 1.6 5.9 1.9 Sardinia 1991 173 12 0.1 85.0 13.2 1.7 1992 Sardinia 173 8 25.0 75.0 1985 Tunisia 173 26.7 13 8.4 35.6 26.7 1.5 1.1 1987 Malta 240 (1) Gonzalez-Solis et al. (1997a); (2) Gonzalez-Solis et al. (1997b); (3) Bosch et al. (2000); (4) Milchev et al. (2004); (5) Goutner (1986); (6) Bogliani et al. (1990); (7) Vargas et al. (1978); (8) van Eerden and Munsterman (1986); (9) Goutner et al. (1997); (10) Athanassopoulos et al. (2003); (11) Sara and Baccetti (1993); (12) Addis and Cau (1997); (13) Sara (1993).  Ill  T A B L E 7. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the North Atlantic Ocean. Species: Codes as in Table 1 of the Appendix. Clu: Clupeidae; Anch: Anchovies; Cape: Capelin; Oepe: Osmerus eperlanus; Gad: Gadids; Amm: Ammodytes sp., Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes seabird and marine mammal carrion, polychaetes, insects, offal, refuse. Year Clu Anch Cape Oepe Gad Amm Fish Ceph Dec Cru Krill Cop Other Ref Species Area 004 004 004 004 004 004 004 004 011 011 011 011 011 011 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016 016  Iceland Iceland Quebec Scotland W Shetland I. Shetland I. Shetland I. Shetland I. N Norway Quebec Shetland I. Shetland I. Shetland I. Shetland I. England E Iceland Iceland Newfoundland-Labrador N Norway N Norway N Norway N Norway N Norway Quebec Scotland W Scotland W Scotland W Scotland W Scotiand W Scotland W Scotland W Scotland W Scotland W Scotland W  1995 1997 1990 1989 1986 1987 1988 1989 1996 1990 1970 1987 1988 1989 1963 1995 1997 1994 1982 1983 1985 1986 1987 1990 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982  56.0 29.5 45.0 100.0 100.0 97.0 75.0 100.0  41.0 48.5 45.0  3.0 25.0  8.5 17.0 37.0  13.0  4.9 20.5 27.0 25.9 26.8  35.5 49.5 82.6 4.4 13.8  45.0 8.8 47.5 85.0 55.0 66.2 59.5 22.5 25.0 32.5 12.5  13.8 15.6 43.0 9.8 18.2  2.0 80.0 44.0 32.5 12.8 32.8 30.4 13.0 15.8 10.0 45.0 87.5 50.0 12.5 37.5 30.0 37.5 75.0 75.0 67.5 60.0  2.0 22.0  1.0 10.0  98.3 90.4 83.0 63.0 63.0 98.0 7.0 7.5 2.6 37.7 18.3 15.0 24.5 40.3  1.7 1.1  37.0  13.0 18.0 1.0 6.4 1.4 2.0 24.0 4.7  1.0  10.0 3.7 2.5 2.5 7.5 3.8 3.0 2.5  27.5  1 2 3 4 5 5 6 5 7 3 5 5 6 5 8 1 2 9 10 11 12 10 10 3 13 13 13 13 13 13 13 13 13 13  continued  112  7. continued Species Area  TABLE 016 016 016 016 016 016 016 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 022 023 023 023 023 035  Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Baltic S. England E Iceland Iceland Newfoundland-Labrador Newfoundland-Labrador Newfoundland-Labrador Newfoundland-Labrador Newfoundland-Labrador SW Norway SW Norway Quebec Scotland E Scotland W Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Wales Wales Wales Wales Wales Iceland Newfoundland-Labrador Newfoundland-Labrador Newfoundland-Labrador Azores  Year 1974 1975 1976 1977 1986 1987 1988 1996 1963 1995 1997 1977 1978 1982 1983 2002 1985 1990 1990 1992 1990 1986 1987 1988 1989 1990 1991 1974 1975 1985 1986 1987 1997 1978 1982 1983 1989  Clu  Anch  Cape Oepe  Gad  Amm  25.0  75.0 77.0 94.0 94.0 96.0 100.0 42.0 1.0 58.0 49.0 25.0  10.0 3.0 1.0 2.0  4.0  51.0  5.0 93.0 30.0 44.0 55.0 92.9 94.2 78.2 75.0 99.6  0.7  1.3  46.0 45.0 18.7 36.0 4.0  100.0 99.0 65.4 81.1 79.0 59.5 93.1 22.0 30.0  45.0 81.1 38.0 96.0 100.0 99.0 99.0 82.0 80.0 1.0 33.5 18.3 21.0 22.5 4.2  Fish  Ceph  Dec  Cru  Krill  Cop  Other  13.0 3.0 1.0 2.0 2.0 6.0 12.0 4.5 2.2 2.9 19.8 25.0 0.4 100.0 53.5  2.5 20.0 4.9 2.9 1.3  0.5 10.0  0.2 26.0  1.0 1.0 18.0 20.0  0.7 0.5  0.4 0.1 18.0  5.9 73.8 70.0 89.4  1.0  0.8  0.2  9.6  Ref 6 6 6 6 6 6 6 14 8 1 2 15 15 16 17 18 19 20 3 21 4 5 5 6 5 22 22 23 24 24 24 24 2 15 16 17 25  continued  113  7. continued Species Area  TABLE 035 035 035 035 035 035 043 048 051 064 064 064 066 066 071 071 071 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086  Holland Newfoundland-Labrador Newfoundland-Labrador Newfoundland-Labrador Newfoundland-Labrador Quebec Azores Quebec England E Newfoundland-Labrador Quebec Scotland E England E Sweden NewBrunswick NewBrunswick NewBrunswick England E Iceland Iceland Newfoundland-Labrador Newfoundland-Labrador Quebec Scotland E Scotland E Scotland E Scotland E Scotland E Scotland E Scotland E Scotland E Scotland E Scotland E Scotland E Scotland W Shetland I. Shetland I. Shetland I.  Year 1964 1967 1976 1977 1978 1990 1996 1990 1963 1967 1990 1975 1964 1980 1978 1979 1982 1963 1995 1997 1967 1970 1990 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1990 1986 1987 1988  Clu  Anch  Cape  Oepe Gad  Amm  34.5 26.5 30.8  14.0  11.0  79.0  22.0 61.0 54.0 40.8 35.0 3.0 6.0 5.0 7.0 20.0 39.0 10.0 12.0 10.0 16.0  56.0 31.0 29.0 18.9 35.0 98.0 95.0 94.0 95.0 86.0 50.0 61.0 63.0 84.0 86.0 81.0 61.0 100.0 100.0 94.0  Fish 53.0 22.8 5.7 6.2 3.8 50.0 94.8 35.0 52.0 34.0 50.0 21.0 21.9 84.7 46.9 5.3 88.0 21.0 4.5 41.1 2.0  Ceph  Dec  Cru  Krill  11.0 0.1  Cop  Other Ref 36.0 77.1 59.0 52.8 55.3 50.0 5.2 65.0 23.0 66.0 50.0  0.8 14.5 10.1  0.4 1.3 7.0  51.5 86.7 5.0  78.1 15.3 1.2 6.7  1.0 3.5 17.0 1.8 0.3  1.4 25.0 2.0 2.0  57.1 36.6 5.0  7.0 30.0 2.0 2.0  25.0 4.0 2.0 3.0  39.0  6.0  26 27 15 15 15 3 28 3 8 27 3 29 30 30 31 31 32 8 1 2 27 15 3 33 33 33 33 33 33 33 33 33 33 33 4 5 5 6  continued  114  TABLE  Species 086 098 098 098 103 103 103 103 103 103 103 103 103 106 108 108 108 108 109 109 109 109 109 109 111 111 125 125 125 125 125 125 125 125 125 125 125 125  7. continued Area Shetland I. Azores Azores NEUS Azores Azores England E NEUS NEUS NewBrunswick NewBrunswick Quebec Nova Scotia SE U S Denmark Iberian NEUS NEUS England E NEUS NewBrunswick NewBrunswick Quebec Nova Scotia England E Puerto Rico Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I.  Year 1989 1995 1996 1987 1994 1996 1963 1987 1998 1978 1979 1990 1983 1998 1975 1982 1995 1996 1963 1997 1978 1979 1990 1983 1963 1993 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985  Clu  Anch  Cape  Oepe  Gad  Amm  Fish  Ceph  Dec  Cru  Krill  72.6  6.8  68.0 35.5  10.0 11.4 44.0  6.0  22.0 6.0  23.0  12.0  42.0 5.0  9.0  100.0 100.0 20.6 99.6 100.0 21.0 47.3 46.0 100.0 100.0  2.0  1.0 0.1  2.7  0.6 4.0  2.4  36.0 15.0  39.0 91.0 9.3  17.0  32.0 14.0 10.0 45.0 10.7 28.7  53.0 69.0 3.0  2.0 31.0  51.0  8.0 57.0 24.0  22.0 2.0  3.0 62.0 91.0 70.0 86.0 86.0 72.0 74.0 68.0 88.0 95.0 96.0 61.0 62.0  Other Ref  0.4  73.7 27.2 15.0 17.0  72.8  63.0 17.0  Cop  22.0  78.0  14.0 12.0 100.0 9.0 28.0 14.0 14.0 24.0 24.0 28.0 6.0 5.0 2.0 33.0 33.0  15.0 1.0  41.0 5.0 1.0  3.0 89.3 71.1  0.2 6.0  2.0  4.0 2.0 4.0 6.0 2.0 6.0 5.0  5 34 28 35 36 28 8 35 36 31 31 3 37 38 39 40 41 41 42 43 31 31 3 37 8 44 45 45 45 45 45 45 45 45 45 45 45 45  continued  115  7. continued Species Area  TABLE 125 125 125 125 125 125 125 136 153 153 153 153 153 153 173 173 173 173 173 173 173 173 175 175 175 175 175 175 175 175 175 183 183 183 183 183 226 244  Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. G. Mexico NEUS Quebec Quebec Quebec Quebec Nova Scotia England E France France Germany N Norway Quebec Quebec Nova Scotia England E France Iberian Scotland W Scotland W Shetland I. Shetland I. Shetland I. Shetland I. Newfoundland-Labrador N Norway Quebec Scotland W Scotland W Quebec Iceland  Year 1986 4987 1988 1989 1994 1996 2000 1960 1993 1978 1994 1995 1996 1971 1963 1995 1998 1999 1997 1978 1990 1971 1963 1995 1996 1989 1990 1986 1987 1988 1989 1978 1986 1990 1975 1976 1990 1997  Clu  Anch  Cape  Oepe  Gad  Amm  Fish  66.0 56.0 5.0 14.0 3.1 9.9  30.0 42.0 77.0 76.0 47.9 43.4 64.4 99.7 80.7 48.5 62.7 34.6 17.8 65.3 98.0 79.0 100.0 61.8  0.7 13.5 13.3 3.7 1.0 5.8 0.2  0.9 38.1 33.5 1.8 47.9  62.2 28.4 34.5 1.0  21.0 20.5  0.5  Ceph  Dec  29.3 44.0 87.0 37.0 58.0 78.0 100.0 100.0 93.0 100.0  3.0  11.0 57.0 0.9 1.1  . 