Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An experimental investigation of the ultimate capacity of single plate connections Wong, Henry H. J. 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A7 W62.pdf [ 26.86MB ]
Metadata
JSON: 831-1.0062838.json
JSON-LD: 831-1.0062838-ld.json
RDF/XML (Pretty): 831-1.0062838-rdf.xml
RDF/JSON: 831-1.0062838-rdf.json
Turtle: 831-1.0062838-turtle.txt
N-Triples: 831-1.0062838-rdf-ntriples.txt
Original Record: 831-1.0062838-source.json
Full Text
831-1.0062838-fulltext.txt
Citation
831-1.0062838.ris

Full Text

AN E X P E R I M E N T A L I N V E S T I G A T I O N OF THE U L T I M A T E C A P A C I T Y OF S I N G L E P L A T E CONNECTIONS by HENRY H . J . WONG B . A . S c . , T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1979 A T H E S I S SUBMITTED IN P A R T I A L F U L F I L M E N T OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF A P P L I E D S C I E N C E i n THE F A C U L T Y . O F GRADUATE S T U D I E S D e p a r t m e n t o f C i v i l E n g i n e e r i n g We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE U N I V E R S I T Y OF B R I T I S H COLUMBIA A p r i l 1986 © H E N R Y H . J . WONG, 1986 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head of the Department of C i v i l E n g i n e e r i n g o r by h i s or her r e p r e s e n t a t i v e s . I t i s und e r s t o o d t h a t c o p y i n g or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department of C i v i l E n g i n e e r i n g The U n i v e r s i t y of B r i t i s h Columbia 2075 Westbrook P l a c e Vancouver, Canada V6T 1W5 Date: A p r i l 1986 ABSTRACT Sin g l e p l a t e connections are becoming i n c r e a s i n g l y popular i n j o i n i n g beams to g i r d e r s and beams to columns and are p a r t i c u l a r l y s u p e r i o r i n the case of skewed co n n e c t i o n s . However, there are no comprehensive design r u l e s a v a i l a b l e fo r the complete s i n g l e p l a t e c o n n e c t i o n . Related methods deal only with s p e c i f i c connection problems f o r example e c c e n t r i c a l l y loaded b o l t e d and welded c o n n e c t i o n s . G e n e r a l l y , f o r a welded connection attached to a r i g i d support the s t r e n g t h of the weld i s c o n s i d e r e d c r i t i c a l . However, i t has to be recognized that the base metal i n the v i c i n i t y of the weld may become l o c a l l y o v e r s t r e s s e d before the weld streng t h becomes c r i t i c a l l e a d i n g to i n e l a s t i c f a i l u r e , or b u c k l i n g of the supporting member. An experimental i n v e s t i g a t i o n using f u l l s c a l e t e s t specimens was conducted on the o v e r a l l u l t i m a t e load c a r r y i n g c a p a c i t y of the s i n g l e p l a t e connections j o i n i n g beams to g i r d e r s . I t was found that f o r r a t i o s of connection p l a t e depth to the depth of the supporting g i r d e r of l e s s than 60%, there were l o c a l i z e d regions of the g i r d e r in the v i c i n i t y of the connection p l a t e which became h i g h l y o v e r s t r e s s e d at loads much below the g i r d e r ' s u l t i m a t e shear c a p a c i t y . These regions i n c l u d e d the top flange of the g i r d e r j u s t above the connection p l a t e showing t o r s i o n a l b u c k l i n g due t o ' the c l o s e n e s s of the top f l a n g e , p l a t e b u c k l i n g of the top flange above the connection p l a t e due to combined t o r s i o n a l and f l e x u r a l s t r e s s e s , and p l a t e b u c k l i n g of the g i r d e r web below the c o n n e c t i o n p l a t e . The u l t i m a t e f a i l u r e l o a d of the s i n g l e p l a t e c o n n e c t i o n s was found t o be at a l o a d much lower than the g i r d e r ' s u l t i m a t e shear capac i t y . From the a n a l y s i s of the e x p e r i m e n t a l r e s u l t s and parameter s t u d i e s , a d e s i g n f o r m u l a was proposed which can be used t o p r e d i c t the u l t i m a t e c a p a c i t y of s i n g l e p l a t e c o n n e c t i o n s . The formu l a i n c o r p o r a t e d the skew a n g l e of the c o n n e c t i o n and the u l t i m a t e t o r s i o n a l moment r e s i s t a n c e of the c o n n e c t i o n p l a t e i n a d d i t i o n t o the u l t i m a t e shear f o r c e r e s i s t a n c e , u l t i m a t e t o r s i o n a l moment r e s i s t a n c e , and bending moment r e s i s t a n c e of the s u p p o r t i n g g i r d e r . The t e s t r e s u l t s showed the d e s i g n f o r m u l a was a good i n d i c a t o r f o r the p r e d i c t i o n of the u l t i m a t e c a p a c i t y of s i n g l e p l a t e c o n n e c t i o n s . T a b l e o f C o n t e n t s A B S T R A C T i i L I S T OF T A B L E S v i L I S T OF FIGURES v i i ACKNOWLEDGEMENTS x i 1 . INTRODUCTION 1 1.1 INTRODUCTION 1 1.2 REVIEW OF PREVIOUS RESEARCH 2 1.3 O B J E C T I V E S OF THE RESEARCH I N V E S T I G A T I O N 8 1.4 SCOPE AND O B J E C T I V E S COVERED IN T H I S T H E S I S 9 2 . ARRANGEMENT OF T E S T I N G APPARATUS 16 2.1 O R I G I N A L T E S T APPARATUS ARRANGEMENT 16 2 . 2 F I N A L T E S T APPARATUS ARRANGEMENT 17 3 . T E S T SPECIMENS 29 3.1 D E S C R I P T I O N OF THE T E S T SPECIMENS 29 3 . 2 D E S C R I P T I O N OF THE LOAD BEAMS 33 3 . 3 PARAMETERS USED TO F A B R I C A T E THE T E S T SPECIMENS 34 4 . PRELIMINARY COMPUTER A N A L Y S I S 45 4 .1 D E S C R I P T I O N OF N I S A 80 45 4 . 2 PRELIMINARY MODELS OF THE T E S T SPECIMENS 45 4 . 3 A N A L Y S I S TO DATE AND RECOMMENDATIONS FOR FUTURE A N A L Y S I S 46 5 . DATA A C Q U I S I T I O N S Y S T E M AND SPECIMEN INSTRUMENTATION 54 5.1 THE O P T I L O G DATA A C Q U I S I T I O N AND CONTROL SYSTEM 54 5 . 2 S T R A I N GAUGES AND L V D T ' S 55 5 . 3 SPECIMEN INSTRUMENTATION 56 6 . T E S T R E S U L T S 61 6.1 T E N S I O N T E S T S 61 6 . 2 R E S U L T S FROM THE C A L I B R A T I O N T E S T 62 6 .3 RESULTS FROM THE T E S T S 63 6 . 3 . 1 T E S T 1B AND T E S T IC 63 6 . 3 . 2 T E S T 2A AND T E S T 2B 65 6 . 3 . 3 T E S T 3A 66 6 . 3 . 4 T E S T 4A 67 6 . 3 . 5 T E S T 5A 68 7 . D I S C U S S I O N OF T E S T RESULTS 146 7.1 T E S T RESULTS REQUIRED FOR A N A L Y S I S 146 7 .2 T E S T . I B , T E S T 2A, AND T E S T 3A 146 7 .3 SHEAR FORCE RESULTS 148 7 .4 TORSIONAL MOMENT R E S U L T S 151 7 . 5 BENDING MOMENT R E S U L T S ' 156 7 .6 RATIO I N T E R A C T I O N R E S U L T S 159 8 . PARAMETER S T U D I E S .164 8.1 INTRODUCTION OF THE PARAMETER S T U D I E S 164 8 . 2 d p i t / D PARAMETER 165 8 . 3 d t 0 p / D PARAMETER 167 8 .4 D / t w PARAMETER 168 8 . 5 h w / t w PARAMETER 168 8 . 6 b f / t f PARAMETER . . . . 1 6 9 8 . 7 t p i t / t w PARAMETER 170 8 . 8 0 ANGLE PARAMETER 171 8 . 9 PARAMETER S T U D I E S CONCLUSIONS 171 9 . CONCLUSIONS . . . 1 8 1 10 . PROPOSED FUTURE S T U D I E S 184 BIBLIOGRAPHY 186 v LIST OF TABLES TABLE PAGE 3.1 Test Specimens 29 3.2 Test Designations 30 3.3 S i n g l e P l a t e Connection D e t a i l s 32 3.4 Load Beam D e t a i l s ....34 3.5 Test Specimen Dimensions and Parameters 36 5.1 LVDT Conversion F a c t o r s 56 6.1 C o n s o l i d a t e d Coupon Test R e s u l t s 62 7.1 Shear Force and Shear S t r e s s R e s u l t s 150 7.2 T o r s i o n a l Moment Re s u l t s 152 7.3 Bending Moment Re s u l t s 158 7.4 Ra t i o and R a t i o I n t e r a c t i o n R e s u l t s ....161 8.1 Test Specimen Parameters 165 v i LIST OF FIGURES FIGURE PAGE 1.1 T y p i c a l S i n g l e P l a t e Connections 12 1.2 Skewed S i n g l e P l a t e Connection 13 1.3 Forces on E c c e n t r i c a l l y Loaded Connections 14 1.4 Weld Loading P o s s i b i l i t i e s 15 2.1 O r i g i n a l Test Apparatus Arrangement - F l o o r Plan 19 2.2 O r i g i n a l Test Apparatus Arrangement - Plan View 20 2.3 O r i g i n a l Test Apparatus Arrangement - S e c t i o n A 21 2.4 O r i g i n a l Test Apparatus Arrangement - S e c t i o n B 22 2.5 O r i g i n a l Test Apparatus Arrangement - Front View 23 2.6 O r i g i n a l Test Apparatus Arrangement 24 2.7 F i n a l Test Apparatus Arrangement - F l o o r Plan ..25 2.8 F i n a l Test Apparatus Arrangement - 0° Test 26 2.9 F i n a l Test Apparatus Arrangement - 30° Test ....27 2.10 F i n a l Test Apparatus Arrangement - 45° Test ....28 3.1 Test Specimens No.2 to No.5 Before T e s t i n g 37 3.2 Test Specimens No.2 to No.5 Before T e s t i n g 38 3.3 Shop Drawing of Test Specimen No.1 and Load Beam No. 1 39 3.4 Shop Drawing of Test Specimen No.2 40 3.5 Shop Drawing of Test Specimen No.3 41 3.6 Shop Drawing of Test Specimen No.4 and Load Beam No.2 42 3.7 Shop Drawing of Test Specimen No.5 43 3.8 Load Beam's Shear Force and Moment Diagrams ....44 4.1 F i n i t e Element Model - Test Specimen No.1 48 v i i 4.2 F i n i t e Element Model - Test Specimen No.lA 49 4.3 F i n i t e Element Model - Test Specimen No.2 50 4.4 F i n i t e Element Model - Test Specimen No.3 51 4.5 F i n i t e Element Model - Test Specimen No.4 52 4.6 F i n i t e Element Model - Test Specimen No.5 53 5.1 O p t i l o g System with Apple Computer 58 5.2 Back of O p t i l o g Showing Channel P l u g - i n s 59 5.3 Test Specimen No.2 Instrumentation L o c a t i o n s ...60 6.1 Tension Test Arrangement f o r Coupon Test Specimens 107 6.2 Test 1B - S i n g l e P l a t e Connection Looking Northwest 1 08 6.3 Test 1B - S i n g l e P l a t e Connection Looking Southwest .109 6.4 Test 1B - Back of Test Specimen Looking Southeast 110 6.5 Test 1B - Back of Test Specimen Looking Northeast 111 6.6 Test 1C - South Side of F a i l e d Connection .....112 6.7 Test 1C - North Side of F a i l e d Connection 113 6.8 Test 1C - Back of F a i l e d Test Specimen Looking South 114 6.9 Test 2A - South Side of Connection 115 6.10 Test 2A - North Side of Connection 116 6.11 Test 2A - Back of Test Specimen Looking Southeast 117 6.12 Test 2B - F a i l e d Test Specimen Looking Northwest 118 6.13 Test 2B - F a i l e d Test Specimen Looking Southwest 119 6.14 Test 2B - Back of F a i l e d Test Specimen Looking Southeast 120 6.15 Test 2B - Back of F a i l e d Test Specimen Looking Northeast 121 v i i i 6.16 Front View of F a i l e d Test Specimen No.2 122 6.17 End View of F a i l e d Test Specimen No. 2 123 6.18 Back of F a i l e d Test Specimen No.2 Showing S t r e s s Pattern and Buckled Back of Top Flange .124 6.19 Buckled Top Flange of F a i l e d Test Specimen No.2 125 6.20 Test 3A - Connection P l a t e Looking Northwest ..126 6.21 Test 3A - Test Specimen Looking Southwest 127 6.22 Test 3A - Test Specimen Looking Southeast 128 6.23 Test 3A - Test Specimen Looking Northeast 129 6.24 Front View of Test Specimen No.3 130 6.25 End View of Test Specimen No.3 131 6.26 Test 4A - F a i l e d Test Specimen Looking Northwest 132 6.27 Test 4A - F a i l e d Test Specimen Looking Southwest 133 6.28 Test 4A - Back of F a i l e d Test Specimen Looking Southeast 134 6.29 Test 4A - Back of F a i l e d Test Specimen Looking Northeast 135 6.30 Front View of F a i l e d Test Specimen No.4 136 6.31 End View of F a i l e d Test Specimen No.4 137 6.32 Buckled Top Flange of F a i l e d Test Specimen No.4 138 6.33 Test 5A - F a i l e d Test Specimen Looking Northwest 139 6.34 Test 5A - F a i l e d Test Specimen Looking Southwest 140 6.35 Test 5A - Back of F a i l e d Test Specimen Looking Southeast 141 6.36' Test 5A - Back of F a i l e d Test Specimen Looking Northeast 142 6.37 Front View of F a i l e d Test Specimen No.5 143 6.38 End View of F a i l e d Test Specimen No.5 144 ix 6.39 Buckled Top Flange of F a i l e d Test Specimen No. 5 145 8.1 Graph of Ratios and R a t i o I n t e r a c t i o n s v s. dp]_t/ D Parameter 174 8.2 Graph of Ratios and R a t i o I n t e r a c t i o n s v s. dt 0p/D Parameter 175 8.3 Graph of Rati o s and R a t i o I n t e r a c t i o n s v s. D / t w Parameter 176 8.4 Graph of Ratios and R a t i o I n t e r a c t i o n s vs. h w / t w Parameter 177 8.5 Graph of Ratios and R a t i o I n t e r a c t i o n s v s. b f / t f Parameter 178 8.6 Graph of Ratios and R a t i o I n t e r a c t i o n s vs. t p i t A w Parameter 179 8.7 Graph of Ratios and R a t i o I n t e r a c t i o n s v s. 0 Angle Parameter 180 x ACKNOWLEDGEMENTS I would l i k e to express my s i n c e r e g r a t i t u d e and a p p r e c i a t i o n to my a d v i s o r , Dr. S.F. Stiemer, f o r h i s guidance and encouragement throughout the research and pr e p a r a t i o n of t h i s t h e s i s . The co o p e r a t i o n r e c e i v e d from Mr. A l b e r t Ho of Coast S t e e l F a b r i c a t o r s L i m i t e d was very b e n e f i c i a l i n t h i s i n v e s t i g a t i o n and i s s i n c e r e l y a p p r e c i a t e d . T h i s t h e s i s was made p o s s i b l e by the f i n a n c i a l a s s i s t a n c e from the N a t i o n a l S c i e n c e s and Engineering Research C o u n c i l of Canada, Cooperative Research and Development Grant Program. The c o n t r i b u t i o n r e c e i v e d from Coast S t e e l F a b r i c a t o r s L i m i t e d i s a l s o g r a t e f u l l y a p p r e c i a t e d . F i n a l l y , I wish to express my s i n c e r e thanks to the t e c h n i c a l s t a f f at the U.B.C. Department of C i v i l E n g i n e e r i n g , f e l l o w graduate students, and my parents f o r t h e i r encouragement, advice, a s s i s t a n c e , and support. S p e c i a l thanks i s extended to Bernie M e r k l i f o r h i s t e c h n i c a l a s s i s t a n c e d u r i n g the experimental i n v e s t i g a t i o n . S p e c i a l thanks and s i n c e r e a p p r e c i a t i o n i s a l s o extended t o my f i a n c e e , P o l l y Jang, f o r her support and a s s i s t a n c e i n the p r e p a r a t i o n of t h i s t h e s i s . x i Chapter 1 INTRODUCTION 1.1 INTRODUCTION Si n g l e p l a t e connections are becoming i n c r e a s i n g l y popular i n s t r u c t u r a l s t e e l c o n s t r u c t i o n . Design engineers and s t e e l f a b r i c a t o r s have found these connections to be very cost e f f i c i e n t f o r commercial, r e s i d e n t i a l , and l i g h t i n d u s t r i a l a p p l i c a t i o n s which were analyzed and b u i l t as simple c o n s t r u c t i o n . The connection p l a t e i s shop-welded to the supporting member and f i e l d - b o l t e d to the supported member as shown in F i g u r e 1.1. Skewed s i n g l e p l a t e connections are e s p e c i a l l y c o s t e f f i c i e n t (Figure 1.2). Q u a l i t y c o n t r o l i s e a s i l y p o s s i b l e f o r t h i s type of connection d u r i n g the f a b r i c a t i o n and e r e c t i o n stages. However, l i m i t e d guidance i s given i n the form of design r u l e s f o r s i n g l e p l a t e c o n n e c t i o n s . Few e x i s t i n g i n v e s t i g a t i o n s (Lipson [ 1 ] , R ichard et a l . [2], and Young and Disque [3]) have con c e n t r a t e d on the whole s i n g l e p l a t e connection which i n c l u d e d the b o l t s , the welds, and the r i g i d i t y of the j o i n t . Others ( F i s h e r [ 4 ] , Crawford and Kulak [ 5 ] , B u t l e r and Kulak [ 6 ] , B u t l e r , P a l , and Kulak [ 7 ] , and Dawe and Kulak [8]) have i n v e s t i g a t e d c e r t a i n aspects of the connection such as only the welds or only the b o l t s . I n v e s t i g a t i o n s of skewed s i n g l e p l a t e connections (Figure 1.2) or the connection welded to a f l e x i b l e element l i k e the g i r d e r web ( F i g u r e 1.1a) have not 1 2 yet been made or repo r t e d . Serious concerns have been expressed by Tide [9] regarding the supporting beam web b u c k l i n g i n the v i c i n i t y of the e c c e n t r i c a l l y loaded f i l l e t weld group. The weld i s con s i d e r e d to be c r i t i c a l i n the resea r c h models which r e q u i r e d the welded connection to be atta c h e d to a r i g i d support. If the support i s f l e x i b l e , the web would have i n e l a s t i c a l l y f a i l e d before the weld becomes c r i t i c a l because the s t r e s s s t a t e s must s a t i s f y the e q u i l i b r i u m and c o m p a t i b i l i t y c o n d i t i o n s and the base metal i s weaker than the weld metal. 1.2 REVIEW OF PREVIOUS RESEARCH An e a r l y d e s c r i p t i o n of the load-deformation r e l a t i o n s h i p f o r a s i n g l e b o l t i n double shear was given i n 1965 by F i s h e r [ 4 ] . T h i s r e l a t i o n s h i p i s R = R u l t x (1-e" MV [1.1] where R = b o l t f o r c e at a given deformation R u^ t = b o l t ' s u l t i m a t e shear s t r e n g t h e = base of n a t u r a l logarithms M, X = r e g r e s s i o n c o e f f i c i e n t s A = shearing, bending, and bearing deformation of the b o l t and bearing deformation of the p l a t e . The v a l u e s f o r R, u, and X were determined f o r v a r i o u s b o l t and p l a t e connections based on the b o l t ' s u l t i m a t e shear s t r e n g t h (R,,n-) and deformation (A). 3 In 1971, Crawford and Kulak [5] developed the method of instantaneous center of r o t a t i o n f o r b o l t groups to p r e d i c t the u l t i m a t e s t r e n g t h of e c c e n t r i c a l l y loaded b o l t e d connections. T h i s t h e o r e t i c a l approach i s based on three assumptions: the b o l t group r o t a t e s about an instantaneous center, deformation of a given b o l t i s l i n e a r l y p r o p o r t i o n a l to i t s d i s t a n c e from the instantaneous center and a c t s i n a d i r e c t i o n p e r p e n d i c u l a r to the r a d i u s of r o t a t i o n , and the u l t i m a t e s t r e n g t h of the b o l t group i s reached when the u l t i m a t e s t r e n g t h of the b o l t f u r t h e s t from the center of r o t a t i o n i s reached (Figure 1.3a). Equation [1.1 ] i s used to determine the magnitude of the f o r c e f o r each b o l t . They exp e r i m e n t a l l y v e r i f i e d t h e i r p r e d i c t i o n s and presented a t a b l e g i v i n g values to c a l c u l a t e the u l t i m a t e load f o r o n e - l i n e and two-line groups of ASTM A325 b o l t s . In the e a r l y 1970's, r e s u l t s of i n v e s t i g a t i o n s on e c c e n t r i c a l l y loaded welded conn e c t i o n s were p u b l i s h e d ( B u t l e r and Kulak [6], B u t l e r , P a l , and Kulak [ 7 ] , and Dawe and Kulak [ 8 ] ) . E a r l i e r in 1959, Archer et a l . [10] had s t u d i e d the u l t i m a t e s t r e n g t h of f i l l e t welds subjected to shear and bending fo r d i f f e r e n t r a t i o s of l o a d e c c e n t r i c i t y to weld l e n g t h . They found that the u l t i m a t e s t r e n g t h of the weld i s dependent on the d i r e c t i o n of the a p p l i e d load with respect to the a x i s of the weld. In 1971, B u t l e r and Kulak [6] v e r i f i e d that the load-deformation r e l a t i o n s h i p of equation [1.1] used f o r b o l t s c o u l d a l s o be used f o r welds. Ex p e r i m e n t a l l y v e r i f i e d expressions f o r R , , A , u, and X u i t ins x 4 were published as f u n c t i o n s of 8, the angle between the d i r e c t i o n of the a p p l i e d l o a d and the l o n g i t u d i n a l a x i s of the weld. Later B u t l e r , P a l , and Kulak [7] p u b l i s h e d t h e i r r e s u l t s for p r e d i c t i n g the u l t i m a t e s t r e n g t h of an e c c e n t r i c a l l y loaded welded connection when the welds are in-plane to the load (Figure 1.4a). They f o l l o w e d a s i m i l a r i n v e s t i g a t i v e approach as Crawford and Kulak's method of instantaneous center of r o t a t i o n used fo r b o l t s i n r e f e r e n c e [ 5 ] . In the B u t l e r , P a l , and Kulak [7] i n v e s t i g a t i o n , the welded p l a t e connection i s loaded i n shear and t o r s i o n and the weld group i s f r e e to deform throughout i t s depth. The study was extended i n 1974 by Dawe and Kulak [8] f o r s i n g l e p l a t e connections which were loaded i n shear and f l e x u r e (Figure 1.4b). I t was s t a t e d that the weld group cannot r o t a t e or deform i n the compression zone and the s t r e s s d i s t r i b u t i o n i s t r i a n g u l a r while the weld group in the t e n s i o n zone has f o r c e s d e s c r i b e d by the instantaneous center of r o t a t i o n method (Figure 1.3b). In the CISC Handbook of S t e e l C o n s t r u c t i o n [11], Tables 3-15 and 3-32 t a b u l a t e C c o e f f i c i e n t s f o r the e f f e c t of e c c e n t r i c loads on b o l t groups and weld groups, r e s p e c t i v e l y . S i m i l a r l y , Tables X and XIX were developed i n the AISC Manual of S t e e l C o n s t r u c t i o n [12]. These c o e f f i c i e n t s were obtained using the method of instantaneous center of r o t a t i o n d e s c r i b e d i n r e f e r e n c e s [ 5 ] , [ 6 ] , [ 7 ] , and [8] above. The u l t i m a t e s t r e n g t h of the b o l t or weld group was p r e d i c t e d and then an a p p r o p r i a t e f a c t o r of s a f e t y 5 was a p p l i e d . In most recent research r e p o r t s (Brandt [13], Swannell [14] and [15], and Neis [16]), v a r i o u s methods were presented to manually l o c a t e the instantaneous center of r o t a t i o n and to p r e d i c t the u l t i m a t e s t r e n g t h of a b o l t e d or welded connection s i n c e Crawford and Kulak's [5] and Dawe and Kulak's [8] methods r e q u i r e a computer to determine the three unknowns: the u l t i m a t e load, the p o s i t i o n of the n e u t r a l a x i s , and the l o c a t i o n of the instantaneous c e n t e r . Brandt [17] provided a computer program to approximate the unknowns while Neis [18] d i s c u s s e d proposed r e s e a r c h to support the theory presented i n h i s e a r l i e r paper (r e f e r e n c e [ 1 6 ] ) . B e a u l i e u and P i c a r d [19] compared the a n a l y t i c a l methods presented by Dawe and Kulak [8] and Neis [16] f o r the p r e d i c t i o n of u l t i m a t e loads to e x p e r i m e n t a l l y obtained u l t i m a t e l o a d s . They found that Dawe and Kulak's method gave a good c o r r e l a t i o n while Neis' method would be dependent on the l o a d i n g parameters. Richard et a l . [2] p u b l i s h e d a paper i n 1980 d e t a i l i n g the a n a l y s i s and design of s i n g l e p l a t e framing c o n n e c t i o n s . The authors d e r i v e d a new load-deformation r e l a t i o n s h i p f o r a s i n g l e b o l t i n s i n g l e shear. The r e l a t i o n s h i p i s a weighted l e a s t squares f i t of the t e s t data with ±20% bounds and i s given by R = K PA + { K ^ / t l + l K ^ / R o l " ' I 1 7 " ' ) [1.2] where R = b o l t f o r c e at a given deformation 6 K = slope of the load-deformation curve i n the extreme P y i e l d i n g range A = b o l t - p l a t e deformation K,= K-K p K = i n i t i a l slope of the ioad-deformation curve = 2 E t , t 2 / ( t , + t 2 ) where E i s the modulus of e l a s t i c i t y and t , and t 2 are the p l a t e t h i c k n e s s e s R 0= b o l t reference load n'= b o l t load-deformation curve shape parameter. The load-deformation curve parameters ( Rp» K w R o i and n') are t a b u l a t e d in referen c e [2] f o r v a r i o u s b o l t diameters and p l a t e t h i c k n e s s e s . An equation f o r the moment at the b o l t l i n e was developed from experimental moment-rotation data. Then the design formulas, (e/h) = ( e / h ) r e f x (n/N) x ( S r e f / S ) 0 ' 4 [1.3a] and e ( S ) 0 ' 4 = h x ( e / h ) r e f x (n/N) x ( S r e f ) 0 , 4 [1.3b] where e = e c c e n t r i c i t y equal to the d i s t a n c e from the b o l t l i n e to the load or p o i n t of i n f l e c t i o n i n the beam h = depth of the b o l t p a t t e r n (e/h) r e£ = parameter based on span/depth r a t i o (1/d) of the beam = 0.06(l/d)-0.15 when (l/d)>6 = 0.035(l/d) when (l/d)<6 7 n number of b o l t s N c o e f f i c i e n t based on b o l t d i a m e t e r : 5 f o r 19 mm and 22 mm dia m e t e r b o l t s and 7 f o r 25 mm diameter b o l t s S s e c t i o n modulus of the s u p p o r t e d beam S r e f c o e f f i c i e n t based on b o l t d i a m e t e r : 100 f o r 19 mm b o l t s , 175 f o r 22 mm b o l t s , and 450 f o r 25 mm b o l t s , were d e r i v e d u s i n g n o n d i m e n s i o n a l moment-rotation c u r v e s and beam l i n e t h e o r y . The v a r i a b l e s r e p r e s e n t v a r i o u s beam and b o l t parameters. The moment a t the weld can be computed knowing the beam shear f o r c e , the c o n n e c t i o n e c c e n t r i c i t y , and the d i s t a n c e from the b o l t l i n e t o the weld l i n e . The weld s i z e i s d e s i g n e d u s i n g t h e maximum weld s t r e s s which i s the r e s u l t a n t of the p l a t e ' s normal and shear s t r e s s e s . D esign a i d s f o r the s o l u t i o n of e ( S ) ^ * 4 i n e q u a t i o n [1.3b] and the c o n n e c t i o n d e s i g n procedure a r e g i v e n i n r e f e r e n c e I t i s important t o note t h a t i n a l l the above mentioned r e f e r e n c e s , the a n a l y t i c a l and e x p e r i m e n t a l models r e q u i r e the welded c o n n e c t i o n t o be a t t a c h e d t o a r i g i d s u p p o r t i n g element. Some ca s e s where the element i s not r i g i d l y a t t a c h e d a re s t a t e d i n r e f e r e n c e [ 9 ] . For o n e - s i d e d c o n n e c t i o n s such as beam-to-girder web ( F i g u r e 1.1a), the s u p p o r t i n g element and sub-element (web) a r e r e l a t i v e l y f l e x i b l e . T h i s reduces the c o n n e c t i o n moment but i n c r e a s e s the s t r e s s e s i n the g i r d e r web i n the v i c i n i t y of the weld. [ 3 ] . 