Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Responses of sockeye salmon (Oncorhynchus nerka) embryos to intragravel incubation environments in selected.. Cope, R. Scott 1996-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
ubc_1996-0203.pdf [ 7.64MB ]
Metadata
JSON: 1.0074813.json
JSON-LD: 1.0074813+ld.json
RDF/XML (Pretty): 1.0074813.xml
RDF/JSON: 1.0074813+rdf.json
Turtle: 1.0074813+rdf-turtle.txt
N-Triples: 1.0074813+rdf-ntriples.txt
Original Record: 1.0074813 +original-record.json
Full Text
1.0074813.txt
Citation
1.0074813.ris

Full Text

RESPONSES OF SOCKEYE SALMON (Oncorhynchus  nerka.) EMBRYOS  INTRAGRAVEL INCUBATION ENVIRONMENTS IN SELECTED STREAMS WITHIN THE STUART - TAKLA WATERSHED  by R. SCOTT COPE B . S c , U n i v e r s i t y OF V i c t o r i a , 1993 A THESIS SUBMITTED I N PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department o f Zoology, F i s h e r i e s C e n t r e ) We a c c e p t t h i s t h e s i s as c o n f o r m i n g to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA APRIL 1996 © - R. S c o t t Cope  In presenting  this  degree at the  thesis  in  University of  freely available for reference copying  of  department  this or  publication of  partial fulfilment  of  British Columbia,  I agree  and study.  this  his  or  her  that the  representatives.  may be It  is  thesis for financial gain shall not be  permission.  Department The University of British Columbia Vancouver, Canada  DE-6 (2/88)  requirements  I further agree  thesis for scholarly purposes by  the  that  for an  advanced  Library shall make it  permission for extensive  granted  by the  understood allowed  that without  head  of  my  copying  or  my written  ABSTRACT  Before  impacts of  forest harvesting  can  be  identified,  the  n a t u r a l p h y s i c a l and b i o l o g i c a l i n f l u e n c e s on i n c u b a t i o n p r o c e s s e s must be understood w i t h i n i n t e r i o r B r i t i s h Columbia watersheds. e a r l y S t u a r t s t o c k of sockeye salmon {Oncorhynchus the  most n o r t h e r l y n u r s e r y  h a b i t a t of  the  nerka)  Fraser  River  s t o c k s . T h i s has l e d t o s p e c u l a t i o n t h a t p r o d u c t i o n may by  high  s t u d y was  overwinter  i n c u b a t i o n m o r t a l i t y . An  conducted on f o u r a d j a c e n t  in  situ  be  The  and  1994  study  utilize sockeye limited  incubation  t r i b u t a r i e s of t h e S t u a r t -  T a k l a w a t e r s h e d (Kynock, F o r f a r , G l u s k i e , B i v o u a c c r e e k s ) , the 1993  The  during  broodyears.  o b j e c t i v e was  to estimate  overwinter  s u r v i v a l of  sockeye salmon embryos w i t h i n v a r i o u s redd m i c r o - e n v i r o n m e n t s . I t was  hypothesized  on  environmental  t h a t spawning salmon s e l e c t i n c u b a t i o n s i t e s based cues t o o p t i m i z e  pre-emergent , f r y  bioassays,  environmental monitoring,  in  egg  to  fry survival.  conjunction  with  Egg  to  microhabitat  were implemented t o d e f i n e a range of  n a t u r a l spawning c o n d i t i o n s and t h e i r r e l a t i v e c o n t r i b u t i o n t o f r y recruitment. R e s u l t s demonstrate t h a t h i g h q u a l i t y , r e l a t i v e l y i n v a r i a n t i n c u b a t i o n environment r e s u l t e d i n the l a c k of c l a s s i c a l r e l a t i o n s observed  i n previous  survival.. Physical  s t u d i e s between i n c u b a t i o n  processes  (i.e. hydraulic  c h a r a c t e r i s t i c s ) and b i o l o g i c a l p r o c e s s e s  parameters regime,  and  bedload  ( i . e . mass c l e a n i n g  by  h i g h d e n s i t i e s of spawning a d u l t s ) r e s u l t i n u n i f o r m l y h i g h q u a l i t y  g r a v e l c o n d i t i o n s w i t h p e r m e a b i l i t i e s , surface water and  intragravel  dissolved  i n c u b a t i o n success. and  unlimited  oxygen  levels  interchange,  associated  A l t e r n a t i v e hypotheses of random egg  high  quality  habitat  1) o b s e r v e d s p a t i a l p r e f e r e n c e s  and,  were  2)  rejected  with  high  deposition due  to;  expansion/contraction  of  range under d i f f e r e n t annual p o p u l a t i o n s i z e s . Sockeye  salmon  s u c c e s s f u l l y spawned o v e r  h a b i t a t s . H i g h d e n s i t y spawning h a b i t a t was  a  wide  range  of  the downstream end  of  pools at the pool r i f f l e i n t e r f a c e . H a b i t a t s u t i l i z e d t o a l e s s e r degree  included;  c h a n n e l s and  riffles,  stream  margins,  p o r t i o n s of the o f f - c h a n n e l  between t h e s e h a b i t a t  t y p e s were not  intermittent  side  habitat. Survival rates  significantly  different in  c o n t r a s t t o p r e d i c t i o n s g e n e r a t e d from o p t i m a l i t y models. T h i s due  to  the  simulations density  definition showed  of  "marginal"  high  density  number  of  success i n northern Stuart stock d e p l e t i o n and spawning. By Stuart  situ  redd low  ( i . e . assumed  areas. Spawning a d u l t s avoided t r u l y m a r g i n a l areas w i t h  i n t r a g r a v e l d i s s o l v e d oxygen l e v e l s below 3.0 A  In  s i m i l a r intragravel. conditions, i n both  ( i . e . assumed m a r g i n a l ) and  preferred)  habitat.  was  adaptations  which  would  mg/1. optimize  incubation  environments were i d e n t i f i e d w i t h i n the e a r l y  of sockeye salmon. E a r l y S t u a r t seasonal  sockeye r i s k  energy  maximum temperatures d u r i n g m i g r a t i o n  spawning e a r l y i n the  season  sockeye enjoy advanced e m b r y o l o g i c a l  ( J u l . - Aug.),  and  early  development p r i o r t o  the onset of low water temperatures. Embryos r a p i d l y accumulate the thermal u n i t s necessary to hatch,  t h e r e b y becoming m o b i l e i n time  t o a v o i d f r e e z i n g and d e s i c c a t i o n as w a t e r - l e v e l s d e c l i n e and reach s e a s o n a l minima. Embryos and a l e v i n s o f t h e e a r l y S t u a r t s t o c k can apparently lethal.  t o l e r a t e temperature c o n d i t i o n s p r e v i o u s l y  considered  F r y s u c c e s s f u l l y emerge i n t h e s p r i n g a f t e r a c c u m u l a t i n g  l e s s thermal u n i t s than any other F r a s e r r i v e r s t o c k . The t r a d e o f f against migration  this  strategy  i s the  effect  of  unusually  stressful  c o n d i t i o n s on t h e q u a l i t y and v i a b i l i t y o f t h e gametes.  E v i d e n c e o f t h i s t r a d e o f f was o b t a i n e d  i n 1994, when egg s u r v i v a l  r a t e s were v e r y low f o r spawners t h a t a r r i v e d l a t e and had s u f f e r e d severe thermal s t r e s s during  migration.  iv  TABLE OF CONTENTS i i  ABSTRACT TABLE OF CONTENTS  V  LIST OF TABLES  vii  LIST OF FIGURES  viii xi  ACKNOWLEDGEMENTS CHAPTER 1 - INTRODUCTION General Introduction Natural History Environmental Factors Affecting Incubation Habitat Selection Objectives  Incubation  Survival  . . .  1 1 2 3 7 9  CHAPTER 2 - MATERIALS AND METHODS Study Area M a t e r i a l s and Methods Egg C a p s u l e I m p l a n t a t i o n E x p e r i m e n t Site Selection Incubation capsules F e r t i l i z a t i o n Procedure Environmental Monitoring A d d i t i o n a l Incubation Experiments Stream F i d e l i t y Experiment Incubation Transects Capsule effects Intragravel Behaviour of A l e v i n s  12 12 16 16 16 17 18 21 22 22 23 24 24  CHAPTER 3 - RESULTS Spawner A b u n d a n c e a n d D i s t r i b u t i o n Egg t o P r e - e m e r g e n t F r y S u r v i v a l P h y s i c a l Environment E f f e c t s o f E n v i r o n m e n t a l F a c t o r s on I n c u b a t i o n A l e v i n Development and B e h a v i o u r  26 26 30 32 42 48  CHAPTER 4 - DISCUSSION S p a t i a l preferences Micro-Habitat D i s t r i b u t i o n on t h e s p a w n i n g g r o u n d s Incubation Survival E f f e c t s o f E n v i r o n m e n t a l F a c t o r s on I n c u b a t i o n T e m p e r a t u r e a n d Embryo D e v e l o p m e n t G r a v e l Q u a l i t y and D i s s o l v e d Oxygen Stress CHAPTER 5 - CONCLUSION  Survival  Survival  55 56 56 57 58 61 -61 64 66 73  V  LITERATURE CITED  76  APPENDIX A  91  APPENDIX B  98  APPENDIX C  100  vi  LIST OF TABLES  T a b l e 1. Sockeye salmon a d u l t escapement e s t i m a t e s and f r y p r o d u c t i o n e s t i m a t e s (T. Whitehouse, D.F.O., S t o c k Assessment Group, unpubl. data) and c o r r e s p o n d i n g egg t o pre-emergent f r y s u r v i v a l r a t e e s t i m a t e s f o r t h e e a r l y S t u a r t study streams o f M i d d l e R i v e r and T a k l a Lake (1993 and 1994 broodyears)  28  T a b l e 2. Summary o f stream and i n t r a g r a v e l p h y s i c a l parameters f o r p r e f e r r e d and m a r g i n a l redd s i m u l a t i o n s ( a l l l o c a t i o n s , c r e e k s and y e a r s combined)  35  T a b l e 3. Summary o f stream and i n t r a g r a v e l p h y s i c a l parameters by g e n e r a l h a b i t a t type (margin, t h a l w e g , p o o l , o f f - c h a n n e l ) f o r a l l seasons (1993 - 1994), c r e e k s (n=4) and l o c a t i o n s combined (n=563)  39  T a b l e 4. Summary o f stream and i n t r a g r a v e l p h y s i c a l parameters and c o r r e s p o n d i n g embryo s u r v i v a l r a t e s f o r in situ r e d d . s t r a n d i n g s i m u l a t i o n s and p r e f e r r e d ( c o n t r o l ) redd s i m u l a t i o n s . Embryos were f e r t i l i z e d and i n c u b a t i o n c a p s u l e s p l a n t e d i n l a t e August. Experiment was t e r m i n a t e d i n mid-February under s e a s o n a l minima c o n d i t i o n s f o r d i s c h a r g e and t e m p e r a t u r e  50  vii  LIST OF FIGURES  F i g u r e 1. The F r a s e r R i v e r watershed d e p i c t i n g t h e l o c a t i o n of t h e S t u a r t - T a k l a watershed. .  13  F i g u r e 2. E x p e r i m e n t a l study a r e a showing B i v o u a c , G l u s k i e , F o r f a r , and Kynock c r e e k s and s e l e c t e d i n t e n s i v e s a m p l i n g reaches  14  F i g u r e 3. Egg i n c u b a t i o n c a p s u l e s and i n c u b a t i o n bags u t i l i z e d as b i o a s s a y s (from l e f t t o r i g h t ; s t a n d a r d c a p s u l e s - 12 cm l e n g t h , Behaviour c a p s u l e - 46 cm l e n g t h , i n c u b a t i o n bag - volume 0.2 m ) . Note r e d d • s t r a n d i n g s i m u l a t i o n excavated i n background (area - 2m ). 19 3  2  F i g u r e 4. A d u l t sockeye a r r i v a l t i m i n g a t F o r f a r Creek mouth. Number o f a d u l t sockeye was t h e d a i l y t o t a l sockeye t h r o u g h t h e fence a t the mouth o f F o r f a r Creek. The p e r i o d J u l y 29 - August 2, 1993 was u n a v a i l a b l e due t o a f r e s h e t event removing t h e c o u n t i n g f e n c e d u r i n g t h i s p e r i o d . D a i l y escapement was c o n s e r v a t i v e l y e s t i m a t e d a t 3 000 based on peak l i v e counts p l u s cummulative dead (G. Smith, D.F.O., Stock Assessment Group, u n p u b l . data)  27  F i g u r e 5. Redd l o c a t i o n s determined t h r o u g h e t h o l o g i c a l o b s e r v a t i o n ( J u l y 31, Aug. 1 and Aug 5 1993) w i t h i n G l u s k i e 400 m study r e a c h . T r a n s e c t s 1 and 5, and i n c u b a t i o n c a p s u l e l o c a t i o n s (redd s i m u l a t i o n s ) were i n c l u d e d f o r r e f e r e n c e p o i n t s (see Appendix A ) . Stream w e t t e d s u r f a c e a r e a was surveyed Sept. 18, 1993. Note s t r a n d e d redd l o c a t i o n s a l o n g stream margins  29  F i g u r e 6. P e r c e n t m o r t a l i t y o f embryos a s s e s s e d a t t h e end o f each r e t r i e v a l p e r i o d f o r a l l s t u d y streams combined (mean +/- 2*S.E.). Note f e r t i l i z a t i o n = 0-2 days (Aug.), P r e - h a t c h = 2-50 days ( l a t e S e p t . ) , a l e v i n = 50-180 days ( l a t e Dec. - Feb.), pre-emergent f r y = 180-260 days (mid April)  31  F i g u r e 7. Comparison o f s u r v i v a l r a t e ( f e r t i l i z a t i o n t o p r e h a t c h embryos; 50 days) between r e d d s i m u l a t i o n bags (n=10) u t i l i z i n g r e p r e s e n t a t i v e in situ s u b s t r a t e c o m p o s i t i o n and s t a n d a r d egg i n c u b a t i o n c a p s u l e s (mean +/- 95% c o n f i d e n c e i n t e r v a l ) . I n c u b a t i o n l o c a t i o n s were a r r a y e d a c r o s s study c r e e k s (FLH = F o r f a r 150m p r e f e r r e d r e d d s i m u l a t i o n . FLL =Forfar 150m m a r g i n a l . KLS1 = Kynock 350m s t r a n d i n g s i m u l a t i o n . KHH = Kynock 1550m p r e f e r r e d . KHL = Kynock 1550m m a r g i n a l . )  33  viii  F i g u r e 8. F o r f a r Creek lower watershed (150 m) r e d d s i m u l a t i o n s . Photographs d e p i c t c o n d i t i o n s t y p i c a l o f a) m a r g i n a l and b) p r e f e r r e d i n c u b a t i o n h a b i t a t s (photographs were t a k e n 14 days p o s t f e r t i l i z a t i o n ) . . .  34  F i g u r e 9. D a i l y maximum temperatures i n F o r f a r Creek f o r t h e p e r i o d 1990 - 1994 (B. Anderson, D.F.O., P.B.S., u n p u b l . data) 37 F i g u r e 10. E a r l y S t u a r t spawning p e r i o d (20 J u l y - 20 August) d a i l y maximum stream temperatures i n ; a) Kynock, b) F o r f a r , and c) G l u s k i e c r e e k s f o r t h e b r o o d y e a r s 1993 and 1994 (B. Anderson, D.F.O., P.B.S., u n p u b l . data) . . 38 F i g u r e 11. H y d r o - m e t e o r o l o g i c a l d a t a r e c o r d e d i n G l u s k i e Creek watershed i n c l u d i n g mean d a i l y f l o w s f o r t h e w a t e r - y e a r November 1, 1991 t o October 31, 1992 and t o t a l d a i l y r a i n f a l l f o r A p r i l 27 t o October 20, 1992  . 40  F i g u r e 12. Frequency d i s t r i b u t i o n o f stream (n=771) and i n t r a g r a v e l (n=784) d i s s o l v e d oxygen measurements w i t h i n the f o u r s t u d y streams from the p e r i o d 1992 - 1995 . . .  43  F i g u r e 13. W i t h i n s t u d y r e a c h v a r i a t i o n f o r d i s s o l v e d oxygen and temperature f o r t h e s t a n d p i p e s a m p l i n g g r i d o f Kynock Creek 1550 m (mid-watershed), 4 A p r i l 1994. Temperature and d i s s o l v e d oxygen were measured a t an i n t r a g r a v e l depth o f 2 0 cm. S t a n d p i p e s were grouped by h a b i t a t c l a s s i f i c a t i o n code ( l = t h a l w e g , r i f f l e , 2=margin, 3=pool, g l i d e , 4=off-channel)  44  F i g u r e 14. L i n e a r r e g r e s s i o n o f t h e 1994 embryo s u r v i v a l r a t e ( a l l c r e e k s , l o c a t i o n s ) 50 days a f t e r f e r t i l i z a t i o n on t h e c o r r e s p o n d i n g i n t r a g r a v e l d i s s o l v e d oxygen (@ 2 0 cm depth) a t the p e r i o d i m m e d i a t e l y p r i o r t o egg deposition  46  F i g u r e 15. The 1994 embryo s u r v i v a l r a t e (%) from t h e t r a n s e c t e x p e r i m e n t a l r e a c h (Kynock 1550 m s i t e ; Appendix A) 50 days a f t e r f e r t i l i z a t i o n v e r s u s t h e c o r r e s p o n d i n g i n t r a g r a v e l d i s s o l v e d oxygen (@ 20 cm depth) a t the p e r i o d i m m e d i a t e l y p r i o r t o egg d e p o s i t i o n . T r a n s e c t runs from the n o r t h bank margin (A) a c r o s s a r i f f l e and p o o l i n t o t h e o f f - c h a n n e l h a b i t a t (B) . . . . 47 F i g u r e 16. Mean c a p s u l e s u r v i v a l r a t e (50 days p o s t f e r t i l i z a t i o n ) f o r f e r t i l i z a t i o n p r o c e d u r e s by d a t e f e r t i l i z e d and c r e e k . A. 1993 f e r t i l i z a t i o n b a t c h e s and c o r r e s p o n d i n g s u r v i v a l r a t e s . B. 1994 f e r t i l i z a t i o n b a t c h e s and c o r r e s p o n d i n g s u r v i v a l r a t e s  ix  49  F i g u r e 17. I n t r a g r a v e l p a t t e r n o f changes i n v e r t i c a l d i s t r i b u t i o n o f sockeye a l e v i n s i n r e l a t i o n t o d e p t h of f r e e z i n g . A. 2 cm depth o f f r e e z i n g w i t h i n s u b s t r a t e . B. 15 cm. C. 40 cm  52  F i g u r e 18. Accumulated mean d a i l y temperature units(°CTU) o b s e r v e d f o r t h e two y e a r s o f i n c u b a t i o n s t u d y w i t h i n Kynock, F o r f a r , G l u s k i e and B i v o u a c c r e e k s . Temperature d a t a was from B. Anderson, D.F.O., P.B.S., u n p u b l . d a t a . Developmental s t a g e s were determined from c a p s u l e embryos r e t r i e v e d i n L a t e September, Mid-December, and m i d - A p r i l u t i l i z i n g t h e c l a s s i f i c a t i o n system o f V e r n i e r (1969) . 53 F i g u r e 19. D a i l y maximum, minimum and mean w a t e r t e m p e r a t u r e s from t h e F r a s e r R i v e r a t H e l l ' s Gate (average from 1945 - 1993), compared w i t h t h e 1993 and 1994 mean d a i l y temperatures  69  F i g u r e 20. Mean e a r l y S t u a r t r e c r u i t s p e r spawner f o r each one degree C e l s i u s increment o f mean J u l y F r a s e r R i v e r w a t e r temperature a t H e l l ' s gate f o r t h e p e r i o d 1948 1989. R e c r u i t s p e r spawner c a l c u l a t e d from INPFC sockeye database ( I . W i l l i a m s , D.F.O., P.B.S, u n p u b l . data) based on r e t u r n s c a l c u l a t e d from e s t i m a t e d c a t c h p l u s escapement on a f o u r y e a r r e t u r n c y c l e . Mean J u l y F r a s e r R i v e r water temperature c a l c u l a t e d f o r each c o r r e s p o n d i n g y e a r from H e l l ' s Gate database  70  x  ACKNOWLEDGEMENTS  I w i s h t o express my s i n c e r e g r a t i t u d e and a p p r e c i a t i o n t o Dr. Steve  Macdonald,  my  functional  supervisor,  forhis initial  suggestion of t h i s study. H i s r e l e n t l e s s guidance, moral, and  financial  support throughout  this  logistic  study were i n t e g r a l .  I am  a l s o v e r y g r a t e f u l t o C h a r l i e S c r i v e n e r , Bruce Anderson, Dr. P e t e r T s c h a p l i n s k i and Glenn Smith f o r t h e i r a s s i s t a n c e and s u p p o r t i n s e t t i n g up t h e f i e l d experiments and c o l l e c t i n g t h e r e s u l t s . I am also  thankful  t o t h e time  and e f f o r t  contributed  by a l l  the  S t u a r t - T a k l a w o r k i n g group members. I w i s h t o thank my U n i v e r s i t y s u p e r v i s o r , D r . C a r l W a l t e r s , for  h i s guidance, support, c r i t i c a l  r e v i e w o f t h e m a n u s c r i p t and  e n d l e s s source o f i n s i g h t . I am a l s o g r a t e f u l t o my o t h e r committee members,  Dr. Steve  Tschaplinski  Macdonald,  and Dr. W i l l i a m  Dr. Tony Neill,  Pitcher,  for their  Dr. Peter  review  of  the  manuscript. Research  funds and l o g i s t i c a l  Department o f F i s h e r i e s  and Oceans  support were p r o v i d e d by t h e (Biological  Sciences  through  t h e F r a s e r R i v e r S u s t a i n a b l e Development  Natural  Sciences  and E n g i n e e r i n g  Research  Branch)  Program. The  Council  o f Canada  p r o v i d e d me w i t h p e r s o n a l f i n a n c i a l support f o r two y e a r s t h r o u g h a p o s t - g r a d u a t e s c h o l a r s h i p . Both t h e s e s o u r c e s o f f u n d i n g were critical  f o r t h e c o m p l e t i o n o f t h i s t h e s i s and I am g r a t e f u l t o  them f o r t h e i r s u p p o r t .  xi  CHAPTER 1 - INTRODUCTION  General  Introduction  Sockeye salmon p r o v i d e one Pacific  Coast  standing, 1973,  and  of the most v a l u a b l e of Canada's  fisheries.  T h e i r use  by  n a t i v e peoples  commercial  fisheries  date  to the  late  i s of  long  1800s  (Hart  R i c k e r 1987) . The c u r r e n t commercial h a r v e s t of F r a s e r R i v e r  sockeye salmon i s v a l u e d at $260 m i l l i o n a n n u a l l y Healey  1993).  Sockeye  incubation  streams  also  (Henderson  drain  and  watersheds  c o n t a i n i n g v a l u a b l e timber. The c l o s e a s s o c i a t i o n of salmon streams with  timbered  watersheds  creates p o t e n t i a l  problems  for  fishery  management. Timber h a r v e s t i n g can have n e g a t i v e a f f e c t s on salmon incubation 1975,  environments  (Hall  and  Lantz  1969,  Ringler  and  Hall  P l a t t s e t . a l . 1989). There has been a long h i s t o r y of c o a s t a l - b a s e d  interaction (Poulin  research  1984,  (Sheridan  projects  Hartman and  and  McNeil  (FFIRP)  within  S c r i v e n e r 1990)  1968,  Burns  1970,  fish-forestry  British  and  Columbia  the U n i t e d  Moring  1975),  l i m i t e d study of i n t e r i o r watersheds (Slaney e t . a l . 1977,  States  and  only  Sterling  1985) . Given the amount of i n t e r i o r f o r e s t r y a c t i v i t y and the l a c k of knowledge concerning o v e r - w i n t e r i n g i n c u b a t i o n p r o c e s s e s , i s an urgent practices biological  requirement  that  are  f o r e c o l o g i c a l s t u d i e s to guide  appropriate  for  the  specific  the  Stuart  -  Takla  (Macdonald e t . a l . 1992). 1  FFIRP  was  land-use  physical  c o n d i t i o n s of i n t e r i o r watersheds. To develop  understanding  there  initiated  such in  and an 1990  B e f o r e any impacts from f o r e s t h a r v e s t i n g can be e s t i m a t e d , n a t u r a l p h y s i c a l and b i o l o g i c a l i n f l u e n c e s on i n c u b a t i o n p r o c e s s e s must be u n d e r s t o o d w i t h i n t h e s e i n t e r i o r w a t e r s h e d s . T h i s t h e s i s examines  t h e n a t u r a l i n c u b a t i o n environment b e f o r e l o g g i n g ,  specific  focus  on  spawner  habitat  selection,  the  with  physical  i n c u b a t i o n environment, and embryo s u r v i v a l . This  introductory  c h a p t e r r e v i e w s the  relevant  literature  c o n c e r n i n g t h e e a r l y S t u a r t sockeye salmon s t o c k , spawner h a b i t a t selection,  the  physical  incubation  environment  and  how  these  f a c t o r s i n f l u e n c e embryo s u r v i v a l . Chapter two d e s c r i b e s t h e s t u d y a r e a and methods. Chapter t h r e e p r e s e n t s the r e s u l t s of experiments for  the  1993  and  1994  discusses  the  o v e r - w i n t e r i n c u b a t i o n s u c c e s s of e a r l y S t u a r t sockeye salmon  and  a s s o c i a t e d p h y s i c a l and of  conclusions  chapter  five.  Natural  History  and  b r o o d y e a r s . Chapter  four  b i o l o g i c a l p r o c e s s e s . F i n a l l y , a summary  management  implications  are  presented i n  I n c u b a t i o n s u r v i v a l i s i n f l u e n c e d by two main f a c t o r s ; 1)  how  a d u l t s choose i n c u b a t i o n s i t e s and, 2) the environment w i t h i n those s i t e s . The remainder of t h i s c h a p t e r r e v i e w s t h e s e f a c t o r s . Pacific  salmon  are  anadromous  and  semelparous.  