Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Volatile organic components of municipal primary sewage effluent after chlorination and dechlorination Mori, Brian Tomio 1976

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
[if-you-see-this-DO-NOT-CLICK]
UBC_1976_A6_7 M66_8.pdf [ 10.39MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0063024.json
JSON-LD: 1.0063024+ld.json
RDF/XML (Pretty): 1.0063024.xml
RDF/JSON: 1.0063024+rdf.json
Turtle: 1.0063024+rdf-turtle.txt
N-Triples: 1.0063024+rdf-ntriples.txt
Original Record: 1.0063024 +original-record.json
Full Text
1.0063024.txt
Citation
1.0063024.ris

Full Text

VOLATILE ORGANIC COMPONENTS OF MUNICIPAL PRIMARY SEWAGE EFFLUENT AFTER CHLORINATION AND DECHLORINATION  by BRIAN TOMIO MORI B.Sc., Uniyersity.Bof Brit-isliJCol'iimbia-, 1971  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE  i i - . tfrinD'thei-Departments o f C h e m i s t r y and C i v i l E n g i n e e r i n g  We accept t h i s t h e s i s as conforming required standard  THE UNIVERSITY OF BRITISH COLUMBIA JurJuly9M76 (o)  Brian Tomio Mori, 1976  t o the  In p r e s e n t i n g t h i s t h e s i s  in p a r t i a l f u l f i l m e n t o f the requirements f o r  an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and I f u r t h e r agree t h a t p e r m i s s i o n for  for extensive copying of t h i s  study. thesis  s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r  by h i s  representatives.  It  i s understood that c o p y i n g o r p u b l i c a t i o n  o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my written  permission.  Department of  Chemistry  The U n i v e r s i t y o f B r i t i s h Columbia 2075 W e s b r o o k P l a c e V a n c o u v e r , Canada V6T 1W5  Date  that  June 1976  i ABSTRACT  The extraction, separation and i d e n t i f i c a t i o n of v o l a t i l e organic components of primary effluent before and a f t e r chlbrination was  undertaken to  ascertain whether the chlorination of treatment plant effluents r e s u l t s i n the formation of new v o l a t i l e chlorinated organics. Extraction e f f i c i e n c i e s of 70 to 90 percent  of an aqueous solution of  phenols were obtained by both continuous solvent extraction and sorption on a column of a macroreticular r e s i n . macroreticular r e s i n recovered  Tests with primary effluent showed that the  a s l i g h t l y larger number of compounds than the  solvent extractor which also suffered from emulsion problems.' Since the r e s i n was  also expedient i n handling  r e p l i c a t e samples i t was  adopted and further  studies indicated that i t had a capacity of 1.7 mg TOC/cc of r e s i n and r e coveries of the phenols were unaffected by pH or  detergents.  Preliminary separation of the. .components on the basis of a c i d i t y with .05'M^NaOH and d i e t h y l ether and by thin layer chromatography on s i l i c a gel with pet ether and methanol proved to be u s e f u l .  Gas  chromatographic  (GC)  studies with various s i l i c o n e l i q u i d phases demonstrated that OV-101, 0V-17, and 0V-225 a l l provide good separation a f t e r optimization of temperature programs. Primary effluent samples taken from Lion's Gate Treatment Plant i n North Vancouver on Monday mornings proved to be remarkably consistent i n their GC 63  traces as monitored by detectors.  Ni electron capture  A series of spectacular new  (EG) and flame i o n i z a t i o n (FID)  peaks was  consistently observed by  EC as a r e s u l t of c h l o r i n a t i o n , but the FID showed only minor changes. levels of up to 120 mg/1 dosage of 200 mg/1  Dosage  Cl^ (NaOCl) produced similar chromatograms while a  produced a new  l e v e l s used i n treatment plants.  set of changes not found at the dosage Gas chromatographic studies with a micro-  ii e l e c t r o l y t i c conductivity  d e t e c t o r showed t h a t 10 o r 11 new h a l o g e n a t e d peaks  i n t h e n e u t r a l and b a s i c f r a c t i o n and 6 o r 7 new h a l o g e n a t e d peaks i n t h e a c i d i c f r a c t i o n r e s u l t from c h l o r i n a t i o n .  These compounds a l l o f w h i c h a r e  i n n g / l c o n c e n t r a t i o n s account f o r o n l y 0.01 p e r c e n t o f t h e a p p l i e d  chlorine  dosage b u t make up about 40 p e r c e n t o f t h e more v o l a t i l e o r g a n i c a l l y bound halogen present i n c h l o r i n a t e d primary e f f l u e n t . A f t e r a series of p a r t i a l l y successful and  GC e f f l u e n t t r a p p i n g ,  a c o m p u t e r i z e d GC-MS.  a t t e m p t s by r e t e n t i o n t i m e , GC-MS  a number of components were p o s i t i v e l y i d e n t i f i e d by  T R i r t y - o n e compounds were p o s i t i v e l y i d e n t i f i e d by mass  spectra  and GC r e t e n t i o n t i m e s , a n o t h e r 24 were t e n t a t i v e l y i d e n t i f i e d by mass  spectra  and an a d d i t i o n a l seven were v e r y t e n t a t i v e l y i d e n t i f i e d by GC r e -  t e n t i o n times.. Only t h r e e o f t h e compounds r e s u l t i n g from c h l o r i n a t i o n were p o s i t i v e l y i d e n t i f i e d . A l l compounds i d e n t i f i e d by mass s p e c t r a concentrations i n primary e f f l u e n t .  The i m p l i c a t i o n s  suggestions f o r further i n v e s t i g a t i o n s are also  discussed.  Research S u p e r v i s o r .  are present i n  of t h i s s t u d y and  iii TABLE OF CONTENTS Page Abstract  i  T a b l e o f Contents  »  i i i  L i s t o f Tables  v  L i s t of Figures  v i i  Acknowlegments  ,  ix  Symbols and A b b r e v i a t i o n s  x  CHAPTER I  1  INTRODUCTION, PURPOSE AND SCOPE  Definitions  ,,  Introduction  1 ,  1  Purpose and Scope o f T h i s Research  2  CHAPTER I I LITERATURE REVIEW  ,  4  A.  Preface  4  B.  C o m p o s i t i o n o f Domestic Sewage and E f f l u e n t s .............. 1. O r g a n i c s .  4 4  2. I n o r g a n i c s  20  C.  A S i m p l i f i e d Model o f t h e C h l o r i n a t i o n P r o c e s s  20  D.  R e a c t i o n s o f C h l o r i n e w i t h O r g a n i c s i n Aqueous Media ...... 1. R e a c t i o n s w i t h N i t r o g e n o u s Compounds , , 2. R e a c t i o n s o f C h l o r i n e w i t h Other O r g a n i c s 3. R e a c t i o n s o f N-Chloro Compounds w i t h O r g a n i c s The E f f e c t s o f C h l o r i n e on Sewage E f f l u e n t s 1. P r a c t i c e s I n Treatment P l a n t s 2. B i o l o g i c a l E f f e c t s o f R e s i d u a l C h l o r i n e 3. T o x i c E f f e c t s o f C h l o r i n a t e d O r g a n i c s ,. 4. C h e m i c a l E f f e c t s o f C h l o r i n a t i o n s  24 24 27 30 31 31 31 34 36  A n a l y t i c a l Methods 1. Sampling and P r e s e r v a t i o n ............ 2. E x t r a c t i o n and C o n c e n t r a t i o n 3. S e p a r a t i o n , 4. C h e m i c a l A n a l y s i s  41 41 42 45 50  E.  F.  CHAPTER I I I  EXPERIMENTAL  54  A.  O u t l i n e o f t h e Problems  ,  ,  B.  A p p a r a t u s and Techniques , 1. G e n e r a l Methodology 2. Sampling and P r e s e r v a t i o n 3. D e s i g n and Test o f E x t r a c t i o n Methods a. S o l v e n t E x t r a c t o r b. E x t r a c t i o n w i t h XADV2 R e s i n c. Comparison o f XAD-2 and S o l v e n t E x t r a c t o r d. E x t r a c t i o n o f P a r t i c u l a t e s .......... .  54 54 54 56 57 57 59 62 62  iy  4. S e p a r a t i o n E x p e r i m e n t s ................................. a. P r e l i m i n a r y S e p a r a t i o n , b. , GC O p t i m i z a t i o n c. TLC o f A c i d i t y Separated F r a c t i o n s ,, ,. 5. E f f e c t s o f C h l o r i n a t i o n , a. Changes i n S o l u b l e TOC upon C h l o r i n a t i o n ,. b. E f f e c t s D e t e c t a b l e by GC w i t h EC and F I D D e t e c t o r s .. c. E f f e c t s M o n i t o r e d by MEC D e t e c t o r and GC C o r r e l a t i o n s d. GC-rMS S t u d i e s on t h e MS-rl-2 e. T e n t a t i v e I d e n t i f i c a t i o n by R e t e n t i o n Time f . T r a p p i n g o f GC Peaks g. GCr-MS-Computer , CHAPTER IV RESULTS AND DISCUSSION A.  ,  E x t r a c t i o n Experiments 1. S o l v e n t E x t r a c t o r 2. E x t r a c t i o n w i t h XAD-2 R e s i n  B.  Separation Experiments 1. P r e l i m i n a r y S e p a r a t i o n 2. GC O p t i m i z a t i o n , 3. TLC o f A c i d i t y F r a c t i o n s .,,  C.  , , . . ,  ,  . , . ,  69 69 72  82 82 ,. 85 87  ,  E f f e c t s o f C h l o r i n a M o n on P r i m a r y E f f l u e n t 1, S o l u b l e TOC ,, , , 2, E f f e c t s M o n i t o r e d b y EC and F I D e t e c t o r s ' , , 3, GC 4, GC^MS S t u d i e s 5, T e n t a t i v e I d e n t i f i c a t i o n F y R e t e n t i o n . Time 6, GCrrMS^ComputerSSfeuddses 7, C o r r e l a t i o n s Among GC Chromatograms  CHAPTER V  69 ,  ,  63 63 64 64 65 65 65 65 66 66 66 67  ,  92 92' 92  ,  124 , . 130 146  SUMMARY, IMPLICATIONS AND SUGGESTIONS FOR FURTHER STUDIES  153  Summary ,,,,,.,,,.,,,,,,,,,,.,.,,,,,,....,,,...,...>.<,..  153  Implications  154  ,  Recommendations f o r F u r t h e r S t u d i e s  ...........................  BIBLIOGRAPHY APPENDIX  I  1. 2. 3, 4,  REFINEMENTS  ,  160  TO THE AQUEOUS CHLORINETAMMONIA MODEL  179  R e a c t i o n s o f C h l o r i n e w i t h Water D e c o m p o s i t i o n s o f H0C1 and O C l " , ,. , R e a c t i o n s . o f H0C1 and O C l ' w i t h Ammonia Thermodynamic P r o p e r t i e s o f C h l o r a m i n e s ,,,,  APPENDIX I T SUMMARY OF CHROMATOGRAMS OF EFFLUENT SAMPLES APPENDIX I I I  ,  ,  GC CONDITIONS FOR FIGURES  APPENDIX I V MASS SPECTRA OF COMPOUNDS POSITIVELY IDENTIFIED IN CHLORINATED PRIMARY EFFLUENT ,., APPENDIX V  158  MASS SPECTRA OF UNIDENTIFIED COMPONENTS OF CHLORINATED PRIMARY EFFLUENT ,  179 180 181 185 186 188  190 196  -y LIST OF TABLES Table  Page  2.1  Major I n p u t s to Domestic Sewage  5  2.2  T y p i c a l S t r e n g t h D i s t r i b u t i o n s i n Raw Sewages  7  2.3  G e n e r a l Composition  o f an American Domestic Sewage  9  2.4  General Composition  o f an E n g l i s h Domestic Sewage  2.5  Amino A c i d Content o f Raw Sewage  11  2.6  O r g a n i c Components o f P r i m a r y E f f l u e n t  13  2.7  V o l a t i l e Components o f Human U r i n e  2.8  General Composition  o f Secondary E f f l u e n t  18  2.9  O r g a n i c Components o f Secondary E f f l u e n t s  19  2.10  I n o r g a n i c Composition  21  2.11  Summary o f R e a c t i o n C o n d i t i o n s f o r O r g a n i c s i n Sewage  28  2.12  T o x i c i t y o f S e l e c t e d Compounds t o A q u a t i c L i f e  35  2.13  C h l o r i n a t e d Compounds Formed by C h l o r i n a t i o n o f  ,  o f L i o n ' s Gate E f f l u e n t  10  16  Primary E f f l u e n t  39  4.1  R e c o v e r i e s o f Phenols by S o l v e n t E x t r a c t o r  70  4.2  S o l v e n t Loss Due t o Entrainment  71  4.3  R e c o v e r i e s o f Phenols  74  4.4  E f f e c t s o f LAS on R e c o v e r i e s o f P h e n o l s by XAD-2  75  4.5  Breakdown o f Losses f o r XAD-2 System  76  4.6  Breakthrough  77  4.7  E f f e c t o f C h l o r i n a t i o n on S o l u b l e TOC  4.8  E f f e c t s o f C h l o r i n a t i o n by GC A n a l y s i s w i t h FID and  from D i s t i l l e d Water by XAD-2  Study f o r Sewage on XAD-2  96  EC D e t e c t o r s  98  4.9  C o n c e n t r a t i o n s o f Halogen as C h l o r i n e i n P r i m a r y E f f l u e n t  4.10  C h l o r i n e Uptake by V o l a t i l e s  4.11  R e t e n t i o n Times o f Test Compounds  4.12  Compounds I d e n t i f i e d by GC R e t e n t i o n Time  128  4.13  Performance Check o f F i n n i g a n 3000  131  4.14  F i l e Names f o r GC-MS-Comp S t u d i e s  4.15  Summary o f RGC Data  134  4.16  P h t h a l a t e s and Septum B l e e d by LMRGC  140  4.17  R e s u l t s o f S p e c t r a l Searches and R e t e n t i o n Time Checks f o r CL.1202 R e s u l t s o f S p e c t r a l Searches and R e t e n t i o n Time Checks f o r C-HALL Compounds P o s i t i v e l y I d e n t i f i e d by Mass Spectrum and R e t e n t i o n Times  4.18 4.19  ... 116 118  ,  ,  125  132  142 143 145  yi  Table  Page  4.20  Compounds T e n t a t i v e l y  I d e n t i f i e d by MS  4.21  Spectrum Numbers o f Halogenated N e u t r a l  147 and B a s i c  Organics  149  4.22  Spectrum Numbers o f Halogenated A c i d i c O r g a n i c s  150  5.1  Guide t o E n v i r o n m e n t a l E f f e c t s o f I d e n t i f i e d Compounds  155  yii  LIST OF FIGURES Figure  Page  3.1  Flowchart of the P r o j e c t  55  3.2  Continuous  58  3.3  M a c r o r e t i c u l a r Resin E x t r a c t i o n Apparatus  4/1  Recovery o f O r g a n i c s from P r i m a r y E f f l u e n t By XAD-2 R e s i n  4.2  Solvent Extractor  61 ,,.  79  Continuous S o l v e n t and XAD-2 R e s i n E x t r a c t i o n o f O r g a n i c s from P r i m a r y E f f l u e n t M o n i t o r e d by GC  81  4.3  S o x h l e t E x t r a c t s o f P a r t i c u l a t e s A n a l y z e d by GC  83  4.4  S i l i c a G e l Column F r a c t i o n a t i o n of P r i m a r y E f f l u e n t E x t r a c t s A n a l y z e d by GC  84  4.5  A c i d i t y Separation of Primary E f f l u e n t  Extracts  A n a l y z e d by GC  86  4.6  GC O p t i m i z a t i o n - N + B by EC  88  4.7  GC O p t i m i z a t i o n - WA by EC  4.8  GCCOptimization  4.9  GC O p t i m i z a t i o n - WA by FID  4.10  TLC o f N + B F r a c t i o n ; S i l i c a G e l , P e t E t h e r  93  4.11  TLC o f N + B/TLC F r a c t i o n ; S i l i c a G e l , M e t h a n o l  94  4.12  Flowchart of Separation Procedure  9.5  4.13  E f f e c t s of C h l o r i n a t i o n  by GC - N + B by EC-1  9-9.  4.14  E f f e c t s o f C h l o r i n a t i o n by GC - N + B by FID-1  100  4.15  E f f e c t s o f C h l o r i n a t i o n by GC - WA by EC  4.16  E f f e c t s o f C h l o r i n a t i o n by GC - WA by FID  102  4.17  E f f e c t s o f C h l o r i n a t i o n by GC - SA by EC  103  4.18  E f f e c t s o f Chlormna£ionbbyGGC--SSAbbyFFI'D  104  4.19  E f f e c t s of C h l o r i n a t i o n  by GC - N + B by EC-2  105  4.20  E f f e c t s o f C h l o r i n a t i o n by GC - N +BB by FID-2  106  4.21  E f f e c t s o f C h l o r i n a t i o n by GC - A by EC  107  ,..  89  - N + B by FID  ,  90 ,  ,  91  101  4.22 E f E f f e c t s o f C h l o r i n a t i o n by GC - A by FID  108  4.23  E f f e c t s o f C h l o r i n a t i o n by GC - A by MEC ,,.  112  4.24  E f f e c t s o f C h l o r i n a t i o n by GC - N + B by MEC-1  113  4.25E  E f f e c t s o f C h l o r i n a t i o n by GC - N + B by MEC-2  114  4.26 CaC^libratiofiu.eurveoforrSMECeDetector  115  4.27 4.28  122 123  T o t a l I o n C u r r e n t P l o t f o r N + B F r a c t i o n by .MS-12 Mass S p e c t r a from MS^12 j , ' , , , , , , , , , , , , , , , , , , , , , , ' , ,-.* ...... v  Figure 4.29  GC R e t e n t i o n Times o f T e s t Compounds  4.30  RGC's o f A c i d F r a c t i o n s  4.31  RGC's o f N e u t r a l and B a s i c  4.32  RGC's o f TLC F r a c t i o n s  4.33 4.34  : RGC's and LMRGC's o f B l a n k s , MEC - GC-MS C o r r e l a t i o n s  Fractions  ix ACKNOWLEDGEMENTS  The a u t h o r wishes t o express h i s s i n c e r e g r a t i t u d e t o D r . K. J . H a l l f o r h i s p a t i e n c e , encouragement and guidance d u r i n g t h i s p r o j e c t . i t u d e i s extended  A special grat-  t o Dr. J.. N. B l a z e v i t c h (U.S. E n v i r o n m e n t a l P r o t e c t i o n ,-  Agency) f o r h i s w i l l i n g c o o p e r a t i o n and generous h o s p i t a l i t y d u r i n g t h e days the a u t h o r spent i n S e a t t l e .  Thanks a r e a l s o e x p r e s s e d t o Sue Harper f o r the i n -  organic c a n a l y s i s of primary e f f l u e n t . A l a r g e number of o t h e r p e o p l e have each c o n t r i b u t e d i n no s m a l l way t o the c o m p l e t i o n o f t h i s p r o j e c t by v e r y w i l l i n g l y and g e n e r o u s l y p r o v i d i n g t h e i r a d v i c e , c o o p e r a t i o n and: m a t e r i a l s u p p o r t .  A l t h o u g h l i m i t a t i o n s o f space p r e -  v e n t a p r o p e r e x p r e s s i o n o f g r a t i t u d e t o a l l o f them t h e a u t h o r would l i k e t o e s p e c i a l l y thank L i z a McDonald, D r . R. Bose and D r . J . Farmer f o r t h e i r h e l p . T h i s t h e s i s i s d e d i c a t e d t o my p a r e n t s and t o my w i f e C a t h e r i n e and s o n M i c h a e l who t h r o u g h t h e i r l o v e and u n d e r s t a n d i n g c o n t r i b u t e d g r e a t l y t o i t s completion.  SYMBOLS AND ABBREVIATIONS A BOD CIMS COD CRT DO EC EIMS EMW FID •G'G'IR ', ^ ,,_GC-MS-(Com) GLC GPC GSC GVRD IR LC LC LLC LSC MEC MLD n  N + B NMR S/N SS TLm TLC TOC TS USEPA UV VS'  Acidic Fraction B i o c h e m i c a l Oxygen Demand Chemical I o n i z a t i o n Mass S p e c t r o s c o p y Chemical Oxygen Demand Cathode Ray Tube D i s s o l v e d Oxygen E l e c t r o n Capture E l e c t r o n Impact Mass S p e c t r o s c o p y E s t i m a t e d M o l e c u l a r Weight Flame I o n i z a t i o n D e t e c t o r Gas; rChroffiaeograpHyInfrared Gas* CferomatograpfciyMass Spectrometer-(Computer) G a s - L i q u i d Chromatography G e l p e r m e a t i o n Chromatography G a s - S o l i d Chromatography G r e a t e r Vancouver R e g i o n a l D i s t r i c t Infrared L e t h a l Concentration f o r n Percent of Population L i q u i d Chromatography L i q u i d - r L i q u i d Chromatography L i q u i d - S ^ l i d Chromatography M i c r o e l e c t r o l y t i c Conductivity..(Detector) Minimum L e t h a l Dose F o r D e a t h o f One o r More Members o f the Group N e u t r a l and B a s i c F r a c t i o n N u c l e a r M a g n e t i c Resonance S i g n a l to Noise Suspended S o l i d s T o l e r a n c e L i m i t (Median), f o r 50. P e r c e n t of t h e P o p u l a t i o n T h i n L a y e r Chromatography T o t a l O r g a n i c Carbon Total Solids U n i t e d S t a t e s E n v i r o n m e n t a l P r o t e c t i o n Agency Ultra Violet Volatile Solids  CHAPTER I  INTRODUCTION, PURPOSE AND  SCOPE  Definitions The  t e r m i n o l o g y used i n t h i s t h e s i s i s t h a t commonly used by those i n -  v o l v e d w i t h e n v i r o n m e n t a l s c i e n c e s and t e c h n o l o g i e s . s t a n d i n g s however, some d e f i n i t i o n s w i l l be s t a t e d . u n t r e a t e d - wastewater.  To a v o i d any m i s u n d e r Sewage i s d e f i n e d as  The s t a n d a r d d e f i n i t i o n s of d o m e s t i c , storm, combined  and i n d u s t r i a l sewages a r e adhered m u n i c i p a l sewage system.  The  to.  M u n i c i p a l sewage i s t h a t sewage i n the  terms p r i m a r y , s e c o n d a r y , and t e r t i a r y  efflu-  ents a r e used t o d e s c r i b e the e f f l u e n t s from the v a r i o u s types of m u n i c i p a l as opposed t o i n d u s t r i a l sewage t r e a t m e n t p l a n t s u n l e s s o t h e r w i s e i n d i c a t e d . Standard a b b r e v i a t i o n s a r e used throughout t i o n s i s p r o v i d e d on page  t h i s t h e s i s and a l i s t of a b b r e v i a -  x.  Introduction In  the U n i t e d S t a t e s , domestic sewage c o n s t i t u t e s about .a q u a r t e r o f the  t o t a l aqueous o r g a n i c wastes.  (ACS Subcommittee 1969).  The amount of o r g a n i c  9 p r e s e n t i n domestic sewage i n 1963 was 7.3 x 10 l b , 9 9 v a l u e s o f 9.7 x 10 l b f o r c h e m i c a l i n d u s t r i e s , 5.9 x 10 l b  m a t e r i a l i n terms of BOD compared t o BOD  9 for  p u l p and paper i n d u s t r i e s , 4.3 x 10  l b ? f o r food p r o c e s s i n g i n d u s t r i e s ,  9  and 0.5 x 10  l b f o r t h e p e t r o l e u m and c o a l i n d u s t r y .  s i z e d t h a t t h e s e a r e wastewaters s h o u l d be 0.3  and not e f f l u e n t s .  I t s h o u l d be empha-  Values f o r e f f l u e n t s  t o 2 o r d e r s o f magnitude l o w e r .  The response o f f a n t e c o s y s t e m - t d n t h e d i s c h a r g e - o f "^organics i n w i l l n a t u r a l l y depend upon the type o f compound and the type of  wastewaters  ecosystem.  V a l l e n t y n e ( 1 9 5 7 ) , and C r o l l (1972), have r e v i e w e d the types of o r g a n i c s . found i n n a t u r a l w a t e r s .  Little  (1970) and Ongerth e t a l . (1973) r e p o r t t h a t  o n l y 66 of a s u s p e c t e d 456  organic  identified.  from d o m e s t i c sewage a r e r a p i d l y degraded by m i c r o -  Most o r g a n i c s  c h e m i c a l s i n w a t e r have been p o s i t i v e l y  organisms, so r a p i d l y i n f a c t t h a t d e p l e t i o n of d i s s o l v e d oxygen i n the ing  w a t e r o f t e n r e s u l t s from the d i s c h a r g e of u n t r e a t e d  compounds may  o c c u r as w i t h DDT,  (Woodwell e f a l . ,  and  Zillich  a normal c o n s t i t u e n t of the atmosphere  some d r i n k i n g w a t e r s (Dowty e t a l . , 1975a).  of t o x i c and o r r e c a l c i t r a n t c h l o r i n a t e d o r g a n i c  (1972), Brungs (1973), and  S e r v i z i and Martens (1974) have demonstrated  There i s l i t t l e doubt t h a t most of t h i s t o x i c i t y i s due  to C l  ecosystems. +  species.  i n v e s t i g a t i o n s by J o l l e y (1973), G l a z e e t a l . (1973), Rook (1974) and (1974) however, show t h a t c h l o r i n a t e d o r g a n i c s  the c h l o r i n a t i o n of sewage or n a t u r a l w a t e r s . s e n s a t i o n a l i z e d by the l a y and 1974;  Marx, 1974).  result in  compounds.  or reviewed the t o x i c i t i e s of c h l o r i n a t e d e f f l u e n t s to a q u a t i c  al.  can  even become u b i q u i t o u s .  Dugan (1972) suggested t h a t c h l o r i n a t i o n of domestic sewage may the f o r m a t i o n  If a  i n the food c h a i n of the ecosystem  1967), or i t may  For example, c a r b o n t e t r a c h l o r i d e i s now 1972)  However, some  be r e c a l c i t r a n t , m e t a b o l i z e d to t o x i c m a t e r i a l , o r t o x i c .  compound i s r e c a l c i t r a n t c o n c e n t r a t i o n  (Iliff,  sewage.  receiv-  Current  B e l l a r et  a r e d e f i n i t e l y formed  during  These r e s u l t s have r e c e n t l y been  s c i e n t i f i c p r e s s (Time, 1974;  Vancouver  I n o r d e r to m a i n t a i n a p r o p e r p e r s p e c t i v e ,  Sun,  calculations  based on t h e d a t a p r e s e n t e d by L i l l i a n et a l . (1975), J o l l e y (1973) and JWPCF (1974) shows t h a t w e l l over 99.99 p e r c e n t of c h l o r i n a t e d o r g a n i c s man  are i n t e n t i o n a l l y produced i n d u s t r i a l l y .  metabolize chlorinated organics g a n i c compound c o n t a i n s  (Doonan 1973).  produced by  Some organisms a l s o produce  and  Moreover the f a c t t h a t an  or-  c h l o r i n e does not n e c e s s a r i l y mean t h a t i t i s h a r m f u l  or even r e c a l c i t r a n t . Purpose and  Scope of T h i s R e s e a r c h  T h i s p r e s e n t i n v e s t i g a t i o n w i l l f o c u s on t h e o r g a n i c s which are r e l a t i v e l y v o l a t i l e .  The  o b j e c t i v e s w i l l be  to:  i n primary e f f l u e n t s  3 1. ) develop an e f f i c i e n t method  f o r the r e c o v e r y and c o n c e n t r a t i o n o f  these m a t e r i a l s , (  2. ) determine whether changes i n the c o m p o s i t i o n p r o f i l e o f the v o l a t i l e o r g a n i c s i n primary e f f l u e n t  occur as a r e s u l t o f  chlorination,  3. ) s e p a r a t e and i d e n t i f y the p r o d u c t s and p r e c u r s o r s o f the r e a c t i o n c h l o r i n e w i t h primary  effluent.  of  CHAPTER I I  LITERATURE REVIEW  A.  Preface T h i s c h a p t e r w i l l be d i v i d e d i n t o f i v e s e c t i o n s .  The f i r s t t h r e e s e c t i o n s  w i l l be devoted t o p r e d i c t i o n s o f the t y p e s o f c h l o r i n a t i o n r e a c t i o n s which w i l l o c c u r d u r i n g t h e c h l o r i n a t i o n o f sewage.  I n o r d e r to a c c o m p l i s h t h i s the  c o m p o s i t i o n o f sewage and p r i m a r y e f f l u e n t w i l l be r e v i e w e d , a s i m p l i f i e d c h e m i c a l model of t h e c h l o r i n a t i o n p r o c e s s w i l l be p r e s e n t e d , and the known r e a c t i o n s o f c h l o r i n e w i t h o r g a n i c s w i l l be b r i e f l y r e v i e w e d .  The f i n a l two  s e c t i o n s w i l l be devoted t o a r e v i e w o f the known e f f e c t s o f t h e c h l o r i n a t i o n of  sewage and o f t h e a n a l y t i c a l methods r e l e v a n t t o t h i s and o t h e r s i m i l a r  investigations. B.  C o m p o s i t i o n o f Domestic  1.  Organics Sources  Sewage and E f f l u e n t s  The c o m p o s i t i o n o f sewage w i l l n a t u r a l l y depend upon w h i c h i n d u s -  t r i e s a r e d i s c h a r g i n g i n t o t h e c o l l e c t i o n system.  Among t h e sewages from  h o u s e h o l d s , i t has been found t h a t a l t h o u g h r e l a t i v e amounts v a r y , t h e major types o f o r g a n i c m a t e r i a l p r e s e n t i n domestic sewage a r e s i m i l a r i n t h e U n i t e d S t a t e s and E n g l a n d . 2.1.  The m a j o r i n p u t s to domestic sewage a r e p r e s e n t e d i n T a b l e  E x c r e t a account f o r p r a c t i c a l l y a l l o f t h e o r g a n i c - n i t r o g e n b u t o n l y  80 p e r c e n t o f the o r g a n i c - c a r b o n . . P h y s i c a l Forms  Raw sewage i s a heterogeneous  m i x t u r e o f f l o a t i n g , suspended,  e m u l s i f i e d and d i s s o l v e d i n o r g a n i c and o r g a n i c m a t t e r i n w a t e r .  The c o m p o s i t i o n  e q u i l i b r i u m i s a f f e c t e d by e v a p o r a t i o n , s o l u b i l i t y e q u i l i b r i a , s o r p t i o n p r o c e s s e s , p r e c i p i t a t i o n , and b i o l o g i c a l metabolism.  Due t o t h e wide v a r i a t i o n  i n p h y s i c a l forms of o r g a n i c m a t e r i a l i n sewage and t h e c o r r e s p o n d i n g  variation  5  T a b l e 2.1  Component  Major I n p u t s to Domestic  O r g a n i c Carbon  Sewage.  Organic N i t r o g e n  NH  3  + Urea  as N  Faeces*  17  1.5  5  1.7  10.5  8  0.2  0  7  3.4  10.5  Urine*  Dishwashing and Food Preparation**  P e r s o n a l and C l o t h e s Washing**  *  U n i t s are g/adult/day.  * * U U n i t s a r e g/person/day. a)  P a i n t e r and V i n e y (1959)  (  6 of d e g r a d a t i o n e f f i c i e n c y i n sewage t r e a t m e n t p l a n t s o r i n n a t u r a l w a t e r s , c h e m i c a l a n a l y s i s o f sewage i s more m e a n i n g f u l a f t e r s e g r e g a t i o n o f o r g a n i c s by p h y s i c a l means.  A disadvantage o f mechanical s e p a r a t i o n o f organics i s  t h a t sorbed v o l a t i l e m a t e r i a l s ( F i s h b e i n , 1972b, Khan, 1972), and m e t a l comp l e x e d o r g a n i c s (Chau, 1973) may n o t be i n c l u d e d i n the s o l u b l e f r a c t i o n . W h i l e no s t a n d a r d s e g r e g a t i o n method has been adopted, sewages a r e g e n e r a l l y c l a s s i f i e d as to s e t t l e a b l e , c o l l o i d a l , s u p r a c o l l o i d a l and s o l u b l e f r a c t i o n s . The s o l u b l e m a t e r i a l has a p a r t i c l e s i z e l e s s than 0.2 t o 1.0 m i c r o n s .  A  d e s c r i p t i o n o f the s i z e f r a c t i o n s o f raw sewage i n terms o f e n g i n e e r i n g p a r ameters i s p r e s e n t e d i n T a b l e 2.2.  From t h i s t a b l e i:t can be seen t h a t  about  one t h i r d o f the o r g a n i c carbon i n sewage i s d i s s o l v e d , w h i l e the o r g a n i c n i t r o g e n i s e q u a l l y d i s t r i b u t e d amongst the f o u r f r a c t i o n s . Molecular Size D i s t r i b u t i o n  S e v e r a l g e l p e r m e a t i o n chromatographic (GPC)  s t u d i e s have been conducted t o determine the m o l e c u l a r s i z e o f the o r g a n i c compounds i n raw sewage. one w i t h an E s t i m a t e d  Zuckermann and M o l o f (1970) found o n l y two f r a c t i o n s ,  Molecular  weight  (EMW)  o f 400 and a n o t h e r o f  EMW  1200 . +  Hardt e t a l . , ( 1 9 7 1 ) , i a d R o b e r t s o n (1972), and C l e s c e r i (1973) a l l found more complex m o l e c u l a r w e i g h t p r o f i l e s .  R o b e r t s o n a l s o found e v i d e n c e o f s o l u t e -  g e l i n t e r a c t i o n , thus some i n a c c u r a c i e s a r e i n h e r e n t i n t h e assignment o f EMW values.  The p r o f i l e s a r e so d i f f e r e n t t h a t as R o b e r t s o n p o i n t s o u t , no gener-  a l i z a t i o n s s h o u l d be made.  I t can be s a i d however t h a t 20-60 p e r c e n t of t h e  &i§§SlY§& .8£§§&4es©apfc@n -ha^ign EMWEOI© Ie's'sj5tha nd35_0,sand.<may :  thus be amenable  £9 .seRSIStianabX-ogaS. &hromato&r ap hy the upper l i m i t s o f t -:  1  J  amenable t c GC s e p a r a t i o n . Co:•-nr,G'en@rail-Ghem'i'ca-lq<G-lasses  Two major s t u d i e s have been u n d e r t a k e n t o c l a s -  s i f y the o r g a n i c m a t e r i a l in sewage by c h e m i c a l g r o u p i n g s .  Both s t u d i e s ,  one in England ( P a i n t e r et a l . 1959, 1961, P a i n t e r 1971), and the o t h e r in the E a s t e r n U n i t e d S t a t e s (Hunter and H e u k e l e k i a n , 1965; H e n k e l e k i a n and  Table 2.2  Fraction  P a r t i c l e Size a  b  . .  b  VS d  %  mg/1  %  284  65  827*  63  1-10 3  31  7  10 -10 5  44  10  79  18  Colloidal  Settleable  AC  <1  <1.0  3  > 10  5  482*  37  *  Only v a l u e s f o r s o l u b l e versus suspended were g i v e n ,  a  R i c k e r t and Hunter  b  Hunter and Heukelekian (1965), Rudolfs and Balmat  c  P a i n t e r and Viney  d  P a i n t e r , Viney and Bywaters  TOC  b  mg/1  <0.2  Supra c o l l o i d a l  TS  c  m  At  Soluble  T y p i c a l D i s t r i b u t i o n s i n Raw Sewages  mg/1  a %  mg/1  c %  mg/1  (1961)  b %  mg/1  %  e  mg/1  10  . %.  37  88  42  46  42  90  29  2.0  27  20  10  12  11  40  15  1.1  11  5.4  20  36  17  22  20  68  22  3.1  34  5.4  20  64  31  29  27  105  34  3.7  23  6.2  23  (1971)  (1959)  Organic-N  (19 5 2 ) , Heukelekian and Balmat (1959)  8 Balmat, 1959;  R i c k e r t and H u n t e r , 1971;  H u n t e r , 1971) employed c l a s s i c a l  s o l v e n t and TLC s e p a r a t i o n p r o c e d u r e s f o l l o w e d by wet c h e m i c a l q u a n t i f i c a t i o n techniques.  The r e s u l t s o f the s t u d i e s a r e p r e s e n t e d i n T a b l e s 2.3 and 2.4.  D i r e c t comparison  o f these s t u d i e s i s d i f f i c u l t  in different units.  I t i s noteworthy  s i n c e the data i s expressed  t h a t the c a r b o h y d r a t e s , p r o t e i n s ,  a t i l e acids., and a n i o n i c s u r f a c t a n t s account f o r most o f t h e s o l u b l e  vol-  carbon.  The amount o f s o l u b l e o r g a n i c s r e c o v e r a b l e by s o l v e n t e x t r a c t i o n o r s o r p t i o n and s u f f i c i e n t l y v o l a t i l e f o r gas chromatographic i s of p a r t i c u l a r i n t e r e s t .  I n the American  analysis  s t u d y i t was found t h a t 80 mg/1  or 85 per cent o f t h e d i s s o l v e d o r g a n i c s were e t h e r s o l u b l e .  Volatile  acids  accounted f o r 30 mg/1, b u t any compounds v o l a t i l e a t 103°C were l o s t d u r i n g a n a l y s i s s i n c e VS was used t o measure o r g a n i c m a t t e r .  In the E n g l i s h study,  n o n - v o l a t i l e s and v o l a t i l e a c i d s accounted f o r about 80 p e r c e n t o f t h e d i s s o l v e d carbon.  The r e m a i n i n g 20 p e r c e n t o f the carbon was u n c l a s s i f i e d r a t h e r than  v o l a t i l e enough t o be l o s t d u r i n g t h e c o n c e n t r a t i o n p r o c e d u r e s .  Thus one  can conclude t h a t the v o l a t i l e s , e x c l u s i v e o f the v o l a t i l e a c i d s c o n s t i t u t e o n l y a v e r y s m a l l p o r t i o n of the s o l u b l e o r g a n i c m a t e r i a l . S p e c i f i c CGompounds identified  i n sewage.  and V i n e y , 1959; t h a n e t a l . 1962;  P r i o r t o 1972, v e r y few s p e c i f i c compounds had been  Most of the work w a s x l i m i t e d t o amino a c i d s ( P a i n t e r  Hunter and H e u k e l e k i a n , 1965) and t o v o l a t i l e a c i d s Murtaugh and Bunch, 1965;  Loehr and K u k a r , 1965).  r e s u l t s of the amino a c i d s t u d i e s a r e p r e s e n t e d i n T a b l e 2.5.  (Viswana-.; The  The v o l a t i l e  a c i d a n a l y s e s g e n e r a l l y show the p r e s e n c e o f a l l a c i d s from f o r m i c t h r o u g h p e n t a n o i c w i t h a c e t i c a c i d a c c o u n t i n g f o r around 80 p e r c e n t o f t h e t o t a l w e i g h t o f t h e s e ccompounds. The o n l y attempt t o c o m p r e h e n s i v e l y  s u r v e y t h e i n d i v i d u a l components  of sewage was conducted i n the S o u t h e a s t e r n U n i t e d S t a t e s by K a t z e t a l . (1972) and J o l l e y  (1973).  These i n v e s t i g a t o r s used l i q u i d chromatography  f o r i n i t i a l s e p a r a t i o n f o l l o w e d by d e r i v i t i z a t i o n  and GC and MS  analysis.  Table  General Composition.of  2.3  Constituent  Settleable a  Total  Grease Free Fatty Acids Unsaturated Saturated Phenols Detergents Glyceride Fatty Unsaturated Saturated Phospholipids Unsaponifiables  Total  Acids  Aliphatic Aromatic Oxygenated Carbohydrates and L i g n i n Pectin Hemicellulose Cellulose Lignin Hexose Pentose  Amino A c i d s Bases Amphoterics .Neutrals Cholesterol Uric Acid  11.70* 0.89 0.18 0.71 0.004 0.08 6.45 1.13 5.33 0.00 2.99 1.92 ' 0.74 0.34  Supra b  15.27 0.46 0.08 0.38 10.43 2.49 7.94 0.00 2.22  18.05 1.48 3.53 11.50 1.54 0.26  19.6 0.13 2.60 11.8 5.12  8.59  15.44  9.45 0.04  Creatine - Creatinine Percent V o l a t i l e Solids Accounted f o r  *  A l l concentrations  a  Hunter  b  Heukelekian  an American  72.5  are i n  and H e u k e l e k i a n  (1959)  mg/1  (1965)  Domestic.Sewage,  Colloidal  a  9.57 1.70 0.24 1.46 0.002 0.14 4.48 0.88 3.60 0.02 2.16 1.41 0.38 0.37  b  17.25 0.78 0.12 0.56 12.76 1.56 11.20 0.10 2.30  10.60 2.16 4.32 3.15 0.97 0.13  6.25 0.13 0.74 0,68 0.86  12.84  6.44  6.64 0.02  94.1  77.8  Colloidal a  3.55 1.48 0.20 .1.28 0.002 0.10 1.7?. 0.24 1.48 0.04 1.86 1.09 0.26 0.51 6.09 1.35 1.33 2.43 0.98 0.10 5.37  b  12.82 0.66 0.12 0.54 8.42 1.68 • 6.74 0.08 2.42  81.9  22.56 0.12 3.94  6.57 0.57 •1.40 1.32 3.28 19.52  3.58 '. 0.03  94.5  Soluble  95.5  9.77 0.77 9.05 3.24 4.80 13.59 0.03 0.33 0.20 88.2  T a b l e 2.4  G e n e r a l C o m p o s i t i o n of an E n g l i s h Domestic Sewage ' 3  Constituent  Settleable  Supracolloidal  Colloidal  Soluble  Carbohydrates Amino A c i d s Combined Free Acids Soluble Insoluble Volatile/non-volatile Esters Anionic Surfactants  9.3*  2.5  2.7  28.2  10.0  6.8  8.0  2.1 26.8  2.2 21.8  0.8 15.7  6.9 2.8 23.9  16.6 1.4  9.1 1.0  4.5 1.5  0.3  0.1  0.6  68.2  46.3  90  63.7  72.2  82.1  /'  Amino Sugars Urea (as N) Ammonia (as N) Creatinine T o t a l Carbon % T o t a l Carbon Accounted For  * a b  A l l concentrations P a i n t e r and V i n e y P a i n t e r (1971)  105 63.3  a r e i n mg/1 (1959)  carbon, u n l e s s o t h e r w i s e s t a t e d ,  10.2/13.7 0 10.1 0 12 31 2.7  11  Table 2.5  Amino Acid  Amino Acid Content of Raw Sewage'  ,  Concentration (mg/1) Free  Cystine Lystine & H i s t i d i n e Histidine Lysine Arginine Serine, Glycine and Aspartic Acid Threonine and Glutamic Acid  0-trace trace present absent/ present trace 0.02-0.13  0.01 -0.18  Total  Particulate  1.4-5.7 5.1-9.7 present^ absent present 4.6-11.0 9.4-19.4  1.90 (3.51) 2.03 1.48  4.5 24.8  1.85/5.18 (7.03)  r  1.83/3.39/4.29 (9.51)  Alanine Proline Tyrosine Methionine and Valine  0.02-0.09 0 0.06-0.09 0.05-0.024  5.1-11.9 0 1.7-6.4 0.09-15.7  4.42  Phenylalanine Leucine Tryptophane  ;0.02-0.33 0.06-0.28 present  4.7-16.84.2-13.1:present  5.42  a Hunter  (1971)  1.87 4.21  12 The compounds i d e n t i f i e d are r e l a t i v e l y non-volatile and present concentrations.  in^g/1  Other studies of more limited scope have been undertaken  by  Rudolfs and Heihemann (1939) , Smith and Gourdon (1969), Bennett et a l . (1973) , Buehler et a l . (1973), Farrington and Quinn (1973), Kolattukudy and Purdy (1973), and Singley et a l . (1974). in Table  The results of these studies are summarized  2.6.  Spector (1956) and Katz e_t a l . (1968) have compiled a l i s t of the r e l a t i v e l y non-volatile compounds i n urine and feces along with their excretion rates.  This data can be used to estimate the concentrations of these compon-  ents assuming no loss due to b i o l o g i c a l a c t i v i t y or physical processes.  With  the assumptions of an average body weight of f o r t y - f i v e kilograms and an average sewage flow of four hundred l i t r e s per capita per day, the concentration i n sewage of each component can be estimated by the following formula.  Excretion rate (mg/kg) x 0.1 eg. cholesterol  estimated 0.7 mg/1  Some idea of which v o l a t i l e compounds one may can be garnered from the studies on urine.  kg/1 found 0.3  mg/1  expect to f i n d i n sewage  Z l a t k i s et a l . (1973a, b, c) used  headspace extraction followed by GC - MS analysis and i d e n t i f i e d about 50 v o l a t i l e urine components which are l i s t e d i n Table 2.7. pounds are present i n mg/1  Most of these com-  to /cg/1 concentrations inlur.Ine (Zlatkis ,1975) and  one  might expect to f i n d them in/zg/1 to ng/l concentrations i n sewage. The organic compounds i d e n t i f i e d i n secondary effluents along with their concentrations are summarized i n Tables 2.8 and 2.9.  A comparison of these  concentration values with those for primary effluents w i l l y i e l d some i n f o r mation on removal and/or biodegradability of the constituents. It i s i n t e r e s t ing to note that removal may be airfunC'tionf ojfoieon'.cen-fration i n that v o l a t i l e acids are 99% removed while some of the trace constituents such as p-cresol and  T a b l e 2.6  O r g a n i c Components of P r i m a r y E f f l u e n t  Compound  Concentration  Reference  /fg/1  Aromatics  (Benzenoid)  Phenol p-Cresol Pentachlorophenol 2- H y d r o x y b e n z o i c A c i d 3- H y d r o x y b e n z o i c A c i d 4-H y d r o x y b e n z o i c A c i d 4- H y d r o x y p h e r i y l a c e t i c Acid 3-Hydroxyphenylproprionic Acid 3-Hydroxyphenylhydrac r y l i c Acid Lignins Folic Acid Benzoic Acid Phenylacetic Acid Hippuric Acid Hexachlorophene Aromatics  '  2 2 1 2 2 2  190  2  20  2  6 1500 _,  2 7 7  _ 10 _ 30  2 2 5 1  10  3  10 14  2 7  13  3  30 7 29 . 50 5  3 2 7 2 2  (Heterocyclic)  N-Methyl-2-fyridone 5-carboxamide N-Methy1-4-pyridone3-carboxamide Niacin Uracil 5- A c e t y l - 6 - a m i n o 3-methyl u r a c i l Thymine Thiamine Inosine Orotic Acid T q  6 20 4 7 40 _  -  Theobromine Caffeine Xanthine Hypoxanthine 1-Methylxanthine 3-Methylxan t h i n e  10 70 25 17  3 2 2 2 2 3  7-Methylxanthine  .  3  1,7-Dimethylxanthine  -ZZ.-  3  T a b l e .2.6  cont'd.  Compound  Uric Acid Guanosine Adenosine Riboflavin Urocanic Acid Indican  Concentration  Reference  20 50 — 22 — 2  2 2 2 7 2 2  0.8  7  17000;' 10000 3 — — 300  7 7 7 7 7 7  — 10000 2600 1000 400, 120 240^ 11700;*,. 4606 — — — — — — —  5 5 5 5 5 7 7 7 7 5 7 5 7 5 5 2  Cutin Glycerine Corprostanol 5j& - C H o l e s t a n - 3 ^ - o l  — — 100 —  4 2 7 6  Allulose Glucose Galactose Mannose Fructose Rhamnose Sorbose and/or x y l o s e Arabinose Ribose  — — — — — — — — —  3 2 2 3 3 3 3 3 3  Cobalamin Unsaturates . Oleic Acid Linoleic Acid Biotin Pantothenic Acid Ascorbic Acid Cholesterol Saturates Formic A c i d Acetic Acid Proprionic Acid Butyric Acid Pentanoic Acid Laurie Acid Myristic Acid Palmitic Acid Stearic Acid Lactic Acid Pyruvic Acid Glycollic Acid Oxalic Acid Glutaric Acid C i t r i c Acid Succinic Acid  c  15 T a b l e 2.6  cont'd.  Compound  Concentration  Sucrose Maltose Lactose Muramic A c i d  Reference 3 2 3 2  a.  See a l s o T a b l e 2.5.  b.  C o n c e n t r a t i o n found i n whole sewage, c o n c e n t r a t i o n i n e f f l u e n t i s unknown but p r o b a b l y 1-3 o r d e r s o f magnitude l o w e r .  c.  I d e n t i f i e d i n sludge only.  d.  References 1. B u e h l e r e t a l . (1973) 2. K a t z e t a l . (1972) 3. J o l l e y (1973) 4. Kolatt'ukudy and Purdy (1973) 5. P a i n t e r and V i n e y (1959) , P a i n t e r e t a l . (1961) 6. Smith and Gourdon (1969) 7. Hunter (1971)  T a b l e 2.7  V o l a t i l e Components of Normal Human Urine'  Component Chloroform Ethanol 1- B u t a n o l Proprionaldehyde Furfural Acetone 2- Butanone 3- Methyl-2-butanone 2,3-Butanedione 2- Pentanone 3-Methy1-2-p ent anone 4- Methyl-2-pentanone 3-Methylcyclopentanone 3- Hexanone 5- Methyl-3-hexanone 2- Heptanone 4- Heptanone 6-Methyl-3-heptanone 3- 0ctanone 2- Nonanone Piperitone Carvone 3- Penten-2-one ^ 4- Methyl-3-penten-2-one Thiolan-2-one Toluene ^ p-Methyl propenylbenzene Benzaldehyde pfCresol 2.3- D i m e t h y l f u r a n 2.4- D i m e t h y l f u r a n 2-Methyl-5-Ethylfuran 2,3,5-TrimeMiylfuran C^-Furan 2-n-Pentylfuran Acetylfuran Pyrrole 1- M e t h y l p y r r o l e 2- M e t h y l p y r r o l e Dimethylpyrrole 1- B u t y l p y r r o l e Methylpyrazine 2,3-Dimethylpyrazine 2,5 or 2 , 6 - D i m e t h y l p y r a z i n e 2,3,5-Trimethylpyrazine 2,Methyl-6-ethylpyrazine Vinylpyrazine 2-Methyl-6-vinylpyrazine ytl-Pinene Allylisothiocyanate D  T a b l e 2.7  cont'd.  Component Dlmethyldisulphide  a  Z l a t k i s et a h  (1973  b,c)  b  Identification i s tentative  T a b l e ; 2.8  G e n e r a l C o m p o s i t i o n o f Secondary E f f l u e n t  Component  P e r c e n t by Weight o f O r g a n i c M a t t e r  Humic A c i d s Fulvic Humic Hymanthomelanic Ether Extractables Anionic Detergents Carbohydrates Proteins Tannins  a  Rebhum and Manka (1971);  40 - 50 23 11 .8 8 14 12 22 2  Manka e t a l . (1974)  19 T a b l e 2.9  O r g a n i c Components o f Secondary E f f l u e n t s  Compound  Concentration  Carbohydrates Glucose Fructose Sucrose Mannose Allulose Xylose Raffinose Glycerine Formic A c i d Acetic Acid F r op'd'o'nU'd-cA^d?d~d Butyric Acid Iso-butyric Acid Iso-valeric Acid Caproic Acid Uric Acid P o l y c y c l i c Aromatics Pyrene 1 Perylene r Benzepyrenes J DDT BHC Dieldrin Uracil 5-Ac etylamino-6-amino-3-Me thy1 u r a c i l Inosine 1-Methyl I n o s i n e 1-Methyl X a n t h i n e 7-Methyl X a n t h i n e 1,7-Dimethyl X a n t h i n e p-Cresol  1.  Painter  2.  Jolley  (1973) (1973)  Reference  2-50  1  10 20 5 10 10 50 10 10  2 1 1 1 1 1 1 1 1 1  1 0.1 0.1 0.1 30 30 20 80 6 5 6 90  1 1 1 2 2 2 2 22 2 2  20 m e t h y l x a n t h i n e are h a r d l y removed a t a l l . 2.  Inorganics The main purpose of r e v i e w i n g the i n o r g a n i c c o m p o s i t i o n of sewage e f f l u e n t s  i s to a s s e s s t h e i r e f f e c t s upon the aqueous c h e m i s t r y of c h l o r i n e through various complexation  r e a c t i o n s w i t h b o t h o r g a n i c s and s p e c i e s c o n t a i n i n g C l . +  In v i e w of the voluminous amount of l i t e r a t u r e a v a i l a b l e and the  complexity  of p r i m a r y e f f l u e n t as a c h e m i c a l system, t h i s r e v i e w w i l l o n l y attempt e s t i m a t e the amounts of i n o r g a n i c s a v a i l a b l e f o r such The (1971) .  to  interactions.  i n o r g a n i c c o m p o s i t i o n s of whole sewages were r e v i e w e d by P a i n t e r Tanner e_t a l . (1973) and Koch e_t a l . (1976) have s u r v e y e d the concen-  t r a t i o n s of some heavy m e t a l s i n Vancouver sewages and treatment p l a n t e f f l u ents. was  A sample of u n c h l o r i n a t e d e f f l u e n t from L i o n ' s Gate Treatment P l a n t  s u r v e y e d i n t h i s s t u d y and the r e s u l t s ase p r e s e n t e d i n T a b l e 2.10  s i m i l a r t o those of the o t h e r s t u d i e s .  are  I n o r d e r to e s t i m a t e the amount of  e a c h c o n s t i t u e n t a c t u a l l y a v a i l a b l e t o i n f l u e n c e the c h l o r i n a t i o n p r o c e s s , r a t i o s o f d i s s o l v e d / t o t a l c a l c u l a t e d from the d a t a of H e u k e l e k i a n and Balmat (1959) are a l s o i n c l u d e d i n Table C.  2.10.  A S i m p l i f i e d Model of the C h l o r i n a t i o n P r o c e s s  The P r o c e s s i n the Sewage Treatment P l a n t The mechanics of e f f l u e n t c h l o r i n a t i o n hav«been d i s c u s s e d i n d e t a i l by White (1971).  The  f i r s t s t e p i n v o l v e s the p r e p a r a t i o n of a c o n c e n t r a t e d  s o l u t i o n of c h l o r i n e from e i t h e r c h l o r i n e gas o r c h l o r i n a t e d l i m e .  This  c o n c e n t r a t e d s o l u t i o n i s then added to the t r e a t m e n t p l a n t e f f l u e n t .  I n some  p l a n t s the f i n a l e f f l u e n t i s d e c h l o r i n a t e d w i t h s u l p h u r d i o x i d e . Chemical  Model  The purpose of t h i s model i s t o e s t i m a t e the c o n c e n t r a t i o n s of s p e c i e s containing C l . +  The importance  o f these s p e c i e s l i e s i n t h e i r a b i l i t y  r e a c t w i t h o r g a n i c s t o form s t a b l e carbon - c h l o r i n e bonds.  to  There a r e many  21  T a b l e 2.10  Component  I n o r g a n i c C o m p o s i t i o n o f L i o n ' s Gate E f f l u e n t  Total Concentration  Fraction  Dissolved/Total  3  mg/1 Al As B Ba Be Ca Cd Cl" Co Cr Cu F" Fe Hg K Mg Mn Mo NH3-N Ni Pb Se Si Ti V Zn  0.095 <0.006 <0.05 <0.02 ; <0.05 8.7° <0.001 • 28 <0.005 0.011 0.10S' 0.07 1.05 <.<0.002 6.7 2.989 0.04^ <0.02 15b 0.011 0.013f 0.008 c  0.12  c  0.88  c  t( c  c  0.92 0.35  c  s  0.95 0.96 0.94  g  s  0.0  &  2.8  r  <0.2 ' <0.07© 0.105 .  0.11  C  e  0.0  a  F o r p r i m a r y e f f l u e n t as opposed t o whole sewage as c a l c u l a t e d from d a t a o f H e u k e l e k i a n and Balmat (1959)  b  GVRD d a t a  c  T o t a l HCI - HNO  digestible  components and f a c t o r s which should be included i n the model.  These include  the sources of c h l o r i n e , the solvent, ammonia, other inorganics, p a r t i c u l a t e s , organics, pH, r e a c t i o n time, mixing,  temperature and s u n l i g h t .  In order to keep the model simple only three f a c t o r s w i l l be considered. 1)  the h y d r o l y s i s of c h l o r i n e , 2) the d i s s o c i a t i o n of hypochlorous a c i d , and  3)  the reactions of c h l o r i n e and hypochlorous a c i d with ammonia to form  chloramines.  