Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Volatile organic components of municipal primary sewage effluent after chlorination and dechlorination 1976

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1976_A6_7 M66_8.pdf
UBC_1976_A6_7 M66_8.pdf [ 10.39MB ]
Metadata
JSON: 1.0063024.json
JSON-LD: 1.0063024+ld.json
RDF/XML (Pretty): 1.0063024.xml
RDF/JSON: 1.0063024+rdf.json
Turtle: 1.0063024+rdf-turtle.txt
N-Triples: 1.0063024+rdf-ntriples.txt
Citation
1.0063024.ris

Full Text

VOLATILE ORGANIC COMPONENTS OF MUNICIPAL PRIMARY SEWAGE EFFLUENT AFTER CHLORINATION AND DECHLORINATION by BRIAN TOMIO MORI B.Sc., Uniyersity.Bof Brit-isliJCol'iimbia-, 1971 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i i - . tfrinD'thei-Departments of Chemistry and C i v i l Engineering We accept t h i s t h e s i s as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA JurJuly9M76 (o) Brian Tomio Mori, 1976 In p re sent ing t h i s t he s i s in p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree tha t permiss ion fo r ex tens i ve copying of t h i s t he s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r ep re sen ta t i v e s . It i s understood that copying or p u b l i c a t i o n o f t h i s t he s i s f o r f i n a n c i a l gain s h a l l not be a l lowed without my w r i t t e n permi s s ion . Department of Chemistry The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 Date June 1976 ABSTRACT i The extraction, separation and identification of volatile organic com- ponents of primary effluent before and after chlbrination was undertaken to ascertain whether the chlorination of treatment plant effluents results in the formation of new volatile chlorinated organics. Extraction efficiencies of 70 to 90 percent of an aqueous solution of phenols were obtained by both continuous solvent extraction and sorption on a column of a macroreticular resin. Tests with primary effluent showed that the macroreticular resin recovered a slightly larger number of compounds than the solvent extractor which also suffered from emulsion problems.' Since the resin was also expedient in handling replicate samples i t was adopted and further studies indicated that i t had a capacity of 1.7 mg TOC/cc of resin and re- coveries of the phenols were unaffected by pH or detergents. Preliminary separation of the. .components on the basis of acidity with .05'M̂ NaOH and diethyl ether and by thin layer chromatography on s i l i c a gel with pet ether and methanol proved to be useful. Gas chromatographic (GC) studies with various silicone liquid phases demonstrated that OV-101, 0V-17, and 0V-225 a l l provide good separation after optimization of temperature programs. Primary effluent samples taken from Lion's Gate Treatment Plant in North Vancouver on Monday mornings proved to be remarkably consistent in their GC 63 traces as monitored by Ni electron capture (EG) and flame ionization (FID) detectors. A series of spectacular new peaks was consistently observed by EC as a result of chlorination, but the FID showed only minor changes. Dosage levels of up to 120 mg/1 Cl^ (NaOCl) produced similar chromatograms while a dosage of 200 mg/1 produced a new set of changes not found at the dosage levels used in treatment plants. Gas chromatographic studies with a micro- ii e l e c t r o l y t i c c o n d u c t i v i t y detector showed that 10 or 11 new halogenated peaks i n the n e u t r a l and b a s i c f r a c t i o n and 6 or 7 new halogenated peaks i n the a c i d i c f r a c t i o n r e s u l t from c h l o r i n a t i o n . These compounds a l l of which are i n n g / l concentrations account f o r only 0.01 percent of the a p p l i e d c h l o r i n e dosage but make up about 40 percent of the more v o l a t i l e o r g a n i c a l l y bound halogen present i n c h l o r i n a t e d primary e f f l u e n t . A f t e r a s e r i e s of p a r t i a l l y s u c c e s s f u l attempts by r e t e n t i o n time, GC-MS and GC e f f l u e n t t r a p p i n g , a number of components were p o s i t i v e l y i d e n t i f i e d by a computerized GC-MS. TRirty-one compounds were p o s i t i v e l y i d e n t i f i e d by mass spe c t r a and GC r e t e n t i o n times,another 24 were t e n t a t i v e l y i d e n t i f i e d by mass spect r a and an a d d i t i o n a l seven were very t e n t a t i v e l y i d e n t i f i e d by GC r e - t e n t i o n times.. Only three of the compounds r e s u l t i n g from c h l o r i n a t i o n were p o s i t i v e l y i d e n t i f i e d . A l l compounds i d e n t i f i e d by mass sp e c t r a are present i n concentrations i n primary e f f l u e n t . The i m p l i c a t i o n s of t h i s study and suggestions f o r f u r t h e r i n v e s t i g a t i o n s are a l s o discussed. Research Supervisor. i i i TABLE OF CONTENTS Page Abs t r a c t i Table of Contents » i i i L i s t of Tables v L i s t of Figur e s v i i Acknowlegments , i x Symbols and Ab b r e v i a t i o n s x CHAPTER I INTRODUCTION, PURPOSE AND SCOPE 1 D e f i n i t i o n s ,, 1 I n t r o d u c t i o n , 1 Purpose and Scope of This Research 2 CHAPTER I I LITERATURE REVIEW , 4 A. Preface 4 B. Composition of Domestic Sewage and E f f l u e n t s .............. 4 1. Organics . 4 2. Inorganics 20 C. A S i m p l i f i e d Model of the C h l o r i n a t i o n Process 20 D. Reactions of C h l o r i n e w i t h Organics i n Aqueous Media ...... 24 1. Reactions w i t h Nitrogenous Compounds , , 24 2. Reactions of Ch l o r i n e w i t h Other Organics 27 3. Reactions of N-Chloro Compounds w i t h Organics 30 E. The E f f e c t s of C h l o r i n e on Sewage E f f l u e n t s 31 1. P r a c t i c e s I n Treatment P l a n t s 31 2. B i o l o g i c a l E f f e c t s of Residu a l C h l o r i n e 31 3. Tox i c E f f e c t s of C h l o r i n a t e d Organics ,. 34 4. Chemical E f f e c t s of C h l o r i n a t i o n s 36 F. A n a l y t i c a l Methods 41 1. Sampling and P r e s e r v a t i o n ............ 41 2. E x t r a c t i o n and Concentration 42 3. Separation , 45 4. Chemical A n a l y s i s 50 CHAPTER I I I EXPERIMENTAL 54 A. O u t l i n e of the Problems , , 54 B. Apparatus and Techniques , 54 1. General Methodology 54 2. Sampling and P r e s e r v a t i o n 56 3. Design and Test of E x t r a c t i o n Methods 57 a. Solvent E x t r a c t o r 57 b. E x t r a c t i o n w i t h XADV2 Resin 59 c. Comparison of XAD-2 and Solvent E x t r a c t o r 62 d. E x t r a c t i o n of P a r t i c u l a t e s .......... . 62 i y 4. Separation Experiments ................................. 63 a. P r e l i m i n a r y Separation , 63 b. , GC Op t i m i z a t i o n 64 c. TLC of A c i d i t y Separated F r a c t i o n s ,, ,. 64 5. E f f e c t s of C h l o r i n a t i o n , 65 a. Changes i n Soluble TOC upon C h l o r i n a t i o n ,. 65 b. E f f e c t s Detectable by GC w i t h EC and FID Detectors .. 65 c. E f f e c t s Monitored by MEC Detector and GC C o r r e l a t i o n s 65 d. GC-rMS Studies on the MS-rl-2 66 e. T e n t a t i v e I d e n t i f i c a t i o n by Retention Time 66 f. Trapping of GC Peaks 66 g. GCr-MS-Computer , 67 CHAPTER IV RESULTS AND DISCUSSION , , , . . , 69 A. E x t r a c t i o n Experiments , 69 1. Solvent E x t r a c t o r 69 2. E x t r a c t i o n w i t h XAD-2 Resin , , 72 B. Separation Experiments 82 1. P r e l i m i n a r y Separation 82 2. GC O p t i m i z a t i o n , . , . , , ,. 85 3. TLC of A c i d i t y F r a c t i o n s .,, 87 C. E f f e c t s of C h l o r i n a M o n on Primary E f f l u e n t , 92 1, Soluble TOC ,, , , , 92' 2, E f f e c t s Monitored by EC and FI Detectors',, 92 3, GC 4, GC^MS Studies 5, T e n t a t i v e I d e n t i f i c a t i o n Fy Retention. Time 124 6, GCrrMS^ComputerSSfeuddses , . 130 7, C o r r e l a t i o n s Among GC Chromatograms 146 CHAPTER V SUMMARY, IMPLICATIONS AND SUGGESTIONS FOR FURTHER STUDIES 153 Summary ,,,,,.,,,.,,,,,,,,,,.,.,,,,,,....,,,...,...>.<,.. 153 I m p l i c a t i o n s , 154 Recommendations f o r Further Studies ........................... 158 BIBLIOGRAPHY , 160 APPENDIX I REFINEMENTS TO THE AQUEOUS CHLORINETAMMONIA MODEL 179 1. Reactions of C h l o r i n e w i t h Water 179 2 . Decompositions of H0C1 and OCl" , ,. , , 180 3, Reactions.of H0C1 and OCl' w i t h Ammonia 181 4, Thermodynamic P r o p e r t i e s of Chloramines ,,,, 185 APPENDIX IT SUMMARY OF CHROMATOGRAMS OF EFFLUENT SAMPLES , 186 APPENDIX I I I GC CONDITIONS FOR FIGURES 188 APPENDIX IV MASS SPECTRA OF COMPOUNDS POSITIVELY IDENTIFIED IN CHLORINATED PRIMARY EFFLUENT ,., 190 APPENDIX V MASS SPECTRA OF UNIDENTIFIED COMPONENTS OF CHLORINATED PRIMARY EFFLUENT , 196 -y LIST OF TABLES Table Page 2.1 Major Inputs to Domestic Sewage 5 2.2 T y p i c a l Strength D i s t r i b u t i o n s i n Raw Sewages 7 2.3 General Composition of an American Domestic Sewage 9 2.4 General Composition of an E n g l i s h Domestic Sewage 10 2.5 Amino A c i d Content of Raw Sewage 11 2.6 Organic Components of Primary E f f l u e n t 13 2.7 V o l a t i l e Components of Human Urine , 16 2.8 General Composition of Secondary E f f l u e n t 18 2.9 Organic Components of Secondary E f f l u e n t s 19 2.10 Inorganic Composition of Lion's Gate E f f l u e n t 21 2.11 Summary of Reaction Conditions f o r Organics i n Sewage 28 2.12 T o x i c i t y of Selected Compounds to Aquatic L i f e 35 2.13 C h l o r i n a t e d Compounds Formed by C h l o r i n a t i o n of Primary E f f l u e n t 39 4.1 Recoveries of Phenols by Solvent E x t r a c t o r 70 4.2 Solvent Loss Due to Entrainment 71 4.3 Recoveries of Phenols from D i s t i l l e d Water by XAD-2 74 4.4 E f f e c t s of LAS on Recoveries of Phenols by XAD-2 75 4.5 Breakdown of Losses f o r XAD-2 System 76 4.6 Breakthrough Study f o r Sewage on XAD-2 77 4.7 E f f e c t of C h l o r i n a t i o n on Soluble TOC 96 4.8 E f f e c t s of C h l o r i n a t i o n by GC A n a l y s i s w i t h FID and EC Detectors 98 4.9 Concentrations of Halogen as C h l o r i n e i n Primary E f f l u e n t ... 116 4.10 C h l o r i n e Uptake by V o l a t i l e s 118 4.11 Retention Times of Test Compounds , 125 4.12 Compounds I d e n t i f i e d by GC Retention Time 128 4.13 Performance Check of Finnigan 3000 131 4.14 F i l e Names f o r GC-MS-Comp Studies , 132 4.15 Summary of RGC Data 134 4.16 Phthalates and Septum Bleed by LMRGC 140 4.17 Results of S p e c t r a l Searches and Retention Time Checks f o r CL.1202 142 4.18 Results of S p e c t r a l Searches and Retention Time Checks f o r C-HALL 143 4.19 Compounds P o s i t i v e l y I d e n t i f i e d by Mass Spectrum and Retention Times 145 y i Table Page 4.20 Compounds T e n t a t i v e l y I d e n t i f i e d by MS 147 4.21 Spectrum Numbers of Halogenated N e u t r a l and Basic Organics 149 4.22 Spectrum Numbers of Halogenated A c i d i c Organics 150 5.1 Guide to Environmental E f f e c t s of I d e n t i f i e d Compounds 155 y i i LIST OF FIGURES Fig u r e Page 3.1 Flowchart of the P r o j e c t 55 3.2 Continuous Solvent E x t r a c t o r 58 3.3 M a c r o r e t i c u l a r Resin E x t r a c t i o n Apparatus 61 4/1 Recovery of Organics from Primary E f f l u e n t By XAD-2 Resin , , . 79 4.2 Continuous Solvent and XAD-2 Resin E x t r a c t i o n of Organics from Primary E f f l u e n t Monitored by GC 81 4.3 Soxhlet E x t r a c t s of P a r t i c u l a t e s Analyzed by GC 83 4.4 S i l i c a Gel Column F r a c t i o n a t i o n of Primary E f f l u e n t E x t r a c t s Analyzed by GC 84 4.5 A c i d i t y Separation of Primary E f f l u e n t E x t r a c t s Analyzed by GC 86 4.6 GC O p t i m i z a t i o n - N + B by EC 88 4.7 GC Op t i m i z a t i o n - WA by EC ,.. 89 4.8 GCCOptimization - N + B by FID , 90 4.9 GC O p t i m i z a t i o n - WA by FID , 91 4.10 TLC of N + B F r a c t i o n ; S i l i c a G e l , Pet Ether 93 4.11 TLC of N + B/TLC F r a c t i o n ; S i l i c a G e l , Methanol 94 4.12 Flowchart of Separation Procedure 9.5 4.13 E f f e c t s of C h l o r i n a t i o n by GC - N + B by EC-1 9-9. 4.14 E f f e c t s of C h l o r i n a t i o n by GC - N + B by FID-1 100 4.15 E f f e c t s of C h l o r i n a t i o n by GC - WA by EC , 101 4.16 E f f e c t s of C h l o r i n a t i o n by GC - WA by FID 102 4.17 E f f e c t s of C h l o r i n a t i o n by GC - SA by EC 103 4.18 E f f e c t s of Chlormna£ionbbyGGC--SSAbbyFFI'D 104 4.19 E f f e c t s of C h l o r i n a t i o n by GC - N + B by EC-2 105 4.20 E f f e c t s of C h l o r i n a t i o n by GC - N +BB by FID-2 106 4.21 E f f e c t s of C h l o r i n a t i o n by GC - A by EC 107 4.22 E f E f f e c t s of C h l o r i n a t i o n by GC - A by FID 108 4.23 E f f e c t s of C h l o r i n a t i o n by GC - A by MEC ,,. 112 4.24 E f f e c t s of C h l o r i n a t i o n by GC - N + B by MEC-1 113 4.25E E f f e c t s of C h l o r i n a t i o n by GC - N + B by MEC-2 114 4.26 CaC^libratiofiu.eurveoforrSMECeDetector 115 4.27 T o t a l Ion Current P l o t f o r N + B F r a c t i o n by .MS-12 122 4.28 Mass Spectra from MS^12 j , ' , , , , , , , , , , , , , , , , , , , , , , ' , ,-.*v...... 123 F i g u r e 4.29 GC Retention Times of Test Compounds 4.30 RGC's of A c i d F r a c t i o n s 4.31 RGC's of N e u t r a l and B a s i c F r a c t i o n s 4.32 RGC's of TLC F r a c t i o n s 4.33 : RGC's and LMRGC's of Blanks, 4.34 MEC - GC-MS C o r r e l a t i o n s i x ACKNOWLEDGEMENTS The author wishes to express h i s s i n c e r e g r a t i t u d e to Dr. K. J . H a l l f o r h i s p a t i e n c e , encouragement and guidance during t h i s p r o j e c t . A s p e c i a l g r a t - i t u d e i s extended to Dr. J..,-N. B l a z e v i t c h (U.S. Environmental P r o t e c t i o n Agency) f o r h i s w i l l i n g cooperation and generous h o s p i t a l i t y during the days the author spent i n S e a t t l e . Thanks are als o expressed to Sue Harper f o r the i n - organic c a n a l y s i s of primary e f f l u e n t . A l a r g e number of other people have each c o n t r i b u t e d i n no s m a l l way to the completion of t h i s p r o j e c t by very w i l l i n g l y and generously p r o v i d i n g t h e i r advice, cooperation and: m a t e r i a l support. Although l i m i t a t i o n s of space pre- vent a proper expression of g r a t i t u d e to a l l of them the author would l i k e to e s p e c i a l l y thank L i z a McDonald, Dr. R. Bose and Dr. J . Farmer f o r t h e i r h e l p . This t h e s i s i s dedicated to my parents and to my w i f e Catherine and son Mic h a e l who through t h e i r love and understanding c o n t r i b u t e d g r e a t l y to i t s completion. SYMBOLS AND ABBREVIATIONS A A c i d i c F r a c t i o n BOD Biochemical Oxygen Demand CIMS Chemical I o n i z a t i o n Mass Spectroscopy COD Chemical Oxygen Demand CRT Cathode Ray Tube DO D i s s o l v e d Oxygen EC E l e c t r o n Capture EIMS E l e c t r o n Impact Mass Spectroscopy EMW Estimated Molecular Weight FID Flame I o n i z a t i o n Detector •G'G'IR ', ^ Gas; rChroffiaeograpHyInfrared ,,_GC-MS-(Com) Gas* CferomatograpfciyMass Spectrometer-(Computer) GLC Gas-Liquid Chromatography GPC Gel permeation Chromatography GSC Gas-Solid Chromatography GVRD Greater Vancouver Regional D i s t r i c t IR I n f r a r e d L C n L e t h a l Concentration f o r n Percent of Po p u l a t i o n LC L i q u i d Chromatography LLC Liq u i d - r L i q u i d Chromatography LSC L i q u i d - S ^ l i d Chromatography MEC M i c r o e l e c t r o l y t i c Conductivity..(Detector) MLD Minimum L e t h a l Dose For Death of One or More Members of the Group N e u t r a l and Ba s i c F r a c t i o n Nuclear Magnetic Resonance S i g n a l to Noise Suspended S o l i d s Tolerance L i m i t (Median), f o r 50. Percent of the P o p u l a t i o n Thin Layer Chromatography T o t a l Organic Carbon T o t a l S o l i d s United States Environmental P r o t e c t i o n Agency U l t r a V i o l e t V o l a t i l e S o l i d s N + B NMR S/N SS TLm TLC TOC TS USEPA UV VS' CHAPTER I INTRODUCTION, PURPOSE AND SCOPE D e f i n i t i o n s The terminology used i n t h i s t h e s i s i s that commonly used by those i n - volved w i t h environmental sciences and t e c h n o l o g i e s . To avoid any misunder- standings however, some d e f i n i t i o n s w i l l be s t a t e d . Sewage i s defined as untreated- wastewater. The standard d e f i n i t i o n s of domestic, storm, combined and i n d u s t r i a l sewages are adhered t o . M u n i c i p a l sewage i s that sewage i n the m u n i c i p a l sewage system. The terms primary, secondary, and t e r t i a r y e f f l u - ents are used to d e s c r i b e the e f f l u e n t s from the v a r i o u s types of m u n i c i p a l as opposed to i n d u s t r i a l sewage treatment p l a n t s unless otherwise i n d i c a t e d . Standard a b b r e v i a t i o n s are used throughout t h i s t h e s i s and a l i s t of a b b r e v i a - t i o n s i s provided on page x. I n t r o d u c t i o n In the United S t a t e s , domestic sewage c o n s t i t u t e s about .a quarter of the t o t a l aqueous organic wastes. (ACS Subcommittee 1969). The amount of organic 9 m a t e r i a l i n terms of BOD present i n domestic sewage i n 1963 was 7.3 x 10 l b , 9 9 compared to BOD values of 9.7 x 10 l b f o r chemical i n d u s t r i e s , 5.9 x 10 l b 9 f o r pulp and paper i n d u s t r i e s , 4.3 x 10 l b ? f o r food processing i n d u s t r i e s , 9 and 0.5 x 10 l b f o r the petroleum and c o a l i n d u s t r y . I t should be empha- s i z e d that these are wastewaters and not e f f l u e n t s . Values f o r e f f l u e n t s should be 0.3 to 2 orders of magnitude lower. The response offantecosystem-tdnthe discharge-of "^organics i n wastewaters w i l l n a t u r a l l y depend upon the type of compound and the type of ecosystem. V a l l e n t y n e (1957), and C r o l l (1972), have reviewed the types of organics . found i n n a t u r a l waters. L i t t l e (1970) and Ongerth et a l . (1973) r e p o r t that only 66 of a suspected 456 organic chemicals i n water have been p o s i t i v e l y i d e n t i f i e d . Most organics from domestic sewage are r a p i d l y degraded by micro- organisms, so r a p i d l y i n f a c t that d e p l e t i o n of d i s s o l v e d oxygen i n the r e c e i v - ing water o f t e n r e s u l t s from the discharge of untreated sewage. However, some compounds may be r e c a l c i t r a n t , metabolized to t o x i c m a t e r i a l , or t o x i c . I f a compound i s r e c a l c i t r a n t c o n c e n t r a t i o n i n the food chain of the ecosystem can occur as w i t h DDT, (Woodwell e f a l . , 1967), or i t may even become u b i q u i t o u s . For example, carbon t e t r a c h l o r i d e i s now a normal c o n s t i t u e n t of the atmosphere ( I l i f f , 1972) and some d r i n k i n g waters (Dowty et a l . , 1975a). Dugan (1972) suggested that c h l o r i n a t i o n of domestic sewage may r e s u l t i n the formation of t o x i c and or r e c a l c i t r a n t c h l o r i n a t e d organic compounds. Z i l l i c h (1972), Brungs (1973), and S e r v i z i and Martens (1974) have demonstrated or reviewed the t o x i c i t i e s of c h l o r i n a t e d e f f l u e n t s to aquatic ecosystems. There i s l i t t l e doubt that most of t h i s t o x i c i t y i s due to C l + s p e c i e s . Current i n v e s t i g a t i o n s by J o l l e y (1973), Glaze et a l . (1973), Rook (1974) and B e l l a r et a l . (1974) however, show that c h l o r i n a t e d organics are d e f i n i t e l y formed during the c h l o r i n a t i o n of sewage or n a t u r a l waters. These r e s u l t s have r e c e n t l y been s e n s a t i o n a l i z e d by the l a y and s c i e n t i f i c press (Time, 1974; Vancouver Sun, 1974; Marx, 1974). In order to maintain a proper p e r s p e c t i v e , c a l c u l a t i o n s based on the data presented by L i l l i a n et a l . (1975), J o l l e y (1973) and JWPCF (1974) shows that w e l l over 99.99 percent of c h l o r i n a t e d organics produced by man are i n t e n t i o n a l l y produced i n d u s t r i a l l y . Some organisms a l s o produce and metabolize c h l o r i n a t e d organics (Doonan 1973). Moreover the f a c t that an o r - ganic compound contains c h l o r i n e does not n e c e s s a r i l y mean that i t i s harmful or even r e c a l c i t r a n t . Purpose and Scope of This Research Th i s present i n v e s t i g a t i o n w i l l focus on the organics i n primary e f f l u e n t s which are r e l a t i v e l y v o l a t i l e . The o b j e c t i v e s w i l l be to: 3 1. ) develop an e f f i c i e n t method f o r the recovery and concentration of these materials, ( 2. ) determine whether changes i n the composition p r o f i l e of the v o l a t i l e organics i n primary e f f l u e n t occur as a r e s u l t of c h l o r i n a t i o n , 3. ) separate and i d e n t i f y the products and precursors of the reaction of chlorine with primary e f f l u e n t . CHAPTER I I LITERATURE REVIEW A. Preface This chapter w i l l be d i v i d e d i n t o f i v e s e c t i o n s . The f i r s t three s e c t i o n s w i l l be devoted to p r e d i c t i o n s of the types of c h l o r i n a t i o n r e a c t i o n s which w i l l occur during the c h l o r i n a t i o n of sewage. In order to accomplish t h i s the composition of sewage and primary e f f l u e n t w i l l be reviewed, a s i m p l i f i e d chemical model of the c h l o r i n a t i o n process w i l l be presented, and the known r e a c t i o n s of c h l o r i n e w i t h organics w i l l be b r i e f l y reviewed. The f i n a l two se c t i o n s w i l l be devoted to a review of the known e f f e c t s of the c h l o r i n a t i o n of sewage and of the a n a l y t i c a l methods r e l e v a n t to t h i s and other s i m i l a r i n v e s t i g a t i o n s . B. Composition of Domestic Sewage and E f f l u e n t s 1. Organics Sources The composition of sewage w i l l n a t u r a l l y depend upon which indus- t r i e s are d i s c h a r g i n g i n t o the c o l l e c t i o n system. Among the sewages from households, i t has been found that although r e l a t i v e amounts vary, the major types of organic m a t e r i a l present i n domestic sewage are s i m i l a r i n the United States and England. The major inputs to domestic sewage are presented i n Table 2.1. E x c r e t a account f o r p r a c t i c a l l y a l l of the o r g a n i c - n i t r o g e n but only 80 percent of the organic-carbon. . P h y s i c a l Forms Raw sewage i s a heterogeneous mixture of f l o a t i n g , suspended, e m u l s i f i e d and d i s s o l v e d i n o r g a n i c and organic matter i n water. The composition e q u i l i b r i u m i s a f f e c t e d by evaporation, s o l u b i l i t y e q u i l i b r i a , s o r p t i o n pro- cesses, p r e c i p i t a t i o n , and b i o l o g i c a l metabolism. Due to the wide v a r i a t i o n i n p h y s i c a l forms of organic m a t e r i a l i n sewage and the corresponding v a r i a t i o n 5 Table 2.1 Major Inputs to Domestic Sewage. Component Organic Carbon Organic N i t r o g e n NH 3 + Urea as N Faeces* 17 1.5 U r i n e * 5 1.7 10.5 Dishwashing and Food P r e p a r a t i o n * * 8 0.2 0 Personal and Clothes Washing** 7 3.4 10.5 * U n i t s are g/adult/day. **UUnits are g/person/day. a) P a i n t e r and Viney (1959) ( 6 of degradation e f f i c i e n c y i n sewage treatment p l a n t s or i n n a t u r a l waters, chemical a n a l y s i s of sewage i s more meaningful a f t e r segregation of organics by p h y s i c a l means. A disadvantage of mechanical separation of organics i s that sorbed v o l a t i l e m a t e r i a l s ( F i s h b e i n , 1972b, Khan, 1972), and metal com- plexed organics (Chau, 1973) may not be in c l u d e d i n the s o l u b l e f r a c t i o n . While no standard segregation method has been adopted, sewages are g e n e r a l l y c l a s s i f i e d as to s e t t l e a b l e , c o l l o i d a l , s u p r a c o l l o i d a l and s o l u b l e f r a c t i o n s . The s o l u b l e m a t e r i a l has a p a r t i c l e s i z e l e s s than 0.2 to 1.0 microns. A d e s c r i p t i o n of the s i z e f r a c t i o n s of raw sewage i n terms of engineering par- ameters i s presented i n Table 2.2. From t h i s t a b l e i:t can be seen that about one t h i r d of the organic carbon i n sewage i s d i s s o l v e d , w h i l e the organic n i t r o g e n i s e q u a l l y d i s t r i b u t e d amongst the four f r a c t i o n s . Molecular S i z e D i s t r i b u t i o n S everal g e l permeation chromatographic (GPC) stu d i e s have been conducted to determine the molecular s i z e of the organic compounds i n raw sewage. Zuckermann and Molof (1970) found only two f r a c t i o n s , one w i t h an Estimated Molecular weight (EMW) of 400 and another of EMW 1200 +. Hardt et al . , ( 1 9 7 1 ) , iad Robertson (1972), and C l e s c e r i (1973) a l l found more complex molecular weight p r o f i l e s . Robertson a l s o found evidence of s o l u t e - g e l i n t e r a c t i o n , thus some i n a c c u r a c i e s are inherent i n the assignment of EMW values. The p r o f i l e s are so d i f f e r e n t that as Robertson p o i n t s out, no gener- a l i z a t i o n s should be made. I t can be s a i d however that 20-60 percent of the &i§§SlY§& .8£§§&4es©apfc@n -ha^ign EMWEOI© Ie's'sj5tha:nd35_0,sand.<may thus be amenable £9 .seRSIStianabX-ogaS. &hromato&r1apJhy the upper l i m i t s of t:-- amenable t c GC s e p a r a t i o n . Co:•-nr,G'en@rail-Ghem'i'ca-lq<G-lasses Two major s t u d i e s have been undertaken to c l a s - s i f y the organic m a t e r i a l in sewage by chemical groupings. Both s t u d i e s , one in England ( P a i n t e r et a l . 1959, 1961, P a i n t e r 1971), and the other in the Eastern United States (Hunter and Heukelekian, 1965; Henkelekian and Table 2.2 Typical D i s t r i b u t i o n s i n Raw Sewages Fraction P a r t i c l e Size TS . . VS TOC Organic-N a b c b d b a c b e At m AC mg/1 % mg/1 % mg/1 % mg/1 % mg/1 % mg/1 % mg/1 . % . Soluble <0.2 <1 <1.0 284 65 827* 63 88 42 46 42 90 29 2.0 27 10 37 C o l l o i d a l 1-10 3 31 7 20 10 12 11 40 15 1.1 11 5.4 20 Supra c o l l o i d a l 103-10 5 44 10 482* 37 36 17 22 20 68 22 3.1 34 5.4 20 Settleable > 10 5 79 18 64 31 29 27 105 34 3.7 23 6.2 23 * Only values f o r soluble versus suspended were given, a Rickert and Hunter (1971) b Hunter and Heukelekian (1965), Rudolfs and Balmat (19 52), Heukelekian and Balmat (1959) c Painter and Viney (1959) d P a i n t e r , Viney and Bywaters (1961) 8 Balmat, 1959; R i c k e r t and Hunter, 1971; Hunter, 1971) employed c l a s s i c a l s olvent and TLC separation procedures followed by wet chemical q u a n t i f i c a t i o n techniques. The r e s u l t s of the s t u d i e s are presented i n Tables 2.3 and 2.4. D i r e c t comparison of these s t u d i e s i s d i f f i c u l t s i n c e the data i s expressed i n d i f f e r e n t u n i t s . I t i s noteworthy that the carbohydrates, p r o t e i n s , v o l - a t i l e acids., and a n i o n i c s u r f a c t a n t s account f o r most of the s o l u b l e carbon. The amount of s o l u b l e organics recoverable by s o l v e n t e x t r a c t i o n or s o r p t i o n and s u f f i c i e n t l y v o l a t i l e f o r gas chromatographic a n a l y s i s i s of p a r t i c u l a r i n t e r e s t . In the American study i t was found that 80 mg/1 or 85 per cent of the d i s s o l v e d organics were ether s o l u b l e . V o l a t i l e acids accounted f o r 30 mg/1, but any compounds v o l a t i l e at 103°C were l o s t during a n a l y s i s s i n c e VS was used to measure organic matter. In the E n g l i s h study, n o n - v o l a t i l e s and v o l a t i l e a c i d s accounted f o r about 80 percent of the d i s s o l v e d carbon. The remaining 20 percent of the carbon was u n c l a s s i f i e d r a t h e r than v o l a t i l e enough to be l o s t during the c o n c e n t r a t i o n procedures. Thus one can conclude that the v o l a t i l e s , e x c l u s i v e of the v o l a t i l e a c i d s c o n s t i t u t e only a very s m a l l p o r t i o n of the s o l u b l e organic m a t e r i a l . S p e c i f i c CGompounds P r i o r to 1972, very few s p e c i f i c compounds had been i d e n t i f i e d i n sewage. Most of the work w a s x l i m i t e d to amino a c i d s ( P a i n t e r and Viney, 1959; Hunter and Heukelekian, 1965) and to v o l a t i l e acids (Viswana-.; than et a l . 1962; Murtaugh and Bunch, 1965; Loehr and Kukar, 1965). The r e s u l t s of the amino a c i d s t u d i e s are presented i n Table 2.5. The v o l a t i l e a c i d analyses g e n e r a l l y show the presence of a l l a c i d s from formic through pentanoic w i t h a c e t i c a c i d accounting f o r around 80 percent of the t o t a l weight of these ccompounds. The only attempt to comprehensively survey the i n d i v i d u a l components of sewage was conducted i n the Southeastern United States by Katz et a l . (1972) and J o l l e y (1973). These i n v e s t i g a t o r s used l i q u i d chromatography f o r i n i t i a l s e p a r a t i o n followed by d e r i v i t i z a t i o n and GC and MS a n a l y s i s . T a b l e 2.3 G e n e r a l C o m p o s i t i o n . o f a n A m e r i c a n D o m e s t i c . S e w a g e , C o n s t i t u e n t S e t t l e a b l e S u p r a C o l l o i d a l C o l l o i d a l S o l u b l e a b a b a b 11.70* 15.27 9.57 17.25 3.55 12.82 0.89 0.46 1.70 0.78 1.48 0.66 0.18 0.08 0.24 0.12 0.20 0.12 0.71 0.38 1.46 0.56 .1.28 0.54 0.004 0.002 0.002 0.08 0.14 0.10 6.45 10.43 4.48 12.76 1.7?. 8.42 1.13 2.49 0.88 1.56 0.24 1.68 5.33 7.94 3.60 11.20 1.48 • 6.74 0.00 0.00 0.02 0.10 0.04 0.08 2.99 2.22 2.16 2.30 1.86 2.42 1.92 1.41 1.09 ' 0.74 0.38 0.26 0.34 0.37 0.51 18.05 19.6 10.60 6.25 6.09 6.57 1.48 0.13 2.16 0.13 1.35 0.57 3.53 2.60 4.32 0.74 1.33 •1.40 11.50 11.8 3.15 0,68 2.43 1.32 1.54 5.12 0.97 0.86 0.98 3.28 0.26 0.13 0.10 8.59 15.44 12.84 6.44 5.37 19.52 9.45 6.64 3.58 '. 0.04 0.02 0.03 72.5 94.1 77.8 94.5 81.9 95.5 T o t a l G r e a s e F r e e F a t t y A c i d s U n s a t u r a t e d S a t u r a t e d P h e n o l s D e t e r g e n t s G l y c e r i d e F a t t y A c i d s U n s a t u r a t e d S a t u r a t e d P h o s p h o l i p i d s U n s a p o n i f i a b l e s A l i p h a t i c A r o m a t i c O x y g e n a t e d T o t a l C a r b o h y d r a t e s a n d L i g n i n P e c t i n H e m i c e l l u l o s e C e l l u l o s e L i g n i n H e x o s e P e n t o s e A m i n o A c i d s B a s e s A m p h o t e r i c s . N e u t r a l s C h o l e s t e r o l U r i c A c i d C r e a t i n e - C r e a t i n i n e P e r c e n t V o l a t i l e S o l i d s A c c o u n t e d f o r 22.56 0.12 3.94 9.77 0.77 9.05 3.24 4.80 13.59 0.03 0.33 0.20 88.2 * A l l c o n c e n t r a t i o n s a r e i n mg/1 a H u n t e r a n d H e u k e l e k i a n (1965) b H e u k e l e k i a n (1959) Table 2.4 General Composition of an E n g l i s h Domestic Sewage 3' Con s t i t u e n t S e t t l e a b l e S u p r a c o l l o i d a l C o l l o i d a l Soluble Carbohydrates 9.3* 2.5 2.7 28.2 Amino Acids Combined /' 10.0 6.8 8.0 6.9 Free 2.8 Acids Soluble 2.1 2.2 0.8 23.9 I n s o l u b l e 26.8 21.8 15.7 V o l a t i l e / n o n - v o l a t i l e 10.2/13.7 E s t e r s 16.6 9.1 4.5 0 A n i o n i c Surfactants 1.4 1.0 1.5 10.1 Amino Sugars 0.3 0.1 0.6 0 Urea (as N) 12 Ammonia (as N) 31 C r e a t i n i n e 2.7 T o t a l Carbon 105 68.2 46.3 90 % T o t a l Carbon Accounted For 63.3 63.7 72.2 82.1 * A l l concentrations are i n mg/1 carbon, unless otherwise s t a t e d , a P a i n t e r and Viney (1959) b P a i n t e r (1971) 11 Table 2.5 Amino Acid Content of Raw Sewage' Amino Acid , Concentration (mg/1) Free Total Particulate Cystine Lystine & Histidine Histidine Lysine Arginine Serine, Glycine and Aspartic Acid 0-trace trace present absent/ present trace 0.02-0.13 1.4-5.7 5.1-9.7 present^ absent present 4.6-11.0 9.4-19.4 1.90 (3.51) 2.03 1.48 1.83/3.39/4.29 (9.51) Threonine and Glutamic Acid 0.01 -0.18 4.5r24.8 1.85/5.18 (7.03) Alanine Proline Tyrosine Methionine and Valine 0.02-0.09 0 0.06-0.09 0.05-0.024 5.1-11.9 0 1.7-6.4 0.09-15.7 4.42 1.87 4.21 Phenylalanine Leucine Tryptophane ;0.02-0.33 0.06-0.28 present 4.7-16.8- 4.2-13.1:- present 5.42 a Hunter (1971) 12 The compounds identified are relatively non-volatile and present in^g/1 concentrations. Other studies of more limited scope have been undertaken by Rudolfs and Heihemann (1939) , Smith and Gourdon (1969), Bennett et a l . (1973) , Buehler et a l . (1973), Farrington and Quinn (1973), Kolattukudy and Purdy (1973), and Singley et a l . (1974). The results of these studies are summarized in Table 2.6. Spector (1956) and Katz e_t a l . (1968) have compiled a l i s t of the rela- tively non-volatile compounds in urine and feces along with their excretion rates. This data can be used to estimate the concentrations of these compon- ents assuming no loss due to biological activity or physical processes. With the assumptions of an average body weight of forty-five kilograms and an average sewage flow of four hundred l i t r e s per capita per day, the concentra- tion in sewage of each component can be estimated by the following formula. Some idea of which volatile compounds one may expect to find in sewage can be garnered from the studies on urine. Zlatkis et a l . (1973a, b, c) used headspace extraction followed by GC - MS analysis and identified about 50 volatile urine components which are lis t e d in Table 2.7. Most of these com- pounds are present in mg/1 to /cg/1 concentrations inlur.Ine (Zlatkis ,1975) and one might expect to find them in/zg/1 to ng/l concentrations in sewage. The organic compounds identified in secondary effluents along with their concentrations are summarized in Tables 2.8 and 2.9. A comparison of these concentration values with those for primary effluents w i l l yield some infor- mation on removal and/or biodegradability of the constituents. It is interest- ing to note that removal may be airfunC'tionf ojfoieon'.cen-fration in that volatile acids are 99% removed while some of the trace constituents such as p-cresol and Excretion rate (mg/kg) x 0.1 kg/1 eg. cholesterol estimated 0.7 mg/1 found 0.3 mg/1 Table 2.6 Organic Components of Primary E f f l u e n t Compound Concentration Reference / f g / 1 Aromatics (Benzenoid) Phenol 6 ' 2 p-Cresol 20 2 Pentachlorophenol 4 1 2- Hydroxybenzoic A c i d 7 2 3- Hydroxybenzoic A c i d 40 2 4- Hydroxybenzoic A c i d _ 2 4- Hydroxypheriylacetic A c i d 190 2 3-Hydroxyphenyl- p r o p r i o n i c A c i d 20 2 3-Hydroxyphenylhydra- c r y l i c A c i d 6 2 L i g n i n s 1500 7 F o l i c A c i d _, 7 Benzoic A c i d _ 2 Ph e n y l a c e t i c A c i d 10 2 H i p p u r i c A c i d _ 5 Hexachlorophene 30 1 Aromatics ( H e t e r o c y c l i c ) N-Methyl-2-fyridone 5-carboxamide 10 3 N-Methy1-4-pyridone- 3-carboxamide 10 2 N i a c i n 14 7 U r a c i l 13 3 5- Acetyl-6-amino- 3-methyl u r a c i l 30 3 Thymine 7 2 Thiamine 29 - 7 Inosine . 50 2 O r o t i c A c i d 5 2 T Theobromine 3 q C a f f e i n e 10 2 Xanthine 70 2 Hypoxanthine 25 2 1-Methylxanthine 17 2 3-Methylxan t h i n e 3 7-Methylxanthine . 3 1,7-Dimethylxanthine -ZZ.- 3 Table .2.6 cont'd. Compound Concentration Reference U r i c A c i d 20 2 Guanosine 50 2 Adenosine — 2 R i b o f l a v i n 22 7 Urocanic A c i d — 2 Indican 2 2 Cobalamin 0 .8 7 Unsaturates . O l e i c A c i d 17000;' 7 L i n o l e i c A c i d 10000 7 B i o t i n 3 7 Pantothenic A c i d — 7 Asco r b i c A c i d — 7 C h o l e s t e r o l 300 7 Saturates Formic A c i d — 5 A c e t i c A c i d 10000 5 P r o p r i o n i c A c i d 2600 5 B u t y r i c A c i d 1000 5 Pentanoic A c i d 400, 5 Laurie A c i d 120 7 M y r i s t i c A c i d 240^ 7 P a l m i t i c A c i d 11700;*,. 7 S t e a r i c A c i d 4606 7 L a c t i c A c i d — 5 Pyru v i c A c i d — 7 G l y c o l l i c A c i d — 5 O x a l i c A c i d — 7 G l u t a r i c A c i d — 5 C i t r i c A c i d — 5 S u c c i n i c A c i d — 2 C u t i n — c 4 G l y c e r i n e — 2 Corprostanol 100 7 5j& - C H o l e s t a n - 3 ^ - o l — 6 A l l u l o s e — 3 Glucose — 2 Galactose — 2 Mannose — 3 Fructose — 3 Rhamnose — 3 Sorbose and/or x y l o s e — 3 Arabinose — 3 Ribose — 3 15 Table 2.6 cont'd. Compound Concentration Reference Sucrose Maltose Lactose Muramic A c i d 3 2 3 2 a. See also Table 2.5. b. Concentration found i n whole sewage, c o n c e n t r a t i o n i n e f f l u e n t i s unknown but probably 1-3 orders of magnitude lower. c. I d e n t i f i e d i n sludge only. d. References 1. Buehler et a l . (1973) 2. Katz et a l . (1972) 3. J o l l e y (1973) 4. Kolatt'ukudy and Purdy (1973) 5. P a i n t e r and Viney (1959) , P a i n t e r et a l . (1961) 6. Smith and Gourdon (1969) 7. Hunter (1971) Table 2.7 V o l a t i l e Components of Normal Human Urine' Component Chloroform Ethanol 1- Butanol Proprionaldehyde F u r f u r a l Acetone 2- Butanone 3- Methyl-2-butanone 2,3-Butanedione 2- Pentanone 3- Methy1-2-p ent anone 4- Methyl-2-pentanone 3-Methylcyclopentanone 3- Hexanone 5- Methyl-3-hexanone 2- Heptanone 4- Heptanone 6-Methyl-3-heptanone 3- 0ctanone 2- Nonanone P i p e r i t o n e Carvone 3- Penten-2-one ^ 4- Methyl-3-penten-2-one Thiolan-2-one Toluene ^ p-Methyl propenylbenzene Benzaldehyde p f C r e s o l 2.3- Dimethylfuran 2.4- Dimethylfuran 2-Methyl-5-Ethylfuran 2,3,5-TrimeMiylfuran C^-Furan 2-n-Pentylfuran A c e t y l f u r a n P y r r o l e 1- M e t h y l p y r r o l e 2- M e t h y l p y r r o l e D i m e t h y l p y r r o l e 1- B u t y l p y r r o l e D Methylpyrazine 2,3-Dimethylpyrazine 2,5 or 2,6-Dimethylpyrazine 2,3,5-Trimethylpyrazine 2,Methyl-6-ethylpyrazine V i n y l p y r a z i n e 2-Methyl-6-vinylpyrazine ytl-Pinene A l l y l i s o t h i o c y a n a t e Table 2.7 cont'd. Component Dlmethyldisulphide a Z l a t k i s et a h (1973 b,c) b I d e n t i f i c a t i o n i s t e n t a t i v e Table; 2.8 General Composition of Secondary E f f l u e n t Component Percent by Weight of Organic Matter Humic Acids 40 - 50 F u l v i c 23 Humic 11 Hymanthomelanic .8 Ether E x t r a c t a b l e s 8 An i o n i c Detergents 14 Carbohydrates 12 P r o t e i n s 22 Tannins 2 a Rebhum and Manka (1971); Manka et a l . (1974) Table 2.9 Organic Components of Secondary E f f l u e n t s 19 Compound Concentration Reference Carbohydrates Glucose Fructose Sucrose Mannose A l l u l o s e Xylose R a f f i n o s e G l y c e r i n e Formic A c i d A c e t i c A c i d F r op'd'o'nU'd-c d?d~d B u t y r i c A c i d I s o - b u t y r i c A c i d I s o - v a l e r i c A c i d Caproic A c i d U r i c A c i d P o l y c y c l i c Aromatics Pyrene 1 Perylene r Benzepyrenes J DDT BHC D i e l d r i n U r a c i l 5-Ac etylamino-6-amino-3-Me thy1 Inosine 1-Methyl Inosine 1-Methyl Xanthine 7-Methyl Xanthine 1,7-Dimethyl Xanthine p-Cresol 2-50 1 2 10 1 20 1 5 1 10 1 10 1 50 1 10 1 10 1 1 1 0.1 1 0.1 1 0.1 1 30 2 u r a c i l 30 2 20 2 80 2 6 2- 5 2 6 2 90 2 1. P a i n t e r (1973) 2. J o l l e y (1973) 20 methyl xanthine are h a r d l y removed at a l l . 2. Inorganics The main purpose of reviewing the i n o r g a n i c composition of sewage e f f l u e n t s i s to assess t h e i r e f f e c t s upon the aqueous chemistry of c h l o r i n e through various complexation r e a c t i o n s w i t h both organics and species c o n t a i n i n g C l + . In view of the voluminous amount of l i t e r a t u r e a v a i l a b l e and the complexity of primary e f f l u e n t as a chemical system, t h i s review w i l l only attempt to estimate the amounts of i n o r g a n i c s a v a i l a b l e f o r such i n t e r a c t i o n s . The i n o r g a n i c compositions of whole sewages were reviewed by P a i n t e r (1971) . Tanner e_t a l . (1973) and Koch e_t a l . (1976) have surveyed the concen- t r a t i o n s of some heavy metals i n Vancouver sewages and treatment p l a n t e f f l u - ents. A sample of u n c h l o r i n a t e d e f f l u e n t from Lion's Gate Treatment P l a n t was surveyed i n t h i s study and the r e s u l t s ase presented i n Table 2.10 are s i m i l a r to those of the other s t u d i e s . In order to estimate the amount of each c o n s t i t u e n t a c t u a l l y a v a i l a b l e to i n f l u e n c e the c h l o r i n a t i o n process, r a t i o s of d i s s o l v e d / t o t a l c a l c u l a t e d from the data of Heukelekian and Balmat (1959) are a l s o i n c l u d e d i n Table 2.10. C. A S i m p l i f i e d Model of the C h l o r i n a t i o n Process The Process i n the Sewage Treatment P l a n t The mechanics of e f f l u e n t c h l o r i n a t i o n hav«been discussed i n d e t a i l by White (1971). The f i r s t step i n v o l v e s the p r e p a r a t i o n of a concentrated s o l u t i o n of c h l o r i n e from e i t h e r c h l o r i n e gas or c h l o r i n a t e d l i m e . This concentrated s o l u t i o n i s then added to the treatment p l a n t e f f l u e n t . In some p l a n t s the f i n a l e f f l u e n t i s d e c h l o r i n a t e d w i t h sulphur d i o x i d e . Chemical Model The purpose of t h i s model i s to estimate the concentrations of species c o n t a i n i n g C l + . The importance of these species l i e s i n t h e i r a b i l i t y to react w i t h organics to form s t a b l e carbon - c h l o r i n e bonds. There are many 21 Table 2.10 Inorganic Composition of Lion's Gate E f f l u e n t Component T o t a l Concentration F r a c t i o n D i s s o l v e d / T o t a l 3 mg/1 A l 0.095 c 0.12 As <0.006 B <0.05 Ba <0.02 c; Be <0.05 Ca 8.7° 0.88 Cd <0.001 c • C l " 28 Co <0.005 t ( Cr 0.011 c Cu 0.10S' 0.92 F " 0.07 Fe 1.05 c 0.35 Hg <.