UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Measurement of low frequency electric fields using electrodeless breakdown of gases Friedmann, Daniel E. 1983

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1983_A7 F75.pdf [ 6.76MB ]
Metadata
JSON: 831-1.0074526.json
JSON-LD: 831-1.0074526-ld.json
RDF/XML (Pretty): 831-1.0074526-rdf.xml
RDF/JSON: 831-1.0074526-rdf.json
Turtle: 831-1.0074526-turtle.txt
N-Triples: 831-1.0074526-rdf-ntriples.txt
Original Record: 831-1.0074526-source.json
Full Text
831-1.0074526-fulltext.txt
Citation
831-1.0074526.ris

Full Text

MEASUREMENT OF LOW FREQUENCY ELECTRIC FIELDS USING ELECTRODELESS BREAKDOWN OF GASES by DANIEL E. FRIEDMANN B.A.Sc, The University of B r i t i s h Columbia, 1979 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n THE FACULTY OF GRADUATE STUDIES (Engineering Physics) We accept t h i s Thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA JANUARY 1983 © Daniel E. Friedmann, 1983 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head o f my department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department o f ir/U<s I AJ e. e R IAJ 6 p H V S ( C S : The U n i v e r s i t y of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date T A ^ I ft ( 9 8 3 DE-6 (3/81) i i ABSTRACT There i s a need for an e l e c t r i c f i e l d meter to measure environmental f i e l d s under high voltage transmission l i n e s and t h e i r associated switchyards. This thesis describes a new e l e c t r i c f i e l d meter based on the electrodeless breakdown of gases i n i n s u l a t i n g vessels. When a glass bulb f i l l e d with a gas (e.g. neon) i s placed i n an a l t e r n a t i n g e l e c t r i c f i e l d i t emits l i g h t i n the form of pulses. The number of pulses per cycle of the e l e c t r i c f i e l d i s proportional to the f i e l d magnitude. An e l e c t r i c f i e l d meter i s constructed by conveying the l i g h t from the gas f i l l e d glass bulb (the sensor) to an e l e c t r o n i c counter (the detector) with an o p t i c a l f i b e r . The r e s u l t i n g meter has a low weight, non m e t a l l i c sensor that can be separated from the detector e l e c t r o n i c s by any desired distance. The sensor shape d i c t a t e s i t s d i r e c t i o n a l s e n s i t i v i t y . A s p h e r i c a l bulb has an i s o t r o p i c response to the f i e l d while a c y l i n d r i c a l bulb gives a maximum response when i t s axis i s aligned with the f i e l d d i r e c t i o n . The size of the bulb i s inversely proportional to the threshold below which the f i e l d can not be measured. A 25mm bulb has a 10kv m-1 threshold. The transmission of the l i g h t s i g n a l from the sensor to the detector i s immune to e l e c t r i c a l noise. The detector e l e c t r o n i c s i s simple because the f i e l d magnitude information i s contained i n the number of pulses not i n the magnitude of the pulses. This thesis presents the t h e o r e t i c a l , experimental and f i e l d test r e s u l t s which explain the operation of the meter and substantiates i t s advantages. The basic p h y s i c a l model for the sensor i s established by describing the r e l a t i o n between o p t i c a l pulses and f i e l d magnitude, the e f f e c t of sensor shape on t h i s r e l a t i o n , the operation of the sensor i n e l l i p t i c a l l y p o l a r i z e d (including harmonic) f i e l d s and the e f f e c t of bulb size and gas composition on the phenomena. i i i The b a s i c p r a c t i c a l c o n s i d e r a t i o n s a r e i n v e s t i g a t e d b y s t u d y i n g t h e e n v i r o n m e n t a l e f f e c t s o n t h e p e r f o r m a n c e o f t h e m e t e r , t h e l i f e t i m e a n d s t a b i l i t y o f t h e m e t e r , t h e e f f e c t o f t h e s e n s o r on t h e f i e l d b e i n g m e a s u r e d a n d t h e g e n e r a l e n g i n e e r i n g o f m e t e r . T h i s w o r k h a s r e s u l t e d i n a f u l l y t e s t e d p r o t o t y p e m e t e r whose b a s i c o p e r a t i o n i s w e l l u n d e r s t o o d . i v T a b l e o f Contents Page 1 . 0 I n t r o d u c t i o n 1 1 . 1 E n v i r o n m e n t a l E l e c t r i c F i e l d s 5 1 . 2 P r i n c i p l e of O p e r a t i o n o f E x i s t i n g E l e c t r i c F i e l d Meters 8 1 . 3 P o s s i b i l i t i e s f o r a New E l e c t r i c F i e l d Meter 10 2 . 0 E x i s t i n g Work R e l a t e d t o E l e c t r o d e l e s s Breakdown 12 3 . 0 P h y s i c a l Model 14 3 . 1 I n t r o d u c t i o n 14 3 . 2 The Breakdown Mechanism 15 3 . 3 Breakdown i n I n s u l a t i n g V e s s e l s 2 0 3 . 3 . 1 S t r o n g Breakdown 2 2 3 . 3 . 2 Weak Breakdown 2 5 3 . 3 . 3 S t a r t up C o n d i t i o n s 2 5 3 . 3 . 4 The Pennin g E f f e c t 2 5 3 . 3 . 5 F i n i t e C o n d u c t i v i t y E f f e c t s 27 3 . 4 Breakdown Guided by V e s s e l W a l l s 2 9 3 . 4 . 1 I n t r o d u c t i o n 2 9 3 . 4 . 2 P o s s i b l e E f f e c t s 2 9 3 . 4 . 2 . 1 F i n i t e C o n d u c t i v i t y S c r e e n i n g 31 3 . 4 . 2 . 2 W a l l C o l l i s i o n Guidance 3 2 3 . 4 . 2 . 3 E x t e n s i o n t o C y l i n d e r s o f F i n i t e w i d t h 3 3 3 . 5 Breakdown i n P l a n a r R o t a t i n g F i e l d s 3 4 3 . 5 . 1 I n t r o d u c t i o n 3 4 3 . 5 . 2 Breakdown i n C i r c u l a r l y P o l a r i z e d F i e l d s 3 4 V Page 3.5.2.1 C y l i n d r i c a l Tubes 35 3.5.2.2 S p h e r i c a l Bulbs 36 3.5.3 E x t e n s i o n t o E l l i p t i c a l l y P o l a r i z e d F i e l d s 40 3.6 Summary 43 4.0 E l e c t r i c F i e l d Meter D e s i g n 45 4.1 I n t r o d u c t i o n 45 4.2 F u n c t i o n a l D e s c r i p t i o n o f GEM 46 4.2.1 The Sensor 46 4.2.1.1 The B u l b 48 4.2.1.1.1 B u l b Manufacture 48 4.2.1.2 The Holder 50 4.2.1.2.1 H o l d e r Manufacture 51 4.2.1 .3 E n g i n e e r i n g C o n s i d e r a t i o n s 52 4.2.1.3.1 Humidity 52 4.2.1.3.2 Temperature 52 4.2.1.3.3 Harmonics 53 4.2.2 The F i b r e 54 4.2.3 The D e t e c t o r 56 4.2.3.1 E l e c t r i c a l D e s i g n 58 4.2.4 O v e r a l l E n g i n e e r i n g c o n s i d e r a t i o n s 56 4.3 Summary 62 5.0 5.1 5.2 E x p e r i m e n t a l R e s u l t s I n t r o d u c t i o n E x p e r i m e n t a l Apparatus 64 64 66 v i Page 5.2.1 I n t r o d u c t i o n 66 5.2.2 Apparatus f o r G e n e r a t i n g U n i f o r m F i e l d s i n a F i x e d D i r e c t i o n and S t u d y i n g P u l s e E m i s s i o n 66 5.2.3 Apparatus f o r G e n e r a t i n g P l a n a r R o t a t i n g F i e l d 69 5.3 Study o f the B a s i c Phenomenon 73 5.3.1 S t a n d a r d Phenomena 73 5.3.1.1 G e n e r a l P u l s e E m i s s i o n 73 5.3.1.2 Rate o f P u l s e E m i s s i o n as a F u n c t i o n o f A p p l i e d F i e l d Magnitude 75 5.3.1.3 D e t e r m i n a t i o n of E D 78 5.3.1.4 P u l s e E m i s s i o n : Dependence on A p p l i e d Waveform 79 5.3.2 P o s s i b l e Mechanisms t o Reduce the T h r e s h o l d 82 5.4 Sensor Shape I n v e s t i g a t i o n s 86 5.4.1 S p h e r i c a l Bulbs 86 5.4.2 C y l i n d r i c a l Tubes 87 5.5 I n v e s t i g a t i o n s o f P l a n a r R o t a t i n g F i e l d s 94 5.5.1 C y l i n d r i c a l Tubes 94 5.5.2 S p h e r i c a l Bulbs 94 5.5.2.1 G e n e r a l P u l s e E m i s s i o n i n C i r c u l a r l y P o l a r i z e d F i e l d s 96 5.5.2.2 Rate o f P u l s e E m i s s i o n on a F u n c t i o n o f F i e l d Magnitude and Shape 96 5.5.2.3 P l a n a r R o t a t i n g F i e l d s and Penning M i x t u r e s 100 5.6 I n v e s t i g a t i o n s of E n g i n e e r i n g Problems 101 5.6.1 F i e l d P e r t u r b a t i o n 101 5.6.2 Meter C a l i b r a t i o n S t a b i l i t y 103 v i i Page 5.6.3 Humidity E f f e c t s 103 5.6 . 4 Temperature E f f e c t s 105 5.7 F i e l d T e s t s 106 5.8 Summary 108 6.0 Summary and C o n c l u s i o n 109 7.0 R e f e r e n c e s 115 Appendix I Appendix I I 117 122 v i i i L i s t o f T a b l e s Page T a b l e 1 Breakdown Parameters 19 T a b l e 2 GEM P r e l i m i n a r y S p e c i f i c a t i o n s 63 T a b l e 3 Meter C o n f i g u r a t i o n s and A p p l i c a t i o n s 114 i x L i s t o f F i g u r e s Page F i g u r e 1 E q u i p o t e n t i a l s around a human body 7 F i g u r e 2 F i e l d s t r e n g t h s a p p l i c a b l e t o the b u l b 21 F i g u r e 3 C a l i b r a t i o n curve ( f r e q u e n c y v e r s u s f i e l d ) 24 F i g u r e 4 O p t i c a l p u l s e s f o r weak breakdown 26 F i g u r e 5 Geometry of f i e l d s f o r c y l i n d r i c a l b u l b 30 F i g u r e 6 Geometry o f R o t a t i n g a p p l i e d f i e l d s 37 F i g u r e 7 Photo of p r o t o t y p e meter 47 F i g u r e 8 Photo o f t y p i c a l b u l b s 49 F i g u r e 9 Phasors f o r a p p l i e d r o t a t i n g f i e l d s w i t h harmonics 55 F i g u r e 10 B l o c k diagram o f d e t e c t o r 57 F i g u r e 1 1 C i r c u i t diagram of d e t e c t o r 60 F i g u r e 1 2 E x p e r i m e n t a l s e t up 67 F i g u r e 1 3 Apparatus f o r g e n e r a t i n g r o t a t i n g f i e l d s 70 F i g u r e 14 E l e c t r i c c i r c u i t f o r g e n e r a t i n g r o t a t i n g f i e l d s 71 F i g u r e 1 5 Photo o f apparatus f o r g e n e r a t i n g r o t a t i n g f i e l d s 72 F i g u r e 16 O p t i c a l p u l s e s f o r s t r o n g breakdown 74 F i g u r e 17 C a l i b r a t i o n c u r v e s f o r d i f f e r e n t b u l b p r e s s u r e 76 F i g u r e 18 C a l i b r a t i o n c u r v e s f o r d i f f e r e n t b u l b dimensions 80 F i g u r e 19 O p t i c a l p u l s e s f o r square wave 83 F i g u r e 20 O p t i c a l p u l s e s f o r Penning b u l b 84 F i g u r e 21 Time i n t e g r a t e d photo o f d i s c h a r g e i n a c y l i n d r i c a l tube 89 F i g u r e 22 C a l i b r a t i o n o f c y l i n d r i c a l tube 91 F i g u r e 23 A n g u l a r response o f c y l i n d r i c a l tube 93 F i g u r e 24 C a l i b r a t i o n c u r v e f o r s t r o n g breakdown 95 F i g u r e 25 C a l i b r a t i o n curve i n c i r c u l a r l y p o l a r i z e d f i e l d 97 F i g u r e 26 C a l i b r a t i o n c u r v e s i n e l l i p t i c a l l y p o l a r i z e d f i e l d s F i g u r e 27 F i e l d p e r t u r b a t i o n by b u l b F i g u r e 29 E l e c t r i c f i e l d under a 500kV l i n e F i g u r e I I T h e o r e t i c a l c a l i b r a t i o n c u r v e s i n e l l i p t i c a l l y p o l a r i z e d f i e l d s Page 99 102 F i g u r e 28 Bulb measurement s t a b i l i t y graph 104 107 F i g u r e I Geometry of c o n d u c t i n g s h e l l i n the a p p l i e d f i e l d 118 1 26 x i ACKNOWLEDGEMENT The i n i t i a l s t i m u l u s f o r t h i s work came from F. Heminsley who was i n t e r e s t e d i n d e v e l o p i n g a meter f o r m o n i t o r i n g e n v i r o n m e n t a l f i e l d s . The i n t i t i a l i n v e n t i o n r e s u l t e d from a c o l l a b o r a t i v e e f f o r t o f J e f f Young and the author which r e s u l t e d i n p a t e n t a p p l i c a t i o n No. 06/142,815 (US). The author i s i n d e b t e d t o R.R. Parsons, R.R. H e e r i n g and R.A. Nodwell f o r the encouragement they p r o v i d e d w h i l e the p r o j e c t was b e i n g d e v e l o p e d i n the A p p l i e d S c i e n c e 459 L a b o r a t o r y . S u b s e q u e n t l y d u r i n g the MASc program the B.C. S c i e n c e C o u n c i l not o n l y p r o v i d e d f i n a n c i a l s u p p o r t f o r the p r o j e c t b u t a l s o encouraged the development t o the commercial e x p l o i t a t i o n o f the d e v i c e . Some f i n a n c i a l s u p p o r t f o r the equipment was a l s o p r o v i d e d by NSERC. The development of the p h y s i c a l models and the p l a n n i n g and e x e c u t i o n of the experiments was a j o i n t e f f o r t w i t h F.L. C u r z o n . Many o t h e r s have a l s o g r e a t l y c o n t r i b u t e d t o the development o f e x p e r i m e n t a l f a c i l i t i e s , the e x e c u t i o n of experiments and the c o n s t r u c t i o n of the meter. Most n o t a b l y M. F e e l e y , G. A u c h i n l e c k , F. E a s t o n , R. A l l a n , A. Cheuck, E. W i l l i a m s , L. De S i l v a , D. P a r f e n i u k , D. Gayton and P. Wong. The author i s v e r y t h a n k f u l l t o J . Rothe and F. Heminsley f o r t h e i r c o n t i n u o u s encouragement and h e l p w i t h f i e l d t e s t s . 1 1.0 INTRODUCTION E l e c t r i c power i s c e n t r a l t o the energy systems o f Canada and the de v e l o p e d c o u n t r i e s . Even w i t h p r e s e n t e f f o r t s t o reduce the energy i n t e n s i v e n e s s of the economy through c o n s e r v a t i o n and h i g h e r p r i c e s , s u b s t a n t i a l growth i n the e l e c t r i c s e c t o r i s expe c t e d to c o n t i n u e . To move l a r g e amounts of power e c o n o m i c a l l y and r e l i a b l y over l o n g d i s t a n c e s , e l e c t r i c u t i l i t i e s need overhead A.C. t r a n s m i s s i o n l i n e s which o p e r a t e a t v o l t a g e s of 500 kV and above. In 1977 the U n i t e d S t a t e s alone had 20,000 km 1 o f t r a n s m i s s i o n l i n e s o p e r a t i n g a t 500 kV. S i n c e then the t o t a l l e n g t h o f t r a n s m i s s i o n l i n e s i n the U.S. has d o u b l e d . Furthermore the v o l t a g e o f the l i n e s has i n c r e a s e d c o n t i n u o u s l y . L i n e s o p e r a t i n g a t 765 kV a r e now common, w h i l e e x p e r i m e n t a l l i n e s are b e i n g o p e r a t e d a t v o l t a g e s above 1000 kV. Because of t h i s growth ( i n mil e a g e and v o l t a g e ) t h e r e i s an evergrowing number of people b e i n g exposed t o i n c r e a s i n g l y l a r g e r e l e c t r i c f i e l d s g e n e r a t e d by these p o w e r l i n e s and t h e i r a s s o c i a t e d s u b s t a t i o n s . Most o f those exposed ( e s p e c i a l l y t o the l a r g e r f i e l d s ) work i n the e l e c t r i c power i n d u s t r y . However o t h e r s l i v i n g and/or o p e r a t i n g equipment near p o w e r l i n e s or s u b s t a t i o n s a l s o r e c e i v e s u b s t a n t i a l exposure t o e l e c t r i c f i e l d s . Accompanying t h i s e x p a n s i o n of the e l e c t r i c power i n d u s t r y t h e r e i s a growing c o n c e r n among the p u b l i c , the E l e c t r i c a l U t i l i t i e s and the r e g u l a t o r y b o d i e s about the p o s s i b l e h e a l t h e f f e c t s of these f i e l d s . The c o n c e r n i s e x e m p l i f i e d by a number o f h e a r i n g s on the proposed c o n s t r u c t i o n of h i g h e r v o l t a g e l i n e s i n the U.S.2 2 There are t h e o r e t i c a l reasons t o b e l i e v e t h a t low f r e q u e n c y (50 t o 60Hz) e l e c t r i c f i e l d s can cause b i o l o g i c a l e f f e c t s : 1. n e u r o l o g i c a l or o t h e r e f f e c t s can be caused by 50 - 60Hz body c u r r e n t s i n d u c e d by the e x t e r n a l e l e c t r i c f i e l d . A l t h o u g h 60Hz i s p a r t i a l l y chosen f o r t r a n s m i s s i o n of AC power because of i t b e i n g the lowest f r e q u e n c y g i v i n g the i l l u s i o n o f c o n t i n u o u s l i g h t i n g w i t h i n c a n d e s c e n t lamps, i t i s a hazardous f r e q u e n c y . E x p e r i m e n t s ^ show t h a t t h r e s h o l d f o r s t i m u l a t i o n of nerve, s k e l e t a l muscle and c a r d i a c muscle are minimal near 60Hz; 2. e x t e r n a l f i e l d s c o u l d d i r e c t l y i n t e r f e r e i n b i o l o g i c a l p r o -c e s s e s t h a t i n v o l v e or a r e a f f e c t e d by the p r e s e n c e of e l e c t r i c f i e l d s , such as hormone and enzyme r e c o g n i t i o n p r o c e s s e s on c e l l membrane s u r f a c e s , bone growth p r o c e s s e s , e t c . ; 3. s m a l l a r c d i s c h a r g e s which r e s u l t when a p e r s o n a t one p o t e n t i a l touches an o b j e c t a t another p o t e n t i a l may a l s o l e a d t o p h y s i o l o g i c a l and p s y c h o l o g i c a l e f f e c t s and 4. unwanted s i g n a l s i s p r o s t h e t i c d e v i c e s ( f i l l i n g s i n t e e t h , pace-makers, h e a r i n g a i d s , e t c . ) can be u n c o m f o r t a b l e and dangerous. These t h e o r e t i c a l concerns have been p a r t i a l l y s u p p o r t e d by e xperiment. S t u d i e s p u b l i s h e d by Presman 4 o f r e s u l t s o b t a i n e d i n the S o v i e t Union and o t h e r s t u d i e s from E a s t e r n c o u n t r i e s c l a i m a number of a d v e r s e h e a l t h e f f e c t s such as headaches, f a t i g u e , i r r i t a b i l i t y and s e x u a l impotency among 500 kv s w i t c h y a r d w orkers. However, s t u d i e s by groups i n Sweden and the U.S.A. r e p o r t e d no s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e o b s erved between those workers who had been exposed t o s t r o n g e l e c t r i c f i e l d s and those who had n o t . R e c e n t l y s t u d i e s i n Canada^ s u p p o r t the f i n d i n g s i n the U.S.A. and Sweden. In a l l these s t u d i e s , the 3 number of p e o p l e i n v e s t i g a t e d was s m a l l so t h a t no r e l i a b l e i n f o r m a t i o n can be i n f e r r e d c o n c e r n i n g h e a l t h e f f e c t s which have a low f r e q u e n c y o f o c c u r r e n c e ( e . g . m o r t a l i t y r a t e s ) . A l s o , adverse e f f e c t s w i t h l o n g dormant p e r i o d s would n o t have been d e t e c t e d by the s t u d i e s done so f a r . F i n a l l y , the a c t u a l exposure, of the people i n v e s t i g a t e d , t o e l e c t r i c f i e l d s i s not known, s i n c e t h e r e has not been an e l e c t r i c f i e l d d e t e c t o r t h a t makes c o n t i n u o u s m o n i t o r i n g p o s s i b l e . F o r t h i s r e a s o n , a d e v i c e was d e s i r e d which c o u l d p r o v i d e c o n t i n u o u s m o n i t o r i n g of e l e c t r i c f i e l d e x p o s u r e s . A survey of e x i s t i n g d e v i c e s ( a l l of which are based on i n d u c e d c u r r e n t between two metal p l a t e s ) shows t h a t they have a number of d i s a d v a n t a g e s 6 . F i r s t l y , most d e v i c e s have d i r e c t i o n a l dependent s e n s i t i v i t i e s and are a d v e r s e l y i n f l u e n c e d by harmonic c o n t e n t of the a p p l i e d f i e l d . S e c ondly, they are made o f metal and thus c r e a t e a h a z a r d to workers u s i n g them because of the r i s k o f f l a s h o v e r . The i n i t i a l m o t i v a t i o n f o r the work d e s c r i b e d i n t h i s t h e s i s was to d e v e l o p a m o n i t o r i n g d e v i c e which would not s u f f e r from the e f f e c t s c i t e d above. I t would then be p o s s i b l e t o c a r r y out b e t t e r s t u d i e s on the c o r r e l a t i o n between exposure t o e l e c t r i c f i e l d s , and p o s s i b l e adverse h e a l t h e f f e c t s . However such a d e v i c e would have o t h e r p r o m i s i n g a p p l i c a t i o n s . F o r example, many crane o p e r a t o r s have been k i l l e d (2 i n B.C. l a s t y e a r ) when the crane touches the p o w e r l i n e . E x i s t i n g e l e c t r i c f i e l d d e t e c t o r s do not r e l i a b l y warn o p e r a t o r s of heavy c o n s t r u c t i o n equipment of the dangers posed by overhead t r a n s m i s s i o n l i n e s ^ . T h i s T h e s i s d e s c r i b e s the t h e o r e t i c a l , e x p e r i m e n t a l and e n g i n e e r i n g work done to d e v e l o p a new e l e c t r i c f i e l d meter. The meter i s based on a p r i n c i p l e which i s t o t a l l y d i f f e r e n t from t h a t o f e x i s t i n g meters. The new meter i s based on the e l e c t r i c a l breakdown of a low p r e s s u r e gas i n an 4 i n s u l a t i n g e n v e l o p e . T h i s phenomenon i s known as e l e c t r o d e l e s s breakdown and d u r i n g the c o u r s e o f d e v e l o p i n g the e l e c t r i c f i e l d meter, many new r e s u l t s were o b t a i n e d c o n c e r n i n g the p h y s i c a l p r o c e s s e s o c c u r r i n g i n e l e c t r o d e l e s s breakdown. The remainder of the i n t r o d u c t i o n d e s c r i b e s the t y p i c a l f i e l d s t o be measured, the e x i s t i n g e l e c t r i c f i e l d meters and i n t r o d u c e s the concept of the new e l e c t r i c f i e l d meter GEM (Gaseous E l l e c t r i c F i e l d M e t e r ) . S e c t i o n 2 p r e s e n t s a review o f the l i t e r a t u r e r e l a t e d t o the e f f e c t on which GEM i s based. S e c t i o n 3 i s devoted t o a d e s c r i p t i o n o f the P h y s i c a l Model f o r GEM, i t c o n t a i n s a l l the b a s i c t h e o r y . The d e s i g n o f GEM, which c o n t a i n s the a c t u a l p h y s i c a l and e n g i n e e r i n g c o n s i d e r a t i o n s , i s g i v e n i n S e c t i o n 4 . S e c t i o n 5 i s a d e t a i l e d a c c o u n t o f the major e x p e r i m e n t a l r e s u l t s o b t a i n e d i n the l a b o r a t o r y and i n p r e l i m i n a r y f i e l d t e s t s which form the e x p e r i m e n t a l b a s i s o f S e c t i o n s 3 and 4 . F i n a l l y , S e c t i o n 6 c o n t a i n s the c o n c l u s i o n s and expe c t e d f u t u r e developments. .1 Environmental E l e c t r i c F i e l d s Environmental e l e c t r i c f i e l d s are due to the p o t e n t i a l difference between energized conductors (powerlines) ( t y p i c a l l y 100V to 1000kV) and the ground (Ov). The f i e l d ' s magnitude and d i r e c t i o n depends on the number, d i s t r i b u t i o n and voltage of the conductors, the ground cover, the environmental conditions and any objects present nearby. T y p i c a l f i e l d s under 3 phase transmission li n e s are approximately e l l i p t i c a l l y p olarized i n a v e r t i c a l plane. The major axis of the e l l i p s e i s nearly v e r t i c a l due to the presence of the h o r i z o n t a l ground plane ( e l e c t r i c f i e l d s are perpendicular to the surface of good conductors). The e l l i p s e i s a r e s u l t of adding the f i e l d s from each phase. At an equal distance from each wire the actual f i e l d s cancel out to zero (a major property of three phase transmission). However, when the distances to each wire are not i d e n t i c a l the resultant f i e l d does not vanish. Thus the magnitude of the e l e c t r i c f i e l d under a transmission l i n e exhibits a two hump camel shape having a minimum near the center conductor (approximate cancellation) and a maximum near each outer conductor (l e a s t c a n c e l l a t i o n ) . A t y p i c a l f i e l d i s sketched below. CONDUCTORS ~\$~ rrrs HUxU '•v-/_~n APPART o o o 6 The f i e l d i n a s w i t c h y a r d i s much more complex due to a l a r g e number of p o w e r l i n e s of d i f f e r e n t v o l t a g e s , h e i g h t s and d i r e c t i o n s . However, the f i e l d a t any g i v e n p o s i t i o n i s s t i l l e l l i p t i c a l l y p o l a r i z e d . The d e s c r i p t i o n so f a r has i g n o r e d the p r e s e n c e of l a r g e c o n d u c t i n g o b j e c t s . These o b j e c t s can s e v e r e l y d i s t o r t the e l e c t r i c f i e l d l i n e s . Fo r example the f i e l d near the head of a person can be 10 times l a r g e r ^ than the ambient f i e l d i n the absence of the p e r s o n . T h i s enhancement i s due to a c o n c e n t r a t i o n of f i e l d l i n e s near the head (see F i g u r e 1 ) . An e l e c t r i c f i e l d meter must not o n l y measure these complex f i e l d s b u t must o p e r a t e i n extremes o f weather c o n d i t i o n s (±40°C, 0 - 100% r e l a t i v e h u m i d i t y ) and extreme e l e c t r i c a l n o i s e ( a t 60 Hz and i t s h a r m o n i c s ) . 