Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effect of microbial action on nuclear waste management: is there enhanced leaching from bitumen and.. 1982

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1982_A7 C54.pdf
UBC_1982_A7 C54.pdf
UBC_1982_A7 C54.pdf [ 5.84MB ]
Metadata
JSON: 1.0062986.json
JSON-LD: 1.0062986+ld.json
RDF/XML (Pretty): 1.0062986.xml
RDF/JSON: 1.0062986+rdf.json
Turtle: 1.0062986+rdf-turtle.txt
N-Triples: 1.0062986+rdf-ntriples.txt
Citation
1.0062986.ris

Full Text

EFFECT OF MICROBIAL ACTION ON NUCLEAR WASTE MANAGEMENT: THERE ENHANCED LEACHING FROM BITUMEN AND INCREASED RADIONUCLIDE MOVEMENT THROUGH GEOLOGIC MEDIA? by BRUCE CLELLAND CLEGG B . S c , The U n i v e r s i t y Of A l b e r t a , 1979 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n THE FACULTY OF GRADUATE STUDIES Department Of C i v i l Engineering We accept t h i s t h e s i s as conforming to the re q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA October 1982 © Bruce C l e l l a n d Clegg, 1982 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e Head o f my Department or by h i s o r h e r r e p r e s e n t a t i v e s . 'It i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f C i v i l E n g i n e e r i n g The U n i v e r s i t y of B r i t i s h C o l u m b i a 2 0 7 5 Wesbrook P l a c e V a n c o u v e r , Canada V 6 T 1W5 D a t e : 15 O c t o b e r 1 9 7 9 A b s t r a c t Long-term management of n u c l e a r wastes demands a b s o l u t e p h y s i c a l i s o l a t i o n of n o x i o u s r a d i o n u c l i d e s from the b i o s p h e r e u n t i l decay t o s a f e l e v e l s has o c c u r r e d . Due t o the e x t r e m e l y l o n g h a l f - l i f e of some i s o t o p e s , the r e q u i r e d i s o l a t i o n may be on t h e o r d e r of m i l l e n n i a . P a s t r e s e a r c h on r a d i o a c t i v e wastes has c e n t e r e d on the p h y s i c o c h e m i c a l mechanisms t h a t may e f f e c t a premature r e t u r n of r a d i o n u c l i d e s t o the environment. However, b i o l o g i c a l a c t i o n i n a radwaste d i s p o s a l s i t e may have two major e f f e c t s : 1) p h y s i c a l d e s t r u c t i o n of the s o l i d i f y i n g m a t r i x t h r o u g h s o l u b i l i z a t i o n or o x i d a t i o n ; and/or 2) enhanced movement of r a d i o n u c l i d e s t h rough ( a d s o r b e n t ) g e o l o g i c media by p r o d u c t i o n of v a r i o u s c h e l a t i n g a g e n t s . The work p r e s e n t e d here i s f o c u s e d on both t h e s e m i c r o b i o l o g i c a l p r o c e s s e s . 6 0 C o and 1 3 7 C s e n c a p s u l a t e d i n bitumen was a l l o w e d t o undergo m i c r o b i a l a t t a c k by a s e l e c t e d h y d r o c a r b o n o c l a s t i c c u l t u r e under i d e a l i z e d e n v i r o n m e n t a l c o n d i t i o n s . The r a d i o n u c l i d e s r e l e a s e d by t h i s p r o c e s s were then e v a l u a t e d f o r t h e i r a b i l i t y t o b i n d w i t h s e l e c t e d g e o l o g i c media. In o r d e r t o compare the e f f e c t of reduced a d s o r p t i o n due t o m i c r o b i a l a c t i o n , s y n t h e t i c c h e l a t i n g a gents were used as a s t a n d a r d . The same h y d r o c a r b o n o c l a s t i c c u l t u r e used f o r the s e e x p e r i m e n t s was a l s o t e s t e d f o r i t s s e n s i t i v i t y t o y - i r r a d i a t i o n . i i i Subsequent a n a l y s i s showed m i c r o b i a l a t t a c k of bitumen d i d not enhance the release of the ions. However, a decreased adsorption to the geologic media was observed but the e f f e c t was much l e s s than that observed f o r the s y n t h e t i c c h e l a t i n g agents. The l e v e l of r - r a d i a t i o n expected i n the f i n a l waste r e p o s i t o r y w i l l not e f f e c t the v i a b i l i t y of the organisms t e s t e d . T a b l e o f C o n t e n t s A b s t r a c t i i L i s t o f T a b l e s ... v i L i s t o f F i g u r e s v i i Acknowledgement v i i i I . INTRODUCTION 1 1 . ' BACKGROUND 1 2. THE CHALK RIVER NUCLEAR LABORATORIES' LOW AND INTERMEDIATE LEVEL WASTE PROGRAM 2 A. TREATMENT AND DISPOSAL OF LOW AND INTERMEDIATE LEVEL WASTES 4 i . Volume R e d u c t i o n 4 i i . I m m o b i l i z a t i o n 4 i i i . U l t i m a t e D i s p o s a l 6 i v . N a t u r a l B a r r i e r s 6 3. MICROBIAL ANTAGONISATION OF RADWASTE ISOLATION ...7 A. MICROBIAL ACTIVITY AND LEACHING 7 B. MICROBIAL ACTIVITY AND SUBSURFACE NUCLIDE MOVEMENT 8 4. SCOPE OF THIS WORK 9 I I . MICROBIAL DEGRADATION OF BITUMEN 10 1 . BACKGROUND 10 A. ALIPHATICS 11 B. AROMATICS 12 C. POLYCYCLIC AROMATIC HYDROCARBONS 13 2. REPRESENTATIVE HYDROCARBONOCLASTIC BACTERIA 14 3. CONDITIONS FOR GROWTH AND PRELIMINARY IDENTIFICATION 15 A. GROWTH CONDITIONS 15 B. IDENTIFICATION 16 C. GROWTH CURVES 16 4. SELECTION OF A SUITABLE CULTURE AND GROUNDWATER .17 A. SELECTION OF A SUITABLE CULTURE 17 B. SELECTION OF A SUITABLE GROUNDWATER SOLUTION .22 REMARKS 23 I I I . MICROBIAL RADIOSENSITIVITY 24 1 . BACKGROUND 2 4 2. METHODS 2 5 A. GROWTH MEDIA PREPARATION 25 B. CELL PREPARATION 25 C. IRRADIATION AND ENUMERATION 26 3. RESULTS 27 IV. EVALUATION OF MICROBIALLY ENHANCED LEACHING 31 1. ENHANCED LEACHING 32 2. METHODS 44 A. ANALYSIS 46 3. RESULTS AND DISCUSSION 47 A. STATISTICAL EVALUATION 47 V B. CONCLUSION 49 V. EFFECT OF CHELATING AGENTS ON RADIONUCLIDE MIGRATION 50 1 . BACKGROUND 50 2. METHODS 53 3. ANALYSIS 54 4. RESULTS AND DISCUSSION 56 5. REMARKS 61 V I . CONCLUSION 62 BIBLIOGRAPHY 65 APPENDIX A - ONTARIO MINISTRY OF THE ENVIRONMENT ANALYSIS 71 APPENDIX B - SYNTHETIC GROUNDWATER SOLUTIONS 73 APPENDIX C - LEACH TEST DATA 77 APPENDIX D - LEACHANT CONDUCTIVITY AND PH 89 APPENDIX E - ANALYSIS OF VARIANCE OF 6 0 C o AND 1 3 7 C s ~ SAMPLE MEANS AT T>14DAYS 90 L i s t o f T a b l e s I . MICROBIAL MINERAL SALTS SOLUTION 15 I I . y -IRRADIATION TIMES USED FOR CULTURES A,B,C AND D ..27 I I I . 6 0 C o ADSORPTION DATA 56 IV. 1 3 7 C s ADSORPTION DATA 57 V. 8 5 S r ADSORPTION DATA 57 V I . COMPETING ION ADSORPTION DATA 58 V I I . ADSORPTION DATA FOR COMPETING IONS IN SELECTED GROUNDWATERS 58 V I I I . LEACHANT A ADSORPTION DATA 59 IX. ADSORPTION DATA FOR NUTRIENT MEDIA CONTROL 59 X. LEACHANT D ADSORPTION DATA 60 X I . LEACH TEST DATA - TEST SET A1 - 6 0 C o 77 X I I . LEACH TEST DATA - TEST SET A2 - 6 0 C o 77 X I I I . LEACH TEST DATA - TEST SET A3 - 6 0 C o 78 XIV. LEACH TEST DATA - TEST SET B1 - 6 0 C o -...78 XV. LEACH TEST DATA - TEST SET B2 - 6 0 C o 79 XVI. LEACH TEST DATA - TEST SET B3 - 6 0 C o 79 X V I I . LEACH TEST DATA - TEST SET C l - 6 0 C o 80 X V I I I . LEACH TEST DATA - TEST SET C2 - 6 0 C o 80 XIX. LEACH TEST DATA - TEST SET C3 - 6 0 C o 81 XX. LEACH TEST DATA - TEST SET D1 - 6 0 C o 81 XXI. LEACH TEST DATA - TEST SET D2 - 6 0 C o 82 X X I I . LEACH TEST DATA - TEST SET D3 - 6 0 C o 82 X X I I I . LEACH TEST DATA - TEST SET A1 - 1 3 7 C s 83 XXIV. LEACH TEST DATA - TEST SET A2 - 1 3 7 C s 83 XXV. LEACH TEST DATA - TEST SET A3 - 1 3 7 C s 84 XXVI. LEACH TEST DATA - TEST SET B1 - 1 3 7 C s 84 XXV I I . LEACH TEST DATA - TEST SET B2 - 1 3 7 C s 85 XXVI11. LEACH TEST DATA - TEST SET B3 - 1 3 7 C s 85 XXIX. LEACH TEST DATA - TEST SET C1 - 1 3 7 C s 86 XXX. : LEACH TEST DATA - TEST SET C2 - 1 3 7 C s 86 XXXI. LEACH TEST DATA - TEST SET C3 - 1 3 7 C s 87 X X X I I . LEACH TEST DATA - TEST SET D1 - 1 3 7 C s 87 X X X I I I . LEACH TEST DATA - TEST SET D2 - 1 3 7 C s 88 XXXIV. LEACH TEST DATA - TEST SET D3 - 1 3 7 C s 88 v i i L i s t o f F i g u r e s 1. C u l t u r e A - 11 Hour Growth C u r v e 18 2. C u l t u r e A - S t a n d a r d C u r v e 18 3. C u l t u r e B - 12 Hour Growth C u r v e 19 4. C u l t u r e B - S t a n d a r d C u r v e 19 5. C u l t u r e C - 12 Hour Growth C u r v e 20 6. C u l t u r e C - S t a n d a r d C u r v e 20 7. C u l t u r e D - 12 Hour Growth C u r v e 21 8. C u l t u r e D - S t a n d a r d C u r v e 21 9. D o s e - R e s p o n s e of C u l t u r e A 29 10. D o s e - R e s p o n s e of C u l t u r e B 29 11. D o s e - R e s p o n s e of C u l t u r e C 30 12. D o s e - R e s p o n s e of C u l t u r e D 30 13. L e a c h i n g p r o f i l e s f o r s e t s A1,B1,C1 and D1 - 6 0 C o ....35 14. L e a c h i n g p r o f i l e s f o r s e t s A1,B1,C1 and D1 - 1 3 7 C s ...35 15. L e a c h i n g p r o f i l e s f o r s e t s A2,B2,C2 and D2 - 6 0 C o ....36 16. L e a c h i n g p r o f i l e s f o r s e t s A2 fB2,C2 and D2 - 1 3 7 C s ...36 17. L e a c h i n g p r o f i l e s f o r s e t s A3,B3,C3 and D3 - 6 0 C o ....37 18. L e a c h i n g p r o f i l e s f o r s e t s A3,B3,C3 and D3 - 1 3 7 C s ...37 19. L e a c h i n g p r o f i l e s f o r s e t s A1,A2 and A3 - 6 0 C o 38 20. L e a c h i n g p r o f i l e s f o r s e t s A1,A2 and.A3 •- 1 3 7 C s 38 21. L e a c h i n g p r o f i l e s f o r s e t s B1,B2 and B3 - 6 0 C o '.39 22. L e a c h i n g p r o f i l e s f o r s e t s B1,B2 and B3 - 1 3 7 C s 39 23. L e a c h i n g p r o f i l e s f o r s e t s C1,C2 and C3 - 6 0 C o 40 24. L e a c h i n g p r o f i l e s f o r s e t s C1,C2 and C3 .- 1 3 7 C s 40 25. L e a c h i n g p r o f i l e s f o r s e t s D1,D2 and D3 - 6 0 C o 41 26. L e a c h i n g p r o f i l e s f o r s e t s D1,D2 and D3 - 1 3 7 C s 41 I v i i i Ac knowledgement I t i s w i t h s i n c e r e g r a t i t u d e t h a t I would l i k e t o t h a n k t h e e n g i n e e r s , s c i e n t i s t s and t e c h n i c i a n s o f t h e C h a l k R i v e r N u c l e a r L a b o r a t o r i e s . T h e i r k i n d s u g g e s t i o n s , h e l p f u l c r i t i c i s m s and g e n e r a l s u p p o r t has c u l m i n a t e d i n t h i s t h e s i s . I would l i k e t o thank i n p a r t i c u l a r D r . ' s Norman G e n t n e r and D o u g l a s Champ f o r t h e g e n e r o u s use o f t h e i r t i m e and l a b s p a c e . However, I w o u l d l i k e t o thank e s p e c i a l l y , Mr.Leo B u c k l e y who's e x p e r t s u g g e s t i o n s and weekends i n t h e l a b were an i n s p i r a t i o n . 1 I. INTRODUCTION 1. BACKGROUND F u l l s c a l e atomic energy rese a r c h i n Canada has culminated i n a p r e s s u r i z e d heavy water r e a c t o r known as CANDU* T h i s r e a c t o r , one of Canada's great t e c h n i c a l achievements, i s one of three r e a c t o r designs on world commercial markets. The uniqueness of the r e a c t o r design i s c h a r a c t e r i z e d by the use of 1) n a t u r a l uranium; 2 ) deuterium oxide (heavy water) as moderator and c o o l a n t ; 3 ) a m u l t i p l e pressure tube c o n f i g u r a t i o n i n s t e a d of a s i n g l e l a r g e pressure v e s s e l of other r e a c t o r s ; and 4 ) on power f u e l i n g ( f u e l bundle replacement d u r i n g r e a c t o r o p e r a t i o n ) . The commercial power r e a c t o r uses uranium with g r e a t e r e f f i c i e n c y than the LWR** types. Because of i t s neutron economy the CANDU r e a c t o r a l s o has the advantage of being adaptable to more e f f i c i e n t f u e l c y c l e s , such as the thorium f u e l c y c l e without major * CANada Dueterium Uranium. * * L i g h t Water Reactor 2 m o d i f i c a t i o n of t h e e x i s t i n g d e s i g n . T h i s means i t i s p o s s i b l e t o o p e r a t e a t or n e a r b r e e d i n g , making t h e CANDU r e a c t o r c o m p a r a b l e t o t h e f a s t b r e e d e r r e a c t o r . T h o r i u m . i s a t l e a s t t h r e e t i m e s as a b u n d a n t i n t h e e a r t h ' s c r u s t as u r a n i u m t h u s t h e a v a i l a b l e n u c l e a r f u e l r e s o u r c e would be c o n s i d e r a b l y i n c r e a s e d . I f t h i s c y c l e i s embraced, Canada w i l l r e q u i r e a r e p r o c e s s i n g f a c i l i t y i n o r d e r t o r e c o v e r f i s s i l e m a t e r i a l s c o n t a i n e d i n t h e s p e n t f u e l s . 1 The s e p a r a t e d f i s s i o n p r o d u c t s w i l l r e q u i r e s a f e permanent d i s p o s a l . The C a n a d i a n waste management program was i n i t i a t e d t o e v a l u a t e d i s p o s a l o p t i o n s . P r i o r t o 1971 a l l i r r a d i a t e d f u e l was e i t h e r p r o c e s s e d a b r o a d o r s o l d . 2 S i n c e t h e n , t h e s p e n t f u e l has been s t o r e d i n water f i l l e d b a y s a t t h e n u c l e a r power s t a t i o n s . The f a t e o f t h e s p e n t f u e l s has not y e t been d e c i d e d , but e i t h e r i t w i l l be r e p r o c e s s e d and t h e r e s i d u e s i m m o b i l i z e d and d i s p o s e d , o r i t w i l l be d i s p o s e d i n t a c t , most l i k e l y i n mined c a v i t i e s w i t h i n g r a n i t i c m i n e r a l f r e e s t r u c t u r e s a b u n d a n t l y l o c a t e d i n t h e C a n a d i a n S h i e l d . 2. THE CHALK RIVER NUCLEAR LABORATORIES' LOW AND INTERMEDIATE LEVEL WASTE PROGRAM A l o n g w i t h t h e h i g h l e v e l w a s t e s a r e l e s s a c t i v e w a s t e s g e n e r a t e d f r o m d a i l y o p e r a t i o n o f t h e n u c l e a r power r e a c t o r s . The b r o a d c a t e g o r i e s i n c l u d i n g a l l low and i n t e r m e d i a t e l e v e l 3 r a d w a s t e s encompass o n l y 0 . 1 % o f t h e t o t a l "waste" r a d i o a c t i v i t y . 3 U n f o r t u n a t e l y , t h e s e w a s t e s a r e s u b s t a n t i a l i n volume and a r e c h e m i c a l l y and r a d i o l o g i c a l l y h e t e r o g e n o u s . Some o f t h e v a r i o u s d i f f e r e n c e s w i t h Canada's low and i n t e r m e d i a t e l e v e l w a s t e s a r e : 1) t h e p r o d u c t i o n o f 1 4 C i s much g r e a t e r t h a n i n a LWR due t o t h e much s m a l l e r LWR c o r e s i z e ; 2 ) a h i g h d e g r e e of s y s t e m i n t e g r i t y m i n i m i z e s l o s s e s c o n t a i n i n g f i s s i o n and n e u t r o n a c t i v a t i o n p r o d u c t s ; and 3 ) t r i t i u m a p p e a r s t o be more abundant t h a n i n LWR's. 4 F u r t h e r m o r e , t h e major s o u r c e s o f CANDU low and i n t e r m e d i a t e l e v e l w a s t e s a r e a s s o c i a t e d w i t h : 1) R o u t i n e o p e r a t i o n and m a i n t e n a n c e . 2 ) P u r i f i c a t i o n i n heavy and l i g h t water c i r c u i t s ( t h e m a j o r i t y of t h e r a d i o i s o t o p e s a r e c o n t a i n e d on s p e n t i o n - e x c h a n g e r e s i n s and f i l t e r s c o n t a i n i n g 6 0 C o , 1 3 7 C s and 1"C ( p r e s e n t a s a c a r b o n a t e on i o n - excha n g e r e s i n s ) . 3 ) E q u i p m e n t d e c o n t a m i n a t i o n . 5 The u l t i m a t e d i s p o s a l of r a d w a s t e s w i l l i n c o r p o r a t e a m u l t i p l e b a r r i e r s y s t e m i n w h i c h a waste n u c l i d e would have t o b r e a c h a s e r i e s o f o b s t a c l e s 6 p r i o r t o r e c o n t a c t w i t h t h e b i o s p h e r e . T h e s e o b s t a c l e s i n c l u d e a number o f p r e t r e a t m e n t and t r e a t m e n t s t e p s d i s c u s s e d below. 4 A. TREATMENT AND DISPOSAL OF LOW AND INTERMEDIATE LEVEL WASTES i . Volume R e d u c t i o n A l l w a s t e s t h a t o c c u r as i n c i n e r a b l e s o l i d s w i l l be i n c i n e r a t e d t o a s t a b l e a s h . B o t h O n t a r i o H ydro ( B r u c e N u c l e a r Power D e v e l o p m e n t ) and A t o m i c E n e r g y o f Canada L i m i t e d (AECL) a t t h e C h a l k R i v e r N u c l e a r L a b o r a t o r y (CRNL) have i n c i n e r a t o r s o p e r a t i n g f o r t h i s p u r p o s e . L i q u i d wates may u n d e r g o a t w o - s t e p p r o c e d u r e f o r volume r e d u c t i o n : 1) R e v e r s e o s m o s i s ; and 2) E v a p o r a t i o n . R e v e r s e o s m o s i s c o n c e n t r a t e s s o l i d s by e x c l u d i n g w ater t h r o u g h a s e m i p e r m e a b l e membrane. A s e c o n d s t e p i n volume r e d u c t i o n may u t i l i z e a v e r t i c a l t h i n - f i l m e v a p o r a t o r 6 t o f u r t h e r i n c r e a s e t h e p e r c e n t a g e of t o t a l s o l i d s (up t o 50% has been a c h i e v e d w i t h some w a s t e s ) . 7 i i . I m m o b i l i z a t i o n The u l t i m a t e aim o f i m m o b i l i z a t i o n of r a d w a s t e s i s t h e p r o d u c t i o n o f a d u r a b l e l e a c h - r e s i s t a n t s o l i d . Compounds t h a t have been u s e d as a s o l i d i f y i n g m a t r i x i n c l u d e cement, u r e a - f o r m a l d e h y d e , p o l y e s t e r and b i t u m e n . 8 The s e l e c t i o n of b i t u m e n by CRNL's low and i n t e r m e d i a t e l e v e l waste program was due t o i t s v e r s a t i l i t y , volume s a v i n g s and l e a c h r e s i s t a n c e ( h i g h e s t 5 of t h o s e m a t e r i a l s m e n t i o n e d ) . 9 . B i t u m e n i s c h e m i c a l l y v e r y h e t e r o g e n o u s but i t s components may be g r o u p e d i n t o f o u r b r o a d c a t e g o r i e s : s a t u r a t e d h y d r o c a r b o n s , r e s i n s , c y c l i c h y d r o c a r b o n s and a s p h a l t e n e s . 1 0 O t h e r e l e m e n t s t h a t may be p r e s e n t a r e oxygen(1 - 1 7 % ) , s u l f u r ( 1 - 9 % ) a n d / o r n i t r o g e n ( 1 % ) . 1 1 At room t e m p e r a t u r e ( 2 0 - 2 5 ° ) b i t u m e n ' s p h y s i c a l s t a t e may be d e s c r i b e d as a complex c o l l o i d a l s y s t e m . 1 2 B i t u m e n has been u s e d t o cement b u i l d i n g m a t e r i a l s ( B a b y l o n ) , c a u l k b o a t s or as a water s t o p between b r i c k w a l l s i n t h e t h e t h i r d m i l l e n i u m B . C . 1 3 The e s t a b l i s h m e n t of b i t u m e n as a s o l i d i f y i n g m a t r i x f o r n u c l e a r w a s t e s may be a t t r i b u t e d t o t h e R e s e a r c h C e n t r e f o r N u c l e a r E n e r g y a t M o l , B e l g i u m and t h e P l u t o n i u m R e s e a r c h C e n t r e o f M a r c o u l e , F r a n c e . The B e l g i u m e s t a b l i s h m e n t was c o n s t r u c t e d and o p e r a t e d (on a s m a l l s c a l e ) f r o m 1960-1964 w h i l e t h e M a r c o u l e i n s t a l l a t i o n s t a r t e d o p e r a t i o n i n 1965. C a n a d i a n e x p e r i e n c e w i t h b i t u m e n has been l i m i t e d t o l a b o r a t o r y and p i l o t s c a l e p r o j e c t s . The c o m p l e t i o n o f CRNL's Waste T r e a t m e n t C e n t r e (WTC) has been s l a t e d f o r 1982. T h i s complex w i l l u t i l i z e volume r e d u c t i o n by i n c i n e r a t i o n o r r e v e r s e o s m o s i s and e v a p o r a t i o n , f o l l o w e d by b i t u m e n i z a t i o n . 6 i i i . U l t i m a t e D i s p o s a l In order to ensure p h y s i c a l i s o l a t i o n of the radwaste from c o n t a c t with the biosphere ( u n t i l the waste r a d i o n u c l i d e s have decayed to a c c e p t a b l e l i m i t s ) t e r m i n a l d i s p o s a l w i l l be subterranean. The f i n a l waste r e p o s i t o r y w i l l probably be l o c a t e d on the Canadian S h i e l d i n a g e o l o g i c a l l y s t a b l e hard rock formation known as a p l u t o n . Some of the obvious advantages f o r the s e l e c t i o n of a p l u t o n are that they are: " r e l a t i v e l y homogeneous s t r u c t u r e s of high i n t e g r i t y and long s t a b i l i t y " and "have remained undisturbed s i n c e e a r l y g e o l o g i c times i e , f o r 2 0 0 to 2 0 0 0 m i l l i o n y e a r s " . 1 " i v . N a t u r a l B a r r i e r s Although the utmost c o n s i d e r a t i o n w i l l be given to s i t i n g the r e p o s i t o r y in a h y d r o g e o l o g i c a l l y i n a c t i v e zone, groundwater i n t r u s i o n may occur. If i n t r u s i o n does occur the d e l e t e r i o u s e f f e c t of the groundwater flow may be t w o f o l d : l e a c h i n g of the s o l i d i f i e d waste with concomitant movement through the r e p o s i t o r y and the subsurface environment. In order to minimize the passage of leached r a d i o n u c l i d e s out of the r e p o s i t o r y , n a t u r a l l y o c c u r r i n g adsorbents may be used to b a c k f i l l the r e p o s i t o r y environment. T h i s method i s i n accordance with the m u l t i p l e - b a r r i e r approach to nuclear waste management. If a strong adsorbent i e , b e n t o n i t e i s used, leached n u c l i d e a t t e n u a t i o n w i l l be g r e a t l y enhanced. 