UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Research dilatometer testing in sands and in clayey deposits Tsang, Clifford Hing-Cheung 1987

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1987_A7 T75.pdf [ 11.27MB ]
Metadata
JSON: 831-1.0062926.json
JSON-LD: 831-1.0062926-ld.json
RDF/XML (Pretty): 831-1.0062926-rdf.xml
RDF/JSON: 831-1.0062926-rdf.json
Turtle: 831-1.0062926-turtle.txt
N-Triples: 831-1.0062926-rdf-ntriples.txt
Original Record: 831-1.0062926-source.json
Full Text
831-1.0062926-fulltext.txt
Citation
831-1.0062926.ris

Full Text

R E S E A R C H DILATOMETER TESTING IN SANDS AND IN C L A Y E Y DEPOSITS by CLIFFORD HING-CHEUNG TSANG B.A.Sc, The University of Toronto, 1978 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FQR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF CIVIL ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA SEPTEMBER 1987 © CLIFFORD HING-CHEUNG TSANG, 1987 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at The University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. DEPARTMENT OF CIVIL ENGINEERING The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date: SEPTEMBER 1987 A b s t r a c t i i The development of M a r c h e t t i ' s f l a t d i l a t o m e t e r , method of t e s t i n g , changes of M a r c h e t t i ' s (1980,1981) o r i g i n a l c o r r e l a t i o n s and Schmertmann's (1982,1983) proposed c o r r e l a t i o n s a r e b r i e f l y d e s c r i b e d . F a c t o r s a f f e c t i n g r e s u l t s of t h e d i l a t o m e t e r t e s t (DMT) are d i s c u s s e d . I n o r d e r t o improve the u n d e r s t a n d i n g of t h e M a r c h e t t i d i l a t o m e t e r t e s t (DMT), an e l e c t r o n i c r e s e a r c h d i l a t o m e t e r was d e v e l o p e d a t UBC. The r e s e a r c h d i l a t o m e t e r can measure; pore p r e s s u r e a t the c e n t e r of the membrane, membrane d i s p l a c e m e n t , a p p l i e d p r e s s u r e , p u s h i n g f o r c e and v e r t i c a l i t y . T e s t r e s u l t s o b t a i n e d from t h e r e s e a r c h d i l a t o m e t e r i n sand and i n c l a y e y d e p o s i t s a t 4 s i t e s i n the Lower M a i n l a n d of B.C. a r e p r e s e n t e d . S o i l p a r a m e t e r s i n t e r p r e t a t e d u s i n g M a r c h e t t i ' s (1980,1981) and Schmertmann's (1982,1983) c o r r e l a t i o n s a r e d i s c u s s e d . Comparison i s made t o o t h e r i n - s i t u t e s t i n g methods such as cone p e n e t r a t i o n t e s t , vane shear t e s t and p r e s s u r e m e t e r t e s t . Based on a b e t t e r u n d e r s t a n d i n g of the DMT, f u t u r e p o t e n t i a l methods of i m p r o v i n g o r c h e c k i n g t h e e x i s t i n g c o r r e l a t i o n s a r e proposed. T A B L E OF CONTENTS i i i ABSTRACT i i LIST OF FIGURES v i ACKNOWLEDGEMENTS x i v CHAPTER 1 INTRODUCTION 1.1 H i s t o r i c a l Review 1 1.2 Purpose and Scope 2 CHAPTER 2 THE STANDARD FLAT DILAOTMETER 2.1 Development of t h e In s t r u m e n t 4 2.2 The D i l a t o m e t e r T e s t and P r o c e d u r e s 6 2.3 Data R e d u c t i o n 9 2.4 S o i l P r o p e r t i e s I n t e r p r e t a t i o n 11 2.5 Advantages and D i s a d v a n t a g e s of the D i l a t o m e t e r T e s t 15 2.6 D i l a t o m e t e r T e s t i n g a t the U n i v e r s i t y of B r i t i s h Columbia 16 CHAPTER 3 THE RESEARCH FLAT DILATOMETER 3.1 F a c t o r s A f f e c t i n g R e s u l t s from the D i l a t o m e t e r T e s t 18 3.1.1 I n c l i n a t i o n . 18 3.1.2 Pore P r e s s u r e 19 3.1.3 Modulus of E l a s t i c i t y 21 3.2 Development of t h e UBC R e s e a r c h D i l a t o m e t e r 23 i v 3.3 T e s t P r o c e d u r e s and Data A c q u i s i t i o n 29 3.4 Data R e d u c t i o n 31 CHAPTER 4 RESEARCH DILATOMETER TESTING IN SANDS 4.1 Scope 34 4.2 S i t e Geology and D e s c r i p t i o n 34 4.3 S o i l D e f o r m a t i o n C h a r a c t e r i s t i c s 38 4.4 Modulus 46 4.5 F r i c t i o n A n g l e 54 4.6 O v e r c o n s o l i d a t i o n R a t i o and C o e f f i c i e n t of E a r t h P r e s s u r e a t Rest 63 CHAPTER 5 RESEARCH DILATOMETER TESTING IN CLAYEY DEPOSITS 5.1 Scope 67 5.2 S i t e Geology and D e s c r i p t i o n 69 5.2.1 McDonald's Farm 69 5.2.2 B.C. Hydro R a i l w a y C r o s s i n g S i t e 69 5.2.3 232nd S t . I n t e r c h a n g e - Lower and Upper S i t e s 73 5.3 S o i l D e f o r m a t i o n C h a r a c t e r i s t i c s 76 5.4 Pore P r e s s u r e Measurements 88 5.5 U n d r a i n e d Shear S t r e n g t h 101 5.6 Shear Modulus 111 5.7 O v e r c o n s o l i d a t i o n R a t i o and C o e f f i c i e n t of E a r t h P r e s s u r e a t Rest 113 V CHAPTER 6 SUMMARY AND CONCLUSION 6.1 O b s e r v a t i o n s 118 6.2 P r e d i c t e d P r o p e r t i e s of Sand 120 6.3 P r e d i c t e d P r o p e r t i e s of C l a y e y D e p o s i t s 120 6.4 S u g g e s t i o n s f o r F u t u r e R e s e a r c h 121 REFERENCES 124 APPENDIX I M o d i f i c a t i o n of In p u t Data of DILLY4 128 APPENDIX I I Computer Output 131 APPENDIX I I I Measurements Recorded w i t h the UBC Re s e a r c h D i l a t o m e t e r 155 APPENDIX IV A d d i t i o n a l F i g u r e s f o r T e s t i n g i n Sand a t McDonald's Farm S i t e 165 v i LIST OF FIGURES FIG PAGE 2.1 M a r c h e t t i ' s F l a t D i l a t o m e t e r 5 2.2 D i l a t o m e t e r and C o n t r o l - U n i t 7 2.3 Schematic of D i l a t o m e t e r 8 3.1 UBC R e s e a r c h D i l a t o m e t e r 25 3.2 D e s i g n D e t a i l of R e s e a r c h D i l a t o m e t e r 26 3.3 D e s i g n D e t a i l of R e s e a r c h D i l a t o m e t e r 27 3.4 D e s i g n D e t a i l of R e s e a r c h D i l a t o m e t e r 28 4.1 G e n e r a l L o c a t i o n of McDonald's Farm S i t e 35 4.2 T y p i c a l CPT P r o f i l e a t McDonald's Farm S i t e 37 4.3 DMT P r o f i l e a t McDonald's Farm - I n t e r p r e t e d 39 G e o t e c h n i c a l Parameters v i i 4.4 DMT P r o f i l e a t McDonald's Farm 40 - I n t e r m e d i a t e G e o t e c h n i c a l Parameters 4.5 T y p i c a l R e s u l t of R e s e a r c h DMT a t McDonald's 41 Farm S i t e - Dense Sand 4.6 T y p i c a l R e s u l t of R e s e a r c h DMT a t McDonald's 42 Farm - Loose Sand 4.7 T y p i c a l R e s u l t of S e l f - b o r e d P r e s s u r e m e t e r 43 T e s t a t McDonald's Farm S i t e 4.8 T y p i c a l R e s u l t of F u l l - d i s p l a c e m e n t 44 P r e s s u r e m e t e r T e s t a t McDonald's Farm S i t e 4.9 Comparison of Shear M o d u l i from E D and from 49 U n l o a d - R e l o a d C y c l e of D i l a t o m e t e r E x p a n s i o n Curve 4.10 Comparison of Shear M o d u l i from U n l o a d - 52 R e l o a d C y c l e of D i l a t o m e t e r E x p a n s i o n Curve and from Downhole S e i s m i c Shear Wave V e l o c i t y 4.11 R e l a t i o n s h i p between S l o p e of Unload - R e l o a d 53 Loop and S l o p e of P, - P 0 v i i i 4.12 Comparison of L a b o r a t o r y T r i a x i a l Peak 55 F r i c t i o n A n g l e w i t h CPT and S e l f - b o r i n g P r e s s u r e m e t e r V a l u e s 4.13 F r i c t i o n A n g l e s E s t i m a t e d by DMT R e s u l t s 56 4.14 Comparison of F r i c t i o n A n gle from D i l a t o m e t e r 59 E x p a n s i o n Curve and from DMT R e s u l t s 4.15 R e l a t i o n s h i p between B e a r i n g C a p a c i t y Number 61 and F r i c t i o n A n gle from L a r g e C a l i b r a t i o n Chamber T e s t s 4.16 R e l a t i o n s h i p between F r i c t i o n A n g l e and 62 D i l a t o m e t e r Modulus 4.17 I n - s i t u E a r t h P r e s s u r e C o e f f i c i e n t Vs Depth a t 64 McDonald's Farm 4.18 O v e r c o n s o l i d a t i o n R a t i o Vs Depth a t McDonald's 65 Farm 5.1 G e n e r a l L o c a t i o n P l a n of R e s e a r c h S i t e s 68 5.2 T y p i c a l CPT P r o f i l e a t L a n g l e y R a i l w a y S i t e 70 I X 5.3 DMT P r o f i l e a t L a n g l e y R a i l w a y S i t e - 71 I n t e r p r e t e d G e o t e c h n i c a l P a r a m e t e r s 5.4 DMT P r o f i l e a t L a n g l e y R a i l w a y S i t e - 72 I n t e r m e d i a t e G e o t e c h n i c a l Parameters 5.5 T y p i c a l CPT P r o f i l e a t Lower 232nd S t . S i t e 74 5.6 T y p i c a l CPT P r o f i l e a t Upper 232nd S t . S i t e 75 5.7 DMT P r o f i l e a t Lower 232nd S t . S i t e - 77 I n t e r p r e t e d G e o t e c h n i c a l P a r a m e t e r s 5.8 DMT P r o f i l e a t Lower 232nd S t . S i t e - 78 I n t e r m e d i a t e G e o t e c h n i c a l P a r a m e t e r s 5.9 DMT P r o f i l e a t Upper 232nd S t . S i t e - 79 I n t e r p r e t e d G e o t e c h n i c a l P a r a m e t e r s 5.10 DMT P r o f i l e a t Upper 232nd S t . S i t e - 80 I n t e r m e d i a t e G e o t e c h n i c a l P a r a m e t e r s 5.11 T y p i c a l R e s u l t of R e s e a r c h DMT a t Upper 232nd 81 S t . S i t e - Compacted C l a y X 5.12 T y p i c a l R e s u l t of Research DMT a t McDonald's 82 Farm S i t e - C l a y e y S i l t 5.13 T y p i c a l R e s u l t of R e s e a r c h DMT a t Lower 232nd 83 S t . S i t e - S i l t y C l a y 5.14 Comparison of P, and P^ a t McDonald's Farm 86 S i t e 5.15 Comparison of and P_ a t L a n g l e y R a i l w a y 87 Li S i t e 5.16 Pore P r e s s u r e D u r i n g P e n e t r a t i o n of 90 D i l a t o m e t e r and Cone T e s t i n g s a t McDonald's Farm S i t e 5.17 Pore P r e s s u r e D u r i n g P e n e t r a t i o n of 91 D i l a t o m e t e r and Cone T e s t i n g s a t L a n g l e y R a i l w a y S i t e 5.18 Pore P r e s s u r e D u r i n g P e n e t r a t i o n of 92 D i l a t o m e t e r and Cone T e s t i n g s a t Lower 232nd S t . S i t e xi 5.19 Pore P r e s s u r e D u r i n g P e n e t r a t i o n of 93 D i l a t o m e t e r and Cone T e s t i n g s a t Upper 232nd S t . S i t e 5.20 D i s s i p a t i o n of Pore P r e s s u r e Around R e s e a r c h 95 D i l a t o m e t e r and P i e z o m e t r i c Cone a t McDonald's Farm S i t e 5.21 Degree of D i s s i p a t i o n Around R e s e a r c h 96 D i l a t o m e t e r and P i e z o m e t r i c Cone At McDonald's Farm S i t e 5.22 Comparison of C l o s i n g P r e s s u r e and Pore 97 P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r a t McDonald's Farm S i t e 5.23 Comparison of C l o s i n g P r e s s u r e and Pore 98 P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r a t L a n g l e y R a i l w a y S i t e 5.24 Comparison of C l o s i n g P r e s s u r e and Pore 99 P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r a t Lower 232nd S t . S i t e x i i 5.25 Comparison of C l o s i n g P r e s s u r e and Pore 100 P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r a t Upper 232nd S t . S i t e 5.26 Comparison of U n d r a i n e d Shear S t r e n g t h From 102 DMT and from Vane T e s t At McDonald's Farm S i t e 5.27 Comparison of U n d r a i n e d Shear S t r e n g t h From 103 DMT and from Vane Test At L a n g l e y R a i l w a y S i t e 5.28 Comparison of U n d r a i n e d Shear S t r e n g t h From 104 DMT and from Vane Test At Lower 232nd S t . S i t e 5.29 Comparison of U n d r a i n e d Shear S t r e n g t h From 105 DMT and from Vane T e s t At Upper 232nd S t . S i t e 5.30 C o r r e l a t i o n between Kg and Su/a^ 107 5.31 R e l a t i o n s h i p between K Q and Su(vane)/cr^ 109 5.32 P 0/Su(vane) P r o f i l e s 110 5.33 E s t i m a t e d Shear M o d u l i from E D and from U n l o a d 112 - R e l o a d C y c l e of D i l a t o m e t e r E x p a n s i o n Curve x i i i 5.34 O v e r c o n s o l i d a t i o n R a t i o Vs Depth 114 5.35 I n - s i t u E a r t h P r e s s u r e C o e f f i c i e n t Vs Depth 116 xiv Acknowledgements The a u t h o r wishes t o thank h i s r e s e a r c h s u p e r v i s o r s , Dr R.G. Campanella and Dr P.K. R o b e r t s o n , f o r t h e i r a d v i c e and encouragement i n a l l s t a g e s of t h i s r e s e a r c h p r o j e c t . He a l s o w i s h e s t o e x p r e s s h i s a p p r e c i a t i o n t o h i s c o l l e a q u e s , Don G i l l e s p i e , J i m G r e i g , P e t e r Brown and Bruce O ' N i e l , f o r t h e i r a s s i s t a n c e d u r i n g the f i e l d programme. F u r t h e r thanks must go t o Ian McPherson who o r i g i n a l l y d e s i g n e d the r e s e a r c h d i l a t o m e t e r , and t o A r t Brookes who made the equipment s u c c e s s f u l l y work. Most of a l l , t h e a u t h o r would l i k e t o thank h i s w i f e , T i n a , f o r her l o v e , p a t i e n c e and h e l p i n t y p i n g t h i s r e p o r t . F i n a n c i a l s u p p o r t was p r o v i d e d by N.S.E.R.C. and was g r e a t l y a p p r e c i a t e d . C h a p t e r 1 l I n t r o d u c t i o n 1.1 H i s t o r i c a l Review In a paper s u b m i t t e d t o the 1975 R a l i e g h ASCE S p e c a l i t y C o n f e r e n c e , S.M. M a r c h e t t i i n t r o d u c e d a new i n - s i t u t e s t i n g d e v i c e c a l l e d the " f l a t d i l a t o m e t e r " . The i n s t r u m e n t was d e s i g n e d t o i n v e s t i g a t e the h o r i z o n t a l s o i l d e f o r m a b i l i t y of l a t e r a l l y l o a d e d d r i v e n p i l e s . I n 1978, M a r c h e t t i r e v i s e d h i s i n - s i t u t o o l t o a more s t r e a m l i n e shape w i t h a s h a r p e r c u t t i n g edge i n o r d e r t o m i n i m i z e s o i l d i s t u r b a n c e d u r i n g p e n e t r a t i o n of the i n s t r u m e n t . A f t e r p e r f o r m i n g d i l a t o m e t e r t e s t s (DMT) a t over 40 w e l l documented s i t e s i n I t a l y , M a r c h e t t i e s t a b l i s h e d a s e t of e m p i r i c a l c o r r e l a t i o n s f o r s o i l c l a s s i f i c a t i o n and p r o p e r t y e s t i m a t i o n . The i n s t r u m e n t was f i r s t i n t r o d u c e d i n t o N o r t h America w i t h M a r c h e t t i ' s (1980) p u b l i c a t i o n and Schertmann's (1981) d i s c u s s i o n i n the G e o t e c h n i c a l D i v i s i o n J o u r n a l of the ASCE. A f t e r t h i s i n t r o d u c t i o n , the use of t h e f l a t d i l a t o m e t e r t e s t (DMT) i n N o r t h A m e r i c a has i n c r e a s e d g r a d u a l l y . 2 1.2 Purpose and Scope Recent r e s e a r c h has changed many of M a r c h e t t i ' s (1980,1981) o r i g i n a l e m p i r i c a l c o r r e l a t i o n s . However, due t o the s i m p l e d e s i g n of t h e i n s t r u m e n t and o p e r a t i o n of the t e s t , the fundamental s o i l b e h a v i o u r of the t e s t i s s t i l l riot w e l l u n d e r s t o o d . In o r d e r t o b e t t e r u n d e r s t a n d t h e t e s t , t h e i n - s i t u t e s t i n g r e s e a r c h group a t the U n i v e r s i t y of B r i t i s h Columbia (UBC) has d e v e l o p e d an e l e c t r o n i c r e s e a r c h d i l a t o m e t e r (McPherson 1985). The UBC r e s e a r c h d i l a t o m e t e r i s i d e n t i c a l i n o p e r a t i o n t o M a r c h e t t i ' s d i l a t o m e t e r and can c o n t i n u o u s l y measure: 1. pore p r e s s u r e d u r i n g p e n e t r a t i o n and d u r i n g the d i l a t o m e t e r t e s t , 2. the t o t a l and e f f e c t i v e s o i l s t r e s s e s t o g e t h e r w i t h the s o i l d e f o r m a t i o n d u r i n g the d i l a t o m e t e r t e s t , 3. the p e n e t r a t i o n f o r c e b e h i n d t h e i n s t r u m e n t , a n d 4. the i n c l i n a t o n of the probe. The purpose of t h i s t h e s i s i s t o p r e s e n t t e s t r e s u l t s i n sand and c l a y e y d e p o s i t s o b t a i n e d w i t h the r e s e a r c h d i l a t o m e t e r from 4 s i t e s i n t h e Lower M a i n l a n d of B r i t i s h C o l u m b i a . The s o i l s t r e s s , pore water p r e s s u r e and s o i l d e f o r m a t i o n c h a r a c t e r i s t i c s of t h e d i l a t o m e t e r t e s t are i l l u s t r a t e d and d i s c u s s e d . S o i l p a r a m e t e r s o b t a i n e d from t e s t s u s i n g b oth M a r c h e t t i ' s (1980,1981) o r i g i n a l and r e c e n t 3 improved c o r r e l a t i o n s a r e p r e s e n t e d and d i s c u s s e d . R e f e r e n c e i s made t o d a t a o b t a i n e d from l a b o r a t o r y t e s t s on r e c o v e r e d samples and o t h e r i n - s i t u t e s t s such as cone p e n e t r a t i o n t e s t , vane shear t e s t and p r e s s u r e m e t e r t e s t , w h i c h e v e r i s a p p l i c a b l e . Based on an improved u n d e r s t a n d i n g of the t e s t , f u t u r e p o t e n t i a l methods of i m p r o v i n g or c h e c k i n g the e x i s t i n g c o r r e l a t i o n s a r e proposed. Chapter 2 4 The Standard F l a t Dilatometer 3 0 2.1 Development of the Instrument The d e v i c e was de v e l o p e d by S. M a r c h e t t i a t L ' A q u i l a U n i v e r s i t y i n I t a l y . When f i r s t i n t r o d u c e d i n 1975 ( M a r c h e t t i , 1975), the f l a t d i l a t o m e t e r c o n s i s t e d of a s t a i n l e s s s t e e l p l a t e , 80mm wide and 20mm t h i c k , w i t h a py r a m i d shaped t i p . On bo t h s i d e s of the b l a d e , a t h i n s t e e l c i r c u l a r membrane of 60mm d i a m e t e r was mounted f l u s h w i t h t h e p l a t e s u r f a c e . In o r d e r t o m i n i m i z e s o i l d i s t u r b a n c e d u r i n g p e n e t r a t i o n but s t i l l t o have a d e v i c e r i g i d enough f o r i n s e r t i o n , M a r c h e t t i r e v i s e d h i s o r i g i n a l d e s i g n ( M a r c h e t t i , 1980). The p r e s e n t d i l a t o m e t e r i n comme r c i a l use has a s t r e a m l i n e shape b l a d e , 95mm wide and 14mm t h i c k w i t h a c u r v e d c u t t i n g edge. A s i n g l e s t a i n l e s s s t e e l membrane, 0.25mm t h i c k and 60mm i n d i a m e t e r i s mounted f l u s h on one s i d e o f the b l a d e , as shown i n f i g u r e 2.1. 5 F i g u r e 2 . 1 M a r c h e t t i ' s F l a t D i l a t o m e t e r 6 2 . 2 The D i l a t o m e t e r T e s t and P r o c e d u r e s The d i l a t o m e t e r i s c o n n e c t e d t o a c o n t r o l u n i t a t the ground s u r f a c e by a n y l o n tube p r e t h r e a d e d t h r o u g h t h e p e n e t r a t i o n rods ( f i g u r e 2.2). The d i l a t o m e t e r , i s pushed i n t o t h e s o i l a t a r a t e of approx. 2-4cm/sec. G e n e r a l l y , t h e p e n e t r a t i o n r a t e i s s e t a t 2cm/sec which i s the s t a n d a r d adopted f o r the cone p e n e t r a t i o n t e s t . At 20cm depth i n t e r v a l s , p e n e t r a t i o n i s st o p p e d and the d i l a t o m e t e r t e s t (DMT) i s performed w i t h o u t d e l a y by s t a r t i n g t o i n f l a t e t h e membrane. The membrane i s i n f l a t e d by gas p r e s s u r e ( u s u a l l y compressed n i t r o g e n ) s u p p l i e d t h r o u g h the c o n t r o l box and the n y l o n t u b e . As t h e membrane i s i n f l a t e d , two r e a d i n g s a r e man u a l l y taken from a p r e s s u r e gauge mounted on the c o n t r o l u n i t : t h e l i f t o f f p r e s s u r e of the membrane (Reading A) and t h e p r e s s u r e t o cause 1mm d e f l e c t i o n a t the c e n t e r of the membrane (Reading B ) . Beneath t h e membrane i s a s i m p l e e l e c t r o n i c d e v i c e which i s c o n n e c t e d t o the c o n t r o l u n i t by an e l e c t r i c a l w i r e i n s i d e t h e n y l o n t u b e . D u r i n g p e n e t r a t i o n , the membrane i s i n c o n t a c t w i t h a s e n s i n g d i s c and t h e d e v i c e t u r n s on a b u z z e r i n the c o n t r o l u n i t . The d e v i c e t u r n s t h e b u z z e r o f f when the membrane s t a r t s t o l i f t o f f t h e s e n s i n g d i s c , and t u r n s t h e bu z z e r on a g a i n when the c e n t e r of the membrane reac h e s a d e f l e c t i o n of 1mm ( f i g u r e 2.3). 7 F i g u r e 2.2 D i l a t o m e t e r and C o n t r o l - U n i t TOP VIEW See Detail Below 1 = J SECTION A - A Membrane Sensing Disc Insulating Seat Plexiglass Cylinder Stainless Steel Cylinder Pneumatic Electric Conduit DETAIL F i g u r e 2.3 Sc h e m a t i c of D i l a t o m e t e r 9 The r a t e of i n f l a t i o n i s c o n t r o l l e d t h r o u g h a v a l v e i n the c o n t r o l box and i s u s u a l l y a d j u s t e d i n such a way t h a t t h e d i l a t o m e t e r t e s t ( t h e e n t i r e e x p a n s i o n ) t a k e s about 15 t o 30 seconds. Once the 1mm d e f l e c t i o n a t t h e c e n t e r of t h e membrane i s rea c h e d , the t e s t i s c o m p l e t e d , and the p r e s s u r e i n s i d e the d i l a t o m e t e r i s v e n t e d and p e n e t r a t i o n f o r a n o t h e r t e s t i s c o n t i n u e d . F u l l d e t a i l s of t h e s t a n d a r d f l a t d i l a t o m e t e r and t e s t i n g p r o c e d u r e s a r e g i v e n i n t h e F l a t D i l a t o m e t e r Manual by M a r c h e t t i and Crapps (1981) and i n a r e c e n t p u b l i c a t i o n by ASTM (Schmertmann, 1986). 2.3 Data R e d u c t i o n In o r d e r t o det e r m i n e the p r e s s u r e s , P 0 and , wh i c h a r e a p p l i e d t o the s o i l a t the s t a r t and a t t h e end of t h e ex p a n s i o n r e s p e c t i v e l y , the two Readings A and B a r e c o r r e c t e d f o r membrane s t i f f n e s s . The e x p r e s s i o n s f o r t h e c o r r e c t i o n a r e : = A + AA (2.1) P, = B - AB (2.2) where AA the vacuum r e q u i r e d t o keep t h e membrane j u s t i n c o n t a c t w i t h the s e n s i n g d i s c i n f r e e a i r s i n c e the membrane a c q u i r e s a permanent outward c u r v a t u r e once used. where AB the p r e s s u r e r e q u i r e d t o cause a 1mm d e f l e c t i o n a t the c e n t e r of the membrane i n f r e e a i r . 10 (AA ad AB a r e d e t e r m i n e d b e f o r e and a f t e r each sounding.) From t h e two p r e s s u r e measurements P 0 & P,, M a r c h e t t i (1980) proposed t h r e e index p a r a m e t e r s : t h e d i l a t o m e t e r modulus ( E D ) , the m a t e r i a l index ( I D ) and the h o r i z o n t a l s t r e s s i n d e x (Kg). The e x p r e s s i o n s f o r the index p a r a m e t e r s a r e : E D = 38.2(P,-P 0) (2.3) I D = ( P , - P 0 ) / ( P 0 - u ) (2.4) K D = ( P 0 - u ) / i T (2.5) where u = e q u i l b r i u m pore water p r e s s u r e p r i o r t o b l a d e i n s e r t i o n = v e r t i c a l e f f e c t i v e s o i l s t r e s s The d i l a t o m e t e r modulus i s d e r i v e d u s i n g the t h e o r y of e l a s t i c i t y . M a r c h e t t i (1975 & 1980) assumed t h a t t h e s o i l a d j a c e n t t o the b l a d e i s an e l a s t i c h a l f space and i s u n i f o r m l y l o a d e d by the 60mm d i l a t o m e t e r membrane w i t h a d i s p l a c e m e n t of e x a c t l y 1mm. The membrane i s c o n s i d e r e d as a r i g i d d i s c so t h a t t h e r e i s no s o i l p r e s s u r e r e d i s t r i b u t i o n . F u r t h e r , i t was assumed t h a t t h e r e i s no s e t t l e m e n t e x t e r n a l t o t he l o a d e d a r e a , i . e . a r e a of the membrane, d u r i n g the e x p a n s i o n . The o t h e r two i n d i c e s a r e n o r m a l i z e d p a r a m e t e r s which M a r c h e t t i (1980) i n t r o d u c e d t o e s t a b l i s h e m p i r i c a l c o r r e l a t i o n s f o r s o i l p r o p e r t i e s w i t h the use of Eg. The parameters I n and K n r e q u i r e a knowledge of the i n - s i t u e q u i l i b r i u m water p r e s s u r e . The i n - s i t u water p r e s s u r e i s u s u a l l y assumed t o be h y d r o s t a t i c and t h u s , the o n l y i n f o r m a t i o n r e q u i r e d i s t h e depth t o t h e ground water l e v e l (GWL). The i n - s i t u v e r t i c a l e f f e c t i v e s t r e s s i s c a l c u l a t e d u s i n g the assumed h y d r o s t a t i c water p r e s s u r e and the s o i l u n i t weight d e t e r m i n e d from the e m p i r i c a l c o r r e l a t i o n s based on l D & E D . Because of t h e c o n f i g u r a t i o n of t h e measuring system of the d i l a t o m e t e r ( i . e . an a c t u a l d e f l e c t i o n of 1.1mm), e x p r e s s i o n s f o r the membrane s t i f f n e s s c o r r e c t i o n and t h e d i l a t o m e t e r modulus a r e s l i g h t l y m o d i f i e d i n the d a t a r e d u c t i o n program (Crapps & Schmertmann, 1981) s u p p l i e d w i t h the i n s t r u m e n t . E q u a t i o n s 2.1 and 2.3 a r e changed t o : P 0 = (A+AA) - (5/105(B-AB) - (A+AA)) (2.6) E D = 3 4 . 7 ( P 1 - P 0 ) (2.7) A f u l l d i s c u s s i o n on t h i s c o n f i g u r a t i o n c o r r e c t i o n i s g i v e n i n t he F l a t D i l a t o m e t e r Manual by M a r c h e t t i & Crapps (1981). 2.4 S o i l Properties Interpretation W i t h t h e e x p e r i e n c e and i n f o r m a t i o n g a i n e d a f t e r p e r f o r m i n g d i l a t o m e t e r t e s t s a t over 40 s i t e s i n I t a l y , M a r c h e t t i (1980) d e v e l o p e d a s e t of e m p i r i c a l c o r r e l a t i o n s between the t h r e e d i l a t o m e t e r i n d e x p a r a m e t e r s , I D , K Q & E D and v a r i o u s s o i l p r o p e r t i e s of s o i l t y p e , s o i l u n i t w e i g h t , c o e f f i c i e n t of e a r t h p r e s s u r e a t r e s t ( K 0 ) , 12 o v e r c o n s o l i d a t i o n r a t i o (OCR), d r a i n e d c o n s t r a i n e d modulus (Mp) and u n d r a i n e d shear s t r e n g t h of c o e s h i v e s o i l s ( S u ) . The c o r r e l a t i o n s were based on t e s t r e s u l t s a t 10 s e l e c t e d w e l l documented s i t e s . As the m a j o r i t y of the s i t e s c o n s i s t e d of c l a y d e p o s i t s w i t h o n l y two s i t e s of sand, M a r c h e t t i d i d not have enough i n f o r m a t i o n t o e s t a b l i s h the c o r r e l a t i o n of f r i c t i o n a n g l e s of sands (#') i n h i s (1980) paper. The c o r r e l a t i o n t o d e t e r m i n e t h e f r i c t i o n a n g l e of sand was proposed i n an u n - p u b l i s h e d t e c h n i c a l note ( M a r c h e t t i , 1981) supplemented w i t h the F l a t D i l a t o m e t e r Manual ( M a r c h e t t i & C rapps, 1981) a f t e r o b t a i n i n g t e s t d a t a from f o u r a d d i t i o n a l sand s i t e s . The 1981 F l a t D i l a t o m e t e r Manual p r e s e n t s t h e e a r l i e s t c omplete s e t of s o i l p r o p e r t i e s c o r r e l a t i o n s from d i l a t o m e t e r t e s t i n g . Some of the o r i g i n a l c o r r e l a t o n s p r e s e n t e d i n M a r c h e t t i ' s (1980) paper were s l i g h t l y m o d i f i e d i n t h e Manual, and t h o s e m o d i f i c a t i o n s a r e : 1. The c o r r e l a t i o n of s o i l c l a s s i f i c a t i o n has i n c l u d e d the use of t h e d i l a t o m e t e r modulus, E D , t o s u b - d i v i d e t h e s o i l c l a s s i f i c a t i o n and g i v e an e s t i m a t e of t h e s o i l d e n s i t y . 2. The c o r r e l a t i o n of OCR f o r c o h e s i o n l e s s s o i l has been s l i g h t l y a d j u s t e d i n o r d e r t o d i f f e r e n t i a t e between sands w i t h I D > 2 and s i l t y m a t e r i a l s w i t h I D between 1.2 and 2. 