8 L o c a l l y o v e r s t r e s s e d regions adjacent to the top of the connection are caused by the combined shear and moment e f f e c t s . 1.3 OBJECTIVES OF THE RESEARCH INVESTIGATION The u l t i m a t e load c a r r y i n g c a p a c i t y of s i n g l e p l a t e connections with s p e c i a l c o n s i d e r a t i o n f o r f l e x i b l e web supports s h a l l be e x p e r i m e n t a l l y and . a n a l y t i c a l l y i n v e s t i g a t e d . The u l t i m a t e c a p a c i t i e s w i l l be expressed as fu n c t i o n s of v a r i o u s parameters which d e s c r i b e the lo a d , boundary, geometry, and m a t e r i a l property of the supporting member, the supported member, and the s i n g l e connection p l a t e . For design purposes, recommendations f o r the c h o i c e of the parameters s h a l l be given while the f a c t o r of s a f e t y s h a l l be d e f i n e d based on the l i m i t s t a t e s design r u l e s f o r s t r u c t u r a l s t e e l . The experimental r e s e a r c h w i l l c o n s i d e r s i x main aspects of the s i n g l e p l a t e c o n n e c t i o n : 1. f l e x i b i l i t y of the su p p o r t i n g member at the welded connection r e l a t e d to the member's p l a t e dimensions and m a t e r i a l p r o p e r t i e s , 2. v a r i a t i o n of the connection p l a t e dimensions, 3. v a r i a t i o n of the connection p l a t e l o c a t i o n with r e s p e c t to the supporting member, 4. s l o t t e d holes to reduce the moment at the weld, 5. skewed connection angle j3 (/3=0° f o r a beam connected p e r p e n d i c u l a r to the g i r d e r ) , and 9 6. r e l a t i n g a f l e x i b l e connection to an e q u i v a l e n t r i g i d c o n n e c t i o n . I t w i l l be attempted to r e l a t e r i g i d l y connected s i n g l e p l a t e connections d e s c r i b e d by the research methods of e c c e n t r i c a l l y loaded welded and b o l t e d connection using the instantaneous center of r o t a t i o n procedures. The a n a l y t i c a l i n v e s t i g a t i o n w i l l c o n s i s t of performing f i n i t e element u l t i m a t e load a n a l y s i s using NISA 80 [20], C o r r e l a t i o n s t u d i e s w i l l be performed with the a v a i l a b l e a n a l y t i c a l and experimental r e s u l t s . The r e s u l t s of the experimental i n v e s t i g a t i o n w i l l be used to c a l i b r a t e the f i n i t e element program NISA 80 and to v e r i f y the a n a l y t i c a l r e s u l t s . The main o b j e c t i v e of the r e s e a r c h i n v e s t i g a t i o n i s to develop a design procedure with design a i d s i n the form of t a b l e s and/or c h a r t s d e r i v e d from the r e s u l t s and parameter s t u d i e s which w i l l be b e n e f i c i a l to design engineers and s t e e l f a b r i c a t o r s . 1.4 SCOPE AND OBJECTIVES COVERED IN THIS THESIS Th i s t h e s i s i s a part of the o v e r a l l research i n v e s t i g a t i o n and examines the f e a s i b i l i t y of some of the o b j e c t i v e s set f o r t h i n S e c t i o n 1.3. T h i s t h e s i s w i l l mainly cover the experimental i n v e s t i g a t i o n of s i n g l e p l a t e connections f o r beam-to-girder webs. O b j e c t i v e s 1, 2, and 5 d i s c u s s e d i n S e c t i o n 1.3 w i l l be i n v e s t i g a t e d u sing f u l l s c a l e t e s t specimens and that 1 0 f l e x i b l e s u p p o r t i n g elements w i l l have lower u l t i m a t e c a p a c i t i e s can be shown. The s i n g l e p l a t e c o n n e c t i o n specimens w i l l be f a b r i c a t e d f o l l o w i n g e x i s t i n g shop p r a c t i c e f o r dimensions and l o c a t i o n s . S l o t t e d h o l e s a r e used t o d e f i n e the shear f o r c e and moment a t the c o n n e c t i o n weld l i n e . Parameter s t u d i e s w i l l be conducted. The a n a l y t i c a l i n v e s t i g a t i o n w i l l be s t a r t e d by i n v e s t i g a t i n g the f i n i t e element a n a l y s i s f o r the t e s t specimens. Then c o r r e l a t i o n s t u d i e s can be performed on the e x p e r i m e n t a l and a n a l y t i c a l r e s u l t s . A d e s i g n f o r m u l a w i l l be d e r i v e d from the e x p e r i m e n t a l i n v e s t i g a t i o n and parameter s t u d i e s . The d e s i g n f o r m u l a w i l l be i n a p r e l i m i n a r y form and w i l l s e r v e as the b a s i s f o r the f i n a l d e s i g n procedure t o be d e v e l o p e d . F u t u r e a n a l y t i c a l i n v e s t i g a t i o n and c o r r e l a t i o n s t u d i e s w i l l be used t o v e r i f y t h i s d e s i g n f o r m u l a . The arrangement of the t e s t i n g a p p a r a t u s i s d e s c r i b e d i n Chapter 2 w h i l e d e s c r i p t i o n s of the t e s t specimens, the l o a d beams, and the t e s t parameters are d i s c u s s e d i n Chapter 3. Chapter 4 c o n t a i n s a p r e l i m i n a r y d i s c u s s i o n of the NISA 80 computer a n a l y s i s and Chapter 5 d e a l s w i t h the d a t a a c q u i s i t i o n system and the t e s t specimen i n s t r u m e n t a t i o n . The e x p e r i m e n t a l r e s u l t s a r e p r e s e n t e d i n Chapter 6. The e x p e r i m e n t a l a n a l y s i s i s d e a l t w i t h i n Chapter 7 and Chapter 8. Chapter 7 l o o k s a t the t e s t r e s u l t s from a s t r e n g t h of m a t e r i a l s p o i n t of view. Chapter 8 d e s c r i b e s the parameter s t u d i e s u s i n g v a r i o u s g e o m e t r i c parameters of the s i n g l e 11 p l a t e c o n n e c t i o n . Chapter 9 and Chapter 1 0 c o n t a i n the c o n c l u s i o n s of the e x p e r i m e n t a l i n v e s t i g a t i o n and the p r o p o s a l s f o r f u t u r e s t u d i e s . 12 (a) B e a m - t o - G i r d e r Web C o n n e c t i o n (b) B e a m - t o - C o l u m n Web C o n n e c t i o n ( c ) B e a m - t o - C o l u m n F l a n g e C o n n e c t i o n F i g u r e 1.1 T y p i c a l S i n g l e P l a t e C o n n e c t i o n s y 4 (a) B o l t e d Connection (b) Welded Connection Figure 1 . 3 Forces on E c c e n t r i c a l l y Loaded Connections (a) Welds Loaded i n Shear and T o r s i o n (b) Welds Loaded i n Shear and F l e x u r e F i g u r e 1.4 Weld Loading P o s s i b i l i t i e s Chapter 2 ARRANGEMENT OF TESTING APPARATUS 2.1 ORIGINAL TEST APPARATUS ARRANGEMENT The o r i g i n a l t e s t apparatus arrangement used for the c a l i b r a t i o n t e s t i n c o r p o r a t e d e x i s t i n g columns, frames, l o a d c e l l s , and load a c t u a t o r s at the S t r u c t u r e s L a b o r a t o r i e s of the U n i v e r s i t y of B r i t i s h Columbia Department of C i v i l E n g i n e e r i n g . The frames, c o n s i s t i n g of W-shape columns, channels c u t t e d from S-shapes, and W-shape stub-column spacers, were c o n s t r u c t e d from A36 m a t e r i a l and have been used at the l a b o r a t o r y s i n c e 1969. A 1779 kN (400.0 kips) Team Corporation load a c t u a t o r with a Sensotec l o a d c e l l was used to load the t e s t specimens which represented the supporting g i r d e r and the s i n g l e p l a t e c o n n e c t i o n . The a c t u a t o r was suspended from a 524 mm (20g in.) deep b u i l t - u p beam of A36 m a t e r i a l . The t e s t apparatus must be arranged on a 609.6 mm (24.0 in.) by 609.6 mm (24.0 i n . ) g r i d to c o i n c i d e with holes i n the l a b o r a t o r y f l o o r which allow columns and equipment bases to be t i e d down with anchor rods 3 1 of 44.5 mm (1^ in.) diameters and 978 mm (38^ i n . ) l e n g t h s . The t e s t specimens were c a l c u l a t e d to be 2438.4 mm (96.0 in.) i n l e n g t h from c e n t e r - t o - c e n t e r of the columns to minimize the end e f f e c t s such that the t o r s i o n a l s t r e s s e s at a s u f f i c i e n t d i s t a n c e from the ends w i l l mainly depend on the magnitude of the a p p l i e d torque a c c o r d i n g to S t . Venant's p r i n c i p l e . Shear and t o r s i o n a l moment were a p p l i e d 16 17 to the t e s t specimens by a lo a d i n g beam with i t s l e n g t h determined to apply approximately 80% of the actu a t o r l o a d to the connection. A MTS Systems Cor p o r a t i o n 444.8 kN (100.0 kips) load c e l l was attached to the end of the load beam f u r t h e s t away from the shear p l a t e connection to r e c o r d the end r e a c t i o n . The end r e a c t i o n and a c t u a t o r l o a d i n g are used to determine the shear f o r c e and t o r s i o n a l moment a p p l i e d through the shear p l a t e to the t e s t specimens. Fi g u r e s 2.1 to 2.6 show v a r i o u s plans, s e c t i o n s , and photographs of the o r i g i n a l t e s t apparatus arrangement. 2.2 FINAL TEST APPARATUS ARRANGEMENT The o r i g i n a l t e s t apparatus arrangement can support an actuator l o a d i n g of 867.4 kN (195.0 k i p s ) . When the c a l i b r a t i o n t e s t (Test Specimen No.1, Run No.1) was conducted, a higher l o a d i n g was found to be r e q u i r e d . The arrangement was modified by moving Frame No.3 609.6 mm (24.0 in.) north (Figure 2.7). In t h i s p o s i t i o n , the apparatus can support an act u a t o r l o a d i n g of 1134 kN (255.0 k i p s ) . When the 1779 kN (400.0 kips) load a c t u a t o r and the frames were f a b r i c a t e d for the l a b o r a t o r y , the actuator was intended to be p o s i t i o n e d d i r e c t l y under a frame but i t was not p o s s i b l e f o r t h i s s e r i e s of t e s t s due to the len g t h and p o s i t i o n of the load beams. T h i s m o d i f i e d t e s t apparatus arrangement was used f o r a l l the t e s t specimens. For the t e s t i n g of Test Specimens No.2 to No.5, guides were added to the loa d c e l l end of the load beam to 18 pr e v e n t any o u t - o f - p l a n e t w i s t i n g of the l o a d beam. F i g u r e s 2.8 t o 2.10 a r e photographs of t h i s f i n a l t e s t a p p a r a t u s arrangement. ^ z F i g u r e 2.1 O r i g i n a l T e s t A p p a r a t u s A r r a n g e m e n t - F l o o r P l a n F i g u r e 2.2 O r i g i n a l T e s t Apparatus Arrangement - P l a n View 21 Ho. i F i g u r e 2.3 O r i g i n a l Test Apparatus Arrangement - S e c t i o n A 22 C»»OT To 1.6 Figure 2.4 O r i g i n a l Test Apparatus Arrangement - Section B 23 F i g u r e 2.5 O r i g i n a l Test A pparatus Arrangement - F r o n t View 24 F i g u r e 2.6 O r i g i n a l Test Apparatus Arrangement r 5* P o J ^ AcTuAToA y 6C/W A-'-O " ScAue : / O O M « = 3 O O O M M NO. I J X x • l-OUfl-,0M Op" -12.1 <\.\, 4 - ' - 0 " * V Figure 2.7 Final Test Apparatus Arrangement - Floor Plan 26 2 7 28 F i g u r e 2.10 F i n a l T e s t Apparatus Arrangement - 45° T e s t Chapter 3 TEST SPECIMENS 3.1 DESCRIPTION OF THE TEST SPECIMENS The t e s t specimens were provided by Coast S t e e l F a b r i c a t o r s L i m i t e d , a l o c a l s t e e l f a b r i c a t o r . A l l f a b r i c a t i o n i n c l u d i n g c u t t i n g , welding, and d r i l l i n g was completed i n the shop before s h i p p i n g to the S t r u c t u r e s L a b o r a t o r i e s of the U n i v e r s i t y of B r i t i s h Columbia Department of C i v i l E n g ineering. The t e s t specimens represented the s u p p o r t i n g members of one-sided s i n g l e p l a t e connections. A l l t e s t specimens conformed with CSA G40.21-M 300W fo r m a t e r i a l p r o p e r t i e s and dimensional t o l e r a n c e s and with CAN3-S16.1-M78 f o r b o l t i n g and welding f a b r i c a t i o n . The specimen l e n g t h of 2092 mm 3 (82g in.) allowed f o r the frame column depth and the end 3 p l a t e t h i c k n e s s e s of 10 mm (g i n . ) . The r o l l e d shapes used to f a b r i c a t e the t e s t specimens along with the number of b o l t s used i n the connections are t a b u l a t e d i n Table 3.1. Table 3.1 Test Specimens TEST SPECIMEN BEAM DESIGNATION NO. OF BOLTS NO. IN CONNECTION 1 W6 10X101 (W24X68) 6 1 A W610X101 (W24X68) 3 2 W460X61 (W18X41) 2 3 W310X39 (W12X26) 1 4 W360X33 (W14X22) 2 5 W410X39 (W16X26) 2 29 30 These beam s i z e s were chosen because they represent t y p i c a l beams used in l i g h t c o n s t r u c t i o n a p p l i c a t i o n s which were deeper than 310 mm (12 i n . ) . The number of b o l t s for Test Specimen No.1 were reduced from s i x to three when no n o t i c e a b l e e f f e c t s occurred to the specimen d u r i n g the t e s t . T h i s modified specimen was designated Test Specimen No.1, Run No.3 or Test Specimen No.1A. F i g u r e 2.6 shows Test Specimen No.1 d u r i n g a t e s t . Test Specimens No.2 to No.5 were f a b r i c a t e d a f t e r the three t e s t s of Test Specimen No.1 were completed. F i g u r e s 3.1 and 3.2 show Test Specimens No.2 to No.5 before t e s t i n g . The t e s t specimen numbers and t e s t name d e s i g n a t i o n s are t a b u l a t e d i n Table 3.2. Table 3.2 Test D e s i g n a t i o n s TEST SPECIMEN RUN NO. TEST NO. 1 1 1A 1 2 1B 1A 3 1C 2 1 2A 2 2 2B 3 1 3A 4 1 4A 5 1 5A 31 The s i n g l e p l a t e connection was l o c a t e d at the midspan of the t e s t specimens. The depths of the connection p l a t e s were determined by approximating how deep a p l a t e would be for the supported beam t y p i c a l l y framing i n t o the t e s t specimen and checking i t with the t e s t parameters. Then the depths were adju s t e d to account f o r l i m i t a t i o n s due to standard b o l t spacing, end d i s t a n c e , and edge d i s t a n c e . The a l t e r n a t i v e i n d u s t r i a l standard of 25 mm (1.0 in.) diameter ASTM A490 b o l t s at 76 mm (3.0 i n . ) and 102 mm (4.0 in.) 3 spacings i n s t e a d of the i n d u s t r i a l standard of 19 mm (^  in.) ASTM A325 b o l t s at 76 mm (3.0 i n . ) spacing were used to transmit as much of the a c t u a t o r l o a d i n g as p o s s i b l e to the t e s t specimens without d r a s t i c a l l y i n c r e a s i n g the depth and the number of b o l t s i n the connection p l a t e . The connection p l a t e t h i c k n e s s was. designed to r e s i s t a f a c t o r e d bearing force approximately equal to the f a c t o r e d shear r e s i s t a n c e of the b o l t s . The welds ran the depth on both s i d e s of the s i n g l e p l a t e connection and were s i z e d to r e s i s t the f a c t o r e d r e s u l t a n t s t r e s s due to shear and bending. Test Specimens No.4 and No.5 had connection p l a t e s which were angled at 30° and 45° r e s p e c t i v e l y to represent skewed connections. The s i n g l e p l a t e connection d e t a i l s are t a b u l a t e d i n Table 3.3. Shop drawings of the t e s t specimens are shown on F i g u r e 3.3 to F i g u r e 3.7. T a b l e 3.3 S i n g l e P l a t e C o n n e c t i o n D e t a i l s CONNECTION PLATE DETAILS TEST NO. SPECIMEN OF DEPTH WIDTH THICKNESS TO TOP WELD BOLT BOLT L INE TO NO. BOLTS ( d p l t * ( t p l t ) 0 F FLANGE S I ZE SPACING EDGE OF SPECIMEN 0 mm i n . mm i n . mm i n . mm i n . mm i n . mm i n . mm i n . o 1 6 457 .2 18.0 102 4 .0 15.9 5/8 38.1 1 .5 10 3/8 7 6 . 2 3 .0 6 3 . 5 2.5 0 1 A 3 228 .6 9.0 1 02 4 .0 15.9 5/8 38.1 1 .5 10 3/8 7 6 . 2 3 .0 6 3 . 5 2.5 0 2 2 203 .2 8 .0 127 5.0 12.7 1/2 25 .4 1.0 13 1/2 101 .6 4 . 0 6 3 . 5 2.5 0 3 1 127.0 5.0 102 4 .0 12.7 1/2 12.7 0 .5 19 3/4 6 3 . 5 2.5 0 4 2 203 .2 8 .0 127 5.0 12 .7 1/2 25 .4 1.0 13 1/2 101 .6 4 . 0 6 3 . 5 2.5 30 5 2 203.2 8.0 127 5.0 12.7 1/2 25 .4 1.0 13 1/2 101 .6 4 . 0 6 3 . 5 2.5 45 CO to 33 3.2 DESCRIPTION OF THE LOAD BEAMS The shear fo r c e and t o r s i o n a l moment were a p p l i e d to the t e s t specimens by a load beam. At the l o c a t i o n where the l o a d beam was connected to the connection p l a t e , there were s l o t t e d holes to achieve a pure shear f o r c e at the b o l t l i n e . The load beam at the b o l t l i n e l o c a t i o n was assumed to act l i k e a hinge and that d u r i n g the t e s t , the moment remains zero. Then knowing the a p p l i e d load and the load at the f a r end, the shear f o r c e and t o r s i o n a l moment at the weld l i n e c o u l d be c a l c u l a t e d (Figure 3.8). Due to the dimensional s i z e of the load a c t u a t o r u n i t , the c l o s e s t point of l o a d i n g to the t e s t specimen was 457 mm (18.0 i n . ) . With t h i s d i s t a n c e f i x e d , the l e n g t h of the load beam was determined to transmit as much of the ac t u a t o r l o a d i n g as p o s s i b l e to the specimen without the l o a d beam becoming too long and unmanageable. At approximately 80% of the a c t u a t o r l o a d i n g being a p p l i e d to the specimen, the loa d beam was 2438 mm (96.0 in.) i n len g t h f o r the connection angle 0=0°. At 0=45°, the load beam would be 3658 mm (144.0 in.) long. Two load beams were f a b r i c a t e d f o r the experimental i n v e s t i g a t i o n and t h e i r d e t a i l s are presented i n Table 3.4. Two beams were r e q u i r e d because there were d i f f e r e n t connection p l a t e depths, b o l t spacings, and the number of b o l t s between the v a r i o u s t e s t specimens. Doubler p l a t e s were added around the s l o t t e d hole region of the loa d beam web to av o i d p l a t e f a i l u r e due to bear i n g . Load Beam No.2 34 was made long enough to handle the skew connection cases of 30° and 45°. F i g u r e 2.6 shows Load Beam No.1 and Fig u r e 2.9 shows Load Beam No.2. Shop drawings of the load beams are shown on F i g u r e 3.3 and F i g u r e 3.6. Table 3.4 Load Beam D e t a i l s LOAD BEAM NO. 1 2 BEAM DESIGNATION W610X125 W460X6T (W24X84) (W18X41) MAX. NO. OF HOLES 6 2 BOLT SPACING mm 76 102 i n . 3.0 " 4 . 0 DOUBLER PLATE THICKNESS mm 10 13 i n . 3/8 1/2 P ANGLE USED FOR 0° 0°; 30°; 45° TEST SPECIMEN USED FOR 1,1A 2,3; 4 ; 5 3.3 PARAMETERS USED TO FABRICATE THE TEST SPECIMENS The t e s t specimens were f a b r i c a t e d with s i n g l e p l a t e connections having the f o l l o w i n g two main parameters spread amongst' them: 1. connection p l a t e depth to g i r d e r depth r a t i o (d D^ t/D) °f approximately 75%, 40%, 45%, 50%, and 60% and 2. skewed connection angle (/3) of 0°, 30°, and 45°. 35 The ^ p i t ^ 0 r a t i ° s were r e f i n e d t o a d j u s t f o r s t a n d a r d b o l t s p a c i n g , e n d d i s t a n c e , a n d edge d i s t a n c e . T a b l e 3 . 5 shows t h e d i m e n s i o n s a n d some o f t h e i m p o r t a n t p a r a m e t e r s o f t h e t e s t s p e c i m e n s . T h e d p ^ t / D r a t i o a n d t h e d e p t h f r o m t h e t o p of t h e g i r d e r t o p f l a n g e t o t h e b o t t o m o f t h e c o n n e c t i o n p l a t e t o t h e g i r d e r d e p t h ( d f c / D ) r a t i o a r e t h e two m o s t i m p o r t a n t p a r a m e t e r s . The v a l u e o f t h e s e r a t i o s w i l l g i v e an i n d i c a t i o n of t h e f l e x i b i l i t y o f t h e s i n g l e p l a t e c o n n e c t i o n . Table 3.5 Test Specimen Dimensions and Parameters TEST SPECIMEN NO. 1 1A 2 3 4 5 BEAM DESIGNATION W610X101 (W24X68) W610X101 (W24X68) W460X61 (W18X41) W310X39 (W12X26) W360X33 (W14X22) W410X39 (W16X26) GIRDER DEPTH mm 606 606 452 310 348 402 D i n . 23.86 23.86 17.80 1 2.20 1 3.70 1 5.83 WEB THICKNESS mm 10.7 10.7 8.3 6.9 5.9 6.7 t w i n . 0.421 0.421 0.33 0.27 0.23 , 0.26 FLANGE THICKNESS mm 15.2 15.2 10.9 9.2 8.2 8.7 fcf i n . 0.598 0.598 0.429 0.36 0.32 0.34 FLANGE WIDTH mm 232 232 191 168 127 141 b f i n . 9.13 9.13 7.52 6.61 5.00 5.55 h „ = D - 2 t £ mm 575.6 575.6 430.2 291 .6 331 .6 384.6 i n . 22.66 22.66 16.94 1 1 .48 1 3.06 15.14 d p l t / D 0.754 0.377 0.450 0.410 0.584 0.505 d t o p / D 0.817 0.440 0.506 0.451 0.657 0.569 0 ANGLE 0° 0° 0° 0° 30° 45° 37 F i g u r e 3.1 T e s t Specimens No.2 t o No.5 B e f o r e T e s t i n g F i g u r e 3.2 Test Specimens No.2 t o No.5 B e f o r e T e s t i n g 3 9 \ ft 4 1* 3 TT~i7T £ -lo\ /-4 2-3* i- id* -r* 1 i-d. 3 " 2" .. i - ft.\o\ U — (c't^ ! - i t lo' / . X . — ( c ' U , F i g u r e 3 . 3 Shop Drawing of T e s t Specimen No . 1 and Load Beam No. 1 40 ) I* 1 1 V J r—U 1 7 3 - 44m: A x ! 5 t I in a, •in W*».tll SAUL'S 0 c5 r 4 %-6> SAvS Cc^tH Tetf iH><r-r0 tie) F i g u r e 3.4 Shop Drawing of Test Specimen No.2 41 Art lo'g ffllip To 0 4 " 4' Figure 3.5 Shop Drawing of Test Specimen No.3 42 3'- ss,i. zJ !,r A* MR. V» 5" f4 4ft c-j- raw 0-6" TtiT (*>i>f ft ok.) 0 '\ 171 A- A F i g u r e 3.6 Shop Drawing of Test Specimen No.4 and Load Beam No. 2 43 6 - to & ALU ' * * tit flit / a< 3- r be ( # Ac- «>£ 1 F i g u r e 3.7 Shop Drawing of T e s t Specimen No.5 44 M Ml 2.0<*pv> rnrY\ "78 m. S H E A R F i g u r e 3.8 Load Beam's Shear Forc e and Moment Diagrams Chapter 4 PRELIMINARY COMPUTER ANALYSIS 4.1 DESCRIPTION OF NISA 80 The u l t i m a t e l o a d and a n a l y t i c a l analyses were performed using the f i n i t e element program NISA 80 [20]. This program allows f o r no n l i n e a r m a t e r i a l behaviour and nonlinear geometrical behaviour. The von Mises c r i t e r i o n was a p p l i e d to t r a c e the y i e l d p r o g r e s s . For e l a s t i c and e l a s t i c - p l a s t i c b u c k l i n g behaviour, p l a t e / s h e l l and beam elements were used to model the connection p l a t e and supporting g i r d e r . NISA 80 p r o v i d e s a s p e c i a l i t e r a t i o n technique which f o l l o w s the load-deformation path without problems of convergence even in the p o s t - c r i t i c a l range. The program was operated on the U n i v e r s i t y of B r i t i s h Columbia Department of C i v i l E n gineering's D i g i t a l Equipment Corporation VAX 11-730 mini-computer. 4.2 PRELIMINARY MODELS OF THE TEST SPECIMENS One h a l f of the l e n g t h of the t e s t specimens was modelled and analyzed using NISA 80 because of the presence of symmetrical c o n d i t i o n s . Isoparametric, degenerated p l a t e / s h e l l elements of the r e c t a n g u l a r q u a d r a t i c Lagrange family type with f i v e degrees of freedom per node were used to model the supporting g i r d e r . Two d i f f e r e n t groups of t h i s element type represented the web and the f l a n g e s r e s p e c t i v e l y . Beam elements were used to model the 45 46 connection p l a t e . F i n i t e element models r e p r e s e n t i n g each of the t e s t specimens are shown i n F i g u r e s 4 .1 to 4.6. The r e s u l t a n t shear fo r c e and moment that were a p p l i e d from the connection p l a t e to the supporting g i r d e r were modelled in the NISA program by a p p l y i n g the shear f o r c e d i r e c t l y to the a p p r o p r i a t e nodes and a p p l y i n g the moment by using i t s r e s u l t a n t f o r c e c o u p l e s . S e l e c t e d connection f o r c e s from the experimental r e s u l t s were used as lo a d i n g input f o r the f i n i t e element a n a l y s i s to t r a c e the l o a d i n g p a t t e r n and to produce a n a l y t i c a l r e s u l t s which can be comparable at the same load l e v e l s . At each load step, NISA 80 provided nodal displacements, elemental s t r e s s e s at each Gaussian i n t e g r a t i o n p o i n t , and elemental s t r e s s s t a t e s at each i n t e g r a t i o n p o i n t , s p e c i f i e d through the element's t h i c k n e s s . Elemental s t r e s s e s are t a b u l a t e d as f o r c e s per u n i t t h i c k n e s s and moment per u n i t t h i c k n e s s . By f o l l o w i n g the load-displacement curve, the u l t i m a t e load f o r the specimen c o u l d be determined while i n d i v i d u a l s t r e s s e s or displacements at v a r i o u s l o c a t i o n s on the g i r d e r c o u l d be analyzed. 