7 3 . MICROBIAL ANTAGONISATION OF RADWASTE ISOLATION M i c r o b i a l a c t i v i t y may enhance t h e movement of r a d i o n u c l i d e s f r o m a r e p o s i t o r y by e f f e c t i n g p h y s i c a l d e s t r u c t i o n o f t h e s o l i d i f i e d m a t r i x o r p r o d u c t i o n o f c o m p l e x i n g a g e n t s t h a t may d e c r e a s e . t h e e f f e c t i v e n e s s o f s o r p t i o n r e a c t i o n s by b a c k f i l l m a t e r i a l . A. MICROBIAL ACTIVITY AND LEACHING The r e l e a s e of waste r a d i o n u c l i d e s e n c a p s u l a t e d i n b i t u m e n may be e n v i s i o n e d as a p r o c e s s i n v o l v i n g two mechanisms: 1) M a t r i x d e c a y c a u s e d by d i r e c t m i c r o b i a l a t t a c k o f t h e b i t u m e n ; and 2 ) M a t r i x s o l u b i l i z a t i o n e f f e c t e d t h r o u g h t h e p r o d u c t i o n o f a l c o h o l s , e s t e r s , k e t o n e s and o t h e r m e t a b o l i c e n d - p r o d u c t s . 1 5 A l t h o u g h t h e r e s u l t of e a c h mechanism i s assumed t o be n e g l i g i b l e o v e r a few y e a r s , t h e e f f e c t may have s i g n i f i c a n t c o n s e q u e n c e s f o r a waste t h a t must r e m a i n i s o l a t e d f o r c e n t u r i e s . 1 6 The e f f e c t o f d i r e c t m i c r o b i a l a t t a c k on b i t u m e n has been documented by p r e v i o u s i n v e s t i g a t o r s . 1 7 " 2 3 However, i n v e s t i g a t i o n s on m i c r o b i a l a t t a c k o f n u c l e a r w a s t e s e n c a p s u l a t e d i n b i t u m e n i s v i r t u a l l y n o n - e x i s t e n t . 2 " The r e s e a r c h t h a t has been done was p e r f o r m e d under t h e a u s p i c e s o f t h e L o s Alamos S c i e n t i f i c L a b o r a t o r y . 2 5 U n f o r t u n a t e l y , many of t h e i r f i n d i n g s do n o t have g e n e r a l a p p l i c a b i l i t y . The 8 e x p e r i m e n t a l d e s i g n and r a t i o n a l e f o c u s e d on e x p e r i m e n t s t h a t would y i e l d i n f o r m a t i o n t h a t p e r t a i n e d d i r e c t l y t o t h e U.S. Waste I s o l a t i o n P i l o t P l a n t (WIPP). These s t u d i e s i n c l u d e d C 0 2 gas e v o l u t i o n f r o m ( i n a c t i v e ) a s p h a l t , m i c r o b i a l m e t h y l a t i o n o f Pu, e n u m e r a t i o n o f WIPP m i c r o f l o r a and g e n e r a l r a d i o b i o l o g i c a l s t u d i e s . The g e o l o g i c a l e n v i r o n m e n t of p l u t o n s and t h a t e x p e c t e d f o r t h e WIPP ( h a r d r o c k - s a l t ) i s d i s s i m i l a r a nd t h e r e f o r e c r o s s c o m p a r i s o n s s h o u l d o n l y be made w i t h c a u t i o n . B. MICROBIAL ACTIVITY AND SUBSURFACE NUCLIDE MOVEMENT The a b i l i t y of s t r o n g s y n t h e t i c c h e l a t i n g a g e n t s t o m i t i g a t e a g a i n s t r a d i o n u c l i d e s o r p t i o n t o b a c k f i l l m a t e r i a l has been e s t a b l i s h e d e l s e w h e r e . 2 6 E m e r y 2 7 , has shown t h a t h y d r o x a m a t e and p o l y h y d r o x a m a t e c h e l a t i n g a g e n t s may be p r o d u c e d t h r o u g h m i c r o b i a l m e t a b o l i s m of o r g a n i c m a t e r i a l s . I t f o l l o w s l o g i c a l l y , t h e r e f o r e , t h a t m i c r o b i a l l y p r o d u c e d c h e l a t i n g a g e n t s may s e r v e t o enhance t h e movement of r a d i o n u c l i d e s t h r o u g h b a c k f i l l m a t e r i a l and t h e s u r r o u n d i n g s u b s u r f a c e e n v i r o n m e n t . The f a t e and m i g r a t o r y p r o p e r t i e s o f n u c l e a r waste e l e m e n t s i n a n a t u r a l g e o l o g i c a l e n v i r o n m e n t has been e v a l u a t e d by numerous m e t h o d o l o g i e s . However, e v a l u a t i o n o f th e p a r t i t i o n i n g of t h e waste e l e m e n t between t h e s o l i d media and l i q u i d phase ( g r o u n d w a t e r ) i s t h e f o c a l p o i n t o f most s t u d i e s . V a r i o u s r e s e a r c h e r s have t r i e d t o i l l u s t r a t e t h e 9 d e s t i n y o f e s c a p e d r a d i o n u c l i d e s under a m y r i a d o f c o n d i t i o n s . 2 8 - 3 0 4 . SCOPE OF THIS WORK As m e n t i o n e d e a r l i e r , m i c r o b i a l p o p u l a t i o n s may have an a d v e r s e e f f e c t on n u c l e a r waste management by d i r e c t a t t a c k o f a b i t u m i n i z e d waste p a c k a g e a n d / o r p r o d u c t i o n o f c h e l a t i n g a g e n t s . The s c o p e o f t h i s t h e s i s w i l l span t h e s e two i s s u e s . U n l i k e t h e L o s Alamos work, t h i s r e s e a r c h s h o u l d f i n d g e n e r a l a p p l i c a b i l i t y t h r o u g h o u t t h e n u c l e a r i n d u s t r y . However, s u n d r y d e t a i l s ( c h o i c e of r a d i o n u c l i d e s , o r g a n i s m s and t e c h n i q u e s ) were c h o s e n f o r t h e i r r e l e v a n c e t o t h e C a n a d i a n n u c l e a r p r o g r a m . 10 I I . MICROBIAL DEGRADATION OF BITUMEN 1 . BACKGROUND Compared w i t h g l u c o s e d e g r a d a t i o n , m i c r o b i a l o x i d a t i o n o f h y d r o c a r b o n s p o s e s a u n i q u e s e t of p r o b l e m s : t h e y a r e i n s o l u b l e i n w ater and p r e s e n t p r o b l e m s o f how t h e y a r e s o l u b i l i z e d o r e m u l s i f i e d ; t h e y a r e c h e m i c a l l y u n r e a c t i v e so r e q u i r e s p e c i a l i z e d enzymes f o r t h e i r i n i t i a l o x i d a t i o n , and, f i n a l l y t h e y r e v e r s e t h e m e t a b o l i s m of m i c r o o r g a n i s m s from b e i n g g l y c o l y t i c and l i p o g e n i c t o b e i n g l y p o l y t i c and g l u c o n e o g e n i c . 3 1 . S i n c e m e t a b o l i s m o f h y d r o c a r b o n s i s n o t a s " e n e r g y - e f f i c i e n t " as d e g r a d a t i o n o f common s u g a r s , use o f h y d r o c a r b o n s as a s u b s t r a t e w i l l o n l y o c c u r a s a s e c o n d a r y mechanism.* As a r e s u l t , a d a p t a t i o n and n a t u r a l s e l e c t i o n have e v o l v e d m i c r o o r g a n i s m s w i t h t h e a b i l i t y t o overcome o r c i r c u m v e n t some of t h e c o n s t r a i n t s l i s t e d a b o v e . T h e s e a d a p t a t i o n s have endowed o r g a n i s m s w i t h t h e a b i l i t y t o : * H y d r o c a r b o n s w i l l o n l y be d e g r a d e d i n t h o s e c a s e s where o t h e r more s u i t a b l e s u b s t r a t e s a r e l a c k i n g o r a b s e n t . 11 p r o d u c e s u r f a c e - a c t i v e a g e n t s f o r t h e e m u l s i f i c a t i o n o f t h e i r h y d r o c a r b o n s u b s t r a t e ; o x i d i z e t h e i r r e a c t a n t ( u s u a l l y t o an a l c o h o l o r d i o l ) t h e r e b y making them more p r o n e t o an e n z y m a t i c c a t a b o l i s m s i m i l a r t o f a t t y a c i d m e t a b o l i s m ; p r o d u c e s i m p l e s u g a r s f r om f a t t y a c i d s o r o t h e r l i p o i d a l p r e c u r s o r s . A l t h o u g h t h e h i g h s u b s t r a t e s p e c i f i c i t y of most m i c r o b i a l s p e c i e s l i m i t s t h e o v e r a l l d e g r a d a t i o n o f a h e t e r o g e n o u s m i x t u r e o f h y d r o c a r b o n s , i n d i v i d u a l components may be a t t a c k e d p r e f e r e n t i a l l y by a mixed c u l t u r e of h y d r o c a r b o n o c l a s t i c b a c t e r i a . W i t h r e s p e c t t o t h e major o r g a n i c g r o u p s t h a t compose b i t u m e n , m i c r o b i a l d e g r a d a t i o n may o c c u r i n t h e f o l l o w i n g ways: A. ALIPHATICS A c c o r d i n g t o R a t l e d g e , 3 2 t h e f o l l o w i n g c h a r a c t e r i s t i c s a p p l y t o t h e d e g r a d a t i o n o f a l i p h a t i c h y d r o c a r b o n s : 1. A l i p h a t i c h y d r o c a r b o n s a r e a s s i m i l a t e d by a wide v a r i e t y o f m i c r o o r g a n i s m s . O t h e r c l a s s e s of compound, i n c l u d i n g a r o m a t i c s , may be o x i d i s e d but a r e a s s i m i l a t e d by o n l y a few b a c t e r i a . 2 . n - A l k a n e s o f c h a i n l e n g t h s h o r t e r t h a n n-nonane a r e n o t u s u a l l y a s s i m i l a t e d but may be o x i d i s e d . O n l y some b a c t e r i a have t h e a b i l i t y t o grow on a l k a n e s s h o r t e r t h a n n - o c t a n e . As t h e c h a i n l e n g t h o f t h e a l k a n e i n c r e a s e s beyond C 9 t h e y i e l d f a c t o r i n c r e a s e s but t h e r a t e of o x i d a t i o n d e c r e a s e s . 3... S a t u r a t e d compounds a r e d e g r a d e d more r e a d i l y t h a n u n s a t u r a t e d o n e s . 4. B r a n c h e d - c h a i n compounds a r e d e g r a d e d l e s s r e a d i l y t h a n s t r a i g h t c h a i n compounds. A l t h o u g h h y d r o c a r b o n s o f c h a i n l e n g t h <C 9 a r e more 1 2 s o l u b l e and t h e r e f o r e more a v a i l a b l e t o m i c r o o r g a n i s m s t h e y seem t o i l l i c i t a t o x i c r e s p o n s e . 3 3 T h i s t o x i c i t y may be a t t r i b u t e d t o a d i s r u p t i o n o f t h e c y t o p l a s m i c membrane w i t h a c o n c o m i t a n t l o s s i n f u n c t i o n a l i n t e g r i t y . 3 4 In a d d i t i o n t o t o x i c i t y f r o m s h o r t h y d r o c a r b o n s , f a t t y a c i d s may a l s o be n o x i o u s . The d e l e t e r i o u s e f f e c t of f a t t y a c i d s i s e v i d e n t from t h e i r a m p h o t e r i c n a t u r e by means of w h i c h t h e y may a c t as an e m u l s i f i e r . 3 5 The f i r s t s t e p i n t h e m e t a b o l i s m o f a l i p h a t i c h y d r o c a r b o n s i s u s u a l l y t o a p r i m a r y a l c o h o l by one o f two p o s s i b l e enzymes ( c y t o c h r o m e P-450 o r r u b r e d o x i n ) . To c o n v e r t t h e p r i m a r y a l c o h o l t o i t s c o r r e s p o n d i n g c a r b o x y l i c a c i d , a s e c o n d o x i d a t i o n u s u a l l y f o l l o w s . A f t e r t h i s c o n v e r s i o n t o a c a r b o x y l i c a c i d i s c o m p l e t e , f i n a l d e g r a d a t i o n c a n o c c u r v i a n o r m a l b i o c h e m i c a l c a t a b o l i c pathways s u c h as 0 - o x i d a t i o n . A l t h o u g h t h e i n i t i a l mode of o x i d a t i o n c h a n g e s f o r a l k e n e s and b r a n c h e d - c h a i n s u b s t r a t e s , t h e r e s u l t a n t p r o d u c t i s u s u a l l y s i m i l a r , namely, a t e r m i n a l c a r b o x y l i c g r o u p . B. AROMATICS Not u n l i k e t h e d e c o m p o s i t i o n o f an a l i p h a t i c compound - m e t a b o l i s m of an a r o m a t i c s p e c i e s r e q u i r e s o x i d a t i o n of t h e i n i t i a l s u b s t r a t e t o a common p r o d u c t . In t h e c a s e of most s i m p l e b e n z e n e - l i k e compounds, t h e common p r o d u c t i s u s u a l l y a c a t e c h o l . C h a p m a n 3 6 i l l u s t r a t e s t h a t 3 major p r o d u c t s o f an 13 i n i t i a l o x i d a t i o n s e q u e n c e ( c a t e c h o l o r 1 , 2 - d i h y d r o x y b e n z e n e , p r o t o c a t e c h u i c a c i d o r 3 , 4 - d i h y d r o x y b e n z o i c a c i d and g e n t i s t i c a c i d o r 2 , 5 - d i h d r o x y b e n z o i c a c i d ) a r e " a t t h e f o c a l p o i n t s o f pathways f o r a wide r a n g e o f compounds" and t h a t " o t h e r s u b s t i t u t e d c a t e c h o l s or s u b s t i t u t e d p a r a h y d r i c p h e n o l s may s e r v e a s r i n g - f i s s i o n s u b s t r a t e s " . 3 7 The s u b s e q u e n t r e a c t i o n s t e p t h a t f o l l o w s c o n v e r s i o n t o a c a t e c h o l i s r i n g - f i s s i o n . F o r c a t e c h o l s t h e o r t h o - f i s s i o n ( c l e a v a g e between t h e two c a r b o n s c o n t a i n i n g t h e h y d r o x y g r o u p s ) pathway p r e d o m i n a t e s , w h i l e s u b s t i t u t e d c a t e c h o l s may und e r g o m e t a - f i s s i o n ( c l e a v a g e of t h e bond between an h y d r o x y - b e a r i n g c a r b o n and a c a r b o n a d j a c e n t t o i t t h a t i s n o t h y d r o x y - s u b s t i t u t e d ) . 3 8 Thus, f o l l o w i n g c o n v e r s i o n t o a c a t e c h o l o r a s u b s t i t u t e d c a t e c h o l and r i n g - f i s s i o n , c e n t r a l m e t a b o l i c pathways f u n c t i o n t o c a u s e c o m p l e t e o x i d a t i o n . C. POLYCYCLIC AROMATIC HYDROCARBONS In c o m p a r i s o n t o d e g r a d a t i o n o f t h e s i m p l e a r o m a t i c compounds, p o l y c y c l i c a r o m a t i c h y d r o c a r b o n s (PAH) a r e a l s o d e p e n d e n t on c o n v e r s i o n t o a d i h y d r o d i o l b e f o r e f u r t h e r m e t a b o l i s m may p r o c e e d . A l t h o u g h some g e n e r a (Aeromonas) a p p e a r t o v a r y f r o m t h i s scheme t h r o u g h p r o d u c t i o n of a 1- h y d r o x y - 2 - n a p t h o i c a c i d from p h e n a n t h r e n e , t h e g e n e r a l m i c r o b i a l a t t a c k seems t o s t a r t w i t h p r o d u c t i o n o f t h e d i o l . A g a i n , d i h y d r o d i o l p r o d u c t i o n i s u s u a l l y f o l l o w e d by r i n g - 14 f i s s i o n a nd t h e n t o t a l d e g r a d a t i o n v i a v a r i o u s c e n t r a l m e t a b o l i c p a t h w a y s . The d e g r a d a t i o n o f PAH's l a r g e r t h a n 3 r i n g s has not y e t been u n e q u i v o c a l l y d e m o n s t r a t e d . A l t h o u g h t h i s may r e p r e s e n t a l a c k o f p e r s e v e r e n c e by e x p e r i m e n t e r s i n t h e f i e l d , t h e a s p h a l t e n e f r a c t i o n o f b i t u m e n may be r e s i s t a n t t o m i c r o b i a l a t t a c k . In c o n c l u s i o n , m i c r o b i a l d e g r a d a t i o n o f h y d r o c a r b o n s i s d e p e n d e n t on c o n v e r s i o n o f t h e s u b s t r a t e t o a more r e a c t i v e i n t e r m e d i a t e s u c h as a c a r b o x y l i c a c i d or an a l c o h o l , t h i s p r o d u c t i n t u r n i s c o m p l e t e l y d e g r a d e d by i n t r a c e l l u l a r s y s t e m s t h a t have a more g e n e r a l f u n c t i o n . 2. REPRESENTATIVE HYDROCARBONOCLASTIC BACTERIA As m e n t i o n e d e a r l i e r , t h e r a t e o f m i c r o b i a l o x i d a t i o n of h y d r o c a r b o n s i s u s u a l l y e x t r e m e l y s l o w . Thus, t o m a x i m i z e t h e p o s s i b l e d e g r a d a t i o n of b i t u m e n ( c o n t a i n i n g waste r a d i o n u c l i d e s ) f r e s h c u l t u r e s o f u n i d e n t i f i e d h y d r o c a r b o n o c l a s t i c m i c r o b e s were o b t a i n e d f r o m : 1) Gemni B i o c h e m i c a l R e s e a r c h L i m i t e d - 1 m i x e d ( C u l t u r e A) and 2 pu r e ( C u l t u r e s B and C) c u l t u r e s . 2) U n i v e r s i t y of C a l g a r y - 1 mixed c u l t u r e ( C u l t u r e D ) . * * Thanks t o D r . I a n F o r r e s t e r and Mr.Cam Wyndham o f Gemni B i o c h e m i c a l R e s e a r c h and t h e U n i v e r s i t y o f C a l g a r y r e s p e c t i v e l y f o r t h e i r k i n d d o n a t i o n o f t h e s e c u l t u r e s . 15 A l l f o u r c u l t u r e s had been l o c a t e d i n t h e b i t u m e n - r i c h A t h a b a s c a t a r s a n d s and were t h e r e f o r e w e l l a d a p t e d t o t h e t a s k o f u t i l i z i n g a h e t e r o g e n o u s m i x t u r e o f h y d r o c a r b o n s as a m e t a b o l i c s u b s t r a t e . 3. CONDITIONS FOR GROWTH AND PRELIMINARY IDENTIFICATION A. GROWTH CONDITIONS A l l c u l t u r e s were grown on a m i n e r a l s a l t s s o l u t i o n t h a t had been f o u n d t o be s a t i s f a c t o r y f o r m i c r o b i a l d e g r a d a t i o n of h y d r o c a r b o n s . As d e s c r i b e d by B u s h n e l l and H a a s , 3 9 t h e c o n t e n t s o f t h i s m i x t u r e a r e l i s t e d i n T a b l e I below: D i s t i l l e d , d e i o n i z e d water 1000.0 m is MgSO„ 0.2 g C a C l 2 0.02 g KH 2 PO„ 1.0 g K 2 H P O „ 1.0 g ( N H „ ) 2 S O „ 1 .0 g FeCJ-3 2 d r o p s c o n e . s o l n . T a b l e I - MICROBIAL MINERAL SALTS SOLUTION To p r e v e n t p r e c i p i t a t i o n o f v a r i o u s i n o r g a n i c s p e c i e s a f t e r s t e r i l i z a t i o n (>20 m i n u t e s a t 1 2 5 ° C ) , F e C l 3 and C a C l 2 were a u t o c l a v e d s e p a r a t e l y and added a f t e r t h e main s o l u t i o n had c o o l e d . In a d d i t i o n t o t h e s a l t s l i s t e d a b ove, n o n - s e l e c t i v e n u t r i e n t s i n c l u d i n g 0.3 wt.% m a l t e x t r a c t , 0.3 wt.% y e a s t e x t r a c t a nd 0.5 wt.% p e p t o n e were added t o t h e m i n e r a l s a l t s 1 6 s o l u t i o n on t h e recommendation of F o r r e s t e r . " 0 T e m p e r a t u r e was m a i n t a i n e d a t c l o s e t o a m b i e n t (20-25°C) and a e r a t i o n was m a x i m i z e d t h r o u g h c o n t i n o u s a g i t a t i o n o f a l l c u l t u r e s . B. IDENTIFICATION C u l t u r e s A,C and D c o n t a i n e d gram n e g a t i v e r o d - s h a p e d c e l l s t h a t showed some m o t i l i t y a t 30° C . An O n t a r i o M i n i s t r y o f The E n v i r o n m e n t a n a l y s i s " 1 ( s e e A p p e n d i x A) r e p o r t showed th e 4 c u l t u r e s may c o n t a i n t h e f o l l o w i n g g e n e r a : C u l t u r e A - Pseudomonas C u l t u r e B - B a c i l l u s C u l t u r e C - VE g r o u p * C u l t u r e D - C i t r o b a c t e r , Pseudomonas C. GROWTH CURVES In c o n j u c t i o n w i t h t h e O n t a r i o M i n i s t r y o f The E n v i r o n m e n t a n a l y s i s ( A p p e n d i x A ) , m i c r o b i a l g r o w t h p r o f i l e s ( F i g u r e s 1,3,5 and 7) were e s t a b l i s h e d by t h e f o l l o w i n g methods: 0.30 ml of f r e s h i n n o c u l u m was added t o 20 mis of t h e n u t r i e n t media s a l t s o l u t i o n ( d e s c r i b e d e a r l i e r ) and a l l o w e d t o r o t a t e ( 5 - l 0 RPM) a t 25°C. Samples were t a k e n from t h e r e a c t i o n v e s s e l e v e r y h o u r f o r a t l e a s t 11 h o u r s . S e r i a l * B a c t e r i a i n t h e VE g r o u p s h a r e c h a r a c t e r i s t i c s w i t h t h e g e n e r a Pseudomonas, Xanthomenas and C h r o m o b a c t e r i u m and a s y e t a r e not w e l l d e f i n e d t a x o n o m i c a l l y . " 2 17 d i l u t i o n s f o l l o w e d by media p l a t i n g was u s e d t o d e t e r m i n e t h e number o f v i a b l e c e l l s p e r s a m p l e . " 3 S t a n d a r d c u r v e s ( F i g u r e s 2,4,6 and 8) o f a b s o r b a n c e v s c e l l c o n c e n t r a t i o n , were a l s o o b t a i n e d f o r e a c h c u l t u r e by t a k i n g a b s o r b a n c e r e a d i n g s o f 0.5 t o 1.0 ml a l i q u o t s o f e a c h h o u r l y sample on a G i l f o r d 240 s p e c t r o p h o t o m e t e r (wavelength=600nm). "These p l o t s ( F i g u r e s 1-8) i l l u s t r a t e t h a t C u l t u r e D showed t h e most r a p i d i n i t i a l g r o w t h . A s e c o n d i n t e r e s t i n g o b s e r v a t i o n o f t h e c u l t u r e D p r o f i l e i s i t s b i p h a s i c n a t u r e . T h i s i n f o r m a t i o n c o u p l e d w i t h t h a t i n A p p e n d i x A, c o n f i r m s t h e m u l t i - o r g a n i s m c o n t e n t of C u l t u r e D. 4. SELECTION OF A SUITABLE CULTURE AND GROUNDWATER A. SELECTION OF A SUITABLE CULTURE In o r d e r t o i s o l a t e t h e mixed c u l t u r e w i t h t h e g r e a t e s t b i t u m e n d e g r a d i n g p o t e n t i a l , t h e f o l l o w i n g p r o c e d u r e was f o l l o w e d : 1.0 g of b i t u m e n ( 3 0 - 4 0 mesh of S p - 1 7 0 ) * was p l a c e d i n 20.0 mis o f d e i o n i z e d w ater (DIW) c o n t a i n i n g 0.1340 g Y e a s t N i t r o g e n Base (YNB)** and 0.1 wt.