3. I n the t r a n s i t i o n zone of I n from 0.9 t o 1.2, t h e 13 d i l a t o m e t e r cannot p r e c i s e l y i n d i c a t e the s o i l t y p e and t h e r e f o r e , no s t r e n g t h parameters (#' or Su) a r e c a l c u l a t e d . A computer progam, DILLY, i s p r o v i d e d w i t h t h e i n s t r u m e n t . The program was w r i t t e n by Crapps & Schertmann (1981) t o reduce the raw t e s t d a t a t o the d i l a t o m e t e r i n d i c e s and then i n t e r p r e t e t h e s o i l p r o p e r t i e s . The c o r r e l a t i o n s d e v e l o p e d by M a r c h e t t i (1980 & 1981) were h i g h l y e m p i r i c a l . As more DMT d a t a became a v a i l a b l e from l a r g e s c a l e c a l i b r a t i o n chamber t e s t s and more w e l l documented f i e l d s i t e s , i t was apparent t h a t M a r c h e t t i ' s c o r r e l a t i o n s were not v a l i d f o r a l l sands. The c o r r e l a t i o n s tended t o o v e r e s t i m a t e t h e v a l u e s of K 0 and OCR i n sand and u n d e r e s t i m a t e the f r i c t i o n of a n g l e . However, u s e r s have r e p o r t e d good c o r r e l a t i o n s i n s o f t c l a y d e p o s i t s u s i n g DMT r e s u l t s (Schertmann, 1981, and L a c a s s e & Lunne, 1982). T h i s i s not s u r p r i s i n g s i n c e M a r c h e t t i ' s c o r r e l a t i o n s were m a i n l y based on d a t a o b t a i n e d from uncemented c o h e s i v e s o i l s ( i e . c l a y d e p o s i t s ) . When d e v e l o p i n g th e c o r r e l a t i o n s of K Q v e r s u s K 0, M a r c h e t t i (1980) d i d not e x p e c t any unique r e l a t i o n s h i p between K D & K 0 ( P 0 & a' h) f o r a l l s o i l s . The c a l i b r a t i o n chamber t e s t work i n I t a l y has shown t h a t depends on b o t h s o i l r e l a t i v e d e n s i t y and i n - s i t u s t r e s s h i s t o r y f o r sands 14 ( B e l l o t t i e t a l , 1979). However, a s i n g l e c u r v e f i t t e d w e l l a l l t h e a v a i l a b l e d a t a ( m o s t l y f o r c l a y ) and t h u s , M a r c h e t t i had a c c e p t e d the c o r r e l a t i o n f o r both c l a y and sand. The c o r r e l a t i o n of OCR and f r i c t i o n a n g l e f o r sands were a l s o based on a v e r y l i m i t e d amount of d a t a . F u r t h e r m o r e , M a r c h e t t i (1981) c o n s i d e r e d h i s proposed method of e s t i m a t i n g the f r i c t i o n a n g l e of sand as o n l y a p o s s i b l e framework i n which new d a t a s h o u l d be i n c l u d e d as they become a v a i l a b l e . Schmertmann (1982) p r o v i d e d a more r a t i o n a l method t o c a l c u l a t e the f r i c t i o n a n g l e of sand u s i n g t h e b e a r i n g c a p a c i t y t h e o r y d e v e l o p e d by Durngunoglo and M i t c h e l l . ( 1 9 7 5 ) . Schmertmann's (1982) method i s complex and i t e r a t i v e , and r e q u i r e s the p u s h i n g f o r c e s t o advance t h e d i l a t o m e t e r as a d d i t i o n a l i n p u t d a t a . To improve the p r e d i c t i o n of K 0 i n sand, Schmertmann (1983) d e v e l o p e d a new c o r r e l a t i o n f o r K 0 Vs K Q w i t h <j>' as an a d d i t i n a l i n p u t p a r a m e t e r , based on the chamber t e s t d a t a a v a i l a b l e up t o 1983. F o r t h e improvement of the OCR p r e d i c t i o n , Schmertmann (1 9 8 3 ) , a l s o based on the a v a i l a b l e chamber t e s t d a t a , p r o p o s e d a c o r r e l a t i o n by s l i g h t y m o d i f y i n g Mayne and Kulhawy's approach (1982) which a l s o r e q u i r e s the use of a d r a i n e d f r i c t i o n a n g l e . Schmertmann (GPE, I n c . , DMT D i g e s t S e r i e s ) recommended t h a t t h e above t h r e e methods s h o u l d r e p l a c e M a r c h e t t i ' s 15 o r i g i n a l c o r r e l a t i o n f o r d e t e r m i n i n g 0', K 0 and OCR i n sands. B u l l o c k (1983) d e v e l o p e d a new d a t a r e d u c t i o n program, DILLY4, which i n c o r p o r a t e d a l l t h e s e changes. M a r c h e t t i ' s (1981) c o r r e l a t i o n of #' was, however, r e t a i n e d as an o p t i o n f o r the u s e r s s i n c e Schmertmann method r e q u i r e s the a d d i t i o n a l i n p u t d a t a of the p u s h i n g f o r c e . 2.5 Advantages and Disadvantages of the Dilatometer Test The main advantage of the d i l a t o m e t e r t e s t i s the i n s t r u m e n t ' s low i n i t i a l c o s t and the s i m p l i c i t y of the o p e r a t i o n and maintenance s i n c e no s o p h i s t i c a t e d e l e c t r o n i c s a r e r e q u i r e d . The t e s t does not r e q u i r e h i g h l y s k i l l e d o p e r a t o r s or t e c h n i c a n s and has been found t o be a h i g h l y r e p e a t a b l e t e s t t h a t i s almost o p e r a t o r independent ( L a c a s s e and Lunne, 1982). A l t h o u g h the d i l a t o m e t e r t e s t (DMT) i s e x t r e m e l y s i m p l e , i t p r o v i d e s an i m p r e s s i v e range of s o i l parameters t h r o u g h e m p i r i c a l and s e m i - e m p i r i c a l c o r r e l a t i o n s . F i n a l l y , i t appears t h a t the t e s t r e s u l t s can a l s o be used f o r e v a l u a t i o n of o t h e r g e o t e c h n i c a l problems such a s ; l i q u e f a c t i o n p o t e n t i a l , c o e f f i c e n t of h o r i z o n t a l subgrade r e a c t i o n p r e d i c t i o n and l a t e r a l p i l e movement p r e d i c t i o n . 16 The main d i s a d v a n t a g e of t h e d i l a t o m e t e r t e s t i s t h a t the i n s t r u m e n t can be e a s i l y damaged when p e n e t r a t i n g t h r o u g h v e r y dense sands or g r a v e l s . The membrane, which i s t h i n t o make i t expandable, i s f r a g i l e and s u s c e p t i b l e t o damage. G r a v e l s can e a s i l y t e a r the membrane. In dense sands, t h e r e can be s i g n i f i c a n t f r i c t i o n a l f o r c e t o make a s t r e t c h or w r i n k l e on t h e membrane. However, s t r o n g e r membranes have been d e v e l o p e d r e c e n t l y . One f i n a l c o n c e r n i s the l e v e l of c o n f i d e n c e i n the i n t e r p r e t a t e d s o i l p a rameters o b t a i n e d form t h e d i l a t o m e t e r t e s t . The t e s t i s s t i l l r e l a t i v e l y new and the c o r r e l a t i o n s proposed by M a r c h e t t i (1980,1981) and Schmertmann (1982,1983) were based on a l i m i t e d amount of t e s t r e s u l t s . As the t e s t i s s i m p l e w i t h o n l y two measurements t a k e n , i t i s o f t e n d i f f i c u l t f o r u s e r s t o j u s t i f y t h e i n t e r p r e t a t e d s o i l p arameters w i t h o u t a g r e a t e r fundamental u n d e r s t a n d i n g of the t e s t . 2.6 D i l a t o m e t e r T e s t i n g a t the U n i v e r s i t y of B r i t i s h  C olumbia At the U n i v e r s i t y of B r i t i s h Columbia (UBC), d i l a t o m e t e r t e s t i n g has been performed u s i n g the i n - s i t u t e s t i n g r e s e a r c h v e h i c l e (Campanella & R o b e r t s o n , 1981). The i n s t r u m e n t has been pushed i n t o the ground a t a r a t e of 2cm/sec. Two r e a d i n g s A & B a r e read m a n u a l l y from the 17 p r e s s u r e gauge i n the c o n t r o l u n i t a t 20cm d e p t h i n t e r v a l s . The measurements a r e reduced and i n t e r p r e t a t e d u s i n g the computer programs DIL.RED or DILLY4. The program DIL.RED was adapted from the program DILLY w r i t t e n by Crapps and Schmertmann (1981) w i t h p l o t t i n g s u b - r o u t i n e s added a t UBC. The program, DILLY4, i s the program d e v e l o p e d by B u l l o c k (1983) which i n c o r p o r a t e s the improved c o r r e l a t i o n s f o r sands as mentioned i n s e c t i o n 2.4. To c a l c u l a t e the f r i c t i o n a n g l e of sand u s i n g Schmertmann's method (1982), a l o a d c e l l has been used a t t h e p u s h i n g head t o c o n t i n u a l l y measure the p e n e t r a t i n g f o r c e . The measured t h r u s t t o g e t h e r w i t h t h e two p r e s s u r e measurements A & B a r e then reduced and a n a l y s e d u s i n g t h e program, DILLY4. 18 Chapter 3  The Research F l a t Dilatometer 3.1 Factors A f f e c t i n g Results from the Dilatometer Test M a r c h e t t i ' s d i l a t o m e t e r i s e x t r e m e l y s i m p l e t o o p e r a t e and m a i n t a i n . However, the s i m p l i c i t y of the equipment and o p e r a t i o n a r e o f f s e t by the d i f f i c u l t i e s i n u n d e r s t a n d i n g t h e t e s t and i n t e r p r e t a t i n g the r e s u l t s . D u r i n g the use of the f l a t d i l a t o m e t e r , s e v e r a l s i g n i f i c a n t a s p e c t s a f f e c t i n g t h e d a t a c o l l e c t i o n and i n t e r p r e t a t i o n have been o b s e r v e d . 3.1.1 Inclination I t i s almost i m p o s s i b l e t o push any i n s t r u m e n t i n t o t h e ground w i t h o u t d e v e l o p i n g some n o n - v e r t i c a l i t y ( i n c l i n a t i o n ) , e s p e c i a l l y f o r deep s o u n d i n g s . T h i s problem i s p a r t i c u l a r l y i m p o r t a n t i f t h e i n s t r u m e n t measures l a t e r a l s t r e s s e s , such as the d i l a t o m e t e r . The two r e a d i n g s o b t a i n e d from the d i l a t o m e t e r t e s t can be s i g n i f i c a n t l y i n f l u e n c e d by v e r t i c a l s t r e s s e s due t o n o n - v e r t i c a l i t y . The i n f l u e n c e can a f f e c t the i n t e r p r e t a t i o n of s o i l p a r a m e t e r s . E x p e r i e n c e g a i n e d w i t h cone p e n e t r a t i o n t e s t s a t UBC would suggest t h a t good v e r t i c a l i t y can u s u a l l y be m a i n t a i n e d i n u n i f o r m s o f t d e p o s i t s f o r p e n e t r a t i o n d e p t h up t o about 15m. However i n l e s s u n i f o r m dense d e p o s i t s , t h e maximum de p t h t o m a i n t a i n good v e r t i c a l i t y i s u n c e r t a i n . 3.1.2 Pore P r e s s u r e The c o r r e l a t e d s o i l p a r a m e t e r s from d i l a t o m e t e r t e s t d a t a a r e based on t h e t h r e e d i l a t o m e t e r i n d e x p a r a m e t e r s , I D , K D and E D . The par a m e t e r s I D and K Q r e q u i r e a knowledge of the i n - s i t u e q u i l i b r i u m water p r e s s u r e b e f o r e p e n e t r a t i o n ( u 0 ) . The d a t a a n a l y s e s assumes the i n - s i t u e q u i l i b r i u m water p r e s s u r e t o be h y d r o s t a t i c a l t h o u g h t h i s may not always be the c a s e . The assumption of h y d r o s t a t i c water p r e s s u r e can t h e r e f o r e i n f l u e n c e the index parameters e s p e c i a l l y i n s o f t d e p o s i t s where P 0 and P, can be s m a l l r e l a t i v e t o the assumed u 0 , and s u b s e q u e n t l y a f f e c t the i n t e r p r e t a t e d s o i l p a r a m e t e r s . The e x i s t i n g t e s t p r o c e d u r e s assumes t h a t the membrane i n f l a t i o n i s performed i m m e d i a t e l y a f t e r p e n e t r a t i o n i s stopped a t each 20cm i n t e r v a l s . The r a t e of p r e s s u r e a p p l i e d i s s e t so t h a t the t e s t ( e x p a n s i o n ) i s co m p l e t e d w i t h i n 15 t o 30 seconds. However, i t i s not a l w a y s p o s s i b l e t o m a i n t a i n a c o n s t a n t time of t e s t i n g . T h i s i s because the r a t e of e x p a n s i o n i s g e n e r a l l y c o n s t a n t but P 0 and P^ may va r y c o n s i d e r a b l y . Thus, the time needed t o r e a c h P 0 and P, w i l l v a r y . A l s o , the time between s t o p p i n g the p e n e t r a t i o n and s t a r t i n g the e x p a n s i o n i s not always c o n s t a n t . R e s u l t s from p i e z o m e t e r cone p e n e t r a t i o n t e s t i n g have i n d i c a t e d t h a t p e n e t r a t i o n i n t o s a t u r a t e d s o f t c o h e s i v e and/or s i l t y d e p o s i t s can g e n e r a t e v e r y l a r g e pore 20 p r e s s u r e s . D i s s i p a t i o n of t h e s e l a r g e e x c e s s pore p r e s s u r e s t a k e s p l a c e s i m m e d i a t e l y a f t e r t h e p e n e t r a t i o n i s s t o p p e d . As the d i l a t o m e t e r r e c o r d s t o t a l s t r e s s measurements (A and B ) , t h e s e h i g h pore p r e s s u r e s around th e d i l a t o m e t e r w i l l have a s i g n i f i c a n t i n f l u e n c e on t h e t e s t r e s u l t s . McPherson (1985) has shown t h a t i f t h e time between s t o p p i n g p e n e t r a t i o n and s t a r t i n g the e x p a n s i o n t e s t i n a s a t u r a t e d s o f t c o h e s i v e d e p o s i t s i s v a r i e d , the d i l a t o m e t e r index parameters w i l l a l s o v a r y . McPherson (1985) showed t h a t as t h e e x c e s s pore p r e s s u r e d e c r e a s e d , t h e measured v a l u e s of P 0 and P, a l s o d e c r e a s e d , and t h i s c a u s ed an i n c r e a s e i n the index parameters I D and Eg, but a d e c r e a s e i n Kg. The d e c r e a s e i n Kg i s due t o t h e d e c r e a s e i n P 0 as a d i r e c t r e s u l t of the d e c r e a s i n g pore p r e s s u r e around th e d i l a t o m e t e r membrane. The i n c r e a s e i n l g and Eg i s due t o the f a c t t h a t the drop i n P 0 i s g r e a t e r than the drop i n P,. Campanella and R o b e r t s o n (1983) a n t i c i p a t e d t h a t i n many low p e r m e a b i l i t y c o h e s i v e d e p o s i t s , v a r i a t i o n s i n t h e e x i s t i n g t e s t i n g p r o c e d u r e w i l l have l i t t l e i n f l u e n c e i n the DMT r e s u l t s . However, when t h e t e s t i s p e r formed i n r e l a t i v e l y h i g h p e r m e a b i l i t y d e p o s i t s such as s i l t or s i l t y f i n e sands where s i g n i f i c a n t h i g h pore p r e s s u r e s can s t i l l be g e n e r a t e d d u r i n g p e n e t r a t i n g , the e x i s t i n g t e s t i n g p r o c e d u r e may cause i n c o n s i s t e n t r e s u l t s due t o r a p i d pore p r e s s u r e d i s s i p a t i o n . 21 3.1.3 Modulus of E l a s t i c i t y The e x p r e s s i o n f o r the d i l a t o m e t e r modulus, Eg, d e r i v e d by M a r c h e t t i (1975 & 1980) was based on the t h e o r y of e l a s t i c i t y . The s o i l a d j a c e n t t o t h e d i l a t o m e t e r membrane i s assumed t o be an e l a s t i c m a t e r i a l , but t h e v a l i d i t y of t h i s a s s u m p t i o n i s u n c e r t a i n . T h i s u n c e r t a i n i t y i s l e s s i m p o r t a n t p r o v i d e d t h a t the parameter, Eg, i s o n l y used as a parameter f o r e m p i r i c a l c o r r e l a t o n p u r p o s e s . Though M a r c h e t t i (1975) d e r i v e d the e x p r e s s i o n of Eg and c o n s i d e r e d the d i l a t o m e t e r as a fundamental i n - s i t u t e s t i n g t o o l w i t h sound t h e o r e t i c a l background, he has never s u g g e s t e d t o d e r i v e t h e e l a s t i c d e f o r m a t i o n modulus of a s o i l (E) based on t h e v a l u e of Eg. Some u s e r s of the d i l a t o m e t e r have s u g g e s t e d t h a t t h e s o i l may behave i n an e l a s t i c manner d u r i n g t h e d i l a t o m e t e r t e s t and t h u s b e l i e v e t h a t the Eg v a l u e c o u l d g i v e a r e a s o n a b l e e s t i m a t e of the s o i l modulus of E l a s t i c i t y (E) wh i c h e n g i n e e r s o f t e n r e q u i r e f o r d e s i g n . The membrane of the d i l a t o m e t e r i s l o c a t e d i n t h e c e n t e r of one s i d e of the f l a t p l a t e a t a s h o r t d i s t a n c e b e h i n d t h e t i p . O b s e r v a t i o n s and c a v i t y e x p a n s i o n t h e o r i e s have i n d i c a t e d t h e r e i s some t o t a l s t r e s s r e l i e f b e h i n d t h e t i p of most p e n e t r a t i o n d e v i c e s , s i n c e t h e t o t a l s t r e s s e s r e q u i r e d t o open t h e c a v i t y a t the t i p a r e l a r g e r t h a n t h e s t r e s s e s r e q u i r e d t o m a i n t a i n the c a v i t y . In the c a s e of a p e n e t r a t i o n cone, the t h e o r y of s p h e r i c a l c a v i t y e x p a n s i o n r e l a t e s a p p r o x i m a t e l y t o the t i p and t h e o r y of c y l i n d e r i c a l 22 c a v i t y e x p a n s i o n t o the s h a f t ( G i l l e s p i e , 1981). I t seems t h a t a s i m i l a r a n a l o g y e x i s t s f o r the p e n e t r a t i o n of the d i l a t o m e t e r , and t h e r e f o r e t h e s o i l element i n c o n t a c t w i t h the membrane may have undergone some s t r e s s r e l i e f ( i e . u n l o a d i n g ) b e f o r e membrane e x p a n s i o n . E x p e r i e n c e w i t h p r e s s u r e m e t e r t e s t i n g shows t h a t e l a s t i c s o i l modulus can be o b t a i n e d by p e r f o r m i n g an u n l o a d - r e l o a d c y c l e d u r i n g a p r e s s u r e m e t e r e x p a n s i o n t e s t . A c c o r d i n g t o the t h e o r y of p l a s t i c i t y , i f the e l a s t i c l i m i t of the s o i l d u r i n g the u n l o a d i n g phase i s not exceeded, the s o i l behaves e l a s t i c a l l y d u r i n g the u n l o a d i n g - r e l o a d i n g phase u n t i l the r e l o a d i n g s t r e s s r e a c h e s the y i e l d s u r f a c e t h a t o c c u r e d a t the p r e v i o u s maximum s t r e s s l e v e l b e f o r e u n l o a d i n g . The i n f l a t i o n of a f l a t d i l a t o m e t e r membrane a f t e r p e n e t r a t i o n may r e p r e s e n t a r e l o a d i n g of the s o i l element i n c o n t a c t w i t h the membrane. I t i s t h e r e f o r e e x p e c t e d t h a t the s o i l would deform as an e l a s t i c medium d u r i n g the t e s t . However, Campanella and R o b e r t s o n (1983) a n t i c i p a t e d t h a t the e x p a n s i o n of 1mm a t the c e n t e r of t h e membrane may exceed t h e s t r e s s l e v e l a t the p r e v i o u s u n l o a d i n g , and hence, the assu m p t i o n of e l a s t i c i t y may not h o l d t r u e f o r the e n t i r e membrane i n f l a t i o n , r e s u l t i n g i n a modulus s o f t e r than t h e e l a s t i c modulus. 23 3.2 Development of t h e UBC R e s e a r c h D i l a t o m e t e r In o r d e r t o o b t a i n a more fundamental u n d e r s t a n d i n g .of the s o i l b e h a v i o u r ( i e . the s o i l d e f o r m a t i o n and pore p r e s s u r e c h a r a c t e r i s t i c s ) d u r i n g p e n e t r a t i o n and membrane e x p a n s i o n of the f l a t d i l a t o m e t e r t e s t ; and t o s t u d y how the f a c t o r s d e s c r i b e d i n t h e p r e c e e d i n g s e c t i o n a f f e c t t h e DMT r e s u l t s , McPherson (1985) d e s i g n e d a r e s e a r c h d i l a t o m e t e r a t the U n i v e r s i t y of B r i t i s h Columbia (UBC). The UBC r e s e a r c h d i l a t o m e t e r i n c l u d e s t h e f o l l o w i n g f e a t u r e s : 1. a pore p r e s s u r e t r a n s d u c e r i n t h e c e n t e r of t h e membrane t o measure t h e pore p r e s s u r e d u r i n g p e n e t r a t i o n of the d i l a t o m e t e r and e x p a n s i o n of t h e membrane, 2. a p r e s s u r e t r a n s d u c e r i n s i d e the b l a d e t o measure the a p p l i e d gas p r e s s u r e , 3. a s t r a i n gauge d e f l e c t o r arm a t t a c h e d t o the c e n t e r of the membrane t o c o n t i n u o u s l y measure d e f l e c t i o n of the membrane d u r i n g i n f l a t i o n , 4. a s l o p e s e n s o r t o measure the v e r t i c a l i t y of the b l a d e d u r i n g p e n e t r a t i o n , and 5. a l o a d c e l l b e h i n d the b l a d e t o c o n t i n u o u s l y measure the p u s h i n g f o r c e d u r i n g p e n e t r a t i o n . A l o a d c e l l b e h i n d the b l a d e was i n c l u d e d because a d i r e c t measure of p u s h i n g f o r c e would a l l o w a d i r e c t c a l c u l a t i o n of u s i n g the Durngunoglo & M i t c h e l l b e a r i n g c a p a c i t y t h e o r y (1975) as pr o p o s e d by Schmertmann (1982). W h i l e i t i s d i f f i c u l t t o measure p u s h i n g f o r c e d i r e c t l y 24 b e h i n d M a r c h e t t i ' s s t a n d a r d d i l a t o m e t e r , Schmertmann suggested measuring the p u s h i n g f o r c e above ground s u r f a c e and t o assume the f r i c t i o n a l o n g t h e p e n e t r a t i o n rods b e h i n d the f r i c t i o n r e d u c e r t o be n e g l i g i b l e . For t h i s s t u d y , the pu s h i n g f o r c e was a l s o measured a t the ground s u r f a c e u s i n g an a d d i t i o n a l l o a d c e l l . The purpose of d e v e l o p i n g t h e r e s e a r c h d i l a t o m e t e r was not t o r e p l a c e the use of M a r c h e t t i ' s s t a n d a r d d i l a t o m e t e r but t o p r o v i d e a d d i t i o n a l i n f o r m a t i o n and t o p r o v i d e a b e t t e r u n d e r s t a n d i n g of f l a t d i l a t o m e t e r t e s t i n g . I n a d d i t i o n t o a l l t h e e l e c t r o n i c measuring d e v i c e s , M a r c h e t t i ' s measuring system was r e t a i n e d i n the UBC r e s e a r c h d i l a t o m e t e r so t h a t d i r e c t comparison c o u l d be made between the r e s e a r c h d a t a and t h e s t a n d a r d d i l a t o m e t e r d a t a . The d imensions and shape of the UBC r e s e a r c h d i l a t o m e t e r a re i d e n t i c a l t o M a r c h e t t i ' s ,except t h a t the f l a t p l a t e of the r e s e a r c h model has a l o n g e r s h o u l d e r and stem so t h a t a l l the added e l e c t r o n i c f e a t u r e s c o u l d be i n c o r p o r a t e d ( f i g u r e 3.1). F i g u r e s 3.2, 3.3 and 3.4 i l l u s t r a t e d the d e s i g n of the r e s e a r c h d i l a t o m e t e r . D e t a i l s of the d e s i g n a r e g i v e n by McPherson (1985). When the r e s e a r c h d i l a t o m e t e r was f i r s t d e s i g n e d , i t was i n t e n d e d t h a t t h e pore p r e s s u r e t r a n s d u c e r mounted f l u s h on the s t e e l membrane measure o n l y the pore p r e s s u r e o u t s i d e F i g u r e 3.1 UBC R e s e a r c h D i l a t o m e t e r (B) CROSS SECTION F i g u r e 3.2 Design D e t a i l of R e s e a r c h D i l a t o m e t e r (Adapted from McPherson, 1985) to 27 PORE PRESSURE TRANSDUCER POROUS STONE 9BL I nrH— 1 i t » — SECTION (D) DETAILS OF MEASURING SYSTEM F i g u r e 3.3 D e s i g n D e t a i l of R e s e a r c h D i l a t o m e t e r (Adapted from McPherson, 1985) WIRE CONNECTORS INSITU TESTING TRUCK AIRLINE TRUCK TO DILATOMETER •BRASS COLLAR IE) DETAIL OF DILATOMETER ROD CONNECTION FRICTION SLEEVE INCLINOMETER MOUNTED HERE LOAD CELL STRAIN GAUGES D I L A T O M E T E R — -(F) LOAD CELL SECTION F i g u r e 3.4 Design D e t a i l (Adapted from of Research D i l a t o m e t e r McPherson, 1985) CO the membrane d u r i n g p e n e t r a t i o n and e x p a n s i o n , and the p r e s s u r e t r a n s d u c e r i n s i d e t h e b l a d e measure t h e a p p l i e d gas p r e s s u r e d u r i n g the e x p a n s i o n . The e f f e c t i v e p r e s s u r e on the membrane c o u l d then be c a l c u l a t e d by s u b s t r a c t i n g the pore p r e s s u r e from the a p p l i e d gas measurement. However, when the i n s t r u m e n t was made, i t was i m p o s s i b l e t o s e a l the pore p r e s s u r e t r a n s d u c e r from t h e a p p l i e d gas i n s i d e the b l a d e . The "pore p r e s s u r e " t r a n s d u c e r , t h e r e f o r e , measures the d i f f e r e n t i a l p r e s s u r e between the i n s i d e of t h e b l a d e and the e x t e r n a l pore p r e s s u r e . Hence, the "pore p r e s s u r e " t r a n s d u c e r measures pore p r e s s u r e s o u t s i d e t h e membrane d u r i n g p e n e t r a t i o n ( i n s i d e of membrane v e n t e d t o a t m o s p h e r i c p r e s s u r e ) and e f f e c t i v e p r e s s u r e s on t h e membrane d u r i n g e x p a n s i o n ( a i r p r e s s u r e s minus pore p r e s s u r e s ) . Pore p r e s s u r e s on t h e membrane d u r i n g e x p a n s i o n a r e t h e r e f o r e c a l c u l a t e d by s u b s t r a c t i n g t h e e f f e c t i v e p r e s s u r e measurements from the a p p l i e d gas p r e s s u r e measurements. 3.3 T e s t P r o c e d u r e s and Data A c q u i s t i o n The r e s e a r c h d i l a t o m e t e r was pushed i n t o t h e ground u s i n g the UBC i n - s i t u t e s t i n g r e s e a r c h t r u c k s i m i l a r t o the s t a n d a r d d i l a t o m e t e r . The power s u p p l y and e l e c t r o n i c systems d e v e l o p e d f o r a p p l i e d cone r e s e a r c h a t UBC was used f o r t he d i l a t o m e t e r r e s e a r c h t e s t i n g . A c o m p l e t e d e s c r i p t i o n of the power s u p p l y and e l e c t r o n i c system i s g i v e n by Campanella and Ro b e r t s o n (1981). 30 The t e s t i n g p r o c e d u r e f o r u s i n g the UBC r e s e a r c h d i l a t o m e t e r was i d e n t i c a l t o t h a t used f o r M a r c h e t t i ' s s t a n d a r d DMT. The two main DMT measurements, A and B, were r e c o r d e d m a n u a l l y from the gauge on the c o n t r o l box. In a d d i t i o n , two c h a r t r e c o r d e r s were used t o r e c o r d the d a t a from the e l e c t r o n i c d e v i c e s . The b l a d e i n c l i n a t i o n , pore water p r e s s u r e , and the p u s h i n g f o r c e s measured b e h i n d the bl a d e and a t the ground s u r f a c e d u r i n g p e n e t r a t i o n were r e c o r d e d on a s t r i p c h a r t r e c o r d e r . The s t r i p c h a r t was c o n t r o l l e d by a s w i t c h on the p u s h i n g head and a depth encoder so t h a t the c h a r t advance o n l y when the push-rods were b e i n g pushed. The s t r i p c h a r t r e c o r d e r , however, c o u l d a l s o be e a s i l y s w i t c h e d t o t i m e c o n t r o l i n s t e a d of depth c o n t r o l by s i m p l y p r e s s i n g a t i m e - c o n t r o l b u t t o n on the r e c o r d e r . T h e r e f o r e , when i t was i n t e n d e d t o study the e f f e c t of pore p r e s s u r e d i s s i p a t i o n s d u r i n g a s t o p i n p e n e t r a t i o n , the s t r i p c h a r t was c o n t i n u o u s l y advance t o r e c o r d pore p r e s s u r e s a g a i n s t t i m e . The o t h e r c h a r f r e c o r d e r used was a X-Y-Y r e c o r d e r . The X-Y-Y r e c o r d e r was used t o r e c o r d t h e measured a i r p r e s s u r e and e f f e c t i v e p r e s s u r e ( i e . a i r p r e s s u r e minus pore p r e s s u r e ) v e r s u s d e f l e c t i o n a t t h e c e n t e r of the membrane d u r i n g the e n t i r e d i l a t o m e t e r e x p a n s i o n and d e f l a t i o n phases. 31 3.4 Data R e d u c t i o n The r e c o r d e d d a t a ; a p p l i e d a i r p r e s s u r e Vs membrane d e f l e c t i o n and e f f e c t i v e p r e s s u r e Vs membrane d e f l e c t i o n , d u r i n g t h e e x p a n s i o n t e s t were c o r r e c t e d f o r membrane s t i f f n e s s i n o r d e r t o det e r m i n e the c o r r e c t e d e x p a n s i o n c u r v e s ; t o t a l s t r e s s e s Vs membrane d e f l e c t i o n and e f f e c t i v e s t r e s s e s Vs membrane d e f l e c t i o n . The d e f o r m a t i o n c u r v e of the membrane ( i e . membrane s t i f f n e s s ) i n f r e e a i r was a l s o r e c o r d e d u s i n g the X-Y-Y r e c o r d e r when t h e c o r r e c t i o n v a l u e s , AA and AB were measured. The c o r r e c t e d e x p a n s i o n c u r v e s o b t a i n e d u s i n g the UBC r e s e a r c h d i l a t o m e t e r p r o v i d e a more complete p i c t u r e of the d i l a t o m e t e r t e s t . I n a d d i t i o n t o o b t a i n i n g the t o t a l s t r e s s e s , P 0 & P, a t the s t a r t and a t t h e end of the e x p a n s i o n , t h e t o t a l s t r e s s a t t h e c l o s u r e of t h e membrane (P ) was a l s o o b t a i n e d from the f o l l o w i n g e x p r e s s i o n : where C i s t h e a p p l i e d t o t a l p r e s s u r e measured a t th e c l o s u r e of t h e membrane. The c o r r e s p o n d i n g e f f e c t i v e s o i l s t r e s s e s P 0 ' / P i ' and P ' were o b t a i n e d u s i n g the f o l l o w i n g e x p r e s s i o n s : P c = C + AA (3.1) P 0' = A' + AA (3.2) P = B' - AB (3.3) P c = C + AA (3.4) where A', B', C are t h e e f f e c t i v e p r e s s u r e measurements ( a p p l i e d p r e s s u r e i n s i d e minus pore 32 p r e s s u r e o u t s i d e the membrane) when the membrane i s a t l i f t o f f , 1mm d e f l e c t i o n and a t c l o s u r e , r e s p e c t i v e l y . P o re p r e s s u r e s d u r i n g the t e s t were c a l c u l a t e d by s u b s t r a c t i n g the e f f e c t i v e s t r e s s e s from t h e t o t a l s t r e s s e s . The pore p r e s s u r e s a t d i f f e r e n t s t a g e s of t h e t e s t a r e : u 0 = P 0 - P 0' ( = A - A') (3.5) u, = P, - P,' ( = B - B') (3.6) u = P - P ' ( = C - C') (3.7) c c c where u 0 , u, and u c a r e the pore p r e s s u r e s when the membrane i s a t l i f t o f f , a t 1mm d e f l e c t i o n and a t c l o s u r e , r e s p e c t i v e l y . A l t h o u g h the UBC r e s e a r c h d i l a t o m e t e r p r o v i d e d a d d i t i o n a l d a t a , o n l y t h e two b a s i c r e a d i n g s , A and B, and the p e n e t r a t i o n push f o r c e were used i n the d a t a r e d u c t i o n and i n t e r p r e t a t i o n u s i n g t h e computer programs, DIL.RED or DILLY4, as d e s c r i b e d i n S e c t i o n 2.6. The c a l c u l a t i o n of f r i c t i o n a n g l e of sand i n DILLY4 uses Schmertmann 1s (1982) method which i s based on t h e p e n e t r a t i o n f o r c e measured a t the ground s u r f a c e , w i t h the as s u m p t i o n t h a t f r i c t i o n f o r c e s a l o n g t h e p e n e t r a t i o n r o d s b e h i n d the f r i c t i o n r e d u c e r a r e n e g l i g i b l e . In o r d e r t o use the p e n e t r a t i o n f o r c e measured i m m e d i a t e l y b e h i n d the b l a d e o b t a i n e d w i t h the UBC r e s e a r c h d i l a t o m e t e r t o d i r e c t l y c a l c u l a t e the f r i c t i o n a n g l e of sand, the i n p u t d a t a of t h e 33 program D I L L Y 4 was s l i g h t l y m o d i f i e d t o s u i t t h i s purpose (Appendix I ) . 34 Chapter 4 Research Dilatometer Testing in Sands 4.1 Scope The f i e l d programme u s i n g the r e s e a r c h d i l a t o m e t e r i n sands was conducted a t the McDonald's Farm r e s e a r c h s i t e on Sea I s l a n d , Richmond. A d e t a i l e d s t u d y c o n s i s t i n g of v a r i o u s i n - s i t u t e s t i n g s and l a b o r a t o r y t e s t i n g s has been c a r r i e d out a t the s i t e as an on-going UBC r e s e a r c h e f f o r t . The t e s t s used f o r comparison i n t h i s s t u d y were: a) cone p e n e t r a t i o n t e s t (CPT), b) down-hole s e i s m i c CPT, c) s e l f - b o r i n g p r e s s u r e m e t e r t e s t (SBPMT), d) f u l l d i s p l a c e m e n t p r e s u r e m e t e r t e s t (FDMPT) and e) l a b o r a t o r y d r a i n e d t r i a x i a l c o m p r e s s i o n t e s t . As o n l y one sand s i t e was t e s t e d f o r t h i s s t u d y , t h r e e s o u n d i n g s , MRD-1, MRD-2 & MRD-3 were made u s i n g t h e r e s e a r c h d i l a t o m e t e r t o check the r e p e a b i l i t y of the r e s u l t s . 