The f o l l o w i n g e q u i l i b r i a and reactions w i l l be used.  1)  Cl„, * + H O ^ H' + C l :+ H0C1 2(aq) 2  2)  H0C1 + H 0 * H 0 + 0C1  3)  NH..  4)  NH + H0C1  KJJ  = 4.2  Q  3(aq)  0C1  3  . + H„0 =? NH, + OH"  = 1.8 x 10  +  2  4  NH C1 + H O  3  10"* at  = 2.5 x 10  +  2  x  k  2  = 9.7 x 10  5  8  25°C  at 20°C at 20°C  exp(-3000/RT) 1 mole sec  5)  NH C1 + H 0 -*H0C1 + NH^  k  6)  NH C1 + H0C1  k  2  2  NHC1 + H*0  2  2  = 8.7 x 10 exp(-17,000/RT) sec-1 2  = 7.6 x 10 exp (-7300/RT) 1 mole sec  7) From  2NH.C1  NHCl. + NH  • 2s  Q  2  k  j  i t can be seen that at pH  hypochlorous a c i d .  Now i f  = 80 exp (-4300/RT) 1 m o l e " s e c ~ 1  3  4 a l l of the c h l o r i n e i s i n the form of  A =[H0Cl] -+• [0C1~J B = [ N H J + [NH!]"  then  8. [HOC!], = A  9. [NHj  = B  Since k ^ » k »k- the concentration 2  of monochloramine i s to a rough approxima-  3  t i o n independent of the concentration 11.  NH C1 + H 0 = H0C1 + NH 2  2  3  of dichloramine.  From the e q u i l i b r i u m  1  i t can be seen t h a t 12 la From e q u a t i o n s 6 and 7 i t can be seen t h a t  The f i n a l c o n c e n t r a t i o n s of h y p o c h l o r o u s a c i d and h y p o c h l o r i t e i o n can be c a l c u l a t e d as f o l l o w s : 14. The i n d i v i d u a l c o n c e n t r a t i o n s of the a c i d and i o n can be c a l c u l a t e d  from  e q u a t i o n 8. From t h e s e e q u a t i o n s a s o l u t i o n of the i n i t i a l c o m p o s i t i o n : 1 x 10~ M, 3  [ t o t a l C l ] - 1 x 10 ^M; +  pH - 7.0;  [NH^-Nj -  and r e a c t i o n time - 10  minutes;  w i l l have the f o l l o w i n g f i n a l c o m p o s i t i o n : and L i m i t a t i o n s of the Model There a r e many l i m i t a t i o n s t o t h i s model. the r e d u c t i o n o f C l  +  to C l  The most i m p o r t a n t are t h a t  through r e a c t i o n w i t h r e d u c i n g agents and  the  d e c o m p o s i t i o n s of the c h l o r a m i n e s to n i t r o g e n gas and o t h e r p r o d u c t s have n o t been i n c l u d e d .  Other l e s s i m p o r t a n t f a c t o r s n o t i n c l u d e d a r e 1) f o r m a t i o n of  c h l o r i n e h y d r a t e , 2) d e c o m p o s i t i o n r e a c t i o n s of h y p o c h l o r o u s a c i d and hypoc h l o r i t e i o n s , and 3) t h e f o r m a t i o n o f o t h e r N - c h l o r o compounds. are d i s c u s s e d i n Appendix  These f a c t o r s  I.  V a l i d i t y o f the Model P a l i n (1950) and Isomura (1967) h'ave conducted s t u d i e s on the t i o n s of d'ilute ammonia - c h l o r i n e s o l u t i o n s i n d i s t i l l e d w a t e r .  composiA t ammonia/  c h l o r i n e mole r a t i o s o f 1:1 b o t h i n v e s t i g a t o r s found t h a t the ammonia was a l most t o t a l l y c o n v e r t e d t o monochloramine.  U n f o r t u n a t e l y due t o the d e t e c t i o n  •2,4 l i m i t s o f t h e a n a l y t i c a l methods no q u a n t i f i c a t i o n o f d i c h l o r a m i n e and h y p o c h l o r o u s a c i d c o u l d be made. A g e n e r a l f e e l i n g f o r t h e v a l i d i t y o f t h e aqueous ammonia-chlorine system --. as a model of the p r i m a r y e f f l u e n t - c h l o r i n e system can be o b t a i n e d from t h e p l o t s of r e s i d u a l c h l o r i n e a g a i n s t added c h l o r i n e f o r the two systems.  The  p l o t f o r t h e aqueous ammonia-chlorine system was c a l l e d t h e ' b r e a k p o i n t c u r v e ' by G r i f f i n and C h a m b e r l a i n (1941a,b).  An example o f t h e p l o t f o r a p r i m a r y  e f f l u e n t - c h l o r i n e system can be found i n the s t u d y by McKee e t a l . (1960). The o v e r a l l shapes o f t h e two c u r v e s and t h e forms o f t h e r e s i d u a l s a r e s i m i l a r w h i c h i n d i c a t e s t h a t t h e model i s e s s e n t i a l l y v a l i d .  There a r e however,  two d i f f e r e n c e s between t h e c u r v e s i n the r e g i o n o f t h e c h l o r i n e / a m m o n i a r a t i o n o r m a l l y used i n sewage t r e a t m e n t p l a n t s . a n e o u s l y consumes 0.4 - 1.1 x 10 :  F i r s t l y , primary e f f l u e n t  instant-  m o l e s / l o f Cl^ wM/Te^the ammonia system has  no i n s t a n t a n e o u s /demand., and s e c o n d l y , w i t h p r i m a r y e f f l u e n t t h e s l o p e o f t h e  l i n e i s between 0.82 and 0.92 r a t h e r than 1.0 as n o t e d i n t h e ammonia-chlorine system.  I n o t h e r words, p r i m a r y e f f l u e n t dosed w i t h 28 mg/1 of Cl^ w i l l  sume 4.9 - 11.2 mg/1 C l i n f i f t e e n m i n u t e s . 2  con-  The i n s t a n t a n e o u s consumption  of 2.8 - 8.7 mg/1 i s p r o b a b l y due t o o x i d a t i o n s o f i n o r g a n i c s and/or some v e r y rapid reactions with organics.  The s l o w e r consumption o f 2.1 - 3.5 mg/1 as  manifested i n the d i f f e r e n c e s i n slopes t e n t a t i v e l y suggests the occurrence of o x i d a t i o n and s u b s t i t u t i o n r e a c t i o n s w i t h o r g a n i c s . I n summary, -the form o f t h e r e s i d u a l c h l o r i n e i n a t r e a t m e n t p l a n t i s e s s e n t i a l l y mono and d i c h l o r a m i n e s as was p r e d i c t e d by t h e s i m p l e model.  The v a l -  ue o f a more r e f i n e d model w h i c h i n c l u d e s minor i n t e r a c t i o n s i s tempered by t h e tremendous c o m p l e x i t y o f t h e c h l o r i n e - p r i m a r y e f f l u e n t system. i n d i c a t i o n t h a t r e a c t i o n s o f C l s o u r c e s w i t h o r g a n i c s do o c c u r . +  D.  R e a c t i o n s o f C h l o r i n e W i t h O r g a n i c s i n Aqueous Media  1.  R e a c t i o n s W i t h N i t r o g e n o u s Compounds  There i s some  . 25 Engineering Oriented Studies  Taras  (1950, 1953)  conducted a comprehen-  s i v e s t u d y of the c h l o r i n e demands and n i t r o g e n l o s s e s o f amino a c i d s as w e l l as some p r o t e i n s and o t h e r compounds. (1926), Norman (1936), and P a l i n of  S m a l l e r s t u d i e s were conducted by  (1950).  S t r i c t comparison  Wright  of the b e h a v i o u r  these compounds t o c h l o r i n e i s n o t p o s s i b l e on the b a s i s of t h e s e s t u d i e s  due t o the d i f f e r e n c e s i n C l / N r a t i o s and a n a l y t i c a l problems. r e s u l t s of Taras  From the  (1950, 1953) however some g e n e r a l t r e n d s can be observed w i t h  i n i t i a l mole r a t i o s of 4:1  (Cl/Albuminoid-N)  and n e a r n e u t r a l pH: a) p r i m a r y  CK and /£ -amino groups, mercapto and t h i o e t h e r e a l groups a l l consume two mole* e q u i v a l e n t s o f C l ^ i n f i f t e e n m i n u t e s , b) the £ and £" -amino groups and p e p t i d e l i n k a g e n i t r o g e n atoms r e a c t v e r y s l o w l y w i t h c h l o r i n e , c) a r o m a t i c s u b s t i t u t i o n of  c h l o r i n e p r o b a b l y o c c u r s i n t y r o s i n e and t r y p t o p h a n e , and d) l o s s e s of n i -  t r o g e n i n a one hour o c c u r o n l y f o r cX and j&-amino 50 p e r c e n t . ine  Zaloum (1973) i n v e s t i g a t e d the r e a c t i o n of v a r y i n g dosages of c h l o r -  on some amino a c i d s and o t h e r compounds.  (Cl/N) no l o s s of c h l o r i n e r e s i d u a l was His to  a c i d s and range from 25 t o  A t mole r a t i o s of l e s s than  2:1  o b s e r v e d except i n t h e case of h i s t i d i n e .  r e s u l t f o r h i s t i d i n e i n d i c a t e s that e l e c t r o p h i l i c a d d i t i o n or s u b s t i t u t i o n carbon p r o b a b l y o c c u r s .  He a l s o demonstrated  t h a t w i t h C l / G l y c i n e mole  r a t i o s g r e a t e r than 21:1 o x i d a t i o n of g l y c i n e w i t h l o s s of carbon o c c u r s . Pure C h e m i s t r y O r i e n t e d S t u d i e s amines was  A c o n G i s e p i c t u r e of N - c h l o r i n a t i o n o f  p r e s e n t e d by M o r r i s (1965) i n the form of a B r o n s t e d t y p e p l o t o f  pK^ vs l o g k^/k^, where k^ and k^ a r e the r e s p e c t i v e c o m p e t i t i v e m o l e c u l a r r e a c t i o n r a t e c o n s t a n t s o f H0C1  w i t h the amine and ammonia.  c o r r e l a t i o n w i t h a s l o p e of 0.5 was  obtained.  A good l i n e a r  I t s h o u l d be n o t e d however t h a t  ammonia i t s e l f showed a s i g n i f i c a n t d e v i a t i o n o f the type u s u a l l y to  attributed,  s t e r i c hindrance. I n v e s t i g a t i o n s by D a k i n (1916) among o t h e r s i n d i c a t e d t h a t the r e a c t i o n of  Of-amino a c i d s w i t h NaOCl and o t h e r c h l o r i n a t i n g agents r e s u l t s i n d e a m i n a t i o n and/or d e c a r b o x y l a t i o n t o form the c o r r e s p o n d i n g aldehyde o r n i t r i l e .  A study  26 by van Tamelen e t a l . (1968) y i e l d e d the f o l l o w i n g :  a) w i t h d i m e t h y l g l y c i n e  d e c a r b o x y l a t i o n o c c u r s most r e a d i l y w i t h a pH of 1.5  and a C l / N mole r a t i o of  2:1,  carbon d i o x i d e , formaldehyde, and c h l o r o d i m e t h y l a m i n e  were i d e n t i f i e d  as  p r o d u c t s , b ) d e c a r b o x y l a t i o n most l i k e l y i n v o l v e s N - c h l o r i n a t i o n r a t h e r than f o r m a t i o n of the a c y l h y p o c h l o r i t e and d e f i n i t e l y i n v o l v e s a t r a n s ,  coplanar  arrangement, and c) o t h e r complex r e a c t i o n s a l s o occur w i t h compounds such as trytophan.  P a t t o n e t a l . (1972) p r e s e n t  aqueous c h l o r i n a t i o n of c y t o s i n e :  the f o l l o w i n g o b s e r v a t i o n s on  a t a 1:1 mole r a t i o o n l y  the  4,N-chlorination  o c c u r s , b) a t a 2:1 mole r a t i o C l / C y t o s i n e the 4, N-chloro ( I ) , 4 , N - c h l o r o , i  5-chloro  ( I I ) , 4 , N - c h l o r o , c h l o r o h y d r i n ( I I I ) , and  1,4N-dichloro-chlorohydrin  (IV) were a l l formed, c) i n c r e a s i n g the C l / C y t o s i n e mole r a t i o i n c r e a s e d  the  y i e l d o f I I I and IV and a t a 5:1 moijie r a t i o a t e t r a c h l o r o d e r i v a t i v e was  formed  w h i c h decomposed on s t a n d i n g to I and I I . e t a l . (1973) a t pH 4 and a 2:1  Subsequent i n v e s t i g a t i o n s by P e r e i r a  C l / s u b s t r a t e mole r a t i o w i t h some amino a c i d s  and d i p e p t i d e s y i e l d e d the f o l l o w i n g :  a) w i t h t y r o s i n e o n l y the r i n g c h l o r i n a t e d  aldehyde o r n i t r i l e r a t h e r than the r i n g c h l o r i n a t e d amino a c i d s were o b s e r v e d w h i c h c o n f l i c t s w i t h the c l a i m s of Thompson (1954), b) the n i t r i l e / a l d e h y d e r a t i o was  95/5,  group a l p h a to the amino group was  k c ) w i t h g l u t a m i c a c i d o n l y the  removed  '  carboxyl  d) o n l y t e r m i n a l N - c h l o r i n a t i o n  i s observed w i t h d i p e p t i d e s w i t h p o s s i b l e d e c o m p o s i t i o n to a  w i t h L-phenylalanirie  of the  dichloramine  c h l o r i m i n e and e) no N - c h l o r i n a t i o n i s o b s e r v e d w i t h N - a c e t y l  L-alanine;  f ) w i t h c y s t e i n e o n l y o x i d a t i o n of the s u l p h u r t o c y s t e i c a c i d and some dimeri z a t i o n t o c y s t i n e was  o b s e r v e d , c y s t i n e was  o x i d i z e d to c y s t e i c a c i d .  a l s t u d i e s on the r e a c t i o n of o t h e r o r g a n i c s u l p h i d e s w i t h c h l o r i n e a r e by Baker et a l .  Additiondiscussed  (1946).  Hoyano e_t a l . (1973) s t u d i e d the r e a c t i o n s of some u r a c i l s and w i t h aqueous h y p o c h l o r o u s a c i d a t H O C l / s u b s t r a t e  purines  mole r a t i o s of 2 and  4:1.  W i t h the u r a c i l s , N - c h l o r i n a t i o n p r e c e d e d d e l e c t r o p h i l i c s u b s t i t u t i o n .  The  p u r i n e s y i e l d e d 20-90 p e r c e n t parabanic  a c i d s i n seven days.  Thus o x i d a t i v e  27 d e g r a d a t i o n may be an i m p o r t a n t r e a c t i o n w i t h t h e s e  compounds.  A somewhat s p e c i a l case i s o b s e r v e d i n the c h l o r i n a t i o n o f c y a n u r i c a c i d , (Brady e_t a l . , 1963; the k e t o - t a u t o m e r .  S a n c i e r et_ a l . , 1964) where N - c h l o r i n a t i o n o c c u r s o n l y i n The s t a b i l i t y of t h e N - c h l o r i n a t e d k e t o - t a u t o m e r  combined  w i t h the f a c i l e r e l e a s e o f c h l o r i n e from t h e e n o l and t h e f a c t t h a t t h e r e a r e t h r e e t a u t o m e r i c s i t e s on the t r i a z i n e r i n g has made c y a n u r i c a c i d an i m p o r t a n t " c h l o r i n e s t a b i l i z e r " i n swimming p o o l s ( G a r d i n e r , 1 9 7 3 ; 2.  R e a c t i o n s o f C h l o r i n e w i t h Other  Canelli,  1974).  Organics  Introduction  The r e a c t i o n s of c h l o r i n e w i t h o r g a n i c s can be c l a s s i f i e d  i n t o f o u r groups:  n u c l e o p h i l i c a t t a c k o f C l , e l e c t r o p h i l i c a t t a c k of C l , +  p h o t o c h e m i c a l , and o x i d a t i o n r e a c t i o n s .  E x c e l l e n t r e v i e w s o f c h l o r i n a t i o n reac-^  t i o n s i n pure systems have been p u b l i s h e d by House (1965), E i s c h (1966), B u e h l e r and P e a r s o n  (1970) and Dorn (1972).  I n r e a d i n g t h e s e r e v i e w s , i t must be k e p t  i n - m i n d t h a t most o f the y i e l d s quoted have been o p t i m i z e d .  Furthermore,  y i e l d o f l e s s than one p e r c e n t i s u s u a l l y i n s i g n i f i c a n t t o a c l a s s i c a l  a  synthetic  chemist whereas such a y i e l d may be v e r y i m p o r t a n t t o an e n v i r o n m e n t a l c h e m i s t . T h e r e f o r e a b r i e f summary of c o n d i t i o n s i n a t r e a t m e n t p l a n t i s p r o v i d e d i n T a b l e 2.11 i n o r d e r t o o b t a i n a f e e l i n g f o r t h e r e l a t i v e importance and p o s s i b l e magnitudes o f t h e s e r e a c t i o n groups i n p r i m a r y e f f l u e n t .  These groups w i l l  now  be d i s c u s s e d i n t h e most p r o b a b l e o r d e r of i m p o r t a n c e . Oxidation Reactions  These r e a c t i o n s have been r e v i e w e d by B a r k e r  The mechanisms a r e not c o m p l e t e l y u n d e r s t o o d .  (1964).  I n most cases o x i d a t i o n w i t h  H0C1 i s as r a p i d as w i t h m o l e c u l a r Cl^ however, f a c t o r s such as a c i d and base c a t a l y s i s , the g r e a t e r p p r o p e n s i t y t o o x i d a t i o n o f a n i o n s , e.g. f o r m i c a c i d , and h y d r a t e f o r m a t i o n e.g. aldehydes make g e n e r a l i z a t i o n somewhat tenuous. i s w e l l known t h a t a l d o s e sugars a r e o x i d i z e d t o a c i d s by h y p o c h l o r i t e . i n v e s t i g a t i o n s o f t h e o x i d a t i o n of a r o m a t i c r i n g s have been c a r r i e d o u t .  It  Several In  a c i d i c s o l u t i o n s , Van Buren and Dence (1967) w o r k i n g w i t h l i g n i n model compounds e s t i m a t e d t h a t 20 - 80% o f the p r o d u c t s a r e o x i d a t i o n r a t h e r than sub-  28 T a b l e 2.11 a.  Summary of R e a c t i o n C o n d i t i o n s f o r Organics  C o n d i t i o n s i n the Main Body of Water  Component  Remarks  Solvent Buffers  Water Acetic acid/Acetate Carb onate/B i c a r b ona t e 6.5 - 8.5 2-12°C Variable Approximately 50/50 i n H0C1/0C1" v e r y l i t t l e of each a v a i l a b l e M a r t i a l l y c o n v e r t e d to chloramines [ T o t a l C1+J* = 10"4 ~10" MM *~10~ M [individual] ~10" - 10" M [ T o t a l J - 1 0 " -10" M --10 mg/1 0.001 - 10 mg/1 20 - 50 minutes  H Temperature Mixing • Cl /HOCl/OCl" P  2  NH  i n Sewage  3  M  Cl" Br" Organic  3  4  compounds  6  3  Bacteria Heavy metals R e a c t i o n time  b.  C o n d i t i o n s a t the  4  4  Surface  Component  Remarks  Solvent  F l o a t i n g o r g a n i c s = 0.1 - 2.0% of the a r e a Polywater? 2 - 37° C 15-30 minutes V a r i a b l e , d i r e c t s u n l i g h t sometimes -7-i- i.able P o s s i b l y present Present Abundance of some types i s g r e a t e r a t the s u r f a c e  Temperature ( a i r ) R e a c t i o n time UV l i g h t Cl Chloramines Organics 2  ;  .  "T" " C l " r e f e r s to a l l s p e c i e s c o n t a i n i n g c h l o r i n e i n the +1 o x i d a t i o n s t a t e as opposed to hi|drated C l i o n s . No C l ( q ) i expected to be p r e s e n t (Swain and C r i s t 1972). +  +  s  a  29 s t i t u t i o n o r d i s p l a c e m e n t p r o d u c t s , w h i l e V o l l b r a c h t e t a l . (1968) d e t e r m i n e d t h a t e x h a u s t i v e c h l o r i n a t i o n o f some o t h e r phenols y i e l d e d c h l o r i n a t e d hexenones.  cyclo-  I n n e u t r a l s o l u t i o n s , EPA (1972) p o s t u l a t e d r i n g c l e a v a g e o f  phenols.  In b a s i c s o l u t i o n , Moye and S t e r n h e l l (1966) s t a t e than p h e n o l i s c o n v e r t e d t o a c h l o r i n a t e d c y c l o p e n t a n e c a r b o x y l i c a c i d p r o b a b l y by a F a v o r s k i i r e a r r a n g e ment arid o x i d a t i o n o f t h e cyclolpentenone' i n t e r m e d i a t e . E l e c t r o p h i l i c Reactions  Aromatic e l e c t r o p h i l i c s u b s t i t u t i o n s of c h l o r i n e  f o r hydrogen u s i n g sodium h y p o c h l o r i t e were r e v i e w e d by Hopkins and C h i s h o l m (1946) and Soper and Smith (1926).  The k i n e t i c s o f t h e aqueous c h l o r i n a t i o n o f  p h e n o l w e r e i n v e s t i g a t e d by B u r t t s c h e l l e t a l . (1959), and Lee-and M o r r i s (1962) among o t h e r s .  E l i a s e k and J u n g w i r t (1963) s t u d i e d t h e e x h a u s t i v e c h l o r i n a t i o n  of p h e n o l , o r t h o - c r e s o l and p y r o c a t e c h o l by sodium h y p o c h l o r i t e .  They found  t h a t the c o m p l e t e l y o,p s u b s t i t u t e d p h e n o l i s i n i t i a l l y formed f o l l o w e d by o x i dation to a chloroquinone.  The c h l o r o q u i n o n e was then e i t h e r f u r t h e r  chlorinat-.  ed, o r i n t h e presence o f l i g h t , c o n v e r t e d t o a h y d r o x y c h l o r o q u i n o n e w h i c h p o l y m e r i z e d a t pH>7 t o humic a c i d type compounds.  An u n s p e c i f i e d type o f o x i d a -  t i v e d e c o m p o s i t i o n was observed i n the case o f p y r o c a t e c h o l t o t h e e x t e n t o f 60 p e r c e n t . Van Buren and Dence (1967) observed t h e s u b s t i t u t i v e d i s p l a c e m e n t o f the p r o p y l m o i e t y from g u a i a c y l e t h y l c a r b i n o l and v e r a t r y l e t h y l  carbinol.  E l e c t r o p h i l i c a d d i t i o n i s known t o o c c u r i n aqueous s o l u t i o n o r s u s p e n s i o n , eg. Emerson (1945). demonstrated  I n v e s t i g a t i o n s by Gunstone and P e r e i r a (1973) among o t h e r s  t h a t h a l o g e n a t i o n o f u n s a t u r a t e d f a t t y a c i d s and a l c o h o l s o f t h e  a p p r o p r i a t e s t e r e o c h e m i s t r y can r e s p e c t i v e l y y i e l d s i g n i f i c a n t amounts o f h a l o g e n a t e d o x o l a n e s and oxanes.  Hawkins (1973) natsnt-sd  anone .NaOCl and an ammonium s a l - j Zz s  •' - • v a n e . .  Uv. r,-- ia-tion 5  J  zi  c  P h o t o c h e m i c a l R e a c t i o n s M e i n e r s and M o r r i s s (1964) s t u d i e d the e f f e c t o f UV i r r a d i a t i o n on t h e c h l o r i n e o x i d a t i o n o f s t a r c h i n a c i d i c aqueous s o l u t i o n . More r e c e n t l y K o b a y a s h i and Okuda (1972) found s i g n i f i c a n t p h o t o c h e m i c a l up-  30 take, cf chlorine by a large number of compounds i n d i l u t e aqueous solution. Catalysis by Hg(II) and  PbXXT)-  Nucleophilic Reactions  W^as, also noted,  Due to the competitive hydrolysis reactions,  nucleophilic substitutions are unlikely to play an important r o l e i n sewage effluents.  It should be noted however that halide exchanges involving the  addition of chloride w i l l make the compound more stable with respect to hydrolysis. 3.  Reactions of N-Chloro Compounds with Organics I t has been noted by Burttschelle6:fga:-1> (1959'),*;andxotR'ersT^that; the rate of  chlorination of phenol i n the presence of ammonia i s very slow.  Zaloum (1973)  observed oxidative type chlorination reactions of amino acids by chloramines. The c l a s s i c a l mechanism of chlorination involves c a t a l y s i s by acid and chloride with the l i m i t i n g step being the d i s s o c i a t i o n of the chloramine to the amine and molecular chlorine, e.g. Hurst and Soper (.1949).  Some evidence  has been presented for the direct chlorination ( e l e c t r o p h i l i c substitution) by morpholinum ions l(Carraarid .Englarid(1958) , dichloramine-T .(jHiguchi and Hussain, B  19.6#')\, and diethylchloramine X'BrownaaridFSpper^1953) , s  An important facet of  the investigation of Brown and Soper i s that rate of chlorination of phenols 3 with N-chlorodiethyl amine at neutral pH i s 10  times greater than that of  chlorination with H0C1 probably due to the s i g n i f i c a n t amounts of RR'NC1H  +  present.  Onuska (1973) was unable to detect d i e t h y l amine i n sewage, although  Rains et a l . (1973) tentatively i d e n t i f i e d a series of a l k y l amines i n sludges. West and Barret (1954) observed the production of 5-chlorouracils from the reactions of some u r a c i l s with N-chlorosuccinimide ih?acetic acid.  Chlorination  of styrene by monochlorourea was discussed by Hanby and Rydon (1946).  The  alpha-chlorination of unsymmetrical benzylic sulphides with N-chlorosuccinimide i n carbon tetrachloride was observed by Tuleen (1967).  Substituted hydrazines  have been prepared from chloramine and a substituted amine (Audrieth and Diamond, 1954;  Diamond and Audrieth, 1955), or by other chlorinating agents  ( A u d r i e t h e t a l . , 1956, C o l t o n et_ a l . , 1954). of  Hawkins (1973) p a t e n t e d the use  cyclohexanone, NaOCl and an ammonium s a l t f o r the p r o d u c t i o n of 1 - c h l o r o -  amino c y c l o h e x a n o l .  Other examples of t h e r e a c t i o n s of c h l o r a m i n e s can be  found i n t h e r e v i e w s by Drago (1957) and K o v a c i c et a l . (1970). F r e e r a d i c a l a d d i t i o n of c h l o r a m i n e s to u n s a t u r a t e d compounds i n H^SO^/ HOAc r e s u l t i n g i n ^ - c h l o r o a m i n e s hass been noted ( K o v a c i c e t a l . , 1970). phase r e a c t i o n s tend to y i e l d o n l y c h l o r i n a t e d p r o d u c t s ( P r a k a s h and  Gas  Sisler,1970).  E970)The E f f e c t s of C h l o r i n e on Sewage E f f l u e n t s 1.  P r a c t i c e s i n Treatment P l a n t s The l a t e s t e s t i m a t e s o f c h l o r i n e usages i n the U n i t e d S t a t e s (JWPCF,  a r e 1.87  x 10^ t o n s / y e a r f o r wastewater,  2.5 x 10"* t o n s / y e a r f o r water s u p p l i e s  and 2.1 x 10^ t o n s / y e a r f o r swimming p o o l s . ine  was  d i s c u s s e d by Laubusch (1959).  major i m p u r i t i e s b e i n g N  2  and CO^  and benzene d e r i v a t i v e s may  The c o m p o s i t i o n of gaseous c h l o r -  The p u r i t y i s 99.5% or b e t t e r w i t h t h e  a l t h o u g h some h a l o g e n a t e d methane, ethane  be p r e s e n t i n ppm  The uses of c h l o r i n e i n wastewater (1972).  quantities.  t r e a t m e n t have been d e s c r i b e d by White  The dosage a p p l i e d v a r i e s a c c o r d i n g to the s t r e n g t h of the e f f l u e n t .  F o r example, d u r i n g the n i g h t when the sewage i s e s s e n t i a l l y only 1 - 2 ing  mg/1  Cl^ may  Cl^ may  t o 0.5 h r depending  tween the p l a n t and r e c e i v i n g w a t e r . e f f l u e n t s range from 0.0  infiltration,  be added w h i l e d u r i n g peak l o a d s and, e s p e c i a l l y d u r -  dumping of d i g e s t o r s , 30 mg/1  times v a r y from 0.25  or  1974)  t o 5.0 mg/1  not d e c h l o r i n a t i o n i s p r a c t i c e d .  be added to the e f f l u e n t .  Contact  upon the f l o w and l e n g t h of l i n e  be-  The combined c h l o r i n e r e s i d u a l s i n the depending  on the time of y e a r and whether  F r e e r e s i d u a l c h l o r i n a t i o n i s not the  usual practice. 2.  B i o l o g i c a l E f f e c t s of R e s i d u a l C h l o r i n e Disease C o n t r o l  The h i s t o r i c a l t r e n d s of water borne d i s e a s e o u t b r e a k s  have been reviewed by Craun (1972), Craun and McCabe (1973) and K i t t r e l l and Furfai,(1963).  There can be no doubt t h a t c h l o r i n a t i o n of water s u p p l i e s has  effected has  a s i g n i f i c a n t decrease i n d i s e a s e s ,  not  occurred.  disease outbreaks to  establish.  The has  The  however a t o t a l  eradication  e f f e c t of waste-water c h l o r i n a t i o n  not  been documented and  is  very  difficult  e f f e c t s of c h l o r i n a t i o n of e f f l u e n t s on  counts a t a beach i n the r e c e i v i n g w a t e r are ambiguous due  on  coliform  to r e g r o w t h of c o l -  i f o r m s and v a r i o u s e n v i r o n m e n t a l f a c t o r s a f f e c t i n g d i e o f f ( K i t t r e l l 1963).  and  I n a d d i t i o n , S i l v e y e t a l . (.1974) found s a l m o n e l l a e b a c t e r i a i n c h l o r -  i n a t e d e f f l u e n t s and  r e c e i v i n g water.  T o x i c i t i e s to V a r i o u s Forms of L i f e system can  cause p o p u l a t i o n changes due  The  a d d i t i o n of m a t e r i a l  to an  eco-  to s p e c i f i c o r g e n e r a l t o x i c i t y ,  car-  cinogenicity, mutagenicity, teratogenicity, behavioural modification being a s p e c i f i c l i m i t i n g n u t r i e n t . t i o n of pH, t o x i c and and  other detrimental  antagonistic  effects  e f f e c t s can be  Microorganisms  c o m p l i c a t e d due  (Longbottom, 1972;  (1972), White (1972) and (Bacteria,  Viruses  and  sewage b a c t e r i a , e s p e c i a l l y c o l i f o r m s H e u k e l e k i a n and  0.1  t o 5.0 - 0.5  t e m p e r a t u r e , pH,  Algae). has  mg/1  mg/1  The  synergistic Studies or  and  days f o l l o w e d  Merkens  on  and  effective control  r e v i e w e d by White (99.9% k i l l ) of  (1972).  bacteria  viruses  residual.  nutrients.  by a d e c l i n e .  re-  been d i s c u s s e d by F a i r et_ a l . (.1948)  combined r e s i d u a l f o r 10 m i n u t e s , w h i l e free  addition,  e f f e c t of c h l o r i n e  K i t t r e l l and  of many f a c t o r s  F u r f a i (1963) s t a t e  growth of 4 to 8 times the o r i g i n a l p o p u l a t i o n of c o l i f o r m s  1974) .  In  Brungs (1973).  In r e c e i v i n g waters, regrowth i s a f u n c t i o n  c o c c i do not  to  O n g e r t h , 1973).  F a u s t (1961) among o t h e r s ,  A l t h o u g h i t i s a f u n c t i o n of pH,  r e q u i r e 0.2  other f a c t o r s .  t o x i c i t i e s of r e s i d u a l c h l o r i n e have been u n d e r t a k e n by  (1958), Z i l l i c h  requires  or i t s  T o x i c i t y of r e s i d u a l c h l o r i n e i s a f u n c -  t e m p e r a t u r e , form of the r e s i d u a l and  v i e w s of the  and  Furfai  Salmonellae, f e c a l coliforms,  including that a re-  occurred i n and  fecal  0.5  strepto-  appear to e x h i b i t t h i s r e g r o w t h i n s u r f a c e w a t e r s ( S i l v e y e_t a l . ,  33 I n h i b i t i o n of a l g a l growth was 1971). 1969)  S t u d i e s by K o t t  e f f e c t e d by 0.15  ( K o t t and E d l i s , 1969;  - 3.0  Betzer  mg/1  (McKee and  and K o t t , 1969;  Kott,  showed t h a t c h l o r i n e i s a l g i s t a t i c to c h l o r e l l a p y r e n o i d o s a and  s o r o k i n i a n a a t 0.4 t h a t 10 mg/1  mg/1  and  t o c l a d o p h o r a sp. a t about 1 mg/1.  r e s i d u a l s of c h l o r i n e are n e c e s s a r y to k i l l  He  Wolf,  C.  a l s o showed  these species  while  bromine or a m i x t u r e of c h l o r i n e and bromine k i l l e d c h l o r i n e r e s i s t a n t a l g a e Cosmarium and o t h e r a l g a e a t r e s i d u a l s of 0.4  to 2.0  a d d i t i o n he n o t e d t h a t the a v a i l a b i l i t y of l i g h t and a l s o a f f e c t the  mg/1  t o t a l halogen.  In  the t i m i n g of dosages  toxicity.  Invertebrates..  Some/values f o r t o x i c l e v e l s of r e s i d u a l c h l o r i n e t a k e n  from McKee and Wolf (1971) are chironomous (Blood worms) 15 - 50 mg/1, onomous l a r v a e 0.65 atodes 95 - 100 mg/1, mg/1.  mg/1  i n 24 h r s . , m u s s e l s , s n a i l s , sponges 2.5  and  of c h l o r i n e .  chir-  mg/1,  s h e l l f i s h pumping r a t e s are reduced by 0.01  Daphnia were k i l l e d i n 48 h r s . by 4 mg/1  Other  nem-  0.05  studies  have been conducted by McLean (1973) on the combined e f f e c t s of c h l o r i n e temperature and TvSh. Zillich  and  (1972) i t can be s t a t e d t h a t t o x i c e f f e c t s range from Brown t r o u t mg/1  free  h r s . , to w h i t e suckers,  f o r 2 minutes r e s u l t s i n 100  1.0  mg/1  f r e e Cl^  (1972) c o r r e l a t e s t h i s t o s c a l e s i z e .  i s l e t h a l i n 0.5  S e r v i z i and Martens(1974) and Martens and  mg/1  to 1.0  hrs.  as. low as 0.005 mg/1  Servizi(1974)  types o f e f f l u e n t s found m o r t a l i t i e s of salmon and  combined r e s i d u a l s of 0.02  % mortality in  24  White  Other e f f e c t s such as " d e p r e s s e d a c t i -  v i t y " i n b r o o k t r o u t are o b s e r v e d a t c o n c e n t r a t i o n s  various  and  weteci.nco,nclusiv.e^.  From the r e v i e w s by Brungs (1973), McKee and Wolf (1971)  exposure t o 0.04  Cl.  eg.  free  working with  rainbow t r o u t a t  w h i c h i s the d e t e c t i o n l i m i t of the amperometric  t i t r a t o r . ' They a l s o found e v i d e n c e of g i l l damage a f t e r p r o l o n g e d exposure t o c h l o r i n e and. that, Cpho salmon do not n e c e s s a r i l y avoid" areas c o n t a i n i n g (1.3 mg/1)  concentrations  of c h l o r i n e ' .  lethal .  34 Plant  Life.  The  e f f e c t of c h l o r i n e on p l a n t l i f e i n a q u a t i c systems i s  e s s e n t i a l l y unknown.  A study on k e l p i n d i c a t e d 5 - 1 0  reduces p h o t o s y n t h e t i c Mammals.  activity  mg/1  significantly  (McKee and W o l f , 1971).  Muegge (1956) r e p o r t s t h a t humans have h i g h t o l e r a n c e s f o r  residual chlorine.  Concentrations  of 50 mg/1  c h l o r i n e have no a c u t e t o x i c e f f e c t s .  and h i g h e r i n the form of f r e e  I t s h o u l d be n o t e d however t h a t  g e n i c - type responses have been r e p o r t e d  aller-  (Watson and K i b l e r , 1934), and  eye i r r i t a t i o n s have a l s o been observed a t c o n c e n t r a t i o n s  of 0.5  mg/1  that  (McKee  and Wolf 1971). 3.  T o x i c E f f e c t s of C h l o r i n a t e d O r g a n i c s A l a r g e volume of i n f o r m a t i o n i s a v a i l a b l e on the t o x i c e f f e c t s of i n -  d u s t r i a l l y produced c h l o r i n a t e d o r g a n i c s .  The  a c u t e t o x i c e f f e c t s of t h e s e com-  pounds have been r e v i e w e d by F i s h b e i n and Flam (1972) and G r i b b l e  (1974).  T h e i r mutagenic e f f e c t s were r e v i e w e d by F i s h b e i n (1973b) w h i l e M i l l e r d i s c u s s e d some t e r a t o g e n i c e f f e c t s .  A s t u d y by Das  (1974)  e t a l . (1969) showed t h a t  v a r i o u s c h l o r o c a t e c h o l s and c h l o r o - o - b e n z o - q u i n o n e s from b l e a c h e d k r a f t c h l o r i n a t i o n e f f l u e n t had  1-3  (Atlantic  P r e l i m i n a r y s t u d i e s by Gehrs e_t a l . (1974) on  Salmon).  hr  LC-^QQ  v a l u e s of about 20 mg/1  f o r young Salmo s a l a r 4-chlorores-  o r c i n o l and 5 - c h l o r o u r a c i l i n d i c a t e d d e l e t e r i o u s e f f e c t s on h a t c h i n g of eggs o c c u r at c o n c e n t r a t i o n s  of 0.1  and 5 mg/1  respectively.  While i t i s  o b v i o u s t h a t some c h l o r i n a t e d compounds are v e r y t o x i c , the i m p o r t a n t r e l a t i n g to the c h l o r i n a t i o n of sewage i s whether h a l o g e n a t i o n of an o r g a n i c compound makes i t more t o x i c t o a q u a t i c l i f e . t h i s q u e s t i o n i t i s u s e f u l to s e p a r a t e numerical yaiuenexpressing  two  carp  In  question  or o x i d a t i o n considering  f a c e t s of a c u t e t o x i c i t y 1)  the  the. t o x i c i t y - p f p a . p a r t i c u l a r compound to an organism  and 2) the s t r u c t u r a l f e a t u r e s of a m o l e c u l e w h i c h tend t o make i t t o x i c . An example of the f i r s t f a c e t i s the comparison of the t o x i c i t i e s o f a s e r i e s of benzene d e r i v a t i v e s t o a q u a t i c l i f e T a b l e 2.12. when a t t e m p t i n g  Two  problems arise.,  to compare the t o x i c i t i e s of d i f f e r e n t compounds by a  liter-  T a b l e 2.12  T o x i c i t i e s of S e l e c t e d Compounds to A q u a t i c L i f e '  Organism  Compound  ^ .Benzene II  it  ,6-Dichlorobenzene p-D i c h l o robenz ene Phenol ^hS-CMforopnenol m-Chlorophenol p-Chlorophenol  Toxicity . C r i t e r i o n • C„. o n c•e n t r a t i-o n b  Sunfish Mosquito F i s h Rainbow T r o u t Fish Fish  LC 48 hr  Goldfish  MTE°  n  46 490 13-26 2.2 34  TLM  ^100 LC 5 0  L C  100  1.00° 1.58° 2.10° 2.58°  II  n  II  II  II  Phenol 6-Chlorophenol Pentachlorophenol  B l u e g i l l Sunfish 48 h r TLM 21 B l u e g i l l F i n g e r l i n g s / 9 6 hr-TLM-6.6 Various Fish 24 h r TLM 0.75-0.22  Benzoic A c i d  Mosquito Goldfish  II  Fish  TLM 7-^-916 hr L  200 _  L C  2,3,5-Trichlorobenzoic Acid 2,3,6-Trichlorbbenzoic Acid Phenol  L a r g e Mouth Bass  100  24 hr  TLM  L a r g e Mouth Bass 24 h r TLM Daphnia JT_.D MLD Scenedesmus ( A l g a ) it Microregma it (Protozoan) E. C o l i (Bacterium) " Daphnia Scenedesmus Microregma " E. C o l i " Daphnia " Scenedesmus it Microregma E. C o l i Daphnia it 48 h r MLD it prolonged MLD  ti II  II  Quinone II II II  Hydroquinone II  tt n  Toluene Benzyl A l c o h o l Benzoic A c i d  160 67 670 17 43 32 1100 0.37 5.5 0.18 46 16 7.3 45 27 6.5 33 12  a. From McKee and Wolf (1971) u n l e s s o t h e r w i s e i n d i c a t e d b. U n i t s a r e 10^ times moles p e r l i t r e u n l e s s o t h e r w i s e i n d i c a t e d c. Data from G e r s d o r f f and Smith (1940); MTE = maximum t o x i c e f f e c t exp r e s s e d i n u n i t s o f 1 m o l e ! m i n ~ l n o r m a l i z e d to p h e n o l ; a l a r g e r number indicates a greater t o x i c i t y . -  ature review. mg/1.  The  f i r s t problem i s t h a t t o x i c i t i e s a r e r e p o r t e d  W h i l e the numbers g e n e r a t e d from the use  i n units  of  of t h e s e u n i t s are i n d i c a t i v e  of the a b s o l u t e t o x i c i t i e s of the compounds, t h e y do not r e f l e c t the  relative  t o x i c i t i e s of a s e r i e s of compounds on a m o l e c u l e f o r m o l e c u l e b a s i s .  There-  f o r e f o r t h i s r e v i e w t o x i c i t y v a l u e s have been c o n v e r t e d to u n i t s of moles per litre.  The  conditions lem  second and more s e r i o u s problem a r i s e s out of the n o n - s t a n d a r d i z e d used i n the g e n e r a t i o n o f t o x i c i t y d a t a .  As a r e s u l t o f t h i s p r o b -  i t i s presumptuous to a r b i t r a r i l y e s t a b l i s h a minimum d i f f e r e n c e between  'the t o x i c i t y v a l u e s f o r two  compounds w h i c h must be c o n s i d e r e d  significant.  A study of the second f a c e t of t o x i c i t y i s f u r n i s h e d by T a b l e 2.12 as the r e v i e w s of the i n d u s t r i a l l y produced c h l o r i n a t e d o r g a n i c s . 2.12  From T a b l e  i s appears t h a t c h l o r i n a t i o n or o x i d a t i o n i n c r e a s e s the t o x i c i t y of  compound o n l y i n c e r t a i n cases and  From o t h e r s t u d i e s i t  appears t h a t a l t h o u g h the t o x i c i t y cannot be e a s i l y p r e d i c t e d two  are r e l a t e d .  a)  s t a b i l i t y w i t h r e s p e c t to d e g r a d a t i o n , e.g.  from s t r u c t u r e  Important f a c t o r s or c o i n c i d e n t a l p r o p e r t i e s  s t e r e o i s o m e r i s m s , e.g.  BHC;  DDT,  aldrin  chlorinated dibenzodioxins; and  the  t h a t t o x i c i t y i s r e l a t e d to p o s i t i o n of  s u b s t i t u t i o n and numbers of c h l o r i n e atoms p r e s e n t .  c h l o r i n e s u b s t i t u t i o n , e.g.  as w e l l  d)  c)  w a t e r s o l u b i l i t y e.g.  appear to  be:  b) p o s i t i o n of o t h e r forms of dichlorobenzenes  (McKee and W o l f , 1971). Sublethal and  alarm substances (Vallentyne,  tigated.  to the low c o n c e n t r a t i o n s  C h e m i c a l E f f e c t s of Engineering Studies  previously  1967)  These s u b l e t h a l e f f e c t s may  e f f e c t s due 4.  e f f e c t s such as i n t e r f e r e n c e w i t h or d u p l i c a t i o n of pheromones  discussed.  a r e p r o b a b l e b u t have n o t been i n v e s be even more i m p o r t a n t than a c u t e t o x i c of o r g a n i c s i n p r i m a r y e f f l u e n t s .  Chlorination The  r e a c t i o n s w i t h o x i d i z a b l e i n o r g a n i c s have been  (O'lve'rc e t a l . (1974) n o t e d the s o l u b i l i z a t i o n of h e a v y  m e t a l s from sewage s l u d g e s e x h a u s t i v e l y  chlorinated.  This e f f e c t i s probably  the  37 due t o pH reduction, r a t h e r than o x i d a t i o n by c h l o r i n e . A p a r t from the b r e a k p o i n t c u r v e , some i n v e s t i g a t o r s have n o t e d a r e d u c t i o n o f the d e c h l o r i n a t e d  sewage.  r e f u t e s t h e s e c l a i m s and p o s t u l a t e s  A recent  Chemical S t u d i e s organics 1969;  reduction  i n v e s t i g a t i o n by Zaloum  (1973)  t h a t the observed changes i n BOD,, were due  to d i f f e r e n c e s i n i n i t i a l m i c r o b i a l p o p u l a t i o n n o t observe any d e t e c t a b l e  BOD  during  the BOD  test.  He d i d  i n TOC upon c h l o r i n a t i o n .  The f i r s t major s t u d i e s o f the e f f e c t s o f c h l o r i n e on  i n wastes d e a l t w i t h k r a f t m i l l b l e a c h i n g wastes (Van Buren e_t a l . ,  Das e t a l . , 1969;  Rogers and K e i t h , 1974).  Chlorinated  quinones  and p h e n o l s were found i n t h e s e e f f l u e n t s . A major i n v e s t i g a t i o n of the e f f e c t s of c h l o r i n a t i o n on m u n i c i p a l ment p l a n t e f f l u e n t s was u n d e r t a k e n by J o l l e y  (1973).  treat-  He l i m i t e d h i s i n v e s t i g a -  t i o n t o the r e l a t i v e l y n o n - v o l a t i l e compounds and i n v e s t i g a t e d the f o l l o w i n g areas: 1)  primary e f f l u e n t a)  the e f f e c t s of v a r i o u s dosages o f n o n - r a d i o a c t i v e  b)  the magnitude o f the uptake of r a d i o a c t i v e c h l o r i n e by at a dosage of 26 mg/1  c)  the s e p a r a t i o n  chlorine organics  Cl^  and i d e n t i f i c a t i o n of the c h l o r i n a t e d compounds  formed d u r i n g c h l o r i n a t i o n . 2)  secondary e f f l u e n t a)  the magnitude of t h e uptake of r a d i o a c t i v e c h l o r i n e by and  organics  inorganics  b)  the e f f e c t s o f d e c h l o r i n a t i o n upon c h l o r i n e uptake  c)  an e v a l u a t i o n of the e f f e c t s o f u s i n g NaOCl i n s t e a d o f Cl^  (g)  upon c h l o r i n e uptake d) •f  the i d e n t i f i c a t i o n of c h l o r i n a t e d compounds formed d u r i n g ination.  chlor-  38 His concentration ization.  procedure i n v o l v e d r o t a r y evaporation  Separation  w i t h a UV d e t e c t o r counts and  was  and  a c c o m p l i s h e d by a n i o n exchange l i q u i d  The  I d e n t i f i c a t i o n was  chromatography  based on  chromatographic  most s t r i k i n g r e s u l t of J o l l e y ' s e x p e r i m e n t s w i t h non-  r a d i o a c t i v e c h l o r i n e and p r i m a r y e f f l u e n t was  the d i s a p p e a r a n c e of UV  compounds w i t h i n c r e a s i n g dosages of c h l o r i n e . observed i n the c h l o r i n a t e d samples. t y work are as f o l l o w s .  Forty-nine  appeared at s i m i l a r c o n c e n t r a t i o n s Between 44 and  lyophil-  c o n t i n u o u s f r a c t i o n c o l l e c t o r f o r the r a d i o a c t i v i t y  c a t i o n exchange LC.  r e t e n t i o n time.  f o l l o w e d by  S e v e r a l new  peaks were a l s o  Some i m p o r t a n t r e s u l t s of h i s of the s i x t y - t w o  absorbing  radioactivi-  r a d i o a c t i v e compounds  i n b o t h p r i m a r y and  secondary e f f l u e n t s .  52 r a d i o a c t i v e peaks were o b s e r v e d i n the i n d i v i d u a l chromato36  grams, at a d e t e c t i o n l i m i t of about 50 ng=/l The  concentrations  C l i n u n c o n c e n t r a t e d sewage.  of the i n d i v i d u a l compounds ranged from 0.1  c h l o r i n e i n sewage.  He  t o 15y#g/l as  found t h a t r e a c t i o n t i m e o n l y s l i g h t l y a f f e c t s the y i e l d s  of c h l o r i n a t e d compounds w h i l e the form of the a p p l i e d c h l o r i n e a f f e c t s formation  of at most s i x compounds.  D e c h l o r i n a t i o n had no s i g n i f i c a n t e f f e c t  upon the number of s t a b l e o r g a n o - c h l o r i n e c a l c u l a t i o n showed t h a t about 0.6  compounds formed.  A very important  p e r c e n t of the a p p l i e d c h l o r i n e e l u t e d i n  peaks o t h e r than c h l o r i d e w h i l e a n o t h e r 0.4  p e r c e n t remained i n the r e s i n .  T h i s means t h a t about 1 p e r c e n t of the c h l o r i n e a p p l i e d t o p r i m a r y and e f f l u e n t at dosages of 6.0 organo-chlorine  and  compounds.  to v o l a t i l i z a t i o n  ( P i t t and  t i o n p r o c e d u r e were not  the  2.6  mg/1  Cl^  T h i s v a l u e may S c o t t , 1973)  secondary  r e s p e c t i v e l y ends up i n s t a b l e be even h i g h e r  and  s i n c e the l o s s e s  i n s o l u b i l i t y during  the  due  concentra-  further investigated.  A l i s t of the compounds i d e n t i f i e d by J o l l e y appears i n T a b l e 2.13.  Most  of the p r o d u c t s are those e x p e c t e d from d i r e c t e l e c t r o p h i l i c s u b s t i t u t i o n , a l t h o u g h the m e t a - s u b s t i t u t e d  p h e n o l , 5 - c h l o r o s a l i c y l i c a c i d , and  guanine are o b v i o u s e x c e p t i o n s .  Somewhat s u r p r i s i n g i s the 1:4  6-chloro-  ortho-para  39 T a b l e 2.13  C h l o r i n a t e d Compounds Formed by C h l o r i n a t i o n of P r i m a r y  Compound  Concentration i n Primary E f f l u e n t jlg/1 MxlO  8  Concentration of Probable Precursor (/lg/1) MxlO 8  2- C h l o r o p h e n o l 3- C h l o r o p h e n o l > 4- C h l o r o p h e n o l 4- C h l o r o - 3 - m e t h y l - p h e n o l 3- C h l o r o - 4 - h y d r o x y - b e n z o i c Acid 5- C h l o r o s a l i c y l i c a c i d 4- C h l o r o r e s o r c i n o l  7.6 (0.51) (0.69) (1.5)  6.0 (0.40) (0.54) (1.1)  10.6  (1.3) 0.74 (1.2)  0.80 0.51 (0.83)  —  5- C h l o r o u r a c i l 5- C h l o r o u r i d i n e 8-Chloroxanthine 8-Chlorocaffeine 6- C h l o r o g u a n i n e  26.2 20.4 4.5 6.7 . (0.9)  17.6 8.2 2.4 3.1 (0.48)  0.38 :(0.62) (1.1) 11.1 1.9  0.26 (0.42) (0.75) 7.0 1.1  b  d  d  d  d  d  d  2- C h l o r o b e n z o i c a c i d 3- C h l o r o b e n z o i c acid^» 4- C h l o r o b e n z o i c a c i d 4-Chlorophenylacetic acid 4-Chloromandelic a c i d d  d  a.  J o l l e y (1973)  b.  I d e n t i f i e d as e i t h e r o r b o t h o f t h e s e compounds.  c. From t o t a l o f compounds i n c h l o r i n a t e d c o n c e n t r a t i o n of u n c h l o r i n a t e d s p e c i e s .  Effluent  • 7  11.3  5.5  40  35  70 10  45 5.5  — —  17  c  13.6  e f f l u e n t , converted to equivalent  d. Not found i n p r i m a r y e f f l u e n t , c o n c e n t r a t i o n s i n p a r e n t h e s e s r e f e r t o secondary e f f l u e n t .  40 s u b s t i t u t i o n r a t i o ; of the b e n z o i c a c i d ( S m i t h 1934).  The  y i e l d s of  compounds range from 5 t o 50 mole p e r c e n t based on the o r g a n i c  chlorinated  precursor.  The  h i g h y i e l d of 2 - c h l o r o p h e n o l c o n f l i c t s w i t h the o b s e r v a t i o n s o f B u r t t s c h e l l e t a l . (1959) a l t h o u g h i t s h o u l d be p o i n t e d  out  t h a t B u r t t s c h e l l ' s group  worked w i t h pure s o l u t i o n s r a t h e r than sewage. A n o t h e r s t u d y on sewage has been u n d e r t a k e n by G l a z e ejt a l . (1973) u s i n g XAD  resin extraction.  formed a t 10-100 mg/1 i n new  He  found t h a t v o l a t i l e c h l o r i n a t e d compounds were  C l ^ , thus J o l l e y ' s e s t i m a t e of the amount of  s t a b l e o r g a n o c h l o r i r i e compounds may  sewage b e f o r e c h l o r i n a t i o n ; s o l i d s was  eliminated  and,  be low.  Glaze doubly f i l t e r e d  thus the uptake of c h l o r i n e by b a c t e r i a and i n a d d i t i o n , some l o s s of ammonia may  He a l s o a c i d i f i e d h i s e f f l u e n t to pH 2 - 3 w h i c h may s a t u r a t i o n of the r e s i n w i t h v o l a t i l e a c i d s . t i f i e d to d a t e i s c h l o r o f o r m .  The  c h l o r o f o r m f o l l o w e d by e v a p o r a t i v e c o n c e n t r a t i o n  They p o s t u l a t e d  systems such  Their a n a l y t i c a l technique  and  d i r e c t NMR  with ether or and  IR  p r e s e n c e of h a l o g e n i n the e t h e r e x t r a c t was  directly  analysis detected  the p r e s e n c e of c h l o r i n a t e d f a t t y a c i d s .  Rook (1974) e s t a b l i s h e d t h a t h a l o f o r m r e a c t i o n s o c c u r w i t h c o l o r e d i n n a t u r a l water.  iden-  v  of e x t r a c t i o n of f l a s h e v a p o r a t e d o r (Unconc'entratedfie'fiffl'Uents  by AgNO^.  