4.3 ANALYSIS TO DATE AND RECOMMENDATIONS FOR FUTURE ANALYSIS At the present time, there are some problems i n the proper op e r a t i o n of NISA 80. The f i n i t e element model was reduced to j u s t the elements r e p r e s e n t i n g the web and flanges of the supporting g i r d e r . By a p p l y i n g small i n d i v i d u a l load cases i n each of the p o s s i b l e d i r e c t i o n s , i t 47 was found that NISA 80 presented problems with shear l o a d i n g i n the d i r e c t i o n p e r p e n d i c u l a r to the plane of the web and consequently there would be problems with the t o r s i o n a l moment on the g i r d e r . These problems must be r e s o l v e d before the a n a l y t i c a l a n a l y s i s can be continued. Due to time c o n s t r a i n t s , t h i s p a r t of the i n v e s t i g a t i o n was not i n c l u d e d in t h i s t h e s i s . One s o l u t i o n to these problems might be to use s h e l l elements rather than degenerated p l a t e / s h e l l elements. However, the NISA v e r s i o n which was used does not provide such elements. When these problems have been r e s o l v e d , the connection p l a t e should be checked to see i f the beam elements are s u f f i c i e n t f o r the model or i f degenerated p l a t e / s h e l l elements or s h e l l elements would be required.-For skewed s i n g l e p l a t e connections, the s u f f i c i e n c y of using symmetry f o r the g i r d e r with two l o a d cases should be analyzed or i f i t i s r e q u i r e d to model the whole g i r d e r under one load case. A f t e r the f i n i t e element program r e s u l t s have been c a l i b r a t e d and v e r i f i e d with the experimental r e s u l t s , more beam parameters along with v a r i o u s connection p l a t e parameters c o u l d be analyzed and s t u d i e d . F i g u r e 4.1 F i n i t e Element Model - Test Specimen No.1 n o 153 (a X t SIMM U4-(83 •Hi Mo (2+) (41 •IU 131 ltd (6 I •it Qa) 115 8^  m •!.•» g t © •is -EL-4 14 /«,. I fl I J<>4 1^8 14-7 •I3| .lio 114-.16 8 0 © .« 4 4 0 . I6c •1*3 III I4fr 14-* 11.8 111. "7* © 78 © <5 •3 ns m •'ti ./to © 144-I4i III lo"? -73 91 © lb 7J © 41 . i i 4< . 1*1 JL£EL 14-1 141 •oa i£2_ © • Si 74 11 31 St © <3 i3 .. 17+ »T1 as) 140 Of) .111 lot © ©. S4_ _C£L I7| 1*7 •87 *8<r 7o m loo , I O O „ i s o . iso i s o . i s o , is t 7y s o _ so o O O Q o o • o V» -( T O O r W + r>l - - "J o 187 I8i © |l?o 111 (IT) nt rife) US) Mi F i g u r e 4.2 F i n i t e Element Model - Test Specimen No.1A n o >li l"To"l ;Ui 111 • us 14+ • H I • 111 I t o •Ul /St? .131 m m ISO (lA) H I IM-.lij 13V. 148 14-7 'in 130 146 1*5 • 1X1 .'ig ( 5 ) 14+ 14-3 .In 116 (10 I4i 141 .IU • a s m i n l i - o 111 "t (js) 115 • IO| • 11 114-III .17 It l / v IH 'IS 14 n o |0<) • 11 Tl © • 1i J o lot /of © ' 03 .41 •M-•87 i,4—I't1 fv (/l) »tl si 64 © 73 o © I B - t l 77 Co © 7fe .51 58 © .57 ©. SS SA-61 X t ^: SYMM _8» i8 J| 34 4-7 30 .©. © + 4 • 21 I—j 14 Ii © 4-1. »2S 41 14 12 •*» CD * /o If) A 1 tf l ^ t o S . o Cf srti.i -SK8.0 •56>.i 5U.8 4 8«.7 4Sb.fc 314.4 118.2. r . 1 1 2 . 0 r I+-S.B : 'I017 G7.G s i i s . 3k.s 0 s 0.0 100 I o o I so ISO 1 So ISO 7-T 75 •SO SO if * * o o O r-o n >1 o o 8 r 3 if* F i g u r e 4.3 F i n i t e E l e m e n t Model - T e s t S p e c i m e n No.2 X m .no i e t 1101 * ' n Tjr-18* 183 30) l i s l i t in) 181. »ltS 191 .1*4 m. ty n t oisi I 5 » TUT • i n lU l*J nt '»»- GO • us in 141 • 1 3 1 '4-8 (47 • I 3 | I SO 144 HS • 111 U S 144 141 ./17 I1C 2.0 14-1 141 • us-© • H i 111 / S 4 I i i 7 . T " J . ? . > * A-• i n no .in " 7 , l f c ( I ? ) 112 l u o • 1 1 .98 © ll+ 111 >T"I it llv in © . 1 4 H O 104 • 1 3 © los | o 7 • II «|o © 10b > 61 S B 104- GO 103 84 [T] 'i~ & i i t 81 / f t -IS 81 64 © fio « f c J t i 78 7b © »S1 IS SB ® 56 -ii © ITT • « J4 3 4 -f° n~i 'a ©• 31. 3 1 4-1 3 0 © 4 6 45 • 11 ©• 4 3 27 4 1 © •** 41 2 4 © + 0 . » 3 1 38 3 1 © 36 | I | . 1 1 35 <3 S f M M 17 i t 13 I - S O ISO ISO ISO IS IS 1ST IS o p cr o o o-o to r o Vl o o t o 13 rt r-10 M iw 4 - M . 5 4 iS.O 4 -W- . 6 3 7 3 . 8 ;'3lV0 i- 2-11.1 2 4 6 . 8 111.4-j 1 1 3 0 . 1 - • J o . * 1' « " o . 1 ft 3 II. o 0 . 0 o F i g u r e 4.4 F i n i t e E l e m e n t Model - T e s t S p e c i m e n No.3 lb* ISI I2<> US no Ho 111 91 It IS 60 61 +4 3o 3i It X t IM-Qo •K1 IJ4 .in |04- • HI i4 r+| ;-<1 • 4 I i ] .in its I33 © 118 Is3 © 88 13 ^ SB © 43 ^ i» IU .147 Iii • in lax. • 87 41 »11 161 146 I3l 116 lol 86 71 56, 41 16 © © © © © <3 160 .145 !3o 'oo '8S •7o • 40 •»« IS! 144- 111 114- 11 84- 61 t54- 51 x4 <1 © IS8 I1B © • 113 16 © .83 © © •38 '11 141. a i ,111 97 fll 67 5 i 37 ix © IS6 . W IU © •iu 7t © • 81 66 «5l © 36 «l l IS* /4-0 no <?5 8a 3i 20 © © © © © /54 • 131 114- • 101 14 •71 64- .41 M »H ISI ,128 loa 11 78 «1 48 33 ie • in 111. ED It GE) •77 6x. LXJ .47 3x (Tl «n S Y M M IS i * 13 o l ioo 3 0 S . 0 300.0 * 14-14 -f 1.3J.I f- 201.0 no.i ii-v.a 111.4 £8.6 31.3 10. o SO o.o * »• *- »5o /Jo ISO ISO o o r-0-o o o -o o o 8 + 75* U J o O "J 3 O 12 cn F i g u r e 4.5 F i n i t e E l e m e n t Model - T e s t S p e c i m e n No.4 X t 110 Hi lot IO.S-"Jl 75* JIM- Dol •141 1.34 • 111 |04- • 81 •If CD . 5 1 *+ JjjJ • i n 111 m © l*« .147 133 131 © us • in loi 101. © 8« •87 13 .SB - n © .57 43 11 41 © .17 1— 161 14-6 111 Jit 101 86 n 6^ 41 16 4 © © © © 160 .14 -3 130 »us \0a • Sr 10 'SS 4o »XS IS1 1*4 111 II4 11 «4 «1 34 31 14 ISA • |43 116 © • II3 1g © • 83 x © £8 . ^ i 1 ^ 38 .13 IS-I 14 J. in 111 17 81 37 11 l i t •141 lib © • III U © .01 © 34 .11 |S«- 140 I U IIO IS SO 6S So 3S 10 © © © © © 1*4 • 131 U V • IO) 14 .11 6+ .41 34 .11 • 13 136 log 13 IB 61 4-8 33 18 . - i CD • Hi l i t • I07 11 133 •77 6i rr) I47 { 3> CD - n ISo ISO ISO ISO o +6 7-5' 7-S' — * 31 SIMM II ll_ lo *? 8 7 (, lb r o o o o o o (1 V/) H H II o 4 tngx U 3 4 1 . 0 q- 345.0 311.0 + 313.1 + 271.8 f 1110 l"7|.X 14-i.B /1U.4-SS.O 61. b 38-8 ft o 8.0 4.o O.o ai F i g u r e 4.6 F i n i t e E l e m e n t Model - T e s t S p e c i m e n No.5 IfcS lio Iii U4- Q o ] jl«1 IU lit 1-^9 •H-7 0 160 a I+5 ' S 7 ( t l , 5 6 ^ .141 is* 140 © 151- . I i i EE I3f l I H llO "4 B I i i Go 111 © lio HI ua i n 126 115 (17 © 114 1*3 _L3_ na •117 -115 114-• lu in. • in 110 • lol |08 /o6 (of <?o |Q4 [ T l • 81 103 (ox. (Ts) •87 86 © loo 11 .85 84-18 17 f « l .83 .ex. ft 15 © •81 .80 © 14-13 TZT •79 76 7J- 60 74- 1-fcJ .S-T 73 58 71 (7ft) ••Tl .56 © 7 0 -55 61 _5~4-53 51 66 © -5, i f 50 © 64- .41 63 61 -4» 46 4-5 i» *3 4i xa •21 26 © 4o -15 31 .14-i B © - 2 3 37 .11 36 © - x i 35 io © 24- -II 33 IS 3-v co »"rr .31 It. X t 15 14 ') II < 4 |0 - 8 i t s < " ° q-, ii4. J ' 310.0 373.6 8 311.8 • •• H 2 . 0 D e> 0 • • Zll.x, • llr.6 170.4-14-5.0 W I11.1 *1 9.0 ••. * o.o 75 75 15-0 I-So I So ISO IS IS IS IS o V) o r 8 o o o >0 o o «l o r- cn CO Chapter 5 DATA ACQUISITION SYSTEM AND SPECIMEN INSTRUMENTATION 5.1 THE OPTILOG DATA ACQUISITION AND CONTROL SYSTEM The experimental t e s t data was a c q u i r e d with an Optim E l e c t r o n i c s C o r p o r a t i o n O p t i l o g Data A c q u i s i t i o n and C o n t r o l System operated i n c o n j u n c t i o n with an Apple Computer Incorporated Apple II Plus microcomputer system (F i g u r e s 5.1 and 5.2). Twenty channels f o r data measurements were used i n the f o l l o w i n g manner: e i g h t f o r s t r a i n gauges, seven f o r l i n e a r v a r i a b l e d i f f e r e n t i a l t ransformers (LVDT's), two f o r load c e l l s , and three f o r system c a l i b r a t i o n s . The data was measured with the s c a l e r e s o l v e d i n t o 30,000 d i g i t s ; making the Optilog' a-, very accurate measuring d e v i c e . • S p e c i f i c i n formation was r e q u i r e d f o r each measuring channel to c o n t r o l the c h a r a c t e r i s t i c s of the data being recorded. The O p t i l o g has a S e l f - B a l a n c i n g Module which can balance each channel of s t r a i n type sensors and set a zero value at t h i s balanced p o i n t . During measurements, the s i g n a l was r e f e r r e d to t h i s zero s e t t i n g . For the experimental i n v e s t i g a t i o n , the system was set up to measure a l l twenty channels at the same time at v a r i o u s load l e v e l s . From the measurements, a load versus s t r a i n or load versus displacement curve c o u l d be t r a c e d at each instrumental l o c a t i o n . Data was recorded i n i t s simplest form of ' d i g i t s ' and l a t e r converted on the VAX 11-730 to i n c r e a s e the measurement speed and to f a c i l i t a t e 54 55 c o r r e c t i o n s . Otherwise, the proper c a l i b r a t i o n f a c t o r must be c a l c u l a t e d to correspond with a s p e c i f i e d output u n i t and s t o r e d i n the O p t i l o g . 5.2 STRAIN GAUGES AND LVDT'S Two types of s t r a i n gauges were used f o r the experimental i n v e s t i g a t i o n . I n i t i a l l y , Magnaflux Corporation s t r a i n gauges of type PA-06-125AA-120 were used fo r Test Specimens No.1, 1A, 2, and 3. However, they were very d e l i c a t e to apply because of t h e i r very short gauge l e n g t h . For the l a s t two t e s t specimens, Measurements Group Incorporated, Micro-Measurements D i v i s i o n s t r a i n gauges of type CEA-06-250UW-120 were used because they were l a r g e r and s t u r d i e r to handle. The s t r a i n gauges were c a l i b r a t e d with the O p t i l o g S e l f - B a l a n c i n g Module. The second type of s t r a i n gauges gave b e t t e r balance p a t t e r n r e s u l t s than the f i r s t type. L i n e a r v a r i a b l e d i f f e r e n t i a l t ransformers (LVDT's) manufactured by Hewlett-Packard had ranges of ±25.4 mm (±1.00 i n . ) , ±12.7 mm (±0.500 i n . ) , and ±2.54 mm (±0.100 i n . ) . The LVDT's were c a l i b r a t e d with the O p t i l o g and c a l i b r a t i o n block gauges. The c o n v e r s i o n f a c t o r f o r 1 d i g i t of the O p t i l o g was c a l c u l a t e d f o r each LVDT by using l i n e a r r e g r e s s i o n curve f i t t i n g t echniques. Table 5.1 t a b u l a t e s the conversion f a c t o r s from d i g i t s to m i l l i m e t e r s fo r each LVDT. 56 Table 5.1 LVDT Conversion F a c t o r s LVDT RANGE CONVERSION FACTOR (mm) (mm/ 1 DIGIT) 1 ±12.7 0.00084370165 2 ±25.4 0.001190570256 3 ±12.7 0.000870754940 4 ±12.7 0.000869064598 5 ±2.54 0.000199213737 6 ±12.7 0.000874660448 7 ±2.54 0.0002326109 5.3 SPECIMEN INSTRUMENTATION S t r a i n gauges and LVDT's were used to monitor the t e s t specimens f o r s t r a i n and displacement changes. The s t r a i n gauges were o r i e n t a t e d to measure u n i - d i r e c t i o n a l s t r a i n s corresponding to the l o n g i t u d i n a l d i r e c t i o n of the supporting g i r d e r . The gauges were s p e c i f i c a l l y l o c a t e d i n the v i c i n i t y of the connection p l a t e to c o i n c i d e with the elemental i n t e g r a t i o n p o i n t s of the f i n i t e element model f o r each of the t e s t specimens. The LVDT's measured v a r i o u s displacements at the mid-span and near the ends of the t e s t specimens. The LVDT's were l o c a t e d to c o i n c i d e with the f i n i t e element model's nodal p o i n t s . F i g u r e 5.3 shows how Test Specimen No.2 was instrumented. 57 Load c e l l s measured the a c t u a t o r l o a d and end r e a c t i o n . These r e a d i n g s were used t o c a l c u l a t e the l o a d and moment t h a t was t r a n s m i t t e d through the c o n n e c t i o n p l a t e and the weld t o the s u p p o r t i n g g i r d e r . The O p t i l o g read a l l the measuring d e v i c e s s i m u l t a n e o u s l y . I n s t r u m e n t i n g the t e s t specimen i n t h i s manner w i l l f a c i l i t a t e easy comparison between the e x p e r i m e n t a l d a t a and i t s c o r r e s p o n d i n g f i n i t e element r e s u l t s . F i g u r e 5.1 O p t i l o g System w i t h Apple Computer 59 F i g u r e 5.2 Back of O p t i l o g Showing Channel P l u g - i n s LVDT *~> TTI F i g u r e 5.3 T e s t Specimen No.2 I n s t r u m e n t a t i o n L o c a t i o n s X l\10 its "in 191 181 1*1 171 i n J*o 26) 111 ns i si © " i •IS7 IS* N\L"=- fAIR.p.of5. LOcAT'0*J r\60UT t s i H w , pS-SpAR Sloe in I'D 14-1 JEL •MS © •131 111. (23) {in rn »'if na m r47 »I3| /JO 141 US • U l us 144-(43 © • /n lo) 14-1 Ml »US' 140 © • 111 I i i n o " 7 "<• © IIS IUO • 11 .98 Oi) ui '17 11 111 HI © -.•it-no 104 © • 13 © tog •91 © 10b .81 68 103 86 -.» it 81 *tS © 81 14 © Do »fcl 71 11 78 Q2) .6"! 17 60 76 © '3-1 © 74 »1"7 56 © Ii • SS 7| 54 «1 Si 34- , 3 f a GO *1* 1 UiJLVfcT*l 5C-,*! 4-1 CM«-)r30 © 46 4S sc-,«»s-CM i.' IB 4+ 0 ^ .17 S i <l S 3 J ^ •===• n i_*ro.o «M.' 1 j-i.o 414.1 i-vts-r «3 13 -373.8 ;'3VS0 41 6 >— l_VBT*Z CP*'* © 4-0 J1 © 38 31 1 1 M -246.8 1 H . 4 I«i6\0 110.6 130.7 E E a5 L-VbT«4J u n o ISO ISO ISO IS IS o *1 p <r o o tr o r o • i •J o o II r- CTl O Chapter 6 TEST RESULTS 6.1 TENSION TESTS Tension t e s t s were conducted on coupons c u t t e d from the web of the adjacent p i e c e of the beam from which the t e s t specimens were f a b r i c a t e d . The r e s u l t s of the t e n s i o n t e s t s were r e q u i r e d to determine the y i e l d s t r e n g t h at 0.2% o f f s e t , the t e n s i l e s t r e n g t h , and the Young's modulus f o r each t e s t specimen. The r e s u l t i n g s t r e s s - s t r a i n curves w i l l be fed i n t o the NISA 80 f i n i t e element program to produce comparable a n a l y t i c a l r e s u l t s f o r the proposed c o r r e l a t i o n study. Three t e s t coupons were machined from each beam segment according to ASTM Standard A370. The t e n s i o n t e s t s were conducted on a Baldwin Tate-Emery T e s t i n g Machine. S t r a i n gauges were mounted on three of the coupon specimens to check the accuracy of the t e s t i n g machine which was found to be q u i t e a c c u r a t e . The middle 50.8 mm (2.00 i n . ) s e c t i o n of the 203.2 mm (8.00 in.) gauge l e n g t h was measured f o r e l o n g a t i o n because i t was not p o s s i b l e to mount a 76.2 mm (3.00 in.) range LVDT between the g r i p heads of the Baldwin T e s t i n g Machine. F i g u r e 6.1 shows one of the coupon specimens i n the t e n s i o n t e s t i n g machine. The y i e l d s t r e n g t h (0.2% o f f s e t ) , t e n s i l e s t r e n g t h , and Young's modulus r e s u l t s f o r each t e s t specimen were c a l c u l a t e d from the average of t h e i r r e s p e c t i v e coupon 61 62 specimen t e s t r e s u l t s . Table 6.1 t a b u l a t e s these r e s u l t s f o r each t e s t specimen. The y i e l d s t r e n g t h (0.2% o f f s e t ) , t e n s i l e s t r e n g t h , and Young's modulus w i l l be r e q u i r e d i n the parameter study c a l c u l a t i o n s . Table 6.1 C o n s o l i d a t e d Coupon Test R e s u l t s TEST SPECIMEN F F F F E E y y u u y y NO. MPa KSI MPa KSI MPa KSI 1 309 44.8 450 65.3 206000 29900 2 302 43.8 457 66.3 201000 29200 3 388 56.3 494 71 .6 194000 28100 4 294 42.6 438 63.6 196000 28400 5 315 45.8 456 66.1 210000 30500 6.2 RESULTS FROM THE CALIBRATION TEST Test 1A was the c a l i b r a t i o n t e s t u s ing the o r i g i n a l t e s t i n g arrangement d e s c r i b e d i n S e c t i o n 2.1 i n c o n j u n c t i o n with Load Beam No.1 d e s c r i b e d i n S e c t i o n 3.2. The t e s t g i r d e r was f a b r i c a t e d from a W610X101 beam. When the specimen was loaded to the c a p a c i t y of the t e s t arrangement, nothing v i s i b l y s i g n i f i c a n t o c c u r r e d . There was no y i e l d i n g or e x c e s s i v e d e f l e c t i o n s o c c u r r i n g i n the t e s t specimen. The c a l i b r a t i o n t e s t r e v e a l e d that the f o l l o w i n g improvements to the t e s t apparatus were r e q u i r e d : 1. i n c r e a s e the maximum c a p a c i t y of the t e s t apparatus, 63 2. make the LVDT support frame more r i g i d , and 3. add three more LVDT's to the top flange of the t e s t specimen to record the downward displacement. Pages 69 and 70 show the d e t a i l s , o b s e r v a t i o n s , and d e s c r i p t i o n s of the t e s t specimen used f o r the c a l i b r a t i o n t e s t . 6.3 RESULTS FROM THE TESTS 6.3.1 TEST 1B AND TEST 1C Test 1B used the f i n a l t e s t apparatus arrangement d e s c r i b e d i n S e c t i o n 2.2 with Load Beam No.1. The f i n a l t e s t apparatus arrangement was used f o r the r e s t of the t e s t s . T h i s arrangement contained the improvements to the apparatus suggested i n S e c t i o n 6.2. However, when the t e s t specimen was loaded to the maximum c a p a c i t y of the f i n a l t e s t apparatus arrangement, nothing of s i g n i f i c a n c e seemed to have o c c u r r e d . Graphs of the s t r a i n and displacement data i n d i c a t e d the specimen had not y i e l d e d and the measuring d e v i c e s were f u n c t i o n i n g p r o p e r l y . There were some s l i g h t d i s c r e p a n c i e s p o s s i b l y due to unequal l o a d d i s t r i b u t i o n from the b o l t s to the s i n g l e p l a t e or due to n o n - l i n e a r geometric e f f e c t s of the g i r d e r . Pages 71 to 78 shows the r e s u l t s of Test 1B and F i g u r e s 6.2 to 6.5 are four photographs of the t e s t specimen. I t was n o t i c e d that the t e s t specimen was not deformed i n performing Test 1B and the 6-bolt connection with a 75% 64 depth of the connection p l a t e to depth of the g i r d e r (dp^ t/D) r a t i o was capable of p r o v i d i n g a r i g i d support f o r the s i n g l e p l a t e c o n n e c t i o n . Consequently, the connection p l a t e was reduced to a 3-bolt connection in the hope that the connection would become f l e x i b l y connected. Test 1C examined Test Specimen No.l i n the 3-bolt connection c o n f i g u r a t i o n . The t e s t specimen was renamed to Test Specimen No.1A. N o t i c e a b l e y i e l d i n g and deformation of the t e s t g i r d e r were observed during t h i s t e s t . At the f a i l u r e l o ad, the top f l a n g e of the g i r d e r near the s i n g l e p l a t e connection d i s p l a y e d the e f f e c t s of the a p p l i e d t o r s i o n . T h i s e f f e c t would have been much more v i s i b l e i f the weld d i d not crack at the top of the connection p l a t e because the t e s t specimen would have been able to s u s t a i n a higher l o a d i n g . The g i r d e r web was buckled i n the region below the connection p l a t e . The g i r d e r web remained s t r a i g h t where the s i n g l e p l a t e connection was welded to i t . Even though the s t r a i n gauges measured a u n i - d i r e c t i o n a l l o n g i t u d i n a l s t r a i n i n s t e a d of the p r i n c i p l e s t r a i n , d e f i n i t e y i e l d i n g p a t t e r n s were recorded at s p e c i f i c l o c a t i o n s i n the t e s t specimen. Test o b s e r v a t i o n s and r e s u l t s f o r Test IC are presented on pages 79 to 83. F i g u r e s 6.6 to 6.8 show the f a i l e d specimen from three d i f f e r e n t v i e w p o i n t s . 65 6.3.2 TEST 2A AND TEST 2B Test 2A was a 2-bolt s i n g l e p l a t e connection t e s t conducted with Load Beam No.2 si n c e a 101.6 mm (4.00 in.) b o l t spacing was used. The t e s t g i r d e r was f a b r i c a t e d from a W460X61 beam. When the load approached the f a i l u r e l o ad, the web of the g i r d e r j u s t below the connection p l a t e s t a r t e d to buckle. Near the f a i l u r e l o ad, the top flange of the g i r d e r d i s p l a y e d t o r s i o n a l e f f e c t s . Y i e l d i n g had occurred at v a r i o u s l o c a t i o n s on the t e s t specimen and was v e r i f i e d by the graphs of the s t r a i n and displacement data. Test 2A was stopped when the web p l a t e of the load beam came i n t o c o n t a c t with the weld of the s i n g l e p l a t e connection. The load at t h i s p o i n t was used as the f a i l u r e load of Test 2A. L a t e r , i t was found that t h i s f a i l u r e l o a d was not the tr u e u l t i m a t e f a i l u r e load of Test Specimen No.2 because the contact of the two p a r t s was not severe enough to c o n s t i t u t e f a i l u r e . Test 2B r e t e s t e d Test Specimen No.2 f o c u s i n g on the ul t i m a t e l o a d that the specimen can c a r r y . Since the specimen had alre a d y y i e l d e d , r e a p p l y i n g the s t r a i n gauges and LVDT's were not necessary. During the t e s t , i t was observed that the top flange t o r s i o n a l e f f e c t s s t a r t e d to occur at 80% of the u l t i m a t e f a i l u r e l o a d . At 90% of the ul t i m a t e f a i l u r e l o ad, the back edge of the g i r d e r top flange r i g h t where the connection p l a t e was welded began to buckle. The e f f e c t of the a p p l i e d t o r s i o n was so great that the web b u c k l i n g below the connection p l a t e was s t r a i g h t e n e d 66 out. Just before the u l t i m a t e f a i l u r e load was reached, the f l e x u r a l bending e f f e c t was n o t i c e d and combined with the shear and t o r s i o n a l e f f e c t s . P l a s t i c y i e l d i n g s t a r t e d o c c u r r i n g . At the u l t i m a t e f a i l u r e l o ad, p l a s t i c y i e l d i n g occurred at such a r a t e that the a p p l i e d l o a d was not capable of being s u s t a i n e d by the specimen. Test o b s e r v a t i o n s , r e s u l t s , and photographs of Test 2A are shown on pages 84 to 88 and F i g u r e s 6.9 to 6.11. Test 2B's o b s e r v a t i o n s , r e s u l t s , and photographs are presented on pages 89 to 91 and F i g u r e s 6.12 to 6.19. 6.3.3 TEST 3A Test 3A was a 1-bolt connection specimen using Load Beam No.2. A 1-bolt connection i s d i f f e r e n t from standard i n d u s t r i a l p r a c t i c e where a 2-bolt connection i s considered an absolute minimum. However a small d ,./D r a t i o can be p i t 7 t e s t e d with a 1-bolt c o n n e c t i o n . A l s o a complete set of r e s u l t s showing shear and t o r s i o n a l e f f e c t s on the number of b o l t s in the connection c o u l d be examined. Load Beam No.2 was used because i t had the shallower web depth of the two load beams in the r e g i o n where the connection p l a t e was b o l t e d . The t e s t g i r d e r was f a b r i c a t e d from a W310X39 beam. Test 3A was stopped before the u l t i m a t e f a i l u r e load of the t e s t specimen was reached because the web of the load beam was i n c o n t a c t with the bottom flange of the girder.-A d d i t i o n a l load to the specimen would change the l o a d path with part of the l o a d going to the t e s t specimen through the 67 bottom flange without passing through the connection p l a t e . The weld length was longer than expected due to a f a b r i c a t i o n e r r o r where the 127.0 mm (5.00 in.) side of the connection p l a t e was welded to the supporting g i r d e r i n s t e a d of the 101.6 mm (4.00 in.) s i d e . Consequently, the dp^/D r a t i o was in c r e a s e d and the shear and t o r s i o n a l s t r e s s e s were reduced because the shear f o r c e and t o r s i o n a l moment were spread over a l a r g e r p o r t i o n of the p l a t e than a n t i c i p a t e d . Test Specimen No.3 was observed to behave i n the same manner as Test 1C and Test 2B by the time that Test 3A was stopped. Graphs of the s t r a i n and displacement data i n d i c a t e d that the specimen had s t a r t e d to y i e l d . The top flange of the g i r d e r showed the e f f e c t s of the a p p l i e d t o r s i o n . The g i r d e r web had a n o t i c e a b l e bend i n i t j u s t below the bottom of the connection p l a t e . The t e s t o b s e r v a t i o n s and r e s u l t s of Test 3A are presented on pages 92 to 96 and photographed i n F i g u r e s 6.20 to 6.25. 6.3.4 TEST 4A Test 4A i n v e s t i g a t e d a skewed s i n g l e p l a t e connection specimen of /3=30°. The connection p l a t e was s i z e d f o r a 2-bolt c o n n e c t i o n , the t e s t g i r d e r was f a b r i c a t e d from a W360X33 beam, and the t e s t specimen was loaded by Load Beam No. 2. 68 The u l t i m a t e f a i l u r e load of Test Specimen No.4 was reached. E f f e c t s of the a p p l i e d t o r s i o n were n o t i c e a b l e on the top flange of the g i r d e r and on the g i r d e r web j u s t below the connection p l a t e . The back edge of the top f l a n g e of the g i r d e r where the connection p l a t e was welded, buckled due to the combined t o r s i o n a l and f l e x u a l bending e f f e c t s . The f l e x u r a l bending e f f e c t s were n o t i c e d j u s t before the u l t i m a t e f a i l u r e l o a d was a t t a i n e d . T h i s e f f e c t l e d to p l a s t i c y i e l d i n g of the t e s t specimen. Graphs of the s t r a i n and displacement data confirmed y i e l d i n g at the instrumented l o c a t i o n s of the t e s t specimen. Test o b s e r v a t i o n s and r e s u l t s of Test 4A are shown on pages 97 to 101 and photographed i n F i g u r e s 6.26 to 6.32. 