UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The variation of ground snow loads with elevation in southern British Columbia Claus, Bernhard Ralph 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1981_A7 C53.pdf [ 10.96MB ]
Metadata
JSON: 831-1.0063004.json
JSON-LD: 831-1.0063004-ld.json
RDF/XML (Pretty): 831-1.0063004-rdf.xml
RDF/JSON: 831-1.0063004-rdf.json
Turtle: 831-1.0063004-turtle.txt
N-Triples: 831-1.0063004-rdf-ntriples.txt
Original Record: 831-1.0063004-source.json
Full Text
831-1.0063004-fulltext.txt
Citation
831-1.0063004.ris

Full Text

THE VARIATION OF GROUND SNOW LOADS WITH ELEVATION IN SOUTHERN B R I T I S H COLUMBIA by BERNHARD RALPH CLAUS B.Ap.Sc., The U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1977 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF ' .. MASTER OF A P P L I E D SCIENCE i n THE FACULTY OF GRADUATE STUDIES D e p a r t m e n t o f C i v i l E n g i n e e r i n g We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF B R I T I S H COLUMBIA O c t o b e r 1981 © B e r n h a r d R a l p h C l a u s , 1981 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t . of the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h C olumbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head of my department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood t h a t c o p y i n g or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . B e r n i R. C l a u s Department of C i v i l E n g i n e e r i n g The U n i v e r s i t y of B r i t i s h Columbia 2075 Westbrook M a l l Vancouver, B.C. Canada V6T 1W5 Date A b s t r a c t Measurements conducted a t 20 l o c a t i o n s i n Southern B r i t i s h Columbia were used t o i n v e s t i g a t e the r e l a t i o n s h i p between maximum water e q u i v a l e n t (ground snow lo a d ) and e l e v a t i o n . I t was found t h a t the r e l a t i v e i n c r e a s e of water e q u i v a l e n t w i t h e l e v a t i o n ( i e . the s l o p e of the water e q u i v a l e n t p l o t t e d a g a i n s t e l e v a t i o n ) c o u l d be d e f i n e d v e r y w e l l f o r l a r g e r r e g i o n s w i t h s i m i l a r c l i m a t i c c o n d i t i o n s . For a g i v e n mountain, ground snow l o a d s c o u l d t h e r e f o r e be p r e d i c t e d by e x t r a p o l a t i n g from water e q u i v a l e n t v a l u e s a t one e l e v a t i o n t o another e l e v a t i o n . P l o t s of the a b s o l u t e v a l u e s of water e q u i v a l e n t s a g a i n s t e l e v a t i o n f o r r e g i o n s of s i m i l a r c l i m a t i c c o n d i t i o n s c o u l d g i v e o n l y approximate v a l u e s of ground snow loads- f o r any p a r t i c u l a r s i t e . P l o t s of the mean water e q u i v a l e n t and of the 30 year maximum water e q u i v a l e n t p l o t t e d a g a i n s t e l e v a t i o n f o r the measurement l o c a t i o n s and f o r the r e g i o n s of s i m i l a r snow c o n d i t i o n s a r e p r e s e n t e d . The d e n s i t y of snow at' the time of maximum water e q u i v a l e n t was b r i e f l y i n v e s t i g a t e d . No c o r r e l a t i o n of d e n s i t y w i t h e l e v a t i o n was found. i i i CONTENTS A b s t r a c t . i i L i s t Of T a b l e s v L i s t Of F i g u r e s v i Acknowledgement x i Chapter 1. I n t r o d u c t i o n And Survey Of Other Work 1 1.1 I n t r o d u c t i o n 1 1 .2 Survey Of Work Done On Snow Loads 3 1.2.1 Ground Snow. Loads . 4 1.2.2 Roof Loads 5 1.2.3 V a r i a t i o n Of Ground Loads With E l e v a t i o n 6 Chapter 2. C l i m a t e And Measurements 9 2.1 Major C l i m a t i c Regions Of Southern B r i t i s h Columbia . 9 2.1.1 Coast Mountains 14 2.1.2 Southwest • I n t e r i o r 14 2.1.3 Southeast I n t e r i o r And Southern R o c k i e s 14 2.2 D e f i n i t i o n s 15 2.3 S e l e c t i o n Of L o c a t i o n s 15 2.4 S e l e c t i o n Of S t a t i o n s 16 2.5 Measurement 17 2.5.1 Method 17 2.5.2 Ac c u r a c y And R e l i a b i l i t y 18 • 2.5.3 U n i t s Used 19 Chapter 3. A n a l y s i s And R e s u l t s At The L o c a t i o n s 20 3.1 C a l c u l a t i o n Of S t a t i s t i c s At Each S t a t i o n 20 3.2 C a l c u l a t i o n Of 30 Year Return P e r i o d Water E q u i v a l e n t s 23 3.2.1 Ch o i c e Of Return P e r i o d 23 3.2.2 Choice Of D i s t r i b u t i o n 24 3.3 P l o t t i n g Of S t a t i s t i c s For Each L o c a t i o n 26 3.3.1 Ch o i c e Of Curve To Be F i t t e d 26 3.3.2 D i f f i c u l t i e s W i th Constant V a r i a n c e For The R e g r e s s i o n 37 3.3.3 Changes In V a r i a n c e With E l e v a t i o n 40 3.3.4 W e i g h t i n g Of R e g r e s s i o n Curve 42 3.4 D e n s i t y At Time Of Maximun Water E q u i v a l e n t 43 Chapter 4. Regions W i t h S i m i l a r Ground Load C h a r a c t e r i s t i c s 45 4.1 Parameters Used To Determine S i m i l a r i t y Of L o c a t i o n s 45 4.2 Regions With S i m i l a r Ground Snow Loads 47 i v 4.3 S i m i l a r i t i e s I n The R e l a t i v e I n c r e a s e Of G r o u n d Snow L o a d s 60 4.3.1 M e t h o d 60 4.3.2 R e s u l t s 61 4.4 D i s c u s s i o n Of Wa t e r E q u i v a l e n t P l o t s F o r The R e g i o n s 70 C h a p t e r 5. C o m p a r i s o n Of R e s u l t s W i t h The N a t i o n a l B u i l d i n g Code 73 5.1 D i f f e r n c e s Due To L o c a l V a r i a b i l i t y 75 5.2 D i f f e r e n c e s Due To P r o b a b i l i t y D i s t r i b u t i o n And Sample S i z e 76 5.3 D i f f e n c e s Due To The E s t i m a t i o n Of Snow D e n s i t y .... . 77 C h a p t e r 6. D e t e r m i n a t i o n Of G r o u n d Snow L o a d s F o r D e s i g n . 79 6.1 Snow L o a d s R e q u i r e d A t A Measurement L o c a t i o n 80 6.1.1 M e t h o d 80 6.1.2 A c c u r a c y 80 6.2 W a t e r E q u i v a l e n t / D a t a N ot A v a i l a b l e 81 6.2.1 M e t h o d . . ".' 81 6.2.2 A c c u r a c y .... . 83 6.3 W a t e r E q u i v a l e n t D a t a A v a i l a b l e A t D i f f e r e n t E l e v a t i o n s 84 6.3.1 M e t h o d 84 6.3.2 A c c u r a c y 84 6.4 A c c u r a c y Of E s t i m a t e s 86 6.4.1 S i m i l a r i t y Of C l i m a t i c F a c t o r s 87 6.4.2 S i m i l a r i t y Of A s p e c t 87 6.4.3 L o c a l E f f e c t s 88 6.5 D e t e r m i n a t i o n Of Snow L o a d s A t O t h e r R e t u r n P e r i o d s . 89 C h a p t e r 7. Summary And C o n c l u s i o n 91 R e f e r e n c e s 93 A p p e n d i x I : Wa t e r E q u i v a l e n t and Snow D e p t h S t a t i s t i c s .... 97 A p p e n d i x I I : Snow D e n s i t y S t a t i s t i c s .....116 V LIST OF TABLES Table I Snow l o a d measurement l o c a t i o n s 16 Tab l e I I C o n v e r s i o n f a c t o r s f o r snow measurements 19 Tab l e I I I Student V a l u e s of K f o r 30 year r e t u r n . . . 25 Tab l e IV Snow d e n s i t i e s a t maximum water e q u i v a l e n t s 44 Tab l e V Regions w i t h s i m i l a r water e q u i v a l e n t s . . . . 47 Table VI Regions w i t h s i m i l a r r e l a t i v e water e q u i v a l e n t s 61 Table V I I Comparison of snow l o a d s w i t h : t h e N a t i o n a l B u i l d i n g Code 74 Table V I I I R e g r e s s i o n c o e f f i c i e n t s f o r measurement l o c a t i o n s 81 Table IX R e g r e s s i o n c o e f f i c i e n t s f o r s e l e c t e d R e g i o n s . . . . 82 Tab l e X R e l a t i v e water e q u i v a l e n t r e g r e s s i o n c o e f f i c i e n t s 85 v i LIST OF FIGURES F i g u r e T i t l e 1.1 Map showing measurement l o c a t i o n s 2 2.1 R e l a t i o n of a l t i t u d e and p r e c i p i t a t i o n i n Southern B r i t i s h Columbia .. 10 2.2 Annual p r e c i p i t a t i o n i n Southern B r i t i s h Columbia 11 2.3 Mean annual snow f a l l - i n Southern B r i t i s h B r i t i s h Columbia 12 2.4 Water e q u i v a l e n t : on 1 A p r i l i n Southern B r i t i s h Columbia.. . .... 13 3.1 S t a n d a r d d e v i a t i o n of water e q u i v a l e n t s , a l l l o c a t i o n s 21 3.2 C o e f f i c i e n t of v a r i a t i o n of water e q u i v a l e n t a l l l o c a t i o n s 22 3.3 Mean water e q u i v a l e n t : R e v e l s t o k e Mt. . . . 28 3.4 Mean water e q u i v a l e n t : F i d e l i t y Mt 28 3.5 Mean water e q u i v a l e n t : Copeland Mt 28 3.6 Mean water e q u i v a l e n t : Apex Mt 29 3.7 Mean water e q u i v a l e n t : Enderby 29 3.8 Mean water e q u i v a l e n t : S i l v e r s t a r Mt 29 3.9 Mean water e q u i v a l e n t : C r e s t o n 30 3.10 Mean water e q u i v a l e n t : G r a n i t e Mt 30 3.11 Mean water e q u i v a l e n t : J e r s e y Mine 30 3.12 Mean water e q u i v a l e n t : Z i n c t o n 31 3.13 Mean water e q u i v a l e n t : Sandon 31 3.14 Mean water e q u i v a l e n t : K a s l o 31 3.15 Mean water e q u i v a l e n t : F e r n i e 32 v i i F i g u r e T i t l e 3.16 Mean water e q u i v a l e n t : North Star Mt............ 32 3.17 Mean water e q u i v a l e n t : Lake Lou i s e 32 3 . 1 8 Mean water e q u i v a l e n t : Grouse Mt 33 3.19 Mean water e q u i v a l e n t : Seymour Mt. . . 33 3.20 Mean water e q u i v a l e n t : H o l l y b u r n Mt 33 3.21 Maximum water e q u i v a l e n t : Revelstoke Mt 34 3.22 Maximum water e q u i v a l e n t : F i d e l i t y Mt 34 3.23 Maximum water e q u i v a l e n t : Copeland Mt 34 3.24 Maximum water e q u i v a l e n t : Apex Mt 35 3.25 Maximum water e q u i v a l e n t : Enderby 35 3.26 Maximum water e q u i v a l e n t : S i l v e r s t a r Mt 35 3.27 Maximum water e q u i v a l e n t : Creston 36 3.28 Maximum water e q u i v a l e n t : G r a n i t e Mt. 36 3.29 Maximum water e q u i v a l e n t : J e r s e y Mine..... 36 3.30 Maximum water e q u i v a l e n t : Z i n c t o n 37 3.31 Maximum water e q u i v a l e n t : Sandon 37 3.32 Maximum water e q u i v a l e n t : Kaslo .. 37 3.33 Maximum water e q u i v a l e n t : F e r n i e 38 3.34 Maximum water e q u i v a l e n t : North Star Mt 38 3.35 Maximum water e q u i v a l e n t : Lake Louise 38 3.36 Maximum water e q u i v a l e n t : Grouse Mt 39 3.37 Maximum water e q u i v a l e n t : Seymour Mt 39 3.38 Maximum 'water e q u i v a l e n t : H o l l y b u r n Mt 39 3.39 E f f e c t of constant v a r i a n c e on r e g r e s s i o n 41 4.1 Mean water e q u i v a l e n t : Rogers Pass Region 48 V I 1 1 F i g u r e T i t l e 4.2 Mean water e q u i v a l e n t : Copeland R e g i o n . . . . . . . . . . 48 4.3 Mean water e q u i v a l e n t : L o c a t i o n s 11 12 13.. 48 4.4 Mean water e q u i v a l e n t : Okanagan Region 49 4.5 Mean water e q u i v a l e n t : Kootenay Region.. 50 4.6 Mean water e q u i v a l e n t : L o c a t i o n s 31 .32 33 50 4.7 Mean water e q u i v a l e n t : L o c a t i o n s 41 42 43.. 50 4.8. Mean water e q u i v a l e n t : I n t e r i o r Region ( e x c l . C o p e l a n d ) . . . . . . . . . . . . . . . .51 4.9 .Mean water e q u i v a l e n t : L o c a t i o n s 11 12 13 21 22 23 31 32 .33 41 42 43. . . . . ... 51 4.10 Mean water e q u i v a l e n t : L o c a t i o n s 11 12 13 21 22 23 32 33 41 42 43 51 52 53. .............. ... 51 4.11 Mean water e q u i v a l e n t : Rocky Mt. (Wet) Region 52 4.12 Mean water e q u i v a l e n t : Rocky Mt. (Dry) Region 52 4.13 Mean water e q u i v a l e n t : Coast-Vancouver Region 53 4.14 Mean water e q u i v a l e n t : A l l l o c a t i o n s . . . . 53 4.15 Maximum water e q u i v a l e n t : Rogers Pass Region 54 4.16 Maximum water e q u i v a l e n t : Copeland R e g i o n . 54 4.17 Maximum water e q u i v a l e n t : L o c a t i o n s 11 12 13 54 4.18 Maximum water e q u i v a l e n t : Okanagan Region 55 4.19 Maximum water e q u i v a l e n t : Kootenay Region 56 i x 4.20 Maximum water e q u i v a l e n t : L o c a t i o n s 31 32 33.... 56 4.21 Maximum water e q u i v a l e n t : L o c a t i o n s 41 42 *43 56 4.22 Maximum water e q u i v a l e n t : I n t e r i o r Region ( e x c l . Copeland) 57 4.23 Maximum water e q u i v a l e n t : L o c a t i o n s 11 12 13 21 22 23 31 32 33 41 42 43 57 4.24 Maximum water e q u i v a l e n t : L o c a t i o n s 11 12 13 21 22 23 31 32 33 41 42 43 51 52 53 57 4.25 Maximum water e q u i v a l e n t : Rocky Mt. (Wet) Region 58 4.26 Maximum water e q u i v a l e n t : Rocky Mt. Dry Region 58 4.27 Maximum water e q u i v a l e n t : Coast-Vancouver 59 4.28 Maximum water e q u i v a l e n t : A l l l o c a t i o n s 59 4.29 R e l a t i v e mean water e q u i v a l e n t : I n t e r i o r Region 62 4.30 R e l a t i v e mean water e q u i v a l e n t : L o c a t i o n s 11 12 13 62 4.31 R e l a t i v e mean water e q u i v a l e n t : L o c a t i o n s 21 22 23... 62 4.32 R e l a t i v e mean water e q u i v a l e n t : L o c a t i o n s 31 32 33 . 63 4.33 R e l a t i v e mean water e q u i v a l e n t : L o c a t i o n s 41 42 43 63 4.34 R e l a t i v e mean water e q u i v a l e n t : L o c a t i o n s 31 32 33 41 42 43 63 4.35 R e l a t i v e mean water e q u i v a l e n t : Rocky Mt. (Wet) Region 64 X F i g u r e T i t l e 4.36 R e l a t i v e mean w a t e r e q u i v a l e n t : R o c k y Mt. ( D r y ) R e g i o n 64 4.37 R e l a t i v e mean w a t e r e q u i v a l e n t : C o a s t - V a n c o u v e r R e g i o n 65 4.38 R e l a t i v e mean w a t e r e q u i v a l e n t : A l l l o c a t i o n s . . . . 65 4.39 R e l a t i v e maximum w a t e r e q u i v a l e n t : I n t e r i o r R e g i o n 66 4.40 R e l a t i v e maximum w a t e r e q u i v a l e n t : L o c a t i o n s 11 12 13.. .66 4.41 R e l a t i v e maximum w a t e r e q u i v a l e n t : L o c a t i o n s 21 22 23 66 4.42 R e l a t i v e maximum w a t e r e q u i v a l e n t : L o c a t i o n s 31 32 33 67 4.43 R e l a t i v e maximum w a t e r e q u i v a l e n t : L o c a t i o n s 41 42 43 67 .4.44 R e l a t i v e maximum w a t e r e q u i v a l e n t : L o c a t i o n s 31 32 33.41 42 4 3 . . . . . . . 67 4.45 R e l a t i v e maximum w a t e r e q u i v a l e n t : R o c k y Mt. (Wet) R e g i o n . . . 68 4.46 R e l a t i v e maximum w a t e r e q u i v a l e n t : R o c k y Mt. ( D r y ) 68 4.47 R e l a t i v e maximum w a t e r e q u i v a l e n t : C o a s t - V a n c o u v e r R e g i o n 69 4.48 R e l a t i v e maximum w a t e r e q u i v a l e n t : A l l l o c a t i o n s . . 69 4.49 R e l a t i o n o f A l t i t u d e a n d w a t e r e q u i v a l e n t s i n S o u t h e r n B r i t i s h C o l u m b i a 71 Ac knowledgements I would l i k e t o e x p r e s s my s i n c e r e a p p r e c i a t i o n and g r a t i t u d e t o Dr. S.O. R u s s e l l f o r h i s encouragement, guidance and c o n s t a n t a v a i l a b i l i t y f o r d i s c u s s i o n throughout the p r e p a r a t i o n of t h i s t h e s i s , and t o P e t e r Schaerer of the N a t i o n a l Research C o u n c i l , f o r h i s a d v i c e and a s s i s t a n c e i n making the ground snow l o a d d a t a a v a i l a b l e t o me. I am a l s o i n d e b t e d t o Dr. W. C a s e l t o n f o r r e a d i n g t h i s t h e s i s and f o r h i s v a l u a b l e and c o n s t r u c t i v e comments. I am g r a t e f u l t o P a u l Anhorn and the many o t h e r s who took the measurements used i n t h i s t h e s i s . I am a l s o g r a t e f u l t o the people I worked w i t h a t the Swiss F e d e r a l I n s t i t u t e f o r Snow and Avalanche Research f o r s h a r i n g t h e i r knowledge and ent h u s i a s m f o r the study of snow w i t h o u t which I might have never have s t a r t e d on t h i s work. Thanks a l s o go t o my p a r e n t s and my f r i e n d s , the C i v i l E n g i n e e r i n g graduate s t u d e n t s I worked w i t h , the m e d i c a l c l a s s of 84 and the people I have l i v e d w i t h , f o r t h e i r companionship and f o r t h e i r encouragement and u n d e r s t a n d i n g when I needed i t most. I am e s p e c i a l l y g r a t e f u l t o C h a r l e s S. Bungi f o r making sure t h a t I d i d not become l o s t i n my work. L a s t l y , s p e c i a l thanks go t o my l o v e s , Heather whose i n f l u e n c e has been perhaps deeper and more s i g n i f i c a n t than of any o t h e r s , and t o K a t i a f o r her ever p r e s e n t s m i l e . F i n a n c i a l support was p r o v i d e d by the N a t i o n a l Research C o u n c i l of Canada. 1 Chapter 1. I n t r o d u c t i o n and survey of other work 1.1 I n t r o d u c t i o n Ground snow loads in Canada are based on ob s e r v a t i o n s of snow depths on the ground taken at more than 200 s t a t i o n s across the country f o r p e r i o d s ranging from 10 to 18 years. Since most of the o b s e r v a t i o n s have been taken near populated areas, few records are a v a i l a b l e i n remoter p a r t s of the country, p a r t i c u l a r l y i n the mountain' regions of B r i t i s h Columbia. . Where measurements do e x i s t i n the mountain r e g i o n s , they are u s u a l l y at v a l l e y s t a t i o n s r e s u l t i n g i n l i t t l e i n f o r m a t i o n on how the snow load changes with e l e v a t i o n . In 1965 the N a t i o n a l Research C o u n c i l i n i t i a t e d a programme of measuring the annual snow water e q u i v a l e n t s at d i f f e r e n t e l e v a t i o n s f o r s e v e r a l mountains i n Southern B r i t i s h Columbia, (see F i g u r e 1.1) The goal of t h i s t h e s i s i s to use these measurements to examine and q u a n t i f y the r e l a t i o n s h i p between annual maximum water e q u i v a l e n t (ground snow load) with e l e v a t i o n i n Southern B. C. I t i s d e s i r e d to be able to p r e d i c t approximate v a l u e s of the maximum ground snow loads at a given e l e v a t i o n when few or no measurements are a v a i l a b l e at the s i t e concerned. S e v e r a l s t a t i s t i c a l parameters were c a l c u l a t e d at each o^rt / I Port'-. Figure 1.1 Map of Southern B r i t i s h Columbia showing measurment locations measurement s t a t i o n i n an attempt t o f i n d t r e n d s i n the v a l u e s of water e q u i v a l e n t s e i t h e r v e r t i c a l l y w i t h e l e v a t i o n or s p a t i a l l y by r e g i o n . Extreme v a l u e p r o b a b i l i t y d i s t r i b u t i o n s were used t o c a l c u l a t e the maximum d e s i g n snow l o a d s . In Canada thes e a re taken as those l o a d s which on the average are exceeded ev e r y t h i r t y y e a r s . Both the a b s o l u t e v a l u e of the water e q u i v a l e n t s and the r e l a t i v e d i f f e r e n c e s of water e q u i v a l e n t s w i t h e l e v a t i o n were i n v e s t i g a t e d i n some d e t a i l . S t a t i s t i c s f o r snow depth a re t a b u l a t e d , , but are o n l y d i s c u s s e d i n g e n e r a l terms. Snow d e n s i t y was b r i e f l y i n v e s t i g a t e d as t o i t s v a r i a t i o n w i t h e l e v a t i o n . 1.2 Survey Of Work Done On Snow Loads The d e t e r m i n a t i o n of roo f snow l o a d s i s g e n e r a l l y d i v i d e d i n t o two p a r t s . F i r s t the maximum ground snow l o a d i s de t e r m i n e d . T h i s i s dependent on the r e t u r n p e r i o d used, the e l e v a t i o n , and the c l i m a t i c r e g i o n ( I n t e r n a t i o n a l O r g a n i z a t i o n f o r S t a n d a r d i z a t i o n ( 1 9 7 4 ) i n [ 2 4 ] ) . Secondly the ground snow l o a d i s m u l t i p l i e d by v a r i o u s c o e f f i c i e n t s t o ta k e i n t o account d i f f e r e n t r o o f shapes, exposure and o t h e r l o a d i n g c o n d i t i o n s . 4 1.2.1 G r o u n d Snow L o a d s B e f o r e t h e 1951 e d i t i o n o f t h e N a t i o n a l B u i l d i n g Code snow, l o a d s were c a l c u l a t e d by u s i n g t h e a v e r a g e s n o w f a l l a n d average-r a i n f a l l i n t h e months J a n u a r y , F e b r u a r y and M a r c h . The maximum l o a d was l i m i t e d t o 40 l b / s q f t . (.1.9 k P a ) [ l 7 ] . S u b s e q u e n t l y Thomas ? 2 7 ? Took t h e maximum snow d e p t h s r e c o r d e d f o r a number o f s t a t i o n s a c r o s s Canada and c o n v e r t e d t h e s e t o snow l o a d s by a s s u m i n g a d e n s i t y f o r t h e snow o f 0.2 gm/cc. To t h i s he a d d e d t h e maximum d a i l y e x p e c t e d r a i n f a l l i n l a t e w i n t e r o r e a r l y s p r i n g a n d p l o t t e d t h e v a l u e s on a map o f C a n a d a . T h i s map was p u b l i s h e d i n t h e N a t i o n a l B u i l d i n g Code i n 1953. As more y e a r s o f d a t a became a v a i l a b l e Boyd u s e d a s t a t i s t i c a l a n a l y s i s o f t h e a n n u a l maximum d e p t h s o f snow. He f i t t e d t h e Gumbel e x t r e m e v a l u e d i s t r i b u t i o n t o t h e m e a s u r e d maximum a n n u a l snow d e p t h s a n d t h e maximum snow d e p t h f o r a 30 y e a r r e t u r n p e r i o d was t h e n c a l c u l a t e d . The maximum snow d e p t h s were c o n v e r t e d t o snow l o a d s by u s i n g a snow d e n s i t y o f 0.2 gm/cc. S i n c e maximum r o o f l o a d s o f t e n o c c u r when r a i n w a t e r i s r e t a i n e d i n t h e snow, t h e maximum one-day r a i n f a l l e x p e c t e d t o o c c u r d u r i n g t h e months o f maximum snow d e p t h was a d d e d t o t h e snow l o a d s . T h e s e v a l u e s were t h e n p l o t t e d t o p r o d u c e an u p d a t e d v e r s i o n o f t h e map done by Thomas. T h i s map became p a r t o f t h e 1960 N a t i o n a l B u i l d i n g Code. I n 1977 t h i s map was r e p l a c e d by a t a b l e o f g r o u n d l o a d s f o r d i f f e r e n t towns [ 1 9 ] . 5 1.2.2 Roof Loads B e f o r e 1960, no d i s t i n c t i o n was made between ground snow l o a d s and r o o f snow l o a d s . Design ro o f l o a d s were u s u a l l y s p e c i f i e d as a u n i f o r m l y d i s t r i b u t e d l o a d e q u a l t o the maximum snow l o a d w i t h r e d u c t i o n p e r m i t t e d o n l y f o r s l o p e d r o o f s and a few o t h e r c o n d i t i o n s [ 1 7 ] , However, roo f l o a d s can d i f f e r s i g n i f i c a n t l y from ground l o a d s and o n l y r a r e l y a r e u n i f o r m snow l o a d s on r o o f s o b s e r v e d . U s u a l l y the wind, i n f l u e n c e d by the shape of the roof and by a d j a c e n t s t r u c t u r e s , w i l l d i s t r i b u t e the snow i n a non-uniform p a t t e r n . O v e r - d e s i g n may occur where the wind r e g u l a r l y blows the snow away, and under d e s i g n may occur where the wind v e l o c i t y i s d e c r e a s e d , f o r example near penthouses, and the snow acc u m u l a t e s . In 1956 the D i v i s i o n of B u i l d i n g Research of the N a t i o n a l Research C o u n c i l s t a r t e d a study comparing ground l o a d s t o r o o f l o a d s f o r v a r i o u s t y p e s of r o o f s shapes, exposure, and c l i m a t i c c o n d i t i o n s . The r e s u l t s of the s t u d i e s [22] were i n c o r p o r a t e d i n t o the 1960 and 1965 r e v i s i o n s of the N a t i o n a l B u i l d i n g Code. T a y l o r [27] d i s c u s s e s the 1977 Commentary [20] on the 1975 N a t i o n a l B u i l d i n g Code. 6 1.2.3 V a r i a t i o n Of Ground Loads With E l e v a t i o n L i t t l e work has been done i n v e s t i g a t i n g the e f f e c t of e l e v a t i o n on ground snow l o a d s . U s u a l l y when measurements are taken i n mountainous r e g i o n s , t hey are taken i n v a l l e y bottoms where the c e n t e r s of p o p u l a t i o n a r e . Snow c o u r s e s a t h i g h e r e l e v a t i o n s done f o r h y d r o l o g i c a l s t u d i e s are g e n e r a l l y too f a r a p a r t t o be r e a d i l y compared w i t h each o t h e r i f one wants to c o n s i d e r the e f f e c t s of e l e v a t i o n . Meiman [16] has done a l i t e r a t u r e s u r v ey of snow a c c u m u l a t i o n r e l a t e d t o e l e v a t i o n , a s p e c t and f o r e s t canopy. A l t h o u g h e l e v a t i o n was g e n e r a l l y a major f a c t o r a f f e c t i n g snow a c c u m u l a t i o n , many workers had s u b s t a n t i a l l y improved t h e i r c o r r e l a t i o n s by i n c l u d i n g o t h e r l a n d s u r f a c e f a c t o r s . The s t u d i e s s urveyed showed t h a t a s p e c t was an i m p o r t a n t e f f e c t , but i t was c o n s i d e r a b l y l e s s than t h a t of e l e v a t i o n . Aspect d i d not have an e f f e c t on maximum snowpack under n a t u r a l f o r e s t c o n d i t i o n s where melt o p p o r t u n i t y i s m i n i m a l d u r i n g the a c c u m u l a t i o n p e r i o d , [ 1 6 ] however t h e r e were s t r o n g i n d i c a t i o n s t h a t a c c u m u l a t i o n , i r r e s p e c t i v e of melt i s r e l a t e d t o a s p e c t . I t was found t h a t f o r e s t canopy a f f e c t s a c c u m u l a t i o n p a t t e r n s i n terms of a few meters w h i l e e l e v a t i o n e f f e c t s o c c u r over 100's of m eters. The e f f e c t of f o r e s t canopy would most l i k e l y have v e r y l i t t l e e f f e c t on l o a d s of s t r u c t u r e s , but c o u l d change the v a l u e s of snow c o u r s e measurements. G e n e r a l l y Meiman found t h a t the " e f f e c t s of e l e v a t i o n , a s p e c t , and f o r e s t canopy on maximum snowpack water e q u i v a l e n t e x h i b i t tremendous v a r i a b i l i t y between and w i t h i n g i v e n 7 p h y s i o g r a p h i c - c l i m a t i c boundary c o n d i t i o n s . " Packer [21] a l s o i n v e s t i g a t e d the e f f e c t of e l e v a t i o n , a s p e c t , and c o v e r on the maximum snowpack water c o n t e n t i n a western w h i t e p i n e f o r e s t i n a watershed i n n o r t h e r n Idaho. He found t h a t the d i s t r i b u t i o n of maximum snow water, c o n t e n t can be d e s c r i b e d by an e q u a t i o n c o n t a i n i n g the f i r s t t h r e e power f u n c t i o n s of e l e v a t i o n , . . the f i r s t t h r e e power f u n c t i o n s of a s p e c t , a l i n e a r f u n c t i o n of f o r e s t canopy d e n s i t y , and a l i n e a r i n t e r a c t i o n between the magnitude of snow f a l l from year t o year and e l e v a t i o n . , H e n d r i c k et a l . [ 1 1 ] found t h a t s e a s o n a l p r e c i p i t a t i o n i n c r e a s e s l i n e a r l y w i t h e l e v a t i o n i n a study f o r a mountain i n Vermont. However a v e r y l a r g e v a r i a t i o n i n t h i s r a t e of i n d i v i d u a l e v e n t s makes p r e d i c t i o n f o r h i g h e r e l e v a t i o n s d i f f i c u l t . The r e s u l t s of Dingman et a l [6] i n a study on the v a r i a t i o n of snow p r o p e r t i e s w i t h e l e v a t i o n i n New Hampshire and Vermont showed a s t r o n g dependence of snow water e q u i v a l e n t s and depths on e l e v a t i o n . The dependence were due t o two e l e v a t i o n r e l a t e d c l i m a t i c f a c t o r s : 1) more p r e c i p i t a t i o n o c c u r s a h i g h e r e l e v a t i o n s , and 2) v e r t i c a l t e mperature g r a d i e n t s . Rhea and Grant [23] c o n s i d e r the t o t a l s n o w f a l l i n a mountainous a r e a t o be the r e s u l t a n t of o r o g r a p h i c l i f t i n g , l a r g e s c a l e v e r t i c a l m o t i o n , c o n v e c t i o n , and upstream b a r r i e r i n t e r c e p t i o n . I t was found t h a t the l o n g term average w i n t e r p r e c i p i t a t i o n was s t r o n g l y c o r r e l a t e d t o t o p o g r a p h i c s l o p e computed over the f i r s t 20km upwind of the s t a t i o n . The . 