Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Physical-chemical treatment and disinfection of a landfill leachate Bjorkman, Victor B. 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1979_A7 B56.pdf [ 6.03MB ]
Metadata
JSON: 831-1.0063018.json
JSON-LD: 831-1.0063018-ld.json
RDF/XML (Pretty): 831-1.0063018-rdf.xml
RDF/JSON: 831-1.0063018-rdf.json
Turtle: 831-1.0063018-turtle.txt
N-Triples: 831-1.0063018-rdf-ntriples.txt
Original Record: 831-1.0063018-source.json
Full Text
831-1.0063018-fulltext.txt
Citation
831-1.0063018.ris

Full Text

P H Y S I C A L - C H E M I C A L TREATMENT OF A L A N D F I L L  AND  DISINFECTION  LEACHATE  by  Victor B.A.Sc., University  A  B.  Bjorkman  of B r i t i s h  Columbia,  THESIS  SUBMITTED IN P A R T I A L  OF  REQUIREMENTS  THE  FOR THE  M A S T E R OF A P P L I E D  1951  FULFILLMENT DEGREE  OF  SCIENCE  in The  Faculty  of G r a d u a t e  C The Department  We a c c e p t to  THE  this  of C i v i l  thesis  the required  UNIVERSITY  conforming  standards  OF B R I T I S H C O L U M B I A  May, Victor  as  Studies Engineering)  1979  B e r n h a r d Bj orkman  In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l l m e n t o f the r e q u i r e m e n t s  for  an advanced degree a t t h e U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and  study.  I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may representatives.  be g r a n t e d by the Head o f my Department o r h i s  I t i s understood  t h a t c o p y i n g or p u b l i c a t i o n o f t h i s  t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my  permission.  V i c t o r B. Bjorkman  Department o f C i v i l  Engineering  The U n i v e r s i t y of B r i t i s h Columbia 2075 Westbrook P l a c e Vancouver, B r i t i s h Columbia V6T 1W5 Canada  i i  ABSTRACT  Water, w i l l  leach  substances waters.  the  be  waste  may  to  be  and It  leachate  source  a very  parameters  foregoing  is  now  should  biological  sewage  not  often  water,  requires  parameters  system.  was  receiving  water.  deal with to  a  select  it  purpose  safely  to  the  water;  that  Solids,  sanitary f i l l .  landfill,  These  surface  or  leached ground  receiving water,  low  i s ,  the  can  levels  of  d i s s o l v e d oxygen  m u n i c i p a l waste  is  of  to  levels  and  water.  of  toxic  this  system  lesser extent, of  the  from  leachate  be  overall  waste  thus,  before  the it  from  l a n d f i l l s ,  design.  Toxic  by  the  collected  discharged to  refuse  designed  waters  can be  research to  for  extremely  a number  the  chemicals  standard  l a n d f i l l  discharged a natural  to  a  receiving  treatment.  discharged  the  that  some r e c e n t l y  into  removed  complete  be  might  in  processes;  If  more  the  and  pretreatment  effluent  necessary  the  possible high  recognized  adequately  treatment  and  by  in normal, are  incorporated  physical-chemical  reagents,  found  a  receiving  diluted waste  in  from  for  Suspended  controlled,  requires  sewer  To  is  strong  those  refuse  substances  it  COD,  treatment  municipal  natural  of  pollution  generally  be  are  It  beds  metals.  and m e t a l s  i t  of  before  collection is  leachate  through  inorganic  many t i m e s  these  landfills  a  c l a s s e d as  are  chemicals  and  leachate,  water  turbidity Added  organic  The  usually  flowing  to  attempt  l a n d f i l l leachate, a  develop  such that  b i o l o g i c a l treatment  large  number  p h y s i c a l methods  primary  to  candidates  of  possible  available-, from  prior  plant  a the or  a  chemical i t  was  first  information  and  theory  available  use  a s t a t i s t i c a l l y designed  candidates  such as duration  found  were  used.  were  indicated as having  (Cd),  Four  Total  pH.  four  reagents  A l l  not  Organic  were  from  of  removed  determines  (TOC),  those  with  the quantity  of  except  removed  leachate-  (Turb),  Cadmium  the  the  Chemical  above  Oxygen  Inorganic of  by the  afore-named  Total  Calcium,  Carbon Solids  lime,  were  significantly  with  additional  organic  materials  i n approximate  experiments,  t h e named  (Ca),  (DS).  with  t o be an e f f e c t i v e  applied  of  Total  Dissolved  In these  the leachate. of  Solids  and alum  on t h e  two o f  Colour,  (TC)  speeds  as expressed  and t h e components  ozone.  i n the removal  t o t h e COD o f  Carbon  metals,  and only  ozone.  i s indicated  (Pb),  settling,  Calcium  only  i n removal  b y pH a d j u s t m e n t with  (K),  relationship  (Mn), Lead Total  Turbidity  that  of  sulfate,  effect  Potassium  determined  and Dissolved  by oxidation  not effective  sensitive  (SS)  b y pH a d j u s t m e n t  Ozone  of  Carbon  wastewater  by r e a c t i o n  (TC),  effective  the multivalent  this  removals  amounts  to  parameters  and u s u a l  ferric  significant  (Zn),  experiments  times  ozone,  Carbon  Zinc  as Manganese  Solids  lime,  and the acid-base  t h e components  and Total  Total  (Fe),  or duration  n o r m a l minimum  significantly  as w e l l  (TS)—Suspended  minor  Iron  were  (COD),  removed  for screening  i n the physical  of mixing  a potentially  (TS),  The f o l l o w - u p  pollutants,  (TIC)  Solids  Phosphorus  term  i f  chemical reagents,  (Cu),  (Na),  Demand  i t was advantageous  programme  no changes  and speed  t o be s i g n i f i c a n t ,  Copper  Sodium  experimental  the screening process,  were  contained  secondly,  chosen. In  screened,  i n the l i t e r a t u r e ;  were  stoichiometric  the polymers  tested  pollutants. disinfectant,  An ozone-COD r a t i o ,  ozone necessary  but  highly  which  for the oxidation  of  some  of  the  contained  dissolved  COD,  application  of  investigation.  is  metals  proposed  this  and  for  ozone-COD  for  this ratio  disinfection, leachate. is  put  The  forth,  as  a  function  possibility subject  to  of  of  the the  further  V  TABLE OF CONTENTS  t  ABSTRACT  i i  LIST OF TABLES'  viii x  LIST OF FIGURES ACKNOWLEDGEMENT  i xiii  Chapter 1  2  INTRODUCTION  1  1.1  The S a n i t a r y L a n d f i l l  1  1.2  L a n d f i l l Leachate  1  1.3  Leachate P r o d u c t i o n  2  1.4-  E f f e c t o f Leachate on R e c e i v i n g Environment  2  1.5  The C h a r a c t e r o f Leachate  3  1.6  Purpose o f T h i s R e s e a r c h P r o j e c t  3  LITERATURE REVIEW AND EXPERIMENTAL DESIGN  10  2.1  2.2 3.  P r e v i o u s R e s e a r c h on t h e Treatment o f L a n d f i l l Leachate  10  E x p e r i m e n t a l Programme  12  GENERAL-REVIEW OF PHYSICAL CHEMICAL PROCESSES  14  3.1  General Process D e s c r i p t i o n  14  3.2  P h y s i c a l Unit Processes  14  3.3  Chemical U n i t P r o c e s s e s  14  3.4  Advantages  and Disadvantages o f P h y s i c a l - C h e m i c a l  Processes 4„  15  SELECTION OF REAGENT AND PROCESS CANDIDATES  17  4.1  17  D i v i s i o n o f t h e E x p e r i m e n t a l Programme i n t o Two Phases  vi  5  6  7  8  4.2  Chemical Reagents  17  4.3  P h y s i c a l U n i t O p e r a t i o n s Screened  18  EXPERIMENTAL DESIGN  20  5.1  S t a t i s t i c a l F a c t o r i a l Design  20  5.2  F r a c t i o n a l F a c t o r i a l Design  20  5.3  C a l c u l a t i o n of E f f e c t s  24  5.4  C a l c u l a t i o n o f the Standard D e v i a t i o n  26  5.5  Determining the S i g n i f i c a n t E f f e c t s  28  EXPERIMENTAL APPARATUS AND ANALYTICAL METHODS  42  6.1  Ozone G e n e r a t i n g and C o n t a c t System  42  6.2  P h y s i c a l Unit Processes S i m u l a t i o n  44  6.3  A n a l y t i c a l Methods  45  6.4  D i s i n f e c t i o n w i t h Ozone  6.5  Ozone D i s i n f e c t i o n Procedure  •  46 47  PRESENTATION AND DISCUSSION OF DATA  48  7.1  D a t a — S c r e e n i n g Experiments  48  7.2  D i s c u s s i o n o f S c r e e n i n g Data  48  7.3  P o s t - S c r e e n i n g E x p e r i m e n t a l Data  50  7.4  D i s c u s s i o n o f P o s t - S c r e e n i n g Data  72  7.5  Data—Ozone D i s i n f e c t i o n  77  7.6  D i s c u s s i o n o f D i s i n f e c t i o n Data  77  7.7  General Discussion  80  7.8  A p p l i c a t i o n o f R e s u l t s t o P r e d i c t Ozone Requirements  7.9  Cost C o n s i d e r a t i o n s  .  83 89  CONCLUSIONS AND RECOMMENDATIONS  91  8.1  91  Conclusions  v i i  8.2 9 10  LIST  Recommendations OF  REFERENCES  92 95  APPENDICES General Raw  Data  Bibliography  98 99  viii  LIST OF TABLES  TABLE 1  LIMITS FOR EFFLUENT PARAMETERS THAT MAY BE OF CONCERN IN SPECIFIC DISCHARGE  4  2  RECEIVING WATER QUALITY MAINTENANCE OBJECTIVES  3  TYPICAL COMPOSITION OF LEACHATES  4  TREATMENT VARIABLES SCREENED AND APPLIED LEVELS OF EACH CORRESPONDING TO "HIGH" AND "LOW"  . . . .  9  LEVELS INDICATED IN  SCREENING DESIGN MATRIX OF TABLE 5 5  PLACKET-BURMAN  19  DESIGN FOR DETERMINING THE EFFECT OF 15  VARIABLES, AT 2 LEVELS EACH, USING 16 RUNS  22  6  POLLUTANTS MEASURED IN THE SCREENING PROCESS  7  FOUND VALUES OF THE POLLUTANTS MEASURED IN THE SCREENING  . . . .  EXPERIMENTS 8  23  25  COMPILATION OF STATISTICALLY SIGNIFICANT EFFECTS FOR VARIABLES OF SCREENING EXPERIMENTS  9  6  41  COMPILATION OF REAGENT DOSING LEVELS FOR GROUPS 1, 2 AND 3 WITH SIGNIFICANT POLLUTING CHARACTERISTICS SHOWN WHERE APPLICABLE  10  52  COMPILATION OF REAGENT DOSING LEVELS FOR GROUPS 4, 5 AND 6 WITH SIGNIFICANT POLLUTING CHARACTERISTICS SHOWN WHERE APPLICABLE  11  53  COMPILATION OF REAGENT DOSING LEVELS FOR GROUPS 7, 8 AND 9 WITH SIGNIFICANT POLLUTING CHARACTERISTICS SHOWN WHERE APPLICABLE  12  54  COMPILATION OF REAGENT DOSING LEVELS FOR GROUPS 10 AND 11  O  ix  WITH SIGNIFICANT POLLUTING CHARACTERISTICS SHOWN WHERE APPLICABLE 13  COMPILATION OF REAGENT DOSING LEVELS FOR GROUP 1 2 , RUNS 101-104  14  56  NAME CODES FOR THE INDEPENDENT VARIABLES FOR THE POST-SCREENING EXPERIMENTS (.GROUPS 2-12)  15  55  57  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 2, RUNS 17, 18, 20, 23, 27, 29, 30, 31, 32  16  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 4, RUNS 37-52  17  65  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 1 1 , RUNS 97-100  24  64  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 1 0 , RUNS 81-96  23  63  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 9, RUNS 73-80  22  62  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 8, RUNS 65-72  21  61  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 7, RUNS 57, 62-64  20  60  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 6, RUNS 57-61  19  59  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 5, RUNS 53-56  18  58  66  REMOVAL OF SELECTED POLLUTANTS FROM LANDFILL LEACHATE IN EXPERIMENTAL GROUP 12, RUNS 101-104  67  X  25  EXAMPLE OF A FACTORIAL DESIGN MATRIX USED IN THE POST-SCREENING EXPERIMENTS WITH THE MAIN EFFECTS AND THE INTERACTION EFFECTS CALCULATED FOR EACH OF THE FOUR TREATMENT VARIABLES USED IN GROUP 4 (EFFECT ON DEPENDENT VARIABLE—COLOUR)  26  69  SUMMARY OF BEST LOW' RESIDUALS OBTAINED WITH'REAGENT DOSES AND DOSE RANGES AS INDICATED  27  %  78  STANDARD PLATE COUNTS AT 35°C FOR LEACHATE TREATED WITH OZONE (COD OF 14,300 irig/1)  79  xi  LIST OF FIGURES  FIGURE 1  HALF-NORMAL PLOT OF THE SCREENING DATA FOR TURBIDITY WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  2  27  HALF-NORMAL PLOT OF THE SCREENING DATA FOR pH WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  3  30  HALF-NORMAL PLOT OF THE SCREENING DATA FOR TOTAL CARBON WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  4  31  HALF-NORMAL PLOT OF THE SCREENING DATA FOR PHOSPHORUS WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  5  32  HALF-NORMAL PLOT OF THE SCREENING DATA FOR TOTAL SOLIDS WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  6  . . .  33  HALF-NORMAL PLOT OF THE SCREENING DATA FOR CADMIUM WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  7  34  HALF-NORMAL PLOT OF THE SCREENING DATA FOR COPPER WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  8  35  HALF-NORMAL PLOT OF THE SCREENING DATA FOR ZINC WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  36  xii  9  HALF-NORMAL PLOT OF THE SCREENING DATA FOR CALCIUM WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  10  37  HALF-NORMAL PLOT OF THE SCREENING DATA FOR POTASSIUM WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  11  38  HALF-NORMAL PLOT OF THE SCREENING DATA FOR SODIUM WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  12  39  HALF-NORMAL PLOT OF THE SCREENING DATA FOR IRON WITH RELATED TABULATED EXAMPLE OF THE STANDARD DEVIATION CALCULATION  40  13  SCHEMATIC OF OZONATING SYSTEM  43  14  EXAMPLE OF THE HALF-NORMAL PLOT OF THE ABSOLUTE VALUES OF THE CALCULATED DEPENDENT VARIABLE EFFECTS ON COLOUR WITH THE RELATED STANDARD DEVIATION CALCULATION  15  71  CHART FOR ESTIMATING OZONE DOSE REQUIRED TO OXIDIZE CERTAIN METALLIC IONS AND LIVING ORGANISMS  88  xiii  ACKNOWLEDGMENT  The a u t h o r g r a t e f u l l y acknowledges t h e g u i d a n c e , i n t e r e s t o f h i s S u p e r v i s o r , Dr. D. S. M a v i n i c .  a s s i s t a n c e and  Acknowledgment i s a l s o  made o f t h e h e l p f u l a d v i c e r e c e i v e d from Dr. W. K. Oldham and Dr. R. D. Cameron.  Much a s s i s t a n c e was r e c e i v e d from Mrs. E l i z a b e t h  McDonald, Mary Mager and Susan Harper o f t h e C i v i l E n g i n e e r i n g mental Laboratory.  Environ-  F i n a n c i a l support f o r t h i s work o r i g i n a t e d from t h e  N a t i o n a l Research C o u n c i l o f Canada.  CHAPTER 1  INTRODUCTION  1.1  The S a n i t a r y  Landfill  The s a n i t a r y l a n d f i l l t e c h n i q u e i s c u r r e n t l y t h e most w i d e l y used s o l i d waste d i s p o s a l method.  The predominant  use o f t h e s a n i t a r y  l a n d f i l l i s based on i t s a c c e p t a b i l i t y , measured i n t h e combined terms o f time and volume e f f e c t i v e n e s s , n u i s a n c e abatement and c o s t .  The  i n c r e a s i n g volumes o f s o l i d waste b e i n g g e n e r a t e d t o d a y , c o n t a i n i n g more and more compounded m a t e r i a l s o f g r e a t c o m p l e x i t y , i n t r o d u c e new  problems  f o r l a n d f i l l s o l i d waste d i s p o s a l . B a s i c a l l y , a s a n i t a r y l a n d f i l l i s a l a n d a r e a where s o l i d waste i s d e p o s i t e d , compacted f o r volume r e d u c t i o n , and t h e n t h e d e p o s i t i o n i s c o v e r e d w i t h e a r t h a t r e g u l a r time and space  intervals.  N o t w i t h s t a n d i n g t h e s i m p l e d e s c r i p t i o n o f the s a n i t a r y  landfill  'process, t h e r e a r e a number o f a s s o c i a t e d problems which can o n l y be o v e r come by p r o p e r d e s i g n , e f f i c i e n t o p e r a t i o n , and c o n t r o l o f a l l o f t h e p r o d u c t s o f d e c o m p o s i t i o n g e n e r a t e d from t h e s o l i d  1.2  Landfill  waste.  Leachate  P o s s i b l y the most s e r i o u s problem caused by d e p o s i t e d s o l i d waste i n a l a n d f i l l i s t h e p r o d u c t i o n o f g r o s s l y p o l l u t e d l i q u i d s from t h e extraneous water e n t e r i n g and p a s s i n g t h r o u g h t h e l a n d f i l l .  The  water  e n t e r i n g the l a n d f i l l forms s o l u t i o n s o f t h e a n a e r o b i c d e c o m p o s i t i o n  2  products  o f t h e s o l i d waste i n t h e l a n d f i l l , and these s o l u t i o n s , generally-  termed " l e a c h a t e s , " c o n t a i n both d i s s o l v e d and suspended p o l l u t i n g substances.  1.3  Leachate  Production  L a n d f i l l l e a c h a t e i s o n l y produced when t h e r e i s more water e n t e r i n g t h e l a n d f i l l than i s r e q u i r e d t o s a t u r a t e t h e mass o f t h e d e p o s i t e d s o l i d waste.  A desired f u n c t i o n o f the s a n i t a r y l a n d f i l l  i s the  e f f e c t i v e s t a b i l i z a t i o n o f the organic p u t r e s c i b l e s i n the deposited waste; t h i s s t a b i l i z a t i o n i s e x p e d i t e d T o t a l l y preventing i n f i l t r a t i o n and  i n a moist-to-wet environment.  o f water i n t o t h e l a n d f i l l would be c o s t l y  counter-productive t o the s t a b i l i z a t i o n process ( 1 ) . Recognizing  t h a t i t may n o t be p r a c t i c a l o r d e s i r a b l e t o l i m i t  a l l l e a c h a t e p r o d u c t i o n , i t becomes n e c e s s a r y the produced l e a c h a t e , so t h a t t h e harm caused may be  1.4-  solid  t o both c o l l e c t and manage t o a r e c e i v i n g environment  minimized.  E f f e c t o f Leachate  The  on a R e c e i v i n g Environment  " i n s u l t " caused  t o a r e c e i v i n g environment by l a n d f i l l  leachate i s widely discussed i n the l i t e r a t u r e  ( 2 , 3 ) . Q u a l i t a t i v e and  q u a n t i t a t i v e l i m i t s on s p e c i f i e d p o l l u t a n t s have been s e t by many governmental r e g u l a t o r y a g e n c i e s .  T a b l e s 1 and 2 a r e examples o f  r e g u l a t i n g l i m i t s and a r e those s e t by t h e P o l l u t i o n C o n t r o l Board o f the P r o v i n c e o f B r i t i s h Columbia (4-).  3  1.5  The  C h a r a c t e r o f Leachate  The ( 2 , 3, 5 ) .  c h a r a c t e r o f l e a c h a t e has been d e s c r i b e d by many i n v e s t i g a t o r s  Table 3 d i s p l a y s a range o f v a l u e s o f s e l e c t e d l e a c h a t e  p o l l u t a n t s as g i v e n by some o f t h e s e  1.6  investigators.  The Purpose o f T h i s Research P r o j e c t  The purpose o f t h i s r e s e a r c h p r o j e c t was  to evaluate  the  e f f e c t i v e n e s s o f c e r t a i n s e l e c t e d c h e m i c a l s , combined w i t h p h y s i c a l s e p a r a t i o n p r o c e s s e s , t o remove p o l l u t a n t s from l a n d f i l l l e a c h a t e ; i t was a l s o d e c i d e d t o e v a l u a t e ozone, b o t h as a p o l l u t i o n removal c h e m i c a l as an a l t e r n a t e d i s i n f e c t i o n medium.  and  4  TABLE 1 LIMITS FOR EFFLUENT PARAMETERS THAT MAY BE OF CONCERN IN SPECIFIC DISCHARGE ( 1 ) * (Ref. 4, Tab. 5-2)  Parameter  Maximum C o n c e n t r a t i o n ( 2 ) * mg/1 (except pH and TI^) L e v e l AA  5 Methylene Blue A c t i v e Substances 15 O i l and Grease 6.5-8.5 pH 0.2 Phenol (3) 100% TL (96 hr.) 2.0 (Total) Aluminum 0.05 (Total) Arsenic ( D i s s o l v e d ) 1.0 Barium 5 (Dissolved) Boron 0.005 ( D i s s o l v e d ) Cadmium 0.1 (Total) Chromium (Dissolved) 0.1 Cobalt 0.2 (Dissolved) Copper 0.1 (Total) Cyanide (Dissolved) 5 Fluoride 0.3 (Dissolved) Iron 0.05 (Total) Lead (Dissolved) 0.05 Manganese (Total) 0.0006 Mercury 0.2 Molybdenum (Total) 0.3 (Dissolved) Nickel (4) Nitrogen 5 R e s i n A c i d Soaps 0.05 Selenium (Total) 0.1 (Total) Silver (Dissolved)(5) 50 Sulphate 0.5 (Dissolved) Sulphide 5 Tin (Total) 0.5 Zinc (Total) m  -  L e v e l BB  30 6.5-8.5 0.4 75% •4.0 0.25 1.0 5 0.01 0.3 0.5 0.5 0.5 1.0 0.1 0.5 0.002 0.5 0.5  0.1 1.0 250 1.0 10 5.0  * B r a c k e t e d numbers r e f e r t o Appendix t o T a b l e 1 which  follows.  5  APPENDIX TO TABLE 1  Explanatory  1.  Notes  The l i m i t s apply t o d i s c h a r g e s t o a l l r e c e i v i n g waters and t o ground u n l e s s otherwise permit  noted.  However, a l i m i t w i l l o n l y be shown on a  where i n v e s t i g a t i o n s i n accordance w i t h S e c t i o n 5.12 i n d i c a t e  t h i s i s needed. 2.  L e v e l s may be a d j u s t e d t o take account o f background l e v e l s i n the water s u p p l y .  Other parameters may be added a t the d i s c r e t i o n o f the  Director. 3.  T L ^ ^ S h r . ) samples t o be p r i o r t o c h l o r i n a t i o n .  4.  A l i m i t a t i o n on n i t r o g e n may be r e q u i r e d where s i t e - s p e c i f i c  studies  i n d i c a t e n i t r o g e n t o be a c o n t r o l l i n g f a c t o r f o r e u t r o p h i c a t i o n o r where the n i t r o g e n l e v e l o f the e f f l u e n t i s c o n s i d e r e d t o be high. 5.  Applies t o freshwater  only.  abnormally  6  TABLE 2 RECEIVING WATER QUALITY MAINTENANCE OBJECTIVES ( 1 ) * ( R e f . 4, Tab. 5-3)  OBJECTIVE  PARAMETER D i s s o l v e d Oxygen  Decrease not t o exceed 10%  Residual  Below d e t e c t a b l e method)  Chlorine  limits  (amperometric  Nutrients  No d e t e c t a b l e i n c r e a s e i n s i t e specific productivity-limiting parameters ( 2 ) " ( 5 ) *  C o l i f o r m s - r e c e i v i n g waters - s h e l l f i s h meat  (3)* (3)*  Toxicity  No i n c r e a s e above background (4-)*  Settleable Solids  Negligible  increase  F l o a t a b l e S o l i d s and Scum  Negligible  increase  Oil  None v i s i b l e  Organisms  No change i n p r o d u c t i v i t y o r development o f n u i s a n c e c o n d i t i o n s (5)*  Heavy Metals  Negligible  on water  surface  increase  * B r a c k e t e d numbers r e f e r t o Appendix t o T a b l e 2 which follows.  7  APPENDIX TO TABLE 2  Explanatory  Notes  These o b j e c t i v e s a r e f o r t h e maintenance  o f background  receiving  water q u a l i t y , g e n e r a l l y expressed i n terms o f t h e maximum a l l o w a b l e change f o r s p e c i f i e d parameters.  They a r e not a p p l i c a b l e w i t h i n t h e  i n i t i a l d i l u t i o n zone as d e f i n e d i n t h i s document.  Other d i s c h a r g e s  may be taken i n t o account i n d e t e r m i n i n g whether t h e a l l o w a b l e maximum change i s t o be l e s s than any v a l u e g i v e n .  