UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Instream aeration of the Serpentine River Town, Christopher Albert 1986

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1986_A7 T68.pdf [ 8.8MB ]
Metadata
JSON: 831-1.0062716.json
JSON-LD: 831-1.0062716-ld.json
RDF/XML (Pretty): 831-1.0062716-rdf.xml
RDF/JSON: 831-1.0062716-rdf.json
Turtle: 831-1.0062716-turtle.txt
N-Triples: 831-1.0062716-rdf-ntriples.txt
Original Record: 831-1.0062716-source.json
Full Text
831-1.0062716-fulltext.txt
Citation
831-1.0062716.ris

Full Text

INSTREAM AERATION OF THE SERPENTINE RIVER by CHRISTOPHER ALBERT TOWN U n i v e r s i t y Of B r i t i s h Columbia, 1984 SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n FACULTY OF GRADUATE STUDIES Department of C i v i l E n g i n e e r i n g We accept t h i s t h e s i s as conforming to—the r e g u i r e d 'standard. B.A.Sc., A THESIS THE THE © UNIVERSITY OF BRITISH COLUMBIA JUNE 1986 C h r i s t o p h e r A l b e r t Town, 1986 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l l m e n t of the requirements f o r the advanced degree at the UNIVERSITY OF BRITISH COLUMBIA, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree that p e r m i s s i o n f o r ex t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s or her R e p r e s e n t a t i v e s . I t i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . C h r i s t o p h e r A l b e r t Town Department of CIVIL ENGINEERING THE UNIVERSITY OF BRITISH COLUMBIA 2070 Wesbrook Pla c e , Vancouver, Canada. V6T-1W5 Date: June, 1986 ABSTRACT Urban encroachment and i n t e n s i v e a g r i c u l t u r a l p u r s u i t s w i t h -i n the Serpentine-Nicomekl watershed ( i n p r o x i m i t y to Vancouver, B.C.) have caused a number of s e r i o u s f i s h k i l l s on the Serpent-ine R i v e r s i n c e 1980. Low d i s s o l v e d oxygen l e v e l s were respons-i b l e f o r these k i l l s . This study i n v e s t i g a t e d some of the dynamic chemical and b i o l o g i c a l r e l a t i o n s h i p s w i t h i n the r i v e r , as w e l l as a r t i f i c i a l a e r a t i o n as a p o l l u t i o n abatement or i n - s i t u improvement measure. Weekly sampling from J u l y to December, 1985, i n c l u s i v e , e s t a b l i -shed a s o l i d data base from which i n c i t e f u l i n t e r r e l a t i o n s h i p s were deduced. A strong c o r r e l a t i o n between c h l o r o p h y l l - a and d i s s o l v e d oxygen l e v e l s supported the hypothesis t h a t , algae blooms dying i n the F a l l , c reate a massive oxygen demand. A prototype, (457 m) a r t i f i c i a l a e r a t i o n l i n e was designed, i n s t a l -l e d and monitored to evaluate i t s p o t e n t i a l f o r a l l e v i a t i n g low d i s s o l v e d oxygen c o n d i t i o n s experienced i n the F a l l p e riods. The a e r a t i o n system operated s u c c e s s f u l l y during September, October and November of 1985; however, because of i d e a l weather c o n d i t -i o n s , d i s s o l v e d oxygen l e v e l s never dropped below 7.3 mg/L, so the opportunity to evaluate i n - s i t u oxygen t r a n s f e r d i d not a r i s e i n 1985. Nevertheless, the data base generated supports the use of the prototype a e r a t i o n u n i t as a means of "upgrading" a s t r e t c h of r i v e r subject t o p e r i o d i c , low, d i s s o l v e d oxygen l e v e l s . Expansion of the system, to include other c r i t i c a l s t r e t c h e s of the Serpentine R i v e r , i s s t r o n g l y recommended. i i TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS i i i LIST OF TABLES v i LIST OF FIGURES v i i ACKNOWLEDGEMENTS v i i i 1. INTRODUCTION 1 2. BACKGROUND 3 2.1 H i s t o r y 3 2.2 Ri v e r Uses 4 2.3 Land Use i n the Watershed 5 2.4 S u r f i c i a l Geology and Landforms 9 2.5 S o i l s 10 2.6 Climate and Weather P a t t e r n s 11 2.7 Hydrology 15 2.7.1 Groundwater 15 2.7.2 Ri v e r and Creek Flows 16 2.7.3 T i d a l Gates 19 2.8 Mud Bay and E s t u a r i n e Environments 19 2.9 F i s h and W i l d l i f e 21 2.9.1 F i s h 21 2.9.2 W i l d l i f e 23 2.10 Summary 24 3. ARTIFICIAL AERATION 25 3.1 L i t e r a t u r e Review 25 3.2 Purpose 30 3.3 Design 31 3.4 I n s t a l l a t i o n 32 3.5 Assessment 35 i i i 4. SAMPLING PROGRAM (1985) 37 4.1 I n t r o d u c t i o n 37 4.2 S i t e L o c a t i o n s 38 4.2.1 I n t r o d u c t i o n 38 4.2.2 S i t e D e s c r i p t i o n s 39 4.3 Parameters 42 4.3.1 Laboratory 42 4.3.1.1 Chemical Oxygen Demand 42 4.3.1.2 T o t a l Organic Carbon 43 4.3.1.3 T o t a l Ammonia 43 4.3.1.4 Organic Nitrogen 44 4.3.1.5 N i t r a t e Nitrogen 44 4.3.1.6 Orthophosphate 44 4.3.1.7 T o t a l Phosphorus 45 4.3.1.8 Sediment A n a l y s i s 45 4.3.2 F i e l d 46 4.3.2.1 D i s s o l v e d Oxygen 46 4.3.2.2 Temperature 46 4.3.2.3 S p e c i f i c Conductance 46 4.3.2.4 pH 46 4.3.2.5 C h l o r o p h y l l - a 47 4.3.2.6 Primary P r o d u c t i v i t y 47 4.4 Q u a l i t y C o n t r o l 48 4.5 R e s u l t s and D i s c u s s i o n 49 4.5.1 Water Q u a l i t y 49 4.5.1.1 D i s s o l v e d Oxygen 50 4.5.1.2 Temperature 58 4.5.1.3 pH 61 4.5.1.4 S p e c i f i c Conductance 65 4.5.1.5 Ammonia Nitrogen 65 4.5.1.6 N i t r a t e s 67 4.5.1.7 Phosphorus 69 4.5.1.8 Other Parameters 71 4.5.2 R a i n f a l l and Water Q u a l i t y 71 4.5.3 Periphyton P o p u l a t i o n s 74 4.5.3.1 C h l o r o p h y l l - a 74 4.5.3.2 Primary P r o d u c t i v i t y 76 4.5.4 D i t c h M o n i t o r i n g 80 4.5.5 Sediment R e s u l t s 81 i v 5. RESULTS AND DISCUSSION OF OTHER YEAR'S DATA 83 5.1 I n t r o d u c t i o n 83 5.2 Water Q u a l i t y 84 5.3 Sediments '. 87 5.4 T i d a l Gates 87 5.5 D i s c u s s i o n 88 6. CONCLUSIONS AND RECOMMENDATIONS 92 6.1 C o n c l u s i o n s 92 6.1.1 General 92 6.1.2 S p e c i f i c 93 6.2 Recommendations 94 REFERENCES 96 APPENDIX I - A e r a t i o n c a l c u l a t i o n s 102 APPENDIX II - Water Q u a l i t y Data (1985) 105 APPENDIX I I I - D i t c h M o n i t o r i n g Data (1985) 114 APPENDIX IV - Sediment Analyses (1985) 116 v LIST OF TABLES Table No. T i t l e Page No. 1 . Surrey Land Use by Percent of Area 6 2. P r i n c i p a l S o i l Groups in the S e r p e n t i n e -Nicomekl Lowlands and Adjacent Uplands 12 3. Climate Parameters - Surrey 13 4. F r o s t P e r i o d - Surrey 14 5. Oxygen T r a n s f e r Rates f o r Surface A e r a t o r s . 28 6. I n t e r l a b Q u a l i t y C o n t r o l 48 7. D u p l i c a t e Sample Comparison 49 8. Comparison of DO Probe and M o d i f i e d Winkler . 49 9. Oxygen Depth P r o f i l e s 56 10. T r o p h i c Type C h a r a c t e r i s t i c s 74 11. Primary P r o d u c t i v i t y at S i t e #13 77 12. Latimer D i t c h Analyses 80 13. Trace Metals i n Stream Sediments of the Lower F r a s e r V a l l e y compared with the Serpentine R i v e r 82 14. Serpentine Water Q u a l i t y , 1982 84 15. Serpentine Water Q u a l i t y , 1983 85 16. Serpentine Water Q u a l i t y , 1984 86 17. S e l e c t e d Sediment Analyses 87 18. T i d a l Gate Opening and DO 88 19. F a c t o r s i n Oxygen Balance 89 20. R a i n f a l l and F i s h K i l l s 90 v i LIST OF FIGURES F i g u r e No. T i t l e Page No. T~. O f f i c i a l Surrey Community Plan, 1985 7 2. Mean Annual and Monthly Flows - Mahood Creek 1952-1976 17 3. Discharge Hydrograph f o r Mahood Creek - 1970 .. 18 4. T i d a l Gate Op e r a t i o n s - S e r p e n t i n e River,1974-1977. 20 5. M i g r a t i o n Routes and Spawning H a b i t a t s 22 6. A e r a t i o n Design on the Serpentine R i v e r 33 7. Map of Serpentine R i v e r - S i t e L o c a t i o n s 40 8. Map of Serpentine - Nicomekl Drainage Basin 41 9. D i s s o l v e d Oxygen versus Time - S i t e s 10, 12, 99A. 51 10. D i s s o l v e d Oxygen S a t u r a t i o n - P e r c e n t versus Time S i t e s 10, 12, 99A 52 11. D i s s o l v e d Oxygen Along Serpentine Length 54 12. D i s s o l v e d Oxygen S a t u r a t i o n - P e r c e n t Along Serpentine Length 55 13. D i s s o l v e d Oxygen V a r i a t i o n Over 24 Hour P e r i o d s . 57 14. D i s s l o v e d Oxygen and Chlorophy11-a versus Time s i t e 12 59 15. Temperature versus Time - s i t e s 10, 12, 99A ... 60 16. pH versus Time - s i t e s 10, 12, 99A 62 17. pH and C h l o r o p h y l l - a versus Time - s i t e 12 .... 64 18. T o t a l Ammonia versus Time - s i t e s 10, 12, 99A .. 66 19. N i t r a t e s and C h l o r o p h y l l - a versus Time - S i t e 12. 68 20. T o t a l Phosphorus versus Time - s i t e s 10, 12, 99A. 70 21. R a i n f a l l , N i t r a t e s and T o t a l Phosphorus vs Time a l l s i t e s 73 22. C h l o r o p h y l l - a versus Time - s i t e s 10, 12, 99A .. 75 23. Primary P r o d u c t i v i t y and C h l o r o p h y l l - a On S e l e c t e d Days - s i t e 13 78 v i i ACKNOWLEDGEMENTS The author would l i k e to express h i s g r a t i t u d e to Dr.D.S Mavinic f o r h i s experienced s u p e r v i s i o n , h e l p with the manuscript and o v e r a l l support d u r i n g t h i s study. Dr. K. H a l l was a l s o of tremendous a s s i s t a n c e . Ken Ashley and Brent Moore were of i n v a l u a b l e h e l p , espec-i a l l y i n the p r a c t i c a l a spects of the study. Laboratory exper-t i s e p r o v i d e d by Susan L i p t a k and Paula Parkinson was a l s o appre-c i a t e d . Thanks are a l s o due to George Derksen f o r c o l l e c t i n g the 24 hour water q u a l i t y data; and Ken Wilson f o r s u p p l y i n g the t i d a l gate c h a r t s . Computing a s s i s t a n c e from Troy Vassos and Tony M a r t i n saved the author a l o t of time. D r a f t i n g e x p e r t i s e p r o v i d e d by R i c h a r d Brun.is g r a t e f u l l y acknowledged. F i n a n c i a l support f o r t h i s work came from the Department of F i s h e r i e s and Oceans, Canada, and the. M i n i s t r y of Environment, B r i t i s h Columbia. The m a j o r i t y of the l a b o r a t o r y c o s t s were p a i d by the Waste Management Branch, M i n i s t r y of Environment, B r i t i s h Columbia. Funds were a l s o s u p p l i e d by the N a t u r a l Sciences and En g i n e e r i n g Research C o u n c i l of Canada. v i i i 1.INTRODUCTION A l o t of time, e f f o r t and expense by many people and gover-nment departments has been spent t r y i n g to e l u c i d a t e and under-stand the problems and resources of the Serpentine - Nicomekl watershed c o n t a i n e d in the m u n i c i p a l i t i e s of Surrey and Langley, i n c l o s e p r o x i m i t y to Vancouver, B.C. "As one of the most i n t e n -s i v e l y farmed areas i n Western Canada... i t has developed i n t o a f o c a l p o i n t of c o n f l i c t and c o n t r o v e r s y over f l o o d c o n t r o l , water use, u r b a n i z a t i o n and a g r i c u l t u r a l p o l i c i e s , and over the complex impacts of these f a c t o r s on the f i s h e r y , w i l d l i f e and other n a t u r a l resources of the area."(Cox and McFarlane,1978). Major problems that have been experienced on the Serpentine River are l i s t e d below. 1. F i s h k i l l s 2. Water q u a l i t y d e t e r i o r a t i o n 3. Problem d i s c h a r g e s 4. Poor drainage i n the watershed 5. D e s t r u c t i o n or d e t e r i o r a t i o n of aqua t i c h a b i t a t s and r e a r i n g grounds 6. D e s t r u c t i o n or d e t e r i o r a t i o n of waterfowl h a b i t a t s 7. S a l i n e i n t r u s i o n when t i d a l gates are blocked open 8. Dyking r e l a t e d - s t i r r i n g up sediment 9. Urban encroachment 10. Chemical s p i l l s - eg pentachlorophenols T h i s r e p o r t concerns i t s e l f with the f i r s t three problems. In October,1980 a s e r i o u s f i s h k i l l (300 - 800 spawning Coho salmon), on the Serpentine R i v e r , motivated Region II Waste Management Branch to i n i t i a t e a water chemistry program i n 1981, to determine the causes of the low d i s s o l v e d oxygen (DO) l e v e l s , and t o suggest p o s s i b l e remedial measures. Two other, low DO f i s h k i l l s , i n October of 1983, motivated the formation, i n J u l y 1984, of an interagency group (Waste Management, F i s h and Wild-1 l i f e , Water Management, Environment P r o t e c t i o n S e r v i c e , and Dep-artment of F i s h e r i e s and Oceans). October of 1984 saw the l a s t r e p o r t e d , DO-related f i s h k i l l (470 Coho). Remedial measures proposed by the interagency committee were both long term; pro-vide shade-bearing t r e e s and reduce a g r i c u l t u r a l drainage cont-aminant l o a d i n g s of phosphorus and oxygen demanding m a t e r i a l s and short term ; a l g a l bloom h a r v e s t i n g and instream a e r a t i o n . The Environmental E n g i n e e r i n g Group, Department of C i v i l Engine-e r i n g , at the U n i v e r s i t y of B r i t i s h Columbia was c o n t a c t e d to see i f a graduate student might be i n t e r e s t e d i n an instream a e r a t i o n p r o j e c t f o r the Serpentine R i v e r . T h i s author agreed to under-take t h i s p r o j e c t , as p a r t of the requirements f o r a Master of A p p l i e d Science degree. The purpose of t h i s i n v e s t i g a t i o n was to study the back-ground to the f i s h k i l l s on the Serpentine R i v e r ; design, i n s t a l l and monitor an instream a e r a t i o n system; d e v i s e and assess data from a sampling program; analyze and d i s c u s s data c o l l e c t e d from p r e v i o u s y e a r s ; and make recommendations to the a u t h o r i t i e s f o r a f u t u r e plan of a c t i o n . 2 2.BACKGROUND 2.1 H i s t o r y To c o n s i s t e n t l y p rovide farmers along the Serpentine River with f r e s h water f o r i r r i g a t i o n , t i d a l gates were f i r s t c o n s t r u c -ted i n 1912 (Wilson, 1986). R e h a b i l i t a t i o n of the gates was necessary i n 1974, because of e x c e s s i v e leakage. As such, f l o o d c o n t r o l and drainage have been the focus of most of the a t t e n t i o n p a i d to the Serpentine - Nicomekl watershed. A Dayton and Knight (1984) r e p o r t l i s t s 41 r e p o r t s done i n the past, a l l concerned with drainage and f l o o d c o n t r o l i n the area. The B.C. E n v i r o n -ment and Land Use Committee (ELUC) S e c r e t a r i a t c o o r d i n a t e d an interagency group in 1975 and 1976 to review the problems in the b a s i n . T h e i r two main recommendations (O'Riordan, 1976) were that immediate drainage problems be approached on an area-by-area b a s i s and, most i m p o r t a n t l y , that steps be taken to implement a watershed management approach to the b a s i n . Water q u a l i t y s t u d i e s have become more important i n the recent p a s t . In 1974, the Environment P r o t e c t i o n S e r v i c e i n i t -i a t e d a study to determine changes i n the water q u a l i t y between June 1974 and Nov. 1975. T h i s data was assessed by Bourque and Hebert (1982). They concluded t h a t "most of the parameters measured met EPA water q u a l i t y standards f o r fish...Summer temp-e r a t u r e s were near l e t h a l l e v e l s q u i t e often...pH exceeded recom-mended l e v e l s on o c c a s s i o n . " Water q u a l i t y data c o l l e c t e d by the B.C. Water I n v e s t i g a t i o n s Branch, M i n i s t r y of Environment, bet-ween 1974 and 1977, were presented and analysed by Cox and McFar-lane (1978). Data was a l s o c o l l e c t e d by the B.C. Waste Manage-3 ment Branch, at three s t a t i o n s along the Serpentine R i v e r from 1972-1978. However, t h i s data has not been o f f i c i a l l y presented or a nalysed i n r e p o r t form. The Waste Management Branch became r e - i n v o l v e d with the Serpentine River a f t e r the 1980 f i s h k i l l . Moore (1984) d e t a i l s the development of t h e i r sampling program through to 1984. To summarize; 1981 - water chemistry at numerous l o c a t i o n s 1982 - water chemistry p l u s phytoplankton sampling 1983 - water chemistry, phytoplankton,sediment sampling 1984 - water chemistry, c h l o r o p h y l l - a and phaeophytin-a The i n t e r a g e n c y p r o p o s a l , to provide instream a e r a t i o n , arose a f t e r some 22 lake a e r a t i o n p r o j e c t s around the p r o v i n c e were proven very s u c c e s s f u l . At the time the p r o p o s a l was made, instream a e r a t i o n was the most f e a s i b l e route to f o l l o w . There was a l s o a sense of urgency about enhancing the S e r p e n t i n e ' s DO l e v e l s , because the 1980 and 1983 Coho run (3 year spawning c y c l e ) had been h i t hard twice and a t h i r d k i l l would l i k e l y decimate the run. An instream a e r a t o r c o u l d be designed and i n s t a l l e d r e l a t i v e l y q u i c k l y , whereas the suggestions of p r o v i -ding shade b e a r i n g t r e e s and reducing a g r i c u l t u r a l contaminants and phosphorus l o a d i n g s c o u l d have taken years to e f f e c t . 2.2 R i v e r U s e s The urban expansion of the Vancouver Lower Mainland has i n c r e a s e d c o m p e t i t i v e pressure on the c o n f l i c t i n g i n t e r e s t s of the Serpentine - Nicomekl watershed. R e c r e a t i o n , i r r i g a t i o n , f i s h , and w i l d l i f e are a l l v y i n g f o r the r e s o u r c e . R e c r e a t i o n a l users are p r i m a r i l y a n g l e r s , but some boaters a l s o enjoy the 4 r i v e r . A recent a n g l e r / c a t c h survey (Redekopp and S c o t t , 1985) suggests t h a t 2000-3000 an g l e r days are spent a n n u a l l y on the Serpentine R i v e r . Twenty-one permits f o r i r r i g a t i o n , one d a t i n g back to 1935, on the Serpentine River are e n t i t l e d to draw about 9460 cubi c meters per day. The Serpentine River d r a i n s approximately 1/2 of the Serpen-t i n e - Nicomekl watershed, which Dick (1975) estimated as 33,870 h e c t a r e s . Farmers and waterfowl ( s e c t i o n 2.9) are i n t i m a t e l y concerned w i t h the drainage f a c i l i t i e s of the area. Urban p l a n -ners are a l s o a f f e c t e d by the S e r p e n t i n e drainage c a p a c i t y , s i n c e urban growth has generated s i g n i f i c a n t q u a n t i t i e s of stormwater runoff which the Serpentine i s expected to r e c e i v e . The r i v e r a l s o serves to s u s t a i n s i z a b l e salmonid, s t e e l h e a d and c u t t h r o a t t r o u t p o p u l a t i o n s (see S e c t i o n 2.9). 2.3 Land Use i n the Watershed The Ser p e n t i n e River begins near Tynehead, Surrey at an e l e v a t i o n of 75 meters and flows 29 km,southwest to r e c e i v e i t s three t r i b u t a r i e s , Mahood, Hyland and Latimer Creeks, before emptying i n t o Mud Bay. Mahood and Hyland Creeks o r i g i n a t e i n the urban zones of the upland areas, flow through suburban zones, and then f i n a l l y through small i n t e n s i v e l y farmed areas , before j o i n -ing the Serpentine R i v e r . Latimer Creek e s s e n t i a l l y d r a i n s small acreages. The mainstem of the Serpentine begins i n the uplands j u s t i n s i d e an urban zone, then flows through Tynehead Park, and small acreages; i n the lowlands, i t meanders through l a r g e r farms. 5 The f i n a l adoption of the O f f i c i a l Community Plan (OCP) f o r Surrey on March 25, 1985 i s shown in F i g u r e 1. The breakdown in percent of area used per zoning category, shown i n Table 1, was d e r i v e d by d i r e c t area measurements o f f the OCP and are a p p r o x i -mate valu e s o n l y . T h i s plan j u s t about doubles the p r o p o r t i o n s of r e s i d e n t i a l and commercial land, and almost t r i p l e s the indus-t r i a l l a n d a v a i l a b l e from the 1980 p r o p o r t i o n s . T a b l e 1. S u r r e y L a n d Use by P e r c e n t o f A r e a ZONE ABBREV. % OF TOTAL AREA Downtown DTN 1 .2 Town Center TCR 0.4 Commerc i a l COM 2.2 M u l t i p l e R e s i d e n t i a l RM 3.0 Urban R e s i d e n t i a l URB 20.2 Suburban R e s i d e n t i a l SUB 27.0 I n d u s t r i a l IND 11.6 A g r i c u l t u r a l AGR 31.0 S p e c i a l Study Area SPL 3.4 TOTAL 100.0 T h i s i n f o r m a t i o n , combined with the estimated p o p u l a t i o n growth from 147,100 in 1981 to 292,000 by 2001, h i g h l i g h t s the d i r e c t i o n of p r e ssure that w i l l be e x e r t e d on the watershed i n the f u t u r e . Nine s p e c i f i c areas ensuing from t h i s urban pressure were out-l i n e d i n Bourque and Hebert (1982). They are ... (1) flow regime changes - no water i n summer due to e x c e s s i v e removal of groundwater i n w e l l s , and f l o o d i n g i n winter due to r a p i d runoff of paved s u r f a c e s . (2) c h a n n e l i z a t i o n of upland t r i b u t a r i e s (3) vandalism of f i s h (4) removal of stream bank v e g e t a t i o n and consequent i n c r e a s e s i n water temperature (5) i n c r e a s e d e r o s i o n and sedimentation 6 OFFICIAL COMMUNITY PLAN DESIGNATIONS FIRST AND SECOND READING 1« Ih. of MAY, 1083 THIRD READING, >1at. day or JANUARY, 1988. FINAL ADOPTION 25 Ih day of MARCH, 1985 3rd. day of FEBRUARY, 1988. F i g u r e 1: O F F I C I A L S U R R E Y C O M M U N I T Y P L A N , 1985 . ( F rom D i s t r i c t of S u r r e y P lanning D e p a r t m e n t ) . (6) sewage contamination of streams from s e p t i c tank leakage - r e s u l t i n g i n i n c r e a s e d n i t r o g e n and phosphorus l e v e l s (7) i n c r e a s e d b a c t e r i a l contamination from human and pet wastes (8) t o x i c l e a c h a t e s from garbage d i s p o s a l s (9) i n c r e a s e d l e v e l s of o i l s , l e a d , p e s t i c i d e s and other contaminants i n stormwater and road r u n o f f . The l a r g e s t c o n c e n t r a t i o n of farms i s i n the lowlands. In 1977, roughly 45% of the dyked land was given to pasture, while 15% was i n market gardening, 19% forage c r o p s , 6% c e r e a l s and 10% was woodland ( H i r s t et a l . , 1979). For a g r i c u l t u r a l purposes, the l a n d i s p o o r l y d r a i n e d , low i n pH, d e f i c i e n t i n potassium, c a l c i u m , phosphorus and other m i n e r a l s ; as such, the Canada Land Inventory of 1973 c l a s s i f i e d most of the s o i l as having severe to very severe l i m i t a t i o n s f o r a g r i c u l t u r e . There has been l i t t l e i n c e n t i v e to d e v e l o p i n g the lowlands f o r other than a g r i c u l t u r a l purposes, because of the poor drainage i n the area and the a v a i l -a b i l i t y of inexpensive land elsewhere. As a g r i c u l t u r a l l a n d elsewhere i n the F r a s e r V a l l e y has been rezoned, i t has l e d to the Serpentine - Nicomekl lowlands being one of the most i n t e n s i -v e l y farmed areas of B.C. To overcome the n a t u r a l l i m i t a t i o n s , drainage has been improved by d i t c h i n g , t i l l i n g , c h a n n e l i z a t i o n and dyking; chemical pest c o n t r o l i s r e q u i r e d and heavy dosages of f e r t i l i z e r s are r e q u i r e d . T h i s i n t e n s i v e use of the l a n d c r e a t e s s t r e s s f u l c o n d i t i o n s on the Serpentine R i v e r . In "addit-i o n , r u n - o f f from barns, n u r s e r i e s and market gardens degrades the water q u a l i t y of the r e c e i v i n g waters i n t h i s region (Bourque and Hebert, 1982). 