8 c o r r e l a t i o n was i n c r e a s e d by i n c l u d i n g an e x p o n e n t i a l f o r m u l a f o r the p a r t i a l d e p l e t i o n of downstream condensate due t o p r e c i p i t a t i o n . However, they a l s o found t h a t l o n g term average w i n t e r p r e c i p i t a t i o n was not w e l l c o r r e l a t e d t o s t a t i o n e l e v a t i o n except f o r p o i n t s on the same r i d g e . Snow cour s e l o c a l s e t t i n g appeared t o make a f a i r l y s y s t e m a t i c . d i f f e r e n c e i n observ e d water , e q u i v a l e n t v a l u e s r a n g i n g i n the mean between +5cm and -1Ocm. [23] However, few s t u d i e s have concerned themselves d i r e c t l y w i t h the e f f e c t s of e l e v a t i o n of the ground snow l o a d s as a p p l i e d t o roo f l o a d i n g s . R e s u l t s have t o be g e n e r a l enough f o r use over wide a r e a s and- u s e f u l f o r d e s i g n s p e c i f i c a t i o n such as p r o v i d e d i n codes. Zingg [29] d i s c u s s e s ground snow l o a d s i n S w i t z e r l a n d where the l o a d s a re g i v e n as a q u a d r a t i c f u n c t i o n of e l e v a t i o n . In B r i t i s h Columbia the o n l y s t u d i e s have been by Schaerer [2 . 6 ] . T h i s t h e s i s r e p r e s e n t s a c o n t i n u a t i o n of h i s work. 9 Chapter 2. C l i m a t e and measurements 2.1. Major C l i m a t i c Regions Of Southern B r i t i s h Columbia The c l i m a t e of Southern B r i t i s h Columbia v a r i e s c o n s i d e r a b l y as one t r a v e l s from west t o e a s t a c r o s s the p r o v i n c e . On a r e g i o n a l s c a l e , c l i m a t e s a s s o c i a t e d w i t h major r e g i o n s a r e det e r m i n e d by l a r g e s c a l e topography, wind systems and a i r masses. On a s m a l l e r s c a l e , c o n d i t i o n s a r e ve r y much m o d i f i e d by l o c a l p h y s i o g r a p h i c f a c t o r s such as s l o p e , a s p e c t and e l e v a t i o n . The p r o x i m i t y of the P a c i f i c Ocean p l a y s a major r o l e i n d e t e r m i n i n g the c l i m a t e of B r i t i s h Columbia. Mountain ranges t r e n d i n g n o r t h w e s t - s o u t h e a s t p r e s e n t a b a r r i e r t o m o i s t u r e r i c h w e s t e r l y p r e v a i l i n g winds and are a major f a c t o r i n d e t e r m i n i n g the " d i s t r i b u t i o n of p r e c i p i t a t i o n and the degree of dominance of P a c i f i c a i r masses i n r e l a t i o n t o c o n t i n e n t a l a i r masses". [25] The r i s i n g a i r on the western s i d e s of mountain ranges r e l e a s e s much p r e c i p i t a t i o n , whereas on the l e e s i d e , c o n d i t i o n s a r e much d r i e r . As the m a r i t i m e a i r moves e a s t , the a i r becomes p r o g r e s s i v e l y d r i e r i n l a n d . The r e l a t i o n between a l t i t u d e and p r e c i p i t a t i o n i s g i v e n i n F i g u r e 2.1. Maps of p r e c i p i t a t i o n , a pproximate s n o w f a l l and water e q u i v a l e n t s a r e g i v e n i n F i g u r e s 2 • 2 f 2•3 f 2*4* P r e c i p i t a t i o n (cm) c i-! fD pa S ft> o Co rt Hi H-H- O ro 3 a- O Hi Hi H o 0> a t—1 rt H* fD rt H C H a-fD H-3 Co 3 o a. 05 •a X) ri 3 fD 0) o a H-13 i 1 H--P- rt i. ..i &) v—' rt H-O 3 H> 3 CO o e rt sr fD l-i 3 w H H' ft H-CO =r n o r-1 e 3 cr H-Vane. I s . fflnts. Lower Fraser V a l l e y Cascade flits* Okanagan V a l l e y fflonashee Range S e l k i r k Trench S e l k i r k Pits. P u r c e l l Trench P u r c e l l Cits. Rocky flit. Trench Rocky flits. o o o E l e v a t i o n (meters) 01 20 40 60 (0 100 120 140 160 180 200 Kilomnm Figure 2.2 Annual p r e c i p i t a t i o n i n Southern B r i t i s h Columbia (inches) C i r c l e s indicate snow measurement locations (from Farley [9]) Figure 2.3 Mean annual snowfall i n Southern B r i t i s h Columbia (inches) C i r c l e s indicate snow measurement loca t i o n s . (from Farley [9]) Kilometres 20 0 20 40 60 100 120 140 160 ISO 200 Kilometre! Figure 2.4 Water equevalent on 1 A p r i l i n Southern B r i t i s h Columbia C i r c l e s indicate snow measurement loca t i o n s . (from Farley [9]) . 1 4 The m a j o r c l i m a t i c r e g i o n s o f S o u t h e r n B r i t i s h C o l u m b i a a r e a s f o l l o w s : [4 ] [13 3 2.1.1 C o a s t M o u n t a i n s The c l i m a t e o f t h e c o a s t m o u n t a i n s o f B r i t i s h C o l u m b i a i s c h a r a c t e r i z e d by i t s m i l d n e s s , h u m i d i t y and e x t r e m e l y h e a v y p r e c i p i t a t i o n e s p e c i a l l y i n t h e m o u n t a i n s . Snow f a l l i s g e n e r a l l y l i m i t e d t o h i g h e r e l e v a t i o n s a nd u s u a l l y i s q u i t e wet.. 2.1.2 S o u t h w e s t I n t e r i o r T h i s r e g i o n . o f c o n t i n e n t a l c l i m a t e i s b e t w e e n t h e C o a s t Range t o t h e w e s t and t h e C o l u m b i a M o u n t a i n s t o t h e e a s t . I t i s i n t h e r a i n - s h a d o w o f t h e C o a s t r a n g e r e s u l t i n g i n a r i d c h a r a c t e r i s t i c s . 2.1.3 S o u t h e a s t I n t e r i o r And S o u t h e r n R o c k i e s T h i s r e g i o n i s v e r y m o u n t a i n o u s , and a s s u c h h a s h i g h e r p r e c i p i t a t i o n t h a n t h e d r y i n t e r i o r , e s p e c i a l l y on t h e west f a c i n g s l o p e s , a l t h o u g h t h e v a l l e y s a r e s e m i a r i d . B e c a u s e o f h i g h e r e l e v a t i o n s , t e m p e r a t u r e s a r e l o w e r a n d a b o u t one h a l f o f t h e p r e c i p i t a t i o n f a l l s a s snow. 1 5 2.2 D e f i n i t i o n s To d i s t i n g u i s h between the mountains which were i n c l u d e d i n the study, the i n d i v i d u a l s t a t i o n s measured and the s i t e s where snow loads are r e q u i r e d some terms used in t h i s t h e s i s w i l l be d e f i n e d . A. l o c a t i o n . i s an. area ( u s u a l l y a s i n g l e mountain) comprising s e v e r a l s t a t i o n s each at a d i f f e r e n t e l e v a t i o n where the snow measurements which were used i n t h i s study were taken. A s t a t i o n i s one e l e v a t i o n on a mountain where the snow ob s e r v a t i o n s were taken. A r e g i o n i s a l a r g e r area comprising s e v e r a l l o c a t i o n s with s i m i l a r ground snow load c o n d i t i o n s . A s i t e i s a place where maximum snow loa d i n f o r m a t i o n i s r e q u i r e d . 2.3 S e l e c t i o n Of L o c a t i o n s L o c a t i o n s were s e l e c t e d on a number of mountains throughout Southern B r i t i s h Columbia, p r e f e r a b l y near c e n t e r s of p o p u l a t i o n where there i s a need f o r snow loa d information.[26] Of prime importance was a c c e s s i b l i t y i n the winter, e i t h e r by truck or snowmobile. Measurements at a few of the o r i g i n a l l o c a t i o n s were d i s c o n t i n u e d because of i n a c c e s s i b l i t y due to road c l o s u r e s or because the l o c a t i o n was not c o n s i d e r e d r e p r e s e n t a t i v e of the area. The l o c a t i o n s , the number of s t a t i o n s at each l o c a t i o n and the approximate number of years of o b s e r v a t i o n are given i n Table I. F i g u r e 1.1 shows the l o c a t i o n s where o b s e r v a t i o n s were made. . 1 6 Table I Snow Load Measurement L o c a t i o n s l o c a t ion P l o t l o c a t i o n number of approx number code symbol s t a t ions of years 1 1 R Revelstoke . 1 2 • 1 2 . • . 1 2 • F F i d e l i t y 1 0 •' 1 2 .13 :c Copeland 1 0 .4-6 2 1 A Apex 9 . 9 2 2 E Enderby 1 5 . 1 2 23 V S i l v e r s t a r - V e r n o n 1 2 1 1 - 1 2 31 P Creston 1 0 9 32 T Granite-Rossland 1 1 6-1 1 3 3 J Jersey-Salmo 8 1 1 41 Z Zincton 6 11 42 D Sandon 11 11 4 3 K Kaslo 7 , 8 • •• 51 . I F e r n i e 7 1 0 52 N North Star-Kimberley 8 1 2 5 3 L Lake Louise 8 1 2 61 G Grouse 1 0 5 - 1 1 62 S Seymour 1 0 8 - 1 1 63 W W h i s t l e r 0 . 0 64 . H Hollyburn .1 0 3 - 4 2.4 S e l e c t i o n Of S t a t i o n s Each l o c a t i o n (or mountain) has from s i x to f i f t e e n s t a t i o n s where measurements are taken. A t y p i c a l s t a t i o n would be a small c l e a r i n g of approximately two t r e e h e i g h t s i n width on the downslope s i d e of a mountain road. An attempt was made to f i n d s t a t i o n s with s i m i l a r aspect and v e g e t a t i o n and a l s o to be r e p r e s e n t a t i v e of the a r e a . Since maximum snow loads are of concern i n t h i s study, s t a t i o n s were s e l e c t e d to be as wind f r e e as p o s s i b l e to maximize the snow accumulation. A f t e r a few years as measurements became a v a i l a b l e , some of the s t a t i o n s were changed to improve t h e i r l o c a t i o n . 17 2.5 Measurement C o l l e c t i o n of data was s t a r t e d by the N a t i o n a l Research C o u n c i l i n 1968, with the number of l o c a t i o n s i n c r e a s i n g in subsequent y e a r s . Most of the measurements were taken by N.R.C. s t a f f . The data was provided to the author by the N a t i o n a l Research C o u n c i l , D i v i s i o n of B u i l d i n g Research i n Vancouver, B.C. 2.5.1 Method Snow depth and water e q u i v a l e n t s .were measured at each s t a t i o n . The water e q u i v a l e n t measurements were made with a F e d e r a l snow sampler with approximately three measurements made per station'. Although more measurements at each s t a t i o n would have been d e s i r a b l e , i t was f e l t that three c a r e f u l l y done measurements would be adequate and that a l a r g e number s t a t i o n s with a c c e p t a b l e accuracy were p r e f e r a b l e to a smaller number with a s l i g h t i n c r e a s e i n accuracy. The spread between measurements proved to be s m a l l . [26] Since only the annual maximum water e q u i v a l e n t s were of i n t e r e s t , measurements were taken at _ approximately two week i n t e r v a l s d u r i n g the p e r i o d when the maximum values were expected. Although the maximum snow depth may be missed because of snow settlement, water e q u i v a l e n t s g e n e r a l l y do not decrease much u n t i l s p r i n g m e l t i n g occurs and and the values measured c o u l d be expected to be c l o s e to the maximum v a l u e s . Only i n the Vancouver area, where temperatures are much warmer and 1 8 m e l t i n g b e g i n s i m m e d i a t e l y d i d the water e q u i v a l e n t measurements have t o be taken r i g h t a f t e r a s n o w f a l l . G e n e r a l l y maximum v a l u e s o c c u r r e d i n the v a l l e y s i n January or F e b r u a r y and but a t h i g h e r e l e v a t i o n s maximum v a l u e s a re r e c o r d e d l a t e r , g e n e r a l l y A p r i l or May. 2.5.2 A c c u r a c y And R e l i a b i l i t y Most of the measurements were done by N a t i o n a l Research C o u n c i l s t a f f w i t h the e x c e p t i o n of W h i s t l e r Mountain.where the s k i - l i f t company d i d them and the Vancouver Mountains where, f o r a few year s - s t u d e n t s d i d the measurements. Because the measurements were g e n e r a l l y done c a r e f u l l y and the s t a t i o n s w e l l chosen one can have a a h i g h degree of c o n f i d e n c e i n them. A few measurements done when weather c o n d i t i o n s were e x t r e m e l y poor were d e l e t e d i f the v a l u e s seemed u n u s u a l . U n f o r t u n a t e l y the a c c u r a c y of the v a l u e s o b t a i n e d a t W h i s t l e r Mountain was u n c e r t a i n and i t was d e c i d e d not use them i n the a n a l y s i s . 19 2.5.3 U n i t s Used Most of the snow measurements were r e c o r d e d i n B r i t i s h u n i t s and i t i s o n l y r e c e n t l y t h a t S . I . u n i t s a r e b e i n g used. For purposes of t h i s study a l l measurements were c o n v e r t e d t o t h e i r m e t r i c v a l u e s . Because of the i n t r i n s i c d e f i n i t i o n of water e q u i v a l e n t and because c o m p a r i s i o n can. more r e a d i l y be made t o snow d e p t h s , water e q u i v a l e n t s are e x p r e s s e d i n c e n t i m e t e r s , r a t h e r than k i l o p a s c a l s which would be more s u i t a b l e when c o n s i d e r i n g roof l o a d s . Table I I g i v e s c o n v e r s i o n f a c t o r s between v a r i o u s u n i t s . T a b l e I I C o n v e r s i o n F a c t o r s For Snow Measurements 1 cm water = 0.0981 kPa 1 cm water = 2.048 l b / s q . f t . 1 i n water = 2.540 cm water 1 i n water = 5.202 l b / s q . f t . . 1 i n water = 0.2491 kPa 1 kPa = 20.88 l b / s q . f t . 20 Chapter 3. A n a l y s i s and r e s u l t s a t the l o c a t i o n s 3.'1 C a l c u l a t i o n Of S t a t i s t i c s At Each S t a t i o n A t . e a c h s t a t i o n the mean, s t a n d a r d d e v i a t i o n , c o e f f i c i e n t of v a r i a t i o n , the minimum and the maximum v a l u e s f o r the annual maximum snow water e q u i v a l e n t s were c a l c u l a t e d . These s t a t i s t i c s a r e t a b u l a t e d i n Appendix I . The p l o t s showing an o v e rview f o r a l l the s t a t i o n s of the s t a n d a r d d e v i a t i o n and the c o e f f i c i e n t of v a r i a t i o n a r e g i v e n i n F i g u r e s 3.1 and 3.2 F i g u r e 4.14 g i v e s an overview f o r a l l s t a t i o n s of the mean water e q u i v a l e n t . P l o t s of the mean water e q u i v a l e n t s and of maximum water e q u i v a l e n t f o r each s t a t i o n are g i v e n l a t e r i n t h i s c h a p t e r . In t h e s e p l o t s the l o c a t i o n s f o r the d ata p l o t t e d i s i d e n t i f i e d by a l e t t e r symbol. The l e g e n d of the l e t t e r s used as p l o t symbols i s g i v e n i n T a b l e I . S t a t i s t i c s f o r the snowdepth and d e n s i t y of the snow at the time the maximum water e q u i v a l e n t s were measured a r e a l s o t a b u l a t e d (appendix I and I I ) but no a n a l y s i s was done on these' v a l u e s . (_> STD OF MEAN WATER EQUIV. £ ALL LOCATIONS o CO o o C D o in o o C O C M G 6 R P F R I 5 D F E V S R o i J Ey | EN o K G « tv" E fj, E V f f £ 1 E V E _ l I 1 L_ 1000 ELEVATION (METERS) 2000 Figure 3.1 Standard deviation of water equivalent A l l locations plotted. For legend see Table 22 COEF OF VARIATION OF HW ALL LOCATIONS O CM in o i o CO o t ID CE 1—1 o CU <° CE o U_ O £ LL_ O LU O ^ C O in o P zHf Gf l n s fl i E R § RL P TPNR N j D D fc L H E E C 1000 2000 ELEVRT10N (METERS) Figure 3.2 Co e f f i c i e n t of v a r i a t i o n of water equivalent A l l locations p l o t t e d . 23 3.2 C a l c u l a t i o n Of 30 Year Return P e r i o d Water E q u i v a l e n t s 3.2.1 C h o i c e Of Return P e r i o d In Canada a 30 year r e t u r n p e r i o d has been s e l e c t e d as the b a s i s f o r d e t e r m i n i n g d e s i g n snow l o a d s . T h i s p e r i o d was m a i n l y chosen s i n c e i t i s the same as the s t a n d a r d normal p e r i o d f o r c l i m a t o l o g i c a l r e c o r d s , but. i s o t h e r w i s e q u i t e a r b i t r a r y . [2] The I n t e r n a t i o n a l • O r g a n i z a t i o n f o r S t a n d a r d i z a t i o n (1974) (ISO) ( i n [24]) proposed a r e t u r n p e r i o d of 50 y e a r s . Salm s u g g e s t s t h a t more than one r e t u r n p e r i o d c o u l d be used. For example 5 y e a r s c o u l d be used f o r o r d i n a r y l o a d s and 50 y e a r s f o r e x t r a o r d i n a r y l o a d s , w i t h the 50 year r e t u r n p e r i o d l o a d s h a v i n g l a r g e r p e r m i s s i b l e s t r e s s e s . [24] L i k e w i s e one c o u l d s p e c i f y d i f f e r e n t r e t u r n p e r i o d s f o r d i f f e r e n t u ses. For example lower r e t u r n p e r i o d s c o u l d be used f o r farm b u i l d i n g s and h i g h e r r e t u r n p e r i o d s used f o r b u i l d i n g s o c c u p i e d by p e o p l e . In l i n e w i t h the N a t i o n a l B u i l d i n g Code r e q u i r e m e n t s a 30 year r e t u r n p e r i o d i s used i n t h i s t h e s i s f o r maximum snow l o a d s . 24 3.2.2 Choice'Of D i s t r i b u t i o n R a ther than debate the m e r i t s of the v a r i o u s types of extreme v a l u e d i s t r i b u t i o n s i t was d e c i d e d t o c a l c u l a t e the 30 year r e t u r n maximum snow water e q u i v a l e n t u s i n g s e v e r a l common d i s t r i b u t i o n s and then t o compare them f o r s i m i l a r i t y . The normal, cube r o o t normal, l o g - n o r m a l , and gumbel d i s t r i b u t i o n s were used. For the d i s t r i b u t i o n s based on the normal d i s t r i b u t i o n (eg. normal, cube r o o t normal, and log-normal) the S t u d e n t - t d i s t r i b u t i o n was used i n s t e a d of the normal t o t a k e i n t o account some of the s m a l l number of y e a r s of o b s e r v a t i o n . For these d i s t r i b u t i o n s the e q u a t i o n used t o c a l c u l a t e the maximum v a l u e s has the form: X = mean + ( K ) ( s t a n d a r d d e v i a t i o n ) (3.1) where: X i s the maximum ex p e c t e d v a l u e K i s a c o e f f i c i e n t dependent on the r e t u r n p e r i o d and on the sample s i z e (degree of freedom) For s m a l l sample s i z e s the S t u d e n t - t d i s t r i b u t i o n t a k e s i n t o account the i n c r e a s e d u n c e r t a i n t y by i n c r e a s i n g the v a l u e of "K" f o r the g i v e n r e t u r n p e r i o d . The importance of u s i n g the S t u d e n t - t d i s t r i b u t i o n i s e v i d e n t when one compares the v a l u e s of "K" f o r d i f f e r e n t sample s i z e s n w i t h the v a l u e of "K" g i v e n by the normal d i s t r i b u t i o n . T h i s i s seen i n T a b l e I I I . The v a l u e s of the 30 year r e t u r n maximum snow water e q u i v a l e n t s f o r the p r o b a b i l i t y d i s t r i b u t i o n s used a t the l o c a t i o n s measured are g i v e n i n Appendix I . E x a m i n a t i o n of Appendix I shows t h a t the maximum snow l o a d s o b t a i n e d from the d i f f e r e n t d i s t r i b u t i o n s a r e v e r y s i m i l a r . T a b l e I I I S t u d e n t - t V a l u e s Of K F o r 30 Y e a r R e t u r n 25 n d e g r e e s V a l u e n D e g r e e s V a l u e of f r e e d o m of K of Freedom o f K 2 3.67658 1 0 2.05749 3 2.82131 1 5 1 .97744 4 2.50140 20 1.93958 5 2.33653 . 25 1.91751 6 2.23650 30 1.90306 7 2.16949 40 1.88531 8 2.12152 50 1.87480 9 2.08511 n o r m a l d i s t . 1.834 G e n e r a l l y t h e s t u d e n t - t d i s t r i b u t i o n u s e d d i r e c t l y g i v e s l o w e r v a l u e s a n d t h e l o g n o r m a l .the h i g h e r v a l u e s i n p r e d i c t i n g t h e 30 y e a r maximum w a t e r e q u i v a l e n t s . When some o f t h e y e a r l y v a l u e s o f maximum w a t e r e q u i v a l e n t a p p r o a c h z e r o f o r some y e a r s , b u t ha v e h i g h e r v a l u e s f o r o t h e r y e a r s , s u c h a s f o r t h e l o w e r e l e v a t i o n s t a t i o n s i n t h e S o u t h C o a s t - V a n c o u v e r s t a t i o n s , t h e l o g - n o r m a l d i s t r i b u t i o n g i v e s r e s u l t s v e r y much h i g h e r t h a n t h o s e o f t h e o t h e r d i s t r i b u t i o n s . An e x a m p l e o f t h i s w o u l d be Mount Seymour S t a t i o n No. 5, where w a t e r e q u i v a l e n t s f o r 9 y e a r s o f r e c o r d r a n g e e i t h e r f r o m 1.8 cm t o 2.5 cm o r f r o m 28 cm t o 39 cm. The 30 y e a r maximum v a l u e s o f t h e n o r m a l , l o g n o r m a l , gumbel and cube r o o t d i s t r i b u t i o n s a r e r e s p e c t i v e l y 59 cm, 246 cm, 60 cm, 102 cm. C l e a r l y t h e l o g - n o r m a l v a l u e o f 246 cm i s a n o m a l o u s . The cube r o o t s t u d e n t - t d i s t r i b u t i o n u s u a l l y g i v e s l a r g e r v a l u e s t h a n t h e Gumbel, b u t t h i s i s t o e x p e c t e d s i n c e t h e c u b e r o o t s t u d e n t - t i n c l u d e s t h e i n c r e a s e d u n c e r t a i n t y due t o s m a l l s a m p l e s i z e . •Because t h e cube r o o t s t u d e n t - t i n c l u d e s t h e e f f e c t o f 26 s a m p l e s i z e , and b e c a u s e i t d o e s n o t e x h i b i t t h e e x t r e m e d e v i a t i o n s t h a t t h e l o g - n o r m a l s o m e t i m e s has (when c o m p a r e d t o o t h e r d i s t r i b u t i o n s ) , t h e c u b e r o o t s t u d e n t - t w i l l be t h e p r i m a r y d i s t r i b u t i o n u s e d i n t h e a n a l y s i s i n t h i s t h e s i s . 3.3 P l o t t i n g Of S t a t i s t i c s F o r E a c h L o c a t i o n S c a t t e r p l o t s were made o f e l e v a t i o n a g a i n s t t h e c o m puted s t a t i s t i c s ( e g . e l e v a t i o n v s . mean, e l e v a t i o n v s . s t a n d a r d d e v i a t i o n , e l e v a t i o n v s . c o e f f i c i e n t o f v a r i a t i o n , . e t c . )•. T hese showed s i g n i f i c a n t c o r r e l a t i o n w i t h e l e v a t i o n . L e a s t s q u a r e s r e g r e s s i o n was t h e n u s e d t o q u a n t i f y t h e r e l a t i o n s h i p o f t h e c o m p u t e d s t a t i s t i c s w i t h e l e v a t i o n and p r o v i d e a n u m e r i c a l v a l u e f o r t h e d e g r e e o f f i t ( r 2 ) . 3.3.1 C h o i c e Of C u r v e To Be F i t t e d The c h o i c e o f t h e c u r v e t o f i t t h e c o m p u t e d s t a t i s t i c a l v a l u e s w i t h e l e v a t i o n may n o t be d i r e c t l y r e p r e s e n t a t i v e o f one p h y s i c a l c a u s e , b u t t o be an e m p i r i c a l r e l a t i o n s h i p . A l i n e a r r e l a t i o n s h i p b e t w e e n g r o u n d snow l o a d s and e l e v a t i o n h a s been f o u n d by G o l d i n g ( i n [ 2 6 ] ) f o r t h e e a s t e r n R o c k y M o u n t a i n s of A l b e r t a a n d by G a r s t k a ( i n [ 2 6 ] ) i n Wyoming. Brown [ 3 ] f o u n d a l i n e a r r e l a t i o n s h i p i n N e v a d a , b u t m e n t i o n e d t h e p o s s i b i l i t y o f t h e c u r v e f l a t t e n i n g o u t a t h i g h e r e l e v a t i o n s . I n S w i t z e r l a n d , a q u a d r a t i c r e l a t i o n s h i p w i t h e l e v a t i o n i s u s e d t o s p e c i f y d e s i g n snow l o a d s on b u i l d i n g s [ 1 5 ] , [ 2 9 ] , F o r 27 B r i t i s h Columbia, Schaerer [26] suggests a q u a d r a t i c r e l a t i o n s h i p , changing to a l i n e a r one i n the dry c o l d r e g i o n s . In t h i s study l i n e a r and q u a d r a t i c r e l a t i o n s h i p s were used to f i t curves to the data. In most cases a q u a d r a t i c curve provided a ' much improved f i t over a l i n e a r curve. In a few l o c a t i o n s however a l i n e a r r e l a t i o n s h i p c o u l d have e q u a l l y w e l l a p p l i e d . For some areas, such as those with wetter c l i m a t e s (eg. Vancouver) an ex p o n e n t i a l curve might f i t b e t t e r . For s i m p l i f i c a t i o n i n p r e s e n t a t i o n only the q u a d r a t i c r e l a t i o n s h i p w i l l be shown on the p l o t s . The p l o t s of the mean water e q u i v a l e n t s f i t t e d by a qu a d r a t i c curve are given i n F i g u r e s 3.3 - 3.20 and p l o t s of the 30 year r e t u r n maximum water e q u i v a l e n t s are given i n F i g u r e s 3 . 