UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Research dilatometer testing in sands and in clayey deposits Tsang, Clifford Hing-Cheung 1987

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1987_A7 T75.pdf [ 11.27MB ]
Metadata
JSON: 831-1.0062926.json
JSON-LD: 831-1.0062926-ld.json
RDF/XML (Pretty): 831-1.0062926-rdf.xml
RDF/JSON: 831-1.0062926-rdf.json
Turtle: 831-1.0062926-turtle.txt
N-Triples: 831-1.0062926-rdf-ntriples.txt
Original Record: 831-1.0062926-source.json
Full Text
831-1.0062926-fulltext.txt
Citation
831-1.0062926.ris

Full Text

R E S E A R C H D I L A T O M E T E R TESTING IN SANDS AND IN C L A Y E Y DEPOSITS by CLIFFORD HING-CHEUNG  TSANG  B.A.Sc, The University of Toronto, 1978 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FQR T H E DEGREE OF MASTER OF APPLIED  SCIENCE  in THE F A C U L T Y OF GRADUATE STUDIES DEPARTMENT OF CIVIL  ENGINEERING  We accept this thesis as conforming to the required standard  THE UNIVERSITY  OF BRITISH COLUMBIA  SEPTEMBER  1987  © CLIFFORD HING-CHEUNG TSANG, 1987  In presenting this thesis in partial fulfilment of the requirements for an advanced degree at The University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.  DEPARTMENT OF CIVIL ENGINEERING The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date: SEPTEMBER 1987  ii  Abstract  The d e v e l o p m e n t o f M a r c h e t t i ' s of  testing,  changes  correlations correlations  and  of  are b r i e f l y  discussed.  was  (1980,1981) o r i g i n a l  (1982,1983)  proposed  test  t o improve the understanding  test  (DMT),  an  electronic  d e v e l o p e d a t UBC. The r e s e a r c h  displacement,  method  described.  can measure; p o r e p r e s s u r e membrane  dilatometer,  r e s u l t s of the d i l a t o m e t e r  In order  Marchetti dilatometer dilatometer  Marchetti's  Schmertmann's  Factors affecting are  flat  a t the center  applied pressure,  of  (DMT) of the  research dilatometer  the  membrane,  pushing  f o r c e and  verticality.  Test  results obtained  from t h e r e s e a r c h  dilatometer i n  s a n d a n d i n c l a y e y d e p o s i t s a t 4 s i t e s i n t h e Lower of  B.C.  are presented.  Marchetti's  in-situ  S o i l parameters i n t e r p r e t a t e d  (1980,1981)  correlations  are  and  discussed.  t e s t i n g methods  potential  methods  correlations  of  Schmertmann's Comparison  is  made t o o t h e r test,  vane  test.  understanding  of  improving  checking  are proposed.  using  (1982,1983)  such as cone p e n e t r a t i o n  shear t e s t and pressuremeter  B a s e d on a b e t t e r  Mainland  or  the  DMT,  future  the existing  iii TABLE  OF CONTENTS  ABSTRACT  i i  L I S T OF FIGURES  v i  ACKNOWLEDGEMENTS  xiv  CHAPTER 1 INTRODUCTION 1.1 H i s t o r i c a l R e v i e w  1  1.2 P u r p o s e a n d S c o p e  2  CHAPTER 2 THE STANDARD FLAT DILAOTMETER 2.1 D e v e l o p m e n t o f t h e I n s t r u m e n t  4  2.2 The D i l a t o m e t e r  6  Test  and Procedures  2.3 D a t a R e d u c t i o n 2.4 S o i l  Properties  9 Interpretation  11  2.5 A d v a n t a g e s a n d D i s a d v a n t a g e s o f t h e Dilatometer Test 2.6 D i l a t o m e t e r T e s t i n g a t t h e U n i v e r s i t y o f B r i t i s h Columbia  15 16  CHAPTER 3 THE RESEARCH FLAT DILATOMETER 3.1 F a c t o r s A f f e c t i n g R e s u l t s f r o m t h e Dilatometer 3.1.1  Test  Inclination  18 .  18  3.1.2 P o r e P r e s s u r e  19  3.1.3 M o d u l u s o f E l a s t i c i t y  21  3.2 D e v e l o p m e n t o f t h e UBC R e s e a r c h D i l a t o m e t e r  23  iv 3.3 T e s t P r o c e d u r e s a n d D a t a A c q u i s i t i o n  29  3.4 D a t a R e d u c t i o n  31  CHAPTER 4 RESEARCH DILATOMETER TESTING I N SANDS 4.1 S c o p e  34  4.2 S i t e G e o l o g y a n d D e s c r i p t i o n  34  4.3 S o i l D e f o r m a t i o n C h a r a c t e r i s t i c s  38  4.4 M o d u l u s  46  4.5 F r i c t i o n A n g l e  54  4.6 O v e r c o n s o l i d a t i o n R a t i o a n d C o e f f i c i e n t o f E a r t h P r e s s u r e a t Rest  63  CHAPTER 5 RESEARCH DILATOMETER TESTING I N CLAYEY DEPOSITS 5.1 S c o p e  67  5.2 S i t e G e o l o g y a n d D e s c r i p t i o n  69  5.2.1 M c D o n a l d ' s Farm  69  5.2.2 B.C. H y d r o R a i l w a y C r o s s i n g S i t e 5.2.3 232nd S t . I n t e r c h a n g e - Lower a n d U p p e r Sites  69 73  5.3 S o i l D e f o r m a t i o n C h a r a c t e r i s t i c s  76  5.4 P o r e P r e s s u r e M e a s u r e m e n t s  88  5.5 U n d r a i n e d S h e a r S t r e n g t h  101  5.6 S h e a r M o d u l u s  111  5.7 O v e r c o n s o l i d a t i o n R a t i o a n d C o e f f i c i e n t of  Earth Pressure a t Rest  113  V  CHAPTER 6 SUMMARY AND CONCLUSION 6.1 O b s e r v a t i o n s  118  6.2 P r e d i c t e d P r o p e r t i e s o f S a n d  120  6.3 P r e d i c t e d P r o p e r t i e s o f C l a y e y D e p o s i t s  120  6.4 S u g g e s t i o n s  121  f o r Future Research  REFERENCES  124  APPENDIX I  M o d i f i c a t i o n o f Input Data  APPENDIX I I  Computer O u t p u t  APPENDIX I I I  Measurements Recorded Research Dilatometer  APPENDIX I V  of DILLY4  128 131  w i t h t h e UBC 155  A d d i t i o n a l F i g u r e s f o r T e s t i n g i n Sand a t McDonald's Farm S i t e 165  vi L I S T OF FIGURES  FIG  PAGE  2.1  Marchetti's Flat Dilatometer  5  2.2  Dilatometer  7  2.3  Schematic of D i l a t o m e t e r  8  3.1  UBC R e s e a r c h D i l a t o m e t e r  25  3.2  Design D e t a i l  of Research D i l a t o m e t e r  26  3.3  Design D e t a i l  of Research D i l a t o m e t e r  27  3.4  Design D e t a i l  of Research D i l a t o m e t e r  28  4.1  General  4.2  T y p i c a l CPT P r o f i l e a t M c D o n a l d ' s F a r m S i t e  37  4.3  DMT  39  and C o n t r o l - U n i t  L o c a t i o n of McDonald's Farm S i t e  P r o f i l e a t M c D o n a l d ' s Farm  Geotechnical  Parameters  -  Interpreted  35  vii 4.4  DMT  P r o f i l e a t M c D o n a l d ' s Farm  - Intermediate Geotechnical  4.5  Typical  Result  40  Parameters  o f R e s e a r c h DMT  at McDonald's  41  o f R e s e a r c h DMT  at McDonald's  42  of  Pressuremeter  43  F a r m S i t e - Dense S a n d  4.6  Typical  Result  F a r m - L o o s e Sand  4.7  Typical  Result  Self-bored  T e s t a t M c D o n a l d ' s Farm  4.8  4.9  Typical  Result  Site  of  Full-displacement  P r e s s u r e m e t e r T e s t a t M c D o n a l d ' s Farm  Site  Comparison  and  Unload  of  Shear  M o d u l i from E  D  from  44  49  - Reload C y c l e of D i l a t o m e t e r Expansion  Curve  4.10  Comparison Reload and  4.11  of  Cycle  Shear of  Moduli  from  Unload  Dilatometer Expansion  -  52  Curve  f r o m Downhole S e i s m i c S h e a r Wave V e l o c i t y  Relationship  between S l o p e of U n l o a d  L o o p and S l o p e o f P,  -  P  0  - Reload  53  viii 4.12  Comparison Friction  of  Laboratory  Angle  Pressuremeter  4.13  Friction  4.14  Comparison  with  Angles Estimated  of F r i c t i o n  Relationship and  4.16  Relationship  In-situ  55  Self-boring  Angle  Results  56  Angle from D i l a t o m e t e r Results  Bearing from  59  Capacity  Large  Number  61  Calibration  Tests  Dilatometer  4.17  by DMT  f r o m DMT  between  Friction  Chamber  and  Peak  Values  E x p a n s i o n C u r v e and  4.15  CPT  Triaxial  between  Friction  Angle  and  62  Depth at  64  Depth at McDonald's  65  Modulus  Earth Pressure  C o e f f i c i e n t Vs  M c D o n a l d ' s Farm  4.18  Overconsolidation  R a t i o Vs  Farm  5.1  General  L o c a t i o n P l a n of R e s e a r c h S i t e s  5.2  T y p i c a l CPT  Profile  at Langley  Railway  68  Site  70  IX  5.3  DMT  Profile  at  Langley  Interpreted Geotechnical  5.4  DMT  Profile  at  Langley  Intermediate Geotechnical  Railway  Site  -  71  Site  -  72  Parameters  Railway Parameters  5.5  T y p i c a l CPT P r o f i l e  a t Lower 232nd S t . S i t e  74  5.6  T y p i c a l CPT P r o f i l e  a t Upper 232nd S t . S i t e  75  5.7  DMT  5.8  Profile  at  Lower  5.10  Parameters  DMT  232nd  Profile  at  Lower  DMT  Profile  at  Upper  St.  232nd  St.  Parameters  DMT  232nd  Profile  at  Upper  - Compacted  Clay  -  77  Site  -  78  Site  -  79  St.  Site  -  80  232nd  81  Parameters  T y p i c a l R e s u l t o f R e s e a r c h DMT St. Site  Site  Parameters  Interpreted Geotechnical  Intermediate Geotechnical  5.11  St.  Interpreted Geotechnical  Intermediate Geotechnical  5.9  232nd  a t Upper  X  5.12  T y p i c a l R e s u l t o f R e s e a r c h DMT Farm S i t e  5.13  Site - Silty  McDonald's  82  Silt  T y p i c a l R e s u l t o f R e s e a r c h DMT St.  5.14  - Clayey  at  a t Lower  232nd  83  Farm  86  Railway  87  Clay  C o m p a r i s o n o f P, a n d  P^  at  McDonald's  P_  at  Langley  Site  5.15  Comparison of  and  Li  Site  5.16  Pore  Pressure  Dilatometer Farm  5.17  Pore  Pressure  Railway  Pore  of  90  T e s t i n g s a t McDonald's  and  During Cone  Penetration  Testings  at  of  91  Langley  Site  Pressure  Dilatometer St.  Cone  Penetration  Site  Dilatometer  5.18  and  During  Site  and  During  Penetration  of  Cone T e s t i n g s a t Lower  232nd  92  xi 5.19  Pore  Pressure  Dilatometer St.  5.20  of Pore P r e s s u r e  Dilatometer  and  of  232nd  Around  Research  95  P i e z o m e t r i c Cone a t M c D o n a l d ' s  Dissipation  Around  Research  and  P i e z o m e t r i c Cone A t  McDonald's  of  Closing  and  96  Site  Comparison Pressure  Comparison Pressure  Pore  of  Closing  Pressure  and  Site  Comparison  Closing  Pressure  and  Site  98  at  Pore  D u r i n g P e n e t r a t i o n of D i l a t o m e t e r  L o w e r 232nd S t .  at  Pore  D u r i n g P e n e t r a t i o n of D i l a t o m e t e r  of  97  Site  Langley Railway  Pressure  Pressure  D u r i n g P e n e t r a t i o n of D i l a t o m e t e r  M c D o n a l d ' s Farm  5.24  Upper  93  Site  Degree  Farm  5.23  Cone T e s t i n g s a t  of  Site  Dilatometer  5.22  Penetration  Dissipation  Farm  5.21  and  During  at  99  xii 5.25  Comparison  of  Closing  Pressure  and  Pore  P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r  100  at  U p p e r 232nd S t . S i t e  5.26  Comparison DMT  5.27  and  and  From  of Undrained  Shear  Strength  of Undrained  Shear  Strength  of Undrained  Shear  5.30  Correlation  5.31  R e l a t i o n s h i p between K  5.32  P /Su(vane) P r o f i l e s  5.33  E s t i m a t e d Shear M o d u l i from E  105  Site  b e t w e e n Kg a n d S u / a ^  Q  104  Site  From  f r o m Vane T e s t A t Upper 232nd S t .  103  Site  From  Strength  102  Site  From  f r o m Vane T e s t A t Lower 232nd S t .  Comparison DMT  Strength  f r o m Vane T e s t A t L a n g l e y R a i l w a y  Comparison DMT  5.29  and  Shear  f r o m Vane T e s t A t M c D o n a l d ' s F a r m  Comparison DMT  5.28  and  of Undrained  107  and Su(vane)/cr^  109  110  0  D  and  from Unload  - Reload C y c l e of D i l a t o m e t e r Expansion  Curve  112  xiii 5.34  Overconsolidation  R a t i o Vs D e p t h  5.35  I n - s i t u Earth Pressure C o e f f i c i e n t  114  Vs Depth  116  xiv Acknowledgements  The R.G.  author  wishes to thank h i s r e s e a r c h  C a m p a n e l l a and  Dr  P.K.  encouragement i n a l l stages also Don  wishes  to express  Robertson, of  this  for their  research  a s s i s t a n c e d u r i n g the  Further designed  t h a n k s must go  the  research  advice  project.  and He  h i s appreciation to h i s colleaques,  G i l l e s p i e , J i m G r e i g , P e t e r Brown and  their  s u p e r v i s o r s , Dr  field  Bruce O ' N i e l ,  for  programme.  t o I a n M c P h e r s o n who  d i l a t o m e t e r , and  originally  to Art Brookes  who  made t h e e q u i p m e n t s u c c e s s f u l l y w o r k .  Most Tina,  of  f o r her  Financial greatly  a l l , the author  would l i k e  l o v e , p a t i e n c e and  support  appreciated.  was  t o thank h i s w i f e ,  help in typing this  provided  report.  by N.S.E.R.C. a n d  was  l Chapter 1  Introduction  1.1 H i s t o r i c a l  Review  In a paper submitted Conference, device  S.M.  t o t h e 1975 R a l i e g h ASCE S p e c a l i t y  Marchetti  c a l l e d the " f l a t  designed  i n t r o d u c e d a new  dilatometer".  In  loaded  1978,  driven  Marchetti  cutting  minimize  soil  during  well  disturbance  After performing  documented  The with  sites  test  in  t o a more order  penetration t e s t s (DMT)  in Italy, Marchetti soil  of  to the  at over  established a  classification  and  estimation.  instrument  Marchetti's  discussion After  was  d e f o r m a b i l i t y of  edge  dilatometer  s e t of e m p i r i c a l c o r r e l a t i o n s f o r property  instrument  revised his in-situ tool  shape w i t h a s h a r p e r  instrument.  testing  piles.  streamline  40  The  to i n v e s t i g a t e the h o r i z o n t a l s o i l  laterally  in-situ  this (DMT)  was  first  introduced  into North  (1980) p u b l i c a t i o n and Schertmann's  i n the G e o t e c h n i c a l introduction, i n North  the  America (1981)  D i v i s i o n J o u r n a l o f t h e ASCE. use of t h e f l a t  A m e r i c a has i n c r e a s e d  dilatometer  gradually.  2 1.2  P u r p o s e and Recent  Scope  research  has  changed  (1980,1981) o r i g i n a l e m p i r i c a l the  simple  test, riot  the  well  design  (UBC)  of  correlations.  instrument  behaviour  and  Marchetti's  H o w e v e r , due o p e r a t i o n of  of the  test  is  to the  still  understood.  to better understand  research has  (McPherson in  the  fundamental s o i l  In order testing  of  many  the  group at the U n i v e r s i t y  developed  an  electronic  1 9 8 5 ) . The  UBC  research  operation  test,  the  in-situ  of B r i t i s h C o l u m b i a  research  dilatometer  dilatometer  is identical  t o M a r c h e t t i ' s d i l a t o m e t e r and  can  continuously  measure: 1.  pore  pressure  dilatometer 2.  effective soil  deformation  3.  the p e n e t r a t i o n  4.  the  The in  purpose  dilatometer C o l u m b i a . The deformation  and  during  from  the  soil  the  with  the  test,  instrument,and  probe.  of t h i s t h e s i s deposits 4  stresses together  the d i l a t o m e t e r  force behind  clayey  i s to present  obtained  with  test  stress,  discussed.  using both M a r c h e t t i ' s  pore of Soil  water the  pressure dilatometer  parameters  results  the  s i t e s i n t h e Lower M a i n l a n d  characteristics  i l l u s t r a t e d and tests  during  i n c l i n a t o n of the  sand and  penetration  test,  t h e t o t a l and soil  during  research of B r i t i s h and  soil  test  obtained  ( 1 9 8 0 , 1 9 8 1 ) o r i g i n a l and  are from  recent  3 improved c o r r e l a t i o n s  a r e p r e s e n t e d and d i s c u s s e d . R e f e r e n c e  i s made t o d a t a o b t a i n e d f r o m l a b o r a t o r y t e s t s on samples  and  other  in-situ  t e s t s such as cone  t e s t , vane s h e a r t e s t and p r e s s u r e m e t e r t e s t ,  recovered penetration  whichever  is  applicable.  B a s e d on an i m p r o v e d potential  methods  correlations  of  u n d e r s t a n d i n g of t h e t e s t ,  improving  are proposed.  or  future  checking the e x i s t i n g  4 Chapter 2  The  Standard F l a t  Dilatometer  3 0  2.1  Development of the Instrument The  d e v i c e was d e v e l o p e d by S.  University  introduced  dilatometer  i n 1975  of  the  c o n s i s t e d of a s t a i n l e s s s t e e l p l a t e ,  80mm  the blade,  (Marchetti,  pyramid  shaped  order  to  penetration but s t i l l insertion, Marchetti 1 9 8 0 ) . The p r e s e n t streamline  shape  curved  cutting  0.25mm  thick  and  side of the blade,  minimize t o have  On  both  soil a  surface.  disturbance  device  rigid  revised h i s o r i g i n a l design dilatometer  blade,  edge.  tip.  a t h i n s t e e l c i r c u l a r membrane o f 60mm  d i a m e t e r was m o u n t e d f l u s h w i t h t h e p l a t e  In  L'Aquila  1975),  w i d e a n d 20mm t h i c k , w i t h a sides  at  i n Italy.  When f i r s t flat  Marchetti  A  95mm single  i n commercial wide  60mm i n d i a m e t e r  enough f o r (Marchetti, use has a  a n d 14mm t h i c k  stainless  steel  during  with a  membrane,  i s m o u n t e d f l u s h on o n e  a s shown i n f i g u r e 2 . 1 .  5  Figure  2.1  Marchetti's  Flat  Dilatometer  6 2 . 2 The D i l a t o m e t e r T e s t The  dilatometer  and  i s connected  g r o u n d s u r f a c e by  a  penetration  (figure  rods  into the s o i l penetration adopted  nylon  is  f o r the  tube  prethreaded  cone  i s stopped  test.  d e l a y by s t a r t i n g  The membrane i s i n f l a t e d  o f f pressure to  electronic  the 1mm  B).  wire  the  (usually box  two r e a d i n g s a r e  membrane  deflection  Beneath  inside  t h e d e v i c e t u r n s on a b u z z e r  the  the  (Reading at  the  membrane  and  manually  center  of  A)  and  the  center of the is a  simple  t o t h e c o n t r o l u n i t by nylon  i n the  tube.  control  During  unit.  disc The  o f f when t h e membrane s t a r t s t o l i f t  t h e s e n s i n g d i s c , and t u r n s t h e buzzer  2.3).  control  test the  t h e membrane i s i n c o n t a c t w i t h a s e n s i n g  device t u r n s the buzzer off  to inflate  by g a s p r e s s u r e  device which i s connected  electrical  penetration,  of  cause  membrane ( R e a d i n g  and  depth  f r o m a p r e s s u r e gauge m o u n t e d on t h e c o n t r o l u n i t : t h e  pressure  an  20cm  tube.  As t h e membrane i s i n f l a t e d ,  lift  At  and t h e d i l a t o m e t e r  compressed n i t r o g e n ) s u p p l i e d through  taken  the  a t 2cm/sec w h i c h i s t h e s t a n d a r d  penetration  (DMT) i s p e r f o r m e d w i t h o u t  the n y l o n  through  2 . 2 ) . The d i l a t o m e t e r , i s p u s h e d  set  penetration  membrane.  to a control unit at the  a t a r a t e o f a p p r o x . 2-4cm/sec. G e n e r a l l y , t h e rate  intervals,  Procedures  t h e membrane r e a c h e s  on a g a i n when t h e  a d e f l e c t i o n o f 1mm  (figure  7  Figure  2.2  D i l a t o m e t e r and  C o n t r o l- U n i t  TOP See Detail  VIEW  Below 1=J  SECTION  A-A  Membrane Sensing  Disc  Insulating  Stainless Steel  Pneumatic  Plexiglass  Seat  Cylinder  Cylinder  Electric  Conduit DETAIL  Figure  2.3  Schematic  of  Dilatometer  9 The the  r a t e of i n f l a t i o n  control  box a n d i s u s u a l l y a d j u s t e d  the d i l a t o m e t e r t e s t to  i s c o n t r o l l e d through  (thee n t i r e expansion) takes  the test  dilatometer  and  Full  testing  details  of  procedures  the  In  flat  i n the Flat  (1981) and  in  a  1986).  Reduction order  to determine the pressures, P  are a p p l i e d t o the s o i l expansion  of t h e  standard  are given  r e c e n t p u b l i c a t i o n by ASTM ( S c h m e r t m a n n ,  Data  15  and p e n e t r a t i o n f o r another  D i l a t o m e t e r M a n u a l by M a r c h e t t i a n d C r a p p s  2.3  about  i s completed, and t h e p r e s s u r e  i n s i d e the dilatometer i s vented i s continued.  in  i n s u c h a way t h a t  30 s e c o n d s . Once t h e 1mm d e f l e c t i o n a t t h e c e n t e r  membrane i s r e a c h e d ,  test  a valve  and  0  a t t h e s t a r t and a t t h e end  respectively,  the  two  c o r r e c t e d f o r membrane s t i f f n e s s .  Readings  The  A  and  expressions  , which of  the  B  are  f o r the  correction are: = A + AA  (2.1)  P, = B - AB  (2.2)  where AA  t h e vacuum r e q u i r e d t o k e e p t h e membrane just  where AB  i n contact with the sensing d i s c i n  f r e e a i r s i n c e t h e membrane  acquires  permanent outward c u r v a t u r e  once used.  the pressure  r e q u i r e d t o cause a  deflection at the center in  free a i r .  a  1mm  o f t h e membrane  10 (AA  a d AB a r e d e t e r m i n e d b e f o r e  and a f t e r  each  sounding.)  From t h e two p r e s s u r e (1980)  proposed  three  measurements P  index  Marchetti  the  horizontal  f o r the index  parameters  D  ( K g ) . The e x p r e s s i o n s  P,,  the dilatometer  ( I ) and  D  index  &  parameters:  modulus ( E ) , t h e m a t e r i a l index stress  0  are: E  D  = 38.2(P,-P )  (2.3)  I  D  = (P,-P )/(P -u)  (2.4)  K  D  = (P -u)/iT  (2.5)  0  0  0  0  where u  =equilbrium to  blade  pore water pressure insertion  =vertical effective  The  adjacent  to  uniformly  loaded  displacement  to  stress  the  ( 1 9 7 5 & 1980) assumed  blade  is  by t h e 60mm  an  elastic  dilatometer  i s no s o i l  i t was assumed t h a t t h e r e  the loaded  expansion.  the theory of  that  the  area,  i . e . area  membrane  The  other  which M a r c h e t t i  (1980)  correlations parameters I  for soil n  and K  n  pressure  with  membrane,  properties  require  a  to  as a  external  during  two i n d i c e s a r e n o r m a l i z e d introduced  a  redistribution.  i s no s e t t l e m e n t  of the  soil  h a l f space and i s  o f e x a c t l y 1mm. The membrane i s c o n s i d e r e d  r i g i d d i s c so t h a t there Further,  soil  d i l a t o m e t e r modulus i s d e r i v e d u s i n g  e l a s t i c i t y . Marchetti  prior  establish  the  parameters empirical  w i t h t h e u s e o f E g . The  knowledge  of  the  in-situ  e q u i l i b r i u m water p r e s s u r e . usually  assumed  information (GWL).  to  be  The i n - s i t u  hydrostatic  water and  pressure  thus,  the  only  r e q u i r e d i s t h e depth t o t h e ground water  The  in-situ vertical  effective  is  level  stress i s calculated  u s i n g t h e assumed h y d r o s t a t i c w a t e r p r e s s u r e  and  the  soil  u n i t weight determined from the e m p i r i c a l c o r r e l a t i o n s based on  l  D  & E . D  Because of t h e c o n f i g u r a t i o n of t h e measuring system of the  dilatometer  (i.e.  expressions  for  the  dilatometer  modulus  r e d u c t i o n program the  instrument. P E  0  D  are  deflection  of  1.1mm),  slightly  modified  in  the  data  ( C r a p p s & S c h m e r t m a n n , 1981) s u p p l i e d Equations  2.1  and  2.3  are  changed  = (A+AA) - ( 5 / 1 0 5 ( B - A B ) - (A+AA))  (2.6)  = 34.7(P -P )  (2.7)  1  full  in  the Flat Dilatometer  0  with to:  d i s c u s s i o n on t h i s c o n f i g u r a t i o n c o r r e c t i o n i s g i v e n  2.4 S o i l P r o p e r t i e s With  the  performing Marchetti  and  actual  membrane s t i f f n e s s c o r r e c t i o n a n d t h e  A  between  an  M a n u a l by M a r c h e t t i  experience  and  tests  the three dilatometer  coefficient  at  index  p r o p e r t i e s of s o i l  of  gained  after  information  (1980) d e v e l o p e d a s e t of  soil  (1981).  Interpretation  dilatometer  various  & Crapps  earth  over  40 s i t e s  empirical  correlations  parameters, I type,  pressure  soil at  in Italy,  D  ,K  unit rest  Q  & E  D  weight, (K ), 0  12 overconsolidation  ratio  (Mp)  and  s h e a r s t r e n g t h of  coeshive  The  correlations  w e r e b a s e d on  r e s u l t s at  well  undrained  documented  consisted  of  sites.  clay  M a r c h e t t i d i d not correlation p a p e r . The sand  Manual  friction  proposed 1981)  1981  complete  in  an  supplemented  of  dilatometer presented  1.  The use soil  with  1981)  selected  the  Some  in his  technical Flat  the  (1980)  angle  of note  Dilatometer  after obtaining test  Manual p r e s e n t s  of  the  the  data  earliest  correlations original  modifications  of s o i l  classification to  D  and  give  an  modified  are:  of the d i l a t o m e t e r modulus, E , classification  from  correlatons  ( 1 9 8 0 ) p a p e r were s l i g h t l y  those  sand,  establish  (#')  the  sites  s i t e s of  friction  properties  in Marchetti's  correlation  10  (Su).  sites.  soil  testing.  t h e M a n u a l , and  sands  un-published  Flat Dilatometer  set  of  modulus  soils  of  o n l y two  to determine the  (Marchetti & Crapps,  The  majority  with  angles  from f o u r a d d i t i o n a l sand  in  the  deposits  correlation  (Marchetti,  As  test  have enough i n f o r m a t i o n t o  of  was  (OCR), d r a i n e d c o n s t r a i n e d  has  included  sub-divide  estimate  the the  of t h e  soil  has  been  density. 2.  The  c o r r e l a t i o n o f OCR  slightly  adjusted  sands w i t h I  3.  1.2  and  In  the  D  for cohesionless  in  > 2 and  order  to  soil  differentiate  s i l t y materials  with  I  D  between between  2. transition  zone  of  I  n  from  0.9  to  1.2,  the  13 dilatometer  cannot p r e c i s e l y  therefore,  no  strength  indicate  parameters  the  soil  (#'  or  type  and  Su)  are  with  the  calculated.  A  computer  i n s t r u m e n t . The  progam,  p r o g r a m was  (1981)  to  reduce  indices  and  then i n t e r p r e t e  The  from  the  correlations  were h i g h l y  scale  documented f i e l d correlations  the  sites,  it valid  based  on  clay  Schertmann  t o the  dilatometer  became  1981)  available  chamber t e s t s and apparent  &  more  well  that  Marchetti's  f o r a l l s a n d s . The  correlations  friction  since  data  (1980  of  i n sand  and  a n g l e . However, u s e r s  have  0  and  OCR  in soft clay deposits and  using  DMT  Lacasse & Lunne, 1982).  This  Marchetti's correlations  were m a i n l y  d a t a o b t a i n e d from uncemented c o h e s i v e s o i l s  (ie.  deposits).  When  developing  Marchetti between  the  (1980) d i d K  D  &  K  0  (P  correlations  not 0  expect  & a' )  relative  density  and  any  of  shown t h a t  in-situ  K  versus  Q  unique  for a l l s o i l s .  h  chamber t e s t work i n I t a l y has soil  &  properties.  v a l u e s of K  ( S c h e r t m a n n , 1981, surprising  DMT  was  r e p o r t e d good c o r r e l a t i o n s  i s not  Crapps  data  soil  more  tended to overestimate the  results  test  calibration  the  by  provided  d e v e l o p e d by M a r c h e t t i  were n o t  underestimate  is  written  raw  e m p i r i c a l . As  large  DILLY,  The  K, 0  relationship calibration  d e p e n d s on  stress history  for  both sands  14 (Bellotti all  e t a l , 1979). However, a s i n g l e c u r v e  the a v a i l a b l e data  had  accepted  correlation based  on  become  correlation  very  the  limited  i n w h i c h new  f o r b o t h c l a y a n d s a n d . The angle  amount  considered friction  for of  his  angle  data  calculate  data.  were  also  Furthermore,  proposed  method  of  of sand as o n l y a p o s s i b l e  should  be  included  the  ( 1 9 8 2 ) p r o v i d e d a more r a t i o n a l friction  capacity  theory  (1975).  Schmertmann's  iterative,  angle  developed  by  of  prediction  as  (1982)  of K  correlation  0  additional  sand  as  they  method  K  Vs  0  K  Q  and  and  forces  to  advance  the  data.  To  improve  the  (1983) d e v e l o p e d  available  F o r t h e i m p r o v e m e n t o f t h e OCR p r e d i c t i o n ,  proposed  a  correlation  Kulhawy's approach drained  friction  Schmertmann the  on  above  the by  a  <j>' a s an a d d i t i n a l  p a r a m e t e r , b a s e d on t h e chamber t e s t d a t a  (1983), a l s o based  Mitchell.  