6.3.5 TEST 5A Test 5A was conducted on a skewed 2-bolt s i n g l e p l a t e connection of /3=45°. The t e s t g i r d e r was f a b r i c a t e d from a W410X39 beam and Test Specimen No.5 was loaded by Load Beam No.2. The u l t i m a t e f a i l u r e load was a t t a i n e d and s i m i l a r f a i l u r e d e s c r i p t i o n s as Test 4A were observed. Test o b s e r v a t i o n s and r e s u l t s of Test 5A are d i s p l a y e d on pages 102 to 106 and photographed i n F i g u r e s 6.33 to 6.39. 69 WCtOXIOl SPECIMEN NO.1 - f t l l N NO. BEAM DIMENSIONS: TEST \A NOMINAL d - 603 m rr\ Xf. - IS"mm MEASURED Az*. - I5.2_mr»\ b-f — 2.32. m»n LENGTH =2.4-39.4- mm NO. OF BOLTS = 6 &OLT SPACING' 16.Zmm ECCENTRICITY = 68.5mm £ ANGLE = 0° 03 itr >T -Q8. I /2.30.3 p it i |i 1 fi i i 1 £. r ll : ll PLAN VIEW 56 *2X ! T FROMT \IIF\M P51 9 •oi. (. -LV»-T#I uvOr * i o r 4 * • x-J .SrrT\ON A - A SKETCHES NOT TO SCALE. ALL DIMENSIONS \N i*m. 70 TET5T 1A T E S T n f t S E f W A T i o N S : - Speci^e-Ai i_o/\t>e.b "To CA/-^CI—Y OF TfeSiT f&Am& niziie MA,ie- -To -rHe -TEST aP/OAtd-ru-i A-JO L v & T suPfriLT — lLNuo/ii}/Aj<; CUiLve Fou.(-Wi L O ^ D I A J ^ CUWET — AJO ViSt-iiiAJC-. FAlUlRg -.Q/SDS • M.,M...-._._-4fc 18S 2-4-4 HT,(.,..> r-W-ca»/8 - 44> 985' -"--Vb N--" NUi k= V L/4 = 4-lfl 1^ 4- 334-M •«-.,««,-nr*. = 4-16 134- 314- N-^. 71 W C i n x i O l S P E C I M E N N O . 1 - R U N M Q . 2 . BEAM D I M E N S I O N S : TEST \a NOMINAL d- 603 mm t>f — 2 _ 7 _ S m M MEASURFD ->fc 4- — IS. 2_mrr> b f — "2-32. rr\ rri L E N G T H =2.4-39.4- mm NO. OF BOLTS = 6 BOLT S P A C I N G ' 16.2. mm ECCENTR IC ITY = 68.5mm ft A N G L E = 0 ° n - o 8 . i • Pt_AT£ J2.30.3 950 ISO LUC imf t-V6T : L-MLT '**-5" -»lil*-|s-.«i P L A N " V M E W -S=,*2; 56*3 i i * S<=,*S" " r J aa O J [ _ FROMT \IIF\AI 6 8.r—*j i o | . ( . . u<tt-|*#| O 09 1 * r8 S E C T I O N A-A SKETCHES NOT TO SCALE . ALL DIMENSIONS IN mm. 72 TETST 16 - SPeane*J i_oA_,£o -TO -THE. M f l X l M R M c r t / M O T y OF TW<T T6-ST /\ftA/**K, E . A A ^ A J T TOTL'ORg DESCRIPTION: — i e c i b e a - T O « e b u c e T H £ " co*fJecrr/o*J PcAre To A 3 _ &01-T COM*' £CTfo*/ . F A I L U R E L f l A , D S ; SUA 61 *T08 4-^1 Al-ww. M€€-•-«,TOT , , , , s -54-^  IfeO S V » A J - w m F A M U P V £ S K E T C H - S W610x101 SPECIMEN N0.1 - RUN NO.2 NUMBER OF MEASUREMENTS - 67 MEAS. MTS #1 MTS *2 CONN.PLATE CONN.PLATE MTS *1 MTS *2 CONN.PLATE NO . KN KN KN X KIPS KIPS 1 0 000 0 000 0 000 0 000 0 000 0 OOO 0.666 2 44 897 8 229 36 668 81 67 1 10 093 1 850 8 . 243 4 133 565 24 925 108 640 81 339 5 178 166 33 273 144 893 81 325 40 053 7 480 32.573 6 222 767 41 769 180 998 81 250 50 080 9 390 7 178 285 33 376 144 908 81 279 40 080 7 503 32.577 8 133 803 24 984 108 818 81 328 30 080 5 617 24.463 10 44 660 8 348 36 312 8 1 308 1 1 89 380 16 666 72 714 81 354 20 093 3 747 16.347 13 178 285 33 391 144 893 81 271 14 222 886 41 828 181 057 81 233 50 107 9 403 40.703 16 133 803 25 058 108 744 81 272 17 89 558 16 785 72 773 81 258 20 133 3 773 16.360 19 89 024 16 636 72 387 81 312 20 20 133 921 25 073 108 848 81 278 30 107 5 637 24.470 21 178 403 33 436 144 968 81 258 40 107 7 517 32.590 22 223 004 41 9 17 18 1 087 61 203 50 133 9 423 40.710 23 267 486 50 4 13 217 073 81 1S3 60 133 1 1 333 48.800 25 356 273 67 331 288 942 81 101 80 093 26 400 7SS 75 842 324 913 81 075 90 093 17 050 73.043 28 489 G01 92 820 396 781 81 042 29 534 083 101 286 432 797 81 036 120 067 22 770 97.297 31 623 226 1 18 323 504 903 81 014 32 667 886 126 819 54 1 067 81 012 150 147 28 510 121.637 33 712 07 1 135 167 576 905 B1 018 160 080 30 129.693 34 756 791 143 455 613 336 81 250 137.883 35 801 214 151 862 649 351 81 046 180 120 34 140 145.980 154.120 37 890 356 168 825 721 531 38 934 779 177 380 757 399 81 024 2 10 147 39 877 170.270 178.297 40 1023 862 194 580 829 282 80 41 1067 870 203 106 864 764 80 980 240 067 45 660 194.407 43 1067 929 203 299 864 631 80 44 1023 566 194 802 828 763 80 968 230 107 43 793 186.313 178.267 46 934 423 177 647 756 776 BO 989 47 890 1 19 169 032 721 086 81 010 200 107 38 000 162.107 154.047 49 800 858 151 759 649 099 SO 756 791 143 292 613 499 81 066 170 133 32 213 137.920 51 712 131 134 692 S77 439 81 086 160 093 30 280 129.8 13 52 667 767 126 152 541 616 81 108 121.760 ' 53 623 285 1 17 522 505 763 81 145 140 120 26 420 113.700 54 578 447 108 907 469 539 81 172 130 040 24 483 105.557 55 533 905 100 307 433.598 81 213 120 027 22 550 97 477 56 489 720 91 767 397.953 81 261 1 10 093 20 630 89 463 57 445 178 83 167 362.011 81 318 100 080 18 697 81 383 58 400 755 74 686 326.070 81 364 90 093 16 790 73 303 59 356 154 66 145 290.009 81 428 80 067 14 870 65 197 60 311 494 57 560 253.934 81 521 70 027 12 940 57 087 61 267 190 49 034 218.156 8 1 648 60 067 1 1 023 4 9 043 62 222 530 40 479 182.051 81 810 50 027 9 too 40 927 63 178 225 31 983 146.243 82 055 40 067 7 190 32 877 64 133 743 23 487 110.257 82 439 30 067 5 280 24 787 65 89 320 14 931 74.389 83 284 20 080 3 357 16 723 66 44 779 6 391 38.388 85 728 10 067 1 437 8 630 67 0 949 0 252 0.697 73 438 0 213 0 057 0 157 W610x101 SPECIMEN N0.1 - RUN NO.2 +VE • COMPRESSIVE STRAIN -VE • fENSILE STRAIN MEAS. S.G.*1 S.G.»2 S.G.*3 S.G.#4 S.G.*5 S.G.#6 NOT USED NOT USED NO. MM/MM MM/MM MM/MM MM/MM MM/MM MM/MM MM/MM MM/ MM 1 0 .OOOOOO 0 .OOOOOO 0.OOOOOO 0.OOOOOO 0.OOOOOO 0.OOOOOO 0. OOOOOO 0.000000 2 0 0OO011 0 .000028 -0.000009 -0.000059 -0.000039 0.0OOOS6 0.000000 0.000000 3 -0 .000008 0 .0OO025 0.000003 -0.000091 -0.000052 0.OOOO90 0. OOOOOO 0.000000 4 -0 .O0OO27 0 .0OO02I O.OOOOIS -O.OOOI22 -O.00O060 0.0O0I23 0.OOOOOO 0.000000 S -0 .000047 0 .000016 0.OO0027 -0.000154 -0.000069 0.00015B 0.OOOOOO 0.000000 e -0 .0OO067 0 .000012 O.0OO040 -0.0O0187 -0.000078 0.OO0195 0.OOOOOO 0.000000 7 -0 .OO0O45 0 O0O01S 0.OOO024 -0.000156 -0.O0O0G8 0.OOO161 0.000000 0.000000 8 -0 .0OO02G 0 .000020 0.000009 -0.000123 -0.000058 0.OO0127 0.OOOOOO 0.000000 9 -0 .000006 0 .0O0024 0.OOOOOO -O.OOO092 -0.O0O05O 0.OO0094 0. OOOOOO 0.000000 10 0 .000015 0 .000030 -0.000009 -0.0O0059 -0.000040 0.000059 0.000000 0.000000 11 -0 .000006 0 .0OO025 0.000002 -0.000092 -O.O0OO52 0.0OOO91 0.OOOOOO 0.000000 12 -0 OOO026 0 .000022 0.000014 -0.000122 -O.O0OO6O 0.0O0124 0. OOOOOO 0.000000 13 -0 OO0O46 0 .000017 0.OOOO26 -0.000155 -O.O0OO69 0.000160 0.000000 0.000000 14 -0 000065 0 .000013 0.000040 -0.000187 -0.000079 0.OOO193 0.OOOOOO 0.000000 15 -0 O0OO44 0 .00O016 0.000024 -0.000155 -0.000068 0.0OO162 0. OOOOOO 0. OOOOOO 16 -0 OOO025 0 OOO02I 0.OOOO12 -0.000123 -0.000059 0.000126 0.000000 0.000000 17 -0 0O0005 0 OOO025 0.00O0O1 -0.000092 -O.OOOOSO 0.000093 0. OOOOOO 0.000000 18 6 6666i4 6 OOO029 -0.000010 -0.000060 -0.000041 0.000055 0. OOOOOO 0.000000 19 -0 0OO006 0 000026 0.OOO0O2 -0.000091 -0.0OO051 0.0OO092 0.OOOOOO 0.000000 20 -o, 0O0025 0 000022 0.OOOO14 -0.000122 -0.O00O59 0.OOO126 0.OOOOOO 0.000000 21 -0 O0O045 0 OOO0I8 0.0OO027 -0.000155 -0.000069 0.0OO160 0.OOOOOO 0.000000 22 -0 OO0065 0 000013 0.000040 -0.000186 -0.000079 0.000192 0.OOOOOO 0.OOOOOO 23 -0 O00084 0 000010 0.000054 -0.000219 -0.000087 0.000227 0.OOOOOO 0.000000 24 -0 0O0103 0 OO00O5 0.000065 -0.000252 -0.000097 0.000264 0.000000 0. OOOOOO 25 -0 000121 0 OOOOOI 0.00O076 -0.0002B5 -0.0001C8 0.000299 0.OOOOOO 0.000000 26 -0 000141 -0 OO0OO2 0.000090 -0.000318 -0.000117 0.0OO334 0.OOOOOO 0.000000 27 -0 OO0161 -0 000005 0.000105 -0.000353 -O.O0OI27 0.000368 0.OOOOOO 0.000000 28 -0 OO0179 -0 0O0O08 0.OO0116 -0.000385 -0.O00137 0.000404 0.OOOOOO 0.000000 29 -0 OO0199 -0 000012 0.000131 -0.000419 -0.000147 0.OO0438 0.OOOOOO 0.000000 30 -0 OO02 17 -0 OO0016 0.000142 -0.000454 -0.000159 0.000473 0.OOOOOO 0.000000 31 -0 0O0237 -0 O0O019 0.000156 -0.000486 -0.OO0168 0.000508 0.OOOOOO 0.000000 32 -0 000260 -0 00O026 0.000167 -0.000524 -0.000182 0.000539 0.OOOOOO 0.000000 33 -0 OO0281 -0 000032 0.000180 -0.000561 -0.000195 0.0OO571 0. OOOOOO 0.OOOOOO 34 -0 000304 -0 000040 0.000190 -0.000599 -0.000208 0.O00605 0.OOOOOO 0.000000 35 -0 000319 -0 000040 0.000209 -0.000631 -0.000215 0.000645 0.000000 0.000000 36 -0 000339 -0 00004 4 0.000223 -0.000670 -0.000230 0.OO06B4 0.000000 0.000000 37 -0 OO0345 -0 OOO042 0.000244 -0.000705 -0.000236 0.000739 0.OOOOOO 0.000000 38 -0. 000355 -0 0O0034 0.000279 -0.000744 -0.OO0239 0.OO0818 0.OOOOOO 0.000000 39 -6 O00375 -6 666639 0.000314 -0 000791 -6.000245 0.0O0992 0.OOOOOO 0.000000 40 -0. OO0406 -0 0O0056 0.000356 -0.0O0848 -O.O0O264 0.001042 0.OOOOOO 0.000000 4t -0. 000426 -0 0OO062 0.000419 -O.OO0893 -0.000272 0.001034 0. OOOOOO 0.000000 42 -0. OO0440 -0. OOO066 0.0OO512 -0.00094 3 -0.000287 O.OOI107 0. OOOOOO 0.000000 43 -0. 000417 -0. 0O0O7 2 0.OOO540 -0.O00914 -0.000275 0.001091 O.OOOOOO 0.000000 44 -0. 000405 -0. 0OO078 0.000519 -0.OO08B5 -0.000270 0.OO1Q58 0. OOOOOO 0.000000 45 -6". 000391 - 6 . 666683 6.666498 -0.000855 -6.666265 "0". 66102 1 6.600000 0.000000 46 -0. O00372 -0. O0O082 0.OOO480 -0.000821 -O.00O256 0.0OO990 0. OOOOOO 0.000000 47 -0. 0O0353 -0. 0O0O81 0.000467 -0.OO0784 -0.000242 0.000961 0.OOOOOO 0.000000 48 -0. 000332 -0. O0O079 0.000453 -0.000748 -0.000231 0.0O0931 0.000000 0.000000 49 -0. 000317 -0. 000083 O.0OO433 -0.OO0718 -0.000225 0.00089 1 0. OOOOOO 0.000000 SO -0. OO0301 -0. 0O0084 0.0004 20 -0.0O0686 -0.000216 0.OOO857 0.000000 0.000000 51 -0. 000282 -0. 00O084 0.000404 -0.000651 -O.O0O208 0.0OO822 0.000000 0.000000 52 -0. 000264 -0. 00008 3 0.000391 -0.000618 -0.000199 0.000784 0.000000 0.000000 53 -0. OO0245 -0. 000083 0.OOO377 -0.OO0583 -0.000188 0.000751 0.000000 0.000000 54 -O.OOO230 -0 000086 0 000363 -0 000552 -0.000182 0 0007 11 0 oooooo 0.000000 55 -0.000212 -0 0OOO83 0 000352 -0 000516 -0.OO0172 0 000676 0 oooooo 0.oooooo 56 -O.O0O188 -o 0OOO77 0 000345 -0 0O0477 -0.000159 0 000645 0 oooooo o.oooooo 57 -0.000168 -0 000074 0 000334 -0 000442 -0.000148 0 000610 0 oooooo 0.oooooo 58 -0.0OO151 -0 0OO072 0 0OO321 -0 0O0407 -0.000139 0 000574 0 oooooo o.oooooo 59 -0.00O132 -0 000069 0 000313 -0 0O0371 -0.000130 0 000537 0 oooooo o.oooooo 60 -0.000115 -0 000066 0 000302 -0 000337 -0.000122 0 000497 0 oooooo 0.000000 61 -0.0O0O97 -0 0O0O62 0 000290 -0 000302 -0.000117 0 000460 0 oooooo 0.oooooo 62 -0.000079 -0 000058 0 0002B3 -0 000267 -0.000111 0 000420 0 oooooo 0.000000 63 -0.0OOO62 -o OOOOS4 0 000271 -0 000234 -0.000105 0 0O0383 0 oooooo o.oooooo 64 -0.0OO044 -0 00OO50 0 000263 -0 000200 -0.000100 0 000347 0 oooooo 0.oooooo 65 -0.OOOO26 -0 000044 0 000256 -0 000165 -O.OOO094 0 000309 0 oooooo 0. oooooo 66 -0.O0O011 -0 000039 0 000245 -0. 000131 -0.000091 0 000269 0 oooooo 0.oooooo 67 -0.000017 -0 000034 0 0002S3 -0. 000095 -0.00009S 0 000205 0 oooooo 0.000000 W610x101 SPECIMEN NO.1 - RUN NO.2 • VE • SHORTENING -VE • EXTENDING" NO. MM MM MM MM MM 1 0 0000 0.0000 0 0000 0 0000 0 0000 0.0000 0 0000 3 -0 2219 -0.1869 0 0157 0.0139 -0 0229 4 -0 2885 -0.2441 0 0087 0 0096 -0 034 1 -0.2641 -0 0302 0405 6 -O 42 10 -0.3453 0 0052 0 0052 -0 7 -0 3788 -0.3155 -0 0009 0 0035 -0 0446 -O.4050 -0 0407 9 -0 2472 -0.2060 0 0078 0 0078 10 -0 1755 -0.1441 0 0122 0 0130 -0 0116 -0.1294 -0 0100 12 -0 3088 -0.2548 0 0026 0 0052 13 -0 3738 -0.3084 -0 0O26 0 004 3 -0 0446 -0.3647 -0 0402 14 -0 4252 -0.3476 0 O017 0 0035 -0 0558 -0.4531 -0 0505 15 -0 3805 -0.3155 -0 0035 0 0026 0405 16 -0 3198 -0.2679 -0 0017 0 0017 -0 0339 -O. 3 184 -0 0307 18 -0 1763 -0.1464 0 0104 0 0122 19 -0 24 13 -0.2000 0 0087 0 01 13 -0 0219 -0.1942 -0 0202 0298 2 1 -0 377 1 -0.3107 -0 0026 0 0035 22 -0 4252 -0.3500 0 0009 0 0043 -0 0558 -0.4557 -0 0507 23 -0 4708 -0.3857 O 0087 0 0035 -0 0669 -0.5493 -0 0609 24 -0 5155 -0.4167 0 0244 0 01 13 07 12 25 -0 5518 -0.4369 0 0479 0 0235 -0 0888 -0.7426 -0 0816 0919 27 -0 5999 -0.4631 0 1 176 0 0617 28 -0 6125 -0.4691 0 1593 0 0B60 -0 122 1 - 1.0199 -0 1 130 1233 30 -0 6336 -0.4655 0 2516 0 1399 31 -0 6463 -0.4679 0 2943 0 1651 -0 1562 - 1.3120 -0 1445 1S61 33 -0 6657 -0.4655 0 3770 0 2077 34 -0 6581 -0.4441 0 4293 0 2390 -0 1920 -1.5875 -0 1782 -0 1891 36 -0 7214 -0.4691 0 5416 0 37 -0 8648 -0.5965 0 6914 0 3946 -0 2277 -1.8674 -0 2 147 38 2303 39 -1 3364 -0.9656 1 1633 0 6735 -0 40 -1 5355 -1.1203 1 3741 0 7891 -0 2705 -2.1700 -0 2642 4 1 -1 7448 -1.294 1 1 5822 0 8960 -0 2845 -2.2759 -0 28 19 42 -1 9768 -1 .4715 1 8 155 1 0159 -0 3005 43 -2 0384 - 1.5287 1 8512 1 0394 -0 2924 -2.3808 -0 2959 2856 45 -2 0122 - 1.5263 1 7999 0 7 1 18 -0 46 -2 0013 -1.5263 1 7633 0 7 109 -0 2604 -2.1700 -0 2652 2545 48 -1 9819 -1.5299 1 6919 0 7031 49 -1 9684 -1.5299 1 6553 0 6831 -0 2247 - 1.9076 -0 2335 50 -1 9574 -1.5311 1 6 153 o 676 1 -0 2136 -1.8158 -0 2231 51 -1 9464 - 1.5299 1 5769 0 6735 -0 2018 2 124 52 -1 937 1 -1.5275 1 5351 0 6666 -0 1904 - 1.6365 -0 2019 53 -1 9287 -1.5323 1 4881 0 6440 -0 17B5 -1.5403 -0 1914 54 -1.9262 -1 .5394 1 .4376 0.6292 -0 1665 -1 .4563 -0 1810 55 -1.9262 - 1 5525 1 3836 0.5979 -0 1554 -1.3601 -0 1705 56 -1.9253 -1 5632 1 3323 0.5753 -0 1432 -1 .2840 -0 1596 57 -1.9194 - 1 57 16 1 .2809 0.5579 -0 1319 -1 . 1860 -0 1486 58 - 1.9009 - 1 5680 1 2408 O.5406 -0 1 199 - 1 .088 1 -0 1377 59 -1.8722 -1 5513 1 2077 0.5353 -0 1086 -0.9936 -0 1268 60 -1.8224 -1 5287 1 1781 0.5275 -0 0970 -0.8957 -0 1 156 61 -1.7794 - 1 4989 1 1529 0.5171 -0 0851 -0.7933 -0 1047 62 -1.7313 -1 4632 1 1276 0.5093 -0 0739 -0.6884 -0 0935 63 -1.6781 -1 4239 1 1076 0.5006 -0 0622 -0.5878 -0 0828 64 -1.6317 -1 3930 1 0736 0.4858 -0 0510 -0.4846 -0 0714 65 -1.5743 -1 3513 1 0484 0.4762 -0 0392 -0.3857 -0 0605 66 -1.5009 -1 2941 1 0249 0.4745 -0 0279 -0.2825 -O 0491 67 -0.3484 -0 3881 0 3187 -0.0209 -0 01 16 -0.1399 -0 0316 00 7 9 W6I0 X 1QI SPECIMEN NO. I  8 F A M n i M E N S i n i M S : N O M I N A L -RUN MO. 3 T E S T IC d = 60S mr»v X f = | 5 m r o b f = U S r n m MEASURED 606 mm LENGTH =2.4-38.4- mm NO. OF BOLTS - 3 EOLT SPACING = "76.2. mm ECCENTRICITY^ 68.5m, p ANGLE = 0° - 1 0 . " 7 m m f- - / 5 " . 7 - m «w ™ 2- 32. mm IIO8.1 11.30.3 PLAN VIEW ^ = = =3|fa-A* - n • 5"Q .1 ^0 . 1 * - S € , ~ 4 -i i i 1 F R O M T V l £ W CO s i it? 6&S ^ S K E T C H E S N O T T O S C A L E . LVtkT •» \ SECTION A-A, T " ALL. DIMENSIONS IN m m . 80 TFST ic. TbP FU\fiic>£. OF S/'tfciA-f/g SWov-C ToAts/ovJ/»t_ epFffCT-S. TOLTlRg DESCRIPTION: ~ S P e c i ^ e ^ 8u.cfc.uei_ /AJ g c u o v o T r i e e o A j w e c - r , . . , fii.fi-T£; — Lo/16 c a s t ' s srfouj D e p i / O i T i r Viet_b IA/<5, OccuAAi/v^ FAlLUftg U-AE-SJ VHA, =____±________±___M. H I . , M » 3 4 - 4 - 31-7 Q34- H-MT.*»..-* M,yym/i-.44- 3VT 034- H ' * , - . M_«ii»i-4 » I ^ T * - ^ = O MttH.^- •• /-.-314. 389 lAf M€e-»»«(To-rm. - 394- 389 4-.\.«. _MG>eSrr W(__. O F Dufe To W610x101 SPECIMEN N0.1 - RUN NO.3 NUMBER OF MEASUREMENTS • 35 MEAS . MTS #1 MTS *2 CONN.PLATE CONN:PLATE MTS 1\ MTS *2 CONN.PLATE NO KM KN KN % 1 0 000 0 OOO 0 000 0 000 OOO 0 OOO 0.000 2 44 542 8 229 36 312 81 525 10 013 1 850 8 . 163 4 133 506 25 073 108 433 81 5 178 225 33 658 144 567 81 1 15 40 067 7 567 32.500 g 222 7 178 285 33 599 144 686 81 154 40 080 8 133 625 25 07 3 108 551 81 236 30 040 5 637 24.403 10 44 542 8 274 36 268 81 1 1 89 083 16 607 72 476 81 358 20 027 3 733 16.293 12 133 447 25 13 178 225 33 718 144 508 81 082 40 067 7 S80 14 222 470 42 228 180 242 81 018 50 013 9 493 40.520 . 16 133 625 25 1 18 108 507 81 17 88 964 16 607 72 358 81 333 20 OOO 3 733 16.267 19 89 024 16 651 72 3/3 81 20 133 565 25 162 108 403 81 161 30 027 5 657 24.370 22 222 945 42 347 180 598 81 23 266 953 50 873 216 080 80 943 60 013 11 437 48.577 25 356 451 68 265 288 185 80 26 400 696 76 895 323 801 80 810 90 080 17 2B7 72.793 27 445 059 85 613 359 446 80 764 100 053 19 247 28 489 957 94 391 395 566 80 7 35 " 1 10 147 2 1 220 88.927 29 533 905 103 006 430 899 80 707 120 027 23 157 96.870 3 1 623 344 120 428 502 916 80 680 32 667 352 128 746 538 606 80 708 150 027 28 943 12 1.083 34 756 969 145 650 61 1 319 80 35 800 977 154 012 646 964 80 772 180 067 34 623 145.443 00 W610x101 SPECIMEN N 0 . 1 - RUN NO.3 •VE • COMPRESSIVE STRAIN •-VE "'.' 'TENSILE STRAIN S.G.*8 NO. MM/MM MM/MM MM/MM MMj/ MM MM/MM 1 0 OOOOOO 0.OOOOOO 0 OOOOOO 0 OOOOOO 0 OOOOOO 0 OOOOOO 0 OOOOOO 0 OOOOOO 2 - 0 00O005 -0.O0OO20 0 000019 -0 000040 0 0 0 0 0 1 7 0 0 0 0 0 2 1 0 000004 -0 ' ' 3 ' - 6 0OOO22 -0OOO035 6 6 0 6 6 3 7 - 6 6 6 6 6 7 2 6 6 6 6 6 3 6 6 00004 1 - 6 6 0 6 0 0 7 - 6 0OO035 4 -0 0OO036 -0.OOO052 0 OOO059 - 0 0 0 0 1 0 1 0 000046 0 OO0062 -0 O00O16 -0 O0O04 7 5 - 0 0OO05 1 -0.O0OO75 n 0OO077 -0 OOO130 0 000069 0 O0O082 -0 O00O27 -0 6 -0 000064 -0.OOO1O8 0 000095 -0 OO0162 0 -0 OOO040 -0 00O062 7 - 0 O0O048 -0.O0O096 0 OO0076 - 0 000130 0 000084 0 00OO83 -0 O0OO34 -0 000046 8 -0 000032 -0.000080 n 000056 -0 000099 0 000071 0 0OO033 9 - 0 0OO017 -0.OO0063 0 000036 -0 000068 0 -0 000015 -0 000023 10 -0 OOOO03 oooo 19 -0.OO0O44 0 0O0017 -0 00O039 0 000036 0 000021 -0 000O06 -0 00O014 -0 -0.000059 o 000035 - 0 000070 -0 000026 - 6 W W > 6 6 6 6 3 4 - 6 . 6 6 6 6 7 4 6 6 6 6 6 5 6 " - 6 6 0 6 1 6 6 0 000063 0 000062 -0 0O0023 - 0 000039 13 -0 000050 -0.000090 0 0OO074 -0 000130 0 000079 0 000083 -0 0O0O32 -0 000050 -0 0O0061 15 -0 0OO048 -0.0O0O98 0 000075 -0 000130 0 OO0086 16 -0 0OOO32 -0.OO0O83 0 O0O055 - 0 0O0099 0 0O0073 0 000061 -0 000026 - 0 000031 17 -0 000016 -0.000066 0 000036 -0 OOO067 0 0OO058 0 O00042 - 0 000017 - 0 000019 is - 6 6 6 6 6 6 3 -0.000047 6 6 0 0 6 1 7 - 6 6 6 6 6 3 8 6 6 6 6 6 4 0 6 6 6 6 6 2 i - 6 6 0 6 6 6 7 -0 OOOOI1 19 -0 00O018 -O.O0OO62 0 O0O036 -0 000069 0 000054 0 0OO04 1 -0 000016 -0 000024 20 0OOO36 21 -0 000049 -0.OOOO93 0 0OO077 - 0 OO0130 0 000082 0 22 -0 000064 -0.OO0113 0 OOO096 - 0 000162 0 000101 0 000104 -0 0OO044 -0 OOOOS9 23 -n 000074 -0.000145 0 000114 -0 000192 0 000130 0 000120 -0 O0OO55 -0 000065 24 -o OOO086 -0.OO0184 0 OO0I32 -0 000222 0 000161 -0 00007 2 25 -0 O0OO98 -0.OO0236 0 000145 - 0 0O0254 0 00018B 0 OOO161 -0 0O0085 -0 000074 26 -0 000109 -0.000307 0 000159 -0 000282 0 000205 0 OO0179 - 0 000107 - 0 0OO078 27 -0 000117 -0.000403 6 000166 - 6 000309 6 6 6 6 2 6 8 6 6 6 6 1 9 2 - 6 6 6 6 1 3 2 - 6 666685 28 -0 000120 -0.OO0528 0 000172 - 0 OO0336 0 000206 0 0O0206 -0 000154 -0 OOO103 29 -0 000125 -0.000653 0 000181 -0 000369 0 000216 0 000219 -0 000176 -0 0O0123 30 -0 000131 -0.OO0791 0 000191 - 6 6 6 6 4 1 6 6 000236 0 000233 - 6 000209 -0 OO0143 31 -0 OO0146 -0.000921 0 000200 - 0 000464 0 000270 0 000249 - 0 OO0240 -0 000172 -0 000216 33 -0 000276 -0.0O1369 0 000216 - 0 000618 0 34 -0 000388 -0.001757 0 000219 - 0 000727 0 O0O7 10 0 000293 -0 000300 -0.000299 000326 -0 000360 00 N) W610X101 SPECIMEN NO.1 - RUN NO.3 +VE • SHORTENING "-VE EXTENDING NO. MM MM MM MM MM 1 0 OOOO 0 OOOO 0 OOOO 0 OOOO 0 OOOO 0 OOOO 0 OOOO 3 -0 0937 -O 0548 O 0496 -0 0035 -0 4 -0 1282 -0 0691 0 0827 -0 O009 -0 0297 -0 2537 -0 0321 6 -0 2050 -0 0905 0 1794 0 O070 -0 7 -0 1932 -0 0952 0 1489 0 0078 -0 0422 -0 4461 -0 0430 9 -0 1308 -0 0762 0 0827 0 0078 -0 10 -0 0827 -0 0476 0 0505 0 0035 -0 01 18 -0 1539 -0 01 12 12 -0 1561 -0 0833 0 1019 0 0035 13 -0 1865 -0 094 1 0 1358 0 0035 -0 0404 -0 3630 -0 0433 1794 0 0096 -0 0504 -0 4531 -0 15 -0 1983 -0 1000 0 1480 0 0070 16 -0 1713 -0 0929 0 1 149 0 0078 -0 0301 -0 3507 -0 0326 18 -0 0869 -0 0512 0 0514 0 0061 19 -0 1274 -0 0750 0 0723 0 0017 -0 0193 -0 1950 -0 0219 21 -0 1890 -0 0964 0 1358 0 0035 22 -0 2143 -0 0988 0 1785 0 O070 -0 0524 -0 4531 -0 0540 24 -0 3004 -0 1024 0 3509 0 0348 25. -0 3915 -0 1 131 0 5146 0 0991 -0 084 1 -0 7522 -0 0872 27 -0 8361 -0 1810 1 2138 0 2312 28 -1 1635 -0 2298 1 7267 0 3198 -0 1209 -1 0942 -0 1296 30 -1 7237 -0 2774 2 6610 0 4615 31 -2 0704 -0 2941 3 2270 0 5423 -0 1636 -1 4178 -0 1779 33 -2 9133 -0 3060 4 6490 0 7318 ' 34 -3 4739 -0 2834 5 5955 o 8543 -0 2074 -1 8726 -0 2482 -0 2866 CD CO W 4 - 6 0 X C I SPgflMCN NO. 2- - R U N NO. I T E S T 2-A B E A M tiiMFNSIOMS • MnMiMAi M E A S U R E D d * 4 - 5 0 « , . d •= •4-5"2. -*«-.. -t+ - II mm. lO.R L E M 6 T H = 2 . 4 - 3 8 . 4 - m - , . N O . O F fiOUTS = _ . 8 O U T S P f l C l / O G , - I D I . U o . £ C C £ M T f l . l C r r Y - 6 3 . 5 " - , - , . /S ANC-,L£ - O" - PLUTC 12.11. X. I - . 1 1 . X. JS. - - --4J ~ •*: k—11.7 P L A N NJIgW * " « ^ L " 7 r • -Se.«7' I ^ i > i i PROMT V l F W 0 M7.0 I* * 1_\/_T »3 L.1-T* . S F C T I O M A - A T v. S K E T C W E S N O T " T o S C A L 6 . A L L . I > l l s \ t t N S l O N S »N »r.m. 85 TFST 2-A TEXT nasa*vi\T\nns: rtT 32o /t/v, -Ts/s F<-/i»i<;e o f .SParo/urA/ •sHoios -T-6*x/o«/»t E-FFcerr*. IS M * S f c . rarnRg PESCfUPTVON : S P e ^ ^ e i J T o / " F« - r t A J C,e sHOiW - S " T o / i s / < w ^ t £ p p £ C - r x S L I G H T wj£.a j j u o c u i / ^ fieuOvO T t f £ COAIA><= crio* /'c./J-nr P A l L A J f t g L O A D S : VHM * 35G 111 /vi  N I _ » V *.= -2-\ 3 3 4 - " T o S MT»«»..»» (AT <ca*/3 - ^  ^ft-V l O - S N>*« M«l~»-<,TOT*., r "2.QS 2,^ 3 163 W460x61 SPECIMEN NO.3 - RUN NO.1 NUMBER OF MEASUREMENTS" 42 MTS *1 MTS #2 CONN.PLATE CONN.PLATE MTS #1 MTS *2 CONN.PLATE 1 0 OOO 0 000 0 000 0 000 2 44 601 9 037 35 564 79 737 10 027 2 032 7.995 4 133 536 27 171 106 364 79 652 5 177 988 36 342 14 1 646 79 582 40 013 8 170 31 .843 7 177 929 35 949 141 980 79 796 8 133 625 26 838 106 787 79 916 30 040 6 033 24.007 10 44 630 8 711 35 919 80 482 11 88 964 17 778 71 186 80 017 20 OOO 3 997 16.0O3 13 177 899 36.127 141 772 79 14 222 4 11 45 364 177 047 79 603 50 000 10 198 39.802 16 133 536 26 675 106 861 80 17 88 964 17 622 71 342 80 192 20 000 3 962 16.038 19 89 024 17 704 71 320 80 20 133 476 26 875 106 602 79 866 30 007 6 042 23.965 22 222 530 45 305 177 225 79 23 266 953 54 735 212 217 79 496 60 013 12 305 47.708 25 355 917 73 707 282 210 79 26 400 310 83 197 317 1 14 79 217 89 993 18 703 71.290 28 406 093 81 766 324 327 79 865 29 41 1 431 83.152 328 279 79 790 92 493 18 693 73.800 31 422 462 85 769 336 693 79 698 32 422 433 85 843 336 590 79 679 94 967 19 298 75.668 34 355 798 71 283 284 516 79 965 35 311 168 61 912 249 256 80 103 69 953 13 918 56.035 37 222 322 43 326 178 996 38 177 899 34 096 143 804 80 834 39 993 7 665 32.328 40 88 875 15 776 73 099 41 44 364 6 658 37 706 84 993 9 973 1 497 8.477 • CO CTi W460x6l SPECIMEN NO 2 - RUN NO 1 +VE " COMPRESSIVE STRAIN -VE • TENSILE STRAIN MEAS. S.G.*1 S.G.*2 S.G.#3 S.G.*4 S.G.#5 S.G.*6 S,G.*7 S.G.#8 NO. MM / MM MM/MM MM/MM MM/MM MM/MM MM/MM MM/MM MM/MM 1 0. OOOOOO 0.OOOOOO 0.OOOOOO 0 .OOOOOO 0 . OOOOOO 0 OOOOOO 0 .OOOOOO 0 .OOOOOO 2 -0.OOOO40 -0.O0OO33 -0.0OO038 -0 .000054 -0 .000016 0 .000049 -0 .000032 0 .0OOO67 3 -0.OOOO87 -6.000060 -0.OOOO44 -0 .000104 -0 .OOO04 4 0 .000064 -0 .0OOO30 0 . 000096 4 -0.OOO140 -0. 00O086 -0.000045 -0 .0O0163 -0 .000079 0 .0O007 1 -0 .O0OO24 0 .000123 5 -0.000210 -0.000116 -0.OOO047 -0 .000247 -0 .000120 0 .OO0O77 -0 .000019 0 .OO0148 6 -0.0O0312 -0.0O0163 -0.000053 -0 .000335 -0 .000183 0 . OOOOBO -0 .0O0020 0 .000184 7 -0.000312 -O.OOOI48 -0.0O0O55 -0 .000291 -0 .000153 0 .00007 1 -0 .000029 0 .000157 8 -0.000270 -0.000129 -0.OOO058 -0 .000240 -0 .000115 0 000063- -0 .000039 0 .000133 9 -0.000227 -0.000109 -0.000060 -0 .000190 -0 .000084 0 000054 -0 .000049 0 000106 10 -0.000184 -0.000087 -0.000061 -0 .000141 -0 .000055 0 00004 3 -0 .000057 0 000075 1 1 -0.000227 -0.000108 -0.OOO059 -0 000192 -0 00O084 0 000050 -0 00004 7 0 000100 12 -0.OOO270 -O.OOOI27 -0.OOOO56 -0 66624 3 -0 000116 0 0OOO58 -0 OOO036 0 0O0126 13 -0.OOO315 -0.OO0147 -0.OO0052 -0 000295 -0 000146 0 000065 -0 000026 0 000149 14 -0.OO036I -0.000168 -0.00O050 -0 000346 -0 000176 0 00007 4 -0 000018 0 000180 15 -0.000324 -0.000151 -0.OOO054 -0 O0O295 -0 0OO143 0 OO0068 -0 0OOO28 0 000156 16 -0.OOO281 -0.0O0133 -0.OOO057 -0 000244 -0 000111 0 000062 -0 0O0038 o 0OO131 17 -0.000236 -0.000113 -0.0O0060 -0 000194 -0 000080 0 000052 -0 OOO049 0 000103 18 -O.0OO192 -0.000091 -O.O0O061 -0 000144 -0 000051 0 0O0041 -0 000057 0 00007 4 19 -0.000236 -0.000111 -0.OOO059 -0 000195 -0 00O080 0 000049 -0 00004 7 0 000100 20 -0.000280 -0.000131 -0.OOO056 -0 00024 7 -0 000112 0 O0O057 -0 000036 0 OOO126 21 -0.000325 -0.000151 -0.0O0O52 -0 000299 -0 000143 0 000064 -0 O0OO25 0 000152 22 -0.0OO370 -0.00017 1 -0.0O0O50 -0 OO0349 -0 000173 0 000072 -0 O00O18 0 000180 23 -0.000489 -0.000240 -0.O0OO23 -0 0O04 34 -0 000262 0 00007 3 0 000004 0 000214 24 -6.000659 -0.000328 6.000039 -6 666572 -0 666427 0 666674 6 OOOO49 6 666250 25 -0.000870 0.OO0O59 0.000120 -0 0O0742 -0 000605 0 000067 0 OO0110 0 000281 26 -0.O01192 0.00O029 0.000524 -0 000944 -0 0O0878 0 00024 2 0 000282 0 000361 27 -0.001434 0.000025 0.000615 -0 000997 -6 000976 6 666384 6 000347 6 000402 28 -0.001517 -0. 