2 1 - 3 . 3 8 . 3.3.2 D i f f i c u l t i e s With Constant Variance For The Regression A l e a s t squares second order r e g r e s s i o n has the form: Y = a + bX +cX 2 + e (3.2) where: Y i s the dependent v a r i a b l e (eg. mean water e q u i v a l e n t ) X i s the independent v a r i a b l e (eg. e l e v a t i o n ) a,b,c are parameters e i s the r e s i d u a l or d e v i a t i o n from the model The c o e f f i c i a n t s a,"b,c are chosen to. minimize the sums of the squares of the r e s i d u a l s . T h i s means that one i s assuming that the v a r i a n c e s of the dependent v a r i a b l e (Y) are a l l equal, which i s not always the case when c o n s i d e r i n g snow loads at d i f f e r e n t e l e v a t i o n s . The reason i s that 1) the v a r i a n c e of the mean 40. WRTER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 00 c fD < 33 m 70 CO 32.0 n m n s z n o in o Z D Z r\) i o o i S r — o . • • 5 • • Ol£) ' UIDOID (OAOU1 H o i o _ ( O - J ? CDU) * ro — KPH ?»3 Si OQ C i-i ro 40. <r-4.0 WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 8.0 12.0 16.0 20.0 24.0 28.0 33 i — . c O f JO 32.0 O C D O ^ O Z O O to o z o z UIOODOD. -OOIO — o t / i t o o — cn OCD tnro KPR CjO m * -< It. t*3 JO 0£ 40. WRTER EQUIVALENT - SNOW LOAD 60. 120. 160. 200. 240. 260. 320. 360. CM 4.0 6.0 12.0 16.0 20.0 24.0 28.0 32.0 n o n s z n o (/> o z o z I OOOOr . o O CD CJOOGD r o c r j o o o o o r — U) I — U) > c n L n * KPfl Si t*l JO — I •-3 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 o o n a z n o tn o z o z I I I • I Oi I O O C D . o o - • • E - • o c o * c n o o c n o o o -CDA i cn-o > c n o > c o m KPfl r o Co m * to ^ *J - i *s • <5 to to o o *•* t/> c: to 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 6.0 12.0 16.0 20.0 24.0 28.0 32.0 • • • • i cn i o o — r wo- • cni • • oco- > moo>j -JCOOCD H •JO O-J J — J i * ~ J C d KPA ro Co ro 5 m ^ ! t»3 ; *s «5 to n c; ta t*j to o o to c: to 40. WATER EQUIVALENT - SNOW LOAD 80 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 n o n x z n o cn o z o z - J I O O — c n o - • r o t • • oco- * - J — o - o . D O I O N J H ro — N O £ U)Ln J oio > ~jcn CO KPfl ro Co CO Q < 2 I S <5 to I 40. 4.0 WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 8.0 12.0 16.0 20.0 24.0 28.0 32.0 O0DO3JZO 0 in o z o z in in —i —i 1 • • a I + N O - • • S . • O C D I D — O O I + S= 3 IDU> C COU) U l ID U l KPfi Co *-* o £S " to o ^ z "S c: to <"} to to o o •s t/J -9. fa 40. WATER EQUIVALENT - SNOW LOAD 60. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 I I i n I O) I 0 0 ~ _ U I O • — ™ • • O l O -O O O I D . oiroors) ^ L O O o o i IOC0 — rs) a>~j oi r i KRfl rvj cu O to to •s <5 to to to o o CO to 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 OODOXZO o in o Z o z I O I o -— . O - • O l O - CD I D l t f O r o • U I O U I O A — O l i o o>.& U ) C 1 ID KPfl A. XI Co o to t*J c: to o to to o o -3 t<5 •~3 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 n o n x z n O Cn o z o z cn cn c o c n c n c o O L D o c o o r s j KPfl J 0 D ^ Co o to to <3 to to o o *-3 t» -3 c; to 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 n n n i z n o cn o z o z I I I H I CD I O O O D . — O • • ^  O CO c n o o c o o c o o i \ j c n o r U)C0 ;, c n i M < c o c o cn KPfl cn ro 3 •0 m Co o to to *-3 c: to 5; n c; to hj to o o •-3 to -3 to 40. WATER EQUIVALENT - SNOW LOAD I. 120. 160 . 200 . 240 . 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 O C D O J O Z O o cn o Z D Z ro i o o f f l . c o o - • - 5 cn- o c o • r o o - j C D A O ^ J - j c n o . cocn * r j r o cn KPfl cn co m to r- * i O -3 £ c : cn to m ^ & to © o •-3 CO WATER EQUIVALENT - SNOW LOAD 120. 180. 240. 300. 360. 420. 480. 540. CM 42.0 48.0 o c D o a o z o o w o z o z i n i n I O O D - j , r o - • -- j — O l D -• A O U I . c o f f i o L n ^ o r o r o 0 c o c o c o c n WATER EQUIVALENT - SNOW LOAD 120. 180. 240. 300. 360. 420. 480. KPH o Go — o 33 to O to * rs c; to to o o to -a c; 540. CM WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 O 0 D O 3 3 Z O O CO o Z O Z CO CO —I —t • 0 1 1 1 + U> 1 OOU) UIO- • -CD - • O LD CD —OO u j c n o o ) CD £L OlNJ o u> cn X 0)CD — lN)CO KPH co C o -k o r~ 'Z. ^  *> c z t o ss to o o to 40 a n n u a l maximum w a t e r e q u i v a l e n t i n c r e a s e s w i t h i n c r e a s i n g e l e v a t i o n a n d 2) n o t a l l t h e v a l u e s o f t h e d e p e n d e n t v a r i a b l e h a v e t h e same r e l i a b i l i t y . 3.3.3 C h a n g e s I n V a r i a n c e W i t h E l e v a t i o n G e n e r a l l y i n t h e c a s e o f snow l o a d s , t h e v a r i a n c e o f t h e mean maximum a n n u a l w a t e r e q u i v a l e n t i n c r e a s e s w i t h i n c r e a s i n g e l e v a t i o n . T h i s t r e n d i s shown i n F i g u r e 3.1 w h i c h p l o t s t h e s t a n d a r d d e v i a t i o n s a g a i n s t e l e v a t i o n f o r a l l s t a t i o n s o b s e r v e d . T h i s means t h a t t h e d i f f e r e n c e b e t w e e n t h e maximum a n n u a l maximum w a t e r e q u i v a l e n t ( f o r a g i v e n r e t u r n p e r i o d ) a n d t h e mean a n n u a l maximum w a t e r e q u i v a l e n t s becomes p r o g r e s s i v e l y l a r g e r w i t h i n c r e a s i n g e l e v a t i o n . F i g u r e 3.39 i l l u s t r a t e s t h i s p o i n t . T h e s e c h a n g e s i n t h e v a r i a n c e v i o l a t e t h e a s s u m p t i o n i n a l e a s t s q u a r e s r e g r e s s i o n a n a l y s i s t h a t t h e v a r i a n c e i s c o n s t a n t . F o r t u n a t e l y t h o u g h , t h e e f f e c t o f t h e c h a n g i n g v a r i a n c e on t h e c u r v e a p p r o x i m a t e d by t h e r e g r e s s i o n i s s m a l l . H o w e v e r , t h i s c h a n g i n g v a r i a n c e w i t h e l e v a t i o n , a n d t h e p r o b l e m s i n d e t e r m i n i n g i t s v a l u e a t d i f f e r e n t e l e v a t i o n s p r e v e n t e d t h e u s e o f t h e i n d i v i d u a l w a t e r e q u i v a l e n t m e a s u r e m e n t s i n t h e r e g r e s s i o n d i r e c t l y a n d n e c e s s i t a t e d t h e c a l c u l a t i o n o f a mean w a t e r e q u i v a l e n t a t e a c h s t a t i o n w h i c h was t h e n u s e d i n t h e r e g r e s s i o n . The f o r m e r m e t h o d w o u l d h a v e b e e n much p r e f e r a b l e s i n c e i s o l a t e d m e a s u r e m e n t s o f o n l y one o r t w o y e a r s m e a s u r e m e n t s c o u l d t h e n be i n c l u d e d . 41 Figure 3.39 I l l u s t r a t i o n variance for of the e f f e c t of the regression. assuming constant 42 •3.3.4 W e i g h t i n g Of R e g r e s s i o n Curve As can be seen i n Appendix I , the means, 30 year water e q u i v a l e n t s , e t c . a t d i f f e r e n t s t a t i o n s are c a l c u l a t e d from v a r y i n g y e a r s of o b s e r v a t i o n . I t would t h e r e f o r e p r o b a b l y be d e s i r a b l e t o weight these v a l u e s by the number of y e a r s of o b s e r v a t i o n s or i n v e r s e l y w i t h the s t a n d a r d d e v i a t i o n t o i n c l u d e the e f f e c t of i n c r e a s e d r e l i a b i l i t y w i t h l a r g e r sample s i z e s . However, because of the h i g h degree of f i t of the c u r v e s to the d a t a i t d i d not seem n e c e s s a r y t o do w e i g h t i n g . F u r t h e r m o r e , i f w e i g h t i n g by the number of y e a r s of o b s e r v a t i o n , i t was f e l t t h a t a group of d a t a v a l u e s w i t h a l a r g e p e r i o d of o b s e r v a t i o n s (eg. a t lower e l e v a t i o n s ) would have an undue i n f l u e n c e on the shape of the cu r v e a t data v a l u e s w i t h a s m a l l e r o b s e r v a t i o n p e r i o d (eg. h i g h e r e l e v a t i o n s ) . I f w e i g h t i n g by u s i n g the i n v e r s e of the s t a n d a r d d e v i a t i o n , the changes of v a r i a n c e w i t h e l e v a t i o n would be m i s t a k e n l y i n c l u d e d as changes i n the r e l i a b i l i t y . 43 3.4 D e n s i t y A t Time Of Maximun W a t e r E q u i v a l e n t The mean d e n s i t y o f snow a t V t h e t i m e o f maximum w a t e r e q u i v a l e n t was d e t e r m i n e d by d i v i d i n g t h e a n n u a l maximum w a t e r e q u i v a l e n t s by t h e snow d e p t h a t t h e t i m e o f o b s e r v a t i o n . The minimum, maximum, mean, and s t a n d a r d d e v i a t i o n o f t h e snow d e n s i t i e s a r e g i v e n i n A p p e n d i x I I . The mean d e n s i t y o f t h e snow a t t h e t i m e o f maximum w a t e r e q u i v a l e n t i s n o t n e c e s s a r i l y t h e same a s t h e snow d e n s i t y a t t h e t i m e o f maximum snow d e p t h s i n c e t h e m e a s u r e m e n t s o f t e n h a v e been t a k e n a few d a y s a f t e r t h e l a s t snow f a l l . The w a t e r c o n t e n t r e m a i n s c o n s t a n t and t h e r e f o r e t h e d e n s i t i e s d e t e r m i n e d may be s l i g h t l y h i g h e r . The v a r i a t i o n o f t h e mean d e n s i t y c a n be e x p e c t e d t o be l e s s f o r l a r g e r snow d e p t h s b e c a u s e o l d e r snow s e t t l e s a t a c o n s i d e r a b l y s l o w e r r a t e t h a n new snow. R e f e r i n g t o A p p e n d i x I I one c a n see c o n s i d e r a b l e v a r i a t i o n i n t h e mean d e n s i t y . Some o f t h e v a r i a t i o n w i l l be due t o t h e t i m e o f measurement a s e x p l a i n e d a b o v e , however some v a r i a t i o n w i l l be due t o d i f f e r e n c e s i n t h e snow c o n d i t i o n s o f t h e r e g i o n s . S p a t i a l l y , t h e v a l u e o f t h e mean snow d e n s i t i e s a p p e a r s t o h a v e s i m i l a r v a l u e s f o r d i f f e r e n t r e g i o n s . The a p p r o x i m a t e r a n g e s a nd means f o r t h e snow d e n s i t i e s a r e g i v e n i n T a b l e I V . I t i s p a r t i c u l a r l y e v i d e n t t h a t t h e snow d e n s i t i e s n e a r t h e c o a s t have v e r y l a r g e v a r i a b i l i t y , l i k e l y due t o t h e wet c l i m a t e a n d t h e l a r g e v a r i a b i l i t y i n snow f a l l f r o m y e a r t o y e a r . T h e r e d o e s n o t a p p e a r t o be much c o r r e l a t i o n o f snow d e n s i t y a t maximum w a t e r e q u i v a l e n t w i t h e l e v a t i o n , e x c e p t f o r T a b l e I V Snow D e n s i t i e s A t Maximum Water E a u i v a l e n t 44 R e g i o n min imum maximum a v e r a g e (gm/cc) (gm/cc) (gm/cc) R o g e r s P a s s .25 , .51 .41 Okanagan . 15 .41 .31 K o o t e n a y -.19 .55 .34 F e r n i e .20 .50 .38 K i m b e r l e y . 1 7 • .40 .29 L a k e L o u i s e .19 .62 .29 C o a s t - V a n c o u v e r .05? * .84? * . 36 may be a n o m a l o u s v a l u e s t h e V a n c o u v e r l o c a t i o n s . T h i s however i s a p o s s i b l e i n d i c a t i o n t h a t t h e mean d e n s i t y o f t h e snow c o v e r i s c o r r e l a t e d w i t h snow d e p t h . T h i s seems r e a s o n a b l e s i n c e a snow c o v e r w i t h a g r e a t e r d e p t h w i l l be composed o f a l a r g e r f r a c t i o n o f d e n s e o l d e r snow. 45 C h a p t e r 4. R e g i o n s w i t h s i m i l a r g r o u n d l o a d c h a r a c t e r i s t i c s E x a m i n a t i o n . o f p l o t s o f mean a n n u a l maximum w a t e r e q u i v a l e n t s , 30. y e a r maximum w a t e r e q u i v a l e n t s , s t a n d a r d d e v i a t i o n s , e t c , a g a i n s t e l e v a t i o n showed t h a t s e v e r a l l o c a t i o n s have s i g n i f i c a n t s i m i l a r i t i e s . I t was d e s i r a b l e t o g r o u p l o c a t i o n s w i t h s i m i l a r g r o u n d s n o w l o a d c h a r a c t e r i s t i c s t o g e t h e r so t h a t r e g i o n s o f B r i t i s h C o l u m b i a w i t h s i m i l a r c h a r a c t e r i s t i c s c o u l d be d e f i n e d . P r i m a r i l y what was w a n t e d were r e g i o n s w i t h s i m i l a r 30 y e a r maximum w a t e r e q u i v a l e n t and methods t o c a l c u l a t e t h e 30 y e a r maximums a t d i f f e r e n t e l e v a t i o n s . 4.1 P a r a m e t e r s U s e d To D e t e r m i n e S i m i l a r i t y Of L o c a t i o n s The s t a t i s t i c a l p a r a m e t e r s c a l c u l a t e d a t e a c h s t a t i o n ( s e e A p p e n d i x I ) were p l o t t e d a g a i n s t e l e v a t i o n . The p r i n c i p a l p a r a m e t e r s p l o t t e d w e r e : a ) m e a n s , b ) s t a n d a r d d e v i a t i o n s , c ) 3 0 y e a r maximum w a t e r e q u i v a l e n t s a n d d ) c o e f f i c i e n t o f v a r i a t i o n . I t was h o p e d t o d e t e r m i n e f o r a r e g i o n a c u r v e o f mean a n n u a l maximum w a t e r e q u i v a l e n t s a g a i n s t e l e v a t i o n a n d o f t h e s t a n d a r d d e v i a t i o n o f t h e mean a n n u a l maximum w a t e r e q u i v a l e n t s a g a i n s t e l e v a t i o n . From t h e s e two p l o t s i t w o u l d be t h e n p o s s i b l e t o d e t e r m i n e t h e maximum w a t e r e q u i v a l e n t a t any e l e v a t i o n f o r any r e t u r n p e r i o d . 46 L e a s t squares r e g r e s s i o n c u r v e s f o r the mean annual maximum water . e q u i v a l e n t f i t t e d the combined.data from s e v e r a l l o c a t i o n s v e r y w e l l and r 2 v a l u e s above .95 were not uncommon. U s i n g v i s u a l i n s p e c t i o n and r 2 v a l u e s groups of l o c a t i o n s w i t h s i m i l a r mean annual maximum water e q u i v a l e n t c o u l d be d e f i n e d . However i t was harder t o observe t r e n d s d e f i n i n g groups of l o c a t i o n s w i t h s i m i l a r s t a n d a r d d e v i a t i o n s . When p l o t t i n g the s t a n d a r d d e v i a t i o n f o r the same l o c a t i o n s which had s i m i l a r mean annual maximum water e q u i v a l e n t , t h e r e was c o n s i d e r a b l y more s c a t t e r than t h e r e was f o r the means. Some i n d i c a t i o n of the amount of s c a t t e r o b t a i n e d w i t h p l o t s of the s t a n d a r d d e v i a t i o n and.of the c o e f f i c i e n t of v a r i t a t i o n can be seen b y r e f e r i n g t o F i g u r e 3.1 and F i g u r e 3.2. I t was a l s o attempted t o f i n d t r e n d s among the o t h e r s t a t i s t i c a l parameters as t a b u l a t e d i n Appendix I , but t h i s proved t o be unmanagable. P l o t s u s i n g the 30 year maximum water e q u i v a l e n t d a t a combined from s e v e r a l l o c a t i o n s d i d show an e x c e l l e n t f i t t o a r e g r e s s i o n c u r v e . T h i s was m a i n l y because of the h i g h degree of f i t of a c u r v e t o the mean annual maximum water e q u i v a l e n t t b which a s m a l l e r number i s added (K * s t a n d a r d d e v i a t i o n ) t o o b t a i n the 30 year v a l u e . S i n c e the 30 year maximum water e q u i v a l e n t s a r e the p r i n c i p a l v a l u e s of i n t e r e s t f o r d e s i g n , and because they e x h i b i t smooth c u r v e s , l o c a t i o n s were grouped i n t o r e g i o n s by s i m i l a r i t y of the mean an n u a l maximum water e q u i v a l e n t and of the 30 year maximum water e q u i v a l e n t . 47 4:. 2 Regions With S i m i l a r Ground Snow Loads The l o c a t i o n s were grouped i n t o l a r g e r r e g i o n s on the b a s i s of s i m i l a r i t y of the mean annual maximum water e q u i v a l e n t p l o t s and 30 year maximum water e q u i v a l e n t p l o t s , and a l s o on the b a s i s of p r e c i p i t a t i o n , snow depth and water e q u i v a l e n t maps of Southern B r i t i s h Columbia ( F i g u r e s 2.2 - 2 . 4 ) . The. bo u n d a r i e s of the r e g i o n s . w i t h s i m i l a r ground snow l o a d i s u n c e r t a i n s i n c e the network of measurement l o c a t i o n s was not s u f f i c i e n t l y dense. These r e g i o n s , a l o n g w i t h o t h e r groups of l o c a t i o n s which have s i m i l a r water e q u i v a l e n t v a l u e s , a re l i s t e d i n i n Table V and t h e i r c u r v e s - a r e p l o t t e d i n F i g u r e s 4.1 - 4.28. F i g u r e 4.28, a p l o t of a l l the means of a l l the water e q u i v a l e n t s measured i s shown f o r r e f e r e n c e o n l y , and the r e g r e s s i o n c u r v e i s not meant to s i g n i f y some r e l a t i o n s h i p . T a b l e V Regions With S i m i l a r Ground Snow Loads Region Name L o c a t i o n s Rogers Pass Mt. Copeland Okanagan Kootenay Kootenay s o u t h * Kootenay n o r t h * I n t e r i o r ( n o t i n c l . 13) Wet Rocky M t . ( F e r n i e ) Dry Rocky Mt. Coast Mnt. - Vancouver 11,12 13 21 ,22,23 31,32,33,41,42,43 31 ,32,33 41,42,43 11,12,21 ,22,23,31,32,33,41,42,43 51 52,53 61 ,62,64 S u b - r e g i o n s WATER EQUIVALENT - SNOW LOAD MEAN WATER EQUIVALENT R E G I O N : OKflNflGAN LOCATIONS; 21 22 23 CXX CONST N o RSO r\j C en g CONST BX 35. 0.956 0.00006334 -0.09187090 42.17 Q r C E O g ? 1 CO § 1 CM > a ° 1000 ELEVATION (METERS) Figure 4.4 C i-t ro 40. <r-4.0 WRTER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 6.0 < XI m 70 320. 360. CM 12.0 16.0 20.0 24.0 28.0 32.0 o w z o KPH :o r— zo'>-g a m ? * ? 2 S + — z * • . . . . a,o 0 ) 0 0 ( 0 - * - J O O A A N O -—I o i c c n COIS) c o o ro ^ sT o £ ui O r? ui — i 03 5 5 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20 .0 24.0 28.0 32.0 0 in z D ; cn c —i 1 i i i i -jo- • — i, C D O O C D -C D A O O P O O -o ^ \ cocn \ — cn KPfl : o r- -xt >• g o m ^ z n CD t«3 ro — s» ro —( ^  m t*l ro ro •© co — d co x co ro WATER EQUIVALENT - SNOW LOAD 40. 80. 120. 160. 200. 240. 280. 320. r-— x> z J> o ro — 4> co 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 n o n s z n 0 cn o z o z cn cn 1 > • • I + (V> I o o —_ o o - roS • • o u i o x — OOCD- i CD — oro * coco 2 CDO) C (OCO KPA" co r o 5 0 " t»3 ro ro C: ro cro 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 n t o n x z n KPfl • t i l l I O I o — — O .fc 0 ) 0 coco • 0 ) 0 A -— — ocn CD cno — o o o O)C0 IS) — cn ro ro co co x cn ro c/i ro ro ro cn ro co co 2 -3 <*) to t*l o c: s «*] '•3 WATER EQUIVALENT - SNOW LOAD 40. 60. 120. 160. 200. 240. 280. 320. 360. CM — t s 1, u, H H H 1 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 KPfi 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 6.0 12.0 16.0 20.0 24.0 28.0 H ' 00 c r{ fD m < D — < -•—. OL m 70 to 32.0 n o n x z n o to o Z D — KPfl • • • i t — • • • CO 5 NOOPO OO o o » GDU> ' CD-^I > JM7> <2 i ; ~ JO 5 Q CE o ._) o CO 6 W f l RETURN CUBE ROOT STUD T | REGION: OKANAGAN * LOCATIONS: 21 22 23 CONST + BX + CXX N - 3 5 . o RSO - 0.966 csi C - 0.00008783 <"•> B - -0.12716746 CONST- 66.12 C E ° > £ a U J r— <x 1000 ELEVATION (METERS) 2000 Figure 4.18 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 nunizn O CO o z o KPfl 30 m CD cn \: ZS q>j_oo — m _ S l O O C n -JO cncc CO — CO^J 4 ^ ro ro ro co ro co Co O to t*j C: to ^ c: to to o to to 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 40. WATER EQUIVALENT - SNOW LOAD 80. 120. 160. 200. 240. 280. 32.0 nonizn O CO o z o z • • • H I c n t o o — r C O O IMS, • • o c n o ? c o o o c o r o o -c o c o ? o o 5 c o c o c o 320. KPfl ~ to ro ro ^ ro ^ ro c; co to co Si ~ o co O ro *S co co co ^  4> c; - to ro x> CO 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 r, " « 28.0 32.0 nmnazn O CO o Z D Z c n i 9 • o o c o c o * * c n - j o — . c o c n o o * r o o £ r o o i c n ro ro 4> — co co cn ro KPfl £ t ° R ° - 2 & zz *° " I to to <5 to cn ro ^  ro ro c; cn ro to co co to co S, ~ O co O ro *"i co co co ^  30YR RETURN CUBE ROOT STUD T £ REGION: ROCKr MT. WET g -j * LOCATIONS: 51 FERN IE m CONST + BX + CXX N - 7 . o RSO = 0.992 0 .' rJ C - 0.00061140 CM <n B = -1 .46343898 " CONST- 961.35 . 9 t 5 0 1000 2000 ELEVATION (METERS) Figure 4.25 3017? RETURN CUBE ROOT STUD T REGION: ROCKY MT. DRY LOCATIONS: 52 53 CXX CONST + BX N - 16. o RSO = 0.500 tsi C - 0.00001372 «"> B - -0.01921973 CONST- 46.38 a cr o z CO I r — Z UJ 3 a UJ or -UJ cr 9 1000 ELEVATION (METERS) 2000 Figure 4.26 00 6g 60 4.3 S i m i l a r i t i e s In The R e l a t i v e I n c r e a s e Of Ground Snow Loads R e f e r i n g t o p l o t s of the mean annual maximum water e q u i v a l e n t and 30 year maximum water e q u i v a l e n t of a l l the l o c a t i o n s observed ( F i g u r e s 3.3 - 3.38) i t can be seen t h a t c u r v e s p l o t t e d f o r many l o c a t i o n s seem to e x h i b i t s i m i l a r i n c r e a s e s of water e q u i v a l e n t w i t h e l e v a t i o n or s i m i l a r " c u r v a t u r e " , but the o r i g i n may v a r y . By knowing the r e l a t i v e i n c r e a s e ( d i f f e r e n c e ) of water e q u i v a l e n t from one e l e v a t i o n t o another i t w i l l be p o s s i b l e t o e x t r a p o l a t e water e q u i v a l e n t s from one e l e v a t i o n where v a l u e s a r e known t o another where they are n o t . 4.3.1 Method A l e a s t squares r e g r e s s i o n was done where the " c o n s t a n t " term of the q u a d r a t i c e q u a t i o n , used to model the r e l a t i o n s h i p between water e q u i v a l e n t and e l e v a t i o n , v a r i e d between l o c a t i o n s . The model used had the form: Y = bX + c X 2 + a ( l ) Z d ) + a ( 2 ) Z ( 2 ) + ... (4.1) where Y i s the dependent v a r i a b l e ( w a t e r e q u i v a l e n t e t c . ) X i s the e l e v a t i o n b,c a re parameters Z(s) i s a dummy v a r i a b l e , = 1 f o r l o c a t i o n (s) = 0 o t h e r w i s e a ( s ) i s the c o n s t a n t term f o r l o c a t i o n (s) 61 4.3.2 R e s u l t s As b e f o r e , when c o n s i d e r i n g t h e a c t u a l v a l u e o f w a t e r e q u i v a l e n t s , l o c a t i o n s e x h i b i t i n g s i m i l a r r e l a t i v e w a t e r e q u i v a l e n t s (mean a n n u a l maximum and 30 y e a r maximum) were g r o u p e d t o g e t h e r i n t o r e g i o n s . T h e s e r e g i o n s a l o n g w i t h o t h e r g r o u p s o f l o c a t i o n s h a v i n g s i m i l a r r e l a t i v e w a t e r e q u i v a l e n t v a l u e s a r e l i s t e d i n T a b l e VI and p l o t t e d i n F i g u r e s 4.29 -4.48. T a b l e VI R e g i o n s W i t h S i m i l a r R e l a t i v e W a t e r E q u i v a l e n t s R e g i o n Name L o c a t i o n I n t e r i o r R o g e r s P a s s * Okanagan * K o o t e n a y s o u t h * K o o t e n a y n o r t h * K o o t e n a y * R o c k y M t n . ( w e t ) R o c k y M t n . ( d r y ) C o a s t - V a n c o u v e r 1 1 , 1 2 , 1 3 , 2 1 , 2 2 , 2 3 , 3 1 , 3 2 , 3 3 , 4 1 , 4 2 , 4 3 11,12,13 21,22,23 31 ,32,33 41,42,43 31,32,33,41,42,43 51 52,53 61,62,64 * S u b - r e g i o n s As c a n be s e e n t h e d e g r e e o f f i t f o r most o f t h e c u r v e s i s v e r y h i g h w i t h an a v e r a g e r 2 o f 0.92. I t i s n o t e w o r t h y t h a t t h e i n t e r i o r r e g i o n h a s v e r y s i m i l a r r e l a t i v e i n c r e a s e s o f w a t e r e q u i v a l e n t w i t h e l e v a t i o n o v e r a v e r y l a r g e a r e a . RELATIVE WATER EQUIVALENT - SNOW LOAD ( - CONSTANT) O 40 80 120. 160. 200. 240. 280. 320. , s •> S -H- • J 1 ' 0.0 4.0 8.0 12.0 16.0 20.0 24.0 26.0 IsJ t-» O VO CO-J 01 CP if* UJ to t-« h-« CA CO M O tO L/l 00 O O tO N)H-,l-« to I OOJtCfc t-» CO r-* 00 CO O O VO to 00 CI • • • • • • • • • • • * •o 0*1 to co h-< -o *o ~J ui cn co -J co u> ui to -J to vo H- UI J> o O W r-1 Ul N) UJ VO ~J •-• 0"1 Ul to ui oi co ui cn cn ui co to ui J> J> UJ Ul UJ tO tO tO r-" I — UJtOI—'UJtOI—'UJtOI—'UJtOH-* CM KPR CD J*J W O O H 0-3Z. -3 >cn-3 II >a II II z z • 3 C ~H 2 VOU3 + 30 n I d m < 2 «-° oovoratpro 0 ^ S3 JO s t-t*j •5; o • • * • O O II PI z too H - r cn coo toro •-3 too o< 0£> • U J O + r tox* o OU1 n Ol^l * > ro >-3 c ro O < z * cn ro 1-ro < RELATIVE WATER EQUIVALENT - SNOW LOAD (- CONSTANT) 40. 80. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 - J I— I U U I C O ~JOlVO UJVOUI tOOM— rbUl-O O O z cn •6 p* o n > •-3 t-t O Z cn 32.0 CDOP3HOT1 O l O O H 0 - 3 Z - 3 > c n ^ t -Hro II > D II II z z o c n n • s c VOCD + 33 con < ooto-Dturo . . »•• o o II ro o o r 1 o o u>ro uio to< l-'U) vo<ji ~)ro + » n p" ro < » ro r ro < KPR ° S n [*• x> jt» z: o •z cn ^ " -»3 — t*; t*j t> ro RELATIVE WATER EQUIVALENT - SNOW LOAD (- CONSTANT) 0. 40. 80. 120. 160. 200. 240. 280. 320. \ 1, S h h H H ' r-0.0 CM 4.0 8.0 12.0 16.0 20.0 24.0 CD 33 t o m c o z 28.0 O l O O H 0>-3Zi-3 >tn-3 r>-3ro II > o II II z z • 3 C VO 03 + 33 UJUJtO I com < i—voco ootoajcom • • • o • • *•• UJICI!. o oo II ro MCAU1 z oo r UIU1U1 cn U I O u>ro ocoui •-3 -oo com UJOI u>< + to to to r •CtUI UltOh^  o UIU1 o o torn » > ro TI LE o < z » cn ELEV KPR n t*j X ZZ ^  § ^ cn ^ " -3 ro t*j - to t*j ro C*-co t-l*J ro R E L A T I V E WATER EQUIVALENT - SNOW LOAD (- CONSTANT) O. 40. 80. 120. 160. 200. 240. 280. 320. CM 0.0 4.0 8.0 12.0 16.0 20.0 24.0 t o f o M c> 73 rototo crtinco • • • O - J C T l N J O -JPOOJ z O J l — 00 tO to io t - ' O o > -3 t-t O z to 28.0 cuosoi-ao'o WOOH 0>-3Z ' -3 > t O - 3 r-"-3P3 II >o II II z z O & - 3 0 • 3 C M> 03 + 33 i cnp] < O O I - - 3 3 t D P J KPR °s r> to Z ! ^ o LO ^ -3 to to o o U I O II ra r torn O J O v o < o - j + —Jen O coo * tn < » r cn < L O to .© c: s t-. to -3 R E L A T I V E WATER EQUIVALENT - SNOW LOAD (- CONSTANT) J20. 160. 200. 240. 260. 320. 360. CM 40. 80. 4.0 8.0 12.0 16.0 20.0 24.0 28.0 33 I I I H U I M t n o - J ^1-JCT1 VOCTvLn •OCTVN) o o z to •3 L J t O h ^ 32.0 0 3 0 3 3 ^ 3 0 tooo 0 - 3 Z > t o [-•-3 II Ji-ll II Z Z o c - 3 • 3 voto + VOP3 O O I - ' 3 3 03 * o o > -3 M O z to KPfl o o o o h-*0 c o o - J O N J - J (-•CO o u i II m N>P3 O » P3 r < * t-P3 < to to to . to «s s t--to RELATIVE WATER EQUIVALENT - SNOW LOAD (- CONSTANT) 120. 160. 200. 240. 280. 320. 360. 40. 80. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 OM/liblOlVI-' 3! —ii-^cnooi-^o z i—* l l l l O O O U M O • • • • • • IOVDON3COO OOOJ>vOJ>tn COCTlVOUlOOJ oou ivo tnu icn J>J>i»LOLJLO o j t o i - ' L j r o i - ' 32.0 C0O3)>-3OTJ t O O O t - i 0"-3Z>-3 >t0H r * 3 P 3 ii >o II II z z O C - 3 C 3 • 3 C VOCD + 3J o-ip3 < o o c T t s s c o m o • « »• o o o II P3 z W O r to O J O U1P3 -3 VOO u>< OJNJ • oot-- + r unj> o o o - J o • > P3 •-3 r M P3 o < z » to P3 r 1 KPR 5 S n to 3D i . H ^ o L O It. " "3 LO to - to . 0 0 to « 3 L O C O J ^ £5 t-s± to M J> -9 MEAN WATER EQUIVALENT £ REGION: ROCKY MT. WET FITTED CURVE: CONSTANT + B*ELEV + C*ELEV*ELEV TOTAL NUMBER = 7. o RSQ = 0.997 OJ C = 0.000266425 <" B = -0.601998508 CONST = 373.3430 LOCATION: 51 1000 ELEVATION (METERS) 2000 Figure 4.35 MEAN WATER EQUIVALENT 1 REGION: ROCKY MT. DRY CONSTANT U+ VBiELEV + C*ELEV*ELEV TOTAL NUMBER = 16. ° C - S Q ==°- 9 6 80.000002300 0.024245452 M CONST LOCATIONS 8. -9.5140 52 8. -23.8343 53 B GR 1 2 o (M O O (NI oo c ^1 R E L A T I V E WATER EQUIVALENT - SNOW LOAD (- CONSTANT) 0. 40. 80. 120. 160. 200. 240. 280. 320. CM ^ S S >-i h S l-i 1 & 0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 KPR m < 30 33 o o o z TO CO • • • VDIOOJ -JO\CO ouioj Cftcncn CPO50i-3O' iJ O I O O H >co-3 II > a II II z z o c n n • 3 C VO 03 + 33 I cnr>3 < O O 0 0 3 3 03P3 • • * • • o f - O II P3 z W O CO ooo OJP3 -3 J>tO o < J>Ln • O J > + f -J.cn o b o o o • J O » > •-3 f P3 o < z » CO tn r P3 < cn to 1—• 1^  o >• z • LO to n C ; to *-3 RELATIVE WATER EQUIVALENT - SNOW LOAD (- CONSTANT) 40. 80. 120. 160. 200. 240. 280. 320. 360. CM 59 OQ C CD OJ e 4 > o RELATIVE WATER EQUIVALENT - SNOW LOAD (--40. 0. 40. 80. 120. 160. 200. 1 1 \ *! S L l ' ' CONSTANT) 240. 280. CM -4.0 0.0 4.0 8.0 12.0 16.0 20.0 24.0 KPfl t—• i—«t—• IV W O CO OO -J ONLn J> CO to W - J W O M J O W O t O L n C O O O t O Z i i c o f CO OO LTI C7N LP ON-J tO LO [O CO CO o C O - J ON U I Ln VD J> CO O to O • • • • • • • • • • • • w - J to J> CTI co t o o J> UI J> £>. O CO O W ~J LP Ln to CO fOIOOMJlvOWOO-JCDtC*OJ ON LO LH ON ONI—' J>-J I—' CO CO W J> J> J> LO LO OJ tO tO IO W W W OJ tO W OJ tO W OJ to w OJ tO W o O z cn -3 con^ji-an'fl B O O H 0 - 3 Z - 3 >C0i-3 r"-3ra II > D II II Z Z o c « - 3 0 • 3 c COCO + PO I L P P J < O O ^ J ? C I C D P 3 . . * . . o o II m o o o w r 1 o o o t o n t o o o < oooo • t o o C O H O tO CD O tocn > O z to * ro tr P J < » P J pi < 30 CO m CD AO O to z to _ to z •s m c; 3D to o 3D c; to to to o o •-3 Cn •~3 c; to -3 RELATIVE WATER EQUIVALENT - SNOW LOAD (-_40. 0. 40. 80. 120. 160. 200. CONSTANT) 240 . "80 . - 4 . 0 0.0 4.0 8.0 12.0 16.0 20.0 OJtOW r n < D -JONOO -JHCN 24.0 t O O O l - l C - 3 Z H >lO-3 r > - 3 P 3 II >a II II z z o c - 3 0 • 3 c COtD + 30 I ONPJ < o o H j u n n 70 LO • • • n • • * ONONOJ o o o II PJ OJOOJ z t o o r .feON-J to t o o OJPJ Co onto •-3 t o o ONCO OH t o < + H H P r 00 cn OJtOW o OJLn n 00 J> » > PJ •3 r M PJ o < z » to pa LEV KPfl i— to — i to ° to Ln to -• »-9 _ c: - to " d " to to to o o •-3 co "3 c; to HH 00 c i-i fD RELATIVE WATER EQUIVALENT - SNOW LOAD (- CONSTANT) 0. 40. 60. 120. 160. 200. 240. 280. 320. CM 99 12.0 16.0 20.0 24.0 OJtoi—' CD tocn Co Z 28.0 tOOJOi-SO'iJ O l O O H ©>-3Z>-3 >C0H M B II > o II II z z O C H O • 3 C VOCD + SJ ONONCP I - J P J < o c n v o O O O 5 0 C D P 3 • • • n • • »•• cocn oo o w o II P J co-oco z W O r co to CO to C O O O J P 3 votovo •3 o o on< O O O • O J > + to to to r O L n OJtOW o -JVO o •C*J> » > P J •-3 r 1 I-I P J O < z » to P J r P J < KPfl ^ to ° to co to ro c; " to to to o o to •~3 to L O RELATIVE WATER EQUIVALENT - SNOW LORD (- CONSTANT) _40. o. 40. 80. 120. 160. 200. 240. 280. / H S h S -T- ' ' 1 CM -4.0 0.0 4.0 8.0 12.0 16.0 24.0 KPR 20.0 -JOOVO CMOJtO • • • r o - o c o Olr-O u i u n o ioco.c* UIU1U) UIIOI-' r o o > -3 o z cn W O O H 0.-3Z-3 >cn>-3 r » 3 n II > o II II z z O & - 3 0 • 3 C voco + a: I Ulp] < ooojocora • . *.• t-o n m coo p V D O ion o o • tovo + COh-" mm o IOUI » ro r < * P3 r PJ < Co R 2 ! : * ^ § " n u i cr; u > to C*3 to o o •s Co - 3 to RELATIVE WATER EQUIVALENT - SNOW LOAD (- CONSTANT) 40. 60. 120. 160. 200. 240. 280. 320. 360. CM 4.0 8.0 12.0 16.0 20.0 24.0 28.0 ui is j i - ' O 33 v l U H c n ^ J M •C5»l— 00 COUltO •t».t!..t-. UJIOI-' o o cn •3 32.0 K O O H OHZ>3 > c n n ["••3P3 ii > o II II z z O C - 3 0 • 3 C VO03 + 3! COt>3 < O O C 0 3 3 03P3 O O UIO OIO ooo M U l-TO com coo II P3 torn P3 r < P3 r cn < KPH £ Co R 2 r: •* § to - - 3 * c; w to (*j to o o •-} co --3 c; to RELATIVE WATER EQUIVALENT - SNOW LOAD ( 0. 40. 80. 120. 160. 200. 240. CONSTANT) 280. 320. CM 0.0 4.0 8.0 12.0 16.0 20.0 24.0 OMJIi^Ul fOH' C3 3) t-> t - ' i - ' ~Jh--CTiCO>—-O Z l—UIUICOkOVD O H ^ O U I M vDOM-'COcno OOM-'CO>-'*Cn VDVOOM-'OU) o o z cn -3 lU i l^^UIUIUJ U M H W M P r o o > H M o z cn 28.0 0303) i-3 (-313 m o o n ©i-3Z>-3 >cn-3 P - 3 P 3 11 >u 11 11 z z O C H O • 3 c VOCD + 3! I *»P3 < 00 too (JIO P3 r cnt»3 voo u>< vocn • uicn + COUI * > o O UI.6. » P3 £"• P3 < * P3 r P3 < KPR 1- Co o o n : D £ —i x ° to •• "-3 S § CO * " D CO C2 " to .p. 1*3 * "-a U) CO •~3 c; to 30YR RETURN CUBE ROOT STUD T REGION: ROCKY MT. WET FITTED CURVE: CONSTANT + B*ELEV + C*ELEV*ELEV TOTAL NUMBER = 7. RSQ = 0.993 C = 0.000611408 B = -1.463438988 CONST = 961.3542 LOCATION: 51 1 1000 ELEVATION (METERS) 2000 Figure 4.45 cr CJ Q cr o o z CO I d ° 30YR RETURN CUBE ROOT STUD T REGION: ROCKY MT. DRY FITTED CURVE: CONSTANT + B*ELEV + C*ELEV*ELEV TOTAL NUMBER = 16. RSQ = 0.900 C = 0.000010944 B = 0.017006893 GR ° 1 00 "> CONST LOCATIONS 7.1332 -19.9473 52 53 on " UJ cr UJ 0D CE UJ ? or 1000 2000 ELEVATION (METERS) Figure 4.46 a-, oo RELATIVE WATER EQUIVALENT - SNOW LOAD (- CONSTANT) 60. 120. 180. 240. 300. 360. 420. 480. CM *4 OQ C H 4~> m < 70 cn 42.0 KPR 33 Co 2 3 0 to •z. • • to ^to 1 * i r> n c; <L ft: m » to O o •s CO "•3 to 69 70 4.4 D i s c u s s i o n Of W a t e r E q u i v a l e n t P l o t s F o r The R e g i o n s The r e g i o n s w i t h s i m i l a r w a t e r e q u i v a l e n t - e l e v a t i o n c u r v e s a s g i v e n i n t h e l a s t s e c t i o n s c o r r e s p o n d v e r y w e l l w i t h t h e c l i m a t i c r e g i o n s o f s o u t h e r n B r i t i s h C o l u m b i a ( s e c t i o n 2.1). S i m i l a r i t i e s . a n d d i f f e r e n c e s i n t h e w a t e r e q u i v a l e n t e l e v a t i o n c u r v e s f o r t h e r e g i o n s c a n . b e : n o t i c e d . The w a t e r e q u i v a l e n t c u r v e s o f t h e w e t t e r r e g i o n s , w h i c h a r e l o c a t e d g e n e r a l l y on t h e w i n d w a r d s i d e s o f m o u n t a i n r a n g e s ( e g . C o a s t -V a n c o u v e r , F e r n i e ) i n c r e a s e i n v a l u e v e r y q u i c k l y a s one i n c r e a s e s i n e l e v a t i o n a n d t h e y h a v e t h e h i g h e s t v a l u e s o f w a t e r e q u i v a l e n t s i n t h e p r o v i n c e . A p r o f i l e a c r o s s s o u t h e r n B r i t i s h C o l u m b i a s h o w i n g t h e r e l a t i o n b e t w e e n a l t i t u d e a n d w a t e r e q u i v a l e n t s i s g i v e n i n F i g u r e 4.49. The w a t e r e q u i v a l e n t v a l u e s shown w e r e . d e t e r m i n e d by u s i n g t h e e l e v a t i o n p r o f i l e a n d t h e w a t e r e q u i v a l e n t - e l e v a t i o n c u r v e s g i v e n e a r l i e r . B e c a u s e o f t h e s c a l e u s e d , t h e w a t e r e q u i v a l e n t p r o f i l e shown i n F i g u r e 4.49 i s i l l u s t r a t i v e o n l y . R e f e r i n g t o t h e p l o t s o f w a t e r e q u i v a l e n t a g a i n s t e l e v a t i o n , t h e w a t e r e q u i v a l e n t s o f t h e c o l d e r r e g i o n s ( K i m b e r l e y , L a k e L o u i s e ) h a v e much l o w e r v a l u e s a n d i n c r e a s e l i n e a r l y a t a much l o w e r r a t e t h a n t h e we t c l i m a t e v a l u e s . The " i n t e r m e d i a t e " c l i m a t e s h a v e i n t e r m e d i a t e v a l u e s a n d t h e i r c u r v e s a r e s l i g h t l y c u r v e d u p w a r d s ( e g . O k a n a g a n , K o o t e n a y , a n d R o g e r s P a s s r e g i o n s ) . Mt C o p e l a n d h a s v e r y h i g h v a l u e s o f w a t e r e q u i v a l e n t s a n d i s an e x c e p t i o n t o t h e s e t r e n d s . T h i s c o u l d be due t o l o c a l e f f e c t s . The d i f f e r e n c e b e t w e e n t h e c u r v e s o f t h e wet a n d d r y E l e v a t i o n (m) Water Equivalent (cm) s B Loner Fraser Valley a co Cascade rots. Okanagan Valley Monashee Range S e l k i r k Trench (Arrot* Lakes) Slocan Lake S e l k i r k Mts. P u r c e l l Trench (Kooteney Lake) P u r c e l l Hits. Rocky n t . Trench Rocky Mts. of?"  72 r e g i o n s seems t o l i e i n the f a c t t h a t the i n c r e a s e of water e q u i v a l e n t s w i t h e l e v a t i o n i n the wet c l i m a t e s a re m a i n l y due t o o r o g r a p h i c e f f e c t s . In the d r i e r c l i m a t e s the water e q u i v a l e n t i n c r e a s e i s p r o b a b l y l e s s due t o i n c r e a s e d s n o w f a l l w i t h e l e v a t i o n , than due t o the l o n g e r a c c u m u l a t i o n p e r i o d because of the lower t e m p e r a t u r e s . T h i s would r e s u l t i n o n l y a g r a d u a l i n c r e a s e of water e q u i v a l e n t s w i t h e l e v a t i o n . On F i g u r e 4.13, 4.27 of. the South Coast-Vancouver r e g i o n i t can be seen t h a t the data can be broken i n t o two p a r t s , t h a t below 500 meters and t h a t above 500 meters. .This i s l i k e l y because below 500 meters t h e r e i s no permanent snow and the l o a d s a re d e t e r m i n e d by i n d i v i d u a l s n o w f a l l e v e n t s , w h i l e above 500 meters snow t h a t f a l l s i s more permanent and remains f o r most of a w i n t e r . A l s o i n F i g u r e s 4.13, 4.27 one can see t h a t the r e g r e s s i o n c u r v e s f o r the lower e l e v a t i o n s of the Vancouver p l o t s o b v i o u s l y do not a p p l y . 7 3 C h a p t e r 5. C o m p a r i s o n o f r e s u l t s w i t h t h e N a t i o n a l B u i l d i n g Code I n t h e N a t i o n a l B u i l d i n g Code ( 1 9 7 7 ) , snow l o a d s a r e r e f e r e d t o i n t h r e e p l a c e s : 1) S u b s e c t i o n 4.4.7-, L i v e l o a d s due t o snow a n d r a i n [ l 8 ] , 2) C l i m a t e i n f o r m a t i o n f o r t h e B u i l d i n g Code of Canada [ 1 9 ] and 3) C o m m e n t a r i e s on p a r t 4 of t h e N a t i o n a l B u i l d i n g Code, commentary H, s n o w l o a d s [ 2 0 ] . B a s i c a l l y , t h e c a l c u l a t i o n o f r o o f snow l o a d s u s i n g , t h e N a t i o n a l B u i l d i n g Code a r e b r o k e n down i n t o two p a r t s . F i r s t one d e t e r m i n e s t h e g r o u n d snow l o a d f o r t h e l o c a l i t y f r o m t h e T a b l e o f C l i m a t i c i n f o r m a t i o n [ 1 9 ] . . Then one d e t e r m i n e s t h e r o o f snow l o a d by u s i n g v a r i o u s c o e f f i c i e n t s t o t a k e i n t o a c c o u n t d i f f e r e n t r o o f s h a p e s , e x p o s u r e , e t c . R e f e r e n c e i s made i n t h e c o d e t o t h e v a r i a b i l i t y o f snow l o a d s i n t h e m o u n t a i n s a n d o f t h e i m p o r t a n c e o f l o c a l c o n d i t i o n s . C o m p a r i s o n o f t h e r e s u l t s o f t h i s s t u d y w i t h t h e v a l u e s o f t h e 30 y e a r r e t u r n g r o u n d snow l o a d s g i v e n i n t h e N a t i o n a l B u i l d i n g Code ( T a b l e o f C l i m a t i c I n f o r m a t i o n ) c a n r e a d i l y be made f o r many l o c a t i o n s . T a b l e V I I c o m p a r e s t h e N a t i o n a l B u i l d i n g Code g r o u n d snow l o a d s f o r towns i n s o u t h e r n B . C . ( t a k e n f r o m [ 1 9 ] ) w i t h t h e g r o u n d snow l o a d s f o r t h e same towns u s i n g t h e r e s u l t s o f t h i s s t u d y . W a t e r e q u i v a l e n t s were d e t e r m i n e d f r o m p l o t s o f r e g i o n a l v a l u e s i f no o b s e r v a t i o n s were made c l o s e t o t h e town c o n c e r n e d ( e g . G r a n d F o r k s u s e s K o o t e n a y R e g i o n v a l u e s ) . F o r one town 74 T a b l e V I I C o m p a r i s o n W i t h The N a t i o n a l B u i l d i n g Code L o c a t i o n E l e v a t i o n N.B.C G r o u n d L o a d s G r o u n d L o a d s u s i n g t h i s s t u d y m e t e r s kPa cm H20 cm H20 s o u r c e C o a s t - V a n c o u v e r A b b o t s f o r d 27 2.4 24 A g a s s i z • 18 3. 1 32 L a n g l e y 2.2 22 V a n c o u v e r 10 1 .9 19 N o r t h V a n c o u v e r 2.2 22 30 F i g . 4.27(300m) S q u a m i s h 1 0 3.2 33 Okanagan P e n t i c t o n 350 1.3 1 3 25 F i g . 3.2.4 R e l o w n a 350 1 .9 1 9 ' 25 F i g . 4.18 Salmon Arm 353 2.8 29 V e r n o n m 350 2.0 20 R o g e r s P a s s R e v e l s t o k e 458 4.6 47 70 F i g . 3.21 G l a c i e r 1248 7.6 77 86 F i g . 3.22 G o l d e n 786 3.8 39 K o o t e n a y K a s l o 534 3.0 31 40 F i g . 3.32 C a s t l e g a r 494 3.4 35 40 F i g . 4.19 C r e s e n t V a l l e y 610 3.4 35 40 F i g . 4 . 1 9 G r a n d F o r k s 532 2.0 20 40 F i g . 4.19 M o n t r o s e 472 3.2 33 40 F i g . 4.19 N a k u s p 431 3.6 37 40 F i g . 4.19 N e l s o n 539 3.3 34 40 F i g . 4.19 T r a i l 416 3.2 33 32 F i g . 3.28 R. Mnt. T r e n c h K i m b e r l e y 1115 3.0 31 36 F i g . 3.34 C r a n b r o o k 99 2.4 24 35 F i g . 3.34 E l k o 939 3.5 36 F e r n i e 950 4.6 47 70 F i g . 4.25 ( N o r t h V a n c o u v e r ) t h e e l e v a t i o n r a n g e i s q u i t e l a r g e so an a v e r a g e e l e v a t i o n was u s e d f o r c o m p a r i s o n p u r p o s e s . A few towns were e i t h e r t o o f a r away f r o m a measurement l o c a t i o n t o p e r m i t a d e q u a t e c o m p a r i s o n ( e g . L a n g e l y , A b b o t s f o r d ) , o r t h e y were s i t u a t e d on t h e b o r d e r o f a c l i m a t i c r e g i o n ( E l k o ) . I t c a n be s e e n f r o m T a b l e V I I t h a t some o f t h e v a l u e s 75 obtained from t h i s work and those, from the N a t i o n a l B u i l d i n g Code are. n e a r l y equal. However, some values i n c l u d i n g those from towns which have measurements l o c a t i o n s nearby (eg. Mt. Revelstoke) are up to 50% higher than the N.B.C. va l u e s . The reason f o r t h i s d i f f e r e n c e appears to be due to three causes:,. 1.) B u i l d i n g code measurements were not taken. e x a c t l y at the same place as the measurements used in t h i s study, and l o c a l snow c o n d i t i o n v a r i a b i l i t y can be expected to have some e f f e c t . 2) D i f f e r e n t extreme value p r o b a b i l i t y d i s t r i b u t i o n s were used to o b t a i n the N a t i o n a l B u i l d i n g Code values and 3) the N a t i o n a l B u i l d i n g Code snow loads were determined from snow depth data which r e q u i r e s an estimate of the snow d e n s i t y . 5.1 D i f f e r n c e s Due To L o c a l V a r i a b l i t y . Snow depths can be very v a r i a b l e over small d i s t a n c e s , due to l o c a l d i f f e r e n c e s i n exposure t o the wind, l o c a l t e r r a i n e f f e c t s , and due to j u s t the p l a i n u n p r e d i c t a b i l i t y of snow. At Revelstoke, f o r example the e f f e c t s of Rogers Pass i n t e r s e c t i n g with the Columbia V a l l e y can produce s i g n i f i c a n t d i f f e r e n c e s even w i t h i n a few k i l o m e t e r s . On the north shore of Vancouver the e f f e c t of winds coming down Howe Sound can r e s u l t i n much d i f f e r e n t snow depths near Horseshoe Bay as compared with other p a r t s of Vancouver's north shore. Furthermore, s i n c e maximum values are of i n t e r e s t , the measurement s i t e s used f o r t h i s study were chosen to be as wind f r e e e as p o s s i b l e to maximize snow accumulation. Therefore l o c a l e f f e c t s are of prime 76 importance when determining a snow load f o r a s i t e . 5.2 D i f f e r e n c e s Due To P r o b a b i l i t y D i s t r i b u t i o n And Sample S i z e D i f f e r e n t extreme value d i s t r i b u t i o n s were used to o b t a i n the values of snow loads given by the N a t i o n a l B u i l d i n g Code, and to obt a i n those loads given i n t h i s study. The d i s t r i b u t i o n used to c a l c u l a t e the snow loads given by the Code was the Gumbel d i s t r i b u t i o n , while the p r i n c i p a l d i s t r i b u t i o n used i n t h i s study was the cube root s t u d e n t - t d i s t r i b u t i o n . R e f e r r i n g to Appendix I which l i s t s maximum water e q u i v a l e n t s f o r s e v e r a l p r o b a b l i l i t y d i s t r i b u t i o n s , the Gumbel and cube root normal d i s t r i b u t i o n s g e n e r a l l y give very c l o s e values unless the values obtained from only a few. years of data. Here the cube root s t u d e n t - t values were n o t i c e a b l y higher because t h i s d i s t r i b u t i o n i n c l u d e s the u n c e r t a i n t y of us i n g a small sample s i z e . Regardless, the snow loads c a l c u l a t e d using the Gumbel d i s t r i b u t i o n as given i n appendix I s t i l l are g e n e r a l l y l a r g e r than the corresponding values given by the N a t i o n a l B u i l d i n g Code. It i s recognized that the sample s i z e or o b s e r v a t i o n p e r i o d i s r e l a t i v e l y short , averaging about ten years, and e r r o r e x i s t s in e x t r a p o l a t i n g to a 30 year r e t u r n p e r i o d . The ob s e r v a t i o n p e r i o d f o r t h i s study a l s o i n c l u d e d two winters with higher snow loads (1968 and 1972), which were c l o s e to the 30 year maximum and t h e r e f o r e tended to i n c r e a s e the c a l c u l a t e d 30 year maximum l o a d . 77 5.3 D i f f e n c e s Due To The E s t i m a t i o n Of Snow Density Snow loads given i n the N a t i o n a l B u i l d i n g Code (as c a l c u l a t e d by Boyd) [2] were c a l c u l a t e d by using snow depth data i n s t e a d of using values of the weight of the snow (water e q u i v a l e n t ) d i r e c t l y as i s the case with values obtained f o r t h i s study. The reason f o r using snow, depth data was that water e q u i v a l e n t data i s not as r o u t i n e l y a v a i l a b l e as snow depth data. Snow depths were converted (by Boyd) to water e q u i v a l e n t s by assuming a snow d e n s i t y of 0.2 gm/cc. The maximum 24 hour r a i n f a l l that i s expected to occur d u r i n g the months of maximum snow depth was added to t h i s value to o b t a i n the values given i n the N a t i o n a l B u i l d i n g Code. ( r e f e r to s e c t i o n 1.2.1) The c h o i c e of 0.2 as the snow d e n s i t y i s not e n t i r e l y unreasonable s i n c e the snow cover at time of maximum depth would be composed of a s u b s t a n t i a l l a y e r of new snow over a l a y e r of o l d snow. New snow has a d e n s i t y of about 0.1 and o l d snow has a d e n s i t y of about 0.3+ and t h e r e f o r e the average i s about 0.2. However, r e f e r r i n g to S e c t i o n 3.4 and to Appendix II i t can be seen that the average value of the snow d e n s i t y i n Southern B r i t i s h Columbia, depending on the r e g i o n , averages from about 0.29 to 0.41 which are c o n s i d e r a b l y higher than the value of 0.2 used f o r the N.B.C. v a l u e s . In S w i t z e r l a n d , Zingg [29] has used d e n s i t i e s of 0.25 and 0.30 to estimate snow l o a d s . At a high e l e v a t i o n and with l a r g e snow depths i n the Swiss Alps the author observed d e n s i t i e s at maximum water e q u i v a l e n t not v a r y i n g much from 0.40 gm/cm [ 5 ] . 78 There are s e v e r a l reasons c o n t r i b u t i n g to the higher c a l c u l a t e d d e n s i t i e s . F i r s t l y the c a l c u l a t e d d e n s i t i e s given i n the Appendix are not u s u a l l y taken at the time of maximum snow depth, but a few days l a t e r . Although the water e q u i v a l e n t measurement does not change over the course of a few days, the snow sur f a c e does s e t t l e r e s u l t i n g in a higher c a l c u l a t e d d e n s i t y . Secondly, the F e d e r a l Snow Sampler used to measure the water e q u i v a l e n t s i s known to over estimate the water e q u i v a l e n t by 5% to 12%. T h i r d l y , the N a t i o n a l B u i l d i n g Code adds the 24 hour r a i n f a l l to the c a l c u l a t e d snow load, so the e f f e c t i v e N a t i o n a l B u i l d i n g Code d e n s i t y i s somewhat higher than 0.2 gm/cc. However, the l a r g e d i f f e r e n c e i n the c a l c u l a t e d d e n s i t i e s of t h i s study with the N a t i o n a l B u i l d i n g Code value of 0.2 gm/cc does i n d i c a t e that the value of 0.2 gm/cc i s underestimated. The value of 0.2 gm/cc may be a good estimate f o r snow d e n s i t y for snow depths of low water e q u i v a l e n t , but f o r l a r g e snow depths a l a r g e p o r t i o n of the snow i s composed of o l d snow which i s even more d e n s i f i e d under i t s own weight, e s p e c i a l l y i n wet c l i m a t e s and p a r t i c u l a r l y near the c o a s t . Therefore most of the evidence suggests that a value of 0.2 i s too low to use as a mean snow d e n s i t y and along with l o c a l v a r i a t i o n and the short o b s e r v a t i o n p e r i o d c o n t r i b u t e d to the lower values of ground snow loads given i n the N a t i o n a l B u i l d i n g Code when compared to the r e s u l t s of t h i s study. 79 . Chapter 6 . D e t e r m i n a t i o n of ground snow l o a d s f o r d e s i g n G e n e r a l l y i f some water e q u i v a l e n t d a t a or snow depth d a t a c o n v e r t a b l e t o - w a t e r e q u i v a l e n t s i s a v a i l a b l e f o r a . s i t e , i t i s p r e f e r a b l e t o use t h i s d a t a t o e s t i m a t e maximum snow l o a d s . However, i f no •data i s a v a i l a b l e f o r the s i t e , the r e s u l t s of t h i s study can be used as an a i d t o determine approximate snow l o a d s --for a s i t e a t a g i v e n e l e v a t i o n . F i r s t l y i f the s i t e i s on the same mountain as a measurement l o c a t i o n , p l o t s of water e q u i v a l e n t a g a i n s t e l e v a t i o n may be used d i r e c t l y . S e c o n d l y , i f no i n f o r m a t i o n on water e q u i v a l e n t s a r e known, p l o t s of water e q u i v a l e n t a g a i n s t e l e v a t i o n f o r the r e g i o n , or p r e f e r a b l e p l o t s from nearby measurement l o c a t i o n s can be used. T h i r d l y , i f some water e q u i v a l e n t d a t a i s known on the same mountain but a t a d i f f e r e n t e l e v a t i o n , p l o t s of r e l a t i v e water e q u i v a l e n t s can be used t o determine the water e q u i v a l e n t a t the r e q u i r e d e l e v a t i o n . The c o e f f i c i e n t s f o r the r e g r e s s i o n e q u a t i o n s a re g i v e n i n T a b l e s V I I I , IX, and X. S i n c e the water e q u i v a l e n t data from the d i f f e r e n t l o c a t i o n s have v a r y i n g amounts of s c a t t e r when p l o t t e d , an a p p r e c i a t i o n of which can o n l y be r e a l i z e d by r e f e r i n g t o a c t u a l p l o t s w i t h the da t a p l o t t e d on them, and s i n c e a b e t t e r e s t i m a t e of the water e q u i v a l e n t can sometimes be o b t a i n e d by s i m p l y r e a d i n g the v a l u e from the p l o t , t h e s e t a b l e s s h o u l d o n l y be used i n c o n j u c t i o n w i t h the p l o t s g i v e n i n 80 e a r l i e r c h a p t e r s . 