7 8 1.2 P r i n c i p l e o f O p e r a t i o n o f E x i s t i n g E l e c t r i c F i e l d Meters I n v a r i a b l y p r e s e n t e l e c t r i c f i e l d meters c o n s i s t o f two meta l h a l v e s s e p a r a t e d by an i n s u l a t o r . When immersed i n an e l e c t r i c f i e l d the f i e l d i n d u c e s an a l t e r n a t i n g charge (or c u r r e n t ) which i s d i r e c t l y p r o p o r t i o n a l t o the magnitude o f the s i n u s o i d a l f i e l d . The meters work by measuring a q u a n t i t y p r o p o r t i o n a l t o the charges in d u c e d on the s e n s i n g e l e c t r o d e s ( m e t a l h a l v e s ) o r by measuring a q u a n t i t y p r o p o r t i o n a l t o the c u r r e n t between the e l e c t r o d e s . i n both cases the meters respond t o the average v a l u e o f the r e c t i f i e d s i g n a l , b u t a r e c a l i b r a t e d t o r e a d i n rms (assuming a u n i f o r m s i n u s o i d a l f i e l d ) . The c a l i b r a t i o n c o n s t a n t depends on the shape and s i z e o f the s e n s i n g e l e c t r o d e s as w e l l as on the f i e l d geometry. T y p i c a l l y the e l e c t r o n i c s r e q u i r e d t o d e t e c t the s i g n a l from the e l e c t r o d e i s housed between or i n s i d e the metal e l e c t r o d e s . The meters y i e l d a maximum r e a d i n g when a l i g n e d w i t h the d i r e c t i o n o f the f i e l d and a minimum ( c l o s e to z e r o ) when p e r p e n d i c u l a r t o the f i e l d . These meters have the f o l l o w i n g f a v o u r a b l e a t t r i b u t e s : 1. many of the measurement s t a n d a r d s have been devel o p e d f o r them; 2. they can be m i n i a t u r i z e d t o the s i z e o f a c i g a r e t t e box. However, i f a re a d o u t i s r e q u i r e d ( r a t h e r than j u s t s t o r a g e of the e l e c t r i c f i e l d r e a d i n g a t d e f i n i t e time i n t e r v a l s ) w i r e s (or an o p t i c a l f i b e r l i n k ) must be used t o connect the d e v i c e t o the r e a d o u t meter. The meters have the f o l l o w i n g d i s a d v a n t a g e s : 1 . they a r e m e t a l l i c and t h e r e f o r e dangerous because o f the r i s k of f l a s h - o v e r from the h i g h v o l t a g e equipment t o the sensor; 9 2. they a r e d i r e c t i o n a l l y s e n s i t i v e ( i e . the s e n s i t i v i t y depends on the o r i e n t a t i o n o f the d e v i c e i n the e l e c t r i c f i e l d ) ; 3. because the o u t p u t i s p r o p o r t i o n a l t o the average r e c t i f i e d s i g n a l the p r e s e n c e of harmonics i n the e l e c t r i c f i e l d i n t r o d u c e s an e r r o r which depends on the amplitude of the harmonic components. The e r r o r a l s o v a r i e s w i t h the phase d i f f e r e n c e between the harmonics and the fundamental; 4. they are made of metal which g r e a t l y p e r t u r b s the f i e l d and thus a meter c a l i b r a t e d i n a unform f i e l d may not be a c c u r a t e i n a non-uniform f i e l d ; 5. a s e l f c o n t a i n e d meter ( i e . one i n which the e l e c t r o n i c s and d i s p l a y are t o g e t h e r w i t h the s e n s i n g e l e c t r o d e s ) i s heavy; 6. a meter i n which the d i s p l a y e l e c t r o n i c s and the s e n s i n g e l e c t r o d e s a r e s e p a r a t e d ( f o r example meters f o r c r a n e s ) i s s u s c e p t i b l e t o e l e c t r i c a l n o i s e because o f the c o n n e c t i n g m e t a l l i c w i r e s . I f the two p a r t s are s e p a r a t e d by an o p t i c a l f i b e r ^ the e l e c t r o n i c s w i t h the s e n s i n g e l e c t r o d e s becomes more c o m p l i c a t e d and r e q u i r e s i t s own b a t t e r y o r power so u r c e ( t o modulate the l i g h t e m i t t i n g d i o d e ) . E n v i r o n m e n t a l e f f e c t s o f temperature and h u m i d i t y on these meters a r e n o t w e l l documented. However one s t u d y 1 6 shows t h a t t h e r e are no adverse e f f e c t s f o r temperatures from 0° t o 40°C ( i n f o r m a t i o n i s not g i v e n f o r temperatures below z e r o ) . Over the temperature range o f 0 t o 40°C v a r y i n g h u m i d i t y was a l s o found t o have no adverse e f f e c t . 10 1.3 P o s s i b i l i t i e s f o r a New E l e c t r i c F i e l d Meter An e l e c t r i c f i e l d meter i s made of two p a r t s : 1. the senso r which responds w i t h a s i g n a l p r o p o r t i o n a l t o the e l e c t r i c f i e l d and 2. the d e t e c t o r which d e t e c t s , a m p l i f i e s and d i s p l a y s (or s t o r e s ) the s i g n a l . As can be seen some of the p r e s e n t meters combine the sensor and d e t e c t o r i n t o one package. However o t h e r s (mostly f o r use as warning d e v i c e s ) s e p a r a t e the senso r and d e t e c t o r . T y p i c a l l y ( w i t h one e x c e p t i o n ^ ) the l i n k i s a w i r e . A new meter which overcomes the main d i s a d v a n t a g e s ( m e t a l l i c s e n s o r , d i r e c t i o n a l s e n s i t i v i t y , n o i s e s e n s i t i v i t y , e t c . ) i s d e s i r e d . One of the main d i s a d v a n t a g e s , d i r e c t i o n a l s e n s i t i v i t y , can t h e o r e t i c a l l y be overcome. Three of the a v a i l a b l e s e n s o r s can be p l a c e d i n t h r e e o r t h o g o n a l d i r e c t i o n s . However these s e n s o r s i n f l u e n c e each o t h e r (because they d i s t o r t the f i e l d l i n e s ) u n l e s s they are s e p a r a t e d by 2 or 3 s e n s o r d i m e n s i o n s . D i r e c t i o n a l independence can a l s o be overcome by u s i n g a non m e t a l l i c i s o t r o p i c a l l y shaped s e n s o r . The non m e t a l l i c s e n s o r a l s o reduces f l a s h o v e r r i s k and a f f o r d s the p r o s p e c t o f g r e a t l y r e d u c i n g the c o u p l i n g of e l e c t r i c a l n o i s e from the senso r t o the d e t e c t o r . A sens o r o f s y m m e t r i c a l shape w i t h o u t m e t a l p a r t s t h e r e f o r e becomes the main d e s i g n o b j e c t i v e . The need t o measure and q u a n t i f y the s i g n a l from the s e n s o r w i t h a d e t e c t o r which n e c e s s a r i l y employs e l e c t r i c a l components d i c t a t e s another o b j e c t i v e . The senso r and d e t e c t o r must be s e p a r a t e d from each o t h e r by a s i g n a l t r a n s m i s s i o n system which i s immune t o e l e c t r i c a l n o i s e , and which does not a d v e r s e l y 11 a f f e c t the s e n s o r ' s performance ( i e . does not d i s t o r t the f i e l d ) . In p r a c t i c e a s e n s o r which measures the component of the e l e c t r i c f i e l d a l o n g a s p e c i f i e d a x i s and g i v e s a maximum response when the p r e f e r r e d a x i s o f the s e n s o r i s a l i g n e d w i t h the f i e l d i s h i g h l y d e s i r a b l e f o r many a p p l i c a t i o n s . F o r example a c c u r a t e mapping o f e l e c t r i c f i e l d s f o r r e s e a r c h purposes or f o r the manufacture of e l e c t r i c a l equipment. Thus the i d e a l s e n s o r s h o u l d be a v a i l a b l e w i t h s p a t i a l l y i s o t r o p i c or n o n i s o t r o p i c s e n s i t i v i t y . Of the many phenomena t h a t o c c u r i n the presence o f e l e c t r i c f i e l d s , the e m i s s i o n of l i g h t by i n s u l a t i n g s o l i d s and gases i s most p r o m i s i n g . A s e n s o r based on t h i s phenomenon i n v o l v e s no m e t a l , can be made of any shape ( s p h e r i c a l f o r i s o t r o p i c response) and emits a s i g n a l ( e l e c t r o m a g n e t i c r a d i a t i o n ) which can be transmported t o the d e t e c t o r by an i n s u l a t i n g o p t i c a l l i n k . I n i t i a l experiments c a r r i e d out by e x p o s i n g e l e c t r o d e l e s s g l a s s b u l b s f i l l e d w i t h neon t o a l t e r n a t i n g e l e c t r i c f i e l d s r e v e a l e d t h a t the b u l b s emit i n t e n s e p u l s e s o f l i g h t . The number of p u l s e s per second was p r o p o r t i o n a l t o the s t r e n g t h of the a p p l i e d f i e l d w h i l e the p u l s e a m p l i t u d e d i d not seem i m p o r t a n t . The f a c t t h a t the i n f o r m a t i o n i s c o n t a i n e d i n the number o f p u l s e s g i v e s the meter as a whole the advantage of b e i n g a d i g i t a l system, t h e r e f o r e making the d e s i g n of the d e t e c t o r s i m p l e and n o i s e immune. In c o n c l u s i o n , to measure the complex e n v i r o n m e n t a l e l e c t r i c f i e l d s w i t h maximum a c c u r a c y and minimum danger ( t o the person u s i n g i t ) a new meter w i t h a non m e t a l l i c s e n s o r i s r e q u i r e d . The meter can be based on the breakdown of gases i n e l e c t r o d e l e s s g l a s s v e s s e l s . The next s e c t i o n d i s c u s s e s work on e l e c t r o d e l e s s breakdown of gases done by o t h e r s p r i o r to the development of the GEM. 12 2.0 E x i s t i n g Work R e l a t e d t o E l e c t r o d e l e s s Breakdown The breakdown o f gases by e l e c t r i c f i e l d s i n f l u o r e s c e n t l i g h t i n g and neon s i g n s i s a f a m i l i a r s i g h t . However i n a l l these cases metal e l e c t r o d e s a r e i n c o n t a c t w i t h the gas. E l e c t r o d e l e s s breakdown o c c u r s when the e l e c t r o d e s t h a t g e n e r a t e the f i e l d (the h i g h v o l t a g e l i n e s i n t h i s case) a r e s e p a r a t e d from the gas by an i n s u l a t i n g v e s s e l . The p h y s i c s of t h i s type of breakdown i s t o t a l l y d i f f e r e n t , m o s t l y because the e l e c t r o d e s and the gas (which becomes a c o n d u c t i n g plasma a f t e r breakdown) cannot form an e l e c t r i c a l c i r c u i t . I n s t e a d the v e s s e l w a l l s p l a y a major r o l e . Depending on the f r e q u e n c y of the a p p l i e d f i e l d e l e c t r o d e l e s s breakdown takes d i f f e r e n t f o r m s 1 0 . A t low f r e q u e n c i e s ( l e s s than 100Hz) d i s c h a r g e o c c u r s as c u r r e n t p u l s e s almost i n d e p e n d e n t l y i n each h a l f c y c l e . The d i s c h a r g e i s governed by p r i m a r y and secondary p r o c e s s e s as i n D.C. breakdown. The v e s s e l w a l l s p l a y a dominant r o l e i n the d i s c h a r g e . As the f r e q u e n c y i s i n c r e a s e d , p r o d u c t s o f the d i s c h a r g e i n one h a l f c y c l e remain t o a s s i s t the subsequent d i s c h a r g e s , and a d e c r e a s e i n t h r e s h o l d f i e l d ( f i e l d below which the gas w i l l n ot breakdown) r e s u l t s . A t even h i g h e r f r e q u e n c i e s the e l e c t r o n s are swept a s h o r t e r d i s t a n c e i n each h a l f c y c l e : when t h e i r o s c i l l a t i o n a m plitude becomes l e s s than the l e n g t h of the v e s s e l , the w a l l s no l o n g e r p l a y a dominant r o l e , the d i s c h a r g e becomes c o n t i n u o u s and the breakdown t h r e s h o l d d e c r e a s e s . E v e n t u a l l y a t v e r y h i g h f r e q u e n c i e s the e l e c t r o n s s t o p c o l l i d i n g w i t h the gas mo l e c u l e s and the d i s c h a r g e t h r e s h o l d i n c r e a s e s r a p i d l y . The h i g h f r e q u e n c y regime has been s t u d i e d because o f i t s a p p l i c a t i o n t o plasma d i s p l a y p a n e l s . However, the low f r e q u e n c y regime 13 r e c e i v e d a t t e n t i o n f o r a b r i e f p e r i o d d u r i n g the 1950's and then q u i c k l y d i s a p p e a r e d even from many w e l l known t e x t books. In f a c t the p r e l i m i n a r y work on GEM was done w i t h o u t knowledge o f the p u b l i s h e d r e s u l t s . H a r r i e s and von E n g e l 1 1 > 1 2 ' 1 3 d i d most of the work on e l e c t r o d e l e s s breakdown a t 50Hz. One of t h e i r main m o t i v a t i o n s was to u n d e r s t a n d the breakdown of i n s u l a t i o n used i n e l e c t r i c a l equipment ( i n s u l a t i o n d e v e l o p s s m a l l a i r pockets i n which e l e c t r o d e l e s s breakdown o c c u r s and e v e n t u a l l y d e s t r o y s the i n s u l a t i o n ) . They s t u d i e d the breakdown mechanism by o b s e r v i n g the c u r r e n t p u l s e s produced w i t h each d i s c h a r g e . T h i s work l e a d t o the b a s i c e x p l a n a t i o n of why c u r r e n t p u l s e s o c c u r . However they d i d not study the l i g h t e m i s s i o n d u r i n g breakdown, nor d i d they c o r r e l a t e the c u r r e n t or l i g h t p u l s e s t o the a p p l i e d e l e c t r i c f i e l d t o d e r i v e a measure of the f i e l d . T h e i r work was a l s o done o n l y w i t h u n i f o r m s i n g l e phase s i n u s o i d a l f i e l d s i n the l a b o r a t o r y . I t a l s o d i d not c o n c e r n i t s e l f w i t h v e s s e l s of d i f f e r e n t shapes nor w i t h the i n t e r a c t i o n o f on-going d i s c h a r g e s w i t h the v e s s e l w a l l s . The t h e o r y b e h i n d the o p e r a t i o n o f GEM i s d e s c r i b e d i n the n e x t s e c t i o n i n terms of a p h y s i c a l model f o r the s e n s o r . The p h y s i c a l model has i t s s t a r t i n g p o i n t on the work on D.C. breakdown and on H a r r i e s ' and von E n g e l s ' work. 14 0 P h y s i c a l Model 1 I n t r o d u c t i o n The p h y s i c a l model f o r GEM i s a t h e o r e t i c a l a p p r o x i m a t i o n t o the s e n s o r used t o e x p l a i n and u n d e r s t a n d how the s e n s o r works. The model i s based on the l i t e r a t u r e (see S e c t i o n 2) and numerous new experiments c a r r i e d out d u r i n g the development of GEM (see S e c t i o n 5 ) . There a r e many p r a c t i c a l ( e n g i n e e r i n g ) reasons to d e v e l o p a p h y s i c a l model: 1. i t a l l o w s a deeper u n d e r s t a n d i n g o f the b a s i c phenomena and t h e r e f o r e the t h e o r e t i c a l advantages and l i m i t a t i o n s o f the d e v i c e ; 2. i t sheds l i g h t on methods of c o n t r o l l i n g major meter parameters (such as t h r e s h o l d and response to e n v i r o n m e n t a l e f f e c t s ) and 3. i t a l l o w s p r e d i c t i o n o f r e s u l t s which are hard to o b t a i n e x p e r i m e n t a l l y (such as the i n f l u e n c e of h a r m o n i c s ) . T h i s s e c t i o n w i l l d e s c r i b e the b a s i c breakdown phenomena f o r homogeneous l i n e a r f i e l d s f i r s t . R e s u l t s w i l l then be extended to p l a n e o r r o t a t i n g f i e l d s ( i e . more t y p i c a l e n v i r o n m e n t a l f i e l d s ) . P r a c t i c a l c o n s i d e r a t i o n s such as e n v i r o n m e n t a l e f f e c t s , harmonics and meter d e s i g n a r e d e f e r r e d t o S e c t i o n 4. 15 3.2 The Breakdown Mechanism As stated previously the breakdown mechanism at low frequencies i s the same as D.C. The reason for this w i l l become apparent i n Subsection 3.3. Breakdown i n D.C. f i e l d s i s governed by the Townsend 1 4 mechanism which has been i n t e n s i v e l y studied because of the important role i t plays i n the formation of sparks between metal electrodes. Townsend formulated the following theory. Consider N electrons propagating through a gas which i s exposed to an e l e c t r i c f i e l d . The electrons are accelerated by the f i e l d and ionize atoms by c o l l i s i o n s . The number of new electrons produced per unit distance __. i s proportional to the number of electrons. Where , the constant of p r o p o r t i o n a l i t y , i s the f i r s t Townsend c o e f f i c i e n t . Thus the number of new electrons (DN) after a d i s t ance d i s given by dx dN c< N 3x DN = No (e ot d - 1) Where No i s the i n i t i a l number of electrons. Photons emitted by the excited atoms bombard the i n t e r i o r of the containing vessel and produce more electrons which can also contribute to the growth of i o n i z a t i o n within the gas. Let the p r o b a b i l i t y of secondary emission from the walls be % (per electron from the primary a v a l a n c h e ) where & i s known as the second Townsend c o e f f i c i e n t . I f an ava l a n c h e s t a r t s w i t h one e l e c t r o n the number of secondary e l e c t r o n s a f t e r the f i r s t a v a l a n c e w i l l be tf(e*d _ 1 ) I f the p r o c e s s i s c o n t i n u o u s the number of e l e c t r o n s a f t e r many a v a l a n c e s w i l l be 1 + tf(e<*d - 1) + tf2(e*d - 1)2 + . . . . 1 ~ X(e^a - 1) C l e a r l y a l l the gas i n the c o n t a i n e r w i l l be i o n i z e d i f the denominator o f the above e x p r e s s i o n v a n i s h e s , i e . i f T h i s e x p r e s s i o n i s known as the Townsend breakdown c r i t e r i o n . The f o l l o w i n g i m p o r t a n t o b s e r v a t i o n s can be made: 1 . depends on the energy a c q u i r e d by the e l e c t r o n p e r mean f r e e p a t h . The e l e c t r o n must a c q u i r e enough energy t o i o n i z e an atom, o t h e r w i s e the number o f e l e c t r o n s w i l l n o t i n c r e a s e . Thus below a c e r t a i n f i e l d o( tends t o 0 and the Townsend c r i t e r i a cannot be s a t i s f i e d . T h i s f i e l d i s the t h r e s h o l d f i e l d E D f o r av a l a n c h e growth; 17 2. the dependence o f the c r i t e r i o n on V i s l o g a r i t h m i c and t h e r e f o r e weak. Y i s governed by the secondary e m i s s i o n m a t e r i a l ( i e . the v e s s e l w a l l s i n t h i s case) and 3 . the dependance o f the c r i t e r i o n on ot i s l i n e a r , oi i s t h e r e f o r e most i m p o r t a n t f o r t h r e s h o l d c o n t r o l . S i n c e X i s s e t by the secondary e m i t t e r s u r f a c e i t i s c o n s t a n t f o r a g i v e n s e n s o r m a t e r i a l and geometry. Thus oid i s c o n s t a n t , c* i s a f u n c t i o n of the energy g a i n e d per mean f r e e p a t h ( E Q A ) <X = f ( E n A ) A where A i s t h e mean f r e e p a t h and f the a r b i t r a r y f u n c t i o n . Ii f o l l o w s t h a t f ( E 0 X) d = c o n s t a n t A or s i n c e A = c o n s t a n t / p (gas p r e s s u r e ) V 0 = E Q d = 0 (pd) (1) Where 0 i s another f u n c t i o n , p i s the gas p r e s s u r e ( r e l a t e d t o A ) and V Q i s the t h r e s h o l d v o l t a g e . T h i s remarkable r e s u l t i s known as t h e Paschen S c a l i n g Law. What e q u a t i o n (1) says i s i f p d i s h e l d c o n s t a n t and d i s v a r i e d the t h r e s h o l d f i e l d E Q can be c o n t r o l l e d ( E Q v a r i e s i n v e r s e l y w i t h d f o r c o n s t a n t p d ) . T h i s i s one o f the two most i m p o r t a n t r e s u l t s i n the c o n s t r u c t i o n o f low t h r e s h o l d 18 s e n s o r s . The o t h e r c o n s i d e r a t i o n i s the v a l u e of pd. .The shape o f 0 can be deduced from the b a s i c p h y s i c s . A t v e r y low p r e s s u r e t h e r e are al m o s t no m o l e c u l e s and t h e r e f o r e a l a r g e v o l t a g e i s r e q u i r e d t o s t a r t breakdown. At v e r y h i g h p r e s s u r e s t h e r e a r e so many c o l l i s i o n s t h a t a v e r y h i g h v o l t a g e i s r e q u i r e d i n o r d e r f o r the e l e c t r o n s t o g a i n s u f f i c i e n t energy. Thus (? must have a minimum somewhere between these two extremes. A graph o f V Q v e r s u s pd resembles an asymmetric p a r a b o l a . I t i s a t t h i s minimum pd t h a t the sensor must be o p e r a t e d . T y p i c a l l y 0 has a broad minimum near pd 10 t o 60 T o r r mm. T a b l e 1 shows t y p i c a l v a l u e s o f the parameters d i s c u s s e d f o r d i f f e r e n t g a s e s . I n e r t gases are h i g h l y d e s i r a b l e because o f t h e i r l o n g l i f e ( v e r y s t a b l e , no c h e m i c a l d e c o m p o s i t i o n ) . Neon and Argon can be used because of t h e i r low V D . Pyrex i s the b e s t c h o i c e f o r sensor m a t e r i a l because o f i t s a v a i l a b i l i t y , ease o f use, toughness and v a l u e of ^ no t s u b s t a n t i a l l y worse than f o r o t h e r g l a s s e s . 19 gas V 0 (v) pd minimum ( T o r r mm) neon 230 4 argon 220 1 .5 a i r 350 6.0 T a b l e 1 a) Breakdown parameters f o r d i f f e r e n t gases m a t e r i a l p y r e x m e t a l e l e c t r o d e p h o t o m u l t i p l i e r c o a t i n g v e r y low ( l e s s than 1 0 - 3 ) 0.01 0.3 T a b l e 1 b) Breakdown parameter f o r d i f f e r e n t m a t e r i a l s T a b l e 1 Breakdown Parameters 20 3.3 Breakdown i n I n s u l a t i n g V e s s e l s In a normal spark gap the breakdown s t a r t s as d e s c r i b e d i n the p r e v i o u s s u b s e c t i o n and c o n t i n u e s as a steady d i s c h a r g e w i t h the i o n i z e d gas (plasma) f o r m i n g p a r t of the e l e c t r i c a l c i r c u i t . However i n an i n s u l a t i n g v e s s e l the breakdown i s i n t e r r u p t e d by the v e s s e l w a l l s . Thus i n a D.C. f i e l d one breakdown o c c u r s , the charges s e p a r a t e and an i n t e r n -a l f i e l d which c a n c e l s the a p p l i e d f i e l d i s s e t up. I n s t e a d o f a c o n t i n -uous d i s c h a r g e t h e r e i s one s m a l l p u l s e d i s c h a r g e . The f o l l o w i n g d i s c u s s i o n d e v e l o p s the model f o r an a l t e r n a t i n g l i n e a r f i e l d and s p h e r i c a l v e s s e l s w i t h no c o n d u c t i v i t y . C l e a r l y the o r i e n t a t i o n of the v e s s e l w i t h r e s p e c t t o the a p p l i e d f i e l d does not m a t t e r . Suppose t h a t a s p a t i a l l y u n i f o r m f i e l d E^, o f f i x e d d i r e c t i o n i s a p p l i e d and v a r i e s i n time a c c o r d i n g to the e x p r e s s i o n = s i n W t where E^ i s the amplitude of the f i e l d , t i s the time and W the f r e -quency. In what f o l l o w s the magnitude of e l e c t r i c f i e l d s i s denoted by the a p p r o p r i a t e symbol w i t h the v e c t o r s u b s c r i p t o m i t t e d . E l e c t r i c a l breakdown w i l l o c c u r a t h i g h enough f i e l d s t r e n g t h s , and w i l l e v o l v e i n accordance w i t h the c o n v e n t i o n a l Townsend T h e o r y 1 4 . A f t e r breakdown the b u l b i s f i l l e d w i t h p a r t i a l l y i o n i z e d gas i n which i o n s and e l e c t r o n s are s e p a r a t e d by E A . The charge s e p a r a t i o n produces a space charge f i e l d , Eg which c o u n t e r a c t s the e f f e c t o f (see F i g u r e 2 b ) . S i n c e Eg i s produced by the e f f e c t s o f the a p p l i e d f i e l d , Eg i s l e s s than or e q u a l t o Ej^. I f the c o n d u c t i v i t y of the p a r t i a l l y i o n i z e d gas i s l a r g e enough the 21 • ( a ) F i g u r e 2 F i e l d S t r e n g t h s A p p l i c a b l e t o the Bulb a) F i e l d s t r e n g t h s v e r s u s time. E A - s i n u s o i d a l a p p l i e d f i e l d ( v e r t i c a l l i n e s a r e superposed o p t i c a l p u l s e s ) E j - sawtooth i n t e r n a l f i e l d . E g- stepwave space charge f i e l d . " E Q - breakdown f i e l d s t r e n g t h . b) Geometry of E A , _Eg and E j 22 i n t e r n a l f i e l d , E j i s r a p i d l y brought to z e r o 1 1 so t h a t - + Eg I f , however, the degree o f i o n i z a t i o n f o l l o w i n g breakdown i s too low, the t o t a l s e p a r a t i o n of i o n s and e l e c t r o n s w i l l produce a space charge f i e l d , Eg, which i s weaker than E A . Hence a r e s i d u a l i n t e r n a l f i e l d E j w i l l r emain i n the b u l b , and w i l l be i n the same d i r e c t i o n as E^. I t i s c o n v e n i e n t t o d i s t i n g u i s h between these two cases by the terms ' s t r o n g breakdown' (_Ej- = 0 j u s t a f t e r breakdown) and 'weak breakdown' (Ej g r e a t e r than 0 a f t e r breakdown). One would e x p e c t l a r g e a m p l i t u d e o p t i c a l p u l s e s t o o c c u r i n s t r o n g breakdown, and lower amplitude p u l s e s to a r i s e from weak breakdown. The s e p a r a t e d charges r e s i d e , between breakdowns, on the i n n e r s u r f a c e o f the g l a s s s h e l l , where th e y a r e h e l d i n p l a c e by p o l a r i z a t i o n f o r c e s . The charges are t h e r e f o r e immobile, and Eg can o n l y be changed by subsequent breakdowns. The e x t r a charges t r a n s p o r t e d to the g l a s s on such o c c a s i o n s e i t h e r n e u t r a l i z e those a l r e a d y t h e r e , or i n c r e a s e t h e i r c o n c e n t r a t i o n 1 1 - 1 ^ . 