% p e p t o n e . T h i s s o l u t i o n was t h e n s t e r i l i z e d by r _ i r r a d i a t i o n (500 K r a d s ) . Two i d e n t i c a l * "Sp-170" i s t h e d e s i g n a t i o n u s e d by Husky O i l ( t h e b i t u m e n s u p p l i e r ) f o r t h i s c l a s s of o x i d i z e d b i t u m e n . **YNB i s a n o n - s e l e c t i v e s o u r c e of n o n - c a r b o n n u t r i e n t s f o r m i c r o b i a l g r o w t h , i n c l u d i n g t h e f o l l o w i n g : (NH a ) 2 SOi , ( 75 w t . % ) , K H 2 P 0 , ( 1 5 w t . % ) , MgSO a(7 w t . % ) , N a C l O w t . % ) , C a C l 2 ( l wt.%) and s e l e c t e d v i t a m i n s and n u t r i e n t s ( < 1 wt.%) 18 CULTURE A 11 HOUR GROWTH CURVE F i g u r e 1 - C u l t u r e A - 11 H o u r G r o w t h C u r v e CULTURE A STANDARD CURVE-(ABS. VS CELL CONC.) F i g u r e 2 - C u l t u r e A - S t a n d a r d C u r v e 19 2 0 CULTURE C 12 HOUR GROWTH CURVE T 1 1 I 1 1 1 1 1 1 1 T ~ ~ 1$ $jt HA ItM 14A t*M TIMM(EOURS) F i g u r e 5 - C u l t u r e C - 12 H o u r G r o w t h C u r v e CULTURE C STANDARD CURVE-(ABS. VS CELL CONC.) CELL CONCENTRATION (CELLS/ML) (X10* ) F i g u r e 6 - C u l t u r e C - S t a n d a r d C u r v e 21 CULTURE D STANDARD CURVE-(ABS. VS CELL CONC.) i t t t * t H M 144** I M A * CELL CONCENTRATION (CEILS/ML) (X10* ) F i g u r e 8 - Cu l t u r e D - Standard Curve 2 2 s o l u t i o n s were p r e p a r e d f o l l o w i n g t h i s p r o c e d u r e . To c o n f i r m t h a t b i t u m e n was t h e s o l e c a r b o n s o u r c e p r e s e n t i n t h e t e s t v e s s e l s , a p p r o p r i a t e c o n t r o l s ( s e t s a and b) were r u n . A l s o , t o d i r e c t l y compare r a t e o f g r o w t h on b i t u m e n t o r a t e o f g r o w t h on a common c a r b o n s o u r c e a s e c o n d s e t o f c o n t r o l s were r u n (e and f ) c o n s i s t i n g o f s u c r o s e s u b s t i t u t e d f o r b i t u m e n . T h u s , s i x i n d i v i d u a l s e t s were r u n c o n s i s t i n g o f : a) YNB + C u l t u r e A b) YNB + C u l t u r e D c) YNB + Bitumen(1 g) + C u l t u r e A d) YNB + B i t u m e n U g) + C u l t u r e D e) YNB + S u c r o s e O g) + C u l t u r e A f ) YNB + S u c r o s e O g) + C u l t u r e D At T=46 h o u r s , g r o w t h was f o u n d o n l y f o r t h o s e s e t s c o n t a i n i n g C u l t u r e D and s i m i l a r i l y , .the l a r g e s t p o p u l a t i o n L s i z e s were o n l y f o u n d f o r s e t s d and f . B. SELECTION OF A SUITABLE GROUNDWATER SOLUTION C u r r e n t work by t h e A p p l i e d G e o s c i e n c e B r a n c h o f t h e W h i t e s h e l l N u c l e a r R e s e a r c h E s t a b l i s h m e n t has e s t a b l i s h e d f o u r s y n t h e t i c g r o u n d w a t e r s as a p p r o p r i a t e f o r r a d i o n u c l i d e a d s o r p t i o n s t u d i e s . I n o r d e r t o s i m u l a t e " r e a l " r e p o s i t o r y c o n d i t i o n s f o r s u b s e q u e n t e x p e r i m e n t s ( S e c t i o n s IV and V ) , s e l e c t i o n o f a s y n t h e t i c g r o u n d w a t e r t h a t would n o t s u p r e s s m i c r o b i a l g r o w t h was n e c e s s a r y . The f o u r s y n t h e t i c g r o u n d w a t e r s o l u t i o n s were p r e p a r e d a c c o r d i n g t o t h e methods o u t l i n e d i n A p p e n d i x B. Growth o f C u l t u r e D was t e s t e d t h r o u g h s i m p l e i n n o c u l a t i o n o f e a c h 23 g r o u n d w a t e r s o l u t i o n c o n t a i n i n g 0.3 wt.% m a l t e x t r a c t , 0.3 wt.% y e a s t e x t r a c t and 0.5 wt.% p e p t o n e but no a d d i t i o n a l m i n e r a l s a l t s o t h e r t h a n t h o s e c o n t a i n e d by t h e g r o u n d w a t e r . A f t e r i n c u b a t i o n a t 25°C t h e s o l u t i o n c o n t a i n i n g WN-1 S a l i n e S o l u t i o n s u p p o r t e d th e b e s t g r o w t h of C u l t u r e D. REMARKS S i n c e t h e d e g r a d a t i o n o f b i t u m e n i s e x t r e m e l y slow, a l l f o r e s e e a b l e i n h i b i t o r s o f m i c r o b i a l a c t i v i t y were e l i m i n a t e d ( S e c t i o n I V ) . On t h e b a s i s o f t h e r u d i m e n t a r y e v a l u a t i o n s o f g r o w t h m e n t i o n e d above, C u l t u r e D and WN-1 S a l i n e S o l u t i o n were s e l e c t e d as the most a p p r o p r i a t e c u l t u r e and g r o u n d w a t e r s o l u t i o n r e s p e c t i v e l y , t o p r o v i d e a " w o r s t c a s e " a p p r o a c h . 2 4 I I I . MICROBIAL RADIOSENSITIVITY S i n c e t h e f i n a l waste r e p o s i t o r y w i l l be a c o n t i n o u s s o u r c e o f l o w - l e v e l r a d i a t i o n (<10 R / h r ) , t h e e f f e c t o f r a d i a t i o n on C u l t u r e s A,B,C and D has been e v a l u a t e d . 1. BACKGROUND The m a j o r i t y o f l o w - l e v e l waste r a d i o n u c l i d e s t h a t may be e n c a p s u l a t e d i n b i t u m e n e m i t r _ r a d i a t i o n ( i e 1 3 7 C s , 6 0 C o e t c . ) . The a b s o r b e d dose from t h e s e r a d i o n u c l i d e s has been c i t e d a s a p o t e n t i a l a r e a of c o n c e r n w i t h r e s p e c t t o r a d i o l y t i c d e g r a d a t i o n o f a s p h a l t w i t h c o n c o m i t a n t gas g e n e r a t i o n . " 5 However, t h e s e same f i e l d s c o u l d be b a c t e r i o c i d a l ; t h e r e l a t i v e r e s i s t i v i t y of C u l t u r e A,B,C and D t o low LET* r a d i a t i o n was e v a l u a t e d t h r o u g h i r r a d i a t i o n o f e a c h c u l t u r e w i t h a h i g h e n e r g y (1330.0 KeV) r _ s o u r c e . In o r d e r t o g r a p h i c a l l y i l l u s t r a t e t h e l e t h a l e f f e c t s on * LET o r L i n e a r E n e r g y T r a n s f e r encompasses t h a t f r a c t i o n o f t h e i n h e r e n t e n e r g y a s s o c i a t e d w i t h t h e r a d i a t i o n t h a t i s t r a n s f e r r e d t o t h e t a r g e t atoms - e n e r g y t r a n s m i t t e d t o t h e a b s o r b e r p e r u n i t p a t h l e n g t h . 25 a p o p u l a t i o n of e a c h c u l t u r e , p e r c e n t a g e s u r v i v a l was d e t e r m i n e d o v e r t h e ran g e o f 0-300 K r a d s . The r e s u l t s o f t h i s e x p e r i m e n t w i l l y i e l d i n f o r m a t i o n t h a t i s i m p o r t a n t i n t h e c o n s i d e r a t i o n of whether o r n o t i r r a d i a t i o n w i l l e f f e c t i v e l y d e c r e a s e o r e l i m i n a t e t h e r a t e o f b i t u m e n b i o d e g r a d a t i o n . 2. METHODS A. GROWTH MEDIA PREPARATION S i x l i t r e s of m i n e r a l s a l t s s o l u t i o n were p r e p a r e d as d e s c r i b e d e a r l i e r ( S e c t i o n I I ) , w i t h t h e e x c e p t i o n o f C a C l 2 . To p r e v e n t t h e p r e c i p i t a t i o n o f i n o r g a n i c s a l t s ( d u r i n g s t e r i l i z a t i o n ) a C a C l 2 s o l u t i o n of 0.02 g/ml was p r e p a r e d s e p a r a t e l y . P e p t o n e , y e a s t and m a l t e x t r a c t were added a c c o r d i n g t o F o r r e s t e r , a c c o m p a n i e d by 2 wt.% a g a r . T h e s e two s o l u t i o n s (medium and C a C l 2 ) were t h e n s t e r i l i z e d s e p a r a t e l y and m i x e d upon t e r m i n a t i o n o f s t e r i l i z a t i o n . A p p r o x i m a t e l y 300 p l a t e s were p r e p a r e d from t h i s m i x t u r e and a l l o w e d t o c o o l under i n t e n s e UV i r r a d i a t i o n . B. CELL PREPARATION A f r e s h s o l u t i o n o f c e l l s was p r e p a r e d from e a c h c u l t u r e and a l l o w e d t o i n c u b a t e f o r a p p r o x i m a t e l y 72 h o u r s . Due t o t h i s l o n g i n c u b a t i o n p e r i o d a l l c e l l s o l u t i o n s were assumed t o be i n a s t a t i o n a r y g r o w t h p h a s e . 26 C e l l w a s h i n g was done t h r e e t i m e s by a d d i n g 1 ml of e a c h f r e s h c u l t u r e t o N a l g e n e c e n t r i f u g e t u b e s f o l l o w e d by 9-10 mis of PBS.* E a c h c u l t u r e was t h e n c e n t r i f u g e d a t 9000 RPM f o r 5- 10 m i n u t e s a t 2°C. The s u p e r n a t a n t was d i s c a r d e d and t h e p e l l e t r e s u s p e n d e d i n 9-10 mis o f PBS. C. IRRADIATION AND ENUMERATION F o l l o w i n g w a s h i n g , t h e p e l l e t s were v i g o r o u s l y a g i t a t e d i n PBS t o y i e l d a homogeneous c e l l s o l u t i o n . I m m e d i a t e l y p r i o r t o and f o l l o w i n g e a c h i r r a d i a t i o n i n t e r v a l e a c h c u l t u r e was p l a c e d i n i c e t o d e c r e a s e t h e e f f e c t o f e n z y m a t i c a l l y c a t y l z e d r e p a i r . I r r a d i a t i o n was p e r f o r m e d w i t h an AECL Gammacell-220 w i t h a dead t i m e * * and dose r a t e o f 2.4024 K r a d and 0.4640 K r a d / s e c * * * r e s p e c t i v e l y . 4 6 On t h e b a s i s of t h i s d e a d t i m e and dose r a t e t h e c u l t u r e s were i r r a d i a t e d d i r e c t l y i n t h e c e n t r i f u g e t u b e s a c c o r d i n g t o T a b l e I I . * PBS- P h o s p h a t e B u f f e r S o l u t i o n i s a m i x t u r e of K 2HPO a and K H 2 P O „ p r e s e n t i n an a p p r o p r i a t e m o l a r r a t i o t o y i e l d a b u f f e r e d pH of 7.50. ** Dead t i m e i s t h e r e s i d u a l r a d i a t i o n r e c e i v e d by t h e sample p r i o r t o and upon t e r m i n a t i o n o f t h e d o s i n g p e r i o d . ***Dose r a t e and dead t i m e a r e d e t e r m i n e d from t h e m easured s o u r c e ( 6 0 C o ) a c t i v i t y a t some r e f e r e n c e t i m e , t=0. Thus, d o s e s and dead t i m e a t t i m e t c a n be c a l c u l a t e d from t h e o r i g i n a l a c t i v i t y , r e f e r e n c e t i m e and s o u r c e h a l f - l i f e . 27 D o s e ( K r a d ) Sequent i a l T i m e ( s e c ) C u m u l a t i v e T i m e ( s e c ) 0 5 10 15 25 50 75 100 200 300 210.3 210.3 0.0 5.6 5.6 5.6 16.4 48.7 48.7 48.7 0.0 5.6 11.2 16.8 33.2 81 .9 130.6 179.3 389.6 600.2 T a b l e I I - y-IRRADIATION TIMES USED FOR CULTURES A,B,C AND D Upon r e c e i p t of t h e a p p r o p r i a t e dose,. 0.5 mis of t h e c u l t u r e was removed and s e r i a l d i l u t i o n s of 10" 1 , 1 0 " 2 , 1 0 " 3 , 10" 4 and t h e f i r s t f o u r d i l u t i o n s and a t e a c h dose l i s t e d i n T a b l e I I . A f i f t h s e t of r e p l i c a t e p l a t e s was p r e p a r e d f o r t h e 0 dose c o n t r o l . S i n c e i r r a d i a t i o n of t h e c u l t u r e s was p e r f o r m e d s e q u e n t i a l l y , 0.5 ml a l i q u o t s o f t h e sample were d i l u t e d and p l a t e d a f t e r r e c e i p t of t h e a p p r o p r i a t e d o s e . A l l p l a t e s were t h e n a l l o w e d t o i n c u b a t e f o r 48 h o u r s a t 20°C p r i o r t o c o l o n y enumerat i o n . 3. RESULTS D o s e - r e s p o n s e c u r v e s ( F i g u r e s 9-12) were g e n e r a t e d f o r c u l t u r e s A,B,C and D. T h e s e c u r v e s i l l u s t r a t e t h a t none o f th e c u l t u r e s a r e c a p a b l e of growth a t a dose >75 K r a d s . At l e a s t h a l f t h e p o p u l a t i o n w i l l d i e ( L D 5 0 ) a f t e r e x p o s u r e t o a dose e x c e e d i n g 6 K r a d . T h e s e r e s u l t s i n d i c a t e t h a t none of IO" 5 were made. R e p l i c a t e p l a t e s were p r e p a r e d f o r e a c h of 2 8 t h e c u l t u r e s t e s t e d a r e r a d i o s e n s i t i v e ( s u b s t a n t i a l c e l l d e a t h i s o n l y r e a l i z e d a t >1000 r a d s ) however, C u l t u r e A,C and D a l l showed s u r v i v a l c u r v e s c h a r a c t e r i s t i c o f a M u l t i t a r g e t * mechanism f o r c e l l u l a r i n a c t i v a t i o n . * 7 T h i s r e s u l t may be e x p e c t e d s i n c e many b a c t e r i a l s p e c i e s show t h i s r e s p o n s e t o y - i r r a d i a t i o n . In o r d e r t o m i n i m i z e t h e e x p o s u r e t o p e r s o n n e l and p r e v e n t s e v e r e r a d i o l y t i c damage t o t h e b i t u m e n , t h e i n i t i a l s u r f a c e d ose r a t e w i l l be k e p t below 10 R / h r . a 8 E x c e p t f o r 1"C, 1 3 7 C s and 6 0 C o w i l l be t h e most p r e d o m i n a n t r a d i o n u c l i d e s c o n t a i n e d i n t h e low l e v e l waste r e p o s i t o r y . " 9 T h e s e waste n u c l i d e s have a h a l f - l i f e o f 5730, 30 and 5.3 y e a r s r e s p e c t i v e l y . Thus, w i t h an e x p o n e n t i a l d e c a y , a c t i v i t y c o n t r i b u t e d by 1 3 7 C s and 6 0 C o w i l l have d e c r e a s e d t o n e g l i g i b l e l e v e l s w i t h i n 300 y e a r s . S i n c e e a c h c u l t u r e t e s t e d i s r e l a t i v e l y r a d i o - i n s e n s i t i v e and t h e b i t u m e n waste b l o c k w i l l c o n t a i n p r e d o m i n a t e l y s h o r t - l i v e d r a d i o n u c l i d e s w i t h a low i n i t i a l a c t i v i t y - t h e r a d i o l o g i c a l e f f e c t of t h e waste on t h e s e m i c r o b i a l s p e c i e s w o u l d be n e g l i g i b l e . However, l o n g - t e r m e x p o s u r e may i n c r e a s e t h e r a t e of m u t a t i o n a n d / o r i n c r e a s e t h e r e l a t i v e r a d i o s e n s i t i v i t y of e x p o s e d o r g a n i s m s . 5 0 * M u l t i t a r g e t t h e o r y assumes an o r g a n i s m d e a t h w i l l r e s u l t o n l y a f t e r v a r i o u s i n t r a c e l l u l a r " t a r g e t s " a r e i n a c t i v a t e d by t h e r a d i a t i o n s o u r c e . 29 RADIATION DOSE RESPONSE PROFILE OF CULTURE A DOSE(KRAD) F i g u r e 9 - Dose-Response o f C u l t u r e A RADIATION DOSE RESPONSE PROFILE OF CULTURE B T 1 1 1 1 1 1 1 1 1 1 1 1 r 1t.O S4.0 MM 40.9 4IM MM $4M 71.0 tOJ> DOSE(KRAD) F i g u r e 10 - Dose-Response o f C u l t u r e B 30 RADIATION DOSE RESPONSE PROFILE OF CULTURE C 00.0 04J0 10J0 0OJ> DOSE(KRAD) F i g u r e 11 - Dose-Response o f C u l t u r e C RADIATION DOSE RESPONSE PROFILE OF CULTURE D i 1 i 1 1 1 1 1 1 1 1 r - i 1 i 1 1 1 1 1 1 1— 0J0 4.0 0J0 10.0 I0J0 00.0 04.0 00.0 00J0 00.0 40J0 DOSE (KRAD) F i g u r e 12 - Dose-Response o f C u l t u r e D 31 IV. EVALUATION OF MICROBIALLY ENHANCED LEACHING L e a c h i n g , t h e p r o c e s s by w h i c h a r e l a t i v e l y i n s o l u b l e s p e c i e s s u c h as an i n o r g a n i c s a l t i s s o l u b i l i z e d , i s t h e p r i m a r y mechanism f o r r e l e a s e . of e n c a p s u l a t e d waste r a d i o n u c l i d e s . The p r o c e s s o f l e a c h i n g i m m o b i l i z e d w a s t e s has been s h o w n 5 1 " ' 5 2 t o be a p p r o x i m a t e d by F i c k ' s d i f f u s i o n e q u a t i o n s , 5 3 ' ' 5 " and a p l o t o f : I g j y. vs ( t n ) ° - 5 E q t . I V . 1 A 0 F w i l l show l i n e a r i t y i f t h e p r o c e s s i s g o v e r n e d by d i f f u s i o n . * I f t h e c u m u l a t i v e f r a c t i o n o f a c t i v i t y l e a c h e d i s p l o t t e d a g a i n s t t i m e t h e r e s u l t a n t c u r v e ( f o r a d i f f u s i o n - m e d i a t e d r e s p o n s e ) may be d e s c r i b e d as p a r a b o l i c i n i t i a l l y t h e n t a p e r i n g o f f t o a s t r a i g h t l i n e w i t h s l o p e "~0. T h i s t y p e of p l o t was u s e d t o i l l u s t r a t e t h e d a t a p r e s e n t e d i n t h i s S e c t i o n . However, d i f f u s i o n (and t h e r e f o r e l e a c h i n g ) w i l l not * Where a n = r a d i o a c t i v i _ t y l e a c h e d d u r i n g t h e l e a c h a n t r e n e w a l p e r i o d , n ; A 0 = r a d i o a c t i v i t y i n i t a l l y p r e s e n t i n specimen;F=ex- p o s e d s u r f a c e a r e a of s p e c i m e n ( c m 2 ) ; V = s p e c i m e n v o l u m e ( c m 3 ) and t n = d u r a t i o n ( d a y s ) of l e a c h a n t r e n e w a l p e r i o d . 5 " 3 2 o c c u r u n l e s s t h e s o l i d i f i e d w a s t e s a r e i n c o n t a c t w i t h t h e l e a c h a n t . An i n c r e a s e i n any o f t h e mechanisms t h a t w i l l a l l o w g r e a t e r a v a i l a b i l i t y o f t h e e n c a p s u l a t e d s p e c i e s w i t h t h e l e a c h a n t w i l l t h e r e f o r e r e s u l t i n an i n c r e a s e i n l e a c h i n g . 1. ENHANCED LEACHING The p e r t i n e n t f a c t o r s w i t h r e s p e c t t o b i t u m e n t h a t may r e s u l t i n e n h a n c e d l e a c h i n g a r e : a) M e c h a n i c a l a b r a s i o n , b) T e m p e r a t u r e , c ) D i f f u s i o n , d) B i o d e g r a d a t i o n . S i n c e t h e f i n a l waste r e p o s i t o r y w i l l be l o c a t e d i n a g e o l o g i c a l l y s t a b l e l o c a t i o n , t h e e f f e c t o f m e c h a n i c a l a b r a s i o n w i l l e l i c i t a n e g l i g i b l e i n c r e a s e i n c o n t a c t o f t h e i m m o b i l i z e d waste r a d i o n u c l i d e s w i t h n a t i v e g r o u n d w a t e r s . U n f o r t u n a t e l y , t h e t e m p e r a t u r e c h a r a c t e r i s t i c s of t h e r e p o s i t o r y a r e unknown. I n i t i a l l y t h e r e p o s i t o r y t e m p e r a t u r e i s e x p e c t e d t o be a p p r o x i m a t e l y 1 0°C however, waste h e a t from h i g h - l e v e l r a d i o a c t i v e d e c a y may i n c r e a s e t h e o v e r a l l r e p o s i t o r y t e m p e r a t u r e . I f t h e i n c r e a s e i s l a r g e enough, l e a c h i n g may be e n h a n c e d as a r e s u l t of t h e i n c r e a s e d s u r f a c e c o n t a c t . 5 5 The r e m a i n i n g two f a c t o r s may r e s u l t i n t h e g r e a t e s t i n c r e a s e i n l e a c h i n g under " r e p o s i t o r y c o n d i t i o n s " and t h e r e f o r e d e s e r v e g r e a t e r e l a b o r a t i o n . 3 3 D i f f u s i o n The e n h a n c e d movement o f i o n s f r o m b i t u m e n as t h e c o n c e n t r a t i o n g r a d i e n t i s d e c r e a s e d between t h e b i t u m e n and s o l v e n t c a n be r a t i o n a l i z e d by a d i f f u s i o n m e d i a t e d p h e n o m e n o n . 5 1 The r a d i o n u c l i d e - b i t u m e n m i x t u r e w i l l be e s s e n t i a l l y homogeneous t h u s , t h e waste s o l i d may be c o n s i d e r e d an i s o t r o p i c medium. In t h i s c a s e , a random u n i f o r m movement of i o n s between t h e b i t u m e n s u r f a c e and t h e s u r r o u n d i n g media w i l l o c c u r . I f t h e s u r r o u n d i n g media has a low i n i t i a l i o n i c c o n c e n t r a t i o n ( i e DIW), a n e t i n c r e a s e i n t h e i o n c o n t e n t w i l l be o b s e r v e d a f t e r c o n t a c t w i t h t h e b i t u m e n b l o c k . The d r i v i n g f o r c e f o r t h i s s t e a d y - s t a t e movement i s the d i f f e r e n c e i n c o n c e n t r a t i o n between t h e b i t u m e n and w a t e r , AC. As AC a p p r o a c h e s 0, t h e n e t exchange between t h e i s o t r o p i c s o l i d and l e a c h a n t w i l l a l s o become 0. M a t h e m a t i c a l l y , d i f f u s i o n may be d e s c r i b e d a s : t h e r a t e of t r a n s f e r of d i f f u s i n g s u b s t a n c e t h r o u g h u n i t a r e a o f a s e c t i o n i s p r o p o r t i o n a l t o t h e c o n c e n t r a t i o n g r a d i e n t measured n o r m a l t o t h e s e c t i o n , i e F = -D\T. E q t . I V . 2 \X where F i s t h e r a t e of t r a n s f e r p e r u n i t a r e a of s e c t i o n , C t h e c o n c e n t r a t i o n of d i f f u s i n g s u b s t a n c e , x t h e s p a c e c o o r d i n a t e measured n o r m a l t o t h e s e c t i o n , and D i s c a l l e d t h e d i f f u s i o n c o e f f i c i e n t . 