6.1 Snow Loads Required At A Measurement L o c a t i o n 6.1.1 Method When the s i t e where snow load i n f o r m a t i o n i s r e q u i r e d i s on the same mountain as a measurement l o c a t i o n , the determination of water e q u i v a l e n t s i s merely a matter of reading it's value from the a p p r o p r i a t e p l o t s . These p l o t s are given i n F i g u r e s 3.3 - 3.38 and are summarized in Table V I I I . For example i f one wished to know the snow loads on Mount Seymour one would r e f e r to F i g u r e 4.27. I f other snow measurements are a v a i l a b l e , these should always be examined and i n c l u d e d i n the determination of the c a l c u l a t e d snow l o a d . 6*1.2 Accuracy For the i n d i v i d u a l l o c a t i o n s , the r e l a t i o n s h i p between water e q u i v a l e n t and e l e v a t i o n i s very w e l l known. T h i s i s seen i n the high r 2 values obtained i n the l e a s t squares q u a d r a t i c r e g r e s s i o n . At these i n d i v i d u a l l o c a t i o n s , t h e r e f o r e , estimates of water e q u i v a l e n t s at any d e s i r e d e l e v a t i o n can be made q u i t e a c c u r a t e l y . 81 Table VIII Regression C o e f f i c i e n t s For Measurement L o c a t i o n s 30 year r e t u r n and cube root Student-t d i s t r i b u t i o n used. Water e q u i v a l e n t s i n centimeters and e l e v a t i o n s i n meters. "N" r e f e r s to the number of s t a t i o n s . T h i s t a b l e should only be used i n co n j u n c t i o n with p l o t s of the data with r e g r e s s i o n curve. Water E q u i v a l e n t = A + B ( e l e v a t i o n ) + C ( e l e v a t i o n ) 2 L o c a t i o n A B C r 2- N 11 Revelstoke 105 - o . 11 68 0 . 0 0 0 0 9 8 0 0 . 9 7 9 • 1 2 12 F i d e l i t y . 1 1 3 - o . 1698 0 . 0 0 0 1 1 9 1 0 .991 1 0 1 3 Copeland 92 0 . 0465 0 . 0 0 0 0 4 0 4 0 . 8 8 7 1 0 21 Apex 31 - o . 0489 0 . 0 0 0 0 4 7 0 0 . 9 6 0 8 22 Enderby 56 - o . 0970 0 . 0 0 0 0 7 4 4 0 . 9 7 8 1 5 23 Vernon 77 - o . 1622 0 . 0 0 0 1 0 5 2 0 . 9 7 7 12 31 Creston 81 - o . 1 401 0 . 0 0 0 1 1 8 7 0 .981 10 32 Rossland 52 - o . 0686 0 . 0 0 0 0 7 4 1 0 . 9 5 3 1 1 33 Salmo 64. - o . 0646 0 . 0 0 0 0 5 1 6 0 . 9 8 3 8 41 Zincton 63 - o . 1109 .0 . 0 0 0 1 1 3 4 0 . 9 5 2 6 42 Sandon 35 - 0 . 02 90 0 . 0 0 0 0 5 3 3 0 . 9 9 2 1 1 43 Kaslo - 1 1 0 . 0 . 3353 - o . 0 0 0 1 3 4 7 0 . 9 2 3 7 51 F e r n i e 961 - 1 . 4634 0 . 0 0 0 6 1 1 4 0 . 9 9 2 . 7 52 Kimberley 81 - o . 0964 0 . 0 0 0 0 5 2 7 0 . 9 3 2 8 53 Lake Lou i s e 2 36 - o . 2464 0 . 0 0 0 0 7 7 5 0 . 9 7 7 8 61 Grouse - 2 7 0 . 1482 0 . 0 0 0 2 1 6 9 0 . 9 5 5 10 62 Seymour 43 - o . 2 8 3 5 0 . 0 0 0 5 9 7 6 0 . 9 6 1 10 64 H o l l y b u r n 36 - o . 1 680 0 . 0 0 0 4 2 6 9 0 . 9 0 6 9 6 . 2 Water E q u i v a l e n t Data Not A v a i l a b l e 6 . 2 . 1 Method When no water e q u i v a l e n t data or snow depth data c o n v e r t a b l e to water e q u i v a l e n t s i s a v a i l a b l e on the mountain, approximate val u e s of the maximum snow load can be estimated by using p l o t s of water e q u i v a l e n t s a g a i n s t e l e v a t i o n as given i n F i g u r e s 3 . 3 - 3 . 3 8 , 4 .1 - 4 . 2 8 The water e q u i v a l e n t i s estimated 82 by r e a d i n g i t s v a l u e on t h e p l o t s f o r t h e d e s i r e d e l e v a t i o n . B o t h , p l o t s o f r e g i o n a l v a l u e s a n d p l o t s o f g r o u p s o f l o c a t i o n s c a n be u s e d . I t i s p r e f e r a b l e t o use v a l u e s f r o m n e a r b y l o c a t i o n s r a t h e r t h a n r e g i o n a l v a l u e s b e c a u s e t h e l a t t e r w i l l g e n e r a l l y have more s c a t t e r due t o t h e l a r g e r g e o g r a p h i c a r e a and h e n c e g r e a t e r c l i m a t i c v a r i a b i l i t y . T a b l e I X R e g r e s s i o n C o e f f i c i e n t s F o r S e l e c t e d R e g i o n s 30 y e a r r e t u r n a n d cube r o o t S t u d e n t - t d i s t r i b u t i o n u s e d W a t e r e q u i v a l e n t s , i n c e n t i m e t e r s a n d e l e v a t i o n s i n m e t e r s . "N" r e f e r s t o t h e number o f s t a t i o n s . T h i s t a b l e s h o u l d o n l y be u s e d i n c o n j u n c t i o n w i t h p l o t s o f t h e d a t a w i t h r e g r e s s i o n c u r v e . W a t e r E q u i v a l e n t = A + B ( e l e v a t i o n ) + C ( e l e v a t i o n ) 2 R e g i o n A • • B C r 2 N R o g e r s P a s s 131 - 0 . 1 728 0 . 0 0 0 1 1 7 8 0 . 955 22 (11 12) Okanagan 66 - 0 . 1 272 0 . 0 0 0 0 8 7 8 0 . 966 35 (21 22 23) K o o t e n a y 48 - 0 . 0474 o . 0 0 0 0 6 1 2 0 . 899 53 (31 32 33 41 42 43) K o o t e n a y - S o u t h 94 - 0 . 1 595 0 . 0 0 0 1 1 8 7 0 . 905 29 (31 32 33) K o o t e n a y - N o r t h 42 - o . 0222 0 . 0 0 0 0 4 7 6 0 . 949 24 (41 42 43) I n t e r i o r 69 - o . 0976 0 . 0 0 0 0 8 1 8 0 . 765 1 1 0 (11 12 21 22 23 31 32 33 41 42 43) R o c k y Mt. D r y 46 - o . 01 92 0 . 0 0 0 0 1 3 7 0 . 500 1 6 (52 53) V a n c o u v e r Mt. 34 - 0 . 1995 0 . 0 0 0 5 0 1 0 0 . 937 29 (61 62 63) 83 A l t e r n a t i v e l y one c a n use p l o t s o f r e l a t i v e w a t e r e q u i v a l e n t a g a i n s t e l e v a t i o n g i v e n i n F i g u r e s 4.29 - 4.48. The c o n s t a n t t e r m o f t h e r e g r e s s i o n i s e s t i m a t e d by e x a m i n i n g t h e v a l u e of t h e c o n s t a n t t e r m f o r n e a r b y l o c a t i o n s . 6.2.2 A c c u r a c y When no w a t e r e q u i v a l e n t d a t a i s a v a i l a b l e , s i m i l a r i t y o f snow c o n d i t i o n s i s v e r y i m p o r t a n t b e t ween t h e s i t e where w a t e r e q u i v a l e n t s a r e . r e q u i r e d and t h e l o c a t i o n ( s ) u s e d t o d e t e r m i n e them. The snow c o n d i t i o n s s h o u l d r e s e m b l e a s c l o s e l y a s p o s s i b l e t h o s e o f t h e l o c a t i o n s o r r e g i o n u s e d . I f snow c o n d i t i o n s a r e n o t d e f i n a t e l y known t o be t h e same, t h e n t h e c e r t a i n t y o f t h e e s t i m a t e d v a l u e s w i l l n o t be v e r y h i g h , and t h e v a l u e s o b t a i n e d must be t r e a t e d w i t h e x t r e m e c a u t i o n . F u r t h e r m o r e , i f r e g i o n a l p l o t s have t o be u s e d b e c a u s e no i n d i v i d u a l l o c a t i o n n e a r t h e s i t e e x i s t s , t h e s c a t t e r o f t h e d a t a i s r e l a t i v e l y l a r g e a n d may i n a few p l a c e s r e a c h 100% o f t h e w a t e r e q u i v a l e n t v a l u e . F o r some r e g i o n s , t h e r e a r e o n l y a few measurement . l o c a t i o n s ( e g . R o c k y Mt. Wet) and one c a n n o t e x p e c t t h e s e l o c a t i o n s t o be n e c e s s a r i l y r e p r e s e n t a t i v e o f t h e r e g i o n . T h e r e f o r e w a t e r e q u i v a l e n t s o b t a i n e d f r o m most r e g i o n a l p l o t s a r e o n l y v e r y a p p r o x i m a t e f i g u r e s . .84 6.3 Water E q u i v a l e n t Data A v a i l a b l e At D i f f e r e n t E l e v a t i o n s 6.3 .1 Method When water e q u i v a l e n t data i s a v a i l a b l e at another e l e v a t i o n on the same mountain as the s i t e where snow loads are r e q u i r e d , the r e l a t i v e d i f f e r e n c e s of water e q u i v a l e n t s at d i f f e r e n t e l e v a t i o n s can be determined. P l o t s of r e l a t i v e water e q u i v a l e n t s f o r groups of nearby l o c a t i o n s or f o r the region given i n F i g u r e s 4.29 - 4.48 can be used to determine the d i f f e r e n c e of the water e q u i v a l e n t s a t . t h e e l e v a t i o n s concerned. The c o e f f i c i e n t s for the r e g r e s s i o n curves are summarized i n Table X. T h i s d i f f e r e n c e i s added to the known water e q u i v a l e n t to determine the value at the s i t e . Since r e l a t i v e water e q u i v a l e n t s have l i t t l e v a r i a b i l i t y over l a r g e r areas, i t i s g e n e r a l l y best to use p l o t s of r e l a t i v e water e q u i v a l e n t f o r groups.of l o c a t i o n s or p l o t s f o r the region r a t h e r than j u s t one nearby l o c a t i o n . 6.3.2 Accuracy Since the e f f e c t of the ab s o l u t e magnitude of the water e q u i v a l e n t values i s e l i m i n a t e d , the p l o t s of r e l a t i v e water e q u i v a l e n t e x h i b i t much l e s s s c a t t e r of the data p o i n t s , and can in c l u d e much l a r g e r regions than p l o t s of a b s o l u t e values of water e q u i v a l e n t . The degree of f i t of the l e a s t squares q u a d r a t i c r e g r e s s i o n s on the r e l a t i v e water e q u i v a l e n t s a g a i n s t 85 Table X • R e l a t i v e Water E q u i v a l e n t R e g r e s s i o n C o e f f i c i e n t s 30 year r e t u r n and cube r o o t S t u d e n t - t d i s t r i b u t i o n used. Water e q u i v a l e n t s i n c e n t i m e t e r s and e l e v a t i o n s i n meters. "N" r e f e r s t o the number of s t a t i o n s . See p l o t s f o r v a l u e s of c o n s t a n t terms f o r l o c a t i o n s . T h i s t a b l e s h o u l d o n l y be used i n c o n j u n c t i o n w i t h p l o t s o f . t h e d a t a w i t h r e g r e s s i o n c u r v e . Water E q u i v a l e n t = c o n s t a n t + B ( e l e v a t i o n ) + C ( e l e v a t i o n ) 2 : R e g i o n . B C r 2 N Rogers Pass - 0 . 0 9 2 3 0 . 0 0 0 0 9 1 6 0 . 961 32 (11 12) Okanagan - o .1 197 0 . 0 0 0 0 8 4 6 0 . 970 35 (21 22 23) Kootenay - o . 0 2 6 0 0 . 0 0 0 0 5 6 3 0 . 943 53 (31 32 33 41 42 43) Kootenay-South - 0 . 1 396 o . 0001091 0 . 930 29 (31 32 33) Kootenay-North - 0 . 0 3 6 8 0 . 0 0 0 0 3 2 2 0 . 983 24 (41 42 43) I n t e r i o r - o . 0 8 8 3 0 . 0 0 0 0 8 0 2 0 . 957 1 20 (11 12 21 22 23 31 32 33 41 42 43) Rocky Mt. Dry - o . 0 1 7 0 0 . 0 0 0 0 1 0 9 0 . 900 1 6 (52 53) Vancouver Mt. - 0 . 1808 0 . 0 0 0 4 8 3 4 0 . 941 29 (61 62 6.3) e l e v a t i o n i s v e r y h i g h w i t h the r 2 v a l u e s a v e r a g i n g 0.96. The degree of f i t t o the r e g r e s s i o n c u r v e i s e s p e c i a l l y h i g h f o r the western Kootenay r e g i o n . Because the r e l a t i v e water e q u i v a l e n t s a r e v e r y w e l l known, and v a r y o n l y s l i g h t l y w i t h i n a r e g i o n , the e s t i m a t e s of water e q u i v a l e n t s o b t a i n e d from u s i n g data a t o t h e r e l e v a t i o n s , can be ex p e c t e d t o be of h i g h a c c u r a c y . C a u t i o n s h o u l d be used though, when e x t r a p o l a t i n g water e q u i v a l e n t s from v a l l e y s t a t i o n s t o v e r y h i g h e l e v a t i o n s where snow c o n d i t i o n s may be q u i t e 86 d i f f e r e n t . 6.4 Accuracy Of Estimates The accuracy of e s t i m a t i n g the water e q u i v a l e n t s depends f i r s t l y on how w e l l the r e l a t i o n s h i p between water e q u i v a l e n t s and e l e v a t i o n i s known, and secondly on the s i m i l a r i t y of snow c o n d i t i o n s at the s i t e and the l o c a t i o n ( s ) used i n determining the estimated. The r e l a t i o n s h i p between the water e q u i v a l e n t s and e l e v a t i o n i s known with v a r y i n g degrees ' of c e r t a i n t y for the d i f f e r e n t r e g i o n s . The degree of c e r t a i n t y i s best evaluated by r e f e r r i n g to the r 2 of the l e a s t squares r e g r e s s i o n and to the s c a t t e r of the data p o i n t s which have be p l o t t e d mainly for t h i s purpose. I f the r e g r e s s i o n curve does not f i t the data p o i n t s c l o s e l y , e s p e c i a l l y near the upper and lower most e l e v a t i o n s , the values of the water e q u i v a l e n t should be d i r e c t l y read from the p l o t using these data p o i n t s and the r e g r e s s i o n - e q u a t i o n should not used. This i s p a r t i c u l a r l y true f o r the lower e l e v a t i o n s of the Coast-Vancouver Region p l o t s . S i m i l a r i t y of snow c o n d i t i o n s at the s i t e and measurement l o c a t i o n ( s ) used i s of prime importance. P l o t s of a l l the l o c a t i o n s i n the region should be examined to determine the r e g i o n a l v a r i a b i l i t y . I f most p l o t s w i t h i n the re g i o n are a l l s i m i l a r and the region d e f i n a t e l y i n c l u d e s the s i t e then s i m i l a r i t y of snow c o n d i t i o n s can be expected. S i m i l a r i t y of snow c o n d i t i o n s can be best determined by 37 e x a m i n i n g c l i m a t i c c o n d i t i o n s , a s p e c t a n d l o c a l e f f e c t s . The d e g r e e t h a t c o n d i t i o n s a r e t h e same w i l l l a r g e l y d e t e r m i n e t h e d e g r e e o f c o n f i d e n c e one may have i n t h e e s t i m a t e d snow l o a d s . 6.4.1 S i m i l a r i t y Of C l i m a t i c F a c t o r s An a p p r o x i m a t e i n d i c a t i o n . o f t h e s i m i l a r i t y 'of-, snow c o n d i t i o n s o f t h e s i t e a n d l o c a t i o n u s e d c a n be g i v e n by e x a m i n i n g c l i m a t i c i n f o r m a t i o n f o r t h e a r e a . A v a i l a b l e p r e c i p i t a t i o n d a t a f o r t h e s i t e a n d l o c a t i o n s c a n be c h e c k e d t o see i f t h e y h a v e s i m i l a r v a l u e s a n d show s i m i l a r t r e n d s . S i m i l a r i t y o f w a t e r e q u i v a l e n t s , mean snow d e p t h s a nd p r e c i p i t a t i o n c a n be e s t i m a t e d on a g r o s s s c a l e by r e f e r r i n g t o maps of w a t e r e q u i v a l e n t s , snow d e p t h s a nd p r e c i p i t a t i o n s u c h a s g i v e n i n F i g u r e s 2.2 - 2.4. 6.4.2 S i m i l a r i t y Of A s p e c t The e f f e c t o f a s p e c t on snow l o a d s i s two f o l d . S i n c e t h e amount o f s o l a r r a d i a t i o n v a r i e s w i t h a s p e c t , a s p e c t c a n i n f l u e n c e t h e m e l t i n g o f t h e snow c o v e r . I n n a t u r a l c o n d i t i o n s a s p e c t may n o t h a v e any e f f e c t on maximum snow p a c k [ 1 6 ] p r o b a b l y due t o t h e e f f e c t o f t h e f o r e s t c a n o p y . T h i s e f f e c t s h o u l d be c o n s i d e r e d i n e v a l u a t i n g any d a t a o b t a i n e d i n f o r e s t e d a r e a s . I n c l e a r i n g s o r on s t r u c t u r e s t h e e f f e c t o f a s p e c t c a n be s i g n i f i c a n t where w i n t e r m e l t i s common [ 1 6 ] . S o u t h f a c i n g s l o p e s w i l l g e n e r a l l y h a v e a l o w e r snow d e p t h t h a n s i m i l a r s l o p e s b u t w i t h a n o r t h e r n e x p o s u r e . 88 Aspect a l s o can i n f l u e n c e the accumulation . of the snowcover. On a r e g i o n a l b a s i s t h i s i s evidenced by l a r g e r accumulations on the windward sid e of mountain ranges and smaller accumulations on the leeward side (Figure 4.49). In Southern B r i t i s h Columbia the p r e v a i l i n g winds g e n e r a l l y move from west to e a s t . However, on a more l o c a l b a s i s , e s p e c i a l l y in mountainous (steeper) t e r r a i n , aspect may have the opposite e f f e c t and snow depths i n c r e a s e d . Snow i s o f t e n e n t r a i n e d i n a i r and c a r r i e d from the windward s i d e s of mountains to the leeward s i d e s where i t i s d e p o s i t e d . T h e r e f o r e , snow loads may be g r e a t e r than values based mainly on r e g i o n a l s n o w f a l l s . Aspect was not i n v e s t i g a t e d i n t h i s study, p r i m a r i l y because the e f f e c t of e l e v a t i o n i s much more pronounced than that of aspect, and the small number of l o c a t i o n s observed would not l i k e l y provide any usable r e s u l t s . In most cases the aspect of the l o c a t i o n s observed can be r e a d i l y determined by r e f e r i n g to a topographic map of the area concerned. The aspect of the l o c a t i o n can then be compared to that of the s i t e s . 6.4.3 L o c a l E f f e c t s C l ose geographic d i s t a n c e between the s i t e where snow loads are r e q u i r e d and the measurement l o c a t i o n s used to determine them i s u s u a l l y a good i n d i c a t o r that snow c o n d i t i o n s at the two p l a c e s are s i m i l a r . However, snow loads can be extremely v a r i a b l e and l o c a l e f f e c t s can s i g n i f i c a n t l y change the snow c h a r a c t e r i s t i c s over a d i s t a n c e of only a few k i l o m e t e r s . Snow 89 loads estimated from p l o t s of water e q u i v a l e n t s a g a i n s t e l e v a t i o n at nearby l o c a t i o n s or f o r the region must be used with extreme c a u t i o n i f no evidence e x i s t s to show that snow c o n d i t i o n s are s i m i l a r . A few examples i l l u s t r a t i n g the l o c a l v a r i a b i l i t y of snow loads can be.given. In the Lake Louise area, snow depths seem to vary i n bands, p o s s i b l y due to the e f f e c t of smaller v a l l e y s i n t e r s e c t i n g with the main one. At Donald, B.C. snow depths are s u b s t a n t i a l l y higher than at Golden, 23 km away, because of the e f f e c t of Rogers Pass. Water e q u i v a l e n t s at Mt. Copeland (Fi g u r e s 3.5, 3.23 are n o t i c e a b l y higher than those of nearby Mt. Revelstoke or Mt. F i d e l i t y (Figure's 3.3, 3.4 and .3.21, 3.22) 6.5 Determination Of Snow Loads At Other Return Periods For reasons e x p l a i n e d e a r l i e r , throughout t h i s paper only mean annual water e q u i v a l e n t s and 30 year r e t u r n maximum water e q u i v a l e n t s are given. R e f e r i n g to equation 3.1, the value of the water e q u i v a l e n t s (Xn) f o r a given r e t u r n p e r i o d (n) i s given by: Xn = mean + (Kn / K30)(X30 - mean) (6.1) where: Xn i s the maximum expected value i n n years Kn i s the c o e f f i c i e n t f o r a r e t u r n p e r i o d of n years K30 i s the c o e f f i c i e n t of a 30 year r e t u r n p e r i o d A value of 1.834 f o r K30 can be assumed. Kn f o r a normal d i s t r i b u t i o n can be found i n most s t a t i s t i c s books. A c t u a l l y i s 90 would be more c o r r e c t t o use the S t u d e n t - t v a l u e s of K, such as g i v e n i n T a b l e I I I however, o n l y r a t i o s of K a r e needed and a l s o the average v a l u e s of the degree of freedom r e q u i r e d by t h e S t u d e n t - t would be h a r d t o d e t e r m i n e . I f i t i s d e s i r e d , the a p p r o p r i a t e t r a n s f o r m a t i o n s can be made t o e q u a t i o n 6.1 t o use the cube r o o t normal d i s t r i b u t i o n i n s t e a d of the normal d i s t r i b u t i o n , but the r e s u l t s w i l l l i k e l y not v a r y much.. 91 Chapter 7. Summary and Conclusion The r e l a t i v e change of water e q u i v a l e n t s with e l e v a t i o n has been q u a n t i f i e d q u i t e w e l l . and should give r e l i a b l e water e q u i v a l e n t values when e x t r a p o l a t i n g snow loads from one e l e v a t i o n to another. S p a t i a l l y , water e q u i v a l e n t s are not very p r e d i c t a b l e , p r i m a r i l y because e f f e c t s of t e r r a i n , aspect, and other l o c a l c o n d i t i o n s are d i f f i c u l t to q u a n t i f y . As a r e s u l t the d e t e r m i n a t i o n of water e q u i v a l e n t s when no nearby snow data i s a v a i l a b l e i s only approximate and may be s i g n i f i c a n t l y d i f f e r e n t from true v a l u e s . One p o s s i b l e method to achieve values with a l a r g e r c e r t a i n t y would be to assemble a l l a v a i l a b l e water e q u i v a l e n t data f o r a r e g i o n . For these l o c a t i o n s , the values of the constant term, f o r the r e l a t i v e water e q u i v a l e n t curves given i n t h i s study c o u l d be determined (Equation 4.1). The values of the constants would not be dependent on e l e v a t i o n and contour maps of them c o u l d be made f o r the d i f f e r e n t r e g i o n s . Water e q u i v a l e n t s would be c a l c u l a t e d by determining the constant, and then using the a p p r o p r i a t e l i n e a r and q u a d r a t i c terms f o r the re g i o n i n the r e g r e s s i o n equation. The d e n s i t y of snow at the time of maximum water e q u i v a l e n t s has been found to show trends between regions and to vary c o n s i d e r a b l y w i t h i n r e g i o n s . No dependence of snow d e n s i t y with e l e v a t i o n was found, although there may be some c o r r e l a t i o n 92 o f d e n s i t y w i t h snow d e p t h . The v a l u e s o f snow d e n s i t y o b t a i n e d i n t h i s s t u d y have been c o n s i d e r a b l y h i g h e r t h a n t h e d e n s i t y u s e d • (0.2gm/cc) i n t h e d e t e r m i n a t i o n o f snow l o a d s g i v e n i n t h e N a t i o n a l B u i l d i n g Code. T h i s s u g g e s t s a s f a r a s 30 y e a r r e t u r n v a l u e s a r e c o n c e r n e d ( i . e . n o t t h e a d e q u a c y of t h e v a l u e s f o r d e s i g n ) t h a t t h e v a l u e s g i v e n i n t h e c o d e a r e t o o l o w . S i n c e g r o u n d snow l o a d s d e p e n d on t h e w e i g h t o f snow, i t w o u l d be b e n e f i c i a l i f new snow l o a d s were o b t a i n e d u s i n g m e a s u r e d v a l u e s of w a t e r e q u i v a l e n t d i r e c t l y . 93 REFERENCES (1) B e n j a m i m , J.R., and C o r n e l l , A.C., P r o b a b i l i t y ,  S t a t i s t i c s , a n d D e c i s i o n f o r C i v i l E n g i n e e r s , M c G r a w - H i l l Book Company, New Y o r k , 1970. (2) Boyd,D.W., "Maximum Snow D e p t h s a nd Snow L o a d s on R o o f s i n Ca n a d a , " P r o c e e d i n g s 2 t h A n n u a l M e e t i n g , W e s t e r n Snow  C o n f e r e n c e , S p o k a n e , W a s h i n g t o n , A p r i l 1961 ( r e p r i n t e d a s NRC 6312) pp. 6 - 16. (3) Brown, J o h n W., "An A p p r o a c h t o Snow L o a d E v a l u a t i o n " , P r o c e e d i n g s o f 3 8 t h A n n u a l M e e t i n g , W e s t e r n Snow  C o n f e r e n c e . p p . 5 2 - 6 0 (4) Chapman,J.D., "The C l i m a t e o f B r i t i s h C o l u m b i a , " p a p e r p r e s e n t e d t o t h e F i f t h B r i t i s h C o l u m b i a N a t u r a l R e s o u r c e s  C o n f e r e n c e , U n i v e r s i t y o f B r i t i s h C o l u m b i a , F e b r u a r y 27, 1952. (5) C l a u s , B.R., C o m p a c t i v e V i s c o s t i y o f Snow f r o m S e t t l e m e n t  Gauge M e a s u r e m e n t s , I n t e r n a l R e p o r t N r . 563, E i d g e n o e s s i s c h e s I n s t i t u t f u e r S c h n e e - und L a w i n e n f o r s h u n g , W e i s s f l u h j o c h / D a v o s , S w i t z e r l a n d , 1978. (6) Dingmans,S.H.E., and H e n d r i c , R., " V a r i a t i o n o f Snow P r o p e r t i e s w i t h E l e v a t i o n i n New H a m p s h i r e and V e r m o n t " , P r o c e e d i n g s : M o d e l i n g o f Snow C o v e r R u n o f f , S.C. C o l b e c k and M.Ray, e d i t o r s , U.S. Army C o l d R e g i o n s R e s e a r c h a n d E n g i n e e r i n g L a b o r a t o r y , H a n o v e r , New H a m p s h i r e , 26-28 S e p t e m b e r 1978. pp. 9 3 - 1 0 0 (7) D r a p e r N.R., a n d S m i t h , A p p l i e d R e g r e s s i o n A n a l y s i s , J o h n W i l e y & S o n s , I n c . , New Y o r k . 9 4 (8) . F a r l e y , A . L . , A t l a s Of B r i t i s h C o l u m b i a , The U n i v e r s i t y Of B r i t i s h C o l u m b i a P r e s s , 1979. pp. 42-44 (9) F a r l e y , A . L . , C l i m a t i c V a r i a b l e s F o r B r i t i s h C o l u m b i a , {A s e r i e s o f 25 maps a t a s c a l e o f 30 m i l e s / i n c h ) , V i c t o r i a : L a n d I n v e n t o r y , 1967, Maps 1 7 , 1 8 , 1 9 , 2 0 . (10) Grant,L.-O. And Rhea J.O., E l e v a t i o n And M e t e o r o l o g i c a l C o n t r o l s Of New Snow, i n A d v a n c e d C o n c e p t s a n d T e c h n i q u e s  i n t h e S t u d y o f Snow and I c e .Resources c o m p i l e d by H.S. S a n t e f o r d and J.L.. S m i t h , N a t i o n a l Academy o f S c i e n c e s , W a s h i n g t o n D.C., 1974, p p l 6 9 -181 (11) H e n d r i c k , R . L . , D e A n g e l i s , R . J . , a n d Dingman,S.L., "The R o l e o f E l e v a t i o n I n D e t e r m i n i n g S p a t i a l D i s t r i b u t i o n s o f - P r e c i p i t a t i o n , Snow, And Wat e r I n p u t A t Mt. M a n s f i e l d , V e r m o n t " , P r o c e d i n g s : M o d e l i n g o f Snow C o v e r R u n o f f , S.C. C o l b e c k a n d M.Ray, e d i t o r s , U.S. Army C o l d R e g i o n s R e s e a r c h a n d E n g i n e e r i n g L a b o r a t o r y , H a n o v e r , New H a m p s h i r e , 26-28 S e p t e m b e r 1978. pp. 9 3 - 1 0 0 (12) Isyumov,N. and D a v e n p o r t , A . G . , "A P r o b a b i l i s t i c A p p r o a c h t o t h e P r e d i c t i o n o f Snow L o a d s " , C a n a d i a n J o u r n a l o f  C i v i l E n g i n e e r i n g , V o l 1. No.1, S e p t . 