UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A decision support system for real-time hydropower scheduling in a competitive power market environment Shawwash, Ziad K. Elias 2000

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
ubc_2000-487105.pdf [ 18.79MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0064007.json
JSON-LD: 1.0064007+ld.json
RDF/XML (Pretty): 1.0064007.xml
RDF/JSON: 1.0064007+rdf.json
Turtle: 1.0064007+rdf-turtle.txt
N-Triples: 1.0064007+rdf-ntriples.txt
Original Record: 1.0064007 +original-record.json
Full Text
1.0064007.txt
Citation
1.0064007.ris

Full Text

A DECISION SUPPORT SYSTEM FOR REAL-TIME HYDROPOWER SCHEDULING IN A COMPETITIVE P O W E R  M A R K E T  ENVIRONMENT  by Z i a d K. Elias S h a w w a s h B.Sc, N e w England College, 1982 M.A.Sc., T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1 9 9 5 A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty o f Graduate Studies Department o f Civil Engineering W e a c c e p t this thesis as c o n f o r m i n g to t h e r e q u i r e d s t a n d a r d  The^University of British Columbia February, 2 0 0 0 © Z i a d K. S h a w w a s h , 2 0 0 0  In p r e s e n t i n g this t h e s i s i n partial f u l f i l m e n t o f the r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree that the L i b r a r y s h a l l m a k e it f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d study. I f u r t h e r a g r e e that p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f this t h e s i s f o r s c h o l a r l y p u r p o s e s m a y be g r a n t e d b y t h e h e a d o f m y d e p a r t m e n t o r b y h i s o r h e r r e p r e s e n t a t i v e s . It i s u n d e r s t o o d that c o p y i n g o r p u b l i c a t i o n o f this t h e s i s f o r financial gain shall not be allowed without my written permission.  Department of Civil Engineering The University of British Columbia Vancouver, Canada Date F e b r u a r y ^ 2000  A Decision Support System for Real-time Hydropower Scheduling in a Competitive Power Market Environment  ABSTRACT  T h e electricity supply market i s rapidly changing f r o m a monopolistic to a competitive e n v i r o n m e n t . B e i n g a b l e t o o p e r a t e their s y s t e m o f r e s e r v o i r s a n d g e n e r a t i n g f a c i l i t i e s t o g e t m a x i m u m b e n e f i t s o u t o f e x i s t i n g assets a n d r e s o u r c e s is i m p o r t a n t t o t h e B r i t i s h C o l u m b i a H y d r o A u t h o r i t y (B.C. H y d r o ) . A d e c i s i o n s u p p o r t s y s t e m h a s b e e n d e v e l o p e d t o h e l p B . C . H y d r o o p e r a t e their s y s t e m i n a n o p t i m a l w a y . T h e s y s t e m i s o p e r a t i o n a l a n d is o n e o f t h e t o o l s that a r e c u r r e n t l y u s e d b y t h e B . C . H y d r o s y s t e m o p e r a t i o n s e n g i n e e r s t o d e t e r m i n e o p t i m a l s c h e d u l e s that m e e t t h e h o u r l y d o m e s t i c l o a d a n d a l s o m a x i m i z e t h e v a l u e B . C . H y d r o o b t a i n s f r o m s p o t t r a n s a c t i o n s i n the W e s t e r n U.S. a n d A l b e r t a e l e c t r i c i t y markets. T h i s dissertation describes the development  and implementation o f the decision support  system i n production mode. T h e decision support system consists o f six components: the input data preparation routines, the graphical user interface (GUI), the  communication  protocols, the hydraulic simulation model, the optimization model, a n d the results display software. A m a j o r part o f this w o r k i n v o l v e d the d e v e l o p m e n t a n d i m p l e m e n t a t i o n o f a p r a c t i c a l a n d d e t a i l e d l a r g e - s c a l e o p t i m i z a t i o n m o d e l that d e t e r m i n e s t h e o p t i m a l t r a d e o f f b e t w e e n t h e long-term value o f water a n d the returns f r o m spot trading transactions i n real-time o p e r a t i o n s . T h e p o s t m o r t e m - t e s t i n g p h a s e s h o w e d that t h e g a i n s i n v a l u e f r o m u s i n g t h e m o d e l accounted for 0 . 