complex  input  with  to  is  i n s a n d , Schmertmann  for  method  using the bearing  Durngunoglo  and r e q u i r e s t h e pushing  dilatometer  that  sands  available.  Schmertmann  1983.  well  f o r c l a y ) and t h u s , M a r c h e t t i  and f r i c t i o n  (1981)  estimating framework  o f OCR a  Marchetti  the  (mostly  fitted  available  chamber  slighty  modifying  new  input up  to  Schmertmann test  data,  Mayne  (1982) which a l s o r e q u i r e s t h e use  and of  a  angle.  (GPE, I n c . , DMT three  methods  Digest Series)  recommended  should replace Marchetti's  15 original sands.  correlation Bullock  program,  as an  (1983)  DILLY4,  Marchetti's  for  developed  which  f o r the users  Advantages and The  of  m a i n t e n a n c e s i n c e no The  repeatable  test that  and  1982).  Lunne,  Although simple,  test  or technicans  the  i t provides  Finally, used  a l l  was,  and  cost  and  does has  the  OCR  in  reduction  these  changes.  however,  retained requires  force.  D i l a t o m e t e r Test  the  test  is  simplicity  of  the the  sophisticated electronics  not  require highly  been f o u n d t o  be  a  i s almost operator  independent  dilatometer  (DMT)  an  t h r o u g h e m p i r i c a l and  and  0  data  dilatometer  o p e r a t i o n and  operators  initial  the  low  required.  new  of the p u s h i n g  Disadvantages of  main a d v a n t a g e  K  s i n c e Schmertmann m e t h o d  instrument's  are  a  ( 1 9 8 1 ) c o r r e l a t i o n o f #'  option  0',  incorporated  the a d d i t i o n a l i n p u t data  2.5  determining  test  impressive  range of  is soil  skilled highly (Lacasse  extremely parameters  semi-empirical c o r r e l a t i o n s .  i t appears that the  f o r e v a l u a t i o n of o t h e r  test  also  be  g e o t e c h n i c a l problems such  as;  liquefaction potential, coefficent r e a c t i o n p r e d i c t i o n and  lateral  pile  of  r e s u l t s can  horizontal  subgrade  movement p r e d i c t i o n .  16  The the  main  d i s a d v a n t a g e of the d i l a t o m e t e r  instrument  through thin  can  v e r y dense  be  easily  Gravels  can  is fragile  easily  tear  s a n d s , t h e r e c a n be s i g n i f i c a n t stretch  or  wrinkle  on  the  membranes h a v e been d e v e l o p e d  One  final  interpretated test.  The  proposed  is still  by  Marchetti  soil  the  susceptible  membrane. I n  frictional membrane.  force to  a  stronger  the l e v e l of c o n f i d e n c e i n the  relatively  new  and  (1980,1981)  dilatometer  the  correlations  and  Schmertmann  i s s i m p l e w i t h o n l y two m e a s u r e m e n t s difficult  dense  make  However,  to  recently.  for users to j u s t i f y  parameters without a greater  of the  2.6  is  and  w e r e b a s e d on a l i m i t e d amount o f t e s t  As t h e t e s t often  penetrating  parameters o b t a i n e d form the  test  (1982,1983)  is  concern  soil  when  i s that  s a n d s o r g r a v e l s . The membrane, w h i c h i s  t o make i t e x p a n d a b l e ,  damage.  damaged  test  the  fundamental  results.  taken,  i t  interpretated understanding  test.  D i l a t o m e t e r T e s t i n g at the U n i v e r s i t y of  British  Columbia At  the  dilatometer testing  University testing  has  research vehicle  instrument 2 c m / s e c . Two  has  been  of been  Columbia  (UBC),  performed using the  in-situ  (Campanella & R o b e r t s o n , 1981).  pushed  readings A &  British  B  into are  The  the ground at a r a t e of read  manually  from  the  17 p r e s s u r e gauge The  i n t h e c o n t r o l u n i t a t 20cm d e p t h  measurements  are  reduced  intervals.  and i n t e r p r e t a t e d  using the  c o m p u t e r p r o g r a m s DIL.RED o r D I L L Y 4 . The p r o g r a m DIL.RED  was  adapted  and  from  Schmertmann  The Bullock for  with  DILLY  DILLY4,  is  written  by  as  mentioned  in  the  program  section  2.4.  a n g l e o f s a n d u s i n g Schmertmann's  cell  UBC.  developed  by  correlations  To c a l c u l a t e t h e method  (1982),  a  h a s been u s e d a t t h e p u s h i n g h e a d t o c o n t i n u a l l y  the penetrating  the  Crapps  s u b - r o u t i n e s added a t  (1983) w h i c h i n c o r p o r a t e s t h e improved  sands  measure  program  (1981) w i t h p l o t t i n g  program,  friction load  the  two  f o r c e . The m e a s u r e d  p r e s s u r e measurements  thrust  together  A & B are then reduced  and a n a l y s e d u s i n g t h e p r o g r a m , D I L L Y 4 .  18 Chapter 3  The  3.1  Research F l a t  Factors Affecting  Dilatometer  R e s u l t s from the D i l a t o m e t e r  Test  Marchetti's dilatometer i s extremely simple to and  maintain.  However,  operation are o f f s e t the  test  the f l a t  t h e s i m p l i c i t y of t h e equipment and  by t h e  difficulties  and i n t e r p r e t a t i n g  in  understanding  t h e r e s u l t s . D u r i n g t h e use o f  dilatometer, several s i g n i f i c a n t aspects  t h e d a t a c o l l e c t i o n and i n t e r p r e t a t i o n  3.1.1  operate  h a v e been  affecting observed.  Inclination It  i s almost  ground  without  (inclination),  i m p o s s i b l e t o p u s h any i n s t r u m e n t i n t o t h e developing  especially  i s p a r t i c u l a r l y important stresses,  some  non-verticality  f o r deep s o u n d i n g s .  This  problem  i f t h e i n s t r u m e n t measures  lateral  s u c h a s t h e d i l a t o m e t e r . The two r e a d i n g s o b t a i n e d  f r o m t h e d i l a t o m e t e r t e s t c a n be s i g n i f i c a n t l y  influenced  vertical  i n f l u e n c e can  affect  s t r e s s e s due t o n o n - v e r t i c a l i t y .  the i n t e r p r e t a t i o n  of  soil  g a i n e d w i t h cone p e n e t r a t i o n t e s t s good v e r t i c a l i t y deposits  for  can u s u a l l y  The  parameters. a t UBC  be m a i n t a i n e d  Experience  would suggest in  good v e r t i c a l i t y  i s uncertain.  that  uniform  p e n e t r a t i o n d e p t h up t o a b o u t 15m.  l e s s u n i f o r m d e n s e d e p o s i t s , t h e maximum d e p t h  by  to  However  soft in  maintain  3.1.2 P o r e The data I , of  c o r r e l a t e d s o i l parameters  are K  D  Pressure  based D  the i n - s i t u  (u ). water  D  and K  analyses  pressure  to  a l w a y s be t h e c a s e .  assumes  be  the  hydrostatic  The  assumption  pressure  can  especially  i n s o f t d e p o s i t s where P  relative  therefore  influence  to  the  assumed  interpretated  soil  parameters.  The  u ,  is  performed  s e t so t h a t t h e t e s t 30  seconds.  maintain rate vary  of  immediately  and  a constant expansion  vary. starting  in-situ  of  equilibrium t h i s may n o t  hydrostatic  the and  index P,  after  water  parameters  can  be  small  penetration  The r a t e o f p r e s s u r e  i t is  not  time of t e s t i n g .  This  i s generally constant  is but P  indicated that silty  from  i s not always  because a n d P^  0  deposits  into can  0  and  may P,  constant.  saturated generate  P  the  the penetration  p i e z o m e t e r cone p e n e t r a t i o n  penetration  15  possible to  Thus, t h e time needed t o r e a c h  the expansion  is  applied  within  always  A l s o , t h e time between s t o p p i n g  Results  and/or  penetration  (expansion) i s completed  However,  considerably.  will  knowledge  and s u b s e q u e n t l y a f f e c t t h e  0  s t o p p e d a t e a c h 20cm i n t e r v a l s .  to  parameters,  before  although  test  e x i s t i n g t e s t p r o c e d u r e s a s s u m e s t h a t t h e membrane  inflation  is  0  index  require a  Q  e q u i l i b r i u m water pressure  The d a t a  0  dilatometer  on t h e t h r e e d i l a t o m e t e r  a n d E . The p a r a m e t e r s I  D  from  t e s t i n g have  soft  very  cohesive  large  pore  20 pressures.  D i s s i p a t i o n of these  takes places As  immediately  the d i l a t o m e t e r r e c o r d s  B), these  McPherson stopping  penetration  saturated soft cohesive index  parameters  t h a t as the excess values  of  increase Kg.  direct  P  i n the The  the  pore  pressure  index  also  r e s u l t of the d e c r e a s i n g  f a c t t h a t the drop i n P  Campanella  and  DMT  0  Robertson  relatively  However,  Eg,  when  but  a  p r o c e d u r e may pressure  during  have l i t t l e test  penetrating,  the  as  0  around Eg  a  the to  the drop i n  P,.  anticipated that in in  the  influence in  the  performed  in  is  silt  to  or  can  existing  c a u s e i n c o n s i s t e n t r e s u l t s due  dissipation.  decrease  deposits, variations  the  an  i s due  h i g h p e r m e a b i l i t y d e p o s i t s such as  generated  measured  t h i s caused  pressure  (1983)  in a  ( 1 9 8 5 ) showed  f i n e s a n d s where s i g n i f i c a n t h i g h p o r e p r e s s u r e s be  test  to the decrease i n P pore  will  between  the  and  i s g r e a t e r than  t e s t i n g procedure w i l l  results.  and  and  dilatometer  i n c r e a s e i n l g and  many low p e r m e a b i l i t y c o h e s i v e existing  time  the expansion  decreased,  i s due  The  the  decreased,  D  (A  dilatometer  v a r y . McPherson  parameters I  membrane.  stopped.  i s v a r i e d , the  also  P,  is  results.  if  starting  deposits  d e c r e a s e i n Kg  dilatometer  the t e s t  will  and  0  the  shown t h a t  and  pressures  s t r e s s measurements  around  i n f l u e n c e on  ( 1 9 8 5 ) has  pore  the p e n e t r a t i o n  total  high pore pressures  have a s i g n i f i c a n t  in  after  large excess  silty still  testing  rapid  pore  21 3.1.3 M o d u l u s o f E l a s t i c i t y The by  expression  Marchetti  elasticity. assumed  f o r the d i l a t o m e t e r modulus, Eg, d e r i v e d  (1975  The s o i l  &  1980)  adjacent  was  based  t o t h e d i l a t o m e t e r membrane i s  t o be an e l a s t i c m a t e r i a l , b u t t h e v a l i d i t y  assumption provided  i s uncertain. This u n c e r t a i n i t y i s l e s s  derived  the expression  background, deformation  he  has  never  thus  t o o l w i t h sound  manner d u r i n g  estimate  of  engineers  often require f o r design.  center behind have  soil  membrane o f of  one  modulus  the  side  to  Elasticity  Eg.  i s some t o t a l  is  test  reasonable (E)  which  located  i n the  plate at a short  distance  and c a v i t y  expansion  stress relief  since  the  theories behind the  total  stresses  open t h e c a v i t y a t t h e t i p a r e l a r g e r t h a n t h e  stresses required to maintain penetration  could give a  of  of the f l a t  t i p o f most p e n e t r a t i o n d e v i c e s , required  of  the dilatometer  dilatometer  the t i p . Observations i n d i c a t e d there  theoretical  have s u g g e s t e d t h a t t h e s o i l  b e l i e v e t h a t t h e Eg v a l u e the  the dilatometer  (E) b a s e d on t h e v a l u e  of the d i l a t o m e t e r  may b e h a v e i n an e l a s t i c  (1975)  suggested t o derive the e l a s t i c  modulus o f a s o i l  users  The  important  Marchetti  of Eg and c o n s i d e r e d  as a f u n d a m e n t a l i n - s i t u t e s t i n g  and  of t h i s  t h a t the parameter, Eg, i s only used as a parameter  f o r e m p i r i c a l c o r r e l a t o n p u r p o s e s . Though  Some  on t h e t h e o r y o f  cone,  r e l a t e s approximately  the theory  the c a v i t y . In the case  of  a  of s p h e r i c a l c a v i t y expansion  t o the t i p and theory  of  cylinderical  22 c a v i t y expansion to the shaft that  a  similar  analogy  (Gillespie,  exists  membrane  unloading)  may  before  Experience elastic  soil  unload-reload According of  that occured  some s t r e s s r e l i e f ( i e .  pressuremeter can  be  cycle  during  testing  obtained  by  shows  the unloading  i f the e l a s t i c  an test. limit  phase i s not exceeded, t h e  during  the  unloading-reloading  the r e l o a d i n g s t r e s s reaches the y i e l d at the previous  that  performing  a pressuremeter expansion  of p l a s t i c i t y ,  elastically  until  with  expansion.  modulus  during  behaves  phase  with  seems  element i n c o n t a c t  undergone  membrane  t o the theory  the s o i l  soil  have  It  f o r the penetration of the  d i l a t o m e t e r , and t h e r e f o r e t h e s o i l the  1981).  maximum  stress  surface  level  before  membrane  after  unloading.  The  i n f l a t i o n of  a  p e n e t r a t i o n may r e p r e s e n t contact soil  flat  dilatometer  a r e l o a d i n g of the s o i l  w i t h t h e membrane. I t i s t h e r e f o r e e x p e c t e d t h a t t h e  would  deform  as  an  elastic  However, Campanella and R o b e r t s o n the  expansion  of  exceed the s t r e s s hence,  element i n  the  1mm level  assumption  at  the  at  modulus.  (1983) center  the test.  anticipated  that  o f t h e membrane may  previous  unloading,  and  o f e l a s t i c i t y may n o t h o l d t r u e f o r  t h e e n t i r e membrane i n f l a t i o n , than t h e e l a s t i c  the  medium d u r i n g  resulting  i n a modulus s o f t e r  23 3.2 D e v e l o p m e n t o f t h e UBC R e s e a r c h In order the  soil  pressure  Dilatometer  t o o b t a i n a more f u n d a m e n t a l u n d e r s t a n d i n g  behaviour  ( i e . the  soil  c h a r a c t e r i s t i c s ) during  expansion of the f l a t factors described  penetration  dilatometer  test;  i n the preceeding  r e s u l t s , McPherson  deformation  (1985) d e s i g n e d  features:  to  includes the following  dilatometer 2.  a  i n the center  measure t h e pore p r e s s u r e  membrane how t h e the  DMT  a research dilatometer at  dilatometer  transducer  and  section affect  ( U B C ) . The  a pore pressure  and pore  and t o study  the U n i v e r s i t y of B r i t i s h Columbia  1.  .of  UBC  research  o f t h e membrane  during penetration  of  the  a n d e x p a n s i o n o f t h e membrane,  pressure  transducer  i n s i d e the blade  t o measure t h e  a p p l i e d gas p r e s s u r e , 3.  a strain the  gauge d e f l e c t o r arm a t t a c h e d  membrane  a slope  center  of  t o c o n t i n u o u s l y measure d e f l e c t i o n o f t h e  membrane d u r i n g 4.  to the  sensor  inflation, t o measure t h e v e r t i c a l i t y  of  the  blade  d u r i n g p e n e t r a t i o n , and 5.  a load c e l l pushing  the blade  force during  A load c e l l direct  behind  measure  behind of  t o c o n t i n u o u s l y measure t h e  penetration.  the blade  pushing  force  was  included  would  c a l c u l a t i o n of  using the Durngunoglo &  capacity  (1975)  theory  While i t i s d i f f i c u l t  to  because  allow  a  Mitchell  a s p r o p o s e d by Schmertmann measure  pushing  force  a  direct bearing (1982). directly  24 behind  Marchetti's  suggested and  standard  measuring  the pushing  t o assume t h e f r i c t i o n  the  friction  pushing  reducer  but  along  Schmertmann  f o r c e above ground  load  t h e p e n e t r a t i o n rods  t o be n e g l i g i b l e . F o r t h i s  purpose of d e v e l o p i n g  to  r e p l a c e t h e use of M a r c h e t t i ' s  better  additional  understanding  addition  to  of  measuring  research dilatometer  flat  and  The  dimensions  dilatometer  are  was  so t h a t d i r e c t  and  shape  identical  that  incorporated illustrated  retained  of t h e d e s i g n  When  are given  the  intended  research  In  devices,  in  the  of  dilatometer  the  to Marchetti's  UBC  UBC  by M c P h e r s o n  data.  research  ,except t h a t t h e shoulder  and  f e a t u r e s c o u l d be  3.2,  of t h e r e s e a r c h  3.3  and  dilatometer.  3.4  Details  (1985).  d i l a t o m e t e r was f i r s t  that t h e pore p r e s s u r e  a  c o m p a r i s o n c o u l d be made  3.1). Figures  the design  provide  measuring  a l l t h e added e l e c t r o n i c (figure  was  testing.  f l a t p l a t e of t h e r e s e a r c h model has a l o n g e r so  using  dilatometer  to  dilatometer  electronic system  standard  between t h e r e s e a r c h d a t a and t h e s t a n d a r d  on  study, the  the research dilatometer  information  a l l the  Marchetti's  was  behind  cell.  The  t o provide  stem  surface  f o r c e was a l s o m e a s u r e d a t t h e g r o u n d s u r f a c e  an a d d i t i o n a l  not  dilatometer,  transducer  designed, i t mounted  t h e s t e e l membrane m e a s u r e o n l y t h e p o r e p r e s s u r e  flush  outside  Figure  3.1  UBC  Research  Dilatometer  (B)  Figure  3.2  CROSS SECTION  Design D e t a i l of Research D i l a t o m e t e r ( A d a p t e d f r o m M c P h e r s o n , 1985)  to  27  PORE PRESSURE TRANSDUCER POROUS  I  STONE  nrH—  9BL »  —  1i t  SECTION (D) DETAILS  Figure  3.3  OF MEASURING  SYSTEM  Design D e t a i l of Research Dilatometer ( A d a p t e d f r o m M c P h e r s o n , 1985)  WIRE  CONNECTORS  INSITU TRUCK  TESTING  TO  DILATOMETER  AIRLINE  •BRASS COLLAR IE)  DETAIL OF DILATOMETER  ROD CONNECTION  TRUCK  INCLINOMETER  FRICTION  MOUNTED  HERE  SLEEVE  LOAD CELL STRAIN GAUGES DILATOMETER—-  (F)  Figure  3.4  LOAD CELL SECTION  D e s i g n D e t a i l of R e s e a r c h D i l a t o m e t e r ( A d a p t e d f r o m M c P h e r s o n , 1985) CO  the  membrane  during  penetration  pressure  transducer  pressure  during the expansion.  expansion,  The e f f e c t i v e p r e s s u r e  be c a l c u l a t e d by s u b s t r a c t i n g  pressure  was made, i t was transducer  The " p o r e  impossible  pressure"  transducer,  pressure  the e x t e r n a l  pore  pressure.  measures  pore  transducer  during penetration  between  and  effective  expansion  ( a i r pressures  pressures  on  the by  seal  therefore,  the  Hence,  the  "pore  outside  pressures minus  the blade.  pressure"  atmospheric  pore  pressures).  the  are therefore  effective  pressure  measurements.  dilatometer  was  pushed i n t o t h e ground  u s i n g t h e UBC i n - s i t u t e s t i n g  research truck s i m i l a r  standard  power  dilatometer.  The  supply  and  to  supply  and  C a m p a n e l l a and R o b e r t s o n  the  electronic  f o r a p p l i e d c o n e r e s e a r c h a t UBC was  the dilatometer research  o f t h e power  Pore  and Data A c q u i s t i o n  research  systems developed  the  t h e membrane to  during expansion  substracting  Procedures  pore  on t h e membrane d u r i n g  measurements from t h e a p p l i e d gas p r e s s u r e  for  pore  t h e i n s i d e of t h e b l a d e and  pressures  membrane  the  measures  ( i n s i d e o f membrane v e n t e d  pressure)  calculated  to  from t h e a p p l i e d gas i n s i d e  differential  The  on t h e  f r o m t h e a p p l i e d g a s m e a s u r e m e n t . H o w e v e r , when t h e  instrument  3.3 T e s t  and t h e  i n s i d e t h e b l a d e measure t h e a p p l i e d gas  membrane c o u l d t h e n pressure  and  used  t e s t i n g . A complete d e s c r i p t i o n  electronic (1981).  system  is  given  by  30 The  testing  d i l a t o m e t e r was standard  identical  DMT.  recorded  procedure  f o r using to  two  chart  recorders  from t h e e l e c t r o n i c d e v i c e s . water  pressure,  blade  and a t t h e  recorded  on  controlled encoder  were b e i n g be  control  a  ground strip  that  Therefore,  e f f e c t of  pore  the  phases.  box.  blade  inclination,  versus  In  pore  f o r c e s measured behind t h e during  penetration  pushing  head  and  a  were was  depth  strip  r e c o r d e r , however,  a  time-control i t was  chart  against  button  intended  dissipations  pressure  on  the  t o study the  during  a  was c o n t i n u o u s l y  stop  in  advance t o  time.  u s e d was a X-Y-Y r e c o r d e r . The  ( i e . a i r pressure  deflection at the center  entire  could  i n s t e a d of depth  was u s e d t o r e c o r d t h e m e a s u r e d a i r  effective  the  control  to time c o n t r o l  other c h a r f recorder  X-Y-Y r e c o r d e r  the  r e c o r d e r . The s t r i p c h a r t  the  when  pressure  record pore pressures  during  chart  by s i m p l y p r e s s i n g  pressure)  The  surface  switched  recorder.  and  Marchetti's  were used t o r e c o r d t h e d a t a  p u s h e d . The s t r i p c h a r t  penetration,  for  research  t h e c h a r t a d v a n c e o n l y when t h e p u s h - r o d s  easily  The  on  and t h e pushing  by a s w i t c h on  so  used  UBC  The two m a i n DMT m e a s u r e m e n t s , A a n d B, were  m a n u a l l y f r o m t h e gauge  addition,  also  that  the  dilatometer  of  expansion  pressure  minus the  and  pore  membrane deflation  31 3.4 D a t a  Reduction  The  recorded  data;  applied  a i r p r e s s u r e V s membrane  d e f l e c t i o n and e f f e c t i v e pressure during  the  stiffness curves;  expansion  i n order total  test  to  were  the  deflection, f o r membrane  corrected  expansion  s t r e s s e s V s membrane d e f l e c t i o n a n d e f f e c t i v e  membrane  recorded  membrane  corrected  determine  s t r e s s e s V s membrane d e f l e c t i o n . the  Vs  The  deformation  ( i e . membrane s t i f f n e s s )  using  the  X-Y-Y  recorder  curve  of  i n f r e e a i r was a l s o when  the correction  v a l u e s , AA a n d AB were m e a s u r e d .  The c o r r e c t e d e x p a n s i o n research  curves  obtained  using  the  UBC  d i l a t o m e t e r p r o v i d e a more c o m p l e t e p i c t u r e o f t h e  dilatometer  test.  stresses,  P  expansion,  the total  0  &  In P,  addition  at  the  to  start  obtaining and  total  a t t h e end of t h e  s t r e s s a t t h e c l o s u r e of  (P ) was a l s o o b t a i n e d  the  the  membrane  from t h e f o l l o w i n g e x p r e s s i o n :  P  = C + AA (3.1) c where C i s t h e a p p l i e d t o t a l p r e s s u r e measured a t t h e c l o s u r e o f t h e membrane. The  corresponding  were o b t a i n e d  effective  soil  s t r e s s e s P ' / P i ' and P ' 0  using the following expressions:  P '  = A' + AA  (3.2)  P  = B' - AB  (3.3)  P  = C  (3.4)  0  + AA  c w h e r e A', B', C measurements  are the e f f e c t i v e  (applied  pressure  pressure  i n s i d e minus pore  32 pressure is  outside  at l i f t  t h e membrane) when t h e membrane  o f f , 1mm  deflection  and  at  closure,  respectively. Pore  pressures  substracting The  during  the e f f e c t i v e  pore pressures u  the  were  calculated  s t r e s s e s from t h e t o t a l  at different  stages  of t h e t e s t a r e :  ( = A - A')  (3.5)  u, = P, - P,'  ( = B - B')  (3.6)  - P ' ( = C - C') c  (3.7)  0  = P  c  0  0  c  where u , u , a n d u 0  c  are the  t h e membrane i s a t l i f t  by  stresses.  - P '  u  = P  test  pore  pressures  when  o f f , a t 1mm d e f l e c t i o n a n d  at c l o s u r e , r e s p e c t i v e l y .  Although additional  the  data,  UBC  research  dilatometer  o n l y t h e two b a s i c r e a d i n g s ,  t h e p e n e t r a t i o n p u s h f o r c e were u s e d i n t h e and  interpretation  using  DILLY4, as d e s c r i b e d  The  of  u s e s Schmertmann s (1982) 1  force  the  the f r i c t i o n  penetration  obtained  with  reduction  t h e c o m p u t e r p r o g r a m s , DIL.RED o r  friction method  angle which  forces along  reducer  the  o f sand i n DILLY4 is  based  on  UBC  c a l c u l a t e the f r i c t i o n  research  angle  penetration  are negligible.  f o r c e measured immediately the  data  the  measured a t t h e ground s u r f a c e , w i t h t h e  assumption that f r i c t i o n behind  A a n d B, a n d  i n S e c t i o n 2.6.  calculation  penetration  provided  In order  behind  dilatometer  rods t o use  the  blade  to directly  of sand, the input data  of  the  33 program  DILLY4  (Appendix I ) .  was  s l i g h t l y modified to suit  this  purpose  34 Chapter 4  Research D i l a t o m e t e r  T e s t i n g i n Sands  4.1 Scope The f i e l d programme u s i n g t h e r e s e a r c h sands  dilatometer  in  was c o n d u c t e d a t t h e M c D o n a l d ' s F a r m r e s e a r c h s i t e on  Sea I s l a n d , R i c h m o n d . A d e t a i l e d in-situ  testings  and  o u t a t t h e s i t e a s an t e s t s used  study c o n s i s t i n g of v a r i o u s  laboratory on-going  f o r comparison  a) c o n e p e n e t r a t i o n t e s t  t e s t i n g s h a s been  UBC  i nthis  research  carried  effort.  The  study were:  (CPT),  b) d o w n - h o l e s e i s m i c CPT, c) s e l f - b o r i n g pressuremeter t e s t  (SBPMT),  d) f u l l  test  displacement presuremeter  e) l a b o r a t o r y d r a i n e d t r i a x i a l  As  (FDMPT) a n d  compression  o n l y one s a n d s i t e was t e s t e d  test.  for this  study, three  s o u n d i n g s , MRD-1, MRD-2 & MRD-3 were made u s i n g t h e r e s e a r c h d i l a t o m e t e r t o check  4.2 S i t e Geology and McDonald's  Farm  edge o f S e a I s l a n d 4.1). Sea I s l a n d  the repeability  of the r e s u l t s .  Description i s an abandoned farm a t t h e N o r t h e r n  i n themunicipality of  Richmond  (figure  i s l o c a t e d b e t w e e n t h e N o r t h Arm a n d M i d d l e  36  Arm  of  the F r a s e r R i v e r D e l t a extending  Strait  of G e o r g i a .  dykes  to  is  Island i s contained  protect against  approximately  1.6m  The  (Geodetic  l e v e l w i t h the general  D a t u m ) , and  g r o u n d s u r f a c e , and  the adjacent  Sea  i s covered site  i t s adjacent  G l a c i a t i o n had into  the  b r o u g h t down by t h e l i n e t o c r e a t e new  of  The  site  ground e l e v a t i o n  is  v a r i e s w i t h the  t o 10,000 y e a r s  discharge  system  river.  mainly  at  w i t h weeds.  about tidal  1.5m  The  below  fluctuation  i s l a n d s i n the Fraser  l e s s t h a n a b o u t 8000 y e a r s  8000  Fraser  the  a  the  in  River.  I s l a n d and  Delta are Some  Fraser  by  f l o o d i n g from the  groundwater t a b l e u n d e r l y i n g the  westwards i n t o  ago,  old  after  the  (Blunden,  1975).  i c e sheets  of  the  began  to  r e t r e a t e d , the F r a s e r R i v e r Strait  of G e o r g i a .  Sand, s i l t  r i v e r were a c c u m u l a t e d a l o n g l a n d s u r f a c e s as  River  the p r e s e n t  and  the  clay shore  Fraser  River  Delta.  A t y p i c a l cone p e n e t r a t i o n t e s t p r o f i l e figure  4.2  and  shows t h a t t h e g e n e r a l  soil  i s presented  profile  in  consists  of: 0 - 2m  soft organic  2 - 13m  medium t o c o a r s e  13 - 15m > Blunden to  at  15m  fine  silty  clay  sand; v a r i a b l e d e n s i t y  s a n d , some s i l t  soft normally  (transition  consolidated clayey  (1975) i n d i c a t e d t h a t the c l a y s i l t  least  150m  d e p t h i n t h i s p a r t o f Sea  deposit Island.  zone) silt. extends  PORE PRESSURE U (BAR)  FRICTION RESIST FC (BAR)  BEARING RESISTANCE OT (BAR) «  1  1  *  FRICTION RATIO RF« FC/QT(%) 200  DIFF PP RATIO ALHJT 0  SOIL PROFILE SOFT CLAY 8 SILT  COARSE SAND LOOSE TO DENSE WITH LAYERS OF FINE SAND  FINE SAND 90NC SILT  Or *60% (BALDI «t 4,1962)  SOFT, NORMALLY CONSOU DATED CLAYEY SILT SAND ' 1 0 % SILT « 7 0 % CLAY » 2 0 % l_L. « 38 % P.I. • 15 % • 35 % k'8xO <t*0.3  i  COJIIMUM ran WSURC  F i g u r e 4.2  i  i  i  •  i  I BAR • 100 NPo - I kgf/cm  ton/ft.  