<0.002c K 6.7 s 0.95 Mg 2.989 0.96 Mn 0.04^ 0.94 Mo <0.02g NH3-N 15b N i 0.011 s Pb 0.013f 0.0 Se 0.008 & S i 2.8r 0.11 T i <0.2C' V <0.07© Zn 0.105 e. 0.0 a For primary e f f l u e n t as opposed to whole sewage as c a l c u l a t e d from data of Heukelekian and Balmat (1959) b GVRD data c T o t a l HCI - HNO d i g e s t i b l e components and factors which should be included i n the model. These include the sources of chlorine, the solvent, ammonia, other inorganics, p a r t i c u l a t e s , organics, pH, reaction time, mixing, temperature and sunlight. In order to keep the model simple only three factors w i l l be considered. 1) the hydrolysis of chlorine, 2) the dissociation of hypochlorous acid, and 3) the reactions of chlorine and hypochlorous acid with ammonia to form chloramines. The following e q u i l i b r i a and reactions w i l l be used. 1) Cl„, * + HO ^ H' + Cl :+ H0C1 2(aq) 2 2) H0C1 + H20 * H 30 + + 0C1 3) NH.. . + H„0 =? NH,+ + OH" 3(aq) 2 4 4) NH3 + H0C1 NH2C1 + HO 5) NH2C1 + H20 -*H0C1 + NH^ KJJ Q = 4.2 x 10"* at 25°C 0C1 = 2.5 x 10  8 at 20°C = 1.8 x 10 5 at 20°C k = 9.7 x 10 exp(-3000/RT) 1 mole sec k = 8.7 x 10 exp(-17,000/RT) sec -1 6) NH2C1 + H0C1 NHC12 + H*0 7) 2NH.C1 NHCl. + NH • 2s 2 j k 2 = 7.6 x 10 exp (-7300/RT) 1 mole sec k 3 = 80 exp (-4300/RT) 1 mole" 1sec~ 1 From Q i t can be seen that at pH 4 a l l of the chlorine i s i n the form of hypochlorous acid. Now i f A =[H0Cl] -+• [0C1~J B = [ N H J + [NH!]" then 8. [HOC!], = A 9. [NHj = B Since k^» k2»k-3 the concentration of monochloramine i s to a rough approxima- tion independent of the concentration of dichloramine. From the equilibrium 11. NH2C1 + H20 = H0C1 + NH3 i t can be seen that 12 l a From equations 6 and 7 i t can be seen that The f i n a l concentrations of hypochlorous a c i d and h y p o c h l o r i t e i o n can be c a l c u l a t e d as f o l l o w s : The i n d i v i d u a l concentrations of the a c i d and i o n can be c a l c u l a t e d from equation 8. From these equations a s o l u t i o n of the i n i t i a l composition: [NH^-Nj - 1 x 10~ 3M, [ t o t a l C l + ] - 1 x 10 ^M; pH - 7.0; and r e a c t i o n time - 10 minutes; w i l l have the f o l l o w i n g f i n a l composition: L i m i t a t i o n s of the Model There are many l i m i t a t i o n s to t h i s model. The most important are that the r e d u c t i o n of C l + to C l through r e a c t i o n w i t h reducing agents and the decompositions of the chloramines to n i t r o g e n gas and other products have not been i n c l u d e d . Other l e s s important f a c t o r s not i n c l u d e d are 1) formation of c h l o r i n e hydrate, 2) decomposition r e a c t i o n s of hypochlorous a c i d and hypo- c h l o r i t e i o n s , and 3) the formation of other N-chloro compounds. These f a c t o r s are discussed i n Appendix I . V a l i d i t y of the Model P a l i n (1950) and Isomura (1967) h'ave conducted s t u d i e s on the composi- t i o n s of d'ilute ammonia - c h l o r i n e s o l u t i o n s i n d i s t i l l e d water. At ammonia/ c h l o r i n e mole r a t i o s of 1:1 both i n v e s t i g a t o r s found that the ammonia was a l - most t o t a l l y converted to monochloramine. Unfortunately due to the d e t e c t i o n 14. and •2,4 l i m i t s of the a n a l y t i c a l methods no q u a n t i f i c a t i o n of dichloramine and hypochlorous a c i d could be made. A general f e e l i n g f o r the v a l i d i t y of the aqueous ammonia-chlorine system --. as a model of the primary e f f l u e n t - c h l o r i n e system can be obtained from the p l o t s of r e s i d u a l c h l o r i n e against added c h l o r i n e f o r the two systems. The p l o t f o r the aqueous ammonia-chlorine system was c a l l e d the 'breakpoint curve' by G r i f f i n and Chamberlain (1941a,b). An example of the p l o t f o r a primary e f f l u e n t - c h l o r i n e system can be found i n the study by McKee et a l . (1960). The o v e r a l l shapes of the two curves and the forms of the r e s i d u a l s are sim- i l a r which i n d i c a t e s that the model i s e s s e n t i a l l y v a l i d . There are however, two d i f f e r e n c e s between the curves i n the region of the chlorine/ammonia r a t i o normally used i n sewage treatment p l a n t s . F i r s t l y , primary e f f l u e n t i n s t a n t - aneously consumes 0.4 - 1.1 x 10 m o l e s / l of Cl^ wM/Te^the ammonia system has :no instantaneous /demand., and secondly, w i t h primary e f f l u e n t the slope of the l i n e i s between 0.82 and 0.92 r a t h e r than 1.0 as noted i n the ammonia-chlorine system. In other words, primary e f f l u e n t dosed w i t h 28 mg/1 of Cl^ w i l l con- sume 4.9 - 11.2 mg/1 C l 2 i n f i f t e e n minutes. The instantaneous consumption of 2.8 - 8.7 mg/1 i s probably due to o x i d a t i o n s of i n o r g a n i c s and/or some very r a p i d r e a c t i o n s w i t h organics. The slower consumption of 2.1 - 3.5 mg/1 as manifested i n the d i f f e r e n c e s i n slopes t e n t a t i v e l y suggests the occurrence of o x i d a t i o n and s u b s t i t u t i o n r e a c t i o n s w i t h o r g a n i c s . In summary, -the form of the r e s i d u a l c h l o r i n e i n a treatment p l a n t i s es- s e n t i a l l y mono and dichloramines as was p r e d i c t e d by the simple model. The v a l - ue of a more r e f i n e d model which i n c l u d e s minor i n t e r a c t i o n s i s tempered by the tremendous complexity of the chl o r i n e - p r i m a r y e f f l u e n t system. There i s some i n d i c a t i o n that r e a c t i o n s of C l + sources w i t h organics do occur. D. Reactions of C h l o r i n e With Organics i n Aqueous Media 1. Reactions With Nitrogenous Compounds . 25 Engineering Oriented Studies Taras (1950, 1953) conducted a comprehen- s i v e study of the c h l o r i n e demands and n i t r o g e n l o s s e s of amino aci d s as w e l l as some p r o t e i n s and other compounds. Smaller s t u d i e s were conducted by Wright (1926), Norman (1936), and P a l i n (1950). S t r i c t comparison of the behaviour of these compounds to c h l o r i n e i s not p o s s i b l e on the b a s i s of these s t u d i e s due to the d i f f e r e n c e s i n Cl/N r a t i o s and a n a l y t i c a l problems. From the r e s u l t s of Taras (1950, 1953) however some general trends can be observed w i t h i n i t i a l mole r a t i o s of 4:1 (Cl/Albuminoid-N) and near n e u t r a l pH: a) primary CK and /£ -amino groups, mercapto and t h i o e t h e r e a l groups a l l consume two mole* equiv a l e n t s of C l ^ i n f i f t e e n minutes, b) the £ and £" -amino groups and peptide l i n k a g e n i t r o g e n atoms react very s l o w l y w i t h c h l o r i n e , c) aromatic s u b s t i t u t i o n of c h l o r i n e probably occurs i n t y r o s i n e and tryptophane, and d) l o s s e s of n i - trogen i n a one hour occur only f o r cX and j&-amino acids and range from 25 to 50 percent. Zaloum (1973) i n v e s t i g a t e d the r e a c t i o n of v a r y i n g dosages of c h l o r - ine on some amino acids and other compounds. At mole r a t i o s of l e s s than 2:1 (Cl/N) no l o s s of c h l o r i n e r e s i d u a l was observed except i n the case of h i s t i d i n e . His r e s u l t f o r h i s t i d i n e i n d i c a t e s that e l e c t r o p h i l i c a d d i t i o n or s u b s t i t u t i o n to carbon probably occurs. He a l s o demonstrated that w i t h C l / G l y c i n e mole r a t i o s greater than 21:1 o x i d a t i o n of g l y c i n e w i t h l o s s of carbon occurs. Pure Chemistry Oriented Studies A conGise p i c t u r e of N - c h l o r i n a t i o n of amines was presented by M o r r i s (1965) i n the form of a Bronsted type p l o t of pK^ vs l o g k^/k^, where k^ and k^ are the r e s p e c t i v e competitive molecular r e a c t i o n r a t e constants of H0C1 w i t h the amine and ammonia. A good l i n e a r c o r r e l a t i o n w i t h a slope of 0.5 was obtained. I t should be noted however that ammonia i t s e l f showed a s i g n i f i c a n t d e v i a t i o n of the type u s u a l l y a t t r i b u t e d , to s t e r i c hindrance. I n v e s t i g a t i o n s by Dakin (1916) among others i n d i c a t e d that the r e a c t i o n of Of-amino ac i d s w i t h NaOCl and other c h l o r i n a t i n g agents r e s u l t s i n deamination and/or decarboxylation to form the corresponding aldehyde or n i t r i l e . A study 26 by van Tamelen et a l . (1968) y i e l d e d the f o l l o w i n g : a) w i t h d i m e t h y l g l y c i n e decarboxylation occurs most r e a d i l y w i t h a pH of 1.5 and a Cl/N mole r a t i o of 2:1, carbon d i o x i d e , formaldehyde, and chlorodimethylamine were i d e n t i f i e d as products, b ) d e c a r b o x y l a t i o n most l i k e l y i n v o l v e s N - c h l o r i n a t i o n r a t h e r than formation of the a c y l h y p o c h l o r i t e and d e f i n i t e l y i n v o l v e s a t r a n s , coplanar arrangement, and c) other complex r e a c t i o n s a l s o occur w i t h compounds such as trytophan. Patton et a l . (1972) present the f o l l o w i n g observations on the aqueous c h l o r i n a t i o n of c y t o s i n e : at a 1:1 mole r a t i o only 4 , N - c h l o r i n a t i o n occurs, b) at a 2:1 mole r a t i o C l / C y t o s i n e the 4, iN-chloro ( I ) , 4,N-chloro, 5-chloro ( I I ) , 4,N-chloro, c h l o r o h y d r i n ( I I I ) , and 1,4N-dichloro-chlorohydrin (IV) were a l l formed, c) i n c r e a s i n g the C l / C y t o s i n e mole r a t i o i n creased the y i e l d of I I I and IV and at a 5:1 moijie r a t i o a t e t r a c h l o r o d e r i v a t i v e was formed which decomposed on standing to I and I I . Subsequent i n v e s t i g a t i o n s by P e r e i r a et a l . (1973) at pH 4 and a 2:1 C l / s u b s t r a t e mole r a t i o w i t h some amino a c i d s and d i p e p t i d e s y i e l d e d the f o l l o w i n g : a) w i t h t y r o s i n e only the r i n g c h l o r i n a t e d aldehyde or n i t r i l e r a t h e r than the r i n g c h l o r i n a t e d amino a c i d s were observed which c o n f l i c t s w i t h the claims of Thompson (1954), b) w i t h L-phenylalanirie the n i t r i l e / a l d e h y d e r a t i o was 95/5, kc) w i t h glutamic a c i d only the c a r b o x y l group alpha to the amino group was removed d) only t e r m i n a l N - c h l o r i n a t i o n i s observed w i t h d i p e p t i d e s w i t h p o s s i b l e decomposition of the dichloramine to a chlorimine and e) no N - c h l o r i n a t i o n i s observed w i t h N - a c e t y l L - a l a n i n e ; ' f ) w i t h c y s t e i n e only o x i d a t i o n of the sulphur to c y s t e i c a c i d and some dimer- i z a t i o n to c y s t i n e was observed, c y s t i n e was o x i d i z e d to c y s t e i c a c i d . A d d i t i o n - a l s t u d i e s on the r e a c t i o n of other organic sulphides w i t h c h l o r i n e are discussed by Baker et a l . (1946). Hoyano e_t a l . (1973) s t u d i e d the r e a c t i o n s of some u r a c i l s and purines w i t h aqueous hypochlorous a c i d at HOCl/substrate mole r a t i o s of 2 and 4:1. With the u r a c i l s , N - c h l o r i n a t i o n p r e c e d e d d e l e c t r o p h i l i c s u b s t i t u t i o n . The purines y i e l d e d 20-90 percent parabanic a c i d s i n seven days. Thus o x i d a t i v e 27 degradation may be an important r e a c t i o n w i t h these compounds. A somewhat s p e c i a l case i s observed i n the c h l o r i n a t i o n of cyanuric a c i d , (Brady e_t a l . , 1963; Sancier et_ a l . , 1964) where N - c h l o r i n a t i o n occurs only i n the keto-tautomer. The s t a b i l i t y of the N - c h l o r i n a t e d keto-tautomer combined w i t h the f a c i l e r e l e a s e of c h l o r i n e from the en o l and the f a c t t h a t there are three tautomeric s i t e s on the t r i a z i n e r i n g has made cyanuric a c i d an important " c h l o r i n e s t a b i l i z e r " i n swimming pools (Gardiner,1973; C a n e l l i , 1974). 2. Reactions of C h l o r i n e w i t h Other Organics I n t r o d u c t i o n The r e a c t i o n s of c h l o r i n e w i t h organics can be c l a s s i f i e d i n t o four groups: n u c l e o p h i l i c a t t a c k of C l , e l e c t r o p h i l i c a t t a c k of C l + , photochemical, and o x i d a t i o n r e a c t i o n s . E x c e l l e n t reviews of c h l o r i n a t i o n reac-^ t i o n s i n pure systems have been published by House (1965), E i s c h (1966), Buehler and Pearson (1970) and Dorn (1972). In reading these reviews, i t must be kept in-mind that most of the y i e l d s quoted have been optimized. Furthermore, a y i e l d of l e s s than one percent i s u s u a l l y i n s i g n i f i c a n t to a c l a s s i c a l s y n t h e t i c chemist whereas such a y i e l d may be very important to an environmental chemist. Therefore a b r i e f summary of c o n d i t i o n s i n a treatment p l a n t i s provided i n Table 2.11 i n order to o b t a i n a f e e l i n g f o r the r e l a t i v e importance and p o s s i b l e magnitudes of these r e a c t i o n groups i n primary e f f l u e n t . These groups w i l l now be discussed i n the most probable order of importance. Oxidation Reactions These r e a c t i o n s have been reviewed by Barker (1964). The mechanisms are not completely understood. In most cases o x i d a t i o n w i t h H0C1 i s as r a p i d as w i t h molecular Cl^ however, f a c t o r s such as a c i d and base c a t a l y s i s , the greaterppropensity to o x i d a t i o n of anions, e.g. formic a c i d , and hydrate formation e.g. aldehydes make g e n e r a l i z a t i o n somewhat tenuous. I t i s w e l l known that aldose sugars are o x i d i z e d to aci d s by h y p o c h l o r i t e . Several i n v e s t i g a t i o n s of the o x i d a t i o n of aromatic r i n g s have been c a r r i e d out. In a c i d i c s o l u t i o n s , Van Buren and Dence (1967) working w i t h l i g n i n model com- pounds estimated that 20 - 80% of the products are o x i d a t i o n r a t h e r than sub- 28 Table 2.11 Summary of Reaction Conditions for Organics i n Sewage a. Conditions i n the Main Body of Water Component Remarks Solvent Buffers PH Temperature Mixing • Cl 2/HOCl/OCl" NH 3 C l " Br" Organic compounds Bac t e r i a Heavy metals Reaction time Water Acetic acid/Acetate Carb onate/B icarb ona t e 6.5 - 8.5 2-12°C Variable Approximately 50/50 i n H0C1/0C1" very l i t t l e of each a v a i l a b l e M a r t i a l l y converted to chloramines [Total C1+J* = 10"4 M ~10" 3MM *~10~ 4 M [individual] ~10" 6 - 10" 4 M [TotalJ-10" 3 -10" 4 M --10 mg/1 0.001 - 10 mg/1 20 - 50 minutes b. Conditions at the Surface Component Remarks ; . Solvent F l o a t i n g organics = 0.1 - 2.0% of the area Polywater? Temperature ( a i r ) 2 - 37° C Reaction time 1 5 - 3 0 minutes UV l i g h t V a r i a b l e , d i r e c t sunlight sometimes -7 - i - i.able C l 2 Possibly present Chloramines Present Organics Abundance of some types i s greater at the surface "T" " C l " r e f e r s to a l l species containing c h l o r i n e i n the +1 oxidation state as opposed to hi|drated C l + ions. No C l + ( a q ) i s expected to be present (Swain and C r i s t 1972). 29 s t i t u t i o n or displacement products, w h i l e V o l l b r a c h t et a l . (1968) determined that exhaustive c h l o r i n a t i o n of some other phenols y i e l d e d c h l o r i n a t e d c y c l o - hexenones. In n e u t r a l s o l u t i o n s , EPA (1972) p o s t u l a t e d r i n g cleavage of phenols. In b a s i c s o l u t i o n , Moye and S t e r n h e l l (1966) s t a t e than phenol i s converted to a c h l o r i n a t e d cyclopentane c a r b o x y l i c a c i d probably by a F a v o r s k i i rearrange- ment arid o x i d a t i o n of the cyclolpentenone' intermediate. E l e c t r o p h i l i c Reactions Aromatic e l e c t r o p h i l i c s u b s t i t u t i o n s of c h l o r i n e f o r hydrogen using sodium h y p o c h l o r i t e were reviewed by Hopkins and Chisholm (1946) and Soper and Smith (1926). The k i n e t i c s of the aqueous c h l o r i n a t i o n of phenolwere i n v e s t i g a t e d by B u r t t s c h e l l et a l . (1959), and Lee-and M o r r i s (1962) among others. E l i a s e k and Jungwirt (1963) s t u d i e d the exhaustive c h l o r i n a t i o n of phenol, o r t h o - c r e s o l and pyrocatechol by sodium h y p o c h l o r i t e . They found that the completely o,p s u b s t i t u t e d phenol i s i n i t i a l l y formed f o l l o w e d by o x i - d a t i o n to a chloroquinone. The chloroquinone was then e i t h e r f u r t h e r c h l o r i n a t - . ed, or i n the presence of l i g h t , converted to a hydroxychloroquinone which p o l y - merized at pH>7 to humic a c i d type compounds. An u n s p e c i f i e d type of o x i d a - t i v e decomposition was observed i n the case of pyrocatechol to the extent of 60 per- cent. Van Buren and Dence (1967) observed the s u b s t i t u t i v e displacement of the p r o p y l moiety from g u a i a c y l e t h y l c a r b i n o l and v e r a t r y l e t h y l c a r b i n o l . E l e c t r o p h i l i c a d d i t i o n i s known to occur i n aqueous s o l u t i o n or suspension, eg. Emerson (1945). I n v e s t i g a t i o n s by Gunstone and P e r e i r a (1973) among others demonstrated that halogenation of unsaturated f a t t y acids and a l c o h o l s of the appropriate stereochemistry can r e s p e c t i v e l y y i e l d s i g n i f i c a n t amounts of halogenated oxolanes and oxanes. Hawkins (1973) natsnt-sd anone s .NaOCl and an ammonium sal-j Zz Uv.5 r,--Jia-tion zi •' - • v a n e . . c Photochemical Reactions Meiners and M o r r i s s (1964) s t u d i e d the e f f e c t of UV i r r a d i a t i o n on the c h l o r i n e o x i d a t i o n of s t a r c h i n a c i d i c aqueous s o l u t i o n . More r e c e n t l y Kobayashi and Okuda (1972) found s i g n i f i c a n t photochemical up- 30 take, cf chlorine by a large number of compounds in dilute aqueous solution. Catalysis by Hg(II) and PbXXT)- Ŵas, also noted, Nucleophilic Reactions Due to the competitive hydrolysis reactions, nucleophilic substitutions are unlikely to play an important role in sewage effluents. It should be noted however that halide exchanges involving the addition of chloride w i l l make the compound more stable with respect to hy- drolysis. 3. Reactions of N-Chloro Compounds with Organics I t has been noted by Burttschelle6:fga:-1> (1959'),*;andxotR'ersT̂ that; the rate of chlorination of phenol in the presence of ammonia is very slow. Zaloum (1973) observed oxidative type chlorination reactions of amino acids by chloramines. The classical mechanism of chlorination involves catalysis by acid and chloride with the limiting step being the dissociation of the chloramine to the amine and molecular chlorine, e.g. Hurst and Soper (.1949). Some evidence has been presented for the direct chlorination (electrophilic substitution) by morpholinum ions l(CarraaridB.Englarid(1958) , dichloramine-T .(jHiguchi and Hussain, 19.6#')\,s and diethylchloramine X'BrownaaridFSpper^1953) , An important facet of the investigation of Brown and Soper is that rate of chlorination of phenols 3 with N-chlorodiethyl amine at neutral pH is 10 times greater than that of chlorination with H0C1 probably due to the significant amounts of RR'NC1H+ present. Onuska (1973) was unable to detect diethyl amine in sewage, although Rains et a l . (1973) tentatively identified a series of alkyl amines in sludges. West and Barret (1954) observed the production of 5-chlorouracils from the reac- tions of some uracils with N-chlorosuccinimide ih?acetic acid. Chlorination of styrene by monochlorourea was discussed by Hanby and Rydon (1946). The alpha-chlorination of unsymmetrical benzylic sulphides with N-chlorosuccinimide in carbon tetrachloride was observed by Tuleen (1967). Substituted hydrazines have been prepared from chloramine and a substituted amine (Audrieth and Dia- mond, 1954; Diamond and Audrieth, 1955), or by other chlorinating agents (Audrieth et a l . , 1956, Colton et_ a l . , 1954). Hawkins (1973) patented the use of cyclohexanone, NaOCl and an ammonium s a l t f o r the production of 1 - c h l o r o - amino cyclohexanol. Other examples of the r e a c t i o n s of chloramines can be found i n the reviews by Drago (1957) and Kovacic et a l . (1970). Free r a d i c a l a d d i t i o n of chloramines to unsaturated compounds i n H^SO^/ HOAc r e s u l t i n g i n ^ - c h l o r o a m i n e s hass been noted (Kovacic et a l . , 1970). Gas phase r e a c t i o n s tend to y i e l d only c h l o r i n a t e d products (Prakash and S i s l e r , 1 9 7 0 ) . E970)The E f f e c t s of C h l o r i n e on Sewage E f f l u e n t s 1. P r a c t i c e s i n Treatment P l a n t s The l a t e s t estimates of c h l o r i n e usages i n the United States (JWPCF, 1974) are 1.87 x 10^ tons/year f o r wastewater, 2.5 x 10"* tons/year f o r water s u p p l i e s and 2.1 x 10^ tons/year f o r swimming pools. The composition of gaseous c h l o r - in e was discussed by Laubusch (1959). The p u r i t y i s 99.5% or b e t t e r w i t h the major i m p u r i t i e s being N 2 and CO^ although some halogenated methane, ethane and benzene d e r i v a t i v e s may be present i n ppm q u a n t i t i e s . The uses of c h l o r i n e i n wastewater treatment have been described by White (1972). The dosage a p p l i e d v a r i e s according to the s t r e n g t h of the e f f l u e n t . For example, during the night when the sewage i s e s s e n t i a l l y i n f i l t r a t i o n , only 1 - 2 mg/1 Cl^ may be added w h i l e during peak loads and, e s p e c i a l l y dur- ing dumping of d i g e s t o r s , 30 mg/1 Cl^ may be added to the e f f l u e n t . Contact times vary from 0.25 to 0.5 hr depending upon the flow and l e n g t h of l i n e be- tween the p l a n t and r e c e i v i n g water. The combined c h l o r i n e r e s i d u a l s i n the e f f l u e n t s range from 0.0 to 5.0 mg/1 depending on the time of year and whether or not d e c h l o r i n a t i o n i s p r a c t i c e d . Free r e s i d u a l c h l o r i n a t i o n i s not the u s u a l p r a c t i c e . 2. B i o l o g i c a l E f f e c t s of R e s i d u a l C h l o r i n e Disease C o n t r o l The h i s t o r i c a l trends of water borne disease outbreaks have been reviewed by Craun (1972), Craun and McCabe (1973) and K i t t r e l l and F u r f a i , ( 1 9 6 3 ) . There can be no doubt that c h l o r i n a t i o n of water s u p p l i e s has e f f e c t e d a s i g n i f i c a n t decrease i n d i s e a s e s , however a t o t a l e r a d i c a t i o n has not occurred. The e f f e c t of waste-water c h l o r i n a t i o n on disease outbreaks has not been documented and i s very d i f f i c u l t to e s t a b l i s h . The e f f e c t s of c h l o r i n a t i o n of e f f l u e n t s on c o l i f o r m counts at a beach i n the r e c e i v i n g water are ambiguous due to regrowth of c o l - iforms and v a r i o u s environmental f a c t o r s a f f e c t i n g d i e o f f ( K i t t r e l l and F u r f a i 1963). In a d d i t i o n , S i l v e y et a l . (.1974) found salmonellae b a c t e r i a i n c h l o r - i n a t e d e f f l u e n t s and r e c e i v i n g water. T o x i c i t i e s to Various Forms of L i f e The a d d i t i o n of m a t e r i a l to an eco- system can cause p o p u l a t i o n changes due to s p e c i f i c or general t o x i c i t y , c a r - c i n o g e n i c i t y , m u t a g e n i c i t y , t e r a t o g e n i c i t y , b e h a v i o u r a l m o d i f i c a t i o n or i t s being a s p e c i f i c l i m i t i n g n u t r i e n t . T o x i c i t y of r e s i d u a l c h l o r i n e i s a func- t i o n of pH, temperature, form of the r e s i d u a l and other f a c t o r s . In a d d i t i o n , t o x i c and other d e t r i m e n t a l e f f e c t s can be complicated due to s y n e r g i s t i c and a n t a g o n i s t i c e f f e c t s (Longbottom, 1972; Ongerth, 1973). Studies or r e - views of the t o x i c i t i e s of r e s i d u a l c h l o r i n e have been undertaken by Merkens (1958), Z i l l i c h (1972), White (1972) and Brungs (1973). Microorganisms (Bacteria, Viruses and Algae). The e f f e c t of c h l o r i n e on sewage b a c t e r i a , e s p e c i a l l y c o l i f o r m s has been discussed by F a i r et_ a l . (.1948) and Heukelekian and Faust (1961) among o t h e r s , and reviewed by White (1972). Although i t i s a f u n c t i o n of pH, e f f e c t i v e c o n t r o l (99.9% k i l l ) of b a c t e r i a r e q u i r e s 0.1 to 5.0 mg/1 combined r e s i d u a l f o r 10 minutes, w h i l e v i r u s e s r e q u i r e 0.2 - 0.5 mg/1 f r e e r e s i d u a l . In r e c e i v i n g waters, regrowth i s a f u n c t i o n of many f a c t o r s i n c l u d i n g temperature, pH, and n u t r i e n t s . K i t t r e l l and F u r f a i (1963) s t a t e that a r e - growth of 4 to 8 times the o r i g i n a l p o p u l a t i o n of c o l i f o r m s occurred i n 0.5 days fo l l o w e d by a d e c l i n e . Salmonellae, f e c a l c o l i f o r m s , and f e c a l s t r e p t o - c o c c i do not appear to e x h i b i t t h i s regrowth i n surface waters ( S i l v e y e_t a l . , 1974) . 33 I n h i b i t i o n of a l g a l growth was e f f e c t e d by 0.15 - 3.0 mg/1 (McKee and Wolf, 1971). Studies by Kott (Kott and E d l i s , 1969; Betzer and K o t t , 1969; K o t t , 1969) showed that c h l o r i n e i s a l g i s t a t i c to c h l o r e l l a pyrenoidosa and C. s o r o k i n i a n a at 0.4 mg/1 and to cladophora sp. at about 1 mg/1. He a l s o showed that 10 mg/1 r e s i d u a l s of c h l o r i n e are necessary to k i l l these species w h i l e bromine or a mixture of c h l o r i n e and bromine k i l l e d c h l o r i n e r e s i s t a n t algae eg. Cosmarium and other algae at r e s i d u a l s of 0.4 to 2.0 mg/1 t o t a l halogen. In a d d i t i o n he noted that the a v a i l a b i l i t y of l i g h t and the t i m i n g of dosages a l s o a f f e c t the t o x i c i t y . Invertebrates.. Some/values f o r t o x i c l e v e l s of r e s i d u a l c h l o r i n e taken from McKee and Wolf (1971) are chironomous (Blood worms) 15 - 50 mg/1, c h i r - onomous l a r v a e 0.65 mg/1 i n 24 h r s . , mussels, s n a i l s , sponges 2.5 mg/1, nem- atodes 95 - 100 mg/1, and s h e l l f i s h pumping rates are reduced by 0.01 - 0.05 mg/1. Daphnia were k i l l e d i n 48 h r s . by 4 mg/1 of c h l o r i n e . Other s t u d i e s have been conducted by McLean (1973) on the combined e f f e c t s of c h l o r i n e and temperature and weteci.nco,nclusiv.e^. TvSh. From the reviews by Brungs (1973), McKee and Wolf (1971) and Z i l l i c h (1972) i t can be s t a t e d that t o x i c e f f e c t s range from Brown t r o u t exposure to 0.04 mg/1 f r e e f o r 2 minutes r e s u l t s i n 100 % m o r t a l i t y i n 24 h r s . , to white suckers, 1.0 mg/1 f r e e Cl^ i s l e t h a l i n 0.5 to 1.0 h r s . White (1972) c o r r e l a t e s t h i s to s c a l e s i z e . Other e f f e c t s such as "depressed a c t i - v i t y " i n brook t r o u t are observed at concentrations as. low as 0.005 mg/1 f r e e C l . S e r v i z i and Martens(1974) and Martens and S e r v i z i ( 1 9 7 4 ) working w i t h various types o f e f f l u e n t s found m o r t a l i t i e s of salmon and rainbow t r o u t at combined r e s i d u a l s of 0.02 mg/1 which i s the d e t e c t i o n l i m i t of the amperometric t i t r a t o r . ' They a l s o found evidence of g i l l damage a f t e r prolonged exposure to c h l o r i n e and. that, Cpho salmon do not n e c e s s a r i l y avoid" areas containing l e t h a l . (1.3 mg/1) concentrations of chlorine'. 34 Plant Life. The e f f e c t of c h l o r i n e on p l a n t l i f e i n aquatic systems i s e s s e n t i a l l y unknown. A study on kelp i n d i c a t e d 5 - 1 0 mg/1 s i g n i f i c a n t l y reduces photosynthetic a c t i v i t y (McKee and Wolf, 1971). Mammals. Muegge (1956) r e p o r t s that humans have h i g h t o l e r a n c e s f o r r e s i d u a l c h l o r i n e . Concentrations of 50 mg/1 and higher i n the form of f r e e c h l o r i n e have no acute t o x i c e f f e c t s . I t should be noted however that a l l e r - genic - type responses have been reported (Watson and K i b l e r , 1934), and that eye i r r i t a t i o n s have a l s o been observed at concentrations of 0.5 mg/1 (McKee and Wolf 1971). 3. Toxic E f f e c t s of C h l o r i n a t e d Organics A l a r g e volume of i n f o r m a t i o n i s a v a i l a b l e on the t o x i c e f f e c t s of i n - d u s t r i a l l y produced c h l o r i n a t e d organics. The acute t o x i c e f f e c t s of these com- pounds have been reviewed by F i s h b e i n and Flam (1972) and G r i b b l e (1974). Their mutagenic e f f e c t s were reviewed by F i s h b e i n (1973b) w h i l e M i l l e r (1974) discussed some t e r a t o g e n i c e f f e c t s . A study by Das et a l . (1969) showed that v a r i o u s c h l o r o c a t e c h o l s and chloro-o-benzo-quinones from bleached k r a f t c h l o r - i n a t i o n e f f l u e n t had 1-3 hr LC-^QQ values of about 20 mg/1 f o r young Salmo s a l a r ( A t l a n t i c Salmon). P r e l i m i n a r y s t u d i e s by Gehrs e_t a l . (1974) on 4-chlorores- o r c i n o l and 5 - c h l o r o u r a c i l i n d i c a t e d d e l e t e r i o u s e f f e c t s on hatching of carp eggs occur at concentrations of 0.1 and 5 mg/1 r e s p e c t i v e l y . While i t i s obvious that some c h l o r i n a t e d compounds are very t o x i c , the important question r e l a t i n g to the c h l o r i n a t i o n of sewage i s whether halogenation or o x i d a t i o n of an organic compound makes i t more t o x i c to aquatic l i f e . In c o n s i d e r i n g t h i s question i t i s u s e f u l to separate two f a c e t s of acute t o x i c i t y 1) the numerical yaiuenexpressing the. t o x i c i t y - p f p a . p a r t i c u l a r compound to an organism and 2) the s t r u c t u r a l features of a molecule which tend to make i t t o x i c . An example of the f i r s t f a c e t i s the comparison of the t o x i c i t i e s of a s e r i e s of benzene d e r i v a t i v e s to aquatic l i f e Table 2.12. Two problems arise., when attempting to compare the t o x i c i t i e s of d i f f e r e n t compounds by a l i t e r - Table 2.12 T o x i c i t i e s of Selected Compounds to Aquatic L i f e ' Compound Organism T o x i c i t y . • „. • - b C r i t e r i o n Concentration ^ .Benzene Sunf i s h LC 46 II Mosquito F i s h 48 hr TLM 490 it Rainbow Trout ^ 1 0 0 13-26 ,6-Dichlorobenzene F i s h L C 5 0 2.2 p-D i c h l o robenz ene F i s h L C 1 0 0 34 Phenol G o l d f i s h MTE° 1.00° ^hS-CMforopnenol n II 1.58° m-Chlorophenol n II 2.10° p-Chlorophenol II II 2.58° Phenol B l u e g i l l S u n f i s h 48 hr TLM 21 6-Chlorophenol B l u e g i l l F i n g e r l i n g s / 9 6 hr-TLM-6.6 Pentachlorophenol Various F i s h 24 hr TLM 0.75-0.22 Benzoic A c i d Mosquito F i s h TLM 200 II G o l d f i s h 7-̂-916 hr L L C 1 0 0 _160 2,3,5-Trichlorobenzoic A c i d Large Mouth Bass 24 hr TLM 67 2,3,6-Trichlorbbenzoic A c i d Large Mouth Bass 24 hr TLM 670 Phenol Daphnia JT_.D MLD 17 ti Scenedesmus (Alga) it 43 II Microregma (Protozoan) it 32 II E. C o l i (Bacterium) " 1100 Quinone Daphnia 0.37 II Scenedesmus 5.5 II Microregma " 0.18 II E. C o l i " 46 Hydroquinone Daphnia " 16 II Scenedesmus 7.3 tt Microregma it 45 n E. C o l i 27 Toluene Daphnia 6.5 Benzyl A l c o h o l it 48 hr MLD 33 Benzoic A c i d it prolonged MLD 12 a. From McKee and Wolf (1971) unless otherwise i n d i c a t e d b. U n i t s are 10^ times moles per l i t r e unless otherwise i n d i c a t e d c. Data from Gersdorff and Smith (1940); MTE = maximum t o x i c e f f e c t ex- pressed i n u n i t s of 1 m o l e - ! m i n ~ l normalized to phenol; a l a r g e r number i n d i c a t e s a greater t o x i c i t y . ature review. The f i r s t problem i s that t o x i c i t i e s are reported i n u n i t s of mg/1. While the numbers generated from the use of these u n i t s are i n d i c a t i v e of the absolute t o x i c i t i e s of the compounds, they do not r e f l e c t the r e l a t i v e t o x i c i t i e s of a s e r i e s of compounds on a molecule f o r molecule b a s i s . There- fore f o r t h i s review t o x i c i t y values have been converted to u n i t s of moles per l i t r e . The second and more s e r i o u s problem a r i s e s out of the non-standardized c o n d i t i o n s used i n the generation of t o x i c i t y data. As a r e s u l t of t h i s prob- lem i t i s presumptuous to a r b i t r a r i l y e s t a b l i s h a minimum d i f f e r e n c e between 'the t o x i c i t y values f o r two compounds which must be considered s i g n i f i c a n t . A study of the second f a c e t of t o x i c i t y i s f u r n i s h e d by Table 2.12 as w e l l as the reviews of the i n d u s t r i a l l y produced c h l o r i n a t e d o r g a n i c s . From Table 2.12 i s appears that c h l o r i n a t i o n or o x i d a t i o n increases the t o x i c i t y of the compound only i n c e r t a i n cases and that t o x i c i t y i s r e l a t e d to p o s i t i o n of s u b s t i t u t i o n and numbers of c h l o r i n e atoms present. From other s t u d i e s i t appears that although the t o x i c i t y cannot be e a s i l y p r e d i c t e d from s t r u c t u r e the two are r e l a t e d . Important f a c t o r s or c o i n c i d e n t a l p r o p e r t i e s appear to be: a) s t a b i l i t y w i t h respect to degradation, e.g. DDT, a l d r i n b) p o s i t i o n of c h l o r i n e s u b s t i t u t i o n , e.g. c h l o r i n a t e d d i b e n z o d i o x i n s ; c) other forms of stereoisomerisms, e.g. BHC; and d) water s o l u b i l i t y e.g. dichlorobenzenes (McKee and Wolf, 1971). S u b l e t h a l e f f e c t s such as i n t e r f e r e n c e w i t h or d u p l i c a t i o n of pheromones and alarm substances ( V a l l e n t y n e , 1967) are probable but have not been i n v e s - t i g a t e d . These s u b l e t h a l e f f e c t s may be even more important than acute t o x i c e f f e c t s due to the low concentrations of organics i n primary e f f l u e n t s . 4. Chemical E f f e c t s of C h l o r i n a t i o n Engineering Studies The r e a c t i o n s w i t h o x i d i z a b l e i n o r g a n i c s have been p r e v i o u s l y discussed. (O'lve'rc et a l . (1974) noted the s o l u b i l i z a t i o n of heavy metals from sewage sludges e x h a u s t i v e l y c h l o r i n a t e d . This e f f e c t i s probably 37 due to pH reduction, r a t h e r than o x i d a t i o n by c h l o r i n e . Apart from the breakpoint curve, some i n v e s t i g a t o r s have noted a BOD re d u c t i o n of the d e c h l o r i n a t e d sewage. A recent i n v e s t i g a t i o n by Zaloum (1973) r e f u t e s these claims and p o s t u l a t e s that the observed changes i n BOD,, were due to d i f f e r e n c e s i n i n i t i a l m i c r o b i a l p o p u l a t i o n during the BOD t e s t . He d i d not observe any det e c t a b l e r e d u c t i o n i n TOC upon c h l o r i n a t i o n . Chemical Studies The f i r s t major s t u d i e s of the e f f e c t s of c h l o r i n e on organics i n wastes d e a l t w i t h k r a f t m i l l b l e a c h i n g wastes (Van Buren e_t a l . , 1969; Das et a l . , 1969; Rogers and K e i t h , 1974). C h l o r i n a t e d quinones and phenols were found i n these e f f l u e n t s . A major i n v e s t i g a t i o n of the e f f e c t s of c h l o r i n a t i o n on m u n i c i p a l t r e a t - ment p l a n t e f f l u e n t s was undertaken by J o l l e y (1973). He l i m i t e d h i s i n v e s t i g a - t i o n to the r e l a t i v e l y n o n - v o l a t i l e compounds and i n v e s t i g a t e d the f o l l o w i n g areas: 1) primary e f f l u e n t - a) the e f f e c t s of v a r i o u s dosages of n o n - r a d i o a c t i v e c h l o r i n e b) the magnitude of the uptake of r a d i o a c t i v e c h l o r i n e by organics at a dosage of 26 mg/1 Cl^ c) the se p a r a t i o n and i d e n t i f i c a t i o n of the c h l o r i n a t e d compounds formed during c h l o r i n a t i o n . 2) secondary e f f l u e n t a) the magnitude of the uptake of r a d i o a c t i v e c h l o r i n e by organics and i n o r g a n i c s b) the e f f e c t s of d e c h l o r i n a t i o n upon c h l o r i n e uptake c) an e v a l u a t i o n of the e f f e c t s of using NaOCl i n s t e a d of Cl^ (g) upon c h l o r i n e uptake d) the i d e n t i f i c a t i o n of c h l o r i n a t e d compounds formed during c h l o r - •f i n a t i o n . 38 His concentration procedure i n v o l v e d r o t a r y evaporation f o l l o w e d by l y o p h i l - i z a t i o n . Separation was accomplished by anion exchange l i q u i d chromatography w i t h a UV detector and continuous f r a c t i o n c o l l e c t o r f o r the r a d i o a c t i v i t y counts and c a t i o n exchange LC. I d e n t i f i c a t i o n was based on chromatographic r e t e n t i o n time. The most s t r i k i n g r e s u l t of J o l l e y ' s experiments w i t h non- r a d i o a c t i v e c h l o r i n e and primary e f f l u e n t was the disappearance of UV absorbing compounds w i t h i n c r e a s i n g dosages of c h l o r i n e . Several new peaks were a l s o observed i n the c h l o r i n a t e d samples. Some important r e s u l t s of h i s r a d i o a c t i v i - ty work are as f o l l o w s . Forty-nine of the s i x t y - t w o r a d i o a c t i v e compounds appeared at s i m i l a r concentrations i n both primary and secondary e f f l u e n t s . Between 44 and 52 r a d i o a c t i v e peaks were observed i n the i n d i v i d u a l chromato- 36 grams, at a d e t e c t i o n l i m i t of about 50 ng=/l C l i n unconcentrated sewage. The concentrations of the i n d i v i d u a l compounds ranged from 0.1 to 15y#g/l as c h l o r i n e i n sewage. He found that r e a c t i o n time only s l i g h t l y a f f e c t s the y i e l d s of c h l o r i n a t e d compounds wh i l e the form of the a p p l i e d c h l o r i n e a f f e c t s the formation of at most s i x compounds. D e c h l o r i n a t i o n had no s i g n i f i c a n t e f f e c t upon the number of s t a b l e organo-chlorine compounds formed. A very important c a l c u l a t i o n showed that about 0.6 percent of the a p p l i e d c h l o r i n e e l u t e d i n peaks other than c h l o r i d e w h i l e another 0.4 percent remained i n the r e s i n . This means that about 1 percent of the c h l o r i n e a p p l i e d to primary and secondary e f f l u e n t at dosages of 6.0 and 2.6 mg/1 Cl^ r e s p e c t i v e l y ends up i n s t a b l e organo-chlorine compounds. This value may be even higher s i n c e the l o s s e s due to v o l a t i l i z a t i o n ( P i t t and S c o t t , 1973) and i n s o l u b i l i t y during the concentra- t i o n procedure were not f u r t h e r i n v e s t i g a t e d . A l i s t of the compounds i d e n t i f i e d by J o l l e y appears i n Table 2.13. Most of the products are those expected from d i r e c t e l e c t r o p h i l i c s u b s t i t u t i o n , although the meta-substituted phenol, 5 - c h l o r o s a l i c y l i c a c i d , and 6-chloro- guanine are obvious exceptions. Somewhat s u r p r i s i n g i s the 1:4 ortho-para 39 Table 2.13 C h l o r i n a t e d Compounds Formed by C h l o r i n a t i o n of Primary E f f l u e n t Compound 2- Chlorophenol 3- Chlorophenol b> d 4- Chlorophenol d 4- Chloro-3-methyl-phenol d 3- Chloro-4-hydroxy-benzoic A c i d d 5- C h l o r o s a l i c y l i c a c i d 4- C h l o r o r e s o r c i n o l d 5- C h l o r o u r a c i l 5- C h l o r o u r i d i n e 8-Chloroxanthine 8-Chlorocaffeine 6- Chloroguanine d 2- Chlorobenzoic a c i d 3- Chlorobenzoic acid^»d 4- Chlorobenzoic a c i d d 4-Chlorophenylacetic a c i d 4-Chloromandelic a c i d Concentration i n Primary E f f l u e n t j l g / 1 MxlO 8 Concentration of Probable Precursor (/lg/1) MxlO 8 7.6 6.0 10.6 11.3 (0.51) (0.40) (0.69) (0.54) (1.5) (1.1) (1.3) 0.80 — 0.74 0.51 • 7 5.5 (1.2) (0.83) 26.2 17.6 40 35 20.4 8.2 4.5 2.4 70 45 6.7 . 3.1 10 5.5 (0.9) (0.48) 0.38 0.26 :(0.62) (0.42) — (1.1) (0.75) — 11.1 7.0 17 c 13.6 1.9 1.1 a. J o l l e y (1973) b. I d e n t i f i e d as e i t h e r or both of these compounds. c. From t o t a l of compounds i n c h l o r i n a t e d e f f l u e n t , converted to eq u i v a l e n t c o n c e n t r a t i o n of u n c h l o r i n a t e d s p e c i e s . d. Not found i n primary e f f l u e n t , concentrations i n parentheses r e f e r to secondary e f f l u e n t . 