3.3.1 S t r o n g Breakdown The e v o l u t i o n of the f i e l d s f o r s t r o n g breakdown i s shown i n F i g u r e l a . The a p p l i e d f i e l d has a s i n u s o i d a l waveform, and the v e r t i c a l l i n e s s i g n i f y the o c c u r r e n c e o f o p t i c a l p u l s e s . Eg, which r e p r e s e n t s the space charge f i e l d i n the b u l b i s the s t e p p e d waveform below the time a x i s . I t i s c o n s t a n t between o p t i c a l p u l s e s i n accordance w i t h the assumed i m m o b i l i t y of charges a d h e r i n g t o the g l a s s . E j , which i s the 23 sum of E^ and Eg i s the saw-tooth wave form. Each time that E-j- reaches the breakdown f i e l d (E Q) of the gas i n the bulb, a breakdown occurs, accompanied by a f l a s h of l i g h t , and E-j- i s reset to zero. The process recurs when E-j- again reaches a value of E Q . Changes i n E-j- between breakdown correspond to changes i n E A . Therefore the change i n E A between o p t i c a l pulses i s simply E 0(see Figure 2). Thus for strong breakdown the average number of pulses (n) per cycle of the applied f i e l d i s given by the expression 1^ n = 2[2E A/E Q] where the square brackets denote the integer part of the r a t i o 2E A/E 0. If the frequency of the applied f i e l d i s f A then the frequency (fg) of the o p t i c a l pulses i s given by the expression f B = 2[2'E A/E 0Jf A (2) Thus f g depends i n a stepwise fashion on E A ( s o l i d l i n e i n Figure 3) A step occurs each time tha E A increases by E^/2, where E^ i s the average breakdown f i e l d of the gas. The step i n the pulse frequency has a size of 2 f A (see Figure 3). Since, i n strong breakdown the conditions ins i d e the bulb are i d e n t i c a l for the production of each successive pulse, one would also expect much less v a r i a t i o n i n pulse amplitude for strong breakdown than for weak breakdown. — H 4 5 K V / m K - ' F i g u r e 3 Frequency ( f g ) of the o p t i c a l p u l s e s v e r s u s a p p l i e d f i e l d a m p l i t u d e ( E A ) f o r 25mm diameter b u l b . a) High p r e s s u r e neon (10 T o r r ) b) Low p r e s s u r e neon (1 T o r r ) 25 3.3.2 Weak Breakdown In weak breakdowns, E-j- i s not r e s e t t o z e r o by a breakdown. Hence the change i n the a p p l i e d f i e l d r e q u i r e d t o make the i n t e r n a l f i e l d (E-j-) e q u a l t o the breakdown f i e l d i s s m a l l e r than E Q . Because o f the s t a t i s t i c a l f l u c t u a t i o n s i n E-j- from one o p t i c a l p u l s e t o the next, i t i s to be e x p e c t e d t h a t the s t e p e x h i b i t e d i n F i g u r e 3 w i l l be smoothed out, and t h a t t o a good a p p r o x i m a t i o n f B w i l l depend l i n e a r l y on E^ ( d o t t e d l i n e i n F i g u r e 3 ) . I t i s a l s o t o be a n t i c i p a t e d t h a t the change i n E A between o p t i c a l p u l s e s w i l l be s m a l l e r , the weaker the p u l s e s . T h i s e f f e c t i s i l l u s t r a t e d i n F i g u r e 4 which shows the o p t i c a l p u l s e s superposed on the a p p l i e d f i e l d - w a v e f o r m f o r weak breakdown. 3.3.3 S t a r t - u p C o n d i t i o n s The minimum f i e l d s t r e n g t h r e q u i r e d t o m a i n t a i n s t e a d y s t a t e o p e r a t i o n o f the b u l b i s E^ = E Q/2 ( e q u a t i o n 2 ) . I t would appear t h a t a f i e l d of s t r e n g t h E^ = E Q/2 i s too s m a l l t o i n t i a t e t h i s regime because i t has been assumed t h a t the gas has a breakdown f i e l d o f E Q . However i f one w a i t s l o n g enough the s t a t i s t i c a l p r o p e r t i e s o f the phenomenon ensure t h a t the f i r s t breakdown o c c u r s even when E^ i s l e s s than E Q . T h i s i s p a r t i c u l a r l y t r u e i n the weak breakdown regime. 3.3.4 The Pennin g E f f e c t The v a l u e o f the breakdown f i e l d E 0 i s governed by the Paschen law. In the case o f sim p l e i n e r t gases such as Ar and Ne the t h r e s h o l d i s s e t O p t i c a l p u l s e s superposed on a p p l i e d f i e l d wave form ( E A ) f o r 25mm diameter n e o n - f i l l e d b u l b a t 1 T o r r (weak breakdown c a s e ) . E i = f i e l d a m p l i t ude. 27 by V Q / d . One of the drawbacks of GEM i s t h a t E Q , f o r a g i v e n gas, can o n l y be d e c r e a s e d by making l a r g e r and l a r g e r s e n s o r s (which i s not d e s i r a b l e ) Thus i t i s i m p o r t a n t to c o n s i d e r ways of l o w e r i n g Vo. The Penning e f f e c t i s such a p o s s i b i l i t y . When a m i x t u r e of gases i s used (say Ar and Ne) and the m a j o r i t y c o n s t i t u e n t has m e t a s t a b l e s t a t e s ( 9 9 % Ne) then the t h r e s h o l d f o r breakdown can be lowered. T h i s happens because the m e t a s t a b l e s r e t a i n the energy put i n t o them and i o n i z e more of the m i n o r i t y gas atoms p r o v i d e d the e x c i t a t i o n energy of the gas m e t a s t a b l e l e v e l exceeds the i o n i z a t i o n energy of the m i n o r i t y component of the gas m i x t u r e . The net e f f e c t i s t h a t more e l e c t r o n s are used f o r i o n i z a t i o n ( i e . c>< i s r a i s e d ) . Other p o s s i b i l i t i e s f o r l o w e r i n g the t h r e s h o l d i n c l u d e doping the i n e r t gas w i t h a s m a l l p e r c e n t a g e of r a d i o a c t i v e gas (say t r i t i u m ) . The r a d i o a c t i v e e m i s s i o n s c o l l i d e w i t h the atoms and p r o v i d e more "seed" e l e c t r o n s from which a v a l a n c h e s can grow. 3 . 3 . 5 F i n i t e C o n d u c t i v i t y E f f e c t s The models p r e s e n t e d above depend on the assumption t h a t the b u l b has z e r o e l e c t r i c a l c o n d u c t i v i t y . I f the c o n d u c t i v i t y i s f i n i t e , then the gas i s exposed t o a f i e l d E T , which i s d i f f e r e n t from E A (see Appendix I * ) . However, the model remains v a l i d p r o v i d e d E A i s r e p l a c e d by E i p . A t low f r e q u e n c i e s s e v e r e s c r e e n i n g o c c u r s and the b u l b ceases to produce o p t i c a l p u l s e s . A t h i g h e r f r e q u e n c i e s the f i e l d ( E T ) which * Appendix I was d e v e l o p e d by F.L. C u r z o n . p e n e t r a t e s the g l a s s i s phase s h i f t e d b u t not a t t e n u a t e d s i g n i f i c a n t l y . T h i s means t h a t graphs of E A v e r s u s time can be c o n v e r t e d i n t o p l o t s o f E T v e r s u s time by s l i g h t l y d i s p l a c i n g the c u r v e s to the l e f t . D r a s t i c i n c r e a s e s i n e l e c t r i c a l c o n d u c t i v i t y can be produced by h i g h h u m i d i t y o: h i g h temperature. T h e r e f o r e i n these c o n d i t i o n s the b u l b may cease to o p e r a t e . 29 3.4 Breakdown gu i d e d by the V e s s e l W a l l s ( l i n e a r f i e l d s ) 1 6 3.4.1 I n t r o d u c t i o n So f a r the d i s c u s s i o n has d e a l t w i t h v e s s e l s whose w a l l s do n o t i n t e r a c t w i t h the e v o l v i n g d i s c h a r g e . The w a l l s o n l y p r o v i d e photo-e l e c t r o n s , s t o p the d i s c h a r g e and t r a p the c h a r g e s . T h i s p i c t u r e i s a c c u r a t e as l o n g as the v e s s e l i s s p h e r i c a l or c y l i n d r i c a l and a l i g n e d w i t h the f i e l d d i r e c t i o n . However i n a t t e m p t i n g t o b u i l d a c y l i n d r i c a l s e n s o r ( f o r those a p p l i c a t i o n s which r e q u i r e the measurement o f e l e c t r i c f i e l d components i e . d i r e c t i o n a l s e n s i t i v i t y ) one must t r e a t the case i n which the d i s c h a r g e i n t e r a c t s w i t h the c o n t a i n e r w a l l s as i t t r a v e l s from one end o f the v e s s e l t o the o t h e r . T h i s i n t e r a c t i o n must o c c u r when the c y l i n d r i c a l v e s s e l i s a t an a n g l e t o the e l e c t r i c f i e l d . A s i m i l a r i n t e r a c t i o n must a l s o o c c u r i n a l l v e s s e l s when complex r o t a t i n g f i e l d s a r e p r e s e n t . In the f o l l o w i n g s u b s e c t i o n s the p h y s i c a l model i s e v o l v e d f o r the ca s e d e p i c t e d i n F i g u r e 5. A c y l i n d r i c a l v e s s e l a t an angle 9 w i t h the a p p l i e d f i e l d . F i r s t two p o s s i b l e p h y s i c a l e f f e c t s t h a t may govern the d i s c h a r g e a r e i n t r o d u c e d . Then each e f f e c t i s d i s c u s s e d i n d e p e n d e n t l y . 3.4.2 P o s s i b l e E f f e c t s F r e e e l e c t r o n s which i n t i a t e d i s c h a r g e s move a l o n g e l e c t r i c f i e l d l i n e s . As seen i n F i g u r e 5 these l i n e s are v e r t i c a l ( d i r e c t i o n o f E f t) and thus one would e x p e c t the e l e c t r o n s t o move i n a v e r t i c a l d i r e c t i o n 30 F i g u r e 5 Geometry of a p p l i e d f i e l d and breakdown d i s c h a r g e . E A = a p p l i e d f i e l d ; E p = f i e l d a l o n g t u b e - a x i s ; E N = f i e l d normal t o t u b e - a x i s ; 9 = a n g l e between tube a x i s and v e r t i c a l ( z ) . Shaded r e g i o n - breakdown d i s c h a r g e w i t h i n t e r n a l f i e l d a l o n g z. 31 u n t i l they h i t the v e s s e l w a l l s . I f the e l e c t r o n s s t i c k t o the w a l l as soon as they h i t i t then t h e r e w i l l be no breakdown, a t l e a s t i n the case o f v e r y narrow t u b e s . However, H a r r i e s , based on h i s work, b e l i e v e s t h a t many c o l l i s i o n s are r e q u i r e d b e f o r e e l e c t r o n s w i l l s t i c k . Thus one p o s s i b l e mechanism i s f o r the tube w a l l s t o " g uide" the d i s c h a r g e from one end of the tube (C i n F i g u r e 5) t o the o t h e r ( A ) . Another way i n which the e l e c t r o n s may t r a v e l from one end o f the tube to the o t h e r i s i f the i n t e r n a l f i e l d ( i n s i d e the v e s s e l ) i s p a r a l l e l t o the tube a x i s . The a p p l i e d f i e l d , E A , has two components (see F i g u r e 5 ) : E N , normal to the tube and Ep, p a r a l l e l t o the tube. Suppose t h a t E^ i s s c r e e n e d by some mechanism but E p i s not, then the d i s c h a r g e w i l l p r o c e e d a l o n g Ep. In c o n c l u s i o n , i f a d i s c h a r g e i s t o proceed from one end of the tube t o the o t h e r e i t h e r the normal component o f the a p p l i e d f i e l d i s s c r e e n e d or the tube w a l l s guide the d i s c h a r g e . The next two s u b s e c t i o n s d e s c r i b e t h e s e models. 3.4.2.1 F i n i t e C o n d u c t i v i t y S c r e e n i n g The s c r e e n i n g due t o the f i n i t e c o n d u c t i v i t y of the g l a s s v a r i e s i n v e r s e l y p r o p o r t i o n a l ( f o r a g i v e n g l a s s s u r f a c e c o n d i t i o n ) w i t h the v e s s e l d i m e n s i o n . A s m a l l v e s s e l w i l l s c r e e n the f i e l d more than a l a r g e v e s s e l . Thus i t may be p o s s i b l e i n a narrow tube f o r t o be s c r e e n e d w h i l e Ep i s n o t . I f t h i s i s the case then the gas w i l l behave as i f i t were immersed i n an a x i a l f i e l d o f s t r e n g t h Ep = E A cos 9 32 and w i l l y i e l d a c o r r e s p o n d i n g v a l u e o f breakdown f r e q u e n c y ( i e . e q u a t i o n 2 w i t h r e p l a c e d by E p ) . C l e a r l y when 9 i s 90° t h e r e are no p u l s e s . 3 . 4.2.2 W a l l C o l l i s i o n Guidance Now assume t h a t f i n i t e c o n d u c t i v i t y i s not r e s p o n s i b l e f o r the e f f e c t . Furthermore assume t h a t e l e c t r o n s a r e a c c e l e r a t e d towards the v e s s e l w a l l s bounce o f f and are a g a i n a c c e l e r a t e d . I f d u r i n g the w a l l c o l l i s i o n a l m o s t no energy i s l o s t then the e l e c t r o n s w i l l be guided t o the o t h e r end of the tube. The e f f e c t i v e energy g a i n e d by then w i l l be E A L cos 9 where L i s the l e n g t h o f the tube (assuming the w i d t h d i r e c t i o n i s v e r y s m a l l ) . T h i s e x p r e s s i o n i s s i m p l y the p o t e n t i a l d i f f e r e n c e between the ends o f an i n c l i n e d t ube. Thus an i n c l i n e d tube i s e q u i v a l e n t t o a tube a l i g n e d w i t h the f i e l d o f l e n g t h L e (assuming the tube i s i n f i n i t e l y t h i n ) L e = L cos 9 (3) E x p e r i m e n t a l r e s u l t s p r e s e n t e d i n S e c t i o n 5 show t h a t t h i s model i s c o r r e c t . Thus the f r e q u e n c y of breakdown i n e l e c t r o d e l e s s tubes i s governed by the p o t e n t i a l d i f f e r e n c e between the ends o f the tube, p r o v i d e d the d i s c h a r g e i s gu i d e d by the tube w a l l s . A t h i n c y l i n d r i c a l tube t h e r e f o r e measures the component o f the e l e c t r i c f i e l d a l o n g i t s a x i s ( i e . produces a maximum r e a d i n g when a l i g n e d w i t h the f i e l d ) . 33 3.4.2.3 E x t e n s i o n t o C y l i n d e r s o f F i n i t e Width I f the c y l i n d r i c a l tube has a w i d t h which i s a s i g n i f i c a n t f r a c t i o n o f i t s l e n g t h , then the model i s c o m p l i c a t e d . B a s i c a l l y , the e f f e c t i v e l e n g t h i s no l o n g e r L cos 6 but i n c l u d e s a term p r o p o r t i o n a l t o the w i d t h o f the tube. Furthermore the maximum r e a d i n g i s most l i k e l y a t a s m a l l a n g l e from a l i g n m e n t w i t h the f i e l d ( i e . a l o n g the l a r g e s t path or d i a g o n a l of the t u b e ) . " F a t " tubes a r e not t r e a t e d i n any more d e t a i l because they do not have any obvious a p p l i c a t i o n . 34 3.5 Breakdown In P l a n a r R o t a t i n g F i e l d s 1 ^ 3.5.1 I n t r o d u c t i o n The p h y s i c a l model d e v e l o p e d so f a r has c o n s i d e r e d o n l y s p a t i a l l y u n i f o r m e l e c t r i c f i e l d s of f i x e d d i r e c t i o n ( l i n e a r f i e l d s ) . The model, however, i s a p p l i c a b l e t o non u n i f o r m f i e l d s p r o v i d e d the sens o r dimensions a r e s m a l l e r than the l e n g t h s c a l e o f the non u n i f o r m i t y . T h i s i s u s u a l l y the c a s e . E n v i r o n m e n t a l e l e c t r i c f i e l d s are t y p i c a l l y p l a n a r r o t a t i n g ( i n an e l l i p t i c a l envelope, see S e c t i o n 1.1) and thus the p h y s i c a l model must be extended. However, i t s h o u l d be mentioned t h a t i n many a p p l i c a t i o n s the e l e c t r i c f i e l d meter i s p l a c e d near a l a r g e ' c o n d u c t i n g o b j e c t ( i e . p e r s o n , c r a n e , e t c . ) where to a good a p p r o x i m a t i o n , the f i e l d i s i n a f i x e d d i r e c t i o n ( i e . p e r p e n d i c u l a r t o the o b j e c t s s u r f a c e ) and u n i f o r m over a s c a l e a few times s m a l l e r than the o b j e c t s r a d i u s o f c u r v a t u r e . The f o l l o w i n g s u b s e c t i o n s w i l l d i s c u s s the model f o r s p h e r i c a l and c y l i n d r i c a l v e s s e l s i n p l a n e c i r c u l a r l y p o l a r i z e d f i e l d s . The r e s u l t s w i l l then be extended t o p l a n e e l l i p t i c a l l y p o l a r i z e d f i e l d s . 3.5.2 Breakdown i n C i r c u l a r l y P o l a r i z e d F i e l d s A c i r c u l a r l y p o l a r i z e d f i e l d has a c o n s t a n t magnitude E A but r o t a t e s a t a c o n s t a n t r a t e (60 Hz) i n the p l a n e o f p o l a r i z a t i o n . Any p r o j e c t i o n o f t h i s f i e l d i s the f a m i l i a r s p a t i a l l y u n i f o r m f i e l d i n a f i x e d d i r e c t i o n . 35 3.5.2.1 C y l i n d r i c a l Tubes The e x t e n s i o n o f the p h y s i c a l model f o r c y l i n d r i c a l tubes t o p l a n a r r o t a t i n g f i e l d s i s s i m p l e . C y l i n d r i c a l tubes measure m a i n l y the component of the e l e c t r i c f i e l d a l o n g the tube a x i s (see S e c t i o n 2.4.2.2) i r r e s p e c t i v e of whether the f i e l d i s p l a n a r r o t a t i n g or not. Due t o the f i n i t e a s p e c t r a t i o o f the c y l i n d e r , the d i r e c t i o n o f the measured component i s i n e r r o r by r o u g h l y + 2 ° f o r a t y p i c a l tube ( l e n g t h , 5 5 mm, di a m e t e r 4 mm). The c y l i n d e r responds o n l y t o E (the component of the f i e l d a l o n g the t u b e ) , i f the f o l l o w i n g c o n d i t i o n i s s a t i s f i e d E N < ( L / D ) E Q where i s the f i e l d component p e r p e n d i c u l a r t o the c y l i n d e r a x i s , L i s l e n g t h o f the c y l i n d e r and D i t s d i a m e t e r . T h i s c o n d i t i o n means t h a t EJQ i s n ot s t r o n g enough t o cause a breakdown a c r o s s the tube. F o r a t y p i c a l c y l i n d e r (L = 50 mm, D = 4 mm), E^ can be twe l v e times as l a r g e as the a x i a l breakdown f i e l d b e f o r e i t i n f l u e n c e s the response of the b u l b . I f E N exceeds LE 0/D, then i t i s c o n v e n i e n t t o d e f i n e a r e j e c t i o n r a t i o r , by the e x p r e s s i o n r = 1 - E p / E N where E p and E N a r e the r e s p e c t i v e p a r a l l e l and p e r p e n d i c u l a r f i e l d components r e q u i r e d t o produce a g i v e n f B . i t i s r e a d i l y shown t h a t 36 r = 1 - (D/L), which f o r a t y p i c a l c y l i n d r i c a l b u l b , has the v a l u e , 0.9. Thus i n a c i r c u l a r l y p o l a r i z e d f i e l d o f magnitude ( E A < L/D E Q ) the c y l i n d r i c a l tube measures E A as i n e q u a t i o n 2, where E Q i s governed by the f u l l l e n g t h (L) of the c y l i n d e r . The measurement i s the same i r r e s p e c t i v e of o r i e n t a t i o n . 3.5.2.2 S p h e r i c a l Bulbs F o r s p h e r i c a l b u l b s the e x t e n s i o n of the p h y s i c a l model i s more complex. Assuming the b a s i c phenomena ( S e c t i o n 2.3) remains the same and t h a t the i n t e r n a l f i e l d E B i n the b u l b caused by the charge s e p a r a t i o n i s u n i f o r m ( t h i s assumption w i l l be d i s c u s s e d l a t e r ) , then a new breakdown s t i l l o c c u r s e v e r y time the a p p l i e d f i e l d changes by E Q , however the a d d i t i o n of the f i e l d s i s now v e c t o r i a l . For breakdown one must have I - A + _ B I = E 0 where the s t r a i g h t b r a c k e t s i n d i c i a t e s the magnitude of the v e c t o r i a l sum. In the s p e c i a l case where i s c i r c u l a r l y p o l a r i z e d and E_g i s u n i f o r m i t i s e a s i l y seen from F i g u r e 6 t h a t f o r the f i e l d t o change by E Q , E A must r o t a t e through an a n g l e 9 g i v e n by 2 2 E Q = E A [(1 - cos 9 ) 2 + s i n 9 2 ] or 2 c o s 9 = 1 - JL E o 2 2 E A 37 F i g u r e 6 Geometry of R o t a t i n g A p p l i e d F i e l d . E A ( 1 ) - a p p l i e d f i e l d a t 1 s t breakdown. E R ( 1 ) - " w a l l charge" f i e l d , 1 s t breakdown. E a ( 2 ) - a p p l i e d f i e l d a t 2nd breakdown. E n = breakdown f i e l d 38 Thus e q u a t i o n 2 which e x p r e s s e d the f r e q u e n c y of breakdown becomes f B = f A 2 J T = f A 2 TT ( 4 ) 9 cos-1/1 - 1 Eo^ Y " I 2 E A 2 ) Two i m p o r t a n t o b s e r v a t i o n s can be made c o n c e r n i n g the c a l i b r a t i o n curve ( f B v e r s u s E A ) : 1 . the s t e p s a s s o c i a t e d w i t h s t r o n g breakdown have d i s a p p e a r e d . T h i s e f f e c t can be u n d e r s t o o d i n t u i t i v e l y . The s t e p s i n the p r e v i o u s case were due t o the f a c t t h a t the change i n changes i n s i g n . In one c y c l e E^ i n c r e a s e s and then d e c r e a s e s . S t e p s o c c u r because any i n c r e a s e i n E A of l e s s than E Q f o l l o w e d by a d e c r e a s e w i l l not l e a d t o a p u l s e ( i e . near the peaks of the s i n e wave). In t h i s case E A i s c o n s t a n t and changes i n E^ due to r o t a t i o n are always of the same s i g n and t h e r e f o r e t h e r e a r e no d i s c o n t i n u i t i e s ( i n t e g e r b r a c k e t s ) i n e q u a t i o n 4 . 2 . The number of p u l s e s per second f B f o r a g i v e n f i e l d a m p l i t u d e E A i s i n c r e a s e d by r o t a t i n g the f i e l d e x c e p t a t t h r e s h o l d . T h i s i s a p p a r e n t from e q u a t i o n 4 . A t t h r e s h o l d , E A = Eo , 2 the number of p u l s e s i s f A as i s a l s o o b t a i n e d w i t h e q u a t i o n 2 . However, f o r E A l a r g e r than t h r e s h o l d e q u a t i o n 4 always g i v e s - a b i g g e r v a l u e . For example f o r E A much l a r g e r than E Q ( w e l l above t h r e s h o l d ) 9 approaches E Q / E A and e q u a t i o n 4 becomes 39 f A = 1 7L 2__A 2 E Q Thus ( n e g l e c t i n g the p r e s e n c e of s t e p s ) the number of p u l s e s i s enchanced by "TT/2 (1/4 the c i r c u m f e r e n c e of the c i r c l e ) . The a c t u a l enhancement f a c t o r v a r i e s s l o w l y from 1 t o TT/2 as E A i s i n c r e a s e d . Now c o n s i d e r the case of Eg not u n i f o r m . C l e a r l y t h i s i s the case i n r e a l l i f e s i n c e Eg i s formed by l o c a l i z e d charges a t the ends of the b u l b . However i n the case where and Eg a r e a l i g n e d the non u n i f o r m i t y o f Eg s h o u l d have l i t t l e e f f e c t on the p h y s i c a l model. T h i s i s why the non u n i f o r m i t y of Eg was n e g l e c t e d up to t h i s s e c t i o n . When Eg i s not u n i f o r m the c o n d i t i o n f o r breakdown becomes where the a n g u l a r b r a c k e t s i n d i c a t e some form of s p a t i a l average of the v e c t o r sum over the volume of the b u l b . The average i s r e q u i r e d because the breakdown c o n d i t i o n depends on the f i e l d geometry ( s i n c e Eg i s not u n i f o r m ) . E q u a t i o n 5 i s v e r y complex t o s o l v e and w i l l not be t r e a t e d f u r t h e r h e r e . Q u a l i t i v e l y two o b s e r v a t i o n s can be made 1. f o r l a r g e a p p l i e d f i e l d ^E A much g r e a t e r than E ^ the non u n i f o r m i t y o f Eg can be n e g l e c t e d and p r e v i o u s r e s u l t s a p p l y . T h i s i s because i n t h i s regime E A and Eg are a p p r o x i m a t e l y a l i g n e d ; 2. f o r E A near t h r e s h o l d the non u n i f o r m i t y of Eg can p l a y a s i g n i f i c a n t r o l e and must change the count r a t e g i v e n by e q u a t i o n 4. 