2 5 % to 1.0% o f the revenues obtained. T h e financial returns f r o m u s i n g the d e c i s i o n s u p p o r t s y s t e m g r e a t l y o u t w e i g h the c o s t s o f b u i l d i n g i t . O t h e r b e n e f i t s a r e the s a v i n g s i n t h e t i m e n e e d e d t o p r e p a r e t h e g e n e r a t i o n a n d t r a d i n g s c h e d u l e s . T h e s y s t e m o p e r a t i o n s e n g i n e e r s n o w c a n u s e the t i m e s a v e d t o f o c u s o n o t h e r i m p o r t a n t a s p e c t s o f their j o b . T h e o p e r a t o r s are c u r r e n t l y e x p e r i m e n t i n g w i t h t h e s y s t e m i n p r o d u c t i o n m o d e , a n d a r e g r a d u a l l y g a i n i n g c o n f i d e n c e that the a d v i c e i t p r o v i d e s is a c c u r a t e , r e l i a b l e a n d s e n s i b l e . T h e m a i n l e s s o n l e a r n e d f r o m d e v e l o p i n g a n d i m p l e m e n t i n g t h e s y s t e m w a s that there i s n o a l t e r n a t i v e t o w o r k i n g v e r y c l o s e l y w i t h t h e i n t e n d e d e n d - u s e r s o f the system, a n d w i t h t h e people w h o have deep knowledge, experience a n d understanding o f h o w the system is a n d s h o u l d b e operated.  ii  A Decision Support System for Real-time Hydropower Scheduling in a Competitive Power Market Environment  TABLE OF CONTENTS ABSTRACT  ii  LIST O F FIGURES  vii  LIST O F T A B L E S  ,  xii  ACKNOWLEDGMENTS  xiii  DEDICATION  xiv  CHAPTER 1  INTRODUCTION  1  1.1  Background  1  1.2  Goal, Objectives and Study Approach  3  1.3  Organization of the Thesis  4  CHAPTER 2 2.1  LITERATURE REVIEW  6  Historic Development of Generation Scheduling Techniques..;  2.1.1 E a r l y S t a g e s o f D e v e l o p m e n t 2.1.2 T h e E r a o f R a p i d D e v e l o p m e n t 2.1.3 C u r r e n t S t a t e - o f - t h e - A r t 2.2  State-of-the-Art in Industry  2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 2.2.10 2.3  6  6 9 11 12  T h e N o r w e g i a n E l e c t r i c P o w e r R e s e a r c h Institute T h e University o f Waterloo Hydro Quebec C e n t r o de Pesquisas de E n e r g i a Electrica, B r a z i l The University o f California, L o s Angeles G e o r g i a Institute o f T e c h n o l o g y T h e Pacific Gas and Electric C o m p a n y The Tennessee Valley Authority Electricite de F r a n c e Hydro Electric C o m m i s s i o n o f Tasmania, Australia  Summary  13 14 14 14 15 15 16 16 16 :.. 17 17  iii  A Decision Support S y s t e m for Real-time Hydropower Scheduling in a Competitive Power Market Environment  C H A P T E R 3 T H E DECISION M A K I N G E N V I R O N M E N T 3.1  The B . C . Hydro Power System  3.1.1 3.1.2 3.1.3 3.2  3.3  19  H i s t o r i c D e v e l o p m e n t o f B.C. Hydro's G e n e r a t i n g F a c i l i t i e s The Hydro Electric System L o o k i n g A h e a d a n d S h a p i n g the F u t u r e  The B . C . Hydro Decision-Making Environment  3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6  G u i d i n g Criteria for Decision M a k i n g O b j e c t i v e s o f the S y s t e m O p e r a t o r Generation System Operations System Operations Planning S u m m a r y o f K e y F e a t u r e s o f the B.C. H y d r o G e n e r a t i n g S y s t e m Electricity Trade Operations  Decision-Making Processes and Decision Support Systems  3.3.1 3.3.2 3.3.3 3.3.4 CHAPTER 4  Decision Making Approaches in Organizations Historical Development of Decision-Making Methods Structure of Decision Support Systems The N e e d for Decision Support Systems  T H E DECISION SUPPORT S Y S T E M  4.1  Objectives of the Decision Support System  4.2  User's Functional Requirements and Design Philosophy  4.2.1 4.2.2 4.3  User's F u n c t i o n a l R e q u i r e m e n t s Design Philosophy  Components of the Decision Support System  4.3.1 4.3.2 4.3.3 .4.3.4 4.3.5 4.3.6  Data The The The The The  19  Preparation, Saving, and G U I Launch Software G r a p h i c a l U s e r Interface Communication Protocols Hydraulic Simulator Optimizer Results-Display Software  19 21 27 33  33 34 35 45 55 56 65  65 65 67 67 70  70 70  70 71 72  72 74 76 77 81 81  4.4  Hydroelectric Systems Modeled  84  4.5  Mathematical Modeling of Generating Facilities  85  4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6  Hydraulic Modeling of Reservoir Operations 85 Modeling Hydropower Generation 92 Modeling of Thermal Generation 105 Modeling Load Resource Balance 105 M o d e l i n g O p e r a t i n g R e s e r v e & R e g u l a t i n g M a r g i n R e q u i r e m e n t s . . 