The  early  S t u a r t sockeye salmon m i g r a t i o n r e p r e s e n t s an extreme c a s e . T h i s s t o c k m i g r a t e s t o the northernmost F r a s e r R i v e r w a t e r s h e d km;  a l t i t u d e 691 m;  («1  I d l e r and Clemens 1959), and i s t h e f i r s t  100 to  commence spawning w i t h i n t h i s system, ( J u l y 20 - August 20; K i l l i c k 2  1955) . Females  establish  oviposition  territories  and  construct  s e v e r a l n e s t s , c o l l e c t i v e l y c a l l e d a redd (Fleming and Gross 1994). The  eggs a r e c o v e r e d w i t h g r a v e l and the female guards t h e n e s t  u n t i l h e r d e a t h (Van Den Berge and Gross 1986). The p e r i o d o f egg i n c u b a t i o n extends through w i n t e r w i t h f r y emergence o c c u r r i n g from A p r i l t o June  (Hickey and Smith 1991).  Historically  t h e e a r l y S t u a r t sockeye s t o c k has n e v e r been  l a r g e , and has been u n u s u a l l y v a r i a b l e (Cooper and Henry 1962,  Cass  1989). The c o n s t r u c t i o n of f i s h w a y s a t H e l l ' s Gate, c o u p l e d w i t h r e g u l a t o r y p r o t e c t i o n i n the commercial f i s h e r y had i n c r e a s e d the average  size  of t h e run about  seven  times by  1961  t o 328  000  (average a l l c y c l e y e a r s ) . Pre-1948 abundances a v e r a g e d l e s s than 50  000  (Cooper  and  Henry  1962).  S i n c e 1952,  returns  have been  h i g h l y v a r i a b l e w i t h no t r e n d i n abundance (Cass 1989). escapements  on the dominant  Spawning  c y c l e averaged 208 000/yr and  ranged  from 23 000 i n 1965 t o 582 000 i n 1949  (Cass 1989) . The o t h e r t h r e e  c y c l e y e a r s had  between 17  average  escapements  000  and  51  000  (Hickey and Smith 1991). The t o t a l e a r l y S t u a r t p r o d u c t i o n c a p a c i t y i n terms o f p o s t u l a t e d spawning a r e a has been e s t i m a t e d a t 632  000  spawners  000  (Anon 1988) . W i t h average sockeye escapements  o f 2 08  t h e r e appears t o be much u n d e r - u t i l i z e d p r o d u c t i o n c a p a c i t y et.  (Langer  a l . 1992) . ;  Environmental F a c t o r s A f f e c t i n g I n c u b a t i o n  The  early  Stuart  s t o c k of sockeye  Survival  salmon  utilize  t h e most  n o r t h e r l y spawning h a b i t a t of the F r a s e r R i v e r salmon s t o c k s . There 3  i s a l s o an apparent u n d e r - u t i l i z e d p r o d u c t i o n c a p a c i t y . T h i s had l e d t o s p e c u l a t i o n t h a t p r o d u c t i o n of the e a r l y S t u a r t sockeye  salmon  may  be  limited  by  s t o c k of  environmental f a c t o r s .  These  p o t e n t i a l l i m i t a t i o n s t o sockeye p r o d u c t i o n has r a i s e d i n t e r e s t i n d e v e l o p i n g an enhancement f a c i l i t y t o i n c r e a s e f r y p r o d u c t i o n (SEPE n g i n e e r i n g 1988, Langer e t . a l . 1992). T h i s t h e s i s examines those f a c t o r s which may survival  and  f r y production.  Nest  "quality"  impact i n c u b a t i o n  presumably  embryo s u r v i v a l . The s u r v i v a l r a t e t o pre-emergent  affects  f r y r e f l e c t s the  s e v e r i t y o f t h e e n v i r o n m e n t a l c o n d i t i o n s and t h e a d a p t a b i l i t y o f the  fry  (Koski  1975).  The  environmental  factors  generally  c o n s i d e r e d t o a f f e c t egg t o emergence s u r v i v a l a r e w a t e r d i s c h a r g e (Hunter 1959, M c N e i l 1968, 1969), p e r m e a b i l i t y and g r a v e l  quality  (see Chapman 1988 f o r r e v i e w ) , d i s s o l v e d oxygen ( A l d e r d i c e e t . a l . 1958, K o s k i 1966, 1975, B j o r n n and R e i s e r 1991), temperature i n the incubation Murray  environment  1990),  stability  (Brannon  1987,  V e l s o n 1987,  of the g r a v e l bed  Beacham  (Hunter 1959,  1966, L i s l e and Lewis 1992), and u p w e l l i n g groundwater  and  McNeil  (Kogl 1965,  Hansen 19.75, Leeman 1993).. Temperature i s one of the primary p h y s i c a l f a c t o r s i n f l u e n c i n g t h e l i f e h i s t o r y t r a i t s of P a c i f i c salmon 1991). N u m e r i c a l d a t a {Oncorhynchus  (Brannon 1987,  Burgner  spp.) have been c o m p i l e d f o r  t h e i n f l u e n c e o f temperature on i n c u b a t i o n s u c c e s s ( V e l s o n 1987) . The  majority  of  this  database  has  been  derived  from  British  Columbia s a l m o n i d h a t c h e r i e s and l a b o r a t o r y e x p e r i m e n t s u t i l i z i n g c o a s t a l b r o o d s t o c k . As a r e s u l t , d a t a on m o r t a l i t y i s s c a r c e f o r  s t o c k s and temperatures l e s s than 5 °C ( V e l s o n 1987). I n g e n e r a l , sockeye embryos and a l e v i n s a r e not w e l l adapted t o s u r v i v e a t h i g h incubation  temperatures  (Murray  and M c P h a i l  1988, Beacham and  Murray 1990). The e s t i m a t e d upper temperature o f 50% m o r t a l i t y f o r sockeye salmon embryos was 15.5 °C (Beacham and Murray 1990) . Based on t h i s composite database t h e recommended i n c u b a t i o n t e m p e r a t u r e range o f sockeye salmon was 4.4-13.3°C ( B j o r n n and R e i s e r 1991). Population-specific been  demonstrated  conditions 1987,  d i f f e r e n c e s i n developmental b i o l o g y have  and may  reflect  experienced during  adaptation t o the thermal  development  (Beacham  and Murray  1988, 1989, Murray and M c P h a i l 1988). I n t e r i o r s t o c k s have  f a s t e r development  r a t e s a t c o l d e r t e m p e r a t u r e s t h a n do c o a s t a l  s t o c k s , and h a t c h e a r l i e r (Brannon 1987, Beacham and Murray 1989). High m o r t a l i t i e s However,  a r e common when t e m p e r a t u r e s a r e below  interior  spawning  sockeye  stocks  have  higher  1-3°C. embryo  s u r v i v a l r a t e s a t low i n c u b a t i o n temperatures (89% @ 2°C) t h a n do c o a s t a l spawning s t o c k s (32% @ 2°C),  (Beacham and Murray  1989).  The e a r l y S t u a r t s t o c k o f sockeye salmon spawn d u r i n g annual maximum s t r e a m temperatures t h a t approach, and may even upper  critical  levels  f o r successful  spawning  exceed,  (Scrivener  and  Anderson 1994) . Stream temperatures then d e c l i n e t o m i d - w i n t e r lows w h i c h may  remain  a t 0°C f o r s e v e r a l  overwinter incubation  months, p o s s i b l y  s u c c e s s ( S c r i v e n e r and Anderson  limiting 1994).  Many e x p e r i m e n t s and f i e l d s t u d i e s have r e l a t e d t h e s u r v i v a l of  s a l m o n i d embryos  to substrate  amount o f g r a v e l f i n e s  c o m p o s i t i o n and t h e r e l a t i v e  (McNeil and A h n e l l 1964, K o s k i 1966, H a l l 5  and  Lantz  1969,  N o r t h c o t e 1970,  Ringler  Ringler  S l a n e y e t . a l . 1977,  T a p p e l and B j o r n n 1983, 1988,  1970,  Tagart 1984,  S c r i v e n e r and Brownlee 1989,  a l . 1991). S u b s t r a t e  Brownlee e t . a l . 1988, Permeability  H a l l 1975,  Lotspeich  and  Dill  and  Everest  E v e r e s t e t . a l . 1987, L i s l e and Lewis 1992,  1981,  Chapman Young e t .  composition a f f e c t s two c r i t i c a l p r o p e r t i e s of  spawning g r a v e l ; p e r m e a b i l i t y 1983,  and  and  pore s i z e  Chapman 1988,  (Tappel and  Bjornn  P l a t t s e t . a l . 1989).  ( a b i l i t y of p a r t i c l e s t o t r a n s m i t w a t e r p e r u n i t  of time) i s a commonly used measure of the s u i t a b i l i t y of a r e d d for  successful  Pollard  1955,  incubation  of embryos  Terhune 1958,  (Wickett  Coble 1961,  Koski  1954,  1958,  1966,  1970,  Vaux  1968,  Chapman 1988) . The more permeable the g r a v e l r e d d the g r e a t e r i n t r a g r a v e l v e l o c i t y and the g r e a t e r the s u p p l y of oxygen 1970,  Chapman 1988,  Scrivener  and  the  (Wickett  Brownlee 1989) . Entombment of  embryos and a l e v i n s can o c c u r when f i n e m a t e r i a l l o d g e s i n g r a v e l interstices  (Koski  1975,  Phillips  e t . a l . 1975,  Lisle  and  Lewis  1992) . The  p r i m a r y s o u r c e of oxygen f o r the i n t r a g r a v e l environment  i s the passage of water i n t o and out of the g r a v e l streambed and i s affected  by  such f a c t o r s as  gravel  permeability,  streambed c o n f i g u r a t i o n and stream d i s c h a r g e 1962,  K o g l 1965,  W i c k e t t 1954,  s t u d i e s have l e d t o the  Sowden and  consensus t h a t  low  gravel  (Vaux 1962,  depth, Sheridan  Power 1985). Numerous d i s s o l v e d oxygen  reduced water exchange i n c r e a s e embryo m o r t a l i t y (see Chapman B j o r n n and R e i s e r 1991  and 1988,  f o r r e v i e w s ) . Reduced s u r v i v a l c o u l d r e s u l t  from i n t e r f e r e n c e w i t h the i n t e r c h a n g e 6  of d i s s o l v e d oxygen due  to  sediment a c c r e t i o n ( P l a t t s e t . a l . 1989). R i p a r i a n - z o n e s u b s t r a t e s in  many  interior  streams,  including  these  study  streams,  c h a r a c t e r i z e d by l a r g e amounts of l a c u s t r i n e d e p o s i t s al.  are  (Slaney e t .  1977, Sanborn 1994). T h e r e f o r e , p o s t - l o g g i n g i n c r e a s e s i n the  d e l i v e r y o f f i n e sediments i s a p r i n c i p l e c o n c e r n of r e s e a r c h e r s . Reported c r i t i c a l  ranges  of d i s s o l v e d  a r t i f i c i a l streams and l a b o r a t o r i e s were; 0.72 1954),  derived  - 3.70 mg/1  mg/1  5.0  mg/1  ( B j o r n n and  Reiser  1991) . I t i s e v i d e n t from r e s e a r c h on  more  that  dissolved  oxygen  below  some minimum  becomes a major determinant of s u r v i v a l ; 6.0 mg/1 mg/1  ( M c N e i l 1969, K o s k i 1975), 5.0 mg/1  <  (Wickett  - 7.19  systems  e t . a l . 1958),  from  0.72  natural  (Alderdice  oxygen  level  (Koski 1966),  3.0  (Sowden and Power 1985).  Annual v a r i a t i o n s i n the amount and t i m i n g of d i s c h a r g e may cause c o n s i d e r a b l e v a r i a t i o n i n the a v a i l a b i l i t y and s u i t a b i l i t y of spawning grounds  (Hunter 1959, M c N e i l 1968, 1969). D e w a t e r i n g and  f r e e z i n g o f embryos i s g e n e r a l l y c o n s i d e r e d an i m p o r t a n t cause of mortality  i n those i n t e r i o r  streams w i t h m i d w i n t e r f l o w minima  ( R e i s e r and Wesche 1979, N e i l s o n and B a n f o r d 1983,  B u s t a r d 1986,  Chapman e t . a l . 1986, Gibson and Myers 1988, B a r l a u p e t . a l . 1994). Sockeye salmon can d e t e c t u p w e l l i n g water p a t t e r n s (Tautz and Groot 1975, Burgner 1991), and may  l i m i t t h e i r spawning d i s t r i b u t i o n t o  a r e a s o f warm water u p w e l l i n g o r groundwater  seepage  to minimize  d e l e t e r i o u s e f f e c t s from c o l d stream water (Kogl 1965) .  incubation  Habitat  Although  Selection  environmental q u a l i t y 7  ultimately  determines  if a  f e r t i l i z e d egg w i l l  s u r v i v e t o produce a f r y , t h e o p p o r t u n i t y t o  s u r v i v e i s i n f l u e n c e d by the b e h a v i o u r of the p a r e n t s . I t has been found c o n s i s t e n t l y t h a t r e l a t i v e l y h i g h p r o p o r t i o n s of salmon runs spawn i n c e r t a i n areas  of streams w h i l e o t h e r a r e a s  have a  low  p e r c e n t a g e of the run (Hunter 1959) . The p r e c i s e homing a b i l i t y of i n d i v i d u a l s t o n a t a l spawning grounds, and the narrow t i m e window o v e r w h i c h spawning may numbers o f  individuals  be  successful, usually results  competing  for limited  nest  i n large  sites  (Foote  1990) . A  widely  "marginal  accepted  habitat  theory  theory",  in  fisheries  derived  from  management  is  the  o p t i m a l i t y models  of  h a b i t a t s e l e c t i o n ( i . e . I d e a l Free D i s t r i b u t i o n , F r e t w e l l and Lucas 1970;  Density-Dependent H a b i t a t S e l e c t i o n , M a c C a l l 1990;  Gradation  In H a b i t a t Q u a l i t y , H i l b o r n and Walters 1992). T h i s t h e o r y p r e d i c t s that  sockeye  salmon s e l e c t  spawning m i c r o h a b i t a t  with  the  most  s u i t a b l e c h a r a c t e r i s t i c s , and o n l y move i n t o " l e s s d e s i r a b l e " areas under crowded c o n d i t i o n s (Hunter 1959). I f areas not used when runs are  s m a l l have r e l a t i v e l y poor c o n d i t i o n s f o r eggs and  then  marginal  mortality  habitat  (Merrell  exposes  1962,  animals  McNeil  to  increased  1968). M a r g i n a l  areas  alevins, risk are  those  r e g i o n s w h i c h might not c o n s i s t e n t l y p r o v i d e spawning a r e a by b e i n g  exposed  exceptionally  either  ( i . e . d e s i c c a t i o n and/or f r e e z i n g ) o r by  poor  incubation  environment  ( i . e . low  of  being  dissolved  oxygen, e x c e s s i v e f i n e s ) ( H u n t e r 1959). A marginal  number o f  studies  h a b i t a t theory.  support First,  the  predictions derived  embryo s u r v i v a l 8  can  vary  from  widely  among n e s t s and (Koski  1975,  Secondly,  i s often c o r r e l a t e d to environmental  S c r i v e n e r 1988,  Van  Den  Berge  and  parameters  gross  1989).  e v i d e n c e suggests t h a t c o m p e t i t i o n i n c r e a s e s w i t h n e s t  site quality decreases  (Foote 1990)  (Tautz  1977,  W h i l e mature females  and as d e n s i t i e s i n c r e a s e , t e r r i t o r y area Schroder  1982,  Fleming  and  Gross  can maximize embryo s u r v i v a l by d e p o s i t i n g  t h e i r eggs i n a h i g h q u a l i t y nest s i t e  (Fleming and Gross  the number of spawning s i t e s i s o f t e n l i m i t e d promoting behaviour  1994).  1989),  territorial  (Foote 1990). T h i s r e s u l t s i n an i n c r e a s i n g p r o p o r t i o n of  spawners o c c u r r i n g i n l e s s d e s i r a b l e a r e a s as d e n s i t i e s i n c r e a s e ( R i c k e r 1954, Hunter 1959, L a r k i n 1977, Schroder 1982, N e i l s o n and Banford  1983,  Chapman e t . a l . 1986).  Average  breeding  success  d e c l i n e s w i t h d e n s i t y , whereas v a r i a n c e i n female success i n c r e a s e s ( F l e m i n g and Gross 1994) . T h i s r e s u l t s i n an a s y m p t o t i c number of r e c r u i t s as spawner numbers i n c r e a s e ( H i l b o r n and W a l t e r s Expansion  and  utilization  contraction  of  marginal  of  p o p u l a t i o n range  habitat  with  changes  or  1992).  differential  in  population  abundance i s a commonly observed phenomenon a s s o c i a t e d w i t h such o p t i m a l i t y models (Hunter 1959, M c C a l l 1990) .  Objectives  The natural  general  objectives  of  this  study  were  to;  i n c u b a t i o n c o n d i t i o n s i n a set of i n t e r i o r  1)  define  experimental  streams w h i c h had e x p e r i e n c e d m i n i m a l a n t h r o p o g e n i c  impacts  2) d e t e r m i n e responses of embryos t o q u a l i t a t i v e and  quantitative  d i f f e r e n c e s i n the v a r i o u s redd micro-environments 9  i n which  and,  sockeye  spawn. T h i s salmon  thesis  select  optimize  incubation  egg  fry  determine  of  spawners  based  hypothesis that on  to  i n n o r t h e r n e n v i r o n m e n t s . Egg  to  placed  in  classification habitat  "preferred"  was  parameters  (relative  range  of  natural  spawning  and  the  by  spatial  within  each  implemented  conditions  r e s p o n s e s o f embryos t o h y p o t h e s i z e d d i f f e r e n c e s  and  determined  densities),  r e a c h . E n v i r o n m e n t a l m o n i t o r i n g was  the  spawning  e n v i r o n m e n t a l cues  were  Habitat  of q u a l i t a t i v e  distribution experimental  sites  bioassays  habitats.  observations  the s p e c i f i c  to f r y s u r v i v a l  pre-emergent "marginal"  tests  and  to the  i n the v a r i o u s  redd micro-environments. Such an approach  makes two a s s u m p t i o n s . F i r s t ,  individual  f i s h must be a b l e t o p e r c e i v e and respond t o d e t e c t a b l e g r a d i e n t s of " s u i t a b i l i t y " . using  Second,  spawning salmon measure s u i t a b i l i t y  e n v i r o n m e n t a l cues  such  as  dissolved  oxygen,  by  waterflow,  t e m p e r a t u r e and s u b s t r a t e . These assumptions l e a d t o t h e g e n e r a l p r e d i c t i o n t h a t p r e f e r r e d h a b i t a t w i l l have a h i g h e r q u a l i t y higher  egg  habitat.  to  pre-emergent  Several  distribution  and  specific egg  to  fry survival predictions  emergence  rate,  are  survival  and  than marginal  made:  1)  correlated  Spawner to  the  q u a l i t y o f p h y s i c a l parameters b e i n g s e l e c t e d f o r . 2.) C o n t a g i o u s spawner  distribution,  as  a  result  of  physical  parameters.  3.) C o a r s e s c a l e l o n g i t u d i n a l g r a d i e n t o f p h y s i c a l p a r a m e t e r s and incubation  s u r v i v a l w i t h i n a c r e e k . 4.)  M i c r o - s c a l e g r a d i e n t of  p h y s i c a l parameters and i n c u b a t i o n s u r v i v a l a c r o s s t h e margins of a creek.  5.) Density-dependence r e f l e c t e d as spawners b e i n g f o r c e d 10  i n t o m a r g i n a l s i t e s w i t h p o o r e r q u a l i t y e n v i r o n m e n t a l parameters and  lower i n c u b a t i o n  success.  These p r e d i c t i o n s are scenarios.  First,  (spawners not  be  that  selecting incubation  cues t o o p t i m i z e l o c a t i o n s may  i t could  falsifiable  egg  under s e v e r a l a l t e r n a t i v e egg  deposition  s i t e s based on  is  random  environmental  t o f r y emergence s u r v i v a l ) . S e c o n d l y ,  not be l i m i t e d . The  study streams may  redd  have u n l i m i t e d  h i g h q u a l i t y i n c u b a t i o n h a b i t a t r e l a t i v e t o p o t e n t i a l abundance of spawners.  Finally,  incubation  success  sites  to optimize  rather as the  than  hypothesized,  selecting  sites  spawners may  spawning a c t . T h i s  11  optimize  be  selecting  alternative  hypothesis  presumes the h a b i t a t r e q u i r e m e n t s f o r spawning may the h a b i t a t r e q u i r e m e n t s f o r s u c c e s s f u l  to  incubation.  conflict  with  CHAPTER 2 - MATERIALS AND METHODS  Study Area  The S t u a r t R i v e r watershed c o n s i s t s o f t h r e e major r i v e r and lake  systems  which  drain  south  into  t h e Nechako  River. I t  r e p r e s e n t s t h e most n o r t h e r n e x t e n t o f t h e F r a s e r R i v e r w a t e r s h e d (Fig.  1) . Two  identified  sockeye  salmon  runs  to the Stuart  system a r e  from r u n t i m i n g and spawning d i s t r i b u t i o n .  The e a r l y  S t u a r t s t o c k u t i l i z e s more than 30 t r i b u t a r i e s , p r i m a r i l y t o T a k l a Lake and M i d d l e R i v e r  ( L a t . 55° 00' N, Long. 125° 50' W.). Four  a d j a c e n t t r i b u t a r i e s (Bivouac, G l u s k i e , F o r f a r , Kynock c r e e k s ) were chosen f o r t h i s p r o j e c t  ( F i g . 2; B e r n a r d e t . a l . 1994).  Comprehensive watershed d e s c r i p t i o n s o f t h e s t u d y streams a r e i n H a r d e r e t . a l . (1989), H i c k e y and Smith (1991), Langer e t . a l . (1992), and Macdonald e t . a l . (1992). B r i e f l y , w a t e r s h e d s a r e i n t h e Hogem Range o f the Omineca Mountains, t h e n o r t h e r n end o f t h e sub-boreal  spruce  biogeoclimatic  zone  (BCMFL  1988) .  Annual  p r e c i p i t a t i o n i s *50 cm and o c c u r s almost e x c l u s i v e l y as snow from November t o March  (Macdonald e t . a l . 1992). V e g e t a t i o n c o v e r i s  p r e d o m i n a n t l y mature s p r u c e / p i n e f o r e s t . Study w a t e r s h e d s a r e s m a l l streams  which  have  no  flow  stabilizing  lacustrine  features.  T w e n t y - s i x o f t h e 33 e a r l y S t u a r t spawning streams f a l l i n t o  this  c a t e g o r y , r e p r e s e n t i n g 44% o f t h e a v a i l a b l e spawning h a b i t a t f o r the stock  (Langer e t . a l . 1992). Each s t r e a m used i n t h i s  represents  «l-7% o f t h e e s t i m a t e d  Escapements  t o t h e s e t h r e e streams r e p r e s e n t from 8-42% o f t h e 12  total  spawning  study  capacity.  F i g u r e 1. The F r a s e r R i v e r w a t e r s h e d the S t u a r t - Takla watershed. 13  d e p i c t i n g the l o c a t i o n  of  Figure 2. Experimental F o r f a r , and Kynock reaches.  s t u d y a r e a showing c r e e k s and s e l e c t e d 14  Bivouac, intensive  Gluskie, sampling  e n t i r e e a r l y S t u a r t escapement (Langer e t . a l . 1992). G l u s k i e Creek has  a t o t a l watershed  a r e a o f 55 km  and i s  2  a p p r o x i m a t e l y 19 km l o n g . The lower 0.8 km has a g r a d i e n t of  1-2%.  The upper stream has a g r a d i e n t of 11% o r g r e a t e r . E s t i m a t e d u s a b l e spawning a r e a  i s 11  000  m  w i t h spawning c a p a c i t y e s t i m a t e d  2  at  18 000 a d u l t s assuming a 50:50 sex r a t i o and optimum d e n s i t y o f 2 spawners/m  2  (Langer  e t . a l . 1992).  G l u s k i e r e p r e s e n t s 3%  of  t o t a l e s t i m a t e d p r o d u c t i o n c a p a c i t y , y e t r e p r e s e n t s between of  the  exceed  entire 10 000  Forfar  early  escapement.  Escapements f r e q u e n t l y  Creek has  a total  l o n g . The  watershed  area  of  42  km  i s 10  adults.  000  m,  lower 2 km has a g r a d i e n t o f  w i t h spawning c a p a c i t y e s t i m a t e d  2  Forfar  Creek  and  2  upper c r e e k has a 5% o r g r e a t e r g r a d i e n t . E s t i m a t e d  area  8-14%  f i s h (Langer e t . a l . 1992).  a p p r o x i m a t e l y 18, km The  Stuart  the  represents  3%  of  the  1-2%.  spawning at  total  p r o d u c t i o n c a p a c i t y , y e t r e p r e s e n t s between 9-18%  is  18  300  estimated  of the  entire  e a r l y S t u a r t escapement. Escapements f r e q u e n t l y exceed 10 000  fish  (Langer e t . a l . 1992) . Kynock Creek has approximately 0.5-2%. The spawning 47 600  15 upper  area  km  a total l o n g . The  creek  i s 23  000  watershed lower  increases to m  2  area  1.6  km  7-8%  of 75 has  by  3  fish  and  is  gradient  of  km.  2  Estimated  w i t h spawner c a p a c i t y e s t i m a t e d  a d u l t s . Kynock Creek r e p r e s e n t s 7% of t h e t o t a l  p r o d u c t i o n c a p a c i t y , y e t r e p r e s e n t s between 9-42% early  a  km  S t u a r t escapement. Escapements (Langer e t . a l . 1992). 15  at  estimated  of the  f r e q u e n t l y exceed  entire 15  000  Bivouac  Creek  has  a  watershed  a p p r o x i m a t e l y 18 km l o n g . The then  i n c r e a s e s t o 4%.  