4.2 Site Geology and Description McDonald's Farm i s an abandoned farm a t t h e N o r t h e r n edge of Sea I s l a n d i n the m u n i c i p a l i t y of Richmond ( f i g u r e 4.1). Sea I s l a n d i s l o c a t e d between the N o r t h Arm and M i d d l e 36 Arm of the F r a s e r R i v e r D e l t a e x t e n d i n g westwards i n t o the S t r a i t of G e o r g i a . The I s l a n d i s c o n t a i n e d by a system of dykes t o p r o t e c t a g a i n s t f l o o d i n g from the r i v e r . The s i t e i s a p p r o x i m a t e l y l e v e l w i t h t h e g e n e r a l ground e l e v a t i o n a t 1.6m ( G e o d e t i c Datum), and i s c o v e r e d m a i n l y w i t h weeds. The groundwater t a b l e u n d e r l y i n g the s i t e i s about 1.5m below the ground s u r f a c e , and v a r i e s w i t h the t i d a l f l u c t u a t i o n i n the a d j a c e n t F r a s e r R i v e r . Sea I s l a n d and i t s a d j a c e n t i s l a n d s i n t h e F r a s e r R i v e r D e l t a a r e l e s s than about 8000 y e a r s o l d ( B l u n d e n , 1975). Some 8000 t o 10,000 y e a r s ago, a f t e r the i c e s h e e t s of the F r a s e r G l a c i a t i o n had r e t r e a t e d , the F r a s e r R i v e r began t o d i s c h a r g e i n t o t h e S t r a i t of G e o r g i a . Sand, s i l t and c l a y b rought down by the r i v e r were a c c u m u l a t e d a l o n g t h e s hore l i n e t o c r e a t e new l a n d s u r f a c e s as the p r e s e n t F r a s e r R i v e r D e l t a . A t y p i c a l cone p e n e t r a t i o n t e s t p r o f i l e i s p r e s e n t e d i n f i g u r e 4.2 and shows t h a t t h e g e n e r a l s o i l p r o f i l e c o n s i s t s o f : 0 - 2m s o f t o r g a n i c s i l t y c l a y 2 - 13m medium t o c o a r s e sand; v a r i a b l e d e n s i t y 13 - 15m f i n e sand, some s i l t ( t r a n s i t i o n zone) > 15m s o f t n o r m a l l y c o n s o l i d a t e d c l a y e y s i l t . B lunden (1975) i n d i c a t e d t h a t the c l a y s i l t d e p o s i t e x t e n d s t o a t l e a s t 150m d e p t h i n t h i s p a r t of Sea I s l a n d . PORE PRESSURE U (BAR) FRICTION RESIST FC (BAR) BEARING RESISTANCE OT (BAR) FRICTION RATIO RF« FC/QT(%) COJIIMUM ran WSURC « 1 1 * 200 Or *60% (BALDI «t 4,1962) i i i i • i DIFF PP RATIO ALHJT 0 SOIL PROFILE SOFT CLAY 8 SILT COARSE SAND LOOSE TO DENSE WITH LAYERS OF FINE SAND FINE SAND 90NC SILT SOFT, NORMALLY CONSOU DATED CLAYEY SILT SAND '10% SILT «70% CLAY » 2 0 % l_L. « 38 % P.I. • 15 % • 35 % k'8xO orvtac. <t*0.3 I BAR • 100 NPo - I kgf/cm ton/ft. F i g u r e 4.2 T y p i c a l CPT P r o f i l e a t McDonald's Farm S i t e 38 The d i l a t o m e t e r t e s t p r o v i d e s a s i m i l a r s o i l p r o f i l e of the s i t e , e x c ept t h a t t h e c l a y s i l t d e p o s i t below 15m i s i n t e r p r e t e d as c l a y . The DMT r e s u l t s of soun d i n g MRD-1 a r e p r e s e n t e d i n f i g u r e s 4.3 & 4.4. The r e s u l t s of soundings MRD-2 & MRD-3 a r e i n c l u d e d i n Appendix I I . The t h r e e soundings show a v e r y h i g h r e p e a t a b i l i t y of the DMT r e s u l t s . T h i s c h a p t e r w i l l d i s c u s s o n l y t h e r e s u l t s o b t a i n e d i n the sand d e p o s i t s from 2 - 13m d e p t h . T e s t r e s u l t s o b t a i n e d i n t he c l a y e y s i l t d e p o s i t from 15 - 30m w i l l be p r e s e n t e d i n C h apter 5. 4.3 S o i l Deformation C h a r a c t e r i s t i c s W i t h the use of the r e s e a r c h d i l a t o m e t e r , d e f o r m a t i o n c u r v e s ( s t r e s s e s Vs membrane d e f l e c t i o n ) f o r d i l a t o m e t e r t e s t s i n the sand a t the McDonald's Farm s i t e were o b t a i n e d . T y p i c a l r e s u l t s from t h e r e s e a r c h d i l a t o m e t e r t e s t s i n dense and l o o s e sands a t McDonald's Farm a r e i l l u s t r a t e d i n f i g u r e s 4.5 & 4.6 r e s p e c t i v e l y . F o r c o m p a r i s o n , f i g u r e s 4.7 & 4.8 (Hughes & R o b e r t s o n , 1984) show t y p i c a l r e s u l t s of s e l f - b o r i n g and f u l l d i s p l a c e m e n t p r e s s u r e m e t e r t e s t s i n the sands a t the same s i t e . The DMT c u r v e s a r e v e r y s i m i l a r i n shape t o the p r e s s u r e e x p a n s i o n c u r v e s o b t a i n e d from s e l f - b o r i n g and p u s h - i n ( f u l l d i s p l a c e m e n t ) p r e s s u r e m e t e r p r o b e s . 39 U.B.C. INSITU TESTING. LOCATION: HCDONALD'S FARH TEST No. HRD-1 TEST DATE: HAR 21 84 INTERPRETED GEOTECHNICAL PARAMETERS. o in 0"2 0'9 l l 1 (W) HlcGCl c o r o > t o ' s r 1 1 1 1 1 1 1 0 2 2 1 i 0 92 I FRICTION ANGLE 5.0 35.0 4 1 1 1 1 1 i i i i i i i i i i i i i L_ ro —I c to u ai OJ UNDR.COHESION (KPa) .0 20.0 40.0 i i i r i i i i i i 1 1 1 1 1 1 1 ! 1 1 1 I f i i 1 I Cu (cohesive) o CO ZD o =i °-ZD co Q O C "J M 5 CE tr i— CO <=> 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 ^ 1 — 1 — ^ 1 1 i 1 > e \ IT rz E CJ ?, o _ in 5 £ £ § 2 = i— £i : 0 l 1 1 l l 1 1 1 1 1 1 I 1 : z : 3 i CD O w v \ 6 t Id |-P0)/(l CE i n -n — >~ \ Ajl cr \ r CJ W I : ° & o i r i 0"2 0"9 1 1 1 1 1 1 1 o 'or a-t>i o tu (W) Hid3Cl i 1 0'22 0 1 '92 F i g u r e 4 . 3 DMT P r o f i l e a t McDonald's Farm - I n t e r p r e t e d G e o t e c h n i c a l Parameters (Sounding MRD-1, DIL.RED) 40 U.B.C. INSITU TESTING. LOCATION:MCDONALD'S FARM INTERMEDIATE GEOTECHNICRL PflRflriETERS TEST No. tlRD-1 TEST DATE: riAR 21 84 CO zd o o LU 0_ t- c LU —' X _! LU CX Q O M CO H CO or LU o ce X i — CO 10 <u t_ +-• CO — ro —t Q_ OJ > Q_ C D o . a o . CM a o ' (U) H i d 3 0 0 2 0 9 0 or O'W 0'8t Q'ZZ 0"9Z —I 1 1 1 I I I Q o o ' i i i i i 1 r m o ' I I I I I I 1 1 1 1 1 1 T -0'2 0'9 O'OC O'frl 0'8t Q'ZZ 0'92 (W) H ld3Q F i g u r e 4.4 DMT P r o f i l e a t McDonald's Farm - I n t e r m e d i a t e G e o t e c h n i c a l Parameters (Sounding MRD-1, DIL.RED) 41 Figure 4.5 Typical Result of Research DMT at McDonald's Farm Site - Dense Sand 42 F i g u r e 4 . 6 T y p i c a l R e s u l t o f R e s e a r c h DMT a t McDonald's Farm - Loose Sand 43 I l O O p DEPTH = 7 m IOOO -900 -800 -01 I I J i i l I I I ! 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 A R R a d i o l D i s p l a c e m e n t ( % ) F i g u r e 4.7 T y p i c a l R e s u l t of S e l f - b o r e d P r e s s u r e m e t e r T e s t a t McDonald's Farm S i t e (Adapted from Hughes and R o b e r t s o n , 1984) 44 5.5 m 1.0 2.0 3.0 4.0 5.0 6.0 R o d i o l D i s p l o c e m e n t ( % ) 7.0 8.0 AR 9.0 10.0 F i g u r e 4 . 8 T y p i c a l R e s u l t of F u l l - d i s p l a c e m e n t P r e s s u r e m e t e r T e s t a t McDonald's Farm S i t e (Adapted from Hughes and R o b e r t s o n , 1984) 45 For t h e r e s e a r c h d i l a t o m e t e r t e s t i n g i n sand a t McDonald's Farm, t h e r e was almost no e x c e s s pore p r e s s u r e s measured d u r i n g b o t h the p e n e t r a t i o n and e x p a n s i o n phases of the t e s t . The measured pore p r e s s u r e s were a p p r o x i m a t e l y e q u a l t o the e q u i l i b r i u m pore p r e s s u r e s . The shapes of the e f f e c t i v e s t r e s s c u r v e and the t o t a l s t r e s s c u r v e a r e i d e n t i c a l and the v a l u e s of the t o t a l s t r e s s c u r v e a r e l a r g e r by t h e amount a p p r o x i m a t e l y e q u a l t o t h e i n - s i t u water p r e s s u r e , u 0 ( f i g u r e s 4.5 & 4.6). The measured DMT l i f t o f f p r e s s u r e s , P 0 , a r e h i g h e r than t h e e x p e c t e d i n - s i t u t o t a l h o r i z o n t a l s t r e s s e s , (where = K 0 • t7^+u0 assuming K o - 0 . 5 ) . U n l o a d e d - r e l o a d c y c l e s were performed d u r i n g the e x p a n s i o n phase of some t e s t s . The s l o p e s of the u n l o a d - r e l o a d c y c l e s were c o n s i d e r a b l y s t e e p e r than the s l o p e s of the e x p a n s i o n phase from P 0 t o P,. A f t e r the e x p a n s i o n , t h e membrane was d e f l a t e d and r e t u r n e d t o i t s c l o s e d p o s i t i o n a t a p r e s s u r e a p p r o x i m a t e l y e q u a l t o t h e i n - s i t u pore p r e s s u r e , u 0 . A l l t h e s e d e f o r m a t i o n c h a r a c t e r i s t i c s a r e o b s e r v e d i n p r e s s u r e m e t e r t e s t i n g s i n sand. The t o t a l and e f f e c t i v e p r e s s u r e measurements a t l i f t o f f , 1mm d e f l e c t i o n and a t c l o s u r e of the e x p a n s i o n c u r v e s a r e summarized and p r e s e n t e d i n Appendix I I I . The s l o p e of t h e s t r a i g h t e x p a n s i o n phase a t any s t r e s s l e v e l from P 0 t o P^ i s much l e s s than t h e s l o p e of t h e 46 u n l o a d and r e l o a d c y c l e s . T h i s o b s e r v a t i o n i n d i c a t e s t h a t the s o i l d u r i n g the d i l a t o m e t e r e x p a n s i o n t e s t i s no l o n g e r e l a s t i c a f t e r the p e n e t r a t i o n . As d i s c u s s e d i n s e c t i o n 3.1, the s o i l i n c o n t a c t w i t h the membrane has e x p e r i e n c e d s t r e s s r e l i e f due t o the p e n e t r a t i o n p r o c e s s . I t i s t h e r e f o r e e x p e c t e d t h a t the s o i l would deform i n an e l a s t i c manner, a t l e a s t t o a c e r t a i n e x t e n t , when the s o i l i s r e l o a d e d d u r i n g the e x p a n s i o n . However, the d a t a p r e s e n t e d i n f i g u r e s 4.5 and 4.6 c l e a r l y shows t h a t the e l a s t i c response of the s o i l i s exceeded a f t e r a v e r y s m a l l e x p a n s i o n ( l e s s than 1 m i c r o n m e t e r ) . For the m a j o r i t y of the DMT e x p a n s i o n , the s o i l i s deformed p l a s t i c a l l y ; e x c e p t d u r i n g the s m a l l u n l o a d - r e l o a d c y c l e s , where the s o i l responds e l a s t i c a l l y . 4.4 Modulus The d i l a t o m e t e r modulus, E Q i s d e f i n e d a s : E D = 38.2 (P, - P 0 ) = E / ( 1 - / i 2 ) (4.1) When d e r i v i n g the above e x p r e s s i o n , M a r c h e t t i (1975 & 1980) assumed t h a t t h e s o i l i s e l a s t i c ; t h e membrane i s r i g i d so t h a t the s o i l i s u n i f o r m l y l o a d e d by the membrane w i t h o u t any s o i l p r e s s u r e r e d i s t r i b u t i o n ; and no d e f o r m a t i o n o c c u r s e x t e r n a l t o the l o a d e d a r e a d u r i n g the e x p a n s i o n . Though M a r c h e t t i used E D o n l y as a c o r r e l a t i o n p a r ameter, i t seems t o many u s e r s t h a t the E D e x p r e s s i o n can g i v e a d i r e c t e s t i m a t e of a s o i l ' s d e f o r m a t i o n modulus, E, p r o v i d e d t h a t 47 M a r c h e t t i ' s assumptions a r e v a l i d t o a c e r t a i n e x t e n t and a r e a s o n a b l e v a l u e of the P o i s s o n ' s r a t i o , M, can be assumed. E q u a t i o n 4.1 can be r e w r i t t e n a s : E = ( 1 - M 2 ) E d (4.2) For sands, P o i s s o n r a t i o u s u a l l y v a r i e s from 0.2 t o 0.4. As a r e s u l t , the c a l c u l a t e d E ranges from 0.84 E D t o 0.96 Eg. From the p r e v i o u s d i s c u s s i o n i n S e c t i o n 4.3, i t appears the assumption t h a t the s o i l i s e l a s t i c d u r i n g the DMT e x p a n s i o n i s not v a l i d . However, Campanella & R o b e r t s o n (1983) o b s e r v e d t h a t the d i l a t o m e t e r m o d u l i Eg o b t a i n e d from t e s t s i n sands was c l o s e t o the Young's m o d u l i a t a p p r o x i m a t e l y 25% of the f a i l u r e l o a d , E 2 5 . J a m i o l k o w s k i e t a l (1985) a l s o r e p o r t e d s i m i l a r f i n d i n g s i n n o r m a l l y c o n s o l i d a t e d sands from r e c e n t c a l i b r a t i o n chamber t e s t by ENEL, I t a l y . The moduli o b t a i n e d from Eg appears t o p r o v i d e r e a s o n a b l e moduli f o r d e s i g n i n sands f o r t h e f o l l o w i n g r e a s o n s : 1. The s t r e s s l e v e l d u r i n g the DMT e x p a n s i o n i s c o n s i d e r a b l y h i g h e r than the i n - s i t u s t r e s s e s , t h e r e f o r e the s o i l i s somewhat s t i f f e r , and 2. t h e s t r a i n l e v e l d u r i n g the 1mm e x p a n s i o n from P 0 t o P, i s l a r g e and t h e s o i l deforms p l a s t i c a l l y , t h e r e f o r e the s o i l i s somewhat s o f t e r . These two f a c t o r s , when combined, appear t o produce 48 r e a s o n a b l e Young's m o d u l i f o r most d e s i g n purposes i n sand. The shear modulus, G, i s d e f i n e d a s : G = 0.5*E/(1+ju) ( 4 . 3 ) S u b s t i t u t i n g e q u a t i o n 4,2 i n t o e q u a t i o n 4.3, the shear modulus can be d e f i n e d a s : G = 0 . 5 * E D * ( 1 - M 2 ) / ( 1 + M ) ( 4 . 4 ) F i g u r e 4.9 p r e s e n t s the c a l c u l a t e d shear modulus p r o f i l e s f o r t h e sand a t McDonald's Farm assuming M= 0.2 and y= 0.3 and u s i n g e q u a t i o n 4.4 (G ranges from 0 . 3 5 E D t o 0 . 4 E D ) . The s o i l d e f o r m a t i o n c u r v e s ( s t r e s s e s Vs membrane d e f l e c t i o n ) f o r t h e d i l a t o m e t e r t e s t s a r e s i m i l a r i n b o t h c h a r a c t e r i s t i c and shape t o t h e e x p a n s i o n c u r v e s o b t a i n e d from the p r e s s u r e m e t e r t e s t s . Hughes (1982) and Wroth(1982) showed t h a t the " e l a s t i c " shear modulus of a s o i l can be measured from an u n l o a d - r e l o a d c y c l e of a p r e s s u r e m e t e r e x p a n s i o n c u r v e . I f the s o i l i s p e r f e c t l y e l a s t i c i n u n l o a d i n g , then the u n l o a d i n g - r e l o a d i n g c y c l e w i l l have a s l o p e e q u a l t o 2G. The shear modulus of sand d e p o s i t s o b t a i n e d i n t h i s manner appea r s t o be i n s e n s i t i v e t o t h e method i n s t a l l a t i o n of the p r e s s u r e m e t e r probe. (Hughes and R o b e r t s o n , 1 9 8 4 ) . I t would appear t h a t the shear modulus of sand a t t h e McDonald's Farm s i t e can a l s o be e s t i m a t e d from t h e u n l o a d i n g - r e l o a d i n g c y c l e s of the p r e s s u r e e x p a n s i o n 49 G CMPa) F i g u r e 4.9 Comparison of Shear M o d u l i from Erj and from U n l o a d - R e l o a d C y c l e of D i l a t o m e t e r E x p a n s i o n Curve (Sounding MRD-1) 50 c u r v e s o b t a i n e d from the r e s e a r c h d i l a t o m e t e r . R e s u l t s of p r e s s u r e m e t e r t e s t s a r e a n a l y s e d u s i n g t h e t h e o r y of c y l i n d e r i c a l c a v i t y e x p a n s i o n . The e x p a n s i o n of a p r e s s u r e m e t e r probe s i m u l a t e s a p l a i n s t r a i n c y l i n d r i c a l c a v i t y e x p a n s i o n . The k i n d of e x p a n s i o n caused by t h e d i l a t o m e t e r membrane i s d i f f i c u l t t o e x a c t l y model. However, the DMT e x p a n s i o n c o u l d be c o n s i d e r e d t o be somewhat between a f l a t c a v i t y e x p a n s i o n and a s p h e r i c a l c a v i t y e x p a n s i o n . I t i s t h e r e f o r e assumed t h a t the shear modulus of a s o i l can a l s o be e s t i m a t e d from the g r a d i e n t of the DMT u n l o a d -r e l o a d c y c l e s o b t a i n e d from the r e s e a r c h d i l a t o m e t e r . W i t h o u t knowing t h e e x a c t k i n d of e x p a n s i o n t h a t t h e d i l a t o m e t e r membrane s i m u l a t e s , i t i s i m p o s s i b l e t o c a l c u l a t e t h e c a v i t y s t r a i n l e v e l a t the 1mm d e f l e c t i o n i n t h e DMT. However, t o s i m p l i f y t h i s problem, a c a v i t y s t r a i n of 14%, w h i c h i s e q u a l t o 1mm d e f l e c t i o n d i v i d e d by h a l f of the b l a d e t h i c k n e s s (7mm), i s assumed. The u n l o a d - r e l o a d shear m o d u l i , G u r , of t h e sand a t the McDonald's Farm s i t e , c a l c u l a t e d from the s l o p e s of the DMT u n l o a d - r e l o a d c y c l e s a r e a l s o p r e s e n t e d i n f i g u r e 4.9. The shear modulus i s assumed t o e q u a l o n e - h a l f the s l o p e of the u n l o a d - r e l o a d c y c l e s . As shown i n f i g u r e 4.9, t h e e l a s t i c shear m o d u l i c a l c u l a t e d from the u n l o a d - r e l o a d c y c l e s a r e a l m o s t t h e 51 same as the shear m o d u l i c a l c u l a t e d from the d i l a t o m e t e r modulus, Eg. The p r o f i l e of dynamic shear moduli of sand (G ) a t c * max McDonald's Farm has been d e t e r m i n e d u s i n g a s e i s m i c cone ( R i c e , 1984). F i g u r e 4.10 shows t h a t the shear m o d u l i , G, d e t e r m i n e d from u n l o a d - r e l o a d c y c l e s and from E^ a r e about o n e - f i f t h of the dynamic shear m o d u l i , G„ . S i m i l a r r e s u l t s •* max were found f o r shear m o d u l i o b t a i n e d from s e l f - b o r e d and f u l l - d i s p l a c e m e n t p r e s s u r e m e t e r r e s u l t s , c o r r e c t e d f o r s t r e s s l e v e l (Hughes and R o b e r t s o n , 1984). When examining t h e d i l a t o m e t e r e x p a n s i o n c u r v e s , t h e r e e x i s t e d a c o n s i s t a n t r e l a t i o n s h i p between the s l o p e of the u n l o a d - r e l o a d c y c l e and the s l o p e of the s t r a i g h t e x p a n s i o n phase ( f i g u r e 4.11). I t i s e x p e c t e d t h a t e l a s t i c s h ear m o d u l i of sand can be e s t i m a t e d u s i n g t h i s r e l a t i o n s h i p when d i l a t o m e t e r t e s t s a r e performed u s i n g M a r c h e t t i ' s s t a n d a r d i n s t r u m e n t . Moreover, w i t h the shear m o d u l i o b t a i n e d from t h i s r e l a t i o n s h i p , the shear m o d u l i c a l c u l a t e d from the E D v a l u e s can be compared. F i g u r e 4.11 shows t h a t the s l o p e of the u n l o a d - r e l o a d c y c l e i s g e n e r a l l y about 3.6 ti m e s l a r g e r than t h e s l o p e of the e x p a n s i o n from P 0 t o P,. S i m i l a r r e s u l t s have been o b s e r v e d when comparing the s l o p e of u n l o a d - r e l o a d c y c l e s and e x p a n s i o n c u r v e s f o r p r e - b o r e d p r e s s u r e m e t e r t e s t i n 52 C CMPo) LU Q 5-10-15' 20 • 40 _ L _ 60 80 i _ 100 G f r o m u n l o a d - r e l o a d cycle A Sound ing MRD-1 O Sounding M R D-2 • Sound ing M R D - 3 G m a x f r o m s h e a r w a v e ve loc i t y ( a f t e r R i c e , 1984) F i g u r e 4.10 Comparison of Shear M o d u l i from Unload -R e l o a d C y c l e of D i l a t o m e t e r E x p a n s i o n Curve and from Downhole S e i s m i c Shear Wave V e l o c i t y F i g u r e 4.11 R e l a t i o n s h i p between S l o p e of U n l o a d R e l o a d Loop and S l o p e of P, - P 0 54 sand ( B r a u i d , 1980). 4.5 F r i c t i o n A n g l e The p r o f i l e of f r i c t i o n a n g l e of t h e sand a t McDonald's Farm has been d e t e r m i n e d u s i n g r e s u l t s o b t a i n e d from cone p e n e t r a t i o n t e s t , s e l f - b o r i n g p r e s s u r e m e t e r t e s t s and l a b o r a t o r y t r i a x i a l t e s t s ( R o b e r t s o n , 1982). These t e s t s suggest an average 0' v a l u e of about 40° ( f i g u r e 4.12 ). F i g u r e 4.13 p r e s e n t s the t h r e e d i f f e r e n t f r i c t i o n a n g l e p r o f i l e s o b t a i n e d by the d i l a t o m e t e r t e s t u s i n g t h e f o l l o w i n g : 1. M a r c h e t t i ' s (1981) e m p i r i c a l c o r r e l a t i o n , 2. Schmertmann's (1982) method w i t h p e n e t r a t i o n f o r c e measured a t t h e ground s u r f a c e , and 3. Schmertmann's (1982) method w i t h p e n e t r a t i o n f o r c e measured d i r e c t l y b e h i n d the R e s e a r c h D i l a t o m e t e r . The shape of the f r i c t i o n a n g l e p r o f i l e s d e t e r m i n e d by the t h r e e methods a r e v e r y s i m i l a r . The average f r i c t i o n a n g l e o b t a i n e d u s i n g M a r c h e t t i ' s (1981) c o r r e l a t i o n i s about 32°. T h i s v a l u e i s s i g n i f i c a n t l y l o w e r than v a l u e s d e t e r m i n e d from the o t h e r t e s t s . T h i s a g r e e s w i t h o t h e r o b s e r v e r s t h a t M a r c h e t t i ' s (1981) c o r r e l a t i o n u s u a l l y g i v e s v a l u e s of t h e f r i c t i o n a n g l e which a r e t o o low. 55 •a, 20 _ i MAXIMUM FRICTION 4* MAX (degrees) AO 5 -IOA SILT «• 50 LEGEND O 5BPMT-I • S3PMT-2 LAb A TZIAY.JAL CFT — PCI ISA F i g u r e 4.12 Comparison o f L a b o r a t o r y T r i a x i a l Peak F r i c t i o n A n g l e w i t h CPT and S e l f - b o r i n P r e s s u r e m e t e r V a l u e s (Adapted from R o b e r t s o n , 1982) f <0og) 15-1 1 1 1 1 I I 1 1 1 1 gure 4.13 F r i c t i o n A n g l e s E s t i m a t e d by DMT r e s u l (Sounding MRD-1) 57 Schmertmann's (1982) method was based on Durngunoglo and M i t c h e l l ' s (1975) b e a r i n g c a p a c i t y t h e o r y . The f r i c t i o n a n g l e v a l u e s of sand can be d i r e c t l y c a l c u l a t e d w i t h the use of the p e n e t r a t i o n f o r c e measured b e h i n d the b l a d e . I f p e n e t r a t i o n f o r c e i s measured a t t h e ground s u r f a c e , i t i s n e c e s s a r y t o f i r s t e v a l u a t e the t h r u s t a t t h e b l a d e . Schmertmann (1982) s u g g e s t e d t h a t the f r i c t i o n f o r c e a c t i n g a l o n g the p e n e t r a t i o n rods b e h i n d the f r i c t i o n r e d u c e r c o u l d be n e g l e c t e d . When p e r f o r m i n g d i l a t o m e t e r t e s t s u s i n g M a r c h e t t i ' s s t a n d a r d i n s t r u m e n t , i t i s g e n e r a l l y o n l y p o s s i b l e t o o b t a i n the t h r u s t a t the ground s u r f a c e . F i g u r e 4.13 shows t h a t the #' v a l u e s computed u s i n g the p u s h i n g f o r c e measured a t the ground s u r f a c e a r e o n l y s l i g h t l y h i g h e r than the v a l u e s c a l c u l a t e d u s i n g t h e f o r c e measured b e h i n d the b l a d e ; a t some depths the v a l u e s a r e alm o s t i d e n t i c a l . T h i s shows t h a t t h e assumption made by Schmertmann (1982) t h a t f r i c t i o n a l o n g the p e n e t r a t i o n rods b e h i n d the f r i c t i o n r e d u c e r c o u l d be n e g l e c t e d i s v e r y c l o s e t o r e a l i t y a t the McDonald's Farm s i t e . However, t h i s may not always be v a l i d , e s p e c i a l l y i f the sand l a y e r i s o v e r l a i n by a t h i c k c l a y d e p o s i t . I t i s worth m e n t i o n i n g t h a t the v a l u e s of f r i c t i o n a n g l e d e t e r m i n e d u s i n g Schmertmann's (1982) method a r e f r i c t i o n a n g l e d e r i v e d under c o n d i t i o n of p a i n s t r a i n , <j> '. 3 c ps 0pg a r e u s u a l l y 1 0 - 4° h i g h e r than v a l u e s d e r i v e d under c o n d i t i o n of a x i a l symmetry, <f> ' (Lee, 1970). However as e x p l a i n e d by Schmertmann (1982), f r i c t i o n a n g l e s d e t e r m i n e d u s i n g wedge p e n e t r a t i o n t h e o r i e s a r e u s u a l l y c o n s e r v a t i v e l y on the low s i d e . F i g u r e s 4.12 and 4.13 show t h a t the v a l u e s of A ' d e t e r m i n e d u s i n g Schmertmann's (1982) DMT method, ps 3 have an average of 40°, and a r e i n an e x c e l l e n t agreement w i t h the v a l u e s of 0' o b t a i n e d from cone p e n e t r a t i o n t e s t , p r e s s u r e m e t e r t e s t and l a b o r a t o r y t r i a x i a l t e s t s . The p r e s s u r e e x p a n s i o n c u r v e s i n sand a r e e x t r e m e l y s i m i l a r f o r both t h e d i l a t o m e t e r t e s t and t h e p r e s s u r e m e t e r t e s t . In S e c t i o n 4.4, i t has a l r e a d y been i l l u s t r a t e d t h a t the e l a s t i c shear modulus of sand can be e s t i m a t e d from an u n l o a d - r e l o a d c y c l e d u r i n g a d i l a t o m e t e r e x p a n s i o n t e s t s i m i l a r t o t h a t from a p r e s s u r e m e t e r t e s t . I n t h i s s e c t i o n , i t i s a t t e m p t e d t o d e t e r m i n e the tf>' v a l u e s of sand a t t h e McDonald's Farm s i t e from the e x p a n s i o n c u r v e s o b t a i n e d from the R e s e a r c h D i l a t o m e t e r u s i n g a method s i m i l a r t o t h a t p r o posed by Hughes e t a l (1977) f o r s e l f - b o r i n g p r e s s u r e m e t e r t e s t s . The f r i c t i o n a n g l e a t c o n s t a n t volume, 0 C V , f o r the sand d e p o s i t s a t McDonald's Farm was assumed t o be 36° ( R o b e r t s o n , 1982). W i t h t h e use of t h i s tf>cv v a l u e , the f r i c t i o n a n g l e s e v a l u a t e d from the e x p a n s i o n c u r v e s of the d i l a t o m e t e r t e s t a r e o b t a i n e d and p r e s e n t e d i n f i g u r e 4.14. The method by Hughes e t a l (1977) uses t h e s l o p e (s) of a l o g e x p a n s i o n p r e s s u r e v e r s u s l o g c a v i t y s t r a i n p l o t . A s i m i l a r a s s u m p t i o n has been made f o r t h e d i l a t o m e t e r e x p a n s i o n c u r v e s . F i g u r e 4.14 Comparison of F r i c t i o n A n g l e from D i l a t o m e t e r E x p a n s i o n C u r v e and from DMT r e s u l t s 60 The f r i c t i o n a n g l e s d e t e r m i n e d from the e x p a n s i o n c u r v e s of the d i l a t o m e t e r t e s t s were much h i g h e r than the c o r r e s p o n d i n g v a l u e s d i r e c t l y c a l c u l a t e d u s i n g Schmertmann's (1982) approach. The average 0 ' v a l u e p r e d i c t e d u s i n g Hughes et a l ' s approach was about 55°. Hughes and R o b e r t s o n (1984) o b t a i n e d s i m i l a r u n a c c e p t a b l y h i g h <j>' v a l u e s when u s i n g t h e same method f o r a n a l y s e s of f u l l - d i s p l a c e m e n t p r e s s u r e m e t e r r e s u l t s . T h i s once more g i v e s the i n d i c a t i o n t h a t a d i l a t o m e t e r t e s t i n sand i s i n many ways s i m i l a r t o a f u l l - d i s p l a c e m e n t p r e s s u r e m e t e r t e s t . When exam i n i n g the p r o f i l e s of I D , and E D o b t a i n e d from d i l a t o m e t e r s o u n d i n g s , the shape of the E Q p r o f i l e s i s v e r y c o m p a r i a b l e t o the cone b e a r i n g p r o f i l e s . The f r i c t i o n a n g l e of sands can be e s t i m a t e d from the b e a r i n g p r o f i l e s of cone p e n e t r a t i o n t e s t s . F i g u r e 4,15 ( R o b e r t s o n & Campanella, 1983) shows t h a t t h e v a l u e s of 0' a r e c l o s e l y r e l a t e d t o the cone b e a r i n g s . A s i m i l a r r e l a t i o n s h i p may t h u s be e x p e c t e d t o e x i s t between the f r i c t i o n a n g l e and the d i l a t o m e t e r m o d u l i . F i g u r e 4.16 aims t o i n v e s t i g a t e t h i s p o s s i b i l i t y . The c o r r e l a t i o n of f r i c t i o n a n g l e d e v e l o p e d by M a r c h e t t i (1981) made use of t h e d i l a t o m e t e r m o d u l i . A c c o r d i n g t o the p r e c e e d i n g d i s c u s s i o n , M a r c h e t t i ' s c o r r e l a t i o n s h o u l d g i v e a r e a s o n a b l y good e s t i m a t i o n of 0 ' v a l u e s i n sands. However, the c o r r e l a t i o n has been found t o be u n s u c c e s s f u l perhaps because i t was d e r i v e d based on cr Z m UJ m 2 U < 0. < a o z re < LU CO 1000 8 0 0 6 0 0 4 0 0 2 0 0 100 80 60 40 20 10 8 6 4 LEGEND « • CHAPMAN S D0NALDU98I) + BALOI el 01.(1981) HOLDEN(1976) V 1 VEISMANIS (I974) O PARKIN et al. (1980) A VILLET 8 MITCHELL (1981) / Durgunogluft Mitchell (1975) (K 0= 1.0) • (K0= 1-sinoS) / Proposed correlation Janbu a Senneset (1974) d> s 30°32oW ,36°38 < ,40o 42° 44° 46° 48° i i i r 0.2 0.4 0.6 0.8 TANGENT <£' 1.2 F i g u r e 4.15 R e l a t i o n s h i p between B e a r i n g C a p a c i t y Number and F r i c t i o n A n g l e from L a r g e C a l i b r a t i o n Chamber T e s t s (Adapted from R o b e r t s o n and C a m p a n e l l a , 1983) 62 z < 1.2-1-.8 -.6 -Schmertmann Marchett i (1982) (1981) M R D - 1 M R D - 2 M R D - 3 2. 1 2.3 2.5 LOG CELVcr' ) 2.7 2.9 F i g u r e 4.16 R e l a t i o n s h i p between F r i c t i o n A n gle and D i l a t o m e t e r Modulus 63 l i m i t e d t e s t d a t a from o n l y s i x s i t e s . I t i s b e l i e v e d t h a t M a r c h e t t i ' s (1981) c o r r e l a t i o n of f r i c t i o n a n g l e c o u l d be improved by i n c l u d i n g more r e c e n t d a t a . I f M a r c h e t t i ' s (1981) c o r r e l a t i o n of f r i c t i o n a n g l e f o r sand c o u l d be improved, the t e s t c o u l d resume i t s o r i g i n a l s i m p l i c i t y w i t h o u t the need of m o n i t o r i n g p e n e t r a t i o n f o r c e s . A l s o , i t can p r o v i d e u s e r s an a l t e r n a t i v e of e s t i m a t i n g t h e f r i c t i o n a n g l e or as a comparison t o Schmertmann's Method. 