8 2.4 S u r f i c i a l G e o l o g y and L a n d f o r m s The Serpentine - Nicomekl area i s a fl a t - b o t t o m e d v a l l e y , which was a former sea embayment and i s pa r t of the Fr a s e r Low-land (Holland, 1976). The Lowland extends to Bellingham and i s bounded on the north by the P a c i f i c range of the C o a s t a l Moun-t a i n s and on the southeast by the Skagit range of the Cascade Mountains. The area has had a very complex P l e i s t o c e n e and Recent h i s t o r y i n v o l v i n g marine and non-marine, g l a c i a l and non-g l a c i a l d e p o s i t i o n . During s e v e r a l g l a c i a l advances, i c e accumu-l a t e d to depths of about 2300 m, and the land was depressed r e l a t i v e to the sea (Holland, 1976). Cox and McFarlane (1978) r e p o r t that the ... "present shallow v a l l e y forming the major p a r t of the f l o o d p l a i n of the lower reaches of both r i v e r s i s a r e s u l t of the r e t r e a t of a C o r d i l l e r a n g l a c i a t i o n some 11,000 to 14,000 years ago. A 100 m high moraine rims the northern s i d e of the v a l l e y , while a s i m i l -ar moraine on the south s i d e r i s e s only some 45 m above the v a l l e y f l o o r (present day Panorama Rid g e ) . The mainstem R i v e r s are from 1.0 to 2.5 km apart i n the lower v a l l e y and may have been l i n k e d by meandering channels p r i o r to a g r i c u l t u r a l develop-ment; the Serpentine and the Nicomekl are today j o i n e d by i n t e r -c o n n ecting drainage d i t c h e s . The e n t i r e lowland i s w i t h i n 15 m e l e v a t i o n (geodetic datum), while much of the lower f l o o d p l a i n has an e l e v a t i o n of 1 to 2 m and i s lower than s p r i n g and winter high t i d e l e v e l s . Both r i v e r s d r a i n i n t o Mud Bay, the ea s t e r n extension of Boundary Bay." The d e l t a area of Mud Bay i s s t i l l very a c t i v e g e o l o g i c a l l y and s u b j e c t to topographic changes from s i l t d e p o s i t i o n , c u r r e n t a c t i o n , e t c . D e p o s i t i o n and e r o s i o n has been slowed and even stopped by the c o n s t r u c t i o n of dykes. The t o t a l l e n g t h of dykes to date, on the two r i v e r s , i s about 64 km (Bishop, 1986). The t o t a l area of the Serpentine - Nicomekl watershed i s about 33,870 ha (Dick, 1975). The f l o o d p l a i n area i s c o n s i d e r e d to be about 4900 ha ( H i r s t et a l . , 1979). The slope of the land 9 i n the lowland i s very s l i g h t , 0.05 percent or l e s s . Roads, dykes and d i t c h e s are important t o p o g r a p h i c a l f e a -t u r e s with regard to water runoff i n the lowland a r e a s . F r a s e r Highway, P a c i f i c Highway, 160 th S t r e e t and Number' 10 Highway a l l s i g n i f i c a n t l y a f f e c t the hydrology of the area. 2.5 S o i l s Information i n t h i s s e c t i o n i s p r i m a r i l y d e r i v e d from Sprout and K e l l y (1961). On the b a s i s of g e o l o g i c a l o r i g i n , the s o i l s of the Lower Fr a s e r V a l l e y are d i v i s i b l e i n t o upland and lowland s o i l s . Up-land s o i l s were d e r i v e d from moderately coarse t e x t u r e d , compact, stoney g l a c i a l t i l l (Luttmerding, 1980). Whereas the parent m a t e r i a l of lowland s o i l s was f i n e r - t e x t u r e d , f a i r l y recent r i v e r and stream d e p o s i t s . The upland s o i l s are separated i n t o two main c l a s s e s : humic g l e y s o l and p o d z o l . pH l e v e l s around 5.5 are common. The lowland s o i l s can a l s o be c l a s s i f i e d i n t o two major groups; g l e y s o l s , which are developed i n sandy marine sediments and m e s i s o l s and humisols, which are developed under swamp f o r e s t v e g e t a t i o n . The s o i l development h i s t o r y of the basin has been complex and, as a consequence, over 80% of the s o i l s i n the watershed are c l a s s i f i e d as s o i l complexes, i . e . they are com-posed of two or three s e r i e s . The lowland s o i l s are t y p i c a l l y low i n pH (5.0 - 6.0) and p o o r l y d r a i n e d . Chemical a n a l y s e s of s o i l s i n the lowlands r e v e a l e d d e f i c i e n c i e s f o r crop growth i n c a l c i u m , magnesium, phosphorus and potassium. Although t o t a l n i t r o g e n contents are high , i t i s u n l i k e l y that s u f f i c i e n t n i t r o g e n w i l l be r e l e a s e d 10 i n a v a i l a b l e form, in s u f f i c i e n t q u a n t i t i e s , to s u s t a i n crop growth. To overcome the inherent l i m i t a t i o n s t o a g r i c u l t u r e , i n t e n s i v e management (drainage, t i l l a g e and f e r t i l i z e r s ) i s nece-ssary to maintain p r o f i t a b l e p r o d u c t i v i t y . Table 2 o u t l i n e s the p r i n c i p a l s o i l groups i n the Serpentine - Nicomekl lowlands and adjacent uplands. Organic matter i n the s o i l s i s very predominant, which r a i s e s the q u e s t i o n "how much organic matter from the s o i l i s being d i s s o l v e d i n the groundwa-t e r or s u r f a c e r u n o f f and i s then i n t r o d u c e d to the Serpentine R i v e r ? " To date, no d e f i n i t i v e study on t h i s aspect of s o i l / w a t -er i n t e r a c t i o n has been undertaken. 2.6 C l i m a t e and W e a t h e r P a t t e r n s Knowledge of g e n e r a l i z e d c l i m a t i c p a t t e r n s , w i t h i n t h i s s e c t i o n , o r i g i n a t e d i n Kendrew and Kerr (1955). The d i s t i n c t i v e general f e a t u r e s of the Surrey c l i m a t e are m i l d humid w i n t e r s , warm but not hot summers, and a s m a l l range of temperatures. Frequent i r r e g u l a r i t i e s of barometric p r e s s u r e , high and low pressure systems, b r i n g a i r masses from d i s t a n t and d i v e r s e regions to g i v e n o t o r i o u s l y v a r i a b l e weather. The m i l d winters are a r e s u l t of the oceanic c o n d i t i o n s i n the P a c i f i c . The C o a s t a l and Cascade Mountains i n c r e a s e the r a i n y tendency of the area. F r o s t i s u s u a l l y s l i g h t ; snow f a l l s on a few days i n most wint e r s , but i t i s damp and soon m e l t s . Surrey i s p r o t e c t e d from most A r c t i c c o l d waves, that sweep southward i n t o r e g i o n s f a r t h e r e a s t , by the Coast Mountains (Rue, 1978). The r a i n s decrease a f t e r March (see Table 3) and are lowest i n J u l y and August. The 1 1 Table 2. P r i n c i p a l S o i l Groups i n the Serpentine - Nicomekl Lowlands and Adjacent Uplands (from Hirst et a l . . 1979) GROUP ORIGIN SURFACE PH ORGANIC MATTER PERCENTAGE CONDUCTIVITY VALUE TOTAL AREA (ha) ** Organlcs (humisoIs and meslsols) Organic veneers and blankets overlying gleyed marine sediments 4.4-4.8 100 0.4 - 1.1 3406 Sa1Ine organlcs Thin r i v e r i n e sediments mixed Into underlying decomposed peat 4.5 48 2. 1 60 GleysoIs (o r t h i c , hum 1c and rego gleysots S1lty f l u v i a l deposits ovei— lying marine depos1ts 4.8-5.9 G - 30 0.3 - 0.6 1071 SalIne gleysols Recent marine sediments over-lying decomposed peat 4.8 16 2.4 587 Upland podzols and gleysoIs Washed and un-washed marine deposits, Incl.. raised beaches 3.6 and up 5 - 5 3 1241 * Total area as measured within lowlands inside 15 m contour Table 3. Mean Monthly Climate Parameters - Surrey (Data from Canadian Climate Normals) PARAMETER UNITS LOCATION PERIOD OF RECORD J F M A M J J A S 0 N D YEAR Sol ar Radiation * MJ/m' * * Vancouver UBC *** 1 9 5 9 - 1 9 8 0 2 . 9 4 5 . 5 3 1 0 . 0 3 1 5 . 0 9 2 0 . 1 5 2 1 . 7 8 2 2 . 9 5 1 8 . 6 5 1 3 . 2 2 7 . 3 8 3 . 5 9 2 . 2 8 Mean Da 1 1y Max Temp °C Surrey + Mun. Hall 1 9 5 1 - 1 9 8 0 4 . 8 7 . 8 9 . 7 1 3 . 3 1 7 . 0 1 9 . 3 2 2 . 5 2 2 . 0 1 9 . 7 1 4 . 3 9 . 1 6 . 2 1 3 . 8 Mean Da 1 1y Mln Temp °c It n II - 0 . 6 1 . 2 2 . 0 4 . 6 7 . 6 1 0 . 5 1 2 . 1 1 2 . 1 1 0 . 1 6 . 8 3 . 0 0 . 9 5 . 9 Mean Dally Mean Temp °c n n fl 2 . 1 4 . 5 5 . 9 8 . 9 1 2 . 3 1 4 . 9 1 7 . 2 1 7 . 0 1 4 . 8 1 0 . 6 6 . 0 3 . 6 9 . 8 Mean Total Precip. mm II II II 1 8 1 . 2 1 3 9 . 4 1 2 0 . 1 7 5 . 5 5 8 . 3 5 6 . 1 3 5 . 4 5 0 . 8 7 2 . 4 1 3 1 . 6 1 7 8 . 7 2 0 8 . 4 1 3 0 7 . 9 Greatest ppt In 2 4 hr mm n n II 8 7 . 9 4 7 . 5 4 9 . 8 3 3 . 5 3 3 . 3 3 4 . 5 5 3 . 3 4 3 . 2 4 2 . 7 6 2 . 7 5 0 . 5 7 7 . 0 8 7 . 9 • Mean global solar radiation on a horizontal surface ** mega Joules per square meter *** close s t location with recorded radiation values + Surrey Municipal Hall 1s 7 6 m above Mean Sea level summers are warm but sea breezes prevent intense heat b u i l d - u p . Autumn begins around the end of September when n i g h t s become c o o l and the r a i n s r e t u r n . The p r e v a i l i n g winds of Surrey are w e s t e r l i e s , which are n o t o r i o u s l y stormy in winter; g a l e f o r c e i s frequent, and succes-s i o n s of storms may continue f o r a week or lo n g e r . In summer, winds are l i g h t e r and gales are few; t h e i r d i r e c t i o n of o r i g i n i s p r i m a r i l y n o r t h e a s t . Table 3 was c o l l a t e d from data p u b l i s h e d i n Canadian Climate Normals (1982). The v a l u e s f o r Mean G l o b a l S o l a r R a d i a t i o n are, as expected, high i n the summer and low i n the winter. J u l y and August are the warmest months and January and December are the c o l d e s t . Only January has a mean, d a i l y minumum temperature l e s s than f r e e z i n g . October through February are very wet months, whereas p r e c i p i t a t i o n i n J u l y i s s i x times l e s s than December. The p o t e n t i a l f o r very heavy r a i n f a l l events throughout the year i s demonstrated by the numbers under the G r e a t e s t P r e c i p i t a t i o n i n 24 hr, Table 3; i t has been as high as 87.9 mm i n January. The f r o s t r e c o r d (Table 4) i n the area was a l s o taken from the Canadian Climate Normals (1982) and covers the p e r i o d from 1963 to 1980. T a b l e 4. F r o s t P e r i o d - S u r r e y . AVERAGES EXTREMES Last F r o s t F i r s t F r o s t F r o s t f r e e 216 days e a r l i e s t March 8 Sept. 26 L a s t f r o s t A p r i l 4 F i r s t f r o s t Nov. 7 l a t e s t A p r i l 25 Nov. 26 14 2.7 H y d r o l o g y As mentioned p r e v i o u s l y , the Serpentine - Nicomekl watershed encompasses about 33,870 ha, of which 4900 ha are c o n s i d e r e d f l o o d p l a i n . Though the r i v e r o r i g i n a t e s at about 75 m e l e v a t -i o n , about 90% of the r i v e r ' s course i s below the 15 m contour l i n e , with much of that below 2 m. The upper t r i b u t a r i e s , Mahood and Hyland Creeks, have g r a d i e n t s around 1% and up to 3% over sho r t reaches. 2.7.1 Groundwater H a l s t e a d (1978) s t u d i e d the groundwater flow system of the S e r p e n t i n e - Nicomekl b a s i n and some of h i s f i n d i n g s are summa-r i z e d below. Groundwater flow systems, w i t h i n the S e r p e n t i n e - Nicomekl v a l l e y , are composite and have many sources and areas of recharge i n c e n t r a l and e a s t e r n F r a s e r V a l l e y . They f o l l o w a l a t e r a l path through a t h i c k s e c t i o n of u n c o n s o l i d a t e d d e p o s i t s and are mani-f e s t e d as a d i s c h a r g e zone i n the area. The higher lands a d j a -cent to the v a l l e y s are sources of l o c a l flow systems, that d i s -charge and i n t e g r a t e with the major flow systems, to provide a chemical z o n a t i o n w i t h i n the topographic l i m i t s of the v a l l e y s . The g e o l o g i c a l framework i s a complex s e c t i o n of s i l t y c l a y , s i l t y sand, sandy s i l t s and sand l e n s e s of f l u v i a l , g l a c i o f l u v i a l and g l a c i o m a r i n e o r i g i n , t h a t provide leaky c o n d i t i o n s i n the d i s c h a r g e zones of a major groundwater flow system. The t h i c k sequence of u n c o n s o l i d a t e d d e p o s i t s does not represent a c l a s s i -c a l a r t e s i a n b a s i n , but i n the lowlands, a r t e s i a n c o n d i t i o n s do e x i s t . In f a c t , the Water Rig h t s Branch in 1915 r e p o r t e d uncon-15 t r o l l e d a r t e s i a n w e l l s d i s c h a r g i n g 1514 cub i c meters per day. Hydrochemical analyses d e f i n e a zone of p o s i t i v e base excha-nge, that i s a t t r i b u t e d to a c y c l i c a l r e v e r s a l of groundwater flow; t h i s i s caused by s e m i d i u r n a l t i d a l changes i n Mud Bay. Flows o f f the e a s t e r n and southern ends of the uplands, near Newton, produce a d i l u t i o n e f f e c t which extends a c o n s i d e r a b l e d i s t a n c e i n t o the v a l l e y . Groundwater w i t h i n the watershed has a r e l a t i v e l y high con-c e n t r a t i o n of NaCl, which v a r i e s with the s t r e n g t h of r e g i o n a l i n f l o w s and d i l u t i o n a l waters. In f a c t , much of the groundwater i n the lowland area i s not recommended f o r i r r i g a t i o n because sodium l e v e l s are too h i g h . 2.7.2 R i v e r and Creek Flows Stream gauges operated by the Water Survey of Canada measure flows on Mahood Creek, Nicomekl R i v e r and two of i t s t r i b u t a r i e s . Cox and McFarlane (1978) r e p o r t , on the b a s i s of 13 years of flow data on the Nicomekl and 25 years f o r Mahood Creek, (assuming the Nicomekl and Serpentine R i v e r s d i s c h a r g e s i m i l a r volumes) 6 3 that the watershed a n n u a l l y r e l e a s e s about 115 x 10 m to Mud Bay. Mean annual and monthly flows recorded f o r Mahood Creek, between the years 1952 and 1976, are p l o t t e d i n F i g u r e 2 (from Cox and McFarlane, 1978). There are l a r g e v a r i a t i o n s between months throughout the y e a r s . For i n s t a n c e , mean January flows 3 3 v a r i e d from 1 m /s to 4 m / s . The mean annual flows are n o t i c e -a b l y more p r e d i c t a b l e . The hydrograph of mean d a i l y flows f o r 1970, on Mahood Creek are shown i n F i g u r e 3 (from H a l s t e a d , 16 5 Y E A R r e 2: Mean A n n u a l and M o n t h l y F l o w s - Mahood C r e e k , 1 9 5 2 - 1 9 7 6 ( f r o m Cox and M c F a r l a n e , 1978) CO StolionNO 0 8 M H 0 2 0 F i g u r e 3: D i s c h a r g e H y d r o g r a p h f o r Mahood C r e e k - 1 9 7 0 . ( f r o m H a l s t e a d , 1978) 1978), and are t y p i c a l of flows i n the area. High flows during the heavy p r e c i p i t a t i o n months of Nov., D e c , Jan. and Feb.; and low flows d u r i n g the summer are r e p r e s e n t a t i v e . F i g u r e 3 a l s o h i g h l i g h t s the wide f l u c t u a t i o n s i n flows between con s e c u t i v e days. 2.7.3 T i d a l Gates T i d a l gates were f i r s t c o n s t r u c t e d i n 1912 (Wilson, 1986) and upgraded i n 1974. They are l o c a t e d where Highway 99A c r o s s e s each r i v e r . The gates prevent s a l i n e contamination of the f r e s h waters, to maintain water q u a l i t y f o r i r r i g a t i o n a l purposes. The gates are opened p a s s i v e l y whenever the p r e s s u r e on the upstream s i d e i s g r e a t e r than opposing pressure on the downstream si d e ( i . e . at low t i d e ) . They c l o s e when c o n d i t i o n s are r e v e r -sed. Gate o p e r a t i o n s have been recorded s i n c e 1974. They r e v e a l that the gates are u s u a l l y open from 1 - 9 hours per day, but may be c l o s e d f o r up to 8 days at a time. F i g u r e 4 i s an i n t e r e s t i n g summary graph, as presented i n Cox and McFarlane (1978), of the t i d a l gate o p e r a t i o n s . I t r e f l e c t s the strong c o r r e l a t i o n bet-ween t o t a l monthly p r e c i p i t a t i o n (Surrey Newton r e c o r d i n g s t a t -ion) and the number of hours the gates remained open that month. 2.8 Mud Bay and E s t u a r i n e E n v i r o n m e n t s B i o l o g i c a l growth i n the Mud Bay estuary i s i n t e g r a l l y t i e d to the q u a l i t y of water that i t r e c e i v e s from the Serpentine and Nicomekl R i v e r s . In f a c t , Mud Bay was once the source of 60% of B r i t i s h Columbia's s h e l l f i s h i n d u s t r y , but the f i s h e r y was c l o s e d i n 1962 due to f e c a l contamination from r i v e r s d r a i n i n g i n t o the 19 TOTAL MONTHLY PRECIPITATION (mm) SOO-i 200 100 NICOMEKL TIDAL GATES1 HOURS PER MONTH OPEN NICOMEKL TIDAL GATES' HOURS PER DAY OPEN SERPENTINE TIDAL GATES i HOURS PER MONTH OPEN 200 100 200 ICO SERPENTINE TIDAL GATES • HOURS PER DAY OPEN \ T — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i — r M A M J J A S O N D J F MA MJ J A S O N D 1974 1975 - I — i — i — I — I — i — r J F M A M J J 1976 ~ i — i — i — r A 3 0 N ~i—r o J i — i — r F M A 1977 F i g u r e 4: T i d a l Gate Operations - Ser p e n t i n e R i v e r , 1974-1977, (from Cox and McFarlane, 1978) Bay (Kay, 1976). At present, only h a r v e s t i n g of crab, prawn, and shrimp i s p e r m i t t e d ; of these, only crab i s present i n commercial q u a n t i t i e s . However, the t i d a l f l a t s do p r o v i d e feeding grounds f o r j u v e n i l e salmon and some h e r r i n g and waterfowl. 2.9 F i s h and W i l d l i f e 2.9.1 F i s h H i s t o r i c a l l y , the Serpentine and Nicomekl R i v e r s contained about 6500 Steelhead, 3500 C u t t h r o a t Trout and around 15,000 Coho (O'Riordan, 1976). Today, estimates are roughly 100 - 200 S t e e l -head, 400 C u t t h r o a t ( C a v e r h i l l , 1986) and the most recent 5 year average f o r Coho i s 700 (Schubert, 1986). H i r s t et a l . (1979) p o s t u l a t e d t h a t the d e c l i n e i n the f i s h e r y i s l i k e l y the r e s u l t of u r b a n i z a t i o n and a g r i c u l t u r a l impacts on spawning h a b i t a t s i n the upland t r i b u t a r i e s , as w e l l as the impact upon lowland r e a r -ing h a b i t a t s by i n t e n s i v e farming and land drainage p r a c t i c e s . The F i s h e r i e s and Marine S e r v i c e prepared a map, shown in F i g u r e 5, i l l u s t r a t i n g the m i g r a t i o n and r e a r i n g r outes, spawning grounds and r e c e i v i n g branches of the Serpentine system. D e t a i l -ed d e s c r i p t i o n s of the m o r p h o l o g i c a l , p h y s i c a l and a q u a t i c char-a c t e r i s t i c s of each s e c t i o n of the watercourse have been prese n t -ed i n Cox and McFarlane (1978), and done by Backman and Simonson (1986). As w e l l , the watercourse has been d i v i d e d i n t o numerous "reaches" and each reach has been ev a l u a t e d f o r spawning potent-i a l , r e a r i n g q u a l i t y , and downstream movements of f r y and j u v e n i l e s . 21 to to L E G E N D migration & rearing routes ima spawning F i g u r e 5: M i g r a t i o n R o u t e s and S p a w n i n g H a b i t a t s . ( P r e p a r e d by F i s h e r i e s and M a r i n e S e r v i c e ) 2.9.2 W i l d l i f e Cox (1975) reviewed the w i l d l i f e resources of the Serpentine - Nicomekl b a s i n ; some of h i s p o i n t s are i n c l u d e d i n t h i s sec-t i o n . The watershed i s an i n t e g r a l part of the F r a s e r ' River E s t u a r y and D e l t a system, the most important w i n t e r i n g area f o r migratory b i r d s i n Canada , and a key element in the P a c i f i c Flyway of North America. Thus, i t a t t r a c t s i t s share of the m i l l i o n s of waterfowl and a q u a t i c b i r d s , which migrate through and/or winter i n the F r a s e r Lowland. Over one hundred and f i f t y b i r d s p e c i e s have been observed i n the area. The a c t u a l numbers of b i r d s i s not known a c c u r a t e l y , but i t may be assumed that s e v e r a l hundred thousand waterfowl and probably shore b i r d s , num-ber i n g i n the m i l l i o n s , are supported by the a r e a . Up to 66 s p e c i e s of p a s s e r i n e and numbers of r a p t o r i a l b i r d s are a l s o present w i t h i n the watershed. Wetland mammalian s p e c i e s l i k e muskrat, racoon, beaver, o t t e r , and weasel are the most n o t i c e a b l e mammals. Others p r e s -ent i n the wooded zones i n c l u d e r a b b i t s , skunk and oppossums. The f i e l d s are host to innumerable f i e l d mice, moles and shrew, on which the r a p t o r i a l b i r d s are dependent. C u r r e n t l y there are 6 gun c l u b s o p e r a t i n g w i t h i n the b a s i n , with a t o t a l of 1170 members (Trew, 1986). Hunting access i s p r i m a r i l y gained v i a l e a s i n g arrangements between the gun c l u b and p r i v a t e landowners. P u b l i c waterfowl hunting i s p e r m i t t e d only on p a r t s of the Boundary Bay - Mud Bay f o r e s h o r e s . Fortuna-t e l y , the waterfowl hunting season, October through January, does not c o n f l i c t with a g r i c u l t u r a l use. 23 2.10 Summary The f i s h k i l l s of e a r l i e r years has motivated the a c t i o n to a r t i f i c i a l l y aerate the Serpentine R i v e r . The primary, human, use f o r the r i v e r i s to meet a g r i c u l t u r a l needs; however, urban stormwater runoff i s i n c r e a s i n g l y p l a c i n g demands on the Serpent-i n e . I n t e n s i v e c u l t i v a t i o n of the land i s r e q u i r e d to make farming a p r o f i t a b l e venture. S o i l s i n the area have a high o r g a n i c content.' Surrey c l i m a t e i s c h a r a c t e r i z e d by m i l d , wet winters and warm, dry summers. As a consequence, r i v e r flows are v a r i a b l e , and high d u r i n g the f a l l and winter, and low i n the summer. F i s h p o p u l a t i o n s spawning on the r i v e r are d r a m a t i c a l l y reduced from h i s t o r i c times. I t i s the i n t e n t of t h i s a e r a t i o n scheme to maintain and promote the f i s h e r y i n the Serpentine R i v e r . 24 3.ARTIFICIAL AERATION 3.1 L i t e r a t u r e Review There are three major areas where a r t i f i c i a l a e r a t i o n i s employed i n environmental e n g i n e e r i n g : wastewater, l a k e s and r i v e r s . The three d i f f e r i n nature, environmental c o n d i t i o n s and d e s i r e d oxygen l e v e l s . W i thin each of these areas, m u l t i p l e methods of a e r a t i o n may be used. Ma r t i n (1927) r e p o r t s that experiments on a e r a t i o n of waste-water s t a r t e d i n England as e a r l y as 1882. A l o t of time, e f f o r t and expense has been spent s i n c e then on improving the e f f i c i e n -c i e s of oxygen t r a n s f e r t o wastewater. Hypolimnetic a e r a t i o n began i n the l a t e 1940's (Mercier and P e r r e t , 1949) and conti n u e s today as an important technique f o r f i s h e r i e s enhancement and water q u a l i t y improvement (Ashley, 1985). The f i r s t r e p o r t e d instream a e r a t o r was i n s t a l l e d on the Flambeau R i v e r i n Wisconsin i n 1943 ( T y l e r , 1946). T y l e r concluded "Thus the n a t u r a l methods of s e l f p u r i f i c a t i o n of our streams, which have been so important i n c o n s e r v i n g t h e i r waters f o r the use of mankind, may be r e i n f o -rced e f f i c i e n t l y and economically by instream a e r a t i o n . " T y l e r ' s enthusiasm, though shared by many, has been r e s i s t e d by govern-ment r e g u l a t o r s p r i m a r i l y on p h i l o s o p h i c a l grounds i . e . wastewat-er should be t r e a t e d at the source. Most r e s e a r c h e r s agree with t h i s premise but a l s o f e e l t h a t r i v e r a e r a t i o n i s meant to pro-v i d e supplemental treatment, on a pa r t time b a s i s , at the most c r i t i c a l times of the year. T h i s i s , i n many cases (Amberg, 1969; Imhoff, 1968; and Whipple et a l . , 1969), more co s t e f f e c t -ive than secondary or t e r t i a r y treatment f a c i l i t i e s . A l s o , i n -25 stream a e r a t i o n can provide a measure of p r o t e c t i o n a g a i n s t non-p o i n t source p o l l u t i o n . The l i t e r a t u r e on a r t i f i c i a l r i v e r a e r a t i o n i s very sparse, with only a handful of i n - s i t u a p p l i c a t i o n s having been implemen-ted and r e p o r t e d on. River a e r a t i o n options i n c l u d e pressure i n j e c t i o n , weirs, t u r b i n e , U-tubes, s u r f a c e and d i f f u s e d a e r a t i o n systems. A i r or pure oxygen may be used. A d i f f e r e n t i a t i o n between l a r g e and small r i v e r s i s made in the l i t e r a t u r e (Whip-p l e , 1971), because of the unique d i f f e r e n c e s between the two. A pressure i n j e c t i o n system was f i r s t d e s c r i b e d by Anon (1960). I t e s s e n t i a l l y s u p e r s a t u r a t e s a s m a l l p o r t i o n of the t o t a l flow, which i s then remixed with the main flow; the excess a i r i s r e l e a s e d as very small bubbles, which r i s e through and a e r a t e the r e s t of the water. Amberg et al.,(1969) found that a b s o r p t i o n e f f i c i e n c i e s as high as 55% were a t t a i n e d and that t r e a t i n g only 1.64% of the t o t a l flow enabled a 2 ppm i n c r e a s e i n DO l e v e l s . Weirs have been used s u c c e s s f u l l y as a e r a t i o n d e v i c e s (Game-son et a l . , 1958; H a g i s t , 1967; Imhoff and A l b r e c h t , 1978). In f a c t , an i n c r e a s e of 3 ppm was r e p o r t e d with a 2.8 m drop on B a d f i s h Creek, Wisconsin (Wiley and Lueck, 1960). Of course, i t i s necessary to have a s u f f i c i e n t head drop f o r t h i s method to be employed. The f i r s t , f u l l - s c a l e look at t u r b i n e a e r a t i o n o c c u r r e d on the Flambeau R i v e r , Wisconsin i n 1953; Wiley and Lueck (i960) concluded " . . . t u r b i n e r e a e r a t i o n has been found p a r t i c u l a r l y u s e f u l i n a l l e v i a t i n g c r i t i c a l c o n d i t i o n s on l a r g e r i v e r s where 26 power dams are so l o c a t e d and other c o n d i t i o n s permit the use of t h i s method.". Of s e v e r a l instream a e r a t i o n methods i n p l a c e on the Ruhr R i v e r i n Germany, the most e f f e c t i v e and most economical was a t u r b i n e a e r a t i o n i n s t a l l a t i o n (Imhoff and A l b r e c h t , 1978). U-tube a e r a t i o n was i n t r o d u c e d i n the Netherlands about 1957 ( B r u i j n and T u i z z a d , 1958). An understanding of the o p e r a t i o n and advantages of the U-tube system i s given by Speece, 1969b; B r u i j n and T u i z z a d , 1958; and Speece et a l . , 1969. E s s e n t i a l l y , a i r or oxygen i s int r o d u c e d at the top of the downflow s i d e of the U-tube, such that the bubble i s swept down with the water. The p r e s s u r i z a t i o n and long c o n t a c t times i n the U-tube provide good o p p o r t u n i t y f o r oxygen t r a n s f e r . In f a c t , oxygen a b s o r p t i o n e f f i c i e n c i e s of 90% can be achieved with a p r o p e r l y designed U-tube. L i k e the pressure i n j e c t i o n system, the idea i s to super-s a t u r a t e a p o r t i o n of the flow and then r e i n t r o d u c e i t to the main flow. The f i r s t t r i a l u s i ng mechanical s u r f a c e a e r a t o r s (the most common method) took p l a c e i n 1962 i n the Ship and S a n i t a r y Canal of Chicago (Eng. News Record 1962). B a s i c a l l y , the u n i t has an im p e l l e r which draws water to the s u r f a c e and c a s t s i t out p e r i -p h e r a l l y by c e n t r i f u g a l f o r c e , c r e a t i n g a zone of inten s e t u r b u l -ence extending out from the a e r a t o r ; w i t h i n t h i s zone, a i r i s e n t r a i n e d i n t o the water and oxygen absorbed (Whipple et a l . , 1970). Some oxygen t r a n s f e r r a t e s r e p o r t e d i n the l i t e r a t u r e are given i n Table 5. P o t e n t i a l problems with s u r f a c e a e r a t i o n i n c l u d e foaming, the hazard to r e c r e a t i o n a l v e h i c l e s , the r e s t r i -c t i o n of n a v i g a t i o n a l a c c e s s , resuspension of bottom sediments 27 T a b l e 5. Oxygen T r a n s f e r R a t e s f o r S u r f a c e A e r a t o r s L o c a t i o n T r a n s f e r Rate (kg 0 n/hp-hr) Source Delaware r i v e r P a s s a i c r i v e r A e r a t i o n tank Lab. channel Chicago Sewerage Canal 1 .39 0.95 1 .45 - 1.72 1.81 0.68 - 2.04 Whipple 1971 Whipple et a l . 