000002 0.O0O617 -0 001040 -0 001013 0 000386 0 000352 0 000396 29 -0.001535 -0.00O012 O.OOO620 -0 001054 -0 001030 0 000385 0 000353 0 0O0398 30 -0.001614 -O.O0OO4 2 O.OOOG47 -o O01097 -0 001078 0 000353 0 O0O371 0 000416 31 -0.001673 -0.OOO063 0.OO0583 -o O01119 -0 001107 0 000346 0 OO0371 0 0004 30 32 -0.001710 -0.000123 0.000578 -0 001128 -0 001125 0 00O349 0 000385 0 000441 33 -0.001667 -0.0OC112 0.000575 -0 001109 -0 001118 0 OO0346 0 000377 0 000427 34 -0.001627 -0.OOO096 0.OO0572 -0 001065 -0 001093 0 0OO34 1 0 000362 0 000399 35 -0.001586 -0.000078 0.000566 -0 001020 -0 001070 0 000336 0 000349 0 000368 36 -0.001544 -0.000060 0.000560 -0 000977 -0 001044 0 000331 0 000334 0 000341 37 -0.OO1502 -0.00004 1 0.000552 -0 0OO934 -0 0OI017 0 000323 0 0OO320 o 000308 38 -0.001462 -O.OOO024 0.00054 6 -0 000888 -0. 0O098S 0 000311 0 000305 0 OO0272 39 -0.001420 -0.000008 0.000538 -0 000842 -0. 0OO951 0 000303 0. 000288 0. OO0239 40 -0.001377 0.000005 O.OOOS25 -0. 000795 -0. 000916 0. 000292 0. 000269 0. 000204 41 -0.001334 0.000019 0.000509 -0. 000744 -0. 000872 0. 000281 0. 000247 0. 000165 42 -0.001292 0.000023 0.OO0481 -0. 000693 -0. 000809 0. 000269 0. 0OO216 0. 000115 CD W460x61 SPECIMEN NO.2 - RUN NO.1 •VE • SHORTENING '-VE"• E X T E NOING NO. MM MM MM MM MM 1 0 0000 0.0000 0 0000 0 0000 0 0000 0 0000 0 oooo 3 0 0633 0.3679 0 0967 0 3050 -0 0422 4 0 0776 0.5750 0 1280 0 4728 -0 0637 -0 5607 -0 0651 6 -0 6024 1.8609 -0 3622 1 9554 -0 1227 7 -0 6404 1.7716 -0 4127 1 9432 -0 1040 -0 8965 -0 0956 0733 9 -0 6893 1.4323 -0 5172 1 7355 10 -0 6944 1.2465 -0 5599 1 5999 -0 0406 -0 2869 -0 0300 -0 6640 1.3918 -0 5137 1 6895 -0 0604 -0 4706 -0 0509 12 -0 6235 1.5608 -0 4571 1 7990 0723 13 -0 5872 1.7299 -0 4049 1 904 1 -0 1024 -0 8650 -0 0944 15 -0 6361 1.8430 -0 4397 2 0267 -0 16 -0 6741 1.6787 -0 4946 1 9328 -0 084 1 -0 704 1 -0 0742 17 -0 7 112 1.5013 -0 5468 1 8216 -0 0633 -0 18 -0 7315 1.3156 -0 5886 1 6895 -0 0305 19 -0 701 1 1.4573 -0 5477 1 7738 -0 0620 -0 47 14 -0 05 16 2 1 -0 6243 1 .8001 -0 4380 1 9919 22 23 - o 6227 1 .9942 -0 4 145 2 1205 -0 1267 -1 0793 -0 1 170 - J 5009 3.3848 1463 24' " -2 4231 4.9921 - 1 9043 5 6011 -0 21 12 - 1 6400 25 -3 3849 6.5648 -2 7368 7 3010 -0 2620 -1 9321 -0 2 194 27 -5 3845 9.4638 -4 4931 10 3002 28 -6 4864 8.8174 -5 5763 10 2 167 -0 3642 -2 5540 -0 2970 -5 6904 10 3566 -0 3691 -2 5794 -0 30 -7 2575 9.2424 -6 2572 10 9580 3187 31 -7 5697 9.3495 -6 5463 11 1988 -0 3936 -2 7263 -0 3236 33 -7 7 148 9.4424 -6 6926 11 3908 34 -7 6591 9.3662 -6 6630 11 4491 -0 3721 -2 5199 -0 2940 -0 2698 36 -7 5435 9.1876 -6 5960 11 5290 37 -7 4684 9.0590 -6 5446 11 5325 -0 2996 -1 8613 -0 2212 -0 1966 39 -7 2921 8.6912 -6 4192 11 40 -7 16.13 8.4221 -6 3304 11 2379 -0 2229 -1 1799 -0 1461 1207 42 -5 9861 7.6244 -5 3499 10 2037 oo CO S P g C l M C M Nfl. 7. - RUN NO. __ S E A M n i M g l M S l f t M S : d - 4 - J O d = 4 - J * 2 . ~>,A. — 8 j t w a 8 . 3 —-•««* _ , • = I I m « r t . - io.q <»->. L E N 6 T H = 2 . 4 - 3 3 . 4 -N O . O F S O L . T 5 = 2 . B O U T S P A C I N G , - | O l . . - « . E C C S M T A l C I T Y ^ 6 3 . 5 * - P U T S 12.11.-. I -.11. X. uv or " 4 uv a-r ~s -=^=-~-* -~ STRAIN GAUGES ANO LVDTS WERE NOT USED IN THIS TEST. -•I I*— P L A N V l g W A-*—i .SECTION A-A SKETCHES NOT TO SCALS. ALL, DIMENSIONS IN mw. 90 T F S T 2.6 — s.-TAfli*j 4Ax$ez /TAJC L N ' - ' T * * uoe/t.e AJOT n ie i . iAi -rw,. T E S T S^Ocis.;: c w c v - T H C ai_T/A4/?-nr L - O / T O 6 J " J ° ' c ' l / \ / T : ; « * r - T "To (X- . — AT ZSff K-^, eflAt-K-uiA^ SOUNOJ occuA. - A T ZISKAJ, S P t c i « r -A< TOP 1-e_/»^t£ . / / K W f TOA> £/<>*/>(. t P ^ e c r r . - AT 3,So THt- &*c* O F T " C -roP Pezzer A T -r-He <OC/»TC - ^ - C 4 - 0 0 ».<V, L O T i o ? c A / * t K . t M ^ * J C l S « AW- P c / U t ' C Y l 6 l . & " J < fie^/nf - A - T k A / _ Pfln_u>?e <_oAO «s £ e o c M e c , — SMCA/ l . Pf/JB T_VS__,O*JPL. epPetTs occart. F I / U T , THE" PI_£>,U/MU £ . F P e c T HApPer/vji s-H^ae/M_.Y T O P L A S T C y e u w * M » F * I L . U 4 £ . ™ n i R F DESCRIPTION: — O F T o A p t - < A < ^ g A T «iAiAiecT'OA> p<,fl-T& K> &a.cy_jL«f &. — specimen Wera fl-r -fH£ £ U c * op T M E <_.ONM.CTIOA» ^ T 6 , S STK^WT. V H « » = 4-2.1, - 5 9 1 . N  ^ ^ \> -, = 3 . -7o8S a---M»tx»>~t - N\T = 2 M»««.-*= V-..• • A.g"2-fco OSO 4-83 M « « . * , _ < ,-ro-v.,. r ~2-b0 OSo 4-03 ^ -«» P A H U R £ S K E T C H E S i W460x61 SPECIMEN NO.2 - RUN NO.2 NUMBER OF MEASUREMENTS • 40 MEAS. MTS #1 MTS *2 CONN.PLATE CONN.PLATE MTS *1 MTS #2 CONN.PLATE NO K N KN KN % KIPS KIPS 1 0 OOO 0 000 0 OOO 0 OOO OOOO 2 44 571 8 807 35 764 80 240 10 020 . 1 . 980 8.040 4 133 565 27 231 106 335 3 ' 178 047 36 587 14 1 461 79 451 40 027 B. 225 31.802 7 266 893 54 202 212 692 8 311 435 62 957 248 478 79 785 70 013 14 153 55.860 10 400 221 80 S20 319 701 1 1 404 818 81 432 323 386 79 884 91 007 18 307 72 . 700 12 409 177 82 4 18 326 759 79 858 91 987 18 528 13 413 596 83 389 330 206 74.233 14 4 18 014 84 36 1 333 654 79 8 19 93 973 18 965 75.008 15 422 522 85 369 337 153 79 795 94 987 19 192 16 426 91 1 86 370 340 76.557 17 431 507 87 385 344 122 79 749 97 007 19 645 77.362 18 435 19 440 344 89 365 350 980 79 706 98 20 444 852 90 425 354 427 79 673 ioo 007 20 328 79.678 22 453 51 1 92 471 361 040 23 458 108 93 509 364 599 79 588 102 987 21 022 81.965 24 25 466 856 95 577 37 1 2/8 79 26 471 482 96 667 374 815 79 497 105 993 21 732 84.262 27 475 87 1 97 787 378 084 79 451 106 980 21 983 28 480 260 98 802 381 457 85.755 29 "484 708 99 892 384 816 79 391 108 967 22 457 86.510 3 1 493 486 102 087 391 399 32 498 142 103 191 394 950 79 285 1 1 1 987 23 198 88.788 33 34 SO 2 4 12 97 557 404 855 80 35 507 038 98 639 408 399 80 546 1 13 987 22 175 91.812 36 37 515 638 100 307 415 330 80 38 520 442 101 345 419 097 80 527 117 000 22 783 94.217 40 528 745 102 153 STRAIN GAUGES AND LVDTS WERE NOT USED IN THIS TEST. 92 W3I0 X 39 .SPFCIMEN N O . 3 - ft\lN N O . I  REAM n i M P M S l ONS : NOMINAL, M F A S l l R F h T E S T 3 * d = 3 l O W w b f - I ^ 5 m n 3)0 m m LENGTH = 2.4-38. 4- m« NO. OF BOLTS = I BOLT SPACING = O ECCENTRICITY - 63.5rv>m 3^ A N 6 L £ = O e PL.AN V l £ W 03 [ 1-i ) A < -F R O N T MMgNAJ ,6iS] , l O l . f c J_NBT «»4-S g C T l O M A - A "I S K E T C H E S NOT T O SCM-E. A A . L t > i N \ E . N S l O N S IN m m . 93 T P T S T f ) R < ; £ f t V A - r i Q N 5 : - A T "73 kJN), S P S O M C A J " T O P F L _ A AiG £ SHO IN I S T O ^ F F c S C T S , TH£ SIA J « U _ PLAT£ W / ) S ti,£N-c Mcfi-C T^Asi 6e.t_o-j TW<T PcAre. - f l - r l l ^ n r j . L W & T ^ - - j - M £ A S d A < ^ < . IT-S PdoPeR. _ . o c A - p _ / J . -AT 111 K.AJ. L o A b &EAM PL/A-re |S IAJ C O AJTVI C /T U I I T M T r f e fioTToM F L - ^ W & e o F T H E S p £ " C | M £ * J . - T e v T ^ s SToPPeu A T l l | jcAJ 8£o*u<.£ OF Trf£ C O A J T * C T . F A T L U R g D E S C R I P T I O N ; — - S P ^ O M C A ; T o p FC/W<}<; S H O ^ J S T O * - * J O A > A I _ £ F F £ O T - S . — Spcc./Mer/^  fl-r T r i e _ M C K . OF C O A J A / S C - T I O J PLATC I S •s-rv?A\$i-»-r. ~~ ^oTicefl^te. E>ei\J_. THE. sPerctAteN t ^ e - S ius-r fi£u>u F A I L U R E L O A D S ' V«Ax=Jli__°±ajN. M - . - N i - . - , . g 3 10 861 fell NJ-MT.« , . . , > NW-oryS = 10 861 617. N-M i « « » « = V - . - L / 4 r |Q4-ril4--tO M «.-••-«,TOT,,, r I OA- 1TI\ 4-TO N-mm F A I L U R E SKETCHES ., -T/ 4r TOrt.il O*I*L ' ^ . P F 6 C T 5 STA«I6.»»T M o T i c e A - - C L O / \ & fte.«M PCATC I A) C O / J T A C T Ul«TM ( _OTTOA * Ft-Ancc W310x39 SPECIMEN NO.3 - RUN NO . t MEAS. MTS #1 MTS *2 CONN.PLATE CONN.PLATE X MTS *1 KIPS MTS *2 KIPS CONN.PLATE 1 2 0 22 000 271 0 5 000 279 0 16 OOO 992 76 298 5 007 1 187 3 OOO 820 4 5 66 88 723 964 15 19 013 876 51 69 7 1 1 088 77 658 20 OOO 4 468 15 532 7 a 44 . 22 423 152 8 4 fl 896 4 19 1 18 35 17 36 526 734 no5 80 61 054 726 4 9 980 987 0 1 993 825 3 987 10 11 66 77 694 844 13 15 159 939 53 6 1 534 904 79 524 17 500 3 583 12 13 035 917 13 14 44 22 453 211 8 4 370 419 36 17 793 80 107 4 993 0 993 4 000 16 17 66 77 723 814 13 15 130 8B0 53 61 934 79 592 17 493 3 570 13 923 19 20 88 93 994 4 13 19.090 20.558 69 72 904 854 77 992 21 OOO 4 622 16 378 22 23 102 106 16 1 579 22 23 701 568 79 83 460 01 1 77 887 23 9C0 5 298 18 662 463 25 26 1 15 120 476 102 2b 26 422 185 90 93 054 917 78 198 27 000 5 887 2 1 113 28 29 128 133 821 417 27 28 79 742 765 4 10 101 104 108 078 652 425 78 78 440 663 29 30 993 987 6 6 467 612 23 24 527 31 32 142 146 195 435 30 30 344 900 1 1 1 1 15 851 535 78 898 32 920 6 947 25 145 973 34 35 155 159 569 869 32 33 635 1 17 122 126 934 752 79 285 35 940 7 445 28 495 405 37 38 168 173 855 243 34 35 540 304 134 137 939 79 622 38 947 7 937 31 010 40 4 1 182 186 377 855 36 37 972 810 145 149 40b 045 79 765 42 007 8 50O 33 507 473 43 44 195 200 633 1 1 1 39 39 196 901 156 160 437 210 80 061 44 987 8 970 36 017 733 46 47 208 213 859 485 42 42 036 4 36 166 17 1 823 049 80 122 47 993 9.540 38 453 I W310x39 SPECIMEN NO.3 - RUN NO.t +VE • COMPRESSIVE STRAIN -VE • TENSILE STRAIN MEAS. S.G.#1 S.G.#2 S.G.#3 S.G.S4 S.G.*5 S.G.#6 S.G.#7 S.G.*8 NO. MM/ MM MM/MM MM/MM MM/MM MM/ MM MM/MM MM/MM MM/MM 1 0 .OOOOOO 0. OOOOOO 0.OOOOOO 0 .OOOOOO 0 .OOOOOO 0 •OOOOOO 0 OOOOOO 0.000000 2 -0 .O00O7 1 -0.00O069 -0.OO0056 -0 .000032 0 .0O0OO5 0 .ooooso -0 0O0047 0.OOO071 3 -0 .000127 -0.000112 -0.OO0070 -0 .000080 -0 .000029 0 .00004 7 -0 .00004 3 0.0OOO92 4 -0 .000183 -0.000154 -0.OOO079 -0 .000130 -0 .000070 . 0.000O4 1 -0 .000033 0.000109 5 -0 .O0O297 -0.000228 0.OO0O78 -0 .000203 -0 .000182 0 .0O0172 0 .0O0129 0.000242 6 -0 .000251 -0.000185 0.O0O134 -0 .000131 -0 .000141 0 .000222 0 .000163 0.000259 7 -0 .000192 -0.000138 0.000144 -0 .OO0080 -0 .000103 0 .000229 0 .000156 0.00024 1 e -0 .000130 -6.OOO09O 0.000145 -0 .000026 -0 . 000058 0 .000224 0 .000130 0.000210 9 -0 .000186 -0.000131 0.OO0132 -0 .O00078 -0 .000091 0 .000218 0 .000136 0.000227 10 -0 .000241 -0.000171 0.000122 -0 .000127 -0 .000127 0 .0002 16 0 .000145 0.000246 11 -0 .O0O269 -0.000192 0.OO0117 -0 .000153 -0 .000147 0 .000214 0 .000154 0.000256 12 -0 .000242 -0.000173 0.000126 -0 .000127 -0 .000129 0 000217 0 0O0151 0.00024 7 13 -0 .OO0187 -0.000133 0.OO0137 -0 .000076 -0 .0OO095 0 000220 0 .000142 O.00O231 14 -0 .O0O128 -0.OOOO89 0.OO0148 -0 000024 -0 000057 0 000221 0 .000134 0.000208 15 -0 OO0185 -0.OOO129 0.0OO133 -0 000075 -O 000090 0 000218 0 000137 0.OO0226 16 -0 OOO240 -0.000170 0.000123 -0 00O127 -0 000127 0 000216 0 000145 O.0O0245 17 -0 000267 -0.OO0192 0.000119 -0.000151 -0 000146 0 O0O214 0 000153 0.000255 18 -0 000286 -0.000205 0.000119 -0 000167 -0 000159 0 000214 0 000159 0.0O0262 19 -0 000298 -0.O0O215 0.000119 -0 000176 -0 000168 0 O00216 0 OO0166 0.000269 20 -0 000316 -0.000225 0.000128 -0 000179 -0 000190 0 O00212 0 0OO183 0.000285 21 -0 000334 -0.000237 0.O0OI54 -0 000192 -0 666205 6 606229 6 000210 0.OO0312 22 -0 000351 -0.000260 0.000230 -0 000186 -0 0O0228 0 O0O39 1 0 000255 0.000352 23 -0 000375 -0.O0O287 O.OOO307 -0 000191 -0 00024 7 0 000490 0 000298 O.0OO395 24 -6 000390 -0.000301 0.00034 7 -0 000198 -0 000280 0 000571 0 000328 0.000427 25 -0 000405 -0.000314 0.000371 -0 000206 -0 000294 0 000619 0 000349 0.0004 52 26 -0 000425 -0.000326 0.000438 -0 000218 -0 000322 0 000671 0 000389 0.000495 27 -0 0O0447 -0.000342 0.000469 -0 000229 -0 000339 0 000711 0 O0O415 0.OOOS30 28 -0 0O0468 -0.000367 0.OO0544 -0 000230 -0 0O0356 0 O0O799 0 OO0468 0.OO0632 29 -0 000498 -0.000388 0.O0O575 -0 000252 -0 0OO377 0 000838 0 000501 0.000677 30 -0 OO0555 -0.0004 20 0.000625 -0 000296 -0 000417 0 000897 0 000553 0.000738 31 -0 000598 -0.000449 0.000674 -0 000341 -0 000455 0 000958 0 000594 0.000814 32 -0 000648 -0.000463 0.000725 -0 000385 -0 000501 0 001021 0 000635 0.000872 33 -0 000685 -0.000493 0.000774 -0 000426 -0 000512 0 001127 0 000677 0.00094 2 34 -0 000746 -0.000523 0.000832 -0 000480 -0 000515 0 001213 0 000716 0.001012 35 -0 000819 -0.OO0561 0.000890 -0 000540 -0 000537 0 O01304 0 000776 0.001078 36 -0 O00899 -0.000606 0.000945 -0 000598 -0 000555 0 001368 0 000828 O.OOI153 37 -0 000976 -0.000650 0.001008 -0. 000668 -0. 000603 0. 001424 0. OOO88O 0.O01231 38 -0. 001050 -0.000701 0.001069 -0. 000744 -0. 000653 0. 001506 0. OO0925 0.001312 39 -0 001158 -0.000752 0.001123 -0. 000830 -0. 000681 0. 001588 0. 000971 0.001418 40 -0. 001272 -0.000819 0.001188 -0. 000938 -0. 000713 0. 001679 0. 001021 0.O01500 4 1 -0. 001478 -0.000940 0.001280 -0. 001155 -0. 000779 0. 001843 0. 001086 0.001617 42 -0. 001540 -0.000981 0.001288 -0. 001211 -0. 000815 0. 001850 0. 001101 0.001640 43 -0. 001732 -0.001108 O.0O1321 -0. 001432 -0. 000903 0. 001934 0. 001120 0.001699 44 -0. 001938 -O.OOI245 0.001341 -0. O01S55 -0. O01029 0. 001993 0. 001148 0.0O1763 45 -0. 0O2O14 -0.001289 0.001365 -0. 0O1733 -0. 001080 0. O02O27 0. 001171 0.001789 46 -0. 0O2O63 -0.001318 0.00138O -0. 001779 -0. 001116 0. 002052 0. 001191 0.001817 47 -0. O02176 -0.001392 0.001391 -0. 001887 -0. 001192 0. 002072 0. 0O1216 0.001844 cn W310x39 SPECIMEN NO.3 - RUN NO.1 • VE • SHORTENING -VE " EXTENDING NO. 1 MM MM MM MM 0 OOOO 0 OOOO 0 OOOO O.OOOO 0 OOOO O.OOOO O OOOO 3 -0 0979 0 1500 -0.0305 0.0982 4 -0 1527 0 3238 -0.0235 0.2216 -0 0749 -0.6919 -0 0728 6 -2 4965 2 4228 -1.0693 2.0597 7 -2 5100 2 2704 - 1. 1320 1.9719 -0 0745 -0.7741 -0 052 1 9 -2 2847 2 0585 - 1.0379 1.7433 10 -2 2957 2 1633 - 1.0197 1.8033 -0 0807 -0.8764 -0 0756 1 1 -2 3227 2 2478 - 1.0162 1.8598 -0 12 -2 3362 2 2133 - 1.0362 -0.9700 -0 0758 13 -2 3548 2 1204 -1.0675 1.8077 -0 0693 -0.7540 -0 0512 • IS -2 2906 2 0573 -1.0423 16 -2 2982 2 1633 -1.0214 1.8033 -0 0819 -0.8782 -0 0758 18 -2 3531 2 3061 - 1.0223 1.9050 19 -2 4062 2 3799 -1.0379 1.9710 -0 1024 -1.1423 -0 1O07 2 1 -2 7986 2 8395 - 1. 1746 2.3473 22 -3 0770 3 1919 -t.2722 2.5898 -0 1 17 1 -1.3461 -0 1 189 23 -3 3377 3 5360 - 1.3645 2.8097 -0 1 173 -1.4344 -0 24 -3 5140 3 7384 -1.4289 2.9461 -6 1177 -1.4808 -0 132 1 25 -3 7030 3 8598 -1.5273 3.0469 -0 1 177 -1.5027 -0 1389 1475 27 -4 2303 4 2313 - 1.7833 3.2460 28 -4 6150 4 4396 -1.9914 3.3954 -0 1219 -1.7161 -0 1638 30 -5 3550 4 7932 -2.4651 31 -5 7793 4 9897 -2.7011 3.8943 -0 1337 -1.8088 -0 1935 32 -6 3801 •i 1373 -3.0346 4.0551 -0 1404 - 1.9269 -0 33 -6 8196 5 3623 -3.2531 -6 2 168 34 -7 3714 5 5469 -3.5684 4.4148 -0 1548 -2.0450 -0 2296 2801 37 -9 74 30 6 0302 -5.0155 5.0388 -0 1857 -2.3747 -0 3001 34 15 40 -12 5779 6 5505 -6.8981 5.7715 -0 2163 -2.5829 -0 42 - 14 94 1 1 6 6815 -8.7920 43 -15 6582 6 7160 - 10.0563 6.6231 -0 2604 -2.8199 -0 3619 .45 -15 7856 6 7 124 - i i.6542 46 -15 7848 6 7863 -11.7508 7.0O12 -0 2835 -3.3010 -o 4006 6 5755 -12.2489 6.7431 -0 2974 -3.3062 -0 4 152 — — — L - V D T N O T M e A S U R V N G , I T S l f S O « A ^ L O C A T I O N 97 W360 X33 SPECIMEN NO. 4- - RUN NO. REAM DI MENTIONS : TEST 4-A N O M I N A L d = 34-3. mm — 6 mm -?fc f- ~ 8 n\n\ b-p = I 2_"7 mm MEASURED d = 34-8 - mm - 8- 2. mm LENGTH = 2.4 3Q.4- m^  NO. OF BOLTS = 2L BOLT SPACING.^ IOI.6 mw ECCENTRICITY = 61.0 MM PLAN VIEW ^ ' a-CM J L o N •+ 6 N 7 >j : [ t : ; ) SECTION A-A •9-i in.o -L.VtkT " l O A. SECTION 6-S SKETCHES NOT TO SCALE. ALL DIMENSIONS \VJ 98 T P ST 4-A. TEST Q R . ^ E f t V A T l Q N ^ : A T ltit«J^ 3 C « . £ A t O / 0 C , N 0 I . S £ S S.TAO.TS T T J o c c . u A . . A T I H K.AJ , ^ r e c i M e A J ^T/1/4.T4 T o -r*J'*-r i*J ~ T H C *Jg£ Putin 6 O F TKCT &£-y4A<1. • A T l o f t n A J j L V D T ' S * l /s/» io *\3 -vio-r MCA-SUA'AIG , T r i e / * PAoPe*. L O C A T / O A I S , . A T 2 3 O <.AI, ^ P u c i ^ e / v ) TOP F C A A J C C - S H O U J S Tb/ts/oA/rtc < £ F F e c _ - r s . — A T 23s L,\JfcT rio-r MeAs\AA-4*i*i 'T-s P/loPea. t _ o C / J T V O A V . — A T Z 3 8 J ^ M , P L A S T I C Y\£i_tSiAj <^  occ_uA.i AA/A FAicuAe C O A & i s / U A c * e & . BAcK. O F T 4 £ TQP F C ^ A J C C A T T H £ CoAiA/eCT/oJ pU\T<c 6u.c;ci_e.s. THr A e i - r o F -rH<r L V D T ' s A A < £ N O - T NVCASU/J..«JG, -THE.I/C PrtoAeA L O C A T . f l ^ s . F W T T l R r D E S C R I P T I O N " . "Tb/cSio /J A c £ F F f i c T i . — 6 A C K OF T O / 3 F « - A A J ^ £ fi-r c o / V A / e c T / j « J PUATI= £ucfe-L(--4 C u e To COM3,AVeo -TO*_SIOA»A<- / T ^ O F<-.exu£A(. &£hlb//i$ GFFecTS. —^PefciM^AJ i/^a A T THe SPCK O F T«e c o A V N e c - n c j Put-rc is S-T#A/C;HT.. — lAcrT/M A T c C . 0 ^ 0 IS / i C A C V C O . — 5 H C A * AA»O - T O & S . C A I A I _ epFecrs o c c u 4 FlAST^ THe F L £ x u r t / » C &£A«>IAJ^ e F F e c - T H^PAVrJ-S ^ a i o C A J c Y LeAO/^6, T o A^/ ls-r .c V I £ C O / A J < > AMO FAI«-M.A£. FftiLUftg L ft A O ^ ! V«A» ~ X38 on AJ M r . . . . « > r-W~ry3 ^ 13 810 6 x 8 AJ-m„ MBtrt,-< = •*-/> = -7 4T1 StO AJ-,^ M 09^* 143N-F A M U F > E S K E T C H E S ; A,acjy-6& TOP SACK. >/o.4-W360x33 SPECIMEN NO.4 - RUN NO.1 NUMBER OF MEASUREMENTS . 54 MEAS. MTS *1 MTS *2 CONN.PLATE CONN.PLATE MTS *1 MTS *2 CONN.PLATE 1 2 0 22 OOO 152 275 0 4 8 000 167 51 1 0 17 35 000 986 764 81 80 191 777 4 9 980 953 0 1 937 913 4 .043 4 5 66 68 545 964 998 12 17 21 796 163 670 53 71 89 749 802 328 80 80 80 708 477 20 24 000 953 3 4 858 872 12.083 16.142 7 e 88 66 846 545 15 10 680 090 73 56 166 455 84 837 14 960 2 268 16.448 12.692 10 . 11 21 44 974 275 0 3 7 19 612 21 38 2bb 662 87 324 9 953 1 262 8.692 13 14 15 88 1 10 88 727 830 816 16 21 15 540 670 606 72 89 73 187 179 2 10 80 82 45 1 429 24 19 920 967 4 3 872 508 20.048 16 17 18 66 44 427 126 915 9 5 0 97 1 323 756 56 38 2 1 455 803 159 87 96 937 549 9 4 920 927 1 0 197 170 12.692 8.723 19 20 2 1 44 66 88 393 516 757 5 10 16 649 995 614 38 55 72 744 521 143 87 83 81 471 281 14 19 953 2 472 8.710 12.482 22 23 24 110 88 66 998 846 2< 15 744 628 89 73 254 218 82 410 19 953 973 4 3 888 513 20.065 16.460 25 26 44 22 21S 122 5 0 316 764 38 21 90O 359 87 96 978 548 9 4 940 973 0 172 4 .802 28 29 66 B8 545 757 10 16 950 639 55 72 595 098 81 231 19 953 3 745 16.208 31 32 33 133 155 091 273 26 30 230 737 106 124 861 535 80 204 34 907 6 910 27.997 34 33 36 186 195 440 603 37 39 239 315 149 156 201 288 80 79 026 901 43 973 8 838 35.135 37 38. 213 221 248 996 41 43 1 16 066 172 178 131 930 80 80 7 19 600 49 907 9 682 40.225 40 41 230 235 981 4O0 44 45 8b3 869 186 189 128 531 80 515 52 920 10 312 42.608 43 44 244 248 267 893 47 47 240 974 197 200 027 9 19 80 725 55 953 10 785 45.168 46 47 48 257 262 266 760 030 389 49 SO 51 679 524 288 208 211 215 080 506 101 80 80 718 747 58 59 907 887 '1 1 1 1 35B 530 47.548 49 50 271 275 045 404 51 52 844 660 219 222 201 745 80 80 879 61 913 1 1 838 49.278 50.075 50.915 52 53 54 284 288 292 301 897 930 54 54 54 202 313 913 230 234 238 099 584 017 81 81 200 254 64 65 947 853 12 12 210 345 52.737 53.508 LO W3GOx33 SPECIMEN NO.4 - RUN NO.1 •VE - COMPRESSIVE STRAIN -VE - TENSILE STRAIN MEAS. S.G.*I S.G.*2 S.G.#3 S.G.#4 S.G.#5 S.G.'6 S.G.#7 S.G.'S NO . MM/MM MM/MM MM/MM MM/MM MM/MM MM f MM MM/ MM MM/MM 1 0 oooooo 0 .OOOOOO 0.OOOOOO 0.000000 0.OOOOOO 0 .oooooo 0 oooooo 0 .OOOOOO 2 -0 .000047 -0 0O0034 -0.00O015 -0.0O0056 -0.000008 0 0O0070 0 •0OOO02 0 .0O0O78 3 -0 .000095 -0 .000055 0.0OOO11 -0. OO0108 -0.000030 0 .000096 0 .000040 0 .000122 4 -6 .000148 -6 .00O07 i 6.66664 2 -0.666162 -6.0O0061 6 .OOOI15 6 .000089 6 OOOI55 5 -0 . OOO209 -0 .000094 O.OOO079 -0.0O0224 -0.000097 0 .000133 0 OOOI44 0 0O0190 6 -0 .00O270 -0 00O116 0.0001 IB -0.00O290 -0.000135 0 .000149 0 OOO196 0 0OO225 7 -0 .000227 -0 OOO103 0.OOOO80 -O.OO0244 -0.000109 0 .000133 0 .666(48 0 .0OO193 8 -0 .000178 -0 .000087 0.OOO045 -0.000193 -0.000080 0 .OOO117 0 .00OO95 0 0OO161 9 -0 .000127 -0 0OO069 0.0OOO16 -0.000141 -0.000051 0 .000098 0 .0O0048 0 .0OO125 10 -0 .000079 -0 .000050 -0.000013 -O.OOO088 -0.000025 0 .000074 0 . 000007 0 0O0087 1 1 -0 .0O0129 -0 .0OO071 0.000015 -0. 000139 -0.000048 0 .000100 0 .O00045 0 .000127 12 -0 0OO177 -0 .000087 0.00004 5 -0.000192 -0.000077 0 OOOI16 0 .O00093 0 .000161 13 -0 .000226 -0 .000103 0.000081 -0.000242 -0.000107 0 .000132 0 .000147 0 .000192 14 -0 000276 -0 OOOI17 0.000116 -0.000295 -0.000137 0 .000147 0 .000196 0 .0OO220 15 -0 OO0230 -0 0O0103 0.000082 -O.OO0245 -0.000109 0 .000131 0 .000147 0 •0O0193 16 -0 000180 -0 000087 0.000046 -0.000193 -0.000079 0 .000117 0 .000095 0 000159 17 -0 000130 -0 000070 0.000016 -0.000142 -0.000050 0 .000099 0 .000046 0 000126 18 -0 000082 -0 00O052 -0.000012 -0.000089 -0.000025 0 000072 0 .000007 0 0O0O87 19 -0 000132 -0 00007 1 0.000016 -0.000142 -0.000049 0 .000099 0 .00004 5 0 .0OO125 20 -0 000180 -0 000088 0.000046 -0.000193 -0.000079 0 .000117 0 .O00O94 0 OO0159 2 1 -0 000229 -0 OOO103 0.000081 -0.000244 -0.000108 0 000129 0 000147 0 OOO191 22 -0 0002 79 -6 000118 0.000119 -0.000296 -0.000139 0 000145 0 000196 0 00O221 23 -0 000231 -0 000104 0.00O082 -0.000246 -0.000110 0 000132 0 00O148 0 000193 24 -0 000182 -0 000088 0.000047 -0.000194 -0.000080 0 000117 0 000095 0 OOO160 25 -0 000132 -0 000O7 1 0.000016 -0.000143 -0.000051 0 000096 0 000044 0 000125 26 -0 000084 -0 000053 -0.000013 -0.000091 -0.000027 0 000073 0 000007 0 0O0O85 27 -0 000133 -0 000072 0.00O015 -0.00O142 -0.000050 0 000099 0 O00O4 7 0 000125 28 -0 000182 -0 0O0088 0.000044 -0.000193 -O.0OOO79 0 000114 0 000093 0 000159 29 -0 000231 -0 000104 0.000082 -0.000245 -0.000109 0 000132 0 000145 0 000190 30 -0 000279 -0 000118 0.000119 -0.000297 -0.000140 0 000146 0 000196 0 000220 31 -0 00034 3 -0 000142 0.000154 -0.000365 -0.000180 0 000158 0 000252 0 000255 32 -0 000431 -0 000177 0.000192 -0.000450 -0.000235 0 000177 0 000307 0 000292 33 -0 000537 -0 000228 0.000223 -0.000575 -0.000302 0 000199 0 000360 0 000337 34 -6 600599 -6 000266 0.O0O229 -0.000643 -0.00O339 0 00O217 0 O00381 0 000367 35 -0 000655 -0 000303 0.0O0236 -O.OO0698 -0.00O368 0 000237 0 000398 0 0O0403 36 -0 000735 -0 000364 0.000236 -0.000774 -0.000408 0 000265 0 000416 0 0OO451 37 -6 000879 -0 0004 50 0.00O228 -0.000910 -0.0004 70 0 000285 0 0004 29 0 000498 38 -0 001007 -0 OOOS43 0.000212 -0.001024 -0.000529 0 000301 0 0004 38 0 0O054 3 39 -0 001050 -0 000576 0.000212 -0.001063 -0.00054 7 0 000306 0 000446 0 000560 40 -0 001105 -0 000616 0.OOO2O6 -0.001111 -0.000576 0 000311 0 000452 0 000578 4 1 -0 001154 -0 000655 0.000200 -0.001150 -0.000605 0 000309 0 000457 0 000592 42 -0. 001213 -0 000698 0.0O0I9I -O.OOI176 -0.OO0635 0 000313 0 OO04 59 o. 00O609 43 - 6 . 001274 -0. 00074 4 0.000178 -0.001248 -O.OO0673 0. 000316 6 666461 6. 0OO62S 44 -0. 001349 -0. 000802 0.000160 -0.001319 -0.000723 0. 000313 0. 000462 0. 000641 45 -0. 001416 -0. 000856 0.000143 -O.OOI390 -0.0OO7 5S 0. 0O0311 0 000463 0. 0OO656 46 -0. 001489 -0. 000913 0.000122 -0.001439 -0.000803 0. 000311 0. O0O464 0. 00067 1 47 -0. 001530 -0. 000949 0.000112 -0.001477 -0.000835 0. 000314 0. 0O0466 0. 000686 48 -0. 001591 -0. 000996 0.000096 -0.001520 -0.000866 0. 000314 0. 000464 0. 000696 49 -0. 001661 -0. 001056 0.000078 -O.OOI523 -0.000910 0. 000311 0. 000465 0. 000710 50 -0. 001717 -0. 001098 0.000066 -0.001558 -0.000923 0. 000313 0. 000465 0. 000722 51 -0. 001793 -0. 001159 0.000050 -0.001596 -0.0O09S8 0. 00O313 0. 000462 0. 000734 52 -0. 0O1863 -0. 00t212 0.000028 -0.001779 -0.000975 0. 000319 0. 000457 0. 000752 53 -0. 00211 1 -0. 001352 -0.000035 -O.0O2546 -0.001016 0. 000324 0. OO04 2O 0. 0007 76 54 -0. 002637 -0. 001460 -0.000122 -0.003140 -0.000937 0. 000323 0. 0O034 1 0. 000775 W 3 6 0 x 3 3 S P E C I M E N N O . 4 - R U N N O . 1 • V E - S H O R T E N I N G - V E - ' E X T E N D I N G M E A S . L V D T * 1 N O . MM 0 . 0 0 0 0 0 . 0 7 S 9 0 . 0 7 5 1 6 . 0 9 4 5 O . 1 2 2 3 O . 1 4 0 9 6 . 0 4 13 L V O T * 2 MM 0 . 0 0 0 0 . 0 3 1 0 . 0 9 8 8 . 2 2 2 8 . 3 9 1 7 . 5 5 3 6 . 4 1 9 1 L V D T * 3 MM OOOOOO O . O B 5 3 O . 1 0 7 1 6. 1 5 4 i " 0 . 2 1 3 3 0 . 2 6 2 1 L V O T * 4 MM L V O T * 5 MM L V O T #6 MM 0 . 0 0 0 0 - 0 . 0 1 9 1 0 . 0 2 5 2 6. 1 1 6 5 0 . 2 4 6 8 O . 3 8 4 1 0 . 0 0 0 0 - 0 . 0 2 0 5 - 0 . 0 4 2 4 - 6 . 0 6 7 5 - 0 . 0 9 0 0 - O . 1 1 8 7 0 0 0 0 1 9 7 7 4 2 5 1 6 4 7 2 9 I B 6 1 6 5 0 - 0 . 0 0 5 1 - 0 . 0 8 1 0 0 . 2 7 1 5 0 . 0 9 7 6 0 . 2 0 7 2 O . 1 3 9 3 0 . 0 3 8 3 0 . 3 0 0 7 0 . 1 9 1 2 0 . 0 6 2 6 - O . 1 0 2 6 - O . 0 8 0 1 - 0 . 0 5 6 2 - 1 . 0 1 9 9 - 0 . 8 0 7 3 - 0 . 5 6 7 7 L V O T «7 MM 6 . 0 0 0 0 - 0 . 0 2 2 3 - 0 . 0 4 6 1 - 6 . 0 7 1 4 - 0 . 0 9 8 6 - O . 1 2 5 6 - 6 .1 0 1 2 - 0 . 0 7 6 5 - 0 . 0 5 1 9 1 0 1 1 - 0 . 1 4 7 6 - O . 1 4 5 1 - 0 . 0 8 9 4 - 0 . 0 5 1 2 0 . 0 2 8 6 0 . 1 7 2 6 - 0 . 0 5 5 7 - 0 . 0 2 7 9 0 . 0 5 0 5 - 0 . 0 5 3 9 0 . 0 0 7 8 O . 1 1 3 0 - 0 . 0 3 1 9 - 0 . 0 5 2 4 - 0 . 0 7 5 9 - 0 . 3 2 8 0 - 0 . 5 1 9 5 - 0 . 7 3 9 1 - 0 . 0 2 6 8 - 0 . 0 4 6 3 - 0 . 0 7 5 6 13 14 15 16 17 18 19 2 0 2 1 - 0 . 0 5 7 4 - 0 . 0 3 2 1 - 0 . 0 5 9 1 - 6 . 6 9 9 6 - O . 1 6 7 9 - O . 1 4 8 5 - 6 . 1 3 7 5 • 0 , 0 8 6 1 - 0 . 0 5 1 5 0 . 3 1 0 7 0 . 4 4 2 9 O . 3 1 6 7 0 . 1 1 2 3 O . 1 6 3 7 O . 1 0 6 2 0 . 2 1 9 9 0 . 3 1 8 9 0 . 2 2 8 6 - 0 . 1 0 0 4 - O . 1 2 2 1 - O . 1 0 4 4 - 0 . 9 8 5 7 - 1 . 1 7 9 9 - 1 . 0 1 7 2 - O . 1 0 0 5 - O . 1 2 5 4 - O . 1 0 1 7 O . 1 7 2 6 0 . 0 1 0 7 - 0 . 0 5 3 6 0 . 0 4 0 1 - 0 . 0 5 3 1 - 0 . 0 5 8 3 O . 1 2 2 5 - 0 . 0 0 0 9 - 0 . 0 5 3 9 - 0 . 0 8 0 9 - 0 . 0 5 7 4 - 0 . 0 3 4 1 - 0 . 7 8 6 3 - 0 . 5 7 4 7 - O . 3 3 7 6 - 0 . 0 7 7 2 - 0 . 0 5 2 1 - 0 . 0 2 7 0 0 . 0 3 4 5 O . 1 7 7 4 0 . 