4.6 OCR and K n F i g u r e 4.17 p r e s e n t s the K 0 vaues of sand a t McDonald's Farm, d e t e r m i n e d u s i n g b o t h M a r c h e t t i ' s (1980) c o r r e l a t i o n and Schmertmann's (1983) method. F i g u r e 4.18 p r e s e n t s the OCR d e t e r m i n e d u s i n g b o t h M a r c h e t t i ' s (1980) c o r r e l a t i o n and Mayne and Kulhawy's f o r m u l a t h a t was m o d i f i e d by Schmertmann (1983). The g e o l o g y of the F r a s e r D e l t a s u g g e s t s t h a t the sand d e p o s i t a t the s i t e i s n o r m a l l y c o n s o l i d a t e d , which would i n d i c a t e a K 0 v a l u e r a n g i n g from 0.4 t o 0.5. Because of the t u r b u l e n t environment i n wh i c h the sand was l a i d down and p a s t s e i s m i c a c t i v i t i e s , a d d i t i o n a l h o r i z o n t a l s t r e s s may have been l o c k e d i n t o the sand. T h i s would suggest a p o s s i b l e K 0 v a l u e v a l u e of about 0.6 t o 0.7 ( R o b e r t s o n , 1982). 64 F i g u r e 4.17 I n - s i t u E a r t h P r e s s u r e C o e f f i c i e n t Vs Depth a t McDonald's Farm (Sounding MRD-1) OCR gure 4.18 O v e r c o n s o l i d a t i o n R a t i o Vs Depth a t McDonald's Farm (Sounding MRD-1) The K 0 and OCR v a l u e s d e t e r m i n e d u s i n g M a r c h e t t i ' s (1980) c o r r e l a t i o n s were h i g h e r than the a n t i c i p a t e d v a l u e s d e s c r i b e d above. I t has been found t h a t M a r c h e t t i ' s c o r r e l a t i o n s g e n e r a l l y o v e r p r e d i c t e d the K 0 and OCR v a l u e s ( B u l l o c k , 1983). I t seems t h a t the OCR and K 0 v a l u e s d e t e r m i n e d u s i n g the approaches suggested by Schmertmann (1983) p r o v i d e a much b e t t e r d e s c r i p t i o n of the s i t e . 67 Ch a p t e r 5 R e s e a r c h D i l a t o m e t e r T e s t i n g i n C l a y e y D e p o s i t s 5.1 Scope A f i e l d programme of p e r f o r m i n g r e s e a r c h d i l a t o m e t e r t e s t s i n c l a y e y d e p o s i t s was co n d u c t e d a t t h e f o l l o w i n g s i t e s i n the Lower M a i n l a n d of B r i t i s h C o l u m b i a : 1) Sea I s l a n d - McDonald's Farm 2) L a n g l e y - B.C. Hydro R a i l w a y C r o s s i n g S i t e 3) L a n g l e y - 232nd S t . I n t e r c h a n g e , lower s i t e 4) L a n g l e y - 232nd S t . I n t e r c h a n g e , upper s i t e The g e n e r a l l o c a t i o n s of t h e s i t e s a r e shown i n f i g u r e 5 . 1 . L i k e the McDonald's Farm s i t e , the t h r e e s i t e s i n L a n g l e y a r e a l s o r e s e a r c h s i t e s f o r t h e i n - s i t u t e s t i n g group a t UBC. D e t a i l e d i n v e s t i g a t i o n of the L a n g l e y s i t e s has been made u s i n g v a r i o u s i n - s i t u t e s t i n g t e c h n i q u e s . The t e s t s used f o r comparison i n t h i s s t u d y a r e : 1) f i e l d vane shear t e s t (FVST), 2) cone p e n e t r a t i o n (CPT), 3) downhole s e i s m i c t e s t , 4) s e l f - b o r i n g p r e s s u r e m e t e r t e s t (SBPMT), and 5) f u l l d i s p l a c e m e n t p r e s s u r e m e t e r t e s t (FDPMT). 69 5.2 Site Geology and Description 5.2.1 McDonald's Farm (As p r e s e n t e d i n S e c t i o n 4.2) 5.2.2 B.C. Hydro Railway Crossing Site The s i t e i s l o c a t e d a p p r o x i m a t e l y 100m west of the B.C. Hydro r a i l w a y o v e r p a s s near the 232nd S t . e x i t of the Trans Canada Highway i n L a n g l e y . The s i t e i s s i t u a t e d a t the base of an a p p r o x i m a t e l y 5m c u t a d j a c e n t t o t h e s h o u l d e r of the west-bound t r a f f i c . G e o l o g i c a l l y the s i t e i s l o c a t e d a t t h e e a s t e r n e x t e n t of the C a p i l a n o sediments which c o n s i s t of r a i s e d d e l t a i c , marine and g l a c i o m a r i n e sediments and marine shore d e p o s i t s (Armstrong, 1978). A t y p i c a l CPT p r o f i l e i s p r e s e n t e d i n f i g u r e 5.2 which shows t h a t the s i t e s t r a t i g r a h p y c o n s i s t s o f : 0 - 2.5m mixed g r a v e l and s a n d f i l l 2.5 - 10m s i l t y c l a y , o v e r c o n s o l i d a t e d w i t h i n t e r b e d e d s i l t y sand l a y e r s 10 - 30m s i l t y c l a y , s l i g h t l y o v e r c o n s o l i d a t e d t o n o r m a l l y c o n s o l i d a t e d w i t h some t h i n s i l t y sand l a y e r s . F i g u r e s 5.3 and 5.4 p r e s e n t the DMT r e s u l t s which a l s o c l e a r l y i d e n t i f i e s t h e c l a y d e p o s i t s . F i g u r e 5.2 T y p i c a l CPT P r o f i l e a t L a n g l e y R a i l w a y S i t e o U.B.C. INSITU TESTING. L O C R T I O N : L f l N G L E Y - R R I L U R Y INTERPRETED GEOTECHNICAL PARAMETERS. TEST No. LRD-2 TEST DATE: OCT 7 83 o M CO UJ —. X ro o Q-o ^ of Q CO Q O U J ™ CE CH CO O CJ CE x o SL'C 9 (W) H l d 3 f J S 2 S SL'8 S2'2t SL'SI SZ'6I SL'ZZ J I I I I I I I I i i i i r sc't sz's s i . 8 S 2 2 i s r s r (W) H l d 3 0 i 1 r S2"6t Sc'22 F i g u r e 5.3 DMT P r o f i l e a t Langley R a i l w a y S i t e -I n t e r p r e t e d G e o t e c h n i c a l Parameters U.B.C. INSITU TESTING. L O C A T I O N : L A N G L E Y - R A I L U A Y TEST No. LRD-2 TEST DATE; OCT 7 8 3 INTERMEDIATE GEOTECHNICAL PARAMETERS Si.' 1 (W) H l d 3 0 t S2'S Sc'8 S2'2l S C ' S I S2'6t Sc. i i 1 1 1 1 1 1 1 i i zz 1 C O ° . ZD ( D _ _1 ZD a o C o az • *~ LU Q_ h- C LU —' Q o _ l 1—1 Q o 1 1 1 1 1 1 1 1 1 1 1 1 1 o Cu l_ -ojb 1 I 1 H a HORIZONTAL TRESS INDEX 4.0 8.0 1 1 1 1 1 1 1 1 1 1 1 1 1 V S? o C O \ a 1 1 1 1 1 1 1 1 1 1 1 1 1 o o PO,PI,Vertical Stress (HPa) .0 0.25 0.5 0.15 1 c Q I I I I I 1 1 1 1 I 1 1 1 1 — — — * o SL' i i i i i i i i i i i t S2'S Sc'8 S2'2I Sc'St S2'6! 9L ( M H l d 3 0 1 '22 F i g u r e 5.4 DMT P r o f i l e a t Langley R a i l w a y S i t e I n t e r m e d i a t e G e o t e c h n i c a l Parameters 5.2.3 232nd S t . I n t e r c h a n g e - Lower and Upper S i t e s These two s i t e s a r e l o c a t e d a t the i n t e r c h a n g e of the west-bound Trans Canada Highway and the 232nd S t . i n L a n g l e y , which i s a p p r o x i m a t e l y 1 km e a s t of t h e B.C. Hydro r a i l w a y c r o s s i n g s i t e . The l ower s i t e i s l o c a t e d near the e x i t t o the highway. The upper s i t e i s l o c a t e d 4.8m above the lower s i t e and i s s i t u a t e d on a compacted c l a y f i l l t h a t forms approach from th e 232nd S t . o v e r p a s s . These two s i t e s l i e a t t h e western e x t e n t of the F o r t L a n g l e y f o r m a t i o n which c o n s i s t s of i n t e r b e d e d m a r i n e , g l a c i o m a r i n e and g l a c i a l s e d i m e n t s . T y p i c a l CPT p r o f i l e s f o r t h e lower and upper s i t e s a r e p r e s e n t e d i n f i g u r e 5.5 and f i g u r e 5.6, r e s p e c t i v e l y . The s t r a t i g r a p h y of t h e lower s i t e i s v e r y s i m i l a r t o the r a i l w a y c r o s s i n g s i t e and c o n s i s t s o f : 0 - 2m o v e r c o n s o l i d a t e d o r g a n i c s i l t y c l a y 2 -10m o v e r c o n s o l i d a t e d s i l t y c l a y 10 - 20m s l i g h t l y o v e r c o n s o l i d a t e d t o n o r m a l l y c o n s o l i d a t e d s i l t y c l a y w i t h o c c a s i o n a l s i l t y sand l e n s e s . The s t r a t i g r a p h y of the upper s i t e c o n s i s t s o f : 0 -4.5m compacted c l a y f i l l 4.5- 8m o v e r c o n s o l i d a t e d s i l t y c l a y 8 -15m n o r m a l l y c o n s o l i d a t e d s i l t y c l a y w i t h i n t e r b e d e d s i l t y sand l e n s e s . 74 F i g u r e 5.5 T y p i c a l CPT P r o f i l e a t Lower 232nd S t . S i t e PORE PRESSURE SLEEVE FRICTION CONE BEARING FRICTION RATIO DIFFERENTIAL P.P. INTERPRETED U Go. of water) (bar) Ot (bar) Rf (X) RATIO iU/Ot PROFILE Dopth Incroment t .025 m Max Depth i 19. 82 m F i g u r e 5.6 T y p i c a l CPT P r o f i l e a t Upper 232nd S t . S i t e F i g u r e s 5.7 t o 5.10 p r e s e n t the DMT r e s u l t s a t the lower and upper s i t e s . The DMT r e s u l t s i n g e n e r a l c l e a r l y i d e n t i f y the c l a y d e p o s i t s a t the two s i t e s . However, the DMT r e s u l t s i n d i c a t e t h a t the upper approx. 5m of compacted c l a y a t the upper s i t e as sandy s i l t m a t e r i a l and o c c a s i o n a l y c l a s s i f y the v e r y s o f t c l a y a t the lower s i t e as mud ( a l s o , see Appendix I I ) . 5.3 S o i l D e f o r m a t i o n C h a r a c t e r i s t i c s T y p i c a l p r e s s u r e e x p a n s i o n c u r v e s f o r the c l a y d e p o s i t s o b t a i n e d u s i n g the r e s e a r c h d i l a t o m e t e r a r e p r e s e n t e d i n f i g u r e s 5.11 t o 5.13. F i g u r e 5.11 i l l u s t r a t e s t h e r e s u l t i n compacted c l a y w i t h h i g h o v e r c o n s o l i d a t i o n r a t i o a t the upper S i t e i n L a n g l e y . F i g u r e 5.12 and f i g u r e 5.13 i l l u s t r a t e the t e s t r e s u l t s i n n o r m a l l y c o n s o l i d a t e d c l a y e y s i l t a t McDonald's Farm and s l i g h t l y o v e r c o n s o l i d a t e d s i l t y c l a y a t the lower s i t e i n L a n g l e y , r e s p e c t i v e l y . S i m i l a r t o t h e t e s t s i n sands, the r e s u l t s e x h i b i t r emarkable s i m i l a r i t y i n shape t o the p r e s s u r e e x p a n s i o n c u r v e s o b t a i n e d from p u s h - i n p r e s s u r e m e t e r p r o b e s . The t e s t r e s u l t s i n the h i g h l y o v e r c o n s o l i d a t e d compacted c l a y show t h a t n e g a t i v e pore p r e s s u r e s a r e g e n e r a t e d d u r i n g the p e n e t r a t i o n phase of the t e s t s . The magnitude of the n e g a t i v e pore p r e s s u r e drops s l i g h t l y a f t e r t h e e x p a n s i o n - d e f l a t i o n phase. The s l o p e of the s t r a i g h t U.B.C. INSITU TESTING. L O C f l J I O N : L f l N G L E Y - 2 3 2 ST(LOUER) INTERPRETED GEOTECHNICAL PARAMETERS. TEST No. LRD-3 TEST DATE: JUN 20 84 £ i LL. O I—I CO £ro CJ ^ Ctf Q CO O CE cr CO o CJ I—I UJ UJ ^ Si.-1 cn -SZ'S (W) Hld3a SL'8 SZ'ZI SL'SI S2*6I Si. ZZ J L J L "i 1 r i 1 1 r — i 1 1 1 1 r ~ S L T S2'S Sc"8 S2'2I Sc'St (W) Hld3Q S2'6I SLZZ F i g u r e 5.7 DMT P r o f i l e a t Lower 232nd S t . S i t e -I n t e r p r e t e d G e o t e c h n i c a l Parameters U.B.C. INSITU TESTING. L O C A T I O N : L f l N G L E Y - 2 3 2 ST(LOUER) INTERMEDIATE GEOTECHNICAL PARAMETERS CO Q O CC ro LU 0_ 1- C LU — o r— cr _ i M Q X _ l LU cr Q I— 2 2 I—I o M CO M CO CC LU O CC X t -co i n OJ i _ C O _ ro —i CL. 3 5 OJ o Q _ TEST No. LRD-3 TEST DATE; JUN 20 84 , , J W ) H ± d 3 0 S L 1 S2 S SL'8 S2-2I Sc ' S r S 2 - 6 l SL'22 -1 1 1 1 1 I I £>|l' I I l J I I I "i r i i i i i 1 r I I a. a. b — * ~ i ; — r S3 -S i i 1 1 r — - i 1 1 r~ SL-8 S2-2I SL-SF 53*61 SUZZ (W) H l d 3 0 F i g u r e 5.8 DMT P r o f i l e a t Lower 232nd S t . S i t e -Intermedi a t e G e o t e c h n i c a l Parameters 79 U.B.C. INSITU TESTING. LOCATION: L f i N C L E Y - 2 3 2 STOPPER) TEST No. LRD-4 TEST DATE: DAR 2 84 INTERPRETED GEOTECHNICAL PARAMETERS. o in Si. ' t l 1 SS'S Si . ' 1 1 i (W) 8 i H i d 3 a SZ'EI Sc'ST S2'6I Si. ! 1 1 1 1 1 zz i FRICTION ANGLE 5.0 35.0 4 1 1 1 1 1 1 1 i i I 1 1 1 1 1 1 i l_ ra ~-i 3 C ro t _ a i •e-UNDR.COHESION (KPa) .0 20.0 40.0 1 1 1 1 1 1 1 / 1 1 1 1 1 1 i 1 I 1 1 1 1 1 1 1 1 1 1 i i Cu (cohesive) o JSTRAINED MODULUS (HPa) . 0 20 .0 40.0 1 r 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 i i > d \ T o o TERIAL :NDEX in — CO — ; SAND i CO C 3 TERIAL :NDEX o — 6 1 Id cr " m — CO -d w a Q _ i Si . ' I 1 1 S2"S Si . ' I 8 (W) 1 1 1 1 1 1 SZ'Zl SL'SI S2'6t Si. H l d 3 0 i zz F i g u r e 5.9 DMT P r o f i l e a t Upper 232nd S t . S i t e -I n t e r p r e t e d G e o t e c h n i c a l Parameters 80 U.B.C. INSITU TESTING. L O C A T I O N : L R N G L E Y - 2 3 2 ST(UPPER)  INTERMEDIATE GEOTECHNICAL PARAMETERS TEST No. LRD-4 TEST DATE: MAR 2 84 CO ZD Q O CC ro LU Q_ I— C LU ~ o r — CX X _1 LU c r Q o I—I CO M CO CC LU o cc CO in m co t_ CO ro u QJ > a! CD Q_ ro o _ CM (W) H l d 3 0 S e t S2"S Sc'9 SZ'Zt S L S I S2'6t Sc'2Z i I I I i I I I I i I i I O ' J 1 ___ • * I I I l I I I I -i r o I I I I I I I 1 I I I I I S e t SZ'S 9L'8 SZ'Zl SL'St SZ'61 SL'ZZ (W) H id3Q F i g u r e 5.10 DMT P r o f i l e a t Upper 232nd S t . S i t e -Intermedi a t e G e o t e c h n i c a l Parameters 81 20 16 -£ 12 H < CO LU cr CO UJ cr CL 0-D E P T H = 3.6 m I = 0 . 8 8 KD=7.7 •EFFECTIVE P R E S S U R E TOTAL P R E S S U R E * P 0 •Ur /• run _< 1 PORE P R E S S U R E 0 0.2 OA 0.6 0.8 DEFLECTION (mm) 1.0 F i g u r e 5.11 T y p i c a l R e s u l t of R e s e a r c h DMT a t Upper 232nd S t . S i t e - Compacted C l a y 82 20 16-DEPTH =18.8 m KD= 2.0 % 12H CO LU or ZD 00 00 LU cr. Q_ 8-4-- u , 0-0 TOTAL P R E S S U R E PORE P R E S S U R E ^ E F F E C T I V E P R E S S U R E 0.2 OA 0.6 DEFLECTION (mm) 0.8 1.0 F i g u r e 5.12 T y p i c a l R e s u l t of R e s e a r c h DMT a t McDonald's Farm S i t e - C l a y e y S i l t 20 D E P T H = 19.6m l D = 0 . 2 6 KD= 2.8 164 124 a m LU rr to LU or CL 84 A H TOTAL P R E S S U R E PORE P R E S S U R E o-E F F E C T I V E P R E S S U R E 0 0.2 0.4 0.6 DEFLECTION (mm) 0.8 F i g u r e 5.13 T y p i c a l R e s u l t of R e s e a r c h DMT a t Lowe 232nd S t . S i t e - S i l t y C l a y e x p a n s i o n i s much l a r g e r when comparing w i t h t h e r e s u l t s i n s l i g h t l y o v e r c o n s o l i d a t e d t o n o r m a l l y c o n s o l i d a t e d s o f t c l a y e y d e p o s i t s . The r e s u l t s i n the s l i g h t l y o v e r c o n s o l i d a t e d t o n o r m a l l y c o n s o l i d a t e d s o f t c l a y e y d e p o s i t s show t h a t v e r y l a r g e e x c e s s pore p r e s s u r e s a r e g e n e r a t e d and t h a t the e f f e c t i v e s t r e s s e s a r e v e r y s m a l l d u r i n g b o t h the p e n e t r a t i o n and e x p a n s i o n phases of the t e s t s . Though the d e f o r m a t i o n c h a r a c t e r i s t i c s a r e s i m i l a r f o r t h e d e p o s i t s a t the L a n g l e y s i t e s and McDonald's Farm, they a r e not e x a c t l y the same. T y p i c a l r e s u l t s a t McDonald's Farm show t h a t the e f f e c t i v e s t r e s s a d j a c e n t t o t h e c e n t e r of t h e membrane i n c r e a s e s s l i g h t l y d u r i n g the e x p a n s i o n and dr o p s t o a v e r y s m a l l v a l u e , almost e q u a l t o z e r o , a t c l o s u r e . The pore p r e s s u r e next t o the membrane a l s o i n c r e a s e s s l i g h t l y d u r i n g t h e e x p a n s i o n phase, and d e c r e a s e s d u r i n g u n l o a d i n g . T y p i c a l t e s t r e s u l t s i n L a n g l e y show t h a t the e f f e c t i v e s t r e s s appears t o remain unchanged t h r o u g h o u t t h e p r e s s u r e e x p a n s i o n and u n l o a d i n g phase of t h e t e s t . The i n c r e a s e and d e c r e a s e i n t o t a l s t r e s s a p p l i e d on the membrane i s e q u a l l y matched by an i n c r e a s e and d e c r e a s e i n the pore p r e s s u r e . The c l a y e y s i l t d e p o s i t a t McDonald's Farm has an average p l a s t i c i t y i n d e x ( P i ) v a l u e of 15 and average s e n s i t i v i t y of 5. I t i s not e x p e c t e d t h a t the d e f o r m a t i o n c h a r a c t e r i s t i c s of t h i s m a t e r i a l would have an i d e n t i c a l b e h a v i o u r of the s o f t s i l t y c l a y a t L a n g l e y which has a PI v a l u e of about 24 and s e n s i t i v i t y v a l u e of about 11. C a v i t y e x p a n s i o n t h e o r i e s have shown t h a t a l i m i t p r e s s u r e e x i s t s f o r u n d r a i n e d c a v i t y e x p a n s i o n i n s o f t c l a y s . I t appears t h a t the p e n e t r a t i o n p r o c e s s d u r i n g a DMT i n s o f t c l a y i s s u f f i c i e n t t o induce p r e s s u r e s e q u i v a l e n t t o some l i m i t p r e s s u r e . Because of t h e s t r e s s r e l i e f phenomena due t o the l o c a t i o n of the membrane r e l a t i v e t o t h e b l a d e t i p , the l i f t - o f f p r e s s u r e P 0 i s l e s s than t h e l i m i t p r e s s u r e . However, the e x p a n s i o n of 1mm would t e n d t o r e - e s t a b l i s h the l i m i t p r e s s u r e . The shape of the p r e s s u r e e x p a n s i o n c u r v e s o b t a i n e d by t h e r e s e a r c h d i l a t o m e t e r i s t h e r e f o r e remarkably s i m i l a r t o the l a t t e r s e c t i o n of the p r e s s u r e e x p a n s i o n c u r v e s from p r e s s u r e m e t e r t e s t s i n s o f t c l a y e y d e p o s i t s . F i g u r e 5.14 and f i g u r e 5.15 g i v e a comparison of the p r e s s u r e measured a t 1mm from d i l a t o m e t e r t e s t s ( P i ) t o the l i m i t p r e s s u r e s measured a t 10% c a v i t y s t r a i n from p r e s s u r e m e t e r t e s t s ( P L ) a t the McDonald's Farm s i t e and L a n g l e y ' s B.C. Hydro R a i l w a y s i t e , r e s p e c t i v e l y . The P , v a l u e s a r e s l i g h t l y l e s s than the P r v a l u e s a t McDonald's 86 F i g u r e 5.14 Comparison of P, and Pr a t McDonald's Farm S i t e 87 F i g u r e 5.15 Comparison of P, and P L a t L a n g l e y R a i l w a y S i t e 88 Farm, but b o t h a r e a l m o s t i d e n t i c a l a t L a n g l e y . A l s o , i t i s i n t e r e s t i n g t o note t h a t the t o t a l p r e s s u r e r e c o r d e d as the membrane r e t u r n e d t o i t s c l o s e d p o s i t i o n i s almost t h e same as the i n i t i a l pore p r e s s u r e a t t h e s t a r t of the e x p a n s i o n t e s t i n s l i g h t l y o v e r c o n s o l i d a t e d t o n o r m a l l y c o n s o l i d a t e d s o f t c l a y e y d e p o s i t s . T h i s i s due t o the f a c t t h a t e i t h e r the e f f e c t i v e s t r e s s appears t o remain unchanged throughout t h e t e s t or the e f f e c t i v e s t r e s s d rops t o alm o s t z e r o a t c l o s u r e of the membrane. T h e r e f o r e , i t may be p o s s i b l e t o e s t i m a t e the i n i t i a l p o re p r e s s u r e around the membrane i m m e d i a t e l y a f t e r p e n e t r a t i o n by r e c o r d i n g the c l o s i n g p r e s s u r e when u s i n g M a r c h e t t i ' s s t a n d a r d d i l a t o m e t e r . T h i s o b s e r v a t i o n w i l l be f u r t h e r i l l u s t r a t e d i n S e c t i o n 5.4. 5.4 Pore P r e s s u r e Measurements The r e s u l t s o b t a i n e d w i t h the r e s e a r c h DMT shows t h a t the pore p r e s s u r e g e n e r a t e d d u r i n g the DMT p e n e t r a t i o n phase i s v e r y s i m i l a r t o t h a t g e n e r a t e d d u r i n g t h e cone p e n e t r a t i o n t e s t . Large pore p r e s s u r e s a r e g e n e r a t e d i n s o f t s l i g h t l y o v e r c o n s o l i d a t e d t o n o r m a l l y c o n s o l i d a t e d c l a y d e p o s i t s and low or n e g a t i v e pore p r e s s u r e s a r e g e n e r a t e d i n s t i f f d e p o s i t s w i t h h i g h o v e r - c o n s o l i d a t i o n r a t i o . The pore p r e s s u r e measurements o b t a i n e d d u r i n g p e n e t r a t i o n of the r e s e a r c h d i l a t o m e t e r and a p i e z o m e t e r cone a t t h e f o u r s i t e 89 s t u d i e d a r e p r e s e n t e d i n f i g u r e s 5.16 t o 5.19. The p o r e p r e s s u r e s r e c o r d e d by the cone were measured j u s t b e h i n d the cone t i p which a r e g e n e r a l l y s m a l l e r than the pore p r e s s u r e s measured on t h e f a c e of the t i p . The pore p r e s s u r e s r e c o r d e d by t h e r e s e a r c h d i l a t o m e t e r were measured on the c e n t e r of the membrane. When comparing the two d i f f e r e n t pore p r e s s u r e measurements r e c o r d e d by t h e cone and d i l a t o m e t e r , i t i s o b s e r v e d t h a t the pore p r e s s u r e o b t a i n e d by the r e s e a r c h d i l a t o m e t e r a r e g e n e r a l l y s m a l l e r than t h e p r e s s u r e o b t a i n e d by t h e cone. Boghrat (1982) i n d i c a t e d t h a t the v o l u m e t r i c s t r a i n and shear s t r a i n o b s e r v e d around th e d i l a t o m e t e r d u r i n g p e n e t r a t i o n were a p p r e c i a b l y l o w e r and more u n i f o r m than t h o s e o c c u r r i n g around the p e n e t r a t i n g cone t i p . On the b a s i s of t h i s o b s e r v a t i o n , Boghrat c o n c l u d e d t h a t the d i s t u r b a n c e of the s o i l a round th e d i l a t o m e t e r i s much l e s s than t h a t around th e cone. However, J a m i o l k o w s k i e t a l (1985) r e p o r t e d t h a t t h e i r e x p e r i e n c e had been somewhat d i f f e r e n t and t h a t t h e i r d i l a t o m e t e r and cone r e s u l t s were v e r y s i m i l a r ; hence the same l e v e l of d i s t u r b a n c e might be e x p e c t e d . T h i s w r i t e r f e e l s t h a t the l e v e l of s o i l d i s t u r b a n c e around th e d i l a t o m e t e r and the cone would depend on the s t i f f n e s s , s e n s i t i v i t y and p l a s i c i t y of the t e s t e d s o i l d e p o s i t s and t h a t t h i s i s t h e reason why the pore p r e s s u r e r e c o r d e d by t h e cone i s l a r g e r than t h a t by the 90 U CBorO F i g u r e 5.16 Pore P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r and Cone T e s t i n g s a t McDonald's Farm S i t e 91 F i g u r e 5.17 Pore P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r and Cone T e s t i n g s a t L a n g l e y R a i l w a y S i t e 92 F i g u r e 5.18 Pore P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r and Cone T e s t i n g s a t Lower 232nd S t . S i t e 9 3 U CBarO -2 o-f- 4 _1_ Research DMT P i e z o m e t r i c Cone 5H a. UJ a ioH 15-6 F i g u r e 5.19 Pore P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r and Cone T e s t i n g s a t UpDer 232nd S t . S i t e d i l a t o m e t e r a t McDonald's Farm and why the two measurements a r e almost i d e n t i c a l a t the L a n g l e y s i t e s where s e n s i t i v i t y and PI v a l u e s of the s o i l a r e much h i g h e r . S o i l w i t h h i g h s e n s i t i v i t y w i l l r e a c h i t s f a i l u r e s t a t e even under a v e r y s m a l l d i s t u r b a n c e . F i g u r e 5.20 p r e s e n t s the pore p r e s s u r e d i s s i p a t i o n phenomena around the r e s e a r c h d i l a t o m e t e r and a p i e z o m e t e r cone, i m m e d i a t e l y a f t e r p e n e t r a t i o n , a t McDonald's Farm. F i g u r e 5.21 p r e s e n t s the same r e s u l t s i n p e r c e n t a g e of d i s s i p a t i o n . The r e s u l t s of d i s s i p a t i o n t e s t s show t h a t the r a t e of d i s s i p a t i o n of e x c e s s pore p r e s s u r e i s s l o w e r around the f l a t d i l a t o m e t e r than around t h e cone, though the pore p r e s s u r e g e n e r a t e d next t o t h e membrane i s s m a l l e r . Time f o r 50% d i s s i p a t i o n f o r t h e DMT i s a p p r o x i m a t e l y t w i c e t h a t of a 10cm 2 cone. The s l o w e r r a t e of d i s s i p a t i o n around the d i l a t o m e t e r i s p r o b a b l y r e l a t e d t o the shape of the f l a t d i l a t o m e t e r b l a d e . When s t u d y i n g t h e s o i l d e f o r m a t i o n c h a r a c t e r i s t i c s i n S e c t i o n 5.3, i t was o b s e r v e d t h a t the t o t a l p r e s s u r e r e c o r d e d a t c l o s u r e ( P c ) i n s l i g h t l y o v e r c o n s o l i d a t e d t o n o r m a l l y c o n s o l i d a t e d s o f t c l a y e y d e p o s i t s was v e r y c l o s e t o the i n i t i a l pore p r e s s u r e around the membrane b e f o r e e x p a n s i o n ( i e . t h e pore p r e s s u r e d u r i n g p e n e t r a t i o n ) . F i g u r e s 5.22 t o 5.25 f u r t h e r i l l u s t r a t e t h i s o b s e r v a t i o n by comparing the pore p r e s s u r e r e c o r d e d by the r e s e a r c h L a a 10-9-8-7-6-5-4-3-2-1-.1 T 1 I I I I I I 1—I I I I I I I 1 1 1 I I I I I A R D M T @ 2 0 . 4 m D E P T H O CONE @ 2 1 . 0 m D E P T H O A O A O CD 1 1 I I M i l 1 T 1 1 I I I I I I 10 TIME (min) T 1 I I I I I 100 F i g u r e 5.20 D i s s i p a t i o n of Pore P r e s s u r e Around Research D i l a t o m e t e r and P i e z o m e t r i c Cone at McDonald's Farm S i t e ID Ln 100 60 20-- —" i u i i i r n I I i i i i i i 111 i i i i i i 11 A o 8 °* A R D M T (5) 20.4 m O CONE @ 21.0 m D E P T H D E P T H • o A O * -o A O O A • i i i i i I I i i i i i r i i n i A _ A A 1 1 1 1*1 I I .1 10 100 TIME <mln> F i g u r e 5.21 Degree of D i s s i p a t i o n Around R e s e a r c h D i l a t o m e t e r and P i e z o m e t r i c Cone At McDonald's Farm S i t e CA 97 U & Pc (Bar) -2 20-£ a. UJ a 2S-30 1 1 ^ 1 -\ 1 K \ % t 1 1 - Measured pore I i pressure by research I di la tometer 1 - Closing p r e s s u r e , l r p.p. a f te r d iss ipat ion 1 F i g u r e 5.22 Comparison of C l o s i n g P r e s s u r e and Pore P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r a t McDonald's Farm S i t e F i g u r e 5.23 Comparison of C l o s i n g P r e s s u r e and Pore P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r a t L a n g l e y R a i l w a y S i t e F i g u r e 5.24 Comparison of C l o s i n g P r e s s u r e and Pore P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r a t Lower 232nd S t . S i t e 100 F i g u r e 5.25 Comparison o f C l o s i n g P r e s s u r e and Pore P r e s s u r e D u r i n g P e n e t r a t i o n of D i l a t o m e t e r a t Upper 232nd S t . S i t e 101 d i l a t o m e t e r d u r i n g p e n e t r a t i o n w i t h t h e t o t a l p r e s s u r e measured a t c l o s u r e , P , a t each of the f o u r s t u d i e d s i t e s . The r e s u l t s i n f i g u r e s 5.22 t o 5.25 and the r e s u l t s i n f i g u r e s 4.5 and 4.6 c l e a r l y show t h a t , f o r t h e c l e a n sand and s o f t c l a y e y d e p o s i t s t e s t e d , the DMT c l o s i n g p r e s s u r e s ( P c ) a r e v e r y s i m i l a r t o the DMT p e n e t r a t i o n pore p r e s s u r e s and t h a t t h e s e a r e s i m i l a r t o t h e pore p r e s s u r e s r e c o r d e d d u r i n g cone p e n e t r a t i o n . However, f i g u r e 5.25 shows t h a t i n s t i f f h i g h l y o v e r c o n s o l i d a t e d c l a y e y s o i l s , t he measured pore p r e s s u r e s d u r i n g DMT p e n e t r a t i o n can be n e g a t i v e and the c l o s i n g p r e s s u r e ( P c ) h i g h l y p o s i t i v e . 5 . 5 Undrained Shear Strength The u n d r a i n e d shear s t r e n g t h , Su, of the c o h e s i v e d e p o s i t s a t the f o u r r e s e a r c h s i t e s have been i n v e s t i g a t e d u s i n g the f i e l d vane shear t e s t ( F V ) . In a d d i t i o n , t h e s t r e n g t h of the c l a y e y s i l t a t McDonald's Farm has a l s o been d e t e r m i n e d u s i n g the s e l f - b o r i n g p r e s s u r e m e t e r t e s t (SBPMT). F i g u r e s 5.26 t o 5.29 p r e s e n t t h e s e r e s u l t s t o g e t h e r w i t h t h e u n d r a i n e d shear s t r e n g t h d e t e r m i n e d from the DMT u s i n g t h e e m p i r i c a l c o r r e l a t i o n proposed by M a r c h e t t i (1980). The f i e l d vane and s e l f - b o r i n g p r e s s u r e m e t e r t e s t r e s u l t s produce s i m i l a r v a l u e s of Su a t McDonald's Farm. The Su p r o f i l e s d e t e r m i n e d by the f i e l d vane and t h e d i l a t o m e t e r 102 Su <KPcO Q 2 0 4 0 6 0 8 0 100 1 2 0 1 5 - J 1 1 1 1 1 F i g u r e 5.26 Comparison o f U n d r a i n e d Shear S t r e n g t h From DMT and from Vane T e s t At McDonald's Farm S i t e 103 Su <KPa> a. ui a ioH 15-20 40 60 80 100 I — DMT (Marchet t i . 1980) A F I E L D V A N E 120 F i g u r e 5.27 Comparison o f U n d r a i n e d Shear S t r e n g t h From DMT and from Vane T e s t At L a n g l e y R a i l w a y S i t e 104 F i g u r e 5.28 Comparison of U n d r a i n e d Shear S t r e n g t h From DMT and from Vane T e s t At Lower 232nd S t . S i t e B o4 20 40 _ J _ Su <KPa> 60 _ J L _ 80 C l a s s i f i e d as s i l t by DMT 5H A A r 105 100 120 ioH A A — DMT ( M a r c h e t t i . 