5 6 The r e s u l t a n t e f f e c t of t h i s p r o c e s s w i l l be an e q u i l i b r i u m s t a t e i n w h i c h t h e c o n c e n t r a t i o n o f i o n s i n t h e 34 l e a c h a n t a p p r o x i m a t e s t h e c o n c e n t r a t i o n o f i o n s i n t h e b i t u m e n . U n f o r t u n a t e l y , e q u i l i b r i u m w i l l o n l y be a t t a i n e d i n t h o s e c a s e s i n w h i c h t h e l e a c h a n t i s s t a t i c . G r o u n d w a t e r f l o w i n a " r e a l " r e p o s i t o r y would r e p r e s e n t a dynamic s t a t e t h a t may a f f o r d i n f i n i t e d i l u t i o n p r o v i d e d a c o n c e n t r a t i o n g r a d i e n t e x i s t s between the s o l i d m a t r i x and g r o u n d w a t e r . T h i s b e h a v i o u r i s c l e a r l y i l l u s t r a t e d by F i g u r e s 13 t o 26 i n w h i c h t h e c u m u l a t i v e f r a c t i o n l e a c h e d (as a f u n c t i o n o f t i m e ) i s s t i l l i n c r e a s i n g f o r a l l c a s e s i n w h i c h an i o n i c c o u n t e r b a l a n c e was n o t p r e s e n t ( S e t - A ) . S e t s B,C, and D* however, a l l i l l u s t r a t e t h e c a s e i n w h i c h an e q u i l i b r i u m i s b e i n g a p p r o a c h e d and s l o p e — - K ) , due t o t h e m i t i g a t i n g e f f e c t s o f i o n s p r e s e n t i n s o l u t i o n p r i o r t o t h e i n i t i a t i o n o f t h e t e s t . B i o d e g r a d a t i o n As p r e v i o u s l y m e n t i o n e d b o t h l a b o r a t o r y 1 7 " 1 9 and i n s i t u 2 1 - 2 3 , 5 7 - 6 0 a t t a c k has been a d e q u a t e l y d e m o n s t r a t e d . The e f f e c t o f m i c r o b i a l a t t a c k o f a b i t u m i n i z e d waste may enhance l e a c h i n g v i a : p h y s i c a l r e m o v a l of t h e e x p o s e d l a y e r of t h e b i t u m e n as i t i s u s e d as a m i c r o b i a l s u b s t r a t e ; s o l u b i l i z a t i o n by m e t a b o l i c i n t e r m e d i a t e s , e n d - p r o d u c t s 1 5 o r c o - o x i d a t i v e p r o d u c t s 6 1 ; o r e m u l s i f i c a t i o n o f t h e b i t u m e n by m i c r o b i a l l y * S e t A c o n t a i n e d DIW o n l y . However, B,C and D were composed p r i m a r i l y o f t h e n u t r i e n t s o l u t i o n d i s c u s s e d i n S e c t i o n I I . 0 3 5 SETS A1#1,C1J)1 - "Co LEACHED VS TIME — i — /ML0 TIME(DAYS) F i g u r e 13 - L e a c h i n g p r o f i l e s f o r s e t s A l , B 1 , C 1 a n d D1 _ 6 0 Co' SETS A1,B1,C1J)1 - m C s LEACHED VS TIME a 1 e—© SET A-1 * • SET B-1 •—» SET C-t SET D-1 TIME (DAYS) F i g u r e 14" - L e a c h i n g p r o f i l e s f o r s e t s A1,B1,C1 a n d D1 - 1 3 7 C s 36 SETS A2tB2,C2tD2 - "Co LEACHED VS TIME ^ SETS A2tB2,C2tD2 - "Cs LEACHED VS TIME TIME(DAYS) F i g u r e 16 - L e a c h i n g p r o f i l e s f o r s e t s A2,B2,C2 a n d D2 - 1 3 7 C s 3 7 SETS A3£3,C3J)3 - ' Cs LEACHED VS TIME a—o SET A-3 < • SET B-3 • SET C-3 x— K SET D-3 f— ~ T " ? i * — ( 4 _ + • ^ ) t , ^ fi * x * *~~ — X M — K tJO tOM MM M . 0 70.0 MM MM IMM 49M MM MM TIME(DAYS) Figure 18 - Leaching p r o f i l e s for sets A3,B3,C3 and D3 - 1 3 7 C s 3 8 SETS A1A2A3 - mCs LEACHED VS TIME 3 9 i SETS B122.B3 - "Co LEACHED VS TIME o—e> SET B-1 < • SET B-2 *—• SET B-3 -i 1 1 r I I M TIME(DAYS) F i g u r e 21 - L e a c h i n g p r o f i l e s f o r s e t s B1,B2 and B3 - 6 0 C o SETS B1,B2£3 - Cs LEACHED VS TIME 40 r SETS C1,C2,C3 - "Co LEACHED VS TIME SET C-1 SET C-2 SET C-3 T 1 1 50.0 00.0 i r 70.0 I r~ 00.0 —i 1 1 r 30.0 4CJO 1QQJ0 F i g u r e TIME(DAYS) 23 - L e a c h i n g p r o f i l e s f o r s e t s C1,C2 and C3 - 6 0 C o SETS C1,C2,C3 - mCs LEACHED VS TIME o—o SIT C-1 * • SET C-2 *—» SET C-3 —i 1 1 1 1 r 40J) 80.0 80.0 TIME(DAYS) F i g u r e 24 - L e a c h i n g p r o f i l e s f o r s e t s C1,C2 and C3 IOOJO 1 3 7 C s 41 TIME(DAYS) F i g u r e 25 - L e a c h i n g p r o f i l e s f o r s e t s D1,D2 and D3 - 6 0 C o SETS D 1J)2J)3 - mCs LEACHED VS TIME T 1 I0QJO TIME(DAYS) F i g u r e 26 - "Le a c h i n g " p r o f i l e s f o r s e t s D1,D2 and D3 - 1 3 7 C s 4 2 p r o d u c e d s u r f a c e - a c t i v e a g e n t s s u c h as l i p i d s , g l y c o l i p i d s and l i p o p r o t e i n s . 6 2 " 6 5 O b v i o u s l y , t h e l a t t e r two modes of m i c r o b i a l l y i n i t i a t e d r a d i o a c t i v e waste r e l e a s e a r e de p e n d e n t on t h e p r e s e n c e of t h e f i r s t i f b i t u m e n i s t h e s o l e c a r b o n s o u r c e (a l i k e l y s c e n a r i o i n a deep waste r e p o s i t o r y ) . F u r t h e r m o r e , t h e p r e s e n c e o f exogenous a g e n t s t h a t may s o l u b i l i z e o r e m u l s i f y t h e b i t u m e n i s not a r e l e v a n t p r o b l e m u n l e s s t h e r e p o s i t o r y c o n t a i n i n g t h e waste i s i n o r a d j a c e n t t o a g e o l o g i c a l f o r m a t i o n c o n t a i n i n g p e t r o l e u m . U n t i l now, no i n v e s t i g a t o r s have u n d e r t a k e n t o show i n c r e a s e d r e l e a s e o f r a d i o n u c l i d e s e n c a p s u l a t e d i n b i t u m e n due t o m i c r o b i a l a c t i o n and o n l y one s t u d y has r e v i e w e d m i c r o b i a l a t t a c k of a s p h a l t c o n t a i n i n g i n a c t i v e s a l t s . 6 6 In t h e p a s t , i n v e s t i g a t o r s have u t i l i z e d any a v a i l a b l e method t o maximize t h e c o n t a c t of t h e m i c r o b i a l b i o m a s s w i t h t h e s u b s t r a t e i n o r d e r t o i n c r e a s e t h e r a t e o f a t t a c k . U n f o r t u n a t e l y , t h e s e t e c h n i q u e s have u s u a l l y d i s r u p t e d ( o r d e s t r o y e d ) t h e s t r u c t u r a l i n t e g r i t y o f t h e b i t u m e n t o s u c h an e x t e n t as t o p r e c l u d e t h e p o s s i b i l i t y of t h e i r use i n any s a t i s f a c t o r y e x p e r i m e n t d e s i g n e d t o show e n h a n c e d l e a c h i n g . In t h e e x p e r i m e n t d e s c r i b e d i n t h e f o l l o w i n g pages a s t a n d a r d i z e d p r o c e d u r e 6 7 was f o l l o w e d t h a t s h o u l d a l l o w good i n t e r c o m p a r i s o n of r e s u l t s . The p r o c e d u r e was m o d i f i e d s l i g h t l y f o r t e s t S e t s C and D ( d e s c r i b e d i n S e c t i o n I I ) . t o a l l o w f o r maximum growth o f h y d r o c a r b o n o c l a s t i c b a c t e r i a . 4 3 O p t i m a l n u t r i e n t , oxygen and t e m p e r a t u r e c o n d i t i o n s were m a i n t a i n e d t o c r e a t e an e x p e r i m e n t a l s y s t e m t h a t c o u l d r e s o l v e any d i f f e r e n c e i n mass l e a c h i n g o f r a d i o n u c l i d e s f r o m b i t u m e n t h a t was o r was not u n d e r g o i n g m i c r o b i a l a t t a c k . A l t h o u g h m i c r o b i a l g r o w t h was not d e p e n d e n t on t h e use o f b i t u m e n as a s o l e c a r b o n s o u r c e , a f t e r a p p r o x i m a t e l y 12 h o u r s ( s e e S e c t i o n I I ) an endogenous g r o w t h p h a s e had been r e a c h e d f o r t h e m i x e d p o p u l a t i o n and f u r t h e r g r o w t h was d e p e n d e n t on t h e use o f b i t u m e n as a c a r b o n s o u r c e . The o b j e c t i v e of t h i s i n v e s t i g a t i o n was s i m p l y t o d e t e r m i n e i f a s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e e x i s t e d between i n o c u l a t e d samples and t h e i r r e s p e c t i v e c o n t r o l s , i r r e s p e c t i v e o f t h e mechanism ( s o l u b i l i z a t i o n , e m u l s i f i c a t i o n o r b i o d e g r a d a t i o n ) under c o n d i t i o n s t h a t were o p t i m i z e d f o r m i c r o b i a l g r o w t h . 44 2.• METHODS Tw e l v e i d e n t i c a l s amples of Sp-170 ( o x i d i z e d ) b i t u m e n c o n t a i n i n g 38 wt.% sodium n i t r a t e , 4.914 »iCi/gm 6 0 C o and 8.229 »iCi/gm 1 3 7 C s (New E n g l a n d N u c l e a r L t d . ) were p r e p a r e d i n a t w i n - s c r e w e x t r u d e r a t a p r o d u c t f l o w r a t e o f 2.163 kg/hr and a peak t e m p e r a t u r e o f < 1 7 0 ° C . The f i n a l homogeneous c y l i n d r i c a l p r o d u c t had a mean mass, volume and a r e a of 21.2 g U = 1 . 0 8 ) , 15.7 cm 3( t f=7.90 X IO"?) and 35.1 c m 2 U = 1 . 0 5 ) r e s p - e c t i v e l y . W h i l e t h e l e a c h s amples c o o l e d f o r f o u r d a y s a t a m b i e n t t e m p e r a t u r e , f o u r s e p a r a t e l e a c h a n t s o l u t i o n s were p r e p a r e d and c o n s i s t e d o f t h e f o l l o w i n g : L e a c h a n t S o l u t i o n A D i s t i l l e d , d e m i n e r a l i z e d water ( c o n d u c t i v i t y <1.00 X 10" 6Mho/cm). L e a c h a n t S o l u t i o n B T5 D i s t i l l e d , d e m i n e r a l i z e d w ater ( c o n d u c t i v i t y - as a b o v e ) . 2) M i n e r a l s a l t s s o l u t i o n as d e s c r i b e d e a r l i e r ( S e c t i o n I I ) . 3) M i c r o b i a l n u t r i e n t media c o n s i s t i n g o f : 0.3% m a l t e x t r a c t , 0.3% y e a s t e x t r a c t and 0.5% p e p t o n e . L e a c h a n t s o l u t i o n C T ) D i s t i l l e d , d e m i n e r a l i z e d w a t e r ( c o n d u c t i v i t y - a s a b o v e ) . 2) M i n e r a l s a l t s s o l u t i o n a s d e s c r i b e d e a r l i e r ( S e c t i o n I I ) . 3) M i c r o b i a l n u t r i e n t media c o n s i s t i n g o f : 0.3% m a l t e x t r a c t , 0.3% y e a s t e x c t r a c t and 0.5% p e p t o n e . 4) H y d r o c a r b o n o c l a s t i c b a c t e r i a ( C u l t u r e - D ) . L e a c h a n t S o l u t i o n D T l D i s t i l l e d , d e m i n e r a l i z e d w ater ( c o n d u c t i v i t y - as a b o v e ) . 2) WN-1 S y n t h e t i c g r o u n d w a t e r s o l u t i o n as d e s c r i b e d 45 e a r l i e r i n S e c t i o n I I . * 3) M i c r o b i a l n u t r i e n t media c o n s i s t i n g o f : 0.3% m a l t e x t r a c t , 0.3% y e a s t e x t r a c t and 0.5% p e p t o n e . 4) H y d r o c a r b o n o c l a s t i c b a c t e r i a ( C u l t u r e - D ) . The b i t u m e n samples were p l a c e d i n 250 ml S y b r o n / N a l g e wide-mouth, s t r a i g h t s i d e p o l y m e t h y l p e n t e n e j a r s w i t h p o l y p r o p y l e n e screw c l o s u r e s . T h r e e samples f o r e a c h l e a c h a n t s o l u t i o n were t h e n immersed i n 100 mis of l e a c h a n t , i n s u c h a manner a s t o maximize t h e e x p o s u r e between t h e l e a c h a n t and sample s u r f a c e ( w i t h n o t l e s s t h a n 5.0 mis c o v e r i n g t h e s a m p l e ) . To m a i n t a i n good a e r a t i o n o f t h e m i c r o b i a l c u l t u r e s but t o m i n i m i z e r e l e a s e of r a d i o n u c l i d e s a s a r e s u l t o f m e c h a n i c a l a g i t a t i o n , a l l s a m p l e s were a g i t a t e d h o r i z o n t a l l y by a L a b - L i n e J u n i o r O r b i t S h a k e r a t 100 RPM. The l e a c h a n t s o l u t i o n s were c h a n g e d a c c o r d i n g t o t h e g u i d e l i n e s o f H e s p e 6 7 - e v e r y 24 h o u r s f o r t h e f i r s t 7 d a y s and t h e n once p e r week f o r t h e f o l l o w i n g 8 weeks. P r i o r t o t e r m i n a t i o n o f t h e e x p e r i m e n t a f i n a l sample was c o l l e c t e d 30 d a y s a f t e r t h e end o f t h e 8 week s a m p l i n g p e r i o d . F o r t h e d u r a t i o n of t h e t e s t a l l samples were m a i n t a i n e d a t an a v e r a g e t e m p e r a t u r e o f 23.6°C (tf=1.64). In o r d e r t o e n s u r e m i c r o b i a l a c t i v i t y was a t a maximum r a t e ( e x p o n e n t i a l g r o w t h p h a s e ) , a l l s t e r i l e l e a c h a n t s o l u t i o n s (C and D) were i n n o c u l a t e d 3-4 h o u r s b e f o r e * In k e e p i n g w i t h a " w o r s t - p o s s i b l e - c a s e " p h i l o s o p h y , WN-1 s y n t h e t i c g r o u n d w a t e r was s e l e c t e d a s a s u i t a b l e example s i n c e t h i s g r o u n d w a t e r was shown e a r l i e r ( S e c t i o n I I ) t o be t h e most c o n d u c i v e t o growth of C u l t u r e - D . 4 6 t h e t i m e i n w h i c h t h e y were t o be c h a n g e d ( s e e S e c t i o n I I ) . A. ANALYSIS I m m e d i a t e l y p r i o r t o e a c h l e a c h a n t change, 25.0 mis o f s p e n t l e a c h a n t were wi t h d r a w n f r o m t h e sample c o n t a i n e r s and t r a n s f e r r e d t o p o l y p r o p y l e n e v i a l s . The s u b s e q u e n t a n a l y s i s e mployed a m u l t i - c h a n n e l y - s p e c t r o m e t e r e q u i p p e d w i t h a G e ( L i ) * d e t e c t o r . C o u n t i n g t o o k an a v e r a g e o f 3 h o u r s f o r e a c h sample. Most sa m p l e s a v e r a g e d between 2-3 o r d e r s o f m a g n i t u d e above b a c k g r o u n d (1 X 10" 1 2 C i / m l ) t h e r e f o r e b a c k g r o u n d was not c o n s i d e r e d a s i g n i f i c a n t f a c t o r i n t h e r e s u l t i n g s t a t i s t i c a l a n a l y s i s . C o n d u c t i v i t y - a n d pH measurements were made w i t h t h e use of R a d i o m e t e r ( C o p e n h a g e n ) and F i s h e r I n s t r u m e n t s ( s e e A p p e n d i x D) . * G e ( L i ) - Germanium, L i t h i u m . 4 7 3. RESULTS AND DISCUSSION V i s u a l i n t e r p r e t a t i o n o f F i g u r e s 13 t o 18 show o n l y one c o n s i s t e n t t r e n d i s e v i d e n t i n t h e p r o f i l e s o f : £ a n V v s ( t r , ) 0 - 5 E q t . I V . 1 A 0 F ( c u m u l a t i v e f r a c t i o n l e a c h e d v s t i m e ) . S e t A's s l o p e i s g r e a t e s t i n most c a s e s a t t>21 d a y s i n c o m p a r i s o n t o S e t s B,C and D. T h e s e l a t t e r t e s t s e t s a l l a p p e a r t o be a p p r o a c h i n g a s l o p e = 0 ( F i g u r e 16). As m e n t i o n e d e a r l i e r , j u s t i f i c a t i o n f o r t h e l e a c h i n g b e h a v i o u r o f s e t A can be e x p l a i n e d by a h i g h AC. In t h i s c a s e , d i f f u s i o n w i l l c a u s e a n e t movement of r a d i o n u c l i d e s between t h e b i t u m e n and DIW. A l t h o u g h a l l samples were v i r t u a l l y i d e n t i c a l i n terms of mass, volume and a r e a , s m a l l s u r f a c e i m p e r f e c t i o n s would e x p l a i n t h e i n i t i a l d i f f e r e n c e s i n l e a c h i n g b e h a v i o u r of t h e s a m p l e s . However, l o n g t e r m b e h a v i o u r w o u l d be a f u n c t i o n , u l t i m a t e l y , o f t h e l e a c h a n t r a t h e r t h a n t h e s a mple. A. S T ATISTICAL EVALUATION S i n c e o n l y q u a l i t a t i v e e v a l u a t i o n s may be made by i n s p e c t i o n of F i g u r e s 13 t o 18, an A n a l y s i s o f V a r i a n c e ( w i t h o n e - i n d e p e n d e n t v a r i a b l e ) c o u p l e d w i t h t h e Student-Newman- K e u l s p r o c e d u r e 6 8 was employed as a q u a n t i t a t i v e a p p r o a c h t o 48 d e t e r m i n e d i f f e r e n c e s i n sample means. S i n c e s l o p e ~ 0 a t t>14 d a y s ( s e e F i g u r e 18), sample means were e v a l u a t e d from t h e c u m u l a t i v e f r a c t i o n l e a c h e d f r o m t=14 t o t=93 d a y s . A l l s t a t i s t i c a l t e s t s were p e r f o r m e d i n d e p e n d e n t l y f o r t h e two i s o t o p e s u s e d , a t an c=0.05 s i g n i f i c a n c e l e v e l ( s e e A p p e n d i x E f o r s t a t i s t i c a l r e s u l t s ) . I n s p e c t i o n o f A p p e n d i x E shows t h a t f o r 6 0 C o t h e a v e r a g e means o f S e t s A and B were s i g n i f i c a n t l y d i f f e r e n t from t h e a v e r a g e means of S e t s C and D a t a=0.05, and f o r 1 3 7 C s Group A was s i g n i f i c a n t l y d i f f e r e n t f r o m B,C and D. However, t h e r e was no s i g n i f i c a n t d i f f e r e n c e between C and D and between B and D. T h u s , t h e combined s t a t i s t i c a l a n a l y s i s f o r 6 0 C o and 1 3 7 C s i l l u s t r a t e s o n l y t h a t t h e S e t A a v e r a g e was s i g n i f i c a n t l y h i g h e r t h a n s e t s C and D's a v e r a g e a t a=0.05. S e t B's mean was s t a t i s t i c a l l y homogeneous t o S e t A f o r 6 0 C o as a r e s u l t of t h e a b n o r m a l l y low l e a c h i n g b e h a v i o u r of 6 0 C o f o r sample A1 ( F i g u r e 1 3 ) . T h i s i s i l l u s t r a t e d by t h e p r o f i l e s o f a l l o t h e r s a m p l e s b ut e s p e c i a l l y F i g u r e 21 i n w h i c h A1 shows a b n o r m a l l y low l e a c h i n g w i t h r e s p e c t t o A2 and A3. T h u s , i t a p p e a r s sample A1 c o u l d r e p r e s e n t an anomaly i n w h i c h t h e i n i t i a l l e a c h i n g ( a t Day 1,2 and 3) was u n u s u a l l y s u p r e s s e d . T h i s a b n o r m a l i t y , i n t u r n , a f f e c t s t h e s t a t i s t i c a l a n a l y s i s f o r t h e e n t i r e t e s t . 4 9 B. CONCLUSION A f t e r 9 3 d a y s o f l e a c h i n g u nder o p t i m a l c o n d i t i o n s , m i c r o b i a l a t t a c k d i d not enhance t h e r e l e a s e of 1 3 7 C s and 6 0 C o from b i t m e n . E x t r a p o l a t i o n of t h e d a t a a n d / o r p l o t s p r e s e n t e d h e r e , would n o t p r o v i d e a v i a b l e c a s e f o r enh a n c e d l e a c h i n g of t h e s e r e p r e s e n t a t i v e r a d i o n u c l i d e s f o r t h e l o n g - t e r m ( t > 9 3 d a y s ) . However, t h e c u m u l a t i v e f r a c t i o n l e a c h e d i s a f u n c t i o n o f l e a c h a n t c o n d u c t i v i t y ( s e e A p p e n d i x C and D ) . T h i s i s c e r t a i n l y a c o n s i d e r a t i o n f o r r e a l r e p o s i t o r y c o n d i t i o n s i n w h i c h t h e c o n d u c t i v i t y o f n a t i v e g r o u n d w a t e r s a r e e x p e c t e d t o be h i g h . 5 0 V. EFFECT OF CHELATING AGENTS ON RADIONUCLIDE MIGRATION As a r e s u l t o f a " d e f e n s e i n d e p t h " * p h i l o s o p h y a d o p t e d by many of t h e o r g a n i z a t i o n s c o n t e m p l a t i n g l a n d - b u r i a l of r a d w a s t e s , n a t u r a l l y o c c u r r i n g g e o l o g i c media i s b e i n g c o n s i d e r e d as a p o t e n t i a l r a d i o n u c l i d e a d s o r b e n t . The media t h a t may c o m p r i s e t h i s b a r r i e r w i l l o c c u r n a t u r a l l y i n s i t u , o r v a r i o u s m a t e r i a l s w i t h a h i g h a d s o r p t i o n c a p a c i t y ( b e n t o n i t e ) may be u s e d t o augment t h e b u r i a l s i t e ' s n a t u r a l a b i l i t y t o a t t e n u a t e r a d i o n u c l i d e m i g r a t i o n t h r o u g h i t s s u b s u r f a c e e n v i r o n m e n t . 1. BACKGROUND A l t h o u g h numerous s t u d i e s 2 6 " 3 0 , 6 9 " 7 5 have been p e r f o r m e d t o d a t e on t h e a d s o r p t i o n o f r a d i o n u c l i d e s t o s o i l s , sands and g r a v e l s , few e x p e r i m e n t s have c o n s i d e r e d a d s o r p t i o n t o t h e s e m a t e r i a l s under n o n - i d e a l i z e d c o n d i t i o n s . The p r o g n o s i s f o r a * A " d e f e n c e i n d e p t h " p h i l o s o p h y u t i l i z e s m u l t i p l e b a r r i e r s t o a r r e s t t h e r e t u r n of e s c a p e d r a d i o n u c l i d e s t o t h e b i o s p h e r e . 