other  have r e s u l t e d i n premature  o n l y compound he has  as those used i n r e c r e a t i o n a l b o a t s and v e h i c l e s .  The  his  have o c c u r r e d .  Adams and M i d d l e b r o o k (1973) s t u d i e d c l o s e d l o o p h y p o c h l o r i t e  i s of l i m i t e d v a l u e .  chlorine  T h i s work was  d i r e c t e d to d r i n k i n g w a t e r and  matter  thus i s not  comparable.  Aagroup £n-9flj?nnes'o't'afOGaglsdn(197-3)"5Carlsondettalir(T975) , i s i n v e s t i g a t i n g the c h l o r i n a t i o n r e a c t i o n s of a number of model o r g a n i c s o l u t i o n at d i f f e r e n t pH.  compounds i n d i l u t e aqueous  These s t u d i e s are not y e t complete, however, as  an  example of h i s r e s u l t s , the c h l o r i n a t i o n of oi. - t e r p i n o l y i e l d e d a m i x t u r e of eight products.  The  c o m p o s i t i o n of the p r o d u c t m i x t u r e was  pH  dependent.  41  T o x i c i t y t e s t s showed t h a t a l l the p r o d u c t s except the d i c h l o r i d e have about the /l  same t o x i c i t y as  - t e r p i n o l t o Daphnia magna, i . e . :  whereas the d i c h l o r i d e had an L C ^ Q 4 8 h r s of about 1 5 mg/1  1974).  exhibit  ( C a r l s o n and Capple, the  to b i o a c c u m u l a t e and to  toxicity.  A n a l y t i c a l Methods The a n a l y s i s o f e n v i r o n m e n t a l samples  due  h r s « / 1 2 0 mg  8  These workers a r e a l s o i n v o l v e d i n d e v e l o p i n g methods f o r r e l a t i n g  p h y s i c a l p r o p e r t i e s of a m o l e c u l e t o i t s a b i l i t y  F.  4  to the complex n a t u r e of the samples  of m a t e r i a l s to be a n a l y z e d .  Two  i s an e s p e c i a l l y d i f f i c u l t  and the v e r y s m a l l  problem  concentrations  g e n e r a l approaches to the problem a r e used:  a)  the complete p h y s i c a l s e p a r a t i o n of components f o l l o w e d by a n a l y s i s  b)  the q u a n t i t a t i v e d e t e r m i n a t i o n o f s p e c i f i c  and  compounds i n the p r e s e n c e o f  o t h e r s through the use o f s p e c i f i c d e t e c t i o n methods.  In t h i s s t u d y , the  first  approach w i l l u l t i m a t e l y be used a l t h o u g h the second w i l l be a v a l u a b l e a i d i n the  development  problem w i l l  o f the t e c h n i q u e s to be used.  i n v o l v e t e c h n i q u e s of sampling and p r e s e r v a t i o n ,  s e p a r a t i o n and c h e m i c a l a n a l y s i s . in 1.  The o v e r a l l approach to the  the f o l l o w i n g Sampling and  concentration,  These t e c h n i q u e s w i l l be b r i e f l y  reviewed  sections. Preservation  Hunter and H e u k e l e k i a n  (1965)  used 2 4 - h o u r  composite samples  i n their  a n a l y s i s of sewage to a l l o w f o r the d i u r n a l f l u c t u a t i o n s i n c o m p o s i t i o n . approach has s e v e r a l drawbacks.  This  The c o n c e n t r a t i o n of s l u g s o f compounds w i l l  be u n d e r e s t i m a t e d , a u t o m a t i c samplers which sample a t a s p e c i f i c depth w i l l miss f l o a t i n g m a t e r i a l and f i n a l l y , minimum of 2 4 h o u r s .  Grab  e n t i r e l y miss s l u g l o a d s . is  samples In  the s t o r a g e time o f the f i r s t on the o t h e r hand, w i l l  a d d i t i o n , when samples  sample  overemphasize  or  a r e taken by hand t h e r e  the p s y c h o l o g i c a l tendency to e i t h e r c a t c h o r m i s s o b v i o u s l y r i c h  or a r e a s .  is a  portions  42 V a r i o u s methods have been e v a l u a t e d for s p e c i f i c analyses.  The  f o r p r e s e r v a t i o n of sewage samples  l o s s e s o f m a t e r i a l s a r e a t t r i b u t e d t o two main  c a u s e s , b i o l o g i c a l d e c o m p o s i t i o n and p h y s i c a l l o s s e s due  to  evaporation,  p r e c i p i t a t i o n and s o r p t i o n on the s a m p l i n g v e s s e l and p a r t i c u l a t e s . Loehr and Bergeron (1967) and H e l l w i g (1967) have r e v i e w e d the c h e m i c a l t i v e s used f o r sewage.  Loehr and Bergeron (1967) found t h a t s t o r a g e a t  alone i s s a t i s f a c t o r y f o r preventing s i x days.  Lichtenberg  preserva-  changes of COD,  BOD,  pH, DO  1°C  and SS f o r  (1973) found t h a t s t o r a g e i n a c o l d , dark environment  d i d not p r e v e n t l o s s of PCB's and recommended the a d d i t i o n of 15 mg/1  of  formaldehyde. Desbaumes and Imhoff (1972) i n t h e i r study of h y d r o c a r b o n s s t a t e d t h a t o n l y g l a s s or s t a i n l e s s s t e e l c o n t a i n e r s a r e s u i t a b l e b e c a u s e o f s o r p t i o n . ;  They a l s o i n d i c a t e d t h a t s u b s t a n t i a l l o s s e s o c c u r i f s t o r a g e hours a l t h o u g h o n a g l a s s may  t i m e exceeds  no d e t a i l s as t o the mechanism of the l o s s are g i v e n .  a l s o be a problem as L e i t h e (1973) s t a t e s t h a t g l a s s  (1974)^found t h a t 5% of the DDT  adso^be'ded on the g l a s s c o n t a i n e r .  not i d e n t i f i e d .  Desbaumes and  Imhoff (1972) a l s o  E x t r a c t i o n and  The  identified type of  P h t h a l a t e e s t e r s and o t h e r p l a s t i c i z e r s are a l s o  l e a c h e d by w a t e r from p l a s t i c s and some s t e e l c o n t a i n e r s 2.  Ahnoff  i n an 8 y t g / l aqueous s o l u t i o n was  some s u b s t i t u t e d benzenes l e a c h e d by w a t e r from p l a s t i c b o t t l e s . p l a s t i c was  Adsorption  containers  s h o u l d be e x t r a c t e d f o r 1 hour w i t h pet e t h e r f o r p e s t i c i d e samples. and J o s e f s s o n  10  (Mathur, 1974).  Concentration  Four g e n e r a l methods, namely, s o l v e n t e x t r a c t i o n , a d s o r p t i o n ,  freeze  c o n c e n t r a t i o n and gas s t r i p p i n g have been used f o r the c o n c e n t r a t i o n of o r g a n i c s from w a t e r . Solvent E x t r a c t i o n (1972) used the s e p a r a t o r y a mixture  Hunter and H e u k e l e k i a n (1965) and H i t e s and funnel technique.  Biemann  Methylene c h l o r i d e , F r e o n s ,  and  of methylene c h l o r i d e and d i e t h y l e t h e r are f a v o u r i t e s o l v e n t s f o r  43 t h i s technique.  Continuous e x t r a c t i o n s , b o t h w i t h s o l v e n t  (Goldberg e t a l . ,  1973) and w i t h o u t . s o l v e n t d i s t i l l a t i o n  1974) have been used. in et  'a s e r i e s -  distillation  (Ahnoff and J o s e f s s o n ,  Two o r t h r e e o f these e x t r a c t o r s a r e u s u a l l y s e t up  and t o t a l r e c o v e r i e s o f 70 t o 110% a r e r e p o r t e d by G o l d b e r g  a l . (1973) a t f l o w r a t e s o f 8 1/hr. Adsorption  The optimum p r o c e d u r e s f o r carbon a d s o r p t i o n o f o r g a n i c s from  wastewaters have been d i s c u s s e d by Buelow e t a l .  (1973a, b ) .  S t u d i e s on  d e s o r p t i o n have been conducted by Hoak (1964) and A l l e n et_ a l . the to  d e s o r p t i o n o f p h e n o l s from a c t i v a t e d c h a r c o a l f o r example,  (1971), and ranges from 22  70 p e r c e n t . Cookson e_t a l . (1972) have n o t e d t h e o x i d a t i o n o f n - b u t y l m e r c a p t a n t o n-  b u t y l d i s u l p h i d e d u r i n g a d s o r p t i o n on c h a r c o a l , presumably due t o t h e p r e s e n c e of  m o l e c u l a r oxygen and quinone.  Lee e t a l . (1965)used carbon a d s o r p t i o n  to  e x t r a c t o r g a n i c s from Lake Mendota.  G e n e r a l l y s p e a k i n g carbon a d s o r p t i o n  i s n o t used f o r t r a c e a n a l y s i s o f unknowns due t o t h e a c t i v i t y o f t h e carbon s u r f a c e and t h e d i f f i c u l t y i n e l u t i n g some m a t e r i a l from c a r b o n . Kennedy (1973) and G u s t a f s o n and P a l e o s (1971) have r e v i e w e d t h e k i n e t i c s and a p p l i c a t i o n s o f m a c r o r e t i c u l a r r e s i n s f o r a d s o r p t i o n o f o r g a n i c s from water,  w h i l e Kim e t a l .  for  water treatment.  (1974) d i s c u s s e d t h e e n g i n e e r i n g uses o f s y n t h e t i c r e s i n s Junk e t a l . (1974) have determined and o p t i m i z e d r e -  c o v e r i e s and c o n c e n t r a t i o n p r o c e d u r e s f o r 99 d i f f e r e n t compounds u s i n g XAD-2 or  XAD-4 r e s i n .  R e c o v e r i e s v a r y from 80 t o 100% e x c e p t f o r s h o r t c h a i n a l i -  p h a t i c a l c o h o l s , a c i d s and some p h e n o l s whose r e c o v e r i e s a r e a f f e c t e d by pH and s a l t concentration,';, p h a t i c hydrocarbons.  Webb (1973) found these r e s i n s i n e f f e c t i v e f o r a l i -  P i t t and S c o t t (1973) r e p o r t poor r e c o v e r i e s o f n o n - v o l -  a t i l e s from domestic e f f l u e n t .  These r e s i n s can be s e l e c t i v e l y and/or  ly  r e g e n e r a t e d depending upon c h o i c e o f s o l v e n t .  of  p h e n o l s ( G r i e s e r and P i e t r y z k , 1973).  complete-  XAD-2 has been used i n LSC  Examples o f a p p l i c a t i o n s o f macro-  r e t i c u l a r r e s i n s t o e n v i r o n m e n t a l work a r e t h e s t u d i e s by Burnham e_t a l .  (1972),  44 Harvey (1973), G l a z e e t a l .  (1973), V i n s o n e t a l . (1973) and Rogers and Mahood  (1974). Columns o f p o l y u r e t h a n e foam p l u g s with, acetone and hexane e l u t i o n have been used by Chow e t a l . (1971) t o r e c o v e r 20 ppb o f PCB's w i t h 91-98% efficiency.  I n a s t u d y on p e s t i c i d e r e c o v e r i e s , however, Uthe e t a l . (1972)  found i t n e c e s s a r y t o coat t h e p l u g s w i t h s e l e c t i v e a d s o r b e n t s .  Webb (1973)  found b o t h c o a t e d and uncoated p l u g s i n e f f e c t i v e f o r most o t h e r o r g a n i c s . Aue e_t a l . (1972) used s u r f a c e bonded s i l i c o n e s on 40 - 60 mesh Chromosorb G w i t h methanol/benzene cleanup and pentane e l u t i o n t o r e c o v e r p p t , l e v e l s o f p e s t i c i d e s and PCB's. for  R e c o v e r i e s v a r i e d from about 30% f o r l i n d a n e t o 100%  a l d r i n i n column t e s t s .  I o n exchange r e s i n s ( B u r n i s o n , 1972) and c h e l o -  t r o p h i c r e s i n s ( S i e g l and Degens, 1966; Webb and Wood, 1966) have been used for  t h e r e c o v e r y o f amino a c i d s from n a t u r a l w a t e r . F r e e z e C o n c e n t r a t i o n and L y o p h i l i z a t i o n  1965;  F r e e z e c o n c e n t r a t i o n (Baker,  K o b a y a s h i and Lee, 1964) i n v o l v e s s l o w l y J f r e e z i n g '.the s o l u t i o n  from  bottom t o top from t h e o u t s i d e inwards.iand then s e p a r a t i n g t h e pure i c e from the c o n c e n t r a t e . the w a t e r .  L y o p h i l i z a t i o n i n v o l v e s f r e e z i n g t h e sample and s u b l i m i n g  I t has t h e advantage o f l e a v i n g t h e n o n - v o l a t i l e m a t e r i a l as an  anhydrous powder.  Both these t e c h n i q u e s i n v o l v e removing  o r g a n i c m a t e r i a l and a r e q u i t e s l o w . d i f f i c u l t t o handle. et for  t h e water from t h e  Samples o f more than two l i t r e s a r e  Hunter and H e u k e l e k i a n (1965), P a i n t e r (1971), K a t z  a l . (1972) and J o l l e y  (1973) have a l l used one o r b o t h o f t h e s e t e c h n i q u e s  s t u d i e s on sewage. Air  S t r i p p i n g and Headspace A n a l y s i s  Novak e t a l . (1973) o r i g i n a l l y  a p p l i e d t h i s technique t o the a n a l y s i s of d r i n k i n g water. s t r i p p i n g gas and a l i q u i d n i t r o g e n t r a p f o r c o l l e c t i o n .  They used He as a K a i s e r (1973, 1974)  used tubes packed w i t h GC column m a t e r i a l f o l l o w e d by e l u t i o n by N^ and g o t r e c o v e r i e s o f 25 p e r c e n t .  Z l a t k i s e t a l . (1973a) t e s t e d Poropak P, C a r b o s i e v e  and Tenax GC as t r a p p i n g m a t e r i a l s .  They a l s o h e a t e d t h e aqueous s o l u t i o n  -45 to  100°C f o r b e t t e r r e c o v e r i e s .  of a number o f a d s o r b e n t s  B e l l a r and L i c h t e n b e r g  (1974). t e s t e d t h e use  and found Tenax GC and Chromosorb 103 u s e f u l .  Grob  and Grob (1974) a n a l y z e d c o n c e n t r a t i o n s as low as 1 n g / l o f i n d i v i d u a l pet-roleum components i n water u s i n g 1 mg o f c h a r c o a l and f i v e 1 . 5 ^ 1 p o r t i o n s of C S 2 f o r e l u t i o n .  B e l l a r , L i c h t e n b e r g and K r o n e r (1974) a l s o used  s t r i p p i n g t o a n a l y z e f o r c h l o r i n a t e d s o l v e n t s i n d r i n k i n g w a t e r and r e p o r t t h a t f o r components w i t h b o i l i n g p o i n t s l e s s than 150°C and 500 mg o f sample, d e t e c t i o n l i m i t s are AJ 1/bg/l. C o n c e n t r a t i o n The recommended method f o r c o n c e n t r a t i o n o f o r g a n i c s i n o r g a n i c s o l v e n t s i s t h e use o f Kuderna - D a n i s h 1973). to  (K-D)cconcentrator  (Leithe,  Webb (1973) r e p o r t s 85% r e c o v e r y o f compounds c o n c e n t r a t e d  from 100  1 ml i n CHCl^ i n a r o t a r y e v a p o r a t o r  compared t o 90% i n a K-D c o n c e n t r a t o r .  He a l s o recommends t h e a i r s t r e a m method f o r volumes l e s s than 0.25 m l . When w o r k i n g w i t h s o l v e n t s such as c h l o r o f o r m o r d i e t h y l e t h e r w h i c h d i s s o l v e i n water, drying i s necessary before concentration. i s t h e u s u a l d r y i n g agent. to  I t s h o u l d be h e a t e d  remove o r g a n i c i m p u r i t i e s ( G a r r i s o n , 1972).  t e r p i n o l and 2-methyl n a p t h a l e n e w i t h sodium s u l p h a t e 3.  Sodium s u l p h a t e  t o 600°C f o r 2 h r b e f o r e u s e , Losses  o f about 6' p e r c e n t  ofoc-  o c c u r r e d from CHCl^ s o l u t i o n s due t o d r y i n g  (Webb, 1973).  Separation Two g e n e r a l problems o f s e p a r a t i o n o c c u r when w o r k i n g w i t h n a t u r a l w a t e r s .  The  f i r s t i s the p h y s i c a l s e p a r a t i o n o f the p a r t i c u l a t e matter  from t h e s o l -  u b l e compounds and t h e second i s t h e s e p a r a t i o n o f t h e components o f t h e o r ganic e x t r a c t s or residues. The  f i r s t problem i s u s u a l l y s o l v e d by f i l t r a t i o n o r c e n t r i f u g a t i o n  as e x e m p l i f i e d by t h e s t u d i e s o f Hunter and H e u k e l e k i a n (1971). 0.1  (1965) and P a i n t e r  The u s u a l d e f i n i t i o n o f d i s s o l v e d o r g a n i c s i s those o f s i z e l e s s  than  - l.OyU. T y p i c a l g l a s s f i b r e f i l t e r s have pore sizes, o f 0.3 - 1.0^. The  c e l l u l o s e a c e t a t e membrane f i l t e r s a r e a v a i l a b l e from 0 . 2 ^ p o r e s i z e .  Fil-  t r a t i o n times o f 24 h r / 1 f o r m o d e r a t e l y p o l l u t e d w a t e r s a r e common f o r 0.45/t filters  (Andelman and Caruso,  1971).  The s e p a r a t i o n o f o r g a n i c e x t r a c t s and r e s i d u e s i s g e n e r a l l y a c c o m p l i s h e d by chromatographic methods.  A c i d - b a s e s e p a r a t i o n s u s i n g t h e H^SO^/HCCr^NaOH  system a r e commonly used p r i o r t o chromatographic s e p a r a t i o n . Chromatography  F o r a comprehensive  t r e a t m e n t o f t h e s u b j e c t o f chroma-  tography, t h e r e a d e r i s r e f e r r e d t o t h e volume by Heftmann (1967).  This d i s -  c u s s i o n w i l l be l i m i t e d t o some examples o f a p p l i c a t i o n s o f , o r new d e v e l o p ments i n , t h e v a r i o u s types o f chromatography  used i n t h e e n v i r o n m e n t a l  field.  F o r a r e v i e w o f t h e c h r o m a t o g r a p h i c s e p a r a t i o n s o f some e n v i r o n m e n t a l l y i m p o r t a n t c h e m i c a l s , t h e volumes by F i s h b e i n (1972a, 1973a)are Thfn Layer 'Thin l a y e r chromatography  recommended.  has been used as a cleanup  i n p e s t i c i d e a n a l y s i s b e f o r e q u a n t i f i c a t i o n by GLC (EPA, 1971).  procedure  This type of  a p p l i c a t i o n t y p i f i e s t h e use o f TLC i n e n v i r o n m e n t a l work. In  a number o f c a s e s , however, TLC has advantages  i s i n some i n s t a n c e s , t h e optimum s e p a r a t i o n method.  o v e r GLC and LC and The d e t e r m i n a t i o n o f t h e  optimum c o n d i t i o n s f o r r e s o l u t i o n o f a m i x t u r e o f unknowns c a n be a c c o m p l i s h e d i n a much s h o r t e r time f o r TLC than f o r GC and LC.  The r e s u l t s o f TLC sep-  a r a t i o n s can be used as a guide f o r t h e a p p l i c a t i o n o f o t h e r methods, e s p e c i a l l y LSC ( H u r t u b i s e e t a l . , 1973).  chromatographic  I n a i r p o l l u t i o n work,  arenes have been s e p a r a t e d , i d e n t i f i e d , and q u a n t i f i e d by TLC i n c o m b i n a t i o n w i t h d i r e c t s p e c t o f l u o r i m e t r y , UV a b s o r p t i o n s p e c t r o p h o t o m e t r y , and c o l o u r r e a c t i o n s on t h e TLC p l a t e ( S a w i c k i and S a w i c k i , 1972). are  Detection l i m i t s  about l/i g by UV and 1 t o 10 ng by f l u o r e s c e n c e . M a j e r e t a l . (1970) des-  c r i b e s t h e use o f TLC - Mass Spectrophotometry  f o r arene a n a l y s i s and r e p o r t s  -11 -14 d e t e c t i o n l i m i t s o f 1 x 10 g f o r anthracene and 1 x g for  benzopyrene  When w o r k i n g w i t h m i x t u r e s rendered l e s s complex by p r i o r s e p a r a t i o n and chemi c a l workup, c h a r a c t e r i z a t i o n o f t h e components by i n f r a r e d o r NMR methods i s  much more e x p e d i e n t f o l l o w i n g s e p a r a t i o n by TLC of t h i s i s : the work hy H a l l  than GLC  o r LC,  An example  (19JQX on t h e d e t e r m i n a t i o n of sjjme o f t h e a l -  k a l i n e CuO  and Na/Hg d e g r a d a t i o n p r o d u c t s of n a t u r a l l y o c c u r r i n g c o l o u r e d  organics.  Some of the problems w i t h t h e s e t e c h n i q u e s such as p h o t o - o x i d a t i o n ,  wet  s p o t s and charge t r a n s f e r s p e c t r a among o t h e r s a r e d i s c u s s e d i n S a w i c k i ' s  review.  The problem of r e p r o d u c i b i l i t y o f  v a l u e s has been r e v i e w e d by  Zeeuw (1972), w h i l e the i m p u r i t i e s i n s i l i c a g e l have been d i s c u s s e d by  de  Spitz  (1969) and Amos (1970). l£4q:iwiid! 6feoma:tQei;trap'feyr^Although f l o r i s i l  column clean-up  techniques  r o u t i n e l y employed i n p e s t i c i d e a n a l y s i s , h i g h speed and h i g h p r e s s u r e methods w i l l be emphasized i n t h i s r e v i e w .  are  LC  An e x c e l l e n t summary of the  p r i n c i p l e s , t e c h n i q u e s , i n s t r u m e n t a t i o n and a p p l i c a t i o n s of LC i s p r o v i d e d i n the volume e d i t e d by K i r k l a n d  (1971).  To date s i l i c a i s a f a v o u r i t e  m a t e r i a l f o r LSC although, o t h e r m a t e r i a l s such a l u m i n a , c h a r c o a l and are a l s o used.  florisil  F l o r i s i l has a tendency to i r r e v e r s i b l y bond even some non-  p o l a r compounds and thus i s n o t u s u a l l y used f o r the a n a l y s i s of a m i x t u r e o f unknowns.  Good r e p r o d u c i b i l i t y can be o b t a i n e d t h r o u g h the use o f  p r e p a r e d s u p p o r t s and a s o l v e n t o f n o n - v a r y i n g  commercially  c o m p o s i t i o n but g r a d i e n t  e l u t i o n i s hampered by the problems a s s o c i a t e d w i t h m a i n t a i n i n g a c o n s t a n t o r r e p r o d u c i b l e l e v e l o f d e a c t i v a t i n g w a t e r on the s u p p o r t . Some a p p l i c a t i o n s o f LSC i n t h e e n v i r o n m e n t a l  f i e l d i n c l u d e the work on organophosphate l a r v i c i d e s  (Henry e t a l . , 1971), n i t r o t o l u e n e s i n m u n i t i o n wastes (Walsh e t a l ' . , 1973), phenols  ( B h a t i a , 1973), a r o m a t i c h y d r o c a r b o n s  carbons  ( Z s o l n a y , 1974)  ( Z s o l n a y , 1973), t o t a l  hydro-  and n o n - i o n i c a l k y l p h e n o l s u r f a c t a n t s ( K r e j c i e t a l . ,  1974). High p r e s s u r e IEC s t i l l the a n a l y s i s of unknowns. the s e p a r a t i o n of 100  s u f f e r s from r e t e n t i o n times as l o n g as 40 h r f o r  Examples of the use of h i g h p r e s s u r e IEC  include  120 UV a b s o r b i n g peaks i n human u r i n e ( S c o t t e t a l . ,  48 1970)  and  77 a b s o r b i n g peaks i n m u n i c i p a l wastewater a f t e r 500  f o l d concen-  t r a t i o n by vacuum d i s t i l l a t i o n and f r e e z e d r y i n g (Katz e t a l . , 1972).  Jolley  (1973) used e s s e n t i a l l y the same system as S c o t t e_t a l . (1970) and K a t z e t  al.  (1972) i n h i s study on the e f f e c t s of c h l o r i n a t i o n on sewage. D e t e c t i o n l i m i t s by UV r e q u i r e c o n c e n t r a t i o n s i n the range o f 40 f o r u n s a t u r a t e d n o n - a r o m a t i c s and 2 0 ^ g / l non-aromatic and 20 ng/1  u n c a t a l y z e d r e d u c t i o n of Ce  detected  R e f r a c t i v e Index d e t e c t o r s a r e u s u a l l y one  two o r d e r s of magnitude l e s s s e n s i t i v e .  (1972).  Thus 40^<yg/l of  o f a r o m a t i c u n s a t u r a t e d h y d r o c a r b o n s can be  through c o n c e n t r a t i o n t e c h n i q u e s .  and P i t t  f o r aromatics.  mg/1  (IV) to Ce  A f l u o r e s c e n c e d e t e c t o r based upon the ( I I I ) was  d e v e l o p e d and t e s t e d by  Katz  D e t e c t i o n l i m i t s f o r o r g a n i c a c i d s and o t h e r r e d u c i n g com-  pounds range from O.ljig  to 0 . 5 ^ g  using this  technique.  Gel Permeation Chromatography~Although the development o f s e m i - r i g i d p o l y s t y r e n e and p o l y v i n y l a c e t a t e g e l s has made h i g h speed GPC onmental a p p l i c a t i o n o f GPC dextran g e l s .  possible, envir-  has been l i m i t e d t o the s o f t and, i n most  The use of Sephadex g e l s f o r the m o l e c u l a r  size  The GPC  cases,  fractionation  of o r g a n i c s , m a i n l y humic a c i d s , i n n a t u r a l w a t e r s has been r e v i e w e d (1970) and C h r i s t m a n and M i n e a r (1971).  by  s t u d i e s of sewage and  Hall treat-  ment p l a n t e f f l u e n t s has been p r e v i o u s l y d i s c u s s e d . Gas C h r o m a t o g r a p h y ^ T h i s d i s c u s s i o n w i l l be l i m i t e d t o a few a p p l i c a t i o n s of GLC  s e p a r a t i o n of o r g a n i c s i n e n v i r o n m e n t a l  a mass s p e c t r o m e t e r  The  samples.  D i r e c t coupling to  w i l l be d i s c u s s e d i n a s e p a r a t e s e c t i o n .  s e l e c t i o n o f a s t a t i o n a r y phase and p a c k i n g i s a p r o b l e m e n c o u n t e r e d  by everyone w o r k i n g w i t h GLC. used i n e n v i r o n m e n t a l  or  A wide v a r i e t y of s t a t i o n a r y phases has  work F i s h b e i n (1972a,1973a).  The  been  trend i n p e s t i c i d e  a n a l y s i s today i s toward the use of the OV or SP s e r i e s o f s i l i c o n e s as  the  v a r i a t i o n i n c o m p o s i t i o n between d i f f e r e n t l o t s of these phases i s s m a l l e r  49 than t h e o l d e r s i l i c o n e phases ( T r a s h , 1973; Coleman, 1973). s u p p o r t i n e n v i r o n m e n t a l a n a l y s i s i s s i l a n i z e d Chromosorb W.  The f a v o u r i t e The g r a p h i t i z e d  carbons (Carbopak) d e a c t i v a t e d by hydrogen treatment and c o a t i n g w i t h around 0.3%  o f a l i q u i d phase show promise i n t h e d i r e c t a n a l y s i s o f aqueous s o l u t i o n s  ( S u p i n a , 1974).  Both p o l a r and n o n - p o l a r phases have been used i n t h e a n a l y -  s i s o f v o l a t i l e o r g a n i c s i n sewage.  Dowty and L a s e t e r  (1975b) used a m i x t u r e  of 10% GE SF - 96 and 1% I g e p a l CO whereas G l a z e e t a l ^ (1973) used 5% Carbowax  20 M/TPA. Open t u b u l a r columns a r e f i n d i n g i n c r e a s i n g u t i l i z a t i o n i n e n v i r o n m e n t a l  work (Grob and Grob, 1974; Rogers and Mahood, 1974; Lao e t a l . , 1973). use o f SCOT and WCOT columns i s d i s c u s s e d by E t t r e (1973).  The  The t r a d i t i o n a l  open t u b u l a r columns were made o f s t a i n l e s s s t e e l due t o t h e d i f f i c u l t y o f evenly  coating glass.  T h i s d i f f i c u l t y was overcome by German and H o r n i n g  (1973) and t h e l e s s a c t i v e g l a s s columns a r e now i n common use.  Theoretically,  one e x p e c t s b e t t e r r e s o l u t i o n i n a s h o r t e r time w i t h a SCOT column as compared to a packed column ( E t t r e , 1973), however i n t h e study by Lao e t a l . , (1973) fewer peaks were o b s e r v e d w i t h t h e SCOT column than w i t h t h e packed column, e s p e c i a l l y when m a t e r i a l s w i t h h i g h r e t e n t i o n times a r e s e p a r a t e d . reasons f o r t h i s d i f f e r e n c e have n o t been d e t e r m i n e d .  The  One d i s a d v a n t a g e o f t h e  SCOT column i s t h a t o n l y a few t e n t h s o f a m i c r o l i t r e o f sample may be i n j e c t e d . T h i s means t h a t g r e a t e r c o n c e n t r a t i o n of samples may be r e q u i r e d . The most common d e t e c t o r s used f o r e n v i r o n m e n t a l samples a r e t h e FID, EC and s p e c i f i c element d e t e c t o r s . roughly speaking  The FID i s s e n s i t i v e t o most o r g a n i c s and  t r a c e s o f FID response a r e s i m i l a r t o t h o s e o f t h e t o t a l i o n  c u r r e n t produced by c o u p l e d  GC/EIMS u n i t s i n terms o f s e n s i t i v i t y .  e l e c t r o n c a p t i v e d e t e c t o r i s used f o r o r g a n o c h l o r i n e due  The  p e s t i c i d e and PCB a n a l y s i s  t o i t s high s e n s i t i v i t y f o r e l e c t r o n capturing elements.  Karasek e t a l .  (1973) have conducted some s t u d i e s on t h e mechanism o f e l e c t r o n c a p t u r e by a  50 s e r i e s of c h l o r i n a t e d benzenes and b i p h e n y l s .  They demonstrated t h a t b o t h 63  a s s o c i a t i v e and d i s s o c i a t i v e e l e c t r o n c a p t u r e occur. i s favoured  f o r environmental  samples due  The  Ni f o i l  detector  to i t s h i g h temperature s t a b i l i t y .  The problem of the narrow, one decade, l i n e a r range of the d e t e c t o r has been overcome t h r o u g h the use o f c o n s t a n t tronics.  current, variable pulsing rate elec-  L i n e a r i t y o v e r f o u r decades has been o b t a i n e d  (Aue and K a p i l a , 1973).  T h e i r p u b l i c a t i o n a l s o d i s c u s s e d some a s p e c t s of temperature programmed GC w i t h an EC d e t e c t o r . ector i s operated important  E s s e n t i a l l y q u a n t i t a t i o n i s d i f f i c u l t u n l e s s the d e t -  under c o n d i t i o n s where o n l y the mass of the compound i s  as opposed t o the c o n c e n t r a t i o n r a t i o of e l e c t r o n s t o compound.  Among the s p e c i f i c element d e t e c t o r s , . t h e r m i c r o e l e c t r o l y t i c c o n d u c t i v i t y (MEC) MEC  type i s the most g e n e r a l l y used f o r h a l o g e n d e t e c t i o n .  d e t e c t o r was  d e v e l o p e d by C o u l s o n (1965).  The  original  Recent developments by  (1974) a f f o r d 20 t o 50 times g r e a t e r s e n s i t i v i t y f o r c h l o r i n e due i n r e a c t i o n tube and c e l l geometry, use of i s o p r o p a n o l / w a t e r  Hall  t o changes  rather, than water  as the c i r c u l a t i n g s o l v e n t and use of an AC r a t h e r than D C t b r i d g e c i r c u i t f o r measurement of c o n d u c t i v i t y . for  D e t e c t i o n l i m i t s of 0.05  organochloride p e s t i c i d e s .  - 0.1  ng a r e  reported  T e s t s by W i l s o n and Cochrane (1975) r e v e a l e d  o n l y a 4 t o 7 f o l d i n c r e a s e i n s e n s i t i v i t y to n i t r o g e n over the C o u l s o n tector.  The  r e c e n t l y developed m u l t i - e l e m e n t  h e l i u m plasma/atomic  emission  d e t e c t o r o f f e r s i n t e r e s t i n g p o s s i b i l i t i e s and has d e t e c t i o n l i m i t s of ng/sec f o r c a r b o n , 0.03  ng/sec f o r hydrogen and 0.06  de-  0.08  ng/sec f o r c h l o r i n e  (McLean e t . a i . , 1973). 4.  Chemical A n a l y s i s T h i s d i s c u s s i o n w i l l be l i m i t e d t o a r e v i e w o f the i n s t r u m e n t a l t e c h -  niques  of a n a l y s i s w h i c h can be used e i t h e r a f t e r t r a p p i n g of the  separated  components from a chromatograph or i n some cases by d i r e c t c o u p l i n g or i n t e r f a c i n g to the chromatograph.  T r a p p i n g Techniques be d i s c u s s e d .  T r a p p i n g LC e f f l u e n t s i s r a t h e r f a c i l e and w i l l n o t  The t r a p p i n g o f GLC e f f l u e n t s , i s much more complex.  Howlett  and W e l t i (1966), F o w l i s and W e l t i ( 1 9 6 7 ) , M i l a z z o e t a l . ( 1 9 6 8 ) , A r m i t a g e . (1969) and O e r t e l and Myhre (1972) d e s c r i b e c r y o g e n i c t r a p p i n g t e c h n i q u e s f o r IR, NMR and Raman a n a l y s i s .  L o s s e s due t o m i s t o r a e r o s o l f o r m a t i o n a r e common  C o p i e r and Van der Mass (1967) and B l o c k and G r i f f i t h s absorbent f o r IR a n a l y s i s .  (1973) used KBr as an  The G C - t r a p p i n g - I R methodology has been r e v i e w e d  by McNiven (1965), and L e a t h a r d and S h u r l o c k (1970).  I t s h o u l d be k e p t i n  mind t h a t one r e q u i r e s 10 - lOO^zg o f sample f o r o r d i n a t e expanded IR and c a p i l l a r y t u b e - t i m e averaged o r F o u r i e r T r a n s f o r m NMR. Tandem GC-MS  A g e n e r a l o v e r v i e w o f GC/MS/computer systems  i s presented  by K a r a s e k (19-7 2) and the a v a i l a b l e i n s t r u m e n t a t i o n and some a p p l i c a t i o n s a r e r e v i e w e d by Junk (1972). from 20 - 100 ng.  I d e n t i f i c a t i o n l i m i t s w i t h these instruments vary  To d a t e , a l l o f the work i n the e n v i r o n m e n t a l f i e l d has  been c a r r i e d o u t on e l e c t r o n impact s o u r c e s a l t h o u g h p r e l i m i n a r y GC-CIMS and GC-FIMS work i s r e p o r t e d (Junk, 1972;  Blum and R i c h t e r ,  1974).  E n v i r o n m e n t a l samples o f o r g a n i c s u s u a l l y c o n t a i n a l a r g e number o f v o l a t i l e compounds.  I n the case o f i n c o m p l e t e s e p a r a t i o n o f t h e s e components  or when one i s i n t e r e s t e d i n i d e n t i f y i n g more than one o r two o f t h e components computerized data h a n d l i n g f a c i l i t i e s are e s s e n t i a l .  Data h a n d l i n g i s a t e c h -  n o l o g y i n i t s own r i g h t and magnetic d i s c s o f f e r a c o n s i d e r a b l e time s a v i n g over the tape u n i t s d u r i n g d a t a m a n i p u l a t i o n (Ward 1972).  H i t e s and Biemann  i n a s e r i e s o f papers d i s c u s s e d the a l g o r i t h m s and mechanics f o r the product i o n o f r e c o n s t r u c t e d gas chromatograms (1968a), mass chromatograms o r l i m i t ed mass s e a r c h e s (1970) , and background  s u b t r a c t i o n (1968b).  The US EPA has  a b a t t e r y o f 23 GC/MS u n i t s each equipped w i t h a m i n i - c o m p u t e r , d i s k o r tape u n i t , s l o w . p r i n t e r and k e y b o a r d , s l o w p l o t t e r , CRT w i t h k e y b o a r d , CRT h a r d copy u n i t and t e l e p h o n e c o n n e c t i o n t o l a r g e computer ( H e l l e r , McGuire and  52 •Budde, 1975). The  i d e n t i f i c a t i o n of an unknown from i t s mass spectrum i s not always  a simple task.  V a r i o u s f i l e s e a r c h i n g r o u t i n e s have been developed.  can be c l a s s i f i e d i n t o two groups:  a) those programs developed  t e r p r e t a t i o n of the mass spectrum of a new  These  f o r the i n -  or n o n - f i l e d compound and b)  the  i d e n t i f i c a t i o n o f an unknown by s e a r c h i n g a f i l e f o r i t s mass spectrum f i n g e r print.  The  f i r s t group of programs was  reviewed by Kwok e t a l . ,  are d e s i g n e d p r i m a r i l y f o r complex p o l y f u n c t i o n a l compounds of w e i g h t g r e a t e r than 150.  (1973).  These  molecular  W h i l e the complete d e t e r m i n a t i o n of s t r u c t u r e by  these programs i s f a r from u n e q u i v o c a l , they do p r o v i d e v a l u a b l e i n f o r m a t i o n as to what f u n c t i o n a l groupings  are present.  s p e c t r a , e.g. Venkataraghavan et a l . ,  Work w i t h h i g h r e s o l u t i o n  (1969) w i l l not be d i s c u s s e d as  does not g e n e r a l l y o b t a i n h i g h r e s o l u t i o n s p e c t r a by GC - MS a t i o n s o f computer  one  due t o l i m i t -  storage'space.  The programs used t o i d e n t i f y an unknown by s e a r c h i n g a f i n g e r p r i n t f i l e have been d i s c u s s e d by H e r t z , H i t e s and Biemann (1971).  An  international  mass s p e c t r a l s e a r c h system (MSSS) i s a v a i l a b l e and i s b e i n g c o n s t a n t l y upgraded.  The unknown spectrum i s a b b r e v i a t e d by c h o o s i n g  peaks i n each 14 m/e  region beginning  from m/e  the two most i n t e n s e  6 s i n c e a b b r e v i a t i o n t o the  f i v e o r e i g h t most i n t e n s e peaks w i l l i n many cases r e s u l t i n the l o s s of too much i n f o r m a t i o n .  The o u t p u t c o n s i s t s of a l i s t of b e s t f i t compounds and  similarity indicies.  F i l e d s p e c t r a may  o r f o r m u l a , ( H e l l e r , 1972). is  a l s o be r e t r i e v e d by m o l e c u l a r w e i g h t  A f u l l l i s t of the o p t i o n s c u r r e n t l y a v a i l a b l e  i n c l u d e d i n the a r t i c l e by H e l l e r , McGuire and Budde (1975).  computer banks have been developed  (Wangen e t a l . ,  1971)  Although  t h e i r use i s l i m i t e d .  When the spectrum of the unknown c o n t a i n s the s p e c t r a of more than one pound, d i f f i c u l t i e s a r i s e .  small  Abrahamson (1975) has developed  a reverse  program where each spectrum i n the r e f e r e n c e f i l e i s compared t o the  comsearch un-  53 known's spectrum.  The  use of t h i s t e c h n i q u e  with large l i b r a r i e s w i l l  ob-  v i o u s l y r e q u i r e some p r e s c r e e n i n g . I n summary GC-MS-Computer i n s t r u m e n t a t i o n has become v e r y s o p h i s t i c a t e d . I t must be noted however, t h a t the i d e n t i f i c a t i o n a f f o r d e d by the MS-Computer i s o n l y t e n t a t i v e e s p e c i a l l y when the m o l e c u l e i s complex and/or has  stereo-  isomers.  The p o s s i b i l i t y of a l t e r a t i o n i n the GC or i n t e r f a c e i s always  present.  S i n c e one may  not be a b l e to employ IR and NMR  methods due  to sample  s i z e , c h e m i c a l workup and subsequent f u r t h e r a n a l y s i s by GC-MS-Computer, or GC r e t e n t i o n t i m e , may  be n e c e s s a r y to a f f o r d p o s i t i v e i d e n t i f i c a t i o n .  Numerous examples of the use of GC/MS/Computer t e c h n i q u e s m e n t a l samples have a l r e a d y been mentioned.  for environ-  Other s t u d i e s i n c l u d e t h o s e of  H i t e s and Biemann (1972), H i t e s (1973), K e i t h (1969, 1972 ) , H a r r i s Budde and E i c h e l b e r g e r  (1974) and McGuire e t a l . (1973).  54 CHAPTER I I I - EXPERIMENTAL A.  O u t l i n e o f t h e Problems A f l o w c h a r t of t h e p r o j e c t i s shown i n F i g u r e 3.1 and i t s major f a c e t s  a r e summarized below. E x t r a c t i o n - The f i r s t problem was t o d e v i s e an e x p e d i e n t method of r e c o v e r i n g t r a c e o r g a n i c s from w a t e r .  Two systems, a c o n t i n u o u s  s o l v e n t e x t r a c t o r and  an a d s o r p t i o n method were developed and t e s t e d . S e p a r a t i o n - V a r i o u s methods f o r t h e s e p a r a t i o n o f o r g a n i c s were t r i e d .  These  i n c l u d e d f i l t r a t i o n , s o l u b i l i t y , and l i q u i d , t h i n l a y e r , and gas chromatographic  techniques.  E f f e c t s o f C h l o r i n a t i o n oh Sewage - These e f f e c t s were u l t i m a t e l y a n a l y z e d gas chromatography, u t i l i z i n g  by  e l e c t r o n c a p t u r e , flame i o n i z a t i o n , m i c r o e l e c t r o -  l y t i c c o n d u c t i v i t y and mass s p e c t r o m e t r i c d e t e c t o r s . I d e n t i f i c a t i o n o f Compounds i n Sewage- T h i s p o r t i o n of t h e work was  essentially  c o i n c i d e n t a l w i t h t h e study of the e f f e c t s of c h l o r i n a t i o n . B. Ai ^Apparatus and Techniques 1.  General  Procedures  Those t e c h n i q u e s w h i c h were r o u t i n e l y used i n a l l f a c e t s o f t h i s p r o j e c t a r e d e s c r i b e d below, w h i l e t h e o t h e r s w i l l be p r e s e n t e d subsequent s e c t i o n s .  i n the a p p r o p r i a t e  A l l o r g a n i c s o l v e n t s were o f a n a l y t i c a l r e a g e n t (AR)  grade and were g l a s s d i s t i l l e d w i t h a t l e a s t a 1:1 r e f l u x r a t i o . sulphate  Sodium  (AR) and sodium c h l o r i d e (AR) were heated t o 600°C f o r f o u r hours to  remove o r g a n i c s w h i l e aqueous r e a g e n t s were e x t r a c t e d w i t h t h r e e twenty m l portions of d i e t h y l ether.  P l a s t i c and p o r c e l a i n v e s s e l s and t h e f i v e g a l l o n  g l a s s carboys were c l e a n e d by a d e t e r g e n t wash f o l l o w e d by r i n s e s w i t h d i s t i l l e d water and t h e aqueous sample.  A l l o t h e r g l a s s w a r e was c l e a n e d by a  d e t e r g e n t wash f o l l o w e d by chromic a c i d treatment w a t e r , m e t h a n o l , acetone and d i e t h y l e t h e r .  and r i n s e s w i t h  distilled  55  Primary effluent  Primary effluent  * Solvent extractor  XAD resin  comparison  I  4 Model compounds  Model compounds  1  Breakthrough  study  XAD resin  y Silica gel column  Acidity separation  GC optimization column & temperature program  TOC study  V  Effects of C l by FID, EC & MEC GC  Selection of Clg levels  Trapping of GC effluent  Estimation of C l Uptake  Retention times of test compounds  2  2  i  GC-MS MS - 1 2 F - 3000  TLC of acidity fraction  -H  GC retention time  Mass Spectrum  Partial ID  Authentic sample of compound  Positive ID  F i g u r e 3.1 F l o w c h a r t o f t h e P r o j e c t .  56 P r i o r t o e x t r a c t i o n , p r i m a r y e f f l u e n t samples were f i l t e r e d w i t h the apparatus  shown i n F i g u r e ; 3 . 3 a .  F i l t e r s of paper (Whatman 541) and g l a s s  f i b r e (Reeve A n g e l 934) were l a y e r e d t h r e e o f each deep i n t h e 11.5 cm l . D . p o r c e l a i n c r u c i b l e and s e a l e d by d i s t i l l e d w a t e r .  They were s e q u e n t i a l l y  removed when t h e f i l t r a t i o n r a t e dropped below 300 ml/min d u r i n g vacuum t i o n a t 10 i n c h e s w a t e r gauge i n t o t h e f i v e g a l l o n g l a s s c a r b o y s .  filtra-  A l l organic  e x t r a c t s were d r i e d w i t h sodium s u l p h a t e and c o n c e n t r a t e d t o 0.5-2.0 m l i n a r o t a r y evaporator on a H e w l e t t - P a c k a r d e c t o r temperature  ( B u e h l e r ) a t 20°C. 5750 GC w i t h a  The c o n c e n t r a t e d e x t r a c t s were a n a l y z e d  N i EC o r H / a i r F I d e t e c t o r . 2  was 320°C and i n j e c t o r temperature  was 260-280°C.  gases were 95/5 A r g o n i methane f o r EC and h e l i u m f o r FID. of 50 p e r c e n t o f f u l l s c a l e were produced by 1 x 10 EC (50  Detector  The d e t Carrier responses  g of d i e l d r i n w i t h the  —8 s p u l s e i n t e r v a l ) and 5 x 10~ g o f " i s S - o c t a n e " w i t h the FID a t i 1 1  a t t e n u a t i o n s o f 32.x 10.  1  A l l columns were 4'" x y  glass f i t t e d with s i l i c o n e  r u b b e r , S u p e l t e x M - l , o r l e a d ©wrings and f e r r u l e s ( S u p r e l c o ) .  The 5 and 10  yUl GC s y r i n g e s (Hamilton) were c l e a n e d by a s p i r a t i o n o f 5 m l o f acetone  through  the b a r r e l and w i p i n g o f the p l u n g e r . C h l o r i n a t i o n o f p r i m a r y e f f l u e n t samples i n v o l v e d t h e use o f NaOCl s o l u t i o n ( F i s h e r ) w h i c h was a n a l y z e d p r i o r t o u s e by i o d o m e t r i c t i t a t i o n 1971).  R e s i d u a l c h l o r i n e was determined  (APHA,  by t h e P h e n y l a r s i n e o x i d e - I o d i n e method  &APHA>ji X9.7/BX) and a 5 p e r c e n t excess o f s o l i d ^a^S^O^ ( F i s h e r ) was added t o d e c h l o r i n a t e t h e sample and c o n t r o l r e a c t i o n t i m e .  A l l p r i m a r y e f f l u e n t sam-  p l e s were s t i r r e d w i t h a p l a s t i c overhead d r i v e p r o p e l l o r t o e n s u r e complete m i x i n g i n the g l a s s carboy. 2.  Sampling and P r e s e r v a t i o n Sampling L o c a t i o n L i o n ' s Gate Sewage Treatment P l a n t i n N o r t h Vancouver was s e l e c t e d as a  source of e f f l u e n t .  The p l a n t s e r v e s a p o p u l a t i o n (1973) o f 108,000 w i t h an  average f l o w of 11.0 MGD  of m a i n l y domestic sewage.  primary sedimentation, anaerobic sludge  I t provides treatment v i a  d i g e s t i o n , and e f f l u e n t  chlorination.  Supernatant from t h e d i g e s t o r s i s i n t e r m i t t e n t l y r e c y c l e d through t h e p l a n t . P r e c h l o r i n a t i o n was not p r a c t i c e d d u r i n g the p e r i o d of t h i s s t u d y . c o m p o s i t i o n of the e f f l u e n t i s B0D and pH 7.2. 15 mg/1  5  - 100 mg/1,  NH -N - 15 mg/1,  The  TK-N  average  - 30  mg/1  The average d a i l y c h l o r i n e dosage v a r i e s s e a s o n a l l y from 7 t o  w i t h a r e s i d u a l of between 2.0 and 5.0 mg/1  as measured by  amperometric  titration. Sampling and P r e t r e a t m e n t U n c h l o r i n a t e d e f f l u e n t samples were o b t a i n e d from the o u t f a l l w e i r of t h e primary s e t t l i n g tanks.  On one o c c a s i o n a sample of c h l o r i n a t e d e f f l u e n t  t a k e n from the o u t f a l l of the c h l o r i n a t i o n chamber. t a k e n between 1000 h r and 1200 h r on Mondays. g a l l o n Nalgene c a r b o y s . i n most c a s e s .  S i n g l e grab samples were  They were c o l l e c t e d i n f i v e  Work w i t h t h e s e samples was  commenced w i t h i n one hour  T h e r e f o r e the i n i t i a l p r a c t i c e of adding 30 mg/1  of sodium  a z i d e was d i s c o n t i n u e d a f t e r the second s e t of samples and s u b s e q u e n t l y p r e s e r v a t i v e was 3.p  was  no  added.  D e s i g n and Test of E x t r a c t i o n Methods a.  Solvent Extractor  Apparatus - D u r i n g p r e l i m i n a r y t e s t s of the i n i t i a l e x t r a c t o r w i t h sewage i t was noted t h a t some water o v e r f l o w e d i n t o the s o l v e n t chamber, thus the d e s i g n was m o d i f i e d .  The m o d i f i c a t i o n s e s s e n t i a l l y made the f l o w o f water  through t h e e x t r a c t o r u n r e s t r i c t e d i n a d i r e c t i o n o p p o s i t e to the f l o w of the solvent. The f i n a l e x t r a c t i o n system i s i l l u s t r a t e d i n F i g u r e 3.2. for  use w i t h a l i g h t e r t h a n w a t e r s o l v e n t .  I t was  designed  The s o l v e n t , p e t r o l e u m e t h e r bp  37-  47° C i s c o n t i n u o u s l y d i s t i l l e d and channeled to the bottom of the e x t r a c t o r flasks.  There i t i s f i n e l y d i s p e r s e d w i t h a T e f l o n c o a t e d magnetic  s t i r r i n g bar.  The s o l v e n t t h e n r i s e s and o v e r f l o w s back to the d i s t i l l a t i o n chamber.  The  rate  00  F i g u r e 3.2  Continuous S o l v e n t E x t r a c t o r  59 of f l o w of the water sample was  c o n t r o l l e d by the T e f l o n v a l v e .  S o l v e n t E x t r a c t i o n of Model Compounds (Exp E - l ) - I n o r d e r to t e s t the e x t r a c t o r under i d e a l c o n d i t i o n s , two model compounds, 2 , 4 - D i c h l o r o p h e n o l and  2,4,6-Trichlorophenol  (TCP)  these compounds were p r e p a r e d  (Eastman) were s e l e c t e d .  (DCP)  Aqueous s o l u t i o n s of  by d i s s o l v i n g them i n two m i l l i l i t r e s of acetone  and one l i t r e of d i s t i l l e d water w i t h m a g n e t i c s t i r r i n g f i n a l d i l u t i o n , to e i g h t e e n l i t r e s .  The  overnight, followed  s o l u t i o n s were passed t h r o u g h the  e x t r a c t o r a t f l o w r a t e s of t e n and one hundred ml/min w i t h h i g h and speeds.  A t h i g h s t i r r e r speed the o r g a n i c s o l v e n t was  a t low s i t r r e r speed the s o l v e n t was  a n a l y z e d by GC  ( H e w l e t t Packard  (HP), w i t h an EC d e t e c t o r . D i s t i l l e d water was  completely  5750) on 5% DC-11  -  cleaning  A f t e r cleanup of  and water a n o t h e r b l a n k was  S o l v e n t E x t r a c t i o n of P r i m a r y E f f l u e n t (Exp E-2)  run.  I n order to f u r t h e r t e s t  the performance of the e x t r a c t o r , t e s t s were r u n w i t h f i l t e r e d and sewage a t a f l o w r a t e of 100 ml/min and low s t i r r e r speed.  ib,,.  linear  on Chromosorb W  r u n t h r o u g h the e x t r a c t o r between t e s t s w i t h o u t  t o 2 ml and a n a l y z e d by GC on 5% DC-11  unfiltered  F i l t e r e d sewage  a l s o e x t r a c t e d a t low s t i r r e r speed and 10 ml/min f l o w r a t e .  w i t h an e l e c t r o n c a p t u r e  The  Peak a r e a s were measured w i t h a D i s c I n t e g r a t o r .  the Tygon t u b i n g w i t h d e t e r g e n t  were c o n c e n t r a t e d  stirrer  e m u l s i f i e d and  d i l u t e d to the  the t y g o n t u b i n g and an e s t i m a t e of memory e f f e c t s made.  was  low  dispersed i n discrete droplets.  