1974,. pp. 28-49 (13) Kendrew W.G. And K e r r D., The C l i m a t e o f B r i t i s h C o l u m b i a a n d t h e Yukon T e r r i t o r y , Edmond C l o u t i e r , Queen's P r i n t e r , O t t a w a , 1955. (14) '' L u t e s ,'D.A. , "Snow L o a d s F o r The D e s i g n o f R o o f s i n C a n a d a " , P r o c e e d i n g s o f t h e W e s t e r n Snow C o n f e r e n c e , V i c t o r i a , B r i t i s h C o l u m b i a , A p r i l 21 - 23, 1970. pp. 61 - 67 (15) M a r t i n e c , J . , " E x p e c t e d Snow L o a d s On S t r u c t u r e s From I n c o m p l e t e H y d r o l o g i c D a t a " , J o u r n a l Of G l a c i o l o g y , V o l . 19, No. 8 1 , 1977, pp. 185-195 95 (16) Meiman,J.R. Snow A c c u m u l a t i o n R e l a t e d t o E l e v a t i o n , A s p e c t , and F o r e s t Canopy i n Snow H y d r o l o g y : P r o c e e d i n g s  of t h e Wor k s h o p S e m i n a r S p o n s o r e d by t h e C a n a d i a n  N a t i o n a l C o m m i t t e e f o r t h e I n t e r n a t i o n a l H y d r o l o q i c a l  D ecade a nd t h e U n i v e r s i t y o f New B r u n s w i c k , F e b r u a r y 28 & 29, 1968. pp. 3 6 - 4 6 (17) N a t i o n a l B u i l d i n g Code o f C a n a d a , 1951, i s s u e d by t h e A s s o c i a t e C o m m i t t e e on t h e NBC, N a t i o n a l R e s e a r c h C o u n c i l o f C a n a d a , O t t a w a (NRC No. 3 1 8 8 ) ( . 1 8 ) N a t i o n a l B u i l d i n g Code o f C a n a d a , 1977, i s s u e d by t h e A s s o c i a t e C o m m i t t e e on t h e NBC, N a t i o n a l R e s e a r c h C o u n c i l o f C a n a d a , O t t a w a (NRC No. 15555) (19) N a t i o n a l R e s e a r c h C o u n c i l , C l i m a t i c I n f o r m a t i o n f o r  B u i l d i n g Code o f C a n a d a , A s s o c i a t e C o m m i t t e e on t h e N a t i o n a l B u i l d i n g Code, NRCC No. 15556, 1977. pp. 1 - 10 (20) N a t i o n a l R e s e a r c h C o u n c i l , "Commentary H: Snow L o a d s " , C o m m e n t a r i e s on P a r t 4 o f t h e N a t i o n a l B u i l d i n g Code o f  C a n a d a , S u p p l e m e n t No.4, A s s o c i a t e C o m m i t t e e on t h e N a t i o n a l B u i l d i n g Code, NRCC No 15558, 1977. pp. 69-83 (21) P a c k e r , P a u l E., " E l e v a t i o n , A s p e c t , a n d C o v e r E f f e c t s on Maximum Snowpack W a t e r C o n t e n t i n a W e s t e r n W h i t e P i n e F o r e s t " , i n F o r e s t S c i e n c e , V o l . 8, No. 3, S e p t e m b e r 1962. Pp. 225 - 235 (22) P e t e r , B.G. , D a l g l i e s h W.A.,and S c h r i e v e r W.R., " V a r i a t i o n s o f Snow L o a d s on R o o f s " , T r a n s E n g i n e e r i n g I n s t i t u t e o f C a n a d a , V o l . 6, No. A - 1 , A p r i l 1963. (NRC No"! 7418) (23) R hea, J.D. And G r a n t L.O. " T o p o g r a p h i c I n f l u e n c e s on S n o w f a l l P a t t e r n s i n M o u n t a i n o u s T e r r a i n " , i n A d v a n c e d  C o n c e p t s a nd T e c h n i q u e s i n t h e S t u d y o f Snow and I c e - R e s o u r c e s c o m p i l e d by H.S. S a n t e f o r d a n d J . L . S m i t h , N a t i o n a l Academy o f S c i e n c e s , W a s h i n g t o n D . C , 1974, pp. 182 - 193 96 (24) S a l m , B r u n o , "Snow F o r c e s " , i n J o u r n a l o f G l a c i o l o q y , V o l . 1 9 , No. 8 1 , 1977. pp. 67 - 99 (25) S c h a e f e r , D.G. " C l i m a t e " , i n The S o i l L a n d s c a p e s o f  B r i t i s h C o l u m b i a e d i t e d by K . W . G . V a l e n t i n e , P . N . S p r o u t , a n d L.M. L a v k u l i c h , R e s o u r c e A n a l y s i s B r a n c h , M i n i s t r y o f t h e E n v i r o n m e n t , V i c t o r i a , B r i t i s h C o l u m b i a , 1978. pp 3 - 10 (26) S c h a e r e r , P e t e r , " V a r i a t i o n o f G r o u n d L o a d s i n B r i t i s h C o l u m b i a " , P r o c e e d i n g s o f t h e W e s t e r n Snow C o n f e r e n c e ,  V i c t o r i a , B.C. A p r i l 1970, pp. . 44-48, ( A l s o a s NRC R e s e a r c h P a p e r 479) (27) T a y l o r , D.A., "Roof Snow L o a d s i n C a n a d a " , . i n C a n a d i a n  J o u r n a l o f C i v i l E n g i n e e r i n g Volume 1, No. 1, p u b l i s h e d by The N a t i o n a l R e s e a r c h C o u n c i l o f Canada (DBR P a p e r No. 8 8 2 ) , M a r c h 1980 (28) Thomas,M.K., "A M e t h o d o f C o m p u t i n g Maximum. Snow l o a d s " , i n E n g i n e e r i n g J o u r n a l , V o l . 38,. No.2, F e b r u a r y 1955. pp. 120-123 (29) Z i n g g , T . " M a x i m a l e • S c h n e e l a s t e n i n d e r S c h w e i z " , S c h w e i z e r i s h e B a u z e i t u n g , 86. J a h r g . H t . 3 1 , A u g u s t 1968. pp. 55-57 97 APPENDIX I : WATER EQUIVALENT AND SNOW DEPTH STATISTICS  Key f o r a b b r e v i a t i o n s used LOC L o c a t i o n . STA S t a t i o n . ELEV E l e v a t i o n i n meters. N Number of y e a r s of measurements. MIN Minimum v a l u e MAX Maximum v a l u e MEAN . Mean v a l u e STD Sta n d a r d d e v i a t i o n COV C o e f f i c i e n t of v a r i t a t i o n N30YR 30 year r e t u r n u s i n g the S t u d e n t - t d i s t r i b u t i o n L30YR 30 year r e t u r n u s i n g the l o g S t u d e n t - t d i s t r i b u t i o n . G30YR 30 year r e t u r n u s i n g the Gumbel d i s t r i b u t i o n . C30YR 30 year r e t u r n u s i n g the cube r o o t S t u d e n t - t d i s t r i b u t i o CRM Mean of the cube r o o t v a l u e CRCM Means of the cube r o o t s taken t o the t h i r d power. CRSTD St a n d a r d d e v i a t i o n cube r o o t v a l u e s . CRCOV C o e f f i c i e n t of v a r i a t i o n of the cube r o o t v a l u e s . TCOV Transformed c o e f f i c e n t of v a r i a t i o n of the cube r o o t s , ( i e . TCOV = [(CRCOV +1)**3] - 1 ). LMEAN Mean of l o g s . LTMEAN A n t i - l o g s of means l o g s . » * « * « * * » » * * * 1 1 MOUNT R E V E L S T O K E * * * * * * * * * * * * * KQUirT S ; A T I S M ! N S ^ A X ' ^ M E A N ^ S T D COV N30YR L 3 0 Y R G30YR C 3 0 Y R CRM C R C M C R S T D C R C O V T C O V L M E A N L T M E A N L S T D L O C S T A E L E V N M I N 11 1. 0 4 9 7 . 12. 13. 2 11 2 . 0 6 1 4 . 12. 19. 8 11 3. 0 7 0 3 . 12. 2 1 . 8 11 4. 0 8 4 1 . 12. 28 . 7 11 5. 0 9 7 2 . 12. 3 1 . 7 11 6. 0 1 0 9 6 . 12. 4 1 . 9 11 7. 0 1 1 9 5 . 0. 0. 0 11 8. 0 1 3 2 3 . 12. 6 2 . 7 11 9. 0 1 4 8 7 . 12. 6 4 . 5 11 10. 0 1 5 7 4 . 12. 78 . 0 11 11. 0 1 6 4 9 . 12. 86 . 6 11 12. 0 1 8 0 1 . 11. 8 9 . 7 11 12. 5 1 8 2 9 . 0. 0. 0 11 13. 0 1902 . 12. 9 6 . 0 49 . 0 31 . 5 11. 7 0. 3 7 0 55 . 1 68 . 4 56. 9 61 . 8 3. 6 5 . 3 3 9 . 6 15. 0 0. 3 7 9 6 9 . 9 82 . 4 72. 3 76 . 4 3. 62 . 2 3 9 . 5 13. 9 0. 3 5 2 6 7 . 5 7 7 . 4 69 . 7 72 . 8 3. 70 . 9 4 5 . 2 14. 3 0. 3 1 6 74 . 0 8 1 . 4 76 . 3 78 . 2 3. 7 7 . 0 52. 6 14. 9 0. 2 8 3 82 . 6 8 9 . 8 84 . 9 86 . 7 3. 9 4 . 5 6 5 . 5 16. 3 0. 2 4 9 9 8 . 3 104. 2 100. 9 101. 7 4. 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 126. 2 84 . 6 18. 7 0. 221 122 . 3 126. 1 125. 2 124. 5 4. 132. 3 9 2 . 8 20 . 7 0. 2 2 3 134. 6 140. 7 137. 9 138. 2 4. 157. 0 108. 6 22 . 8 0. 2 1 0 154. 7 160. 1 158. 3 157. 9 4. 184. 4 120. 1 28 . 9 0. 241 178. 4 184. 5 183. 0 181. 9 4. 2 0 4 . 0 127 . 5 3 2 . 9 0. 2 5 8 194. 6 2 0 1 . 3 199 . 2 198. 3 5. 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 2 4 1 . 3 152. 5 4 5 . 0 0. 2 9 5 2 4 3 . 3 2 6 2 . 8 2 5 0 . 4 254 . 1 5. 11 3 0 . 1 0. 3 6 3 7 . 8 0. 3 6 3 8 . 0 0. 5 3 4 3 . 9 O. 7 2 51 . 3 0. 01 6 4 . 3 0. 0 0. 0 0. 3 7 8 3 . 4 O. 51 9 1 . 5 0. 7 5 107. 2 0. 91 118 . 1 0. 0 0 125 . 2 0. 0 0. 0 0. 3 0 148 . 6 0. 4 1 9 0. 1 3 4 7 0. 461 1. 4 6 6 2 9 . 3 0. 1 8 3 4 4 0 0. 1 3 1 0 0. 4 4 7 1. 5 6 7 3 6 . 9 0. \73 4 0 4 0. 1 2 0 2 0. 4 0 6 1. 571 3 7 . 2 0. 1 5 8 3 7 2 0. 1 0 5 4 0. 3 5 1 1. 6 3 5 4 3 . 2 0. 1 3 7 3 5 2 0. 0 9 4 6 0. 3 1 2 1. 7 0 5 50 . 7 0. 1 2 3 3 2 8 0. 0 8 1 9 0. 2 6 6 1. 8 0 4 6 3 . 7 0. 1 0 6 0 0. 0 0. 0 0. 0 0. 0 0. 0 3 1 0 0. 0 7 0 9 0. 2 2 8 1. 9 1 8 8 2 8 0. 0 9 1 3 2 9 0. 0 7 3 1 0. 2 3 6 1. 9 5 8 9 0 . 8 0. 0 9 4 3 2 4 0. 0 6 8 2 0. 2 1 9 2. 0 2 8 106 . 6 0. 0 8 8 3 7 6 0. 0 7 6 7 0. 2 4 8 2. 0 6 9 117 . 2 0. 0 9 8 4 0 7 0. 0 8 1 4 0. 2 6 5 2. 0 9 4 124. 1 0. 1 0 3 0 0. 0 0. 0 0. 0 0. 0 0. 0 5 1 4 0. 0 9 7 1 0. 3 2 0 2. 1 6 6 146 . 7 0. 1 2 6 SNOW D E P T H S T A T I S T I C S ( C E N T I L O C S T A E L E V N MIN MAX 11 1. 0 4 9 7 . 12. 38 . 145. 11 2 . 0 6 1 4 . 12. 6 3 . 175 . 11 3. 0 7 0 3 . 12 66 . 175. 11 4. 0 8 4 1 . 12. 58. 175. 11 5. 0 9 7 2 . 12. 6 9 . 198. 11 6. 0 1 0 9 6 . 12. 130. 2 2 4 . 11 7. 0 1 1 9 5 . 0. 0. 0. 11 8. 0 1 3 2 3 . 12. 150. 2 5 7 . 11 9. 0 1 4 8 7 . 12. 168. 2 7 7 . 11 10. 0 1574 . 12. 208 . 2 9 5 . 11 11. 0 1 6 4 9 . 12. 218 . 3 3 8 . 11 12. 0 1 8 0 1 . 11. 234 . 3 7 6 . 11 12. 5 1 8 2 9 . 0. 0. 0. 11 13. 0 1902 . 12 254 . 4 2 7 . ) MEAN S T D COV N30YR L 3 0 Y R 9 5 . 36 . 0. 3 7 9 167. 2 1 4 . 115. 36 . 0. 3 1 4 187. 2 1 5 . 117. 36 . 0. 3 1 1 190. 2 1 5 . 126. 35 . 0. 2 8 0 197. 2 3 0 . 148. 40. 0. 2 7 3 2 2 9 . 2 6 5 . 166 . 33 . 0. 1 9 9 2 3 3 . 2 4 1 . 0. 0. 0. 0 0. 0. 193 . 34 . 0. 174 2 6 1 . 2 6 9 . 2 1 3 . 30 . 0. 143 2 7 4 . 2 7 9 . 2 5 3 . 3 3 . 0. 129 3 1 9 . 3 2 5 . 2 6 9 . 42 . 0. 155 3 5 3 . 3 6 2 . 2 9 6 . 4 1 . 0. 1 3 9 3 7 9 . 3 8 7 . 0. 0. 0. 0 0. 0. 3 3 8 . 59. 0. 175 4 5 7 . 4 7 3 . G30YR C 3 0 Y R CRM C R C M C R S T D 172. 190 . 4. 4 8 9 0 . 0. 6 3 0 193. 2 0 2 . 4. 8 0 111 . 0. 5 2 9 195. 204 . 4. 8 3 113 . 0. 5 2 0 2 0 2 . 2 1 4 . 4. 9 6 122 . 0. 5 0 7 2 3 5 . 2 4 8 . 5. 2 4 144. 0. 5 1 8 2 3 8 . 2 3 7 . 5. 4 8 164. 0. 3 5 5 0. 0. 0. 0 0. 0. 0 2 6 6 . 2 6 6 . 5. 7 6 1 9 1 . 0. 3 3 1 2 7 9 . 2 7 7 . 5. 9 6 2 1 1 . 0. 2 7 9 3 2 4 . 3 2 3 . 6. 31 2 5 1 . 0. 2 7 2 3 6 0 . 3 5 9 . 6. 44 2 6 7 . 0. 3 2 9 3 8 5 . 3 8 4 . 6. 6 5 2 9 4 . 0. 3 0 5 0. 0. 0 0 0. 0. 0 4 6 7 . 4 6 7 . 6. 9 4 3 3 5 . 0. 4 0 2 C R C O V T C O V L M E A N L T M E A N L S T D 0. 1 4 0 7 0. 4 8 4 1. 9 4 0 8 7 . 0. 1 9 3 0. 1 1 0 0 0. 3 6 8 2. 0 3 8 109 . 0. 1 4 7 0. 1 0 7 5 0. 3 5 9 2. 0 4 6 111 . 0. 1 4 2 0. 1021 0. 3 3 9 2. 0 8 1 120 . 0. 1 4 0 0. 0 9 8 8 0. 3 2 7 2. 1 5 2 142 . 0. 1 3 5 0. 0 6 4 9 0. 2 0 7 2. 2 1 3 163 . 0. 0 8 4 0. 0 0. 0 0. 0 0. 0 0 0. 0 5 7 4 0. 182 2. 2 8 0 190 . 0. 0 7 5 0. 0 4 6 9 0. 1 4 7 2. 3 2 4 2 1 1 . 0. 0 6 1 0. 0 4 3 1 0. 1 3 5 2. 3 9 9 2 5 1 . 0. 0 5 6 0. 0 5 1 1 0. 161 2. 4 2 5 2 6 6 . 0. 0 6 6 0. 0 4 5 9 0. 144 2. 4 6 7 2 9 3 . 0. 0 6 0 0. 0 0. 0 0. 0 0. 0. 0 0. 0 5 7 9 0. 1 8 4 2. 5 2 3 3 3 3 . 0. 0 7 5 » ««»*«*»*»*»*12 FIDELITY MOUNTAIN »*****•*•»**«* WATER EQUIVALENT STATISTICS (CENTI LOC STA ELEV N MIN MAX MEAN 12 10. 0 959. 11. 25. 9 46. 2 36. 3 12 11. 0 1081. 12. 36. 1 82. 8 49. 1 12 12. 0 1192. 12. 45. 2 90. 2 60. 2 12 13. 0 1305. 12. 50. 0 95. 2 63. 5 12 14. 0 1455. 12. 57. 9 111.8 75. 9 12 15. 0 1486. 11. 66. 5 133. 3 85. 9 12 16. 0 1682. 12. 90. 2 172. 0 110. 5 12 17. 0 1807. 12. 95. 2 208. 3 125. 3 12 IB. 0 1894. 12. 102. 1 221. 0 142. 3 12 19. 0 1981. 11. 107. 2 244. 9 155. 6 ) STD COV N30YR L30YR G30YR C30YR CRM 6. 0 0. 165 48. 6 50. 7 49. 4 49. 8 3. 30 13. 3 0. 270 75. 9 77. 6 78. 0 76. 8 3. 64 13. 0 0. 216 86. 5 88. 9 88. 5 87. 9 3. 90 14. 5 0. 228 92. 7 95. 5 95. 0 94. 3 3. 97 16. 5 0. 217 109. 1 113. 3 111. 7 111. 6 4. 21 19. 2 0. 223 124. 9 127. 4 127. 6 126. 3 4. 39 23. 5 0. 213 157. 9 159. 7 161. 7 158. 9 4. 78 32. 2 0. 257 190. 3 194. 4 195. 4 192. 4 4. 97 35. 7 0. 251 214. 3 223. 5 219. 9 219. 6 5. 19 41. 6 0. 267 240. 2 253. 9 246. 0 248. 0 5. 34 CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD 36. 0 0. 185 0. 0561 0. 178 1. 555 35. 9 0. 074 48. 2 0. 303 0. 0833 0. 271 1. 679 47. 8 0..104 59. 5 0. 269 0. 0689 0. 221 1. 771 59. 1 0. 088 62. 6 0. 289 0. 0727 0. 234 1. 793 62. 1 0. 093 74. 9 0. 297 0. 0706 0. 227 1. 871 74. 4 0. 091 84. 7 0. 307 0. 0699 0. 225 1. 925 84. 2 0. 088 109. 1 0. 316 0. 0662 0. 212 2 035 108. 5 0. 083 123. 1 0. 396 0. 0796 0. 258 2. 087 122. 1 0. 100 139. 8 0. 418 0. 0B06 0. 262 2. 142 138. 6 0. 103 152. 4 0. 462 0. 0865 0. 283 2. 179 150. 9 0. I l l SNOW DEPTH STATISTICS (CENTIMETERS) LOC STA ELEV N MIN MAX MEAN 12 10. 0 959. 12. 81. 135. 104. 12 11. 0 1081. 12. 107. 173. 133. 12 12. 0 1192. 12. 122. 196. 156. 12 13. 0 1305. 12. 132. 213. 161. 12 14. 0 1455. 11. 145. 239. 189. 12 15. 0 1486. 11. 168. 274. 212. 42 16. 0 1682. 12. 208. 353. 261. 12 17. 0 1807. 12. 251. 401. 299. 12 18. 0 1894. 12. 246. 411. 320. 12 19. 0 1981. 11. 269. 427. 336. STD COV N30YR L30YR 030YR C30YR CRM 16. 0. 151 135. 139. 138. 137. 4. 69 24. 0. 178 180. 186. 184. 184. 5. 09 23. 0. 149 203. 208. 207. 206. 5. 37 25. 0. 158 212 216. 216. 214. 5. 42 29. 0. 153 247. 255. 251. 252. 5. 72 32. 0. 152 278. 285. 283. 282. 5. 95 40. 0. 153 341. 347. 347. 345. 6. 37 45. 0. 151 389. 395. 396. 393. 6. 67 52. 0. 162 424. 438. 432. 432. 6. 82 52. 0. 155 442. 457. 449. 451. 6. 94 CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD 103. 0. 234 0. 0499 0. 157 2. 012 103. 0. 065 132. 0. 297 0. 0585 0. 186 2. 117 131. 0. 076 155. 0. 267 0. 0497 0. 156 2. 188 154. 0. 065 159. 0. 279 0. 0514 0. 162 2. 201 159. 0. 066 187. 0. 292 0. 0510 0. 161 2. 271 187. 0. 066 211. 0. 298 0. 0501 0, 158 2. 323 210. 0. 065 259. 0. 317 0. 0497 0. 157 2. 412 258. 0. 064 297. 0. 324 0. 0486 0. 153 2. 471 296. 0. 062 317. 0. 368 0. 0540 0. 171 2. 499 316. 0. 070 334. 0. 360 0. 0519 0. 164 2. 522 333. 0. 068 VO VD »##*»**»**##»13 MOUNT COPELAND *****#**»#*#*# WATER EQUIVALENT STATISTICS (CENTIMETERS) LOC STA ELEV N MIN MAX MEAN STD COV N30YR L30YR 13 1. 0 617. 6. 51. 6 105. 2 75. 5 21. 2 0. 281 122. 9 139. 9 13 2. 0 777. 6. 64. 8 123. 2 92. 7 24. 7 0. 266 147. 8 164. 8 13 3. 0 884. 6. 74. 4 122. 7 98. 0 19. 6 0. 200 141. 9 151. 7 13 4. 0 960. 5. 84. 3 136. 7 109. 7 24. 6 0. 224 167. 3 180. 9 13 5. 0 1052. 5. 100. 3 176. 8 126. 1 31. 8 0. 252 200. 5 213. 8 13 6. 0 1213. 4. 112. 5 180. 3 144. 6 31. 1 0. 215 222. 4 244. 1 13 7. 0 1402. 4. 125. 0 166. 4 142. 7 17. 4 0. 122 186. 2 191. 2 13 8. 0 1524. 5. 135. 9 226. 1 167. 5 38. 3 0. 229 257. 1 272. 6 13 9. 0 1670. 5. 127. 0 227. 6 170. 4 40. 9 0. 240 265. 9 289. 0 13 10. 0 1836. 5. 154. 9 279. 4 196. 2 49. 7 0. 253 312. 3 329. 7 SNOW DEPTH STATISTICS (CENTIMETERS) LOC STA ELEV N MIN MAX MEAN STD COV N30YR L30YR 13 1. 0 617. 6. 127. 254. 195. 55. 0. 281 317. 363. 13 2. 0 777. 6. 160. 272. 228. 50. 0. 218 340. 372. 13 3. 0 884. 6. 188. 297. 243. 47. 0. 193 347. 368. 13 4. 0 960. 5. 208. 325. 253. 49. 0. 195 368. 386. 13 5. 0 1052. 5. 246. 330. 284. 41. 0. 146 381. 393. 13 6. 0 1213. 4. 274. 384. 328. 53. 0. 162 460. 487. 13 7. 0 1402. 4. 284. 340. 312. 26. 0. 084 378. 384. 13 8. 0 1524. 5. 300. 417. 345. 50. 0. 146 462. 476. 13 9. 0 1670. 5. 315. 467. 366. 62. 0. 170 511. 528. 13 10. 0 1836. 5. 300. 495. 378. 76. 0. 202 557. 587. G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD 121. 6 132. 4 4. 19 73. 8 0. 403 0. 0961 0. 317 1. 863 72. 9 0. 126 146. 3 157. 6 4. 50 90. 8 0. 405 0. 0901 0. 295 1. 954 89. 9 0..118 140. 7 147. 7 4. 59 96. 9 0. 310 0. 0674 0. 216 1. 984 96. 4 0. 088 163. 3 i75. 3 4. 77 108. 3 0. 355 0. 0745 0. 241 2. 032 107. 6 0. 097 195. 3 208. 3 4. 99 124. 2 0. 402 0. 0806 0. 262 2. 091 123. 2 0. 102 212. 2 235. 1 5. 23 143. 0 0. 377 0. 0721 0. 232 2. 153 142. 1 0. 094 180. 5 189. 3 5. 22 142. 2 0. 209 0. 0400 0. 125 2. 152 141. 9 0. 052 250. 9 266. 4 5. 49 165. 3 0. 405 0. 0738 0. 238 2. 216 164. 3 0. 094 259. 3 279. 3 5. 52 167. 8 0. 437 0. 0792 0. 257 2. 222 166. 6 0. 102 304. 3 322. 6 5. 78 193. 2 0. 461 0. 0798 0. 259 2. 283 191. 7 0. 101 G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD 314. 342. 5. 75 190. 0. 557 0. 0968 0. 319 2. 274 188. 0. 128 337. 359. 6. 08 225. 0. 457 0. 0750 0. 242 2. 349 224. 0. 099 344. 360. 6. 21 240. 0. 402 0. 0647 0. 207 2. 378 239. 0. 084 360. 379. 6. 30 250. 0. 400 0. 0635 0. 203 2. 396 249. 0. 082 374. 389. 6. 56 282. 0. 315 0. 0481 0. 151 2. 450 282. 0. 062 443. 477. 6. 88 326. 0. 373 0. 0542 0. 172 2. 511 325. 0. 071 369. 382. 6. 78 312. 0. 190 0. 0280 0. 086 2. 493 311. 0. 036 454. 471. 7. 00 343. 0. 334 0. 0477 0. 150 2. 534 342. 0. 062 501. 521. 7. 14 364. 0. 390 0. 0547 0. 173 2. 559 362. 0. 070 545. 575. 7. 21 374. 0. 474 0. 0657 0. 210 2. 571 373. 0. 084 » » « * * * * * * * 2 1 APEX MT (PENTICTON) * * * * * * * * « * # * * * WATER E Q U I V A L E N T S T A T I S T I C S (CENT LOC S T A E L E V N MIN MAX MEAN 21 1. 0 777. 9. 2. 0 15. 2 8. 1 21 2. 0 936. 9. 3. 0 19. 0 10. 2 21 3. 0 1024. 9. 4. 3 23. 6 12. 8 21 4. 0 1143. 9. 6. 9 27. 2 18. 0 21 5. 0 1241. 9. 10. 2 28. 4 20. 8 21 6. 0 1366. 9. 17. 3 41. 1 28. 1 21 7. 0 1436. 9. 17. 8 44. 4 30. 4 21 8. 0 1503. 9. 22. 9 58. 9 36. 5 21 9. 0 1762. 0. 0. 0 0. 0 0. 0 21 10. 0 1911. 0. 0. 0 0. 0 0. 0 ) STD COV N30YR L30YR G30YR C30YR CRM 4. 0 0. 490 16. 4 26. 8 16. 7 20. 5 1. 95 5. 0 0. 494 20. 6 31. 4 21. 1 25. 2 2. 10 6. 3 0. 489 25. 9 37. 4 26. 5 31. 0 2 2 8 8. 0 0. 445 34. 8 49. 0 35. 5 41. 4 2. 56 7. 0 0. 336 35. 4 43. 7 36. 0 39. 7 2. 71 8. 4 0. 299 45. 7 51. 3 46. 5 48. 8 3. 01 9. 6 0. 317 50. 5 58. 4 51. 3 54. 8 3. 0 9 12. 8 0. 351 63. 1 71. 2 64. 3 67. 5 3. 28 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 7. 4 0. 3 7 9 0. 1949 0. 7 0 6 0. 8 4 3 7. 0 0. 2 8 0 9. 3 0. 3 9 7 0. 1886 0. 6 7 9 0. 9 4 6 8. 8 0 . 2 6 4 11. 8 0. 414 0. 1818 0. 6 5 0 1. 0 5 2 11. 3 0. 2 5 0 16. 8 0. 431 0. 1683 0. 595 1. 2 0 8 16. 1 0. 231 20. 0 0. 3 3 5 0. 1234 0. 418 1. 291 19. 6 0. 168 27. 4 0. 3 0 7 0. 1017 0. 3 3 7 1. 432 27. 0 0. 133 29. 4 0. 341 0. 1104 0. 3 6 9 1. 462 28. 9 0. 146 35. 2 0. 3 8 2 0. 1165 0. 392 1. 538 34. 5 0. 151 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 SNOW DEPTH S T A T I S T I C S (CENTIMETERS) LOC STA E L E V N MIN MAX MEAN STD COV N30YR L30YR 21 1. 0 777. 9. 10. 58. 34. 14. 0. 421 64. 92. 21 2. 0 936. 9. 15. 66. 38. 16. 0. 425 71. 88. 21 3. 0 1024. 9. 23. 76. 49. 17. 0. 349 84. 102. 21 4. 0 1143. 9. 36. 99. 6 8 . 26. 0. 380 121. 150. 21 5. 0 1241. 9. 36. 102. 71. 21. 0. 300 116. 137. 21 6. 0 1366. 9. 63. 137. 99. 24. 0. 245 150. 163. 21 7. 0 1436. 9. 61. 147. 97. 28 0. 285 155. 171. 21 8. 0 1503. 9. 84. 147. 117. 26. 0. 220 170. 183. 21 9. 0 1762. 0. 0. 0. 0. 0 0. 0 0. 0. 21 10. 0 1911. 0. 0. 0. 0. 0 0. 0 0. 0. G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 65. 76. 3. 17 32. 0. 513 0. 1620 0. 569 1. 485 31. 0. 2 3 0 72. 79. 3. 29 36. 0. 4 8 2 0. 1468 0. 508 1. 538 34. 0. 196 85. 93. 3. 60 47. 0. 4 4 7 0. 1241 0. 421 1. 6 6 0 46. 0. 167 123. 136. 4. 01 64. 0. 545 0. 1360 0. 4 6 6 1. 798 63. 0. 182 118. 127. 4. 11 69. 0. 442 0. 1076 0. 3 5 9 1. 8 3 3 68. 0. 146 152. 157. 4. 60 98. 0. 3 8 2 0. 0 8 3 0 0. 2 7 0 1. 9 8 5 97. 0. 109 157. 164. 4. 56 95. 0. 4 3 9 0. 0 9 6 3 0. 318 1. 971 93. 0. 126 173. 178. 4. 86 115. 0. 3 6 5 0. 0751 0. 2 4 3 2. 0 5 8 114. 0. 0 9 9 0. 0. 0. 0 0. 0. 0 0. 0 0. 0 0. 0 0. 0. 0 0. 0. 0. 0 0. 0. 0 0. 0 0. 0 0. 0 0. 0. 0 * * « * * * * * » * * » 2 2 ENDERBY MOUNTAIN WATER EQUIVALENT S T A T I S T I C S ( C E N T I M E T E R S ) LOC STA E L E V N MIN MAX MEAN STD COV N30YR L30YR 22 0. 1 381. 11. 6. 3 22. 1 14. 1 5. 3 0. 379 24. 9 30. 9 22 0. 2 472 11. 6. 3 22. 1 14. 6 4. 6 0. 315 24. 0 29. 4 22 0. 3 610. 8. 6. 9 20. 8 13. 5 5. 0 0. 368 24. 0 28. 8 22 1. 0 756. 12. 5. 1 20. 3 14. 5 4. 8 0. 330 24. 1 31. 2 22 2. 0 8 5 0 . 12. 7. 6 21. 6 16. 2 4. 7 0. 2 9 3 25. 7 30. 8 22 3. 0 1015. 12. 12. 7 26. 7 20. 7 4. 8 0. 232 30. 3 33. 2 22 4. 0 1173. 12. 17. 3 33. 3 24. 7 5. 4 0. 219 35. 6 37. 8 22 5. 0 1320. 12. 22. 9 39. 9 31. 5 5. 8 0. 186 43. 2 45. 5 22 6. 0 1353. 11. 31. 0 61. 5 47. 4 10. 0 0. 211 67. 8 72. 8 22 7. 0 1463. 12. 40. 6 70. 4 54. 0 10. 1 0. 187 74. 4 77. 7 22 8. 0 1567. 12. 41. 1 77. 5 59. 3 12. 2 0. 206 84. 0 89. 2 22 9. 0 1686. 12. 54. 1 96. 5 74. 2 14. 3 0. 192 103. 0 108. 6 22 10. 0 1783. 12. 61. 5 105. 4 84. 1 14. 8 0. 176 113. 9 119. 9 22 11. 0 1913. 12. 67. 1 137. 2 101. 6 23. 8 0. 234 149. 7 160. 4 22 12. 0 2024. 5. 112. 8 141. 2 124. 5 11. 5 0. 0 9 3 151. 4 153. 6 SNOW DEPTH S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N MIN MAX MEAN STD COV N30YR L30YR 22 0. 1 381. 11. 25. 99. 55. 23. 0. 421 101. 120. 22 0. 2 472. 11. 30. 84. 56. 15. 0. 274 87. 97. 22 0. 3 610. 8. 30. 81. 52. 18. 0. 3 4 9 91. 107. 22 1. 0 756. 11. 36. 216. 70. 50. 0. 715 171. 160. 22 2. 0 8 5 0 . 11. 25. 76. 56. 15. 0. 2 6 6 86. 103. 22 3. 0 1015. 12. 38. 84. 61. 15. 0. 2 4 6 91. 99. 22 4. 0 1173. 12. 48. 104. 77. 16. 0. 204 108. 115. 22 5. 0 1320. 12. 66. 122. 95. 15. 0. 160 126. 132. 22 6. 0 1353. 11. S6. 155. 132. 20. 0. 150 172 183. 22 7. 0 1463. 12. 122. 180. 150. 19. 0. 124 188. 192. 22 8. 0 1567. 12. 127. 201. 164. 25. 0. 153 215. 221. 22 9. 0 1686. 12. 155. 249. 198. 28. 0. 140 254. 261. 22 10. 0 1783. 12. 170. 259. 220. 27. 0. 121 274. 281. 22 11. 0 1913. 12. 196. 325. 262. 40. 0. 154 343. 353. 22 12. 0 2024. 5. 267. 335. 302. 29. 0. 097 370 378. G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 25. 7 28. 0 2. 38 13. 4 0. 324 0. 1366 0. 4 6 8 1. 116 13. 0 0. 184 24. 6 26. 8 2. 42 14. 1 0. 2 8 3 0. 1170 0. 394 1. 140 13. 8 0. .161 24. 3 26. 5 2. 35 12. 9 0. 2 9 9 0. 1276 0. 434 1. 102 12. 6 0. 168 24. 9 27. 6 2. 40 13. 9 0. 3 0 6 0. 1274 0. 433 1. 132 13. 6 0. 179 26. 5 28. 4 2. 50 15. 7 0. 2 7 2 0. 1088 0. 3 6 3 1. 188 15. 4 0. 149 31. 1 32. 0 2. 73 20. 3 0. 2 2 2 0. 0 8 1 2 0. 264 1. 3 0 3 20. 1 0. 108 36. 4 36. 9 2. 90 24. 3 0. 2 1 5 0. 0741 0. 2 3 9 1. 3 8 2 24. 1 0. 097 44. 2 44. 6 3. 15 31. 1 0. 199 0. 0 6 3 3 0. 2 0 2 1. 491 30. 9 0. 0 8 3 69. 2 70. 7 3. 60 46. 7 0. 261 0. 0 7 2 6 0. 234 1. 6 6 7 46. 4 0. 0 9 6 76. 0 76. 4 3. 77 53. 4 0. 236 0. 0 6 2 7 0. 2 0 0 1. 725 53. 1 0. 0 8 2 86. 0 87. 1 3. 8 8 58. 6 0. 2 7 2 0. 0 7 0 2 0. 2 2 6 1. 765 58. 2 0. 0 9 2 105. 2 106. 3 4. 19 73. 4 0. 2 7 3 0. 0 6 5 3 0. 2 0 9 1. 8 6 3 72. 9 0. 0 8 6 116. 3 117. 5 4. 37 8 3 . 2 0. 2 6 4 0. 0 6 0 4 0. 192 1. 918 82. 8 0. 0 8 0 153. 4 155. 8 4. 64 99. 9 0. 3 6 8 0. 0 7 9 2 0. 257 1. 9 9 6 99. 0 0. 104 149. 6 152. 8 4. 99 124. 2 0. 153 0. 0 3 0 7 0. 0 9 5 2. 0 9 4 124. 0 0. 0 4 0 G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 104. 111. 3. 72 52. 0. 530 0. 1423 0. 491 1. 701 50. 0. 186 90. 93. 3. 8 0 55. 0. 357 0. 0 9 4 0 0. 3 0 9 1. 733 54. 0. 125 92. 99. 3 69 50. 0. 444 0. 1202 0. 4 0 6 1. 6 9 3 49. 0. 159 178. 163. 3. 9 9 63. 0. 722 0. 1810 0. 647 1. 786 61. 0. 2 0 5 88. 95. 3. 78 54. 0. 3 8 0 0. 1003 0. 332 1. 728 53. 0. 140 94. 96. 3. 91 60. 0. 3 2 8 0. 0 6 3 9 0. 273 1. 773 59. 0. 110 111. 112. 4. 2 3 76. 0. 2 9 5 0. 0 6 9 7 0. 224 1. 8 7 6 75. 0. 0 9 2 128. 130. 4. 55 94. 0. 251 0. 0551 0. 175 1. 973 94. 0. 0 7 3 175. 178. 5. 07 131. 0. 273 0. 0 5 3 8 0. 170 2. 114 130. 0. 0 7 3 190. 190. 5. 30 149. 0. 220 0. 0 4 1 5 0. 130 2. 173 149. 0. 054 219. 219. 5. 46 163. 0. 2 7 9 0. 0 5 1 0 0. 161 2. 211 162. 0. 067 259. 258. 5. 82 197. 0. 273 0. 0 4 6 8 0. 147 2. 2 9 3 197. 0. 0 6 1 _ 278. 278. 6. 0 3 219. 0. 2 4 8 0. 0411 0. 128 2. 3 3 9 21B. 0. 05<»o 0 6 7 349. 349. 6. 38 2 6 0 . 0. 3 2 8 0. 0514 0. 162 2. 413 259. 0. 365. 375. 6. 70 301. 0. 218 0. 0 3 2 5 0. 101 2. 478 301. 0. 0 4 2 « * » * * * » » * * 2 3 VERNON - S I L V E R S T A R * * « » * * * * * « * » * » * WATER E Q U I V A L E N T S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N 23 0. 1 381. 11. 23 0. 2 530. 11. 23 1. 0 716. 11. 23 2. 0 8 8 1 . 11. 23 3. 0 1097. 12. 2 3 3. S 1097. 0. 23 4. 0 1247. 9. 23 4. 5 1247. 0. 23 5. 0 1366. 12. 23 6. 0 1472. 10. 23 7. 0 1597. 12. 2 3 8. 0 1679. 12. 23 9. 0 1844. 9. 2 3 9. 2 1850. 3. 2 3 9. 5 1881. 0. MIN 2. 5 2. 5 5. 1 6. 3 8. 9 0. 0 MAX MEAN STD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 11. 7 0. 0 23. 6 27. 4 37. 8 43. 7 48. 8 54. 1 0. 0 18. 15. 16. 20. 24. 0. 28. 0. 47. 2 49. 8 71. 6 93. 2 113. 5 86. 9 0. 0 3 7 0 3 1 0 7 0 8. 4 9. 5 11.1 14. 0 16. 7 0. 0 21. 5 0. 0 32. 9 36. 2 52. 8 67. 2 86. 0 74. 9 0. 0 4. 7 4. 8 3. 7 4. 3 5. 3 0. 0 5. 2 0. 0 7. 2 7. 9 11. 7 15. 0 22. 0 18. 1 0. 0 0. 556 0. 505 0. 337 0. 310 0. 315 0. 0 0. 242 0. 0 0. 2 1 9 0. 219 0. 222 0. 2 2 3 0. 256 0. 242 0. 0 18. 0 19. 3 18. 7 22. 8 27. 3 0. 0 32. 3 0. 0 47. 5 52. 5 76. 4 97. 5 131. 9 126. 0 0. 0 23. 9 28. 7 22. 6 27. 3 31. 7 0. 0 36. 7 0. 0 49. 4 55. 5 81 104 149 154 0 18. 6 19. 9 19. 2 23. 4 28. 1 0. 0 32. 8 0. 48 53 78 99 133 114 0 5 3 7 20. 23. 20. 25. 1 29. 7 0. 0 34. 7 0. 0 48. 6 54. 3 79. 2 101. 4 141. 8 141. 4 0. 0 1. 97 7. 7 0. 376 0. 1907 0. 6 8 8 0. 8 6 3 7. 3 0. 2 5 3 2. 0 5 8. 6 0. 3 9 6 0. 1930 0. 6 9 8 0. 9 1 3 8. 2 0 . 2 6 8 2. 20 10. 7 0. 2 6 8 0. 1218 0. 412 1. 0 1 9 10. 5 0. 165 2. 38 13. 5 0. 2 6 9 0. 1127 0. 378 1. 123 13. 3 0. 154 2. 53 16. 1 0. 2 8 2 0. 1115 0. 373 1. 2 0 0 15. 9 0. 149 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 2. 76 21. 1 0. 2 4 0 0. 0 8 6 9 0. 284 1. 319 2 0 . 8 0. 118 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 3. 19 32. 5 0. 2 2 8 0. 0 7 1 3 0. 2 3 0 1. 509 32. 3 0. 0 9 2 3. 29 35. 7 0. 