20.0 41.0  18.8  6.0  Other Ref  0.1 0.3 4.9 0.1 0.1 0.4 0.1 1.0  17.2 3.0  30.6 30.6  2.6  Cop  4.0 2.0 18.0 10.0 49.0 46.6 34.9  97.0 0.3 0.2 0.2  Cru Krill  2.0 37.5  20.8  69.1 69.2 70.5 56.0 13.0 60.4 42.0 19.0  7.0 52.0  17.0  60.5 98.9 100.0 76.0 14.6  1.1  9.4  15.8  24.0 5.6  3.0  6.0  45 45 45 45 46 46 47 48 49 50 51 51 51 52 8 53 54 55 56 50 3 52 8 53 54 55 4 5 5 6 5 56 57 3 58 58 3 59  continued  116  7. concluded pecies Area  TABLE 244 244 244 244 244 244 304 304 305 314 335 336 338 339 343 344 346 346  Scotland W Shetland I. Shetland I. Shetland I. Shetland I. Shetland I. Nova Scotia Nova Scotia Nova Scotia NEUS NEUS NEUS NEUS Newfoundland-Labrador NEUS N Norway NEUS Newfoundland-Labrador  Year  Clu  1981 1986 1987 1988 1989 1999 1974 1975 1974 1989 1969 1969 1969 1999 1969 1998 1935 1985  20.0  15.0  Anch  Cape  Oepe Gad  Amm 20.0 4.0 29.0 3.0 4.0 1.0  Fish  Ceph 0.3  17.0 59.0 20.1 8.3 33.0 60.0  Dec  Cru Krill  2.5  Cop  Other Ref  40.7  16.5 96.0 71.0 97.0 79.0  26.9 0.3 64.0  7.4 1.8 3.0  19.9  5.1 45.6 89.6 40.0 82.4 15.9 31.0  13.2 29.6 3.0  4.4 54.5 66.0 100.0  13.0 6.9 2.1  87.0 93.1 96.6  100.0  1.3  60 6 6 6 6 61 62 62 62 63 64 64 64 65 64 66 67 68  (1) Lilliendahl and Solmundsson (1997); (2) Thompson et al. (1999); (3) Cairns et al. (1991); (4) Swann et al. (1991); (5) van Heezik (1989); (6) Harris and Riddiford (1989); (7) Barrett and Anker-Nilssen (1997); (8) Dunnet et al. (1990); (9) Rodway and Montevecchi (1996); (10) Barrett and Rikardsen (1992); (11) Barrett et al. (1987); (12) Anker-Nilssen (1987); (13) Hislop and Harris (1985); (14) Lyngs and Durinck (1998); (15) Brown and Nettleship (1984); (16) Birkhead and Nettleship (1987); (17) Vader et al. (1990); (18) Wilhelm et al. (2003); (19) Anker-Nilssen and Nygard (1987); (20) Lorentsen and Anker-Nilssen (1999); (21) Harris and Wanless (1995); (22) Uttley et al. (1994); (23) Birkhead (1976); (24) Hatchwell (1991); (25) Hamer et al. (1994); (26) Spaans (1971); (27) Threlfall (1968); (28) Ramos et al. (1998); (29) Beaman (1978); (30) Gotmark (1984); (31) Braune and Gaskin (1982); (32) Cooper (1986); (33) Harris and Wanless (1997); (34) Ramos et al. (1995); (35) Safina et al. (1990); (36) Granadeiro et al. (2002); (37) Kirkham (1986); (38) McGinnis and Emslie (2001); (39) Bogliani et al. (1990); (40) Costa (1984); (41) Erwin et al. (1998); (42) Pearson (1968); (43) Hall et al. (2000); (44) Shealer (1995); (46) Hamer et al. (1991); (47) Votier et al. (2003); (48) Palmer (1962); (49) Blackwell et al. (1995); (50) Pilon et al. (1983); (51) Rail and Chapdelaine (1998); (52) Ross (1976); (53) Gremillet et al. (1998); (54) Gremillet (1997); (55) Leopold and van Damme (2003); (56) Johansen et al. (2001); (57) Anker-Nilssen et al. (2000); (58) Wanless (1984); (59) Phillips et al. (1999); (60) Furness and Todd (1984); (61) Ojowski et al. (2000); (62) Brown et al. (1981); (63) Lee (1995); (64) Stott and Olson (1973); (65) Robert and Cloutier (2001); (66) Bustnes et al. (2000); (67) Cottam (1939); (68) Goudie and Ankey (1986).  117  T A B L E 8. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the North Pacific Ocean. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Clup: Clupeidae; Anch: Anchovies; Ammo: Ammodytes sp.; Cape: Capelin; Caran: Carangidae; Osme: Osmeridae; Gad: Gadids; Belon: Beloniformes; Onco: Oncorhynchus spp.; Flat: Flatfish; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes molluscs, echinoderms, polychaetes, insects, and offal. Species Area Year Myct Clup Anch Ammo Cape Caran Osme Gad Belon Seba Onco Flat Fish 001 001 001 001 001 001 001 001 001 001 001 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 003 003 003 003 003 003  Buldirl. Buldir I. Buldirl. Buldirl. Buldir I. Buldirl. E Bering S. E Bering S. G . Alaska G . Alaska Pribilofl. Buldirl. Buldirl. Buldirl. Buldirl. Buldirl. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. G . Alaska G . Alaska Pribilofl. Buldir I. Buldir I. Buldirl. Buldirl. Buldirl. Buldirl.  1993 1994 1995 1996 1997 1998 1986 1987 1964 1965 1980 1994 1995 1996 1997 1998 1966 1976 1978 1981 1982 1983 1986 1987 1964 1965 1982 1993 1994 1995 1996 1997 1998  0.3 0.1  0.1 2.8 1.3  1.5  1.4 0.1  continued  118  8. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the North Pacific Ocean. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Clup: Clupeidae; Anch: Anchovies; Ammo: Ammodytes sp.; Cape: Capelin; Caran: Carangidae; Osme: Osmeridae; Gad: Gadids; Belon: Beloniformes; Onco: Oncorhynchus spp.; Flat: Flatfish; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes molluscs, echinoderms, polychaetes, insects, and offal. TABLE  Species . 001 001 001 001 001 001 001 001 001 001 001 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 002 003 003 003 003 003 003  Area Buldirl. Buldirl. Buldirl. Buldirl. Buldir I. Buldir I. E Bering S. E Bering S. G . Alaska G . Alaska Pribilofl. Buldirl. Buldirl. Buldir I. Buldir 1. Buldir I. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. G . Alaska G . Alaska Pribilofl. Buldirl. Buldir I. Buldir I. Buldir I. Buldir I. Buldirl.  Year 1993 1994 1995 1996 1997 1998 1986 1987 1964 1965 1980 1994 1995 1996 1997 1998 1966 1976 1978 1981 1982 1983 1986 1987 1964 1965 1982 1994 1994 1995 1996 1997 1998  Ceph  Dec  Cru  0.2 0.1  2.6 3.2 1.0 0.4  6.3 3.7 0.4 1.2 0.2 4.0 0.3 21.9 16.2 30.0 10.8 4.9 0.7 3.0 2.7. 10.0 1.0 9.0 9.0 5.0 3.0 8.6 1.5 10.0 7.6 2.8 8.4 8.4. 1.8 0.6 1.4 0.7  0.1 3.0  0.1  12.4 7.0 0.6 2.6 0.2 6.0 2.0 5.0 2.0 5.0 12.0 3.1 1.2 10.0 15.5 3.6 3.6 3.6 0.1 3.7 0.1  Krill 100.0 35.2 50.9 59.6 49.3 97.9 2.4 52.9 75.8 70.0 89.0 1.5 6.7 5.4 3.5 7.0 1.0 1.0 0.9 1.0 1.0 2.0 19.5 8.4 1.6 5.4 0.8 42.5 42.5 18.5 23.6 0.6 8.6  Cop  Other  55.9 41.7 20.3 38.8 50.5 7.0 1.7 25.2 5.0 75.3 78.5 91.7 83.3 93.4 75.0 96.0 84.0 87.0 89.0 84.0 80.0 96.2 71.6 75.3 94.8 45.3 45.3 75.4 75.4 92.2 90.4  0.6 5.3 0.3 4.4 0.2 2.0  1.0  0.2 0.2 0.7 0.3 2.1 0.2  Reference Williams etal. (2001) Williams era/. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Harrison (1990) Piatt etal. (1990) Bedard(1969) Bedard(1969) Verrneer etal. (1987) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Springer and Roseneau (1985) Springer and Roseneau (1985) Springer and Roseneau (1985) Springer and Roseneau (1985) Springer and Roseneau (1985) Springer and Roseneau (1985) Harrison (1990) Piatt etal. (1990) Bedard(1969) Bedard(1969) Roby(1991) Williams etal. (2001) Williams etal. (2001) Williams et al. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001)  continued  119  TABLE  jecies 006 006 006 006 007 007 007 007 007 007 007 010 010 010 010 010 010 010 010 010 012 012 012 012 012 012 012 012 012 012 012 012 012 012 012 012 012 012  8. continued Area Aleutian I. E Bering S. G. Alaska G . Alaska Aleutian I. British Columbia British Columbia G . Alaska G . Alaska G. Alaska G . Alaska G. Alaska G. Alaska G . Alaska G . Alaska G . Alaska G . Alaska G . Alaska G . Alaska G . Alaska British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia G . Alaska G . Alaska Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido  Year 1989 1985 1990 1996 1989 1972 1990 1978 1980 1990 1996 1979 1980 1981 1987 1989 1990 1994 1995 1996 1976 1977 1978 1979 1980 1986 1987 1988 1989 1979 1985 1984 1985 1987 1992 1993 1994 1995  Myct  Clup  Anch  Ammo  Cape Caran  Osme  Gad Belon  Seba  Onco  Flat  Fish  100.0 20.0  25.0 97.2 80.2 4.4 67.0  25.0  18.5  51.8 59.0  2.8 11.8  8.0 51.5  6.0  71.3  17.6 25.0 2.2 1.8 11.8 3.0 1.8 8.1 24.2 17.9 49.6 7.5 12.5 16.9  24.8 25.1 19.0  2.5  2.3 2.4 31.2 60.2 95.5 50.0  93.6 81.0 60.3 39.7 25.0 19.7 14.7 11.8 10.3 10.3 17.6 3.7 44.2 17.7 53.9 31.1 35.6 45.9 52.7 44.7 74.8 21.0 46.3 30.9 44.8 56.0 30.5 4.5 25.0  8.4  0.2 19.0 6.4  13.9  11.4 22.7 22.9 30.2  0.5 1.8 7.1 2.2  0.5 0.6 5.0  27.9 19.1 36.8 8.8 11.8  0.5 4.0 0.6 1.8 1.5 90.7 36.8 13.5 19.4 0.6 14.3  4.5 12.2 1.4 12.8 8.6 1.7  22.4 61.0 22.0 6.3 29.0  4.6 0.5 0.6 5.0 26.1 0.5 4.0 0.6 1.8 1.5 2.4 2.6 2.9 4.3 1.4 12.3 18.3 5.8 18.3  36.9 52.0 45.2 45.6 31.4 58.9 49.9 65.5 64.6  26.6  6.5 0.6 6.8 2.3 17.0 6.9 35.4 4.8 12.8 9.3 25.0  continued  120  TABLE  8. continued  Species 006 006 006 006 007 007 007 007 007 007 007 010 010 010 010 010 010 010 010 010 012 012 012 012 012 012 012 012 012 012 012 012 012 012 012 012 012 012  Area Aleutian I. E Bering S. G . Alaska G . Alaska Aleutian I. British Columbia British Columbia G . Alaska G. Alaska G. Alaska G. Alaska G . Alaska G . Alaska G . Alaska G . Alaska G . Alaska G . Alaska G . Alaska G. Alaska G . Alaska British Columbia British Columbia British" Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia G . Alaska G . Alaska Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido  Year 1989 1985 1990 1996 1989 1972 1990 1978 1980 1990 1996 1979 1980 1981 1987 1989 1990 1994 1995 1996 1976 1977 1978 1979 1980 1986 1987 1988 1989 1979 1985 1984 1985 1987 1992 1993 1994 1995  Ceph  Dec  Cru  Krill  Cop  30.0  44.1  9.3 6.0  8.6  1.4 3.8 2.9 3.1 4.5 1.3  0.5 1.0  27.0 