105 M o d e l i n g Import and E x p o r t Transfer Capability 106  iv  A Decision Support System for Real-time Hydropower Scheduling in a Competitive Power Market Environment  4.6  S T O M Optimization Models  4.6.1 4.6.2 4.6.3 4.6.4 4.6.5 CHAPTER 5  5.1  106  T h e Generalized Optimization Model 106 M a x i m i z e the E f f i c i e n c y O p t i m i z a t i o n M o d e l 108 M i n i m i z e the C o s t o f W a t e r U s e d O p t i m i z a t i o n M o d e l 108 M a x i m i z e the V a l u e o f P o w e r P r o d u c t i o n O p t i m i z a t i o n M o d e l 1 0 9 M a x i m i z e the P r o f i t O p t i m i z a t i o n M o d e l 110  T H E SOLUTION AND I M P L E M E N T A T I O N PROCESS  The Solution Process  115  5.1.1 S T O M G e n e r a l i z e d S o l u t i o n P r o c e s s 5.1.2 S t e p s o f the S o l u t i o n A l g o r i t h m 5.2  The Implementation Process  115 117 126  5.2.1 I m p l e m e n t a t i o n R o a d b l o c k s 5.2.2 I m p l e m e n t a t i o n P r o c e s s a n d S u c c e s s F a c t o r s CHAPTER 6  115  126 126  R E S U L T S A N D DISCUSSION  143  6.1 Results of Initial Stages of Development  143  6.1.1 R e s u l t s o f the P r o t o t y p e a n d D e s i g n P h a s e s 6.1.2 D i s c u s s i o n o n the P r o t o t y p e a n d D e s i g n P h a s e 6.2  Results of the Implementaiton Phase  6.2.1 S t r u c t u r e a n d O b j e c t i v e o f the P o s t m o r t e m A n a y s i s S t u d i e s 6.2.2 R e s u l t s a n d D i s c u s s i o n o f the P o s t m o r t e m A n a l y s i s S t u d i e s 6.2.3 S t r u c t u r e a n d O b j e c t i v e s o f I m p l e m e n t a t i o n i n P r o d u c t i o n M o d e 6.2.4 R e s u l t s a n d D i s c u s s i o n o f I m p l e m e n t a t i o n i n P r o d u c t i o n M o d e 6.2.5 S e n s i t i v i t y A n a l y s i s I n f o r m a t i o n 6.3  Performance of the Decision Support System  6.3.1 P e r f o r m a n c e o f the S o l u t i o n A l g o r i t h m 6.3.2 P e r f o r m a n c e o f the S i m p l e x P r i m a l a n d D u a l A l g o r i t h m s CHAPTER 7  CONCLUSIONS AND R E C O M M E N D A T I O N S  143 158 163  163 163 176 178 189 208  208 218 219  7.1  Summary....  219  7.2  Contributions  223  7.3  Future Research Requirements  224  7.3.1 F u t u r e R e s e a r c h o n O v e r a l l A p p r o a c h f o r H y d r o e l e c t r i c S y s t e m Operation 224 7.3.2 F u t u r e R e s e a r c h o n P o s s i b l e E x t e n s i o n s o f S T O M A l g o r i t h m s 225 7.3.3 F u t u r e R e s e a r c h o n M o d e l i n g o f H y d r o e l e c t r i c S y s t e m s 228 REFERENCES  229  v  A Decision Support System tor Real-time Hydropower Scheduling in a Competitive Power Market Environment  ANNEXES  239  Annex A The Hydraulic Simulator Program General Algorithm  240  Annex B To Do Checklist to Run the Short Term Optimization Model ( S T O M ) . 243 Annex C The Short T e r m Optimization M o d e l Software Programs  245  Annex D Functional Features of the Graphical User Interface  247  Annex E Procedure to Determine the Optimal Unit Commitment  A. 10  Annex F Results Software Graphic Displays  A.43  Annex G Main Operational Features of Hydro Systems Modeled in S T O M  283  G. 1 T h e P e a c e R i v e r S y s t e m 284 G.2 T h e C o l u m b i a R i v e r S y s t e m 287 J.2.1 T h e U p p e r C o l u m b i a : M i c a & R e v e l s t o k e H y d r o S y s t e m 2 8 7 J.2.2 T h e L o w e r C o l u m b i a : P e n d D ' O r e i l l e H y d r o e l e c t r i c S y s t e m . 2 8 7 G.3 T h e S t a v e R i v e r S y s t e m : , 291 G.4 T h e B r i d g e R i v e r S y s t e m 293 G.5 T h e C a m p b e l l R i v e r S y s t e m 295 G.6 T h e C h e a k a m u s R i v e r S y s t e m 297 G.7 T h e C l o w h o m R i v e r S y s t e m 297 G.8 T h e W a h l e a c h R i v e r S y s t e m 298 G.9 T h e A s h R i v e r S y s t e m 299 G. 10 E m e r g i n g O p e r a t i o n a l Issues 300  vi  A Decision Support System for Real-time Hydropower Scheduling in a Competitive Power Market Environment  LIST OF FIGURES CHAPTER 3  Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure  3.1. S o u r c e s o f E l e c t r i c i t y S u p p l y i n 1 9 9 8 3.2. M a p o f B C H y d r o ' s M a j o r E l e c t r i c a l S y s t e m 3.3. B C H y d r o ' s P r e s e n t R e g i o n a l G e n e r a t i o n - D e m a n d B a l a n c e 3.4. P e a c e R i v e r I n f l o w s 3.5. C o l u m b i a R i v e r I n f l o w s 3.6. T o t a l D a i l y D o m e s t i c L o a d ( 1 9 8 5 - 1 9 9 7 ) 3.7. M i n i m u m a n d M a x i m u m H o u r l y L o a d ( 1 9 8 5 - 1 9 9 7 ) 3.8. V a r i a t i o n o f M o n t h l y / H o u r l y D o m e s t i c L o a d i n 1 9 9 7 3.9. V a r i a t i o n o f H o u r l y D o m e s t