3 1 5 5 - 0 . 0 2 0 0 0 . 0 5 4 9 O . 1 1 6 7 0 . 0 1 3 0 O . 1 1 8 2 0 . 2 2 1 6 - 0 . 0 5 5 8 - 0 . 0 7 8 3 - O . 1 0 2 0 - 0 . 5 3 7 9 - O . 7 4 0 0 - 0 . 9 6 7 4 - 0 . 0 5 1 9 - 0 . 0 7 6 5 - 0 . 1 0 1 0 2 2 - 0 . 0 2 9 5 2 3 - 0 . 0 5 6 5 2 4 - 0 . 0 9 5 3 2 5 2 6 2 7 - O . 1 6 4 5 - 0 . 1 4 9 3 - O . 1 3 3 3 0 . 4 4 8 8 0 . 3 2 1 5 0 . 1 7 6 2 6 . 0 1 1 9 - 0 . 0 5 4 8 0 . 0 3 8 1 O . 1 6 7 2 O . 1 1 0 6 0 . 0 4 3 5 0 . 3 2 2 4 0 . 2 3 2 9 O . 1 2 5 1 - O . 1 2 4 9 - O . 1 0 6 6 - 0 . 0 8 2 9 - 1 . 1 8 4 3 - 1 . 0 1 2 9 - 0 . 7 9 3 3 - O . 1 2 5 8 - O . 1 0 1 4 - 0 . 0 7 7 2 - 0 . 0 4 9 6 - 0 . 0 5 5 7 - 0 . 0 1 5 7 O . O O O O - 0 . 0 5 1 3 0 . 0 1 5 6 - 0 . 0 5 8 0 - 0 . 0 3 4 5 - 0 . 0 5 5 8 - 0 . 5 6 5 9 - 0 . 3 3 6 7 - 0 . 5 3 6 2 - 0 . 0 5 2 3 - 0 . 0 2 7 4 - 0 . 0 5 2 3 2 8 2 9 3 0 - 0 . 0 8 2 7 - 0 . 0 5 2 3 - 0 . 0 2 6 2 O . 1 8 1 0 0 . 3 1 5 5 0 . 4 5 1 2 0 . 0 5 7 5 0 . 1 1 6 7 0 . 1 6 9 8 0 . 1 2 1 7 0 . 2 2 4 2 0 . 3 2 5 9 - 0 . 0 7 8 3 - O . 1 0 1 8 - 0 . 1 2 5 1 - 0 . 7 4 0 8 - 0 . 9 7 2 6 - 1 . 1 8 8 7 - 0 . 0 7 6 3 - 0 . 1 0 1 0 - O . 1 2 6 1 3 1 3 2 3 3 3 4 3 5 - 0 . 0 2 6 2 - 0 . 0 6 9 2 - 0 . 6 7 4 1 - 1 . 1 0 7 8 - 1 . 5 7 2 7 - 2 . 3 8 7 7 0 . 6 3 8 1 0 . 8 5 7 2 1 . 1 9 4 1 1 . 5 5 6 1 1 . 9 3 5 9 2 . 5 4 0 7 O . 1 9 9 4 0 . 1 8 9 0 - 0 . 0 2 5 3 0 . 4 8 8 4 0 . 7 0 1 3 0 . 9 9 0 7 - 0 . 1 5 2 0 - 0 . 1 8 3 5 - 0 . 2 0 0 0 - 1 . 4 3 4 4 - 1 . 7 0 6 5 - 2 . 0 4 7 6 - 0 . 1 5 1 7 - O . 1 8 0 5 - O . 2 1 2 4 - O . 3 4 7 4 - 0 . 7 4 7 1 - 1 . 4 4 9 8 1 . 4 4 2 6 1 . 9 6 7 6 2 . 8 2 0 1 - 0 . 2 1 1 2 - 0 . 2 2 7 1 - 0 . 2 4 9 0 - 2 . 1 8 0 5 - 2 . 3 1 0 9 - 2 . 4 8 2 3 - 0 . 2 2 7 5 - O . 2 4 15 - O . 2 5 8 4 3 7 3 8 3 9 - 5 . 1 6 0 1 - 7 . 1 5 9 6 - 7 . 7 3 3 4 2 . 0 9 3 0 2 . 1 5 1 4 2 . 2 0 3 7 - 4 . 0 5 6 0 - 5 . 7 0 4 3 - 6 . 1 1 9 7 3 . 3 7 9 8 4 . 2 2 4 5 4 . 5 0 0 9 - 0 . 2 9 2 0 - O . 3 2 7 3 - 0 . 3 4 2 6 - 2 . 7 4 8 2 - 2 . 9 7 3 8 - 3 . 0 6 5 7 - 0 . 2 9 5 9 - O . 3 3 0 8 - O . 3 4 8 2 4 0 4 1 4 2 ' 4 3 4 4 4 5 4 6 4 7 - 8 . 5 3 4 9 - 9 . 1 6 0 9 - 1 0 . 2 9 9 9 " - 1 1 . 2 6 8 5 - 1 2 . 5 7 7 0 - 1 3 . 8 0 6 3 • ^ . " o T i T -- 1 5 . 7 8 9 0 2 . 1 9 0 6 2 . 2 0 6 1 2 . 1 5 6 1 - 6 . 8 3 7 2 - 7 . 4 0 1 4 - 8 . 4 2 1 1 4 . 7 9 7 2 5 . 0 4 14 5 . 4 6 2 1 - 0 . 3 5 9 2 - 0 . 3 7 6 1 - 0 . 3 9 9 0 - 3 . 1 7 1 5 - 3 . 2 7 12 - 3 . 4 2 5 2 4 8 - 1 6 . 7 9 9 8 2 . 1 0 1 4 2 . 0 0 3 7 1 . 9 0 8 5 1 . 7 8 7 0 1 . 7 2 2 8 1 . 5 7 7 5 - 9 . 2 9 4 4 - 1 0 . 4 7 5 2 - 1 1 . 5 9 7 6 - 1 2 . 0 8 4 3 - 1 2 . 0 7 9 1 5 . 7 8 19 6 . 1 9 9 9 6 . 6 1 1 0 - 0 . 4 2 1 9 - 0 . 4 5 2 0 - 0 . 4 8 0 7 - 3 . 5 3 4 5 - 3 . 6 9 4 6 - 3 . 8 7 5 6 - 0 . 3 6 5 2 - O . 3 8 1 2 - O . 4 0 3 6 - 0 . 4 2 3 8 - O 4 5 2 9 - 0 . 4 8 2 9 6 . 9 9 2 5 7 . 3 3 5 8 7 . 6 6 4 3 - 0 . 5 1 3 2 - 0 . 5 3 5 9 - 0 . 5 6 6 8 - 3 . 9 7 2 7 - 4 . 1 1 6 2 - 4 . 3 0 6 0 - 0 . 5 1 1 7 - O . 5 3 3 8 - 0 . 5 6 2 7 — — L V O T N O T M E A S U R \ H & I T S IN IT IAL L O C A T I O N 4 9 5 0 5 1 5 2 5 3 5 4 - 1 7 . 8 0 6 3 - 1 8 . 4 4 0 8 - 1 9 . 2 3 7 2 - 1 9 . 9 9 8 2 - 2 1 . 5 8 1 9 - 2 1 . 6 2 4 0 1 . 3 3 1 1 1 . 1 9 0 6 O . 7 5 9 6 • 1 2 . 0 7 9 1 • 1 2 . 0 8 0 O • 1 2 . 0 7 8 2 8 . 0 4 15 8 . 3 5 8 7 8 . 6 7 2 4 - 0 . 5 9 6 2 - 0 . 6 1 S 2 - 0 . 6 5 4 0 - 4 3 4 2 7 4 . 5 7 8 8 4 . 7 3 9 8 - 0 . 5 9 B 7 - 0 . 6 2 7 1 - 0 . 6 6 8 5 0 . 5 1 0 8 - 0 . 6 7 9 8 - 3 . 1 4 0 7 • 1 2 . 0 7 4 8 • 1 2 . 0 7 8 2 • 1 2 . 0 7 8 2 9 . 1 5 7 3 1 0 . 3 8 8 8 1 2 . 4 6 5 9 - 0 . 6 9 3 5 - 0 . 7 9 4 7 _ - 0 . 9 0 9 B - 4 . 8 9 3 7 - 5 . 4 7 0 1 - 6 . 3 3 8 7 - O . 7 1 5 0 - 0 . 8 6 3 9 - 1 . 0 8 7 7 102 W4-IQy3S 5 . P F C 1 N A F N MQ. S - RUN MO. I  REAM DIMENSIONS-' N O M I N A L M E A S U R E D -tf - 1 mm -»tt ~ 3."7rv\r^  b$ - /4-Omm kf = 14-1 r»m TEST 5A LENGTH = 2,4-38.4-** NO. OF BOLTS - 2. 6>Ol_T SPACING - |OI.6mm ECC ENTRI CITY ^  67. "I m.* ANGLE - 4-5"° SECTION A- A T K * L V t > T 4^-.SFCTION B-B SKETCHES NOT TO SCALE.. ALL DIMENSIONS IN mm. 103 T F S T 5 A TEST O B S E R V A T I O N S : - A T KJJ) C./LCAK.IAJ4; NOIS£i 3TAATTS Tb O C C U R . . -PtT -S^£CIAH£AJ TO,O F<-AA10,£ S H O W * TI>A3IOAM<_ £ F F 6 C T S . - 4 T |t*7 KTV", L-v/b-r ^ O T A4£-flsuAiAJfr ITS P^cPeA I-OCATio»i. - A T \TQle.Aj| .^PeciMiiAj t^e& snowi rotjio^L £.FF&C_T.S. - A T "2.48 K.A7, D / ^ C K . O P TH£. T o P F(_AAJ€»>£ A T TH<£ C O N/Je CT/O-J PL,/TT€ S T / t A T s T o £ a c / c c £ . — p,T " ^ z L i / C i T * l N O T Aif/ISUA /A ' 5 ITS ploPe-A. Loc4T/o/0, — / 1 T 2.^S')e-AJ^ P l _ A S T i c V l£H}/rJS- O C c y / U F f l i L W A e i% A e A c H e a . T H ^ A ^ S T O F T H ^ L M & T ' S wo-r Mgr/Mq/?jAj<-THei/z. PfLaPe/l L o c » T ( w s . F K Y U U R E D E S C R I P T I O N : — SP£C\M&* T£>P F L f l ^ e M l f c - S / V W SHo»J Tb*S#o*lA<. E F F E C T J , &4<ifc. O F T 0 / o F L A ^ C A T corJrJ£csr<a<s) P<-AT£ - f i u c j c t e o B>*.€: T o C O M i i A J e b T O & S I O A J A C /WO pL£X.a/lAL- &£*Q i A] (f- £FF£o.TS.. — S p £ C | M S 7 g M a M-r T H e fiflCK. OP TH£ CO/vWecT.O/V P\J\T£ '£ ST/2.A|^rtT. — U L T I M A T G : L O A & R£Acnea. — S H E A A . AAJ& XOfi~^\a^\_ £FF£CTi 0CCU/2 . F'/2.ST , ~THe FCex«A>i_ &£AI^>.N6V E F F e c - T H A P P 6 M 5 •S'U.'bDeAjLY U=/A&//^ T-« A-/UTlC VlEt - t j i A l f r , A-00 RiLu« t-. FAILURE" LOADS' i i ^ ^ 8 i s a M | ^ L T M I L « 14-7 <H-S-Tfe-7 N-,^ FAILURE S T A A K H T S A C J C SKETCHES: T o A S i » « J A L . U U U : - 2 °; . Oi Ki-PO & u>; si & £t CP CO: 00 - J CO M M U : CO (0 00: CJ CD CD K> CO M Ul Ul -4 - J cn fO U : CO tO tO: U -4 0> CD -J -4: 4k CO cn: ro to to i cn cn fc U i . xw ro CO: co CJ -J: I to to ro > to CJ i to en to to cn: CO CJ CJ: M O i: CO CD CD ceo ro co i:cn — to to to i cn cn oo; - l O O i U> fc t o fc si fc: ro to co fc fc - j ro CD co cn CD roi to to CO ro ro cn O O O si 00 si cn CJ cn: tO tO Ul: CO tO CO: — fc fc: U O Oi O tO si: cn co cn cs ro CJ CD CO Ul CJ (0: IO CD s j i ro ro ro: -J cn cn: —• cn to; O * *j fc — cn co to; to to: to to to- to ro K) W tO: tO — — — O O tO - J fciO CR CO cn cn o to - * — Ul fc CO: 01 fc tO Ul CJ to -4 Ul UV to ui cn: Ul O fc •J Ul Ul. to ro to cn cn fc -4 (J <0: - b: CJ cn fc O W — fc fc -J: -4 fc CD -J *^  O; si cn cn Ul -O Ui: co ro o to to to fc O to O O - J ui cn cn : •o ui CO CJ CD ID (0 10: fc — CD O CJ >J — o OI — CO CD: — sj — si CO (J: CD tO —• ro ro - * u ro CO: en fc t o - J fc CO: CJ tO fO; to to t o fc CJ to fc co cn CO CD fc; tO — CJ! cn CD o: *- M U O Ul si: Ul KJ O i CO to CO 10 Ul to tO Ul O to CD Ul: — cn col IO t o M i CJ K> tO — cn to: Ul 03 CD Ul Ul ov mo ^  cn CD t o •o cn ui ui — O m cn ui: CJ fc -J tO 03 CD: CO to to to — ro s, CJ si — CO -J fc fc Ul O Oo o >:-o to —; CCD cn -J: 1: -4 Ul s»: ui ut cn CD fc O 00 O to CO to to cn cn CJ O ^ CJ Ul fc — Cn O CD: -4 CD «J.i to ro to - - O s| (J 03 si CJ 01: Ul ' £ CD Ul 01 O tO CJ - u cn ro u si _ CJ fc cn (J fc u O (J CD fc CD — Ul -» fc cn CD O fc O U CO — Ul —. to to to Ul -4 —• • U to to cn u i cn - CD Q CJ CJ O (0 to to fc IO fc - O O O to co cn to to w m o w co ui -J to - * to CO UI fc:UI Ul CO: CJ co <o:CC CJ ro — (Jl —' ut ro fc ui cs o —• C0 Ul: si o fc — (J o cn $ fc M O fc cn CD 03 00 Ul fc cn co to Ul ut 03 ro Ut: CO fc CJ: — CD W O O CD O CD Ul cn o ui: fc fc CO cn cn mi O — CO: - O 01: to to to -4 CJ fc CJ CO -4 CO -o m O - fc -4 ro O Ul Ul fc CD Lil Ki fc cn to O to fc en to o -J ro -J O -» m CO CD fc •4 -J Ut: CJ o en: ut - O — fc u -J to to fc ui to w to to to si (Jl s) CJ CJ CJ CJ fc Ul cn fc cn ro -4 CD fc — m cn co — u to to ro si fc to co en si CO 01 ro CJ O — to fc cn c j cn si CD O: -4 U 01 CO -J —: (0 10 tO; -o oi cn CO CD 03: 8 tO (J Ul CJ fc tO CDi «J K) sj: — — 10; ID tO Q i CO CD O i CJ sj si CO 03 CO Ul Ul O to ro co fc si O: en -J -o; CO CJ CJ Ut tO Ul: CO CJ Ut sj CD CJ — CD cn co - j t o CO ( J si fc Ul Ul fc s) O - -J 00 — CO to to to fc en si si o CJ si to -* oi to cn cn o si co o cn to co — CD CO O to to to cn fc cn: O O i to CJ fc CO tO CD U O 8 . -O O -):CJ cn si ):CJ O U> to CJ cn fc 10 u ^ U fc Ul C J i — < CJ 01:03 I fc to cn Ul fc to u to u CD CO fc cn en s>: si ro fc co to 00 CD o o 03 03 03 to to u si ui ro O CO to fc CD cn fc cn cj 38S CO sj to — U 01 fc CJ CJ CO fc <n t o to to to 01 01 si si o CJ 03 CO tO ui O to M O W - O o fc 00 Ul 03 O Ul cn w o CD — CO fc to CJ to fc O cn co — t o — —. Ul CO CO 00 fc fc o oi cn CO o to to o en CJ si si tO CD 03 to ( J to si U 0J o - o fc tO si. O Nl Ul CJ ^ . Oi CD-O O X - I O -o O vt * CD CO CO - O O ro sj to CD o cn to o ui x w-i Z x in Z cn * u t s: O X -4 W410x39 SPECIMEN NO.5 - PUN NO.1 •VE • COMPRESSIVE STRAIN -VE • TENSILE STRAIN MEAS. S.G.fl S.G.*2 S.G.*3 S.G.#4 S.G.15 S.G.*6 S.G.*7 S.G.*8 NO. MM/MM MM/MM MM / MM MM/MM MM/MM MM/MM MM/ MM MM/MM 1 0.OOOOOO 0 .oooooo o.oooooo O.OOOOOO 0.OOOOOO 0.oooooo 0. oooooo 0.OOOOOO 2 -0 .000043 -0 .000026 -0.0CO012 -0.OO0O43 -O.000008 0.00OO37 -0.0OOOO3 0.000046 3 -0 .0O0O88 -0 .000047 0.oooooo -0.O0O081 -0.000029 0.O00O35 0.000022 0.O0OO58 4 -0 .000133 -0 .000067 0.000015 -0.OOO120 -O.000056 0.00OO3 1 0.000049 0.0OOO63 5 -0 .000179 -0 .000089 0.0OOO32 -O.OOOI58 -0.000079 6.000026 0.000077 0.0O0O69 6 -0 .000239 -0 .000147 0.000008 -0.000213 -0.0OO100 0.000086 0.000079 0.O0O137 7 -0 .000198 -0 .000129 -0.000O03 -0.000178 -0.000077 0.000087 0.000052 0.00O125 8 -0 .000154 -0 .000108 -0.000018 -0.000140 -O.OOO054 0.000090 0.000022 0.OOOI16 9 -0 .000110 -0 .000089 -0.000033 -0.000102 -0.000029 0.000091 -0.0O0OO2 0.000106 10 -0 .000067 -0 .000066 -0.000043 -0.000064 -0.000011 O.O0OO84 -0.000024 0.0O0O86 1 1 -0 .OOOI 10 -0 .000089 -0.OOOO32 -0.000101 -0.000028 0.000090 -0.000002 0.000106 12 -0 .000155 -0 .000109 -0.000018 -0.000139 -0.000052 0.OOOO90 0.000022 0.0O0113 13 -0 .000199 -0 .000130 -0.OOOOO2 -0.0O0177 -0.000074 O.OOOOB5 0.000O50 0.000125 14 -0 000245 -0 000151 O.OOOOI1 -0.000215 -0.000100 0.00O086 0.000079 0.000137 15 -0 000203 -0 000131 -0.000002 -0.000179 -0.000077 0.000089 0.000051 0.000127 16 -0 000158 -0 .000110 -0.000018 -0.000141 -0.000054 0.000089 0.000022 0.000116 17 -0 000114 -0 000091 -0.000032 -0.000103 -0.000030 0.000091 -0.00OO02 0.000107 18 -0 0OO069 -0 OO0O67 -0.000043 -0.000065 -0.000012 0.000084 -0.000024 0.000088 19 -0 OOOI14 -0 000090 -0.OOOO32 -0.000103 -O.OOO029 0.000089 -0.000002 0.000106 : 20 -0 000158 -0 OOOI10 -0.000017 -0.000140 -0.000053 0.000088 0.00O022 0.0OO113 21 -0 0O0203 -0 00013I -0.0O0002 -0.0O0179 -0.000076 0.OOO086 0.000051 0.00O124 22 -0 000249 -0 000152 0.000009 -0.000216 -0.000100 0.000086 0.000078 0.OOO136 23 -6 0004 11 -0 000283 -0.000019 -0.000360 -0.000149 0.OOO198 0.000086 ' 6.666258 24 -0 OO0S53 -0 000376 -0.000026 -0.000463 -0.000193 0.000227 0.000105 0.000309 25 -0 000692 -0 000469 -0.000O39 -0.000555 -0.000235 0.000246 0.000121 0.000352 26 -0 000719 -0 000489 -0.OOOO43 -0.000563 -0.000243 0.000250 0.000124 O.00O361 27 -0 0O0753 -0 OO0514 -O.OOO048 -0.0O0581 -0:000255 0.000254 0.000128 0.O00370 ' 28 -0 000777 -0 000530 -0.000051 -0.000596 -0.000265 0.000253 0.000128 0.000375 29 -6 000802 -0 000548 -0.000055 -0.000611 -0.000272 0.000261 0.000132 0.000383 30 -0 O0O833 -0 000571 -O.0O0O62 -0.000636 -0.000283 0.000263 0.000132 0.0O0393 31 -0 0O0864 -0 000594 -0.00O067 -0.000655 -0.000293 0.000265 0:000132 0.000401 32 -6 000895 -0 0O0620 -0.00O076 -O.OO0676 -0.000305 0.0O026G 0.000130 0.000409 33 -0 000926 -0 000641 -0.000080 -0.000696 -O.0O032O 0.0O0265 0.000132 0.OOO4 1O 34 -0 0O0955 -0 000664 -0.000088 -0.000719 -0.000328 0.000266 0.000132 0.00O418 35 -0 000985 -0 000691 -0.000096 -0.000749 -0.00034 4 0.000266 0.000132 0.00O422 36 -0 001013 -0 000713 -0.000105 -0.000770 -0.000353 0.000269 0.000131 0.000429 37 -0 001048 -0 000742 -0.000115 -0.000793 -0.000365 0.000269 0.000126 0.000436 38 -0 001083 -0 000771 -0.000125 -0.000818 -0.000382 0.000268 0.000122 0.000441 39 -0 001119 -0 000802 -0.000139 -0.000845 -0.000397 0.000266 0.000119 0.0004 50 40 -0 001149 -0 000831 -0.000149 -0.000870 -0.000407 0.000269 0.000115 0.000458 4 1 -0 001200 -0 CO0878 -0.OOO170 -0.000914 -O.000425 0.O0O267 0.000107 0.000473 42 -0 001230 -0 000908 -0.000183 -0.000946 -0.000440 0.000266 0.0C0I03 0.000480 43 -0. 001269 -0. 000944 -0.000199 -0.000985 -0.000454 0.000269 0.000094 0.0OO487 44 ' -6. 00131i -6. 000986 -0.000218 -0.001019 -0.000469 0.000266 0.000085 0.000494 45 -0. 001366 -0. 001042 -0.000246 -0.001058 -O.000485 0.000266 0.000069 0.000502 46 -0. 001413 -0. 001091 -0.000273 -0.001086 -0.000495 0.00O271 0.000055 0.000515 47 -0. 001484 -0. 001169 -0.0O0314 -0.0O1134 -O.000504 0.000266 0.000030 0.00O526 48 -0. 001521 -0. 001206 -0.000334 -0.001161 -0.000511 0.000267 0.0O0O21 O.0OO535 49 -0. 001577 -0. 0O1265 -0.000368 -0.001195 -0.000512 0.000266 0.000002 0.00O546 50 -0. 001638 -0. 001330 -0.000407 -0.001238 -0.000523 0.000270 -0.000023 0.000564 51 -0. 001697 -0. 0O1393 -0.OO0446 -0.0O1274 -0.000536 0.0002 78 -0.O00O48 0.000579 52 -0. 001773 -0. 001471 -0.000496 -0.001316 -0.000559 0.00O284 -0.000084 0.000598 53 -0. 0O1902 -0. 001604 -0.OO0593 -0.001374 -O.0O054 2 0.000309 -0.000162 0.000641 54 -0. 001999 -0. 001692 -0.000671 -0.001450 -0.000527 0.000344 -0:000232 0.000686 55 -0. 002126 -0. 001791 -0.000802 -0.001491 -0.000399 0.000447 -0.000374 0.000809 V 4 1 0 x 3 9 SPECIMEN NO 5 - RUN NO. • V E • SHORTENING MEAS. NO. t LVOT #1 MM r> OOOO LVOT HI MM 0 . 0 0 0 0 LVOT * 3 MM 0 . 0 0 0 0 LVDT *4 MM 0 . 0 0 0 0 LVDT * 5 MM 0 . 0 0 0 0 MM 0 . 0 0 0 0 MM 2 3 0 - 0 0 3 5 4 0 1 2 7 0 5 3 2 0 . 0 1 4 3 - 0 . 0 4 7 6 0 . 0 0 1 2 0 . 0 7 3 1 0 . 1 6 9 8 0 . 3 9 1 0 0 . 0 7 5 6 0 . 1 9 3 8 0 . 4 0 0 6 - 0 - 0 - 0 0177 0 3 4 5 0514 - 0 . 1 5 6 6 - 0 . 3 2 3 6 - O . 5 0 I 2 - 0 - 0 0 1 8 8 0 3 6 8 5 6 0 - 0 1 164 6 2 6 9 0 . 0 3 9 3 - 1 . 0 1 3 2 0 . 6 2 6 9 2 . 1 1 6 8 0 2 6214 5707 - 0 0 9 5 0 - 0 . 8 9 6 5 - 0 0 7 8 2 0814 8 9 - 0 - 0 7661 8 2 2 6 - 1 . 0 9 8 9 - 1 . 1 2 9 9 1 . 7 3 8 0 1 .5334 2 2 2500 0 6 2 3 - 0 0 4 5 8 - 0 . 4 4 4 3 - 0 0254 1 1 12 13 - 0 - 0 - 0 8 2 4 3 7686 7 0 5 3 - 1 . 1 1 2 0 - 1 . 0 7 3 9 - 1 . 0 3 5 8 1 .4986 1 . 6 8 9 3 1 .9052 2 2 1883 - 0 0608 - 0 . 5 7 1 2 - 0 0 4 3 5 14 15 - 0 - 0 6 6 9 9 6 9 9 4 - 1 . 0 2 7 5 - 1 .0608 2 . 1 3 3 3 1 .9601 2 2 5 8 2 0 4464 - 0 - 0 0962 0 8 0 3 - 0 . 9 0 7 9 - 0 . 7 7 5 8 - 0 - 0 0 8 2 8 0647 0 4 5 1 17 18 - 0 - 0 8 3 1 9 8 2 3 5 - 1. 1394 - 1 . 0 9 4 1 1 . 5508 1 . 4124 2 1 0 8 4 0 9354 - 0 0291 - 0 . 2 8 0 8 - 0 008 1 20 21 - 0 - 0 7821 7 188 - 1 . 0906 - 1 . 0 4 8 9 1 . 7 0 5 8 1 .9191 2 2 4021 - 0 0 7 9 5 - 0 . 7 4 7 0 - 0 064 2 0 8 3 0 23 24 25 - 3 - 4 - 5 2651 6 1 7 6 8 0 1 3 - 4 . 1 4 3 2 - 5 . 6 3 7 4 - 6 . 9 1 7 2 4 . 2 1 1 8 4 . 7 4 9 1 5 . 0 6 5 2 7 7 1046 9598 - 0 - 0 17 19 1996 - 1 . 4 4 4 9 - 1 . 7 0 1 2 - 0 -o 0821 1037 26 27 28 - 6 - 6 - 6 0367 3902 5218 - 7 . 1 6 9 6 - 7 . 5 3 7 5 - 7 . 6 7 4 4 5 . 1 6 1 8 5 . 2 0 1 0 5 . 2 0 9 7 8 8 8 1579 3674 4238 - 0 - 0 - 0 2090 2146 2189 2267 2313 2389 - 1 . 8 5 6 0 - 1 . 8 9 0 1 - 1 . 9 4 79 - 1 . 9 6 8 0 - 1 . 9 9 9 5 - 6 - 0 - 0 " " - 0 - 0 - 0 1 100 1 154 12 19 1265 132 1 1375 29 30 3 1 - 6 - 7 - 7 8002 0871 4 102 - 7 . 9 5 7 8 - 8 . 2 4 5 9 5 . 2 5 9 4 5 . 2 8 8 1 S . 3 0 3 8 8 8 B 6 142 7706 9531 - 6 - 0 - 0 32 33 - 7 - 7 7755 9 6 4 S - 8 . 9 5 0 7 - 9 . 1 4 4 8 5 . 3 2 5 5 5 . 3 2 0 3 9 9 1539 2260 - 0 - 0 2452 2490 - 2 . 0 7 2 1 - 2 . 1 2 0 2 -o - 0 1433 1503 35 36 - 8 - 8 6251 9609 - 9 . 7 7 5 8 - 1 0 . 1 3 1 8 5 . 3 5 1 7 5 . 3 9 6 1 9 9 78 13 - 0 2642 - 2 . 2 7 8 5 - 0 1679 1705 38 39 - 9 - 1 0 7 5 2 3 1624 - 1 0 . 9 4 3 7 - 1 1 . 3 7 2 3 5 . 3 5 4 3 5 . 3 4 7 3 10 3593 - 0 2767 - 2 . 4 5 6 0 - 0 1838 1893 4 i 42 43 -1 1 - 1 1 - 1 2 2491 6 3 5 5 1797 - 1 2 . 5 1 1 7 - 1 2 . 9 1 5 3 - 1 3 . 4 7 8 4 5 . 3 0 9 9 5 . 3 0 4 6 5 . 2 9 1 6 1 1 11 0901 3830 - 0 - 0 2958 2992 - 2 . 6 5 6 3 - 2 . 6 8 8 7 - 0 1998 44 4 5 - 1 2 - 1 3 7821 6 4 8 5 - 1 4 . 0 9 7 5 - 1 4 . 9 7 8 6 5 . 2 1 0 6 5 . 1 3 3 1 1 1 12 6515 0392 - 0 -c 3128 - 2 . 8 1 3 8 - 0 . - 0 . 2 1 0 0 2152 22 19 47 48 49 - 1 5 - 16 6 1 6 0 2303 - 1 7 . 0 4 7 8 - 1 7 . 7 1 8 1 4 . 8 9 0 2 4 . 8 1 6 1 12 13 9838 294 1 7573 - 0 - 0 3426 3426 - 2 . 9 9 9 2 - 3 . 0 8 1 4 - 0 - 0 . 2401 2487 — — — L V D T N O T M E A S U R . I N 5 5 0 51 52 - 18 - 18 0 9 5 7 8997 - 2 O . 0 4 3 3 - 2 1 . 3 2 4 3 4 . 4 2 3 4 4 . 1 8 9 2 14 14 2822 8 2 8 0 - 0 3432 3434 - 3 . 2 9 6 6 - 3 . 3 3 6 8 - 0 - 0 2756 2959 I T S I N I T I A L L O C A T O N 53 54 55 ^2.1 .£74.7. - 2 1 . 7 5 1 4 - 2 1 . 8 8 5 6 - 2 6 . 4 8 9 0 - 2 9 . 0 5 8 2 - 3 1 ~ 5 9 6 5 2 . 7 6 3 8 1 . 5 8 8 3 - 1 . 6 6 7 5 1 6 . 5 6 7 8 1 7 . 3 0 1 3 1 8 . 1 0 4 4 -o - 0 3675 . 3343 - 3 . 6 4 2 1 - 3 . 9 5 8 7 - 0 . - 0 3226 2682 107 F i g u r e 6.1 T e n s i o n Test Specimens Arrangement f o r Coupon Test F i g u r e 6.2 Test 1B -Northwest S i n g l e P l a t e C o n n e c t i o n L o o k i n g 109 F i g u r e 6.3 Test 1B - S i n g l e P l a t e C o n n e c t i o n L o o k i n g Southwest 1 10 111 1 12 1 1 3 F i g u r e 6.7 Test 1C - N o r t h S i d e of F a i l e d C o n n e c t i o n 114 F i g u r e 6.8 Test 1C South - Back of F a i l e d T e s t Specimen L o o k i n g 115 F i g u r e 6.9 Test 2A - South S i d e of C o n n e c t i o n F i g u r e 6.10 Test 2A - N o r t h S i d e of C o n n e c t i o n 1 1 7 F i g u r e 6.11 T e s t 2A Southeast Back of Test Specimen L o o k i n g F i g u r e 6.12 Test 2B - F a i l e d Test Specimen L o o k i n g Northwest 119 F i g u r e 6.13 Test 2B - F a i l e d Test Specimen L o o k i n g Southwest 120 F i g u r e 6.14 Test 2B - Back of F a i l e d T est Specimen L o o k i n g Southeast 121 F i g u r e 6.15 Test 2B - Back of F a i l e d T e s t Specimen L o o k i n g N o r t h e a s t 122 F i g u r e 6.16 F r o n t View of F a i l e d T e s t Specimen No.2 123 F i g u r e 6.17 End View of F a i l e d Test Specimen No.2 124 F i g u r e 6.18 Back of F a i l e d T est Specimen No.2 Showing S t r e s s P a t t e r n and B u c k l e d Back of Top F l a n g e F i g u r e 6.19 B u c k l e d Top F l a n g e of F a i l e d Test Specimen No.2 126 F i g u r e 6.20 Test 3A - C o n n e c t i o n P l a t e L o o k i n g Northwest 127 F i g u r e 6.21 Test 3A - Test Specimen L o o k i n g Southwest F i g u r e 6.22 Test 3A - Test Specimen L o o k i n g Southeast 129 F i g u r e 6.23 Test 3A - Test Specimen L o o k i n g N o r t h e a s t 130 F i g u r e 6.24 F r o n t View of Test Specimen No.3 1 3 1 132 F i g u r e 6.26 T e s t 4A - F a i l e d Test Specimen L o o k i n g Northwest 133 F i g u r e 6.27 Test 4A - F a i l e d Test Specimen Looking Southwest 134 F i g u r e 6.28 Test 4A - Back of F a i l e d T est Specimen L o o k i n g Southeast 1 35 F i g u r e 6.29 T e s t 4A - Back N o r t h e a s t of F a i l e d T e s t Specimen L o o k i n g 136 F i g u r e 6.30 F r o n t View of F a i l e d T est Specimen No.4 137 F i g u r e 6.31 End View of F a i l e d T e s t Specimen No.4 1 38 F i g u r e 6.32 B u c k l e d Top Flange of F a i l e d T e s t Specimen No.4 139 F i g u r e 6.33 Test 5A - F a i l e d T est Specimen L o o k i n g Northwest 140 F i g u r e 6 . 3 4 T e s t 5A - F a i l e d Test Specimen L o o k i n g Southwest 141 F i g u r e 6.35 T e s t 5A - Back of F a i l e d T e s t Specimen L o o k i n g S o u t h e a s t 142 F i g u r e 6.36 Test 5A - Back of F a i l e d T e s t Specimen L o o k i n g N o r t h e a s t F i g u r e 6.37 F r o n t View of F a i l e d T e s t Specimen No.5 1 4 4 145 F i g u r e 6 . 3 9 B u c k l e d Top Flange of F a i l e d T e s t Specimen No.5 Chapter 7 DISCUSSION OF TEST RESULTS 7.1 TEST RESULTS REQUIRED FOR ANALYSIS The r e l e v a n t t e s t r e s u l t r e q u i r e d f o r experimental data a n a l y s i s and parameter s t u d i e s was the f a i l u r e load f o r each t e s t to study the ul t i m a t e c a p a c i t y of s i n g l e p l a t e connections. The r e s t of the t e s t r e s u l t s were the e f f e c t s on the t e s t specimens as the loa d was followed up the lo a d i n g curve. These t e s t r e s u l t s w i l l be u s e f u l f o r fu t u r e c o r r e l a t i o n . s t u d i e s to a n a l y t i c a l r e s u l t s . The u l t i m a t e f a i l u r e load f o r each t e s t i s d e f i n e d as the maximum load recorded. The l o a d and t e s t r e s u l t s were recorded i n c r e m e n t a l l y . The maximum loa d recorded i s used to c a l c u l a t e any parameter or r e s u l t which i s d e r i v e d from a load v a l u e . Any dimensional parameter of the sup p o r t i n g g i r d e r or the s i n g l e p l a t e connection i s c a l c u l a t e d using the a c t u a l measured v a l u e s . 7.2 TEST IB, TEST 2A, AND TEST 3A The u l t i m a t e t e s t r e s u l t s of Test 1B, Test 2A, and Test 3A are not in c l u d e d i n the experimental data a n a l y s i s which f o l l o w s . I n c l u d i n g these t e s t r e s u l t s would have changed the o b j e c t i v e s of the experimental a n a l y s i s and would have caused undue b i a s e s i n the r e s u l t s of the parameter s t u d i e s . Test 1B had a connection p l a t e depth to g i r d e r depth (dp^ t/D) r a t i o of 75% which caused the t e s t specimen to 146 147 behave l i k e a r i g i d connection. The r e s u l t s of Test 1B are not s u i t a b l e to be i n c l u d e d i n the parameter s t u d i e s of f l e x i b l e connections because t h i s connection was too r i g i d . However, the r e s u l t s are v a l u a b l e as a reference f o r c o r r e l a t i o n s t u d i e s to future a n a l y t i c a l r e s u l t s . The maximum load r e s u l t of Test 2B i s used i n s t e a d of Test 2A because a higher l o a d i n g was obtained and the specimen reached f a i l u r e . Test 2A d i d not t e s t the specimen to i t s u l t i m a t e f a i l u r e load while Test 2B continued passed where Test 2A was terminated u n t i l the u l t i m a t e f a i l u r e l o a d of the specimen was reached. The t e s t r e s u l t s of Test 2A w i l l be more u s e f u l i n c o r r e l a t i n g the e f f e c t s of the i n i t i a l l o a d i n g on the t e s t specimen. Test 3A had to be stopped before the u l t i m a t e f a i l u r e load c o u l d be a t t a i n e d because c o n t a c t occurred between the t e s t specimen's bottom flange and the l o a d beam. The t e s t r e s u l t s of Test 3A w i l l be u s e f u l f o r the c o r r e l a t i o n of the e f f e c t s d u r i n g the i n i t i a l l o a d i n g on the specimen. These r e s u l t s can give an estimate of the lower bound s o l u t i o n to any parameter study. The t e s t r e s u l t s of Test IB, Test 2A, and Test 3A are i n c l u d e d i n the r e s t of the s e c t i o n s of t h i s chapter f o r completeness of r e s u l t s and f o r f u t u r e r e f e r e n c e . However, they are not i n c l u d e d i n the d i s c u s s i o n of the t e s t r e s u l t a n a l y s i s nor i n the parameter s t u d i e s a n a l y s i s . 1 48 7.3 SHEAR FORCE RESULTS The maximum shear fo r c e f o r each t e s t i s equal to one-half of the ul t i m a t e f a i l u r e l o a d recorded because the s i n g l e p l a t e connection was l o c a t e d at the mid-span of the t e s t specimen's supporting g i r d e r . Measured dimensions and te n s i o n t e s t r e s u l t s f o r each of the t e s t beams are used to evaluate the ul t i m a t e shear s t r e s s , the u l t i m a t e shear f o r c e r e s i s t a n c e , the average shear s t r e s s , and the maximum shear s t r e s s . The f o l l o w i n g s t r e n g t h of m a t e r i a l equations are used to c a l c u l a t e the s t r e s s e s and r e s i s t a n c e : V max 2 max [7. 1] r u l t = . [7. 2] V u l t " T , . t D u l t w [7. 3] r = avg Vmax/ ( tw D ) [7. 4] Tmax V Q / ( I t ) max na x w [7. 5] where D = depth of the t e s t g i r d e r = y i e l d s t r e n g t h of the t e s t g i r d e r I = moment of i n e r t i a about the x - a x i s of the t e s t g i r d e r P = maximum load onto the t e s t specimen max Q = f i r s t moment of area about the n e u t r a l a x i s of na the c r o s s - s e c t i o n of the t e s t g i r d e r fcw = web t h i c k n e s s of the t e s t g i r d e r V max = maximum shear f o r c e V u l t = u l t i m a t e shear f o r c e r e s i s t a n c e r avg = average shear s t r e s s 1 49 T = maximum shear s t r e s s max r u ^ t = u l t i m a t e shear s t r e s s . The r e s u l t i n g c a l c u l a t i o n s are t a b u l a t e d i n Table 7.1 along with the r a t i o s f o r the maximum shear f o r c e to the ulti m a t e shear f o r c e r e s i s t a n c e (V /V ) and for the max' u l t maximum shear s t r e s s to the u l t i m a t e shear s t r e s s ( T m a x / T u l t K T h e V m a x / V u l t r a t i o i s e c 3 u a l t o the r a t i o of the average shear s t r e s s to the u l t i m a t e shear s t r e s s ( T a v g / T u l t K In the Canadian codes f o r e l a s t i c a n a l y s i s and consequently i n design p r a c t i c e , the average shear s t r e s s i s commonly used than the u l t i m a t e shear s t r e s s . Due to t h i s reason, the average shear s t r e s s i s used to r e l a t e the t e s t r e s u l t s caused by the shear f o r c e on the t e s t specimens. Test 1C, Test 2B, Test 4A, and Test 5A provide u l t i m a t e f a i l u r e l o a d r e s u l t s that are a p p l i c a b l e to f l e x i b l e c onnections. The maximum f a i l u r e shear f o r c e (V ) ranges max 3 between 119.0 kN (26.8 kips) and 323.5 kN (72.7 kips) f o r the t e s t specimens while the average shear s t r e s s ( T a v g ) i s between 47.4 MPa (6.88 KSI) and 58.0 MPa (8.41 KSI). Since the t e s t specimens were c o n s t r u c t e d from d i f f e r e n t s i z e s of beams, the t e s t r e s u l t s can be best d e s c r i b e d as r a t i o s to the u l t i m a t e shear f o r c e r e s i s t a n c e or u l t i m a t e shear s t r e s s to allow comparisons between the specimens. The v m a x ^ V u l t or T /T H. r a t i o i s between 26.1% to 34.1%. T h i s r e s u l t avg u l t suggests f a i l u r e of s i n g l e p l a t e connections w i l l occur at a shear f o r c e between 25% and 35% of the u l t i m a t e shear T a b l e 7.1 T E S T 1B V kN 4 5 0 . 