area  of  51  km  and  2  lower 2 km has a g r a d i e n t o f  E s t i m a t e d spawning a r e a  is 3  000  is  1.5%, m  2  and  spawner c a p a c i t y 5 700 a d u l t s . Bivouac Creek r e p r e s e n t s 1% of the t o t a l e s t i m a t e d p r o d u c t i o n c a p a c i t y , and r e p r e s e n t s between < l - 3 % o f t h e e n t i r e e a r l y S t u a r t escapement. Escapements a r e g e n e r a l l y < 1 000 f i s h  (Langer e t . a l . 1992).  M a t e r i a l s and  Methods  The main e x p e r i m e n t a l approach was t o ; 1) map suitability measure  ( i . e . redd d i s t r i b u t i o n ) ,  space/time  environmental  variations  parameters  to  expected h a b i t a t  2) p l a n t egg  in survival determine  rate  their  capsules to  and,  3)  influence  monitor on  the  expected s u r v i v a l p a t t e r n s .  Egg  Capsule  Implantation  i.)  Site  Selection  Two  Experiment  study reaches were s e l e c t e d i n each of G l u s k i e , F o r f a r and  Kynock c r e e k s , f o r an i n i t i a l Creek was  t o t a l of 6 s t u d y r e a c h e s .  added t o t h i s study d e s i g n i n 1994.  Bivouac  Study reaches were  s e l e c t e d t o ; 1) c o n t a i n p o o l - r i f f l e - o f f / c h a n n e l h a b i t a t , and 2) be r e p r e s e n t a t i v e of the lower f l o o d p l a i n reaches and reaches. broodyear spawning  Lineal  distribution  indicated habitat  the  that  and  abundance  study  reaches  occurred  from  data  were the  part  creek  mid-watershed f o r the of mouth  the to  1992 core the  1 230 m, 2 550 m, 2 580 m p o i n t s w i t h i n G l u s k i e , F o r f a r and Kynock 16  creeks r e s p e c t i v e l y The low  study reaches were p a r t i t i o n e d ,  and  high  displaying Groot  ( T s c h a p l i n s k i 1994).  utilization  spawning  spawning  behaviours  at  in relative  habitat.  terms,  Salmon  regular intervals  observed (Tautz  1975), had t h e i r redds marked by wooden s t a k e s . The  implantation habitat  s i t e s were then  utilization..  "preferred",  while  High  s e l e c t e d based utilization  low  marginal,  one  situ  expected  habitat  utilization  "marginal". Two r e p r e s e n t a t i v e in  on  was  habitat  ii.)Incubation  and  capsule spawner  considered  was  considered  redd s i m u l a t i o n s (2m ),  (one  2  p r e f e r r e d ) were then c o n s t r u c t e d w i t h i n each  r e a c h f o r an i n i t i a l  into  study  t o t a l of 12 redd s i m u l a t i o n s (Appendix  A).  capsules  V a r i o u s methods to estimate i n c u b a t i o n s u r v i v a l are d e s c r i b e d in  the  literature.  artificial Moring of  redds  These  (Slaney  et.  1984), redd capping  downstream migrants  include  excavation  a l . 1977,  (Koski 1966,  of  natural  Gustafson-Marjanen  Tagart 1984)  (Fish. Res. Bd. Can.  1956,  and  and t r a p p i n g  Anon 1968,  Hickey  and Smith 1991). S u r v i v a l estimates d e r i v e d using these methods be  biased  due  to  several  u n s u c c e s s f u l l y developed  eggs  factors;  1)  decomposition  b e f o r e recovery, 2) scavenging,  p r e d a t i o n , 4) i n t r a g r a v e l m i g r a t i o n or, 5) o v e r - e s t i m a t i o n of d e p o s i t i o n . A l t e r n a t i v e l y , eggs may porous 1988,  containers Groot  technique  1989,  (Vibert Perkins  or  may of 3) egg  be implanted i n t o the g r a v e l i n  1949,  Slaney  e t . a l . 1977,  Scrivener  and  Krueger  1994) . T h i s  "bioassay"  i s a p p r o p r i a t e l y designed 17  to  indicate  the  quality  of  spawning  habitat.  However,  chambers  often  u n n a t u r a l l y h i g h numbers and t h e c a p s u l e s  cluster  eggs  in  can become t r a p s f o r  sediment and encourage t h e growth of fungus (Harshbarger and P o r t e r 1979,  Bams 1985, Greenberg 1992). I n t h i s s t u d y , egg development  c a p s u l e s were m o d e l l e d  after Scrivener  (1988) and Groot  (1989).  These c a p s u l e s mimic egg pocket centrum c o n d i t i o n s (Chapman 1988). They a l s o p r o v i d e d s u f f i c i e n t water exchange and s p a t i a l s e p a r a t i o n o f eggs t o remain f r e e o f s a p r o p h y t i c f u n g i and a c c u m u l a t i n g  fines  i n c o a s t a l B r i t i s h Columbia streams ( S c r i v e n e r 1988) . T h i s c a p s u l e d e s i g n r e q u i r e s minimal s u p e r v i s i o n , would remain unhampered by i c e and  t h e extremes  of a northern  climate,  and c o u l d  be  easily  recovered. Incubation  capsules  were s t a i n l e s s  steel  cylinders  (37 mm  i n s i d e diameter) w i t h 2.3 mm diameter h o l e s s e t a t 2.0 mm c e n t r e s . The ends were covered w i t h s n u g - f i t t i n g p o l y e t h y l e n e t e s t caps w i t h numerous 2.3 mm h o l e s . A c o l o u r coded w i r e l e a d i n g from t h e c a p s u l e t o t h e g r a v e l s u r f a c e marked t h e c a p s u l e s i t e and a s s i s t e d  with  r e t r i e v a l . Two l e n g t h s o f capsule were u t i l i z e d ; a s t a n d a r d ( l e n g t h = 12 cm) and a l o n g e r v e r s i o n f o r b e h a v i o r a l work ( l e n g t h = 46 cm). Behaviour c a p s u l e s c o n s i s t e d of two 23 cm s e c t i o n s clamped t o g e t h e r vertically  iii.)  (Fig. 3).  Fertilization  Pooled  Procedure  sockeye salmon gametes  (4?, 4tf) were c o l l e c t e d  each c r e e k d u r i n g spawning. Ova were s e l e c t e d from r i p e  from  females  ( l o o s e eggs e a s i l y e x t r u d e d by g e n t l e abdominal p r e s s u r e a p p l i e d 18  Figure 3. Egg i n c u b a t i o n capsules and i n c u b a t i o n bags u t i l i z e d as bioassays (from l e f t to r i g h t ; standard capsules - 12 cm length, Behaviour capsule - 46 cm l e n g t h , i n c u b a t i o n bag volume 0.2 m ) . Note redd s t r a n d i n g s i m u l a t i o n e x c a v a t e d i n background ( a r e a - 2m ) . 3  2  19  a n t e r i o r t o p o s t e r i o r ) . F i s h were c a r e f u l l y examined f o r m a t u r i t y and any female t h a t appeared t o be p a r t i a l l y was  n o t used.  Fish  of e i t h e r  sex w i t h  spawned o r immature  s e v e r e wounds,  a b n o r m a l i t i e s , o r i n g e n e r a l l y poor c o n d i t i o n were a l s o Gametes were s t o r e d  separately  physical rejected.  i n polyethylene containers  were m a i n t a i n e d a t moderate temperatures (6-11 °C) w i t h i n transport  boxes.  Gametes  were  fertilized  using  which gamete  t h e wet method  i n c o r p o r a t i n g an i s o t o n i c sodium b i c a r b o n a t e r i n s e ( W i l c o x e t . a l . 1984) . T h i r t y eggs, s p a t i a l l y s e p a r a t e d by g r a v e l , were p l a c e d i n t h e top  10 cm o f each c a p s u l e . C a p s u l e s (n  vertically  i n each  simulated  redd  1993  =32 , n  1994  =22 ) were p l a n t e d  a t a depth  of 2 0  cm, t h e  p r e v i o u s l y d e t e r m i n e d average redd depth (Macdonald e t . a l . 1992) . All  planting  fertilization agitation around  procedures  were  completed  t o prevent m o r t a l i t y  within  one  hour  of  due t o m e c h a n i c a l shock o r  (Jensen and A l d e r d i c e 1983). Fencing m a t e r i a l was secured  each  redd  simulation  t o ensure  t h e c a p s u l e s were n o t  d i s t u r b e d by t h e r e m a i n i n g spawners. T y p i c a l l y , each r e a c h w i t h i n each c r e e k r e p r e s e n t e d a u n i q u e f e r t i l i z a t i o n e v e n t . F e r t i l i z a t i o n s u c c e s s was d e t e r m i n e d f o r each fertilization  event  using  randomly  r e t r i e v e d 48 h r s a f t e r f e r t i l i z a t i o n . of  d e v e l o p i n g embryos (n  1993  =10 , n  1994  selected  capsules  (n=2)  P e r i o d i c random c o l l e c t i o n s  =6-7 c a p s u l e s / r e d d s i m u l a t i o n )  were made: 1) L a t e September - e a r l y October as w a t e r t e m p e r a t u r e s d e c l i n e d r a p i d l y . 2) L a t e December d u r i n g low t e m p e r a t u r e and f l o w conditions.  3) M i d - A p r i l  to coincide 20  with  the onset  of f r y  emergence.  Development  rates  were  c l a s s i f i c a t i o n system o f V e r n i e r  examined  utilizing  the  (1969).  A n a l y s i s o f egg t o f r y s u r v i v a l i n v o l v e d p o o l i n g i n d i v i d u a l capsule  s u r v i v a l rates  transformation;  (percent  Z a r 1984)  s u r v i v a l normalized  by a r c s i n e  f o r each r e d d / d a t e r e t r i e v a l by stream,  s t r e a m r e a c h and s i t e ( p r e f e r r e d v s m a r g i n a l ) . T e s t i n g f o r between h a b i t a t d i f f e r e n c e s i n s u r v i v a l was by a n a l y s i s o f v a r i a n c e  (ANOVA;  SAS  between  1988) . S u r v i v a l  rates  were t e s t e d  f o r differences  m a r g i n a l and p r e f e r r e d s i t e s nested w i t h i n stream and stream Post-hoc m u l t i p l e  reach.  comparisons o f ANOVA r e s u l t s were done  using  Duncan's m u l t i p l e range t e s t (SAS 1988).  iv.)  Environmental  Monitoring  Standpipe monitoring reach  i n each c r e e k ,  intragravel within  physical  s t a t i o n s e s t a b l i s h e d w i t h i n each s t u d y  were u t i l i z e d variables.  to characterize  Standpipe  monitoring  each s t u d y r e a c h were based on a s t r a t i f i e d  ensured  a l l stream h a b i t a t  thalweg, pool,  off-channel).  t y p e s were  s t r e a m and  sampled  stations  design  (stream  Standpipe m o n i t o r i n g  that  margin,  s t a t i o n s were  a l s o l o c a t e d w i t h i n t h e "marginal"  and " p r e f e r r e d " redd  simulations  where egg c a p s u l e s were i m p l a n t e d .  A t o t a l o f 10 t o 2 6  standpipes,  depending on reach, period 1-13)  were sampled f o r each r e a c h i n each  sample  (Appendix A ) . Sampling was u n d e r t a k e n b e f o r e spawning ( J u l y and d u r i n g  each embryo c o l l e c t i o n p e r i o d  (late  September,  l a t e December, A p r i l ) . Following  a method developed by Terhune 21  (1958), a s t a n d p i p e  was  driven into  intragravel  t h e s u b s t r a t e t o . a depth  dissolved  measurements.  An  oxygen,  interior  o f 20 cm t o c o l l e c t  temperature  sealing  and p e r m e a b i l i t y  r o d was  used  to  prevent  c o n t a m i n a t i o n by s u r f a c e water d u r i n g the i n s t a l l a t i o n o f t h e p i p e . Temperature and d i s s o l v e d oxygen were measured i n s i d e and a d j a c e n t t o t h e s t a n d p i p e u s i n g an Oxyguard probe w i t h a w a t e r - s t i r r e r . A t each s t a n d p i p e l o c a t i o n stream v e l o c i t y and depth measurements were made as w e l l as v i s u a l estimates o f the s i z e o f s u r f i c i a l m a t e r i a l . R e l a t i v e g r a v e l p e r m e a b i l i t y was d e t e r m i n e d water  from t h e s t a n d p i p e f o r a known l e n g t h o f t i m e  a pre-determined  streambed by pumping  ( « 5 sec)  head ( 1 " ) .  P h y s i c a l parameters were examined f o r d i f f e r e n c e s on a environmental  over  scale  (watershed),  meso-scale  w a t e r s h e d s ) and, on a m i c r o - h a b i t a t s c a l e  (reaches  (habitat  type  macrowithin within  r e a c h e s ) . M u l t i p l e l i n e a r r e g r e s s i o n a n a l y s i s was used t o t e s t t h e relative  significance  incubation  locations  of environmental i n relation  variables  to their  measured a t  corresponding  embryo  s u r v i v a l . Post-hoc simple l i n e a r r e g r e s s i o n was used t o examine t h e s i g n i f i c a n c e o f each e n v i r o n m e n t a l parameter i n d e p e n d e n t l y .  Additional i.)  Stream  Incubation Fidelity  A fully  Experiments Experiment  c r o s s e d gamete i n c u b a t i o n program was i n s t i t u t e d  w i t h i n t h e g e n e r a l h a b i t a t study o f 1 9 9 3 . The o b j e c t i v e was t o t e s t i f g e n e t i c d i f f e r e n t i a t i o n between broodstock from t h e study creeks may i m p a i r a b i l i t y o f eggs t o s u r v i v e i n nearby c r e e k s . W i t h i n each 22  creek  redd  utilized  simulations  (upper  reach,  p r e f e r r e d h a b i t a t ) were  (Appendix A ) . I n a d d i t i o n t o t h e 32 c a p s u l e s o f a c r e e k  b r o o d s t o c k , 10 a d d i t i o n a l c a p s u l e s were p l a n t e d w i t h eggs from the o t h e r two s t u d y c r e e k s . These 30 c a p s u l e s  (n=10 from each o f t h e  c r e e k s ) were l e f t f o r the i n c u b a t i o n d u r a t i o n and r e t r i e v e d d u r i n g the  final  viability  sampling p e r i o d ( A p r i l between  e s t i m a t e d under  broodstocks,  identical  1994).  across  rearing  A comparison three  study  o f gamete  streams  was  c o n d i t i o n s (1 way ANOVA; SAS  1988) .  ii.)  Incubation  In  1994,  Transects  bank t o bank t r a n s e c t s o f i n c u b a t i o n c a p s u l e s were  i n s t a l l e d w i t h i n the Kynock 1550 m study r e a c h (Appendix A l ) . s e l e c t i o n ( n = l l in situ  redd s i m u l a t i o n s ) was based on q u a l i t a t i v e  and q u a n t i t a t i v e d i f f e r e n c e s i n h a b i t a t parameters, expected spawner u t i l i z a t i o n . of  environmental  adults.  Based  parameters  the habitat.  regardless of  The o b j e c t i v e was t o expand t h e range beyond  on t h e 1993 r e s u l t s  "threshold" l e v e l existed utilize  Site  those  selected  by spawning  i t was h y p o t h e s i z e d  that a  beyond which spawning females would n o t  I t was f u r t h e r  hypothesized  that  lower  s u r v i v a l r a t e s would r e s u l t from the lower q u a l i t y h a b i t a t beyond t h e s e t h r e s h o l d s . E i t h e r 6 o r 8 c a p s u l e s were i n s t a l l e d a t each o f the  11  redd  s i m u l a t i o n s . Capsule  retrieval  (n=2-3  capsules)  f o l l o w e d t h e s t a n d a r d sampling p r o t o c o l . E n v i r o n m e n t a l  parameters  were measured as p r e v i o u s l y d e s c r i b e d , w i t h i n each s i m u l a t e d redd.  23  iii)  Capsule  effects  A l t e r n a t i v e p e r f o r a t e d c o n t a i n e r s were d e s i g n e d t o a s s e s s t h e e f f e c t o f t h e i n c u b a t i o n c a p s u l e s on egg t o f r y s u r v i v a l These  incubation  "bags" were adapted  (1994) . Mesh bags were much l a r g e r from m a r k - r o s e t t e c l o t h .  Substrate  from  Perkins  (Fig. 3).  and Krueger  («.2m ) and were 3  constructed  was n o t s e l e c t e d f o r optimum  q u a l i t i e s b u t t o r e p r e s e n t t h e in situ  composition.  r e d d s i m u l a t i o n t e s t e d t h e concern t h a t  This a l t e r n a t e  s e l e c t i o n of only  q u a l i t y substrate t o put i n t o incubation capsules  created  good micro-  h a b i t a t c o n d i t i o n s t h a t u n n a t u r a l l y i n f l u e n c e d s u r v i v a l . Two "bags" were p a i r e d w i t h 8 s t a n d a r d c a p s u l e s  i n 5 locations arrayed  across  creeks  (Appendix A ) . Capsule e f f e c t s were then examined by p a i r e d  t-test  ( Z a r 1984).  iv.)  Intragravel  Behaviour  Constriction  of  Alevins  o f l a r v a l movement w i t h i n i n c u b a t i o n  capsules  c o u l d decrease i n c u b a t i o n success i f subgravel b e h a v i o u r o f a l e v i n s ( i . e . v e r t i c a l / l a t e r a l migration) environmental containing  conditions.  6 behavioral  i n c u b a t i o n capsules  occurs  Five  redd  incubation  were a r r a y e d  i n response t o changing stranding  capsules  across  creeks  simulations  and s i x s t a n d a r d i n 1994 (Appendix  A ) . The d e s i g n o f t h e b e h a v i o r a l i n c u b a t i o n c a p s u l e s would p e r m i t t h e v e r t i c a l movement o f l a r v a e versus  12 cm i n s t a n d a r d  incubation  chosen based on o b s e r v a t i o n s likely  be  impacted  by  ( i . e . 46 cm o f v e r t i c a l  during  capsules).  Locations  were  t h e 1993 s t u d i e s t h a t would  dewatering 24  distance  or  freezing.  Stranding  s i m u l a t i o n s were g e n e r a l l y l o c a t e d w i t h i n stream margins o r s h a l l o w gravel  bars  containing  low d e n s i t y  spawning exposed s u r f i c i a l Collections hatching  spawning a c t i v i t y  and  substrate.  of developing  embryos were made;  1) p r i o r t o  i n l a t e September as w a t e r l e v e l s and t e m p e r a t u r e s  to decline  post-  r a p i d l y and, 2) d u r i n g  began  the a l e v i n stage i n February  d u r i n g minimum f l o w and temperature c o n d i t i o n s . Within  each s i m u l a t e d  redd, d u r i n g  both r e t r i e v a l  e n v i r o n m e n t a l parameters were measured as  previously  The e f f e c t s o f d e w a t e r i n g and f r e e z i n g on l a r v a l s u r v i v a l r a t e s was i n f e r r e d from; 1) d e t e r m i n a t i o n  periods, described.  b e h a v i o u r and  of t h e p r e - h a t c h  v e r t i c a l d i s t r i b u t i o n and s u r v i v a l o f embryos, 2) c o n t r a s t i n g t h e vertical capsules  d i s t r i b u t i o n s o f embryos and a l e v i n s w i t h i n in  relation  to  key  environmental  behaviour  parameters ( i . e .  w a t e r l e v e l , temperature) and, 3) e x a m i n a t i o n o f s u r v i v a l r a t e s i n r e l a t i o n t o environmental conditions.  25  CHAPTER 3 - RESULTS  Spawner Abundance and  Distribution  The e a r l y S t u a r t escapement t y p i c a l l y o c c u r s between J u l y 22 t o August 15, and peak spawning a c t i v i t y occurs between August 3-13 (Fig  4; G. Smith, D.F.O., Stock Assessment Group, u n p u b l .  Escapement  estimates  f o r t h e study  between t h e two y e a r s o f study Stock  Assessment  usable 1993  Group,  creeks  data).  were v e r y d i f f e r e n t  (Table 1; T. Whitehouse, D.F.O.,  unpubl.  data).  Based  on e s t i m a t e s f o r  spawning a r e a optimum escapement l e v e l s were exceeded i n  ( d e n s i t y = 3.46 spawners/m ) , w h i l e 1994 was w e l l below t h i s 2  level  (density  broodyear,  =  0.30 spawners/m ) . 2  During  the high  density  abundances were d r a m a t i c a l l y h i g h e r a t a l l l o c a t i o n s ,  and d i s t r i b u t i o n s were extended a f u r t h e r 1.2 - 2.0 km upstream t o where  obstructions  blocked  further  movement  (P. T s c h a p l i n s k i ,  M.O.F., Research Branch., p e r . comm.). Redd spatial  distributions within preferences  (n=6).  a l l study High  reaches  density  demonstrated  spawning  habitat  ( " p r e f e r r e d " ) was c o n s i s t e n t l y a t t h e t a i l  of pools i n the pool-  riffle  habitats  transition.  included; r i f f l e s , portions  Low d e n s i t y  spawning  stream margins,  i n t e r m i t t e n t s i d e - c h a n n e l s and  o f o f f - c h a n n e l h a b i t a t . These s p a t i a l  c o n s i s t e n t o v e r b o t h study y e a r s  26  ("marginal")  preferences  ( F i g . 5, Appendix A ) .  were  1200 t  1—1  1  CN CN  rH |  CN  rH 1  1  >£>  00  CN  CN  1 O ro  cn  01  i  <  rH  ro  Cn  <I  in  cn  Cn  <  < i  cn < i rH rH  << 1  ro rH  Cn  cn  I  < i  rH  rH  in  F i g u r e 4. A d u l t sockeye a r r i v a l t i m i n g at F o r f a r Creek mouth. Number of a d u l t sockeye was the d a i l y t o t a l sockeye through the fence at the mouth of F o r f a r Creek. The p e r i o d J u l y 29 August 2, 1993 was u n a v a i l a b l e due t o a f r e s h e t event removing the c o u n t i n g fence d u r i n g this period. Daily escapement was c o n s e r v a t i v e l y estimated at 3 000 based on peak l i v e counts p l u s cummulative dead (G. Smith, D.F.O., Stock Assessment Group, unpubl. d a t a ) . 27  o CD CD 4-) i—I 4-) T5 co  CD CO 13  cn-H  CO CD  d -rH  S O  T3 CO  a g o a  cd  4J  co ^  3  rH rH  CO  O  -H  u  o rH  a.  CD  -u  °  ^  c  w  CO 4-> 4H  „<•  hi  cO tO  *g  cxi oo ^t- oo co C D o  (0 4-> 00  <c • >, rH rH rH  co r Q  3 CO cd CD  g -rH  a  3 (D CO  4_)  u  u  CO CD  - 4-) O  CO CD  a o 4-) u c 4J o CD  g  CD  co (D  4J  CD cd  O O rH  CD g g DJ CO - H ^ ro co 4-> cn cj (D co tn CO CO CD r H CD CO < CD T3 4-)  G  rH  no  CO cd  •38 rg  4-) i—I CTl 0 0 Cd CTl  >  o  rH  CD  co cO  C?  CD 0) co MH  oo G u ,G CD CD o 4-> SH 4J  oo  fO  G  rG  g  CD  3 : CD U I CD  CD rH rQ CO  Eh  act;  H->  G CD  CD >  U -H  +  OO  CD fO  ^ CD  U  CD "  CD  M—  S-  4—  E  CD CL ra CJ 00  >> •r-  oo E  CD •  o o o  6-9  i >, CT) CT) U. UJ  CT) 3 ro  Q_  oo CD  OO  -Q fO OO  E  O  CD £_  >> ro  CD O  +-> rO  OO  oo ro O  5_  CD  jQ 00  >> CD  JXL  oo 00 00  <C  J—  >  •rX O: CD co sCD O 00 ro L O ro  CJ H-> • • O ro O H-> "O LO  CO  ro O  CJ E O O OO +-> S_ — , +-> ro CD OO ro  E  CD  25 00 CL  CD  CD 00  CD  ro I—  CL =3 O s_ CD  • r—  OO  CD  <T> - Q  cn  . i— ro  CD O  3 u  r-H  c r —  E  ro CD  E E  E  -a £  CD  O  T3 CT) "O CD 13 13 CD E C L 00 00 ro 00 ro E 00 ro CD =5 < C CO  +  +  CD 6-9 CTl s_ CD 03 EE >  a>  >  ^ u_ o. S-  <TJ  ro s_ CT) O s_ Q_  E  CD  ro CD s_  4->  r-^  + + + + + + +  CD +-> ro  CD +-> ro  rH r*  CO  00  CD  CD  ro  r—i  O  OO  23 000 16 749 20 665 20 665 46 000 33 498 41 330 41 702 4.1 1.8 15.3 3.0 7 296 12 083 22 737 19.1 35.4 13.5 49.5 45.8 50.9  - H O)  19913 Broody ear Bivouac Gluskie Forfarl Kynock  g  199' 4 Broody ear Total Total Bivouac Gluskie Forfar| Kynock 2 148 6 950 1 950 2 511 81 265 4 296 13 900 3 900 5 022 162 530 0.3 0.4 0.5 0.2 3.5 6 857 749 2 700 3 408 42 116 29.5 28.9 48.0 22.7 11.6 28.0 15.6 60.1 49.0 27.7  co  i CT) CT) UJ  1<3  + + + +  N  F i g u r e 5. Redd l o c a t i o n s d e t e r m i n e d t h r o u g h ethological observation ( J u l y 31, A u g . 1 and A u g 5 1993) w i t h i n Gluskie 400 m s t u d y r e a c h . Transects 1 a n d 5, a n d i n c u b a t i o n capsule locations (redd simulations) were i n c l u d e d f o r reference points (see A p p e n d i x A ) . S t r e a m w e t t e d s u r f a c e area was surveyed Sept. 18, 1993. Note s t r a n d e d redd locations along stream margins. 29  Egg t o Pre-emergent F r y S u r v i v a l  E x a m i n a t i o n o f t h e sources o f v a r i a t i o n f o r embryo s u r v i v a l rates  indicated  (p < 0.01;  an  Appendix  interaction B) . T h i s  years  between  means  f o r each  broodyear  that  creek  and  the data  analyzed  across  i n testing  effects.  S u r v i v a l r a t e s were b l o c k e d by b r o o d y e a r ,  creek  cannot  be  f o r habitat and s u r v i v a l  d i f f e r e n c e s between h a b i t a t s were t e s t e d . The  1993 mean  s u r v i v a l rate  from  fertilization  to pre-  emergent  f r y was 49%. Mean s u r v i v a l was 51%, 50% and 46% f o r  Gluskie,  Forfar  and Kynock  creeks  d i f f e r e n c e between s u r v i v a l r a t e s effect  of creek  (p > 0.05),  respectively.  