40 3.5.3 E x t e n s i o n t o E l l i p t i c a l l y P o l a r i z e d F i e l d s E l l i p t i c a l l y p o l a r i z e d f i e l d s are l i k e c i r c u l a r l y p o l a r i z e d f i e l d s e x c e p t t h a t as E^ r o t a t e s i t changes magnitude. A t one extreme ( c o n s t a n t E f t) these f i e l d s reduce t o the c i r c u l a r l y p o l a r i z e d f i e l d s , and the other extreme ( v e r y narrow e l l i p s e ) they reduce to the u n i f o r m f i e l d s i n a s i n g l e d i r e c t i o n . Thus the e f f e c t s expected f o r e l l i p t i c a l l y p o l a r i z e d f i e l d s l i e somewhere i n between. In t h i s s e c t i o n the symbol E A w i l l be used t o denote the semimajor a x i s o f the e l l i p s e . T h i s non s t a n d a r d use of E A i s d e s i r a b l e because the e q u a t i o n s f o r the l i n e a r f i e l d s case c a r r y over t o t h i s e l l i p t i c a l c a s e . In the case of c y l i n d r i c a l tubes t h e r e i s no change. The tubes measure m a i n l y the component of the f i e l d and w i l l thus g i v e a maximum r e a d i n g when a l i g n e d w i t h the semi major a x i s o f the e l l i p s e . In the case of s p h e r i c a l b u l b s c i r c u l a r l y p o l a r i z e d f i e l d s cause two changes t o the p h y s i c a l model: enchancement i n the number of p u l s e s per second f o r a g i v e n f i e l d magnitude and smoothing o u t of the s t e p s . These e f f e c t s a l s o o c c u r i n e l l i p t i c a l l y p o l a r i z e d f i e l d s . The d e r i v a t i o n o f t h e p u l s e f r e q u e n c y f Q i n e l l i p t i c a l l y p o l a r i z e d f i e l d s proceeds i n a s i m i l a r manner as the d e r i v a t i o n o f e q u a t i o n 4 (assuming E B i s uniform) and i s t r e a t e d i n d e t a i l i n Appendix I I * . By analogy the r e s u l t y i e l d s two e f f e c t s 1. an enhancement** i n the p u l s e f r e q u e n c y r a n g i n g from 1 a t * Appendix I I was d e v e l o p e d by F.L. Curzon ** The enhancement i s d e f i n e d as the r a t i o o f f B i n an e l l i p t i c a l f i e l d of semimajor a x i s E f t t o f B i n a l i n e a r f i e l d , E A 41 t h r e s h o l d t o 1/4 the c i r c u m f e r e n c e o f the e l l i p s e d i v i d e d by E A a t f i e l d s h i g h above t h r e s h o l d i e . e = E G / E A and f g = f& c i r c u m f e r e n c e e 2 . A d i s a p p e a r a n c e o f the s t e p s o f f B vs E A a t f i e l d s h i g h above t h r e s h o l d . In the c i r c u l a r l y p o l a r i z e d f i e l d s the s t e p s d i s a p p e a r because the change i n E^ i s always o f the same s i g n . T h i s i s s t i l l the case i n e l l i p t i c a l l y p o l a r i z e d f i e l d s i f the semiminor a x i s f i e l d o f the e l l i p s e i s l a r g e r than breakdown f i e l d . O therwise s t e p s w i l l s t i l l be v i s i b l e . Thus v e r y q u a l i t a t i v e l y the b u l b behaves as i n a u n i f o r m f i e l d when E Q i s l a r g e r than the semi minor a x i s and as i n a c i r c u l a r l y p o l a r i z e d f i e l d ( e x c e p t t h a t the enhancement i s 1/4 the c i r c u m f e r e n c e o f the e l l i p s e d i v i d e d by E A i e . l e s s than TT/2) when the semi minor a x i s f i e l d i s g r e a t e r than E Q . Non u n i f o r m e f f e c t s of Eg a l s o change the count r a t e f o r f i e l d s near t h r e s h o l d . In c o n c l u s i o n : 1. C y l i n d r i c a l b u l b s measure the component o f a p l a n a r r o t a t i n g f i e l d s a l o n g the c y l i n d e r a x i s . As such they can be used, f u l l y t o c h a r a c t e r i z e the f i e l d i n space and time p r o v i d e d one o r i e n t s the b u l b i n d i f f e r e n t d i r e c t i o n s and maps the f i e l d . 42 S p h e r i c a l b u l b s measure an "average" o f the p l a n a r r o t a t i n g f i e l d . T h i s average i s h e a v i l y dependent on the f i e l d geometry and magnitude. Because of t h i s and s p a t i a l l y non u n i f o r m Eg e f f e c t s the b u l b must be  c a l i b r a t e d f o r any g i v e n f i e l d geometry i f a c c u r a t e measurements a r e t o be made ( t h i s i s a l s o the case w i t h e x i s t i n g m e t e r s ) . On the o t h e r hand the measurement i s independent o f the o r i e n t a t i o n o f the b u l b w i t h r e s p e c t t o the f i e l d . 43 3.6 Summary When an e l e c t r o d e l e s s gas f i l l e d b u l b i s immersed i n a s p a t i a l l y u n i f o r m f i e l d of f i x e d d i r e c t i o n and magnitude ( E A ) l i g h t p u l s e s are emmited w i t h a f r e q u e n c y f B = 2[2 E A / E Q ] f A (2) where f A i s the f r e q u e n c y o f the a p p l i e d f i e l d and E Q i s the breakdown f i e l d o f the gas. E Q i s g i v e n by the Paschen Law E Q = 0 (pd) (1 ) d where i s a f u n c t i o n w i t h a broad minimum, p i s the gas p r e s s u r e and d the dimension o f the v e s s e l (the diameter f o r a sphere and the l e n g t h f o r a c y l i n d e r ) . E 0 can be c o n t r o l l e d by the gas type and the dimension o f the v e s s e l . A c y l i n d r i c a l tube immersed a t an an g l e 9 t o the f i e l d s t i l l obeys (2) however the e f f e c t i v e f i e l d i s E A cos 9 n o t E A . In p l a n a r r o t a t i n g f i e l d s e q u a t i o n 2 must be m o d i f i e d . For c y l i n d r i c a l tubes E A must be r e p l a c e d by the component o f the f i e l d a l o n g the tube a x i s . For s p h e r i c a l b u l b s the count r a t e i s always l a r g e r than or e q u a l t o f B g i v e n by e q u a t i o n 2 . The enhancement a t v e r y l a r g e f i e l d s i s e q u a l t o 1/4 o f the c i r c u m f e r e n c e o f the e l l i p s e d i v i d e d by E A . A l s o a t h i g h f i e l d s (or lower f i e l d s f o r f a t e l l i p s e s ) the s t e p s ( i n t e g e r b r a c k e t s i n e q u a t i o n 4) d i s a p p e a r . 44 The p h y s i c a l m o d e l p r e s e n t e d s o f a r h a s d e a l t w i t h t h e b a s i c i d e a l p h y s i c s o f t h e s e n s o r i n a c o n t r o l l e d l a b o r a t o r y e n v i r o n m e n t . The n e x t s e c t i o n d e s c r i b e s t h e f u l l m e t e r ( s e n s o r and d e t e c t o r ) a n d d i s c u s s e s e n v i r o n m e n t a l e f f e c t s e s p e c i a l l y on t h e s e n s o r . E x p e r i m e n t s c o n f i r m i n g t h e p r e d i c t i o n s i n t h i s s e c t i o n a n d t h e f o l l o w i n g a r e d i s c u s s e d i n S e c t i o n 5 . 45 4.0 E l e c t r i c F i e l d Meter D e s i g n 4.1 I n t r o d u c t i o n T h i s s e c t i o n d e s c r i b e s a complete meter f o r measuring low f r e q u e n c y e l e c t r i c f i e l d s , s p e c i f i c a l l y t y p i c a l f i e l d s e n c o untered under h i g h v o l t a g e t r a n s m i s s i o n l i n e s and i n s u b s t a t i o n s . The meter i s based on the a p p l i c a t i o n o f the breakdown o f gases i n d i e l e c t r i c e n v e l o p e s . A g l a s s b u l b f i l l e d w i t h a gas (the s e n s o r ) emits p u l s e s of l i g h t when exposed to the e l e c t r i c f i e l d . The number of p u l s e s per second i s a measure of the e l e c t r i c f i e l d . S i n c e the d e v i c e depends on e l e c t r i c a l breakdown o f a gas, i t i s r e f e r r e d to below by the acronym GEM (gaseous e l e c t r i c f i e l d m e t e r ) . The s e n s o r has the f o l l o w i n g i m p o r t a n t p r o p e r t i e s . I t c o n t a i n s no metal p a r t s and can be made to have an i s o t r o p i c or d i r e c t i o n a l s e n s i t i v i t y . I t p r o v i d e s i n f o r m a t i o n about the f i e l d s t r e n g t h by e m i t t i n g l i g h t which i s e a s i l y t r a n s p o r t e d to a d e t e c t o r w i t h o u t the use of m e t a l . S i n c e the i n f o r m a t i o n i s c o n t a i n e d i n the number of p u l s e s e m i t t e d r a t h e r than i n t h e i r h e i g h t the o u t p u t i s i d e a l l y s u i t e d to d i g i t a l p r o c e s s i n g . The above c h a r a c t e r i s t i c s c o n f e r the f o l l o w i n g b e n e f i t s on t h e f i e l d measuring meter. The meter i s s m a l l , rugged and r e a d i l y p o r t a b l e . I t i s a c c u r a t e ( b e t t e r than 5%) and remains c a l i b r a t e d f o r p e r i o d s o f s e v e r a l months. Due t o the o u t p u t of l i g h t p u l s e s from the s e n s o r , the meter ( d e t e c t o r + s e n s o r ) i s e a s i l y s h i e l d e d and o p e r a t e s w e l l i n n o i s y e l e c t r i c a l e n v ironments. I t i s a l s o s a f e t o use and has good time r e s o l u t i o n (~1 s e c ) . 46 In what f o l l o w s , the GEM and i t s p a r t s are d e s c r i b e d . The d e s c r i p t i o n c o v e r s d e s i g n a s p e c t s as w e l l as p r a c t i c a l c o n s i d e r a t i o n s f o r meter o p e r a t i o n i n e n v i r o n m e n t a l e l e c t r i c f i e l d s . 4.2 F u n c t i o n a l D e s c r i p t i o n o f the GEM 1 9 The GEM i s composed of t h r e e p a r t s (see F i g u r e 7 ) : the senso r (lower l e f t i n F i g u r e 7 ) , which senses the e l e c t r i c f i e l d and gen e r a t e s p u l s e s of l i g h t whose f r e q u e n c y i s p r o p o r t i o n a l t o the f i e l d ' s magnitude; the o p t i c a l f i b r e (upper p a r t i n F i g u r e 7 ) , which t r a n s m i t s the p u l s e s o f l i g h t t o the d e t e c t o r , the d e t e c t o r (lower r i g h t i n F i g u r e 7 ) , which c o u n t s the p u l s e s of l i g h t and gen e r a t e s a d i g i t a l r e a d i n g p r o p o r t i o n a l to the e l e c t r i c f i e l d magnitude. The o u t p u t r e a d i n g can be e a s i l y d i s p l a y e d t o the u s e r s or s t o r e d f o r l a t e r r e t r i e v a l . The use of a l o n g o p t i c a l f i b r e ( a t l e a s t 2 m^) p e r m i t s e l e c t r i c a l f i e l d s t o be measured u n d i s t o r t e d by the pres e n c e o f the pe r s o n making the o b s e r v a t i o n . A compact v e r s i o n o f the GEM can be made by u s i n g a s h o r t f i b r e , or by mounting the b u l b d i r e c t l y on the d e t e c t o r . However w i t h such a system the f i e l d i s d i s t u r b e d by the user and by the presence of the d e t e c t o r . The f o l l o w i n g s u b s e c t i o n s d e s c r i b e each of the t h r e e p a r t s i n d e t a i l . 4.2.1 The Sensor The s e n s o r i s a gas f i l l e d g l a s s b u l b e n c l o s e d i n a p r o t e c t i v e d i e l e c t r i c c a s e . F i g u r e 7 P h o t o s h o w i n g p r o t o t y p e o f i n s t a n t a n e o u s d i s p l a y u n i t (66% o f r e a l s i z e ) . 48 4.2.1.1 The B u l b The b u l b i s most e a s i l y made of pyrex (see S e c t i o n 3.2) and f i l l e d w i t h neon to a t y p i c a l p r e s s u r e o f 1 t o r r f o r a b u l b o f 25 mm d i a m e t e r ( i e . Paschen minimum f o r neon). The shape of the b u l b d i c t a t e s i t s d i r e c t i o n a l s e n s i t i v i t y . A s p h e r i c a l b u l b (see F i g u r e 8) i s i s o t r o p i c i . e . , i t g i v e s the same r e a d i n g i r r e s p e c t i v e o f the f i e l d d i r e c t i o n . A narrow c y l i n d r i c a l b u l b , on the o t h e r hand, g i v e s a maximum r e a d i n g when the f i e l d d i r e c t i o n i s a l i g n e d w i t h the a x i s of the c y l i n d e r . The b u l b ' s e l e c t r i c f i e l d t h r e s h o l d i s a f u n c t i o n of the p r e s s u r e and the l e n g t h s c a l e ( L ) . F o r a s p h e r i c a l b u l b L becomes the diameter w h i l e f o r a c y l i n d r i c a l b u l b , L becomes the l e n g t h of the c y l i n d e r a x i s . For a f i x e d p r o d u c t of p r e s s u r e and l e n g t h s c a l e a t the Paschen minimum the t h r e s h o l d f i e l d s t r e n g t h i s i n v e r s e l y p r o p o r t i o n a l t o L. For example, a 25 mm b u l b f i l l e d t o 1 T o r r has a t h r e s h o l d of 15 kV/m w h i l e a 38 mm b u l b f i l l e d t o 0.66 T o r r has a t h r e s h o l d o f 10 kV/m. In t h e weak breakdown regime the o u t p u t p u l s e f r e q u e n c y i s d i r e c t l y p r o p o r t i o n a l t o the e l e c t r i c f i e l d magnitude over broad ranges (10 t o 60 kV/m) f o r low p r e s s u r e s ( 1 T o r r ) . The s e n s o r has a s l i g h t s t a r t u p h y s t e r i s i s . A f i e l d g r e a t e r than t h r e s h o l d ( t y p i c a l l y 5% more (see S e c t i o n 3.3)) i s r e q u i r e d to s t a r t i t . However, once s t a r t e d , a r e l i a b l e r e a d i n g can be o b t a i n e d i n f i e l d s e q u a l or h i g h e r than t h r e s h o l d . 4.2.2.1.1 Bulb Manufacture To f i l l the b u l b s w i t h gas they are pumped down on a copper vacuum system by a 100 mm a p e r t u r e d i f f u s i o n pump equipped w i t h a l i q u i d F i g u r e 8 P h o t o s h o w i n g t y p i c a l b u l b s . 50 n i t r o g e n t r a p ( B a l z e r ' s D i f f 170, pumping speed 170 l i t r e s / s e c ) . The d i f f u s i o n pump i s backed by a S e r g e n t Welch r o t a r y o i l pump (Model Duoseal 1402, pumping speed 160 l i t r e s / m i n ) . The complete system has a base p r e s s u r e o f l e s s than 5 x 1 0 ~ 6 T o r r . A f t e r pumping f o r 24 hours, and b a k i n g a t 280°C f o r 4 hours, the b u l b s are f i l l e d t o a s u i t a b l e p r e s s u r e w i t h r e a g e n t grade gases, s e a l e d , and then baked a g a i n a t 280°C f o r a n o t h e r 4 h o u r s . The second b a k i n g improves the performance o f the b u l b s , but i t i s not y e t known why the improvement o c c u r s . Most of the b u l b s have been made u s i n g neon (99.999% pure) and argon (99.9995% pure) o b t a i n e d from the Matheson Co. In the neon, the c h i e f i m p u r i t i e s a r e h e l i u m ( 8ppm) and n i t r o g e n ( 2ppm). In argon some i m p u r i t i e s a r e p r e s e n t a t the l e v e l o f 0.1 ppm. Some b u l b s have a l s o been f i l l e d w i t h c o m m e r c i a l l y a v a i l a b l e d r y a i r or n i t r o g e n . The b u l b s of the d e s i r e d d i a m e t e r , d, are f i l l e d t o a p r e s s u r e , p, such t h a t pd i s a t t h e Paschen minimum (determined e x p e r i m e n t a l l y ) . 4.2.1.2 The Ho l d e r The b u l b i s p l a c e d i n a p r o t e c t i v e d i e l e c t r i c case, the h o l d e r . The h o l d e r s e r v e s t h r e e f u n c t i o n s : 1 . t o p r o t e c t the b u l b from e n v i r o n m e n t a l c o n d i t i o n s and h a n d l i n g ; 2. t o h o l d the o p t i c a l f i b e r c l o s e t o the b u l b and a l l o w the c o u p l i n g o f l i g h t p u l s e s t o the f i b e r and 3. t o p r e v e n t most of the ambient l i g h t from e n t e r i n g the f i b e r . The l a s t two c r i t e r i a can be met by most p l a s t i c s . However the f i r s t c r i t e r i o n i s more s t r i n g e n t . G l a s s i n c r e a s e s i t s c o n d u c t i v i t y by 51 o r d e r s of magnitude when hand l e d or exposed t o l a r g e r e l a t i v e h u m i d i t y 2 0 because mo b i l e a l k a l i i o n s can d i s s o l v e i n adsorbed water. Thus f o r r e l i a b l e o p e r a t i o n the b u l b must be e n c l o s e d i n a c o n t a i n e r whose c o n d u c t i v i t y i s not i n f l u e n c e d by these e f f e c t s . T e f l o n ( p o l y t e t r a f l u o r e t h y l e n e ) which i s h y d r o p h o b i c i s the i d e a l m a t e r i a l and has worked w e l l i n v e r y humid environments. For more t y p i c a l c o n d i t i o n s ( h u m i d i t y under 70%) p l e x i g l a s s ( p o l y m e t h y l a c r y l a t e ) i s adequate. With these h o l d e r s b u l b s can be dropped from 2 m onto c o n c r e t e f l o o r s w i t h no damage. 4.2.1.2.1 H o l d e r Manufacture F o r r e s e a r c h and t e s t purposes h o l d e r s are made by d r i l l i n g out c y l i n d r i c a l s t o c k of the d e s i r e d m a t e r i a l . The r e s u l t i n g c y l i n d e r w i t h one c l o s e d end i s capped w i t h a screw-on cap of the same m a t e r i a l . The f i b e r i s f i t t e d t o the cap. In t h i s manner the h o l d e r can be opened to r e p l a c e the b u l b . Ambient l i g h t i s reduced ( i t does not need t o be e l i m i n a t e d because the e l e c t r o n i c s i s s e n s i t i v e t o p u l s e s not D.C. s i g n a l s ) by p a i n t i n g the h o l d e r b l a c k ( i n s i d e ) or by p u t t i n g b l a c k e l e c t r i c i a n s tape o u t s i d e . In p r o d u c t i o n the h o l d e r w i l l most l i k e l y be made by d i p p i n g the b u l b ( w i t h the f i b e r g l u e d t o i t ) i n t o molten h o l d e r m a t e r i a l (say t e f l o n ) . 52 4.2.1.3 E n g i n e e r i n g C o n s i d e r a t i o n s There a r e two types o f p r a c t i c a l c o n s i d e r a t i o n s t h a t a p p l y t o the se n s o r when o p e r a t i n g i n e n v i r o n m e n t a l f i e l d s : e n v i r o n m e n t a l e f f e c t s (temperature and h u m i d i t y ) and the e f f e c t s o f f i e l d h armonics. 4.2.1.3.1 Humidity As mentioned e a r l i e r h u m i d i t y i n c r e a s e s the c o n d u c t i v i t y o f the g l a s s and under extreme c o n d i t i o n s can c o m p l e t e l y s h i e l d the gas from the f i e l d . The e f f e c t can be e l i m i n a t e d by p r o t e c t i n g the b u l b w i t h a s u i t a b l e h o l d e r . 4.2.1.3.2 Temperature Temperature can have both d i r e c t and i n d i r e c t e f f e c t s on the performance of the s e n s o r . D i r e c t e f f e c t s o ccur because the c o n d u c t i v i t y of the g l a s s i s i n c r e a s e d w i t h temperature and because the gas breakdown parameter changes w i t h temperature. Both o f these e f f e c t s are minimal between -40°C and 40°C the t y p i c a l o p e r a t i o n range. I n d i r e c t e f f e c t s are caused because temperature i n f l u e n c e s the c o n c e n t r a t i o n o f m a t e r i a l s a d h e r i n g t o the b u l b s i n t e r i o r and e x t e r i o r s u r f a c e . The m a t e r i a l s may be p h y s i c a l l y absorbed or c h e m i c a l l y combined. On v a r y i n g the temperature p h y s i c a l a b s o r p t i o n i s r e v e r s i b l e whereas " c h e m i s o r p t i o n " i s n o t . A b s o r p t i o n of m a t e r i a l on the b u l b s u r f a c e has two e f f e c t s : 1 . i t can i n f l u e n c e g l a s s p r o p e r t i e s such as c o n d u c t i v i t y or the secondary e m i s s i o n c o e f f i c i e n t X and 53 2. i t can change the gas c o m p o s i t i o n and t h e r e f o r e i t s breakdown p r o p e r t i e s . To minimize these e f f e c t s one must keep the b u l b e x t e r i o r c l e a n and p r o t e c t e d (by u s i n g the h o l d e r ) and minimize the i m p u r i t i e s i n s i d e the b u l b . T h i s i s the main m o t i v a t i o n f o r p r o p e r l y b a k i n g and pumping the b u l b s d u r i n g p r o d u c t i o n as w e l l as f o r u s i n g v e r y pure g a s e s . The e x t e n t of temperature e f f e c t s must be e v a l u a t e d e x p e r i m e n t a l l y . R e s u l t s are p r e s e n t e d i n S e c t i o n 5. 4.2.1.3.3 H a r m o n i c s 1 8 The e f f e c t harmonics have on s e n s o r o p e r a t i o n depends on the shape of the s e n s o r . a) C y l i n d r i c a l Tubes S i n c e a c y l i n d r i c a l tube responds o n l y t o the component of the f i e l d a l o n g i t s a x i s , i t i s o n l y n e c e s s a r y t o c o n s i d e r the e f f e c t of a l i n e a r l y p o l a r i z e d f i e l d . The f i e l d w i l l n o r m a l l y c o n t a i n two major harmonic components: the fundamental ( f r e q u e n c y , f A , a m p l i t u d e E A ) and the t h i r d harmonic ( f r e q u e n c y 3 f A , a m p l i t u d e EJJ) . T y p i c a l l y E H / E A < 0 . 1 . I f E j j / E A ^ 1 / 9 then the number of extrema i n the f i e l d per c y c l e of the fundamental i s not a f f e c t e d by the v a l u e o f E H . The number of counts i s t h e r e f o r e s t i l l d e termined by the l a r g e s t v a l u e of the f i e l d s t r e n g t h , i r r e s p e c t i v e o f the harmonic c o n t e n t . 54 b) S p h e r i c a l Bulbs The a n a l y s i s f o r l i n e a r l y p o l a r i z e d f i e l d s i s i d e n t i c a l t o t h a t g i v e n above. Hence the number of breakdowns per c y c l e o f the fundamental component of the a p p l i e d f i e l d i s determined by the g r e a t e s t f i e l d s t r e n g t h i n the c y c l e . For e l l i p t i c a l l y p o l a r i z e d f i e l d s a t y p i c a l phasor i s shown i n F i g u r e 9. The enhancement i n counts caused by the r o t a t i n g f i e l d w i l l be p r o p o r t i o n a l t o the c i r c u m f e r e n c e of the phasor, which, t o f i r s t o r d e r i n E H / E A i s e q u a l t o the c i r c u m f e r e n c e of the phasor assuming no harmonic d i s t o r t i o n ( E H = 0 ) . Thus as a f i r s t a p p r o x i m a t i o n the s p h e r i c a l b u l b o n l y responds t o the fundamental component of the a p p l i e d f i e l d . The l a r g e s t f i e l d s t r e n g t h which can o c c u r d u r i n g the o s c i l l a t i o n p e r i o d o f the fundamental i s E A + E H . T h i s f i e l d i s t h e r e f o r e measured w i t h a maximum f r a c t i o n a l e r r o r o f E H / E A . 4.2.2 The F i b e r The o p t i c a l f i b r e i s a commercial p r o d u c t purchased from W e l c h - A l l y n . The p r o t o t y p e GEM uses a v i n y l c l a d g l a s s f i b r e bundle 2mm i n d i a meter and 2 m l o n g . S h o r t e r or l o n g e r f i b r e s can be used. S i n c e the s e n s o r l i g h t o u t p u t i s s t r o n g , a narrow f i b r e can be used and no s p e c i a l r e f l e c t o r s a r e needed t o enhance the c o l l e c t i o n o f l i g h t a t the i n p u t t o the f i b r e . The most i m p o r t a n t p r o p e r t y of the f i b r e c a b l e i s i t s c o n d u c t i v i t y which must be v e r y low ( < 1 0 - 1 2 mho m~1 f o r t y p i c a l f i b r e s i n f i e l d s o f 60 Hz f r e q u e n c y ) . T h i s p r o p e r t y ensures t h a t the f i e l d t o which the s e n s o r i s exposed i s not changed s i g n i f i c a n t l y by the f i b r e . Low 55 F i g u r e 9 Phasors f o r A p p l i e d F i e l d , E A d o t t e d c u r v e - e l l i p t i c a l p o l a r i z a t i o n - no harmonic d i s t o r t i o n , s o l i d curve - e l l i p t i c a l p o l a r i z a t i o n w i t h 3 r d harmonic d i s t o r i t i o n , E H . 