1970 E c k e n f e l d e r + Ford 1968 Susag et a l . 1966 Kaplovsky et a l . 1964 and, being on the s u r f a c e , i t would be more s u s c e p t i b l e to vandalism. D e s p i t e these problems, Doyle (1973) says i t has been used as a low c o s t method of p r o v i d i n g a d d i t i o n a l oxygen to streams. The d i f f u s e d a i r system of T y l e r ' s (1946) was the f i r s t attempt at a e r a t i n g a r i v e r , " i n - s i t u " . T h i s f i r s t system was composed of Carborundum d i f f u s e r p l a t e s and porous tubes p l a c e d about 3.6 m under water, i n both the headrace and t a i l r a c e of the P i x l e y Dam, Wisconsin. Oxygen t r a n s f e r e f f i c i e n c i e s averaged about 7% but v a r i e d with s a t u r a t i o n d e f i c i t . DO l e v e l s i n c r e a s e d about 0.55 mg/L. Another d i f f u s e d a i r system was rep o r t e d by P a l l a d i n o (1961). I t used d r i l l e d pipe d i f f u s e r s , with 3.2 mm h o l e s , under about 1.4 m of water. T h i s u n i t managed to r a i s e oxygen l e v e l s by about 0.8 mg/L, g i v i n g an a b s o r p t i o n e f f i c i e n c y of 1.7% at i n i t i a l DO c o n c e n t r a t i o n s of 2 to 3 mg/L. Shaw and Yu (1970) r e p o r t e d average oxygen t r a n s f e r r a t e s , on the P a s s a i c R i v e r i n New J e r s e y , of 0.54 kg oxygen/hp-hr, using two 0.2 m a i r supply p i p e s ; each pipe was 24.4 m long and was equipped with 80 L i n k - B e l t A d j u s t - A i r D i f f u s e r s (3.97 m o r i f i c e s ) under a water depth of 3.05 m. As noted above, oxygen t r a n s f e r e f f i c i e n c i e s of 1.7% and 7.0% i n - s i t u are s u b s t a n t i a l l y lower than those o b t a i n e d 28 i n more c o n v e n t i o n a l f i n e - b u b b l e d i f f u s e d - a i r systems w i t h i n a e r a t i o n tanks or lagoons f o r t r e a t i n g wastewater ( t y p i c a l l y 10% to 30%, M e t c a l f and Eddy, 1979) There i s some disagreement i n the l i t e r a t u r e p e r t a i n i n g to the economics of the d i f f u s e d a i r technique. Hogan (1970) s t a t e s " . . . d i f f u s e d a e r a t i o n of streams w i l l not be economically compe-t e t i v e with other methods, even i f the d i f f u s e d system can be designed to achieve a much higher r a t i o of oxygen captured by the water to oxygen s u p p l i e d than has ever been demonstrated f o r comparable depths...Although d i f f u s e d a e r a t i o n i s shown not to be the optimum a e r a t i o n technique f o r water of l i m i t e d depth, such as a stream, t h i s technique i s shown to i n c r e a s e i n i t s economic c o m p e t i t i v e p o s i t i o n as the depth i n c r e a s e s . " Whereas Whipple (1971) concludes that "River a e r a t i o n systems appear to o f f e r a very economical means of a c h i e v i n g DO standards on major r i v e r s . Whether s u r f a c e a e r a t o r s or bottom d i f f u s e r s are a p p l i c a b l e to a given s i t e depends p r i m a r i l y on requirements of n a v i g a t i o n ( r a t h -er than economics)." Eder and Cunningham (1982) note that "Oxygen t r a n s f e r e f f i c -i ency, u sing a i r , i s very poor as s a t u r a t i o n i s approached and i s normally l i m i t e d to s i t u a t i o n s i n which the DO d e f i c i t i s very l a r g e . " Both Amberg et a l . (1969), and Speece (1969a) agree t h a t the use of molecular oxygen becomes ec o n o m i c a l l y c o m p e t i t i v e when attempting to aerate water which i s a l r e a d y above 50% s a t u r a t i o n , e s p e c i a l l y i n l a r g e urban c e n t e r s where pure oxygen can be pur-chased at reasonable r a t e s . In summary, c o s t s are very d i f f i c u l t to compare because of 29 the many d i f f e r e n t f a c t o r s i n v o l v e d and because some c o s t s are r e p o r t e d and some are not. The reader i s r e f e r r e d to the s p e c i f i c s t u d i e s mentioned f o r more d e t a i l e d i n f o r m a t i o n . 3.2 P u r p o s e Wiley (1947) s a i d that the o b j e c t i v e s of a r t i f i c i a l stream a e r a t i o n are " ( 1 ) . To a c c e l e r a t e m i c r o b i o l o g i c a l breakdown of fermentable organic matter p r i m a r i l y r e s p o n s i b l e f o r the oxygen demand, by m a i n t a i n i n g minimum l e v e l s of DO. ( 2 ) . To supply any d e f i c i e n c y i n d i s s o l v e d oxygen r e s u l t i n g from the m i c r o b i o l o g i c a l o x i d a t i o n s , by making up the d i f f e r e n c e s between the t o t a l oxygen demand and the oxygen normally s u p p l i e d by n a t u r a l r e a r a t i o n of the stream." To expand on Wiley's o b j e c t i v e s with regard to the Serpen-t i n e R i v e r i n p a r t i c u l a r , the u l t i m a t e goal was to i n s t a l l a system capable of p r e v e n t i n g a f i s h k i l l . However, due to budge-t a r y c o n s t r a i n t s , the purpose of the 1985 a e r a t i o n scheme became twofold (1) to provide a l o c a l zone or channel of oxygenated water as a kind of r e p r i e v e f o r the f i s h and (2) to demonstrate a p i l o t type u n i t to the government a u t h o r i t i e s and assess the v i a b i l i t y of t h i s technology. The s i z e of the a e r a t i o n system pr o v i d e d was d e f i n i t e l y i n s u f f i c i e n t to meet the t o t a l oxygen demand of the e n t i r e r i v e r , d u r i n g the c r i t i c a l p e r i o d s ( r e f e r to Appendix I ) ; however, m u l t i p l e systems, s t r a t e g i c a l l y l o c a t e d on the r i v e r , c o u l d be used to maintain DO l e v e l s high enough u n t i l c o n d i t i o n s improved and to prevent a f i s h k i l l . At present, i n -s i t u a e r a t i o n i s viewed as a short-term, remedial measure, u n t i l the source of the DO .depression i s i s o l a t e d or u n t i l a more 30 s u i t a b l e long term s o l u t i o n i s i n s t i t u t e d . 3.3 Design The s i t i n g of the a e r a t i o n system was chosen to maximize oxygen t r a n s f e r e f f i c i e n c i e s under the given c o n s t r a i n t s . Con-t r a i n t s that were imposed i n c l u d e d power and c o n s t r u c t i o n acces-s i b i l i t y , as w e l l as c o n s i d e r a t i o n f o r p o t e n t i a l vandalism at the s i t e . Since g r e a t e r e f f i c i e n c i e s are a t t a i n e d with f i n e bubble systems (longer c o n t a c t times) as compared to coarse-bubble sys-tems, the former was used to supply the maximum amount of d i s s o l -ved oxygen p o s s i b l e . A hydrographic survey was undertaken to s e l e c t one of the two most l i k e l y s i t e s (152nd St and 160th St, see F i g u r e 7 ) . The south s i d e of 160th St was s e l e c t e d , p r i m a r i -l y because i t was more remote and a nearby farmer c o u l d keep an eye on i t ; t h i s would minimize the p r o b a b i l i t y of vandalism. A l s o , being f u r t h e r upstream, the b e n e f i c i a l e f f e c t s of a e r a t i o n would accrue to a g r e a t e r p o r t i o n of the Serpentine l e n g t h , p r i o r to reaching the t i d a l gates. Two S u t o r b i l t , model 3HBV, 5 horsepower blowers were connec-ted i n p a r a l l e l , and d e l i v e r e d 3.4 cubi c meters of a i r per minute at a pressure of 69 kilonewtons per square meter (7 m of water). Compressed a i r was t r a n s p o r t e d to the a e r a t i o n zone v i a 152 m of 50 mm non-perforated pvc p i p e . F i n a l l y , 304 m of p e r f o r a t e d pvc pip e , with 0.8 mm h o l e s d r i l l e d every 0.15 m, conveyed the a i r to the water. The f i r s t 152 m of p e r f o r a t e d pipe had a 50 mm i n s i d e diameter. To reduce pressure l o s s e s and save expense, the l a s t 152 m of p e r f o r a t e d pipe had a 38 mm i n s i d e diameter. The hole 31 s i z e and spacing was e s t a b l i s h e d by experimentation at H y d r o p h i l -l i c I n d u s t r i e s , Langley B.C. F i g u r e 6 i l l u s t r a t e s the plan and e l e v a t i o n views of the a e r a t i o n system. A z i g - z a g layout p a t t e r n was chosen to impact upon a s i g n i f i c a n t p o r t i o n of the r i v e r width. From the c r o s s -s e c t i o n a l view, i t can be seen that the pipe was designed to remain s t a t i o n a r y about 0.3 m o f f the bottom. T h i s e l i m i n a t e s resuspension of bottom sediments and avoids unnecessary s t r u c -t u r a l s t r e s s e s i f movement were pe r m i t t e d . The f l o a t s on top keep the pipe ( s p e c i f i c g r a v i t y >1.0) from s i n k i n g when i t i s f u l l of water. The concre t e b l o c k s on the bottom prevent the pipe from f l o a t i n g to the s u r f a c e when i t i s f u l l of a i r . Nylon twine was used to a t t a c h the f l o a t s and b l o c k s to the d i f f u s e r l i n e . The concre t e b l o c k s (17.3 kg) were t e s t e d beforehand as to how f a r they c o u l d be expected to si n k i n t o the s o f t , bottom sediments. The net height of water above the d i f f u s e r averages about 3.4 m. 3.4 I n s t a l l a t i o n A 2.4 x 3.1 m cedar shed c o n s t r u c t e d on a 100 mm, r e i n f o r -ced c o n c r e t e pad housed the blowers and r e l a t e d p a r a p h e r n a l i a . About 275 concre t e b l o c k s were d e l i v e r e d and d i s t r i b u t e d along the r i v e r s i d e . The pvc pipe came i n 6.1 m l e n g t h s ; two s e c t i o n s were glued together the ni g h t before i n s t a l l a t i o n . Since the glue took s i x hours to f u l l y develop, the 12.2 m s e c t i o n s were j o i n e d by compression c o u p l i n g s on the water. Each blower was secured to the concre t e and connected i n p a r a l l e l with p i p i n g ( g a l v a n i z e d s t e e l ) , i n c o r p o r a t i n g one way v a l v e s . High a i r temp-32 North river bank (dyked) 216m a Pump House South r iver bank (dyked) P L A N V I E W _2_ E I ^ 2 perforations 0.8mm holes at 0.15m spacing Floats 6 to b • J l I I j IL. "5 Jl II [ II— ^ C o n c r e t e f Blocks *PCV pipe E L E V A T I O N V IEW SECTION A - A N O T E : THE SCHEMATIC SKETCH IS NOT TO S C A L E . Figure 6 • AERATION DESIGN ON T H E S E R P E N T I N E RIVER 33 e r a t u r e s generated by the blowers were handled and d i s s i p a t e d by the s t e e l p i p e . To guard a g a i n s t vandalism and meet P r o v i n c i a l r e g u l a t i o n s (pvc pipe c a r r y i n g compressed a i r must be buried) a t r e n c h was dug down the s l o p e d s i d e of the r i v e r bank for the pvc p i p e . Connections were made down to the p o i n t where the pipe turned upstream. A f t e r the trench was b a c k f i l l e d , three teams of h e l p -e r s performed d i f f e r e n t o p e r a t i o n s . The f i r s t team connected the 12.2 m lengths on the water's s u r f a c e ; the next team fo l l o w e d behind and a t t a c h e d the f l o a t s . The t h i r d team had the d i f f i c u l t task of t y i n g on the concrete b l o c k s and c a r e f u l l y lowering the pipe i n t o the water. While t h i s work was being c a r r i e d out, the e l e c t r i c a l c o n t r a c t o r was p r e p a r i n g the blowers to r e c e i v e hook up from B.C. Hydro. Once e v e r y t h i n g was i n p l a c e , the blowers were turned on and i t took 5 - 1 0 minutes f o r the water to be pushed out of the p i p e . The z i g - z a g p a t t e r n became r e a d i l y v i s i b l e on the water's s u r f a c e ; i n f a c t the t u r b u l e n c e was such that r e a e r a t i o n r a t e s i n the area would be c o n s i d e r a b l y higher than i n the more p l a c i d areas of the r i v e r . I n i t i a l l y , the noise l e v e l from the blowers bothered the nearby farmer, so measures were taken to muffle the sound to an a c c e p t a b l e l e v e l . These measures i n c l u d e d b u i l d i n g l e a d - l i n e d boxes, i n s t a l l a t i o n of f i b e r g l a s s i n s u l a t i o n and u s i n g rubber s e a t s f o r the blowers. C o n s t r u c t i o n of the l e a d - l i n e d boxes allowed s u f f i c i e n t o p p o r t u n i t y f o r the c i r c u l a t i o n of a i r , which a c t s to c o o l the blowers. F i b e r g l a s s i n s u l a t i o n was i n s t a l l e d on a l l four w a l l s and the roof; however, area was p r o v i d e d to allow enough a i r i n t o the shed to meet the blower's requirements. 34 3.5 Assessment In a c t u a l p r a c t i c e , the two 5 hp blowers were able to force a i r along 80% of the t o t a l l e n g t h of d i f f u s e d l i n e . The t o t a l volume of a i r d e l i v e r e d to the water was s t i l l 3.4 cubi c meters per min. but i t was d e l i v e r e d through 244 m of pipe i n s t e a d of 304 m. Since the severe DO drop c o u l d occur very r a p i d l y , i t was decided to monitor the DO l e v e l s three times a week while the ae r a t o r was o p e r a t i o n a l . T h i s would enable r e l e v a n t information to be gathered at the opportune time. T r a n s f e r e f f i c i e n c i e s improve as the oxygen d e f i c i t i n -cr e a s e s . In f a c t , when the DO l e v e l i s 50% of s a t u r a t i o n or gr e a t e r , the t r a n s f e r of oxygen from an a i r bubble i s very s m a l l . The lowest value f o r DO (experienced at s i t e 12, see F i g u r e 7) during the a e r a t i o n p e r i o d (Sept. 20 - Nov. 29) was 7.3 mg/L at a Temp.= 12.9 °C; t h i s was e q u i v a l e n t to 69% s a t u r a t i o n . There-f o r e , s i n c e the oxygen l e v e l s d i d not drop to the l e v e l s of past years, (see Note below) t h e . f u l l c a p a b i l i t y of the aer a t o r was never f u l l y demonstrated d u r i n g t h i s t r i a l p e r i o d . Nevertheless, the Department of F i s h e r i e s and Oceans and the v a r i o u s P r o v i n c i a l departments are s a t i s f i e d with t h i s prototype system and i t s a b i l i t y to provide some measure of r e l i e f to the Serpentine R i v e r , i n f u t u r e y e a r s . C o n s i d e r a t i o n i s being given to i n s t a l -l i n g a d d i t i o n a l u n i t s elsewhere along the r i v e r . NOTE: As October/85 was approaching, i t appeared as i f weather c o n d i t i o n s were s e t t i n g up f o r a dramatic DO drop on the r i v e r . The summer was very dry £nd hot ( a l l o w i n g a b u i l d u p of BOD i n the d i t c h e s ) ; mid September was r e l a t i v e l y c o o l with some s i g n i f i c a n t 35 r a i n f a l l events (23.2 mm on Sept. 16 at Surrey M u n i c i p a l H a l l ) and then h o t t e r days i n l a t e Sept. (22°C on Sept. 28) and e a r l y October, which c r e a t e d an algae bloom (see Appendix I I ) . Between Oct. 12 and Nov. 7 i t r a i n e d everyday except one ( t o t a l l i n g 332 mm). Then, i n e a r l y November a very unusual c o l d s p e l l h i t and temperatures were below, f r e e z i n g from Nov. 12 i n t o December. Th e r e f o r e , the o v e r a l l weather c o n d i t i o n s d i d not encourage the severe DO drop as seen i n previous years. C a l c u l a t i o n s are presented i n Appendix I, which i n d i c a t e the p o r t i o n of the oxygen demand, in a worst-case s c e n a r i o , which can, t h e o r e t i c a l l y , be met by the e x i s t i n g d i f f u s e d a e r a t i o n system. 36 4.SAMPLING PROGRAM, (1985) 4.1 I n t r o d u c t i o n The q u a l i t y of a n a l y t i c a l data i s c r i t i c a l l y dependent on the v a l i d i t y of the sample and the soundness of the sampling program (MacDougall et a l . , 1980). The o b j e c t of t h i s sampling program was to generate water chemistry data, which was r e p r e s -e n t a t i v e of the s t a t e of the r i v e r at a given time. The data was then used, (1) to answer q u e s t i o n s such as "Are n u t r i e n t s l i m i t -ing b i o l o g i c a l growth? How much oxygen demanding m a t e r i a l i s p r e s e n t ? " e t c . and (2) to provide i n f o r m a t i o n upon which to draw reasonable c o n c l u s i o n s . The sampling program was based on a reasonable h y p o t h e s i s f o r the low d i s s o l v e d oxygen (DO) l e v e l s of p r e v i o u s years and on budgetary c o n s t r a i n t s . The hypothesis was: algae which d i e i n the f a l l c o n t r i b u t e an e x c e s s i v e amount of bioche m i c a l oxygen demand (BOD), thus d e p l e t i n g the DO re s e r v e s of the r i v e r . Seven sampling s i t e s were chosen along the l e n g t h of the r i v e r (see F i g u r e 7 ). Weekly grab samples were c o l l e c t e d from the middle of the r i v e r , at about h a l f a meter below the water s u r f a c e . Samples were c o l l e c t e d on Mondays, or Tuesdays when a h o l i d a y f e l l on a Monday. Samples were always c o l l e c t e d consec-u t i v e l y , beginning at the upstream s t a t i o n i n the morning and ending with the f u r t h e s t downstream s t a t i o n i n the a f t e r n o o n . The samples, c o l l e c t e d i n p l a s t i c b o t t l e s , were kept i n a c o o l e r , with i c e , and t r a n s p o r t e d to the M i n i s t r y of Environment's l a b o r -a t o r y at B.C. Research, Vancouver f o r a n a l y s i s the next day. Seven parameters (chemical oxygen demand, organic carbon, organic 37 n i t r o g e n , ammonia, n i t r a t e , orthophosphate and t o t a l phosphate) were q u a n t i f i e d by the l a b o r a t o r y . In a d d i t i o n , weekly f i e l d -sampling measured DO, temperature, pH, s p e c i f i c conductance and c h l o r o p h y l l - a . Monthly, primary p r o d u c t i v i t y experiments, using r a d i o a c t i v e b i c a r b o n a t e , were a l s o performed. Cross s e c t i o n a l and depth DO readings were a l s o r e g u l a r l y e v a l u a t e d . During the a e r a t i o n p e r i o d (Sept. 20 - Nov. 29), DO l e v e l s were monitored three times per week. Two s e t s , of three sediment samples, taken in the a e r a t i o n area, were a l s o analysed f o r t o t a l n i t r o g e n , t o t a l phosphorus, t o t a l carbon as w e l l as a number of metals. F i n a l l y , s e v e r a l d i t c h e s were sampled at v a r i o u s times dur i n g the F a l l p e r i o d . Q u a l i t y c o n t r o l , on some of the analyses performed by the M i n i s t r y of Environment l a b o r a t o r y , was undertaken at the U.B.C. Environmental E n g i n e e r i n g l a b o r a t o r y and i s d i s c u s s e d i n s e c t i o n 4.4. 4.2 S i t e L o c a t i o n s 4.2.1 I n t r o d u c t i o n Seven s i t e l o c a t i o n s were chosen along the l e n g t h of the Serpentine R i v e r . I t was f e l t t h a t seven s i t e s were s u f f i c i e n t to develop an overview of the Serpentine R i v e r ' s behaviour and perhaps i s o l a t e a p a r t i c u l a r reach as a problem a r e a . I t was a l s o necessary to a c q u i r e data w e l l upstream, j u s t upstream, w i t h i n and downstream of the a e r a t i o n zone. S i t e l o c a t i o n s , which have been used i n p r e v i o u s years by personnel from the M i n i s t r y of Environment, were s e l e c t e d f o r t h i s study, so that 38 comparisons c o u l d be made between y e a r s . The s i t e s were l i m i t e d to seven, because of budget and time c o n s t r a i n t s . F i g u r e 7 (from Moore, 1984) presents the seven l o c a t i o n s . Four s i t e s (10, 6, 152, 99A) were a c c e s s i b l e by bridge and three (12, 13, 14) had to be accessed by boat. In t o t a l , 19 km, or 0.65 of the Serpentine R i v e r ' s t o t a l l e n g t h were covered by these seven s t a t i o n s . 4.2.2 S i t e D e s c r i p t i o n s A l l seven s i t e s are without v e g e t a t i v e cover and are dyked, to c o n t a i n a 100 year f l o o d . A l l seven s i t e s are l o c a t e d i n the f l o o d p l a i n , as d e f i n e d by the 1.5 m contour of the Serp e n t i n e -Nickomekl watershed ( r e f e r to F i g u r e 8, from Bergmann, 1980). River widths given i n each d e s c r i p t i o n o b v i o u s l y vary with water depth and are re p o r t e d only to give the reader a general p i c t u r e of the s i t e . S i t e #10 = I n t e r s e c t i o n of the Serpentine with F r a s e r Hwy. I t i s the shallowest (as low as 1 meter) of a l l s i t e s recorded. In the summer, i t was o f t e n covered with t h i c k algae mats. I t i s approximately 16 m wide. S i t e #6 = I n t e r s e c t i o n of the Serpentine with Highway #10. I t s approximate width i s 20 meters. I t i s some 650 m. upstream of the a e r a t i o n zone. The water depth i s about 1.5 m. S i t e #12 = 227 m upstream of the center l i n e of 160th S t . I t s approximate width i s 22 m. I t i s the only s t a t i o n l y i n g w i t h i n the a e r a t i o n zone. I t ' s the deepest of a l l the s i t e s ( 4 m). 39 40 41 S i t e #13 = 100 m upstream of the center l i n e of 160th S t . I t i s j u s t downstream of the a e r a t i o n zone. I t i s approximately 22 m wide and 3.5 m deep. S i t e #14 = 150 m downstream of the center l i n e of 160th S t . I t has an approximate width of 22 m and depth about 2.5 - 3.5 m. S i t e #152 = I n t e r s e c t i o n of the Serpentine with 152nd St. I t has an approximate width of 30 m and depth about 3.0 m. S i t e #99A = I n t e r s e c t i o n of the Serpentine with Highway 99A. Samples were taken only 15 m upstream from the t i d a l gates. The approximate width i s 28 m and depth i s about 3.0 m. 4.3 P a r a m e t e r s The parameters chosen were used to e v a l u a t e the n u t r i e n t l e v e l s p r e sent, oxygen demand and perhaps i s o l a t e a p a r t i c u l a r problem parameter. In t h i s s e c t i o n , r e l e v a n t i n f o r m a t i o n on each parameter i s presented. 