Other parameters  may be added by t h e D i r e c t o r . L i m i t i n g parameters w i l l n o r m a l l y be taken as phosphates  and/or  n i t r o g e n forms. In g e n e r a l , t o t a l c o l i f o r m l e v e l s a r e not t o exceed a median MPN o f 1000/100 ml o r a f e c a l c o l i f o r m median MPN o f 200/100 ml and i n s h e l l f i s h waters a r e n o t t o exceed a f e c a l c o l i f o r m median MPN o f 14/100 ml and s h e l l f i s h meats may n o t show a f e c a l c o l i f o r m g r e a t e r than MPN o f 230 p e r 100 gm.  level  Reference may be made t o B r i t i s h  Columbia H e a l t h Branch "Recommended Water Q u a l i t y S t a n d a r d s " and t h e " N a t i o n a l S h e l l f i s h S a n i t a t i o n Program by t h e U n i t e d S t a t e s Department  Manual o f O p e r a t i o n " p u b l i s h e d  o f H e a l t h , E d u c a t i o n and W e l f a r e .  As measured i n a 96-hour T I ^ s t a t i c b i o a s s a y t e s t . P r o d u c t i v i t y r e f e r s t o b i o l o g i c a l parameters which a r e n o t amenable t o t a b u l a t i o n ; however, the f o l l o w i n g n u i s a n c e c o n d i t i o n s a r e t y p i c a l o f those t o be c o n s i d e r e d : In f r e s h w a t e r l a k e s , presence o f :  a) massive growths o f  p l a n k t o n i c b l u e g r e e n a l g a e (Cyanophyceae  f o r more than  8  s e v e r a l days d u r a t i o n ; b) massive growths o f a t t a c h e d f i l a m e n t o u s diatoms ( B a c i l l a r i o p h y c e a e ) and/or r o o t e d a q u a t i c p l a n t s e s p e c i a l l y near t h e s h o r e l i n e .  In r i v e r s and s t r e a m s , presence o f massive growths o f a t t a c h e d green a l g a e C C h l o r o p h y c e a e ) , f i l a m e n t o u s diatoms ( B a c i l l a r i o p h y c e a e ) and/or r o o t e d a q u a t i c p l a n t s , s l i m e - f o r m i n g b a c t e r i a (as " S p h a e r o t i l u s " ) , s l u d g e worms ( T u b i f i c i d a e ) o r c h i r o n o m i d s ( C h i r o n o m i d a e ) .  At sea o r i n e s t u a r i e s , presence o f s l u d g e beds w i t h reduced s p e c i e s d i v e r s i t y and a r e s t r i c t e d range o f predominant organisms such as " C a p i t e l l a  capitata."  9  TABLE 3 TYPICAL COMPOSITION OF LEACHATES ( 1 , 5)  T  Parameter  PH T o t a l Carbon (TC) T o t a l Organic Carbon (TOC) Chemical Oxygen Demand (COD) Calcium (Ca) Cadmium (Cd) Copper (Cu) Iron (Fe) Potassium (K) Sodium (Na) P h o s p h o r u s — T o t a l (P) Manganese (Mn) Lead (Pb) Z i n c (Zn) T o t a l S o l i d s (TS) Suspended S o l i d s (SS) D i s s o l v e d S o l i d s (DS)  Range o f V a l u e s or C o n c e n t r a t i o n *  3.7 715 256 0 5 0 0 0 2.8 0 0 0.06 0 0 584 10 584  8.5 28,000 28,000 90,000 7,200 17 23.4 5,500 3,770 7,700 130 1,558 5 1,000 45,000 16,800 44,900  * A l l v a l u e s except those f o r pH a r e i n M i l l i g r a m s p e r L i t r e (mg/1).  10  CHAPTER 2  LITERATURE REVIEW AND  2.1  P r e v i o u s Research  The  ongoing  EXPERIMENTAL DESIGN  on Treatment o f L a n d f i l l  Leachate  research directed to l a n d f i l l leachate  treatment,  c a r r i e d on a t the U n i v e r s i t y o f B r i t i s h Columbia ( l , 2, 3) and by o t h e r s (5,  6, 7) demonstrates the d i f f i c u l t y  for  a l l landfill  leachate.  The  of developing a u n i v e r s a l  treatment  extreme v a r i a b i l i t y , i n both c o n c e n t r a t i o n  and numbers o f p o l l u t i n g c o n s t i t u e n t s i n l a n d f i l l l e a c h a t e , i s the p r i n c i p a l cause f o r the treatment  difficulties;  t o these  difficulties  must be added the problem o f p r o v i d i n g an adequate and n o n p o l l u t i n g d i s i n f e c t i o n s t e p , t o cope w i t h the p o t e n t i a l f o r b a c t e r i a l and contamination  viral  (8) o f the l a n d f i l l l e a c h a t e .  Poorman (2) i n an i n v e s t i g a t i o n o f a n a e r o b i c b i o l o g i c a l ment o f l a n d f i l l  treat-  l e a c h a t e , found t h a t w i t h d e t e n t i o n times o f 5 t o 20  days good removals o f o r g a n i c s was  p o s s i b l e ; but i n the case o f the heavy  metal p o l l u t a n t s , w h i l e the;."percentage r e d u c t i o n appeared  relatively  high,  the e f f l u e n t c o n c e n t r a t i o n s were s t i l l above a c c e p t a b l e l i m i t s ( 4 ) . L i d k e a (3) found, i n t r e a t i n g l a n d f i l l l e a c h a t e w i t h p e a t , t h a t a d s o r p t i o n o f metals of  on the peat was  the peat f o r any p a r t i c u l a r  h i g h up t o the a d s o r p t i o n c a p a c i t y  metal,  U l o t h and M a v i n i c (1) t r e a t e d l e a c h a t e by an a e r o b i c b i o l o g i c a l p r o c e s s and o b t a i n e d r e s u l t s s i m i l a r t o the Poorman (2) a n a e r o b i c but a l s o i d e n t i f i e d  some i n h i b i t i o n o f b i o l o g i c a l a c t i v i t y and  study  attributed  11  t h i s p a r t i a l l y t o t h e heavy m e t a l c o n t e n t .  Corbett ( 9 ) , using a leachate  w i t h lower c o n c e n t r a t i o n s o f t h e p o l l u t i n g c o n s t i t u e n t s t h a n a r e found i n most l e a c h a t e s , compared t r e a t i n g l e a c h a t e by a d s o r p t i o n / f i l t e r i n g t h r o u g h peat and c h e m i c a l t r e a t m e n t  u s i n g l i m e and f e r r i c c h l o r i d e ; he found b o t h  t o be e f f e c t i v e f o r m e t a l r e m o v a l , w i t h no r e a l advantage i n combined chemical-peat (rainbow  treatment.  Bioassays  indicated that t o x i c i t y to f i s h  t r o u t ) i n c r e a s e d w i t h h i g h e r pH v a l u e s . Thornton and B l a n c (.5) t r e a t e d l e a c h a t e w i t h alum and l i m e ,  f i n d i n g t h a t l i m e was much s u p e r i o r t o alum f o r m e t a l removal b u t n e i t h e r gave s a t i s f a c t o r y removal o f BOD o r COD.  Chian and De W a l l e ( 6 )  experimented w i t h b i o l o g i c a l and p h y s i c a l - c h e m i c a l t r e a t m e n t s and concluded  of leachate  t h a t a combined p h y s i c a l - c h e m i c a l - b i o l o g i c a l system was  r e q u i r e d f o r proper leachate treatment.  B o y l e and Ram ( 7 ) conducted  b i o l o g i c a l and p h y s i c a l - c h e m i c a l r e s e a r c h on l a n d f i l l l e a c h a t e and r e p o r t e d on removals o f COD, I r o n , C h l o r i d e , T o t a l S o l i d s , pH, A l k a l i n i t y , Hardness and C o l o r .  The b i o l o g i c a l p r o c e s s e s  r e m o v a l s , whereas c h e m i c a l s  were more e f f e c t i v e f o r BOD and COD  p r o v i d e d a b e t t e r removal o f c o l o u r and I r o n .  C h l o r i n a t i o n i s t h e most w i d e l y used p r o c e s s f o r t h e d i s i n f e c t i o n o f wastewater i n N o r t h America b u t t h i s p r o c e s s  i s now b e i n g  criticized  because o f t h e p o s s i b l e r e a c t i o n between c h l o r i n e and t h e o r g a n i c s found i n leachate.  I t has been r e p o r t e d ( 1 0 ) t h a t i t i s p r o b a b l e  that  every  c o n c e i v a b l e c h l o r o - o r g a n i c r e a c t i o n o c c u r s and t h a t some o f t h e s e r e a c t i o n s produce p r o d u c t s  that are carcinogenic.  Yao ( 1 1 ) examined t h e u n d e s i r a b l e  a s p e c t s o f c h l o r i n a t i o n and t h e advantages o f u s i n g ozone as a d i s i n f e c t a n t , but t h e use o f ozone, as a d i s i n f e c t a n t o f l e a c h a t e s , i s j u s t now b e i n g researched.  12  2.2  E x p e r i m e n t a l Programme  The e x p e r i m e n t a l programme was d e s i g n e d such t h a t t h e e f f e c t o f each o f t h e c h e m i c a l r e a g e n t s , and t h e p h y s i c a l s e p a r a t i o n methods t e s t e d , c o u l d be s t a t i s t i c a l l y e v a l u a t e d , both as d i r e c t s i n g l e e f f e c t s and as combined i n t e r a c t i n g e f f e c t s .  S e v e r a l s e q u e n t i a l l y s i z e d r e a g e n t dose  ranges were a p p l i e d , t o q u a n t i f y t h e a c t u a l range i n which t h e r e a g e n t s were most e f f e c t i v e l y r e a c t i n g w i t h t h e p o l l u t a n t s i n t h e l e a c h a t e . E a r l y i n t h e e x p e r i m e n t a l programme i t was found t h a t t h e ozone r e q u i r e d t o o x i d i z e and c o n s e q u e n t l y remove some o f t h e m e t a l l i c p o l l u t a n t s was p a r t o f , and i n t e r m e d i a t e t o , an i n i t i a l t o t a l r a p i d t a k e up o f t h e a p p l i e d ozone by t h e l e a c h a t e .  "Rapid t a k e up" o f ozone as  used here r e f e r s t o t h e t o t a l ozone t h a t i s r e a c t e d b e f o r e any o f t h e ozone i s c a r r i e d t h r o u g h t h e l e a c h a t e by t h e c a r r i e r gaseous oxygen. U s i n g t h i s concept o f " r a p i d t a k e up," an attempt was made t o r e l a t e  this  t o a measurable l e a c h a t e parameter and a d i s t i n g u i s h i n g p h y s i c a l c h a r a c t e r i s t i c o f the p o l l u t i n g m e t a l l i c s .  The t o t a l c h e m i c a l oxygen  demand (COD) o f t h e l e a c h a t e was used as t h e measurable base parameter f o r the l e a c h a t e , w h i l e f o r the m e t a l l i c p o l l u t a n t s , the r a t i o o f the i o n i c r a d i u s t o t h e v a l e n c e was used as t h e d i s t i n g u i s h i n g m e t a l l i c  parameter.  Use o f t h e i o n i c r a d i u s t o v a l e n c e r a t i o as a measure o f t h e o x i d i z e a b i l i t y o f m e t a l l i c s has been d e s c r i b e d by G o l d s c h m i t t (12) and by McKenzie e t a l . ( 1 3 ) .  The way i n which an atom o r i o n w i l l r e a c t i s  c o n d i t i o n e d , i n p a r t , by s i z e ( 1 4 ) .  By p l o t t i n g t h e i o n i c r a d i u s - v a l e n c e  r a t i o v e r s u s t h e r a t i o o f a p p l i e d ozone t o l e a c h a t e - c o n t a i n e d COD, i t was p o s s i b l e t o p r e d i c t an " o r d e r e d , " ozone promoted, removal sequence f o r some o f t h e m e t a l l i c p o l l u t a n t s , and e q u a l l y i m p o r t a n t t o p r e d i c t  those  13  t h a t would not be removed by p r a c t i c a l l y s i z e d ozone a p p l i c a t i o n s . I t was  found t h a t b a c t e r i a l k i l l was  a p p l i e d ozone-COD r a t i o and t h i s was i o n i c radius-valence  ratio.  The  a l s o a f u n c t i o n of  incorporated  e m p i r i c a l l y i n t o the  f o r e g o i n g p l o t then e s t i m a t e s  the amount  o f ozone r e q u i r e d t o o x i d i z e some of the m e t a l l i c p o l l u t a n t s and l i v i n g organisms i n a l e a c h a t e f o r which t h e COD n o t e d t h a t i t was  not i n t e n d e d  i n t h i s research  the  i s known.  the  I t should  be  t o "model" the ozone  r e a c t i o n or d i s i n f e c t i o n p r o c e s s , but o n l y t o f i n d a w o r k i n g r e l a t i o n s h i p between a l e a c h a t e p a r a m e t e r , t h e ozone dose and the  leachate-contained  m e t a l l i c and b i o l o g i c a l p o l l u t a n t s . , Ozone i s b o t h c o r r o s i v e t o t r e a t m e n t p l a n t and t o x i c t o l i v i n g a n i m a l s and p l a n t s .  equipment  and  These c o r r o s i v e and t o x i c q u a l i t i e s ,  c o u p l e d w i t h the c o s t o f p r o d u c i n g ozone, have c o n s t r a i n e d the use ozone, b o t h as a p o l l u t a n t removal agent and as a d i s i n f e c t a n t .  of  I f an  e f f e c t i v e , minimum, s p e c i f i c , m e t a l l i c - p o l l u t a n t removal and/or d i s i n f e c t i n g ozone dose c o u l d be f i x e d , so t h a t no n o n r e a c t e d ozone i s p r o d u c e d , t h e n much o f the t r e a t m e n t p l a n t t o x i c i t y containment and  corrosion resistance  c o n s t r u c t i o n c o s t s c o u l d be a v o i d e d ; a l s o , t h o s e ozone p r o d u c t i o n r e s u l t i n g from o v e r d o s i n g c o u l d be m i n i m i z e d .  costs  14  CHAPTER 3  GENERAL REVIEW OF PHYSICAL-CHEMICAL PROCESSES  3.1  G e n e r a l Process  Description  In t r e a t i n g wastewater, any p r o c e s s e s t h a t do n o t use l i v i n g organisms  t o e f f e c t treatment a r e b r o a d l y c l a s s i f i e d as  Many such combinations  physical-chemical.  a r e p o s s i b l e and a r e u s u a l l y made up o f s e v e r a l  p h y s i c a l or chemical u n i t processes.  3.2  P h y s i c a l Unit  Processes  P h y s i c a l u n i t p r o c e s s e s a r e those treatment p r o c e s s e s t h a t use some p h y s i c a l c h a r a c t e r i s t i c o f t h e wastewater contaminant mechanism t o s e p a r a t e t h e contaminant  o r treatment  from t h e c a r r y i n g l i q u i d .  This  c h a r a c t e r i s t i c may be d e n s i t y , weight, s i z e , c o l o u r , shape o r any o t h e r p h y s i c a l form. screening,  Some p r o c e s s e s t h a t use p h y s i c a l c h a r a c t e r i s t i c s a r e :  m i x i n g , f l o c c u l a t i o n , s e d i m e n t a t i o n , f l o t a t i o n , f i l t r a t i o n and  induced d r y i n g ( 1 5 ) .  3.3  Chemical U n i t  Processes  Chemical u n i t p r o c e s s e s a r e those p r o c e s s e s t h a t use c h e m i c a l r e a c t i o n s between an added reagent and the contaminant t o change t h e c h e m i c a l form o f t h e contaminant. harmless  o f t h e wastewater  I t may be r e n d e r e d  i n , o r removed from, the c a r r y i n g l i q u i d .  Examples o f c h e m i c a l  15  u n i t processes are:  c h e m i c a l p r e c i p i t a t i o n , gas t r a n s f e r , a b s o r p t i o n ,  d i s i n f e c t i o n , c o a g u l a t i o n , o x i d a t i o n or r e d u c t i o n (15) and a d s o r p t i o n ( 1 6 ) . Most c h e m i c a l u n i t p r o c e s s e s r e q u i r e a contemporary or f o l l o w i n g p h y s i c a l u n i t p r o c e s s t o complete the s e p a r a t i o n o f the p o l l u t a n t from the wastewater.  3.4  Advantages and Disadvantages  of Physical-Chemical  A v i a b l e p h y s i c a l - c h e m i c a l treatment  Processes  process f o r l a n d f i l l  l e a c h a t e would have some i n h e r e n t advantages over a b i o l o g i c a l process.  The most important 1.  advantages would  treatment  be:  A q u i c k s t a r t - u p and shut-down o f the p r o c e s s t o a d j u s t t o c l i m a t i c and s e a s o n a l v a r i a b i l i t y o f l e a c h a t e production.  2.  P h y s i c a l - c h e m i c a l p r o c e s s e s a r e not a f f e c t e d by substances  3.  i n the l e a c h a t e .  P h y s i c a l - c h e m i c a l p r o c e s s e s are o f t e n o n l y n o m i n a l l y temperature  4.  toxic  dependent.  P h y s i c a l - c h e m i c a l treatment  p r o c e s s e s are more r e a d i l y  d i r e c t e d t o t r e a t and remove s p e c i f i c t a r g e t c o n s t i t u e n t s o f the wastewater than are b i o l o g i c a l treatment Some o f the disadvantages  of p h y s i c a l - c h e m i c a l treatment, i n  comparison t o b i o l o g i c a l treatment, might 1.  processes.  be:  P h y s i c a l - c h e m i c a l treatment p r o c e s s e s g e n e r a l l y produce l a r g e q u a n t i t i e s of sludges c o n t a i n i n g the removed p o l l u t a n t p l u s c h e m i c a l s , and these sludges are o f t e n r e f r a c t o r y i n n a t u r e , and hence not amenable t o f u r t h e r management.  16  2.  In the chemical unit portion of a physical-chemical treatment process, the chemical reagents are usually added i n molecular forms.  The reagent molecules  disassociate into the component ions or r a d i c a l s and one of these components takes part i n the treatment reaction and i s consequently removed.  The other  component remains i n the treated wastewater effluent and may not be acceptable i n the following use or disposal stages of the wastewater. 3.  Where s a t i s f a c t o r y pollutant residuals could be achieved with either physical-chemical or b i o l o g i c a l treatment, the physical-chemical process would probably be at a cost disadvantage.  17  CHAPTER 4  SELECTION OF REAGENT AND PROCESS  4.1  CANDIDATES  D i v i s i o n o f t h e Programme i n t o Two Phases  Because o f the m u l t i p l i c i t y o f p h y s i c a l and c h e m i c a l  process  c a n d i d a t e s a v a i l a b l e , i t was n e c e s s a r y t o d i v i d e t h e e x p e r i m e n t a l programme i n t o two phases.  In t h i s programme d i v i s i o n , t h e f i r s t  phase was a  s c r e e n i n g o f c a n d i d a t e s , f o r both p h y s i c a l and c h e m i c a l p r o c e s s e s ; the second  phase c o n s i s t e d o f a more r i g o r o u s i n v e s t i g a t i o n o f t h e treatment  l e v e l s a t t a i n a b l e by t h e p h y s i c a l s - c h e m i c a l c a n d i d a t e s emerging from t h e p r e v i o u s phase. The dependence o f t h e second phase on the r e s u l t s o f t h e preceding screening step n e c e s s i t a t e d a p r e l i m i n a r y a n a l y s i s o f the f i r s t phase r e s u l t s , and t h i s format  4.2  Chemical  i s adhered  to i n this report.  Reagents  A published l i s t  o f chemicals  (17) used f o r treatment  and wastewater, shows 73 c h e m i c a l r e a g e n t s . p r e l i m i n a r y experiments  o f water  U t i l i z i n g the r e s u l t s o f some  and a review o f t h e g e n e r a l p r a c t i c e r e p o r t e d i n  the l i t e r a t u r e , t h i s l a r g e number o f p o t e n t i a l c a n d i d a t e s was reduced t o six:  l i m e , alum, f e r r i c c h l o r i d e , f e r r i c  s u l f a t e , powdered a c t i v a t e d  carbon and ozone. Powdered a c t i v a t e d carbon was o n l y used  as a reagent dose mixed  i n t o t h e l e a c h a t e b e i n g t r e a t e d because e x p e r i m e n t a t i o n w i t h carbon i n  18  t h i s and o t h e r forms, such as a d s o r p t i v e - f i l t e r i n g o f l e a c h a t e , was a l r e a d y b e i n g c a r r i e d out a t the U n i v e r s i t y o f B r i t i s h Columbia Ozone was  (3, 9).  i n c l u d e d mainly as an a l t e r n a t i v e d i s i n f e c t a n t , t o  r e p l a c e the common d i s i n f e c t a n t c h l o r i n e ; however, i t s e f f e c t as an o v e r a l l p o l l u t a n t remover was Supplemental  examined.  t o the s i x d i r e c t - a c t i n g chemicals l i s t e d  t h r e e h i g h - m o l e c u l a r - w e i g h t s y n t h e t i c polymers and s e t t l i n g enhancers polymer  were t e s t e d as c o a g u l a t i o n  i n a s i x t e e n - e x p e r i m e n t , s t a t i s t i c a l group.  from each charge p o t e n t i a l was  d i r e c t i o n s were f o l l o w e d f o r p r e p a r i n g and u s i n g the  P h y s i c a l Unit Operations  A  chosen; a n i o n i c , n o n i o n i c and  c a t i o n i c , from a number s u p p l i e d by m a n u f a c t u r e r s ' agents.  4.3  above,  The  suppliers'  polymers.  Screened  Four p h y s i c a l u n i t o p e r a t i o n s , a u x i l i a r y t o the use o f the chosen chemicals and polymers, were s e l e c t e d ; these were c o a g u l a t i o n , f l o c c u l a t i o n , s e d i m e n t a t i o n and a g a s - c o n t a c t i n g column system, t o i n j e c t the ozone i n t o the wastewater.  S i n c e development o f the e f f e c t i v e n e s s o f  the c h e m i c a l p o r t i o n o f the e x p e r i m e n t a l programme depended h e a v i l y on the success o f the p h y s i c a l u n i t p r o c e s s o p e r a t i o n , s e v e r a l a p p l i c a t i o n v a r i a b l e s such as c o n t a c t t i m e , m i x i n g speed and the time a l l o w e d f o r s e t t l i n g were i n v e s t i g a t e d i n the s c r e e n i n g d e s i g n . c h e m i c a l r e a g e n t s and the p h y s i c a l parameters  Table 4 l i s t s  the  examined i n the s c r e e n i n g  experiments, as w e l l as the q u a n t i t i e s o r measurements used i n a p p l y i n g t h e s e reagents and p h y s i c a l u n i t p r o c e s s e s .  19  TABLE  4  T R E A T M E N T V A R I A B L E S S C R E E N E D AND A P P L I E D L E V E L S OF E A C H , C O R R E S P O N D I N G TO THE " H I G H " AND " L O W " L E V E L S I N D I C A T E D I N T H E S C R E E N I N G D E S I G N M A T R I X OF T A B L E 5  Variable  Variable Designation  A B C D . E F G H I J K  High  Level  Low  (+)  Lime Lime Alum Ferric  Chloride  Alum Time o f F l o c c u l a t i o n Blank Speed o f F l o c c u l a t i o n  L M N  S e t t l i n g Time Sludge Recycle Activated Carbon Ferric Sulfate Ozone Blank  0  Blank  (-)  1,000  mg/1  0  2,000. 75 167 125  mg/1 mg/1 mg/1 mg/1  0 0 0  4-0 m i n  -  40 60 10,000 50 250  0 20 m i n  rpm min mg/1 mg/1 mg/1  90 ± 30 m g / 1  -  Level  20 r p m 30 m i n 0 0 0 0  -  20  CHAPTER 5  EXPERIMENTAL DESIGN  5.1  S t a t i s t i c a l F a c t o r i a l Design  Because t h e purpose o f t h i s i n v e s t i g a t i o n i n v o l v e d t h e p o s s i b l e e f f e c t s o f a number o f f a c t o r s , t h a t i s , c h e m i c a l r e a g e n t s and t h e c o n t r o l o f p h y s i c a l t e c h n i q u e s i n t h e r e m o v a l o f p o l l u t a n t s from l a n d f i l l  leachate,  a s t a t i s t i c a l , f a c t o r i a l l y d e s i g n e d s e r i e s o f experiments was chosen as the most e f f i c i e n t  approach.  In a s t a t i s t i c a l , f a c t o r i a l l y designed experiment, the a p p l i e d v a r i a b l e s a r e used a t two o r more l e v e l s ( i n t h i s case two) and i n a l l p o s s i b l e c o m b i n a t i o n s w i t h each o t h e r a t t h e chosen l e v e l s .  By an  appropriate manipulation of the obtained data, f o r a block of experiments, t h e e f f e c t o f each v a r i a b l e i n c a u s i n g a change i n t h e dependent parameter can be d e t e r m i n e d .  