There  was  no  (p > 0.05), and no s i g n i f i c a n t  reach  (p > 0.05) o r h a b i t a t  type  (p > 0.05) . The  mean 1994 s u r v i v a l r a t e t o pre-emergent  fry  was 27%.  There was s i g n i f i c a n t v a r i a t i o n i n s u r v i v a l r a t e s between c r e e k s (p < 0.01), habitat  b u t not reaches  type w i t h i n  reaches  lowest  i n Bivouac  Creek  Forfar  (16%) and G l u s k i e  within  each  creek  (p > 0.05), o r  (p > 0.05). Mean s u r v i v a l r a t e was  (6%; p < 0.05). Mean s u r v i v a l r a t e s o f (28%) creeks were i n t e r m e d i a t e  (p < 0.05),  and a l l 3 c r e e k s had lower mean s u r v i v a l r a t e s than Kynock  Creek  (60%; p < 0.05; Appendix B ) . There were s i g n i f i c a n t d i f f e r e n c e s i n m o r t a l i t y r a t e between the  developmental  stages  (p <  0.01).  Eighty  percent  of the  m o r t a l i t y o c c u r r e d i n t h e f i r s t 50 days, b e f o r e h a t c h i n g ( F i g . 6). The 1994 p r e - h a t c h m o r t a l i t y (62.5%) was h i g h e r t h a n 1993 (48.1%; p < 0.05). The r e m a i n i n g m o r t a l i t y was e x p r e s s e d as u n f e r t i l i z e d 30  100  j  90  —  80  +  Fertilized  Pre-hatch  Alevin  Preemergent fry  Developemental Stage  F i g u r e 6. P e r c e n t m o r t a l i t y o f embryos a s s e s s e d a t t h e end o f each r e t r i e v a l p e r i o d f o r a l l study streams combined (mean +/2*S.E.). Note f e r t i l i z a t i o n = 0-2 days (Aug.), P r e - h a t c h = 250 days ( l a t e Sept.), a l e v i n = 50-180 days ( l a t e Dec. - Feb.), pre-emergent f r y = 180-260 days (mid A p r i l ) . 31  eggs (8%) and o v e r - w i n t e r i n g processes (12%). The m a j o r i t y o f overw i n t e r i n g m o r t a l i t y o c c u r r e d when i n d i v i d u a l c a p s u l e s  were  frozen  as i n t r a g r a v e l w a t e r l e v e l s dropped below t h e c a p s u l e d e p t h ( i . e . a s i m u l a t i o n of redd s t r a n d i n g ) . This w a t e r l e v e l s were  occurred  i n m i d - w i n t e r when  lowest.  S u r v i v a l r a t e s d i d not d i f f e r between t h e redd s i m u l a t i o n bags (n=10)  and a s s o c i a t e d egg c a p s u l e s  ( f i g . 7;  p > 0.05).  The r e d d  s i m u l a t i o n bags appeared t o show l e s s v a r i a b l e s u r v i v a l among study s i t e s t h a n i n d i c a t e d by t h e c a p s u l e  data. F e r t i l i z a t i o n  success,  d e t e r m i n e d 48 hours p o s t - f e r t i l i z a t i o n , d i d n o t v a r y between y e a r s (p > 0 . 0 5 ; F i g . 6 ) . R e s u l t s o f t h e stream f i d e l i t y e x p e r i m e n t were non-significant,  indicating  that  any  genetic  differentiation  between creeks does not i m p a i r a b i l i t y o f eggs t o s u r v i v e i n nearby creeks.  P h y s i c a l Environment  All  i n c u b a t i o n environments were r e l a t i v e l y  invariant, with  h i g h q u a l i t y i n c u b a t i o n h a b i t a t a v a i l a b l e a t a l l s c a l e s examined. Figure  8 illustrates  the v i s u a l  r e p r e s e n t a t i v e marginal were  no  significant  characteristics associated  with  and p r e f e r r e d i n c u b a t i o n h a b i t a t s . There differences  between  these  habitats ( a l l  reaches, creeks and y e a r s combined) i n e i t h e r stream o r i n t r a g r a v e l p a r a m e t e r s (Table 2 ) . W h i l e b o t h i n c u b a t i o n h a b i t a t s c o n t a i n q u a l i t y c o n d i t i o n s , t h e r e was a t r e n d towards l o w e r v a l u e s the  marginal  habitats  ( i . e . shallower,  lower  velocity,  s u b s t r a t e , l o w e r p e r m e a b i l i t y , and lower d i s s o l v e d o x y g e n ) . 32  high  within finer  • Simulated Redd  100 J 90  - Upper 95% C.I  80  • Mean capsule  70  - Lcwer 95% C I .  60 > 50  •rH  > 40 u 30 -  10  20 10 + 0 FLH  KLS1  FLL  KHH  KHL  Location  F i g u r e 7. Comparison o f s u r v i v a l r a t e ( f e r t i l i z a t i o n t o p r e h a t c h embryos; 50 days) between redd s i m u l a t i o n bags (n=10) u t i l i z i n g r e p r e s e n t a t i v e in situ s u b s t r a t e c o m p o s i t i o n and s t a n d a r d egg i n c u b a t i o n c a p s u l e s (mean +\- 95% c o n f i d e n c e i n t e r v a l ) . I n c u b a t i o n l o c a t i o n s were a r r a y e d a c r o s s s t u d y c r e e k s (FLH = F o r f a r 150m p r e f e r r e d redd s i m u l a t i o n . FLL = F o r f a r 150m m a r g i n a l . KLS1 = Kynock 350m s t r a n d i n g s i m u l a t i o n . KHH = Kynock 1550m p r e f e r r e d . KHL = Kynock 1550m m a r g i n a l . ) . 33  CD  U  4-) CD U 0 • H 4-> a 0  d) Xi  TJ a CO , G CO OJ4J  m cd rH 4J tn-H  0 £| 4J cd 0 Xi  x: ch  G 0  • -H  CO 4J  c0 ro X!  3 4-) O cd G  •H  rH - H  6 TJ CD CQ rH  -H  rH  CD T3 4H CD <D rH rH  a  •  o LO T3 c H G 0 — rd •H 4J -  T f rH  m xiCQ -aH CD rH  CD 4-)  ro N  -H rH fJl-H  U  rd rd e  4J  rH  <D 14-i  (0 4J CD CQ 5 MH 0 0 0 a rH  1—1  rH  CO  rd Sh a) u tti (D - H T3 u a  X  4J rH rH  rrj coG  4H rH  G CD ^  0 0 - H rd fa 4J 4J •H  • T) CD CD c rH 0 0 CD O  Fig  rH  ro  T a b l e 2 . Summary o f stream and i n t r a g r a v e l p h y s i c a l p a r a m e t e r s f o r p r e f e r r e d and m a r g i n a l redd s i m u l a t i o n s ( a l l l o c a t i o n s , creeks and y e a r s combined; n=25).  VARIABLE VELOCITY (m/s) Std. E r r . Range n DEPTH (cm) Std. E r r . Range n STREAM TEMP (C) Std. E r r . Range n  CAPSULE INCUBATION SITE PREFERRED MARGINAL 0.19 0.13 0.02 0.04 0.00 - 0.45 0.0 - 0.71 22 21 29.1 4 2.0 -74.0 24 3 . 58 0.65 - 0.1-9.4 25  20.7 3.7 1.0-57.0 23 3.4 0.63 -0.1-8.8 24  SURFACE SUBSTRATE Std. E r r . Range n  3 .41 0.22 1.0 - 4.4 18  3.06 0.3 1.0-5.0 18  STREAM DISSOLVED OXYGEN (mg/1) Std. E r r . Range n  11.68 0.17 10.3-13.1 25  11.17 0.29 7.3-12.9 23  INTRAGRAVEL DISSOLVED OXYGEN (mg/1) Std. E r r . Range n  10.76 0.22 8.2-12 .4 25  9.99 0.4 4.9-12 .0 24  PERMEABILITY (ml/s) Std. E r r . Range n  21.7 2.8 8.4-50.0 16  19.3 3.7 0.0-48.6 16  3.6 0.65 - 0.1-9.4 25  3.42 0.62 0.0-8.5 24  INTRAGRAVEL TEMPERATURE (C) Std. E r r . Range n  35  p < 0.05  no  no  no  no  no  no  no  no  The  i s representative  of the  a n n u a l p a t t e r n f o r n a t a l streams used by t h e e a r l y S t u a r t  sockeye  stock  Forfar  Creek  t h e r m a l regime  ( F i g 9; B. Anderson,  D.F.O., P.B.S., u n p u b l . d a t a ) .  Daily  s t r e a m t e m p e r a t u r e s r i s e from 4 - 10°C d u r i n g June, v a r y from 8 16°C d u r i n g summer, and drop r a p i d l y i n October and remain a t 0.0 0.5°C  throughout  temperatures  winter.  Kynock  ( J u l y 20 - Aug 20 ),  higher than e i t h e r G l u s k i e creeks  ( F i g . 10) .  significantly  Creek  higher  The  ( 11.7  mean 1993  spawning  /13 . 4  1994  (10.2/12.4°C) o r F o r f a r 1994 mean  than  1993  spawning  (p <  period  °C) were «1.0°C (10.5/12.4°C)  temperatures  0.05).  There  were  were  no  s i g n i f i c a n t d i f f e r e n c e s i n stream temperature between e i t h e r ; 1) r e a c h e s w i t h i n a c r e e k o r , 2) h a b i t a t t y p e . For  a l l r e a c h e s , c r e e k s and y e a r s combined,  t h e r e were no  s i g n i f i c a n t d i f f e r e n c e s i n i n t r a g r a v e l w a t e r t e m p e r a t u r e between i n c u b a t i o n l o c a t i o n s (Table 2 ) , o r h a b i t a t t y p e s i n g e n e r a l (Table 3).  During the mid-winter  (1993)  sample p e r i o d ,  t h e r m a l regime c l o s e l y p a r a l l e l l e d thermal  regime.  No h a b i t a t  (Mean  specific  diff  the intragravel  . = 0.1°C) t h e stream  groundwater  upwelling  was  d e t e c t a b l e from temperature comparisons. Peak  stream  f l o w s were g e n e r a t e d by snow m e l t  during the  s p r i n g and by r a i n storms d u r i n g t h e s p r i n g and autumn. Low f l o w s were o b s e r v e d from November t o March  and from m i d - J u l y t o mid-  September ( F i g 11; S c r i v e n e r and Anderson 1994) . W i n t e r d i s c h a r g e s may be as l i t t l e as 20% o f t h e f a l l . As seen from t h e s t r e a m w e t t e d s u r f a c e a r e a a p p r o x i m a t e l y 50 days  after  spawning, redds l o c a t e d i n stream margin h a b i t a t s were s u s c e p t i b l e 36  o co  u  CD  pa  CTl  O CTl CTi  T3 O  -H  u CD a CD  x; S-l  o CD CD  03 VH  o CO CD  • —  2  4-)  u cd 4_>  cd  cd  V-( CD  •  D j r H  CD  J->  I cr  -3  a  £ 3  e .  -H  .  g pq -H  cd *  p ^ CTl  CD r4  tn  •H  fa  31  Q  20Jul  1Aug  C.  5Aug  9Aug  13Aug  17Aug  9Aug  13Aug  17Aug  Gluskie  17 16 15 -  G 14 £  ii  a e <"  E-  131 2  -  11 10 -  20Jul  24Jul  28Jul  1Aug  5Aug  F i g u r e 10. E a r l y S t u a r t spawning p e r i o d (20 J u l y - 20 August) d a i l y maximum stream temperatures i n ; a) Kynock, b) F o r f a r , and c) G l u s k i e creeks f o r the broodyears 1993 and 1994 (B. Anderson, D.F.O., P.B.S., unpubl. d a t a ) . 38  T a b l e 3. Summary o f stream and i n t r a g r a v e l p h y s i c a l parameters by g e n e r a l h a b i t a t type (margin, thalweg, p o o l , o f f - c h a n n e l ) f o r a l l seasons (1993-1994), c r e e k s (n=4) and l o c a t i o n s combined (n=563). VARIABLE  MARGIN  THALWAG  POOL  OFF - CHANNEL  P < 0.05  VELOCITY (m/s)  0.29  0 .43  0.14  0.08  ***  Std. E r r .  0 .02  0.02  0.01  0.01  Range  0.01-1.06 166 B  0.00-1.45  0.00-0.58 90  0.00-0.59  n Duncan DEPTH (cm)  18.9  187 A 27 . 5  C 41.8  100 D 25.3  Std. E r r .  1  1.1  1.9  2  Range n  2.0-100.0 190 B  2.0-84.0 92  Duncan  3.0-64.0 168 C  1.0-132.0 98 B  STREAM TEMPERATURE (C)  6.7  Std. E r r .  0.3  6.6 0.3  5.9 0.4  Range n INTRAGRAVEL TEMPERATURE (C) Std. E r r . Range n  -0.1-12.7 171  6.7 0.2 -0.1-12.8 172  -0.1-12.7 194  6.6 0.3 0-12.8 193  A  -0.1-12.7 93  6 0.4 -0.1-12 .7 93  ***  5.8 0.4 -0.2-12.9 98  5.7 0.4 -0.1-12.8 98  SURFACE SUBSTRATE Std. E r r .  3.57 0 .07  Range n  1.7-5.1 164  Duncan  3 .99  3.38  0 .05 2.0-5.0 184  0.16 1.0-5.2  B  A  73 B  11.1  2.84 0.11 1.0-5.0 82  ***  C  STREAM DISOLVED OXYGEN (mg/1)  10.9  11  Std. E r r .  0.1  0.1  0.1  0.2  Range  9.4-13.2  9.1-12.8  n  9.4-13.3 171  3.6-13.0  194  Duncan  98  A  A  93 A  10.4  ***  B  INTRAGRAVEL DISOLVED OXYGEN (mg/1)  9.5  9.8  9.9  Std. E r r .  6.6  0.17  0.15  0.2  Range n  0.38  0.3-12.8 172  0.3-12.9  0.3-12.4 93  0.2-12.0  193  Duncan  A  A  A  B  PERMEABILITY (ml/s)  25.4  19.9  98  25.9  24.9  1.5  1.5  2.5  1.8  Range  3-125  4-129  6-120  n  0-82  160  181  60  78  Std. E r r .  39  ***  40 AVG FLOW PRECIP.  o to 6 + r3 o O4 4 LL  LU 2 CC U) 0  N  •  D  T  J  4^  F  M  A  M  J  J  A  S  O  DAYS OF 1991-1992  F i g u r e 11. H y d r o - m e t e o r o l o g i c a l d a t a r e c o r d e d i n G l u s k i e Creek watershed i n c l u d i n g mean d a i l y f l o w s f o r t h e w a t e r - y e a r November 1, 1991 t o October 31, 1992 and t o t a l d a i l y r a i n f a l l f o r A p r i l 27 t o October 20, 1992.  40  to  dewatering  ( F i g . 5) . Reach v e l o c i t i e s  at this  point  (late  September) averaged 30% o f those d u r i n g t h e spawning p e r i o d , and r e d d w a t e r depths were s i m i l a r l y reduced. R e s u l t s o f t h e environmental m o n i t o r i n g program a r e summarized by  h a b i t a t type  and sample date  i n Appendix CL. There were no  d i f f e r e n c e s i n mean ( a l l sample p e r i o d s and h a b i t a t types combined) v e l o c i t y , depth,  stream temperature,  w a t e r t e m p e r a t u r e between study  permeability, or intragravel  creeks  (p > 0.05; A p p e n d i x C 2 ) .  There were d i f f e r e n c e s i n s u r f a c e s u b s t r a t e index, stream d i s s o l v e d oxygen and i n t r a g r a v e l d i s s o l v e d oxygen. A l l mean v a l u e s i n d i c a t e d high q u a l i t y incubation habitat(Appendix was  significantly  shallower  C2) . The 1994 b r o o d y e a r  (p < 0.05). T h i s was a t t r i b u t e d t o  water impoundment as a r e s u l t of beaver a c t i v i t y i n lower watershed r e a c h e s i n 1993 ( i . e . p o o l depth; Appendix C I ) . Generally, surface substrate composition corresponding sizes  of  t o h i g h q u a l i t y spawning g r a v e l w i t h mean p a r t i c l e  (2 mm  composition  i n d i c e s were > 3.4,  - 64 mm) . Only  off-channel  habitat  (substrate  i n d e x = 2.8) had a s i g n i f i c a n t p r o p o r t i o n o f s i l t and  sands (Appendix C I ) . The range (1.0-5.0) i n d i c a t e s p o r t i o n s o f t h i s h a b i t a t c o n t a i n e d h i g h q u a l i t y g r a v e l f o r i n c u b a t i n g eggs  (Table  3 ) . There were d i f f e r e n c e s i n s u r f a c e s u b s t r a t e c o m p o s i t i o n between r e a c h e s (p < 0.05) . Upper l o c a t i o n s were c o a r s e r due t o i n c r e a s i n g gradients  and  water  velocities.  Broodyear  differences  were  a t t r i b u t e d t o water impoundment by beavers d u r i n g t h e w i n t e r o f 1993/1994 i n 2 o f t h e 6 study reaches. T h i s r e s u l t e d i n s u r f a c e deposition of fine  sediments. 41  A l l habitats  ( t a b l e 3) and capsule i n c u b a t i o n l o c a t i o n s  (Table  2) c o n t a i n mean p e r m e a b i l i t i e s o f > 19 ml/s (6,840 cm/hr). N i n e t y percent  o f a l l samples  (n = 784) o f s t r e a m  and  intragravel  d i s s o l v e d oxygen were > 6.0 mg/1 ( F i g . 12). There were i n t r a g r a v e l d i s s o l v e d oxygen d i f f e r e n c e s between t h e two s t u d y y e a r s ( J u l y and Sept. mean  sampling  1994  =8.49±  periods  p  0.19 mg/1). T h i s  <  0.05;  mean  1993  =9.59±0.14  mg/1,  d i f f e r e n c e was a t t r i b u t e d t o t h e  h i g h e r w a t e r temperatures o f 1994. Intragravel  dissolved  oxygen  l e v e l s between p r e f e r r e d  and  m a r g i n a l i n c u b a t i o n h a b i t a t were s i m i l a r (p > 0.05; T a b l e 2 ) . Only off-channel 0.05;  h a b i t a t had lower i n t r a g r a v e l d i s s o l v e d  6.4  mg/1;  Table  3 ) . The v a r i a n c e  within  a  oxygen study  (p < reach  d e m o n s t r a t e s a l l h a b i t a t s c o n t a i n areas o f h i g h q u a l i t y i n c u b a t i o n habitat  (Fig. 13).  E f f e c t s o f Environmental F a c t o r s on I n c u b a t i o n S u r v i v a l  Multiple physical  regression  variables  analysis  measured  o f embryo  at incubation  survival location  rates  standpipes  (stream t e m p e r a t u r e , d i s s o l v e d oxygen, v e l o c i t y , d e p t h , substrate  i n d e x and, i n t r a g r a v e l temperature,  permeability) predictions survival  failed  any  dissolved  significant  oxygen,  correlation  2  significantly  differences  detect  surficial  (p > 0.05, r = 0.17, n=53). T h i s was a r e s u l t o f ; 1)  between  contained  to  on  preferred  and  marginal  d i f f e r e n t and, 2) p r e f e r r e d  high  quality  habitats and m a r g i n a l  incubation habitat with  i n environmental  conditions. 42  were  not  habitats  non-significant  Results  of  similar  D i s s o l v e d oxygen (mg/1)  F i g u r e 12. Frequency d i s t r i b u t i o n of stream (n=771) and i n t r a g r a v e l (n=784) d i s s o l v e d oxygen measurements w i t h i n t h e f o u r s t u d y streams from the p e r i o d 1992 - 1995. 43  0/2 i n s i d e Temp i n s i d e  ]0/2 o u t s i d e •Temp o u t s i d e  S  1  o  1  1  2  2  2  2  2  3  H a b i t a t type  F i g u r e 13. W i t h i n study r e a c h v a r i a t i o n f o r d i s s o l v e d oxygen and t e m p e r a t u r e f o r t h e s t a n d p i p e s a m p l i n g g r i d o f Kynock Creek 1550 m (mid-watershed), 4 A p r i l 1994. Temperature and d i s s o l v e d oxygen were measured a t an i n t r a g r a v e l d e p t h o f 20 cm. S t a n d p i p e s were grouped by h a b i t a t c l a s s i f i c a t i o n code ( l = t h a l w e g , r i f f l e , 2=margin, 3=pool, g l i d e , 4 = o f f - c h a n n e l ) . 44  survival  from low  ("preferred")  density  sites,  with  ("marginal") obvious  sites,  high  v i s u a l substrate  ( F i g . 8), y e t s i m i l a r i n t r a g r a v e l c o n d i t i o n s v i s u a l d i f f e r e n c e s were m i s l e a d i n g  and  density  differences  (Table 2 ) , suggest  i n terms of a c t u a l  the  incubation  site quality. Incubation regardless the  l o c a t i o n s f o r the 1994  t r a n s e c t study were s e l e c t e d  of e x p e c t e d spawner h a b i t a t u t i l i z a t i o n . As  range of e n v i r o n m e n t a l parameters a s s o c i a t e d  l o c a t i o n s was  a result,  with  incubation  expanded. I n c l u s i o n of t h i s data w i t h i n 1994  survival  rates resulted i n a non-significant multiple c o r r e l a t i o n prediction (p  =  0.06,  r  2  =  0.34,  n=43) .  There  was  a  non-significant  r e l a t i o n s h i p between i n t r a g r a v e l d i s s o l v e d oxygen and  s u r v i v a l rate  ( F i g . 14). T r a n s e c t d a t a suggest i n t r a g r a v e l d i s s o l v e d oxygen does not 15). mg/1  effect survival rate u n t i l  l e v e l s drop below 4.0  intragravel  w e l l described Multiple  dissolved  oxygen.  s u r v i v e and  Embryos  placed  the  3.0  these not  by l i n e a r r e g r e s s i o n models. regression  s i g n i f i c a n t l y higher  temperatures  in  t h i s r e l a t i o n s h i p i s probably  analysis  also  indicated a relationship  between temperature and embryo s u r v i v a l r a t e . I n 1994,  1994,  (Fig.  Spawning sockeye d i d not u t i l i z e h a b i t a t w i t h l e s s t h a n  l o c a t i o n s d i d not  had  mg/1  s u r v i v a l rates  ( F i g . 10) . T h e r e f o r e ,  higher  at  Kynock Creek  (Appendix B) a given  and  sampling  s u r v i v a l r a t e s of Kynock Creek were  stream time  in  associated  w i t h warmer t e m p e r a t u r e s . T h i s r e l a t i o n s h i p was  a spurious r e s u l t .  R e g r e s s i o n a n a l y s i s i n d i c a t e d the d i f f e r e n c e i n  mortality  for  1993  and  1994  was  related  to 45  the  date  fertilized  patterns in  1994  1 0 0 . 00 -r Y = 2.15x  2 . 00  +15.67  4.00  6.00  Dissolved  Oxygen  8.00  10.00  1 2 . 00  (mg/1)  F i g u r e 14. L i n e a r r e g r e s s i o n of the 1994 embryo s u r v i v a l r a t e ( a l l creeks, l o c a t i o n s ) 50 days a f t e r f e r t i l i z a t i o n on the c o r r e s p o n d i n g i n t r a g r a v e l d i s s o l v e d oxygen (@ 20 cm depth) at the p e r i o d immediately p r i o r to egg d e p o s i t i o n . 46  100  so A  (0 >  60  40  -I  20  A. 4  6  10  D i s s o l v e d Oxygen (mg/1)  F i g u r e 15. The 1994 embryo s u r v i v a l r a t e (%) from the t r a n s e c t experimental reach (Kynock 1550 m s i t e ; Appendix A) 50 days a f t e r f e r t i l i z a t i o n versus the c o r r e s p o n d i n g intragravel d i s s o l v e d oxygen (@ 20 cm depth) a t the p e r i o d immediately p r i o r t o egg d e p o s i t i o n . Transect runs from the n o r t h bank margin (A) across a r i f f l e and p o o l i n t o the o f f - c h a n n e l h a b i t a t (B).  47  (Fig.  16). The non-random temporal s e l e c t i o n o f i n c u b a t i o n  sites  l e d t o a n e g a t i v e r e l a t i o n s h i p between t h e d a t e o f f e r t i l i z a t i o n and  the r e s u l t i n g  survival  50  days  t e m p o r a l sequence o f f e r t i l i z a t i o n Kynock, F o r f a r ,  Gluskie,  after  fertilization.  and c a p s u l e i m p l a n t a t i o n was  and Bivouac c r e e k . Temporal sequence was  d i c t a t e d by t h e o r d e r o f spawning and m a t u r a t i o n w i t h i n streams.  This  survival  rate  relationship  period  between  was n o t e v i d e n t  sequence. The n e g a t i v e  date  of  i n 1993 under a s i m i l a r  relationship  r e l a t i o n s h i p was e x e m p l i f i e d  within  o f 1994 c o i n c i d e s  after  and  temporal w i t h the 4) . T h i s  Kynock Creek s t u d y r e a c h e s .  on August 4-6, 2-4 days a f t e r  peak, had some o f t h e h i g h e s t s u r v i v a l r a t e s 9, 7 days  spawning  fertilization  when escapement u n e x p e c t e d l y dropped o f f ( F i g .  Gametes c o l l e c t e d  The  t h e escapement  ( F i g . 16) . On August  t h e end o f t h e escapement peak,  gametes were  s t r i p p e d from t h e few r e m a i n i n g r i p e a d u l t s a t t h e f e n c e . A l t h o u g h these  embryos were p l a n t e d  within  s i g n i f i c a n t l y lower s u r v i v a l r a t e s August 9 s u f f e r e d  t h e same  location  t h e y had  ( F i g . 16). Embryos c o l l e c t e d on  a m o r t a l i t y event a t s t a g e 8-10. T h i s  coincides  w i t h 20-60 ATU s o r 2-10 days p o s t - f e r t i l i z a t i o n . T h i s  mortality  1  event  was n o t e v i d e n t  i n gametes  collected  on August  4-6 and  i n c u b a t e d w i t h i n t h e same stream r e a c h .  A l e v i n Development and Behaviour  T a b l e 4 summarizes t h e p h y s i c a l  c h a r a c t e r i s t i c s of stranded  (marginal s i t e s subject  t o exposure) and c o n t r o l  situ  There was no d i f f e r e n c e  redd  simulations.  48  (preferred)  in  i n intragravel  100  w o  ft  to dP >  in  80  •H  60 4-  X X  4J  ) -r(HSN •Ud (ti rH Di -H  • 40  4->  rH H  > PL.  •H  • •  —  Ifl a o  Q  A. 1993  20  X  X •  7-Aug  8-Aug  x  XKynock • Forfar OGluskie I  •  >  u  CO  0 6-Aug  9-Aug 10-Aug 11-Aug 12-Aug 13-Aug Date F e r t i l i z e d  F i g u r e 16. Mean capsule s u r v i v a l r a t e (50 days post f e r t i l i z a t i o n ) f o r f e r t i l i z a t i o n procedures by date f e r t i l i z e d and creek. A. 1993 f e r t i l i z a t i o n batches and c o r r e s p o n d i n g s u r v i v a l r a t e s . B. 1994 f e r t i l i z a t i o n batches and c o r r e s p o n d i n g survival rates.  49  T a b l e 4. Summary o f stream and i n t r a g r a v e l p h y s i c a l p a r a m e t e r s and c o r r e s p o n d i n g embryo s u r v i v a l r a t e s f o r in situ r e d d s t r a n d i n g s i m u l a t i o n s and p r e f e r r e d ( c o n t r o l ) r e d d s i m u l a t i o n s . Embryos were f e r t i l i z e d and i n c u b a t i o n c a p s u l e s p l a n t e d i n l a t e August. Experiment was t e r m i n a t e d i n m i d - F e b r u a r y under s e a s o n a l minima c o n d i t i o n s f o r d i s c h a r g e and t e m p e r a t u r e .  REDD SIMULATION Santple Variable  Period  Intragravel  July  Kynock 1550 m Stranded  Kynock 300 m  preferred  Stranded  con trol Dissolved  Oxygen  (mg/1) Intragravel  Sept Feb July  F o r f a r 150 m  preferred  Stranded  con trol  1500 m preferred  control  control  8.7  9.1  8.2  9.4  9.6  9.7  9.2  10.0  9.0  9.5  9.0  9.8  9.6  8.9  -  -  -  -  **8.6  12.4  10.6  10.6  11  10.3  8.3  8.3  9.3  9.2  -  -  **0.3  0.0  **11.3  8 .5  12.8  12 . 5  12.2  7.7  7.5  9.5  12 . 