56 c o n d u c t i v i t y a l s o reduces the c o u p l i n g o f e l e c t r i c a l n o i s e from the f i b r e to the d e t e c t o r e l e c t r o n i c s . Many commercial f i b r e bundles are p r o t e c t e d w i t h a metal s h i e l d . These are o b v i o u s l y u n s u i t a b l e . However, many of the f i b r e s w i t h no metal are c o a t e d w i t h a c o n d u c t i v e r e s i n . In f a c t two s e t s of f i b r e s s u p p l i e d by the same manufacturer over a p e r i o d of f o u r months had w i d e l y d i f f e r e n t c o n d u c t i v i t i e s . The e a r l i e r s e t was s a t i s f a c t o r y but the second s e t had u n a c c e p t a b l y h i g h c o n d u c t i v i t y . Another i m p o r t a n t p r o p e r t y of f i b r e bundle f o r t h i s a p p l i c a t i o n i s r o b u s t n e s s . Continuous use of the f i b r e i n the f i e l d can e v e n t u a l l y l e a d t o the b r e a k i n g of some or a l l f i b r e s i n the b u n d l e . T h i s i s o n l y a problem near the end caps of the bundle where the f l e x i b l e f i b r e bundle meets an i n f l e x i b l e cap. To overcome t h i s problem the commercial f i b r e b u n dles have been r e - i n f o r c e d (near the caps o n l y ) w i t h graded heat s h r i n k t u b i n g . T h i s has the same e f f e c t as s p r i n g s near the j u n c t i o n s between w i r e s and e l e c t r i c a l a p p l i a n c e s . 4.2.3 The D e t e c t o r The d e t e c t o r i s a s m a l l p l a s t i c box c o n t a i n i n g the e l e c t r o n i c s which are s h i e l d e d by an i n t e r n a l m e t a l s h e e t l i n e r . The f u n c t i o n of the d e t e c t o r i s t o measure the f r e q u e n c y of occurence of l i g h t p u l s e s s i n c e t h i s f r e q u e n c y i s p r o p o r t i o n a l t o the e l e c t r i c f i e l d . A s i m p l i f i e d b l o c k diagram of the d e t e c t o r i s shown i n F i g u r e 10. The p h o t o d e t e c t o r d e t e c t s the weak o p t i c a l p u l s e s which are then a m p l i f i e d and shaped. D u r i n g t h i s p r o c e s s a l l p u l s e s whose amplitude i s h i g h e r than a c e r t a i n t h r e s h o l d ( s e t above the n o i s e l e v e l ) are c o n v e r t e d t o s t a n d a r d p u l s e s (same am p l i t u d e and d u r a t i o n ) . These p u l s e s are then LIGHT PHOTO DETECTOR PULSE AMPLIFIER AND SHAPER DIGITAL COUNTER DIGITAL DISPLAY DIGITAL STORAGE F i g u r e 10 B l o c k D i a g r a m o f D e t e c t o r a n d D i s p l a y S y s t e m . 58 counted over a s h o r t time span (At). A f t e r e v e r y p e r i o d o f l e n g t h A.t the c o u n t e r i s r e s e t t o z e r o and a l l o w e d t o count a g a i n . The l o n g e r A t , the more a c c u r a t e the r e a d i n g , p r o v i d e d o f cou r s e t h a t the f i e l d does not change d u r i n g t h i s time span. The s h o r t e r At, the b e t t e r the time r e s o l u t i o n of the meter. A good compromise f o r t y p i c a l a l t e r n a t i n g e n v i r o n m e n t a l f i e l d s i s a time i n t e r v a l of one second. The f l u c t u a t i o n i n the number of counts i n each i n t e r v a l At tends t o be c o n s t a n t , i r r e s p e c t i v e of the f i e l d s t r e n g t h . A t t h r e s h o l d the e r r o r i s t y p i c a l l y 5% and c o r r e s p o n d i n g l y lower f o r s t r o n g e r f i e l d s . The counts which are d i r e c t l y p r o p o r t i o n a l t o the e l e c t r i c f i e l d can be e i t h e r d i s p l a y e d t o the u s e r or s t o r e d f o r l a t e r r e t r i e v a l . One l a b p r o t o t y p e employs a l i q u i d c r y s t a l d i s p l a y and has a r e c h a r g e a b l e b a t t e r y . The d e t e c t o r measures 110 x 60 x 30 mm and the b a t t e r i e s l a s t f o r a t l e a s t 10 hours (see F i g u r e 7 ) . Another l a b p r o t o t y p e c o n t a i n s a m i c r o p r o c e s s o r and some memory i n s t e a d o f the d i s p l a y . T h i s p r o t o t y p e i s s l i g h t l y l a r g e r . In t h i s case, f o r example, the minimum, maximum and average e l e c t r i c f i e l d r e a d i n g e v e r y f i v e minutes can be s t o r e d over an e i g h t hour p e r i o d . The e l e c t r o n i c s o f both d e t e c t o r s are amenable t o f u r t h e r m i n a t u r i z a t i o n . 4.2.3.1 E l e c t r i c a l D e s i g n The d e t e c t o r e l e c t r o n i c s can be s e p a r a t e d i n t o two d i s t i n c t p a r t s (and b o a r d s ) . The f i r s t p a r t which b a s i c a l l y d e t e c t s , a m p l i f i e s and shapes the p u l s e s i s s p e c i f i c t o t h i s a p p l i c a t i o n . The second p a r t which c o n s i s t s of a d i g i t a l c o u n t e r and d i s p l a y system i s a v e r y s t a n d a r d o component of most d i g i t a l d e v i c e s and w i l l not be d e s c r i b e d f u r t h e r . 59 The c i r c u i t diagram f o r the p h o t o d e t e c t o r , a m p l i f i e r and p u l s e shaper i s shown i n F i g u r e 11. The c i r c u i t i s made w i t h s t a n d a r d o f f the s h e l f components (which can o p e r a t e between -30°C and 40°C) . L i g h t i s d e t e c t e d by a p h o t o t r a n s i s t o r (FPT100). The s i g n a l i s f e d through a low n o i s e FET t o a s e r i e s o f f o u r o p e r a t i o n a l a m p l i f i e r s ( a l l w i t h i n a c h i p ) f o r a m p l i f i c a t i o n . The t o t a l g a i n i s about 30,000. Each a m p l i f i e r stage i s o n l y A.C. c o u p l e d t o the next s t a g e ( i e . c a p a c i t o r f o l l o w e d by r e s i s t o r a t the i n p u t of each o p e r a t i o n a l a m p l i f i e r ) i n o r d e r t o reduce low f r e q u e n c y n o i s e . F i n a l l y the a m p l i f i e d v o l t a g e p u l s e i s put through a comparator and c o n v e r t e d t o a s t a n d a r d h e i g h t p u l s e . The t h r e s h o l d f o r the comparator can be a d j u s t e d w i t h a v a r i a b l e r e s i s t o r (R21) so as to d e t e c t o n l y those s i g n a l s which are above the n o i s e l e v e l ( i e . when the e l e c t r i c f i e l d i s o f ) . To reduce the 60 Hz n o i s e f u r t h e r the power s u p p l y i s d e c o u p l e d as shown i n the lower r i g h t o f F i g u r e 11. The above d e s i g n and the c o u n t e r and d i s p l a y e l e c t r o n i c s can o p e r a t e from a 9v r e c h a r g e a b l e b a t t e r y f o r 10 c o n t i n u o u s h o u r s . I t i s p o s s i b l e t o reduce the s i z e o f the d e t e c t o r i f r e q u i r e d f o r c e r t a i n a p p l i c a t i o n s . For example the p r e s e n t c i r c u i t f o r the p h o t o d e t e c t o r , a m p l i f i e r and p u l s e shaper uses about f o u r I C s . These c o u l d be combined i n t o one c h i p . I f d e s i r e d the whole d e t e c t o r c o u l d be packaged i n a 50 x 50 mm board ( a t a setup c o s t of l e s s than $50,000). 4.2.4 O v e r a l l E n g i n e e r i n g C o n s i d e r a t i o n s Most of the e n g i n e e r i n g c o n s i d e r a t i o n s a p p l y t o the sensor and have been d i s c u s s e d i n S e c t i o n 4.2.1.3. E l e c t r i c a l n o i s e a f f e c t s the d e t e c t o r -TEST Ftoi K/T 4 ojrfKT To D/CrrAL •r =r c/i Rio loo F i g u r e 11 C i r c u i t Diagram f o r P h o t o d e t e c t o r A m p l i f i e r and P u l s e Shaper. o 61 but can be v i r t u a l l y e l i m i n a t e d by s h i e l d i n g the e l e c t r o n i c s and by u s i n g a low pass f i l t e r . In c o n s i d e r i n g the meter as a whole the major c o n s i d e r a t i o n s are the e f f e c t s o f nearby c o n d u c t i n g o b j e c t s (or people) and the s e p a r a t i o n between the s e n s o r and the d e t e c t o r . E x p e r i m e n t s ^ have r e v e a l e d t h a t when a p e r s o n e n t e r s an e l e c t r i c f i e l d the f i e l d i s d i s t o r t e d a t d i s t a n c e s up t o 2 m away from the p e r s o n . Thus i n u s i n g the meter f o r making u n d i s t u r b e d measurements car e s h o u l d be taken i n m a i n t a i n i n g a r e a s o n a b l e d i s t a n c e ( o r d e r o f meters) from l a r g e c o n d u c t i n g o b j e c t s . On the o t h e r hand i f one wishes t o measure the enhanced f i e l d near a c o n d u c t i n g o b j e c t (say the head o f a person) then the senso r can be brought v e r y c l o s e . However, the senso r s h o u l d be m a i n t a i n e d about 10 mm away from p o i n t e d m e t a l l i c o b j e c t s . T h i s i s r e q u i r e d because p o i n t e d o b j e c t s have such a l a r g e enhancing e f f e c t t h a t they can l e a d t o corona d i s c h a r g e i n the a i r and i n the gas i n s i d e the s e n s o r . The corona d i s c h a r g e produces l i g h t and i n v a l i d a t e s the t r u e r e a d i n g o f the meter. In a l l measurements the d e t e c t o r s h o u l d be m a i n t a i n e d a t l e a s t 0.5m ( t h i s d i s t a n c e i s d e r i v e d e x p e r i m e n t a l l y ) from the sensor i n o r d e r t h a t i t s m e t a l l i c p a r t s do not i n f l u e n c e the r e a d i n g . I f a compact d e s i g n o f GEM i s r e q u i r e d i n which the s e n s o r and d e t e c t o r are one u n i t , then the meter has t o be c a l i b r a t e d as one u n i t and can o n l y be used r e l i a b l y i n u n i f o r m f i e l d s . 62 4.3 Summary An e l e c t r i c f i e l d meter based on the breakdown o f gas i n an i n s u l a t i n g v e s s e l i s c o n s t r u c t e d of t h r e e p a r t s : the s e n s o r , the f i b e r and the d e t e c t o r . The s e n s o r produces l i g h t p u l s e s whose number i s p r o p o r t i o n a l t o the e l e c t r i c f i e l d . The f i b r e conveys these p u l s e s to the d e t e c t o r where they ar e counted and d i s p l a y e d . The s p e c i f i c a t i o n s f o r the meter are summarized i n T a b l e 2. The e n t r y f o r temperature i s d e r i v e d e x p e r i m e n t a l l y and f u r t h e r d i s c u s s e d i n S e c t i o n 5. The l a s t two s e c t i o n s have p r e s e n t e d the p h y s i c a l model f o r the s e n s o r and the d e s i g n of the meter. These s e c t i o n s are p a r t l y based on a s e r i e s o f experiments performed d u r i n g the development of GEM and i t s p h y s i c a l model. These experiments are the s u b j e c t of S e c t i o n 5. 63 T a b l e 2 GEM P r e l i m i n a r y S p e c i f i c a t i o n s A c c u r a c y C a l i b r a t i o n S i z e Sensor ( i n c l u d i n g h o l d e r , s p h e r i c a l bulb) F i b r e D e t e c t o r Power T h r e s h o l d E n v i r o n m e n t a l e f f e c t s H u m i d i t y Above room temperature Below room temperature b e t t e r than 5% seldom r e q u i r e d ( e v e r y few months) 45mm diameter x 55mm l e n g t h 2mm diameter x 2m* l e n g t h 110 x 60 x 30mm 9v r e c h a r g e a b l e b a t t e r y (10 hours o p e r a t i o n ) 14 kV/m (can be reduced by i n c r e a s i n g sensor dimensions) no e f f e c t no e f f e c t unknown * v a r i a b l e 6 4 5.0 E x p e r i m e n t a l R e s u l t s 5.1 I n t r o d u c t i o n The purpose of t h i s s e c t i o n i s t o d e s c r i b e i n d e t a i l the experiments performed d u r i n g the development of GEM and i t s p h y s i c a l model. Most experiments are performed i n the l a b o r a t o r y where e l e c t r i c f i e l d s are g e n e r a t e d between l a r g e p a r a l l e l p l a t e s . Some experiments are performed j u s t o u t s i d e the l a b o r a t o r y i n o r d e r to study e n v i r o n m e n t a l e f f e c t s . Furthermore, some f i e l d t e s t s both under t y p i c a l t r a n s m i s s i o n l i n e s and i n s u b s t a t i o n s have been c a r r i e d o u t . Experiments o u t s i d e and f i e l d t e s t s are performed w i t h a f u l l p r o t o t y p e meter. However, i n the l a b o r a t o r y i t i s more d e s i r a b l e to r e p l a c e the d e t e c t o r w i t h a more s e n s i t i v e p h o t o m u l t i p l i e r . The p h o t o m u l t i p l i e r s i g n a l can be viewed d i r e c t l y on the o s c i l l o s c o p e ( i e . the d e t e c t o r s i g n a l would have t o be a m p l i f i e d and t h e r e f o r e d i s t o r t e d ) and/or counted w i t h a d i g i t a l c o u n t e r . Thus i n the l a b o r a t o r y o n l y the s e n s o r ( o f t e n w i t h o u t the h o l d e r , s i n c e the environment i s c o n t r o l l e d ) and the f i b r e of the meter are used. Four major s e r i e s of experiments c a r r i e d out i n the l a b o r a t o r y and i t s immediate v i c i n i t y are d e s c r i b e d . The f i r s t s e r i e s d e a l s w i t h the b a s i c phenomena of p u l s e e m i s s i o n i n u n i f o r m f i e l d s o f f i x e d d i r e c i t o n . T h i s s e t of experiments e s t a b l i s h e d , the v a l i d i t y o f the b a s i c p h y s i c a l model ( S e c t i o n s 3.2 and 3.3). The second s e r i e s o f experiments d e a l s w i t h the s e n s o r shape. T h i s s e t of experiments p r o v i d e d the b a c k i n g f o r e x t e n d i n g the p h y s i c a l model t o the case when the breakdown i s g u i d e d by the v e s s e l w a l l s . The o p e r a t i o n of a d i r e c t i o n a l l y s e n s i t i v e s e n s o r i s 65 based on these experiments (see S e c t i o n 3.4). The t h i r d s e t of experiments d e a l s w i t h the o p e r a t i o n o f s p h e r i c a l and c y l i n d r i c a l s e n s o r s i n p l a n a r r o t a t i n g f i e l d s . T h i s s e t o f experiments p r o v i d e s an u n d e r s t a n d i n g of what the s e n s o r measures when exposed t o e n v i r o n m e n t a l f i e l d s which are not p e r t u r b e d by a c o n d u c t i n g o b j e c t (see S e c t i o n 3.5 and 4.2). F i n a l l y , the l a s t s e t of experiments d e a l w i t h e n g i n e e r i n g c o n s i d e r a t i o n s such as s t a b i l i t y o f c a l i b r a t i o n , a c c u r a c y , temperature and h u m i d i t y e f f e c t s and f i e l d p e r t u r b a t i o n (by the s e n s o r ) . I t s h o u l d be noted t h a t the d e t a i l s of the e x p e r i m e n t a l r e s u l t s p r e s e n t e d i n a g i v e n s e c t i o n a r e f o r the s p e c i f i c s e n s o r d e s c r i b e d i n the s e c t i o n . However, most experiments have been performed w i t h many d i f f e r e n t b u l b s and s i m i l a r r e s u l t s have been o b t a i n e d . In what f o l l o w s the l a b o r a t o r y e x p e r i m e n t a l s e t up i s d e s c r i b e d i n d e t a i l . Then the p r o c e d u r e and r e s u l t s f o r each s e t o f experiments are p r e s e n t e d . F i n a l l y , r e s u l t s from f i e l d t e s t s are g i v e n . 66 5.2 E x p e r i m e n t a l Apparatus 5.2.1 I n t r o d u c t i o n The e x p e r i m e n t a l apparatus c o n s i s t s of two main p a r t s : a d e v i c e f o r g e n e r a t i n g e l e c t r i c f i e l d s and equipment f o r m o n i t o r i n g and s t u d y i n g the l i g h t p u l s e s . There are two d e v i c e s f o r p r o d u c i n g e l e c t r i c f i e l d s . One gen e r a t e s u n i f o r m f i e l d i n a f i x e d d i r e c t i o n the o t h e r a p l a n a r r o t a t i n g f i e l d of v a r i a b l e e l l i p t i c i t y . The d e v i c e t h a t g e n e r a t e s u n i f o r m f i e l d s and the p u l s e m o n i t o r i n g equipment w i l l be d e s c r i b e d f i r s t , f o l l o w e d by a d e s c r i p t i o n of the d e v i c e f o r g e n e r a t i n g p l a n a r r o t a t i n g f i e l d s . 5.2.2 Apparatus f o r G e n e r a t i n g U n i f o r m F i e l d s i n a F i x e d D i r e c t i o n and S t u d y i n g P u l s e E m i s s i o n . The e l e c t r i c f i e l d i s gen e r a t e d between the p l a t e s o f a p a r a l l e l p l a t e c a p a c i t o r , as shown i n F i g u r e 12. The p l a t e s c o n s i s t o f 600mm x 600mm x 3mm square s h e e t s of p o l i s h e d aluminum w i t h b e v e l l e d edges and rounded c o r n e r s (radiusf\f 150mm) which s e r v e t o reduce corona a t h i g h f i e l d s t r e n g t h s . They a r e mounted h o r i z o n t a l l y on l u c i t e sheets ( t h i c k n e s s 10mm) which are quipped w i t h h i n g e d l u c i t e doors f o r s a f e t y p u r p o s e s . The upper p l a t e i s sup p o r t e d by t h r e e 25mm diameter t h r e a d e d l u c i t e rods which can be screwed i n t o the upper l u c i t e s heet and p e r m i t t h i s p l a t e t o be a l i g n e d c o r r e c t l y w i t h r e s p e c t t o the lower one. The p l a t e s a r e p a r a l l e l t o each o t h e r (+ 1mm) and the v a r i a b l e s p a c i n g i s n o r m a l l y s e t a t a d i s t a n c e o f 150mm. The senso r i s mounted on a l u c i t e 67 o BULB OPTICAL FIBRE 'A PHOTO MULTIPLIER ~ ~ T " LUCITE ^ ALUMINUM 5 0 : 1 TRANSFORMER AUTO TRANSFORMER Figure 1 2 Experimental Set Up 68 b r a c k e t a t the c e n t e r of the f i e l d g e n e r a t e d by the p l a t e s , so t h a t i t does not i n f l u e n c e the charge d i s t r i b u t i o n on the p l a t e s 2 1 . T h i s l o c a t i o n of the senso r a l s o ensures t h a t the a p p l i e d f i e l d i s s p a t i a l l y u n i f o r m . The c a p a c i t o r i s n o r m a l l y powered by a 50:1 t r a n s f o r m e r f e d by an a u t o t r a n s f o r m e r ('Variac') such t h a t a maximum p o t e n t i a l d i f f e r e n c e o f 6kV (rms) o c c u r s between the p l a t e s . T h i s c o r r e s p o n d s t o a f i e l d s t r e n g t h o f 40kV m - 1 (rms) a t a f r e q u e n c y o f 60Hz. In some experiments a programmable power s u p p l y i s used i n s t e a d (Kepco, Model OPS 5000, g a i n 1000, maximum o u t p u t 5kV). T h i s f a c i l i t a t e s s t u d i e s o f the e f f e c t of f r e q u e n c y and wave form shape on the sensor r e s p o n s e . The f r e q u e n c y range employed extends from a few Hz up t o 600 Hz. The v o l t a g e a p p l i e d t o the p l a t e s i s measured d i r e c t l y w i t h a h i g h v o l t a g e p o t e n t i a l d i v i d e r . The f l a s h e s o f l i g h t e m i t t e d by the b u l b s are conveyed t o an RCA 931A p h o t o m u l t i p l i e r through the v i n y l c l a d g l a s s f i b r e bundle (1.5m l o n g , 2mm i n diameter) o b t a i n e d from W e l c h - A l l y n Co. The p h o t o m u l t i p l i e r i s o p e r a t e d w i t h i t s cathode a t -1kV w i t h r e s p e c t t o ground. The s i g n a l s a r e r e c o r d e d p h o t o g r a p h i c a l l y u s i n g a s t o r a g e o s c i l l o s c o p e ( T e k t r o n i x Inc . , Model 549 w i t h a Model CA p l u g - i n a m p l i f i e r ) . The o u t p u t from the o s c i l l o s c o p e a m p l i f i e r (which c o n t a i n s a r e p l i c a o f the s i g n a l d i s p l a y e d on the o s c i l l o s c o p e ) i s f e d to the coun t e r (Advance In s t r u m e n t s , Model TC9A, 32 mHz). The c o u n t i n g i n t e r v a l i s u s u a l l y i n the range o f one to ten s e c o n d s . A l l experiments ( e x c e p t f o r those i n v o l v i n g the stu d y o f e n v i r o n m e n t a l e f f e c t s ) are c a r r i e d o ut a t 293 + 4 K e l v i n and l e s s than 70% r e l a t i v e h u m i d i t y . 69 5.2.3 Apparatus f o r G e n e r a t i n g P l a n a r R o t a t i n g F i e l d s ' ^ The 60 Hz p l a n a r r o t a t i n g f i e l d s are produced by f o u r v e r t i c a l m e t a l p l a t e s . The p l a t e s c o n s i s t o f 260mm x 760mm x 3mm sheet s o f p o l i s h e d aluminum w i t h b e v e l l e d edges and rounded c o r n e r s . They are mounted v e r t i c a l l y on l u c i t e s h e e t s and form a square a r r a y when viewed from the top (see F i g u r e 13). The sensor i s mounted i n the c e n t e r o f the d e v i c e on a v e r t i c a l h o l l o w l u c i t e r o d . The o p t i c a l f i b r e i s mounted i n s i d e the l u c i t e r o d and emerges from the apparatus a t the bottom (see F i g u r e 13). The f o u r p l a t e c a p a c i t o r i s powered by two p a r a l l e l c i r c u i t s each powered by a 50:1 t r a n s f o r m e r f e d by a " V a r i a c " . The two t r a n s f o r m e r s a r e d r i v e n by s i g n a l s 180° out of phase. Each c i r c u i t c o n s i s t s of a b r i d g e network which g e n e r a t e s two v o l t a g e s (V-j , V 2 and V-j, V 4 ) 90° out of phase w i t h each o t h e r (see F i g u r e 14). By c o n n e c t i n g each o f these v o l t a g e s (V-j , V 3 and V 4 ) t o a d j a c e n t p l a t e s o f the c a p a c i t o r an e l l i p t i c a l l y p o l a r i z e d f i e l d can be g e n e r a t e d . The e l l i p t i c i t y o f the f i e l d can be v a r i e d by changing the r e s i s t a n c e v a l u e s i n the b r i d g e network (see R21» F i g u r e 1 4 ) . The magnitude of the f i e l d can be v a r i e d by changing V 0 . The apparatus i s capa b l e o f g e n e r a t i n g f i e l d s o f up to 30 kV/m. The f l a s h e s o f l i g h t are conveyed t o the same apparatus d e s c r i b e d p r e v i o u s l y . F i g u r e 15 shows a p i c t u r e o f the a p p a r a t u s . 70 71 F i g u r e 14 E l e c t r i c C i r c u i t f o r G e n e r a t i n g R o t a t i n g F i e l d s F i g u r e 15 Photo showing p l a t e s f o r p r o d u c t i o n o f 60Hz r o t a t i n g e l e c t r i c f i e l d s ( r i g h t ) , 5 c h a n n e l p h o t o m u l t i p l i e r ^ v a r i a c s f o r d r i v i n g the t r a n s f o r m e r s ( l e f t ) , and e l e c t r o n i c s (bottom) 73 5.3 Study of the B a s i c Phenomenom The experiments performed t o i n v e s t i g a t e the b a s i c phenomena a r e d e s c r i b e d i n two sub s e c t i o n s . The f i r s t d e a l s w i t h a l l major f e a t u r e s of the s t a n d a r d phenomena, the second d e a l s w i t h attempts t o reduce the t h r e s h o l d by u s i n g d i f f e r e n t gas c o m p o s i t i o n s . 5.3.1 S t a n d a r d Phenomena 5.3.1.1 G e n e r a l P u l s e E m i s s i o n T h i s experiment i s performed w i t h a pyrex b u l b of 25mm diameter f i l l e d w i t h neon t o a p r e s s u r e o f 10 T o r r . The a p p l i e d f i e l d i s a 60Hz waveform whose magnitude i s v a r i e d . The r e l a t i o n between p u l s e e m i s s i o n and the phase o f the a p p l i e d f i e l d i s o b s e r v e d by add i n g the measured v o l t a g e a c r o s s the p l a t e s and the p h o t o - m u l t i p l i e r o u t p u t . The o s c i l l o s c o p e d i s p l a y o f t h i s s i g n a l shows the l i g h t p u l s e s superposed on the a p p l i e d f i e l d . A t y p i c a l o s c i l l o s c o p e t r a c e t r i g g e r e d on the a p p l i e d f i e l d has been t r a c e d i n F i g u r e 16. The p u l s e s of l i g h t appear on the r i s i n g and f a l l i n g s l o p e s of the s i n e wave. From many such p i c t u r e s i t i s observed t h a t the l i g h t p u l s e s on a g i v e n s l o p e o f the a p p l i e d f i e l d are spaced so t h a t the change i n the magnitude of the a p p l i e d f i e l d i s approximately, c o n s t a n t . T h i s change E D i n the a p p l i e d f i e l d r e q u i r e d t o produce a new p u l s e i s a p p r o x i m a t e l y the same on r i s i n g and f a l l i n g s l o p e s . However the change i n f i e l d between the l a s t p u l s e i n a r i s i n g / f a l l i n g s l o p e and the f i r s t p u l s e of a f a l l i n g / r i s i n g s l o p e i s u s u a l l y s l i g h t l y l e s s than E 0 . T h i s 74 F i g u r e 16 O p t i c a l p u l s e s superposed on a p p l i e d f i e l d wave form ( E A ) f o r 25mm di a m e t e r n e o n - f i l l e d b u l b a t 10 T o r r ( s t r o n g breakdown c a s e ) . E A = f i e l d a m p l i t u d e . 