I n a d d i t i o n t o t h i s main e f f e c t , a measure o f t h e  i n t e r a c t i o n o f t h e a p p l i e d v a r i a b l e s may be d e t e r m i n e d , i n a complete f a c t o r i a l design.  5.2  F r a c t i o n a l F a c t o r i a l Design  A s p e c i a l case o f t h e f a c t o r i a l l y d e s i g n e d experiments i s a s a t u r a t e d f r a c t i o n a l f a c t o r i a l d e s i g n , which p e r m i t s t h e i n v e s t i g a t i o n o f up t o "n - 1" a p p l i e d o r independent v a r i a b l e s i n "n" e x p e r i m e n t s ; however, t h i s s a t u r a t e d f r a c t i o n a l d e s i g n does n o t g i v e an e s t i m a t e o f t h e interactions  between any two a p p l i e d v a r i a b l e s .  These p a r t i c u l a r d e s i g n s ,  21  o f t e n r e f e r r e d t o as Placket-Burman (.18) d e s i g n s are n o t a b l y u s e f u l f o r s c r e e n i n g a p p l i e d v a r i a b l e s (.19), t h a t i s , i n d e t e r m i n i n g which a p p l i e d v a r i a b l e s have a s i g n i f i c a n t e f f e c t , i n going from one a p p l i e d l e v e l t o another a p p l i e d l e v e l , on a p a r t i c u l a r dependent v a r i a b l e .  "Significant  e f f e c t , " as used h e r e , means an e f f e c t g r e a t e r than the v a r i a t i o n s t h a t appear i n any e x p e r i m e n t a l work due t o e r r o r s or m a n i p u l a t i v e  causes.  A s a t u r a t e d , f r a c t i o n a l d e s i g n m a t r i x i s shown i n T a b l e 5 f o r "n" = 16 experiments.  T h i s i s the s c r e e n i n g d e s i g n used, and by u s i n g  o n l y 12 o f the 15 p o s s i b l e treatment  v a r i a b l e s , the d a t a m a n i p u l a t i o n s f o r  the unused treatment v a r i a b l e p o s i t i o n s may  be used t o p r o v i d e an  estimate  o f the v a r i a n c e and the s t a n d a r d d e v i a t i o n . In the d e s i g n m a t r i x shown i n Table 5, the p l u s e s (+) minuses (-)  ( i n the columns under the a p p l i e d v a r i a b l e s d e s i g n a t i o n s )  i n d i c a t e the p a r t i c u l a r h i g h and  low l e v e l s r e s p e c t i v e l y , f o r the a p p l i e d  v a r i a b l e s i n each o f the rows o f runs o r i n d i v i d u a l e x p e r i m e n t a l numbered 1 t o 16 i n the l e f t - h a n d column.  the a p p l i e d v a r i a b l e s used  i n the s c r e e n i n g experiments.  low  of  Because of the  o f l i m e and alum i n d i c a t e d i n the l i t e r a t u r e , these were  i n c l u d e d as two  s e p a r a t e v a r i a b l e s , each w i t h the consequent f o u r a p p l i e d  l e v e l s and a l l combinations  o f those  levels.  In the s c r e e n i n g experiments,  twelve p o l l u t i n g  characteristics  o r dependent v a r i a b l e s o f the l e a c h a t e were measured b e f o r e and treatment,  tests,  Shown i n Table 4, i n a d d i t i o n  t o the v a r i a b l e s , are the V a r i a b l e D e s i g n a t i o n s and the h i g h and  importance  and  f o r each o f the s i x t e e n e x p e r i m e n t a l r u n s .  dependent v a r i a b l e s are l i s t e d  These  after  twelve  i n T a b l e 6, as are the c o n c e n t r a t i o n s o r  v a l u e o f t h a t dependent v a r i a b l e i n the p a r t i c u l a r u n t r e a t e d l e a c h a t e . The  experiments  were performed  i n random o r d e r and the response  measured  22  TABLE 5 PACKET-BURMAN DESIGN FOR DETERMINING THE EFFECT OF 15 VARIABLES, AT TWO LEVELS EACH, USING 16 RUNS  MATRIX FOR SCREENING DESIGN APPLIED VARIABLES RUN NO.  A  B  C  D  E  F  G*  H  I  J  K  L  M  N*  0*  1  +  +  +  t  -  +  -  +  +  -  -  +  -  -  -  2  +  +  +  -  +  -  +  +  -  -  +  -  -  -  +  3  +  +  -  +  -  +  +  -  -  +  -  -  -  +  +  4  +  -  +  -  +  +  -  -  +  -  -  -  +  +  +  5  -  +  -  +  +  -  -  +  -  -  -  +  +  +  +  6  +  +  +  -  -  +  -  -  -  +  +  +  +  -  7  -  +  +  -  -  +  -  -  -  +  +  +  +  -  +  8  +  +  -  -  +  -  -  -  +  +  +  +  -  +  -  9  +  -  -  +  -  -  -  +  +  +  +  -  +  -  +  10  -  -  +  -  -  -  +  +  +  +  -  +  -  +  +  11  -  +  -  -  -  +  +  +  +  -  +  -  +  +  -  12  +  -  -  -  +  +  +  +  -  +  -  +  +  -  -  13  -  -  -  +  +  +  +  -  +  -  +  +  -  -  +  14  -  -  +  +  +  +  -  +  -  +  +  -  -  +  -  15  -  +  +  +  +  -  +  -  +  +  -  -  +  -  -  16  +  +  +  +  -  +  -  +  +  -  -  +  -  -  -  Note:  F o r t h e purpose o f t h e p r o j e c t , 12 v a r i a b l e s r e p r e s e n t r e a l changes i n t h e l e v e l o f t h e v a r i a b l e s , w h i l e 3 v a r i a b l e s , marked w i t h an a s t e r i s k (.*) a r e dummy v a r i a b l e s used t o e s t i m a t e e x p e r i m e n t a l error (19).  TABLE  6  POLLUTANTS MEASURED I N THE  5.03  PH Turbidity  Iron  60  (turb)  SCREENING PROCESS  Calcium  Carbon  (TC)  7,380  Potassium  Total  Solids  (TS)  8,600  Sodium  Zinc  (Cd)  (Zn)  Dependent the  variables  experimental  shown  values  (pollutants)  block  of  a r e i n mg/1 e x c e p t  turbidity, of  Copper  32.5  i n Hach  370  (Na)  f o r pH, which turbidity  i n untreated  15.10  (P)  0.043  (Cu)  i n the leachate  16 s c r e e n i n g e x p e r i m e n t s .  formazin  each variable  measured  270  (K)  Phosphorus  0.035  560  (Ca)  Total  Cadmium  441  (Fe)  Values  i s i n pH u n i t s , units,  and  and are the  leachate.  for  24  for  each dependent v a r i a b l e , t h a t i s , the r e s i d u a l i n the t r e a t e d  was  measured by a p p r o p r i a t e  laboratory a n a l y t i c a l techniques(20).  response measurements, f o r the s c r e e n i n g Table  5.3  leachate The  e x p e r i m e n t s , are d i s p l a y e d  in  7.  C a l c u l a t i o n of E f f e c t s  C a l c u l a t i n g the net average e f f e c t and  its statistical  s i g n i f i c a n c e , i n g o i n g from the low l e v e l t o the h i g h l e v e l o f any a p p l i e d independent v a r i a b l e s , were t h e n e x t two  steps.  of  For each o f  the the  d e s i g n a t e d , independent a p p l i e d v a r i a b l e s , t h a t i s , a p p l i e d r e a g e n t s or u n i t p r o c e s s l e v e l , the net e f f e c t i s the d i f f e r e n c e between the average o f the sum and  o f the dependent r e s p o n s e s o b t a i n e d  that obtained  a t the low a p p l i e d l e v e l .  a t the h i g h l e v e l  applied  For example, the e f f e c t o f  " v a r i a b l e A ( l i m e ) " on the dependent v a r i a b l e " t u r b i d i t y " i s :  ,.. Effect T  r  r  A  =  £ Responses a t "( + )" No.  Responses a t "(+)"  T h e r e f o r e , from T a b l e s 5 and given  Z Responses a t " ( - ) " No.  Responses a t " ( - ) "  7, t h e e f f e c t o f l i m e (A) on t u r b i d i t y i s  by:  Effect  . 95 + 66 + 40 t 120 (Turb)= v V  78 + 104  5.25  + 100  + 24 + 76 +  + 60 + 93 + 45 + 72 + 106  Hach T u r b i d i t y U n i t s ,  55  +  60  TABLE FOUND V A L U E S O F  POLLUTANTS  MEASURED I N THE  DEPENDENT  RUN NOS. 1 2 3 4 5 6 7 8  PH  Turb  TC  TS  7  Cd  SCREENING  VARIABLE  Zn  Fe  Ca  1.08 • 1.17 1.07  27.9 13.5 9.4  900 625 775  240 242  360 336 330  137.5 37.5  880 700 525  249 248 249  359 399 358  750 752 575  256 243 257  8.05 8.50 8.45  95 66 40  6,420 6,374 6,480  12,279 12,642 12,876  0.029 0.029  5.55  120 78 100 104  6,480 6,360 5,975 6,620  10,559 12,146 10,428  0.042 0.030 0.064  38.0 3.13 33.75  12,326  16.5  175.0 105.0  24  12,797 10,965  0.035 0.031  0,72 32.25  3.5 250  12,032 10,701 9,251  0.037 0.041  9,005  0.048 0.031  7.40 5.60 6.70  9 10  9.11 5.06 5.09  76 60  6,930 6,540 7,200  11 12 13  6.93 5.55 5.00  93 55 45  6,330 6,550 6,785 7,160  8,769  0.018  0.039 0.041  0.042  EXPERIMENTS  K 257  Na  P  Cu  0.625 2.975 0.82 11.44 16.20  0.043 0.042 0.036 0.054  351  10.80 7.28  0.049 0.070 0.071  0.375 11.70 16.20  0.030 0.065 0.051  40.75  440  580  270  326 350 365  14.5 30.25 33.75  43.75 150 457  990 537  220 353 360  3.90 5.25 15.00  0.057  490  225 248 267  32.5  475  350  266  370  16.20  0.057  25.0 32.5  16.705 441  675 560  248 270  351 370  9.60 15.10  0.041 0.043  0.040 0.130  14  5.00  72  15 16  6.16 5.03  106 60  Note :  The a b o v e r e p r e s e n t t h e f o u n d v a l u e s o f d e p e n d e n t v a r i a b l e s m e a s u r e d i n t r e a t e d l e a c h a t e f o r t h e 16 s c r e e n i n g r u n s . A l l v a l u e s a r e i n mg/1 e x c e p t f o r pH a n d t u r b i d i t y w h i c h a r e i n pH u n i t s a n d H a c h f o r m a z i n t u r b i d i t y u n i t s r e s p e c t i v e l y .  6,780 7,380  11,793 8,598  0.035  26  T h i s s t a t e s t h a t i n g o i n g from t h e low l e v e l o f "A" l e v e l o f "A" decreased  ( l i m e ) , 0 and 1,000  5.25  Hach u n i t s .  mg/1  (lime) t o the high  r e s p e c t i v e l y , the t u r b i d i t y i s  As w i l l be shown l a t e r , t h i s change i n  t u r b i d i t y i s l e s s t h a n t h e e s t i m a t e d s t a n d a r d e r r o r ( d e v i a t i o n ) and t h e r e f o r e not deemed s i g n i f i c a n t ; however, i t i l l u s t r a t e s t h e c a l c u l a t i o n methodology.  5.4  C a l c u l a t i o n o f t h e Standard D e v i a t i o n  The d a t a accompanying F i g u r e 1 (shown below the f i g u r e ) i s a s i x - c o l u m n t a b l e and from t h e l e f t t h e s e columns r e p r e s e n t : 1.  The rank o r o r d e r number o f the c a l c u l a t e d  2.  The symbol name o f t h e independent  3.  The a b s o l u t e v a l u e o f t h e c a l c u l a t e d  4.  The t e c h n i c a l l y c o r r e c t e d v a l u e o f  effect  variable effect Z,  the a r e a  under a normal curve f o r a h a l f - n o r m a l d i s t r i b u t i o n 5.  The a b s o l u t e v a l u e o f t h e e f f e c t m u l t i p l i e d by t h e Z  6.  (21)  v a l u e , and  finally,  The square o f t h e  Z  values.  This p r e s e n t a t i o n permits a r i t u a l i s t i c c a l c u l a t i o n of the standard e r r o r or  d e v i a t i o n o f t h e e f f e c t s from the f o r m u l a ( 2 1 ,  22)  E(Value)(Z)  I t i s t o be noted t h a t the s t a n d a r d d e v i a t i o n o f the may  be determined  from t h e unused o r dummy columns (17) where:  responses  27  0  2  4  6  1 0  8  ORDER  ORDER NUMBER  EFFECT NAME  ABSOLUTE VALUE  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  H D B N 0 K A I F E G L J C M  0.50 2.00 2.25 2.50 3.75 4.25 5.25 5.50 6.75 7.75 8.00 9.00 15.00 31.50 33.75  II  12  13  14  NUMBERS  z  (VALUE  0.079 0.158 0.239 0.322 0.408 0.496 0.589 0.688 0.794 0.910 1.040  HZ)  0.0395 0.3160 0.5377 0.8050 1.5300 2.1080 3.0922 3.7840 5.3595 7.0525 8.3200 £32.9444  (Z)  2  0.0062 0.0250 0.0571 0.1037 0.1665 0.2460 0.3469 0.4733 0.6304 0.8281 1.0816 Z3.9648  Z(VALUE)(Z) s -  2  £(Z ) 3  2  •  9  4  4  ~ 3.9648 = 8.31 F i g u r e 1. H a l f - n o r m a l p l o t o f t h e s c r e e n i n g d a t a f o r t u r b i d i t y w i t h r e l a t e d t a b u l a t e d example o f t h e s t a n d a r d d e v i a t i o n c a l c u l a t i o n .  28  _ C  2  + N  S  where  + O  3  C, N,  difference  2  and  0  2  ,  (2)  a r e t h e e f f e c t s o f t h e dummy v a r i a b l e s .  The  i n t h e e s t i m a t e o f the s t a n d a r d d e v i a t i o n , by t h e two c a l c u l a -  t i o n s , i s n o t s u f f i c i e n t t o a l t e r t h e end r e s u l t .  5.5  Determining the S i g n i f i c a n c e o f the E f f e c t s  U s i n g t h e method proposed by D a n i e l (23) and m o d i f i e d by Zahn ( 2 1 , 22) f o r d e t e r m i n i n g t h e s i g n i f i c a n t e f f e c t s i n a s i n g l e r e p l i c a t i o n f a c t o r i a l experiment, the c a l c u l a t e d absolute values o f the e f f e c t s are p l o t t e d v e r s u s t h e c o r r e s p o n d i n g o r d e r number o f t h e ranked e f f e c t s .  The  s c a l e o f t h e v e r t i c a l a x i s , on which t h e e f f e c t v a l u e s a r e p l o t t e d , i s i n multiples  o f t h e e s t i m a t e d s t a n d a r d d e v i a t i o n , w h i l e on t h e h o r i z o n t a l  a x i s , t h e ranked o r d e r numbers a r e p l o t t e d a t t h e i r c o r r e c t e d ( 21) half-normal percentiles.  I n c l u d e d on t h e p l o t t i n g g r i d a r e s o - c a l l e d  "Guard R a i l s " ( 2 1 , 2 3 ) , marking  o f f t h e 60%, 80% and 95% c o n f i d e n c e  limits  used t o d e t e c t t h e s i g n i f i c a n c e o f t h e l a r g e r e f f e c t s , t h a t i s , those e f f e c t s t h a t do n o t f a l l on. t h e normal expected p o s i t i o n s f o r n o n s i g n i f i c a n t effects.  The n o r m a l l y expected p o s i t i o n s o f t h e n o n s i g n i f i c a n t  effects  are i n d i c a t e d by t h e d i a g o n a l l i n e b e g i n n i n g a t t h e o r i g i n . For t h e s c r e e n i n g experiments of t h e independent  (runs 1-16), t h e h a l f - n o r m a l p l o t  v a r i a b l e e f f e c t s on t u r b i d i t y a r e shown i n F i g u r e 1.  In F i g u r e 1 t h e s i g n i f i c a n t e f f e c t s ( t h e e f f e c t s above t h e 95% c o n f i d e n c e l i m i t ) , a r e t h e ones caused by effects  M  and  C  M"(ozone) and  C (alum).  However, b o t h  were c a l c u l a t e d p o s i t i v e v a l u e s , t h u s i n d i c a t i n g t h a t  29  ozone, and alum c o n t r i b u t e t o i n c r e a s i n g t u r b i d i t y . J ( s l u d g e r e c y c l e ) was  The e f f e c t  of  c a l c u l a t e d as a n e g a t i v e e f f e c t , t h e r e b y d i m i n i s h i n g  t u r b i d i t y , but the p r o b a b i l i t y o f sludge r e c y c l e b e i n g a r e a l e f f e c t , l o w e r i n g t u r b i d i t y , i s low,  somewhere i n the o r d e r o f 65%,  o n l y s l i g h t l y above the 60% c o n f i d e n c e l i m i t F i g u r e s 1 through  "Guard  and  since i t f a l l s  Rail."  12, w i t h the accompanying e f f e c t data  and  s t a n d a r d d e v i a t i o n c a l c u l a t i o n , show the p l o t t i n g f o r s i g n i f i c a n c e of the " c a l c u l a t e d e f f e c t " d a t a , d e r i v e d from the raw sixteen screening  data o f Table 7, f o r the  experiments.  Table 8 i s a c o m p i l a t i o n o f the l e a c h a t e c h a r a c t e r i s t i c s which were s i g n i f i c a n t l y e f f e c t e d by the c h e m i c a l and p h y s i c a l treatments applied.  From t h i s t a b l e , i t i s noted  t h a t o n l y lime and ozone are  e f f e c t i v e i n r e d u c i n g some o f the monitored  p o l l u t a n t s , w h i l e alum  f e r r i c s u l f a t e had a r e a l , but n e g a t i v e , e f f e c t on one N e v e r t h e l e s s , the l a t t e r two experimentation treatment.  and  c h a r a c t e r i s t i c each.  reagents were i n c l u d e d i n the  because o f t h e i r common usage i n water and  follow-up wastewater  30  ORDER  ORDER NUMBER  EFFECT NAME  1 2 3 4  J  .  H I E  5  D  6 7 8  G K D  9 10 11 12  F L C N M A B  13 14 15  ABSOLUTE VALUE  NUMBERS  z  (VALUE HZ)  (Z)  0.00395  0.006241 0.024964  0.0500 0.0650 0.0925  0 .079 0 .158 0 .239  0.1025 0.1075  0 .322 0 .408  0.03300  0.057121 0.103684  0.04385  0.166464  0.1450  0 .496  0.1450 0.1500 0.1575  0 .589 0 .688 0 .794  0.07192 0.08541  0.246016 0.346921 0.473344  0.1600  0 .910 1 .040  0.3025 0.3175 0.5925 1.1375 2.3600  0.01270 0.02211  0.10320 0.12806 0.14550 0.31450  1.081600  E0.96420  E3.964891  0.630436 0.828100  E(VALUE)(Z) s  :  E(Z2)  3.964891 = 0.24 Figure  2.  2  H a l f - n o r m a l p l o t o f t h e s c r e e n i n g d a t a f o r pH w i t h r e l a t e d t a b u l a t e d example o f t h e s t a n d a r d d e v i a t i o n c a l c u l a t i o n .  31  0  2  4  6  6  10 ORDER  EFFECT NAME  ORDER NUMBER  N I 0  7 8  L  9 10  K  11 12 13 14 15  Figure  3.  D G B  170.125 177.125  J  570.625  A  359.875  M  386.875  related  plot  tabulated  of  15  z  (VALUE HZ )  (Z)  0.079  3.43 9.38 15.27 22.18  0.006241 0.024964  29.33  0.166464  0.589 0.688  43.46 51.61 63.38  0.246016 0.346921 0.473344  0.794 0.910  94.19 154.81 184.21  0.630436 0.828100 1.081600  £671.25  £3.964891  0.496  1.040  221.875  Half-normal  14  0.158 0.239 0.322 0.408  87.625 92.125 118.625  F  13  NUMBERS  43.375 5.9.375 63.875 68.875 71.875 87.625  E H  3 4 5 6  12  ABSOLUTE VALUE  C  1 2  II  2  0.057121 0.103684  £(VALUE)(Z)  s  the  =  E(Z2) _  671.25  ~  3.964891  -  169.3  screening data  example  of  the  for  standard  total  carbon  deviation  with  calculation.  32  0  2  4  6  8  10 ORDER  II  12  ABSOLUTE VALUE  EFFECT NAME  1 2 3 4  L H  0.063125  0.079  0.268125  0.158  I C K  0.724375 0.783125  0.239 0.322  0.939375 1.013125 1.111875 1.173125  J N  8  M E  9 10  1.265625  G 0  11 12 13 14  1.858125 2.406875 2.740625 3.64375 6.998125  F D A B  15  14  15  NUMBERS  ORDER NUMBER  5 6 7  13  7.553125  z  (VALUE  0.408  0.006241 0.024964  0.1731  0.057121 0.103684 0.166464  .5025 .655 .807 1.005  0.910  1.690 2.503 LB. 0 1 9 3 7 2  1.040  2  0.0049 0.0244 0.2521 .3832  0.496 0.589 0.688 0.794  (Z)  HZ)  0.246016 0.346921 0.473344 0.630436 0.828100 1.081600 L3.964891  £(VALUE)(Z) s  E(Z2) 8.019372 3.964891 = 2.02  Figure  4.  Half-normal related  plot  tabulated  of the screening data example  f o r phosphorus  of the standard  deviation  with calculation.  33  0  2  4  6  8  10 ORDER  EFFECT NAME  ORDER NUMBER  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  0 K C J E I H N G D M F  A B L  ABSOLUTE VALUE  0.636 0.665 0.680 0.711 0.793 0.839 0.857 0.874 0.893 0.917 0.924 0.982 2.042 3.451 4.035  II  12  13  14  15  NUMBERS  Z  0.079 0.158 0.239 0.322 0.408 0.496 0.589 0.688 0.794 0.910 1.040 1.191 1.376 1.626 2.051  S  (VALUE H Z )  (Z)  0.050165 0.09975 0.16252 0.228942 0.323594 0.416144 0.504773 0.601312 0.709042 0.83447 0.96096 £4.891622  0.006241 0.024964 0.057121 0.103684 0.166464 0.246016 0.346921 0.473344 0.630436 0.828100 1.081600 £3.964891  -  2  E(VALUE)(Z) —r  Z(Z 2 )  4.891622 3.964891 = 1.23 Figure  5.  Half-normal plot of the screening data f o r t o t a l solids with r e l a t e d t a b u l a t e d example o f t h e standard d e v i a t i o n c a l c u l a t i o n .  34  0  2  4  6  6  10 ORDER  ORDER NUMBER  EFFECT NAME  ABSOLUTE VALUE  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  I H A J D E 0 N G F L K C M B  0.0000625 0.0016875 0.0018375 0.0019375 0.0022125 0.0023125 0.0025875 0.0025875 0.0027875 0.0027875 0.0032875 0.0062125 0.0065875 0.0066625 0.0130625  II  12  13  14  15  NUMBERS  z  (VALUE  0 .079 0 .158 0 .239 0 .322 0 .408 0 .496 0 .589 0 .688 0 .794 0 .910 1 .040  (Z)  KZ)  0.049375 2.666 4.391625 6.23875 9.027 11.47 15.240375 17.802 22.13275 25.36625 34.19 1148.57438 x X X  X X  X  X X  X X  X  X  10 10 10 10 10 10 10 10 10 10 10 10  -  2  4 0.006241 4 0.024964 4 0.057121 4 0.103684 4 0.166464 4 0.246016 4 0.346921 4 0.473344 4 0.630436 4 0.828100 4 1.081600 4 E3. 964891  Z(VALUE)(Z) s —  2  Ul ) 148.57438 x 10 - 4 3.964891  = 0.0037 Figure 6.  Half-normal plot of the screening data f o r cadmium with related tabulated example of the standard deviation c a l c u l a t i o n .  35  0  2  4  6  8  10  II  ORDER  ORDER NUMBER  EFFECT NAME  ABSOLUTE VALUE  1 2 3 4 5. 6 7 8 9 10 11 12 13 14 15  M E C N  0.000625 0.003375 0.005125 0.006375 0.006375 0.008500 0.009375 0.009625 0.010375 0.012125 0.012325 0.014625 0.015375 0.018250 0.020125  H  L G F  I 0 A J D K B  12  13  14  15  NUMBERS  (Z)  (VALUE H Z )  Z 0.079 0.158 0.239 0.322 0.408 0.496 0.589 0.688 0.794 0.910 1.040  0.000049 0.000533 0.001224 0.002052 0.002601 0.004216 0.0055287 0.006622 0.00823775 0.0113375 0.012818 ZO.05491056  2  0.006241 0.024964 0.057121 0.103684 0.166464 0.246016 0.346921 0.473344 0.630436 0.828100 1.081600 £3.964891  E(VALUE)(Z) s  2  Z(Z ) 0.05491056 3.964891 = 0.014  Figure  7.  Half-normal tabulated  plot  example  of of  the the  screening standard  data  for  deviation  copper  with  related  calculation.  36  ORDER  ORDER NUMBER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  EFFECT NAME  ABSOLUTE VALUE  0 F K D E N L G J H I' C M A B  0.210 0.4525 0.580 1.2325 1.2350 1.260 2.3825 2.6950 2.8950 3.2075 4.6475 4.803375 6.4800 7.2925 26.560375  NUMBERS  (VALUE ) ( Z )  z 0.079 0.158 0.239 0.322 0.408 0 .496 0.589 0 .688 0 .794 0 .910 1 .040  0.01659 0.071495 0.13862 0.396865 , 0.50388 0.62496 1.4032925 1.85416 2.29863 2.918825 4.8334 £15.060717  (Z) 0 0 0 0 0 0 0 0 0 0 1 £3  2  006241 024964 057121 103684 166464 246016 346921 473344 630436 828100 081600 964891  £(VALUE)(Z) s  2  £(Z ) _ 15.060719 3.964891 = 3.8  Figure  8.  Half-normal tabulated  plot  example  of of  the screening data the standard  for zinc  deviation  with  related  calculation.  37  0  2  4  6  8  10 ORDER  ORDER NUMBER  EFFECT NAME  ABSOLUTE VALUE  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  0 c  10.75 11.75 18.85 24.50 33.75 56.25 59.25 68.75 75.00 80.75 84.50 85.00 85.50 127.50 208.75  H  L G N A K  M E  J F  D I B  II  12  13  14  15  NUMBERS  ( VALUE )(Z)  z  0.84925 1.8565 4.48125 7.889 13.770 27.90 34.89825 47.30 59.55 73.4825 87.880 E359.85675  0.079 0.158 0.239 0.322 0.408 0.496 0.589 0.688 0.794 0.910 1.040  s -  (Z)  2  0.006241 0.024964 0.057121 0.103684 0.166464 0.246016 0.346921 0.473344 0.630436 0.828100 1.081600 E3.964891  E(VALUE)(Z) E(Z ) 2  _ 359.85675 3.964891 = 90.76 Figure  9.  Half-normal p l o t of the screening data f o r calcium with r e l a t e d t a b u l a t e d example of the standard d e v i a t i o n c a l c u l a t i o n .  