o r g a n i c e x t r a c t s were d i v i d e d i n h a l f , c o n c e n t r a t e d , range and  Extracts  on Chromosorb W  (HP)  detector.  E x t r a c t i o n w i t h XAD-2 R e s i n  Apparatus -  Due  t r a c t i o n was  necessary.  by  t o problems w i t h the s o l v e n t e x t r a c t o r a new method o f A styrene-divinyl'benzene m a c r o r e t i c u l a r r e s i n ,  b e r l i t e XAD-2 (Rohm and Haas) was  tested.  R e s i n cleanup was  exAm-  accomplished  60 by t h r e e washings w i t h d i s t i l l e d water• and d e c a n t i n g - o f t h e .finest- f o l l o w e d by s u c c e s s i v e S o x h l e t e x t r a c t i o n s w i t h methanol f o r t e n h o u r s , a c e t o n e f o r twentyf o u r h o u r s , and d i e t h y l - e t h e r f o r t w e n t y - f o u r h o u r s . s t o r e d as a methanol s l u r r y u n t i l i t was u s e d . i l l u s t r a t e d i n F i g u r e 3.3.  The c l e a n r e s i n was t h e n  The e x t r a c t i o n a p p a r a t u s i s  The r e s i n , as a methanol s l u r r y , was packed  into  e i g h t e e n by one i n c h g l a s s columns o r one hundred m i l l i l i t r e b u r e t s t o a v o l ume o f 80 m l . B e f o r e e x t r a c t i o n o f a sample t h e column was washed w i t h l i t r e s o f d i s t i l l e d w a t e r t o remove t h e m e t h a n o l .  five  D e s o r p t i o n was o r i g i n a l l y  a c c o m p l i s h e d by e l u t i o n w i t h 200 m l o f acetone and d r y i n g o f t h e a c e t o n e w a t e r e l u a n t m i x t u r e w i t h sodium s u l p h a t e .  Extractions of the eluant mixture  w i t h p e t r o l e u m e t h e r and d i e t h y l e t h e r were a l s o t r i e d * . The method adopted was e l u t i o n w i t h 200 m i s o f d i e t h y l e t h e r . run  finally  The e t h e r was a l l o w e d t o  t h r o u g h t h e ic.o?lumn u n t i l two l a y e r s were observed i n t h e r e c e i v i n g  flask.  The f l o w was stopped f o r f i f t e e n m i n u t e s t o a l l o w f o r complete p e r m e a t i o n and t h e n a l l o w e d t o p r o c e e d a t 3 - 4 m l / m i n u t e .  The e l u a n t was d r i e d w i t h  sodium s u l p h a t e and c o n c e n t r a t e d . The columns were t h e n washed w i t h 200 m l of  acetone and 100 m l o f methanol f o r complete c l e a n u p .  XAD-2  E x t r a c t i o n o f Model Compounds (Exp.. E-3) - T h i s experiment was r u n i n  f o u r p a r t s i n o r d e r t o measure r e c o v e r i e s and d e t e r m i n e t h e s o u r c e s o f l o s s e s i n t h e system.  The p h e n o l s were a n a l y z e d by GC-EC d e t e c t o r .  The r e c o v e r y  of DCP and TCP from d i s t i l l e d w a t e r s o l u t i o n s was t e s t e d a t n e u t r a l pH ( E x p . 13a)3a). The e f f e c t o f d e t e r g e n t on r e c o v e r y was d e t e r m i n e d by a d d i n g 4.9 mg/1 of LAS s t a n d a r d s o l u t i o n (R. A. T a f t , C i n c i n n a t i , Ohio) t o t h e aqueous p h e n o l solutions  (Exp. E-3b).  One f r a c t i o n was a c i d i f i e d w i t h U^SO^ t o pH 1.8 and  two l i t r e p o r t i o n s o f b o t h f r a c t i o n s were e x t r a c t e d .  LAS was a n a l y z e d by t h e  M e t h y l e n e B l u e method (APHA 1971). A d e t a i l e d breakdown o f l o s s e s i n t h e system was made u s i n g  distilled  62 water and t h e c h l o r o p h e n o l s (Exp. E 3 - c ) .  R e c o v e r i e s and l o s s e s a t v a r i o u s  s t a g e s were determined by s o l v e n t e x t r a c t i o n o r s o r p t i o n . e n t a i l e d three ten ml e x t r a c t i o n s w i t h pet ether and  Solvent e x t r a c t i o n  a f t e r a c i d i f i c a t i o n t o pH 2  a d d i t i o n o f 20 g/1 o f NaCI. Experiment E-3-d was i d e n t i c a l  i n place of d i s t i l l e d water.  t o E-3-c except t h a t raw sewage was used  The s o l u t i o n of DCP was p r e p a r e d by d i s s o l v i n g  the p h e n o l i n a c e t o n e and water as b e f o r e .  This s o l u t i o n  was t h e n added t o  t h r e e o r f o u r l i t r e s o f sewage. B r e a k t h r o u g h Study (Exp E-4).  To d e t e r m i n e t h e c a p a c i t i e s of t h e columns  e i g h t e e n l i t r e p o r t i o n s o f f i l t e r e d p r i m a r y e f f l u e n t , a t b o t h n e u t r a l and a c i d pH's,  were e x t r a c t e d a t a f l o w fhrough r a t e o f 100 ml/min.  samples were f i l t e r e d  Column e f f l u e n t  ( 0 . 4 5 ^ membranes) and a n a l y z e d f o r s o l u b l e TOC (Beck-  man 915 c a r b o n a n a l y z e r ) . 6.  Comparison o f XAD-2 and S o l v e n t E x t r a c t o r -(Exp E-5.') I n o r d e r t o compare t h e e x t r a c t i o n e f f i c i e n c i e s o f t h e XAD columns and  the s o l v e n t obtained.  e x t r a c t o r , t h r e e f i v e g a l l o n a l i q u o t s o f p r i m a r y e f f l u e n t were One a l i q u o t was dosed w i t h 106 mg/1 Cl^ f o r one h o u r .  A l l three  a l i q u o t s were f i l t e r e d and t h e f i l t e r s from each a l i q u o t were c o l l e c t e d damp but w i t h o u t f r e e m o i s t u r e . extracted The  One a l i q u o t of t h e u n c h l o r i n a t e d  e f f l u e n t was  i n t h e s o l v e n t e x t r a c t o r a t 100 ml/minute and low s t i r r e r speed.  o t h e r a l i q u o t s o f f i l t e r e d c h l o r i n a t e d and u n c h l o r i n a t e d  e x t r a c t e d by columns o f XAD-2 r e s i n .  A l l three organic  e f f l u e n t were  e x t r a c t s were concen-  t r a t e d t o 5 mis and a n a l y z e d by GC. ;d.  E x t r a c t i o n o f P a r t i c u l a t e s - ( E x p E-6) - The f i l t e r pads were c u t up i n t o  1" x 2" s t r i p s and p l a c e d  i n pre-extracted  c e l l u l o s e Soxhlet Thimbles.  Filters  from t h e c h l o r i n a t e d sample were e x t r a c t e d w i t h a 1:1:3 m i x t u r e o f m e t h a n o l , acetone and n-hexane.  F i l t e r s from t h e u n c h l o r i n a t e d  w i t h methanol and a 1:1 m i x t u r e o f c h l o r o f o r m ther or not f r e e c h l o r i n e i n chloroform  samples were  extracted  and m e t h a n o l t o d e t e r m i n e whe-  i s a significant interference.  Three  63  p o r c e l a i n b o i l i n g chips  (Hengar) were added to the d i s t i l l a t i o n chamber and  the e x t r a c t o r s were o p e r a t e d a t 20 - 25 m i n u t e s per c y c l e f o r 26 h o u r s . e x t r a c t s were d r i e d and  concentrated  to 5 ml.  The  form/methanol e x t r a c t s were f u r t h e r c o n c e n t r a t e d 5 ml w i t h a c e t o n e .  The  pure methanol and  to 0.5  e x t r a c t s were t h e n a n a l y z e d  4.  Separation  a.  Preliminary Separation  by  ml and  All  chloro-  r e d i l u t e d to  GC.  Experiments (Exp  S-l)  P r e l i m i n a r y s e p a r a t i o n of the o r g a n i c s by s i l i c a g e l chromatography a c i d - b a s e s o l u b i l i t y was  attempted p r i o r to gas  and  chromatography.  S i l i c a G e l Chromatography (Exp S - l a ) - S i l i c a g e l ( F i s h e r Grade 923, 200 mesh) was was  h e a t e d a t 260°C f o r f i v e hours and  G l a s s columns (0.3 by 40 cm)  allowed  s i l i c a g e l was  The  were p r e p a r e d from s o f t g l a s s t u b i n g .  s i l i c a g e l was  t a i n i n g the s l u r r y was  E-5  was  s l u r r i e d i n pet e t h e r and  one h o u r .  and  the f l a s k con-  A 0.5  slurry  ml a l i q u o t of sample  e l u t e d w i t h 8 ml of pet  ether,  (Exp S - l - b ) - Four f i v e g a l l o n a l i q u o t s of e f f l u e n t  c h l o r i n a t e d at l e v e l s of 0.0,  They were e x t r a c t e d by XAD-2.  The  15, 100  and  200 mg/1  3>  and  a c i d i f i e d t o pH 2 w i t h aqueous H^SO^  of d i s t i l l e d w a t e r and  for suc-  3 x 10 ml of 0.01  NaOH to s e p a r a t e s t r o n g a c i d s , weak a c i d s and n e u t r a l compounds.  e t h y l e t h e r a f t e r the a d d i t i o n of N a C l .  Cl^  d i e t h y l e t h e r e l u a n t was  c e s s i v e l y e x t r a c t e d w i t h 3 x 10 ml of 0.1 ,:M NaHC0  solutionsvwere  The  8 ml of 1:1 methanol/benzene ( v / v ) .  A c i d i t y Separations were o b t a i n e d  col-  then f i l l e d  p a r t i a l l y evacuated to remove a i r b u b b l e s .  p l a c e d on the column and  8 m l of benzene and  The  a 2 cm p l u g of g l a s s w o o l i n s e r t e d .  then added t o the column to a depth of 15 cm.  from Exp.  gently  overnight.  columns were r i n s e d wi'th m e t h a n o l , benzene, and p e t e t h e r and  w i t h pet e t h e r .  was  The  to f u r t h e r e q u i l i b r i a t e  umns were c o n s t r i c t e d near the bottom and The  then 5% by w e i g h t of water  added i n a g l a s s s t o p p e r e d round bottom f l a s k .  tumbled u n t i l f r e e f l o w i n g and  100-  The  M  aqueous  and r e - e x t r a c t e d w i t h d i -  A t o t a l operations  blank consisting  sodium t h i o s u l p h a t e , and a sample of NaOCl/Na S 0 9  64 were a l s o a n a l y z e d .  After concentration  t o 1 m l , t h e e x t r a c t s were s t o r e d  at -10°C i n 2 m l g l a s s s t o p p e r e d v o l u m e t r i c  f l a s k s (Kimax).  the b i c a r b o n a t e  and 0.05' M NaOH was u s e d ,  b.  e x t r a c t i o n s t e p was o m i t t e d  GC O p t i m i z a t i o n  (EXp.  Subsequently,  S-2)  An attempt was made t o d e t e r m i n e t h e optimum p a c k i n g and c o n d i t i o n s f o r GC s e p a r a t i o n .  The GC work was performed on a H e w l e t t P a c k a r d 5750 i n s t r u m -  ent w i t h EC and FID d e t e c t o r s .  Four column p a c k i n g s were t e s t e d .  3% 0V-1 and o f 3% 0V-225 on Chromosorb W (HP) were o b t a i n e d icals.  Packings of  from P i e r c e Chem-  P a c k i n g s o f 3% OV-101 and o f 3% 0V-17 on Chromosorb W(HP) 80-100 mesh  (Chromatographic S p e c i a l i t i e s ) were p r e p a r e d by t h e s o l u t i o n - f i l t r a t i o n method (Supina, filling  1974).  The p a c k i n g s were d r i e d a t 50°C f o r twenty m i n u t e s  t h e columns w i t h 7.0-7.5 g o f m a t e r i a l .  before  Packed columns were  conditioned  by a temperature program o f 30° f o r 20 m i n u t e s , a 1° /minute i n c r e a s e , by an i s o t h e r m a l p e r i o d o f two days a t t h e maximum t e m p e r a t u r e . and  l e a d f e r r u l e s were used d u r i n g c o n d i t i o n i n g . Samples from Exp.  FID  S - l - b were a n a l y z e d  f o r the i n i t i a l  H e l i u m gas  i  on a l l f o u r columns u s i n g b o t h  and EC d e t e c t o r s under v a r i o u s temperature programs.  ponses were o p t i m i z e d  followed  The d e t e c t o r  res-  o f f i n a l c o n d i t i o n s o f t h e temperature  program. c.  TLC o f A c i d i t y S e p a r a t e d F r a c t i o n s (Exp S-3) Im an attempt t o a c c o m p l i s h more complete p r e l i m i n a r y s e p a r a t i o n o f t h e  e f f l u e n t samples, t h e n e u t r a l and b a s i c f r a c t i o n s o f t h e samples c h l o r i n a t e d a t 0 and 120 mg/1 C l from Exp.  C l - 7 were s e p a r a t e d by TLC. A p r e l i m i n a r y  t e s t o f t h e d e v e l o p e r s was made on c o m m e r c i a l l y p r e p a r e d p l a t e s  (Eastman)  w h i l e f i n a l s e p a r a t i o n was made on p l a t e s p r e p a r e d as f o l l o w s .  Silica gel  ( K i e s e l g e l ) was e x t r a c t e d f o r 24 hours i n . a S o x h l e t  e x t r a c t o r w i t h methanol.  I t was oven d r i e d u n t i l f r e e f l o w i n g and 5% by w e i g h t GaSO^ ( F i s h e r AR) was added. acetone.  G l a s s TLC p l a t e s were washed w i t h d e t e r g e n t and r i n s e d w i t h w a t e r and S i l i c a g e l was a p p l i e d as an aqueous s l u r r y and t h e c o a t e d p l a t e s  were o v e n d r i e d a t 103°C f o r 24.hours and s t o r e d over CaSO^ i n a d e s s i c a t o r p r i o r to use.  Samples were a p p l i e d as a s t r e a k .  w i t h p e t e t h e r and a r b i t r a r i l y  The p l a t e s were  d i v i d e d into four or eight f r a c t i o n s .  covery o f the m a t e r i a l from the p l a t e s was a c c o m p l i s h e d  by EC-GC.  Re-  by t h e t e c h n i q u e  d e v i s e d by H a l l (1970) except t h a t t h e a s b e s t o s was o m i t t e d . m a t e r i a l was m o n i t o r e d  developed  The r e c o v e r e d  The f r a c t i o n s showing EC responses  recombined and r e s e p a r a t e d by TLC u s i n g methanol as a d e v e l o p e r .  were  After  div-  i s i o n o f the p l a t e and r e c o v e r y of the m a t e r i a l , the f r a c t i o n showing EC response was then c o n c e n t r a t e d t o 0.1 m l and a n a l y z e d by GC-MS. p o s s i b l e b l a n k was o b t a i n e d from n o n - s o x h l e t  A worst  e x t r a c t e d s i l i c a g e l and t h e  ' " c l e a n " areas o f t h e second TLC p l a t e w h i c h corresponded  t o t h e same R^ v a l -  ues as the f r a c t i o n a n a l y z e d by GC-MS. 5.  E f f e c t s of C h l o r i n a t i o n  a.  Mangesiin  S o l u b l e TOC Upon C h l o r i n a t i o n -(Exp C l - 1 )  Three f r e s h e f f l u e n t samples were c h l o r i n a t e d a t l e v e l s o f 0, 12 and 103 mg/1 C ^ .  The samples were f i l t e r e d (0.45^membrane) and the TOC o f t h e samples  determined  on a Beckmann 915 TOC a n a l y z e r .  b.  E f f e c t s D e t e c t a b l e by GC w i t h EC and F I D e t e c t o r s (Exp C l - 2 ) E x t r a c t s were a n a l y z e d by GC w i t h EC and FID d e t e c t o r s t o determine i f  changes o c c u r as a r e s u l t of c h l o r i n a t i o n and t o determine whether changes (Occur.bingaatbhitghilevelsjofclGhlofinatlon'- also"? occurredj&at t h e l e v e l s o f c h l o r i n a t i o n used i n the t r e a t m e n t p l a n t s .  E x p e r i m e n t a l c o n d i t i o n s used i n t h e s e  experiments were i d e n t i c a l t o those i n Experiment S-2. c.  E f f e c t s M o n i t o r e d by MEC D e t e c t o r and GC C o r r e l a t i o n s (Exp. C l - 3 ) . Samples were a n a l y z e d on a M i c r o - T e k ( T r a c o r 222) GC equipped w i t h a  T r a c o r 310 d e t e c t o r o p e r a t i n g on the C l mode  a t 815°C and a 6' x 1/8" g l a s s  column c o n t a i n i n g t h e p a c k i n g as used w i t h t h e GCrMS (Exp C l - 7 ) .  The r e s p -  onse o f t h e d e t e c t o r was c a l i b r a t e d w i t h a s t a n d a r d m i x t u r e o f p e s t i c i d e s .  66  An attempt was made t o c o r r e l a t e t h e GC chromatograms M i c r o t e k GC, and H e w l e t t - P a c k a r d GC.  from the GC-MS,  Samples were a n a l y z e d on the H e w l e t t  P a c k a r d w i t h a 4' x h" g l a s s column of t h e • p a c k i n g used w i t h the o t h e r i n struments. each GC.  The i n d i v i d u a l optimum temperature programs were r e t a i n e d f o r Three compounds, o - c h l o r o p h e n o l , p - c h l o r o p h e n o l and o,p' -  DDT  were used as m a r k e r s . d.  GC-MS S t u d i e s on the MS 12 (Exp C l - 4 ) The e x t r a c t s from experiment C l - 2 were i n i t i a l l y used i n t h i s e x p e r i m e n t .  A second s e t of samples was p r e p a r e d by e x t r a c t i n g , a c i d i t y s e p a r a t i n g and c o n c e n t r a t i n g e f f l u e n t c h l o r i n a t e d a t 0 and 25 mg/1  Cl^.  I n t h i s second  experiment t e n g a l l o n a l i q u o t s of e f f l u e n t samples were a n a l y z e d by  combin-  i n g the e x t r a c t s o f two XAD-2 columns. The GC-MS i s a c o m b i n a t i o n o f a Pye 104 GC and a Micromass 12 s i n g l e f o c u s s i n g mass s p e c t r o m e t e r i n t e r f a c e d by a d i f f e r e n t i a l l y pumped porous frdtf-^type separator.  G l a s s columns  (1 m x 2 mm OD) w i t h s t a i n l e s s  steel  Swagelock f i t t i n g s were packed w i t h the OV-101 and 0V-225 p a c k i n g s p r e v i o u s ly described.  E l e c t r o n e n e r g i e s of 70 and 25 eV were used.  They were  scanned a t a r a t e o f 3 sec/400 amu and r e c o r d e d on UV c h a r t p a p e r . b o i l i n g p e r f l u o r o k e r o s e n e was used as a c a l i b r a n t .  Low  Mass s p e c t r a were t a k e n  a t the b e g i n n i n g , maximum and t a i l of each peak w h i c h appeared on the GC. e.  T e n t a t i v e I d e n t i f i c a t i o n by R e t e n t i o n Time (Exp C l - 5 ) To t e n t a t i v e l y i d e n t i f y some o f the o r g a n i c compounds formed as a r e s u l t  o f c h l o r i n a t i o n , the GC r e t e n t i o n t i m e s of a number o f r e c r y s t a l l i z e d  chlor-  i n a t e d compounds were d e t e r m i n e d under c o n d i t i o n s used t o a n a l y z e the samples of c h l o r i n a t e d e f f l u e n t .  R e t e n t i o n times o f composite s o l u t i o n s and  individ-  u a l components were d e t e r m i n e d a t 120 and 160°C and .with the t e m p e r a t u r e programs used f o r t h e p r i m a r y e x t r a c t s . £.  T r a p p i n g of GC Peaks (Exp. C l - 6 )  An attempt was made to t r a p a s p e c i f i c peak and a n a l y z e i t by probe MS. A 30:1  A new  s e t of samples was  c h l o r i n a t e d a t 0, 12 and 100 mg/1  s t a i n l e s s s t e e l e f f l u e n t s p l i t t e r was  GC o p e r a t i n g on the EC d e t e c t o r mode. methylene c h l o r i d e and d r i e d .  Attempts were made to t r a p one s p e c i f i c peak cm of Tenax GC,  E i g h t 3^#1  and a tube  i n j e c t i o n s of the neu-  t r a l and b a s i c f r a c t i o n of the sample c h l o r i n a t e d a t 100 mg/1 The  Packard  C a p i l l a r y g l a s s tubes were r i n s e d w i t h  cm of the 0V-225 m a t e r i a l .  each t r a p p i n g system.  of C l ^ .  i n s t a l l e d i n the H e w l e t t  w i t h an a i r c o o l e d tube, a tube packed w i t h one packed w i t h one  direct  were made w i t h  tubes were h a n d l e d o n l y w i t h f o r c e p s and  eluted  w i t h 100/^1 of d i e t h y l e t h e r w h i c h was  a l l o w e d to e v a p o r a t e i n the atmosphere  down t o a volume of 2 ^ 1 .  d i s c e r n a b l e upon r e i n j e c t i n g t h i s  a l i q u o t i n t o the g.  Cl-7)  s e t of samples was  c h l o r i n a t e d a t 0, 12 and 120 mg/1  sample of p l a n t c h l o r i n a t e d e f f l u e n t was t i l l e d w a t e r and t h i o s u l p h a t e was systems.  The  l/ll  GC.  GC-MS-Computer (Exp A new  No peak was  concentrated  obtained.  01^, and  a  A b l a n k of 35 1 of d i s -  r u n t h r o u g h the c o l l e c t i o n and e x t r a c t i o n  e x t r a c t s were a n a l y z e d  5750 by EC and FID on OV-101 and 0V-225.  The  on the H e w l e t t  Packard  samples were c o o l e d w i t h  dry  i c e and t r a n s p o r t e d by c a r to the USEPA l a b i n S e a t t l e where they were s t o r e d in a freezer. The GC-MS-Computer was and a F i n n i g a n 3100  D  MS  a F i n n i g a n 3000 c o n s i s t i n g of a F i n n i g a n 9500 GC  i n t e r f a c e d by a j e t s e p a r a t o r .  i n c l u d e d a Systems I n d u s t r y  A u x i l i a r y equipment  PDP8 computer w i t h m a g n e t i c d i s c and Dec  t r a n s f e r u n i t , t e l e p r i n t e r and Houston I n s t r u m e n t s s l o w p l o t t e r , CRT  d i s p l a y / c o n t r o l c o n s o l e w i t h a hard copy u n i t , and a t e l e p h o n e  device.  Samples were s e p a r a t e d  SE-30/4% OV-210 on Gas  Chrom Q.  on a 4' x 1/8"  Tape,  Tektronix hookup  g l a s s column c o n t a i n i n g  6%  S p e c t r a were o b t a i n e d a t 70 eV i o n i z i n g  tage and scanned a t 1 sample /.-amu, i n t e g r a t i o n time of 8, o v e r the mass  vol-  range 34-450.  Numerous l i m i t e d mass s e a r c h e s were conducted to attempt t o  l o c a t e peaks o f i n t e r e s t .  U l t i m a t e l y , each spectrum was m a n u a l l y i n s p e c t e d  and a p p r o p r i a t e background c o r r e c t i o n s made.  The r e s u l t a n t s p e c t r a were  compared w i t h t h e MSSS f i l e s o r t h e AWRE••*' = .Aldermaston (1974) and Cornu and Massot  (1975) e i g h t peak i n d i c e s .  I n a d d i t i o n , s p e c t r a n o t m a t c h i n g those  i n t h e f i l e were i n t e r p r e t e d by the methods o u t l i n e d by M c L a f f e r t y (1973). T h e / t e n t a t i v e l y i d e n t i f i e d s p e c t r a were then compared w i t h t h o s e c o l l e c t e d by Stenhagen e t a l . . ( 1 9 7 4 ) .  ^Authentic samples o f t h e compounds whose s p e c -  t r a a passed t h e s e t e s t s were o b t a i n e d when p o s s i b l e and t h e i r GC r e t e n t i o n times and mass s p e c t r a were o b t a i n e d on t h e F i n n i g a n 3000 GC-MS.  4  69 CHAPTER IV  I n t h i s chapter w i l l be p r e s e n t e d  RESULTS AND  DISCUSSION  the r e s u l t s from each experiment d e s c r i b e d i n Chapter I I I  and d i s c u s s e d .  I n the i n t e r e s t of b r e v i t y a l l of the  t r a c e s and mass s p e c t r a w i l l not be r e p r o d u c e d .  A s e l e c t i o n of chromatograms  and mass s p e c t r a chosen on the b a s i s o f p o s i t i v e i m p o r t a n c e w i l l be w h i l e o n l y the s a l i e n t f e a t u r e s of the o t h e r s w i l l be d e s c r i b e d . of the chromatograms of e f f l u e n t samples i s p r e s e n t e d GC  c o n d i t i o n s f o r the chromatograms p r e s e n t e d  GC  presented  A summary  i n Appendix I I .  i n t h i s chapter are  The  described  i n d e t a i l i n Appendix I I I . A.  E x t r a c t i o n Experiments  1.  Solvent E x t r a c t o r The  r e c o v e r i e s of DCP  and TCP  t r a c t o r (Exp. E - l ) a r e p r e s e n t e d i n d i c a t e d r e s i d u a l s of 0.30  from d i s t i l l e d  i n T a b l e 4.1.  mg DCP  and 0.35  mg  w a t e r by the s o l v e n t  ex-  A t e s t f o r memory e f f e c t s TCP  o r about 4 p e r c e n t  of  the  t o t a l p h e n o l passed through the Tygon tubing.> No d e t e c t a b l e memory e f f e c t s p e r s i s t e d a f t e r c l e a n i n g the Tygon. Loss of s o l v e n t proved to be somewhat of a problem, p r i m a r i l y due e n t r a i n m e n t of s o l v e n t i n the aqueous sample. portance  I n o r d e r to e s t i m a t e the  to the im-  o f t h i s l o s s , measurements were made of the s o l v e n t needed t o r e -  p l e n i s h the s t o c k i n the d i s t i l l a t i o n t i l l a t i o n i n t o the e x t r a c t i o n f l a s k s . a r e a c c u r a t e o n l y t o + 10% due  f l a s k and of the r a t e of s o l v e n t d i s These r e s u l t s p r e s e n t e d  to the d i f f i c u l t y  f l a s k e x a c t l y , t o the c a l i b r a t i o n mark.  of f i l l i n g  From Tables  4.1  and  the 4.2  i n Table  4.2  distillation i t appears t h a t  poor r e c o v e r i e s a r e coupled w i t h l a r g e s o l v e n t l o s s e s . I n summary, s l i g h t l y b e t t e r r e c o v e r i e s a r e o b t a i n e d a t low f l o w r a t e s . I n v i e w of the l o n g e x t r a c t i o n times r e q u i r e d w i t h low f l o w r a t e s , the timum o p e r a t i n g c o n d i t i o n s a r e a f l o w r a t e of 100 ml/minute and a low  opstirrer  Table;4.1 - R e c o v e r i e s  o f P h e n o l s by S o l v e n t E x t r a c t o r  Run No.  Compound  Concentration mg/1  Flow Rate mg/min  1 1 2 2 3 3 4 4 5 5  DCP TCP DCP TCP DCP TCP DCP TCP DCP TCP  0.48 0.48 0.41 0.33 0.51 0.46 0.39 0.26 0.50 0.43  10 10 10 10 100 100 100 100 100 100  Stirrer "Speed  high high low low high high low low low low  mg Passed Recovery Through E x t r a c t o r * mg %  8.2 8.2 7.1 5.7 8.7 7.9 6.7 4.5 8.6 7.4  5.8 5.8 5.8 4.3 3.2 3.4 4.6 3.2 5.8 4.9  71 71 82 76 37 43 69 71 67 66  71  T a b l e 4.2 - S o l v e n t Loss Due to Entrainment  Run  1 2, 3 4 5  Time o f Run hrs  Stirrer Speed  Solvent D i s t i l l e d ml  ml  28.5 28.5 3.0 3.0 •3.0  high low high low low  20,500 20,500 2,160 2,160 2,160  650 300 830 300 250  Solvent Lost % of S o l v e n t Distilled •3.2 1.7 38 14 12  72 speed. When f i l t e r e d sewage e f f l u e n t (Exp E-2) was e x t r a c t e d an e m u l s i o n developed.  problem  A t a f l o w r a t e of 100 ml/minute and low s t i r r e r speed an e m u l s i o n  w i t h e n t r a i n e d b r o w n i s h scum formed a t t h e top of the e x t r a c t o r f l a s k and o v e r flowed i n t o t h e d i s t i l l a t i o n chamber. then became bumpy.  The b o i l i n g i n the d i s t i l l a t i o n chamber  A t a reduced f l o w r a t e (10 ml/minute) the e m u l s i o n and  bumping were s l o w e r t o d e v e l o p .  D i s c r e t e bubbles w i t h a b r o w n i s h scum q u i c k l y  appeared a t t h e top o f t h e e x t r a c t i o n f l a s k and a f t e r 15 hours the e m u l s i o n i n t h e d i s t i l l a t i o n f l a s k was s i m i l a r i n volume t o t h a t o b t a i n e d i n 1 hour with a high flow rate. E x a m i n a t i o n of the gas chromatograms o f the sewage e x t r a c t s showed a t o t a l o f 34 peaks d e t e c t a b l e by EC.  Three o f t h e s e peaks appeared  in.the d i s -  t i l l e d water b l a n k . A l t h o u g h the §xt-ractor.s±sanr.ea-sona&3Jylgrf4e?fierit-,- i t was d e c i d e d t o develop an a d s o r p t i o n method f o r e x t r a c t i o n due t o the e m u l s i o n problem.  The a l t e r -  n a t i v e f s s o l u t i o n s o f a c i d i f i c a t i o n of t h e sample t o pH 1.8 and a d d i t i o n of 20 g/1 NaCI would p r o b a b l y i n c r e a s e s o r p t i o n l o s s e s .  I n a d d i t i o n , experience  has shown t h a t such p r a c t i c e s do n o t e l i m i n a t e emulsions w i t h e n v i r o n m e n t a l samples. 2.  E x t r a c t i o n W i t h XAD-2 R e s i n The f i r s t problems  t o be s o l v e d were the development of a cleanup method,  and t h e development o f an e f f i c i e n t method of e l u t i o n .  S i n c e the r e s i n con-  t a i n s i n o r g a n i c as w e l l as unknown o r g a n i c i m p u r i t i e s , the approach d e s c r i b e d i n Chapter I I I was d e v i s e d .  The purpose o f the methanol  remove t h e water and r e s i d u a l i n o r g a n i c s from the r e s i n .  e x t r a c t i o n was t o Acetone and d i e t h y l  e t h e r were chosen because they were t h e s o l v e n t s used f o r e l u t i o n of t h e sorbed organics. ourless.  The methanol  e x t r a c t was y e l l o w w h i l e a l l of t h e o t h e r s were c o l -  S i n c e b r i t t l e p l a s t i c s tend t o c r a c k upon d r y i n g t h e c l e a n e d r e s i n  73 was  s t o r e d as a.methanol s l u r r y .  The r e l e a s e o f ' o r g a n i c s from c l e a n e d  w h i c h was a l l o w e d t o d r y has r e c e n t l y been c o n f i r m e d The  resin  by Junk e t a l . (1974).  e l u t i n g s o l v e n t must s a t i s f y t h r e e r e q u i r e m e n t s .  I t must be a good  g e n e r a l s o l v e n t , d i s p l a c e water from t h e column and be e a s i l y removed t o a l l o w concentration of the e x t r a c t .  The column c o n t a i n s about 8 m l o f w a t e r as  measured by e l u t i o n o f t h e column w i t h hexane. d r i e d w i t h Na SO^ and c o n c e n t r a t e d , 2  When t h e acetone e l u a n t was  about 0.3 m l o f water remained.  The p r e s -  ence o f such a l a r g e amount o f water w i l l cause l a r g e l o s s e s o f v o l a t i l e organics during the concentration step.  To a c c o m p l i s h  of t h e a c e t o n e - water e l u a n t a p p r o x i m a t e l y ml o f d i e t h y l e t h e r were needed.  a 3 x 10 m l e x t r a c t i o n  120 ml o f p e t r o l e u m e t h e r and 200  T e s t s on t h e r e c o v e r i e s o f DCP from a 200:10  m i x t u r e of acetone and water y i e l d e d r e c o v e r i e s o f 77% w i t h p e t e t h e r and 64% with d i e t h y l ether.  Due t o these e x t r a c t i o n d i f f i c u l t i e s t h e stopped f l o w  method o f e l u t i o n w i t h d i e t h y l e t h e r was adopted.  Comparison o f t h e e l u t i o n  e f f i c i e n c i e s o f acetone and d i e t h y l e t h e r showed r e c o v e r i e s o f 93% f o r a c e t o n e and  89% by d i e t h y l e t h e r .  Thus t h e s o l v e n t s were i d e n t i c a l w i t h i n t h e 5% e r r o r  l i m i t s and no r e s i d u a l w a t e r was n o t e d a f t e r d r y i n g t h e d i e t h y l  ether.  A breakdown o f t h e r e c o v e r i e s o f DCP and TCP from t h e XAD-2 column a c c o r d i n g t o e l u a n t f r a c t i o n (Exp. E-3) i s shown i n T a b l e 4.3. The e f f e c t o f LAS detergent  on r e c o v e r i e s o f p h e n o l s from a c i d i f i e d and n o n - a c i d i f i e d s o l u t i o n s  i s shown i n T a b l e 4.4.  A d e t a i l e d breakdown o f l o s s e s i s shown i n T a b l e 4.5.  From T a b l e 4.3 i t can be seen t h a t t h e e l u t i o n of sorbed p h e n o l i s e s s e n t i a l l y complete a f t e r about 1 bed volume o f d i e t h y l e t h e r has passed t h r o u g h t h e column.  N e i t h e r t h e pH o f t h e s o l u t i o n nor t h e c o n c e n t r a t i o n s o f  the p h e n o l s appear t o a f f e c t t h e r e c o v e r y .  These r e s u l t s concur w i t h t h e r e -  c e n t l y p u b l i s h e d work o f V i n s o n e t a l . (1973) and Junk e t a l . (1974).  Detergents  a l s o had no e f f e c t uon t h e r e c o v e r i e s o f t h e p h e n o l s . A d s o r p t i o n o f t h e LAS d e t e r g e n t  74  Table;4.3  Run No.  1. 1 1 1 1 2 2 2 2 2 2 2 0  Recoveries of Phenols from D i s t i l l e d Water by XAD-2  Sample Description  O r i g i n a l Solution 1st 50ml of Eluant 2nd 50 ml of Eluant 3rd 50 ml of Eluant 4th 50 ml of Eluant Composite of Concentrates O r i g i n a l Solution 1st 50 ml of Eluant 2nd 50 ml of Eluant 3rd 50 ml of Eluant 4th 50 ml of Eluant Composite of Concentrates  Initial mg Through Concentration Column mg/1 DCP  TCP  DCP  TCP  1.1 \,\.  1.05  18.7  17.8  0.133  0.189  2.3  Recovery mg  %  DCP  TCP  DCP  TCP  12.3 1.9 0.05 0 15.0  10.5 2.3 0.05 0 13.4  66 10 —  58 13  80  75  1.6 2.6 0.1 0.15 <C0.01 <-0.01 <0.01 CO.01 1.80 2.65  70 4  81 5  79  83  3.2  75 T a b l e 4.4  R  un  E f f e c t of LAS on R e c o v e r i e s o f P h e n o l s by XAD-2  Volume o f Sample Passed Through Column (1)  pH  Original Solution 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 Total  1.8  Original Solution 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 Total  7.1  Original  1.8  Solution  Recovery C o n c e n t r a t i o n (mg/1) LAS DCP TCP  LAS  4.5 0.9 2.3 1.8 2.0 1.8  a  20 50 40 55 40  4.5 0.0 0.3 0.3 0.2 0.4  a  0.0  a  0.55  a  0.45 0.90  a  1.05 a  0.70 0.00  1.25  1.35  0.00  _ —  ___  82  84  78  82  a  0 7 7 4  1.10 a  percent DCP TCP  a  0.00 0.00  0.00  a - O r i g i n a l c o n c e n t r a t i o n of component asO determined by a n a l y s i s o r from amount of m a t e r i a l added and volume o f s o l u t i o n .  Table 4.5  Run  Compoundratioa in Original Solution  Breakdown of tosses for XAD-2 System  Concentration i n O r i g i n a l Solution by weight by solvent extraction  Loss Due to Filtration mg/1 % mg/1 %  Loss Due to Sorption on Tygon mg/1 %  Loss Due to NonAdsorption on XAD Resin mg/1 %  mg/1  mg/1 0.0 0.0 0.0  0 0 0  0.071 0.092 0.032  14 9 13  0.0 0 0.0 0 0.0  0 0 0  0.12 9.08  16 12  0.13 0.14  18 21  ©V03  4 5  Distilled Water-1 Distilled Water-2  DCP TCP DCP  O.'S'S 0.25  0.52 1.0 0.24  Sewage-1 Sewage-2  DCP DCP  0.83 0.76  0.74 0.66  i.o  0.03  77.  occurred only when the sample was  acidified.  by Junk et a l . , (1974) with v o l a t i l e acids.  Similar results were obtained Detergents cannot be  analyzed  by GC-MS and v o l a t i l e acids are of no i n t e r e s t i n this study. From Table i t can be seen that these compounds are present sewage.  in  In order to prevent premature saturation of the r e s i n with these  compounds, i t was  decided  From Tables 4.3  to extract primary effluent samples at near neutral  and 4.5  were 7 - 9  precent.  pH's.  i t can be, seen that the major source of loss i n  this method i s sorption on the Tygon tubing.  of DCP  i n high concentrations  2.3  From Table 4.5  The losses during  concentration  i t i s also evident that the recoveries  are s i g n i f i c a n t l y lower when sewage rather than d i s t i l l e d water i s  extracted.  Therefore  the recoveries of organics from sewage are affected  by sorption and/or p r e c i p i t a t i o n reactions even though LAS water had no e f f e c t .  in distilled  The s i g n i f i c a n t sorption on p a r t i c u l a t e s indicates that  quantification w i l l be more d i f f i c u l t by sorptive extraction which required p r e - f i l t r a t i o n , than by solvent extraction where removal of p a r t i c u l a t e s i s unnecessary. In summary, the XAD-2 r e s i n method appears to be s l i g h t l y more e f f i c i e n t than the solvent extraction method for the recovery of DCP d i s t i l l e d water solutions.  However the recoveries of DCP  and TCP  from neutral  from sewage were  about 25% lower than those from d i s t i l l e d water. The r e s u l t s of the breakthrough studies of sewage (Exp. E-4) i n Table 4.6 13 percent were noted.  and displayed i n Figure 4.1.  are l i s t e d  Deviations of up to 6 mg/1  or  among the TOC values for samples which should have been i d e n t i c a l The stated r e p r o d u c i b i l i t y of the instrument i s about + 1 per-  cent while about 1 percent  error i s expected due to syringe measurements.  The deviations are probably due to the solids i n the samples. these deviations no comparisons of the TOC  Because of  of a c i d i f i e d and u n a c i d i f i e d  78 T a b l e 4.6  B r e a k t h r o u g h Study f o r Sewage on XAD-2  Volume Through Column (1)  T o t a l O r g a n i c Carbon i n E f f l u e n t pH .2.0 Run 1  Raw Sample 0.5 1.0 2.0 2.5 3.0 4.0 5.0 6.0 6.5 7.0 8.0 9.0 10.0 10.3 11.0 12.0 13.0 14.0 15.0 17.0 18.Q  Composite  67 45 48 43 43 45 51 52 67 62 68 69 65 70 71 65 68  61  (mg/1) , Run 2 Run 1  pH 7.2 Run 2  65 43 45 46 43 48 45 53 50  63 40 43 45 41 44 46 47 45  64 40 42 41 40 44 45 43 45  62 64 66 66  56 55 54 63  50 50 58 60  64 66 63 65 68 67 64  60 65 64 62 66 62  63 60 64 66 62 62 64  60  52  58  Figure  4.1  Recovery of O r g a n i c s from P r i m a r y E f f l u e n t by XAD-2 R e s i n  80 e f f l u e n t are j u s t i f i e d . r e s i n i n terms of mg  From the graphs i n F i g u r e 4.1  TOC/cc r e s i n i s 1.7  the c a p a c i t y of  f o r b o t h samples.  w e l l w i t h the r e s u l t s of Kennedy (1973) who  the  T h i s compares  showed t h a t r e s i n c a p a c i t y  can  v a r y over an o r d e r of magnitude depending upon the p o l a r i t y of the compound and quoted a c a p a c i t y of 3.5-5.2 mg/cc f o r V i t a m i n B-12.  There was  i n the t u r b i d i t y of the samples a f t e r passage t h r o u g h the column.  no  change  Turbidity  v a l u e s ranged from 20-25 JTU's as determined by the J a c k s o n Candle (APHA 1971). The b r e a k t h r o u g h p o i n t c o u l d be e s t i m a t e d  v i s u a l l y by the movement of  the  y e l l o w i s h brown c o l o u r down t h e r e s i n column. The b r e a k t h r o u g h volume o"f- t h e a c i d i f i e d sample appears to be than t h a t of the n o n - a c i d i f i e d sample. 9 and  10 1 o r 120 and  a c i d i f i e d samples.  The  increase i n recovery 2.3,  133  The b r e a k t h r o u g h volumes a r e about  column volumes r e s p e c t i v e l y f o r a c i d i f i e d and  s h i f t i n b r e a k t h r o u g h volumes c o r r e s p o n d s t o  of. TOC  upon a c i d i f i c a t i o n of about 4 mg/1.  assuming the v o l a t i l e a c i d s a r e p r i m a r i l y a c e t i c and  dodecy1 benzene s u l p h o n a t e s , 12.1 mg/1  of s o l u b l e  smaller  the  the v o l a t i l e a c i d s and d e t e r g e n t s  non-  an  From T a b l e detergents contribute  TOC.  I n summary, t h e XAD-2 r e s i n e x t r a c t s about 30% of the TOC  from f i l t e r e d  p r i m a r y e f f l u e n t and has a s a t u r a t i o n c a p a c i t y of 130 column volumes.  There  i s some e v i d e n c e t h a t a c i d i f i c a t i o n of samples r e s u l t s i n premature s a t u r a t i o n of the r e s i n by v o l a t i l e a c i d s and The  detergents.  e x t r a c t i o n e f f i c i e n c i e s of the s o l v e n t e x t r a c t o r and  the XAD-2  r e s i n f o r v o l a t i l e s i n p r i m a r y e f f l u e n t were compared by a n a l y z i n g the concentrates.  The  GC  t r a c e s ane  shown i n F i g u r e 4.2  The  reasons f o r the p o o r  q u a l i t y of the chromatogram of the u n c h l o r i n a t e d XAD-2 e x t r a c t as compared t o those of the s o l v e n t e x t r a c t and c h l o r i n a t e d XAD-2 e x t r a c t a r e not known. One  l i k e l y e x p l a n a t i o n i s the p r e s e n c e of s u l p h u r compounds.  chromatograms (a) and two  techniques  (b) i n F i g u r e 4.2  Comparison of  i n d i c a t e s t h a t the r e c o v e r i e s by  a r e v e r y s i m i l a r i n terms of the c o n c e n t r a t i o n s  of  the  the  81  1—•—  SO  »  100  1  i  11  150  a 200  1  Temp (°C)  F i g u r e 4.2 Continuous S o l v e n t and XAD-2 R e s i n E x t r a c t i o n o f O r g a n i c s from P r i m a r y E f f l u e n t M o n i t o r e d by GC. GC c o n d i t i o n s i n A p p e n d i x I I I .  *  i  250  82 i n d i v i d u a l components.  The  XAD-2 r e s i n appears t o be s l i g h t l y b e t t e r  than  s o l v e n t e x t r a c t i o n w i t h pet e t h e r i n terms of the number of compounds extracted. A cursory was  e x a m i n a t i o n of the v o l a t i l e s e x t r a c t a b l e from the p a r t i c u l a t e s  made to g a i n some i d e a as t o t h e i r c o m p l e x i t y .  The  i n v e s t i g a t i o n of the e x t r a c t s a r e shown i n F i g u r e 4.3. t w e l v e to s e v e n t e e n peaks, two  The  extracts  There are a l s o  e x t r a c t as compared t o the MeOH e x t r a c t .  There  I t must be kept i n mind t h a t  were used, however the s o l u b i l i z a t i o n of o r g a n i c s  oxidation i s also possible.  GC  contain  or t h r e e of which a r e e x t r e m e l y l a r g e .  a r e fewer peaks i n the c h l o r i n a t e d sample. d i f f e r e n t solvents  r e s u l t s of the  some new  through  peaks i n the CHCl^/MeOH  A l t h o u g h f u r t h e r i n v e s t i g a t i o n of  t h e s e e x t r a c t s i s o b v i o u s l y w a r r a n t e d , due  t o l i m i t a t i o n s on time i t was  d e c i d e d t o c o n c e n t r a t e on the s o l u b l e f r a c t i o n . B.  Separation  1.  Preliminary  Experiments Separation  GC r e s o l u t i o n was  not s u f f i c i e n t to a d e q u a t e l y s e p a r a t e a l l of the com-  ponents of the p r i m a r y e f f l u e n t e x t r a c t (Exp. E-5). ;  t h a t the s e n s i t i v i t y of the EC d e t e c t o r compounds i s much g r e a t e r  It i s further  f o r c h l o r i n a t e d and  t h a n t h a t of a GC-MS, thus i t was  recognized  oxygenated d e c i d e d t o con-  c e n t r a t e the e x t r a c t s t o 0.2-0.5 ml w h i c h would tend t o i n c r e a s e  the problems  of r e s o l u t i o n .  separation  T h e r e f o r e i t was  of the e x t r a c t s p r i o r to GC A representative  d e c i d e d to attempt p r e l i m i n a r y  analysis.  s e t of r e s u l t s from the S i l i c a G e l column experiments  ( E x p . S ^ l a ) are shown i n F i g u r e 4.4.  A l t h o u g h the background i s  considerably  r e d u c e d , upon c l o s e i n s p e c t i o n of t h e s e GC  t r a c e s , one  similar.  o c c u r r e d i n the S i l i c a G e l  I t would appear t h a t c h a n n e l i n g  f i n d s them r e m a r k a b l y columns.  F u r t h e r m o r e , changing o f the e l u t i n g s o l v e n t r e s u l t e d i n a d r a m a t i c change i n the c o n s i s t e n c y  of the g e l w i t h the r e s u l t t h a t the f l o w r a t e t h r o u g h  the  83  /  ,  Time(Mm)  F i g u r e A.3 S o x h l e t E x t r a c t s o f P a r t i c u l a t e s A n a l y z e d by GC. i n Appendix I I I .  GC  conditions  84  1  •  50  •  •  ' »  50  «00  150  1  200  :  V  250  ,,  300  Te/np(°C)  F i g u r e 4.4 S i l i c a G e l Column F r a c t i o n a t i o n o f P r i m a r y E f f l u e n t A n a l y z e d by GC. GC c o n d i t i o n s i n A p p e n d i x I I I .  Extracts  column was 0.01  considerably  ml/min.  In order  decreased.  Flow r a t e s w i t h MeOH/Benzehe were about  to speed s e p a r a t i o n e i t h e r wide columns w i t h  large  volumes of e l u a n t and d e c r e a s e s i n r e s o l u t i o n or some type of p r e s s u r i z a t i o n of the column were n e c e s s a r y .  Only p r o p i p e t t e s were a v a i l a b l e f o r the  latter  purpose and r a t h e r than r i s k the i n t r o d u c t i o n of i m p u r i t i e s , t h e s i l i c a g e l column method was  discontinued  i n f a v o u r of a c i d i t y  A r e p r e s e n t a t i v e s e t of GC  separation.  chromatograms of the a c i d i t y s e p a r a t e d  f r a c t i o n s of the XAD-2 e x t r a c t s are p r e s e n t e d i n F i g u r e 4.5  (Exp-. S - l b ) .  Comparison of the t h r e e t r a c e s shows t h a t the EC d e t e c t a b l e m a t e r i a l i s a l most e q u a l l y d i v i d e d between the n e u t r a l + b a s i c f r a c t i o n (N + B) and weak a c i d f r a c t i o n (WA).  There were few compounds i n "the s t r o n g a c i d f r a c t i o n  w h i c h i s n o t s u r p r i s i n g s i n c e no d e r i v a t i z a t i o n was a c i d s v o l a t i l e enough t o be a n a l y z e d  bj  c a r r i e d out t o make the  GC.  There a r e an u n e x p e c t e d l y l a r g e number of peaks a t the low end of the WA feature.  fraction.  T h i s l e a d s one  The  chromatograms on 0V-17  temperature  and 0V-225 a l s o have t h i s  t o s u s p e c t i n c o m p l e t e s e p a r a t i o n p r o b a b l y due  high s o l u b i l i t y of d i e t h y l ether i n water. 7 i n F i g u r e 4.5  the  The  to  the  peaks numbered 1 t h r o u g h  a r e . t h o s e s u s p e c t e d of b e i n g p r e s e n t i n b o t h the WA  N + B f r a c t i o n s and w h i c h r i g h t l y b e l o n g i n the N + B f r a c t i o n .  The  and alter-  n a t i v e of u s i n g pet e t h e r i s not a t t r a c t i v e s i n c e many oxygenated or p o l a r compounds a r e o o n l y  sparingly soluble i n this solvent.  I t was  therefore  d e c i d e d to wash f u t u r e aqueous e x t r a c t s w i t h 4 x 10 ml of d i e t h y l e t h e r r a t h e r than w i t h j u s t the one  10 ml p o r t i o n employed i n t h i s  separation.  S i n c e many phenols a r e . n o t s u f f i c i e n t l y a c i d i c t o be c o m p l e t e l y by the b i c a r b o n a t e ,  i t was  d e c i d e d to d i s c o n t i n u e the b i c a r b o n a t e  extracted extraction  and use o n l y the sodium h y d r o x i d e e x t r a c t i o n . 2.  G.C. The  Optimization o b j e c t i v e of t h i s p o r t i o n of the p r o j e c t i s to d e t e r m i n e the b e s t  30  }  gure 4.5  50  Temp  (°C)  .100  •  150  A c i d i t y S e p a r a t i o n of P r i m a r y E f f l u e n t E x t r a c t s A n a l y z e d by GC.  200 GC c o n d i t i o n s i n Appendix I I I .  GC phase and t h e optimum temperature program f o r s e p a r a t i o n o f the v o l a t i l e s i n sewage (Exp. S-2).  The OV s e r i e s of s i l i c o n e s were chosen f o r r e a s o n s  o u t l i n e d i n Chapter I I . The b a s i c c r i t e r i a to>be used f o r comparison of t h e s e phases and temperature programs a r e the e l u t i o n of the maximum number of compounds i n a r e a s o n a b l e time and t h e r e s o l u t i o n o f t h e s e compounds. R e p r e s e n t a t i v e chromatograms t o f the N + B and WA f r a c t i o n s of the sample c h l o r i n a t e d a t 15 mg/1  Cl^ a r e shown i n F i g u r e s 4.6 t h r o u g h  4.9.  The SA f r a c t i o n s showed about a dozen f a i r l y w e l l r e s o l v e d peaks by EC FID ( F i g s . 4.17, 4.18).  W i t h the OV-101, OV-17  optimum temperature'program was minutes f o r b o t h f r a c t i o n s . i n the e x t r a c t s , OV-1 l i m i t of 100°C.  the  30°/10 m i n u t e s , 6°/minute, and 200°C/20  Due  to the l a r g e number of l o w - b o i l i n g compounds  was o f l i m i t e d use because of i t s l o w e r temperature  The o t h e r phases p r o v i d e good s e p a r a t i o n of the N + B  f r a c t i o n ( F i g u r e s 4.6 and 4.8)  a t low t e m p e r a t u r e s , however a l l of them have  some r e s o l u t i o n problems above 100°C. v a r i o u s phases  and OV-225 columns,  and  ( F i g u r e s 4.7  and 4.9)  Comparison of the WA  shows t h a t fewer peaks a r e observed  w i t h t h e OV-225 phase t h a n w i t h OV-101 o r OV-17. h i g h p o l a r i t y of the OV-225 phase.  f r a c t i o n on the  T h i s i s p r o b a b l y due to the  No memory e f f e c t s were observed d u r i n g  these a n a l y s e s . 3.  TLC S e p a r a t i o n of A c i d i t y F r a c t i o n s The main o b j e c t i v e of t h i s work was  to f u r t h e r s e p a r a t e the a c i d i t y  f r a c t i o n s so t h a t each peak o b s e r v a b l e i n the GC-MS c o n s i s t e d o f o n l y one compound. A sample s e t of chromatograms as m o n i t o r e d by GC w i t h an EC d e t e c t o r are  p r e s e n t e d i n F i g u r e s 4.3-0 and;4^11.  A " w o r s t p o s s i b l e " b l a n k and  t r a c e of t h e sample b e f o r e TLC a r e i n c l u d e d i n these f i g u r e s .  EC  I t i s evident  t h a t most of t h e more v o l a t i l e compounds a r e l o s t d u r i n g TLC m a n i p u l a t i o n s . W i t h pet e t h e r as the d e v e l o p e r one can see from F i g u r e 4.10  t h a t most o f  30 (100)  "~30  50 Temp  F i g u r e 4.6  ~~~ (°C)  foO (100) OV-I  150 (150)  200 (200)  in porentheses  GC O p t i m i z a t i o n N + B by EC.  GC c o n d i t i o n s i n Appendix I I I .  ^ (250)  (c) 0V-225  30 F i g u r e 4.7  30  Temp  (• C)  100  GC O p t i m i z a t i o n WA by EC. GC c o n d i t i o n s i n Appendix I I I ,  •fer  F i g u r e 4.8  GC O p t i m i z a t i o n N + B by FID.  