i c L o a d i n 1 9 9 7 3.10. F i l l i n g a n d D r a w D o w n o f a T y p i c a l S t o r a g e R e s e r v o i r 3.11. S c h e d u l i n g P r o b l e m M o d e l i n g D e c o m p o s i t i o n H i e r a r c h y 3.12. G r o w t h i n E l e c t r i c i t y T r a d e R e v e n u e s 3.13. A l b e r t a P o o l S p o t P r i c e s ; 3.14. N Y M E X / C O B E l e c t r i c i t y F u t u r e s 3.15. M i d C l o u m b i a E l e c t r i c i t y P r i c e s 3.16. I n t e r a c t i o n s b e t w e e n S c i e n c e , T e c h n o l o g y a n d the D e c i s i o n - M a k e r for Solving Decision Problems  22 25 26 38 39 40 41 42 43 44 49 59 60 61 62 66  CHAPTER 4  Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure  4.1. 4.2. 4.3. 4.4. 4.5.  M a i n Design Features of S T O M 72 S T O M G r a p h i c a l U s e r Interface , 75 Simulator/Optimizer Data F l o w General Arrangement 79 T h e Simulator Algorithm Flowchart 80 Schematic of Typical River Systems with Reservoirs a n d Hydroelectric Facilities 86 4.6. S p i l l C h a r a c t e r i s t i c s f o r S t o r a g e R e s e r v o i r s 88 4.7. F o r e b a y L e v e l as a F u n c t i o n o f S t o r a g e 90 4.8. S t o r a g e as a F u n c t i o n o f F o r e b a y L e v e l 91 4.9. M a i n C o m p o n e n t s o f P o w e r G e n e r a t i o n a n d C o n t r o l S y s t e m 92 4.10. L a y o u t o f H y d r o e l e c t r i c P l a n t w i t h F r a n c i s R e a c t i o n T y p e T u r b i n e 93 4.11. T a i l w a t e r L e v e l v s P l a n t D i s c h a r g e a n d D o w n s t r e a m W a t e r L e v e l s 95 4.12. P r o d u c t i o n F u n c t i o n o f a H y d r o e l e c t r i c G e n e r a t i n g P l a n t 96 4.13. T y p i c a l P r o d u c t i o n F u n c t i o n f o r a H y d r o e l e c t r i c P l a n t w i t h F o u r U n i t s 98 4.14. P i e c e w i s e L i n e a r C u r v e F i t t i n g P r o c e d u r e o f the P r o d u c t i o n F u n c t i o n 100 4.15. V a r i a t i o n o f C u r v e F i t t i n g E r r o r b y T h r e e C u r v e F i t t i n g M e t h o d s f o r a T y p i c a l Plant with Four Units 102 4.16. V a r i a t i o n o f M a x i m u m G e n e r a t i o n L i m i t w i t h F o r e b a y L e v e l a n d U n i t Availability for a Typical Plant with Four Units 103  vii  A Decision Support System for R e a l - t i m e Hydropower Scheduling in a Competitive Power Market Environment  F i g u r e 4.17. V a r i a t i o n o f M a x i m u m T u r b i n e D i s c h a r g e L i m i t w i t h F o r e b a y L e v e l a n d Availability for a Typical Plant with Four Units F i g u r e 4.18. V a l u e o f W a t e r i n S t o r a g e a n d M a r g i n a l V a l u e o f W a t e r f o r T i m e S t e p t F i g u r e 4.19. M a r g i n a l V a l u e o f W a t e r as a F u n c t i o n o f S t o r a g e a n d T i m e F i g u r e 4.20. C u t o f the W a t e r V a l u e F u n c t i o n F i g u r e 4.21. D e t e r m i n a t i o n o f O p t i m a l P r o d u c t i o n L e v e l U s i n g the R e s o u r c e s V a l u e F u n c t i o n a n d the M a r k e t D e m a n d F u n c t i o n  Unit 104 110 111 112 113  CHAPTER 5  Figure Figure Figure Figure Figure  5.1. 5.2. 5.3. 5.4. 5.5.  CHAPTER  S T O M ' s Generalized Solution Process S T O M ' s Solution Algorithm Adjustments for Variations in Tailwater Level T h e Storage L i m i t s Shrinking Envelop M e t h o d : F a c t o r s C o n t r i b u t i n g to S u c c e s s f u l I m p l e m e n t a t i o n o f S T O M  116 118 123 125 127  6  F i g u r e 6.1. S c h e m a t i c o f the P e a c e a n d C o l u m b i a P r o t o t y p e M o d e l 144 F i g u r e 6.2. E n e r g y U s e a n d G a i n f o r the M a x . E f f i c i e n c y O b j e c t i v e F u n c t i o n : L i n e a r , P i e c e w i s e L i n e a r O p t i m i z a t i o n M o d e l s a n d the S c h e d u l e d P l a n 147 F i g u r e 6.3. G e n e r a t i o n S u m m a r y ( i n M W H r ) f o r M a x . E f f i c i e n c y O b j e c t i v e F u n c t i o n : L i n e a r , P i e c e w i s e L i n e a r O p t i m i z a t i o n M o d e l s a n d the S c h e d u l e d P l a n 149 F i g u r e 6.4. V a r i a t i o n o f F o r e b a y L e v e l s ( i n m ) f o r the M a x . E f f i c i e n c y O b j e c t i v e F u n c t i o n : L i n e a r a n d P i e c e w i s e L i n e a r O p t i m i z a t i o n M o d e l s a n d the S c h e d u l e d P l a n 1 5 0 F i g u r e 6.5. V a r i a t i o n o f G e n e r a t i o n L e v e l s ( i n M W H