38  0  2  4  6  6  10 ORDER  ORDER NUMBER  EFFECT NAME  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  0  II  14  15  (Z)  (VALUE ) ( Z )  Z  0.125 0.625 0.625 0.875 1.875 2.625 2.875 3.875 4.125 4.125 5.625 6.625 9.125 9.375 12.125  E J C L I K L H A D N G B  13  NUMBERS  ABSOLUTE VALUE  F  12  0 .079 0 .158 0 .239 0 .322 0 .408 0 .496 0 .589 0 .688 0 .794 0 .910 1 .040  0.009875 0.09875 0.149375 0.28175 0.765 1.302 1.693375 2.666 3.27525 3.75373 - 5.8500 119.845125  2  0.006241 0.024964 0.057121 0.103684 0.166464 0.246016 0.346921 0.473344 0.630436 0.828100 1.081600 £3.964891  E(VALUE)(Z) s —  2  Ul )  _ 19.845125 3.964891 = 5.0 Figure  10.  Half-normal related  plot  of  the  screening  t a b u l a t e d example of  the  data for  potassium  standard deviation  with calculation.  39  0  2  4  6  8  10 ORDER  ORDER NUMBER  EFFECT NAME  ABSOLUTE VALUE  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  A J 0 E F  1.41 4.25 5.25 6.25 6.50 9.50 9.50 9.50 10.75 12.25 14.00 14.50 14.75 17.75 26.50  H I M L D G K N C B  II  12  13  14  15  NUMBERS  ( VALUE H Z )  z 0.079 0.158 0.239 0.322 0.408 0.496 0. 589 0.688 0.794 0.910 1.040  0.11139 0.6715 1.25475 2.0125 2.6520 4.7120 5.5955 6.5360 4.5355 11.1475 14.5600 £57.7864  (Z)  2  0.006241 0.024964 0.057121 0.103684 0.166464 0.246016 0.346921 0.473344 0.630436 0.828100 1.081600 £3.964891  £(VALUE)(Z) s  2  £(Z ) 57.7864 3.964891 = 14.57  F i g u r e 11.  H a l f - n o r m a l p l o t o f t h e s c r e e n i n g data f o r sodium with r e l a t e d t a b u l a t e d example o f the s t a n d a r d d e v i a t i o n c a l c u l a t i o n .  40  0  2  4  6  8  10 ORDER  ABSOLUTE VALUE  ORDER NUMBER  EFFECT NAME  1  G  1.8875  2 3 4 5  0 E  II  12  z  (VALUE K Z )  3.3875  0 .079 0 .158 0 .239 0 .322 0 .408  0.1491 0.5352 1.3115  I  6 7 8  K F C  14.7625 16.1375 17.8875  0 .496 0 .589 0 .688  9 10 11 12  L  18.4875 32.3625 34.2375  0 .794  13 14  M A B  D J N  15  14  2.6122 5.9109 7.3222  61.8620 99.3625  2  <Z>  0 006241 0 024964 0 057121 0 103684 0 166464 0 246016  9.5050 12.3066 14.6791  0 346921 0 473344 0 630436  29.4499 35.6070  0 828100 1 081600  1119.3887  964891  0 .910 1 .040  175.7625 265.3625  15  NUMBERS  5.4875 8.1125 14.487 5  H  13  £(VALUE)(Z) s  -  £(Z2)  3.964891 = Figure  12.  Half-normal tabulated  plot  example  of of  30.1  the screening data the standard  for  deviation  iron with  related  calculation.  41  TABLE C O M P I L A T I O N OF FOR  INDEPENDENT  EXPERIMENT  STATISTICALLY  SIGNIFICANT  V A R I A B L E S I N THE  DESCRIPTION  Statistical  Group  Runs  (Screening)  #1-16  8  SCREENING  LEACHATE CHARACTERISTIC S I G N I F I C A N T L Y A F F E C T E D B Y C H A N G E I N L E V E L S OF TREATMENT V A R I A B L E S  1  Treatment  Variables  Variable  High" Level  Low* Level  Lime  1000  0  pH,  P,  Lime  2000  0  pH,  P,  Alum  200t  0  Turb.**  Ferric Chloride  167  0  Ferric Sulfate  200  0  Activated Carbon  50  0  Sludge Recycle  50  0  Turb.  50 ± 10  0  pH***,  Ozone Time  EFFECTS EXPERIMENTS  Fe Cd, Zn,  Fe  TS**  pA**  9  Turb.**,  Fe***  for  Flocculation  40 M i n  20 M i n  Settling Time  60 M i n  30 M i n  Flocculation  4 0 RPM  25 RPM  *  otherwise  Speed  for  Mg/1 u n l e s s  shown.  * *  Significantly characteristic  "f* T h i s high  i s value levels.  for  increased i n  combined * * *  Of  this  effluent.  low significance.  4-2  CHAPTER 6  EXPERIMENTAL APPARATUS AND  The  ANALYTICAL METHODS  components o f the apparatus  assembled t o conduct  the  e x p e r i m e n t a l programme c o n s i s t e d o f two main u n i t s , the "ozone g e n e r a t i o n and  c o n t a c t i n g " system assembly, and the " p h y s i c a l u n i t  processes  s i m u l a t i o n " system assembly.  6.1  Ozone G e n e r a t i n g and C o n t a c t i n g System  A schematic  f l o w diagram o f the ozone g e n e r a t i o n and c o n t a c t i n g  system i s shown i n F i g u r e 13. Generator was  used.  For ozone g e n e r a t i o n , a Grace L a b o r a t o r y  T h i s type o f ozone g e n e r a t o r produces ozone, from  the oxygen i n a i r o r from pure oxygen, by p a s s i n g these gases between e l e c t r o d e s w i t h an a l t e r n a t i n g h i g h - v o l t a g e d i f f e r e n c e .  A u n i f o r m glow  d i s c h a r g e , commonly c a l l e d a s i l e n t d i s c h a r g e , i s m a i n t a i n e d i n s e r t i n g a d i e l e c t r i c between the e l e c t r o d e s . t h i s study; t h i s was  zero grade (hydro-carbons  oxygen s u p p l i e d from a p r e s s u r e  Only oxygen was l e s s than  rotameters.  5 ppm)  by  used i n commercial  cylinder.  The f l o w r a t e o f the ozone-oxygen mixture g e n e r a t o r was  i n the gas  stream  from the ozone,  c o n t r o l l e d and p r o p o r t i o n e d i n t o two p a r t s , by a s e t o f t h r e e One  p a r t went d i r e c t l y i n t o a . p o t a s s i u m - i o d i d e  t r a p f o r the  a n a l y s i s o f the ozone c o n t e n t , f o l l o w e d by volume measurement v i a a w e t - t e s t volume meter. h i g h by 9.5  The  second p a r t was  i n t r o d u c e d i n t o a 1.37  meter  c e n t i m e t e r i n s i d e diameter p o l i s h e d l u c i t e c y l i n d e r , c o n t a i n i n g  CONTACT CYLINDER  WET TEST METER —r>  OZONE GENERATOR  OZONE  D E T E R M I N A T I O N OF O Z O N E IN O F F OXYGEN STREAM  OXYGEN WET TEST .METER  K.I.TRAP  DETERMINATION OF O Z O N E IN O Z O N E OXYGEN S T R E A M 0  Control  Valves  LEACHATE RECYCLE PUMP  FIG.I3'SCHEMATIC OF OZONATING SYSTEM  CO  44  t h e sample o f l e a c h a t e t o be  ozonated.  The ozone-oxygen stream was d i s p e r s e d i n t o t h e l e a c h a t e t h r o u g h a f i n e - p o r o s i t y f r i t t e d gas d i s p e r s i o n t u b e , mounted near t h e bottom o f the l u c i t e contact c y l i n d e r . a t a c o n s t a n t r a t e o f 1.5  The l e a c h a t e i n the c y l i n d e r was  recycled  l i t e r s p e r m i n u t e , c o u n t e r - c u r r e n t t o t h e gas  f l o w ; t h i s was performed m a i n l y t o p r o v i d e a foam d i s p e r s i o n  s p r a y on t h e  top s u r f a c e o f the l e a c h a t e i n t h e c y l i n d e r . The gas stream e x i t i n g t h e c o n t a c t c y l i n d e r was l e d t o a second p o t a s s i u m i o d i d e t r a p and t h e n t o a w e t - t e s t volume meter assembly, t o measure the ozone c o n t e n t and volume o f t h e e x i t i n g gas.  I t s h o u l d be  noted t h a t a l l experiments were conducted w i t h no ozone e s c a p i n g t h e c o n t a c t chamber, i n d i c a t i n g t h a t a l l o f t h e ozone b e i n g a p p l i e d r e a c t e d i n the l e a c h a t e .  The f o r e g o i n g was  excepted i n one r u n t h a t was  carried  t h r o u g h t o the p o i n t where a b r e a k t h r o u g h , o f u n r e a c t e d ozone, was  noted;  t h i s b r e a k t h r o u g h caused a d i s c o l o u r a t i o n o f t h e c o n t e n t s o f t h e p o t a s s i u m iodide trap.  6.2  P h y s i c a l Unit Processes S i m u l a t i o n  The p h y s i c a l u n i t p r o c e s s e s s i m u l a t i o n was made u s i n g two s t a n d a r d , s i x - p a d d l e l a b o r a t o r y s t i r r i n g d e v i c e s , commonly c a l l e d " j a r t e s t apparatus."  The apparatus a l l o w s r a p i d m i x i n g d u r i n g and a f t e r t h e  a d d i t i o n o f r e a g e n t s and then t h e s t i r r i n g p a d d l e s may  be slowed t o any  chosen speed, t h u s p e r m i t t i n g t h e c o a g u l a t i o n and f l o c c u l a t i o n o f t h e p r e c i p i t a t e o r f l o e formed. by P h i p p s and B i r d .  The s p e c i f i c a p p a r a t u s used was  manufactured  45  6.3  A n a l y t i c a l Methods  Measurement o f t h e c h a r a c t e r i s t i c s o f the raw l e a c h a t e , used i n t h i s i n v e s t i g a t i o n , was made by t h e s t a f f o f the E n v i r o n m e n t a l E n g i n e e r i n g L a b o r a t o r y , Department o f C i v i l E n g i n e e r i n g , U n i v e r s i t y o f B r i t i s h  Columbia.  These measurements were i n accordance w i t h procedures o f Standard Methods ( 2 0 ) , w i t h minor m o d i f i c a t i o n s as noted i n t h e r e f e r e n c e by McDonald and Cameron ( 2 4 ) .  B a c t e r i a l counts on ozonated l e a c h a t e were determined u s i n g  procedures t h a t a r e d e s c r i b e d i n t h e f o l l o w i n g S e c t i o n 6.5. The " a f t e r treatment" c h a r a c t e r i s t i c s were measured u s i n g the same procedures as f o r the raw l e a c h a t e and these procedures a r e b r i e f l y d e s c r i b e d i n the f o l l o w i n g :  pH  - A l l d e t e r m i n a t i o n s were made w i t h a F i s h e r accumet pH Meter, Model 210.  Turbidity  - The t u r b i d i t y was measured w i t h a nepholmeter  procedure  ( 2 0 ) , u s i n g a Hach  T u r b i d i m e t e r , Model 2100A. Colour  - The c o l o u r was determined u s i n g a H e l i g e Aqua T e s t e r i n accordance w i t h the manufacturer's  Solids  specifications.  - S o l i d s d e t e r m i n a t i o n s were made u s i n g methods d e s c r i b e d i n Standard Methods ( 2 0 ) .  M e t a l l i c Ions  - The m e t a l l i c - i o n s p e c i e s Cd, Ca, K, Na, Cu, Mn and Zn were determined on a J a r r e l - A s h Model 82-516, Atomic A d s o r p t i o n Spectrophotometer.  The method employed  46  d i r e c t a s p i r a t i o n w i t h both c o n c e n t r a t e d and nonconcentrated samples o f l e a c h a t e , as a p p r o p r i a t e , f o r the q u a n t i t y o f contained m e t a l l i c i o n . T o t a l Carbon  The  carbons were a n a l y z e d by the  and I n o r g a n i c  procedures o f Standard Methods ( 2 0 ) ,  Carbon  u s i n g a Beckman Model 915,  coupled  t o t a l - c a r b o n and i n o r g a n i c carbon a n a l y z e r . Chemical Oxygen  COD  was  determined by the  "Dichromate  Demand  Method" o f Standard Methods ( 2 0 ) .  Ozone  Ozone was  determined by the  "Idiometric"  p r o c e d u r e , as o u t l i n e d i n Standard Methods (20).  6.4  D i s i n f e c t i o n w i t h Ozone  The  l i t e r a t u r e c o n t a i n s numerous r e f e r e n c e s and i n f o r m a t i o n  e s t a b l i s h i n g the e f f e c t i v e n e s s o f ozone as a v i r a l and disinfectant.  bacterial  Bringman (25) s t a t e s t h a t , i n t e s t s c a r r i e d o u t , ozone  600 t o 3,000 times more r a p i d than c h l o r i n e i n b a c t e r i a l  was  disinfection.  I n g o l s and F e t n e r (26) conclude t h a t b a c t e r i a l k i l l by c h l o r i n e i s p r o g r e s s i v e , as compared t o ozone which i s sudden a n d . ' t o t a l , r a f t e r a " t h r e s h o l d " dose has been a p p l i e d .  Because o f t h i s e s t a b l i s h e d  disinfection  a b i l i t y o f ozone, o n l y a l i m i t e d c o n f i r m a t o r y e v a l u a t i o n o f the d i s i n f e c t i o n by ozone was  planned i n t o t h i s e x p e r i m e n t a l p r o j e c t ; the main emphasis  on d e t e r m i n i n g the dose a t which b a c t e r i a l k i l l  was  accomplished.  was  1+7  6.5  Ozone D i s i n f e c t i o n P r o c e d u r e  S t a n d a r d P l a t e Counts a t 35°C u s i n g P l a t e Count Agar ( T r y p t o n e Glucose Y e a s t Agar) (20) were made on a s e r i e s o f n o n d i l u t e d samples o f ozonated l e a c h a t e .  Each s e q u e n t i a l sample, numbered from 1 t o 9, had an  i n c r e a s i n g ozone dose r a n g i n g from 0 mg/1 t o 163 mg/1.  Following this  s e q u e n t i a l l y i n c r e a s i n g ozone dose t e s t , 9 S t a n d a r d P l a t e Counts a t 35°C were made, u s i n g l e a c h a t e samples ozonated w i t h a common ozone dose o f 110 mg/1 each; 5 o f t h e s e samples were u n d i l u t e d and 4 were d i l u t e d 1-10, w i t h Stock B u f f e r S o l u t i o n ( 2 0 ) . A l l p l a t e c o u n t s were made u s i n g a Quebec colony counter.  R e c o r d i n g o f P l a t e Counts were i n accordance t o t h e  p r o c e d u r e s o f S t a n d a r d Methods ( 2 0 ) .  48  CHAPTER 7  PRESENTATION AND DISCUSSION OF DATA  7.1  Data—Screening  Experiments  T a b l e 4 shows the a p p l i e d dose l e v e l s o f the r e a g e n t s s c r e e n e d , as w e l l as the parameters  o f the p h y s i c a l u n i t operations screened.  Table 6 l i s t s t h e dependent  variables  ( p o l l u t a n t s ) measured i n t h e t r e a t e d  l e a c h a t e , and a l s o shows the o r i g i n a l c o n c e n t r a t i o n o f t h e monitored p o l l u t a n t s i n the u n t r e a t e d l e a c h a t e .  Table 7 gives the r e s i d u a l  c o n c e n t r a t i o n o f each o f t h e monitored p o l l u t a n t s i n t h e t r e a t e d l e a c h a t e from t h e s c r e e n i n g experiments.  7.2  D i s c u s s i o n o f S c r e e n i n g Data  The d e t a i l e d method o f m a n i p u l a t i n g the raw d a t a i s p r e s e n t e d i n Chapter 5 o f t h i s paper.  The c a l c u l a t e d independent e f f e c t d a t a ,  accompanying F i g u r e s 1 through 12, i s p l o t t e d i n the f i g u r e s t o determine those e f f e c t s t h a t a r e s t a t i s t i c a l l y  significant.  Because the low l e v e l o f t h e a p p l i e d reagent doses was a z e r o dose, the c a l c u l a t e d e f f e c t , caused by a p p l y i n g t h e reagent a t the h i g h l e v e l , i s a c l o s e a p p r o x i m a t i o n o f t h e r e a l removal caused by t h e named reagent a t t h e h i g h l e v e l a p p l i e d .  T h i s approximate  r e a l e f f e c t o f the  p a r t i c u l a r dose i s n o t i c e a b l e even when a reagent i s a p p l i e d as two separate doses.  T h i s s e p a r a t i o n o f dose e f f e c t may be n o t e d , i n the  s c r e e n i n g experiments, i n the a p p l i c a t i o n o f l i m e . dependent  In F i g u r e 2, where t h e  v a r i a b l e i s pH, the c a l c u l a t e d e f f e c t o f i n c r e a s i n g the l i m e dose  49  from 0 mg/1,  l o w - l e v e l dose, t o 1000  mg/1,  h i g h - l e v e l dose, i s t o r a i s e  the pH by 1.1375 pH u n i t s , w h i l e the c a l c u l a t e d e f f e c t o f i n c r e a s i n g the lime dose from 0 mg/1 s t a t i s t i c a l l y designed reagent  o r reagent  t o 2000 mg/1  i s 2.360 pH u n i t s .  T h i s a b i l i t y o f the  experiment t o e s t i m a t e the e f f e c t o f a p a r t i c u l a r  dose i s a u s e f u l datum.  An example o f one  o f these  u s e f u l data o b s e r v a t i o n s i s i l l u s t r a t e d i n F i g u r e 6, where i t i s shown t h a t the dependent v a r i a b l e Cadmium i s not s i g n i f i c a n t l y removed u s i n g a 1000  mg/1  l i m e dose but i s s i g n i f i c a n t l y removed by a lime dose o f 2000  mg/1. The r e s u l t s , d e r i v e d from the p l o t s i n F i g u r e s 1 t o 12, t a b u l a t e d i n T a b l e 8 and  are  can be summarized f o r each o f the a p p l i e d  independent v a r i a b l e s as f o l l o w s : Lime.  Lime was  shown t o have a s i g n i f i c a n t p o t e n t i a l f o r  d e c r e a s i n g the c o n c e n t r a t i o n o f t h r e e o f the monitored and  Zn,  Fe, w h i l e the i n c r e a s e i n t o t a l s o l i d s , a t t r i b u t a b l e t o l i m e ,  approached a s i g n i f i c a n t l e v e l .  Lime e f f e c t e d a change i n pH,  pH from the o r i g i n a l v a l u e o f 5.03 a p p l i e d and  up t o 9.11,  T u r b i d i t y was  Ozone was  raising  used a t the same time.  shown t o e f f e c t a r e d u c t i o n i n pH and  shown t o i n c r e a s e from the ozone a p p l i c a t i o n .  estimate f o r the r e d u c t i o n i n pH by ozone was  the  depending on the q u a n t i t y  the i n t e r a c t i n g e f f e c t o f o t h e r reagents  Ozone.  The  p o l l u t a n t s , P,  approximately  The 90  Fe. confidence  percent.  found r e d u c t i o n i n pH d i f f e r s ' - f r o m the f i n d i n g s o f o t h e r i n v e s t i g a t o r s  ( 2 7 ) , who  found  t h a t i n o z o n a t i n g wastewaters, the wastewater  pH  c o n s i s t e n t l y changes towards n e u t r a l i t y , pH 7, d u r i n g the ozone In t h i s s e t o f experiments, o f 5.03.  the wastewater was  ozonated  treatment.  at an o r i g i n a l  To be c o n s i s t e n t w i t h the p r e v i o u s l y r e p o r t e d work, the pH  pH  should  50  have been i n c r e a s e d towards pH  7 by the ozone treatment•  lime a d d i t i o n i n c r e a s e d the pH t o w e l l above pH e f f e c t f o r ozone shows a net pH r e d u c t i o n . can be made a t t h i s Alum.  No  The f o l l o w i n g  7 but the  calculated  explanation f o r t h i s  anomaly  time.  Alum had  one  s i g n i f i c a n t e f f e c t , namely t o i n c r e a s e the  t u r b i d i t y o f the l e a c h a t e . Ferric Sulfate.  F e r r i c s u l f a t e i n c r e a s e d the t o t a l  solids  content o f the t r e a t e d l e a c h a t e , when compared t o l e a c h a t e t r e a t e d without using f e r r i c  sulfate.  Sludge R e c y c l e .  Slude r e c y c l e was  t u r b i d i t y but the p r o b a b i l i t y f o r t h i s was  p o s s i b l y e f f e c t i v e i n reducing  low, about 60 p e r c e n t ,  as  demonstrated i n the F i g u r e 1 p l o t . None o f the o t h e r a p p l i e d v a r i a b l e s , reagents p r o c e s s e s were found q u a l i t y o f any  or p h y s i c a l u n i t  t o e f f e c t a s i g n i f i c a n t change i n the q u a n t i t y or  o f the l e a c h a t e c h a r a c t e r i s t i c s measured.  Lime and  ozone became the prime reagent  c a n d i d a t e s f o r the  f o l l o w - u p r e s e a r c h , from the r e s u l t s o f the s c r e e n i n g experiments.  Alum  and f e r r i c s u l f a t e were i n c l u d e d i n the f o l l o w - u p work because o f the near u n i v e r s a l acceptance treatment  chemicals.  o f these reagents The  as u s e f u l water and  low s i g n i f i c a n c e o f the s i n g l e , s l u d g e - r e c y c l e  e f f e c t p r e c l u d e d sludge r e c y c l e as a u s e f u l treatment  7.3  wastewater  Post-Screening Experimental  variable.  Data  T a b l e s 9 t o 13 d i s p l a y the doses o f a p p l i e d reagents o r d e r of reagent  a p p l i c a t i o n f o r the 11 groups o f experiments  numbers 2 t o 12) i n the p o s t - s c r e e n i n g e x p e r i m e n t a t i o n .  and  the  (group  For c o n t i n u i t y ,  51  the i n f o r m a t i o n f o r t h e " s c r e e n i n g experiments"  i s i n c l u d e d i n these t a b l e s  as group number 1. The reagent used  l e a c h a t e c h a r a c t e r i s t i c s a f f e c t e d by i n c r e a s i n g any s p e c i f i c from a l o w - l e v e l dose t o a h i g h e r - l e v e l dose a r e a l s o shown  i n these t a b l e s .  T a b l e 14- l i s t s t h e name code f o r each o f the  v a r i a b l e s ( r e a g e n t s ) used  i n the follow-up  independent  experimentation.  T a b l e s 15 t o 24 show t h e o r i g i n a l c o n c e n t r a t i o n , t h e h i g h , low and mean o f t h e r e s i d u a l c o n c e n t r a t i o n s , t h e s t a n d a r d d e v i a t i o n o f t h e r e s i d u a l s and t h e p e r c e n t o f the o r i g i n a l c o n c e n t r a t i o n s t h a t were removed i n the b e s t removal (lowest r e s i d u a l ) d u r i n g the treatment 19 c h a r a c t e r i s t i c s t h a t were  f o r each o f the  monitored.  T a b l e 26 shows the b e s t ( l o w e s t ) v a l u e s f o r the s e l e c t e d p o l l u t a n t s i n t h e t r e a t e d l e a c h a t e w i t h the treatment e f f e c t i v e reagent'dose Tables of  reagents  and the  o r dose range i n d i c a t e d .  to  , i n the appendix t o t h i s r e p o r t , a r e c o m p i l a t i o n s  the r e s i d u a l measured c o n c e n t r a t i o n s o f t h e monitored  leachate p o l l u t i n g  c h a r a c t e r i s t i c s , f o r a l l o f the p o s t - s c r e e n i n g e x p e r i m e n t a l r u n s , and i s the raw data from which the p r e v i o u s t a b l e s were The  found v a l u e s f o r the p o s t - s c r e e n i n g experiments  s t a t i s t i c a l l y and n u m e r i c a l l y m a n i p u l a t e d , of  developed. were  w i t h v a r i a n t s t o s u i t t h e number  a p p l i e d r e a g e n t s and t h e d a t a a v a i l a b l e , i n t h e same manner as d e t a i l e d  i n Chapter  5 f o r t h e s c r e e n i n g experiments.  F o r example, f o r t h e  e x p e r i m e n t a l groups numbers 2, 4 and 10, t h e e x p e r i m e n t a l d e s i g n used one  i n which 4 independent  combinations experiments.  was  v a r i a b l e s ( r e a g e n t s ) were t e s t e d i n a l l p o s s i b l e  o f two l e v e l s o f a p p l i c a t i o n i n 16 runs o r s e p a r a t e Table 25 i s an i l l u s t r a t i o n o f the c o m p u t a t i o n a l m a t r i x  used  52  TABLE  9  C O M P I L A T I O N OF R E A G E N T D O S I N G L E V E L S F O R G R O U P S 1 , 2 , AND 3 W I T H S I G N I F I C A N T P O L L U T I N G C H A R A C T E R I S T I C SHOWN WHERE A P P L I C A B L E EXPERIMENT  DEFINITION  Statistical Runs  #1-16  Lime Alum Fe2(S04)  Group  LEACHATE  CHARACTERISTIC  1  (Ozonation First) Treatment V a r i a b l e s 0 mg/1 - 1000 mg/1 0 mg/1 - 2000 mg/1 . 