GC  c o n d i t i o n s i n Appendix I I I .  the r e c o v e r a b l e  EC d e t e c t a b l e m a t e r i a l has an  o f l e s s t h a n 0.25.  f r a c t i o n was rechromatographed w i t h methanol as a d e v e l o p e r . chromatogram ( F i g u r e 4.11)  This  I n t h i s second  i t i s e x t r e m e l y s u r p r i s i n g t h a t most of the m a t e r -  i a l has an R^ v a l u e o f l e s s than 0.5.  Unfortunately  the m a t e r i a l from t h i s  chromatogram h a v i n g R^O.O t o 0.25 was l o s t and o n l y the m a t e r i a l o f R^ 0.25 t o 0.50 was a n a l y z e d  by GC-MS.  F i g u r e s 4.10 and 4.11 and subsequent GC-MS a n a l y s i s showed t h a t  along  w i t h the l o 6 s o f the more v o l a t i l e components, t h e r e was a l s o some removal of the l e s s p o l a r compounds.  The d a t a showed however t h a t many o f the peaks  o b s e r v a b l e by GC-MS were p r o b a b l y s t i l l c o n t a i n i n g more than one component. I n summary, i t i s suggested t h a t f o r p r e l i m i n a r y s e p a r a t i o n h i g h  speed  l i q u i d chromatography r a t h e r t h a n the c o m b i n a t i o n o f a c i d i t y and TLC t e c h n i q u e s s h o u l d be employed.  T h i s would a l l o w a c l e a n e r , l e s s cumbersome sep-  a r a t i o n of components w i t h o u t l o s s o f the more v o l a t i l e ones, and c o u l d be expediently  complemented w i t h u l t i m a t e s e p a r a t i o n by GC.  I n any case an o u t l i n e o f t h e e x t r a c t i o n and s e p a r a t i o n methods f i n a l l y adopted f o r t h i s p r o j e c t i s shown i n F i g u r e 4.12. ;C. 1.  E f f e c t s o f C h l o r i n a t i o n oh P r i m a r y E f f l u e n t S o l u b l e TOC The  r e s u l t s p r e s e n t e d i n T a b l e 4.7 i n d i c a t e t h a t t h e r e i s v e r y  little  change i n the s o l u b l e o r g a n i c c a r b o n of sewage as a r e s u l t o f c h l o r i n a t i o n (Exp. C l - 1 ) . I t i s a l s o apparent from t h e s e r e s u l t s t h a t the 0.45^membrane f i l t e r s can remove 20 p e r c e n t o f t h e c a r b o n from p r i m a r y e f f l u e n t w h i c h has been p r e v i o u s l y f i l t e r e d t h r o u g h g l a s s f i b e r f i l t e r s o f 1.0/tpore s i z e . 2.  E f f e c t s M o n i t o r e d by EC and F I D e t e c t o r s The  chromatograms o f the v a r i o u s e x t r a c t s are shown i n F i g u r e s 4.13  t h r o u g h 4.22 (Exp. C l - 2 ) .  These chromatograms were chosen t o i l l u s t r a t e  Effluent  NaOCI (pH 7.2)  Blank (Distilled H 0 )  Sample  2  Chlorinate with NaOCI or Take plant chlorinated sample  Unchlorinated sample  Plastic carboy  Dechlorinate with N Q  2 2°3 S  Filter  ( l/i)  Extract  ( X A D resin)  I  Elute column  I  Extract  Neutrals l(N +  &  (200ml  eluantv  Basics  EtgO)  (3x10ml  0.05N  NoOH)  Acids A c i d i f y , Re extract  B)  ( 3 x 10ml  Dry  Et 0) 2  (Na S0 ) 2  Concentrate  4  to 0.2— 0.5 ml  GC ( E C , F I D )  TLC  of N + B  (Silica gel, pet ether, .methanol)  F i g u r e 4.12  Flowchart of Separation Procedure  96  T a b l e 4.7  C h l o r i n e C M o r i n e dose mg/1 C l  mg/1 C l  2  E f f e c t o f C h l o r i n a t i o n on S o l u b l e TOC  TOC (size<V) (mg/1)  TOC (size<)0.45>) (mg/1)  0  50  37  12  50  37  103  48  39  97  the e f f e c t of v a r i o u s dosages of c h l o r i n e upon the a c i d i t y s e p a r a t e d f r a c t i o n s of the e x t r a c t s and  the r e p r o d u c i b i l i t y of t h e s e ~ e f f e c t s between two  ent samples of p r i m a r y  effluent.  differ-  B e f o r e d i s c u s s i n g these chromatograms i n  d e t a i l some g e n e r a l p o i n t s s h o u l d be made.  The r e p r o d u c i b i l i t y of the chrom-  atograms i s not good p a r t i c u l a r l y i n the low temperature r e g i o n due l o n g i n i t i a l i s o t h e r m a l p e r i o d a t almost ambient t e m p e r a t u r e .  to  Therefore  o n l y changes i n p a t t e r n s of peaks are t a k e n as i n d i c a t i o n s of changes to c h l o r i n a t i o n a l t h o u g h  i t i s recognized  various extracts.  due  t h a t s h i f t s . ^ i n the r e t e n t i o n time  of a s e r i e s of peaks many not always be an a r t i f a c t of a n a l y s i s . f u r t h e r noted t h a t t h e r e may  the  It is  be d i f f e r e n c e s i n c o n c e n t r a t i o n among the  These d i f f e r e n c e s x^hich a r e most apparent i n the  FID  t r a c e s , can be m i n i m i z e d by n o r m a l i z i n g peak h e i g h t s to those o f che  un-  changed peaks.  higher  F i n a l l y , the c a r r i e r gas f l o w r a t e was  d u r i n g the a n a l y s i s of the sample dated March 8.  significantly  The h i g h e r f l o w r a t e  r e s u l t e d from d e t e c t o r r e s p o n s e o p t i m i z a t i o n s t u d i e s c a r r i e d out on March  10.  S i n c e f l o w r a t e s a r e never e x a c t l y r e p r o d u c i b l e and p a t t e r n r e c o g n i t i o n techniques  c o u l d be employed d u r i n g the comparisons, i t was  decided  to  s a c r i f i c e f l o w r a t e r e p r o d u c i b i l i t y i n o r d e r to s t a n d a r d i z e the d e t e c t o r response. The peaks whose magnitudes were i n c r e a s e d due w i t h an " I " and i n each f i g u r e . i n T a b l e 4.8.  those whose magnitude was The One  to c h l o r i n a t i o n are marked  d e c r e a s e d a r e marked w i t h a  t o t a l number of changes i n each e x t r a c t i s summarized  of the most s t r i k i n g f e a t u r e s of T a b l e 4.8  i s that with  an EC d e t e c t o r the number of i n c r e a s e s f a r outnumbers the number of T h i s i n d i c a t e s t h a t the y i e l d s of these p r o d u c t s the p r o d u c t s  "D"  of c h l o r i n a t i o n a r e s m a l l ,  r e s u l t from n o n - e l e c t r o n c a p t u r i n g p r e c u r s o r s or the  a r e h i g h m o l e c u l a r w e i g h t and/or n o n - s o l v a t e d Many more i n c r e a s e s a r e d e t e c t e d by the EC  decreases.  precursors  molecules. t h a n by the FID whereas the  98  T a b l e 4.8 - E f f e c t s o f C h l o r i n a t i o n by GC A n a l y s i s W i t h FID and EC D e t e c t o r s Figure  Sample Date  Fraction  Detector  No. o f I n c r e a s e s  No. o f D e c r e a s e s  4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22  18/12/74 18/12/74 18/12/74 18/12/74 18/12/74 18/12/74 8/03/75 8/03/75 8/03/75 8/03/75  N + N + WA WA SA SA N + N + A A  EC FID EC EID EC FID EC FID EC FID  15 4 12 4 1 0 18 5 2 0  3 2 5 2 0 0 5 1 0 0  B B  B B  99  30  30  50 Temp  100 (°C)  150  F i g u r e 4.13 E f f e c t s o f C h l o r i n a t i o n by GC - N+B by EC-1. i n Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t .  200  GC  conditions  (a) Unchlorlnated  30  30  50  100 Temp  (•  150  200  C)  F i g u r e 4.14 E f f e c t s o f C h l o r i n a t i o n by GC - N+B by F I D - l . of Symbols i n t e x t .  GC c o n d i t i o n s  i n Appendix I I I ,  Explanation  101  F i g u r e 4.15 E f f e c t s of C h l o r i n a t i o n by GC - WA Appendix I I I . E x p l a n a t i o n o f Symbols i n t e x t .  by EC.  GC c o n d i t i o n s i n  102  (a) Unchlorinated  Figure 4.16 E f f e c t s of C h l o r i n a t i o n by GC - WA by FID'. GC conditions i n Appendix I I I . Explanation of Symbols i n t e x t .  103  $0~  30  50  100  :  Temp  ^50  200  (°C)  F i g u r e 4.17 E f f e c t s of C h l o r i n a t i o n by GC - SA by EC. Appendix I I I . E x p l a n a t i o n o f Symbols i n t e x t .  GC  conditions i n  J  30 F i g u r e 4.18  1  30  50  fl  Temp  E f f e c t s of C h l o r i n a t i o n by GC  (°C)  i100  - SA by FID.  I  150 GC  conditions  i n Appendix I I I .  !  200  105  F i g u r e 4.19 E f f e c t s o f C h l o r i n a t i o n by GC - N+B by EC-2. i n Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t .  GC  conditions  Jl (a)  Unchlorinated  200  F i g u r e 4.20 E f f e c t s o f C h l o r i n a t i o n by GC -N+B by FID-2. i n Appendix I I I . E x p l a n a t i o n o f Symbols i n t e x t .  219  GC c o n d i t i o n s  JUL  (a)  (b)  12 mg/1 C l  (c)  120 mg/1  (d)  29  Unchlorinated  Plant  29  2  Cl  2  chlorinated  50  100 Tomp ( ° C J  150  F i g u r e 4.21 E f f e c t s o f C h l o r i n a t i o n by GC - A b y EC, Appendix I I I . E x p l a n a t i o n o f Symbols i n t e x t .  200  219  GC c o n d i t i o n s i n  108  9  1  1—:  29  50  ;  «  IOO  Temp  :  1  150  .  t  200  1 -  219  (°C)  Figure A. 22 Effects of Chlorination by GC - A by FIB. Appendix I I I .  GC conditions  in  109  number of d e c r e a s e s a r e more s i m i l a r . of oxygen or c h l o r i n e f a c t o r f o r an EC between the two  Other a s p e c t s of T a b l e 4.8  such as the  of the  chromatograms.  t h r o u g h 4.16  can see  and  t h a t the new  dosage of 100 mg/1 or 12 mg/1.  difference  e f f l u e n t samples can be more p r e c i s e l y d i s c u s s e d d u r i n g a  4.19  and  peaks p r e s e n t i n each of the f i g u r e s . one  addition  i n c r e a s e i t s response  e f f e c t s of c h l o r i n a t i o n upon the N + B f r a c t i o n s are  i n F i g u r e s 4.13  4.19)  surprising since  to a m o l e c u l e can d r a m a t i c a l l y  detector.  detailed analysis The  T K i s i s not  The  or 120 mg/1  4.20.  illustrated  There are between 50 and  W i t h the EC d e t e c t o r ( F i g s . 4.13  peaks marked " I " w h i c h appear a t a  m e d i a t e between t h o s e of dosages of 12 and  120  mg/1.  and  chlorine  a l s o appear a t a c h l o r i n e dosage of 15  e f f e c t s of c h l o r i n a t i o n at the p l a n t  60  are g e n e r a l l y  mg/1  inter-  There i s a one  to  one  correspondence between the peaks of chromatograms (rc)i-ahdl (d) i n F i g u r e 4.19.1n f a c t t h e r e a r e some a r e a s where p l a n t c h l o r i n a t i o n more c l o s e l y resembles a dosage of 120 mg/1  than 12 mg/1.  the s o l v e n t peak but MS  There a r e some new  peaks w h i c h appear n e a r  t h e s e a r e not marked as they cannot be a n a l y z e d by  GC-  w i t h the OV-101 column. One  can  w i t h 200 mg/1  a l s o see  appear i n t h e sample dosed  of c h l o r i n e which a r e d i f f e r e n t from t h o s e ' a p p e a r i n g a t lower  dosages o f c h l o r i n e . a b l y due  t h a t many changes marked "X"  These changes u n i q u e to h i g h dosage l e v e l s a r e  prob-  to the p r e s e n c e of f r e e r e s i d u a l c h l o r i n e s i n c e the " b r e a k p o i n t " i s  expected to l i e between 140  and  170 mg/1  C^.  I n the i n t e r e s t of  optimizing  the y i e l d s of o n l y t h o s e produces of c h l o r i n a t i o n w h i c h r e s u l t from t r e a t m e n t p l a n t dosage l e v e l s , i t was 0, 12,  and  120 mg/1  d e c i d e d to o n l y c h l o r i n a t e samples a t l e v e l s  of  Cl . 2  I t i s e v i d e n t from F i g u r e s 4.14  and  4.20  N + B f r a c t i o n are much s m a l l e r w i t h the FID S i n c e the changes due  t h a t most of the peaks i n as compared to the EC  to c h l o r i n a t i o n a l s o o c c u r i n areas of poor  the  detector. resolution  110 they a r e much l e s s s p e c t a c u l a r i n these chromatograms.  Because of the sub-  s t a n t i a l d i f f e r e n c e s i n d e t e c t o r responses no u n e q u i v o c a l c o r r e l a t i o n s  can  be made between the EC and FID chromatograms, however i t does not appear as though any of the e f f e c t s o f c h l o r i n a t i o n a r e v i s i b l e w i t h b o t h d e t e c t o r s . Judging  from the FID one would expect t o see about 60 peaks i n the  N+B  f r a c t i o n by GC-MS, however t h e e f f e c t s of c h l o r i n a t i o n w i l l p r o b a b l y not  be  very evident. The  chromatograms of the a c i d i c f r a c t i o n s a r e d i s p l a y e d i n F i g u r e s  through 4.18  and F i g u r e s 4.21  and 4.22.  Comparison of F i g u r e s 4.17  shows t h a t the NaOH e x t r a c t s c o n t a i n one new from c h l o r i n a t i o n .  4.15  and  4.21  EC d e t e c t a b l e peak r e s u l t i n g  The appearance of e f f e c t s o f c h l o r i n a t i o n unique to h i g h  dosage l e v e l s i s a g a i n e v i d e n t i n chromatogram (d)* i n F i g u r e 4.17.  The  !  chromatograms i n F i g u r e s 4.18 e f f e c t s of c h l o r i n a t i o n .  and 4.22  show the l a c k o f any  FID  detectable  J u d g i n g from t h e s e chromatograms t h e r e s h o u l d  n i n e peaks v i s i b l e i n the a c i d f r a c t i o n by GC-MS, none of w h i c h i s due  be to  chlorination. The c h r o m a t o g r a p h i c p r o f i l e s of the v a r i o u s samples of p r i m a r y c o l l e c t e d throughout t h i s study as w e l l a a s the e f f e c t s of appeared tolibe remarkably  consistent.  through 12 i n chromatograms Ca)' tical.  ?A t o t a l of n i n e new  ent i n F i g u r e s 4.13  For example the peaks numbered 1  i n F i g u r e s 4.13  and.4.19 appear to be i d e n -  and i f f o r r e a s o n s p r e v i o u s l y d i s c u s s e d some  a r e i n c l u d e d i n F i g u r e 4.13  from n i n e t o seventeen o r e i g h t e e n . e f f l u e n t samples.  chlorination  peaks r e s u l t i n g from c h l o r i n a t i o n o b v i o u s l y p r e s -  and 4.19,  of the peaks i n F i g u r e 4.15  effluent  This combination  t h i s number i n c r e a s e s  Only one o r two peaks do not appear i n b o t h of F i g u r e s 4.15  and 4.13  t i f i e d by the a n a l y s i s o f samples t a k e n on J u l y 8, 1974  i s further  and Nov.  19,  These e x t r a c t s (Appendix I I ) , one w i t h b i c a r b o n a t e e x t r a c t i o n and one produced GC chromatograms s i m i l a r t o e i t h e r the Dec.  18/74  o r March  jus-  1974. without 8/75  Ill e x t r a c t s on columns of OV-101, OV-17  and OV-225.  E v i d e n c e f o r the c o n s i s t e n c y  o f the o t h e r chromatograms of the e x t r a c t s i s p r o v i d e d by comparison appropriate figures.  of the  I t i s n o t e d t h a t t h e c o n s i s t e n c y o f t h e FID chromato-  grams i s not as s t r i k i n g as t h a t o f the EC chromatograms because of f a c t o r s p r e v i o u s l y mentioned. I n summary, two major p o i n t s a r i s e out of t h e s e s t u d i e s . was mg/1  demonstrated  t h a t c h l o r i n e dosages as h i g h as 120 mg/1  but l e s s than  200  can be used t o i n c r e a s e the y i e l d s of c h l o r i n a t i o n p r o d u c t s w i t h o u t  f o r m i n g p r o d u c t s not produced  i n treatment p l a n t s .  Secondly i t was  new EC and FID d e t e c t a b l e compounds a r e c o n s i s t e n t l y produced c h l o r i n a t i o n a t treatment p l a n t dosage l e v e l s . were d e t e c t e d i n the N + B as a r e s u l t of t h i s 3.  Firstly i t  MEC  f r a c t i o n and 4-6  shown t h a t  as a r e s u l t of  A t o t a l of 16 to 18 new  new peaks i n the a c i d i c  peaks  fraction  chlorination.  Detector  T h i s d e t e c t o r was used to s t u d y t h e magnitude of c h l o r i n e uptake by v o l a t i l e o r g a n i c s (Exp. C l - 3 ) . 4.23,, 4.24, and 4.25 f  4.26.  the  The chromatograms a r e p r e s e n t e d i n F i g u r e s  and the d e t e c t o r c a l i b r a t i o n curve i s shown i n F i g u r e  The c h l o r i n e c o n t e n t of each peak was  determined  and the t o t a l  chlorine  c o n t e n t of each sample c a l c u l a t e d assuming a sewage sample volume o f 10 1 (Exp. E - 4 ) .  These r e s u l t s a r e summarized i n Table 4.9.  t a k e i n each f r a c t i o n was  up-  then e x p r e s s e d as a p e r c e n t a g e of the dosage and  the t o t a l o r g a n i c c h l o r i n e p r e s e n t i n the sample. presented i n Table  The c h l o r i n e  These c a l c u l a t i o n s a r e  4.10.  B e f o r e d i s c u s s i n g the s i g n i f i c a n c e of the c h l o r i n e uptake d a t a , f o u r p o i n t s s h o u l d be made.  F i r s t l y , "tixe MEC  d e t e c t o r i s not s p e c i f i c f o r c h l o r -  i n e , although i t i s s p e c i f i c f o r halogens.  S e c o n d l y , even assuming t h a t a l l  peaks were due t o c h l o r i n e , the response per nanogram of c h l o r i n e i s not c o n s t a n t f o r a l l t y p e s ' o f compounds as can be seen from F i g u r e 4.26.  Thus  112  <  I  22  :  I  i  I  1  1  1  1  20  18  16  14  12  10  8  Time  ;  I  I  6  4  (min)  F i g u r e 4.23 E f f e c t s o f C h l o r i n a t i o n by GC - A by MEC. Appendix I I I . E x p l a n a t i o n of Symbols i n t e x t .  GC  conditions i n  '  0  (a)  J  1  24  22  -—  •  20  1  \ B i S Tim©  — i  14 (min)  il  12  Unchlorinated  _ i  10  i  8  F i g u r e 4.24 E f f e c t s o f C h l o r i n a t i o n by GC - N+B by MEC-1. i n Appendix I I I . E x p l a n a t i o n o f Symbols i n t e x t .  i  6  ,  4  .  GC c o n d i t i  2  114  24  22  20  18  18 Time  14  12  10  0  6  4  ( mlnute» )  F i g u r e 4.25 E f f e c t s o f C h l o r i n a t i o n by GC - N+B by MEC-2. i n Appendix I I I . E x p l a n a t i o n o f Symbols i n t e x t .  GC c o n d i t i o n s  §  F i g u r e 4.26  2  3 4 CHLORINE  5  C a l i b r a t i o n Curve f o r MEC  10  (NG) Detector.  20  30  .116 T a b l e 4.9 - C o n c e n t r a t i o n s o f H a l o g e n as C h l o r i n e i n P r i m a r y a)  Effluent  Acid Fraction  Concentration of Chlorine.(ng.Cl/1) Peak -12 3 4 5 6 7 8 9 10 11 12 13  C h l o r i n e Dose (mg /C1./1) N(0)  12 80  40 40 100  60 40 100 60 60 180 60 40  P (12) 60 70 40 70 60 240 90 40  120 80 40 60 40 100 80 . 60 140 260 30 120 100  117 b)  N e u t r a l and B a s i c F r a c t i o n  C o n c e n t r a t i o n of C h l o r i n e (ng C l / 1 ) C h l o r i n e Dosage (mg N (0)  12  120  P (12)  Concentration Factor  1 2 3 4 5 6 6a 7 8 9a :9b 10a lQa 11 12a 12a Uu 13a 1_4 1<5* 16* 1JZ 18  5 x 10  220 500  OS OS OS  10 5  10  4  260 1050 100 160 50  60  30 140  220 90 50  15 40 15 15 45 20 95 40 30 70 205 70 80 65 20  5 x 10 OS OS OS 90 110 40 50 10 100 10 5 30 10 5 60 50 15 5 50 30 OS 40 25 55 15 240 60 85 110 40  4  10  4  30 200b 360 60 50  4  5 x 10 OS OS OS 50 100 25 50  90  10 40 10 5 35 10 5 45 35 20 10 50 30 100 35 30 60 15 240 60 130 130 60  420  280  60 100 20 OS 140 120 120 . ... .90 . . 80 — : v.:.  140 100 OS 50 60  90  10  m  2.0* 21*' 22* 23 24 25* 26* 2c7* 28 29a •29a 30 31 32a -32a—  _ ... 4. ...  ,~4 10  60  60 160  320 140 50 50  20  20  60  50 140  260 120 90  f  90 120 50 .  OS - O f f s c a l e  100 40 OS 50  40  10  4  940 OS OS 450 850 150 90 180 600 0 360 180 50 200 500 160 500 300 90 60 440 160 420 1000 120 120 180 180 50 140 360 160  118 T a b l e 4.10 - C h l o r i n e Uptake by V o l a t i l e s a)  Acid  Fraction  C l - Dosage mg/1 2  Total Chlorine >rg/l  N (0) 12'; P (12) 120 b)  0.25 0.68 0.67 1.11  N e u t r a l and B a s i c  Concen. Factor .  2  N  4  4  5xl0 5x104 5xl0  Total Chlorine /#g/l  4  0.0033 0.0020 .0006  59 36 63  1.57  >Yg/l  C h l o r i n e Uptake' % Dose % Total C l  b a  2.83 2.21 -=-  N (0) 12 P (12)  4  c)  (0)  12 P (12) 120  4  a b  0.40 0.24 0.70  a  10* 10 10  C h l o r i n e Uptake % Dose % Total Cl-  Fraction  C l s Dosage mg/1  —: 10  //g/1  a -  —  —  hi  .85  S-r^?'  i.52 1.62 8.05  0.40 0.53 3.12  0.0033 0.0044 0.0026  14 24 —  -  26 33 39  1.18 1.85 2.16  -— 0.45 0.59:  0.0038 0.0049  ...  24 27  Total's Uptake  C l - Dosage (mg/1) 2  N (0) 12 P (12) 120 a - excluding b - excluding  Total C l (Jfe/l)  ty/g/D  1.10 2.20 2.29 9.16 unnumbered peaks a t b e g i n n i n g peaks 1, 2, 3  0.80 0.87 3.82  Cl-Uptake % Dose . % T o t a l  O^QO.7 0^00,6 Q.cO.05  36 38 42  119 an e r r o r of p l u s or minus 25 p e r c e n t or more i s expected i n the i n d i v i d u a l values. was  A l s o peak h e i g h t was  f e l t t h a t t h i s was  number of s h o u l d e r s  used as a response r a t h e r than peak a r e a ;  a v a l i d s u b s t i t u t i o n m a i n l y because of the  on the peaks.  T h i r d , the v a r i a b i l i t y of  large  concentration  f a c t o r s among a s e t of i d e n t i c a l l y h a n d l e d e x t r a c t s i s expected to be 10 p e r c e n t . was  F i n a l l y , the d e t e c t i o n l i m i t f o r the l e s s c o n c e n t r a t e d  30 n g / l C l w h i l e the d e t e c t i o n l i m i t of the more c o n c e n t r a t e d  lower a t t e n u a t i o n was  it  about  samples samples a t  3 n g / l C l , assuming a minimum d e t e c t a b l e peak of  0.2  cm. From the chromatograms of the a c i d f r a c t i o n , F i g u r e 4.23,  i t is  evident  t h a t t h e r e a r e s i x o r seven peaks w h i c h appear as a r e s u l t of c h l o r i n a t i o n . From T a b l e 4.9  i t can be seen t h a t a l l o f t h e s e peaks a r e p r e s e n t i n concen=  t r a t i o n s below t h e d e t e c t i o n l i m i t of the mass s p e c t r o m e t e r u n l e s s  the com-  pounds are l e s s than twenty p e r c e n t c h l o r i n e by w e i g h t . Comparison of the chromatograms of the n e u t r a l p l u s b a s i c f r a c t i o n s i n F i g u r e s 4.24  and  4.25  shows t h a t t h e r e i s a one  to one  c o r r e s p o n d e n c e between  peaks i n i d e n t i c a l samples r u n at d i f f e r e n t c o n c e n t r a t i o n s There a r e a l s o 10 o r 11 new as denoted i n T a b l e 4.9.  and  attenuations.  peaks w h i c h appear as a r e s u l t of c h l o r i n a t i o n  Of t h e s e , o n l y peaks 4, 5, 9, 10 and  a b l y be d e t e c t a b l e w i t h a mass s p e c t r o m e t e r . peaks, t h e r e a r e s e v e r a l o t h e r s  20 w i l l  prob-  I n a d d i t i o n t o the 10 o r 11  i n the sample dosed w i t h 120 mg/1  appear t o be enhanced as a r e s u l t of c h l o r i n a t i o n .  Cl^  new  which  I t i s u n l i k e l y that  the  h y p o c h l o r i t e contained  many c h l o r i n a t e d compounds s i n c e b o t h the m i c r o e l e c t r o -  l y t i c c o n d u c t i v i t y and  e l e c t r o n c a p t u r e t r a c e s of an e x t r a c t of 50 mis  of  h y p o c h l o r i t e s o l u t i o n showed no peaks except i n the r e g i o n of the unnumbered peaks a t the s t a r t of the chromatogram,?. These unnumbered peaks a r e p r o b a b l y h a l o g e n a t e d methane and The  ethanes.  c h l o r i n e u p t a k e summary i n T a b l e 4.10  shows t h a t at dosage l e v e l s  120 commonly used i n p r i m a r y t r e a t m e n t p l a n t s about 0.01 c h l o r i n e ends up two-thirds  i s somewhat s u r p r i s i n g l y i n c o r p o r a t e d  - organic  methanes and The  use  applied  i n the e x t r a c t a b l e v o l a t i l e compounds,of t h i s amount  compounds r a t h e r than a c i d i c compounds. extracted  p e r c e n t of the  i n t o n e u t r a l and  about  basic  F u r t h e r m o r e , about 40 p e r c e n t of  c h l o r i n e found i n p r i m a r y c h l o r i n a t e d e f f l u e n t ,  the  excluding  e t h a n e s , r e s u l t e d from c h l o r i n a t i o n . of the term ' e x t r a c t e d ' - ,  the v o l a t i l e s s h o u l d be emphasized. organic matter sorbs organics d i s s o l v e d o r g a n i c m a t t e r can  i n the p r e c e d i n g p a r a g r a p h to  describe  I t i s w e l l known t h a t c l a y s and  from w a t e r (Weber 1972). increase  On  natural  the o t h e r hand,  the s o l u b i l i t y of o t h e r o r g a n i c  com-  pounds (Wershaw et a l . , 1969), a l t h o u g h the d i s s o l v e d o r g a n i c m a t t e r i n sewage was  shown to have.no e f f e c t on the s o r p t i o n of d i e l d r i n by  (Huang 1971).  S i n c e c l a y s and  organic  p a r t i c u l a t e s w i l l be removed  the f i l t r a t i o n of the samples between the c h l o r i n a t i o n and l o s s e s due  to s o r p t i o n may  c h l o r o p h e r i o l due  montmorillinite  be s i g n i f i c a n t . I n T a b l e 4.5,  t o s o r p t i o n on p a r t i c u l a t e s was  during  extraction  steps,  the l o s s of d i -  15 p e r c e n t .  This confirms  t h a t s o r p t i o n i s s i g n i f i c a n t however the a p p l i c a t i o n of 15 p e r c e n t as a gene r a l estimate i s obviously  not•justifiable.  W i t h t h e s e s o r p t i v e l o s s e s i n mind i t i s p o s s i b l e to make a v e r y r o u g h comparison of the v a l u e s f o r t o t a l c h l o r i n e i n L i o n ' s U s i n g u n f i l t e r e d samples and  Gate E f f l u e n t w i t h  for  o t h e r sewages.  solvent  al.  (1974) found about 0.2_^f.g/l PCB's i n d o m e s t i c sewage, w h i l e McDermott  those  e x t r a c t i o n , Dube e t  (1974) found about O . S ^ g / l t o t a l i d e n t i f i a b l e o r g a n o c h l o r i n e p e s t i c i d e s i n domestic sewage.• T h e r e f o r e the t o t a l d i s s o l v e d and i n e i n t h e s e sewages was  at l e a s t ; 0 . 4 ^ g / l . /  v o l a t i l e c h l o r i n a t e d compounds.  No  sorbed o r g a n i c  data i s a v a i l a b l e f o r other  J u d g i n g from the d i s t r i b u t i o n of  throughout the chromatogram i t appears t h a t the 1 . 4 - 2 . o f c h l o r i n e i n the u n c h l o r i n a t e d  chlor-  chlorine organic  sample of L i o n ' s Gate e f f l u e n t i s i n  the  same range o f c o n c e n t r a t i o n s , a l t h o u g h no P C B ' s o r p e s t i c i d e s were i d e n t i f i a b l e by mass s p e c t r o m e t r y .  The i n d i v i d u a l c o n c e n t r a t i o n s o f c h l o r i n e c o n t a i n i n g  o r g a n i c s r e s u l t i n g from c h l o r i n a t i o n on a c h l o r i n e b a s i s range from 0.02 to  0.15 Ag/1 w h i l e J o l l e y /  (1973)reported  c o n c e n t r a t i o n s o f 0.2 t o  D i f f e r e n c e s i n e x t r a c t i o n and a n a l y t i c a l p r o c e d u r e s as w e l l a s t h e f a c t t h a t J o l l e y measured m a i n l y n o n - v o l a t i l e compounds may account f o r t h e s e  concentra-  tion differences. 4.  GC-MS S t u d i e s on the MS-12 The  initial  e x p e r i m e n t s w i t h the GC-MS showed some p r o m i s e .  atograms o f a l l N + B  f r a c t i o n s o f t h e e x t r a c t s were i d e n t i c a l .  The chromF i g u r e s 4.27  p r e s e n t s a t y p i c a l chromatogram w h i l e some o f t h e c o r r e s p o n d i n g mass s p e c t r a are shown i n F i g u r e 4.28.  Only two compounds, a p h t h a l a t e (Spectrum 34) and  c a f f e i n e (Spectrum 36) a r e i d e n t i f i a b l e . Peaks 9, 1 1 , 14, 17 and 19 i n F i g u r e 4.27  have a l m o s t i d e n t i c a l mass s p e c t r a w i t h the m a j o r i o n s e r i e s b e i n g m/e  45, 5 9 , 73...  and 137, and thus appear t o be a l k y l s i l a n e s .  d i f f e r e n c e s . b u t b a c k g r o u n d s u b t r a c t i o n was v e r y d i f f i c u l t . to  There were some I t proved  difficult  t r i g g e r the MS a t the p r e c i s e times f o r the m i n o r components o f the e x t r a c t s .  F l u c t u a t i o n s i n a c c e l e r a t i n g v o l t a g e and h y s t e r e s i s problems were a l s o n o t e d d u r i n g a GC r u n . During  t h e c o u r s e o f t h i s p r o j e c t the p e r f o r m a n c e o f the MS-12 s e r i o u s l y  deteriorated.  N e g a t i v e b a s e l i n e d r i f t o c c u r r e d d u r i n g t e m p e r a t u r e program-  ming due t o an i n c r e a s e i n p r e s s u r e drop a c r o s s t h e column w i t h i n c r e a s i n g GC o v e n t e m p e r a t u r e .  The s e n s i t i v i t y o f t h e i n s t r u m e n t  decreased  t o the p o i n t  —6 where the i d e n t i f i c a t i o n l i m i t o f DCP was 1.2 x 10 g. The p r e s s u r e i n t h e -4 a n a l y z e r chamber was about 5 x 10 T o r r and the GC d e t e c t o r had t o be s e t at  1 x 10~^ Amps f u l l s c a l e r a t h e r than the m a n u f a c t u r e r ' s  Amps.  recommended 1 x 10 ^  Only one o r two r a t h e r b r o a d peaks c o u l d be d e t e c t e d p e r r u n .  tempt t o conduct a s e a r c h f o r  35  *f*  Cl.H  An a t -  35 "I* 37 37 Cl, C l , and H C l by a l i m i t e d *T*  so  .  .  .  ;  *  >  ,  .  .  /40 , 300  280  . . .  30 ,  Temperature  F i g u r e 4.27 T o t a l I o n C u r r e n t P l o t f o r N+B F r a c t i o n by MS-12. denote Spectrum.  200 (°C)  . . .  2.0 ,  .  .  120  GC c o n d i t i o n s i n Appendix I I I .  [0 , . 40  Numbers  .  o 40  Spectrum  149  34  57  41  69  111  JLL  L  93  _i  105  205  12i  .J  m/e  Spectrum  194  36  28  109 55  32 .  42 -iu.  82  67.  In  137 I  1 u-  165  m/e F i g u r e 4.28  Mass S p e c t r a from MS-12.  Spectrum numbers correspond  to peaks i n F i g u r e 4.27.  124, mass s c a n showed two peaks.  However d u r i n g t h i s r u n the h y s t e r e s i s problem  was v e r y e v i d e n t . In  summary, a l t h o u g h t h e i n i t i a l work w i t h t h e MS-12  was  promising,  problems developed w h i c h f o r c e d t h e s u s p e n s i o n of work w i t h t h i s  instrument.  A l t e r n a t i v e methods of a n a l y s i s were t h e r e f o r e needed. 5.  T e n t a t i v e I d e n t i f i c a t i o n by R e t e n t i o n Time The o b j e c t i v e of t h i s experiment  was  t o t e n t a t i v e l y i d e n t i f y some of the  major peaks i n the chromatograms of t h e sewage e x t r a c t s by comparison of r e t e n t i o n times.  The  t e s t compounds, t h e i r r e c r y s t a l l i z a t i o n s o l v e n t s and  r e t e n t i o n times a r e l i s t e d i n ' l i a b l e ;4.11. compounds a l o n g w i t h c o r r e s p o n d i n g GC t r a c t s a r e shown i n F i g u r e All  The composited  GC t r a c e s o f  these  t r a c e s of some c h l o r i n a t e d sewage ex-  4.29.  o f the t e s t compounds, w i t h the e x c e p t i o n s of peaks 3 and 4, have  c o r r e s p o n d i n g peaks i n e i t h e r o f t h e sewage e x t r a c t s . them, l i s t e d i n T a b l e 4.12, It  GC  correspond  However o n l y a few o f  to major peaks i n the sewage e x t r a c t s .  i s a l s o noted t h a t some of the h i g h b o i l i n g compounds were not e l u t e d .  For example the d i h y d r o x y b e n z e n e and t h e d i c h l o r o q u i n o n e were n o t e l u t e d w i t h i n t h e temperature mining  program.  These n e g a t i v e r e s u l t s a r e u s e f u l i n d e t e r -  the l i m i t s i n terms of v o l a t i l i t y of compounds a n a l y z e d i n t h i s p r o j e c t .  S e v e r a l f a c t o r s m i t i g a t e a g a i n s t p u r s u i n g t h i s experiment use o f o t h e r GC column p a c k i n g s .  f u r t h e r by  the  I t i s not p o s s i b l e to c o r r e l a t e the chrom-  atograms o f t h e sewage e x t r a c t s r u n on d i f f e r e n t column p a c k i n g s due to the l a r g e number of peaks.  Furthermore,  s i n c e major peaks may  components, a change i n column p a c k i n g s may ones w h i l e d i f f e r e n t major peaks may  appear.  contain several  cause major peaks to become m i n o r The l i s t of compounds chosen as  t e s t compounds i s o b v i o u s l y f a r from comprehensive and one would expect  to  o b t a i n a l i s t of s e v e r a l p o s s i b l e compounds f o r each peak i n the sewage sample. N o t w i t h s t a n d i n g the aforementioned  problems, i t can be s a i d t h a t the  125 T a b l e 4.11 R e t e n t i o n Times o f Test Compounds  Compound  Recrystallization Solvent  0-Ghloroberizoic a c i d m-Chlorobenzoic a c i d p-Chlorobenzoic acid 2-Amino-5-CKlorobenzoic A c i d 4-Chlorometanilic Acid p-Chloro p h e n o l p-Bromo phenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol Resorcinol p-Chloroaniline 2.4-D i c h l o r o a n i l i n e 2,4,6 T r i c h l o r o a n i l i n e 4-Chloro-2,6-Dinitroaniline 4.5- D i c h l o r o - 2 - N i t r o A n i l i n e 4-Chloro p y r i d i n e . HCI 3- A m i n o - 2 - C h l o r o p y r i d i n e 2,4-Dichloropyrimidine 2-Amino-4,6Dichloropyrimidine 11- C h l o r o - 2 , 4 - D i n i t r o b e n z e n e l-Chloromethyl-2 methyl napthalene 4- C h l o r o b e n z a l d e h y d e 2 , 5 D i c h l o r o p-quinone 4,4'-Dichlorobenzophenone l-Bromo-4-Chlorobenzene Carbontetrachloride Chloroform Methylene C h l o r i d e S o l v e n t peak i  N - Compound d i d n o t e l u t e  P e t ether " "  Benzene R^O/MeOH Benzene P e t ether " "= Ethanol "  Pet ether MeOH  R e t e n t i o n Time (min) (Temp, prog.)  29.6 N N N N 21.0 21.6 25.0 26.8 N 26.4 27.0 32.9 34.2 35.5 N 17.2 17.2 30.6 32.8 34.2 9.5 N 38.6 9.0 0.8 0.8 0.7 0*7=  F i g u r e 4.29  1. 2. 3. 4. 5. 6. 7. 8. 9.  I d e n t i t y o f Numbered Peaks i n Chromatogram (a)  l-Bromo-4-chlorobenzene 4-Chlorobenzaldehyde 3-Amino-2-chloropyridine 2,4-Dichloropyrimidine 3-Chlorophenol 3-Bromophenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 3-Chloroaniline  10. 11. 12. 13. 14. 15. 16. 17. 18.  2,4-Dichloroaniline 2-Chlorobenzoic a c i d 2-Amino-4,6-dichloropyrimidine l-Chloro-2,4-dinitrobenzene 2,4,6-Trichloroaniline l-Chloromethyl-2-methylnapthalene 4-Chloro-2,4-dinitroaniline 4,5-Dichloro-2-nitroaniline 4,4'-Dichlorobenzophenone  F i g u r e 4.29 GC R e t e n t i o n Times o f T e s t Compounds. page. GC c o n d i t i o n s i n Appendix I I I .  Numbers i n chromatogram (a) a r e e x p l a i n e d on f a c i n g  128  T a b l e 4.12  Compounds I d e n t i f i e d by GC R e t e n t i o n Time  Detector  Compound  4-Chlorophenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol 2-Chlorobenzoie A c i d l - C h l o r o m e t h y l - 2 - M e t h y l Napthalene or 4 - C h l o r o - 2 , 4 - D i n i t r o - A n i l i n e 4,4*- Dichlorobenzophenone  a - See S e c t i o n 7 of t h i s  chapter.  A u t h e n t i c Compound  Primary  MEC, .MS EC, FID EC, FID EC, FID EC, FID EC, FID EC, FID  MEC EC EC EC EC EC EC  Effluent  . 130 i d e n t i f i c a t i o n of f i v e or s i x c h l o r i n a t e d compounds i n c h l o r i n a t e d sewage has been v e r y t e n t a t i v e l y e s t a b l i s h e d . needed to c o n f i r m these ;6.  Further i n v e s t i g a t i o n s are obviously  identifications.  GC-MS-Computer S t u d i e s The o b j e c t i v e of t h i s experiment was  t o i d e n t i f y as many components o f  the sewage e x t r a c t s as p o s s i b l e an the b a s i s o f mass s p e c t r a and GC r e t e n t i o n time.  A t y p i c a l s e t of i n s t r u m e n t  T a b l e 4.13  performance e v a l u a t i o n d a t a i s shown i n  a l o n g w i t h the c r i t e r i a of H a r r i s , E i c h e l b e r g e r and Budde  The d e v i a t i o n s a t 365 and 442 a r e not c o n s i d e r e d A voluminous q u a n t i t y of i n f o r m a t i o n was  (undated).  to be s e r i o u s .  g e n e r a t e d from the  manipulation  and r e d u c t i o n of d a t a d u r i n g the a n a l y s i s of the v a r i o u s e x t r a c t s and I n the i n t e r e s t s o f b r e v i t y o n l y some i l l u s t r a t i v e examples of the gas chromatograms (RGC)  and  l i m i t e d mass searches  The mass s p e c t r a of the compounds  (LMRGC) w i l l be  p o s i t i v e l y i d e n t i f i e d w i l l be  reconstructed presented. presented  g r a p h i c a l l y i n Appendix IV, w h i l e the r e m a i n i n g mass s p e c t r a w i l l be i n Appendix V.  presented  For c o n v e n i e n c e , the chromatograms and a s s o c i a t e d s p e c t r a  w i l l be r e f e r e n c e d by f i l e name. i n Table  blanks.  An e x p l a n a t i o n of t h e s e f i l e names i s g i v e n  4.14.  S i n c e the RGC's have been n o r m a l i z e d  i n some cases t o the s o l v e n t peak,  the peak h e i g h t s do not r e f l e c t the r e l a t i v e c o n c e n t r a t i o n s of a p a r t i c u l a r component i n the v a r i o u s f r a c t i o n s .  However, a problem of l o s s o f v o l a t i l e s  i s e v i d e n t upon comparison o f '1CSI202 and C-HALL w i t h 120N1.  One would  ex-  p e c t to f i n d peak h e i g h t s i n CL1202 to be f i f t e e n times those i n 120N1.  In  f a c t , below spectrum number 20 the r a t i o i s o n l y 2:1, w h i l e above spectrum number 150  the r a t i o i s 10 or  12:1.  V a r i o u s temperature programs were employed to o p t i m i z e and r e s o l u t i o n . Of the i n i t i a l temperatures o f 100, was  chosen to be optimum.  reproducibility,  75, 60 and  55°C, 60°C  A d e v i a t i o n of + 3 s p e c t r a o r 12 seconds p e r s i s t e d  131  T a b l e 4.13  AMU  51 68 69 70 127 197 198 199 275 365 441 442 443  Rel.  Performance Check o f F i n n i g a n 3000  I n t . (%)  39.42 0.62 41.04 0.33 44.49 0.24 100.00 6.68 15.66 1.08 3.32 22.43 4.48  Criterion  Meets C r i t e r i o n  30-60 % o f 19.8 % of 69  Yes Yes  % of 69 40-60 % o f 198 <1 % o f 198 100 % 5-9 % of 198 10-30 % o f 198 >2 % o f 198 < 443 40-60 % of 198 19-21 % o f 442  Yes Yes Yes Yes Yes Yes No* Yes No* Yes  <2  C2  * C r i t e r i a a r e f o r F i n n i g a n 1015 w h i c h has a mass range o f 0 - 750 Amuiji t h e F i n n i g a n 3000 has a range o f 0 - 500 Amu.  132  T a b l e 4.14 - F i l e Names f o r GC-MS-Comp. S t u d i e s F i l e Name  Extract Fraction  C h l o r i n e Dose  Date o f Run  mg/1  ARAWS1 CL12A1 APLCL1 CL12DA BLANKA  Acids;  NBRAW1 CL12N1 NBPLGL 120NB1 CL1202 35LBK1  N e u t r a l s + Bases  C-HALL B-HALL  Neut. + Base /TLC B l a n k f o r C-HALL  RAWNB1 M1XA2 M1XB  Same Sample as NBRAW1 Mix o f T e s t Compounds M i x o f T e s t Compounds  0 12 Plant 120 0  Blank-Acidic ii  II  I!  II  II  II  II  .  I I  B l a n k - N e u t . + Base  0 12 Plant 120 120(30/1 cone, t o 2 pX) 0 120 0 0  May 6-8/75 II II  II II  it  J u l y /75 II  Dec. 18/75  133  w i t h t h i s i n i t i a l temperature. i n i t i a l temperature  T h i s may  o r program r a t e s .  be due t o s l i g h t d i f f e r e n c e s i n  When samples were r u n on  days the r e p r o d u c i b i l i t y o f r e t e n t i o n times was much p o o r e r .  different  D e v i a t i o n s of  s i x spectrum numbers (24 sec) were n o t e d . An unexpected development m i l i t a t e d a g a i n s t a l l o w i n g more than h a l f hour to c o o l the GC oven and a l l o w f o r was  e f e q u i l i b r a t i o n between r u n s .  an  It  noted t h a t even w i t h no sample i n j e c t i o n , two peaks appeared i n the  chromatogramv, The mass s p e c t r a of these peaks (Appendix but d i d not match those o f the GC s t a t i o n a r y phases.  V) were i d e n t i c a l  I t was  t h e r e f o r e con-  c l u d e d t h a t these peaks were the r e s u l t of c o n d e n s a t i o n of septum b l e e d m a t e r i a l onto the GC column and subsequent v o l a t i l i z a t i o n of t h i s m a t e r i a l at higher temperatures. by changing  T h i s problem c o u l d be a m e l i o r a t e d but not e l i m i n a t e d  the septum d a i l y .  A l t h o u g h these peaks p r e s e n t e d a problem, they  a l s o p r o v i d e d a s e t of r e f e r e n c e p o i n t s f o r comparison o f the RGC's. The RGC's of the a c i d , n e u t r a l p l u s b a s i c , and TLC b a s i c f r a c t i o n s a r e p r e s e n t e d i n F i g u r e s 4.30, i s p r e s e n t e d i n F i g u r e 4.33.  T a b l e 4.15  4.31  separated n e u t r a l plus  and 4.32,  w h i l e the b l a n k  p r e s e n t s , a summary of the  number of peaks i n , and the e f f e c t s of c h l o r i n a t i o n on each e f f l u e n t  total extract.  There does not appear to be any n o t i c e a b l e e f f e c t of c h l o r i n a t i o n upon the a c i d i c f r a c t i o n as p r e d i c t e d by FID s t u d i e s , a l t h o u g h p h e n o l i c compounds s h o u l d appear i n t h i s f r a c t i o n .  The RGC's of the n e u t r a l p l u s b a s i c f r a c t i o n s  show some changes as a r e s u l t of c h l o r i n a t i o n . produced, however they may  Some new  peaks a r e a p p a r e n t l y  have been due t o changes i n r e s o l u t i o n s i n c e no  d i f f e r e n t mass s p e c t r a c o u l d be o b t a i n e d from these peaks. The LMRGC's p r o v i d e d an i n v a l u a b l e a i d i n the d a t a r e d u c t i o n p r o c e s s . Searches f o r septum b l e e d (m/e i n e (m/e  293) , o - p h t h a l a t e e s t e r s (m/e  35, 36) were r o u t i n e l y made f o r each chromatogram.  y i e l d e d peaks i n NBRAW1 a t S p e c t r a 7, 11, 62, 83, and 234.  149), and  chlor-  C h l o r i n e searches These peaks were  T a b l e 4.15  File  T o t a l Number of Peaks:  ARAWS1 CL12A1 APLCL1 CL120A BLANK A  15 15 15 15 4  NBRAW1 CL12N1 NBPLCL 120NB1 CL1202 35LBK1  64 60 60 63 62 6  C-HALL B-HALL  49 6  Summary o f RGC Data  Peaks R e s u l t i n g from C h l o r i n a t i o n (Spectrum Numbers)  Peaks D e c r e a s e d b y C h l o r i n a t i o n (Spectrum No's)  None None None None None  None None None' None None  None 145, 167, 257. 146, 168, 192, 257 144, 167, 183, 191 82, 85, 145, 169, 183, None  43, 41, 41, 40,  Ncit Determined ii  i  it  None ..None 252, 272 252, -157 282, 172 SNone 7 Not Determined n  it  0  IS 20 33 13 S P E C T R A NLK3ER  SO  F i g u r e 4.30  GQ  70  88  30  188  110  120  130  RGC's o f A c i d F r a c t i o n s .  110  ISO  160  170  180  130  ZOO  210  220  230  GC c o n d i t i o n s i n Appendix I I I ,  210  2 5 0 2 6 0 2 7 0 2 6 0 2 3 0 3 0 0  310  3 2 0 3 3 0 3 1 0 3 5 0 3 6 0  On  -i SPECTRUM  r—i—r-  5Q  1  100  '  150  •»—I—  200  NUMBER  F i g u r e 4.31  RGC's of N e u t r a l and B a s i c F r a c t i o n s ,  -1— 250  1  —  300  1  —  350  GC c o n d i t i o n s i n Appendix I I I ,  -I  1  '  r-  40Q.  ov  F i g u r e 4.32  RGC's o f TLC  Fractions.  GC  c o n d i t i o n s i n Appendix I I I .  139  c o n s i s t e n t l y and u n i q u e l y p r e s e n t a t a l l c h l o r i n e dosages a l t h o u g h the g r e a t d i f f e r e n c e i n y i e l d s o f t h e s e i o n s from a l i p h a t i c as opposed t o a r o m a t i c c h l o r i n a t e d compounds tends t o d e c r e a s e t h e i m p o r t a n c e o f t h i s s e a r c h .  The  septum b l e e d s e a r c h showed t h a t t h e s e peaks a r e i n some cased most i n t e n s e peaks i n the chromatograms.  The LMRGC of m/e  149 shows t h a t the p h t h a l a t e  e s t e r s a r e found i n b o t h t h e ^ n e u t r a l p l u s b a s i c and a c i d i c f r a c t i o n s a l t h o u g h j u d g i n g from the r a t i o of peak i n t e n s i t y to average b a s e l i n e t h e i r c o n c e n t r a t i o n s i n the n e u t r a l p l u s b a s i c f r a c t i o n i s about 20 t i m e s t h o s e i n the a c i d fraction.  I n a d d i t i o n , one a d d i t i o n a l p h t h a l a t e appears i n the a c i d i c  t i o n a t spectrum 274 APLCL1. a phthalate ester. of m/e  frac-  T h i s peak may be due t o the s a p o n i f i c a t i o n of  A summary of the i n f o r m a t i o n c o n t a i n e d i n the LMRGC's  149 and 293 i s p r e s e n t e d i n T a b l e 4.163,  0  The o t h e r v e r y i m p o r t a n t a p p l i c a t i o n of the LMRGC was t o p i n p o i n t the s p e c t r a o f t h e components.  F o r example i n M3LXA2 the p h t h a l a t e appears a t  spectrum 214 w h i l e t h e septum b l e e d o c c u r s a t spectrum 213 a l t h o u g h t h e s e components show up as a s i n g l e peak i n the RGC.  The g e n e r a l method i n v o l v e d  s i n g l e o r d o u b l e d i s p l a y of c o n s e c u t i v e spectra,- s e l e c t i o n o f peaks f o r LMRGC's, c o n s t r u c t i o n of the LMRGC, p i n p o i n t i n g of the spectrum o r s p e c t r a of i n t e r e s t and the libaekground' s p e c t r a , background s u b t r a c t i o n , , and p r i n t i n g .  The  CRT  c o n s o l e and magnetic d i s k were i n v a l u a b l e i n p e r f o r m i n g t h e s e f u n c t i o n s . One complete c y c l e c o u l d be c a r r i e d out i n 4 - 5 m i n u t e s . Once a mass spectrum was chosen i t was s u b t r a c t e d from t h e n e x t h i g h e r number spectrum t o ensure t h a t major peaks found i n the chosen spectrum d i d i n f a c t b e l o n g i n t h a t spectrum. F o r example, i f spectrum 1 1 - 9  was  chosen,  spectrum 12 - 11 was a l s o r e t r i e v e d t o attempt t o ensure t h a t peaks from the compound(s) e l u t i n g a t spectrum 12 or h i g h e r were not i n c l u d e d i n t h e spectrum o f t h e compound whose maximum o c c u r r e d a t spectrum 11. The m a t c h i n g of s p e c t r a t o r e f e r e n c e f i l e s l e d t o the c o m p i l a t i o n of a  Table 4.16 Phthalates and Septum Bleed from LMRGC File  Phthalates (m/e 149)  Septum Bleed (m/e 293)  Spectrum Numbers ARAWS1 CL12A1 APLCL1 CLI2OA BLANK A NBRAW1 CL12N1 NBPL'CL 120NB1 CL1202 35LBK1 C-HALL 3B-HALL RAWNB1 M1XA2* M1XB*  *  204, 211, 253, 203, . 210,.252, 203, 211, 253, 203, 210, 253, 203, 210, 252, 203, 211, 241, 202, 210, 2405 203, 211, 241, 203, 211, 241, 195, 204, 211, 203, 211, 241,  Spectrum Numbers  273 274  274 274 338 247, 254, 246, 252, 247, 253, 247, 253, 242, 248, 253, 338,  276, 273, 339, 341, 254, 401  341, 406 336, 409 403 423 277, 342, 425  210, 209, 210, 209, 210, 209, 210, 210, 209, 210, 210,  257 257 257 256 257 257 258 258 257 258 258  182, 209, 222, 229, 236, 269, 366, 508 181, 221, 229, 365, 508  187, 237 187, 237  211, 219, 251, 257, 265, 291, 369 209, 214, 235, 239, 262 179, 201, 206, 226, 233  217, 265 213, 261 184, 234  Spiked with phthalates  141 l i s t o f p o s s i b l e compounds f o r each spectrum.  A n a l y s i s o f a m i x t u r e o f au-  t h e n t i c samples o f t h e s e compounds by GC-FID and GC-MS-Com p r o v i d e d s p e c t r a and r e t e n t i o n t i m e s .  The comparison o f G C - r e t e n t i o n times was based on r e l -  a t i v e r e t e n t i o n times as f o l l o w s : • R r  (R  B1C "  V  -  B1S "  V  =  R  B1C - B1S R  +  R  =  SB1C where  (R  R  R  R  R  (4.1)  B1C " B1S R  = R e t e n t i o n t i m e o f peak i n CL<1202 o r C-HALL  r  R  " B1S  S " C  :  = R e t e n t i o n time o f peak i n M1XA2 o r M1XB  g  R,,..-, = R e t e n t i o n time o f ihs.likSeptum b l e e d i n CL1202 o r C-HALL DLL  R„  1 C  = R e t e n t i o n time o f 1 s t Septum b l e e d i n M1XA2 o r M1XB.  Bib  T h i s method o f c o r r e l a t i o n o f t h e r e t e n t i o n times was chosen f o r t h e f o l l o w ing  reasons.  F i r s t , s i n c e r e l a t i v e r e t e n t i o n times on a r a t i o b a s i s a r e a  f u n c t i o n o f temperature t h e e r r o r l i m i t s f o r t h e s e r a t i o s w i l l a l s o be a f u n c t i o n of temperature.  