r ) f o r the M a x . E f f i c i e n c y O b j e c t i v e F u n c t i o n : L i n e a r a n d P W L O p t i m i z a t i o n M o d e l s a n d the S c h e d u l e d P l a n 151 F i g u r e 6.6. P r o d u c t i o n G a i n f o r the M a x . P r o d u c t i o n O b j e c t i v e F u n c t i o n : L i n e a r a n d P i e c e w i s e L i n e a r O p t i m i z a t i o n M o d e l s a n d the S c h e d u l e d P l a n 154 F i g u r e 6.7.a. G e n e r a t i o n S u m m a r y ( i n M W H r ) f o r M a x . P r o d u c t i o n O b j e c t i v e F u n c t i o n : L i n e a r , P i e c e w i s e L i n e a r O p t i m i z a t i o n M o d e l s a n d the S c h e d u l e d P l a n 155 F i g u r e 6.7.b. G a i n e r s a n d L o s e r i n G e n e r a t i o n , a n d P r o d u c t i o n G a i n o f the L i n e a r a n d Piecewise Linear Models, in M W H r 155 •Figure 6.8. V a r i a t i o n o f F o r e b a y L e v e l s ( i n m ) f o r the M a x . P r o d u c t i o n O b j e c t i v e F u n c t i o n : L i n e a r a n d P i e c e w i s e L i n e a r O p t i m i z a t i o n M o d e l s a n d the S c h e d u l e d Plan.... 1 5 6 F i g u r e 6.9. V a r i a t i o n o f G e n e r a t i o n ( i n M W H r ) L e v e l s f o r the M a x . P r o d u c t i o n O b j e c t i v e F u n c t i o n : L i n e a r a n d P W L O p t i m i z a t i o n M o d e l s a n d the S c h e d u l e d P l a n 1 5 7 F i g u r e 6.10. O p t i m a l L o a d i n g Pattern: the E f f e c t o f U s i n g P i e c e w i s e L i n e a r G e n e r a t i o n Production Function in S T O M 161 F i g u r e 6.11. O p t i m a l G e n e r a t i o n S c h e d u l e f o r G M S , P C N , M C A , a n d R E V 161 F i g u r e 6.12. E f f i c i e n c y I n d e x a n d P W L P r o d u c t i o n F u n c t i o n ( H o u r 18 i n S t u d y ) 162 F i g u r e 6.13. D i s t r i b u t i o n o f G e n e r a t i o n at H o u r 18 o n 2 2 D e c . 1 9 9 8 164 F i g u r e 6.14. A c t u a l G e n e r a t i o n A l l o c a t i o n , D i f f e r e n c e i n O p t i m i z e d S c h e d u l e , a n d G a i n i n Stored Energy: M a x . Efficiency Objective Function .• 1 7 0 viii  A Decision Support System for Real-time Hydropower Scheduling'in a Competitive Power Market Environment  F i g u r e 6.15. A l l o c a t i o n o f G e n e r a t i o n f o r A c t u a l a n d O p t i m i z e d 171 F i g u r e 6.16. C o m p a r i s o n b e t w e e n O p t i m i z e d a n d D i s p a t c h e d C o l u m b i a : P e a c e R a t i o , a n d Capacity Ratio 171 F i g u r e 6.17. V a r i a t i o n o f E n e r g y G a i n w i t h T o t a l G e n e r a t i o n , M a x i m i z e E f f i c i e n c y Objective Function 172 F i g u r e 6.18. P r o b a b i l i t y a n d C u m u l a t i v e D i s t r i b u t i o n o f % G a i n i n S t o r e d E n e r g y : M a x . Efficiency Objective Function 172 F i g u r e 6.19. V a r i a t i o n o f V a l u e G a i n w i t h T o t a l . G e n e r a t i o n , M i n i m i z e C o s t o f W a t e r U s e d Objective Function 173 F i g u r e 6.20. P r o b a b i l i t y a n d C u m u l a t i v e D i s t r i b u t i o n o f % G a i n i n V a l u e o f S t o r e d W a t e r : Min. Cost of Water Used 173 F i g u r e 6.21. V a r i a t i o n o f E n e r g y % G a i n w i t h T o t a l G e n e r a t i o n : M a x i m i z e P r o d u c t i o n Objective Function 174 F i g u r e 6.22. P r o b a b i l i t y a n d C u m u l a t i v e D i s t r i b u t i o n F u n c t i o n o f % G a i n i n V a l u e o f E x t r a Energy Generated: Max. V a l u e of Production 174 F i g u r e 6.23. C o m p a r i s o n o f % G a i n f o r the three O b j e c t i v e F u n c t i o n s 175 F i g u r e 6.24. C o m p a r i s o n o f P r o b a b i l i t y o f % G a i n f o r the T h r e e O b j e c t i v e F u n c t i o n s 1 7 5 F i g u r e 6.25. P l a n o f the S h i f t O f f i c e , 14th F l o o r P a r k P l a c e , V a n c o u v e r 177 F i g u r e 6.26. V a r i a t i o n o f D o m e s t i c L o a d f o r the O p t i m i z a t i o n S t u d y 178 F i g u r e 6.27. A l l o c a t i o n o f G e n e r a t i o n i n the S c h e d u l e d P l a n 179 F i g u r e 6.28. S c h e d u l e d a n d O p t i m i z e d G M S F o r e b a y L e v e l s a n d P l a n t G e n e r a t i o 182 F i g u r e 6.29. S c h e d u l e d a n d O p t i m i z e d P C N F o r e b a y L e v e l s a n d P l a n t G e n e r a t i o n 183 F i g u r e 6.30. S c h e d u l e d a n d O p t i m i z e d M C A F o r e b a y L e v e l s