T y p i c a l CPT P r o f i l e a t M c D o n a l d ' s Farm  Site  orvtac.  38 The  dilatometer test provides a similar s o i l  the s i t e ,  except that t h e c l a y  interpreted  as  clay.  presented  i n figures  MRD-2  MRD-3  &  soundings  silt  deposit  p r o f i l e of  below  T h e DMT r e s u l t s o f s o u n d i n g MRD-1 a r e  4.3 & 4.4.  are included  The  results  i n Appendix  of  soundings  I I . The t h r e e  show a v e r y h i g h r e p e a t a b i l i t y o f t h e DMT r e s u l t s .  This  chapter w i l l  discuss only the results obtained i n  t h e s a n d d e p o s i t s f r o m 2 - 13m d e p t h . T e s t r e s u l t s in  15m i s  the clayey s i l t  d e p o s i t from  15 - 30m w i l l  obtained  be p r e s e n t e d  i n C h a p t e r 5.  4.3 S o i l Deformation  Characteristics  With t h e use of t h e r e s e a r c h curves tests  (stresses  membrane  deflection)  deformation  for dilatometer  i n t h e sand a t t h e McDonald's Farm s i t e were o b t a i n e d .  Typical and  Vs  dilatometer,  results  loose  figures  sands  from t h e r e s e a r c h d i l a t o m e t e r t e s t s at  McDonald's  4.5 & 4.6 r e s p e c t i v e l y .  & 4.8 (Hughes & R o b e r t s o n , self-boring  and f u l l  to  self-boring probes.  are  illustrated  For comparison,  1984) show  typical  displacement pressuremeter  s a n d s a t t h e same s i t e . shape  Farm  The DMT c u r v e s a r e v e r y  the pressure and p u s h - i n  expansion (full  curves  displacement)  i n dense in  figures  4.7  results  of  tests  i n the  similar  obtained  in from  pressuremeter  39  U.B.C. INSITU  TESTING.  TEST No. HRD-1  LOCATION: HCDONALD'S FARH  TEST DATE:  INTERPRETED GEOTECHNICAL PARAMETERS. HAR o  0"2  in  1  022 1  i  0 92 I  35.0 1 1 1  i  i  i  i  i  i  i  i  i  i  i  i  r  i  i  i  i  i i  1  1  1  1  1  1  1  !  1  1  1  1  1  I  1  i  i  i  1  I  1  1 1  i  i  I  1  1  1  i  f  Cu (cohesive)  40.0  i  20.0 .0  UNDR.COHESION (KPa)  o CO  1  1  o  °-  co  O  > "J  C  M CE  1  u ai  OJ  ZD =i ZD Q  l  (W) HlcGCl o>t o'sr 1 1 1 1 1 1  cor  L_ ro —I c to  5.0 1 1  FRICTION ANGLE  4  l  0'9  21 8 4  \  e  IT  rz  5  tr  E CJ  <=>  ?o, _  in  l  0  1  1  1  1  1  1  l  l  1  1  ^1—  1  1— ^ 1 1  1  1  1 :  1  1  I  z  :  CE  i  2: =w v  Id  t  5£ \  6  £ § i — £i  3 O  CD  in-  n — >~ cr o  CJ  \  Ajl  \ i  0"2  Figure 4 . 3  r i  0"9  1  1  o'or  1  (W)  1 a t>i  |-P0)/(l  i— CO  1  -  Hid3Cl  r  W  1 o tu  1  I  : i  0'22  1  °  1  0'92  DMT P r o f i l e a t McDonald's Farm - I n t e r p r e t e d G e o t e c h n i c a l Parameters ( S o u n d i n g MRD-1, DIL.RED)  &  40  U.B.C. INSITU  TESTING.  TEST No. tlRD-1  LOCATION:MCDONALD'S FARM  INTERMEDIATE GEOTECHNICRL 0 2 —I CO  1  0 9 1  1  0 or  (U)  PflRflriETERS  Hid30 O'W  I  I  i  i  I  I  0'8t  Q'ZZ  TEST DATE:  riAR 21 84  0"9Z  I  o .  zd  o o  a  LU 0_  t- c  LU —' o .  CM  a o '  X _! LU CX Q  i  Q  i  i  1  r  O M CO H CO  or LU o ce X i— CO  o o '  10 <u t_ +-•  CO — ro  —t Q_  OJ  >  Q_  m o '  CD  I  0'2  Figure  4.4  I  I  0'9  I  O'OC  1 O'frl  1  (W) H l d 3 Q  1 0'8t  1  1 Q'ZZ  1  T-  0'92  DMT P r o f i l e a t McDonald's Farm - Intermediate G e o t e c h n i c a l Parameters ( S o u n d i n g MRD-1, DIL.RED)  41  F i g u r e 4.5  T y p i c a l R e s u l t of Research DMT at McDonald's Farm S i t e - Dense Sand  42  Figure  4.6  T y p i c a l R e s u l t o f R e s e a r c h DMT McDonald's Farm - L o o s e Sand  at  43  I lOOp DEPTH  = 7 m  IOOO 900  -  800  -  0  1  I  I  J  i  i  l  I  0  1.0  2.0  3.0  4.0  5.0  6.0  7.0  Radiol Displacement  Figure  4.7  (%)  I  I  !  8.0  9.0  10.0  AR  Typical Result of Self-bored Pressuremeter T e s t a t M c D o n a l d ' s Farm S i t e ( A d a p t e d f r o m H u g h e s a n d R o b e r t s o n , 1984)  44  5.5 m  1.0  2.0  3.0  4.0  5.0  6.0  Rodiol Displocement  Figure 4 . 8  7.0 8.0 AR (%)  9.0  10.0  T y p i c a l R e s u l t of F u l l - d i s p l a c e m e n t P r e s s u r e m e t e r T e s t a t M c D o n a l d ' s Farm S i t e ( A d a p t e d f r o m Hughes a n d R o b e r t s o n , 1984)  45 For  the  research  dilatometer  M c D o n a l d ' s F a r m , t h e r e was a l m o s t  testing  no e x c e s s  in  pore  equal  to  stress  identical  and  curve the  pressure, u  than  =  cycles  were  tests.  The  from P  to  0  deflated  slopes  stress  total equal  curve  are  s t r e s s curve are to  the  in-situ  total  the  After  P , 0  horizontal K -0.5). o  the expansion  higher  stresses,  Unloaded-reload p h a s e o f some cycles  were  the slopes of the expansion  phase  the  unload-reload  are  expansion,  the  membrane  was  returned to i t s closed p o s i t i o n at a pressure equal t o t h e i n - s i t u pore  pressuremeter  pressure,  characteristics  testings  in  measurements  c l o s u r e of the expansion in  the  during  of  deformation  pressure  total  o f f pressures,  steeper than  and  of  assuming  0  performed  P,.  the  in-situ  0  approximately these  lift  K • t7^+u  considerably  approximately  ( f i g u r e s 4.5 & 4 . 6 ) .  0  expected  (where  were  phases of  p r e s s u r e s . The s h a p e s o f t h e  approximately  m e a s u r e d DMT  the  and  values  l a r g e r by t h e amount  The  pressures  t h e e q u i l i b r i u m pore  effective  water  pore  at  pressures  measured d u r i n g both t h e p e n e t r a t i o n and expansion t h e t e s t . The m e a s u r e d  sand  at  sand. lift  The  are total  u . A l l 0  observed and  in  effective  o f f , 1mm d e f l e c t i o n a n d a t  curves a r e summarized and p r e s e n t e d  Appendix I I I .  The level  slope of the s t r a i g h t expansion  from  P  0  to  P^  phase a t any s t r e s s  i s much l e s s t h a n t h e s l o p e o f t h e  46 unload the  and  soil  reload  during  the dilatometer  elastic  after  the  i n contact  soil  relief  due  cycles. This  to  and  expansion t e s t  the  penetration  process.  micronmeter). soil  a  For  i s deformed  unload-reload  very the  small  plastically;  manner, a t  i s reloaded in  during  figures  (less  than  o f t h e DMT e x p a n s i o n , except  c y c l e s , where t h e s o i l  4.5  response of the s o i l  expansion  majority  stress  I t i s therefore  presented  shows t h a t t h e e l a s t i c  i s exceeded a f t e r  longer  i n s e c t i o n 3.1,  w o u l d d e f o r m i n an e l a s t i c  However, t h e d a t a  4.6 c l e a r l y  i s no  w i t h t h e membrane h a s e x p e r i e n c e d  t o a c e r t a i n e x t e n t , when t h e s o i l  the expansion.  indicates that  t h e p e n e t r a t i o n . As d i s c u s s e d  expected that the s o i l least  observation  during  responds  the  1 the  small  elastically.  4.4 M o d u l u s The  d i l a t o m e t e r modulus, E E  i s defined as:  Q  = 38.2 ( P , - P ) = E / ( 1 - / i )  (4.1)  2  D  0  When d e r i v i n g t h e a b o v e e x p r e s s i o n , M a r c h e t t i 1980) rigid  assumed  the  so t h a t the s o i l  without occurs  that  any s o i l  soil  i s uniformly  pressure  seems t o many u s e r s estimate  of  D  loaded  by  area  during  &  t h e membrane i s the  r e d i s t r i b u t i o n ; a n d no  e x t e r n a l t o the loaded  Though M a r c h e t t i used E  i s elastic;  (1975  the  membrane  deformation expansion.  only as a c o r r e l a t i o n parameter, i t  that the E  D  expression  a s o i l ' s deformation  can give a d i r e c t  m o d u l u s , E, p r o v i d e d  that  47 Marchetti's  assumptions are v a l i d  to a c e r t a i n  reasonable value of the Poisson's r a t i o , Equation  4.1  c a n be r e w r i t t e n  E = (1-M )E  M, c a n be  usually varies  f r o m 0.2  t h e c a l c u l a t e d E r a n g e s f r o m 0.84  From t h e p r e v i o u s d i s c u s s i o n the  assumption  expansion  that the  is  not  assumed.  (4.2)  d  sands, P o i s s o n r a t i o  a result,  a  as:  2  For  e x t e n t and  soil  valid.  E  in Section  is  elastic  However,  t o 0.4.  t o 0.96  D  4.3,  Eg.  i t appears  during  Campanella  As  the  DMT  & Robertson  ( 1 9 8 3 ) o b s e r v e d t h a t t h e d i l a t o m e t e r m o d u l i Eg o b t a i n e d f r o m tests  in  sands  was  close  to  a p p r o x i m a t e l y 25% of t h e f a i l u r e al  (1985)  consolidated ENEL,  the  Young's  moduli  at  load, E 5 . Jamiolkowski  et  2  also  reported  similar  findings  sands  from r e c e n t c a l i b r a t i o n  in  normally  chamber  test  by  Italy.  The  moduli  reasonable  obtained  moduli  for  from  design  Eg  appears  in  sands  to  provide  f o r the  following  reasons: 1.  The  stress  level  during  the  c o n s i d e r a b l y h i g h e r than the i n - s i t u the 2.  soil  i s somewhat s t i f f e r ,  the s t r a i n is  l a r g e and  soil These  level  i s somewhat two  deforms  expansion  stresses,  is  therefore  and  d u r i n g t h e 1mm  the s o i l  DMT  expansion from P  plastically,  to  P,  therefore  the  0  softer.  factors,  when  combined,  appear  to  produce  48 r e a s o n a b l e Young's m o d u l i  The  f o r most d e s i g n p u r p o s e s  i n sand.  s h e a r m o d u l u s , G, i s d e f i n e d a s : G  =  0.5*E/(1+ju)  Substituting equation  (4.3)  4,2  into  equation  4.3,  the  shear  m o d u l u s c a n be d e f i n e d a s : G  Figure  =  4.9  0.5*E *(1-M )/(1+M)  (4.4)  2  D  presents  the calculated  shear modulus  for  t h e s a n d a t M c D o n a l d ' s Farm a s s u m i n g  and  u s i n g e q u a t i o n 4.4  The  soil  deflection)  deformation  f o r the  characteristic from  ranges  (G  from  expansion  an  curve.  unloading,  in  2G.  this  the  Robertson,  The  soil  shear  manner  method i n s t a l l a t i o n  It  Vs  membrane i n both obtained  cycle  a  soil  can  be  of a pressuremeter  i s perfectly  elastic  in  then t h e u n l o a d i n g - r e l o a d i n g c y c l e w i l l have a  slope equal t o obtained  D  curves  shear modulus o f  unload-reload If  to 0.4E ).  D  (stresses  expansion  0.3  t e s t s . Hughes ( 1 9 8 2 ) and W r o t h ( 1 9 8 2 )  showed t h a t t h e " e l a s t i c " measured  y=  dilatometer tests are similar  and shape t o t h e  the pressuremeter  M= 0.2 a n d  from 0 . 3 5 E  curves  profiles  modulus  appears  of  sand  deposits  t o be i n s e n s i t i v e t o t h e  of the pressuremeter  probe.  (Hughes  and  1984).  would  appear  t h a t t h e s h e a r modulus o f sand  McDonald's  Farm  site  unloading -  reloading  can cycles  also of  be the  estimated pressure  at the from  the  expansion  49  G  Figure  4.9  CMPa)  C o m p a r i s o n o f S h e a r M o d u l i f r o m Erj a n d Unload - R e l o a d C y c l e of D i l a t o m e t e r E x p a n s i o n Curve ( S o u n d i n g MRD-1)  from  50 c u r v e s o b t a i n e d from the r e s e a r c h d i l a t o m e t e r .  Results  of  pressuremeter  t e s t s are analysed using the  t h e o r y o f c y l i n d e r i c a l c a v i t y e x p a n s i o n . The pressuremeter  probe  cavity expansion.  simulates  The  kind  a  of  a flat  strain  expansion  d i l a t o m e t e r membrane i s d i f f i c u l t t h e DMT  plain  expansion of  cylindrical  caused  by  the  t o e x a c t l y model. However,  e x p a n s i o n c o u l d be c o n s i d e r e d t o be somewhat b e t w e e n cavity  e x p a n s i o n and a s p h e r i c a l c a v i t y e x p a n s i o n . I t  i s t h e r e f o r e assumed t h a t the s h e a r modulus of also  a  be  estimated  from  the  a  soil  g r a d i e n t o f t h e DMT  can  unload -  r e l o a d c y c l e s o b t a i n e d from the r e s e a r c h d i l a t o m e t e r .  Without  knowing  dilatometer calculate t h e DMT. of  membrane the  cavity  the  simulates, strain  However, t o s i m p l i f y  14%, w h i c h  moduli, G ,  i t  1mm  t h i s problem,  is  assumed.  f r o m t h e s l o p e s o f t h e DMT  are  presented  figure  assumed t o e q u a l o n e - h a l f t h e  to  deflection  a cavity  The  slope  The of  of  unload-reload  unload-reload  4.9.  in  strain  d e f l e c t i o n d i v i d e d by h a l f  calculated  in  the  impossible  o f t h e s a n d a t t h e M c D o n a l d ' s Farm  u r  also  is  l e v e l at the  i s e q u a l t o 1mm  t h e b l a d e t h i c k n e s s (7mm), shear  e x a c t k i n d of e x p a n s i o n t h a t  site, cycles  shear modulus i s  the  unload-reload  cycles.  As  shown  calculated  in  from  figure the  4.9,  the  elastic  shear  moduli  unload - reload c y c l e s are almost  the  51 same  as  the  shear  moduli c a l c u l a t e d  from t h e d i l a t o m e t e r  modulus, Eg.  The  profile c  of dynamic shear moduli of sand *  M c D o n a l d ' s Farm h a s been d e t e r m i n e d (Rice,  1984).  Figure  using  a  (G  seismic  are  o n e - f i f t h o f t h e d y n a m i c s h e a r m o d u l i , G„ . Similar •* max were f o u n d f o r s h e a r m o d u l i  stress level When  obtained  pressuremeter  (Hughes a n d R o b e r t s o n ,  from  self-bored  and  corrected  for  results, 1984).  examining the d i l a t o m e t e r expansion c u r v e s , there  unload-reload  c y c l e and t h e s l o p e of t h e s t r a i g h t  ( f i g u r e 4.11).  It  is  expected  that  m o d u l i o f s a n d c a n be e s t i m a t e d u s i n g t h i s dilatometer instrument. this  about results  e x i s t e d a c o n s i s t a n t r e l a t i o n s h i p between t h e s l o p e  phase  cone  4.10 shows t h a t t h e s h e a r m o d u l i , G,  d e t e r m i n e d from u n l o a d - r e l o a d c y c l e s and from E^  full-displacement  ) at max  t e s t s are performed Moreover,  relationship,  with  using  of  the  expansion  elastic  shear  r e l a t i o n s h i p when  Marchetti's  standard  the shear moduli o b t a i n e d from  the shear moduli c a l c u l a t e d  from  the  E  D  v a l u e s c a n be c o m p a r e d .  F i g u r e 4.11 shows t h a t t h e s l o p e o f cycle  the  unload-reload  i s g e n e r a l l y a b o u t 3.6 t i m e s l a r g e r t h a n t h e s l o p e o f  the e x p a n s i o n from P observed  when  0  to  comparing  P,.  Similar  results  have  been  the slope of unload-reload c y c l e s  and e x p a n s i o n c u r v e s f o r p r e - b o r e d  pressuremeter  test  in  52  C CMPo) 20  40  _L_  5-  60  80  i_  G  from unload-reload  A  Sounding  MRD-1  O  Sounding  MRD-2  •  Sounding  MRD-3  Gmax wave (after  from  100 cycle  shear  velocity R i c e , 1984)  LU Q  10-  •  15'  F i g u r e 4.10  Comparison o f Shear M o d u l i from U n l o a d Reload C y c l e of D i l a t o m e t e r Expansion Curve a n d f r o m D o w n h o l e S e i s m i c S h e a r Wave Veloc i t y  Figure  4.11  R e l a t i o n s h i p between S l o p e of R e l o a d L o o p a n d S l o p e o f P, -  Unload P 0  54 sand ( B r a u i d ,  4.5  1980).  F r i c t i o n Angle The  Farm  p r o f i l e of  has  been  penetration laboratory  friction  test,  self-boring  s u g g e s t an a v e r a g e 0'  profiles  of t h e  determined using  triaxial  Figure  angle  4.13  obtained  by  results obtained pressuremeter  tests  (Robertson,  value  o f a b o u t 40°  presents  the  the  sand at McDonald's  tests  and  1982). These  tests  (figure  three d i f f e r e n t dilatometer  from cone  4.12  ).  friction  angle  using  the  test  following: 1.  Marchetti's  (1981) e m p i r i c a l  2.  Schmertmann's  (1982)  correlation,  method  with  measured at the ground s u r f a c e , 3.  Schmertmann's  (1982)  method  measured d i r e c t l y behind  The the  shape of the  friction  obtained  32°.  This  determined observers  value from  is the  friction  angle  penetration  other  tests.  p r o f i l e s determined The  average  lower  i s about  This agrees with  which are too  usually  low.  by  friction  than  (1981) c o r r e l a t i o n  angle  force  Dilatometer.  (1981) c o r r e l a t i o n  significantly  that Marchetti's  v a l u e s of the  with  similar.  using Marchetti's  force  and  the Research  t h r e e methods a r e v e r y  angle  penetration  values other gives  55  MAXIMUM FRICTION 4* MAX  20  (degrees)  AO  50  _i  LEGEND O  5BPMT-I  • S3PMT-2 LAb CFT  A TZIAY.JAL — PCI  5 -  •a,  IOA  SILT «•  ISA  Figure  4.12  C o m p a r i s o n o f L a b o r a t o r y T r i a x i a l Peak F r i c t i o n A n g l e w i t h CPT a n d S e l f - b o r i n Pressuremeter Values (Adapted from R o b e r t s o n , 1982)  f  15-1  1  g u r e 4.13  1  1  1  <0og)  I  I  1  1  1  1  F r i c t i o n A n g l e s E s t i m a t e d by DMT ( S o u n d i n g MRD-1)  resul  57 Schmertmann's and  Mitchell's  angle of  values  (1982)  necessary  o f s a n d c a n be d i r e c t l y  along be  to  evaluate  the  force acting  t o o b t a i n t h e t h r u s t a t t h e ground s u r f a c e .  Figure  identical. Schmertmann  reality  not  always  the  blade;  be  ground  surface  some  depths  shows  that  the  friction  reducer  valid, clay  the values  using  slightly measured  a r e almost  assumption  along  pushing  made  by  the penetration  rods  i s very  close  However, t h i s  i f the  sand  layer  that  the  Schmertmann's  values (1982)  of  method  are  condition of a x i a l  <j> '. ps  c  1  0  is  friction  d e r i v e d under c o n d i t i o n of p a i n s t r a i n ,  3  usually  may  deposit.  i s worth mentioning determined  force  c o u l d be n e g l e c t e d  especially  the  are only  t h e M c D o n a l d ' s Farm s i t e .  o v e r l a i n by a t h i c k  angle  using  c a l c u l a t e d using the  (1982) t h a t  at  computed  at  the f r i c t i o n  to  dilatometer  instrument,  at  This  the f r i c t i o n  blade.  only  the  are  the  i t i s generally  standard  than the values  0pg  at  i t is  using  performing  higher  friction  thrust  If  tests  When  measured  angle  blade.  could  force  It  the  reducer  shows t h a t t h e #' v a l u e s  behind  behind  (1982) s u g g e s t e d t h a t t h e f r i c t i o n  Marchetti's  behind  friction  c a l c u l a t e d w i t h t h e use  measured  the p e n e t r a t i o n rods behind  possible  The  i s measured a t t h e ground s u r f a c e ,  first  neglected.  4.13  force  force  Schmertmann  was b a s e d on D u r n g u n o g l o  (1975) b e a r i n g c a p a c i t y t h e o r y .  the penetration  penetration  method  - 4° h i g h e r  s y m m e t r y , <f> '  than values ( L e e , 1970).  derived  under  However  as  e x p l a i n e d by Schmertmann using  (1982), f r i c t i o n  wedge p e n e t r a t i o n t h e o r i e s a r e u s u a l l y  on t h e l o w s i d e . F i g u r e s 4.12 a n d 4.13 of  A ' ps  determined  h a v e an a v e r a g e with  the  The similar test.  using  o f 40°, a n d a r e i n  In  expansion  S e c t i o n 4.4,  cycle  similar  to that  it  attempted  Research by  pressuremeter ,  be  agreement  tests.  i n sand a r e e x t r e m e l y pressuremeter  i t h a s a l r e a d y been i l l u s t r a t e d  during  a  dilatometer  to determine  test.  from  expansion  In t h i s  Hughes  et  t e s t s . The  test  t h e tf>' v a l u e s o f s a n d a t t h e  using al  an  section,  from the expansion c u r v e s o b t a i n e d  Dilatometer  that  a  method  (1977)  similar  for  from  to that  self-boring  f r i c t i o n angle a t c o n s t a n t volume,  f o r t h e s a n d d e p o s i t s a t M c D o n a l d ' s F a r m was a s s u m e d t o 36°  (Robertson,  the f r i c t i o n the  curves  from a pressuremeter  M c D o n a l d ' s Farm s i t e  C V  method,  s h e a r m o d u l u s o f s a n d c a n be e s t i m a t e d  unload-reload  proposed  values  ( 1 9 8 2 ) DMT  f o r b o t h t h e d i l a t o m e t e r t e s t and t h e  is  the  excellent  t e s t and l a b o r a t o r y t r i a x i a l  pressure  the e l a s t i c  0  an  conservatively  show t h a t  Schmertmann's  3  determined  v a l u e s o f 0' o b t a i n e d f r o m c o n e p e n e t r a t i o n t e s t ,  pressuremeter  the  angles  1982). W i t h t h e use of t h i s  a n g l e s e v a l u a t e d from the expansion  dilatometer  test  e t a l (1977) uses  the  of a l o g e x p a n s i o n p r e s s u r e v e r s u s l o g c a v i t y  expansion  assumption curves.  has  cv  value,  curves  of  a r e o b t a i n e d and p r e s e n t e d i n f i g u r e  4.14. The method by Hughes  similar  tf>  been  made  for  the  slope  (s)  strain plot.  A  dilatometer  Figure  4.14  Comparison of F r i c t i o n A n g l e from D i l a t o m e t e r E x p a n s i o n C u r v e and from results  DMT  60 The curves  friction  angles  of the d i l a t o m e t e r t e s t s  corresponding  w e r e much  average 0'  a l ' s a p p r o a c h was  obtained similar same  This  dilatometer  once  test  more  in  higher  examining  Robertson  is  very  compariable  angle  of sands can  the in  the  be  estimated  between the F i g u r e 4.16  (1981) to  should  are c l o s e l y  angle  of  friction use  of  preceeding  may and  aims t o i n v e s t i g a t e  made  the  (Robertson  relationship  friction  correlation  correlation values  A similar  D  obtained  the  because  friction  related  to  the  expected  dilatometer  developed  dilatometer  has  by  moduli.  Marchetti's  good e s t i m a t i o n of  was  of  possibility.  discussion,  it  is  & Campanella,  the  angle  give a reasonably  perhaps  to a  profiles  t h u s be  this  i n sands. However, the c o r r e l a t i o n  unsuccessful  a  from the b e a r i n g p r o f i l e s  bearings.  According  Q  E  t o t h e c o n e b e a r i n g p r o f i l e s . The  cone  Marchetti  and  s h a p e of t h e E  shows t h a t t h e v a l u e s o f 0'  The  that  ways s i m i l a r  D  1983)  moduli.  many  the  test.  c o n e p e n e t r a t i o n t e s t s . F i g u r e 4,15  to e x i s t  (1984)  pressuremeter  indication  the p r o f i l e s of I ,  from d i l a t o m e t e r soundings,  the  h i g h <j>' v a l u e s when u s i n g  f u l l - d i s p l a c e m e n t pressuremeter  When  than  u s i n g Schmertmann's  Hughes a n d  gives  sand  expansion  v a l u e p r e d i c t e d u s i n g Hughes  a b o u t 55°.  unacceptably  the  method f o r a n a l y s e s of f u l l - d i s p l a c e m e n t  results.  be  from  values d i r e c t l y calculated  ( 1 9 8 2 ) a p p r o a c h . The et  determined  0'  been found  to  d e r i v e d based  on  1000 800 600 400  LEGEND « • CHAPMAN S D0NALDU98I) + BALOI el 01.(1981) HOLDEN(1976) 1 VEISMANIS (I974) V  200  O PARKIN et al. (1980) A VILLET 8 MITCHELL (1981)  cr Z  100 80  m  UJ m 2  60  Durgunogluft Mitchell (1975) (K = 1.0) •  40  (K = 1-sinoS)  0  /  0  20 U < 0. < a o z re <  /  Proposed correlation  10 8 6 4 Janbu a Senneset (1974)  LU CO  d> s 30°32 W 36°38 40 42° 44° 46° 48° o  i  0.2  i  i  0.4  0.6  ,  <,  o  r  0.8  1.2  T A N G E N T <£'  Figure  4.15  R e l a t i o n s h i p between B e a r i n g C a p a c i t y Number a n d F r i c t i o n A n g l e f r o m L a r g e C a l i b r a t i o n Chamber T e s t s (Adapted from Robertson and Campanella, 1983)  62  1.2-  Schmertmann Marchetti (1982)  (1981)  MRD-1 1- M R D - 2  MRD-3  z <  .8 -  .6 -  2. 1  2.3  2.5 LOG  Figure  4.16  2.7  2.9  CELVcr')  R e l a t i o n s h i p between F r i c t i o n D i l a t o m e t e r Modulus  Angle and  63 limited  test  Marchetti's improved  data  from o n l y  (1981) c o r r e l a t i o n  by  including  (1981) c o r r e l a t i o n of improved, without can  the  users  of f r i c t i o n recent  friction could  I t i s believed  data.  angle  resume  angle  be  I f Marchetti's  for  sand  its original  penetration  could  that  could  be  simplicity  forces. Also,  i t  an a l t e r n a t i v e o f e s t i m a t i n g t h e f r i c t i o n  o r as a c o m p a r i s o n t o Schmertmann's Method.  4.6 OCR a n d K Figure Farm, and  test  more  t h e need o f m o n i t o r i n g  provide  angle  six sites.  n  4.17 p r e s e n t s  determined  the K  0  vaues of sand a t McDonald's  using both Marchetti's  Schmertmann's (1983) method. F i g u r e  OCR d e t e r m i n e d u s i n g b o t h M a r c h e t t i ' s Mayne a n d K u l h a w y ' s f o r m u l a  (1980) 4.18  correlation  presents  the  (1980) c o r r e l a t i o n and  t h a t was m o d i f i e d  by Schmertmann  (1983).  The deposit  geology of the Fraser D e l t a suggests that the at  indicate a K turbulent past  the 0  site  value  i s normally  ranging  environment  seismic a c t i v i t i e s ,  have  been  possible K 1982).  locked 0  value  in  value  c o n s o l i d a t e d , which would  f r o m 0.4 t o 0.5. B e c a u s e o f  the of  the  w h i c h t h e s a n d was l a i d down a n d  additional  into  sand  horizontal  sand.  about  0.6  This to  would 0.7  stress  may  suggest a (Robertson,  64  Figure  4.17  I n - s i t u Earth Pressure a t M c D o n a l d ' s Farm ( S o u n d i n g MRD-1)  Coefficient  Vs Depth  OCR  g u r e 4.18  Overconsolidation McDonald's Farm ( S o u n d i n g MRD-1)  R a t i o Vs D e p t h a t  The  K  and  0  OCR  values  determined using  (1980) c o r r e l a t i o n s were h i g h e r described  above.  It  has  than the a n t i c i p a t e d  been  found  correlations generally overpredicted (Bullock,  1983).  determined using (1983) p r o v i d e  It the  seems  that  approaches  Marchetti's  that  the K the  0  OCR  suggested  and and by  values  Marchetti's OCR K  values 0  values  Schmertmann  a much b e t t e r d e s c r i p t i o n o f t h e s i t e .  67 Chapter  Research  5.1  Dilatometer Testing i n Clayey  Deposits  Scope A field  tests sites 1)  5  in  programme o f  clayey  performing  deposits  was  i n t h e Lower M a i n l a n d  Sea I s l a n d  - McDonald's  research  conducted  of B r i t i s h  at the  Farm  - B.C. H y d r o R a i l w a y C r o s s i n g S i t e  3) L a n g l e y  - 232nd S t . I n t e r c h a n g e ,  lower  site  4) L a n g l e y  - 232nd S t . I n t e r c h a n g e , u p p e r  site  5.1.  general locations  L i k e the McDonald's  Langley  are  g r o u p a t UBC. has  also  o f t h e s i t e s a r e shown i n f i g u r e  Farm  research  Detailed  site, sites  the  investigation  used f o r comparison  1) f i e l d  vane shear  test  three  of  the  Langley  i n t h i s study a r e : (FVST),  3) d o w n h o l e s e i s m i c t e s t ,  5)  full  pressuremeter  displacement  test  pressuremeter  in  (SBPMT), a n d test  sites  techniques.  2) c o n e p e n e t r a t i o n ( C P T ) ,  4) s e l f - b o r i n g  sites  f o r the i n - s i t u t e s t i n g  been made u s i n g v a r i o u s i n - s i t u t e s t i n g  tests  following  Columbia:  2) L a n g l e y  The  dilatometer  (FDPMT).  The  69 5.2 S i t e Geology and D e s c r i p t i o n 5.2.1 McDonald's (As  5.2.2  Farm  presented  i n Section  4.2)  B.C. Hydro Railway C r o s s i n g The  site  Site  i s located approximately  100m w e s t o f t h e B.C.  H y d r o r a i l w a y o v e r p a s s n e a r t h e 232nd S t . e x i t Canada  Highway i n L a n g l e y .  o f an a p p r o x i m a t e l y west-bound  the  5m c u t a d j a c e n t  i s s i t u a t e d a t t h e base to the shoulder  Capilano  the s i t e  of  i s located at the eastern  the  extent  sediments which c o n s i s t of r a i s e d d e l t a i c ,  marine and g l a c i o m a r i n e  sediments and marine shore  (Armstrong,  typical  figure  Trans  traffic.  