4.3.1 Laboratory 4.3.1.1 Chemical Oxygen Demand (COD) The COD t e s t was used as a measure of the oxygen e q u i v a l e n t of the organic matter content of a sample that i s s u s c e p t i b l e to o x i d a t i o n by a st r o n g chemical o x i d a n t . The a n a l y t i c a l technique used was the Open Reflux Method (Standard Methods, 1985) using potassium dichromate ( I ^ C ^ O ^ ) . Samples were c o l l e c t e d i n 250 ml b o t t l e s , u n f i l t e r e d , with 0.2 ml c o n c e n t r a t e d H 2 S 0 4 as a p r e s e r -v a t i v e . S i g n i f i c a n t i n t e r f e r e n c e from c h l o r i d e s o c c u r r e d on s e v e r a l 42 o c c a s i o n s , due to s a l i n e contamination of the r i v e r . T h i s r e s u l t -ed from the t i d a l gates being jammed open. HgSO^ i s added to e l i m i n a t e the c h l o r i d e i n t e r f e r e n c e , at the M i n i s t r y of E n v i r o n -ment Laboratory, only as requested. S i n c e , at the time of samp-l i n g , i t was assumed the r i v e r was, as normal, i n i t s freshwater s t a t e , t h i s request was not made. Other l e s s s i g n i f i c a n t i n t e r -f erences are from NH^, NK^ and reduced i n o r g a n i c s p e c i e s . 4.3.1.2 T o t a l Organic Carbon (TOC) TOC i s a more convenient and d i r e c t e x p r e s s i o n of t o t a l organic carbon than e i t h e r the BOD or COD t e s t s . I t a l s o i n c l u d -es a component of organic carbon that the COD t e s t w i l l not p i c k up. The Combust i o n - I n f r a r e d Method (Standard Methods 1985) was used as the a n a l y t i c a l technique. Samples were u n f i l t e r e d , un-preserved and a i r was excluded. I n t e r f e r e n c e s are n e g l i g i b l e . 4.3.1.3 T o t a l Ammonia (NH^ + NH*) T o t a l ammonia was chosen f o r : i t s t o x i c nature to f i s h , i t s n u t r i e n t v a l u e , and i t s c o n t r i b u t i o n to oxygen demand. The t o x i -c i t y to f i s h by ammonia or ammonium s a l t s has been a t t r i b u t e d to the u n - i o n i z e d ammonia s p e c i e s (NH^) (Wuhrmann et a l . , 1947; Wuh-rmann and Woker, 1948). The European Inland F i s h e r i e s A d v i s o r y Commission has suggested a water q u a l i t y c r i t e r i o n of 0.025 mg/L NH-j-N. Ammonia was determined by the Automated B e r t h o l o t Method (Technicon Instrument Corp., 1973) and i n c l u d e s the u n - i o n i z e d and i o n i z e d (NH*) components. The u n - i o n i z e d p o r t i o n of t o t a l ammonia i s pH and temperature dependent. Thurston et a l . , (1974) 43 present t a b l e s i n t h e i r paper of the percent of u n - i o n i z e d ammo-n i a , i n aqueous ammonia s o l u t i o n s , of zero s a l i n i t y , as a func-t i o n of pH and temperature. For example on Sept. 16/85 at s i t e #6 (see Appendix II) f o r a Temp = 14.5 °C, pH = 6.32, and NH^ = 0.956 mg/L NH^-N, the u n - i o n i z e d f r a c t i o n would be only 0.05 mg/L NH^-N, a c c o r d i n g to Thurston et a l . , (1974). 4.3.1.4 Organic N i t r o g e n Organic n i t r o g e n was chosen f o r i t s n u t r i e n t value and c o n t r i b u t i o n to oxygen demand. Organic n i t r o g e n was obtained by t a k i n g the d i f f e r e n c e between ammonia and T o t a l K j e l d a h l Nitrogen (TKN). TKN values were e s t a b l i s h e d using the Block D i g e s t i v e Automated C o l o r i m e t r i c Method (Standard Methods, 1985). U n i t s are expressed as mg/L of N i t r o g e n . -4.3.1.5 N i t r a t e N i t r o g e n (NOg) N i t r a t e was chosen f o r i t s n u t r i e n t value to algae. As a component of t o t a l n i t r o g e n , i t can a l s o be used to determine whether n i t r o g e n i s a l i m i t i n g n u t r i e n t . N i t r a t e p l u s n i t r i t e v a l u e s were ob t a i n e d by the Automated Cadmium Reduction Method (Standard Methods, 1985). N i t r i t e values were obtained through the Automated D i a z o t i z a t i o n Method (Standard Methods, 1985). Th e r e f o r e , the d i f f e r e n c e between the measurements given by these two techniques i s the N i t r a t e v a l u e . U n i t s are expressed as mg/L N0 3~N. 4.3.1.6 Orthophosphate (Ortho-P) Orthophosphates were chosen because they are used i n a g r i -44 c u l t u r a l f e r t i l i z e r s and phosphorus i s o f t e n the most c r i t i c a l n u t r i e n t i n r e g u l a t i n g p r o d u c t i v i t y i n freshwater systems. Orth-ophosphates are r e a d i l y a v a i l a b l e f o r b i o l o g i c a l metabolism, s i n c e they do not need f u r t h e r breakdown. A l s o , as a component of t o t a l phosphorus, ortho-P can a l s o be used to determine whether phosphorus i s a growth l i m i t i n g n u t r i e n t . To determine quant-i t i e s , the Automated A s c o r b i c A c i d Method (AAA) was used (Stand-a r d Methods, 1985). U n i t s are expressed as mg/L PO^-P. 4.3.1.7 T o t a l Phosphorus T o t a l phosphorus was chosen s i n c e phosphorus i s e s s e n t i a l f o r the growth of algae and other organisms. T o t a l phosphorus values were determined by f i r s t d i g e s t i n g a l l phosphorus forms to orthophosphates and then using the AAA Method. U n i t s are expres-sed as mg/L phosphorus. 4.3.1.8 Sediment Analyses An Eckman dredge r e t r i e v e d the s u r f a c e sediment samples. An Eckman dredge i s a s o f t - s u r f a c e , sediment sampler that has s p r i n g loaded jaws, which are a c t i v a t e d by a heavy weight s l i d down the lowering c a b l e . Three separate samples were taken a c r o s s the r i v e r width, at two s t a t i o n s , and analysed f o r TKN, t o t a l phosph-orus, t o t a l carbon as w e l l as numerous metals. Samples were d i g e s t e d using Concentrated N i t r i c A c i d and the a n a l y t i c a l t e c h -nique i s c o n t a i n e d in an update of the Environmental Laboratory Manual (1976), B.C. M i n i s t r y of Environment. 45 4.3.2 F i e l d 4.3.2.1 D i s s o l v e d Oxygen (DO) D i s s o l v e d oxygen measurements assessed a e r a t o r performance, e v a l u a t e d the o v e r a l l h e a l t h of the r i v e r and i n d i c a t e d abrupt changes in water q u a l i t y . A d i s s o l v e d oxygen meter and probe (Yellow Springs I n s t r u e -ment Co.,YSI), model #57, c a l i b r a t e d to e i t h e r the Winkler or the a i r s a t u r a t i o n technique, was used to measure the d i s s o l v e d oxygen. Some i n - s i t u Winkler t e s t s were performed to c o r r o b o r a t e the DO probe values ( r e f e r to S e c t i o n 4.4). 4.3.2.2 Temperature Water temperatures p l a y a s i g n i f i c a n t r o l e i n f r y develop-ment, s u r v i v a l , a n d a f f e c t the DO s a t u r a t i o n c o n c e n t r a t i o n . Temp-er a t u r e a l s o serves as a guide to the group of microorganisms (eg mesophiles or p s y c h r o p h i l e s ) which may be p r e s e n t . Temperatures were measured using a YSI, temperature probe ( a s s o c i a t e d with the d i s s o l v e d oxygen meter). 4.3.2.3 S p e c i f i c Conductance S p e c i f i c conductance was used p r i m a r i l y to i n d i c a t e s a l i n e c ontamination. I t was measured u s i n g a YSI, s p e c i f i c conductance probe, model #33. 4.3.2.4 pH pH i s a fundamental water q u a l i t y parameter which i n f l u e n c e s the e q u i l i b r i u m of the bicarbonate-carbonate system, microorg-46 anisms, higher organisms and many chemical s p e c i e s . pH was measured with a Cole-Parmer, d i g i - s e n s e probe, model #5994, and c a l i b r a t e d weekly with s o l u t i o n s of known pH. 4.3.2.5 C h l o r o p h y l l - a C h l o r o p h y l l - a i s the most common p h o t o s y n t h e t i c pigment in green p l a n t s (Keeton, 1980). T h e r e f o r e , i t was chosen to quant-i f y the biomass of phytoplankton i n the r i v e r . However, t h i s value does not d i s t i n g u i s h between l i v i n g and dead a l g a e . Algae can c o n t r i b u t e s i g n i f i c a n t l y to DO l e v e l s , even to the p o i n t of s u p e r s a t u r a t i o n . A l s o , algae blooms are a c l e a r i n d i c a t i o n that excess n i t r o g e n and phosphorus are p r e s e n t . The c h l o r o f o r m -methanol e x t r a c t i o n (Wood, 1985) was used to q u a n t i f y amounts of c h l o r o p h y l l - a . A Turner Designs F l u o r i m e t e r (Model 10) was used to measure the f l o u r e s c e n c e of samples. A standard curve then converted f l o u r e s c e n c e i n t o c h l o r o p h y l l - a . 4.3.2.6 Primary P r o d u c t i v i t y In order to determine the algae's c o n t r i b u t i o n to DO l e v e l s and e s t a b l i s h how s i g n i f i c a n t the l i v i n g p o p u l a t i o n of algae was, monthly primary p r o d u c t i v i t y experiments were run. Since l i g h t l e v e l s and t u r b i d i t y a f f e c t primary p r o d u c t i v i t y , values obtained were r e a l l y j u s t a p i c t u r e of the "moment". Primary p r o d u c t i v i t y experiments were performed j u s t below the s u r f a c e and at e i t h e r 1 or 2 meters below the s u r f a c e . T o t a l i n o r g a n i c carbon measurements were a l s o taken f o r use i n the c a l c u l a t i o n s . Transparent 300 ml, BOD b o t t l e s were f i l l e d with r i v e r water, i n j e c t e d with carbon 14 ( l a b e l l e d HCOg ,Amersham 47 S e r l e ) and allowed to incubate f o r approximately four hours. A blank, using f o r m a l i n , was run a l o n g s i d e the l i v e b o t t l e s to c o r r e c t f o r p h y s i c a l a d s o r p t i o n of the i s o t o p e . A f t e r four hours, each b o t t l e was i n j e c t e d with f o r m a l i n to k i l l a l l l i f e . Then, the algae were separated out on S a r t o r i u s 0.2 micron c e l l u -l o s e n i t r a t e f i l t e r s . The f i l t e r s were d i s s o l v e d i n PCS s c i n t i l -l a t i o n s o l u t i o n and the r a d i o a c t i v i t y counted on an ISOCAP 300 s c i n t i l l a t i o n counter u s i n g an e x t e r n a l standard to c o r r e c t f o r quenching. L a t e r , r a d i o a c t i v i t y data, t o t a l i n o r g a n i c carbon measurements, i n c u b a t i o n time and the iso t o p e d i s c r i m i n a t i o n f a c t o r (1.064) were used to c a l c u l a t e uptake r a t e s (mg C/L/hr). 4.4 Q u a l i t y C o n t r o l The accuracy of the analyses performed by the M i n i s t r y of Environment (ME) l a b o r a t o r y at B.C. Research was v e r i f i e d , on random o c c a s i o n s , by the Environmental E n g i n e e r i n g (EE) l a b o r -a t o r y at the U n i v e r s i t y of B r i t i s h Columbia. R e s u l t s are shown i n Table 6. T a b l e 6. I n t e r l a b Q u a l i t y C o n t r o l DATE LAB COD TOC NO,+N00 TKN TP ORTHO-P mq/L mg/L mqVL Z mg/L mg/L mg/L ME - - 0.38 0.214 0.01 Aug. 12 85 EE 0.40 <0.50 <0.05 ME 27 7 0.57 0.96 0. 122 -Oct. 7 85 EE 20 9 0.62 1 . 1 0. 13 — As noted, there were only minimal d i f f e r e n c e s between the r e s u l t s 48 from the two l a b o r a t o r i e s . A l s o , d u p l i c a t e samples were submit-ted to the ME l a b , i n c o g n i t o , to v e r i f y t h e i r own r e p r o d u c i b i l i t y ( r e f e r to Table 7 ) . T a b l e 7. D u p l i c a t e Samp le C o m p a r i s o n DATE SAMPLE TOC N0_ NH_ ORG N ORTHO-P TOT P mq/L mg; 'L mg7L mg/L mg/L mg/L J u l y 29 #1 1 3 <0. 02 0.009 1 .64 0.008 0.236 J u l y 29 #2 1 3 <0. 02 0.009 1 .47 0.010 0.251 Again, as noted, the d u p l i c a t e sample analyses were minimally d i f f e r e n t from one another. The accuracy of the oxygen meter and probe was checked a g a i n s t the i n - s i t u M o d i f i e d Winkler method of DO dete r m i n a t i o n (Table 8 ) . T a b l e 8. C o m p a r i s o n o f DO P r o b e and M o d i f i e d W i n k l e r DATE SITE PROBE WINKLER 1985 mq/L mg/L Oct. 7 #12 10.2 11.6 Oct. 25 #12 8.3 7.9 Nov. 18 #14 10.0 9.8 Dec. 9 #13 10.4 10.6 Except f o r the l e v e l s on Oct. 7, values compared reasonably w e l l . For the purposes of t h i s p r o j e c t , probe readings are cons-i d e r e d a c c u r a t e enough. 4 . 5 R e s u l t s and D i s c u s s i o n 4.5.1 Water Q u a l i t y Complete water q u a l i t y data are presented i n Appendix I I . 49 These data were obtained from weekly grab samples. F i g u r e s , unless otherwise i n d i c a t e d , were d e r i v e d using these data. Sum-maries and important h i g h l i g h t s are d i s c u s s e d below. 4.5.1.1 D i s s o l v e d Oxygen C r o s s - s e c t i o n a l , DO readings, at the same depth, never v a r i e d more than 0.6 mg/L. As such, i t i s reasonable to c o n s i d e r DO readings taken i n the middle of "the r i v e r as r e p r e s e n t a t i v e v a l u e s . D i s s o l v e d oxygen l e v e l s and d i s s o l v e d oxygen s a t u r a t i o n l e v e l s i n percent f o r s i t e s 10, 12, 99A f o r the d u r a t i o n of the study are shown i n F i g u r e s 9 and 10 r e s p e c t i v e l y . Only s i t e s 10, 12, and 99A are d i s p l a y e d , to g i v e a c l e a r p i c t u r e of the r i v e r c o n d i t i o n s from the uppermost, through the middle, and to the lowest s i t e . Time on the independent a x i s i s measured i n days, beginning from J u l y 2 as day 0 and f i n i s h i n g with Dec. 9 on day 160. F i g u r e 9 shows that s i t e 10 r e g u l a r l y experienced lower DO l e v e l s than a l l the other s i t e s . At l e a s t two f a c t o r s are respo-n s i b l e f o r t h i s s i t u a t i o n . F i r s t l y , the depth at s i t e 10, lowest of a l l s i t e s , hovered around 1 m d u r i n g the summer; t h i s meant that the benthal oxygen demand probably exerted a s i g n i f i c a n t demand on the water column above. Secondly, both Mahood and Hyland Creeks i n t e r s e c t the Serpentine downstream of s i t e 10, and s i n c e they are r e l a t i v e l y w e l l oxygenated, a simple mass balance would e x p l a i n the d i f f e r e n c e i n DO l e v e l s f u r t h e r downstream. At s i t e s 12 and 99A, a l l DO l e v e l s were above 6.2 mg/L and most were above 8.0 mg/L. A c c o r d i n g to D a v i s ( l 9 7 5 ) , i n h i s review of v a r i o u s r e s e a r c h e r s , the minimum DO l e v e l r e q u i r e d to 50 0 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 110 120 130 1 4 0 150 160 July'2 /85 Time (days) Dec) 9 /85 F i g u r e 9: D i s s o l v e d Oxygen v e r s u s T ime - s i t e s 1 0 , 12 , 99A. 175 to 1654S Legend A S1TE1Q X SITE12 • SITE99A_ J U ' y 2 / 8 5 , - o n P e r c e n t v e r s u s T i m e - S i t e s 1 0 , 1 2 , 99A F i g u r e 1 0 : D i s s o l v e d Oxygen S a t u r a t e - P e r c e n t ^ I ^ I J T ^ B O 9 0 1 0 0 110 120 130 140 150 160 Time (days) Dec. 9/85 prevent severe impacts on a mixed, freshwater p o p u l a t i o n of f i s h , i n c l u d i n g salmonids, was suggested as 3.9 mg/L. During the e n t i r e sampling program, only s i t e 10 would have breached t h i s minimum. The percent d i s s o l v e d oxygen s a t u r a t i o n versus time, as p l o t t e d i n F i g u r e 10, e f f e c t i v e l y e l i m i n a t e s any temperature e f f e c t s upon the oxygen p a t t e r n . The values above 100% s a t u r a t -ion i n d i c a t e s u p e r s a t u r a t e d l e v e l s a r i s i n g from the photosyn-t h e t i c a c t i v i t y of algae i n the r i v e r . To v i s u a l i z e how DO v a r i e d along the l e n g t h of the Serpen-t i n e , on a given day, r e f e r to F i g u r e s 11 and 12. The most encouraging data on the a e r a t o r ' s e f f e c t i v e n e s s was on Sept. 23, where, on e i t h e r s i d e of the a e r a t o r , DO l e v e l s were lower. I t i s s i g n i f i c a n t that t h i s p o s i t i v e r e s u l t o c c u r r e d d u r i n g the lowest DO readings recorded at s i t e 12. T h i s s u b s t a n t i a t e s the f a c t that the lower the DO l e v e l , the g r e a t e r i s the d r i v i n g f o r c e to t r a n s f e r oxygen from the bubble to the water column. The more common experience, however, was that DO was s l i g h t l y lower in the a e r a t i o n zone than j u s t upstream or downstream of i t (see data on Oct. 28, F i g u r e s 11 and 12). The most probable e x p l a n a t i o n i s that the a e r a t i o n c r e a t e d such a t u r b u l e n t e n v i r o -nment i n - s i t u , t h a t the algae were not able to e s t a b l i s h a great mass or c o n t r i b u t e as much DO, as i n more t r a n q u i l areas of the r i v e r . 53 13-1 1 2 -10 6 12 13 14 152 99A Site Location F i g u r e 1 1 : D i s s o l v e d Oxygen A l o n g S e r p e n t i n e L e n g t h . 125-1 25 H 1 i 1 1 1 f 10 6 12 13 14 152 99A Site Location F i g u r e 12 : D i s s o l v e d Oxygen S a t u r a t i o n - P e r c e n t - A l o n g S e r p e n t i n e L e n g t h Oxygen p r o f i l e s with depth are l i s t e d in Table 9, f o r s e l e c -Table 9. Oxygen Depth P r o f i l e s SITE #152 # 1 2 DATE AUG. 1 2 SEPT . 9 DEC . 2 PARAMETER DO TEMP DO TEMP DO TEMP DEPTH (m) mq/L °C mg/L °C mg/L °C sf c 10.0 21 .0 6.0 14.9 9.8 -0.3 1.2 7.6 5.6 14.5 9.6 1.8 4.3 5.6 14.5 9.3 2.4 3.9 5.6 14.5 9.2 3.0 3.4 5.6 14.5 9.1 3.7 — 4.5 14.5 0.7 -0.1 ted dates. Of a l l dates shown, a benthal oxygen demand was not-i c e a b l e , most d r a m a t i c a l l y , on Dec. 2, when DO dropped 8.4 mg/L i n the bottom 0.6m of water. The DO drop from the s u r f a c e to the 1.2 m depth v a r i e d only from 0.2 to 2.4 mg/L. Since l i g h t p e n e t r a t i o n i s almost n e g l i g i b l e below 1.2 m, the DO drop i s , v i r t u a l l y independent of the algae's photosynthetic a c t i v i t y . Primary p r o d u c t i v i t y values taken at the surface and at depth c o n f i r m t h i s statement (see S e c t i o n 4.5.3.2). To observe DO v a r i a n c e over 24 hour p e r i o d s , an i n - s i t u h ydrolab (courtesy of the Environmental P r o t e c t i o n S e r v i c e ) was used at s i t e #6. I t was p l a c e d about 0.7 m from the bottom of the r i v e r , the water height above i t (approximately 0.5 m) f l u c t -uated with r i v e r l e v e l s . F i g u r e 13 p o r t r a y s the r e s u l t s . The independent a x i s begins at 9:00 am and ends with 8:00 am the next day. In the warmer months of J u l y and August, the e f f e c t of photosynthesis and r e s p i r a t i o n can c l e a r l y be seen. In the c o l d e r months of September and October the phenomenon i s not r e g i s t e r e d . Even over 24 hour p e r i o d s , the DO never f e l l below 5.5 mg/L, which i s s t i l l w e l l above Davis' recommended minimum. 56 Time of Day (hr.) F i g u r e 13: D i s s o l v e d Oxygen V a r i a t i o n O v e r 24 H o u r P e r i o d s . S i t e 13 The c o r r e l a t i o n between DO and c h l o r o p h y l l - a , at s i t e 12, i s c l e a r l y d i s p l a y e d i n F i g u r e 14. The c o r r e l a t i o n c o e f f i c i e n t (r) of a l i n e a r r e g r e s s i o n between DO and c h l o r o p h y l l - a i s given below f o r three separate time p e r i o d s ( i n c l u s i v e ) ; days 0 - 3 5 r = -0.63 days 4 1 - 1 0 5 r = 0.81 days 111 - 153 r = -0.66 Thus, there i s a s t a t i s t i c a l l y s i g n i f i c a n t r e l a t i o n s h i p between DO and c h l o r o p y l l - a , e s p e c i a l l y from day 41 to day 105. C h l o r o -p h y l l - a i s the primary p h o t o s y n t h e t i c pigment present i n a l l algae (Wetzel, 1983). Although i t does not d i f f e r e n t i a t e between dead and l i v i n g algae, i t i s o f t e n used to give an estimate of the a l g a l biomass. A f t e r the dramatic disappearance of algae by day 105 (Oct. 15), the DO l e v e l s moved upward - probably i n response to c o l d e r temperatures, s i n c e oxygen s a t u r a t i o n v a l u e s were l e s s than 100% beyond day 105 (Figure 10). I t should be remembered t h a t the month of September/85 was h i g h l i g h t e d by warm, e s s e n t i a l l y , dry weather while October/85 experienced con-tinuous r a i n s , followed by the f r e e z i n g weather of November. As such,- the expected massive b i o c h e m i c a l oxygen demand d i d not m a t e r i a l i z e and DO l e v e l s remained r e l a t i v e l y high d u r i n g the salmon m i g r a t i o n . 4.5.1.2 Temperature Temperature readings recorded f o r s i t e s 10, 12, and 99A, over the course of the sampling program, are given i n F i g u r e 15. The obvious p r o g r e s s i o n of lower temperatures from s i t e 10, to the higher temperatures at s i t e 99A, was due to the order of sampling. S i t e 10 was sampled i n e a r l y morning (about 8:30 am) 58 Chlorophyll-a (ug/L) 30-1 0 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 110 120 130 1 4 0 150 160 July 2/85 Time (days) Dec' 9/85 F i g u r e 1 5 : T e m p e r a t u r e v e r s u s T ime - s i t e s 1 0 , 1 2 , 99A. and s i t e 99A i n the e a r l y afternoon (about 2:30 pm). The warmer temperatures correspond c l o s e l y with mean a i r temperatures, as recorded at Surrey M u n i c i p a l H a l l by the Atmospheric Environment S e r v i c e . T h i s i s p r i m a r i l y due to the f a c t that there i s no shade-providing, v e g e t a t i v e cover i n the lowland areas. As noted i n Bourque and Hebert (1982), the i n c i p i e n t l e t h a l temperature f o r Coho f r y i s 25°C ( B r e t t , 1952) and f o r a d u l t steelhead i t i s 21°C (Coutant, 1970). Thus J u l y and August represent a s e r i o u s danger to f r y and e a r l y a d u l t spawners. B r e t t (1971) a l s o i n d i c a t e s that growth may be i n h i b i t e d i n r e s i d e n t salmon and t r o u t i f temperatures exceed 19°C. The higher water temperatures a l s o support the growth of m e s o p h i l i c organisms with t h e i r more r a p i d metabolic r a t e s . As such, i f a sudden surge of biodegradable organic matter enters the system under the c o n d i t i o n s noted above, then there i s the p o t e n t i a l f o r a r a p i d drop i n DO, as the b a c t e r i a begin degrading the waste. High temperatures a l s o c o n t r i b u t e to the growth of algae, and the consequent e u t r o p h i c s t a t e i n the r i v e r , during the summer months. 4.5.1.3 pji pH values, recorded f o r s i t e s 10, 12 and 99A, are presented g r a p h i c a l l y i n F i g u r e 16. pH values range between 5.4 and 9.0. By day 111 (Oct. 21) and beyond, pH values were c o n s i s t e n t l y below 6.0. The t r e n d f o r pH, over the time p e r i o d i s downward. Cox and McFarlane (1978) have observed that " a l l s o i l s w i t h i n the drainage area are h i g h l y a c i d i c and the r e s u l t i n g low pH of the water d r a i n i n g and l e a c h i n g through the s o i l s appears to be 61 5 H 1 1 1 1 1 r — i 1 1 1 1 1 1 1 1 " 0 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 110 120 130 1 4 0 150 160 J u l y ! 2 / 8 5 Time (days) Dec! 9/85 F i g u r e 16: pH v e r s u s T i m e - s i t e s 1 0 , 12 , 99A. e f f e c t i v e l y balanced by the a d d i t i o n of run-off water, c o n t a i n i n g a l k a l i n e f e r t i l i z e r s , c a l c i um and lime compounds and some organic contaminants from the surrounding urban areas. The lower pH values experienced i n l a t e F a l l are most l i k e l y due to the i n c -reased r a i n f a l l , without the compensating a l k a l i n e f e r t i l i z e r s , s i n c e farming has ceased f o r the winter." High pH l e v e l s in the summer are probably due to high r a t e s of photosynthesis, which a l t e r s the carbonate b u f f e r i n g c a p a c i t y of the water. The f o l l o -wing carbonate e q u i l i b r i u m equation (1) e x p l a i n s t h i s r e l a t i o n -s h i p : C0 2 + H 2 0 < — > H 2 C 0 3 <~->H + + HCO~ > H + + CO~ . ( 1 ) During p h o t o s y n t h e s i s , C0 2 i s used up by the algae and oxygen i s produced. For equation (1) to remain i n e q u i l i b r i u m , by Le C h a t e l i e r ' s p r i n c i p l e , i t w i l l s h i f t to the l e f t , which consumes protons (H +)and r a i s e s the pH. F i g u r e 17 supports t h i s hypoth-e s i s . N o t i c e that f o r every peak of c h l o r o p h y l l - a , there i s a corresponding peak i n pH. The c o r r e l a t i o n c o e f f i c i e n t (r) of a l i n e a r r e g r e s s i o n between pH and c h l o r o p h y l l - a i s given below f o r three separate time p e r i o d s ( i n c l u s i v e ) , days 0 - 3 5 r = -0.58 days 41 - 105 r = 0.75 days 111 - 153 r = -0.05 Thus, a s t a t i s t i c a l l y s i g n i f i c a n t r e l a t i o n s h i p i s observed, esp-e c i a l l y between day 41 and day 105. Once the algae have essent-i a l l y disappeared, the pH i s s t i l l found to f l u c t u a t e - probably i n response to gr e a t e r and more frequent r a i n f a l l events, s i n c e r = -0.05 f o r that p e r i o d . However, the absolute l e v e l i s cons-i d e r a b l y lower. 63 CM p 1 0 0 - 9 0 - 8 0 g/D - 6 0 3 CO i - 5 0 5 ^ 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 110 120 130 1 4 0 150 160 July 2/85 Time (days) Dec. 9/85 F i g u r e 17: pH and C h l o r o p h y l l - a v e r s u s T i m e - s i t e 1 2 . 