1980) A F I E L D VANE 15-F i g u r e 5.29 Comparison of U n d r a i n e d Shear S t r e n g t h From DMT and from Vane T e s t At Upper 232nd S t . S i t e a r e s i m i l a r a t a l l of the f o u r s t u d i e d s i t e s . However, the DMT r e s u l t s a r e s m a l l than both the FV and SBPMT v a l u e s by about 30% a t McDonald's Farm and s l i g h t l y l a r g e r than t h e FV v a l u e s by about 25% a t the t h r e e L a n g l e y s i t e s . The c o m p a r i s o n s shown i n f i g u r e s 5.26 t o 5.29 do not g i v e a c l e a r and g e n e r a l p i c t u r e of how the DMT Su v a l u e s r e l a t e w i t h the u n d r a i n e d shear s t r e n g t h s d e t e r m i n e d u s i n g the f i e l d vane. F i g u r e 5.30 shows M a r c h e t t i ' s (1980) e m p i r i c a l c o r r e l a t i o n between the Su/a^ and the h o r i z o n t a l s t r e s s i n d e x Kg. The c o r r e l a t i o n was based on t h e lower bound of a l i m i t e d amount of d a t a from f i e l d vane shear t e s t s , u n c o n f i n e d c o m p r e s s i o n t e s t s and u n c o n s o l i d a t e d u n d r a i n e d t e s t s i n l a b o r a t o r y . The FV d a t a were m a i n l y from s i t e s w h ich have a s e n s i t i v i t y of about 1 t o 3. I t a p p e a r s t h a t the r e l a t i o n s h i p between Su & Kg might a l s o depend on s e n s i t i v i t y s i n c e s e n s i t i v i t y can a f f e c t the pore p r e s s u r e response of t h e s o i l a t f a i l u r e w hich c o n s e q u e n t l y a f f e c t s the v a l u e s of P 0 and Kg. I f t h i s i s the c a s e , t h i s may be the reason why the DMT r e s u l t s u n d e r e s t i m a t e d the Su a t the McDonald's Farm s i t e which has an a v e r a g e s e n s i t i v i t y of 5, and o v e r e s t i m a t e d the Su a t the L a n g l e y s i t e s which have an average s e n s i t i v i t y v a l u e s of 9 and 11 a t t h e r a i l w a y s i t e and t h e upper & lower s i t e s , r e s p e c t i v e l y . 107 (b) Su 1.0 05 Q2\ T—i—i—r i • r FV 77f ^r-=a22(0.5KD)-35 CXy 7^ / A FV A <>/ FV FV ' / uu uu FV » ' I L FOR I D 1 0 . 9 3 4 5 10 20 30 A - F V with sensitivity = 1.5 to 2 O - F V with sensitivity = 2 to 3 FV - Field Vane UU - Undrained unconsolidated T r i a x i a l U • Unconfined Compression F i g u r e 5.30 C o r r e l a t i o n between K D and Su/av* (Adapted from M a r c h e t t i , 1980) 108 F i g u r e 5.31 p r e s e n t s the r e l a t i o n s h i p between Kg and the Su/o^ r a t i o o b t a i n e d from t h e f i e l d vane a t the f o u r r e s e a r c h s i t e s . A v e r y good c o r r e l a t i o n i s o b s e r v e d between the Su/V and Kg f o r the c l a y d e p o s i t s a t L a n g l e y . A l s o , i t i s i n t e r e s t i n g t o note t h a t t h e r e appears a good c o r r e l a t i o n between the d a t a from McDonald's Farm and t h e d a t a form the upper 5m of compacted c l a y a t the upper s i t e of L a n g l e y , which has a s i m i l a r a verage s e n s i t i v i t y v a l u e of 5. In S e c t i o n 5.3, i t has been shown t h a t b o t h P 0 and P , a r e dominated by the pore p r e s s u r e s d e v e l o p e d d u r i n g p e n e t r a t i o n i n s o f t c l a y e y d e p o s i t s and a r e s i m i l a r t o t h e l i m i t p r e s s u r e f o r some form of c a v i t y e x p a n s i o n . I t i s t h e r e f o r e not s u r p r i s i n g t h a t the h o r i z o n t a l s t r e s s i n d e x , Kg, d e r i v e d from the measurement P 0 , can be c o r r e l a t e d t o p a r a m e t e r s such as u n d r a i n e d shear s t r e n g t h , s t i f f n e s s and s t r e s s h i s t o r y as s u g g e s t e d by M a r c h e t t i i n h i s (1980) paper. However, any c o r r e l a t i o n w i l l not be unique f o r a l l s o i l s , s i n c e f a c t o r s such as s e n s i t i v i t y p l a y s an i m p o r t a n t r o l e . F i g u r e 5.32 shows b o t h P 0/Su and Pi;/Su p r o f i l e s , u s i n g the Su d e t e r m i n e d by the f i e l d vane f o r t h e f o u r s i t e s . I t i s o b s e r v e d t h a t no s i n g l e f a c t o r can a p p l y t o d e t e r m i n e the u n d r a i n e d shear s t r e n g t h d i r e c t l y e i t h e r from P 0 or P , . The two f a c t o r s a r e about 10 and a r e r e l a t i v e l y c o n s i s t a n t w i t h d e p t h a t McDonald's Farm where the c l a y i s n o r m a l l y 109 10-ID C o .2. 3 in 1-. 1 i i I I I I I I I 1 1 1—I—I I I l_ Sensit iv ity = 4 to 5 in compacted c l a y f i l l at \ upper 232nd S t . . S i t e / O Langley - Rai lway S i te A Langley - lower 232nd S t S i t e • Langley - upper 232 nd St. Site M c D o n a l d ' s F a r m Marchett i (1980) ( l D = 0 . 9 ) 1 1—i— i i I I i ' 10 KD 1 1 1—I I I I 100 Figure 5.31 Relationship between K D and Su(vane)/aJ 110 P O / S u & P l / S u 10 IS P O / S u & P l / S u 25 - o -o ~o - o **o 0 *°~o --a :8 -o * °-o -* ° » o *- 8 McDonald's Form l0/Su(vane) .-o° ° Vsufvane) *°-o • o - o 1 1 10H IS 10 IS 20 2S O - o - o —ao •«• o o - -o o --oo ~o o - •>• o o - o - e o - o- o » o- o — as - o -- -o o - o - -»o o *• o - o - o Lower 232nd St.  Site f0/Su(vane) - * -° O ^ Sutvone) o - o o -o o - o - o o o o 10 IS 0 s 10 15 20 25 f O - o - o - o - o - - o o 0 0 •» o - o - o 0 - 0 Railway Site - o (b/Su(vane) - o O *1 'sutvane) - o » 6 I 1 0 ' 0 5 J 1 10 IS 20 2S - O - o - o - o - - o o o o ~- o o - O 0 •H- CD o - -» o o - o » -O o -Upper 232nd St. Site •*- "o'Sutvane) 1 ° VsuWane) 1 1 l F i g u r e 5.32 P 0/Su(vane) P r o f i l e s c o n s o l i d a t e d . The f a c t o r s a t the L a n g l e y s i t e s range from 5 t o 20 and i n c r e a s e w i t h d e p t h as the d e p o s i t s become s l i g h t l y o v e r c o n s o l i d a t e d t o n o r m a l l y c o n s o l i d a t e d . T h i s o b s e r v a t i o n s u g g e s t s t h a t the c o r r e l a t i o n s between P 0 & Su and P, & Su c o u l d a l s o depend on the s t r e s s h i s t o r y of t h e s i t e . 5.6 Shear Modulus As d i s c u s s e d i n S e c t i o n 4.4 f o r sands, shear m o d u l i of the c o h e s i v e d e p o s i t s a t the f o u r r e s e a r c h s i t e s were e s t i m a t e d from the d i l a t o m e t e r modulus, Eg u s i n g t h e e q u a t i o n : G = 0.5*E d*(1-M 2)/(1+M) (5.1) w i t h n = 0.5 f o r u n d r a i n e d c o n d i t i o n . A l s o , shear moduli were d e t e r m i n e d from unloaded and r e l o a d c y c l e s d u r i n g the e x p a n s i o n phase o b t a i n e d w i t h t h e r e s e a r c h d i l a t o m e t e r . D e t a i l s on the a s s u m p t i o n s r e q u i r e d were g i v e n i n S e c t i o n 4.4. F i g u r e 5.33 p r e s e n t s the computed and measured shear modulus p r o f i l e s a t the f o u r r e s e a r c h s i t e s . The G v a l u e s a r e i n the range of 500 - lOOOkPa a t McDonald's Farm, and from 300 - lOOOkPa w i t h a maximum of a p p r o x i m a t e l y 4000kPa a t the L a n g l e y s i t e s . Theses v a l u e s , however, a r e c o n s i d e r a b l y s m a l l e r than the G v a l u e s d e t e r m i n e d from 112 o 15-*-1000 1 McDonald's Form — From E Dwi!h >u=0.5 • From unload-reload cycle 20-NOTE 6max v o r i e s , r o m 60000 to 80000 kPa 25-5-10-IS 250 S00 750 1000 1250 1S0Q 17S0 2000 0 0— 500 1000 2000 2500 Lower 232nd Si . Site — From E 0 with >u=0.5 • From unload-reload cycle 15-20-0 0-± 10-1S Railway Site — From E o with;u = 0.5 NOTE 20000 to 40000 kPa Upper 232nd St. Site — From EDwithAJ = 0.5 • From unload-relood cycle NOTE G m Q X varies from 20000 to 40000 kPa F i g u r e 5 . 3 3 E s t i m a t e d Shear Moduli from En and from Unload - Reload C y c l e of D i l a t o m e t e r Expansion Curve the downhole s e i s m i c cone t e s t i n g . The v a l u e s of G a t 3 max McDonald's Farm a r e a p p r o x i m a t e l y 60MPa a t 15m d e p t h and 80MPa a t 30m d e p t h . The v a l u e of G m a x a t the L a n g l e y s i t e s a r e a p p r o x i m a t e l y 20MPa near t h e ground s u r f a c e and 40MPa a t 15m d e p t h . The shear modulus c a l c u l a t e d from the d i l a t o m e t e r modulus or d e t e r m i n e d from t h e u n l o a d and r e l o a d c y c l e of the e x p a n s i o n c u r v e i s c o n s i d e r a b l y s m a l l e r than the measured G . S i n c e the s o f t c o h e s i v e c l a y e y d e p o s i t s next max J t o t h e membrane a r e sheared t o complete f a i l u r e d u r i n g p e n e t r a t i o n , w i t h v e r y l a r g e pore p r e s s u r e g e n e r a t e d and almost z e r o e f f e c t i v e s t r e s s , i t i s not s u r p r i s i n g t h a t the membrane e x p a n s i o n t e s t can not g i v e a good e s t i m a t e of the s t i f f n e s s of the u n d i s t u r b e d s o i l . 5.7 OCR and K n F i g u r e 5.34 p r e s e n t s the o v e r c o n s o l i d a t i o n r a t i o s , OCR, p r e d i c t e d by the d i l a t o m e t e r and f i e l d vane shear t e s t s a t the f o u r s i t e s . The OCR v a l u e s d e r i v e d from the FV r e s u l t s were based on Schmertmann's proposed c o r r e l a t i o n between n o r m a l i z e d u n d r a i n e d shear s t r e n g t h r a t i o and o v e r c o n s o l i d a t i o n r a t i o from l a b o r a t o r y t e s t s . (Schmertmann, 1978) 114 F i g u r e 5.34 O v e r c o n s o l i d a t i o n R a t i o Vs Depth The g e o l o g y of McDonald's Farm s u g g e s t s t h a t t h e c l a y e y s i l t d e p o s i t i s n o r m a l l y c o n s o l i d a t e d w i t h an OCR e q u a l t o 1. Both t h e d i l a t o m e t e r and f i e l d vane r e s u l t s g i v e a v e r y good d e s c r i p t i o n of the s t r e s s h i s t o r y a t McDonald's Farm. The g e o l o g y of the L a n g l e y s i t e s s u g g e s t s t h a t the s i l t y c l a y d e p o s i t s i n t h e upper a p p r o x . 10m i s o v e r c o n s o l i d a t e d (or compacted a t t h e upper s i t e ) , and then s l i g h t y o v e r c o n s o l i d a t e d t o n o r m a l l y c o n s o l i d a t e d w i t h d e p t h . The f i e l d vane r e s u l t s appear t o g i v e a good d e s c r i p t i o n of the s t r e s s h i s t o r y a t the s i t e s . The d i l a t o m e t e r r e s u l t s appear t o o v e r e s t i m a t e the OCR and i n d i c a t e t h a t the d e p o s i t a t 15m t o 20m de p t h has an OCR of about 2. The reason f o r t h i s d i s c r e p a n c y may stem from the f a c t t h a t the h o r i z o n t a l s t r e s s i n d e x , K^, i s h i g h , w h i c h l e a d s t o a h i g h p r e d i c t i o n of OCR f o r the d e p o s i t . The h i g h K D v a l u e s appear t o be due t o t h e much h i g h e r pore p r e s s u r e s g e n e r a t e d around the membrane as a r e s u l t of t h e h i g h s o i l s e n s i t i v i t y . Based on the e s t i m a t e d OCR from the f i e l d vane t e s t s and assumed PI v a l u e s of the d e p o s i t s , K 0 v a l u e s of the f o u r s i t e s were e s t i m a t e d u s i n g Brooker and I r e l a n d ' s p r oposed r e l a t i o n s h i p (Brooker & I r e l a n d , 1965). F i g u r e 5.35 compares the above e s t i m a t e d K 0 w i t h the v a l u e s p r e d i c t e d by the d i l a t o m e t e r t e s t i n g . A good comparison i s o b t a i n e d a t McDonald's Farm. For the L a n g l e y s i t e s , the v a l u e s p r e d i c t e d 116 8 8 8 8 8 8 o o McDonald's Farm — DMT (Marchetti, 1980) O FIELD VANE (Brooker and Ireland. 1965), PI = 15 V. 10-IS-Lower 232nd St. Site — DMT (Marchetti,1980) O FIELD VANE (Brooker and Ireland, 1965). PI = 24V. IS' Railway Site — DMT (Marchetti. 1980) 0 O FIELD VANE (Brooker and 0 I Ireland, 1965) PI = 24 V. O J o \ o J 0 J O [ 0 < O 1 o ) o o °<r o -o / 0 \ o ( 0 i i i i Ko 0 1 J—. 1 *, ? < Upper 232nd St. Site — DMT (Marchetti.1980) O FIELD VANE (Brooker and Ireland, 1965). PI = 24 V. 0 oo O Oy °/ 0 <m / ° of J i i F i g u r e 5.35 I n - s i t u E a r t h P r e s s u r e C o e f f i c i e n t Vs Depth 117 by t h e d i l a t o m e t e r t e s t s a r e s l i g h t l y h i g h e r . T h i s i s because K 0 i s a l s o c o r r e l a t e d t o the h i g h K . C h a p t e r 6 118 Summary and C o n c l u s i o n 6.1 O b s e r v a t i o n s Data have been r e c o r d e d and p r e s e n t e d u s i n g t h e UBC r e s e a r c h d i l a t o m e t e r . The measured p r e s s u r e - d e f l e c t i o n c u r v e s o b t a i n e d d u r i n g the d i l a t o m e t e r membrane e x p a n s i o n a r e v e r y s i m i l a r t o the p r e s s u r e e x p a n s i o n c u r v e s o b t a i n e d from s e l f - b o r i n g or f u l l - d i s p l a c e m e n t p r e s s u r e m e t e r t e s t s . Based on the r e s u l t s o b t a i n e d w i t h the UBC r e s e a r c h DMT i n c l e a n sands and s o f t and s t i f f c l a y e y s o i l s , t he f o l l o w i n g o b s e r v a t i o n have been made: 1. D i l a t o m e t e r t e s t s i n c l e a n sands a r e d r a i n e d d u r i n g b o t h the p e n e t r a t i o n and e x p a n s i o n phases, w i t h a l m o s t no e x c e s s pore p r e s s u r e s g e n e r a t e d . 2. D i l a t o m e t e r t e s t s i n c l a y e y d e p o s i t s ( J Q * 0.6) a r e u n d r a i n e d d u r i n g both the p e n e t r a t i o n and e x p a n s i o n phases. 3. In s o f t , n o r m a l l y t o s l i g h t l y o v e r c o n s o l i d a t e d ( K D < 3 . 0 ) c l a y e y s o i l s , t h e DMT r e s u l t s ( P 0 , P i ) a r e dominated by l a r g e p o s i t i v e e x c e s s pore p r e s s u r e s and s m a l l e f f e c t i v e s t r e s s e s around the membrane. 4. In s t i f f , h e a v i l y o v e r c o n s o l i d a t e d c l a y e y s o i l s , n e g a t i v e pore p r e s s u r e s can be g e n e r a t e d d u r i n g p e n e t r a t i o n of the d i l a t o m e t e r . The pore p r e s s u r e s g e n e r a t e d d u r i n g p e n e t r a t i o n of t h e d i l a t o m e t e r a r e v e r y s i m i l a r t o the pore p r e s s u r e s g e n e r a t e d d u r i n g cone p e n e t r a t i o n . The c l o s i n g p r e s s u r e from a DMT ( P c ) i s v e r y s i m i l a r t o the DMT p e n e t r a t i o n pore p r e s s u r e f o r c l e a n sands and s o f t c l a y e y d e p o s i t s ( I n < 0 . 6 , K n < 3 . 0 ) . In c l e a n sands, a l m o s t no e x c e s s pore p r e s s u r e s a r e g e n e r a t e d and the c l o s i n g p r e s s u r e r e p r e s e n t s a good a p p r o x i m a t i o n of the s t a t i c e q u i l i b r i u m p i e z o m e t r i c p r e s s u r e ( u 0 ) . The d i s s i p a t o n of e x c e s s pore p r e s s u r e s d u r i n g a s t o p i n p e n e t r a t i o n i s s l o w e r f o r a DMT than f o r a 10cm 2 p i e z o m e t e r cone p e n e t r a t i o n t e s t (CPTU). Time f o r 50% d i s s i p a t i o n f o r the DMT i s a p p r o x i m a t e l y t w i c e t h a t of a 10cm 2 cone. D u r i n g the membrane e x p a n s i o n phase of a DMT, the s o i l a d j a c e n t t o the membrane appea r s t o deform p l a s t i c a l l y . However, e l a s t i c b e h a v i o u r i s ob s e r v e d d u r i n g s m a l l u n l o a d i n g - r e l o a d i n g c y c l e s . The 0' v a l u e s computed u s i n g the p u s h i n g f o r c e measured a t t h e ground s u r f a c e were o n l y s l i g h t l y h i g h e r than the 0' v a l u e s c a l c u l a t e d u s i n g t h e f o r c e measured d i r e c t l y b e h i n d t h e d i l a t o m e t e r (McDonald's Farm S i t e ) . T h i s i n d i c a t e s t h a t t h e r e i s l i t t l e r o d f r i c t i o n a f t e r the f r i c t i o n r e d u c e r d u r i n g d i l a t o m e t e r p e n e t r a t i o n i n c l e a n sands. 120 6.2 P r e d i c t e d P r o p e r t i e s of Sand The d i l a t o m e t e r t e s t i n g gave good e s t i m a t e s of t h e s o i l p r o p e r t i e s of the sand a t McDonald's Farm. The DMT c l e a r l y c l a s s i f i e s t h e sand d e p o s i t f o r g e n e r a l l o g g i n g p u r p o s e s . The f r i c t i o n a n g l e , K 0 and OCR d e t e r m i n e d u s i n g Schertmann's (1982,1983) c o r r e l a t i o n s a r e i n good agreement w i t h v a l u e s d e t e r m i n e d from o t h e r t e s t i n g methods. M a r c h e t t i ' s (1980,1981) c o r r e l a t i o n s gave a low e s t i m a t e of f r i c t i o n a n g l e and a h i g h e s t i m a t e on OCR and K 0. The r e s u l t s a r e s i m i l a r t o those r e p o r t e d i n the l i t e r a t u r e (GPE, I n c . , DMT D i g e s t S e r i e s , and B u l l o c k , 1983). A good e s t i m a t e of shear modulus can be computed from the d i l a t o m e t e r modulus ( E D ) * u s i n g a r e a s o n a b l e assumed v a l u e of p o i s s o n r a t i o . 6.3 P r e d i c t e d P r o p e r t i e s of C l a y e y D e p o s i t s The d i l a t o m e t e r t e s t i n g i n g e n e r a l gave a r a t h e r poor e s t i m a t e of the s o i l p r o p e r t i e s "of the s t u d i e d c l a y e y d e p o s i t s . A l t h o u g h the DMT i n g e n e r a l c l e a r l y i d e n t i f i e d the c l a y e y d e p o s i t s , i t i n d i c a t e d the c l a y e y s i l t as c l a y a t McDonald's Farm, the compacted c l a y as s i l t a t the L a n g l e y upper s i t e , and o c c a s i o n a l l y the v e r y s o f t c l a y as mud a t 121 the L a n g l e y r a i l w a y and lower s i t e s . At the McDonald's Farm s i t e , t he DMT gave a v e r y good e s t i m a t e of OCR and K 0. The DMT, however u n d e r e s t i m a t e d the u n d r a i n e d shear s t r e n g t h when compared w i t h t h e f i e l d vane (Su) s i n c e the M a r c h e t t i ' s (1980) c o r r e l a t i o n was based on the lower bound of some s c a t t e r e d d a t a . At the L a n g l e y s i t e s , t h e DMT o v e r e s t i m a t e d the OCR, K 0 and u n d r a i n e d shear s t r e n g t h . T h i s might be r e l a t e d t o the h i g h s e n s i t i v i t y of the c l a y d e p o s i t s a t t h e L a n g l e y s i t e s , s i n c e M a r c h e t t i ' s (1980) c o r r e l a t i o n s were based on d e p o s i t s of low s e n s i t i v i t y . S i n c e i n s o f t c l a y e y d e p o s i t s the s o i l a d j a c e n t t o t h e membrane i s sheared t o complete f a i l u r e d u r i n g p e n e t r a t i o n w i t h v e r y l a r g e pore p r e s s u r e and a l m o s t z e r o e f f e c t i v e s t r e s s e s , the d i l a t o m e t e r modulus was v e r y low i n comparison t o measured G v a l u e s , max 6.4 S u g g e s t i o n s f o r F u t u r e R e s e a r c h 1. I t has been shown t h a t a good e s t i m a t e of the e l a s t i c shear modulus of sand can be measured from the u n l o a d - r e l o a d c y c l e of t h e e x p a n s i o n c u r v e o b t a i n e d w i t h the r e s e a r c h d i l a t o m e t e r . I t appears t h a t t h e r e e x i s t s a c o n s i s t a n t r e l a t i o n s h i p between the s l o p e of the 122 u n l o a d - r e l o a d c y c l e and the s l o p e of the s t r a i g h t e x p a n s i o n phase f o r DMT i n sand. I t i s s u g g e s t e d t o study the p o s s i b i l i t y of f u r t h e r e s t a b l i s h i n g a r e l a t i o n s h i p so t h a t a shear modulus can be e s t i m a t e d from t h e s l o p e of the s t r a i g h t e x p a n s i o n when u s i n g M a r c h e t t i ' s d i l a t o m e t e r . 2. I t has been i l l u s t r a t e d t h a t E^ appears t o be a u s e f u l parameter i n sand and p r o b a b l y has a good c o r r e l a t i o n w i t h t h e f r i c t i o n a n g l e . M a r c h e t t i ' s (1981) c o r r e l a t i o n of 0' and E D was u n s u c c e s s f u l , p r o b a b l y because of the l i m i t e d a v a i l a b l e d a t a . I t i s s u g g e s t e d t o r e f i n e t h i s c o r r e l a t i o n by i n c l u d i n g more u p - t o - d a t e d a t a . T h i s can p r o v i d e u s e r s an a l t e r n a t i v e method f o r e s t i m a t i n g the f r i c t i o n a n g l e of sand or as a comparison t o Schmertmann's (1982) method. 3. I t has been shown t h a t the c l o s i n g p r e s s u r e of t h e membrane, P , i s v e r y c l o s e t o the i n i t i a l pore p r e s s u r e b e f o r e the e x p a n s i o n t e s t . T h i s p r o v i d e s a way of e s t i m a t i n g the g e n e r a t e d pore p r e s s u r e d u r i n g p e n e t r a t i o n of the d i l a t o m e t e r . F u t u r e work i s recommended t o f u r t h e r s t u d y t h i s phenomenon and u t i l i z e the e s t i m a t e d pore p r e s s u r e d a t a t o improve the c o r r e l a t i o n s f o r d i l a t o m e t e r t e s t i n g s i n c l a y , s i m i l a r to t h e development of the p i e z o m e t e r cone i n cone p e n e t r a t i o n t e s t i n g . 4. S i n c e t h e d i l a t o m e t e r t e s t i n g i s v e r y s i m i l a r t o a f u l l d i s p l a c e m e n t p r e s s u r e m e t e r t e s t i n g , i t i s recommended t h a t the d i l a t o m e t e r t e s t i n g can make use of the development i n f u l l d i s p l a c e m e n t p r e s s u r e m e t e r t e s t i n g t o sharpen the d i l a t o m e t e r c o r r e l a t i o n s and b e t t e r u n d e r s t a n d the d i l a t o m e t e r t e s t . S i n c e the A r e a d i n g ( P 0 ) and C r e a d i n g ( P c ) a r e c l o s e l y r e l a t e d t o the p e n e t r a t i o n pore p r e s s u r e s i n s o f t c l a y d e p o s i t s , f u r t h e r work can be c a r r i e d out t o e s t a b l i s h a p r o c e d u r e f o r p e r f o r m i n g d i s s i p a t i o n t e s t s u s i n g the DMT. 124 REFERENCE Arm s t r o n g , J.E., ( 1 9 7 8 ) , "Post Vachon W i s c o n s i n G l a c i a t i o n , F r a s e r Lowland, B r i t i s h C o l u m b i a " , G e o l o g i c a l Survey of Canada, B u l l e t i n 332. B e l l o t t i , R., B i z z i , G., Ghionna, V., J a m i o l k p w s k i , M., M a r c h e t t i , S., and P a s q u a l i n i , E., (1979), " P r e l i m i n a r y C a l i b r a t i o n T e s t s of E l e c t r i c a l Cone and F l a t D i l a t o m e t e r i n Sand", V I I ECSMFE, B r i g h t o n , E n g l a n d . Blunden, R.H., (1 9 7 5 ) , "Urban Geology of Richmond, B r i t i s h C o l u m b i a " , A d v e n t u r e s i n E a r t h S c i e n c e s S e r i e s , No. 15, Dept. of G e o l o g i c a l S c i e n c e s , U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouver, B.C. Bo g h r a t , A., (1982), "The D e s i g n and C o n s t r u c t i o n of a P i e z o b l a d e and an E v a l u a t i o n o f t h e M a r c h e t t i D i l a t o m e t e r i n Some F l o r i d a S o i l s " , Ph.D T h e s i s , U n i v e r s i t y of F l o r i d a , G a i n e s v i l l e , F l o r i d a . B r a u i d , J . , (1980), " I n S i t u T e s t s t o Measure S o i l S t r e n g t h and S o i l D e f o r m a b i l i t y f o r O f f s h o r e E n g i n e e r i n g " , Texas A & M R e s e a r c h F o u n d a t i o n , I n t e r n a l R e p o r t . B r o o k e r , E.W., and I r e l a n d , H.O., (1965), " E a r t h P r e s s u r e s a t R e s t R e l a t e d t o S t r e s s H i s t o r y " , Canadian G e o t e c h n i c a l J o u r n a l , V o l . 11, No.1. B u l l o c k , P . J . , (1983), "The D i l a t o m e t e r : C u r r e n t T e s t P r o c e d u r e s and Data I n t e r g r e t a t i o n " , M.Eng. T h e s i s , Dept. of C i v i l E n g i n e e r i n g , U n i v e r s i t y of F l o r i d a , G a i n e s v i l l e , F l o r i d a . C a m p a n e l l a , R.G., and R o b e r t s o n , R.K., ( 1 9 8 1 ) , " A p p l i e d Cone R e s e a r c h " , ASCE symposium on Cone P e n e t r a t i o n T e s t i n g and E x p e r i e n c e , S t . L o u i s , Oct.1981, pp 343-363. Campanella, R.G., and R o b e r t s o n , R.K., (1983), " F l a t P l a t e D i l a t o m e t e r T e s t i n g : R e s e a r c h and Development", S o i l M echanics S e r i e s , No. 68, Dept. of C i v i l E n g i n e e r i n g , U n i v e r i s i t y of B r i t i s h C o l u m b i a , Vancouver, B.C. 125 Crapps, D., and Schmertmann, J . , (1981), "DILLY, a F o r t r a n Computer Programme t o Reduce D i l a t o m e t e r D a t a " , Schmertmann and Crapps, I n c . , I n t e r n a l R e p o r t , G a i n e s v i l l e , F l o r i d a . Durngunoglo, H.T., and M i t c h e l l , J.K., (19 7 5 ) , " S t a t i c P e n e t r a t i o n R e s i s t a n c e of S o i l s : I - A n a l y s i s , I I E v a l u a t i o n of Theory and I m p l i c a t i o n f o r P r a c t i c e " , ASCE S p e c i a l t y C o n f e r e n c e on I n - S i t u Measurement of S o i l P r o p e r t i e s , R a l e i g h , NC. G i l l e s p i e , D.G., (1981), "The P i e z o m e t e r Cone P e n e t r a t i o n T e s t " , M.A.Sc. T h e s i s , Dept. of C i v i l E n g i n e e r i n g , U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouver, B.C. GPE, I n c . , D i l a t o m e t e r D i g e s t S e r i e s , No. 1-5, 1983-1985, G a i n e s v i l l e , F l o r i d a . Hughes, J.M.O., Wroth, C P . , and W i n d l e , D., (1977), " P r e s s u r e m e t e r T e s t s i n Sands", Geotechnique 27, No. 4. Hughes, J.M.O., (1982), " I n t e r p r e t a t i o n of P r e s s u r e m e t e r T e s t s f o r D e t e r m i n a t i o n of the E l a s t i c Shear Modulus", E n g i n e e r i n g F o u n d a t i o n C o n f e r e n c e on U p d a t i n g S u b s u r f a c e Sampling of S o i l s and Rocks and T h e i r I n - s i t u T e s t i n g , Santa B a r b a r a , C a l i f o r n i a . Hughes, J.M.O., and R o b e r t s o n , P.K., (1984), " F u l l D i s p l a c e m e n t P r e s s u r e m e t e r T e s t i n g i n Sand", S o i l Mechanics S e r i e s , No.78, Dept. of C i v i l E n g i n e e r i n g , U n i v e r s i t y of B r i t i s h C o lumbia, Vancouver, B.C. J a m i o l k o w s k i , M., Ladd, C.C., Germaine, J.T., and L a n c e l l o t t a , R., (19 8 5 ) , "New Developements i n F i e l d and L a b o r a t o r y T e s t i n g of S o i l s " , S t a t e - o f - t h e A r t R e p o r t , XI ICSMFE, San F r a n c i s c o . L a c a s e , S., and Lunne, T., (1982), " P e n e t r a t i o n T e s t s i n Two T e s t i n g , ESOPT I I , Amsterdam. Lee, K.L., (1970), "Comparison of P l a n e and T r i a x i a l T e s t s on Sand", J o u r n a l of the S o i l Mechanics and F o u n d a t i o n D i v i s i o n , ASCE, V o l . 96, No. SM3. 126 M a r c h e t t i , S., (1975), "A New In S i t u T e s t f o r the Measurement of H o r i z o n t a l S o i l D e f o r m a b i l i t y " , ASCE S p e c i a l t y C onference on I n S i t u Measurement of S o i l P r o p e r t i e s , R a l e i g h , NC. M a r c h e t t i , S., (1980), "In S i t u T e s t s by F l a t D i l a t o m e t e r " , J o u r n a l of the G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE, V o l . 106, No. GT3. M a r c h e t t i , S., (1981), " O u t l i n e of an I n v e s t i g a t i o n t o E s t a b l i s h C o r r e l a t i o n Between D i l a t o m e t e r R e s u l t s and <£' i n Sands", GPE. I n c . , I n t e r n a l R e p o r t , G a i n e s v i l l e , F l o r i d a . M a r c h e t t i , S., and Crapps, D.K., (1981), " F l a t D i l a t o m e t e r Manual; D r a f t - E d i t i o n " , GPE, I n c . , G a i n e s v i l l e , F l o r i d a . Mayne, P.W., and Kulhawy, F.H., (1982), "K 0 - OCR R e l a t i o n s h i p s i n S o i l " , J o u r n a l of the G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE, V o l . 108, No. GT6. McPherson, I.D., (1985), "An E v a l u a t i o n of the F l a t D i l a t o m e t e r As an I n s i t u T e s t i n g D e v i c e " , M.A.Sc. T h e s i s , Dept. of C i v i l E n g i n e e r i n g , U n i v e r s i t y of B r i t i s h C o l u m b i a , Vancouver, B.C. R i c e , A.H., (1984), "The S e i s m i c Cone P e n e t r o m e t e r " , M.A.Sc. T h e s i s , Dept. of C i v i l E n g i n e e r i n g , U n i v e r i s t y of B r i t i s h C o l u m b i a , Vancouver, B.C. R o b e r t s o n , P.K., (1982), " I n - s i t u T e s t i n g of S o i l W i t h Emphasis on I t s A p p l i c a t i o n t o L i q u e f a c t i o n Assessment", Ph.D T h e s i s , Dept. of C i v i l E n g i n e e r i n g , U n i v e r s i t y of B r i t i s h C o lumbia, Vancouver, B.C. R o b e r t s o n , P.K., and C a m p a n e l l a , R.G., (1983), " I n t e r p r e t a t i o n of Cone P e n e t r a t i o n T e s t s : P a r t I and P a r t I I " , Canadian G e o t e c h n i c a l J o u r n a l , V o l . 20, No. 4. Schmertmann, J.H., (1978), " G u i d e l i n e s f o r Cone P e n e t r a t i o n T e s t , Performance and D e s i g n " , U.S. Department of T r a n s p o r t a t i o n , Report FHWA-TS-78-209, Washington, D.C. 127 Schmertmann, J.H., (1981), D i s c u s s i o n of " I n S i t u T e s t s by F l a t D i l a t o m e t e r " , J o u r n a l of the G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE., V o l . 107, No. GT6. Schmertmann, J.H., (1982), "A Method f o r D e t e r m i n i n g the F r i c t i o n A n gle i n Sands From t h e M a r c h e t t i D i l a t o m e t e r T e s t (DMT)", 2nd European Symposium on P e n e t r a t i o n T e s t i n g , ESOPT I I , Amsterdam. Schmertmann, J.H., (1983), " R e v i s e d P r o c e d u r e f o r C a l c u l a t i o n g K 0 and OCR from DMT's w i t h IQ>1.2 and Which I n c o r p o r a t e the P e n e t r a t i o n F o r c e Measurement t o P e r m i t C a l c u l a t i n g the P l a n e S t r a i n F r i c t i o n A n g l e " , DMT Workshop, March 16-18, G a i n e s v i l l e , F l o r i d a . Schmertmann, J.H., (1986), "Suggested Method F o r P e r f o r m i n g the F l a t D i l a t o m e t e r T e s t " , G e o t e c h n i c a l T e s t i n g J o u r n a l , ASTM. Wroth, C P . , ( 1982), " B r i t i s h E x p e r i e n c e w i t h the S e l f - B o r i n g P r e s s u r e m e t e r " , Symposium on P r e s s u r e m e t e r and i t s M a r i n e A p p l i c a t i o n s , P a r i s . APPENDIX I M o d i f i c a t i o n of Input Data of DILLY^-129 M o d i f i c a t i o n of i n p u t d a t a of DILLY4 The c a l c u l a t i o n of 0' i n DILLY^ u s i n g Schmertmann's ( 1 9 8 2 ) method i s based on the f o r c e diagram and e q u a t i o n shown on the f o l l o w i n g page. The l o a d c e l l i n s i d e the r e s e a r c h d i l a t o m e t e r i s l o c a t e d i m m e d i a t e l y b e h i n d the neck of the b l a d e . I n o r d e r t o determine the f r i c t i o n a l f o r c e a c t i n g on the d i l a t o m e t e r b l a d e u s i n g the p e n e t r a t i o n f o r c e measured b e h i n d the neck w i t h o u t c h a n g i n g the e q u a t i o n s i n the program, the f o l l o w i n g i n p u t d a t a and m o d i f i c a t i o n a re r e q u i r e d : 1) I n p u t d a t a : D i a . of f r i c t i o n r e d u c e r = 0 D i a . of p u s h i n g r o d = 0 wt. of p u s h i n g r o d = 0 2) The b e a r i n g a r e a of the d i l a t o m e t e r 1 9 . 