51 r a d i o n u c l i d e that has completely breached i t s s o l i d i f y i n g matrix but abuts a w e l l packed adsorbent i s q u i t e good. T h i s adsorbent w i l l tend to reduce the movement of the r e l e a s e d r a d i o n u c l i d e v i a two independent mechanisms: a) a well-packed, h i g h l y dense adsorbent of small p a r t i c l e s i z e w i l l d r a s t i c a l l y reduce the groundwater flow r a t e and t h e r e f o r e decrease the a c t i v e p a r t i c l e ' s l i n e a r v e l o c i t y ; and b) the adsorbent w i l l " t i e - u p " the escaped n u c l i d e s through v a r i o u s physicochemical mechanisms such as ion-exchange, van der Waals a t t r a c t i o n , c o v a l e n t bonding, e t c . U n f o r t u n a t e l y , numerous m i t i g a t i n g f a c t o r s e x i s t that may reduce the a b i l i t y of the b a c k f i l l m a t e r i a l to bind r e l e a s e d r a d i o n u c l i d e s . These f a c t o r s have only r e c e i v e d c u r s o r y a t t e n t i o n . For i n s t a n c e , the a b i l i t y of some d i s s o l v e d compounds t o have str o n g i o n i c , secondary or complex i n t e r a c t i o n s with common f i s s i o n products may serve to impair or n e u t r a l i z e the g e o l o g i c media's a b i l i t y to atte n u a t e these r a d i o n u c l i d e s . Of p o t e n t i a l concern to the Nuclear Industry are m u l t i d e n t a t e c h e l a t i n g agents such as ethylenediamine- t e t r a a c e t i c a c i d (EDTA), d i e t h y l e n e t r i a m i n e p e n t a a c e t i c a c i d (DTPA) or c y c l o h e x a n e d i a m i n e t e t r a a c e t i c a c i d (CDTA). Since many of these compounds are used i n c o n j u n c t i o n with d e t e r g e n t s , t h e i r use f o r r a d i o a c t i v e decontamination i s e s s e n t i a l l y u b i q u i t o u s . A recent s t u d y 2 6 has shown a 20,000 f o l d decrease i n the 5 2 a d s o r p t i v e c a p a c i t y o f C onasauga s h a l e f o r 6 0 C o due t o t h e p r e s e n c e of e x t r e m e l y low c o n c e n t r a t i o n s o f EDTA. As a r e s u l t , many 6 0 C o c o n t a m i n a n t plumes showing a b n o r m a l l y h i g h m i g r a t i o n r a t e s may be a t t r i b u t e d t o t h e d e c r e a s e d a b i l i t y o f t h e s o i l t o b i n d c o m p l e x e d 6 0 C o . 2 6 In a d d i t i o n t o t h e s y n t h e t i c m u l t i d e n t a t e l i g a n d s m e n t i o n e d above - many n a t u r a l l y o c c u r r i n g o r g a n i c s may a c t as c o m p l e x i n g a g e n t s . T h e s e o r g a n i c s i n c l u d e humic and f u l v i c a c i d s , many d i c a r b o x y l i c a c i d s , and v a r i o u s m i c r o b i a l l y - g e n e r a t e d b i o c h e m i c a l s s u c h as hydroxamate and p o l y h y d r o x a m a t e . 2 7 Even g l y c i n e , t h e s i m p l e s t amino a c i d , may s e r v e t o complex waste r a d i o n u c l i d e s . Due t o t h i s p o t e n t i a l f o r e n h a n c e d m i g r a t i o n o f r a d i o n u c l i d e s t h r o u g h g e o l o g i c media due t o m i c r o b i a l a c t i o n , t h e f o l l o w i n g s e t of e x p e r i m e n t s was d e s i g n e d t o i l l u s t r a t e i f t h e r e was an o b s e r v a b l e e f f e c t and i f so, t o d e t e r m i n e i t s m a g n i t u d e . Accompanying t h o s e r u n s t h a t d i r e c t l y employed m i c r o b i a l p o p u l a t i o n s were o t h e r e x p e r i m e n t s t h a t would show t h e a d s o r p t i o n of 6 0 C o , 1 3 7 C s and 8 5 S r t o b e n t o n i t e , g a b b r o and g r a n i t e i n t h e p r e s e n c e o f EDTA, T u r c o (a common r a d i o a c t i v e d e c o n t a m i n a t i o n compound), SCSSS, G r a n i t e G r o u n d w a t e r * and d e i o n i z e d , d e m i n e r a l i z e d w a t e r . In o r d e r t o s i m u l a t e r e a l c o n d i t i o n s , a l l s o l u t i o n s t h a t c o n t a i n e d * The c o m p o s i t i o n of SCSSS ( S t a n d a r d C a n a d i a n S h i e l d S a l i n e S o l u t i o n ) and G r a n i t e G r o u n d w a t e r i s d i s c u s s e d i n A p p e n d i x B. 53 m i c r o b i a l p o p u l a t i o n s were t a k e n from t h e l e a c h a n t s o l u t i o n ( a f t e r 1 week's c o n t a c t ) m e n t i o n e d i n S e c t i o n IV. From t h e combined r e s u l t s o f , t h e s e e x p e r i m e n t s t h e e f f e c t o f EDTA, T u r c o , m i c r o b e s and t h e a n t a g o n i s t i c ( o r enhanced) e f f e c t o f c o m p e t i n g c a t i o n s ( 6 0 C o - 1 3 7 C s , 8 5 S r - 1 3 7 C s ) c o u l d be compared and i n t e r r e l a t e d . 2. METHODS E i g h t i n d e p e n d e n t e x p e r i m e n t a l r u n s were p e r f o r m e d and a r e l i s t e d i n T a b l e s I I I - X f o l l o w i n g . F o r e a c h d e t e r m i n a t i o n , 1.0 g o f a d s o r b e n t ( F i s h e r - b e n t o n i t e , 40-50 mesh g a b b r o o r g r a n i t e ) was p l a c e d i n an a c i d - w a s h e d (10 m i n u t e s i n 6N HN0 3) p o l y p r o p y l e n e t e s t t u b e and mixed w i t h 14.8 mis o f a d s o r b a t e c o n s i s t i n g of " s u p e r Q"* w a t e r , SCSSS, G r a n i t e G r o u n d w a t e r , 1 0 " 5 M EDTA, T u r c o * * or t h e l e a c h a n t m a t e r i a l (1 week's c o n t a c t ) of s e t A o r D d e s c r i b e d e a r l i e r ( s e e S e c t i o n I V ) . S t a n d a r d s o l u t i o n s o f 6 ° C o , 1 3 7 C s , 8 5 S r o r a c o m b i n a t i o n of 6 0 C o and 1 3 7 C s o r 8 5 S r and 1 3 7 C s were t h e n added (0.2 m i s ) t o a l l s a m p l e s n ot c o n t a i n i n g l e a c h a n t m a t e r i a l t o y i e l d an i n i t i a l t o t a l a c t i v i t y n o t e x c e e d i n g 1.05 X 10" 1 uCi. E a c h t u b e was t h e n s e a l e d w i t h p a r a f i l m and a l l o w e d t o r o t a t e on a * "Super Q" wa t e r i s water t h a t has been d i s t i l l e d , d e i o n i z e d , m i l l i p o r e f i l t e r e d and p a s s e d t h r o u g h a c t i v a t e d c a r b o n . * T u r c o i s a common d e c o n t a m i n a t i o n s o l u t i o n c o n t a i n i n g 6.0 wt.% diammonium h y d r o g e n c i t r a t e , 2.5 wt.% o x a l i c a c i d and 1.0 wt.% p h e n y l t h i o u r e a . T h i s s o l u t i o n was d i l u t e d t o a diammonium h y d r o g e n c i t r a t e c o n c e n t r a t i o n o f 10" 5M. 54 S c i e n t i f i c I n d u s t r i e s I n c o r p o r a t e d M odel 151 r o t a t e r . A g i t a t i o n was c o n t i n u e d f o r 48 h o u r s a t 5 RPM t o m i n i m i z e g r a i n a b r a s i o n . 3 0 T e m p e r a t u r e r a n g e d from 2 0 - 2 5 ° C . Upon t e r m i n a t i o n o f e a c h run a d s p r b a t e and a d s o r b e n t were s e p a r a t e d v i a c e n t r i f u g a t i o n a t 15,000 RPM f o r 60 m i n u t e s . A p p r o p r i a t e c o n t r o l s ( t e s t r a d i o n u c l i d e + l i q u i d p hase o n l y ) were r u n w i t h e a c h e x p e r i m e n t a l g r o u p . To e v a l u a t e t h e e f f e c t n u t r i e n t media ( c o m p o s i t i o n r e p o r t e d i n S e c t i o n I I ) had on a d s o r p t i v i t y , an e n t i r e e x p e r i m e n t a l r u n was s e t - u p c o n s i s t i n g of n u t r i e n t media s p i k e d w i t h 6 0 C o and 1 3 7 C s . The r e s u l t s of t h i s c o n t r o l g r o u p a r e shown i n T a b l e IX. 3. ANALYSIS Upon t e r m i n a t i o n of c e n t r i f u g a t i o n 6.0 mis of s u p e r n a t a n t were c o l l e c t e d , p l a c e d i n p o l y p r o p y l e n e v i a l s and c o u n t e d on a m u l t i - c h a n n e l y - s p e c t r o m e t e r as p e r S e c t i o n IV. The y - a c t i v i t y b a c k g r o u n d and c o u n t t i m e r e m a i n e d unchanged ( f r o m t h a t d e s c r i b e d i n S e c t i o n IV) f o r a l l a n a l y s e s . A c c o r d i n g t o c o n v e n t i o n , 3 0 1 7 6 t h e d i s t r i b u t i o n c o e f f i c i e n t , K^, was e v a l u a t e d a c c o r d i n g t o t h e f o l l o w i n g f o r m u l a : KD (ml/g) = ( C n - Ce ) ( V ) Eqt.V.1 (Ce )(M) Where C 0 i s t h e r a d i o n u c l i d e c o n c e n t r a t i o n i n i t i a l l y , Ce i s t h e r a d i o n u c l i d e c o n c e n t r a t i o n a t e q u i l i b r i u m , V i s t h e volume of l i q u i d and M i s t h e mass o f a d s o r b e n t m a t e r i a l . 5 5 E v a l u a t i o n of t h i s e q u a t i o n f o r e v e r y r u n y i e l d s a n u m e r i c a l e x p r e s s i o n f o r t h e d i s t r i b u t i o n o f e a c h r a d i o n u c l i d e between t h e l i q u i d and s o l i d p h a s e . T h i s method a l l o w s f o r good i n t e r c o m p a r i s o n o f r e s u l t s as a d s o r b e n t o r o t h e r e x p e r i m e n t a l c o n d i t i o n s c h a n g e . The i n i t i a l c o n c e n t r a t i o n o f e a c h r a d i o n u c l i d e was e v a l u a t e d t h r o u g h c o n t r o l s t h a t c o n t a i n e d components i d e n t i c a l t o t h e e x p e r i m e n t a l s e t s e x c e p t f o r an a d s o r b e n t . U n f o r t u n a t e l y , i t became e v i d e n t from t h e s e r u n s t h a t some r a d i o n u c l i d e a d s o r p t i o n t o t h e r e a c t i o n v e s s e l w a l l s o c c u r r e d . To m i n i m i z e t h i s e f f e c t , 10""5M EDTA was added t o 6 0 C o and 1 3 7 C s c o n t r o l s . The p r e s e n c e of EDTA i n t h e c o n t r o l t u b e s d e c r e a s e d t h e a d s o r p t i o n o f c o b a l t t o t h e v e s s e l w a l l s . S i n c e t h e n e t a d s o r p t i o n (as e x p r e s s e d by K 6 ) of 6 0 C o i s g r e a t l y e f f e c t e d by C 0 a l l K B ' s f o r 6 0 C o were c a l c u l a t e d f r o m a C 0 t h a t c o n t a i n e d EDTA. S i n c e a m i c r o b i a l b i o m a s s may a d s o r b v a r i o u s s p e c i e s , a l l K D ' s o f s o l u t i o n s c o n t a i n i n g a c t i v e c u l t u r e s were e v a l u a t e d f r o m a C 0 o f n e t a v a i l a b l e ( u n a d s o r b e d ) a c t i v i t y . T hus, t h e a v a i l a b l e a c t i v i t y of an a c t i v e s o l u t i o n of l e a c h a n t ( f r o m S e c t i o n IV) was e v a l u a t e d as t h a t a c t i v i t y r e m a i n i n g f r e e i n s o l u t i o n . a f t e r t h e t r e a t m e n t d e s c r i b e d e a r l i e r i n Methods but w i t h no a d s o r b e n t . T h i s a l t e r a t i o n w i l l r e s o l v e t h e d i f f e r e n c e between r a d i o n u c l i d e s a d s o r b e d t o t h e m i c r o b i a l p o p u l a t i o n and t h e s p e c i f i c a d s o r b e n t . 56 4. RESULTS AND DISCUSSION T a b l e s I I I - V i n d i c a t e t h a t a d s o r p t i o n o f 6 0 C o was h i g h e r t h a n t h a t o f any o t h e r n u c l i d e . However, t h e e f f e c t o f EDTA was much more p r o n o u n c e d w i t h c o b a l t and w i t h a g r a n i t e a d s o r b e n t , i t e l i c i t s a 1900 f o l d d e c r e a s e i n K 0. T h i s r e s u l t , a l t h o u g h not as d r a m a t i c , i s i n a c c o r d a n c e w i t h t h a t r e p o r t e d by Means and C r e r a r . 2 6 As e x p e c t e d , EDTA had o n l y a n e g l i g i b l e e f f e c t on 1 3 7 C s a d s o r p t i o n b u t 8 5 S r had s l i g h t l y d e c r e a s e d K D ' s due t o EDTA. However, s i n c e EDTA does not form s t r o n g c o m p l e x e s w i t h a n y t h i n g o t h e r t h a n r a r e e a r t h s , t r a n s i t i o n m e t a l s or t r a n s u r a n i c s , t h i s e f f e c t may be e x p e c t e d . The r e l a t i v e e f f e c t of T u r c o on d e c r e a s i n g K D was g r e a t e s t f o r 8 5 S r i n w h i c h an 11 f o l d d e c r e a s e i n a d s o r p t i o n t o b e n t o n i t e was o b s e r v e d . Sample 6 0 C o U C i / m l ) K D B e n t o n i t e 2.051 X IO" 4 7.41 X Gabbro 4.508 X 10" 3 3.23 X G r a n i t e 1.493 X 10' 3 1.01 X B e n t o n i t e + E D T A 3.068 X 10" 3 4.82 X Gabbro+EDTA 1.050 X 10- 1 0.00 G r a n i t e + E D T A 9.813 X 10" 2 5.25 X B e n t o n i t e + T u r c o 2.908 X l 0 - a 5.22 X C o n t r o l 1.016 X 10" 1 T a b l e I I I - 6 0 C o ADSORPTION DATA 57 Sample 1 3 7 C s ( „ C i / m l ) K D B e n t o n i t e 1.643 X 10- 3 7.54 X 10 Gabbro 7.325 X 10" 3 1 .57 X 10 G r a n i t e 4.615 X 10' 3 2.59 X 10 B e n t o n i t e + E D T A 1.695 X 10" 3 7.30 X 10 Gabbro+EDTA 7.513 X 10' 3 1 .53 X 10 G r a n i t e + E D T A 3.154 X 10- 3 3.85 X 1 0 B e n t o n i t e + T u r c o 1.899 X 10" 3 6.50 X 10 C o n t r o l 8.41.9 X 10" 2 T a b l e IV - 1 3 7 C s ADSORPTION DATA Sample 8 5 S r ( „ C i / m l ) 6.975 X 10"" K 0 B e n t o n i t e 2.23 X Gabbro 3.164 X 10" 2 3.44 X G r a n i t e 4.619 X 10" 2 1 .88 X B e n t o n i t e + E D T A 7.931 X 10"" 1 .96 X Gabbro+EDTA 1.028 X 10" 1 2.02 X G r a n i t e + E D T A 1.036 X 10" 1 8.51 X B e n t o n i t e + T u r c o 7.625 X 10' 3 1 .90 X C o n t r o l 1.042 X 10" 1 T a b l e V - 8 5 S r ADSORPTION DATA Sample e o C o U C i / m l ) C o , C s + B e n t o n i t e 1 . 757 X 10"" S r , C s + B e n t o n i t e Co,Cs+Gabbro 1 . 766 X 10" 3 Sr,Cs+Gabbro C o , C s + G r a n i t e 7. 181 X 10-" S r , C s + G r a n i t e C o , C s ( C o n t r o l ) 1 . 224 X I 0 " a S r , C s ( C o n t r o l ) Sample 6 0 Co K 0 C o , C s + B e n t o n i t e 3. 50 X 1 O 3 S r , C s + B e n t o n i t e Co,Cs+Gabbro 3. 35 X 10 2 Sr,Cs+Gabbro C o , C s + G r a n i t e 8. 46 X 1 O 2 S r , C s + G r a n i t e 1 3 7 C s U C i / m l ) 8 5 S r U C i / m l ) 8 .650 X I 0 " a 8 .906 X 10-" 4 .199 X 10"" 2 .066 X 10" 3 2 .481 X 10" 3 1 .403 X 10' 2 1 .824 X 10~ 3 2 .024 X 10" 3 2 .141 X 10" 2 2 .508 X 10" 3 3 .658 X 10" 2 1 .743 X 10" 3 1 3 7 C s K 0 8 5 S r K 0 8 .71 X 10 2 8 .45 X 10 2 1 .83 X 10 3 3 .56 X J 0 2 2 .94 X 10 2 4 .03 X 10 1 4 .05 X 10 2 3 .64 X 10 2 2 .13 X 10 1 T a b l e VI - COMPETING ION ADSORPTION DATA 58 Sample C o , C s + B e n t o n i t e + G r a n i t e G/W S r , C s + B e n t o n i t e + G r a n i t e G/W C o , C s + G r a n i t e + G r a n i t e G/W S r , C s + G r a n i t e + G r a n i t e G/W C o , C s + B e n t o n i t e + SCSSS G/W S r , C s + B e n t o n i t e + SCSSS G/W C o , C s + G r a n i t e + SCSSS G/W S r , C s + G r a n i t e + G r a n i t e G/W Sample C o , C s + B e n t o n i t e + G r a n i t e G/W S r , C s + B e n t o n i t e + G r a n i t e C o , C s + G r a n i t e + G r a n i t e G/W S r , C s + G r a n i t e + G r a n i t e C o , C s + B e n t o n i t e + SCSSS G/W S r , C s + B e n t o n i t e + SCSSS G/W C o , C s + G r a n i t e + SCSSS G/W S r , C s + G r a n i t e + G r a n i t e G/W 6 0 C o ( „ C i / m l ) 1.774 X 10"" 7.550 X 10-" 8.181 X 10" 4 2.236 X 10" 2 6 0 C o K 0 3.47 X 10 3 8.04 X 10 2 7.40 X 10 2 1.26 X 10 2 3 7 C s U C i / m l ) 1 .086 X 10" 3 1 .033 X 10" 3 3 .408 X 10" 3 3 .859 X 10" 3 1 .084 X 10" 2 1 .091 X 10" 2 2 .084 X 10" 2 1 .969 X 10" 2 i 3 7 C s Ko 6. 91 X 10 2 7. 27 X 1 o 2 2. 10 X 10 2 1 . 84 X 10 2 5. 57 X 10 1 5. 52 X 10 1 2. 18 X 10 1 2. 39 X 10 1 8 5 S r ( „ C i / m l ) 4.911 X 10"" 3.870 X 10" 2 5.022 X 10" 2 5.279 X 10" 2 B 5 S r K D 1.57 X 10 3 5.06 X 10° 4.55 X 10" 1 0.00 T a b l e V I I - ADSORPTION DATA FOR COMPETING IONS IN SELECTED GROUNDWATERS 59 Sample 6 0 C o U C i / m l ) 1 3 7 C s ( „ C i / m l ) Set A + B e n t o n i t e 3.955 X 10" a 7.763 X 10"" Se t A+Gabbro 1.490 X 10" 3 1 .902 X 1.0'3 S e t A + G r a n i t e 4.411 X 10"" 9.788 X 10"" Se t A ( C o n t r o l ) 8.838 X 10" 3 2.359 X 10~ 2 Sample 6 0 C o K o 1 3 7 C s K 0 S e t A + B e n t o n i t e 3.20 X 10 2 4.41 X 10 2 S e t A+Gabbro 7.40 X 10 1 1.71 X 10 2 S e t A + G r a n i t e 2.86 X 10 2 3.47 X 10 2 T a b l e V I I I - LEACHANT A ADSORPTION DATA Sample 6 ° C o J J i C j V m l ) 1 3 7 C s ( n C i / m l ) S e t C + B e n t o n i t e 2.001 X 10" 3 1.867 X 10" 3 S e t C+Gabbro 5.815 X 10' 3 1.278 X 10' 2 S e t C + G r a n i t e 6.030 X 10" 3 1.249 X 10" 2 S e t C ( C o n t r o l ) 5.631 X 10~ 3 1.299 X 10" 2 Sample 6 0 C o K D 1 3 7 C s K 0 S e t C + B e n t o n i t e 2.72 X 10 1 8.93 X 10 1 S e t C+Gabbro 0.00 2.44 X 10" 1 S e t C + G r a n i t e 0.00 5.97 X 10~ 1 T a b l e IX - ADSORPTION DATA' FOR NUTRIENT MEDIA CONTROL Sample 6 ° C o ( p C i / m l ) 1 3 7 C s ( „ C i / m l ) S e t D + B e n t o n i t e 1.949 X 10' 3 6.519 X 10" J S e t D+Gabbro 7.781 X 10" 3 1.795 X 10~ 2 S e t D + G r a n i t e 7.819 X 10" 3 1.836 X 10~ 2 S e t D ( C o n t r o l ) 1.135 X 10" f t 3.062 X 10" U Sample 6 ° C o K D 1 3 7 C s K 0 S e t D + B e n t o n i t e 3.96 X 10 1 2.90 X 10 1 S e t D+Gabbro 0.00 9.94 X 10" 1 S e t D + G r a n i t e 0.00 6.35 X 10" 1 T a b l e X - LEACHANT D ADSORPTION DATA 60 The competing e f f e c t s of 6 0 C o on 1 3 7 C s and 8 5 S r on 1 3 7 C s are r e p o r t e d i n Table VI. In a l l cases b e n t o n i t e showed the h i g h e s t a d s o r p t i v e c a p a c i t y followed by g r a n i t e ( f o r 6 0 C o and 1 3 7 C s ) and gabbro. The r e l a t i v e d i f f e r e n c e i n K D's f o r the three adsorbents decreased f o r each group of r a d i o n u c l i d e s from t h e i r non-competitive c o u n t e r p a r t . As evidenced by the data i n Table VI, the a d s o r p t i v e c a p a c i t y of b e n t o n i t e was decreased by the competing ions while that f o r gabbro and g r a n i t e was i n c r e a s e d (perhaps due to a non-competitive mechanism f o r a d s o r p t i o n ) . Table VIII presents data r e l a t i n g to the e f f e c t of s y n t h e t i c groundwaters on K B. In every case and f o r both adsorbents t e s t e d (bentonite and g r a n i t e ) the groundwater with the h i g h e s t c o n d u c t i v i t y (SCSSS) has the g r e a t e s t e f f e c t on d e c r e a s i n g K„. T h i s higher f i g u r e i s e a s i l y e x p l a i n e d by the s a t u r a t i o n of a v a i l a b l e a c t i v e s i t e s on the adsorbent by non-active ions present i n the h i g h l y c o n c e n t r a t e d b r i n e . Bentonite showed a g r e a t l y reduced a d s o r p t i v i t y f o r the leached r a d i o n u c l i d e s c o n t a i n e d i n leachant A and D. However, i t appears that leachant A (JJIW) only s l i g h t l y perturbed the a d s o r p t i v e c a p a c i t y of g r a n i t e and gabbro. In the case of leachant A c o n t a c t e d with gabbro or g r a n i t e , a < 2 f o l d r e d u c t i o n was found f o r K D's between t h i s leachant and d e i o n i z e d , d e m i n e r a l i z e d water c o n t a i n i n g 6 0 C o and 1 3 7 C s . The e f f e c t of l e a c h a n t s C and D on the a d s o r p t i o n of these 61 r a d i o n u c l i d e s t o g r a n i t e o r g a b b r o i s s i g n i f i c a n t . The a d s o r p t i v i t y o f b o t h g a b b r o a n d g r a n i t e f o r t h e r a d i o n u c l i d e s c o n t a i n e d i n l e a c h a n t C o r D was d e c r e a s e d more t h a n 100 t i m e s by t h e c o m p l e x i n g a g e n t s p r e s e n t i n t h e two s o l u t i o n s ( as e v i d e n c e d by t h e R 0 v a l u e s r e p o r t e d i n T a b l e s V I , I X and X ) . XXXIII and XXXIV. 