Geologically of  The s i t e  of the  1978).  A  CPT p r o f i l e  5.2 w h i c h shows t h a t t h e s i t e  deposits  i s presented i n  stratigrahpy  consists  of: 0  - 2.5m m i x e d g r a v e l a n d s a n d f i l l  2.5 -  10m s i l t y silty  10  -  30m s i l t y  clay, overconsolidated with sand l a y e r s clay, slightly  normally sand  Figures clearly  interbeded  overconsolidated to  c o n s o l i d a t e d w i t h some t h i n  silty  layers.  5.3 a n d 5.4 p r e s e n t  t h e DMT r e s u l t s w h i c h a l s o  i d e n t i f i e s the clay deposits.  F i g u r e 5.2  T y p i c a l CPT  P r o f i l e at Langley Railway  Site o  U.B.C. INSITU  TESTING.  T E S T No. LRD-2  LOCRTION:LflNGLEY-RRILURY  INTERPRETED GEOTECHNICAL PARAMETERS. o  SL'C  9  (W) H l d 3 f J S2S  J  SL'8 I  S2'2t  I  I  SL'SI  I  I  SZ'6I I  I  I  TEST DATE:  OCT  7 83  SL'ZZ  i  o  M CO  UJ —. X o Qro  o ^ of Q  CO Q O UJ  ™  CE  CH CO  O CJ  CE x  sc't  F i g u r e 5.3  i i i r sz's si.8 S22i  (W)  Hld30  i srsr  1  S2"6t  r Sc'22  DMT P r o f i l e a t L a n g l e y R a i l w a y S i t e Interpreted Geotechnical Parameters  U.B.C. INSITU  TESTING.  LOCATION:LANGLEY-RAILUAY  INTERMEDIATE GEOTECHNICAL PARAMETERS Si.' t  i  1  CO  S2'S i  1  (W) H l d 3 0 Sc'8 S2'2l SC'SI 1  1  1  1  1  S2'6t i  1  Sc.  i  T E S T No. LRD-2 TEST DATE; OCT 7 8 3  zz 1  ° .  ZD _1 ZD a o C  ( D  _  o  o  az  Lh-U Q _ C LU —'  Cu  l_  *~  -ojb  1 I 1 H  o  o a  1  1  1  1  1  1  1  1  1 1  1  1 1  1  1  1  1  1  1  1  1  1  1  1  1  1  8.0  HORIZONTAL TRESS INDEX  _l 1 — 1 Q  V  S?  4.0  Q  •  CO  o  \  1  1  1  1 1  1  1  1  1 1  1  1 1  I  I  I  I  1  1  1 1  I  1 1  1  I  1  0.25  0.5  c Q  — —— *  .0  PO,PI,Vertical Stress (HPa)  0.15  1  a o o  o  SL'  t  F i g u r e 5.4  i  i i i i i i i S2'S Sc'8 S2'2I Sc'St (M Hld30  i  i i S2'6! 9L  1  '22  DMT P r o f i l e a t L a n g l e y R a i l w a y S i t e Intermediate Geotechnical Parameters  5.2.3  232nd S t . These  two  west-bound Langley, railway exit the  I n t e r c h a n g e - L o w e r and sites  Trans  are  Canada  crossing  to  the  s i t e . The  T h e s e two Langley  formation  glaciomarine  and  lower  and  f i g u r e 5.6,  The the  glacial  crossing  0  -  2  -10m  2m  B.C.  located  i s located  St.  are  in  Hydro  near 4.8m  w e s t e r n e x t e n t of of  the above  fill  that  the  Fort  interbeded  marine,  profiles  for  i n f i g u r e 5.5  and  i s very similar  to  presented  of the  site  and  8m -15m  consists organic  overconsolidated  silty  slightly  stratigraphy -4.5m  lower s i t e  overconsolidated  silty  8  is  the  s e d i m e n t s . T y p i c a l CPT  of  sand the  silty  of: silty  clay  clay  overconsolidated  consolidated  4.5-  232nd  the  overpass.  consists  upper s i t e s  stratigraphy  railway  0  the  a compacted c l a y  232nd S t .  which  i n t e r c h a n g e of  e a s t of  upper s i t e  l i e at the  Sites  respectively.  10 - 20m  The  1 km  i s s i t u a t e d on  sites  and  lower s i t e  h i g h w a y . The  l o w e r s i t e and  at the  Highway  which i s approximately  forms approach from the  the  located  Upper  to  normally  clay with  occasional  lenses. upper s i t e  compacted c l a y overconsolidated  consists  fill silty  clay  normally consolidated  silty  interbeded  lenses.  silty  of:  sand  clay  with  74  Figure  5.5  T y p i c a l CPT P r o f i l e a t L o w e r 232nd S t . S i t e  PORE PRESSURE U Go. of water)  SLEEVE FRICTION (bar)  CONE BEARING Ot (bar)  Dopth Incroment t  F i g u r e 5.6  .025 m  Typical  FRICTION RATIO Rf (X)  Max  DIFFERENTIAL P.P. RATIO iU/Ot  Depth i  INTERPRETED PROFILE  19. 82 m  CPT P r o f i l e a t Upper 232nd S t . S i t e  Figures  5.7  and  upper  lower  identify DMT  t o 5.10 sites.  at  the  ( a l s o , see  5.3  S o i l Deformation Typical  obtained  compacted  silt clay the  pressure the  clay  the  tests  similarity obtained  The  sites.  sandy  the  clearly  However,  silt  soft clay  research Figure  of  the  compacted  material  at the  lower  and  site  Langley.  illustrates  site  Figure  5.12  in  test  compacted  clay  generated  during  the  shape  from push-in  to  as  and  that  the  the  ratio  at  in the  consolidated  clayey  overconsolidated  silty  respectively. exhibit  Similar  to  remarkable  expansion  curves  probes.  highly  negative  penetration  pore  pore pressure  the  phase.  The  overconsolidated pressures  phase of the  magnitude of the n e g a t i v e expansion-deflation  result  in  5.13  pressure  pressuremeter  in  deposits  figure  results the  results show  slightly  i n Langley,  sands,  the  overconsolidation  test r e s u l t s i n normally  lower in  f o r the c l a y  dilatometer are presented  5.11  high  a t M c D o n a l d ' s F a r m and at the  two  u p p e r a p p r o x . 5m  as  at  r e s u l t s in general  expansion curves  with  in  illustrate  results  Characteristics  t o 5.13.  Site  DMT  Appendix I I ) .  using 5.11  site  the very  mud  upper  DMT  that the  upper  occasionaly classify  figures  The  the  the c l a y d e p o s i t s at the  results indicate  clay  present  are  tests.  drops s l i g h t l y s l o p e of the  The  after  straight  U.B.C. INSITU LOCflJION: LflNGLEY-232  TESTING.  T E S T No. LRD-3  ST(LOUER)  TEST DATE:  INTERPRETED GEOTECHNICAL PARAMETERS. SZ'S  Si. 1 -  (W) H l d 3 a SL'8  SZ'ZI  SL'SI  S2*6I  J U N 20 8 4  Si. ZZ  £i LL.  O I—I CO  £ro CJ ^ Ctf Q J  L  J  L  CO O  CE  cr  CO  o CJ  "i  1  1  1  i  r  1  1  r  cn -  I—I UJ UJ ^  SLT  F i g u r e 5.7  —i S2'S  Sc"8  1  S2'2I  1  (W) Hld3Q  r~ Sc'St  S2'6I  SLZZ  DMT P r o f i l e a t Lower 232nd S t . S i t e I n t e r p r e t e d G e o t e c h n i c a l Parameters  U.B.C. INSITU LOCATION: LflNGLEY-232  INTERMEDIATE S L  1  TESTING.  T E S T No. LRD-3  ST(LOUER)  GEOTECHNICAL PARAMETERS , , J  S2 S -1 1  W  SL'8 1 1  )  H  ± 30  TEST  JUN  d  IS c ' S r  S2-2I 1 I  S2 6l -  SL'22  CO Q O CC ro LU 0_ 1- C LU —  o r— cr _i M Q  X _ l LU cr  Q  — I2 — I 2I o  M M CC O X  CO CO LU CC t -  co  I  I  "i  r  £>|l'  I  J  l i  i  i  i  I  I  I  i  1  r  ~i ; — r  I  in  OJ i_  CO —i  _  ro  a. a. b  CL.  3 5  OJ  o  — *  Q _  S3 S -  F i g u r e 5.8  i  SL-8  i (W)  1 S2-2I  1 r SL-SF  Hld30  —-i  1 53*61  1  DATE;  20 84  r~  SUZZ  DMT P r o f i l e a t Lower 232nd S t . S i t e Intermediate G e o t e c h n i c a l Parameters  79  U.B.C. INSITU  TESTING.  LOCATION: L f i N C L E Y - 2 3 2 S T O P P E R )  INTERPRETED GEOTECHNICAL PARAMETERS. o  Si.' l  Sc'ST 1 1  S2'6I 1  1  Si. 1  zz i  1  ra  35.0 1 1  C ro t_ ai  •e-  1  i  i  I  1  1  1  1  1 1  1 1  1  1  1  1  I  1  1  1  i  1  1  1  1  1 1  1  1  1  1  1  1  1  i i  1  20.0  Cu (cohesive)  1 1  40.0  1  1  .0 1  1  1 1  1  1  1  i  40.0  1  i  >  d  \  .0  20 .0  T  i  r  cr  m  1  1  1  1  1  i  i  CO  ;  TERIAL :NDEX  CO —  1  SAND  o  C3  1  UNDR.COHESION (KPa)  o— 6  Id  JSTRAINED MODULUS (HPa)  Hid3a  SZ'EI i !  /  in —  "  1  (W)  Si.' 8 1 i  l_ 3  o  o  1  SS'S  ~-i  5.0 1 1  FRICTION ANGLE  4  in  t  TEST No. LRD-4 TEST DATE: DAR 2 8 4  CO  — -  a  w  d i  Si.' I  F i g u r e 5.9  1 S2"S  1  Si.'  8  I (W)  1  SZ'Zl  Hld30  1  1  SL'SI  1  1 1  S2'6t  Si.  i  zz  DMT P r o f i l e a t Upper 232nd S t . S i t e I n t e r p r e t e d G e o t e c h n i c a l Parameters  Q  _  80  U.B.C. INSITU LOCATION:LRNGLEY-232  TESTING.  T E S T No.  INTERMEDIATE GEOTECHNICAL PARAMETERS Set i  I  LRD-4 TEST DATE:  ST(UPPER)  (W)  S2"S  I  I  Sc'9 i  Hld30  SZ'Zt  MAR 2 8 4  I  I  I  SLSI  I  S2'6t i I  i  Sc'2Z I  I  I  I  l  I  I  I  CO  ZD Q O  CC LU I— LU  ro Q_ C ~  o _ CM  o r—  CX  _1  X LU Q  c r  o  I—I CO M CO CC LU o cc  CO J  1  I  -i  r  in m co t_  CO  ro ro  O '  u  QJ >  a!  C QD _  ___ o  I  Set  I  • I  SZ'S  * I  I  9L'8  I  I  SZ'Zl  (W)  1  Hid3Q  I  SL'St  I  I  SZ'61  I  I  SL'ZZ  F i g u r e 5.10 DMT P r o f i l e a t Upper 232nd S t . S i t e Intermediate G e o t e c h n i c a l Parameters  81  20 D E P T H = 3.6 m I =0.88  K =7.7 D  16 -  £  <  12  H  CO LU  •EFFECTIVE  cr  PRESSURE  CO UJ  cr  TOTAL  CL * P  0-  PRESSURE  0  /•PrOuRnE P R E S S U R E  •Ur  0  Figure  _<  0.2  5.11  OA  1  0.6 DEFLECTION (mm)  0.8  1.0  T y p i c a l R e s u l t o f R e s e a r c h DMT a t U p p e r 232nd S t . S i t e - C o m p a c t e d C l a y  82  20 D E P T H =18.8 m K = 2.0 D  16-  % 12H  CO LU  or  ZD  8-  00 00  TOTAL  LU  PRESSURE  cr. Q_  4PORE  -u,  ^EFFECTIVE  PRESSURE  PRESSURE  00  Figure  0.2  5.12  OA  0.6 DEFLECTION (mm)  0.8  T y p i c a l R e s u l t o f R e s e a r c h DMT a t McDonald's Farm S i t e - C l a y e y S i l t  1.0  20 D E P T H = 19.6m l = 0.26 D  K = 2.8 D  164  a m  124  LU  rr to or  84 TOTAL  LU  PRESSURE  CL  AH  PORE  PRESSURE  EFFECTIVE  PRESSURE  o-  0  Figure  0.2  5.13  0.4 0.6 DEFLECTION (mm)  0.8  T y p i c a l R e s u l t o f R e s e a r c h DMT a t Lowe 232nd S t . S i t e - S i l t y C l a y  expansion slightly clayey  i s much l a r g e r when c o m p a r i n g w i t h t h e r e s u l t s i n overconsolidated  to  normally  consolidated  soft  deposits.  The  results  normally  in  consolidated  l a r g e excess pore effective  the  slightly  soft  pressures  stresses  are  overconsolidated  to  clayey deposits  show t h a t  very  are  and  that  the  both  the  Though  the  generated  very  small  during  p e n e t r a t i o n and e x p a n s i o n phases of t h e  tests.  deformation  f o r the deposits at  characteristics are similar  the Langley the  s i t e s and McDonald's Farm, they  exactly  same.  Typical  results  effective  stress  increases  slightly  small  value,  pressure the  a r e not  at  McDonald's  adjacent during  almost  to  the  Farm center  equal  to  stress  appears  results  o f t h e membrane very  i n Langley  slightly  during  unloading.  show t h a t t h e e f f e c t i v e  t o remain unchanged throughout t h e p r e s s u r e  e x p a n s i o n and u n l o a d i n g decrease  the  z e r o , a t c l o s u r e . The p o r e  expansion phase, and d e c r e a s e s d u r i n g  test  that  t h e expansion and drops t o a  n e x t t o t h e membrane a l s o i n c r e a s e s  Typical  show  in total  p h a s e o f t h e t e s t . The i n c r e a s e  and  s t r e s s a p p l i e d on t h e membrane i s e q u a l l y  m a t c h e d by an i n c r e a s e a n d d e c r e a s e  i n the pore  pressure.  The  clayey s i l t  average  deposit  plasticity  sensitivity  index  at  (Pi)  McDonald's value  o f 5. I t i s n o t e x p e c t e d  characteristics  of  this  of  15  that  material  Farm and  the  would  v a l u e of about  s e n s i t i v i t y v a l u e of about  pressure clays.  exists  I t appears  in soft clay some l i m i t due  to  tip,  the  c l a y a t L a n g l e y which has  theories  for  have  undrained  shown  cavity  relief  pressure the  curves  P  0  is  expansion  of  p r e s s u r e . The  obtained  by  less  than  1mm  limit in soft DMT  phenomena  shape of  limit tend to  the  pressure  the research d i l a t o m e t e r i s  s i m i l a r to the l a t t e r  pressure  c u r v e s from p r e s s u r e m e t e r  expansion  blade  the  would  t h e r e f o r e remarkably  section  of  tests  the  in soft  deposits.  Figure  5.14  and  f i g u r e 5.15  p r e s s u r e m e a s u r e d a t 1mm limit  a  l o c a t i o n o f t h e membrane r e l a t i v e t o t h e  r e - e s t a b l i s h the l i m i t  clayey  PI  i s s u f f i c i e n t to induce pressures e q u i v a l e n t to  However,  expansion  that  that the p e n e t r a t i o n process d u r i n g a  lift-off  pressure.  a  11.  expansion  p r e s s u r e . Because of t h e s t r e s s  the  average  h a v e an i d e n t i c a l  silty  Cavity expansion  an  deformation  behaviour of the s o f t 24 a n d  has  pressures  pressuremeter Langley's  B.C.  from d i l a t o m e t e r t e s t s  measured  tests  (P ) L  Hydro  values are s l i g h t l y  g i v e a comparison  a t the Railway  at  10%  cavity  McDonald's site,  l e s s than the P  r  (Pi)  to  strain  Farm  at  the the from  site  respectively. values  of  The  and P,  McDonald's  86  F i g u r e 5.14  C o m p a r i s o n o f P, a n d Pr a t M c D o n a l d ' s Site  Farm  87  F i g u r e 5.15  C o m p a r i s o n o f P, and Site  P  L  at Langley  Railway  88 Farm, b u t b o t h a r e a l m o s t i d e n t i c a l a t  Also, recorded  Langley.  i t i s i n t e r e s t i n g t o note that the t o t a l  a s t h e membrane r e t u r n e d  to i t s closed position  a l m o s t t h e same a s t h e i n i t i a l  pore pressure  the expansion t e s t  overconsolidated  consolidated  in slightly  soft  clayey deposits. This  that either  the e f f e c t i v e  throughout  the test or the e f f e c t i v e  zero a t c l o s u r e possible  to  of  the  estimate  membrane i m m e d i a t e l y closing  membrane.  the i n i t i a l  pressure  The  pore pressure by  i t may  be  around the  recording  Marchetti's  the  standard  be f u r t h e r i l l u s t r a t e d i n  very  obtained  w i t h t h e r e s e a r c h DMT shows t h a t  generated during  similar  penetration slightly  Measurements  results  the pore pressure  to  that  t h e DMT p e n e t r a t i o n  generated  t e s t . Large pore pressures  overconsolidated  d e p o s i t s and low or n e g a t i v e stiff  unchanged  5.4.  5.4 P o r e P r e s s u r e  is  will  normally  i s due t o t h e f a c t  Therefore,  using  dilatometer. This observation Section  to  s t r e s s drops t o almost  penetration  when  is  a t t h e s t a r t of  s t r e s s appears t o remain  after  pressure  to  during  research  measurements  normally  consolidated  pore pressures  obtained  during  cone  are generated i n soft clay  are generated i n  deposits with high over-consolidation r a t i o .  pressure  the  phase  penetration  The p o r e of  the  d i l a t o m e t e r and a p i e z o m e t e r cone a t t h e f o u r  site  89 studied are presented  The just  in figures  pore pressures the  recorded  by  to  5.19.  the cone  were  measured  cone t i p w h i c h a r e g e n e r a l l y s m a l l e r  than  the pore pressures  m e a s u r e d on  pore  pressures  by  on  behind  5.16  recorded  the c e n t e r  different and  of  pore  the  by  research  membrane.  pressure  dilatometer, i t  obtained  the  the  is  f a c e of the  d i l a t o m e t e r were m e a s u r e d When  observed  that  research  dilatometer  than the pressure  obtained  by  shear  those  observed  of  were  this  of the  soil  than  around  the  that  different  that t h e i r  very  their  s i m i l a r ; hence the  and  experience dilatometer  disturbance  a r o u n d t h e d i l a t o m e t e r and  soil  stiffness,  d e p o s i t s and  pressure  recorded  sensitivity  that this by  the  is  smaller  strain  and  that  than  On  the  that  the less  Jamiolkowski had  been  et a l  somewhat  cone r e s u l t s  the  level  and  during  i s much  of d i s t u r b a n c e  This  the  feels  pressure  tip.  concluded  However,  expected.  on  cone  Boghrat  same l e v e l  writer  cone  more u n i f o r m  around the d i l a t o m e t e r  (1985) r e p o r t e d and  lower  cone.  the  dilatometer  penetrating  observation,  two  are g e n e r a l l y  the  appreciably  disturbance that  pore  the  cone.  around  o c c u r r i n g around the  basis  the  the  by  (1982) i n d i c a t e d t h a t t h e v o l u m e t r i c  strain  penetration  comparing  measurements r e c o r d e d  the  Boghrat  t i p . The  might of  were be soil  the cone would depend  and  plasicity  the  reason  cone i s l a r g e r  of why  the  tested  the  t h a n t h a t by  pore the  90  U  Figure  5.16  CBorO  Pore P r e s s u r e During P e n e t r a t i o n D i l a t o m e t e r a n d Cone T e s t i n g s a t Farm S i t e  of McDonald's  91  Figure  5.17  Pore Pressure During P e n e t r a t i o n D i l a t o m e t e r a n d Cone T e s t i n g s a t Railway S i t e  of Langley  92  Figure  5.18  Pore P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r a n d Cone T e s t i n g s a t Lower 232nd S t . S i t e  93  U  CBarO  -2 o-f-  4  6  _1_  Research  DMT  Piezometric  Cone  5H  a. UJ a  ioH  15-  Figure  5.19  Pore P r e s s u r e During P e n e t r a t i o n of D i l a t o m e t e r a n d Cone T e s t i n g s a t UpDer 232nd S t . S i t e  dilatometer  a t M c D o n a l d ' s Farm a n d  are almost and  PI  why  i d e n t i c a l at the Langley  values  sensitivity  of the s o i l  will  reach  t h e two  measurements  s i t e s where  sensitivity  a r e much h i g h e r . S o i l w i t h h i g h  i t s failure  s t a t e even under  a  very  small disturbance.  F i g u r e 5.20 phenomena  presents  around  5.21  after  flat  50% d i s s i p a t i o n cone.  2  same  of e x c e s s  next  The  dilatometer  blade.  rate  related  When s t u d y i n g t h e s o i l 5.3,  it  was  tests  pressure  recorded at c l o s u r e (P )  in  of  show t h a t  i s slower  t o the  shape  expansion F i g u r e s 5.22 comparing  pore (ie.  pressure the  t o 5.25 the  pore  the  around  the  pore  that  slightly  pore further  around pressure  around  of  the  the  total  recorded  by  to  before  penetration).  i l l u s t r a t e this observation  pressure  in  very close to  membrane  during  the  pressure  overconsolidated  the  a  flat  characteristics  n o r m a l l y c o n s o l i d a t e d s o f t c l a y e y d e p o s i t s was initial  of  t w i c e t h a t of  dissipation  deformation  observed c  Farm.  i n percentage  i s approximately  slower  i s probably  the  piezometer  McDonald's  results  pore  a  t o t h e membrane i s s m a l l e r . Time f o r  f o r t h e DMT  dilatometer  Section  dissipation  d i l a t o m e t e r than around the cone, though  pressure generated  10cm  the  at  r e s u l t s of d i s s i p a t i o n  r a t e of d i s s i p a t i o n the  pressure  penetration,  presents  d i s s i p a t i o n . The  pore  t h e r e s e a r c h d i l a t o m e t e r and  cone, immediately Figure  the  the  by  research  10-  T  1 I I I I II  1—I  9-  I I I I I I  1 m  1  1 I I I I I  A  RDMT@20.4  DEPTH  O  CONE @ 2 1 . 0 m D E P T H  876-  L a a  54-  O A O  3-  A O  CD  21-  .1  1  1 I I  Mil 1  F i g u r e 5.20  T  1  1 I I I I II  T  1 I I I I I  10  100  TIME (min)  D i s s i p a t i o n o f Pore P r e s s u r e Around R e s e a r c h D i l a t o m e t e r a n d P i e z o m e t r i c Cone a t M c D o n a l d ' s Farm S i t e ID Ln  100  -  —"  i i  i u i A  r n  I  i  i  I  o  A O  8  i i i 111  i  i  i  i i i 11  i  R D M T (5) 20.4 m D E P T H CONE @ 21.0 m DEPTH  •  °* o  A  60  O  -  *  o A O O  A  20-  A  _  A  •  i  i  .1  i i i IIi  i  i  i  i ri i n  10  i  A  1  1 1 1*1 I I  100  TIME <mln>  F i g u r e 5.21  Degree of D i s s i p a t i o n Around R e s e a r c h D i l a t o m e t e r a n d P i e z o m e t r i c Cone A t M c D o n a l d ' s Farm S i t e CA  97  U  &  Pc  (Bar)  -2  1  \  1  ^  20-  1 K  1  £  -  \%  a.  UJ  a  1 1I 1t  2S-  I  i  l  r  Closing  pressure,  p.p. a f t e r d i s s i p a t i o n  1  30  Figure  Measured pore p r e s s u r e by research dilatometer  5.22  Comparison of C l o s i n g P r e s s u r e and Pore P r e s s u r e During P e n e t r a t i o n of D i l a t o m e t e r a t M c D o n a l d ' s Farm S i t e  Figure  5.23  C o m p a r i s o n o f C l o s i n g P r e s s u r e and P o r e P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r at Langley Railway S i t e  Figure  5.24  Comparison of C l o s i n g P r e s s u r e and Pore Pressure During P e n e t r a t i o n of Dilatometer a t Lower 232nd S t . S i t e  100  Figure  5.25  C o m p a r i s o n o f C l o s i n g P r e s s u r e and P o r e Pressure During P e n e t r a t i o n of Dilatometer a t U p p e r 232nd S t . S i t e  101 dilatometer  during  penetration  with  the  total  pressure  measured a t c l o s u r e , P , a t each of the f o u r s t u d i e d  The  results  i n f i g u r e s 5.22  f i g u r e s 4.5 a n d 4.6 c l e a r l y and  soft  (P )  are very  and  that  c  t o 5.25 a n d t h e r e s u l t s i n  show t h a t , f o r  c l a y e y d e p o s i t s t e s t e d , t h e DMT similar  these  t o t h e DMT  are similar  the  highly  p e n e t r a t i o n pore  t o the pore pressures  overconsolidated  pore pressures  d u r i n g DMT  the c l o s i n g pressure  5 . 5 Undrained Shear The  (P ) highly c  field  pressures pressures recorded  shows t h a t  soils, be  sand  in  the measured negative  and  positive.  Strength  undrained  the  clayey  p e n e t r a t i o n can  shear  strength,  deposits at the four research using  clean  closing  d u r i n g c o n e p e n e t r a t i o n . H o w e v e r , f i g u r e 5.25 stiff  sites.  vane  s i t e s have  shear  s t r e n g t h of the c l a y e y s i l t  Su,  test  of been  the  cohesive  investigated  (FV). In a d d i t i o n , the  a t McDonald's Farm has a l s o been  determined using the s e l f - b o r i n g pressuremeter t e s t  (SBPMT).  Figures  with the  undrained  5.26  t o 5.29 p r e s e n t  shear  these  results together  s t r e n g t h d e t e r m i n e d f r o m t h e DMT  e m p i r i c a l c o r r e l a t i o n p r o p o s e d by M a r c h e t t i  The  field  vane  and  self-boring  r e s u l t s produce s i m i l a r v a l u e s  using the  (1980).  pressuremeter  o f Su a t M c D o n a l d ' s F a r m .  Su p r o f i l e s d e t e r m i n e d by t h e f i e l d  test The  vane and t h e d i l a t o m e t e r  102  Su  20 1  Q 15-J  Figure  5.26  40 1  <KPcO  60 1  80 1  100 1  120  C o m p a r i s o n o f U n d r a i n e d S h e a r S t r e n g t h From DMT a n d f r o m Vane T e s t A t M c D o n a l d ' s F a r m Site  103  Su  20  40  <KPa>  60  80  100 I  —  DMT ( M a r c h e t t i . 1980)  A  FIELD  120  VANE  a. ui a ioH  15-  F i g u r e 5.27  C o m p a r i s o n o f U n d r a i n e d S h e a r S t r e n g t h From DMT a n d f r o m Vane T e s t A t L a n g l e y R a i l w a y Site  104  F i g u r e 5.28  C o m p a r i s o n o f U n d r a i n e d S h e a r S t r e n g t h From DMT a n d f r o m V a n e T e s t A t L o w e r 232nd S t . Site  105  Su <KPa>  20  o4  40  _J_  60  80  _JL_  100  120  C l a s s i f i e d as silt  by  5H  DMT  r  A A  B  A A  —  DMT  ( M a r c h e t t i . 1980)  A  FIELD  VANE  ioH  15-  F i g u r e 5.29  C o m p a r i s o n o f U n d r a i n e d S h e a r S t r e n g t h From DMT a n d f r o m Vane T e s t A t U p p e r 232nd S t . Site  are DMT  similar  a t a l l of the f o u r s t u d i e d s i t e s .  r e s u l t s a r e s m a l l t h a n b o t h t h e FV and  a b o u t 30% a t M c D o n a l d ' s Farm and  slightly  values  three  by  about  comparisons c l e a r and  25%  shown  at  in  figures  the  undrained  field  vane.  Figure  5.30  shear  c o r r e l a t i o n between the Kg.  limited  The  c o r r e l a t i o n was  amount  unconfined  of  data  compression  t h e DMT  and  from tests  Su  sites.  The  do n o t g i v e a values  relate  using  (1980)  the  and  FV  which  have a s e n s i t i v i t y  of about  the  empirical  horizontal  stress  shear  unconsolidated  might  pore  pressure  response  1 to  of  the  soil  a f f e c t s the v a l u e s of P  case,  may  underestimated  be  the  reason  which  o f 5, and  and  0  why  failure  Kg. the  If this DMT  the which  i s the results  o v e r e s t i m a t e d t h e Su a t  h a v e an a v e r a g e s e n s i t i v i t y  11 a t t h e r a i l w a y s i t e and  respectively.  at  can a f f e c t  t h e Su a t t h e M c D o n a l d ' s F a r m s i t e w h i c h  an a v e r a g e s e n s i t i v i t y sites  3.  since sensitivity  consequently this  mainly  undrained  a p p e a r s t h a t t h e r e l a t i o n s h i p b e t w e e n Su & Kg sensitivity  were  tests,  sites  d e p e n d on  data  vane  a  from  also  and  FV  determined  field  i n l a b o r a t o r y . The  Langley  than the  b a s e d on t h e l o w e r b o u n d o f  tests  It  by  larger  Marchetti's  Su/a^  values  SBPMT  t o 5.29  strengths  shows  the  Langley  5.26  g e n e r a l p i c t u r e o f how  with  index  the  However,  the  upper  &  has the  v a l u e s of  lower  9  sites,  107  T—i—i—r  (b)  i  •  r  77f  FV  7^ ^r-=a22(0.5K )CXy  35  D  Su 1.0 FV  / A  A <>/  FOR FV  I 10.9 D  FV  05  uu  FV  / '  Q2\  uu  »  3  4 5  '  I  L  20  10  A  - F V with sensitivity = 1.5 to 2  O  -  F V with sensitivity = 2 to 3  FV - F i e l d Vane UU - Undrained unconsolidated U • Unconfined Compression  Figure  5.30  30  Triaxial  C o r r e l a t i o n b e t w e e n K a n d Su/av* ( A d a p t e d f r o m M a r c h e t t i , 1980) D  108 Figure the  presents  t h e r e l a t i o n s h i p b e t w e e n Kg  r a t i o o b t a i n e d from the f i e l d  vane  research  sites.  A v e r y good c o r r e l a t i o n  i s observed  the  and Kg  f o r the c l a y d e p o s i t s at Langley. A l s o ,  is  Su/o^  5.31  Su/V  interesting  to note that  t h e r e a p p e a r s a good  b e t w e e n t h e d a t a f r o m M c D o n a l d ' s Farm a n d upper  5m  of  compacted  are  Section  dominated  penetration limit  5.3, by  in  pressures  not  surprising  of  that  cavity  from the measurement P ,  parameters  such  0  s t r e s s h i s t o r y as paper. soils,  However, since  can  be  by  Marchetti  any c o r r e l a t i o n  factors  will  to the It  stress  is  index,  correlated  to  stiffness  and  in  his  (1980)  n o t be u n i q u e  such as s e n s i t i v i t y  P,  during  expansion.  as u n d r a i n e d s h e a r s t r e n g t h , suggested  the  and  0  developed  the h o r i z o n t a l  Kg, d e r i v e d  i t  5.  s o f t c l a y e y d e p o s i t s and a r e s i m i l a r  p r e s s u r e f o r some f o r m  therefore  between  s i t e of L a n g l e y ,  b e e n shown t h a t b o t h P  pore  four  correlation  s e n s i t i v i t y v a l u e of  i t has  the  the  t h e d a t a form  c l a y a t the upper  which has a s i m i l a r average  In  at  and  p l a y s an  for a l l  important  role.  Figure the  Su  5.32  shows b o t h P / S u and Pi;/Su p r o f i l e s , 0  d e t e r m i n e d by t h e f i e l d  i s o b s e r v e d t h a t no s i n g l e undrained two  at  McDonald's  sites.  f a c t o r can a p p l y t o d e t e r m i n e  shear s t r e n g t h d i r e c t l y  f a c t o r s are about  depth  vane f o r t h e f o u r  using  either  from P  10 a n d a r e r e l a t i v e l y Farm  where  the  0  or P , .  consistant  clay  is  It the The  with  normally  109  10-  i  i  I  I  I  I I I I  1  1  1—I—I  I  Sensitivity = 4 to 5 in c o m p a c t e d c l a y f i l l at upper 2 3 2 n d S t . . S i t e  I l_  \  / ID C  o  .2. 3 in  1-  O  Langley - Railway  A  Langley - lower 232nd  StSite  •  Langley - upper  St. Site  McDonald's  Site  232 nd  Farm  M a r c h e t t i (1980) (l =0.9) D  . 1  1  1—i—i  i  I I  1  i'  10 KD  Figure  5.31  R e l a t i o n s h i p between K  D  and  1  1—I  I I I  100  Su(vane)/aJ  110 PO/Su  &  Pl/Su  10  PO/Su  IS  0  25  s  &  10  15  20  25  20  2S  f O  - o -o ~o  - o  0  **o *°~o --a  -  0  o o - o - o - o o 0  •» o -  o -  :8 -o  o 0  * °-o * ° » o McDonald's Form  *- 8  -  10H-  0  -  b Su(vane)  (  1  o  /  ° Vsufvane)  .