28.7 11.8 16.0  Other  Reference  Day etal. (1999) Vermeer etal. (1987) Bay etal. (1999) Day etal. (1999) Day etal. (1999) Sealy(1975) Vermeer (1992) Sanger (1987b) Vermeer etal. (1987) Day etal. (1999) Day etal. (1999) Hayes and Kuletz (1997) Hayes and Kuletz (1997) Hayes and Kuletz (1997) Litzower al. (1998) Hayes and Kuletz (1997) Hayes and Kuletz (1997) Hayes and Kuletz (1997) Hayes and Kuletz (1997) Hayes and Kuletz (1997) Vermeer and Westrheim (1984) Vermeer and Westrheim (1984) Vermeer and Westrheim (1984) Vermeer and Westrheim (1984) Vermeer and Westrheim (1984) Burger et al. (1993) Burger etal. (1993) Burger et al. (1993) Burger et al. (1993) Hatch (1984) Vermeer et al. (1987) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001)  continued  121  TABLE  Species 012 012 012 012 012 012 012 012 012 012 012 012 013 013 013 013 013 013 013 013 016 016 016 017 017 017 017 017 017 017 017 017 017 017 017 017 017 017  8. continued Area Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Japan Japan Japan Japan Japan Washington Washington Aleutian I. Buldir I. Buldir I. Buldirl. Buldir I. Buldir I. E Bering S. Pribilofl. Okhotsk S. Okhotsk S. Okhotsk S. British Columbia British Columbia Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. G . Alaska G . Alaska G. Alaska Okhotsk S. Okhotsk S.  Year 1996 1997 1998 1999 2000 1994 1995 1996 1997 1998 1974 1975 1996 1993 1994 1995 1996 1997 1986 1980 1987 1988 1999 1977 1978 1988 1989 1991 1992 1994 1996 1997 1998 1979 1987 1995 1987 1988  Myct  Clup  Anch  Ammo  21.0 4.0  53.2 15.2 88.4 68.2 77.1 92.7 49.7 42.7 15.7 86.1 58.0 28.0  32.9 27.6 8.8 12.7 22.9 6.0 24.5 38.0 24.6 7.9 6.0 33.0  Cape Caran  Osme  Gad Belon  0.4 0.5  0.4 15.0 35.0  1.0 25.8 16.9 51.9 3.2  15.4 2.4  Flat  2.3 3.6  9.0 33.7 2.1 0.3  13.9 54.8 2.8 19.1  0.2  3.2 2.7 7.8 41.3 4.1  1.5  13.4 1.1 7.0  1.6 1.9 25.2 10.0  0.2  1.8 0.8 1.3  2.0  0.3  2.1 1.3  2.9 5.6 15.0 2.6 39.0 9.6 55.4 0.3  7.8 3.6  82.8 0.1 0.4  1.5  15.6 5.6  0.2 47.1 41.5 22.0 14.2 26.3  37.9 46.5  0.2  46.4 4.4 21.6 5.0 2.6 6.2  22.3 19.1 13.0 13.6 3.3  4.7 0.4 0.9  15.9 5.5  Fish  0.3  4.7  21.1 79.1 35.6 59.8 44.9 57.3 11.7 0.1  Onco  2.4  0.6  54.3 6.9 38.3  Seba  0.1  0.1 11.0 1.6  38.1 53.8 10.6 35.6 24.0 10.1 56.0 4.1 8.4  continued  122  TABLE  8. continued  Species 012 012 012 012 012 012 012 012 012 012 012 012 013 013 013 013 013 013 013 013 016 016 016 017 017 017 017 017 017 017 017 017 017 017 017 017 017 017  Area Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Japan Japan Japan Japan Japan Washington Washington Aleutian I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. E Bering S. Pribilofl. Okhotsk S. Okhotsk S. Okhotsk S. British Columbia British Columbia Buldir I. Buldir I. Buldirl. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. G. Alaska G. Alaska G. Alaska Okhotsk S. Okhotsk S.  Year 1996 1997 1998 1999 2000 1994 1995 1996 1997 1998 1974 1975 1996 1993 1994 1995 1996 1997 1986 1980 1987 1988 1999 1977 1978 1988 1989 1991 1992 1994 1996 1997 1998 1979 1987 1995 1987 1988  Ceph  Dec  Cru  Krill  Cop  Other  Reference Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Takahashi etal. (2001) Takahashi era/. (2001)  0.2 5.0 0.4  10.8  1.9 1.4  33.8  0.1  5.3  1.0  47.0  1.3  Takahashi et al. (2001) Takahashi etal. (2001) Takahashi et al. (2001) Leschner(1976) Leschner(1976) 11.2 0.1 37.2 37.2 9.5 49.2 28.0 36.3  0.2 0.2 4.6 2.5 29.9 30.2 9.0 43.3 55.1 45.8 72.3 11.4 2.4 4.0  11.2 64.7 62.8 57.4 89.2 50.8 15.0  57.8  Hunt etal. (1998) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams et al. (2001) Harrison (1990)  30.0  Verrneer etal. (1987) Golubova (2002) Golubova (2002) Golubova (2002) Verrneer (1979) Verrneer (1979) Williams Williams Williams Williams Williams Williams  0.1 0.3 1.1  et al. (2001)  etal. (2001) et al. (2001) et al. (2001) etal. (2001) e/a/. (2001)  0.6 2.2 0.3  Williams etal. (2001) Williams etal. (2001) Hatch (1984) Hatch and Sanger (1992)  0.2  Piatt etal. (1990) Golubova (2002) Golubova (2002)  continued  123  TABLE 8. continued  Species 017 017 018 018 018 018 018 018 018 018 018 018 018 018 018 018 018 018 018 018 019 019 019 019 019 019 019 019 019 019 019 020 020 022 022 022 022 022  Area Okhotsk S. Okhotsk S. Aleutian I. Aleutian I. Aleutian I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. G. Alaska G. Alaska G. Alaska G. Alaska G. Alaska G. Alaska Okhotsk S. Pribilofl. British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia G. Alaska Anadyr G . Bering S. E Bering S. E Bering S. E Bering S.  Year 1990 1999 1987 1994 1998 1975 1988 1989 1991 1994 1996 1998 1977 1979 1987 1994 1998 1999 1988 1984 1978 1979 1980 1981 1982 1987 1988 1996 1997 1998 1999 1979 1970 1973 1971 1978 1980 1981  Myct  Clup 17.6 82.6  2.5  Anch 1.9  Ammo  Cape Caran  23.5 13.3 86.3 32.1 8.8 42.3 75.7 22.1 64.2 4.4  3.9 0.2 2.9 25.0  54.7 98.9 90.1 68.1 94.1 40.6 58.7  36.5 0.7 2.3 1.7 2.0 0.2 5.1  45.4  Osme  Gad Belon  Seba  0.2 4.3 28.6 50.3 1.9 5.4  Onco  Flat  3.9 0.3  1.1 5.9 2.0  1.2 13.6 38.5 4.8 26.0 1.0 5.0 3.0 6.0 2.0  2.1 30.2 15.0 9.4  1.9 3.3 6.5 14.3 3.3 44.2 7.8 42.1 17.1 64.7 34.0 2.8 0.4 6.4 16.6 3.8 0.8 30.8 26.1 2.0 11.6 9.6 14.6 4.0 48.7 67.9  6.0  1.2 5.8 4.8 7.3 2.2  Fish  15.0  14.5  5.0 22.0  23.0  24.7  24.7  19.4 24.8 42.0 8.0 84.0  55.0 90.0 16.0  3.0 2.0  continued  124  TABLE 8. continued Species Area 017 017 018 018 018 018 018 018 018 018 018 018 018 018 018 018 018 018 018 018 019 019 019 019 019 019 019 019 019 019 019 020 020 022 022 022 022 022  Okhotsk S. Okhotsk S. Aleutian I. Aleutian I. Aleutian I. Buldir I. Buldir I. Buldir I. Buldir I. Buldirl. Buldir I. Buldir I. G . Alaska G . Alaska G. Alaska G. Alaska G. Alaska G. Alaska Okhotsk S. Pribilofl. British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia British Columbia G. Alaska Anadyr G . Bering S. E Bering S. E Bering S. E Bering S.  Year 1990 1999 1987 1994 1998 1975 1988 1989 1991 1994 1996 1998 1977 1979 1987 1994 1998 1999 1988 1984 1978 1979 1980 1981 1982 1987 1988 1996 1997 1998 1999 1979 1970 1973 1971 1978 1980 1981  Ceph  Cru  Dec  Krill  Cop  Other  1.9 0.1  33.4 13.5  3.4  0.8  0.5 0.8 0.9  0.1 8.1  Golubova (2002) Golubova (2002) Piatt and Kitaysky Piatt and Kitaysky Piatt and Kitaysky Piatt and Kitaysky  (2002) (2002) (2002) (2002)  Williams etal. (2001) Williams etal. (2001) Piatt and Kitaysky (2002)  11.0 30.4 12.8 28.9 66.0  0.1 19.4 0.3 47.5  Reference  4.4 6.5 5.3 0.7 2.0 2.0 7.7 4.9 1.3 3.2 3.8  0.3 0.4 6.6 0.7 0.9 0.6 0.6 17.2 0.8 1.7 0.1 7.2 1.1  0.2  47.2  33.3 19.6 25.5 33.0 56.0 32.1 23.6 61.5 6.8 10.2 30.0 95.0 55.0 33.1 17.7  51.5 50.3 50.4 37.0 32.3  29.8 61.6 34.9 55.7  0.5  Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Piatt and Kitaysky (2002) Piatt and Kitaysky (2002) Piatt and Kitaysky (2002) Piatt and Kitaysky (2002) Piatt and Kitaysky (2002) Piatt and Kitaysky (2002) Piatt and Kitaysky (2002) Piatt and Kitaysky (2002) Verrneer (1985) Verrneer (1985) Verrneer (1985) Verrneer (1985) Verrneer (1985) Burger and Powell (1990) Burger and Powell (1990)  Heddetal. (2002)  Redd etal. (2002) Hedd etal. (2002) Hedd etal. (2002) Gaston etal. (1993) Verrneer etal. (1987) Ogietal. (1985) Ogi and Tsujita (1973) Springer et al. (1987) Springer et al. (1987) Springer et al. (1987)  continued  125  TABLE 8. continued Species 022 022 022 022 022 022 023 023 023 023 023 023 023 023 023 023 047 047 047 047 047 047 047 047 047 047 047 047 047 047 053 076 076 076 085 085 085 085  Area E Bering S. E Bering S. G. Alaska G . Alaska Pribilofl. Pribilofl. Aleutian I. Anadyr G . Bering S. G . Alaska Hokkaido Kurile I. Okhotsk S. Pribilofl. Pribilofl. N Pacific Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Japan Yellow S. British Columbia Hokkaido Hokkaido Japan Buldir I. Buldir I. Buldir I. Buldir I.  