40 s u b s t i t u t i o n r a t i o ; of the benzoic a c i d (Smith 1934). The y i e l d s of c h l o r i n a t e d compounds range from 5 to 50 mole percent based on the organic precursor. The high y i e l d of 2-chlorophenol c o n f l i c t s w i t h the observations of B u r t t s c h e l l et a l . (1959) although i t should be pointed out that B u r t t s c h e l l ' s group worked w i t h pure s o l u t i o n s r a t h e r than sewage. Another study on sewage has been undertaken by Glaze ejt a l . (1973) using XAD r e s i n e x t r a c t i o n . He found that v o l a t i l e c h l o r i n a t e d compounds were formed at 10-100 mg/1 C l ^ , thus J o l l e y ' s estimate of the amount of c h l o r i n e i n new s t a b l e organochloririe compounds may be low. Glaze doubly f i l t e r e d h i s sewage before c h l o r i n a t i o n ; thus the uptake of c h l o r i n e by b a c t e r i a and other s o l i d s was e l i m i n a t e d and, i n a d d i t i o n , some l o s s of ammonia may have occurred. He a l s o a c i d i f i e d h i s e f f l u e n t to pH 2 - 3 which may have r e s u l t e d i n premature s a t u r a t i o n of the r e s i n w i t h v o l a t i l e a c i d s . The only compound he has i d e n - t i f i e d to date i s chloroform. v Adams and Middlebrook (1973) s t u d i e d c l o s e d loop h y p o c h l o r i t e systems such as those used i n r e c r e a t i o n a l boats and v e h i c l e s . Their a n a l y t i c a l technique of e x t r a c t i o n of f l a s h evaporated or (Unconc'entratedfie'fiffl'Uents with ether or chloroform followed by evaporative co n c e n t r a t i o n and d i r e c t NMR and IR a n a l y s i s i s of l i m i t e d v a l u e . The presence of halogen i n the ether e x t r a c t was detected by AgNO^. They p o s t u l a t e d the presence of c h l o r i n a t e d f a t t y a c i d s . Rook (1974) e s t a b l i s h e d that haloform r e a c t i o n s occur w i t h c o l o r e d matter i n n a t u r a l water. This work was d i r e c t e d to d r i n k i n g water and thus i s not d i r e c t l y comparable. Aagroup £n-9flj?nnes'o't'afOGaglsdn(197-3)"5Carlsondettalir(T975) , i s i n v e s t i g a t i n g the c h l o r i n a t i o n r e a c t i o n s of a number of model organic compounds i n d i l u t e aqueous s o l u t i o n at d i f f e r e n t pH. These s t u d i e s are not yet complete, however, as an example of h i s r e s u l t s , the c h l o r i n a t i o n of oi. - t e r p i n o l y i e l d e d a mixture of e i g h t products. The composition of the product mixture was pH dependent. 41 T o x i c i t y tests showed that a l l the products except the d i c h l o r i d e have about the same t o x i c i t y as - t e r p i n o l to Daphnia magna, i . e . : 4 8 hrs « / 1 2 0 mg / l whereas the d i c h l o r i d e had an LC^ Q 4 8 hrs of about 1 5 mg/1 (Carlson and Capple, 1 9 7 4 ) . These workers are also involved i n developing methods for r e l a t i n g the ph y s i c a l properties of a molecule to i t s a b i l i t y to bioaccumulate and to ex h i b i t t o x i c i t y . F. A n a l y t i c a l Methods The analysis of environmental samples i s an e s p e c i a l l y d i f f i c u l t problem due to the complex nature of the samples and the very small concentrations of materials to be analyzed. Two general approaches to the problem are used: a) the complete p h y s i c a l separation of components followed by analysis and b) the quantitative determination of s p e c i f i c compounds i n the presence of others through the use of s p e c i f i c detection methods. In t h i s study, the f i r s t approach w i l l u l t i m a t e l y be used although the second w i l l be a valuable a i d i n the development of the techniques to be used. The o v e r a l l approach to the problem w i l l involve techniques of sampling and preservation, concentration, separation and chemical a n a l y s i s . These techniques w i l l be b r i e f l y reviewed i n the following sections. 1 . Sampling and Preservation Hunter and Heukelekian ( 1 9 6 5 ) used 24-hour composite samples i n t h e i r analysis of sewage to allow f or the d i u r n a l f l u c t u a t i o n s i n composition. This approach has several drawbacks. The concentration of slugs of compounds w i l l be underestimated, automatic samplers which sample at a s p e c i f i c depth w i l l miss f l o a t i n g material and f i n a l l y , the storage time of the f i r s t sample i s a minimum of 2 4 hours. Grab samples on the other hand, w i l l overemphasize or e n t i r e l y miss slug loads. In addition, when samples are taken by hand there i s the psychological tendency to e i t h e r catch or miss obviously r i c h portions or areas. 42 Various methods have been evaluated f o r p r e s e r v a t i o n of sewage samples f o r s p e c i f i c analyses. The l o s s e s of m a t e r i a l s are a t t r i b u t e d to two main causes, b i o l o g i c a l decomposition and p h y s i c a l l o s s e s due to evaporation, p r e c i p i t a t i o n and s o r p t i o n on the sampling v e s s e l and p a r t i c u l a t e s . Loehr and Bergeron (1967) and H e l l w i g (1967) have reviewed the chemical p r e s e r v a - t i v e s used f o r sewage. Loehr and Bergeron (1967) found that storage at 1°C alone i s s a t i s f a c t o r y f o r preventing changes of COD, BOD, pH, DO and SS f o r s i x days. Lichtenberg (1973) found that storage i n a c o l d , dark environment d i d not prevent l o s s of PCB's and recommended the a d d i t i o n of 15 mg/1 of formaldehyde. Desbaumes and Imhoff (1972) i n t h e i r study of hydrocarbons s t a t e d that only glass or s t a i n l e s s s t e e l containers are s u i t a b l e because ;of s o r p t i o n . They a l s o i n d i c a t e d that s u b s t a n t i a l l o s s e s occur i f storage time exceeds 10 hours although no d e t a i l s as to the mechanism of the l o s s are given. Adsorption onaglass may a l s o be a problem as L e i t h e (1973) s t a t e s that g l a s s containers should be e x t r a c t e d f o r 1 hour w i t h pet ether f o r p e s t i c i d e samples. Ahnoff and Josefsson (1974)^found that 5% of the DDT i n an 8 y t g / l aqueous s o l u t i o n was adso^be'ded on the glass c o n t a i n e r . Desbaumes and Imhoff (1972) a l s o i d e n t i f i e d some s u b s t i t u t e d benzenes leached by water from p l a s t i c b o t t l e s . The type of p l a s t i c was not i d e n t i f i e d . Phthalate e s t e r s and other p l a s t i c i z e r s are a l s o leached by water from p l a s t i c s and some s t e e l containers (Mathur, 1974). 2. E x t r a c t i o n and Concentration Four general methods, namely, solvent e x t r a c t i o n , a d s o r p t i o n , freeze concentration and gas s t r i p p i n g have been used f o r the c o n c e n t r a t i o n of organ- i c s from water. Solvent E x t r a c t i o n Hunter and Heukelekian (1965) and H i t e s and Biemann (1972) used the separatory funnel technique. Methylene c h l o r i d e , Freons, and a mixture of methylene c h l o r i d e and d i e t h y l ether are f a v o u r i t e s o l v e n t s f o r 43 t h i s technique. Continuous e x t r a c t i o n s , both w i t h solvent d i s t i l l a t i o n (Goldberg et a l . , 1973) and wit h o u t . s o l v e n t d i s t i l l a t i o n (Ahnoff and Jose f s s o n , 1974) have been used. Two or three of these e x t r a c t o r s are u s u a l l y set up i n 'a s e r i e s - and t o t a l r e c o v e r i e s of 70 to 110% are reported by Goldberg et a l . (1973) at flow r a t e s of 8 1/hr. Adsorption The optimum procedures f o r carbon adsorption of organics from wastewaters have been discussed by Buelow et a l . (1973a, b ) . Studies on desorption have been conducted by Hoak (1964) and A l l e n et_ a l . (1971), and the d esorption of phenols from a c t i v a t e d c h a r c o a l f o r example, ranges from 22 to 70 percent. Cookson e_t a l . (1972) have noted the o x i d a t i o n of n-butylmercaptan to n- b u t y l d i s u l p h i d e during adsorption on c h a r c o a l , presumably due to the presence of molecular oxygen and quinone. Lee et a l . (1965)used carbon adsorption to e x t r a c t organics from Lake Mendota. Generally speaking carbon adsorption i s not used f o r tr a c e a n a l y s i s of unknowns due to the a c t i v i t y of the carbon surface and the d i f f i c u l t y i n e l u t i n g some m a t e r i a l from carbon. Kennedy (1973) and Gustafson and Paleos (1971) have reviewed the k i n e t i c s and a p p l i c a t i o n s of m a c r o r e t i c u l a r r e s i n s f o r adsorption of organics from wat- er , w h i l e Kim et a l . (1974) discussed the engineering uses of s y n t h e t i c r e s i n s f o r water treatment. Junk et a l . (1974) have determined and optimized r e - coveries and conc e n t r a t i o n procedures f o r 99 d i f f e r e n t compounds using XAD-2 or XAD-4 r e s i n . Recoveries vary from 80 to 100% except f o r short chain a l i - p h a t i c a l c o h o l s , acids and some phenols whose re c o v e r i e s are a f f e c t e d by pH and s a l t concentration,';, Webb (1973) found these r e s i n s i n e f f e c t i v e f o r a l i - p h a t i c hydrocarbons. P i t t and Scott (1973) report poor r e c o v e r i e s of non-vol- a t i l e s from domestic e f f l u e n t . These r e s i n s can be s e l e c t i v e l y and/or complete- l y regenerated depending upon choice of s o l v e n t . XAD-2 has been used i n LSC of phenols (Grieser and P i e t r y z k , 1973). Examples of a p p l i c a t i o n s of macro- r e t i c u l a r r e s i n s to environmental work are the st u d i e s by Burnham e_t a l . (1972), 44 Harvey (1973), Glaze et a l . (1973), Vinson et a l . (1973) and Rogers and Mahood (1974). Columns of polyurethane foam plugs with, acetone and hexane e l u t i o n have been used by Chow et a l . (1971) to recover 20 ppb of PCB's w i t h 91-98% e f f i c i e n c y . In a study on p e s t i c i d e r e c o v e r i e s , however, Uthe et a l . (1972) found i t necessary to coat the plugs w i t h s e l e c t i v e adsorbents. Webb (1973) found both coated and uncoated plugs i n e f f e c t i v e f o r most other o r g a n i c s . Aue e_t a l . (1972) used surface bonded s i l i c o n e s on 40 - 60 mesh Chromosorb G w i t h methanol/benzene cleanup and pentane e l u t i o n to recover ppt, l e v e l s of p e s t i c i d e s and PCB's. Recoveries v a r i e d from about 30% f o r l i n d a n e to 100% fo r a l d r i n i n column t e s t s . Ion exchange r e s i n s (Burnison, 1972) and chelo- t r o p h i c r e s i n s ( S i e g l and Degens, 1966; Webb and Wood, 1966) have been used f o r the recovery of amino aci d s from n a t u r a l water. Freeze Concentration and L y o p h i l i z a t i o n Freeze c o n c e n t r a t i o n (Baker, 1965; Kobayashi and Lee, 1964) i n v o l v e s slowly J f r e e z i n g '.the s o l u t i o n from bottom to top from the outside inwards.iand then separating the pure i c e from the concentrate. L y o p h i l i z a t i o n i n v o l v e s f r e e z i n g the sample and subliming the water. I t has the advantage of l e a v i n g the n o n - v o l a t i l e m a t e r i a l as an anhydrous powder. Both these techniques i n v o l v e removing the water from the organic m a t e r i a l and are q u i t e slow. Samples of more than two l i t r e s are d i f f i c u l t to handle. Hunter and Heukelekian (1965), P a i n t e r (1971), Katz et a l . (1972) and J o l l e y (1973) have a l l used one or both of these techniques f o r s t u d i e s on sewage. A i r S t r i p p i n g and Headspace A n a l y s i s Novak et a l . (1973) o r i g i n a l l y a p p l i e d t h i s technique to the a n a l y s i s of d r i n k i n g water. They used He as a s t r i p p i n g gas and a l i q u i d n i t r o g e n trap f o r c o l l e c t i o n . K a i s e r (1973, 1974) used tubes packed w i t h GC column m a t e r i a l f o l lowed by e l u t i o n by N^ and got re c o v e r i e s of 25 percent. Z l a t k i s et a l . (1973a) t e s t e d Poropak P, Carbosieve and Tenax GC as tra p p i n g m a t e r i a l s . They a l s o heated the aqueous s o l u t i o n -45 to 100°C f o r b e t t e r r e c o v e r i e s . B e l l a r and Lichtenberg (1974). t e s t e d the use of a number of adsorbents and found Tenax GC and Chromosorb 103 u s e f u l . Grob and Grob (1974) analyzed concentrations as low as 1 n g / l of i n d i v i d u a l pet-- roleum components i n water using 1 mg of charcoal and f i v e 1.5^1 p o r t i o n s of C S 2 f o r e l u t i o n . B e l l a r , Lichtenberg and Kroner (1974) a l s o used s t r i p p i n g to analyze f o r c h l o r i n a t e d s o l v e n t s i n d r i n k i n g water and report that f o r components w i t h b o i l i n g p o i n t s l e s s than 150°C and 500 mg of sample, d e t e c t i o n l i m i t s are AJ 1/bg/l. Concentration The recommended method f o r concentration of organics i n organic s o l v e n t s i s the use of Kuderna - Danish (K-D)cconcentrator ( L e i t h e , 1973). Webb (1973) r e p o r t s 85% recovery of compounds concentrated from 100 to 1 ml i n CHCl^ i n a r o t a r y evaporator compared to 90% i n a K-D concentrator. He al s o recommends the ai r s t r e a m method f o r volumes l e s s than 0.25 ml. When working w i t h s o l v e n t s such as chloroform or d i e t h y l ether which d i s s o l v e i n water, drying i s necessary before c o n c e n t r a t i o n . Sodium sulphate i s the usual d r y i n g agent. I t should be heated to 600°C f o r 2 hr before use, to remove organic i m p u r i t i e s ( G a r r i s o n , 1972). Losses of about 6' percent ofoc- t e r p i n o l and 2-methyl napthalene occurred from CHCl^ s o l u t i o n s due to dryi n g w i t h sodium sulphate (Webb, 1973). 3. Separation Two general problems of separation occur when working w i t h n a t u r a l waters. The f i r s t i s the p h y s i c a l s e p a r a t i o n of the p a r t i c u l a t e matter from the s o l - uble compounds and the second i s the sep a r a t i o n of the components of the or- ganic e x t r a c t s or r e s i d u e s . The f i r s t problem i s u s u a l l y solved by f i l t r a t i o n or c e n t r i f u g a t i o n as e x e m p l i f i e d by the st u d i e s of Hunter and Heukelekian (1965) and P a i n t e r (1971). The usual d e f i n i t i o n of d i s s o l v e d organics i s those of s i z e l e s s than 0.1 - l.OyU. T y p i c a l g l a s s f i b r e f i l t e r s have pore sizes, of 0.3 - 1.0^. The c e l l u l o s e acetate membrane f i l t e r s are a v a i l a b l e from 0.2^pore s i z e . F i l - t r a t i o n times of 24 hr/1 f o r moderately p o l l u t e d waters are common f o r 0.45/t f i l t e r s (Andelman and Caruso, 1971). The s e p a r a t i o n of organic e x t r a c t s and residues i s g e n e r a l l y accomplished by chromatographic methods. Acid-base separations using the H^SO^/HCCr^NaOH system are commonly used p r i o r to chromatographic s e p a r a t i o n . Chromatography For a comprehensive treatment of the subj e c t of chroma- tography, the reader i s r e f e r r e d to the volume by Heftmann (1967). This d i s - cussion w i l l be l i m i t e d to some examples of a p p l i c a t i o n s o f , or new develop- ments i n , the various types of chromatography used i n the environmental f i e l d . For a review of the chromatographic separations of some environmentally im- portant chemicals, the volumes by F i s h b e i n (1972a, 1973a)are recommended. Thfn Layer 'Thin l a y e r chromatography has been used as a cleanup procedure i n p e s t i c i d e a n a l y s i s before q u a n t i f i c a t i o n by GLC (EPA, 1971). This type of a p p l i c a t i o n t y p i f i e s the use of TLC i n environmental work. In a number of cases, however, TLC has advantages over GLC and LC and i s i n some i n s t a n c e s , the optimum separation method. The determination of the optimum c o n d i t i o n s f o r r e s o l u t i o n of a mixture of unknowns can be accomplished i n a much s h o r t e r time f o r TLC than f o r GC and LC. The r e s u l t s of TLC sep- a r a t i o n s can be used as a guide f o r the a p p l i c a t i o n of other chromatographic methods, e s p e c i a l l y LSC (Hurtubise et a l . , 1973). In a i r p o l l u t i o n work, arenes have been separated, i d e n t i f i e d , and q u a n t i f i e d by TLC i n combination w i t h d i r e c t s p e c t o f l u o r i m e t r y , UV absorption spectrophotometry, and colour r e a c t i o n s on the TLC p l a t e (Sawicki and Saw i c k i , 1972). D e t e c t i o n l i m i t s are about l/i g by UV and 1 to 10 ng by fluorescence. Majer e t a l . (1970) des- c r i b e s the use of TLC - Mass Spectrophotometry f o r arene a n a l y s i s and r e p o r t s -11 -14 det e c t i o n l i m i t s of 1 x 10 g f o r anthracene and 1 x g f o r benzopyrene When working w i t h mixtures rendered l e s s complex by p r i o r s e p a r a t i o n and chem- i c a l workup, c h a r a c t e r i z a t i o n of the components by i n f r a r e d or NMR methods i s much more expedient f o l l o w i n g s e p a r a t i o n by TLC than GLC or LC, An example of t h i s i s : the work hy H a l l (19JQX on the determination of sjjme of the a l - k a l i n e CuO and Na/Hg degradation products of n a t u r a l l y o c c u r r i n g coloured or g a n i c s . Some of the problems w i t h these techniques such as p h o t o - o x i d a t i o n , wet spots and charge t r a n s f e r s p e c t r a among others are discussed i n Sawicki's review. The problem of r e p r o d u c i b i l i t y of values has been reviewed by de Zeeuw (1972), w h i l e the i m p u r i t i e s i n s i l i c a g e l have been discussed by S p i t z (1969) and Amos (1970). l£4q:iwiid! 6feoma:tQei;trap'feyr^Although f l o r i s i l column clean-up techniques are r o u t i n e l y employed i n p e s t i c i d e a n a l y s i s , high speed and h i g h pressure LC methods w i l l be emphasized i n t h i s review. An e x c e l l e n t summary of the p r i n c i p l e s , techniques, instrumentation and a p p l i c a t i o n s of LC i s provided i n the volume e d i t e d by K i r k l a n d (1971). To date s i l i c a i s a f a v o u r i t e m a t e r i a l f o r LSC although, other m a t e r i a l s such alumina, c h a r c o a l and f l o r i s i l are a l s o used. F l o r i s i l has a tendency to i r r e v e r s i b l y bond even some non- p o l a r compounds and thus i s not u s u a l l y used f o r the a n a l y s i s of a mixture of unknowns. Good r e p r o d u c i b i l i t y can be obtained through the use of commercially prepared supports and a solvent of non-varying composition but gradient e l u t i o n i s hampered by the problems a s s o c i a t e d w i t h maintaining a constant or re p r o d u c i b l e l e v e l of d e a c t i v a t i n g water on the support. Some a p p l i c a t i o n s of LSC i n the environmental f i e l d i n c l u d e the work on organophosphate l a r v i c i d e s (Henry et a l . , 1971), n i t r o t o l u e n e s i n munition wastes (Walsh et a l ' . , 1973), phenols ( B h a t i a , 1973), aromatic hydrocarbons (Zsolnay, 1973), t o t a l hydro- carbons (Zsolnay, 1974) and n o n - i o n i c a l k y l p h e n o l s u r f a c t a n t s ( K r e j c i et a l . , 1974). High pressure IEC s t i l l s u f f e r s from r e t e n t i o n times as long as 40 hr f o r the a n a l y s i s of unknowns. Examples of the use of h i g h pressure IEC i n c l u d e the s e p a r a t i o n of 100 120 UV absorbing peaks i n human ur i n e (Scott et a l . , 48 1970) and 77 absorbing peaks i n municipal wastewater a f t e r 500 f o l d concen- t r a t i o n by vacuum d i s t i l l a t i o n and freeze d r y i n g (Katz et a l . , 1972). J o l l e y (1973) used e s s e n t i a l l y the same system as Scott e_t a l . (1970) and Katz et a l . (1972) i n h i s study on the e f f e c t s of c h l o r i n a t i o n on sewage. Detection l i m i t s by UV r e q u i r e concentrations i n the range of 40 mg/1 f o r unsaturated non-aromatics and 2 0 ^ g / l f o r aromatics. Thus 40^<yg/l of non-aromatic and 20 ng/1 of aromatic unsaturated hydrocarbons can be detected through concentration techniques. R e f r a c t i v e Index detectors are u s u a l l y one or two orders of magnitude l e s s s e n s i t i v e . A fluorescence detector based upon the uncatalyzed r e d u c t i o n of Ce (IV) to Ce ( I I I ) was developed and t e s t e d by Katz and P i t t (1972). D e t e c t i o n l i m i t s f o r organic a c i d s and other reducing com- pounds range from O.ljig to 0.5^g using t h i s technique. Gel Permeation Chromatography~Although the development of s e m i - r i g i d polystyrene and p o l y v i n y l a c e t a t e gels has made high speed GPC p o s s i b l e , e n v i r - onmental a p p l i c a t i o n of GPC has been l i m i t e d to the s o f t and, i n most cases, dextran g e l s . The use of Sephadex gels f o r the molecular s i z e f r a c t i o n a t i o n of o r g a n i c s , mainly humic a c i d s , i n n a t u r a l waters has been reviewed by H a l l (1970) and Christman and Minear (1971). The GPC s t u d i e s of sewage and t r e a t - ment p l a n t e f f l u e n t s has been p r e v i o u s l y discussed. Gas Chromatography^This d i s c u s s i o n w i l l be l i m i t e d to a few a p p l i c a t i o n s of GLC s e p a r a t i o n of organics i n environmental samples. D i r e c t coupling to a mass spectrometer w i l l be discussed i n a separate s e c t i o n . The s e l e c t i o n of a s t a t i o n a r y phase and packing i s a problem encountered by everyone working w i t h GLC. A wide v a r i e t y of s t a t i o n a r y phases has been used i n environmental work F i s h b e i n (1972a,1973a). The trend i n p e s t i c i d e a n a l y s i s today i s toward the use of the OV or SP s e r i e s of s i l i c o n e s as the v a r i a t i o n i n composition between d i f f e r e n t l o t s of these phases i s smaller 49 than the ol d e r s i l i c o n e phases (Trash, 1973; Coleman, 1973). The f a v o u r i t e support i n environmental a n a l y s i s i s s i l a n i z e d Chromosorb W. The g r a p h i t i z e d carbons (Carbopak) d e a c t i v a t e d by hydrogen treatment and coating w i t h around 0.3% of a l i q u i d phase show promise i n the d i r e c t a n a l y s i s of aqueous s o l u t i o n s (Supina, 1974). Both p o l a r and non-polar phases have been used i n the analy- s i s of v o l a t i l e organics i n sewage. Dowty and Laseter (1975b) used a mixture of 10% GE SF - 96 and 1% Igepal CO whereas Glaze et a l ^ (1973) used 5% Carbo- wax 20 M/TPA. Open t u b u l a r columns are f i n d i n g i n c r e a s i n g u t i l i z a t i o n i n environmental work (Grob and Grob, 1974; Rogers and Mahood, 1974; Lao et a l . , 1973). The use of SCOT and WCOT columns i s discussed by E t t r e (1973). The t r a d i t i o n a l open tu b u l a r columns were made of s t a i n l e s s s t e e l due to the d i f f i c u l t y of evenly coating g l a s s . This d i f f i c u l t y was overcome by German and Horning (1973) and the l e s s a c t i v e glass columns are now i n common use. T h e o r e t i c a l l y , one expects b e t t e r r e s o l u t i o n i n a shor t e r time w i t h a SCOT column as compared to a packed column ( E t t r e , 1973), however i n the study by Lao et a l . , (1973) fewer peaks were observed w i t h the SCOT column than w i t h the packed column, e s p e c i a l l y when m a t e r i a l s w i t h high r e t e n t i o n times are separated. The reasons f o r t h i s d i f f e r e n c e have not been determined. One disadvantage of the SCOT column i s that only a few tenths of a m i c r o l i t r e of sample may be i n j e c t e d . This means that greater concentration of samples may be r e q u i r e d . The most common detectors used f o r environmental samples are the FID, EC and s p e c i f i c element d e t e c t o r s . The FID i s s e n s i t i v e to most organics and roughly speaking traces of FID response are s i m i l a r to those of the t o t a l i o n current produced by coupled GC/EIMS u n i t s i n terms of s e n s i t i v i t y . The e l e c t r o n c a p t i v e detector i s used f o r organochlorine p e s t i c i d e and PCB a n a l y s i s due to i t s high s e n s i t i v i t y f o r e l e c t r o n c a p t u r i n g elements. Karasek et a l . (1973) have conducted some stu d i e s on the mechanism of e l e c t r o n capture by a 50 s e r i e s of c h l o r i n a t e d benzenes and b i p h e n y l s . They demonstrated that both 63 a s s o c i a t i v e and d i s s o c i a t i v e e l e c t r o n capture occur. The N i f o i l d etector i s favoured f o r environmental samples due to i t s high temperature s t a b i l i t y . The problem of the narrow, one decade, l i n e a r range of the detector has been overcome through the use of constant c u r r e n t , v a r i a b l e p u l s i n g r a t e e l e c - t r o n i c s . L i n e a r i t y over four decades has been obtained (Aue and K a p i l a , 1973). Their p u b l i c a t i o n a l s o discussed some aspects of temperature programmed GC w i t h an EC d e t e c t o r . E s s e n t i a l l y q u a n t i t a t i o n i s d i f f i c u l t unless the det- ector i s operated under c o n d i t i o n s where only the mass of the compound i s important as opposed to the concentration r a t i o of e l e c t r o n s to compound. Among the s p e c i f i c element d e t e c t o r s , . t h e r m i c r o e l e c t r o l y t i c c o n d u c t i v i t y (MEC) type i s the most g e n e r a l l y used f o r halogen d e t e c t i o n . The o r i g i n a l MEC d e t e c t o r was developed by Coulson (1965). Recent developments by H a l l (1974) a f f o r d 20 to 50 times greater s e n s i t i v i t y f o r c h l o r i n e due to changes i n r e a c t i o n tube and c e l l geometry, use of isopropanol/water rather, than water as the c i r c u l a t i n g s olvent and use of an AC r a t h e r than DCtbridge c i r c u i t f o r measurement of c o n d u c t i v i t y . D e t e c t i o n l i m i t s of 0.05 - 0.1 ng are reported f o r organochloride p e s t i c i d e s . Tests by Wilson and Cochrane (1975) revealed only a 4 to 7 f o l d i n c r e a s e i n s e n s i t i v i t y to n i t r o g e n over the Coulson de- t e c t o r . The r e c e n t l y developed multi-element helium plasma/atomic emission detector o f f e r s i n t e r e s t i n g p o s s i b i l i t i e s and has d e t e c t i o n l i m i t s of 0.08 ng/sec f o r carbon, 0.03 ng/sec f o r hydrogen and 0.06 ng/sec f o r c h l o r i n e (McLean e t . a i . , 1973). 4. Chemical A n a l y s i s This d i s c u s s i o n w i l l be l i m i t e d to a review of the i n s t r u m e n t a l t e c h - niques of a n a l y s i s which can be used e i t h e r a f t e r trapping of the separated components from a chromatograph or i n some cases by d i r e c t coupling or i n t e r - f a c i n g to the chromatograph. Trapping Techniques Trapping LC e f f l u e n t s i s r a t h e r f a c i l e and w i l l not be discussed. The trapping of GLC e f f l u e n t s , i s much more complex. Howlett and W e l t i (1966), Fowlis and W e l t i (1967), M i l a z z o e t a l . (1968), Armitage . (1969) and O e r t e l and Myhre (1972) describe cryogenic trapping techniques f o r IR, NMR and Raman a n a l y s i s . Losses due to mist or a e r o s o l formation are common Copier and Van der Mass (1967) and Block and G r i f f i t h s (1973) used KBr as an absorbent f o r IR a n a l y s i s . The GC-trapping-IR methodology has been reviewed by McNiven (1965), and Leathard and Shurlock (1970). I t should be kept i n mind that one re q u i r e s 10 - lOO^zg of sample f o r o r d i n a t e expanded IR and c a p i l l a r y tube-time averaged or F o u r i e r Transform NMR. Tandem GC-MS A general overview of GC/MS/computer systems i s presented by Karasek (19-7 2) and the a v a i l a b l e i n strumentation and some a p p l i c a t i o n s are reviewed by Junk (1972). I d e n t i f i c a t i o n l i m i t s w i t h these instruments vary from 20 - 100 ng. To date, a l l of the work i n the environmental f i e l d has been c a r r i e d out on e l e c t r o n impact sources although p r e l i m i n a r y GC-CIMS and GC-FIMS work i s reported (Junk, 1972; Blum and R i c h t e r , 1974). Environmental samples of organics u s u a l l y c o n t a i n a l a r g e number of v o l a t i l e compounds. I n the case of incomplete s e p a r a t i o n of these components or when one i s i n t e r e s t e d i n i d e n t i f y i n g more than one or two of the components computerized data handling f a c i l i t i e s are e s s e n t i a l . Data handling i s a tech- nology i n i t s own r i g h t and magnetic d i s c s o f f e r a considerable time saving over the tape u n i t s during data manipulation (Ward 1972). H i t e s and Biemann i n a s e r i e s of papers discussed the algorithms and mechanics f o r the produc- t i o n of reconstructed gas chromatograms (1968a), mass chromatograms or l i m i t - ed mass searches (1970) , and background s u b t r a c t i o n (1968b). The US EPA has a b a t t e r y of 23 GC/MS u n i t s each equipped w i t h a mini-computer, d i s k or tape u n i t , s l o w . p r i n t e r and keyboard, slow p l o t t e r , CRT w i t h keyboard, CRT hard- copy u n i t and telephone connection to l a r g e computer ( H e l l e r , McGuire and 52 •Budde, 1975). The i d e n t i f i c a t i o n of an unknown from i t s mass spectrum i s not always a simple task. Various f i l e searching r o u t i n e s have been developed. These can be c l a s s i f i e d i n t o two groups: a) those programs developed f o r the i n - t e r p r e t a t i o n of the mass spectrum of a new or n o n - f i l e d compound and b) the i d e n t i f i c a t i o n of an unknown by searching a f i l e f o r i t s mass spectrum f i n g e r - p r i n t . The f i r s t group of programs was reviewed by Kwok et a l . , (1973). These are designed p r i m a r i l y f o r complex p o l y f u n c t i o n a l compounds of molecular weight greater than 150. While the complete determination of s t r u c t u r e by these programs i s f a r from unequivocal, they do provide v a l u a b l e i n f o r m a t i o n as to what f u n c t i o n a l groupings are present. Work w i t h h i g h r e s o l u t i o n s p e c t r a , e.g. Venkataraghavan et a l . , (1969) w i l l not be discussed as one does not g e n e r a l l y o b t a i n high r e s o l u t i o n s p e c t r a by GC - MS due to l i m i t - a t i o n s of computer storage'space. The programs used to i d e n t i f y an unknown by searching a f i n g e r p r i n t f i l e have been discussed by H e r t z , H i t e s and Biemann (1971). An i n t e r n a t i o n a l mass s p e c t r a l search system (MSSS) i s a v a i l a b l e and i s being c o n s t a n t l y up- graded. The unknown spectrum i s abbreviated by choosing the two most in t e n s e peaks i n each 14 m/e r e g i o n beginning from m/e 6 s i n c e a b b r e v i a t i o n to the f i v e or e i g h t most intense peaks w i l l i n many cases r e s u l t i n the l o s s of too much i n f o r m a t i o n . The output c o n s i s t s of a l i s t of best f i t compounds and s i m i l a r i t y i n d i c i e s . F i l e d s p e c t r a may a l s o be r e t r i e v e d by molecular weight or formula, ( H e l l e r , 1972). A f u l l l i s t of the options c u r r e n t l y a v a i l a b l e i s i ncluded i n the a r t i c l e by H e l l e r , McGuire and Budde (1975). Although s m a l l computer banks have been developed (Wangen et a l . , 1971) t h e i r use i s l i m i t e d . When the spectrum of the unknown contains the s p e c t r a of more than one com- pound, d i f f i c u l t i e s a r i s e . Abrahamson (1975) has developed a reverse search program where each spectrum i n the reference f i l e i s compared to the un- 53 known's spectrum. The use of t h i s technique w i t h l a r g e l i b r a r i e s w i l l ob- v i o u s l y r e q u i r e some prescreening. In summary GC-MS-Computer instrumentation has become very s o p h i s t i c a t e d . I t must be noted however, that the i d e n t i f i c a t i o n afforded by the MS-Computer i s only t e n t a t i v e e s p e c i a l l y when the molecule i s complex and/or has s t e r e o - isomers. The p o s s i b i l i t y of a l t e r a t i o n i n the GC or i n t e r f a c e i s always present. Since one may not be able to employ IR and NMR methods due to sample s i z e , chemical workup and subsequent f u r t h e r a n a l y s i s by GC-MS-Computer, or GC r e t e n t i o n time, may be necessary to a f f o r d p o s i t i v e i d e n t i f i c a t i o n . Numerous examples of the use of GC/MS/Computer techniques f o r e n v i r o n - mental samples have already been mentioned. Other s t u d i e s i n c l u d e those of H i t e s and Biemann (1972), H i t e s (1973), K e i t h (1969, 1972 ), H a r r i s Budde and E i c h e l b e r g e r (1974) and McGuire et a l . (1973). 54 CHAPTER I I I - EXPERIMENTAL A. O u t l i n e of the Problems A flow chart of the p r o j e c t i s shown i n Figure 3.1 and i t s major f a c e t s are summarized below. E x t r a c t i o n - The f i r s t problem was to devise an expedient method of reco v e r i n g t r a c e organics from water. Two systems, a continuous solvent e x t r a c t o r and an adsorption method were developed and t e s t e d . Separation - V a r i o u s methods f o r the s e p a r a t i o n of organics were t r i e d . These included f i l t r a t i o n , s o l u b i l i t y , and l i q u i d , t h i n l a y e r , and gas chromatograp- h i c techniques. E f f e c t s of C h l o r i n a t i o n oh Sewage - These e f f e c t s were u l t i m a t e l y analyzed by gas chromatography, u t i l i z i n g e l e c t r o n capture, flame i o n i z a t i o n , m i c r o e l e c t r o - l y t i c c o n d u c t i v i t y and mass spectrometric d e t e c t o r s . I d e n t i f i c a t i o n of Compounds i n Sewage- This p o r t i o n of the work was e s s e n t i a l l y c o i n c i d e n t a l w i t h the study of the e f f e c t s of c h l o r i n a t i o n . B. Ai ^Apparatus and Techniques 1. General Procedures Those techniques which were r o u t i n e l y used i n a l l f a c e t s of t h i s p r o j e c t are described below, w h i l e the others w i l l be presented i n the appropriate subsequent s e c t i o n s . A l l organic s o l v e n t s were of a n a l y t i c a l reagent (AR) grade and were g l a s s d i s t i l l e d w i t h at l e a s t a 1:1 r e f l u x r a t i o . Sodium sulphate (AR) and sodium c h l o r i d e (AR) were heated to 600°C f o r four hours to remove organics w h i l e aqueous reagents were e x t r a c t e d w i t h three twenty ml p o r t i o n s of d i e t h y l ether. P l a s t i c and p o r c e l a i n v e s s e l s and the f i v e g a l l o n g l a s s carboys were cleaned by a detergent wash followed by r i n s e s w i t h d i s - t i l l e d water and the aqueous sample. A l l other glassware was cleaned by a detergent wash followed by chromic a c i d treatment and r i n s e s w i t h d i s t i l l e d water, methanol, acetone and d i e t h y l ether. 55 Primary effluent * Solvent extractor 4 comparison Model compounds 1 Primary effluent XAD resin I Model compounds XAD resin y Breakthrough study Silica gel column Acidity separation GC optimization column & temperature program TLC of acidity fraction TOC study V Selection of Clg levels Estimation of C l 2 Uptake Effects of C l 2 by FID, EC & MEC GC Trapping of GC effluent Retention times of test compounds i GC-MS MS -12 F - 3000 -H GC retention time Mass Spectrum Partial ID Authentic sample of compound Positive ID Figure 3.1 Flowchart of the P r o j e c t . 56 P r i o r to e x t r a c t i o n , primary e f f l u e n t samples were f i l t e r e d w i t h the apparatus shown i n Figure;3.3a. F i l t e r s of paper (Whatman 541) and g l a s s f i b r e (Reeve Angel 934) were layered three of each deep i n the 11.5 cm l.D. p o r c e l a i n c r u c i b l e and sealed by d i s t i l l e d water. They were s e q u e n t i a l l y removed when the f i l t r a t i o n r a t e dropped below 300 ml/min during vacuum f i l t r a - t i o n at 10 inches water gauge i n t o the f i v e g a l l o n g l a s s carboys. A l l organic e x t r a c t s were d r i e d w i t h sodium sulphate and concentrated to 0.5-2.0 ml i n a r o t a r y evaporator (Buehler) at 20°C. The concentrated e x t r a c t s were analyzed on a Hewlett-Packard 5750 GC w i t h a N i EC or H 2 / a i r F I d e t e c t o r . The det- ector temperature was 320°C and i n j e c t o r temperature was 260-280°C. C a r r i e r gases were 95/5 Argoni methane f o r EC and helium f o r FID. Detector responses of 50 percent of f u l l s c a l e were produced by 1 x 10 g of d i e l d r i n w i t h the —8 EC (50 s pulse i n t e r v a l ) and 5 x 10~ g of "isS-octane" w i t h the FID at 1 i 1 1 attenuations of 32.x 10. A l l columns were 4'" x y g l a s s f i t t e d w i t h s i l i c o n e rubber, Supeltex M - l , or lea d ©wrings and f e r r u l e s ( S u prelco). The 5 and 10 yUl GC syringes (Hamilton) were cleaned by a s p i r a t i o n of 5 ml of acetone through the b a r r e l and wiping of the plunger. C h l o r i n a t i o n of primary e f f l u e n t samples i n v o l v e d the use of NaOCl s o l u - t i o n (Fisher) which was analyzed p r i o r to use by iodometric t i t a t i o n (APHA, 1971). R e s i d u a l c h l o r i n e was determined by the Phenylarsine oxide-Iodine method &APHA>ji X9.7/BX) and a 5 percent excess of s o l i d ^a^S^O^ ( F i s h e r ) was added to d e c h l o r i n a t e the sample and c o n t r o l r e a c t i o n time. A l l primary e f f l u e n t sam- pl e s were s t i r r e d w i t h a p l a s t i c overhead d r i v e p r o p e l l o r to ensure complete mixing i n the g l a s s carboy. 2. Sampling and P r e s e r v a t i o n Sampling L o c a t i o n Lion's Gate Sewage Treatment P l a n t i n North Vancouver was s e l e c t e d as a source of e f f l u e n t . The p l a n t serves a p o p u l a t i o n (1973) of 108,000 w i t h an average flow of 11.0 MGD of mainly domestic sewage. I t provides treatment v i a primary sedimentation, anaerobic sludge d i g e s t i o n , and e f f l u e n t c h l o r i n a t i o n . Supernatant from the d i g e s t o r s i s i n t e r m i t t e n t l y r e c y c l e d through the p l a n t . P r e c h l o r i n a t i o n was not p r a c t i c e d during the p e r i o d of t h i s study. The average composition of the e f f l u e n t i s B0D 5 - 100 mg/1, NH -N - 15 mg/1, TK-N - 30 mg/1 and pH 7.2. The average d a i l y c h l o r i n e dosage v a r i e s s e a s o n a l l y from 7 to 15 mg/1 w i t h a r e s i d u a l of between 2.0 and 5.0 mg/1 as measured by amperometric t i t r a t i o n . Sampling and Pretreatment Unchlorinated e f f l u e n t samples were obtained from the o u t f a l l weir of the primary s e t t l i n g tanks. On one occasion a sample of c h l o r i n a t e d e f f l u e n t was taken from the o u t f a l l of the c h l o r i n a t i o n chamber. S i n g l e grab samples were taken between 1000 hr and 1200 hr on Mondays. They were c o l l e c t e d i n f i v e g a l l o n Nalgene carboys. Work w i t h these samples was commenced w i t h i n one hour i n most cases. Therefore the i n i t i a l p r a c t i c e of adding 30 mg/1 of sodium azide was d i s c o n t i n u e d a f t e r the second set of samples and subsequently no p r e s e r v a t i v e was added. 