2 4 0 0. 0 7 2 9 0. 2 3 5 1. 550 35. 4 0. 0 9 5 3. 7 3 52. 0 0. 2 7 9 0. 0 7 4 7 0. 241 1. 713 51. 6 0. 0 9 8 4. 04 66. 2 0. 3 0 6 0. 0 7 5 7 0. 2 4 5 1. 817 65. 6 0. 100 4. 38 84. 1 0. 4 0 0 0. 0 9 1 2 0. 2 9 9 1. 9 2 0 8 3 . 2 0. 123 4. 2 0 73. 9 0. 3 5 9 0. 0 8 5 6 0. 2 8 0 1. 8 6 5 73. 3 0. 115 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 SNOW DEPTH S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N MIN MAX MEAN 23 23 23 2 3 23 23 23 23 23 23 23 23 23 23 23 0. 1 0. 2 1. 0 2. 0 3. 0 3. 5 4. 0 4. 5 5. 0 6. 0 7. 0 8. 0 9. 0 9. 2 9. 5 381. 530. 716. 881. 1097. 1097. 1247. 1247. 1366. 1472. 1597. 1679. 1844. 1850. 1881. 10. 10. 11. 11. 12. 0. 9. 0. 12. 10. 12. 12. 9. 3. 0. 18. 25. 33. 33. 30. 0. 46. 0. 81. 97. 119. 130. 160. 145. 0. 76. 79. 79. 71. 79. 0. 104. 0. 122. 137. 190. 234. 259. 226. 0. 37. 44. 48. 53. 58. 0. 74. 0. 101. 115. 149. 177. 217. 194. 0. STD 20. 0. 16. 0. 14. 0. 12. 0. 17. 0. COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 0. 20. 0. 14. 16. 24. 29. 39. 43. 0 539 369 294 231 297 0 266 0 142 139 160 163 178 222 0 77. 78. 77. 78. 93. 0. 115. 0. 130. 148. 198. 235. 298. 316. 0. 93. 87. 82. 86. 110. 0. 127. 0. 134. 152. 203. 243. 317. 374. 0. 80. 80. 79. 79. 96. 0. 117. 0. 132. 150. 201. 2 4 0 301. 288. 0. 85. 3. 23 34. 0. 564 0. 1742 0. 6 1 9 1. 512 33. 0. 221 82. 3. 49 42. 0. 419 0. 1201 0. 4 0 5 1. 619 42. 0. 155 8 0 . 3. 61 47. 0. 3 4 3 0. 0951 0. 3 1 3 1. 667 46. 0. 122 82. 3. 73 52. 0. 303 0. 0 8 1 3 0. 2 6 4 1. 711 51. 0. 109 102. 3. 84 57. 0. 414 0. 1079 0. 3 6 0 1. 746 56. 0. 146 0. 0. 0 0. 0. 0 0. 0 0. 0 0. 0 0. 0. 0 122. 4. 17 73. 0. 375 0. 0 8 9 8 0. 294 1. 857 72. 0. 118 0. 0. 0 0. 0. 0 0. 0 0. 0 0. 0 0. 0. 0 133. 4. 65 100. 0. 224 0. 0 4 8 2 0. 152 2. 001 100. 0. 0 6 3 151. 4. 8 6 115. 0. 2 2 5 0. 0 4 6 4 0. 146 2. 058 114. 0. 0 6 0 201. 5. 29 148. 0. 281 0. 0531 0. 168 2. 169 148. 0. 0 6 9 2 4 0 . 5. 60 176. 0. 304 0. 0 5 4 3 0. 172 2. 243 175. 0. 071 0 8 2 ^ 3 0 9 . 5. 99 215. 0. 3 6 9 0. 0 6 1 6 0. 197 2. 331 214. 0. 348. 5. 77 192. 0. 4 4 9 0. 0 7 7 9 0. 2 5 2 2. 2 8 0 191. 0. 1 0 4 C O 0. 0. 0 0 0. 0 0. 0 0. 0 0. 0 0. 0. 0 » * » * * * # 3 1 CRESTQN - KOOTENAY PASS * * * * * * * * * * * * * * WATER E Q U I V A L E N T S T A T I S T I C S ( C E N T I M E T E R S ) LOC STA E L E V N MIN MAX MEAN STD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 31 1 . 0 541. 9. 4 . 6 2 0 . 8 1 3 . 9 6 . 7 0 . 4 7 9 2 7 . 8 4 2 . 8 2 8 . 4 3 4 . 5 2 34 1 2 . 8 0 . 4 4 0 0 . 1 8 8 3 0 . 6 7 8 1 . 0 8 3 12.1 0 . 2 6 3 31 2 . 0 616. 9. 5 . 6 2 4 . 6 1 6 . 8 6 . 7 0 . 3 9 9 3 0 . 8 4 5 . 5 31 4 3 7 . 4 2 51 1 5 . 8 0 . 4 0 2 0 . 1 6 0 4 0 . 5 6 2 1.181 1 5 . 2 0 . 2 2 9 31 3. 0 735. 0. 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 31 4 . 0 8 2 0 . 9. 8 . 4 3 6 . 8 2 3 . 1 9 . 6 0 . 4 1 4 4 3 . 0 5 9 . 9 43 9 5 0 . 8 2 . 7 9 2 1 . 7 0 . 4 3 8 0 . 1 5 7 2 0 . 5 4 9 1.321 2 0 . 9 0 . 2 1 9 31 5 . 0 914. 9. 1 2 . 7 4 5 . 7 2 9 . 8 1 0 . 7 0 . 3 6 1 5 2 . 2 6 4 . 5 5 3 . 1 5 8 . 3 3 0 6 2 8 . 5 0 . 3 9 5 0 . 1 2 9 2 0 . 4 4 0 1 . 4 4 5 2 7 . 9 0 . 1 7 5 31 6 . 0 1015. 9. 1 3 . 5 5 0 . 3 3 2 . 8 1 2 . 2 0 . 3 7 3 5 8 . 4 7 3 . 6 5 9 . 5 6 5 . 9 3 . 1 5 3 1 . 3 0 . 4 2 5 0 . 1 3 4 8 0 . 4 6 1 1. 4 8 5 30. 5 0. 183 31 7 . 0 1119. 9. 1 1 . 9 5 8 . 9 3 7 . 1 1 3 . 6 0 . 3 6 7 6 5 . 4 9 0 . 1 6 6 . 7 7 6 . 6 3 . 2 8 3 5 . 3 0 . 4 6 4 0 . 1 4 1 5 0 . 4 8 8 1 . 5 3 4 3 4 . 2 0 . 2 0 2 31 8 . 0 1271. 9. 2 4 . 1 7 5 . 4 4 8 . 6 1 5 . 2 0 . 3 1 2 8 0 . 3 9 3 . 2 8 1 . 7 8 7 0 3 . 6 1 4 7 . 1 0 . 3 9 3 0 . 1 0 8 7 0 . 3 6 3 1 . 6 6 6 4 6 . 4 0 . 1 4 5 31 9 . 0 1355. 9. 2 7 . 9 8 2 . 5 5 3 . 1 1 5 . 8 0 . 2 9 7 8 6 . 0 9 7 . 9 8 7 . 4 9 2 . 3 3 . 7 2 5 1 . 6 0 . 3 8 1 0 . 1 0 2 5 0 . 3 4 0 1 . 7 0 7 5 0 . 9 0 . 1 3 6 31 1 0 . 0 1439. 9. 3 0 . 2 1 0 9 . 0 6 6 . 8 2 4 . 8 0 . 3 7 1 1 1 8 . 5 1 4 3 . 3 1 2 0 . 7 1 3 0 . 9 4 . 0 0 6 3 . 9 0 . 5 1 7 0 . 1 2 9 4 0 . 4 4 1 1 . 7 9 6 6 2 . 5 0 . 1 7 3 31 1 1 . 0 1826. 9. 5 7 . 4 1 8 3 . 4 1 1 5 . 7 4 2 . 2 0 . 3 6 5 2 0 3 . 8 2 4 3 . 9 2 0 7 . 6 2 2 4 . 4 4 . 8 1 1 1 1 . 0 0 . 6 1 0 0 . 1 2 6 8 0 . 4 3 1 2 . 0 3 6 1 0 8 . 6 0 . 1 6 9 SNOW DEPTH S T A T I S T I C S ( C E N T I M E T E R S ) LOC STA E L E V N MIN MAX MEAN 31 1. 0 541. 9. 10. 84. 47. 31 2. 0 616. 9. 23. 74. 55. 31 3. 0 735. 0. 0. 0. 0. 31 4. 0 8 2 0 . 9. 41. 114. 77. 31 5. 0 914. 9. 66. 157. 106. 31 6. 0 1015. 9. 71. 152. 108. 31 7. 0 1119. 9. 63. 155. 114. 31 8. 0 1271. 9. 81. 190. 136. 31 9. 0 1355. 9. 89. 201. 145. 31 10. 0 1439. 9. 97. 257. 171. 31 11. 0 1826. 9. 178. 376. 274. STD COV N30YR L30YR G30YR C30YR CRM 27. 0. 567 102. 174. 104. 130. 3. 4 6 19. 0. 350 95. 133. 97. 114. 3. 74 0. 0. 0 0. 0. 0. 0. 0. 0 23. 0. 304 126. 151. 128. 139. 4. 21 29. 0. 273 166. 186. 169. 177. 4. 6 9 29. 0. 2 6 9 168. 184. 170. 177. 4. 72 32. 0. 285 181. 208. 184. 196. 4. 8 0 33. 0. 244 205. 226. 208. 216. 5. 11 30. 0. 207 207. 223. 210. 216. 5. 2 2 44. 0. 260 263. 289. 267. 277. 5. 51 65. 0. 239 410. 445. 416. 430. 6. 4 6 CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 41. 0. 771 0. 2 2 2 8 0. 8 2 8 1. 586 39. 0. 314 52. 0. 528 0. 1409 0. 4 8 5 1. 707 51. 0. 201 0. 0. 0 0. 0 0. 0 0. 0 0. 0. 0 75 0. 4 6 3 0. 1100 0. 367 1. 8 6 6 73. 0. 149 103. 0. 441 0. 0 9 4 0 0. 3 0 9 2. 010 102. 0. 125 105. 0. 429 0. 0 9 0 9 0. 2 9 8 2. 017 104. 0. 119 111. 0. 4 8 0 0. 1001 0. 331 2. 038 109. 0. 134 133. 0. 431 0. 0 8 4 4 0. 275 2. 120 132. 0. 112 143. 0. 373 0. 0 7 1 3 0. 2 3 0 2. 151 142. 0. 0 9 5 167. 0. 485 0. 0881 0. 2 8 8 2. 218 165. 0. 117 269. 0. 523 0. 0 8 1 0 0. 2 6 3 2. 426 267. 0. 106 **#*»**32 ROSSLAND - GRANITE MOUNTAIN *******#** LSJ E STA Q U IELEV N T SN A T I SmN S <CMAXTIMMEANS)STD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD LOC STA ELEV N 32 1. 0 483. 11. 32 2. 0 594. 11. 32 3. 0 707. 11. 32 3. 5 853. 6. 32 4. 0 960. 11. 32 4. 5 1085. 9. 32 5. 0 1106. 8. 32 6. 0 1164. 11. 32 7. 0 1320. 11. 32 8. 0 1524. 5. 32 9. 0 1692. 11. 4. 1 33. 8 12. 4 8. 4 0. 676 29. 4 36. 4 30. 6 32. 1 2. 3 36. 3 17. 2 9. 4 0. 549 36. 4 68. 3 37. 7 47. 0 7. 6 38. 9 20. 4 8. 6 0. 421 37. 9 46. 2 39. 1 41. 7 11. 4 31. 0 21. 2 6. 8 0. 323 36. 5 44. 2 36. 1 40. 5 9. 7 48. 8 25. 5 10. 7 0. 417 47. 2 *58. 1 48. 7 52. 3 15. 7 43. 7 31. 1 9. 3 0. 300 50. 5 59. 1 51. 4 55. 1 24. 6 63. 5 40. 2 13. 2 0. 327 68. 1 75. 9 68. 9 72. 4 19. 0 68. 8 42. 4 14. 1 0. 332 71. 1 82. 8 73. 0 77. 0 27. 2 87. 1 59. 4 17. 8 0. 300 95. 6 112. 1 98. 1 104. 2 49. 0 90. 2 65. 7 16. 1 0. 246 103. 4 111. 8 100. 8 108. 3 36. 8 124. 5 81. 7 27. 5 0. 336 137. 5 164. 7 141. 4 151. 6 2.22 11.0 0.469 0.2110 0.776 1.015 10.4 0.268 2. 48 15. 2 0. 556 0. 2243 0. 835 1. 146 14. 0 0. 338 2. 68 19. 3 0. 386 0. 1439 0. 497 1. 273 18. 7 0. 192 2. 74 20. 5 O. 311 0. 1134 0. 380 1. 306 20. 2 0. 152 2. 89 24. 2 0. 416 0. 1440 0. 497 1. 371 23. 5 0. 193 3. 11 30. 2 0. 332 0. 1065 0. 355 1. 473 29. 7 0. 143 3. 39 39. 0 0. 366 0. 1078 0. 360 1. 585 38. 4 0. 139 3 45 40. 9 0. 397 O. 1153 0. 387 1. 604 40. 2 0. 154 3. 86 57. 6 0. 414 0. 1073 0. 358 1. 753 56. 7 0. 146 4. 01 64. 7 0. 322 0. 0802 0. 260 1. 807 64. 2 0. 103 4. 28 78. 6 0. 515 0. 1203 0. 406 1. 886 77. 0 0. 162 SNOW DEPTH STATISTICS (CENTIMETERS) LOC STA ELEV N MIN MAX MEAN 32 1. 0 485. 10. 18. 91. 43. 32 2. 0 594. 11. 10. 107. 52. 32 3. 0 707. 11. 25. 117. 69. 32' 3. 5 853. 6. 53. 89. 68. 32 4. 0 960. 11. 38. 137. 80. 32 4. 5 1085. 9. 63. 145. 103. 32 5. 0 1106. 8. 79. 175. 122. 32 6. 0 1164. 10. 61. 183. 122. 32 7. 0 1320. 11. 71. 190. 150. 32 8. 0 1524. 5. 147. 218. 174. 32 9. 0 1692. 11. 127. 305. 226. STD COV N30YR L30YR G30YR C30YR CRM 23. 0. 537 90. 109. 93. 99. 3. 40 27. 0. 508 107. 175. 110. 132. 3. 62 24. 0. 345 118. 146. 121. 131. 4. 05 14. 0. 208 99. 105. 98. 102. 4. 06 30. 0. 374 140, 166. 145. 153. 4. 24 28. 0. 273 161. 179. 164. 171. 4. 65 37. 0. 303 200. 227. 202. 215. 4. 91 41. 0. 333 206. 238. 210. 223. 4. 90 34. 0. 229 220. 256. 225. 239, 5. 28 31. 0. 180 247. 258. 242. 254. 5. 57 55. 0. 244 338. 376. 346. 359. 6. 05 CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD 39. 0. 595 0. 1749 0. 622 1. 578 38. 0. 224 47. 0. 725 0. 2002 0. 729 1. 649 45. 0. 292 67. 0. 506 0. 1248 0. 423 1. 813 65. 0. 173 67. 0. 277 0. 0682 0. 219 1. 823 67. 0. 088 76. 0. 547 0. 1290 0. 439 1. 872 75. 0. 171 100. 0. 434 0. 0933 0. 307 1. 997 99. 0. 123 119. 0. 508 0. 1034 0. 344 2. 068 117. 0. 136 118. 0. 564 0. 1150 0. 386 2. 063 116. 0. 153 147. 0. 456 0. 0863 0. 282 2. 163 145. 0. 120 173. 0. 327 0. 0588 0. 187 2. 235 172. 0. 076 221. 0. 520 0. 0859 0. 281 2. 341 219. 0. 115 i—» o ***»*****»***»*33 JERSEY MINE *«*»*#***•*«#***** WATER EQUIVALENT STATISTICS (CENTIMETERS) LOC STA ELEV N MIN MAX MEAN STD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD 33 1. 0 668. 11. 8. 1 31. 0 22. 4 7. 3 0. 327 37. 3 49. 3 38. 4 43. 1 2. 78 21. 5 0. 357 0. 1285 0. 437 1. 321 21. 0 0. 183 33 2. 0 777. 11. 10. 9 35. 1 26. 0 7. 8 0. 300 41. 9 52. 5 43. 0 47. 3 2. 93 25. 2 0. 337 0. 1150 0. 386 1. 392 24. 7 0. 161 33 3. 0 815. 11 14. 5 39. 9 28. 9 7. 1 0. 247 43. 4 49. 8 44. 4 46. 8 3. 05 28. 3 0. 274 0. 0898 0. 294 1. 447 28. 0 0. 123 33 4. 0 1000. 11. 23. 6 47. 5 34. 2 6. 8 0. 199 48. 1 50. 6 49. 1 49. 6 3. 23 33. 8 0. 216 0. 0668 0. 214 1. 527 33. 6 0. 087 33 5. 0 1113. 11. 23. 4 51. 3 37. 1 8. 0 0. 215 53. 4 56. 8 54. 5 55. 4 3. 32 36. 6 0. 241 0. 0726 0. 234 1. 561 36. 4 0. 095 33 6. 0 1219. 11. 26. 2 59. 9 42. 0 10. 0 0. 238 62. 3 67. 0 63. 7 65. 0 3. 46 41. 3 0. 277 0. 0802 0. 261 1. 612 40. 9 0. 105 33 7. 0 1323. 11. 33. 5 70. 6 46. 8 10. 1 0. 215 67. 3 69. 3 68. 8 68. 4 3. 59 46. 2 0. 246 0. 0687 0. 220 1. 662 45. 9 0. 088 33 8. 0 1430. 11. 31. 7 77. 0 50. 6 12. 0 0. 237 75. 0 79. 7 76. 7 77. 6 3. 68 49. 8 0. 288 0. 0784 0. 254 1. 694 49. 4 0. 102 SNOW DEPTH STATISTICS (CENTIMETERS) LOC STA ELEV N MIN MAX MEAN STD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD 33 1. 0 668. 1 1. 23. 84. 65. 19. 0. 301 104. 135. 107. 119. 3. 97 62. 0. 470 0. 1184 0. 399 1. 786 61. 0. 169 33 2. 0 777. 1 1. 43. 114. 81. 23. 0. 280 128. 145. 131. 137. 4. 29 79. 0. 424 0. 0987 0. 326 1. 893 78. 0. 132 33 3. 0 815. 1 1. 53. 124. 88. 21. 0. 244 132. 145. 135. 139. 4. 42 86. 0. 376 0. 0850 0. 277 1. 932 86. 0. 113 33 4. 0 1000. 1 1. 74. 160. 108. 22. 0. 206 153. 158. 156. 156. 4. 74 107. 0. 314 0. 0662 0. 212 2. 025 106. 0. 085 33 5. 0 1113. 1 1. 81. 140. 112. 17. 0. 157 147. 153. 150. 151. 4. 80 111. 0. 255 0. 0530 0. 168 2. 043 no. 0. 070 33 6. 0 1219. 1 1. 91. 157. 119. 21. 0. 179 162. 167. 165. 165. 4. 90 118. 0. 288 0. 0587 0. 187 2. 069 117. 0. 076 33 7. 0 1323. 1 1. 84. 178. 126. 28. 0. 222 183. 190. 186. 187. 4. 99 124. 0. 358 0. 0718 0. 231 2. 090 123. 0. 092 33 8. 0 1430. 1 1. 107. 190. 137. 26. 0. 188 189. 193. 193. 191. 5. 14 136. 0. 307 0. 0597 0. 190 2. 130 135. 0. 076 o * * # * » » « # * # # # * * # 4 1 Z I N C T O N # # # * » * » * » * * * * * # # * * WATER E Q U I V A L E N T S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N M IN MAX MEAN STD COV N 3 0 Y R L 3 0 Y R 41 1. 0 5 3 9 . 11 . 0. 5 2 0 . 3 11. 0 6. 2 0. 5 6 0 2 3 . 6 7 0 . 3 41 2. 0 6 8 6 . 1 1 . 0. 5 2 5 . 9 14. a 7. 2 0. 4 8 9 2 9 . 4 104. 0 41 3. 0 7 9 9 . 11 . 16. 5 3 9 . 9 2 6 . 1 7. 1 0. 2 7 4 4 0 . 6 4 4 . 1 41 4. 0 8 8 4 . 1 1 . 19. 6 52 . 6 3 0 . 6 10. 6 0. 3 4 8 52 . 2 56 . 9 41 5. 0 9 6 0 . 1 1 . 2 0 . 3 56 . 4 3 4 . 3 1 1 . 0 0. 3 2 0 56 . 6 6 2 . 5 41 6. 0 1 0 5 5 . 2 5 . 4 6 4 . 0 4 2 . 2 12 . 9 0. 3 0 6 6 8 . 4 7 7 . 0 SNOW D E P T H S T A T I S T I C S ( C E N T I M E T E R S ) L O C S T A E L E V N M IN MAX MEAN S T D COV N 3 0 Y R L 3 0 Y R 41 1. 0 5 3 9 . 11 . 8. 6 3 . 3 9 . 2 0 . 0. 5 0 4 7 9 . 135 . 41 2. 0 6 8 6 . 1 1 . 8. 8 1 . 4 9 . 2 5 . 0. 5 1 9 1 0 1 . 2 0 1 . 41 3. 0 7 9 9 . 11 . 48 . 114. 8 2 . 2 2 . 0. 2 6 8 127 . 143 . 4 1 4. 0 8 8 4 . 1 1 . 56. 142 . 9 9 . 2 8 . 0. 2 8 5 156 . 173 . 41 5. 0 9 6 0 . 1 1 . 56. 152 . 1 02 . 2 9 . 0. 2 8 3 1 6 1 . 178 . 41 6. 0 1 0 5 5 . 11 . 74 . 160 . 117 . 2 7 . 0. 2 3 0 172 . 188. G30YR C 3 0 Y R CRM CRCM C R S T D CRCOV TCOV L M E A N L T M E A N L S T D 2 4 . 5 3 4 . 7 2. 11 9. 4 0. 5 6 6 0. 2 6 8 6 1. 0 4 2 0. 9 1 1 8. 1 0 . 4 6 0 3 0 . 5 4 4 . 9 2. 3 4 12. 8 0. 5 9 8 0. 2 5 5 9 0. 9 8 1 1. 0 4 3 11 . 1 0 . 4 7 8 4 1 . 6 4 2 . 5 2. 9 4 2 5 . 5 0. 2 7 0 0. 0 9 1 7 0 . 3 0 1 1. 4 0 1 2 5 . 2 0 . 1 2 0 53 . 7 5 4 . 8 3. 0 9 2 9 . 5 0. 3 4 8 0. 1 1 2 4 0 . 3 7 7 1. 4 6 3 2 9 . 0 0. 1 4 4 58. 1 5 9 . 8 3. 2 2 3 3 . 2 0. 3 4 1 0 . 1 0 6 2 0. 3 5 4 1. 5 1 5 3 2 . 7 0. 1 3 8 7 0 . 2 7 3 . 1 3. 4 5 4 0 . 9 0. 3 6 1 0 . 1 0 4 8 0. 3 4 8 1. 6 0 6 4 0 . 3 0 . 1 3 8 G30YR C 3 0 Y R CRM CRCM C R S T D CRCOV TCOV L M E A N L T M E A N L S T D 8 2 . 1 0 2 . 3. 2 8 3 5 . 0. 6 8 4 0 . 2 0 8 7 0. 7 6 6 1. 5 1 7 3 3 . 0. 3 0 2 104 . 1 36 . 3. 51 4 3 0. 8 0 5 0. 2 2 9 3 0. 8 5 8 1. 5 9 8 4 0 . 0. 3 4 7 130 . 1 36 . 4. 31 8 0 . 0. 4 0 8 0. 0 9 4 6 0. 3 1 1 1. 8 9 8 7 9 . 0. 1 2 6 160 . 1 6 5 . 4. 5 8 9 6 . 0. 4 4 4 0. 0 9 7 0 0. 3 2 0 1. 9 7 7 9 5 . 0. 1 2 8 165 . 1 7 0 . 4. 6 3 9 9 . 0. 4 4 8 0. 0 9 6 7 0. 3 1 9 1. 9 9 2 9 8 . 0. 1 2 8 176. 1 8 1 . 4. 8 7 1 1 5 . 0. 3 8 7 0. 0 7 9 6 0. 2 5 8 2. 0 5 8 114. 0. 1 0 6 o VJ * » * * « * * * * « * * » * * 4 2 SANDON WATER E Q U I V A L E N T S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N M IN MAX MEAN S T D COV N 3 0 Y R L 3 0 Y R 4 2 11 . 0 9 1 4 . 11 . 18. 3 5 0 . 5 3 2 . 8 9. 5 0. 2 8 8 5 2 . 0 58 . 1 4 2 12. 0 1 0 2 7 . 1 1 . 2 9 . 2 5 5 . 1 3 9 . 6 7. 5 0. 1 8 8 54 . 8 57 . 1 4 2 13. 0 1 1 1 3 . 11 . 3 1 . 5 6 5 . 3 4 4 . 6 10. 2 0. 2 2 8 6 5 . 2 6 8 . 5 4 2 14. 0 1 2 4 7 . 10. 3 7 . 1 8 2 . 5 56 . 6 14. 4 0. 2 5 5 8 6 . 2 9 2 . 2 4 2 15. 0 1 4 0 2 . 10. 3 7 . 6 8 4 . 6 6 0 . 2 16. 6 0. 2 7 5 9 4 . 3 103 . 2 4 2 16. 0 1 4 3 9 . 1 1 . 4 2 . 7 9 0 . 9 6 2 . 4 16. 7 0. 2 6 7 9 6 . 3 1 0 3 . 0 4 2 17. 0 1 6 1 5 . 1 1 . 58 . 9 1 1 7 . 6 8 3 . 1 2 0 . 4 0. 2 4 5 124 . 6 1 3 1 . 6 4 2 18. 0 1 7 5 3 . 11 . 6 0 . 2 1 35 . 9 9 2 . 9 2 4 . 7 0. 2 6 6 1 4 3 . 1 152 . 6 4 2 19. 0 1 8 5 9 . 11 . 6 4 . 0 1 4 1 . 7 9 8 . 6 2 6 . 3 0. 2 6 7 1 5 2 . 2 162 . 5 4 2 2 0 . 0 1 9 5 7 . 0. 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 4 2 2 1 . 0 2 0 3 0 . 11 . 7 1 . 1 1 82 . 4 117 . 2 3 7 . 9 0. 3 2 3 194 . 3 2 0 9 . 6 4 2 2 2 . 0 2 1 4 9 . 11 . 7 5 . 2 1 8 5 . 4 1 24 . 6 4 0 . 0 0. 3 2 1 2 0 6 . 0 2 2 4 . 4 G30YR C 3 0 Y R CRM CRCM C R S T D CRCOV TCOV L M E A N L T M E A N L S T D 53 . 3 5 5 . 3 3. 17 3 1 . 9 0. 3 1 3 0 . 0 9 8 8 0. 3 2 6 1. 4 9 8 3 1 . 5 0. 131 55 . 9 56 . 1 3. 4 0 3 9 . 2 0. 2 1 2 0 . 0 6 2 4 0. 1 9 9 1. 5 9 1 3 9 . 0 o . 0 8 1 6 6 . 7 6 7 . 1 3. 5 3 4 3 . 9 0. 2 6 4 0. 0 7 4 8 0. 2 4 1 1. 6 3 9 4 3 . 6 0. 0 9 7 B7 . 9 8 9 . 6 3. 81 5 5 . 5 0. 3 2 1 0. 0 8 4 2 0. 2 7 4 1. 7 4 0 5 5 . 0 0.. 1 0 9 96 . 2 9 9 . 3 3. 8 9 5 8 . 8 0. 3 6 1 0 . 0 9 2 8 0. 3 0 5 1. 7 6 4 58 . 1 0. 121 9 8 . 7 1 0 0 . 2 3. 9 4 6 1 . 1 0. 3 4 6 0 . 0 8 7 9 0. 2 8 8 1. 7 8 2 6 0 . 5 0. 1 1 4 127 . 5 1 2 8 . 7 4. 3 4 8 1 . 7 0. 3 4 9 0. 0 8 0 4 0. 2 6 1 1. 9 0 8 8 1 . 0 0. 1 0 4 146 . 6 1 4 8 . 5 4. 5 0 9 1 . 0 0. 3 9 2 0 . 0 8 7 3 0 . 2 8 5 1. 9 5 4 9 0 . 0 0 . 1 1 3 155 . 9 1 5 8 . 1 4. 5 9 9 6 . 6 0. 4 0 2 0. 0 8 7 7 0 . 2 8 7 1. 9 8 0 9 5 . 6 0. 1 1 3 0. 0 0. 0 0. 0 0. 0 0. 0 0 . 0 0. 0 0. 0 0. 0 0. 0 199 . 6 2 0 2 . 9 4. 8 5 1 1 3 . 8 0. 5 0 6 0 . 1 0 4 5 0 . 3 4 7 2. 0 5 0 1 1 2 . 1 0. 1 3 3 2 1 1 . 6 2 1 6 . 3 4. 9 5 1 2 0 . 9 0. 5 2 0 0. 1 0 5 1 0. 3 4 9 2 . 0 7 6 1 1 9 . 2 0. 1 3 5 SNOW D E P T H S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N M IN MAX MEAN STD COV N 3 0 Y R L 3 0 Y R 4 2 11 . 0 9 1 4 . 11 . 53 . 1 4 2 . 9 6 . 2 5 . 0. 2 6 3 1 4 7 . 164 . 4 2 12. 0 1 0 2 7 . 1 1 . 84 . 140 . 1 1 2 . 18. 0. 1 6 6 1 4 9 . 1 55 . 4 2 13. 0 1 1 1 3 . 11 . 9 7 . 1 5 7 . 127 . 2 1 . 0. 164 169 . 175 . 4 2 14. 0 1 2 4 7 . 10. 119 . 198 . 1 56 . 3 1 . 0. 1 9 6 2 1 9 . 2 3 0 . 4 2 15 . 0 1 4 0 2 . 10. 112 . 1 85 . 1 5 0 . 2 8 . 0. 1 90 2 0 8 . 2 1 9 . 4 2 16. 0 1 4 3 9 . 11. 117. 2 0 1 . 1 5 3 . 2 9 . 0. 1 87 2 1 2 . 2 2 1 . 4 2 17.' 0 1 6 1 5 . 1 1 . 155 . 2 7 9 . 2 1 0 . 3 6 . 0. 1 7 4 2 8 4 . 2 9 4 . 4 2 18. 0 1 7 5 3 . 11 . 170. 2 8 2 . 2 3 0 . 3 8 . 0. 1 65 3 0 7 . 3 1 8 . 4 2 19. 0 1 8 5 9 . 11 . 178 . 2 9 2 . 2 3 9 . 3 7 . 0. 154 3 1 3 . 3 2 4 . 4 2 2 0 . 0 1 9 5 7 . 0. 0. 0. 0. 0. 0. 0 0. 0. 4 2 2 1 . 0 2 0 3 0 . 1 1 . 193 . 3 4 3 . 2 6 9 . 4 9 . 0. 1 8 3 3 6 9 . 3 8 5 . 4 2 2 2 . 0 2 1 4 9 . 11 . 2 1 3 . 3 8 6 . 2 9 6 . 58 . 0. 1 97 4 1 5 . 4 3 5 . G30YR C 3 0 Y R CRM CRCM C R S T D CRCOV TCOV L M E A N L T M E A N L S T D 1 5 1 . 1 5 7 . 4. 5 4 9 4 . 0. 4 1 5 0. 0 9 1 4 0. 3 0 0 1. 9 6 7 9 3 . 0. 1 2 2 152 . 1 5 3 . 4. 8 0 1 1 1 . 0. 2 6 8 0. 0 5 5 9 0 . 1 7 7 2. 0 4 2 n o . 0. 0 7 3 172 . 1 7 2 . 5. 01 1 26 . 0. 2 7 2 0. 0 5 4 4 0 . 1 7 2 2. 0 9 8 1 25 . 0. 0 7 1 2 2 3 . 2 2 6 . 5. 3 6 1 5 4 . 0. 3 5 1 0 . 0 6 5 4 0 . 2 0 9 2. 1 8 6 1 5 4 . 0. 0 8 5 2 1 2 . 2 1 5 . 5. 2 9 1 4 8 . 0. 3 3 9 0. 0 6 4 0 0. 2 0 5 2 . 1 6 8 147 . 0. 0 8 4 2 1 6 . 2 1 7 . 5. 3 3 1 5 2 . 0. 3 3 5 0. 0 6 2 8 0 . 2 0 1 2. 1 7 8 1 5 1 . 0. 0 8 2 2 8 9 . 2 9 0 . 5. 9 3 2 0 8 . 0. 3 4 1 0. 0 5 7 6 0. 1 8 3 2. 3 1 6 2 0 7 . 0. 0 7 5 3 1 2 . 3 1 4 . 6. 11 2 2 8 . 0. 3 3 6 0. 0 5 5 0 0 . 1 7 4 2. 3 5 6 2 2 7 . 0. 0 7 2 3 1 8 . 3 1 9 . 6. 19 2 3 7 . 0. 3 1 8 0 . 0 5 1 4 0 . 1 6 2 2. 3 7 3 2 3 6 . 0. 0 6 7 0. 0. 0. 0 0. 0. 0 0. 0 0. 0 0 . 0 0. 0. 0 3 7 6 . 3 7 8 . 6. 4 3 2 6 6 . 0. 3 9 2 0. 0 6 1 0 0. 1 9 4 2. 4 2 3 2 6 5 . 0. 0 8 0 4 2 3 . 4 2 7 . 6. 6 4 2 9 2 . 0. 4 3 8 0. 0 6 6 0 0 . 2 1 1 2 . 4 6 3 2 9 1 . 0. 0 8 6 o »»»**»»*«»«#*»*43 KASLO **»»•»»**«******»** ^ J E ^ Q U I ^ N T S; A T I SM!N S (S!TIMSS8,8TD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD LOC STA ELEV N MIN MAX 43 1. 0 549. 6. 5. 6 24. 1 43 2. 0 628. 8. 8. 1 28. 4 43 3. 0 698. 8. 16. 0 38. 6 43 3. 5 762. 7. 20. 6 53. 8 43 4. 0 832. 8. 22. 6 59. 2 43 5. 0 927. 8. 26. 9 67. 8 43 6. 0 1021. 8. 33. 3 71. 9 14. 5 7. 6 0. 526 31. 5 49. 7 31. 0 39. 4 2. 36 13. 2 20. 5 7. 0 0. 341 35. 3 46. 7 35. 6 40. 8 2. 70 19. 6 28. 7 8. 3 0. 290 46. 3 56. 0 46. 8 51. 5 3. 03 27. 9 38. 1 13. 4 0. 351 67. 1 84. 9 67. 2 76. 3 3. 32 36. 6 41. 2 13. 3 0. 322 69. 3 83. 7 70. 1 76. 9 3. 41 39. 8 48. 9 14. 4 0. 294 79. 5 93. 9 80. 3 87. 2 3. 62 47. 6 53. 6 14. 0 0. 262 B3. 3 95. 7 84. 1 90. 2 3. 74 52. 4 0.465 0.1967 0.714 1.099 12.6 0 267 0.351 0.1303 0.444 1.282 19.1 0..182 0 325 0. 1071 0.357 1.438 27.4 0. 146 0 424 0. 1278 0. 435 1. 554 35. 8 0. 173 0. 394 0. 1155 O. 388 1. 592 39. 1 0. 156 0 382 0. 1054 0.351 1.671 46.9 0. 142 0 350 0. 0934 0. 307 1. 714 51. 8 O. 126 SNOW DEPTH STATISTICS (CENTIMETERS) LOC STA ELEV N MIN MAX MEAN 43 1. 0 549. 6. 15. 81. 47. 43 2. 0 628. 8. 33. 84. 66. 43 3. 0 698. 8. 48. 142. 93. 43 3. 5 762. 7. 69. 147. 112. 43 4. 0 832. 8. 79. 155. 116. 43 5. 0 927. 8. 91. 190. 130. 43 6. 0 1021. 8. 99. 185. 142. STD COV N30YR L30YR G30YR C30YR CRM 26. 0. 556 104. 186. 103. 137. 3. 47 18. 0. 270 104. 126. 105. 116. 4. 01 28. 0. 304 154. 180. 155. 167. 4. 49 27. 0. 245 172. 195. 172. 185. 4. 79 25. 0. 217 169. 183. 170. 177. 4. 85 33. 0. 251 199. 215. 201. 208. 5. 04 29. 0. 201 202 218. 204. 212. 5. 19 CRCM CRSTD CRCOV TCOV LMEAN LTMEAN LSTD 42. 0.756 0.2179 0.806 1.592 39. 0.303 65. 0.407 0.1014 0.336 1.804 64. 0.140 91. O. 479 0. 1066 O. 355 1. 951 89. 0. 143 110 0.416 0.0868 0.284 2.037 109. 0.116 114. 0.361 0.0744 0.240 2.054 113. 0.098 128. 0. 420 0. 0835 0. 272 2. 102 126. 0. 109 140. O. 360 0. 0694 0. 223 2. 144 139. 0. 092 o VO * * * * * * * * * * * 5 1 F E R N I E - SNOW V A L L E Y * * * * * * * * * * * * * WATER E Q U I V A L E N T S T A T I S T I C S ( C E N T I M E T E R S ) LOC STA E L E V N MIN MAX MEAN STD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 51 1. 0 1158. 10. 5. 1 53. 3 31. 1 16. 9 0. 544 65. 9 116. 7 67. 9 84. 4 3. 0 3 27. 7 0. 662 0 2 1 8 7 0. 8 1 0 1. 4 1 0 25. 7 0. 319 51 2. 0 1256. 10. 11. 4 66. 5 40. 8 18. 2 0. 446 78. 3 110. 2 8 0 . 4 92. 3 3. 36 38. 0 0. 562 0. 1672 0. 590 1. 562 36. 5 0 . 2 3 3 51 3. 0 1387. 10. 23. 4 81. 3 52. 2 20. 0 0. 384 93. 4 113. 2 95. 8 103. 4 3. 68 49. 8 0. 4 9 3 0. 1341 0. 4 5 9 1. 6 8 6 48. 6 0. 179 51 4. 0 1545. 9. 35. 3 121. 9 76. 4 32. 9 0. 431 145. 0 177. 2 148. 0 161. 5 4. 16 72. 2 0. 615 0. 1477 0. 512 1. 8 4 6 70. 1 0. 193 51 5. 0 1576. 9. 40. 1 167. 6 85. 6 39. 9 0. 466 168. 8 195. 8 172. 4 182. 1 4. 32 8 0 . 7 0. 6 4 6 0. 1494 0. 519 1. 8 9 4 78. 4 0. 191 51 6. 0 1658. 10. 57. 1 196. 3 108. 3 41. 1 0. 379 192. 7 215. 1 197. 6 204. 2 4. 70 104. 0 0. 577 0. 1227 0. 4 1 5 2. 0 0 8 101. 9 0. 158 51 7. 0 1789. 10. 67. 8 249. 7 149. 8 60. 0 0. 400 273. 2 333. 1 280. 3 3 0 3 . 4 5. 22 142. 4 0. 728 0. 1394 0. 4 7 9 2. 142 138. 6 0. 185 SNOW DEPTH S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N MIN MAX MEAN STD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 51 1. 0 1158. 9. 61. 137. 96. 28. 0. 2 8 6 154. 172. 156. 164. 4. 54 94 0. 4 4 6 0. 0981 0. 3 2 4 1. 9 6 6 92. 0. 129 51 2. 0 1256. 10. 43. 183. 124. 44. 0. 352 214. 2 8 0 . 219. 2 4 3 . 4. 91 119. 0. 634 0. 1331 0. 4 5 3 2. 0 6 3 116. 0. 187 51 3. 0 1387. 10. 66. 2 0 3 . 149. 49. 0. 327 249. 308. 254. 279. 5. 23 143. 0. 632 0. 1208 0. 4 0 8 2. 147 140. 0. 166 51 4. 0 1545. 9. 94. 272. 194. 65. 0. 334 329. 395. 335. 363. 5. 72 187. 0. 6 8 0 0. 1190 0. 401 2. 2 6 3 183. 0. 160 51 5. 0 1576. 9. 122. 330. 198. 61. 0. 308 325. 347. 331. 337. 5. 78 193. 0. 565 0. 0 9 7 8 0. 3 2 3 2. 2 8 0 191. 0. 123 51 6. 0 1658. 10. 160. 396. 257. 72. 0. 2 8 0 406. 441. 414. 425. 6. 31 251. 0. 587 0. 0 9 3 0 0. 3 0 6 2. 3 9 5 2 4 9 . 0. 121 51 7. 0 1789. 10. 198. 493. 338. 94. 0. 277 532. 593. 543. 566. 6. 91 330. 0. 6 5 9 0. 0 9 5 4 0. 314 2. 514 326. 0. 126 « * « « * * * « « * 5 2 KIMBERLY - NORTH STAR * * * * * * * * * * * * * WATER E Q U I V A L E N T S T A T I S T I C S ( C E N T I M E T E R S ) LOC STA E L E V N MIN MAX MEAN STD COV N30YR L30YR 52 0. 1 1045. 11. 5. 8 27. 4 17. 3 6. 6 0. 382 30. 7 41. 1 52 1. 0 1186. 11. 8. 9 30. 5 22. 5 7. 5 0. 333 37. 8 47. 6 52 2. 0 1280. 12. 10. 2 39. 4 26. 9 9. 1 0. 3 3 8 45. 3 . 56. 4 52 3. 0 1362. 12. 13. 5 36. 1 27. 5 7. 3 0. 266 42. 2 49. 0 52 4. 0 1423. 12. 12. 7 39. 9 28. 8 8. 4 0. 292 45. 8 54. 9 52 5. 0 1554. 11. 15. 2 45. 0 32. 5 10. 0 0. 308 52. 8 64. 5 52 6. 0 1682. 12. 19. 8 51. 6 37. 0 10. 4 0. 282 58. 0 67. 1 52 7. 0 1804. 12. 17. 8 66. 8 44. 2 14. 9 0. 338 74. 4 92. 2 SNOW DEPTH S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N MIN MAX MEAN STD COV N30YR L30YR 52 0. 1 1045. 11. 23. 97. 64. 22. 0. 338 108. 138. 52 1. 0 1186. 11. 43. 124. 81. 24. 0. 291 129. 146. 52 2. 0 1280. 12. 48. 130. 92. 24. 0. 263 140. 158. 52 3. 0 1362. 12. 66. 124. 97. 21. 0. 214 138. 148. 52 4. 0 1423. 12. 66. 130. 99. 20. 0. 203 139. 148. 52 5. 0 1554. 11. 58. 140. 105. 25. 0. 235 155. 174. 52 6. 0 1682. 12. 69. 208. 122. 36. 0. 298 196. 211. 52 7. 0 1804. 12. 66. 183. 138. 34. 0. 246 206. 237. G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 31. 6 35. 6 2. 54 16. 4 0. 3 6 9 0. 1455 0. 503 1. 200 15. 9 0. 2 0 3 38. 9 42. 7 2. 79 21. 6 0. 3 4 8 0. 1250 0. 424 1. 3 2 5 21. 1 0 . 173 46. 7 50. 8 2. 96 25. 8 0. 3 7 0 0. 1252 0. 4 2 5 1. 402 25. 2 0. 173 43. 4 45. 9 2. 99 26. 8 0. 291 0. 0 9 7 3 0. 321 1. 422 26. 4 0. 133 47. 2 50. 5 3. 04 2 8 . 0 0. 3 2 8 0. 1081 0. 361 1. 439 27. 5 0. 149 54. 2 58. 8 3. 15 31. 4 0. 361 0. 1146 0. 3 8 5 1. 4 8 8 30. 8 0. 158 59. 6 62. 9 3. 3 0 36. 0 0. 3 3 5 0. 1016 0. 3 3 7 1. 549 35. 4 0. 137 76. 7 83. 3 3. 49 42. 5 0. 4 3 6 0. 1249 0. 424 1. 618 41. 5 0. 172 G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 111. 123. 3. 94 61. 0. 502 0. 1274 0. 4 3 3 1. 777 60. 0. 178 132. 138. 4. 29 79. 0. 4 3 5 0. 1015 0. 3 3 7 1. 890 78. 0. 135 144. 150. 4 47 8 9 . 0. 415 0. 0 9 2 9 0. 3 0 5 1. 946 88. 0. 125 142. 144. 4 57 95. 0. 334 0. 0731 0. 2 3 6 1. 976 95. 0. 0 9 6 142. 144. 4 . 60 97. 0. 318 0. 0 6 9 0 0. 2 2 2 1. 986 97. 0. 091 159. 166. 4 . 6 9 103. 0. 3 9 3 0. 0 8 3 9 0. 2 7 3 2. 0 0 9 102. 0. 113 201. 204. 4 . 92 119. 0. 477 0. 0 9 7 0 0. 3 2 0 2. 070 118. 0. 125 211. 222. 5 . 12 135. 0. 4 6 3 0. 0 9 0 4 0. 2 9 6 2. 124 133. 0. 124 « * » * » # » # * # * # » 5 3 L A K E L O U I S E » * » • » * * * * * • * * * * * * * * WATER E Q U I V A L E N T S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N MIN MAX MEAN STD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 53 1. 0 1542. 12. 10. 7 40. 6 21. 9 7. 8 0. 357 37. 7 41. 4 38. 9 39. 5 2. 76 21 1 0. 3 1 8 0. 1150 0. 3 8 6 1. 317 20. 7 0. 149 53 2. 0 1652. 12. 14. 0 43. 2 23. 9 8. 2 0. 343 40. 5 43. 5 41. 8 42. 0 2. 85 23. 1 0. 311 0. 1093 0. 3 6 5 1. 357 22. 8 0 . 1 3 9 53 3. 0 1771. 12. 15. 2 44. 4 23. S 8. 0 0. 338 39. 5 40. 8 40. 8 40. 1 2. 84 22. 8 0. 291 0. 1027 0. 341 1. 352 22. 5 0. 128 53 4. 0 1920. 12. 17. 8 47. 0 29. 6 9. 0 0. 304 47. 7 52. 3 49. 1 50. 2 3. 06 28. 8 0. 3 1 0 0. 1013 0. 336 1. 4 5 3 28. 3 0. 132 53 5. 0 2024. 12. 17. 8 52. 3 33. 5 10. 0 0. 3 0 0 53. 7 60. 1 55. 3 57. 2 3. 19 32. 6 0. 3 2 7 0. 1024 0. 3 4 0 1. 506 32. 1 0. 135 53 6. 0 2137. 10. 26. 2 50. 3 39. 2 9. 2 0. 2 3 5 58. 2 63. 5 59. 3 61. 3 3. 38 38. 6 0. 2 7 4 0. 0811 0. 2 6 3 1. 582 38. 2 0. 107 53 7. 0 2 2 4 9 . 12. 27. 2 58. 4 42. 2 12. 1 0. 286 66. 5 73. 1 68. 4 70. 3 3. 45 41. 1 0. 334 0. 0 9 6 8 0. 319 1. 6 0 9 40. 6 0. 127 53 8. 0 2 3 3 9 . 6. 24. 9 66. 5 46. 1 14. 2 0. 307 77. 8 94. 