Year 1982 1984 1978 1980 1982 1983 1973 1973 1971 1980 1980 1973 1973 1982 1983 1973 1984 1985 1987 1992 1993 1994 1995 1996 1997 1998 1999 2000 1983 1982 1980 1984 1985 1986 1989 1991 1992 1993  Myct  Clup  Anch  5.3  Ammo  Cape  Caran  55.0 0.1 27.0  1.0 2.5 37.0 3.0 14.0  2.0 5.2 16.0 90.0 83.0  Osme  Gad 90.0 39.0  Belon  Seba  Onco  Flat 10.0 1.0  Fish  6.0 3.0  1.0  2.0 3.8  24.6 6.5 24.8  24.7 19.0  24.7 10.0  11.0  100.0 98.3 43.0  43.0 2.0  2.0  16.0 2.0  63.0 90.0  21.0 4.0  25.8 85.0 52.5 61.4 14.0 0.5 76.3 0.5 7.5 53.8 25.0 31.6  15.0 37.5 35.0 86.0 99.5 23.7 99.5 92.5 100.0 43.6 75.0 68.4  7.5  50.9 43.5  17.4 18.0  39.7 48.4 78.0 86.2  28.0 7.4  46.0 0.6  6.0  36.5 63.5 50.1 18.1  1.3  continued  126  TABLE 8. continued Species 022 022 022 022 022 022 023 023 023 023 023 023 023 023 023 023 047 047 047 047 047 047 047 047 047 047 047 047 047 047 053 076 076 076 085 085 085 085  Area E Bering S. E Bering S. G . Alaska G . Alaska Pribilofl. Pribilofl. Aleutian I. Anadyr G . Bering S. G . Alaska Hokkaido Kurile I. Okhotsk S. Pribilofl. Pribilofl. N Pacific Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Hokkaido Japan Yellow S. British Columbia Hokkaido Hokkaido Japan Buldir I. Buldir I. Buldir I. Buldir I.  Year 1982 1984 1978 1980 1982 1983 1973 1973 1971 1980 1980 1973 1973 1982 1983 1973 1984 1985 1987 1992 1993 1994 1995 1996 1997 1998 1999 2000 1983 1982 1980 1984 1985 1986 1989 1991 1992 1993  Ceph  Dec  Cru  Krill  Cop  Other  Reference Springer et al. (1987)  75.4 0.1 8.1 29.0  31.9 5.0  51.2 10.0  0.1  86.0  13.0  18.0  Springer al. (1987) Sanger (1987b) Vermeer etal. (1987) Springer al. (1986) Springer et al. (1986) Ogi (1980) Ogi and Hamanaka (1982) Ogi and Tsujita (1973)  5.0  7.3 17.7  Vermeer etal. (1987) Hashimoto (1993) Ogi (1980) Ogi (1980)  1.7 14.0  66.4  7.8 2.5 3.6  2.6  16.5 4.1 2.5 2.5 39.4 35.0 5.8  5.8 24.0 0.4  2.9 2.1 1.1  5.3 10.9 2.8 12.2 17.9 5.6  0.4 1.5 2.0  25.9 16.0 3.9 46.6 31.2 36.1  Springer et al. (1986) Springer et al. (1986) Ogi (1980) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Bertram (2001) Watanuki (1984) Cheng(1990) Vermeer (1982) Watanuki (1988) Watanuki (1989) Watanuki (1988) Springer etal. (1996) Williams et al. (2001) Williams et al. (2001) Williams et al. (2001)  continued  127  TABLE 8. continued Area 085 085 085 085 085 085 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 089 109 147 153 172 172 172 172 179 179 179 179  Buldir I. Buldir I. Buldir I. Buldirl. Buldir I. Pribilofl. Aleutian I. Buldir I. Buldir I. Buldirl. Buldir I. Buldir I. Buldirl. Buldir I. Buldir I. Buldir I. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. Pribilofl. Pribilofl. Pribilofl. Pribilofl. Aleutian I. G . Alaska British Columbia British Columbia Japan Japan Japan Japan Aleutian I. British Columbia G . Alaska Oregon  Year 1994 1995 1996 1997 1998 1993 1989 1989 1991 1992 1993 1994 1995 1996 1997 1998 1978 1980 1981 1982 1983 1984 1975 1982 1983 1993 1985 1978 1980 1971 1992 1993 1994 1995 1980 1971 1985 1940  Myct 89.1 98.3 32.9 91.3 79.1 79.1 17.1 15.6  Clup  Anch  Ammo  Cape  Caran  Osme  Gad  Belon  Seba  Onco  Flat  Fish  10.5 10.6 6.1  3.1 63.7 11.7  6.9  71.0 50.0 31.0 68.0 27.0 68.0 1.0  29.0 50.0 69.0 32.0 73.0 32.0 88.0  3.2 100.0 83.6 67.3 13.4 14.5  2.0  1.0 2.0 100.0  20.0 8.3 12.0 18.0 86.7 2.7  0.1 2.0 5.0 30.5 5.0  4.6 41.5 17.5 35.0 28.0 26.7 18.9 85.8  7.0 34.0  2.0  80.0 27.9 12.0  49.4 12.0 30.0 13.3 91.7 40.0 63.5 27.5 3.1.0 33.4 74.3 10.1 94.0  49.4 6.0  0.9 7.5 4.0 29.0  16.5 6.5 3.0 7.0  26.7  continued  128  TABLE 8. continued Species 085 085 085 085 085 085 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 086 089 109 147 153 172 172 172 172 179 179 179 179  continued  Area Buldir I. Buldir I. Buldir I. Buldir I. Buldirl. Pribilofl. Aleutian I. Buldirl. Buldirl. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. E Bering S. Pribilofl. Pribilofl. Pribilofl. Pribilofl. Aleutian I. G . Alaska British Columbia British Columbia Japan Japan Japan Japan Aleutian I. British Columbia G. Alaska Oregon  Year 1994 1995 1996 1997 1998 1993 1989 1989 1991 1992 1993 1994 1995 1996 1997 1998 1978 1980 1981 1982 1983 1984 1975 1982 1983 1993 1985 1978 1980 1971 1992 1993 1994 1995 1980 1971 1985 1940  Ceph 8.3 33.7 8.6 7.5 2.8  Dec  Krill  Cop  0.3 5.6 100.0 37.9  2.1 34.2  1.0  22.1  2.4  4.9 2.3 0.7 30.2 0.3  68.7 11.8 9.6 30.2 77.0  Other  32.6 2.1  4.4  25.0 34.1  Cru 2.6 1.7 0.8 0.1 0.8  0.3  26.4 22.4 26.2  2.2  2.0  1.0  2.5 11.0 6.0  55.0  10.7  2.3  8.2  9.7 3.0  Reference Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Lance and Roby (1998) Springer etal. (1996) Springer etal. (1996) Williams et al. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Williams etal. (2001) Springer et al. (1987) Springer et al. (1987) Springer et al. (1987) Springer et al. (1987) Springer et al. (1987) Springer et al. (1987) Decker et al. (1995) Springer et al. (1986) Springer et al. (1986) Springer etal. (1986) Sanger (1986) Baird (1983) Ainley etal. (1981) Robertson (1974) Kato etal. (2001) Kato era/. (2001)  6.6  33.3 6.8 2.1 5.0  1.0  Kato et al. (2001) Kato etal. (2001) Ainley etal. (1981) Robertson (1974) DeGange and Sanger (1987) Gabrielson and Jewett (1940)  TABLE 8. concluded Species 181 223 223 223 226 226 226 244 300 301 305 305 315 315 315 315 315 315 315 315 315 315 337 337 338 339 340 341 342 346 347  Area Aleutian I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. G . Alaska C Pacific N W Pacific Hokkaido N W Pacific Aleutian I. Bering S. Bering S. Bering S. Bering S. Kurile I. Okhotsk S. N Pacific N W Pacific N W Pacific British Columbia G . Alaska Anadyr G . Aleutian I. Anadyr G . Anadyr G . British Columbia E Bering S. G . Alaska  Year 1989 1996 1997 1998 1996 1997 1998 1985 1991 1991 1980 1990 1978 1978 1997 1998 1999 1978 1978 1978 1978 1990 1980 1980 1998 1996 1998 1998 1980 1935 1935  Myct  Clup  Anch  Ammo 96.7  Cape  Caran  Osme  Gad 3.3  Belon  Seba  Onco  Flat  Fish  69.9 74.6 97.6 90.7 97.1 28.1 71.0 36.1 87.8 52.6  3.0  15.0 15.0  21.0  3.0 19.5 27.8  93.5 12.6 1.5 7.0 18.0 100.0 5.4 59.6 49.7 59.4 9.1  0.9  1.5  130  TABLE 8. concluded Species 181 223 223 223 226 226 226 244 300 301 305 305 315 315 315 315 315 315 315 315 315 315 337 337 338 339 340 341 342 346 347  Area Aleutian I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. Buldir I. G. Alaska C Pacific N W Pacific Hokkaido N W Pacific Aleutian I. Bering S. Bering S. Bering S. Bering S. Kurile I. Okhotsk S. N Pacific N W Pacific N W Pacific British Columbia G . Alaska Anadyr G . Aleutian I. Anadyr G . Anadyr G . British Columbia E Bering S. G. Alaska  Year 1989 1996 1997 1998 1996 1997 1998 1985 1991 1991 1980 1990 1978 1978 1997 1998 1999 . 1978 " 1978 1978 1978 1990 1980 1980 1998 1996 1998 1998 1980 1935 1935  Ceph  Dec  Cru  0.7  2.4 4.7 1.9 3.2 1.5 18.4 1.0  27.5 12.1  14.0 96.0 0.9 27.1 7.7 38.2 2.1 0.1  Cop  4.4  0.2 4.2 0.5  5.4 1.4 38.4  Other  1.1  1.9  3.7  0.3  4.2  9.2 66.8  0.2  4.8 100.0  9.6 17.2 1.6 4.1 0.2 100.0 26.3 89.7 6.5 30.7 18.6  Reference Springer et al. (1996) Williams et al. (2001) Williams et al. (2001) Williams etal. (2001) Williams etal. (2001) Williams et al. (2001) Williams etal. (2001) DeGange and Sanger (1987)  9.0  11.2 30.6 13.9 39.0  Krill  4.4 20.5 98.5 78.0 46.0 83.4 0.2 19.0 86.8 99.8 68.0 10.3 93.5 67.8 81.4  Gould al. (1998) Gould etal. (1997) Ogi (1984) Gould etal. (2000) Ogi etal. (1980) Ogi etal. (1980) Hunt et al. (2002) Hunter al. (2002) Hunt etal. (2002) Ogi etal. (1980) Ogi et al. (1980) Ogi et al. (1980) Ogi et al. (1980) Gould etal. (2000) Vermeer (1982) Koehl etal. (1982) Kondratyev (1999) Fischer and Griffin (2000) Kondratyev (1999) Kondratyev (1999) Vermeer (1981) Cottam(1939) Cottam(1939)  131  T A B L E 9. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the South Atlantic Ocean. Species: Codes as in Table 1 of the Appendix. Clup: Clupeidae; Anch: Anchovies; Belon: Beloniformes; Perch: Perch-like; Caran: Carangidae; Gad: Gadids; Myct: Myctophidae; Ceph: cephalopods; Dec: Species 030 032 037 037 049 095 095 095 098 101 102 103 121 131 {' 138 146 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 167 171 178  Area Ghana Ascension Argentina Argentina S Africa E Benguela Benguela Benguela S Africa E Ascension Argentina Argentina Goughl. Brazil E Namibia S Africa W Benguela Benguela Benguela Benguela Benguela Benguela Benguela Benguela Namibia Namibia S Africa W S Africa W S Africa W S Africa W S Africa W Patagonia Argentina Argentina  Year 2000 1959 1988 1999 1978 1991 1992 1993 1977 1959 1998 1999 1983 1986 1981 1980 1984 1985 1986 1987 1989 1990 1991 1992 1958 1979 1954 1955 1956 1978 1985 1992 1992 1993  Clup 100.0  Anch  Belon  Perch  Caran  Gad  Myct  Fish  Ceph  99.0  1.0  Dec  100.0 88.5 50.0 18.0 3.0  79.0 65.0 64.0  17.0 6.0 1.0  4.0 4.0 6.0  7.0 1.0 100.0 99.0 16.3 91.1  83.7  Cru  Krill  Cop  Other  11.5 50.0  25.0  1.0 8.9 100.0  100.0 100.0 100.0 1.0 50.0 1.0 70.0 37.0 21.0 77.0 36.0 44.0 18.0 30.0 0.1  48.0 97.0 50.0 99.0 30.0 70.0 59.0 60.0 28.0 32.0 19.0 12.0 50.0 45.7 42.5 15.3 0.6  25.0 0.5  25.0 0.5  1.0 2.0  24.0 16.0  1.0  18.0 1.0 21.0 14.0 16.0 1.0 14.4  65.0  3.1  0.1  36.3 30.0 82.4 90.9  6.0 4.0 3.0 3.0 3.0 6.0 15.0 28.0 10.0 0.2 9.8 2.3 8.4  2.0 3.0 5.0 8.0 25.0 9.0 2.0  0.2 15.7  Ref 1 2 3 4 5 6 6 6 7 8 9 10 11 12 13 14 6 6 6 6 6 6 6 6 15 15 15 15 15 15 16 17 18 19  continued  132  TABLE 9 . continued Species 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 184 186 188 210 210 210 257 282 305 319 320 320 320 320 320  Area Benguela Benguela Benguela Benguela Benguela Benguela Benguela Benguela Namibia Namibia S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W S Africa W Ascension Ascension Diego Ramirez I. Diego Ramirez I. Diego Ramirez I. Benguela Gough I. Benguela Falkland I. Falkland I. Falkland I. Falkland I. Falkland I. Falkland I.  