4.5.1.4 S p e c i f i c Conductance A l l s p e c i f i c conductance values are given i n Appendix I I . As a r u l e , s p e c i f i c conductance values were l e s s than 300 umho/cm (30 mS/m), with some notable e x c e p t i o n s . On a couple of sampling days, the t i d a l gates were jammed open with d e b r i s , r e s u l t i n g i n extremely high s p e c i f i c conductance values (7,000 umho/cm or 700 mS/m, at s i t e #10 and as h i g h as 30,000 umho/cm or 3000 mS/m, at 99A) due to the i n t r u s i o n of s a l i n e water i n the r i v e r . With these e x c e p t i o n s , the t i d a l gates maintain the " f r e s h water" system remarkably w e l l . 4.5.1.5 Ammonia Nitrogen ( T o t a l ) Ammonia i s excreted i n animal and human waste and a l s o o r i g i n a t e s from the breakdown of nitrogenous wastes. T o t a l ammon-i a values f o r s i t e s 10, 12 and 99A are d i s p l a y e d i n F i g u r e 18. I t i s s i g n i f i c a n t that v a l u e s are c o n s i s t e n t l y higher at the most upstream s i t e (#10). I t would seem that the bulk of the n i t r o g -enous waste was being i n t r o d u c e d to the system somewhere upstream of s i t e 10. C e r t a i n l y , some o x i d a t i o n of the NH^ was o c c u r r i n g throughout the system, but the c o r r e l a t i o n c o e f f i c i e n t (r) of a l i n e a r r e g r e s s i o n between NH^ and DO at s i t e #10 i s -0.05, sug-g e s t i n g that n i t r i f i c a t i o n was p l a y i n g a minor r o l e i n oxygen l e v e l s . A l s o , the optimum pH range for the growth of Nitrosomo-nas and N i t r o b a c t e r , which are r e s p o n s i b l e f o r n i t r i f i c a t i o n , appears to be 7.5 to 8.5 (Loveless and P a i n t e r , 1968; P a i n t e r , 1970; Sharma and A h l e r t , 1977). However, other s t u d i e s have shown that i n a c c l i m a t i z e d systems n i t r i f i c a t i o n can proceed, at a p p a r e n t l y maximum r a t e s , down to about pH 6 to 6.5 (Barnes and 65 TO 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 110 120 130 1 4 0 150 160 July 2/85 Time (days) Dec. 9/85 F i g u r e 18: Ammonia v e r s u s T i m e - s i t e s 1 0 , 1 2 , 99A . B l i s s , 1983). The pH values below 6.0, experienced i n the F a l l , would mean any n i t r i f i c a t i o n that was o c c u r r i n g , would be at r e l a t i v e l y slow r a t e s . 4.5.1.6 N i t r a t e s The primary sources of n i t r a t e s are runoff from f e r t i l i z e d f i e l d s , b a c t e r i a l o x i d a t i o n of ammonia and decomposing organic matter. Phytoplankton p r e f e r ammonia as t h e i r source of n i t r o g e n , but once i t i s a l l used up n i t r a t e s become the most r e a d i l y a c c e s s i b l e form of n i t r o g e n f o r t h e i r n u t r i t i o n a l needs. As phytoplankton take up NO^ they e x c r e t e an OH which can a l s o help to i n c r e a s e pH e s p e c i a l l y i f p r o d u c t i o n i s high and the system i s p o o r l y b u f f e r e d , as the Serpentine i s at times. The r e l a t i o n s h i p between n i t r a t e s and c h l o r o p h y l l - a i s q u i t e e v i d e n t , as shown i n F i g u r e 19. Notice that f o r every drop i n c h l o r o p h y l l -a ( i . e . assumed drop in algae numbers) there i s a c o n s e q u e n t i a l i n c r e a s e i n n i t r a t e l e v e l s ( i . e . not as much of the n i t r a t e s are being taken up, t h e r e f o r e they are measurable i n the water). High n i t r a t e l e v e l s a l s o continued a f t e r the c h l o r o p h y l l - a values dropped o f f , around day 105. These high l e v e l s were r e l a t e d to higher l e v e l s of r a i n f a l l (see F i g u r e 21) and a l s o to a g r e a t e r presence of decomposing organic matter ( l e a v e s , e t c . ) . N itrogen was a n o n - l i m i t i n g , growth n u t r i e n t f o r algae d u r i n g t h i s study. 67 co ~Z. 3 -2.8-2.6-2.4-2.2-2 -1.8 1.6 1.4H 1.2 1 0.8-0.6-0.4 0.2 i 0 -r 1 0 0 Legend A N03 A ChL-o CD CO I JZ Cl o o o 0 July 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 110 120 130 140 150 160 2/85 Time (days) Dec! 9/85 F i g u r e 19: N i t r a t e s and C h l o r o p h y l l - a v e r s u s T i m e - s i t e 12 . 4.5.1.7 Phosphorus Phosphorus may be i n three forms, orthophosphate, polyphos-phate and organic phosphorus c o l l e c t i v e l y known as t o t a l phosph-orus. I t may enter the watercourse by e i t h e r human body wastes, food wastes d i s c h a r g e d to sewers, condensed i n o r g a n i c phosphate compounds used i n detergents (Metcalf and Eddy, 1979) and runoff from f e r t i l i z e d f i e l d s . I t i s the orthophosphatet (ortho-P) form which i s most r e a d i l y used as a n u t r i e n t by the phytoplankton. Acco r d i n g to Mackenthum's (1969) c o n s i d e r e d judgement, to prevent b i o l o g i c a l nuisances, t o t a l phosphorus should not exceed 0.10 mg/L at any p o i n t w i t h i n a f l o w i n g stream, or 0.05 mg/L where waters are more s t a t i o n a r y . The Serpentine system i s f a i r l y s t a t i o n a r y and F i g u r e 20 i n d i c a t e s that t o t a l phosphorus l e v e l s never once f e l l below the 0.05 mg/L maximum recommended. Thus, phosphorus was not a l i m i t i n g n u t r i e n t to algae growth. I t should a l s o be noted that phosphorus was not accumulating downstream; i n f a c t , i t would appear that the bulk of the phosphorus was being i n t r o d u c e d upstream of s i t e #10, and then i s being u t i l i z e d by algae as i t moves downstream or some sedimentation of phosph-orus a s s o c i a t e d with p a r t i c u l a t e matter may be o c c u r r i n g . The ortho-P component of t o t a l phosphorus v a r i e s from a low of 1.7% on August 12, at s i t e #99A, to a high of 65% on November 4, at s i t e #10 (see Appendix I I ) . Over the course of the study the average ortho-P percentage f o r s i t e 10 was 36%, whi l e , at s i t e 99A i t was only 15%. A more thorough i n v e s t i g a t i o n of phos-phorus p a t t e r n s would have to be undertaken to a s c e r t a i n whether the drop i s due to a c t i v e phosphorus uptake along the reach or p h y s i c a l a d s o r p t i o n to i n e r t or i n a c t i v e suspended, p a r t i c l e s 69 0.40-1 0.35 H 0 . 3 0 H 0.25 0.20 0.15 0.05 H 0.00 0 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 110 120 130 1 4 0 150 160 July'2/85 Time (days) Dec. 9/85 F i g u r e 2 0 : T o t a l P h o s p h o r u s v e r s u s T i m e - s i t e s 1 0 , 1 2 , 99A. which s e t t l e out between the two s i t e s . 4.5.1.8 Other Parameters Chemical oxygen demand, t o t a l organic carbon and organic n i t r o g e n v a l u e s are l i s t e d i n Appendix II f o r a l l s i t e s . I s o l a t e d COD values peaked at over 100 mg/L, but these peaks were due to c h l o r i d e i n t e r f e r e n c e s from sea water leakages, o c c u r r i n g when t i d a l gates were jammed open. The average COD at s i t e #10 was about 32 mg 0 2/L. T o t a l o r g a n i c carbon v a l u e s averaged around 11 mg C/L at s i t e #10. The t h e o r e t i c a l r e l a t i o n s h i p of COD to TOC, at 2.67:1, according to equation (2) C + 0 2 <---> C0 2 , (2) was reasonably w e l l maintained, i n p r a c t i c e . Organic n i t r o g e n may be used as a n u t r i e n t source f o r algae but n i t r a t e s , the p r e f e r r e d b i o c h e m i c a l form, were p l e n t i f u l . I t i s i n t e r e s t i n g to note the i n v e r s e r e l a t i o n s h i p between n i t r a t e s and organic n i t r o g e n . R e f e r r i n g to F i g u r e 19, the n i t r a t e values increased as the c h l o r o p h y l l - a v a l u e s dropped; however, the data-base in Appendix I I , r e v e a l s that organic n i t r o g e n l e v e l s were higher when n i t r a t e values were low (before day 105). T h i s i s e x p l a i n e d by the f a c t t h a t , as the n i t r a t e s are being taken up by the algae, they are converted to organic n i t r o g e n . 4.5.2 R a i n f a l l and Water Q u a l i t y One p o s s i b l e s c e n a r i o to e x p l a i n the c l o s e p o s i t i v e c o r r e l -a t i o n s between c h l o r o p h y l l - a , DO and pH, with a negative c o r r e l -a t i o n to n i t r a t e s i s as f o l l o w s . A heavy r a i n f a l l event leads to 71 the washout of algae from the system, followed by an input of BOD, n i t r a t e and lower pH water from the drainage d i t c h e s . How-ever, not a l l i n c i d e n t s of the c l o s e c o r r e l a t i o n s f o l l o w e d heavy r a i n f a l l events. A l s o , BOD v a l u e s were not e x p l i c i t l y t e s t e d f o r , but as much as COD r e f l e c t s r e l a t i v e changes i n BOD, i t can be noted from Appendix II data t h a t i n c r e a s e s i n COD are not w e l l c o r r e l a t e d to heavy r a i n f a l l weeks. F i g u r e 21 presents the e f f e c t of r a i n f a l l on n i t r a t e (mg/L NOg~N) and phosphorus l e v e l s . The bar graph covers the months of September, October,and November, 1985. The phosphorus and n i -t r a t e amounts are the summation of a l l seven sampling s i t e s ; t h i s enables a sense of how the e n t i r e , lowland r i v e r i s respond-i n g . The r a i n f a l l event on Sept. 5 produced i n c r e a s e s i n both phosphorus and n i t r a t e s . P r e c i p i t a t i o n events on Oct. 9 and 13 a l s o l e d to a dramatic i n c r e a s e i n n i t r a t e s , but phosphates a c t u a l l y dropped a l i t t l e . Phosphorus i s more d i f f i c u l t t o l e a c h out of s o i l s than n i t r a t e s and the graph.demonstrates t h i s . In that phosphorus l e v e l s are r e l a t i v e l y independent of r a i n f a l l , there i s however, a trend f o r more phosphorus i n l a t e October and e a r l y November. T h i s may be a f u n c t i o n of the more numerous and inte n s e r a i n f a l l events, s i n c e phosphorus tends to be adsorbed and moves with the p a r t i c u l a t e matter. A l s o s i n c e the f i e l d s are bare i n l a t e Oct. and Nov. there i s a g r e a t e r tendency f o r e r o s -i o n . N i t r a t e s were s u s t a i n e d at the high l e v e l s , even a f t e r October 13. As mentioned b e f o r e , these high l e v e l s a l s o c o i n -c i d e d with the algae d i e - o f f , between Oct. 7 and Oct. 15. 72 1.7--J O. 1.5-CD E '—' 1.3-3 L 0 1.1 -JL a w o X 0.9-0_ _) 0.7-o 0 t -0.5-25 - i _ J 20-\ CD £ 15-(fl 0 -J 10-0 L »> . J 2 5-0-50 - i 4 5-40-E E 35-C 3 0 -O .J ~J a 2 5 -~> . j a 2 0 -.j o 0) L 15-0_ 10-5-0-flvg Sept ppt-72.4 Sept 85 ppt-71.9 flvg Oct ppt-131.6 Oct 85 ppt-112 algae d i e - o f f ! • — H ru J 2 L I flvg Nov ppt-178 Nov 85 ppt-94 \'<\ '•'~\ September October November F i g u r e 2 1 : R a i n f a l l , N i t r a t e s and T o t a l P h o s p h o r u s v s T ime a l l s i t e s . 73 4.5.3 Periphyton P o p u l a t i o n s 4.5.3.1 C h l o r o p h y l l - a C h l o r o p h y l l - a values f o r s i t e s 10, 12 and 99A are p l o t t e d i n F i g u r e 22. Algae d i e from (1) l a c k of s u n l i g h t , (2) prolonged c o l d weather, (3) t o x i c compounds, (4) lack of n u t r i e n t s and (5) zooplankton g r a z i n g . The r a d i c a l algae d i e - o f f , by day 105 (Oct. 15), i s most l i k e l y e x p l a i n e d by (1) and p o s s i b l y (3) as w e l l , s i n c e e a r l y October weather was not unseasonably c o l d and nut-r i e n t s were not l i m i t i n g . I t i s p o s s i b l e that zooplankton g r a z i n g may have been a f a c t o r a l s o . However, i t s s i g n i f i c a n c e c o u l d not be a s c e r t a i n e d s i n c e b i o l o g i c a l sampling in 1982 - 1984 (Moore, 1984) r e v e a l e d very small protozoan p o p u l a t i o n s , but the r o t i f e r s and freshwater Crustacea zooplankton were not enumerated i n Moore's sampling or d u r i n g 1985. The mean number of s u n l i g h t hours per day, as recorded by Atmospheric Environment S e r v i c e s , Surrey-White Rock s t a t i o n , f o r the two weeks p r i o r to Oct. 7 was 7.6, but f o r the week before Oct. 15 the value was only 2.2. The heavy r a i n s of Oct. 9 and 13 may have washed i n t o x i c compounds, s i n c e they d i d introduce m a t e r i a l s which a f f e c t e d pH; t h i s i s evidenced by the pH drop from Oct. 7 to Oct. 15, of 7.46 to 6.15, at s i t e #12. Table 10 (Wetzel, 1983) i n d i c a t e s that the Serpentine R i v e r , T a b l e 1 0 . T r o p h i c T y p e C h a r a c t e r i s t i c s TROPHIC TYPE MEAN PRIMARY PRODUCTIVITY (mg C/m -day) CHLOROPHYLL-a (uq/L) DOMINANT PHYTOPLANKTON O l i g o t r o p h i c 50 - 300 0.3 - 3 Chrysophyceae Cryptophyceae Mesotrophic 250 - 1000 2 - 1 5 E u t r o p h i c > 1000 10 - 500 B a c i l l a r i o p h y c e a e Cyanophyceae 74 July 1 2/85 Time (days) F i g u r e 2 2 : C h l o r o p h y l l - a v e r s u s T ime - s i t e s 1 0 , 1 2 , 99A . with c h l o r o p h y l l - a v a l u e s f a l l i n g between 10 and 500 ug/L, would be c l a s s i f i e d as e u t r o p h i c - at l e a s t f o r p a r t of the year. Phytoplankton c l a s s - a n a l y s e s , r e p o r t e d i n Moore (1984), confirms t h i s c l a s s i f i c a t i o n , as the predominant phytoplankton d e t e c t e d were b a c i l l a r i o p h y c e a e (diatoms) and cyanophyceae (blue - green a l g a e ) . I t i s obvious that organic matter from dead algae can prom-ote b a c t e r i a l growth; t h i s process can use up d i s s o l v e d oxygen very r a p i d l y . However, do the algae remain suspended i n the water column long enough to exert that b i o c h e m i c a l oxygen demand? The s p e c i f i c g r a v i t y of most f r e s h water p l a n k t o n i c organisms i s 1.01 to 1.03 (Wetzel, 1983). Since t h e i r mean diameter i s l e s s than 0.5 mm they would s i n k , i n p l a c i d water, a c c o r d i n g to Stoke's Law. However, a s p e c i f i c g r a v i t y t h a t c l o s e to 1.0 means that the s l i g h t e s t t u r b u l e n c e w i l l keep i t i n suspension. Wind c u r r e n t s i n the area and r i v e r flows are c e r t a i n l y s u f f i c i e n t to provide that necessary t u r b u l e n c e . T h e r e f o r e , the r a p i d d e p l e t -ion of oxygen r e s e r v e s , due to dead algae, remains a sound h y p o t h e s i s . 4.5.3.2 Primary P r o d u c t i v i t y Average a l g a l primary p r o d u c t i v i t y v a l u e s , obtained from s i t e #13, are l i s t e d i n Table 11. S i t e 13 was chosen because i t f i t i n t o the sampling day c o n v e n i e n t l y . A l s o , had a severe DO drop o c c u r r e d , s i t e 13, l o c a t e d j u s t below the a e r a t i o n zone, would have allowed an opportune assessement of how e f f e c t i v e the oxygen t r a n s f e r would have been to a l g a l primary p r o d u c t i v i t y , as 76 compared with a second primary p r o d u c t i v i t y experiment upstream of the a e r a t i o n s i t e . Uptake r a t e s of CC>2 can be converted to oxygen p r o d u c t i o n r a t e s (mg C^/L-hr), v i a the phot o s y n t h e t i c T a b l e 1 1 . P r i m a r y P r o d u c t i v i t y a t S i t e 13 DATE SURFACE 2 m DEPTH 1 m DEPTH (1985) (mq C/L-hr) (mq C/L-hr) (mq C/L-hr) J u l y 22 1 .260 0.017 — Aug. 19 0.112 — 0 .005 Sept. 16 0.030 — 0.002 Oct. 4 0.123 — 0.037 Nov. 12 0.005 0.001 equation ( 3 ) , C0 2 + H 20 <---*» CH 20 + 0 2. (3) That i s , 12 u n i t s of carbon produce 32 u n i t s of oxygen, such that the c o n v e r s i o n f a c t o r i s 2.67. So, f o r example, the sur f a c e oxygen produced by the algae, on Aug. 19, was (0.112)(2.67) = 0.299 mg 0 2 / L - h r . I t i s r e a d i l y observed that, at one meter depth, primary p r o d u c t i o n i s very low. Shallow l i g h t p e n e t r a t i o n and high t u r b i d i t y l e v e l s were s u b j e c t i v e l y observed and probably e x p l a i n the r a d i c a l d i f f e r e n c e between surface and depth product-i o n . The primary p r o d u c t i v i t y v a l u e s from s i t e 13 can be compared with those of Table 10 (from Wetzel, 1983), by c o n v e r t i n g l i t r e s to c u b i c meters, i n t e g r a t i n g the value s over the depth of water (2 m), and accounting f o r a 24 hour day. The Oct. 4 va l u e s , f o r 2 example, convert to 7680 mg C/m -day, which i s biased on the high s i d e , s i n c e only 2 d i s c r e t e depths were t e s t e d . T h i s value, though, d e f i n i t e l y confirms the e u t r o p h i c c l a s s i f i c a t i o n . F i g u r e 23 enables a v i s u a l comparison between primary prod-77 c n (D ro 3 i <^ •a o a c o rt W »< rf 01 (D 3 a M co O 3* t—1 O •1 o T> I o 9 cn (T> Primary Productivity (mg C/L/hr) p at to O (5> \ \ \ \ \ \ \ \ Temp 20.5°C Temp 14.5°C \ \ \ \ \ \ \ Temp 11.8°C, \ \ \ \ \ \ O ^ \ Temp 3.0°C CD fD § 2 . ft  o rt fD a a (A Chlorophyll-a (ug/L) u c t i v i t y and c h l o r o p h y l l - a v a l u e s . I t should be mentioned that 5 experiments of primary p r o d u c t i o n are i n s u f f i c i e n t , from a s t a t -i s t i c a l viewpoint, to make any dogmatic c o n c l u s i o n s . However, i t i s s t i l l p o s s i b l e to gain some f u r t h e r i n s i g h t s i n t o the dynamics i n v o l v e d . For i n s t a n c e , the e f f e c t of temperature on m i c r o b i a l metabolic a c t i v i t y can be seen when Aug. 19 primary p r o d u c t i v i t y values are compared to those of Oct. 4, i n conjunction with c h l o r o p y l l - a data. I t took 1.7 times the number (or mass) to generate approximately the same amount of primary production when the temperature was 8.7°C c o o l e r on Oct. 4. A l s o , the low temp-e r a t u r e s i n November undoubtedly c o n t r i b u t e d to the low values on Nov. 12. Ignoring, f o r the moment, J u l y 22 data, the primary p r o d u c t i o n values c o r r e l a t e d w e l l with the c h l o r o p h y l l - a data. S e v e r a l f a c t o r s may be r e s p o n s i b l e f o r the apparent d i s p a r i t y between J u l y 22 and Aug. 19 v a l u e s , c o n s i d e r i n g c h l o r o p h y l l - a l e v e l s were e s s e n t i a l l y equal. F i r s t l y , the van't Hoff r u l e s t a t e s that b i o l o g i c a l r e a c t i o n r a t e s double f o r every 10°C i n c r e a s e , u n t i l i t approaches i t s optimum temperature. The high-er temperature on J u l y 22 w i l l account for some of the higher p r o d u c t i o n , however, higher decomposition r a t e s by b a c t e r i a at higher temperatures w i l l o f f s e t some of the van't Hoff e f f e c t i n terms of oxygen balance. Secondly, s u n l i g h t hours, i n the prev-ious four days to J u l y 22, averaged 13.4 hrs/day, whereas f o r Aug. 19, they averaged only 9.3 hrs/day (thus lower p r o d u c t i v -i t y ) . T h i r d l y , s i n c e c h l o r o p y l l - a values do not d i s c e r n between l i v i n g and dead algae, i t i s p o s s i b l e that there were more dead algae.on Aug 19 than on J u l y 22. F i n a l l y , Wetzel (1983) p o i n t s out that " o f t e n small s p e c i e s of r e l a t i v e l y minor c o n t r i b u t i o n 79 to the a l g a l community biomass have short g e n e r a t i o n times and c o n t r i b u t e more to the t o t a l primary p r o d u c t i v i t y than do l a r g e r s p e c i e s . " Thus, perhaps, g r e a t e r numbers of smal l e r s p e c i e s were present i n J u l y than i n August. 4.5.4 D i t c h M o n i t o r i n g The d i t c h monitoring data i s presented i n Appendix I I I . Budgetary r e s t r a i n t s imposed a r a t h e r s e l e c t i v e m o n i t o r i n g s t r a t -egy. O v e r a l l , i t i s d i f f i c u l t to assess how i n f l u e n t i a l t h i s source of contaminants i s to the Serpentine system, because of i n s u f f i c i e n t flow data and an incomplete study of d i t c h e s d i s c h -a r g i n g i n t o the Serp e n t i n e . I t should a l s o be made c l e a r that i t i s an onerous task, c o n s i d e r i n g there are over 150 d i t c h e s , with very i r r e g u l a r flows and l o a d i n g s , impacting on the Serpentine system. However, the magnitude of the problem was h i g h l i g h t e d i n the analyses of the Latimer Creek d i t c h on Oct. 9,1985 ( r e f e r to Table 12). Latimer d i t c h runs along the north s i d e of L i v i n g s t o n Road and i n t e r s e c t s Latimer Creek (see F i g u r e 7). I f the average Table 12. Latimer D i t c h Analyses DATE 1985 COD mg/L TOT N mq N/L TOT P mg P/L TOC mg/L FLOW L/min Oct. 9 2570 91 .5 23.0 200 1 36 medium s t r e n g t h raw wastewater * 500 40 8.0 160 — * A c c o r d i n g t o Met c a l f and Eddy (1979). wastewater e f f l u e n t flows are 227 L/day-person (Metcalf and Eddy, 80 1979) and acc o u n t i n g f o r d i f f e r e n c e s i n s t r e n g t h (COD), then the Latimer d i t c h can be equated to the raw wastewater produced by 4434 people! Granted, these flows are not continuous, but i t does beg the q u e s t i o n - how many other s i m i l a r d i t c h e s are there c o n t r i b u t i n g t h i s q u a n t i t y and q u a l i t y of wastewater? I t would not take many d i t c h e s of t h i s type, d i s c h a r g i n g c o i n c i d e n t a l l y , to be the cause of s e r i o u s oxygen d e p l e t i o n s . 4.5.5 Sediment R e s u l t s Three sediment samples were c o l l e c t e d from each of s i t e s 12 and 13. The complete r e s u l t s from the samples taken in the middle of the r i v e r are given i n Appendix IV. Included in the r e s u l t s are T o t a l K j e l d a h l N i t r o g e n (TKN), t o t a l carbon, t o t a l phosphorus, as w e l l as a l a r g e complement of elements. The s t a t i o n s are about 125 m apart and the values are reasonably s i m i l a r . Between the s i t e s i t can be seen that TKN v a r i e d by 31%, t o t a l carbon by 21% and t o t a l phosphorus by 6%. Some of the ab s o l u t e v a l u e s are compared with p r e v i o u s year's data i n Table 16, S e c t i o n 5.3. Highest a b s o l u t e values f o r the elements were Iron - 27.1 mg/g dry weight of sediment, Carbon - 20.6 mg/g, Aluminum - 11.0 mg/g, Magnesium - 9.3 mg/g, Calcium - 4.6 mg/g. These values are t y p i c a l f o r the area, as compared to data c o l l -e c t e d i n 1982 and 1983 by personnel from the M i n i s t r y of E n v i r o n -ment (Moore, 1984). H a l l et a l . (1976) researched t r a c e metal c o n c e n t r a t i o n s i n the Lower Mainland; much of the f o l l o w i n g a n a l y s e s comes from t h e i r r e p o r t . The degree of the t r a c e metal contamination of the sediments i n the Serpentine R i v e r can best be determined by 81 comparing them to values determined f o r other sediments i n the Lower F r a s e r v a l l e y . During the summer of 1974, over 300 s u r f a c e sediment samples were c o l l e c t e d from small streams i n the Lower F r a s e r v a l l e y and analyzed f o r t r a c e metals ( c o b a l t (Co), copper (Cu) , i r o n (Fe), manganese (Mn), n i c k e l ( N i ) , l e a d (Pb), z i n c (Zn) - Isherwood, unpublished d a t a ) . Assuming that values g r e a t -er than 2 standard d e v i a t i o n s (2s) above the mean i n d i c a t e areas of contamination as opposed to n a t u r a l occurrence ( O l i v e r and Agemian, 1974), i t r e a d i l y becomes apparent from Table 13 that T a b l e 1 3 . T r a c e M e t a l s i n S t r e a m S e d i m e n t s o f t h e Lower F r a s e r V a l l e y c o m p a r e d w i t h t h e S e r p e n t i n e R i v e r (a) ( r e f H a l l e t a l . , 1976) Trace Metal A r i t h m e t i c mean (x) Standard Dev.(s) (x + 2s) Serpentine R i v e r * S t i l l Creek ** Co 12 4 20 16.5 23.6 Cu 25 16 57 32.2 816 Fe X 1 0 3 24 15 54 22.3 33.4 Mn 343 227 797 364 425 Ni 36 28 92 38.8 85 Pb 18 45 108 55.3 840 Zn 64 40 144 83.2 408 (a) a l l u n i t s are ug/g dry weight of sediment * a r i t h m e t i c mean values determined from a l l sediment sampling s i t e s along the Serpentine's l e n g t h as c o n t a i n e d i n Moore (1984) and t h i s author's sampling (about 60 s u r f a c e sediment samples i n t o t a l ) . ** S t i l l Creek at Douglas Road, Burnaby, B.C. the Serpentine would not be c l a s s i f i e d as a t r a c e metal contam-i n a t e d r i v e r system. The t r a c e metal values of one s i t e on S t i l l Creek ( h e a v i l y i n d u s t r i a l i z e d zone of Burnaby, B.C.) r e v e a l what a very contaminated stream s e c t i o n i s l i k e . 