3.p Design and Test of E x t r a c t i o n Methods a. Solvent E x t r a c t o r Apparatus - During p r e l i m i n a r y t e s t s of the i n i t i a l e x t r a c t o r w i t h sewage i t was noted that some water overflowed i n t o the solvent chamber, thus the design was m o d i f i e d . The m o d i f i c a t i o n s e s s e n t i a l l y made the flow of water through the e x t r a c t o r u n r e s t r i c t e d i n a d i r e c t i o n opposite to the flow of the s o l v e n t . The f i n a l e x t r a c t i o n system i s i l l u s t r a t e d i n F i g u r e 3.2. I t was designed f o r use w i t h a l i g h t e r than water s o l v e n t . The s o l v e n t , petroleum ether bp 37- 47° C i s continuously d i s t i l l e d and channeled to the bottom of the e x t r a c t o r f l a s k s . There i t i s f i n e l y d ispersed w i t h a T e f l o n coated magnetic s t i r r i n g bar. The solvent then r i s e s and overflows back to the d i s t i l l a t i o n chamber. The r a t e 00 F i g u r e 3.2 Continuous Solvent E x t r a c t o r 59 of flow of the water sample was c o n t r o l l e d by the T e f l o n v a l v e . Solvent E x t r a c t i o n of Model Compounds (Exp E - l ) - I n order to t e s t the e x t r a c - t o r under i d e a l c o n d i t i o n s , two model compounds, 2,4-Dichlorophenol (DCP) and 2,4,6-Trichlorophenol (TCP) (Eastman) were s e l e c t e d . Aqueous s o l u t i o n s of these compounds were prepared by d i s s o l v i n g them i n two m i l l i l i t r e s of acetone and one l i t r e of d i s t i l l e d water w i t h magnetic s t i r r i n g o v e rnight, followed by f i n a l d i l u t i o n , to eighteen l i t r e s . The s o l u t i o n s were passed through the e x t r a c t o r at flow r a t e s of ten and one hundred ml/min w i t h high and low s t i r r e r speeds. At high s t i r r e r speed the organic s o l v e n t was completely e m u l s i f i e d and at low s i t r r e r speed the s o l v e n t was dispersed i n d i s c r e t e d r o p l e t s . The organic e x t r a c t s were d i v i d e d i n h a l f , concentrated, d i l u t e d to the l i n e a r range and analyzed by GC (Hewlett Packard 5750) on 5% DC-11 on Chromosorb W (HP), w i t h an EC d e t e c t o r . Peak areas were measured w i t h a D i s c I n t e g r a t o r . D i s t i l l e d water was run through the e x t r a c t o r between t e s t s without c l e a n i n g the tygon tubing and an estimate of memory e f f e c t s made. A f t e r cleanup of the Tygon tubing w i t h detergent and water another blank was run. Solvent E x t r a c t i o n of Primary E f f l u e n t (Exp E-2) - I n order to f u r t h e r t e s t the performance of the e x t r a c t o r , t e s t s were run w i t h f i l t e r e d and u n f i l t e r e d sewage at a flow r a t e of 100 ml/min and low s t i r r e r speed. F i l t e r e d sewage was a l s o e x t r a c t e d at low s t i r r e r speed and 10 ml/min flow r a t e . E x t r a c t s were concentrated to 2 ml and analyzed by GC on 5% DC-11 on Chromosorb W (HP) w i t h an e l e c t r o n capture d e t e c t o r . ib,,. E x t r a c t i o n w i t h XAD-2 Re s i n Apparatus - Due to problems w i t h the s o l v e n t e x t r a c t o r a new method of ex- t r a c t i o n was necessary. A styrene-divinyl'benzene m a c r o r e t i c u l a r r e s i n , Am- b e r l i t e XAD-2 (Rohm and Haas) was t e s t e d . R e s i n cleanup was accomplished 60 by three washings w i t h d i s t i l l e d water• and decanting-of the .finest- f o l l o w e d by successive Soxhlet e x t r a c t i o n s w i t h methanol f o r ten hours, acetone f o r twenty- four hours, and d i e t h y l - e t h e r f o r twenty-four hours. The clean r e s i n was then stored as a methanol s l u r r y u n t i l i t was used. The e x t r a c t i o n apparatus i s i l l u s t r a t e d i n Figure 3.3. The r e s i n , as a methanol s l u r r y , was packed i n t o eighteen by one i n c h g l a s s columns or one hundred m i l l i l i t r e burets to a v o l - ume of 80 ml. Before e x t r a c t i o n of a sample the column was washed w i t h f i v e l i t r e s of d i s t i l l e d water to remove the methanol. Desorption was o r i g i n a l l y accomplished by e l u t i o n w i t h 200 ml of acetone and dr y i n g of the acetone water eluant mixture w i t h sodium sulphate. E x t r a c t i o n s of the eluant mixture w i t h petroleum ether and d i e t h y l ether were al s o t r i e d * . The method f i n a l l y adopted was e l u t i o n w i t h 200 mis of d i e t h y l ether. The ether was allowed to run through the ic.o?lumn u n t i l two l a y e r s were observed i n the r e c e i v i n g f l a s k . The flow was stopped f o r f i f t e e n minutes to al l o w f o r complete permeation and then allowed to proceed at 3 - 4 ml/minute. The eluant was d r i e d w i t h sodium sulphate and concentrated. The columns were then washed w i t h 200 ml of acetone and 100 ml of methanol f o r complete cleanup. XAD-2 E x t r a c t i o n of Model Compounds (Exp.. E-3) - This experiment was run i n four p a r t s i n order to measure r e c o v e r i e s and determine the sources of l o s s e s i n the system. The phenols were analyzed by GC-EC d e t e c t o r . The recovery of DCP and TCP from d i s t i l l e d water s o l u t i o n s was te s t e d at n e u t r a l pH (Exp. 13a)3a). The e f f e c t of detergent on recovery was determined by adding 4.9 mg/1 of LAS standard s o l u t i o n (R. A. T a f t , C i n c i n n a t i , Ohio) to the aqueous phenol s o l u t i o n s (Exp. E-3b). One f r a c t i o n was a c i d i f i e d w i t h U^SO^ to pH 1.8 and two l i t r e p o r t i o n s of both f r a c t i o n s were e x t r a c t e d . LAS was analyzed by the Methylene Blue method (APHA 1971). A d e t a i l e d breakdown of loss e s i n the system was made using d i s t i l l e d  62 water and the chlorophenols (Exp. E3-c). Recoveries and lo s s e s at v a r i o u s stages were determined by sol v e n t e x t r a c t i o n or s o r p t i o n . Solvent e x t r a c t i o n e n t a i l e d three ten ml e x t r a c t i o n s w i t h pet ether a f t e r a c i d i f i c a t i o n to pH 2 and a d d i t i o n of 20 g/1 of NaCI. Experiment E-3-d was i d e n t i c a l to E-3-c except that raw sewage was used i n place of d i s t i l l e d water. The s o l u t i o n of DCP was prepared by d i s s o l v i n g the phenol i n acetone and water as before. This s o l u t i o n was then added to three or four l i t r e s of sewage. Breakthrough Study (Exp E-4). To determine the c a p a c i t i e s of the columns eighteen l i t r e p o r t i o n s of f i l t e r e d primary e f f l u e n t , at both n e u t r a l and a c i d pH's, were ext r a c t e d at a flow fhrough r a t e of 100 ml/min. Column e f f l u e n t samples were f i l t e r e d ( 0 . 4 5 ^ membranes) and analyzed f o r s o l u b l e TOC (Beck- man 915 carbon a n a l y z e r ) . 6. Comparison of XAD-2 and Solvent E x t r a c t o r -(Exp E-5.') In order to compare the e x t r a c t i o n e f f i c i e n c i e s of the XAD columns and the solvent e x t r a c t o r , three f i v e g a l l o n a l i q u o t s of primary e f f l u e n t were obtained. One a l i q u o t was dosed w i t h 106 mg/1 Cl^ f o r one hour. A l l three a l i q u o t s were f i l t e r e d and the f i l t e r s from each a l i q u o t were c o l l e c t e d damp but without f r e e moisture. One a l i q u o t of the un c h l o r i n a t e d e f f l u e n t was extra c t e d i n the sol v e n t e x t r a c t o r at 100 ml/minute and low s t i r r e r speed. The other a l i q u o t s of f i l t e r e d c h l o r i n a t e d and un c h l o r i n a t e d e f f l u e n t were extr a c t e d by columns of XAD-2 r e s i n . A l l three organic e x t r a c t s were concen- t r a t e d to 5 mis and analyzed by GC. ;d. E x t r a c t i o n of P a r t i c u l a t e s - ( E x p E-6) - The f i l t e r pads were cut up i n t o 1" x 2" s t r i p s and placed i n pre- e x t r a c t e d c e l l u l o s e Soxhlet Thimbles. F i l t e r s from the c h l o r i n a t e d sample were ext r a c t e d w i t h a 1:1:3 mixture of methanol, acetone and n-hexane. F i l t e r s from the un c h l o r i n a t e d samples were ex t r a c t e d w i t h methanol and a 1:1 mixture of chloroform and methanol to determine whe- ther or not f r e e c h l o r i n e i n chloroform i s a s i g n i f i c a n t i n t e r f e r e n c e . Three 63 p o r c e l a i n b o i l i n g chips (Hengar) were added to the d i s t i l l a t i o n chamber and the e x t r a c t o r s were operated at 20 - 25 minutes per c y c l e f o r 26 hours. A l l e x t r a c t s were d r i e d and concentrated to 5 ml. The pure methanol and c h l o r o - form/methanol e x t r a c t s were f u r t h e r concentrated to 0.5 ml and r e d i l u t e d to 5 ml w i t h acetone. The e x t r a c t s were then analyzed by GC. 4. Separation Experiments a. P r e l i m i n a r y Separation (Exp S-l) P r e l i m i n a r y s e p a r a t i o n of the organics by s i l i c a g e l chromatography and acid-base s o l u b i l i t y was attempted p r i o r to gas chromatography. S i l i c a G el Chromatography (Exp S-la) - S i l i c a g e l ( F i s h e r Grade 923, 100- 200 mesh) was heated at 260°C f o r f i v e hours and then 5% by weight of water was added i n a glass stoppered round bottom f l a s k . The s i l i c a g e l was g e n t l y tumbled u n t i l f r e e f l o w i n g and allowed to f u r t h e r e q u i l i b r i a t e overnight. Glass columns (0.3 by 40 cm) were prepared from s o f t glass t u b i n g . The c o l - umns were c o n s t r i c t e d near the bottom and a 2 cm plug of g l a s s wool i n s e r t e d . The columns were r i n s e d wi'th methanol, benzene, and pet ether and then f i l l e d w i t h pet ether. The s i l i c a g e l was s l u r r i e d i n pet ether and the f l a s k con- t a i n i n g the s l u r r y was p a r t i a l l y evacuated to remove a i r bubbles. The s l u r r y was then added to the column to a depth of 15 cm. A 0.5 ml a l i q u o t of sample from Exp. E-5 was placed on the column and e l u t e d w i t h 8 ml of pet ether, 8 ml of benzene and 8 ml of 1:1 methanol/benzene ( v / v ) . A c i d i t y Separations (Exp S-l-b) - Four f i v e g a l l o n a l i q u o t s of e f f l u e n t were obtained and c h l o r i n a t e d at l e v e l s of 0.0, 15, 100 and 200 mg/1 Cl^ f o r one hour. They were e x t r a c t e d by XAD-2. The d i e t h y l ether eluant was suc- c e s s i v e l y e x t r a c t e d w i t h 3 x 10 ml of 0.1 ,:M NaHC0 3 > and 3 x 10 ml of 0.01 M NaOH to separate strong a c i d s , weak acid s and n e u t r a l compounds. The aqueous solutionsvwere a c i d i f i e d to pH 2 w i t h aqueous H^SO^ and r e - e x t r a c t e d w i t h d i - e t h y l ether a f t e r the a d d i t i o n of NaCl. A t o t a l operations blank c o n s i s t i n g of d i s t i l l e d water and sodium t h i o s u l p h a t e , and a sample of NaOCl/Na 9S 0 64 were a l s o analyzed. A f t e r c o n c e n t r a t i o n to 1 ml, the e x t r a c t s were stored at -10°C i n 2 ml glass stoppered v o l u m e t r i c f l a s k s (Kimax). Subsequently, the bicarbonate e x t r a c t i o n step was omitted and 0.05' M NaOH was used, b. GC O p t i m i z a t i o n (EXp. S-2) An attempt was made to determine the optimum packing and c o n d i t i o n s f o r GC s e p a r a t i o n . The GC work was performed on a Hewlett Packard 5750 instrum- ent w i t h EC and FID d e t e c t o r s . Four column packings were t e s t e d . Packings of 3% 0V-1 and of 3% 0V-225 on Chromosorb W (HP) were obtained from P i e r c e Chem- i c a l s . Packings of 3% OV-101 and of 3% 0V-17 on Chromosorb W(HP) 80-100 mesh (Chromatographic S p e c i a l i t i e s ) were prepared by the s o l u t i o n - f i l t r a t i o n method (Supina, 1974). The packings were d r i e d at 50°C f o r twenty minutes before f i l l i n g the columns w i t h 7.0-7.5 g of m a t e r i a l . Packed columns were conditioned by a temperature program of 30° f o r 20 minutes, a 1° /minute i n c r e a s e , followed by an isothermal p e r i o d of two days at the maximum temperature. Helium gas and lead f e r r u l e s were used during c o n d i t i o n i n g . i Samples from Exp. S-l-b were analyzed on a l l four columns using both FID and EC detectors under v a r i o u s temperature programs. The detector r e s - ponses were optimized f o r the i n i t i a l of f i n a l c o n d i t i o n s of the temperature program. c. TLC of A c i d i t y Separated F r a c t i o n s (Exp S-3) Im an attempt to accomplish more complete p r e l i m i n a r y s e p a r a t i o n of the e f f l u e n t samples, the n e u t r a l and b a s i c f r a c t i o n s of the samples c h l o r i n a t e d at 0 and 120 mg/1 C l from Exp. Cl-7 were separated by TLC. A p r e l i m i n a r y t e s t of the developers was made on commercially prepared p l a t e s (Eastman) wh i l e f i n a l s e p a r a t i o n was made on p l a t e s prepared as f o l l o w s . S i l i c a g e l ( K i e s e l g e l ) was ex t r a c t e d f o r 24 hours i n . a Soxhlet e x t r a c t o r w i t h methanol. I t was oven d r i e d u n t i l f r e e f l o w i n g and 5% by weight GaSO^ ( F i s h e r AR) was added. Glass TLC p l a t e s were washed w i t h detergent and r i n s e d w i t h water and acetone. S i l i c a g e l was a p p l i e d as an aqueous s l u r r y and the coated p l a t e s were oven d r i e d at 103°C f o r 24.hours and stored over CaSO^ i n a d e s s i c a t o r p r i o r to use. Samples were a p p l i e d as a s t r e a k . The p l a t e s were developed w i t h pet ether and a r b i t r a r i l y d i v i d e d i n t o four or eig h t f r a c t i o n s . Re- covery of the m a t e r i a l from the p l a t e s was accomplished by the technique devised by H a l l (1970) except that the asbestos was omitted. The recovered m a t e r i a l was monitored by EC-GC. The f r a c t i o n s showing EC responses were recombined and reseparated by TLC using methanol as a developer. A f t e r d i v - i s i o n of the p l a t e and recovery of the m a t e r i a l , the f r a c t i o n showing EC response was then concentrated to 0.1 ml and analyzed by GC-MS. A worst p o s s i b l e blank was obtained from non-soxhlet e x t r a c t e d s i l i c a g e l and the ' " c l e a n " areas of the second TLC p l a t e which corresponded to the same R^ v a l - ues as the f r a c t i o n analyzed by GC-MS. 5. E f f e c t s of C h l o r i n a t i o n a. M a n g e s i i n Soluble TOC Upon C h l o r i n a t i o n -(Exp Cl-1) Three f r e s h e f f l u e n t samples were c h l o r i n a t e d at l e v e l s of 0, 12 and 103 mg/1 C^. The samples were f i l t e r e d (0.45^membrane) and the TOC of the samples determined on a Beckmann 915 TOC a n a l y z e r . b. E f f e c t s Detectable by GC w i t h EC and FI Detectors (Exp Cl-2) E x t r a c t s were analyzed by GC w i t h EC and FID detectors to determine i f changes occur as a r e s u l t of c h l o r i n a t i o n and to determine whether changes (Occur.bingaatbhitghilevelsjofclGhlofinatlon'- also"? occurredj&at the l e v e l s of c h l o r - i n a t i o n used i n the treatment p l a n t s . Experimental c o n d i t i o n s used i n these experiments were i d e n t i c a l to those i n Experiment S-2. c. E f f e c t s Monitored by MEC Detector and GC C o r r e l a t i o n s (Exp. C l - 3 ) . Samples were analyzed on a Micro-Tek (Tracor 222) GC equipped w i t h a Tracor 310 de t e c t o r operating on the C l mode at 815°C and a 6' x 1/8" g l a s s column c o n t a i n i n g the packing as used w i t h the GCrMS (Exp C l - 7 ) . The resp- onse of the detector was c a l i b r a t e d w i t h a standard mixture of p e s t i c i d e s . 66 An attempt was made to c o r r e l a t e the GC chromatograms from the GC-MS, Microtek GC, and Hewlett-Packard GC. Samples were analyzed on the Hewlett Packard w i t h a 4' x h" g l a s s column of the•packing used w i t h the other i n - struments. The i n d i v i d u a l optimum temperature programs were r e t a i n e d f o r each GC. Three compounds, o-chlorophenol, p-chlorophenol and o,p' - DDT were used as markers. d. GC-MS Studies on the MS 12 (Exp Cl-4) The e x t r a c t s from experiment Cl-2 were i n i t i a l l y used i n t h i s experiment. A second set of samples was prepared by e x t r a c t i n g , a c i d i t y s eparating and concentrating e f f l u e n t c h l o r i n a t e d at 0 and 25 mg/1 C l ^ . I n t h i s second experiment ten g a l l o n a l i q u o t s of e f f l u e n t samples were analyzed by combin- in g the e x t r a c t s of two XAD-2 columns. The GC-MS i s a combination of a Pye 104 GC and a Micromass 12 s i n g l e f o c u s s i n g mass spectrometer i n t e r f a c e d by a d i f f e r e n t i a l l y pumped porous frdtf-^type separator. Glass columns (1 m x 2 mm OD) w i t h s t a i n l e s s s t e e l Swagelock f i t t i n g s were packed w i t h the OV-101 and 0V-225 packings p r e v i o u s - l y d e s c r i b e d . E l e c t r o n energies of 70 and 25 eV were used. They were scanned at a r a t e of 3 sec/400 amu and recorded on UV chart paper. Low b o i l i n g perfluorokerosene was used as a c a l i b r a n t . Mass s p e c t r a were taken at the beginning, maximum and t a i l of each peak which appeared on the GC. e. T e n t a t i v e I d e n t i f i c a t i o n by Retention Time (Exp Cl-5) To t e n t a t i v e l y i d e n t i f y some of the organic compounds formed as a r e s u l t of c h l o r i n a t i o n , the GC r e t e n t i o n times of a number of r e c r y s t a l l i z e d c h l o r - i n a t e d compounds were determined under c o n d i t i o n s used to analyze the samples of c h l o r i n a t e d e f f l u e n t . R e tention times of composite s o l u t i o n s and i n d i v i d - u a l components were determined at 120 and 160°C and .with the temperature programs used f o r the primary e x t r a c t s . £. Trapping of GC Peaks (Exp. Cl-6) An attempt was made to trap a s p e c i f i c peak and analyze i t by d i r e c t probe MS. A new set of samples was c h l o r i n a t e d at 0, 12 and 100 mg/1 of C l ^ . A 30:1 s t a i n l e s s s t e e l e f f l u e n t s p l i t t e r was i n s t a l l e d i n the Hewlett Packard GC operating on the EC detector mode. C a p i l l a r y g l a s s tubes were r i n s e d w i t h methylene c h l o r i d e and d r i e d . Attempts were made to trap one s p e c i f i c peak w i t h an a i r cooled tube, a tube packed w i t h one cm of Tenax GC, and a tube packed w i t h one cm of the 0V-225 m a t e r i a l . E i g h t 3^#1 i n j e c t i o n s of the neu- t r a l and b a s i c f r a c t i o n of the sample c h l o r i n a t e d at 100 mg/1 were made w i t h each trapping system. The tubes were handled only w i t h forceps and e l u t e d w i t h 100/^1 of d i e t h y l ether which was allowed to evaporate i n the atmosphere down to a volume of 2 ^ 1 . No peak was d i s c e r n a b l e upon r e i n j e c t i n g t h i s l/ll a l i q u o t i n t o the GC. g. GC-MS-Computer (Exp Cl-7) A new set of samples was c h l o r i n a t e d at 0, 12 and 120 mg/1 01^, and a sample of p l a n t c h l o r i n a t e d e f f l u e n t was obtained. A blank of 35 1 of d i s - t i l l e d water and t h i o s u l p h a t e was run through the c o l l e c t i o n and e x t r a c t i o n systems. The concentrated e x t r a c t s were analyzed on the Hewlett Packard 5750 by EC and FID on OV-101 and 0V-225. The samples were cooled w i t h dry i c e and transported by car to the USEPA lab i n S e a t t l e where they were stored i n a f r e e z e r . The GC-MS-Computer was a F i n n i g a n 3000 c o n s i s t i n g of a F i n n i g a n 9500 GC and a F i n n i g a n 3100 D MS i n t e r f a c e d by a j e t separator. A u x i l i a r y equipment included a Systems Industry PDP8 computer w i t h magnetic d i s c and Dec Tape, t r a n s f e r u n i t , t e l e p r i n t e r and Houston Instruments slow p l o t t e r , T e k t r o n i x CRT d i s p l a y / c o n t r o l console w i t h a hard copy u n i t , and a telephone hookup devi c e . Samples were separated on a 4' x 1/8" g l a s s column c o n t a i n i n g 6% SE-30/4% OV-210 on Gas Chrom Q. Spectra were obtained at 70 eV i o n i z i n g v o l - tage and scanned at 1 sample /.-amu, i n t e g r a t i o n time of 8, over the mass range 34-450. Numerous l i m i t e d mass searches were conducted to attempt to l o c a t e peaks of i n t e r e s t . U l t i m a t e l y , each spectrum was manually inspected and appropriate background c o r r e c t i o n s made. The r e s u l t a n t s p e c t r a were compared w i t h the MSSS f i l e s or the AWRE••*' = .Aldermaston (1974) and Cornu and Massot (1975) ei g h t peak i n d i c e s . In a d d i t i o n , s p e c t r a not matching those i n the f i l e were i n t e r p r e t e d by the methods o u t l i n e d by M c L a f f e r t y (1973). T h e / t e n t a t i v e l y i d e n t i f i e d s p e c t r a were then compared w i t h those c o l l e c t e d by Stenhagen et a l . . ( 1 9 7 4 ) . ^Authentic samples of the compounds whose spec- t r a a passed these t e s t s were obtained when p o s s i b l e and t h e i r GC r e t e n t i o n times and mass sp e c t r a were obtained on the Fi n n i g a n 3000 GC-MS. 4 69 CHAPTER IV RESULTS AND DISCUSSION In t h i s chapter the r e s u l t s from each experiment described i n Chapter I I I w i l l be presented and discussed. In the i n t e r e s t of b r e v i t y a l l of the GC traces and mass s p e c t r a w i l l not be reproduced. A s e l e c t i o n of chromatograms and mass spec t r a chosen on the b a s i s of p o s i t i v e importance w i l l be presented w h i l e only the s a l i e n t features of the others w i l l be d e s c r i b e d . A summary of the chromatograms of e f f l u e n t samples i s presented i n Appendix I I . The GC c o n d i t i o n s f o r the chromatograms presented i n t h i s chapter are described i n d e t a i l i n Appendix I I I . A. E x t r a c t i o n Experiments 1. Solvent E x t r a c t o r The r e c o v e r i e s of DCP and TCP from d i s t i l l e d water by the solvent ex- t r a c t o r (Exp. E - l ) are presented i n Table 4.1. A t e s t f o r memory e f f e c t s i n d i c a t e d r e s i d u a l s of 0.30 mg DCP and 0.35 mg TCP or about 4 percent of the t o t a l phenol passed through the Tygon tubing.> No d e t e c t a b l e memory e f f e c t s p e r s i s t e d a f t e r c l e a n i n g the Tygon. Loss of s o l v e n t proved to be somewhat of a problem, p r i m a r i l y due to the entrainment of s o l v e n t i n the aqueous sample. I n order to estimate the im- portance of t h i s l o s s , measurements were made of the solvent needed to r e - p l e n i s h the stock i n the d i s t i l l a t i o n f l a s k and of the r a t e of s o l v e n t d i s - t i l l a t i o n i n t o the e x t r a c t i o n f l a s k s . These r e s u l t s presented i n Table 4.2 are accurate only to + 10% due to the d i f f i c u l t y of f i l l i n g the d i s t i l l a t i o n f l a s k exactly, to the c a l i b r a t i o n mark. From Tables 4.1 and 4.2 i t appears that poor r e c o v e r i e s are coupled w i t h l a r g e solvent l o s s e s . In summary, s l i g h t l y b e t t e r r e c o v e r i e s are obtained at low flow r a t e s . In view of the long e x t r a c t i o n times r e q u i r e d w i t h low flow r a t e s , the op- timum operating c o n d i t i o n s are a flow r a t e of 100 ml/minute and a low s t i r r e r Table;4.1 - Recoveries of Phenols by Solvent E x t r a c t o r Run Compound Concentration Flow S t i r r e r mg Passed Recovery No. mg/1 Rate "Speed Through mg/min E x t r a c t o r * mg % 1 DCP 0.48 10 high 8.2 5.8 71 1 TCP 0.48 10 high 8.2 5.8 71 2 DCP 0.41 10 low 7.1 5.8 82 2 TCP 0.33 10 low 5.7 4.3 76 3 DCP 0.51 100 high 8.7 3.2 37 3 TCP 0.46 100 high 7.9 3.4 43 4 DCP 0.39 100 low 6.7 4.6 69 4 TCP 0.26 100 low 4.5 3.2 71 5 DCP 0.50 100 low 8.6 5.8 67 5 TCP 0.43 100 low 7.4 4.9 66 71 Table 4.2 - Solvent Loss Due to Entrainment Run Time of Run S t i r r e r Solvent D i s t i l l e d Solvent Lost hrs Speed ml ml % of Solvent D i s t i l l e d 1 28.5 high 20,500 650 •3.2 2, 28.5 low 20,500 300 1.7 3 3.0 high 2,160 830 38 4 3.0 low 2,160 300 14 5 •3.0 low 2,160 250 12 72 speed. When f i l t e r e d sewage e f f l u e n t (Exp E-2) was e x t r a c t e d an emulsion problem developed. At a flow r a t e of 100 ml/minute and low s t i r r e r speed an emulsion w i t h entrained brownish scum formed at the top of the e x t r a c t o r f l a s k and over- flowed i n t o the d i s t i l l a t i o n chamber. The b o i l i n g i n the d i s t i l l a t i o n chamber then became bumpy. At a reduced flow r a t e (10 ml/minute) the emulsion and bumping were slower to develop. D i s c r e t e bubbles w i t h a brownish scum q u i c k l y appeared at the top of the e x t r a c t i o n f l a s k and a f t e r 15 hours the emulsion i n the d i s t i l l a t i o n f l a s k was s i m i l a r i n volume to that obtained i n 1 hour w i t h a high flow r a t e . Examination of the gas chromatograms of the sewage e x t r a c t s showed a t o t a l of 34 peaks d e t e c t a b l e by EC. Three of these peaks appeared i n . t h e d i s - t i l l e d water blank. Although the §xt-ractor.s±sanr.ea-sona&3Jylgrf4e?fierit-,- i t was decided to develop an adsorption method f o r e x t r a c t i o n due to the emulsion problem. The a l t e r - n a t i v e f s s o l u t i o n s of a c i d i f i c a t i o n of the sample to pH 1.8 and a d d i t i o n of 20 g/1 NaCI would probably i n c r e a s e s o r p t i o n l o s s e s . In a d d i t i o n , experience has shown that such p r a c t i c e s do not e l i m i n a t e emulsions w i t h environmental samples. 2. E x t r a c t i o n With XAD-2 Resin The f i r s t problems to be solved were the development of a cleanup method, and the development of an e f f i c i e n t method of e l u t i o n . Since the r e s i n con- t a i n s i n o r g a n i c as w e l l as unknown organic i m p u r i t i e s , the approach described i n Chapter I I I was devised. The purpose of the methanol e x t r a c t i o n was to remove the water and r e s i d u a l i n o r g a n i c s from the r e s i n . Acetone and d i e t h y l ether were chosen because they were the solv e n t s used f o r e l u t i o n of the sorbed org a n i c s . The methanol e x t r a c t was y e l l o w w h i l e a l l of the others were c o l - o u r l e s s . Since b r i t t l e p l a s t i c s tend to crack upon dry i n g the cleaned r e s i n 73 was stored as a.methanol s l u r r y . The r e l e a s e of'organics from cleaned r e s i n which was allowed to dry has r e c e n t l y been confirmed by Junk et a l . (1974). The e l u t i n g s olvent must s a t i s f y three requirements. I t must be a good general s o l v e n t , d i s p l a c e water from the column and be e a s i l y removed to a l l o w c o n c e n t r a t i o n of the e x t r a c t . The column contains about 8 ml of water as measured by e l u t i o n of the column w i t h hexane. When the acetone eluant was d r i e d w i t h Na 2SO^ and concentrated, about 0.3 ml of water remained. The pres- ence of such a l a r g e amount of water w i l l cause l a r g e l o s s e s of v o l a t i l e organics during the con c e n t r a t i o n step. To accomplish a 3 x 10 ml e x t r a c t i o n of the acetone - water eluant approximately 120 ml of petroleum ether and 200 ml of d i e t h y l ether were needed. Tests on the r e c o v e r i e s of DCP from a 200:10 mixture of acetone and water y i e l d e d r e c o v e r i e s of 77% w i t h pet ether and 64% w i t h d i e t h y l ether. Due to these e x t r a c t i o n d i f f i c u l t i e s the stopped flow method of e l u t i o n w i t h d i e t h y l ether was adopted. Comparison of the e l u t i o n e f f i c i e n c i e s of acetone and d i e t h y l ether showed r e c o v e r i e s of 93% f o r acetone and 89% by d i e t h y l ether. Thus the so l v e n t s were i d e n t i c a l w i t h i n the 5% e r r o r l i m i t s and no r e s i d u a l water was noted a f t e r d r y i n g the d i e t h y l ether. A breakdown of the r e c o v e r i e s of DCP and TCP from the XAD-2 column accor- ding to eluant f r a c t i o n (Exp. E-3) i s shown i n Table 4.3. The e f f e c t of LAS detergent on r e c o v e r i e s of phenols from a c i d i f i e d and n o n - a c i d i f i e d s o l u t i o n s i s shown i n Table 4.4. A d e t a i l e d breakdown of l o s s e s i s shown i n Table 4.5. From Table 4.3 i t can be seen that the e l u t i o n of sorbed phenol i s es- s e n t i a l l y complete a f t e r about 1 bed volume of d i e t h y l ether has passed through the column. Neither the pH of the s o l u t i o n nor the concentrations of the phenols appear to a f f e c t the recovery. These r e s u l t s concur w i t h the r e - c e n t l y published work of Vinson et a l . (1973) and Junk et a l . (1974). Detergents a l s o had no e f f e c t uon the r e c o v e r i e s of the phenols. A d s o r p t i o n of the LAS detergent 74 Table;4.3 Recoveries of Phenols from D i s t i l l e d Water by XAD-2 Run Sample I n i t i a l mg Through Recovery No. Description Concentration Column mg % mg/1 DCP TCP DCP TCP DCP TCP DCP TCP 10. Original Solution 1.1 1.05 18.7 17.8 1 1st 50ml of Eluant \,\. 12.3 10.5 66 58 1 2nd 50 ml of Eluant 1.9 2.3 10 13 1 3rd 50 ml of Eluant 0.05 0.05 — 1 4th 50 ml of Eluant 0 0 2 Composite of Concentrates 15.0 13.4 80 75 2 Original Solution 0.133 0.189 2.3 3.2 2 1st 50 ml of Eluant 1.6 2.6 70 81 2 2nd 50 ml of Eluant 0.1 0.15 4 5 2 3rd 50 ml of Eluant <C0.01 <-0.01 2 4th 50 ml of Eluant <0.01 CO.01 2 Composite of Concentrates 1.80 2.65 79 83 75 Table 4.4 E f f e c t of LAS on Recoveries of Phenols by XAD-2 Volume of Recovery R u n Sample Passed pH Concentration (mg/1) percent Through Column (1) LAS DCP TCP LAS DCP TCP O r i g i n a l S o l u t i o n 1.8 4.5 a 0.55 a 1.25 a _ — ___ 0.0 - 0.5 0.9 20 0.5 - 1.0 2.3 50 1.0 - 1.5 1.8 40 1.5 - 2.0 2.0 55 T o t a l 1.8 0.45 1.05 40 82 84 O r i g i n a l S o l u t i o n 7.1 4.5 a 0.90 a 1.35 a 0.0 - 0.5 0.0 0 0.5 - 1.0 0.3 7 1.0 - 1.5 0.3 7 1.5 - 2.0 0.2 4 T o t a l 0.4 0.70 1.10 78 82 O r i g i n a l S o l u t i o n 1.8 0.0 a 0.00 a 0.00 a 0.00 0.00 0.00 a - O r i g i n a l c o n c e n t r a t i o n of component asO determined by a n a l y s i s or from amount of m a t e r i a l added and volume of s o l u t i o n . Table 4.5 Breakdown of tosses for XAD-2 System Run Compoundratioa Concentration Loss Due to Loss Due to Loss Due to Non- in Original in Original Solution Fi l t r a t i o n Sorption on Adsorption on Solution by weight by solvent mg/1 % Tygon XAD Resin extraction mg/1 % mg/1 % mg/1 % mg/1 mg/1 Dis t i l l e d DCP O.'S'S 0.52 0.0 0 0.071 14 0.0 0 0 Water-1 TCP i.o 1.0 0.0 0 0.092 9 0.0 0 0 Di s t i l l e d DCP 0.25 0.24 0.0 0 0.032 13 0.0 0 Water-2 Sewage-1 DCP 0.83 0.74 0.12 16 0.13 18 ©V03 4 Sewage-2 DCP 0.76 0.66 9.08 12 0.14 21 0.03 5 77. occurred only when the sample was acidified. Similar results were obtained by Junk et a l . , (1974) with volatile acids. Detergents cannot be analyzed by GC-MS and volatile acids are of no interest in this study. From Table 2.3 i t can be seen that these compounds are present in high concentrations in sewage. In order to prevent premature saturation of the resin with these compounds, i t was decided to extract primary effluent samples at near neutral pH's. From Tables 4.3 and 4.5 i t can be, seen that the major source of loss in this method is sorption on the Tygon tubing. The losses during concentration were 7 - 9 precent. From Table 4.5 i t is also evident that the recoveries of DCP are significantly lower when sewage rather than d i s t i l l e d water is extracted. Therefore the recoveries of organics from sewage are affected by sorption and/or precipitation reactions even though LAS in d i s t i l l e d water had no effect. The significant sorption on particulates indicates that quantification w i l l be more d i f f i c u l t by sorptive extraction which required pre-filtration, than by solvent extraction where removal of particulates is unnecessary. In summary, the XAD-2 resin method appears to be slightly more efficient than the solvent extraction method for the recovery of DCP and TCP from neutral d i s t i l l e d water solutions. However the recoveries of DCP from sewage were about 25% lower than those from d i s t i l l e d water. The results of the breakthrough studies of sewage (Exp. E-4) are listed in Table 4.6 and displayed in Figure 4.1. Deviations of up to 6 mg/1 or 13 percent among the TOC values for samples which should have been identical were noted. The stated reproducibility of the instrument is about + 1 per- cent while about 1 percent error is expected due to syringe measurements. The deviations are probably due to the solids in the samples. Because of these deviations no comparisons of the TOC of acidified and unacidified 78 Table 4.6 Breakthrough Study f o r Sewage on XAD-2 Volume Through Column (1) T o t a l Organic Carbon i n E f f l u e n t pH .2.0 (mg/1) , pH 7.2 Run 1 Run 2 Run 1 Run 2 Raw Sample 67 65 63 64 0.5 43 40 40 1.0 45 45 43 42 2.0 48 46 45 41 2.5 43 43 41 40 3.0 43 48 44 44 4.0 45 45 46 45 5.0 51 53 47 43 6.0 50 45 45 6.5 52 7.0 67 62 56 50 8.0 62 64 55 50 9.0 68 66 54 58 10.0 66 63 60 10.3 69 11.0 65 64 60 63 12.0 66 60 13.0 70 63 65 64 14.0 71 65 64 66 15.0 65 68 62 62 17.0 68 67 66 62 18.Q 64 62 64 Composite 61 60 52 58 Figure 4.1 Recovery of Organics from Primary E f f l u e n t by XAD-2 Resin 80 e f f l u e n t are j u s t i f i e d . From the graphs i n F i g u r e 4.1 the c a p a c i t y of the r e s i n i n terms of mg TOC/cc r e s i n i s 1.7 f o r both samples. This compares w e l l w i t h the r e s u l t s of Kennedy (1973) who showed that r e s i n c a p a c i t y can vary over an order of magnitude depending upon the p o l a r i t y of the compound and quoted a c a p a c i t y of 3.5-5.2 mg/cc f o r Vitamin B-12. There was no change i n the t u r b i d i t y of the samples a f t e r passage through the column. T u r b i d i t y values ranged from 20-25 JTU's as determined by the Jackson Candle (APHA 1971). The breakthrough po i n t could be estimated v i s u a l l y by the movement of the y e l l o w i s h brown colour down the r e s i n column. The breakthrough volume o"f- the a c i d i f i e d sample appears to be s m a l l e r than that of the n o n - a c i d i f i e d sample. The breakthrough volumes are about 9 and 10 1 or 120 and 133 column volumes r e s p e c t i v e l y f o r a c i d i f i e d and non- a c i d i f i e d samples. The s h i f t i n breakthrough volumes corresponds to an increase i n recovery of. TOC upon a c i d i f i c a t i o n of about 4 mg/1. From Table 2.3, assuming the v o l a t i l e acids are p r i m a r i l y a c e t i c and the detergents dodecy1 benzene sulphonates, the v o l a t i l e acids and detergents c o n t r i b u t e 12.1 mg/1 of s o l u b l e TOC. In summary, the XAD-2 r e s i n e x t r a c t s about 30% of the TOC from f i l t e r e d primary e f f l u e n t and has a s a t u r a t i o n c a p a c i t y of 130 column volumes. There i s some evidence that a c i d i f i c a t i o n of samples r e s u l t s i n premature s a t u r a - t i o n of the r e s i n by v o l a t i l e acids and detergents. The e x t r a c t i o n e f f i c i e n c i e s of the solvent e x t r a c t o r and the XAD-2 r e s i n f o r v o l a t i l e s i n primary e f f l u e n t were compared by a n a l y z i n g the con- c e n t r a t e s . The GC traces ane shown i n F i g u r e 4.2 The reasons f o r the poor q u a l i t y of the chromatogram of the u n c h l o r i n a t e d XAD-2 e x t r a c t as compared to those of the solvent e x t r a c t and c h l o r i n a t e d XAD-2 e x t r a c t are not known. One l i k e l y e xplanation i s the presence of sulphur compounds. Comparison of chromatograms (a) and (b) i n F i g u r e 4.2 i n d i c a t e s that the r e c o v e r i e s by the two techniques are very s i m i l a r i n terms of the concentrations of the 81 1 — • — » 1 i 11 a 1 * i SO 100 150 200 250 Temp (°C) Figure 4.2 Continuous Solvent and XAD-2 Resin E x t r a c t i o n of Organics from Primary E f f l u e n t Monitored by GC. GC c o n d i t i o n s i n Appendix I I I . 82 i n d i v i d u a l components. The XAD-2 r e s i n appears to be s l i g h t l y b e t t e r than solvent e x t r a c t i o n w i t h pet ether i n terms of the number of compounds ex- t r a c t e d . A cursory examination of the v o l a t i l e s e x t r a c t a b l e from the p a r t i c u l a t e s was made to g a i n some idea as to t h e i r complexity. The r e s u l t s of the GC i n v e s t i g a t i o n of the e x t r a c t s are shown i n F i g u r e 4.3. The e x t r a c t s c o n t a i n twelve to seventeen peaks, two or three of which are extremely l a r g e . There are fewer peaks i n the c h l o r i n a t e d sample. I t must be kept i n mind that d i f f e r e n t solvents were used, however the s o l u b i l i z a t i o n of organics through o x i d a t i o n i s a l s o p o s s i b l e . There are a l s o some new peaks i n the CHCl^/MeOH e x t r a c t as compared to the MeOH e x t r a c t . Although f u r t h e r i n v e s t i g a t i o n of these e x t r a c t s i s obviously warranted, due to l i m i t a t i o n s on time i t was decided to concentrate on the s o l u b l e f r a c t i o n . B. Separation Experiments 1. P r e l i m i n a r y Separation GC r e s o l u t i o n was not s u f f i c i e n t to adequately separate a l l of the com- ponents of the primary e f f l u e n t e x t r a c t (Exp. ;E-5). I t i s f u r t h e r recognized that the s e n s i t i v i t y of the EC detector f o r c h l o r i n a t e d and oxygenated compounds i s much greater than that of a GC-MS, thus i t was decided to con- ce n t r a t e the e x t r a c t s to 0.2-0.5 ml which would tend to increase the problems of r e s o l u t i o n . Therefore i t was decided to attempt p r e l i m i n a r y s e p a r a t i o n of the e x t r a c t s p r i o r to GC a n a l y s i s . A r e p r e s e n t a t i v e set of r e s u l t s from the S i l i c a Gel column experiments (Exp.S^la) are shown i n Figure 4.4. Although the background i s considerably reduced, upon c l o s e i n s p e c t i o n of these GC t r a c e s , one f i n d s them remarkably s i m i l a r . I t would appear that channeling occurred i n the S i l i c a Gel columns. Furthermore, changing of the e l u t i n g s o l v e n t r e s u l t e d i n a dramatic change i n the consistency of the g e l w i t h the r e s u l t that the flow r a t e through the 83 / , Time(Mm) Figure A.3 Soxhlet E x t r a c t s of P a r t i c u l a t e s Analyzed by GC. GC c o n d i t i o n s i n Appendix I I I . 84 1 • • • ' » 1 : V ,, 50 50 «00 150 2 0 0 250 300 Te/np(°C) Figure 4.4 S i l i c a Gel Column F r a c t i o n a t i o n of Primary E f f l u e n t E x t r a c t s Analyzed by GC. GC c o n d i t i o n s i n Appendix I I I . column was considerably decreased. Flow r a t e s w i t h MeOH/Benzehe were about 0.01 ml/min. In order to speed s e p a r a t i o n e i t h e r wide columns w i t h l a r g e volumes of eluant and decreases i n r e s o l u t i o n or some type of p r e s s u r i z a t i o n of the column were necessary. Only p r o p i p e t t e s were a v a i l a b l e f o r the l a t t e r purpose and r a t h e r than r i s k the i n t r o d u c t i o n of i m p u r i t i e s , t h e s i l i c a g e l column method was discontinued i n favour of a c i d i t y s e p a r a t i o n . A r e p r e s e n t a t i v e set of GC chromatograms of the a c i d i t y separated f r a c t i o n s of the XAD-2 e x t r a c t s are presented i n F i g u r e 4.5 (Exp-. S - l b ) . Comparison of the three traces shows that the EC d e t e c t a b l e m a t e r i a l i s a l - most eq u a l l y d i v i d e d between the n e u t r a l + b a s i c f r a c t i o n (N + B) and the weak a c i d f r a c t i o n (WA). There were few compounds i n "the strong a c i d f r a c t i o n which i s not s u r p r i s i n g s i n c e no d e r i v a t i z a t i o n was c a r r i e d out to make the acids v o l a t i l e enough to be analyzed bj GC. There are an unexpectedly l a r g e number of peaks at the low temperature end of the WA f r a c t i o n . The chromatograms on 0V-17 and 0V-225 a l s o have t h i s f e a t u r e . This leads one to suspect incomplete s e p a r a t i o n probably due to the h i g h s o l u b i l i t y of d i e t h y l ether i n water. The peaks numbered 1 through 7 i n Figure 4.5 are.those suspected of being present i n both the WA and N + B f r a c t i o n s and which r i g h t l y belong i n the N + B f r a c t i o n . The a l t e r - n a t i v e of using pet ether i s not a t t r a c t i v e s i n c e many oxygenated or p o l a r compounds areoonly s p a r i n g l y s o l u b l e i n t h i s s o l v e n t . I t was t h e r e f o r e decided to wash f u t u r e aqueous e x t r a c t s w i t h 4 x 10 ml of d i e t h y l ether r a t h e r than w i t h j u s t the one 10 ml p o r t i o n employed i n t h i s s e p a r a t i o n . Since many phenols are.not s u f f i c i e n t l y a c i d i c to be completely e x t r a c t e d by the bicarbonate, i t was decided to d i s c o n t i n u e the bicarbonate e x t r a c t i o n and use only the sodium hydroxide e x t r a c t i o n . 2. G.C. O p t i m i z a t i o n The o b j e c t i v e of t h i s p o r t i o n of the p r o j e c t i s to determine the best } 30 5 0 .100 • 150 2 0 0 Temp (°C) gure 4.5 A c i d i t y Separation of Primary E f f l u e n t E x t r a c t s Analyzed by GC. GC conditions i n Appendix I I I . GC phase and the optimum temperature program f o r s e p a r a t i o n of the v o l a t i l e s i n sewage (Exp. S-2). The OV s e r i e s of s i l i c o n e s were chosen f o r reasons o u t l i n e d i n Chapter I I . The b a s i c c r i t e r i a to>be used f o r comparison of these phases and temperature programs are the e l u t i o n of the maximum number of compounds i n a reasonable time and the r e s o l u t i o n of these compounds. Representative chromatograms t o f the N + B and WA f r a c t i o n s of the sample c h l o r i n a t e d at 15 mg/1 Cl^ are shown i n Figures 4.6 through 4.9. The SA f r a c t i o n s showed about a dozen f a i r l y w e l l r e s o l v e d peaks by EC and FID ( F i g s . 4.17, 4.18). With the OV-101, OV-17 and OV-225 columns, the optimum temperature'program was 30°/10 minutes, 6°/minute, and 200°C/20 minutes f o r both f r a c t i o n s . Due to the l a r g e number of l o w - b o i l i n g compounds i n the e x t r a c t s , OV-1 was of l i m i t e d use because of i t s lower temperature l i m i t of 100°C. The other phases provide good s e p a r a t i o n of the N + B f r a c t i o n (Figures 4.6 and 4.8) at low temperatures, however a l l of them have some r e s o l u t i o n problems above 100°C. Comparison of the WA f r a c t i o n on the various phases (Figures 4.7 and 4.9) shows that fewer peaks are observed w i t h the OV-225 phase than w i t h OV-101 or OV-17. This i s probably due to the high p o l a r i t y of the OV-225 phase. No memory e f f e c t s were observed during these analyses. 3. TLC Separation of A c i d i t y F r a c t i o n s The main o b j e c t i v e of t h i s work was to f u r t h e r separate the a c i d i t y f r a c t i o n s so that each peak observable i n the GC-MS co n s i s t e d of only one compound. A sample set of chromatograms as monitored by GC w i t h an EC detector are presented i n Figures 4.3-0 and;4^11. A "worst p o s s i b l e " blank and EC t r a c e of the sample before TLC are included i n these f i g u r e s . I t i s evident that most of the more v o l a t i l e compounds are l o s t during TLC manipulations. With pet ether as the developer one can see from Figure 4.10 that most of 30 "~30 50 ~~~ foO 150 200 ^ (100) (100) (150) (200) (250) Temp (°C) OV-I in porentheses Figure 4.6 GC Optimization N + B by EC. GC conditions i n Appendix I I I . (c) 0V-225 30 30 100 Temp (• C) Figure 4.7 GC O p t i m i z a t i o n WA by EC. GC cond i t i o n s i n Appendix I I I , •fer Figure 4.8 GC O p t i m i z a t i o n N + B by FID. GC conditions i n Appendix I I I .  