Year 1983 1984 1985 1986 1987 1988 1989 1990 1958 1979 1954 1955 1956 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1955 1955 2000 2001 2002 1985 1990 1985 2001 1980 1987 1993 1994 1996  CIup 2.3 7.6 15.2 15.2 38.6 43.2 47.0 62.9 85.0 1.0 44.0 62.0 20.0 10.0 6.0 4.5 4.5 2.0 6.0 7.5 18.0 21.0 42.5 36.5 49.0  Anch 27.3 34.8 16.7 16.7 30.3 21.2 10.6 6.1  Belon 21.2 15.2 18.9 29.5 15.2 13.6 13.6 6.8  Perch  Caran  Gad 41.7 36.4 44.7 35.6 13.6 18.9 19.7 18.9  Myct  Fish 7.5 6.0 4.5 3.0 2.3 3.1 9.1 5.3  10.0 86.0 30.0 26.0 25.0 50.0 48.5 54.0 54.0 64.0 44.0 50.0 27.0 51.5 34.5 39.0 18.5  5.0 7.0 4.0 10.0 14.5 18.5 15.5 9.5 16.0 10.5 19.5 13.0 12.5 10.5 10.0  1.0  66.0 75.9 1.2 33.3  18.0 11.0 30.0 4.0 9.5 7.5 14.0 17.0 27.5 22.0 28.0 12.5 7.0 10.5 10.5  2.7 3.7  Ceph  5.0 4.0 1.0 1.0 11.0  Dec  Cru  Krill  Cop  Other  4.0  10.0  26.0 21.5 15.5 12.0 7.5 6.5 10.0 7.5 2.0 3.5 3.5 12.0 100.0 100.0  2.4  1.9 20.6 11.0 60.7 97.8 1.9 41.3 1.7 15.8 77.3  22.9 12.6 11.8 86.7 2.2 53.0 36.0 39.0 1.7 0.8  6.1 3.0 13.6 0.9 3.0 6.9 22.7 59.3 82.5 21.9  2.3 0.5 52.8 1.4 3.0 38.2  Ref 20 20 20 20 20 20 20 20 15 15 15 15 15 21 21 21 21 21 21 21 21 21 21 21 21 22 22 23 23 23 24 25 24 26 27 28 28 28 28  continued  133  TABLE  9. continued  Gad Myct Fish Ceph K r i l l C o p Other Ref Anch Belon Perch Caran Dec Cru Year Clup Species Area 74.1 28 25.9 1997 320 Falkland I. 28 100.0 1998 Falkland I. 320 96.4 28 1.1 2.5 1999 320 Falkland I. 20.0 3.0 77.0 29 1990 Falkland I. 330 29 7.0 7.0 86.0 1991 330 Falkland I. 31.0 4.0 65.0 29 1992 330 Falkland I. 41.0 3.0 56.0 29 1993 330 Falkland I. 45.0 7.0 48.0 29 1994 330 Falkland I. 30 34.0 48.0 18.0 2000 Falkland I. 330 20 1.8 1.6 1.6 95.0 1983 331 Benguela 20 0.8 1984 99.2 Benguela 331 20 4.9 90.2 4.9 1985 Benguela 331 20 100.0 1986 Benguela 331 20 1.7 1.6 10.7 86.0 1987 Benguela 331 20 1.6 2.5 91.0 1988 4.9 Benguela 331 8.2 20 4.9 1989 24.6 62.3 Benguela 331 9.0 20 16.4 18.0 1990 56.6 Benguela 331 5.0 6 95.0 1991 Benguela 331 6 10.0 22.0 1992 68.0 331 Benguela 15 6.0 5.0 6.0 83.0 1958 331 Namibia 15 54.0 20.0 15.0 11.0 1980 331 Namibia 9.0 9.0 15 20.0 23.0 1954 37.0 2.0 S Africa W 331 '.15 2.0 2.0 3.0 44.0 1955 49.0 S Africa W 331 15 1.0 14.0 1.0 84.0 1978 331 S Africa W 29.8 15.5 31 51.6 3.1 1980 Argentina 333 32 22.1 1.7 19.3 1988 56.9 Argentina 333 33 8.0 5.0 55.0 1997 333 Argentina 34 31.4 2.0 66.6 32.0 1986 Falkland I. 333 34 15.2 54.8 30.0 1987 333 Falkland I. 34 32.8 2.7 64.5 1989 333 Falkland I. 33.0 29 3.0 64.0 1990 Falkland I. 333 29 9.0 91.0 1991 333 Falkland I. 29 7.0 93.0 1992 Falkland I. 333 29 38.0 26.0 36.0 1993 333 Falkland I. 29 57.0 43.0 1994 Falkland I. 333 (1) Van der Winden et al. (2002); (2) Dorward (1963); (3) Spivak and Sanchez (1992); (4) Copello and Favero (2001); (5) McLachlan et al. (1980); (6) Crawford and Dyer (1995); (7) Randall and Randall (1978); (8) Ashmole (1963); (9) Favero et al. (2000); (10) Mauco et al. (2001); (11) Fraser (1984); (12) Rexende (1987); (13) Guillet and Furness (1985); (14) Crawford et al. (1985); (15) Burger and Cooper (1984); (16) Gibbs et al. (1987); (17) Punta et al. (1993); (18) Malacalza et al. (1994); (19) Malacalza et al. (1997); (20) Adams et al. (1992); (21) Berruti et al. (1993); (22) Dorward (1962); (23) Arata and Xavier (2003); (24) Jackson (1988); (25) Klages and Cooper (1997); (26) Cherel et al. (2002d); (27) Croxall et al. (1985); (28) Piitz et al. (2001); (29) Bingham (1995); (30) Clausen and Piitz (2003); (31) Scolaro and Bodano (1986); (32) Scolaro et al. (1999); (33) Gandini et al. (1999); (34) Thompson (1993).  134  Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the South Pacific Ocean. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Chip: Clupeidae; Anch: Anchovies; Seba: Sebastes sp.; Ammo: Ammodytes sp.; Perch: Perch-like; Goat: Goatfish; Exoc: Exocoetidae; Belon: Beloniformes; Caran: Carangidae; Syno: Synodontidae; Flat: Flatfish; Athe: Atherinidae; Scorp: Scorpaeniformes; Gad: Gadids; Ceph: cephalopods; s, insects, and offal. T A B L E 10.  pedes 010 012 019 022 024 024 024 026 026 031 032 034 044 069 069 069 083 083 095 095 095 101 101 105 115 119 130 131 132 137 143 147 154  Area California Bight California Bight California Bight California Bight Hawaii Hawaii Solomon I. Hawaii Solomon I. Galapagos Hawaii Peru California State California Bight California Bight California Bight Hawaii Hawaii New South Wales New South Wales Queensland Hawaii Solomon I. Hawaii Great Barrier Reef Snares Islands Great Barrier Reef Mexico W Hawaii Peru Hawaii California Bight Solomon I.  Year 1993 1993 1993 1993 1982 1988 1965 1988 1965 1968 1988 1935 1985 1975 1976 1977 1981 1988 2000 2001 1987 1988 1965 1988 1986 1985 1994 1991 1988 1987 1988 1993 1975  Myct  Clup  Anch  19.1  37.4  Seba 61.5 29.6  62.8  31.2  Ammo  Perch  Goat  Exoc  30.8 36.1  2.0 7.3  29.2  6.6  20.1  23.5  Belon  Caran  Syno  Flat 5.3  Athe  Scorp  1.0 1.0  8.4  40.5 22.3 9.5  4.5  65.0 100.0 16.0 24.0  13.0 6.0  3.0 3.0 9.4 14.7  27.2 25.8  20.9  13.0  27.0 82.0  40.0 11.0  15.0  5.7  5.8  8.1 19.0 10.3  15.0  25.0  25.0  20.0  9.1 9.5 16.7  71.1  60.9  2.1 16.0  57.0  36.0  12.7  13.0 20.3 13.7 20.0  continued  135  TABLE 10. Percentage of weight or volume contribution of food groups (see Table 2.2 for description) in the diet of seabird species breeding around the South Pacific Ocean. Species: Codes as in Table 1 of the Appendix. Myct: Myctophidae; Clup: Clupeidae; Anch: Anchovies; Seba: Sebastes sp.; Ammo: Ammodytes sp.; Perch: Perch-like; Goat: Goatfish; Exoc: Exocoetidae; Belon: Beloniformes; Caran: Carangidae; Syno: Synodontidae; Flat: Flatfish; Athe: Atherinidae; Scorp: Scorpaeniformes; Gad: Gadids; Ceph: cephalopods; Dec: decapods; Cru: other crustaceans; Cop: copepods; Other: includes molluscs, polychaetes, insects, and offal. Species 010 012 019 022 024 024 024 026 026 031 032 034 044 069 069 069 083 083 095 095 095 101 101 105 115 119 130 131 132 137 143 147 154  Area California Bight California Bight California Bight California Bight Hawaii Hawaii Solomon I. Hawaii Solomon I. Galapagos Hawaii Peru California State California Bight California Bight California Bight Hawaii Hawaii New South Wales New South Wales Queensland Hawaii Solomon I. Hawaii Great Barrier Reef Snares Islands Great Barrier Reef Mexico W Hawaii Peru Hawaii California Bight Solomon I.  Year 1993 1993 1993 1993 1982 1988 1965 1988 1965 1968 1988 1935 1985 1975 1976 1977 1981 1988 2000 2001 1987 1988 1965 1988 1986 1985 1994 1991 1988 1987 1988 1993 1975  Gad  Fish  Ceph  Dec  Cru  Krill  Cop  Other  Reference Sydeman  al. (1997)  Sydeman Sydeman  al. (1997) a/. (1997)  Sydemanetal. (1997) Seki and Harrison (1989) Harrison (1990) Ashmole and Ashmole (1967) Harrison (1990) Ashmole and Ashmole (1967) Harris (1970) Harrison (1990) Velando and Marquez (2002) Winkler (1996) Hunt and Butler (1980) Hunt and Butler (1980) Hunt and Butler (1980) Bertellotti and Yorio (2000) Harrison (1990) Chiaradia et al. (2002) Chiaradia et al. (2002) Blaber and Wassenberg (1989) Harrison (1990) Ashmole and Ashmole (1967) Harrison (1990) Smith (1990) 9.1 74.6 7.6  2.3 8.3  33.9  16.4  7.0 97.8  0.5  2.2  0.4  Sagar et al. (2003) Blaber et al. (1995) Calixto-Albarran and Osorno (2000) Harrison (1990) Guillen (1990) Harrison (1990) Sydeman et al. (1997) Morrisons al. (1977)  continued  136  TABLE 10. continued  Species 157 158 158 158 158 163 182 182 182 182 182 182 186 186 186 186 186 188 188 188 188 189 189 189 190 190 190 191 191 191 200 202 203 203 203 216 227 227  Area  Year  Queensland Peru Peru Peru Peru Queensland New South Wales New Zealand New Zealand New Zealand New Zealand Victoria Great Barrier Reef Hawaii Peru Peru Peru American Samoa Great Barrier Reef Hawaii S. Cortes Peru Peru Peru Great Barrier Reef Hawaii Hawaii Peru Peru Peru Hawaii Hawaii Snares I. Snares I. Solander I. Chatham I. Peru Peru  1987 1977 1995 1996 1997 1987 1998 1979 1980 1981 1983 2000 1994 1988 1996 1997 1998 1980 1994 1988 2000 1996 1997 1998 1994 1982 1988 1986 1996 1997 1988 1988 1996 1997 1997 1979 1996 1999  Myct  Clup  Anch  Seba  Ammo Perch  28.1 65.0 2.0 39.4  20.0 65.5 87.0 85.7 32.5 16.0  Goat  Exoc  Belon  10.2 51.0 3.2 2.6 1.4 0.1 48.0  -.  