-o° *°-o • o - o  -  Railway Site  0 Su(vane)  l  /  O *1 'sutvane)  o  -  o »  1  I  IS  10  IS  J0  2S  20  O - o  1  5  1  10  6  0  IS  '  - O  - o —ao •«• o o - -o o --oo ~o o - •>• o o -  -  o  - e o - o- o » o- o — as  - o  - o - o o - - o o o o ~o o  O  •H-  0  CD  o - -» o o - o  -  » -O  - -o o  o - -»o o *• o - o - o  o  10-  Lower 232nd St. Site  Upper 232nd St. Site  0 Su(vane) - * o -° o O ^Sutvone) f  Pl/Su  /  o -o  o o  F i g u r e 5.32  o  •*- "o'Sutvane) o  o o  P /Su(vane) 0  °  IS  Profiles  1  1  VsuWane)  1  l  consolidated. t o 20  and  slightly  increase  with  depth  overconsolidated  observation and  The f a c t o r s a t t h e L a n g l e y  P,  to  as  sites  the  normally  range from 5  deposits  become  consolidated.  s u g g e s t s t h a t t h e c o r r e l a t i o n s between P  This &  0  & Su c o u l d a l s o d e p e n d on t h e s t r e s s h i s t o r y  Su  of the  site.  5.6  Shear Modulus As d i s c u s s e d  the  cohesive  estimated  i n Section  deposits  from  the  at  4.4  f o r sands, shear moduli  the  four  dilatometer  research  modulus,  Eg  sites  of were  using  the  unloaded  and  equation: G = 0.5*E *(1-M )/(1+M)  (5.1)  2  d  w i t h n = 0.5  Also, reload  i n Section  Figure  from at  during  at  the  t h e computed  the four  the  and  research  i n t h e r a n g e o f 500 - lOOOkPa 300  assumptions  required  at  measured  shear  s i t e s . The G  values  McDonald's  Farm,  - lOOOkPa w i t h a maximum o f a p p r o x i m a t e l y Langley  considerably  sites.  smaller  with the  4.4.  5.33 p r e s e n t s  profiles  from  t h e e x p a n s i o n phase o b t a i n e d  d i l a t o m e t e r . D e t a i l s on  were g i v e n  modulus  condition.  s h e a r m o d u l i were d e t e r m i n e d  cycles  research  are  f o r undrained  than  Theses the G  values, values  and  4000kPa  however,  are  determined  from  112  o 15-*-  250  1000 1  S00  750 1000 1250 1S0Q 17S0 2000 Railway  McDonald's Form  Site  — From E w i t h ; u = 0.5  — From E wi!h >u=0.5  o  D  •  From unload-reload cycle  5-  20-  NOTE 20000 to 40000 kPa NOTE max 60000 to 80000 kPa 6  v o r i e s  ,  r  o  m  10-  25-  IS 0  0—  500  1000  2000  2500  0 0-±  Lower 232nd S i . Site — From E w i t h >u=0.5 0  •  From unload-reload cycle  Upper 232nd St. Site — From E withAJ = 0.5 D  •  From unload-relood cycle  NOTE 10-  G  m Q X  varies from  20000 to 40000 kPa  15-  20-  1S  F i g u r e 5 . 3 3 E s t i m a t e d S h e a r M o d u l i f r o m En a n d from Unload - Reload C y c l e of D i l a t o m e t e r Expansion Curve  the  downhole  seismic  cone  t e s t i n g . The v a l u e s o f G  M c D o n a l d ' s Farm a r e a p p r o x i m a t e l y 60MPa 80MPa  at  30m d e p t h . The v a l u e o f G  a r e a p p r o x i m a t e l y 20MPa n e a r  at max  3  m a x  t h e ground  at  15m  depth  at the Langley  and sites  s u r f a c e a n d 40MPa a t  15m d e p t h . The modulus the  shear or  determined  expansion  measured  G  max  curve  penetration,  from  the dilatometer  from t h e u n l o a d and r e l o a d c y c l e o f i s considerably  smaller  than  the  J  are  with  sheared  very  zero e f f e c t i v e  membrane  calculated  . Since the s o f t cohesive c l a y e y d e p o s i t s next  t o t h e membrane  almost  modulus  to  large  stress,  complete  failure  during  pore p r e s s u r e g e n e r a t e d and  i t i s not s u r p r i s i n g  that  e x p a n s i o n t e s t c a n n o t g i v e a good e s t i m a t e o f t h e  s t i f f n e s s of the undisturbed  5.7 OCR a n d K  soil.  n  F i g u r e 5.34 p r e s e n t s t h e o v e r c o n s o l i d a t i o n r a t i o s , predicted  by  based  normalized  on  Schmertmann's  undrained  overconsolidation ratio 1978)  OCR,  t h e d i l a t o m e t e r and f i e l d vane shear t e s t s a t  t h e f o u r s i t e s . The OCR v a l u e s d e r i v e d f r o m t h e were  the  shear  proposed  FV  correlation  strength  from l a b o r a t o r y t e s t s .  ratio  results between and  (Schmertmann,  114  F i g u r e 5.34  O v e r c o n s o l i d a t i o n R a t i o Vs  Depth  The silt  geology  deposit  1. B o t h  o f McDonald's Farm s u g g e s t s  that the clayey  i s n o r m a l l y c o n s o l i d a t e d w i t h an OCR e q u a l t o  t h e d i l a t o m e t e r and f i e l d  vane r e s u l t s g i v e  a  very  good d e s c r i p t i o n o f t h e s t r e s s h i s t o r y a t McDonald's Farm.  The silty  geology clay  depth.  in  overconsolidated The  field  vane  of  dilatometer  results  indicate  sites  the  suggests  upper  approx.  the  to  normally  results  stress  appear  to  a b o u t 2. The r e a s o n  consolidated  with  to  at  give  the  overestimate  a  good  sites.  the  The  OCR  and  h a s an OCR o f  f o r t h i s d i s c r e p a n c y may s t e m  from  the which  l e a d s t o a h i g h p r e d i c t i o n o f OCR f o r t h e d e p o s i t . The  high  D  horizontal  is  s t r e s s i n d e x , K^, i s h i g h ,  K  the  10m  then  appear  history  the  and  t h a t t h e d e p o s i t a t 15m t o 20m d e p t h  that  that  ( o r compacted a t t h e upper s i t e ) ,  description  fact  Langley  deposits  overconsolidated slighty  of the  v a l u e s a p p e a r t o be due t o t h e much h i g h e r p o r e  generated  a r o u n d t h e membrane a s a r e s u l t  of t h e  pressures high  soil  sensitivity.  B a s e d on t h e e s t i m a t e d OCR f r o m t h e and  assumed PI v a l u e s o f t h e d e p o s i t s , K  s i t e s were e s t i m a t e d u s i n g B r o o k e r relationship  (Brooker  the above e s t i m a t e d K dilatometer  testing.  and  field  vane  tests  values of the four  0  Ireland's  proposed  & I r e l a n d , 1 9 6 5 ) . F i g u r e 5.35 c o m p a r e s 0  with A  the  good  M c D o n a l d ' s Farm. F o r t h e L a n g l e y  values  predicted  comparison sites,  is  by  obtained  the at  the values p r e d i c t e d  116  Railway Site  McDonald's Farm  — DMT (Marchetti. 1980)  — DMT (Marchetti, 1980) O FIELD VANE (Brooker and Ireland. 1965), PI = 15 V.  0  O FIELD VANE (Brooker and Ireland, 1965) PI = 24 V.  I  0  O o  J\ o J 0 J O0 <[ O 1) o o o  °<r o  10-  8  8  -  o  8 8  8 8 o o  /  0  \  o  (  0  i  i  IS0  1  J—.  Lower 232nd St. Site  Ko  *,  1  i  i  ?  <  Upper 232nd St. Site  — DMT (Marchetti,1980) O FIELD VANE (Brooker and Ireland, 1965). PI = 24V.  —  DMT (Marchetti.1980)  O  FIELD VANE (Brooker and Ireland, 1965). PI = 24 V.  0  oo  O Oy  °/  0  <m /  °  of  IS'  F i g u r e 5.35  I n - s i t u Earth Pressure  J  Coefficient  i  i  Vs Depth  117 by t h e  dilatometer  because K  0  tests  are  slightly  higher.  i s a l s o c o r r e l a t e d to the h i g h K .  This  is  118 Chapter 6  Summary and C o n c l u s i o n  6.1  Observations D a t a h a v e been r e c o r d e d  research curves are  dilatometer.  obtained  very  during  similar  and  The the  presented  measured  on  the r e s u l t s obtained  c l e a n sands and s o f t and s t i f f observation 1.  UBC  expansion obtained  pressuremeter  tests.  w i t h t h e UBC r e s e a r c h clayey s o i l s ,  the  DMT i n  following  h a v e been made:  Dilatometer  tests  i n clean  sands a r e d r a i n e d  the p e n e t r a t i o n and e x p a n s i o n excess pore pressures 2.  membrane  expansion curves  from s e l f - b o r i n g o r f u l l - d i s p l a c e m e n t Based  the  pressure-deflection  dilatometer  to the pressure  using  Dilatometer undrained  tests  during  with  both  almost  no  generated.  in both  phases,  during  clayey the  deposits  penetration  ( J Q * 0.6) a r e and  expansion  overconsolidated  (K <3.0)  phases. 3.  In s o f t , normally clayey  soils,  to slightly  t h e DMT  results  D  ( P , P i ) a r e dominated 0  l a r g e p o s i t i v e excess pore pressures  and s m a l l  by  effective  s t r e s s e s a r o u n d t h e membrane. 4.  In  stiff,  negative  heavily pore  overconsolidated  pressures  can  p e n e t r a t i o n of the d i l a t o m e t e r .  be  clayey  soils,  generated  during  The  pore  pressures  dilatometer are  generated during p e n e t r a t i o n of t h e  very  similar  to  the  pore  pressures  ( P ) i s very  similar to  g e n e r a t e d d u r i n g cone p e n e t r a t i o n . The  c l o s i n g pressure  f r o m a DMT  c  t h e DMT p e n e t r a t i o n p o r e p r e s s u r e soft clayey deposits  static The  pressure  n  n  represents  dissipation 10cm  pressure  is  slower  for a  f o r t h e DMT  DMT  test  and  sands,  and  the  of the  (u ). 0  during a stop i n  than  (CPTU).  i s approximately  f o r a 10cm  2  Time  f o r 50%  twice  that of a  cone.  2  During  t h e membrane e x p a n s i o n p h a s e o f a DMT,  adjacent  t o t h e membrane a p p e a r s t o d e f o r m  However, e l a s t i c  behaviour  unloading-reloading 0' v a l u e s  is  values  behind  the  indicates friction sands.  observed  the  soil  plastically. during  small  cycles.  computed u s i n g t h e pushing  a t t h e g r o u n d s u r f a c e were o n l y 0'  generated  d i s s i p a t o n of excess pore pressures  p i e z o m e t e r cone p e n e t r a t i o n  The  are  a good a p p r o x i m a t i o n  equilibrium piezometric  penetration  sands  ( I < 0 . 6 , K <3.0). In clean  a l m o s t no e x c e s s p o r e p r e s s u r e s closing  for clean  higher  than the  c a l c u l a t e d u s i n g t h e f o r c e measured  directly  dilatometer that  reducer  there  slightly  f o r c e measured  (McDonald's islittle  Farm  Site).  rod f r i c t i o n  during dilatometer penetration  This  after the i n clean  120 6.2  P r e d i c t e d P r o p e r t i e s o f Sand The d i l a t o m e t e r t e s t i n g  gave good e s t i m a t e s of t h e  p r o p e r t i e s of t h e sand a t McDonald's  The DMT logging  clearly classifies  purposes.  The  u s i n g Schertmann's  friction  f r i c t i o n angle, K  (1982,1983)  angle  and  (GPE, I n c . , DMT  a to  dilatometer  value of poisson  correlations from o t h e r  determined  are  in  testing  high  estimate  on  OCR  those  reported  in  the  of shear  modulus  (  m o d u l u s c a n be E D  )*  The d i l a t o m e t e r t e s t i n g of  good  methods.  and K . 0  of The  literature  computed  using a reasonable  from  assumed  ratio.  P r e d i c t e d P r o p e r t i e s of Clayey  estimate  a n d OCR  D i g e s t S e r i e s , and B u l l o c k , 1983).  A good e s t i m a t e  6.3  0  (1980,1981) c o r r e l a t i o n s gave a low e s t i m a t e  r e s u l t s are s i m i l a r  the  Farm.  t h e sand d e p o s i t f o r g e n e r a l  agreement w i t h v a l u e s determined Marchetti's  soil  the  soil  Deposits  i n g e n e r a l gave a  p r o p e r t i e s "of  the  rather  poor  studied clayey  deposits.  Although  the  DMT  in  general  clearly  clayey d e p o s i t s , i t i n d i c a t e d the clayey  identified  silt  t h e compacted c l a y as s i l t  as  McDonald's  Farm,  at the  upper s i t e ,  and o c c a s i o n a l l y t h e v e r y s o f t c l a y  as  clay  the at  Langley mud  at  121 the Langley  At  the  estimate  the  M c D o n a l d ' s Farm s i t e , t h e DMT g a v e a v e r y  good the  0  shear  s t r e n g t h when c o m p a r e d w i t h t h e f i e l d  since the Marchetti's lower  At  sites.  o f OCR a n d K . The DMT, h o w e v e r u n d e r e s t i m a t e d  undrained (Su)  r a i l w a y and lower  ( 1 9 8 0 ) c o r r e l a t i o n was  bound o f some s c a t t e r e d  the Langley  and  undrained  high  sensitivity  sites,  vane  based  on  t h e OCR,  K  data.  t h e DMT o v e r e s t i m a t e d  0  s h e a r s t r e n g t h . T h i s m i g h t be r e l a t e d t o t h e of the c l a y d e p o s i t s a t t h e Langley  since Marchetti's  sites,  ( 1 9 8 0 ) c o r r e l a t i o n s were b a s e d on d e p o s i t s  of low s e n s i t i v i t y .  Since  i n soft clayey deposits  the s o i l  membrane i s s h e a r e d t o c o m p l e t e f a i l u r e with  very  large  pore  pressure  during  1.  f o r Future  modulus  unload-reload the  low i n comparison  Research  I t h a s been shown t h a t a g o o d e s t i m a t e shear  effective  values,  max  6.4 S u g g e s t i o n s  to the  penetration  and almost zero  s t r e s s e s , t h e d i l a t o m e t e r m o d u l u s was v e r y to measured G  adjacent  of  sand  can  be  of  the  measured  c y c l e of the expansion curve  elastic  from  the  obtained  with  research d i l a t o m e t e r . I t appears that there e x i s t s a  consistant  relationship  between  the  slope  of  the  122 unload-reload expansion study  cycle  phase  the  for  so  slope  in  sand.  of  that  t h e s l o p e of  the  DMT  possibility  relationship from  and  of  the  I t i s suggested  further  establishing  a shear modulus can  the  straight  straight  be  expansion  to a  estimated  when  using  t h a t E^ a p p e a r s t o be a  useful  Marchetti's dilatometer. 2.  It  has  been i l l u s t r a t e d  p a r a m e t e r i n sand and with  the f r i c t i o n  of  and E  0'  limited  was  D  provide  good  correlation correlation  u n s u c c e s s f u l , probably because  of  the  to refine  this  data. This  can  data. I t i s suggested  i n c l u d i n g more u p - t o - d a t e  users  friction  a  a n g l e . M a r c h e t t i ' s (1981)  available  c o r r e l a t i o n by  p r o b a b l y has  an a l t e r n a t i v e method f o r e s t i m a t i n g t h e  angle  of  sand  or  as  a  comparison  to  Schmertmann's ( 1 9 8 2 ) m e t h o d . 3.  It  has  been  shown  that  the  c l o s i n g p r e s s u r e of  membrane, P , i s v e r y c l o s e t o t h e i n i t i a l before  the  estimating penetration  expansion the of  generated the  recommended t o f u r t h e r the  estimated  test.  This pore  pore  the  development  pressure  penetration 4.  of  the  a  way  pressure  during  Future  data  to  of  work  is  utilize  improve  the  in  clay,  similar  piezometer  cone  i n cone  testing.  Since the d i l a t o m e t e r t e s t i n g displacement  pressure  t h i s phenomenon and  correlations for dilatometer testings to  provides  dilatometer. study  pore  the  pressuremeter  i s very s i m i l a r testing,  to a  full  i t i s recommended  that  the  dilatometer  development i n f u l l to  sharpen  the  testing  displacement  dilatometer  u n d e r s t a n d the d i l a t o m e t e r Since  the A r e a d i n g  related deposits, procedure DMT.  to  can  (P ) 0  make  use  pressuremeter correlations  and  for  work c a n  performing  the  testing  and  better  test. C reading  (P ) c  the p e n e t r a t i o n pore p r e s s u r e s  further  of  be c a r r i e d  out  dissipation  are  closely  in soft  clay  to e s t a b l i s h tests  using  a  the  124 REFERENCE  Armstrong, J.E., (1978), F r a s e r Lowland, British Canada, B u l l e t i n 332.  "Post Vachon W i s c o n s i n G l a c i a t i o n , Columbia", G e o l o g i c a l Survey of  B e l l o t t i , R., B i z z i , G., G h i o n n a , V., J a m i o l k p w s k i , M., Marchetti, S., a n d P a s q u a l i n i , E., (1979), " P r e l i m i n a r y C a l i b r a t i o n T e s t s o f E l e c t r i c a l Cone a n d F l a t D i l a t o m e t e r i n S a n d " , V I I ECSMFE, B r i g h t o n , E n g l a n d . B l u n d e n , R.H., ( 1 9 7 5 ) , "Urban G e o l o g y o f R i c h m o n d , British Columbia", Adventures in Earth Sciences S e r i e s , No. 15, Dept. of G e o l o g i c a l S c i e n c e s , University of British C o l u m b i a , V a n c o u v e r , B.C. B o g h r a t , A., ( 1 9 8 2 ) , "The D e s i g n and C o n s t r u c t i o n of a P i e z o b l a d e and an E v a l u a t i o n o f t h e M a r c h e t t i D i l a t o m e t e r i n Some F l o r i d a S o i l s " , Ph.D T h e s i s , U n i v e r s i t y of Florida, Gainesville, Florida. B r a u i d , J . , (1980), " I n S i t u T e s t s t o Measure S o i l and S o i l Deformability f o r Offshore Engineering", M Research Foundation, I n t e r n a l Report.  Strength Texas A &  Brooker, E.W., a n d I r e l a n d , H.O., ( 1 9 6 5 ) , " E a r t h P r e s s u r e s at Rest R e l a t e d t o S t r e s s H i s t o r y " , Canadian Geotechnical J o u r n a l , V o l . 11, No.1. Bullock, P.J., (1983), "The D i l a t o m e t e r : Current Test P r o c e d u r e s a n d D a t a I n t e r g r e t a t i o n " , M.Eng. T h e s i s , D e p t . o f Civil Engineering, U n i v e r s i t y of F l o r i d a , Gainesville, Florida. C a m p a n e l l a , R.G., a n d R o b e r t s o n , R.K., ( 1 9 8 1 ) , " A p p l i e d Cone Research", ASCE s y m p o s i u m on Cone P e n e t r a t i o n T e s t i n g a n d E x p e r i e n c e , S t . L o u i s , O c t . 1 9 8 1 , pp 343-363. Campanella, R.G., a n d R o b e r t s o n , R.K., ( 1 9 8 3 ) , " F l a t P l a t e Dilatometer Testing: Research and Development", Soil Mechanics S e r i e s , No. 68, D e p t . of C i v i l Engineering, U n i v e r i s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , B.C.  125 C r a p p s , D., a n d S c h m e r t m a n n , J . , ( 1 9 8 1 ) , " D I L L Y , a F o r t r a n Computer Programme t o Reduce D i l a t o m e t e r D a t a " , Schmertmann and C r a p p s , I n c . , I n t e r n a l R e p o r t , G a i n e s v i l l e , F l o r i d a . Durngunoglo, H.T., a n d M i t c h e l l , J.K., (1975), "Static Penetration Resistance of S o i l s : I - Analysis, II Evaluation of Theory a n d I m p l i c a t i o n f o r P r a c t i c e " , ASCE Specialty Conference on I n - S i t u Measurement of Soil P r o p e r t i e s , R a l e i g h , NC. G i l l e s p i e , D.G., ( 1 9 8 1 ) , "The P i e z o m e t e r Cone P e n e t r a t i o n Test", M.A.Sc. Thesis, Dept. of C i v i l Engineering, U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , B.C. GPE, Inc., Dilatometer Gainesville, Florida.  D i g e s t S e r i e s , No. 1-5, 1983-1985,  Hughes, J.M.O., W r o t h , C P . , a n d W i n d l e , D., (1977), " P r e s s u r e m e t e r T e s t s i n S a n d s " , G e o t e c h n i q u e 2 7 , No. 4. H u g h e s , J.M.O., (1982), "Interpretation of Pressuremeter Tests for Determination of the E l a s t i c Shear Modulus", Engineering Foundation Conference on U p d a t i n g S u b s u r f a c e Sampling of S o i l s and Rocks and T h e i r I n - s i t u T e s t i n g , Santa Barbara, C a l i f o r n i a . H u g h e s , J.M.O., a n d Robertson, P.K., (1984), "Full Displacement P r e s s u r e m e t e r T e s t i n g i n Sand", S o i l Mechanics S e r i e s , No.78, D e p t . o f C i v i l Engineering, U n i v e r s i t y of B r i t i s h C o l u m b i a , V a n c o u v e r , B.C. Jamiolkowski, M., Ladd, C.C., Germaine, J.T., and Lancellotta, R., (1985), "New D e v e l o p e m e n t s i n F i e l d a n d L a b o r a t o r y T e s t i n g o f S o i l s " , S t a t e - o f - t h e A r t Report, XI ICSMFE, S a n F r a n c i s c o . L a c a s e , S., a n d L u n n e , T., ( 1 9 8 2 ) , " P e n e t r a t i o n T e s t s i n Two T e s t i n g , ESOPT I I , A m s t e r d a m . L e e , K.L., ( 1 9 7 0 ) , " C o m p a r i s o n o f P l a n e a n d T r i a x i a l Tests on Sand", J o u r n a l o f t h e S o i l Mechanics and Foundation D i v i s i o n , ASCE, V o l . 9 6 , No. SM3.  126 Marchetti, S., (1975), "A New In Situ Test for Measurement of Horizontal Soil Deformability", Specialty Conference on In Situ Measurement of P r o p e r t i e s , R a l e i g h , NC.  the ASCE Soil  M a r c h e t t i , S., ( 1 9 8 0 ) , " I n S i t u T e s t s by F l a t Dilatometer", J o u r n a l of t h e G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE, V o l . 106, No. GT3. Marchetti, S., (1981), " O u t l i n e of an I n v e s t i g a t i o n to E s t a b l i s h C o r r e l a t i o n B e t w e e n D i l a t o m e t e r R e s u l t s and <£' in S a n d s " , GPE. I n c . , I n t e r n a l R e p o r t , G a i n e s v i l l e , F l o r i d a . M a r c h e t t i , S., and C r a p p s , D.K., (1981), "Flat Dilatometer M a n u a l ; D r a f t - E d i t i o n " , GPE, I n c . , G a i n e s v i l l e , F l o r i d a . Mayne, P.W., and K u l h a w y , F.H., (1982), "K OCR Relationships in Soil", Journal of the Geotechnical E n g i n e e r i n g D i v i s i o n , ASCE, V o l . 108, No. GT6. 0  McPherson, I.D., (1985), "An Evaluation of the Flat D i l a t o m e t e r As an I n s i t u T e s t i n g Device", M.A.Sc. Thesis, Dept. of C i v i l E n g i n e e r i n g , U n i v e r s i t y of B r i t i s h C o l u m b i a , V a n c o u v e r , B.C. R i c e , A.H., ( 1 9 8 4 ) , "The S e i s m i c Cone P e n e t r o m e t e r " , M.A.Sc. T h e s i s , D e p t . of C i v i l E n g i n e e r i n g , U n i v e r i s t y of British C o l u m b i a , V a n c o u v e r , B.C. R o b e r t s o n , P.K., (1982), "In-situ Testing of Soil With E m p h a s i s on I t s A p p l i c a t i o n to L i q u e f a c t i o n Assessment", Ph.D T h e s i s , Dept. of Civil Engineering, U n i v e r s i t y of B r i t i s h C o l u m b i a , V a n c o u v e r , B.C. Robertson, P.K., and Campanella, R.G., (1983), "Interpretation of Cone P e n e t r a t i o n T e s t s : P a r t I and P a r t I I " , C a n a d i a n G e o t e c h n i c a l J o u r n a l , V o l . 20, No. 4. S c h m e r t m a n n , J.H., ( 1 9 7 8 ) , " G u i d e l i n e s f o r Cone P e n e t r a t i o n Test, Performance and Design", U.S. Department of T r a n s p o r t a t i o n , R e p o r t FHWA-TS-78-209, W a s h i n g t o n , D.C.  127 Schmertmann, J . H . , ( 1 9 8 1 ) , D i s c u s s i o n o f " I n S i t u T e s t s by F l a t Dilatometer", Journal of the Geotechnical Engineering D i v i s i o n , ASCE., V o l . 107, No. GT6. S c h m e r t m a n n , J . H . , ( 1 9 8 2 ) , "A M e t h o d f o r Determining the Friction A n g l e i n Sands From t h e M a r c h e t t i D i l a t o m e t e r T e s t (DMT)", 2nd E u r o p e a n Symposium on P e n e t r a t i o n T e s t i n g , ESOPT I I , Amsterdam. Schmertmann, J.H., (1983), "Revised Procedure for Calculationg K a n d OCR f r o m DMT's w i t h I Q > 1 . 2 a n d W h i c h Incorporate the Penetration Force Measurement t o Permit Calculating t h e P l a n e S t r a i n F r i c t i o n A n g l e " , DMT W o r k s h o p , M a r c h 16-18, G a i n e s v i l l e , F l o r i d a . 0  Schmertmann, J.H., (1986), "Suggested Method F o r P e r f o r m i n g the F l a t D i l a t o m e t e r T e s t " , Geotechnical Testing Journal, ASTM. Wroth, C P . , ( 1982), "British Experience with the Self-Boring Pressuremeter", Symposium on P r e s s u r e m e t e r a n d i t s Marine A p p l i c a t i o n s , P a r i s .  APPENDIX I M o d i f i c a t i o n of I n p u t Data of DILLY^-  129 M o d i f i c a t i o n o f i n p u t d a t a o f DILLY4 The  c a l c u l a t i o n o f 0'  method i s based  (1982)  shown on t h e f o l l o w i n g  The  load c e l l  on t h e f o r c e d i a g r a m  and e q u a t i o n  page.  inside  located immediately behind order t o determine  i n D I L L Y ^ u s i n g Schmertmann's  the research dilatometer i s t h e neck of t h e b l a d e .  the f r i c t i o n a l  In  f o r c e a c t i n g on t h e  d i l a t o m e t e r b l a d e u s i n g t h e p e n e t r a t i o n f o r c e measured behind t h e neck w i t h o u t changing  the equations i n the  program, t h e f o l l o w i n g i n p u t d a t a and m o d i f i c a t i o n a r e required: 1)  Input data:  D i a . of f r i c t i o n Dia. wt.  2)  reducer = 0  of pushing r o d of pushing r o d  The b e a r i n g a r e a o f t h e d i l a t o m e t e r of  12.9cm  2  = 0 = 0 19.2cm*  (instead  ) i n c l u d i n g a d d i t i o n a l area of neck.  A l s o , s i n c e t h e r e s e a r c h d i l a t o m e t e r has a l o n g e r s h o u l d e r and stem, t h e b l a d e a r e a i s 5 3 0 c m 355cm  2  f o r M a r c h e t t i ' s d i l a t o m e t e r , when u s i n g e i t h e r t h e  f o r c e measured a t t h e ground for  i n s t e a d of  the computation.  surface or behind  the blade  Penetration  130  Force  Weight o f t h e Rods and D i l a t o m e t e r  Bouyant Force on Rods » Porewater P r e s s u r e a t Depth o f Z x C r o s s - s e c t i o n a l a r e a o f t h e P.ods  B e a r i n g on F r i c t i o n Reducer - Net A d d ' l . A r e a o f Reducer x B e a r i n g Capacity B e a r i n g on Keck o f Blade - Net A d d ' l . A r e a o f Keck x B e a r i n g Capacity  Effective Vertical Stress o' v  n  F r i c t l o n a l F o r c e on Blade t a n (• /2) x b l a d e area r  Normal F o r c e oh Blade. » KJJ x blade area 2 Blade a r e a ™ 355 cm -  P  0  " V  p. - C o r r e c t e d D i l a t o m e t e r '"A" Reading u » Porewater Pressure P r i o r to I n s e r t i o n ( n o t e : r a p i d d r a i n a g e assumed) Q  r i n g Force on B l a d e B e a r i n g C a p a c i t y x C r o s s - s e c t i o n a l area . o f t h e Blade (- 12.9 cm )  tan ( 0 p / 2 ) - [ THRUST - (fi/4) x RODIAM x UQ X 1.019 - (DMAREA * (fi/4) x 0FRIC2 - B x DFR1C) x q f • RODWT x (ZS • 2) ] / F u (6.4) 2  8  where: dps • D r a i n e d f r i c t i o n a n g l e o f the s o i l - plane s t r a i n THRUST •» I n s e r t i o n t h r u s t ( k g ) RODIAM - D r i l l r o d diameter (cm) "0 " p o r e w a t e r p r e s s u r e p r i o r t o i n s e r t i o n o f t h e dilatometer (bars) DMAREA - B e a r i n g area o f t h e d i l a t o m e t e r (12.9 cm2) B - T h i c k n e s s o f the d i l a t o m e t e r (1.37 cm) DFRIC • Diameter o f the f r i c t i o n r e d u c e r (cm) qf - Durgunoglu and M i t c h e l l b e a r i n g c a p a c i t y (kg/cm2) - see f o l l o w i n g e x p l a n a t i o n RODWT » D r i l l r o d weight p e r u n i t l e n g t h (kg/m) ZS " T e s t depth (m) - Note: 2 m added i n e q u a t i o n to account f o r r o d s above ground f"H " H o r i z o n t a l f o r c e n o r m a l t o t h e d i l a t o m e t e r b l a d e , <P0 - un) x b l a d e a r e a (- 355 cm ) x 1.019 P0 " C o r r e c t e d d i l a t o m e t e r "A" r e a d i n g ( b a r s ) 2  (Adapted  from B u l l o c k , 1983)  APPENDIX I I Computer Output  U.B.C.INSITU TESTING RESEARCH GROUP. R e c o r d Qf 0 1 l e t o m e t e r t e s t No:MR0-1 Oate:MAR 21 84  F i l e Name:MR0-1X Locatlon:MCOONALD'S FARM C a l i b r a t i o n I n f o r m a t 1on:0A»  0.20 B a r s  DB«  Gamma«Bulk u n i t weight Sv 'Effective over.stress •Pore p r e s s u r e Uo • M a t e r i a l index Id • D i l a t o m e t e r modulus Ed • H o r i z o n t a l s t r e s s index Kd z (m)  0.20 0.40 0.60 0.80 1 .OO 1.20 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.0O 4.20 4.40 4.60 4.80 5.0O S.20 S.40 S.60 S.80 6.00 6.20 6.40 6.60 Z  (m)  PO RI (Bar) (Bar) 1. 10 0.70 0.60 0.70 0.90 0.60 0.70 0.70 0.80 0.80 1.10 0.90 1.20 0.90 1.40 1.40 1.50 2. 10 1.70 1 .70 1.30 1.90 1.50 2.00 1.80 1.80 2.30 2.30 1.90 1.80 2. 10 3.00  3.53 2.33 1.53 1 .33 1 .73 1. 13 1. 13 1.33 2.03 2.63 3.03 2.43 2.83 3.03 4.73 S.43 6.63 8.33 6.73 6.43 4.73 5.83 5.33 6.63 6.43 7.43 8.53 8.13 6.63 6.73 9.73 11 .63  PI PO (Bar) (Bar)  Ed (Bar)  Uo  84. 56. 32. 22. 29. 18. 15. 22. 43. 63. 67. 53. 56. 74. 115. 139. 177. 216. 174. 164. 119. 136. 133. 160. 160. 195. 216. 202. 164. 171. 264. 299.  0.0 0.0 0.0 0.0 0.0 0.02 0.06 O.08 0. 10  Ed (Bar)  Uo  0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56  Id  2.21 2.33 1.55 0.90 0.92 0.91 0.67 1.02 1.76 2.69 2.01 2.07 1.60 3.04 2.82 3.47 4. 14  2.89 3.36 4. 