4  Sept  (deg C)  Feb  **0.0  0.1  Water Depth  July  8  42  12  17  Sept  8  32  6  26  Substrate  Stranded  9.1  Temperature  Above  Forfar  preferred  9.4  -  14  10  7  50  2  25  3  27  (cm)  Feb  -40  *25  *20  -15  *15  -15  •25  Stream  July  0.68  0. 40  0.12  0.15  0.42  0.30  0.30  0.55  Velocity  Sept  0.02  0.17  0.02  0.25  0.22  0.09  0.01  0.16  (m/s)  Feb  0.00  -  0.00  -  0.00  0.00  -  -  -  -  -  -  -  -  40  0  2  0  15  0  20  0  Intragravel  Depth o f  Freezing  (cm)  Sept Feb  -2  10.1  Mean S u r v i v a l (%)  Feb  0 /39  64  16/13  60  32/34  32  (Standard/behaviour) Note: u n a b l e t o r e t r i e v e G l u s k i e  50 m r e d d s t r a n d i n g  simulation  * = v i s u a l estimate **=40 cm deep September sample p e r i o d F e b r u a r y sample p e r i o d  standpipe  =eyed egg (56 days p o s t =alevin  fertilization)  (185 days p o s t - f e r t i l i z a t i o n )  50  0/0  2  d i s s o l v e d oxygen (p>0.05) . Samples t a k e n a t a d e p t h o f 40 cm (11.3 mg/1, 8.6 mg/1) i n d i c a t e h o s p i t a b l e r e a r i n g e n v i r o n m e n t s a t depths below t h e mean redd depth o f 20 cm. No c o n t r o l s i t e s were t o d e s i c c a t i o n o r f r e e z i n g ( w a t e r l e v e l above s u r f i c i a l All  of the stranding  waterlevels. redd,  simulations  were  influenced  Embryos w i t h i n s t a n d a r d c a p s u l e s ,  survived  unless  bottom o f t h e c a p s u l e s alevins within  t h e depth o f f r e e z i n g (Table 4 ) . The  subject  substrate).  by d e c l i n i n g  w i t h i n a stranded penetrated  vertical  t o the  d i s t r i b u t i o n of  behaviour capsules i n r e l a t i o n t o depth o f f r e e z i n g  confirms a l e v i n s a r e responding d i r e c t l y t o t h i s stimulus t h a n t o some o t h e r f a c t o r t h a t might promote b e t t e r moving deeper i n t o t h e g r a v e l  i n t e r v a l ( F i g . 18) and  stream thermograph ( F i g . 9) suggest a l e v i n h a t c h i n g mean  time  of the f a l l  s u r v i v a l by  (Fig. 17).  Comparison o f t h e e s t i m a t e d h a t c h i n g  the  rather  freeze-up.  Spawning  maximum a n n u a l stream temperatures and i n c u b a t i n g  coincides coincides  with with  embryos r a p i d l y  a c c u m u l a t e t h e r m a l u n i t s e a r l y i n development. As a r e s u l t 67% o f the  thermal  incubation  units period  a r e accumulated w i t h i n (Fig.  18) . H a t c h i n g  the f i r s t  was  19% o f t h e  estimated  t o occur  between Sept 27 - Oct 29. Embryonic s t a g e i n l a t e September ranged from stage 24 ( p r i m o r d i a l caudal f i n , 3/4 y o l k sac v a s c u l a r i z e d ) t o stage 30 (hatched a l e v i n ) . The range of thermal u n i t s a t t h i s p o i n t was  372-436.  By e a r l y  t e m p e r a t u r e s and f l o w s ,  December,  during  t h e onset  o f minimum  100% o f embryos had r e a c h e d t h e a l e v i n  stage (stage 31-35). C o i n c i d i n g  with  rising  stream  temperatures  i n s p r i n g , f r y emergence occurs p r i n c i p l y from m i d - A p r i l t o mid-May 51  Freezing 0-15  14  15-27  a  Q  27-3E  • Alevins (Feb.)  38-50  SEggs  (Sept)  50-61 20%  40%  60%  80%  100%  B. 0-15  Freezing  15-27 u  xi -u) a  27-38  S  38-50 50-61 203  40%  60%  100%  C .  0-15 15-27 27-38  Freezing  a a  38-50 50-61 20%  40%  60%  30%  1003  Percent t o t a l larvae  F i g u r e 17. I n t r a g r a v e l p a t t e r n o f changes i n v e r t i c a l d i s t r i b u t i o n of sockeye a l e v i n s i n r e l a t i o n t o depth o f f r e e z i n g . A. 2 cm d e p t h o f f r e e z i n g w i t h i n s u b s t r a t e . B. 15 cm. C. 40 cm. 52  "4-1  o o c  CD  <T5 CD  CO IS  0  as  4-) 4-) 3  Zl  g> o E  e se 91 L  •• i• •  CO  •  3 4->  CD  g a! ft  4J  ft  U  O 4-4  LZ  T3 CU >  I  t> O  o 4J  6  <u -r  1  5  U> CWD rH; E-" O ) « co • 4-) CO CO rV CD r H CD (XJ 4-> CD  CD  xe  I  •a  CD  g  ft  O  ° 6 CD  o 3  o, - OH CD Q > CD l  t H -rH  irer- ex •f  CO 4J  -9Z  oea- • Z,X oea-8  \ • *. '*. V *•  6cT  A O N -  0Z  A O N -  XX  A O N -  Z  CO qj Q  -a a  c ii § » _i_ *• *• +-"  »  CD 4-) CD H CT3 r Q ^ S * M C D CP -3 . 4_> CT> h H H ft^ 3 CD XIw ^ f )  3  XJ  !!l  "5 ft CD ^ nj H C 4J 5-1 cu 1 1 3 cd CD ft *J -H CD O 4_> &4  •  O  3 0 0 - \Z  *  • 400-51 400-9  des-£cT des-8X hdas-6 6nv- X G 6nv- ZZ 6nv-{ex 6nv- i7  r^.  "  ^  U-l  e  CD CD 4-> r-l CO  4J  ^  2  s  H  a CO 4-> CD " H CO CD r H M-l  u  u C •a u o  <  CO  (5 « 6 2^ e e  w  O CD U rC CD H 4-4 M-4 4_> U  4  fa  53  1 1  CD -;j >1 6 ~ CO CO 4-> Q O  , H  s Tun iBuuam  a  r4  O  *. Uj  (0 sAep eaa6ep)  s  Q  CTJ  CO  tage 30  *. \  Period  \  A O N -  >X5 CD - H  U CQ  u o  a f t e r exposure t o 600-800 thermal u n i t s  54  (mean = 260 d a y s ) .  CHAPTER 4 - DISCUSSION  The  stock  R i c k e r 1973)  concept o f "unique" salmon " r a c e s "  i s important  ( L a r k i n 1972,  t o management o f P a c i f i c salmon, and the  F r a s e r R i v e r sockeye are composed o f a m u l t i t u d e o f l o c a l spawning stocks very  (Killick little  spawning  about  stocks,  reproductive reflect  1960,  the genetic  during  1988,  Cass 1986). W h i l e we know  composition  i t i s widely  adaptations  Brannon  McPhail  Gilhousen  and developmental  experienced 1982,  1955,  believed biology  t o the s p e c i f i c  of the individual that  among  1987, Beacham and Murray  D e v e l o p i n g an u n d e r s t a n d i n g  populations  environmental  spawning and development  Murray e t . a l . 1989,  differences i n  conditions  (Miller  1989,  must  and Brannon  1990, Murray and  1990).  o f how i n c u b a t i n g embryos s u r v i v e  through seasonal v a r i a t i o n i n temperature and h y d r o l o g i c regime was a  priority  of  this  project.  Observed  survival  spawning  adults  selecting  facilitated  by;  microhabitat  t o optimize  general northern of  1)  egg t o f r y s u r v i v a l and,  mechanisms w h i c h  would  environments. These  spawning,  thermal  optimize  rates  were  incubation  2) a number o f  incubation  success i n  mechanisms i n c l u d e d ; t h e e a r l y time  tolerance,  adults. I  will  d i s c u s s those c h a r a c t e r i s t i c s o f t h e environment  population  which d i r e c t l y r e l a t e t o i n c u b a t i o n s u r v i v a l i n  environments.  by  alevin  mechanisms,  northern  modifications  rate,  behavioral  and  and h a b i t a t  development  I reject the anthropocentric  spawning  view  that  n o r t h e r n i n c u b a t i o n streams are a h a r s h and u n f o r g i v i n g i n c u b a t i o n 55  environment and t h a t p r o p h y l a c t i c measures are necessary t o m i t i g a t e over-winter  ( i . e . spawning channels)  mortality.  S p a t i a l preferences Micro-Habitat  A l t h o u g h the environment u l t i m a t e l y determines i f a f e r t i l i z e d egg w i l l s u r v i v e t o produce a f r y , t h e o p p o r t u n i t y be  influenced  by  the  behaviour  of  the  to survive  parents.  Of  may  special  s i g n i f i c a n c e i s t h e d i s t r i b u t i o n of spawners on t h e spawning beds. Preferred  h a b i t a t was  at the  pool  r i f f l e i n t e r f a c e . Numerous s t u d i e s have p r e v i o u s l y documented  this  h a b i t a t preference 1965, Vaux 1968,  t h e downstream  ends  of p o o l s  f o r salmonids ( S t u a r t 1953, Hunter 1959, Cooper Hoopes 1972,  Tautz and Groot 1975,  Wesche 1977, Thurow and K i n g 1994). M a r g i n a l utilized  t o a l e s s e r degree i n c l u d e d ;  Reiser  and  h a b i t a t s w h i c h were  riffles,  stream margins,  i n t e r m i t t e n t s i d e channels and p o r t i o n s of the o f f - c h a n n e l  habitat.  Sockeye s u c c e s s f u l l y spawned o v e r a wide range o f h a b i t a t s . T h i s range l i k e l y has upper and lower l i m i t s beyond w h i c h f i s h were u n w i l l i n g t o spawn as observed from the l a c k of spawning i n h a b i t a t where i n t r a g r a v e l d i s s o l v e d oxygen l e v e l s were below  3.0  mg/1.  Based  and  their  on  the l i n e a l  distribution  of spawning  adults  c o r r e s p o n d i n g m i c r o - h a b i t a t parameters, few l o c a t i o n s i n t h e l o w e r and  mid-watershed  reaches c o n t a i n e d  ( T s c h a p l i n s k i 1994) .  56  t h e s e "zones  of  exclusion"  Distribution  on the spawning  grounds  Due t o t h e f o r t u i t o u s t i m i n g o f t h i s study a h i g h d e n s i t y y e a r (3.46  spawners/m ) was f o l l o w e d by a v e r y low d e n s i t y y e a r (0.30 2  spawners/m ) . I n 1993, d u r i n g  historic  2  h i g h escapements,  there  were much h i g h e r l o c a l spawning d e n s i t i e s i n p r e f e r r e d and m a r g i n a l h a b i t a t s . However, the poor q u a l i t y h a b i t a t s ( i . e . d i s s o l v e d <3.0 mg/1) were g e n e r a l l y not u t i l i z e d situation.  Instead,  a larger  scale  oxygen  f o r spawning even i n t h i s  spatial  r e - d i s t r i b u t i o n of  spawners o c c u r r e d . F i r s t , ranges w i t h i n the c r e e k s were expanded t o l i m i t s imposed by upstream o b s t r u c t i o n s . T h i s r e s u l t e d i n e s t i m a t e d escapement c a p a c i t i e s (Langer e t . a l . 1992), b e i n g met o r exceeded. S e c o n d l y , spawner escapement e s t i m a t e s o f a l t e r n a t i v e t r i b u t a r i e s reached well  beyond  streams This  unprecedented l e v e l s ( i . e . B i v o u a c , Leo c r e e k s ) , and were p r e v i o u s l y d e s c r i b e d ranges w i t h i n most o t h e r n a t a l  (G. Smith, D.F.O., Stock Assessment  escapement  re-distribution  i n dominant  Group,  p e r . comm.).  cycle  y e a r s was a  p r e v i o u s l y n o t e d phenomenon o f t h e e a r l y S t u a r t s t o c k ( J . Woodey, D.F.O., p e r . comm, Langer e t . a l . 1992) and A l a s k a n sockeye s t o c k s ( B l a i r and Quinn 1991). The indicate Results  o v e r - r e p r e s e n t a t i o n o f escapement t o t h e s t u d y spawners from  are preferentially  the  streams suggest t h i s selection  regimes  Stuart/Takla  gamete  transplant  selecting experiment  these  streams streams.  between  s t o c k was n o t p r e v e n t e d by s p e c i f i c from  watershed.  colonizing Previous  other  streams  displacement  study stream  w i t h i n the  experiments  of  sockeye from s m a l l streams w i t h i n a l a k e system suggest a t t r a c t i o n 57  to  certain  local  spawning  scale,  rather  site characteristics than  and  conspecifics  s i t e s p e c i f i c homing  on  ( B l a i r and  a  Quinn  1991) . To  summarize,  results  suggest spawning a d u l t s fry  survival.  Once  from  local  ( H i l b o r n and Walters 1992)  densities  reaches or streams r a t h e r  reach  the  literature  to o p t i m i z e egg  certain  limits  by the g r a d a t i o n i n h a b i t a t  to c o l o n i z e  to the  model  selection  l e s s densely populated  than spawn i n u n s u i t a b l e h a b i t a t ,  dangerously h i g h d e n s i t i e s  The  and  and density-dependent h a b i t a t  (MacCall 1990), move on  Incubation  study  s e l e c t spawning h a b i t a t  remaining spawners, as p r e d i c t e d  model  this  or  at  on a l o c a l s c a l e .  Survival f r y r e f l e c t s the  overall  r i g o r s endured by a given population of developing eggs and  alevins  and  survival  is  a  conditions  rate  to pre-emergent  consequence and  the  of  the  severity  adaptability  of  the  of fry  the  environmental  (Koski  1975)  .  The  eggs  and  i n f e r r e d from  the  c a p a b i l i t y of these northern i n t e r i o r streams to s u s t a i n alevins  from f e r t i l i z a t i o n to pre-emergence was  r e s u l t s u s i n g the p e r f o r a t e d i n c u b a t i o n c a p s u l e s . These b i o a s s a y s are  designed to i n d i c a t e  embryo  and  alevin  assessment of the  stage  and  1994  q u a l i t y of  of  incubation.  spawning h a b i t a t They  do  not  for  provide  the an  c r i t i c a l stage of a l e v i n to emergent f r y .  Mean s u r v i v a l 1993  the  rates  to pre-emergent  respectively,  incubation habitat.  are  Productivity, 58  f r y of  49%  and  a  high  28%  for  indicative  of  related  density-independent  to  quality  mechanisms,  f o r Kynock,  F o r f a r and G l u s k i e creeks appears t o be  v e r y h i g h . Egg t o pre-emergent f r y s u r v i v a l r a t e s ranged from 1660%. T h i s compares for  f a v o u r a b l y to pre-emergent  s i m i l a r studies  (Oncorhynchus  f r ysurvival  rates  spp.) i n c o a s t a l systems; 0-87%  ( P h i l l i p s and Campbell 1961), 16-62% (Coble 1961), 3-47% (Scrivener 1988) , and 0-67% (Groot 1989). Other i n v e s t i g a t o r s McNeil  1962)  reported  pre-hatch  mortality  (Hunter 1959,  rates  commonly  exceeding 90% under n a t u r a l c o n d i t i o n s . F u r t h e r , the e a r l y  Stuart  stock does not e x h i b i t lower o v e r a l l r e c r u i t m e n t r a t e s p e r spawner than  other  Fraser  River  stocks  (Walters  and S t a l e y  1987, Cass  1989) . Much o f the m o r t a l i t y i n spawning beds has been a t t r i b u t e d to the  i n a b i l i t y o f f r y to emerge from the g r a v e l  Phillips  e t . a l . 1975).  Therefore,  studies  (Koski 1966, 1975, i n which  the newly  emerged migrant f r y a r e counted as they leave the stream may g i v e a  more  accurate  estimate  of f r y p r o d u c t i o n  within  a  stream.  S u r v i v a l of P a c i f i c salmonids to emergence under n a t u r a l c o n d i t i o n s i s h i g h l y v a r i a b l e but normally low; coho 23%-27%  (Chapman 1965,  Koski 1966), chum 6-31% (Cowan 1991), and pink salmon seldom exceed 20%  (Hunter 1959, Parker 1962, McNeil 1966). Estimated f r y s u r v i v a l  f o r sockeye salmon a l s o appears low  and has ranged from 2 t o 25%  over a p e r i o d of s e v e r a l years i n s e v e r a l streams ( F i s h . Res. Bd. Can. 1956), 11-31% i n F u l t o n R i v e r Meadow Creek  (Kokanee,  emigrating f r y years of t h i s  Taylor  (Anon 1968), and 8.9 -17.1% i n  e t . a l . 1972). Concurrent egg t o  estimates w i t h i n the study streams d u r i n g the two study ranged from 12-48%  59  (G. Smith, D.F.O., Stock  Assessment Group, unpubl. were  higher  than  d a t a ) . These egg t o f r y s u r v i v a l  other  sockeye  stocks  within  rates  the j u v e n i l e  enumeration program (G. Smith, D.F.O., Stock Assessment Group, p e r . comm.). The c o m b i n a t i o n over-winter estimates,  mortality support  quality incubation  of high rates,  incubation survival and  the conclusion  the that  high  these  r a t e s , low  fry  production  streams  are high  streams.  V e r y o f t e n spawners a r e t o o few t o occupy f u l l y t h e a v a i l a b l e spawning a r e a . I t has been argued t h a t areas not used when runs a r e s m a l l have r e l a t i v e l y poor c o n d i t i o n s f o r eggs and a l e v i n s  (Hunter  1959) . R e s u l t s from t h i s study do not support t h i s c o n t e n t i o n . The upper G l u s k i e Creek i n c u b a t i o n s i t e was not u t i l i z e d d u r i n g t h e low escapement y e a r , y e t p r o v i d e d some o f t h e h i g h e s t s u r v i v a l within  this  creek.  Merrell  (1962) and M c N e i l  (1968) r e p o r t e d a  s i m i l a r phenomenon w i t h p i n k salmon i n s o u t h w e s t e r n recruitment  a n a l y s i s a l s o does not support  rates  Alaska.  Stock  the contention  that  d i f f e r e n t cycle l i n e s are s i g n i f i c a n t l y d i f f e r e n t i n p r o d u c t i v i t y ( W a l t e r s and S t a l e y 1987, Cass 1989, B l a i r and Quinn 1991) . D u r i n g this  study,  d e n s i t i e s were an o r d e r o f magnitude d i f f e r e n t , y e t  p r o d u c e d s i m i l a r mean egg t o e m i g r a t i n g f r y s u r v i v a l r a t e s 1) .  The  higher  f r y production  estimates  of  1994  (Table  appears  to  c o n t r a d i c t t h a t o f t h e pre-emergent s u r v i v a l e s t i m a t e s . I s p e c u l a t e t h a t t h e h i g h e r e a r l y ' m o r t a l i t y r a t e s observed capsules  were  compensated  f o r by  a  within incubation  dramatic  decrease  s u p e r i m p o s i t i o n a t t h e much lower spawner d e n s i t i e s o f 1994.  60  in  E f f e c t s o f Environmental F a c t o r s on I n c u b a t i o n  Survival  S u r v i v a l r a t e s between p r e f e r r e d and m a r g i n a l h a b i t a t s were not s i g n i f i c a n t l y d i f f e r e n t i n c o n t r a s t t o p r e d i c t i o n s g e n e r a t e d from o p t i m a l i t y models Hilborn  ( F r e t w e l l and Lucas  and W a l t e r s 1992) . T h i s  1970, M a c C a l l 1990,  was due t o t h e p e r c e p t i o n  and  d e f i n i t i o n o f " m a r g i n a l " h a b i t a t . T r u l y m a r g i n a l a r e a s ( i . e . < 3.0 mg/1 d i s s o l v e d oxygen) were a v o i d e d by spawning a d u l t s . The r e s u l t was  low d e n s i t y  assumed  ( i . e . assumed m a r g i n a l ) and h i g h in  preferred)  situ  redd  simulations  density ( i . e . with  similar  intragravel conditions.  Temperature  The  and Embryo  first  temperatures  Development  h a b i t a t l i m i t a t i o n o f c o n c e r n was maximum stream during  spawning.  Mean  stream  spawning  period  t e m p e r a t u r e s ranged from 10.2 - 13.4°C. I n t r a g r a v e l t e m p e r a t u r e s closely  followed  these  t e m p e r a t u r e s were below  values.  While  mean  spawning  period  maximums r e f l e c t e d i n t h e l i t e r a t u r e f o r  s u c c e s s f u l spawning and f e r t i l i z a t i o n , d a i l y maximum t e m p e r a t u r e s approached  16°C  i n Kynock  Creek  i n 1994. M o r t a l i t y was not  s i g n i f i c a n t l y r e l a t e d t o spawning p e r i o d t e m p e r a t u r e s . C o n t r a r y t o expectations highest  the highest  s u r v i v a l r a t e s were a s s o c i a t e d w i t h t h e  temperatures.  The mortality  second  limitation  o f concern  was  due t o f r e e z i n g and d e w a t e r i n g .  over-wintering Stream  egg  temperatures  d e c l i n e d t o m i d - w i n t e r lows o f 0°C f o r s e v e r a l months, and water l e v e l s d e c l i n e d t o «20% o f spawning p e r i o d 61  ( S c r i v e n e r and Anderson  1994) . However, t h e the  m a j o r i t y of m o r t a l i t y  (80%) o c c u r r e d b e f o r e  o n s e t o f w i n t e r c o n d i t i o n s , and o n l y 12% o f embryo m o r t a l i t y  o c c u r r e d from 10 Oct - 15 A p r i l  ( F i g . 6) . These r e s u l t s conform t o  p a t t e r n s d e r i v e d f o r Oncorhynchus  spp. from c o a s t a l and l a b o r a t o r y  systems ( W i c k e t t 1954, A l d e r d i c e e t . a l . 1958, Hunter 1959, M c N e i l 1962,  Murray  and M c P h a i l 1988,  Beacham and Murray  1989).  This  s u g g e s t s o v e r - w i n t e r m o r t a l i t y due t o f r e e z i n g and d e s i c c a t i o n was not  d e t e r m i n i n g f r y p r o d u c t i o n as o r i g i n a l l y h y p o t h e s i z e d . The  characteristic  s i g n a t u r e of groundwater  upwelling  in a  n o r t h e r n environment i s a warmer, more s t a b l e w i n t e r t h e r m a l regime within  the i n t r a g r a v e l  environment  ( S h e r i d a n 1962,  Cooper  Leman 1993). Where i n t r a g r a v e l water t e m p e r a t u r e s d i f f e r small  amount  from  the stream,  the major  source of  1965, only a  intragravel  d i s s o l v e d oxygen i s the i n t e r c h a n g e of t h a t water w i t h s u r f a c e f l o w (Sheridan 1962, Cooper 1965). Study streams were i n d i c a t i v e of h i g h interchange  between  stream  and  intragravel  environment.  This  i n d i c a t e s t h e i n c u b a t i o n environment i s m a i n t a i n e d by t h e stream and not u p w e l l i n g groundwater. T h e r e f o r e , spawning salmon were not selecting  i n c u b a t i o n , s i t e s based on t e m p e r a t u r e  groundwater t o maximize embryo s u r v i v a l In critical  t h e case of  fall  spawners  s t a g e of development  (i.e.  upwelling  rate).  the embryos must r e a c h some  b e f o r e the w a t e r becomes t o  (Brannon 1965). R e s u l t s from Combs and Burrows  (1957) and Combs  (1965) suggest t h a t p i n k and Chinook embryos c o u l d t o l e r a t e p e r i o d s of low temperatures i f the i n i t i a l  cold  t e m p e r a t u r e was  long above  6.0°C and embryogenesis had proceeded t o a c r i t i c a l d e v e l o p m e n t a l 62  stage. The e a r l y S t u a r t stock spawns four weeks e a r l i e r  than any  other  allowing  F r a s e r R i v e r stock  (Killick  1955, Brannon  i n c u b a t i n g embryos t o r a p i d l y accumulate this c r i t i c a l  1987),  thermal u n i t s and reach  stage p r i o r t o w i n t e r "freeze-up".  R e s u l t s i n experimental channels and s i m u l a t e d redds i n d i c a t e eggs can t o l e r a t e 1-5 weeks dewatering w i t h no e f f e c t s on h a t c h i n g success, p r o v i d e d moisture content i s maintained and t h e sediments neither 1982,  freeze  Becker  nor exceed  incubation  tolerances  e t . a l . 1983, R e i s e r and White  (Fast  et.  al.  1983, N e i t z e l and  Becker 1985, Becker e t . a l . 1986). Newly hatched a l e v i n s , however, are  i n t o l e r a n t due to the formation of f u n c t i o n a l g i l l s  al.  1982).  early  By spawning e a r l i e r  Stuart  development  adults  ensure  (Becker e t .  than any o t h e r sockeye  embryos  experience  phase and are undergoing the c r i t i c a l  a  s t o c k the  rapid  early  h a t c h i n g phase as  f r e e z e - u p descends upon the r e g i o n . Salmonid within  the  alevins gravel  environmental 1953,  Dill  move about bed  conditions  prior  both to  may a f f e c t  laterally  and v e r t i c a l l y  emergence,  and  changing  subgravel b e h a v i o u r  1967, 1969, Bams 1969, D i l l  (Stuart  and N o r t h c o t e 1970, Carey  and Noakes 1981, Godin 1982, Fast e t . a l . 1982, G a r c i a De Leaniz et.  a l . 1993).  cm/min  Frequent movement, i n f a v o u r a b l e s u b s t r a t a ,  has been  recorded  (Bams  1969).  The  observed  m i g r a t o r y response of sockeye a l e v i n s t o f r e e z i n g adaptation apparent utilizing  t o the i n c u b a t i o n harshness early  of  Stuart  environment.  interior broodstock 63  streams.  downward  ( F i g . 17) i s an  This  mitigates  Laboratory  duplicated  of 5  these  in  the  results situ  results  (Dr. M. Bradford, D.F.O., Research D i v i s i o n , p e r . comm.).  