24.1  64.1 57.7 10.7  10.7  32.9 25.2  50.3  45.5 14.7  21.5 6.2 17.7 28.8  8.3 18.3 23.0  •  1.6 10.1 4.0  2.7  7.5 6.3 0.6  9.0 14.4 2.0 2.7 7.5  5.0  29.3  2.9  Athe Scorp  7.0  6.7 4.3 5.9 22.8 9.0  100.0 91.7 82.3 26.0 20.5  Syno Flat  11.0  56.1 56.4  0.2  Caran  12.8  1.8  12.9 57.4 26.7 0.1 0.2 0.7  87.0 97.7 93.9  8.1 12.2 5.2  5.7 60.9 47.0 32.5 4.3 3.4  43.2  continued  137  TABLE 10. continued Species 157 158 158 158 158 163 182 182 182 182 182 182 186 186 186 186 186 188 188 188 188 189 189 189 190 190 190 191 191 191 200 202 203 203 203 216 227 227  Area Queensland Peru Peru Peru Peru Queensland New South Wales New Zealand New Zealand New Zealand New Zealand Victoria Great Barrier Reef Hawaii Peru V Peru Peru American Samoa Great Barrier Reef Hawaii S. Cortes Peru , Peru Peru Great Barrier Reef Hawaii Hawaii Peru Peru Peru Hawaii Hawaii Snares I. Snares I. Solander I. Chatham I. Peru Peru  Year 1987 1977 1995 1996 1997 1987 . 1998 1979 1980 1981 1983 2000 1994 1988 1996 1997 1998 1980 1994 1988 2000 1996 1997 1998 1994 1982 1988 1986 1996 1997 1988 1988 1996 1997 1997 1979 1996 1999  Pbac  2.0  Fish 64.1 71.9 28.0 87.0 60.6 63.1 19.0 9.7 3.9 3.7 6.0 18.0 26.5 7.9 42.3 8.1 27.7 29.6 6.7 2.0 70.0 21.6 3.0 32.2 1.4 1.4 5.4 4.8 36.0 24.0 23.0 0.3 26.9 22.4  Ceph 23.1  Dec  Cru  Krill  Cop  Other  Reference Blaber and Wassenberg (1989) Tovar Serpa and Galarza Minaya (1983) Zavalaga and Paredes (1999) Zavalaga and Paredes (1999) Jahncke er al. (1997) Blaber and Wassenberg (1989) Bunce (2001) Wingham(1985) Wingham(1985) Wingham(1985) Robertson (1992) Bunce (2001)  26.7 1.0 0.5 0.2 0.6 5.0 4.0 17.4 2.8  Blaber etal. (1995) Harrison (1990) Jahncke and Goya (2000) Jahnckeera/. (1997) Jahncke and Goya (2000)  0.9 46.2 9.1 3.9  Harrison etal. (1984) Blaber etal. (1995) Harrison (1990) Mellinketal. (2001) Jahncke and Goya (2000) Jahncke etal. (1997) Jahncke and Goya (2000)  45.0 22.2 28.9 0.1 78.0 30.8 3.5 9.0 10.5  11.5 8.3  44.4 28.2  24.4 2.3  1.5 2.0 2.0 6.9  7.3 0.5  59.0 18.0 32.0 85.5  Blaber etal. (1995) Seki and Harrison (1989) Harrison (1990) Tovar and Guillen (1988) Jahncke and Goya (2000) Jahnckeera/. (1997) Harrison (1990) Harrison (1990) James and Stahl (2000) James and Stahl (2000) James and Stahl (2000) Imber(1981) Garcia-Godos et al. (2002) Garcia-Godos et al. (2002)  continued  138  TABLE 10. concluded  Species 227 232 233 234 238 250 251 254 254 255 255 261 261 281 287 300 305 305 310 313 315 322 326 327 327 332  Area  Year  Myct  Peru Hawaii Chatham I. Peru Hawaii New Zealand Bounty I. New Zealand New Zealand Chatham I. Chatham I. New Zealand New Zealand Hawaii New Zealand New Zealand California Bight California State Hawaii Hawaii Victoria New Zealand Victoria New Zealand New Zealand Chile S  2000 1988 1980 1996 1988 1970 1950 1973 1975 1977 1980 1993 1996 1988 1971 1981 1979 1977 1988 1988 1981 1984 1988 1986 1993 1985  8.2  Clup  4.3 6.9 30.3  Anch  Seba  Ammo  Perch  Goat  Exoc  Belon  Caran  Syno  Flat  Athe Scorp  9.1 5.1  2.3 78.8 7.0  30.8 28.0 44.0 53.0  44.0 17.0 15.7 20.0  2.9 16.0  2.5  15.0  15.0  30.0  25.0  37.5  10.1 3.9  14.3 26.7  47.0  139  TABLE 10. continued Species 227 232 233 234 238 250 251 254 254 255 255 261 261 281 287 300 305 305 310 313 315 322 326 327 327 332  Area Peru Hawaii Chatham I. Peru Hawaii New Zealand Bounty I. New Zealand New Zealand Chatham I. Chatham I. New Zealand New Zealand Hawaii New Zealand New Zealand California Bight California State Hawaii Hawaii Victoria New Zealand Victoria New Zealand New Zealand ChileS  Year 2000 1988 1980 1996 1988 1970 1950 1973 1975 1977 1980 1993 1996 1988 1971 1981 1979 1977 1988 1988 1981 1984 1988 1986 1993 1985  Gad  Fish 8.1 38.0 25.7 36.1 32.4 0.6  Ceph 83.6 52.5  25.9 0.3  Dec 9.5 6.6 19.2 6.3 99.1  2.3 78.9 23.7 23.4 4.0 14.0 10.9 12.7 1.0 38.3 7.4  1.0 27.5 52.1 77.9 6.0  0.6 0.6 18.7 18.7 27.2 58.0 5.0 6.0 49.0 33.2 9.0 85.0 14.2 9.6 14.5 7.0  Krill  16.6  46.2 28.7  100.0 0.3  ...  0.7 4.0  Cru 0.1  2.0 1.3 1.3'  19.8 25.6  99.0 94.0 5.8  Cop  0.1  70.0 70.0  Other  0.5  0.2 0.2  2.5 2.4 11.3 12.0  2.0 76.6 3.0 10.0  0.6 5.0 13.0  5.0  35.0 3.3  0.1  0.1  Reference Garcia-Godos et al. (2002) Harrison (1990) Imber(1981) Jahncke et al. (1999) Harrison (1990) Prince and Morgan (1987) Imber(1981) Imber(1981) Prince and Morgan (1987) Imber(1981) Prince and Morgan (1987) Freeman and Wilson (2002) Freeman (1998) Harrison (1990) Imber(1973) Harper (1983) Chu(1984) Chu(1984) Harrison (1990) Harrison (1990) Montague et al. (1986) van Heezik (1989) Cullene*a/.(1992) van Heezik (1990) Moore and Wakelin (1997) Wilson et al. (1989)  140  TABLE 11. Energy Density (ED; in kJ/g) of forage prey known to occur in the diets of seabirds. Prey taxon  Area  Fish  NEUS Gulf of Alaska North Sea Japan Gulf of Alaska Macquarie Island Gulf of Alaska Macquarie Island W Mediterranean Newfoundland Scotian Shelf Gulf of Alaska W Mediterranean Macquarie Island Macquarie Island Macquarie Island Victoria W Mediterranean Japan W Mediterranean Gulf of Alaska Newfoundland Scotian Shelf W Mediterranean Newfoundland Gulf of Alaska Macquarie Island Macquarie Island Macquarie Island Gulf of Alaska Gulf of Alaska Scotian Shelf Victoria Macquarie Island Macquarie Island Gulf of Alaska Scotian Shelf Scotian Shelf Gulf of Alaska Newfoundland Albatross Island Gulf of Alaska Newfoundland Scotian Shelf Scotian Shelf North Sea Scotian Shelf W Mediterranean W Mediterranean Gulf of Alaska Gulf of Alaska McDonald Islands McDonald Islands Japan  Ammodytes hexapterus Ammodytes marinus Ammodytes personalis Anoplopoma fimbria Antimora rostrata Atheresthes stomias Bathylagus antarcticus Boops boops Boreogadus saida Clupea harengus Clupea pallasi Deltentosteus quadrimaculatus Electrona antarctica Electrona carlsbergi Electrona subaspera Engraulis australis Engraulis encrasicolus Engraulis japonicus Gadiculus argenteus argenteus Gadus macrocephalus Gadus morhua Gadus morhua Gobius niger Gymnelus viridis Gymnocanthus galeatus Gymnoscopelus braueri Gymnoscopelus fraseri Gymnoscopelus microlampas Hexagrammos stelleri Hexagrammos spp. Hippoglossoides platessoides Hyporhamphus melanochir Krefftichthys anderssoni Lepidonotothen squamifrons Lepidopsetta bilinearis Leptoclinus maculatus Limanda ferruginea Lumpenus fabricii Lumpenus maculatus Macruronus novaezelandiae Mallotus villosus Mallotus villosus Mallotus villosus Melanogrammus aeglefinus Merlangius merlangus Merluccius bilinearis Merluccius merluccius Micromesistius poutassou Myoxocephalus polyacanthocephalus Ophiodon elongatus Paradiplospinus gracilis Pleuragramma antarcticum Pleurogrammus azonus continued  ED  Reference  4.76 5.67 4.64 5.47 2.64 1.26 5.80 3.93 5.94 5.89 7.20 5.84 5.81 9.04 5.37 7.42 5.20 6.67 6.29 6.77 2.94 4.09 4.80 4.81 4.42 5.40 10.91 8.26 9.05 3.45 3.45 4.20 5.70 8.36 5.00 3.36 5.90 4.50 4.73 6.08 6.00 4.84 7.54 7.50 5.30 4.40 6.00 4.88 5.98 3.31 3.98 4.60 7.00 4.78  1 2 3 4 2 5 6 5 7 8 9 10 7 11 11 5; 11 12 7 4 7 2 8 13 7 8 6 11 11 5 10 2 13 12 5 5 10 9 13 10 8 14 2 8 13 13 3 13 7 7 10 10 15 15 4  141  TABLE 11. continued Prey taxon  Pleurogrammus monopterygius Pollachius virens Protomyctophum spp. Salmo salar Sardina pilchardus Sardinella aurita Sardinops sagax Scomber scombrus Scomberesox saurus Sebastes polyspinis Sebastes spp. Serranus hepatus Sprattus sprattus Symphurus nigrescens Synchiropus phaethon Thaleichthys pacificus Theragra chalcogramma Thyrsites atun Trematomus eulepidotus Trichodon trichodon Trisopterus minutus Zaprora silenus Callionymidae Cottidae