4 max k i p s 101 MPa 178 KSI 2 5 . 9 T u l t V . . kN 1 157 u l t k i p s 260 ' a v g M P a 6 9 ' 5 KSI 10.1 T MPa 7 9 . 6 max KSI 11.5 V m a x / V u l t ° ' 3 8 9  = T a v g / T u l t W'ult ° ' 4 4 6 S h e a r F o r c e and S h e a r S t r e s s R e s u l t s TEST 1C 323 .5 72 .7 178 2 5 . 9 1 157 260 4 9 . 9 7.24 57 . 1 8 .29 0 .280 0 .320 TEST 2A 168.4 37 .9 174 25 .3 654. 1 147 4 4 . 9 6.51 51 .3 7.44 0 .257 0.294 T E S T 2B 2 1 3 . 3 4 8 . 0 174 2 5 . 3 6 5 4 . 1 147 5 6 . 9 8 .25 6 4 . 9 9 .42 0 . 3 2 6 0 .373 T E S T 3A 8 5 . 5 19 .2 224 3 2 . 5 4 7 9 . 2 108 4 0 . 0 5 .80 4 5 . 0 6 .53 0 . 178 0.201 T E S T 4A 119.0 2 6 . 8 170 2 4 . 6 3 4 8 . 5 78 .3 5 8 . 0 8.41 6 6 . 7 9 .67 0.341 0 .393 T E S T 5A 127.7 2 8 . 7 182 2 6 . 4 4 8 9 . 8 1 10 47 .4 6.88 5 5 . 0 7 .97 0.261 0 .302 151 f o r c e r e s i s t a n c e o f t h e s u p p o r t i n g g i r d e r . S t a t e d a n o t h e r way, t h e s u p p o r t i n g g i r d e r o f a s i n g l e p l a t e c o n n e c t i o n c a n w i t h s t a n d a l o a d e q u a l t o be tween 50% and 70% o f i t s u l t i m a t e s h e a r f o r c e r e s i s t a n c e . S i n c e t h e t e s t s p e c i m e n s were no t c a p a b l e o f a t t a i n i n g t h e i r u l t i m a t e s h e a r f o r c e r e s i s t a n c e , i t means t h e f a i l u r e c r i t e r i a o f s i n g l e p l a t e c o n n e c t i o n s w i l l i n c l u d e t h e t o r s i o n a l moment a n d / o r b e n d i n g moment e f f e c t s . 7.4 TORSIONAL MOMENT RESULTS The t o r s i o n a l moment a p p l i e d t o t h e c e n t e r l i n e o f t h e t e s t s p e c i m e n g i r d e r web i s c a l c u l a t e d f r o m t h e t o r s i o n a l component o f t h e moment r e s u l t i n g f r o m t h e maximum l o a d a c t i n g w i t h an e c c e n t r i c i t y e q u a l t o t h e d i s t a n c e f r o m t h e s p e c i m e n c e n t e r l i n e t o t h e c e n t e r l i n e o f t h e b o l t s , . The t o r s i o n a l moment e q u a t i o n i s M. = P ,„ x e, x cos/3 [ 7 . 6 ] t max beam where e b e a m = e c c e n t r i c d i s t a n c e b e t w e e n t h e c e n t e r l i n e o f t h e t e s t s p e c i m e n and t h e c e n t e r l i n e o f t h e b o l t s M f c = a p p l i e d t o r s i o n a l moment P max = m a x ^ m u m l o a d o n t o t h e t e s t s p e c i m e n 0 = skew a n g l e o f t h e s i n g l e p l a t e c o n n e c t i o n . T a b l e 7.2 t a b u l a t e s t h e t e s t s p e c i m e n s ' t o r s i o n a l moment r e s u l t s and r e s i s t a n c e s . The u l t i m a t e t o r s i o n a l moment r e s i s t a n c e o f t h e beam i s c a l c u l a t e d by T a b l e 7.2 T o r s i o n a l Moment R e s u l t s 'beam u l t , b e a m M t / T u l t , beam 'pit t o r s f p l t mm i n . kH-m K - f t kN -m K - f t mm i n . mm i n . mm i n . 3 TEST 1B 6 8 . 5 2 .70 61.71 45.51 10.29 7 .59 5 .99 457 .2 18.00 63 .2 2 .49 0 .305 556100 33 .94 T E S T 1C 6 8 . 5 2 .70 44 .32 3 2 . 6 9 10 .29 7 .59 4.31 2 2 8 . 6 9.00 63 .2 2 .49 0 .277 252500 15.41 TEST 2A 63 .5 2 .50 21 .38 15.77 4 .36 3.22 4 .90 203 .2 8 .00 59 .4 2.34 0 .272 194700 1 1 .88 T E S T 2B 6 3 . 5 2 .50 2 7 . 0 9 19.98 4 .36 3.22 6.21 2 0 3 . 2 8 .00 5 9 . 4 2.34 0 .272 194700 1 1 .88 T E S T '3A 6 3 . 5 2 .50 10 .86 8.01 3. 16 2 .33 3. 44 127 .0 5 .00 6 0 . 1 2 .37 0 . 2 3 2 106200 6 .48 T E S T 4A 6 7 . 0 2 .64 13.81 10 .19 1 .62 1.19 8 .53 2 0 3 . 2 8 . 0 0 5 5 . 0 2 .16 0 . 2 7 8 170800 10 .42 T E S T 5A 6 7 . 7 2 .67 1 2.23 9 .02 2 .34 1 .73 5 .22 2 0 3 . 2 8 . 0 0 4 4 . 9 1 .77 0 . 2 8 8 1 18000 7 .20 cn T a b l e 7.2 T o r s i o n a l Moment R e s u l t s ( c o n ' t ) T u l t , p l t M t / T u l t , p l t T u l t M f c / T u l t TEST 1B TEST 1C TEST 2A T E S T 2B T E S T 3A T E S T 4A T E S T 5A kN-m 96 .32 43 .74 33 .72 3 3 . 7 2 18.40 2 9 . 5 9 2 0 . 4 3 K - f t 71 .04 3 2 . 2 6 2 4 . 8 7 2 4 . 8 7 13 .57 2 1 . 8 2 15 .07 0.641 1.013 0 .634 0 .803 0 .590 0 . 4 6 7 0 . 5 9 8 kN-m 106.61 54 .03 38 .08 3 8 . 0 8 2 1 . 5 6 31.21 2 2 . 7 8 K - f t 78 .63 3 9 . 8 5 2 8 . 0 9 2 8 . 0 9 15 .90 2 3 . 0 2 1 6 . 8 0 0 .579 0 .820 0 .562 0.711 0 .504 0 .443 0 . 5 3 7 1 54 T , . , = 2R, X T , . U [7.7] ult,beam beam ult,beam where T u l t beam = u l f c i m a t e t o r s i o n a l moment r e s i s t a n c e of the t e s t g i r d e r ZR, = t o r s i o n a l r e s i s t a n c e constant of the t e s t beam g i r d e r T u l t beam = u l t i m a t e shear s t r e s s of the t e s t g i r d e r . The u l t i m a t e t o r s i o n a l moment r e s i s t a n c e of the beam by i t s e l f i s not capable of c a r r y i n g the a p p l i e d t o r s i o n a l moment. The r e s u l t s show the a p p l i e d t o r s i o n a l moment i s at l e a s t four times greater than the beam's t o r s i o n a l moment r e s i s t a n c e . The t o r s i o n a l moment r e s i s t a n c e of the connection p l a t e i s c a l c u l a t e d and i n c l u d e d in the u l t i m a t e t o r s i o n a l moment r e s i s t a n c e of the t e s t specimen. The f o l l o w i n g equations based on the connection p l a t e geometry and t o r s i o n theory are used: e t o r s " [ ebeam- ( tw/ 2 )] x c o s * [ 7 ' 8 ] I R p l t = a X d p l t x ( e t o r s ) 2 [ 7 ' 9 ] T u l t , p l t " Z R p l t X T u l t , p l t [ 7 - l 0 ] where dp^ t = depth of the connection p l a t e ebeam = e c c e n t r i c d i s t a n c e between the c e n t e r l i n e of the t e s t specimen and the c e n t e r l i n e of the b o l t s e,. = e c c e n t r i c d i s t a n c e between the edge of the t o r s 3 connection p l a t e and the c e n t e r l i n e of the b o l t s 155 T u l t p i t = u l t ^ m a t e t o r s i o n a l moment r e s i s t a n c e of the connection p l a t e t = web t h i c k n e s s of the t e s t g i r d e r w J a = t o r s i o n a l constant which depends the d ^ to e t o r s r a t i o j3 = skew angle of the s i n g l e p l a t e connection ER_1J_ = t o r s i o n a l r e s i s t a n c e constant of the connection p l a t e p i t r u l t p i t = u l t ^ m a t e shear s t r e s s of the connection p l a t e . The y i e l d s t r e n g t h of the connection p l a t e i s assumed to be 300 MPa (43.5 KSI). The t o t a l u l t i m a t e t o r s i o n a l moment r e s i s t a n c e ( T u i t ^ equals the sum of the t o r s i o n a l moment r e s i s t a n c e s of the beam and the connection p l a t e , T u l t = Tult,beam + T u l t , p l t [7.11]. The t e s t r e s u l t s i n d i c a t e the r a t i o of a p p l i e d t o r s i o n a l moment to the u l t i m a t e t o r s i o n a l moment r e s i s t a n c e ( M t / T u l t ) ranges from 44.3% to 82.0%. The higher r a t i o s of 71.1% and 82.0% are a p p l i c a b l e to pe r p e n d i c u l a r (0=0°) connections while the lower r a t i o s of 44.3% and 53.7% de s c r i b e skewed (0*0°) connections. These r e s u l t s suggest that p e r p e n d i c u l a r connections can withstand a higher t o r s i o n a l moment than skewed c o n n e c t i o n s . However, a p r e d i c t i o n of the v a r i a t i o n of the M ^ ^ u l t r a t ^ ° with the skew angle i s not p o s s i b l e . The values of the a p p l i e d t o r s i o n a l moment to the ulti m a t e t o r s i o n a l moment r e s i s t a n c e r a t i o i n d i c a t e that the 156 u l t i m a t e f a i l u r e i s not caused by the t o r s i o n a l moment e f f e c t a c t i n g by i t s e l f . The u l t i m a t e f a i l u r e c r i t e r i a w i l l have to inc l u d e the shear f o r c e and/or bending moment e f f e c t s . T h i s f i n d i n g agrees with the f i n a l statement made in S e c t i o n 7.3. 7.5 BENDING MOMENT RESULTS The bending moment, a p p l i e d at the mid-span of the t e s t specimen where the s i n g l e p l a t e connection was l o c a t e d , i s c a l c u l a t e d from the maximum a p p l i e d l o a d and from the bending component of the moment r e s u l t i n g from the e c c e n t r i c l o a d . The equation that i s used i s M. = (P L, /4) + (P x e K x s i n 0 ) [7.12] b max beam max beam K where ebeam = e c c e n t r ^ c d i s t a n c e between the c e n t e r l i n e of the t e s t specimen and the c e n t e r l i n e of the b o l t s Lbeam = ^ e n 9 t ^ 1 °^ t n e t e s t specimen = 2438.4 mm = 96.0 i n . M b = a p p l i e d bending moment to the mid-span of the t e s t g i r d e r P = maximum loa d onto the t e s t specimen max (i = skew angle of the s i n g l e p l a t e c o n n e c t i o n . The l a t t e r part of equation 7.12 i s a p p l i c a b l e f o r t e s t specimens with a connection angle of 0*0°. Any bending moment r e s i s t a n c e of the connection p l a t e i s assumed to be minimal and w i l l be n e g l e c t e d . T h e r e f o r e , the t e s t g i r d e r i s the only p o r t i o n of the t e s t specimen that p r o v i d e s 157 bending moment r e s i s t a n c e . The a p p l i e d bending moment r e s u l t s and the bending moment r e s i s t a n c e s are t a b u l a t e d in Table 7.3. The r a t i o of the a p p l i e d bending moment to the bending moment r e s i s t a n c e of the t e s t specimen (M^/M^) ranges between 43.0%. and 121.7%. The higher r a t i o s of 85.9% and 121.7% are obtained from the skewed connection angle specimens. The pe r p e n d i c u l a r connection specimens have the lower range r a t i o s of 43.0% and 66.3%. These r e s u l t s i n d i c a t e that skewed connection specimens can withstand a higher bending moment than the p e r p e n d i c u l a r connection specimens. The values obtained f o r the a p p l i e d bending moment to bending moment . r e s i s t a n c e r a t i o i n d i c a t e that the ult i m a t e f a i l u r e of the t e s t specimens are not caused by the bending moment a c t i n g by i t s e l f . The l e n g t h of the t e s t specimens was determined such that the bending moment would not be the major cause of f a i l u r e . The M^/Mj. r a t i o r e s u l t s i n d i c a t e that t h i s o b j e c t i v e i s achieved i n a l l cases except Test 4A. However, Test 4A does not present any problems i n the a n a l y s i s because the specimen was f a b r i c a t e d from the beam with the lowest bending moment r e s i s t a n c e of the f i v e beams t e s t e d and there i s probably some bending moment r e s i s t a n c e present i n the skewed connection p l a t e . The ultimate f a i l u r e c r i t e r i a w i l l have to i n c l u d e the shear f o r c e and/or t o r s i o n a l moment e f f e c t s as set out by the t e s t o b j e c t i v e s and confirmed by the bending moment r e s u l t s . T h i s f i n d i n g Table 7.3 Bending Moment Re s u l t s TEST 1B TEST IC TEST 2A TEST 2B TEST 3A TEST 4A TEST 5A M, kN-m 549.2 394.4 205.3 260.1 104.3 153.1 167.9 b K - f t 405.0 290.9 151.4 191.8 76.9 112.9 123.9 M f kN-m 917.6 917.6 329.1 329.1 219.3 125.8 195.6 K - f t 676.8 676.8 289.2 289.2 161.7 92.8 144.3 Mb/Mr 0.598 0.430 0.524 0.663 0.476 1.217 0.859 oo 159 i s compatible with the f i n a l statements made i n S e c t i o n 7.3 and S e c t i o n 7.4. 7.6 RATIO INTERACTION RESULTS From the analyses of t e s t r e s u l t s d i s c u s s e d i n the previous three s e c t i o n s , i t can be concluded that there are i n t e r a c t i o n s amongst the r a t i o s of maximum shear f o r c e to ulti m a t e shear f o r c e r e s i s t a n c e (V /V , ), a p p l i e d t o r s i o n a l moment to u l t i m a t e t o r s i o n a l moment r e s i s t a n c e (M t/T u^ f c), and a p p l i e d bending moment to u l t i m a t e bending moment r e s i s t a n c e (M^/M^) f o r each of the t e s t specimens. The r a t i o i n t e r a c t i o n s are i n v e s t i g a t e d using the square root of the sum of the squares method. Table 7.4 t a b u l a t e s the r a t i o and r a t i o i n t e r a c t i o n r e s u l t s . The r a t i o s and r a t i o i n t e r a c t i o n s that are examined i n c l u d e : 51 " V m a x / V u l t [ 7 ' 1 3 ] 62 = V Tult [ 7 ' 1 4 ] 8 3 = Mb/Mr [?.15] = {S}2 + 5 2 2 ) ° ' 5 [7.16] r?2 = ( 0 ] 2 + 5 3 2 ) 0 , 5 [7.17] rj 3 = ( 5 2 2 + 5 3 2 ) 0 , 5 [7.18] rj 4 = ( 5 ^ + 5 2 2 + 6 3 2 ) 0 , 5 [7.19] where = a p p l i e d bending moment at the mid-span of the t e s t specimen 160 = u l t i m a t e bending moment r e s i s t a n c e of the t e s t specimen Mfc = a p p l i e d t o r s i o n a l moment at the mid-span of the t e s t specimen T ,. = ul t i m a t e t o r s i o n a l moment r e s i s t a n c e of the t e s t u l t spec imen V m = maximum a p p l i e d shear f o r c e max V ,. = ul t i m a t e shear f o r c e r e s i s t a n c e of the t e s t u l t specimen 5 1 = shear f o r c e r a t i o 62 = t o r s i o n a l moment r a t i o 5g = bending moment r a t i o 771 = shear fo r c e r a t i o and t o r s i o n a l moment r a t i o i n t e r a c t i o n T J 2 = shear f o r c e r a t i o and bending moment r a t i o i n t e r a c t i o n = t o r s i o n a l moment r a t i o and bending moment r a t i o i n t e r a c t i o n 7 ] ^ = " t h r e e - r a t i o i n t e r a c t i o n " which combines the shear f o r c e r a t i o , the t o r s i o n a l moment r a t i o , and the bending moment r a t i o . The shear f o r c e r a t i o and t o r s i o n a l moment r a t i o i n t e r a c t i o n ( r ^ ) provide r e s u l t s which are between 55.9% and 86.7%. The high end of t h i s range corresponds with the two per p e n d i c u l a r (0=0°) t e s t specimens which have r a t i o i n t e r a c t i o n values of 78.2% and 86.7%. The two skewed t e s t specimens have r e s u l t s that tend toward the lower end of T a b l e 7.4 R a t i o and R a t i o I n t e r a c t i o n R e s u l t s TEST IB TEST 1C TEST 2A TEST 2B T E S T 3A T E S T 4A T E S T 5A 5 1 max' u l t 0 .389 0 .280 0 .257 0 . 3 2 6 0. 178 0.341 0 . 2 6 0 6 2 - V T ult 0.579 0 .820 0 .562 0.711 0 . 5 0 4 0 .443 0 . 5 3 7 6 3 " M b / M r 0 .598 0 .430 0 .524 0 .663 0 . 4 7 6 1.217 0 . 8 5 9 *1 = [ S , 2 + 8 2 2 ] 0 ' 5 0.698 0 .867 0 .618 0 .782 0 .534 0 . 5 5 9 0 . 5 9 7 ^2 - [S, 2 + 8 3 2 ] 0 - 5 0.714 0 .513 0 .583 0 . 7 3 9 0 .508 1 .264 0 . 8 9 7 ^3 = [ 5 2 2 + 6 3 2 ] 0 - 5 0.833 0 .926 0 .768 0 .973 0 .693 1 .295 1.013 *4 = [ 6 1 2 + 5 2 2 + 8 3 2 ] 0 - 5 0 .919 0 .967 0 .810 1 .026 0 . 7 1 5 1 . 339 1 . 046 1 62 t h i s r a t i o i n t e r a c t i o n range with values of 55.9% and 59.7%. The t e s t r e s u l t s suggest that f o r the rj 1 r a t i o i n t e r a c t i o n , f l e x i b l e p e r p e n d i c u l a r connection w i l l give higher r e s u l t s than f l e x i b l e skewed connections namely 75% to 90% as opposed to 50% to 65%. The shear f o r c e r a t i o and bending moment r a t i o i n t e r a c t i o n (T^) suggests an o p p o s i t e e f f e c t on the t e s t specimens i n regard to the skew angle of the s i n g l e p l a t e connection as the T J 1 r a t i o i n t e r a c t i o n e f f e c t . The r e s u l t s of the r a t i o i n t e r a c t i o n are between 51.3% and 126.4%. Pe r p e n d i c u l a r specimens possess the low range r e s u l t s of 51.3% and 73.9% while the skewed specimens have the high range r e s u l t s of 89.7% and 126.4%. These r e s u l t s suggest that p e r p e n d i c u l a r connections w i l l be between 50% and 75% while skewed connections w i l l be g r e a t e r than 85% f o r the r a t i o i n t e r a c t i o n . The r e s u l t s of the t o r s i o n a l moment r a t i o and bending moment r a t i o i n t e r a c t i o n (rj^) are between 92.6% and 129.5%. The t o r s i o n a l moment r a t i o e f f e c t which a f f e c t s p e r p e n d i c u l a r connections more and the bending moment r a t i o e f f e c t which a f f e c t s skewed connections more are almost balanced with the r a t i o i n t e r a c t i o n of these two i n d i v i d u a l r a t i o s . The TJ^ r a t i o i n t e r a c t i o n r e s u l t s are q u i t e c l o s e to 100% that i t i s p o s s i b l e t o use t h i s r a t i o i n t e r a c t i o n as a p r e d i c t i o n of f a i l u r e . The t h r e e - r a t i o i n t e r a c t i o n (TJ^) which combines the shear f o r c e r a t i o (V /V , . ), the t o r s i o n a l moment r a t i o max u l t 163 ( M t / T u ^ t ) , and t h e b e n d i n g moment r a t i o (M^/M^) g i v e s r e s u l t s r a n g i n g be tween 9 6 . 7 % and 1 3 3 . 9 % . G e n e r a l l y , t h e T ? 4 r a t i o i n t e r a c t i o n g i v e s r e s u l t s o f j u s t o v e r 100% f o r t e s t s p e c i m e n s w h i c h have r e a c h e d t h e i r u l t i m a t e f a i l u r e l o a d . T e s t 1C w o u l d have p r o v i d e d a s i m i l a r r e s u l t i f t h e w e l d d i d no t c r a c k . Of t h e t h r e e i n d i v i d u a l r a t i o s ( 5 ^ 6 2 , and 8^) and t h e f o u r r a t i o i n t e r a c t i o n s ( T ^ , T J 2 , V^, and i 7 4 ) , t h e t h r e e - r a t i o i n t e r a c t i o n ( T J 4 > p r o v i d e s t h e b e s t p r e d i c t i o n o f f a i l u r e and t h e u l t i m a t e f a i l u r e l o a d f o r s i n g l e p l a t e c o n n e c t i o n s . The c r i t e r i a o f [ ( V m a x / V u l t ) 2 + ( M t / T u l t ) 2 + <VMr)2] ° ' 5 * 1 ' 0 0 [ 7 ' 2 0 ] w i l l p r o v i d e a s a f e s i n g l e p l a t e c o n n e c t i o n c o n n e c t e d t o a g i r d e r web i n w h i c h t h e c o n n e c t i o n i s c o n s i d e r e d a s f l e x i b l e . The V and M r v a l u e s a r e c a l c u l a t e d f o r t h e g i r d e r a l o n e w h i l e t h e T i s c a l c u l a t e d f o r t h e g i r d e r and t h e s i n g l e p l a t e . T h i s e q u a t i o n w i l l e n s u r e t h a t a l l i n d i v i d u a l r a t i o s and a l l t w o - r a t i o i n t e r a c t i o n s w i l l be s a f e and be l e s s t h a n 1.00. H o w e v e r , f o l l o w i n g t h e C a n a d i a n c o d e p h i l o s o p h y o f l i m i t s t a t e s d e s i g n , a 0=0.90 p e r f o r m a n c e f a c t o r s h o u l d be a p p l i e d t o e a c h o f t h e u l t i m a t e r e s i s t a n c e s . The f a i l u r e c r i t e r i a o r d e s i g n e q u a t i o n f o r s i n g l e p l a t e c o n n e c t i o n o f beams t o g i r d e r webs becomes [ ( V m a x ^ V u l t ) 2 + ( V * T u l t ) 2 + <V*Mr)2] ° ' 5 ^ - 0 0 [ 7 ' 2 1 ] -Chapter 8 PARAMETER STUDIES 8.1 INTRODUCTION OF THE PARAMETER STUDIES Vario u s geometric parameters of the s i n g l e p l a t e connections are s t u d i e d to determine i f the u l t i m a t e f a i l u r e of these connections can be r e l a t e d to one or more of these parameters. G e n e r a l i z e d trends of how the u l t i m a t e f a i l u r e w i l l behave as i t r e l a t e s to each parameter w i l l be the main o b j e c t i v e of t h i s parameter study which d e a l s with the experimental a n a l y s i s r e s u l t s . The parameters are expressed as dimensionless r a t i o s . The parameters i n c l u d e the r a t i o s f o r the connection p l a t e depth to the g i r d e r depth (dp-^/D), the depth from the top of the g i r d e r top flan g e to the bottom of the connection p l a t e to the g i r d e r depth ( ^ t 0 p / D K the g i r d e r depth to the th i c k n e s s of the g i r d e r web (D/t w>, the c l e a r depth of the g i r d e r web between the f l a n g e s to the t h i c k n e s s of the g i r d e r web ( h w / t w ) , the width of the g i r d e r f l a n g e to the th i c k n e s s of the g i r d e r f l a n g e ( b f / t ^ ) , and the t h i c k n e s s of the connection p l a t e to the t h i c k n e s s of the g i r d e r web ^/t^) . T ^ e i n f l u e n c e o f t h e skew angle (0) w i l l a l s o be s t u d i e d . The valu e s of the parameters f o r the four t e s t specimens of the experimental a n a l y s i s that w i l l be s t u d i e d are t a b u l a t e d i n Table 8.1. The parameters that w i l l be s t u d i e d are r e l a t e d to the r a t i o s and r a t i o i n t e r a c t i o n s d i s c u s s e d i n S e c t i o n 7.6. I t was found i n the previous chapter that these r a t i o s and 164 165 Table 8 .1 Test Spec imen Parameters TEST 1C TEST 2B TEST 4A TEST 51 dP i t / D 0.377 0.450 0.584 0.505 d t o p / D 0.440 0.506 0.657 0.569 "A. 56.6 54.5 59.0 60.0 h / t ( h w = D-2t f) 53.8 51 .8 56.2 57.4 b f / t f 1 5.26 17.52 15.49 16.21 1 .49 1 .53 2.15 1 .90 0 Angle 0° 0° 30° 45° r a t i o i n t e r a c t i o n s were the best b a s i s to d i s c u s s the ul t i m a t e f a i l u r e of the t e s t specimens and the s i n g l e p l a t e c o nnections. The r a t i o s and r a t i o i n t e r a c t i o n s are the shear f o r c e r a t i o ( 5 ^ , the t o r s i o n a l moment r a t i o (§2), the bending moment r a t i o (63)» the shear f o r c e r a t i o and t o r s i o n a l moment r a t i o i n t e r a c t i o n ( T ^ ) , the shear f o r c e r a t i o and bending moment r a t i o i n t e r a c t i o n ^2^' fc^e t o r s i o n a l moment r a t i o and bending moment r a t i o i n t e r a c t i o n ( T J 3 ) , and the t h r e e - r a t i o i n t e r a c t i o n ( i ? 4 ) . 8.2 d p l t / D PARAMETER The <3p^t/D parameter i s chosen because i t d e s c r i b e s both the connection p l a t e and the suppo r t i n g g i r d e r used to f a b r i c a t e the s i n g l e p l a t e c o n n e c t i o n . The parameter can 1 66 a l s o be used to determine the f l e x i b i l i t y of the connection, the connection becomes more r i g i d as the clp-^/D r a t i o i s inc r e a s e d . The four t e s t specimens are considered to be q u i t e f l e x i b l e and t h e i r dp-^/D r a t i o s are between 0.377 and 0.584. The experimental a n a l y s i s r e s u l t s f o r the r a t i o s and r a t i o i n t e r a c t i o n s are p l o t t e d r e l a t i v e to the ^ p i t ^ 0 parameter i n F i g u r e 8 . 1 . The f o l l o w i n g g e n e r a l i z a t i o n s can be made about the r a t i o s and the r a t i o i n t e r a c t i o n s versus the d p i t /D parameter over the range of the experimental a n a l y s i s r e s u l t s . The shear f o r c e r a t i o can be considered to be a constant at 30% and i s smaller than a l l the other r a t i o s and r a t i o i n t e r a c t i o n s . The other s i x r e l a t i o n s and i n t e r a c t i o n s are coupled: 6 2 with , 6^ with T J 2 , and T J ^ with T)^. Each p a i r of coupled curves have the same shape and are separated by approximately the same v e r t i c a l d i s t a n c e on the graph. The second r a t i o of each couple can be d e r i v e d by adding the shear f o r c e r a t i o e f f e c t to the f i r s t r a t i o of each p a i r . The c o u p l i n g e f f e c t a l s o confirms the near constancy of the shear f o r c e r a t i o r e s u l t s . Trends that are observed over the range of the dp-^/D P a r a m e t e r t e s t e d i n c l u d e the 5 2 and curves d e c r e a s i n g g r a d u a l l y as dp-^/D i s i n c r e a s e d while the 5^ and T J 2 curves i n c r e a s e as dp^fc/D i s i n c r e a s e d . The T J^ and T J^ curves are n e a r l y constant u n t i l dp^ t/D=0.50, then they increase s h a r p l y . The T? 4 versus ^^^/D curve encompasses a l l the other p l o t t e d c u r v e s . 