Directed  movement was found under temperature  controls, This  confirming  response  indicating  was  that  alevins  not  observed  s t r e s s , but not i n  a r e responding t o temperature. in  coastal  Chinook  e i t h e r : 1) There was an i n t e r a c t i o n between  alevins substrate  s i z e and a l e v i n s i z e which allowed the sockeye a l e v i n s t o migrate and not the l a r g e r chinook. 2) There  i s a genetic  behaviour, which the c o a s t a l chinook a l e v i n s  Gravel  Quality  and Dissolved  Numerous oxygen  and  studies  reduced  have water  determinant of  lacked.  Oxygen l e d to consensus exchange  that  increase  low  embryo  dissolved mortality.  V a r i a t i o n due t o other f a c t o r s o f t e n obscures t h i s r e l a t i o n s h i p i n natural  systems,  such that  survival often  appears  independent of  i n t r a g r a v e l d i s s o l v e d oxygen (Koski 1966, Chapman 1988, Groot 1989, V r o n s k i i and Leman 1991) . Hansen (1975) found streambed low  dissolved  oxygen  (< 3.0 mg/1)  were not used  N i n e t y percent of the i n t r a g r a v e l d i s s o l v e d this  areas w i t h  f o r spawning.  oxygen v a l u e s  within  study were > 6.0 mg/1. Those areas below 3.0 mg/1 were not  u t i l i z e d f o r spawning. As a r e s u l t , i t should not be s u r p r i s i n g t o f i n d t h e r e was not a s i g n i f i c a n t r e l a t i o n s h i p between i n t r a g r a v e l d i s s o l v e d oxygen Survival composition  and s u r v i v a l .  of salmonid  i n many  embryos has been r e l a t e d  experiments  and f i e l d  studies  to  substrate  (Koski  1966,  1975,  Tappel and Bjornn 1983, Tagart 1984, S c r i v e n e r  1989,  L i s l e and Lewis 1992, H a l l and Lantz 1969, D i l l and Northcote 64  and Brownlee  1970) . H i g h i n t r a g r a v e l d i s s o l v e d oxygen and s u r v i v a l r a t e s have often and  been a t t r i b u t e d t o h i g h p e r m e a b i l i t i e s (Coble  McNeil  1970, W i c k e t t  1970).  Permeability  does  1961, W e l l s not a f f e c t  s u r v i v a l d i r e c t l y but i s a measure o f t h e adequacy o f t h e g r a v e l i n the redd t o a l l o w f o r a s u f f i c i e n t supply  o f w a t e r and d i s s o l v e d  oxygen t o t h e embryos and f r y . The  spawning  female  can a l t e r  grain  s i z e and p o r o s i t y o f  g r a v e l t o ensure t h a t ova begin w i t h an adequate f l o w o f oxygenated w a t e r (Chapman 1988) . V i g o r o u s d i g g i n g o f t h e female removes f i n e s and  small gravels  contains (McNeil  t o form t h e egg pocket and t h e c o m p l e t e d redd  less fine s i l t and A h n e l l  and sand than t h e s u r r o u n d i n g  1964, R i n g l e r  Chapman 1988) . S u b s t r a t e  by o t h e r r e s e a r c h e r s  d i a m e t e r were r a r e  g r a v e l would  1987,  streams  documented by Chapman (1988) f o r heavy  spawning g r a v e l beds o f o p t i m a l  in  et. a l .  p e r m e a b i l i t i e s w i t h i n the study  c l o s e l y agree w i t h v a l u e s  studies  1970, E v e r e s t  substrate  survival conditions.  Concurrent  demonstrate t h a t p a r t i c l e s < 0.3 mm  (1-1.6%) and i n t e r s t i t i a l  spaces  i n the  remain c l e a r p e r m i t t i n g water exchange and movement  of a l e v i n s ( S c r i v e n e r 1994). The lowest mean p e r m e a b i l i t i e s a t t h e completion (1966)  o f t h e i n c u b a t i o n p e r i o d were > 19 ml/s (Table 3 ) . K o s k i  reported  s u r v i v a l above  this  t h r e s h o l d . Egg t o f r y s u r v i v a l r a t e s o f > 30% a r e e x p e c t e d  from  such g r a v e l s 1989,  no  detectable  affect  ( L o t s p e i c h and E v e r e s t  on  1981, S c r i v e n e r and Brownlee  Chapman 1988, S c r i v e n e r 1994). L a r g e a n n u a l spawning p o p u l a t i o n s  o f P a c i f i c salmon  probably  engender a "mass c l e a n i n g " and h e l p m a i n t a i n h i g h q u a l i t y spawning 65  habitat  ( E v e r e s t e t . a l . 1987, Chapman 1988, Burgner 1991). Annual  s c a r i f i c a t i o n o f f l o w c o n t r o l l e d spawning c h a n n e l s i s a commonly used r e m e d i a l measure t o mimic t h i s e f f e c t Using  independent  Gottesfeld streams  methods,  Scrivener  (1994), e s t i m a t e d  accounted  m a t e r i a l . During  f o r 25-50 salmon  sediment  measurably streambed the  (1994)  w i t h i n the study movement  o f bed  spawning, o v e r - r e p r e s e n t a t i o n o f movement, i n c o n j u n c t i o n peak,  the p a r t i c l e  suggest  size  and  fine  with  spawners  distribution  a  were  of the  ( S c r i v e n e r and Anderson 1994). I t i s p o s s i b l e t h a t o v e r  course  spawning  salmon  % of the annual  concentration  influencing  and Anderson  spawning  sediments (<1.19mm) i n b e d l o a d suspended  ( T a y l o r e t . a l . 1972).  o f a number o f y e a r s  sockeye  i s comparable  p e r f o r m e d by f l o o d s Interior  t h e geomorphic  t o o r even  work  greater  done by  than  that  ( G o t t e s f e l d 1994).  systems  have low autumn and w i n t e r  stream  flows.  These f l o w s a r e unable t o t r a n s p o r t b e d l o a d and do n o t form a l a y e r i n g p a t t e r n l i k e c o a s t a l systems, where spawning t a k e s p l a c e as autumn and w i n t e r f r e s h e t s a r e e s t a b l i s h i n g l a y e r i n g (C.  patterns  S c r i v e n e r , D.F.O., Research D i v i s i o n , p e r . comm.). As a r e s u l t ,  i n t e r i o r spawning sockeye salmon streambed  have a l a s t i n g i m p r e s s i o n on t h e  characteristics.  Stress  P r o d u c t i o n o f f r y under o p t i m a l c o n d i t i o n s  (i.e.  artificial  spawning channels) i s not constant from y e a r t o y e a r o r from stream to  stream, and t h e d i f f e r e n c e s o f t e n remain u n e x p l a i n e d . A c r i t i c a l 66  question  o f sockeye  importance  salmon p o p u l a t i o n  biology  o f s t r e s s f a c t o r s encountered  spawning, v e r s u s  i s the r e l a t i v e  by spawners p r i o r t o  s t r e s s f e l t by embryos due t o t h e e n v i r o n m e n t a l  c o n d i t i o n s experienced during incubation. . The e a r l y S t u a r t s t o c k e n t e r s t h e F r a s e r R i v e r from l a t e June t h r o u g h m i d - l a t e J u l y a t a time when r i v e r t e m p e r a t u r e s a r e r i s i n g and  the flows  combination migration  a r e near t h e i r peak  ( C l a r k e e t . a l . 1994).  o f h i g h temperatures and h i g h s t r e a m f l o w period  can p l a c e  r e s u l t i n g i n the u t i l i z a t i o n 60% o f p r o t e i n r e s e r v e s  severe  This  during the  demands on energy  reserves,  of 90-95% o f body f a t r e s e r v e s and 55-  ( I d l e r and Clemens 1959) .  The i n c u b a t i o n c a p s u l e r e s u l t s i n 1994 demonstrate a n e g a t i v e relationship  between  date  fertilized  and  F u r t h e r m o r e , embryos w i t h i n t h e same l o c a t i o n very  different  survival  rates  based  survival  rate.  (Kynock 300 m) had  on t h e d a t e  gametes  were  s t r i p p e d and f e r t i l i z e d . This i n d i c a t e s a p o s s i b l e d e t e r i o r a t i o n of gamete v i a b i l i t y .  This  relationship  coincided with  dates  when  escapement u n e x p e c t e d l y  dropped o f f d u r i n g t h e second h a l f o f t h e  run  o f an e a r l y m o r t a l i t y event  ( F i g . 4) . Evidence  i n the l a t e  spawned gametes and not t h e e a r l i e r gametes, i n c o n j u n c t i o n w i t h no known change i n p h y s i c a l i n c u b a t i o n c o n d i t i o n s , i n d i c a t e f a c t o r s o t h e r than e n v i r o n m e n t a l It  c o n d i t i o n s may have been r e s p o n s i b l e .  has been h y p o t h e s i z e d  that the d e c l i n e i n a r r i v a l s  c o i n c i d e n t a l w i t h , and caused by, t h e extreme t e m p e r a t u r e s developed  i n t h e F r a s e r R i v e r d u r i n g t h e 1994 m i g r a t i o n  was that  ( F i g . 19;  C l a r k e e t . a l . 1995). The 1994 e a r l y S t u a r t m i g r a t i o n t e m p e r a t u r e 67  began s l i g h t l y below average and r a p i d l y r o s e a t peak passage time to  r e a c h h i s t o r i c a l maximum l e v e l s . Ocean c o n d i t i o n s s e t t h e s t a g e  for  s u c c e s s f u l r i v e r m i g r a t i o n (Blackbourne 1991, Mysak 1986, Hinch  et.  A l . 1994, 1995). A n a l y s i s o f w e i g h t - l e n g t h r e g r e s s i o n s (Dr. S.  Hinch,  U.B.C. F i s h e r i e s  C e n t r e , p e r s . com.) i n d i c a t e d  t h e 1994  e a r l y S t u a r t sockeye were i n b e t t e r i n i t i a l c o n d i t i o n than t h e 1993 broodstock. Bioenergetic modelling i n d i c a t e d  that  energy use i n  1994 was t h e t h i r d h i g h e s t r e c o r d e d w h i l e 1993 was e q u i v a l e n t t o the  l o n g term average ( C l a r k e e t . a l . 1995). I n 1993 79% o f r a d i o -  tagged  sockeye  reached H e l l ' s  Gate, w h i l e  i n 1994 67% a r r i v e d .  However, d u r i n g t h e second week o f J u l y (1994) as temperatures r o s e rapidly,  no f i s h reached H e l l ' s Gate, and f i s h s t i l l  displayed  erratic  demonstrated spawning  and p h y s i o l o g i c a l  (1955)  migration, races.  elevated  ( C l a r k e e t . a l . 1995). water  temperatures  I t has been  during  upstream  m i g r a t i o n s c r e a t e s e v e r e and a c u t e s t r e s s w h i c h  behavioral Killick  that  behaviour  downstream  demonstrated  responses  alters  ( J o h n s t o n e t . a l . 1992).  the c h r o n o l o g i c a l  o r d e r o f sockeye  spawning and d e a t h show remarkable c o n s i s t e n c y  The a b r u p t d i s a p p e a r a n c e o f t h e t a i l  within  of the run at the  spawning grounds s u p p o r t s t h e s e f i n d i n g s . The h y p o t h e s i s t h a t m i g r a t i o n arduousness may a f f e c t progeny s u r v i v a l was i n c i d e n t l y t e s t e d i n t h i s s t u d y . The h i s t o r i c a l mean r e c r u i t s p e r spawner database (1949-1987;  Pac. Salm. Comm., unpubl.  data) was b l o c k e d by 1°C increments o f mean J u l y t e m p e r a t u r e a t H e l l ' s Gate. There appears t o be an optimum t e m p e r a t u r e range f o r progeny s u r v i v a l from b r o o d s t o c k m i g r a t i o n a t 15-16°C ( F i g . 2 0 ) . 68  4-1 r H rd - H (13  SH T 3 CD  > c  ro CTl CD  -H  - Bnv-Si - 6nv-ei - 6nv-II - 6nv-6  6 rH  CD <tf GO CTl CO CTl U rH fa  CD C £ ! CO 4->  ro  cr,  g  - 6nv- Z. en CTl <H  1  a a H H X S w Kt H s a a  1 j  i i i  ; ! i  ro (71 cn  - 6nv-5  O CTi rH r H 4H  00  CD  xi  CD 4_>  rH |  - 6nv-e  1  - SnY-T - i^r-oe  SH  ^ xi  J-> 4-) CO - H SH £ CD  QHT3 g CD CD rH  4_)  - Tnr-8c3  rH  CO  It  CD O  - inr-9e -  I^f-fZ  4_>  CO  u  C ro rO cr. CD cn g«H  *  (' s  V  - inr-os  CO LD  - inr-8T  g CT> 3 rH  - inr-91 - inr-^T  s  - inr-ex - inr-OI  s  - inr-8  g  c o -H  / '  s  •H  rH  g 4-< - CD tn co  g 3 g  rH  -H  CD  X > c0 (0 g —  • CO  - inr-9  >, CD CD rH  4->  •H  CO  - inr-iv  CO Q  - T^C-Z  cn  -- unr-0£  —r—  O CN  o (0)  CO  <o  ajn^Bjaduiaj,  63  3 4J  co CO rH • - CD rH  a  g CD CD CD ffi 4->  rH  CM CN  O  rH  U Dl -H fa  rH  F i g u r e 20. Mean e a r l y S t u a r t r e c r u i t s p e r spawner f o r each one degree c e l s i u s increment o f mean J u l y F r a s e r R i v e r water t e m p e r a t u r e a t H e l l ' s gate f o r t h e p e r i o d 1948 - 1989. R e c r u i t s p e r spawner c a l c u l a t e d from INPFC sockeye database ( I . W i l l i a m s , D.F.O., P.B.S, u n p u b l . data) based on r e t u r n s c a l c u l a t e d from e s t i m a t e d c a t c h p l u s escapement on a f o u r y e a r r e t u r n c y c l e . Mean J u l y F r a s e r R i v e r w a t e r t e m p e r a t u r e c a l c u l a t e d f o r each c o r r e s p o n d i n g y e a r from H e l l ' s Gate database. 70  How egg q u a l i t y a f f e c t s embryo s u r v i v a l i s a t t h i s p o i n t j u s t conjecture.  Advancing  temperature above s p e c i e s  specific  optima  d u r i n g t h e spawning m i g r a t i o n appears t o have an i n h i b i t i n g e f f e c t on gonad development  and gamete q u a l i t y i n many s a l m o n i d s p e c i e s .  Columbia R i v e r sockeye l o s e an average of 7.5% of t h e i r body weight a t 10°C and 12% at 16.5°C. Testes were > 25% s m a l l e r a t 16.5°C, and a d v e r s e g o n a d a l development smaller  and  lighter  1977) . I n 1977 moribund  was  e v i d e n t i n females who  eggs a t 16.5°C  (Bouck  a p p r o x i m a t e l y 6 347 000  Horsefly  females  e s t i m a t e d a t j u s t 0.3%  (INPFC  produced  e t . a l . 1975,  Bouck  eggs were s t r i p p e d  1978).  Fry  from  production  was  (INPFC 1979), and v i a b i l i t y of t h e eggs was  t h e s u s p e c t e d cause. C h r o n i c confinement and a c u t e e m e r s i o n s t r e s s r e s u l t s i n endocrine d y s f u n c t i o n s and rates  (fertilization  stressed  fish  to  28  days  compared t o progeny  (Campbell e t . a l . 1992,  s i g n i f i c a n t l y lower s u r v i v a l posthatch)  f o r progeny  from  from u n s t r e s s e d c o n t r o l  fish  1994).  While the f i s h c u l t u r e i n d u s t r y recognizes that v a r y i n g quality  i s one  of  the  limiting  factors  for  successful  egg mass  p r o d u c t i o n of f i s h f r y ( P i p e r e t . a l . 1982, K j o r s v i k e t . a l . 1990), c l a s s i c a l r e c r u i t m e n t models ( R i c k e r 1954, B e v e r t o n and H o l t  1957,  r e c r u i t m e n t r e g r e s s i o n models) have not e x p l i c i t l y r e c o g n i z e d the effects models  of egg have  generally  spawner must be experienced  quality  by  due the  on  survival  assumed  that  to variations recruits,  of p o t e n t i a l  not  variation  recruits.  in recruits  i n environmental their  p a r e n t s . My  Such per  conditions hypothesis  s u g g e s t s m i g r a t i o n c o n d i t i o n s encountered by a d u l t sockeye i n the 71  mainstem F r a s e r R i v e r may  determine the y e a r c l a s s s t r e n g t h of the  progeny.  production  Therefore,  conditions reproductive  alone  egg cannot  be  relied  success.  72  and  juvenile upon  as  environmental predictors  of  CHAPTER 5 - CONCLUSION  The  high  mechanisms,  productivity,  related  to  density-independent  f o r t h e spawning grounds o f t h e s e c e n t r a l  interior  study streams was i n f e r r e d from r e s u l t s u s i n g p e r f o r a t e d capsules.  The c o m b i n a t i o n o f h i g h i n c u b a t i o n  overwinter support  incubation  adults  that  these  streams  Observed  studies  between i n c u b a t i o n  s u r v i v a l rates  were  quality  Survival habitats  perception  rates  between  by spawning  t o optimize  low d e n s i t y  were n o t s i g n i f i c a n t l y  and d e f i n i t i o n o f "marginal"  p a r a m e t e r s and  facilitated  s e l e c t i n g incubation microhabitat  spawning  are high  factors resulted i n the lack of c l a s s i c a l r e l a t i o n s  i n previous  survival.  estimates,  streams.  Several  survival.  s u r v i v a l r a t e s , low  m o r t a l i t y r a t e s and t h e h i g h f r y p r o d u c t i o n  the conclusion  observed  incubation  egg t o fry-  and h i g h  density  d i f f e r e n t due t o  habitat. Truly  the  marginal  a r e a s were a v o i d e d by spawning a d u l t s . The r e s u l t was l o w d e n s i t y ( i . e . assumed m a r g i n a l ) and h i g h d e n s i t y in  situ  ( i . e . assumed  preferred)  redd simulations with s i m i l a r i n t r a g r a v e l c o n d i t i o n s .  Incubation  environments were r e l a t i v e l y i n v a r i a n t w i t h  high  q u a l i t y i n c u b a t i o n h a b i t a t a v a i l a b l e a t a l l s c a l e s examined. I t was p r o p o s e d t h a t t h e r e l a t i v e l y u n i f o r m , h i g h q u a l i t y h a b i t a t was due to;  1) t h e h i g h  dimensions,  q u a l i t y of a v a i l a b l e bedload,  of the correct  t h a t moves through t h e s e systems a t a r a t e  that i s  modest i n comparison t o c o a s t a l systems and, 2) t h e mass c l e a n i n g engendered by h i g h d e n s i t i e s o f spawning a d u l t s . T h i s 73  resultsi n  h i g h q u a l i t y g r a v e l c o n d i t i o n s w i t h p e r m e a b i l i t i e s , s u r f a c e water interchange,  and  intragravel  d i s s o l v e d oxygen l e v e l s  associated  to  success  w i t h h i g h i n c u b a t i o n success. A  number of  northern stock.  mechanisms  environments  Early Stuart  were  optimize  identified  sockeye r i s k  incubation  w i t h i n the  early  energy d e p l e t i o n and  Stuart seasonal  maximum t e m p e r a t u r e s d u r i n g m i g r a t i o n and spawning. The a c c r u e d by spawning e a r l y i n the season i s advanced  in  advantage  embryological  development p r i o r t o the onset of low water t e m p e r a t u r e s .  Embryos  r a p i d l y accumulate the thermal u n i t s n e c e s s a r y  thereby  becoming m o b i l e water-levels apparently  to hatch,  i n time t o respond t o f r e e z i n g and d e s i c c a t i o n as  decline. Alevins  of  the  early  Stuart  stock  can  t o l e r a t e temperature c o n d i t i o n s p r e v i o u s l y c o n s i d e r e d  l e t h a l f o r l o n g p e r i o d s of time and emerge s u c c e s s f u l l y a f t e r l e s s t h e r m a l u n i t s than any o t h e r F r a s e r R i v e r s t o c k . The t r a d e o f f a g a i n s t t h i s s t r a t e g y i s the e f f e c t o f u n u s u a l l y s t r e s s f u l m i g r a t i o n c o n d i t i o n s on the q u a l i t y and v i a b i l i t y of the gametes. E v i d e n c e  of t h i s t r a d e o f f was  o b t a i n e d i n 1994  when egg  s u r v i v a l r a t e s were v e r y low f o r spawners t h a t a r r i v e d l a t e and  had  s u f f e r e d severe thermal s t r e s s during m i g r a t i o n . I m p l i c a t i o n s f o r stock  management  are  the  general  assumption  of  classical  r e c r u i t m e n t models t h a t v a r i a t i o n i n r e c r u i t s p e r spawner must be due  to v a r i a t i o n s i n environmental  recruits, include;  not 1)  t h e i r parents.  the  conditions experienced  by  the  I m p l i c a t i o n s t o h a b i t a t management  seasonal v a r i a t i o n  i n t e m p e r a t u r e and  discharge  d u r i n g spawning and i n c u b a t i o n and, 2) i n c r e a s e s o r changes i n the 74  character  of  sediment  input.  As  spawning  period  temperatures  approach c r i t i c a l l e v e l s and energy r e s e r v e s o f spawning a d u l t s a r e at  a minimum,  riparian  f o r e s t r y p r e s c r i p t i o n s must  be  closely  m o n i t o r e d . The apparent a d a p t a t i o n i n d e v e l o p m e n t a l b i o l o g y o f t h e early  Stuart  variation monitoring  stock  and  i n temperature of  these  the s p e c i f i c and  timing  hydraulic  variables  to  regime  i n association  the  seasonal  would  suggest  with  forestry  p r e s c r i p t i o n s s h o u l d be a p r i o r i t y o f f u t u r e r e s e a r c h . As r i p a r i a n zone s u b s t r a t e s a r e c h a r a c t e r i z e d by l a r g e amounts o f l a c u s t r i n e d e p o s i t s p o s t - l o g g i n g i n c r e a s e s i n t h e d e l i v e r y o f f i n e sediments must not surpass the a b i l i t y of p h y s i c a l ( h y d r a u l i c regime, bedload c h a r a c t e r i s t i c s ) and b i o l o g i c a l spawning a d u l t s ) p r o c e s s e s  (mass c l e a n i n g by h i g h d e n s i t i e s of  to maintain the current g r a v e l q u a l i t y .  75  LITERATURE CITED  A l d e r d i c e , D.F. and W.P. W i c k e t t , and J.R. B r e t t . 1958. Some e f f e c t s o f temporary exposure t o low d i s s o l v e d oxygen l e v e l s on P a c i f i c salmon eggs. J . F i s h . Res. Bd. Can. 15: 229-250. Anonymous. 1968. The Babine Lake Salmon Development Program. L.M. D i l l ( e d ) . F i s h e r i e s and M a r i n e S e r v i c e , Vancouver, B r i t i s h Columbia Prog. Rept. 75 p. Anonymous. 1988. F r a s e r R i v e r sockeye management and enhancement p l a n . Canadian Department o f F i s h e r i e s and Oceans, Vancouver, B r i t i s h Columbia, 87 p. Bams, R.A. 1969. A d a p t a t i o n s o f sockeye salmon a s s o c i a t e d w i t h i n c u b a t i o n i n stream g r a v e l s . In: N o r t h c o t e , T.G. ( e d . ) . Symposium  on  salmon  and  trout  in  streams.  H.R.  Lectures i n Fisheries. University of B r i t i s h I n s t i t u t e o f F i s h e r i e s , Vancouver, B.C. p. 71-?.  MacMillan  Columbia,  Bams, R.A. 1985. Comparison o f t h r e e i n s t r e a m i n c u b a t i o n t e c h n i q u e s f o r coho salmon. N. Amer. J . F i s h . Manag. 5: 159172 . B a r l a u p , B.T., H. L u r a , H. Saegrov, and R.C. Sundt. 1994. I n t e r and i n t r a - s p e c i f i c v a r i a b i l i t y i n female s a l m o n i d spawning b e h a v i o u r . Can. J . Z o o l . 72: 636-642. BCMFL (B.C. M i n i s t r y o f F o r e s t s and L a n d s ) . 1988. B i o g e o c l i m a t i c zones o f B r i t i s h Columbia. F o l i o map a v a i l a b l e from BCMFL, R e s e a r c h Branch, 31 B a s t i o n Square, V i c t o r i a , B.C. Beacham, T.D. and C.B. Murray. 1987. A d a p t i v e v a r i a t i o n i n body s i z e , age, morphology, egg s i z e , and d e v e l o p m e n t a l b i o l o g y o f chum salmon (Oncorhynchus keta) i n B r i t i s h C o l u m b i a . Can. J . F i s h . Aquat. S c i . 44: 244-261. Beacham, T.D. and C.B. Murray. 1988. V a r i a t i o n i n d e v e l o p m e n t a l b i o l o g y o f p i n k salmon {Oncorhynchus gorbuscha) i n British C o l u m b i a . Can. J . Z o o l . 66: 2634-2648. Beacham, T.D. and C.B. Murray. 1989. V a r i a t i o n i n d e v e l o p m e n t a l b i o l o g y o f sockeye salmon (Oncorhynchus nerka) and Chinook salmon (0. tshawytscha) i n B r i t i s h Columbia. Can. J . Z o o l . 67: 2081-2089. Beacham, T.D. and C.B. Murray. 1990. Temperature, egg s i z e , and development o f embryos and a l e v i n s o f f i v e s p e c i e s o f p a c i f i c salmon: a c o m p a r a t i v e a n a l y s i s . T r a n s . Amer. F i s h . Soc. 119: 927-945.  76  B e c k e r , C D . , D.A. N e i t z e l and D.H. F i c k e i s e n . 1982. E f f e c t s o f d e w a t e r i n g on c h i n o o k salmon r e d d s : t o l e r a n c e o f f o u r d e v e l o p m e n t a l phases t o d a i l y d e w a t e r i n g s . T r a n s . Am. F i s h . Soc. I l l : 624-637. B e c k e r , C D . , D.A. N e i t z e l and C S . A b e r n e t h y . 1983. E f f e c t s o f d e w a t e r i n g on c h i n o o k salmon r e d d s : t o l e r a n c e o f f o u r development phases t o one-time d e w a t e r i n g . N. Am. J . F i s h . Manag. 