82 5.RESULTS AND DISCUSSION OF OTHER Y E A R ' S DATA 5.1 I n t r o d u c t i o n In 1980, the year of the f i r s t f i s h k i l l , water q u a l i t y data was not c o l l e c t e d . However, knowing that water temperature c o r -r e l a t e s w e l l with the average of 5 previous day's mean, a i r temperature v a l u e s (Wilson, 1985), water temperatures f o r 1980 can be deduced. I t was found that temperatures f o r the two days p r i o r to the k i l l exceeded the 30 year mean for October (10.6 °C) by about 3 °C. T h i s was the only year that higher water temper-at u r e s j u s t p r i o r to a f i s h k i l l were recorded. The data c o l l e c t e d by B.C. Waste Management, M i n i s t r y of Environment personnel f o r the years 1982, 1983, 1984 are b r i e f l y analysed i n the f o l l o w i n g s e c t i o n s , to i d e n t i f y any trends or s i m i l a r i t i e s with 1985 data. A recent f i s h sampling survey, done under the auspices of the Tynehead Z o o l o g i c a l S o c i e t y , i n d i c a t e d some alarming s t a t i s -t i c s (Backman, 1986). Using dead-pitch (counting dead salmon a f t e r they have spawned) sampling techniques, during Oct. - Jan., a p a r t i c u l a r reach of the Upper Serpentine River was surveyed i n 1984/85, and 436 Coho were recorded. In 1985/86, the same reach, using the same sampling techniques recorded only 69 Coho spawn-e r s . When these numbers are e x t r a p o l a t e d over the e n t i r e spawning area, a t o t a l of 1200 spawners i n 1984/85 was reduced to, only, 190 spawners in 1985/86. The reasons f o r the decrease are not f u l l y understood, however, Backman suggests that the i c e formations i n Nov. may have p h y s i c a l l y impeded the movement of 83 t h e s a l m o n . A l s o , t h e low r a i n f a l l i n N o v . may h a v e p r e v e n t e d movements i n t o many o f t h e spawn ing c h a n n e l s . The h e a v y r a i n s o f J a n . may have w a s h e d some o f t h e c a r c a s s e s away b e f o r e t h e y were c o u n t e d - l e a d i n g t o an a r t i f i c i a l l y low c o u n t . 5.2 Wa te r Q u a l i t y O n l y s e l e c t w a t e r q u a l i t y v a l u e s a r e t a b u l a t e d i n t h i s c h a p t e r . R e f e r t o M o o r e (1984) f o r a l i s t i n g o f t h e c o m p l e t e d a t a s e t . T a b l e 14 r e v e a l s t h a t DO l e v e l s i n 1982 were low enough T a b l e 1 4 . S e r p e n t i n e W a t e r Q u a l i t y , 1982 S I T E DATE COD NH- NO- TDP * DO TEMP PH (mq/L ) (mq'7D (mq7L) (mq/L ) (mg/L) °C S e p t . 13 26 0 .325 0.73 0 . 145 5.8 13 .5 7.0 #59 S e p t . 29 22 0 .265 0.27 0 . 2 1 4 2.9 11 .5 7.1 ( n e a r O c t . 5 30 0 .537 0.33 0 .228 1 .1 8 .6 . 7.6 #10) O c t . 14 17 0 .582 0 .55 0 . 1 9 4 4 .8 12.2 6.9 O c t . 20 71 0 .587 0.97 0 . 1 1 4 4 .5 6.3 6.6 S e p t . 13 22 0 .214 0.60 0 . 0 5 7 4 .9 17.0 6.7 S e p t . 29 18 0 .220 0.54 0 . 0 2 6 7 .7 13 .0 7.1 #6 O c t . 5 35 0 .084 0.36 0 . 0 3 9 4 .8 10 .7 7.7 O c t . 14 17 0 .396 0.44 0 . 0 6 7 4 .0 11.4 6.7 O c t . 20 27 0 .408 1.04 0 . 0 7 3 5.4 7.2 6.5 S e p t . 13 35 0 .130 0.33 0 . 0 2 5 6.2 19.0 7.0 O c t . 5 18 0 .084 0 .17 0 . 0 1 9 6 .7 13.0 7.2 #99A O c t . 14 — 0.270 0.43 0 .052 8.0 1 1 .8 6.0 O c t . 20 13 5.2 7.0 * TDP = T o t a l d i s s o l v e d p h o s p h o r u s a t s i t e 10 t o k i l l f i s h , y e t none were r e p o r t e d . S i n c e DO l e v e l s r e c o v e r e d d o w n s t r e a m . o f s i t e 10, i t i s l o g i c a l t o c o n c l u d e t h a t t h e p r o b l e m m a t e r i a l e n t e r s u p s t r e a m o f s i t e 10. The w a t e r q u a l -i t y v a l u e s o f 1982 e m u l a t e d 1985 d a t a , i n t h a t ammonia a n d 84 phosphorus v a l u e s were c o n s i s t e n t l y h i g h e s t at s i t e 10 ( i . e . j u s t downstream of Latimer Creek). P r e c i p i t a t i o n between Oct. 1 and Oct. 6 was 44.6 mm, whereas between Sept. 13 and Sept. 31, i t was only 7.1 mm. T h i s may e x p l a i n the high n u t r i e n t l e v e l s on Oct. 5 at s i t e 59, but does not e x p l a i n the lower n u t r i e n t l e v e l s at s i t e 6 and 99A, downstream. Table 15 (1983 data) c l e a r l y shows the s u p e r i o r water q u a l -i t y i n the Upper Serpentine, r e l a t i v e to the lowland s t a t i o n s . T a b l e 1 5 . S e r p e n t i n e W a t e r Q u a l i t y , 1983 SITE DATE COD NH- NO.. TDP * DO TEMP pH (mq/L) (mq7L) (mq/L) (mq/L) (mq/L) °C Sept. 20 <10 0.005 0.21 0.021 „ _ 8.5 Sept. 26 1 1 0.005 0.21 0.022 10.9 10.2 8.0 #1 Oct. 4 19 0.008 0.33 0.026 — 7.4 (upper Oct. 17 26 0.008 0.50 0.032 10.2 9.2 7.2 Serp) Oct. 26 — Sept. 20 29 0.303 0.61 0. 139 7.4 Sept. 26 32 0. 142 0.44 0. 106 5.6 13.2 7.4 #10 Oct. 4 35 0.093 0.66 0.101 6.5 12.1 7.0 Oct. 17 29 0.326 0.47 0. 150 6.4 9.1 7.3 Oct. 26 45 0.277 1 .33 0.055 5.9 10.1 6.8 Sept. 20 29 0.040 0.62 0.035 m- mm. _ _ 7.6 Sept. 26 30 0.016 0.45 0.035 12.7 14.8 8.1 #99A Oct. 4 53 0.086 0.41 0.033 9.6 14.8 7.5 Oct. 17 41 0.013 <.02 0.063 12.0 10.1 8.0 Oct. 26 53 0.464 2.03 0.088 2.7 9.9 6.6 * TDP = T o t a l d i s s o l v e d phosphorus Accumulation of n u t r i e n t s downstream was not a problem; however, a f i s h k i l l was r e p o r t e d . Again, ammonia and phosphorus l e v e l s are higher at s i t e 10, than s i t e 99A. D i s s o l v e d oxygen was always s i g n i f i c a n t l y higher at s i t e 99A than s i t e 10, except i n l a t e October d u r i n g the f i s h k i l l . T h i s means that the p o l l u t i o n 85 l o a d i n g must have been introduced somewhere between s i t e 10 and s i t e 99A. Temperatures at the time of the f i s h k i l l were l e s s than the 30 year mean. P r e c i p i t a t i o n f a l l i n g between Oct. 17 and Oct. 26 was 56 mm, which p a r t i a l l y accounts f o r the massive i n c r e a s e i n n u t r i e n t s on Oct. 26 at s i t e 99A. From the c l o s e r e l a t i o n s h i p observed between c h l o r o p h y l l - a and and n i t r a t e s i n 1985, i t i s surmized that the drop i n DO and r i s e i n NO^ on Oct. 26/83 would a l s o c o r r e l a t e to an algae d i e - o f f . U n f o r t u n a t e l y , no c h l o r o p h y l l - a data was taken. Table 16, summarizing the 1984 data, a f f i r m s the same pat-t e r n noted i n the 1985 data, namely that a s i g n i f i c a n t drop i n c h l o r o p h y l l - a (Oct. 4 to Oct. 11) accompanies a drop i n pH, with a corresponding decrease i n DO and an increase i n N0 3« R a i n f a l l d u r i n g that week was 85 mm. Comparing DO l e v e l s on Oct. 11, i t i s found that s i t e 10 was higher than s i t e 6, downstream. T h i s leads one to b e l i e v e that the contamination was being introduced somewhere between s i t e 10 and s i t e 6. T a b l e 1 6 . S e r p e n t i n e Wa te r Q u a l i t y , 1984 SITE DATE NH^ NO-. ORTH-P DO TEMP pH CHL-a (mq/L) (mq7L) (mq/L) (mq/L) °C (uq/L) Oct. 4 0.328 0.80 0. 123 8.7 13.8 7.2 1 1 #10 Oct. 11 0.286 3.20 0. 155 6.1 12.6 7.5 6 Oct. 15 7.5 9.0 6.7 — — Oct. 4 0.016 0.65 0.032 10.8 13.0 7.6 33 Oct. 1 1 0.084 1 .23 0.041 3.1 13.0 6.8 6 #6 Oct. 15 -- -- 2.0 9.0 - — Oct. 18 0.532 1 .58 0.067 5.3 9.1 6.6 2 Oct. 24 0.620 0.34 0.065 2.4 7.4 6.8 3 Nov. 1 0.267 1 .56 0.040 9.1 4.0 6.9 2 Oct. 4 0.006 0.51 0.012 10.0 14.0 7.7 39 #152 Oct. 1 1 0.206 0.96 0.050 6.8 13.0 7.0 7 Oct. 15 — — — 4.0 10.0 - — 86 5.3 Sediments Sediment analyses , i n c l u d i n g a l a r g e complement of metals, f o r p e r i o d s of 1982, 1983, and 1984, are c o n t a i n e d i n a r e p o r t by Moore (1984). A s e l e c t few of the numbers are presented i n Table 17, to h i g h l i g h t the o b s e r v a t i o n that v a l u e s are not changing r a d i c a l l y over time. Note t h a t , c o n s i d e r i n g the s i t e s are d i f f -e r e n t , values obtained on August 26/85 do not d i f f e r s u b s t a n t i a l -l y from v a l u e s of e a r l i e r y e a r s . Table 17. S e l e c t e d Sediment Analyses PARAMETER DATE SITE TKN TOT P TOT C (mg/g) (mg/g) (mg/q) J u l y 2/81 #6 1 .4 0.051 11.8 Oct. 5/82 #6 1 .2 0.86 14.0 Aug. 31/83 #4 0.7 0.66 15.0 * Aug. 26/85 #12 1 .7 0.91 24.0 Organic carbon on. How important i s sediment oxygen demand to s e r i o u s DO d e p l e t i o n s ? Moore (1984) concludes "...DO p r o f i l e s and concur-rent sediment sampling i n d i c a t e that sediment oxygen demands are not s i g n i f i c a n t l y reducing the r i v e r DO l e v e l s . . . " . 5.4 T i d a l Gates I t i s commonly known that impounded water can have d e l e t e r -ious e f f e c t s on water q u a l i t y . Long gate c l o s u r e s c r e a t e a r e s e r v o i r - l i k e system. The t i d a l gates have been c l o s e d f o r as long as e i g h t days at a time. T h e r e f o r e , s t r i p - c h a r t r e c o r d i n g s of the t i d a l gate o p e r a t i o n s , s u p p l i e d by the B.C. Water Manage-ment Branch, M i n i s t r y of Environment, were s t u d i e d to determine whether or not a c o n n e c t i o n to the S e r p e n t i n e DO problem c o u l d be 87 i d e n t i f i e d . An examination of Table 18 c l e a r l y demonstrates that there i s no p o s i t i v e c o r r e l a t i o n between t i d a l gate openings and DO l e v e l s . In f a c t , the c o r r e l a t i o n c o e f f i c i e n t (r) of a l i n e a r r e g r e s s i o n , between DO at s i t e 10 and t i d a l gate openings, i s -0.02 and between DO and s i t e 99A and t i d a l gate openings i t i s -0.8. T h i s suggests, i f a n y t h i n g , that the longer the gates are c l o s e d , the higher the DO l e v e l s w i l l be! Table 18. T i d a l Gate Opening and DO DATE DISSOLVED OXYGEN (mq/L) TIDAL GATE OPENINGS * (hrs/day) #10 #152 #99A Oct. 20/82 4.5 -- 5.2 2.0 Oct. 4/83 6.5 — 9.6 1 .1 Oct. 17/83 6.4 — 12.0 0.0 Oct. 26/83 5.9 — 2.7 7.5 Oct. 4/84 8.7 10.0 — 1 .4 Oct. 11/84 6.1 6.8 — 1 .6 Sep. 30/85 6.7 — 15.0 0.0 Oct. 21/85 8.2 8.9 4.6 * Gate openings f o r the p r e v i o u s our days. 5.5 D i s c u s s i o n Nemerow (1974) reviews the major f a c t o r s which a f f e c t the oxygen balance i n a stream (Table 19). Slime growths, as w e l l as primary and secondary organic bottom d e p o s i t s , do not e x e r t a s i g n i f i c a n t d r a i n on the oxygen r e s e r v e s of the Serpentine R i v e r . The n e g a t i v e e f f e c t of temperature r i s e s , i n the summer time, i s superceded by the p o s i t i v e , c o u n t e r - e f f e c t of p h o t o s y n t h e s i s . A q u a t i c l i f e , s a l i n i t y and reduced i n o r g a n i c s p e c i e s are minor c r e d i t o r s a l s o . Organic matter, which o r i g i n a t e s from the d i t -88 T a b l e 1 9 . F a c t o r s i n Oxygen B a l a n c e CREDITORS BENEFACTORS 1 : Organic matter 1 . Reaeration 2. Slime growths 2. Photosynthesis 3. Primary organic bottom 3. Temperature decrease d e p o s i t s (benthal) 4. D i l u t ion 4. Secondary organic bottom d e p o s i t s (dead algae) 5. A r t i f i c i a l a e r a t i o n * 5. Temperature r i s e s 6. Aquatic l i f e 7. Organic contamination i n branch streams 8. S a l i n i t y 9. Reduced i n o r g a n i c s p e c i e s * * Added by the author ches, dead algae i n suspension, and t r i b u t a r i e s , e s p e c i a l l y L a t -imer Creek, are of main concern. A l l the b e n e f a c t o r s ( e x c l u d i n g #5) p l a y s i g n i f i c a n t r o l e s on the S e r p e n t i n e , at v a r i o u s times of the year. However, when f i s h k i l l s have occurred, none of the b e n e f a c t o r s met the demand on the oxygen r e s e r v e s . From 1985 data, a c l o s e r e l a t i o n s h i p , between c h l o r o p h y l l - a and both DO and n i t r a t e s , has been obser-ved. P h o t o s y n t h e t i c c o n t r i b u t i o n s of DO dropped s h a r p l y , before the major k i l l of 1984, as evidenced by the drop i n c h l o r o p h y l l -a. A s i m i l a r drop i n DO c o i n c i d e d with an i n c r e a s e i n n i t r a t e s , before the major f i s h k i l l of 1983. Temperatures before a l l f i s h k i l l s were below the t h i r t y year mean, with the e x c e p t i o n of the 1980 k i l l . T h e r e f o r e , i t can be concluded that unseasonably warm temperatures are not c o n t r i b u t i n g f a c t o r s to the c r i t i c a l l y low DO l e v e l s . The g e n e r a l l y p l a c i d nature of the Serpentine River tempts one to surmise that r e - a e r a t i o n i s p l a y i n g a minor r o l e . C e r t a i n -89 l y , r e a e r a t i o n i s p r o p o r t i o n a l to t u r b u l e n c e , but the negative c o r r e l a t i o n between oxygen l e v e l s and t i d a l gate openings proves that any s t a g n a t i o n c r e a t e d by t i d a l gate o p e r a t i o n i s not d i r e c -t l y r e s p o n s i b l e f o r depressed oxygen v a l u e s . Regarding d i l u t i o n from Mahood, Hyland and Latimer Creeks, data records are i r r e g -u l a r and incomplete; but of e x i s t i n g data, Latimer Creek e x h i b i t s the poorest water q u a l i t y . On days when sampling spanned the e n t i r e l e n g t h of the Serpentine, i t was c o n s i s t e n t l y observed that poorest water q u a l i t y e x i s t s between the c o n f l u e n c e s of Latimer and Mahood Creek. For example, on Sept. 29/82, DO meas-ured j u s t upstream of Latimer was 10.3 mg/L (Moore, 1984) and j u s t downstream i t was only 2.9 mg/L (Table 14). T h i s p a t t e r n was not uncommon. In f a c t , i t was an outflow of oxygen-demanding waters from Latimer Creek (a farmer had a p p a r e n t l y spread manure on h i s f i e l d immediately p r i o r to a l a t e September r a i n f a l l ) which was suspected as the cause of the 1980 f i s h k i l l (Farrow, 1980). In c o n j u n c t i o n with 1985 d i t c h data, Latimer Creek i s a d e f i n i t e c andidate as a major source of e x c e s s i v e BOD. The other l i k e l y source i s dead a l g a e , which remain suspended in the water column. Table 20 was formulated to address the i n f l u e n c e of r a i n f a l l on the f i s h k i l l s . In a l l cases except Oct. 31/83, the two days T a b l e 2 0 . R a i n f a l l and F i s h K i l l s DATE Oct Oct Oct Oct Oct 2, 1980 9, 1983 31, 1983 19, 1984 28, 1984 FISH KILLED 300 - 800 50 150 12 470 RAINFALL * (mm) 19.6 14.0 49.6 10.9 41 .6 * R a i n f a l l i n p r e v i o u s seven days 90 j u s t p r i o r to the k i l l were f a i r l y d r y . The f o l l o w i n g s c e n a r i o i s put f o r t h : r a i n f a l l i n g s e v e r a l days before the k i l l runs o f f the f i e l d s i n t o the d i t c h e s ; t h i s r u n o f f i s unable to flow i n t o the r i v e r , because the r i v e r h eight prevents the f l o o d boxes from opening; the d r i e r weather and t i d a l gate openings lower the r i v e r h eight such that the f u l l y loaded d i t c h e s then empty i n t o the r i v e r ; t h i s c r e a t e s a l a r g e , instantaneous demand on the oxygen r e s e r v e s i n the r i v e r . Even i f t h i s s c e n a r i o i s t r u e , an e f f e c t i v e c o n t r o l may be i m p o s s i b l e . The only s o l u t i o n that i s both r e a l i s t i c and c o s t - e f f e c t i v e , may be a s e r i e s of instream a e r a t i o n systems, capable of meeting t h i s temporary, but sudden, oxygen demand on the Serpentine R i v e r . 91 6.CONCLUSIONS AND RECOMMENDATIONS 6.1 Conclusi o n s 6.1.1 General (1) The a e r a t i o n system was s u c c e s s f u l i n i t s o p e r a t i o n . However, because of the high d i s s o l v e d oxygen l e v e l s which pers-i s t e d throughout the F a l l of 1985, i t remains untested i n i t s p o t e n t i a l to i n f l u e n c e oxygen l e v e l s i n the Serpentine R i v e r . (2) The Latimer Creek area i s a d e f i n i t e source of contami-n a t i o n to the Serpentine R i v e r . D i t c h e s i n that area do c o n t r i -bute s i g n i f i c a n t p o l l u t i o n loads to the Serpentine R i v e r . Anoth-er p o s s i b l e problem reach l i e s between F r a s e r Highway ( s i t e 10) and Highway #10 ( s i t e 6), where data has demonstrated lower oxygen l e v e l s at Highway #10 than upstream ( F r a s e r Highway) and downstream (152nd St.) of i t . (3) Both 1984 and 1985 data r e v e a l e d the p a t t e r n that a s i g n i f i c a n t drop i n c h l o r o p h y l l - a r e s u l t e d i n a pH and DO dec-rease, with an accompanying i n c r e a s e i n n i t r a t e l e v e l s . The hypothesis that l a r g e masses of algae d i e i n a short p e r i o d of time, i n the F a l l , and c r e a t e a l a r g e b i o c h e m i c a l oxygen demand (which the r i v e r cannot s u s t a i n ) , was strengthened by t h i s the-s i s . (4) Heavy r a i n f a l l c o r r e l a t e s w e l l with i n c r e a s e s i n n i t r a t -es and, to a l e s s e r degree, with i n c r e a s e s i n phosphorus. N i t r i -f i c a t i o n was found to be a minor c o n t r i b u t o r to oxygen f l u c t u a t -i o n s . N i t r o g e n and phosphorus d i d not l i m i t the growth of al g a e . .The Serpentine R i v e r , d u r i n g the F a l l p e r i o d , i s e u t r o p h i c . 92 (5) T i d a l gate o p e r a t i o n s are not d i r e c t l y r e l a t e d to depre-ssed oxygen v a l u e s . In f a c t , no p o s i t i v e c o r r e l a t i o n between low d i s s o l v e d oxygen l e v e l s and t i d a l gate openings per day was found. (6) The number of p o t e n t i a l contaminating sources are very many and, coupled with i r r e g u l a r flows and v a r i a b l e water q u a l i t -i e s , makes f o r an extremely d i f f i c u l t assessment of the problem source. In f a c t , the evidence i n d i c a t e s that the f i s h k i l l s of past years were a t t r i b u t a b l e to d i f f e r e n t sources or perhaps m u l t i p l e sources. Thus, p r a g m a t i c a l l y speaking, a e r a t i o n , though a "band-aid" approach, may w e l l prove to be the only p l a u s i b l e course of a c t i o n , at l e a s t f o r the near f u t u r e . 6.1.2 S p e c i f i c (1) A 24 hour Hydrolab detected a d e f i n i t e response i n d i s s o l v e d oxygen to the phenomena of p h o t o s y n t h e s i s and r e s p i r a t -ion of algae d u r i n g the months of J u l y and August, 1985. (2) Of a l l seven s i t e s , s i t e #10 c o n s i s t e n t l y experienced the poorest water q u a l i t y measurements. D i s s o l v e d oxygen l e v e l s reached as low as 3.0 mg/L. (3) Water temperatures i n J u l y and August c o n s i s t e n t l y ex-ceed 21 °C. T h i s r e p r e s e n t s a s e r i o u s t h r e a t to Coho f r y and e a r l y a d u l t spawners. (4) pH v a r i e d a l o t from week to week at i n d i v i d u a l s t a t -i o n s , and over the l e n g t h of the Serpentine R i v e r on a given day, between J u l y 2 and Oct. 15, 1985. Then, from Oct. 15 to Dec. 2, 1985, pH v a l u e s s t a b i l i z e d , both from week to week, and along the l e n g t h of the r i v e r on a given day. The e x c e s s i v e variance i s , 93 thought to be, a t t r i b u t a b l e to the high r a t e s of ph o t o s y n t h e s i s , which causes a pH change i n the p o o r l y b u f f e r e d r i v e r waters. (5) High l e v e l s (7,000 - 30,000 umho/cm, or 700 - 3000 mS/m) of s p e c i f i c conductance were caused by d e b r i s that blocked open the t i d a l g a tes. (6) Organic n i t r o g e n l e v e l s i n c r e a s e d as the n i t r a t e l e v e l s decreased. N i t r a t e s are converted to organic n i t r o g e n by the algae present i n the r i v e r . (7) A l g a l primary p r o d u c t i v i t y values i n d i c a t e t h a t , near the s u r f a c e , d i s s o l v e d oxygen produced by algae i s very s i g n i f i -cant, but, at one meter depth and below, the c o n t r i b u t i o n to oxygen l e v e l s i s very s l i g h t . The low l e v e l s at depth are l i k e l y due to r e s t r i c t e d p e n e t r a t i o n of l i g h t , because of high l e v e l s of t u r b i d i t y . (8) Sediment r e s u l t s from 1985 i n d i c a t e i n s i g n i f i c a n t changes i n sediment q u a l i t y over the past 5 ye a r s . Sediment r e s u l t s c o l l e c t e d i n 1982,1983 and 1985 and compared to other streams i n the Lower F r a s e r V a l l e y r e v e a l e d the Serpentine R i v e r would not be co n s i d e r e d a contaminated t r a c e metal a r e a . 6.2 R e c o m m e n d a t i o n s To maximize the u t i l i t y of the present c a p i t a l investment i n a e r a t i o n equipment, i t i s recommended that a f i s h net be i n s t a l -l e d at the end of the present a e r a t i o n zone. The net would have to be capable of being r a i s e d and lowered. When DO, upstream, i s approaching an unacceptably low l e v e l , the net would be r a i s e d to c o n t a i n the f i s h i n an oxygenated zone; the net would be lowered 94 when c o n d i t i o n s improve. In a d d i t i o n , a booster a e r a t i o n s t a t i o n at 152nd St. should be c o n s t r u c t e d . A c a p i t a l expenditure of only $6000 would be s u f f i c i e n t . T h i s would provide a d d i t i o n a l oxygen, when DO l e v e l s are c r i t i c a l l y depressed i n the s e c t i o n of the r i v e r between 152nd S t . and the t i d a l gates. In e f f e c t , then, there would be two zones of a e r a t i o n along the r i v e r between 160th St. and the t i d a l gates; these would be supplemented by a "removable net", designed to h o l d the f i s h i n the oxygenated water course, pending the r e t u r n of more f a v o r a b l e water q u a l i t y c o n d i t i o n s upstream. C o n s i d e r i n g the frequency of use ( e s s e n t i a l l y Sept. to Nov.), the t o t a l c a p i t a l and annual c o s t s are q u i t e reasonable f o r t h i s type of s o l u t i o n , to the problem at hand. A comprehensive, systematic, f i v e - y e a r sampling s t r a t e g y should a l s o be developed, with the i n t e n t of i s o l a t i n g s p e c i f i c problem reaches and i d e n t i f y i n g problem parameters more a c c u r a t e -l y . A s i n g l e government department and one person, s p e c i f i c a l l y , should be r e s p o n s i b l e f o r the Serpentine s t r a t e g y . I t would be necessary to b u i l d f l e x i b i l i t y i n t o the p l a n , i n order to respond to the f i n d i n g s to date. The f i r s t year of the s t r a t e g i c plan should expend s i g n i f i c a n t resources on the Latimer Creek area, s i n c e i t has been h i g h l i g h t e d as d e f i n i t e l y p r o b l e m a t i c . D i t c h monitoring should a l s o be kept up, wit h a t t e n t i o n f o c u s i n g on the worst o f f e n d e r s over the past years, as w e l l as seeking out new ones. A s c a l e d down v e r s i o n of the 1985 sampling program c o u l d be used, to keep annual o p e r a t i n g and l a b o r a t o r y c o s t s as low as p o s s i b l e . 