a n d P l a n t G e n e r a t i o n 184 F i g u r e 6.31. S c h e d u l e d a n d O p t i m i z e d R E V F o r e b a y L e v e l s a n d P l a n t G e n e r a t i o n 185 F i g u r e 6.32. S c h e d u l e d a n d O p t i m i z e d G e n e r a t i o n S u m m a r y 186 F i g u r e 6.33. O p e r a t i n g R e s e r v e O b l i g a t i o n a n d R e g u l a t i n g M a r g i n R e q u i r e m e n t 187 F i g u r e 6.34. O p t i m i z e d T r a d i n g S c h e d u l e s , T i e L i m i t s , S y s t e m C a p a c i t y S l a c k , a n d S p o t Prices : 188 F i g u r e 6.35. P l a n n e d a n d O p t i m i z e d G e n e r a t i o n a n d F o r e b a y S c h e d u l e s : S t a v e F a l l s R i v e r System 194 F i g u r e 6.36. P l a n n e d a n d O p t i m i z e d G e n e r a t i o n a n d F o r e b a y S c h e d u l e s : B r i d g e R i v e r System 195 F i g u r e 6.37. P l a n n e d a n d O p t i m i z e d G e n e r a t i o n a n d F o r e b a y System F i g u r e 6.38. P l a n n e d a n d O p t i m i z e d G e n e r a t i o n a n d F o r e b a y System F i g u r e 6.39. P l a n n e d a n d O p t i m i z e d G e n e r a t i o n a n d F o r e b a y System F i g u r e 6.40. P l a n n e d a n d O p t i m i z e d G e n e r a t i o n a n d F o r e b a y System F i g u r e 6.41. P l a n n e d a n d O p t i m i z e d G e n e r a t i o n a n d F o r e b a y C l o w h o m , Wahleach and A s h River Systems F i g u r e 6.42. T u r b i n e D i s c h a r g e L i m i t C o s t F i g u r e 6.43 P l a n t ' s I n c r e m e n t a l C o s t o f G e n e r a t i o n  ix  Schedules: Campbell River 196 Schedules: Peace River 197 Schedules: Columbia River 198 Schedules: PendOreille River : 199 Schedules: Cheakamus, 200 201 202  A Decision Support System for Reai-time Hydropower Scheduling In a Competitive Power Market Environment  Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure  6.44. P l a n t ' s G e n e r a t i o n L i m i t C o s t 203 6.45. I n c r e m e n t a l C o s t o f W a t e r Storage. 204 6.46. S t o r a g e L i m i t s C o s t 205 6.47. S y s t e m I n c r e m e n t a l C o s t , S p o t M a r k e t P r i c e s , T i e L i n e L i m i t s C o s t , a n d Regulating Margin Cost 200 6.48. B e h a v i o r o f S I C w i t h G e n e r a t i o n , E x p o r t s a n d Imports, T i e L i n e L i m i t s , and System Slack 207 6.49. T o t a l R u n C P U T i m e : User's R e q u i r e m e n t s a n d A c t u a l P e r f o r m a n c e 208 6.50. C P U T i m e s o f the S o l u t i o n S t e p s 209 6.51. C o n v e r g e n c e o f the O b j e c t i v e F u n c t i o n a n d F o r e b a y D i f f e r e n c e 210 6.52. V a r i a t i o n o f S o l u t i o n C P U T i m e w i t h Iterations 210 6.53. V a r i a t i o n o f P e r f o r m a n c e w i t h the S i z e o f the O p t i m i z a t i o n P r o b l e m 212 6.54. C o n v e r g e n c e o f F o r e b a y L e v e l s a n d O b j e c t i v e F u n c t i o n V a l u e s f o r S T O M Optimization Models 216 6.55. C o n v e r g e n c e o f G e n e r a t i o n S c h e d u l e s a n d F o r e b a y L e v e l s i n Iterations 2 1 7 6.56. P e r f o r m a n c e o f the S i m p l e x D u a l a n d P r i m a l A l g o r i t h m s 218  C H A P T E R  7  F i g u r e 7.1. A S t r u c t u r e d A p p r o a c h to the S h o r t - t e r m H y d r o e l e c t r i c S c h e d u l i n g P r o b l e m i n a Competitive Market Environment 221 F i g u r e 7.2. T h e C o n c e p t o f P r o x i m a l D e c i s i o n A n a l y s i s , a n d P r o d u c e r ' s M a r k e t V a l u e Function 227 A N N E X  Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure  D  D . l . S T O M G r a p h i c a l U s e r Interface D.2. S e l e c t i n g R i v e r S y s t e m s a n d P l a n t s D.3. S e t t i n g S t u d y Start D a t e a n d D u r a t i o n D.4. T h e G U I O p t i o n s B u t t o n D.5. P l a n t S e l e c t i o n f o r S e t t i n g User's O p e r a t i o n a l L i m i t s D.6. M a x i m u m F o r e b a y L e v e l O u t o f R a n g e E r r o r M e s s a g e s D.7. G U I O p t i o n a l O p e r a t i o n a l L i m i t s T a b s D.8. G U I O p t i o n a l O p e r a t i o n a l L i m i t s : M a x i m u m F o r e b a y L e v e l D.9. G U I O p t i o n a l O p e r a t i o n a l L i m i t s : S p i l l s D.10. G U I O p t i o n a l O p e r a t i o n a l L i m i t s : M a x i m u m P l a n t D i s c h a r g e L i m i t D . l 1. G U I O p t i o n a l O p e r a t i o n a l