3: 373-382. B e c k e r , C D . , D.A N e i t z e l and D.W. C a r l i l e . 1986. S u r v i v a l d a t a f o r dewatered rainbow t r o u t (Salmo gairdneri R i c h . ) eggs and a l e v i n s . J . A p p l . I c h t h y o l . 3: 102-110. B e r n a r d , D.P., C.L. Murray, J.D. L o u s i e r , J.S. Macdonald, N.T. Johnston and D.L. Hogan. 1994. S t u a r t - T a k l a F i s h e r i e s / F o r e s t r y i n t e r a c t i o n p r o j e c t : r e s e a r c h d e s i g n workshop. B.C. M i n i s t r y o f Environment Lands and P a r k s . F i s h . Tech. C i r c . No. 96. 45 p. + Appendices B e v e r t o n , R.J.H. and S.J. H o l t . 1957. On the dynamics of exploited fish populations. F i s h e r i e s Investment S e r i e s 2, V o l . 19. U.K. M i n i s t r y o f A g r i c u l t u r e and F i s h e r i e s , London. B j o r n n , T.C and D.W. R e i s e r . 1991. H a b i t a t r e q u i r e m e n t s o f s a l m o n i d s i n streams. In: Meehan, W.R. ( e d . ) . Influences of forest  and  habitats.  rangeland  management  on salmonid  fishes  Amer. F i s h . Soc. Spec. P u b l . 19: 83-138.  and  their  B l a c k b o u r n , D.J. 1991. Brood-year sea s u r f a c e t e m p e r a t u r e and t h e subsequent f r e s h w a t e r s u r v i v a l r a t e o f w i l d and enhanced s t o c k s o f N o r t h American p i n k , chum and sockeye salmon, p. 122-138 In: White, B. and I . G u t h r i e (eels.). Proceedings of the 15th February  Northeast 27-March  1,  Pacific 1991,  Commission, Vancouver, B.C.  pink and Parksville,  chum salmon workshop, B.C. P a c i f i c Salmon  B l a i r , G.R. and T.P. Quinn. 1991. Homing and spawning s i t e s e l e c t i o n by sockeye salmon (Oncorhynchus nerka) i n Iliamna Lake, A l a s k a . Can. J . Z o o l . 69: 176-181. Bouck, G.R., G.A. Chapman, P.J. S c h n i e d e r , and D.J. S t e v e n s . 1975. Effects of h o l d i n g t e m p e r a t u r e s on r e p r o d u c t i v e development i n a d u l t sockeye salmon (Oncorhynchus nerka), p. 24-40. In: J.R. Donaldson and J . Brophy (eds.). Proceedings of the 26 Oregon.  th  annual  northwest  fish  77  culture  conference,  Otter  Rock,  Bouck, G.R. 1977. The importance o f w a t e r q u a l i t y t o Columbia R i v e r salmon and s t e e l h e a d . p. 149-154. In: S c h w i e b e r t , E. ( e d . ) . Columbia symposium held  River salmon in Vancouver,  and steelhead, Washington,  Amer. F i s h . Soc. Spec. P u b l . No. 10.  proceedings March 5-6,  of a 1976.  Brannon, E.L. 1965. The i n f l u e n c e o f p h y s i c a l f a c t o r s on t h e development and weight o f sockeye salmon embryos and a l e v i n s . I n t e r n a t i o n a l P a c i f i c Salmon F i s h e r i e s Commission P r o g r e s s Report 12. Brannon, E.L. 1987. Mechanisms s t a b i l i z i n g s a l m o n i d f r y emergence t i m i n g , p. 120-124. In: H.D. Smith, L. M a r g o l i s , and C.C. Wood Sockeye  [ed.]  and  future  salmon  management.  (Oncorhynchus  nerka)  population  biology  Can. Spec. P u b l . F i s h Aquat. S c i . 96.  Brownlee, M.J., B.G. Shepherd, and D.R. e f f e c t s o f f o r e s t h a r v e s t i n g on water Creek watershed i n the c e n t r a l i n t e r i o r Can. Tech. Rep. F i s h . Aquat. S c i . 1613.  B u s t a r d . 1988. Some quality i n the Slim o f B r i t i s h Columbia. 41 p.  Burgner, R.L. 1991. L i f e h i s t o r y o f sockeye salmon (Oncorhynchus nerka), p. 3-101. In: C. Groot and L. M a r g o l i s [ e d . ] . P a c i f i c salmon l i f e h i s t o r i e s . U.B.C. P r e s s , Vancouver, B.C. 564 p. Burns, J.W. 1970. Spawning bed s e d i m e n t a t i o n s t u d i e s i n n o r t h e r n C a l i f o r n i a streams. C a l i f . F i s h and Game. 56: 253-270. B u s t a r d , D. 1986. Some d i f f e r e n c e s between c o a s t a l and i n t e r i o r s t r e a m ecosystems and t h e i m p l i c a t i o n s t o j u v e n i l e f i s h p r o d u c t i o n , p. 117-126. In: P a t t e r s o n , J.H. (ed.). Proceedings of  May,  the  workshop  1984.  on habitat  improvements,  Whistler,  B.C.  8-10  Can. Tech. Rep. F i s h . Aquat. S c i . No. 1483. 219 p.  C a m p b e l l , P.M., T.G. P o t t i n g e r and J.P. Sumpter. 1992. S t r e s s reduces t h e q u a l i t y o f gametes produced by r a i n b o w t r o u t . B i o l . Repr. 47: 1140-1150. C a m p b e l l , P.M., T.G. P o t t i n g e r and J.P. Sumpter. 1994. P r e l i m i n a r y e v i d e n c e t h a t c h r o n i c confinement s t r e s s reduces the q u a l i t y o f gametes produced by brown and rainbow t r o u t . A q u a c u l t u r e 120: 151-169. Carey, W.E. and D.L.G. Noakes. 1981. Development of p h o t o b e h a v i o u r a l responses i n young rainbow t r o u t , gairdneri R i c h a r d s o n . J . F i s h . B i o l . 19: 285-296.  Salmo  Cass, A . J . 1989. Stock s t a t u s o f F r a s e r R i v e r sockeye. Can. Tech. Rep. F i s h . Aquat. S c i . 1674. 106 p. Chapman, D.W. 1965. Net p r o d u c t i o n o f j u v e n i l e coho salmon i n t h r e e Oregon streams. Trans. Amer. F i s h . Soc. 94: 40-52. 78  Chapman, D.W., D.E. Weitkamp, T.L. Welsh, M.B. D e l l and T.H. Schadt. 1986. E f f e c t s o f r i v e r f l o w on t h e d i s t r i b u t i o n o f Chinook salmon r e d d s . Trans. Am. F i s h . Soc. 115: 537-547. Chapman, D.W. 1988. C r i t i c a l r e v i e w o f v a r i a b l e s u s e d t o d e f i n e e f f e c t s o f f i n e s i n redds o f l a r g e s a l m o n i d s . T r a n s . Amer. F i s h . Soc. 117: 1-21. Clarke, W.C., S.G. H i n c h , M. L a p o i n t e , I . v . W i l l i a m s and M. B r a d f o r d . 1995. Report o f t h e e n r o u t e m o r t a l i t y team, 1994 F r a s e r R i v e r I n v e s t i g a t i o n . D.F.O. U n p u b l i s h e d R e p o r t . 41 p. C o b l e , D.W. 1961. I n f l u e n c e o f water exchange and d i s s o l v e d oxygen i n redds on s u r v i v a l of s t e e l h e a d t r o u t embryos. Trans. Amer. F i s h . Soc. 90: 469-474. Combs, B.D. and R.E. Burrows. 1957. T h r e s h o l d t e m p e r a t u r e s f o r the normal development o f Chinook salmon eggs. P r o g . F i s h . C u l t . 19: 3-6. Combs, B.D. 1965. E f f e c t o f temperature on t h e development o f salmon eggs. Prog. F i s h . C u l t . 27: 134-137. Cooper, A.C. and K.A. Henry. 1962. The h i s t o r y o f t h e e a r l y S t u a r t sockeye r u n . I n t . Pac. Salmon F i s h . Comm. P r o g . Rept. No. 10. 48 p. Cooper, A.C. 1965. The e f f e c t o f t r a n s p o r t e d s t r e a m s e d i m e n t s on the s u r v i v a l o f sockeye and p i n k salmon eggs and a l e v i n . I n t e r n a t i o n a l P a c i f i c Salmon F i s h e r i e s Commission B u l l e t i n 18. Cowan, L. 1991. P h y s i c a l c h a r a c t e r i s t i c s and i n t r a g r a v e l s u r v i v a l of chum salmon i n d e v e l o p e d and n a t u r a l groundwater c h a n n e l s i n Washington. Amer. F i s h . Soc. Symp. 10: 125-131. Dill,  L.M. 1967. B e h a v i o r a l e c o l o g y o f chum salmon (0. keta) and coho salmon (0. kisutch) a l e v i n s i n t h e g r a v e l . MSc T h e s i s . U n i v e r s i t y o f B r i t i s h Columbia, Van. B.C. 83 p.  Dill,  L.M. 1969. The s u b - g r a v e l b e h a v i o u r o f p a c i f i c salmon l a r v a e . In: N o r t h c o t e , T.G. (ed.). Symposium on salmon and trout in streams. H.R. M a c M i l l a n L e c t u r e s i n F i s h e r i e s . University o f B r i t i s h Columbia, I n s t i t u t e o f F i s h e r i e s , Vancouver, B.C. p. 89-?.  Dill,  L.M. and T.G. N o r t h c o t e . 1970. E f f e c t s o f g r a v e l s i z e , egg depth, and egg d e n s i t y on i n t r a g r a v e l movement and emergence of coho salmon {Oncorhynchus kisutch) a l e v i n s . J . F i s h . Res. Bd. Canada. 27: 1191-1199.  79  E v e r e s t , F.H., R.L. B e s c h t a , J.C. S c r i v e n e r , K.V. K o s k i , J.R. S e d e l l and C . J . Cedarholm. 1987. F i n e sediment and s a l m o n i d p r o d u c t i o n : a paradox. P. 98-142. In: E.O. S a l o and T.W. Cundy [eds.].  Streamside  Management:  Forestry  and  fishery,  interactions. I n s t i t u t e o f F o r e s t Resources C o n t r i b u t i o n 57. U n i v e r s i t y o f Washington, AR-10, S e a t t l e , WA. F a s t , D.E., Q.J. S t o b e r , S.C. Crumley and E.S. K i l l e b r e w . 1982. S u r v i v a l and movement o f Chinook and coho salmon a l e v i n s i n h y p o x i c e n v i r o n m e n t s , p. 51-60. In: Brannon, E.L. and E.O. Salo,  (eds.) . Salmon  and trout  migratory  U n i v e r s i t y o f Washington P r e s s , S e a t t l e . F i s h e r i e s R e s e a r c h Board o f Canada. Ottawa. 182 p.  behaviour  symposium.  1956. Annual r e p o r t , 1955.  F l e m i n g , I.A. and M.R. G r o s s . 1989. E v o l u t i o n o f a d u l t l i f e h i s t o r y and morphology i n a P a c i f i c salmon Oncorhynchus kisutch). E v o l u t i o n . 43: 141-157.  female (coho:  F l e m i n g , I.A. and M.R. G r o s s . 1994. B r e e d i n g c o m p e t i t i o n i n a P a c i f i c salmon (coho: Oncorhynchus kisutch) : measures o f n a t u r a l and s e x u a l s e l e c t i o n . E v o l u t i o n . 48: 637-657. F o o t e , C . J . 1990. An e x p e r i m e n t a l comparison o f male and female spawning t e r r i t o r i a l i t y i n a p a c i f i c salmon. B e h a v i o u r 115: 283-314. F r e t w e l l , S.D. and H.L. Lucas. 1970. On t e r r i t o r i a l b e h a v i o u r and o t h e r f a c t o r s i n f l u e n c i n g h a b i t a t d i s t r i b u t i o n i n b i r d s . I . T h e o r e t i c a l development. A c t a B i o t h e r . 19: 16-3 6. G a r c i a de L e a n i z , C , N. F r a s e r , and F. H u n t i n g f o r d . 1993. D i s p e r s a l o f A t l a n t i c salmon f r y from a n a t u r a l r e d d : evidence f o r u n d e r g r a v e l movements? Can. J . Z o o l . 71: 1454-1457. G i b s o n , R . J . and R.A. Myers. 1988. I n f l u e n c e o f s e a s o n a l d i s c h a r g e on s u r v i v a l o f j u v e n i l e A t l a n t i c salmon, salar. Can. J . F i s h . Aquat. S c i . 45: 344-348.  river Salmo  G i l h o u s e n , P. 1960. M i g r a t o r y b e h a v i o u r o f a d u l t F r a s e r R i v e r Sockeye. I n t . Pac. Salmon F i s h . Comm. P r o g . Rept. 7. 78 p. G o d i n , J.-G.J. 1982. M i g r a t i o n s o f s a l m o n i d f i s h e s d u r i n g e a r l y l i f e h i s t o r y phases: d a i l y and a n n u a l t i m i n g , p. 22-50. In: Brannon,  E.L.  and  E.O.  Salo,  migratory behaviour symposium. S e a t t l e , p. 275-285.  80  {Eds.).  Salmon  and  trout  U n i v e r s i t y o f Washington Press,  G o t t e s f e l d , A.S. 1994. Bedload movement i n M i d d l e R i v e r t r i b u t a r i e s . In: Macdonald, J . S . ( e d . ) . Proceedings Takla  fishery/forestry  1993, Prince George, 2007. p. 33-40.  workshop:  B.C.  a two year  review  of  April  the 1,  Can. Tech. Rep. F i s h . Aquat. S c i .  Greenberg, L.A. 1992. F i e l d s u r v i v a l o f brown t r o u t eggs i n a p e r f o r a t e d i n c u b a t i o n c o n t a i n e r . N o r t h Amer. J . F i s h . Manag. 12: 833-835. G r o o t , E.P. 1989. I n t e r t i d a l spawning o f chum salmon: s a l t w a t e r t o l e r a n c e o f t h e e a r l y l i f e s t a g e s t o a c t u a l and s i m u l a t e d i n t e r t i d a l c o n d i t i o n s . Msc. T h e s i s . U n i v e r s i t y o f B r i t i s h Columbia. 126 p. G u s t a f s o n - M a r j a n e n , K . I . and J.R. M o r i n g . 1984. C o n s t r u c t i o n o f a r t i f i c i a l redds f o r e v a l u a t i n g s u r v i v a l o f A t l a n t i c salmon eggs and a l e v i n s . N. Amer. J . F i s h . Manag. 4: 455-456. Hall,  J.D. and R.L. L a n t z . 1969. E f f e c t s o f l o g g i n g on t h e h a b i t a t o f coho salmon and c u t t h r o a t t r o u t i n c o a s t a l streams. In:  Northcote,  T.G.  ( e d . ) . Symposium  on salmon  and  trout  in  streams. H.R. M a c M i l l a n L e c t u r e s i n F i s h e r i e s . U n i v e r s i t y o f B r i t i s h Columbia, I n s t i t u t e o f F i s h e r i e s , Vancouver, B.C. Hansen, E.A. 1975. Some e f f e c t s o f groundwater r e d d s . T r a n s . Amer. F i s h . Soc. 104: 100-110.  on brown t r o u t  Harder, P.A. and A s s o c i a t e s L t d . MS 1989. An o v e r v i e w o f f i s h r e s o u r c e s i n the S t u a r t / T a k l a watershed and an assessment o f p o t e n t i a l r e s o u r c e use c o n f l i c t s . P r e p a r e d f o r Department o f F i s h e r i e s and Oceans, Vancouver, B.C. 78p. + a p p e n d i c e s . H a r s h b a r g e r , T.J. and P.E. P o r t e r . 1982. Embryo s u r v i v a l and f r y emergence from two methods o f p l a n t i n g brown t r o u t eggs. N. Amer. J . F i s h . Man. 2: 84-89. Hart,  J . L . 1973. P a c i f i c F i s h e s o f Canada. Board o f canada. B u l l . 180. 740 p.  Fisheries  Research  Hartman, G.F. and J.C. S c r i v e n e r . 1990. Impacts o f f o r e s t r y , p r a c t i c e s on a c o a s t a l stream ecosystem, C a r n a t i o n Creek, B r i t i s h Columbia. Can. B u l l . F i s h . Aquat. S c i . 223: 148 p. Henderson, M.A. and M.C. Healey. 1993. D o u b l i n g sockeye salmon production i n the Fraser River - I s t h i s sustainable development?. E n v i r o n . Man. 17: 719-728. H i c k e y , D.G. and G.A. Smith. 1991. Enumeration o f t h e 1988 brood e a r l y - t i m e d S t u a r t R i v e r system sockeye salmon {Oncorhynchus nerka) f r y i n G l u s k e and F o r f a r C r e e k s . Can. MS Rep. F i s h . Aquat. S c i . 2103. 19p. + a p p e n d i c e s . 81  H i l b o r n , R . and C . J . W a l t e r s . 1992. Quantitative assessment: choice, dynamics and uncertainty,  Chapman and H a l l , New York. 57 0 p.  fisheries p.  stock 487-514.  H i n c h , S.G., Healey, M.C., D i e w e r t , R.E., and Henderson, M.A. 1994. C l i m a t i c change and ocean e n e r g e t i c s o f F r a s e r R i v e r sockeye (Oncorhynchus n e r k a ) . Can. Spec. P u b l . F i s h . Aquat. S c i . 121 ( I n p r e s s ) . H i n c h , S.G., M.C. Healey, R.E. D i e w e r t , K.A. Thomson, R. H o u r s t o n , M.A. Henderson and F. Juanes. 1995. P o t e n t i a l e f f e c t s o f c l i m a t e change on marine growth and s u r v i v a l o f F r a s e r R i v e r sockeye. Can. J . F i s h . Aquat. S c i . ( I n P r e s s ) . Hoopes, D.T. 1972. S e l e c t i o n o f spawning s i t e s by sockeye salmon i n s m a l l streams. F i s h e r y B u l l . 7 0 ( 2 ) : 447-457. Hunter, J.G. 1959. S u r v i v a l and p r o d u c t i o n o f p i n k and chum salmon i n a c o a s t a l stream. J . F i s h . Res. Bd. Canada. 16: 835886. I d l e r , D.R. and W.A. Clemens. 1959. The energy e x p e n d i t u r e s o f F r a s e r R i v e r sockeye salmon d u r i n g t h e spawning m i g r a t i o n t o C h i l k o and S t u a r t Lakes. I n t . Pac. Salmon F i s h . Comm. Prog. Rept. No. 6. 26 p. International Pacific r e p o r t 1977.  Salmon  F i s h e r i e s Commission.  1978. Annual  International Pacific r e p o r t 1978.  Salmon  Fisheries  1979. Annual  Commission.  J e n s e n , J.O.T., and D.F. A l d e r d i c e . 1983. Changes i n m e c h a n i c a l shock s e n s i t i v i t y o f coho salmon {Oncorhynchus kisutch) eggs d u r i n g i n c u b a t i o n . A q u a c u l t u r e 32: 303-312. J o h n s t o n , C.E., M.J. Hambrook, R.W. Gray and K.G. D a v i d s o n . 1992. M a n i p u l a t i o n o f r e p r o d u c t i v e f u n c t i o n i n A t l a n t i c salmon (Salmo salar) kelts with controlled p h o t o p e r i o d and t e m p e r a t u r e . Can. J . F i s h . Aquat. S c i . 49: 2055-2061. Killick, S.R. 1955. The c h r o n o l o g i c a l o r d e r o f F r a s e r R i v e r sockeye salmon d u r i n g m i g r a t i o n , spawning and d e a t h . I n t . P a c i f i c Salmon F i s h . Comm. B u l l . V I I : 95 p. K j o r s v i k , E, A. Mangor-Jensen and I . H o l m e f j o r d . 1990. Egg q u a l i t y i n f i s h e s . Advances i n M a r i n e B i o l o g y . 26: 71-113. Kogl,  D.R. 1965. S p r i n g s and groundwater as f a c t o r s a f f e c t i n g s u r v i v a l o f chum salmon spawn i n a s u b a r c t i c s t r e a m . Msc. T h e s i s , U n i v e r s i t y o f A l a s k a , AK. 59p. 82  K o s k i , K.V. 1966. The s u r v i v a l o f coho salmon (Oncorhynchus k i s u t c h ) from egg d e p o s i t i o n t o emergence i n t h r e e Oregon c o a s t a l streams. Msc. T h e s i s . Oregon State U n i v e r s i t y , C o r v a l l i s . 84 p. K o s k i , K.V. 1975. The s u r v i v a l and f i t n e s s o f two s t o c k s o f chum salmon (Oncorhynchus keta) from egg d e p o s i t i o n t o emergence i n a c o n t r o l l e d - s t r e a m environment a t B i g Beef Creek. D o c t o r a l d i s s e r t a t i o n . U n i v e r s i t y o f Washington, S e a t t l e . 189 p. Langer, O.E., B. MacDonald, J . P a t t e r s o n and B. Schouwenburg. 1992. A s t r a t e g i c review o f f i s h e r i e s resources and management o b j e c t i v e s . S t u a r t / T a k l a h a b i t a t management a r e a . F r a s e r R i v e r A c t i o n P l a n , Department o f F i s h e r i e s and Oceans, Vancouver, B.C. L a r k i n , P.A. 1972. The s t o c k concept and management o f P a c i f i c salmon. U n i v e r s i t y o f B r i t i s h Columbia, H.R. MacMillan L e c t u r e s , The s t o c k concept i n P a c i f i c salmon, p. 11-15. L a r k i n , P.A. 1977. P a c i f i c salmon. In: G u l l a n d , J.A. ( E d . ) . Fish population dynamics. John Wiley and Sons, C h i c h e s t e r , England, p. 156-186. Leman, V.N. 1993. Spawning s i t e s o f chum salmon Oncorhynchus keta: m i c r o h y d r o l o g i c a l regime and v a r i a b i l i t y o f progeny i n redds (Kamchatka R i v e r b a s i n ) . J . I c h t h y . 33: 104-117. L i s l e , T.E. and J . L e w i s . 1992. E f f e c t s o f sediment t r a n s p o r t on s u r v i v a l o f s a l m o n i d embryos i n a n a t u r a l s t r e a m : a s i m u l a t i o n approach. Can. J . F i s h . Aquat. S c i . 49: 2337-2344. L o t s p e i c h , F.B. and F.H. E v e r e s t . 1981. A new method f o r r e p o r t i n g and i n t e r p r e t i n g t e x t u r a l c o m p o s i t i o n o f spawning g r a v e l . USDA. F o r . S e r . Res. Note PNW-3 69: l i p . M a c C a l l , A.D. 1990. Dynamic  populations.  geography  of  marine  fish  U n i v e r s i t y o f Washington P r e s s , S e a t t l e . 153pp.  Macdonald, J.S., J.C. S c r i v e n e r and G. Smith. 1992. The S t u a r t Takla Fisheries/Forestry Interaction Project: study d e s c r i p t i o n and d e s i g n . Can. Tech. Rep. F i s h . Aquat. S c i . 1899. 39p. M c N e i l , W.J. 1962. V a r i a t i o n s i n t h e d i s s o l v e d oxygen c o n t e n t o f i n t r a g r a v e l water i n f o u r spawning streams o f S o u t h e a s t e r n A l a s k a . U.S. F i s h and W i l d l i f e S e r v i c e , S p e c i a l S c i e n t i f i c R e p o r t - F i s h e r i e s No. 402, 15 p.  83  M c N e i l , W.J. and W.H. A h n e l l . 1964. Success o f p i n k salmon spawning r e l a t i v e t o s i z e of spawning bed m a t e r i a l s . U.S. F i s h and W i l d l i f e S e r v i c e S p e c i a l S c i e n t i f i c R e p o r t - F i s h e r i e s 469. M c N e i l , W.J. 1966. E f f e c t o f t h e spawning bed environment on r e p r o d u c t i o n o f p i n k and chum salmon. U.S. F i s h and W i l d l i f e F i s h e r y B u l l e t i n 65: 495-523. M c N e i l , W.J. 1968. M i g r a t i o n and d i s t r i b u t i o n o f p i n k salmon spawners i n S a s h i n Creek i n 1965, and s u r v i v a l o f t h e i r progeny. U.S. F i s h . W i l d . S e r . F i s h . B u l l . 66: 575-586. M c N e i l , W.J. 1969. S u r v i v a l o f p i n k and chum salmon eggs and a l e v i n s . In: N o r t h c o t e , T.G. ( e d . ) . Symposium on salmon and trout in streams. H.R. M a c M i l l a n L e c t u r e s i n F i s h e r i e s . U n i v e r s i t y o f B r i t i s h Columbia, I n s t i t u t e o f F i s h e r i e s , Vancouver, B.C. M e r r e l l , T.R. J r . 1962. F r e s h w a t e r s u r v i v a l o f p i n k salmon a t S a s h i n Creek, A l a s k a . In: Wilimovsky, N.J. (ed.). Symposium on pink salmon. H.R. M a c m i l l a n L e c t u r e s i n F i s h e r i e s , U n i v e r s i t y o f B r i t i s h Columbia, I n s t i t u t e o f F i s h e r i e s , Vancouver, B.C. p. 59-70. M i l l e r , R . J . and E.L. Brannon. 1982. The o r i g i n and development of l i f e h i s t o r y p a t t e r n s i n P a c i f i c salmonids, p. 296-309. In: E.L. Brannon and E.O. S a l o ( e d s . ) . Proceedings of the salmon and  trout  migratory  behaviour  symposium.  U n i v e r s i t y o f Washington, S e a t t l e WA.  School of F i s h e r i e s ,  M o r i n g , J.R. 1975. The A l s e a Watershed s t u d y : e f f e c t s o f l o g g i n g on t h e a q u a t i c r e s o u r c e s o f t h r e e headwater streams o f t h e Alsea River, Oregon. Part III Discussion and recommendations. Oregon Dept. F i s h and W i l d l . , F i s h . Res. Rept. No. 9 ( P a r t 3 ) , 24 p. Murray, C.B. and J.D. M c P h a i l . 1988. E f f e c t o f i n c u b a t i o n t e m p e r a t u r e on t h e development o f f i v e s p e c i e s o f P a c i f i c salmon (Oncorhynchus) embryos and a l e v i n s . Can. J . Z o o l . 66: 266-273 . Murray, C.B., J.D. M c P h a i l and M.L. Rosenau. 1989. R e p r o d u c t i v e and d e v e l o p m e n t a l b i o l o g y o f kokanee from upper Arrow Lake, B r i t i s h Columbia. Trans. Amer. F i s h . Soc. 118: 503-509. Murray, C.B., T.D. Beacham and J.D. M c P h a i l . 1990. I n f l u e n c e o f p a r e n t a l s t o c k and i n c u b a t i o n t e m p e r a t u r e on t h e e a r l y development o f coho salmon (Oncorhynchus k i s u t c h ) i n B r i t i s h C o l u m b i a . Can. J . Z o o l . 68: 347-358.  84  Mysak, L.A. 1986. E l Nino, i n t e r a n n u a l v a r i a b i l i t y and f i s h e r i e s i n t h e n o r t h e a s t P a c i f i c Ocean. Can. J . F i s h . Aquat. S c i . 43: 464-497 . N e i l s o n , J.D. and C.E. B a n f o r d . 1983. Chinook s a l m o n ( O n c o r h y n c h u s tshawytscha) spawner c h a r a c t e r i s t i c s i n r e l a t i o n t o r e d d p h y s i c a l f e a t u r e s . Can. J . Z o o l . 61: 1524-1531. N e i t z e l , D.A. and C D . Becker. 1985. T o l e r a n c e o f eggs, embryos, and a l e v i n s o f Chinook salmon t o t e m p e r a t u r e changes and r e d u c e d h u m i d i t y i n dewatered r e d d s . T r a n s . Am. F i s h . Soc. 114: 267-273. P a r k e r , R.R. 1962. A concept o f t h e dynamics o f p i n k salmon p o p u l a t i o n s , p. 203-211. In: Wilimovsky, N.J. (ed.) . Symposium on pink salmon. H.R. M a c m i l l a n L e c t u r e s i n F i s h e r i e s . U n i v e r s i t y o f B r i t i s h Columbia, I n s t i t u t e o f F i s h e r i e s , Vancouver, B.C. P e r k i n s , D.L. and C.C. Krueger. 