2 c m * ( i n s t e a d of 1 2 . 9 c m 2 ) i n c l u d i n g a d d i t i o n a l a r e a of neck. A l s o , s i n c e the r e s e a r c h d i l a t o m e t e r has a l o n g e r s h o u l d e r and stem, the b l a d e a r e a i s 5 3 0 c m i n s t e a d of 3 5 5 c m 2 f o r M a r c h e t t i ' s d i l a t o m e t e r , when u s i n g e i t h e r the f o r c e measured a t the ground s u r f a c e o r b e h i n d the b l a d e f o r the co m p u t a t i o n . Penetration Force Weight of the Rods and Dilatometer 130 E f f e c t i v e V e r t i c a l S tress o' v n Bouyant Force on Rods » Porewater Pressure at Depth of Z x C r o s s - s e c t i o n a l area of the P.ods Bearing on F r i c t i o n Reducer - Net Add'l. Area of Reducer x Bearing Capacity Bearing on Keck of Blade - Net Ad d ' l . Area of Keck x Bearing Capacity F r i c t l o n a l Force on Blade - t a n (•r/2) x blade area Normal Force oh Blade. » KJJ x blade area 2 Blade area ™ 355 cm - P 0 " V p. - Corrected Dilatometer '"A" Reading u Q » Porewater Pressure P r i o r to I n s e r t i o n (note: r a p i d drainage assumed) r i n g Force on Blade Bearing Capacity x C r o s s - s e c t i o n a l area . of the Blade (- 12.9 cm ) tan (0p 8/2) - [ THRUST - (fi/4) x RODIAM2 x UQ X 1.019 - (DMAREA * (fi/4) x 0FRIC2 - B x DFR1C) x qf • RODWT x (ZS • 2) ] / F u (6.4) where: dps • Drained f r i c t i o n angle of the s o i l - plane s t r a i n THRUST •» I n s e r t i o n thrust (kg) RODIAM - D r i l l rod diameter (cm) "0 " porewater pressure p r i o r to i n s e r t i o n of the d i l a t o m e t e r (bars) DMAREA - Bearing area of the di l a t o m e t e r (12.9 cm2) B - Thickness of the d i l a t o m e t e r (1.37 cm) DFRIC • Diameter of the f r i c t i o n reducer (cm) qf - Durgunoglu and M i t c h e l l bearing c a p a c i t y (kg/cm2) - see f o l l o w i n g explanation RODWT » D r i l l rod weight per u n i t length (kg/m) ZS " Test depth (m) - Note: 2 m added i n equation to account f o r rods above ground f"H " H o r i z o n t a l force normal to the dilatometer blade, <P0 - un) x blade area (- 355 cm 2) x 1.019 P0 " Corrected d i l a t o m e t e r "A" reading (bars) (Adapted from B u l l o c k , 1 9 8 3 ) APPENDIX II Computer Output F i l e Name:MR0-1X Locatlon:MCOONALD'S FARM U.B.C.INSITU TESTING RESEARCH GROUP. Record Qf 0 1 l e t o m e t e r t e s t No:MR0-1 Oate:MAR 21 84 C a l i b r a t i o n Informat 1on:0A» 0.20 Bar s DB« 0.27 B a r s ZM- 0.0 B a r s ZW- 1.OO metres Gamma«Bulk u n i t weight Sv ' E f f e c t i v e o v e r . s t r e s s •Pore p r e s s u r e • M a t e r i a l index • D i l a t o m e t e r modulus • H o r i z o n t a l s t r e s s index Uo Id Ed Kd INTERPRETED GEOTECHNICAL PARAMETERS Ko " I n s l t u e a r t h p r e s s . c o e f f . O C R - O v e r c o n s o l I d a t I o n R a t i o M • C o n s t r a i n e d modulus Cu 'Undrained c o n e s 1 o n ( c o h e s i v e ) P H I - F r l c t l o n A n g l e ( e o h e s l o n l e s s ) z PO RI Ed (m) ( B a r ) ( B a r ) ( B a r ) 0.20 1. 10 3.53 84. 0.40 0.70 2.33 56. 0.60 0.60 1.53 32. 0.80 0.70 1 .33 22. 1 .OO 0.90 1 .73 29. 1.20 0.60 1. 13 18. 1.60 0.70 1. 13 15. 1.80 0.70 1.33 22. 2.00 0.80 2.03 43. 2.20 0.80 2.63 63. 2.40 1.10 3.03 67. 2.60 0.90 2.43 53. 2.80 1.20 2.83 56. 3.00 0.90 3.03 74. 3.20 1.40 4.73 115. 3.40 1.40 S.43 139. 3.60 1.50 6.63 177. 3.80 2. 10 8.33 216. 4.0O 1.70 6.73 174. 4.20 1 .70 6.43 164. 4.40 1.30 4.73 119. 4.60 1.90 5.83 136. 4.80 1.50 5.33 133. 5.0O 2.00 6.63 160. S.20 1.80 6.43 160. S.40 1.80 7.43 195. S.60 2.30 8.53 216. S.80 2.30 8.13 202. 6.00 1.90 6.63 164. 6.20 1.80 6.73 171. 6.40 2. 10 9.73 264. 6.60 3.00 11 .63 299. Z PO PI Ed (m) ( B a r ) ( B a r ) ( B a r ) Uo I d Gamma Sv Kd (T/CM) (Bar) OCR Pc ( B a r ) KO Cu PHI M (B a r ) (Deg) ( B a r ) S o i l Type D e s c r i p t i o n Z (nt) 1 .70 0.031 35.5 • * • • * 13.17 3.82 35.4 311. SILTY SANO CEMENTED 0 .20 1.70 0.06S 10-8 43.58 2.83 1.93 33.0 145. SILTY SANO LOOSE 0 .40 1.60 0.097 6.2 8.77 0.85 1.35 28.9 66. SANDY SILT COMPRESSIBLE 0 .60 1.60 0. 129 5.4 4.74 0.61 1.23 0. 10 41. SILT COMPRESSIBLE 0 .80 1.60 0. 161 5.6 4.97 0.80 1.26 55. SILT COMPRESSIBLE 1 . 00 1.60 0. 173 3.4 2.24 0.39 0.86 26. SILT COMPRESSIBLE 1 .20 1.60 0. 197 3.2 2. 13 0.42 0.84 0.08 20. CLAYEY SILT COMPRESSIBLE 1. .60 1.60 0.209 3.0 1.85 0.39 0.78 28. SILT COMPRESSIBLE 1. 80 1.60 0.221 3.2 3.36 0.74 0.82 27.9 60. SANOY SILT COMPRESSIBLE 2. 00 1.70 0.235 2.9 3.54 0.83 0.76 29.8 89. SILTY SANO LOOSE 2. 20 1.70 0.249 3.9 6.13 1.53 0.96 29.0 108. SILTY SANO LOOSE 2. 40 1.70 0.263 2.8 3.36 0.88 0.74 28.4 70. SILTY SAND LOOSE 2. 60 1.60 0.275 3.7 3.83 1.05 0.93 27.9 87. SANOY SILT COMPRESSIBLE 2. 80 1.70 0.289 2.4 2.52 0.73 0.65 29.9 93. SILTY SAND LOOSE 3. 00 1.80 0.305 3.9 6. 17 1.88 0.96 30.9 192. SILTY SAND LOW RIGIDITY 3. 20 1.80 0.321 3.6 5.41 1.74 0.91 * 32. 1 225. SAND LOW RIGIDITY 3. ,40 1.80 0.337 3.7 5.60 1.89 0.92 33.7 290. SAND LOW RIGIDITY 3. 60 1.80 0.353 5.2 10.67 3.77 1.19 33.4 415. SANO LOW RIGIDITY 3. 80 1.80 0.369 3.8 5.94 2. 19 0.95 32.6 289. SAND LOW RIGIDITY 4. 00 1.80 0.385 3.6 5.33 2.05 0.91 32.0 263. SAND LOW RIGIDITY 4. .20 1.80 0.401 2.4 2.47 0.99 0.65 30.9 149. SAND LOW RIGIDITY 4. ,40 1.80 0.417 3.7 5.64 2.35 0.93 30. 1 218. SILTY SAND LOW RIGIDITY 4. .60 1.80 0.433 2.6 2.86 1.24 0.69 30.8 176. SAND LOW RIGIDITY 4. 80 1.80 0.449 3.6 5.27 2.37 0.90 30.8 256. SILTY SAND LOW RIGIOITY 5.00 1.80 0.465 3.0 3.72 1.73 0.78 31.2 231. SAND LOW RIGIDITY 5. .20 1.80 0.481 2.8 3.39 1.63 0.75 32.5 273. SAND LOW RIGIDITY 5. ,40 1.80 0.497 3.7 5.67 2.82 0.93 32.0 353. SAND LOW RIGIDITY 5. 60 1.80 0.513 3.5 5.23 2.68 0.90 31.5 323. SILTY SAND LOW RIGIDITY 5. .80 1.80 0.529 2.6 2.99 1.58 0.71 30.8 220. SAND LOW RIGIDITY 6. 00 1.80 0.545 2.3 2.38 1.30 0.63 31.3 212. SAND LOW RIGIDITY 6. 6. ,20 1.80 0.561 2.8 3.28 1.84 0.74 33.9 367. SAND LOW RIGIDITY .40 1.90 0.579 4.2 7.26 4.20 1.02 32.9 522. SANO MEOIUM RIGIOITY 6. .60 Gamma Sv Kd OCR PC KO Cu PHI M S o i l Type D e s c r 1 p t I o n Z (T/CM) ( B a r ) ( B a r ) ( B a r ) (Deg) ( B a r ) (m) 0.0 0.0 0.0 0.0 0.0 0.02 0.06 O.08 0. 10 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 Uo 2.21 2.33 1.55 0.90 0.92 0.91 0.67 1.02 1.76 2.69 2.01 2.07 1.60 3.04 2.82 3.47 4. 14 2.89 3.36 4. 14 3.39 3.20 3.38 3.85 4.89 3.54 Id Sounding MRD-1 (DIL.RED) Z PO Pt Ed Uo Id Gamma Sv Kd OCR Pc KO Cu PHI H S o i l Type D e s c r i p t i o n (re) ( B a r ) ( B a r ) (Bar) (Bar) (T/CM) (Bar) ( B a r ) ( B a r ) (Oeg) (Bar) Z (m) 6.80 2 .80 9. 33 226. 0.58 2.94 1.90 0.597 3.7 5.72 3.41 0.93 31.0 370. SILTY SAND MEOIUM RIGIDITY 6.80 7.00 2 .80 10. .23 257. 0.60 3.38 1.90 0.615 3.6 5.31 3.27 0.90 31.9 413. SAND MEDIUM RIGIOITY 7.00 7.20 2 .90 11. ,03 281. 0.62 3.57 1.90 0.633 3.6 5.38 3.41 0.91 32.3 454. SAND MEOIUM RIGIOITY 7.20 7.40 5. .30 17. 53 423. 0.64 2.62 2.00 0.653 7.1 19.86 12.97 1.48 32.6 930. SILTY SAND RIGID 7.40 7.60 4. .40 16. 83 430. 0.66 3.32 2.OO 0.673 5.6 12.32 8.29 1.25 33.5 856. SANO RIGID 7.60 8.00 4. .00 14. S3 364. 0.70 3. 19 1.90 0.709 4.7 8.78 6.22 1.10 32.5 669. SILTY SAND MEOIUM RIGIOITY 8.00 8.60 2.90 11. 33 292. 0.76 3.94 1.90 0.763 2.8 3.34 8.85 0.74 32.1 407. SAND MEDIUM RIGIDITY 8.60 9.00 3. .20 13. 23 347. 0.80 4. 18 1.90 0.799 3.0 3.80 3.04 0.79 32.9 505. SAND MEOIUM RIGIOITY 9.00 9.60 4.O0 17. 33 461. 0.86 4.25 1.90 0.853 3.7 5.61 4.78 0.92 33.9 753. SAND MEDIUM RIGIOITY 9.60 10.00 6 .60 17. 53 378. 0.90 1.92 2.00 0.893 6.4 14.49 12.94 1.38 30. 1 786. SILTY SAND RIGID 10.00 10.60 4 , .40 18. 43 485. 0.96 4.08 1.90 0.947 3.6 5.47 S. 18 0.92 33.5 787. SAND MEDIUM. RIGIDITY 10.60 tl.OO 3, . 10 12. 73 333. 1.00 4.59 1.90 0.983 2.1 1.98 1.95 0.58 32.2 386. SAND MEDIUM RIGIDITY 1 1.00 11.60 2. .50 6. 63 143. 1.06 2.87 1.80 1.031 1 .4 0.88 0.91 0.37 28.3 121. SILTY SAND LOW RIGIOITY 1 1.60 11.80 3. .40 11. 63 285. 1.08 3.55 1.90 1.049 2.2 2. 12 2.22 0.60 30.6 339. SANO MEOIUM RIGIOITY 1 1.80 12.00 5, .20 17. 93 440. 1. 10 3. 10 2.00 1.069 3.8 6.07 6.48 0.95 31.5 735. SILTY SAND RIGID 12.00 12.20 6. . 10 18. 63 434. 1. 12 2.52 2.00 1.089 4.6 8.49 9.24 1.09 30.7 779. SILTY SAND RIGID 12.20 12.40 3, .90 14. 93 382. 1. 14 4.00 1.90 1. 107 2.5 2.66 2.95 0.67 31.8 494. SANO MEOIUM RIGIDITY 12.40 12.60 3, .90 16. 43 434. 1. 16 4.57 1.90 1. 125 2.4 2.55 2.87 0.66 32.7 552. SAND MEDIUM RIGIOITY 12.60 12.80 4. .30 19. 13 513. 1. 18 4.75 1.90 1. 143 2.7 3. 17 3.62 0.72 33.6 704. SANO MEDIUM RIGIOITY 12.80 13.00 5. .80 IB. 63 444. 1.20 2.79 2.00 1.163 4.0 6.43 7.48 0.98 30.9 747. SILTY SANO RIGID 13.00 13.40 4. .90 18. 43 468. 1.24 3.70 2.00 1.203 3.0 3.90 4.69 0.79 32.0 686. SAND RIGID 13.40 13.80 2. .90 7. 73 167. •1.28 2.98 1.80 1.235 1.3 0.78 0.97 0.34 28.3 142. SILTY SANO LOW RIGIDITY 13.80 14.00 5. .20 16. 43 389. 1.30 2.88 1.90 1.253 3. 1 4.07 5. 10 O.BI 30.4 574. SILTY SAND MEDIUM RIGIDITY 14.00 14.20 4. .30 13. S3 319. 1.32 3. 10 1.90 1.271 2.3 2.37 3.01 0.63 29.9 396. SILTY SAND MEDIUM RIGIOITY 14.20 14.40 3, .50 12. 63 316. 1.34 4.23 1.90 1.289 1.7 1.25 1.61 0.45 30.8 300. SANO MEDIUM RIGIDITY 14.40 14.60 3 .50 11. 13 264. 1.36 3.57 1.90 1.307 1.6 1.19 1.S6 0.44 29.7 245. SAND MEDIUM RIGIDITY 14.60 14.80 3 .60 10.53 240. 1.38 3. 12 1.90 1.325 1.7 1.25 1.65 0.45 29.1 227. SILTY SAND MEDIUM RIGIDITY t4.80 15.00 3 .50 1 1. 53 278. 1.40 3.82 1.90 1.343 1.6 1.09 1.47 0.42 30.0 247. SANO MEDIUM RIGIDITY 15.00 15.20 4.0O 10. 03 209. 1.42 2.34 1.90 1.361 1.9 1.58 2. IS 0.52 28. 1 205. SILTY SAND MEDIUM RIGIDITY 15.20 16.00 3 .40 4. 23 29. 1.50 0.44 1.60 1.409 1.3 0.54 0.76 0.3S 0. 19 24. SILTY CLAY SOFT 16.00 17.00 4 .30 4. .93 22. 1.60 0.23 1.60 1.469 1.8 0.88 1.29 0.50 0.29 19. CLAY SOFT 17.00 18.00 4 .70 5. . 13 15. 1.70 0. 14 1.60 1.529 2.0 0.97 1.48 0.53 0.33 13: CLAY SOFT 18.00 18.20 4. .80 5. 23 15. 1.72 0. 14 1.60 1.54 1 2.0 1.00 1.S4 0.54 0.34 13. CLAY SOFT 18.20 18.40 . 4. 90 5. .33 15. 1.74 0. 14 1.60 1.553 2.0 1.03 1.60 0.55 0.35 13. CLAY SOFT 18.40 18.60 4, .70 5. .23 18. 1.76 0. 18 1.60 1.565 1.9 0.91 1.42 0.51 0.32 16. CLAY SOFT 18.60 18.80 5 .00 5. .63 22. 1.78 0.20 1.70 1.579 2.0 1.03 1.63 0.56 0.36 19. CLAY LOW CONSISTENCY 18.80 19.00 4, .70 5. .43 25. 1.80 0.25 1.70 1.593 1.8 0.86 1.38 0.50 0.31 21. CLAY LOW CONSISTENCY 19.00 19.20 5 .30 6. . 13 29. 1.82 0.24 1.70 1.607 2.2 1. 13 1.82 0.59 0.39 27. CLAY LOW CONSISTENCY 19.20 19.40 4. .50 5. .33 29. 1.84 0.31 1.70 1.621 1.6 0.73 1. 19 0.44 0.28 24. CLAY LOW CONSISTENCY 19.40 19.60 4.70 5. .43 25. 1.86 0.26 1.70 1.635 1.7 0.80 1.31 0.47 0.30 21. CLAY LOW CONSISTENCY 19.60 19.80 5 .30 6. . 13 29. 1.88 0.24 1.70 1.649 2.1 1.06 1.75 0.56 0.38 25. CLAY LOW CONSISTENCY 19.80 20.00 3 .80 S. .03 43. 1.90 0.65 t.70 1.663 1. 1 0.42 0.69 0.28 0. 18 36. CLAYEY SILT LOW DENSITY 20.00 20.20 5 .60 6 .23 22. 1.92 0. 17 1.70 1.677 2.2 1. 16 1.94 0.60 0.41 21. CLAY LOW CONSISTENCY 20.20 20.40 3 .20 5, . 13 67. 1.94 1.53 1.60 1.689 0.7 0.23 0.39 0. 12 25.0 57. SANDY SILT COMPRESSIBLE 20.40 20.60 5 .50 6 .33 29. 1.96 0.23 1.70 1.703 2. 1 1.06 1.81 0.57 0.39 26. CLAY LOW CONSISTENCY 20.60 20.1)0 5 .80 6 .33 18. 1.98 0. 14 1.70 1.717 2.2 1. 18 2.03 0.60 0.43 18. CLAY LOW CONSISTENCY 20.80 Z PO PI Ed Uo Id Gamma Sv Kd OCR Pc KO Cu PHI M S o i l Type D e s c r i p t i o n Z (n>) ( B a r ) ( B a r ) (Bar) ( B a r ) (T/CM) (Bar) ( B a r ) ( B a r ) (Oeg) ( B a r ) (re) NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu nor P h i c a l c u l a t e d . 2.IBar-IOOKPa 3.# •1mm D e f l e c t i o n not re a c h e d . Sounding MRD-1 (DIL.RED) , Continued 134 U.B.C. INSITU TESTING. LOCATION: nCDONflLD'S FARM INTERMEDIATE GEOTECHNICAL PARAMETERS TEST No. flRD-2 TEST DATE: APR 18 84 CO Zj Q o LU Q_ r- ZZ UJ """ ZZ o r— cn _ J H Q X _ J LU cr Q r- 2 2 M O jvj CO M CO CC LU O CC X I— CO in to OJ CO ~ , CO —I Q_ ro c Q J > Q_ o 4-o . CM o o ' 0 2 0 9 0 01 O'FI 0'8I —I—I 1 1 I I I I ' Q'ZZ 0'92 J 1 I L _ J L o co' Q i 1 r i i 1 i r o o CM" ' ' I ' I J I L m o ' o o ' "i r i r / t I T3 9= UJ H CO J L s? .J L *~"i i i i i i i i 1 1 1 1 r~ 0"2 0'9 O'Ot 0>l 0'8I O'ZZ 0'92 (W) HldlO Sounding MRD-2 (DIL.RED) 135 U.B.C. INSITU TESTING. LOCATION: flCDONRLD'S FRRH  INTERPRETED GEOTECHNICAL PARAMETERS. TEST No. HRD-2 TEST DATE: RPR 18 84 o M CO LU — ^ ™ O Q -o ^ erf Q CO 3 =3 O O LU cr t— CO o CJ LU ^ 0*2 0*9 _1 o oo' o o a ' \ (W) Hld3a 001 O't'l 0'8t J I I I I L I i i i i r i 1 1 r J l J L J I i r O'Ot 0>t 0"8I (W) H l d 3 0 C to i_ cn u > a u 3 CJ II I I Sounding MRD-2 (DIL.RED), Continued z (m) F i l e Name:MRD-2X Location:MCDONALD'S FARM U.B.C.INSITU TESTING RESEARCH GROUP• Re c o r d o f D i l a t o m e t e r t e s t No:MRD-2 Oate:APR 18 84 C a l i b r a t i o n I n f o r m a t l o n : 0 A ' 0.20 B a r s Garama'Bulk u n i t w e i g h t Sv ' E f f e c t i v e o v e r . s t r e s s Uo «Pore p r e s s u r e I d ' M a t e r i a l index Ed ' D i l a t o m e t e r modulus Kd ' H o r i z o n t a l s t r e s s Index OB' 0.27 B a r s ZM* 0.0 B a r s ZW» 1.50 m e t r e s PO PI ( B a r ) ( B a r ) Ed Uo I d (Ba r ) ( B a r ) Gamma Sv (T/CM) ( B a r ) Kd OCR Pc ( B a r ) KO INTERPRETED GEOTECHNICAL PARAMETERS Ko " I n s l t u e a r t h p r e s s . c o e f f . O C R ' O v e r c o n s o l i d a t l o n R a t i o M ' C o n s t r a i n e d modulus Cu ' U n d r a i n e d c o h e s l o n ( c o h e s l v e ) P H I ' F r l c t l o n A n g l e ( c o h e s l o n l e s s ) Cu PHI M ( B a r ) (Deg) ( B a r ) S o i l Type D e s c r i p t i o n Z (m) 1.00 0.70 1.63 32. 0.0 1.33 1.60 0.157 4. .5 3 .98 0.63 1.07 27.5 55. SANOY S I L T 2.00 0.70 1.23 18. 0.05 0.82 1.60 0.267 2. .4 1, .36 0.36 0.66 0.08 20. SILT 3.00 0.70 1. 13 15. 0. 15 0.78 1.60 0.327 1. .7 0 .76 0.25 0.46 0.06 13. CLAYEY SILT 4 .OO 1.40 6.23 167. 0.25 4.20 1.80 0.407 2 .8 3. .38 1.38 0.75 32.7 234. SANO S.OO 1.60 6.63 174. 0.35 4.02 1.80 0.487 2. .6 2. .82 1.37 0.69 32.0 230. SAND 6 .OO 2.60 8.03 188. 0.45 2.53 1.90 0.577 3. ,7 5. ,74 3.31 0.93 30. 1 303. SILTY SANO 7.00 2.80 10.83 278. 0.55 3.57 1.90 0.667 3 .4 4 .75 3. 17 0.86 32. 1 432. SAND 8.00 3.60 13.33 337. 0.65 3.30 1 .90 0.757 3 .9 6 .25 4.73 0.97 32.0 566. SILTY SAND 9.00 2.20 8.23 209. 0.75 4. 16 1.80 0.837 1 .7 1 .33 1.11 0.47 30.8 204. SAND 10.OO 3.00 14.93 413. 0.85 5.55 1.90 0.927 2 .3 2. .32 2. 15 0.63 34.3 508. SAND z PO PI Ed Uo Id Gamma Sv Kd OCR PC KO CU PHI M S o i l T ype (m) ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) ( B a r ) ( B a r ) ( B a r ) (Deg) ( B a r ) COMPRESSIBLE 1.00 COMPRESSIBLE 2.0O COMPRESSIBLE 3.0O LOW RIGIOITY 4.00 LOW RIGIOITY 5.00 MEDIUM RIGIOITY 6.00 MEDIUM RIGIDITY 7.00 MEDIUM RIGIDITY 8.00 LOW RIGIDITY 9.00 MEDIUM RIGIOITY 10.00 D e s c r i p t i o n Z (m) NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu n o r Phi 2.1Bar-100KPa 3.0 «1mm O e f l e c t i o n not r e a c h e d . c a l c u l a t e d . Sounding MRD-2 (DIL.RED), Continued 137 U.B.C. INSITU LOCATION: nCDONRLD'S FARtl TESTING. TEST No. HRD-3 TEST DATE: APR 18 84 INTERMEDIATE GEOTECHNICAL PARAMETERS 0 2 i i (W) Hld3a 0'9 0 01 0'W i 1 i 1 i i 0'8t 0'22 0'9Z i i i i i DILATOflETER riODULUS (HPa) .0 20.0 40.0 60.0 I 1 1 1 1 1 1 1 1 1 — , | , o o_ \_ . U J H to ro o HORIZONTAL TRESS INDEX 4.0 8.0 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 V a a. CO o t i i i i i i ^ ^ T ^ (vwy^ t t ( a a PO.Pl,Vertical Stress (HPa) .0 0.5 J.O 1.5 2 1 1 > h 1 i i i o — "> o_ o_ t> 1 1 1 1 1 N i / i i i \\ X \ 1 1 i i l Q 1 1 0'2 i i i 0"9 0 0 t I I I (W) Hid3Q 1 1 1 1 0'8I 0*22 0 i 92 Sounding MRD-3 (DIL.RED) 138 U.B.C. INSITU TESTING. LOCATION: nCDONOLD'S FORM  INTERPRETED GEOTECHNICAL PARAMETERS. TEST No. riRD-3 TEST DATE: RPR 18 84 CO LU ~ T- ra CJ ^ erf Q Z ZD CO Q O cr cc I— CO 2 o CJ cr x CC Q LU ^ 0"2 0"9 (W) H l d 3 0 cot o'w o-8r J I I I L rrzz i 1 1 1 1 r 0"2 0'9 O'OC O'W 081 (W) Hld3Q 022 3 C CO (-cn o u CJ II 092 Sounding MRD-3 (DIL.RED), Continued U.B.C.INSITU TESTING RESEARCH GROUP• F i l e Name:MRD-3X R e c o r d of D i l a t o m e t e r t e s t No:MRD-3 Location.MCDONALD'S FARM Date:APR 18 84 C a l i b r a t i o n Inforraat1on:DA' 0.20 B a r s 0B» 0.27 Bar s ZM' 0.0 B a r s ZW» 1.50 m e t r e s Gamma»8u1k u n i t w e i g h t Sv ' E f f e c t i v e o v e r . s t r e s s Uo 'Pore p r e s s u r e Id • M a t e r i a l Index Ed • D i l a t o m e t e r modulus Kd ' H o r i z o n t a l s t r e s s Index INTERPRETED GEOTECHNICAL PARAMETERS Ko " I n s l t u e a r t h p r e s s . c o e f f . O C R ' O v e r c o n s o l I d a t l o n R a t i o M ' C o n s t r a i n e d modulus Cu ' U n d r a i n e d c o h e s l o n ( c o h e s l v e ) P H I ' F r l c t l o n A n g l e ( c o h e s l o n l e s s ) Z (m) PO PI ( B a r ) ( B a r ) Ed Uo ( B a r ) ( B a r ) Id Gamma Sv (T/CM) ( B a r ) Kd OCR Pe ( B a r ) KO Cu PHI M ( B a r ) (Oeg) ( B a r ) S o l i Type O e s c r i p t I o n Z (Kl) 5.00 1. 40 5. 63 146. 0.35 4.03 1 .80 0.533 2. 0 1.70 0.91 0.54 31. 0 159. SANO LOW RIGIDITY S .00 7 .00 2. 60 12. 63 354. 0.55 4.99 1 .90 0.713 2. 9 3.50 2.49 0.76 34. 3 502. SANO MEOIUM RIGIOITY 7 .00 9.00 2. .50 10. ,23 267. 0.75 4.42 1 .90 0.893 2. 0 1.68 1.50 0.53 31. .6 290. SAND MEDIUM RIGIDITY 9 .00 10. OO 3. OO 15. 83 444. 0.85 5.97 1 .90 0.983 2. 2 2.07 2.04 0.59 34. ,7 524. SAND MEOIUM RIGIDITY 10 .00 11.00 5. 00 18. .83 479. 0.95 3.41 2 .00 1.083 3. 7 5.78 6.26 0.94 32. 1 787. SAND RIGID 11. .00 12.00 3. 20 12. 33 316. 1.05 4.25 1 .90 1. 173 1. 8 1.48 1.74 0.50 31. , 1 324. SAND MEDIUM RIGIDITY 12. .00 13.00 3. 40 14. 03 368. 1.15 4.72 1 .90 1.263 1. 8 1.40 1.77 0.48 31. 8 368. SAND MEDIUM RIGIDITY 13. .00 14.00 4. 10 9. 93 202. 1.25 2.05 1 .90 1.353 2. 1 1.93 2.61 0.57 27. ,7 212. SILTY SANO MEOIUM RIGIDITY 14. .00 16.00 3. CO 5. 43 84. 1.45 1.57 1 .70 1.493 1. 0 0.42 0.62 0.24 25. 0 71. SANDY SILT LOW DENSITY 16. .00 17.00 4. 40 5. 13 25. 1.55 0.26 1 .70 1.563 1. 8 0.87 1.35 0.50 0.31 21 . CLAY LOW CONSISTENCY 17. .00 18.OO 4. 50 5. 03 18. 1.65 0. 19 1 .60 1.623 1. 8 0.82 1.32 0.48 0.30 16. CLAY SOFT 18. OO 18.20 4. 60 5. 33 25. 1.67 0.25 1 .70 1.637 1. 8 0.84 1.38 0.49 0.31 21 . CLAY LOW CONSISTENCY 18. .20 18.40 2. .80 4. .53 60. 1.69 1.56 1 .60 1.649 0. 7 0.20 0.32 0.09 25. 0 51. SANDY SILT COMPRESSIBLE 18. .40 18.60 4. , 10 4 . 93 29. 1.71 0.35 1 .60 1.661 1. 4 0.60 0.99 0.38 0.24 24. SILTY CLAY SOFT 18. .60 18.80 4. .20 4. 93 25. 1.73 0.30 1 .60 1.673 1. 5 0.62 1.04 0.39 0.25 21. CLAY SOFT 18 .80 19.00 2. ,70 4. .43 60. 1.75 1.82 1 .70 1.687 0. 6 0.15 0.25 0.03 25. 0 51. SILTY SAND LOOSE 19. .00 19.20 3. ,90 4. .83 32. 1.77 0.44 1, .60 1.699 1. 3 0.48 0.82 0.32 0.21 27. SILTY CLAY SOFT 19. .20 19.40 3. 90 4 . 33 15. 1.79 0.20 1 .60 1.711 1. 2 0.47 0.80 0.31 0.21 13. CLAY SOFT 19. .40 19.60 2. ,70 3. 83 39. 1.81 1.27 1 .60 1.723 0. 5 0. 12 0.21 0.01 25. 0 33. SANDY SILT COMPRESSIBLE 19. .60 19.80 3. 90 4. 53 22. 1.83 0.30 1 .60 1.735 1. 2 0.45 0.77 0.30 0.20 19. CLAY SOFT 19. 30 20.00 4, 10 4 . 63 18. 1.85 0.24 1.60 1.747 1. 3 0.50 0.88 0.33 0.22 16. CLAY SOFT 20. .00 20.20 2. 70 3. .93 43. 1.87 1.48 1 .60 1.759 0. 5 0. 11 0. 19 -.02 25. 0 36. SANDY SILT COMPRESSIBLE 20. .20 20.40 4. 80 5. 43 22. 1.89 0.22 1 .60 1.771 1. 6 0.74 1.30 0.44 0.30 19. CLAY SOFT 20.40 20.60 3. 50 4. ,73 43. 1.91 0.77 1.60 1.783 0. 9 0.28 0.51 0. 18 0. 14 36. CLAYEY SILT COMPRESSIBLE 20. 60 20.80 5. 00 5. 63 22. 1.93 0.21 1, .70 1.797 1. 7 0.78 1.41 0.46' 0.32 19. CLAY LOW CONSISTENCY 20. ,80 21 .OO 4 . 50 5. 53 36. 1.95 0.40 1 .70 1.811 1. 4 0.58 1.05 0.37 0.26 30. SILTY CLAY LOW CONSISTENCY 21. ,00 21.20 5. 40 6. 43 36. 1.97 0. 30 1 .70 1.825 1. 9 0.91 1.66 0.51 0.37 30. CLAY LOW CONSISTENCY 21 . 20 Z PO PI Ed Uo Id Gamma Sv Kd OCR Pc KO Cu PHI M S o i l Type D e s c r I p t I o n Z (m) ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) ( B a r ) ( B a r ) ( B a r ) (Deg) ( B a r ) (m) NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu n o r P h i c a l c u l a t e d . 2.IBar-IOOKPa 3.# '1mm D e f l e c t i o n not r e a c h e d . Sounding MRD-3 (DIL.RED) , Continued to 10 F i l e Name:LRD-2X LocatIon:LANGLEY-RAILWAY U.S.C.INSITU TESTING RESEARCH GROUP. Re c o r d of D i l a t o m e t e r t e s t No:LRD-2 Date:OCT 7 83 C a l i b r a t i o n Informatlon:DA» 0.20 Bars DB' 0.27 Bars ZM« 0.0 B a r s ZW- t.00 m e t r e s Gamma'Bulk u n i t weight Sv ' E f f e c t i v e o v e r . s t r e s s Uo 'Pore p r e s s u r e Id ' M a t e r i a l index Ed ' D i l a t o m e t e r modulus Kd ' H o r i z o n t a l s t r e s s Index INTERPRETED GEOTECHNICAL PARAMETERS Ko ' I n s l t u e a r t h p r e s s . c o e f f . O C R ' O v e r c o n s o l i d a t i o n R a t i o M ' C o n s t r a i n e d modulus Cu ' U n d r a i n e d c o h e s 1 o n ( c o n e s Ive) P H I ' F r i c t i o n A n g l e ( c o h e s t o n l e s s ) Z (ra) PO PI ( B a r ) ( B a r ) Ed Uo Id (Bar ) ( B a r ) Gamma Sv (T/CM) ( B a r ) Kd OCR Pc ( B a r ) KO Cu PHI M ( B a r ) (Deg) ( B a r ) So 11 Type D e s c r t p t I o n Z (ra) 2 .20 1, .50 1 .93 15. 0. 12 0. 31 1 .60 0. 215 6 .4 6 . 17 1.33 1 .38 0.20 30. CLAY SOFT 2 .20 2 .40 1 .80 2 .33 18. 0. 14 0. 32 1 .60 0. 227 7 .3 7 .56 1.72 1 .51 0.25 40. CLAY SOFT 2 .40 2 .80 1, .80 2 .23 15. 0. 16 0. 26 1 .60 0. 239 6 .9 6 .84 1.64 1 .44 0.25 31. CLAY SOFT 2 .60 2 .80 1. .90 2 .23 11. 0. 18 0. 19 1 .50 0. 249 6 .9 6 .91 1.72 1 .45 0.26 24. MUD 2 .80 3 .00 2 .00 2 .43 15. 0.20 0. 24 1 .60 0. 261 6 .9 6 .90 1.80 1 .45 0.27 32. CLAY SOFT 3 .00 3 .20 2 .30 2 .73 15. 0.22 0. 21 1 .60 0. 273 7 .6 8 .06 2.20 1 .55 0.32 33. CLAY SOFT 3 .20 3 .40 2. .20 2, .83 22. 0.24 0. 32 1 .60 0. 285 6 .9 6 .87 1.96 1 .45 0.29 46. CLAY SOFT 3. .40 3 .60 2. .30 2 .73 15. 0.26 0. 21 1 .60 0. 297 6 .9 6. .85 2.04 1, .44 0.31 31. CLAY SOFT 3 .60 3 .80 2 .30 2. .93 22. 0.28 0. 31 1 .60 0. ,309 6 .5 6. .34 1.96 1, .40 0.30 45. CLAY SOFT 3 .80 4 .CO 2 .50 2 .93 15. 0.30 0. 20 1 .60 0. 321 6 .9 6, .83 2.19 1, .44 0.33 31. CLAY SOFT 4. .00 4 .20 2. .70 3, .23 18. 0.32 0. 22 1 .60 0. 333 7 . 1 7, .29 2.43 1 .48 0.36 40. CLAY SOFT 4 .20 4 .40 2 .70 3 .23 18. 0.34 0. 22 1 .60 0. 345 6 .8 6. .81 2.35 1 .44 0.35 39. CLAY SOFT 4 .40 4 .60 2 .70 3 . 13 IS. 0.36 0. 18 1 .60 0. 357 6 .6 6. .37 2.27 1, .40 0.35 31. CLAY SOFT 4 .60 4 .80 2 .60 3, .03 15. 0.38 0. 19 1 .60 0. 369 6 .0 5 .57 2.06 1 .32 0.32 29. CLAY SOFT 4 .80 5 .00 2 .70 3 . 13 15. 0.40 0. 19 1 .60 0. 381 6 .0 5. .60 2.13 1 .32 0.33 29. CLAY SOFT 5, .00 5 .20 2. .80 3, . 13 11. 0.42 0. 14 1.50 0. 391 6 . 1 5, .68 2.22 1, .33 0.35 23. MUD 5 .20 5 .40 2. .70 3. .33 22. 0.44 0. 28 1 .60 0. 403 5 .6 4. .99 2.01 1. .26 0.32 42. CLAY SOFT 5 .40 5 .60 2. .80 3. .43 22. 0.46 0. 27 1 .60 0. 415 5 .6 5. .04 2.09 1, .26 0.33 42. CLAY SOFT 5. .60 5 .80 2. .90 3. .33 15. 0.48 0. 18 1 .60 0. 427 5 .7 5. ,08 2. 17 1, .27 0.35 29. CLAY SOFT 5, .80 6 .00 2. .70 3. . 13 15. 0.50 0. 20 1 .60 0. 439 5 .0 4. . 19 1.84 1, . 16 0.30 27. CLAY SOFT 6. .00 6 .20 2. .90 3. 33 15. 0.52 0. 18 1 .60 0. 451 5 .3 4. ,54 2.05 1. .21 0.33 27. CLAY SOFT 6. .20 6. .40 2. 90 3. ,53 22. 0.54 0. 27 1 .60 0. 463 5 . 1 4 , 30 1.99 1. . 18 0.33 39. CLAY SOFT 6. .40 6. .60 3. 00 3. ,63 22. 0.56 0. 26 1 .60 0. 475 5 . 1 4, .36 2.07 1, . 18 0.34 40. CLAY SOFT 6. .60 6. 80 3. 20 3. 73 18. 0.58 0. 20 1 .60 0. 487 5 .4 4. .68 2.28 1, .22 0.37 34. CLAY SOFT 6. ,80 7. .00 3. 20 3. .83 22. 0.60 0. 24 1 .60 0. 499 5 .2 4. .45 2.22 1, 20, 0.36 40. CLAY SOFT 7. ,00 7. .20 3. 20 3. .83 22. 0.62 0. 24 1 .60 0. 511 5 .0 4. .24 2.17 1, .17 0.36 39. CLAY SOFT 7. .20 7 .40 3. .20 3. .93 25. 0.64 0. 29 1 .60 0. 523 4 .9 4. .04 2.11 1, . 14 0.35 45. CLAY SOFT 7. ,40 7 .60 3. .60 4. . 13 18. 0.66 0. 18 1 .60 0. 535 5 .5 4. .84 2.59 1, .24 0.42 35. CLAY SOFT 7. ,60 7 .80 2 .30 3, .03 25. 0.68 0. 45 1 .60 0. 547 3 .0 1 . 84 1.01 0 .78 0.20 32. SILTY CLAY SOFT 7. .80 8 .00 3. ,70 4, .33 22. 0.70 0. 21 1 .60 0. 559 5 .4 4 , .66 2.61 1, .22 0.42 41. CLAY SOFT 8. ,00 8 .20 3 ,60 3 .93 11. 0.72 0. 11 1 .50 0. 569 5 . 1 4 , .26 2.42 1 . 17 0.40 21. MUD 8 .20 8 .40 3 ,50 3 .93 15. 0.74 0. 16 1 .60 0. 581 4 .8 3, .86 2.24 1 . 12 0.38 26. CLAY SOFT 8 .40 Z PO PI Ed Uo Id Gamma Sv Kd OCR Pc KO Cu PHI M S o i l Type D e s c r i p t i o n Z (m) ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) (Bar) ( B a r ) ( B a r ) (Deg) ( B a r ) (m) Sounding LRD-2 (DIL.RED) o 2 P O P I Ed Uo I d Gamma Sv Kd OCR PC KO Cu PHI M S o d Typo (m) ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) ( B a r ) ( B a r ) ( 8 a r ) (Oeg) ( B a r ) D e s c r i p t I o n Z (m) 8.60 3 .80 4 . 23 15. 0.76 0. 14 1.60 0.593 5 . 1 4.34 2.57 8.80 3 .70 4. .23 18. 0.78 0. 18 1.60 0.605 4 .8 3.95 2.39 9.00 3 .70 4. .53 29. 0.80 0.29 1.70 0.619 4 .7 3.77 2.34 9.20 2.50 3. .73 43. 0.82 0.73 1.60 0.631 2 .7 1.56 0.99 9.40 4, . 10 4 . 73 22. 0.84 0. 19 1.70 0.645 5 . 1 4.25 2.74 9.60 4, .30 5 .23 32. 0.86 0.27 1.70 0.659 5 .2 4.47 2.94 9.80 4, .40 4 .93 18. 0.88 0. 15 1.70 0.673 5 .2 4.48 3.02 to.00 4, .40 5. .23 29. 0.90 0.24 1.70 0.687 5 . 1 4.30 2.95 10.20 4 .50 5 . 13 22. 0.92 O. 18 1.70 0.701 5 . 1 4.32 3.03 10.40 4 .70 5. .53 29. 0.94 0.22 1.70 0.715 5 .3 4.52 3.23 10.60 4, .60 5. .93 46. 0.96 0.37 1.70 0.729 5 .0 4.17 3.04 10.80 4, .80 5. .53 25. 0.98 0. 19 1.70 0.743 5 . 1 4.36 3.24 11.00 4. .40 5. . 13 25. 1.00 0.21 1.70 0.757 4 .5 3.53 2.67 11.20 4. .30 5. 13 29. 1.02 0.25 1.70 0.771 4 .3 3.25 2.50 11.40 4 , .20 4. .93 25. 1.04 0.23 1.70 0.785 4 .0 2.98 2.34 11.60 4. .40 5. 43 36. 1.06 0.31 1.70 0.799 4 .2 3. 16 2.52 11.80 4. .40 5. 63 43. 1.08 0.37 1.70 0.813 4 . 1 3.05 2.48 12.00 4. .80 5. .53 25. 1. 10 0.20 1.70 0.827 4 .5 3.51 2.90 12.20 4. .90 5. 93 36. 1. 12 0.27 1.70 0.841 4 .5 3.54 2.97 12.40 5.00 6. .03 36. 1. 14 0.27 1.70 0.855 4 .5 3.56 3.04 12.60 4.90 6. .23 46. 1.16 0.36 1.70 0.869 4 .3 3.31 2.87 12.80 4 .80 5. .73 32. 1.18 0.26 1.70 0.883 4 . 1 3.06 2.71 13.00 5 .00 5. .93 32. 1.20 0.24 1.70 0.897 4 .2 3.22 2.89 13.20 5 .20 6.03 29. 1.22 0.21 1.70 0.911 4 .4 3.38 3.08 13.40 5 .30 5.93 22. 1.24 0. 16 1.70 0.925 4 .4 3.41 3.15 13.60 5 .30 6 .03 2S. 1.26 0. 18 1.70 0.939 4 .3 3.30 3.10 13.80 5 .20 6. .33 39. 1.28 0.29 1.70 0.953 4 . 1 3.08 2.94 14.00 5 .40 6. . 13 25. 1.30 0. 18 1.70 0.967 4 .2 3.23 3. 12 14.20 5 . 10 6. . 13 36. 1.32 0.27 1.70 0.981 3 .9 2.78 2.73 14.40 5 .40 6. .33 32. 1.34 0.23 1.70 0.995 4 . 1 3.04 3.03 14.60 5 . 10 6.03 32. 1.36 0.25 1.70 1.009 3 .7 2.62 2.64 14.80 5, .40 7. .03 56. 1.38 0.41 1.70 1.023 3 .9 2.87 2.93 15.00 5 .90 7. .03 39. 1.40 0.25 1.70 1.037 4 .3 3.35 3.47 Z PO PI Ed Uo Id Gamma Sv Kd OCR PC (m) ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) ( B a r ) ( 8 a r ) NOTES: 1.For 0.9>Id>1.2 n e i t h e r Cu n o r Phi c a l c u l a t e d . 2.IBar-IOOKPa 3.# »1mm D e f l e c t i o n not r e a c h e d . 1.18 0.42 27. CLAY SOFT 8 .60 1. 13 0.40 32. CLAY SOFT 8 .80 1.11 0.39 49. CLAY LOW CONSISTENCY 9 .00 0.71 0.20 49. CLAYEY SILT COMPRESSIBLE 9 .20 1.17 0.45 39. CLAY LOW CONSISTENCY 9 .40 1.20 0.48 59. CLAY LOW CONSISTENCY 9 .60 1.20 0.49 34. CLAY LOW CONSISTENCY 9 .80 1.18 0.49 52. CLAY LOW CONSISTENCY 10 .00 1. 18 0.50 39. CLAY LOW CONSISTENCY 10 .20 1.20 0.53 53. CLAY LOW CONSISTENCY 10 .40 1.16 0.50 82. SILTY CLAY LOW CONSISTENCY 10.60 1.18 0.53 46. CLAY LOW CONSISTENCY 10. .80 1.07 0.46 42. CLAY LOW CONSISTENCY 11. ,00 1.03 0.44 47. CLAY LOW CONSISTENCY 1 1. ,20 0.99 0.41 40. CLAY LOW CONSISTENCY 11. 40 1.02 0.44 57. CLAY LOW CONSISTENCY 11. 60 1.60 0.44 67. SILTY CLAY LOW CONSISTENCY 1 1. 80 1.07 0.50 42. CLAY LOW CONSISTENCY 12. ,00 1.07 0.51 60. CLAY LOW CONSISTENCY 12. ,20 1.08 0.52 60. CLAY LOW CONSISTENCY 12. ,40 1.04 0.50 75. SILTY CLAY LOW CONSISTENCY 12. ,60 1.00 0.4B 51. CLAY LOW CONSISTENCY 12. ,80 1.03 0.50 52. CLAY LOW CONSISTENCY 13. ,00 1.05 0.53 47. CLAY LOW CONSISTENCY 13. ,20 1.06 0.54 36. CLAY LOW CONSISTENCY 13. ,40 1.04 0.54 41. CLAY LOW CONSISTENCY 13. .60 1.01 0.52 62. CLAY LOW CONSISTENCY 13. .80 1.03 0.54 41. CLAY LOW CONSISTENCY 14. .00 0.96 0.49 54. CLAY LOW CONSISTENCY 14. .20 1.00 0.53 51. CLAY LOW CONSISTENCY 14. ,40 0.93 0.48 48. CLAY LOW CONSISTENCY 14. 60 0.97 0.52 87. SILTY CLAY LOW CONSISTENCY 14. 