the recoverable EC det e c t a b l e m a t e r i a l has an of l e s s than 0.25. This f r a c t i o n was rechromatographed w i t h methanol as a developer. In t h i s second chromatogram (Figure 4.11) i t i s extremely s u r p r i s i n g that most of the mater- i a l has an R^ value of l e s s than 0.5. Unfortunately the m a t e r i a l from t h i s chromatogram having R^O.O to 0.25 was l o s t and only the m a t e r i a l of R^ 0.25 to 0.50 was analyzed by GC-MS. Figures 4.10 and 4.11 and subsequent GC-MS a n a l y s i s showed that along w i t h the lo6s of the more v o l a t i l e components, there was a l s o some removal of the l e s s p o l a r compounds. The data showed however that many of the peaks observable by GC-MS were probably s t i l l c o n t a i n i n g more than one component. In summary, i t i s suggested that f o r p r e l i m i n a r y s e p a r a t i o n high speed l i q u i d chromatography r a t h e r than the combination of a c i d i t y and TLC tech- niques should be employed. This would allow a cl e a n e r , l e s s cumbersome sep- a r a t i o n of components without l o s s of the more v o l a t i l e ones, and could be expediently complemented w i t h u l t i m a t e s e p a r a t i o n by GC. In any case an o u t l i n e of the e x t r a c t i o n and se p a r a t i o n methods f i n a l l y adopted f o r t h i s p r o j e c t i s shown i n F i g u r e 4.12. ;C. E f f e c t s of C h l o r i n a t i o n oh Primary E f f l u e n t 1. Soluble TOC The r e s u l t s presented i n Table 4.7 i n d i c a t e that there i s very l i t t l e change i n the s o l u b l e organic carbon of sewage as a r e s u l t of c h l o r i n a t i o n (Exp. C l - 1 ) . I t i s a l s o apparent from these r e s u l t s that the 0.45^membrane f i l t e r s can remove 20 percent of the carbon from primary e f f l u e n t which has been p r e v i o u s l y f i l t e r e d through g l a s s f i b e r f i l t e r s of 1.0/tpore s i z e . 2. E f f e c t s Monitored by EC and FI Detectors The chromatograms of the v a r i o u s e x t r a c t s are shown i n Figures 4.13 through 4.22 (Exp. C l - 2 ) . These chromatograms were chosen to i l l u s t r a t e   Effluent Sample Chlorinate with NaOCI or Take plant chlorinated sample Blank (Distilled H 2 0 ) NaOCI (pH 7 .2 ) Unchlorinated sample Plastic carboy Dechlorinate with N Q 2 S 2 ° 3 F i l t e r ( l / i ) Extrac t ( X A D resin) I Elute column ( 2 0 0 m l E t g O ) I E x t r a c t eluantv ( 3 x 1 0 m l 0 . 0 5 N NoOH) Neutrals & Basics l (N + B) A c i d s Dry ( N a 2 S 0 4 ) A c i d i f y , Re extract ( 3 x 10ml E t 2 0 ) Concentrate to 0.2— 0.5 ml GC ( E C , F ID) T L C of N +B (Silica gel, pet ether, .methanol) Figure 4.12 Flowchart of Separation Procedure 96 Table 4.7 E f f e c t of C h l o r i n a t i o n on So l u b l e TOC C h l o r i n e C M o r i n e dose TOC TOC mg/1 C l mg/1 C l 2 ( s i z e < V ) (size<)0.45>) (mg/1) (mg/1) 0 50 37 12 50 37 103 48 39 97 the e f f e c t of v a r i o u s dosages of c h l o r i n e upon the a c i d i t y separated f r a c t i o n s of the e x t r a c t s and the r e p r o d u c i b i l i t y of t h e s e ~ e f f e c t s between two d i f f e r - ent samples of primary e f f l u e n t . Before d i s c u s s i n g these chromatograms i n d e t a i l some general p o i n t s should be made. The r e p r o d u c i b i l i t y of the chrom- atograms i s not good p a r t i c u l a r l y i n the low temperature r e g i o n due to the long i n i t i a l i s othermal p e r i o d at almost ambient temperature. Therefore only changes i n pa t t e r n s of peaks are taken as i n d i c a t i o n s of changes due to c h l o r i n a t i o n although i t i s recognized that s h i f t s . ^ i n the r e t e n t i o n time of a s e r i e s of peaks many not always be an a r t i f a c t of a n a l y s i s . I t i s f u r t h e r noted that there may be d i f f e r e n c e s i n c o n c e n t r a t i o n among the v a r i o u s e x t r a c t s . These d i f f e r e n c e s x^hich are most apparent i n the FID t r a c e s , can be minimized by n o r m a l i z i n g peak heights to those of che un- changed peaks. F i n a l l y , the c a r r i e r gas flow r a t e was s i g n i f i c a n t l y higher during the a n a l y s i s of the sample dated March 8. The higher flow r a t e r e s u l t e d from detector response o p t i m i z a t i o n s t u d i e s c a r r i e d out on March 10. Since flow r a t e s are never e x a c t l y r e p r o d u c i b l e and p a t t e r n r e c o g n i t i o n techniques could be employed during the comparisons, i t was decided to s a c r i f i c e flow r a t e r e p r o d u c i b i l i t y i n order to standardize the detector response. The peaks whose magnitudes were increased due to c h l o r i n a t i o n are marked w i t h an " I " and those whose magnitude was decreased are marked w i t h a "D" i n each f i g u r e . The t o t a l number of changes i n each e x t r a c t i s summarized i n Table 4.8. One of the most s t r i k i n g f eatures of Table 4.8 i s that w i t h an EC detector the number of increases f a r outnumbers the number of decreases. This i n d i c a t e s that the y i e l d s of these products of c h l o r i n a t i o n are s m a l l , the products r e s u l t from non-electron capturing precursors or the precursors are high molecular weight and/or non-solvated molecules. Many more increases are detected by the EC than by the FID whereas the 98 Table 4.8 - E f f e c t s of C h l o r i n a t i o n by GC A n a l y s i s With FID and EC Detectors Figure Sample Date F r a c t i o n Detector No. of Increases No. of Decreases 4.13 18/12/74 N + B EC 15 3 4.14 18/12/74 N + B FID 4 2 4.15 18/12/74 WA EC 12 5 4.16 18/12/74 WA EID 4 2 4.17 18/12/74 SA EC 1 0 4.18 18/12/74 SA FID 0 0 4.19 8/03/75 N + B EC 18 5 4.20 8/03/75 N + B FID 5 1 4.21 8/03/75 A EC 2 0 4.22 8/03/75 A FID 0 0 9 9 30 30 50 100 150 200 Temp ( ° C ) Figure 4.13 E f f e c t s of C h l o r i n a t i o n by GC - N+B by EC-1. GC conditions i n Appendix I I I . Explanation of Symbols i n text. (a) Unchlorlnated 30 30 50 100 Temp (• C) 150 200 Figure 4.14 E f f e c t s of C h l o r i n a t i o n by GC - N+B by F I D - l . GC conditions i n Appendix I I I , of Symbols i n t e x t . E x p l a n a t i o n 101 Figure 4.15 E f f e c t s of C h l o r i n a t i o n by GC - WA by EC. GC c o n d i t i o n s i n Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t . 102 (a) Unchlorinated Figure 4.16 Effects of Chlorination by GC - WA by FID'. GC conditions i n Appendix I I I . Explanation of Symbols i n text. 103 $0~ 30 50 : 100 ^ 5 0 200 Temp (°C) Figure 4.17 E f f e c t s of C h l o r i n a t i o n by GC - SA by EC. GC c o n d i t i o n s i n Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t . J 1 fl i- I ! 30 30 50 100 150 200 Temp ( ° C ) Figure 4.18 E f f e c t s of C h l o r i n a t i o n by GC - SA by FID. GC conditions i n Appendix I I I . 1 0 5 Figure 4.19 E f f e c t s of C h l o r i n a t i o n by GC - i n Appendix I I I . E x p l a n a t i o n of Symbols i n N+B by EC-2. GC c o n d i t i o n s t e x t . Jl (a) Unchlorinated 2 0 0 219 Figure 4.20 E f f e c t s of C h l o r i n a t i o n by GC -N+B by FID-2. GC c o n d i t i o n s i n Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t . JUL 29 (a) Unchlorinated (b) 12 mg/1 C l 2 (c) 120 mg/1 C l 2 (d) Plant chlorinated 29 50 100 Tomp ( ° C J 150 Figure 4.21 E f f e c t s of C h l o r i n a t i o n by GC - A by EC, Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t . 200 219 GC c o n d i t i o n s i n 108 1 1—: ; « : 1 . t 1 - 9 2 9 5 0 IOO 150 2 0 0 219 Temp (°C) Figure A. 22 Effects of Chlorination by GC - A by FIB. GC conditions in Appendix III. 109 number of decreases are more s i m i l a r . TKis i s not s u r p r i s i n g s i n c e a d d i t i o n of oxygen or c h l o r i n e to a molecule can d r a m a t i c a l l y i n c r e a s e i t s response f a c t o r f o r an EC d e t e c t o r . Other aspects of Table 4.8 such as the d i f f e r e n c e between the two e f f l u e n t samples can be more p r e c i s e l y discussed during a d e t a i l e d a n a l y s i s of the chromatograms. The e f f e c t s of c h l o r i n a t i o n upon the N + B f r a c t i o n s are i l l u s t r a t e d i n Figures 4.13 through 4.16 and 4.19 and 4.20. There are between 50 and 60 peaks present i n each of the f i g u r e s . With the EC d etector ( F i g s . 4.13 and 4.19) one can see that the new peaks marked " I " which appear at a c h l o r i n e dosage of 100 mg/1 or 120 mg/1 a l s o appear at a c h l o r i n e dosage of 15 mg/1 or 12 mg/1. The e f f e c t s of c h l o r i n a t i o n at the p l a n t are g e n e r a l l y i n t e r - mediate between those of dosages of 12 and 120 mg/1. There i s a one to one correspondence between the peaks of chromatograms (rc)i-ahdl (d) i n F i g u r e 4.19.1n f a c t there are some areas where p l a n t c h l o r i n a t i o n more c l o s e l y resembles a dosage of 120 mg/1 than 12 mg/1. There are some new peaks which appear near the s o l v e n t peak but these are not marked as they cannot be analyzed by GC- MS w i t h the OV-101 column. One can a l s o see that many changes marked "X" appear i n the sample dosed w i t h 200 mg/1 of c h l o r i n e which are d i f f e r e n t from those'appearing at lower dosages of c h l o r i n e . These changes unique to high dosage l e v e l s are prob- ably due to the presence of f r e e r e s i d u a l c h l o r i n e s i n c e the "breakpoint" i s expected to l i e between 140 and 170 mg/1 C^. In the i n t e r e s t of o p t i m i z i n g the y i e l d s of only those produces of c h l o r i n a t i o n which r e s u l t from treatment p l a n t dosage l e v e l s , i t was decided to only c h l o r i n a t e samples at l e v e l s of 0, 12, and 120 mg/1 C l 2 . I t i s evident from Figures 4.14 and 4.20 that most of the peaks i n the N + B f r a c t i o n are much smaller w i t h the FID as compared to the EC d e t e c t o r . Since the changes due to c h l o r i n a t i o n a l s o occur i n areas of poor r e s o l u t i o n 110 they are much l e s s s p e c t a c u l a r i n these chromatograms. Because of the sub- s t a n t i a l d i f f e r e n c e s i n detector responses no unequivocal c o r r e l a t i o n s can be made between the EC and FID chromatograms, however i t does not appear as though any of the e f f e c t s of c h l o r i n a t i o n are v i s i b l e w i t h both d e t e c t o r s . Judging from the FID one would expect to see about 60 peaks i n the N + B f r a c t i o n by GC-MS, however the e f f e c t s of c h l o r i n a t i o n w i l l probably not be very evident. The chromatograms of the a c i d i c f r a c t i o n s are d i s p l a y e d i n Figures 4.15 through 4.18 and Figures 4.21 and 4.22. Comparison of Figures 4.17 and 4.21 shows that the NaOH e x t r a c t s c o n t a i n one new EC d e t e c t a b l e peak r e s u l t i n g from c h l o r i n a t i o n . The appearance of e f f e c t s of c h l o r i n a t i o n unique to high dosage l e v e l s i s again evident i n chromatogram !(d)* i n Figure 4.17. The FID chromatograms i n Figures 4.18 and 4.22 show the l a c k of any d e t e c t a b l e e f f e c t s of c h l o r i n a t i o n . Judging from these chromatograms there should be nine peaks v i s i b l e i n the a c i d f r a c t i o n by GC-MS, none of which i s due to c h l o r i n a t i o n . The chromatographic p r o f i l e s of the v a r i o u s samples of primary e f f l u e n t c o l l e c t e d throughout t h i s study as wellaas the e f f e c t s of c h l o r i n a t i o n appeared tolibe remarkably c o n s i s t e n t . For example the peaks numbered 1 through 12 i n chromatograms Ca)' i n Figures 4.13 and.4.19 appear to be i d e n - t i c a l . ?A t o t a l of nine new peaks r e s u l t i n g from c h l o r i n a t i o n o b v i o u s l y pres- ent i n F i g u r e s 4.13 and 4.19, and i f f o r reasons p r e v i o u s l y discussed some of the peaks i n F i g u r e 4.15 are included i n F i g u r e 4.13 t h i s number increases from nine to seventeen or eighteen. Only one or two peaks do not appear i n both e f f l u e n t samples. This combination of Figures 4.15 and 4.13 i s f u r t h e r j u s - t i f i e d by the a n a l y s i s of samples taken on J u l y 8, 1974 and Nov. 19, 1974. These e x t r a c t s (Appendix I I ) , one w i t h bicarbonate e x t r a c t i o n and one without produced GC chromatograms s i m i l a r to e i t h e r the Dec. 18/74 or March 8/75 I l l e x t r a c t s on columns of OV-101, OV-17 and OV-225. Evidence f o r the consistency of the other chromatograms of the e x t r a c t s i s provided by comparison of the appropriate f i g u r e s . I t i s noted that the consistency of the FID chromato- grams i s not as s t r i k i n g as that of the EC chromatograms because of f a c t o r s p r e v i o u s l y mentioned. In summary, two major p o i n t s a r i s e out of these s t u d i e s . F i r s t l y i t was demonstrated that c h l o r i n e dosages as high as 120 mg/1 but l e s s than 200 mg/1 can be used to increase the y i e l d s of c h l o r i n a t i o n products without forming products not produced i n treatment p l a n t s . Secondly i t was shown that new EC and FID d e t e c t a b l e compounds are c o n s i s t e n t l y produced as a r e s u l t of c h l o r i n a t i o n at treatment p l a n t dosage l e v e l s . A t o t a l of 16 to 18 new peaks were detected i n the N + B f r a c t i o n and 4-6 new peaks i n the a c i d i c f r a c t i o n as a r e s u l t of t h i s c h l o r i n a t i o n . 3. MEC Detector This d e t e c t o r was used to study the magnitude of c h l o r i n e uptake by the v o l a t i l e organics (Exp. C l - 3 ) . The chromatograms are presented i n Figures 4.23,,f4.24, and 4.25 and the detector c a l i b r a t i o n curve i s shown i n Figure 4.26. The c h l o r i n e content of each peak was determined and the t o t a l c h l o r i n e content of each sample c a l c u l a t e d assuming a sewage sample volume of 10 1 (Exp. E-4). These r e s u l t s are summarized i n Table 4.9. The c h l o r i n e up- take i n each f r a c t i o n was then expressed as a percentage of the dosage and the t o t a l organic c h l o r i n e present i n the sample. These c a l c u l a t i o n s are presented i n Table 4.10. Before d i s c u s s i n g the s i g n i f i c a n c e of the c h l o r i n e uptake data, four p o i n t s should be made. F i r s t l y , "tixe MEC detector i s not s p e c i f i c f o r c h l o r - i n e , although i t i s s p e c i f i c f o r halogens. Secondly, even assuming that a l l peaks were due to c h l o r i n e , the response per nanogram of c h l o r i n e i s not constant f o r a l l types'of compounds as can be seen from Figure 4.26. Thus 112 < I : I i I 1 1 1 1 ; I I ' 2 2 2 0 18 16 14 12 10 8 6 4 0 T i m e (min) Figure 4 .23 E f f e c t s of C h l o r i n a t i o n by GC - A by MEC. GC c o n d i t i o n s i n Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t . (a) Unchlorinated J 1 - — • 1 — i il _ i i i , . 2 4 2 2 2 0 \ B i S 14 12 10 8 6 4 2 Tim© (min) Figure 4.24 E f f e c t s of C h l o r i n a t i o n by GC - N+B by MEC-1. GC c o n d i t i i n Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t . 114 24 22 20 18 18 14 12 10 0 6 4 Time ( mlnute» ) Figure 4.25 E f f e c t s of C h l o r i n a t i o n by GC - N+B by MEC-2. GC c o n d i t i o n s i n Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t . § 2 3 4 5 10 2 0 3 0 C H L O R I N E (NG) Figure 4.26 C a l i b r a t i o n Curve f o r MEC Detector. .116 Table 4.9 - Concentrations of Halogen as C h l o r i n e i n Primary E f f l u e n t a) A c i d F r a c t i o n Concentration of Chlorine.(ng.Cl/1) Peak C h l o r i n e Dose (mg /C1./1) N(0) 12 P (12) 120 -1- 60 2 80 70 80 3 40 4 60 60 5 40 40 40 40 6 100 70 100 7 40 60 60 80 8 60 . 60 9 140 10 100 180 240 260 11 90 30 12 60 120 13 40 40 100 117 b) N e u t r a l and Ba s i c F r a c t i o n Concentration of C h l o r i n e (ng Cl/1) N (0) Ch l o r i n e Dosage (mg 12 P (12) 120 Concentration Factor ,~4 _ ... 4. .. 4 4 4 4 4 10 5 x 10 . 10 5 x 10 10 5 x 10 10 1 OS OS 30 OS 940 2 220 OS 260 OS 200b OS OS 3 500 OS 1050 OS 360 OS OS 4 100 90 60 50 450 5 160 110 50 100 850 6 50 40 25 150 6a 50 50 7 90 8 10 10 10 180 9a 5 90 100 40 600 10 10 0 :9b 5 5 10a 30 35 360 lQa 10 10 10 11 5 5 180 12a 60 15 60 60 60 45 50 12a 40 50 35 U u 15 15 20 200 13a 15 5 10 1_4 30 45 60 50 50 50 500 1<5* 20 30 30 160 16* 140 95 160 OS 140 100 500 1JZ 40 40 35 300 18 30 25 30 90 m 70 55 60 60 2.0* 15 15 440 21*' 220 205 320 240 260 240 160 22* 90 70 140 60 120 60 420 23 50 80 50 85 90 130 1000 24 65 110 130 120 25* 20 50 40 90 60 120 26* 180 2c7* 20 20 420 280 180 2f8 50 29a 140 •29a 90 100 40 100 60 140 30 40 20 100 360 31 120 OS 120 OS 140 OS 32a 50 . 50 120 . . . .90 . . 80 50 160 - 3 2 a — — : v.:. 60 OS - Off s c a l e 118 Table 4.10 - Ch l o r i n e Uptake by V o l a t i l e s a) A c i d F r a c t i o n C l - Dosage mg/1 T o t a l C h l o r i n e C h l o r i n e Uptake 2 >rg/l //g/1 % Dose % T o t a l Cl- N (0) 0.25 12'; 0.68 0.40 0.0033 59 P (12) 0.67 0.24 0.0020 36 120 1.11 0.70 .0006 63 b) N e u t r a l and Basic F r a c t i o n Concen. C l s Dosage T o t a l C h l o r i n e C h l o r i n e Uptake' Factor . 2 mg/1 /#g/l >Yg/l % Dose % T o t a l C l —: a b a hi 1 0 4 N (0) 1.57 a .85 S-r^?' - — — - 10* 12 2.83 i.52 0.40 0.0033 14 26 10 4 P (12) 2.21 1.62 0.53 0.0044 24 33 10 4 120 -=- 8.05 3.12 0.0026 — 39 5 x l 0 4 N (0) 1.18 - — 5x104 12 1.85 0.45 0.0038 24 5 x l 0 4 P (12) 2.16 0.59: 0.0049 ... 27 c) Total's Uptake a C l 2 - Dosage T o t a l C l Cl-Uptake b (mg/1) (Jfe/l) ty/g/D % Dose . % T o t a l N (0) 1.10 12 2.20 0.80 Ô QO.7 36 P (12) 2.29 0.87 0̂ 00,6 38 120 9.16 3.82 Q.cO.05 42 a - b - excluding unnumbered peaks at beginning excluding peaks 1, 2, 3 119 an e r r o r of plus or minus 25 percent or more i s expected i n the i n d i v i d u a l v a l u e s . A l s o peak height was used as a response r a t h e r than peak area; i t was f e l t that t h i s was a v a l i d s u b s t i t u t i o n mainly because of the l a r g e number of shoulders on the peaks. T h i r d , the v a r i a b i l i t y of c o n c e n t r a t i o n f a c t o r s among a set of i d e n t i c a l l y handled e x t r a c t s i s expected to be about 10 percent. F i n a l l y , the d e t e c t i o n l i m i t f o r the l e s s concentrated samples was 30 n g / l C l w h i l e the d e t e c t i o n l i m i t of the more concentrated samples at lower a t t e n u a t i o n was 3 n g / l C l , assuming a minimum detectable peak of 0.2 cm. From the chromatograms of the a c i d f r a c t i o n , F i gure 4.23, i t i s evident that there are s i x or seven peaks which appear as a r e s u l t of c h l o r i n a t i o n . From Table 4.9 i t can be seen that a l l of these peaks are present i n concen= t r a t i o n s below the d e t e c t i o n l i m i t of the mass spectrometer unless the com- pounds are l e s s than twenty percent c h l o r i n e by weight. Comparison of the chromatograms of the n e u t r a l plus b a s i c f r a c t i o n s i n Figures 4.24 and 4.25 shows that there i s a one to one correspondence between peaks i n i d e n t i c a l samples run at d i f f e r e n t concentrations and a t t e n u a t i o n s . There are a l s o 10 or 11 new peaks which appear as a r e s u l t of c h l o r i n a t i o n as denoted i n Table 4.9. Of these, only peaks 4, 5, 9, 10 and 20 w i l l prob- ably be d e t e c t a b l e w i t h a mass spectrometer. In a d d i t i o n to the 10 or 11 new peaks, there are s e v e r a l others i n the sample dosed w i t h 120 mg/1 Cl^ which appear to be enhanced as a r e s u l t of c h l o r i n a t i o n . I t i s u n l i k e l y that the h y p o c h l o r i t e contained many c h l o r i n a t e d compounds s i n c e both the m i c r o e l e c t r o - l y t i c c o n d u c t i v i t y and e l e c t r o n capture t r a c e s of an e x t r a c t of 50 mis of h y p o c h l o r i t e s o l u t i o n showed no peaks except i n the r e g i o n of the unnumbered peaks at the s t a r t of the chromatogram,?. These unnumbered peaks are probably halogenated methane and ethanes. The c h l o r i n e uptake summary i n Table 4.10 shows that at dosage l e v e l s 120 commonly used i n primary treatment p l a n t s about 0.01 percent of the a p p l i e d c h l o r i n e ends up i n the e x t r a c t a b l e v o l a t i l e compounds,of t h i s amount about two-thirds i s somewhat s u r p r i s i n g l y incorporated i n t o n e u t r a l and b a s i c compounds r a t h e r than a c i d i c compounds. Furthermore, about 40 percent of the e x t r a c t e d - organic c h l o r i n e found i n primary c h l o r i n a t e d e f f l u e n t , excluding methanes and ethanes, r e s u l t e d from c h l o r i n a t i o n . The use of the term 'extracted'-, i n the preceding paragraph to describe the v o l a t i l e s should be emphasized. I t i s w e l l known that c l a y s and n a t u r a l organic matter sorbs organics from water (Weber 1972). On the other hand, d i s s o l v e d organic matter can increase the s o l u b i l i t y of other organic com- pounds (Wershaw et a l . , 1969), although the d i s s o l v e d organic matter i n sew- age was shown to have.no e f f e c t on the s o r p t i o n of d i e l d r i n by m o n t m o r i l l i n i t e (Huang 1971). Since c l a y s and organic p a r t i c u l a t e s w i l l be removed during the f i l t r a t i o n of the samples between the c h l o r i n a t i o n and e x t r a c t i o n steps, l o s s e s due to s o r p t i o n may be s i g n i f i c a n t . In Table 4.5, the l o s s of d i - chloropheriol due to s o r p t i o n on p a r t i c u l a t e s was 15 percent. This confirms that s o r p t i o n i s s i g n i f i c a n t however the a p p l i c a t i o n of 15 percent as a gen- e r a l estimate i s obviously n o t • j u s t i f i a b l e . With these s o r p t i v e l o s s e s i n mind i t i s p o s s i b l e to make a very rough comparison of the values f o r t o t a l c h l o r i n e i n Lion's Gate E f f l u e n t w i t h those f o r other sewages. Using u n f i l t e r e d samples and solvent e x t r a c t i o n , Dube et a l . (1974) found about 0.2_^f.g/l PCB's i n domestic sewage, w h i l e McDermott (1974) found about O . S ^ g / l t o t a l i d e n t i f i a b l e organochlorine p e s t i c i d e s i n domestic sewage.• Therefore the t o t a l d i s s o l v e d and sorbed organic c h l o r - i n e i n these sewages was at l e a s t ; 0 . 4 / ^ g / l . No data i s a v a i l a b l e f o r other v o l a t i l e c h l o r i n a t e d compounds. Judging from the d i s t r i b u t i o n of c h l o r i n e throughout the chromatogram i t appears that the 1 . 4 - 2 . o f organic c h l o r i n e i n the u n c h l o r i n a t e d sample of Lion's Gate e f f l u e n t i s i n the same range of co n c e n t r a t i o n s , a l t h o u g h no PCB'sor p e s t i c i d e s were i d e n t i f i a b l e by mass spectrometry. The i n d i v i d u a l c oncentrations of c h l o r i n e c o n t a i n i n g organics r e s u l t i n g from c h l o r i n a t i o n on a c h l o r i n e b a s i s range from 0.02 to 0.15 /Ag/1 w h i l e J o l l e y (1973)reported c o n c e n t r a t i o n s of 0.2 to Di f f e r e n c e s i n e x t r a c t i o n and a n a l y t i c a l procedures as w e l l as the f a c t that J o l l e y measured mainly n o n - v o l a t i l e compounds may account f o r these concentra- t i o n d i f f e r e n c e s . 4. GC-MS Studies on the MS-12 The i n i t i a l experiments w i t h the GC-MS showed some promise. The chrom- atograms of a l l N + B f r a c t i o n s of the e x t r a c t s were i d e n t i c a l . F i g u r e s 4.27 presents a t y p i c a l chromatogram w h i l e some of the corresponding mass s p e c t r a are shown i n F i g u r e 4.28. Only two compounds, a ph t h a l a t e (Spectrum 34) and c a f f e i n e (Spectrum 36) are i d e n t i f i a b l e . Peaks 9, 11, 14, 17 and 19 i n F i g u r e 4.27 have almost i d e n t i c a l mass s p e c t r a w i t h the major i o n s e r i e s being m/e 45, 59, 73... and 137, and thus appear t o be a l k y l s i l a n e s . There were some di f f e r e n c e s . but background s u b t r a c t i o n was very d i f f i c u l t . I t proved d i f f i c u l t to t r i g g e r the MS at the p r e c i s e times f o r the minor components of the e x t r a c t s . F l u c t u a t i o n s i n a c c e l e r a t i n g v o l t a g e and h y s t e r e s i s problems were a l s o noted during a GC run. During the course of t h i s p r o j e c t the performance of the MS-12 s e r i o u s l y d e t e r i o r a t e d . Negative b a s e l i n e d r i f t occurred during temperature program- ming due to an inc r e a s e i n pressure drop across the column w i t h i n c r e a s i n g GC oven temperature. The s e n s i t i v i t y of the instrument decreased to the p o i n t —6 where the i d e n t i f i c a t i o n l i m i t of DCP was 1.2 x 10 g. The pressure i n the -4 analyzer chamber was about 5 x 10 Torr and the GC det e c t o r had to be set at 1 x 10~^ Amps f u l l s c a l e r a t h e r than the manufacturer's recommended 1 x 10 ̂ Amps. Only one or two r a t h e r broad peaks could be detected per run. An a t - 35 *f* 35 "I* 37 * T * 37 tempt to conduct a search f o r C l . H C l , C l , and H C l by a l i m i t e d so . . . ; * > , . . /40 , . . . 30 , . . . 2.0 , . . [0 , . . o 300 280 200 120 40 40 Temperature (°C) Figure 4.27 T o t a l Ion Current P l o t f o r N+B F r a c t i o n by MS-12. GC conditions i n Appendix I I I . Numbers denote Spectrum. Spectrum 34 149 41 5 7 JLL 69 111 L 93 _ i 105 .J 12i 2 0 5 m/e Spectrum 36 28 32 . 42 - i u . m / e 55 6 7 . 82 In I 1 u- 109 137 194 165 Figure 4.28 Mass Spectra from MS-12. Spectrum numbers correspond to peaks i n Figure 4.27. 124, mass scan showed two peaks. However during t h i s run the h y s t e r e s i s problem was very evident. In summary, although the i n i t i a l work w i t h the MS-12 was promising, problems developed which forced the suspension of work w i t h t h i s instrument. A l t e r n a t i v e methods of a n a l y s i s were t h e r e f o r e needed. 5. Tentative I d e n t i f i c a t i o n by Retention Time The o b j e c t i v e of t h i s experiment was to t e n t a t i v e l y i d e n t i f y some of the major peaks i n the chromatograms of the sewage e x t r a c t s by comparison of GC r e t e n t i o n times. The t e s t compounds, t h e i r r e c r y s t a l l i z a t i o n s o l v e n t s and r e t e n t i o n times are l i s t e d i n ' l i a b l e ;4.11. The composited GC t r a c e s of these compounds along w i t h corresponding GC traces of some c h l o r i n a t e d sewage ex- t r a c t s are shown i n F i g u r e 4.29. A l l of the t e s t compounds, w i t h the exceptions of peaks 3 and 4, have corresponding peaks i n e i t h e r of the sewage e x t r a c t s . However only a few of them, l i s t e d i n Table 4.12, correspond to major peaks i n the sewage e x t r a c t s . I t i s a l s o noted that some of the h i g h b o i l i n g compounds were not e l u t e d . For example the dihydroxybenzene and the dichloroquinone were not eluted w i t h i n the temperature program. These negative r e s u l t s are u s e f u l i n d e t e r - mining the l i m i t s i n terms of v o l a t i l i t y of compounds analyzed i n t h i s p r o j e c t . Several f a c t o r s m i t i g a t e against pursuing t h i s experiment f u r t h e r by the use of other GC column packings. I t i s not p o s s i b l e to c o r r e l a t e the chrom- atograms of the sewage e x t r a c t s run on d i f f e r e n t column packings due to the l a r g e number of peaks. Furthermore, s i n c e major peaks may c o n t a i n s e v e r a l components, a change i n column packings may cause major peaks to become minor ones w h i l e d i f f e r e n t major peaks may appear. The l i s t of compounds chosen as t e s t compounds i s obviously f a r from comprehensive and one would expect to o b t a i n a l i s t of s e v e r a l p o s s i b l e compounds f o r each peak i n the sewage sample. Notwithstanding the aforementioned problems, i t can be s a i d that the 125 Table 4.11 Retention Times of Test Compounds Compound R e c r y s t a l l i z a t i o n R etention Time Solvent (min) (Temp, prog.) 0- Ghloroberizoic a c i d Pet ether 29.6 m-Chlorobenzoic a c i d " N p-Chlorobenzoic a c i d " N 2- Amino-5-CKlorobenzoic A c i d N 4-Chlorometanilic A c i d N p-Chloro phenol 21.0 p-Bromo phenol 21.6 2,4-Dichlorophenol Benzene 25.0 2,4,6-Trichlorophenol R^O/MeOH 26.8 Re s o r c i n o l Benzene N p - C h l o r o a n i l i n e Pet ether 26.4 2.4- D i c h l o r o a n i l i n e " 27.0 2,4,6 T r i c h l o r o a n i l i n e "= 32.9 4- C h l o r o - 2 , 6 - D i n i t r o a n i l i n e Ethanol 34.2 4.5- D i c h l o r o - 2 - N i t r o A n i l i n e " 35.5 4-Chloro p y r i d i n e . HCI N 3- Amino-2-Chloropyridine 17.2 2,4-Dichloropyrimidine 17.2 2-Amino-4,6Dichloropyrimidine Pet ether 30.6 1- 1- Chloro-2,4-Dinitrobenzene MeOH 32.8 l-Chloromethyl-2 methyl napthalene 34.2 4- Chlorobenzaldehyde 9.5 2,5 iDichloro p-quinone N 4,4'-Dichlorobenzophenone 38.6 l-Bromo-4-Chlorobenzene 9.0 Carb o n t e t r a c h l o r i d e 0.8 Chloroform 0.8 Methylene C h l o r i d e 0.7 Solvent peak 0*7= N - Compound d i d not e l u t e Figure 4.29 I d e n t i t y of Numbered Peaks i n Chromatogram (a) 1. l-Bromo-4-chlorobenzene 10. 2,4-Dichloroaniline 2. 4-Chlorobenzaldehyde 11. 2-Chlorobenzoic a c i d 3. 3-Amino-2-chloropyridine 12. 2-Amino-4,6-dichloropyrimidine 4. 2,4-Dichloropyrimidine 13. l-Chloro-2,4-dinitrobenzene 5. 3-Chlorophenol 14. 2,4,6-Trichloroaniline 6. 3-Bromophenol 15. l-Chloromethyl-2-methylnapthalene 7. 2,4-Dichlorophenol 16. 4-Chloro-2,4-dinitroaniline 8. 2,4,6-Trichlorophenol 17. 4,5-Dichloro-2-nitroaniline 9. 3-Chloroaniline 18. 4,4'-Dichlorobenzophenone Figure 4.29 GC Retention Times of Test Compounds. Numbers i n chromatogram (a) are explained on f a c i n g page. GC con d i t i o n s i n Appendix I I I . 128 Table 4.12 Compounds I d e n t i f i e d by GC Retention Time Compound Detector Authentic Compound Primary E f f l u e n t 4-Chlorophenol MEC, .MS MEC 2,4-Dichlorophenol EC, FID EC 2,4,6-Trichlorophenol EC, FID EC 2-Chlorobenzoie Acid EC, FID EC l-Chloromethyl-2-Methyl Napthalene EC, FID EC or 4-Chloro-2,4-Dinitro-Aniline EC, FID EC 4,4*- Dichlorobenzophenone EC, FID EC a - See Section 7 of t h i s chapter. . 130 i d e n t i f i c a t i o n of f i v e or s i x c h l o r i n a t e d compounds i n c h l o r i n a t e d sewage has been very t e n t a t i v e l y e s t a b l i s h e d . Further i n v e s t i g a t i o n s are obviously needed to confirm these i d e n t i f i c a t i o n s . ;6. GC-MS-Computer Studies The o b j e c t i v e of t h i s experiment was to i d e n t i f y as many components of the sewage e x t r a c t s as p o s s i b l e an the b a s i s of mass spec t r a and GC r e t e n t i o n time. A t y p i c a l set of instrument performance e v a l u a t i o n data i s shown i n Table 4.13 along w i t h the c r i t e r i a of H a r r i s , E i c h e l b e r g e r and Budde (undated). The d e v i a t i o n s at 365 and 442 are not considered to be s e r i o u s . A voluminous q u a n t i t y of i n f o r m a t i o n was generated from the manipulation and r e d u c t i o n of data during the a n a l y s i s of the v a r i o u s e x t r a c t s and blanks. In the i n t e r e s t s of b r e v i t y only some i l l u s t r a t i v e examples of the r e c o n s t r u c t e d gas chromatograms (RGC) and l i m i t e d mass searches (LMRGC) w i l l be presented. The mass spec t r a of the compounds p o s i t i v e l y i d e n t i f i e d w i l l be presented g r a p h i c a l l y i n Appendix IV, w h i l e the remaining mass spectra w i l l be presented i n Appendix V. For convenience, the chromatograms and a s s o c i a t e d s p e c t r a w i l l be referenced by f i l e name. An e x p l a n a t i o n of these f i l e names i s given i n Table 4.14. Since the RGC's have been normalized i n some cases to the s o l v e n t peak, the peak heights do not r e f l e c t the r e l a t i v e concentrations of a p a r t i c u l a r component i n the v a r i o u s f r a c t i o n s . However, a problem of l o s s of v o l a t i l e s i s evident upon comparison of '1CSI202 and C-HALL w i t h 120N1. One would ex- pect to f i n d peak heights i n CL1202 to be f i f t e e n times those i n 120N1. In f a c t , below spectrum number 20 the r a t i o i s only 2:1, w h i l e above spectrum number 150 the r a t i o i s 10 or 12:1. Various temperature programs were employed to optimize r e p r o d u c i b i l i t y , and r e s o l u t i o n . Of the i n i t i a l temperatures of 100, 75, 60 and 55°C, 60°C was chosen to be optimum. A d e v i a t i o n of + 3 s p e c t r a or 12 seconds p e r s i s t e d 131 Table 4.13 Performance Check of Finnigan 3000 AMU R e l . I n t . (%) C r i t e r i o n Meets C r i t e r i o n 51 39.42 30-60 % of 19.8 Yes 68 0.62 <2 % of 69 Yes 69 41.04 70 0.33 C2 % of 69 Yes 127 44.49 40-60 % of 198 Yes 197 0.24 <1 % of 198 Yes 198 100.00 100 % Yes 199 6.68 5-9 % of 198 Yes 275 15.66 10-30 % of 198 Yes 365 1.08 >2 % of 198 No* 441 3.32 < 443 Yes 442 22.43 40-60 % of 198 No* 443 4.48 19-21 % of 442 Yes * C r i t e r i a are f o r Fi n n i g a n 1015 which has a mass range of 0 Finnigan 3000 has a range of 0 - 500 Amu. - 750 Amuiji the 132 Table 4.14 - F i l e Names f o r GC-MS-Comp. Studies F i l e Name E x t r a c t F r a c t i o n C h l o r i n e Dose mg/1 Date of Run ARAWS1 CL12A1 APLCL1 CL12DA BLANKA NBRAW1 CL12N1 NBPLGL 120NB1 CL1202 35LBK1 C-HALL B-HALL RAWNB1 M1XA2 M1XB Acids; B l a n k - A c i d i c N e u t r a l s + Bases i i I ! I I I I I I I I I I . I I Blank-Neut. + Base Neut. + Base /TLC Blank f o r C-HALL Same Sample as NBRAW1 Mix of Test Compounds Mix of Test Compounds 0 12 P l a n t 120 0 0 12 P l a n t 120 120(30/1 cone, to 2 pX) 0 120 0 May 6-8/75 I I I I I I I I it 0 J u l y /75 I I Dec. 18/75 133 w i t h t h i s i n i t i a l temperature. This may be due to s l i g h t d i f f e r e n c e s i n i n i t i a l temperature or program r a t e s . When samples were run on d i f f e r e n t days the r e p r o d u c i b i l i t y of r e t e n t i o n times was much poorer. Deviations of s i x spectrum numbers (24 sec) were noted. An unexpected development m i l i t a t e d against a l l o w i n g more than h a l f an hour to c o o l the GC oven and allow f o r e f e q u i l i b r a t i o n between runs. I t was noted that even w i t h no sample i n j e c t i o n , two peaks appeared i n the chromatogramv, The mass spec t r a of these peaks (Appendix V) were i d e n t i c a l but d i d not match those of the GC s t a t i o n a r y phases. I t was t h e r e f o r e con- cluded that these peaks were the r e s u l t of condensation of septum bleed m a t e r i a l onto the GC column and subsequent v o l a t i l i z a t i o n of t h i s m a t e r i a l at higher temperatures. This problem could be ameliorated but not e l i m i n a t e d by changing the septum d a i l y . Although these peaks presented a problem, they a l s o provided a set of reference p o i n t s f o r comparison of the RGC's. The RGC's of the a c i d , n e u t r a l plus b a s i c , and TLC separated n e u t r a l plus b a s i c f r a c t i o n s are presented i n Figures 4.30, 4.31 and 4.32, w h i l e the blank i s presented i n F i g u r e 4.33. Table 4.15 presents, a summary of the t o t a l number of peaks i n , and the e f f e c t s of c h l o r i n a t i o n on each e f f l u e n t e x t r a c t . There does not appear to be any n o t i c e a b l e e f f e c t of c h l o r i n a t i o n upon the a c i d i c f r a c t i o n as p r e d i c t e d by FID s t u d i e s , although phenolic compounds should appear i n t h i s f r a c t i o n . The RGC's of the n e u t r a l plus b a s i c f r a c t i o n s show some changes as a r e s u l t of c h l o r i n a t i o n . Some new peaks are apparently produced, however they may have been due to changes i n r e s o l u t i o n s i n c e no d i f f e r e n t mass s p e c t r a could be obtained from these peaks. The LMRGC's provided an i n v a l u a b l e a i d i n the data r e d u c t i o n process. Searches f o r septum bleed (m/e 293) , o-phthalate e s t e r s (m/e 149), and c h l o r - i n e (m/e 35, 36) were r o u t i n e l y made f o r each chromatogram. C h l o r i n e searches y i e l d e d peaks i n NBRAW1 at Spectra 7, 11, 62, 83, and 234. These peaks were Table 4.15 Summary of RGC Data F i l e T o t a l Number of Peaks: Peaks R e s u l t i n g from C h l o r i n a t i o n (Spectrum Numbers) Peaks Decreasedby C h l o r i n a t i o n (Spectrum No's) ARAWS1 15 None CL12A1 15 None APLCL1 15 None CL120A 15 None BLANK A 4 None NBRAW1 64 None CL12N1 60 43, 145, 167, 257. NBPLCL 60 41, 146, 168, 192, 257 120NB1 63 41, 144, 167, 183, 191 CL1202 62 40, 82, 85, 145, 169, 183, 35LBK1 6 None C-HALL 49 Nc it Determined B-HALL 6 ii i it None None None' None None None ..None 252, 272 252, -157 282, 172 SNone 7 Not Determined n it 0 IS 20 33 13 SO GQ 70 88 30 188 110 120 130 110 ISO 160 170 180 130 ZOO 210 220 230 210 2 5 0 2 6 0 2 7 0 2 6 0 2 3 0 3 0 0 310 3 2 0 3 3 0 3 1 0 3 5 0 3 6 0 SPECTRA NLK3ER Figure 4.30 RGC's of A c i d F r a c t i o n s . GC conditions i n Appendix I I I , O n -i r—i—r- 5Q 100 1 ' 150 • » — I — 200 -1— 250 1 — 300 -I 1 ' r-40Q. 1 — 350 SPECTRUM NUMBER Figure 4.31 RGC's of Neutral and Basic Fractions, GC conditions i n Appendix III, ov Figure 4.32 RGC's of TLC F r a c t i o n s . GC c o n d i t i o n s i n Appendix I I I .  139 c o n s i s t e n t l y and uniquely present at a l l c h l o r i n e dosages although the great d i f f e r e n c e i n y i e l d s of these ions from a l i p h a t i c as opposed to aromatic c h l o r i n a t e d compounds tends to decrease the importance of t h i s search. The septum bleed search showed that these peaks are i n some cased most intense peaks i n the chromatograms. The LMRGC of m/e 149 shows that the ph t h a l a t e es t e r s are found i n both t h e ^ n e u t r a l plus b a s i c and a c i d i c f r a c t i o n s although judging from the r a t i o of peak i n t e n s i t y to average b a s e l i n e t h e i r concentra- t i o n s i n the n e u t r a l plus b a s i c f r a c t i o n i s about 20 times those i n the a c i d f r a c t i o n . In a d d i t i o n , one a d d i t i o n a l p h t h a l a t e appears i n the a c i d i c f r a c - t i o n at spectrum 274 APLCL1. This peak may be due to the s a p o n i f i c a t i o n of a ph t h a l a t e e s t e r . A summary of the i n f o r m a t i o n contained i n the LMRGC's of m/e 149 and 293 i s presented i n Table 4.163,0 The other very important a p p l i c a t i o n of the LMRGC was to p i n p o i n t the s p e c t r a of the components. For example i n M3LXA2 the ph t h a l a t e appears a t spectrum 214 w h i l e the septum bleed occurs at spectrum 213 although these components show up as a s i n g l e peak i n the RGC. The general method i n v o l v e d s i n g l e or double d i s p l a y of consecutive spectra,- s e l e c t i o n of peaks f o r LMRGC's, c o n s t r u c t i o n of the LMRGC, p i n p o i n t i n g of the spectrum or sp e c t r a of i n t e r e s t and the libaekground' s p e c t r a , background su b t r a c t i o n , , and p r i n t i n g . The CRT console and magnetic d i s k were i n v a l u a b l e i n performing these f u n c t i o n s . One complete c y c l e could be c a r r i e d out i n 4 - 5 minutes. Once a mass spectrum was chosen i t was subtracted from the next higher number spectrum to ensure that major peaks found i n the chosen spectrum d i d i n f a c t belong i n that spectrum. For example, i f spectrum 1 1 - 9 was chosen, spectrum 12 - 11 was a l s o r e t r i e v e d to attempt to ensure that peaks from the compound(s) e l u t i n g at spectrum 12 or higher were not included i n the spectrum of the compound whose maximum occurred at spectrum 11. The matching of sp e c t r a to reference f i l e s l e d to the co m p i l a t i o n of a F i l e Table 4.16 Phthalates and Septum Bleed from LMRGC Phthalates (m/e 149) Septum Bleed (m/e 293) Spectrum Numbers Spectrum Numbers ARAWS1 204, 211, 253, 273 210, 257 CL12A1 203, . 210, .252, 274 209, 257 APLCL1 203, 211, 253, 274 - 210, 257 CLI2OA 203, 210, 253, 274 209, 256 BLANK A 203, 210, 252, 338 210, 257 NBRAW1 203, 211, 241, 247, 254, 276, 341, 406 209, 257 CL12N1 202, 210, 2405 246, 252, 273, 336, 409 210, 258 NBPL'CL 203, 211, 241, 247, 253, 339, 403 210, 258 120NB1 203, 211, 241, 247, 253, 341, 423 209, 257 CL1202 195, 204, 211, 242, 248, 254, 277, 342, 425 210, 258 35LBK1 203, 211, 241, 253, 338, 401 210, 258 C-HALL 182, 209, 222, 229, 236, 269, 366, 508 187, 237 3B-HALL 181, 221, 229, 365, 508 187, 237 RAWNB1 211, 219, 251, 257, 265, 291, 369 217, 265 M1XA2* 209, 214, 235, 239, 262 213, 261 M1XB* 179, 201, 206, 226, 233 184, 234 * Spiked with phthalates 141 l i s t of p o s s i b l e compounds f o r each spectrum. A n a l y s i s of a mixture of au- t h e n t i c samples of these compounds by GC-FID and GC-MS-Com provided s p e c t r a and r e t e n t i o n times. The comparison of GC-retention times was based on r e l - a t i v e r e t e n t i o n times as f o l l o w s : • ( RB1C " V - ( RB1S " V RB1C - RB1S + RS " RC R r = = : (4.1) SB1C " RB1S RB1C " RB1S where Rr = Re t e n t i o n time of peak i n CL<1202 or C-HALL R g = Retention time of peak i n M1XA2 or M1XB R,,..