14 3.39 3.20 3.38 3.85 4.89 3.54 Id  OCR  Pc (Bar)  KO  35.5 10-8 6.2 5.4 5.6 3.4 3.2 3.0 3.2 2.9 3.9 2.8 3.7 2.4 3.9 3.6 3.7 5.2 3.8 3.6 2.4 3.7 2.6 3.6 3.0 2.8 3.7 3.5 2.6 2.3 2.8 4.2  • *•• * 43.58 8.77 4.74 4.97 2.24 2. 13 1.85 3.36 3.54 6.13 3.36 3.83 2.52 6. 17 5.41 5.60 10.67 5.94 5.33 2.47 5.64 2.86 5.27 3.72 3.39 5.67 5.23 2.99 2.38 3.28 7.26  13.17 2.83 0.85 0.61 0.80 0.39 0.42 0.39 0.74 0.83 1.53 0.88 1.05 0.73 1.88 1.74 1.89 3.77 2. 19 2.05 0.99 2.35 1.24 2.37 1.73 1.63 2.82 2.68 1.58 1.30 1.84 4.20  3.82 1.93 1.35 1.23 1.26 0.86 0.84 0.78 0.82 0.76 0.96 0.74 0.93 0.65 0.96 0.91 0.92 1.19 0.95 0.91 0.65 0.93 0.69 0.90 0.78 0.75 0.93 0.90 0.71 0.63 0.74 1.02  Kd  OCR  PC (Bar)  KO  Gamma Sv Kd (T/CM) ( B a r ) 1 .70 1.70 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.70 1.70 1.70 1.60 1.70 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.90  0.031 0.06S 0.097 0. 129 0. 161 0. 173 0. 197 0.209 0.221 0.235 0.249 0.263 0.275 0.289 0.305 0.321 0.337 0.353 0.369 0.385 0.401 0.417 0.433 0.449 0.465 0.481 0.497 0.513 0.529 0.545 0.561 0.579  Gamma Sv (T/CM) ( B a r )  ZW- 1.OO m e t r e s 0.27 B a r s ZM- 0.0 B a r s INTERPRETED GEOTECHNICAL PARAMETERS Ko " I n s l t u e a r t h p r e s s . c o e f f . OCR-OverconsolIdatIon Ratio M • C o n s t r a i n e d modulus Cu ' U n d r a i n e d c o n e s 1 o n ( c o h e s i v e ) PHI-Frlctlon Angle(eoheslonless)  S o u n d i n g MRD-1  Cu PHI M S o i l Type ( B a r ) (Deg) ( B a r ) 311. 145. 66. 0. 10 41. 55. 26. 0.08 20. 28. 27.9 60. 29.8 89. 29.0 108. 28.4 70. 27.9 87. 29.9 93. 30.9 192. * 32. 1 225. 33.7 290. 33.4 415. 32.6 289. 32.0 263. 30.9 149. 30. 1 218. 30.8 176. 30.8 256. 31.2 231. 32.5 273. 32.0 353. 31.5 323. 30.8 220. 31.3 212. 33.9 367. 32.9 522. 35.4 33.0 28.9  M PHI Cu ( B a r ) (Deg) ( B a r )  (DIL.RED)  SILTY SANO SILTY SANO SANDY SILT SILT SILT SILT CLAYEY S I L T SILT SANOY S I L T SILTY SANO SILTY SANO SILTY SAND SANOY S I L T SILTY SAND SILTY SAND SAND SAND SANO SAND SAND SAND SILTY SAND SAND SILTY SAND SAND SAND SAND SILTY SAND SAND SAND SAND SANO S o i l Type  Description CEMENTED LOOSE COMPRESSIBLE COMPRESSIBLE COMPRESSIBLE COMPRESSIBLE COMPRESSIBLE COMPRESSIBLE COMPRESSIBLE LOOSE LOOSE LOOSE COMPRESSIBLE LOOSE LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIOITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY LOW RIGIDITY MEOIUM RIGIOITY Descr1ptIon  Z (nt) 0 .20 0 .40 0 .60 0 .80 1 . 00 1 .20 1..60 1. 80 2. 00 2. 20 2. 40 2. 60 2. 80 3. 00 3. 20 3.,40 3. 60 3. 80 4. 00 4..20 4.,40 4..60 4. 80 5.00 5..20 5.,40 5. 60 5..80 6. 00 6.,20 6..40 6..60 Z (m)  Z (re) 6.80 7.00 7.20 7.40 7.60 8.00 8.60 9.00 9.60 10.00 10.60 tl.OO 11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.40 13.80 14.00 14.20 14.40 14.60 14.80 15.00 15.20 16.00 17.00 18.00 18.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.00 20.20 20.40 20.60 20.1)0 Z (n>)  PO Pt Ed Uo Id (Bar) (Bar) (Bar) (Bar) 2 .80 9. 33 2 .80 10. .23 2 .90 11. ,03 5..30 17. 53 4..40 16. 83 4..00 14. S3 2.90 11. 33 3..20 13. 23 4.O0 17. 33 6 .60 17. 53 4 .40 , 18. 43 3,. 1012. 73 2..50 6. 63 3..40 11. 63 5,.20 17. 93 6.. 10 18. 63 3,.90 14. 93 3,.90 16. 43 4..30 19. 13 5..80 IB. 63 4..90 18. 43 2..90 7. 73 5..20 16. 43 4..30 13. S3 3,.50 12. 63 3 .50 11. 13 3 .60 10.53 3 .50 1 1.53 4.0O 10. 03 3 .40 4. 23 4 .30 4..93 4 .70 5.. 13 4..80 5. 23 . 4..90 5..33 4,.70 5..23 5 .00 5..63 4,.70 5..43 5 .30 6.. 13 4..50 5..33 4.70 5..43 5 .30 6.. 13 3 .80 S..03 5 .60 6 .23 3 .20 5,. 13 5 .50 6 .33 5 .80 6 .33 PI PO (Bar) (Bar)  226. 257. 281. 423. 430. 364. 292. 347. 461. 378. 485. 333. 143. 285. 440. 434. 382. 434. 513. 444. 468. 167. 389. 319. 316. 264. 240. 278. 209. 29. 22. 15. 15. 15. 18. 22. 25. 29. 29. 25. 29. 43. 22. 67. 29. 18.  0.58 0.60 0.62 0.64 0.66 0.70 0.76 0.80 0.86 0.90 0.96 1.00 1.06 1.08 1. 10 1. 12 1. 14 1. 16 1. 18 1.20 1.24 •1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.50 1.60 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98  Gamma Sv Kd (T/CM) ( B a r )  2.94 3.38 3.57 2.62 3.32 3. 19 3.94 4. 18 4.25 1.92 4.08 4.59 2.87 3.55 3. 10 2.52 4.00 4.57 4.75 2.79 3.70 2.98 2.88 3. 10 4.23 3.57 3. 12 3.82 2.34 0.44 0.23 0. 14 0. 14 0. 14 0. 18 0.20 0.25 0.24 0.31 0.26 0.24 0.65 0. 17 1.53 0.23 0. 14  Ed Uo Id (Bar) ( B a r )  1.90 1.90 1.90 2.00 2.OO 1.90 1.90 1.90 1.90 2.00 1.90 1.90 1.80 1.90 2.00 2.00 1.90 1.90 1.90 2.00 2.00 1.80 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.60 1.60 1.60 1.60 1.60 1.60 1.70 1.70 1.70 1.70 1.70 1.70 t.70 1.70 1.60 1.70 1.70  0.597 0.615 0.633 0.653 0.673 0.709 0.763 0.799 0.853 0.893 0.947 0.983 1.031 1.049 1.069 1.089 1. 107 1. 125 1. 143 1.163 1.203 1.235 1.253 1.271 1.289 1.307 1.325 1.343 1.361 1.409 1.469 1.529 1.54 1 1.553 1.565 1.579 1.593 1.607 1.621 1.635 1.649 1.663 1.677 1.689 1.703 1.717  Sv Gamma (T/CM) (Bar)  3.7 3.6 3.6 7.1 5.6 4.7 2.8 3.0 3.7 6.4 3.6 2.1 1 .4 2.2 3.8 4.6 2.5 2.4 2.7 4.0 3.0 1.3 3. 1 2.3 1.7 1.6 1.7 1.6 1.9 1.3 1.8 2.0 2.0 2.0 1.9 2.0 1.8 2.2 1.6 1.7 2.1 1. 1 2.2 0.7 2. 1 2.2 Kd  OCR 5.72 5.31 5.38 19.86 12.32 8.78 3.34 3.80 5.61 14.49 5.47 1.98 0.88 2. 12 6.07 8.49 2.66 2.55 3. 17 6.43 3.90 0.78 4.07 2.37 1.25 1.19 1.25 1.09 1.58 0.54 0.88 0.97 1.00 1.03 0.91 1.03 0.86 1. 13 0.73 0.80 1.06 0.42 1. 16 0.23 1.06 1. 18 OCR  Pc KO (Bar) 3.41 3.27 3.41 12.97 8.29 6.22 8.85 3.04 4.78 12.94 S. 18 1.95 0.91 2.22 6.48 9.24 2.95 2.87 3.62 7.48 4.69 0.97 5. 10 3.01 1.61 1.S6 1.65 1.47 2. IS 0.76 1.29 1.48 1.S4 1.60 1.42 1.63 1.38 1.82 1. 19 1.31 1.75 0.69 1.94 0.39 1.81 2.03  0.93 0.90 0.91 1.48 1.25 1.10 0.74 0.79 0.92 1.38 0.92 0.58 0.37 0.60 0.95 1.09 0.67 0.66 0.72 0.98 0.79 0.34 O.BI 0.63 0.45 0.44 0.45 0.42 0.52 0.3S 0.50 0.53 0.54 0.55 0.51 0.56 0.50 0.59 0.44 0.47 0.56 0.28 0.60 0. 12 0.57 0.60  Pc (Bar)  KO  Cu PHI H S o i l Type ( B a r ) (Oeg) ( B a r ) 31.0 31.9 32.3 32.6 33.5 32.5 32.1 32.9 33.9 30. 1 33.5 32.2 28.3 30.6 31.5 30.7 31.8 32.7 33.6 30.9 32.0 28.3 30.4 29.9 30.8 29.7 29.1 30.0 28. 1  370. 413. 454. 930. 856. 669. 407. 505. 753. 786. 787. 386. 121. 339. 735. 779. 494. 552. 704. 747. 686. 142. 574. 396. 300. 245. 227. 247. 205. 0. 19 24. 0.29 19. 0.33 13: 0.34 13. 0.35 13. 0.32 16. 0.36 19. 0.31 21. 0.39 27. 0.28 24. 0.30 21. 0.38 25. 0. 18 36. 0.41 21. 25.0 57. 0.39 26. 0.43 18. PHI Cu ( B a r ) (Oeg)  M (Bar)  NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu n o r P h i c a l c u l a t e d . 2.IBar-IOOKPa 3.# •1mm D e f l e c t i o n n o t r e a c h e d .  Sounding MRD-1  (DIL.RED) , C o n t i n u e d  SILTY SAND SAND SAND SILTY SAND SANO SILTY SAND SAND SAND SAND SILTY SAND SAND SAND SILTY SAND SANO SILTY SAND SILTY SAND SANO SAND SANO SILTY SANO SAND SILTY SANO SILTY SAND SILTY SAND SANO SAND SILTY SAND SANO SILTY SAND SILTY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAYEY SILT CLAY SANDY SILT CLAY CLAY S o i l Type  Description MEOIUM RIGIDITY MEDIUM RIGIOITY MEOIUM RIGIOITY RIGID RIGID MEOIUM RIGIOITY MEDIUM RIGIDITY MEOIUM RIGIOITY MEDIUM RIGIOITY RIGID MEDIUM. RIGIDITY MEDIUM RIGIDITY LOW RIGIOITY MEOIUM RIGIOITY RIGID RIGID MEOIUM RIGIDITY MEDIUM RIGIOITY MEDIUM RIGIOITY RIGID RIGID LOW RIGIDITY MEDIUM RIGIDITY MEDIUM RIGIOITY MEDIUM RIGIDITY MEDIUM RIGIDITY MEDIUM RIGIDITY MEDIUM RIGIDITY MEDIUM RIGIDITY SOFT SOFT SOFT SOFT SOFT SOFT LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW DENSITY LOW CONSISTENCY COMPRESSIBLE LOW CONSISTENCY LOW CONSISTENCY Description  Z (m) 6.80 7.00 7.20 7.40 7.60 8.00 8.60 9.00 9.60 10.00 10.60 1 1.00 1 1.60 1 1.80 12.00 12.20 12.40 12.60 12.80 13.00 13.40 13.80 14.00 14.20 14.40 14.60 t4.80 15.00 15.20 16.00 17.00 18.00 18.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.00 20.20 20.40 20.60 20.80 Z (re)  134  U.B.C. INSITU  TESTING.  TEST No. flRD-2 TEST DATE: PARAMETERS APR 18 84  LOCATION: nCDONflLD'S FARM  INTERMEDIATE GEOTECHNICAL 0 2  0 9  —I—I  0 01  1  I  1  0'8I  O'FI I  I  I  '  0'92  Q'ZZ  1  J  I  L_  CO Zj  Q  o  o  LU Q_ r - ZZ UJ """ ZZ  o  4-  T3 9= UJ H CO  o.  r—  CM  cn _J  H Q  o o'  J  i X _ J LU  cr r-  Q 2  2 M O jvj CO M CO CC LU O CC X — I CO  1  r  i  1  i  J  L  i  L  r  o  co'  s?  Q  o o CM"  '  "i  '  I  '  I  r  in to  J  I  i  r  L  .J  L  1  1  t  OJ  CO ~ ,  — I Q_ ro c CO  QJ >  /  I  m o'  Q_ o o'  *~"i 0"2  i i i i i i i 0'9  O'Ot  (W)  0>l  HldlO  1 0'8I  1  O'ZZ  S o u n d i n g MRD-2 (DIL.RED)  r~ 0'92  135  U.B.C. INSITU LOCATION: flCDONRLD'S  TESTING.  TEST No.  HRD-2  FRRH  INTERPRETED GEOTECHNICAL PARAMETERS. 0*2  0*9 _1  TEST DATE: RPR 18 84  (W) Hld3a 001  I  J  I  O't'l I  I  0'8t L  C to i_ cn  I  o oo'  o  M CO  LU — ^ O  ™ Q -  i  i  i  i  i  r  1  1  u >  \  a u  o  o ^ erf  Q  r  3  CJ o a'  J  l  J  J  L  I  CO 3  =3 O O  LU  II  cr  t— CO  o  CJ I  LU ^  I  i  r  O'Ot  (W)  0>t  Hld30  0"8I  S o u n d i n g MRD-2 ( D I L . R E D ) , C o n t i n u e d  F i l e Name:MRD-2X Location:MCDONALD'S  FARM  U.B.C.INSITU TESTING RESEARCH GROUP• Record o f Dilatometer t e s t Oate:APR 18 84  C a l i b r a t i o n Informatlon:0A'  OB'  0.20 B a r s  z  PO PI (Bar) (Bar)  1.00 0.70 1.63 2.00 0.70 1.23 3.00 0.70 1. 13 4 .OO 1.40 6.23 S.OO 1.60 6.63 6 .OO 2.60 8.03 7.00 2.80 10.83 8.00 3.60 13.33 9.00 2.20 8.23 10.OO 3.00 14.93 z  (m)  PI PO (Bar) (Bar)  Ed Uo Id (Bar) ( B a r ) 32. 18. 15. 167. 174. 188. 278. 337. 209. 413.  0.0 0.05 0. 15 0.25 0.35 0.45 0.55 0.65 0.75 0.85  Gamma Sv Kd (T/CM) ( B a r )  1.33 1.60 0.82 1.60 0.78 1.60 4.20 1.80 4.02 1.80 2.53 1.90 3.57 1.90 3.30 1 .90 4. 16 1.80 5.55 1.90  Ed Uo Id (Bar) (Bar)  0.157 0.267 0.327 0.407 0.487 0.577 0.667 0.757 0.837 0.927  Sv Gamma (T/CM) ( B a r )  0.0  Bars  ZW»  1.50 m e t r e s  INTERPRETED GEOTECHNICAL PARAMETERS Ko " I n s l t u e a r t h p r e s s . c o e f f . OCR'Overconsolidatlon Ratio M ' C o n s t r a i n e d modulus Cu ' U n d r a i n e d c o h e s l o n ( c o h e s l v e ) PHI'Frlctlon Angle(coheslonless)  Garama'Bulk u n i t w e i g h t Sv 'Effective over.stress Uo «Pore p r e s s u r e Id ' M a t e r i a l index Ed ' D i l a t o m e t e r modulus Kd ' H o r i z o n t a l s t r e s s Index (m)  ZM*  0.27 B a r s  No:MRD-2  OCR  Pc (Bar)  4..5 2..4 1..7 2 .8 2..6 3.,7 3 .4 3 .9 1 .7 2 .3  3 .98 0.63 1,.36 0.36 0 .76 0.25 3..38 1.38 2..82 1.37 5.,74 3.31 4 .75 3. 17 6 .25 4.73 1 .33 1.11 2..32 2. 15  Kd  OCR  PC (Bar)  KO  Cu PHI M S o i l Type ( B a r ) (Deg) ( B a r )  1.07 0.66 0.46 0.75 0.69 0.93 0.86 0.97 0.47 0.63 KO  0.08 0.06  27.5  55. 20. 13. 32.7 234. 32.0 230. 30. 1 303. 32. 1 432. 32.0 566. 30.8 204. 34.3 508.  PHI M CU ( B a r ) (Deg) ( B a r )  NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu n o r P h i c a l c u l a t e d . 2.1Bar-100KPa 3.0 «1mm O e f l e c t i o n n o t r e a c h e d .  S o u n d i n g MRD-2 (DIL.RED),  Continued  SANOY S I L T SILT CLAYEY S I L T SANO SAND S I L T Y SANO SAND S I L T Y SAND SAND SAND S o i l Type  Description  Z (m)  COMPRESSIBLE COMPRESSIBLE COMPRESSIBLE LOW RIGIOITY LOW RIGIOITY MEDIUM RIGIOITY MEDIUM RIGIDITY MEDIUM RIGIDITY LOW RIGIDITY MEDIUM RIGIOITY  1.00 2.0O 3.0O 4.00 5.00 6.00 7.00 8.00 9.00 10.00  Description  Z (m)  137  U.B.C. INSITU TESTING.  TEST No. HRD-3 TEST DATE:  LOCATION: nCDONRLD'S FARtl  INTERMEDIATE GEOTECHNICAL PARAMETERS 0'9 i  1  1  0'W i  0'8t i  i  0'22 i  i  i  0'9Z i  40.0  60.0  i  (W) Hld3a  0 01 i  o o_  \_  . UJ H  to  20.0  (HPa)  ro  .0 I 1  DILATOflETER riODULUS  1  02 i  APR 18 84  1  1 1  1  1  1  1  1  I  1  1  1  1  1  1  1  —  1  |  1  1  ,  1 1  1  V a  1  a.  CO  o a a  1.5  2  t  i  1 1 >  i  i  i  i ^ ^ T ^  1  1  1  i  i  1i  h  i i o — "> o_ o_ t>  1\\  i  (  vwy^ 1  1  1 0'8I  1  t  t  i  (  i  l  1  N i  0.5  J.O  i  X \  /  .0  PO.Pl,Vertical Stress (HPa)  ,  1  8.0 4.0  HORIZONTAL TRESS INDEX  1  o  Q  1 0'2  1  i 0"9  i  i 00t  I  I  I  (W) Hid3Q  1 0*22  S o u n d i n g MRD-3 (DIL.RED)  1  i 0 92  138  U.B.C. INSITU  TESTING.  LOCATION: nCDONOLD'S FORM  INTERPRETED GEOTECHNICAL PARAMETERS. 0"2  0"9  cot J  (W) H l d 3 0 I  o'w I  o 8r -  I  TEST No. riRD-3 TEST DATE: RPR 18 84  rrzz  L  3 C CO  (cn  CO LU ~ T- ra  o u  CJ ^ erf Q Z  CJ  ZD  CO  Q O  II cr cc  I—  CO  2 o  CJ  cr x CC LU  Q ^  i  0"2  0'9  O'OC  1  1  O'W  1  (W) Hld3Q  1  081  S o u n d i n g MRD-3 (DIL.RED),  r  022  092  Continued  F i l e Name:MRD-3X Location.MCDONALD'S FARM  U.B.C.INSITU TESTING RESEARCH GROUP• Record of D i l a t o m e t e r t e s t Date:APR 18 84  C a l i b r a t i o n Inforraat1on:DA'  0.20 B a r s  0 B » 0.27 B a r s  PO PI (Bar) (Bar)  5.00 7 .00 9.00 10. OO 11.00 12.00 13.00 14.00 16.00 17.00 18.OO 18.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.00 20.20 20.40 20.60 20.80 21 .OO 21.20  1. 40 5. 63 2. 60 12. 63 2..50 10.,23 3. OO 15. 83 5. 00 18..83 3. 20 12. 33 3. 40 14. 03 4. 10 9. 93 3. CO 5. 43 4. 40 5. 13 4. 50 5. 03 4. 60 5. 33 2..80 4..53 4., 10 4 .93 4..20 4. 93 2.,70 4..43 3.,90 4..83 3. 90 4 .33 2.,70 3. 83 3. 90 4. 53 4, 10 4 .63 . 2. 70 3..93 4. 80 5. 43 3. 50 4.,73 5. 00 5. 63 4 .50 5. 53 5. 40 6. 43  Z (m)  PI PO (Bar) (Bar)  Gamma Sv Kd (T/CM) ( B a r )  Ed Uo Id (Bar) (Bar) 146. 354. 267. 444. 479. 316. 368. 202. 84. 25. 18. 25. 60. 29. 25. 60. 32. 15. 39. 22. 18. 43. 22. 43. 22. 36. 36.  0.35 0.55 0.75 0.85 0.95 1.05 1.15 1.25 1.45 1.55 1.65 1.67 1.69 1.71 1.73 1.75 1.77 1.79 1.81 1.83 1.85 1.87 1.89 1.91 1.93 1.95 1.97  4.03 4.99 4.42 5.97 3.41 4.25 4.72 2.05 1.57 0.26 0. 19 0.25 1.56 0.35 0.30 1.82 0.44 0.20 1.27 0.30 0.24 1.48 0.22 0.77 0.21 0.40 0. 30  Id Ed Uo (Bar) (Bar)  1 .80 0.533 1 .90 0.713 1 .90 0.893 1 .90 0.983 2 .00 1.083 1 .90 1. 173 1 .90 1.263 1 .90 1.353 1 .70 1.493 1 .70 1.563 1 .60 1.623 1 .70 1.637 1 .60 1.649 1 .60 1.661 1 .60 1.673 1 .70 1.687 1,.60 1.699 1 .60 1.711 1 .60 1.723 1 .60 1.735 1.60 1.747 1 .60 1.759 1 .60 1.771 1.60 1.783 1,.70 1.797 1 .70 1.811 1 .70 1.825 Gamma Sv (T/CM) ( B a r )  0.0  Bars  ZW»  1.50 m e t r e s  INTERPRETED GEOTECHNICAL PARAMETERS Ko " I n s l t u e a r t h p r e s s . c o e f f . OCR'OverconsolIdatlon Ratio M 'Constrained modulus Cu ' U n d r a i n e d c o h e s l o n ( c o h e s l v e ) PHI'Frlctlon Angle(coheslonless)  Gamma»8u1k u n i t weight Sv 'Effective over.stress Uo 'Pore p r e s s u r e Id • M a t e r i a l Index Ed •Dilatometer modulus Kd ' H o r i z o n t a l s t r e s s Index Z (m)  ZM'  No:MRD-3  OCR  2. 0 2. 9 2. 0 2. 2 3. 7 1. 8 1. 8 2. 1 1. 0 1. 8 1. 8 1. 8 0. 7 1. 4 1. 5 0. 6 1. 3 1. 2 0. 5 1. 2 1. 3 0. 5 1. 6 0. 9 1. 7 1. 4 1. 9  1.70 3.50 1.68 2.07 5.78 1.48 1.40 1.93 0.42 0.87 0.82 0.84 0.20 0.60 0.62 0.15 0.48 0.47 0. 12 0.45 0.50 0. 11 0.74 0.28 0.78 0.58 0.91  Kd  OCR  Pe (Bar) 0.91 2.49 1.50 2.04 6.26 1.74 1.77 2.61 0.62 1.35 1.32 1.38 0.32 0.99 1.04 0.25 0.82 0.80 0.21 0.77 0.88 0. 19 1.30 0.51 1.41 1.05 1.66 Pc (Bar)  KO 0.54 0.76 0.53 0.59 0.94 0.50 0.48 0.57 0.24 0.50 0.48 0.49 0.09 0.38 0.39 0.03 0.32 0.31 0.01 0.30 0.33 -.02 0.44 0. 18 0.46' 0.37 0.51 KO  Cu PHI M S o l i Type (Bar) (Oeg) ( B a r )  0.31 0.30 0.31 0.24 0.25 0.21 0.21 0.20 0.22 0.30 0. 14 0.32 0.26 0.37  31. 0 34. 3 31..6 34.,7 32. 1 31., 1 31. 8 27.,7 25. 0 25. 0 25. 0 25. 0 25. 0  159. 502. 290. 524. 787. 324. 368. 212. 71. 21 . 16. 21 . 51. 24. 21. 51. 27. 13. 33. 19. 16. 36. 19. 36. 19. 30. 30.  M Cu PHI (Bar) (Deg) (Bar)  SANO SANO SAND SAND SAND SAND SAND SILTY SANO SANDY S I L T CLAY CLAY CLAY SANDY S I L T S I L T Y CLAY CLAY SILTY SAND SILTY CLAY CLAY SANDY S I L T CLAY CLAY SANDY S I L T CLAY CLAYEY S I L T CLAY SILTY CLAY CLAY S o i l Type  OescriptIon  Z (Kl)  LOW RIGIDITY MEOIUM RIGIOITY MEDIUM R I G I D I T Y MEOIUM RIGIDITY RIGID MEDIUM RIGIDITY MEDIUM RIGIDITY MEOIUM RIGIDITY LOW DENSITY LOW CONSISTENCY SOFT LOW CONSISTENCY COMPRESSIBLE SOFT SOFT LOOSE SOFT SOFT COMPRESSIBLE SOFT SOFT COMPRESSIBLE SOFT COMPRESSIBLE LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY DescrIptIon  S .00 7 .00 9 .00 10 .00 11..00 12..00 13..00 14..00 16..00 17..00 18. OO 18..20 18..40 18..60 18 .80 19..00 19..20 19..40 19..60 19. 30 20..00 20..20 20.40 20. 60 20.,80 21.,00 21 .20 Z (m)  NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu n o r P h i c a l c u l a t e d . 2.IBar-IOOKPa 3.# '1mm D e f l e c t i o n n o t r e a c h e d .  S o u n d i n g MRD-3 (DIL.RED) ,  Continued to  10  F i l e Name:LRD-2X LocatIon:LANGLEY-RAILWAY C a l i b r a t i o n Informatlon:DA»  U.S.C.INSITU TESTING RESEARCH GROUP. R e c o r d o f D i l a t o m e t e r t e s t No:LRD-2 Date:OCT 7 83 0.20 B a r s DB' 0.27 B a r s ZM« 0.0 B a r s ZW- t.00 m e t r e s INTERPRETED GEOTECHNICAL PARAMETERS Ko ' I n s l t u e a r t h p r e s s . c o e f f . OCR'Overconsolidation Ratio M ' C o n s t r a i n e d modulus Cu ' U n d r a i n e d c o h e s 1 o n ( c o n e s Ive) PHI'Friction Angle(cohestonless)  Gamma'Bulk u n i t w e i g h t Sv 'Effective over.stress Uo 'Pore p r e s s u r e Id ' M a t e r i a l index Ed ' D i l a t o m e t e r modulus Kd ' H o r i z o n t a l s t r e s s Index Z (ra) 2 .20 2 .40 2 .80 2 .80 3 .00 3 .20 3 .40 3 .60 3 .80 4 .CO 4 .20 4 .40 4 .60 4 .80 5 .00 5 .20 5 .40 5 .60 5 .80 6 .00 6 .20 6..40 6..60 6. 80 7..00 7..20 7 .40 7 .60 7 .80 8 .00 8 .20 8 .40 Z (m)  PO PI (Bar) (Bar) 1,.50 1 .80 1,.80 1..90 2 .00 2 .30 2..20 2..30 2 .30 2 .50 2..70 2 .70 2 .70 2 .60 2 .70 2..80 2..70 2..80 2..90 2..70 2..90 2. 90 3. 0 0 3. 20 3. 20 3. 20 3..20 3..60 2 .30 3.,70 3 ,60 3 ,50  1 .93 2 .33 2 .23 2 .23 2 .43 2 .73 2,.83 2 .73 2..93 2 .93 3,.23 3 .23 3 . 13 3,.03 3 . 13 3,. 13 3..33 3..43 3..33 3.. 13 3. 33 3.,53 3.,63 3. 73 3..83 3..83 3..93 4.. 13 3,.03 4,.33 3 .93 3 .93  Ed Uo I d (Bar) (Bar) 15. 18. 15. 11. 15. 15. 22. 15. 22. 15. 18. 18. IS. 15. 15. 11. 22. 22. 15. 15. 15. 22. 22. 18. 22. 22. 25. 18. 25. 22. 11. 15.  0. 12 0. 14 0. 16 0. 18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74  0. 31 0. 32 0. 26 0. 19 0. 24 0. 21 0. 32 0. 21 0. 31 0. 20 0. 22 0. 22 0. 18 0. 19 0. 19 0. 14 0. 28 0. 27 0. 18 0. 20 0. 18 0. 27 0. 26 0. 20 0. 24 0. 24 0. 29 0. 18 0. 45 0. 21 0. 11 0. 16  PO PI Ed Uo Id (Bar) (Bar) (Bar) (Bar)  Gamma Sv Kd (T/CM) ( B a r ) 1 .60 1 .60 1 .60 1 .50 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1.50 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .50 1 .60  0. 215 0. 227 0. 239 0. 249 0. 261 0. 273 0. 285 0. 297 0.,309 0. 321 0. 333 0. 345 0. 357 0. 369 0. 381 0. 391 0. 403 0. 415 0. 427 0. 439 0. 451 0. 463 0. 475 0. 487 0. 499 0. 511 0. 523 0. 535 0. 547 0. 559 0. 569 0. 581  6 .4 7 .3 6 .9 6 .9 6 .9 7 .6 6 .9 6 .9 6 .5 6 .9 7. 1 6 .8 6 .6 6 .0 6 .0 6. 1 5 .6 5 .6 5 .7 5 .0 5 .3 5. 1 5. 1 5 .4 5 .2 5 .0 4 .9 5 .5 3 .0 5 .4 5. 1 4 .8  Gamma Sv Kd (T/CM) ( B a r )  OCR 6 . 17 7 .56 6 .84 6 .91 6 .90 8 .06 6 .87 6..85 6..34 6,.83 7,.29 6..81 6..37 5 .57 5..60 5,.68 4..99 5..04 5.,08 4.. 19 4.,54 4 ,30 , 4,.36 4..68 4..45 4..24 4..04 4..84 1 .84 . 4 .66 , 4 .26 , 3,.86 OCR  Pc (Bar) 1.33 1.72 1.64 1.72 1.80 2.20 1.96 2.04 1.96 2.19 2.43 2.35 2.27 2.06 2.13 2.22 2.01 2.09 2. 17 1.84 2.05 1.99 2.07 2.28 2.22 2.17 2.11 2.59 1.01 2.61 2.42 2.24  Cu PHI M ( B a r ) (Deg) ( B a r )  KO 1 .38 1 .51 1 .44 1 .45 1 .45 1 .55 1 .45 1,.44 1,.40 1,.44 1 .48 1 .44 1,.40 1 .32 1 .32 1,.33 1..26 1,.26 1,.27 1,. 16 1..21 1.. 18 1,. 18 1,.22 1, 20, 1,.17 1,. 14 1,.24 0 .78 1,.22 1 . 17 1 . 12  Pc KO (Bar)  0.20 0.25 0.25 0.26 0.27 0.32 0.29 0.31 0.30 0.33 0.36 0.35 0.35 0.32 0.33 0.35 0.32 0.33 0.35 0.30 0.33 0.33 0.34 0.37 0.36 0.36 0.35 0.42 0.20 0.42 0.40 0.38  30. 40. 31. 24. 32. 33. 46. 31. 45. 31. 40. 39. 31. 29. 29. 23. 42. 42. 29. 27. 27. 39. 40. 34. 40. 39. 45. 35. 32. 41. 21. 26.  So 11 T y p e  Descr tptIon  Z (ra)  CLAY CLAY CLAY MUD CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY MUD CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY SILTY CLAY CLAY MUD CLAY  SOFT SOFT SOFT  2 .20 2 .40 2 .60 2 .80 3 .00 3 .20 3..40 3 .60 3 .80 4..00 4 .20 4 .40 4 .60 4 .80 5,.00 5 .20 5 .40 5..60 5,.80 6..00 6..20 6..40 6..60 6.,80 7.,00 7..20 7.,40 7.,60 7..80 8.,00 8 .20 8 .40  Cu PHI M S o i l Type ( B a r ) (Deg) ( B a r )  SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT Description  Z (m)  S o u n d i n g LRD-2 (DIL.RED) o  2 (m)  PO PI Ed Uo Id (Bar) (Bar) (Bar) (Bar)  3 .80 3 .70 3 .70 2.50 4,. 10 4,.30 4,.40 to.00 4,.40 10.20 4 .50 10.40 4 .70 10.60 4,.60 10.80 4,.80 11.00 4..40 11.20 4..30 11.40 4 .20 , 11.60 4..40 11.80 4..40 12.00 4..80 12.20 4..90 12.40 5.00 12.60 4.90 12.80 4 .80 13.00 5 .00 13.20 5 .20 13.40 5 .30 13.60 5 .30 13.80 5 .20 14.00 5 .40 14.20 5 . 10 14.40 5 .40 14.60 5 . 10 14.80 5,.40 15.00 5 .90 8.60 8.80 9.00 9.20 9.40 9.60 9.80  Z (m)  4 .23 . 4..23 4..53 3..73 4 .73 . 5 .23 4 .93 5..23 5 . 13 5..53 5..93 5..53 5.. 13 5. 13 4..93 5. 43 5. 63 5..53 5. 93 6..03 6..23 5..73 5..93 6.03 5.93 6 .03 6..33 6.. 13 6.. 13 6..33 6.03 7..03 7..03  PI PO (Bar) (Bar)  15. 18. 29. 43. 22. 32. 18. 29. 22. 29. 46. 25. 25. 29. 25. 36. 43. 25. 36. 36. 46. 32. 32. 29. 22. 2S. 39. 25. 36. 32. 32. 56. 39.  0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1. 10 1. 12 1. 14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40  0. 14 0. 18 0.29 0.73 0. 19 0.27 0. 15 0.24 O. 18 0.22 0.37 0. 19 0.21 0.25 0.23 0.31 0.37 0.20 0.27 0.27 0.36 0.26 0.24 0.21 0. 16 0. 18 0.29 0. 18 0.27 0.23 0.25 0.41 0.25  Id Uo Ed (Bar) (Bar)  Gamma Sv Kd (T/CM) ( B a r ) 1.60 1.60 1.70 1.60 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70  0.593 0.605 0.619 0.631 0.645 0.659 0.673 0.687 0.701 0.715 0.729 0.743 0.757 0.771 0.785 0.799 0.813 0.827 0.841 0.855 0.869 0.883 0.897 0.911 0.925 0.939 0.953 0.967 0.981 0.995 1.009 1.023 1.037  Sv Gamma (T/CM) ( B a r )  OCR  5. 1 4 .8 4 .7 2 .7 5. 1 5 .2 5 .2 5. 1 5. 1 5 .3 5 .0 5. 1 4 .5 4 .3 4 .0 4 .2 4. 1 4 .5 4 .5 4 .5 4 .3 4. 1 4 .2 4 .4 4 .4 4 .3 4. 1 4 .2 3 .9 4. 1 3 .7 3 .9 4 .3  4.34 3.95 3.77 1.56 4.25 4.47 4.48 4.30 4.32 4.52 4.17 4.36 3.53 3.25 2.98 3. 16 3.05 3.51 3.54 3.56 3.31 3.06 3.22 3.38 3.41 3.30 3.08 3.23 2.78 3.04 2.62 2.87 3.35  Kd  OCR  PC KO (Bar) 2.57 2.39 2.34 0.99 2.74 2.94 3.02 2.95 3.03 3.23 3.04 3.24 2.67 2.50 2.34 2.52 2.48 2.90 2.97 3.04 2.87 2.71 2.89 3.08 3.15 3.10 2.94 3. 12 2.73 3.03 2.64 2.93 3.47 PC (8ar)  Cu PHI M ( 8 a r ) (Oeg) ( B a r )  0.42 0.40 0.39 0.20 0.45 0.48 0.49 0.49 0.50 0.53 0.50 0.53 0.46 0.44 0.41 0.44 1.60 0.44 1.07 0.50 1.07 0.51 1.08 0.52 1.04 0.50 1.00 0.4B 1.03 0.50 1.05 0.53 1.06 0.54 1.04 0.54 1.01 0.52 1.03 0.54 0.96 0.49 1.00 0.53 0.93 0.48 0.97 0.52 1.05 0.60 1.18 1. 13 1.11 0.71 1.17 1.20 1.20 1.18 1. 18 1.20 1.16 1.18 1.07 1.03 0.99 1.02  KO  M PHI Cu ( B a r ) (Deg) ( B a r )  NOTES: 1.For 0.9>Id>1.2 n e i t h e r Cu n o r P h i c a l c u l a t e d . 2.IBar-IOOKPa 3.# »1mm D e f l e c t i o n not reached.  Sounding  LRD-2 (DIL.RED),  27. 32. 49. 49. 39. 59. 34. 52. 39. 53. 82. 46. 42. 47. 40. 57. 67. 42. 60. 60. 75. 51. 52. 47. 36. 41. 62. 41. 54. 51. 48. 87. 64.  Continued  S o d Typo CLAY CLAY CLAY CLAYEY S I L T CLAY CLAY CLAY CLAY CLAY CLAY SILTY CLAY CLAY CLAY CLAY CLAY CLAY SILTY CLAY CLAY CLAY CLAY SILTY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY SILTY CLAY CLAY Soil  Type  Descr iptIon  Z (m)  SOFT SOFT LOW CONSISTENCY COMPRESSIBLE LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY  8 .60 8 .80 9 .00 9 .20 9 .40 9 .60 9 .80 10 .00 10 .20 10 .40 10.60 10..80 11.,00 1 1.,20 11. 40 11. 60 1 1.80 12.,00 12.,20 12.,40 12.,60 12.,80 13.,00 13.,20 13.,40 13..60 13..80 14..00 14..20 14.,40 14. 60 14. 80 15..00  Description  2 (m)  U.B.C.INSITU TESTING RESEARCH GROUP, F i l e Name:LRD-3X R e c o r d o f D i l a t o m e t e r t e s t No:LRD-3 L o c a t ton:LANGLEY-232 ST(LOWER) 0ate:JUN 20 84 C a l i b r a t i o n Informatton:OA-  0.20 B a r s  DB" 0.27 Bars  z  t .OO 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.CO 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00  Z (m)  PI PO (Bar) (Bar) 1 . to 1 .40 1 .50 t .50 1 .80 1 .80 1..80 1 .90 1,.90 2..00 2 . to 1 .80 t .90 I .80 2,.00 2..00 2.. to 2..20 2..20 2..20 2..20 2..20 2,.30 2 .40 2 .30 2 .50 2 .50 2 .50 2 .70 2 .80 2 .70 2 .90  2.. 13 1 .73 , 1..73 I..93 2.,03 2. 13 2.03 2.03 2.,23 2. 33 2. 33 2. 23 2..23 2..33 2..33 2. 43 2. 43 2. 43 2. 43 2. 53 2. 63 2..73 2. 73 2. 83 2..83 2..83 2..83 2..93 3.. 13 3.. 13 3.. 13 3..23  Pt PO (Bar) (Bar)  Ed Uo Id (Bar) (Bar) 36. 11. 8. 15. 8. 11. 8. 4. 11. 11. 8. 15. 11. 18. 11. 15. It.  8. 8. 11. 15. 18. 15. 15. 18. 11. 11. 15. 15. 11. 15. 11.  0.0 0.10 0. 12 0. 14 0. 16 0. 18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70  0.94 0.25 0. 17 0.32 0. 14 0.20 0. 14 0.08 0.20 0. 19 0. 13 0.29 0.21 0.36 0.20 0.27 0. 19 0. 13 0. 13 0. 19 0.25 0.31 0.24 0.23 0.30 0. 17 0. 17 0.23 0.21 0. 15 0.21 0.15  Ed Id Uo (Bar) (Bar)  Gamma Sv (T/CM) ( B a r ) 1 .60 1 .50 1 .50 1 .60 1 .50 1.50 1 .50 t .50 1.50 1 .50 1 .50 t .60 1 .50 1 .60 1 .50 1 .60 1 .50 1 .50 1..50 1..50 1 .60 1 .60 1 .60 1 .60 1 .60 1 .50 1 .50 1 .60 1 .60 1 .50 1 .60 1 .50  0.152 0.202 0.212 0.224 0.234 0.244 0.254 0.264 0.274 0.284 0.294 0.306 0.316 0.328 0.338 0.350 0.360 0.370 0.380 0.390 0.402 0.414 0.426 0.438 0.450 0.460 0.470 0.482 0.494 0.504 0.516 0.526  Sv Gamma (T/CM) ( B a r )  ZW-  1.00 metres  INTERPRETED GEOTECHNICAL PARAMETERS Ko ' I n s i t u e a r t h p r e s s . c o e f f . OCR'OverconsolidatIon Ratio M ' C o n s t r a i n e d modulus Cu ' U n d r a i n e d c o n e s i o n ( c o h e s I v e ) PHI'Frictlon Angle(coheslonless)  Gamma'Bulk u n i t w e i g h t Sv 'Effective over.stress Uo *Pore p r e s s u r e Id ' M a t e r i a l Index Ed ' D i l a t o m e t e r modulus Kd ' H o r i z o n t a l s t r e s s Index (m)  ZM- 0.0 B a r s  Kd  OCR  7.2 6.4 6.5 6. 1 7.0 6.6 6.3 6.4 6.1 6.1 6.2 4.9 5.0 4.5 4.9 4.6 4.7 4.8 4.6 4.5 4.3 4.1 4.2 4.2 3.9 4.2 4.0 3.9 4.2 4.2 3.9 4.2  7..44 6. 19 6. 30 5..65 7..07 6..50 5. 99 6..08 S. 63 5. 73 5. 83 4. 05 4. 18 3. 48 3. 99 3..70 3.82 3..93 3. 71 3. 50 3. 28 3. 07 3. 16 3..24 2. 80 3.. 15 3.00 2..83 3.. 15 3. 24 2. 85 3. 16  Kd  OCR  Pc (Bar) 1.13 1.25 1.34 1.27 1.65 1.59 1.52 1.61 1.54 1.63 1.71 1.24 1.32 1.14 1.35 1.30 1.38 1.45 1.41 1.36 1.32 1.27 1.34 1.42 1.26 1.45 1.41 1.37 1.55 1.63 1.47 1.66 PC (Bar)  KO 1.50 1.38 1.39 1.33 1.46 1.41 1.36 1.37 1.33 1.34 1.35 1.14 1. 16 1.07 1.14 1.10 1.11 1. 13 1.10 1.07 1.04 1.01 1.02 1.03 0.96 1.02 0.99 0.97 1.02 1.03 0.97 1.02 KO  Cu PHI M ( B a r ) (Deg) ( B a r ) 0. 19 0.20 0.20 0.25 0.24 0.23 0.25 0.24 0.25 0.27 0.21 0.22 0.20 0.23 0.22 0.23 0.24 0.24 0.23 0.23 0.22 0.24 0.25 0.23. 0.25 0.25 0.24 0.27 0.28 0.26 0.29  78. 23. 16. 30. 17. 24. 16. 9. 23. 23. 16. 26. 20. 31. 20. 25. 20. 14. 14. 19. 24. 29. 24. 24. 28. 18. 18. 23. 24. 19. 23. 18.  M PHI Cu ( B a r ) (Deg) ( B a r )  Soli  Type  Description  Z (m)  SILT MUO MUD CLAY MUO MUD MUD MUD MUD MUD MUD CLAY MUD SILTY CLAY MUO CLAY MUD MUO MUD MUD CLAY CLAY CLAY CLAY CLAY MUD MUD CLAY CLAY MUD CLAY MUD  COMPRESSIBLE  Soil  OescrIptIon  1.00 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.0O 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 Z (m)  Type  SOFT  SOFT SOFT SOFT  SOFT SOFT. SOFT SOFT SOFT SOFT SOFT SOFT  S o u n d i n g LRD-3 (DIL.RED)  to  z  <l») 8.20 8.40 8.60 8.80 9.00 9.20 9.40 9.60 9.80 10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40 13.60 13.80 14.00 14.20 14.40 14.60 14.80 15.00 15.20 15.40 15.60 15.80 16.00 16.20 16.40 16.60 16.80 17.00 17.20 Z  (in)  PI PO (Bar) (Bar) 2 .90 2..90 2..90 2.90 2,.80 2,.90 3..00 3.. 10 3.. 10 3..30 3..30 3,.30 3 .40 3,.70 3 .30 3 .80 3..90 3..80 3..70 4.. 10 4.0O 4..20 4. , 10 4,.30 4..40 4..20 4 .20 4 .20 . 3 .60 4..40 4,.40 4..40 4,.60 3 .90 4 .20 4,.50 4 .30 4..90 5..00 4.60 4..50 4..80 4 .90 4 .80 4 ,80 5.00  3..33 3..43 3. 33 3. 33 3.. 