80 1.05 0.60 64. CLAY LOW CONSISTENCY 15. .00 KO Cu PHI M S o i l Type D e s c r i p t i o n 2 ( B a r ) (Deg) ( B a r ) (m) Sounding LRD-2 (DIL.RED), Continued U.B.C.INSITU TESTING RESEARCH GROUP, F i l e Name:LRD-3X Record of D i l a t o m e t e r t e s t No:LRD-3 Locat ton:LANGLEY-232 ST(LOWER) 0ate:JUN 20 84 C a l i b r a t i o n Informatton:OA- 0.20 Bars DB" 0.27 Bars ZM- 0.0 B a r s ZW- 1.00 metres Gamma'Bulk u n i t weight Sv ' E f f e c t i v e o v e r . s t r e s s Uo *Pore p r e s s u r e Id ' M a t e r i a l Index Ed ' D i l a t o m e t e r modulus Kd ' H o r i z o n t a l s t r e s s Index INTERPRETED GEOTECHNICAL PARAMETERS Ko ' I n s i t u e a r t h p r e s s . c o e f f . O C R ' O v e r c o n s o l i d a t I o n R a t i o M ' C o n s t r a i n e d modulus Cu 'Undrained c o n e s i o n ( c o h e s I v e ) P H I ' F r i c t l o n A n g l e ( c o h e s l o n l e s s ) z PO PI Ed Uo Id Gamma Sv Kd OCR Pc KO Cu PHI M S o l i Type D e s c r i p t i o n Z (m) ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) (B a r ) ( B a r ) ( B a r ) (Deg) ( B a r ) (m) t .OO 1 . to 2. . 13 36. 0.0 0.94 1 .60 0.152 7.2 7. .44 1.13 1.50 78. SILT COMPRESSIBLE 1.00 2.00 1 .40 1 , .73 11. 0.10 0.25 1 .50 0.202 6.4 6. 19 1.25 1.38 0. 19 23. MUO 2.00 2.20 1 .50 1. .73 8. 0. 12 0. 17 1 .50 0.212 6.5 6. 30 1.34 1.39 0.20 16. MUD 2.20 2.40 t .50 I. .93 15. 0. 14 0.32 1 .60 0.224 6. 1 5. .65 1.27 1.33 0.20 30. CLAY SOFT 2.40 2.60 1 .80 2. ,03 8. 0. 16 0. 14 1 .50 0.234 7.0 7. .07 1.65 1.46 0.25 17. MUO 2.60 2.80 1 .80 2. 13 11. 0. 18 0.20 1.50 0.244 6.6 6. .50 1.59 1.41 0.24 24. MUD 2.80 3.00 1. .80 2.03 8. 0.20 0. 14 1 .50 0.254 6.3 5. 99 1.52 1.36 0.23 16. MUD 3.00 3.20 1 .90 2.03 4. 0.22 0.08 t .50 0.264 6.4 6. .08 1.61 1.37 0.25 9. MUD 3.20 3.40 1, .90 2. ,23 11. 0.24 0.20 1.50 0.274 6.1 S. 63 1.54 1.33 0.24 23. MUD 3.40 3.60 2. .00 2. 33 11. 0.26 0. 19 1 .50 0.284 6.1 5. 73 1.63 1.34 0.25 23. MUD 3.60 3.80 2 . to 2. 33 8. 0.28 0. 13 1 .50 0.294 6.2 5. 83 1.71 1.35 0.27 16. MUD 3.80 4.00 1 .80 2. 23 15. 0.30 0.29 t .60 0.306 4.9 4. 05 1.24 1.14 0.21 26. CLAY SOFT 4.00 4.20 t .90 2. .23 11. 0.32 0.21 1 .50 0.316 5.0 4. 18 1.32 1. 16 0.22 20. MUD 4.20 4.40 I .80 2. .33 18. 0.34 0.36 1 .60 0.328 4.5 3. 48 1.14 1.07 0.20 31. SILTY CLAY SOFT 4.40 4.60 2, .00 2. .33 11. 0.36 0.20 1 .50 0.338 4.9 3. 99 1.35 1.14 0.23 20. MUO 4.60 4.80 2. .00 2. 43 15. 0.38 0.27 1 .60 0.350 4.6 3. .70 1.30 1.10 0.22 25. CLAY SOFT 4.80 5.CO 2. . to 2. 43 I t . 0.40 0. 19 1 .50 0.360 4.7 3.82 1.38 1.11 0.23 20. MUD 5.0O 5.20 2. .20 2. 43 8. 0.42 0. 13 1 .50 0.370 4.8 3. .93 1.45 1. 13 0.24 14. MUO 5.20 5.40 2. .20 2. 43 8. 0.44 0. 13 1. .50 0.380 4.6 3. 71 1.41 1.10 0.24 14. MUD 5.40 5.60 2. .20 2. 53 11. 0.46 0. 19 1. .50 0.390 4.5 3. 50 1.36 1.07 0.23 19. MUD 5.60 5.80 2. .20 2. 63 15. 0.48 0.25 1 .60 0.402 4.3 3. 28 1.32 1.04 0.23 24. CLAY SOFT 5.80 6.00 2. .20 2. .73 18. 0.50 0.31 1 .60 0.414 4.1 3. 07 1.27 1.01 0.22 29. CLAY SOFT. 6.00 6.20 2, .30 2. 73 15. 0.52 0.24 1 .60 0.426 4.2 3. 16 1.34 1.02 0.24 24. CLAY SOFT 6.20 6.40 2 .40 2. 83 15. 0.54 0.23 1 .60 0.438 4.2 3. .24 1.42 1.03 0.25 24. CLAY SOFT 6.40 6.60 2 .30 2. .83 18. 0.56 0.30 1 .60 0.450 3.9 2. 80 1.26 0.96 0.23. 28. CLAY SOFT 6.60 6.80 2 .50 2. .83 11. 0.58 0. 17 1 .50 0.460 4.2 3. . 15 1.45 1.02 0.25 18. MUD 6.80 7.00 2 .50 2. .83 11. 0.60 0. 17 1 .50 0.470 4.0 3.00 1.41 0.99 0.25 18. MUD 7.00 7.20 2 .50 2. .93 15. 0.62 0.23 1 .60 0.482 3.9 2. .83 1.37 0.97 0.24 23. CLAY SOFT 7.20 7.40 2 .70 3. . 13 15. 0.64 0.21 1 .60 0.494 4.2 3. . 15 1.55 1.02 0.27 24. CLAY SOFT 7.40 7.60 2 .80 3. . 13 11. 0.66 0. 15 1 .50 0.504 4.2 3. 24 1.63 1.03 0.28 19. MUD 7.60 7.80 2 .70 3. . 13 15. 0.68 0.21 1 .60 0.516 3.9 2. 85 1.47 0.97 0.26 23. CLAY SOFT 7.80 8.00 2 .90 3. .23 11. 0.70 0.15 1 .50 0.526 4.2 3. 16 1.66 1.02 0.29 18. MUD 8.00 Z PO Pt Ed Uo Id Gamma Sv Kd OCR PC KO Cu PHI M S o i l Type O e s c r I p t I o n Z (m) ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) (B a r ) ( B a r ) ( B a r ) (Deg) ( B a r ) (m) Sounding LRD-3 (DIL.RED) to z PO PI Ed Uo Id Gamma Sv Kd OCR PC KO CU PHI M S o i l Type D e s c r I p t I o n Z <l») ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) (Bar) ( B a r ) ( B a r ) (Deg) ( B a r ) lm) 8.20 2 .90 3. .33 15. 0.72 0.20 1 .60 0.538 4.1 3.01 1.62 1.00 0.29 23. CLAY SOFT 8 .20 8.40 2. .90 3. .43 18. 0.74 0.25 1 .60 0.550 3.9 2.87 1.S8 0.97 0.28 28. CLAY SOFT 8 .40 8.60 2. .90 3. 33 IS. 0.76 0.20 1.60 0.562 3.8 2.73 1.53 0.95 0.28 22. CLAY SOFT 8 .60 8.80 2.90 3. 33 15. 0.78 0.20 1 .60 0.574 3.7 2.60 1.49 0.93 0.27 22. CLAY SOFT 8 .80 9.00 2, .80 3. . 13 11. 0.80 0.16 1 .50 0.584 3.4 2.31 1.35 0.87 0.25 16. MUO 9 .00 9.20 2, .90 3. .43 18. 0.82 0.25 1 .60 0.596 3.5 2.38 1.42 0.89 0.26 26. CLAY SOFT 9 .20 9.40 3. .00 3. .33 11. 0.84 0. 15 1 .50 0.606 3.6 2.46 1.49 0.90 0.27 16. MUD 9 .40 9.60 3. . 10 3. .43 11. 0.86 0. IS 1 .50 0.616 3.6 2.54 1.57 0.92 0.29 17. MUD 9 .60 9.80 3. . 10 3. S3 15. 0.88 0. 19 1 .60 0.628 3.5 2.43 1.53 0.90 0.28 21. CLAY SOFT 9 .80 10.00 3. .30 3. .63 11. 0.90 0. 14 1.50 0.638 3.8 2.68 1.71 0.94 0.31 17. MUD 10 .OO 10.20 3. .30 3. ,73 15. 0.92 0. 18 1 .60 0.650 3.7 2.57 1.67 0.92 0.30 22. CLAY SOFT 10 .20 10.40 3, .30 3. 83 18. 0.94 0.22 1 .60 0.662 3.6 2.46 1.63 0.90 0.30 26. CLAY SOFT 10 .40 10.60 3 .40 3. .93 18. 0.96 0.22 1 .60 0.674 3.6 2.52 1.70 0.91 0.31 27. CLAY SOFT to .60 10.80 3, .70 4. .03 11. 0.98 0. 12 1 .50 0.684 4.0 2.92 2.00 0.98 0.36 18. MUO 10 .80 11.00 3 .30 3. 93 22. 1.00 0.27 1 .60 0.696 3.3 2. 19 1.52 0.85 0.29 30. CLAY SOFT 1 1 .00 11.20 3 .80 4. ,73 32. 1.02 0.33 1 .70 0.710 3.9 2.85 2.02 0.97 0.36 50. SILTY CLAY LOW CONSISTENCY 1 1 .20 11.40 3. .90 4. .33 15. 1.04 0. 15 1 .60 0.722 4.0 2.90 2.10 0.98 0.37 23. CLAY SOFT 1 1 . 11 .40 11.60 3. .80 4. .43 22. 1.06 0.23 1 .60 0.734 3.7 2.65 1.94 0.93 0.35 32. CLAY SOFT .60 11.80 3. .70 4 . 33 22. t .08 0.24 1 .60 0.746 3.5 2.41 1.80 0.89 0.33 31. CLAY SOFT 1 1 .80 12.00 4. . 10 4. .63 18. 1.10 0. 18 1 .60 0.758 4.0 2.90 2.20 0.9B 0.39 28. CLAY SOFT 12 .00 12.20 4.0O 4. .53 18. 1.12 0. 18 1 .60 0.770 3.7 2.66 2.04 0.94 0.37 27. CLAY SOFT 12. .20 12.40 4. .20 4. .73 18. 1.14 0. 17 1 .60 0.782 3.9 2.85 2.23 0.97 0.40 28. CLAY SOFT 12 .40 12.60 4 , . 10 4. .93 29. 1.16 0.28 1 .70 0.796 3.7 2.60 2.07 0.93 0.38 42. CLAY LOW CONSISTENCY 12 .60 12.80 4, .30 5. 33 36. 1. 18 0.33 1 .70 0.810 3.9 2.78 2.25 0.96 0.40 54. SILTY CLAY LOW CONSISTENCY 12 .80 13.00 4. .40 4. .93 18. 1.20 0. 17 1 .60 0.822 3.9 2.83 2.32 0.97 0.42 28. CLAY SOFT 13 .00 13.20 4. .20 4. 83 22. 1.22 0.21 1 .60 0.834 3.6 2.47 2.06 0.90 0.38 32. CLAY SOFT 13 .20 13.40 4 .20 4 . 83 22. 1.24 0.21 1 .60 0.846 3.5 2.39 2.02 0.89 0.37 31. CLAY SOFT 13. .40 13.60 4 . 20 4 . 93 25. 1.26 0.25 1 .70 0.860 3.4 2.31 1.98 0.87 0.37 35. CLAY LOW CONSISTENCY 13 . 60 13.80 3 .60 4. .33 25. 1.28 0.31 1 .60 0.872 2.7 1.56 1.36 0.71 0.27 29. CLAY SOFT 13 .80 14.00 4. .40 S. 23 29. 1.30 0.27 1 .70 0.886 3.5 2.39 2.12 0.89 0.39 41. CLAY LOW CONSISTENCY 14 .00 14.20 4, .40 4.93 18. 1.32 0. 17 1 .60 O.B98 3.4 2.32 2.08 0.88 0.39 26. CLAY SOFT 14 .20 14.40 4. .40 5. .23 29. 1.34 0.27 1 .70 0.912 3.4 2.24 2.04 0.86 0.38 40. CLAY LOW CONSISTENCY 14 .40 14.60 4, .60 5, .33 25. 1.36 0.23 1 .70 0.926 3.5 2.39 2.22 0.89 0.41 36. CLAY LOW CONSISTENCY 14 .60 14.80 3 .90 6. .43 88. 1.38 1.00 1 .70 0.940 2.7 1.58 1.48 0.71 104. SILT LOW DENSITY 14, .80 15.00 4 .20 4 .93 25. 1.40 0.26 1 .70 0.954 2.9 1.82 1.74 0.77 0.34 31 . CLAY LOW CONSISTENCY 15 .00 15.20 4, .50 5. .43 32. 1.42 0.30 1 .70 0.968 3.2 2.06 2.00 0.82 0.38 43. CLAY LOW CONSISTENCY 15 .20 15.40 4 .30 5. .93 56. 1.44 0.57 1.70 0.982 2.9 1.80 1.77 0.77 0.35 70. SILTY CLAY LOW CONSISTENCY IS .40 15.60 4. .90 5. .53 22. 1.46 0. 18 1 .70 0.996 3.5 2.35 2.34 0.88 0.43 31. CLAY LOW CONSISTENCY 15 .60 15.80 5. .00 5. 83 29. 1.48 0.24 1 .70 1.010 3.5 2.38 2.40 0.89 0.44 41. CLAY LOW CONSISTENCY 15 , .80 16.00 4.60 S. .63 36. I.SO 0.33 1 .70 1.024 3.0 1.91 1.96 0.79 0.38 45. SILTY CLAY LOW CONSISTENCY 16, .00 16.20 4. .50 5. 73 43. 1.52 0.41 1.70 1.038 2.9 1.76 1.82 0.76 0.36 52. SILTY CLAY LOW CONSISTENCY 16. ,20 16.40 4. .80 5. 83 36. 1.54 0.32 1 .70 1.052 3.1 1.98 2.08 0.81 0.40 46. CLAY LOW CONSISTENCY 16 . 40 16.60 4 .90 5. 43 18. 1.56 0. 16 1 .60 1.064 3. 1 2.02 2. 15 0.81 0.41 24. CLAY SOFT 16 . 60 16.80 4 .80 5, 43 22. 1 .5B 0.20 1 .70 1.078 3.0 1.87 2.02 0.78 0.39 27. CLAY LOW CONSISTENCY 16 , 80 17.00 4 , 80 5. 43 22. 1 .60 0.20 1 .70 1.092 2.9 1.81 1.98 0.77 0.39 27. CLAY LOW CONSISTENCY 17 . 00 17.20 5.00 5. 63 22. 1.62 0. 19 1 .70 1. 106 3.1 1.94 2. 14 0.80 0.41 28. CLAY LOW CONSISTENCY 17 , .20 Z PO PI Ed Uo Id Gamma Sv Kd OCR PC KO Cu PHI M S o l i Type D e s c r I p t I o n Z (in) ( B a r ) ( B a r ) ( B a r ) (Bar) (T/CM) (Bar) ( B a r ) ( B a r ) (Deg) ( B a r ) (m) Sounding LRD-3 (DIL.RED) , Continued 2 PO PI Ed Uo Id Gamma Sv Kd OCR Pc KO Cu PHI M S o i l Typo D e s c r i p t i o n (m) ( B a r ) ( B a r ) (Bar) (Bar) (T/CM) ( B a r ) ( B a r ) ( B a r ) (Deg) ( B a r ) 2 (m) 17 .40 5 .00 5. 53 18. 1.64 0. 16 1 .60 1 .118 3.0 1 .89 2.11 17.60 5 .00 5. 73 25. 1.66 0.22 1 .70 1 . 132 3.0 1 .83 2.08 17.80 S. . 10 5. 73 22. 1.68 0. 18 1 .70 I . 146 3.0 1 .87 2. 14 18.OO 5 .00 5. 63 22. 1.70 0. 19 1 .70 1 . 160 2.8 1 .73 2.01 18.20 5 . 10 5. 53 15. 1.72 0. 13 1 .60 1 . 172 2.9 1 .77 2.07 18.40 5. .20 5. 83 22. 1.74 0. 18 1 .70 1 . 186 2.9 1 .80 2.14 18.60 4. .90 5. 73 29. 1.76 0.26 1 .70 1 .200 2.6 1 .52 1.83 18.80 5 00 5. 43 15. 1.78 0. 13 1 .60 1 .212 2.7 1 .56 1.89 19.00 5. .20 5. ,73 18. 1.80 0. 16 1 .60 1 .224 2.8 1 .67 2.04 19.20 5. .20 5. S3 11. 1.82 0. 10 1 .50 1 .234 2.7 1 .63 2.02 19.40 5. .60 6. 33 25. 1.84 0. 19 1 .70 1 .248 3.0 1 .90 2.36 19.60 5. .40 6. 33 32. 1.86 0.26 1 .70 1 .262 2.8 1 .70 2.14 19.80 5. .50 6. 33 29. 1.88 0.23 1 .70 1 .276 2.8 1 .73 2.20 20.00 5. .40 6. 23 29. 1.90 0.24 1 .70 1 .290 2.7 1 .61 2.08 2 PO PI Ed Uo Id Gamma Sv Kd OCR Pc (m) ( B a r ) ( B a r ) (Bar) ( B a r ) (T/CM) ( B a r ) ( 8 a r ) NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu nor Phi c a l c u l a t e d . 2.IBar-IOOKPa 3.* 'Irani D e f l e c t i o n not r e a c h e d . 0.79 0.41 23. CLAY SOFT 17.40 0.77 0.40 32. CLAY LOW CONSISTENCY 17.60 0.78 0.42 27. CLAY LOW CONSISTENCY 17.80 0.75 0.40 26. CLAY LOW CONSISTENCY 18.OO 0.76 0.41 18. CLAY SOFT 18.20 0.77 0.42 27. CLAY LOW CONSISTENCY 18.40 0.70 0.37 32. CLAY LOW CONSISTENCY 18.60 0.71 0.38 17. CLAY SOFT 18.80 0.74 0.41 22. CLAY SOFT 19.00 0.73 0.40 13. MUO 19.20 0.79 0.46 32. CLAY LOW CONSISTENCY 19.40 0.74 0.42 39. CLAY LOW CONSISTENCY 19.60 0.75 0.43 35. CLAY LOW CONSISTENCY 19.80 0.72 0.42 33. CLAY LOW CONSISTENCY 20.00 KO Cu PHI M S o i l Type D e s c r i p t i o n Z (B a r ) (Oeg) (B a r ) (m) Sounding LRD-3 (DIL.RED) , Continued U.B.C.INSITU TESTING RESEARCH GROUP• F i l e Name:LRD-4X Record of D i l a t o m e t e r t e s t No:LRD-4 Locat1on:LANGLEY-232 ST(UPPER) Oato:MAR 2 84 C a l i b r a t i o n Informatlon:DA> 0.20 B a r s OB* 0.27 Bars ZM» 0.0 Bars ZW- 3.00 motres Gamma*Bu1k u n i t weight Sv " E f f e c t i v e o v e r . s t r e s s Uo "Pore p r e s s u r e Id ' M a t e r i a l Index Ed ' D i l a t o m e t e r modulus Kd ' H o r i z o n t a l s t r e s s Index INTERPRETED GEOTECHNICAL PARAMETERS Ko ' I n s l t u e a r t h p r e s s . c o e f f . O C R ' O v e r c o n s o l i d a t i o n R a t i o M ' C o n s t r a i n e d modulus Cu 'Undrained c o h e s l o n ( c o h e s t v e ) P H I ' F r l c t l o n Angl e( cones Ion I e s s ) Z PO PI (m) ( B a r ) ( B a r ) Ed Uo Id (Bar ) ( B a r ) Gamma Sv (T/CM) (Bar) Kd OCR Pc KO Cu PHI M S o l i Type O e s c r I p t I o n Z ( B a r ) ( B a r ) (Oeg) ( B a r ) (m) 29.0 *«•*• 3.36 3.43 32. 4 161. SANOY SILT CEMENTED 0 .20 22.2 42.79 2.70 2.95 184. SILT COMPRESSIBLE 0 .40 24.7 50.60 4.91 3. 13 0.50 236. SILT LOW DENSITY 0 .60 21.1 52.32 6.96 2.86 31. 3 425. SANDY SILT MEDIUM DENSITY 0 .80 8.4 12.95 2. 16 1.65 29. 3 164. SANDY SILT LOW DENSITY 1 .00 6.0 6.71 1.34 1.32 28. 2 113. SANOY SILT COMPRESSIBLE 1 .20 6.S 6.28 1.49 1.39 110. SILT COMPRESSIBLE 1 .40 6.8 6.74 1.78 1.43 119. SILT LOW DENSITY 1 .60 3.0 1.91 0.57 0.79 0.11 19. SILTY CLAY SOFT 1 .80 3.6 2.55 0.84 0.92 0.15 27. SILTY CLAY SOFT 2 .OO 3.6 3.26 1.18 0.91 27. 5 101. SANDY SILT COMPRESSIBLE 2 .20 S.O 10.21 4.09 1. 17 29. 7 259. SILTY SAND LOW RIGIDITY 2 .40 7.9 8.44 3.66 1.58 260. SILT MEDIUM DENSITY 2 .60 6.0 7.26 3.40 1.31 28. 4 279. SANDY SILT MEDIUM DENSITY 2 .80 6.1 7.80 3.94 1.31 28. 6 318. SANDY SILT MEDIUM DENSITY 3 .00 6.S 7. 19 3.72 1.39 28. 2 318. SANDY SILT MEDIUM DENSITY 3 .20 6.4 6.59 3.54 1.38 28.0 310. SANDY SILT MEDIUM DENSITY 3 .40 7.7 8. 14 4.50 1.55 0.65 288. SILT MEDIUM DENSITY 3. 60 6.0 5.57 3.17 1.32 229. SILT MEDIUM DENSITY 3. 80 4.S 3.49 2.04 1.07 160. SILT LOW DENSITY 4 . 00 4.0 2.93 1.75 0.98 0.31 110. SILT LOW DENSITY 4 . 20 3.5 2.43 1.49 0.90 113. SILT LOW DENSITY 4 .40 3.6 2.48 1.59 0.91 108. SILT LOW DENSITY 4 .60 3.S 2.37 1.51 0.88 0.28 96. SILT LOW DENSITY 4 .80 4.6 3.66 2.39 1.09 0.41 90. SILTY CLAY LOW CONSISTENCY 5 .00 4.3 3.32 2.22 1.04 0.38 53. CLAY LOW CONSISTENCY 5 .20 3.8 2.69 1.83 0.94 0.33 38. CLAY SOFT 5. .40 3.5 2.43 1.68 0.90 0.31 41. SILTY CLAY SOFT 5. .60 2.6 1.50 1.05 0.69 0.21 24. SILTY CLAY SOFT 5. 80 3.2 2. 10 1.50 0.83 0.28 38. SILTY CLAY SOFT 6. 00 3.3 2. 16 1.57 0.84 0.30 30. CLAY SOFT 6. 20 3.1 1.94 1.43 0.80 0.28 28. CLAY SOFT 6. .40 Kd OCR Pc KO Cu PHI M S o i l Type D e s c r I p t I o n Z ( B a r ) (Bar) (Oeg) ( B a r ) (m) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2 .OO 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 20 40 60 80 00 20 40 60 5.80 6.00 6.20 6.40 0.90 1.40 2.40 2.80 1.40 1.20 1.50 1.80 0.90 1.20 1.30 2 .OO 3.40 2.80 3. 10 3.40 3.50 4.30 3.50 2.70 2.50 2.30 2.40 2.40 3.20 3. 10 2.80 2.70 2. 10 2.60 2.70 2.60 2.23 3.03 4.43 6.63 3.43 2.83 3.03 3.43 1.33 1.73 3.23 6.03 6.73 6.83 7.63 7.83 7.83 8.03 6.83 5.43 4.53 4.53 4.53 4.33 4.73 4.03 3.53 3.53 2.73 3.43 3.33 3.23 46. 56. 70. 133. 70. 56. 53. 56. 15. 18. 67. 139. 115. 139. 157. 153. 150. 129. 115. 94. 70. 77. 74. 67. 53. 32. 25. 29. 22. 29. 22. 22. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.04 0.06 0.08 0.10 0. 12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 1.48 1. 16 0.85 1.37 1.45 1.36 1.02 0.91 0.48 0.44 1.48 2.01 0.98 1.44 1.46 1.31 1.25 0.88 0.97 1.05 0.85 1.03 0.9S 0.87 0.51 0.32 0.29 0.34 0.35 0.36 0.26 0.28 1.60 1.60 1.70 1.80 1.70 1.60 1.60 1.70 1.60 1.60 1.60 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.60 1.60 1.60 1.60 1.60 1.60 0.031 0.063 0.097 0. 133 0. 167 0. 199 0.231 0.265 0.297 0.329 0.361 0.397 0.433 0.469 0.505 0.521 0.537 0.553 0.569 0.583 0.597 0.611 0.625 0.639 0.653 0.667 0.679 0.691 0.703 0.715 0.727 0.739 Z PO PI (ro) ( B a r ) ( B a r ) Ed Uo Id (Bar ) (Bar) Gamma Sv (T/CM) ( 8 a r ) Sounding (DIL.RED) Z PO PI Ed Uo Id Gamma Sv Kd OCR Pc KO Cu PHI M S o i l Type D e s c r i p t i o n Z (m) ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) (Bar) ( B a r ) ( B a r ) (Deg) ( B a r ) (m) 6.60 2.10 2.73 22. 0.36 0.36 1.60 0.751 2.3 1.26 0.94 0.63 0.20 22. SILTY CLAY SOFT 6.60 6.80 2.60 3.23 22. 0.38 0.28 1.60 0.763 2.9 1.79 1.37 0.77 0.27 27. CLAY SOFT 6.80 7.00 2.70 3.13 15. 0.40 0.19 1.60 0.775 3.0 1.85 1.43 0.78 0.28 19. CLAY SOFT 7.00 7.20 2.60 3.03 15. 0.42 0.20 1.60 0.787 2.8 1.66 1.31 0.73 0.26 18. CLAY SOFT 7.20 7.40 2.50 3.03 18. 0.44 0.26 1.60 0.799 2.6 1.49 1.19 0.69 0.24 20. CLAY SOFT 7.40 7.60 2.60 3.03 15. 0.46 0.20 1.60 0.811 2.6 1.54 1.25 0.70 0.25 17. CLAY SOFT 7.60 7.80 2.60 3.03 15. 0-48 0.20 1.60 0.823 2.6 1.48 1.22 0.69 0.25 17. CLAY SOFT 7.80 Z PO PI Ed Uo Id Gamma Sv Kd OCR Pc KO Cu PHI M S o i l Type D e s c r i p t i o n Z (ro) ( B a r ) ( B a r ) ( B a r ) ( B a r ) (T/CM) ( B a r ) ( B a r ) ( B a r ) (Oeg) ( B a r ) (ra) NOTES:1.For 0.9>Id>1.2 n e i t h e r Cu nor Phi c a l c u l a t e d . 2.1Bar«100KPa 3.# '1mm D e r l e c t l o n n o t r e a c h e d . Sounding LRD-4 (DIL.RED), Continued 147 SCHMERTMANN tt CRAPPS. INC. FILE NAME: RESEARCH DMT TESTING FILE NUMBER: MRO-1 RECORD OF DILATOMETER TEST NO. R.OMT SOUNDING NO.1 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE.J-GEO.MARCH 80) KO IN SANDS DETERMINED USING SCHMERTMANN METHOD (1983) PHI ANGLE CALCULATION BASED ON OURGUNOGLU AND MITCHELL (ASCE.RALEIGH CONF.JUNE 75) MODIFIED MAVNE AND KULHAWY FORMULA USED FOR OCR IN SANDS (ASCE.J-GED.JUNE 82) LOCATION: MCDONALD'S FARM PERFORMEO - DATE: MAR 21 1984 BY: C TSANG TEST NO. R.DMT SOUNDING NO. 1 CALIBRATION INFORMATION: DA- 0.20 BARS OB- 0.27 BARS ZM- 0.0 BARS ZW- 1.00 METERS VSO- 0.031 BARS ROD OIA.- 3.SO CM FRICTION RED. OIA.- 4.38 CM ROD WEIGHT- 6.59 KG/M DELTA/PHI- 0.50 BAR • 1.019 KG/CM2 - 1.044 TSF • 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT • 1.000 T/M3 Z THRUST A B ED 10 (M) (KG) (BAR) (BAR) (BAR) UO (BAR) GAMMA SV (T/M3) (BAR) PC (BAR) CU PHI (BAR) (OEG) (BAR) SOIL TYPE 0.20 347. 0, 90 3 .80 84. 2. .21 35 .48 0. 0 1. .70 0. .031 4 . 20 4 . .34 0.40 511. 0. SO 2 .60 57. 2. .33 10 .88 0. 0 1. .70 0. 064 0. 64 9 .92 1 . , 14 0.60 551. 0. .40 1 .80 32. 1 .55 6 .37 0. 0 1 .60 0. .096 0, .33 3 .46 0. .67 0.80 541. 0. .50 1 .60 22. 0 .90 5 .50 0. 0 1, .60 0, , 127 0. .62 4 .85 1 , ,24 1.00 531. 0. .70 2 .00 29. 0 .92 5 .68 0. 0 1 .60 0. . 159 0. 81 5 .09 1 , ,27 1.20 408. 0. .40 1 .40 18. 0 .91 3 .41 0. 020 1. .60 0. . 170 0. .39 2 .30 0, 87 1.60 347. 0. SO 1 .40 15. 0. .67 3 .31 0. 059 1. .60 0. . 194 0. 42 2 . 19 0. ,85 1.80 306. 0. .50 1 .60 22. 1. .01 3. .02 0. 079 1. .60 0. 206 0. 39 1 .90 0. ,79 2.00 327. 0. .60 2 .30 43. 1, .75 3 .23 0. 098 1. .60 0. .217 0. 51 2 .34 0. 64 2.20 490. 0, .60 2 .90 64. 2 .68 2 .95 0. 118 1. .70 0, .231 0. 39 1 .70 0. .52 2.40 603. 0. 90 3 .30 67. 2. .00 3 .93 0. 137 1. .70 0. .245 0. 63 2 .57 0. .63 2.60 613. 0. 70 2 .70 53. 2. .06 2. .87 0. 157 1, ,70 0. .259 0. 39 1 .50 0. .48 2.80 633. 1. .00 3 . 10 57. 1. .59 3. .78 0. 177 1, .60 0. ,270 0. .67 2 .47 0. .62 3.00 674. 0. .70 3 .30 74. 3. .03 2 .48 0. 196 1. .70 0. 284 0. 33 1 . 16 0. .42 3.20 827. 1. .20 5 .00 116. 2. .81 3. .95 0. 216 1. .80 0. .300 0. 73 2 .43 0. 61 3.40 1052. 1. .20 5 .70 140. 3. .46 3. .69 0. 236 1 . .80 0. 316 0. 58 1 .85 0. .52 3.SO 1400. i , .30 6. .90 178. 4. . 12 3. .76 0. 255 1. .80 0. .331 0. SO 1 .SO 0. .45 3.80 1318. 1. .90 8. .60 216. 3. .41 5, .26 0. 275 1. .80 0. 347 1. 23 3 .55 0. .72 4.00 1083. 1. .50 7 .00 175. 3. .58 3. .88 0. 294 1. .80 0. .363 0. 81 2 .23 0. .58 4.20 991. 1. SO 6 .70 164. 3. .41 3, .66 0. 314 1. 80 0. .378 0. .83 2 . 19 0. .58 4.40 868. 1 , . 10 5 .00 119. 3. .55 2. .45 0. 334 1. .80 0. 394 0. .48 1 .22 0. .44 4.60 786. 1. ,70 6 . 10 136. 2. .54 3, .77 0. 353 1. .80 0. .410 1. 11 2 .72 0. .67 4.80 909. 1. 30 5 .60 133. 3. .40 2. .65 0. 373 1 . .80 0. 436 0. 61 1 .42 0. 48 5.00 1001. 1 . 80 6 .90 161. 2. .88 3 .64 0. 393 1. 80 0. .441 1. .04 2 .36 0. .61 5.20 1083. 1 , SO 6. .70 161. 3. .34 3. .04 0. 412 1 .80 0. 457 0. 76 1 .67 0, .51 5.40 1522. 1. 60 7. .70 195. 4 . . 11 2, .90 0. 432 1 . .80 0. 473 0. 55 1 . 15 0. .40 5.60 1635. 2. 10 8 .80 216. 3. .37 3 .79 0. 451 1 80 0. .488 0. .96 1 .96 0, .53 5.80 1236. 2. 10 8 .40 202. 3. . 19 3 .63- 0. 471 1. 80 0. 504 1. 13 2 .25 0. .59 6.CO 1165. 1 . .70 6 .90 164. 3. .36 2 .71 0. 491 1. 80 0. .520 0. .74 1 .43 0. .48 6.20 1338. 1. 60 7 .00 171. 3. .82 2, 41 0. 510 1. 80 0. 535 0. 57 1 .06 0. .40 6.40 2084. 1 . 90 10 .00 265. 4 . 86 2 .as 0. 530 1 .80 0. 551 0. 49 0 .89 0. .34 6.60 2146. 2. SO 1 1 .90 299. 3. .52 4 .31 0. 550 1 90 0. 569 1. 33 2 .35 0. 58 6.80 177B. 2. .60 9. .60 227. 2. .93 3, .80 0. .569 1 .90 0. .586 1 .26 2. . 14 0. 56 7.00 1982. 2. .60 10 .50 258. 3. 36 3, .66 0. 589 1 .90 0, .604 1 . 13 1. .87 0. 52 7.20 3127. 2. ,70 1 1 .30 282. 3. .55 3 .69 0.608 1 .90 0 .622 0 .68 1 .09 o. 37 7.40 3679. 5. . 10 17 .80 424. 2. .62 7 .28 0. .628 2 .00 0 .641 3 .67 5 .72 0. 89 7.60 3015. 4. .20 17 . 10 431. 3. .31 5 ,6B 0. ,648 2 .00 0 .661 2 .48 3 .75 0. 72 8 OO 2555. 3. 80 14, .80 365. 3. . 18 4. .74 0. .687 1 .90 0 .698 2 .06 2. .95 0. 65 8.60 1941. 2. .70 11 .60 293. 3. .91 2. .87 0. 746 1 .90 0. .751 1. .07 1 .42 0. 47 9.O0 2044. 3. OO 13 .50 348. 4. , 15 3, .07 0. ,785 1 .90 0. .787 1 .26 1. .60 0. SO 9.60 3505. 3. 80 17 .60 463. 4 . 22 3, .76 0. .844 1 .90 0. .840 1 .31 1 .56 0. 46 10.00 5764. 6. .40 17 .80 379. 1. .91 6 .52 0. .883 2 .00 0 .877 3 .48 3 .95 0. 72 10.60 3853. 4 . 20 18. .70 487. 4 . 06 3, .71 0. .942 1 .90 0. .933. 1 .42 1 .53 0. 45 11.OO 2381 . 2. 90 13 .00 334. 4 . 55 2, . 19 0. 981 1 .90 0. ,968 0 .89 0 .92 0. 37 35. 1 312. SILTY SAND 41.6 146. SILTY SANO 40.8 66. SANDY SILT 42. CLAYEY SILT 56. SILT 26. SILT 20. CLAYEY SILT 29. SILT 31. a 61. SANDY SILT 3S.3 90. SILTY SANO 35.6 109. SILTY SAND 36.6 71. SILTY SAND 35.5 89. SANDY SILT 37.3 95. SILTY SANO 37.0 194. SILTY SAND 38.9 229. SAND 40.9 294. SAND 38.8 420. SAND 38.0 293. SAND 37.1 267. SANO 37.0 152. SAND 34.2 222. SILTY SAND 36.7 170. SAND 36.1 259. SILTY SAND 37.2 235. SAND 40.0 278. SAND 39.5 358. SANO 37.0 328. SILTY SANO 37.3 224. SANO 38.6 216. SANO 41.6 373. SAND 40.2 530. SANO 38.9 375. SILTY SAND 39.8 419. SANO 43.3 461 . SANO 41.6 941. SILTY SAND 40.9 866. SAND 39.9 677. SILTY SANO 38.9 414. SAND 38.8 513. SAND 42. 1 763. SAND 43.6 796. SILTY SANO 42.2 797. SANO 39.6 394. SANO CONTINUED ON NEXT PAGE TEST NO. R.OMT SOUNDING NO.1 (CONTINUEO) Sounding MRD-1 (DILLY^) (Thrust measured a t ground surface) 148 z THRUST 1 1 B EO 10 KO UO GAMMA SV PC OCR KO CU PHI M SOIL TYPE (M> (KO> (BAR) (BAR) (BAR) (BAR) (T/M3) (BAR) (BAR) (BAR) (DEG) (BAR) 11.60 1226. 2. .30 6 .90 143. 2 .83 1 .43 1 .040 1 .80 1 .018 0.93 0 .91 0.42 34.7 122. SILTY SAND 11.80 2544. 3. .20 11 .90 286. 3 .52 2 .26 1 .060 1 .90 1 .036 1.01 0 .97 0.38 39.6 345. SAND 12.00 3474. 5.00 18 .20 442. 3 .09 3 .90 1 .079 2 .00 1 .056 2.25 2 . 13 0.56 40.4 743. SILTY SANO 12.20 3515. 5, SO 18 .90 435. 2 .51 4 .65 1 .099 2 .00 1 .075 3.28 3 .05 0.67 39.7 787. SILTY SANO 12.40 3393. 3. .70 15 .20 363. 3 .97 2 .55 1 . 119 1 .90 1.093 1 .02 0 .93 0.36 41.3 502. SAND 12.60 434 1. 3. .70 16 .70 435. 4 .54 2 .49 1 . 138 1 .90 1. 110 0.68 0 .61 0.28 43.0 961. SANO 12.80 5314. 4 , 10 19 .40 515. 4 .72 2 .79 1 . 158 1 .90 1. 128 0.55 0 .49 0.24 44.4 715. SANO 13.00 6111. 5. .60 18 .90 445. 2 .78 4 .03 1 . 178 2 .00 1. 148 1.51 1 .31 0.40 44.2 755. SILTY SANO 13.40 4936. 4, ,70 18 .70 469. 3. .67 3 . 10 1 .217 2 .00. 1. 187 1. 13 0, .96 0.35 43. 1 698. SAND 13.80 2136. 2. .70 8 .00 168. 2 .94 1 .34 1 .256 1 .80 1.222 0.77 0 .63 0.33 38.2 142. SILTY SAND 14.00 3311. 5. 00 16. .70 390. 2. .86 3 . 16 t .276 2 .00 1.242 2.06 1, .66 0.50 39.6 S80. SILTY SANO 14.20 3004. 4. . 10 13, .80 320. 3, .07 2 .39 1 .295 1 .90 1.260 1 .39 1, . 10 0.41 39.5 402. SILTY SAND • 14.40 2636. 3. .30 12 .90 317. 4. . 18 1 .71 1 .315 1 .90 1.277 0.95 0. .74 0.34 39.2 306. SANO 14.60 2565. 3. 30 11. .40 265. 3. .52 1 .67 1 .335 1 .90 1.295 0.97 0 .75 0.35 38.9 251. SAND 14.80 2616. 3. 40 10. .80 240. 3. .09 1 .71 1 .354 1 .90 1.313 1 .01 0. ,77 0.35 38.9 232. SILTY SANO 15.00 2371. 3. 30 11 .80 279. 3. .78 1 .60 1 .374 1 .90 1.330 1.03 0, .78 0.36 38.2 253. SAND 15.20 2156. 3. .80 10 .30 209. 2. .31 1 .93 1 .394 1 .90 1.348 1.48 1, . 10 0.44 36.9 209. SILTY SANO 16.00 572. 3. 20 4. .50 29. 0. .43 1 .37 1 .472 1 .60 1.407 0.7S 0. .55 0.36 0. 19 24. SILTY CLAY 17.00 572. 4 . 10 5. .20 22. 0. .23 1 .86 1 .570 1 .60 1.466 t .31 0 .89 0.51 0.29 19. CLAY 18.00 572. 4. SO 5. .40 15. 0. . 14 1 .99 1 .668 1 .60 1 .525 1.51 0. .99 0.54 0.33 13. CLAY IB. 20 572. 4 . 60 5. .50 15. 0. . 14 2 .03 1 .688 1 .60 1.536 1.57 1, .02 0.55 0.34 13. CLAY 18.40 572. 4 . 70 5. .60 15. 0. . 13 2 .06 1 .70S 1 .60 1 .548 1 .62 1, .05 0.56 0.35 13. CLAY 18.60 572. 4 . 50 5. .50 18. 0. . 18 1 .91 1 .727 1 .60 1.560 1 .45 0. .93 0.52 0.32 16. CLAY 1S.SO 572. 4 . 80 5, .90 22. 0. . 19 2 .07 1 .747 1 .70 1.574 1 .66 1 .05 0.56 0.36 19. CLAY 19.00 572. 4. 50 5. .70 25. 0. .25 1 .85 1 .766 1 .70 1.587 1.40 0. .88 0.50 0.32 22. CLAY 19.20 572. 5. 10 6, .40 29. 0. .24 2 . 19 1 .786 1 .70 1.601 1.85 1. . 16 0.60 0.40 27. CLAY 19.40 572. 4 . 30 5. .60 29. 0. .31 1, .67 1 .806 1 .70 1.618 1 .22 0. ,75 0.45 0.28 24. CLAY 19.60 572. 4 . SO 5. .70 25. 0. .25 1, .77 1 .825 1 .70 1.639 1.34 0. .82 0.48 0.31 22. CLAY 19.80 572. 5. 10 6. .40 29. 0. .24 2. .10 1 .845 1 .70 1.643 1 .78 1. .08 0.57 0.38 26. CLAY 20.OO 572. 3. 60 5. .30 43. 0. 64 1, . 17 1 .865 1 .70 1.656 0.72 0. .43 0.29 0. 19 36. CLAYEY SILT 20.20 572. 5. 40 6. SO 22. 0. , 17 2. .23 1 .884 1, .70 1.670 1.97 1. , 18 0.60 0.42 21. CLAY 20.40 572. 3.00 5. 40 67. 1. 49 0. .77 1 .904 1 .60 1.682 1.73 1. 03 0.56 . 26.2 57. SANDY SILT 20.60 572. 5. 30 6. .60 29. 0. .23 2. .11 1 .923 1, .70 1.69S 1.84 1. OS 0.57 0.40 28. CLAY 20.80 572. 5. 60 6. .60 18. 0. , 14 2. .26 1 .943 1. .70 1.709 2.06 1. 21 0.61 0.44 18. CLAY END OF SOUNDING Sounding MRD-1 (DILLY^), Continued (Thrust measured a t ground surface) 149 SCHMERTMANN & CRAPPS. INC. TEST NO. OMT SOUNDING NO.2 FILE NAME: RESEARCH OMT TEST FILE NUMBER: MRD-2 RECORD OF DILATOMETER TEST NO. DMT SOUNDING NO.2 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE. J-GED.MARCH SO) KO IN SANDS OETERMINEO USING SCHMERTMANN METHOD (1983) PHI ANGLE CALCULATION BASED ON OURGUNOGLU AND MITCHELL (ASCE.RALEIGH CONF,JUNE 75) MODIFIED MAVNE ANO KULHAWY FORMULA USEO FOR OCR IN SANDS (ASCE.J-GEO.JUNE 82) LOCATION: MCDONALD'S FARM PERFORMED - DATE: APR 18 1984 BY: C. TSANG CALIBRATION INFORMATION: DA. 0.20 BARS 08' 0.27 BARS ZM' 0.0 BARS ZW' 1.50 METERS VSO- 0.157 BARS ROO OIA.' 3.50 CM FRICTION REO. OIA.' 4.38 CM ROO WEIGHT* £.59 KG/M OELTA/PHI* 0.50 1 BAR • 1 .019 KG/CM2 • 1 .044 TSF • 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT • 1 .000 T/M3 z THRUST t L I 3 ED ID KD UO GAMMA SV PC OCR KO CU PHI M SOIL TYPE {*> (KG) (BAR) (BAR) (BAR) (BAR ) (T/M3) (BAR) (BAR) (BAR) (DEG) (BAR) 1.00 449. 0. SO 1 .90 32. 1. 33 4. 46 0.0 1.60 0. 157 0. .46 2.95 0.67 35.9 55. SANDY SILT 2.00 235. 0. 50 1 .50 18. 0. 81 2. .46 0.049 1.60 0.265 0, ,37 1 .38 0.66 0.08 20. CLAYEY SILT 3.00 163. 0. 50 1 .40 15. 0, 78 1 . .71 0. 147 1.60 0.324 0. .25 0.78 0.46 0.06 13. CLAYEY SILT 4.00 1308. 1. 20 6 .50 168. 4. 18 2. 94 0.245 1.80 0.393 0. .45 1. 14 0.40 40.0 24 1. SAND 5.00 1246. 1. 40 6 .90 175. 4 . 00 2. 67 0.343 1.80 0.471 0. .57 1.21 0.43 38.6 236. SANO 6.00 2044. 2. 40 8 .30 188. 2. .52 3. .89 0.442 1.90 0.554 1, 06 1.92 0.52 40.4 311. SILTY SANO 7.00 1941. 2.60 11 . 10 279. 3. .55 3. 52 0.540 1.90 0.643 1. . 18 1 .84 0.52 39.3 444 . SANO 8.0O 3004. 3.40 13 .60 338. 3. .28 4 . OS 0.638 1.90 0.731 1. .39 1.90 0.51 41.5 579. SILTY SAND 9.00 2003. 2.00 8 .SO 20S. 4 . 12 1 . 80 0.736 1.80 0.815 0. .52 0.S4 0.31 39.8 211. SAND 10.00 4292. 3. 80 IS .30 414. 5. .51 2. 41 0.834 1.90 0.898 0. ,21 0.23 0.16 44.7 524. SAND END OF SOUNDING Sounding MRD-2 (DILLY4) (Thrust measured a t ground surface) 150 SCHMERTMANN 5 CRAPPS. INC. TEST NO. OMT SOUNDING NO.3 FILE NAME: RESEARSH OMT TEST FILE NUMBER: MRO-3 RECORD OF DILATOMETER TEST NO. DMT SOUNDING NO.3 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE,J-GED.MARCH 80) KO IN SANDS DETERMINED USING SCHMERTMANN METHOD (1983) PHI ANGLE CALCULATION BASEO ON DURGUNOGLU AND MITCHELL (ASCE.RALEIGH CONF.JUNE 75) MODIFIED MAVNE AND KULHAWY FORMULA USED FOR OCR IN SANDS (ASCE.J-GED.JUNE 82) LOCATION: MCDONALD'S FARM PERFORMED - DATE: APR 18 1984 BY: C. TSANG CALIBRATION INFORMATION: DA- 0.20 BARS OB- 0.27 BARS ZM- 0.0 BARS ZW- 1.50 METERS VSO- 0.883 BARS ROD 0IA.- 3.50 CM FRICTION RED. DIA.- 4.38 CM ROD WEIGHT- S.59 KG/M DELTA/PHI- 0.50 1 BAR • 1.019 KG/CM2 • 1.044 TSF • 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT • 1.000 T/M3 Z THRUST A B ED ID KD UO GAMMA SV PC OCR KO CU PHI M SOIL TYPE (M) (KG) (BAR) (BAR) (BAR) (BAR) (T/M3) (BAR) (BAR) (BAR) (OEG) (BAR) 5.00 1042. 1 .20 5 .90 147. 4 .00 1 .96 0 .343 1 .80 0 .540 0 .52 0 .96 0. .40 37.0 159. SAND 7.00 3086. 2, .40 13 . 10 355. 4 .97 2 .92 0 .540 1 .90 0 .706 0 .50 0 .71 0. .30 43.0 508. SANO 9.00 1921. 2. .30 10.50 268. 4 .38 2. .00 0 .736 1 .90 0 .883 0 .79 0 .89 0. .38 38.7 295. SANO 10.00 3965. 2. .80 16 . 10 445. 5 .92 2 .23 0 .834 1 .90 0 .971 0 .34 0 .35 0. .21 43.6 . 533. SAND 11.00 4721. 4. .80 19 .10 4B0. 3 .40 3 .82 0 .932 2 .00 1 .065 1 .61 1 .51 0. .45 42.8 799. SANO 12.00 2555. 3. .00 12 .60 317. 4 .21 1 .87 1 .030 1 .90 1 . 158 0 .92 0 .80 0. .35 39.3 331. SAND 13.00 3229. 3. .20 14.30 369. 4 .68 1 .82 1. . 129 1 .90 1 .246 0. .77 0 .62 0. .30 40.8 377. SAND 14.00 2779. 3. .90 10.20 202. 2. .03 2. . 15 1 .227 1 .90 1 .334 1 .40 1 .05 0. .41 38.8 216. SILTY SAND 16.00 1410. 2. 80 5 .70 84. 1. .54 1 .06 1 .423 1 .70 1 .491 1, . 18 0 .79 0. .40 34.0 72. SANOY SILT 17.00 572. 4. .20 5 .40 25. 0. .25 1. .85 1 .521 1 .70 1. .560 1. .38 0. .88 0. .50 0.31 23. CLAY 18.00 572. 4 . 30 5 .30 18. 0 . 18 1, .77 1. .619 1 .60 1 .624 1, .35 0. .83 0. .48 0.31 16. CLAY 18.20 572. 4. 40 5 .60 25. 0. .25 1. .81 1, .639 1 .70 1. .638 1, .40 0. .85 0. .49 0.32 22. CLAY 18.40 572. 2. .60 4 .80 60. 1 .52 0. .69 1. .658 1 .60 1. .649 1. 60 0. .97 0. .54 26.5 51. SANOY SILT 18.60 572. 3. .90 5 .20 29. 0. .34 1, .46 1, .678 1 .60 1. .661 1. .01 0. .61 0. .39 0.25 24. CLAY 18.80 572. 4.00 5 .20 25. 0. .29 1. .50 1 . 698 1 .60 1 .673 1. .06 0 .64 0. .40 0.26 22. CLAY 19.OO 572. 2. SO 4 .70 GO. 1, .76 0. .58 1, .717 1 .60 1, .685 1 , .52 0 .90 0. 53 36.7 51. SANDY SILT 19.20 572. 3. .70 5 . 10 32. 0. .43 1, .27 1 . .737 1 .60 1 .697 0 .84 0 .50 0. .33 0.21 27'. SILTY CLAY 19.40 572. 3. .70 4 .60 IS. 0. .20 1. .25 1. .757 1 .60 1 .708 0. .83 0 .48 0. .32 0.21 13. CLAY 19.60 572. 