Gadidae Gobiidae Myctophidae Myctophidae Pleuronectidae Triglidae Cephalopods Squid Squid  Gonatus sp. Histioteuthis sp. Mastigoteuthis sp. Moroteuthis ingens Moroteuthis sp. Nototddarus gouldi Onychoteuthis borealijaponica Todarodes sp. Gonatidae Bivalves Gastropods Mollusks Cirripedia Barnacles Crustaceans Crustaceans Amphipods Amphipods Chaetognaths Cladocerans  Area Gulf of Alaska Scotian Shelf Macquarie Island Newfoundland W Mediterranean W Mediterranean Victoria Newfoundland Newfoundland Gulf of Alaska Gulf of Alaska W Mediterranean North Sea W Mediterranean W Mediterranean Gulf of Alaska Gulf of Alaska Victoria McDonald Islands Gulf of Alaska W Mediterranean Gulf of Alaska W Mediterranean NEUS W Mediterranean W Mediterranean Gulf of Alaska Scotian Shelf W Mediterranean W Mediterranean  ED 4.02 5.00 7.54 4.40 10.03 6.91 8.60 10.30 6.80 6.10 2.97 7.43 5.85 5.81 5.38 7.70 2.73 7.10 6.10 3.36 5.59 2.37 5.34 4.91 5.81 5.34 8.05 3.00 5.28 8.45  Reference 2 13 7 16 7 7 12 16 16 6 2 7 3 7 7 6 2 12 15 2 7 2 7 6 7 7 2 9 7 7  Newfoundland Scotian Shelf Macquarie Island Macquarie Island Macquarie Island McDonald Islands McDonald Islands McDonald Islands Gulf of Alaska Macquarie Island Gulf of Alaska Gulf of Alaska Gulf of Alaska Gulf of Alaska Gulf of Alaska Gulf of Alaska Macquarie Island Scotian Shelf Gulf of Alaska Scotian Shelf Gulf of Alaska Gulf of Alaska  4.30 4.20 3.78 2.65 1.82 5.60 1.84 2.00 6.10 4.01 3.81 1.79 2.62 2.00 3.28 2.05 4.68 3.00 2.91 3.00 0.83 2.51  18 13 5 5 5 17 5 15 6 5 2 19 19 19 20 19 5 9 19 9 20 19  continued  142  TABLE 11. concluded Prey taxon Crabs Decapods Isopods Ostracods Euphausiids Euphausiids Copepods  Eucalanus bungii Neocalanus cristatus Neocalanus plumchrus Polychaetes Jellyfish Insects Oiironornidae Marine mammals Seabirds  Area Gulf of Alaska Gulf of Alaska Gulf of Alaska Gulf of Alaska Gulf of Alaska Scotian Shelf Gulf of Alaska Bering Sea Bering Sea Bering Sea Gulf of Alaska Gulf of Alaska Gulf of Alaska Gulf of Alaska Gulf of Alaska Scotian Shelf  ED 3.79 3.25 2.59 1.26 3.46 3.00 3.81 2.02 5.36 4.95 1.68 0.60 4.53 2.22 7.00 5.93  Reference 19 20 20 20 19 9 19 21 21 21 20 19 19 22 19 9  (1) Dunn (1975); (2) van Pelt et al. (1997); (3) Hilton et al. (1998); (4) Takahashi et al. (2001); (5) Goldsworthy et al. (2001); (6) Perez (1994); (7) Byrd et al. (1997); (8) Birkhead and Nettleship (1987); (9) Huettmann (2003); (10) Litzow et al. (2004); (11) Tiemey et al. (2002); (12) Bunce (2001); (13) Bowen et al. (1993); (14) Gales and Green (1990); (15) Moore etal. (1998); (16) Montevecchi etal. (2002); (17) Cherel and Ridoux (1992); (18) Cooper (1992); (19) Davis et al. (1998); (20) Foy and Norcross (1999); (21) Russell et al. (1999); and (22) Cummins and Wuycheck(1971).  143  TABLE 12. Mean trophic levels (TL) of the world's seabirds. N: number of datasets for which diet composition was available for different breeding sites; Min and Max: Minimum and maximum TL respectively; SD: Standard Deviation; SE: Standard Error. TL Species Crested auklet Least auklet Whiskered auklet Razorbill Dovekie Kittlitz's murrelet Marbled murrelet Long-billed murrelet Spectacled guillemot Pigeon guillemot Black guillemot Rhinoceros auklet Parakeet auklet Craven's murrelet Xantus' murrelet Atlantic puffin Tufted puffin Homed puffin Cassin's auklet Ancient murrelet Japanese murrelet Common murre Thick-billed murre Black noddy Lesser noddy Brown noddy Black-fronted tern Whiskered tern White-winged tem Black tern Swallow-tailed gull White tern Lesser white tem Inca tem Herring gull Armenian gull Olrog's gull Laughing gull Audouin's gull Band-tailed gull Brown-headed gull Black-billed gull Yellow-legged gull California gull Common gull Grey-headed gull Black-tailed gull Ring-billed gull Kelp gull Lava gull  N  Mean  Min  Max  SD  11 16 6 9 7 4 7 1 1 10 7 31 8 1 1 48  3.17 3.07 3.11 4.03 3.21 4.01 3.87 4.00 3.70 4.22 4.40 4.10 3.27 4.30 4.50 4.12 4.27 .4.16 3.44 3.44 4.20 4.08 4.17 4.55 4.47 4.44 3.90 3.57 3.60 3.43 4.05 4.40 4.00 3.94 3.67 3.30 3.46 3.50 4.12 3.70 3.30 3.80 3.65 2.81 3.80 3.20 4.02 3.35 3.57 3.40  3.10 3.01 3.02 3.87 3.00 3.79 3.69  3.23 3.12 3.37 4.11 3.81 4.26 3.99  0.04 0.04 0.13 0.07 0.30 0.19 0.11  -  -  -  3.52 4.13 3.95 3.04  4.46 4.50 4.66 3.75  0.26 0.13 0.15 0.25  -  -  -  3.85 4.08 3.96 3.17 3.25  4.35 4.50 4.50 4.11 3.63  0.11 0.14 0.18 0.30 0.27  17 18 12 2 1 48 41 3 4 6 1 1 1 1 2 3 1 2 8 1 2 1 4 1 1 1 6 1 2 1 14 1 4 1  .  -  -  -  3.49 3.36 4.50 4.44 4.24  4.50 4.50 4.64 4.49 4.50  0.17 0.20 0.08 0.02 0.10  -  -  -  3.80 4.32  4.30 4.50  0.35 0.09  -  -  -  3.68 2.95  4.20 4.41  0.37 0.45  -  -  -  3.41  3.50  0.06  -  -  3.83  4.33  -  -  -  -  3.01  4.47  0.64  -  -  -  3.50  4.10  0.42  0.21  -  -  -  3.93  4.37  0.11  -  -  -  3.40  3.75  0.17  -  -  -  SE 0.36 0.20 0.24 0.23 0.30 0.28 0.29 0.67 0.42 0.55 0.69 0.37 0.33 0.40 0.80 0.30 0.44 0.40 0.41 0.37 0.58 0.30 0.36 0.61 0.66 0.62 0.64 0.56 0.58 0.12 0.30 0.61 0.66 0.38 0.46 0.51 0.58 0.42 0.56 0.64 0.51 0.58 0.55 0.32 0.56 0.50 0.34 0.37 0.54 0.56  continued  144  TABLE 12. continued TL Species Lesser black-backed gull Slender-billed gull Glaucous-winged gull Iceland gull Thayer's gull Hartlaub's gull Heermann's gull Sooty gull Glaucous gull Great black-headed gull White-eyed gull Yellow-footed gull Brown-hooded gull Great black-backed gull Mediterranean gull Little gull Gray gull Silver gull Western gull Pacific gull Bonaparte's gull Franklin's gull Relict gull Common black-headed gull Saunder's gull Slaty-backed gull Red-billed gull Dolphin gull Andean gull Ivory gull Large-billed tern Gray noddy Blue noddy Ross's gull Red-legged kittiwake Black-legged kittiwake Black-bellied tern Little tern Aleutian tern Bridled tern Least tern River tern Damara tern Lesser crested tern Crested tern Chinese crested tem Caspian tern Roseate tern Elegant tern Forster's tern Sooty tern South American tern Common tern  N ' 2 1 1 1 1 1 1 1 1 1 1 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 57 1 1 1 1 1 1 1 10 1 1 1 1 6 1 10  Mean 3.98 3.80 4.04 3.30 3.60 3.40 3.70 4.00 4.40 4.10 3.70 3.90 3.20 3.64 3.55 4.54 4.00 3.30 4.22 3.40 3.92 3.40 3.40 3.40 3.90 4.35 3.20 3.40 4.00 4.23 3.50 4.00 4.36 3.90 4.25 4.00 4.00 3.50 3.49 4.25 4.50 4.00 4.00 4.50 4.25 4.50 4.10 4.45 3.90 4.00 4.45 4.18 4.32  SD  Min 3.60  Max 4.35  -  -  -  3.12 2.64 4.54  4.15 4.45 4.54  0.52 1.28 0.00  -  0.53  -  0.19  4.43  4.05  -  -  -  -  3.27  4.35  0.49  -  -  4.18  4.48  0.15  -  -  -  4.30  4.42  0.08  -  -  -  -  4.05 3.17  4.41 4.40  0.10 0.25  4.06  3.81  4.43  4.50  0.26  0.24  -  -  4.16  4.50  -  -  -  4.50  0.03  4.41  -  -  3.86  4.50  0.13  0.21  SE 0.61 0.59 0.24 0.50 0.63 0.53 0.62 0.65 0.46 0.61 0.58 0.64 0.48 0.52 0.56 0.62 0.66 0.46 0.53 0.53 0.64 0.45 0.53 0.41 0.64 0.62 0.50 0.51 0.67 0.48 0.50 0.57 0.59 0.64 0.42 0.32 0.65 0.47 0.42 0.55 0.80 0.65 0.66 0.80 0.61 0.80 0.55 0.73 0.47 0.25 0.55 0.58 0.65  continued 145  TABLE 12. continued  TL Species Peruvian tern Gray-backed tern Royal tern Fairy tern Gull-billed tern Arctic tern White-cheeked tern Sandwich tern Cayenne tern Saunder's tern White-fronted tern Black-naped tern Yellow-billed tern Trudeau's tern Kerguelen tern Antarctic tern Sabine's gull Brown skua Chilean skua South polar skua Pomarine jaeger Great skua Long-tailed jaeger Parasitic jaeger Christmas Island frigatebird Ascension frigatebird Lesser frigatebird Magnificent frigatebird Great frigatebird Australian pelican Dalmatian pelican American white pelican Brown pelican Peruvian pelican Great white pelican Spot-billed pelican Pink-backed pelican Red-billed tropicbird White-tailed tropicbird Red-tailed tropicbird Black-faced cormorant Flightless cormorant Bank cormorant Brandt's cormorant New Zealand king shag Stewart Island shag Auckland Island shag Chatham Island shag Bounty Island shag Double-crested cormorant Neotropic cormorant Indian cormorant  N 1 1 1 1 11 1 1 1 1 1 1 1 1 4 2 9 1 11 1 20 2 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  Mean  Min  Max  SD  4.00 4.43 4.49 4.00 3.79 3.84 4.00 4.33 4.00 3.70 4.50 4.18 4.50 4.50 4.00 3.75 3.92 4.75 3.70 4.44 4.40 4.29 4.27 4.14 4.30 4.50 4.41 4.52 4.23 3.70 4.50 4.50 4.50 3.82 4.50 4.20 3.80 4.50 4.22 4.40 4.50 4.50 4.50 4.26 4.50 4.50 4.50 4.40 4.50 4.33 4.48 4.50  -  -  -  3.20 3.34  4.13 4.22  0.34 0.30  4.15  4.50  0.25  -  -  -  3.67 3.84 4.39  