0 mg/1 200 mg/1  pH,  P,  Zn,  Ozone  0 mg/1 -  50 mg/1  pH**,  Sludge Recycle  0 mg/1 -  50 mg/1  Turbidity**  Group  Runs  (Ozonation  #17-32  2000 mg/1  Alum  25 mg/1 -  125 mg/1  25 mg/1 -  125 mg/1  25 mg/1 -  107  Ozone  pH,  Turbidity**,  mg/1  R u n s 1 9 , 2 1 , 2 4 , 2 5 , 2 6 , 28 o f t h i s group n o t completed due t o l o s s o f t r e a t e d l e a c h a t e sample Statistical  Group  3  Runs  #33-36  Four  r e p l i c a t e runs  as  i n Group  Fe**  First)  1200 mg/1 -  3  Turbidity*",  2  Lime  Fe2(S04)  Fe  TS*  200 mg/1  Statistical  Cd,  Turbidity*  0 mg/1 -  3  EFFECTED  not  completed  2  *  Indicates  effect  was an i n c r e a s e  * *  Indicates  effect  was o f  low s t a t i s t i c a l  significance  SS*,**,  Mn,  Zn  53  TABLE COMPILATION SIGNIFICANT  REAGENT  Statistical  Group  FOR  GROUPS 4 ,  CHANGES  1200  Alum 3  Ozone  CHARACTERISTIC  mg/1 -  2000  mg/1  150 mg/1  30 m g / 1 -  150 mg/1  mg/1 -  TC*, pH*, TC  98 m g / 1  TC,  T S * , TOC*, D S , Zn  TS,  TOC,  Colour,  Colour,  pH,  DS,  SS,  SS,  Fe,  COD,  Mn  Mn,  Cu  (1) Group  #53-56^  Lime  5  K  J  (Ozonation  1600  mg/1 -  Alum  First)  2000  mg/l  pH, SS,  ( 2 )  Turbidity, Colour, TC*, P b * , Z n , F e , C a * , Mn  TS*,  90 m g / 1  Fe2(S04)  90 m g / 1  3  Ozone  43  Statistical  Group  mg/1  6  #57-61 (Ozonation  Lime  First)  2460, 2630, 2790, and 3140 mg/1 ( 3 )  Alum Fe2(SOl|)3 Ozone *  AFFECTED  First)  30 mg/1 -  51  Statistical  Runs  6 WITH  APPLICABLE  4  Turbidity,  Runs  5 AND  SHOWN WHERE  Variables  Lime  Fe2(S04)  LEVELS  LEACHATE  #37-52 ( O z o n a t i o n  Treatment  DOSING  POLLUTING CHARACTERISTIC  DEFINITION  EXPERIMENT  Runs  OF  10  104,  Indicates  Note Note  (1) (2)  Note  (3)  71  mg/1  169  mg/1  111,  effect  115,  119,  2870  126  ( 3 )  was an i n c r e a s e .  Runs 53-55 were r e p l i c a t e r u n s w i t h t h e l i m e dose a t 1600 mg/1. R u n 56 h a d l i m e d o s e a t 2000 mg/1 w i t h t h e o t h e r a p p l i e d variable constant with runs 53-55. Lime and ozone doses i n c r e a s e d i n each r e s p e c t i v e r u n .  54  TABLE  11  C O M P I L A T I O N OF R E A G E N T D O S I N G L E V E L S FOR G R O U P S 7 , 8 AND 9 W I T H S I G N I F I C A N T P O L L U T I N G C H A R A C T E R I S T I C C H A N G E S SHOWN WHERE A P P L I C A B L E  EXPERIMENT Statistical Runs  #57,  Treatment  LEACHATE  DEFINITION Group  7  6 2 , 6 3 , 64 (Ozone  First)  Variables  Lime  2460 mg/1  Alum  0 mg/1 -  Fe2(S04)3  0 mg/1 -  Ozone  104 mg/1  Statistical  Group  Runs  (Ozonation  #65-72  (constant) 75  mg/1  150 mg/1 (constant)  8 First)  Lime  2100 mg/1 -  2900 mg/1  Alum  50 m g / 1 -  100 mg/1  Ozone  108 mg/1 -  130 mg/1  Statistical  Group  Runs (1600  SS,  #73-80 mg/1 l i m e  added b e f o r e  ozonation)  250 mg/1 -  750 mg/1  Alum  25 mg/1 -  75 m g / 1  Ozone  11  Indicates  mg/1 -  effect  127  was an  mg/1  increase.  COD  Colour,  9  Lime  *  CHARACTERISTIC  Ca*  TIC*  K*,  COD*  EFFECTED  55  TABLE  12  C O M P I L A T I O N OF R E A G E N T D O S I N G L E V E L S F O R G R O U P S 1 0 AND 1 1 W I T H S I G N I F I C A N T P O L L U T I N G C H A R A C T E R I S T I C C H A N G E S SHOWN WHERE A P P L I C A B L E  EXPERIMENTAL Statistical Runs (1600  LEACHATE  DEFINITION Group  10  #81-96 mg/1 l i m e added  before  ozonation)  Lime  750 mg/1  (constant)  Alum  75 mg/1  (constant)  Ozone  97 m g / 1 -  248 mg/1  Anionic Polymer  0 mg/1 -  2 mg/1  Cationic Polymer  0 mg/1 -  2 mg/1  Nonionic Polymer  0 mg/1 -  2 mg/1  Statistical  Group  #97-100^  (1600  mg/1 l i m e added b e f o r e 750 mg/1  (constant)  Alum  75 mg/1  (constant)  159 mg/1  (constant)  1 mg/1  (constant)  Anionic  Polymer  Cationic  Polymer  1 mg/1  (constant)  Nonionic  Polymer  1 mg/1  (constant)  * *  (1)  Low  Runs  TS,  Mn**  Fe**  ozonation)  Lime  Ozone  Colour,  11  Runs  Note  CHARACTERISTIC EFFECTED  97-100 were  deviation. significance.  r e p l i c a t e runs  made  to establish  the  standard  56  TABLE  13  C O M P I L A T I O N OF R E A G E N T D O S I N G L E V E L S GROUP 1 2 , R U N S 1 0 1 - 1 0 4  EXPERIMENT  DEFINITION  Statistical Runs (1600  LEACHATE  G r o u p 12  #101-104 mg/1 added b e f o r e 750  Lime Alum  mg/1  (constant)  75 m g / 1  (constant)  0, 124, 181, respectively  Ozone  Anionic  ozonation)  Polymer  181 mg/1 f o r runs  0 mg/1 -  0 . 5 mg/1  Cationic  Polymer  0 mg/1 -  0 . 5 mg/1  Nonionic  Polymer  0 mg/1 -  0 . 5 mg/1  101 - 1 0 4  FOR  CHARACTERISTIC  CHANGED  TABLE  14  NAME C O D E S FOR T H E I N D E P E N D E N T V A R I A B L E S THE P O S T - S C R E E N I N G E X P E R I M E N T S ( G R O U P S 2 t o  NAME  CODE  INDEPENDENT  VARIABLE  A  Lime  B  Alum  C D  Ferric  Sulfate  Ozone  E  Anionic  Polymer  F  Cationic  Polymer  G  Nonionic  Polymer  12)  58  TABLE R E M O V A L OF IN EXPERIMENTAL  Pollutant  15  S E L E C T E D P O L L U T A N T S FROM L A N D F I L L GROUP 2 , RUNS 1 7 , 1 8 , 2 0 , 2 3 , 2 7 ,  Range a n d Mean o f O r i g i n a l Value or C o n c e n t r a t i o n R e s i d u a l C o n c e n t r a t i o n s i n mg/1 i n mg/1 High  Low  LEACHATE 29, 30, 31,  Standard Deviation "s"  32  Percent Removed (best)  Mean 6.67  5.28  5.99  6.95  53  230  4  98  75  92  2500  2500  500  1200  289  80  5230  4400  3220  3998  31  38  Total Inorganic Carbon  36.6  40.0  4.0  15.8  0.32  89  Total Organic Carbon  5193  4285  3215  3983  31  38  14105  12718  9734  11507  706  31  pH Turbidity Colour Total  COD  Carbon  0.015  Ca  482  2140  780  1163  785  -61  Cu  0.039  0.106  0.030  0.064  0.006  23  Fe  665  325  1.0  86  7.6  99.8  K  156  160  134  150  3.46  14  Mn  10.1  8.2  4.6  6.82  0.095  54  Na  186  185  152  157  10.7  18  11.5  0.190  0.110  0.149  0.026  99  Pb  0.035  0.213  0.164  0.181  0.063  -368  Zn  12.45  6.35  0.27  2.71  0.20  98  P  TS  6775  9135  7535  8366  62  -11  SS  924  183  14  118  0.4  98.5  DS  5851  9107  7266  8248  63  -24  59  TABLE R E M O V A L OF  SELECTED  16  POLLUTANTS  IN EXPERIMENTAL  FROM L A N D F I L L  GROUP 4 ,  RUNS  LEACHATE  37-52  Standard Range a n d Mean o f Value Concentration Residual Concentrat ions Deviation i n mg/1 "s" i n mg/1 High Low Mean  Original Pollutant  or  Percent Removed (best)  0.015  5.28  8.60  6.05  6.85  100  255  25  145  12  75  2500  5000  250  1920  289  90  4095*  4510  3700  4143  31  9.6  Total Inorganic Carbon  29. 5 *  29.2  3.0  13  0.32  90  Total Organic Carbon  4065*  4496  3694  4131  31  13480*  14403  9706  12518  706  28  pH Turbidity Colour Total  Carbon  COD Ca  475* 0.06  Cu  9.1  1870  570  1077  785  -20  0.11  0.041  0.065  0.006  32  Fe  628*  250  0.66  79.3  7.6  99.9  K  152*  148  114  139  3.46  25  Mn  9.79*  8.2  1.5  6.12  0.095  85  Na  160*  255  128  159  10.7  20  P  10.1*  0.41  0.07  0.13  0.026  99.3  Pb  0.033*  0.203  0.057  0.13  0.063  -73  Zn  11.8  4.83  0.04  1.88  0.20  99.7  TS  6602*  8945  7006  8355  62  -3.7  SS  823*  1061  14  286  0.4  98.3  DS  5799*  9111  6949  8074  63  -20  *  Average  o f two  eight-litre  lots.  60  TABLE R E M O V A L OF  SELECTED  POLLUTANTS  IN EXPERIMENTAL  Pollutant  Original Value or Concentration i n mg/1  17  GROUP  Range Residual  FROM L A N D F I L L 5 , RUNS  and  Mean  LEACHATE  53-56  of  Concentrations  Standard Deviation "s"  Percent Removed (best)  High  Low  Mean  5.28  8.20  6.80  7.16  0.015  100  200  50  153  75  50  Colour  2500  1500  500  1000  289  80  Total Carbon  4000  3980  3750  3832.5  31  6.25  TIC  2 2..4  17.2  5  8.32  0.32  78  TOC  3978  3963  3744  3819  31  5.0  COD  12854  12823  11511  11977  706  10  1065  1076  785  -127  0.051  0.058  0.006  36  63  7.6  98.9  13 5  3.46  14.3  pH Turbidity-  Ca  468  Cu  0.08  0.063  Fe  590  90  K  147  138  126  Mn  9.48  6.90  2.50  5.72  0.095  73.6  Na  135  160  140  146.5  10.7  -3.7  8.70  0.180  0.108  0.147  0.026  98.9  Pb  0.030  0.154  0.080  0.115  0.063  -166  Zn  10.35  0.70  0.015  0.355  0.20  99.8  TS  6449  8714  8416  8526  62  -30  SS  723  51  24  41  0.4  96.7  DS  5726  8690  8365  8485  63  -46  P  1870  6  61  TABLE R E M O V A L OF  SELECTED  POLLUTANTS  IN EXPERIMENTAL  Pollutant  18  O r i g i n a l Value or Concentration i n mg/1  FROM L A N D F I L L  GROUP 6 , Range  Residual  RUNS  and  LEACHATE  57-61  Mean  of  Concentrations  Standard Deviation "s"  Percent Removed (best)  High  Low  11.44  10.25  10.94  0.015  62  52  2.2  25.44  75  96.4  Colour  1500  165  85  133  289  94.3  TC  4000  2820  2640  2708  31  34  TIC  22.4  4.2  0.8  0.32  96.4  TOC  3978  2816  2639  31  34  COD  14300  11259  10687  11045  706  25  Ca  450  1770  1500  1625  785  -233  Cu  0.06  0.075  0.030  0.052  0.006  Fe  660  -  -  -  K  109  138  134  Mn  8.7  0.15  Na  126  P  9.3  pH Turbidity  5.27  Mean  1.92 2706  -  7.6  50  136  3.46  -23  0.05  0.086  0.095  99.4  111  110  111  10.7  12.7  0.125  0.065  0.084  0.026  99.3  -  -  -  0.063  -  Pb  0.023  Zn  9.4  0.035  0.020  0.026  0.20  99.8  TS  6022  12284  9169  9948  62  -52  SS  817  85  26  64  0.4  97  DS  5205  9882  63  -75  12199  9113  62  TABLE REMOVAL OF  SELECTED  POLLUTANTS  IN EXPERIMENTAL  Pollutant  19  Original Value or Concentration i n mg/1  GROUP 7 , Range Residual High  FROM L A N D F I L L RUNS 5 7 , and  Mean  of  Standard Deviation "s"  Percent Removed (best)  10.345  0.015  -  Concentrations Low 10.21  LEACHATE  62-64  Mean  5.26  10.50  62  19  2.2  14.55  75  96.4  Colour  1500  165  165  165  289  89  TC  4000  2830  2660  2730  31  34  TIC  22.4  4.2  0.7  1.75  0.32  97  TOC  3978  2829  2655  2728  31  33  COD  14300  11180  8385  10247  706  41  Ca  450  1590  1500  1535  785  -233  Cu  0.06  0.056  0.045  0.052  0.006  25  Fe  660  -  -  -  K  109  138  134  Mn  8.7  0.09  Na  126  P  PH Turbidity  76  -  137  3.46  -22  0.05  .07  0.095  99.4  111  109  110  10.7  13  9.3  1.9  0.069  0.54  0.026  99.2  Pb  -  -  -  -  0.063  -  Zn  9.4  0.03 5  0.020  0.029  0.20  99.8  TS  6022  9169  9049  9112  62  -50  SS  817  47  26  37  0.4  97  DS  5205  9143  9002  9075  63  -73  '  63  TABLE REMOVAL  Pollutant  20  OF S E L E C T E D P O L L U T A N T S FROM L A N D F I L L I N E X P E R I M E N T A L GROUP 8 , R U N S 6 5 - 7 2  O r i g i n a l Value or Concentration i n mg/1  Range Residual High  pH  5.27  10.61  and  Mean  of  LEACHATE  "s"  Percent Removed (best)  9.88  0.015  -  Concentrations Low  Mean  9.2  Standard Deviation  62  17  14  15.5  75  77  Colour  1500  250  200  212.5  289  87  TC  4000  2870  2740  2806  31  32  TIC  22.4  5.8  1.24  2.8  0.32  94  TOC  3978  2869  2737  2803  31  31  COD  14300  12132  10737  11313  706  25  Ca  450  1640  1410  1516  785  -213  Cu  0.06  0.09  0.065  0.077  0.006  -8  Fe  660  0.971  0.301  0.46  7.6  99.9  K  109  174  131  154  3.46  -20  Na  126  111  108  110.6  10.7  12.7  P  9.3  0.087  0.045  0.067  0.026  99.5  Mn  8.7  0.053  0.036  0.043  0.095  99.6  Pb  0.023  0.060  0.011  0.034  0.063  52  Zn  9.4  0.207  0.024  0.050  0.20  99.7  TS  6002  9577  8747  9135  62  -45  SS  817  25  11  18  0.4  98.6  DS  5205  9562  8722  9117  63  -68  Turbidity  64  TABLE R E M O V A L OF  SELECTED  POLLUTANTS  IN EXPERIMENTAL  Pollutants  O r i g i n a l Value or Concentration i n mg/1  21 FROM L A N D F I L L  GROUP 9 ,  RUNS  Range a n d Mean Residual  LEACHATE  73-80  of  Concentrations  Standard  Percent  Deviation  Removed  "s"  (best)  High  Low  Mean  5.29  10.19  8.21  8.97  0.39  62  27  13  18.6  14.93  79  800  500  125  253  25  84  TC  3210  2600  2495  2563  53  22  TIC  26.7  17.8  1.4  7.5  4.41  95  TOC  3183  2599  2492  2555  53  22  COD  9920  10058  9006  9453  182  9  Ca  333  1270  1050  1186  72  -215  Cu  0.019  0.074  0.056  0.066  0.003  -194  Fe  500  3.428  0.285  1.380  0.496  99.9  K  78  102  93  98  5.12  -19  Na  85  85  80  82.4  0.368  5.8  P  11.4  0.115  0.01  0.081  0.377  99.9  Mn  7.34  0.721  0.107  0.283  0.005  98.5  Pb  0.018  0.024  0.011  0.014  0.014  39  Zn  6.60  0.021  0.015  0.0175  0.036  99.8  TS  4846  7516  6465  7111  126  -33  SS  801  24  3  12.4  39  99.6  DS  4326  7492  6453  7099  93  -49  pH Turbidity Colour  -  65  TABLE R E M O V A L OF  SELECTED  POLLUTANTS  IN EXPERIMENTAL  Pollutant  PH  Original Value or Concentration i n mg/1  5.29  22 FROM L A N D F I L L  GROUP 1 0 ,  Range Residual  a n d Mean  of  Concentrations  High  Low  10.59  10.0  LEACHATE  RUNS 8 1 - 9 6 Standard Deviation "s"  Percent Removed (best)  Mean 10.26  0.39 14.93  97.9  96  32  2  6.38  Colour  1000  600  100  294  25  TC  3190  3075  2800  2982  53  TIC  56.6  3.6  0.8  2.00  TOC  3133  3073  2799  2979  53  11  COD  10071  9045  8128  8553  182  19.3  Turbidity  4.41  90 12.2 98.6  Ca  349  1788  1512  1702  72  -354  Cu  0.023  0.056  0.017  0.034  0.003  26  Fe  510  2.0  0.18  0.68  0.496  99.9  K  72  103  87  94  5.12  -21  Na  76  76.70  75.10  75.76  0.368  1.2  P  14.6  0.39  0.13  0.17  0.377  99.1  Mn  6.44  0.22  0.10  0.15  0.005  98.4  Pb  0.025  0.014  0.003  0.0085  0.014  88  Zn  5.73  0.0143  0.0027  0.0064  0.036  99.9  TS  4623  7292  6912  7110  126  -49.5  SS  520  46  3  17.6  39  99.4  DS  4103  6907  7086  93  -68  7281  66  TABLE REMOVAL  Pollutant  23  OF S E L E C T E D P O L L U T A N T S FROM L A N D F I L L L E A C H A T E I N E X P E R I M E N T A L GROUP 1 1 , R U N S 9 7 - 1 0 0  O r i g i n a l Value or Concentration i n mg/1  Range Residual  and  Mean  of  Concentrations  Standard Deviation "s"  Percent Removed (best)  High  Low  5.29  11.60  11.52  11.57  0.39  -117  96  41  7  25.25  14.93  92.7  Colour  1000  100  81.5  87.5  25  91  TC  3190  2985  2875  2907  53  9.9  TIC  56.6  9.75  4.4  7.55  TOC  3133  2981  2866  2910  53  8.5  COD  10071  8380  8030  8221  182  20  Ca  349  1956  1788  1872  72  Cu  0.023  .038  .030  .033  0.003  -30  Fe  510  1.30  0.11  0.70  0.496  99.9  86  91  5.12  -19.4  PH Turbidity  Mean  4.41  92  -412  K  72  98  Na  76  77.2  76.3  76.7  0.368  -0.4  P  14.6  0.28  0.21  0.23  0.377  98.5  Mn  6.44  0.04  0.03  0.325  0.005  99.5  Pb  0.025  0.036  0.016  0.017  0.014  36  Zn  5.73  0.0836  0.0026  0.0307  0.036  99.9  TS  4623  7613  7332  7429  126  -58  SS  520  100  10  54.5  39  98  DS  4103  7513  7322  7374  93  -78  67  TABLE REMOVAL  OF  SELECTED  POLLUTANTS  IN EXPERIMENTAL  Pollutant  O r i g i n a l Value or Concentration i n mg/1  24  GROUP  Range Residual High  pH  5.29  11.63  FROM L A N D F I L L  12,  RUNS  LEACHATE  101-104  a n d Mean o f Concentrations  Standard Deviation "s"  Low  Mean  11.5  11.56  0.39  14  14.93  Percent Removed (best)  94.8  96  28  5  Colour  1000  250  100  TC  3190  3050  2950  2996  TIC  56.6  10.2  2.2  6.96  TOC  3133  3649  2941  3292  53  6.1  COD  10071  8936  8323  8582  182  17.3  Ca  349  2037  1575  1842  72  -362  Cu  0.023  0.054  0.023  0.036  0.003  0  Fe  510  0.96  0.10  0.63  0.496  99.98  K  72  97  89  94  5.12  -24  Na  76  77.8  76.75  77.4  0.368  -1  P  14.6  0.34  0.09  0.18  0.377  99.3  Mn  6.44  0.05  0.01  0.03  0.005  99.8  Pb  0.025  0.043  0.003  0.02  0.014  88  Zn  5.73  0.017  0.006  0.010  0.036  99.9  TS  4623  7663  6636  7368  126  -44  SS  520  73  7  26  39  98.6  DS  4103  7590  6623  7341  93  -61  Turbidity  137.5  25 53 4.41  90 7.5 96  68  to  f i n d t h e average  response  o r e f f e c t o f each o f t h e 4 r e a g e n t s t e s t e d ,  as w e l l as the e f f e c t o f t h e 11 p o s s i b l e reagent o v e r a l l response.  i n t e r a c t i o n s i n the  The "Found V a l u e s " shown i n Table 25 a r e t h e a c t u a l  r e s i d u a l v a l u e s f o r " C o l o u r " i n t h e Group 4 The average  experiments.  e f f e c t caused by i n c r e a s i n g the dose o f each o f t h e  a p p l i e d r e a g e n t s and i n t e r a c t i o n s i s c a l c u l a t e d , t h e r a n k i n g noted i n o r d e r o f a b s o l u t e v a l u e and then t r a n s f e r r e d t o t h e n u m e r i c a l accompanying F i g u r e 14. the Standard 14 graph.  T h i s data l i s t  list  demonstrates t h e c a l c u l a t i o n o f  D e v i a t i o n used t o f i n d the s i g n i f i c a n t e f f e c t s on the F i g u r e  I t may be noted t h a t F i g u r e 14 demonstrates t h e appearance o f  a h a l f - n o r m a l p l o t , when a number o f the e f f e c t s o f e q u a l s i z e a r e p l o t t e d . These e q u a l e f f e c t s c o u l d be p l o t t e d as one average average  e f f e c t l o c a t e d a t the  order p o s i t i o n . F i g u r e 14 shows t h a t i n going from a dose o f 51 mg/1 t o 98 mg/1  of  ozone, ozone has t h e l a r g e s t average  e f f e c t o f the reagents t e s t e d ,  t h a t i s , r e d u c i n g the c o l o u r by a p p r o x i m a t e l y s i g n i f i c a n t colour-reducing effect  by a p p r o x i m a t e l y  Lime a l s o has  o f 2000 c o l o u r u n i t s , i n t h e a p p l i c a t i o n  range between 1200 mg/1 and 2000 mg/1. ozone i n these a p p l i c a t i o n ranges  2500 u n i t s .  The i n t e r a c t i o n between l i m e and  has t h e e f f e c t o f i n c r e a s i n g t h e c o l o u r  1125 c o l o u r u n i t s .  The t h r e e f o r e g o i n g e f f e c t s o f Ozone  and Lime d e v i a t e i n a s t a t i s t i c a l l y  s i g n i f i c a n t manner from a h a l f - n o r m a l  d i s t r i b u t i o n o f n o n s i g n i f i c a n t e f f e c t s , and may be e s t i m a t e d t o occur w i t h a c o n f i d e n c e o f more than 95 p e r c e n t . The  standard d e v i a t i o n , estimated i n the numerical  data  accompanying F i g u r e 14, i s d i f f e r e n t from t h e s t a n d a r d d e v i a t i o n e s t i m a t e d in  T a b l e 16; t h e l a t t e r i s a r r i v e d a t by t h e r e s u l t s from  3 replicate  runs  69  TABLE 25 E X A M P L E OF A F A C T O R I A L D E S I G N M A T R I X U S E D I N T H E P O S T - S C R E E N I N G E X P E R I M E N T S W I T H T H E M A I N E F F E C T S AND T H E I N T E R A C T I O N E F F E C T S C A L C U L A T E D F O R E A C H OF T H E FOUR T R E A T M E N T V A R I A B L E S U S E D I N GROUP 4 ( E F F E C T ON D E P E N D E N T V A R I A B L E — C O L O U R ) DEPENDENT  VARIABLE  Colour  ORIGINAL  INDEPENDENT VARIABLE  2500 Helige  INTERACTIONS  ABC  ABD  ACD  BCD  +  -  -  -  -  +  5000  +  +  +  +  +  -  -  1500  -  -  +  +  +  -  +  -  5000  -  -  -  +  -  -  +  +  +  1500  -  +  -  +  -  +  -  +  +  -  5000  -  +  -  -  +  -  -  +  -  +  +  1500  -  -  -  +  +  -  -  -  +  +  -  +  4000  +  -  +  +  -  +  -  -  +  -  -  -  -  2000  -  -  +  +  +  -  +  -  -  -  +  +  +  -  1000  +  -  -  +  -  -  +  +  -  -  +  -  -  +  +  250  46  -  +  -  +  -  +  -  -  +  -  +  -  t  -  +  1500  49  +  +  -  +  +  -  +  -  +  -  -  +  -  -  -  250  47  -  -  +  +  +  -  -  -  -  +  +  +  -  -  +  1000  50  +  -  +  +  -  +  +  -  -  +  -  -  +  -  -  250  51  -  +  +  +  -  -  -  +  +  +  -  -  -  +  -  1000  52  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  250  -2500  B  C  D  AB  AC  AD  BC  BD  CD  37  -  -  -  -  +  +  +  +  +  38  +  +  39  -  +  -  -  -  +  +  42  +  +  -  -  +  -  40  -  -  +  -  +  43  +  -  +  -  45  -  +  +  48  +  +  41  -  44  FOUND VALUE mg/1 ABCD  9  15  8  12  13  LO CN H  7  6  o LO CN  2  11  10  5  o  1  -125  3  LO CN  -125  14  o  -250  Rank  LO CN H  -125  -2000  o  1125  Effects  1  A  Units  -125  RUN NO.  VALUE  4  70  i n Group 4- and i s used as the e s t i m a t e o f the s t a n d a r d d e v i a t i o n f o r the "Found V a l u e s " o f the 16 experiments o f Group 4-.  The s t a n d a r d d e v i a t i o n  o f the responses ("Found V a l u e s " ) and average e f f e c t s are r e l a t e d by the equation:  where  s^.  Standard D e v i a t i o n o f e f f e c t  s  r  Standard D e v i a t i o n o f response  n  H  Number o f runs a t h i g h l e v e l reagent dose  n  L  Number o f runs a t Low  While some d i s p a r i t y may  L e v e l r e a g e n t dose  be noted i n some o f t h e s e e s t i m a t e s o f  the s t a n d a r d d e v i a t i o n o f e f f e c t s by the two methods, i n no case would the f i n a l i n t e r p r e t a t i o n o f the Group 2 data was  r e s u l t s be d i f f e r e n t i n t h e s e experiments.  a n a l y z e d i n the manner d e s c r i b e d i n the  f o r e g o i n g b u t , because o f the m i s s i n g d a t a p o i n t s from the m i s s i n g runs noted i n T a b l e 9, the r e s u l t s o f the a n a l y s i s was the data from the complete  only used t o c o n f i r m  group.  Where t h r e e a p p l i e d independent v a r i a b l e s were used, as i n Groups 8 and 9 ( r e q u i r i n g o n l y 8 runs t o i n c l u d e a l l p o s s i b l e  combinations  o f those t h r e e v a r i a b l e s a t two l e v e l s ) , one h a l f o f the m a t r i x i n Table 25 was  used.  P l o t t i n g o f the c a l c u l a t e d e f f e c t s on a h a l f - n o r m a l p l o t ,  f o r d e t e r m i n a t i o n o f the s i g n i f i c a n t e f f e c t s was manner as f o r the 4- independent v a r i a b l e  groups.  performed i n the same  71  0  2  4  6  8  10 ORDER  ORDER NUMBER  EFFECT NAME  1 2 3 4  BCD CD B ABCD  5 6 7  ACD BD BC AB  8 9  C ABD  10  ABC  11 12 13 14  AC AD A D  15  ABSOLUTE VALUE  II  12  13  14  15  NUMBERS  (VALUE HZ)  z  (Z)  2  0  0.079  0  0.006241  0 0 125 125 125  0.158  0 0  0.024964 0.057121 0.103684 0.166464  125 125 125  0.239 0.322 0.408  40.25 51.00  0.496 0.589 0.688 0.794  62.00 73.625 86.00 99.25  0.246016 0.346921 0.473344 0.630436  250  0.910  227.50  0.828100  250 250 1125  1.040  260.00 1899.625  1.081600 13. 964891  2000 2500  E(VALUE)(Z) s  =  E(Z2) 899.625 3.964891 =  Figure  14.  226.89778  Example o f t h e h a l f - n o r m a l p l o t o f t h e a b s o l u t e v a l u e s o f t h e c a l c u l a t e d dependent v a r i a b l e e f f e c t s on c o l o u r w i t h r e l a t e d s t a n d a r d d e v i a t i o n c a l c u l a t i o n (name c o d e i n a c c o r d a n c e t o Table 14)  72  7.4  D i s c u s s i o n o f P o s t - S c r e e n i n g E x p e r i m e n t a l Data  While T a b l e s 9 t o 24 summarily d e s c r i b e the experiments and results the  o f t h e p o s t - s c r e e n i n g e x p e r i m e n t a l programme, added d i s c u s s i o n o f  effects  o f the treatment on the i n d i v i d u a l p o l l u t a n t s monitored i s  g i v e n i n the f o l l o w i n g (and summarized  pH.  i n T a b l e 26):  The "best v a l u e " chosen f o r pH i s the v a l u e c l o s e s t t o  n e u t r a l (pH 7 ) .  