-, = Retention time of ihs.likSeptum bleed i n CL1202 or C-HALL DLL R „ 1 C = Retention time of 1st Septum bleed i n M1XA2 or M1XB. Bib This method of c o r r e l a t i o n of the r e t e n t i o n times was chosen f o r the f o l l o w - ing reasons. F i r s t , s i n c e r e l a t i v e r e t e n t i o n times on a r a t i o b a s i s are a f u n c t i o n of temperature the e r r o r l i m i t s f o r these r a t i o s w i l l a l s o be a f u n c t i o n of temperature. This would n e c e s s i t a t e a r a t h e r complex type of a n a l y s i s to determine the r e t e n t i o n time c o r r e l a t i o n s . Second, the ph t h a l a t e and septum bleed peaks appear to be l i n e a r l y s h i f t e d when comparing C-HALL w i t h M1XB or CL1202 w i t h M1XA2. This i m p l i e s that the d i f f e r e n c e s i n the chromatograms were due e i t h e r to changes i n flow or column d e t e r i o r a t i o n over the four month p e r i o d between the runs. I n any case the l i n e a r s h i f t provides a very simple method f o r c o r r e l a t i o n of r e t e n t i o n times and thus equation 4.1 was adopted. The use of spectrum numbers as a measure of r e t e n t i o n time c o n t r i b u t e s an e r r o r of about.0.25 spectrum numbers. Since the maximum d e v i a t i o n i n r e - t e n t i o n times of i d e n t i c a l peaks among the runs on the same day was shown tb be leof»3 spectrum numbers, the maximum a l l o w a b l e d e v i a t i o n i n R^ i s -1.00 ^R^ <£+1.00 f o r the r e t e n t i o n time c o r r e l a t i o n s . The r e s u l t s of the s p e c t r a l f i l e searches and r e t e n t i o n time checks are summarized i n Tables 4.17 and 142 Table.4.17 Results of Spectral Searches and Retention Time Checks for CL1202 Spec. No (CL1202) Possible Compd. from F i l e Search Spec No (M1XA2) R̂  within limits 11 19 31 31 31 23 40 44 44 56 56 61 69 69 62 62 66 66 77 ill, 86 98 986 106 106 110.117 117 133 137 137145 145 194 204 211 242 248 C 2Cl4 Cl-Benzene Et-Benzene 0 - M i e 2 ~ Benzene m-Jle2-Benzene p-Me2~Benzene 2-n-Butoxy ethanol iPr-Benzene 1,2,4-Me3~Benzene lr-Me-3-Et-Benzene 1-Me,2-Et-Benzene P - C I 2 Benzene 0 - C I 2 Benzene P - C I 2 Benzene n-Bu-Benzene t-Bu-Benzene Benzaldehyde and C<.-chloro toluene or o-chlorotoluene Benzyl alcohol p-Cresol 2- phenyl ethanol Dihydroheptafulwene Menthol Isomenthol Terpineol Me-Salicylate 1- Me-Nap thaiene 2- iMe^Napthalene Dichlorocresol Indazole Benzimidazole Benzofuran Diethyl phthalate phthalate n-propyl phthalate n~Bu ^phthalate 16 24 31 37 30 28 46 64 70 77 70 80 64 71 72 53 83 92 103 112 115 123 139 139 -0.67 -0.67 +1.00 -1.00 +1.33 -0.67 +0.33 -5.67 -2.00 -1.67 +0.67 -5.00 0.33 -0.67 -1.00 +5.3 -1.00 -1.00 -0.67 -1.00 -0.67 -1.00 -1.00 -1.00 yes yes yes yes (no) <no) yes no no no yes no yes yes yes no yes yes yes yes yes yes yes yes 209 236 263 -0.67 +3.00 -4.00 yes no no 143 Table 4.18 Results of Spectral Searches and Retention Time Checks for C-HALL Spec # Possible Compd. Spec// \ Rĵ  within C-HALL From F i l e Search M1XB limits? 39 Benzaldehyde 51 Benzyl alcohol 59 p-Cresol 69 Methyl Benzoate 68 +.67 yes 71 2-?Jhenyl ethanol 81 Menthol Isomenthol 89 Camphor 87 +.33 yes 99 Indazole 121 2,4 or 2,5-Me.2Benzyl-OH 3-Pjhenyl propylamine Benzimidazole' Benzofuran 111 1-M.e Napthalene 110 +.67 yes 2-Mie Napthalene 114 Iso-borneol 72 -13.00 no Bornyl acetate 111 0.00 yes 136 1,3-Dimethylnapthalene 2,7-Dimethylnapthalene 152 Glycerol triacetate 150 +0.33 yes Diacetin 125 -8.00 no 156 1»4,5 Trimethylnapthaiene 159 Dimethyl phthalate 1577 +0.33 yes 164 Coumarin 162 +0.33 yes 168 Cedrol 176 cxVTetrahydrofuryliQH 178 Benzophenone 178 +1.00 yes 182 Diethylphthalate 178 0.00 yes 201 Anthracene 200 +0.67 yes Phenanthrene 200 +0.67 yes Diphenylacetylene 176 -7.33 no 209 Propyl phthalate 206 0.00 yes 211 Ppt-Bu phenoxyethanol 222 Phthalate 229 Phthalate 226 236 , n- B u phthalate 233 0.00 yes 260 -:ie*;^Stearate 254 -1.00 yes 269 Phthalate 366 Benzyl Bu-phthalate 508 Octyl phthalate . 144 4.18. Most of the mass s p e c t r a l and r e t e n t i o n time c o r r e l a t i o n s are s t r a i g h t - forward however s p e c t r a 31, 61 and 69 i n CL1202 present s p e c i a l problems. For spectrum 31 the c o r r e l a t i o n f a c t o r f o r o-xylene i s -1.00 w h i l e those f o r e t h y l benzene and the other xylenes range from +1.00 to +2.00. Since almost a l l of the other p o s i t i v e l y c o r r e l a t i n g matches have r e t e n t i o n time c o r r e l a - t i o n f a c t o r s between +0.33 and -1.00 i t was f e l t that the c o r r e l a t i o n f a c t o r s f o r the meta and para xylenes was s u f f i c i e n t l y l a r g e to warrant probable r e j e c t i o n . With respect to the dichlorobenzenes the expected order of e l u - t i o n i s meta, para and ortho (ASTM 1967, Zweig and Sherma 1972). Since the ortho-dichlorobenzene shows a l a r g e d e v i a t i o n i n r e l a t i v e r e t e n t i o n times, i t i s most probable that the compounds present i n C11202 are the meta and para dichlorobenzenes. I n some cases authentic samples of the compounds l i s t e d i n Tables 4.17 and 4.18 were not a v a i l a b l e . Therefore no r e t e n t i o n time c o r r e l a t i o n times were obtained. In a d d i t i o n , compounds which afforded a reasonable match on the b a s i s of an eight peak index search but f o r which no r e f e r e n c e spectrum or a u t h e n t i c sample was a v a i l a b l e are not included among those l i s t e d i n Tables 4.17 and 4.18. A summary of compounds p o s i t i v e l y i d e n t i f i e d by mass spectrum and r e - t e n t i o n time appears i n Table 4.19. For these compounds an estimate of c o n c e n t r a t i o n i n sewage e f f l u e n t was made on the b a s i s of peak heights i n the unnormalized t o t a l i o n current traces of the samples. L i n e a r i t y of the mass spectrometer was assumed along w i t h a zero response f o r zero sample i n j e c t e d . Since no s t u d i e s of recovery f a c t o r s or c o n c e n t r a t i o n l o s s e s were made, changes i n i n s t r u m e n t a l s e n s i t i v i t y may have occurred and r e s o l u t i o n was not always good, these concentrations are s t a t e d as order of magnitude ranges. The lower number i n the range i s the average c o n c e n t r a t i o n i n 120NB1, 145 Table 4.19 Compounds P o s i t i v e l y . I d e n t i f i e d by Mass Spectrum and Retention-Time Compound Spec No Spec No Concentration Range i n CL1202 C-HALL Primary E f f l u e n t (^g/1) GC - MS MEC Tetrachloroethylene 11 5-50 1-10 p-Xylene 23 1-10 o-Xylene 31 1-10 Isopropylbenzehe 44 2-20 Tert-butylbenzene 62 10-100 Chlorobenzene 19 10-100 1-10 m-Dichlorobenzenep-dichior . 61 10-100 0.4-4 p-Dichlorobenzene 69 3-30 1-10 £X-Chloro toluene 66 7-70** 0.4-4 Benzyl a l c o h o l 77 51 10-100 2-Phenylethanol 98 71 5-50 C r e s o l (p?) 86 . 59 20^-200 Benzaldehyde 66 39 10-100 Methyl Benzoate 69 0.4-4 M e t h y l s a l i c y l a t e 117 7-70 Benzophenone 178 1-10 1-Methyl napthalene and/or 133 111 5-50 2-Methylnapthalene 133 Phenanthrene and/or 201 0.8-8 Anthracene 201 G l y c e r o l t r i a c e t a t e 152 0.5-5 Methyl s t e a r a t e 260 0.7-7 Dimethyl p h t h a l a t e * 159 0.6-6 D i e t h y l p h t h a l a t e * 204 182 0.4-4 Di-n-propyl p h t h a l a t e * 209 0.3-3 D i - n - b u t y l p h t h a l a t e * 236 9-90 Menthol 106 81 15-150 T e r p i n e o l 110 20-200 Camphor 89 1-10 Bornylacetate 114 0.8-8 Coumarin 164 2-20 * P o s s i b l y from contamination during sampling and a n a l y s i s . ** Estimate i s probably h i g h . 146 CL-1202 and C-HALL i f the compound was present i n a l l three chromatograms. The a c t u a l c o n c e n t r a t i o n may be lower than t h i s due to r e s o l u t i o n problems. The higher number i s one order of magnitude higher than the lower number and i s an estimate of the maximum p o s s i b l e c o n c e n t r a t i o n s . A l i s t of those compounds whose s p e c t r a can be reasonably i d e n t i f i e d i n the s p e c t r a from CL1202 and C-HALL but f o r which no au t h e n t i c samples were a v a i l a b l e i s compiled i n Table 4.20{ These compounds have been t e n t a t i v e l y i d e n t i f i e d and i n many cases s e v e r a l p o s s i b l e i d e n t i f i c a t i o n s were made f o r the i n d i v i d u a l s p e c t r a from CL1202 and C-HALL. 7. C o r r e l a t i o n s Among G.C. Chromatograms In order to f u r t h e r study the compounds formed as a r e s u l t of c h l o r i n a - t i o n , a c o r r e l a t i o n among the GC chromatograms from the v a r i o u s GC instruments was attempted. While some i n f o r m a t i o n regarding these compounds can be ob- tained from the FID and EC detectors (e.g. Figures 4.24 and 4.10), the most s i g n i f i c a n t i n f o r m a t i o n comes from the MEC and mass spectrometric d e t e c t o r s . Therefore c o r r e l a t i o n s among r e t e n t i o n time w i t h the MEC d e t e c t o r , spectrum number i n CL1202 and spectrum number i n C-HALL were made. The MEC detector t r a c e w a s . f i r s t c o r r e l a t e d w i t h CL1202 through the use of three compounds and the zero p o i n t . CL1202 was then c o r r e l a t e d to C-HALL on the b a s i s of i d e n t i c a l s p e c t r a from Tables 4.16, 4.17 and 4.18. The r e s u l t s of these c o r r e l a t i o n s are d i s p l a y e d i n Fi g u r e 4.34. I t i s i n t e r e s t i n g to note that both c o r r e l a t i o n s are l i n e a r . On the b a s i s of Fi g u r e 4.34, the spectrum numbers of the halogen con- t a i n i n g compounds were estimated. This data i s summarized i n Tables 4.21 and 4.22. From these t a b l e s i t can be seen that seven to nine of the t h i r t y - e i g h t halogenated n e u t r a l or b a s i c compounds de t e c t a b l e by MEC are a l s o de- t e c t a b l e by GC-MS, w h i l e none of the a c i d i c compounds c o n t a i n i n g halogen are d e t e c t a b l e by GC-MS. I n the n e u t r a l and b a s i c f r a c t i o n only three of the 147 Table 4.20 Compounds T e n t a t i v e l y I d e n t i f i e d by MS Compound Spectrum No • CL1202 Spectrum No C-HALL Dihydroheptafulvene 98 225 2,3 B i s (4-methoxyphenyl) pent-2-ene 1 -Me-£kyi, 2 ;rEthylbenzene 56 1 -Meithy 1 ,,3-E thy l b enz ehe 56 1,3,5-Trimethyl-2-n-butylbenzene 127 1,3~Dimethylnapthalene 136 2,7-Dimethylnapthalene 136 1,4,5 Trimethylnapthalene 156 D i c h l o r o c r e s o l (4,6) 137 2,4-Dimethylbenzylalcohol 99 2,5-Dimethylbenzylalcohol 99 2-n-Butoxyethano1 40 p-t-Butylphenoxyethanol 211 Cedrol 168 OC^-Tetrahydrof uf u r y l a l c o h o l * 176 Dihydrofuran (2,5) 8 Benzofuran 145, 194 . 121 2-Methylazetidine 8 2,2-D i m e t h y l a z i r i d i n e 8 Indazole' 145, 194 121 Benzemedazole 145, 194 121 A c e t a n i l i d e 133 3-Phenylpropylamine 99 C a f f e i n e See Fig u r e 4.28 * Retention time i s very long and th e r e f o r e suspect i s some type of degradation product. 87T 149 Table 4.21 - Spectrum Numbers of Halogenated. N e u t r a l and B a s i c Organics MEC Detector Mass Spectrometer Spectrum Compound Peak # Retention Time S P f f r u m N u m b e r s h ^ s R e s u l t s ( m ± n ) CL1202 C-HALL C h l o r i n e from C h l o r i n a t i o n 1 .1.2 5 No No* 2 1.5 8 No No* 3 1.8 12 Yes No 4 2.3 19 . Yes Yes 5 3.0 25 Yes Yes 6 3.7 36 No Yes 6a 4.6 47 No Yes 7 5.1 53 No Yes 8 5.8 62 32 Yes Yes 9 6.3 68 40 Yes Yes 9a 7.6 83 56 No Yes 9b 8.1 89 62 No Yes 10 8.9 99 72 No Yes 10a 9.6 107 80 No No* 11 9.9 111 85 No Yes 12 10.3 116 90 No No 12a 10.9 124 98 No No 13 11.2 127 101 Y e s l a No* 13a 11.6 131 106 No No 14a 12.0 136 111 Yes No* 14a 12.3 140 115 No No* 15 12.6 142 117 No No 16 12.9 147 122 No No 13 13.4 153 128 No No* 1"8. 13.7 157 132 No No 19 14.1 162 137 No No 20 14.5 167 142 No Yes 21 14.8 170 146 No No 22 15.3 176 152 No No 23 15.6 179 155 Yes No* 24 15.9 183 159 No No .25 16.2 187 163 No Yes 2"6 16.6 192 169 No Yes* 2Ui 16.9 196 173 No Yes** 28 17.2 199 176 Y e s 3 No* ;29a 17.6 203 180 No No 29a 18.0 208 185 No No 30 18'. 6 216 193 No No 31 . 1 9 . 2 222 200 . . No ....... No. 32 — . • — - • • • -• 20...1 - — 2 3 4 - - ..—21-2- • - Yes .: • . : . • • No . * Enhanced at 120 mg/l dosage only. ** P l a n t c h l o r i n a t e d and 120 mg/1 only a - unsat. HC spectrum 150 Table 4.22 Spectrum Numbers of Halogenated A c i d i c Compounds MEC Detector Mass Spectrometer Spectrum Compound Spectrum Number Shows Re s u l t s from Peak R e t e n t i o n Time CL120A Chlorine. C h l o r i n a t i o n 1 2.3 19 No Y e s a 2 10.2 112 No Yes 3 11.7 133 No No b 4 12.5 142 No Y e s c 5 12.9 149 No No 6 13.3 152 No Yes 7 13.8 158 No No 8 14.5 166 No Y e s c 9 15.1 173 No Y e s b 10 15.4 177 No No 11 16.7 193 No No 12 19.1 222 No Y e s c 13 2.14 250 No Yes a b c - Appears only i n p l a n t c h l o r i n a t e d sample. - Appears only i n p l a n t sample c h l o r i n a t e d at 120 mg/1. - Appears only i n sample c h l o r i n a t e d at 120 and 12 mg/1. 151 f i f t e e n halogenated compounds formed as a r e s u l t of c h l o r i n a t i o n could be i d e n t i f i e d . Peak 5 i s an u n i d e n t i f i a b l e c h l o r o a l k y l compound w h i l e peak 9 i s both p-dichlorobenzene andtX-chloro toluene. L i m i t e d mass searches and s p e c t r a l examinations of NBRAW1, CL12N1, NBPLCL and CL1202 show that p- dichlorobenzene i s present i n a l l of the e x t r a c t s w h i l e the mass spectrum of peak 5, chlorobenzene, m-dichloro-benzene a n d ^ - c h l o r o t o l u e n e are present only i n the c h l o r i n a t e d e x t r a c t s . I t was a l s o found that the mass s p e c t r a corresponding to peaks;3, 13, 14, 23, 28 and 32 were present i n a l l e x t r a c t s . This i n d i c a t e s a good c o r r e l a t i o n among the peaks r e s u l t i n g from c h l o r i n a t i o n as monitored by the MEC detector and the mass spectrometer. I t i s a l s o evident that as expected the MEC detector i s much more s e n s i t i v e than the mass spectrom- e t e r . The f a c t that the two chlorophenols were used as c a l i b r a n t s allowed a more.unequivocal search f o r c h l o r i n a t e d phenols. L i m i t e d mass searches of 128, 162, 142 and 176 were made i n the a c i d and n e u t r a l plus b a s i c f r a c t i o n s run under CL1202 GC c o n d i t i o n s . Although the 128 and 162 LMRGC's showed peaks at spectrum 110 i n a l l e x t r a c t s i n c l u d i n g the u n c h l o r i n a t e d ones and a peak at spectrum 59 only i n the c h l o r i n a t e d samples, examination of the back- ground subtracted s p e c t r a showed l i t t l e more than t a l l g rass. No i s o t o p i c c l u s t e r s were evident i n any of the s p e c t r a . I t i s a l s o noteworthy that m/e 128 i s a minor peak i n the spectrum of p ( - t e r p i n e o l which i s the e s t a b l i s h e d i d e n t i t y of spectrum 110. On the other hand the MEC data shows that peak 2 i n the a c i d f r a c t i o n s or peak 11 i n the n e u t r a l and b a s i c f r a c t i o n s or peak 11 i n the n e u t r a l and b a s i c f r a c t i o n s may be p-chlorophenol. The search f o r c h l o r i n a t e d c r e s o l s by LMRGC's y i e l d e d many peaks f o r m/e 142 or 176. Only spectrum 137 showed c h l o r i n e (m/e 176). In the r e g i o n of s p e c t r a 80 - 140," no new peaks appeared i n the LMRGC's (m/e 142) as a r e s u l t of c h l o r i n a t i o n . Although peaks appeared at spectrum numbers 87, 91, 99, 110, 118, 125, 134 . 152 and 137, the peaks i n the r e g i o n 83 to 130 were so small that t h e i r presence was debatable i n many e x t r a c t s . Since peak 14 (Spectrum 137)• i s present i n a l l e x t r a c t s i t appears as though the c h l o r i n a t i o n does not produce c h l o r i n - ated phenols except p o s s i b l y at c h l o r i n e dosages of 120 mg/1. 153 CHAPTER V SUMMARY, IMPLICATIONS AND SUGGESTIONS FOR FURTHER STUDY.• 1. Summary The f i r s t p art of t h i s work d e a l t w i t h the a n a l y t i c a l methodology neces- sary to e x t r a c t and separate the t r a c e organic components of primary e f f l u e n t . The work on e x t r a c t i o n showed that w h i l e both methods gave adequate r e c o v e r i e s . the continuous solvent e x t r a c t o r s u f f e r e d from emulsion problems w h i l e the s o r p t i o n method s u f f e r e d from poor recovery of organics sorbed on p a r t i c u l a t e s . The s o r p t i o n method was chosen because of i t s compactness and ease of d u p l i c a - t i o n . The s e p a r a t i o n s t u d i e s i n d i c a t e d that the a c i d base so l v e n t e x t r a c t i o n provided u s e f u l p r e l i m i n a r y s e p a r a t i o n but s u f f e r e d from the high s o l u b i l i t y of the organic s o l v e n t i n water. Thin l a y e r chromatography was v a l u a b l e only f o r compounds w i t h v o l a t i l i t i e s l e s s than b e n z y l a l c o h o l or p - c r e s o l . The GC s t u d i e s i n d i c a t e d that a l l the low temperature s i l i c o n e l i q u i d phases provide good s e p a r a t i o n although i t i s evident that they do not g i v e a sep- a r a t i o n of one component per peak even a f t e r o p t i m i z i n g the temperature pro- grams . The second part of t h i s p r o j e c t centered upon the study of the e f f e c t s of c h l o r i n a t i o n upon the v o l a t i l e organic components of primary e f f l u e n t and the i d e n t i f i c a t i o n of these components. I t was found that w i t h concen- t r a t i o n f a c t o r s of 5000-10,000 the e f f e c t s of c h l o r i n a t i o n were only r e a d i l y apparent w i t h the m i c r o e l e c t r o l y t i c c o n d u c t i v i t y and e l e c t r o n capture GC de t e c t o r s . The uptake of c h l o r i n e by the v o l a t i l e s at dosage l e v e l s of around 12 mg/1 was i n the order of 0.01 percent of the a p p l i e d dose. With a d e t e c t i o n l i m i t of 3 ng/1 about 20 ̂ ew/jhalogenated compounds were formed as a r e s u l t of c h l o r i n a t i o n and those compounds account f o r about 40 percent of the t o t a l organic halogen as c h l o r i n e , e x c l u s i v e of the halogenated methanes . 154 and ethanes, found i n c h l o r i n a t e d primary e f f l u e n t . The EC work showed that these e f f e c t s were r e p r o d u c i b l e i n d i f f e r e n t e f f l u e n t samples. In order to i d e n t i f y the organics i n primary e f f l u e n t a computerized GC-MS was e s s e n t i a l . A l a r g e number of s p e c t r a could not be i d e n t i f i e d through f i l e searches and the incomplete s e p a r a t i o n of compounds could be par t of the reason f o r t h i s . A t o t a l of 31 compounds were p o s i t i v e l y i d e n - t i f i e d by both t h e i r mass s p e c t r a and GC r e t e n t i o n times (Table 4.19), another 24 compounds were t e n t a t i v e l y i d e n t i f i e d by t h e i r mass s p e c t r a (Table 4.20) and an a d d i t i o n a l 7 compounds were very t e n t a t i v e l y i d e n t i f i e d on the b a s i s of GC r e t e n t i o n time (Table 4.12). Three of the c h l o r i n a t e d compounds formed by c h l o r i n a t i o n were p o s i t i v e l y i d e n t i f i e d (Tables 4.19 and 4.21). 2. I m p l i c a t i o n s The r e s u l t s of the second p a r t of t h i s study have some i m p l i c a t i o n s f o r the design of treatment p l a n t s and the e f f e c t s of primary e f f l u e n t upon the aquatic ecosystem. I t i s obvious that a l a r g e number of v o l a t i l e organic com- pounds are present i n ^ g / 1 concnetrations i n primary e f f l u e n t . I f some of these compounds e x h i b i t e d e l e t e r i o u s e f f e c t s upon the r e c e i v i n g water or gen- e r a l ecosystem, treatment p l a n t s w i l l have to be designed to reduce t h e i r concentrations to an acceptable l e v e l . Since b i o l o g i c a l o x i d a t i o n r a t e i s a f u n c t i o n of s u b s t r a t e c o n c e n t r a t i o n t h i s may n e c e s s i t a t e the i n s t a l l a t i o n of p h y s i c a l - c h e m i c a l r a t h e r than the b i o l o g i c a l treatment p l a n t s c u r r e n t l y used. In order to assess the p o s s i b l e environmental e f f e c t s of the v o l a t i l e s i n primary e f f l u e n t Table '5.1 was prepared. Before i n t e r p r e t i n g the t a b l e some general p o i n t s should be made. The assignments of the p o s s i b l e p r i n c i p a l sources were based upon an i n t e r p r e t a t i o n of the n a t u r a l or i n d u s t r i a l sources and major uses of a p a r t i c u l a r compound r a t h e r than a waste survey. S t r e e t surface runoff i s i n c l u d e d among the p o s s i b l e sources even though a separate 155 Table 5.1 - Guide to Environmental E f f e c t s of I d e n t i f i e d Compounds Compound Po s s i b l e Concen. T o x i c i t y Source b mg/1 Acute (mg/1) Sub-acute c Tetrachloroethylene Co 0.005 1,F Orthoxylene Co,SS,H 0.001 1,F i-propylbenzene Co,SS,H 0.002 t-butyl benzene Co,SS 0.01 chlorobenzene Cb,H,Cl 0.01 m-dichlorobenzene C l 0.01 p-dichlorobenzene Co,H 0.003 1,F Benzyl alcohol Co.H 0.01 l,Da 2-phenyl ethanol 0.005 0( -chlorotoluene Cl.Co 0.007 1,F Benzaldehyde H 0.01 1,M Methyl benzoate H 0.0004 Methyl s a l i c y l a t e H 0.007 Benzophenone H 6.001 Methyl napthalene Co,SS 0.005 . M Phenanthrene Co,SS 0.0008 1,F Anthracene Co,SS 0.0008 Gl y c e r o l t r i a c e t a t e H 0.0005 Methyl stearate H 0.0007 Dimethyl phthalate 0.0006 Di e t h y l phthalate Co,H 0.0004 Di-n-propyl phthalate 0.0003 Di-n-Butyl phthalate Co,H 0.009 Menthol H 0.015 Camphor H,Co 0.02 1,F Terpineol H 0.001 Bornylacetate 0.0008 Coumarin H 0.002 m (5)L ( 5 ) L 10 '24 4,Met-Mu,Ca? 2, N? 3 N? 3, Ca? /2.CNS 3,ID t ) 3,Ir 3,Ca? 3,Ca? 3,Ca? 2,Ir 2,Ir 2,N 2,N? a - E f f e c t s upon mammals b - References 2,3,5 e;— Lower value Table; 5.1 Cont'd. Symbols P o s s i b l e Sources - Co - Commercial/Industrial C l - C h l o r i n a t i o n of Primary E f f l u e n t H - Household SS - S t r e e t Surface Runoff T o x i c i t y - Acute e.s - Sub-acute 1,F - (60) D 1 - Reference Number F - Test Animal 60 - Toxic Concentration D - Type of Toxic E f f e c t 3,C? /2,CNS 3 - Reference Number C - E f f e c t / Next Reference 2 Second Reference Number CNS ,-r.Effect References 1. McKee and Wolf (1971) 2. Merck Index (1968) 3. Sax (1974) 4. F i s h b e i n 1973B 5. N o l l e r 1957 Symbols Ca - Carcinogen or Cocarcinogen CNS - A f f e c t s C e n t r a l Nervous System D - D e l e t e r i o u s but not l e t h a l Da - Daphnia F - F i s h ID - I n t e r n a l Damage I r - I r r i t a n t L - L e t h a l M - Minnows Met - Metabolic Products Mu - Mutagenic N - N a r c o t i c 157 sewer system i s employed i n sewage c o l l e c t i o n area. This was done since groundwater i n f i l t r a t i o n does occur e.g. during wet weather although the sorption and leaching of organics on s o i l s w i l l a f f e c t the input of organics from t h i s source. Regarding the t o x i c i t y data i t i s evident that there i s l i t t l e acute t o x i c i t y information a v a i l a b l e f o r f i s h l e t alone other aquatic organisms, moreover there i s p r a c t i c a l l y no data at a l l a v a i l a b l e on the subacute e f f e c t s so those l i s t e d are p r i m a r i l y f o r non-aquatic mammals. From Table 5.1 i t appears that no problems of acute t o x i c i t y to f i s h should r e s u l t from the i n d i v i d u a l compounds of ei t h e r unchlorinated or chlorinated /dechlorinated primary e f f l u e n t , although the cumulative t o x i c i t y of a l l of the components and s y n e r g i s t i c e f f e c t s are d i f f i c u l t to p r e d i c t . This con- c l u s i o n i s supported by E s v e l t j2t a l . , (1973) who were able to c o r r e l a t e most of the t o x i c i t y of primary e f f l u e n t to concentrations of MBAS and ammonia and Martens and S e r v i z i (1975) who found that c h l o r i n a t i o n followed by dech l o r i n a t i o n of primary e f f l u e n t might even s l i g h t l y reduce the t o x i c i t y of primary e f f l u e n t to f i s h . On the other hand, the acute to x i c e f f e c t s upon aquatic i n s e c t s , for example, may be important since d i c h l o r o - benzenes have been used as i n s e c t i c i d e s (Merck, 1968). Although acute t o x i c i t y problems may not r e s u l t from these compounds sub-lethal e f f e c t s probably w i l l . P ossible e f f e c t s (McKee and Wolf, 1971; Kemp et a l . , 1973; G i l l e t 1970; Walsh and M i t c h e l l 1974) include c e n t r a l nervous system impairment - Brook Trout'-ISO g 0.02 mg/1 DDT, h y p e r a c t i v i t y - tadpoles 0.5/Ug DDT residue, s u r v i v a l of f i s h from eggs exposed to a toxicant - 3% s u r v i v a l of steelhead 0.4^g/1 DDT and taste i n f l e s h - oysters l ^ g / 1 chlorophenol. I t should be pointed out that DDT i s an extremely to x i c sub- stance and i s c e r t a i n l y s e v e r a l orders of magnitude more toxi c on a TL^ basis than most organic compounds. On the other hand i f the mechanism of the sub-lethal t o x i c i t y i s independent of that of the acute t o x i c i t y , i t i s . 158 not p o s s i b l e to estimate what co n c e n t r a t i o n of a p a r t i c u l a r compound w i l l cause s u b - l e t h a l t o x i c e f f e c t s . Furthermore, the p r e v i o u s l y s t a t e d harmful dosages of DDT and chlorophenol do not take i n t o account bioaccumulation which has been shown to be 3 - 5 orderstof^magnitude w i t h DDT and Daphnia (Kemp et a l . 1973). In summary, t h e r e f o r e , i t i s u n l i k e l y that the t r a c e v o l a t i l e organics i d e n t i f i e d as o r i g i n a l l y present i n , or r e s u l t i n g from the c h l o r i n a t i o n and d e c h l o r i n a t i o n of primary e f f l u e n t w i l l be a c u t e l y t o x i c . t o f i s h . I t i s p o s s i b l e however that these compounds, p a r t i c u l a r l y those which are r e c a l - c i t r a n t may be t o x i c to other organisms or have other d e l e t e r i o u s e f f e c t s upon the aquatic ecosystem. In view of the f a c t that 1 percent of the c h l o r - i n e a p p l i e d to primary e f f l u e n t ends up as ' s t a b l e ' n o n - v o l a t i l e organo-chlor- i n e compounds ( J o l l e y 1973) w h i l e only 0.0(15 percent ends up as s t a b l e v o l - a t i l e organochlorine compounds, i t i s p o s s i b l e that the most se r i o u s e f f e c t s of c h l o r i n a t i o n w i l l be manifested i n the n o n - v o l a t i l e f r a c t i o n . 3. Recommendations f o r Further Studies i ) Q u a n t i f i c a t i o n of i d e n t i f i e d components: I t i s recommended that recovery s t u d i e s be c a r r i e d out using primary e f f l u e n t as the s o l v e n t . Quan- t i f i c a t i o n of the ' i d e n t i f i e d ' compounds can then be conveniently made by unnormalized LMRGC's. i i ) Further s e p a r a t i o n : Since the a c i d i t y s e p a r a t i o n d i d not prove h i g h l y e f f e c t i v e i t i s recommended that f r a c t i o n a t i o n on a HPLC instrument be made p r i o r to f i n a l s e p a r a t i o n by GC. i i i ) I d e n t i f i c a t i o n of more c o n s t i t u e n t s : Subsequent to the improvement i n s e p a r a t i o n , more i d e n t i f i c a t i o n s can be made on the b a s i s of mass spectrum and LC and GC r e t e n t i o n time. i v ) E f f e c t s of c h l o r i n a t i o n : a) D i s t r i b u t i o n of c h l o r i n e uptake. I t would be i n s t r u c t i v e to study the d i s t r i b u t i o n of c h l o r i n e uptake i n the v a r i o u s molecular weight f r a c t i o n s . This could be done through the use of 36 C l and g e l permeation chromatography, b) I t appears from t h i s study that c h l o r i n e uptake i s r e l a t e d to ammonia content of the sewage e f f l u e n t . The formation of halogenated benzenes but not halogenated phenols suggests that the major mechanism of c h l o r i n e uptake may be other than e l e c t r o p h i l i c sub- s t i t u t i o n . Further work on the mechanisms of c h l o r i n e uptake i s t h e r e f o r e recommended. v) Environmental I m p l i c a t i o n s of the Resultant C h l o r i n a t e d Organics. a) Acute t o x i c i t y - Bioassays should be conducted to o b t a i n the LĈ Q values f o r each of the compounds i d e n t i f i e d w i t h a r e p r e s e n t a t i v e set of organisms. b) S u b l e t h a l e f f e c t s - Studies upon the i n h i b i t i o n of b a c t e r i a l m e t r a b o l i c r a t e s by these compounds can be e a s i l y c a r r i e d out. Studies of the e f f e c t s of these compounds on species d i v e r s i t y and predator/prey r e l a t i o n - ships and the s u b l e t h a l e f f e c t s are much more d i f f i c u l t to carry out but such i n v e s t i g a t i o n s are warranted to i d e n t i f y those compounds r e q u i r i n g r o u t i n e m onitoring. c) P e r s i s t e n c e - Studies i n t h i s area should i n c l u d e degradation r a t e s f o r acclimated b a c t e r i a , i d e g r a d a t i o n times f o r non-acclimated b a c t e r i a , intake/metabolic/excretibn/accumulation s t u d i e s f o r some of the major b i o l o - g i c a l species i n the r e c e i v i n g waters and s o l u b i l i t y / s o r p t i o n / p r e c i p i t a t i o n data f o r the e f f l u e n t and r e c e i v i n g water to e s t a b l i s h the a v a i l a b i l i t y of these compounds f o r b i o l o g i c a l uptake. I f sewage sludge i s to be used as f e r t i l i z e r f o r a g r i c u l t u r a l crops s t u d i e s on the f a t e s of these compounds i n t h i s non-aquatic ecosystem are also warranted. 160 BIBLIOGRAPHY Abramson, F. P. (1975) "Automated I d e n t i f i c a t i o n of Mass Spectra by the Rev- erse Search" A n a l . Chem., 47, 45-49. Adams, V. D. and Middlebrook, E. J . (1973) "Organic Residue i n a Closed-Loop H y p o c h l o r i t e System" Dept. of Environ. Eng., Utah State U n i v e r s i t y , Logan, Utah. A l l e n , S. C , P a h l , R. H. and Mayhan, K. G. (1971) "Organic Desorbtion from Carbon. I . A C r i t i c a l Look at Desorbtion of Unknown M a t e r i a l s from Carbon" Water Research, j j , 3-18. American Chemical So c i e t y (1969) Cleaning Our Environment, the Chemical B a s i s f o r A c t i o n Subcommittee on Environmental Improvement, Amer. Chem. Soc., Washington, D. C. p. 97. American P u b l i c H e a l t h A s s o c i a t i o n (1971) Standard Methods f o r the Examina- t i o n of Water and Wastewater, 13th Ed. APHA, Washington, D. C. American S o c i e t y f o r Testing M a t e r i a l s (1967) Compilation of Gas Chromato- graphic Data, ASTM Data SerieseNo. DS25A ASTM, P h i l a d e l p h i a , PA. Amos, R. (1970) "Improved Procedures f o r Handling Thin-Layer Spots" J . Chrom- atogr., ^8, 343-352. Anbar, M. and Y a g i l , G. (1962) "The H y d r o l y s i s of Chloramide i n A l k a l i n e S o l u t i o n " j . Amer. Soc., 84, 1790-1796. Andelman, J . B. and Caruso, S. C. (1971) "Concentration and Separation Tech- niques" i n L. L. L i a c c i o (ed.) Water arid Water P o l l u t i o n C o n t r o l Handbook, Marc e l Dekker New York V o l . 2, Cbl 11. Anhoff, M. and Josefsson, B. (1974) "Simple Apparatus f o r On-Site Continuous L i q u i d - L i q u i d E x t r a c t i o n of Organic Compounds from N a t u r a l Waters" A n a l . Chem., 46_, 658-663. Armitage, F. (1969) "Some Factors A f f e c t i n g the E f f i c i e n c y of C o l l e c t i o n of Gas Chromatographic F r a c t i o n s i n M e l t i n g P o i n t Tubes" J . Chromatogr. S c i . , ]_, 190-191. A u d r i e t h , L. F. and Diamond, L. H. (1954) " P r e p a r a t i o n of N-Substituted Hydra- zines by M o d i f i c a t i o n of the Rachig S y n t h e s i s " J . Amer. Chem. Soc., 76, 4869-4871. A u d r i e t h , L. F. and Rowe, R. A. (1955) "The S t a b i l i t y of Aqueous Chloramine S o l u t i o n s " J . Amer. Chem., S o c , 77, 4726-4728. A u d r i e t h , L. F., S c h e i b l e r , ;U. and Zimmer,;H. (1956) "The Formation of Hydrazines by I n t e r a c t i o n of Ammonia and N-Chlorosuccinimide i n A l k a l i n e S o l u t i o n s " J . Amer. Chem. Soc., 78, 1852-1854. 161 Aue, W. A., K a p i l a , ; S . , and Hastings, C R . (1972) "The Use of Support Bonded S i l i c o n e s f o r the E x t r a c t i o n of Organochlorines of I n t e r e s t from Water"' J . Chromatogr., 73_, 99-104. Aue, W. A. and K a p i l a , S. (1973) "The E l e c t r o n Capture Detector - Controver- s i e s , Comments and Chromatograms". J . Chromatogr. S c i . , ' 11, 255-263. AWRE, Aldermaston. (1973) Ei g h t Peak Index of Mass Spectra Mass Spectrometry Data Center, Reading, U. K., V o l . I l l p a r t s 1 and 2. Baker, R.,iA. (1965) "Microchemical Contaminants by Freeze Concentration and Gas Chromatography" J . Wat* P o l l . Contr. Fed., 3_7, 1164-1170. Baker, R. H., Dodson, R. M. and R i e g e l , B. (1946) "The Cleavage of Organic S u l f i d e s w i t h C h l o r i n e " J . Amer. Chem. Soc. 68, 2636-2639. Barker, I . R. L. (1964) " K i n e t i c Studies i n the O x i d a t i o n of Organic Compounds w i t h the Halogens" Chem. Ind. (London), 1936-1942. Bauer, R. C. and Snoeyink, V. L. (1973) "Reactions of Chloramines w i t h A c t i v e Carbon" J . Wat. P o l l . Contr. Fed., _45, 2290-2301. B e l l a r , T. A. and Licht e n b e r g , J . J . (1974) "The Determination of V o l a t i l e Organic Compounds at the/rg/1 L e v e l i n Water by Gas Chromatography" EPA - 670/4 - 74 - 009, Environmental P r o t e c t i o n Agency, Washington, D. C. B e l l a r , T. A., Licht e n b e r g , J . J . and Kroner, R.C. (1974) "The Occurrence of Organohalides i n C h l o r i n a t e d D r i n k i n g Waters" EPA 670/4 - 74 - 008, Environmental P r o t e c t i o n Agency, Washington, D.C. Bennett, M., Dee, H. J . and Harkness, N. (1973) "The Determination of Veget- able and M i n e r a l O i l s i n the E f f l u e n t s and Sewage Sludges of the Upper Thames Ba s i n " Wat. Research, 7_, 1849-1859. Betzer, N. and K o t t , Y. (1969) " E f f e c t s of Halogens on Algae - I I . Clado- phora Sp." Wat. Research, _3, 257-264. B h a t i a , K. (1973) "Determination of Trace Phenol i n Aqueous S o l u t i o n by Aqueous L i q u i d Chromatography" A n a l . Chem., 45^, 1344-1347. Block, F. and G r i f f i t h s , P. R. (1973) "Considerations f o r I n f r a r e d Microsampl- i n g " A p pl. S p e c t r o s c , 27, 431-435. Blum, W. and R i c h t e r , W. J . (1974) "High E f f i c i e n c y Glass C a p i l l a r y Columns i n Combined GC/CIMS - GC/EIMS A n a l y s i s " F i n n i g a n Spectra, V o l . 4 ( 1 ) , March. Brady, A. P., Sa n c i e r , K. M. and S i r i n e , ; G . (1963) " E q u i l i b r i a i n S o l u t i o n s of Cyanuric A c i d and I t s C h l o r i n a t e d D e r i v a t i v e s " J . Amer. Chem. Soc., 85, 3101-3104. Brown,:L. 0. and Soper, F. G. (1953) "Studies of N-Halogeno-compounds P a r t V. The I n t e r a c t i o n of D i a l k y l c h l o r a m i n e s w i t h Phenols" J . Chem. Soc. 3576-3580. 162 Brungs, W. A. (1973) " E f f e c t s of R e s i d u a l C h l o r i n e on Aquatic L i f e : L i t e r - ature Review" J . Wat. P o l l . Contr. Fed., 45, 2180-2194. Buehler, C. A. and Pearson, D.E. (1970) Survey of Organic Synthesis J . Wiley, Toronto, Ch. 7, p. -329-340. Buhler, D. R., Rasmusson, M. E. and Nakue, H. S. (1973) "Occurrence of Hexachlorophene and Pentachlorophenol i n Sewage and Water" Environ. S c i . Technol., 1_, 929-934. Buelow, R. -W., C a r s w e l l , J . K. and Symons, J . M. (1973a) "An Improved Method f o r Determining Organics by A c t i v a t e d Carbon Adso r p t i o n and Solvent E x t r a c t i o n P t . I " J . Amer. Water Works Ass., 65, 57-72. Buelow,.R. W., C a r s w e l l , J . K. and Symons, J . M. (1973b) "An Improved Method f o r Determining Organics by A c t i v a t e d Carbon Adsorption and Solvent Ex- t r a c t i o n P t . I I . " J . Amer. Water Works Ass., ̂ 5 , 195-199. Burnham, ;A. K., Calder, G. V., F r i t z , J . S., Junk, G. A., Svec, H. J . and W i l l i s , R. (1972) " I d e n t i f i c a t i o n and E s t i m a t i o n of N e u t r a l Organic Contaminants i n Potable Water" A n a l . Chem., 44, 139-142. Burnison, K.BB. (1972) "Amino A c i d F l u x i n a N a t u r a l l y Eutrophic Lake" PhD Thesis, B i o l o g y , Oregon State Univ. B u r t t s c h e l l , R. H., Rosen, A. A., Mid d l e t o n , F. M. and E t t i n g e r , M. B. (1959) " " C h l o r i n e D e r i v a t i v e s of Phenol Causing Taste and Odor" J . Amer. Water Works Ass., _51, 205-214. Cahn, J . W. and P o w e l l , R. E. (1954) "The Rachig Synthesis of Hydrazine" J . Amer. Chem. Soc., 7_6, 2565-2567. C a n e l l i , E. (1974) "Chemical, B a c t e r i o l o g i c a l and T o x i c o l o g i c a l P r o p e r t i e s of Cyanuric A c i d and C h l o r i n a t e d Isocyanurates as A p p l i e d to Swimming Pool D i s i n f e c t i o n " Amer. J . P u b l i c H e a l t h , 64, 155-162. C a r l s o n , R. M. (1973) Communications and Newsletters, Dept. of Chemistry, Univ. of Minnesota. C a r l s o n , R. M. and Capple, R. (1974) "Aqueous C h l o r i n a t i o n of rX-Terpineol" Dept. of Chemistry, Univ. of Minnesota. C a r l s o n , R. M., C a r l s o n , R. E., Kopperman, H. L. and Capple, R. (1975) " F a c i l e I n c o r p o r a t i o n of C h l o r i n e i n t o Aromatic Systems During Aqueous C h l o r i n a t i o n Processes" E n v i r o n . S c i . Technol., 9_, 674-675. Car r , M. D. and England, B. D. (1958) "A New Mechanism of E l e c t r o p h i l i c Aromatic C h l o r i n a t i o n " Proc. Chem. S o c , 350-351. Chapin, R. M. (1931) "The Infl u e n c e of pH Upon the Formation and Decomposi- t i o n of the Chlbro D e r i v a t i v e s of Ammonia" J . Amer. Chem. Soc., 53, 912-920. Chau, Y. K. (1973) "Complexing Capacity of N a t u r a l Water - I t s S i g n i f i c a n c e and Measurement" J . Chromatogr. S c i . , 11^ 579. (abstr.) 163 Chow, A., Gesser, H. D., D a v i s , F. C., Uthe, J . F . and Reinke, J . (1971) "The E x t r a c t i o n and Recovery of P o l y c h l o r i n a t e d Biphenyls Using Porous Polyurethane Foam" A n a l . L e t t . , 4_ (12) , 883-886. Christman, R. F. and Minear, R.A. (1971) "Organics i n Lakes" i n S . J . Faust and J . V. Hunter (eds.) Organic Compounds i n Aquatic Environments Mar c e l Dekker, New York, Ch. 6. C l e s c e r i , N. L. (1973) "Organic N u t r i e n t Factors E f f e c t i n g A l g a l Growths" EPA - 660/3 - 73 - 003. Environmental P r o t e c t i o n Agency, Washington, D. C. • Coleman, A. E. (1973) "Chemistry of L i q u i d Phases - Other S i l i c o n e s " J . Chromatogr. S c i . , 11, 198-201. C o l t o n , E., Jones, M. M. and A u d r i e t h , L. F. (1954) "The P r e p a r a t i o n of Hydrazine from Urea and t - B u t y l h y p o c h l o r i t e " J . Amer. Chem. Soc.,76, 2572-2574. Cookson, J . T., I s h i z a k i , C. and Jones, C. R. (1972) " F u n c t i o n a l Surface Groups on A c t i v a t e d Carbon Responsible f o r Ads o r p t i o n of Organics from Water" A.I.S.C.H.E. Sympos. S e r i e s No. 124, V o l . 68, 157-168. Copier, H. and Van der Mass, J . H. (1967) " M i c r o - I n f r a r e d Spectroscopy of Gas Chromatographic F r a c t i o n s " Spectrochim. A c t a , 23A, 2699-2700. Corbett, R.EE., M e t c a l f , W. S. and Soper, F. G. (1953) "Studies of N-Halo- geno-compounds P a r t IV. The Reaction Between Ammonia and C h l o r i n e i n Aqueous S o l u t i o n and the H y d r o l y s i s Constants of Chloramines" J . Chem. S o c , 1927-1928. Cornu, A. and Massot, R. (1975) Compilation of Mass S p e c t r a l Data 2nd E d i t i o n , Heyden, New York. C o l t o n , F. A. and W i l k i n s o n , G. (1966) Advanced Inorganic Chemistry 2nd E d i t i o n , J . Wiley, New York, p. 561-571. Coulson, D. M. (1965) " E l e c t r o l y t i c C o n d u c t i v i t y Detector f o r Gas Chromato- graphy" J . Gas Chromatogr. 3_, 134-137. Craun, G. F. (1972) "Microbiology - Water-borne Outbreaks" J . Wat. P o l l . Contr. Fed., 44, 1175-1182. Craun, G. F. and McCabe, L. J . (1973) "Review of the Causes of Waterborne - Disease Outbreaks" J . Amer. Water Works Ass., 65, 74-84. C r o l l , B. T. (1972) "Organic P o l l u t a n t s i n Water" Water Treat, and Examin., 21, 213-236. Czech, F. W., Fuchs, R. J . and Antezak, H. F. (1961) "Determination of Mono-, D i - , and Trichloramine by U l t r a v i o l e t A bsorption Spectrophotometry" A n a l . Chem., 33, 705-707. Dakin, H.:D. (1916) "The O x i d a t i o n of Amino - Acids to Cyanides" J . Biochem., 10, 319-323. . 