13 3..43 3..33 3..43 3. S3 3..63 3.,73 3. 83 3..93 4..03 3. 93 4.,73 4..33 4..43 4. .33 4..63 4..53 4..73 4..93 5. 33 4..93 4. 83 4 .83 . 4 .93 4..33 S. 23 4.93 5..23 5,.33 6..43 4 .93 5..43 5..93 5..53 5. 83 S..63 5. 73 5. 83 5. 43 5, 43 5. 43 5. 63  PO PI (Bar) (Bar)  Id Ed Uo (Bar) (Bar) 15. 18. IS. 15. 11. 18. 11. 11. 15. 11. 15. 18. 18. 11. 22. 32. 15. 22. 22. 18. 18. 18. 29. 36. 18. 22. 22. 25. 25. 29. 18. 29. 25. 88. 25. 32. 56. 22. 29. 36. 43. 36. 18. 22. 22. 22.  0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 t .08 1.10 1.12 1.14 1.16 1. 18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 I.SO 1.52 1.54 1.56 1 .5B 1 .60 1.62  0.20 0.25 0.20 0.20 0.16 0.25 0. 15 0. IS 0. 19 0. 14 0. 18 0.22 0.22 0. 12 0.27 0.33 0. 15 0.23 0.24 0. 18 0. 18 0. 17 0.28 0.33 0. 17 0.21 0.21 0.25 0.31 0.27 0. 17 0.27 0.23 1.00 0.26 0.30 0.57 0. 18 0.24 0.33 0.41 0.32 0. 16 0.20 0.20 0. 19  Id Uo Ed (Bar) (Bar)  Gamma Sv (T/CM) ( B a r ) 1 .60 1 .60 1.60 1 .60 1 .50 1 .60 1 .50 1 .50 1 .60 1.50 1 .60 1 .60 1 .60 1 .50 1 .60 1 .70 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .70 1 .70 1 .60 1 .60 1 .60 1 .70 1 .60 1 .70 1 .60 1 .70 1 .70 1 .70 1 .70 1 .70 1.70 1 .70 1 .70 1 .70 1.70 1 .70 1 .60 1 .70 1 .70 1 .70  0.538 0.550 0.562 0.574 0.584 0.596 0.606 0.616 0.628 0.638 0.650 0.662 0.674 0.684 0.696 0.710 0.722 0.734 0.746 0.758 0.770 0.782 0.796 0.810 0.822 0.834 0.846 0.860 0.872 0.886 O.B98 0.912 0.926 0.940 0.954 0.968 0.982 0.996 1.010 1.024 1.038 1.052 1.064 1.078 1.092 1. 106  Sv Gamma (T/CM) ( B a r )  Kd  OCR  4.1 3.9 3.8 3.7 3.4 3.5 3.6 3.6 3.5 3.8 3.7 3.6 3.6 4.0 3.3 3.9 4.0 3.7 3.5 4.0 3.7 3.9 3.7 3.9 3.9 3.6 3.5 3.4 2.7 3.5 3.4 3.4 3.5 2.7 2.9 3.2 2.9 3.5 3.5 3.0 2.9 3.1 3. 1 3.0 2.9 3.1  3.01 2.87 2.73 2.60 2.31 2.38 2.46 2.54 2.43 2.68 2.57 2.46 2.52 2.92 2. 19 2.85 2.90 2.65 2.41 2.90 2.66 2.85 2.60 2.78 2.83 2.47 2.39 2.31 1.56 2.39 2.32 2.24 2.39 1.58 1.82 2.06 1.80 2.35 2.38 1.91 1.76 1.98 2.02 1.87 1.81 1.94  Kd  OCR  PC (Bar) 1.62 1.S8 1.53 1.49 1.35 1.42 1.49 1.57 1.53 1.71 1.67 1.63 1.70 2.00 1.52 2.02 2.10 1.94 1.80 2.20 2.04 2.23 2.07 2.25 2.32 2.06 2.02 1.98 1.36 2.12 2.08 2.04 2.22 1.48 1.74 2.00 1.77 2.34 2.40 1.96 1.82 2.08 2. 15 2.02 1.98 2. 14 PC (Bar)  KO  PHI M CU ( B a r ) (Deg) ( B a r )  1.00 0.29 0.97 0.28 0.95 0.28 0.93 0.27 0.87 0.25 0.89 0.26 0.90 0.27 0.92 0.29 0.90 0.28 0.94 0.31 0.92 0.30 0.90 0.30 0.91 0.31 0.98 0.36 0.85 0.29 0.97 0.36 0.98 0.37 0.93 0.35 0.89 0.33 0.9B 0.39 0.94 0.37 0.97 0.40 0.93 0.38 0.96 0.40 0.97 0.42 0.90 0.38 0.89 0.37 0.87 0.37 0.71 0.27 0.89 0.39 0.88 0.39 0.86 0.38 0.89 0.41 0.71 0.77 0.34 0.82 0.38 0.77 0.35 0.88 0.43 0.89 0.44 0.79 0.38 0.76 0.36 0.81 0.40 0.81 0.41 0.78 0.39 0.77 0.39 0.80 0.41 KO  23. 28. 22. 22. 16. 26. 16. 17. 21. 17. 22. 26. 27. 18. 30. 50. 23. 32. 31. 28. 27. 28. 42. 54. 28. 32. 31. 35. 29. 41. 26. 40. 36. 104. 31 . 43. 70. 31. 41. 45. 52. 46. 24. 27. 27. 28.  M PHI Cu ( B a r ) (Deg) ( B a r )  S o u n d i n g LRD-3 (DIL.RED) , C o n t i n u e d  S o i l Type CLAY CLAY CLAY CLAY MUO CLAY MUD MUD CLAY MUD CLAY CLAY CLAY MUO CLAY SILTY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY SILTY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY SILT CLAY CLAY SILTY CLAY CLAY CLAY SILTY CLAY SILTY CLAY CLAY CLAY CLAY CLAY CLAY S o l i Type  DescrIptIon SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT SOFT LOW CONSISTENCY SOFT SOFT SOFT SOFT SOFT SOFT LOW CONSISTENCY LOW CONSISTENCY SOFT SOFT SOFT LOW CONSISTENCY SOFT LOW CONSISTENCY SOFT LOW CONSISTENCY LOW CONSISTENCY LOW DENSITY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY SOFT LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY DescrIptIon  Z lm) 8 .20 8 .40 8 .60 8 .80 9 .00 9 .20 9 .40 9 .60 9 .80 10 .OO 10 .20 10 .40 to .60 10 .80 1 1.00 1 1.20 1 1.40 . 11 .60 1 1.80 12 .00 12..20 12 .40 12 .60 12 .80 13 .00 13 .20 13..40 13 . .60 13 .80 14 .00 14 .20 14 .40 14 .60 14,.80 15 .00 15 .20 IS .40 15 .60 15 , .80 16,.00 16.,20 16 . .40 16 . .60 16 ,80 17 . .00 17 , .20 Z (m)  2 (m) 17 .40 17.60 17.80 18.OO 18.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.00 2 (m)  PO PI Ed Uo Id (Bar) (Bar) (Bar) (Bar) 5 .00 5 .00 S.. 10 5 .00 5 . 10 5..20 4..90 5 00 5..20 5..20 5..60 5..40 5..50 5..40  5. 53 5. 73 5. 73 5. 63 5. 53 5. 83 5. 73 5. 43 5.,73 5. S3 6. 33 6. 33 6. 33 6. 23  18. 25. 22. 22. 15. 22. 29. 15. 18. 11. 25. 32. 29. 29.  1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 1.90  0. 16 0.22 0. 18 0. 19 0. 13 0. 18 0.26 0. 13 0. 16 0. 10 0. 19 0.26 0.23 0.24  Uo Id PI Ed PO (Bar) (Bar) (Bar) (Bar)  Gamma Sv Kd (T/CM) ( B a r ) 1 .60 1 .70 1 .70 1 .70 1 .60 1 .70 1 .70 1 .60 1 .60 1 .50 1 .70 1 .70 1 .70 1 .70  1 .118 1 . 132 I . 146 1 . 160 1 . 172 1 . 186 1 .200 1 .212 1 .224 1 .234 1 .248 1 .262 1 .276 1 .290  3.0 3.0 3.0 2.8 2.9 2.9 2.6 2.7 2.8 2.7 3.0 2.8 2.8 2.7  Sv Kd Gamma (T/CM) ( B a r )  OCR  Pc KO (Bar)  1 .89 1 .83 1 .87 1 .73 1 .77 1 .80 1 .52 1 .56 1 .67 1 .63 1 .90 1 .70 1 .73 1 .61 OCR  2.11 2.08 2. 14 2.01 2.07 2.14 1.83 1.89 2.04 2.02 2.36 2.14 2.20 2.08  0.79 0.77 0.78 0.75 0.76 0.77 0.70 0.71 0.74 0.73 0.79 0.74 0.75 0.72  Pc KO (8ar)  Cu PHI M ( B a r ) (Deg) ( B a r ) 0.41 0.40 0.42 0.40 0.41 0.42 0.37 0.38 0.41 0.40 0.46 0.42 0.43 0.42  23. 32. 27. 26. 18. 27. 32. 17. 22. 13. 32. 39. 35. 33.  M Cu PHI ( B a r ) (Oeg) ( B a r )  NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu n o r P h i c a l c u l a t e d . 2.IBar-IOOKPa 3.* 'Irani D e f l e c t i o n n o t r e a c h e d .  S o u n d i n g LRD-3 (DIL.RED) , C o n t i n u e d  S o i l Typo  Description  2 (m)  CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY MUO CLAY CLAY CLAY CLAY  SOFT LOW CONSISTENCY LOW CONSISTENCY LOW CONSISTENCY SOFT LOW CONSISTENCY LOW CONSISTENCY SOFT SOFT  17.40 17.60 17.80 18.OO 18.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.00  S o i l Type  Description  LOW LOW LOW LOW  CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY  Z (m)  U.B.C.INSITU TESTING RESEARCH GROUP• F i l e Name:LRD-4X R e c o r d o f D i l a t o m e t e r t e s t No:LRD-4 Locat1on:LANGLEY-232 ST(UPPER) Oato:MAR 2 84 C a l i b r a t i o n Informatlon:DA>  OB*  0.20 B a r s  0.27 B a r s  0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2 .OO 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 20 40 60 80 00 20 40 60 5.80 6.00 6.20 6.40 Z (ro)  Ed Uo I d PO PI (Bar) ( B a r )(Bar) (Bar) 0.90 1.40 2.40 2.80 1.40 1.20 1.50 1.80 0.90 1.20 1.30 2 .OO 3.40 2.80 3. 10 3.40 3.50 4.30 3.50 2.70 2.50 2.30 2.40 2.40 3.20 3. 10 2.80 2.70 2. 10 2.60 2.70 2.60  2.23 3.03 4.43 6.63 3.43 2.83 3.03 3.43 1.33 1.73 3.23 6.03 6.73 6.83 7.63 7.83 7.83 8.03 6.83 5.43 4.53 4.53 4.53 4.33 4.73 4.03 3.53 3.53 2.73 3.43 3.33 3.23  46. 56. 70. 133. 70. 56. 53. 56. 15. 18. 67. 139. 115. 139. 157. 153. 150. 129. 115. 94. 70. 77. 74. 67. 53. 32. 25. 29. 22. 29. 22. 22.  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.04 0.06 0.08 0.10 0. 12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34  1.48 1. 16 0.85 1.37 1.45 1.36 1.02 0.91 0.48 0.44 1.48 2.01 0.98 1.44 1.46 1.31 1.25 0.88 0.97 1.05 0.85 1.03 0.9S 0.87 0.51 0.32 0.29 0.34 0.35 0.36 0.26 0.28  Ed Uo I d PO PI (Bar) ( B a r )(Bar) (Bar)  Kd Gamma Sv (T/CM) ( B a r ) 1.60 1.60 1.70 1.80 1.70 1.60 1.60 1.70 1.60 1.60 1.60 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.60 1.60 1.60 1.60 1.60 1.60  0.031 0.063 0.097 0. 133 0. 167 0. 199 0.231 0.265 0.297 0.329 0.361 0.397 0.433 0.469 0.505 0.521 0.537 0.553 0.569 0.583 0.597 0.611 0.625 0.639 0.653 0.667 0.679 0.691 0.703 0.715 0.727 0.739  0.0 B a r s  ZW-  3.00 motres  INTERPRETED GEOTECHNICAL PARAMETERS Ko ' I n s l t u e a r t h p r e s s . c o e f f . OCR'Overconsolidation R a t i o M ' C o n s t r a i n e d modulus Cu ' U n d r a i n e d c o h e s l o n ( c o h e s t v e ) P H I ' F r l c t l o n Angl e( c o n e s Ion I e s s )  Gamma*Bu1k u n i t w e i g h t Sv "Effective over.stress Uo "Pore p r e s s u r e Id ' M a t e r i a l Index Ed ' D i l a t o m e t e r modulus Kd ' H o r i z o n t a l s t r e s s Index Z (m)  ZM»  29.0 22.2 24.7 21.1 8.4 6.0 6.S 6.8 3.0 3.6 3.6 S.O 7.9 6.0 6.1 6.S 6.4 7.7 6.0 4.S 4.0 3.5 3.6 3.S 4.6 4.3 3.8 3.5 2.6 3.2 3.3 3.1  Kd Gamma Sv (T/CM) ( 8 a r )  Sounding  OCR *«•*•  42.79 50.60 52.32 12.95 6.71 6.28 6.74 1.91 2.55 3.26 10.21 8.44 7.26 7.80 7. 19 6.59 8. 14 5.57 3.49 2.93 2.43 2.48 2.37 3.66 3.32 2.69 2.43 1.50 2. 10 2. 16 1.94 OCR  Pc (Bar) 3.36 2.70 4.91 6.96 2. 16 1.34 1.49 1.78 0.57 0.84 1.18 4.09 3.66 3.40 3.94 3.72 3.54 4.50 3.17 2.04 1.75 1.49 1.59 1.51 2.39 2.22 1.83 1.68 1.05 1.50 1.57 1.43 Pc (Bar)  KO 3.43 2.95 3. 13 2.86 1.65 1.32 1.39 1.43 0.79 0.92 0.91 1. 17 1.58 1.31 1.31 1.39 1.38 1.55 1.32 1.07 0.98 0.90 0.91 0.88 1.09 1.04 0.94 0.90 0.69 0.83 0.84 0.80 KO  Cu PHI M ( B a r ) (Oeg) ( B a r )  S o l i Type  OescrIptIon  Z (m)  32. 4  SANOY SILT SILT SILT SANDY SILT SANDY SILT SANOY SILT SILT SILT SILTY CLAY SILTY CLAY SANDY S I L T SILTY SAND SILT SANDY SILT SANDY SILT SANDY S I L T SANDY SILT SILT SILT SILT SILT SILT SILT SILT SILTY CLAY CLAY CLAY SILTY CLAY SILTY CLAY SILTY CLAY CLAY CLAY  CEMENTED COMPRESSIBLE LOW DENSITY MEDIUM DENSITY LOW DENSITY COMPRESSIBLE COMPRESSIBLE LOW DENSITY SOFT SOFT COMPRESSIBLE LOW RIGIDITY MEDIUM DENSITY MEDIUM DENSITY MEDIUM DENSITY MEDIUM DENSITY MEDIUM DENSITY MEDIUM DENSITY MEDIUM DENSITY LOW DENSITY LOW DENSITY LOW DENSITY LOW DENSITY LOW DENSITY LOW CONSISTENCY LOW CONSISTENCY SOFT SOFT SOFT SOFT SOFT SOFT DescrIptIon  0 .20 0 .40 0 .60 0 .80 1 .00 1 .20 1 .40 1 .60 1 .80 2 .OO 2 .20 2 .40 2 .60 2 .80 3 .00 3 .20 3 .40 3. 60 3. 80 4 .00 . 4 .20 . 4 .40 4 .60 4 .80 5 .00 5 .20 5..40 5..60 5. 80 6. 00 6. 20 6..40 Z (m)  0.50  0.11 0.15  0.65 0.31 0.28 0.41 0.38 0.33 0.31 0.21 0.28 0.30 0.28  31. 3 29. 3 28. 2  27. 5 29. 7 28. 4 28. 6 28. 2 28.0  161. 184. 236. 425. 164. 113. 110. 119. 19. 27. 101. 259. 260. 279. 318. 318. 310. 288. 229. 160. 110. 113. 108. 96. 90. 53. 38. 41. 24. 38. 30. 28.  M PHI Cu ( B a r ) (Oeg) ( B a r )  (DIL.RED)  S o i l Type  Z (m) 6.60 6.80 7.00 7.20 7.40 7.60 7.80 Z (ro)  PO PI Ed Uo Id (Bar) (Bar) (Bar) (Bar) 2.10 2.60 2.70 2.60 2.50 2.60 2.60  2.73 3.23 3.13 3.03 3.03 3.03 3.03  22. 0.36 22. 0.38 15. 0.40 15. 0.42 18. 0.44 15. 0.46 15. 0-48  0.36 0.28 0.19 0.20 0.26 0.20 0.20  PO PI Ed Uo Id (Bar) (Bar) (Bar) (Bar)  Gamma Sv Kd (T/CM) ( B a r ) 1.60 1.60 1.60 1.60 1.60 1.60 1.60  0.751 0.763 0.775 0.787 0.799 0.811 0.823  2.3 2.9 3.0 2.8 2.6 2.6 2.6  Gamma Sv Kd (T/CM) ( B a r )  OCR 1.26 1.79 1.85 1.66 1.49 1.54 1.48 OCR  Pc KO (Bar) 0.94 1.37 1.43 1.31 1.19 1.25 1.22  0.63 0.77 0.78 0.73 0.69 0.70 0.69  Pc KO (Bar)  Cu PHI M S o i l Type ( B a r ) (Deg) ( B a r ) 0.20 0.27 0.28 0.26 0.24 0.25 0.25  22. SILTY CLAY 27. CLAY 19. CLAY 18. CLAY 20. CLAY 17. CLAY 17. CLAY  Cu PHI M S o i l Type ( B a r ) (Oeg) ( B a r )  NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu n o r P h i c a l c u l a t e d . 2.1Bar«100KPa 3.# '1mm D e r l e c t l o n n o t r e a c h e d .  S o u n d i n g LRD-4 (DIL.RED), C o n t i n u e d  Description  Z (m)  SOFT SOFT SOFT SOFT SOFT SOFT SOFT  6.60 6.80 7.00 7.20 7.40 7.60 7.80  Description  Z (ra)  147  TEST NO. R.DMT SOUNDING NO. 1  SCHMERTMANN tt CRAPPS. INC. FILE NAME: RESEARCH DMT TESTING FILE NUMBER: MRO-1  RECORD OF DILATOMETER TEST NO. R.OMT SOUNDING NO.1 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE.J-GEO.MARCH 80) KO IN SANDS DETERMINED USING SCHMERTMANN METHOD (1983) PHI ANGLE CALCULATION BASED ON OURGUNOGLU AND MITCHELL (ASCE.RALEIGH CONF.JUNE 75) MODIFIED MAVNE AND KULHAWY FORMULA USED FOR OCR IN SANDS (ASCE.J-GED.JUNE 82) LOCATION: MCDONALD'S FARM PERFORMEO - DATE: MAR 21 1984 BY: C TSANG CALIBRATION INFORMATION: DA- 0.20 BARS OB- 0.27 BARS ZM- 0.0 BARS ZW- 1.00 METERS ROD OIA.- 3.SO CM FRICTION RED. OIA.- 4.38 CM ROD WEIGHT- 6.59 KG/M  ANALYSIS USES H20 UNIT WEIGHT •  BAR • 1.019 KG/CM2 - 1.044 TSF • 14.51 PSI Z (M)  347. 511. 551. 541. 531. 408.  0, 90 0. SO 0..40 0..50 0..70 0..40  3 .80  347. 1.60 1.80 306. 327. 2.00 2.20 490. 2.40 603. 613. 2.60 2.80 633. 3.00 674. 827. 3.20 3.40 1052. 3.SO 1400. 3.80 1318. 4.00 1083. 991. 4.20 4.40 868. 4.60 786. 4.80 909. 5.00 1001. 5.20 1083. 5.40 1522. 5.60 1635. 5.80 1236. 6.CO 1165. 6.20 1338. 6.40 2084. 6.60 2146. 6.80 177B. 7.00 1982. 7.20 3127. 7.40 3679. 7.60 3015.  0. SO 0..50 0..60 0,.60 0. 90 0. 70 1..00 0..70 1..20 1..20 i ,.30 1..90 1..50 1.SO 1.,10 1.,70 1. 30 1 80 . 1 SO , 1.60 2. 10 2. 10 1.70 . 1. 60 1 90 . 2. SO 2..60 2..60 2.,70 5.. 10 4..20  1.40  1.60 2.30 2.90 3 .30 2.70 3 . 10 3 .30 5 .00 5 .70 6..90 8..60 7.00 6.70 5 .00 6 . 10 5 .60 6 .90 6..70 7..70 8.80 8 .40 6.90 7.00 10 .00 11 .90 9..60 10 .50 11 .30 17 .80 17 . 10  8 OO  3.80  14,.80  0.20 0.40 0.60 0.80 1.00 1.20  UO (BAR)  THRUST A B ED 10 (KG) (BAR) (BAR) (BAR)  2555.  2.60 1.80 1.60 2.00 1.40  84. 2..21 35 .48 57. 2..33 10 .88 32. 1.55 6 .37 22. 0 .90 5 .50 29. 0 .92 5 .68 18. 0 .91 3 .41 0..67 1..01 1,.75 2 .68 2..00 2..06 1..59 3..03 2..81 3..46 4.. 12 3..41 3..58 3..41 3..55 2..54 133. 3..40 161. 2..88 161. 3..34 195. 4 .. 11 216. 3..37 202. 3.. 19 164. 3..36 171. 3..82 . 265. 4 .86 299. 3..52 227. 2..93 258. 3. 36 282. 3..55 424. 2..62 431. 3..31 15. 22. 43. 64. 67. 53. 57. 74. 116. 140. 178. 216. 175. 164. 119. 136.  365.  3 .31 3..02 3 .23 2 .95 3 .93 2..87 3..78 2 .48 3..95 3..69 3..76 5,.26 3..88 3,.66 2..45 3,.77 2..65 3 .64 3..04 2,.90 3 .79 3 .632.71 2, 41 2.as 4 .31 3,.80 3,.66 3 .69 7 .28 5 ,6B  3.. 18 4..74  GAMMA  VSO0.031 BARS DELTA/PHI- 0.50  SV  (T/M3) (BAR)  1.000 T/M3  CU PHI (BAR) (OEG) (BAR)  PC  (BAR)  312. 146. 66. 42. 56. 26.  SILTY SAND SILTY SANO SANDY SILT CLAYEY SILT SILT SILT  31. 3S.3 35.6 36.6 35.5 37.3 37.0 38.9 40.9 38.8 38.0 37.1 37.0 34.2 36.7 36.1 37.2 40.0 39.5 37.0 37.3 38.6 41.6 40.2 38.9 39.8 43.3 41.6 40.9  20. 29. 61. 90. 109. 71. 89. 95. 194. 229. 294. 420. 293. 267. 152. 222. 170. 259. 235. 278. 358. 328. 224. 216. 373. 530. 375. 419. 461 . 941. 866.  CLAYEY SILT SILT SANDY SILT SILTY SANO SILTY SAND SILTY SAND SANDY SILT SILTY SANO SILTY SAND SAND SAND SAND SAND SANO SAND SILTY SAND SAND SILTY SAND SAND SAND SANO SILTY SANO SANO SANO SAND SANO SILTY SAND SANO SANO SILTY SAND SAND  0.65  39.9  677.  SILTY SANO  414.  SAND SAND  0.0 0.0 0.0 0.0 0.0 0.020  1..70 1..70 1 .60  1,.60 1.60 1..60  0..031 0.064 0..096 0,, 127 0.. 159 0.. 170  4 .20 0.64 0,.33 0..62 0.81 0..39  9 .92 3 .46 4 .85 5 .09 2.30  4 .34 . 1,. 14 0..67 1,24 , 1,27 , 0, 87  0.059 0.079 0.098 0. 118 0. 137 0. 157 0. 177 0. 196 0. 216 0. 236 0. 255 0.275 0. 294 0. 314 0. 334 0. 353 0. 373 0. 393 0. 412 0.432 0.451 0. 471 0. 491 0. 510 0. 530 0. 550 0..569 0. 589 0.608 0..628 0.,648  1..60 1..60 1..60 1..70 1..70 1,,70 1,.60 1..70 1..80 1.80 . 1..80 1..80 1..80 1.80 1..80 1..80 1.80 . 1.80 1.80 1.80 . 1 80 1.80 1.80 1.80 1 .80 1 90 1.90 1.90 1.90 2.00 2.00  0.. 194 0. 206 0..217 0,.231 0..245 0..259 0.,270 0. 284 0..300 0. 316 0..331 0. 347 0..363 0..378 0.394 0..410 0. 436 0..441 0. 457 0. 473 0..488 0.504 0..520 0.535 0. 551 0.569 0..586 0,.604 0 .622 0 .641 0.661  0. 42 0. 39 0. 51 0. 39 0.63 0. 39 0..67 0. 33 0. 73 0. 58 0. SO 1.23 0. 81 0..83 0..48 1. 11 0. 61 1..04 0. 76 0. 55 0..96 1. 13 0..74 0. 57 0. 49 1. 33 1.26 1. 13 0 .68 3 .67 2.48  2. 19 1.90 2.34 1.70 2.57 1.50 2.47 1. 16 2.43 1.85 1.SO 3 .55 2.23 2. 19 1.22 2.72 1 .42 2.36 1.67 1. 15 1.96 2 .25 1.43 1.06 0 .89 2.35 2.. 14 1..87 1.09 5 .72 3 .75  0.,85 0.,79 0. 64 0..52 0..63 0..48 0..62 0..42 0. 61 0..52 0..45 0..72 0..58 0..58 0..44 0..67 0. 48 0..61 0,.51 0..40 0,.53 0..59 0..48 0..40 0..34 0. 58 0.56 0.52 o.37 0. 89 0. 72  0..687  1.90  0.698  2.06  2..95  35. 1 41.6 40.8  SOIL TYPE  a  1941.  2..70  11 .60  293.  3..91  2..87  0. 746  1.90  0..751  1..07  1.42  0.47  38.9  9.O0 2044.  3.OO  13 .50  348.  4., 15 3,.07  0.,785  1.90  0..787  1.26  1..60  0.SO  38.8  513.  9.60  3505.  3. 80  17 .60  463.  4 .22 .  3,.76  0..844  1.90  0..840  1.31  1.56  0.46  42. 1  763.  SAND  10.00  5764.  6..40  17 .80  379.  1..91  6 .52  0..883  2.00  0 .877  3 .48  3 .95  0. 72  43.6  796.  SILTY SANO  10.60  3853.  4 .20  18..70  487.  4. 06  3,.71  0..942  1.90  0..933.  1.42  1.53  0.45  42.2  797.  SANO  11.OO  2381 .  2. 90  13 .00  334.  4 .55  2,. 19  0. 981  1.90  0.,968  0 .89  0 .92  0. 37  39.6  394.  SANO  8.60  CONTINUED ON NEXT PAGE TEST NO. R.OMT SOUNDING NO.1 (CONTINUEO)  Sounding MRD-1 (DILLY^) ( T h r u s t measured a t ground  surface)  148  z (M>  THRUST (KO>  11 (BAR)  B (BAR)  EO (BAR)  10  KO  GAMMA SV (T/M3) (BAR)  M (BAR)  0.42 0.38 0.56 0.67 0.36 0.28 0.24 0.40  34.7 39.6 40.4 39.7 41.3 43.0 44.4 44.2  122. 345. 743. 787. 502. 961. 715. 755.  KO  0.93 1.01 2.25 3.28 1 .02 0.68 0.55 1.51  0 .91 0 .97 2 . 13 3 .05 0 .93 0 .61 0 .49 1 .31  SOIL TYPE  SILTY SAND SAND SILTY SANO SILTY SANO SAND SANO SANO SILTY SANO  1 .80 1.90 2 .00 2 .00 1 .90 1.90 1.90 2 .00  3 . 10  1.217  2 .00.  1. 187  1. 13  0,.96  0.35  43. 1  698.  SAND  1 .34 3 . 16 2 .39 1 .71 1 .67 1 .71 1.60 1 .93  1.256 t .276 1.295 1.315 1.335 1.354 1.374 1.394  1.80 2 .00 1.90 1.90 1 .90 1 .90 1.90 1 .90  1.222 1.242 1.260 1.277 1.295 1.313 1.330 1.348  0.77 2.06 1 .39 0.95 0.97 1 .01 1.03 1.48  0 .63 1,.66 1,. 10 0..74 0 .75 0.,77 0,.78 1,. 10  0.33 0.50 0.41 0.34 0.35 0.35 0.36 0.44  38.2 39.6 39.5 39.2 38.9 38.9 38.2 36.9  142. S80. 402. 306. 251. 232. 253. 209.  SILTY SAND SILTY SANO SILTY SAND SANO SAND SILTY SANO SAND SILTY SANO  1 .37  1 .472  1 .60  1.407  0.7S  0..55  0.36  0. 19  24.  SILTY CLAY  .31  0 .89  0.51  0.29  19.  CLAY  1.51 1.57 1 .62 1 .45 1 .66 1.40 1.85 1 .22 1.34 1 .78 0.72 1.97 1.73 1.84 2.06  0..99 1,.02 1,.05 0..93 1 .05 0..88 1.. 16 0.,75 0..82 1..08 0..43 1., 18 1.03 1.OS 1.21  0.54 0.55 0.56 0.52 0.56 0.50 0.60 0.45 0.48 0.57 0.29 0.60 0.56 0.57 0.61  0.33 0.34 0.35 0.32 0.36 0.32 0.40 0.28 0.31 0.38 0. 19 0.42  13. 13. 13. 16. 19. 22. 27. 24. 22. 26. 36. 21. 57. 28. 18.  1226. 2544. 3474. 3515. 3393. 434 1. 5314. 6111.  2..30 3..20 5.00 5, SO 3..70 3..70 4 ,, 10 5..60  6 .90 11 .90 18 .20 18 .90 15 .20 16 .70 19 .40 18 .90  143. 286. 442. 435. 363. 435. 515. 445.  2 .83 3 .52 3 .09 2 .51 3 .97 4 .54 4 .72 2 .78  1.43 2 .26 3 .90 4 .65 2 .55 2 .49 2 .79 4 .03  13.40  4936.  4,,70  18 .70  469.  3..67  13.80 14.00 14.20 • 14.40 14.60 14.80 15.00 15.20  2136. 3311. 3004. 2636. 2565. 2616. 2371. 2156.  2..70 5.00 4.. 10 3..30 3. 30 3.40 3. 30 3..80  8 .00 16..70 13,.80 12 .90 11..40 10..80 11 .80 10 .30  168. 390. 320. 317. 265. 240. 279. 209.  2 .94 2..86 3,.07 4.. 18 3..52 3..09 3..78 2..31  16.00  572.  4..50  29.  0..43  1 .018 1 .036 1 .056 1 .075 1.093 1. 110 1. 128 1. 148  CU PHI (BAR) (DEG)  OCR  PC (BAR)  1 .040 1.060 1.079 1.099 1 . 119 1. 138 1. 158 1. 178  11.60 11.80 12.00 12.20 12.40 12.60 12.80 13.00  3. 20  UO (BAR)  17.00  572.  4 .10  5..20  22.  0..23  1 .86  1.570  1 .60  1.466  18.00 IB. 20 18.40 18.60 1S.SO 19.00 19.20 19.40 19.60 19.80 20.OO 20.20 20.40 20.60 20.80  572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572.  4. SO 4 .60 4 .70 4 .50 4 .80 4. 50 5. 10 4 .30 4 .SO 5. 10 3.60 5.40 3.00 5.30 5.60  5..40 5..50 5..60 5..50 5,.90 5..70 6,.40 5..60 5..70 6..40 5..30 6.SO 5.40 6..60 6..60  15. 15. 15. 18. 22. 25. 29. 29. 25. 29. 43. 22. 67. 29. 18.  0.. 14 0.. 14 0.. 13 0.. 18 0.. 19 0..25 0..24 0..31 0..25 0..24 0. 64 0., 17 1.49 0..23 0., 14  1 .99 2 .03 2 .06 1 .91 2 .07 1 .85 2 . 19 1,.67 1,.77 2..10 1,. 17 2..23 0..77 2..11 2..26  1 .668 1.688 1.70S 1.727 1.747 1.766 1 .786 1.806 1.825 1.845 1.865 1.884 1 .904 1.923 1.943  1 .60 1 .60 1 .60 1 .60 1 .70 1 .70 1 .70 1 .70 1 .70 1 .70 1 .70 1,.70 1 .60 1,.70 1..70  1 .525 1.536 1 .548 1.560 1.574 1.587 1.601 1.618 1.639 1.643 1.656 1.670 1.682 1.69S 1.709  t  END OF SOUNDING  S o u n d i n g MRD-1 ( D I L L Y ^ ) , C o n t i n u e d ( T h r u s t measured a t ground  surface)  0.40 0.44  . 26.2  CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAYEY SILT CLAY SANDY SILT CLAY CLAY  149  SCHMERTMANN & CRAPPS. INC. FILE NAME: RESEARCH OMT TEST FILE NUMBER: MRD-2  TEST NO. OMT SOUNDING NO.2  RECORD OF DILATOMETER TEST NO. DMT SOUNDING NO.2 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE. J-GED.MARCH SO) KO IN SANDS OETERMINEO USING SCHMERTMANN METHOD (1983) PHI ANGLE CALCULATION BASED ON OURGUNOGLU AND MITCHELL (ASCE.RALEIGH CONF,JUNE 75) MODIFIED MAVNE ANO KULHAWY FORMULA USEO FOR OCR IN SANDS (ASCE.J-GEO.JUNE 82) LOCATION: MCDONALD'S FARM PERFORMED - DATE: APR 18 1984 BY: C. TSANG CALIBRATION INFORMATION: DA. 0.20 BARS 08' 0.27 BARS ZM' 0.0 BARS ROO OIA.' 3.50 CM FRICTION REO. OIA.' 4.38 CM 1 BAR • 1 .019 KG/CM2  z  {*> 1.00  tL  •  GAMMA SV (T/M3) (BAR)  KD  32.  1. 33  4. 46  0.0  1.60  2..46  0.049  1.60  (BAR)  I3 (BAR)  ED (BAR)  449.  0.SO  1 .90  UO (BAR )  VSO0.157 BARS OELTA/PHI* 0.50  ANALYSIS USES H20 UNIT WEIGHT • 1 .000 T/M3  1 .044 TSF • 14.51PSI  ID  THRUST (KG)  ZW' 1.50 METERS ROO WEIGHT* £.59 KG/M  PHI CU (BAR) (DEG)  M (BAR)  35.9  55.  SANDY SILT  20.  CLAYEY SILT  13.  CLAYEY SILT  PC (BAR)  OCR  KO  0. 157  0..46  2.95  0.67  1 .38  0.66  0.08  0.46  0.06  SOIL TYPE  2.00  235.  0.50  1 .50  18.  0. 81  0.265  0,,37  3.00  163.  0.50  1 .40  15.  0, 78  1 .71 .  0. 147  1.60  0.324  0..25  0.78  4.00  1308.  1. 20  6 .50  168.  4. 18  2. 94  0.245  1.80  0.393  0..45  1. 14  0.40  40.0  24 1.  SAND  5.00  1246.  1.40  6 .90  175.  4 .00  2. 67  0.343  1.80  0.471  0..57  1.21  0.43  38.6  236.  SANO  6.00  2044.  2. 40  8.30  188.  2..52  3..89  0.442  1.90  0.554  1, 06  1.92  0.52  40.4  311.  SILTY SANO  7.00  1941.  2.60  11 . 10  279.  3..55  3. 52  0.540  1.90  0.643  1.. 18  1 .84  0.52  39.3  444 .  SANO  8.0O  3004.  3.40  13 .60  338.  3..28  4 .OS  0.638  1.90  0.731  1..39  1.90  0.51  41.5  579.  SILTY SAND  9.00  2003.  2.00  8 .SO  20S.  4 .12  1 .80  0.736  1.80  0.815  0..52  0.S4  0.31  39.8  211.  SAND  IS .30  414.  5..51  2. 41  0.834  0.898  0.,21  0.23  0.16  44.7  524.  SAND  10.00  4292.  3. 80  1.90  END OF SOUNDING  S o u n d i n g MRD-2 (DILLY4) ( T h r u s t measured  a t ground  surface)  150  SCHMERTMANN 5 CRAPPS. INC. F I L E NAME: RESEARSH OMT F I L E NUMBER: MRO-3  TEST NO.  OMT  SOUNDING  NO.3  TEST  RECORD OF DILATOMETER TEST NO. DMT SOUNDING NO.3 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE,J-GED.MARCH 8 0 ) KO IN SANDS DETERMINED USING SCHMERTMANN METHOD ( 1 9 8 3 ) PHI ANGLE CALCULATION BASEO ON DURGUNOGLU AND MITCHELL ( A S C E . R A L E I G H CONF.JUNE MODIFIED MAVNE AND KULHAWY FORMULA USED FOR OCR IN SANDS ( A S C E . J - G E D . J U N E 8 2 )  75)  LOCATION: MCDONALD'S FARM PERFORMED - DATE: APR 18 1984 BY: C. TSANG  CALIBRATION INFORMATION: DA0.20 BARS OB0.27 BARS ZMROD 0 I A . - 3.50 CM FRICTION RED. DIA.1 BAR  Z (M)  THRUST (KG)  5.00  1042.  7.00  • 1.019 KG/CM2 • 1.044 T S F • 14.51 PSI  A (BAR)  B (BAR)  ED (BAR)  1 .20  5 .90  147.  3086.  2,.40  0.0 BARS 4.38 CM  13 . 10  355.  ID  KD  4 .00  1 .96  4 .97  2 .92  UO (BAR)  ROD  0 .540  9.00  1921.  2..30  10.50  268.  4 .38  2..00  0 .736  1 .80 1 .90  VSO0.883 BARS DELTA/PHI0.50  ANALYSIS USES H20 UNIT WEIGHT •  GAMMA SV (T/M3) (BAR)  0 .343  ZW1.50 METERS WEIGHTS.59 KG/M  0 .540 0 .706  PC (BAR)  CU PHI (BAR) (OEG)  1.000  T/M3  OCR  KO  0 .52  0 .96  0..40  37.0  159.  SAND  0 .50  0 .71  0..30  43.0  508.  SANO  295.  SANO  1 .90  0 .883  0 .79  0 .89  0..38  38.7  M (BAR)  SOIL TYPE  10.00  3965.  2..80  16 . 10  445.  5 .92  2 .23  0 .834  1 .90  0 .971  0 .34  0 .35  0..21  43.6  . 533.  SAND  11.00  4721.  4..80  19 .10  4B0.  3 .40  3 .82  0 .932  2 .00  1 .065  1 .61  1 .51  0..45  42.8  799.  SANO  12.00  2555.  3..00  12 .60  317.  4 .21  1 .87  1 .030  1 .90  1 . 158  0 .92  0 .80  0..35  39.3  331.  SAND  13.00  3229.  3..20  14.30  369.  4 .68  1 .82  1.. 129  1 .90  1 .246  0..77  0 .62  0..30  40.8  377.  2..03  2.. 15  1 .227  1 .90  1 .334  1 .40  1 .05  0..41  38.8  216.  SILTY  SAND  1 .06  1 .423  1 .70  1 .491  1,. 18  0 .79  0..40  34.0  72.  SANOY  SILT  14.00 16.00  2779. 1410.  3..90 2. 8 0  10.20 5 .70  202. 84.  1..54  17.00  572.  4..20  5 .40  25.  0..25  1..85  1 .521  1 .70  1..560  1..38  0..88  0..50  0.31  23.  18.00 18.20 18.40 18.60 18.80 19.OO 19.20 19.40 19.60 19.80 20.00 20.20 20.40 20.60 2O.80 21.00 21.20  572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572. 572.  4. .30 4. 4 0 2..60 3..90 4.00 2. SO 3..70 3..70 2. 5 0 3..70 3. 9 0 2. 5 0 4 .GO 3. 3 0 4. 8 0 4 .30 5. 20  5 .30 5 .60 4 .80 5 .20 5 .20 4 .70 5 . 10 4 .60 4 . 10 4 .80 4 .90 4 .20 5 .70 5. 0 0 5. 9 0 5. 80 6. 70  18. 25. 60. 29. 25. GO. 32. IS. 39. 22. 18. 43. 22. 43. 22. 36. 36.  0 . 18 0..25 1 .52 0..34 0..29 1,.76 0..43 0..20 1, 22 0..30 0..23 1..42 0..21 0. 76 0. 20 0. 40 0. 30  1,.77 1..81 0..69 1,.46 1..50 0..58 1,.27 1..25 0 .54 1..21 1..31 0..49 1. 67 0..91 1..73 1. 43 1. 9 0  1..619 1,.639 1..658 1,.678 1 .698 1,.717 1 .737 . 1..757 1,.776 1..796 1 .816 . 1 .835 . 1 .855 . 1 .874 1..894 1 .914 1 .933  1 .60 1 .70 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .60 1 .70 1 .70 1 .70  1 .624 1..638 1..649 1..661 1 .673 1,.685 1 .697 1 .708 1..720 1 .732 1..744 1 .755 1 .767 1..779 1..793 1 .806 1 .820 .  1,.35 1,.40 1. 6 0 1..01 1..06 1 .52 , 0 .84 0..83 1..50 0..80 0..90 1 .49 1..33 0. 52 1. 43 1. 07 1. 69  0..83 0..85 0..97 0..61 0 .64 0 .90 0 .50 0 .48 0..87 0 .46 0 .52 0 .85 0..75 0. 29 0. 8 0 0. 59 0. 93  0..48 0..49 0..54 0..39 0..40 0. 53 0..33 0..32 0. 52 0..31 0..34 0..52 0..45 0. 19 0. 47 0. 38 0. 52  0.31 0.32  16. 22. 51. 24. 22. 51. 27'. 13. 33. 19. 16. 36. 19. 36. 19. 30. 30.  END OF  SOUNDING  S o u n d i n g MRD-3 (DILLY4) ( T h r u s t measured  a t ground  surface)  26.5 0.25 0.26 36.7 0.21 0.21 26.8 0.20 0.23 26.8 0.31 0. 15 0.33 0.26 0.38  SAND  CLAY CLAY CLAY SANOY S I L T CLAY CLAY SANDY S I L T S I L T Y CLAY CLAY SANDY S I L T CLAY CLAY SANDY S I L T CLAY CLAYEY S I L T CLAY S I L T Y CLAY CLAY  151  SCHMERTMANN & CRAPPS. INC. F I L E NAME: RESEARCH DMT F I L E NUMBER: MRO-I  TEST NO. R.OMT SOUNDING NO.1 TESTING  RECORD OF DILATOMETER TEST NO. R .DMT SOUNDING NO.1 USING OATA REDUCTION PROCEDURES IN MARCHETTI (ASCE.J-GEO.MARCH SO) KO IN SANOS DETERMINED USING SCHMERTMANN METHOD ( 1 9 8 3 ) PHI ANGLE CALCULATION BASED ON OURGUNOGLU AND MITCHELL (ASCE.RALEIGH CONF,JUNE 7 5 ) MODIFIED MAVNE AND KULHAWY FORMULA USED FOR OCR IN SANOS (ASCE.J-GED.JUNE 8 2 ) LOCATION: MCDONALD'S FARM PERFORMED - OATE: MAR 21 1984 BY: C. TSANG  CALIBRATION INFORMATION: OA0.20 BARS OB0.27 BARS ZMROO D t A . - 0.0 CM F R I C T I O N RED. O I A . -  0.0 0.0  BARS CM  THRUST (KG)  A (BAR)  B (BAR)  0. 90  3. SO 2. 60 1. 80 1. 6 0 2. 0 0 1.,40  84. 57. 32. 22. 29. 18.  0.20 0.40 0.80 0.80 1.00 1.20  299. 377. 204. 125. 188. 173.  1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.0O 3.30 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60  196. 165. 212. 362. 440. 472. 487. 518. 668. 920. 1251. 1164. 912. 834. 738. 661. 779. 857. 944. 1330. 1361. 1007. 944. 1156. 1857. 1802. 1479. 1762. 2801. 3281. 2274.  0. 50 0. SO 0. 6 0 0..60 0. 90 0.,70 1. 0 0 0..70 1..20 1..20 1..30 1..90 1..50 1, SO 1.. 10 1..70 1,.30 1,.80 1. SO 1,.60 2.. 10 2. . 10 1 .70 1,.60 1..90 2. 80 2 .60 2 .60 2 .70 5 . 10 4 .20  1. 4 0 1..60 2..30 2..90 3..30 2.,70 3.. 10 3..30 5..00 5..70 6..90 8..60 7,.00 6..70 5..00 6.. 10 5..60 6..90 6..70 7,.70 8..80 8..40 6 .90 7 .00 10 .00 1 1.90 . 9 .60 10 .50 11 .30 17 .80 17 . 10  8.00  2085.  3 .80  14 .80  0. 50 0. 40 0. 50 0. 70 0.,40  ED (BAR)  ID  KD  UO (BAR)  GAMMA SV (T/M3) (BAR)  PC (BAR)  2. 