95 REFERENCES Amberg H.R., Wise D.W., and A s p i t a r t e T.R., (1969), "Aeration of Streams with A i r and Molecular Oxygen", Tappi, v o l 52, no 10, pp 1866 - 1871. Anon., (1960), " A e r a t i o n of Large Volumes of Water", Water and Waste T r t . J o u r . ( B r i t . ) , v o l 7, p 508. Ashley K.I., (1985), "Hypolimnetic A e r a t i o n : P r a c t i c a l Design and A p p l i c a t i o n " , Water Research, v o l 19, no 6, pp 735 - 740. Backman D.C., (1986), pers. comm. Backman D.C. and Simonson T.L., (1985), "The Serpentine River Watershed Salmonid Resources S t u d i e s , 1984 - 1985", Tynehead Z o o l o g i c a l Park, June. Barnes D. and B l i s s P.J., (1983), " B i o l o g i c a l C o n t r o l of Nitrogen in Wastewater Treatment", E.F.N. Spon L t d , New York, N.Y. B e n e f i e l d L.D., and Randall C.W., (1980), " B i o l o g i c a l Process Design f o r Wastewater Treatment, P r e n t i c e - H a l l Inc. Bergmann L.A., (1980), "Status Report August 1, 1980, Serpentine - Nicomekl S t u d i e s and P r o j e c t s " , Assessment and Planning Dept., B.C. Min. of Env., V i c t o r i a B.C. Bishop G., (1986), Superintendent of Surrey Dyking D i s t r i c t , pers communication. Bourque S., and Hebert G., (1982), "A P r e l i m i n a r y Assessment of Water Q u a l i t y and B i o t a i n the Serpentine and Nicomekl R i v e r s and Mahood Creek, 1974 - 1975", B.C. Min of Env and EPS. Br e t t J.R., (1952), "Temperature Tolerance i n Young P a c i f i c Salmon Genus Oncorhynchus", J . F i s h Res Bd Canada, v o l 9, no 6, pp 265 - 323. Br e t t J.R., (1971), "E n e r g e t i c Responses of Salmon to temperature A study of some thermal r e l a t i o n s i n the ph s i o l o g y and freshwater ecology of sockeye salmon (Onochyncus nerka)", Amer Z o o l , v o l 11, no 1, pp 99 - 113. B r u i j n J . , and Tuinzaad H, (1958), "The R e l a t i o n s h i p Between Depth of U-tubes and the A e r a t i o n Process", JAWWA, v o l 50, p 879. Canadian Climate Normals, (1982), Atmospheric Environment S e r v i c e s , Env Canada. C a v e r h i l l P., (1986), F i s h and W i l d l i f e B i o l o g i s t , pers comm. 96 Coutant C.C., (1970), "Thermal P o l l u t i o n - B i o l o g i c a l E f f e c t s : A Review of the L i t e r a t u r e 1970", JWPCF, v o l 42, no 42, pp 1025 -1057 Cox B., (1975), "The E f f e c t s on F i s h , W i l d l i f e , and R e c r e a t i o n as a r e s u l t of D i k i n g , D i v e r s i o n , Drainage and I r r i g a t i o n on the Serpentine-Nicomekl F l o o d P l a i n " , Unpub. D r a f t , B.C. Min of Env, F i s h and W i l d l i f e Br. Cox B., and McFarlane S., (1978), " F i s h and W i l d l i f e Resources of the Serpentine - Nicomekl Watershed", Unpub. Interagency D r a f t , B.C. Min of Env, F i s h and W i l d l i f e Br. Davis J.C., (1975), "Minimal D i s s o l v e d Oxygen Requirements of Aquatic L i f e with Emphasis on Canadian S p e c i e s : A Review", Jour F i s h e r i e s Research Bd of Canada, v o l 32, no 12, pp 2295 - 2332. Dayton and Knight, (1984), "Serpentine and Nicomekl Dyke Upgrading", B.C. Min of Env, Water Management Br. Dick J.H., (1975), "Water C o n t r o l i n the Serpentine-Nicomekl F l o o d P l a i n : A watershed management approach", B.C. Min of Env, F i s h and W i l d l i f e Br., V i c t o r i a , t y p e s c r i p t . Doyle T.J., (1973), "Oxygenation of Shallow Streams - A Research and Development Need", Water Resources Symposium No 6, " A p p l i c a t i o n s of Commercial Oxygen to Water and Wastewater Systems", Univ of Texas at A u s t i n , p 321. E c k e n f e l d e r W.W., and Ford D.L., (1968), "New Concepts i n Oxygen T r a n s f e r and A e r a t i o n " , i n Advances i n Water Q u a l i t y Improvement, E c k e n f e l d e r W.W. and Gloyna E.F. e d i t o r s , Univ of Texas Press, A u s t i n , Tex. Eder L . J . , and Cunningham W.J., (1982), "Instream R e a r a t i o n O f f e r s an A l t e r n a t i v e to Wastewater Treatment", T a p p i , v o l 65, no 11, pp 85 -88. Eng News Record, (1962), "Sweetening a Smelly R i v e r with Oxygen", v o l 169, no 2, p 49. Environmental Laboratory Manual, (1976), "Laboratory Manual f o r the Chemical Analyses of Waters, Wastewaters, Sediments and B i o l o g i c a l M a t e r i a l s " , update, B.C M i n i s t r y of Environment. Farrow M., (1980), " F i s h Jumped to t h e i r Deaths Out of Oxygen Starved R i v e r " , The Vancouver Sun, October. Gameson A.L.H., Vandyke K.G., and Ogden C.G., (1958), "The E f f e c t of Temperature on A e r a t i o n at Weirs", Water and Water Eng. ( B r i t ) v o l 62, no 753, pp 489 - 492. H a g i s t W.M., (1967), "The E f f e c t of Weirs on the A e r a t i o n of Flowing Streams", Water Resource Center Completion Rep, Univ of Rhode I s l a n d , June. 97 H a l l K.J., Yesaki I., and Chan J . , (1976), "Trace Metals and C h l o r i n a t e d Hydrocarbons i n the Sediments of a M e t r o p o l i t a n Watershed", Tech. r e p o r t #10, Westwater Research Center, U.B.C., Vancouver, B.C. H a l s t e a d E.C., (1978), "Nicomekl - Serpentine Basin Study, B r i t i s h Columbia", Inland Waters D i r e c t o r a t e , S c i e n t i f i c S e r i e s #94. H i r s t S.M., T r u e l s o n R.B., C l a r k B.C., and Easthorpe C.A., (1979) "Impacts of A g r i c u l t u r a l Land Drainage on the F i s h and W i l d l i f e Resources of the Serpentine - Nicomekl Watersheds, B.C.", Unpub Report, Min of Env, F i s h and W i l d l i f e Br. Hogan W.T., (1970), "Mechanical A e r a t i o n Systems fo r R i v e r s and Ponds", E.P.A. Water P o l l u t i o n C o n t r o l Research S e r i e s , Nov.,NTIS PB-206 218. H o l l a n d S.S., (1976), "Landforms of B r i t i s h Columbia", B.C. Dept of Mines and Petroleum Resources. Imhoff K.R., (1968), "Oxygen Management and A r t i f i c i a l R e a r a t i o n i n the Area of Baldeney Lake on the Lower Ruhr R i v e r " , Gas.-u. Wasserfach (Germany), v o l 109, no 36, p 936. Imhoff K.R., and A l b r e c h t D., (1978), "Instream A e r a t i o n i n the Ruhr R i v e r " , Prog Wat. Tech, Great B r i t a i n , v o l 10, nos 3/4, pp 277 - 288. Imhoff K.R., and A l b r e c t D., (1982), " N u t r i e n t s and A l g a l Growth i n an Impounded R i v e r , Consequences f o r i t s Oxygen Balance and C o n t r o l S t r a t e g y " , Wat S c i Tech, v o l 14, pp 185 - 197. Kaplovsky A.J., Walters W.B., and Sosewitz B., ( 1.964), " A r t i f i c i a l A e r a t i o n of Canals i n Chicago", JWPCF, v o l 36, no 4, p 463. Kay B.H., (1976), " S h e l l f i s h growing water. S a n i t a r y survey of Boundary Bay, Mud Bay and Crescent Beach, B.C.", S u r v e i l l a n c e Report E.P.S. 5-PR-76-11, P a c i f i c Region, Env Canada, 78pp. Keeton W.T., (1980), B i o l o g i c a l S c i e n c e , 3rd ed, Norton and Co, New York, N.Y. Kendrew W.G., and Kerr D., (1955), "The Climate of B r i t i s h Columbia and the Yukon T e r r i t o r y " , Queens P r i n t e r , Ottawa. L o v e l e s s J.E., and P a i n t e r H.A., (1968), "The I n f l u e n c e of Metal Ion C o n c e n t r a t i o n s and pH Value on the Growth of a Nitrosomonas S t r a i n I s o l a t e d from A c t i v a t e d Sludge", J Gen. M i c r o b i o l . , v o l 52, no 1, pp 1 - 14. Luttmerding H.A., (1980), " S o i l s of the Langley - Vancouver Map Area", B.C. Min of A g r i c u l t u r e . 98 MacDougall D., et a l . , (1980), " G u i d e l i n e s f o r Data A c q u i s i t i o n and Data Q u a l i t y E v a l u a t i o n i n Environmental Chemistry", A n a l . Chem., v o l 52, no 14, pp 2242 - 2249. MacKenthun K.M., (1969), The p r a c t i c e of Water P o l l u t i o n B i o l o g y , Fed Wat P o l l Con Admin p u b l i s h e r s , Wash D.C., p 19. Ma r t i n A.J., (1927), The A c t i v a t e d Sludge Process, MacDonald and Evans, London, England. M e r c i e r P., and P e r r e t J . , (1949), " A e r a t i o n S t a t i o n of Lake B r e t , M o n a s t b u l l , Schwiez", Ver. Gas. Wasser-Fachm v o l 29, p 25. Me t c a l f and Eddy Inc., (1979), Wastewater E n g i n e e r i n g : Treatment/ Disposal/Reuse, McGraw H i l l , New York, N.Y. Moore B., (1984), "Serpentine River D i s s o l v e d Oxygen Survey 1981-1983", B.C., Min of Env, Waste Management Br., Unpub Report. Nemerow L.M., (1974), S c i e n t i f i c Stream P o l l u t i o n A n a l y s i s , McGraw H i l l , New York, N.Y. O l i v e r B.G. and Agemian H., (1974), "Further S t u d i e s on the Heavy Metal L e v e l s i n Ottawa and Rideau R i v e r Sediments", S c i e n t i f i c S e r i e s #37, lOpp, I n l a n d Waters D i r e c t o r a t e , Water Q u a l i t y Br., Ottawa. O'Riordan J . , (1976), "Serpentine - Nicomekl Drainage Study", B.C. Env and Land Use S e c r e t a r i a t , March 25, D r a f t Report. P a i n t e r H.A., (1970), "A Review of the L i t e r a t u r e on Inorganic N i t r o g e n Metabolism i n Microorganisms", Water Research, v o l 4, no 6, pp 393 - 450. P a l l a d i n o A.J., (1961), " I n v e s t i g a t i o n s of Methods of Stream Improvement", Ind. Water and Wastes, v o l 6, no 3, p 87. Redekopp J.H., and S c o t t K.J., (1985), "Angler Use and Catch Surveys of Anadromous Trout F i s h e r i e s i n the Serpentine and Nicomekl R i v e r s , 1984/85", B.C. Min of Env and Dept. of F i s h e r i e s and Oceans, A p r i l . Rue W., (1978), Climate of the P a c i f i c Coast, Gordon Soules Book P u b l i s h e r s , Vancouver, B.C. Sawyer C.N., and McCarty P.L., (1978), Chemistry f o r Environmen-t a l E ngineers, McGraw H i l l , New York, N.Y. Schubert N., (1986), Dept. of F i s h e r i e s and Oceans, p e r s . comm. Sharma B., and A h l e r t R.C., (1977), " N i t r i f i c a t i o n and Nitrogen Removal", Water Research, v o l 11, pp 897 - 925. Shaw L. and Yu A.M., (1970), "Aerator Performance i n N a t u r a l Streams", JASCE, v o l 96, pp 1099 - 1114. 99 Speece R.E., (1969a), "The Use of Pure Oxygen i n Ri v e r and Impou-ndment A e r a t i o n " , Proc 24 th Purdue Ind Waste Conf, West L a f a y e t -t e , Ind. Speece R.E., (1969b), "U-tube Stream Reaeration ", P u b l i c Works, v o l 100, pp 111 - 113. Speece R.E., Adams L.,and Woodridge C.B., (1969), "U-tube A e r a t i o n Operating C h a r a c t e r i s t i c s " , ASCE, v o l 95, pp 563 - 574. Sprout P.N., and K e l l y C.C., (1961), " S o i l Survey of Surrey M u n i c i p a l i t y " , B.C. Dept. of A g r i c u l t u r e , 68 pp, mimeogr. Standard Methods For the Examination of Water and Wastewater 16th ed., (1985), j o i n t pub. APHA, AWWA, and WPCF. Susag R.H., P o l t a R.C. and Schroepfer G.J., (1966), "Mechanical Surface A e r a t i o n of R e c e i v i n g Waters", JWPCF, v o l 38, no 1, pp 53 - 68. Technicon Instruement Corp, (1973), I n d u s t r i a l Method #154-71W, Tarrytown, New York. Thurston R.V., et a l , (1974), "Aqueous Ammonia E q u i l i b r i u m C a l c u l a t i o n s " , F i s h e r i e s Bioassay Lab, Montana State Univ., Bozeman, Montana, r e p o r t # 74-1. Trew J . , (1986), B.C. W i l d l i f e F e d e r a t i o n , pers comm. T y l e r R.G., (1946), " P o l l u t e d Streams C l e a r e d up by A e r a t i o n " , C i v i l Eng, v o l 16, p 348. Wetzel R.G., (1983), Limnology, 2nd ed., W.B. Saunders Company, Toronto, Canada. Whipple W. J r . , Hunter J.V., Davidson B., Ditmann F. and Yu S., (1969), "Instream A e r a t i o n of P o l l u t e d R i v e r s " , Water Resources Research I n s t i t u t e , Rutgers Univ., New Brunswick, N.J. Whipple W. J r . , Loughlan F.P., and Yu S., (1970), "Instream A e r a t o r s f o r P o l l u t e d R i v e r s " , ASCE, v o l 96, pp 1153 - 1165. Whipple W. J r . , (1971), " A e r a t i o n Systems f o r Large Navigable R i v e r s " , ASCE, v o l 97, pp 883 - 902. Wiley A.J., et a l . , (1947), "River R e a r a t i o n " , Paper Trade Jour., v o l 124, no 12, p 64. Wiley A.J., and Lueck B.F., (1960), "Turbine A e r a t i o n and Other Methods of Rea e r a t i n g Streams", T a p p i , v o l 43, no 3, p 241. Wilson K.W., (1986), Senior H y d r a u l i c Engineer, Water Management Br, B.C. Min of Env, p e r s . comm. 100 Wood L.W., (1985), "Chloroform - Methanol E x t r a c t i o n of C h l o r o p h y l l - a " , Can J . F i s h . Aquat. S c i . , v o l 42, pp 38-43. Wuhrmann K., Zehender F. and Woker H., (1947), " B i o l o g i c a l S i g n i f i c a n c e of the Ammonia and Ammonia Content of Flowing Water i n F i s h e r i e s " , V j s c h r . n a t u r f . Ges. Z u r i c h , v o l 92, pp 198 - 204. Wuhrmann K., and Woker H., (1948), " C o n t r i b u t i o n s to the Toxico-logy of f i s h " , Schweiz Z. Hyd r o l . I I , pp 210-244. 101 APPENDIX I AERATION CALCULATIONS 102 The f o l l o w i n g c a l c u l a t i o n s are presented to i n d i c a t e the p o r t i o n of the oxygen demand which can, t h e o r e t i c a l l y , be met by the e x i s t i n g d i f f u s e d a e r a t i o n system. B e n e f i e l d and Randall (1980) s t a t e " . . . i n a b i o l o g i c a l process, the oxygen t r a n s f e r r a t e of a d i f f u s e d a e r a t i o n system i s u s u a l l y between 0.68 and 1.13 kg oxygen t r a n s f e r r e d / b l o w e r hp-hr". C o n s i d e r i n g that the a e r a t i o n system has 0.8 mm h o l e s ( f i n e bubbles) and that temper-atures in October are f a i r l y low (10 ° C ) , a t r a n s f e r r a t e of 0.9 kg/hp-hr would be a reasonable estimate f o r the Serpentine aer-a t o r . The two, 5-hp blowers, then, are capable of t r a n s f e r r i n g 9 kg of oxygen per hour. System c a p a b i l i t y can thus be e v a l u a t e d as such: (a) What volume of water flows through the a e r a t i o n zone i n one hour? If r i v e r v e l o c i t y = 0.2 m/s, then a drop of water w i l l t r a v e l 720 m i n 1 h r . Given: a c t i v e a e r a t i o n zone l e n g t h (as water flows) = 172 m, then i n 1 hr a 548 m l e n g t h of water has passed e n t i r e l y through the a e r a t i o n zone. If average depth = 3.5 m, and width of a e r a t i o n zone = 8.6 m, then, volume = 16,494,800 L. (b) What t r a n s f e r r a t e i s r e q u i r e d to r a i s e the DO from 1.5(worst case) to 5.0 mg/L, assuming the t r a n s f e r r a t e doesn't vary over t h i s range? t r a n . r a t e = (3.5 mg/L) (1 6, 494,800 L / h r ) d . O x 10~ 6 kg/mg) =57.7 kg/hr. (c) How many e q u i v a l e n t Serpentine a e r a t i o n u n i t s are necessary to meet t h i s demand? 103 # of u n i t s = 5 7 . 7 / 9 = 6 . 4 In other words, under the worst-case s c e n a r i o above, the e x i s t i n g system can be expected to meet about one s i x t h of the oxygen demand d u r i n g the c r i t i c a l p e r i o d . I f the DO l e v e l s are higher to begin with, then the a e r a t i o n u n i t i s capable of sup-p l y i n g a l a r g e r f r a c t i o n of the demand. 104 APPENDIX II WATER QUAL ITY DATA (1985) 105 DATA SUMMARY ON SERPENTINE RIVER. 1985 A l l units mg/L except SPCON (umho/cm); CL-a (ug/L); and To convert SPCON umho/cm to mS/m divide by 10. o DATE TIME SITE DO TEMP SPCON PH COD TOC TIC TC 0 10 9 .4 2 0 . 0 2 5 0 7 . 5 0 4 0 7 19 26 J U L Y 2 O 6 12 . 0 22 . 0 2 2 0 7 . 9 0 39 8 19 27 O 12 14 .8 22 .O 2 4 0 8 . 6 0 4 0 8 18 26 0 13 15 .4 22 . 0 2 4 0 8 . 7 5 49 8 18 26 6 10 6 . 0 2 0 . 0 2 3 0 7 . 0 0 25 7 21 28 6 6 7 .4 22 .5 2 2 0 7 .41 34 8 19 27 6 12 14 . 0 24 . 0 2 6 0 8 . 8 0 37 10 18 28 J U L Y 8 e 13 14 . 0 24 .5 2 6 0 8 . 9 5 41 9 18 27 6 14 13 .2 24 .5 2 7 0 8 . 87 4 5 8 18 26 6 152 12 . 0 25 .5 1850 8 .49 45 1 1 21 32 6 99 9 . 0 24 . 0 5 5 0 0 8 . 7 5 43 1 1 21 32 13 10 8 .2 2 0 . 0 2 3 0 7 . 10 10 7 21 28 13 6 9 .8 23 . 0 2 3 0 7 . 8 0 13 8 2 0 28 13 12 9 .0 24 . 0 1300 8 . 0 0 15 8 2 0 28 J U L Y 1 13 13 9 .2 24 . 0 1350 8 . 0 0 10 7 21 28 13 14 8 .2 24 . 0 2 1 0 0 7 .84 22 8 21 29 13 152 1 1 . .0 25 .5 4 6 0 0 8 . 5 0 4 9 10 2 0 3 0 13 9 9 12 .8 27 . 0 9 5 0 0 8 . 6 5 6 9 1 1 22 33 2 0 10 7 .2 23 . 0 3 1 0 7 . 0 0 33 8 21 29 2 0 6 4 . . 1 27 .0 7O00 7 .44 69 9 23 32 2 0 12 9 a 28 .0 1 4000 8 .32 251 1 1 23 34 J U L Y 2 2 0 13 9 6 28 .0 1 5 5 0 0 8 .01 367 11 26 37 2 0 14 10 .2 28 .0 1 3000 8 . 03 176 10 24 34 2 0 152 1 1 . .0 27 .0 2 3 0 0 0 8 .69 2 22 9 23 32 2 0 9 9 7. .0 2 6 . . 0 3 0 0 0 0 8 . 2 0 2 82 7 22 2 9 27 10 6 . ,3 2 0 . .0 2 4 0 6 .91 24 6 2 0 26 27 6 7 . 8 2 3 . .0 1850 7 . 7 0 4 0 9 2 0 29 27 12 10. .2 23 .5 3 2 0 0 8 .24 35 10 18 28 J U L Y 2 27 13 9 . ,4 25 .0 3 1 2 0 8 .26 39 9 18 27 2 7 14 6 . 3 2 5 . 0 4 7 0 0 7. .93 6 0 9 19 28 27 152 7 . 0 25 . ,5 8 2 0 0 8 0 7 76 12 21 33 27 9 9 10. 8 2 6 . .0 1 5000 a. . 60 248 13 22 35 3 5 10 5 . 1 18. ,0 2 4 0 6 .66 23 5 23 28 35 6 8 . 2 2 0 . o 2 7 0 7. . 16 46 9 18 27 3 5 12 10 . 8 21 . 3 8 0 0 8. .48 27 8 19 27 AUG 6 3 5 13 1 1 . O 21 . 4 9 0 0 8 . 51 28 8 19 27 3 5 14 10 . 8 21 . 5 1000 8. .58 36 8 19 27 35 152 12 . 0 2 2 . 5 3 4 5 0 8. 8 0 4 0 7 19 26 35 9 9 1 1 . 8 2 2 . 5 7 0 0 0 8. 6 8 6 2 5 21 26 41 10 4 . 5 17 . 0 2 1 0 6 . 56 2 0 8 2 0 28 41 6 7 . 0 19 . 0 2 0 0 6 . 78 18 7 17 24 41 12 7 . 6 19. 2 4 7 0 7. 35 13 8 17 25 AUG 12 41 13 7 . 1 19 . 2 5 1 0 7 . 41 1 1 7 17 24 IP (°C): N02, N03, NH3 (mg/L as N); ORTH P (mg/L as P) N02 N03 NH3 ORGN TKN TOT N ORTH P TOT P CL-a 0 .031 0 . 66 0 .241 0 . 68 0 .92 1 .61 0 . 145 0 . 2 5 5 0 . 0 29 0 . 6 0 0 . 0 1 7 0 . 69 O .71 1 .34 0 . 127 0 . 0 29 0 . 39 0 . 0 0 7 1 .01 1 .02 1 .44 0 . 014 0 . 133 0 . 0 29 0 . 37 0 . 0 12 1 . 0 4 1 . 05 1 . 45 0 . 017 0 . 1 1 7 0 .031 0 . 5 3 0 . 155 0 . 72 0 . 8 7 1 . 43 0 . 127 0 . 2 8 0 2 0 0 . 0 26 0 .42 0 .01 1 0 . 8 3 0 .84 1 . 29 0 . 0 2 5 0 . 1 19 10 o . 0 16 0 . 0 3 0 . 107 1 . 13 1 . 24 1 . 2 9 0 . 0 12 0 . 1 1 3 SO 0 . 0 14 0 . 02 0 .071 1 . 18 1 . 25 1 .27 0 . 012 0 . 103 32 0 . 0 12 0 . 02 0 . 0 3 7 1 . 0 0 1 .04 1 . 06 0 . 0 0 7 0 . 0 8 8 29 0 . 005 0 .02 0 . 0 0 9 1 . 18 1 . 19 1 . 19 0 . 0 0 3 0 . 105 31 0 . 005 0 .02 0 . 0 06 0 . 9 3 0 .94 0 .94 0 .004 0 . 105 27 0 . 027 0 . 35 0 . 0 4 3 0 . 92 0 .96 1 .34 0 . 094 0 . 2 3 6 41 0 . 026 0 . 2 0 0 . 184 1 . 3 0 1 .48 1 .71 0 . 0 0 7 0 . 1 19 44 0 . 017 0 . .07 0 . 129 0 .91 1 .04 1 . 13 0 .004 0 . 0 82 42 0 . 017 0 . .07 0 . 142 1 .05 1 . 19 1 . 28 0 . 0 0 3 0 . 0 86 4 5 0 .016 0 . .06 0 . 158 1 .07 1 .23 1 .31 0 . 0 0 3 0 . 0 8 3 52 0 . 005 0 . 0 2 0 . . 0 0 5 1 . 12 1 . 12 1 . 12 0 . 003 0 . 0 9 0 54 0 . 005 0 . .02 0 . 0 0 5 1 . 2 0 1 . 2 0 1 . 2 0 0 . 004 0 . 134 51 0 .034 0 . .31 0 .061 0 .78 0 .84 1 . 18 0 . 0 3 0 0 . 117 2 0 0 .008 0 . 0 2 0 . . 173 1 . . 14 1. .31 1 .31 0 . 007 0 . 146 43 0 , . 005 0 . 0 2 0 . . 113 2 .07 2 . 18 2 . 18 0 .034 o . 309 53 0 . . 005 0 . 0 2 0 . , 120 2 . .24 2 .36 2 . 36 0 . 037 0 . , 3 3 0 6 0 0 . . 005 0 . 0 2 0 . . 055 1 . .82 1 . .87 1 .87 0 . 019 0 , . 245 4 9 0 . . 005 0 . 0 2 0 . 006 1 . . 03 1 .04 1 .04 0 . 019 0 . 2 6 9 44 0 . .007 0 . 0 2 0 . . 013 0 . 35 0 . . 36 0 . 36 0 . 0 9 0 0 . . 173 22 0 . ,031 0 . 4 2 0 . . 085 0 . 61 0 . .69 1 , . 14 0 .081 0 . . 195 18 0 . .029 0 . 28 0 . 150 1. 32 1. .47 1 .78 0 . .006 0 . .116 7 0 0 . 0 2 6 0 . 25 0 . 0 4 9 1. , 14 1. . 19 1 , .47 0 . . 003 0 . .088 62 0 . .025 0 . 25 0 . . 033 1. . 17 1. . 20 1 . .47 0 . . 003 0 . . 0 8 0 6 9 0 . 0 2 3 0 . 22 0 . 120 1. 2 5 1. .37 1 . .61 0 . 0 0 4 0 . 0 8 5 6 0 0 . 0 2 0 0 . 14 0 . 0 21 1. 4 9 1. 51 1 . .67 0 . ,006 0 . 143 71 0 . 0 0 5 0 . 0 2 0 . 0 0 9 1. 6 4 1. 6 5 1 , .65 0 . .008 0 . 2 3 6 6 7 0 . 0 5 0 0 . 56 0 . 147 0 . 6 5 0 . 8 0 1 . .41 0 . .074 0 . 2 9 0 3 0 0 . 051 o . 38 0 . 0 5 3 1. 13 1. 18 1 . .61 o . O IO 0 . 120 82 0 . 0 4 5 0 . 35 0 . 0 4 6 0 . 8 0 0 . 85 1 . 24 0 . 0 0 6 0 . 0 6 9 38 o . 0 4 4 o . 36 0 . 0 4 8 0 . 7 9 0 . 84 1 . 24 0 . 0 0 5 o . 0 6 7 32 0 . 0 4 3 0 . 38 0 . 0 2 5 0 . 74 0 . 76 1 . 18 0 . 0 0 5 0 . 0 5 9 29 0 . 0 1 0 0 . 22 0 . 0 1 6 1. 0 4 1. 0 6 1 . 29 0 . 0 0 3 0 . 121 6 8 0 . 0 0 5 0 . 0 2 0 . 0 0 5 0 . 9 6 0 . 9 6 0 . 9 6 0 . 0 0 8 0 . 148 33 0 . 0 5 2 0 . 6 7 0 . 3 6 0 0 . 8 9 1. 25 1. 97 0 . 1 15 0 . 2 9 6 47 0 . 0 4 4 0 . 4 5 0 . 0 7 8 0 . 74 0 . 82 1. 31 0 . 0 2 0 0 . 123 42 0 . 0 4 6 0 . 5 0 0 . 195 0 . 8 2 1. 01 1. 56 0 . 0 1 8 0 . 1 15 4 0 0 . 0 4 6 0 . 4 8 0 . 2 0 6 0 . 7 6 0 . 97 1. 5 0 0 . 0 1 9 0 . 1 1 1 49 DATE TIME SITE DO TEMP SPCON PH COD TOC TIC TC N02 N03 NH3 ORGN TKN TOT N ORTH P TOT P CL-i 41 14 7 . 1 19 .2 700 7 .42 13 7 18 25 0 .046 0 .48 O .226 0 .82 1 .05 1 .58 0 .018 0 . 106 52 AUG 12 41 152 10 .0 21 .0 3100 7 .82 22 9 19 28 0 .037 0 .34 0 . 126 1 .08 1 .21 1 .59 0 .010 0 . 132 60 41 99 9 .6 21 .5 7100 8 .30 44 9 21 30 0 .009 0 . 10 0 .007 1 .43 1 .44 1 .55 0 .004 o . 2 14 69 48 10 5 .4 16 .8 210 6 .85 33 10 22 32 0 .050 0 .63 0 . 138 2 .65 2 .79 3 .47 0 . 109 0 . 377 120 48 6 9 .9 19 .O 215 7 .73 24 9 18 27 0 .048 o .37 o .015 1 . 1 1 1 . 12 1 .54 0 .014 0 . 1 14 7 1 48 12 1 1 .2 20 .5 260 8 .40 24 10 16 26 0 .045 0 .23 0 .023 1 .02 1 .04 1 .31 0 .016 0 .097 68 AUG 19 48 13 1 1 .2 20 .5 300 8 .48 22 9 16 25 0 .045 0 .24 0 .029 0 .95 0 .98 1 .26 0 .016 o .099 58 48 14 1 1 .2 20 .5 340 8 .57 24 9 16 25 O .044 0 .21 0 .016 0 .88 0 .90 1 . 15 0 .013 0 .086 53 • 48 152 10 .5 20 .0 1 100 8 .80 46 10 16 26 0 .030 0 .04 0 .056 1 . 35 1 .41 1 .48 0 .010 0 . 153 52 48 99 10 . 1 20 .0 2700 8 .94 33 10 16 26 0 .005 0 .02 0 .011 0 .92 0 .93 0 .93 0 .005 0 . 103 35 55 10 7 .6 16 .4 180 7 .02 13 3 21 24 0 .020 0 .33 0 .005 0 .71 0 .71 1 .06 0 .087 0 .2 13 26 55 6 9 .0 18 .8 195 7 .83 24 6 20 26 0 .005 0 .04 0 .036 0 .96 1 .00 1 .04 0 .012 0, . 105 60 55 12 12 .8 19 .8 220 8 .92 26 7 19 26 0 .005 0 .02 0 .005 1 .08 1 .08 1 .08 0 .011 0. ,095 7 1 AUG 26 55 13 13 .6 19 .8 230 9 .04 35 8 19 27 0 .005 0 .02 0 .005 1 . 13 1 . 13 1 . 13 0 .010 0. 107 89 55 14 14 .0 20. .0 250 9 . 13 26 7 19 26 0 .005 0 .02 0 .005 1 . 15 1 . 15 1 . 15 0 .005 0. 1 18 85 55 152 16 .4 22. .7 2400 9 .28 35 10 17 27 0 .005 0 .02 0 .005 1 .00 1 .00 1 .00 0 .003 0. 1 16 80 55 99 13 .4 22 .8 6000 9 .01 60 9 20 29 0 .005 0 .02 0 .005 1 .34 1 .34 1 .34 0 .008 0. 2 11 44 62 10 6. . 1 15. .0 175 6 .57 26 7 19 26 0 .046 0 .53 0 . 145 0 .62 0 .76 1 .34 0 .080 0. 200 21 62 6 9 6 16. 8 165 7 .63 17 4 18 22 0 .020 0 .51 0 .035 0 .62 0 .65 1 . 18 0, .007 0. 089 46 62 12 10. .6 17. .5 400 8 .28 17 4 18 22 0 .021 0. . 19 o .028 0 .66 0 .69 0 .90 0 .006 0. 066 53 SEPT 2 62 13 1 1 . 2 17. .8 485 8 .40 17 5 18 23 0 .021 0. . 17 0 .041 0 .68 0 .72 0 .91 0 .005 0. 066 55 62 14 1 1 . O 18 . 0 660 8 .49 13 4 19 23 0 .020 0. , 13 0 .033 0. .71 0 .74 0 .89 0, .005 0. 067 50 62 152 9. 6 19. , 2 1600 8 .60 19 6 20 26 0 .005 0. ,02 o. ,01 1 0 .86 0 .87 0 .87 0, .004 0. 094 35 62 99 8. O 18. ,7 3000 8 .20 34 6 21 27 0 .005 o. .02 0 .018 o .71 0 .73 o . 73 0 .024 o. 103 21 69 10 5. 5 13. ,0 280 6 . 35 30 14 16 30 0 .060 1. 52 0. 570 0. .84 1 .41 2 .99 0. . 103 0. 235 18 69 6 6. 2 13. .4 140 6 .32 10 5 15 20 0 .029 0. 79 0. .300 0. .51 0, .81 1 , .63 0. .046 0. 143 20 69 12 6. 2 14. 7 150 6 . 40 10 4 16 20 0. .030 0. 67 0. 282 0. 54 0. 82 1 . .52 0. 035 0. 126 27 SEPT g 69 13 6. 1 14. 7 155 6 .40 10 4 15 19 0. 029 0. 68 0. 271 0. 51 0. .78 1 . .49 0. 034 0. 124 29 69 14 6. 6 14 . 7 160 6 .43 10 5 13 18 0. .028 0. 72 0. 232 0. 59 0. .82 1 . ,57 0. 021 0. 124 33 69 152 6. 4 14 . 0 290 6. 83 10 5 10 15 0. 023 0. 68 0. 378 0. 64 1. .02 1 . 72 0. 020 0. 121 33 69 99 6. 9 16. 0 2200 7. . 13 10 6 15 21 0. 019 0. 41 0. 655 0. 69 1. ,34 1 . 77 0. .036 0. 168 41 76 10 3. 5 13. 0 195 6. . 25 33 10 19 29 0. 048 0. 68 0. 613 0. 93 1. .54 2 . 27 0. , 141 0. 321 18 76 6 6. 1 14. 5 190 6. 32 28 8 14 22 0. 063 0. 68 0. 956 0. 62 1. 58 2. 32 0. 031 0. 141 38 76 12 7 . 9 14 . 5 190 6. .39 21 7 14 21 0. 048 0. 81 o. 355 0. 58 0. ,93 1 . ,79 0. 021 0. 101 36 SEPT 1 76 13 7. 9 14 . 5 200 6 , .41 24 7 14 21 0. 048 0. 82 0. 371 0. 60 0. ,97 1 . 84 0. 019 0. 1 14 39 76 14 7 . 9 14 . 5 215 6 . , 42 24 7 14 21 o. 049 0. 83 0. 393 0. 60 0. 99 1 . 87 o. 020 0. 1 14 42 76 152 10. 0 15. 0 315 6. .58 26 6 14 20 0. 043 0. 81 0. 217 0. 76 0. 98 1 . 83 0. 013 0. 096 61 76 99 1 1 . 6 15. 0 1900 7. 39 37 8 1 1 19 0. 036 o. 58 o. 01 1 o. 90 0. 91 1 . 53 0. 010 o. 088 92 83 10 3. 4 1 1 . 0 240 6. .51 28 7 23 30 0. 024 0. 56 0. 235 0. 71 0. 95 1 . 53 0. 107 0. 268 10 83 6 6. 4 1 1 . 5 260 6. 32 37 7 17 24 0. 067 1. 14 0 . 470 o . 58 1. 05 2. 26 o. 041 0. 146 13 83 12 7. 3 12. 9 265 6. 22 33 7 17 24 0. 059 1. 35 0 . 41 1 o. 60 1. 01 2 . 42 0. 043 o. 154 18 SEPT 2 83 13 6. 9 12. 9 280 6. 20 33 9 15 24 0. 063 1. 43 0 . 452 0. 65 1. 10 2. 59 0 . 017 0. 162 19 83 14 6. 4 13. 0 295 6. 17 27 10 16 26 0. 072 1. 54 0 . 472 0. 77 1. 24 2. 85 0. 025 o. 160 29 83 152 7. 3 13. 8 250 6. 79 45 10 13 23 0. 055 1. 73 0 . 298 o . 91 1. 21 3. 00 0. 027 0. 156 48 83 99 7 . 5 14. 2 470 7. 03 37 9 1 1 20 0. 042 1. 49 0 . 201 0 . 71 0. 91 2. 44 0. 025 0. 1 14 26 801 Z 2 o o o o o a o r> o o < < - t -I H H — 4- to to — -J ro a > - . u i CO CJ CJ CJ U N U U U M U - t — - . - t _ t _ . _ t . t _ t O O O O O O O (0 (0 (0 (0 (0 (0 (0 co G J co CJ in cn oi oi cn cn cn co a> oo OB oo oo oo _t - t _t _t _. _t _t oi cn oi oi in oi oi —s —] —i — — - t ID U - - - _t ( O U I - t - t - t -t 10 Ul - - - -t (0 01 — — — -t ( 0 ( J 1 - t - t_t - t (j po Hi O io u & u u m o in u - u M m o ID u * u w J I o . M » u u m o ID u & u u m o co m (O (0 (O (0 (0 (0 (0 O O O O O O O co in _t _. ( 0 fO -t- CJ M 01 o a > m (/) 03 03 01 09 C J (j (o cn - j - j - j -g - j - j - j -O -O CO CJ - J i t — O (0 (0 (0 (0 (0 03 O 03 GJ CO 01 00 00 03 00 03 03 03 03 ( 0 f O O O O - b . r o 00 03 00 03 03 03 (J1 r o O - . - t . O O M A U - O O H U cn oi oi C J to oi o o CJ CO tO to b b - b 00 00 03 03 00 00 03 U U H M U - O 03 03 - J -4 -J. - J - J o o (o to (o - J — O O O O O O (0 O O O O O O 00 O - O O O o o O in i - i - to oi . u _ _ _ O 10 I 0 O U U M & O U (J - U U - (O to - J 03 oo oo o cn 3E "O CO •o o a — — tO IO ~4 ~J O 4-UIOOUI CJ o (0 (0 co co — O O O O O O O O (0 00 00 00 00 (O O O O O O O O to to to to to - t PO •t- co to to -t -o to O O O O O O O - - - - - - u co cn co C J to co oo O O O O 01 o o oi to to to - t - t O cn oi to oo to O O oi O O O O cn — in -o CJ to — 8 g (o oi o O (0 O O O O U I U I cn cn cn in 01010101010101 01 01 01 01 01 01 01 01010101010101 01 01 01 01 01 01 01 a> 03 -4 *4 ~>i 01 01 oo 00 00 a> -o -o 01 -4 to ui A CO J - 01 01 01 -O * J 01 01 01 -4 01 o (o to o o PO cj 01 01 cn C J 01 4- O O O C J - J 03 * J 00 00 "O 03 01 % l A A U 01 U -fO tO to - t _t -4 01 01 O O 01 01 01 -4 00 CJ 01 4- 4- 03 OI (0 OI - t 00 01 01 to 03 00 oi 10 01 — 10 x 00 01 CJ to 03 01 o i t i t OI U1 C J (O to to 4- CO CO 00 CO CO 01 CO CO 4- CO PO (D 01 PO N3 tO to tO tO CJ PO 4- 4- o ( 0 -o 01 C J to C J co C J C J cn to - J po cn 01 — PO CO CO CO -St CO 4- ~4 co C J 01 to 00 - t CJ co to C J co co to to o C0C0POCJfO - t -t o u 4- po o 01 01 -b O — _t to to -j 01 to to - - - - - _ M CJ PO CJ po po to O O O CO (0 (0 01 - - - - - - w i - 4- oi ai ff> -u o O — PO to PO to 01 03 -o 0 4^ 01 cn cn — PO co oo os 01 01 o o 4- 01 in (oco(0oo(o(o(0 ai -o ~4 *4 -4 -o 00 o 3 ( 0 c o c o ( 0 O ( 0 co 03 00 co as 00 01 4- 01 -4 co os 10 u - t _t _t _t _t _t to - t to i t J - 01 -o po co to co u po to to to to to co — CO ~J -4 M -> - - - 01 .