T h i s b e s t v a l u e o c c u r r e d i n Group 4, Run  group the most s i g n i f i c a n t cause o f pH adjustment was  38 and f o r t h i s  lime.  In Group 4  ozone a l s o c o n t r i b u t e d s i g n i f i c a n t l y t o pH adjustment, r a i s i n g the pH, as would be e x p e c t e d , where both t h e o r i g i n a l and t r e a t e d l e a c h a t e pH i s at or below n e u t r a l (see a l s o p. 46, S e c t i o n 7.2, Ozone).  The  adjustment  o f pH i s a c r i t i c a l step i n the removal o f many p o l l u t a n t s by c h e m i c a l precipitation  and f o r t h i s type o f adjustment l i m e i s the most  reagent o f those used i n t h i s Turbidity. 10, Run  investigation.  The b e s t v a l u e f o r t u r b i d i t y was produced i n Group  85, w i t h a lime dose o f 2350 mg/1.  There was no s i g n i f i c a n t  t u r b i d i t y removal by i n c r e a s i n g the ozone dose up t o 248 mg/1 Group 10 experiment.  Ozone had been shown t o e f f e c t  removal i n Group 4 when the ozone dose was  Colour.  removal. colour  measurements o b t a i n e d i n d i c a t e t h a t l i m e e f f e c t s a s i g n i f i c a n t i n c o l o u r i n the dose range 0 t o 2000 mg/1,  e f f e c t i v e ozone range was  mg/1;  l e a c h a t e , the  The s t a t i s t i c a l a n a l y s e s o f the r e s i d u a l  c o l o u r r e d u c t i o n was by ozone.  turbidity  i n c r e a s e d from 51 t o 98  ozone dose i s i n t h i s range f o r t u r b i d i t y  added  i n the  significant  therefore, i t i s considered that, f o r t h i s p a r t i c u l a r effective  effective  but t h a t the most  reduction effective  U n l i k e t u r b i d i t y , f o r which the most  between 51 mg/1  and 98 mg/1,  the c o l o u r r e d u c i n g  73  e f f e c t i v e n e s s o f ozone c o n t i n u e d w e l l above doses o f 98 mg/1; demonstrated i n e x p e r i m e n t a l Groups 8 and of  130 mg/1  and  24-8 mg/1,  measurements was measurements. were v i s u a l l y  10 w i t h h i g h - l e v e l ozone doses R e p r o d u c i b i l i t y of colour  acceptable. The  T o t a l Carbon content of the l e a c h a t e was  by the treatments  used.  corresponding  i n a l l c a s e s , a c t e d as an i n h i b i t o r o f T o t a l Carbon removal.  T o t a l I n o r g a n i c Carbon.  Low  the e x p e r i m e n t a l programme.  a n a l y s i s , t o name any  one  I t was  l e a c h a t e , g e n e r a l l y l e s s than 2 p e r c e n t .  The  The  96, w i t h a r e s i d u a l o f 0.8  not p o s s i b l e , as  effective  T o t a l I n o r g a n i c Carbon was  mg/1  and  a 98.6  obtained  percent  i n the added l i m e  Carbon.  T o t a l Organic Carbon r e p r e s e n t e d more  than 98 p e r c e n t o f the T o t a l Carbon i n the l e a c h a t e ; t h e r e f o r e , the T o t a l Organic  Carbon.  removal  not r e s i d u a l i n the t r e a t e d l e a c h a t e .  T o t a l Organic  for  a  untreated  "best v a l u e " was  low r e s i d u a l s i n d i c a t e t h a t the carbonate  reagent was  was  effluent.  a p p l i e d reagent  r e l a t i v e l y s m a l l p a r t o f the T o t a l Carbon c o n t a i n e d i n the  rate.  only  T o t a l I n o r g a n i c Carbon r e s i d u a l s  i n c a u s i n g the removal o f i n o r g a n i c carbon.  i n Group 10, Run  Lime,  O v e r a l l T o t a l Carbon removed  not s u f f i c i e n t t o produce an a c c e p t a b l e t r e a t e d l e a c h a t e  were o b t a i n e d throughout  The  ozone and the amount removed by ozone  d i r e c t l y a f f e c t e d by the amount o f l i m e added.  from the s t a t i s t i c a l  2495  t o a 22 p e r c e n t removal r a t e f o r t h a t sample.  e f f e c t i v e removal agent was  not  The b e s t T o t a l Carbon removal  38 p e r c e n t , w h i l e the "best v a l u e " i n the t r e a t e d l e a c h a t e was  mg/1,  low"  The t r e a t e d l e a c h a t e samples w i t h the low c o l o u r measurements  g r e a t l y reduced  was  was  not good, with, s t a n d a r d d e v i a t i o n s l a r g e r than "best  T o t a l Carbon.  was  respectively.  this  results  Carbon are n e a r l y i d e n t i c a l t o the r e s u l t s f o r T o t a l  74  Chemical Demand was  Oxygen Demand.  The  "best low v a l u e " f o r Chemical  Oxygen  o b t a i n e d i n Group 11, Run .97, w i t h a r e s i d u a l o f 8030 mg/1  and  a 20 p e r c e n t removal r a t e ; the b e s t e f f i c i e n c y o f removal was  i n Group  Run  leachate  63, a t 41 p e r c e n t .  I t s h o u l d be noted  t h a t the u n t r e a t e d  c o n t a i n e d Suspended S o l i d s t h a t were s e t t l e a b l e without f l o c c u l a t i o n alone. p a r t o f the COD COD  These Suspended S o l i d s p r o b a b l y  present  ( p o s s i b l y a l s o TC)  treatment  o r by  contain a considerable  i n the u n t r e a t e d l e a c h a t e .  The  removal e f f e c t o f these s e l f - s e t t l i n g Suspended S o l i d s i s not  a p p o r t i o n e d t o any  chemical r e a g e n t , and may  "best low v a l u e . "  The  be the r e a l cause o f the  i n d i c a t i o n t h a t s e t t l i n g may  be the cause o f the  b e s t v a l u e i s t h a t the most e f f i c i e n t removal r a t e , o f 41 p e r c e n t 63, was  shown t o have been e f f e c t e d by lime when the l i m e dose  i n c r e a s e d from 2100 mg/1 it  7,  mg/1  t o 2900 mg/1.  The  l i m e dose f o r Run  w i t h no removal e f f e c t i v e n e s s shown f o r l i m e . i s very probable  2900  i n Run  was 97 was  2350  From the f o r e g o i n g ,  t h a t the l i m e dose range f o r removal o f COD  i s near  There was  The  mg/1. Calcium.  low v a l u e " f o r c a l c i u m was  no e f f e c t i v e removal o f c a l c i u m .  the r e s u l t o f a zero l i m e dose.  Lime was  "best shown  t o e f f e c t i v e l y i n c r e a s e the c a l c i u m content o f the t r e a t e d l e a c h a t e . Copper.  Copper was  lime dose range was lime and  ozone was  o n l y removed by l i m e .  between 1200  t o 2000 mg/1.  The  shown t o i n h i b i t copper removal.  copper removal by the lime-ozone i n t e r a c t i o n may  The most e f f e c t i v e i n t e r a c t i o n between This i n h i b i t i o n  of  c o n f i r m t h a t the f i n d i n g s  o f o t h e r i n v e s t i g a t o r s (27) whereby the pH adjustment o f ozone i s always towards n e u t r a l .  P r e c i p i t a t i o n and  i s a f u n c t i o n o f pH;  i f ozone lowers  consequent removal o f copper by the pH then t h i s would account  lime for  75  the i n h i b i t i n g  interaction.  Iron.  The  w i t h a low o f 0.01 The l i m e dose was  "best low v a l u e " f o r i r o n was  mg/1  i n Group 12, Run  104-,  o f r e s i d u a l Fe and a removal r a t e o f 99.9 p e r c e n t .  2350 mg/1  and the ozone dose 181 mg/1  f o r t h i s run.  The found e f f e c t i v e dose r a n g e s , on an i n d i v i d u a l reagent b a s i s , were f o r l i m e , between 1200  and 2000 mg/1,  and f o r ozone between 0 and 98  mg/1,  i n Group 4- and Groups 1 and 4 r e s p e c t i v e l y . Potassium.  The b e s t "apparent" removal r a t e f o r Potassium  25 p e r c e n t where 152 mg/1 removal was  o f K appeared t o be removed.  The  effective  caused by ozone i n the dose range o f 51 t o 98 mg/1.  8, w i t h the ozone dose r a i s e d from 108 lowered; t h a t i s , removal was  t o 130 mg/1,  l e s s a t 130 mg/1  was  In Group  the removal r a t e  ozone than a t 108  was  mg/1.  S i n c e , i n most o f the found r e s u l t s , K r e s i d u a l s i n the t r e a t e d l e a c h a t e were h i g h e r than i n the o r i g i n a l u n t r e a t e d l e a c h a t e , the found v a l u e s f o r K are suspect but the e f f e c t i v e removal ranges are not a f f e c t e d . Manganese.  The " b e s t low v a l u e " f o r Manganese was  (99.8 p e r c e n t removed) found i n Group 12, Run 2350 mg/1  and an ozone dose o f 181 mg/1.  0.01  mg/1  104, w i t h a lime dose o f  The e f f e c t i v e dose ranges f o r  lime and ozone were f o r lime 1600  t o 2000 mg/1  An e f f e c t o f low s i g n i f i c a n c e was  found t o c o n t i n u e i n t o the ozone dose  range o f 96 t o 248 mg/1,  which may  ozone f o r manganese removal may Sodium. was  and f o r ozone 51 t o 98  i n d i c a t e t h a t the e f f e c t i v e range  be something more than 98  treatment  an apparent removal but the  e f f e c t s a t t r i b u t a b l e t o any reagent were o f low s i g n i f i c a n c e and by i n t e r a c t i o n s between the a p p l i e d r e a g e n t s . found i n Group 10, Run  93, was  75.1 mg/1  of  mg/1.  Behaviour o f Sodium, i n the l e a c h a t e under  not d e f i n i t i v e ; i n some cases t h e r e was  mg/1.  The  caused  "best low v a l u e , "  Na w i t h an apparent removal  rate  76  of 1.2  percent.  r u n s , but Na was  A h i g h e r removal r a t e was  found i n one o f the s c r e e n i n g  not found t o be s i g n i f i c a n t l y removed by any  factor  a p p l i e d i n t h e s c r e e n i n g group. Phosphorus.  Phosphorus  responds r e a d i l y t o pH adjustment by  l i m e , w i t h an e f f e c t i v e removal by lime o c c u r r i n g i n the 0 t o 1220 range.  mg/1  Ozone showed no e f f e c t on P removal, w h i l e f e r r i c s u l f a t e had a  low s i g n i f i c a n c e e f f e c t , d e p r e s s i n g t h e removal o f P. v a l u e " was  found i n Group 9, Run  75, w i t h a low o f 0.01  The "best mg/1  low  and a  removal r a t e o f 99.9 p e r c e n t from an u n t r e a t e d l e a c h a t e w i t h 11.4  mg/1  phosphorus. Lead.  Lead appeared t o be removed up t o 88 p e r c e n t from an  o r i g i n a l v a l u e o f 0.025 mg/1.  T h i s h i g h removal r a t e from an  original,  q u i t e low c o n c e n t r a t i o n , o c c u r r e d i n Group 10, Runs 84, 86, 87, 88, and 92, and i n Group 12, Run was  2350 mg/1  9 0 — 2 4 8 mg/1,  101.  F o r each o f t h e s e runs the lime dose  and ozone doses were Run Run 1 0 1 — 0  mg/1.  90  87--97 mg/1,  Runs 84, 86, 88 and  T h i s would i n d i c a t e t h a t lime was  the  removing agent and, because i n c r e a s i n g the lime dose h i g h e r than 1200  mg/1  i n any o f the p o s t - s c r e e n i n g experiments d i d not produce a s i g n i f i c a n t i n c r e a s e i n the removal o f Pb ( e f f e c t ) , i t may the e f f e c t i v e dose.  I t may  be assumed t h a t t h i s  be noted t h a t , i n g o i n g from 1600  was  t o 2000  mg/1  o f a p p l i e d lime i n t h e Group 5 experiments, the average removal o f Pb decreased. Zinc. Run  The  "best low v a l u e " found f o r z i n c o c c u r r e d i n Group  5,  56; removal r a t e s were h i g h , t h a t i s , between 98 and 99.9 p e r c e n t , i n  a l l cases.  S i g n i f i c a n t l y e f f e c t i v e Zn removals were e n t i r e l y due t o  treatment w i t h l i m e , w i t h the s i g n i f i c a n t removals i n the 0 t o 2000  mg/1  lime dose range.  seemed  Ozone had no removal e f f e c t but a c a t i o n i c polymer  77  t o have an e f f e c t o f low s i g n i f i c a n c e , i n the Group 10 experiments. Total Solids.  T o t a l s o l i d s were n o t decreased i n any treatment  but i n s t e a d were i n c r e a s e d ; an e x c e p t i o n t o t h i s o c c u r r e d when t h e r e was no added l i m e .  The r e s i d u a l t o t a l s o l i d s i n c r e a s e d w i t h l a r g e r lime  doses. Suspended S o l i d s .  Lime was e f f e c t i v e i n suspended  solids  removal over a wide dose range, from 1200 t o 2900 mg/1 o f l i m e .  The "best  low v a l u e " f o r SS o f 3 mg/1 was found i n Group 9, Run 77, w i t h a 99.6 p e r c e n t removal r a t e .  Ozone had a s i g n i f i c a n t removal e f f e c t when t h e  dose was i n c r e a s e d from 51 t o 98 mg/1 and the lime dose was a t 1200 and 2000 mg/1. Dissolved Solids.  D i s s o l v e d s o l i d s were i n c r e a s e d i n the  t r e a t e d l e a c h a t e i n a l l e x p e r i m e n t a l runs when t h e treatment i n v o l v e d l i m e . Ozone had a s i g n i f i c a n t removal e f f e c t when t h e a p p l i e d dose was i n c r e a s e d from 51 t o 98 mg/1.  The l e a s t i n c r e a s e i n d i s s o l v e d s o l i d s o c c u r r e d i n  Group 4, Run 51, when t h e l i m e dose was 1200 mg/1 and the ozone dose was 98 mg/1.  7.5  Data—Ozone  Disinfection  T a b l e 27 d i s p l a y s the data r e s u l t i n g from t h e b a c t e r i o l o g i c examination o f samples  o f ozonated l e a c h a t e .  The data o f T a b l e 27 i s  shown i n accordance w i t h r e c o r d i n g procedure p r e s c r i b e d by Standard Methods ( 1 8 ) .  7.6  Discussion of Disinfection  Data  Two obvious anomalies appear  i n t h e r e s u l t s o f T a b l e 27.  78  TABLE  26  SUMMARY OF B E S T LOW R E S I D U A L S O B T A I N E D ' W I T H R E A G E N T D O S E S AND DOSE R A N G E S A S I N D I C A T E D  CHARACTERISTIC  LOW R E S I D U A L  RUN  (BEST  NO.  VALUE)  EFFECTIVE  TREATMENT  DOSE OR R A N G E  Lime pH  (1)  (2)  Turbidity (2) Colour (4) TC  (2)  TIC TOC COD Ca Cu Fe K Mn  (3) (2) (2) (1) (4) (4) (3) (4)  Na P Pb Zn TS  (3) (2) (1) (2) (2)  SS DS  (4)  6 .9 50  Units  colour  Units  2495 0.8 2492 8030 350 0.017  mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 0 . 1 0 mg/1 114 mg/1 0 . 0 1 mg/1 7 5 . 1 mg/1 0 . 0 1 mg/1 0 . 0 0 3 mg/1 0 . 0 0 2 6 mg/1 7006 mg/1  (2)  (5) (4) (4)  Notes:  pH J n i t s  2 Hach  3 mg/1 6946 mg/1  Ozone  38  2000 mg/1  85 100 78  2350 mg/1 1200 -2000 mg/1  96 78 97 14 90 104 51 104 93 75 84 97 51 77 51  2630 2350 2630 2350 0 1200 -2000 1200 -2000 1200 1200 - 2 0 0 0 2350 0 -2000 2350 1200 -2000 1200  mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1  1200 -2900 mg/1 1200 mg/1  51 mg/1 51-98 mg/1 5 1 - 2 4 8 mg/1 51-98 mg/1 248 51-98 51-98  mg/1 mg/1 mg/1  13 51-98 0-50 98 51-98 98  158 51-98  mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1  51-98 51-98  mg/1 mg/1  11 248  (1) (2)  U n d e r l i n e d dose i s s i n g l e e f f e c t i v e dose. Dose n o t u n d e r l i n e d i s dose a t w h i c h l o w r e s i d u a l achieved.  (3)  Both doses not underlined determined.  (4)  Range o f dose u n d e r l i n e d i n d i c a t e s range a t w h i c h r e a g e n t was f o u n d t o be e f f e c t i v e . Effective d o s e i n l o w r e s i d u a l r u n may b e i n t h i s r a n g e o r greater. See Q u a l i f i c a t i o n i n t e x t on p . 71.  (5)  i n d i c a t e s no dose  range  TABLE  27  ' S T A N D A R D P L A T E COUNTS AT T R E A T E D W I T H OZONE ( C O D  Plate  10  No.  Dilution  Mg/1  3 5 ° C FOR L E A C H A T E o f 1 4 , 3 0 0 mg/1)  0  3  Dose  Colonies  Counted  17  1  1:1  0  2  1:1  10  More  than  3  1:1  20  More  t h a n 300  4  1:1  30  More  than  5  1:1  40  More  t h a n 300  6  1:1  89  More  t h a n 300  7  1:1  102  More  t h a n 300  8  1:1  137  9  1:1  163  t o 18  1:1  £  1:10  110  300  300  270 More  t h a n 300  Average  7  80  F i r s t l y , P l a t e No. m i c r o b i a l colony  1, w i t h no a p p l i e d ozone, shows a r e l a t i v e l y  count.  determined t h a t i t was  low  A c r i t i c a l examination o f the procedures used p o s s i b l e t h a t t h i s low  count may  have been caused  by r e s i d u a l d i s i n f e c t a n t ( c h l o r i n e ) , c o l l e c t i n g i n the sample d r a i n - o f f l i n e l e a d i n g from the ozone c o n t a c t i n g and  cylinder (left  d i s i n f e c t i o n o f the apparatus p r i o r t o the t e s t ) .  o f the p r e s c r i b e d method o f r e c o r d i n g  8.  102  and  137  The  occurred,  2 t o 9 do i . e . , between  However, v i s u a l examination o f these p l a t e s i n d i c a t e d  t h a t a noteworthy change i n b a c t e r i a l d e n s i t y had the  washing  Secondly, because  the p l a t e c o u n t s , Nos.  not show a d i s t i n c t p o i n t at which b a c t e r i a l k i l l P l a t e s N o s . 7 and  from the  mg/1  occurred,  v i z . , between  ozone doses.  choice  o f 110  mg/1  ozone d o s e - f o r  p l a t e s 10 t o 18 was  made  on the b a s i s o f the f o r e g o i n g  change i n d e n s i t y , as the approximate ozone  dose f o r b a c t e r i a l k i l l .  p l a t e counts f o r Plates Nos.  t h a t the 110  mg/1  ozone dose was  d i s i n f e c t e d leachate. ozone dose, was high. the  The  not  leachate  leachate  The  The  General  The be  h i g h colony  obviously  e x p l a i n a b l e , but was  confirm  satisfactorily  count f o r P l a t e No.  samples f o r P l a t e s Nos.  9, at 163  discounted  as an  mg/1 errant  10 t o 18 were drawn o f f from  r e c i r c u l a t i o n system, t h e r e b y p r e v e n t i n g  e x p e r i e n c e d i n the p r e v i o u s  7.7  s u f f i c i e n t t o produce a  10 t o 18  the  contamination  sampling.  Discussion  data produced from t h i s i n v e s t i g a t i o n i s not  d e f i n i t i v e f o r a l l leachates  because o f the extreme v a r i a b i l i t y  i n the c o n s t i t u e n t make-up o f l a n d f i l l c o n f i r m s the f i n d i n g s o f other  considered  leachate.  i n v e s t i g a t o r s (28,  to  possible  The  data  generally  29)  i n t h a t many m e t a l l i c  81  p o l l u t a n t s , w i t h a v a l e n c e o f two o r more, may be removed by p H - a d j u s t e d precipitation.  The degree o f removal was most p r o b a b l y governed by t h e  c h e m i c a l e q u i l i b r i u m o f t h e waste water components and t h e added r e a g e n t s , and t h e e f f e c t o f t h i s e q u i l i b r i u m on t h e s o l u b i l i t y p r o d u c t s o f t h e p r e c i p i t a t i n g ion-product substances. by ozone.  There was some c o n c u r r e n t r e m o v a l  I n v e s t i g a t e d i n t h i s p r o j e c t were t h e s e m u l t i v a l e n t m e t a l l i c s :  Cu, F e , Mn, P, Pb, and Zn.  By r e f e r r i n g t o T a b l e 26, i t i s p o s s i b l e t o  determine t h e range o f " l e v e l s " o f a p p l i e d l i m e and ozone i n which t h e m e t a l l i c removals were s i g n i f i c a n t .  There was no s i g n i f i c a n t r e m o v a l o f  K and Na, u n i v a l e n t m e t a l l i c i o n s .  Ca, a b i v a l e n t m e t a l l i c , was, i n some  dose r a n g e s , s i g n i f i c a n t l y i n c r e a s e d i n t h e t r e a t e d l e a c h a t e by t h e use o f lime. T o t a l c a r b o n , c o n s i s t i n g o f m o s t l y o r g a n i c c a r b o n , and c o n t a i n e d i n t h e l e a c h a t e as b o t h d i s s o l v e d and suspended s o l i d s , was o n l y removed by t h e t r e a t m e n t methods used i n t h e s e i n v e s t i g a t i o n s .  partially Therefore,  i t was n o t p o s s i b l e t o produce an a c c e p t a b l e e f f l u e n t f o r d i s c h a r g e t o a n a t u r a l r e c e i v i n g w a t e r , even though T a b l e 26 shows t h a t s i g n i f i c a n t e f f e c t i v e removals were a c c o m p l i s h e d . C o l o u r and t u r b i d i t y were removed m a i n l y by ozone, a l t h o u g h l i m e was somewhat e f f e c t i v e as w e l l .  T h i s c o l o u r removal by l i m e t a k e s p l a c e  i n a narrow range o f pH a d j u s t m e n t , made by i n c r e a s i n g t h e l i m e dosage from 1200 t o 2000 mg/1 (pH 6.05-8.5).  Lime " c o l o u r r e m o v a l " was p r o b a b l y  due, i n p a r t , t o t h e change i n t h e form o f t h e Fe p r e s e n t , t h a t i s , the f e r r o u s t o t h e f e r r i c form.  from  T h i s p a r t i c u l a r c o l o u r r e m o v a l may be  a t t r i b u t e d t o the following. Because t h e l e a c h a t e used i n t h e s e experiments was ozonated by i n t r o d u c i n g ozone i n an oxygen c a r r i e r , b e f o r e t h e pH adjustment w i t h  82  l i m e , the l e a c h a t e  e n t e r i n g the lime treatment stage was  h i g h l y oxygenated.  F e r r o u s i r o n i s o x i d i z e d t o the f e r r i c form i n accordance w i t h  2Fe  An  + +  + j 0  2  + 5H 0 -»• 2 F e ( 0 H ) 2  (s) +  3  examination of a s o l u b i l i t y c h a r t f o r  4H  Fe(OH)  3  and  the v a r i o u s  t r i v a l e n t - i r o n components ( f o r example, see page 29-17 i n d i c a t e s t h a t the  s o l u b i l i t y of  Fe(OH)  3  (s)  (16):  Ref.  (16))  i s a t a minimum i n the  approximate pH range under d i s c u s s i o n , with a consequent i n c r e a s e combined t r i v a l e n t i r o n , i o n i c s p e c i e s  other  Fe(OH)^ , Fe(OH)*  i n the + +  and  Fe(OH) .  Organic c o l o u r , such as t h a t i n l e a c h a t e , p r o b a b l y i s r e l a t e d t o humic substances.  Chemically,  t h e s e humic substances are p o l y m e r i c compounds  w i t h c a r b o x y l i c f u n c t i o n a l groups.  Chemical i n t e r a c t i o n s account f o r  c o l o u r removals by t r i v a l e n t  Together w i t h  iron.  OH  ions,  f u n c t i o n a l groups o f c o l o u r anions occupy c o o r d i n a t i v e t r i v a l e n t - m e t a l i o n i c species Anionic, nonionic, doses o f 0.5, i n c r e a s e any  1.0,  and  2.0  the  s i t e s of  the  (16). and  mg/1,  p o l l u t a n t removals.  