75 d i f f e r e n c e i s c o n s i s t a n t w i t h the e f f e c t o f f i n i t e c o n d u c t i v i t y which causes the f i e l d i n s i d e the b u l b ( E T t o be phase s h i f t e d w i t h r e s p e c t t o the a p p l i e d f i e l d ( E A ) (see S e c t i o n 3.3.5). In f a c t , i f the graph o f E A v e r s u s time i s d i s p l a c e d s l i g h t l y t o the l e f t (becoming E T v e r s u s time) p u l s e s a and c ( i n F i g u r e 16) w i l l o c c u r a t i d e n t i a l f i e l d s t r e n g t h . When the peak t o peak v a l u e , 2 E A , of the a p p l i e d f i e l d i s l e s s than the t h r e s h o l d f i e l d , E D , no l i g h t p u l s e s are seen. As E A i s i n c r e a s e d above E Q/2 the b u l b s t a r t s t o emit p u l s e s . For E A c l o s e t o E 0/2 i t can take a v e r y long time f o r the f i r s t p u l s e t o appear. For a f i e l d , E A , h i g h e r than E Q the b u l b " s t a r t s up" almost i m m e d i a t e l y . As the a p p l i e d f i e l d i s d e c r e a s e d p u l s e s are observed u n t i l E A d e c r e a s e s below E Q / 2 . Thus t h e r e i s a s t a r t up h y s t e r e s i s . These r e s u l t s are c o n s i s t e n t w i t h the s t r o n g breakdown model. 5.3.1.2 Rate o f P u l s e E m i s s i o n as a F u n c t i o n o f A p p l i e d F i e l d Magnitude T h i s experiment i s performed w i t h the same equipment as the p r e v i o u s one b u t the b u l b p r e s s u r e i s a l s o v a r i e d . For f i e l d s above t h r e s h o l d and p r e s s u r e s h i g h e r than 10 T o r r the s i t u a t i o n i s as d e p i c t e d i n F i g u r e 16. The number of p u l s e s e m i t t e d per c y c l e o f the a p p l i e d f i e l d depends on the i n t e g e r number of times t h a t E Q f i t s i n t o 2 E A . An i l l u s t r a t i v e p l o t o f t h i s e f f e c t i s o b t a i n e d by measuring f B , the number of p u l s e s per second (averaged over one second) v e r s u s E A . Such a p l o t c o n s i s t s of s t e p s o f s i z e E D/2 i n a p p l i e d f i e l d and of s i z e 120 Hz i n f B ( i e . twice f A , the f r e q u e n c y o f E A ) . F i g u r e 17 shows such a p l o t . The same e f f e c t i s observed f o r h i g h e r b u l b p r e s s u r e s , e x c e p t t h a t the s t e p s become s h a r p e r . However f o r the lower 76 500 400 300 200 100 F i g u r e 17 10 20 30 40 50 E A* ( kv m " 1 , Rns ) P u l s e e m i s s i o n f r e q u e n c y ( f B ) a s a f u n c t i o n o f a p p l i e d f i e l d ( E A ) f o r d i f f e r e n t b u l b p r e s s u r e s . B u l b d i a m e t e r was 25mm. 77 p r e s s u r e s the s t e p s are g r a d u a l l y smeared out u n t i l a t 1 T o r r the r e l a t i o n s h i p between p u l s e f r e q u e n c y and a p p l i e d f i e l d i s l i n e a r (see F i g u r e 1 8 ) . Another e f f e c t of low p r e s s u r e s i s t h a t the t h r e s h o l d i s not s h a r p l y d e f i n e d a t E Q/2 and p u l s e s are e m i t t e d f o r E A < E Q / 2 . However r e s u l t s a r e not r e l i a b l e i n t h i s regime. For b u l b s f i l l e d t o p r e s s u r e s o f 10 T o r r or g r e a t e r , the change i n a p p l i e d f i e l d (_\E A) between p u l s e s i n e f f e c t i v e l y c o n s t a n t . However a t p r e s s u r e s l e s s t h a t 10 T o r r _ E A b e g i n s t o f l u c t u a t e . I t commonly f l u c t u a t e s by a f a c t o r of two a t p r e s s u r e s l e s s than 1 T o r r f o r a c o n s t a n t amplitude ( E A ) o f the a p p l i e d f i e l d . F i g u r e 4 shows a t y p i c a l waveform f o r a low p r e s s u r e b u l b , o b t a i n e d i n the same way as the one shown i n F i g u r e 16. In comparison, a t p r e s s u r e s e x c e e d i n g 10 T o r r E A f l u c t u a t e s by l e s s than 15%. C l e a r l y , i t i s the v a r i a t i o n s i n A E a t h a t smear out the s t e p s i n F i g u r e 17. I t i s a l s o c l e a r from F i g u r e 4 t h a t _ _ E A depend on the p u l s e h e i g h t . The p u l s e h e i g h t i s a measure of the amount of l i g h t e m i t t e d or the s t r e n g t h o f the breakdown a v a l a n c h e . P u l s e h e i g h t v a r i e s a t a l l p r e s s u r e s . The v a r i a t i o n a t a g i v e n p r e s s u r e depends on the d i f f e r e n t b u l b s . A t h i g h p r e s s u r e s the v a r i a t i o n i s much l e s s than a t low p r e s s u r e s . A t lower p r e s s u r e s , the f i e l d i ncrement between s u c c e s s i v e p u l s e s i n c r e a s e s w i t h the h e i g h t o f the f i r s t p u l s e as can be seen i n F i g u r e 4. These r e s u l t s i n d i c a t e t h a t weak breakdown o c c u r s a t the lower p r e s s u r e s . A t these p r e s s u r e s i t i s ha r d e r t o r e s e t E j c o m p l e t e l y t o 0. I t i s i n t h i s regime t h a t one needs to o p e r a t e GEM i f a l i n e a r r e l a t i o n between E f i e l d and count r a t e i s d e s i r e d . 78 F i n a l l y , i t must be observed t h a t p u l s e shape i s remarkably c o n s t a n t ( f o r an example see i n s e r t i n F i g u r e 16) f o r the p r e s s u r e s t e s t e d from 1 t o 30 T o r r . Furthermore the t o t a l d u r a t i o n o f the p u l s e i s independant of i t s h e i g h t . The ar e a under the p u l s e p r o f i l e ( i e . the amount o f l i g h t e m i t t e d ) i s t h e r e f o r e p r o p o r t i o n a l t o i t s h e i g h t as has been assumed above. 5.3.1.3 D e t e r m i n a t i o n o f E Q T h i s experiment i s performed w i t h a s e r i e s o f bu l b s whose diameter ranges from 12.5mm t o 38.1mm and whose p r e s s u r e ranges from 0.66 T o r r t o 30 T o r r . The a p p l i e d v o l t a g e i s a 60Hz waveform whose magnitude i s v a r i e d . We have seen t h a t E Q i s a w e l l d e f i n e d q u a n t i t y f o r h i g h p r e s s u r e s . I t i s the change i n the a p p l i e d f i e l d n e c e s s a r y t o o b t a i n a new p u l s e (averaged over f a l l i n g and r i s i n g s l o p e s ) . A t low p r e s s u r e s the change i n a p p l i e d f i e l d r e q u i r e d t o o b t a i n a new p u l s e f l u c t u a t e s w i d e l y . However d e f i n i n g E Q as the change i n the a p p l i e d f i e l d r e q u i r e d t o change the p u l s e f r e q u e n c y by 240Hz a l l o w s comparison of low p r e s s u r e and h i g h p r e s s u r e r e s u l t s . A l s o E A = E Q/2 i s d e f i n e d as the t h r e s h o l d f o r b u l b o p e r a t i o n (assuming the b u l b i s s t a r t e d and the v o l t a g e lowered u n t i l 120 p u l s e s / s e c a r e o b s e r v e d ) . A t h i g h p r e s s u r e s t h i s i s a t r u e t h r e s h o l d , b u t a t low p r e s s u r e s , p u l s e s are observed w i t h E A < E Q / 2 . However, r e l i a b l e r e s u l t s a r e o n l y o b t a i n e d f o r count r a t e s g r e a t e r than 120Hz. The p u l s e r a t e was p l o t t e d a g a i n s t the a p p l i e d f i e l d magnitude f o r a s e r i e s o f 25mm diameter b u l b s f i l l e d w i t h neon a t p r e s s u r e s o f 30, 10, 5 79 and 1 T o r r p r e s s u r e . R e s u l t s i n d i c a t e d t h a t the 10, 5 and 1 T o r r b u l b s had an E Q of around 42+3 kV/m. T h i s i s w i t h i n the r e p r o d u c i b i l i t y o f the b u l b c h a r a c t e r i s t i c s . However the 30 T o r r b u l b had an E Q o f 59kV/m. T h i s r e s u l t i n d i c a t e d t h a t the o p t i m a l t h r e s h o l d i s r e l a t i v e l y i ndependent of p r e s s u r e f o r p r e s s u r e s below 10 T o r r . The r e s u l t s are c o n s i s t e n t w i t h the Paschen's law w i t h a broad minimum i n , 0, (see E q u a t i o n 1 ). The v a l i d i t y of t h i s law was a l s o checked f o r t h r e e b u l b s h a v i n g a pd of 25mm T o r r ( d i a m e t e r s 12.5mm, 25mm and 38mm). The r e s u l t s i n d i c a t e d the t h r e s h o l d f i e l d v a r i e s i n v e r s e l y w i t h b u l b diameter f o r f i x e d pd. E Q d was found t o be about 1000 v o l t s (see F i g u r e 1 8 ) . By s e t t i n g pd near the Paschen minimum, the t h r e s h o l d , E Q / 2 , can be reduced by i n c r e a s i n g the b u l b d i a m e t e r s i n c e E Q = 1000/d. F o r t u n a t e l y the Paschen minimum i s s u f f i c i e n t l y broad t o encompass a p r e s s u r e o f 1 T o r r w i t h b u l b s of c o n v e n i e n t s i z e , such t h a t p u l s e f r e q u e n c y i s p r o p o r t i o n a l to the a p p l i e d f i e l d . The s e t o f experiments d e s c r i b e d so f a r e s t a b l i s h the b a s i c p h y s i c a l model f o r u n i f o r m f i e l d s of f i x e d d i r e c t i o n and f o r b u l b s whose w a l l s do not i n t e r a c t w i t h the d i s c h a r g e . However, another s e t o f experiments i n which the wave p r o f i l e and f r e q u e n c y o f the a p p l i e d f i e l d i s v a r i e d was performed t o f u r t h e r check the b a s i c assumption of c o n s t a n t E Q and the e f f e c t o f f i n i t e c o n d u c t i v i t y . 5.3.1.4 P u l s e E m i s s i o n : Dependence on the A p p l i e d Waveform T h i s i n v e s t i g a t i o n i s performed w i t h a pyrex b u l b o f 25mm dia m e t e r f i l l e d w i t h neon t o a pressure, o f 10 T o r r . The a p p l i e d f i e l d i s a programmable waveform whose f r e q u e n c y can be v a r i e d from 1 Hz t o 600Hz. F i g u r e 18 P u l s e e m i s s i o n f r e q u e n c y a s a f u n c t i o n o f a p p l i e d f i e l d f o r d i f f e r e n t b u l b d i a m e t e r s . B u l b p d was 25mm T o r r 81 D i f f e r e n t Frequencies Varying the frequency of the applied f i e l d does not change the phenomenon. The number of pulses emitted per cycle depends only on the f i e l d magnitude (1Hz to 600Hz) not on the rate of change of the f i e l d . Pictures of the pulses superposed on the applied f i e l d f o r 6Hz, 60Hz and 600Hz frequencies are very s i m i l a r provided the appropriate time scales (50 ms/d, 5ms/d,0.5ms/d) are chosen. However at 600Hz i t i s common to see r e l i a b l e operations for 2E A = E Q with one pulse on the maximum and one on the minimum of the sine wave. At this frequency the screening e f f e c t s due to the bulb conductivity are n e g l i g i b l e . Operation above 600Hz has not been investigated due to the lack of equipment for generating the f i e l d s . However, i t i s clear that the e f f e c t w i l l be s i m i l a r u n t i l the frequency approaches the inverse of the pulse width (kHz region). For frequencies below 1 Hz the bulb operation i s u n r e l i a b l e : pulse emission i s sporadic even f or f i e l d s high above threshold. For time independent f i e l d s , pulses are observed when the f i e l d i s turned o f f or on. Maintaining a very high s t a t i c f i e l d w i l l , at times ( e s p e c i a l l y for bulbs at low pressure), cause pulses to be emitted • separated by a few seconds. However th i s i s only observed for very low gas pressures (0.65 To r r ) . D i f f e r e n t Waveforms The above experiments can be repeated with various waveform shapes. Of s p e c i a l i n t e r e s t i s a square wave since i t contains large time 82 i n t e r v a l s of c o n s t a n t f i e l d , where p u l s e s s h o u l d not appear. F i g u r e 19 shows such a wave, p u l s e s are o b s e r v e d o n l y when the f i e l d changes. T r i a n g u l a r waves f o r which each s l o p e i s c o n s t a n t are u s e f u l i n c o n f i r m i n g the p u l s e e m i s s i o n a t c o n s t a n t E Q by c h e c k i n g f o r e m i s s i o n a t c o n s t a n t time i n t e r v a l s d u r i n g each r i s i n g / f a l l i n g s l o p e of the f i e l d . These experiments c o n f i r m the v a l i d i t y o f e q u a t i o n 2 f o r a broad range of f r e q u e n c y (1 *C f A < 600Hz). Furthermore, they c o n f i r m t h a t waveform shape i s not i m p o r t a n t t o the phenomena, o n l y peak to peak f i e l d magnitude m a t t e r s . 5.3.2 P o s s i b l e Mechanisms to Reduce the T h r e s h o l d The most p r o m i s i n g mechanism to reduce the t h r e s h o l d i s the Penning e f f e c t . T h i s experiment i s performed w i t h a 25mm pyrex b u l b f i l l e d w i t h a Penning mixture of Ne and 0.3% Ar to a p r e s s u r e o f 18 T o r r . The a p p l i e d f i e l d i s a 60Hz wave form whose am p l i t u d e i s v a r i e d . A t y p i c a l o s c i l l o s c o p e t r a c e f o r t h i s Penning b u l b i s shown i n F i g u r e 20. As can be seen the e f f e c t i s d i f f e r e n t . I n s t e a d of the u n i f o r m h e i g h t p u l s e s e q u a l l y spaced, t h e r e i s one l a r g e p u l s e f o l l o w e d by a s e r i e s o f s m a l l p u l s e s g e t t i n g p r o g r e s s i v e l y c l o s e r . The t h r e s h o l d f o r the f i r s t p u l s e i s v e r y c l o s e ( i e . w i t h i n 1kV/m) t o the t h r e s h o l d f o r non Penning m i x t u r e s . However as can be deduced from F i g u r e 21 the t h r e s h o l d f o r subsequent p u l s e s i s much lower (2 t o 10 t i m e s ) . Thus a graph of the f r e q u e n c y ( f g ) of o p t i c a l p u l s e s v e r s u s a p p l i e d f i e l d i s s i m i l a r t o normal b u l b s but has a much l a r g e r s l o p e as shown by the d o t t e d l i n e i n F i g u r e 18. F i g u r e 19 O p t i c a l p u l s e superposed on a p p l i e d waveform ( E A ) CO - p u l s e s occur o n l y where E A v a r i e s i n time. 84 10 ms/div 5 ms/div 2 ms/div F i g u r e 20 O p t i c a l p u l s e s superposed on the a p p l i e d wave form E A f o r a Penning mixture b u l b (time runs l e f t ) 85 S i m i l a r r e s u l t s are o b t a i n e d w i t h o t h e r Penning m i x t u r e s . C l e a r l y the e x p e c t e d Penning mechanism works o n l y f o r the p u l s e s f o l l o w i n g the f i r s t one and i s t h e r e f o r e not u s e f u l i n r e d u c i n g the t h r e s h o l d of the s e n s o r . Another a l t e r n a t i v e t o reduce the t h r e s h o l d i s the a d d i t i o n o f t r i t i u m t o a gas. S i n c e i m p u r i t i e s a f f e c t breakdown i r r e s p e c t i v e o f whether they are r a d i o a c t i v e or not experiments were c a r r i e d out to determine what e f f e c t s H 2 would have on the breakdown c h a r a c t e r i s t i c s . I t was found t h a t even v e r y s m a l l p e r c e n t a g e s of H 2 produced b u l b w i t h c l e a r l y d e f i n e d s t e p s which are u n d e s i r a b l e . Thus the b e s t gases f o r b u l b d e s i g n are the i n e r t gases (Ne and A r ) . 86 5.4 Sensor Shape I n v e s t i g a t i o n s The main t h r u s t of these experiments i s t o u n d e r s t a n d the o p e r a t i o n of a c y l i n d r i c a l tube p l a c e d a t an a r b i t r a r y angle to a u n i f o r m e l e c t r i c f i e l d of f i x e d d i r e c t i o n . However, a v e r y simple experiment to show the i s o t r o p i c response of a s p h e r i c a l b u l b i s d e s c r i b e d f i r s t . 5.4.1 S p h e r i c a l B u l b T h i s experiment i s performed w i t h a t y p i c a l s p h e r i c a l b u l b (38mm d i a m e t e r 0.66 T o r r neon). The a p p l i e d f i e l d i s a 60Hz waveform whose magnitude i s v a r i e d . The b u l b i s f i r s t p l a c e d w i t h i t s n i p p l e (see F i g u r e 8) h o r i z o n t a l ( i e . p a r a l l e l t o an e q u i p o t e n t i a l s u r f a c e ) and the t h r e s h o l d f i e l d i s measured f o r d i f f e r e n t r o t a t i o n s of the b u l b about a v e r t i c a l l i n e ( p e r p e n d i c u l a r to the c a p a c i t o r p l a t e s ) . The v a r i a t i o n i n t h r e s h o l d o b s e r v e d i s l e s s t h a t 1%. Thus the response i s i s o t r o p i c . Next the b u l b i s r o t a t e d about a h o r i z o n t a l l i n e w i t h the d i ameter through the n i p p l e p e r p e n d i c u l a r t o the l i n e . The t h r e s h o l d i n c r e a s e s as the n i p p l e d e v i a t e s from p o i n t i n g h o r i z o n t a l l y t o p o i n t i n g v e r t i c a l l y . The change ob s e r v e d f o r t h i s b u l b was 19%. T h i s r e s u l t i s not i n c o n s i s t a n t w i t h the e x t r a l e n g t h p r o v i d e d by the n i p p l e . C l e a r l y the i d e a l s p h e r i c a l b u l b i s i s o t r o p i c , however the i s o t r o p y of a r e a l b u l b depends on how w e l l i t i s s e a l e d o f f a f t e r f i l l i n g . 87 5.4.2 C y l i n d r i c a l Tubes T h i s experiment i s performed w i t h two c y l i n d r i c a l gas f i l l e d t u b e s . The f a t tube i s 12.5mm (diameter, D) by 55mm ( l e n g t h , L) and i s f i l l e d t o , 0.5 T o r r Ar ( t h i s i s w i t h i n the Paschen minimum f o r both d i m e n s i o n s ) . The t h i n tube i s 6mm (D) by 55mm (L) and i s a l s o f i l l e d t o 0.5 T o r r o f A r . The tube under i n v e s t i g a t i o n i s a t t a c h e d a t i t s mid p o i n t t o a h o r i z o n t a l i n s u l a t i n g rod made o f l u c i t e . The r o d , which i s 75mm above the lower p l a t e (see F i g u r e 12), r o t a t e s the tube i n a v e r t i c a l p l a n e . The a n g l e , 0, between the tube a x i s and the v e r t i c a l ( i e . the d i r e c t i o n o f E A ) can be s e t t o an a c c u r a c y o f ±1° by means o f the p r o t r a c t o r f i t t e d to the r o d . To measure f B , l i g h t has t o be c o l l e c t e d from both s i d e s o f the tube ( F i g u r e 5 AD and BC). The f i b r e a x i s t h e r e f o r e i s n o r m a l l y s e t a l o n g the tube r a d i u s i n the pl a n e of F i g u r e 5. The l i g h t e m i s s i o n was a l s o observed by s e t t i n g the end of the f i b r e a t v a r i o u s p o i n t s a l o n g AD or BC, w i t h the f i b r e - a x i s p e r p e n d i c u l a r t o the plane o f F i g u r e 5. The l i g h t e m i s s i o n was a l s o o b served by s e t t i n g the end of the f i b r e a t v a r i o u s p o i n t s a l o n g AD o r BC, w i t h the f i b r e - a x i s p e r p e n d i c u l a r t o the pl a n e of F i g u r e 5. These s t u d i e s showed t h a t the i n t e r n a l f i e l d (E-j-) i s d i r e c t e d away from the s i d e of the tube from which the l i g h t i s e m i t t e d . T i m e - i n t e g r a t e d photographs a l s o show t h a t the breakdown d i s c h a r g e takes t h e form o f the shaded r e g i o n i n F i g u r e 5 when E j i s a l o n g the +z_ d i r e c t i o n . When E j i s a l o n g the -z d i r e c t i o n the breakdown d i s c h a r g e goes from C t o D t o A and i s t h i c k e s t a t A. For the sake o f c l a r i t y t h i s p o r t i o n of the d i s c h a r g e i s o m i t t e d from F i g u r e 5 b u t can be seen i n the 88 photograph ( F i g u r e 2 1 ) . The o b s e r v a t i o n s are c o n s i s t e n t w i t h the i d e a t h a t the breakdown d i s c h a r g e i s m a i n t a i n e d by e l e c t r o n s a c c e l e r a t e d by the i n t e r n a l f i e l d E j and i s guided by the tube w a l l s . The tubes o p e r a t e r e l i a b l y i f f B > 1 2 0 H z . T h r e s h o l d c o n d i t i o n s are t h e r e f o r e d e f i n e d t o be those a t which f B = 120Hz. The t h r e s h o l d f i e l d f o r breakdown was measured f o r the wide tube (D = 12.5mm) w i t h the tube a x i s a l o n g the a p p l i e d f i e l d , or p e r p e n d i c u l a r t o i t . I t was found t h a t E o p / E O N = 12.4kVm- 1/50kVm- 1 - D/L where E Q p and E Q N a r e the r e s p e c t i v e t h r e s h o l d f i e l d s f o r the tube a x i s p a r a l l e l or normal t o the a p p l i e d f i e l d . I t t h e r e f o r e f o l l o w s from the above e q u a t i o n t h a t V(0) = V(90) where V(0) = E 0 p L i s the p o t e n t i a l d i f f e r e n c e a t t h r e s h o l d between the tube ends w i t h 9 = 0 ° , and V(90) = E Q N D i s the p o t e n t i a l d i f f e r e n c e a t t h r e s h o l d a c r o s s the v e r t i c a l d i a meter w i t h 9 = 9 0 ° . T h i s e q u a t i o n i s c o n s i s t e n t w i t h the n o t i o n t h a t the breakdown c o n d i t i o n s s a t i s f y the Paschen r u l e ( E q u a t i o n 1 ) w i t h 0 near i t s broad minimum. The r e s u l t s a l s o show t h a t the f i e l d s a r e not s i g n i f i c a n t l y a t t e n u a t e d by the f l o w o f c o n d u c t i o n c u r r e n t s i n the g l a s s ( i e . has the same s t r e n g t h both o u t s i d e and i n s i d e the t u b e ) . F i g u r e 21 Time i n t e g r a t e d photographs showing the breakdown d i s c h a r g e i n c y l i n d r i c a l t u b e s . The e l e c t r i c f i e l d i s v e r t i c a l . 90 To minimize the e f f e c t of the " f r e e t r a v e l " p a r t o f the d i s c h a r g e , (AB and CD i n F i g u r e 5) f u r t h e r s t u d i e s were done w i t h the narrow tube (D = 6mm, L = 55mm). With the tube v e r t i c a l (9 = 0 ) , the f r e q u e n c y of breakdown (fg) was measured as a f u n c t i o n o f the p o t e n t i a l d i f f e r e n c e V A = E A L a l ° n g the tube. f B s a t i s f i e s the c a l i b r a t i o n e q u a t i o n (see F i g u r e 22, c u r v e a) f B = 380(V A - 0.54) f o r V f t ^ 0.85kV = 0 V A < 0.85kV where V A i s i n kV and f B i n Hz. To maximize the f r e q u e n c y of breakdown f B ( 9 ) , i n a tube i n c l i n e d a t an a n g l e , 9, t o the a p p l i e d f i e l d , the amplitude of the f i e l d i n the gap was m a i n t a i n e d a t i t s l a r g e s t v a l u e of E A m = ^ 3 k V m 1« f B^®^ was then measured f o r 0 < 9-? 7 5 ° . T h i s c u r v e i s shown i n F i g u r e 22 (curve b ) . I f the breakdown d i s c h a r g e does not l o s e s i g n i f i c a n t amounts of energy i n i t s i n t e r a c t i o n w i t h the w a l l , then the f r e q u e n c y of breakdown s h o u l d depend o n l y on the p o t e n t i a l d i f f e r e n c e between the two ends of the tube, i r r e s p e c t i v e o f the angle 9. To check t h i s h y p o t h e s i s we d e f i n e E A as the f i e l d a m p litude which pro d u c e s a p a r t i c u l a r v a l u e of the breakdown f r e q u e n c y , f B , w i t h the tube mounted v e r t i c a l l y . The same breakdown f r e q u e n c y w i l l t h e r e f o r e o c c u r when 9 = 6 ' p r o v i d e d t h a t the p o t e n t i a l d i f f e r e n c e a c r o s s t h e tube remains unchanged, i e . t h a t E A L = E A m L cos 9' (6) Thus a p l o t of E A / E A m a g a i n s t cos9 s h o u l d be a s t r a i g h t l i n e o f u n i t 91 cosG 0 0.1 0.3 0.5 OS 1.0 VA (kv, Rms) F i g u r e 22 Frequency of breakdown as a f u n c t i o n o f p o t e n t i a l d i f f e r e n c e a l o n g the tube (V A) (c u r v e a) and as a f u n c t i o n of o r i e n t a t i o n a n g l e (cos 9) f o r f i x e d E A = 53kVm~'(curve b ) . Bulb i s 55mm x 6mm and f i l l e d w i t h 0.5 T o r r A r . 92 s l o p e , p a s s i n g through the o r i g i n . The above d i s c u s s i o n r e q u i r e s t h a t the p o t e n t i a l d i f f e r e n c e a c r o s s the tube exceeds the t h r e s h o l d v a l u e (0.85kV i n our c a s e ) , so t h a t E q u a t i o n 6 a p p l i e s p r o v i d e d cosQ 0.29. I t s h o u l d be noted t h a t E q u a t i o n 6 i s independent of the s p e c i f i c form of the c a l i b r a t i o n curve ( F i g u r e 21) p r o v i d e d t h a t f B i s a s i n g l e - v a l u e d f u n c t i o n of V A . The p l o t of E j ^ / E ^ a g a i n s t cos 9' can be o b t a i n e d g r a p h i c a l l y from F i g u r e 22 as f o l l o w s : s e l e c t any count r a t e (say 400), cos9' i s o b t a i n e d from curve b (0.58) and E A L i s o b t a i n e d from curve a (1.59kV). e A / E A I T I •*-S o b t a i n e d by d i v i d i n g E A L by 2.92kV ( i e . 