5. REMARKS The e f f e c t of c o m p l e x i n g a g e n t s (whether s y n t h e t i c o r o t h e r w i s e ) may c a u s e a r e d u c e d a t t e n u a t i o n of waste r a d i o n u c l i d e s l e a c h i n g from a n u c l e a r waste r e p o s i t o r y . As e v i d e n c e d f r o m t h e r e s u l t s , s t r o n g c h e l a t i n g a g e n t s p r e s e n t a t 10" 5M c a n d e c r e a s e a R D by up t o 3 o r d e r s o f m a g n i t u d e . T u r c o d i d n ot d e c r e a s e K 0 ' s as much as EDTA, p r o b a b l y b e c a u s e i t s major c o n s t i t u e n t (diammonium h y d r o g e n c i t r a t e ) i s n o t as s t r o n g a c o m p l e x i n g a g e n t as EDTA. 62 V I . CONCLUSION T h r o u g h o u t t h e c o u r s e o f t h e s e e x p e r i m e n t s , c o n d i t i o n s f o r m i c r o b i a l g r o w t h were m a i n t a i n e d a t a l e v e l o n l y p o s s i b l e under t h e i d e a l i z e d e n v i r o n m e n t o f a l a b o r a t o r y . The c o n d i t i o n s e x p e c t e d i n a f u l l - s c a l e l o w - l e v e l r e p o s i t o r y a r e as f o l l o w s : a) a m o d e r a t e l y low t e m p e r a t u r e ( < 2 0 ° C ) ; b) a low oxygen a t m o s p h e r e ( a p p r o a c h i n g O.Oppm 0 2 ) ; and c) d e v o i d o f any m i c r o b i a l g r o w t h . S i n c e i t i s assumed t h a t w ater w i l l f i l l t h e r e p o s i t o r y , t h e p r e s e n c e o f an u n u s u a l l y h i g h s a l t c o n t e n t may be e x p e c t e d t h a t would be b a c t e r i o c i d a l o r b a c t e r i o s t a t i c f o r a l l but a few h a l o p h i l e s . In a d d i t i o n t o t h e c o n d i t i o n s l i s t e d above, a f o u r t h c o n s t r a i n t t h a t may i n h i b i t t h e m i c r o b i a l g r o w t h under r e p o s i t o r y c o n d i t i o n s i s t h e l a c k of an i n i t i a l c o n t a m i n a t i n g c u l t u r e t h a t i s c a p a b l e o f u t i l i z i n g v a r i o u s h y d r o c a r b o n s as a 63 s u b s t r a t e . A l s o , t h e low t e m p e r a t u r e ( < 2 0 ° C ) , h i g h p r e s s u r e and l a c k o f oxygen w i l l s e r v e t o c r e a t e a m i c r o b i a l l y h o s t i l e e n v i r o n m e n t . Even i f v a r i o u s o r g a n i s m s c o u l d s u r v i v e under t h e s e c o n d i t i o n s and u t i l i z e b i t u m e n as t h e i r s o l e c a r b o n s o u r c e , t h e r a t e o f t h e i r m e t a b o l i s m (an d t h e r e f o r e r a t e o f o x i d a t i o n o f b i t umen) would be e x t r e m e l y s l o w . In a d d i t i o n t o t h e c o n d i t i o n s l i s t e d above, a f o u r t h c o n s t r a i n t t h a t may i n h i b i t t h e m i c r o b i a l g r o w t h under r e p o s i t o r y c o n d i t i o n s i s t h e l a c k of an i n i t i a l c o n t a m i n a t i n g c u l t u r e t h a t may u t i l i z e v a r i o u s h y d r o c a r b o n s as a s u b s t r a t e . The s o l i d i f i c a t i o n o f waste r a d i o n u c l i d e s w i t h b i t u m e n r e q u i r e s a b i t u m e n t e m p e r a t u r e of a p p r o x i m a t e l y 175°C. The m o l t e n b i t u m e n - w a s t e m i x t u r e w i l l t h e n be p l a c e d i n a s t a i n l e s s s t e e l c o n t a i n e r . The e f f e c t o f b o t h t h e m o l t e n b i t u m e n and t h e impermeable c o n t a i n e r w i l l : 1) k i l l any c o n t a m i n a t i n g m i c r o b e s on o r n e a r t h e b i t u m e n ; 2) v o l a t i l i z e t h e most e a s i l y m e t a b o l i z e d components of t h e b i t u m e n ( l i g h t a l k a n e f r a c t i o n ) ; 3) c r e a t e an a n h y d r o u s e n v i r o n m e n t ; and 4) p r e v e n t m i c r o b i a l c o n t a m i n a t i o n d u r i n g s t o r a g e o r f i n a l d i s p o s a l . As i l l u s t r a t e d by t h e r e s u l t s p r e s e n t e d i n S e c t i o n I I I , t h e a n t i c i p a t e d b a c k g r o u n d r a d i o a c t i v i t y w i l l not a f f e c t t h e n e t g r o w t h of a m i c r o b i a l p o p u l a t i o n . Changes may o c c u r t o t h e o v e r a l l g e n o t y p e o f t h e p o p u l a t i o n as a r e s u l t o f an 6 4 i n c r e a s e d r a t e o f m u t a t i o n . However, t h e number of v i a b l e o r g a n i s m s w i l l not change due t o t h e r a d i a t i o n e x p e c t e d under r e p o s i t o r y c o n d i t i o n s . A l t h o u g h m i c r o b i a l l y e n h a n c e d l e a c h i n g f r o m b i t u m e n was n o t f o u n d , a s i g n i f i c a n t d e c r e a s e i n K 0 was o b s e r v e d a s a r e s u l t of m i c r o b i a l a c t i o n but i t s i m p o r t a n c e i s s e c o n d a r y t o c o m p l e x a t i o n a n d / o r c h e l a t i o n due t o s y n t h e t i c a g e n t s . A l s o , s i n c e m i c r o b i a l p r o l i f e r a t i o n w i l l be h i g h l y l i m i t e d , any or a l l e n h a n c e d m i g r a t i o n o f a waste r a d i o n u c l i d e due t o m i c r o b i a l a c t i o n would p r o b a b l y be "swamped" by m i g r a t i o n of n u c l i d e s c h e l a t e d p r i o r t o c o n d i t i o n i n g ( p r o v i d e d t h e complex i s n o t t h e r m a l l y l a b i l e ) . A s e c o n d a r y i n f l u e n c e o f a m i c r o b i a l p o p u l a t i o n p r e s e n t i n s i t u may be t o u t i l i z e o r g a n i c c o m p l e x e s as a m e t a b o l i t e . T h i s i n t u r n would s e r v e t o d e c r e a s e e n h a n c e d r a d i o n u c l i d e m i g r a t i o n due t o any p r e v i o u s c h e l a t i o n r e a c t i o n s . On t h e b a s i s of t h e s e s h o r t - t e r m e x p e r i m e n t s , t h e e f f e c t o f m i c r o b i a l a c t i o n on l o n g - t e r m r a d i o a c t i v e waste d i s p o s a l s h o u l d be s m a l l . I f m i c r o b i a l a t t a c k does o c c u r , o t h e r f a c t o r s s u c h as d i f f u s i o n o r c h e l a t i o n ( t o s y n t h e t i c c h e l a t i n g a g e n t s ) would "swamp" t h i s e f f e c t . 65 BIBLIOGRAPHY 1. T o m l i n s o n , M . , e t a l . , "Management Of R a d i o a c t i v e Wastes From N u c l e a r F u e l s And Power P l a n t s In Canada", A t o m i c E n e r g y of Canada L i m i t e d , Rep.AECL-5706 ( 1 9 7 7 ) , p.1-2. 2. M o r r i s o n , J . A . , "AECL E x p e r i e n c e I n Ma n a g i n g R a d i o a c t i v e Wastes From C a n a d i a n N u c l e a r R e a c t o r s " , A t o m i c E n e r g y o f Canada L i m i t e d , Rep.AECL-4707 (1974) p.1. 3. T o m l i n s o n , M . , e t a l . , o p . c i t . , p.2. 4. C h a r l e s w o r t h , D . H . , e t a l . , "The C a n a d i a n Development Program F o r C o n d i t i o n i n g CANDU R e a c t o r Wastes F o r D i s p o s a l " , A t o m i c E n e r g y of Canada L i m i t e d , Rep.AECL- 6344 (1978) p.4. 5. C h a r l e s w o r t h , D . H . , " C u r r e n t D e velopment Programs F o r t h e D i s p o s a l Of Low- and I n t e r m e d i a t e - L e v e l R a d i o a c t i v e W a s t es", A t o m i c E n e r g y o f Canada L i m i t e d , Rep.AECL-6545 (1979) p.3. 6. I b i d . , p.4. 7 . I b i d . , p.9. 8. Bourns,W.T., e t a l . , "Development Of T e c h n i q u e s F o r Radwaste Systems In CANDU Power S t a t i o n s " , A t o m i c E n e r g y of Canada L i m i t e d , Rep.AECL-6534 (1979) p.2. 9. C h a r l e s w o r t h , D . H . , o p . c i t . , p . 9. 10* ZoBel1,C.E.,Molecke,M.A., " S u r v e y Of M i c r o b i a l D e g r a d a t i o n Of A s p h a l t s W i t h N o t e s On R e l a t i o n s i p t o N u c l e a r Waste Management", S a n d i a L a b o r a t o r i e s , Rep.SAND78-1371 (1978) p.5. 11. I b i d . , p .5. 12. E s c h r i c h , H . , " P r o p e r t i e s And Long-Term B e h a v i o u r Of Bitu m e n And R a d i o a c t i v e W a s te-Bitumen M i x t u r e s " , E u r o c h e m i c , Rep.SKBF/KBS 80-14 (1980) p.14. 13. I b i d . , p.16. 14. T o m l i n s o n , M . , e t a l . , o p . c i t . , p.5. 15. Z o B e l l , E . C . , M o l e c k e , M . A . , o p . c i t . , p.3. 66 16. I b i d . , p.4. 17. H a r r i s , J . O . , e t a l . , " P r e l i m i n a r y S t u d i e s of t h e E f f e c t of M i c r o o r g a n i s m s on P h y s i c a l P r o p e r t i e s o f A s p h a l t " , T r a n s a c t i o n s o f t h e Kan s a s Academy o f S c i e n c e , V o l . 6 1 , No.1, (1958) pp.110-113. 18. T r a x l e r , R . W . , " M i c r o b i a l D e g r a d a t i o n o f A s p h a l t " , B i o t e c h n o l o g y And B i o e n g i n e e r i n g , V o l . I V , (1962) pp.369- 376. 19. P h i l i p s , U . A . , T r a x l e r , R . W . , " M i c r o b i a l • D e g r a d a t i o n of A s p h a l t " , A p p l i e d M i c r o b i o l o g y , V o l . 1 1 , (1963) pp.235- 238. 20. T r a x l e r , R . W . , e t a l . , " A c t i o n o f M i c r o o r g a n i s m s on B i t u m i n o u s M a t e r i a l s : 1 . E f f e c t o f B a c t e r i a on A s p h a l t V i s c o s i t y " , A p p l i e d M i c r o b i o l o g y , V o l . 1 3 , No.6, (1965) pp.838-841. 21. T r a x l e r , R.W., "Bitumen A t t a c k By M i c r o o r g a n i s m s " , I n d u s t r i a l And E n g i n e e r i n g C h e m i s t r y , V o l . 5 8 , No.6, (1966) pp.59-64. 22. H a r r i s , J.O., " A s p h a l t O x i d i z i n g B a c t e r i a Of The S o i l " , I n d u s t r i a l And E n g i n e e r i n g C h e m i s t r y , V o l . 5 8 , No.6, (1966) pp.65-69. 23. Wyndham,R.C., C o s t e r t o n , J . W . , " I n V i t r o M i c r o b i a l D e g r a d a t i o n of B i t u m i n o u s H y d r o c a r b o n s and In S i t u C o l o n i z a t i o n of Bit u m e n S u r f a c e s W i t h i n t h e A t h a b a s c a O i l Sands D e p o s i t " , A p p l i e d And E n v i r o n m e n t a l M i c r o b i o l o g y , V o l . 4 1 , No.3, (1981) pp.791-800. 24. Z o B e l l , C . E . , Molecke,M.A., o p . c i t . , p.25. 25. B a r n h a r t , B . J . , e t a l . , " P o t e n t i a l M i c r o b i a l Impact on T r a n s u r a n i c Wastes Under C o n d i t i o n s E x p e c t e d i n t h e Waste I s o l a t i o n P i l o t P l a n t (WIPP), March 15-June 15, 1979", L o s Alamos S c i e n t i f i c L a b o r a t o r y , Rep.LA-7918-PR ( 1 9 7 9 ) . 26. M eans,J.L., e t a l . , " M i g r a t i o n o f R a d i o a c t i v e W a s tes: R a d i o n u c l i d e M o b i l i z a t i o n by C o m p l e x i n g A g e n t s " , S c i e n c e , V o l . 2 0 0 , No.4349, (1978) pp.1477-1481. 27. Emery,T., "Hydroxamic A c i d s o f N a t u r a l O r i g i n " , A d v a n c e s i n E nzymology, V o l . 3 5 , (1971) pp.135-185. 28. Means,J.L., e t a l . , o p . c i t . 67 29. S e i t z , M . G . , e t a l . , " M i g r a t o r y P r o p e r t i e s Of Some N u c l e a r Waste E l e m e n t s In G e o l o g i c M e d i a " , N u c l e a r T e c h n o l o g y , V o l . 4 4 , (1979) pp.284-296. 30. J a c k s o n , R . E . , e t a l . , A d s o r p t i o n Of R a d i o n u c l i d e s In A F l u v i a l - S a n d A q u i f e r , i n C o n t a m i n a n t s and S e d i m e n t s , Volume I e d . R o b e r t A. B a k e r (Ann A r b o r : A n n A r b o r S c i e n c e P u b l i s h e r s , I n c . , 1980), pp.311-329. 31. R a t l e d g e , C , " D e g r a d a t i o n of A l i p h a t i c H y d r o c a r b o n s " , i n D e v e l o p m e n t s In B i o d e g r a d a t i o n Of H y d r o c a r b o n s - 1 e d . R . J . W a t k i n s o n ( E s s e x : A p p l i e d S c i e n c e P u b l i s h e r s L t d . , 1 9 7 8 ) , p.2. 32. I b i d . , p.3. 33. I b i d . , p.3. 34. I b i d . , p.4. 35. A t l a s , R . M . , B a r t h a , R . , " I n h i b i t i o n By F a t t y A c i d s Of The B i o d e g r a d a t i o n Of P e t r o l e u m " , A n t o n i e van Leeuwenhoek J o u r n a l o f M i c r o b i o l o g y , V o l . 3 9 , (1973) pp.257-271. 36. Chapman,P.J.,"An O u t l i n e o f R e a c t o n S e q u e n c e s Used f o r t h e B a c t e r i a l D e g r a d a t i o n o f P h e n o l i c Compounds" i n D e g r a d a t i o n of S y n t h e t i c O r g a n i c M o l e c u l e s i n t h e B i o s p h e r e , P r i n t . a n d Pub. O f f i c e , N a t . A c a d . o f S c i e n c e s Wash., D . C , (1972) pp.17-55. 37. Hopper, D . J . , " M i c r o b i a l D e g r a d a t i o n Of A r o m a t i c H y d r o c a r b o n s " , i n D e v e l o p m e n t s In B i o d e g r a d a t i o n Of H y d r o c a r b o n s - 1 e d . R . J . W a t k i n s o n ( E s s e x : A p p l i e d S c i e n c e P u b l i s h e r s L t d . , 1 9 7 8 ) , p.2. 38. I b i d . , p.104. 39. B u s h n e l l , L . D . , H a a s , H . F . , "The U t i l i z a t i o n Of C e r t a i n H y d r o c a r b o n s By M i c r o o r g a n i s m s " , J o u r n a l of B a c t e r i o l o g y , V o l . 4 1 , (1940) p.657. 40. F o r r e s t e r , I . , P e r s o n a l C o m m u n i c a t i o n , June 29, 1981. 41. H o r s n e l l , G . E . , O n t a r i o M i n i s t r y of t h e E n v i r o n m e n t , M i c r o b i o l o g y S e c t i o n - A n a l y s i s R e p o r t , September 14, 1981. 42. I b i d . , p.2. 68 43. F r o b i s h e r , M . , e t a l . , F u n d a m e n t a l s Of M i c r o b i o l o g y , 9 t h e d . ( T o r o n t o : W . B . S a u n d e r s Company,1974), pp.136-137. 44. V a n d e r g r a a f , T . T . , P e r s o n a l C o m m u n i c a t i o n , J u l y 29, 1980. 45. Z o B e l l , C . E . , M o l e c k e , M . A . , o p . c i t . , p.3. 46. AECL Gammacell-220 " F a c t s s h e e t " and c a l i b r a t i o n d a t a . 47. Andrews,H.L., R a d i a t i o n B i o p h y s i c s , 2nd ed. (Englewood C l i f f s , New J e r s e y : P r e n t i c e - H a l l I n c . , 1974), pp.211- 214. 48. B u c k l e y , L . P . , P e t t i p a s , W . H . , " B i t u m i n i z a t i o n of R e a c t o r W a s t e s , D e v e l o p m e n t , D e s i g n and D e m o n s t r a t i o n " , A t o m i c E n e r g y o f Canada L i m i t e d , Rep.AECL-7338 (1981) p.5. 49. C h a r l e s w o r t h , D . H . , o p . c i t . , p.2. 50. B a r n h a r t , B . J . e t a l . , " P o t e n t i a l M i c r o b i a l Impact on T r a n s u r a n i c Wastes Under C o n d i t i o n s E x p e c t e d i n t h e Waste I s o l a t i o n P i l o t P l a n t (WIPP), December 15,1978- March 15,1979", L o s Alamos S c i e n t i f i c L a b o r a t o r y , Rep.LA-7839-PR .( 1 9 7 9 ) . L 51. Godbec,H.W., e t a l . , " D i f f u s i o n of R a d i o i s o t o p e s T h r o u g h Waste S o l i d s " , T r a n s a c t i o n s o f t h e A m e r i c a n N u c l e a r S o c i e t y , V o l . 1 2 , (.1969) pp.450-451. 52. D e j o n g h e , P . , e t a l . , " I n s o l u b i l i z a t i o n of R a d i o a c t i v e C o n c e n t r a t e s by A s p h a l t C o a t i n g , F i n a l R e p o r t 2, 1st p a r t , C o n c e r n i n g P r o p o s a l 167", E u r . A t o m i c E n e r g y Commission,Rep.EURAEC-695 ( 1 9 6 3 ) . 53. C r a n k , J . , The M a t h e m a t i c s Of D i f f u s i o n , 2nd e d . ( L o n d o n : O x f o r d U n i v e r s i t y P r e s s , 1975). 54. Hespe,E.D., " L e a c h T e s t i n g Of I m m o b i l i z e d R a d i o a c t i v e Waste S o l i d s " , A t o m i c E n e r g y Review, V o l . 9 , No.1, (1971) pp.201. 55. B u c k l e y , L . P . , P e r s o n a l C o m m u n i c a t i o n , June 1981. 56. C r a n k , J . , o p . c i t . , p.2. 57. Kulman,F.E., " M i c r o b i o l o g i c a l D e t e r i o r a t i o n o f B u r i e d P i p e and C a b l e C o a t i n g s " , C o r r o s i o n , V o l . 1 4 , (1958) pp.21 3-222. 58. M a r t i n , K . G . , " D e t e r i o r a t i o n o f B i t u m i n o u s R o o f i n g 6 9 F a b r i c s " , D i v i s i o n of B u i l d i n g R e s e a r c h , Commonwealth S c i e n t i f i c and I n d u s t r i a l R e s e a r c h O r g a n i z a t i o n , M e l b o u r n e , Rep.11 ( 1 9 6 1 ) . 59. H a r r i s , J . O . , " S o i l M i c r o o r g a n i s m s i n R e l a t i o n t o C a t h o d i c a l l y P r o t e c t e d P i p e " , C o r r o s i o n , V o l . 1 6 , (1960) p p . 4 4 1 t - 4 4 8 t . 60. H a r r i s , J . O . , " M i c r o b i o l o g i c a l S t u d i e s R e v e a l S i g n i f i c a n t F a c t o r i n O i l and Gas P i p e l i n e B a c k - F i l l e d D i t c h e s " , K a n s a s S t a t e U n i v e r s i t y A g r i c u l t u r a l E x p e r i m e n t S t a t i o n , Rep.135 ( 1 9 6 3 ) . 61. P e r r y , J . J . , " M i c r o b i a l C o o x i d a t i o n I n v o l v i n g H y d r o c a r b o n s " , M i c r o b i o l o g i c a l R e v i e w s , V o l . 4 3 , No.1, (1979) pp.59-72. 62. G e r s o n , D . F . , Z a j i c , J . E . , " S u r f a c t a n t P r o d u c t i o n From H y d r o c a r b o n s by C o r y n e b a c t e r i u m l e p u s , s p . n o v . and Pseudomonas a s p h a l t e n i c u s s p.nov.", D e v e l o p m e n t s i n I n d u s t r i a l M i c r o b i o l o g y , V o l . 1 9 , (1978) pp.577-599. 63. L u p t o n , F . S . , M a r s h a l l , K . C . , " E f f e c t i v e n e s s o f S u r f a c t a n t s i n t h e M i c r o b i a l D e g r a d a t i o n of O i l " , G e o m i c r o b i o l o g y J o u r n a l , V o l.1,No.3 (1978) pp.235-247. 64. Z a j i c , J . E . , S u p p l i s s o n , B . , E m u l s i f i c a t i o n and D e g r a d a t i o n of B u n k e r - C F u e l O i l by M i c r o - o r g a n i s m s " , B i o t e c h n o l o g y and B i o e n g i n e e r i n g , V o l . 1 4 , (1972) pp.331- 343. 65. Cooper,D.G., Z a j i c , J . E . , " S u r f a c e - A c t i v e Compounds from M i c r o o r g a n i s m s " , A d v a n c e s In A p p l i e d M i c r o b i o l o g y , V o l . 2 6 , (1980) pp.229-253. 66. R o d i e r , J . , e t a l . , "Bitumen C o a t i n g o f R a d i o a c t i v e S l u d g e s from t h e E f f l u e n t T r e a t m e n t P l a n t a t t h e M a r c o u l e C e n t r e , Review o f t h e P r o g r e s s R e p o r t s 1,2,3 and 4", Rep.CEA-2331 ( 1 9 6 3 ) . 67. Hespe,E.D., o p . c i t pp.195-207. 68. Nie,N.H., e t a l . , SPSS: S t a t i s t i c a l P a ckage f o r t h e S o c i a l S c i e n c e s , 2nd e d . (New Y o r k : M c G r a w - H i l l Book Company, 1975), p.428. 69. Means,J.L., e t a l . , " C h e m i c a l Mechanisms o f 6 0 C o T r a n s p o r t i n Ground Water from I n t e r m e d i a t e - L e v e l L i q u i d Waste T r e n c h 7: P r o g r e s s R e p o r t f o r P e r i o d E n d i n g June 30, 1975", Oak R i d g e N a t i o n a l L a b o r a t o r y , Env. S c . 70 D i v . , Rep.940 ( 1 9 7 6 ) . 70. F r i e d , S . , e t a l . , " R e t e n t i o n o f P l u t o n i u m and A m e r i c i u m by Rock", S c i e n c e , V o l . 1 9 6 , (1977) pp.1087-1089. 71. de M a r s i l y , G . , e t a l . , " N u c l e a r Waste D i s p o s a l : Can t h e G e o l o g i s t G u a r a n t e e I s o l a t i o n ? " , S c i e n c e , V o l . 1 9 7 , No.4303, (1977) pp.519-527. 72. S e i t z , M . G . , e t a l . , " S t u d i e s Of N u c l e a r - W a s t e M i g r a t i o n In G e o l o g i c M e d i a , A n n u a l R e p o r t , November 1976-October 1977", Argonne N a t i o n a l L a b o r a t o r y , Rep.ANL-78-8, (1978) 73. Means,J.L., e t a l . , " A d s o r p t i o n of Co and s e l e c t e d a c t i n i d e s by Mn and Fe o x i d e s i n s o i l s and s e d i m e n t s " , G e o c h i m i c a and C o s m o c h i m i c a A c t a . , V o l . 4 2 , (1978) pp.1763-1773. 74. S h e p p a r d , J . C . , e t a l . , " R e t e n t i o n of R a d i o n u c l i d e s by M o b i l e Humic Compounds and S o i l P a r t i c l e s " , E n v i r o n m e n t a l S c i e n c e and T e c h n o l o g y , V o l . 1 4 , No.11, (1980) pp.1349-1353. 75. W a l t o n , F . B . , e t a l . , " D e t e r m i n a t i o n of N u c l i d e - G e o l o g i c M e d i a R e a c t i o n K i n e t i c s U s i n g M i x i n g - C e l l C o n t r a c t o r s " , S u b m i t t e d t o C h e m i c a l G e o l o g y , J u n e , 1981. 76. Wilding,M.W., e t a l . , "Removal of C e s i u m and S t r o n t i u m f r o m F u e l S t o r a g e B a s i n W ater" i n A d v a n c e s In C h e m i s t r y S e r i e s 153 e d . M.H. C a m p b e l l ( W a s h i n g t o n : A m e r i c a n C h e m i c a l S o c i e t y , 1976), pp.134-151. 71 APPENDIX A - ONTARIO MINISTRY OF THE ENVIRONMENT ANALYSIS* TEST/COLONY A B C D1 D2 Gram s t a i n - + - - - Shape Rod Rod Rod Rod Rod S p o r e s - + - - - M o t i l i t y 30°C + + + + - 20°C - C a t a l a s e + + + + + O x i d a s e + — — — + G l u c o s e OF (5 Day) — — — F - Growth 20°C + + + + TSA 30°C + + + 35°C + + Weak + 42°C + + - - MacConkey Agar 30°C Gr + No Gr No Gr Gr + Gr + LAC- LAC+ LAC- Skim Growth + + Weak + + M i l k Pigment - - - - - Agar C a s e i n a s e - - - - - F l o u r e s c . — — — — + N i t r a t e (5 Day) R e d u c t i o n +(Gas) — +(N0 2) +(N0 2) — G e l a t i n a s e - + + - A r g i n i n e (5 Day) D i h y d r o l a s e — + U r e a s e - - + C i t r a t e + Growth 6.5% N a C l Weak + + - ONPG - + - "+" and "-" r e p r e s e n t g r o w t h o r no g r o w t h , r e s p e c t i v e l y . * I n d e p e n d e n t a n a l y s i s was p e r f o r m e d f o r e a c h of t h e two d i s t i n c t s p e c i e s f o u n d i n C u l t u r e D 72 C o l o n y M o r p h o l o g y : TSA 30°C A - Tan, d r y , w r i n k l e d . B - Cream t o w h i t e , i r r e g u l a r , s p r e a d i n g , m a r g i n . C - T i n y , c i r u l a r , smooth, p a l e y e l l o w . D1- C i r c u l a r , cream, c o n v e x , smooth, e n t i r e , m a r g i n . D2- C i r c u l a r , cream, c o n v e x , smooth. 7 3 APPENDIX B - SYNTHETIC GROUNDWATER SOLUTIONS STANDARD SYNTHETIC GRANITE GROUNDWATER" 1) The f o l l o w i n g s t o c k s o l u t i o n s were made up: a) 11.090 g MgSO,.7H 20 /25ml b) 7.115 g M g C l 2 . 6 H 2 0 /25ml c) 1.512 g NaHC0 3 /25ml d) 1.965 g KOH /25ml e) 0.506 g KN0 3 /25ml f ) 0.291 g KF /25ml 2) 0.10 ml o f ( a ) , ( b ) , ( c ) , ( d ) , (e) and ( f ) were p i p e t t e d t o a 2 L v o l u m e t r i c f l a s k . 1.00 ml of ( c ) was added and t h e volume made up t o 1700 mis w i t h d e i o n i z e d water (DIW). 