164 Das, B. S., Reid, S. G., B e t t s , J . L., P a t r i c k , K. (1969) " T e t r a c h l o r o - o-benzoquinone as a Component i n Bleached K r a f t C h l o r i n a t i o n E f f l u e n t Toxic to Young Salmon" J . F i s h . Res. Bd. Can., 26., 3055-3067. Desbaumes, E. and Imhoff, C. (1972) "Determination of Hydrocarbon.Residues i n Water" Wat. Research, b_, 885-893. De Zeeuw, R. A. (1972) " R e p r o d u c i b i l i t y of R f - Values i n TLC" i n A. Niederwieser and G. P a t a k i (eds.) Progress i n Thin Layer Chromatography and Related Methods Ann Arbor, Ann Arbor, Michigan, V o l . I l l , Ch. 2, p. 39-70. Diamond, L. H. and A u d r i e t h , L. F. (1955) " P r e p a r a t i o n of N-Substituted Hydrazines from A r i n e s and Chloramines" J . Amer. Chem. S o c , 7_7, 3131. Doonan, S. (1973) "The Biochemistry of Carbon - Halogen Compounds" i n S. P a t a i (ed.) The Chemistry of the Carbon - Halogen Bond J . Wiley, Toronto, P a r t 2, Ch. 13. Dorn, H. (1972 "Formation of Carbon — Halogen Bonds" i n C. H i l g e t a g and A. M a r t i n i (eds.) P r e p a r a t i v e Organic Chemistry J . Wiley, New York, Ch. 3. Dowty, B., C a r l i s l e , D., L a s e t e r , J . L. and S t o r e r , J . (1975a) "Halogenated Hydrocarbons i n New Orleans D r i n k i n g Water and Blood Plasma" Science, 187, 75-77. Dowty, B., and L a s e t e r , J . L. (1975b) " Gas Chromatographic Procedure to Monitor Low Molecular Weight V o l a t i l e Organics Introduced During M u n i c i p a l Water P r o c e s s i n g " A n a l . L e t t . , _8 25-32. Drago, R.S. (195-7) "Chloramine" " J . Chem. E d u c , 34, 541-545. Duke, D. J . , V i e t h , G. D. and Lee, G. F. (1974) " P o l y c h l o r i n a t e d Biphenyls i n Treatment P l a n t E f f l u e n t s " J . Wat. P o l l . Contr. Fed., 46, 966-972. Dugan, P. R. (1972) Biochemical Ecology of Water P o l l u t i o n Plenum P r e s s , New York, Chs. 7, 8, 9. Edmond, C. R. and Soper, F.G. (1949) "The Mechanism of Formation of Dia l k y l c h l o r o a m i n e s from Hypochlorous A c i d " J . Chem. S o c 2942-2945. E i s c h , J . J . (1966) "Halogenation of H e t e r o c y c l i c Compounds"' Adv. H e t e r o c y c Chem. 7_, 1-37. E l i a s e k , J . , and Jungwirt, A. (1963) "The Mechanism of Phenol C h l o r i n a t i o n i n Aqueous S o l u t i o n " C o l l . Czech. Chem. Comm., _28, 2163-2170: CA 60, 443. Emerson, W. S. ,(1945) "Synthesis w i t h Styrene Oxide" J . Amer. Chem. S o c , 67, 516-518. EPA (1971) "Methods f o r Organic P e s t i c i d e s i n Water and Wastewater" E n v i r - onmental P r o t e c t i o n Agency, C i n c i n n a t i . EPA (1972) "The E f f e c t s of C h l o r i n a t i o n on Selected Organic Chemicals" EPA 12020EXG 03/72, Environmental P r o t e c t i o n Agency, Washington, D. C. 165 E t t r e , L. S. (1973) Open Tubular Columns An I n t r o d u c t i o n Perlcin-Elmer, Norwalk, Conn. E s v e l t , L. A., Kaufman, W. J . and S e l l e c k , R. E. (1973) " T o x i c i t y Assessment of Treated M u n i c i p a l Wastewaters" J . Wat. P o l l . Contr. Fed., _45, 1558- 1572. F a i r , G. M., M o r r i s , J . C , Chang, S. L., W e i l , I . and Burden, Ro P. (1948) "The Behaviour of C h l o r i n e as a Water D i s i n f e c t a n t " J . Amer. Water Works Ass., 40, 1051-1061. F a r r i n g t o n , J . W. and Quinn, J . G. (1973) "Petroleum Hydrocarbons and F a t t y Acids i n Wastewater and E f f l u e n t s " J . Wat. P o l l . Contr. Fed., 4_5, 704- 712. F i s h b e i n , L. (1972a)_ Chromatography of. Environmental Hazards V o l . I , E l s e v i e r , New York. (1972b) "Chromatographic and B i o l o g i c a l Aspects of P o l y c h l o r i n a t e d B i p h e n y l s " J . Chromatogr. S c i . , j>8, 345-426. (1973a) Chromatography of Environmental Hazards V o l . I I , E l s e v i e r , New York. (1973b) "Mutagens and P o t e n t i a l Mutagens i n the Biosphere" S c i . T o t a l E n v i r o n . , 4_, 305-340. F i s h b e i n , L. and Flamm, W. G. (1972) " P o t e n t i a l Environmental Chemical Hazards" S c i . T o t a l E n v i r o n . 1, 117-140. F o w l i s , I . A. and W e l t i , D. (1967) "The C o l l e c t i o n of F r a c t i o n s Separated by Gas-Liquid Chromatography P a r t I I " A n a l y s t 9_2, 639-641. Gardiner, J . (1973) "Chloroisocyanurates i n the Treatment of Swimming P o o l Water" Wat. Research 7_» 823-833. G a r r i s o n , W. (1972) "Sodium Sulphate I m p u r i t i e s " EPA-AQC Newsletter 14 ( J u l y ) , 3. Gehrs, C. W., Eyman, L. D., J o l l e y , R. L. and Thompson, J . E. (1974) " E f f e c t s of S t a b l e C h l o r i n e - C o n t a i n i n g Organics on Aq u a t i c Environments" Nature, 249, 675-676. German, A. L. and Horning, E. C. (1973) "Thermostable Open Tube C a p i l l a r y Columns f o r the High R e s o l u t i o n Gas Chromatography of Human U r i n a r y S t e r i o d s " J . Chromatog. S c i . , 11, 76-82. G e r s d o r f f , W. A. and Smith, L. E. (1940) " E f f e c t of I n t r o d u c t i o n of the H a l - ogens i n t o the Phenol Molecule on T o x i c i t y to G o l d f i a h I , Monochloro- phenols" Amer. J . Pharm. 112, 197-204. G i l l e t , J . W. (ed.) (1970) The B i o l o g i c a l Impact of P e s t i c i d e s i n the E n v i r - onment Oregon S t a t e Univ. P r e s s , C o r v a l l i s . Glaze, W. H., Henderson, J . E., B e l l , J . E. and Wheeler, V.A. (1973) " A n a l y s i s of Organic M a t e r i a l s i n Wastewater E f f l u e n t s A f t e r C h l o r i n a t i o n " J . Chromatogr. S c i . 11, 580-584. 166 Goldberg, M. C , Delong,:L. and S i n c l a i r , M. (1973) " E x t r a c t i o n and Concen- t r a t i o n of Organic Solutes from Water" A n a l . Chem., 45, 89-93. G r i b b l e , G. W. (1974) "TCDD - A Deadly Molecule" Chemistry, 47,.15-18. G r i e s e r , M. D. and P i e t r z y k , : D . J . (1973) " L i q u i d Chromatography on a Porous Polyst y r e n e - Divinylbenzene Support" A n a l . Chem., 45,- 1348-1353. G r i f f i n , A. E. and Chamberlain, N. S. (1941a) " R e l a t i o n of Ammonia - Ni t r o g e n to Breakpoint C h l o r i n a t i o n " Amerc. J . P u b l i c H e a l t h , 31» 803-808. (1941b) "Some Chemical Aspects of Breakpoint C h l o r i n a t i o n " J . New England Water Works Ass., J55, 371-383. Grob, K. and Grob, G. (1974) "Organic Substances i n Potable Water and i t s Precursor - P a r t I I A p p l i c a t i o n s i n the Area of Z u r i c h " J . Chromatogr., 90, 303-313. Gunstone, F. D. and P e r e i r a , B. S. (1973) " F a t t y A c i d s , P a r t 41. The Halog- enation of Some Long Chain Hydroxy Alkenes w i t h S p e c i a l Reference to the P o s s i b i l i t y of Neighbouring Group P a r t i c i p a t i o n Leading to C y c l i c Ethers or Lactones"' Chem. Physics L i p i d s 11, 43-65. Gupta, P., Grover, K. C. and Mehta, R. K. (1972) " K i n e t i c Study of the Reac- t i o n Between Ammonia and C h l o r i n e " Z. Naturforch B., 27, 637-638. Gustafson, R. L. and Paleos , J . (1971) " I n t e r a c t i o n s Responsible f o r the S e l e c t i v e A d s o r p t i o n of Organics on Organic Surfaces" i n S. J . Faust and J . V. Hunter (eds.) Organic Compounds i n Aquatic Environments Marcel Dekker, New York, Ch. 10. H a l l , K. J . (1970) " N a t u r a l Organic Matter i n the Aquatic Environment" PhD Thesis, Univ. of Wisconsin, Madison. H a l l , R.CG'. (1974) "A Hi g h l y S e n s i t i v e and S e l e c t i v e M i c r o e l e c t r o l y t i c Con- d u c t i v i t y Detector f o r Gas Chromatography" J . Chromatogr. S c i . , 12, 152-160. Hanby, W. E. and Rydon, H. N. (1946) "The P r e p a r a t i o n of Styrene C h l o r o h y d r i n " J . Chem. Soc., 114. Hardt, F. W., Spear, R. D., Washington, D.RR., C l e s c e r i , N. L., Greene, W. J . and McDonald, G. C. (1971) "Apparent Molecular Weight D i s t r i b u t i o n i n Raw and Treated Wastewaters" FWQA P r o j e c t No. 1601,00HN, Bio-Environment- a l Engineer. Div., Rensselaer P o l y t e c h n i c I n s t i t . , Troy, New York. H a r r i s , L. E.; Budde, W. L. and E i c h e l b e r g e r , J . W. (1974) " D i r e c t A n a l y s i s of Water Samples f o r Organic P o l l u t a n t s w i t h Gas Chromatography - Mass Spectrometry" A n a l . Chem. 46, 1912-1917. H a r r i s , L. E., E i c h e l b e r g e r , J . W. and Budde, W.L. (undated) "A Procedure f o r the e v a l u a t i o n of the Performance of a Computerized Gas Chromatography Mass Spectrometry System w i t h a Standard Reference Compound" EPA, C i n c i n n a t i . 167 Harvey, G. B. (1973) "Adsorption of C h l o r i n a t e d Hydrocarbons from Seawater by a C r o s s l i n k e d Polymer". EPA - R3 - 73 - 177, Environmental P r o t e c t i o n Agency, Washington, D. C. Hawkins, E. G. E. (1973) "Production of 1, Chloroamino Cyclohexanol" Chem. Ab s t r . , _80, 3175. Heftmann, E. (1967) Chromatography• 2nd E d i t i o n , Remhold, New York. H e l l e r , S. R. (1972) "Conversational Mass S p e c t r a l R e t r i e v a l System and I t s Use as an A i d i n S t r u c t u r e Determination" A n a l . Chem.,44, 1951-1961. H e l l e r , S. R., McGuire, J . M. and Budde, W. L. (1975) "Trace Organics by GC/MS" Environ. S c i . and Technol., 9_, 210-213. H e l l w i g , D. H. R. (1967) " P r e s e r v a t i o n of Waste Water Samples" Wat. Research 1, 79-91. Henry, R. A., Schmit, J . A., Dieckman, J . F. and Murphey, F. J . (1971) "Combined High Speed L i q u i d Chromatography and Bioassay f o r the E v a l u a t i o n and A n a l y s i s of an Organophosphate L a r v i c i d e " A n a l . Chem., 43, 1053-1057. H e r t z , H. S., H i t e s , R. A. and Biemann, K. (1971) " I d e n t i f i c a t i o n of Mass Spectra by Computer Searching a F i l e of Known Spectra" A n a l . Chem., 43, 681-691. Heukelekian, H. and Balmat, J . L. (1959) "Chemical Composition of the P a r t - i c u l a t e F r a c t i o n s of Domestic Sewage" Sewage and Indus. Wastes, 31, 413-423. Heukelekian, H. and Faust, S. J . (1961) " C o m p a t i b i l i t y of Wastewater D i s - i n f e c t i o n by C h l o r i n a t i o n " J . Wat. P o l l . Contr. Fed., 33, 932-942. H i g u c h i , T. and Hussain, A. (1967) "Mechanism of C h l o r i n a t i o n of C r e s o l by Chloramine-T. M e d i a t i o n by Dichloramine-T." J . Chem. Soc. B, 549-552. H i t e s , R. A. (1973) " A n a l y s i s of Trace Organic Compounds i n New England R i v e r s " . J . Chromatogr. S c i . , 11, 570-574. H i t e s , R. A. and Biemann, K. (1968a) "MaSs Spectrometer-Computer System P a r t i c u l a r l y Suited f o r Gas Chromatography of Complex M i x t u r e s " A n a l . Chem., 40, 1217-1221. ' • ( 1 9 6 8 b ) i n D i s c u s s i o n of paper "Computer Recording and Processing of Low R e s o l u t i o n Mass Spectra" i n E. Kendrick (ed.) Adv. Mass Spectrom. 4_, 37-54, E l s e v i e r , New York. •' • ( 1 9 7 0 ) "Computer E v a l u a t i o n of Continuously Scanned Mass Spectra of Gas Chromatographic E f f l u e n t s " A n a l . Chem., 42, 855-860. ' ' ' ' • • ( 1 9 7 2 ) "Water P o l l u t i o n : Organic Compounds i n the Charles R i v e r Boston" Science, 178, 158-160. 168 Hoak, R. D. (1964) "Recovery and I d e n t i f i c a t i o n of Organics i n Water" Adv. Water P o l l . Research 1, 163-180. Hopkins, C. Y. and Ghisholm, M. J . (1946) " C h l o r i n a t i o n by Aqueous Sodium H y p o c h l o r i t e " Can. J . Research, B 24, 208-210. House, H. D. (1965) Modern Sy n t h e t i c Reactions W. A. Benjamin, New York, Ch. 6. Howlett, M. D. D. and W e l t i , ;D. (1966) "The C o l l e c t i o n of F r a c t i o n s Separ- ated by Gas-Liquid Chromatography P a r t I " Analyst 91_, 291-293. Hoyano, Y., Bacon, V., Summons, R. E., P e r e i r a , W. E., Halpern, B. and D u f f i e l d , A. M. (1973) " C h l o r i n a t i o n Studies IV. The Reaction of Aqueous Hypochlorous A c i d w i t h P y r i m i d i n e and Purine Bases" Biochem. Biophys. Research Comm., 53_, 1195-1199. Huang, J . C. (1971) " E f f e c t of Selected Factors on P e s t i c i d e S o r p t i o n and Desorption i n the Aquatic System" J . Wat. P o l l . Contr. Fed., 43, 1739-1748. Hunter, J . V. (1971) " O r i g i n of Organics from A r t i f i c i a l Contamination" i n S. J . Faust and J . V. Hunter (eds.) Organic Compounds i n . A q u a t i c Environments, Marcel Dekker, New York, Ch. 4. Hunter, J . V. and Heukelekian, H. (1965) "The Composition of Domestic Sew- age F r a c t i o n s " J . Wat. P o l l . Contr. Fed., 3_7, 1142-1163. Hurst, F. B. and Soper, F. G. (1949) "The I n t e r a c t i o n of N - C h l o r o a c e t a n i l i d e w i t h Phenols. The Rate of Formation of Hypochlorous A c i d from N- C h l o r o a c e t a n i l i d e by H y d r o l y s i s " J . Chem. Soc., 107-110. Hurtubise, R. J . , L o t t , P. F. and D i a s , J . R. (1973) "Instrumentation f o r Thin-Layer Chromatography" J . Chromatogr. S c i . , 1 1 , 476-491. I l i f f , N. (1972) "Organic Chemicals i n the Environment" New S c i e n t i s t 3 Feb., 263-265. Isomura, Y. (1967) "Comparative Measurements of Combined R e s i d u a l C h l o r i n e Around the Breakpoint" B u l l . Chem. Soc. Japan, 40, 835-842. J o l l e y , R. L. (1973) " C h l o r i n a t i o n E f f e c t s on Organic C o n s t i t u e n t s i n E f f l u - ents from Domestic S a n i t a r y Sewage Treatment P l a n t s " Ph.D. Thesis, Ecology, Univ. of Tennessee. J o l l y , W. L. (1956i> "The Thermodynamic P r o p e r t i e s of Chloramine, Dichloramine and Nitrogen T r i c h l o r i d e " J . Phys. Chem., 60, 507-508. J.W.P.C.F. (1974) " C h l o r i n e f o r E f f l u e n t s i n Short Supply";!. Wat. P o l l . Contr. Fed., 46, 2. Junk, G. A. (1972) "Gas Chromatograph - Mass Spectrometer Combinations and Their A p p l i c a t i o n s " I n t . J . Mass Spectrom. IOn Phys., 8_, 1-71. 169' Junk, G. A., Ri c h a r d , J . J . , G r i e s e r , M. D., W i t i a k , D., W i t i a k , J . L . , A r g u e l l o , M. D., Vick,;R., Svec, H. J . , F r i t z , J . S. and Calder, G.V. ( 1 9 7 4 ) "Use of M a c r o r e t i c u l a r Resins i n the A n a l y s i s of Water f o r Trace Organic Contaminants" J . Chromatogr. 99, 745-762. K a i s e r , R. E. (1973) " E n r i c h i n g V o l a t i l e Components by a Temperature Gradient Tube" A n a l . Chem., 45, 965-966. (1974) "Gas Chromatography.in Environmental A n a l y s i s " J . Chrom- atogr. S c i . , 12_, 36-39. Karasek, F. W. (1972) "GC/MS/Computers" A n a l . Chem., 44, 32A - 42A. Karasek, F. W., Tatore, 0. S. and Kane, D. M. (1973) "Study of E l e c t r o n Cap- t u r e Behaviour- 'of S u b s t i t u t e d Aromatics by Plasma Chromatography" A n a l . Chem., 45, 1210-1214. Katz, S., Confer, A., S c o t t , C. D., B u r t i s , C. A., J o l l e y , R. L., Lee, N. E., McKee, S. A., Maryanoff, B. E., P i t t , W. W. and Warren, K. S. (1968) "An Annotated B i b l i o g r a p h y of Low-Molecular Weight Co n s t i t u e n t s of Human U r i n e " AEC Report 0RNL-TM-2394, Oak Ridge, Tenn. Katz, S., P i t t , W. W., S c o t t , C. D. and Rosen, A. A. (1972) "The Determina- t i o n s of Stabl e Organic Compounds i n Waste E f f l u e n t s at Micrograms per L i t r e . L e v e l s by Automatic High R e s o l u t i o n Ion Exchange Chromatography" Wat. Research, 6_, 1029-1037. Katz, S. and P i t t , W. W. (1972) "A New V e r s a t i l e and S e n s i t i v e M o n i t o r i n g System f o r L i q u i d Chromatography: Cerate O x i d a t i o n and Fluorescent Measurement" A n a l . L e t t . 5̂ , 177-185. Kemp, H. T., L i t t l e , R. L., Holoman, V. L. and Darby, R. L. (1973) Water Q u a l i t y C r i t e r i a Data Book - V o l . 5 E f f e c t s of Chemicals on Aquatic L i f e EPA 18050 HLA 09/73, Environmental P r o t e c t i o n Agency, Washington, D.CC. K e i t h , L. H. (1969) " I d e n t i f i c a t i o n of Organic Contaminants Remaining i n a Treated K r a f t Pulp M i l l E f f l u e n t " Presented at 157th meeting D i v i s i o n of Water, A i r and Waste Chemists, Amer. Chem. Soc., Mi n n e a p o l i s , Minn. (1972) "Chemical C h a r a c t e r i z a t i o n of I n d u s t r i a l E f f l u e n t s " Presented at D i v i s i o n of Waiter, A i r and Waste Chemists ACS, Boston. Kennedy, D. C. (1973) " M a c r o r e t i c u l a r Polymeric Adsorbents" Ind. Engineer. Chem. Prod. Res. Devel. 12, 56-61. Khan, S. U. (1972) "Adsorption of P e s t i c i d e by Humic Substances, A Review" Environ. L e t t . , 3_, 1-12. Kim, B..R., Snoeyink, V. L. and Saunders, F. M. (1974) "Adsorption of Organic Compounds by S y n t h e t i c Resins" presented a t Wafcff P o l l . Contr. Fed. Conf., Denver, Colo., Oct. K i r k l a n d , J . J . (ed.) (1971) Modern P r a c t i c e of L i q u i d Chromatography Wiley- I n t e r s c i e r i c e , Toronto. 170 K i t t r e l l , F. W. and F u r f a i , S. A. (1963) "Observations of C o l i f o r m B a c t e r i a i n Streams" J . Wat. P o l l . Contr. Fed., 35^ 1361-1385. Kobayashi, S. and Lee, G. F. (1964) "Freeze Concentration of D i l u t e Aqueous S o l u t i o n s " A n a l . Chem., 36, 2197-2198. Kobayashi, T. and Okuda, T. (1972) "A Continuous Method of Mo n i t o r i n g Water Q u a l i t y by C h l o r i n e Consumption Under U.V. R a d i a t i o n " Wat. Research, 6_, 197-209. Koch, F. A., H a l l , K. J . and Y e s a k i , I . (1976) "Toxic Substances i n Waste- water of a M e t r o p o l i t a n Area" Westwater Research Center, Univ. of B.C., Vancouver, ( i n p r e s s ) . Kolattukudy, P. E. and Purdy, R. E. (1973) " I d e n t i f i c a t i o n of C u t i n , a L i p i d Biopolymer, as S i g n i f i c a n t Component of Sewage Sludge" Environ. S c i . Technol., _7, 619-623. K o t t , Y. (1969) " E f f e c t s of Halogens on A l g a e - I I I . F i e l d Experiment" Wat. Research _3> 265-267. K o t t , Y. and E d l i s , J . (1969) " E f f e c t s of Halogens on A l g a e - I . C h l o r e l l a S o r o k i n i a n a " Wat. Research, 3^251-256. Kovacic, P., Lowery, M. K. and F i e l d , K. W. (1970) "Chemistry of N-Bromamines and N-Chloramines" Chem. Rev. 7£, 640-665. K r e j c i , M., Rounda, M. and Vavrouch, Z. (1974) " A n a l y s i s of Non-Ionic Sur f a c - tants of the A l k y l Phenol Type i n the Presence of M i n e r a l O i l by Means of L i q u i d Chromatography" J . Chromatogr..91, 549-556. Kwok, K. S., Venkataraghavan, R. and M c L a f f e r t y , F. W. (1973) "Computer - Aided I n t e r p r e t a t i o n of Mass Spectra. I l l A S e l f T r a i n i n g I n t e r p r e t i v e and R e t r i e v a l System" J . Amer. Chem. S o c , 95_, 4185-4194. Lao, R. C , Thomas, R. S., Oja, H. and Dubois, L. (1973) " A p p l i c a t i o n of a Gas Chromatography- Mass Spectrometer - Data Processor Combination to the A n a l y s i s of the P o l y c y c l i c Aromatic Hydrocarbon Content of Airborne P o l l u t a n t s " Adv. Chromatogr., Houston, p. 229-240. Laubusch, E. J . (1959) "Standards of P u r i t y f o r L i q u i d C h l o r i n e " J . Amer. Water Works Ass., _51, 742-748. Leathard, D. A. and Shurlock,:B. C. (1970) I d e n t i f i c a t i o n Methods i n Gas Chrom- atography Wiley, New York, Ch. 9, 10/ Lee, G. F., Kumke, G. W. and Becker, S. L (1965) "Recovery of Organics from a Eutrophic Lake by Carbon Adsorption Technique" I n t . J . A i r Water P o l l u t . , 9, 69-73. Lee, G. F. and M o r r i s , J . C. (1962) " K i n e t i c s of C h l o r i n a t i o n of Phenol - Chloro- p h e n o l i c Tastes and Odors" I n t . J . A i r Water P o l l u t . 6̂, 416 - 431 . L e i t h e , W. (1973) The A n a l y s i s of Organic P o l l u t a n t s in.Water and Wastewater .Translated by S.T.S. Inc. Ann Arbor, Ann Arbor, Mich. 171 L i c h t e n b e r g , J . ; J . (1973) " P r e s e r v a t i o n of PCB Samples" EPA - Duluth, PCB Newsletter No. _5 (29 J a n ) , 3. L i l l i a n , ;D., Singh, H. B., Appleby, A., Lobban, L. et a l . (1975) "Atmospheric Fates of Halogenated Compounds" Environ. S c i . Technol., 9_, 1042-1048. L i s t e r , M. W. (1965) Oxyacids, Oldbourne Press London P. 39-45, 87-112. A. D. L i t t l e (Inc.) (1970) Water Q u a l i t y C r i t e r i a Data Book V o l . 1 Organic Chemical P o l l u t i o n of Freshwater. EPA 18010 DPV 12/70, Environmental P r o t e c t i o n Agency, Washington, D. C. Loehr, R. C. and Bergeron, B. (1967) " P r e s e r v a t i o n of Waste Water Samples P r i o r to A n a l y s i s " Watt Research 1, 577-586. Loehr, R. C. and Kukar, T. J . (1965) "Removal of L i p i d s by Conventional Waste Treatment Methods" I n t . J . A i r Water P o l l u t . , 9_, 479-485. Longbottom, J . E. (1972) "Determination of N i t r i l o t r i a c e t i c A c i d by High Speed Ion Exchange Chromatography" A n a l . Chem.,44, 418-420. Majer, J . R., P e r r y , R. and Reade, M. J . (1970) "The Use of Thin-Layer Chromato- graphy and Mass Spectrometry f o r the Rapid E s t i m a t i o n of Trace Q u a n t i t i e s of A i r P o l l u t a n t s " J . Chromatogr., 4£, 328-333. Manka, J . , Rebhum, M., Mandelbaum, A. and B o r t i n g e r , ;A. (1974) " C h a r a c t e r i z a t i o n of Organics i n Secondary E f f l u e n t s " Environ. S c i , Technol., j8, 1017-1020. Martens, D. W. and S e r v i z i , J . A. (1974) "Acute T o x i c i t y of M u n i c i p a l Sewage to F i n g e r l i n g Sockeye Salmon" I n t . P a c i f i c Salmon F i s h . Comm. Rep. No. 29, New Westminster. (1975) " D e c h l o r i n a t i o n of M u n i c i p a l Sewage Using Sulphur D i o x i d e " I n t . P a c i f . Salm. F i s h . Comm. Progr. Rep. No. 32, New Westminster, B. C. Marx, J . L. (1974) " D r i n k i n g Water: Another Source of Carcinogens?" Science, 186, 809-811. Mathur, S. P. (1974) "Ph t h a l a t e E s t e r s i n the Environment: P o l l u t a n t s or Na t u r a l Products?" J . Environ. Qual., _3» 189-197. Mauger, R. P. and Soper, F. G. (1946) "Acid C a t a l y s i s i n the Formation of Chloroamides from Hypochlorous A c i d . N - C h l o r i n a t i o n by Hy p o c h l o r i t e Ions and A c y l H y p o c h l o r i t e s " J . Chem. S o c , 71-75. M e l l o r , J . W. (1927) A Comprehensive T r e a t i s e oh Inorganic and T h e o r e t i c a l Chemistry Longmans, Green and Co., London, V o l . I I , p. 240-305. (1928) A Comprehensive T r e a t i s e on Inorganic and T h e o r e t i c a l Chemistry Longman, Green and.Co i, London V o l . I l l , p. 218-219. Meiners, A. F. and M o r r i s s , F. V. (1964) "The L i g h t Catalyzed O x i d a t i o n of Starch w i t h Aqueous' C h l o r i n e " J . Org. Chem., 29_, 449-452. 172 Merck,.(1968) The Metck Iridex 8th E d i t i o n , Merck, Rahway. Merkehs, J . C. (1958) "Studies on the T o x i c i t y of C h l o r i n e and Chloramines to the Rainbow Trout" Water Waste Treat. J . _7, 150-151. M e t c a l f , W. S. (1942) "The Absorption Spectra of Mono-, D i - , and Trichloramines and Some A l i p h a t i c D e r i v a t i v e s " J . Chem. Soc., 148-150. M i l a z z o , B., P e t r a k i s , L. and Brown, P. M. (1968)"Microsampling Techniques f o r Combined Gas Chromatography and High-Resolution Nuclear Magnetic Resonance Spectroscopy',,' A p p l . S p e c t r o s c , 22, 574-575. M i l l e r , R. W. (1974) " S u s c e p t i b i l i t y of the Fetus and C h i l d to Chemical P o l l u t - a n t s " Science, 184, 812-814 (May 17). M o r r i s , J . C. (1965) " K i n e t i c s of Reactions Between Aqueous C h l o r i n e and Nit r o g e n Compounds" Presented at 4th Rutgers Resi-Conf., Rutgers Univ., June 15-18. Moye, C. J . and S t e r n h e l l , S. (1966) "The Degradation of Aromatic Rings: The A c t i o n of Hy p o c h l o r i t e s on Phenols" Aust. J . Chem., 19_, 2107-2118. Muegge, 0. J . (1956) " P h y s i o l o g i c a l E f f e c t s of H e a v i l y C h l o r i n a t e d D r i n k i n g Water" J . Amer. Water Works Ass., 48_, 1507-1509. Murtaugh, J . and Bunch, R. L. (1965) " A c i d i c Components of Sewage E f f l u e n t s and Ri v e r Water" J . Wat. P o l l . Contr. Fed., _37, 410-415. McDermott, D. J . (1974) " C h a r a c t e r i s t i c s of M u n i c i p a l Wastewaters, 1971-1973". C o a s t a l Water Research Proijiect Annual Rept., Southern C a l i f o r n i a C o a s t a l Research P r o j e c t , E l Segundo, C a l . p. 87-96.• McGuire, J . M., A l f o r d , A. L. and C a r t e r , M. H. (1973) "Organic P o l l u t a n t I d e n t i f i c a t i o n U t i l i z i n g Mass Spectrometry" EPA RZ - 73 - 234, Environmental P r o t e c t i o n Agency, Washington, D.C. McKee, J . W., Brokaw, C. J . and McLaughlin, R. T. (1960) "Chemical and C o l i c i d a l E f f e c t s of Halogens i n Sewage" J . Wat. P o l l . Contr. Fed., 3_2, 795-819. McKee, J . E. and Wolf, H. W. (1971) Water Q u a l i t y C r i t e r i a 2nd E d i t i o n , S t a t e Water Resources C o n t r o l Board, C a l i f o r n i a . M c L a f f e r t y , F. W. (1973) " I n t e r p r e t a t i o n of Mass Spectra" W. A. Benjamin, Don M i l l s , Ont. McLean, R. I . (1973) " C h l o r i n e and Temperature Stress on E s t u a r i n e I n v e r t e b r a t e s " J . Wat. P o l l . Contr. Fed., ̂ 5 , 837-841. McLean, W.R., Stanton, D.L. and Penketh, G. E. (1973) "A Q u a n t i t a t i v e Tunable Element S e l e c t i v e Detector f o r Gas Chromatography" A n a l y s t , 98, 432-442. McNiven, N. L. (1965) "Chromatography" i n R.G.J. M i l l e r (ed.) Laboratory Meth- ods i n I n f r a r e d Spectroscopy Heyden, London, Ch. 6. N o l l e r , C. R. (1957) Chemistry of Organic Compounds 2nd E d i t i o n , Saunders, P h i l a d e l p h i a . 173 Norman, M. F. (1936) "The Oxidation.of Amino Acids by H y p o c h l o r i t e ;1. G l y c i n e " Biochem.;J. 30, 484 7496. Novak, J . , Z l u t i c k y , J . Kubelka, V. and Mostecky, J . (1973) " A n a l y s i s of Organic Constituents Present i n D r i n k i n g Water" J . Chromatogr., 76, 45-50. O e r t e l , R. P. and Myhre, D. V. (1972) "Raman Spectra - S t r u c t u r e C o r r e l a t i o n s f o r P y r a z i n e s " A n a l . Chem. , 44, 1589-1593. Olv e r , J . W., Kreye, W. C. and K i n g , P. H. (1974) "Heavy Metal Release due to C h l o r i n e O x i d a t i o n of Wastewater Treatment P l a n t Sludges" Presented at 47th Wat. P o l l . Contr. Fed. Conference, Denver C o l . , Oct. 7-11. Ongerth, H. J . , Spath, D. P., Crook, J . and Greenberg, A. E. (1973) " P u b l i c Health Aspects of Organics i n Water" J . Amer. Water Works Ass., j65, 495- 498. Onuska,;F. (1973) "Gas Chromatographic Determination of A l i p h a t i c Amines and Q u a n t i t a t i v e A n a l y s i s of Small Amounts of D i e t h y l Amine i n Wastewater" Wat. Research, _7, 835-841. P a i n t e r , H. A. (1971) "Chemical, Ehys-iicail arid B i o l o g i c a l C h a r a c t e r i s t i c s of Wastes and Waste E f f l u e n t s " i n L.L. C i a c c i o (ed.) Water and Water P o l l u t i o n Handbook Marcel Dekker, New York, V o l . I , p. 329-364. (1973) "Organic Compounds i n S o l u t i o n i n Sewage E f f l u e n t s " Chem. Ind. (London), 1, 818-822. P a i n t e r , H. A. and Viney, M. (1959) "Composition of a Domestic Sewage" J . B i o - chem. M i c r o b i o l o g . Technol. Engineer., 1, 143-162. P a i n t e r , H. A., Viney, M. and Bywaters, A. (1961) "Composition of Sewage and Sewage E f f l u e n t s " Water P o l l . Contr. I n s t . Sewage P u r i f i c . J . Proc., 304- 314. P a l i n , A. T. (1950). "A Study of the Chloro D e r i v a t i v e s of Ammonia and Related Compounds, With S p e c i a l Reference to T h e i r Formation i n the C h l o r i n a t i o n of N a t u r a l and P o l l u t e d Waters" Water and Water Engineer., 54_, 151-159, 189-200, 248-256. Patto n , W., Bacon, V., D u f f i e l d , A.M., Halpern, B., Hoyano, Y., P e r e i r a , W. and Lederberg, J . (1972). " C h l o r i n a t i o n Studies I . The Reactions of Aqueous Hypochlorous A c i d w i t h Cytosine" Biochem. Biophys. Res, Comm., 48^, 880-884. P e r e i r a , W., Hoyano, Y., Summons, R. E., Bacon, V. A. and D u f f i e l d , A. M.(1973) " C h l o r i n a t i o n Studies I I . The Reaction of Aqueous Hypochlorous A c i d w i t h -Amino Acids and Peptides" Biochem. Biophys. A c t a , 313, 170-180. P i t t , W. W. and S c o t t , C. D. (1973) "Measurement of Molecular Organic Contains inants i n p o l l u t e d Waters" ' i n Ecology and A n a l y s i s ^ o f y T r a e e ^ Progress Rept. ORNL-NSF-EATC-1 Oak Ridge, TEnn. June 19.72 - Jan 1973, Sec. 4.10. Prakash, IL. and S i s l e r , H. H. (19.70). "Gas Phase Reaction of Chloramine With_ 174 O l e f i n s and Saturated Hydrocarbons." J . Org. Chem., 35, 3111^3114. P r e s s l e y , T, A., Bishop, D. F. and Roan, S". 0-9-7 2 i "Ammonia Nit r o g e n .Removal by Breakpoint C h l o r i n a t i o n " Environ. S c i . Technol. ,_6_, 622-^628,' ' ' (1973) "Ammonia - Nitrogen Removal by Breakpoint C h l o r i n a t i o n " EPA-670/2-73-058, Environmental P r o t e c t i o n Agency, Washington, D. C. Rains, B. A., DePrimo, M. J . and Groseclose, I.LL. (1973). "Odors Emitted from Raw and Digested Sewage Sludge" EPA-670/2-73-098, Environmental P r o t e c t i o n Agency, Washington, D. C. Rebhum, M. and Manka, J . (1971) " C l a s s i f i c a t i o n of Organics i n Secondary E f - f l u e n t s " Environ. S c i . Technol., .5, 606-609. R i c k e r t , D. A. and Hunter, J . V. (1971) "General Nature of Soluble and P a r t - i c u l a t e Organics i n Sewage and Secondary E f f l u e n t " Wat. Research, .5, 421- 436. Robertson, J . L. (1972) " C h a r a c t e r i z a t i o n of R e s i d u a l Organics from B i o l o g i c a l Treatment" M. Eng. Thesis, McMaster Univ., Hamilton. Rogers, I . H. and K e i t h , L. H. (1974) "Organo-chlorine Compounds i n K r a f t Bleach- i n g Wastes. I d e n t i f i c a t i o n of Two C h l o r i n a t e d G u i a c o l s " Environ. Can. F i s h . Marine Serv. Tech. Rep. No. 465, Vancouver. Rogers, I . H. and Mahood, H. W. (1974) "Removal of F i s h - Toxic Organic Solutes from Whole R r a f t E f f l u e n t by B i o l o g i c a l O x i dation and the Role of Wood Fur n i s h E x t r a c t i v e s " F i s h . Res. Bd. Can. Tech. Rep.,No. 434, Vancouver. Rook, J . J . (1974). "Formation of Haloforms During C h l o r i n a t i o n of N a t u r a l Wat- e r s " Water Treat. Examin., 23_, 234-243. Rudolfs, W. and Balmat, J . L. (1952) " C o l l o i d s i n Sewage I . Separation of Sew- age C o l l o i d s w i t h the A i d of the E l e c t r o n Microscope" Sew. Ind. Wastes, _24, 247-253. Rudolfs, W. and Heinemann, B. (1939) "Growth Promoting Substances i n Sewage and Sludge I I I . Vitamin C, Carotene, Amino A c i d s , F a t t y A c i d s , Napthyl Compounds" Sew. Ind. Wastes, _L1_, 587-594. ' Sancier, K. M., Brady, A. P. and Lee, W, W. (1964). "Absorption Spectra of S o l - u tions of Gtyanuric A c i d and i t s C h l o r i n a t e d D e r i v a t i v e s " Spectroehem. Acta, 20_, 397-403. Sawicki, C. R. and S a w i c k i , E. (1972) "Thin Layer Chromatography i n A i r P o l l u - t i o n Research" i n A. Niederwieser and G. f a t a k i ( e d s . i Progress i n Thin Layer Chromatography and Related Methods Ann Arbor, Ann Arbor, Mich., V o l . I l l , p. 2 3 3 - 2 4 5 . ' " Sax, N. I . ( e d . l (1974). I n d u s t r i a l P o l l u t i o n 7an Nostrand Reinhold, Toronto, S c o t t , C. D., J o l l e y , R. L., P i t t , W. W. and Johnson, W. F. 0-9701 "Prototype Systems f o r the Automated High^Resolution A n a l y s i s of TTV-Absorbing Con- s t i t u e n t s and Carbohydrates i n Body F l u i d s " Amer, J . C l i n , P a t h o l . , 5 3 , 175 701-712. S e r v i z l , J , A,, and Gartens,, JJ,..W^._.U974)_,"Preliminary. Surrey of T o x i c i t y of C h l o r i n a t e d Sewage to Sockeye arid "Pink Salmon" I n t , P a c i f i c - Salmon F i s h , Comm. Prog, Rep. No, 30, New Westminster. S i e g l , A. and Degens, E. T. 0.966) "Concentration of D i s s o l v e d Amino Acids from S a l i n e Waters by Legand Exchange Chromatography" Science,* 151, 1098-1101. S i l v e y , J . K. G. , A b s h i r e , R, L, and Nunez, W. J , (1974) " B a c t e r i o l o g y of C h l o r i n a t e d and Unchlorinated Wastewater E f f l u e n t s " J . Wat. P o l l , Contr, Fed. ,-46, 2153-2162, S i n g l e y , J , E., Kerchmer, C. J . and Miura, R,(1974) " A n a l y s i s of Corprostanol, An I n d i c a t o r of F e c a l Contamination" EPAT-660/2^-74=021, Environmental P r o t e c t i o n Agency, Washington, D, C, Smith, J . C. C19-34). " A l k a l i n e Halogenation Part I , The C h l o r i n a t i o n of Sodium Benzoate" J , Chem, Soc,, 213-^218, Smith, L, L, and Gourdon, R. E. 0-9.69) " S t e r o l Metabolism T- IV, Detection of 5/?-CholestanT.3/ ^ o l i n P o l l u t e d Waters" Wat, Research,-3_, 141^148. Soper, -F. G. and Smith, G, F. 0-926). "The Halogenation of Phenols" J , Chem. S o c , 1582^1591, Spector, W. S. (1956) Handbook of B i o l o g i c a l Data Saunders, P h i l a d e l p h i a , S p i t z , H. (1969) " I m p u r i t i e s i n S i l i c a Gel as a C r i t i c a l Factor i n the Quali^- t a t i v e E v a l u a t i o n of an Organic Compound" J . Chromatogr. ,-42, 384-r388. S t a s i u k , W. N., H e t l i n g , L, J , and Shuster, W, W. (1974) "Nitrogen Removal by C a t a l y s t ^ Aided Breakpoint C h l o r i n a t i o n " J , Wat, P o l l , Contr. Fed,,-46, 1974-1983. Stenhagen, E., Abrahamsson, S, and M c L a f f e r t y , F. W. (eds.) Q.974)-Registry of Mass S p e c t r a l Data Wiley-^Interscience, Toronto, Supina, W, R, 0-974). The-Packed- Columnvin-Gas Chromatography Suprelco, B e l i e f onte. Pa. Swain, C, G, and C r i s t , D, R, 0-9.72). "Mechanism of C h l o r i n a t i o n by Hypochlorous A c i d , The Last of Chloroniumnro Ion, C l + J ' J , Amer. Chem. Soc.,^4, 3195^ 3200, ^ Tanner, G. , T r a s o l i n i , G, and Nemeth, L. 0-9731 "A Study on Wastewater Charac^- t e r i s t i c s of Greater Vancouver Sewage Treatment P l a n t s and Major Sewers" EPS 5TPRT.73^11, Environment Canada, Ottawa, Taras, M. J . O-950 " P r e l i m i n a r y Studies on the C h l o r i n e Demand of S p e c i f i c Chemical Compounds" J . Amer, Water Works Ass,,* 42, 462-^475, - 0-953) " E f f e c t of Free Resid u a l C h l o r i n a t i o n on Nitrogen Compounds i n Water" J . Amer, Water Works Ass. 45, 47^61, 176 Time (Canadian Edit i o n ) . (1974) " C h l o r i n a t i o n Threat?" 25 Nov., p. 61. Thompson, E. 0. P. (1954) " M o d i f i c a t i o n of Tyrosine During Performic A c i d O x i d a t i o n " Biochem. Biophys. A c t a , 15_, 440-441. Trash, C. R. (1973) " M e t h y l s i l i c o n e s - T h e i r Chemistry and Use as Gas Chromato- graphic L i q u i d Phases" J . Chromatogr. , S c i , , 1 1 , 196-198. Tuleen, D. L. (1967) " C h l o r i n a t i o n of Unsymmetrical B e n z y l i c Sulphides w i t h N- Chloro-succinimide" J . Org. Chem., 32, 4006-4008. Uthe, J . F., Reinke, J . and Cesser, H. (1972) " E x t r a c t i o n of Organochlorine P e s t i c i d e s from Water by Porous Polyurethane Coated w i t h S e l e c t i v e Ab- sorbent" Environ. L e t t . , _3, 117-135, V a l l e n t y n e , J . R. (1957) "The Molecular Nature of Organic Matter i n Lakes and Oceans, w i t h Lesser Reference to Sewage and T e r r e s t r i a l S o i l s " J . F i s h . Res. Bd. Can., 14, 33-82. - - (1967) "Pheromones and Related Substances" i n H, L, Golterman and R, S, Clymo (eds.) Chemical; Environment and the Aquatic Habitat N,V, Noord-Hollandsche, Amsterdam," p, 252-254, Van Buren, J . B, and Dence, C. W, (1967) " I d e n t i f i c a t i o n and E s t i m a t i o n of Primary Products from the Reactions of C h l o r i n e w i t h L i g n i n Model Compounds" Tappi,^5Q, 553-558. Vancouver Sun (19741 " C h l o r i n a t i o n - Cancer L i n k Eyed" 2 Nov,, p. 2, Van Tamelen, E, E,, Haarsted, 7, B, and O r v i s , R, L, 0-9.68). "Hypohalite-Induced O x i d a t i v e Decarboxylation of ^Amino A c i d s " Tetrahedron,\ s24, 687-704, 'Venkataraghavan, R, , M c L a f f e r t y , F, W", 8 and Van Lear, G, E, (19.69). "Computer- Aided I n t e r p r e t a t i o n of Mass Spectra" Org, Mass Spectrum, 2_, 1-15, Vinson, J , A,, Burke, G, A., Hager, B., L,, Casper, D, R, , Nylander, W, A, and Middlemiss, R. J , (19731 "An Improved Method f o r the I s o l a t i o n of Phenols from Water" E n v i r , L e t t , ,\_5, 199^207, Vis:,wanathan, C. V., B a i , B. M. and P i l l a i , S, C, (1962) " F a t t y Matter i n Aerobic and Anaerobic Sewage Sludges" J . Wat, P o l l . Contr, Fed.,-^4, 189- 194, V o l l b r a c h t , L. , Huysmans, W. G. B, , M i j s , W. J . and Hageman, H, J , (19.68) " C h l o r i n a t i o n of Phenol and Some Alk y l " - and A r y l - S u b s t i t u t e d Phenols i n A c e t i c A c i d " Tetrahedron, 24_, 6265-6275, Walsh, J . T,, Chalk, R. G, and M e r r i t t , C. (1973) " A p p l i c a t i o n s of L i q u i d Chromatography to P o l l u t i o n Abatement Studies of M u n i t i o n Wastes" Adv, Chromatogr., p, 218-233. Walsh, F. and M i t c h e l l , R. (1974) " I n h i b i t i o n of I n t e r - M i c r o b i a l P r e d a t i o n by C h l o r i n a t e d Hydrocarbons" Nature, 249, 673-674. Wangen, L, E,, Woodward, W. S. and Isenhour, T, L, 0-971) "Small Computer, Mag- 177 n e t i c Tape Oriented, Rapid Search System A p p l i e d to Mass Spectrometry" Anal. Chem., 43, 1605-1614. Ward, S. D. (1973) "Computerized Data A c q u i s i t i o n and Handling" i n D. H. Wi l l i a m s (ed.) Mass Spectrometry The Chemical S o c i e t y , London, V o l . 2, p. 264-301. Watson, S. H. and K i b l e r , C, S. (1934) " D r i n k i n g Water as a Cause of Asthma" J . A l l e r g y , - 5 , 197. • Webb, K. J . and Wood. L. (1973) "Improved Techniques f o r A n a l y s i s of Free Amino Acids i n Sea Water" i n Automati6n-in- Chemistry Technicon Symposium, p. 440-444. Webb, R. (1973)"XAD Resins, Urethane Foams, Solvent E x t r a c t i o n f o r I s o l a t i n g Organic Water P o l l u t a n t s " ROAP 16 ADN Task 37, Environmental P r o t e c t i o n Agency, Athens, Ga, Weber, J . B, (1972) " I n t e r a c t i o n of Organic P e s t i c i d e s w i t h P a r t i c u l a t e Matter i n Aquatic and S o i l Systems" i n R, F, Gould (ed.) Fate of Organic P e s t i - - d d e s - in-Aquatic' Environments Advan. Chem, No. I l l American Chemical Soc- iety,'Washington, D. C, p. 55-120. W e i l , I , and M o r r i s , J . C. (1949a). " K i n e t i c Studies on the Chloramines I . The Rates of Formation of Monochloramine, N-Chloromethy1amine and N-Chlorodi- methylamine" J , Amer. Chem. Soc,, 7JL, 1664-1671. ------- ^-'' '• - ' - - ; (1949b) " E q u i l i b r i u m Studies on N-Chloro Compounds IT. The Base Strength of N-Chloro Dialkylamines and of Monochloramines" J , Amer, Chem, Soc.,-91, 3123-3126, Wershaw-, R, L, , Burcar, P, J , and Goldberg, M. C, (1969) " I n t e r a c t i o n of P e s t i - cides w i t h N a t u r a l Organic Matter" Environ, S c i , Technol. ,\3_, 271-273, West,. R, A. and B a r r e t t , H, W, (19.541 "Synthesis of Chloropyrimidines by Reac- t i o n w i t h NvChlorosuccinimide, and by Condensation Methods" J , Amer, Chem, Soc. ,N|6,- 3146^3148, White, G, C. C1972X Handbook of C h l o r i n a t i o n Van Nostrand, Toronto. Wilson, B. P. and Cochrane, W. P, (1975) "Comparison of the Coulson and H a l l E l e c t r o l y t i c C o n d u c t i v i t y Detectors f o r Nitrogen Containing P e s t i c i d e s " J . Chromatogr,?., ,106, 174-179. Woodwell, G, M,, Wurster, C, F, and Isaacson, P, A. (1967) "DDT Residues i n an East Coast Estuary: A Case of B i o l o g i c a l Concentration of a P e r s i s t e n t I n s e c t i c i d e " Science, 156, 821-823. Wright, N. C, (1926) "The A c t i o n of Hypo c h l o r i t e s on Amino Acids and P r o t e i n s " Biochem. J . , 20, 524-532, Y a g i l , G, and Anbar, M. (1962) "The K i n e t i c s of Hydrazine Formation from C h l o r - amine and Ammonia" J . Amer, Chem., S o c , J54, 1777-1782. Zaloum, R. (1973) " C h l o r i n a t i o n of Soluble R e s i d u a l Organics i n Sewage E f f l u e n t s " M. Eng, Thesis McMaster Univ. Hamilton, 178 Z i l l i c h , J , A. (19.72) " T o x i c i t y of Combined Ch l o r i n e Residuals to Freshwater F i s h " J . Wat. P o l l . Contr. 'Fed, ,-44, 212-220, Z l a t k i s , A. (1975) Personal Communication, Jan, 13, Dept, of Chemistry, Univ. of Houston. Z l a t k i s , A., L i c h t e n s t e i n , H, A, and Tishbee, A, (19J3aX "Concentration and A n a l y s i s of Trace V o l a t i l e Organics i n Gases and B i o l o g i c a l F l u i d s w i t h a New S o l i d Adsorbent" Chromatographic,- 6_, 67-70, . . . . ^ x , ... ^ . --- --• -- ~^ x x; X X x x ^ v x > x x x^. x" -et-a-1, 0-9J3E). "Concentration . and A n a l y s i s of V o l a t i l e U r i n a r y M e t a b o l i t e s " J , Chromatogr, S c i . , x x l l , 299-302. Z l a t k i s , A., Bert s c h , W. , L i c h t e n s t e i n , H, A,, Tishbee, A, ,--et-caL, (19.73c) " P r o f i l e of V o l a t i l e M e t a b o l i t e s i n Urine by Gas Chromatography - Mass Spectrometry" Ana l , Chem,,--45, 763-767, Zsolnay, A. 0-9731 "Determination of Aromatic Hydrocarbons i n Submicrogram Q u a n t i t i e s i n Aqueous Systems by Means of H i g h Performance L i q u i d Chrom- atography" Chemosphere, x2, 253-260, " - - x ^ (1974I"Determination of T o t a l Hydrocarbons i n Sea Water at the Microgram L e v e l With a Flow Calorimeter" J , Chromatogr, ,- 90, 79.-85, Zuckerman, M, M, and Molof, A, A, Q970) "High Q u a l i t y Reuse Water by Chemical- P h y s i c a l Wastewater Treatment" J , Wat, p o l l , Contr. Fed., 42, 437-456, Zweig, G.aand Sherma, J . (eds.) (1972) Handbook of Chromatography C,R,C. Pr e s s , Cleveland, V o l I , 179 APPENDIX I REFINEMENTS TO THE AQUEOUS CHLORINE-AMMONIA MODEL 1. Reaction of C h l o r i n e w i t h Water The f o l l o w i n g data i s taken from Cotton and Wi l k i n s o n (1966) and L i s t e r (1965). When a l a r g e amount of c h l o r i n e i s added to a l i t r e of water be- tween 9. 