T h i s would n e c e s s i t a t e a r a t h e r complex type o f  a n a l y s i s t o d e t e r m i n e t h e r e t e n t i o n time c o r r e l a t i o n s . and septum b l e e d peaks appear  Second, t h e p h t h a l a t e  t o be l i n e a r l y s h i f t e d when comparing  w i t h M1XB o r CL1202 w i t h M1XA2.  C-HALL  This i m p l i e s that the d i f f e r e n c e s i n the  chromatograms were due e i t h e r t o changes i n f l o w o r column d e t e r i o r a t i o n over t h e f o u r month p e r i o d between t h e r u n s .  I n any case t h e l i n e a r  shift  p r o v i d e s a v e r y s i m p l e method f o r c o r r e l a t i o n o f r e t e n t i o n times and thus e q u a t i o n 4.1 was adopted. The use o f spectrum numbers as a measure o f r e t e n t i o n time c o n t r i b u t e s an e r r o r o f about.0.25 spectrum numbers.  S i n c e t h e maximum d e v i a t i o n i n r e -  t e n t i o n times o f i d e n t i c a l peaks among t h e runs on t h e same day was shown t b be leof»3 spectrum numbers, t h e maximum a l l o w a b l e d e v i a t i o n i n R^ i s -1.00 ^R^ <£+1.00 f o r t h e r e t e n t i o n time c o r r e l a t i o n s .  The r e s u l t s o f t h e s p e c t r a l  f i l e s e a r c h e s and r e t e n t i o n time checks a r e summarized i n T a b l e s 4.17 and  142 Table.4.17  Spec. No (CL1202)  11 19 31 31 31 23 40 44 44 56 56 61 69 69 62 62 66 66 77 ill, 86 98 986 106 106 110.117 117 133 137 137145 145 194 204 211 242 248  Results of Spectral Searches and Retention Time Checks for CL1202  Possible Compd. from F i l e Search  C Cl4 Cl-Benzene Et-Benzene 0 -M i e 2 ~ Benzene 2  m-Jle2-Benzene p-Me2~Benzene  2-n-Butoxy ethanol iPr-Benzene 1,2,4-Me3~Benzene lr-Me-3-Et-Benzene 1-Me,2-Et-Benzene P - C I 2 Benzene 0 - C I 2 Benzene P - C I 2 Benzene n-Bu-Benzene t-Bu-Benzene Benzaldehyde and C<.-chloro toluene or o-chlorotoluene Benzyl alcohol p-Cresol 2- phenyl ethanol Dihydroheptafulwene Menthol Isomenthol Terpineol Me-Salicylate 1- Me-Nap thaiene 2-iMe^Napthalene Dichlorocresol Indazole Benzimidazole Benzofuran Diethyl phthalate phthalate n-propyl phthalate n~Bu ^phthalate  Spec No (M1XA2)  R^ within limits  16 24 31 37 30 28  -0.67 -0.67 +1.00 -1.00 +1.33 -0.67  yes yes yes yes (no) <no)  46 64  +0.33 -5.67  yes no  70 77 70 80 64 71 72 53 83 92 103  -2.00 -1.67 +0.67 -5.00 0.33 -0.67 -1.00 +5.3 -1.00 -1.00 -0.67  no no yes no yes yes yes no yes yes yes  112  -1.00  yes  115 123 139 139  -0.67 -1.00 -1.00 -1.00  yes yes yes yes  209  -0.67  yes  236 263  +3.00 -4.00  no no  143 Table 4.18  Results of Spectral Searches and Retention Time Checks for C-HALL  Spec # C-HALL  39 51 59 69 71 81 89 99 121  111 114 136 152 156 159 164 168 176 178 182 201 209 211 222 229 236 260 269 366 508  Possible Compd. From F i l e Search  Spec// M1XB  Benzaldehyde Benzyl alcohol p-Cresol Methyl Benzoate 68 2-?Jhenyl ethanol Menthol Isomenthol Camphor 87 Indazole 2,4 or 2,5-Me. Benzyl-OH 3-Pjhenyl propylamine Benzimidazole' Benzofuran 1-M.e Napthalene 110 2-Mie Napthalene Iso-borneol 72 Bornyl acetate 111 1,3-Dimethylnapthalene 2,7-Dimethylnapthalene Glycerol t r i a c e t a t e 150 Diacetin 125 1»4,5 Trimethylnapthaiene Dimethyl phthalate 1577 Coumarin 162 Cedrol cxVTetrahydrofuryliQH Benzophenone 178 Diethylphthalate 178 Anthracene 200 Phenanthrene 200 Diphenylacetylene 176 Propyl phthalate 206 Ppt-Bu phenoxyethanol Phthalate Phthalate 226 , phthalate 233 - ie*;^Stearate 254 Phthalate Benzyl Bu-phthalate Octyl phthalate  \  Rj^ within limits?  +.67  yes  +.33  yes  +.67  yes  -13.00 0.00  no yes  +0.33 -8.00  yes no  +0.33 +0.33  yes yes  +1.00 0.00 +0.67 +0.67 -7.33 0.00  yes yes yes yes no yes  0.00 -1.00  yes yes  2  n  :  B u  . 144 4.18. Most of the mass s p e c t r a l and r e t e n t i o n time c o r r e l a t i o n s a r e s t r a i g h t f o r w a r d however s p e c t r a 31, 61 and 69 i n CL1202 p r e s e n t s p e c i a l For spectrum  31 the c o r r e l a t i o n f a c t o r f o r o - x y l e n e i s -1.00  e t h y l benzene and the o t h e r x y l e n e s range from +1.00  problems.  w h i l e those f o r  t o +2.00.  S i n c e almost  a l l of t h e o t h e r p o s i t i v e l y c o r r e l a t i n g matches have r e t e n t i o n time c o r r e l a t i o n f a c t o r s between +0.33 and -1.00 f o r the meta and p a r a x y l e n e s was rejection.  i t was  f e l t t h a t the c o r r e l a t i o n f a c t o r s  s u f f i c i e n t l y l a r g e to warrant  probable  With r e s p e c t to the d i c h l o r o b e n z e n e s the expected o r d e r of e l u -  t i o n i s meta, p a r a and o r t h o (ASTM 1967,  Zweig and Sherma 1972).  S i n c e the  o r t h o - d i c h l o r o b e n z e n e shows a l a r g e d e v i a t i o n i n r e l a t i v e r e t e n t i o n t i m e s , i t i s most p r o b a b l e t h a t the compounds p r e s e n t i n C11202 a r e the meta and para dichlorobenzenes. I n some cases a u t h e n t i c samples of the compounds l i s t e d i n T a b l e s and 4.18  were not a v a i l a b l e .  were o b t a i n e d .  T h e r e f o r e no r e t e n t i o n time c o r r e l a t i o n  o r a u t h e n t i c sample was and  times  I n a d d i t i o n , compounds which a f f o r d e d a r e a s o n a b l e match on  the b a s i s of an e i g h t peak i n d e x s e a r c h but f o r which no r e f e r e n c e  T a b l e s 4.17  4.17  spectrum  a v a i l a b l e a r e not i n c l u d e d among those l i s t e d i n  4.18.  A summary o f compounds p o s i t i v e l y i d e n t i f i e d by mass spectrum t e n t i o n time appears i n T a b l e 4.19.  and r e -  F o r these compounds an e s t i m a t e of  c o n c e n t r a t i o n i n sewage e f f l u e n t was made on the b a s i s of peak h e i g h t s i n the u n n o r m a l i z e d  t o t a l i o n c u r r e n t t r a c e s of the samples.  mass s p e c t r o m e t e r was injected.  assumed a l o n g w i t h a zero response f o r zero sample  S i n c e no s t u d i e s of r e c o v e r y f a c t o r s or c o n c e n t r a t i o n l o s s e s were  made, changes i n i n s t r u m e n t a l s e n s i t i v i t y may was  L i n e a r i t y of the  have o c c u r r e d and  resolution  not always good, t h e s e c o n c e n t r a t i o n s a r e s t a t e d as o r d e r o f magnitude  ranges.  The lower number i n the range i s the average c o n c e n t r a t i o n i n 120NB1,  145 T a b l e 4.19  Compounds P o s i t i v e l y . I d e n t i f i e d by Mass Spectrum and  Compound  Spec No CL1202  Tetrachloroethylene 11 p-Xylene 23 31 o-Xylene Isopropylbenzehe 44 Tert-butylbenzene 62 Chlorobenzene 19 m - D i c h l o r o b e n z e n e p - d i c h i o r . 61 p-Dichlorobenzene 69 £X-Chloro t o l u e n e 66 Benzyl alcohol 77 2-Phenylethanol 98 86 . C r e s o l (p?) Benzaldehyde 66 M e t h y l Benzoate Methylsalicylate 117 Benzophenone 1-Methyl n a p t h a l e n e and/or 133 2-Methylnapthalene 133 Phenanthrene and/or Anthracene Glycerol triacetate Methyl stearate Dimethyl p h t h a l a t e * Diethyl phthalate* 204 Di-n-propyl phthalate* Di-n-butyl phthalate* 106 Menthol 110 Terpineol Camphor Bornylacetate Coumarin  Retention-Time  Spec No C-HALL  51 71 59 39 69 178 111 201 201 152 260 159 182 209 236 81 89 114 164  C o n c e n t r a t i o n Range i n P r i m a r y E f f l u e n t (^g/1) GC - MS MEC 5-50 1-10 1-10 2-20 10-100 10-100 10-100 3-30 7-70** 10-100 5-50 20^-200 10-100 0.4-4 7-70 1-10 5-50 0.8-8 0.5-5 0.7-7 0.6-6 0.4-4 0.3-3 9-90 15-150 20-200 1-10 0.8-8 2-20  * P o s s i b l y from c o n t a m i n a t i o n d u r i n g s a m p l i n g and a n a l y s i s . ** E s t i m a t e i s p r o b a b l y h i g h .  1-10  1-10 0.4-4 1-10 0.4-4  146 CL-1202  and  C-HALL i f t h e compound was p r e s e n t  i n a l l t h r e e chromatograms.  The a c t u a l c o n c e n t r a t i o n may be lower than t h i s due t o r e s o l u t i o n problems. The h i g h e r number i s one o r d e r o f magnitude h i g h e r t h a n t h e lower number and i s an e s t i m a t e o f t h e maximum p o s s i b l e c o n c e n t r a t i o n s . A l i s t of those compounds whose s p e c t r a can be r e a s o n a b l y  identified i n  the s p e c t r a from CL1202 and C-HALL b u t f o r w h i c h no a u t h e n t i c samples were a v a i l a b l e i s compiled  i n T a b l e 4.20{  These compounds have been t e n t a t i v e l y  i d e n t i f i e d and i n many cases s e v e r a l p o s s i b l e i d e n t i f i c a t i o n s were made f o r the i n d i v i d u a l s p e c t r a from CL1202 and C-HALL. 7.  C o r r e l a t i o n s Among G.C. Chromatograms I n o r d e r t o f u r t h e r study t h e compounds formed as a r e s u l t o f c h l o r i n a -  t i o n , a c o r r e l a t i o n among the GC chromatograms from the v a r i o u s GC was a t t e m p t e d .  instruments  W h i l e some i n f o r m a t i o n r e g a r d i n g these compounds can be ob-  t a i n e d from t h e FID and EC d e t e c t o r s ( e . g . F i g u r e s 4.24 and 4.10), t h e most s i g n i f i c a n t i n f o r m a t i o n comes from t h e MEC and mass s p e c t r o m e t r i c Therefore  detectors.  c o r r e l a t i o n s among r e t e n t i o n time w i t h t h e MEC d e t e c t o r , spectrum  number i n CL1202 and spectrum number i n C-HALL were made.  The MEC  detector  t r a c e w a s . f i r s t c o r r e l a t e d w i t h CL1202 t h r o u g h t h e use of t h r e e compounds and t h e zero p o i n t .  CL1202 was t h e n c o r r e l a t e d t o C-HALL on t h e b a s i s o f  i d e n t i c a l s p e c t r a from T a b l e s 4.16, 4.17 and 4.18. c o r r e l a t i o n s a r e d i s p l a y e d i n F i g u r e 4.34.  The r e s u l t s of t h e s e  I t i s i n t e r e s t i n g to note that  both c o r r e l a t i o n s are l i n e a r . On t h e b a s i s of F i g u r e 4.34, t h e spectrum numbers of t h e h a l o g e n cont a i n i n g compounds were e s t i m a t e d . 4.22.  T h i s d a t a i s summarized i n T a b l e s 4.21 and  From these t a b l e s i t can be seen t h a t seven t o n i n e of t h e t h i r t y -  e i g h t halogenated  n e u t r a l o r b a s i c compounds d e t e c t a b l e by MEC a r e a l s o de-  t e c t a b l e by GC-MS, w h i l e none of t h e a c i d i c compounds c o n t a i n i n g h a l o g e n a r e d e t e c t a b l e by GC-MS.  I n the n e u t r a l and b a s i c f r a c t i o n o n l y t h r e e of t h e  147  T a b l e 4.20  Compound  Compounds T e n t a t i v e l y I d e n t i f i e d by MS  Spectrum No • CL1202  98 Dihydroheptafulvene 2,3 B i s (4-methoxyphenyl) pent-2-ene 56 1 -Me-£kyi, 2 rEthylbenzene 1 -Meithy 1 ,,3-E thy l b enz ehe 56 1,3,5-Trimethyl-2-n-butylbenzene 1,3~Dimethylnapthalene 2,7-Dimethylnapthalene 1,4,5 T r i m e t h y l n a p t h a l e n e D i c h l o r o c r e s o l (4,6) 137 2,4-Dimethylbenzylalcohol 2,5-Dimethylbenzylalcohol 2-n-Butoxyethano1 40 p-t-Butylphenoxyethanol Cedrol OC^-Tetrahydrof uf u r y l a l c o h o l * D i h y d r o f u r a n (2,5) 8 Benzofuran 145, 194 2-Methylazetidine 8 2,2-Dimethylaziridine 8 Indazole' 145, 194 Benzemedazole 145, 194 Acetanilide 133 3-Phenylpropylamine Caffeine See F i g u r e 4.28  Spectrum No C-HALL 225  ;  127 136 136 156 99 99 211 168 176 . 121 121 121 99  * R e t e n t i o n time i s v e r y l o n g and t h e r e f o r e s u s p e c t i s some type o f d e g r a d a t i o n product.  87T  149 T a b l e 4.21 - Spectrum Numbers of Halogenated. N e u t r a l and B a s i c O r g a n i c s  MEC  Detector  Peak #  R e t e n t i o n Time ) ( m ± n  Mass S p e c t r o m e t e r  Spectrum  P f f CL1202  ^s Chlorine  S  r  u  m  N  u  m  b  e  r  s  C-HALL  1 2 3 4 5 6 6a 7 8 9 9a 9b 10 10a 11 12 12a 13 13a 14a 14a 15 16 13 1"8. 19 20 21 22 23 24 .25 2"6  .1.2 5 1.5 8 1.8 12 2.3 19 . 3.0 25 3.7 36 4.6 47 5.1 53 5.8 32 62 6.3 40 68 7.6 56 83 8.1 62 89 8.9 72 99 9.6 80 107 9.9 85 111 10.3 90 116 98 10.9 124 11.2 101 127 11.6 106 131 12.0 111 136 12.3 115 140 12.6 117 142 12.9 122 147 13.4 128 153 13.7 132 157 14.1 137 162 14.5 142 167 14.8 146 170 15.3 152 176 15.6 155 179 15.9 159 183 16.2 163 187 16.6 169 192 16.9 173 2Ui 196 17.2 28 176 199 29a 17.6 180 203 18.0 29a 185 208 18'. 6 30 193 216 200 31 .19.2 222 —.• -• 20...1 32 - — 2 3 4 - - ..—21-2- • * Enhanced a t 120 mg/l dosage o n l y . ** P l a n t c h l o r i n a t e d and 120 mg/1 o n l y a - u n s a t . HC spectrum •  3  . . -  Compound Results from Chlorination  No No Yes Yes Yes No No No Yes Yes No No No No No No No Yesl No Yes No No No No No No No No No Yes No No No No Yes No No No No ....... Yes .: • . : a  ;  —-••  h  No* No* No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No* Yes No No No* No No* No* No No No* No No Yes No No No* No Yes Yes* Yes** No* No No No No. . • • No .  150  T a b l e 4.22  Spectrum Numbers of H a l o g e n a t e d A c i d i c Compounds  MEC D e t e c t o r Peak  1 2 3 4 5 6 7 8 9 10 11 12 13  Retention  2.3 10.2 11.7 12.5 12.9 13.3 13.8 14.5 15.1 15.4 16.7 19.1 2.14  Time  Mass S p e c t r o m e t e r Spectrum Number CL120A  19 112 133 142 149 152 158 166 173 177 193 222 250  Spectrum Shows Chlorine.  No No No No No No No No No No No No No  a - Appears o n l y i n p l a n t c h l o r i n a t e d sample. b - Appears o n l y i n p l a n t sample c h l o r i n a t e d a t 120 mg/1. c - Appears o n l y i n sample c h l o r i n a t e d a t 120 and 12 mg/1.  Compound R e s u l t s from Chlorination  Yes Yes No Yes No Yes No Yes Yes No No Yes Yes  a  b  c  c b  c  151  f i f t e e n h a l o g e n a t e d compounds formed as a r e s u l t of c h l o r i n a t i o n c o u l d be identified.  Peak 5 i s an u n i d e n t i f i a b l e c h l o r o a l k y l compound w h i l e peak 9  i s both p-dichlorobenzene andtX-chloro toluene.  L i m i t e d mass s e a r c h e s and  s p e c t r a l e x a m i n a t i o n s o f NBRAW1, CL12N1, NBPLCL and CL1202 show t h a t pd i c h l o r o b e n z e n e i s p r e s e n t i n a l l of the e x t r a c t s w h i l e the mass spectrum o f peak 5, c h l o r o b e n z e n e , m - d i c h l o r o - b e n z e n e  and^-chlorotoluene  o n l y i n the c h l o r i n a t e d e x t r a c t s .  a l s o found t h a t the mass s p e c t r a  I t was  are present  c o r r e s p o n d i n g to peaks;3, 13, 14, 23, 28 and 32 were p r e s e n t i n a l l e x t r a c t s . T h i s i n d i c a t e s a good c o r r e l a t i o n among the peaks r e s u l t i n g from as m o n i t o r e d by the MEC  d e t e c t o r and the mass s p e c t r o m e t e r .  t h a t as expected the MEC  chlorination  I t i s also evident  d e t e c t o r i s much more s e n s i t i v e than the mass spectrom-  eter. The f a c t t h a t the two c h l o r o p h e n o l s were used as c a l i b r a n t s a l l o w e d a more.unequivocal  search f o r c h l o r i n a t e d phenols.  L i m i t e d mass s e a r c h e s  128, 162, 142 and 176 were made i n the a c i d and n e u t r a l p l u s b a s i c r u n under CL1202 GC c o n d i t i o n s .  of  fractions  A l t h o u g h the 128 and 162 LMRGC's showed  peaks a t spectrum 110 i n a l l e x t r a c t s i n c l u d i n g the u n c h l o r i n a t e d ones and a peak a t spectrum 59 o n l y i n the c h l o r i n a t e d samples, e x a m i n a t i o n of the background s u b t r a c t e d s p e c t r a showed l i t t l e more t h a n t a l l g r a s s . c l u s t e r s were e v i d e n t i n any of the s p e c t r a .  No  isotopic  I t i s a l s o noteworthy t h a t  m/e  128 i s a minor peak i n the spectrum of p ( - t e r p i n e o l w h i c h i s the e s t a b l i s h e d i d e n t i t y of spectrum 110. in  On the o t h e r hand the MEC  d a t a shows t h a t peak 2  t h e a c i d f r a c t i o n s o r peak 11 i n the n e u t r a l and b a s i c f r a c t i o n s or peak  11 i n t h e n e u t r a l and b a s i c f r a c t i o n s may  be p - c h l o r o p h e n o l .  c h l o r i n a t e d c r e s o l s by LMRGC's y i e l d e d many peaks f o r m/e spectrum 137 showed c h l o r i n e (m/e no new peaks appeared  176).  i n the LMRGC's (m/e  The s e a r c h f o r  142 o r 176.  Only  I n the r e g i o n of s p e c t r a 80 - 140," 142) as a r e s u l t of c h l o r i n a t i o n .  A l t h o u g h peaks appeared a t spectrum numbers 87, 91, 99, 110, 118, 125,  134  . 152 and 137, the peaks i n the r e g i o n 83 t o 130 were so s m a l l t h a t t h e i r p r e s e n c e was d e b a t a b l e i n many e x t r a c t s .  S i n c e peak 14 (Spectrum 137)• i s p r e s e n t i n  a l l e x t r a c t s i t appears as though the c h l o r i n a t i o n does not produce c h l o r i n a t e d p h e n o l s e x c e p t p o s s i b l y a t c h l o r i n e dosages of 120  mg/1.  153 CHAPTER V SUMMARY, IMPLICATIONS AND SUGGESTIONS FOR FURTHER STUDY.•  1.  Summary The  f i r s t p a r t o f t h i s work d e a l t w i t h t h e a n a l y t i c a l methodology n e c e s -  s a r y t o e x t r a c t and s e p a r a t e t h e t r a c e o r g a n i c  components o f p r i m a r y e f f l u e n t .  The work on e x t r a c t i o n showed t h a t w h i l e b o t h methods gave adequate r e c o v e r i e s . the c o n t i n u o u s s o l v e n t e x t r a c t o r s u f f e r e d from e m u l s i o n problems w h i l e t h e s o r p t i o n method s u f f e r e d from poor r e c o v e r y The  of organics  sorbed on p a r t i c u l a t e s .  s o r p t i o n method was chosen because o f i t s compactness and ease o f d u p l i c a -  tion.  The s e p a r a t i o n s t u d i e s i n d i c a t e d t h a t t h e a c i d base s o l v e n t e x t r a c t i o n  provided  u s e f u l p r e l i m i n a r y s e p a r a t i o n b u t s u f f e r e d from t h e h i g h  of t h e o r g a n i c s o l v e n t i n w a t e r .  solubility  T h i n l a y e r chromatography was v a l u a b l e  o n l y f o r compounds w i t h v o l a t i l i t i e s l e s s t h a n b e n z y l a l c o h o l o r p - c r e s o l . The GC s t u d i e s i n d i c a t e d t h a t a l l t h e low t e m p e r a t u r e s i l i c o n e l i q u i d phases p r o v i d e good s e p a r a t i o n a l t h o u g h i t i s e v i d e n t  t h a t they do n o t g i v e a s e p -  a r a t i o n o f one component per peak even a f t e r o p t i m i z i n g t h e t e m p e r a t u r e p r o grams . The  second p a r t o f t h i s p r o j e c t c e n t e r e d  of c h l o r i n a t i o n upon t h e v o l a t i l e o r g a n i c and  upon t h e s t u d y o f t h e e f f e c t s  components o f p r i m a r y e f f l u e n t  t h e i d e n t i f i c a t i o n o f t h e s e components.  I t was found t h a t w i t h  concen-  t r a t i o n f a c t o r s o f 5000-10,000 t h e e f f e c t s of c h l o r i n a t i o n were o n l y r e a d i l y apparent w i t h t h e m i c r o e l e c t r o l y t i c c o n d u c t i v i t y and e l e c t r o n c a p t u r e GC detectors.  The u p t a k e o f c h l o r i n e by t h e v o l a t i l e s a t dosage l e v e l s o f  around 12 mg/1 was i n t h e o r d e r o f 0.01 p e r c e n t of t h e a p p l i e d dose.  With  a d e t e c t i o n l i m i t o f 3 ng/1 about 20 ^ew/jhalogenated compounds were formed as a r e s u l t o f c h l o r i n a t i o n and those compounds account f o r about 40 p e r c e n t o f the t o t a l o r g a n i c h a l o g e n as c h l o r i n e , e x c l u s i v e o f t h e h a l o g e n a t e d methanes  . 154 and ethanes, found i n c h l o r i n a t e d p r i m a r y e f f l u e n t . these e f f e c t s were r e p r o d u c i b l e i n d i f f e r e n t e f f l u e n t  The EC work showed t h a t samples.  In o r d e r to i d e n t i f y t h e o r g a n i c s i n p r i m a r y e f f l u e n t a computerized GC-MS was e s s e n t i a l .  A l a r g e number o f s p e c t r a c o u l d n o t be i d e n t i f i e d  through f i l e s e a r c h e s and t h e i n c o m p l e t e s e p a r a t i o n of compounds c o u l d be p a r t of t h e r e a s o n f o r t h i s .  A t o t a l of 31 compounds were p o s i t i v e l y i d e n -  t i f i e d by b o t h t h e i r mass s p e c t r a and GC r e t e n t i o n times ( T a b l e 4.19), a n o t h e r 24 compounds were t e n t a t i v e l y i d e n t i f i e d by t h e i r mass s p e c t r a ( T a b l e 4.20) and an a d d i t i o n a l 7 compounds were v e r y t e n t a t i v e l y i d e n t i f i e d on t h e b a s i s of GC r e t e n t i o n time ( T a b l e 4.12).  Three of t h e c h l o r i n a t e d compounds formed  by c h l o r i n a t i o n were p o s i t i v e l y i d e n t i f i e d ( T a b l e s 4.19 and 4.21). 2.  Implications The r e s u l t s of t h e second p a r t o f t h i s s t u d y have some i m p l i c a t i o n s f o r  the d e s i g n o f t r e a t m e n t p l a n t s and t h e e f f e c t s o f p r i m a r y e f f l u e n t upon t h e a q u a t i c ecosystem.  I t i s obvious t h a t a l a r g e number of v o l a t i l e o r g a n i c com-  pounds a r e p r e s e n t i n ^ g / 1 c o n c n e t r a t i o n s i n p r i m a r y e f f l u e n t .  I f some o f  these compounds e x h i b i t e d e l e t e r i o u s e f f e c t s upon t h e r e c e i v i n g water o r gene r a l ecosystem,  t r e a t m e n t p l a n t s w i l l have to be d e s i g n e d t o reduce  c o n c e n t r a t i o n s t o an a c c e p t a b l e l e v e l .  their  Since b i o l o g i c a l oxidation rate i s  a f u n c t i o n o f s u b s t r a t e c o n c e n t r a t i o n t h i s may n e c e s s i t a t e t h e i n s t a l l a t i o n of p h y s i c a l - c h e m i c a l r a t h e r t h a n t h e b i o l o g i c a l t r e a t m e n t p l a n t s c u r r e n t l y used. In  o r d e r t o a s s e s s t h e p o s s i b l e e n v i r o n m e n t a l e f f e c t s of t h e v o l a t i l e s  i n p r i m a r y e f f l u e n t T a b l e '5.1 was p r e p a r e d . some g e n e r a l p o i n t s s h o u l d be made.  Before i n t e r p r e t i n g the t a b l e  The assignments  of the p o s s i b l e p r i n c i p a l  s o u r c e s were based upon an i n t e r p r e t a t i o n o f t h e n a t u r a l o r i n d u s t r i a l and major uses o f a p a r t i c u l a r compound r a t h e r t h a n a waste s u r v e y .  sources  Street  s u r f a c e r u n o f f i s i n c l u d e d among t h e p o s s i b l e s o u r c e s even though a s e p a r a t e  155  T a b l e 5.1 - Guide t o E n v i r o n m e n t a l E f f e c t s of I d e n t i f i e d Compounds  Compound  Possible Source b  Tetrachloroethylene Orthoxylene i-propylbenzene t - b u t y l benzene chlorobenzene m-dichlorobenzene p-dichlorobenzene Benzyl a l c o h o l 2-phenyl e t h a n o l 0( - c h l o r o t o l u e n e Benzaldehyde M e t h y l benzoate Methyl s a l i c y l a t e Benzophenone Methyl napthalene Phenanthrene Anthracene Glycerol triacetate Methyl stearate Dimethyl p h t h a l a t e Diethyl phthalate Di-n-propyl phthalate Di-n-Butyl phthalate Menthol Camphor Terpineol Bornylacetate Coumarin  a - E f f e c t s upon mammals b - R e f e r e n c e s 2,3,5 e;— Lower v a l u e  Co Co,SS,H Co,SS,H Co,SS Cb,H,Cl Cl Co,H Co.H Cl.Co H H H H Co,SS Co,SS Co,SS H H Co,H Co,H H H,Co H H  Concen. mg/1 0.005 0.001 0.002 0.01 0.01 0.01 0.003 0.01 0.005 0.007 0.01 0.0004 0.007 6.001 0.005 0.0008 0.0008 0.0005 0.0007 0.0006 0.0004 0.0003 0.009 0.015 0.02 0.001 0.0008 0.002  Acute  Toxicity (mg/1) Sub-acute  4,Met-Mu,Ca? 2, N? 3 N?  1,F 1,F  3, Ca? 3,ID  1,F l,Da  t  m  ) 3,Ir  1,F 1,M  . M 1,F  (5)L ( 5 ) L  10  3,Ca? 3,Ca? 3,Ca?  2,Ir 2,Ir 1,F  c  '24  2,N 2,N?  /2.CNS  T a b l e ; 5.1  Cont'd.  Symbols P o s s i b l e Sources - Co Cl H SS  -  Commercial/Industrial C h l o r i n a t i o n of Primary E f f l u e n t Household S t r e e t S u r f a c e Runoff  Toxicity - Acute  -  e.s  Sub-acute  1,F - (60) D 1 - R e f e r e n c e Number F - Test Animal 60 - T o x i c C o n c e n t r a t i o n D - Type o f T o x i c E f f e c t 3,C? /2,CNS 3 - R e f e r e n c e Number C - Effect / Next R e f e r e n c e 2 Second R e f e r e n c e Number CNS ,-r.Effect  References 1. 2. 3. 4. 5.  McKee and Wolf (1971) Merck Index (1968) Sax (1974) F i s h b e i n 1973B N o l l e r 1957  Symbols Ca - C a r c i n o g e n o r C o c a r c i n o g e n CNS - A f f e c t s C e n t r a l Nervous System D - D e l e t e r i o u s but not l e t h a l Da - Daphnia F - Fish ID - I n t e r n a l Damage Ir - Irritant L - Lethal M - Minnows Met - M e t a b o l i c P r o d u c t s Mu - Mutagenic N - Narcotic  157  sewer system  i s employed i n sewage c o l l e c t i o n a r e a .  T h i s was done s i n c e  groundwater i n f i l t r a t i o n does o c c u r e.g. d u r i n g wet weather a l t h o u g h t h e s o r p t i o n and l e a c h i n g o f o r g a n i c s o n s o i l s w i l l a f f e c t from t h i s s o u r c e . little  Regarding  acute t o x i c i t y  the i n p u t o f o r g a n i c s  the t o x i c i t y d a t a i t i s e v i d e n t t h a t  information available f o r f i s h  there i s  l e t alone other aquatic  organisms, moreover t h e r e i s p r a c t i c a l l y no d a t a a t a l l a v a i l a b l e on the subacute  e f f e c t s so those l i s t e d  From T a b l e 5.1 i t appears r e s u l t from  a r e p r i m a r i l y f o r n o n - a q u a t i c mammals.  t h a t no problems o f a c u t e t o x i c i t y  to f i s h should  the i n d i v i d u a l compounds o f e i t h e r u n c h l o r i n a t e d o r c h l o r i n a t e d  / d e c h l o r i n a t e d p r i m a r y e f f l u e n t , a l t h o u g h the c u m u l a t i v e t o x i c i t y of a l l o f the components and s y n e r g i s t i c e f f e c t s a r e d i f f i c u l t c l u s i o n i s s u p p o r t e d by E s v e l t j 2 t a l . , of the t o x i c i t y of p r i m a r y e f f l u e n t Martens and S e r v i z i  (1975)  t o x i c i t y of primary e f f l u e n t e f f e c t s upon a q u a t i c i n s e c t s ,  (1973) who were a b l e t o c o r r e l a t e most  t o c o n c e n t r a t i o n s o f MBAS and ammonia and  might  to f i s h .  even s l i g h t l y reduce t h e  On the o t h e r  as i n s e c t i c i d e s  s u b - l e t h a l e f f e c t s probably w i l l .  nervous  1973;  Gillet  system impairment  hand, the acute  f o r example, may be i m p o r t a n t s i n c e (Merck,  1970;  Possible effects  dichloro-  from these compounds (McKee and Wolf, 1971;  Walsh and M i t c h e l l 1974) i n c l u d e  - Brook Trout'-ISO  t a d p o l e s 0.5/Ug DDT r e s i d u e , s u r v i v a l of f i s h  toxic  1968).  A l t h o u g h a c u t e t o x i c i t y problems may n o t r e s u l t  Kemp e t a l . ,  This con-  who found t h a t c h l o r i n a t i o n f o l l o w e d by  d e c h l o r i n a t i o n o f primary e f f l u e n t  benzenes have been used  to p r e d i c t .  central  g 0.02 mg/1 DDT, h y p e r a c t i v i t y from eggs exposed  to a t o x i c a n t -  3% s u r v i v a l of s t e e l h e a d 0 . 4 ^ g / 1 DDT and t a s t e i n f l e s h - o y s t e r s l ^ g / 1 chlorophenol.  I t s h o u l d be p o i n t e d o u t t h a t DDT i s an extremely  toxic  sub-  s t a n c e and i s c e r t a i n l y s e v e r a l o r d e r s o f magnitude more t o x i c on a T L ^ b a s i s than most o r g a n i c compounds. the s u b - l e t h a l t o x i c i t y  On the o t h e r hand i f the mechanism o f  i s independent  of t h a t o f the a c u t e t o x i c i t y ,  i t is  . 158 n o t p o s s i b l e t o e s t i m a t e what c o n c e n t r a t i o n of a p a r t i c u l a r compound w i l l cause s u b - l e t h a l t o x i c e f f e c t s . dosages o f DDT and c h l o r o p h e n o l  Furthermore, the p r e v i o u s l y s t a t e d harmful do n o t take i n t o account  bioaccumulation  w h i c h has been shown t o be 3 - 5 o r d e r s t o f ^ m a g n i t u d e w i t h DDT and Daphnia (Kemp e t a l . 1973). I n summary, t h e r e f o r e , i t i s u n l i k e l y t h a t t h e t r a c e v o l a t i l e  organics  i d e n t i f i e d as o r i g i n a l l y p r e s e n t i n , o r r e s u l t i n g from t h e c h l o r i n a t i o n and d e c h l o r i n a t i o n of p r i m a r y e f f l u e n t w i l l be a c u t e l y t o x i c . t o f i s h .  It is  p o s s i b l e however t h a t these compounds, p a r t i c u l a r l y t h o s e w h i c h a r e r e c a l c i t r a n t may be t o x i c t o o t h e r organisms o r have o t h e r d e l e t e r i o u s e f f e c t s upon t h e a q u a t i c ecosystem.  I n v i e w of t h e f a c t t h a t 1 p e r c e n t of t h e c h l o r -  i n e a p p l i e d t o p r i m a r y e f f l u e n t ends up as ' s t a b l e ' n o n - v o l a t i l e  organo-chlor-  i n e compounds ( J o l l e y 1973) w h i l e o n l y 0.0(15 p e r c e n t ends up as s t a b l e v o l atile  organochlorine  compounds, i t i s p o s s i b l e t h a t t h e most s e r i o u s e f f e c t s  of c h l o r i n a t i o n w i l l be m a n i f e s t e d i n t h e n o n - v o l a t i l e f r a c t i o n . 3.  Recommendations f o r F u r t h e r i)  Studies  Q u a n t i f i c a t i o n of i d e n t i f i e d components: I t i s recommended t h a t  recovery tification  s t u d i e s be c a r r i e d o u t u s i n g p r i m a r y e f f l u e n t as t h e s o l v e n t .  Quan-  o f t h e ' i d e n t i f i e d ' compounds can t h e n be c o n v e n i e n t l y made by  u n n o r m a l i z e d LMRGC's. ii)  Further  separation:  S i n c e t h e a c i d i t y s e p a r a t i o n d i d n o t prove  h i g h l y e f f e c t i v e i t i s recommended t h a t f r a c t i o n a t i o n on a HPLC i n s t r u m e n t be made p r i o r t o f i n a l iii)  s e p a r a t i o n by GC.  I d e n t i f i c a t i o n of more c o n s t i t u e n t s :  Subsequent to t h e improvement  i n s e p a r a t i o n , more i d e n t i f i c a t i o n s can be made on t h e b a s i s of mass spectrum and LC and GC r e t e n t i o n iv)  time.  E f f e c t s of c h l o r i n a t i o n :  a)  D i s t r i b u t i o n of c h l o r i n e uptake.  would be i n s t r u c t i v e t o s t u d y t h e d i s t r i b u t i o n o f c h l o r i n e u p t a k e i n t h e  It  v a r i o u s molecular weight f r a c t i o n s .  T h i s c o u l d be done through t h e use of  36 C l and g e l p e r m e a t i o n chromatography,  b)  I t appears from t h i s s t u d y t h a t  c h l o r i n e uptake i s r e l a t e d t o ammonia c o n t e n t of t h e sewage e f f l u e n t .  The  f o r m a t i o n o f h a l o g e n a t e d benzenes b u t n o t h a l o g e n a t e d phenols s u g g e s t s t h a t the major mechanism of c h l o r i n e uptake may be o t h e r than e l e c t r o p h i l i c stitution.  sub-  F u r t h e r work on t h e mechanisms of c h l o r i n e uptake i s t h e r e f o r e  recommended. v)  E n v i r o n m e n t a l I m p l i c a t i o n s of the R e s u l t a n t C h l o r i n a t e d O r g a n i c s .  a)  A c u t e t o x i c i t y - B i o a s s a y s s h o u l d be conducted to o b t a i n t h e  LC^Q  v a l u e s f o r each o f t h e compounds i d e n t i f i e d w i t h a r e p r e s e n t a t i v e s e t o f organisms. b)  S u b l e t h a l e f f e c t s - S t u d i e s upon t h e i n h i b i t i o n of b a c t e r i a l  a b o l i c r a t e s by t h e s e compounds can be e a s i l y c a r r i e d o u t .  metr  Studies of the  e f f e c t s o f t h e s e compounds on s p e c i e s d i v e r s i t y and p r e d a t o r / p r e y r e l a t i o n s h i p s and t h e s u b l e t h a l e f f e c t s a r e much more d i f f i c u l t t o c a r r y o u t b u t such i n v e s t i g a t i o n s a r e w a r r a n t e d t o i d e n t i f y those compounds r e q u i r i n g r o u t i n e monitoring. c)  P e r s i s t e n c e - Studies i n t h i s area should include degradation rates  f o r a c c l i m a t e d b a c t e r i a , i d e g r a d a t i o n times f o r n o n - a c c l i m a t e d b a c t e r i a , i n t a k e / m e t a b o l i c / e x c r e t i b n / a c c u m u l a t i o n s t u d i e s f o r some o f t h e major  biolo-  g i c a l s p e c i e s i n t h e r e c e i v i n g w a t e r s and s o l u b i l i t y / s o r p t i o n / p r e c i p i t a t i o n d a t a f o r t h e e f f l u e n t and r e c e i v i n g water t o e s t a b l i s h t h e a v a i l a b i l i t y of these compounds f o r b i o l o g i c a l u p t a k e .  I f sewage s l u d g e i s t o be used  as f e r t i l i z e r f o r a g r i c u l t u r a l c r o p s s t u d i e s on the f a t e s of t h e s e compounds i n t h i s n o n - a q u a t i c ecosystem a r e a l s o w a r r a n t e d .  160  BIBLIOGRAPHY  Abramson, F. P. (1975) "Automated I d e n t i f i c a t i o n of Mass S p e c t r a by t h e Reve r s e S e a r c h " A n a l . Chem., 47, 45-49. Adams, V. D. and M i d d l e b r o o k , E. J . (1973) " O r g a n i c R e s i d u e i n a Closed-Loop H y p o c h l o r i t e System" Dept. o f E n v i r o n . Eng., Utah S t a t e U n i v e r s i t y , Logan, U t a h . A l l e n , S. C , P a h l , R. H. and Mayhan, K. G. (1971) " O r g a n i c D e s o r b t i o n from Carbon. I . A C r i t i c a l Look a t D e s o r b t i o n o f Unknown M a t e r i a l s from Carbon" Water R e s e a r c h , j j , 3-18. American C h e m i c a l S o c i e t y (1969) C l e a n i n g Our Environment, t h e C h e m i c a l B a s i s f o r A c t i o n Subcommittee on E n v i r o n m e n t a l Improvement, Amer. Chem. Soc., Washington, D. C. p. 97. American P u b l i c H e a l t h A s s o c i a t i o n (1971) S t a n d a r d Methods f o r t h e Examinat i o n o f Water and Wastewater, 1 3 t h Ed. APHA, Washington, D. C. American S o c i e t y f o r T e s t i n g M a t e r i a l s (1967) g r a p h i c D a t a , ASTM D a t a S e r i e s e N o . DS25A  C o m p i l a t i o n o f Gas ChromatoASTM, P h i l a d e l p h i a , PA.  Amos, R. (1970) "Improved P r o c e d u r e s f o r H a n d l i n g T h i n - L a y e r S p o t s " J . Chroma t o g r . , ^ 8 , 343-352. Anbar, M. and Y a g i l , G. (1962) "The H y d r o l y s i s o f C h l o r a m i d e i n A l k a l i n e S o l u t i o n " j . Amer. Soc., 84, 1790-1796. Andelman, J . B. and C a r u s o , S. C. (1971) " C o n c e n t r a t i o n and S e p a r a t i o n Techn i q u e s " i n L. L. L i a c c i o (ed.) Water arid Water P o l l u t i o n C o n t r o l Handbook, M a r c e l Dekker New Y o r k V o l . 2, C b l 11. A n h o f f , M. and J o s e f s s o n , B. (1974) " S i m p l e A p p a r a t u s f o r O n - S i t e C o n t i n u o u s L i q u i d - L i q u i d E x t r a c t i o n of O r g a n i c Compounds from N a t u r a l Waters" A n a l . Chem., 46_, 658-663. A r m i t a g e , F. (1969) "Some F a c t o r s A f f e c t i n g t h e E f f i c i e n c y o f C o l l e c t i o n o f Gas Chromatographic F r a c t i o n s i n M e l t i n g P o i n t Tubes" J . Chromatogr. S c i . , ]_, 190-191. A u d r i e t h , L. F. and Diamond, L. H. (1954) " P r e p a r a t i o n of N - S u b s t i t u t e d H y d r a z i n e s by M o d i f i c a t i o n o f t h e R a c h i g S y n t h e s i s " J . Amer. Chem. Soc., 76, 4869-4871. A u d r i e t h , L. F. and Rowe, R. A. (1955) "The S t a b i l i t y o f Aqueous C h l o r a m i n e S o l u t i o n s " J . Amer. Chem., S o c , 77, 4726-4728. A u d r i e t h , L . F., S c h e i b l e r , ;U. and Zimmer,;H. (1956) "The F o r m a t i o n o f H y d r a z i n e s by I n t e r a c t i o n o f Ammonia and N - C h l o r o s u c c i n i m i d e i n A l k a l i n e S o l u t i o n s " J . Amer. Chem. Soc., 78, 1852-1854.  161 Aue, W. A., K a p i l a , ; S . , and H a s t i n g s , C R . (1972) "The Use o f Support Bonded S i l i c o n e s f o r t h e E x t r a c t i o n o f O r g a n o c h l o r i n e s of I n t e r e s t from Water"' J . Chromatogr., 73_, 99-104. Aue, W. A. and K a p i l a , S. (1973) "The E l e c t r o n C a p t u r e D e t e c t o r - C o n t r o v e r s i e s , Comments and Chromatograms". J . Chromatogr. S c i . , ' 11, 255-263. AWRE, A l d e r m a s t o n . (1973) E i g h t Peak Index o f Mass S p e c t r a Data C e n t e r , R e a d i n g , U. K., V o l . I l l p a r t s 1 and 2.  Mass S p e c t r o m e t r y  B a k e r , R.,iA. (1965) " M i c r o c h e m i c a l Contaminants by F r e e z e C o n c e n t r a t i o n and Gas Chromatography" J . Wat* P o l l . C o n t r . F e d . , 3_7, 1164-1170. Baker, R. H., Dodson, R. M. and R i e g e l , B. (1946) "The C l e a v a g e o f O r g a n i c S u l f i d e s w i t h C h l o r i n e " J . Amer. Chem. Soc. 68, 2636-2639. B a r k e r , I . R. L. (1964) " K i n e t i c S t u d i e s i n t h e O x i d a t i o n o f O r g a n i c Compounds w i t h t h e Halogens" Chem. I n d . (London), 1936-1942. Bauer, R. C. and S n o e y i n k , V. L. (1973) " R e a c t i o n s of C h l o r a m i n e s w i t h A c t i v e Carbon" J . Wat. P o l l . C o n t r . F e d . , _45, 2290-2301. B e l l a r , T. A. and L i c h t e n b e r g , J . J . (1974) "The D e t e r m i n a t i o n o f V o l a t i l e O r g a n i c Compounds a t t h e / r g / 1 L e v e l i n Water by Gas Chromatography" EPA - 670/4 - 74 - 009, E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D. C. B e l l a r , T. A., L i c h t e n b e r g , J . J . and K r o n e r , R . C . (1974) "The O c c u r r e n c e of O r g a n o h a l i d e s i n C h l o r i n a t e d D r i n k i n g Waters" EPA 670/4 - 74 - 008, E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D.C. B e n n e t t , M., Dee, H. J . and H a r k n e s s , N. (1973) "The D e t e r m i n a t i o n o f V e g e t a b l e and M i n e r a l O i l s i n t h e E f f l u e n t s and Sewage S l u d g e s o f t h e Upper Thames B a s i n " Wat. R e s e a r c h , 7_, 1849-1859. B e t z e r , N. and K o t t , Y. (1969) " E f f e c t s o f Halogens on A l g a e - I I . p h o r a Sp." Wat. R e s e a r c h , _3, 257-264.  Clado-  B h a t i a , K. (1973) " D e t e r m i n a t i o n o f T r a c e P h e n o l i n Aqueous S o l u t i o n by Aqueous L i q u i d Chromatography" A n a l . Chem., 45^, 1344-1347. B l o c k , F. and G r i f f i t h s , P. R. (1973) " C o n s i d e r a t i o n s f o r I n f r a r e d M i c r o s a m p l i n g " A p p l . S p e c t r o s c , 27, 431-435. Blum, W. and R i c h t e r , W. J . (1974) "High E f f i c i e n c y G l a s s C a p i l l a r y Columns i n Combined GC/CIMS - GC/EIMS A n a l y s i s " F i n n i g a n S p e c t r a , V o l . 4 ( 1 ) , March. Brady, A. P., S a n c i e r , K. M. and S i r i n e , ; G . (1963) " E q u i l i b r i a i n S o l u t i o n s of C y a n u r i c A c i d and I t s C h l o r i n a t e d D e r i v a t i v e s " J . Amer. Chem. Soc., 85, 3101-3104. Brown,:L. 0. and Soper, F. G. (1953) " S t u d i e s o f N-Halogeno-compounds P a r t V. The I n t e r a c t i o n of D i a l k y l c h l o r a m i n e s w i t h P h e n o l s " J . Chem. Soc. 3576-3580.  162 B r u n g s , W. A. (1973) " E f f e c t s o f R e s i d u a l C h l o r i n e on A q u a t i c L i f e : a t u r e Review" J . Wat. P o l l . C o n t r . Fed., 45, 2180-2194.  Liter-  B u e h l e r , C. A. and P e a r s o n , D . E . T o r o n t o , Ch. 7, p. -329-340.  J . Wiley,  (1970)  Survey o f O r g a n i c S y n t h e s i s  B u h l e r , D. R., Rasmusson, M. E. and Nakue, H. S. (1973) " O c c u r r e n c e o f Hexachlorophene and P e n t a c h l o r o p h e n o l i n Sewage and Water" E n v i r o n . S c i . T e c h n o l . , 1_, 929-934. Buelow, R. -W., C a r s w e l l , J . K. and Symons, J . M. (1973a) "An Improved Method f o r D e t e r m i n i n g O r g a n i c s by A c t i v a t e d Carbon A d s o r p t i o n and S o l v e n t E x t r a c t i o n P t . I " J . Amer. Water Works A s s . , 65, 57-72. Buelow,.R. W., C a r s w e l l , J . K. and Symons, J . M. (1973b) "An Improved Method f o r D e t e r m i n i n g O r g a n i c s by A c t i v a t e d Carbon A d s o r p t i o n and S o l v e n t Ext r a c t i o n P t . I I . " J . Amer. Water Works A s s . , ^ 5 , 195-199. Burnham, ;A. K., C a l d e r , G. V., F r i t z , J . S., Junk, G. A., Svec, H. J . and W i l l i s , R. (1972) " I d e n t i f i c a t i o n and E s t i m a t i o n o f N e u t r a l O r g a n i c Contaminants i n P o t a b l e Water" A n a l . Chem., 44, 139-142. B u r n i s o n , K.BB. (1972) "Amino A c i d F l u x i n a N a t u r a l l y E u t r o p h i c L a k e " PhD T h e s i s , B i o l o g y , Oregon S t a t e U n i v . B u r t t s c h e l l , R. H., Rosen, A. A., M i d d l e t o n , F. M. and E t t i n g e r , M. B. (1959) " " C h l o r i n e D e r i v a t i v e s of P h e n o l C a u s i n g T a s t e and Odor" J . Amer. Water Works A s s . , _51, 205-214. Cahn, J . W. and P o w e l l , R. E. (1954) "The R a c h i g S y n t h e s i s o f J . Amer. Chem. Soc., 7_6, 2565-2567.  Hydrazine"  C a n e l l i , E. (1974) " C h e m i c a l , B a c t e r i o l o g i c a l and T o x i c o l o g i c a l P r o p e r t i e s o f C y a n u r i c A c i d and C h l o r i n a t e d I s o c y a n u r a t e s as A p p l i e d t o Swimming P o o l D i s i n f e c t i o n " Amer. J . P u b l i c H e a l t h , 64, 155-162. C a r l s o n , R. M. (1973) Communications and N e w s l e t t e r s , Dept. of Univ. of Minnesota.  Chemistry,  C a r l s o n , R. M. and C a p p l e , R. (1974) "Aqueous C h l o r i n a t i o n o f r X - T e r p i n e o l " Dept. of C h e m i s t r y , U n i v . o f M i n n e s o t a . C a r l s o n , R. M., C a r l s o n , R. E., Kopperman, H. L. and C a p p l e , R. (1975) " F a c i l e I n c o r p o r a t i o n of C h l o r i n e i n t o A r o m a t i c Systems D u r i n g Aqueous C h l o r i n a t i o n Processes" E n v i r o n . S c i . T e c h n o l . , 9_, 674-675. C a r r , M. D. and E n g l a n d , B. D. (1958) "A New Mechanism o f E l e c t r o p h i l i c A r o m a t i c C h l o r i n a t i o n " P r o c . Chem. S o c , 350-351. C h a p i n , R. M. (1931) "The I n f l u e n c e of pH Upon the F o r m a t i o n and Decomposit i o n o f t h e C h l b r o D e r i v a t i v e s of Ammonia" J . Amer. Chem. Soc., 53, 912-920. Chau, Y. K. (1973) "Complexing C a p a c i t y o f N a t u r a l Water - I t s S i g n i f i c a n c e and Measurement" J . Chromatogr. S c i . , 11^ 579. ( a b s t r . )  163 Chow, A., G e s s e r , H. D., D a v i s , F. C., U t h e , J . F . and R e i n k e , J . (1971) "The E x t r a c t i o n and Recovery o f P o l y c h l o r i n a t e d B i p h e n y l s U s i n g Porous P o l y u r e t h a n e Foam" A n a l . L e t t . , 4_ (12) , 883-886. C h r i s t m a n , R. F. and M i n e a r , R . A . (1971) " O r g a n i c s i n L a k e s " i n S . J . F a u s t and J . V. H u n t e r (eds.) O r g a n i c Compounds i n A q u a t i c Environments M a r c e l Dekker, New Y o r k , Ch. 6. C l e s c e r i , N. L. (1973) " O r g a n i c N u t r i e n t F a c t o r s E f f e c t i n g A l g a l Growths" EPA - 660/3 - 73 - 003. E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D. C. • Coleman, A. E. (1973) " C h e m i s t r y of L i q u i d Phases - Other S i l i c o n e s " Chromatogr. S c i . , 11, 198-201.  J.  C o l t o n , E., J o n e s , M. M. and A u d r i e t h , L. F. (1954) "The P r e p a r a t i o n o f H y d r a z i n e from U r e a and t - B u t y l h y p o c h l o r i t e " J . Amer. Chem. S o c . , 7 6 , 2572-2574. Cookson, J . T., I s h i z a k i , C. and J o n e s , C. R. (1972) " F u n c t i o n a l S u r f a c e Groups on A c t i v a t e d Carbon R e s p o n s i b l e f o r A d s o r p t i o n of O r g a n i c s from Water" A.I.S.C.H.E. Sympos. S e r i e s No. 124, V o l . 68, 157-168. C o p i e r , H. and Van d e r Mass, J . H. (1967) " M i c r o - I n f r a r e d S p e c t r o s c o p y of Gas C h r o m a t o g r a p h i c F r a c t i o n s " S p e c t r o c h i m . A c t a , 23A, 2699-2700. C o r b e t t , R.EE., M e t c a l f , W. S. and Soper, F. G. (1953) " S t u d i e s of N-Halogeno-compounds P a r t I V . The R e a c t i o n Between Ammonia and C h l o r i n e i n Aqueous S o l u t i o n and the H y d r o l y s i s C o n s t a n t s of C h l o r a m i n e s " J . Chem. Soc, 1927-1928. Cornu, A. and M a s s o t , R. (1975) E d i t i o n , Heyden, New Y o r k .  C o m p i l a t i o n of Mass S p e c t r a l D a t a  2nd  C o l t o n , F. A. and W i l k i n s o n , G. (1966) Advanced I n o r g a n i c C h e m i s t r y 2nd E d i t i o n , J . W i l e y , New Y o r k , p. 561-571. C o u l s o n , D. M. (1965) " E l e c t r o l y t i c C o n d u c t i v i t y D e t e c t o r f o r Gas graphy" J . Gas Chromatogr. 3_, 134-137.  Chromato-  Craun, G. F. (1972) " M i c r o b i o l o g y - Water-borne O u t b r e a k s " J . Wat. P o l l . Fed., 44, 1175-1182.  Contr.  Craun, G. F. and McCabe, L. J . (1973) "Review of t h e Causes o f Waterborne D i s e a s e O u t b r e a k s " J . Amer. Water Works A s s . , 65, 74-84. C r o l l , B. T. (1972) 21, 213-236.  " O r g a n i c P o l l u t a n t s i n Water"  Water T r e a t , and Examin.,  Czech, F. W., F u c h s , R. J . and A n t e z a k , H. F. (1961) " D e t e r m i n a t i o n o f Mono-, D i - , and T r i c h l o r a m i n e by U l t r a v i o l e t A b s o r p t i o n S p e c t r o p h o t o m e t r y " A n a l . Chem., 33, 705-707. D a k i n , H.:D. (1916) 10, 319-323.  "The O x i d a t i o n of Amino - A c i d s t o C y a n i d e s " J . Biochem.,  .  164  Das, B. S., R e i d , S. G., B e t t s , J . L., P a t r i c k , K. (1969) " T e t r a c h l o r o o-benzoquinone as a Component i n B l e a c h e d K r a f t C h l o r i n a t i o n E f f l u e n t T o x i c t o Young Salmon" J . F i s h . Res. Bd. Can., 26., 3055-3067. Desbaumes, E. and I m h o f f , C. (1972) " D e t e r m i n a t i o n o f H y d r o c a r b o n . R e s i d u e s i n Water" Wat. R e s e a r c h , b_, 885-893. De Zeeuw, R. A. (1972) " R e p r o d u c i b i l i t y o f R - V a l u e s i n TLC" i n A. N i e d e r w i e s e r and G. P a t a k i (eds.) P r o g r e s s i n T h i n L a y e r Chromatography and R e l a t e d Methods Ann A r b o r , Ann A r b o r , M i c h i g a n , V o l . I l l , Ch. 2, p. 39-70. f  Diamond, L . H. and A u d r i e t h , L. F. (1955) " P r e p a r a t i o n o f N - S u b s t i t u t e d H y d r a z i n e s from A r i n e s and C h l o r a m i n e s " J . Amer. Chem. S o c , 7_7, 3131. Doonan, S. (1973) "The B i o c h e m i s t r y o f Carbon - H a l o g e n Compounds" i n S. P a t a i (ed.) The C h e m i s t r y o f t h e Carbon - H a l o g e n Bond J . W i l e y , T o r o n t o , P a r t 2, Ch. 13. Dorn, H. (1972 " F o r m a t i o n o f Carbon — H a l o g e n Bonds" i n C. H i l g e t a g and A. M a r t i n i (eds.) P r e p a r a t i v e O r g a n i c C h e m i s t r y J . W i l e y , New Y o r k , Ch. 3. Dowty, B., C a r l i s l e , D., L a s e t e r , J . L. and S t o r e r , J . (1975a) " H a l o g e n a t e d Hydrocarbons i n New O r l e a n s D r i n k i n g Water and B l o o d P l a s m a " S c i e n c e , 187, 75-77. Dowty, B., and L a s e t e r , J . L. (1975b) " Gas C h r o m a t o g r a p h i c P r o c e d u r e t o M o n i t o r Low M o l e c u l a r Weight V o l a t i l e O r g a n i c s I n t r o d u c e d D u r i n g M u n i c i p a l Water P r o c e s s i n g " A n a l . L e t t . , _8 25-32. Drago, R.S.  (195-7)  " C h l o r a m i n e " " J . Chem. E d u c , 34, 541-545.  Duke, D. J . , V i e t h , G. D. and L e e , G. F. (1974) " P o l y c h l o r i n a t e d B i p h e n y l s i n Treatment P l a n t E f f l u e n t s " J . Wat. P o l l . C o n t r . Fed., 46, 966-972. Dugan, P. R. (1972) B i o c h e m i c a l E c o l o g y o f Water P o l l u t i o n New Y o r k , Chs. 7, 8, 9.  Plenum P r e s s ,  Edmond, C. R. and Soper, F . G . (1949) "The Mechanism o f F o r m a t i o n o f D i a l k y l c h l o r o a m i n e s from H y p o c h l o r o u s A c i d " J . Chem. S o c 2942-2945. E i s c h , J . J . (1966) Chem. 7_, 1-37.  " H a l o g e n a t i o n o f H e t e r o c y c l i c Compounds"' Adv. H e t e r o c y c  E l i a s e k , J . , and J u n g w i r t , A. (1963) "The Mechanism o f P h e n o l C h l o r i n a t i o n i n Aqueous S o l u t i o n " C o l l . C z e c h . Chem. Comm., _28, 2163-2170: CA 60, 443. Emerson, W. S. ,(1945) 67, 516-518.  "Synthesis w i t h Styrene Oxide"  J . Amer. Chem. S o c ,  EPA (1971) "Methods f o r O r g a n i c P e s t i c i d e s i n Water and Wastewater" onmental P r o t e c t i o n Agency, C i n c i n n a t i .  Envir-  EPA (1972) "The E f f e c t s o f C h l o r i n a t i o n on S e l e c t e d O r g a n i c C h e m i c a l s " EPA 12020EXG 03/72, E n v i r o n m e n t a l P r o t e c t i o n Agency, W a s h i n g t o n , D. C.  165 E t t r e , L. S. (1973) N o r w a l k , Conn.  Open T u b u l a r Columns An I n t r o d u c t i o n  Perlcin-Elmer,  E s v e l t , L. A., Kaufman, W. J . and S e l l e c k , R. E. (1973) " T o x i c i t y Assessment of T r e a t e d M u n i c i p a l W a s t e w a t e r s " J . Wat. P o l l . C o n t r . Fed., _45, 15581572. F a i r , G. M., M o r r i s , J . C , Chang, S. L., W e i l , I . and Burden, Ro P. (1948) "The B e h a v i o u r of C h l o r i n e as a Water D i s i n f e c t a n t " J . Amer. Water Works Ass., 40, 1051-1061. F a r r i n g t o n , J . W. and Q u i n n , J . G. (1973) " P e t r o l e u m Hydrocarbons and F a t t y A c i d s i n Wastewater and E f f l u e n t s " J . Wat. P o l l . C o n t r . Fed., 4_5, 704712. F i s h b e i n , L. (1972a)_ Chromatography of. E n v i r o n m e n t a l Hazards E l s e v i e r , New Y o r k .  Vol. I,  (1972b) " C h r o m a t o g r a p h i c and B i o l o g i c a l A s p e c t s o f P o l y c h l o r i n a t e d B i p h e n y l s " J . Chromatogr. S c i . , j>8, 345-426. (1973a) Chromatography o f E n v i r o n m e n t a l Hazards V o l . I I , E l s e v i e r , New Y o r k . Sci.  (1973b) "Mutagens and P o t e n t i a l Mutagens i n t h e B i o s p h e r e " T o t a l E n v i r o n . , 4_, 305-340.  F i s h b e i n , L. and Flamm, W. G. (1972) " P o t e n t i a l E n v i r o n m e n t a l C h e m i c a l H a z a r d s " S c i . T o t a l E n v i r o n . 1, 117-140. F o w l i s , I . A. and W e l t i , D. (1967) "The C o l l e c t i o n o f F r a c t i o n s S e p a r a t e d by G a s - L i q u i d Chromatography P a r t I I " A n a l y s t 9_2, 639-641. G a r d i n e r , J . (1973) " C h l o r o i s o c y a n u r a t e s i n t h e Treatment o f Swimming P o o l Water" Wat. R e s e a r c h 7_» 823-833. G a r r i s o n , W. (1972) ( J u l y ) , 3.  "Sodium S u l p h a t e I m p u r i t i e s "  EPA-AQC N e w s l e t t e r 14  Gehrs, C. W., Eyman, L. D., J o l l e y , R. L. and Thompson, J . E. (1974) " E f f e c t s of S t a b l e C h l o r i n e - C o n t a i n i n g O r g a n i c s on A q u a t i c E n v i r o n m e n t s " N a t u r e , 249, 675-676. German, A. L. and H o r n i n g , E. C. (1973) " T h e r m o s t a b l e Open Tube C a p i l l a r y Columns f o r t h e H i g h R e s o l u t i o n Gas Chromatography o f Human U r i n a r y S t e r i o d s " J . Chromatog. S c i . , 1 1 , 76-82. G e r s d o r f f , W. A. and S m i t h , L. E. (1940) " E f f e c t o f I n t r o d u c t i o n o f t h e H a l ogens i n t o t h e P h e n o l M o l e c u l e on T o x i c i t y t o G o l d f i a h I , M o n o c h l o r o p h e n o l s " Amer. J . Pharm. 112, 197-204. G i l l e t , J . W. (ed.) (1970) The B i o l o g i c a l Impact o f P e s t i c i d e s i n t h e E n v i r onment Oregon S t a t e U n i v . P r e s s , C o r v a l l i s . G l a z e , W. H., Henderson, J . E., B e l l , J . E. and W h e e l e r , V.A. (1973) " A n a l y s i s of O r g a n i c M a t e r i a l s i n Wastewater E f f l u e n t s A f t e r C h l o r i n a t i o n " J . Chromatogr. S c i . 1 1 , 580-584.  166 G o l d b e r g , M. C , Delong,:L. and S i n c l a i r , M. (1973) " E x t r a c t i o n and Concent r a t i o n o f O r g a n i c S o l u t e s from Water" A n a l . Chem., 45, 89-93. G r i b b l e , G. W. (1974)  "TCDD - A Deadly M o l e c u l e "  Chemistry,  47,.15-18.  G r i e s e r , M. D. and P i e t r z y k , : D . J . (1973) " L i q u i d Chromatography on a Porous P o l y s t y r e n e - D i v i n y l b e n z e n e S u p p o r t " A n a l . Chem., 45,- 1348-1353. G r i f f i n , A. E. and C h a m b e r l a i n , N. S. (1941a) " R e l a t i o n o f Ammonia - N i t r o g e n t o B r e a k p o i n t C h l o r i n a t i o n " Amerc. J . P u b l i c H e a l t h , 31» 803-808. Breakpoint C h l o r i n a t i o n "  (1941b) "Some C h e m i c a l A s p e c t s o f J . New England Water Works A s s . , J55, 371-383.  Grob, K. and Grob, G. (1974) " O r g a n i c Substances i n P o t a b l e Water and i t s P r e c u r s o r - P a r t I I A p p l i c a t i o n s i n t h e A r e a o f Z u r i c h " J . Chromatogr., 90, 303-313. Gunstone, F. D. and P e r e i r a , B. S. (1973) " F a t t y A c i d s , P a r t 4 1 . The H a l o g e n a t i o n o f Some Long C h a i n Hydroxy A l k e n e s w i t h S p e c i a l R e f e r e n c e t o t h e P o s s i b i l i t y o f N e i g h b o u r i n g Group P a r t i c i p a t i o n L e a d i n g to C y c l i c E t h e r s o r L a c t o n e s " ' Chem. P h y s i c s L i p i d s 1 1 , 43-65. Gupta, P., G r o v e r , K. C. and Mehta, R. K. (1972) " K i n e t i c Study o f t h e React i o n Between Ammonia and C h l o r i n e " Z. N a t u r f o r c h B., 27, 637-638. G u s t a f s o n , R. L. and P a l e o s , J . (1971) " I n t e r a c t i o n s R e s p o n s i b l e f o r t h e S e l e c t i v e A d s o r p t i o n o f O r g a n i c s on O r g a n i c S u r f a c e s " i n S. J . F a u s t and J . V. Hunter (eds.) O r g a n i c Compounds i n A q u a t i c Environments M a r c e l Dekker, New Y o r k , Ch. 10. H a l l , K. J . (1970) " N a t u r a l O r g a n i c M a t t e r i n t h e A q u a t i c E n v i r o n m e n t " PhD Thesis, Univ. of Wisconsin, Madison. H a l l , R.CG'. (1974) "A H i g h l y S e n s i t i v e and S e l e c t i v e M i c r o e l e c t r o l y t i c Cond u c t i v i t y D e t e c t o r f o r Gas Chromatography" J . Chromatogr. S c i . , 12, 152-160. Hanby, W. E. and Rydon, H. N. (1946) "The P r e p a r a t i o n o f S t y r e n e C h l o r o h y d r i n " J . Chem. Soc., 114. H a r d t , F. W., Spear, R. D., Washington, D.RR., C l e s c e r i , N. L., Greene, W. J . and McDonald, G. C. (1971) "Apparent M o l e c u l a r Weight D i s t r i b u t i o n i n Raw and T r e a t e d Wastewaters" FWQA P r o j e c t No. 1601,00HN, B i o - E n v i r o n m e n t a l E n g i n e e r . D i v . , R e n s s e l a e r P o l y t e c h n i c I n s t i t . , T r o y , New Y o r k . H a r r i s , L. E.; Budde, W. L. and E i c h e l b e r g e r , J . W. (1974) " D i r e c t A n a l y s i s o f Water Samples f o r O r g a n i c P o l l u t a n t s w i t h Gas Chromatography - Mass S p e c t r o m e t r y " A n a l . Chem. 46, 1912-1917. H a r r i s , L. E., E i c h e l b e r g e r , J . W. and Budde, W.L. (undated) "A P r o c e d u r e f o r the e v a l u a t i o n o f t h e Performance o f a Computerized Gas Chromatography Mass S p e c t r o m e t r y System w i t h a S t a n d a r d R e f e r e n c e Compound" EPA, Cincinnati.  167  Harvey, G. B. (1973) " A d s o r p t i o n o f C h l o r i n a t e d Hydrocarbons from Seawater by a C r o s s l i n k e d P o l y m e r " . EPA - R3 - 73 - 177, E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D. C. Hawkins, E. G. E. (1973) A b s t r . , _80, 3175. Heftmann, E.  (1967)  " P r o d u c t i o n o f 1, Chloroamino C y c l o h e x a n o l "  Chem.  Chromatography• 2nd E d i t i o n , Remhold, New Y o r k .  H e l l e r , S. R. (1972) " C o n v e r s a t i o n a l Mass S p e c t r a l R e t r i e v a l System and I t s Use as an A i d i n S t r u c t u r e D e t e r m i n a t i o n " A n a l . Chem.,44, 1951-1961. H e l l e r , S. R., M c G u i r e , J . M. and Budde, W. L. (1975) GC/MS" E n v i r o n . S c i . and T e c h n o l . , 9_, 210-213. H e l l w i g , D. H. R. 1, 79-91.  (1967)  " T r a c e O r g a n i c s by  " P r e s e r v a t i o n of Waste Water Samples"  Wat. R e s e a r c h  Henry, R. A., S c h m i t , J . A., Dieckman, J . F. and Murphey, F. J . (1971) "Combined H i g h Speed L i q u i d Chromatography and B i o a s s a y f o r t h e E v a l u a t i o n and A n a l y s i s o f an Organophosphate L a r v i c i d e " A n a l . Chem., 43, 1053-1057. H e r t z , H. S., H i t e s , R. A. and Biemann, K. (1971) " I d e n t i f i c a t i o n o f Mass S p e c t r a by Computer S e a r c h i n g a F i l e of Known S p e c t r a " A n a l . Chem., 43, 681-691. H e u k e l e k i a n , H. and Balmat, J . L. (1959) " C h e m i c a l C o m p o s i t i o n o f the P a r t i c u l a t e F r a c t i o n s o f Domestic Sewage" Sewage and I n d u s . Wastes, 31, 413-423. H e u k e l e k i a n , H. and F a u s t , S. J . (1961) " C o m p a t i b i l i t y of Wastewater D i s i n f e c t i o n by C h l o r i n a t i o n " J . Wat. P o l l . C o n t r . Fed., 33, 932-942. H i g u c h i , T. and H u s s a i n , A. (1967) "Mechanism of C h l o r i n a t i o n o f C r e s o l by Chloramine-T. M e d i a t i o n by D i c h l o r a m i n e - T . " J . Chem. Soc. B, 549-552. H i t e s , R. A. (1973) " A n a l y s i s of T r a c e O r g a n i c Compounds i n New E n g l a n d R i v e r s " . J . Chromatogr. S c i . , 11, 570-574. H i t e s , R. A. and Biemann, K. (1968a) "MaSs Spectrometer-Computer System P a r t i c u l a r l y S u i t e d f o r Gas Chromatography of Complex M i x t u r e s " A n a l . Chem., 40, 1217-1221. '  • ( 1 9 6 8 b ) i n D i s c u s s i o n of paper "Computer R e c o r d i n g and P r o c e s s i n g of Low R e s o l u t i o n Mass S p e c t r a " i n E. K e n d r i c k (ed.) Adv. Mass Spectrom. 4_, 37-54, E l s e v i e r , New Y o r k . •' • ( 1 9 7 0 ) "Computer E v a l u a t i o n o f C o n t i n u o u s l y Scanned Mass S p e c t r a of Gas Chromatographic E f f l u e n t s " A n a l . Chem., 42, 855-860. ' ''' • • ( 1 9 7 2 ) "Water P o l l u t i o n : the C h a r l e s R i v e r B o s t o n " S c i e n c e , 178, 158-160.  O r g a n i c Compounds i n  168 Hoak, R. D. (1964) "Recovery and I d e n t i f i c a t i o n o f O r g a n i c s i n Water" Water P o l l . R e s e a r c h 1, 163-180.  Adv.  H o p k i n s , C. Y. and G h i s h o l m , M. J . (1946) " C h l o r i n a t i o n by Aqueous Sodium H y p o c h l o r i t e " Can. J . R e s e a r c h , B 24, 208-210. House, H. D. (1965) Ch. 6.  Modern S y n t h e t i c R e a c t i o n s  W. A. Benjamin, New Y o r k ,  H o w l e t t , M. D. D. and W e l t i , ;D. (1966) "The C o l l e c t i o n o f F r a c t i o n s Separated by G a s - L i q u i d Chromatography P a r t I " A n a l y s t 91_, 291-293. Hoyano, Y., Bacon, V., Summons, R. E., P e r e i r a , W. E., H a l p e r n , B. and D u f f i e l d , A. M. (1973) " C h l o r i n a t i o n S t u d i e s I V . The R e a c t i o n o f Aqueous Hypochlorous A c i d w i t h P y r i m i d i n e and P u r i n e Bases" Biochem. B i o p h y s . R e s e a r c h Comm., 53_, 1195-1199. Huang, J . C. (1971) " E f f e c t o f S e l e c t e d F a c t o r s on P e s t i c i d e S o r p t i o n and D e s o r p t i o n i n t h e A q u a t i c System" J . Wat. P o l l . C o n t r . Fed., 43, 1739-1748. H u n t e r , J . V. (1971) " O r i g i n o f O r g a n i c s from A r t i f i c i a l C o n t a m i n a t i o n " i n S. J . F a u s t and J . V. Hunter (eds.) O r g a n i c Compounds i n . A q u a t i c E n v i r o n m e n t s , M a r c e l Dekker, New Y o r k , Ch. 4. H u n t e r , J . V. and H e u k e l e k i a n , H. (1965) "The C o m p o s i t i o n o f Domestic Sewage F r a c t i o n s " J . Wat. P o l l . C o n t r . Fed., 3_7, 1142-1163. H u r s t , F. B. and Soper, F. G. (1949) "The I n t e r a c t i o n o f N - C h l o r o a c e t a n i l i d e w i t h P h e n o l s . The R a t e o f F o r m a t i o n o f Hypochlorous A c i d from NC h l o r o a c e t a n i l i d e by H y d r o l y s i s " J . Chem. S o c . , 107-110. H u r t u b i s e , R. J . , L o t t , P. F. and D i a s , J . R. (1973) " I n s t r u m e n t a t i o n f o r T h i n - L a y e r Chromatography" J . Chromatogr. S c i . , 1 1 , 476-491. I l i f f , N. (1972) " O r g a n i c Chemicals i n t h e Environment" 3 Feb., 263-265.  New S c i e n t i s t  Isomura, Y. (1967) "Comparative Measurements o f Combined R e s i d u a l C h l o r i n e Around t h e B r e a k p o i n t " B u l l . Chem. Soc. J a p a n , 40, 835-842. J o l l e y , R. L. (1973) " C h l o r i n a t i o n E f f e c t s on O r g a n i c C o n s t i t u e n t s i n E f f l u e n t s from Domestic S a n i t a r y Sewage Treatment P l a n t s " Ph.D. T h e s i s , E c o l o g y , U n i v . o f Tennessee. J o l l y , W. L. (1956i> "The Thermodynamic P r o p e r t i e s o f C h l o r a m i n e , D i c h l o r a m i n e and N i t r o g e n T r i c h l o r i d e " J . Phys. Chem., 60, 507-508. J.W.P.C.F. (1974) " C h l o r i n e f o r E f f l u e n t s i n S h o r t S u p p l y " ; ! . Wat. P o l l . C o n t r . Fed., 46, 2. Junk, G. A. (1972) "Gas Chromatograph - Mass S p e c t r o m e t e r Combinations and T h e i r A p p l i c a t i o n s " I n t . J . Mass Spectrom. IOn Phys., 8_, 1-71.  169' Junk, G. A., R i c h a r d , J . J . , G r i e s e r , M. D., W i t i a k , D., W i t i a k , J . L . , A r g u e l l o , M. D., V i c k , ; R . , S v e c , H. J . , F r i t z , J . S. and C a l d e r , G.V. (1974) "Use o f M a c r o r e t i c u l a r R e s i n s i n t h e A n a l y s i s o f Water f o r T r a c e O r g a n i c C o n t a m i n a n t s " J . Chromatogr. 99, 745-762. K a i s e r , R. E. (1973) " E n r i c h i n g V o l a t i l e Components by a Temperature G r a d i e n t Tube" A n a l . Chem., 45, 965-966. (1974) "Gas Chromatography.in E n v i r o n m e n t a l A n a l y s i s " J . Chroma t o g r . S c i . , 12_, 36-39. K a r a s e k , F. W. (1972) "GC/MS/Computers"  A n a l . Chem., 44, 32A - 42A.  K a r a s e k , F. W., T a t o r e , 0. S. and Kane, D. M. (1973) "Study o f E l e c t r o n Capt u r e Behaviour- 'of S u b s t i t u t e d A r o m a t i c s by Plasma Chromatography" A n a l . Chem., 45, 1210-1214. K a t z , S., C o n f e r , A., S c o t t , C. D., B u r t i s , C. A., J o l l e y , R. L., L e e , N. E., McKee, S. A., M a r y a n o f f , B. E., P i t t , W. W. and Warren, K. S. (1968) "An A n n o t a t e d B i b l i o g r a p h y o f L o w - M o l e c u l a r Weight C o n s t i t u e n t s o f Human U r i n e " AEC R e p o r t 0RNL-TM-2394, Oak R i d g e , Tenn. K a t z , S., P i t t , W. W., S c o t t , C. D. and Rosen, A. A. (1972) "The D e t e r m i n a t i o n s o f S t a b l e O r g a n i c Compounds i n Waste E f f l u e n t s a t Micrograms p e r L i t r e . L e v e l s by A u t o m a t i c H i g h R e s o l u t i o n I o n Exchange Chromatography" Wat. R e s e a r c h , 6_, 1029-1037. K a t z , S. and P i t t , W. W. (1972) "A New V e r s a t i l e and S e n s i t i v e M o n i t o r i n g System f o r L i q u i d Chromatography: C e r a t e O x i d a t i o n and F l u o r e s c e n t Measurement" A n a l . L e t t . 5^, 177-185. Kemp, H. T., L i t t l e , R. L., Holoman, V. L. and Darby, R. L. (1973) Water Q u a l i t y C r i t e r i a D a t a Book - V o l . 5 E f f e c t s of C h e m i c a l s on A q u a t i c L i f e EPA 18050 HLA 09/73, E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D.CC. K e i t h , L. H. (1969) " I d e n t i f i c a t i o n o f O r g a n i c Contaminants Remaining i n a T r e a t e d K r a f t P u l p M i l l E f f l u e n t " P r e s e n t e d a t 157th m e e t i n g D i v i s i o n of Water, A i r and Waste C h e m i s t s , Amer. Chem. Soc., M i n n e a p o l i s , M i n n . (1972) " C h e m i c a l C h a r a c t e r i z a t i o n o f I n d u s t r i a l E f f l u e n t s " P r e s e n t e d a t D i v i s i o n o f Waiter, A i r and Waste Chemists ACS, B o s t o n . Kennedy, D. C. (1973) " M a c r o r e t i c u l a r P o l y m e r i c A d s o r b e n t s " I n d . E n g i n e e r . Chem. P r o d . R e s . D e v e l . 12, 56-61. Khan, S. U. (1972) " A d s o r p t i o n o f P e s t i c i d e by Humic S u b s t a n c e s , A Review" E n v i r o n . L e t t . , 3_, 1-12. Kim, B..R., S n o e y i n k , V. L. and Saunders, F. M. (1974) " A d s o r p t i o n o f O r g a n i c Compounds b y S y n t h e t i c R e s i n s " p r e s e n t e d a t Wafcff P o l l . C o n t r . F e d . Conf., Denver, C o l o . , O c t . K i r k l a n d , J . J . (ed.) (1971) Modern P r a c t i c e o f L i q u i d Chromatography Interscierice, Toronto.  Wiley-  170 K i t t r e l l , F. W. and F u r f a i , S. A. (1963) " O b s e r v a t i o n s of C o l i f o r m B a c t e r i a i n Streams" J . Wat. P o l l . C o n t r . Fed., 35^ 1361-1385. K o b a y a s h i , S. and L e e , G. F. (1964) " F r e e z e C o n c e n t r a t i o n of D i l u t e S o l u t i o n s " A n a l . Chem., 3 6 , 2197-2198.  Aqueous  K o b a y a s h i , T. and Okuda, T. (1972) "A C o n t i n u o u s Method o f M o n i t o r i n g Water Q u a l i t y by C h l o r i n e Consumption Under U.V. R a d i a t i o n " Wat. R e s e a r c h , 6_, 197-209. Koch, F. A., H a l l , K. J . and Y e s a k i , I . (1976) " T o x i c S u b s t a n c e s i n Wastew a t e r o f a M e t r o p o l i t a n A r e a " Westwater R e s e a r c h C e n t e r , U n i v . o f B.C., Vancouver, ( i n p r e s s ) . K o l a t t u k u d y , P. E. and P u r d y , R. E. (1973) " I d e n t i f i c a t i o n o f C u t i n , a L i p i d B i o p o l y m e r , as S i g n i f i c a n t Component o f Sewage S l u d g e " E n v i r o n . S c i . T e c h n o l . , _7, 619-623. K o t t , Y. (1969) " E f f e c t s o f Halogens on A l g a e - I I I . F i e l d E x p e r i m e n t " R e s e a r c h _3> 265-267. K o t t , Y. and E d l i s , J . (1969) " E f f e c t s o f Halogens on A l g a e - I . S o r o k i n i a n a " Wat. R e s e a r c h , 3 ^ 2 5 1 - 2 5 6 .  Wat.  Chlorella  K o v a c i c , P., Lowery, M. K. and F i e l d , K. W. (1970) " C h e m i s t r y o f N-Bromamines and N - C h l o r a m i n e s " Chem. Rev. 7£, 640-665. K r e j c i , M., Rounda, M. and V a v r o u c h , Z. (1974) " A n a l y s i s o f N o n - I o n i c S u r f a c t a n t s o f t h e A l k y l P h e n o l Type i n the P r e s e n c e o f M i n e r a l O i l by Means o f L i q u i d Chromatography" J . Chromatogr..91, 549-556. Kwok, K. S., V e n k a t a r a g h a v a n , R. and M c L a f f e r t y , F. W. (1973) "Computer - A i d e d I n t e r p r e t a t i o n o f Mass S p e c t r a . I l l A S e l f T r a i n i n g I n t e r p r e t i v e and R e t r i e v a l System" J . Amer. Chem. S o c , 95_, 4185-4194. L a o , R. C , Thomas, R. S., O j a , H. and D u b o i s , L. (1973) " A p p l i c a t i o n o f a Gas Chromatography- Mass S p e c t r o m e t e r - D a t a P r o c e s s o r C o m b i n a t i o n t o the A n a l y s i s of the P o l y c y c l i c Aromatic Hydrocarbon Content of A i r b o r n e P o l l u t a n t s " Adv. Chromatogr., H o u s t o n , p. 229-240. Laubusch, E. J . (1959) " S t a n d a r d s of P u r i t y f o r L i q u i d C h l o r i n e " J . Amer. Water Works A s s . , _51, 742-748. L e a t h a r d , D. A. and S h u r l o c k , : B . C. (1970) I d e n t i f i c a t i o n Methods i n Gas Chromatography W i l e y , New Y o r k , Ch. 9, 10/ Lee, G. F., Kumke, G. W. and B e c k e r , S. L (1965) "Recovery o f O r g a n i c s from a E u t r o p h i c L a k e by Carbon A d s o r p t i o n T e c h n i q u e " I n t . J . A i r Water P o l l u t . , 9, 69-73. L e e , G. F. and M o r r i s , J . C. (1962) " K i n e t i c s of C h l o r i n a t i o n of P h e n o l - C h l o r o p h e n o l i c T a s t e s and Odors" I n t . J . A i r Water P o l l u t . 6^, 4 1 6 - 4 3 1 . L e i t h e , W. (1973) The A n a l y s i s of O r g a n i c P o l l u t a n t s i n . W a t e r and Wastewater . T r a n s l a t e d by S.T.S. I n c . Ann A r b o r , Ann A r b o r , M i c h .  171  L i c h t e n b e r g , J . ; J . (1973) " P r e s e r v a t i o n o f PCB Samples" EPA - D u l u t h , PCB N e w s l e t t e r No. _5 (29 J a n ) , 3. L i l l i a n , ;D., S i n g h , H. B., A p p l e b y , A., Lobban, L. e t a l . (1975) " A t m o s p h e r i c F a t e s o f H a l o g e n a t e d Compounds" E n v i r o n . S c i . T e c h n o l . , 9_, 1042-1048. L i s t e r , M. W. (1965) O x y a c i d s , Oldbourne P r e s s London P. 39-45, 87-112. A. D. L i t t l e ( I n c . ) (1970) Water Q u a l i t y C r i t e r i a D a t a Book V o l . 1 O r g a n i c C h e m i c a l P o l l u t i o n o f F r e s h w a t e r . EPA 18010 DPV 12/70, E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D. C. L o e h r , R. C. and B e r g e r o n , B. (1967) " P r e s e r v a t i o n o f Waste Water Samples P r i o r t o A n a l y s i s " Watt R e s e a r c h 1, 577-586. L o e h r , R. C. and K u k a r , T. J . (1965) "Removal o f L i p i d s by C o n v e n t i o n a l Waste Treatment Methods" I n t . J . A i r Water P o l l u t . , 9_, 479-485. Longbottom, J . E. (1972) " D e t e r m i n a t i o n o f N i t r i l o t r i a c e t i c A c i d by H i g h Speed I o n Exchange Chromatography" A n a l . Chem.,44, 418-420. M a j e r , J . R., P e r r y , R. and Reade, M. J . (1970) "The Use o f T h i n - L a y e r Chromatography and Mass S p e c t r o m e t r y f o r the R a p i d E s t i m a t i o n o f T r a c e Q u a n t i t i e s of A i r P o l l u t a n t s " J . Chromatogr., 4£, 328-333. Manka, J . , Rebhum, M., Mandelbaum, A. and B o r t i n g e r , ;A. (1974) " C h a r a c t e r i z a t i o n of O r g a n i c s i n Secondary E f f l u e n t s " E n v i r o n . S c i , T e c h n o l . , j8, 1017-1020. M a r t e n s , D. W. and S e r v i z i , J . A. (1974) " A c u t e T o x i c i t y o f M u n i c i p a l Sewage t o F i n g e r l i n g Sockeye Salmon" I n t . P a c i f i c Salmon F i s h . Comm. Rep. No. 29, New W e s t m i n s t e r .  Using Sulphur D i o x i d e " New W e s t m i n s t e r , B. C.  (1975) " D e c h l o r i n a t i o n o f M u n i c i p a l Sewage I n t . P a c i f . Salm. F i s h . Comm. P r o g r . Rep. No. 32,  Marx, J . L. (1974) " D r i n k i n g Water: A n o t h e r Source o f C a r c i n o g e n s ? " S c i e n c e , 186, 809-811. Mathur, S. P. (1974) " P h t h a l a t e E s t e r s i n t h e Environment: N a t u r a l P r o d u c t s ? " J . E n v i r o n . Q u a l . , _3» 189-197.  Pollutants or  Mauger, R. P. and Soper, F. G. (1946) " A c i d C a t a l y s i s i n t h e F o r m a t i o n o f Chloroamides from H y p o c h l o r o u s A c i d . N - C h l o r i n a t i o n by H y p o c h l o r i t e Ions and A c y l H y p o c h l o r i t e s " J . Chem. S o c , 71-75. M e l l o r , J . W. (1927) A Comprehensive T r e a t i s e oh I n o r g a n i c and T h e o r e t i c a l C h e m i s t r y Longmans, Green and Co., London, V o l . I I , p. 240-305. (1928) A Comprehensive T r e a t i s e on I n o r g a n i c and T h e o r e t i c a l C h e m i s t r y Longman, Green and.Coi, London V o l . I l l , p. 218-219. M e i n e r s , A. F. and M o r r i s s , F. V. (1964) "The L i g h t C a t a l y z e d O x i d a t i o n o f S t a r c h w i t h Aqueous' C h l o r i n e " J . Org. Chem., 29_, 449-452.  172 Merck,.(1968) The Metck Iridex 8 t h E d i t i o n , M e r c k , Rahway. Merkehs, J . C. (1958) " S t u d i e s on t h e T o x i c i t y o f C h l o r i n e and C h l o r a m i n e s t o the Rainbow T r o u t " Water Waste T r e a t . J . _7, 150-151. M e t c a l f , W. S. (1942) "The A b s o r p t i o n S p e c t r a o f Mono-, D i - , and T r i c h l o r a m i n e s and Some A l i p h a t i c D e r i v a t i v e s " J . Chem. Soc., 148-150. M i l a z z o , B., P e t r a k i s , L. and Brown, P. M. ( 1 9 6 8 ) " M i c r o s a m p l i n g T e c h n i q u e s f o r Combined Gas Chromatography and H i g h - R e s o l u t i o n N u c l e a r M a g n e t i c Resonance Spectroscopy',,' A p p l . S p e c t r o s c , 22, 574-575. M i l l e r , R. W. (1974) " S u s c e p t i b i l i t y o f t h e F e t u s and C h i l d t o C h e m i c a l P o l l u t a n t s " S c i e n c e , 184, 812-814 (May 1 7 ) . M o r r i s , J . C. (1965) " K i n e t i c s o f R e a c t i o n s Between Aqueous C h l o r i n e and N i t r o g e n Compounds" P r e s e n t e d a t 4 t h R u t g e r s R e s i - C o n f . , R u t g e r s U n i v . , June 15-18. Moye, C. J . and S t e r n h e l l , S. (1966) "The D e g r a d a t i o n o f A r o m a t i c R i n g s : A c t i o n o f H y p o c h l o r i t e s on P h e n o l s " A u s t . J . Chem., 19_, 2107-2118.  The  Muegge, 0. J . (1956) " P h y s i o l o g i c a l E f f e c t s o f H e a v i l y C h l o r i n a t e d D r i n k i n g Water" J . Amer. Water Works A s s . , 48_, 1507-1509. Murtaugh, J . and Bunch, R. L. (1965) " A c i d i c Components o f Sewage E f f l u e n t s and R i v e r Water" J . Wat. P o l l . C o n t r . Fed., _37, 410-415. McDermott, D. J . (1974) " C h a r a c t e r i s t i c s o f M u n i c i p a l Wastewaters, 1971-1973". C o a s t a l Water R e s e a r c h Proijiect A n n u a l R e p t . , S o u t h e r n C a l i f o r n i a C o a s t a l R e s e a r c h P r o j e c t , E l Segundo, C a l . p. 87-96.• M c G u i r e , J . M., A l f o r d , A. L. and C a r t e r , M. H. (1973) " O r g a n i c P o l l u t a n t I d e n t i f i c a t i o n U t i l i z i n g Mass S p e c t r o m e t r y " EPA RZ - 73 - 234, E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D . C . McKee, J . W., Brokaw, C. J . and M c L a u g h l i n , R. T. (1960) " C h e m i c a l and C o l i c i d a l E f f e c t s o f Halogens i n Sewage" J . Wat. P o l l . C o n t r . Fed., 3_2, 795-819. McKee, J . E. and W o l f , H. W. (1971) Water Q u a l i t y C r i t e r i a 2nd E d i t i o n , S t a t e Water R e s o u r c e s C o n t r o l B o a r d , C a l i f o r n i a . M c L a f f e r t y , F. W. (1973) " I n t e r p r e t a t i o n o f Mass S p e c t r a " W. A. Benjamin, Don M i l l s , Ont. McLean, R. I . (1973) " C h l o r i n e and Temperature S t r e s s on E s t u a r i n e I n v e r t e b r a t e s " J . Wat. P o l l . C o n t r . F e d . , ^ 5 , 837-841. McLean, W.R., S t a n t o n , D . L . and P e n k e t h , G. E. (1973) "A Q u a n t i t a t i v e Tunable Element S e l e c t i v e D e t e c t o r f o r Gas Chromatography" A n a l y s t , 98, 432-442. McNiven, N. L. (1965) "Chromatography" i n R.G.J. M i l l e r (ed.) L a b o r a t o r y Methods i n I n f r a r e d S p e c t r o s c o p y Heyden, London, Ch. 6. N o l l e r , C. R. (1957) C h e m i s t r y o f O r g a n i c Compounds 2nd E d i t i o n , Saunders, Philadelphia.  173 Norman, M. F. (1936) "The O x i d a t i o n . o f Amino A c i d s by H y p o c h l o r i t e ;1. G l y c i n e " Biochem.;J. 30, 4 8 4 4 9 6 . 7  Novak, J . , Z l u t i c k y , J . K u b e l k a , V. and Mostecky, J . (1973) " A n a l y s i s of O r g a n i c C o n s t i t u e n t s P r e s e n t i n D r i n k i n g Water" J . Chromatogr., 76, 45-50. O e r t e l , R. P. and Myhre, D. V. (1972) "Raman S p e c t r a - S t r u c t u r e C o r r e l a t i o n s f o r P y r a z i n e s " A n a l . Chem. , 44, 1589-1593. O l v e r , J . W., K r e y e , W. C. and K i n g , P. H. (1974) "Heavy M e t a l R e l e a s e due to C h l o r i n e O x i d a t i o n of Wastewater Treatment P l a n t S l u d g e s " P r e s e n t e d a t 47th Wat. P o l l . C o n t r . Fed. C o n f e r e n c e , Denver C o l . , Oct. 7-11. Ongerth, H. J . , S p a t h , D. P., Crook, J . and Greenberg, A. E. (1973) " P u b l i c H e a l t h A s p e c t s of O r g a n i c s i n Water" J . Amer. Water Works A s s . , j65, 495498. Onuska,;F. (1973) "Gas Chromatographic D e t e r m i n a t i o n of A l i p h a t i c Amines and Q u a n t i t a t i v e A n a l y s i s of S m a l l Amounts of D i e t h y l Amine i n Wastewater" Wat. R e s e a r c h , _7, 835-841. P a i n t e r , H. A. (1971) " C h e m i c a l , Ehys-iicail arid B i o l o g i c a l C h a r a c t e r i s t i c s of Wastes and Waste E f f l u e n t s " i n L.L. C i a c c i o (ed.) Water and Water P o l l u t i o n Handbook M a r c e l Dekker, New Y o r k , V o l . I , p. 329-364. (1973) " O r g a n i c Compounds i n S o l u t i o n i n Sewage E f f l u e n t s " Chem. I n d . (London), 1, 818-822. P a i n t e r , H. A. and V i n e y , M. (1959) " C o m p o s i t i o n of a Domestic chem. M i c r o b i o l o g . T e c h n o l . E n g i n e e r . , 1, 143-162.  Sewage" J . B i o -  P a i n t e r , H. A., V i n e y , M. and Bywaters, A. (1961) " C o m p o s i t i o n of Sewage and Sewage E f f l u e n t s " Water P o l l . C o n t r . I n s t . Sewage P u r i f i c . J . P r o c . , 304314. P a l i n , A. T. (1950). "A Study of the C h l o r o D e r i v a t i v e s of Ammonia and R e l a t e d Compounds, W i t h S p e c i a l R e f e r e n c e t o T h e i r F o r m a t i o n i n the C h l o r i n a t i o n of N a t u r a l and P o l l u t e d Waters" Water and Water E n g i n e e r . , 54_, 151-159, 189-200, 248-256. P a t t o n , W., Bacon, V., D u f f i e l d , A.M., H a l p e r n , B., Hoyano, Y., P e r e i r a , W. and L e d e r b e r g , J . (1972). " C h l o r i n a t i o n S t u d i e s I . The R e a c t i o n s of Aqueous Hypochlorous A c i d w i t h C y t o s i n e " Biochem. B i o p h y s . Res, Comm., 48^, 880-884. P e r e i r a , W., Hoyano, Y., Summons, R. E., Bacon, V. A. and D u f f i e l d , A. M.(1973) " C h l o r i n a t i o n S t u d i e s I I . The R e a c t i o n of Aqueous Hypochlorous A c i d w i t h -Amino A c i d s and P e p t i d e s " Biochem. B i o p h y s . A c t a , 313, 170-180. P i t t , W. W. and S c o t t , C. D. (1973) "Measurement of M o l e c u l a r O r g a n i c Contains i n a n t s i n p o l l u t e d Waters" ' i n E c o l o g y and A n a l y s i s ^ o f y T r a e e ^ P r o g r e s s Rept. ORNL-NSF-EATC-1 Oak R i d g e , TEnn. June 19.72 - Jan 1973, Sec. 4.10. P r a k a s h , IL. and S i s l e r , H. H.  (19.70). "Gas  Phase R e a c t i o n of Chloramine  With_  174  O l e f i n s and S a t u r a t e d Hydrocarbons."  J . Org. Chem., 35, 3111^3114.  P r e s s l e y , T, A., B i s h o p , D. F. and Roan, S". 0-9-7 2 i "Ammonia N i t r o g e n .Removal by B r e a k p o i n t C h l o r i n a t i o n " E n v i r o n . S c i . T e c h n o l . ,_6_, 622-^628,' ' ' (1973) "Ammonia - N i t r o g e n Removal by B r e a k p o i n t C h l o r i n a t i o n " EPA-670/2-73-058, E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D. C. R a i n s , B. A., DePrimo, M. J . and G r o s e c l o s e , I.LL. (1973). "Odors E m i t t e d from Raw and D i g e s t e d Sewage Sludge" EPA-670/2-73-098, E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D. C. Rebhum, M. and Manka, J . (1971) " C l a s s i f i c a t i o n of O r g a n i c s i n Secondary f l u e n t s " E n v i r o n . S c i . T e c h n o l . , .5, 606-609.  Ef-  R i c k e r t , D. A. and Hunter, J . V. (1971) " G e n e r a l N a t u r e of S o l u b l e and P a r t i c u l a t e O r g a n i c s i n Sewage and Secondary E f f l u e n t " Wat. R e s e a r c h , .5, 421436. R o b e r t s o n , J . L. (1972) " C h a r a c t e r i z a t i o n of R e s i d u a l O r g a n i c s from B i o l o g i c a l Treatment" M. Eng. T h e s i s , McMaster U n i v . , H a m i l t o n . Rogers, I . H. and K e i t h , L. H. (1974) " O r g a n o - c h l o r i n e Compounds i n K r a f t B l e a c h i n g Wastes. I d e n t i f i c a t i o n of Two C h l o r i n a t e d G u i a c o l s " E n v i r o n . Can. F i s h . Marine Serv. Tech. Rep. No. 465, Vancouver. Rogers, I . H. and Mahood, H. W. (1974) "Removal of F i s h - T o x i c O r g a n i c S o l u t e s from Whole R r a f t E f f l u e n t by B i o l o g i c a l O x i d a t i o n and the R o l e of Wood F u r n i s h E x t r a c t i v e s " F i s h . Res. Bd. Can. Tech. Rep.,No. 434, Vancouver. Rook, J . J . (1974). " F o r m a t i o n of Haloforms D u r i n g C h l o r i n a t i o n of N a t u r a l Wate r s " Water T r e a t . Examin., 23_, 234-243. R u d o l f s , W. and Balmat, J . L. (1952) " C o l l o i d s i n Sewage I . S e p a r a t i o n of Sewage C o l l o i d s w i t h the A i d of the E l e c t r o n M i c r o s c o p e " Sew. I n d . Wastes, _24, 247-253. R u d o l f s , W. and Heinemann, B. (1939) "Growth Promoting Substances i n Sewage and Sludge I I I . V i t a m i n C, C a r o t e n e , Amino A c i d s , F a t t y A c i d s , N a p t h y l Compounds" Sew. I n d . Wastes, _L1_, 587-594. ' S a n c i e r , K. M., Brady, A. P. and Lee, W, W. (1964). " A b s o r p t i o n S p e c t r a of S o l u t i o n s of Gtyanuric A c i d and i t s C h l o r i n a t e d D e r i v a t i v e s " Spectroehem. A c t a , 20_, 397-403. S a w i c k i , C. R. and S a w i c k i , E. (1972) " T h i n L a y e r Chromatography i n A i r P o l l u t i o n Research" i n A. N i e d e r w i e s e r and G. f a t a k i ( e d s . i P r o g r e s s i n T h i n L a y e r Chromatography and R e l a t e d Methods Ann A r b o r , Ann A r b o r , M i c h . , V o l . I l l , p. 2 3 3 - 2 4 5 . ' " Sax, N. I . ( e d . l (1974). I n d u s t r i a l P o l l u t i o n 7an N o s t r a n d R e i n h o l d , T o r o n t o , S c o t t , C. D., J o l l e y , R. L., P i t t , W. W. and Johnson, W. F. 0-9701 " P r o t o t y p e Systems f o r the Automated H i g h ^ R e s o l u t i o n A n a l y s i s of TTV-Absorbing Cons t i t u e n t s and Carbohydrates i n Body F l u i d s " Amer, J . C l i n , P a t h o l . , 5 3 ,  175 701-712. S e r v i z l , J , A,, and Gartens,, JJ,..W^._.U974)_,"Preliminary. Surrey of T o x i c i t y of C h l o r i n a t e d Sewage to Sockeye arid " P i n k Salmon" I n t , P a c i f i c - Salmon F i s h , Comm. P r o g , Rep. No, 3 0 , New W e s t m i n s t e r . S i e g l , A. and Degens, E. T. 0.966) " C o n c e n t r a t i o n of D i s s o l v e d Amino A c i d s from S a l i n e Waters by Legand Exchange Chromatography" Science,* 151, 1098-1101. S i l v e y , J . K. G. , A b s h i r e , R, L, and Nunez, W. J , (1974) " B a c t e r i o l o g y o f C h l o r i n a t e d and U n c h l o r i n a t e d Wastewater E f f l u e n t s " J . Wat. P o l l , C o n t r , Fed. ,-46, 2153-2162, S i n g l e y , J , E., Kerchmer, C. J . and M i u r a , R,(1974) " A n a l y s i s o f C o r p r o s t a n o l , An I n d i c a t o r o f F e c a l C o n t a m i n a t i o n " EPAT-660/2^-74=021, E n v i r o n m e n t a l P r o t e c t i o n Agency, Washington, D, C, S m i t h , J . C. C19-34). " A l k a l i n e H a l o g e n a t i o n P a r t I , Benzoate" J , Chem, Soc,, 213-^218,  The C h l o r i n a t i o n o f Sodium  S m i t h , L, L, and Gourdon, R. E. 0-9.69) " S t e r o l M e t a b o l i s m T- I V , D e t e c t i o n o f 5/?-CholestanT.3/ ^ o l i n P o l l u t e d Waters" Wat, Research,-3_, 141^148. Soper, -F. G. and S m i t h , G, F. 0-926). "The H a l o g e n a t i o n o f P h e n o l s " J , Chem. S o c , 1582^1591, S p e c t o r , W.  S. (1956) Handbook o f B i o l o g i c a l Data Saunders, P h i l a d e l p h i a ,  S p i t z , H. (1969) " I m p u r i t i e s i n S i l i c a G e l as a C r i t i c a l F a c t o r i n the Quali^t a t i v e E v a l u a t i o n of an O r g a n i c Compound" J . Chromatogr. ,-42, 384-r388. S t a s i u k , W. N., H e t l i n g , L, J , and S h u s t e r , W, W. (1974) " N i t r o g e n Removal by C a t a l y s t ^ A i d e d B r e a k p o i n t C h l o r i n a t i o n " J , Wat, P o l l , C o n t r . Fed,,-46, 1974-1983. Stenhagen, E., Abrahamsson, S, and M c L a f f e r t y , F. W. ( e d s . ) Q . 9 7 4 ) - R e g i s t r y of Mass S p e c t r a l Data W i l e y - ^ I n t e r s c i e n c e , T o r o n t o , S u p i n a , W, R, 0-974). The-Packed- Columnvin-Gas Chromatography Pa.  Suprelco, B e l i e f onte.  Swain, C, G, and C r i s t , D, R, 0-9.72). "Mechanism o f C h l o r i n a t i o n b y H y p o c h l o r o u s A c i d , The L a s t o f Chloroniumnro I o n , C l ' J , Amer. Chem. S o c . , ^ 4 , 3195^ 3200, ^ + J  Tanner, G. , T r a s o l i n i , G, and Nemeth, L. 0-9731 "A Study on Wastewater Charac^t e r i s t i c s o f G r e a t e r Vancouver Sewage Treatment P l a n t s and M a j o r Sewers" EPS 5TPRT.73^11, Environment Canada, Ottawa, T a r a s , M. J . O-950 " P r e l i m i n a r y S t u d i e s on the C h l o r i n e Demand o f S p e c i f i c C h e m i c a l Compounds" J . Amer, Water Works Ass,,* 42, 462-^475, 0-953) " E f f e c t of F r e e R e s i d u a l C h l o r i n a t i o n on N i t r o g e n Compounds i n Water" J . Amer, Water Works A s s . 45, 47^61,  176  Time (Canadian E d i t i o n ) . (1974) " C h l o r i n a t i o n T h r e a t ? " 25 Nov.,  p. 61.  Thompson, E. 0. P. (1954) " M o d i f i c a t i o n of T y r o s i n e D u r i n g P e r f o r m i c A c i d O x i d a t i o n " Biochem. B i o p h y s . A c t a , 15_, 440-441. T r a s h , C. R. (1973) " M e t h y l s i l i c o n e s - T h e i r C h e m i s t r y and Use as Gas Chromatog r a p h i c L i q u i d Phases" J . Chromatogr. , S c i , , 1 1 , 196-198. T u l e e n , D. L. (1967) " C h l o r i n a t i o n of Unsymmetrical B e n z y l i c S u l p h i d e s w i t h NC h l o r o - s u c c i n i m i d e " J . Org. Chem., 32, 4006-4008. Uthe, J . F., R e i n k e , J . and C e s s e r , H. (1972) " E x t r a c t i o n of O r g a n o c h l o r i n e P e s t i c i d e s from Water by Porous P o l y u r e t h a n e Coated w i t h S e l e c t i v e Abs o r b e n t " E n v i r o n . L e t t . , _3, 117-135, V a l l e n t y n e , J . R. (1957) "The M o l e c u l a r Nature of O r g a n i c M a t t e r i n Lakes and Oceans, w i t h L e s s e r R e f e r e n c e to Sewage and T e r r e s t r i a l S o i l s " J . F i s h . Res. Bd. Can., 14, 33-82. (1967) "Pheromones and R e l a t e d Substances" i n H, L, Golterman and R, S, Clymo (eds.) Chemical; Environment and the A q u a t i c H a b i t a t N,V, N o o r d - H o l l a n d s c h e , Amsterdam," p, 252-254, Van Buren, J . B, and Dence, C. W, (1967) " I d e n t i f i c a t i o n and E s t i m a t i o n o f P r i m a r y P r o d u c t s from the R e a c t i o n s of C h l o r i n e w i t h L i g n i n Model Compounds" Tappi,^5Q, 553-558. Vancouver Sun  (19741 " C h l o r i n a t i o n - Cancer L i n k Eyed" 2 Nov,,  p. 2,  Van Tamelen, E, E,, H a a r s t e d , 7, B, and O r v i s , R, L, 0-9.68). " H y p o h a l i t e - I n d u c e d O x i d a t i v e D e c a r b o x y l a t i o n of ^Amino A c i d s " Tetrahedron,\ 24, 687-704, s  'Venkataraghavan, R, , M c L a f f e r t y , F, W", and Van L e a r , G, E, (19.69). "ComputerA i d e d I n t e r p r e t a t i o n of Mass S p e c t r a " Org, Mass Spectrum, 2_, 1-15, 8  V i n s o n , J , A,, Burke, G, A., Hager, B., L,, Casper, D, R, , N y l a n d e r , W, A, and M i d d l e m i s s , R. J , (19731 "An Improved Method f o r the I s o l a t i o n of P h e n o l s from Water" E n v i r , L e t t , ,\_5, 199^207, Vis:,wanathan, C. V., B a i , B. M. and P i l l a i , S, C, (1962) " F a t t y M a t t e r i n A e r o b i c and A n a e r o b i c Sewage S l u d g e s " J . Wat, P o l l . C o n t r , Fed.,-^4, 189194, V o l l b r a c h t , L. , Huysmans, W. G. B, , M i j s , W. J . and Hageman, H, J , (19.68) " C h l o r i n a t i o n of P h e n o l and Some A l k y l " - and A r y l - S u b s t i t u t e d P h e n o l s i n A c e t i c A c i d " T e t r a h e d r o n , 24_, 6265-6275, Walsh, J . T,, C h a l k , R. G, and M e r r i t t , C. (1973) " A p p l i c a t i o n s of L i q u i d Chromatography t o P o l l u t i o n Abatement S t u d i e s of M u n i t i o n Wastes" Adv, Chromatogr., p, 218-233. Walsh, F. and M i t c h e l l , R. (1974) " I n h i b i t i o n of I n t e r - M i c r o b i a l P r e d a t i o n by C h l o r i n a t e d Hydrocarbons" N a t u r e , 249, 673-674. Wangen, L, E,, Woodward, W.  S. and I s e n h o u r , T, L, 0-971) " S m a l l Computer,  Mag-  177 n e t i c Tape O r i e n t e d , R a p i d Search System A p p l i e d t o Mass S p e c t r o m e t r y " A n a l . Chem., 4 3 , 1605-1614. Ward, S. D. (1973) "Computerized Data A c q u i s i t i o n and H a n d l i n g " i n D. H. W i l l i a m s (ed.) Mass Spectrometry The Chemical S o c i e t y , London, V o l . 2, p. 264-301. Watson, S. H. and K i b l e r , C, S. (1934) " D r i n k i n g Water as a Cause o f Asthma" J . A l l e r g y , - 5 , 197. • Webb, K. J . and Wood. L. (1973) "Improved Techniques f o r A n a l y s i s o f F r e e Amino A c i d s i n Sea Water" i n A u t o m a t i 6 n - i n - C h e m i s t r y T e c h n i c o n Symposium, p. 440-444. Webb, R. (1973)"XAD R e s i n s , Urethane Foams, S o l v e n t E x t r a c t i o n f o r I s o l a t i n g O r g a n i c Water P o l l u t a n t s " ROAP 16 ADN Task 37, E n v i r o n m e n t a l P r o t e c t i o n Agency, A t h e n s , Ga, Weber, J . B, (1972) " I n t e r a c t i o n o f O r g a n i c P e s t i c i d e s w i t h P a r t i c u l a t e M a t t e r i n A q u a t i c and S o i l Systems" i n R, F, Gould (ed.) F a t e o f O r g a n i c P e s t i - d d e s - i n - A q u a t i c ' Environments Advan. Chem, No. I l l American Chemical Soci e t y , ' W a s h i n g t o n , D. C, p. 55-120. W e i l , I , and M o r r i s , J . C. (1949a). " K i n e t i c S t u d i e s on t h e Chloramines I . The Rates of F o r m a t i o n of Monochloramine, N-Chloromethy1amine and N - C h l o r o d i methylamine" J , Amer. Chem. Soc,, 7JL, 1664-1671. ------^-'' '• - ' - - ; (1949b) " E q u i l i b r i u m S t u d i e s on N-Chloro Compounds IT. The Base S t r e n g t h o f N-Chloro D i a l k y l a m i n e s and o f Monochloramines" J , Amer, Chem, Soc.,-91, 3123-3126, Wershaw-, R, L, , B u r c a r , P, J , and G o l d b e r g , M. C, (1969) " I n t e r a c t i o n o f P e s t i c i d e s w i t h N a t u r a l O r g a n i c M a t t e r " E n v i r o n , S c i , T e c h n o l . ,\3_, 271-273, West,. R, A. and B a r r e t t , H, W, (19.541 " S y n t h e s i s o f C h l o r o p y r i m i d i n e s by React i o n w i t h N v C h l o r o s u c c i n i m i d e , and by Condensation Methods" J , Amer, Chem, Soc. ,N|6,- 3146^3148, White, G, C. C1972X Handbook o f C h l o r i n a t i o n Van N o s t r a n d , T o r o n t o . W i l s o n , B. P. and Cochrane, W. P, (1975) "Comparison o f t h e Coulson and H a l l E l e c t r o l y t i c Conductivity Detectors f o r Nitrogen Containing P e s t i c i d e s " J . Chromatogr,?., ,106, 174-179. Woodwell, G, M,, W u r s t e r , C, F, and I s a a c s o n , P, A. (1967) "DDT R e s i d u e s i n an E a s t Coast E s t u a r y : A Case of B i o l o g i c a l C o n c e n t r a t i o n of a P e r s i s t e n t I n s e c t i c i d e " S c i e n c e , 156, 821-823. W r i g h t , N. C, (1926) "The A c t i o n o f H y p o c h l o r i t e s on Amino A c i d s and P r o t e i n s " Biochem. J . , 20, 524-532, Y a g i l , G, and Anbar, M. (1962) "The K i n e t i c s of H y d r a z i n e F o r m a t i o n from C h l o r amine and Ammonia" J . Amer, Chem., S o c , J54, 1777-1782. Zaloum, R. (1973) " C h l o r i n a t i o n o f S o l u b l e R e s i d u a l O r g a n i c s i n Sewage E f f l u e n t s " M. Eng, T h e s i s McMaster U n i v . H a m i l t o n ,  178  Z i l l i c h , J , A. (19.72) " T o x i c i t y o f Combined C h l o r i n e R e s i d u a l s t o F r e s h w a t e r F i s h " J . Wat. P o l l . C o n t r . 'Fed, ,-44, 212-220, Z l a t k i s , A. (1975) P e r s o n a l Communication, J a n , 13, Dept, of C h e m i s t r y , U n i v . of Houston. Z l a t k i s , A., L i c h t e n s t e i n , H, A, and T i s h b e e , A, (19J3aX " C o n c e n t r a t i o n and A n a l y s i s o f T r a c e V o l a t i l e O r g a n i c s i n Gases and B i o l o g i c a l F l u i d s w i t h a New S o l i d A d s o r b e n t " Chromatographic,- 6_, 67-70, .  .  .  ^  .  x  ...  ,  ^  .  ----• -- ~ ^ ; ^ ^. " -et-a-1, 0-9J3E). " C o n c e n t r a t i o n . and A n a l y s i s of V o l a t i l e U r i n a r y M e t a b o l i t e s " J , Chromatogr, S c i . , l l , 299-302. xx  X X x x  v x >  x x  x  x  x x  Z l a t k i s , A., B e r t s c h , W. , L i c h t e n s t e i n , H, A,, T i s h b e e , A, ,--et-caL, (19.73c) " P r o f i l e of V o l a t i l e M e t a b o l i t e s i n U r i n e by Gas Chromatography - Mass S p e c t r o m e t r y " A n a l , Chem,,--45, 763-767, Z s o l n a y , A. 0-9731 " D e t e r m i n a t i o n of A r o m a t i c Hydrocarbons i n Submicrogram Q u a n t i t i e s i n Aqueous Systems by Means of H i g h Performance L i q u i d Chroma t o g r a p h y " Chemosphere, 2, 253-260, x  "-- ^ ( 1 9 7 4 I " D e t e r m i n a t i o n o f T o t a l Hydrocarbons i n Sea Water a t the M i c r o g r a m L e v e l W i t h a Flow C a l o r i m e t e r " J , Chromatogr, ,- 90, 79.-85, x  Zuckerman, M, M, and M o l o f , A, A, Q 9 7 0 ) "High Q u a l i t y Reuse Water by C h e m i c a l P h y s i c a l Wastewater Treatment" J , Wat, p o l l , C o n t r . Fed., 42, 437-456, Zweig, G.aand Sherma, J . (eds.) (1972) Handbook of Chromatography Cleveland, Vol I ,  C,R,C. P r e s s ,  179  APPENDIX I REFINEMENTS TO THE AQUEOUS CHLORINE-AMMONIA MODEL 1.  R e a c t i o n o f C h l o r i n e w i t h Water The  (1965).  f o l l o w i n g d a t a i s t a k e n from C o t t o n and W i l k i n s o n  (1966) and L i s t e r  When a l a r g e amount o f c h l o r i n e i s added t o a l i t r e o f water b e -  tween 9. 