L i m i t s : M i n i m u m G e n e r a t i o n L i m i t D.12. S e l e c t i n g the O p t i m i z a t i o n O b j e c t i v e F u n c t i o n D . l 3 . T h e C o s t F a c t o r U s e r Input F o r m f o r M i n _ Q C F O b j e c t i v e F u n c t i o n D.14. S p o t P r i c e s f o r the M a x _ P O b j e c t i v e F u n c t i o n D.15. S e t t i n g the M a r g i n a l V a l u e o f E n e r g y ( R b c h ) D.16. S e t t i n g the R e s e r v o i r ' s T a r g e t F o r e b a y L e v e l s D.17. M a x i m i z e P r o f i t O b j e c t i v e F u n c t i o n : Rt, h Input F o r m D.18. M a x i m i z e P r o f i t O b j e c t i v e F u n c t i o n : M a r k e t i n g I n f o r m a t i o n D.19. M a x i m i z e P r o f i t O b j e c t i v e F u n c t i o n : D r o p , F i x F o r e b a y T a r g e t L e v e l s c  x  249 250 253 254 254 254 254 256 257 258 259 260 261 262 264 264 267 268 269  A Decision Support System for R e a l - t i m e Hydropower Scheduling in a Competitive Power Market Environment.  F i g u r e D.20. T h e M a x i m i z e P r o f i t O b j e c t i v e F u n c t i o n : O p e r a t i n g R e s e r v e a n d R e g u l a t i o n M a r g i n s Input F o r m 270 ANNEXF  Figure Figure Figure Figure Figure Figure Figure ANNEX  Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure  F.l. Generation Summary F.2 G a i n e r s a n d L o s e r s i n T o t a l G e n e r a t i o n F.3. S p o t P r i c e s & O p t i m i z e d T r a d i n g S c h e d u l e s i n t h e A . B . & U . S . M a r k e t s F.4. E x a m p l e P l a n t F o r e b a y E l e v a t i o n s F.5. E x a m p l e P l a n t G e n e r a t i o n a n d P l a n t D i s c h a r g e F.6. O p t i m a l U n i t C o m m i t m e n t S c h e d u l e D e r i v e d b y S T O M F.7. O p t i m a l D i s t r i b u t i o n o f the O p e r a t i n g R e s e r v e O b l i g a t i o n  276 277 278 279 280 281 282  G  G . l . S c h e m a t i c L a y o u t o f the P e a c e R i v e r H y d r o e l e c t r i c F a c i l i t i e s G.2. S c h e m a t i c L a y o u t o f the U p p e r C o l u m b i a H y d r o e l e c t r i c F a c i l i t i e s G.3. S c h e m a t i c L a y o u t o f the P e n d d ' O r e i l l e H y d r o e l e c t r i c F a c i l i t i e s G.4. S c h e m a t i c L a y o u t o f the S t a v e R i v e r S y s t e m H y d r o e l e c t r i c F a c i l i t i e s G.5. S c h e m a t i c L a y o u t o f the B r i d g e R i v e r S y s t e m H y d r o e l e c t r i c F a c i l i t i e s G.6. S c h e m a t i c L a y o u t o f the C a m p b e l l R. S y s t e m H y d r o e l e c t r i c F a c i l i t i e s G.7. S c h e m a t i c L a y o u t o f the C h e a k a m u s R. S y s t e m H y d r o e l e c t r i c F a c i l i t i e s . G.8. S c h e m a t i c L a y o u t o f the C l o w h o m R. S y s t e m H y d r o e l e c t r i c F a c i l i t i e s G.9. S c h e m a t i c L a y o u t o f the W a h l e a c h R. S y s t e m H y d r o e l e c t r i c F a c i l i t i e s G.10. S c h e m a t i c L a y o u t o f the A s h R i v e r S y s t e m H y d r o e l e c t r i c F a c i l i t i e s  xi  286 289 290 292 294 296 297 298 299 300  A Decision Support System tor Real-time Hydropower Scheduling in a Competitive Power Market Environment  LIST OF TABLES  CHAPTER 3 T a b l e 3.1 P l a n t s a n d R e s e r v o i r s M a n a g e d b y B.C. H y d r o T a b l e 3.2. E l e c t r i c U t i l i t i e s i n B r i t i s h C o l u m b i a  '.  23 27  CHAPTER 4 Table Table Table Table  4.1. 4.2. 4.3. 4.4.  S T O M I n p u t D a t a S a v e d f r o m the L R B S y s t e m O u t p u t R e s u l t s D i s p l a y e d to the User... .-. R i v e r Systems, Reservoirs and Plants M o d e l l e d C o e f f i c i e n t s o f the G e n e r a t i o n P r o d u c t i o n F u n c t i o n  74 .83 84 107  CHAPTER 6 T a b l e 6.1. P l a n n e d a n d O p t i m i z e d G e n e r a t i o n S c h e d u l e s f o r the C o l u m b i a R i v e r S y s t e m : M i c a ( M C A ) and Revelstoke ( R E V ) , i n M W H r : 145 T a b l e 6.2. O p t i m i z e d a n d P l a n n e d G e n e r a t i o n S c h e d u l e s f o r the P e a c e R i v e r S y s t e m : G.M. S h r u m ( G M S ) and Peace C a n y o n ( P C N ) , i n M W H r 146 T a b l e 6.3. P l a n n e d a n d O p t i m i z e d G e n e r a t i o n S c h e d u l e s f o r the C o l u m b i a R i v e r S y s t e m : M i c a ( M C A ) and Revelstoke ( R E V ) , in M W H r 152 T a b l e 6.4. O p t i m i z e d a n d P l a n n e d G