s e t t l i n g or f l o c c u l a t i o n a i d s by  c a t i o n i c p o l y e l e c t r o l y t e s were t e s t e d i n but none were found t o  significantly  However, s i n c e polymers serve i n c r e a s i n g the f l o e s i z e and  the s e t t l i n g c h a r a c t e r i s t i c s o f the r e s u l t i n g s l u d g e ,  as  improving  t h i s noneffect  be used as an i n d i c a t i o n t h a t the p h y s i c a l p r o c e s s e s used ( s t i r r i n g  may and  s e t t l i n g ) were working w e l l . The  ozone d i s i n f e c t i o n data was  discussed  i n the p r e v i o u s  section.  T h i s data confirmed the a b i l i t y o f ozone t o d i s i n f e c t wastewaters noted by o t h e r s  (11,  27).  Others have a l s o noted t h a t ozone doses as s m a l l  as  83  1 t o 2 mg/1  can e f f e c t i v e l y d i s i n f e c t d r i n k i n g water.  contaminated w i t h -a h i g h c o n c e n t r a t i o n o f BOD  or COD,  Wastewaters, r e q u i r e l a r g e r doses  f o r d i s i n f e c t i o n , a l t h o u g h t h i s has been r e p o r t e d as "time t o k i l l " ( 2 5 ) . A n a l y s i s o f the d a t a f o r the experiments r e p o r t e d on here i n d i c a t e  that  t h e r e i s an ordered sequence o f ozone p r i o r i t i e s by the c o n t a m i n a t i n g wastewater c o n s t i t u e n t s .  D u r i n g t h i s ozone p r i o r i t y sequence, the  r e a c t i o n o f ozone i s v e r y r a p i d , t h a t i s , the ozone t o the wastewater.  i n s t a n t l y w i t h the t r a n s f e r o f  T h i s r a p i d r e a c t i o n o f ozone c o n t i n u e s up t o  and beyond t h e o r d e r p o s i t i o n a t which microorganisms a r e d e s t r o y e d .  7.8  A p p l i c a t i o n o f the R e s u l t s t o P r e d i c t Ozone Requirements  Much o f the i n v e s t i g a t i o n c a r r i e d out i n t h i s programme  was  concerned w i t h f i n d i n g the dose a t which a p p l i e d r e a g e n t s were most e f f e c t i v e i n removing o r a l t e r i n g s e l e c t e d c h a r a c t e r i s t i c s o f the l e a c h a t e wastewater.  Knowing these l e v e l s can o n l y be u s e f u l i f they can be  c o r r e l a t e d t o some measurable c h a r a c t e r i s t i c o f the l e a c h a t e and t o some unique, u s e f u l c h a r a c t e r i s t i c o f the p o l l u t i n g s u b s t a n c e .  Where l i m e i s  the a p p l i e d r e a g e n t , the measurable wastewater c h a r a c t e r i s the p r o d u c t pH, and the u s e f u l , unique, known c h a r a c t e r i s t i c o f the p o l l u t a n t i s i t s hydroxide-form, s o l u b i l i t y product. At t h i s t i m e , l i t t l e  i s known o f the ozone r e q u i r e m e n t s n e c e s s a r y  t o promote removals or d e s i r a b l e changes o f p o l l u t a n t s i n any wastewater. For the purpose o f f o r m u l a t i n g a method f o r p r e d i c t i n g the ozone r e q u i r e ment t o t r e a t l e a c h a t e , t o remove any s p e c i f i c m e t a l l i c p o l l u t a n t , was  COD  chosen as the measurable l e a c h a t e c h a r a c t e r i s t i c t h a t w i l l be used as  the r e f e r e n c e base f o r the l e a c h a t e .  The r a t i o o b t a i n e d by d i v i d i n g the  84  g i v e n metal's  v a l e n c e by i t s i o n i c r a d i u s i n Angstrom u n i t s ( A ) , was  unique and u s e f u l c h a r a c t e r i s t i c chosen f o r the m e t a l l i c  the  pollutants.  The r a t i o n a l e f o r the f o r e g o i n g o z o n e - r e l a t e d c h o i c e s i s as follows:  COD  i s an e s t i m a t e o f the a b i l i t y of the o r g a n i c s i n a wastewater  t o reduce a s t r o n g oxidant measure a l l ,  (dichromate).  However, the t e s t does not  o r o n l y , the o r g a n i c compounds, but r a t h e r the wastewater's  a b i l i t y t o reduce the c h e m i c a l o x i d a n t .  Many i n o r g a n i c  c o i n c i d e n t a l l y reduce the o x i d a n t as w e l l .  substances  S i n c e ozone i s a l s o a s t r o n g  chemical o x i d a n t , the use of COD,  as a measure o f the e f f e c t i v e n e s s o f  ozone as an o x i d a n t , i s c o g n a t e l y  useful.  Valence, determines  i n c h e m i s t r y , i s a p r o p e r t y o f an element t h a t  the number o f other atoms w i t h which the atom o f the element  can combine.  The  s i z e o f an i o n i s a f u n c t i o n o f an i o n ' s n u c l e a r  p o s i t i v e charge i n r e l a t i o n t o the t o t a l n e g a t i v e charge o f the e l e c t r o n s surrounding that nucleus.  There w i l l be an a t t r a c t i v e f o r c e between  a d j a c e n t i o n s , where one has a preponderant a n e g a t i v e charge. important  p o s i t i v e charge and the  two other  Thus, an i o n ' s s i z e , as measured by i t s r a d i u s , i s an  f a c t o r i n the c h e m i c a l r e a c t i v i t y o f an i o n ( 1 4 ) .  The  calculation  of the a c t i v i t y , or more s p e c i f i c a l l y t h e " a c t i v i t y c o e f f i c i e n t , " f o r an i o n i n aqueous s o l u t i o n , may  be made approximately  from the summary  "DeBye-Huckle" e q u a t i o n (.16):  2 log f  ±  = 0.5Z  i  y 1 + \{'-  (4)  85  i n which:  f \ = t h e r a t i o o f t h e a c t i v i t y t o t h e molar  = the e l e c t r o n i c  concentration  valence of the i o n  y - t h e i o n i c s t r e n g t h as d e f i n e d by t h e f o l l o w i n g equation (31).  2 y = 0.5E  where:  c Z  i  i  (5)  i  i^  -c^ = t h e m o l a r i t y o f t h e  Z^ = t h e v a l e n c e o f t h e  1  ion  i  ion.  The complete e q u a t i o n from the "DeBye-Hu'ckle" demonstrates t h e u t i l i t y the  o f the v a l e n c e - i o n i c radius r a t i o , f o r d e s c r i b i n g  a c t i v i t y o f an i o n i n an aqueous  0.511 x l  Q  gm 1  where:  t h e o r y more e f f e c t i v e l y  2  z + i  solution:  k y  2  f  0  o V 1 + 0.329 x v x y  1  f ^ , Z^ , y  2  a r e as above and  f " = t h e i o n i c r a d i u s i n Angstrom u n i t s ( A ) .  Calling  i t the " i o n i c p o t e n t i a l , "  ( v a l e n c e ) t o i o n i c r a d i u s i n Angstrom  the r a t i o of i o n i c  u n i t s (A) was f i r s t  G o l d s c h m i t t (.12), t o e x p l a i n t h e d i s t r i b u t i o n and sea water.  On t h e b a s i s o f t h e i r  charge  put forward by  o f elements between sediments  ionic potential,  t h e elements a r e  d i v i d e d i n t o t h r e e groups, which become s e p a r a t e d from one another d u r i n g  86  s e d i m e n t a t i o n i n the s e a . The c a t i o n s , w i t h low i o n i c p o t e n t i a l than t h r e e ) , g e n e r a l l y remain i n i o n i c s o l u t i o n .  (less  Intermediate i o n i c  p o t e n t i a l i o n s , i n the range o f 3 t o 12, have hydroxy1 bonds i n t h e i r h y d r o x i d e s and a r e d e p o s i t e d as h y d r o l y s a t e s . The elements w i t h h i g h e r i o n i c p o t e n t i a l s , g e n e r a l l y g r e a t e r than 12, form complex anions w i t h oxygen and t h e s e u s u a l l y remain i n s o l u t i o n . and phosphorus  belong t o t h i s  N i t r o g e n , carbon, s u l p h u r  group.  I t i s a l s o known t h a t the metals which have a s m a l l atomic o r i o n i c r a d i u s a r e more a c t i v e i n complex i o n f o r m a t i o n (30).  From the  p e r i o d i c t a b l e , the metals w i t h atomic numbers 24- through 30, t h a t i s , Cr, 0.80  Mn, Fe, Co, N i , Cu and Zn, w i t h i o n i c r a d i i  i n the range o f 0.64  A to  A, have a much g r e a t e r tendency t o form complexes than those w i t h  larger ionic r a d i i respectively.  such as K and Ca, w i t h i o n i c r a d i i  1.33 A and 0.99  A,  The p r o c e s s o f "complex f o r m i n g " i s a l s o enhanced by the  e l e c t r o n e g a t i v i t y o f t h e l i g a n d o r e l e c t r o n donor and c o n v e r s e l y t h e s i z e of the p o s i t i v e charge on t h e m e t a l  cation.  Ozone i s t h e s t r o n g e s t known o x i d a n t , much used i n r e s e a r c h and i n d u s t r y t o break or d e s t r o y o r g a n i c l i g a n d s .  At the same t i m e , ozone i s  a ready donor o f e l e c t r o n s and may be expected t o o x i d i z e such complexes,  hydroxo-  v i z . : The hydroxo-complex would form i n a n e u t r a l t o b a s i c  s o l u t i o n as  Al  + + +  + OH" ^ A1(0H)  while a s i m p l i f i e d  ozone r e a c t i o n on m i x i n g w i t h water,  0o + H 0 - 20H~ + 0 + o  ++  o  87  f o l l o w e d by t h e combination r e a c t i o n ,  A1(0H)  The  + +  + 20H~  Al(0H)  3 ( s )  .  r e a c t i o n by ozone w i t h hydroxo- and organo-metal complexes may account  f o r some o f ozone's ready r e a c t i v i t y when mixed w i t h t h e l e a c h a t e . In these experiments, the ozone dose was kept w i t h i n t h e l e v e l t h a t would t r a n s f e r and be r e a c t e d i n t h e r e s i d e n c e time o f t h e oxygenc a r r i e r g a s , i n the c o n t a c t c y l i n d e r (see F i g u r e 1 3 ) . When ozone was a p p l i e d a t up t o 248 mg/1 t o t h e l e a c h a t e , w i t h a COD c o n c e n t r a t i o n o f approximately leachate.  10,000 mg/1, a l l o f t h e ozone was t r a n s f e r r e d t o t h e  At more than 24-8 mg/1, some o f t h e ozone e x i t e d t h e c o n t a c t  c y l i n d e r w i t h t h e c a r r i e r - o x y g e n stream, i n d i c a t i n g a slower r e a c t i o n r a t e between the*ozone and t h e remaining  ozone-reacting  substances.  The u t i l i t y  o f s t a y i n g w i t h i n t h e above-mentioned ozone dose w i l l be d i s c u s s e d i n S e c t i o n 7.9. The  nomographic c h a r t shown i n F i g u r e 15 was c o n s t r u c t e d t o  p o s s i b l y p r o v i d e a quick and simple method o f p r e d i c t i n g the ozone dose required  t o both i n c r e a s e the m e t a l removal i n a l i m e - i n d u c e d ,  p r e c i p i t a t i o n , and t o d i s i n f e c t t h e t r e a t e d wastewater.  pH-adjusted  The c o n s t r u c t i o n  o f t h i s c h a r t may be c r i t i c i z e d i n t h a t only two p o i n t s , from the generated d a t a , were used t o p o s i t i o n t h e d i a g o n a l l i n e i n d i c a t i n g the ozone-to-COD r a t i o , and t h e r e b y ,  t h e ozone dose n e c e s s a r y  m e t a l l i c p o l l u t a n t s , and t o d i s i n f e c t the l e a c h a t e .  t o o x i d i z e some  In F i g u r e 15, ozone  i s g i v e n i n mg/1 w h i l e COD i s i n grams/1. In accordance w i t h G o l d s c h m i t t ' s  (12) p r e s e n t a t i o n , the elements  w i t h a s m a l l ( l e s s than: 3) i o n i c p o t e n t i a l a r e n o t r e a d i l y o x i d i z e d .  In  88  CODg/l FIG 15 » CHART FOR ESTIMATING OZONE DOSE REQUIRED TO OXIDIZE CERTAIN METALLIC IONS AND LIVING ORGANISMS.  89  t h i s work, t h i s was For (C), to  c o n f i r m e d f o r those elements m o n i t o r e d — N a ,  K and  Ca.  the elements w i t h an i o n i c p o t e n t i a l g r e a t e r than 12, such as carbon some removals were noted but i t may m e c h a n i c a l removal i n s e t t l i n g .  metallics  be t h a t t h i s was  due, i n p a r t ,  The i n t e r m e d i a t e i o n i c  potential  ( i o n i c p o t e n t i a l 3 t o 12), were o n l y s i g n i f i c a n t l y e f f e c t e d i n  one c a s e , t h a t i s , i n the case o f Mn. t h a t the ozone was  T h i s may  p a r t l y be due t o the f a c t  a p p l i e d t o the l e a c h a t e b e f o r e pH adjustment, when, a t  a c i d i c pH r a n g e s , those elements t h a t have more than one v a l e n c e s t a t e be expected t o be i n the lower s t a t e .  For example, i r o n a t v a l e n c e 2, has  an i o n i c p o t e n t i a l o f 2.7 as compared t o v a l e n c e s t a t e 3, when the potential is  may  ionic  4.68.  The bounds shown f o r the " E s t i m a t e d ozone/COD f o r d i s i n f e c t i o n , " in  F i g u r e 15, i s an e m p i r i c i m p o s i t i o n i n g o f the v a l u e found i n t h e s e  experiments, o f the ozone dosage r e q u i r e d t o k i l l b a c t e r i a . value f o r b a c t e r i a l k i l l ,  This  r e l a t e d as i t i s t o the ozone-COD r a t i o ,  may  i n d i c a t e the mechanism o f the o f t e n r e p o r t e d " t h r e s h o l d v a l u e " or " a l l  or  n o t h i n g " phenomena r e p o r t e d i n the l i t e r a t u r e f o r ozone d i s i n f e c t i o n . Since t h i s concept o f ozone-COD r a t i o would be most u s e f u l i n d e t e r m i n i n g the  q u a n t i t i e s o f ozone r e q u i r e d f o r d i s i n f e c t i o n , the graph, as shown i n  F i g u r e 15, i s adequate. C o l o u r and t u r b i d i t y , as noted i n S e c t i o n 7.3, and removed by ozone.  are both changed  I t i s p o s s i b l e t h a t an e m p i r i c p o s i t i o n f o r both  c o l o u r and t u r b i d i t y removal c o u l d be e n t e r e d on the F i g u r e 15 graph, so t h a t i t might a l s o p r e d i c t the ozone r e q u i r e d f o r t h i s  procedure.  90  7.9  Cost C o n s i d e r a t i o n s  It  i s beyond the scope o f t h i s examination  to provide a d e t a i l e d  c o s t e l a b o r a t i o n f o r t r e a t i n g l e a c h a t e by p h y s i c a l - c h e m i c a l systems.  It  should be noted, however, t h a t t h i s study i n d i c a t e s the c o s t f o r d i s i n f e c t i o n , by ozone, i s v e r y s e n s i t i v e t o the COD  o f the wastewater  b e i n g t r e a t e d , and t h a t the c o s t o f ozone r e q u i r e d w i l l w i t h i n c r e a s i n g COD  increase, d i r e c t l y ,  i n the wastewater b e i n g t r e a t e d .  T r a d i t i o n a l l y , d i s i n f e c t i o n o f water and wastewater has q u a n t i f i e d by o v e r d o s i n g as measured by a r e s i d u a l o f the agent  i n the t r e a t e d e f f l u e n t .  h i g h COD  s t r e n g t h s , t h i s may  h e r e , t o determine  o v e r d o s i n g may  By u s i n g the ozone-COD r a t i o  the ozone dose r e q u i r e d f o r d i s i n f e c t i o n ,  be prevented.  t o COD  relatively  l e a d t o c o n s i d e r a b l e o v e r d o s i n g , beyond the  c o n s i d e r a t i o n here, w i t h a COD ozone i n mg/1  disinfecting  In the case o f wastewaters w i t h  p o i n t where d i s i n f e c t i o n has taken p l a c e . proposed  been  the  In the case o f the l e a c h a t e under i n the o r d e r o f 10,000 mg/1,  i n grams/1 i s a p p r o x i m a t e l y  the r a t i o o f  10, but t o approach a  r a t i o where a r e s i d u a l i s p o s s i b l e , t h i s r a t i o must be i n c r e a s e d by a t l e a s t 7\  times. When e x t e n s i v e o v e r d o s i n g i s p r a c t i c e d w i t h ozone, i t becomes  n e c e s s a r y t o equip the o z o n a t i o n p l a n t w i t h a r e c y c l e system t o r e t u r n the unused ozone and  c a r r i e r gas t o the g e n e r a t i o n p o i n t .  T h i s r e c y c l e system  must be ozone c o r r o s i o n p r o o f , hence, c o s t l y t o i n s t a l l .  The  carrier  h a v i n g passed through the wastewater, i s m o i s t u r e  laden and must be  d e s s i c a t e d b e f o r e r e e n t e r i n g the ozonator a g a i n .  T h i s d r y i n g of the  i s , i n most c a s e s , more d i f f i c u l t f r e e a i r from the atmosphere.  and more expensive  gas,  gas  than i s the d r y i n g o f  A l l these c o n s i d e r a t i o n s l e a d t o h i g h e r  91  c a p i t a l costs f o r the ozonating  plant-.  I t has been e s t i m a t e d t h a t i t r e q u i r e s  28 watt-hours o f  e l e c t r i c a l energy t o produce and dose 1000 mg o f ozone ( 3 2 ) . T h i s f i g u r e i n c l u d e s energy f o r t h e ozonator and a n c i l l a r y energy f o r i n j e c t i o n and a i r preparation. o f 5 cents  per KWH,  Using t h i s e s t i m a t e and u s i n g an e l e c t r i c a l energy c o s t i t would c o s t , f o r energy, a p p r o x i m a t e l y 10 c e n t s p e r  1000 g a l l o n s f o r d i s i n f e c t i o n . amortizing  Diaper (32) e s t i m a t e s t h e c o s t o f  a 10 mgd ozone-dosing p l a n t a t 2 times the power c o s t s ;  f o r e , the t o t a l cost f o r d i s i n f e c t i o n o f the leachate would be i n the order  there-  used i n t h i s p r o j e c t  o f 30 cents p e r 1000 g a l l o n s f o r t h a t  size.  For comparison, a p l a n t designed t o t r e a t e f f l u e n t from a 10 mgd secondary sewage treatment p l a n t , w i t h an e f f l u e n t COD o f 100 t o 150  mg/1,  would c o s t a p p r o x i m a t e l y 3 cents p e r 1000 g a l l o n s t o d i s i n f e c t t h e e f f l u e n t  92  CHAPTER 8  CONCLUSIONS AND RECOMMENDATIONS  8.1  Conclusions  1.  The b u l k o f t h e m e t a l l i c p o l l u t a n t removal was accomplished  i n t h e l i m e - i n i t i a t e d , pH adjustment  phase o f t h e treatment.  Metallic  i o n p o l l u t a n t s w i t h v a l e n c e s o f 2 o r more were removed by p r e c i p i t a t i o n t o l e v e l s adequate t o meet r e g u l a t o r y standards  ( 4 ) , but n o t t o l e v e l s  i n d i c a t e d by t h e s o l u b i l i t y p r o d u c t s o f t h e i r h y d r o x i d e s . nonconformity  This  t o s o l u b i l i t y - p r o d u c t c o n s t a n t s i s p r o b a b l y due t o  i n t e r f e r e n c e by i n t e r i o n i c phenomena i n a s t r o n g s o l u t i o n . 2.  S o l u b l e o r g a n i c s i n t h e l e a c h a t e were not removed  s u f f i c i e n t l y by lime pH adjustment r e g u l a t o r y standards  (.4-).  t o produce an e f f l u e n t t h a t would meet  "Ozone" o r g a n i c removals were s m a l l and appeared  t o be d i r e c t l y p r o p o r t i o n a l t o t h e a p p l i e d ozone dose. 3.  T u r b i d i t y was i n c r e a s e d by lime a d d i t i o n , but ozone i s  e f f e c t i v e i n reducing t u r b i d i t y .  The e f f e c t i v e e l i m i n a t i o n o f t u r b i d i t y  by ozone appears  t o take p l a c e , i n t h e main p a r t , a t c o m p a r a t i v e l y low  ozone-COD r a t i o s  (5-10 mg/1 ozone p e r gram/1 COD) w i t h some t a i l i n g o f  to higher r a t i o s  (10-20 mg/1 ozone p e r gram/1 COD).  4.  Leachate  c o l o u r was reduced by both lime and ozone.  There  are two sources o f c o l o u r i n t h e l e a c h a t e t r e a t e d ; one from m u l t i v a l e n t m e t a l s , mainly ozone caused  i r o n , and t h e other from o r g a n i c m a t e r i a l s .  Both lime and  r e d u c t i o n i n c o l o u r caused by m e t a l s , w h i l e o n l y ozone  reduced  93  c o l o u r from o r g a n i c s . r e l a t i v e l y low 5. process  The  o r g a n i c c o l o u r r e d u c t i o n took p l a c e a t  ozone doses. Ozone i s an e f f e c t i v e d i s i n f e c t a n t  but the  o n l y took p l a c e a f t e r the ozone demand o f those  g r e a t e r r e a c t i v i t y w i t h ozone had been s a t i s f i e d . were measured as COD  i n the u n t r e a t e d  r e q u i r e d t o grams per l i t r e o f COD 6.  Alum, f e r r i c  substances w i t h  When these  10 t o  o f ozone  1.  p o l y e l e c t r o l i t e s had no r e a l  i n a s s i s t i n g the removal of any p o l l u t a n t s when used i n combination ozone and  lime.  These reagents  a  substances  l e a c h a t e , the r a t i o o f mg/1  i n the l e a c h a t e was  s u l f a t e and  disinfection  were not t e s t e d s i n g l y , so t h a t  effect with  no  judgement i s made o f t h e i r s i n g u l a r c a p a b i l i t i e s . 7.  Based on the r e s u l t s  o f t h i s study, f o r the reagents  tested  and t h i s p a r t i c u l a r l e a c h a t e , the " b e s t " o v e r a l l treatment would be application  o f 110 mg/1  u s i n g 2350 mg/1  ozone, f o l l o w e d by pH-adjusted  of lime.  (b) removal o f 97.9  T h i s would r e s u l t  percent  o f the pretreatment  of the c o l o u r , ( c ) removal o f 20 p e r c e n t be removed as l i s t e d :  in:  precipitation,  (a) d i s i n f e c t i o n , t u r b i d i t y and  o f the COD,  Cu—26%, Fe—99.98%, K—0%,  P—98.5%, P b — 3 9 % , Zn—99.9%.  an  and  90  percent  (d) metals would  Mn—99.8%, N a — 0 % ,  The r e s u l t i n g pH would be h i g h , over 10  pH  units.  8.2  Recommendations  1. demand be  I t i s recommended t h a t a c o n t r o l l e d  investigation  c a r r i e d o u t , u s i n g , i n p l a c e o f l e a c h a t e , prepared  known c o n c e n t r a t i o n o f s o l u b l e m e t a l s , 2.  Ozone o x i d i z i n g  o r g a n i c m a t e r i a l s and  o f ozone  m i x t u r e s of microbes.  e f f i c i e n c i e s were not i n v e s t i g a t e d i n t h i s  94  project.  Other  investigators  (28) have noted o x i d a t i o n e f f i c i e n c i e s  g r e a t e r than 100 p e r c e n t , based on t h e r e d u c t i o n o f COD, u t i l i z i n g one e f f e c t i v e oxygen atom p e r molecule  o f ozone.  I t i s possible that t h i s  g r e a t e r than 100 p e r c e n t e f f i c i e n c y i s due t o s h o r t l i f e , r a d i c a l s formed d u r i n g t h e s p l i t t i n g o f oxygen molecules d i s c h a r g e , ozone-generating  process.  single-oxygen, i n the e l e c t r i c -  These r a d i c a l s have a " f o r b i d d e n "  e l e c t r i c c o n f i g u r a t i o n t h a t does not i n v i t e union w i t h an oxygen to  form an ozone m o l e c u l e .  The l i f e  molecule  o f t h i s r a d i c a l i s s h o r t , i n the  order o f 100 seconds ( 3 3 ) , and t h e p o s s i b i l i t y o f i t becoming a r e a c t a n t in  a wastewater i s p r e s e n t i f t h e ozone-oxygen stream  w i t h the wastewater.  i s quickly contacted  An i n v e s t i g a t i o n o f t h i s p o s s i b l e phenomenon s h o u l d  be c a r r i e d out by i n c r e a s i n g t h e ^ t i m e , from g e n e r a t i o n t o r e a c t i o n s t o r a g e , o f t h e newly generated 3.  ozone.  