167 8.3 i /D PARAMETER top  The d t Qp/D parameter i s co n s i d e r e d to be an important parameter because i t i s not always necessary or p o s s i b l e to l o c a t e the s i n g l e connection p l a t e near the top flan g e of the supporting g i r d e r . L o c a t i n g the s i n g l e p l a t e f u r t h e r away from the top flange w i l l p o s s i b l y reduce the t o r s i o n a l r i g i d i t y of the beam-to-girder web co n n e c t i o n . However, the v a r i a t i o n of t h i s parameter i s not one of the o b j e c t i v e s i n v e s t i g a t e d in t h i s t h e s i s . The ^ t 0 p / D v a l u e s of the t e s t specimens range between 0.440 and 0.657. The values are an a d d i t i o n of 0.056 to 0.073 to t h e i r r e s p e c t i v e t e s t specimen's dp^fc/D va l u e s . These a d d i t i o n s are considered to be constant and minimal. P l o t s of the experimental a n a l y s i s r e s u l t s f o r the r a t i o s and r a t i o i n t e r a c t i o n s r e l a t i v e to the d, /D top parameter are drawn i n Fi g u r e 8.2. The curves were v i r t u a l l y i d e n t i c a l to t h e i r r e s p e c t i v e dp^/D curves. A l l the g e n e r a l i z a t i o n s that were d i s c u s s e d about the r a t i o and r a t i o i n t e r a c t i o n curves i n S e c t i o n 8.2 are s t i l l a p p l i c a b l e with the d t Qp/D parameter. The only exception i s the T J ^ A N C * ??4 curves are ne a r l y constant u n t i l d t Qp/D=0.57 before they sharply i n c r e a s e . P l o t s of the ^ t o p ^ 0 P a r a m e t e r w i l l p o s s i b l y be q u i t e d i f f e r e n t from the p l o t s of the <3pi t/ D parameter when the v a r i a t i o n of the ^ t 0 p / D parameter can be stud i e d i n the f u t u r e . 168 8.4 D/t PARAMETER w The °/t w parameter i s chosen because i t i s capable of d e s c r i b i n g the supporting g i r d e r ' s shear c a p a c i t y and f l e x i b i l i t y . F i g u r e 8.3 shows p l o t s of the experimental a n a l y s i s r e s u l t s f o r the r a t i o s and r a t i o i n t e r a c t i o n s r e l a t i v e to the D/t parameter. The values of the D/t w w r a t i o f o r the t e s t e d specimens range between 54.5 and 60.0. The curve f o r the shear f o r c e r a t i o ( 5 ^ i s f a i r l y constant over t h i s D / t w range while the other s i x curves are coupled as they were f o r the p r e v i o u s l y d i s c u s s e d parameters. G e n e r a l i z e d c o n c l u s i o n s are harder to formulate from the graph because of the v a r i a b l e shapes of the curves. A l s o , the p e r p e n d i c u l a r connections have low D A W r a t i o s while the skewed connections have higher D / t w r a t i o s . J u s t based on the experimental a n a l y s i s r e s u l t s , the t o r s i o n a l moment r a t i o ( 6 2 ) curve i s higher at low D / t w values and lower at high D / t w . The bending moment r a t i o (5^) curve i s lower at low D / t w and higher at high D / t w v a l u e s . The T J 4 curve s t i l l encompasses a l l the t e s t res.ults curves f o r the other r a t i o s and r a t i o i n t e r a t i o n s . 8.5 h / t PARAMETER w w  The h / t w parameter i s chosen because i t i s a l s o capable of d e s c r i b i n g the suppo r t i n g g i r d e r ' s shear c a p a c i t y and f l e x i b i l i t y . The h / t parameter i s i n v e s t i g a t e d i n a d d i t i o n to the D/t parameter because the shear c a p a c i t y of 169 b u i l t - u p g i r d e r s are d e s c r i b e d by the c l e a r depth of the g i r d e r web between the f l a n g e s ( h w ) rather than the t o t a l g i r d e r depth (D). However, the t e s t specimens were manufactured from r o l l e d shapes which allow the use of the t o t a l g i r d e r depth to d e s c r i b e the shear c a p a c i t y . The h ft parameter w i l l be more important than the D/t W W w parameter when longer spans and deeper g i r d e r s are r e q u i r e d in a c t u a l a p p l i c a t i o n s . The curves of the experimental a n a l y s i s r a t i o and r a t i o i n t e r a c t i o n r e s u l t s r e l a t i v e to the h / t parameter are W W p l o t t e d i n F i g u r e 8.4. The h w / f c w r a t i o of the t e s t specimens ranges between 51.8 and 57.4. These values d i f f e r from t h e i r r e s p e c t i v e t e s t specimen's D / t w values by only 2.6 to 2.8. The curves are v i r t u a l l y i d e n t i c a l to t h e i r r e s p e c t i v e D / t w curves r e s u l t i n g i n the same f i n d i n g s as those d i s c u s s e d i n S e c t i o n 8.4. 8.6 b f / t f PARAMETER The b f / t f parameter i s chosen because there were t o r s i o n a l moment e f f e c t s and b u c k l i n g o c c u r r i n g on the top flange of the t e s t g i r d e r s i n the v i c i n i t y of the connection p l a t e . The curves of the experimental a n a l y s i s r e s u l t s f o r the r a t i o s and r a t i o i n t e r a c t i o n s are p l o t t e d r e l a t i v e to the b f A f parameter i n F i g u r e 8.5. The t e s t specimens have b ^ / t j T values ranging between 15.26 and 17.52. The constancy of the 5, curve and the c o u p l i n g of the other s i x curves are s t i l l maintained by t h i s parameter. The 1 70 r j 4 t h r e e - r a t i o i n t e r a c t i o n curve encompasses a l l the other curves for the b ^ A f parameter. The experimental a n a l y s i s r e s u l t s of Test 4A cause high s p i k e s to occur i n the p l o t t e d curves which makes g e n e r a l i z a t i o n s f o r the s i n g l e p l a t e connection behaviour r e l a t i v e to the b^/t^ parameter very d i f f i c u l t . 8.7 t p l t / t w PARAMETER The tpi^/ty parameter i s s t u d i e d because i t r e l a t e s the t h i c k n e s s of the connection p l a t e to the web t h i c k n e s s of the supporting g i r d e r . The range of the t p i t / t w parameter f o r the t e s t specimens i s between 1.49 and 2.15. F i g u r e 8.6 shows the p l o t s of the curves f o r the experimental a n a l y s i s r e s u l t s f o r the r a t i o s and r a t i o i n t e r a c t i o n s r e l a t i v e to the t p ^ t / t w parameter. The constancy of the 5, r a t i o curve i s s t i l l apparent as are the c o u p l i n g of the other s i x curves. D e f i n i t e g e n e r a l i z e d trends can be observed even though the t e s t specimens of the p e r p e n d i c u l a r connections are at the lower end of the t p ^ / t w range and the specimens of the skewed connections are at the higher end. The r a t i o values of the 8 2 and T J, curves are high at the low end of the tpifc/ty range and g r a d u a l l y decrease as the tpit' /' tw r a t i o i s i n c r e a s e d . The 6^ and 7j2 curves s t a r t at small r a t i o values at the low end of the parameter and g r a d u a l l y increase as the t p i _ T A W r a t i o i s i n c r e a s e d . The and T J 4 i n t e r a c t i o n s are reasonably constant u n t i l t p i t / ' t w = 1 " 9 ^ ' then they g r a d u a l l y i n c r e a s e with i n c r e a s i n g 171 t , . / t r a t i o s . The -n. r a t i o i n t e r a c t i o n curve s t i l l p i t w '4 envelopes a l l the other experimental a n a l y s i s r a t i o and r a t i o i n t e r a c t i o n r e s u l t curves. 8.8 fl ANGLE PARAMETER The /3 angle parameter i s chosen because the skewed connection t e s t specimens were i n v e s t i g a t e d as an o b j e c t i v e of t h i s t h e s i s . The two-bolt connection experimental a n a l y s i s r e s u l t curves are p l o t t e d r e l a t i v e to the 0 angle of the connection p l a t e i n F i g u r e 8.7. I t i s d i f f i c u l t to determine trends from the p l o t s because there are only three p o i n t s and the /3=30° r e s u l t s of Test 4A cause sharp spikes in the curves. L i k e the other parameters, the curve of the 5 1 r a t i o i s constant at 30% and the other s i x curves s t i l l show c o u p l i n g . The curve of the . r?4 r a t i o i n t e r a c t i o n envelopes a l l the other curves. 8.9 PARAMETER STUDIES CONCLUSIONS I t would have been best to do the parameter s t u d i e s a f t e r the a n a l y t i c a l a n a l y s i s because there w i l l be more r e s u l t s to make the trends of the curves more i d e n t i f i a b l e . However with only the r e s u l t s of the experimental a n a l y s i s , d e f i n i t e trends of the curves are n o t i c e a b l e that h o p e f u l l y w i l l s t i l l be a p p l i c a b l e when a d d i t i o n a l a n a l y t i c a l r e s u l t s become a v a i l a b l e . In g e n e r a l , a l l the parameters that are st u d i e d show the f o l l o w i n g trends about the r a t i o s and r a t i o i n t e r a c t i o n s 172 when the r a t i o s and r a t i o i n t e r a c t i o n s are p l o t t e d r e l a t i v e to each of the parameters. The shear f o r c e r a t i o ( 5 ^ remains r e l a t i v e l y constant at around 30%. Coupling of the other s i x r a t i o s and r a t i o i n t e r a c t i o n s occurs: the t o r s i o n a l moment r a t i o (62) with the shear f o r c e r a t i o and t o r s i o n a l moment r a t i o i n t e r a c t i o n ( T ^ ) , the bending moment r a t i o (Sg) with the shear f o r c e r a t i o and bending moment r a t i o i n t e r a c t i o n ( T ^ ) , and the t o r s i o n a l moment r a t i o and bending moment r a t i o i n t e r a c t i o n (TJ^) with the t h r e e - r a t i o i n t e r a c t i o n (17^) . The l a t t e r r a t i o i n each of the coupled p a i r s i n c l u d e s the shear f o r c e r a t i o e f f e c t and i s the higher r e s u l t . The T?4. r a t i o i n t e r a c t i o n curve encompasses a l l the other r a t i o curves. The more meaningful trends occur with parameters which deals with one aspect of the s i n g l e c o n n e c t i o n p l a t e and one aspect of the supporting g i r d e r r a t h e r than j u s t d e a l i n g with an i n d i v i d u a l p a r t of the c o n n e c t i o n . The more u s e f u l parameters are 3p l t/D, ^ t o p ^ 0 ' a n d t p l t / / t w " T h e f ° H ° w i n 9 trends are observed i n the range of these parameters f o r the t e s t specimens i n v e s t i g a t e d . The 62 r a t i o and T J 1 r a t i o i n t e r a c t i o n decrease g r a d u a l l y as the parameter i s increased. The 8^ r a t i o and T?2 r a t i o i n t e r a c t i o n i n c r e a s e as the parameter i s incre a s e d . The T?^ and rj^ r a t i o i n t e r a c t i o n s are f a i r l y constant up to a c e r t a i n parameter value and then they i n c r e a s e as the parameter i s i n c r e a s e d . The dp^ t/D parameter w i l l be a good i n d i c a t o r i f the standard d i s t a n c e from the top of the g i r d e r to the center 173 of the f i r s t b o l t i s always the arrangement s i t u a t i o n f o r the s i n g l e p l a t e c o n nections. However, t h i s arrangement w i l l be very s t r i n g e n t and not always p o s s i b l e . Then the d t Qp/D parameter or a combination of the dp^fc/D and ^ t o p ^ 0 parameters w i l l be r e q u i r e d to d e s c r i b e the co n n e c t i o n . The D / t w , h / t , and b f / t f parameters d e a l with the supporting g i r d e r only. No aspect of the connection p l a t e i s used. The r e s u l t i n g parameters curves are very d i f f i c u l t to i n t e r p r e t because they have s h a r p l y r i s i n g and f a l l i n g p o r t i o n s i n each of the cur v e s . No g e n e r a l i z e d i n t e r p r e t a t i o n can be determined f o r the curves of the 0 angle parameter. One p o s s i b l e reason i s that the angle was al r e a d y accounted f o r i n the c a l c u l a t i o n s of the i n d i v i d u a l r a t i o s . "The.angle i s used to c a l c u l a t e the a p p l i e d t o r s i o n a l moment, the t o r s i o n a l moment r e s i s t a n c e , and the a p p l i e d bending moment. The r e s u l t s of the parameter study support the r e s u l t s of the experimental a n a l y s i s . The t h r e e - r a t i o i n t e r a c t i o n w i l l be a good design formula to check the u l t i m a t e c a p a c i t y of s i n g l e p l a t e connections s i n c e i t i s the enveloping curve of a l l the parametric r e s u l t s . The shear f o r c e r a t i o r e s u l t suggests that a quick r u l e of thumb can be the maximum shear f o r c e that the s i n g l e p l a t e connection can withstand must be l e s s than 30% of the u l t i m a t e shear r e s i s t a n c e of the supporting g i r d e r . 174 R a t i o s and R a t i o I n t e r a c t i o n s v s . d /D Parameter p i t o-ZS 0.+o 0.4-5 0-SO o.SS 0.60 dpn-/D F i g u r e 8.1 Graph of R a t i o s and R a t i o I n t e r a c t i o n s v s . d l4./D Parameter 175 R a t i o s and R a t i o I n t e r a c t i o n s v s . d /D Parameter t o p 0.4-5 o.so o.ss ado 0.65" F i g u r e 8.2 Graph of R a t i o s and R a t i o I n t e r a c t i o n s v s . d /D Parameter 176 177 R a t i o s and R a t i o I n t e r a c t i o n s v s . h / t Parameter w w 3*. r+ ss -S4 ^ 7 F i g u r e 8.4 Graph of R a t i o s and R a t i o I n t e r a c t i o n s v s . h / t Parameter w w 178 F i g u r e 8.5 Graph of R a t i o s and R a t i o I n t e r a c t i o n s v s . bf/tf Parameter 1 7 9 R a t i o s and R a t i o I n t e r a c t i o n s v s . t / t Parameter p i t w F i g u r e 8.6 Graph of R a t i o s and R a t i o I n t e r a c t i o n s vs, t . . / t Parameter p i t w 180 R a t i o s and R a t i o I n t e r a c t i o n s v s . /3 Angle Parameter 0" i o° Z o ° 3 o ° 4 - 0 0 F i g u r e 8.7 Graph of R a t i o s and 0 Angle Parameter R a t i o I n t e r a c t i o n s v s . Chapter 9 CONCLUSIONS The u l t i m a t e c a p a c i t y of s i n g l e p l a t e c o n n e c t i o n s f o r s t e e l beams s u p p o r t e d by I-shaped g i r d e r s and a t t a c h e d t o the web of the g i r d e r were e x p e r i m e n t a l l y i n v e s t i g a t e d . Two major c o n c l u s i o n s a r e found from the experiments and the e x p e r i m e n t a l a n a l y s i s . The f i r s t c o n c l u s i o n i s the s u p p o r t i n g g i r d e r behaves f l e x i b l y as ex p e c t e d and not r i g i d l y as r e q u i r e d by p a s t r e s e a r c h and d e s i g n methods when the u l t i m a t e c a p a c i t y of the s i n g l e p l a t e c o n n e c t i o n i s reached. The second c o n c l u s i o n r e s u l t s i n a d e s i g n f o r m u l a t h a t can form the b a s i s of a d e s i g n procedure f o r s i n g l e p l a t e c o n n e c t i o n s . S i n g l e p l a t e c o n n e c t i o n s w i t h a c o n n e c t i o n p l a t e depth t o s u p p o r t i n g g i r d e r depth ( 3 p l t / D ) of l e s s than 60% a r e found t o behave f l e x i b l y as t h e i r u l t i m a t e c a p a c i t y i s approached. V a r i o u s r e g i o n s of the s u p p o r t i n g g i r d e r d i s p l a y f l e x i b l e b e h a v i o u r and a r e o v e r s t r e s s e d when the c o n n e c t i o n i s l o a d e d near i t s u l t i m a t e f a i l u r e l o a d . The top f l a n g e of the s u p p o r t i n g g i r d e r shows the e f f e c t s of the a p p l i e d t o r s i o n a l moment. I f the d p i t / D r a t i o i s l e s s than 40%, the a p p l i e d t o r s i o n a l moment e f f e c t s w i l l cause the web of the s u p p o r t i n g g i r d e r t o b u c k l e j u s t below the c o n n e c t i o n p l a t e l o c a t i o n . The back edge of the t o p f l a n g e of the s u p p o r t i n g g i r d e r where the c o n n e c t i o n p l a t e i s l o c a t e d , b u c k l e s due t o the combined t o r s i o n a l moment and f l e x u r a l bending e f f e c t s . J u s t b e f o r e the u l t i m a t e f a i l u r e l o a d i s 1 8 1 1 82 reached, the f l e x u r a l bending e f f e c t becomes very n o t i c e a b l e . T h i s e f f e c t combines with the shear and t o r s i o n a l e f f e c t s leads to p l a s t i c y i e l d i n g of the whole supporting g i r d e r then u l t i m a t e f a i l u r e . The experimental a n a l y s i s of the t h r e e - r a t i o i n t e r a c t i o n and the parameter s t u d i e s r e v e a l a design formula f o r s i n g l e p l a t e connections j o i n i n g beams to g i r d e r webs that can form the b a s i s of a design procedure. The formula i s developed from s i n g l e p l a t e connections with the p l a t e attached to the web of an I-shaped supporting g i r d e r at the g i r d e r ' s mid-span. The design formula i s [ ( V m a x / * V u l t ) 2 + (V* Tult ) 2 + <V*Mr)2] ° ' 5 ^ - 0 0 [ 9 ' 1 ] ' T h i s formula accounts f o r v a r i o u s aspects of the connection p l a t e and the supporting g i r d e r to c a l c u l a t e ' each of i t s v a r i a b l e s thus a c h i e v i n g the o b j e c t i v e s of t h i s t h e s i s . The skew angle of the s i n g l e p l a t e connection i s i n c o r p o r a t e d i n t o the equations f o r these v a r i a b l e s . An important aspect of t h i s design formula i s that and M f are based on the supporting g i r d e r ' s r e s i s t a n c e alone while T u ^ t i s based on the r e s i s t a n c e s of the connection p l a t e and the supporting g i r d e r t o g e t h e r . A design procedure can be developed from equation 9.1 depending on the amount of shear f o r c e , t o r s i o n a l moment, and bending moment present and the r e s i s t a n c e of the s i n g l e p l a t e connection a v a i l a b l e . A r u l e of thumb developed from the s i n g l e p l a t e connection specimens t e s t e d i s the maximum shear f o r c e must be l e s s than 27% of the u l t i m a t e shear r e s i s t a n c e of the supporting 183 g i r d e r . A l t e r n a t i v e l y , the maximum l o a d must be l e s s than 54% of the u l t i m a t e shear r e s i s t a n c e of the g i r d e r f o r a c o n n e c t i o n p l a t e l o c a t e d a t the mid-span of the s u p p o r t i n g g i r d e r . C h a p t e r 10 PROPOSED FUTURE STUDIES W i t h t h e c o m p l e t i o n o f t h e e x p e r i m e n t a l i n v e s t i g a t i o n and a n a l y s i s f o r t h e u l t i m a t e c a p a c i t y o f s i n g l e p l a t e c o n n e c t i o n s , f o u r a r e a s a r e p r o p o s e d t o be i n v e s t i g a t e d f u r t h e r i n o r d e r t o expand t h e c o n c l u s i o n s made i n t h i s t h e s i s . F i r s t l y , t h e a n a l y t i c a l f i n i t e e l ement a n a l y s i s f o r t h e t e s t s p e c i m e n s s h o u l d be p u r s u e d w i t h NISA 80. A c o r r e l a t i o n s t u d y of t h e e x p e r i m e n t a l and a n a l y t i c a l r e s u l t s s h o u l d f o l l o w t h i s a n a l y t i c a l a n a l y s i s t o c a l i b r a t e t h e a n a l y t i c a l r e s u l t s . S e c o n d l y , t h e p a r a m e t e r s t u d i e s s h o u l d be expanded i n o r d e r t o e x t e n d t h e a n a l y t i c a l a n a l y s i s . U s i n g t h e a n a l y t i c a l i n v e s t i g a t i v e t e c h n i q u e s and p r o c e d u r e s , r e s u l t s f o r o t h e r b e a m - t o - g i r d e r web s i n g l e p l a t e c o n n e c t i o n s c a n be d e r i v e d . G e n e r a l i z e d t r e n d s t h a t were i d e n t i f i e d i n t h e p a r a m e t e r s t u d y u s i n g t h e e x p e r i m e n t a l a n a l y s i s r e s u l t s c a n be c h e c k e d and b e t t e r d e f i n e d . T h i r d l y , t h e r e s e a r c h o b j e c t i v e s t h a t a r e not c o v e r e d i n t h i s t h e s i s s h o u l d be e x p e r i m e n t a l l y a n d / o r a n a l y t i c a l l y i n v e s t i g a t e d . T h e s e o b j e c t i v e s i n c l u d e t h e v a r i a t i o n o f t h e c o n n e c t i o n p l a t e l o c a t i o n w i t h r e s p e c t t o t h e s u p p o r t i n g g i r d e r , t h e use of s l o t t e d o r o v e r s i z e d h o l e s i n t h e c o n n e c t i o n p l a t e t o r e d u c e t h e moment a t t h e we l d l o c a t i o n , and r e l a t i n g a f l e x i b l e c o n n e c t i o n t o an e q u i v a l e n t r i g i d c o n n e c t i o n . T h e s e i n v e s t i g a t i o n s w i l l expand t h e scope o f 1 8 4 185 the r e s e a r c h t o support the d e s i g n recommendations f o r the use of s i n g l e p l a t e c o n n e c t i o n s . F o u r t h l y , the d e s i g n f o r m u l a g i v e n i n the c o n c l u s i o n of t h i s t h e s i s s h o u l d be improved. The f o r m u l a does not i n c l u d e the v a r i a t i o n of the c o n n e c t i o n p l a t e l o c a t i o n w i t h r e s p e c t t o the s u p p o r t i n g g i r d e r . The d e s i g n f o r m u l a s h o u l d be i n v e s t i g a t e d t o examine i f the f o r m u l a a l o n e i s s u f f i c i e n t t o d e s i g n s i n g l e p l a t e c o n n e c t i o n s . I f n o t , the d e s i g n f o r m u l a might be the b a s i s of a d e s i g n procedure which w i l l i n c l u d e d e s i g n a i d s i n the form of d e s i g n t a b l e s and/or g r a p h i c a l c h a r t s . BIBLIOGRAPHY Lipson, S.L. "Single-Angle and S i n g l e - P l a t e Beam Framing Connections", Proceedings of the Canadian  S t r u c t u r a l E n g i n e e r i n g Conference, Toronto, O n t a r i o , Canada, Feb.1968, pp.139-162. Richard, R.M., G i l l e t t , P.E., Kr i e g h , J.D., and Lewis, B.A. "The A n a l y s i s and Design of S i n g l e P l a t e Framing Connections", AISC Engineering J o u r n a l , Vol.17, No.2, Second Quarter, 1980, pp.38-52. Young, N.W. and Disque, R.O. "Design Aids f o r S i n g l e P l a t e Framing Connections", AISC Engineering  J o u r n a l , Vol.18, No.4, Fourth Quarter, 1981, pp.129-148. F i s h e r , J.W. "Behaviour of Fasteners and P l a t e s with Holes", J o u r n a l of the S t r u c t u r a l D i v i s i o n , ASCE, Vol.91, NO.ST6, Dec.1965, pp.265-286. Crawford, S.F. and Kulak, G.L. " E c c e n t r i c a l l y Loaded Bolted Connections", J o u r n a l of the S t r u c t u r a l  D i v i s i o n , ASCE, Vol.97, No.ST3, March 1971, pp.765-783. B u t l e r , L . J . and Kulak, G.L. "Strength of F i l l e t Welds as a Function of D i r e c t i o n of Load", Welding  J o u r n a l , Welding Research C o u n c i l , Vol.50, No.5, May 1971, pp.231s-234s. B u t l e r , L . J . , P a l , S., and Kulak, G.L. " E c c c e n t r i c a l l y Loaded Welded Connections", J o u r n a l of the  S t r u c t u r a l D i v i s i o n , ASCE, Vol.98, No.ST5, May 1972, pp.989-1005. Dawe, J.L. and Kulak, G.L. "Welded Connections Under Combined Shear and Moment", J o u r n a l of the  S t r u c t u r a l D i v i s i o n , ASCE, Vol.100, No.ST4, A p r i l 1974, pp.727-741. Tide, R.H.R. "Design L i m i t a t i o n s of Weld Strength f o r E c c e n t r i c a l l y Loaded F i l l e t Weld Groups", Proceedings of the Canadian S o c i e t y f o r C i v i l 186 187 Engineering Conference, May 26-27, 1981, F r e d e r i c t o n , N.B., Canada, pp.59-80. 10. Archer, F.E., F i s c h e r , H.K., and Ki t c h e n , E.M. " F i l l e t Welds Subjected to Bending and Shear", C i v i l  E n gineering and P u b l i c Works Review, Vol.54, No.634, A p r i l 1959, pp.455-458. 11. Canadian I n s t i t u t e of S t e e l C o n s t r u c t i o n , Handbook of  S t e e l C o n s t r u c t i o n , T h i r d E d i t i o n , Willowdale, O n t a r i o , 1980. 12. American I n s t i t u t e of S t e e l C o n s t r u c t i o n , Inc. Manual  of S t e e l C o n s t r u c t i o n , E i g h t h E d i t i o n , Chicago, I l l i n o i s , 1980. 13. Brandt, G.D. "Rapid Determination of U l t i m a t e Strength of E c c e n t r i c a l l y Loaded B o l t Groups", AISC  Engi n e e r i n g J o u r n a l , Vol.19, No.2, Second Quarter, 1982, pp.94-100. 14. Swannell, P. " R a t i o n a l Design of F i l l e t Weld Groups", J o u r n a l of the S t r u c t u r a l D i v i s i o n , ASCE, Vol.107, NO.ST5, May 1981, pp.789-802. 15. Swannell, P. "Weld Group Behaviour", J o u r n a l of the  S t r u c t u r a l D i v i s i o n , ASCE, Vol.107, No.ST5, May 1981, pp.803-815. 16. Neis, V.V. "Factored R e s i s t a n c e of Welded Connections Subject to Shear and Moment", Canadian J o u r n a l of  C i v i l E n g i n e e r i n g , Vol.7, No.1, March 1980, pp.84-92. 17. Brandt, G.D. "A General S o l u t i o n f o r E c c e n t r i c Loads on Weld Groups", AISC E n g i n e e r i n g J o u r n a l , Vol.19, No.3, T h i r d Quarter, 1982, pp.150-159. 18. Neis, V.V. "An U l t i m a t e Strength Test Program f o r E c c e n t r i c a l l y Loaded Welded Connections", Proceedings of the Canadian S o c i e t y f o r C i v i l  E n g i n e e r i n g Conference, May 26-27, 1981, F r e d e r i c t o n , N.B., Canada, pp.81-95. 188 19. B e a u l i e u , D. and P i c a r d , A. "A C o n t r i b u t i o n to the Study of E c c e n t r i c a l l y Loaded F i l l e t - W e l d e d Connections", Proceedings of the Canadian S o c i e t y  f o r C i v i l E ngineering Conference, May 23-25, 1984, H a l i f a x , N.S., Canada, pp.237-252. 20. Hafner, L., Ramm, E., S a t t e l e , J.M., and Stegmuller, H. NI SA 80-Programmdokumentat ion Programmsystem, B e r i c h t des I n s t i t u t s f u r Ba u s t a t i k U n i v e r s i t a t S t u t t g a r t , 1981. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0062838/manifest

Comment

Related Items