21 35. 48 2..33 10. 88 1 .55 6. 27 5. 5 0 0. 9 0 5..68 0..92 3..41 0..91  0. 0 0. 0 0..0 0. 0 0.,o 0.,020  1 .70 1 .70 1 .60 1 .60 1 .60 1 .60  0. 031 0. 064 0. 096 0. 127 0. 159 0. 170  0. 79 0. 60  15. 22. 43. 64. 67. 53. 57. 74. 116. 140. 178. 216. 17S. 164. 119. 136. 133. 161. 161. 195. 216. 202. 164. 171. 265. 299. 227. 258. 282. 424. 431.  0.,67 1.,01 1.,75 2..68 2..00 2..06 1..59 3..03 2..81 3..46 4.. 12 3..41 3..58 3..41 3..55 2..54 3..40 2..88 3..34 4 . 11 3..37 3.. 19 3 .36 3..82 4 .86 3..52 2 .93 3 .36 3 .55 2 .62 3 .31  3. 31 3..02 3..23 2..95 3. 93 2..87 3..78 2..48 3..95 3..69 3.,76' 5..26 3.,88 3..66 2..45 3..77 2..65 3..64 3..04 2..90 3..79 3..63 2 .71 2..41 2..85 4 .31 . 3 .80 3 .66 3 .69 7 .28 5 .68  0..059 0..079 0..098 0..118 0.. 137 0.. 157 0..177 0.. 196 0..216 0.,236 0..255 0..275 0..294 0,.314 0..334 0..353 0..373 0..393 0..412 0,.432 0..451 0 .471 0 .491 0 .510 0..530 0..550 0..569 0..589 0..608 0..628 0..648  1 .60 1 .60 1 .60 1 .70 1 .70 1 .70 1 .60 1 .70 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 1 .80 t .80 1 .80 1 .90 1..90 1..90 1 .90 2 .00 2 .00  0.. 194 0. 206 0.,217 0. 231 0. 24S 0..259 0..270 0.,284 0..300 0.,316 0..331 0..347 0..383 0..378 0..394 0..410 0..426 0,.441 0,,457 0,.473 0 .488 0..504 0 .520 0..535 0..551 0..569 0. 586 0. 604 0. 622 0. 641 0. 661  0. 42 0. 39 0..62 0..45 0. 72 0..45 0.,74 0. ,39 0..80 0..61 0.,51 1.,27 0.,86 0..88 0..52 1,. 18 0 .64 1.. 10 0 .80 0,.57 1 .04 1 .22 0 .82  365.  3 . 18  4 .74  0..687  1 .90  0. 62 0. 81 0. .39  2. 22  3 . 18  0..69  38.9  677.  SILTY  1 .57  0 .50  37.7  414.  SANO  1 .71  0 .52  38,0  513.  SANO  1 .73  0 .49  41.3  763.  4 . 13  0 .74  43.2  796.  SAND SANO  293.  3 .91  2 .87  0..746  1 .90  0. 751  13 .50  348.  4 . 15  3 .07  0,.785  1 .90  0. 787  1,.34  10.00  4934.  6 .40  17 .80  379.  1 .91  6 .52  0 .883  1 .90 2 .00  S I L T Y SANO S I L T Y SANO SANDY S I L T CLAYEY S I L T SILT SILT  0. 698  11 .60  0..844  312. 146. 66. 42. 56. 26.  1 .43 1. 35 1, 15 0. 68 3.,71 2.,79  0 60 0 .50  3 .00  3 .76  0. 8 4 0 0.,877  1,.45 3,.63  10.60  3256.  4 .20  18 .70  487.  4 .06  3 .71  0 .942  1 .90  0..933  1,.54  1 .65  0 .48  41.6  797.  11.00  1964.  2 .90  13 .00  334.  4 .55  2 . 19  0 .981  1 .90  0..968  0 .99  1 .02  0 .40  38.7  394.  CONTINUED ON NEXT PAGE  T E S T NO. R.OMT SOUNDING NO.1  TYPE  CLAYEY S I L T SILT SANDY S I L T S I L T Y SAND S I L T Y SANO S I L T Y SAND SANDY S I L T S I L T Y SAND S I L T Y SAND  2 .70  4 .22  0. 10  SOIL  20. 29. 61. 90. 109. 71. 89. 95. 194. 229. 294. 420. 293. 267. 152. 222. 179. 259. 235. 278. 358. 328. 224. 216. 373. 530. 375. 419. 461. 941. 866.  1731.  463.  32.7 38.4 30.2  M (BAR)  26.4 32.8 32.9 34.7 33.3 35.4 35.5 38.5 40.8 38.4 37.1 36.2 36.2 32.9 35.9 35.2 36.6 39.7 38.7 35.7 36.0 38.1 41.5 39.5 38.0 39.5 43.2 41 .4 39.2  1566.  17 .60  4. 41 1 .30 1 .00 1. 24 1. 27 0. 87  CU PHI ( B A R ) (DEG)  0. 85 0. 79 0. 75 0. 58 o. 70 0. 53 0. 68 0. 47 0. 65 0. 53 0. 45 0. 73 0. 6 0 0. 61 0..46 0.,70 0. 50 0. 64 0..53 0. 42 0..56 0. 63 0.,51 0.,42 0. 35 0. 60 0..59 0..53 0 .37 0 .89 0 .79  9.00  3 .80  12..29 6..31 4 .85 . 5..09 2..30  KO  1.000 T/M3  2.. 19 1..90 2..83 1 .97 . 2..93 1 .72 2..75 1,.36 2 .65 1,.93 1..53 3..65 2 .38 2 .33 1 .31 2 .88 1 .51 2 .48 1 .75 1 .21 2 . 12 2 .43 1 .58 1 . 13 0 .91 2 .51 2 .30 1 .91 1 .09 5 .79 4 .23  8.60  2896.  OCR  4 .57  1,. 18  9.60  VSO0.031 BARS DELTA/PHI0.50  ANALYSIS USES H20 UNIT WEIGHT •  1 BAR • 1.019 KG/CM2 • 1.044 T S F • 14.51 P S I  Z (M)  ZW1.00 METERS ROD WEIGHT0.0 KG/M  (CONTINUEO)  S o u n d i n g MRD-1 (DILLY4) ( T h r u s t measured i m m e d i a t e l y b e h i n d b l a d e )  SAND SANO SAND SAND SAND SAND S I L T Y SAND SANO S I L T Y SAND SANO SAND SAND S I L T Y SAND SANO SANO SAND SAND S I L T Y SANO SANO SANO S I L T Y SAND SAND SAND  SANO SILTY  SAND  152  Z (M)  THRUST (KG)  A (BAR)  11.SO 11.80 12.00 12.20 12.40 12.60 12.80 13.00  1084. 2107. 2924. 2960. 2852. 3423. 4269. 4899.  13.40  3915.  13.80 14.00 14.20 14.40 14.60 14.80 15.00 15.20  1770. 2479. 2243. 1987. 1790. 1770. 1711. 1S54.  B (BAR)  ED (BAR)  10  KO  2 .30 3 .20 5 .00 5..90 3 .70 3 .70 4 . 10 5 .60  6. 9 0 11. 9 0 18. 20 18. 9 0 13. 2 0 16. 70 19. 4 0 18. 9 0  4..70  18. 70  143. 286. 442. 433. 383. 435. 315. 445.  2.83 3.52 3.09 2.31 3.97 4.34 4.72 2.78  1 .43 2 .26 3 .90 4 .63 2 .33 2 .49 2 .79 4 .03  1 .040 1 .060 1 .079 1 .099 1 .119 1 . 138 1 . 158 1 . 178  1 .80 1 .90 2 .00 2 .00 1 .90 1 .90 1..90 2 .00  1.018 1.036 1.056 1.075 1.093 1. 110 t. 128 1. 148  469.  3.67  3 . 10  1 .217  2,.00  I. 187  2,.70 5..00 4 .10 3..30 3,.30 3,.40 3..30 3..80  8. 0 0 16. 7 0 13..80 12. 9 0 11. 4 0 10. 9 0 11. 8 0 10. 3 0  168. 390. 320. 317. 263. 240. 279. 209.  2.94 2.86 3.07 4. 18 3.32 3.09 3.78 2.31  1 .34 3 . 16 2 .39' 1 .71 1 .67 1 .71 1 .60 1 .93  UO (BAR)  1 .236 1 .276 1 .293 1 .313 1 .335 1 .354 1 .374 1 .394  GAMMA SV <T/M3) (BAR)  1 .80 2..00 1 .90 1 .90 1..90 1 .90 1 .90 1 .90  PC (BAR)  OCR  KO  0 .97 1 . 11 2..40 3..45 1 . 12 0 .84 0..76 1 .81  0 .93 1 .07 2 .27 3 .21 1 .02 0 .76 0 .67 1 .58  1..38  1,. t7  1.222 1.242 1.260 1.277 1.293 1.313 1.330 1.348  0 .86 2 .38 1 .65 1,. 14 1 .24 . 1 .31 , 1,.27 1 ,74 ,  0 .70 1 .92 1 .31 0 .89 0 .99 1 .00 0 .95 1 .29  CU PHI ( B A R ) (OEG)  M (BAR)  0,.43 0..41 0..38 0,.70 0,.39 0,.32 0..39 0,.43  34 . 1 38 .8 39 .7 38 .9 40.6 42 . 1 43 .3 43 .3  122. 345. 743. 787. 502. 561. 715. 755.  0..40  42 . 1  696.  SANO  0..35 0,.56 0,.47 0,.39 0..41 0..43 0,.42 0,.49  37 .4 37 .8 37 .8 37 .3 36 .6 36 .3 36 . 1 34 .5  142. 580. 402. 306. 231. 232. 233. 209.  S I L T Y SANO S I L T Y SANO S I L T Y SANO SANO SANO S I L T Y SANO SAND S I L T Y SAND  16.00  273.  3..20  4. 50  29.  0.43  1 .37  1 .472  1..60  1.407  0.,78  0 .55  0..36  0. 19  24.  17.00  273.  4 . 10  3. 20  22.  0.23  1 .86  t .570  1..60  1.466  1 .31 .  0,.89  0..51  0.29  19.  18.00 18.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.00 20.20 20.40 20.60 20.80  273. 273. 273. 273. 273. 275. 273. 273. 273. 273. 273. 273. 27*. 273. 273.  4..50 4 .60 . 4,.70 4. SO 4. 80 4. SO 5..10 4..30 4. SO 5.. 10 3. 6 0 5.,40 3. OO 5. 30 5. 6 0  5. 4 0 5. 5 0 5. 6 0 5. 5 0 3. 9 0 3. 7 0 6. 4 0 5. 6 0 5. 7 0 6. 4 0 5. 3 0 6. 3 0 3. 4 0 6. 6 0 6. 6 0  15. 15. 15. 18. 22. 25. 29. 29. 25. 29. 43. 22. 67. 29. 18.  0. 14 0. 14 0.13 0. 18 0. 19 0.23 0.24 0.31 0.33 0.24 0.64 0.17 1.49 0.23 0. 14  1 .99 2..03 2 .06 1..91 2,.07 1,.83 2..19 1,.67 1,,77 2,.10 1.. 17 2.,23 0,.77 2..11 2..36  1 .668 1 .688 1 .708 1 .727 1 .747 1 .766 1 .786 1 .806 1 .825 1 .843 1 .865 1 .884 1 .904 1 .923 1 .943  1 .60 1,.60 1..60 1..60 1..70 1..70 1,.70 1,.70 1..70 1,.70 1..70 1.,70 1..60 1..70 1..70  1.525 1.536 1.548 1.560 1.574 1.587 1.601 1.615 1.629 1.642 1.656 t.670 1.682 1.695 1.709  1.,51. 1. 57 1 .62 . 1. 45 1..66 1 .40 . 1. 85 1. 22 1. 34 1. 78 0. 72 1. 97 2. 29 1. 84 2. 06  0 .99 1,.02 1 .05 0,.93 1..03 0..88 1,. 16 0..73 0..82 1. OS 0..43 1. 18 1,.36 1. 0 9 1. 21  0..54 0. 53 0..36 0..52 0..36 0. 50 0. 60 0..43 0. 48 0.,37 0. 29 0. 6 0 0. 76 0. 37 0. 61  0.33 0.34 0.33 0.32 0.36 0.32 0.40 0.28 0.31 0.38 0. 19 0.42  13. 13. 13. 16. 19. 22. 27. 24. 22. 26. 36. 21. 37. 26. 18.  16 .9 0.40 0.44  END OF SOUNDING  S o u n d i n g MRD-1 ( D I L L Y 4 ) , C o n t i n u e d ( T h r u s t measured i m m e d i a t e l y b e h i n d b l a d e )  SOIL  TVPE  S I L T Y SANO SANO S I L T Y SANO S I L T Y SANO SANO SANO SANO SILTY SANO  SILTY  CLAY  CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAYEY S I L T CLAY SANDY S I L T CLAY CLAY  153  SCHMERTMANN » CRAPPS, INC. F I L E NAME: RESEARCH OMT F I L E NUMBER: MRO-2  TEST NO. OMT  SOUNDING  NO.2  TEST  RECORD OF DILATOMETER TEST NO. OMT SOUNDING NO.2 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE.J-GED.MARCH 8 0 ) KO IN SANDS DETERMINED USING SCHMERTMANN METHOD ( 1 9 8 3 ) PHI ANGLE C A L C U L A T I O N BASED ON OURGUNOGLU AND MITCHELL ( A S C E . R A L E I G H CONF.JUNE MODIFIED MAYNE AND KULHAWY FORMULA USED FOR OCR IN SANDS (ASCE.J-GED.JUNE 8 2 )  73)  LOCATION: MCOONALD'S FARM PERFORMED - DATE: APR IB 1984 BY: C. TSANG  C A L I B R A T I O N INFORMATION: DA" 0.20 BARS OB" 0.27 BARS 2M" ROD D I A . " 0.0 CM F R I C T I O N RED. D I A . " 1 BAR  z  (M)  THRUST (KG)  0.0 0.0  BARS CM  • 1.019 KG/CM2 • 1.044 T S F • 14.51 PSI  A (BAR)  B (BAR)  ED (8AR)  10  KD  UO (BAR)  ZW" 1.50 METERS ROO WEIGHT" 0.0 KG/M  VSO" 0.157 BARS DELTA/PHI* 0.50  ANALYSIS USES H20 UNIT WEIGHT -  GAMMA SV (T/M3) (BAR)  PC (BAR)  OCR  KO  CU (BAR)  1.000  T/M3  PHI (OEG)  M (BAR)  23.3  SOIL TYPE  1.00  157.  0.50  1 .90  32.  1.33  4 .46  0.0  1 .60  0,. 157  0.76  4. 93  0.93  55.  SANOY  2.00  102.  0.50  1 .50  18.  0.81  2 .46  0.049  1 .60  0..265  0.37  1. 38  0.66  0.08  20.  CLAYEY  SILT  3.00  86.  0.50  1 .40  15.  0.78  1 .71  0. 147  1 .60  0..324  0.23  0. 78  0.46  0.06  13.  CLAYEY  SILT  4.00  1149.  1.20  6 .30  168.  4. 18  2 .94  0.243  1 .80  0. 393  0.47  1. 19  0.41  39.7  241.  5.00  1070.  1.40  6 .90  175.  4.00  2 .67  0.343  1 .80  0..471  0.61  1. 29  0.44  38.0  236.  6.00  1731.  2.40  8..30  188.  2.32  3..89  0.442  1 .90  0. 554  1 . 14  2. 03  0.34  39.8  311.  7.00  1574.  2.60  11.. 10  279.  3.53  3..32  0.340  1..90  0. 643  1.30  2. 02  0.56  38.2  444.  8.00  2424.  3.40  13..60  338.  3.28  4. .03  0.638  1,.90  0. 731  1.35  2. 12  O.SS  40.3  579.  9.00  SILT  SANO SANO SILTY  SAND  SANO SILTY  SANO  1589.  2.00  8..30  209.  4. 12  1 .80 .  0.736  1.80  0. 813  0.63  0. 77  0.35  38.6  211.  SANO  10.00  3337.  2.80  13..20  414.  3.31  2. 41  0.834  1.90  0. 89S  0.39  0. 44  0.23  43.3  524.  SANO  END OF  SOUNDING  S o u n d i n g MRD-2 (DILLY4) ( T h r u s t measured i m m e d i a t e l y b e h i n d "blade)  154  SCHMERTMANN » CRAPPS. INC. F I L E NAME: RESEARSH DMT F I L E NUMBER: MRO-3  TEST NO  DMT  SOUNOINO  NO.3  TEST  RECORD OF DILATOMETER T E S T NO. DMT SOUNDING NO.3 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE.J-GED.MARCH SO) KO IN SANOS DETERMINED USING SCHMERTMANN METHOD ( 1 9 8 3 ) PHI ANGLE CALCULATION 6ASE0 ON DURGUNOGLU ANO MITCHELL (ASCE.RALEIGH CONF.JUNE MOOIFIED MAYNE AND KULHAWY FORMULA USEO FOR OCR IN SANDS (ASCE.J-GED.JUNE 8 2 )  751  LOCATION: MCOONALO'S FARM PERFORMED - DATE: APR 18 1984 BY: C. TSANG  CALIBRATION INFORMATION: ZMDA0. 20 BARS DB0. 27 BARS F R I C T I O N REO. DIA. • ROO OIA CM 0.0  Z (M)  THRUST (KG)  1 BAR  • 1 .019  KG/CM2  •  A (BAR)  13 (BAR)  ED (BAR)  ID  1 .044 T S F  KD  •  14.51  UO (8AR )  0.0 0.0  BARS CM  ROD  ZW1.50 METERS KG/M WEIGHT0 .0  0.883 BARS VSOOELTA/PHI0.50  ANALYSIS USES H20 UNIT WEIGHT •  PSI  GAMMA SV (T/M3) (BAR)  PC (BAR)  OCR  KO  '1.000  PHI CU ( B A R ) (OEG)  T/M3  M (BAR)  SOIL TYPE  5.00  952.  1.20  5 .90  147.  4. 0 0  1 .96  0 .343  1.80  0.540  0.52  0.97  0. 40  36.9  159.  SAND  7.00  2715.  2.40  13 . 10  355.  4 .97  2 .92  0 .540  1.90  0.706  0.52  0.74  0..31  42.9  508.  SAND  9.00  1668.  2.30  10 .50  268.  4 .38  2 .00  0 .736  1.90  0.883  0.83  0.94  0..39  38.2  295.  SAND  10.00  3274.  2.60  16 . 10  445.  5..92  2..23  0 .834  1.90  0.971  0.45  0.46  0. 24  43.0  533.  SANO  11.00  3714.  4.80  19 . 10  480.  3,.40  3 .82  0 .932  2.00  1.065  1 .89  1.77  0..50  41.7  799.  SAND  331.  SAND  1 .87  1 .030  1.90  1.158  1 .05  0.91  0..39  38.2  4..68  1 .82  1 . 129  1.90  1.246  0.94  0.75  0..34  39.6  377.  2,.03  2 . 15  1 .227  1.90  1.334  1.73  1.29  0..48  36.3  218.  SILTY  SAND  84.  1 .54 .  1..06  1 .423  1.70  1.491  1.62  1.08  0. S3  28.7  72.  SANDY  SILT  5,.40  25.  0,.25  1 .85  1 .S21  1.70  1.560  1.38  0.88  0.,50  0.31  5 .30 5 .60 4 .80 5 .20 S .20 4 .70 5 . 10 4 .60 4 . 10 4 .80 4 .90 4 .20 5 .70 5 .00 5 .90 5 .80 6 .70  18. 25. 60. 29. 25. 60. 32. 15. 39. 22. IS. 43. 22. 43. 22. 36. 36.  0,. 18 1 .77 1 .81 0..25 1..52 0 .69 1 .46 0,.34 1..50 0..29 1..76 0 .58 1 .27 0,.43 1 .25 0..20 1,.22 0 .54 1 .21 0 .30 1 .31 0 .23 1 .42 0 .49 1 .67 0..21 0..76 0. 91 1..73 0..20 1..43 0..40 1..90 0..30  1 .619 1 .639 1 .658 1 .678 1 .698 1 .717 1 .737 1 .757 1 .77G 1 .796 1 .816 1 .835 1 .855 1..874 1..894 1..914 1,.933  1.60 1.70 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1 .60 1 .60 1.60 1.60 1.60 1.70 1.70 1 .70  1.624 1.638 1.649 1.661 1.673 1.685 1 .697 1.708 1:720 1.732 1.744 1.755 1.767 1.779 1.793 1.806 1.820  1.35 1.40 2.11 1 .01 1.06 1 .98 0.84 0.83 1 .96 0.80 0.90 1.94 1.33 0.52 1.43 1.07 1 .69  0.83 0.85 1 .28 0.61 0.64 1 . 18 0.50 0.48 1. 14 0.46 0.52 1.11 0.75 0.29 0.80 0.59 0.93  0..48 0..49 0..74 0..39 0. 4 0 0..72 0..33 0,.32 0.,71 0. 31 0,,34 0..70 0..45 0.. 19 0..47 0..38 0..52  0.31 0.33  12.00  2046.  3.00  12 .60  317.  4..21  13.00  2526.  3.20  14 .30  369.  14.00  1936.  3.90  10 .20  202.  16.00  787.  2.80  5 .70  17.00  267.  4.20  18.00 1S.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80 20.OO 20.20 20.40 20.60 20.80 21.00 21.20  267. 267. 267. 267. 267. 267. 267. 267. 267. 267. 267. 267. 267. 367. 267. 267. 267.  4.30 4.40 3.60 3.90 4.00 2.50 3.70 3.70 2.50 3.70 3.90 2.50 4.60 3.30 4.80 4.30 5.20  END OF  22.  17.3 0.25 0.26 17.7 0.21 0.21 17.8 0.20 0.23 17.8 0.31 0. IS 0.33 0.26 0.38  SOUNDING  Sounding MRD-3 (DILLY4) ( T h r u s t measured i m m e d i a t e l y b e h i n d b l a d e )  16. 22. 51. 24. 22. 51. 27. 13. 33. 19. 16. 36. 19. 36. 19. 30. 30.  SANO  CLAY CLAY CLAY SANDY S I L T CLAY CLAY SANDY S I L T S I L T Y CLAY CLAY SANDY S I L T CLAY CLAY SANDY S I L T CLAY CLAYEY S I L T CLAY S I L T Y CLAY CLAY  155  APPENDIX  III  Measurements Recorded w i t h the UBC R e s e a r c h D i l a t o m e t e r  MEASUREMENTS RECORDED WITH UBC RESEARCH DILATOMETER TESTING NO.: MRD-1 LOCATION : MCDONALD' S FARM  DATE: MAR 21,84  CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.00 METRES DEPTH (M)  A (BAR)  B (BAR)  C (BAR)  A' (BAR)  B' (BAR)  C (BAR)  0.2 0.4 0.6 0.8 1.0 1.2 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0  0.85 0.53 0.42 0.53 0.75 0.42 0.53 0.53 0.64 0.64 0.85 0.75 0.96 0.75 1.18 1.18 1.29 1.93 1.50 1.50 1.07 1.72 1.29 1.82 1.61 1.61 2.15 2.15 1.72 1.61 1.93 2.80 2.58 2.58  3.77 2.58 1.82 1.61 2.04 1.39 1.39 1.61 2.26 2.90 3.34 2.69 3.12 3.34 4.95 5.71 6.90 8.62 7.00 6.68 4.95 6.14 5.60 6.90 6.68 7.65 8.84 8.35 6.90 7.00 10.03 11.86 9.59 10.46  0.11 0.11 0.06 0.06 0.06 0.06 0.11 0.11 0.11 0.22 0.22 0.22 0.22 0.22 0.32 0.43 0.49 0.65 0.49 0.49 0.43 0.54 0.43 0.54 0.54 0.71 0.76 0.65 0.54 0.54 0.97 0.86 0.86 0.97  0.46 0.27 0.09 0.00 0.35 0.00 0.17 0.08 0.27 0.46 0.46 0.36 0.55 0.32 0.73 0.73 0.82 1.46 1.19 1.10 0.55 1.10 0.91 1.37 1.19 1.00 1.64 1.64 1.28 1.10 1.46 2.37 2.01 1.82  2.10 1.82 0.73 0.73 1.35 0.81 0.99 1.08 1.82 2.55 2.92 2.29 2.65 2.87 4.47 5.20 6.44 8.21 6.52 6.30 4.51 5.66 5.11 6.39 6.20 7.11 8.30 7.85 6.47 6.47 9.49 11.50 9.04 9.85  0.00 0.00 -0.19 -0.19 -0.20 -0.19 -0.20 -0.20 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19 -0.09 0.00 0.09 0.19 0.09 0.09 -0.09 0.00 0.09 0.09 0.09 0.19 0.19 0.09 0.09 0.09 0.36 0.46 0.27 0.27  S o u n d i n g MRD-1  (M)  A (BAR)  B (BAR)  C (BAR)  A' (BAR)  B' (BAR)  C (BAR)  7.2 7.4 7.6 8.0 8.6 9.0 9.6 10.0 10.6 11.0 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 16.0 17.0 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8  2.69 5.06 4.20 3.77 2.69 3.01 3.77 6.36 4.20 2.90 2.26 3.23 4.95 5.93 3.66 3.66 4.09 5.60 4.74 1.82 2.69 4.95 4.09 3.34 3.34 3.44 3.34 3.77 3.23 4.15 4.49 4.60 4.69 4.52 4.80 4.47 5.09 4.31 4.49 5.12 3.58 5.34 2.96 5.34 5.55  11.32 17.80 17.15 14.77 11.64 13.48 17.58 17.80 18.66 13.05 6.90 11.86 18.23 18.87 15.21 16.72 19.41 18.87 18.66 7.65 7.98 16.72 13.80 12.94 11.43 10.78 11.75 10.35 4.52 5.23 5.39 5.49 5.60 5.49 5.89 5.66 6.44 5.55 5.66 6.39 5.36 6.52 5.39 6.63 6.57  0.86 1.50 0.97 0.97 0.97 1.08 1.61 2.15 1.72 1.39 1.08 1.50 1.61 1.82 1.61 1.82 1.93 1.82 1.82 1.39 0.76 1.72 1.29 1.08 1.08 1.29 1.29 1.29 2.47 3.72 4.04 4.01 4.28 3.93 4.26 4.01 4.49 3.83 3.83 4.63 2.90 4.85 2.10 4.91 4.91  2.19 4.47 4.11 3.56 2.29 2.37 3.20 5.75 3.37 1.91 1.28 2.29 4.20 4.84 2.83 2.83 3.20 5.02 3.92 0.64 1.37 3.92 3.10 2.01 2.19 2.19 2.10 2.65 0.73 0.53 0.53 0.59 0.65 0.58 0.58 0.54 0.87 0.45 5.54 0.58 0.70 0.69 0.88 0.61 0.58  10.76 17.25 17.06 14.51 11.31 12.86 17.06 17.15 17.97 12.22 5.94 10.95 17.61 18.16 14.51 15.97 18.71 18.25 18.06 6.57 6.66 15.78 13.05 11.77 10.50 9.76 10.67 9.21 1.46 1.12 1.03 1.17 1.13 1.08 1.15 1.04 1.49 0.93 1.09 1.17 1.27 1.10 1.73 1.18 1.03  0.36 0.73 0.64 0.55 0.46 0.36 0.69 1.29 0.73 0.36 0.09 0.36 0.64 0.73 0.64 0.82 0.82 1.00 1.00 0.27 0.00 0.64 0.46 0.09 0.19 0.27 0.27 0.36 0.19 0.12 0.30 0.26 0.30 0.15 0.19 0.18 0.37 0.00 0.18 0.26 0.10 0.34 0.01 0.45 0.30  DEPTH  S o u n d i n g MRD-1, C o n t i n u e d  MEASUREMENTS RECORDED WITH UBC RESEARCH DILATOMETER TESTING NO.: MRD-2 LOCATION : MCDONALD'S FARM  DATE: APR 18,84  CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.50 METRES DEPTH (M)  A (BAR)  B (BAR)  C (BAR)  A' (BAR)  B' (BAR)  C (BAR)  1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  0.51 0.51 0.51 1.24 1.44 2.36 2.57 3.39 1.95 2.78  1.85 1.54 1.43 6.53 6.90 8.34 11.12 13.60 8.54 15.24  0.11 0.11 0.41 0.52 0.73 0.82 1.03 1.33 0.82 1.44  0.00 0.07 0.00 0.79 0.79 1.78 1.95 2.76 1.16 2.04  1.16 1.07 0.90 6.03 6.31 7.81 10.57 13.22 7.90 14.50  -0.20 -0.20 -0.09 0.00 0.09 0.09 0.26 0.62 0.00 0.44  S o u n d i n g MRD-2  MEASUREMENTS RECORDED WITH UBC RESEARCH D11AT0METER TESTING NO.: MRD-3 LOCATION : MCDONALD'S FARM  DATE: APR 18,84  CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.50 METRES DEPTH (M) 5.0 7.0 9.0 10.0 11.0 12.0 13.0 14.0 16.0 17.0 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2  A (BAR)  B (BAR)  C (BAR)  A' (BAR)  B' (BAR)  C (BAR)  1.24 2.36 2.27 2.78 4.84 2.98 3.19 3.91 2.80 4.20 4.28 4.41 2.58 3.93 4.04 2.53 3.72 3.74 2.47 3.72 3.93 2.50 4.55 3.29 4.85 4.34 5.17  5.87 13.08 10.51 16.07 19.05 12.57 14.31 10.19 5.71 5.39 5.34 5.55 4.82 5.20 5.17 4.66 5.06 4.60 4.09 4.77 4.93 4.20 5.66 5.03 5.93 5.79 6.71  0.44 1.03 1.03 1.97 2.16 1.65 1.75 0.73 1.39 3.77 3.90 4.01 1.85 3.61 3.55 1.72 3.39 3.26 2.07 3.36 3.61 2.12 4.15 2.75 4.49 3.83 4.82  0.51 1.78 1.61 2.10 3.92 2.20 2.43 2.84 1.32 0.34 0.45 0.53 0.88 0.46 0.47 0.86 0.37 0.42 0.60 0.44 0.44 0.61 0.56 0.62 0.38 0.39 0.41  5.22 12.69 9.86 15.69 18.31 11.97 13.79 8.96 4.42 0.98 1.09 1.20 1.71 1.14 1.04 1.78 1.35 0.97 1.44 1.18 1.03 1.54 1.20 1.31 1.02 0.94 1.14  -0.20 0.44 0.36 1.13 0.90 0.61 0.75 0.17 0.41 -0.20 0.18 0.08 -0.19 0.02 -0.03 -0.19 -0.11 0.06 -0.20 -0.01 -0.02 -0.20 -0.01 -0.20 -0.03 -0.20 -0.09  S o u n d i n g MRD-3  MEASUREMENTS RECORDED WITH UBC RESEARCH DHATCMETER TESTING NO.: LRD-2 LOCATICN : LANGW-RAILWAY SITE  DATE: CCT 3,83  CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.00 METRES DEPTH (M)  A (BAR)  B (BAR)  C (BAR)  A' (BAR)  B' (BAR)  C (BAR)  2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8  1.29 1.59 1.65 1.72 1.78 2.08 2.00 2.11 2.13 2.33 2.47 2.52 2.52 2.41 2.47 2.60 2.52 2.57 2.70 2.52 2.70 2.68 2.83 3.03 3.03 3.03 3.03 3.39 2.06 3.52 3.36 3.35 3.55 3.52  2.19 2.55 2.47 2.54 2.70 2.95 3.09 2.95 3.22 3.19 3.50 3.47 3.36 3.32 3.39 3.44 3.63 3.68 3.65 3.42 3.55 3.76 3.86 3.96 4.14 4.14 4.22 4.39 3.30 4.55 4.25 4.17 4.53 4.50  1.00 1.36 1.44 1.51 1.54 1.80 1.67 1.90 1.85 2.11 2.16 2.29 2.21 2.16 2.16 2.32 2.27 2.21 2.33 2.24 2.29 2.32 2.33 2.62 2.68 2.65 2.68 2.93 1.57 3.14 3.03 2.93 3.14 3.30  0.07 0.04 0.00 0.00 0.00 0.06 0.07 0.00 0.00 0.05 0.08 0.06 0.00 0.00 0.00 0.00 0.01 0.00 0.10 0.00 0.05 0.01 0.04 0.14 0.00 0.00 0.00 0.00 0.00 0.05 0.09 0.11 0.00 0.01  0.46 0.47 0.42 0.47 0.44 0.41 0.48 0.43 0.36 0.42 0.58 0.51 0.44 0.34 0.48 0.37 0.45 0.47 0.59 0.33 0.35 0.54 0.42 0.40 0.42 0.54 0.44 0.35 0.91 0.36 0.34 0.48 0.37 0.43  -0.10 -0.13 -0.18 -0.10 -0.15 -0.10 -0.14 -0.12 -0.09 -0.04 -0.07 0.01 -0.13 -0.12 -0.15 -0.15 -0.07 -0.16 -0.09 -0.17 -0.18 -0.14 -0.15 -0.05 -0.14 -0.12 -0.12 -0.18 0.00 -0.10 -0.10 -0.05 -0.18 0.01  S o u n d i n g LRD-2  161 DEPTH (M)  A (BAR)  B (BAR)  C (BAR)  A' (BAR)  B' (BAR)  C (BAR)  9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8 15.0  3.50 2.27 3.91 4.12 4.19 4.22 4.33 4.53 4.42 4.55 4.25 4.09 4.01 4.25 4.25 4.58 4.68 4.84 4.66 4.60 4.81 4.96 5.07 5.07 5.04 5.22 4.91 5.17 4.91 5.15 5.71  4.84 4.04 4.96 5.50 5.22 5.45 5.41 5.84 6.18 5.77 5.41 5.36 5.15 5.66 5.90 5.77 6.20 6.28 6.51 6.04 6.15 6.31 6.61 6.33 6.61 6.36 6.36 6.59 6.31 7.28 7.26  3.03 1.41 3.55 3.50 3.63 3.65 3.76 4.01 3.42 3.98 3.73 3.47 3.57 3.60 3.68 3.96 4.01 4.22 4.04 4.04 4.04 3.96 4.53 4.58 4.53 4.60 4.55 4.50 4.27 4.89 4.84  0.00 0.14 0.06 0.08 0.13 0.07 0.05 0.12 0.51 0.00 0.00 0.01 0.00 0.00 0.11 0.05 0.00 0.01 0.30 0.00 0.15 0.08 0.11 0.00 0.00 0.00 0.11 0.00 0.02 1.08 0.34  0.56 1.51 0.45 0.55 0.43 0.45 0.36 0.51 0.95 0.52 0.48 0.43 0.44 0.46 0.51 0.40 0.55 0.50 0.86 0.48 0.38 0.47 0.38 0.37 0.55 0.60 0.43 0.52 0.26 1,54 0.55  -0.18 0.05 -0.03 0.00 -0.02 -0.14 -0.04 0.06 0.51 0.00 -0.05 -0.10 -0.08 -0.15 0.11 -0.03 -0.07 -0.06 0.30 -0.16 -0.09 -0.14 -0.05 -0.07 0.00 0.00 0.00 0.00 -0.16 0.48 0.13  Sounding L R D - 2 , C o n t i n u e d  MEASUREMENTS RECORDED WITH UBC RESEARCH DHATCMETER TESTING NO.: LRD-3 LOCATION : LANGW-LOWER SITE  DATE: JAN 20,84  CALIBRATION INFORMATION:  DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.00 METRES  DEPTH (M)  (BAR)  B (BAR)  C (BAR)  A' (BAR)  B' (BAR)  C (BAR)  1.0 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0  0.85 1.16 1.29 1.31 1.56 1.56 1.64 1.67 1.67 1.78 1.85 1.61 1.69 1.64 1.82 1.82 1.85 2.01 1.96 1.96 2.04 2.04 2.12 2.23 2.15 2.29 2.33 2.32 2.50 2.58 2.53 2.72 2.72 2.75 2.72 2.66 2.61 2.72 2.77 2.87 2.90 3.09  2.42 1.96 1.99 2.23 2.29 2.36 2.32 2.33 2.47 2.58 2.58 2.50 2.50 2.58 2.55 2.66 2.72 2.72 2.75 2.80 2.87 2.96 3.01 3.12 3.15 3.15 3.12 3.18 3.39 3.39 3.44 3.47 3.55 3.72 3.63 3.55 3.39 3.69 3.61 3.74 3.77 3.90  0.31 0.82 0.93 0.96 1.18 1.15 1.26 1.29 1.26 1.42 1.47 1.31 1.39 1.34 1.53 1.53 1.50 1.69 1.75 1.61 1.75 1.78 1.80 1.85 1.85 2.15 1.99 2.12 2.15 2.23 2.23 2.33 2.36 2.39 2.42 2.39 2.36 2.39 2.50 2.58 2.66 2.80  0.36 0.15 0.15 0.22 0.24 0.24 0.24 0.23 0.20 0.25 0.22 0.12 0.08 0.20 0.27 0.18 0.23 0.26 0.18 0.27 0.24 0.20 0.28 0.35 0.28 0.21 0.33 0.24 0.21 0.31 0.26 0.33 0.32 0.26 0.16 0.20 0.16 0.20 0.24 0.25 0.26 0.29  1.26 0.81 0.66 0.69 0.71 0.68 0.69 0.54 0.56 0.61 0.57 0.59 0.56 0.69 0.65 0.60 0.65 0.52 0.64 0.61 0.60 0.63 0.62 0.65 0.69 0.58 0.66 0.59 0.56 0.61 0.70 0.71 0.68 0.68 0.56 0.65 0.62 0.65 0.66 0.55 0.68 0.70  -0.17 -0.20 -0.20 -0.04 -0.06 -0.11 -0.06 -0.07 -0.10 -0.09 0.22 0.12 0.08 0.11 0.12 0.00 0.14 0.07 0.07 0.07 0.05 0.18 0.08 0.15 0.12 0.21 0.15 0.24 0.03 0.07 0.09 0.16 0.15 0.07 0.01 0.07 0.08 0.08 0.14 0.09 0.19 0.29  A  Sounding  LRD-3  DEPTH (M)  10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0  A (BAR)  B (BAR)  (BAR)  A' (BAR)  B' (BAR)  C (BAR)  3.15 3.07 3.18 3.47 3.15 3.55 3.66 3.63 3.50 3.90 3.83 3.95 3.90 4.06 4.20 3.95 4.01 3.98 3.39 4.20 4.20 4.23 4.41 3.72 3.98 4.34 4.12 4.69 4.77 4.44 4.28 4.58 4.74 4.63 4.63 4.77 4.77 4.85 4.91 4.85 4.89 4.98 4.74 4.82 5.03 4.95 5.40 5.25 5.28 5.23  3.98 4.09 4.23 4.34 4.23 4.95 4.55 4.66 4.63 4.92 4.85 5.03 5.25 5.63 5.23 5.12 5.14 5.20 4.60 5.52 5.17 5.52 5.55 6.74 5.20 5.64 6.17 5.79 6.06 5.88 5.98 6.06 5.66 5.66 5.71 5.90 5.85 5.98 5.98 5.88 5.79 6.14 6.00 5.74 5.98 5.82 6.60 6.63 6.65 6.52  2.69 2.75 2.90 3.07 2.69 3.01 3.20 3.12 3.18 3.44 3.31 3.31 3.36 3.69 3.55 3.50 3.47 3.72 2.98 3.33 3.69 3.83 3.72 2.26 3.09 3.74 3.52 4.26 4.28 3.72 3.77 4.28 4.17 4.31 4.26 4.28 4.26 4.37 4.58 4.26 4.41 4.58 4.31 4.49 4.58 4.41 4.85 4.74 4.69 4.88  0.33 0.20 0.30 0.34 0.30 0.29 0.35 0.39 0.31 0.38 0.38 0.22 0.30 0.19 0.26 0.24 0.04 0.23 0.27 0.24 0.11 0.31 0.37 1.34 0.21 0.22 1.17 0.22 0.15 0.28 0.26 0.18 0.00 0.00 0.20 0.26 0.24 0.17 0.00 0.05 0.04 0.22 0.00 0.07 0.31 0.17 0.42 0.17 0.20 0.22  0.69 0.55 0.69 0.66 0.76 0.98 0.75 0.77 0.76 0.81 0.79 0.54 0.72 0.92 0.56 0.68 0.56 0.72 0.74 0.79 0.55 1.00 0.50 4.38 0.77 0.96 2.86 0.70 0.68 0.51 0.69 0.64 0.45 0.28 0.55 0.62 0.48 0.39 0.45 0.56 0.37 0.51 0.64 0.52 0.61 0.70 0.66 0.69 0.63 0.66  0.16 0.07 0.23 0.24 0.12 0.22 0.21 0.180.23 0.32 0.29 0.04 0.19 0.19 0.09 0.08 -0.08 0.23 0.07 0.05 0.00 0.28 0.01 0.27 0.07 0.22 1.17 0.22 0.15 0.05 0.02 0.18 -0.07 -0.03 0.20 0.18 0.13 0.02 0.00 0.05 -O.04 0.13 0.00 0.07 0.16 0.08 0.28 0.17 0.06 0.22  C  Sounding L R D - 3 . Continued  MEASUREMENTS RECORDED WITH UBC RESEARCH DILATOMETER TESTING NO.: LRD-4 LOCATION : LANGLEY-UPPER SITE CALIBRATION INFORMATION:  DATE: MAR 2,84  DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 3.00 METRES  DEPTH (M)  A (BAR)  B (BAR)  C (BAR)  A' (BAR)  B' (BAR)  C (BAR)  0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8  0.67 1.24 2.23 2.58 1.21 0.96 1.29 1.64 0.75 0.99 1.10 1.80 3.18 2.58 2.90 3.18 3.29 4.09 3.33 2.53 2.26 2.10 2.21 2.23 3.01 2.90 2.58 2.53 1.88 2.42 2.53 2.42 1.85 2.36 2.47 2.44 2.33 2.44 2.42  2.47 3.33 4.71 6.93 3.72 3.07 3.31 3.72 1.61 1.96 3.52 6.28 7.00 7.06 7.87 8.14 8.08 8.30 7.11 5.75 4.85 4.80 1.50 4.58 4.95 4.31 3.83 3.77 3.04 3.66 3.63 3.52 3.01 3.50 3.39 3.34 3.31 3.31 3.29  0.11 0.11 0.76 0.14 0.08 0.14 0.32 0.60 0.06 0.57 0.08 0.11 0.46 0.32 0.22 0.49 1.03 1.72 1.56 0.97 1.08 0.81 1.34 1.21 2.01 2.10 2.10 1.99 1.53 1.93 1.99 2.01 1.53 2.15 2.07 2.04 2.01 2.26 2.12  0.59 1.51 2.07 1.75 0.66 0.52 0.51 0.67 0.47 0.35 0.47 1.83 3.45 2.70 3.54 4.06 3.93 4.89 3.68 1.30 1.81 0.99 0.63 0.61 0.24 0.08 0.00 0.03 0.05 0.00 0.09 0.12 0.09 0.07 0.00 0.00 0.00 0.03 0.12  2.37 3.36 3.33 3.66 1.82 2.28 1.37 1.77 1.04 1.24 2.43 4.39 6.77 5.62 8.28 8.85 8.22 8.63 4.95 2.30 2.06 1.72 4.80 1.32 0.96 0.77 0.67 0.60 0.55 0.53 0.66 0.59 0.52 0.66 0.48 0.39 0.50 0.46 0.58  0.19 0.37 0.31 0.13 -0.16 0.06 -0.11 0.10 0.06 -0.08 0.07 0.80 0.72 0.42 0.72 1.19 1.20 1.97 0.39 -0.20 -0.02 -0.20 -0.20 -0.20 -0.20 -0.20 -0.16 -0.16 -0.19 -0.12 -0.05 -0.02 -0.03 0.07 0.00 -0.09 0.00 0.03 0.07  S o u n d i n g LRD-4  APPENDIX I V A d d i t i o n a l F i g u r e s f o r T e s t i n g i n Sand a t M c D o n a l d ' s Farm S i t e  166  G CMPa)  Comparison  o f S h e a r M o d u l i From  E  and f r o m U n l o a d - R e l o a d C y c l e o f Dilatometer Expansion ( S o u n d i n g MRD-2)  Curve  D  167  G (MPa)  Comparison  o f S h e a r M o d u l i f r o m E.  and from Unload - R e l o a d C y c l e Dilatometer Expansion ( S o u n d i n g MRD-3)  Curve  of  $ 26  o-f-  28  30  32 i  34  (Dog) 36 _1_  38  _1_  40 _L_  (use  42  44  Suf-ppce. put/l'rf  5H  10H  F r i c t i o n Angles E s t i m a t e d by Results  ( S o u n d i n g MRD-2)  46 _!_  DMT  48  169  ^) 26  28  1_  30  32  34  _ l _  _L_  (Dag)  36  38  40  _L_  L_  42  44 |_  (IUI)  liatcketil  Jon* -)  5-  \ I o.  LU Q  48  46 _!_  \  /  /  /  10-  /  J  /  /  7  \\ (use. 15-  1  1  p>usk<ncj -force /*ea.s«r<>o/ 1  i  1  F r i c t i o n Angles Estimated ( S o u n d i n g MRD-3)  I  by  I  DMT  L  Results  Ko  \  I n - s i t u Earth Pressure  Coefficient  Vs D e p t h ( S o u n d i n g MRD-2)  Ko  0 4  I n - s i t u Earth Pressure Vs  Depth  ( S o u n d i n g MRD-3)  Coefficient  OCR 10 _1_  15 _L_  20 _1_  ' /  I \  \  O v e r c o n s o l i d a t i o n R a t i o Vs ( S o u n d i n g MRD-2)  Depth  25  OCR  0 J  5 1  10 1  15 1  20 1  \  ,  25 1  y  s fliarckeTti 0 9 8 © ) X 1  1 1 \  -  -I  1  1  1  1  1  O v e r c o n s o l i d a t i o n R a t i o Vs D e p t h ( S o u n d i n g MRD-3)  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062926/manifest

Comment

Related Items