1994. D e s i g n and use o f mesh bags t o e s t i m a t e d e p o s i t i o n and s u r v i v a l o f f i s h eggs i n c o b b l e s u b s t r a t e . N. Amer. J . F i s h . Manag. 14: 866-869. P h i l l i p s , R.W. and H.J. Campbell. 1961. The embryonic s u r v i v a l o f coho salmon and s t e e l h e a d t r o u t as i n f l u e n c e d by some e n v i r o n m e n t a l c o n d i t i o n s i n g r a v e l beds. p. 60-73. In: 14 t h a n n u a l r e p o r t o f t h e P a c i f i c M a r i n e F i s h e r i e s Commission, P o r t l a n d , Oregon. P h i l l i p s , R.W., R.L. L a n t z , E.W. C l a i r e , and J.R. M o r i n g . 1975. Some e f f e c t s o f g r a v e l m i x t u r e s on emergence o f coho salmon and s t e e l h e a d t r o u t f r y . Trans. Amer. F i s h . Soc. 104: 461-466. P i p e r , R.G., I.B. McElwain, L.E. Orme, J.P. McCraren, L.G. F o w l e r and J.R. Leonard. 1982. Fish hatchery management. U.S. Dept. I n t . F i s h W i l d l i f e Serv. Washington, D.C. 517 p. P l a t t s , W.S., R . J . Torquemada, M.L. McHenry, C.K. Graham. 1989. Changes i n salmon spawning and r e a r i n g h a b i t a t from i n c r e a s e d d e l i v e r y o f f i n e sediment t o t h e South F o r k Salmon R i v e r . T r a n s . Amer. F i s h . Soc. 118: 274-283. P o l l a r d , R.A. 1955. M e a s u r i n g seepage t h r o u g h salmon g r a v e l . J . F i s h . Res. Bd. Can. 12: 706-741.  spawning  P o u l i n , V.A. 1984. A r e s e a r c h approach t o s o l v i n g f i s h / f o r e s t r y i n t e r a c t i o n s i n r e l a t i o n t o mass w a s t i n g on t h e Queen C h a r l o t t e I s l a n d s . B.C. M i n i s t r y o f F o r e s t s and Lands, Land Manag. Rep. 27: 16p., V i c t o r i a , B.C.  85  R e i s e r , D.W. and T.A. Wesche. 1977. D e t e r m i n a t i o n o f p h y s i c a l and h y d r a u l i c p r e f e r e n c e s o f brown and brook t r o u t i n t h e s e l e c t i o n o f spawning l o c a t i o n s . Wyoming Water Resources R e s e a r c h I n s t i t u t e , Water Resources S e r i e s 64, L a r a m i e . R e i s e r , D.W. and T.A. Wesche. 1979. In situ f r e e z i n g as a cause of m o r t a l i t y i n brown t r o u t eggs. P r o g r e s s i v e F i s h C u l t u r i s t . 41: 58-60. R e i s e r , D.W. and R.G. White. 1983. E f f e c t s o f complete r e d d dewatering on salmonid egg-hatching success and development o f j u v e n i l e s . Trans. Am. F i s h . Soc. 112: 532-540. R i c k e r , W.E. Canada.  1954. Stock and R e c r u i t m e n t . 1 1 ( 5 ) : 559-623.  J . F i s h . Res.  Bd.  R i c k e r , W.E. 1973. Two mechanisms t h a t make i t i m p o s s i b l e t o m a i n t a i n p e a k - p e r i o d y i e l d s from s t o c k s o f P a c i f i c salmon and o t h e r f i s h e s . J . F i s h . Res. Bd. can. 30: 1275-1286. R i c k e r , W.E. 1987. E f f e c t s o f t h e f i s h e r y and o f o b s t a c l e s t o m i g r a t i o n on t h e abundance o f F r a s e r R i v e r sockeye salmon {Oncorhynchus nerka). Can. Tech. Rep. F i s h . Aquat. S c i . No. 1522. 75 p. R i n g l e r , N.H. 1970. E f f e c t s o f l o g g i n g on t h e spawning b e d environment i n two Oregon c o a s t a l streams. Msc. t h e s i s . Oregon State University, Corvalis. R i n g l e r , N.H. and J.D. H a l l . 1975. E f f e c t s o f l o g g i n g on water t e m p e r a t u r e and d i s s o l v e d oxygen i n spawning beds. Trans. Amer. F i s h . Soc. 104: 111-121. Sanborn, P. 1994. T e r r a i n i n v e n t o r y o f t h e T a k l a w a t e r s h e d s : p r e l i m i n a r y r e s u l t s . In: Macdonald, J.S. (ed.). Proceedings of the  Takla  fishery/  forestry  1, 1993, Prince George, 2007. p. 6-7. SAS  1988. S t a t i s t i c a l North Carolina.  workshop:  a two year  review  April  Inc.,  Cary,  B.C. Can. Tech. Rep. F i s h . Aquat. S c i .  Analysis  System. SAS I s t i t u t e  S c h r o d e r , S.L. 1982. The i n f l u e n c e o f i n t r a s e x u a l c o m p e t i t i o n on the d i s t r i b u t i o n o f chum salmon i n an e x p e r i m e n t a l stream. In: Brannon, E.L. and E.O. S a l o , (Eds.), Salmon and t r o u t migratory behaviour symposium. U n i v e r s i t y o f Washington Press, S e a t t l e , p. 275-285. S c r i v e n e r , J.C. 1988. Two d e v i c e s t o a s s e s s i n c u b a t i o n s u r v i v a l and emergence o f s a l m o n i d f r y i n an e s t u a r y streambed. N o r t h Amer. J . F i s h Manag. 8: 248-258. 86  S c r i v e n e r , J . C . and M.J. Brownlee. 1989. E f f e c t s o f f o r e s t h a r v e s t i n g on spawning g r a v e l and i n c u b a t i o n s u r v i v a l o f chum (Oncorhynchus keta) and coho salmon (0. kisutch) i n Carnation Creek, B r i t i s h Columbia. Can. J . F i s h . Aquat. S c i . 46:681-696. S c r i v e n e r , J.C. 1994. C h a r a c t e r i s t i c s o f streambed g r a v e l s and t r a n s p o r t e d bedload i n T a k l a Lake and M i d d l e R i v e r t r i b u t a r i e s and r e l a t i o n s h i p s w i t h spawning sockeye salmon. In: Macdonald, J.S. ( e d . ) . Proceedings workshop: a two year review  of the Takla April 1, 1993,  fishery/ forestry Prince George, B.C.  Can. Tech. Rep. F i s h . Aquat. S c i . 2007. p. 25-32.  S c r i v e n e r , J.C. and B.C. Anderson. 1994. Stream t e m p e r a t u r e regimes, p o s s i b l e l o g g i n g e f f e c t s , and i m p l i c a t i o n s f o r salmonids of the Takla Lake/Middle R i v e r t r i b u t a r i e s . In: Macdonald, J.S. (ed.) . Proceedings forestry workshop: a two year review  George,  B.C.  of the April  Takla 1, 1993,  fishery/ Prince  Can. Tech. Rep. F i s h . Aquat. S c i . 2007. p. 41-47.  SEP-Engineering. 1988. A e r i a l r e c o n n a i s s a n c e o f enhancement o p p o r t u n i t i e s on t h e S t u a r t Lake and F r a n c o i s Lake systems. E n g i n e e r i n g Recon. r e p . , u n p u b l . S h e r i d a n , W.L. 1962. W a t e r f l o w t h r o u g h a salmon spawning r i f f l e i n s o u t h e a s t e r n a l a s k a . U.S. F i s h W i l d . Ser., Spec. S c i . Rept. F i s h . 407. 20 p. S h e r i d a n , W.L. and W.J. M c N e i l . 1968. Some e f f e c t s o f l o g g i n g on two salmon streams i n A l a s k a . J . F o r . 66: 128-133. S l a n e y , P.A., T.G. H a l s e y and A.F. T a u t z . 1977. E f f e c t s o f f o r e s t h a r v e s t i n g p r a c t i c e s on spawning h a b i t a t o f s t r e a m s a l m o n i d s i n t h e C e n t e n n i a l Creek Watershed B r i t i s h C o l u m b i a . B.C. M i n i s t r y o f R e c r e a t i o n and C o n s e r v a t i o n , F i s h e r i e s Management R e p o r t No. 73. Sowden, T.K. and G. Power. 1985. P r e d i c t i o n o f r a i n b o w t r o u t embryo s u r v i v a l i n r e l a t i o n t o groundwater seepage and p a r t i c l e s i z e o f spawning s u b s t r a t e s . T r a n s . Amer. F i s h . Soc. 114: 804-812. S t e r l i n g , G. 1985. An e v a l u a t i o n o f spawning h a b i t a t and f r y escapement o f rainbow t r o u t (Salmo g a i r d n e r i ) b e f o r e l o g g i n g i n t h e T r i - C r e e k watershed o f west c e n t r a l A l b e r t a . A l b e r t a Dept. Energy N a t u r . Res. T r i - C r e e k Watershed S t u d . Res. Rep. 9: 74 p. S t u a r t , T.A. 1953. Spawning m i g r a t i o n , r e p r o d u c t i o n and young s t a g e s o f t h e l o c h t r o u t (S. trutta L.) . S c o t t i s h Home Department, Freshwater and Salmon F i s h e r i e s Research Report 5, Edinburgh. 87  T a g a r t , J.V. 1984. Coho salmon s u r v i v a l from egg d e p o s i t i o n t o f r y emergence, p. 172-181. In: Walton, J.M. and D.B. Houston (eds.).  Proceedings  of  the  Olympic  wild  P e n i n s u l a C o l l e g e and Olympic N a t i o n a l Washington.  fish  conference.  Park, P o r t A n g e l e s ,  T a p p e l , P.D. and T.C. B j o r n n . 1983. A new method o f r e l a t i n g s i z e o f spawning g r a v e l t o s a l m o n i d embryo s u r v i v a l . N o r t h Amer. J . F i s h . Manage. 3:123-135. T a u t z , A.F. and C. G r o o t . 1975. Spawning b e h a v i o u r o f chum salmon {Oncorhynchus  keta)  and  F i s h . Res. Bd. Can. 32:  rainbow t r o u t  633-642.  {Salmo  gairdneri)  . J.  T a u t z , A.F. 1977. E f f e c t s of v a r i a b i l i t y i n space and t i m e on t h e production dynamics of salmonid f i s h e s . Phd. Thesis, U n i v e r s i t y o f B r i t i s h Columbia, Vancouver. 106 p. T a y l o r , G.D., D.R. H j o r t h and C. Wightman. 1972. M.S. Meadow Creek kokanee p r o d u c t i o n and a s s o c i a t e d problems (1967-1971). F i s h and W i l d l . B r . , V i c t o r i a , B.C., 48 p. Terhune, L.D.B. 1958. The mark VI groundwater s t a n d p i p e f o r m e a s u r i n g seepage t h r o u g h salmon spawning g r a v e l . J . F i s h . Res. Bd. Can. 15: 1027-1063. Thurow, R.F. and J.G. K i n g . 1994. A t t r i b u t e s o f Y e l l o w s t o n e c u t t h r o a t t r o u t redds i n a t r i b u t a r y o f t h e Snake R i v e r , Idaho. Tans. Amer. F i s h . Soc. 123: 37-50. T s c h a p l i n s k i , P.J. 1994. The abundance sockeye salmon r e l a t i v e t o p h y s i c a l streams t r i b u t a r y t o T a k l a Lake and central British Columbia. In:  and d i s t r i b u t i o n o f a d u l t habitat characteristics i n the M i d d l e R i v e r of n o r t h Macdonald, J.S. (ed.).  Proceedings of the Takla fishery/forestry review April 1, 1993, Prince George,  F i s h . Aquat. S c i . 2007. pp. 69-99.  workshop: B.C. Can.  a two Tech.  year Rep.  Van Den Berge, E.P. and M.R. G r o s s . 1986. L e n g t h o f b r e e d i n g l i f e of coho salmon (Oncorhynchus kisutch) . Can. J . Z o o l . 64: 1482 -1486. Van  Den Berghe, E.P. and M.R. G r o s s . 1989. N a t u r a l s e l e c t i o n r e s u l t i n g from female breeding c o m p e t i t i o n i n a p a c i f i c salmon (Coho: Oncorhynchus kisutch). E v o l . 43: 125-140.  Vaux, W.G. 1962. I n t e r c h a n g e o f stream and i n t r a g r a v e l w a t e r i n a salmon spawning r i f f l e . U.S. F i s h and w i l d l i f e S e r v i c e S p e c i a l S c i e n t i f i c Report - F i s h e r i e s 405.  88  Vaux,  W.G. 1968. I n t r a g r a v e l f l o w and i n t e r c h a n g e o f w a t e r i n a streambed. U.S. F i s h and W i l d l i f e S e r v i c e F i s h e r y B u l l e t i n . 66: 479-489.  V e l s e n , F.P.J. 1987. Temperature and i n c u b a t i o n i n p a c i f i c salmon and rainbow t r o u t : c o m p i l a t i o n o f d a t a on median h a t c h i n g time, m o r t a l i t y and embryonic s t a g i n g . Can. Data. Rep. F i s h . Aquat. S c i . 62 6: 58p. Vernier, J.M. 1969. C h r o n o l o g i c a l t a b l e o f t h e embryonic development o f rainbow t r o u t , Salmo gairdneri . (Annal. d'Embryol. Morphogen., 2:495-520). F i s h . Mar. S e r v . , T r a n s l . Ser. No. 3913, 1977. V i b e r t , R. 1949. Du repeuplement en t r u i t e s e t saumons p a r enfouissement de " b o i t e s d'alevinage" g a r n i e s d'oeufs dans l e s g r a v i e r s . B u l l e t i n f r a n c a i s de P i s c i c u l t u r e . 153: 125-150. V r o n s k i i , B.B. and V.N. Leman. 1991. Spawning s t a t i o n s , h y d r o l o g i c a l regime and s u r v i v a l o f progeny i n n e s t s o f Chinook salmon, Oncorhynchus tshawytscha, i n t h e Kamchatka R i v e r b a s i n . J . I c h t h y o l . 31: 91-102. W a l t e r s , C . J . and M.J. S t a l e y . 1987. E v i d e n c e a g a i n s t t h e e x i s t e n c e o f c y c l i c dominance i n F r a s e r R i v e r sockeye salmon {Oncorhynchus nerka). In: Smith, H.D., L. M a r g o l i s and C.C. Wood  (eds.).  Sockeye  salmon  biology and future management. S c i . 96. pp. 375-384.  (Oncorhynchus  nerka)  population  Can. Spec. P u b l . F i s h . Aquat.  W e l l s , R.A. and W.J. M c N e i l . 1970. E f f e c t o f q u a l i t y o f t h e spawning bed on growth and development o f p i n k salmon embryos and a l e v i n s . U.S. F i s h and W i l d l i f e S e r v i c e S p e c i a l S c i e n t i f i c Report - F i s h e r i e s 616. W i c k e t t , W.P. 1954. The oxygen s u p p l y t o salmon eggs i n spawning beds. J . F i s h . Res. Bd. Can. 11: 933-953. W i c k e t t , W.P. 1958. Review o f c e r t a i n e n v i r o n m e n t a l factors a f f e c t i n g t h e p r o d u c t i o n o f p i n k and chum salmon. J . F i s h . Res. Bd. Can. 15: 1103-1126. W i c k e t t , W.P. 1970. Review o f c e r t a i n e n v i r o n m e n t a l f a c t o r s a f f e c t i n g t h e p r o d u c t i o n o f p i n k and chum salmon. J . Fish. Res. Bd. Canada. 27: 1215-1224. W i l c o x , K.W., J . S t o s s and E.M. Donaldson. 1984. Broken eggs as a cause o f i n f e r t i l i t y o f coho salmon gametes. Aquaculture. 40: 77-87.  89  Young, M.K., W.A. Hubert and T.A. Wesche. 1991. S e l e c t i o n of measures of s u b s t r a t e composition t o estimate s u r v i v a l to emergence of salmonids and to d e t e c t changes i n stream s u b s t r a t e s . N. Amer. J . F i s h . Manage. 11: 339-346. Zar, J.H. 1984. B i o s t a t i s t i c a l a n a l y s i s . P r e n t i c e H a l l , C l i f f s , New J e r s e y . 718p.  90  Englewood  APPENDIX A  Schematic r e p r e s e n t a t i o n s of study reaches showing s t a n d p i p e m o n i t o r i n g s t a t i o n s , egg i n c u b a t i o n s i t e s (redd s i m u l a t i o n s ) , and observed r e d d d i s t r i b u t i o n .  91  T FLOW  <&>  i  T2 O  SCALE (meter*)  LEGEND O Permanent Transect Stake •  Standpipe Monitoring Station  M "Preferred" Habitat Redd Simulation •  "Marginal" Habitat Redd Simulation  ^  "Stranded " Redd Simulation  Figure A l . Kynock Creek mid-watershed (1550m) study reach showing standpipe monitoring stations, egg incubation sites (redd simulations), and observed redd distribution.  Tf.  H Incubation "Bag" Redd Simulation gg£ Gamete Transplant Incubation Site Transect Incubation Site Observed Sockeye Redd (1993) (gj) Observed Sockeye Redd (1994)  e  6j2  LEGEND  O Permanent Transect Stake •  Standpipe Monitoring Station  M "Preferred" Habitat Redd Simulation HI "Marginal" Habitat Redd Simulation $  "Stranded " Redd Simulation  H  Incubation "Bag" Redd Simulation  <S> Observed Sockeye Redd (1993) @ ) Observed Sockeye Redd (1994)  LEGEND o • m  •  Permanent Transect Stake Standpipe Monitoring Station "Preferred" Habitat Redd Simulation "Marginal" Habitat Redd Simulation  § "Stranded " Redd Simulation  • •  Incubation "Bag" Redd Simulation Gamete Transplant Incubation Site Transect Incubation Site Observed Sockeye Redd (1993) Observed Sockeye Redd (1994)  Figure A3. Forfar Creek mid-watershed (1500m) study reach showing standpipe monitoring stations, egg incubation sites (redd simulations), and observed redd distribution.  0-  FF-CHANNEI  Figure A4. Forfar Creek lower-watershed (150m) study reach showing standpipe monitoring stations, egg incubation sites (redd simulations), and observed redd distribution.  LEGEND O Permanent Transect Stake •  Standpipe Monitoring Station  PI "Preferred" Habitat Redd Simulation | H  "Marginal" Habitat Redd Simulation "Stranded " Redd Simulation  SCALE  fill Incubation "Bag" Redd Simulation  (meters)  (§3) Observed Sockeye Redd (1993) @)  j  Observed Sockeye Redd (1994)  95  I  V TIO  T20  SCALE (meters)  LEGEND Permanent Transect Stake Standpipe Monitoring Station  Figure A6. Gluskie Creek lower-watershed (50m) study reach showing standpipe monitoring stations, egg incubation sites (redd simulations), and observed redd distribution, (note redd observations were not recorded in 1993. Standpipe monitoring station locations varied between years due to beaver dam.)  El "Preferred" Habitat Redd Simulation • "Marginal" Habitat Redd Simulation § "Stranded " Redd Simulation 1 Incubation "Bag" Redd Simulation Gamete Transplant Incubation Site Transect Incubation Site Observed Sockeye Redd (1993) Observed Sockeye Redd (1994)  9?  APPENDIX B  Summary o f egg t o pre-emergent s u r v i v a l r a t e s f o r p r e f e r r e d and m a r g i n a l redd s i m u l a t i o n s  98  Appendix B l . Summary o f mean s u r v i v a l r a t e (n =10 , n = 6 -7 c a p s u l e s p e r s i t e / t i m e r e t r i e v a l ) f o r i n c u b a t i o n h a b i t a t type (preferred=high u t i l i z a t i o n , marginal=low u t i l i z a t i o n ) by creek (n=4), l o c a t i o n (upper=mid-watershed, lower=lower watershed), and sample s e s s i o n (developmental stage; l = l a t e September, 2=late December, 3=late A p r i l ) f o r s e l e c t e d spawning streams o f the e a r l y S t u a r t sockeye s t o c k . Table format r e f l e c t s the n e s t e d g e n e r a l l i n e a r models experimental d e s i g n (SAS 1988). 1993  CREEK Bivouac  LOCATION  DEVELOP. STAGE  Upper  1 2 3 1 2 3 1 2 3 1 2 3  Lower  Gluskie  Upper  Lower  Forfar  Upper  1 2 3 1 2 3 1 2 3 1 2 3  Lower  Kynock  Upper  Lower  Mean  1 9 9 4  INCUBATION HABITAT Marginal Preferred  BrYr Mean  1993  1994  1993  1994  -  13.91 0.00 0.00 9.85 0.00 0.00 34.39 8.49 5.26 13.95  -  19.30 8.36 0.00 20.14 0.00 1.05 56.14 55.46  -  -  70.65 64.46 35.06 21.55 26.06 21.95 26.33 21.29 24.53 69.76 71.04 69.50 69.59 67.44 69.99 34.40 34.16 36.26 46  -  3.99 1.50 1.75 29.91 31.88 33.03 61.45 63.74 59.80 64.09 60.20 57.36 25  99  -  74.48 63.09 62.92 60.64 59.78 49.52 49.30 47.00 47.58 62.06 67.09 40.89 61.33 55.34 54.91 22.84 21.03 21.76 51  -  Creek Means  93  94 93/94  -  7  -  5  61  32  40  17  36  2  63  29  63  62  28 49  59 27  -IQ  20.20  -  6.62 0.00 0.00 31.97 32.32 14.12 64.71 59.42 60.02 60.44 58.61 51.76 30  51/28  50/16  46/60 38  APPENDIX C  Watershed and Broodyear stream and i n c u b a t i o n p h y s i c a l parameters  100  H  X -H -H sH Ti -H  U rd U  4-J  £ CQ CD CQ  ft rd  ftrH  JUL-93  S E O M C O C O R  N  MEAN  DEC-94  SEP-94  JUL-94  APR-94  DEC-93  SEP-93  " N r ^ r N ^ C O  OFF-CHANNEL  MEAN  DEC-94  SEP-94  JUL-94  APR-94  COCO^COO-^-FOS C O C M ^ T ' T C O ™ " :  DEC-93  CM o CO ^ D (0.10)  0.08 (0.10)  0.05 (0.07)  0.09 (0.08)  0.12 (0.15)  0.04 (0.06)  0.02 (0.04)  0.13 (0.13)  0.14(0.13)  0.12 (0.08)  0.30 (0.12)  0.16 (0.09)  0.11  0.07 (0.05)  0.32 (0.22)  6.0 (3.9) 8.3 (0.5) 6.2 (0.6) 0.1 (0.2)  42.2 (17.8) 39.8 (16.1) 19.0 (18.8) 17.5 (11.9)  25.5(19.6)  5.8 (3.9)  -U. I (U, I)  8.1 (0.7)  8.2 (0.9)  37.7 (16.8)  18.5 (11.0)  I I . 5 (1.2)  35.8 (21.5)  2.3 (1.1)  I. 9 (0.8)  50.4 (8.8)  10.9 (1.2)  0.0 (0.1)  48.4 (11.8)  27.6 (16.8)  6.6 (1.9)  27.5 (27.5)  8.7 (0.2)  47.4 (7.6) 40.7 (22.6)  3.9 (0.7)  9.7 (1.1)  25.0 (19.7) 29.7 (26.2)  3.4(1.0) 9.8 (2.0) 11.1 (1.0)  6.0 (4.0)  7.6 (4.6) 5.5 (3.6) 5.5 (4.3) 11.4(0.6)  12.0(0.5) 9.9 (0.4) 10.0 (1.0) 12.8 (0.4) 10.4(1.6)  2.1 (0.9) 10.3 (1.1) 8.2 (0.6) -0.1 (0.1) 5.7 (3.7)  (O.OJ  8.1 (2.9)  (2.9)  10.1 0.4 (0.4)  D.D  2.5 (1.0)  6.2 (3.3) 6.5 (0.6)  2.8(1.1)  3.1 (0.8)  3.0 (1.2)  2.8 (1.3)  2.9 (0.9) 6.0 (3.5) 9.9 (0.3) 10.0(1.5)  8.1 (0.6)  (9.4)  19.9 (15.7)  17.6(8.9)  16.7  21.3 (13.1)  14.9 (11.5)  27.0 (18.9) 12.5  0.1  8.5  10.6 (0.3)  8.3 (0.8)  27.0 (35.1) 8.4 (2.6)  9.8 (0.4)  I I . 6 (1.3)  3.3 (0.9)  9.3 (0.5)  12.3(0.4)  20.8 (16.4)  11.6(0.6) 9.70 (3.5)  12.3 (0.2)  0.0 (0.1) I. 9(0.55)  4.6 (0.3)  3.2 (0.5) 2.3 (1.3)  19.0(6.7) 25.5 (11.6)  3.3 (0.8) 9.3 (1.0) 10.3 (0.8)  9.9 (0.6) 11.0(0.4)  25.8 (19.9)  4.0 (0.6) J  25.6 (21.7)  6.6 (1.8)  3.0 1^.1  19.9 (11.7) 23.6 (19.4)  8.7 (0.16)  ©  JUL-93  4.3 (0.8)  8.0 (3.0) 12.2 (0.2)  3.9 (0.5)  11.5(0.9)  '  SEP-93  o~ aT ^ C N " ST C O T - T - C M C M TD D O O J R J oi C M T - m C M r^. tn CO C M ^- CO D D D D D D ^  6.7 (3.5)  26.1  3.8 (0.5)  9.5 (1.5)  (19.1)  35.1 (24.1) 3.9 (0.5)  9.5 (1.2) 11.5(0.9)  25.3 (19.4)  ^  POOL  6.7 (3.5)  27.7 (14.9)  (16.4) 18.6 (12.9)  23.1  3.6 (0.9)  '  U.O (0.1)  8.2 (1.0)  3.3 (1.0)  8.7 (2.8)  23.6 (14.5)  9.4 (2.3)  ^  MEAN  8.2 (1.0)  (9.8)  19.1  3.9 (0.9)  8.7(1.9) 11.7(0.3)  3.4 (1.0)  10.6 (2.3)  "  DEC-94  10.8 (1.3)  2.1 (1.0)  0.2 (0.2))  6.2 (0.8)  6.8 (3.3)  0.0 (0.1)  8.0 (0.8)  RO O) RO Q t o i s o> D D C M C M D D CVI D  8.3 (0.4)  (1.0)  11.7(0.4)  L O  SEP-94  2.1 (1.1) 10.9 (1.1)  26.1 (12.9)  0.1 (0.2)  17.0(8.9) 34.0 (12.9)  6.1 (0.8)  17.3 (6.3)  1.8 T - to o> D D C M o"  10.5 (0.9)  ^  JUL-94  8.3 (0.5)  40.6 (16.3)  \\J.\JJ  6.7 (3.3)  19.0(12.6)  13.3 (9.0) U,U  1.9 (1.1) 10.6 (1.0) 7.8 (0.8) NN m m  20.3 (12.0)  24.5 (12.2)  0.2 (0.3)  22.7 (18.2)  0.2 (0.2)  15.8 (10.0)  3.6 (0.7)  O  APR-94  0.28 (0.25)  0.15 (0.16)  0.36 (0.24)  0.28 (0.20)  0.23 (0.18)  39.5 (26.0)  3.8 (0.5)  5.9 (1.1)  8.4 (0.6) 9.3 (2.5)  5.8 (1.0)  13.3 (8.7)  (ml/s)  9.6 (0.7)  8.3 (0.6)  26.5 (14.9)  INDEX  COMPOSITION *  C  DEC-93  c  JUL-93  CO ^ ^  SEP-93  rd TJ  THALWAG  u  MEAN  > i CQ  DEC-94  rd CM  SEP-94  oe CM  JUL-94  CQ CD rH ft rsi P D  APR-94  4H  (mg/1)*  rd T5 O •H rd cu cu (mg/1)*  a (C)*  a (c)  •H in O TS 4H  (cm)  rH r H RELATIVE  rd r H  PERMEABILITY  -u rd SURFACE  4J CQ  DEC-93  Cn 3  0.19(0.18)  >  0.51 (0.28)  0) T j  JUL-93  rd U CQ SUBSTRATE  CQ CD > i rH INTERGRAVEL  •H rd  SEP-93  a •H  MARGIN  rH DISSOLVED 02  o, o u rH rd co. u B  (m/s)  rrj  DATE  e a rrj  STREAM  U  DISSOLVED 02  CD 4-) CD CD  INTRAGRAVEL  CQ  TEMPERATURE  X! rO  STREAM  XI  HABITAT  •H  TEMPERATURE  rd  DEPTH  4J  VELOCITY  4J  o  rH  6  M  £ co  ^ .2 •=  2  E  to w  iii » CO CO CO JO  z  « -E 03 S  1  Appendix C 2 . Stream and i n t r a g r a v e l p h y s i c a l parameters f o r both broodyears (1993, 1994) combined over a l l l o c a t i o n s , s i t e s and seasons f o r the s e l e c t e d study streams (n=3) o f the e a r l y S t u a r t sockeye stock.  CREEK FORFAR KYNOCK  VARIABLE  GLUSKIE  VELOCITY (m/s)  0.27 0.02 0.00-1.45 173  0.26 0.02 0 - 1.23 193  0.29 0.02 0-1.38 174  no  26.4 1.2 3.0-75.0 173  25.7 1.1 1.0-100.0 193  29.3 1.5 2.0-132.0 174  no  6.0 0.3 -0.1 - 10.9 171  6.4 0.2 -0.2-10.8 196  6.9 0.3 -13 181  no  6.0 0.26 -0.1 - 10.6 171  6.4 0.24 -0.1 - 11.0 195  6.9 0.29 -0.1 - 12.8 182  no  3.7 0.1 1.0-5.2 159 A  3.4 0.1 1.0-5.0 180 B  3.7 0.1 1.0-5.0 156 A  ***  11.1 0.1 8.2-13.3 171 A  10.9 0.1 7.6-13.1 196 A  10.5 0.1 3.6-12.5 181 B  ***  9.7 0.2 0.3-12.9 171 A  8.9 0.2 0.3-12.4 195 B  8.8 0.2 0.2-12.1 182 B  ***  22.7 1.3 3-84 154  24.2 1.5 0-120 171  27.0 1.8 5-129 146  no  Std. Err. Range n DEPTH (cm)  Std. Err. Range n STREAM TEMP (C)  Std. Err. Range n INTRAGRAVEL TEMPERATURE (C)  Std. Err. Range n SURFACE SUBSTRATE  Std. Err. Range n Duncans STREAM DISOLVED OXYGEN (mg/1)  Std. Err. Range n Duncans INTRAGRAVEL DISOLVED OXYGEN (mg/1)  Std. Err. Range n Duncans PERMEABILITY (ml/s)  Std. Err. Range n  102  p < 0.05  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Country Views Downloads
Germany 26 0
United States 17 2
China 5 12
France 3 0
Japan 3 0
Canada 1 0
Netherlands 1 0
City Views Downloads
Unknown 33 0
Ashburn 5 0
Mountain View 3 1
Seattle 3 0
Beijing 3 0
Tokyo 3 0
Shenzhen 2 12
Clarks Summit 1 0
Sunnyvale 1 1
Ottawa 1 0
Warrensburg 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0074813/manifest

Comment

Related Items