2 76. 9 86. 3 3. 55 44. 8 0. 3 8 8 0. 1092 0. 3 6 5 1. 6 4 5 44. 1 0. 147 SNOW DEPTH S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N MIN MAX MEAN STD COV N30YR L30YR G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 53 1. 0 1542. 12. 56. 107. 8 0 . 16. 0. 204 113. 119. 116. 117. 4. 29 79. 0. 294 0. 0 6 8 5 0. 2 2 0 1. 8 9 6 79. 0. 0 9 0 53 2. 0 1652. 12. 63. 127. 90. 19. 0. 214 128. 134. 131. 132. 4. 46 88. 0. 3 1 3 0. 0 7 0 2 0. 2 2 6 1. 944 88. 0. 091 53 3. 0 1771. 12. 58. 140. 83. 21. 0. 2 5 9 126. 128. 129. 127. 4. 33 81. 0. 3 4 3 0. 0 7 9 3 0. 257 1. 9 0 6 8 0 . 0. 0 9 9 5 3 4. 0 1920. 12. 81. 155. 107. 21. 0. 193 149. 152. 152. 151. 4. 73 106. 0. 2 9 3 0. 0 6 1 8 0. 197 2. 0 2 3 105. 0. 0 7 9 53 5. 0 2024. 12. 84. 165. 117. 22. 0. 188 162. 167. 165. 165. 4. 88 116. 0. 301 0. 0 6 1 7 0. 197 2. 0 6 2 115. 0. 0 8 0 53 6. 0 2137. 10. 99. 160. 129. 23. 0. 174 176. 183. 178. 180. 5. 04 128. 0. 2 9 7 0. 0 5 8 9 0. 187 2. 105 127. 0. 0 7 7 53 7. 0 2 2 4 9 . 12. 107. 190. 143. 27. 0. 188 197. 204. 201. 201. 5. 21 141. 0. 3 2 3 0. 0621 0. 198 2. 148 141. 0. 081 53 8. 0 2 3 3 9 . 6. 79. 208. 138. 45. 0. 330 239. 281. 236. 261. 5. 11 133. 0. 573 0. 1123 0. 376 2. 118 131. 0. 148 * * * * * * * * * * * * * 6 1 GROUSE MOUNTAIN » * * * * » * * * * • » * # * » * WATER E Q U I V A L E N T S T A T I S T I C S ( C E N T I M E T E R S ) LOC STA E L E V N MIN MAX MEAN STD COV N30YR L30YR 61 1. 0 76. 11. 0. 5 12. 7 2. 8 3. 4 1. 217 9. 8 10. 9 61 2. 0 189. 10. 0. 5 15. 2 4. 3 4. 5 1. 0 3 9 13. 6 22. 8 61 2. 5 2 5 0 . 8. 0. 5 14. 5 4. 1 4. 6 1. 108 13. 8 22. 8 61 3. 0 347. 8. 1. 3 16. 3 6. 0 5. 0 0. 8 2 2 16. 5 28. 9 61 4. 0 402. 9. 1. 5 25. 4 10. 5 8. 3 0. 791 27. 7 61. 3 61 6. 0 878. 8. 38. 1 218. 4 133. 8 67. 3 0. 503 276. 6 473. 5 61 7. 0 985. 8. 46. 0 188. 0 134. 8 57. 6 0. 427 257. 0 394. 8 61 8. 0 1042. 5. 81. 3 215. 9 164. 5 53. 0 0. 322 288. 2 387. 1 61 9. 0 1097. 5. 70. 4 227. 8 180. 4 65. 0 0. 3 6 0 332. 3 528. 2 61 10. 0 1097. 6. 109. 7 242. 6 189. 1 37. 2 0. 303 317. 1 387. 6 G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 10. 3 9. 7 1. 29 2. 1 0. 417 0. 3 2 3 9 1. 3 2 0 0. 275 1. 9 0. 3 7 5 14. 1 16. 1 1. 48 3. 2 0. 511 0. 3 4 6 6 1. 4 4 2 0. 4 3 7 2. 7 0. .448 14. 1 16. 2 1. 45 3. 1 0. 509 0. 3511 1. 4 6 6 0. 418 2. 6 0. 4 4 3 16. 8 20. 7 1. 7 0 4. 9 0. 4 9 3 0. 2 9 0 0 1. 147 0. 642 4. 4 0. 3 8 6 28. 5 38. 0 2. 0 2 8. 3 0. 642 0. 3177 1. 2 8 8 0. 852 7. 1 0. 4 4 9 280. 2 357. 2 4. 95 121. 1 1. 013 0. 2 0 4 7 0. 7 4 8 2. 0 5 6 113. 8 0. 2 9 2 260. 1 318. 6 5. 01 125. 5 0. 859 0. 1716 0. 6 0 8 2. 0 8 0 120. 2 0. 2 4 3 279. 6 337. 2 5. 42 159. 0 0. 6 6 0 0. 1219 0. 412 2. 193 155. 9 0. 169 321. 8 420. 1 5. 56 171. 9 0. 8 2 6 0. 1486 0. 515 2. 222 166. 7 0. 214 313. 6 354. 8 5. 68 183. 7 0. 624 0. 1097 0. 3 6 7 2. 257 180. 8 0. 148 SNOW DEPTH S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N MIN MAX MEAN STD COV N30YR L30YF 61 1. 0 76. 11. 3. 38. 16. 12. 0. 768 41. 65. 61 2. 0 189. 10. 5. 69. 25. 20. 0. 825 66. 106. 61 2. 5 250. 8. 5. 51. 22. 17. 0. 784 59. 96. 61 3. 0 347. 8. 8. 71. 29. 22. 0. 750 76. 125. 61 4. 0 402. 9. 8. 94. 42. 32. 0. 761 110. 217. 61 6. 0 878. 7. 74. 406. 260. 129. 0. 4 9 6 540. 948. 61 7. 0 985. 8. 91. 394. 279. 121. 0. 432 535. 851. 61 8. 0 1042. 5. 165. 437. 343. 110. 0. 319 599. 823. 61 9 : 0 1097. 4. 333. 498. 429. 70. 0. 162 603. 652. 61 10. 0 1097. 6. 196. 462. 369. 111. 0. 301 618. 775 G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 43. 50. 2. 37 13. 0. 6 4 8 0. 2 7 3 8 1. 0 6 7 1. 0 7 6 12. 0. 3 6 3 68. 8 0 . 2. 71 20. 0. 7 8 0 0. 2 8 8 0 1. 137 1. 2 5 0 18. 0. 377 60. 73. 2. 63 18 0. 731 0. 2 7 7 8 1. 0 8 7 1. 216 16. 0. 361 77. 95. 2. 91 25. 0. 776 0. 2 6 6 5 1. 031 1. 351 22. 0. 351 112. 145. 3. 25 34. 0. 962 0. 2 9 6 0 1. 177 1. 481 30. 0. 411 540. 706. 6. 18 236. 1. 256 0. 2 0 3 3 0. 7 4 2 2. 3 4 7 222. 0. 2 9 0 542. 674. 6. 38 2 5 9 . 1. 127 0. 1767 0. 6 2 9 2. 3 9 3 247. 0. 2 5 3 581. 709. 6. 92 331. 0. 855 0. 1236 0. 4 1 9 2. 512 325. 0. 173 580. 632. 7. 52 4 2 6 . 0. 423 0. 0 5 6 3 0. 178 2. 6 2 8 424. 0. 0 7 5 611. 700. 7. 10 358. 0. 795 0. 1119 0. 3 7 5 2. 547 352. 0. 153 to « # * * * * » # * * * * * * * 6 2 MOUNT SEYMOUR « • * * » # » * * * * * * * • * * WATER E Q U I V A L E N T S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N MIN MAX MEAN STD COV N30YR L30YR 62 1. 0 15. 11. 0. 3 10. 2 3. 6 3. 1 0. 856 10. 0 24. 3 6 2 2. 0 122. 11. 0. 8 20. 3 5. 8 6. 3 1. 097 18. 7 28. 7 6 2 3. 0 329. 11. 1. 3 21. 6 8. 1 7. 4 0. 9 0 9 23. 1 47. 6 6 2 4. 0 396. 10. 1. 3 33. 0 13. 8 11 .5 0. 836 37. 4 122. 4 6 2 5. 0 594. 9. 1. 8 39. 4 24. 1 16. 8 0. 698 59. 1 246. 3 62 6. 0 777. 10. 19. 0 107. 4 60. 6 31. 0 0. 512 124. 5 189. 5 6 2 7. 0 9 6 0 . 10. 35. 6 162. 1 103. 9 44. 7 0. 430 195. 8 287. 9 6 2 8. 0 1052. 8. 48. 3 287. 0 155. 2 88. 2 0. 568 342. 4 523. 2 62 9. 0 1067. 9. 73. 9 312. 2 190. 3 84. 4 0. 444 3 6 6 . 4 513. 6 62 10. 0 1113. 3. 129. 5 268. 2 212. 2 73. 1 0. 344 418. 4 610. 3 G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 10. 4 13. 3 1. 41 2. 8 0. 474 0. 3 3 7 2 1. 391 0. 3 6 5 2. 3 0. 502 19. 6 21. 9 1. 61 4. 1 0. 587 0. 3 6 5 6 1. 546 0. 544 3. 5 0..449 24. 1 31. 1 1. 81 6. 0 0. 654 0. 3 6 0 9 1. 521 0. 694 4. 9 0. 4 8 3 38. 8 58. 6 2. 13 9. 7 0. 8 5 0 0. 3981 1. 733 0. 878 7. 5 0. 588 60. 6 101. 8 2. 61 17. 8 0. 9 8 6 0. 3 7 7 2 1. 612 1. 144 13. 9 0. 598 128. 2 152. 8 3. 8 0 55. 0 0. 750 0. 1972 0. 716 1. 716 52. 0 0. 273 201. 0 237. 1 4. 59 96. 7 0. 7 7 7 0. 1693 0. 599 1. 9 6 7 92. 6 0. 2 3 9 347. 1 419. 6 5. 18 139. 3 1. 0 8 5 0. 2 0 9 3 0. 768 2. 118 131. 2 0. 2 8 3 374. 0 434. 6 5. 62 177. 5 0. 9 3 7 0. 1668 0. 589 2. 232 170. 3 0. 2 3 0 371. 1 511. 4 5. 90 2 0 5 . 8 0. 742 0. 1256 0. 4 2 6 2. 3 0 6 202. 4 0. 170 SNOW DEPTH S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N MIN MAX MEAN STD COV N30YR L30YR 62 1. 0 15. 11. 1. 28. 15. 11. 0. 726 36. 116. 6 2 2. 0 122. 11. 5. 63. 23. 19. 0. 819 62. 103. 62 3. 0 329. 11. 8. 79. 32. 23. 0. 706 78. 120. 6 2 4. 0 3 9 6 . 10. 3. 117. 44. 36. 0. 816 119. 310. 6 2 5. 0 594. 9. 8. 109. 64. 42. 0. 6 4 5 151. 413. 6 2 6. 0 777. 10. 58. 287. 168. 79. 0. 471 332. 476. 62 7. 0 9 6 0 . 10. 81. 389. 234. 107. 0. 458 454. 646. 62 8. 0 1052. 8. 94. 516. 299. 165. 0. 552 648. 1050. 6 2 9. 0 1067. 9. 160. 564. 355. 145. 0. 408 657. 852. 62 10. 0 1113. 3. 284. 452. 393. 94. 0. 240 659. 805. G30YR C30YR CRM CRCM CRSTD CRCOV TCOV LMEAN LTMEAN L S T D 38. 55. 2. 25 11. 0. 767 0. 3 4 1 3 1. 413 0. 9 6 6 9. 0. 5 3 9 65. 77. 2. 66 19. 0. 785 0. 2 9 5 4 1. 174 1. 221 17. 0. 3 9 0 81. 94. 3. 01 27. 0. 757 0. 2514 0. 9 5 9 1. 3 9 8 25. 0. 3 3 5 123. 168. 3. 2 3 34. 1. 114 0. 3 4 4 7 1. 431 1. 4 4 6 28. 0. 5 0 8 155. 230. 3. 74 52. 1. 148 0. 3 0 7 2 1. 234 1. 651 45. 0. 4 6 3 341. 397. 5. 38 155. 0. 961 0. 1787 0. 6 3 8 2. 171 148. 0. 2 4 6 467. 540. 6. 01 217. 1. 0 3 9 0. 1729 0. 614 2. 317 207. 0. 2 4 0 657. 818. 6. 44 2 6 7 . 1. 371 0. 2 1 2 8 0. 784 2. 3 9 9 251. 0. 2 9 3 670. 7 5 2 6. 95 335. 1. 0 2 9 0. 1481 0. 513 2. 512 323. 0. 201 598. 738. 7. 29 387. 0. 6 2 0 0. 0851 0. 2 7 8 2. 585 3 8 4 . 0. 114 * * * * » » * # » * * * * * 6 4 H O L L Y B U R N MOUNTA IN * * * * # « * * * • * « WATER E Q U I V A L E N T S T A T I S T I C S ( -CENT IMETERS ) LOC S T A E L E V N M IN MAX MEAN STD COV N 3 0 Y R L 3 0 Y R 6 4 1. 0 15 . 4. 1. 5 5. 1 3. 1 1. 6 0. 5 0 9 6. 9 10. 2 6 4 2. 0 1 6 8 . 4. 1. 8 12. 7 7. 3 4. 5 0. 6 1 9 18. 7 4 9 . 1 6 4 3. 0 3 0 5 . 4. 1. 8 2 0 . 3 10. 9 9. 1 0. 8 3 2 3 3 . 7 128 . 2 6 4 4. 0 4 4 2 . 3. 2. 0 17. 8 9. 4 7. 9 0. 8 4 5 3 1 . 8 153 . 5 6 4 5. 0 6 4 0 . 4. 9. 7 4 3 . 2 3 0 . 2 15. 9 0. 5 2 8 7 0 . 0 149 . 3 6 4 6. 0 7 3 2 . 4. 14. 0 6 4 . 3 4 5 . 5 2 1 . 9 0. 4 8 2 1 0 0 . 3 2 2 6 . 2 6 4 7. 0 8 2 3 . 3. 64 . 3 9 6 . 5 8 2 . 8 16. 6 0. 2 0 1 1 2 9 . 7 148 . 4 6 4 8. 0 9 1 4 . 4. 108 . 5 152 . 4 137 . 6 2 0 . 7 0. 1 5 0 189 . 4 2 0 3 . 6 6 4 9. 0 1 0 2 1 . 4. 1 5 3 . 7 2 6 6 . 7 2 0 8 . 7 52 . 4 0. 2 5 1 3 3 9 . 7 3 8 5 . 6 6 4 10. 0 1 0 8 2 . 1. 156 . 2 156 . 2 1 56 . 2 0. 0 0. 0 0. 0 0. 0 G30YR C 3 0 Y R CRM CRCM C R S T D CRCOV TCOV L M E A N L T M E A N L S T D 6. 4 8. 4 1. 4 2 2. 9 0. 2 4 6 0. 1 7 3 3 0. 6 1 5 0. 4 4 1 2. 8 0. 2 2 6 17. 2 2 8 . 3 1. 8 6 6. 4 0. 4 7 4 0. 2 5 4 6 0. 9 7 5 0. 7 7 3 5. 9 0 . 3 6 7 3 0 . 7 57 . 4 2. 0 4 8. 5 0 . 7 2 5 0. 3 5 4 4 1. 4 8 5 0. 8 6 4 7. 3 0. 4 9 7 26 . 7 5 8 . 4 1. 9 7 7. 6 0 . 6 7 8 0. 3 4 4 5 1. 4 3 0 0. 8 2 5 6. 7 0. 4 8 2 6 4 . 8 9 9 . 4 3. 0 2 2 7 . 5 0. 6 4 6 0. 2 1 4 0 0. 7 8 9 1. 4 1 4 2 5 . 9 0. 3 0 4 9 3 . 1 146 . 0 3. 4 7 4 1 . 7 0. 7 1 9 0. 2 0 7 4 0. 7 6 0 1. 5 9 5 3 9 . 4 0. 3 0 3 119 . 0 140 . 4 4. 3 4 8 2 . 0 0. 3 0 2 0. 0 6 9 5 0. 2 2 3 1. 9 1 2 8 1 . 6 0. 0 9 2 182 . 6 197 . 8 5. 15 136 . 8 0. 2 7 0 0. 0 5 2 3 0. 1 6 5 2. 1 3 5 1 36 . 4 0. 0 7 0 3 2 2 . 6 3 6 5 . 7 5. 9 0 2 0 5 . 4 0. 5 0 0 0. 0 8 4 8 0. 2 7 6 2. 3 0 9 2 0 3 . 7 0. I l l 3 2 2 . 6 0. 0 5. 3 9 0. 0 0. 0 0. 0 0. 0 2. 1 9 4 0 . 0 0. 0 SNOW D E P T H S T A T I S T I C S ( C E N T I M E T E R S ) LOC S T A E L E V N M IN MAX MEAN 6 4 1. 0 15 . 4. 8. 18. 13. 6 4 2. 0 1 6 8 . 4. 13. 4 1 . 3 1 . 6 4 3 . 0 3 0 5 . 4. 13. 6 9 . 4 7 . 6 4 4. 0 4 4 2 . 3. 15. 7 4 . 3 6 . 6 4 5. 0 6 4 0 . 4. 3 3 . 107 . 8 2 . 6 4 6. 0 7 3 2 . 4. 56. 1 42 . 1 0 9 . 6 4 7. 0 8 2 3 . 3. 124. 1 9 3 . 170 . 6 4 8. 0 9 1 4 . 4. 2 1 1 . 3 1 2 . 2 7 9 . 6 4 9. 0 1 0 2 1 . 4. 3 0 7 . 5 2 1 . 3 9 8 . 6 4 10. 0 1 0 8 2 . 1. 3 2 3 . 3 2 3 . 3 2 3 . STD COV N 3 0 Y R L 3 0 Y R G30YR C 3 0 Y R CRM 5. 0. 3 5 9 2 4 . 3 1 . 2 3 . 2 8 . 2. 31 12. 0. 4 0 0 6 1 . 1 05 . 57 . 8 0 . 3. 0 8 26 . 0. 551 112 . 2 7 6 . 104 . 168 . 3. 4 9 3 3 . 0. 9 0 0 1 2 9 . 3 1 0 . 107 . 1 9 2 . 3. 13 3 3 . 0. 4 0 5 1 65 . 2 9 5 . 154. 2 2 0 . 4. 2 6 37 . 0. 3 4 0 2 0 2 . 2 9 2 . 190 . 2 4 5 . 4. 7 2 4 0 . 0. 2 3 4 2 8 2 . 3 4 2 . 2 5 7 . 3 1 5 . 5. 51 46 . 0. 1 6 6 3 9 5 . 4 3 4 . 3 8 0 . 4 1 8 . 6. 5 2 9 2 . 0. 2 3 1 6 2 7 . 6 8 3 . 5 9 7 . 6 6 0 . 7. 3 2 0. 0. 0 0. 0. 5 9 7 . 0. 6. 8 6 CRCM C R S T D CRCOV TCOV L M E A N L T M E A N L S T D 12. 0. 2 8 4 0. 1 2 2 7 0. 4 1 5 1. 0 8 4 12. 0. 161 2 9 . 0. 4 9 4 0. 1 6 0 5 0. 5 6 3 1. 4 5 0 2 8 . 0. 2 2 8 4 2 . 0 . 8 1 2 0. 2 3 2 8 0 . 8 7 4 1. 5 9 6 3 9 . 0. 3 3 7 3 1 . 0. 9 3 7 0. 2 9 9 6 1. 1 9 5 1. 4 4 9 2 8 . 0. 3 6 9 7 7 . 0. 7 0 9 0. 1 6 6 4 0. 5 8 7 1. 8 7 4 7 5 . 0. 2 3 8 1 0 5 . 0. 6 1 5 0. 1 3 0 1 0 . 4 4 3 2. 0 1 4 1 0 3 . 0. 181 1 6 8 . 0. 4 5 8 0. 0 8 3 0 0. 2 7 0 2. 2 2 2 1 6 7 . 0. 111 2 7 7 . 0. 3 8 3 0. 0 5 8 7 0 . 1 8 7 2. 4 4 1 2 7 6 . 0. 0 7 9 3 9 2 0 . 5 5 3 0. 0 7 5 6 0. 2 4 4 2. 5 91 3 9 0 . 0. 0 9 7 0. 0. 0 0. 0 0. 0 2 . 5 0 9 0. 0. 0 APPENDIX I I : SNOW DENSITY STATISTICS D e n s i t i e s a t time of maximum water e q u i v a l e n t Key f o r a b b r e v i a t i o n s used LOC L o c a t i o n . STA S t a t i o n . ELEV E l e v a t i o n i n meters. N Number of ye a r s of measurements. MIN Minimum v a l u e of. the d e n s i t y MAX Maximum v a l u e of the d e n s i t y MEAN . Mean v a l u e of the d e n s i t y STD S t a n d a r d d e v i a t i o n of the mean d e n s i t y COV C o e f f i c i e n t of v a r i t a t i o n of the mean d e n s i t y i MOUNT R E V E L S T O K E * * * * * * * » » » * » » SNOW D E N S I T Y S T A T I S T I C S ( C M / C O LOC S T A E L E V N M I N MAX MEAN S T D COV 11 1. 0 4 9 7 . 1 2 0. 2 5 1 0. 6 0 3 0. 3 4 4 0 0 9 1 0 2 6 3 11 2. 0 6 1 4 . 12 . 0. 2 5 9 0. 4 3 0 0. 3 4 3 0. 0 5 6 0 1 6 5 11 3. 0 7 0 3 . 12 . 0. 2 5 7 0. 4 6 2 0. 3 3 9 0 0 5 9 0. 1 7 5 11 4. 0 8 4 1 . 12 . 0. 2 9 8 0. 5 4 7 0. 3 6 4 0. 0 7 0 0. 191 11 5. 0 9 7 2 . 12 . 0. 3 0 2 0. 4 5 9 0 3 6 1 0. 0 5 3 0. 1 4 7 11 6. 0 1 0 9 6 . 12 . 0. 3 0 4 0. 5 0 2 0. 3 9 4 0. 0 5 9 0. 151 11 7. 0 1 1 9 5 . 0 . 0 . 0 0 . 0 0 . 0 0. 0 0. 0 11 8. 0 1 3 2 3 . 12 . 0. 3 8 2 0. 4 9 1 0. 4 3 7 0. 0 3 9 0. 0 8 9 11 9. 0 1 4 8 7 . 12 . 0. 3 6 9 0 . 5 1 2 0. 4 3 3 0. 0 4 9 0. 1 1 2 11 10 . 0 1 5 7 4 . 1 2 0. 3 7 4 0. 5 3 2 0. 4 2 7 0 0 4 6 0 . 1 0 8 11 11 . 0 1 6 4 9 . 12 . 0. 3 8 0 0 . 5 5 4 0. 4 4 3 0 . 0 4 6 0. 1 0 5 11 12. 0 1 8 0 1 . 1 1 . 0. 3 4 5 0 . 5 4 3 0. 4 2 6 0. 0 5 3 0. 1 2 5 11 12. 5 1 8 2 9 . 0. 0 0 0. 0 0. 0 0. 0 0. 0 11 13 . 0 1 9 0 2 . 1 2 0 . 3 1 5 0 . 5 7 2 0. 4 4 4 0 . 0 6 4 0. 1 4 4 • « « « * * « « « * * « 1 2 F I D E L I T Y M O U N T A I N * * # » * « * * « * * « * SNOW D E N S I T Y S T A T I S T I C S ( C M / C O LOC S T A E L E V N M I N MAX MEAN STD COV 1 2 10. 0 9 5 9 . 1 1 . 0. 2 9 1 0. 4 0 6 0. 3 5 5 0. 0 3 6 0. 101 1 2 11 . 0 1 0 8 1 . 12 . 0. 3 2 4 0. 5 0 8 0. 3 6 7 0 0 4 9 0. 1 3 4 12 12. 0 1 1 9 2 . 12 . 0. 3 3 0 0. 4 6 0 0. 3 8 5 0. 0 4 3 0. 111 12 13. 0 1 3 0 5 . 12 . 0. 3 2 0 0 4 8 6 0. 3 9 4 0. 0 4 9 0. 1 2 4 1 2 14. 0 1 4 5 5 . 1 1 . 0. 3 2 4 0. 4 6 8 0. 3 9 3 0. 0 4 2 0. 1 0 8 12 15. 0 1 4 8 6 . 11 . 0. 3 3 1 0. 4 8 6 0. 4 0 2 0. 0 3 6 0. 090 12 16. 0 1 6 8 2 . 12 . 0. 3 7 0 0. 4 8 7 0. 4 2 2 0. 0 3 5 0 0 8 2 12 17. 0 1 8 0 7 . 12 . 0 3 6 9 0. 5 1 9 0. 4 1 4 0. 0 4 3 0. 1 0 5 12 I B . 0 1 8 9 4 . 12 . 0. 3 8 2 0. 5 3 8 0. 4 4 1 0. 0 4 9 0. n o 12 19. 0 1 9 8 1 . 1 1 . 0. 3 9 6 0. 5 7 4 0. 4 5 7 0. 0 5 6 0. 1 2 2 * « « * * « * * « » * * * 1 3 MOUNT C O P E L A N D # » » * * * « « * * * * * * SNOW D E N S I T Y S T A T I S T I C S <GM/CC) LOC S T A E L E V N M I N MAX MEAN STD COV 1 3 1. 0 6 1 7 . 6. 0. 3 1 3 0. 4 8 7 0. 3 9 2 0. 0 5 9 0. 1 5 2 1 3 2. 0 7 7 7 . 6. 0. 3 3 6 0. 4 5 3 0. 4 0 4 0. 0 4 5 0 111 1 3 3. 0 8 8 4 . 6. 0. 3 6 7 0. 4 8 3 0. 4 0 6 0. 0 4 5 0 1 1 2 1 3 4 . 0 9 6 0 . 5. 0. 4 0 5 0. 4 8 5 0. 4 3 3 0. 0 3 3 0. 0 7 5 1 3 5. 0 1 0 5 2 . 5. 0. 3 9 0 0. 5 3 6 0. 4 4 0 0. 0 5 6 0 1 2 8 1 3 6. 0 1 2 1 3 . 4. 0. 4 1 1 0 . 4 7 0 0 . 4 3 8 0. 0 2 5 0. 0 5 7 13 7. 0 1 4 0 2 . 4. 0. 4 3 4 0. 4 8 9 0. 4 5 6 0. 0 2 5 0 . 0 5 5 1 3 e . 0 1 5 2 4 . 5. 0. 4 4 3 0 . 5 4 2 0. 4 8 2 0. 0 3 9 0 . 0 8 2 1 3 9. 0 1 6 7 0 . 5. 0 . 3 9 7 0. 5 1 3 0. 4 6 2 0 . 0 5 4 0. 1 1 8 1 3 1 0 . 0 1 8 3 6 . 5. 0 . 4 8 4 0. 5 6 4 0. 5 1 5 0. 0 3 1 0. 0 6 0 # * « * * « » # # # 2 1 A P E X MT ( P E N T I C T O N ) « * * » » * « • * « * » « • SNOW D E N S I T Y S T A T I S T I C S ( C M / C O LOC S T A E L E V N M I N MAX MEAN S T D COV 21 1. 0 7 7 7 . 9 . 0. 1 6 7 0. 3 3 6 0. 2 3 3 0. 0 5 1 0. 2 2 0 21 2. 0 9 3 6 . 9. 0. 1 6 5 0. 3 5 3 0. 2 6 3 0 0 6 0 0 2 2 9 21 3. 0 1 0 2 4 . 9. 0 . 1 B 2 0. 3 3 3 0. 2 5 3 0. 0 5 8 0 2 2 8 21 4. 0 1 1 4 3 . 9 . 0. 1 9 2 0. 3 1 0 0. 2 6 0 0. 0 4 3 0. 1 6 5 21 5. 0 1 2 4 1 . 9 . 0. 2 2 2 0. 3 3 9 0. 2 9 0 0. 0 4 2 0. 1 4 5 21 6. 0 1 3 6 6 . 9. 0 . 2 3 3 0. 3 1 1 0. 2 8 0 0. 0 2 3 0. 0 8 2 2 1 7. 0 1 4 3 6 . 9. 0. 2 7 4 0. 4 0 7 0. 3 1 1 0. 0 3 9 0. 1 2 7 2 1 e. 0 1 5 0 3 . 9 . 0. 2 5 6 0 . 4 2 1 0. 3 0 6 0. 0 4 9 0. 1 6 0 21 9 . 0 1 7 6 2 . 0. 0. 0 0. 0 0. 0 0. 0 0. 0 21 10. 0 1 9 1 1 . 0. 0 . 0 0 . 0 0. 0 0 . 0 0. 0 » * « * * # * * « » # * 2 2 E N D E R B Y M O U N T A I N « « # * * * * * * * * « * * « SNOW D E N S I T Y S T A T I S T I C S ( C M / C O LOC S T A E L E V N M I N MAX MEAN STD COV 2 2 0 . 1 3 8 1 . 1 1 . 0. 1 8 5 0 . 4 0 8 0. 2 6 8 0. 0 7 0 0. 2 6 2 2 2 0 . 2 4 7 2 . 1 1 . 0 . 2 0 7 0. 3 4 1 0. 2 5 9 0. 0 4 4 0. 1 7 2 2 2 0. 3 6 1 0 . 8. 0. 1 9 4 0. 3 4 0 0. 2 6 2 0. 0 5 5 0 . 2 1 1 2 2 1. 0 7 5 6 . 1 1 . 0. 0 2 4 0. 3 3 3 0. 2 4 8 0. 0 8 2 0 3 3 2 2 2 2. 0 8 5 0 . 1 1 . 0. 2 1 4 0. 3 1 8 0. 2 8 3 0. 0 2 9 0. 1 0 3 2 2 3. 0 1 0 1 5 . 1 2 0 2 3 0 0 . 4 9 8 0. 3 4 6 0. 0 7 4 0. 2 1 3 2 2 4 . 0 1 1 7 3 . 12 . 0 . 2 5 1 0. 4 2 4 0. 3 2 4 0. 0 4 7 0. 1 4 6 2 2 5. 0 1 3 2 0 . 12 . 0. 2 8 6 0. 3 9 0 0. 3 3 0 0. 0 3 2 0. 0 9 B 2 2 6. 0 1 3 5 3 . 1 1 . 0. 2 8 2 0 . 4 2 1 0. 3 5 9 0. 0 3 9 0 1 0 9 2 2 7. 0 1 4 6 3 . 12 0. 2 9 2 0. 4 4 0 0. 3 5 9 0. 0 4 4 0. 1 2 3 2 2 8 . 0 1 5 6 7 . 12 . 0. 3 0 6 0. 4 1 2 0. 3 5 9 0. 0 3 5 0. 0 9 7 2 2 9. 0 1 6 8 6 . 12 . 0 . 3 1 3 0 . 4 2 5 0. 3 7 3 0. 0 3 6 0. 0 9 6 2 2 10. 0 1 7 8 3 . 12 . 0 . 3 2 7 0. 4 2 2 0. 3 8 0 0. 0 3 0 0. 0 7 8 2 2 1 1 . 0 1 9 1 3 . 12 . 0. 3 2 2 0. 4 4 1 0. 3 8 4 0. 0 3 6 0. 0 9 3 2 2 12. 0 2 0 2 4 . 5. 0 . 3 9 3 0. 4 2 8 0. 4 1 3 0 . 0 1 3 0. 0 3 3 « * * * * » » « * # 2 3 V E R N O N - S I L V E R S T A R * » * « « * » * * * # * # * * SNOW D E N S I T Y S T A T I S T I C S ( B M / C C ) LOC S T A E L E V N M I N MAX MEAN STD COV 2 3 0. 1 3 8 1 . 10. 0. 1 7 4 0. 3 B 0 0. 2 5 5 0. 0 6 0 0. 2 3 4 2 3 0. 2 5 3 0 . 10. 0. 1 5 2 0. 3 1 3 0. 2 2 7 0 0 5 3 0. 2 3 2 2 3 1. 0 7 1 6 . 1 1 . 0. 1 4 7 0. 3 4 5 0. 2 3 2 0. 0 5 7 0. 2 4 7 2 3 2 . 0 8 8 1 . 1 1 . 0. 1 6 6 0 . 3 2 7 0. 2 6 2 0. 0 4 1 0. 1 5 8 2 3 3. 0 1 0 9 7 . 12 . 0. 1 9 3 0. 3 8 5 0. 2 8 8 0 0 4 8 0. 1 6 5 2 3 3 . 5 1 0 9 7 . 0. 0 . 0 0. 0 0. 0 0. 0 0. 0 2 3 4. 0 1 2 4 7 . 9 . 0. 2 2 1 0. 3 8 7 0. 2 9 4 0. 0 5 4 0. 1 8 3 2 3 4. 5 1 2 4 7 . 0 . 0. 0 0. 0 0. 0 0. 0 0. 0 2 3 5. 0 1 3 6 6 . 1 2 0 . 2 5 4 0. 4 2 1 0. 3 2 5 0. 0 4 4 0. 1 3 6 2 3 6. 0 1 4 7 2 . 10 . 0. 2 6 9 0. 3 7 7 0. 3 1 2 0. 0 3 0 0. 0 9 8 2 3 7. 0 1 5 9 7 . 12 . 0. 2 9 2 0. 4 3 7 0 . 3 5 2 0. 0 4 7 0. 1 3 3 2 3 8. 0 1 6 7 9 . 12 . 0 . 3 3 5 0. 4 2 7 0. 3 7 7 0. 0 3 4 0. 0 9 0 2 3 9. 0 1 8 4 4 . 9. 0. 2 9 9 0. 4 4 7 0. 3 9 1 0. 0 4 4 0 . 1 1 3 2 3 9. 2 1 8 5 0 . 3. 0. 3 7 1 0. 4 1 2 0. 3 8 5 0. 0 2 3 0. 0 6 0 2 3 9. 5 1 8 8 1 . 0. 0 . 0 0. 0 0. 0 0. 0 0. 0 *»««*»«31 CRESTON - KOOTENAY PASS ******«***»#»# SNOW DENSITY STATISTICS (OM/CC) LOC STA ELEV N MIN MAX MEAN STD COV 31 1. 0 541. 9. 0. 248 0. 510 0. 324 0. 087 0. 270 31 2. 0 616. 9. 0. 243 0 357 0. 300 0. 039 0. 130 31 3. 0 735. 0. 0. 0 0. 0 0. 0 0. 0 0 0 31 4. 0 820. 9. 0. 195 0. 352 0. 289 0. 050 0. 174 31 5. 0 914. 9. 0. 192 0. 333 0. 277 0. 050 0. 179 31 6. 0 1015. 9. 0. 190 0. 397 0. 300 0. 065 0. 217 31 7. 0 1119. 9. 0. 189 0. 408 0. 321 0. 068 0. 212 31 8. 0 1271. 9. 0. 274 0. 397 0 355 0. 046 0. 130 31 9. 0 1355. 9. 0. 295 0. 410 0. 361 0. 040 0. 110 31 10. 0 1439. 9. 0. 289 0. 457 0. 382 0. 057 0. 14B 31 11. 0 1826. 9. 0. 314 0. 508 0. 412 0. 066 0. 159 #«*#»«»32 ROSSLAND - GRANITE MOUNTAIN ********** SNOW DENSITY STATISTICS I LOC STA ELEV N MIN 32 1. 0 485. 10 0. 228 32 2 0 594. 11 0. 230 32 3. 0 707. 11. 0. 220 32 3. 5 853. 6. 0. 215 32 4. 0 960. 11. 0. 255 32 4. 5 1085. 9. 0. 249 32 5. 0 1106. e. 0. 290 32 6. 0 1164. 10. 0. 241 32 7. 0 1320. i i . 0. 318 32 8. 0 1524. 5. 0. 333 32 9. 0 1692. 11. 0 290 ) MAX MEAN STD COV 0. 371 0. 297 0. 042 0. 143 0. 375 0. 316 0. 041 0. 129 0. 332 0. 291 0. 040 0 136 0 381 0. 309 0. 058 0. 187 0. 358 0 317 0. 034 0. 106 0. 356 0. 301 0. 033 0. 111 0 363 0. 329 0. 024 0 072 0. 500 0. 351 0. 076 0. 217 0. 476 0. 392 0. 046 0. 118 0 414 0. 375 0. 031 0. 084 0 408 0 354 0 046 0. 130 * * « * * * « « « * * * « * * 3 3 JERSEY MINE ****************** LOC STA 33 33 33 33 33 33 33 33 1. 0 2. 0 3. 0 4. 0 5. 0 6. 0 7. 0 8. O ELEV N MIN MAX MEAN STD COV 668. 11. 0. 265 0. 398 0. 345 0. 037 0. 109 777. 11 0. 253 0. 375 0. 318 0. 044 0. 137 815. 11. 0. 250 0. 383 0. 329 0. 041 0 124 1000. 11 0. 243 0. 372 0. 319 0. 034 0. 107 1113. 11. 0. 219 0. 404 0. 333 0. 053 0. 159 1219. 11. 0. 240 0. 424 0. 353 0. 055 0. 156 1323. 11. 0. 310 0. 466 0. 376 0. 050 0. 133 1430. 11. 0. 296 0. 460 0. 369 0. 054 0. 145 ••«*«*««««««»**41 ZINCTON »*«***«*«*«««*»»«* SNDW DENSITY STATISTICS (CM/CO LOC STA ELEV N MIN MAX MEAN STD COV 41 1. 0 539. 11. 0 033 0. 638 0. 292 0. 143 0. 490 41 2. 0 686. 11. 0. 063 0. 630 0. 312 0. 133 0. 425 41 3. 0 799. 11. 0. 263 0. 373 0. 320 0. 036 0. 113 41 4. 0 884. 11. 0. 262 0. 370 0. 308 0. 038 0. 123 41 5. 0 960. 11. 0 268 0. 397 0. 336 0 042 0. 126 41 6. 0 1055. 11. 0. 282 0. 408 0. 355 0. 043 0. 122 # « * * * * « » * « * » * * * 4 2 SANDON * * * * * * * * * * * * * * * * * * SNOW DENSITY STATISTICS (CM/CO LOC STA ELEV N MIN MAX MEAN STD 42 11.0 42 12. 0 13. 0 14. 0 15. 0 16. 0 17 42 42 42 42 42 42 18. 42 19. 42 20 42 21 42 22 914. 1027. 1113. 1247. 1402. 1439. 1615. 1753. 1859. 1957. 2030. 2149. 11. 11. 11. 10. 10. 11. 11. 11. 11. 0. 11. 11. 285 302 269 292 336 343 303 331 349 0 0. 334 0. 333 0. 424 471 450 439 457 474 439 . 487 499 0 548 507 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 341 357 350 360 396 404 0. 394 0. 399 0. 40B 0. 0 0. 428 0. 414 0. 0. 0. 0. 0 0. 0. 0. 0. 0 0 0 035 045 045 043 039 045 046 048 050 0 067 058 COV 0. 103 0. 127 0 130 0. 119 0. 100 0. I l l 0. 117 0. 119 0. 123 0. 0 0. 156 0. 140 ##*####*#**#»«»43 KASLO LOC STA 43 43 43 43 43 43 43 ELEV N MIN MAX MEAN STD COV 549. 6. 0. 249 0. 373 0. 324 0 049 0. 152 628. 8. 0. 241 0 379 0. 303 0. 046 0. 151 698. 8 0. 232 0. 372 0. 311 0. 050 0. 162 762. 7. 0. 245 0. 386 0. 332 0 048 0. 143 832. 8. 0. 263 0. 430 0. 349 0. 051 0. 147 927. 8. 0. 296 0 428 0. 373 0. 049 0. 130 1021. 8. 0. 311 0 416 0 374 0. 036 0. 097 * « « * « * * ' * * * « 5 1 F E R N I E - SNOW V A L L E Y * # » * # * « * * * # * * SNOW D E N S I T Y S T A T I S T I C S ( G M / C C ) LOC S T A E L E V N M I N MAX MEAN STD COV 51 1. 0 1 1 5 8 . 9. 0. 2 0 2 0 . 4 6 5 O. 3 4 2 0 . 0 8 1 0 2 3 6 51 2. 0 1 2 5 6 . 10 . 0 . 2 6 5 0 . 3 9 1 0. 3 1 8 0. 0 4 2 0. 1 3 2 51 3. 0 1 3 8 7 . 10. 0. 2 B 4 0. 4 3 0 0. 3 4 9 0. 0 4 9 0. 1 4 0 51 4. 0 1 5 4 5 . 9 0. 2 9 7 0. 4 7 0 0 3 8 6 0. 0 5 9 0. 1 5 3 51 5. 0 1 5 7 6 . 9. 0. 3 2 9 0. 5 1 0 0. 4 1 6 0. 0 6 9 0 1 6 7 51 6. 0 1 6 5 8 . 10. 0 . 3 5 7 0. 4 9 6 0. 4 1 2 0. 0 4 1 0. 1 0 0 51 7. 0 1 7 8 9 . 10 . 0. 3 4 2 0 . 5 0 6 0. 4 2 9 0. 0 6 1 0. 1 4 2 * # » # » » » # » # 5 2 K I M B E R L Y - NORTH STAR *«««*«***»**« SNOW D E N S I T Y S T A T I S T I C S (GM/CC> LOC S T A E L E V N M I N MAX MEAN S T D COV 5 2 0. 1 1 0 4 5 . 1 1 . 0. 1 6 7 0. 3 9 6 0 2 7 1 0. 0 6 0 0. 2 2 1 5 2 1. 0 1 1 8 6 . 1 1 . 0. 2 0 2 0. 3 3 0 0. 2 7 6 0 0 4 7 0. 1 6 9 5 2 2 . 0 1 2 8 0 . 1 2 0. 2 1 2 0. 3 4 7 0. 2 8 9 0. 0 4 3 0. 1 4 8 5 2 3. 0 1 3 6 2 . 12 . 0 2 0 5 0. 3 3 2 0. 2 8 3 0. 0 4 5 0. 1 5 8 5 2 4 . 0 1 4 2 3 . 12 . 0 . 1 9 2 0. 3 6 6 0. 2 8 8 0. 0 5 2 0. 1 7 9 5 2 5. 0 1 5 5 4 . 1 1 . 0. 2 2 1 0. 3 6 1 0. 3 0 4 0. 0 4 3 0. 1 4 3 5 2 6. 0 1 6 8 2 . 12 . 0. 2 1 8 0. 3 9 1 0. 3 0 6 0. 0 5 4 0. 1 7 5 5 2 7. 0 1 8 0 4 . 12 . 0. 2 2 2 0. 3 6 5 0. 3 1 5 0. 0 4 4 0. 1 4 0 # * » # « # » * * * » » * 5 3 L A K E L O U I S E * * * # * * » * * * * * * # # * « • SNOW D E N S I T Y S T A T I S T I C S ( G M / C C ) LOC S T A E L E V N M I N MAX MEAN S T D COV 5 3 1. 0 1 5 4 2 . 12 . 0 . 191 0. 3 9 0 0. 2 6 8 0. 0 5 1 0. 191 5 3 2 . 0 1 6 5 2 . 12 . 0. 2 1 3 0. 3 4 0 0. 2 6 2 0. 0 4 2 0. 1 6 2 5 3 3. 0 1 7 7 1 . 12 . 0. 2 3 0 0. 3 2 0 0. 2 8 1 0. 0 3 1 0 111 5 3 4. 0 1 9 2 0 12. 0. 2 1 5 0. 3 3 0 0 2 7 1 0. 0 3 7 0. 1 3 5 5 3 5. 0 2 0 2 4 . 12 . 0. 2 1 2 O. 3 2 4 0. 2 8 1 0 . 0 3 8 0. 1 3 4 5 3 6. 0 2 1 3 7 . 10. 0. 2 4 0 0. 3 3 8 0. 3 0 1 0. 0 3 2 0. 1 0 8 5 3 7. 0 2 2 4 9 . 12 . 0. 2 2 5 0. 3 3 8 0. 2 9 1 0. 0 3 5 0. 1 1 9 5 3 e. 0 2 3 3 9 . 6. 0. 2 3 9 0 . 6 2 0 0. 3 5 4 0. 1 3 7 0. 3 8 7 « » « » « « * » * * » « » 6 1 GROUSE M O U N T A I N * * * * * * » * * » * » * » » » SNOW D E N S I T Y S T A T I S T I C S ( LOC S T A E L E V N M I N 61 1. 0 7 6 . 1 1 . 0. 0 3 6 61 2. 0 1 8 9 . 10. 0. 1 0 0 61 2. 5 2 5 0 . 8. 0. 1 0 0 61 3. 0 3 4 7 . 8. 0 . 131 61 4. 0 4 0 2 . 9 0 1 5 0 61 6. 0 8 7 8 . 7. 0 . 4 0 0 61 7. 0 9 8 5 . 8. 0 . 4 2 2 61 B. 0 1 0 4 2 . 5. 0. 4 2 5 61 9. 0 1 0 9 7 . 4. 0 . 4 5 7 61 10. 0 1 0 9 7 . 6. 0. 4 5 1 ) MAX MEAN STD COV 0. 4 3 3 0. 1 9 0 0. 1 1 5 0 6 0 9 0. 2 6 3 0. 1 5 9 0. 0 4 8 0 3 0 0 0. 2 8 4 0. 1 6 7 0. 0 5 8 0. 3 4 7 0. 3 1 6 0. 2 0 3 0. 0 6 1 0. 3 0 2 0. 3 5 9 0. 2 4 3 0 0 6 6 0 2 7 1 0 . 5 1 5 0. 4 6 8 0. 0 4 1 0. 0 8 8 0 6 1 4 0. 4 8 9 0. 0 6 4 0. 1 3 2 0 . 5 21 0 4 8 1 0 . 0 3 7 0. 0 7 6 0. 5 1 9 0 4 8 8 0. 0 2 6 0. 0 5 3 0 . 5 6 0 0. 5 1 5 0 . 0 4 2 0. 0 8 2 #*****#*»***«**62 MOUNT SEYMOUR **«««#**«*****»* SNOW D E N S I T Y S T A T I S T I C S ( G M / C C ) LOC S T A E L E V N M I N MAX MEAN STD COV 6 2 1. 0 15 . 1 1 . 0 . I l l 0 . 5 0 7 0. 2 8 5 0 . 1 4 2 0. 4 9 9 6 2 2. 0 1 2 2 . 1 1 . 0 . 111 0 . 5 0 0 0. 2 3 8 0 . 1 3 3 0. 5 6 0 6 2 3. 0 3 2 9 . 1 1 . 0. 0 5 2 0. 3 3 0 0. 2 2 0 0. 0 8 6 0. 3 9 4 6 2 4. 0 3 9 6 . 10 . 0. 1 3 0 0 . 4 7 2 0. 2 9 5 0. 1 2 6 0. 4 2 6 6 2 5. 0 5 9 4 . 9 0 . 1 3 8 0 . 4 5 2 0. 3 3 2 0 . 1 1 4 0. 3 4 4 6 2 6. 0 7 7 7 . 10 . 0. 2 7 3 0. 4 3 7 0. 3 5 4 0. 0 4 9 0. 1 3 8 6 2 7. 0 9 6 0 . 10. 0 3 6 2 0. 7 8 4 0. 4 5 8 0 121 0. 2 6 4 6 2 8. 0 1 0 5 2 . 8. 0. 4 4 3 0. 8 3 7 0. 5 3 4 0. 1 3 0 0. 2 4 4 6 2 9. 0 1 0 6 7 . 9 . 0. 4 6 2 0. 6 4 8 0. 5 2 8 0. 0 6 7 0. 1 2 7 6 2 10. 0 1 1 1 3 . 3. 0 . 4 5 6 0 5 9 3 0. 5 3 0 0. 0 6 9 0. 1 3 0 * » » # » « * « * - » » * » « 6 4 H O L L Y B U R N M O U N T A I N * • « « # » » * * » * « SNOW D E N S I T Y S T A T I S T I C S ( G M / C C ) LOC S T A E L E V N M I N MAX MEAN S T D COV 6 4 1. 0 15 . 4. 0. 1 5 0 0. 3 4 0 0. 2 4 0 0. 0 8 9 0. 3 7 0 6 4 2. 0 1 6 8 . 4. 0. 1 3 8 0. 3 5 3 0. 2 2 6 0. 1 0 0 0. 4 4 4 6 4 3. 0 3 0 5 . 4 . 0. 1 1 2 0. 3 0 8 0. 2 0 1 0. 0 9 2 0. 4 5 7 6 4 4. 0 4 4 2 . 3. 0. 1 3 3 0. 4 2 0 0. 2 6 5 0. 1 4 5 0. 3 4 8 6 4 5. 0 6 4 0 . 4. 0. 2 7 0 0. 4 5 1 0. 3 5 5 0. 0 8 7 0. 2 4 4 6 4 6. 0 7 3 2 . 4. 0. 2 5 0 0. 5 2 7 0. 3 9 7 0. 1 2 4 0 3 1 2 6 4 7. 0 8 2 3 . 3. 0. 4 5 4 0. 5 1 9 0. 4 9 1 0. 0 3 3 0. 0 6 8 6 4 8. 0 9 1 4 . 4. 0. 4 7 0 0. 5 1 4 0. 4 9 4 0. 0 1 9 0. 0 3 9 6 4 9 . 0 1 0 2 1 . 4 . 0. 4 5 6 0 . 6 5 7 0. 5 2 8 0 0 8 9 0. 1 6 8 6 4 10. 0 1 0 8 2 . 1. 0. 4 8 4 0. 4 B 4 0. 4 8 4 0. 0 0 0 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0063004/manifest

Comment

Related Items