2. 50 4 . 10 39. 1, 22 0 .54 1, .776 1 .60 1. .720 1. .50 0. .87 0. 52 26.8 33. SANDY SILT 19.80 572. 3. .70 4 .80 22. 0. .30 1. .21 1. .796 1 .60 1 .732 0. .80 0 .46 0. .31 0.20 19. CLAY 20.00 572. 3. 90 4 .90 18. 0. .23 1. .31 1 . .816 1 .60 1. .744 0. .90 0 .52 0. .34 0.23 16. CLAY 20.20 572. 2. 50 4 .20 43. 1. .42 0. .49 1 . .835 1 .60 1 .755 1 .49 0 .85 0. .52 26.8 36. SANDY SILT 20.40 572. 4 . GO 5 .70 22. 0. .21 1. 67 1 . 855 1 .60 1 .767 1. .33 0. .75 0. .45 0.31 19. CLAY 20.60 572. 3. 30 5. 00 43. 0. 76 0. .91 1 .874 1 .60 1. .779 0. 52 0. 29 0. 19 0. 15 36. CLAYEY SILT 2O.80 572. 4. 80 5. 90 22. 0. 20 1. .73 1. .894 1 .70 1. .793 1. 43 0. 80 0. 47 0.33 19. CLAY 21.00 572. 4 . 30 5. 80 36. 0. 40 1. 43 1 .914 1 .70 1 . 806 1. 07 0. 59 0. 38 0.26 30. SILTY CLAY 21.20 572. 5. 20 6. 70 36. 0. 30 1. 90 1 .933 1 .70 1 . .820 1. 69 0. 93 0. 52 0.38 30. CLAY END OF SOUNDING Sounding MRD-3 (DILLY4) (Thrust measured a t ground surface) 151 SCHMERTMANN & CRAPPS. INC. FILE NAME: RESEARCH DMT TESTING FILE NUMBER: MRO-I TEST NO. R.OMT SOUNDING NO.1 RECORD OF DILATOMETER TEST NO. R .DMT SOUNDING NO.1 USING OATA REDUCTION PROCEDURES IN MARCHETTI (ASCE.J-GEO.MARCH SO) KO IN SANOS DETERMINED USING SCHMERTMANN METHOD (1983) PHI ANGLE CALCULATION BASED ON OURGUNOGLU AND MITCHELL (ASCE.RALEIGH CONF,JUNE 75) MODIFIED MAVNE AND KULHAWY FORMULA USED FOR OCR IN SANOS (ASCE.J-GED.JUNE 82) LOCATION: MCDONALD'S FARM PERFORMED - OATE: MAR 21 1984 BY: C. TSANG CALIBRATION INFORMATION: OA- 0.20 BARS OB- 0.27 BARS ZM- 0.0 BARS ZW- 1.00 METERS VSO- 0.031 BARS ROO DtA.- 0.0 CM FRICTION RED. OIA.- 0.0 CM ROD WEIGHT- 0.0 KG/M DELTA/PHI- 0.50 1 BAR • 1.019 KG/CM2 • 1.044 TSF • 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT • 1.000 T/M3 Z THRUST A B ED ID KD UO GAMMA SV PC OCR KO CU PHI M (M) (KG) (BAR) (BAR) (BAR) (BAR) (T/M3) (BAR) (BAR) (BAR) (DEG) (BAR) SOIL TYPE 0.20 299. 0. 90 3. SO 84. 2. 21 35. 48 0. 0 1 .70 0. 031 4 . 57 4. 41 0.40 377. 0. 50 2. 60 57. 2. .33 10. 88 0. 0 1 .70 0. 064 0. 79 12. .29 1 . 30 0.80 204. 0. 40 1. 80 32. 1 . 55 6. 27 0. .0 1 .60 0. 096 0. 60 6. .31 1 . 00 0.80 125. 0. 50 1. 60 22. 0. 90 5. 50 0. 0 1 .60 0. 127 0. 62 4 . 85 1. 24 1.00 188. 0. 70 2. 00 29. 0. .92 5. .68 0. ,o 1 .60 0. 159 0. 81 5. .09 1. 27 1.20 173. 0. ,40 1. ,40 18. 0. .91 3. .41 0. ,020 1 .60 0. 170 0. .39 2. .30 0. 87 1.60 196. 0. 50 1. 40 15. 0. ,67 3. 31 0. .059 1 .60 0. . 194 0. 42 2. . 19 0. 85 1.80 165. 0. SO 1. .60 22. 1. ,01 3. .02 0. .079 1 .60 0. 206 0. 39 1. .90 0. 79 2.00 212. 0. 60 2. .30 43. 1. ,75 3. .23 0. .098 1 .60 0. ,217 0. .62 2. .83 0. 75 2.20 362. 0. .60 2. .90 64. 2. .68 2. .95 0. .118 1 .70 0. 231 0. .45 1 . .97 0. 58 2.40 440. 0. 90 3. .30 67. 2. .00 3. 93 0. . 137 1 .70 0. 24S 0. 72 2. .93 o. 70 2.60 472. 0. ,70 2. ,70 53. 2. .06 2. .87 0. . 157 1 .70 0. .259 0. .45 1 .72 0. 53 2.80 487. 1. 00 3. . 10 57. 1. .59 3. .78 0. .177 1 .60 0. .270 0. ,74 2. .75 0. 68 3.0O 518. 0. .70 3. .30 74. 3. .03 2. .48 0. . 196 1 .70 0. ,284 0. ,39 1, .36 0. 47 3.30 668. 1. .20 5. .00 116. 2. .81 3. .95 0. .216 1 .80 0. .300 0. .80 2 .65 0. 65 3.40 920. 1. .20 5. .70 140. 3. .46 3. .69 0. ,236 1 .80 0. ,316 0. .61 1, .93 0. 53 3.60 1251. 1. .30 6. .90 178. 4. . 12 3. ,76' 0. .255 1 .80 0. .331 0. ,51 1. .53 0. 45 3.80 1164. 1. .90 8. .60 216. 3. .41 5. .26 0. .275 1 .80 0. .347 1. ,27 3. .65 0. 73 4.00 912. 1. .50 7, .00 17S. 3. .58 3. ,88 0. .294 1 .80 0. .383 0. ,86 2 .38 0. 60 4.20 834. 1, SO 6. .70 164. 3. .41 3. .66 0, .314 1 .80 0. .378 0. .88 2 .33 0. 61 4.40 738. 1. . 10 5. .00 119. 3. .55 2. .45 0. .334 1 .80 0. .394 0. .52 1 .31 0. .46 4.60 661. 1. .70 6. . 10 136. 2. .54 3. .77 0. .353 1 .80 0. .410 1, . 18 2 .88 0. ,70 4.80 779. 1, .30 5. .60 133. 3. .40 2. .65 0. .373 1 .80 0. .426 0 .64 1 .51 0. 50 5.00 857. 1, .80 6. .90 161. 2. .88 3. .64 0. .393 1 .80 0, .441 1. . 10 2 .48 0. 64 5.20 944. 1. SO 6. .70 161. 3. .34 3. .04 0. .412 1 .80 0, ,457 0 .80 1 .75 0. .53 5.40 1330. 1, .60 7, .70 195. 4 . 11 2. .90 0, .432 1 .80 0, .473 0, .57 1 .21 0. 42 5.60 1361. 2. . 10 8. .80 216. 3. .37 3. .79 0. .451 1 .80 0 .488 1 .04 2 . 12 0. .56 5.80 1007. 2. . 10 8. .40 202. 3. . 19 3. .63 0 .471 1 .80 0. .504 1 .22 2 .43 0. 63 6.00 944. 1 .70 6 .90 164. 3 .36 2 .71 0 .491 1 .80 0 .520 0 .82 1 .58 0. ,51 6.20 1156. 1, .60 7 .00 171. 3. .82 2. .41 0 .510 t .80 0. .535 0 60 1 . 13 0. ,42 6.40 1857. 1. .90 10 .00 265. 4 .86 2. .85 0. .530 1 .80 0. .551 0 .50 0 .91 0. 35 6.60 1802. 2. 80 1 1 . .90 299. 3. .52 4 . 31 0. .550 1 .90 0. .569 1 .43 2 .51 0. 60 6.80 1479. 2 .60 9 .60 227. 2 .93 3 .80 0. .569 1. .90 0. 586 1. 35 2 .30 0. .59 7.00 1762. 2 .60 10 .50 258. 3 .36 3 .66 0. .589 1. .90 0. 604 1, 15 1 .91 0. .53 7.20 2801. 2 .70 11 .30 282. 3 .55 3 .69 0. .608 1 .90 0. 622 0. 68 1 .09 0 .37 7.40 3281. 5 . 10 17 .80 424. 2 .62 7 .28 0. .628 2 .00 0. 641 3. ,71 5 .79 0 .89 7.60 2274. 4 .20 17 . 10 431. 3 .31 5 .68 0. .648 2 .00 0. 661 2. ,79 4 .23 0 .79 8.00 2085. 3 .80 14 .80 365. 3 . 18 4 .74 0. .687 1 .90 0. 698 2. 22 3 . 18 0. .69 8.60 1566. 2 .70 11 .60 293. 3 .91 2 .87 0. .746 1 .90 0. 751 1, . 18 1 .57 0 .50 9.00 1731. 3 .00 13 .50 348. 4 . 15 3 .07 0, .785 1 .90 0. 787 1, .34 1 .71 0 .52 9.60 2896. 3 .80 17 .60 463. 4 .22 3 .76 0. .844 1 .90 0. 840 1, .45 1 .73 0 .49 10.00 4934. 6 .40 17 .80 379. 1 .91 6 .52 0 .883 2 .00 0. ,877 3, .63 4 . 13 0 .74 10.60 3256. 4 .20 18 .70 487. 4 .06 3 .71 0 .942 1 .90 0. .933 1, .54 1 .65 0 .48 11.00 1964. 2 .90 13 .00 334. 4 .55 2 . 19 0 .981 1 .90 0. .968 0 .99 1 .02 0 .40 0. 10 32.7 38.4 30.2 26.4 32.8 32.9 34.7 33.3 35.4 35.5 38.5 40.8 38.4 37.1 36.2 36.2 32.9 35.9 35.2 36.6 39.7 38.7 35.7 36.0 38.1 41.5 39.5 38.0 39.5 43.2 41 .4 39.2 38.9 37.7 38,0 41.3 43.2 41.6 38.7 312. 146. 66. 42. 56. 26. 20. 29. 61. 90. 109. 71. 89. 95. 194. 229. 294. 420. 293. 267. 152. 222. 179. 259. 235. 278. 358. 328. 224. 216. 373. 530. 375. 419. 461. 941. 866. 677. 414. 513. 763. 796. 797. 394. SILTY SANO SILTY SANO SANDY SILT CLAYEY SILT SILT SILT CLAYEY SILT SILT SANDY SILT SILTY SAND SILTY SANO SILTY SAND SANDY SILT SILTY SAND SILTY SAND SAND SANO SAND SAND SAND SAND SILTY SAND SANO SILTY SAND SANO SAND SAND SILTY SAND SANO SANO SAND SAND SILTY SANO SANO SANO SILTY SAND SAND SILTY SAND SANO SANO SANO SILTY SAND SAND SANO CONTINUED ON NEXT PAGE TEST NO. R.OMT SOUNDING NO.1 (CONTINUEO) Sounding MRD-1 (DILLY4) (Thrust measured immediately behind blade) 152 Z THRUST A B ED 10 KO UO GAMMA SV PC OCR KO CU PHI M SOIL TVPE (M) (KG) (BAR) (BAR) (BAR) (BAR) <T/M3) (BAR) (BAR) (BAR) (OEG) (BAR) 11.SO 1084. 2 .30 6. 90 143. 2.83 1 .43 1 .040 1 .80 1.018 0 .97 0 .93 0, .43 34 . 1 122. SILTY SANO 11.80 2107. 3 .20 11. 90 286. 3.52 2 .26 1 .060 1 .90 1.036 1 . 11 1 .07 0. .41 38 .8 345. SANO 12.00 2924. 5 .00 18. 20 442. 3.09 3 .90 1 .079 2 .00 1.056 2. .40 2 .27 0. .38 39 .7 743. SILTY SANO 12.20 2960. 5. .90 18. 90 433. 2.31 4 .63 1 .099 2 .00 1.075 3. .45 3 .21 0, .70 38 .9 787. SILTY SANO 12.40 2852. 3 .70 13. 20 383. 3.97 2 .33 1 .119 1 .90 1.093 1 . 12 1 .02 0, .39 40.6 502. SANO 12.60 3423. 3 .70 16. 70 435. 4.34 2 .49 1 . 138 1 .90 1. 110 0 .84 0 .76 0, .32 42 . 1 561. SANO 12.80 4269. 4 . 10 19. 40 315. 4.72 2 .79 1 . 158 1. .90 t. 128 0. .76 0 .67 0. .39 43 .3 715. SANO 13.00 4899. 5 .60 18. 90 445. 2.78 4 .03 1 . 178 2 .00 1. 148 1 .81 1 .58 0, .43 43 .3 755. SILTY SANO 13.40 3915. 4. .70 18. 70 469. 3.67 3 . 10 1 .217 2, .00 I. 187 1. .38 1, . t7 0. .40 42 . 1 696. SANO 13.80 1770. 2, .70 8. 00 168. 2.94 1 .34 1 .236 1 .80 1.222 0 .86 0 .70 0. .35 37 .4 142. SILTY SANO 14.00 2479. 5. .00 16. 70 390. 2.86 3 . 16 1 .276 2. .00 1.242 2 .38 1 .92 0, .56 37 .8 580. SILTY SANO 14.20 2243. 4 .10 13. .80 320. 3.07 2 .39' 1 .293 1 .90 1.260 1 .65 1 .31 0, .47 37 .8 402. SILTY SANO 14.40 1987. 3. .30 12. 90 317. 4. 18 1 .71 1 .313 1 .90 1.277 1, . 14 0 .89 0, .39 37 .3 306. SANO 14.60 1790. 3, .30 11. 40 263. 3.32 1 .67 1 .335 1. .90 1.293 1 . .24 0 .99 0. .41 36 .6 231. SANO 14.80 1770. 3, .40 10. 90 240. 3.09 1 .71 1 .354 1 .90 1.313 1 , .31 1 .00 0. .43 36 .3 232. SILTY SANO 15.00 1711. 3. .30 11. 80 279. 3.78 1 .60 1 .374 1 .90 1.330 1, .27 0 .95 0, .42 36 . 1 233. SAND 15.20 1S54. 3. .80 10. 30 209. 2.31 1 .93 1 .394 1 .90 1.348 1 , ,74 1 .29 0, .49 34 .5 209. SILTY SAND 16.00 273. 3. .20 4. 50 29. 0.43 1 .37 1 .472 1. .60 1.407 0. ,78 0 .55 0. .36 0. 19 24. SILTY CLAY 17.00 273. 4 . 10 3. 20 22. 0.23 1 .86 t .570 1. .60 1.466 1 . .31 0, .89 0. .51 0.29 19. CLAY 18.00 273. 4. .50 5. 40 15. 0. 14 1 .99 1 .668 1 .60 1.525 1. ,51. 0 .99 0. .54 0.33 13. CLAY 18.20 273. 4 . 60 5. 50 15. 0. 14 2. .03 1 .688 1, .60 1.536 1. 57 1, .02 0. 53 0.34 13. CLAY 18.40 273. 4, .70 5. 60 15. 0.13 2 .06 1 .708 1. .60 1.548 1 . 62 1 .05 0. .36 0.33 13. CLAY 18.60 273. 4. SO 5. 50 18. 0. 18 1. .91 1 .727 1. .60 1.560 1. 45 0, .93 0. .52 0.32 16. CLAY 18.80 273. 4. 80 3. 90 22. 0. 19 2, .07 1 .747 1. .70 1.574 1. .66 1. .03 0. .36 0.36 19. CLAY 19.00 275. 4. SO 3. 70 25. 0.23 1, .83 1 .766 1. .70 1.587 1 . 40 0. .88 0. 50 0.32 22. CLAY 19.20 273. 5. .10 6. 40 29. 0.24 2. .19 1 .786 1, .70 1.601 1. 85 1, . 16 0. 60 0.40 27. CLAY 19.40 273. 4. .30 5. 60 29. 0.31 1, .67 1 .806 1, .70 1.615 1. 22 0. .73 0. .43 0.28 24. CLAY 19.60 273. 4. SO 5. 70 25. 0.33 1, ,77 1 .825 1. .70 1.629 1. 34 0. .82 0. 48 0.31 22. CLAY 19.80 273. 5. . 10 6. 40 29. 0.24 2, .10 1 .843 1, .70 1.642 1. 78 1. OS 0. ,37 0.38 26. CLAY 20.00 273. 3. 60 5. 30 43. 0.64 1. . 17 1 .865 1. .70 1.656 0. 72 0. .43 0. 29 0. 19 36. CLAYEY SILT 20.20 273. 5. ,40 6. 30 22. 0.17 2. ,23 1 .884 1. ,70 t.670 1. 97 1. 18 0. 60 0.42 21. CLAY 20.40 27*. 3. OO 3. 40 67. 1.49 0, .77 1 .904 1. .60 1.682 2. 29 1, .36 0. 76 16 .9 37. SANDY SILT 20.60 273. 5. 30 6. 60 29. 0.23 2. .11 1 .923 1. .70 1.695 1. 84 1. 09 0. 37 0.40 26. CLAY 20.80 273. 5. 60 6. 60 18. 0. 14 2. .36 1 .943 1. .70 1.709 2. 06 1. 21 0. 61 0.44 18. CLAY END OF SOUNDING Sounding MRD-1 (DILLY4), Continued (Thrust measured immediately behind blade) 153 SCHMERTMANN » CRAPPS, INC. TEST NO. OMT SOUNDING NO.2 FILE NAME: RESEARCH OMT TEST FILE NUMBER: MRO-2 RECORD OF DILATOMETER TEST NO. OMT SOUNDING NO.2 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE.J-GED.MARCH 80) KO IN SANDS DETERMINED USING SCHMERTMANN METHOD (1983) PHI ANGLE CALCULATION BASED ON OURGUNOGLU AND MITCHELL (ASCE.RALEIGH CONF.JUNE 73) MODIFIED MAYNE AND KULHAWY FORMULA USED FOR OCR IN SANDS (ASCE.J-GED.JUNE 82) LOCATION: MCOONALD'S FARM PERFORMED - DATE: APR IB 1984 BY: C. TSANG CALIBRATION INFORMATION: DA" 0.20 BARS OB" 0.27 BARS 2M" 0.0 BARS ZW" 1.50 METERS VSO" 0.157 BARS ROD DIA." 0.0 CM FRICTION RED. DIA." 0.0 CM ROO WEIGHT" 0.0 KG/M DELTA/PHI* 0.50 1 BAR • 1.019 KG/CM2 • 1.044 TSF • 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT - 1.000 T/M3 z (M) THRUST (KG) A (BAR) B (BAR) ED (8AR) 10 KD UO (BAR) GAMMA (T/M3) SV (BAR) PC (BAR) OCR KO CU (BAR) PHI (OEG) M (BAR) SOIL TYPE 1.00 157. 0.50 1 .90 32. 1.33 4 .46 0.0 1 .60 0, . 157 0.76 4. 93 0.93 23.3 55. SANOY SILT 2.00 102. 0.50 1 .50 18. 0.81 2 .46 0.049 1 .60 0. .265 0.37 1. 38 0.66 0.08 20. CLAYEY SILT 3.00 86. 0.50 1 .40 15. 0.78 1 .71 0. 147 1 .60 0. .324 0.23 0. 78 0.46 0.06 13. CLAYEY SILT 4.00 1149. 1.20 6 .30 168. 4. 18 2 .94 0.243 1 .80 0. 393 0.47 1. 19 0.41 39.7 241. SANO 5.00 1070. 1.40 6 .90 175. 4.00 2 .67 0.343 1 .80 0. .471 0.61 1. 29 0.44 38.0 236. SANO 6.00 1731. 2.40 8. .30 188. 2.32 3. .89 0.442 1 .90 0. 554 1 . 14 2. 03 0.34 39.8 311. SILTY SAND 7.00 1574. 2.60 11. . 10 279. 3.53 3. .32 0.340 1. .90 0. 643 1.30 2. 02 0.56 38.2 444. SANO 8.00 2424. 3.40 13. .60 338. 3.28 4 . 03 0.638 1, .90 0. 731 1.35 2. 12 O.SS 40.3 579. SILTY SANO 9.00 1589. 2.00 8. .30 209. 4. 12 1 . 80 0.736 1.80 0. 813 0.63 0. 77 0.35 38.6 211. SANO 10.00 3337. 2.80 13. .20 414. 3.31 2. 41 0.834 1.90 0. 89S 0.39 0. 44 0.23 43.3 524. SANO END OF SOUNDING Sounding MRD-2 (DILLY4) (Thrust measured immediately behind "blade) 154 SCHMERTMANN » CRAPPS. INC. TEST NO DMT SOUNOINO NO.3 FILE NAME: RESEARSH DMT TEST FILE NUMBER: MRO-3 RECORD OF DILATOMETER TEST NO. DMT SOUNDING NO.3 USING DATA REDUCTION PROCEDURES IN MARCHETTI (ASCE.J-GED.MARCH SO) KO IN SANOS DETERMINED USING SCHMERTMANN METHOD (1983) PHI ANGLE CALCULATION 6ASE0 ON DURGUNOGLU ANO MITCHELL (ASCE.RALEIGH CONF.JUNE 751 MOOIFIED MAYNE AND KULHAWY FORMULA USEO FOR OCR IN SANDS (ASCE.J-GED.JUNE 82) LOCATION: MCOONALO'S FARM PERFORMED - DATE: APR 18 1984 BY: C. TSANG CALIBRATION INFORMATION: DA- 0. 20 BARS DB- 0. 27 BARS ZM- 0.0 BARS ZW- 1.50 METERS VSO- 0.883 BARS ROO OIA 0.0 CM FRICTION REO. DIA. • 0.0 CM ROD WEIGHT- 0 .0 KG/M OELTA/PHI- 0.50 1 BAR • 1 .019 KG/CM2 • 1 .044 TSF • 14.51 PSI ANALYSIS USES H20 UNIT WEIGHT • ' 1.000 T/M3 Z THRUST A 1 3 ED ID KD UO GAMMA SV PC OCR KO CU PHI M SOIL TYPE (M) (KG) (BAR) (BAR) (BAR) (8AR ) (T/M3) (BAR) (BAR) (BAR) (OEG) (BAR) 5.00 952. 1.20 5 .90 147. 4. 00 1 .96 0 .343 1.80 0.540 0.52 0.97 0. 40 36.9 159. SAND 7.00 2715. 2.40 13 . 10 355. 4 .97 2 .92 0 .540 1.90 0.706 0.52 0.74 0. .31 42.9 508. SAND 9.00 1668. 2.30 10 .50 268. 4 .38 2 .00 0 .736 1.90 0.883 0.83 0.94 0. .39 38.2 295. SAND 10.00 3274. 2.60 16 . 10 445. 5. .92 2. .23 0 .834 1.90 0.971 0.45 0.46 0. 24 43.0 533. SANO 11.00 3714. 4.80 19 . 10 480. 3, .40 3 .82 0 .932 2.00 1.065 1 .89 1.77 0. .50 41.7 799. SAND 12.00 2046. 3.00 12 .60 317. 4. .21 1 .87 1 .030 1.90 1.158 1 .05 0.91 0. .39 38.2 331. SAND 13.00 2526. 3.20 14 .30 369. 4. .68 1 .82 1 . 129 1.90 1.246 0.94 0.75 0. .34 39.6 377. SANO 14.00 1936. 3.90 10 .20 202. 2, .03 2 . 15 1 .227 1.90 1.334 1.73 1.29 0. .48 36.3 218. SILTY SAND 16.00 787. 2.80 5 .70 84. 1 . .54 1. .06 1 .423 1.70 1.491 1.62 1.08 0. S3 28.7 72. SANDY SILT 17.00 267. 4.20 5, .40 25. 0, .25 1 .85 1 .S21 1.70 1.560 1.38 0.88 0. ,50 0.31 22. CLAY 18.00 267. 4.30 5 .30 18. 0, . 18 1 .77 1 .619 1.60 1.624 1.35 0.83 0. .48 0.31 16. CLAY 1S.20 267. 4.40 5 .60 25. 0. .25 1 .81 1 .639 1.70 1.638 1.40 0.85 0. .49 0.33 22. CLAY 18.40 267. 3.60 4 .80 60. 1. .52 0 .69 1 .658 1.60 1.649 2.11 1 .28 0. .74 17.3 51. SANDY SILT 18.60 267. 3.90 5 .20 29. 0, .34 1 .46 1 .678 1.60 1.661 1 .01 0.61 0. .39 0.25 24. CLAY 18.80 267. 4.00 S .20 25. 0. .29 1. .50 1 .698 1.60 1.673 1.06 0.64 0. 40 0.26 22. CLAY 19.00 267. 2.50 4 .70 60. 1. .76 0 .58 1 .717 1.60 1.685 1 .98 1 . 18 0. .72 17.7 51. SANDY SILT 19.20 267. 3.70 5 . 10 32. 0, .43 1 .27 1 .737 1.60 1 .697 0.84 0.50 0. .33 0.21 27. SILTY CLAY 19.40 267. 3.70 4 .60 15. 0. .20 1 .25 1 .757 1.60 1.708 0.83 0.48 0, .32 0.21 13. CLAY 19.60 267. 2.50 4 . 10 39. 1, .22 0 .54 1 .77G 1.60 1:720 1 .96 1. 14 0. ,71 17.8 33. SANDY SILT 19.80 267. 3.70 4 .80 22. 0 .30 1 .21 1 .796 1 .60 1.732 0.80 0.46 0. 31 0.20 19. CLAY 20.OO 267. 3.90 4 .90 IS. 0 .23 1 .31 1 .816 1 .60 1.744 0.90 0.52 0, ,34 0.23 16. CLAY 20.20 267. 2.50 4 .20 43. 1 .42 0 .49 1 .835 1.60 1.755 1.94 1.11 0. .70 17.8 36. SANDY SILT 20.40 267. 4.60 5 .70 22. 0. .21 1 .67 1 .855 1.60 1.767 1.33 0.75 0. .45 0.31 19. CLAY 20.60 367. 3.30 5 .00 43. 0. .76 0. 91 1. .874 1.60 1.779 0.52 0.29 0. . 19 0. IS 36. CLAYEY SILT 20.80 267. 4.80 5 .90 22. 0. .20 1. .73 1. .894 1.70 1.793 1.43 0.80 0. .47 0.33 19. CLAY 21.00 267. 4.30 5 .80 36. 0. .40 1. .43 1. .914 1.70 1.806 1.07 0.59 0. .38 0.26 30. SILTY CLAY 21.20 267. 5.20 6 .70 36. 0. .30 1. .90 1, .933 1 .70 1.820 1 .69 0.93 0. .52 0.38 30. CLAY END OF SOUNDING Sounding MRD-3 (DILLY4) (Thrust measured immediately behind blade) 155 A P P E N D I X I I I Measurements Recorded w i t h the UBC R e s e a r c h D i l a t o m e t e r MEASUREMENTS RECORDED WITH UBC RESEARCH DILATOMETER TESTING NO.: MRD-1 DATE: MAR 21,84 LOCATION : MCDONALD' S FARM CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.00 METRES B (BAR) C (BAR) A' (BAR) B' (BAR) DEPTH (M) 0.2 0.4 0.6 0.8 1.0 1.2 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 A (BAR) 0.85 0.53 0.42 0.53 0.75 0.42 0.53 0.53 0.64 0.64 0.85 0.75 0.96 0.75 1.18 1.18 1.29 1.93 1.50 1.50 1.07 1.72 1.29 1.82 1.61 1.61 2.15 2.15 1.72 1.61 1.93 2.80 2.58 2.58 3.77 2.58 1.82 1.61 2.04 1.39 1.39 1.61 2.26 2.90 3.34 2.69 3.12 3.34 4.95 5.71 6.90 8.62 7.00 6.68 4.95 6.14 5.60 6.90 6.68 7.65 8.84 8.35 6.90 7.00 10.03 11.86 9.59 10.46 0.11 0.11 0.06 0.06 0.06 0.06 0.11 0.11 0.11 0.22 0.22 0.22 0.22 0.22 0.32 0.43 0.49 0.65 0.49 0.49 0.43 0.54 0.43 0.54 0.54 0.71 0.76 0.65 0.54 0.54 0.97 0.86 0.86 0.97 0.46 0.27 0.09 0.00 0.35 0.00 0.17 0.08 0.27 0.46 0.46 0.36 0.55 0.32 0.73 0.73 0.82 1.46 1.19 1.10 0.55 1.10 0.91 1.37 1.19 1.00 1.64 1.64 1.28 1.10 1.46 2.37 2.01 1.82 2.10 1.82 0.73 0.73 1.35 0.81 0.99 1.08 1.82 2.55 2.92 2.29 2.65 2.87 4.47 5.20 6.44 8.21 6.52 6.30 4.51 5.66 5.11 6.39 6.20 7.11 8.30 7.85 6.47 6.47 9.49 11.50 9.04 9.85 C (BAR) 0.00 0.00 -0.19 -0.19 -0.20 -0.19 -0.20 -0.20 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19 -0.09 0.00 0.09 0.19 0.09 0.09 -0.09 0.00 0.09 0.09 0.09 0.19 0.19 0.09 0.09 0.09 0.36 0.46 0.27 0.27 Sounding MRD-1 DEPTH (M) 7.2 7.4 7.6 8.0 8.6 9.0 9.6 10.0 10.6 11.0 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 16.0 17.0 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 A (BAR) 2.69 5.06 4.20 3.77 2.69 3.01 3.77 6.36 4.20 2.90 2.26 3.23 4.95 5.93 3.66 3.66 4.09 5.60 4.74 1.82 2.69 4.95 4.09 3.34 3.34 3.44 3.34 3.77 3.23 4.15 4.49 4.60 4.69 4.52 4.80 4.47 5.09 4.31 4.49 5.12 3.58 5.34 2.96 5.34 5.55 B (BAR) 11.32 17.80 17.15 14.77 11.64 13.48 17.58 17.80 18.66 13.05 6.90 11.86 18.23 18.87 15.21 16.72 19.41 18.87 18.66 7.65 7.98 16.72 13.80 12.94 11.43 10.78 11.75 10.35 4.52 5.23 5.39 5.49 5.60 5.49 5.89 5.66 6.44 5.55 5.66 6.39 5.36 6.52 5.39 6.63 6.57 C (BAR) 0.86 1.50 0.97 0.97 0.97 1.08 1.61 2.15 1.72 1.39 1.08 1.50 1.61 1.82 1.61 1.82 1.93 1.82 1.82 1.39 0.76 1.72 1.29 1.08 1.08 1.29 1.29 1.29 2.47 3.72 4.04 4.01 4.28 3.93 4.26 4.01 4.49 3.83 3.83 4.63 2.90 4.85 2.10 4.91 4.91 A' (BAR) 2.19 4.47 4.11 3.56 2.29 2.37 3.20 5.75 3.37 1.91 1.28 2.29 4.20 4.84 2.83 2.83 3.20 5.02 3.92 0.64 1.37 3.92 3.10 2.01 2.19 2.19 2.10 2.65 0.73 0.53 0.53 0.59 0.65 0.58 0.58 0.54 0.87 0.45 5.54 0.58 0.70 0.69 0.88 0.61 0.58 B' (BAR) 10.76 17.25 17.06 14.51 11.31 12.86 17.06 17.15 17.97 12.22 5.94 10.95 17.61 18.16 14.51 15.97 18.71 18.25 18.06 6.57 6.66 15.78 13.05 11.77 10.50 9.76 10.67 9.21 1.46 1.12 1.03 1.17 1.13 1.08 1.15 1.04 1.49 0.93 1.09 1.17 1.27 1.10 1.73 1.18 1.03 C (BAR) 0.36 0.73 0.64 0.55 0.46 0.36 0.69 1.29 0.73 0.36 0.09 0.36 0.64 0.73 0.64 0.82 0.82 1.00 1.00 0.27 0.00 0.64 0.46 0.09 0.19 0.27 0.27 0.36 0.19 0.12 0.30 0.26 0.30 0.15 0.19 0.18 0.37 0.00 0.18 0.26 0.10 0.34 0.01 0.45 0.30 S ounding MRD-1, C o n t i n u e d MEASUREMENTS RECORDED WITH UBC RESEARCH DILATOMETER TESTING NO.: MRD-2 DATE: APR 18,84 LOCATION : MCDONALD'S FARM CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.50 METRES DEPTH (M) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 A (BAR) 0.51 0.51 0.51 1.24 1.44 2.36 2.57 3.39 1.95 2.78 B (BAR) 1.85 1.54 1.43 6.53 6.90 8.34 11.12 13.60 8.54 15.24 C (BAR) 0.11 0.11 0.41 0.52 0.73 0.82 1.03 1.33 0.82 1.44 A' (BAR) 0.00 0.07 0.00 0.79 0.79 1.78 1.95 2.76 1.16 2.04 B' (BAR) 1.16 1.07 0.90 6.03 6.31 7.81 10.57 13.22 7.90 14.50 C (BAR) -0.20 -0.20 -0.09 0.00 0.09 0.09 0.26 0.62 0.00 0.44 Sounding MRD-2 MEASUREMENTS RECORDED WITH UBC RESEARCH D11AT0METER TESTING NO.: MRD-3 DATE: APR 18,84 LOCATION : MCDONALD'S FARM CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.50 METRES B C A' (BAR) (BAR) (BAR) DEPTH (M) 5.0 7.0 9.0 10.0 11.0 12.0 13.0 14.0 16.0 17.0 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 A (BAR) 1.24 2.36 2.27 2.78 4.84 2.98 3.19 3.91 2.80 4.20 4.28 4.41 2.58 3.93 4.04 2.53 3.72 3.74 2.47 3.72 3.93 2.50 4.55 3.29 4.85 4.34 5.17 5.87 13.08 10.51 16.07 19.05 12.57 14.31 10.19 5.71 5.39 5.34 5.55 4.82 5.20 5.17 4.66 5.06 4.60 4.09 4.77 4.93 4.20 5.66 5.03 5.93 5.79 6.71 0.44 1.03 1.03 1.97 2.16 1.65 1.75 0.73 1.39 3.77 3.90 4.01 1.85 3.61 3.55 1.72 3.39 3.26 2.07 3.36 3.61 2.12 4.15 2.75 4.49 3.83 4.82 0.51 1.78 1.61 2.10 3.92 2.20 2.43 2.84 1.32 0.34 0.45 0.53 0.88 0.46 0.47 0.86 0.37 0.42 0.60 0.44 0.44 0.61 0.56 0.62 0.38 0.39 0.41 B' (BAR) 5.22 12.69 9.86 15.69 18.31 11.97 13.79 8.96 4.42 0.98 1.09 1.20 1.71 1.14 1.04 1.78 1.35 0.97 1.44 1.18 1.03 1.54 1.20 1.31 1.02 0.94 1.14 C (BAR) -0.20 0.44 0.36 1.13 0.90 0.61 0.75 0.17 0.41 -0.20 0.18 0.08 -0.19 0.02 -0.03 -0.19 -0.11 0.06 -0.20 -0.01 -0.02 -0.20 -0.01 -0.20 -0.03 -0.20 -0.09 Sounding MRD-3 MEASUREMENTS RECORDED WITH UBC RESEARCH DHATCMETER TESTING NO.: LRD-2 DATE: CCT 3,83 LOCATICN : LANGW-RAILWAY SITE CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.00 METRES DEPTH A B C A' B' C (M) (BAR) (BAR) (BAR) (BAR) (BAR) (BAR) 2.2 1.29 2.19 1.00 0.07 0.46 -0.10 2.4 1.59 2.55 1.36 0.04 0.47 -0.13 2.6 1.65 2.47 1.44 0.00 0.42 -0.18 2.8 1.72 2.54 1.51 0.00 0.47 -0.10 3.0 1.78 2.70 1.54 0.00 0.44 -0.15 3.2 2.08 2.95 1.80 0.06 0.41 -0.10 3.4 2.00 3.09 1.67 0.07 0.48 -0.14 3.6 2.11 2.95 1.90 0.00 0.43 -0.12 3.8 2.13 3.22 1.85 0.00 0.36 -0.09 4.0 2.33 3.19 2.11 0.05 0.42 -0.04 4.2 2.47 3.50 2.16 0.08 0.58 -0.07 4.4 2.52 3.47 2.29 0.06 0.51 0.01 4.6 2.52 3.36 2.21 0.00 0.44 -0.13 4.8 2.41 3.32 2.16 0.00 0.34 -0.12 5.0 2.47 3.39 2.16 0.00 0.48 -0.15 5.2 2.60 3.44 2.32 0.00 0.37 -0.15 5.4 2.52 3.63 2.27 0.01 0.45 -0.07 5.6 2.57 3.68 2.21 0.00 0.47 -0.16 5.8 2.70 3.65 2.33 0.10 0.59 -0.09 6.0 2.52 3.42 2.24 0.00 0.33 -0.17 6.2 2.70 3.55 2.29 0.05 0.35 -0.18 6.4 2.68 3.76 2.32 0.01 0.54 -0.14 6.6 2.83 3.86 2.33 0.04 0.42 -0.15 6.8 3.03 3.96 2.62 0.14 0.40 -0.05 7.0 3.03 4.14 2.68 0.00 0.42 -0.14 7.2 3.03 4.14 2.65 0.00 0.54 -0.12 7.4 3.03 4.22 2.68 0.00 0.44 -0.12 7.6 3.39 4.39 2.93 0.00 0.35 -0.18 7.8 2.06 3.30 1.57 0.00 0.91 0.00 8.0 3.52 4.55 3.14 0.05 0.36 -0.10 8.2 3.36 4.25 3.03 0.09 0.34 -0.10 8.4 3.35 4.17 2.93 0.11 0.48 -0.05 8.6 3.55 4.53 3.14 0.00 0.37 -0.18 8.8 3.52 4.50 3.30 0.01 0.43 0.01 Sounding LRD-2 161 DEPTH A B C A' B' C (M) (BAR) (BAR) (BAR) (BAR) (BAR) (BAR) 9.0 3.50 4.84 3.03 0.00 0.56 -0.18 9.2 2.27 4.04 1.41 0.14 1.51 0.05 9.4 3.91 4.96 3.55 0.06 0.45 -0.03 9.6 4.12 5.50 3.50 0.08 0.55 0.00 9.8 4.19 5.22 3.63 0.13 0.43 -0.02 10.0 4.22 5.45 3.65 0.07 0.45 -0.14 10.2 4.33 5.41 3.76 0.05 0.36 -0.04 10.4 4.53 5.84 4.01 0.12 0.51 0.06 10.6 4.42 6.18 3.42 0.51 0.95 0.51 10.8 4.55 5.77 3.98 0.00 0.52 0.00 11.0 4.25 5.41 3.73 0.00 0.48 -0.05 11.2 4.09 5.36 3.47 0.01 0.43 -0.10 11.4 4.01 5.15 3.57 0.00 0.44 -0.08 11.6 4.25 5.66 3.60 0.00 0.46 -0.15 11.8 4.25 5.90 3.68 0.11 0.51 0.11 12.0 4.58 5.77 3.96 0.05 0.40 -0.03 12.2 4.68 6.20 4.01 0.00 0.55 -0.07 12.4 4.84 6.28 4.22 0.01 0.50 -0.06 12.6 4.66 6.51 4.04 0.30 0.86 0.30 12.8 4.60 6.04 4.04 0.00 0.48 -0.16 13.0 4.81 6.15 4.04 0.15 0.38 -0.09 13.2 4.96 6.31 3.96 0.08 0.47 -0.14 13.4 5.07 6.61 4.53 0.11 0.38 -0.05 13.6 5.07 6.33 4.58 0.00 0.37 -0.07 13.8 5.04 6.61 4.53 0.00 0.55 0.00 14.0 5.22 6.36 4.60 0.00 0.60 0.00 14.2 4.91 6.36 4.55 0.11 0.43 0.00 14.4 5.17 6.59 4.50 0.00 0.52 0.00 14.6 4.91 6.31 4.27 0.02 0.26 -0.16 14.8 5.15 7.28 4.89 1.08 1,54 0.48 15.0 5.71 7.26 4.84 0.34 0.55 0.13 Sounding LRD -2 , Continued MEASUREMENTS RECORDED WITH UBC RESEARCH DHATCMETER TESTING NO.: LRD-3 DATE: JAN 20,84 LOCATION : LANGW-LOWER SITE CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 1.00 METRES DEPTH A B C (M) (BAR) (BAR) (BAR) B' C (BAR) (BAR) 1.0 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 0.85 1.16 1.29 1.31 1.56 1.56 1.64 1.67 1.67 1.78 1.85 1.61 1.69 1.64 1.82 1.82 1.85 2.01 1.96 1.96 2.04 2.04 2.12 2.23 2.15 2.29 2.33 2.32 2.50 2.58 2.53 2.72 2.72 2.75 2.72 2.66 2.61 2.72 2.77 2.87 2.90 3.09 2.42 1.96 1.99 2.23 2.29 2.36 2.32 2.33 2.47 2.58 2.58 2.50 2.50 2.58 2.55 2.66 2.72 2.72 2.75 2.80 2.87 2.96 3.01 3.12 3.15 3.15 3.12 3.18 3.39 3.39 3.44 3.47 3.55 3.72 3.63 3.55 3.39 3.69 3.61 3.74 3.77 3.90 0.31 0.82 0.93 0.96 1.18 1.15 1.26 1.29 1.26 1.42 1.47 1.31 1.39 1.34 1.53 1.53 1.50 1.69 1.75 1.61 1.75 1.78 1.80 1.85 1.85 2.15 1.99 2.12 2.15 2.23 2.23 2.33 2.36 2.39 2.42 2.39 2.36 2.39 2.50 2.58 2.66 2.80 A' (BAR) 0.36 0.15 0.15 0.22 0.24 0.24 0.24 0.23 0.20 0.25 0.22 0.12 0.08 0.20 0.27 0.18 0.23 0.26 0.18 0.27 0.24 0.20 0.28 0.35 0.28 0.21 0.33 0.24 0.21 0.31 0.26 0.33 0.32 0.26 0.16 0.20 0.16 0.20 0.24 0.25 0.26 0.29 1.26 0.81 0.66 0.69 0.71 0.68 0.69 0.54 0.56 0.61 0.57 0.59 0.56 0.69 0.65 0.60 0.65 0.52 0.64 0.61 0.60 0.63 0.62 0.65 0.69 0.58 0.66 0.59 0.56 0.61 0.70 0.71 0.68 0.68 0.56 0.65 0.62 0.65 0.66 0.55 0.68 0.70 -0.17 -0.20 -0.20 -0.04 -0.06 -0.11 -0.06 -0.07 -0.10 -0.09 0.22 0.12 0.08 0.11 0.12 0.00 0.14 0.07 0.07 0.07 0.05 0.18 0.08 0.15 0.12 0.21 0.15 0.24 0.03 0.07 0.09 0.16 0.15 0.07 0.01 0.07 0.08 0.08 0.14 0.09 0.19 0.29 Sounding LRD-3 A (BAR) B (BAR) C (BAR) A' (BAR) B' (BAR) DEPTH (M) 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 3.15 3.07 3.18 3.47 3.15 3.55 3.66 3.63 3.50 3.90 3.83 3.95 3.90 4.06 4.20 3.95 4.01 3.98 3.39 4.20 4.20 4.23 4.41 3.72 3.98 4.34 4.12 4.69 4.77 4.44 4.28 4.58 4.74 4.63 4.63 4.77 4.77 4.85 4.91 4.85 4.89 4.98 4.74 4.82 5.03 4.95 5.40 5.25 5.28 5.23 3.98 4.09 4.23 4.34 4.23 4.95 4.55 4.66 4.63 4.92 4.85 5.03 5.25 5.63 5.23 5.12 5.14 5.20 4.60 5.52 5.17 5.52 5.55 6.74 5.20 5.64 6.17 5.79 6.06 5.88 5.98 6.06 5.66 5.66 5.71 5.90 5.85 5.98 5.98 5.88 5.79 6.14 6.00 5.74 5.98 5.82 6.60 6.63 6.65 6.52 2.69 2.75 2.90 3.07 2.69 3.01 3.20 3.12 3.18 3.44 3.31 3.31 3.36 3.69 3.55 3.50 3.47 3.72 2.98 3.33 3.69 3.83 3.72 2.26 3.09 3.74 3.52 4.26 4.28 3.72 3.77 4.28 4.17 4.31 4.26 4.28 4.26 4.37 4.58 4.26 4.41 4.58 4.31 4.49 4.58 4.41 4.85 4.74 4.69 4.88 0.33 0.20 0.30 0.34 0.30 0.29 0.35 0.39 0.31 0.38 0.38 0.22 0.30 0.19 0.26 0.24 0.04 0.23 0.27 0.24 0.11 0.31 0.37 1.34 0.21 0.22 1.17 0.22 0.15 0.28 0.26 0.18 0.00 0.00 0.20 0.26 0.24 0.17 0.00 0.05 0.04 0.22 0.00 0.07 0.31 0.17 0.42 0.17 0.20 0.22 0.69 0.55 0.69 0.66 0.76 0.98 0.75 0.77 0.76 0.81 0.79 0.54 0.72 0.92 0.56 0.68 0.56 0.72 0.74 0.79 0.55 1.00 0.50 4.38 0.77 0.96 2.86 0.70 0.68 0.51 0.69 0.64 0.45 0.28 0.55 0.62 0.48 0.39 0.45 0.56 0.37 0.51 0.64 0.52 0.61 0.70 0.66 0.69 0.63 0.66 C (BAR) 0.16 0.07 0.23 0.24 0.12 0.22 0.21 0.18-0.23 0.32 0.29 0.04 0.19 0.19 0.09 0.08 -0.08 0.23 0.07 0.05 0.00 0.28 0.01 0.27 0.07 0.22 1.17 0.22 0.15 0.05 0.02 0.18 -0.07 -0.03 0.20 0.18 0.13 0.02 0.00 0.05 -O.04 0.13 0.00 0.07 0.16 0.08 0.28 0.17 0.06 0.22 Sounding LRD -3 . Continued MEASUREMENTS RECORDED WITH UBC RESEARCH DILATOMETER TESTING NO.: LRD-4 DATE: MAR 2,84 LOCATION : LANGLEY-UPPER SITE CALIBRATION INFORMATION: DA= 0.20 BARS DB= 0.27 BARS ZM= 0.00 BARS ZW= 3.00 METRES DEPTH (M) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 A (BAR) 0.67 1.24 2.23 2.58 1.21 0.96 1.29 1.64 0.75 0.99 1.10 1.80 3.18 2.58 2.90 3.18 3.29 4.09 3.33 2.53 2.26 2.10 2.21 2.23 3.01 2.90 2.58 2.53 1.88 2.42 2.53 2.42 1.85 2.36 2.47 2.44 2.33 2.44 2.42 B (BAR) 2.47 3.33 4.71 6.93 3.72 3.07 3.31 3.72 1.61 1.96 3.52 6.28 7.00 7.06 7.87 8.14 8.08 8.30 7.11 5.75 4.85 4.80 1.50 4.58 4.95 4.31 3.83 3.77 3.04 3.66 3.63 3.52 3.01 3.50 3.39 3.34 3.31 3.31 3.29 C (BAR) 0.11 0.11 0.76 0.14 0.08 0.14 0.32 0.60 0.06 0.57 0.08 0.11 0.46 0.32 0.22 0.49 1.03 1.72 1.56 0.97 1.08 0.81 1.34 1.21 2.01 2.10 2.10 1.99 1.53 1.93 1.99 2.01 1.53 2.15 2.07 2.04 2.01 2.26 2.12 A' (BAR) 0.59 1.51 2.07 1.75 0.66 0.52 0.51 0.67 0.47 0.35 0.47 1.83 3.45 2.70 3.54 4.06 3.93 4.89 3.68 1.30 1.81 0.99 0.63 0.61 0.24 0.08 0.00 0.03 0.05 0.00 0.09 0.12 0.09 0.07 0.00 0.00 0.00 0.03 0.12 B' (BAR) 2.37 3.36 3.33 3.66 1.82 2.28 1.37 1.77 1.04 1.24 2.43 4.39 6.77 5.62 8.28 8.85 8.22 8.63 4.95 2.30 2.06 1.72 4.80 1.32 0.96 0.77 0.67 0.60 0.55 0.53 0.66 0.59 0.52 0.66 0.48 0.39 0.50 0.46 0.58 C (BAR) 0.19 0.37 0.31 0.13 -0.16 0.06 -0.11 0.10 0.06 -0.08 0.07 0.80 0.72 0.42 0.72 1.19 1.20 1.97 0.39 -0.20 -0.02 -0.20 -0.20 -0.20 -0.20 -0.20 -0.16 -0.16 -0.19 -0.12 -0.05 -0.02 -0.03 0.07 0.00 -0.09 0.00 0.03 0.07 Sounding LRD-4 APPENDIX IV A d d i t i o n a l F i g u r e s f o r T e s t i n g i n Sand a t McDonald's Farm S i t e 166 G CMPa) Comparison of She a r M o d u l i From E D and from Unload - R e l o a d C y c l e o f D i l a t o m e t e r E x p a n s i o n Curve (Sounding MRD-2) 167 G (MPa) Comparison o f Shear M o d u l i from E. and from Unload - R e l o a d C y c l e of D i l a t o m e t e r E x p a n s i o n Curve (Sounding MRD-3) $ ( D o g ) 26 o-f-28 30 32 i 34 36 _1_ 38 _ 1 _ 40 _L_ 42 44 46 _ ! _ 48 5H 10H (use Suf-ppce. put/l'rf F r i c t i o n A n g l e s E s t i m a t e d by DMT R e s u l t s (Sounding MRD-2) 169 )^ (Dag) 26 28 1_ 30 32 _ l _ 34 _ L _ 36 38 L_ 40 _ L _ 42 44 |_ 46 _!_ 48 I o. LU Q liatcketil (IUI) 5-10-\ \ / / / / 7 Jon* -) J 15-/ / \ \ (use. p>usk<ncj -force /*ea.s«r<>o/ 1 1 1 i 1 I I L F r i c t i o n A n g l e s E s t i m a t e d by DMT R e s u l t s (Sounding MRD-3) Ko \ I n - s i t u E a r t h P r e s s u r e C o e f f i c i e n t Vs Depth (Sounding MRD-2) Ko 0 4 I n - s i t u E a r t h P r e s s u r e C o e f f i c i e n t Vs Depth (Sounding MRD-3) OCR 10 _1_ 15 _ L _ 20 _1_ 25 ' / I \ \ O v e r c o n s o l i d a t i o n R a t i o Vs Depth (Sounding MRD-2) OCR 0 5 10 15 20 25 J 1 1 1 1 , 1 \ y s fliarckeTti 098©) --I X 1 1 1 \ -1 1 1 1 1 O v e r c o n s o l i d a t i o n R a t i o Vs Depth (Sounding MRD-3) 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0062926/manifest

Comment

Related Items