53kV/m x 0.055m). F i g u r e 23 shows a p l o t of E A / E A m v e r s u s c o s 9 . The f a c t t h a t i t i s an e x c e l l e n t s t r a i g h t l i n e i n d i c a t e s t h a t E q u a t i o n 6 i s v a l i d . The above r e s u l t s show t h a t the f r e q u e n c y of breakdown i n e l e c t r o d e l e s s tubes, immersed i n low f r e q u e n c y f i e l d s , i s governed by the p o t e n t i a l d i f f e r e n c e between the ends of the tube, p r o v i d e d the d i s c h a r g e i s guided by the tube w a l l s . They a l s o show t h a t energy l o s s e s i n the w a l l - d i s c h a r g e i n t e r a c t i o n are not s i g n i f i c a n t . I f they were, then V(9) would have to be l a r g e r than the v a l u e p r e d i c t e d by the model p r e s e n t e d above. F i n a l l y the r e s u l t s demonstrate t h a t a narrow, c y l i n d r i c a l , g a s - f i l l e d , i n s u l a t i n g tube can be used t o measure the component of a low f r e q u e n c y f i e l d a l o n g the t u b e - a x i s . 93 0.1 0.2 0.3 0.4 0J5 0.6 0.7 0.8 0.9 1.0 cos 6 F i g u r e 23 N o r m a l i z e d r e s p o n s e o f c y l i n d r i c a l t u b e a s a f u n c t i o n o f t h e a n g l e b e t w e e n t h e t u b e a x i s a n d t h e f i e l d d i r e c t i o n . 94 5.5 I n v e s t i g a t i o n s of P l a n a r R o t a t i n g F i e l d s The main t h r u s t o f these experiements i s to u n d e r s t a n d the o p e r a t i o n of s p h e r i c a l b u l b s i n p l a n a r r o t a t i n g f i e l d s . However, a v e r y simple experiment i s d e s c r i b e d f i r s t t o show t h a t a c y l i n d r i c a l b u l b responds t o the component of the e l e c t r i c f i e l d a l o n g the b u l b a x i s (see S e c t i o n 3.5.2.1). These experiments a r e performed w i t h the apparatus d e s c r i b e d i n S e c t i o n 5.3.2. 5.5.1 C y l i n d r i c a l Tube T h i s experiment i s performed w i t h the t h i n c y l i n d r i c a l tube ( S e c t i o n 5.4.2). A c i r c u l a r l y p o l a r i z e d f i e l d r o t a t i n g i n a h o r i z o n t a l plane a t 60Hz i s g e n e r a t e d by the equipment d e s c r i b e d i n S e c t i o n 5.2.3. The c y l i n d r i c a l tube i s p l a c e d i n v a r i o u s d i r e c t i o n s i n the plane of the f i e l d . The measurement (fg) remains c o n s t a n t i r r e s p e c t i v e o f tube o r i e n t a t i o n and i s e q u i v a l e n t t o the measurement o b t a i n e d when the tube i s a l i g n e d w i t h a u n i f o r m f i e l d i n a f i x e d d i r e c t i o n of the same magni tude. 5.5.2 S p h e r i c a l Bulbs T h i s experiment i s performed w i t h a 38mm, 1.3 T o r r Ar l e a d g l a s s b u l b whose c a l i b r a t i o n c u r v e has v e r y d i s t i n c t s t e p s i n a u n i f o r m f i e l d of f i x e d d i r e c t i o n (see F i g u r e 24) 95 f B(Hz) 500 + 400 + 300 + 200 + 100 -+ 10 20 30 40 50 F i g u r e 24 P u l s e e m i s s i o n f r e q u e n c y a s a f u n c t i o n o f a p p l i e d f i e l d , 38mm, 1 . 5 T o r r A r , l e a d g l a s s s p h e r i c a l b u l b . 96 5.5.2.1 G e n e r a l P u l s e E m i s s i o n i n C i r c u l a r l y P o l a r i z e d F i e l d s The p u l s e e m i s s i o n observed i s s i m i l a r t o t h a t observed i n f i e l d s of f i x e d d i r e c t i o n , e x c e p t f o r one major d i f f e r e n c e . The p u l s e s are e q u a l l y spaced i n time and do not have any r e l a t i o n t o the phase of the a p p l i e d f i e l d . T h i s o b s e r v a t i o n i s c o n s i s t a n t w i t h the model t h a t a p u l s e o c c u r s e v e r y time E A r o t a t e s through a f i x e d a n g l e . 5.5.2.2 Rate o f P u l s e E m i s s i o n as a F u n c t i o n o f F i e l d Magnitude and Shape F i g u r e 25 shows a p l o t of f B v e r s u s the a p p l i e d e l e c t r i c f i e l d f o r a c i r c u l a r l y p o l a r i z e d f i e l d and a l i n e a r l y p o l a r i z e d f i e l d (which i s g e n e r a t e d by gro u n d i n g the p l a t e s t h a t would n o r m a l l y be connected t o , and V j i n F i g u r e 1 4 ) . As expected, the s t e p s observed i n the l i n e a r f i e l d d i s a p p e a r . The enhancement f a c t o r as d e f i n e d i n S e c t i o n 3.5.2.2 i s 1.67. I t i s o b t a i n e d by t a k i n g the r a t i o o f the s l o p e o f a l i n e c o n s t r u c t e d from the c a l i b r a t i o n c u r v e f o r c i r c u l a r l y p o l a r i z e d f i e l d t o one c o n s t r u c e d from the c a l i b r a t i o n curve f o r a l i n e a r l y p o l a r i z e d f i e l d . For the c i r c u l a r l y p o l a r i z e d f i e l d the l i n e i s the c a l i b r a t i o n c u r v e i t s e l f . F o r the l i n e a r l y p o l a r i z e d f i e l d i t i s the l i n e drawn through the top of the s t e p on the c a l i b r a t i o n c u r v e . The observed enhancement i s c l o s e t o the t h e o r e t i c a l v a l u e ( T T/2) expec t e d f o r E A / E 0 ^ 2 . However t h e enhancement f a c t o r i s observed f o r a l l v a l u e s o f E A above t h r e s h o l d . Furthermore, the t h r e s h o l d f i e l d i s s l i g h t l y lower i n a c i r c u l a r l y p o l a r i z e d f i e l d . T h i s d e s c r e p a n c y between experiment and t h e o r y a t the lower f i e l d s i s p r o b a b l y due t o the assumption t h a t E g i s u n i f o r m . A t h i g h f i e l d s 9 i s s m a l l and and Eg a r e a p p r o x i m a t e l y a n t i p a r a l l e l 10 20 30 40 50 EA' < k v nf1, Rms) F i g u r e 25 P u l s e e m i s s i o n f r e q u e n c y as a f u n c t i o n of a p p l i e d f i e l d (a) l i n e a r f i e l d (b) c i r c u l a r l y p o l a r i z e d f i e l d . 38mm, 1 .5 T o r r Ar^ l e a d g l a s s b u l b . 98 (± a few d e g r e e s ) . F o r t h i s s i t u a t i o n the non u n i f o r m i t y of E B s h o u l d have l i t t l e e f f e c t . However as 9 becomes l a r g e r than 90° (say 120°) n o n - u n i f o r m i t i e s i n Eg can l e a d t o breakdown paths which are not s t r a i g h t and which may be more f a v o u r a b l e than a p a t h a t 9 = 180°. S i n c e t h e r e a r e 180 p u l s e s / s e c a t t h r e s h o l d 9 must be 120 which i s c o n s i s t e n t w i t h the above e x p l a n a t i o n . The same experiment i s r e p e a t e d w i t h p l a n a r r o t a t i n g f i e l d s o f d i f f e r e n t a s p e c t r a t i o s o r r a t i o of semimajor a x i s f i e l d t o semiminor a x i s f i e l d . These f i e l d s are g e n e r a t e d by v a r y i n g the r a t i o o f R 2 i t o R 2 i n the e l e c t r i c c i r c u i t shown i n F i g u r e 14. F i g u r e 26 i s a p l o t o f the r e s u l t s . A g a i n the s t e p s d i s a p p e a r ( p r o g r e s s i v e l y e a r l i e r f o r more rounded e l l i p s e s ) and the h i g h f i e l d enhancement i s v e r y c l o s e t o the t h e o r y ( t h e e l l i p s e c i r c u m f e r e n c e d i v i d e d by 4 E A * ) . However, the s t e p s d i s a p p e a r e a r l i e r than e x p e c t e d from a t h e o r y w i t h u n i f o r m E B (see Appendix I I ) . F o r example, f o r an e l l i p s e o f a s p e c t r a t i o 1:1/2 ( i e . of semimajor a x i s t o semiminor a x i s r a t i o o f 2 ) , the s t e p s s h o u l d d i s a p p e a r n e a r t w i c e t h e t h r e s h o l d (around 24kVm - 1) but they d i s a p p e a r a l m o s t a t t h r e s h o l d ( i e . a t 14kVm - 1). T h i s e f f e c t i s s i m i l a r t o the enhancement observed a t t h r e s h o l d i n the c i r c u l a r l y p o l a r i z e d f i e l d and i s p r o b a b l y a l s o due to the e f f e c t o f non u n i f o r m E B near t h r e s h o l d . These r e s u l t s c o n f i r m the b a s i c t h e o r y o f o p e r a t i o n of a s p h e r i c a l b u l b i n p l a n a r r o t a t i n g f i e l d s w e l l above t h r e s h o l d . They a l s o i n d i c a t e t h a t f o r f i e l d s near t h r e s h o l d the t h e o r y i s not as a c c u r a t e , an o b s e r v a t i o n which i s c o n s i s t e n t w i t h p o s s i b l e e f f e c t s due t o a s p a t i a l l y non u n i f o r m E B . r e c a l l t h a t E A r e p r e s e n t s the semimajor a x i s f i e l d o f the e l l i p t i c a l f i e l d . 99 f R ( H l ) 400 + 300 200 100 + ellipse slope aspect experiment/ ratios theory O O | 1.62/1.57 1-5/1.32 EA' semi major axis (kv m_1) Figure 26 Pulse emission frequency as a function of applied f i e l d magnitude for d i f f e r e n t e l l i p t i c a l l y p o larized f i e l d s . Slopes f o r l i n e s are normalized to the slope of the l i n e through the top of the steps of the c a l i b r a t i o n curve for the li n e a r f i e l d . 38mm, 1.5 Torr Ar lead glass bulb. 100 5.5.2.3 P l a n a r R o t a t i n g F i e l d s and Penning M i x t u r e s T h i s experiment i s i d e n t i c a l t o the p r e v i o u s e x c e p t the Penning b u l b ( S e c t i o n 5.3.2) i s used. L i n e a r f i e l d experiments ( S e c t i o n 5.3.2) r e v e a l e d t h a t a Penning b u l b e x h i b i t s a v e r y l a r g e p u l s e f o l l o w e d by p r o g r e s s i v e l y s m a l l e r and c l o s e r t o g e t h e r p u l s e s i n each s l o p e o f the f i e l d . E x t r a p o l a t i n g t h i s to a c o n t i n u o u s l y i n c r e a s i n g f i e l d ( i e . a ramp) which b a s i c a l l y r e p r e s e n t s a c i r c u l a r l y p o l a r i z e d f i e l d ( i e . the change i n E f t always has the same s i g n and o c c u r s a t a f i x e d r a t e ) one e x p e c t s a c o n t i n u o u s glow ( i e . no p u l s e s ) . The c o n t i n u o u s glow i s m a i n t a i n e d by a c o n t i n u o u s r e p l e n i s h m e n t of the m e t a s t a b l e s t a t e . T h i s r e s u l t i s e x a c t l y what i s observed; no p u l s e s j u s t a weak D.C. l i g h t s i g n a l . 101 5.6 I n v e s t i g a t i o n s of E n g i n e e r i n g Problems Four b a s i c types of experiments have been c a r r i e d out: f i e l d p e r t u r b a t i o n due t o the s e n s o r , meter c a l i b r a t i o n s t a b i l i t y , h u m i d i t y e f f e c t s and temperature e f f e c t s * . 5.6.1 F i e l d P e r t u r b a t i o n The purpose of t h i s experiment i s to f i n d out how c l o s e t o a c o n d u c t o r a b u l b can be brought b e f o r e the f i e l d i s d i s t u r b e d . The experiment i s performed w i t h the 38mm diameter b u l b f i l l e d t o 0.66 T o r r Ne. The a p p l i e d f i e l d i s a 60Hz s i n e wave of v a r i a b l e s t r e n g t h . C a l i b r a t i o n c u r v e s ( f B v e r s u s E A ) are o b t a i n e d as a f u n c t i o n of the d i s t a n c e , L, t o one of the p l a t e s used i n the c a p a c i t o r . I t i s found t h a t as the b u l b i s brought c l o s e r t o the p l a t e the count r a t e (fg) i n c r e a s e s f o r a c o n s t a n t a p p l i e d f i e l d magnitude. F i g u r e 27 shows the c o u n t r a t e as a f u n c t i o n of d i s t a n c e from the p l a t e . The maximum e f f e c t ( t o u c h i n g the p l a t e ) i s a 20% enhancement i n the count r a t e . A t d i s t a n c e s g r e a t e r than one b u l b r a d i u s t h e r e i s no e f f e c t . Thus the s e n s o r i n f l u e n c e s the measurement of the f i e l d up t o a d i s t a n c e of one r a d i u s away from a p l a n a r c o n d u c t o r . the a u t h o r d i d not p a r t i c i p a t e i n these temperature e x p e r i m e n t s . 102 F i g u r e 27 Response of Bulb Near one P l a t e o f a C a p a c i t o r . D = b u l b diameter; C Q = counts a t l a r g e d i s t a n c e from p l a t e . 103 5.6.2 Meter C a l i b r a t i o n S t a b i l i t y A s e t of s m a l l p l a t e s i d e n t i c a l t o the l a r g e ones was c o n s t r u c t e d and p l a c e d o u t s i d e the l a b o r a t o r y and s h i e l d e d from the d i r e c t r a i n . The c o u n t r a t e f o r d i f f e r e n t b u l b s a t f i x e d f i e l d was monitored over the summer months. A t y p i c a l r e s u l t i s shown i n F i g u r e 28. The v a r i a t i o n i s l e s s than 3%. Experiments such as these demonstrate t h a t b u l b s produce r e l i a b l e r e s u l t s and remain c a l i b r a t e d f o r months. 5.6.3 Humidity E f f e c t s T h i s experiment i s performed w i t h a 25mm diameter pyrex b u l b f i l l e d w i t h .5 T o r r of neon. The a p p l i e d f i e l d i s a 60Hz waveform whose am p l i t u d e can be v a r i e d . R e l a t i v e h u m i d i t i e s up t o v a l u e s of 95% can be o b t a i n e d by d i r e c t i n g the a i r from a h u m i d i f i e r on to the b u l b . Higher r e l a t i v e h u m i d i t i e s can be o b t a i n e d by b r e a t h i n g on the b u l b . The o p e r a t i o n of the s e n s o r r e q u i r e s t h a t the a p p l i e d f i e l d p e n e t r a t e the b u l b m a t e r i a l . As the h u m i d i t y i n c r e a s e s the g l a s s c o n d u c t i v i t y i n c r e a s e s and the a p p l i e d f i e l d i s s c r e e n e d from the gas. The e f f e c t can e a s i l y be observed by m o n i t o r i n g p u l s e e m i s s i o n w h i l e b r e a t h i n g on the b u l b . A soon as the g l a s s s u r f a c e i s fogged w i t h the condensed water vapour, p u l s e e m i s s i o n s t o p s a l t o g e t h e r ; as the water e v a p o r a t e s p u l s e e m i s s i o n r e t u r n s t o normal. C o n t r o l l e d experiments are h a r d t o do i n the l a b o r a t o r y due t o water c o n d e n s a t i o n on the p l a t e s . However two c o n c l u s i o n can be r e a c h e d : (1) As the h u m i d i t y i n c r e a s e s the p u l s e r a t e d e c r e a s e s s l o w l y a t f i r s t and then r a p i d l y f o r r e l a t i v e 105 h u m i d i t i e s above 95%; the e f f e c t i s s t r o n g l y dependent- on how c l e a n the b u l b i s . (2) Encasement of the b u l b i n a h y d r o p h o b i c m a t e r i a l such as t e f l o n p r o v i d e s f o r r e l i a b l e o p e r a t i o n a t r e l a t i v e h u m i d i t i e s o f a t l e a s t 95% B r e a t h i n g on the t e f l o n h o l d e r has no e f f e c t . F i e l d t r i a l s i n l i g h t r a i n were a l s o s a t i s f a c t o r y . 5.6.4 Temperature E f f e c t s ( P r e l i m i n a r y R e s u l t s ) T h i s experiment i s performed by f l o w i n g d r y a i r o f v a r y i n g temperature (-40°C t o 40°C) around the b u l b . The b u l b i s mounted i n a p l e x i g l a s s box to p r e v e n t c o n d e n s a t i o n from o c c u r r i n g a t low t e m p e r a t u r e s . From 0°C t o 40°C no e f f e c t i s o b s e r v e d . However from -40° t o 0° d r a m a t i c changes are seen. Furthermore these changes are d i f f e r e n t f o r d i f f e r e n t b u l b s . R e s u l t s i n t h i s range a r e t h e r e f o r e s t i l l v e r y i n c o n c l u s i v e and f u r t h e r work i s r e q u i r e d . 106 5.7 F i e l d T e s t s The meter has been f i e l d t e s t e d a t v a r i o u s times under t r a n s m i s s i o n l i n e s (265kV t o 765kV), i n s u b s t a t i o n s and i n h i g h v o l t a g e l a b o r a t o r i e s . The purpose of these t e s t s has been t o c o n f i r m meter o p e r a t i o n (mainly the d e t e c t o r ) i n nois y e l e c t r i c a l e n v ironments. A l t h o u g h i n i t i a l p r o t o t y p e s r e v e a l e d problems w i t h d e t e c t o r s h i e l d i n g and o p t i c a l f i b r e c o n d u c t i v i t y - the p r o t o t y p e d e s c r i b e d here has worked v e r y w e l l . Because o f the s m a l l f i e l d p e r t u r b a t i o n and s i z e o f the GEM senso r i t has been p o s s i b l e t o measure enhancement f a c t o r s around the human body. The enhancement i s about two when the senso r i s p l a c e d i n the s h i r t p o c k e t and the pe r s o n stands e r e c t . When the senso r i s p l a c e d on the head the enhancement ranges between 6 and 10 depending on the person and the e x a c t p o s i t i o n . These r e s u l t s are c o n s i s t a n t w i t h Deno's 8 t h e o r e t i c a l c a l c u l a t i o n s . O t h e r measurements have i n c l u d e d the mapping o f the e l e c t r i c f i e l d under t r a n s m i s s i o n l i n e s . F i g u r e 29 shows a p l o t o b t a i n e d by w a l k i n g under a 500kV t r a n s m i s s i o n l i n e w i t h a GEM f i t t e d w i t h a 100mm l o n g c y l i n d r i c a l s e n s o r . The g e n e r a l shape o f the curve i s as e x p e c t e d . A c t u a l f i e l d magnitudes a r e har d t o compare t o t h e o r y because the h e i g h t of t h e c o n d u c t o r s v a r i e s g r e a t l y from p l a c e t o p l a c e and the b u l b r e a d i n g i s enhanced by the o b s e r v e r . 107 10 20 30 40 distance (m) F i g u r e 29 E l e c t r i c F i e l d Under a T y p i c a l 500kV L i n e O b t a i n e d With a 100mm Long C y l i n d r i c a l Sensor About 2m Above the Ground. 108 5.8 Summary T h i s s e c t i o n has summarized experiments performed to d e v e l o p GEM and the p h y s i c a l model f o r i t s s e n s o r . R e s u l t s show t h a t the p h y s i c a l model makes p r e d i c t i o n s which are i n good agreement w i t h e x p e r i m e n t a l r e s u l t s . However, some d i s c r e p a n c i e s are observed i n p l a n a r r o t a t i n g f i e l d s near t h r e s h o l d . These d i s c r e p a n c e i s are l i k e l y due t o the erroneous b a s i c assumption o f a u n i f o r m Eg. R e s u l t s a l s o shows the GEM meter o p e r a t e s r e l i a b l y i n t y p i c a l e n v i r o n m e n t a l e l e c t r i c f i e l d s . However temperature e f f e c t s o b s e r v e d below f r e e z i n g are not u n d e r s t o o d . 109 6.0 Summary and C o n c l u s i o n s Adverse h e a l t h e f f e c t s r e s u l t i n g from exposure t o h i g h e l e c t r i c f i e l d s i n the v i c i n i t y o f overhead t r a n s m i s s i o n l i n e s and s w i t c h y a r d s are now a matter of c o n s i d e r a b l e p u b l i c c o n c e r n . In a d d i t i o n d i r e c t a c c i d e n t s r e s u l t i n g from heavy equipment ( i e . c r anes) coming i n t o c o n t a c t w i t h power l i n e s are on the i n c r e a s e . E x i s t i n g e l e c t r i c f i e l d meters are not i d e a l f o r s t u d y i n g and m o n i t o r i n g e n v i r o n m e n t a l e l e c t r i c f i e l d s . The meters measure the i n d u c e d charge or c u r r e n t between metal e l e c t r o d e s . As such the s e n s o r s a r e m e t a l l i c , d i r e c t i o n a l l y s e n s i t i v e and i n most cases (where the e l e c t r o n i c s i s housed w i t h the e l e c t r o d e s ) l a r g e and heavy. T h i s t h e s i s d e s c r i b e s an e l e c t r i c f i e l d meter based on a d i f f e r e n t p r i n c i p l e : e l e c t r o d e l e s s breakdown of gases i n i n s u l a t i n g v e s s e l s . T h i s p r i n c i p l e a l l o w s the c o n s t r u c t i o n of a meter w i t h the sensor and d e t e c t o r s e p a r a t e d by an o p t i c a l f i b r e . The s e n s o r c o n s i s t s of a g l a s s s h e l l f i l l e d w i t h gas. As such the meter has the f o l l o w i n g advantages: 1. i t i s v e r y l i g h t and s m a l l ; 2. i t i s s p a t i a l l y i s o t r o p i c or d i r e c t i o n a l l y s e n s i t i v e (as d e s i r e d ) ; 3. i t has no m e t a l or c o n d u c t i n g p a r t s w i t h i n an a r b i t r a r y d i s t a n c e from the s e n s o r . The d i s t a n c e i s s e t by the o p t i c a l f i b r e l e n g t h and 4. i t remains c a l i b r a t e d f o r l o n g p e r i o d s of time ( e s s e n t i a l l y because i t uses a d i g i t a l s i g n a l ) and i s not a d v e r s e l y a f f e c t e d by e l e c t r i c a l n o i s e . 