0.048 g C a ( O H ) 2 was add e d t o a 200 ml v o l u m e t r i c f l a s k f i l l e d w i t h about 180 mis o f DIW. C 0 2 was b u b b l e d t h r o u g h t h i s m i x t u r e w h i l e s t i r r i n g u n t i l t h e s o l u t i o n became c l e a r . I t was t h e n f i l l e d t o t h e mark w i t h DIW and t h e c o n t e n t s o f t h i s 200 ml f l a s k added t o t h e 2 L v o l u m e t r i c f l a s k . The f i n a l 100 ml o f DIW was added t o t h e v o l u m e t r i c f l a s k t o make t h e volume up t o 2.00 L and t h e s o l u t i o n was s t i r r e d f o r 24 h o u r s i n c o n t a c t w i t h t h e a t m o s p h e r e t o b r i n g t h e pH t o "6.5 + 0.5. 74 STANDARD CANADIAN SHIELD SALINE SOLUTION ( S C S S S ) " " To 100.0 mis of DIW t h e f o l l o w i n g d r y c h e m i c a l s were added: a) 1.906 g K C l b) 1.216 g S r C l 2 . 6 H 2 0 c ) 3.080 g N a 2 S i 0 3 . 9 H 2 0 d) 0.276 g NaHC0 3 e) 1.370 g NaN0 3 10.0 mis of t h i s s t o c k s o l u t i o n was added t o a 2 L v o l u m e t r i c f l a s k and made up t o 2.0 l i t r e s . 110.050 g C a C l 2 . 2 H 2 0 , 4.056 g M g S O „ . 7 H 2 0 and 25.420 g N a C l were added and t h e e n t i r e m i x t u r e was s t i r r e d t h o r o u g h l y . 75 BASALT GROUNDWATER4 * S t o c k S o l u t i o n A The f o l l o w i n g was combined i n a 200 ml v o l u m e t r i c f l a s k : a) 100 ml DIW b) 8.000 g NaHC0 3 c) 5.485 g N a 2 S O „ . 1 0 H 2 0 d) 0.994 g MgSO,.7H 20 e) 1.490 g KC1 f ) 0.232 g KF T h i s s o l u t i o n was s t i r r e d u n t i l d i s s o l v e d and t h e volume made up t o 200 m i s . The f o l l o w i n g was t h e n c o m b i n e d i n a 2 L v o l u m e t r i c f l a s k : a) 1800 ml DIW b) 0.0109 g C a S 0 „ . l / 2 H 2 0 and s t i r r e d u n t i l d i s s o l v e d . S t o c k S o l u t i o n B The f o l l o w i n g was t h e n combined i n a 200 ml v o l u m e t r i c f l a s k : a) 180 ml DIW b) 1.871 g C a C l 2 . 2 H 2 0 T h i s was mixed u n t i l d i s s o l v e d and t h e volume made up t o 2 L. To t h e s t i r r e d 2 L v o l u m e t r i c f l a s k t h e f o l l o w i n g was added: a) 4.0 ml S t o c k S o l u t i o n A b) 4.0 ml S t o c k S o l u t i o n B and made up t o 2.0 l i t r e s , t h e n s t i r r e d o v e r n i g h t . 76 WN-1 S a l i n e - S o l u t i o n * * 1) The f o l l o w i n g s t o c k s o l u t i o n was made-up i n a 200 ml v o l u m e t r i c f l a s k ( f i l l e d t o t h e mark w i t h DIW) a) 0.537 g K C l b) 1.882 g NaHC0 3 c) 0.901 g NaN0 3 2) 20.0 mis of t h i s s t o c k s o l u t i o n was p i p e t t e d i n t o a 2 L v o l u m e t r i c f l a s k , t h e f o l l o w i n g d r y c h e m i c a l s added, t h e n made up t h e mark w i t h DIW. d) 0.056 g FeSO,.7H 20 e) 0. 150 g S r C l 2 . 6 H 2 0 f ) 13.111 g C a C l 2 . 2 H 2 0 g) 1 .232 g MgSO a.7H 20 h) 9.520 g N a C l i ) 1.282 g C a ( O H ) 2 7 7 APPENDIX C - LEACH TEST DATA TEST Al - TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT '• 0 686E-01 0 0623 2. 0 1G4E*00 0 1495 3 . 0 200E*00 0 1822 4 . 0 226E*00 0 2056 5 . 0 244E+00 0 2220 6 0 257E*00 0 2333 7 . 0 2G6E*00 0 2420 14 . 0 295E*00 0 2677 21 . 0 355E»00 0 3227 2B . 0 423E+00 0 3844 . 35 • 0 476E+0O 0 4324 42 . 0 541E*0O 0 4921 49. 0 G22E*00 0 5656 56. 0 717E*00 0 6515 63. 0 796E*00 0 7240 93. 0 1O8E*01 0 9800 " T a b l e XI - LEACH 1-60 CUMULATIVE FRACTION INCREMENTAL LEACHED LEACH RATE CM CM/DAY 0 284E-03 0 284E-03 0 682E-03 0 397E-03 0 831E-03 0 149E-03 0 937E-03 0 106E-03 0 101E-02 0 751E-04 0 106E-02 0 512E-04 0 110E-02 0 399E-04 0 122E-02 0 167E-04 0 147E-02 0 358E-04 0 175E-02 0 402E-04 0 197E-02 O 312E-04 0 224E-02 0 389E-04 0 258E-02 0 479E-04 0 297E-02 0 559E-04 0 330E-02 0 472E-04 0 447E-02 0 389E-04 TEST DATA - TEST MASS DIFFUSION LEACH RATE G/CM"»2*DAY COEFFICIENT CM"2/SEC O.384E-03 0 734E- 12 0.537E-03 0 211E- 1 1 0.201E-03 0 209E- 11 0.144E-03 0 200E- 1 1 0.101E-03 0 186E- 11 0.692E-04 0 171E- 1 1 0.539E-04 0 158E- 1 1 0. 226E-04 0 967E- 12 0.484E-04 0 937E- 12 0.543E-04 0 997E- 12 0.422E-04 0 101E- 1 1 0.525E-04 0 109E- 1 1 0.647E-04 0 123E- 1 1 0.755E-04 0 143E- 11 0.638E-04 0 157E- 11 0.526E-04 0 195E- 11 SET A1 - 6 0 C o TEST A2 - CO-60 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL CUMULATIVE FRACTION RELEASED LEACHED PERCENT CM INCREMENTAL LEACH RATE CM/DAY MASS DIFFUSION LEACH RATE COEFFICIENT G/CM*-2*DAY CM**2/SEC 1 . 0. 125E+01 1.1811 0.532E-02 0 532E-02 0.719E-02 0 258E-09 2. 0. 155E + 01 1 . 4669 0.66 IE-02 0 129E-02 0.174E-02 0 199E-09 3 . 0. 159E+01 1 .4978 0.675E-02 O 139E-03 0. 188E-03 0 138E-09 4 . 0. 165E+01 1.5533 O.7OOE-02 0 250E-03 0.338E-03 0 111E-09 5. 0. 168E+01 1.5892 0.716E-02 0 162E-03 0.218E-03 0 933E- 10 6. 0 . 17 1 E+01 1.6148 0.728E-02 0 115E-03 0. 156E-03 0 802E-lO 7. 0 . 174E+01 1.6373 0.738E-02 0 101E-03 0.137E-03 0 707E-10 14 . 0. 185E+01 1.7446 0.786E-02 0 69 IE-04 0.933E-O4 0 401E-10 21 . 0. 199E+01 1.8778 0.846E-02 0 857E-04 0.116E-03 0 310E-10 28 . 0. 216E+01 2.0365 0.918E-02 0 102E-03 0. 138E-03 0 274E-10 35 . 0.232E+01 2.1920 0.988E-02 0 100E-03 0. 135E-03 0 253E-10 42. 0.253E*01 2.3856 0.108E-01 . 0 125E-03 0. 168E-03 0 250E-10 49 . 0.277E+01 2.6091 0.118E-01 0 144E-03 0. 194E-03 0 257E- 10 56 . 0.307E+01 2.893 1 0.130E-01 0 183E-03 0. 247E-03 0 276E-10 63 . 0.33 IE+01 3. 1262 0.141E-01 0 150E-03 0-203E-03 0 286E-10 93. 0.437E+01 4 . 1262 0.186E-01 0 I50E-03 0-203E-03 0 338E-10 T a b l e X I I - LEACH TEST"DATA - TEST SET A 2 - 6 0 C c 7 8 TEST A3 - CO-60 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT CUMULATIVE FRACTION LEACHED CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM"2*DAY DIFFUSION COEFFICIENT CM"2/SEC 1 . 0 126E*01 1.1856 0 534E-02 0 534E-02 0 722E-02 0 260E-09 2. 0 144E+01 1.3568 0 612E-02 0 770E-03 0 104E-02 0 170E-09 3. 0 I49E*01 1.4036 0 633E-02 0 211E-03 0 285E-03 0 121E-09 4. 0 162E+01 1.5266 0 688E-02 0 554E-03 0 748E-03 0 108E-09 5. 0 169E+01 1.5927 O 718E-02 0 298E-03 0 402E-03 0 937E- 10 6. 0 I73E+01 1.6280 0 734E-02 0 159E-03 0 2I5E-03 0 816E- 10 7 . 0 174E*OI 1.6430 0 741E-02 0 675E-04 0 911E-04 0 712E- 10 14 . . 0 181E+O1 1.7075 0 770E-02 0 415E-04 0 561E-04 0 385E-10 2 1 . 0 191E+01 1.7996 0 811E-02 0 593E-04 0 8COE-04 0 285E- 10 28. 0 202E+01 1.9047 0 858E-02 0 677E-04 0 913E-04 0 239E- 10 35. 0 218E+01 2.0570 0 927E-02 0 981E-04 0 132E-03 0 223E-10 42 . 0 243E*01 2.2887. 0 103E-01 0 149E-03 0 20 IE-03 0 230E-10 49. 0 270E*01 2.5511 0 115E-01 0 169E-03 0 228E-03 0 245E- 10 56 . 0 29GE*01 2.7932 0 126E-01 0 156E-03 0 210E-03 0 257E-10 S3. 0 323E+01 3 0503 0 137E-01 0 166E-03 0 224E-03 0 273E-10 93. 0 423E+01 3.9937 0 180E-O1 O 142E-03 0 191E-03 0 317E-10 T a b l e X I I I - LEACH TEST DATA - TEST SET A3 - 6 0 C o TEST Bl - C0-60 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL CUMULATIVE FRACTION RELEASED LEACHED PERCENT CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM**2*DAY DIFFUSION COEFFICIENT CM"2/SEC 1 . 0 492E*00 0.5415 0 229E-02 0 229E-02 0 309E -02 0 477E-10 2 . 0 608E+00 0.6689 0 283E-02 0 539E-03 0 727E-03 0 364E-10 3. 0 658E+00 0.7234 0 306E-02 0 231E-03 0 312E-03 0 284E-10 4 . 0 69SE*00 0.7674 0 324E-02 , 0 186E-03 0 25 IE-03 0 239E- 10 5. 0 729E*00 0.8022 0 339E-02 0 147E-03 0 199E-03 0 209E-10 6. 0 757E*00 0.8333 0 352E-02 0 131E-03 0 177E-03 0 188E-10 7 . 0 784E*00 0.8630 0 365E-02 0 125E-03 0 169E-03 0 173E-10 •14 . 0 960E+00 1.0565 0 447E-02 0 117E-03 0 158E-03 0 130E-10 2 1 . 0 113E+01 1.2446 0 526E-02 0 114E-03 0 153E-03 0 120E-10 28. 0 125E+01 1 . 3798 o 583E-02 0 817E-04 O 1 IOE-03 0 111E-10 35. 0 135E*01 1 .4806 o 626E-02 0 609E-04 O 822E-04 0 102E- 10 42. 0 144E+01 1.5856 0 670E-02 0 634E-04 0 857E-04 0 973E-11 49. 0 155E+01 1.7013 0 719E-02 0 699E-04 0 944E-04 0 960E-11 56. 0 165E+01 t.8130 0 767E-02 0 674E-04 0 911E-04 0 954E-1 1 63. 0 174E+01 1.9087 0 807E-02 0 578E-04 0 78 IE-04 0 940E-11 93 . 0 204E*01 2.2418 0 948E-02 0 470E-04 0 634E-04 0 678E-11 T a b l e XIV - LEACH TEST DATA - TEST SET B1 - 6 0 C o 7 9 T E S T B2 - C O - 6 0 T O T A L T I M E D A Y S T O T A L A C T I V I T Y R E L E A S E D M I C R O C U R I E S F R A C T I O N A L R E L E A S E D P E R C E N T C U M U L A T I V E F R A C T I O N L E A C H E D CM INCREMENTAL L E A C H RATE C M / D A Y MASS L E A C H RATE G / C M * * 2 * 0 A Y D I F F U S I O N C O E F F I C I E N T C M " 2 / S E C 1 . 0 . 175E+01 1 . 6 5 0 0 0 . 7 4 4 E - 0 2 0 . 7 4 4 E - 0 2 0 . 1 0 0 E - 0 1 0 . 5 0 3 E - 0 9 2 . 0 . 1 9 2 E * 0 1 1 . 8 1 4 3 0 . 8 1 8 E - 0 2 0 . 7 4 1 E - 0 3 0 . 1 0 0 E - 0 2 0 . 3 0 4 E - 0 9 3 . 0 . I 9 9 E * 0 1 1 . 8 8 1 5 0 . 8 4 8 E - 0 2 0 . 3 0 2 E - 0 3 0 . 4 0 8 E - 0 3 0 . 2 1 8 E - 0 9 4 . 0 . 205E+01 1 .9331 0 . 8 7 1 E - 0 2 0 . 2 3 3 E - 0 3 0 . 3 1 4 E - 0 3 0 . 1 7 3 E - 0 9 5 . 0 . 2 0 7 E * 0 1 1 . 9 5 5 0 0 . 8 8 1 E - 0 2 0 . 9 8 7 E - 0 4 0 . 1 3 3 E - 0 3 0 . 1 4 1 E - 0 9 6 . 0 . 210E+01 1 . 9 7 8 9 0 . 8 9 2 E - 0 2 0 . 1 0 7 E - 0 3 0 . 1 4 5 E - 0 3 0 . 1 2 1 E - 0 9 7 . 0 . 2 1 1 E * 0 I 1 . 9 9 4 3 0 . 8 9 9 E - 0 2 0 . G 9 8 E - 0 4 0 . 9 4 2 E - 0 4 0 . 1 0 5 E - 0 9 14 . 0 . 219E+01 2 . 0 6 7 8 0 - 9 3 2 E - 0 2 0 . 4 7 3 E - 0 4 0 . 6 3 8 E - 0 4 0 5 6 4 E - I 0 2 1 . 0 . 2 2 6 E * 0 1 2 . 1 2 8 8 0 . 9 5 9 E - 0 2 0 . , 3 9 3 E - 0 4 0 . 5 3 I E - 0 4 0 . 3 9 8 E - 1 0 28 . 0 . 2 3 3 E * 0 1 2 . 1 9 7 7 0 . 9 9 I E - 0 2 0 4 4 4 E - 0 4 0 . 5 9 9 E - 0 4 0 . 3 1 9 E - 1 0 3 5 . 0 . 239E+01 2 . 2 5 2 8 0 . 1 0 2 E - 0 1 0 3 5 5 E - 0 4 0 . 4 7 9 E - 0 4 0 . 2 6 8 E - 1 0 4 2 . 0 . 2 4 4 E * 0 I 2 . 2 9 9 3 0 . 1 0 4 E - 0 1 0 . 2 9 9 E - 0 4 0 . 4 0 4 E - 0 4 0 . 2 3 2 E - 1 0 49 . 0 . 249E+01 2 . 3 4 7 9 0 . 1 0 6 E - 0 1 0 . 3 1 3 E - 0 4 0 . 4 2 3 E - 0 4 0 . 2 O 8 E - 1 0 56 . 0 . 2 5 3 E * 0 1 2 . 3 8 7 8 0 . 1 0 8 E - 0 1 0 . 2 5 7 E - 0 4 0 . 3 4 7 E - 0 4 0 . 1 8 8 E - 1 0 63 . 0 . 2 5 6 E * 0 1 2 . 4 1 1 4 0 . 1 0 9 E - 0 1 0 . 1 5 2 B - 0 4 0 . 2 0 5 E - 0 4 0 . 1 7 O E - 1 0 93 . 0 . 2 6 3 E * 0 1 2 . 4 7 7 0 0 . 1 1 2 E - 0 1 0 9 8 4 E - 0 5 0 . 1 3 3 E - 0 4 0 . 1 2 2 E - 10 T a b l e XV - LEACH TEST DATA - TEST SET B2 - 6 0 C o T O T A L T O T A L A C T I V I T Y F R A C T I O N A L C U M U L A T I V E F R A C T I O N INCREMENTAL MASS D I F F U S I O N T I M E D A Y S R E L E A S E D M I C R O C U R I E S R E L E A S E D P E R C E N T L E A C H E D CM L E A C H RATE C M / D A Y L E A C H RATE G / C M * ' 2 ' D A Y C O E F F I C I E N T C M « * 2 / S E C 1 . 0 . 145E+01 1 . 3 0 5 4 0 . 5 9 9 E - 0 2 0 . 5 9 9 E - 0 2 0 8 1 0 E - 0 2 0 . 3 2 6 E - 0 9 2 . 0 . 165E+01 1 . 4 8 5 3 . 0 . 6 8 I E - 0 2 0 8 2 5 E - 0 3 0 1 1 2 E - 0 2 0 . 2 1 1 E - 0 9 3 . 0 . 175E+01 1 . 5 7 5 9 0 . 7 2 3 E - 0 2 0 4 1 5 E - 0 3 0 . 5 6 2 E - 0 3 0 . 1 5 8 E - 0 9 4 . 0 . 179E+01 1 . 6 1 4 8 0 . 7 4 I E - 0 2 0 . 1 7 9 E - 0 3 0 . 2 4 2 E - 0 3 0 . 1 2 5 E - 0 9 5 . O . 181E+01 » . 6 2 9 2 0 . 7 4 7 E - 0 2 0 6 6 0 E - 0 4 0 8 9 3 E - 0 4 0 . 1 0 2 E - O 9 6 . 0 . 183E+01 1 . 6 4 5 6 0 . 7 5 5 E - 0 2 0 . 7 5 2 E - 0 4 0 . 1 0 2 E - 0 3 0 . 8 6 4 E - 1 0 7 . 0 . 1 8 4 E + 0 1 1 .6551 0 . 7 5 9 E - 0 2 0 . 4 3 6 E - 0 4 0 . 5 9 0 E - 0 4 0 . 7 4 9 E - 1 0 1 4 . 0 . 1 9 1 E + 0 1 1 . 7 2 0 4 0 . 7 8 9 E - 0 2 0 4 2 8 E - 0 4 0 . 5 8 0 E - 0 4 0 . 4 0 5 E - 1 0 2 1 . 0 . 1 9 8 E + 0 1 1 .78 13 0 . 8 1 7 E - 0 2 0 . 3 9 9 E - 0 4 0 . 5 4 0 E - 0 4 0 . 2 B 9 E - 1 0 28 . O . 2 0 3 E * 0 1 1 . 8 3 3 2 0 . 8 4 1 E - 0 2 O. 3 4 0 E - 0 4 0 . 4 6 0 E - 0 4 0 . 2 3 0 E - 1 0 3 5 . 0 . 2 0 7 E + 0 1 1 . 8 6 6 0 0 . 8 5 6 E - 0 2 0 . 2 1 5 E - 0 4 0 . 2 9 0 E - 0 4 0 . 1 9 0 E - 1 0 4 2 . 0 . 214E+01 1 . 9 2 8 4 0 . 8 8 5 E - 0 2 0 . 4 0 9 E - 0 4 0 . 5 5 3 E - 0 4 0 . 1 6 9 E - 10. 4 9 . 0 . 2 2 0 E + 0 1 1 .98 1 1 0 . 9 0 9 E - 0 2 0 . 3 4 6 E - 0 4 0 . 4 6 8 E - 0 4 0 . 1 5 3 E - 1 0 5 6 . 0 . 2 3 0 E + 0 1 2 . 0 6 9 2 0 . 9 4 9 E - 0 2 0 . 5 7 7 E - 0 4 0 . 78 1E - 0 4 0 . 1 4 6 E - 1 0 6 3 . 0 . 2 3 4 E + 0 1 2 . 1 0 8 8 0 . 9 6 7 E - 0 2 0 . 2 6 0 E - 0 4 0 . 35 I E - 0 4 0 . 1 3 5 E - 1 0 9 3 . 0 . 2 4 6 E + 0 1 2 . 2 1 6 3 0 . 1 0 2 E - 0 1 0 . 1 6 5 E - 0 4 0 . 2 2 3 E - 0 4 0 . 1 0 1 E - 1 0 T a b l e XVI - LEACH TEST DATA - TEST SET B 3 - 6 0 C o 8 0 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT CUMULATIVE FRACTION LEACHED CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM'"2'DAY DIFFUSION COEFFICIENT CM**2/SEC 1 . 0. 135E-KJ1 1.3196 0 586E-02 0 586E-02 0 79 IE-02 0 312E-09 2 . 0. 144E+01 1.4130 0 627E-02 0 414E-03 0 560E -03 0 179E-09 3 . 0. 149E+01 1.4627 0 649E-02 0 221E-03 O 298E-03 0 128E-09 4 . 0. 151E*01 1.4833 0 658E-02 0 917E-04 0 124E-03 0 985E-10 5 . 0. 153E*01 1.4965 0 664E-02 0 585E-04 0 790E-04 0 802E- 10 6. 0. 153E*01 1.5043 0 668F.-C2 0 343E-04 0 464E-04 0 67SE-10 7 . 0. 154E+01 1.5115 0 671E- 02 0 32 IE-04 0 434E-04 0 584E- 10 14 . 0. 157E*01 1 5398 0 683E-02 0 179E-04 0 242E-04 0 303E-10 21 . 0. 162E*01 1.5910 0 706E-02 0 325E-04 0 439E-04 0 216E-10 28. 0. 166E+01 1.6240 0 72 IE-02 0 209E-04 0 283E-04 0 169E- 10 35. 0. 168E+01 1.6498 0 732E-02 0 163E-04 0 220E-04 0 139E-10 42 . 0. 172E+01 1.6820 0 746E-02 0 205E-04 0 276E-04 0 121E-10 49 . 0. 175E*01 .1.7154 0 761E-02 0 212E-04 0 286E-04 0 108E- 10 56. 0. 179E+01 1.7580 0 780E-02 0 270E-04 0 365E-04 0 988E-11 63. 0. 1R3E*01 1.7971 0 798E-02 0 248E-04 0 335E-04 0 918E-11 93. 0. 190E+01 1.8661 0 828E-02 0 102E-04 0 138E-04 p_ 670E-11 T a b l e XVII - LEACH TEST DATA - TEST SET C1 - 6 0 C o TEST C2 - CO-60 TOTAL TIME DAYS TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL RELEASED RELEASED LEACHED LEACH RATE MICROCURIES PERCENT CM CM/DAY MASS LEACH RATE G/CM«-2*DAY DIFFUSION COEFFICIENT CM*'2/SEC 1 . 0.47OE+OO 0.4610 0.204E-02 0 204E-02 0.276E-02 0.378E-10 2 . 0.587E+0O 0.5757 0.255E-02 0 507E-03 0.686E-03 0.295E-10 3. 0.658E+00 0.6448 0.285E-02 0 305E-03 0.413E-03 O.246E-10 4 . 0.695E+00 0,68 14 0.301E-02 0 162E-03 0.219E-03 0.206E-10 5. O.724E+0O 0.7095 0.314E-02 0 124E-03 0.168E-03 0.179E-10 6 . 0.748E+00 0.7333 0.324E-02 0 105E-03 0.143E-03 0. 159E- 10 7 . 0.7G2E*O0 0.7475 0.331E-02 0 630E-04 0.852E-04 0.142E-10 14 . O.832E+00 0.8153 0.361E-02 0 4 28E;04 0.579E-04 0.844E- 1 1 21 . 0.9O3E+O0 0.8855 0. 392E-02 0 443E-04 0.600E-04 0.664E-11 28 . 0.969E+OO O.9504 0.4 20E-02 o 410E-04 0.555E-04 0.573E-11 35. 0.103E+01 1.0136 0.448E-02 0 400E-04 0.541E-04 0.522E-11 42 . 0.108E+01 1.0629 0.470E-02 0 311E-04 0.42 IE-04 0.47BE-11 49 . 0. 1 14E+01 1.1189 0.495E-02 0 354E-04 0.479E-04 0.454E-1 1 5G . 0.163E+01 1.6014 O.7O8E-02 o 305E-03 0.412E-03 0.814E-1 1 63. 0.169E+01 1.6600 O.734E-02 0 370E-04 0.501E-04 0.777E-1 1 93. 0.I87E+01 1.8366 0.812E-02 0 260E-04 0.352E-04 0.645E- 1 1 T a b l e X V I I I - LEACH TEST DATA - TEST SET C 2 - 6 81 T E S T C3 - C O - G O T O T A L T IME D A Y S T O T A L A C T I V I T Y R E L E A S E D M I C R O C U R I E S F R A C T I O N A L C U M U L A T I V E F R A C T I O N R E L E A S E D L E A C H E D P E R C E N T CM INCREMENTAL L E A C H RATE C M / D A Y MASS L E A C H RATE G / C M - » 2 * 0 A Y D I F F U S I O N C O E F F I C I E N T C M * * 2 / S E C 1. 0 . 108E+01 0 . 9 8 9 9 0 4 5 1 E - 0 2 0 45 I E - 0 2 0 . 6 1 0 E - 0 2 0 1 8 5 E - 0 9 2 . 0 . 119E+0I 1 . 0 8 8 3 0 4 9 6 E - 0 2 0 4 4 8 E - 0 3 0 . 6 0 7 E - 0 3 0 1 1 2 E - 0 9 3 . 0 . 1 2 5 E * 0 1 1 . 1 4 3 6 0 5 2 1 E - 0 2 0 2 5 2 E - 0 3 0 . 3 4 1 E - 0 3 0 8 2 2 E - 1 0 4 . 0 . 1 2 7 E * 0 1 1 . 1 6 6 6 0 5 3 1 E - 0 2 0 1 0 5 E - 0 3 0 . 1 4 1 E - 0 3 0 6 4 2 E - 1 0 5 . 0 . 128E+01 1 . 1 7 7 2 0 5 3 6 E - 0 2 O 4 8 4 E - 0 4 0 . 6 5 5 E - 0 4 0 5 2 3 E - 1 0 6 . 0 . 1 3 0 E * 0 1 1 . 1 8 8 9 0 5 4 2 E - 0 2 0 5 3 5 E - 0 4 0 . 7 2 4 E - 0 4 0 4 4 4 E - 1 0 7 . 0 . 131E+01 1 . 2 0 0 0 0 5 4 7 E - 0 2 0 5 0 4 E - 0 4 0 . 6 8 2 E - 0 4 0 3 8 8 E - 1 0 14 . 0 . 1 3 5 E * 0 1 1 . 2 3 7 8 0 5 6 4 E - 0 2 0 2 4 6 E - 0 4 0 . 3 3 3 E - 0 4 0 2 0 6 E - 1 0 21 . 0 . 142E+01 1 . 3 0 4 3 0 5 9 4 E - 0 2 0 4 3 2 E - 0 4 0 . 5 8 5 E - 0 4 0 1 5 3 E - 1 0 2 8 . 0 . 1 4 5 E * 0 1 1 . 3 3 4 4 0 6 0 8 E - 0 2 0 1 9 6 E - 0 4 0 . 2 6 6 E - 0 4 0 1 2 0 E - 1 0 35 . 0 . 1 4 9 E * 0 I 1 . 3 6 5 2 0 6 2 2 E - 0 2 0 2 0 0 E - 0 4 0 . 2 7 I E - 0 4 0 1 0 0 E - 10 42 . 0 . 1 5 2 E * 0 1 1 . 3 9 0 0 0 6 3 3 E - 0 2 0 1 6 2 E - 0 4 0 . 2 1 9 E - 0 4 0 8 6 8 E - 1 1 4 9 . 0 . 1 5 5 E * 0 I 1 . 4 1 9 6 0 6 4 7 E - 0 2 0 1 9 3 E - 0 4 0 . 2 6 1 E - 0 4 0 7 7 6 E - 1 1 5 6 . 0 1 6 4 E * 0 1 1 . 5 0 7 7 0 6 B 7 E - 0 2 0 5 7 3 E - 0 4 0 . 7 7 6 E - 0 4 0 7 6 6 E - 1 1 6 3 . 0 167E+01 1 . 5 3 0 6 0 6 9 7 E - 0 2 0 1 4 9 E - 0 4 0 . 2 0 2 E - 0 4 0 7 0 2 E - 1 1 93 n 171E+01 .1 . 5 7 0 7 0 7 1 6 E - 0 2 0 6 0 9 E - 0 5 0 . 8 2 4 E - 0 5 . 0 5 0 0 E - 1 1 T a b l e XIX - LEACH" TEST DATA - TEST SET C 3 - 6 0 C o T E S T D l - C O - G O T O T A L T I M E D A Y S T O T A L A C T I V I T Y R E L E A S E D M I C R O C U R I E S F R A C T I O N A L R E L E A S E D P E R C E N T C U M U L A T I V E F R A C T I O N L E A C H E D CM I N C R E M E N T A L L E A C H R A T E C M / O A Y MASS L E A C H RATE G / C M * * 2 * D A Y D I F F U S I O N C O E F F I C I E N T C M ' - 2 / S E C '• 0. 1 15E+01 1. 1 184 0 . 4 9 8 E - 0 2 0 . 4 9 8 E - 0 2 0 . 6 7 2 E - 0 2 O . 2 2 6 E - 0 9 2 . 0. I26E+01 1 . 2 2 0 6 0 . 5 4 4 E - 0 2 0 . 4 5 5 E - 0 3 0 . 6 1 3 E - 0 3 0 . 1 3 4 E - 0 9 3 . 0. 131E +01 1 .27 1 1 0 . 5 6 6 E - 0 2 0 . 2 2 5 E - 0 3 0 . 3 0 3 E - 0 3 O . 9 7 1 E - 1 0 4 . 0 . 1 3 3 E + 0 1 1 . 2 9 0 5 0 . 5 7 5 E - 0 2 0 . 8 6 4 E - 0 4 0 . 1 1 6 E - 0 3 0 . 7 5 1 E - 1 0 5 . 0. 1 3 5 E - » 0 1 1 . 3 1 0 9 0 . 5 8 4 E - 0 2 0 . 9 1 I E - 0 4 0 . 1 2 3 E - 0 3 0 . 6 2 0 E - 1 0 6 . 0 . 137E+01 1 . 3 3 1 3 0 . 5 9 3 E - 0 2 0 . 9 0 8 E - 0 4 0 . 1 2 2 E - 0 3 0 . 5 3 3 E - 1 O 7 . 0. 1 3 9 E * 0 t 1 . 3 4 9 1 0 . 6 0 I E - 0 2 O . 7 9 2 E - 0 4 0 . 1 0 7 E - 0 3 0 . 4 6 9 E - I O 14 . 0. 1-I5C + 01 1 . 4 0 7 8 0 . 6 2 7 E - 0 2 0 . 3 7 3 E - 0 4 0 . 5 0 3 E - 0 4 0 . 2 5 5 E - 1 0 2 1 . 0. 152E<-01 1 . 4 7 4 9 0 . 6 5 7 E - 0 2 0 . 4 2 7 E - 0 4 0 . 5 7 6 E - 0 4 0 . 1 8 7 E - 1 0 28 . 0. 15GE+01 1 . 5 172 0 . 6 7 6 E - 0 2 0 . 2 6 9 E - 0 4 0 . 3 6 3 E - 0 4 0 . 1 4 8 E - 1 0 3 5 . O . 159E+01 1 . 5 4 2 7 0 . 6 8 7 E - 0 2 0 . 1 6 2 E - 0 4 0 . 2 1 9 E - 0 4 0 . I 2 3 E - 10 42 . 0 . 1G2E+01 1 . 5 7 6 7 0 . 7 0 2 E - 0 2 0 . 2 1 6 E - 0 4 0 . 2 9 1 E - 0 4 0 . 1 0 7 E - 1 0 4 9 , 0 . I 6 5 E + 0 1 1 . 6 0 6 5 0 . 7 1 6 E - 0 2 0 . 1 9 0 E - 0 4 0 . 2 5 6 E - 0 4 0 . 9 5 0 E - ( 1 56 . 0. 172E+01 1 . 6 6 6 7 6 . 7 4 2 E - 0 2 0 . 3 8 3 E - 0 4 0 . 5 1 7 E - 0 4 0 . 8 9 5 E - 1 1 6 3 . 0 . 1 7 3 E * 0 1 1 . 6 7 9 3 O . 7 4 8 E - 0 2 0 . 8 0 2 E - 0 5 0 . 1 0 8 E - 0 4 0 . 8 0 7 E - 1 1 9 3 . 0 . 1 7 8 E + 0 1 L 7 361 0 . 7 6 9 E - 0 2 ( X G 9 5 E - 0 5 0 . 9 3 7 E - 0 5 0 . 5 7 8 E - 1 1 T a b l e XX - LEACH TEST DATA" - TEST~ SET D1 - 6 0 C o 8 2 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS DIFFUSION TIME DAYS RELEASED MICROCURIES RELEASED PERCENT LEACHED CM LEACH RATE CM/DAY LEACH RATE G/CM*'2*DAY COEFFICIENT CM**2/SEC 1 . 0. 120E*01 1.1558 0.515E-02 0 515E-02 0 697E-02 0 241E-09 2. 0. 135E+01 1.2984 0.579E-02 0 636E-03 0 860E-03 0 152E-09 3. 0. I42E*0I 1.3684 0.610E-02 0 312E-03 0 422E-03 0 113E-09 4 . 0. 145E*01 1.3980 O.623E-02 0 132E-03 0 178E-03 0 8B2E-10 5. 0. 150E+01 1.4386 0.64 IE-02 0 181E-03 0 245E-03 0 747E-10 6 . 0. 153E+01 1.4747 0.657E-02 0 161E-03 0 218E-03 0 655E-10 7 . 0. 155E*01 1.4924 0.665E-02 0 793E-04 0 107E-03 0 575E- 10 14 . 0. 163E*01 1.5681 0.699E-02 0 482E-04 0 65 IE-04 0 317E-10 21 . 0. 17 1E+01 1.6461 0.734E-02 0 497E-04 0 672E-04 0 233E-10 28 . 0. 177E+01 1.6993 0.757E-02 0 339E-04 0 458E-04 0 186E- 10 35. 0. 182E+01 1.7533 0.78 IE-02 0 343E-04 0 465E-04 0 159E-10 42 . 0. 186E+01 1.7920 0.799E-02 0 247E-04 0 334E-04 0 138E- 10 49. 0. I92E*01 1 .8500 0.825E-02 0 369E-04 0 50OE-O4 0 126E-10 56. 0. I96E*0I 1.8852 0.840E-02 0 224E-04 0 303E-04 0 115E-10 63. 0. 198E+01 1.9053 0.849E-02 0 128E-04 0 173E-04 0 104E-10 93. 0. 204E+01 1.9639 0.875E-02 0 870E-05 0 118E-04 0 749E-1 1 T a b l e XXI - LEACH TEST DATA - TEST SET D2 - 6 0 C c TEST D3 - CO-60 TOTAL TIME OAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL CUMULATIVE FRACTION INCREMENTAL RELEASED LEACHED LEACH RATE PERCENT CM CM/DAY MASS LEACH RATE G/CM**2*0AY DIFFUSION COEFFICIENT CM"2/SEC 1 . 0 308E*00 0.3050 0. 135E.-02 0 135E-02 0 182E-02 0 165E-10 2. 0 391E+0O 0.3875 0. 171E-02 0 365E-03 0 491E-03 0 133E- 10 3. 0 432E*00 0.4280 0.189E-02 0 179E-03 0 241E-03 0 iq9E-10 4 . 0 451E+00 0.4470 0.198E-02 0 844E-04 0 114E-03 0 888E-11 5. 