5°C and 100°C, the f o l l o w i n g e q u i l i b r i a are set up: C 1 2 ( g ) ^ 1 C 1 2 ( a q ) K = 0.062, 25°C (1) Cl„, . + H O -ass- H + + C l " + H0C1 K =4.2 x 10~ 4, 25°C (2) 2(aq) 2 This means that a saturated aqueous s o l u t i o n of c h l o r i n e at 25°C w i l l have the f o l l o w i n g composition at pH 4: T o t a l Cl 2-0.09.1 moles/1 ^ ( a q ) • ° ' ° 0 1 m [HOCl] , [C1~J = 0.090 M When l e s s than one or two grams of C l 2 i s d i s s o l v e d i n a l i t r e of water e q u i l i b r i u m (2) i s reached i n a few seconds. Thus i t can be seen that i f the t o t a l C± 2 i s l e s s than 1.0 g/1 and the pH i s greater than 4 there i s a n e g l i g i b l e amount of C l 2 ̂ a <^ present. Hypochlorous a c i d i s a weak a c i d and e x i s t s only i n s o l u t i o n . I t under- goes the f o l l o w i n g d i s s o c i a t i o n i n aqueous s o l u t i o n . HOCl + H 20 ^ H 3 0 + + 0C1~ (pale yellow) ( c o l o u r l e s s ) „ K = 2.5 x 10 @20°C a Thus i n the pH range 6.8 to 7.8 a d i l u t e aqueous s o l u t i o n of HOCl contains 75% to 25% HOCl. Below 9.5°C, C l , . forms a c r y s t a l l i n e hydrate w i t h water. HOCl can ^ \§/ o —8 e x i s t at 0 C (K = 1.5 x 10 ) i n aqueous s o l u t i o n , a Under u l t r a v i o l e t l i g h t or at high temperatures, c h l o r i n e very s l o w l y r e a c t s w i t h water according to the f o l l o w i n g equation. 180 C l 2 + H 20 ^ 2HC1 + lg0 2 2. Decompositions of HOC1 arid OCl Hypochlorite ions decompose i n aqueous s o l u t i o n according to the f o l - lowing reactions: 20C1" -kj» C10~ + C l " ' ^ 0C1~ + C10~ - k ^ C10~ + C l " ^ 2 0 C r - k r 2C1" + 0 2 ( 3 ) k ^ 10~ 6 (g-moles/l)" 1 min" 1 at 25°C^ k 2^10" 4 k 3-vl0~ 8 •-I 9 If free H0C1 i s present i n appreciable amounts, reactions 1,2 and 3 are con- siderably accelerated. Thus commercial solutions of hypochlorite usually contain a carbonate s t a b i l i z e r . C e rtain metals such as cobalt, n i c k e l and copper catalyze reaction 3 but do not a f f e c t the rate of reaction 1 0 ( L i s t e r 1965). The r e a c t i v i t i e s of H0C1 and OCl withiiriorganics are due to the o x i d i z - ing power of H0C1 and OCl . The h a l f c e l l equations are: C10~ + H 20 + 2e~ = C l " + 20H~ E° = '+0.89V H0C1 + H 3 0 + + 2e~ = C l " + 2^0 E° = +1.50V ( C l 2 + 2e~ = 2C1~) E° = +1.36V Some reaction times f o r complete oxidation of inorganics at mg/1 concentra- +2 t i o n l e v e l s are: Fe (pH <7 ~ 9), les s than one hour; H 2S (pH 7 - 10), 2 - 4 hrs; Mn + 2 (pH 7 - 9), 2 - 4 hrs; CN" (pH 8.5 - 9), % hr (White 1972). +2 -2 - The chlorine demand of Fe , S and N0 2 were determined by Taras (1950). I t should be noted that these re a c t i o n times are for free inorganics. I f the inorganics are complexed the re a c t i o n times may be considerably longer 181 i n the pH ranges c i t e d . 3. Reactions of HOG1 arid 0C1 with Ammonia Reaction Products The reaction of HOCl and 0C1 .with aqueous solutions of ammonia gives r i s e to a complex set of e q u i l i b r i a dependent on pH, time, temperature, and concentration. They are compositely referred to as the chlorine break-point reaction. Before discussing this phenomenon, a few d e f i n i t i o n s are i n order. Chlorine residual i s divided into two general c l a s s i f i c a t i o n s , free and com- bined. Free residual chlorine i s the amount of HOCl and 0C1 present ex- pressed as mg/1 01^. Combined residual chlorine i s the amount of chlorine i n the +1 oxidation state which i s chemically bound to nitrogen atoms. I t i s also expressed as mg/1 Cl^. G r i f f i n and Chamberlain (1941a,b) studied the fate of chlorine at var- ious Cl^/NH^ r a t i o s and produced what i s called the breakpoint curve. The minimum residual chlorine at pH 7 was observed at a Cl^/NH^ - N r a t i o of 10:1 by weight or 2.0/1.0 on a mole basis. Subsequent work by Isomura (1967) determined more precisely the fate of Cl^ i n aqueous NH^ systems. His re- sults show that before the breakpoint, the residual chlorine i s i n the form of chloramines. After the breakpoint, chlorine i s i n the form of free chlor- ine and NCl^. The fate of the NH^ - N during breakpoint chlorination has been a matter of controversy for some time. Mellor (1927, 1928) summarized the work prior to 1923 and presented the following equations: 1) HOCl + NH"!"«= nitrogen chloride, N H , NHo0H 4 2 4 2 2) 3NaOCl + 2NH3~N^;2f (nitrogen chloride, chloramide and chlorates)!;. Reaction (2) i s second order o v e r a l l and never complete i n the conversion of NH3 to N 2 at 15° - 25°C. I t i s accelerated^|y--Cu, Hg, Pb, Fe ( I I I ) , Co, N i , T i , Pt, Mn and Cr s a l t s . The tentative i d e n t i f i c a t i o n of the gaseous pro- duct as N̂ , became questionable when i t was observed that trace amounts of 182 n i t r i t e s and n i t r a t e s were al s o produced. Chapin (1931) when studying the e f f e c t of pH on chloramine i n formation a l s o found a gas produced at pH 5.0 which matched the 1898 d e s c r i p t i o n of N 20, but found no N 20 at pH 9.0. Fol l o w i n g the re c o r d i n g of the UV abso r p t i o n s p e c t r a of the chloramines by M e t c a l f (1942) and t h e i r c o n f i r m a t i o n by Czech et a l . (1961), the develop- ment of the OTA, DPD and amperometric t i t r a t i o n techniques f o r r e s i d u a l c h l o r i n e (APHA 1971) and the development of gas chromatographic techniques of gas a n a l y s i s , great advances were made i n the determination of the f a t e of NHg - N during breakpoint c h l o r i n a t i o n . The reported nitrogenous pro- ducts are NH 2C1, NHC1 2 and NC1 3 (Chapin, 1931; M e t c a l f , 1942; P a l i n , 1950; Isomura, 1967; P r e s s l e y et al.,,1972, 1973; Bauer and Snoeyink, 1973; Sta s i u k et a l . , 1974), and N2,N0~ + N0~ ( P a l i n , 1950; P r e s s l e y et a l . , 1972, 1973; S t a s i u k et a l . , 1974). The r e l a t i v e amounts of chloramines, N 2, N0 2 + NO^ and other p o s s i b l e products such as hydrazine depend upon many f a c t o r s which are discussed below. i ) C]"2 :^ R a t i o . I f the NH^ i s i n excess the products are dependent mainly upon pH. I f the i n i t i a l C l ^ N H ^ - N weight r a t i o , i s between 1 and 5, the major product i s NH^Cl. As the i n i t i a l CltNH^ - N r a t i o i s increased from 5 to 10 i n c r e a s i n g q u a n t i t i e s of NHC1 2 > NCl^ and f r e e c h l o r i n e appear, (Palih?j. s 1950; P r e s s l e y et a l . , 1972). Isomura (1967) al s o i n d i c a t e s that as the i n i t i a l amount of NH^ i s increased the co n c e n t r a t i o n of HOCl at the breakpoint also i n c r e a s e s . i i ) pH E f f e c t s . In the presence of excess NH^ and w i t h pH values greater than 8.5, monochloramine alone i s present. At high pH's, formation of hy- draz i n e by the Rachig s y n t h e s i s i s a l s o expected: NH 3 + NH2C1 —> N 2H 4.HC1. Dichloramine and monochloramine are present i n equal q u a n t i t i e s at pH 5. At 183 pH 4, NHCI2 predominates w h i l e NCl^ predominates below pH 2.8. The preced- i n g pH values were taken from work by P a l i n (1950), M e t c a l f (1942), Chapin (1931) and Corbett et a l . (1953). P a l i n (1950) and P r e s s l e y et a l . (1972) i n d i c a t e that at C1:N r a t i o s l a r g e enough to produce f r e e r e s i d u a l c h l o r i n e , the formation of NO^ + N0 2 i s favoured by higher pH w h i l e the formation of NC l ^ i s favoured by lower pH. The r a t i o of NC1 3 - N to N0~ + N0~ - N i s 5.7 at pH 6.0, 1.0 at pH 6.4, 0.11 at pH 7.0, and 0.02 at pH 8.0.; ̂ AthpH 7, NH^ - N i s 95-99% o x i d i z e d t o N 2 . Reaction Rates K i n e t i c s t u d i e s of the v a r i o u s r e a c t i o n s i n v o l v e d i n aqueous NH^ - C l 2 systems have been c a r r i e d out by W e i l and M o r r i s (1949a,b), and reviewed by Mo r r i s (1965). The f o l l o w i n g data are presented: 1) NH 3 + HOCl > NH2C1 + H 20; k r e a c t i o n order o v e r a l l i s 2, f i r s t o o r d e r i n NH 3 and HOCl and pH 6 4 dependent k = 8 x 10 at pH 8, 1 x 10 at pH 4 and pH 12 k = 9.7 x 10 8 exp(-3000/RT) 1 mole" 1 s e c - 1 2) NH 2C1 + HOCl -—> NHC1 2 + H 20; k 2 reactionoorder o v e r a l l i s 2, f i r s t order i n NH 2C1, HOCl; i t e x h i b i t s general a c i d c a t a l y s i s and i s a l s o c a t a l y z e d by C l . k 2 =7.6 x 10 7 exp(-7300/RT) 1 m o l " 1 s e c " 1 k 2' =3.4 x 10'2'2 (1 + 153 x lO - 4 CH*1+ 2 x 10 2 (HOAc^)) 1 m ol" 1 s e c " 1 at 25°C. 3) 2NH2C1 ^NHC1 2 + NH 3; k 3 r e a c t i o n order i s 2, second order i n NH 2C1 k 3 = 80 exp(-4300/RT) 1 m o l " 1 s e c " 1 k 3 !" = 5.6 x 10~ 2(1 + 1.3 x 1 0 5 CH+J+ 35 CHOAcj 1 m o l - 1 sec l a ) NH„C1 + H o0 — * HOCl + NH ; k, 2 2 3 l a -1 184 r e a c t i o n order o v e r a l l i s 2, f i r s t order i n NH^Cl k l a = 8.7 x I 0 7 exp(-17,000/RT) s e c " 1 Gupta et a l . (1972) measured the r a t e of the breakpoint r e a c t i o n at a c i d pH Vs. With equal 0.0125 M, C l 2 and NH^ c o n c e n t r a t i o n s the r a t e was f i r s t order i n each r e a c t a n t and second order o v e r a l l . The k , ranged from 0.15 to 1.1 1 obs mole 1 sec 1 between pH 3.5 and 4.5. The r a t e at pH >5 was too f a s t to meas- ure. They do not s t a t e whether r e s i d u a l ammonia was observed at pH 5 as was found by other i n v e s t i g a t o r s . Mechanism M o r r i s (1965) favours the n o n i o n i c mechanism f o r the r e a c t i o n of c h l o r i n e and amines to form chloramines i n aqueous s o l u t i o n w h i l e Soper (Mauger et a l . , 1946; Edmond et a l . , 1949; Hurst et a l . , 1949; Corbett e t . a l . , 1953) favours the i o n i c mechanism. W e i l and M o r r i s (1949a) found t h a t i o n i c s t r e n g t h has no e f f e c t upon the r e a c t i o n NH 3 + HOCl —» NH 2C1 + H 20 at pH -1.9. Gupta et a l . (1972) observed a negative e f f e c t of sulphate and acetate on the o v e r a l l system at pH 3 - 4. U n f o r t u n a t e l y the two mechanisms are not d i s t i n g u i s h a b l e s i n c e although i n c r e a s i n g i o n i c s t r e n g t h should de- crease only the r a t e of the i o n i c r e a c t i o n , c o n s i d e r a t i o n of the e f f e c t of i o n i c s t r e n g t h on the h y d r o l y s i s of NH^ and HOCl at any given pH w i l l y i e l d i d e n t i c a l r a t e expressions. Both mechanisms are compatible w i t h g e n e r a l a c i d c a t a l y s i s . While the formation of chloramines has been m e c h a n i s t i c a l l y d e s c r i b e d the r e a c t i o n s l e a d i n g to the formation of N 2 and NO^ and N0 2 have not. The most l i k e l y mechanism of N 2 formation would i n v o l v e an hydrazine i n t e r m e d i a t e followed by o x i d a t i v e degradation. The formation of N0.j + N0 2 probably i n v o l v e s the i n t e r m e d i a t e p r o d u c t i o n of an hydroxylamine and/or NO o r N 20 (Cahn and P o w e l l , 1953; A u d r i e t h and Rowe, 1955; Anbar and Y a g i l , 1962; Y a g i l and Anbar, 1962). 185 C h l o r i n a t e d hydrazines, p o s s i b l y due to t h e i r i n s t a b i l i t y , haveivnot been detected i n aqueous NH^ - Cl^ systems. Therefore i n cons i d e r i n g the i n t e r - a c t i o n s of c h l o r i n e w i t h sewage, only the i n t e r a c t i o n s of chloramines w i l l be considered. 4. Thermodynamic P r o p e r t i e s of Chloramines J o l l y (1956) has estimated the f o l l o w i n g a c i d i t y data from homolgous s e r i e s . pK of NH 0C1 -v 14 + 2 a 2 — pk of NHCl 0-v 7 + 3 a 2 - He measured the f o l l o w i n g o x i d a t i o n p o t e n t i a l s : +1.48 v +1.39 v +1.37 v +0.81 v +0081 v Chloramines are decomposed by a c t i v a t e d carbon, (Bauer and Snoeyink, 1973), as w e l l as by the common i n o r g a n i c reducing agents. 1 M H or 1 M NH,+[NC1, 1 M OH NH 2C1 1 M NH 3 NHCl" C l C l " C l " C l " C l " E o E" = E" = Appendix I I Summary of Chromatograms of E f f l u e n t Samples Sample Date Experiment & E x t r a c t i o n Method C h l o r i n e Dosages (mg/1) P r e l i m i n a r y Separation Method F r a c t i o n T o t a l # # of New Peaks of Peaks Due to C h l o r i n a t i o n EC FID EC FID T o t a l 25/06/73 E-2; SE 03/07/73 E-2; SE 10/12/73 E-3-d ; XAD 17/12/73 E-4; XAD 28/01/74 E-5; SE XAD XAD S- l a SF, XAD 18/03/74 S-l-6 XAD S-2 Cl-2 29/04/74 Cl - 1 XAD Cl-4 Cl-2 08/07/74 Cl-4 XAD Cl-2 19/11/74 Cl-5 XAD Cl-2 18/12/74 Cl-2 XAD 20/01/75 Cl-7 XAD Cl-2 0 0 0 0 0 0 106 0,0,106 0 15 100 200 0 12 103 0 25 0 12 0 15 100 200 0 12 120 F F F F,SG F,ASB F,ASB F,ASB F,AS F,ASB F,AS P(M) So P(MC) So P(MAH) So 1 2 3 N + B WA SA 33 34 18 50 17 50 15 38 42 34 20 52 38 21 51 36 8 17 3 3 } N + B 47 47 18 4 WA 36 32 SA 20 7 i 3 1 N + B 48 — 18 — WA 35 — 3* SA 20 — — N + B 53 60 17 4 A 20 10 2 0 N + B 52 50 13 4 WA 37 31 12 4 SA 20 7 1 0 N + B 50 61 17 5 A 19 10 3 0 17 18 4? 17 2 17 2? 17 3 Appendix I I cont'd. 8/03/75 Cl-7 XAD Cl-3 Cl-2 0 12 120 P l a n t TEC F,AS N + B A 53 63 22 9 18 2 5 0 18 2 •P=3QO0 Yes S-3 JL-3000 Ab b r e v i a t i o n s A - A c i d i c F r a c t i o n AS - A c i d i t y Separation ASB - A c i d i t y Separation w i t h Bicarbonate Step F - F i l t r a t i o n M - Methanol, Soxhlet MC - Methanol, Chloroform Soxhlet MAH - Methanol, Acetone, Hexane Soxhlet N + B - N e u t r a l and B a s i c F r a c t i o n P - P a r t i c u l a t e F r a c t i o n SA - Strong A c i d F r a c t i o n SE - Solvent E x t r a c t i o n SG - S i l i c a Gel Column So - Sol u b l e F r a c t i o n TLC - Thin Layer Chromatography XAD - XAD-2 Resin oo 188 Appendix III CG Conditions for Figures Instrument/Column Detector/ Temperature Carrier Gas Flow Atten/Pulse (EC) Program 4.2 HP 5750 EC; 64x10; 5/S 50%C/5 min,10° 65 ml/min 5% DC-11 on min, 300°/30 chromosorb W min (HP) 80-100 mesh 220°C isothermal 4.3 HP 5750 EC; 32x10; 5̂ S 70 ml/min, 3% SE 30 on chrom W (HP) 80-100 mesh 4.4 Identical to 4. 2 4.5 HP 5750 3% OV-101 on chrom W (HP) 80-100 mesh EC; 64x10;50//S 30°C/10 min 6%/min, 200°/ 20 min 65 ml/min 4.6 HP 5750 Various As in 4.5 As in 4.5 except OV-l 100°C/20 min 6%/min,260° /20 min As in 4.5 4.7 HP 5750 Various As in 4.5 4.8 HP 5750 Various FID; 32x10 As in 4.5 65 ml/min 4.9 As in 4.8 4.10 HP 5750 EC; 64x10; 48°C/10 min, 70 ml/min 6% SE-30, 50^ 10°/min,208° 4% OV-210 on hold Gas Chrom Q, 100-120 mesh 4.11 As in 4.10 48°C/6 min, 8°/ min, 208° hold 70 ml/min 4.13 HP 5750 As in 4.7 4.14 3% 0V-10/on Chrom W (HP), 80-100 mesh As in 4.8 4.15 As in 4.13 4.16 As in 4.14 4.17 As in 4.13 4.18 As i n 4.14 70 ml/min 4.19 HP 5750 3% EC: 64x10; 29°/10 min; 6° /min, 219°/20 min OV-101 on 50^S 75 ml/min Chrom W (HP) 80-100 mesh • 4.20 As in 4.19 FID 32x10 As in 4.19 4.21 As in 4.19 4.22 As in 4.20 4.23 Microtek Tracor 310 84°/4 min 10°/min,200°/ 20 min (Tracor 222) 8x10 4.24 As in 4.23 4.25 As in 4.23 Tracor 310 Various As in 4.23 189 Appendix I I I Cont'd. Fi g u r e Instrument/Column Detector/ Temperature C a r r i e r Gas Flow Atten/Pulse (EC) Program 4.27 Pye 104 MS-12 As i n d i c a t e d 3 x l 5 8 A f u l l s c a l e 4.29 As i n 4.19 4.30 F i n n 3000, as i n 4.10 F-3000 60°/2.5 min, 10°/min, 200° 32 p s i 4.31 As i n 4.30 4.32 As i n 4.30 80°/2.5 min, 10°/min,200° 32 p s i 4.33 As i n 4.30 190 APPENDIX IV MASS SPECTRA OF COMPOUNDS POSITIVELY IDENTIFIED IN CHLORINATED PRIMARY EFFLUENT T ' I 1 I 1 45 55 75 I " t 1 l 105 CLI202 11-9 135 1 » ' I !65 185 JULMI , I n i 60 CLI202 19-17 70 T >—*T — 1 r—— 5 r*-^ T 100 k 45 55 120 CLI202 23-25 75 95 ^JJ—p 125 ,— 8—llliitL-^-i-45 55 -» { 1 1 g 1 p 75 CLI202 31-29 i+LL-y 1 11p i , 95 T " — ' 1  r 1 125 4JLL 4 4 54 74 104 CLI202 46-44 (24 191 m 80 l i j i g i i i i i ..h r—r - tu+ C L I 2 0 2 8 1 - 5 9 r - l 70 100 feo 1 « 1 r*—t r 150 C L I 2 0 2 6 2 - 6 0 U — , J - J 50 T - ^ V 80 i — t •!<! p 100 i-U 120 I; 11 I I |l 11 i ^ 40 50 l»l l l i 111 * ) • • -|» J ( I C L I 2 0 2 6 6 - 6 4 i 80 100 i — r — r ^ - r 120 ho ' 1 1 150 C L I 2 0 2 7 6 - 7 4 A | 1 •"t N' 1 43 53 73 93 I ' I • I ' I ' I • I 123 C L I 2 0 2 8 5 - 8 0 45 55 75 105 i — • — r n l i j n i i . i i I I II 8 i 111li11 .. ,i I I i ! j j III111.. 11 75 C L I 2 0 2 9 8 - 9 5 L_I— , . . i i —. i—L*i 45 55 35 I, ...I 45 55 u,—1_ i4 C L I 2 0 2 1 0 6 - 1 0 4 . . I.tilli. "» T ' 1 • "» | 95 IE LLLJ j l l C L I 2 0 2 110-108 J _ j l 4-50 60 80 C L I 2 0 2 II7--II3 44 54 74 104 154 i 1111111 C L I 2 0 2 133-131 nllji i ^ - . ^ — L i 4 — « — , lt»litt 60 70 100 - ! J 'l 140 I V"v f ' l — I— r 4 •j—r"» 84 C L I 2 0 2 2 0 4 - 2 0 2 04 f A * 193 4 — L ft,. ,1 l l , ll • j — • — r - l — i 1 »i |i "i»—j— 50 60 100 c - M A L L 39-42 *± 1J , ^ — , — r -I I I — r 75 j — . — M ! i— I , IL,—1 LL 1 C - H A L L 5 1 - 4 9 105 ' " | 5 1 ' " ' ' ' ) ; i i i i i C - H A L L 59-57 i — 1 r 105 ' ' ; . ' I f-Ll-r- J .1. 60 70 1 ' 1E0" 1 « -—1—~* r C - H A L L 6 9 - 6 7 T r- i — ^ ^ - i — 1 — » 4 -— _ i — { i n 130 •» I » Q r f i l t [III II 8 1 | l M l » • 11 .1 •[ C - H A L L 7 J - 6 9 50 60 90 LL| j i ll 50 1  r » » 1 1 4 tb , — L i l l l i — f — ! < — r 120 C - H A L L 8 1 - 7 7 70 HI r 100 T j 1 r" r 120 19.4 C-HALL 69-85 ^ • i 1 '*> { \—'—| 'i " j * i 1 1 r*-'^T 70 80 100 130 150 - C-HALL 111-108 f1 ' r — | — r i ro so • 1 — r 100 -UL lilt. . . t i l l ! 1 r**"f I i IT i • t L ) i l I f I I \111 L U C - H A L L 114-112 4 50 60 7 100 130 ' 155 C-HALL 152-154 ~< T 1 1 • 1 ^ r.—r J r 5 0 6 0 -j—L,—|—^—j—r-~-4rj—I 100 120 140 C-HALL 159-157 70 4 ~i—«—r "80 i—L*—r~~>—1—»—r1 > 100 130 i—«—r —r 160 L u _ J C-HALL 164-162 -j T 60 70 j — 4 1 100 1 120 "1 140 195 C-HALL 178-176 196 APPENDIX V MASS SPECTRA OF UNIDENTIFIED COMPONENTS OF CHLORINATED PRIMARY EFFLUENT The spectra are organized by f i l e names (see Table 4.14) . They are presented i n ascending order of spectrum number within a f i l e . The i n t e r - p r e t a t i o n of the s t r u c t u r a l features of each spectrum i s according to McLafferty (1973) and h i s terminology i s used!. Symbols and Abbreviations used are: m/e - mass to charge r a t i o of a mass s p e c t r a l peak ' Int. - r e l a t i v e i n t e n s i t y of the s p e c i f i e d peak S t r . Feat. - s t r u c t u r a l features of the compound suggested by i t s mass spectrum F i l e CL1202 Spectrum Number Spectrum and Interpretation 8 - 5 m/e 92 91 74 73 71 70 69 58 57 56 55 54 53 51 50 46 45 44 43 42 41 40 39 38 Int. 3 7 10 4 72 100 87 45 92 96 99 72 98 52 42 92 98 99 92 96 87 99 93 85 Base W; Parent 120;; S t r . Feat.- C y c l i c amine, Methyl?. 14 - 15 • m/e 14 - 15 m/e 100 89 87 85 79 71 70 69 59 58 57 56 55 45 43 42 41 39 Int. 3 1 1 8 1 1 1 9 1 15 29 8 9 61 100 26 62 44 Base 43; Parent ? ; S t r . Feat.- Thiophene(dihydro), Methyl. 24 - 23 m/e 127 125 109 99 86 82 81 61 60 59 49 47 43 37 36 35 Int. 7 11 5 5 2 4 16 2 4 7 5 22 100 9 4 28 Base 43; Parent ? ; S t r . Feat.- Propyl, Dichloro, Alkane. 26 - 24 m/e 123 121 113 88 86 85 84 77 71 70 69 57 56 55- 45 43 42 41 40 39 38 37 36 35 Int. 1 1 1 1 1 6 2 2 5 6 16 28 51 37 8 71 41 100 10 32 1 1 2 3 Base 41; Parent ? ; S t r . Feat.- Alkenyl, Chloroalkane. 40 - 38 m/e 87 85 75 72 71 58 57 56 55 45 43 42 41 40 39 Int. 11 1 5 2 3 3 100 11 9 85 19 18 10 97 33 Base 41; Parent 87? ; S t r . Feat.- 2-nButoxyethanol; ONO ?. 56 - 51 m/e 121 120 119 106 105 104 103 91 79 78 77 65 63 57 51 50 41 39 Int. 2 32 8 8 100 4 9 20 13 11 22 11 12 8 24 11 28 49 Base 105; Parent 120; S t r . Feat.- Methyl-ethylbenzene or n-Propylbenzene. 115 - 113 m/e 120 109 108 95 93 91 89 87 81 79 77 75 67 57 55 45 43 41 39 Int. 2 5 8 11 2 2 3 3 10 3 8 10 9 50 12 100 32 82 38 Base 45; Parent 7 ; S t r . Feat.- A l k y l , Alkenyl, EtO, Aromatic(weak). 124 - 122 m/e 133 131 123 119 118 103 97 95 94 91 85 83 79 77 69 68 67 66 65 55 48 45 43 41 39 35 Int. 2 4 2 11 12 4 8 10 27 20 21 50 15 21 32 14 28 16 25 25 22 20 47 100 76 3 Base 41; Parent ? ; S t r . Feat.- Alkenyl, Aromatic(high, weak), Thiophene(weak). m/e 180 178 177 176 175 160 148 145 143 141 133 121 119 117 105 95 93 91 79 77 59 57 55 53 51 Int. 2 7 3 11 3 3 2 4 8 18 10 12 6 9 17 20 14 17 12 32 23 15 18 16 25 m/e 50 45 43 41 39 Int. 8 28 100 55 25 Base 43(77); Parent 176; S t r . Feat.- Aromatic(high), OH, PhCH 2, Dichloro. z m/e 160 145 139 130 129 128 124 119 118 115 104 93 91 90 81 79 78 77 76 75 68 67 66 65 64 63 Int. 2 8 13 8 6 7 8 10 86 5 5 8 71 14 8 6 7 6 6 6 16 58 18 30 33 37 m/e 53 52 51 50 43 41 40 39 38 37 Int. 49 45 35 26 95 68 30 100 37 20 Base 39(118); Parent 160? ; S t r . Feat.- Indazole or Benzimidazole, Diene, Alkyne or Cyclo- alkene, Aromatic(high and low) , A l k y l side chain. m/e 159 156 155 141 128 115 95 91 89 84 81 79 77 71 69 68 67 59 55 53 51 43 42 41 39 Int. 3 12 5 13 7 7 7 6 4 7 9 8 8 28 12 10 13 51 36 12 11 100 20 64 47 Base 43; Parent 156? ; S t r . Feat.-"Alkenyl, Aromatic(weak) , Exo-sulphur aromatic(weak) , Methyl, Carbonyl?. m/e 152 139 121 111 105 97 95 94 93 91 84 83 81 79 77 75 70 69 67 57 55 53 51 43 41 39 Int. 1 1 7 2 2 8 5 4 5 4 5 15 6 10 7 6 18 29 19 36 57 12 2 87 100 32 Base 41; Parent ? ; S t r . Feat.- Alkenyl, Aromatic(weak). m/e 123 117 109 101 95 89 87 85 79 77 75 73 71 59 58 57 56 55 45 44 43 41 39 Int. 1 1 2 2 2 7 5 5 2 2 8 3 3 16 7 32 8 8 100 17 45 49 15 Base 45; Parent ? ; S t r . Feat.- Alkenyl, A l k y l ( alcohol, ether, a l k y l - s i l i c o n , t h i a - cycloalkane or substituted unsaturated sulphur compound). m/e 170 169 155 142 141 129 128 115 105 95 93 91 81 79 77 71 69 67 65 63 59 57 55 53 51 50 43 441 Int. 10 5 7 3 8 3 7 15 8 7 5 15 11 12 18 10 13 15 12 12 17 19 30 18 19 10 100 56 Base 43; Parent 170; S t r . Feat.- A l k y l , Aromatic, Aldehyde?. m/e 170 156 145 1351103 95 94 93 79 73.71 67 59 55 53 45 44 43 442441 39 Int. 1 1 2 1 6 2 2 2 2 1 3 2 8 4 3 1 4 100 8 10 7 Base 43; Parent ? ; S t r . Feat.- Glycerol acetate l i k e . F i l e CL1202 183 - 181 m/e 194 182 171 170 164 163 155 153 151 135 133 124 116 115 104 99 93 92 91 89 81 77 76 75 74 Int. 1 2 1 2 8 78 9 13 33 9 9 6 11 7 16 16 8 18 16 31 12 47 30 16 21 m/e 71 63 57 55 51 50 45 44 43 441339 Int. 21 27 20 18 22 40 10 20 100 35 40 Base 43(163); Parent 163(164); S t r . Feat.- Dimethyl Phthalate, Aromatic(low), A l k y l . 187 - 184 194 - 192 199 197 215 - 213 219 - 216 230 - 228 236 - 233 m/e 147 146 120 119 118 95 94 93 92 91 90 89 83 79 77 71 69 65 63 60 59 58 57 55 53 51 45 43 41 Int. 1 7 3 3 17 77 6 5 5 7 9 8 3 6 3 11 14 10 6 12 51 13 12 24 10 6 16 100 58 Base 43; Parent 146? ; S t r . Feat.- A l k y l , Aromatic(weak), Thiophene(weak)?. m/e 146 119 118 117 99 92 91 90 77 76 75 74 65 64 63 62 58 52 51 50 41 40 39 38 37 Int. 6 8 100 9 6 7 82 25 4 P8 10 4 18 48 40 15 10 27 16 18 22 12 46 32 20 Base 118; Parent 118(146); S t r . Feat.- Benzofuran, Benzimidazole, Indazole. m/e 135 120 111 105 98 97 93 84 83 82 70 69 68 67 57 56 55 43 42 41 339- Int. 2 7 2 2 2 12 3 8 20 7 20 31 12 7 31 30 67 42 22 100 22 Base 41; Parent ? ; S t r . Feat.- Alkenyl. m/e 184 175 139 125 119 111 99 97 95 93 91 89 83 79 77 75 71 70 69 67 57 55 53 51 45 43 41 39 Int. 3 2 1 1 2 2 16 8 7 7 7 7 13 4 2 3 13 10 20 8 38 45 8 3 48 98 100 23 Base 41; Parent ? ; S t r . Feat.- Alkenyl, A l k y l , Thiophene?. m/e 185 171 157 1431124 115 105 97 87 85 83 77 74 73 71 69 61 60 59 57 55 45 43 41 39 Int. 3 1 1 1 7 3 4 3 . 6 5 7 6 4 42 5 14 8 60 10 27 55 12 73 100 22 Base 41(60); Parent 185; S t r . Feat.- Alkenyl, A l k y l , 'Retro-Diels-Alder'. m/e 180 179 149 135 134 125 119 117 115 107 97 93 83 77 71 70 69 57 56 55 45 43 41 39 Int. 2 21 1 18 2 1 2 2 3 12 10 7 13 6 5 10 24 42 22 53 15 75 100 18 Base 41; Parent 179(180); S t r . Feat.- Alkenyl, A l k y l , OCO,or CS, CO or.N 2. m/e 221 220 219 218 184 183 182 181 166 165 155 154 153 152 142 140 115 114 113 112 102 101 99 Int. 1 17 8 52 6 43 9 13 8 39 8 8 23 37 16 49 18 20 10 57 8 6 8 m/e 91 89 78 77 76 75 74 73 65 63 58 52 51 50 39 Int. 32 20 34 87 26 32 18 32 33 51 22 18 100 41 52 Base 51; Parent 218(219); S t r . Feat.- Aromatic(high and low), Ph, Monochloro, OH?, pos s i b l y i s a Chlorophenyl-benzyl a l c o h o l . m/e 213 209 185 171 157 143 129 115 111 101 98 97 87 85 84 83 74 73 72 71 70 69 61 60 59 57 55 Int. 2 1 1 1 1 1 8 4 2 3 4 8 11 10 6 13 8 77 8 22 8 32 20 100 12 63 83 m/e 45 43 42 41 Int. 28 71 33 72 Base 60; Parent ? ; S t r . Feat.- Alkenyl, A l k y l , A l i p h a t i c acid or ester. m/e 133 127 125 124 123 121 119 115 114 112 111 110 109 107 98 97 96 95 93 91 84 83 82 81 79 77 Int. 1 1 1 1 2 1 1 1 2 1 3 3 3 1 5 12 8 10 2 2 8 22 10 22 12 5 m/e 73 71 70 69 68 67 60 57 56 55 54 53 45 43 42 41 39 Int. 12 8 12 42 18 41 27 27 23 100 32 15 22 79 23 93 29 Base 55(41); Parent ? ; S t r . Feat.- Alkenyl, A l k y l . m/e 292 290 289 288 220 219 218 202 195 191 189 182 162 155 154 148 147 146 145 143 126 116 115 Int. 23 62 15 54 31 15 92 23 15 23 15 38 23 23 15 38 15 46 38 38 15 23 85 m/e 114 111 110 109 105 99 96 95 86 83 82 81 73 71 69 68 67 63 62 61 60 52 51 38 Int. 46 38 23 85 38 23323 38 77 15 23 46 46 61 100 31 31 77 31 31 46 15 84 15 Base 69; Parent 288; S t r . Feat.- T r i c h l o r o , Exo-sulphur aromatic, Diphenyl thio-ether?. m/e 201 200 183 140 130 128 126 117 116 114 112 109 103 99 98 95 88 86 85 75 73 72 71 70 69 62 Int. 1 9 4 1 1 1 1 1 9 2 3 1 26 5 12 3 3 11 27 2 3 7 5 11 6 12 m/e 60 57 55 53 45 44 43 42 41 39 Int. 30 25 45 3 23 30 82 28 100 20 Base 41; Parent 200(201); S t r . Feat.- Alkenyl, A l k y l , Acid. m/e 237 160 149 143 141 139 131 126 114 105 104 99 98 96 95 89 88 85 83 77 75 74 71 70 69 67 59 Int. 4 4 4 4 4 10 4 4 32 15 10 16568 5 8 12 8 10 12 18 10 100 28 22 38 12 18 m/e 57 56 55 45 44 43 42 41 39 Int. 50 30 58 85 22 91 37 91 22 Base 74; Parent ? ; S t r . Feat.- Alkenyl, A l k y l , Methyl ester?. m/e 268 267 237 215 208 198 190 189 175 161 159 151 147 137 135 133 131 119 117 114 107 103 92 Int. 1 7 1 1 1 1 3 1 1 3 3 1 2 6 12 4 4 3 3 3 5 7 3 m/e 89 87 78 77 73 71 59 57 45 43 41 39 Int. 16 8 8 18 3 8 27 28 100 22 15 10 Base 45; Parent ? ; S t r . Feat.- A l k y K S i , S or O) , Aromatic (weak) . F i l e CL1202 424 - 411 m/e 256 227 168 167 160 150 149 142 137 132 126 124 122 115 114 113 112 104 99 88 87 86 85 83 77 Int. 1 1 1 10 1 7 69 2 3 2 2 1 2 1 16 3 4 16 4 5 3 4 3 6 5 m/e 76 74 71 70 69 65 58 57 56 55 50 45 44 43 41 39 Int. 7 100 16 26 12 3 5 59 30 45 2 14 16 83 94 17 Base 74;- Parent ? ; S t r . Feat.- A l k y l , Alkenyl, Phthalate ester?. F i l e C-HALL 41 - 39 m/e 123 122 121 112 98 90 84 83 82 80 79 70 69 68 58 57 56 55 54 53 45 44 43 42 41 Int. 2 41 18 1 1 1 1 1 1 1 4 18 >2 1 2-100 20 12 1 1 1 2 10 7 46 Base 57; Parent 122? ; S t r . F e a t A l k e n y l , t-Butyl?. 64-61 - m/e 144 143 142 140 136 134 125 123 121 120 119 111 95 91 85 84 83 82 81 80 73 72 69 67 57 43 41 Int. 1 1 6 8 6 18 1 4 27 8. 38 12 6 62 4 20 10 17 100 32 32 32 19 14 22 85 30 Base 81; Parent ? ; S t r . Feat.- A l k y l , Polyunsat or c y c l i c alcohol or ether?, Polychloro?. 94 - 91 m/e 135 134 133 120 119 118 117 116 105 104 103 91 90 89 85 82 79 78 77 71 65 63 57 51 50 43 Int. 12 28 35 7 12 9 100 45 20 3 3 20065 38 10 8 7 10 18 12 12 24 28 30 18 36 Base 117; Parent 135? ; . S t r . Feat.- A l k y l , Aromatic. 99 - 103 m/e 162 156 154 152 150 147 139 137 136 135 121 120 119 118 117 116 115 107 105 103 95 93 92 91 Int. 1 2 5 4 3 1 6 14 31 8 40 8 72 92 57 10 14 22 9 12 10 22 10 100 m/e 90 89 85 83 79 78 77 67 65 63 51 50 44 Int. 9 10 20 31 31 9 32 15 30 20 23 12 18 Base 91; Parent 156? ; S t r . Feat.- Aromatic, OH, Methyl. 101 - 99 m/e 162 161 159 147 127 125 123 111 108 104 96 94 81 73 71 70 69 68 59 57 55 54 45 43 42 41 Int. 7 4 7 10 2 4 4 11 13 2 22 2 7 18 42 8 77 12 7 18 20 7 44 65 7 100 Base 41; Parent 162? ; S t r . Feat.- Alkenyl, A l k y l ( a l c o h o l , ether or sulphur). 105 - 108 m/e 162 160 156 152 146 145 137 136 134* 133* 132 131 121* 118 117 111 99 97 86 85* 84 71* 70 Int. 35 4 4 15 62 45 25 65 92 42 33 100 41 58 36 8 29 29 64 13 35 100 79 F i l e C-HALL 105 - 108 (continued) 109 - 107 116 - 113 119 - 117 121 - 119 127 - 125 130 - 128 136 - 132 m/e 69* 57 56 55 51 44 43 41 Int. 31 80 90 35 40 35 70 7 Peaks marked with an a s t e r i s k two spectra are s i m i l a r . Base 71(131) ; Parent 162? ; (*) are not found i n spectrum 105 - 103, r e l a t i v e i n t e n s i t i e s i n the S t r . Feat.- A l k y l . m/e 160 142 141 118 115 108 106 104 95 93 91 82 80 79 77 65 58 54 53 41 Int. 10 32 29 6 8 23 9 21 26 40 50 100 3 5 4 10 17 72 18 22 Base 82; Parent 160; S t r . Feat.- Cycloalkyl?, C y c l i c ketone?, Alcohol?, Methyl. m/e 163 160 147 145 135 131 119 118 117 112 109 97 87 85 83 82 79 73 71 59 58 57 55 44 43 41 Int . 8 28 13 33 13 20 24 40 30 10 7 10 10 100 93 20 10 28 22 28 50 21 30 10 32 40 Base 85; Parent 163? ; S t r . Feat.- Cycloalkanol, Propyl, Sulphide?. m/e Int. m/e Int. 187 174 173 159 152 150 140 139 138 132 124 120 118 108 107 92 91 85 79 78 68 67 65 64 63 5 1 6 2 28 2 18 4 4 42 10 9 60 100 3 2 2 12 36 18 5 2 1 1 1 2 53 52 51 50 45 21 8 7 2 10 Base.91; Parent S t r . Feat.- Cycloalkene, diene.or alkyne, Alkyl-Ph.?. m/e 174 173 159 132 130 125 120 119 118 104 91 90 78 76 75 71 64 63 62 52 50 Int. 2 1 4 2 1 1 3 4 100 6 20 8 1 2 1 10 18 10 2 8 2 Base 118; Parent ? ; S t r . Feat.- Benzimidazole, Indazole or Benzofuran. m/e Int m/e Int. 190 188 186 184 176 175 171 170 169 161 147 142 141 134 133 113 111 103 98 87 85 83 72 70 1 1 1 1 12 2 5 27 7 4 7 5 10 12 100 2 6 2 2 7 60 62 1 1 57 55 48 38 10 11 Base 133; Parent 176? ; S t r . Feat.- Alkyl-trimethylbenzene, Dichlorocarbene?, Butyl?. m/e 173 160 158 157 156 148 147 145 141 121 119 115 91 89 87 71 57 56 55 45 43 41 Int. 3 4 4 4 31 7 14 6 33 22 13 6 8 13 25 33 50 30 10 20 100 30 Base 43; Parent 156? ; S t r . Feat.- A l k y l ( a l c o h o l , ether, S i or S). m/e 159 157 156 155 153 152 142 141 128 115 85 77 76 75 64 63 58 57 51 50 Int. 9 12 100 32 13 11 10 83 12 14 20 6 11 6 5 6 5 8 4 1 Base 156: Parent 156? ; S t r . Feat.- Bicyclo aromatic, Methyl, 1,3 or 2,7 Dimethylnapthalene. to o m/e 182 168 167 154 153 152 140 125 113 112 111 98 97 84 83 82 70 69 68 57 56 55 43 42 41 Int. 1 13 8 2 4 5 3 2 2 5 10 10 26 25 47 20 57 73 22 49 73 95 100 32 95 Base 43; Parent ? ; S t r . Feat.- Alkenyl. m/e 168 150 135 133 123 107 91 85 82 81 69 59 58 57 53 41 Int. 33 24 42 11 9 21 11 100 10 10 8 11 10 20 8 18 Base 85; Parent 168? ; S t r . Feat.- Alkenyl, Thiophene?, Alcohol, Methyl, Carbonyl. m/e 171 170 169 156 155 154 153 152 137 127 110 109 99 98 97 95 87 83 82 81 74 71 70 69 67 59 Int. 7 50 8 3 41 4 10 8 5 3 8 7 9 100 15 18 10 28 14 16 18 13 25220 27 28 m/e 58 57 55 53 41 Int. 13 16 30 8 60 Base 98; Parent 170? ; Str. Feat.- Alkenyl, C y c l i c ether or alcohol, contains spectrum of .1,4,5-Trimethylnapthalene. m/e 208 207 206 192 191 189 187 184 Hi81 169 155 153 150 138 137 135 133 131 125 121 120 117 111 Int. 9 9 13 13 88 13 18 56 13 22 32 20 20 37 28 23 23 37 22 45 100 28 22 m/e 109 108 107 105 95 93 92 91 88 84 81 79 78 77 67 65 59 58 55 53 52 45 43 41 Int. 22 13 28 28 33236327 45 12 12 37 19 12 38 37 22 31 40 37 10 5 19 100 72 Base 43(120) ; Parent 206? ; S t r . Feat.- Diene or cycloalkene, Aromatic (high)), OH?. m/e 209 207 204 189 184 169 161 155 151 150 149 138 135 121 119 111 109 107 95 93 91 85 81 79 78 Int. 2 2 2 2 10 10 5 19 24 30 11 7 42 12 18 13 18 23 60 21 8 8 30 18 5 m/e 77 71 69 67 65 57 55 53 45 43 41 Int. 8 11 11 30 7 8 28 14 20 100 68 Base 43; Parent ? ; S t r . Feat.- s i m i l a r to 167 - 166, contains spectrum of Cedrol. m/e 224 209 196 181 161 159 151 150 149 138 135 122 119 109 108 107 99 96 95 91 81 73 72 69 67 Int. 11 8 8 20 8 8 20 35 11 11 98 12 8 14 14 19 30 11 100 21 7 7 7 26 10 m/e 57 55 41 Int. 10\ 7 57 Base 95; Parent 224? ; S t r . Feat.- Diene or cycloalkene, Propyl, C y c l i c ketone. m/e 185 184 183 182 177 169 160 157 154 153 152 141 130 128 118 117 100 91 90 87 85 76 75 74 64 Int. 6 40 6 40 6 70 4 6 8 16 3 6 2 3 52 3 3 13 3 5 100 7 3 10 13 F i l e C-HALL 172 - 170 m/e 63 59 58 56 52 51 (continued) Int. 8 28 36 10 3 7 Base 85; Parent ? ; S t r . Feat.- fQyfcllJi'c<&x-.JaU'cdfroUTi 173 - 172 m/e 209 153 137 125 124 111 110 109 97 96 95 "87 83 82 81 74 71 70 69 68 67 59 58 57 56 55 44 43 41 Int. 3 8 8 1 5 3 3 4 10 20 11 7 20 31 18 11 38 13 23 22 21 27 38 51 17 41 22 100 52 Base 43; Parent ? ; S t r . Feat.- Cycloalkenyl(alcohol, S i or S), A l k y l , Carbonyl?. 176 - 174 m/e 169 155 120 111 98 83 73 72 71 69 56 55 43 41 Int. 5 1 1 1 1 1 1 5 100 7 5 3 62 12 Base 71; Parent ? ; S t r . Feat.- Similar to 2-Hydroxy-3-methyltetrahydrofuran. 177 - 176 m/e 222 204 189 162 161 147 138 137 134 125 122 121 120 119 117 109 107 105 104 98 95 93 92 91 83 Int. 23 17 17 17 35 23 78 30 41 35 23 36 36 23 30 41 60 41 23 41 39 60 23 23 35 m/e 82 81 80 79 77 68 67 65 59 54 53 51 50 Int. 35 100 23 48 30 18 71 30 60 23 12 6 42 Base 81; Parent 222? ; S t r . Feat.- Aromatic, Diene or cycloalkene, possibly Methyl ester of an aromatic acid with an ortho hydroxyl. (177 - 176) - m/e 222 204 189 161 147 138 137 132 125 122 121 120 119 109 108 107 98 95 94993 83 82 81 80 79 67 (178 - 177) Int. 31 23 23 46 15 100 40 15 48 31 47 47 31 53 22 78 55 55 23 55 30 30 100 30 60 70 m/e 65 57 53 50 Int. 39 78 15 55 Base 81(138); Parent 222? ; S t r . Feat.- Similar to 177 - 176 except that m/e 77, 91, 92, 104 and 105 are missing. 187 - 185 m/e 293 237 220 219 216 215 198 195 184 183 180 179 169 165 159 138 137 109 107 82 81 78 77 59 54 Int. 4 31 3 14 5 35 5 5 9 8 20 9 12 134 38 10 95 13 8 11 20 41 52 100 5 Base 59; Parent ? ; S t r . Feat.- Aromatic, S i l i c o n , Septum bleed peak. 190 i 189 m/e 196 146 124 111 110 99 98 97 96 95 84 83 82 80 74 71 69 68 67 57 56 55 44 43 41 Int. 3 1 4 8 5 10 8 18 26 13 8 28 30 7 13 18 31 28 29 92 25 64 22 100 91 Base 43; Parent 196? ; S t r . Feat.- C y c l i c alcohol or ether. K5 o F i l e C-HALL 192 - 190 m/e :-253 244 230 229 197 196 195 181 175 173 155 135 131 119 107 99 92 91 Int. 7 18 9 52 8 42 41 13 48 22 11 13 11 21 8 100 5 17 Base 99; Parent ? ; S t r . Feat.- Alkylsulphur. 195 - 193 m/e 237 221 219 215 210 198 187 186 185 184 183 179 168 159 153 147 145 139 138 137 117 109 104 Int. 7 7 7 12 7 7 10 15 7 78 15 12 16 16 100 7 7 12 9 38 7 10 6 m/e 92 91 77 67 59 Int. 20 26 10 17 20 Base 153; Parent ? S t r . Feat.- S i m i l a r to 2-Methoxymethyl-3-methoxycarbonyl-5-methylfuran. 196 - 194 m/e Int. m/e Int. 237 216 215 196 195 187 184 159 153 145 140 139 137 131 125 117 116 115 112 111 109 98 97 92 2 3 3 10 5 5 23 9 32 8 5 9 18 6 7 10 10 9 10 30 8 11 38 10 91 84 83 77 71 70 69 68 65 63 57 56 55 53 51 50 45 43 41 ; 65 24 57 15 73 33 57 22 8 2 50 40 66 5 5 2 20 100 60 Base 43; Parent ? Str . Feat.- A l k y l , Alkenyl, Aromatic(weak), Alcohol or Fluoride?, iso-Propyl. 198 - 196 m/e 212 194 180 177 175 161 159 137 129 117 115 111 109 105 97 95 91 85 83 79 77 71 69 59 57 55 Int. 5 6 2 3 3 2 2 10 6 4 6 21 8 45 11 5 23 14 25 5 15 30 32 22 35 53 m/e 51 43 441 Int. 5 100 63 Base 43; Parent 212? ; S t r . Feat.- Alkenyl, s i m i l a r to 196 - 194 except m/e 105 and top end. 205 - 203 m/e 243 231 229 228 218 216 215 195 194 185 179 161 143 137 129 119 102 100 97 91 87 85 74 73 71 Int. 6 1 3 7 3 5 2 3 7 5 8 8 3 3 8 3 19 3 5 7 18 49 23 12 12 m/e 69 60 59 57 55 43 '41 Int. 16 30 15 28 28 100 37 Base 43; Parent ? ; S t r . Feat.- Alkenyl, Ester?, Amide?, Methyl?, Chloro?. 206 - 204 m/e 263 243 228 211 185 171 159 143 129 115 102 97 96 87 83 82 74 73 71 69 60 57 55 43 41 Int. 2 10 3 1 2 1 1 1 6 2 13 6 4 9 7 6 12 11 14 13 30 32 23 100 40 Base 43; Parent ? ; S t r . Feat.- S i m i l a r to 205 - 203 except m/e 161, 179, 194, 195 and 216. 208 - 206 m/e 237 230 229 227 226 219 216 215 202 177 149 137 114 52 Int. 7 100 28 13 21 7 10 62 10 7 38 24 13 10 Base 230; Parent 230? ; S t r . Feat.- P o l y c y c l i c aromatic hydrocarbon, Methyl?. ho o F i l e C-HALL 209 - 208 m/e 256 210 209 198 197 158 157 150 149 137 114 81 62 59 54 Int . 12 12 12 42 31 12 25 12 100 43 12 12 12 19 12 Base 149; Parent ? ; S t r . Feat.- Phthalate ester, possibly n-Propyl. 210 - 209 m/e 237 210 209 199 198 197 195 180 179 165 137 135 99 Int. 12 30 12 12 75 50 32 12 100 20 17 50 17 Base 179; Parent 237? ; S t r . Feat.- Hydroxyl or carbonyl, Chloro?, Aromatic?. 211 - 210 m/e 250 219 210 198 196 180 179 159 137 136 135 119 111 107 97 95 91 83 78 77 71 59 57 55 45 43 41 Int. 2 2 2 2 2 12 100 2 3 3 51 3 3 117 11 3 3 14 3 7 14 9 30 17 10 13 21 Base 179; Parent ? ; S t r . Feat.- Similar to p-t-Butylphenoxyethahol except no m/e 194. 213 - 211 m/e 137 125 117 112 111 104 97 85 84 83 82 78 77 70 69 57 56 55 43 41 Int. 5 4 4 4 12 7 30 12 18 45 20 3 4 31 52 70 40 72 100 70 Base 43; Parent ? ; S t r . Feat.- A l k y l , Alkenyl, Aromatic(weak). 218 - 216 222 - 218 225 - 223 m/e 257 237 221 220 219 218 217 215 208 193 192 191 190 189 184 183 165 159 155 153 152 142 140 Int. 7 15 7 18 21 46 9 37 10 9 30 18 9 12 18 52 24 37 25 12 15 27 78 m/e 138 137 128 114 112 109 108 95 93 91 82 79 78 77 76 73 69 67 t65 63 59 55 53 51 50 43 41 Int. 15 100 12 9 37 33 12 12 12 40 16 38 19 62 91 24 18 33 10 25 80 10 12 40 15 12 10 Base 137; Parent 257? ; S t r . Feat.- Aromatic(high and low), Chloro, appears to be a mixture of spectrum 236 - 234 i n CL1202 with those of some other compounds. m/e 223 205 192 167 150 149 137 132 121 105 104 93 87 76 75 74 71 65 57 56 55 50 43 41 Int. 2 1 1 1 9 100 1 1 2 2 6 2 3 5 2 8 5 3 33 7 2 2 10 23 Base 149; Parent ? ; S t r . Feat.- Phthalate ester, possibly t - B u t y l . m/e 297 283 282 268 253 242 237 212 211 170 163 160 159 147 141 137 133 130 128 127 117 115 91 58 Int. 10 13 100 13 37 13 13 31 20 10 13 18 49 8 18 45 13 13 35 21 52 31 25 14 Base 282; Parent 297? ; S t r . Feat.- C y c l i c or Aromatic, Methyl, Ketone or ester?. 226 - 225 m/e Int. m/e Int. 268 254 253 240 237 220 218 179 178 161 159 146 145 141 137 136 135 128 127 120 117 115 109 13 6 42 7 .7 .1 13 13 20 10 12 12 12 16 30 20 15 23 30 16 22 32 22 108 105 103 92 91 81 79 78 77 69 67 65 58 53 52 51 45 43 32 20 20 20052 30 31 26 70 100 30 22 32 30 12 30 12 55 Base 69; Parent 268? ; S t r . Feat.- Aromatic(high), Methyl, Carbonyl. ISO O as m/e 280 257 237 223 215 212 205 185 150 149 137 104 87 76 59 51 Int. 1 1 1 1 4 1 1 1 7 100 10 1 1 1 7 3 Base 149; Parent ? ; S t r . Feat.- Phthalate ester. m/e 268 237 236 227 219 216 215 208 191 177 164 163 161 159 145 138 137 121 117 109 107 101 95 93 Int. 7 13 11 .1 7 7 29 7 7 7 28 7 7 21 10 13 100 18 23 18 10 13 28 13 m/e 92 91 88 81 79 78 77 74 73 69 67 59 55 54 53 43 42 41 Int. 13 70 23 49 22 28 35 18 25 31 28 60 46 10 10 48 31 22 Base 137; Parent ? ; S t r . Feat.- Aromatic(high), Nitro?, Methyl?. m/e 256 237 219 215 159 150 148 137 122 121 105 104 93 87 85 84 77 76 65 60 59 57 56 55 50 43 41 Int. 1 2 1 5 2 3 2 27 3 3 7 12 12 7 3 4 17 28 22 8 22 53 40 13 13 18 100 Base 41; Parent ? ; S t r . Feat.- Aromatic(low), A l k y l . m/e 236 222 207 206 202 193 191 190 189 180 179 178 168 167 165 154 152 134 133 123 119 109 107 Int. 47 10 12 36 10 20 30 12 16 40 17 40 30 32 32 17 17 10 10 10 13 22 30 m/e 101 96 95 94 91 82 81 80 79 71 69 67 55 43 Int. 10 16 80 22 26 35 88 26 40 42 100 55 65 45 Base 69; Parent 236? ; S t r . Feat.- Diene or cycloalkene, Diunsat. c y c l i c alcohol or ether, or Alkenyl carbonyl. m/e 234 197 184 183 177 167 166 140 139 135 134 131 127 121 108 107 106 93 91 85 79 77 57 53 52 41 Int. 8 1 1 2 4 10 15 2 12 2 100 2 7 3 3 31 3 4 6 12 22 3 22 7 ] 5 Base 134; Parent ? ; S t r . Feat.- contains spectrum of 2,4-Dimethyl-6-ethylpyridine (mw 135), t-Butyl, o-Methyl ester?. m/e 354 250 247 228 209 175 167 151 150 149.98 93 83 76 70 69 67 65 55 41 Int. 2 2 2 2 8 2 5 2 10 100 4 4 22 4 18 4 4 4 12 13 Base 149; Parent ? ; Str. Feat.- Phthalate ester. m/e 199 112 97 84 83 81 71 70 69 57 55 43 41 Int. 50 25 17 18 25 18 58 50 33 100 50 50 32 Base 57; Parent L? ; S t r . Feat.- s i m i l a r to Di-2-ethylhexylfumarate except f o r m/e 199. F i l e C-HALL 366 -360 m/e 238 206 205 178 165 150 149 135 133 132 123 122 105 104 92 91 77 76 65 57 56 51 50 41 Int. 1 15 2 2 1 11 100 4 2 12 12 8 10 15 5 71 5 10 18 4 5 2 4 15 Base 149; Parent ? ; S t r . Feat.- s i m i l a r to Benzyl-butylphthalate. 506 - 498 m/e 299 279 253 243 231 229 222 220 217 203 198 191 188 186.178 168 167 150 149 113 112 104 83 Int. 1 31 1 1 1 1 1 1 1 1 1 1 1 1 1 3 32 11 100 8 6 7 7 m/e 76 71 70 57 55 43 41 Int. 4 25 23 40 18 31 28 Base 149; Parent ? ; S t r . Feat.- Phthalate ester. F i l e APLCL1 83 - 88 114 - 111 152 - 145 187 - 182 243 - 240 m/e 109 108 107 91 90 89 80 79 78 77 63 62 55 53 52 51 50 39 Int. 7 88 100 7 12 7 20 43 13 61 17 9 10 30 20 40 31 42 Base 107; Parent 108? ; S t r . Feat.- Methylphenol, probably p-Cresol. m/e 187 115 101 87 85 84 74 73 69 61 60 555445443441339 Int. 1 3 11 7 7 6 6 57 10 10 100 40 52 54 82 39 Base 60; Parent ? ; S t r . Feat.- A l i p h a t i c a c i d . m/e 129 115 104 101 Int. 10 3 1 1 Base 41; Parent ? 97 91 87 83 73 71 69 61 60 57 55 45 43 41 39 1 6 9 9 60 13 13 8 80 22 47 45 60 100 40 Str . Feat.- A l i p h a t i c a c i d . m/e 185 171 158 157 143 130 129 115 111 101 99 98 97 87 85 83 73 71 69 60 57 55 45 43 41 39 Int. 1 2 1 5 2 1 8 5 2 5 2 3 5 8 8 8 61 11 11 100 20 40 50 59 80 40 Base 60; Parent ? ; S t r . Feat.- A l i p h a t i c a c i d . m/e 129 123 115 111 110 109 101 98 97 96 Int. 1 2 1 5 3 4 1 5 10 8 m/e 43 41 39 Int. 59 3100430 Base 41; Parent ? ; S t r . Feat.- A l i p h a t i c acid. 95 87 84 83 81 79 77 73 69 67 60 57 56 55 54 53 45 8 2 10 18 16 10 7 12 32 24 18 17 18 71 19 10 20 ho o oo F i l e APLCL1 274 m/e 137 125 123 (unsubtracted) Int. 2 1 2 Base 41; Parent 111 109 97 95 83 82 81 79 77 73 69 3 3 9 10 17 10 21 12 8 8 30 ? ; S t r . Feat.- A l i p h a t i c acid. 68 67 60 57 55 54 45 43 41 39 13 33 21 16 69 22 18 51 100 24 F i l e 35LBK1 146 - 143 193 - 189 211 - 205 also 257 - 253 330 - 320 m/e 241 239 237 215 201 195 161 160 159 141 137 109 81 79 78 77 59 51 39 Int. 7 7 33 40 8 8 8 8 40 7 33 10 21 6 51 96 100 18 80 Base 59; Parent ? ; S t r . Feat.- Aromatic, s i m i l a r to septum bleed. m/e 237 219 215 167 159 155 154 139 137 113 112 99 883 82 78 77 65 59 57 55 43 41 Int. 1 1 1 1 1 2 1 7 4 5 10 100 3 3 2 4 1 5 28 7 25 50 Base 99; Parent ? ; S t r . Feat.- C y c l i c alcohol or ether. m/e 297 295 294 293 277 273 * spectrum 146 - 143 Int. 1 1 1 3 1 1 Base 59; Parent ? ; S t r . Feat.- Aromatic, Septum bleed peaks.

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
India 1 0
Romania 1 0
United States 1 0
City Views Downloads
Hyderabad 1 0
Craiova 1 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items