110 Two types of se n s o r s have been s t u d i e d i n d e t a i l : a s p h e r i c a l b u l b and a c y l i n d r i c a l tube. The s p h e r i c a l b u l b has a s p a t i a l l y i s o t r o p i c s e n s i t i v i t y t o the e l e c t r i c f i e l d s . For s u f f i c i e n t l y s m a l l harmonic d i s t o r t i o n , i t responds o n l y t o the fundamental f r e q u e n c y component of the a p p l i e d f i e l d . The response a l s o depends on the p o l a r i z a t i o n of the f i e l d . A c y l i n d r i c a l b u l b responds t o the component o f the e l e c t r i c f i e l d a l o n g i t s a x i s i r r e s p e c t i v e of f i e l d p o l a r i z a t i o n , and measures the g r e a t e s t f i e l d s t r e n g t h a l o n g t h a t d i r e c t i o n . By s u i t a b l y s e l e c t i n g the t h r e s h o l d f i e l d of the tube, one can d i s c r i m i n a t e e n t i r e l y a g a i n s t f i e l d components which are normal t o the t u b e - a x i s . A meter f i t t e d w i t h a c y l i n d r i c a l tube i s most s u i t a b l e f o r a c c u r a t e l y measuring components of the e l e c t r i c f i e l d and thus f u l l y c h a r a c t e r i z i n g the f i e l d . A meter f i t t e d w i t h a s p h e r i c a l b u l b , on the o t h e r hand, i s b e s t s u i t e d f o r l e s s a c c u r a t e a p p l i c a t i o n s i n which c a r e f u l o r i e n t a t i o n o f the sensor i s not p o s s i b l e . The measurement p r o v i d e d by the s p h e r i c a l b u l b i s dependent both on the magnitude and the geometry of the f i e l d . Thus i t does not u n i q u e l y c h a r a c t e r i z e the f i e l d . For e i t h e r type o f senso r t h e r e i s a t h r e s h o l d below which the e l e c t r i c f i e l d cannot be d e t e c t e d . The t h r e s h o l d depends on the type of gas and the b u l b d i m e n s i o n . F o r a g i v e n type o f gas a l a r g e r b u l b has a lower t h r e s h o l d . T h i s p r o p e r t y , a l t h o u g h v e r y advantageous f o r t h r e s h o l d c o n t r o l , i s the main l i m i t a t i o n on the meter. A r e a s o n a b l e s i z e sensor (40mm b u l b d i a m e t e r ) has a t h r e s h o l d o f about 10kV/m. T h i s f i e l d i s s l i g h t l y h i g h e r than t y p i c a l u n p e r t u r b e d f i e l d s found a t ground l e v e l near power l i n e s and s w i t c h y a r d s . Thus t o measure these low f i e l d s a l a r g e r s e n s o r i s r e q u i r e d . On the o t h e r hand v e r y s m a l l b u l b s (a few m i l l i m e t e r s ) can be made and even though they have a v e r y l a r g e t h r e s h o l d they can be used i n unique s i t u a t i o n s as d i s c u s s e d l a t e r on. 111 A l t h o u g h the b a s i c t h e o r y of e l e c t r o d e l e s s breakdown was de v e l o p e d by H a r r i e s and von E n g e l based on Townsend's work t h i s t h e s i s extends t h e i r work both i n t o more b a s i c p h y s i c s and e n g i n e e r i n g a s p e c t s . The s t u d y of e l e c t r o d e l e s s breakdown had been c o n f i n e d t o the b a s i c e x p l a n a t i o n of why c u r r e n t p u l s e s o c c u r when the gas i s exposed to an e l e c t r i c f i e l d . T h i s t h e s i s extends the b a s i c p h y s i c s t o a t h e o r e t i c a l e x p l a n a t i o n o f : 1. the r e l a t i o n between the f r e q u e n c y of l i g h t p u l s e s (fg) and the a p p l i e d f i e l d ( E A ) ; 2. the e f f e c t of gas p r e s s u r e on f B v e r s u s E A ; 3 . the dependence o f f B on E A i n e l l i p t i c a l l y p o l a r i z e d f i e l d s r a n g i n g from l i n e a r t o c i r c u l a r p o l a r i z a t i o n ; 4 . the e f f e c t s o f the geometry and o r i e n t a t i o n of b u l b s on the dependence of f B on E A ; 5 . the e f f e c t s o f harmonics on f B v e r s u s E A and 6. the breakdown e f f e c t i n Penning m i x t u r e s . T h i s t h e s i s a l s o p r e s e n t s many new e n g i n e e r i n g r e s u l t s : 1. e n v i r o n m e n t a l e f f e c t s on the performance of the s e n s o r and meter; 2. l i f e t i m e and s t a b i l i t y of the meter; 3 . meter d e s i g n to reduce e l e c t r i c a l n o i s e and p r o t e c t the sensor a g a i n s t e n v i r o n m e n t a l e f f e c t s and h a n d l i n g and 4 . the i n f l u e n c e o f the s e n s o r on the f i e l d b e i n g measured. Even w i t h a l l these e x t e n s i o n s much work remains t o be done both on the s t u d y of the phenomena and on meter d e s i g n . There a r e a t l e a s t t h r e e a r e a s o f the b a s i c phenomena t h a t r e q u i r e f u r t h e r s t u d y : b u l b c o n s t r u c t i o n , temperature e f f e c t s and o p e r a t i o n i n 112 p l a n a r r o t a t i n g f i e l d s . The f i r s t two a r e a s a r e most l i k e l y r e l a t e d and by f a r the most i m p o r t a n t from a p r a c t i c a l p o i n t of view. A l t h o u g h s i m i l a r b u l b s can be made r o u t i n e l y w i t h a y i e l d r a t e o f about 70% no two b u l b s a r e a l i k e . They have s l i g h t l y d i f f e r e n t t h r e s h o l d s and c a l i b r a t i o n c u r v e s . T h i s i s a problem i n the commercial e x p l o i t a t i o n o f the meter, because each b u l b must be c a l i b r a t e d and each d e t e c t o r a d j u s t e d t o the b u l b ( i e . the mean p u l s e h e i g h t i s d i f f e r e n t f o r d i f f e r e n t b u l b s ) . Temperature e f f e c t s below f r e e z i n g a r e a l s o n o t y e t u n d e r s t o o d . I t i s p r e s e n t l y b e l i e v e d t h a t they are due t o the a d s o r p t i o n o f i m p u r i t i e s a t low t e m p e r a t u r e s . I f t h i s i s the case r e p r o d u c i b l e b u l b s w i t h no temperature e f f e c t s c o u l d be produced by p r o p e r c o n t r o l o f i m p u r i t i e s d u r i n g manufacture. F i n a l l y , a r i g o r o u s q u a n t i t a t i v e model f o r the o p e r a t i o n o f s p h e r i c a l b u l b s i n p l a n n a r r o t a t i n g f i e l d s c o u l d be d e v e l o p e d . The main problem here i s u n d e r s t a n d i n g the form of the non u n i f o r m i n t e r n a l b u l b f i e l d Eg. However, t h i s more r i g o r o u s model may have l i t t l e p r a c t i c a l a p p l i c a t i o n . With p r e s e n t u n d e r s t a n d i n g i t i s c l e a r t h a t s p h e r i c a l b u l b s w i l l need t o be c a l i b r a t e d f o r each f i e l d geometry. F u t u r e work on meter d e s i g n w i l l be g u i d e d by market developments. The p r e s e n t p r o t o t y p e which c o n s i s t s o f a t y p i c a l s i z e s e n s o r (40mm) s e p a r a t e d by an o p t i c a l f i b r e from the d e t e c t o r i s w e l l s u i t e d f o r d e m o n s t r a t i o n s and f i e l d t e s t s . However, the d e s i g n must be m o d i f i e d f o r s p e c i f i c a p p l i c a t i o n s . The main parameters t h a t can be changed a r e : the s e n s o r dimensions ( k e e p i n g i n mind the e f f e c t on t h r e s h o l d ) and geometry, the f i b r e l e n g t h ( i n c l u d i n g z e r o l e n g t h or no f i b r e ) and the d e t e c t o r s i z e ( i f m i n i a t u r i z a t i o n i s d e s i r e d ) and t y p e . Making these changes may be h a r d e r than a p p a r e n t . For example a v e r y s m a l l sensor or a l o n g f i b r e 113 may r e q u i r e d l a r g e r g a i n i n the d e t e c t o r . T a b l e 3 summarizes p o s s i b l e a p p l i c a t i o n s f o r d i f f e r e n t f i b r e l e n g t h s and d e t e c t o r types ( i e . d i f f e r e n t e l e c t r o n i c s f o r c o n v e y i n g the e l e c t r i c f i e l d i n f o r m a t i o n ) . The major a p p l i c a t i o n s are f o r m o n i t o r i n g and warning d e v i c e s . As mentioned b e f o r e one of the major l i m i t a t i o n s i s t h r e s h o l d . However i n most a p p l i c a t i o n s i n which low f i e l d s need t o be measured ( i e . p e r s o n a l warning or m o n i t o r i n g ) the u n p e r t u r b e d (low) f i e l d i s enhanced g r e a t l y by the presence of c o n d u c t i n g o b j e c t s and t h e r e f o r e u s u a l l y d e t e c t a b l e . Other t o t a l l y d i f f e r e n t a p p l i c a t i o n s have r e c e n t l y appeared. These a p p l i c a t i o n s encompass ar e a s of e l e c t r i c f i e l d measurement which cannot be done a t a l l w i t h e x i s t i n g d e v i c e s . These a p p l i c a t i o n s r e q u i r e a v e r y s m a l l (few m i l l i m e t e r s ) non m e t a l l i c sensor ( i e . i n o t h e r a p p l i c a t i o n s m e t a l i s dangerous but can be u s e d ) . One example i s measurement of e l e c t r i c f i e l d s i n s i d e b e e h i v e s (the f i r s t d e v i c e s o l d was f o r t h i s a p p l i c a t i o n ) . Another more p r o m i s i n g a p p l i c a t i o n i s the measurementof f i e l d s i n s i d e ( i n o i l ) l a r g e t r a n s f o r m e r s . These measurements may a s s i s t i n p r e d i c t i n g p o s s i b l e f u t u r e t r a n s f o r m e r m a l f u n c t i o n s d u r i n g t r a n s f o r m e r assembly. 114 T a b l e 3 M e t e r C o n f i g u r a t i o n s a n d A p p l i c a t i o n s ^ v ^ f i b r e ^ \ l e n g t h d e t e c t o r ^ " ^ no f i b r e ( o n e p a c k a g e ) s h o r t f i b r e (< 2 m e t e r s ) l o n g f i b r e ( > 2 m e t e r s ) w a r n i n g d e v i c e P e r s o n a l w a r n i n g d e v i c e ( w orkmen) T e s t i n g v i c i n i t y o f l i v e h i g h t e n s i o n l i n e ( c r a n e o p e r a t o r s , h y d r o r e p a i r -men, e t c . ) d i r e c t r e a d o u t Hand h e l d f i e l d m e a s u r e m e n t d e v i c e ( w o r k m e n , r e s e a r c h e r s , e v a l u a t o r s ) U n p e r t u r b e d a c c u r a t e f i e l d m e a s u r e m e n t L i n e t e s t i n g ( w o r k m e n , r e s e a r c h e r s ) m i c r o -p r o c e s s o r U n s u p e r v i s e d f i e l d m o n i t o r y i n g ( o p e r a t o r s , r e s e a r c h e r s ) P e r s o n a l e x p o s u r e me t e r ( w o r k m e n ) P e r s o n a l e x p o s u r e m e t e r (workmen) U n p e r t u r b e d f i e l d m e e a s u r e m e n t s o v e r l o n g p e r i o d s o f t i m e ( r e s e a r c h e r s , e v a l -u a t o r s ) h i s t o g r a m d e v i c e same a s m i c r o p r o c e s s o r b u t o n l y comp h i s t o g r a m ( i e . no t i m e r e s o l u t i o n ) > i l e s a 115 7.0 R e f e r e n c e s 1. Kronberg H.A., Concern Overhead, EPRI j . , V o l . 5, No. 7, pp 7 - 13, J u n e / J u l y , 1977 2. New York S t a t e P u b l i c S e r v i c e Commission Cases 26529 and 26559 conducted over the p e r i o d 1975 t o 1978, New York S t a t e P u b l i c S e r v i c e Commission (Albany, N.Y.) 3. Banks, R.S., K a n n i a i n e n , CM., and C l a r k , R.D., P u b l i c H e a l t h and S a f e t y E f f e c t s of H i g h - V o l t a g e Overhead T r a n s m i s s i o n L i n e s : An A n a l y s i s f o r the Mines o t a E n v i r o n m e n t a l Q u a l i t y Board, Minesota Department o f H e a l t h , October 1977 4. Presman, A.S., E l e c t r o m a g n e t i c F i e l d s L i f e ( t r a n s l a t e d from R u s s i a n ) 1970, Plenum P r e s s , New York 5. J a n i s c h e w s k y j , W. and Stopps, J.G., "An E p i d e m i o l o g i c a l Study o f P e r s o n n e l Working on ac T r a n s m i s s i o n L i n e s " , Conference o f the CEA, Vancouver, B.C., March, 1979 6. K o t l e r , R.F., M i s o k i a n , M., AC T r a n s m i s s i o n L i n e s F i e l d Measurements, I n s t i t u t e f o r B a s i c S t a n d a r d s , NBS, Washington, D . C , November, 1977 7. " E v a l u a t i o n of P r o x i m i t y Warning D e v i c e s , South-West Research I n s t i t u t e , F e b r u a r y 22, 1980 8. Deno, W.D., C u r r e n t s Induced i n the Human Body by High V o l t a g e T r a n s m i s s i o n L i n e s E l e c t r i c F i e l d - Measurement and C a l c u l a t i o n of D i s t r i b u t i o n and Dose, IEEE T r a n s a c t i o n s on Power Apparatus and Systems, V o l . PAS-96, N.J. September/ Oct o b e r , 1977 9. S p e i g e l , R.J., Kerns, D.R., Cooper, E.H. and Bronaugh, E.L., "A S m a l l , A c c u r a t e , O p t i c a l l y I s o l a t e d E l e c t r i c F i e l d Probe", IEEE PES Summer meeting, Vancouver, B.C., J u l y 15-20, 1979 10. F r a n c i s , G., " I o n i z a t i o n Phenomena i n Gas", B u t t e r w o r t h P u b l i c a t i o n s (London) 1960, pp. 137-172 11. H a r r i e s , W.L. and von E n g e l , A., P r o c . Phys. Soc. B64, 915 (1951) 12. H a r r i e s , W.L., P r o c . I.E.E.E. IIA, 100, 132 - 7 (1953) 13. H a r r i e s , W.L. and von E n g e l , A., P r o c . Roy. Soc. (London) A-222, 490 (1954) 14. Dutton, J . , i n E l e c t r i c a l Breakdown i n Gases, e d i t e d by J.M. Meek and J.D. Craggs (Wiley, New York, 1978), pp. 209-318 116 15. Friedmann, D., Curzon, F.L. and Young, J.F.^ A New E l e c t r i c a l Breakdown Phenomenon! i n g a s - f i l l e d I n s u l a t i n g B u l b s , A p p l . Phys. L e t t 3 8 ( 6 ) , 15 March 1981. (Erratum App. Phys. L e t t . 3 9 ( 8 ) , 15 O c t o b e r 1981) 16. Curzon, F.L., Friedmann, D.E., F e e l e y , M. O r i e n t a t i o n - Dependent E l e c t r o d e l e s s Breakdown o f Gas i n G l a s s Tubes, J o u r n a l of A p p l i e d P h y s i c s (In PressDecember 1982) 17. Friedmann, D.E., Curzon, F.L., F e e l e y , M., Young, J.F., and A u c h i n l e c k , G., An E l e c t r i c F i e l d Meter Based on the Breakdown of Gases, Rev. S c i . I n s t r . 53_, 1273 - 1277, 1982 18. Friedmann, D.E., Curzon, F.L., and F e e l e y , M. E l e c t r o d e l e s s Breadown of Gas i n R o t a t i n g E l e c t r i c F i e l d s a t 60Hz, i n p r e p a r a t i o n f o r s u b m i s s i o n to the Canadian J o u r n a l o f P h y s i c s 19. Young, J . and Friedmann, D.E., E l e c t r i c F i e l d D e t e c t o r , U.S. P a t e n t A p p l i c a t i o n No. 06/142, 815, f i l e d 22 A p r i l 1980 20. Holloway, D.G., "The P h y s i c a l P r o p e r t i e s of G l a s s " , Wykeham P u b l i c a t i o n s (London) L t d . , 1973, C h a p t e r 3. 21. L o r r a i n , P., and Corson, P., " E l e c t r o m a g n e t i c F i e l d s and Waves", San F r a n c i s c o , W.H. Freeman and Co., C h a p t e r 4, F i g u r e 4.22, pg. 169, 1970 22. Da S i l v a , L., "A R o t a t i n g E l e c t r i c F i e l d D e v i c e " , 4 t h year e n g i n e e r i n g p h y s i c s p r o j e c t , UBC, J a n u a r y 4, 1982 23. Jackson, J.D., " C l a s s i c a l E l e c t r o d y n a m i c s " , New York, John W i l e y and Sons, 1975, C h a p t e r 2, pp. 60 - 62 117 APPENDIX I E f f e c t s o f F i n i t e C o n d u c t i v i t y F o r the purposes of t h i s Appendix i t i s assumed t h a t the s p h e r i c a l s h e l l c o n s i s t s of g l a s s i n which s u r f a c e c o n d u c t i o n of l e a c h e d i o n s i n absorbed water i s the main charge t r a n s p o r t m echanism 2 0. T h i s means t h a t the i o n s move as a r e s u l t of the e l e c t r i c f i e l d ( E Q ) t a n g e n t i a l t o the s u r f a c e of the s p h e r e . I t i s a l s o assumed t h a t ohmic c o n d u c t i o n o c c u r s ( i e . v = jj Eg, where v i s the i o n v e l o c i t y , and, g , the m o b i l i t y ) , and t h a t t h e r e i s no net charge on the s p h e re. P o s i t i o n s on the sphere are d e s c r i b e d by r i g h t hand s p h e r i c a l p o l a r c o - o r d i n a t e s a, 9 and <j>. A s p a t i a l l y u n i f o r m o s c i l l a t i n g f i e l d , E A e J ^ t ^ s a p p l i e d a l o n g the z - a x i s of the s h e l l , as shown i n F i g u r e 1^ where ^ i s the f r e q u e n c y , t the time and j 2 = -1. The p o l o i d a l f i e l d EQ i s t h e r e f o r e g i v e n by the e x p r e s s i o n . E e = - E ^ e J ^ t s i n 9 - (1/a)( i v / d 9 ) (1-1) where the p o t e n t i a l V a t p o i n t P ( F i g u r e I ) r e s u l t s from motion o f c h a r g e s o v e r the s u r f a c e of the s h e l l . These charges have a d e n s i t y of S coulombs _ n m so t h a t V s a t i s f i e s the e q u a t i o n , er d £ / 4 T T £ Q R ( I - 2 ) where d £ i s an element of a r e a a t Q ( F i g u r e I ^ R i s the d i s t a n c e from Q to P, and £ 0 i s the p e r m i t t i v i t y of f r e e s p a c e . The domain of i n t e g r a t i o n i s 118 F i g u r e I Geometry of the c o n d u c t i n g s h e l l i n the a p p l i e d f i e l d ( E A ) . 119 s u r f a c e of the s h e l l . Change c o n s e r v a t i o n r e q u i r e s t h a t s a t i s f y the f o l l o w i n g e q u a t i o n : a - T L s i n 9(2<s/£t) + o ( E Q s i n 9)/^9 = 0 (1-3) where -TL. i s the r e s i s t a n c e of the s h e l l i n ohms per s q u a r e . U s i n g t h i s e q u a t i o n t o e l i m i n a t e 6 from (1-2) en a b l e s V t o be e x p r e s s e d i n terms o f Eg as f o l l o w s : "cW/^t = - ^(4TT6 0aR JL s i n 9 ) _ 1 $ E e s i n 9/<j9)d£ (1-4) By d i f f e r e n t i a t i n g (1-1 ) w i t h r e s p e c t t o time ^ V / ^ t can be e l i m i n a t e d from (1-1) and (1-4) t o y i e l d an i n t e g r a l e q u a t i o n f o r Eg, namely; ^E e/3t = - j W E A e J w t s i n 9 + (a/^Q) ( K d £ (1-5) where K = (4TTa 2£ 0 R j l s i n 9 ) _ 1 ( o E e s i n 9 / ^ 9 ) (1-6) To s o l v e the e q u a t i o n we w r i t e E 9 = ^ . E A ( s i n 9 ) e 3 ^ t ( I _ 7 ) where ^ i s a c o n s t a n t which i s t o be de t e r m i n e d . With t h i s assumption e q u a t i o n (1-5) becomes s i n 9 = - s i n 9 + ^ 9 \ (2TJjwa 2c" 0 R J U - 1 cV(cos 9 ) d £ (1-8) 120 The i n t e g r a l can be e v a l u a t e d by n o t i n g t h a t i t i s r e l a t e d t o the p o l o i d a l f i e l d E Q produced by a s u r f a c e charge d e n s i t y fi' o f the f o r m s ' = c cos 9. From J a c k s o n ' s s o l u t i o n 2 3 t o the problem r e g a r d i n g the e f f e c t o f a c o n s t a n t f i e l d a p p l i e d to a c o n d u c t i n g sphere, i t i s r e a d i l y shown t h a t E Q = -(^/<J9) j c ( c o s 9) d£/4TT£ 0 aR = (c sin9/3£. Q) (1-9) Comparing the i n t e g r a n d s i n (1-8) and (1-9) i t i s apparent t h a t e q u a t i o n (1-8) can be w r i t t e n as otsin 9= -sine -2<*. s i n 9 / 3 j a f Q JL (1-10) Hence o( = -1 [1 - j (w'/V)]- 1 (1-11 ) where v/v' = 2 / ( 3 a f 0 A ) (1-12) U s i n g (1-17), (1-11) and (1-3) shows t h a t the s u r f a c e charge d e n s i t y £> i s g i v e n by the e q u a t i o n , € = 2 E A ( c o s 9) eJwt/laSL ( j v ^ + v V ) ] (1-13) Again h a v i n g r e c o u r s e t o Jackson's book i t i s r e a d i l y shown t h a t t h i s s u r f a c e charge produces a u n i f o r m f i e l d E Q i n i t s i n t e r i o r g i v e n by the e q u a t i o n s : 121 Ej, = -w,EAke>t/(Jw+w') (1-14) where k i s a u n i t v e c t o r a l o n g the z - a x i s ( F i g u r e 1-1). Hence the t o t a l a p p l i e d f i e l d i n s i d e the s h e l l ( E T ) i s E T = Ec + E^ = j v j E A e D w t + jw) (1-15) F o r a f i e l d of s t r e n g t h E A , s w i t c h e d on a t time t = 0 i t i s r e a d i l y shown t h a t f o r t > 0 E T = E A e ~ w ' t (1-16) E q u a t i o n (1-15) shows t h a t i s a t t e n u a t e d by the c o n d u c t i n g s h e l l ( E T = E A [ 1 + ( W ' / w ) 2 ] - 1 / 2 ) and i s a l s o phase s h i f t e d by an angle <J> where t a n <)>= (VJ'/W). F o r the case of i n t e r e s t ( w ' « w ) , o n l y the phase s h i f t i s s i g n i f i c a n t . 122 APPENDIX I I Rate of P u l s e E m i s s i o n i n P l a n a r R o t a t i n g F i e l d s In a l i n e a r l y p o l a r i z e d f i e l d (an e l l i p t i c a l f i e l d w i t h u n i t e c c e n t r i c i t y ) the b u l b obeys r e l a t i o n ( 2 ) . In e l l i p t i c a l or c i r c u l a r l y p o l a r i z e d f i e l d however i t i s n e c e s s a r y t o extend the b a s i c t h e o r y . Assuming the b a s i c phenomena remains the same and t h a t the i n t e r n a l f i e l d (Eg) i n the b u l b caused by charge s e p a r a t i o n i s u n i f o r m , then a new breakdown s t i l l o c c u r s e v e r y time the a p p l i e d f i e l d changes by E Q , however the a d d i t i o n o f the f i e l d s i s now v e c t o r i a l . For breakdown one must have \EA + Egl = E 0 ( I I - 2 ) To p r o c e e d f u r t h e r i t i s assumed t h a t the phasors f o r E A (and Eg) are e l l i p t i c a l w i t h major a x i s E A = Y E 0 , ( I I - 3 ) and minor a x i s , e E A = e Y E 0 (n-4) where Y i s a f a c t o r which determines the r a t i o o f the a p p l i e d f i e l d a m p l i t u d e E A , t o the breakdown v o l t a g e of the gas. F o r V O , breakdown does not o c c u r . With these v a r i a b l e s the f i e l d s can be d e s c r i b e d p a r a m e t r i c a l l y by the a n g l e s , A and B and the e q u a t i o n s 123 Eft. = ^ E D ( ( & s i n A) i _ + (cos A ) _ ) — ( I I - 5 ) E__= - r E Q ( ( f s i n B)_i + (cos B)j_ where i i s a u n i t v e c t o r a l o n g the minor a x i s of the phasor and j i s a u n i t v e c t o r a l o n g the c o r r e s p o n d i n g major a x i s . I t f o l l o w s from e q u a t i o n s ( I I -5) t h a t the magnitude of E A + Eg i s g i v e n by the e x p r e s s i o n |EA + E R | 2 = y 2 E 2 (£ 2(sin A - s i n B ) 2 + (cos A - cos B ) 2 ) S i n c e | E ^ + E_| = E Q a t breakdown i t f o l l o w s from the above r e s u l t t h a t , a t breakdown, B s a t i s f i e s the e q u a t i o n (1/2r) = s i n ( (A-B)/2) [ (1-£ 2)sin ( ( A + B ) /2 ) + £ 2 ] 1 / 2 ( I I - 6 ) F o r B =0 ( l i n e a r l y p o l a r i z e d f i e l d s ) the above e q u a t i o n reduces t o the form 1=V(cos B - cos A ) , or E A ( c o s B - cos A ) = E Q ( I I - 7 ) S i n c e E A cos B and E A cos A are the components of the f i e l d s a l o n g the major a x i s o f the e l l i p s e , e q u a t i o n ( I I - 7 ) i s c o n s i s t e n t w i t h e q u a t i o n ( I I - 1 ) . For p, =1 ( c i r c u l a r p o l a r i z a t i o n ) e q u a t i o n ( I I - 6 ) a l s o has the s i m p l e s o l u t i o n (1/2V) = s i n ( ( A - B ) / 2 ) ( I I - 8 ) The a n g l e through which E A r o t a t e s between s u c c e s s i v e breakdowns i s however, A - B . I t t h e r e f o r e f o l l o w s t h a t the number of breakdowns per c y c l e , f g , i s 2 T T f A / ( A - B ) o r , 124 f B = T T f A / s i n 1 (1/2Y) " ( I I - 9 ) Comparing t h i s r e s u l t w i t h e q u a t i o n (Il - I) shows t h a t , f o r s t r o n g f i e l d s (Y>^ > 1) the breakdowns per c y c l e i s i n c r e a s e d i n g o i n g from l i n e a r t o c i r c u l a r p o l a r i z a t i o n f o r f i e l d s o f c o n s t a n t a m p l i t u d e . In f a c t , as Y a o f c / f L - + T T / 2 (11-10) where f c and f L and the r e s p e c t i v e number of breakdowns per second i n c i r c u l a r l y and l i n e a r l y p o l a r i z e d f i e l d s a t the same f i e l d s t r e n g t h s . F o r more g e n e r a l cases of e l l i p t i c a l p o l a r i z a t i o n , e q u a t i o n ( I I - 6 ) can be reduced to a q u a r t i c e q u a t i o n f o r B, and has e i t h e r 0, 2 o r 4 r e a l s o l u t i o n s . For s u c c e s s i v e breakdowns B i s the s m a l l e s t r e a l s o l u t i o n which exceeds A. In the l i m i t i n g case of v e r y s t r o n g f i e l d s E Q becomes an element o f a r c l e n g t h of the ph a s o r . Hence the enhancement r a t i o r e s u l t i n g from the e l l i p t i c a l f i e l d becomes f E / f L = E(m., ) (II-11 ) where f E i s the f r e q u e n c y o f breakdown i n the e l l i p t i c a l l y p o l a r i z e d f i e l d and E(m 1) i s an e l l i p t i c i n t e g r a l o f the second k i n d , w i t h m^  = 1 - £ 2 # T h i s r e s u l t i s analogous t o t h a t o b t a i n e d f o r a c i r c u l a r l y p o l a r i z e d f i e l d . For an e l l i p s e E(m 1) i s the l e n g t h o f a quadrant o f the e l l i p t i c a l p h asor. For the c i r c u l a r p o l a r i z a t i o n m1 = 1 and E(1) =T/2 as e x p e c t e d . To g a i n more i n s i g h t c o n c e r n i n g the e f f e c t s o f cha n g i n g the p o l a r i z a t i o n o f the f i e l d e q u a t i o n (lI-6) has been s o l v e d i t e r a t i v e l y w i t h a computer. The c a l c u l a t i o n i s begun by s e l e c t i n g £ , Y a n d an i n i t i a l v a l u e o f B (B 1 s a y ) . A s o l u t i o n i s 125 o b t a i n e d f o r A (A-|), and B i s then r e s e t t o the v a l u e A-| . .The p r o c e s s i s r e p e a t e d f o r twenty s u c c e s s i v e breakdowns. The angle (j>(n) between the b u l b f i e l d ( E B ) and the _ - a x i s ( F i g u r e 6) i s then e v a l u a t e d on the nth i t e r a t i o n u s i n g the r e s u l t <)>(n) = a r c t a n (p t a n B n) (11-12) The average angle <}> through which Ej^ r o t a t e s f o r breakdown i s then g i v e n by $ = (<}>(20)-A1 )/20 (11-13) and the s t a n d a r d d e v i a t i o n , 6 , by the e x p r e s s i o n 20 g- 2 = ^ (<|)(n)-$) 2/20. (11-14) j=1 (The s t a n d a r d d e v i a t i o n g i v e s i n f o r m a t i o n on the v a r i a b i l i t y i n the time i n t e r v a l between breakdowns). The number o f breakdowns per second i s thus f B = 2Trf A/<f (11-15) F i g u r e I I shows graphs o f f B f o r 0 = 1, .66, .5, 0.33 and 0. The s i g n i f i c a n t f e a t u r e s of the response c u r v e s are as f o l l o w s : 1. a s p i n c r e a s e s from 0 ( l i n e a r p o l a r i z a t i o n ) t o 1 ( c i r c u l a r p o l a r i z a t i o n ) the graphs become p r o g r e s s i v e l y l e s s "stepped" i n form; 2. the graphs become smoother a t s u c c e s s i v e l y l a r g e r v a l u e s of as p i s d e c r e a s e d ; 126 400 300 I 200 100 1 H \-1 2 F i g u r e I I P u l s e E m i s s i o n as a F u n c t i o n of N o r m a l i z e d A p p l i e d F i e l d Magnitude f o r D i f f e r e n t E l l i p t i c a l l y P o l a r i z e d F i e l d s . T h e o r e t i c a l R e s u l t Assuming Eg i s u n i f o r m . Compare w i t h F i g u r e 26. 127 3. t h e c u r v e s a l l s t a r t a t t h e same p o i n t ( i e . t h e t h r e s h o l d f i e l d s t r e n g t h , a n d b r e a k d o w n f r e q u e n c y a t t h r e s h o l d a r e i n d e p e n d e n t o f p o l a r i z a t i o n ) ; 4 . a t h i g h f i e l d s t r e n g t h s , t h e r e s p o n s e c u r v e s a r e a s y m p t o t i c t o s t r a i g h t l i n e s w h i c h p a s s t h r o u g h t h e o r i g i n s . The m o d e l a l s o shows t h a t t h e b r e a k d o w n f r e q u e n c y a t l a r g e f i e l d s i s e n h a n c e d b y a f a c t o r f E / f L , i n c o m p a r i s o n t o t h e v a l u e o f f g o b s e r v e d w i t h l i n e a r l y p o l a r i z e d f i e l d s . The l a r g e s t e n h a n c e m e n t i s TJ/2 a n d o c c u r s i n t h e c a s e o f c i r c u l a r p o l a r i z a t i o n . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0074526/manifest

Comment

Related Items