0 4 7 4 E*00 0.4691 0.207E-02 0 977E-04 0 132E-03 0 782E-11 6. 0 499E+00 0.4945 0.219E-02 0 112E-03 0 151E-03 0 724E-11 7 . 0 533E+00 0.5278 0.233E-02 0 147E-03 0 198E-03 0 707E-11 14 . O 638E+00 0.6319 0.279E-02 0 658E-04 0 886E-04 0 507E-11 21 . 0 731E*00 0.7237 0.320E-02 0 580E-04 0 780E-04 0 443E-11 28. 0 807E+00 O.7994 0.353E-02 o 478E-04 0 644E-04 0 406E-11 35. 0 867E*00 0 8585 0.380E-02 0 374E-04 0 503E-04 0 374E-11 42. 0 933E+00 0.9234 0.408E-02 0 409E-04 0 551E-04 0 361E-11 49.. q 103E+01 1.0246 0.453E-02 0 640E-04 0 86 IE-04 0 381E- 11 56. 0 109E+01 1.0835 0.479E-02 0 372E-04 0 50 IE-04 0 373E-11 63. 0 1 13E*01 1.1161 0.494E-02 0 206E-04 0 277E-04 0 351E-11 0. 122E+01 1.2043 0.533E-02 0 130E-04 1 0 175E-04 q 277E-11 T a b l e XXII - LEACH TEST DATA -• TEST SET D3 . 6 0 ( 8 3 TEST A1 - CS-137 TOTAL TIME DAYS TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL RELEASED RELEASED LEACHED LEACH RATE MICROCURIES PERCENT CM CM/DAY MASS LEACH RATE G/CM**2*DAY DIFFUSION COEFFICIENT CM"2/SEC 1 . 0. 2B9E*01 1.5712 0.716E-02 0 .716E-02 ' 0 968E-02 0 .466E-09 2 . 0. 316E*01 1 . 7194 0. 784E-02 0 676E-03 0 913E-03 0 .279E-09 3. 0. 326E+01 1 .7718 0.808E-02 0 .239E-03 0. 323E-03 0 . 198E-09 4 . 0. 332E*01 1.8022 0.82 IE-02 0 .138E-03 0. 187E-03 0 .153E-09 5. 0. 335E+01 1.8205 O.83OE-02 0 831E-04 0. 112E-03 0 . 125E-09 6 . 0. 337E+01 1.8329 0.835E-02 0 567E-04 0. 7G7E-04 0 . 106E-09 7 . 0. 339E+01 1.8427 0.840E-02 0 .448E-04 0. 606E-04 0 916E-10 14 . 0. 347E+01 1.8858 0.860E-02 0 .281E-04 0. 379E-04 0 480E-10 21 . 0. 363E+01 i .9703 0.898E-02 0 550E-04 0. 743E-04 0 349E-10 28. 0. 3B1E*01 2.0730 0.945E-02 0 669E-04 0. 904E-04 0. 290E-10 35. 0. 397E+01 2.1559 0.983E-02 0 540E-04 0. 729E-04 0. 251E-10 42 . 0. 414E*01 2.2477 0.102E-01 0 598E-04 0. 808E-04 0 227E-10 49. 0. 437E+01 2.3738 0.108E-01 0 821E-04 0. 111E-03 0. 217E-10 5G . 0. 463E*01 2.5165 0.115E-01 0 929E-04 0. 126E-03 0. 214E-10* 63. 0. 486E*01 2.64 17 0.120E-01 0. 816E-04 0. 110E-03 0. 209E-10 93. 0. 575E*01 3.1259 0.142E-01 0. 736E-04 0. 994E-04 0. 198E;10. . T a b l e X X I I I - LEACH TEST DATA - TEST SET A1 _ 1 3 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS DIFFUSION TIME RELEASED RELEASED LEACHED LEACH RATE LEACH RATE COEFFICIENT DAYS MICROCURIES PERCENT CM CM/DAY G/CM"2*DAV CM**2/SEC 1 . 0.681E+01 3. 8286 0. 173E-01 0. 173E-01 0. 233E-01 0. 27 IE-08 2. 0.761E+01 •4 , 2732 0. 193E-01 0. 200E-02 0. 270E-02 0. 169E-08 3 . 0.759E+01 4 4310 0. 200E-01 O. 71 IE-03 0. 960E-03 0. 121E-08 4 . 0.803E+01 4 , 5136 0. 203E-01 0. 372E-03 0. 503E-03 0. 940E-09 5. 0.812E+01 4 , 5631 0. 206E-01 0. 223E-03 0. 301E-03 0. 769E-09 6 . 0.818E+01 A .5959 0. 207E-01 0. 148E-03 0. 200E-03 0. 650E-09 7 . 0.825E+01 4 6363 0. 209E-01 0. 182E-03 0. 246E-03 0. 567E-09 14 . 0.858E+01 4 8206 0. 217E-01 0. 119E-03 0. 160E-03 0 307E-09 21 . 0.897E+01 5 .0373 0. 227E-01 0. 140E-03 0. 188E-03 0. 223E-09 28. 0.943E+01 5 . 2976 0. 239E-01 0. 168E-03 0. 226E-03 0. 185E-09 35 . o.anoE+oi 5 .5622 0. 251E-01 0. 170E-03 0. 230E-03 0. 163E-09 42 . 0.105E+02 5 .9154 0 267E-01 0. 227E-03 0. 307E-03 0. 154E-09 49. 0 . 1 13E + 02 6 . 3448 0. 286E-01 0. 276E-03 0. 373E-03 0. 152E-09 56. 0 .1P2E+02 6 . 8690 0 310E-0I 0. 337E-03 0. 456E-03 0. 156E-09 63 . O, UOE+02 7 . 3066 0. 329E-01 0. 282E-03 0. 380E-03 0. 156E-09 93. 0 . 164E+02 9 . 2055 0. 415E-01 0 285E-03 0. 385E--9?. 0. 168E-09. T a b l e XXIV - LEACH TEST DATA -- TEST SET A 2 -. 13 7 8 4 TEST - A3 CS-137 TOTAL TIME DAYS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT CUMULATIVE FRACTION LEACHED CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM*'2'DAY DIFFUSION COEFFICIENT CM"2/SEC 1 . 0 .421E+01 2 . 3652 0 .107E-01 0 .107E-01 0 .144E-01 0. 103E-08 2 . 0 .460E+01 2 .5825 0 .116E-01 0 .980E-03 0 .132E-02 0.616E-09 3. 0 . 47SEKM 2 .6685 0 .120E-01 0 .388E-03 0 . 523E-03 0.438E-09 4 . 0 .482E+01 2 .7080 0 .122E-OI 0. 178E-03 0 . 240E -03 0.339E-09 5 . 0 486E+01 2 .7309 0 . 123E-01 0. 103E-03 0 .139E-03 0.275E-09 6. 0 .489E+01 2 . 7490 0 .124E-01 0. 817E-04 0 .110E-03 0.233E-09 7 . 0 492E*01 2 7629 0 .125E-01 0. 627E-04 0. 846E-04 0.201E-O9 14. 0 507E*01 2 .8500 0 .128E-OI 0. 56 IE-04 0. 757E-04 0.107E-09 21 . 0. 530E*01 2 9800 0 .134E-01 0. 837E-04 0. 1 13E-03 0.781E-10 28 . 0. 555E*01 3. 1 178 0. 141E-0I 0. 887E-04 0. 120E-03 0.641E-10 35. 0. 594E+01 3 . 3347 0. 150E-01 0. MOE-03 0. 189E-03 0.587E-10 42 . 0. 667E*01 3. 7482 0. 169E-01 0. 266E-03 0. 359E-03 0.61BE-10 49. 0. 739E*OI 4 . 1528 0. 187E-01 0. 260E-03 0. 352E-03 0.650E-10 56. 0. 811E*01 4. 5547 0. 205E-01 0. 259E-03 0. 349E-03 0.684E-10 63. 0. 8S7E+01 4 . 9819 0. 225E-01 0. 275E-03 0. 37 IE-03 0.727E-10 93. 0. 117E*02 6 . 5802 0. 297E-01 0. 24OE-03 0. 324E-03 0.860E-10 T a b l e XXV - L E A C H TEST DATA - TEST SET A 3 - 1 3 7 C s TEST Bt -CS-137 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTIPN INCREMENTAL MASS DIFFUSION TIME DAYS RELEASED MICROCURIES RELEASED PERCENT LEACHED CM LEACH RATE CM/DAY LEACH RATE COEFFICIENT G/CM''2'DAY CM"2/SEC 1 . 0. 119E*01 0. 7822 0.331E-02 0. 331E-02 0. 447E-02 0.994E- 10 2 . 0. 144E+01 0.9477 0.4O1E-02 0. 700E-03 0. 945E-03 0.730E-10 3. 0. 159E+01 1.0438 0.44 1E-02 0.406E-03 0. 549E-03 0.590E-10 4 . 0. 169E+01 1.1087 O.469E-02 0. 275E-03 0. 37 IE-03 0.499E-10 5. 0. 17GE+01 1. 1555 0.489E-02 0. 198E-03 0. 267E-03 0.434E-10 6. 0. 182E+01 t.2005 0.508E-02 0.190E-03 0. 257E-03 0.390E-10 7 . 0. 189E+01 1 .2429 0.526E-02 0.180E-03 0. 242E-03 0.359E-10 14. O. 215E+01 1 .4 146 0.598E-02 0.104E-03 0. 140E-03 0.232E-10 21 . 0. 234E+01 1.5392 0.65 IE-02 0. 752E-04 0. 102E-03 0.183E-10 28 . 0- 245E+01 1.6123 0.682E-02 0.442E-04 0. 59GE-04 0.151E-10 35 . 0. 253E+01 1 .6633 0.703E-02 0.308E-04 0. 416E-04 0.128E-10 42. 0. 262E+01 1 .7222 0.728E-02 0.356E-04 0. 481E-04 0.115E-10 49. 0. 272E+01 1.7916 0.758E-02 0.4I9E-04 0. 566E-04 0.106E-10 56 . 0. 23'OE+OI 1.8452 0.780E-02 0.324E-04 0. 437E-04 0.968E-11 63. 0- 2B6E+01 1.8835 0.796E-02 0.23IE-04 0. 312E-04 0.9I5E-11 93. 0. 303E+01 1.9950 0.844E-02 0.157E-04 0. 212E-04 0.696E-11 T a b l e XXVI - LEACH TEST DATA - TEST SET B1 _ 13 7 8 5 T E S T B2 - C S - 1 3 7 T O T A L T I M E DAYS T O T A L A C T I V I T Y R E L E A S E D M I C R O C U R I E S F R A C T I O N A L R E L E A S E D P E R C E N T C U M U L A T I V E F R A C T I O N L E A C H E O CM INCREMENTAL L E A C H RATE C M / O A Y MASS L E A C H RATE G / C M » * 2 " 0 A Y D I F F U S I O N C O E F F I C I E N T C M " 2 / S E C 1 . 0 . 4 7 7 E » 0 1 2 . 6 8 1 5 0 . 1 2 1 E - 0 1 0 . 1 2 1 E - 0 1 0 . 1 6 3 E - 0 1 0 . 1 3 3 E - 0 8 2 . 0 . 521E+01 2 . 9281 0 . 1 3 2 E - 0 1 0 . 1 1 1 E - 0 2 0 . 1 5 0 E - O 2 0 . 7 9 2 6 - 0 9 3 . 0 . 540E+01 3 . 0 3 4 9 0 . 1 3 7 E - 0 1 0 . 48 I E - 0 3 0 . 6 5 0 E - 0 3 0 . 5 6 7 E - 0 9 4 . 0 . 552E+01 3 . 1039 0 . 1 4 0 E - 0 1 0 . 3 1 1 E - 0 3 0 . 4 2 0 E - O 3 0 . 4 4 5 E - 0 9 5 . 0 . 5 5 7 E * 0 1 3 . 1298 0 . 1 4 1 E - 0 1 0 . 1 1 6 E - 0 3 0 . 1 5 7 E - 0 3 0 . 3 6 2 E - 0 9 6 . 0 . 563E+01 3 . 1628 0 . 1 4 3 E - 0 1 0 . 1 4 9 E - 0 3 0 . 2 0 1 E - 0 3 0 . 3 0 8 E - 0 9 7 . 0 . 5G7E+01 3 1826 0 . 1 4 3 E - 0 1 0 . 8 9 2 E - 0 4 0 . 1 2 0 E - 0 3 0 . 2 6 7 E - 0 9 14 . 0 . 587E+01 3 . 2998 0 . 1 4 9 E - 0 1 0 . 7 5 4 E - 0 4 0 . 1 0 2 E - 0 3 0 . 1 4 4 E - 0 9 21 . 0 . 604E+01 3 . 3934 0 . 1 5 3 E - 0 1 0 . 6 0 3 E - 0 4 0 . 8 1 4 E - 0 4 0 . 1 0 1 E - 0 9 28 . 0 . 624E+01 3 . 5 0 2 9 0 . 1 5 8 E - 0 1 0 . 7 0 5 E - 0 4 O . 9 5 2 E - 0 4 0 . 8 0 9 E - 1 0 ', 3 5 • 0 . 640E+01 3 . 5 9 4 7 0 . 1 6 2 E - 0 1 0 . 5 9 1 E - 0 4 0 . 7 9 8 E - 0 4 0 . 6 8 2 E - 1 0 42 . 0 . 652E+01 3 . 6 6 4 4 0 . 1 6 5 E - 0 1 0 . 4 4 9 E - 0 4 0 . 6 0 G E - 0 4 0 . 5 9 0 E - 1 0 4 9 . 0 6G4E+01 3 . 7 307 0 . 1 6 8 E - 0 1 0 . 4 2 6 E - 0 4 0 . 5 7 6 E - 0 4 0 5 2 4 E - 10 5 G . 0 675E+01 3 . 7903 0 . 1 7 1 E - 0 I 0 . 3 8 4 E - 0 4 0 5 1 9 E - 0 4 0 . 4 7 4 E - 1 0 6 3 . 0 6R2E+01 3 . 8 2 8 9 0 . 1 7 3 E - 0 1 0 2 4 8 E - 0 4 O 3 3 5 E - 0 4 0 . 4 3 0 E - 1 0 93 . o 7O2E+01 3 . 9 4 6 3 0 . 1 7 8 E - 0 1 0 1 7 6 E - 0 4 0 2 3 8 E - 0 4 0 . 3 0 9 E - 1 0 T a b l e XXVII - LEACH TEST DATA - TEST SET B2 1 3 7 T E S T B3 - C S - 1 3 7 T O T A L T O T A L A C T I V I T Y F R A C T I O N A L C U M U L A T I V E F R A C T I O N INCREMENTAL MASS D I F F U S I O N T IME R E L E A S E D R E L E A S E D L E A C H E D L E A C H RATE L E A C H RATE C O E F F I C I E N T D A Y S M I C R O C U R I E S P E R C E N T CM C M / D A Y G / C M « - 2 - 0 A Y C M » ' 2 / S E C 1. 0 . 3 8 8 E + 0 1 2 . 0 8 8 7 0 . 9 5 8 E - 0 2 0 . 9 5 8 E - 0 2 0 . 1 3 0 E - 0 1 0 . 8 3 5 E - 0 9 2 . 0 . 435E+01 2 . 3 3 9 6 O . 1 0 7 E - 0 1 0 . 1 1 5 E - 0 2 0 . 1 5 6 E - 0 2 0 . 5 2 4 E - 0 9 3 . O 460E+01 2 . 4 7 5 2 0 . 1 1 4 E - 0 1 0 - 6 2 2 E - 0 3 0 . 8 4 2 E - 0 3 0 . 3 9 I E - 0 9 4 . 0 . 469E+01 2 . 5 1 9 5 0 . 1 1 6 E - 0 1 0 . 2 0 3 E - 0 3 0 . 2 7 5 E - 0 3 0 . 3 0 4 E - 0 9 5 . O . 471E+01 2 . 5 3 3 6 0 . 1 1 6 E - 0 1 0 . 6 4 8 E - 0 4 0 . 8 7 7 E - 0 4 0 . 2 4 6 E - 0 9 6 . 0 475E+01 2 . 5 5 3 8 0 . 1 1 7 E - 0 1 0 9 2 5 E - 0 4 0 1 2 5 E - 0 3 0 . 2 0 8 E - 0 9 7 . 0 477E+01 2 . 5 6 4 9 0 . 1 1 8 E - 0 1 0 . 5 1 0 E - 0 4 0 . 6 9 1 E - 0 4 0 . 1 8 0 E - 0 9 14 . 0 493E+01 2 . 6 4 8 0 0 . 1 2 1 E - 0 1 0 . 5 4 5 E - 0 4 0 . 7 3 7 E - 0 4 0 . 9 5 8 E - 1 0 2 1 . 0 507E+01 2 . 7 2 5 2 0 . 1 2 5 E - 0 1 0 . 5 0 6 E - 0 4 O . 6 8 5 E - 0 4 0 . 6 7 7 E - 10 2 8 . 0 . 519E+01 2 . 7 8 8 6 0 . 1 2 8 E - 0 1 0 . 4 1 5 E - 0 4 0 . 5 6 2 E - 0 4 0 . 5 3 1 E - 1 0 3 5 . 0 . 526E+01 2 . 8 2 7 2 0 . I 3 0 E - 0 1 0 . 2 5 3 E - 0 4 0 . 3 4 2 E - 0 4 0 . 4 3 7 E - 10 4 2 . 0 . 541E+01 2 9 0 8 9 0 . 1 3 3 E - 0 1 0 . 5 3 5 E - 0 4 0 . 7 2 4 E - 0 4 0 . 3 8 5 E - 1 0 4 9 . 0 . 550E+01 2 . 9581 0 . 1 3 6 E - 0 1 0 . 3 2 3 E - 0 4 0 . 4 3 7 E - 0 4 0 . 3 4 2 E - 1 0 5 6 . 0 . S74E+01 3 0841 0 . 1 4 1 E - 0 1 0 . 8 2 6 E - 0 4 0 . 1 1 2 E - 0 3 0 . 3 2 5 E - 10 6 3 . 0 . 585E+01 3 1428 0 . I 4 4 E - 0 1 0 . 3 8 4 E - 0 4 0 . 5 2 0 E - 0 4 0 . 3 0 0 E - 10 9 3 . 0 . 621E+01 3 . 3 3 7 6 0 . I 5 3 E - 0 1 0 . 2 9 8 E - 0 4 _ . 0 . 4 0 3 E - 0 4 0 . 2 2 9 E - 1 0 T a b l e X X V I I I - LEACH TEST DATA - TEST SET B 3 - 1 3 7 8 6 TOTAL TOTAL A C T I V I T Y FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS D I F F U S I O N TIME DAYS RELEASED MICROCURIES RELEASED PERCENT LEACHED CM LEACH RATE CM/DAY LEACH RATE G/CM*«2*DAY C O E F F I C I E N T C M " 2 / S E C 1 . 0.290E>01 1.6936 0.752E-02 O 752E-02 0 I 0 2 E - 0 I 0.514E-O9 2 . 0.310E+01 1.81 12 0.804E-02 0 5 2 2 E - 0 3 0 705E-03 0 . 2 9 4 E - 0 9 3 . 0 .320E*01 1.8719 0.83 IE-02 0 2 6 9 E - 0 3 0 364E-03 0 . 2 0 9 E - 0 9 4 . 0.324E+01 1.8951 0.84 IE-02 0 103E-03 0 140E-03 0 . 1 6 1 E - 0 9 5. 0.326E*01 1.9091 0.847E-02 0 621E-04 0 838E-04 0 . 1 3 1 E - 0 9 6 . 0.328E+01 1.9167 0.B51E-02 0 336E-04 0 454E-04 0. 1 10E-09 7 . 0. 329E+-01 1.9248 O.854E-02 0 359E-04 0 485E-04 0 . 9 4 8 E - 1 0 14 . 0. 335E*01 1.9610 0.870E-02 0 230E-04 0 310E-04 0 . 4 9 2 E - 1 0 2.1 . 0. 346E+01 2.0226 0.898E-02 0 39 IE-04 0 528E-04 0 . 3 4 9 E - 1 0 28. 0.354E*01 2.0700 0.919E-02 0 300E-04 0 406E-04 0.274E- 10 35. 0.360E+01 2.1065 0.935E-02 0 231E-04 0 312E-04 O.227E-10 42 . 0.368E+01 2.1524 0.955E-02 0 29 IE-04 0 394E-04 0 . 1 9 8 E - 1 0 49. 0.376E+01 2.2013 0.977E-O2 0 310E-04 0 419E-04 0 . 1 7 7 E - 1 0 56. 0. 387E+01 2 . 2628 0.100E-01 0 390E-04 0 526E-04 0.164E- 10 63. 0.397E+01 2.3199 0.103E-01 0 362E-04 0 489E-04 0 . 1 5 3 E - 1 0 93. 0.414E+01 T a b l e XXIX 2.4199 - LEACH 0.107E-01 TEST DATA 0 148E-04 TEST 0.200E-04 SET C l 0 . 1 1 3 E - 1 0 _ 13 7 T E S T " C 2 - C S - 1 3 7 " " • - • TOTAL TOTAL A C T I V I T Y FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS D I F F U S I O N T I M E R E L E A S E D R E L E A S E D L E A C H E D L E A C H RATE L E A C H RATE C O E F F I C I E N T DAYS M I C R O C U R I E S P E R C E N T CM C M / D A Y G / C M * * 2 * D A Y CM-*2/SEC 1 . 0 . 1 0 3 E + 0 1 0 . 6 0 3 5 0 . 2 6 7 E - 0 2 0 . 2 6 7 E - 0 2 0 . 3 6 I E - 0 2 0 . 6 4 7 E - 1 0 2 . 0 . 1 2 0 E * 0 1 0 . 7 0 4 7 0 . 3 1 2 E - 0 2 0 . 4 4 7 E - 0 3 0 . 6 0 5 E - 0 3 0 . 4 4 1 E - 1 0 3 . 0 . 1 3 0 E + O 1 0 . 7 6 7 4 0 . 3 3 9 E - 0 2 0 . 2 7 7 E - 0 3 0 . 3 7 5 E - 0 3 0 . 3 4 9 E - 1 0 4 . 0 . t 3 6 E + 0 1 0 . 7 9 8 6 0 . 3 5 3 E - 0 2 0 . 1 3 8 E - 0 3 0 . 1 8 7 E - 0 3 0.283E-1O 5 . 0. 1 3 9 E * 0 1 0 . 8 2 0 4 0 . 3 6 3 E - 0 2 0 . 9 6 3 E - 0 4 0 . 1 3 0 E - 0 3 0 . 2 3 9 E - 1 0 6 . 0.143E+0I 0 . 8 4 19 0 . 3 7 2 E - 0 2 0 . 9 4 8 E - 0 4 0 . 1 2 8 E - 0 3 0 . 2 1 0 E - 1 0 7 . 0.1 4 6 E+01 O . 8 5 7 7 0 . 3 7 9 E - 0 2 0 . 7 O O E - 0 4 0 . 9 4 8 E - 0 4 0 . 1 8 7 E - 1 0 14 . 0.160E+01 0 . 9 3 9 4 0 . 4 1 5 E - 0 2 0 . 5 1 6 E - 0 4 0 . 6 9 8 E - 0 4 0 . 1 1 2 E - 1 0 21 . 0 . 1 7 2 E + 0 1 1 . 0 1 2 9 0 . 4 4 8 E - 0 2 0 . 4 6 4 E - 0 4 0 . 6 2 8 E - 0 4 0.868E-11 28 . 0 .182E + 0 1 1 .0721 0 . 4 7 4 E - 0 2 0 . 3 7 4 E - 0 4 0 . 5 0 6 E - 0 4 0.730E-11 3 5 . 0 . 1 9 2 E + 0 1 1 . 1297 O . 5 O O E - 0 2 0 . 3 6 4 E - 0 4 0 . 4 9 3 E - 0 4 0.648E-11 42 . 0 .199E + 0 1 1 . 1 7 11 0 . 5 1 8 E - 0 2 0 . 2 6 2 E - 0 4 0 . 3 5 4 E - 0 4 0.580E-11 49 . 0.213E+01 1 . 2 5 0 9 0 . 5 5 3 E - O 2 O . 5 0 4 E - O 4 0 . 6 8 1 E - 0 4 0.568E-11 5 6 . 0 . 2 3 3 E * 0 1 1 . 3 7 13 0 . 6 0 6 E - 0 2 0 . 7 6 1 E - 0 4 0 . 1 0 3 E - O 3 0.597E- 1 1 63 . 0. 240E+01 1 . 4 1 1 0 0 . 6 2 4 E - 0 2 0 . 2 5 0 E - 0 4 0 . 3 3 9 E - 0 4 0.562E- 1 1 93 . 0 . 2T!8E*01 1 . 5 1 5 8 0 . 6 7 0 E - 0 2 0 . 1 5 5 E - 0 4 0 . 2 0 9 E - 0 4 0.439E-1 1 T a b l e XXX - LEACH TEST DATA -"TEST SET C 2 _ 1 3 7 Q 8 7 TEST C3 - CS-137 TOTAL TIME OAVS TOTAL ACTIVITY RELEASED MICROCURIES FRACTIONAL RELEASED PERCENT CUMULATIVE FRACTION LEACHED CM INCREMENTAL LEACH RATE CM/DAY MASS LEACH RATE G/CM""2'DAY DIFFUSION COEFFICIENT CM**2/SEC 1 . 0. 288E+01 1.5732 0. 717E-02 0. 717E-02 0.970E-02 0. 467E-09 2. 0. 3 I7E+01 1.7305 0. 788E-02 0. 716E-03 0.970E-03 0. 282E-09 3. 0. 331E+01 1 .8105 0. 825E-02 0. 364E-03 0.493E-03 0. 206E-09 4. 0. 336E+01 1 .8379 0. 837E-02 0. 125E-03 0.169E-03 0. 159E-09 5. 0. 339E+01 1.8500 0. 843E-02 0. 551E-04 0.746E-04 0. 129E-09 6 . 0. 34IE+01 1.8631 0. 849E-02 0. 597E-04 0.809E -04 0. 109E-09 7 . 0. 343E+01 1.8767 0. 855E-02 0. 62 IE-04 0.84IE-04 0. 949E-10 14 . 0. 353E+01 1.9314 0. 880E-02 0. 355E-04 0.48 IE-04 0. 503E-10 21 . 0. 370E+01 2.0239 0. 922E-02 0. 6O2E-04 0.8I5E-04. 0. 368E-10 28. 0. 377E+01 2.0611 0 .939E-02 O .242E-04 0.328E-04 0 .286E-10 35 . 0. 3B5E+01 2.1038 0 .958E-02 0 .278E-04 0.376E-04 0 239E-10 42 . 0. 39 IE+01 2.1374 0 .974E-02 0 .219E-04 0.296E-O4 0 .205E-10 49. 0. 399E+01 2.1803 0 .993E-02 0 .279E-04 0.377E-04 0 .1B3E-10 56. 0 420E+01 2.2976 0 .105E-01 0 .764E-04 0.103E-03 0 .178E-10 63 . 0 427E+01 2.3319 0 .106E-01 0 .223E-04 O.302E-O4 0 . 163E- 10 93. 0 .438E+01 2.394 1 0 .109E-01 O .944E-05 0.128E-04 0 .11GE-10 Table XXXI - LEACH TEST DATA - TEST SET C3 _ 1 3 7 Cs TEST 01 - CS-137 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL MASS DIFFUSION TIME RELEASEO RELEASED LEACHED LEACH RATE LEACH RATE COEFFICIENT DAYS MICROCURIES PERCENT CM CM/DAY G/CM"2'DAY CM"2/SEC 1. 0.3 1 IE + 01 1 .8064 0.805E-02 0. 805E-02 0. 108E-01 0. 588E-09 2 . 0.34 IE+01 1 .9822 0.883E-02 0. 783E-03 0. 106E-02 0. 354E-09 3 . 0.356E+01 2 .07 13 0.923E-02 0. 397E-03 0. 535E-03 0. 258E-09 4 . 0.363E+01 2 . 1131 0.94 IE-02 0. 186E-03 0. 25 IE-03 0. 20 IE-09 5. 0.369E+01 2 . 1463 0.956E-O2 0. 148E-03 0. 200E-03 0. 166E-09 6 . 0.372E+01 2 . 1644 0.964E-02 0. 803E-04 0. 108E-03 0. 141E-09 7 . 0.375E+01 2 . 1822 0.972E-02 0. 793E-04 0. 107E-03 0. 123E-09 14 . 0.3B9E+01 2 .2614 0.101E-01 0. 504E-04 0. 680E-04 0. 659E- 10 21 . 0.403E+01 2 . 3456 0.104E-01 0. 536E-04 0. 722E-04 0. 472E- 10 28 . 0.413E+01 2 .4003 0.107E-01 0. 348E-04 0. 469E-04 o. 371E-10 35. 0.420E+01 2 .4398 0.109E-01 0. 251E-04 0. 339E-04 0. 307E-10 42. 0.427E+01 2 .4851 0. 1 11E-01 0. 288E-04 0. 389E-04 0 265E-10 49. 0.435E+01 2 .5276 0.113E-01 0. 271E-04 0. 365E-04 0. 235E-10 56. 0.449E+01 2 .6091 0. 1 16E-01 0. 518E-04 0. 699E-04 0. 219E-10 63. 0.452E+01 2 .6254 0.117E-01 0. 104E-04 0. 140E-04 0. 197E-10 93 . 0̂ 461E+01 2 .6796 0.119E-0I 0. 805E-05 0. 109E-04 0. 139E- 10 Table XXXII - LEACH TEST DATA - TEST SET D 1 _ 1 3 y C s 8 8 TOTAL TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL TIME RELEASED RELEASED LEACHED LEACH RATE LEACH RATE COEFICIENT OAYS MICROCURIES PERCENT CM CM/DAY G/CM«*2'DAY CM"2/SEC . 1 . 0 3G8E+01 2 138 0 942E-02 0 942E-02 0 127E-01 0 807E-09 2 . 0 4 1 1E*01 2 3629 0 105E-01 0 11E-02 . 0 15E-02 0 504E-09 3. 0 434E+01 2 4947 0 11E-01 0 587E-03 0 794E-03 0 375E-09 4 . 0 4SE+01 2 57  0 14E-01 0 281E-03 0 380E-03 0 295E-09 5. 0 456E+01 2 6 ISO 0 17E-01 0 269E-03 0 363E-03 0 248E-09 6. 0 4S0E+01 2 647 0 18E-01 0 19E-03 0 161E-03 0 21 1E-09 7 . 0 464E+01' 2 665 0 19E-01 0 971E-04 0 131E-03 0 183E-09 14. 0 484E+01 2 7815 0 124E-01 0 732E-04 0 90E -04 0 98E-10 21 . 0 505E+01- 2 904 0 129E-01 0 757E-04 0 102E-O3 0 723E-10 26. 0 517E+01 2 9691 0 132E-01 0 437E-04 0 59 IE-04 0 569E- 10 35. 0 530E+01 3 0436 0 136E-01 0 474E-04 0 64 IE-04 0 478E-10 42 . 0 539E+01 3 0973 0 138E-01 0 342E-04 0 463E-04 0 412E-10 49. 0 53E+01 3 1764 0 142E-01 0 504E-04 0 682E-04 0 372E-10 56. 0 BSOE+OI 3 207 0 1 4 4 E 7 O I 0 282E-04 0 382E-04 0 35E- IO 63 . 0 5R5F.*01 3 2468 0 145E-01 0 16E-04 0 24E-04 0 302E-10 93. 0 5nOE*-01 3 314 0 I48E-01 0 126E-04 0 170E-04 0 216E-10 T a b l e X X X I I I - LEACH T ST DATA - TEST SET D2 - 1 TEST D3 - CS-137 TOTAL TIME DAYS TOTAL ACTIVITY FRACTIONAL CUMULATIVE FRACTION INCREMENTAL RELEASED RELEASED LEACHED LEACH RATE MICROCURIES PERCENT CM CM/DAY AS LEACH RATE G/CM"2'0AY DIFUSION COEFICIENT CM*»2/SEC 1 . 0 11E*01 0.6547 0.290E-02 0 290E-02 0 390E-02 0 762E-10 2. 0 136E*01 0.802  0.35E-02 0 652E-03 O 878E-03 0 572E- 10 3. 0 14BE*0I 0.8709 0.385E-02 0 304E-03 0 409E-03 0 49E-10 4. 0 154E+01 0.9087 0.402E-02 0 167E-03 0 25E-03 6 367E-10 5 . 0 160E*01 0.9405 0.416E-02 0 141E-03 0 189E-03 0 314E-10 6. 0 164E+01 0.9647 0.427E-02 0 107E-03 0 145E-03 0 276E-10 7 . 0 I70E*01 1.014 0.43E-02 0 162E-03 0 219E-03 0 25E-10 14 . 0 195E*01 t.1450 0.506E-02 0 907E-04 0 12E-03 0 16E-10 21 . 0 214E*01 1.2616 0.58E-02 0 736E-04 0 91E-04 0 135E-10 28 . 0 230E+01 1.350 0.59E-02 0 590E-04 0 795E-04 0 17E-10 35. 0 243E*01 1.4309 0.63E-02 0 479E-04 0 645E-04 0 104E-10 42 . 0 25GE*01 1.5071 0.66E-02 0 482E-04 0 648E-04 0 961E-1  49. 0 278E+01 1.6351 0. 723E-02 0 808E-04 0 109E-03 0 970E-1  56. 0 289E*01 1.6986 0.751E-02 0 40 IE-04 0 540E-04 0 916E-1  63. 0 295E*01 1.737 0.76BE-02 0 247E-04 0 33E-04 0 852E-1  0 313E+01 1.840 0.815E-02 0 157E-04 0 21E-04 0 650E-1  T a b l e XXXIV - LEACH TEST DATA - TEST SET D3 _ 1 3 7 89 APPENDIX D - LEACHANT CONDUCTIVITY AND PH I n i t i a l F i n a l 1 Week's c o n t a c t S e t A pH 4.10 5.80 C o n d u c t i v i t y 1.00 X lO- 6Mho/cm 4.90 X 10""Mho/cm Se t B pH 6.39 6.25 C o n d u c t i v i t y 4.80 X l0" 3Mho/cm 6.5 X l0- 3Mho/cm S e t C pH 6.39 5.65 C o n d u c t i v i t y 4.80 X lO" 3Mho/cm 5.5 X 10- 3Mho/cm Se t D ph 5.62 4.99 C o n d u c t i v i t y 1.85 X lO- 2Mho/cm 1.95 X 10" 2Mho/cm 9 0 APPENDIX E - ANALYSIS OF VARIANCE OF 6 0 C o AND 1 3 7 C s ~ S A M P L E MEANS AT T>14DAYS e o Co: S e t Mean S t D e v i a t i o n St E r r o r 95% C o n f i d e n c e I n t e r v a l f o r Mean A B C D 0.0083 0.0087 0.0064 0.0064 0, 0. 0. 0, 0050 0018 0013 0018 0.0010 0.0003 0.0003 0.0003 0.0064 0.0080 0.0059 0.0057 0.0103 0.0094 0.0070 0.0071 F R a t i o = 4 . 8 5 6 Homogenous s u b s e t s : S u b s e t 1 Group S e t D S e t C Mean 0.0064 0.0064 S u b s e t 2 G r o u p S e t A S e t B. Mean 0.0083 0.0087 1 3 7 S e t A B C D C s : Mean 0.0190 0.0124 0.0083 0.0105 St D e v i a t i o n S t E r r o r 95% C o n f i d e n c e I n t e r v a l f o r Mean 0.0087 0.0040 0.0022 0.0031 0.0017 0.0008 0.0004 0.0006 0.0156 0.0108 0.0074 0.0093 0.0225 0.0140 0.0092 0.01.1 7 F R a t i o = 2 1 . 7 5 6 Homogenous S u b s e t s : S u b s e t 1 Group Mean S e t C 0.0083 Se t D 0.0105 S u b s e t G roup Mean S e t D 0.0105 Se t B 0.0124 S u b s e t Group Mean S e t A 0.0190

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 4 0
Japan 3 0
France 2 0
United Arab Emirates 1 1
City Views Downloads
Unknown 6 3
Tokyo 3 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items