4.14 4.00 4.97  0.28 0.11 0.21  -  -  4.00  4.77  0.35  -  -  -  4.08 4.00 4.11  4.77 4.53 4.16  0.20 0.37 0.04  -  -  -  4.35 4.50 4.15  4.46 4.53 4.31  0.08 0.02 0.11  4.31  4.20  -  -  4.49  0.13  4.31  -  -  4.14  4.46  -  -  0.08  0.12  -  SE 0.66 0.73 0.77 0.65 0.52 0.45 0.66 0.58 0.67 0.56 0.80 0.52 0.80 0.80 0.66 0.48 0.52 0.25 0.49 0.28 0.62 0.47 0.48 0.25 0.27 0.80 0.62 0.77 0.43 0.59 0.80 0.80 0.80 0.33 0.80 0.58 0.66 0.61 0.39 0.63 0.80 0.59 0.80 0.45 0.80 0.80 0.80 0.43 0.80 0.61 0.80 0.80  continued 146  TABLE 12. continued  TL Species  N  Little black cormorant Pied cormorant Guanay cormorant Cape cormorant Socotra cormorant Long-tailed cormorant Crowned cormorant Little pied cormorant Little cormorant Pygmy cormorant Campbell shag Imperial shag Antarctic shag South Georgia shag Kerguelen shag King cormorant Japanese cormorant Great cormorant Macquarie shag European shag Pitt Island shag Red-legged cormorant Rock cormorant Pelagic cormorant Spotted shag Red-faced cormorant Australasian gannet Northern gannet Cape gannet Abbott's booby Masked booby Nazca booby Brown booby Blue-footed booby Red-footed booby Peruvian booby Amsterdam albatross Antipodean albatross Tristan albatross Southern royal albatross Wandering albatross Gibson's albatross Northern royal albatross Short-tailed albatross Laysan albatross Waved albatross Black-footed albatross Buller's albatross Indian yellow-nosed albatross Shy albatross Yellow-nosed albatross Grey-headed albatross Chatham albatross  1 1 5 15 1 1 1 1 1 1 1 5 6 5 1 1 4 16 1 11 1 1 1 4 1 1 6 5 40 1 6 1 5 3 4 3 1 1 1 1 7 1 1 1 1 1 1, 3 2 1 3 11 1  Mean  Min  Max  SD  SE  3.70 4.50 4.12 4.03 4.50 4.50 3.80 4.50 4.41 4.50 4.50 4.22 4.40 4.38 4.00 4.44 4.26 4.34 4.46 4.19 4.00 3.30 4.50 4.17 4.00 3.98 3.86 4.39 4.16 4.50 4.16 4.50 4.20 3.94 4.30 3.71 4.20 4.50 4.50 4.00 4.46 4.10 4.00 3.80 4.37 4.20 4.15 4.16 4.29 4.50 4.47 4.31 4.50  -  -  -  3.68 3.64  4.48 4.37  0.30 0.22  -  -  -  4.06 4.30 4.33  4.42 4.46 4.44  0.14 0.07 0.05  -  -  -  4.14 4.01  4.36 4.50  0.09 0.14  0.58 0.69 0.58 0.47 0.80 0.80 0.64 0.68 0.78 0.80 0.80 0.52 0.54 0.56 0.66 0.76 0.57 0.66 0.53 0.40 0.66 0.52 0.77 0.61 0.66 0.29 0.37 0.63 0.47 0.61 0.51 0.61 0.50 0.48 0.47 0.31 0.59 0.61 0.61 0.56 0.48 0.56 0.57 0.31 0.42 0.51 0.28 0.60 0.61 0.49 0.71 0.50 0.55  -  -  -  -  4.06  4.35  0.12  -  -  -  3.93  4.42  0.24  -  -  -  3.52 4.26 3.61  4.13 4.50 4.61  0.30 0.11 0.23  -  -  -  3.93  4.50  0.20  -  -  -  3.68 3.75 4.20 3.69  4.50 4.29 4.37 3.73  0.34 0.30 0.08 0.02  -  -  -  4.52  0.08  4.31  -  -  -  3.92 4.20  4.35 4.38  0.22 0.13  -  -  -  4.45 3.49  4.50 4.52  0.03 0.29  -  -  -  continued 147  TABLE 12. continued TL Species  N  Mean  Min  Max  SD  SE  Campbell albatross Black-browed albatross Salvin's albatross Sooty albatross Light-mantled albatross White-bellied storm petrel Black-bellied storm petrel Grey-backed storm petrel Least storm petrel European storm petrel White-throated storm petrel White-vented storm petrel Wilson's storm petrel Madeiran storm petrel Fork-tailed storm petrel Ashy storm petrel Hornby's storm petrel Leach's storm petrel Markham's storm petrel Matsudaira's storm petrel Black storm petrel Swinhoe's storm petrel Wedge-rumped storm petrel Tristram's storm petrel White-faced storm petrel Peruvian diving petrel South Georgia diving petrel Magellanic diving petrel Common diving petrel Bulwer's petrel Jouanin's petrel Cory's shearwater Cape Verde shearwater Streaked shearwater Cape petrel Northern fulmar Southern fulmar Blue petrel Kerguelen petrel Southern giant petrel Northern giant petrel Thin-billed prion Fulmar prion Antarctic prion Salvin's prion Fairy prion Broad-billed prion Snow petrel White-chinned petrel Grey petrel Spectacled petrel Parkinson's petrel Westland petrel  1 12 1 3 5 1 2 5 1 1 1 1 5 1 3 1 1 4 3 1 1 1 1 1 1 1 6 1 5 1 1 1 1 1 10 11 4 6 3 9 6 6 1 11 2 5 2 7 9 1 1 1 2  3.80 4.37 4.50 4.55 4.20 4.00 3.86 3.49 3.50 3.80 4.20 4.20 3.63 4.20 4.23 4.20 4.20 4.06 4.29 4.20 4.20 . 4.20 3.70 4.41 3.65 3.86 3.18 3.10 3.16 4.34 3.90 4.24 4.10 4.50 3.61 4.25 4.03 3.75 3.84 4.61 4.62 3.76 3.50 3.33 3.57 3.42 3.12 3.97 4.02 4.46 4.20 3.90 4.38  -  -  -  3.95  4.56  0.23  -  -  -  4.51 3.97  4.59 4.50  0.04 0.22  0.51 0.57 0.61 0.46 0.48 0.44 0.46 0.50 0.47 0.58 0.57 0.56 0.45 0.57 0.37 0.57 0.57 0.49 0.49 0.57 0.58 0.58 0.56 0.59 0.56 0.60 0.38 0.27 0.37 0.55 0.49 0.59 0.39 0.61 0.40 0.58 0.36 0.49 0.42 0.38 0.37 0.47 0.50 0.40 0.45 0.49 0.28 0.38 0.49 0.52 0.62 0.47 0.55  -  -  -  3.81 3.47  3.90 3.50  0.06 0.01  -  -  -  3.25  4.12  0.36  -  -  -  4.14  4.30  0.08  -  -  -  3.57 4.11  4.26 4.48  0.33 0.19  -  -  -  3.11  3.22  0.04  -  -  -  3.07  3.26  0.09  -  -  -  3.17 3.58 3.71 3.31 3.18 4.34 4.40 3.29  4.46 4.49 4.42 4.07 4.19 4.75 4.76 4.50  0.41 0.28 0.37 0.27 0.57 0.16 0.16 0.59  -  -  -  3.09 3.32 3.21 3.11 3.46 3.79  4.07 3.81 3.94 3.12 4.15 4.33  0.27 3.57 0.30 0.01 0.24 0.20  -  -  -  4.27  4.48  0.15  continued 148  TABLE 12. continued TL Species Mascarene petrel Beck's petrel Fiji petrel Tahiti petrel Phoenix petrel Trindade petrel Henderson petrel Chatham Island petrel Barau's petrel Collared petrel Bermuda petrel Jamaica petrel White-necked petrel Cook's petrel De Filippi's petrel Juan Fernandez petrel Cape Verde petrel Black-capped petrel Herald petrel Bonin petrel Atlantic petrel Mottled petrel White-headed petrel Gould's petrel Stejneger's petrel Great-winged petrel Madeira petrel Magenta petrel Soft-plumaged petrel Kermadec petrel Black-winged petrel Galapagos petrel Pycroft's petrel Hawaiian dark-rumped petrel Providence petrel Murphy's petrel Little shearwater Townsend's shearwater Buller's shearwater Flesh-footed shearwater Pink-footed shearwater Fluttering shearwater Greater shearwater Sooty shearwater Heinroth's shearwater Hutton's shearwater Audubon's shearwater Balearic shearwater Christmas shearwater Newell's shearwater Black-vented shearwater Wedge-tailed shearwater Manx shearwater  N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 4 2  Mean  Min  Max  SD  SE  4.20 4.20 4.20 4.20 4.30 4.30 4.30 4.50 4.30 4.30 4.30 4.10 4.50 4.20 4.20 4.20 4.20 4.00 3.80 4.32 4.48 4.10 4.35 4.50 4.50 4.28 4.50 4.20 3.95 3.60 4.10 4.20 4.50 4.20 4.30 3.60 3.80 4.50 4.04 4.49 3.80 4.00 4.28 4.29 4.20 3.80 4.50 4.40 4.42 4.00 3.90 4.47 4.35  -  -  -  4.15  4.41  0.13  -  -  -  3.52  4.38  0.61  -  -  -  3.50  4.58  0.76  -  -  -  4.07 3.93  4.48 4.64  0.29 0.27  -  -  • -  4.41 4.20  4.50 4.50  0.04 0.21  0.57 0.57 0.57 0.57 0.54 0.54 0.54 0.61 0.54 0.54 0.54 0.55 0.37 0.57 0.57 0.57 0.57 0.54 0.46 0.54 0.44 0.42 0.58 0.37 0.62 0.40 0.62 0.53 0.45 0.44 0.48 0.58 0.37 0.47 0.59 0.44 0.59 0.37 0.53 0.55 0.35 0.00 0.47 0.49 0.57 0.62 0.61 0.40 0.45 0.54 0.27 0.54 0.51  -  -  continued 149  TABLE 12. concluded TL Species Short-tailed shearwater Levantine shearwater Antarctic petrel Emperor penguin King penguin Rockhopper penguin Macaroni penguin Fiordland penguin Snares penguin Royal penguin Erect-crested penguin Blue penguin Yellow-eyed penguin Adelie penguin Chinstrap penguin Gentoo penguin Jackass penguin Humboldt penguin Magellanic penguin Galapagos penguin Bufflehead Common goldeneye Barrow's goldeneye Long-tailed duck Harlequin duck White-winged scoter Black scoter Surf scoter Red-breasted merganser Steller's eider Spectacled eider Common eider King eider Falkland steamerduck Chubut steamerduck Flying steamerduck  N 14 1 7 7 12 21 10 1 1 4 1 5 2 35 11 27 15 1 12 1 1 1 3 2 2 1 1 1 1 1 1 3  : 2 l l l  Mean 3.81 3.80 3.93 4.03 4.28 3.68 3.50 4.39 3.60 3.88 3.70 4.20 4.48 3.45 3.26 3.78 4.03 4.17 4.34 4.50 3.56 2.84 3.17 3.47 3.24 3.60 3.47 3.00 4.50 3.34 3.50 3.20 3.31 3.40 3.40 3.30  Min 3.21  Max 4.50  SD 0.49 _  -  -  3.20 3.51 4.16 3.21 3.20  4.45 4.50 4.50 4.48 3.98  0.42 0.44 0.14 0.37 0.24  -  -  -  3.69  4.07  -  -  -  4.06 4.47 3.20 3.20 3.28 3.58  4.30 4.49 4.04 3.76 4.32 4.32  0.09 0.01 0.24 0.17 0.32 0.19  0.21  -  -  -  4.07  4.50  0.15  -  -  -  3.11 3.43 3.20  3.30 3.50 3.27  0.11 0.05 0.05  -  -  -  3.11 3.20  3.27 3.42  0.08 0.16  -  -  -  *  SE 0.54 0.34 0.41 0.39 0.44 0.50 0.44 0.42 0.48 0.37 0.48 0.52 0.54 0.40 0.41 0.49 0.48 0.62 0.55 0.80 0.58 0.43 0.37 0.53 0.46 0.59 0.49 0.31 0.80 0.53 0.50 0.35 0.44 0.45 0.48 0.42  150  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0074880/manifest

Comment

Related Items