e n e r a t i o n S c h e d u l e s f o r the P e a a c e R i v e r S y s t e m : G.M. S h r u m ( G M S ) a n d P e a c e C a n y o n ( P C N ) , i n M W H r 153 T a b l e 6.5. T o t a l G e n e r a t i o n a n d D i f f e r e n c e i n P l a n t G e n e r a t i o n , a n d % G a i n f o r the Postmortem Analysis Studies, M a x i m i z e Efficiency Objective F u n c t i o n ( J u n e 1 9 9 8 - A p r i l 1999) 167 T a b l e 6.6. D a t e , T o t a l G e n e r a t i o n G a i n f o r the P o s t m o r t e m A n a l y s i s S t u d i e s , M a x i m i z e E f f i c i e n c y O b j e c t i v e F u n c t i o n ( J u n e 1998 - A p r i l 1999) 168 T a b l e 6.7. S u m m a r y o f S t a t i s t i c a l T e s t s o f R e s u l t s i n the P o s t m o r t e m A n a l y s i s S t u d 1 6 9 T a b l e 6.8. S u m m a r y D a t a o n V a r i a t i o n o f P e r f o r m a n c e w i t h O p t i m i z a t i o n P r o b l e m S i z e , Maximize Efficiency ObjectiveFunction 212 ANNEXD  .  .  .  T a b l e D. 1. R i v e r S y s t e m s a n H y d r o e l e c t r i c F a c i l i t i e s i n the G U I  252  ANNEX E Table E . l . Unit Combinations and M i n i m u m Plant Discharge T a b l e E.2. U n i t C o m b i n a t i o n s a n d O p t i m a l U n i t C o m m i t m e n t  xii  273 274  A Decision Support System for Real-time Hydropower Scheduling in a Competitive Power Market Environment  ACKNOWLEDGMENTS T h e a u t h o r g r a t e f u l l y a c k n o w l e d g e s the c o n t r i b u t i o n o f the U B C s t u d e n t s f o r their w o r k o n the r e s e a r c h project. In p a r t i c u l a r , s p e c i a l a p p r e c i a t i o n are d u e to T r o y L y n e , P a x t o n C h o w , C o r y Ristock, L i n d s a y Sidwell, Garth Nash, W e n d y Leung, M a h m o u d K a y a l i , Sandy Ng, A s h l e y G a d d , L e o L i u , a n d o t h e r students w h o c o n t r i b u t e d to the s u c c e s s o f this r e s e a r c h project. S p e c i a l a p p r e c i a t i o n i s d u e to the m a n a g e r o f the r e s e a r c h p r o j e c t at B C H y d r o , D r . T h o m a s K. S i u . H e w a s i n s t r u m e n t a l f o r the s m o o t h i m p l e m e n t a t i o n o f the r e s e a r c h p r o j e c t a n d its o u t c o m e s . M i k e L e e , the m a n a g e r o f S h i f t O p e r a t i o n s a n d the I m p l e m e n t a t i o n T e a m p r o v i d e d l i m i t l e s s s u p p o r t f o r the r e s e a r c h p r o j e c t a n d f o r i m p l e m e n t a t i o n o f its output, h i s s u p p o r t is h i g h l y a p p r e c i a t e d . S e n i o r E n g i n e e r G e r r y C r e t e l l i p r o v i d e d g u i d a n c e a n d s u p p o r t f r o m the i n i t i a l p h a s e s o f d e v e l o p m e n t u p to the last stages o f i m p l e m e n t a t i o n , h i s s u p p o r t is h i g h l y a p p r e c i a t e d . S h i f t E n g i n e e r s , G. B r a d l e y , P. C h o u d h u r y , V . C h u , C. F i n g l e r , B. F o n g , M . H a n l o n , C. K o b e r , P. N g , K. P u n c h , C. R i s t o c k , D. R o b i n s o n , H. W a l k , a n d C. Y o o , a l l t o o k the t i m e to test, v e r i f y a n d s u g g e s t m o d i f i c a t i o n a n d i m p r o v e m e n t s to m a k e the d e c i s i o n s u p p o r t s y s t e m m o r e r e s p o n s i v e to their j o b s . In p a r t i c u l a r , s p e c i a l t h a n k s are d u e to the m a s t e r m i n d o f the s o f t w a r e s y s t e m s b e i n g d e v e l o p e d a n d i m p l e m e n t e d i n the S h i f t O f f i c e , C o l i n F i n g l e r , a n d f o r h i s tireless e f f o r t s to i m p l e m e n t S T O M i n p r o d u c t i o n m o d e . T h i s p r o j e c t w o u l d n o t h a v e b e e n c o n c e i v e d a n d c a r r i e d o u t w i t h o u t the k e e n s u p p o r t o f K . K e t c h u m , P. A d a m s , W . J o h n s o n , J o h n W . T a y l o r , a n d K e l l y L i a l . T h a n k s for their e n c o u r a g e m e n t a n d l i m i t l e s s s u p p o r t . S p e c i a l t h a n k s are a l s o d u e to a l l the P o w e r S u p p l y a n d R e s o u r c e M a n a g e m e n t staff at B C H y d r o . T h a n k s f o r m a k i n g this a p p l i e d r e s e a r c h p r o j e c t a s u c c e s s . In p a r t i c u l a r s p e c i a l t h a n k s are d u e to S a m u e l N a l l i a h , M i c h a e l A u a n d K e i t h P i n c h i n f o r c o m p u t e r a n d p r o g r a m m i n g s u p p o r t a n d to B e c k y S t