A d d i t i o n a l and more comprehensive s t u d i e s a r e n e c e s s a r y  b e f o r e a p r a c t i c a l and economic p h y s i c a l - c h e m i c a l system can be for  through  t r e a t i n g raw l a n d f i l l l e a c h a t e w i t h lime and ozone.  developed  These s t u d i e s  should i n c l u d e : a.  As i n (1) above  b.  An i n v e s t i g a t i o n t o t r e a t t h e e f f l u e n t to  c.  reduce  biologically  COD and o t h e r parameters t o a c c e p t a b l e  levels  An i n v e s t i g a t i o n t o p r e t r e a t t h e raw l e a c h a t e b i o l o g i c a l l y i n a biosystem  o r o t h e r w i s e , t o reduce  heavy o r g a n i c s and o t h e r s u b s t a n c e s , p r i o r t o p h y s i c a l chemical 4.  treatment.  Before any other i n v e s t i g a t i o n s w i t h ozone a r e c a r r i e d o u t ,  the l a b o r a t o r y concerned  should have an ozone meter and c o n s t a n t v o l t a g e  r e g u l a t o r s f o r t h e ozone g e n e r a t o r .  95  CHAPTER 9  LIST OF REFERENCES  1.  U l o t h , V. C. and M a v i n i c , D. S., " A e r o b i c B i o s t a b i l i z a t i o n o f a High S t r e n g t h L a n d f i l l Leachate," F a c u l t y o f A p p l i e d S c i e n c e Report, U n i v e r s i t y o f B r i t i s h Columbia, Page 3, February 1976.  2. - Poorman, B. L., " T r e a t a b i l i t y o f Leachate from a S a n i t a r y L a n d f i l l by Anaerobic D i g e s t i o n , " Master o f A p p l i e d S c i e n c e T h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, 7 5 pages, A p r i l 1974. 3.  L i d k e a , T. R. , "Treatment o f S a n i t a r y L a n d f i l l Leachate w i t h P e a t . " M.A.Sc. T h e s i s , Department o f C i v i l E n g i n e e r i n g , U n i v e r s i t y o f B r i t i s h Columbia, 61 pages, September 1974.  4.  P o l l u t i o n C o n t r o l Board, "Report on P o l l u t i o n C o n t r o l O b j e c t i v e s f o r M u n i c i p a l Type Waste Discharges i n B r i t i s h Columbia," Department o f Lands, F o r e s t s , and Water Resources, Government o f the P r o v i n c e o f B r i t i s h Columbia, September 1975.  5.  Thornton, R. J . and B l a n c , F. C. , "Leachate Treatment by C o a g u l a t i o n and P r e c i p i t a t i o n , " J o u r n a l o f the E n v i r o n m e n t a l E n g i n e e r i n g D i v i s i o n , P r o c . Amer. Soc. C i v i l E n g i n e e r s , 99, No. EE4, pp. 535-544, 1973.  6.  Chian, E. S. K. and DeWalle, F. B., " C h a r a c t e r i z a t i o n and Treatment o f Leachate Generated from L a n d f i l l s , " Water-1974: i i , M u n i c i p a l Waste Treatment, AIChE. Symposium S e r i e s , 145, V o l . 71, pp. 319-327, 1974.  7.  B o y l e , W. C. and Ham, R. K., " T r e a t a b i l i t y o f Leachate from S a n i t a r y L a n d f i l l s , " P r o c e e d i n g s o f the 27th I n d u s t r i a l Waste Conference, May 1972, P a r t 2, E n g i n e e r i n g E x t e n s i o n S e r i e s , Purdue U n i v e r s i t y , Purdue, Indiana.  8.  Cooper, R. C., P o t t e r , J . L. and Leong, C., " V i r u s S u r v i v a l i n S o l i d Waste L e a c h a t e s , " Water Research, Pergamon P r e s s , V o l . 9, pp. 733-739, Great B r i t a i n , 1975.  9.  C o r b e t t , J . R. E., "Treatment o f a Low S t r e n g t h L a n d f i l l Leachate w i t h Peat," M.A.Sc. T h e s i s , Department o f C i v i l E n g i n e e r i n g , U n i v e r s i t y o f B r i t i s h Columbia, 174 pages, A p r i l 1975.  10.  "Impact o f Water C h l o r i n a t i o n , " E n v i r o n m e n t a l S c i e n c e and V o l , 10, Page 21, January 1976.  Technology,  11.  Yao, K. M., " I s C h l o r i n e the Only Answer?" Water and Waste E n g i n e e r i n g , Page 30, January 1972.  96  12.  G o l d s c h m i t t , V. M., "The P r i n c i p l e s o f D i s t r i b u t i o n o f Chemical Elements i n M i n e r a l s and Rocks,"-- J o u r n a l o f the Chemical S o c i e t y , pp. 655-673, London, 1937.  13.  MacKenzie, G., T r a c e y , J . and E l l i s , M. W., "Geology o f the Arkansas B a u x i t e Region," P r o f e s s i o n a l Paper 299, U n i t e d S t a t e s Government P r i n t i n g O f f i c e , Washington, D.C. , 1948.  14.  Drummond, A. H., " A t o m s - C h r y s t a l s - M o l e c u l e s , Modern Views o f Atomic S t r u c t u r e and Chemical Bonding," American E d u c a t i o n P u b l i c a t i o n s , The Wesleyan U n i v e r s i t y P r e s s , Columbus, Ohio, 1964.  15.  Wastewater E n g i n e e r i n g , M e t c a l f and Eddy, McGraw Book Company, New N.Y. , 1972.  16.  F a i r , G. M. , Geyer, J . J . and Okun, D. A., Water and Wastewater E n g i n e e r i n g , V o l . 2, John Wiley and Sons, I n c . , New York, N.Y. , 1968.  17.  B. I . F., A U n i t o f G e n e r a l S i g n a l Corp., "Chemicals Used i n the Treatment o f Water and Wastewater," Water and Sewage Works, Reference Number, 1972.  18.  P l a c k e t , R. L. and Burman, J . P., "Design o f Optimum M u l t i f a c t o r i a l Experiments," B i o m e t r i c a , V o l . 33, Page 305, 1946.  19.  Stowe, R. A. and Meyer, R. P., " E f f i c i e n t S c r e e n i n g o f Process V a r i a b l e s , " I n d u s t r i a l and E n g i n e e r i n g Chemistry, V o l . 58, No. 2, February 1966.  20.  A.P.H.A., A.W.W.A., W.P.C.F., Standard Methods f o r the Examination o f Water and Wastewater, American P u b l i c H e a l t h A s s o c i a t i o n , I n c . , 13th E d i t i o n , 1971.  21.  Zahn, D. A., " M o d i f i c a t i o n o f and R e v i s e d C r i t i c a l Values f o r the Half-Normal P l o t , " Technometrics, 17, 2, May 1975.  22.  Zahn, D. A., "An E m p i r i c a l Study o f the Half-Normal Technometrics, 17, 2, May 1975.  23.  D a n i e l , C , "Use o f Half-Normal P l o t s i n I n t e r p r e t i n g F a c t o r i a l L e v e l Experiments," Technometrics, 1, 311, November 1959.  24.  Cameron, R. D. and MacDonald, E. C., "Procedures f o r the A n a l y s i s o f L a n d f i l l Leachate," Appended Seminar P r o c e e d i n g Report, Environment Canada, S o l i d Waste Management Report, EPS-4-752, October 1975.  25.  Bringman, G., " D e t e r m i n a t i o n - o f the L e t h a l A c t i v i t y o f C h l o r i n e and Ozone on E. C o l i , " Z e i t s s c h i f t f i i r Hygiene, 130, Page 130, 1954.  26.  I n g o l s , R. S.. and F e t n e r , R. H., "Some S t u d i e s o f Ozone f o r Use i n Water Treatment," Proceedings o f the S o c i e t y f o r Water Treatment and Examination, 6, 8, 1957.  York,  Plot,"  Two  97  27.  Wynn, C. S., K i r k , B. S. and McNabney, R., " P i l o t P l a n t f o r T e r t i a r y Treatment o f Wastewater w i t h Ozone," Water, A.L.Ch.E. Symposium S e r i e s , No. 129, V o l . 69, Page 42, October 1974.  28.  N i l s o n , R., "Removal o f M e t a l s by Chemical Treatment o f M u n i c i p a l Waste Water," Water Research, Pergamon P r e s s , V o l . 5, pp. 51-60, Great B r i t a i n , 1971.  29.  N e t z e r , A., Norman, J . D. and V i g e r s , G. A., "Removal o f Trace Metals from Wastewater by Ozonation," Water P o l l u t i o n Research i n Canada 1972, V o l . 7, February 1972.  30.  M a s t e r t o n , W. M. and S l o w i n s k i , E. J . , Chemical P r i n c i p l e s , 2nd E d i t i o n , W. B. Saunders Company, T o r o n t o , 1969.  31.  Sawyer, C. N. and McCarty, P. L., Chemistry f o r S a n i t a r y E n g i n e e r s , 2nd E d i t i o n , McGraw-Hill Book Company, T o r o n t o , 1967.  32.  D i a p e r , E. 'W. J . , "Ozone Moves More t o the F o r e , " Water and Wastes E n g i n e e r i n g , Page 65, May 1972.'  33.  Y a t e s , W. F. and B u r l e s o n , J . C , "Chemical R e a c t i o n s i n a S i l e n t E l e c t r i c D i s c h a r g e , " Chemtech, pp. 31-35, January 1973.  98  CHAPTER 10 - APPENDICES GENERAL BIBLIOGRAPHY  1.  Weber, Walter J . , J r . , P h y s i c a l - C h e m i c a l P r o c e s s e s f o r Water QualityC o n t r o l , John Wiley and Sons, New York, 1972.  2.  D a v i e s , 0. L., Design and A n a l y s i s o f I n d u s t r i a l Experiments, P u b l i s h i n g Co., New York, 1954.  3.  N e t z e r , A., Norman, J . D. and V i g e r s , G. A., "Removal o f T r a c e M e t a l s from Waste Water by O z o n a t i o n , " Water P o l l u t i o n Research i n Canada 1972, E d i t o r Murphy, K. L. , McMaster U n i v e r s i t y , O n t a r i o .  4.  Gabovch, R. D., V r o c h i n s k i i , K. K. and K u r i n n y i , I . L., " D e c o l o r i z a t i o n , D e o d o r i z a t i o n and Decontamination o f D r i n k i n g Water by O z o n a t i o n , " Hygiene and S a n i t a t i o n , V o l . 34, No. 6, pp. 336-340 ( E n g l i s h ) .  5.  P o s s e l t , H. S., R e i d i e s , A. H., Weber, W. J . , J r . , " C o a g u l a t i o n o f C o l l o i d a l Hydrous Manganese D i o x i d e , " J o u r n a l AWWA, p. 50, January 1968.  6.  Rebhun, M. S t r e i t , S., " P h y s i c o - C h e m i c a l Treatment Waste Water," Water Research 8_, p. 195, 1974.  7.  L i n s t e d t , K. D., Houchk, C. P., O'Connor, J . T. , "Trace Element Removal i n Advanced Waste Water P r o c e s s e s , " J o u r n a l WPCF, 43, 7, p. 1507, J u l y 1971.  8.  0 ' M e l i a , C . R. , " C o a g u l a t i o n i n Water and Waste Water Treatment," Water Q u a l i t y Improvement by P h y s i c a l and Chemical P r o c e s s e s , E d i t e d by E a r n e s t F. Glpyna and W. Wesley E c k e n f e l d e r , J r . , U n i v e r s i t y o f Texas P r e s s , A u s t i n , Texas, 1965.  9.  Stumm, W., 0 ' M e l i a , C. R., " S t o i c h i o m e t r y o f C o a g u l a t i o n , " J o u r n a l AWWA, p. 515, May 1968.  Hafner  o f Strong M u n i c i p a l  t  10.  Weber, W. J . , J r . , Hopkins, C. B., Bloom, R. B., J r . , " P h y s i o c h e m i c a l Treatment o f Waste Water," J o u r n a l WPCF 42, 1, p. 83, January 1970.  11.  M a c k r i e l , S., "Mechanism o f C o a g u l a t i o n i n Water Treatment," J o u r n a l S a n i t a r y E n g i n e e r i n g D i v i s i o n , Proceedings ASCE, SA3, p. 117, May 1962.  99  PHYSICAL  CHEMICAL  RAW D A T A  -  NO.  Mg/1 EXCEPT  ft  4-> •H T3 • H rQ U H  o rH o o  OF  LANDFILL  pH -  TURBIDITY  C rH O rd rH -P O rd H CJ  CO rH r d • H +-> rH o o H CO  T) <U X) C CO Q)id •H ft CO rH o CO co  >,  DEPENDENT VARIABLES RUN  TREATMENT  LEACHATE  AND  n  o CJ  COLOUR  T3  O  O  1  8.05  95  6420  15680  78.78  0.029  —  : 0.043  2  8.50  66  6374  12517  56.56  0.029  —  ;0.042  3  8.45  40  6480  12923  58  0.018  —  0.036  4  5.55  120  6480  11864  639  0.042  —  0.054  5  7.40  78  6360  11904  117  0.030  —  0.049  6  5.60  100  5975  10354  574  0.064  —  0.070  7  6.70  104  6620  12238  339  0.035  —  0.051  8  9.11  24  6932  12792  190  0.031  —  0.060  9  5.06  76  6543  10674  638  0.039  —  0.065  10  5.09  60  7201  8841  146  0.041  —  0.051  11  6.93  93  6330  12201  394  0.037  —  0.057  12  5.55  55  6550  10560  549  0.041  —  0.040  13  5.00  45  6785  9140  258.3  0.042  —  0.013  14  5.00  72  7160  10188  • 1880  0.048  —  0.057  15  6.16  106  6790  11841  452  0.039  —  0.041  16  5.03  60  7380  8503  309  0.035  —  0.043  17  6.20  180  1500  3900  7576  183  11462  0.030  18  6.81  49  1500  4300  8942  34  12718  0.064  20  6.20  215  1000  4060  7669  346  9734  0.077  23R  6.95  71  2500  4400  9130  58  12564  0.044  27  5.99  230  1000  3220  7535  269  11455  0.073  100  PHYSICAL  CHEMICAL TREATMENT  OF  RAW  -  Mg/1 EXCEPT  TURBIDITY  c  cu  DATA  pH -  LANDFILL  LEACHATE  AND  COLOUR  DEPENDENT VARIABLES RUN  NO.  PH  rd o  o  rd  PH  1  1.08  21.9  900  257  360  0.625  2  1.17  13.5  625  240  336  2.475  3  1.07  9.4  775  242  330  0.82  4  38.0  137.5  880  249  359  11.44  5  3.13  37.5  700  248  349  16.20  6  33.75  175.0  525  249  358  10.80  16.50  105.0  750  256  351  7.28  0.72  3.5  752  243  326  0.375  o  34.25  250  575  257  350  11.70  o <u + >  40.75  440  580  270  365  16.20  14.50  43.75  990  225  270  3.90  30.25  300.0  537  248  353  5.26  13  33.75  457  490  267  360  15.00  14  32.5  47 5  350  266  370  16.20  15  25.00  167.5  675  248  351  9.60  16  32.50  441.0  560  270  370  15.10  7 8 9 10 11  4-> •H  e  c  •H -P  CD Q  C S  O  o  M  H  E-H  1  o 12  H  m  17  0.164  4.80  150  1025  140  152  0.18  7.99  3880  20.1  18  0.217  0.39  100  1125  156  152  0.116  6.65  4285  15.0  20  0.164  6.35  325  1040  134  152  0.110  8.00  4046  14.0  23R  0.190  0.90  53  780  160  152  0.170  7.24  4396  4.0  27  0.181  4.72  60  1020  153  158  0.176  8.20  3215  5.0  7.20  4  500  4260  8833  14  11906  —  —  0.106  30  7.29  32  1000  4160  9135  28  12192  —  —  0.069  31  6.09  100  1500  3800  7624  111  10930  —  —  0.067  32  7.28  4  500  3890  8850  17  10604  —  —  0.047  37  6.20  125  5000  4280  8707  106  13597  —  —  0.081  38  6.90  240  1500  4430  8945  76  12887  —  —  0.054  39  6.05  165  r'500  4180  8511  924  14403  —  —  0.100  40  5.95  145  5000  4200  8694  852  13423  —  —  0.094  41  6.48  210  1000  3780  7518  74  9706  —  —  0.051  42  6.72  250  1500  4380  8843  68  13191  —  —  0.041  43  6.85  235  1500  4510  9168  57  13536  —  —  0.055  44  8.60  25  250  4190  8566  14  12582  —  —  0.041  45  5.99  190  4000  4170  8450  822  13123  —  —  0.091  46  6.44  145  1500  3700  7396  124  11398  —  —  0.046  47  6.45  92  1000  3800  7524  215  11560  —  —  0.046  48  6.70  255  2000  4370  8903  82  13056  —  —  0.041  49  8.35  39  250  4220  8510  81  12169  —  —  0.060  50  8.21  "64  250  4250  8461  20  12656  —  —  0.085  51  6.39  78  1000  3700  7006  57  11025  —  —  0.112  52  7.32  68  250  4140  8478  4.1  12108  —  —  0.046  53  6.83  180  1000  3750  8534  4.7  11511  —  —  0.051  54  6.80  200  1000  3810  8440  4.3  12823  —  —  0.063  55  6 . 8 1 ' 180  1500  3790  8416  5.1  11714  ft  COD  Total  Suspended Solids  Total Carbon  29  RUN N O .  Solids  Colour  DEPENDENT VARIABLES  Turbidity  101  o  3  o  0.060  102  DEPENDENT VARIABLES RUN  rrj CJ  c  NO.  rrj 53  o o  PH  E-H  CJ M E-H  29  0.164  0.43  1.0  1175  158  185  0.130  5.85  4220  40  30  0.164  0.45  8.3  1140  157  160  0.136  4.85  4147  12.8  31  0.170  6.06  75.5  1025  156  152  0.190  8.05  3789  10.9  32  0.213  0.27  1.5  2140  140  152  0.130  4.60  3869  20.8  37  0.124  1.15  250  650  140  140  0.146  8.10  4265  15.0  38  0.109  0.12  28.5  1225  140  175  0.160  5.35  4420  9.6  39  0.128  3.93  50.0  1870  142  145  0.146  8.20  4163  16.5  40  0.117  4.71  36  1020  141  255  0.092  8.05  4189  11.9  41  0.114  3.22  150  985  130  133  0.130  7.80  3764  16.0  42  0.057  0.42  53  1175  140  254  0.180  6.20  4373  6.5  43  0.129  0.13  32  705  148  145  0.154  5.50  4496  14  44  0.203  0.58  0.66  1210  133  132  0.160  1.50  4161  29.2  45  0.116  2.07  210  1055  134  175  0.150  8.05  4156  13.5  46  0.116  4.61  165  1040  137  140  0.170  8.05  3695  5.5  47  0.171  4.83  110  1005  130  137  0.41  7.99  3797  3.0  48  0.131  0.39  50  1160  143  139  0.070  6.25  4363  6.5  49  0.193  0.05  4.5  1200  126  147  0.124  2.15  4193  2.7  50  0.181  0.04  6.5  1180  124  128  0.130  2.50  4228  22.0  51  0.121  3.74  105  570  114  171  0.124  8.05  3694  4.5  52  0.115  0.06  J18  1180  135  135  0.092  4.20  4132  7.5  53  0.080  0.39  90  1095  132  140  0.108  3744  5.6  54  0.139  0.70  80  1065  126  143  0.160  3805  5.5  55  0.086  0.315  75  2440  126  160  0.140  3785  5.0  6.71 6.80 6.90  Total  56  8.20  50  500  3980  8714  2.4  11860  57  10.25  2.2  165  2720  9169  26  10687  58  10.40  52  :165  2700  12284  85  10985  59  11.2  27  85  2640  9189  76  11135  60  11.44  17  165  2660  9569  49  61  11.39  29  85  282Q  9527  62  10.42  18  165  2830  63  10.21  19  165  64  10.50  19  65  10.51  66  COD  Total Carbon  Suspended Solids  a<  VARIABLES  Solids  RUN N O .  Colour  DEPENDENT  Turbidity  103  o  O  3  — —  0.055  —  —  0.045  11159  —  —  0.030  83  11259  —  —  0.075  9049  4.7  10737  —  —  0.050  2660  9076  32  8385  —  —  0.055  165  2710  9155  42  11180  —  —  0.045  17  250  2820  9221  22  11134  —  —  0.082  10.61  16  200  2770  9230  17  10737  —  —  0.065  67  9.71  16  200  2820  8747  25  11135  —  —  0.069  68  9.60  15  250.  2740  8806  13  10928  —  —  0.081  69  9.41  .'15  200  2815  8903  21  11913  —  —  0.068  70  10.00  16  200  2870  9471  11  11391  —  —  0.094  71  9.2  15  200  2820  9024  20  12132  —  —  0.079  72  10.00  14  200  2790  9577  15  11135  —  —  0.090  73  8.30  27  175  2560  6465  12  9553  —  —  0.067  74  9.83  13  125  2600  7448  18  9694  —  —  0.079  75  9.90  14  250  2590  7378  11  9089  —  —  0.071  76  9.50  16  225  2550  7408  8  9652  —  —  0.056  77  8.40  24  500  2560  6695  3  9395  —  —  0.067  78  10.19  16  250  2495  7516  24  10058  0.060  104  DEPENDENT VARIABLES RUN  NO.  XA  c  rrj O  CD  rrj  o o  O 1—f  IS3 56  0.154  0.015  6  1195  138  143  0.180  2.50  3963  17.2  57  0.020  1550  138  111  0.125  0.09  2719  0.7  58  0.020  1590  138  111  0.075  0.09  2697  2.7  59  0.030  1670  138  110  0.086  0.05  2639  0.8  60  0.025  1770  134  111  0.070  0.05  2659  1.2  61  0.035  1670  134  111  0.065  0.15  2816  4.2  62  0.035  1560  134  109  0.081  0.07  2829  0.7  63  0.025  1590  138  109  0.069  0.07  2655  4.5  64  0.032  1440  138  111  1:90  0.05  2709  1.4  65  0.014  0.038  0.427  1615  138  111  0.055  0.042  2826  4.2  66  0.019  0.023  0.314  1640  134  111  0.056  0:036  2768  1.7  67  0.011  0.026  0.771  1430  142  111  0.079  0.042  2819  1.4  68  0.052  0.026  0.328  1490  131  108  0.067  0.037  2737  2.8  69  0.052  0.025  0.301  1515  168  111  0.068  0.036  2809  5.8  70  0.060  0.207  0.421  1515  172  111  0.087  0.051  2879  1.24  71  0.060  0.024  0.543  1410  174  111  0.079  0.053  2817  3.0  72  0.057  0.025  0.371  1515  173  111  0.045  0.044  2788  1.9  73  0.011 0.0175  3.428  10'50  97  82  0.046  0.778  2555  ;4.6  74  0.011  0.015  0.342  1220  93  80  0.082  0.171  2599  1.4  75  0.014  0.018  0.298  1215  99  84  0.01  0.129  2583  6.5  76  0.014  0.018  0.285  1230  96  82  0.10  0.128  2546  4.2  77  0.018  0.021  3.314  1120  100  82  0.101  0.721  2544  15.6  0.011  0.016  0.614  1310  100  83  0.102  0.107  2492  3.3  78  105  • XA  DEPENDENT VARIABLES RUN  u  H  O H O O  C H O rrj XA •P U O rrj EH O  H TJ rrj •H -P H 0 0 E-i CO  CO  CO • X) CO H 3 O CO CO  Q O O  o  o  NO.  79  8.21  23  250  2560  6656  5  9180  —  0.062  80  9.45  16  250  2590  7326  18  9006  —  0.063  81  10.05  3  600  3075  7192  10  8805  —  0.028  82  10.00  32  100  3030  7078  46  8385  —  0.045  83  10.45  •9  400  2990  7226  34  8703  —  0.025  84  10.12  4  100  2990  7054  11.0  8853  —  0.069  85  10.59  2  500  3075  7292  14  8833  —  0.030  86  10.12  3  100  2985  7031  10  8162  —  0.047  87  10.50  8  400  2990  7190  38  8128  —  0.032  88  10.20  5  150  2990  7027  10  8449  —  0.028  89  10.58  4  350  3030  7252  14  8579  —  0.028  90  10.05  5  100  2800  7053  26  8703  —  0.017  91  10.40  3  500  2910  7164  32  9045  —  0.024  92  10.10  4  200  2915  6991  11  8253  —  0.023  93  10.40  4  550  3075  7125  14  8627  —  0.094  94  10.10  3  100  2905  6979  3  8162  —  0.032  95  10.40  9  450  2910  7093  40  8655  —  0.025  96  10.12  4  100  3040  6912  5  8504  —  0.056  97  11.52  7  100  2875  7332  10  8030  —  0.032  98  11.55  33  100  2985  7402  70  8374  —  0.030  99  11.60  20  100  2875  7368  38  8100  —  0.032  100  11.60  41  50  2895  7613  100  8380  --  0.038  '101  11.60  6  250  2980  6636  13  8689  —  0.038  106  DEPENDENT VARIABLES RUN  NO.  PL,  p  0)  rd O  o o  TO  H  O I—I E-<  79  0.024  0.020  1.942  1075  96  81  0.115  0.12  2542  17.9  80  0.018  0.015  0.814  1270  102  85  0.095  0.236  2583  6.8  81  0.007  0.0143  1.57  1712  90  76.20  0.20  0.21  3073  1.75  82  0.014  0.0121  1.96  1712  103  76.75  0.39  0.12  3021  8.60  83  0.014  0.0028  0.25  1725  75.4  0.17  0.18  2987  3.40  84  Tr  0.0054  0.66  1719  89  76  0.13  0.15  2986  3.6  85  Tr  0.0060  0.32  1721  88  "'75.9  0.13  0.19  3073  2.1  86  Tr  0.0028  0.57  1714  90  76.2  0.22  0.10  3981  3.6  0.0027  0.19  1775  88  76.3  0.14  0.19  2988  1.7  0.0043  0.67  1512  101  75.2  0.14  0.14  2989  1.4  87 88  0.007 Tr  89  0.007  0.0064  0.29  1788  88  75.4  0.15  0.10  3027  2.8  90  : Tr  0.0047  2.0  1721  100  75.2  0.15  0.13  2799  0.9  91  0.007  0.0027  0.30  1719  90  76  0.15  0.22  2906  3.6  92  0.007  0.0092  0.51  1712  100  76.7  0.14  0.13  2912  2.85  93  0.014  0.0121  0.28  1721  96  75.1  0.13  0.16  3071  3.55  94  0.020  0.0054  0.48  1687  99  76.3  0.14  0.10  2904  1.2  95  0.014  0.0094  0.18  1712  87  75.3  0.21  0.16  2908  1.5  0.014  0.0028  0.61  1575  96  75.15  0.13  0.13  3039  0.8  0.014  0.0026  0.11  1956  98  76.75  0.21  0.03  2875  0.014  0.0836  0.82  1844  86  76.70  0.28  0.03  2981  4.4  0.0236  0.57  1900  89  77.2  0.22  0.03  2866  8.5  0.0130  1.30  1788  90  76.3  0.28  0.04  2885  9.75  0.0064  0.83  1575  97  77.8  0.16  0.04  2978  2.2  96 97 98 99 100 *101  Tr 0.036 Tr  Total Carbon  Total Solids  11.63  28  100  3005  7663  103  11.50  17  100  2950  7585  104  11.52  100  3050  7586  RUN N O .  5  COD  Colour  102  DEPENDENT VARIABLES  Suspended Solids  a  Turbidity  107  id o  o  73  8936  —  —  0 .054  12  8323  —  —  0 .028  7  8378  —  —  0 .023  3 o  108  DEPENDENT VARIABLES RUN  NO.  -Q  u,  U  rrj O  rd  Ph  o o  O 1—I EH  102  0.043  0.0121  0.96  2037  90  76.75  0.12  0.05  2995  10.25  103  0.020  0.0171  0.63  1912  99  77.8  0.09  0.03  2941  9.4  104  0.014  0.0070  0.10  1844  89  77.4  0.34  0.01  3044  6.0  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0063018/manifest

Comment

Related Items