5°C and 100°C, t h e f o l l o w i n g e q u i l i b r i a a r e s e t up: C 1  2(g)^  1  C 1  2(aq)  Cl„, . + HO 2(aq) 2  K = 0.062,  -ass- H  25°C  + C l " + H0C1  +  T h i s means t h a t a s a t u r a t e d  (1)  K = 4 . 2 x 1 0 ~ , 25°C 4  (2)  aqueous s o l u t i o n o f c h l o r i n e a t 25°C w i l l  have  the f o l l o w i n g c o m p o s i t i o n a t pH 4: T o t a l Cl -0.09.1 moles/1 2  ^ ( a q )  •  °'°  [HOCl] , [C1~J =  0 1 m  0.090 M  When l e s s than one o r two grams o f C l  2  e q u i l i b r i u m (2) i s reached i n a few seconds. the t o t a l  C±  2  i s d i s s o l v e d i n a l i t r e of water Thus i t can be seen t h a t i f  i s l e s s than 1.0 g/1 and t h e pH i s g r e a t e r  than 4 there i s a  n e g l i g i b l e amount o f C l ^ ^ p r e s e n t . 2  a <  H y p o c h l o r o u s a c i d i s a weak a c i d and e x i s t s o n l y i n s o l u t i o n .  I t under-  goes t h e f o l l o w i n g d i s s o c i a t i o n i n aqueous s o l u t i o n . HOCl + H 0 ^ (colourless) 2  H 0 3  +  + 0C1~ ( p a l e y e l l o w ) K  a  = 2.5 x 10  „  @20°C  Thus i n t h e pH range 6.8 t o 7.8 a d i l u t e aqueous s o l u t i o n o f HOCl 75%  contains  t o 25% HOCl.  Below 9.5°C, C l , . forms a c r y s t a l l i n e h y d r a t e w i t h w a t e r . ^ \§/ o —8 e x i s t a t 0 C (K = 1.5 x 10 ) i n aqueous s o l u t i o n , a  HOCl can  Under u l t r a v i o l e t l i g h t o r a t h i g h t e m p e r a t u r e s , c h l o r i n e v e r y r e a c t s w i t h water a c c o r d i n g t o t h e f o l l o w i n g  equation.  slowly  180 Cl 2.  + H 0  2  ^  2  2HC1 + lg0  Decompositions Hypochlorite  2  o f HOC1 arid OCl  i o n s decompose i n aqueous s o l u t i o n a c c o r d i n g  to the f o l -  lowing r e a c t i o n s : 20C1" -kj» 0C1~  +  10~  k ^10"  4  k -vl0~  8  Cl"  2C1" + 0  r  (g-moles/l)"  6  +  C10~ - k ^ C10~  20Cr-k k ^  C10~  1  '  ^  + Cl"  ^  2  ( 3 )  m i n " at 25°C^ 1  2  •-I  9  3  If  f r e e H0C1 i s p r e s e n t  siderably accelerated.  i n appreciable  amounts, r e a c t i o n s 1,2 and 3 a r e con-  Thus commercial  c o n t a i n a carbonate s t a b i l i z e r .  s o l u t i o n s of h y p o c h l o r i t e  usually  C e r t a i n metals such as c o b a l t , n i c k e l and  copper c a t a l y z e r e a c t i o n 3 b u t do n o t a f f e c t the r a t e of r e a c t i o n 1 ( L i s t e r 0  1965). The r e a c t i v i t i e s o f H0C1 and O C l ing  power of H0C1 and OCl .  w i t h i i r i o r g a n i c s a r e due to the o x i d i z -  The h a l f c e l l  equations a r e :  C10~ + H 0 + 2e~ = C l " + 20H~  E° = '+0.89V  H0C1 + H 0  E ° = +1.50V  2  +  3  (Cl  2  + 2e~ = C l " + 2 ^ 0  + 2e~ = 2C1~)  E ° = +1.36V  Some r e a c t i o n times f o r complete o x i d a t i o n of i n o r g a n i c s t i o n l e v e l s are: 2-4  hrs;  Mn  + 2  +2 Fe (pH <7 ~ 9 ) , l e s s than one hour; (pH 7 - 9 ) , 2 - 4 +2  The c h l o r i n e demand of Fe It  should  -2 , S  hrs;  a t mg/1 H S 2  concentra-  (pH 7 - 1 0 ) ,  CN" (pH 8.5 - 9 ) , % h r (White -  and N 0  2  were determined by Taras  (1950).  be noted t h a t these r e a c t i o n times a r e f o r f r e e i n o r g a n i c s .  the i n o r g a n i c s  a r e complexed  1972).  the r e a c t i o n times may be c o n s i d e r a b l y  If  longer  181  i n the pH ranges c i t e d . 3.  Reactions of HOG1  arid 0C1  with Ammonia  Reaction Products The  r e a c t i o n of HOCl and 0C1  .with aqueous solutions of ammonia gives  r i s e to a complex set of e q u i l i b r i a dependent on pH, time, temperature, and concentration. reaction.  They are compositely referred to as the c h l o r i n e break-point  Before discussing t h i s phenomenon, a few d e f i n i t i o n s are i n order.  Chlorine r e s i d u a l i s divided i n t o two general c l a s s i f i c a t i o n s , free and combined.  Free r e s i d u a l chlorine i s the amount of HOCl and 0C1  pressed as mg/1  01^.  present ex-  Combined r e s i d u a l chlorine i s the amount of c h l o r i n e  i n the +1 oxidation state which i s chemically bound to nitrogen atoms. i s also expressed as mg/1  It  Cl^.  G r i f f i n and Chamberlain (1941a,b) studied the fate of c h l o r i n e at various Cl^/NH^ r a t i o s and produced what i s c a l l e d the breakpoint curve.  The  minimum r e s i d u a l c h l o r i n e at pH 7 was observed at a Cl^/NH^ - N r a t i o of 10:1 by weight or 2.0/1.0 on a mole b a s i s .  Subsequent work by Isomura (1967)  determined more p r e c i s e l y the fate of Cl^ i n aqueous NH^  systems.  His r e -  s u l t s show that before the breakpoint, the r e s i d u a l c h l o r i n e i s i n the form of chloramines. ine and  A f t e r the breakpoint, c h l o r i n e i s i n the form of free c h l o r -  NCl^.  The f a t e of the NH^ - N during breakpoint c h l o r i n a t i o n has been a matter of controversy for some time.  Mellor (1927, 1928)  summarized the  work p r i o r to 1923 and presented the f o l l o w i n g equations: 1)  HOCl + NH"!"«= nitrogen c h l o r i d e , N H , NH 0H 4 2 4 2  2)  3NaOCl + 2NH ~N^ 2f (nitrogen c h l o r i d e , chloramide and chlorates)!;.  o  ;  3  Reaction (2) i s second order o v e r a l l and never complete i n the conversion of NH  3  to N  2  at 15° - 25°C.  T i , P t , Mn and Cr s a l t s .  I t i s accelerated^|y--Cu, Hg, Pb, Fe ( I I I ) , Co, N i , The t e n t a t i v e i d e n t i f i c a t i o n of the gaseous pro-  duct as N^, became questionable when i t was observed that trace amounts of  182  n i t r i t e s and n i t r a t e s were a l s o  produced.  C h a p i n (1931) when s t u d y i n g t h e e f f e c t o f pH on c h l o r a m i n e i n f o r m a t i o n a l s o found a gas produced N 0, 2  a t pH 5.0 which matched t h e 1898 d e s c r i p t i o n of  b u t found no N 0 a t pH 9.0. 2  F o l l o w i n g t h e r e c o r d i n g o f t h e UV a b s o r p t i o n s p e c t r a o f t h e c h l o r a m i n e s by M e t c a l f (1942) and t h e i r c o n f i r m a t i o n by Czech e t a l . (1961), t h e d e v e l o p ment o f t h e OTA, DPD and amperometric  t i t r a t i o n techniques f o r r e s i d u a l  c h l o r i n e (APHA 1971) and t h e development o f gas chromatographic  techniques  of  gas a n a l y s i s , g r e a t advances were made i n t h e d e t e r m i n a t i o n o f t h e f a t e  of  NHg - N d u r i n g b r e a k p o i n t c h l o r i n a t i o n .  d u c t s a r e NH C1, NHC1 2  Isomura,  2  and N C 1  1974), and N ,N0~ + N0~ ( P a l i n , 1950; P r e s s l e y e t a l . , 2  1972, 1973; S t a s i u k e t a l . , 2  ( C h a p i n , 1931; M e t c a l f , 1942; P a l i n , 1950;  1967; P r e s s l e y e t a l . , , 1 9 7 2 , 1973; Bauer and Snoeyink, 1973;  Stasiuk et a l . ,  N , N0  3  The r e p o r t e d n i t r o g e n o u s p r o -  +  2  1974).  The r e l a t i v e amounts o f c h l o r a m i n e s ,  NO^ and o t h e r p o s s i b l e p r o d u c t s such as h y d r a z i n e depend upon  many f a c t o r s which a r e d i s c u s s e d below. i)  C]"2 ^ R a t i o . :  m a i n l y upon pH.  I f t h e NH^ i s i n excess t h e p r o d u c t s a r e dependent  I f t h e i n i t i a l C l ^ N H ^ - N w e i g h t r a t i o , i s between 1 and 5,  the major p r o d u c t i s NH^Cl.  As t h e i n i t i a l C l t N H ^ - N r a t i o i s i n c r e a s e d  from 5 t o 10 i n c r e a s i n g q u a n t i t i e s o f N H C 1 (Palih?j.  s  1950; P r e s s l e y e t a l . ,  1972).  2>  N C l ^ and f r e e c h l o r i n e  appear,  Isomura (1967) a l s o i n d i c a t e s t h a t  as t h e i n i t i a l amount o f NH^ i s i n c r e a s e d the c o n c e n t r a t i o n o f HOCl a t t h e breakpoint also increases. ii)  pH E f f e c t s .  I n t h e presence o f excess NH^ and w i t h pH v a l u e s g r e a t e r  than 8.5, monochloramine a l o n e i s p r e s e n t . d r a z i n e by t h e R a c h i g s y n t h e s i s i s a l s o NH  3  + NH C1 2  —>  A t h i g h pH's, f o r m a t i o n o f hy-  expected:  N H .HC1. 2  4  D i c h l o r a m i n e and monochloramine a r e p r e s e n t i n e q u a l q u a n t i t i e s a t pH 5.  At  183 pH 4, NHCI2 predominates  w h i l e N C l ^ predominates  below pH 2.8.  The p r e c e d -  i n g pH v a l u e s were t a k e n from work by P a l i n (1950), M e t c a l f (1942),  Chapin  (1931) and C o r b e t t e t a l . (1953). P a l i n (1950) and P r e s s l e y e t a l . (1972) i n d i c a t e t h a t a t C1:N r a t i o s l a r g e enough t o produce f r e e r e s i d u a l c h l o r i n e , t h e f o r m a t i o n o f NO^ + N 0  2  i s f a v o u r e d by h i g h e r pH w h i l e t h e f o r m a t i o n o f N C l ^ i s f a v o u r e d by lower pH.  The r a t i o o f N C 1  3  - N t o N0~ + N0~ - N i s 5.7 a t pH 6.0, 1.0 a t pH  6.4, 0.11 a t pH 7.0, and 0.02 a t pH 8.0.; ^AthpH 7, NH^ - N i s 95-99% o x i d i z e d toN . 2  R e a c t i o n Rates K i n e t i c s t u d i e s o f t h e v a r i o u s r e a c t i o n s i n v o l v e d i n aqueous NH^ - C l systems have been c a r r i e d out by W e i l and M o r r i s (1949a,b), M o r r i s (1965). 1)  NH  3  > NH C1 + H 0 ; k 2  2  r e a c t i o n o r d e r o v e r a l l i s 2, f i r s t o o r d e r i n N H  = 9.7 x 1 0  2)  3  and HOCl and pH  6 4 = 8 x 10 a t pH 8, 1 x 10 a t pH 4 and pH 12  dependent k k  and reviewed by  The f o l l o w i n g d a t a a r e p r e s e n t e d :  + HOCl  exp(-3000/RT) 1 m o l e " s e c  8  1  NH C1 + HOCl -—> NHC1 + H 0 ; 2  2  k  2  - 1  2  r e a c t i o n o o r d e r o v e r a l l i s 2, f i r s t o r d e r i n NH C1, HOCl; 2  i t exhibits  g e n e r a l a c i d c a t a l y s i s and i s a l s o c a t a l y z e d by C l . k  =7.6 x 1 0  2  exp(-7300/RT) 1 m o l " s e c "  7  1  k ' = 3 . 4 x 10' ' ( 1 + 153 x l O 2  2  1  CH*1+ 2 x 1 0 (HOAc^)) 1 m o l " s e c "  -4  2  2  1  a t 25°C. 3)  2NH C1 2  ^NHC1  2  + NH ; 3  k  3  r e a c t i o n o r d e r i s 2, second o r d e r i n NH C1 2  k  3  = 80 exp(-4300/RT) 1 m o l "  k " = 5.6 x 1 0 ~ ( 1 + 1.3 x 1 0 !  2  3  la)  NH„C1 + H 0 2 2 o  sec"  1  5  1  C J+  — * HOCl + NH ; 3  H+  k, la  35 CHOAcj 1 m o l  2  - 1  -1 sec  1  184 r e a c t i o n o r d e r o v e r a l l i s 2, f i r s t o r d e r i n NH^Cl k  = 8.7  l a  x I0  exp(-17,000/RT) s e c "  7  1  Gupta et a l . (1972) measured the r a t e of the b r e a k p o i n t r e a c t i o n a t a c i d pH Vs. W i t h e q u a l 0.0125 M, C l  2  and NH^  c o n c e n t r a t i o n s the r a t e was  f i r s t order i n  each r e a c t a n t and second o r d e r o v e r a l l .  The k , ranged from 0.15 obs  mole  r a t e a t pH >5  ure.  1  sec  1  between pH 3.5  and 4.5.  The  They do not s t a t e whether r e s i d u a l ammonia was  found by o t h e r Mechanism  1  too f a s t to meas-  observed  a t pH 5 as  was  investigators. M o r r i s (1965) f a v o u r s the n o n i o n i c mechanism f o r the r e a c t i o n  of c h l o r i n e and amines t o form c h l o r a m i n e s (Mauger e t a l . , 1946; a l . , 1953)  was  t o 1.1  i n aqueous s o l u t i o n w h i l e Soper  Edmond e t a l . , 1949;  f a v o u r s the i o n i c mechanism.  H u r s t e t a l . , 1949;  Corbett et.  W e i l and M o r r i s (1949a) found t h a t  i o n i c s t r e n g t h has no e f f e c t upon the r e a c t i o n NH  3  + HOCl — »  at pH -1.9.  NH C1 + 2  H0 2  Gupta et a l . (1972) o b s e r v e d  a n e g a t i v e e f f e c t of s u l p h a t e  a c e t a t e on the o v e r a l l system a t pH 3 - 4.  and  U n f o r t u n a t e l y the two mechanisms  a r e not d i s t i n g u i s h a b l e s i n c e a l t h o u g h i n c r e a s i n g i o n i c s t r e n g t h s h o u l d  de-  c r e a s e o n l y the r a t e of the i o n i c r e a c t i o n , c o n s i d e r a t i o n of the e f f e c t of i o n i c s t r e n g t h on the h y d r o l y s i s o f NH^ i d e n t i c a l rate expressions.  and HOCl a t any g i v e n pH w i l l  yield  Both mechanisms a r e c o m p a t i b l e w i t h g e n e r a l  acid  catalysis. W h i l e the f o r m a t i o n of c h l o r a m i n e s  has been m e c h a n i s t i c a l l y d e s c r i b e d  the r e a c t i o n s l e a d i n g to the f o r m a t i o n of N most l i k e l y  mechanism o f N  2  2  and NO^  and N 0  2  have n o t .  f o r m a t i o n would i n v o l v e an h y d r a z i n e  f o l l o w e d by o x i d a t i v e d e g r a d a t i o n .  The  f o r m a t i o n of N0.j + N 0  2  intermediate  probably  i n v o l v e s the i n t e r m e d i a t e p r o d u c t i o n o f an h y d r o x y l a m i n e and/or NO o r (Cahn and P o w e l l , 1953; Y a g i l and Anbar, 1962).  A u d r i e t h and Rowe, 1955;  The  Anbar and Y a g i l ,  N0 2  1962;  185  C h l o r i n a t e d h y d r a z i n e s , p o s s i b l y due t o t h e i r i n s t a b i l i t y , haveivnot been d e t e c t e d i n aqueous NH^ - Cl^ systems.  Therefore i n considering the i n t e r -  a c t i o n s o f c h l o r i n e w i t h sewage, o n l y t h e i n t e r a c t i o n s o f c h l o r a m i n e s w i l l be considered. 4.  Thermodynamic P r o p e r t i e s o f Chloramines Jolly  (1956) has e s t i m a t e d t h e f o l l o w i n g a c i d i t y d a t a from homolgous  series. pK pk  a a  o f NH C1 -v 14 + 2 0  2  —  of NHCl -v 7 + 3 2 0  He measured t h e f o l l o w i n g o x i d a t i o n p o t e n t i a l s : Cl 1  E  o +1.48 v  H  Cl"  +1.39 v  1  M or M  NH,+[NC1,  Cl"  E" = +1.37 v  1  M  OH  NH C1 2  Cl"  +0.81 v  1  M  NH  NHCl"  Cl"  E" = +0081 v  3  Chloramines a r e decomposed by a c t i v a t e d c a r b o n , (Bauer and S n o e y i n k , 1973), as w e l l as by t h e common i n o r g a n i c r e d u c i n g a g e n t s .  Appendix I I Summary o f Chromatograms o f E f f l u e n t Samples  Sample D a t e  Experiment & Extraction Method  25/06/73 03/07/73 10/12/73 17/12/73 28/01/74  E-2; SE E-2; SE E-3-d ; XAD E-4; XAD E-5; SE  S-la  18/03/74  29/04/74  08/07/74  19/11/74 18/12/74  20/01/75  Chlorine Dosages (mg/1)  Preliminary Separation Method Fraction  F  XAD  0  F  XAD  106  F  SF, XAD  0,0,106  C l - 1 XAD Cl-4 Cl-2 Cl-4 XAD Cl-2 C l - 5 XAD Cl-2 C l - 2 XAD  C l - 7 XAD Cl-2  0 15 100 200 0 12 103 0  F,SG  F,ASB  F,ASB  F,ASB  25 F,AS 0 12 0 15 100 200 0 12 120  # o f New P e a k s Due t o C h l o r i n a t i o n EC FID Total  33 34  0 0 0 0 0  S-l-6 XAD S-2 Cl-2  Total # of P e a k s EC FID  F,ASB  F,AS  P(M) So P(MC) So P(MAH) So 1 2 3 N + B WA SA  18 50 17 50 15 38 42 34 20 52 38 21  N + WA SA N + WA SA N + A N + WA SA  47 36 20 48 35 20 53 20 52 37 20  B  B  B B  N + B A  50 19  51 36 8 47 32 7 — — —  60 10 50 31 7 61 10  17  17  3 i  3  }  18  4  3 18  —  3*  1  18 4?  —  17 2 13 12 1  4 0 4 4 0  17 2 17 2?  17 3  5 0  17 3  Appendix I I c o n t ' d . 8/03/75  Cl-7 Cl-3 Cl-2 S-3  XAD  0 12 120 Plant TEC  F,AS  N + B A  53 22  63 9  18 2  5 0  18 2  •P=3QO0 Yes JL-3000  Abbreviations A - Acidic Fraction AS - A c i d i t y S e p a r a t i o n ASB - A c i d i t y S e p a r a t i o n w i t h B i c a r b o n a t e F - Filtration M - Methanol, Soxhlet MC - M e t h a n o l , C h l o r o f o r m S o x h l e t MAH - M e t h a n o l , A c e t o n e , Hexane S o x h l e t N + B - N e u t r a l and B a s i c F r a c t i o n P - Particulate Fraction SA - S t r o n g A c i d F r a c t i o n SE - S o l v e n t E x t r a c t i o n SG - S i l i c a G e l Column So - S o l u b l e F r a c t i o n TLC - T h i n L a y e r Chromatography XAD - XAD-2 R e s i n  Step  oo  188 Appendix I I I CG Conditions f o r Figures Instrument/Column  4.2  4.3  4.4 4.5  4.6  4.7 4.8 4.9 4.10  4.11 4.13 4.14  4.15 4.16 4.17 4.18 4.19  4.20 4.21 4.22 4.23 4.24 4.25  HP 5750 5% DC-11 on chromosorb W (HP) 80-100 mesh HP 5750 3% SE 30 on chrom W (HP) 80-100 mesh HP 5750 3% OV-101 on chrom W (HP) 80-100 mesh HP 5750 Various  HP 5750 Various HP 5750 Various HP 5750 6% SE-30, 4% OV-210 on Gas Chrom Q, 100-120 mesh As i n 4.10 HP 5750 3% 0V-10/on Chrom W (HP), 80-100 mesh As i n 4.13 As i n 4.14 As i n 4.13 As i n 4.14 HP 5750 3% OV-101 on Chrom W (HP) 80-100 mesh As i n 4.19 As i n 4.19 As i n 4.20 Microtek (Tracor 222) As i n 4.23 As i n 4.23  Detector/ Atten/Pulse (EC)  Temperature Program  C a r r i e r Gas Flow  EC; 64x10; 5/S  50%C/5 min,10° min, 300°/30 min  65 ml/min  EC; 32x10; 5^S  220°C isothermal  70 ml/min,  I d e n t i c a l to 4. 2 EC; 64x10;50//S 30°C/10 min 6%/min, 200°/ 20 min As i n 4.5  65 ml/min  As i n 4.5 except OV-l 100°C/20 min 6%/min,260° /20 min  As i n 4.5  As i n 4.5  65 ml/min  48°C/10 min, 10°/min,208° hold  70 ml/min  48°C/6 min, 8°/ min, 208° hold  70 ml/min  As i n 4.5 FID; 32x10 As i n 4.8 EC; 64x10; 50^  As i n 4.7 As i n 4.8  70 ml/min 29°/10 min; 6° /min, 219°/20 min 75 ml/min  EC: 64x10; 50^S •  FID 32x10  As i n 4.19  Tracor 310 8x10  84°/4 min 10°/min,200°/ 20 min  Tracor 310 Various  As i n 4.23  189  Appendix I I I Cont'd. Figure  4.27  Instrument/Column  Pye 104  Detector/ A t t e n / P u l s e (EC)  Temperature Program  C a r r i e r Gas F l o w  MS-12 3xl5 A f u l l scale  As i n d i c a t e d  F-3000  60°/2.5 m i n , 10°/min, 200°  32 p s i  80°/2.5 m i n , 10°/min,200°  32 p s i  8  4.31 4.32  As i n 4.19 F i n n 3000, as i n 4.10 As i n 4.30 As i n 4.30  4.33  As i n 4.30  4.29 4.30  190 APPENDIX  IV  MASS SPECTRA OF COMPOUNDS POSITIVELY IDENTIFIED IN CHLORINATED PRIMARY EFFLUENT  T' I I 45 55 75 1  1  l  70  T  11-9  CLI202  19-17  1»' I  135  105  JULMI , I n i  60  " t  I  1  CLI202  !65  >—*T —  185  r—— 100  1  5  r*-^  T 120 CLI202  k 45  75  55  23-25  ^JJ—p 125  95 CLI202  ,— —llliitL-^-i8  45  55  -»  {  1  1  75  g  1  p  i+LL-y  95  31-29  1 11p i ,T " — ' 1  CLI202  4JLL  44  54  74  104  1  r  125 46-44  (24  191 CLI202  m  lijigiii  70  i i  80  r—r-tu+  ..h  100  1r  feo CLI202  U — , J - J  V  T - ^  50  i—  80  t  81-59  -l  11  I I |l 11 i ^  40  50  l»l l l i 111  *)••  -|» J ( I  •!<!  p  i  1  43 53  73  N'  93  1  I  '  I  • I  123  '  120  55  75  1  1  150  76-74  I ' I • I  CLI202  45  66-64  i — r — r ^ - r  100  CLI202  A  r  120  ho '  | •"t  150  i-U  100  80  r*—t  1  62-60  CLI202  I;  «  85-80  105  i—•—r  n  CLI202  lijnii.ii 45  II II i 8  55  111li1 1.. 1 ,i1I I i ! j j III111.. 1  9 8 - 9 5  i—L*i  L_I—,..ii—. 35  75  CLI202  I, ...I 45  u,—1_  55  i4  . . I.tilli.  "»  T 95  '  1 • "»  jll 50  60  J_jl  110-108  4-  80  CLI202  44 54  74  104  II7--II3  154  CLI202  i 1111111  60  nllji i ^ - . ^ — L i 4 — « — ,100 lt»litt 70  04  f A  *  133-131  -  CLI202  I V"v f ' l — •j—r"» I — r4 84  IE  |  CLI202  LLLJ  106-104  !  J  'l 140  204-202  193  c-MALL  4  ,1  — L• j — ft,. l , ill • — r - ll — 60  50  1  »i  *± J  |i "i»—j— 100  ,  1  ^  39-42  —  ,  —  r  C-HALL 5 1 - 4 9  -I  I—r  I  75  j — . — M ! i — I1,  iii  '"|  1  5  ' " '  ''  )  ;  i i  i —  IL,—1  LL  105  1  r  1  C-HALL  59-57  «-—1—~*  r  105 C-HALL  ' ' ; 60  .  ' I 70  J .1.  f-Ll-r-  T  ' 1E0"  1  — _ i i— —{ ^i ^n -  r-  130  i—1—»4-  C-HALL  • » I» Q  rfil  t  [III  50  II  8  1  | l Ml  »  •  11  .1  •[  60  i  90  —  f  —  !  120  69-67  7J-69  < — r  C-HALL 8 1 - 7 7  LL|  j  i  50  ll  1  r  » » 1 1  70  4  tb  ,—Lilll  HI  100  r  T  j 120  1  r"  r  19.4  C-HALL  ^  1  •i  70  '*>  {  \—'—|  80  'i  " j *  i  1  1  r*-'^T  100  130  C-HALL  f 'r—|—r i 1  ro  • 100  1  so  — r  -UL  lilt.1  150  i IT  i• t  L  ) i l  50  I  f 60 I  I  \111  L U  .r**"f .till! 114-112  7 100  T  1  50  1 60  •  1  ^  r.—r  70  152-154  J  r  100  120  1  L  100  140  159-157  i— *—r~~>—1—»—r i—«—r >  ~i—«—r "80  130  —r  C-HALL 164-162  -j  60  j —L4u _ J1  T  70  100  ' 155  -j—L,—|—^—j—r-~-4rj—I C-HALL  4  4  130 C-HALL  ~<  -  111-108  C-HALL  I  69-85  1  120  160  "1 140  195 C-HALL 178-176  196 APPENDIX  V  MASS SPECTRA OF UNIDENTIFIED COMPONENTS OF CHLORINATED PRIMARY EFFLUENT  The  s p e c t r a a r e o r g a n i z e d by f i l e  p r e s e n t e d i n ascending o r d e r o f spectrum p r e t a t i o n o f the s t r u c t u r a l McLafferty  names  (see T a b l e 4.14) .  number w i t h i n a f i l e .  f e a t u r e s o f each spectrum  They a r e The i n t e r -  i s according to  (1973) and h i s t e r m i n o l o g y i s used!.  Symbols and A b b r e v i a t i o n s used a r e : m/e - mass t o charge r a t i o o f a mass s p e c t r a l  peak  ' I n t . - r e l a t i v e i n t e n s i t y o f t h e s p e c i f i e d peak S t r . F e a t . - s t r u c t u r a l f e a t u r e s o f the compound suggested by its  mass  spectrum  File  CL1202  Spectrum Number 8-5  14 - 15 14 - 15  Spectrum and I n t e r p r e t a t i o n  m/e Int. Base • m/e m/e Int. Base  92 91 74 73 71 70 69 58 57 56 55 54 53 51 50 46 45 44 43 42 41 40 39 38 3 7 10 4 72 100 87 45 92 96 99 72 98 52 42 92 98 99 92 96 87 99 93 85 W; P a r e n t 120;; S t r . F e a t . - C y c l i c amine, M e t h y l ? . 100 89 87 85 79 71 70 69 59 58 57 56 55 45 43 42 41 39 3 1 1 8 1 1 1 9 1 15 29 8 9 61 100 26 62 44 43; P a r e n t ? ; S t r . F e a t . - T h i o p h e n e ( d i h y d r o ) , M e t h y l .  24 - 23  m/e 127 125 109 99 86 82 81 61 60 59 49 47 43 37 36 35 Int. 7 11 5 5 2 4 16 2 4 7 5 22 100 9 4 28 Base 43; P a r e n t ? ; S t r . F e a t . - P r o p y l , D i c h l o r o , Alkane.  26 - 24  m/e 123 121 113 88 86 85 84 77 71 70 69 57 56 55- 45 43 42 41 40 39 38 37 36 35 Int. 1 1 1 1 1 6 2 2 5 6 16 28 51 37 8 71 41 100 10 32 1 1 2 3 Base 41; P a r e n t ? ; S t r . Feat.- Alkenyl, Chloroalkane.  40 - 38  m/e 87 85 75 72 71 58 57 56 55 45 43 42 41 40 39 I n t . 11 1 5 2 3 3 100 11 9 85 19 18 10 97 33 Base 41; P a r e n t 87? ; S t r . F e a t . - 2-nButoxyethanol;  ONO  ?.  56 - 51  m/e 121 120 119 106 105 104 103 91 79 78 77 65 63 57 51 50 41 39 Int. 2 32 8 8 100 4 9 20 13 11 22 11 12 8 24 11 28 49 Base 105; P a r e n t 120; S t r . F e a t . - Methyl-ethylbenzene o r n-Propylbenzene.  115 - 113  m/e 120 109 108 95 93 91 89 87 81 79 77 75 67 57 55 45 43 41 39 Int. 2 5 8 11 2 2 3 3 10 3 8 10 9 50 12 100 32 82 38 Base 45; P a r e n t 7 ; S t r . F e a t . - A l k y l , A l k e n y l , EtO, Aromatic(weak).  124 - 122  m/e  133 131 123 119 118 103 97 95 94 91 85 83 79 77 69 68 67 66 65 55 48 45 43 41 39 35 Int. 2 4 2 11 12 4 8 10 27 20 21 50 15 21 32 14 28 16 25 25 22 20 47 100 76 3 Base 41; P a r e n t ? ; S t r . F e a t . - A l k e n y l , A r o m a t i c ( h i g h , weak), Thiophene(weak).  m/e 180 178 177 176 175 160 148 145 143 141 133 121 119 117 105 95 93 91 79 77 59 57 55 53 51 Int. 2 7 3 11 3 3 2 4 8 18 10 12 6 9 17 20 14 17 12 32 23 15 18 16 25 m/e 50 45 43 41 39 Int. 8 28 100 55 25 Base 43(77); P a r e n t 176; S t r . F e a t . - A r o m a t i c ( h i g h ) , OH, PhCH , D i c h l o r o . z m/e 160 145 139 130 129 128 124 119 118 115 104 93 91 90 81 79 78 77 76 75 68 67 66 65 64 63 Int. 2 8 13 8 6 7 8 10 86 5 5 8 71 14 8 6 7 6 6 6 16 58 18 30 33 37 m/e 53 52 51 50 43 41 40 39 38 37 I n t . 49 45 35 26 95 68 30 100 37 20 Base 39(118); P a r e n t 160? ; S t r . F e a t . - Indazole o r B e n z i m i d a z o l e , Diene, Alkyne o r C y c l o a l k e n e , A r o m a t i c ( h i g h and low) , A l k y l s i d e c h a i n . 2  m/e 159 156 155 141 128 115 95 91 89 84 81 79 77 71 69 68 67 59 55 53 51 43 42 41 39 Int. 3 12 5 13 7 7 7 6 4 7 9 8 8 28 12 10 13 51 36 12 11 100 20 64 47 Base 43; P a r e n t 156? ; S t r . F e a t . - " A l k e n y l , Aromatic(weak) , Exo-sulphur aromatic(weak) , Methyl, Carbonyl?. m/e 152 139 121 111 105 97 95 94 93 91 84 83 81 79 77 75 70 69 67 57 55 53 51 43 41 39 Int. 1 1 7 2 2 8 5 4 5 4 5 15 6 10 7 6 18 29 19 36 57 12 2 87 100 32 Base 41; P a r e n t ? ; S t r . F e a t . - A l k e n y l , Aromatic(weak). m/e 123 117 109 101 95 89 87 85 79 77 75 73 71 59 58 57 56 55 45 44 43 41 39 Int. 1 1 2 2 2 7 5 5 2 2 8 3 3 16 7 32 8 8 100 17 45 49 15 Base 45; P a r e n t ? ; S t r . Feat.- Alkenyl, A l k y l ( alcohol, ether, a l k y l - s i l i c o n , c y c l o a l k a n e o r s u b s t i t u t e d u n s a t u r a t e d sulphur compound).  thia-  m/e 170 169 155 142 141 129 128 115 105 95 93 91 81 79 77 71 69 67 65 63 59 57 55 53 51 50 43 441 Int. 10 5 7 3 8 3 7 15 8 7 5 15 11 12 18 10 13 15 12 12 17 19 30 18 19 10 100 56 Base 43; P a r e n t 170; S t r . F e a t . - A l k y l , Aromatic, Aldehyde?. m/e 170 156 145 1351103 95 94 93 79 73.71 67 59 55 53 45 44 43 442441 39 Int. 1 1 2 1 6 2 2 2 2 1 3 2 8 4 3 1 4 100 8 10 7 Base 43; P a r e n t ? ; S t r . Feat.- G l y c e r o l acetate l i k e .  File  CL1202  183 - 181  m/e Int. m/e Int. Base  187 - 184  m/e 147 146 120 119 118 95 94 93 92 91 90 89 83 79 77 71 69 65 63 60 59 58 57 55 53 51 45 43 41 Int. 1 7 3 3 17 7 7 6 5 5 7 9 8 3 6 3 11 14 10 6 12 51 13 12 24 10 6 16 100 58 Base 43; P a r e n t 146? ; S t r . F e a t . - A l k y l , Aromatic(weak), Thiophene(weak)?.  194 - 192  m/e 146 119 118 117 99 92 91 90 77 76 75 74 65 64 63 62 58 52 51 50 41 40 39 38 37 Int. 6 8 100 9 6 7 82 25 4 P8 10 4 18 48 40 15 10 27 16 18 22 12 46 32 20 Base 118; P a r e n t 118(146); S t r . F e a t . - Benzofuran, B e n z i m i d a z o l e , I n d a z o l e .  199  197  194 182 171 170 164 163 155 153 151 135 133 124 116 115 104 99 93 92 91 89 81 77 76 75 74 1 2 1 2 8 78 9 13 33 9 9 6 11 7 16 16 8 18 16 31 12 47 30 16 21 71 63 57 55 51 50 45 44 43 441339 21 27 20 18 22 40 10 20 100 35 40 43(163); P a r e n t 163(164); S t r . F e a t . - Dimethyl P h t h a l a t e , A r o m a t i c ( l o w ) , A l k y l .  m/e 135 120 111 105 98 97 93 84 83 82 70 69 68 67 57 56 55 43 42 41 339Int. 2 7 2 2 2 12 3 8 20 7 20 31 12 7 31 30 67 42 22 100 22 Base 41; P a r e n t ? ; S t r . Feat.- Alkenyl.  215 - 213  m/e 184 175 139 125 119 111 99 97 95 93 91 89 83 79 77 75 71 70 69 67 57 55 53 51 45 43 41 39 Int. 3 2 1 1 2 2 16 8 7 7 7 7 13 4 2 3 13 10 20 8 38 45 8 3 48 98 100 23 Base 41; P a r e n t ? ; S t r . F e a t . - A l k e n y l , A l k y l , Thiophene?.  219 - 216  m/e 185 171 157 1431124 115 105 97 87 85 83 77 74 73 71 69 61 60 59 57 55 45 43 41 39 Int. 3 1 1 1 7 3 4 3 . 6 5 7 6 4 42 5 14 8 60 10 27 55 12 73 100 22 Base 41(60); P a r e n t 185; S t r . F e a t . - A l k e n y l , A l k y l , ' R e t r o - D i e l s - A l d e r ' .  230 - 228  m/e 180 179 149 135 134 125 119 117 115 107 97 93 83 77 71 70 69 57 56 55 45 43 41 39 Int. 2 21 1 18 2 1 2 2 3 12 10 7 13 6 5 10 24 42 22 53 15 75 100 18 Base 41; P a r e n t 179(180); S t r . F e a t . - A l k e n y l , A l k y l , OCO,or CS, CO o r . N . 2  236 - 233  m/e Int. m/e Int. Base is a  221 220 219 218 184 183 182 181 166 165 155 154 153 152 142 140 115 114 113 112 102 101 99 1 17 8 52 6 43 9 13 8 39 8 8 23 37 16 49 18 20 10 57 8 6 8 91 89 78 77 76 75 74 73 65 63 58 52 51 50 39 32 20 34 87 26 32 18 32 33 51 22 18 100 41 52 51; P a r e n t 218(219); S t r . F e a t . - A r o m a t i c ( h i g h and low), Ph, Monochloro, OH?, p o s s i b l y Chlorophenyl-benzyl a l c o h o l .  m/e Int. m/e Int. Base  213 209 185 171 157 143 129 115 111 101 98 97 87 85 84 83 74 73 72 71 70 69 61 60 59 57 55 2 1 1 1 1 1 8 4 2 3 4 8 11 10 6 13 8 77 8 22 8 32 20 100 12 63 83 45 43 42 41 28 71 33 72 60; P a r e n t ? ; S t r . Feat.- Alkenyl, A l k y l , Aliphatic acid or ester.  m/e Int. m/e Int. Base  133 127 125 124 123 121 119 115 114 112 111 110 109 107 98 97 96 95 93 91 84 83 82 81 79 77 1 1 1 1 2 1 1 1 2 1 3 3 3 1 5 12 8 10 2 2 8 22 10 22 12 5 73 71 70 69 68 67 60 57 56 55 54 53 45 43 42 41 39 12 8 12 42 18 41 27 27 23 100 32 15 22 79 23 93 29 55(41); Parent ? ; S t r . Feat.- Alkenyl, A l k y l .  m/e 292 290 289 288 220 219 218 202 195 191 189 182 162 155 154 148 147 146 Int. 23 62 15 54 31 15 92 23 15 23 15 38 23 23 15 38 15 46 m/e 114 111 110 109 105 99 96 95 86 83 82 81 73 71 69 68 67 63 62 61 60 52 Int. 46 38 23 85 38 23323 38 77 15 23 46 46 61 100 31 31 77 31 31 46 15 Base 69; P a r e n t 288; S t r . F e a t . - T r i c h l o r o , Exo-sulphur aromatic, Diphenyl 140 130 128 126 1 1 1 1 45 44 43 42 41 23 30 82 28 100 200(201); S t r .  145 143 126 116 115 38 38 15 23 85 51 38 84 15 thio-ether?.  m/e Int. m/e Int. Base  201 200 183 1 9 4 60 57 55 53 30 25 45 3 41; P a r e n t  117 116 114 112 109 103 99 98 95 88 86 85 75 73 72 71 70 69 62 1 9 2 3 1 26 5 12 3 3 11 27 2 3 7 5 11 6 12 39 20 Feat.- Alkenyl, A l k y l , Acid.  m/e Int. m/e Int. Base  237 160 149 143 141 139 131 126 114 105 104 99 98 96 95 89 88 85 83 77 75 74 71 70 69 67 59 4 4 4 4 4 10 4 4 32 15 10 16568 5 8 12 8 10 12 18 10 100 28 22 38 12 18 57 56 55 45 44 43 42 41 39 50 30 58 85 22 91 37 91 22 74; P a r e n t ? ; S t r . F e a t . - A l k e n y l , A l k y l , Methyl e s t e r ? .  m/e Int. m/e Int. Base  268 267 237 215 208 198 190 189 175 161 159 151 147 137 135 133 131 119 117 114 107 103 92 1 7 1 1 1 1 3 1 1 3 3 1 2 6 12 4 4 3 3 3 5 7 3 89 87 78 77 73 71 59 57 45 43 41 39 16 8 8 18 3 8 27 28 100 22 15 10 45; P a r e n t ? ; S t r . F e a t . - A l k y K S i , S o r O) , Aromatic (weak) .  File  CL1202  424 - 411  256 227 168 167 160 150 149 142 137 132 126 124 122 115 114 113 112 104 99 88 87 86 85 83 77 1 1 1 10 1 7 69 2 3 2 2 1 2 1 16 3 4 16 4 5 3 4 3 6 5 m/e 76 74 71 70 69 65 58 57 56 55 50 45 44 43 41 39 Int. 7 100 16 26 12 3 5 59 30 45 2 14 16 83 94 17  m/e  Int.  Base 74;-  File  Parent  ? ;  S t r . Feat.- A l k y l , A l k e n y l , Phthalate e s t e r ? .  C-HALL  41 - 39  64-61  94 - 91  m/e 123 122 121 112 98 90 84 83 82 80 79 70 69 68 58 57 56 55 54 53 45 44 43 42 41 Int. 2 41 18 1 1 1 1 1 1 1 4 18 >2 1 2-100 20 12 1 1 1 2 10 7 46 Base 57; P a r e n t 122? ; S t r . F e a t A l k e n y l , t - B u t y l ? . - m/e 144 143 142 140 136 134 125 123 121 120 119 111 95 91 85 84 83 82 81 80 73 72 69 67 57 43 41 Int. 1 1 6 8 6 18 1 4 27 8. 38 12 6 62 4 20 10 17 100 32 32 32 19 14 22 85 30 Base 81; P a r e n t ? ; S t r . Feat.- A l k y l , Polyunsat or c y c l i c a l c o h o l or ether?, P o l y c h l o r o ? . m/e  Int.  135 134 133 120 119 118 117 116 105 104 103 91 90 89 85 82 79 78 77 71 65 63 57 51 50 43 12 28 35 7 12 9 100 45 20 3 3 20065 38 10 8 7 10 18 12 12 24 28 30 18 36  Base 117;  99 - 103  Parent  m/e 162 156 154 Int. 1 2 5 m/e 90 89 85 83 Int. 9 10 20 31 Base 91; P a r e n t  135?  ; . S t r . Feat.- A l k y l ,  Aromatic.  152 150 147 139 137 136 135 121 120 119 118 117 116 115 107 105 103 95 93 92 91 4 3 1 6 14 31 8 40 8 72 92 57 10 14 22 9 12 10 22 10 100 79 78 77 67 65 63 51 50 44 31 9 32 15 30 20 23 12 18 156?  ;  S t r . F e a t . - Aromatic,  OH,  Methyl.  101 - 99  m/e 162 161 159 147 127 125 123 111 108 104 96 94 81 73 71 70 69 68 59 57 55 54 45 43 42 41 Int. 7 4 7 10 2 4 4 11 13 2 22 2 7 18 42 8 77 12 7 18 20 7 44 65 7 100 Base 41; P a r e n t 162? ; S t r . F e a t . - A l k e n y l , A l k y l ( a l c o h o l , e t h e r o r s u l p h u r ) .  105 - 108  m/e Int.  162 160 156 152 146 145 137 136 134* 133* 132 131 121* 118 117 111 99 97 86 85* 84 71* 70 35 4 4 15 62 45 25 65 92 42 33 100 41 58 36 8 29 29 64 13 35 100 79  File  C-HALL  105 - 108 (continued)  m/e 69* 57 56 55 51 44 43 41 I n t . 31 80 90 35 40 35 70 7 Peaks marked w i t h an a s t e r i s k (*) a r e not found i n spectrum 105 - 103, r e l a t i v e i n t e n s i t i e s i n t h e two s p e c t r a are s i m i l a r . Base 71(131) ; P a r e n t 162? ; S t r . F e a t . - A l k y l .  109 - 107  m/e 160 142 141 118 115 108 106 104 95 93 91 82 80 79 77 65 58 54 53 41 Int. 10 32 29 6 8 23 9 21 26 40 50 100 3 5 4 10 17 72 18 22 Base 82; P a r e n t 160; S t r . F e a t . - C y c l o a l k y l ? , C y c l i c ketone?, A l c o h o l ? , M e t h y l .  116 - 113  m/e 163 160 147 145 135 131 119 118 117 112 109 97 87 85 83 82 79 73 71 59 58 57 55 44 43 41 Int. 8 28 13 33 13 20 24 40 30 10 7 10 10 100 93 20 10 28 22 28 50 21 30 10 32 40 Base 85; P a r e n t 163? ; S t r . F e a t . - C y c l o a l k a n o l , P r o p y l , S u l p h i d e ? .  119 - 117  187 174 173 159 152 150 140 139 138 132 124 120 118 108 107 92 91 85 79 78 68 67 65 64 63 m/e 5 1 6 2 28 2 18 4 4 42 10 9 60 100 3 2 2 12 36 18 5 2 1 1 1 2 Int. 53 52 51 50 45 m/e 8 7 2 10 I n t . 21 S t r . Feat.- Cycloalkene, diene.or alkyne, Alkyl-Ph.?. Base.91; Parent  121 - 119  m/e 174 173 159 132 130 125 120 119 118 104 91 90 78 76 75 71 64 63 62 52 50 Int. 2 1 4 2 1 1 3 4 100 6 20 8 1 2 1 10 18 10 2 8 2 Base 118; P a r e n t ? ; S t r . F e a t . - B e n z i m i d a z o l e , Indazole o r Benzofuran.  127 - 125  m/e Int m/e Int. Base  130 - 128  m/e 173 160 158 157 156 148 147 145 141 121 119 115 91 89 87 71 57 56 55 45 43 41 Int. 3 4 4 4 31 7 14 6 33 22 13 6 8 13 25 33 50 30 10 20 100 30 Base 43; P a r e n t 156? ; S t r . F e a t . - A l k y l ( a l c o h o l , e t h e r , S i o r S ) .  136 - 132  m/e 159 157 156 155 153 152 142 141 128 115 85 77 76 75 64 63 58 57 51 50 Int. 9 12 100 32 13 11 10 83 12 14 20 6 11 6 5 6 5 8 4 1 Base 156: P a r e n t 156? ; S t r . F e a t . - B i c y c l o aromatic, Methyl, 1,3 o r 2,7  190 188 186 184 176 175 171 170 169 161 147 142 141 134 133 113 111 103 98 87 85 83 72 70 1 1 1 1 12 2 5 27 7 4 7 5 10 12 100 2 6 2 2 7 60 62 1 1 57 55 48 38 10 11 133; P a r e n t 176? ; S t r . F e a t . - A l k y l - t r i m e t h y l b e n z e n e , D i c h l o r o c a r b e n e ? , B u t y l ? .  to  o Dimethylnapthalene.  m/e 182 168 167 154 153 152 140 125 113 112 111 98 97 84 83 82 70 69 68 57 56 55 43 42 41 Int. 1 13 8 2 4 5 3 2 2 5 10 10 26 25 47 20 57 73 22 49 73 95 100 32 95 Base 43; P a r e n t ? ; S t r . Feat.- Alkenyl. m/e 168 150 135 133 123 107 91 85 82 81 69 59 58 57 53 41 I n t . 33 24 42 11 9 21 11 100 10 10 8 11 10 20 8 18 Base 85; P a r e n t 168? ; S t r . F e a t . - A l k e n y l , Thiophene?, A l c o h o l , Methyl, C a r b o n y l . m/e 171 170 169 156 155 154 153 152 137 127 110 109 99 98 97 95 87 83 82 81 74 71 70 69 67 59 Int. 7 50 8 3 41 4 10 8 5 3 8 7 9 100 15 18 10 28 14 16 18 13 25220 27 28 m/e 58 57 55 53 41 I n t . 13 16 30 8 60 Base 98; P a r e n t 170? ; S t r . F e a t . - A l k e n y l , C y c l i c e t h e r o r a l c o h o l , c o n t a i n s spectrum o f .1,4,5-Trimethylnapthalene. m/e 208 207 206 192 191 189 187 184 Hi81 169 155 153 150 138 137 135 133 131 125 121 120 117 111 Int. 9 9 13 13 88 13 18 56 13 22 32 20 20 37 28 23 23 37 22 45 100 28 22 m/e 109 108 107 105 95 93 92 91 88 84 81 79 78 77 67 65 59 58 55 53 52 45 43 41 Int. 22 13 28 28 33236327 45 12 12 37 19 12 38 37 22 31 40 37 10 5 19 100 72 Base 43(120) ; P a r e n t 206? ; S t r . F e a t . - Diene o r c y c l o a l k e n e , Aromatic (high)), OH?. m/e 209 207 204 189 184 169 161 155 151 150 149 138 135 121 119 111 109 107 95 93 91 85 81 79 78 Int. 2 2 2 2 10 10 5 19 24 30 11 7 42 12 18 13 18 23 60 21 8 8 30 18 5 m/e 77 71 69 67 65 57 55 53 45 43 41 Int. 8 11 11 30 7 8 28 14 20 100 68 Base 43; P a r e n t ? ; S t r . F e a t . - s i m i l a r t o 167 - 166, c o n t a i n s spectrum o f C e d r o l . m/e Int. m/e Int. Base  224 209 196 181 161 159 151 150 149 138 135 122 119 109 108 107 99 96 95 91 81 73 72 69 67 11 8 8 20 8 8 20 35 11 11 98 12 8 14 14 19 30 11 100 21 7 7 7 26 10 57 55 41 10\ 7 57 95; P a r e n t 224? ; S t r . F e a t . - Diene o r c y c l o a l k e n e , P r o p y l , C y c l i c ketone.  m/e 185 184 183 182 177 169 160 157 154 153 152 141 130 128 118 117 100 91 90 87 85 76 75 74 64 Int. 6 40 6 40 6 70 4 6 8 16 3 6 2 3 52 3 3 13 3 5 100 7 3 10 13  File  C-HALL  172 - 170 (continued)  m/e 63 59 58 56 52 51 I n t . 8 28 36 10 3 7 Base 85; P a r e n t ? ; S t r . F e a t . - fQyfcllJi'c<&x-.JaU'cdfroUTi  173 - 172  m/e 209 153 137 125 124 111 110 109 97 96 95 "87 83 82 81 74 71 70 69 68 67 59 58 57 56 55 44 43 41 Int. 3 8 8 1 5 3 3 4 10 20 11 7 20 31 18 11 38 13 23 22 21 27 38 51 17 41 22 100 52 Base 43; P a r e n t ? ; S t r . Feat.- C y c l o a l k e n y l ( a l c o h o l , S i or S), A l k y l , Carbonyl?.  176 - 174  m/e 169 155 120 111 98 83 73 72 71 69 56 55 43 41 Int. 5 1 1 1 1 1 1 5 100 7 5 3 62 12 Base 71; P a r e n t ? ; S t r . Feat.S i m i l a r to 2-Hydroxy-3-methyltetrahydrofuran.  177 - 176  m/e 222 204 189 162 161 147 138 137 134 125 122 121 120 119 117 109 107 105 104 98 95 93 92 91 83 Int. 23 17 17 17 35 23 78 30 41 35 23 36 36 23 30 41 60 41 23 41 39 60 23 23 35 m/e 82 81 80 79 77 68 67 65 59 54 53 51 50 I n t . 35 100 23 48 30 18 71 30 60 23 12 6 42 Base 81; P a r e n t 222? ; S t r . F e a t . - Aromatic, Diene o r c y c l o a l k e n e , p o s s i b l y Methyl e s t e r o f an aromatic a c i d w i t h an o r t h o h y d r o x y l .  (177 - 176) (178 - 177)  m/e 222 204 189 161 147 138 137 132 125 122 121 120 119 109 108 107 98 95 94993 83 82 81 80 79 67 I n t . 31 23 23 46 15 100 40 15 48 31 47 47 31 53 22 78 55 55 23 55 30 30 100 30 60 70 m/e 65 57 53 50 I n t . 39 78 15 55 Base 81(138); P a r e n t 222? ; S t r . F e a t . - S i m i l a r t o 177 - 176 except t h a t m/e 77, 91, 92, 104 and 105 a r e m i s s i n g .  187 - 185  m/e 293 237 220 219 216 215 198 195 184 183 180 179 169 165 159 138 137 109 107 82 81 78 77 59 54 Int. 4 31 3 14 5 35 5 5 9 8 20 9 12 134 38 10 95 13 8 11 20 41 52 100 5 Base 59; P a r e n t ? ; S t r . F e a t . - Aromatic, S i l i c o n , Septum b l e e d peak.  190 i 189  m/e 196 146 124 111 110 99 98 97 96 95 84 83 82 80 74 71 69 68 67 57 56 55 44 43 41 Int. 3 1 4 8 5 10 8 18 26 13 8 28 30 7 13 18 31 28 29 92 25 64 22 100 91 Base 43; P a r e n t 196? ; S t r . F e a t . - C y c l i c a l c o h o l o r e t h e r . K5  o  File  C-HALL  192 - 190  m/e :-253 244 230 229 197 196 195 181 175 173 155 135 131 119 107 99 92 91 Int. 7 18 9 52 8 42 41 13 48 22 11 13 11 21 8 100 5 17 Base 99; P a r e n t ? ; S t r . Feat.- Alkylsulphur.  195 - 193  m/e Int. m/e Int. Base  237 221 219 215 210 198 187 186 185 184 183 179 168 159 153 147 145 139 138 137 117 109 104 7 7 7 12 7 7 10 15 7 78 15 12 16 16 100 7 7 12 9 38 7 10 6 92 91 77 67 59 20 26 10 17 20 Str. Feat.- Similar to 2-Methoxymethyl-3-methoxycarbonyl-5-methylfuran. 153; P a r e n t ?  196 - 194  m/e Int. m/e Int. Base  237 216 215 196 195 187 184 159 153 145 140 139 137 131 125 117 116 115 112 111 109 98 97 92 2 3 3 10 5 5 23 9 32 8 5 9 18 6 7 10 10 9 10 30 8 11 38 10 91 84 83 77 71 70 69 68 65 63 57 56 55 53 51 50 45 43 41 65 24 57 15 73 33 57 22 8 2 50 40 66 5 5 2 20 100 60 S t r . F e a t . - A l k y l , A l k e n y l , Aromatic(weak), A l c o h o l o r F l u o r i d e ? , i s o - P r o p y l . 43; P a r e n t ? ;  198 - 196  m/e 212 194 180 177 175 161 159 137 129 117 115 111 109 105 97 95 91 85 83 79 77 71 69 59 57 55 Int. 5 6 2 3 3 2 2 10 6 4 6 21 8 45 11 5 23 14 25 5 15 30 32 22 35 53 m/e 51 43 441 Int. 5 100 63 Base 43; P a r e n t 212? ; S t r . F e a t . - A l k e n y l , s i m i l a r t o 196 - 194 except m/e 105 and t o p end.  205 - 203  m/e Int. m/e Int. Base  206 - 204  m/e 263 243 228 211 185 171 159 143 129 115 102 97 96 87 83 82 74 73 71 69 60 57 55 43 41 Int. 2 10 3 1 2 1 1 1 6 2 13 6 4 9 7 6 12 11 14 13 30 32 23 100 40 Base 43; P a r e n t ? ; S t r . F e a t . - S i m i l a r t o 205 - 203 except m/e 161, 179, 194, 195 and 216.  208 - 206  m/e 237 230 229 227 226 219 216 215 202 177 149 137 114 52 Int. 7 100 28 13 21 7 10 62 10 7 38 24 13 10 Base 230; P a r e n t 230? ; S t r . F e a t . - P o l y c y c l i c aromatic hydrocarbon,  243 231 229 228 218 216 215 195 194 185 179 161 143 137 129 119 102 100 97 91 87 85 74 73 71 6 1 3 7 3 5 2 3 7 5 8 8 3 3 8 3 19 3 5 7 18 49 23 12 12 69 60 59 57 55 43 '41 16 30 15 28 28 100 37 43; P a r e n t ? ; S t r . F e a t . - A l k e n y l , E s t e r ? , Amide?, Methyl?, C h l o r o ? .  Methyl?.  ho  o  File  C-HALL  209 - 208  m/e 256 210 209 198 197 158 157 150 149 137 114 81 62 59 54 Int. 12 12 12 42 31 12 25 12 100 43 12 12 12 19 12 Base 149; P a r e n t ? ; S t r . Feat.- Phthalate ester, possibly n-Propyl.  210 - 209  m/e 237 210 209 199 198 197 195 180 179 165 137 135 99 Int. 12 30 12 12 75 50 32 12 100 20 17 50 17 Base 179; P a r e n t 237? ; S t r . F e a t . - Hydroxyl o r c a r b o n y l , C h l o r o ? , A r o m a t i c ? .  211 - 210  m/e 250 219 210 198 196 180 179 159 137 136 135 119 111 107 97 95 91 83 78 77 71 59 57 55 45 43 41 Int. 2 2 2 2 2 12 100 2 3 3 51 3 3 117 11 3 3 14 3 7 14 9 30 17 10 13 21 Base 179; P a r e n t ? ; S t r . F e a t . - S i m i l a r t o p-t-Butylphenoxyethahol except no m/e 194.  213 - 211  m/e 137 125 117 112 111 104 97 85 84 83 82 78 77 70 69 57 56 55 43 41 Int. 5 4 4 4 12 7 30 12 18 45 20 3 4 31 52 70 40 72 100 70 Base 43; P a r e n t ? ; S t r . F e a t . - A l k y l , A l k e n y l , Aromatic(weak).  218 - 216  m/e 257 237 221 220 219 218 217 215 208 193 192 191 190 189 184 183 165 159 155 153 152 142 140 Int. 7 15 7 18 21 46 9 37 10 9 30 18 9 12 18 52 24 37 25 12 15 27 78 m/e 138 137 128 114 112 109 108 95 93 91 82 79 78 77 76 73 69 67 65 63 59 55 53 51 50 43 41 Int. 15 100 12 9 37 33 12 12 12 40 16 38 19 62 91 24 18 33 10 25 80 10 12 40 15 12 10 Base 137; P a r e n t 257? ; S t r . F e a t . - A r o m a t i c ( h i g h and l o w ) , C h l o r o , appears t o be a mixture o f spectrum 236 - 234 i n CL1202 w i t h those o f some o t h e r compounds. t  222 - 218  m/e 223 205 192 167 150 149 137 132 121 105 104 93 87 76 75 74 71 65 57 56 55 50 43 41 Int. 2 1 1 1 9 100 1 1 2 2 6 2 3 5 2 8 5 3 33 7 2 2 10 23 Base 149; P a r e n t ? ; S t r . Feat.- Phthalate ester, p o s s i b l y t - B u t y l .  225 - 223  m/e 297 283 282 268 253 242 237 212 211 170 163 160 159 147 141 137 133 130 128 127 117 115 91 58 Int. 10 13 100 13 37 13 13 31 20 10 13 18 49 8 18 45 13 13 35 21 52 31 25 14 Base 282; P a r e n t 297? ; S t r . F e a t . - C y c l i c o r Aromatic, Methyl, Ketone o r e s t e r ? .  226 - 225  268 254 253 240 237 220 218 179 178 161 159 146 145 141 137 136 135 128 127 120 117 115 109 m/e 13 6 42 7 .7 .1 13 13 20 10 12 12 12 16 30 20 15 23 30 16 22 32 22 Int. 108 105 103 92 91 81 79 78 77 69 67 65 58 53 52 51 45 43 m/e 32 20 20 20052 30 31 26 70 100 30 22 32 30 12 30 12 55 Int. Base 69; P a r e n t 268? ; S t r . F e a t . - A r o m a t i c ( h i g h ) , Methyl, C a r b o n y l .  ISO  O  as  m/e 280 257 237 223 215 212 205 185 150 149 137 104 87 76 59 51 Int. 1 1 1 1 4 1 1 1 7 100 10 1 1 1 7 3 Base 149; P a r e n t ? ; S t r . Feat.- Phthalate ester. m/e Int. m/e Int. Base  268 237 236 227 219 216 215 208 191 177 164 163 161 159 145 138 137 121 117 109 107 101 95 93 7 13 11 .1 7 7 29 7 7 7 28 7 7 21 10 13 100 18 23 18 10 13 28 13 92 91 88 81 79 78 77 74 73 69 67 59 55 54 53 43 42 41 13 70 23 49 22 28 35 18 25 31 28 60 46 10 10 48 31 22 137; P a r e n t ? ; S t r . Feat.- Aromatic(high), N i t r o ? , Methyl?.  m/e 256 237 219 215 159 150 148 137 122 121 105 104 93 87 85 84 77 76 65 60 59 57 56 55 50 43 41 Int. 1 2 1 5 2 3 2 27 3 3 7 12 12 7 3 4 17 28 22 8 22 53 40 13 13 18 100 Base 41; P a r e n t ? ; S t r . Feat.- Aromatic(low), A l k y l . m/e 236 222 207 206 202 193 191 190 189 180 179 178 168 167 165 154 152 134 133 123 119 109 107 Int. 47 10 12 36 10 20 30 12 16 40 17 40 30 32 32 17 17 10 10 10 13 22 30 m/e 101 96 95 94 91 82 81 80 79 71 69 67 55 43 Int. 10 16 80 22 26 35 88 26 40 42 100 55 65 45 Base 69; P a r e n t 236? ; S t r . F e a t . - Diene o r c y c l o a l k e n e , D i u n s a t . c y c l i c a l c o h o l o r e t h e r , o r Alkenyl carbonyl. m/e 234 197 184 183 177 167 166 140 139 135 134 131 127 121 108 107 106 93 91 85 79 77 57 53 52 41 Int. 8 1 1 2 4 10 15 2 12 2 100 2 7 3 3 31 3 4 6 12 22 3 22 7 ] 5 Base 134; P a r e n t ? ; S t r . F e a t . - c o n t a i n s spectrum o f 2 , 4 - D i m e t h y l - 6 - e t h y l p y r i d i n e (mw 135), t - B u t y l , o-Methyl e s t e r ? . m/e 354 250 247 228 209 175 167 151 150 149.98 93 83 76 70 69 67 65 55 41 Int. 2 2 2 2 8 2 5 2 10 100 4 4 22 4 18 4 4 4 12 13 Base 149; P a r e n t ? ; S t r . Feat.- Phthalate ester. m/e 199 112 97 84 83 81 71 70 69 57 55 43 41 Int. 50 25 17 18 25 18 58 50 33 100 50 50 32 Base 57; P a r e n t L? ; S t r . F e a t . - s i m i l a r t o D i - 2 - e t h y l h e x y l f u m a r a t e  except  f o r m/e  199.  File  C-HALL  366 -360  m/e 238 206 205 178 165 150 149 135 133 132 123 122 105 104 92 91 77 76 65 57 56 51 50 41 Int. 1 15 2 2 1 11 100 4 2 12 12 8 10 15 5 71 5 10 18 4 5 2 4 15 Base 149; P a r e n t ? ; S t r . Feat.- s i m i l a r to Benzyl-butylphthalate.  506 - 498  m/e 299 279 253 243 231 229 222 220 217 203 198 191 188 186.178 168 167 150 149 113 112 104 83 Int. 1 31 1 1 1 1 1 1 1 1 1 1 1 1 1 3 32 11 100 8 6 7 7 m/e 76 71 70 57 55 43 41 Int. 4 25 23 40 18 31 28 Base 149; P a r e n t ? ; S t r . Feat.- Phthalate ester.  File  APLCL1  83 - 88  m/e 109 108 107 91 90 89 80 79 78 77 63 62 55 53 52 51 50 39 Int. 7 88 100 7 12 7 20 43 13 61 17 9 10 30 20 40 31 42 Base 107; P a r e n t 108? ; S t r . F e a t . - Methylphenol, p r o b a b l y p - C r e s o l .  114 - 111  m/e 187 115 101 87 85 84 74 73 69 61 60 555445443441339 Int. 1 3 11 7 7 6 6 57 10 10 100 40 52 54 82 39 Base 60; P a r e n t ? ; S t r . Feat.- A l i p h a t i c acid.  152 - 145  m/e 129 115 104 101 97 91 87 83 73 71 69 61 60 57 55 45 43 41 39 Int. 10 3 1 1 1 6 9 9 60 13 13 8 80 22 47 45 60 100 40 Str. Feat.- A l i p h a t i c acid. Base 41; P a r e n t ?  187 - 182  m/e 185 171 158 157 143 130 129 115 111 101 99 98 97 87 85 83 73 71 69 60 57 55 45 43 41 39 Int. 1 2 1 5 2 1 8 5 2 5 2 3 5 8 8 8 61 11 11 100 20 40 50 59 80 40 Base 60; P a r e n t ? ; S t r . Feat.- A l i p h a t i c acid.  243 - 240  m/e Int. m/e Int. Base  129 123 115 111 110 109 101 98 97 96 95 87 84 83 81 79 77 73 69 67 60 57 56 55 54 53 45 1 2 1 5 3 4 1 5 10 8 8 2 10 18 16 10 7 12 32 24 18 17 18 71 19 10 20 43 41 39 59 3100430 41; P a r e n t ? ; S t r . Feat.- A l i p h a t i c acid.  ho o oo  File  APLCL1  274 (unsubtracted)  File  m/e 137 125 123 111 109 97 95 83 82 81 79 77 73 69 68 67 60 57 55 54 45 43 41 39 3 3 9 10 17 10 21 12 8 8 30 13 33 21 16 69 22 18 51 100 24 Int. 2 1 2 Base 41; Parent ? ; S t r . Feat.- A l i p h a t i c a c i d .  35LBK1  146 - 143  m/e 241 239 237 215 201 195 161 160 159 141 137 109 81 79 78 77 59 51 39 Int. 7 7 33 40 8 8 8 8 40 7 33 10 21 6 51 96 100 18 80 Base 59; P a r e n t ? ; S t r . F e a t . - Aromatic, s i m i l a r t o septum b l e e d .  193 - 189  m/e  Int.  237 219 215 167 159 155 154 139 137 113 112 99 883 82 78 77 65 59 57 55 43 41 1 1 1 1 1 2 1 7 4 5 10 100 3 3 2 4 1 5 28 7 25 50  Base 99; 211 - 205 also 257 - 253 330 - 320  Parent  ? ;  S t r . Feat.- C y c l i c alcohol or ether.  m/e 297 295 294 293 277 273 * spectrum 146 - 143 Int. 1 1 1 3 1 1 Base 59; P a r e n t ? ; S t r . F e a t . - Aromatic, Septum b l e e d peaks.  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 16 0
Russia 11 0
Romania 8 0
China 6 4
Ukraine 3 0
France 2 0
United Kingdom 2 0
Hong Kong 1 0
Philippines 1 0
Canada 1 0
India 1 0
City Views Downloads
Unknown 21 0
Ashburn 6 0
Shenzhen 6 4
Penza 5 0
Seattle 3 0
Secaucus 2 0
Dallas 1 0
La Center 1 0
Hyderabad 1 0
Denver 1 0
Lewes 1 0
Ottawa 1 0
Central District 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0063024/manifest

Comment

Related Items