-4 ~4 01 01 01 i _ po po to po to po to to CJ 01 4- OI i _ (0 - t - t po po to PO -t-(0 (o o o o o — PO PO po to PO PO to ro C J -4 cn -u 4- co po to po PO to po to fO 4- fO fO J - tO ~J O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 O O O O O O O popocjpo topocococjcjcn 01 i t CO CD i t i t — -t to i t (O O O O O O O O PO CO -I- CJ CJ -fc. 01 O O O O O O O to po po po to po po C J i t 00 - J - J PO 03 O O O O O O O to po to PO PO PO 01 u o o - 0 0 -O O O O O O O co CJ CJ CJ CJ PO PO 03 tO fO U J - 00 03 0 0 0 0 0 0 0 o 01 -4 01 01 01 CO C J to O - J O 01 1^ co -U totoropopotocj to to to to po to co u u to to u to u 0 — — — — to in O O O O O O O — O O O O O O 03 03 — CJ C J 01 4- PO •O CJ PO CO PO X. - t _t CJ 4- PO -O O - j - J 01 01 01 01 cn 01 to (0 01 01 to CJ CJ -t. (0 CO 00 (0 01 00 00 PO - J - J 03 - J 03 -I- 03 03 03 _t i t (0 -t CJ -4 OI CJ CO 4- cn 01 01 01 01 -t-03 i t 01 OI 01 (0 03 z o - . (00101-0 .0101 u O to (0 -t- — 01 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 4- CO 4- OI 0 **4 -0 OI 01 C J OI PO po to PO to C J _ . 03 o OI - J 01 O CO 00 O CJ Ul — CO — - O - O - O -00 - t co o 01 o 03 (0 00 (0 (O 01 i . U W - _ - - _ 01 O 00 03 -4 4- -J O O 01 O O OI to 00 00 CO 4- CO PO QD -4 00 OI 03 — PO 4-O O O O - - 4-O O to 01 PO co co vl 03 ~4 (0 01 tO OI O O O O O O 1 fO O — — 00 — I > C J X . 01 CJ (j 00 to -t cn _. — — — — O O O O O O — O O O O O O O O O O O O O O O O O O O O — O O — O O O O O O CJ to 00 4- 01 01 *4 - J 03 03 00 00 — (0 OI O O fO 4- (0 01 01 01 01 01 01 00 4- 01 O to 4. — 01 -O -4 00 03 00 -O (0 00 01 01 O — 01 to 01 OI 01 01 01 01 4. OI -J 01 OI 01 01 (0 03 (0 — (0 (0 ~4 01 to cn 03 4- 4- co — - - - - 0 0 0 o JO — — o o (0 01 01 a CO (0 — OI ~4 OI CO Z — — — — O O — — — — — O O O O O O O — 0 — 0 0 0 — 0 0 0 0 0 0 — 0 0 — — — O — — — — — — o — 4- 4- 03 00 CO — CJ — co co 0 o o — CJ 03 01 01 ~4 00 OI 03 ~1 »4 -O ~4 -O. 01 CO 01 OI to PO 01 03 01 O CO O CO CO (0 o CJ 01 CJ 00 00 o 10 -4 -4 -4 00 -0 ~4 ~4 4- 01 (O O CO 00 - J 00 CO PO O O CO — ( J 01 — — -4 «4 O PO fO O O O 01 O — O to 01 cn -j 4-CJ CJ 4. CJ C J U C J C J C J C J 4 . CJ CJ CJ CJ CO CO 4- i t i t CO CJ OJ CO i t _t po PO PO PO IO >4 - t _ . - t - t _ . - t _ t to to co po O — OI (0 — 01 "4 CO CJ 4. CO OI OI — O PO to 00 00 03 OI i t i t to CO CJ 01 po 00 PO 00 — — PO i t i t (0 CO 00 CO - J CJ 01 03 03 00 o (0 01 — 01 01 01 co CJ 01 CO i t CO 01 CO PO CJ OI (O 01 -4 01 01 01 CO O CO 01 CO — CJ to 01 - J 00 CO 01 -4 O -O ~4 CJ 01 -4 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O co PO 10 PO O CO i t CO CO O to to PO CO 03 03 01 (0 00 CO 01 (0 0 0 - 0 0 0 -(J - J O OI OI 01 OI 00 OI 01 ~4 4- CJ O O O O O O O O to — — — — CJ (J 01 CO 03 01 01 00 O O O O O O O O po po C J C J PO C J 01 03 O — O (0 4- (0 O O O O O O -— to PO to CJ CJ to -t i t co 00 i t o 01 O O O O O O -— — PO — — PO — O oi o 00 01 — — — — to — 01 Ol — -4 00 ( J 01 o to — . M to to to to 0 (0 to CJ PO 4- 00 01 01 01 01 (O — (0 - - - _ _ - U -4 00 01 01 4- u to — (0 tO i t 4. i t 03 co to C J i t i t i t cn (0 PO po o — 01 01 — — — — — PO 01 co o 01 cn 4- o O O — — — — — PO (O PO 4- to to (J 01 cn po C J — 01 — - J — — - - O O to CJ O O — (0 (0 4-O (0 — — O cj O o TO X TJ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O H ( 0 0 0 0 3 0 3 0 0 0 3 — - t _ t ( 0 ( 0 ( 0 ( 0 ( 0 OI (J PO PO PO — PO — 01 CJ to to — ~4 -4 O PO (D CO -4 po co po — ~4 co O — -4 CO 03 (0 -J 01 CJ PO PO CJ CJ -4 01 01 601 o o z z z m m o a o o O < < < CO to M UI 00 to 01 01 01 01 01 01 cn UI UI UI UI UI UI UI ^ A ^ ^ A & CO CO CJ CJ CJ CO CJ CJ CJ CO o o o o o o o (J 111 u 6 u u u oi <ji tr> oi en oi oi CO CD CD CD CO CO CD CO CO CO ID (J U - U — (0 UI — ^ — — (0 UI — _ _ ID UI - - - — CO UI (0 fe CJ to 01 o is u A u u n o co to & co ro en o CO to - O O O O O CO CO O O f f l O O m o o o o o o CO O O CO CO O CO -4 00 oo o > H m z n s co co O to fe cn O O O 0 9 I O O CD 01 01 -J UI o * . o O O CO CD o to 00 CO — o o o o o o o to to to to to to to o b o o o o o b b b b b o o o o o o o b'o'o'o'obb CO CO CO CO CO IO to - b b b b oo -CO CO CO b fe O m I •a - — - - — g oo o O O O O O O O O to to to to — U ^ i O ID u i o o o o CJ — — to O CO to 01 01 01 to O O Ui O O O UI to — — — — — to tO 00 -4 -J 01 .6. -J O O O O O O O l/l •o to - - O o co oi o o o o z 01 UI UI UI UI UI UI ui ui ui ai ai ui ui ui ui ui ui ui u io ia ia io io iu i UI UI UI . . . -o 01 -1 CD I u to O CD 00 -4 -O, -4 00 01 Ol UI o — to — -J 00 fe CO CO CO — CJ oi fe — co to -J. -J CO CO CO 00 CO -J CO CD -J CO -J fe CO M to fe fe to 00 -J CD O O 01 o to to 01 CO CO CO fe 01 -J O CO O -J to to to-.to-<.to CJ to to to to to to O 03 fe UI to — to fe CO fe 01 01 CJ IO tO CJ — — fe — to to — co co O o ui to fe a C J -t C J D o> o — o — o o> fe CJ CJ CJ 01 -O 01 01 UI UI UI UI fe oo oo oo oo fe to — - H to 01 01 oo CO CO O O CO CO -1 to o CD CO O CO CO UI UI UI fe UI -J CD CJ to to to to CJ UI lOIOfe O to to to CJ to tototoioto UI CO — O O CO CO ui to to CJ to fe tO IO IO — fO IO M MtOtOtOIOtOKJ to — — CO O to CJ - 1 0 0 0 0 0 1 0 CJ to CJ -4 fe oo O O O O O O O O O O O O O o O O O O O O O b b o b b b b O O O O O O O o o o 8 o o o o o o o — tO — — — CJ to CO — — 1^ -4 CJ -4 to o o o o o - - - - - o tO tO tO — CD O O O O O O O o o o o — — — — — — — to — — — — — to CJ — to to CJ cj to to to fe to CJ UI fe fe CJ ~4 O UI -I w — to to to to to to — - to - r ... o CO to 00 CO — UI to ~J — CJ CJ to to ^ 1 — fe CO CO 00 fe CO UI CJ CJ CJ CJ CJ UI 01 -4 CO fe — UI UI UI UI UI 01 fe -J 01 01 fe UI CO CD CO -J UI UI UI 01 00 UI — 01 UI UI fe UI O O O O O O O O O O O O O O O O O O O O O O O O O O O O O CJ to CO 5 00 CO fe u -J CO 01 to to UI UI UI UI -4 — CD fe — O — O CO CO O 00 UI UI o 01 UI UI UI UI CO to to fe co O ui O o cn ui oo ui to to to to to IO fe •J CO 01 -O CO CO — O U! -J O CJ CJ CO CJ — — — — — fe CO 01 -J -J 01 -J O -J 01 fe — — ui to O O O o o o — O O O O O O O O O O O O O O O O O O O — o - o 30 to oo o a CO fe 01 z UI 01 CO CO CO 01 to CJ to to — CJ 01 CO UI CO CO fe CO CO 00 fe fe CD — CD 01 UI UI UI fe UI fe CJ 01 O UI CD O -J CO UI 01 01 01 01 CO (D CO fe — O to -I o o - O O - O O O O O O O O O - O O O O O - - - -~J CO fe fe fe — CO fe — 01 CJ CJ ~4 CO M 00 00 O OO -4 O 01 CO to to CJ CO 00 -J 00 -4 -J 03 O 01 -J IO CO CO CD CJ -J CO -4 -4 -J CJ CD 01 — 00 01 CO -J cn o fe CD CD — to CJ CJ CJ CJ CJ fe U to M tJ U tOtOtOtOIOIOtO CJ tO IO tO tO tO CJ o H z o 30 H z •fl -i a H •o o I-I » fe O 00 -J -O fe 00 01 01 — CD CJ to to O O O O O O O •o -4 to to fe — o CJ ~ J to ~ J ui fe fe CJ CO CO fe CO a> co fe - J fe co OJ CJ fe CJ CJ CJ fe to 01 CO 00 fe to UI fe 01 CJ to to UI UI O O O O O O O O O O O O O O O O O O O o o o o o o o o o - . — fe CO 00 00 01 o UI — o -J to 01 fe O O O O O O O O O O O O O O O O O O UI CO CO UI CO -J fe O O O O O O O O O O O O O O UI 01 CD 00 -O CO CO O O O O O O O - O O - - - O — -J -4 O O CO UI O O O 01 IO CJ co to — O O O O O O O O O O O O O O O O O O O O O O — — to to to — to IO UI fe fe CJ -J 00 CO fe O M -* to CO CO CD O O — 10 01 O O O o o -UI UI 01 01 ~4 01 ui - J -j fe oi oo o o o o o o -CD CD 00 00 -J CD — UI M O to 00 UI CO - o o o o - -CD CD CD CD CD — fe — -1 UI IO fe 00 01 to — — to — UI - J - J — fe UI fe 01 01 -J 01 CO 01 01 UI -J O 00 CD CD CO CO CD UI to O TIME S ITE DO TEMP SPCON PH COD TOC T IC TC N02 N03 NH3 ORGN TKN TOT N ORTH P TOT P CL - i 0 10 9 .4 20 .0 250 7 .50 40 7 19 26 0 .031 0 .66 0 . 241 0 .68 O .92 1 .61 0 . 145 0 . 255 6 10 6 .0 20 .0 230 7 .00 25 7 21 28 0 .031 0 .53 0 . 155 0 .72 0 .87 1 .43 0 . 127 0 . 280 20 13 10 8 . 2 20 .0 230 7 . 10 10 7 21 28 o .027 0 . 35 0 .043 0 .92 o .96 1 .34 O .094 0 .236 4 1 20 10 7 .2 23 .0 310 7 .00 33 8 21 29 0 .034 0 .31 0 .061 0 .78 0 .84 1 . 18 0 .030 0 . 1 17 20 27 10 6 .3 20 .0 240 6 .91 24 6 20 26 0 .031 0 .42 0 .085 0 .61 0 .69 1 . 14 0 .081 0 . 195 18 35 10 5 . 1 18 .0 240 6 .66 23 5 23 28 0 .050 0 .56 0 . 147 0 .65 0 .80 1 .41 0 .074 0 .290 30 4 1 10 4 .5 17 .O 210 6 . 56 20 8 20 28 0 .052 0 .67 0 .360 0 .89 1 .25 1 .97 0 .115 0 .296 47 48 10 5 .4 16 .8 210 6 .85 33 10 22 32 0 .050 0 .63 0 . 138 2 .65 2 .79 3 .47 0 . 109 0 . 377 120 55 10 7 .6 16 .4 180 7 .02 13 3 21 24 0 .020 0 .33 0 .005 0 .71 0 .71 1 .06 0 .087 0 .213 26 62 10 6 . 1 15 .0 175 6 .57 26 7 19 26 0 .046 0 .53 0 . 145 0 .62 0 . 76 1 .34 0 .080 0 . 200 2 1 69 ' 10 5 .5 13 .0 280 6 . 35 30 14 16 30 0 .060 1 .52 0 .570 0 .84 1 .41 2 .99 0 . 103 0 . 235 18 76 10 3 .5 13 .0 195 6 .25 33 10 19 29 0 .048 0 .68 0 .613 O .93 1 .54 2 .27 0 . 14 1 0 .321 18 83 10 3 .4 1 1 .0 240 6 .51 28 7 23 30 0 .024 0 .06 0 .235 0 .71 O .95 1 .53 0 . 107 0 .268 10 90 10 6 .7 9 .5 195 6 .90 14 5 22 27 0 .034 0 .60 0 .351 0 .69 1 .04 1 .67 0 .111 0 .240 35 97 10 3 .0 9 .0 190 6 .52 20 5 23 28 0 .028 0 .48 0 .495 0 .61 1 . 10 1 .61 0 . 126 0 .267 21 105 10 5 .2 10 .5 280 5 .57 73 26 15 41 0 .061 5 .49 0 .284 1 . .49 1 . 77 7 .32 0 .069 0. .250 17 1 1 1 10 8 .2 9 .8 220 5 .64 52 20 9 29 0 .028 3 .67 0 . 172 0 .92 1 .09 4 .79 O .030 o. . 166 12 1 18 10 8 .8 7 . 1 90 6 . 17 36 16 8 24 0 .026 3 .53 0 . 104 0 .86 0. .96 4 .52 0 . 150 0 .228 9 125 10 7 . 1 8 .0 1 10 5 .70 55 22 9 31 0 .059 3 . 14 0 . 191 1. . 19 1 .38 4 .58 0 . 189 0 .289 1 1 133 10 8 .5 2. .0 245 5 .46 52 22 15 37 0 .028 1 .32 0. .552 1 , 26 1 , .81 3 . 16 0 .023 0 . 170 16 139 10 9 .2 2. . 1 270 5 .80 40 14 15 29 0, .020 1 , .85 0. .402 0. 97 1 .37 3 .24 0 .005 0. . 146 9 146 10 10 .4 0. .0 225 5 .94 26 5 18 23 0. .012 1 .48 0. .419 0. ,47 0. .89 2 .38 0 .003 0. , 119 7 153 10 10 .0 0 .0 190 6 .32 22 6 18 24 0. .008 1 .31 0. .355 0. 38 0. .73 2 .05 0 .054 0. 168 6 160 10 9 .O 0. .2 180 5 .67 47 16 17 33 0. ,037 .' 2. , 79 o. .700 1. 29 1. .99 4 .82 0, . 104 0. 289 16 TIME S ITE DO TEMP SPCON PH COD TOC T IC TC N02 N03 NH3 ORGN TKN TOT N ORTH P TOT P CL-i 0 6 12. .0 22. 0 220 7 .90 39 8 19 27 0. 029 0. 60 0. 017 0. 69 0. .71 1 .34 0 . 127 6 6 7 . 4 22. 5 220 7 .41 34 8 19 27 o. 026 0. 42 0. 01 1 0. 83 0. 84 1 .29 0. .025 0. 1 19 10 13 6 9 8 23. 0 230 7 . 80 13 8 20 28 0. 026 0. ,20 0. 184 1. 30 1. 48 1 . .71 0. 007 0. 1 19 44 20 6 4 . 1 27 . 0 7000 7 . 44 69 9 23 32 o. 008 0. 02 0. 173 1. 14 1. 31 1 .31 0. 007 0. 146 43 27 6 7. 8 23. 0 1850 7. .70 40 9 20 29 0. 029 0. 28 0. 150 1. 32 1. 47 1 . .78 0. .006 0. 1 16 70 35 6 8. 2 20. 0 270 7 . 16 46 9 18 27 o. 051 0. 38 o. 053 1. 13 1. 18 1 .61 0. 010 o. 120 82 41 6 7 . ,0 19. 0 200 6. .78 18 7 17 24 0. 044 0. 45 0. 078 0. 74 0. 82 1 .31 0. .020 0. 123 42 48 6 9. 9 19. 0 215 7. ,73 24 9 18 27 0. 048 0. 37 0. 015 1. 1 1 1. 12 1 . .54 0. 014 0. 1 14 71 55 6 9. ,0 18. 8 195 7. .83 24 6 20 26 0. 005 0. 04 0. 036 o. 96 1. 00 1 . .04 0. 012 0. 105 60 62 6 9. 6 16. 8 165 7 . 63 17 4 18 22 0. 020 0. 51 0. 035 0. 62 0. 65 1 . 18 0. 007 0. 089 46 69 6 6. 2 13. 4 140 6. ,32 10 5 15 20 0. 029 0. 79 0. 300 0 . 51 0. 81 1 . 63 0. 046 0. 143 20 76 6 6 . 1 14. 5 190 6. ,32 28 8 14 22 0. 063 0. 68 0. 956 0. 62 1. 58 2 . 32 0. 031 0. 14 1 38 83 6 6. 4 1 1 . 5 260 6. , 32 37 7 17 24 0. 067 1. 14 0. 470 0. 58 1. 05 2 . 26 0. 041 0. 146 13 90 6 1 1 . 6 1 1 . 0 205 7. 16 15 5 17 22 0. 033 0. 65 0. 015 0. 65 0 . 67 1 . 35 0. 021 0. 093 65 97 6 8. 5 10. 4 180 6. 85 23 5 19 24 0. 028 0. 69 0. 192 0. 78 0. 97 1 . 69 0. 030 0. 131 70 105 6 8. 0 10. 2 130 5. 76 41 12 8 20 0. 020 2. 13 0. 122 0. 66 o. 78 2. 93 0. 034 0. 120 1 1 1 1 1 6 8. 4 10. 0 170 5. 82 31 14 10 24 o. 022 2. 98 0. 145 0. 75 0. 90 3 . 90 0. 038 0. 146 1 1 1 18 6 9. 5 7. 7 80 6. 33 27 9 7 16 o. 014 2 . 62 0. 066 0. 61 0. 68 3. 31 0. 053 0. 134 9 125 6 7. 4 8. 1 90 5 . 60 39 12 9 21 0. 034 2. 40 0. 309 o. 84 1. 15 3. 58 0. 136 0. 24 1 8 133 6 6. 9 2 . 1 200 5. 55 52 22 15 37 0. 039 2 . 14 0. 475 1. 35 1. 83 4 . 01 0. 024 0. 215 15 139 6 10. 0 2. 8 140 6. 26 13 7 13 20 0. 017 1 . 64 0. 175 0. 62 0. 79 2. 45 0. 019 0. 118 8 146 6 10. 0 0 . 0 160 5. 87 26 5 17 22 0 . 014 1 . 69 0. 293 0. 50 0. 79 2 . 49 0. 009 0. 095 5 153 6 10. 2 O. 0 200 6 . 19 15 3 19 22 0. 01 1 1 . 34 0. 508 0 . 31 o . 82 2. 17 0. 007 0. 076 6 160 6 10. 6 0 . 2 100 5. 81 30 10 9 19 0. 013 2. 24 0 . 515 0. 66 1. 17 3. 42 0. 066 0. 172 9 TIME S ITE DO TEMP SPCON PH COD TOC T IC TC N02 N03 NH3 ORGN TKN TOT N ORTH P TOT P CL-a 0 12 14 .8 22 .0 240 8 .60 40 8 18 26 O .029 0 .39 0 .007 1 .01 1 .02 1 .44 0 .014 0 . 133 6 12 14 .0 24 .0 260 8 .80 37 10 18 28 0 .016 0 .03 0 . 107 1 . 13 1 .24 1 .29 0 .012 0 .113 30 13 12 9 .0 24 .0 1300 8 .00 15 8 20 28 O .017 0 .07 0 . 129 0 .91 1 .04 1 . 13 0 .004 0 .082 42 20 12 9 .8 28 .0 14000 8 .32 251 11 23 34 0 .005 0 .02 0 .113 2 .07 2 . 18 2 . 18 0 .034 0 . 309 53 27 12 10 .2 23 .5 3200 8 .24 35 10 18 28 0 .026 0 .25 0 .049 1 . 14 1 . 19 1 .47 0 .003 0 .088 62 35 12 10 .8 21 .3 800 8 .48 27 8 19 27 O .045 0 .35 0 .046 0 .80 0 .85 1 .24 0 .006 o .069 38 41 12 7 .6 19 .2 470 7 .35 13 8 17 25 0 .046 0 .50 0 . 195 0 .82 1 .01 1 .56 0 .018 o . 115 40 48 12 1 1 .2 20 .5 260 8 .40 24 10 16 26 0 .045 0 .23 0 .023 1 .02 1 .04 1 .31 0 .016 o .097 68 55 12 12 .8 19 .8 220 8 .92 26 7 19 26 O .005 0 .02 0 .005 1 .08 1 .08 1 .08 0 .01 1 0 .095 71 62 12 10 .6 17 .5 400 8 .28 17 4 18 22 0 .021 0 . 19 0 .028 0 .66 0 .69 0 .90 0 .006 o .066 53 69 •12 6 .2 14 .7 150 6 .40 10 4 16 20 0.030 0 .67 0. 282 0 .54 0 .82 1 .52 0 .035 0 . 126 27 76 12 7 .9 14 .5 190 6 .39 21 7 14 21 0 .048 0 .81 0 .355 0 .58 0 .93 1 .79 0 .021 0 . 101 36 83 12 7 .3 12 .9 265 6 .22 33 7 17 24 0 .059 1 .35 0 .411 0 .60 1 .01 2 .42 0 .043 0 . 154 18 90 12 12 .2 12 .8 1300 7 .58 26 8 16 24 O .067 0 .71 0 .081 0 .97 1 .05 1 .83 0 .016 0 .090 77 97 12 10 .2 1 1 .2 210 7 .46 31 6 18 24 0 .034 0 .66 0 . 126 0 .94 1 .07 1 . 76 0 .034 o . 126 93 105 12 8 .O 10 .4 125 6 . 15 38 12 8 20 O .020 1 .85 0. .131 0 .66 0 .79 2 .66 0 .029 o .114 12 1 11 12 8 .0 10 .O 210 5 .76 35 16 9 25 0 .027 2 .87 0 . 170 0 .81 0 .98 3 .88 0 .016 0 . 141 12 1 18 12 9 . 3 7 .9 80 6 .50 29 9 7 16 0 .013 2 .55 0 . 109 0 .64 0 .75 3 .31 0 .054 0 . 144 9 125 12 7 .7 8 .3 90 5 .69 32 12 9 21 0 .032 2 .27 0 .261 0 .82 1 .08 3 .38 0 . 129 0 . 229 8 133 12 8 .3 3 .0 170 5 .84 49 15 14 29 0 .024 1 . .86 O. ,373 1 .04 1 .41 3 .29 0 .029 0 . 153 9 139 12 9. .8 3 .0 160 6 .40 19 8 12 20 0 .013 1 , .55 0. , 161 0 .60 0 .76 2 . 32 0 .010 o, .094 8 146 12 10 .5 0 .0 60 5 .99 24 5 15 20 0 .012 1 , .55 0. 293 0 .49 0 .78 2. . 34 0 .007 o, .078 6 153 12 9 .8 0 .0 240 5 .91 24 3 20 23 0 .012 1 . .39 0. ,535 0 .49 1 .02 2. .42 0 .003 0 .064 4 TIME S ITE DO TEMP SPCON PH COD TOC T IC TC N02 N03 NH3 ORGN TKN TOT N ORTH P TOT P CL-a 0 13 15. .4 22. .0 240 8 .75 49 8 18 26 0. .029 0. .37 0. 012 1 , .04 1 , .05 1 , .45 0. .017 0. 117 6 13 14 . 0 24. ,5 260 8 .95 41 9 18 27 0. 014 0. 02 0. 071 1 . . 18 1 . ,25 1 . 27 0. .012 0. 103 32 13 13 9. .2 24 . 0 1350 8 .00 10 7 21 28 0. .017 0. 07 0. 142 1 . .05 1 . , 19 1 . 28 0. ,003 0. 086 45 20 13 9. 6 28. .0 15500 8 .01 367 1 1 26 37 0. ,005 0. 02 0. 120 2. ,24 2. .36 2. 36 0. .037 0. 330 60 27 13 9. .4 25. O 3120 8 . 26 39 9 18 27 0. .025 0. ,25 o. 033 1 . . 17 1 , .20 1 . ,47 0. .003 o. 080 69 35 13 1 1 . .0 21 . 4 900 8 . 51 28 8 19 27 O. 044 0. 36 0. 048 0. ,79 0. 84 1 . ,24 0. .005 0. 067 32 41 13 7. 1 19. 2 510 7. .41 11 7 17 24 O. 046 0. 48 0. 206 0. 76 0. ,97 1 . ,50 0. .019 0. 111 49 48 13 1 1 . .2 20. ,5 300 8. .48 22 9 16 25 0. 045 0. 24 0. 029 0. ,95 0. ,98 1 . 26 0. ,016 0. 099 58 55 13 13. 6 19. 8 230 9. .04 35 8 19 27 0. 005 0. 02 0. 005 1. , 13 1. , 13 1 . 13 0. 010 0. 107 89 62 13 1 1 . 2 17. 8 485 8 . 40 17 5 18 23 0. 021 0. 17 0. 041 0. 68 0. 72 0. 91 o. 005 o. 066 55 69 13 6. 1 14. 7 155 6. .40 10 4 15 19 0. 029 0. 68 0. 271 0. 51 0. 78 1 . 49 0. 034 o. 124 29 76 13 7. 9 14. 5 200 6. .41 24 7 14 21 0. 048 0. 82 0. 371 0. 60 0. 97 1 . 84 0. 019 0. 114 39 83 13 6. 9 12. 9 280 6 . 20 33 9 15 24 0. 063 1. 43 o . 452 0. 65 1. 10 2. 59 0. 017 0. 162 19 90 13 13. 6 12 . 8 750 8. 32 30 8 14 22 0. 065 0. 64 0. 012 1. 05 1. 06 1 . 77 0. 018 0. 1 1 1 93 97 13 10. 6 11 . 3 220 7 . 48 31 7 18 25 0 . 033 0. 65 0 . 069 0. 94 1. 01 1 . 69 0. 028 0. 121 97 105 13 8. 4 10. 4 130 6. 16 42 12 8 20 0. 021 1. 87 0 . 148 0. 65 0. 80 2. 69 0. 030 0 . 1 15 12 1 1 1 13 8. 0 10. 0 220 5. 82 35 15 9 24 0. 027 2. 97 0. 180 0. 80 0. 98 3. 98 0. 016 0. 140 12 1 18 13 9. 4 7 . 9 80 6 . 50 20 9 7 16 0. 013 2. 55 0. 099 0. 62 0. 72 3. 28 0. 057 o . 154 9 125 13 7 . 3 8. 2 90 5. 69 39 13 8 21 0. 031 2 . 32 0 . 275 0. 80 1. 07 3. 42 0. 128 0. 236 8 133 13 8. 3 3. 0 175 5. 73 43 17 14 31 0. 026 1 . 83 o. 405 1. 08 1. 49 3. 35 0 . 030 o . 168 12 139 13 9. 8 3. 0 170 6. 40 31 8 12 20 0. 014 1 . 55 0. 171 0. 61 0. 78 2. 34 0. 010 0. 092 8 146 13 10. 7 O. O 60 5. 97 29 5 14 19 0. 012 1 . 54 0. 270 0. 55 0. 82 2 . 37 0. 008 0. 082 6 153 13 10. 0 0 . 0 240 5. 94 18 3 19 22 0. 012 1 . 37 0. 545 0. 03 0 . 89 2. 27 0. 005 0. 067 5 160 13 10. 2 0 . 2 1 10 5. 71 30 10 10 20 0. 017 2. 33 0. 518 0. 91 1. 43 3. 78 0. 087 0. 242 10 TIME SITE DO TEMP SPCON PH COD TOC TIC TC N02 N03 NH3 ORGN TKN TOT N ORTH P TOT P CL-; 6 14 13 .2 24 .5 270 8 .87 45 8 18 26 0 .012 0 .02 0 .037 1 .00 1 .04 1 .06 0 .007 0 .088 29 13 14 8 .2 24 .0 2100 7 .84 22 8 21 29 0 .016 0 .06 0 . 158 1 .07 1 . 23 1 .31 0 .003 0 .083 52 20 14 10 .2 28 .0 13000 8 .03 176 10 24 34 0 .005 0 .02 0 .055 1 .82 1 .87 1 .87 0 .019 0 . 245 49 27 14 6 .3 25 .0 4700 7 .93 60 9 19 28 0 .023 0 .22 0 . 120 1 .25 1 . 37 1 .61 0 .004 0 .085 60 35 14 10 .8 21 .5 1000 8 .58 36 8 19 27 0 .043 0 .38 0 .025 0 . 74 O . 76 1 . 18 O .005 o .059 29 41 14 7 . 1 19 .2 700 7 .42 13 7 18 25 0 .046 0 .48 0 . 226 0 .82 1 .05 1 .58 0 .018 0 . 106 52 48 14 1 1 .2 20 . 5 340 8 .57 24 9 16 25 0 .044 0 .21 0 .016 0 .88 0 .90 1 . 15 0 .013 0 .086 53 55 14 14 .0 20 .0 250 9 . 13 26 7 19 26 0 .005 0 .02 0 .005 1 . 15 1 . 15 1 . 15 0 .005 0 .118 85 62 14 1 1 .0 18 .0 660 8 .49 13 4 19 23 0 .020 0 . 13 0 .033 0 .71 0 . 74 0 .89 0 .005 0 .067 50 69 . 14 6 .6 14 .7 160 6 .43 10 5 13 18 0 .028 0 .72 0 .232 0 .59 0 .82 1 .57 0 .021 0 . 124 33 76 14 7 .9 14 .5 215 6 .42 24 7 14 21 0 .049 0 .83 0 .393 0 .60 0 .99 1 .87 0 .020 0 .114 42 83 14 6 .4 13 .0 295 6 . 17 27 10 16 26 0 .072 1 .54 0 .472 0 . 77 1 . 24 2 .85 O .025 0 . 160 29 90 14 15 .6 1 1 .8 590 8 .63 22 8 14 22 0 .060 0 .59 0 .01 1 1 .OI 1 .02 1 .67 0 .020 0 . 101 83 97 14 1 1 .0 11 .2 265 7 .61 36 10 17 27 0 .032 0 .66 0 .027 1 . 18 1 .21 1 .90 0 .029 0 . 143 121 105 14 8 . 1 10 .5 130 6 .20 36 12 8 20 0 .020 1 .83 0 . 135 0 .65 0 . 79 2 .64 O 031 o, .115 13 1 1 1 14 8 .0 10 .0 220 5 .84 32 16 9 25 0 .028 2 .92 0 . 185 0 .85 1 .03 3 .98 0 .018 0 . 132 12 1 18 14 9 .3 7 .9 80 6 .50 24 10 7 17 0 .014 2 .69 0 . 180 0. .60 o .72 3 .42 0. . 106 0, . 162 9 125 14 7 .3 8 .2 90 5 .70 34 1 1 9 20 0 .031 2 .24 0, .253 0 .80 1. 05 3 .32 0 . 129 0 .226 8 133 14 8 . 1 3 .0 160 5 .80 43 16 14 30 0 .022 1 , 82 0. .346 1 .06 1 .41 3 .25 0. .031 0. 151 10 139 14 10. .0 3 .0 170 6 .24 22 8 12 20 0 .014 1 , .56 0. . 174 0. .64 o .81 2 . 38 0 .007 o. 095 8 146 14 10 .6 O .0 25 5 .99 24 6 15 21 0, ,012 1 . . 56 0. 267 0. .50 o .77 2 .34 0. .009 0 .080 8 153 14 10 .0 0 O 235 5. .96 20 4 18 22 0 .012 1 . ,36 0. 520 0. , 34 0. .86 2 .23 0. .003 0. 057 4 TIME SITE DO TEMP SPCON PH COD TOC TIC TC N02 N03 NH3 ORGN TKN TOT N ORTH P TOT P CL-i 6 152 12 .0 25. .5 1850 8 .49 45 11 21 32 0. .005 0. .02 o. 009 1 . 18 1 , , 19 1 , . 19 0. ,003 0. 105 31 13 152 1 1 . ,0 25 . 5 4600 8 .50 49 10 20 30 0. ,005 0. 02 0. 005 1 . 12 1 . 12 1 . . 12 0. 003 0. 090 54 20 152 1 1 . .0 27. .0 23000 8 . .69 222 9 23 32 0. ,005 0. 02 0. 006 1 . ,03 1 , ,04 1 , .04 0. 019 0. 269 44 27 152 7 . .0 25. .5 8200 8. .07 76 12 21 33 0. 020 0. 14 0. 021 1 . 49 1 . 51 1 .67 0. 006 0. 143 71 35 152 12. ,0 22. ,5 3450 8. .80 40 7 19 26 0. ,010 0. 22 0. 016 1 . 04 1 , ,06 1 . .29 0. 003 0. 121 68 4 1 152 10. 0 21 . 0 3100 7. 82 22 9 19 28 0. 037 0. 34 0. 126 1 . 08 1 . 21 1 . ,59 0. 010 0. 132 60 48 152 10. 5 20. 0 1100 8. ,80 46 10 16 26 0. 030 0. 04 0. 056 1 . 35 1 . 41 1 . 48 0. 010 0. 153 52 55 152 16. 4 22. 7 2400 9. 28 35 10 17 27 0. 005 0. 02 0. 005 1 . 00 1 . 00 1 . ,00 0. 003 0. 1 16 80 62 152 9. 6 1.9. 2 1600 8. ,60 19 6 20 26 0. 005 0. 02 0. 01 1 0. 86 0. 87 0. .87 0. 004 0. 094 35 69 152 6. 4 14. 0 290 6. 83 10 5 10 15 0. 023 0. 68 0. 378 0. 64 1. 02 1 . 72 0. 020 0. 121 33 76 152 10. 0 15. 0 315 6. 58 26 6 14 20 0. 043 0. 81 0. 217 0. 76 0. 98 1 . 83 0. 013 0. 096 61 83 152 7 . 3 13. 8 250 6. 79 45 10 13 23 0. 055 1. 73 0. 298 0. 91 1. 2 1 3. 00 0. 027 0. 156 48 90 152 16. 0 13. 7 1 100 8 . 86 34 12 12 24 0. 077 0. 92 0. 008 1. 19 1. 20 2. 20 0. 016 0. 109 92 97 152 13 . 0 12. 0 550 8 . 35 27 7 16 23 0. 032 0. 54 0. 008 0. 95 o. 96 1 . 53 0. 024 0. 122 102 105 152 8. 0 11 . 0 150 6 . 20 33 1 1 8 19 0. 020 1. 4 1 0. 188 0. 57 0. 76 2 . 19 0. 020 0. 1 10 15 1 1 1 52 8. 2 10. 0 230 5. 74 27 14 9 23 0. 024 3. 48 0. 200 o. 76 0. 96 4. 46 0. 019 0. 122 13 1 18 152 9. 8 8 . 0 90 6. 34 24 10 7 17 0. 013 2 . 72 0. 089 o. 66 o. 75 3. 48 0. 075 0. 189 1 1 125 152 7 . 7 8 . 2 100 5. 77 39 12 9 21 0. 024 2. 33 0. 200 0. 75 0. 95 3 . 30 0. 106 o. 196 8 133 152 a. 9 3. 4 190 5. 72 21 16 12 28 0. 017 2. 25 0. 239 0. 84 1. 08 3. 35 0. 022 0. 117 12 139 152 10. 0 3. O 180 6. 28 22 8 12 20 0. 015 1 . 71 o. 166 0. 59 0. 76 2 . 49 0. 007 0. 087 8 146 152 10. 6 0. 0 190 5. 79 22 6 15 21 0. 013 1 . 56 o. 295 o. 56 0. 86 2. 43 0. 006 0. 092 6 153 152 160 152 10. 9 0. 2 1 10 5. 85 26 10 9 19 0. 011 2. 14 0. 288 0. 62 0. 91 3. 06 0. 041 0. 154 9 TIME SITE DO TEMP SPCON PH COD 6 99 9 .0 24 .O 5500 8 .75 43 13 99 12 .8 27 .0 9500 8 .65 69 20 99 7. .0 26. .0 30000 8 .20 282 27 99 10 .8 26 .0 150O0 8 .60 248 35 99 11 .8 22 .5 7000 8 .68 62 41 99 9 .6 21 .5 7100 8 .30 44 48 99 10. . 1 20 .0 2700 8 .94 33 55 99 13 .4 22 .8 6000 9 .01 60 62 99 8 .0 18 .7 3000 8. .20 34 69 99 6 .9 16 .0 2200 7 . 13 10 76 99 1 1 .6 15 .0 1900 7 .39 37 83 99 7, .5 14 .2 470 7 .03 37 90 99 15 .0 13 .2 1500 8 .88 33 97 99 14, .7 1 1 .9 1 100 8 .89 31 105 99 8 .2 10 .7 190 6 .25 33 1 1 1 99 8 .9 10, .0 240 5. .87 32 1 18 99 10 .0 8 .0 100 6 .26 22 125 99 7 .7 8 .3 130 5 .65 43 133 99 7 .8 3 .0 200 5 .63 53 139 99 9 .0 3 . 1 220 5 .97 31 146 99 9 . 8 0 .0 300 5. .77 31 153 99 9 . 4 0 .0 700 5. 84 22 160 99 1 1 .3 0 ,2 1 10 5. .86 24 TOC TIC TC N02 N03 NHS 11 21 32 O .005 0. .02 0 .006 11 22 33 0 .005 0. .02 0 .005 7 22 29 o .007 0. .02 0, ,013 13 22 35 0 .005 0. .02 0, 0 0 9 5 21 26 0 .005 0. .02 0 .005 9 21 30 o .009 0, . 10 0 .007 10 16 26 o .005 0. .02 0. .01 1 9 20 29 0 .005 0. .02 0, .005 6 21 27 0 .005 0. .02 0. .018 6 15 21 0 .019 0. .41 0. .655 8 11 19 0 .036 0, .58 0 .011 9 1 1 20 0 .042 1, .49 0, .201 1 1 11 22 0, .060 1, . 10 0, .012 8 14 22 o .038 0. .48 O. .007 10 9 19 0 .023 0. 89 0. . 187 14 8 22 o. ,023 3. 38 0. 250 10 6 16 0, .012 2. .75 0, . 118 13 9 22 0. .024 2, ,71 0, . 188 22 12 34 0. .035 1 . .91 0, . 387 14 13 27 o. .023 1 . 95 0. ,397 7 15 22 o. .013 1 . ,57 0. 270 5 20 25 0. .022 1 . 55 0. 620 6 9 15 o. .009 1 . 71 0. 213 ORGN TKN TOT N ORTH P TOT P CL-a 0. 93 0, .94 O .94 0 .004 O 105 27 1. 20 1 , 20 1 . 20 O. .004 0, , 134 51 0. 35 0. .36 0 .36 O. ,090 0. . 173 22 1. 64 1 . .65 1 .65 0. .008 0. . 236 67 0. 96 O. .96 O .96 0 .008 0 . 148 33 1. 43 1 , , 44 1 .55 O .004 0 . 2 14 69 0. 92 0. .93 0 .93 0. ,005 0, . 103 35 1. 34 1. .34 1 . .34 0 .008 0. .211 44 0. 71 0. 73 0. .73 0. .024 0. . 103 2 1 0. 69 1. .34 1 .77 0. ,036 0. . 168 4 1 0. 90 0. 91 1 , .53 0. .010 O. ,088 92 0. 71 0. 91 2. .44 0. ,025 O. .114 26 1. 19 1. 21 2 .37 0. ,010 0. , 130 72 o. 82 0. 83 1 . .35 0. ,01 1 O. .095 79 0. 55 0. .74 1 . .65 0. ,028 o. 113 21 0. 78 1. 03 4 . 43 0. ,025 0. 139 15 0 . 64 0. 76 3. .52 0. ,038 0. . 171 1 1 0. 79 0. 98 3. .71 0. ,098 0. . 206 9 1. 29 1. 68 3. .62 0. .069 0. . 227 15 0. 99 1. 39 3. .36 0. ,01 1 0. 191 10 0. 63 0. 90 2. 48 0. 005 0. 095 7 0. 58 1. 20 2 . 77 0. 003 0. 055 4 0 . 53 o. 74 2 . 46 o. 015 o. 123 9 APPENDIX III DITCH MONITORING DATA (1985) 114 DITCH SURVEY. 1985 A l l u n i t s mg/L except TEMP °C ; SPCON umho/cm (10 umho/cm = DITCH DO TEMP SPCON pH COD TOC TIC TC cn Avenue 52 0. .8 13 .0 440 6 .0 27 1 1 29 40 Fraser Hw 7 , .9 9 .0 183 6 .9 27 9 14 23 Avenue 64 7. .4 10 .3 382 7 .3 59 21 22 43 Avenue 52 4 .2 8 .8 2020 7 .0 85 27 61 88 Latimer * 5 . 8 7 .8 1940 4 .6 2570 1200 25 1220 Fraser Hw 2 .8 9 .7 215 7 . 1 52 22 8 30 Avenue 64 4 . 4 1 1 . .7 973 6 .2 54 25 13 38 Avenue 52 6 .8 10. .0 1 130 5 .8 71 31 12 43 Lat1mer 2 .2 10 .6 1100 6 .7 358 164 26 190 Fraser Hw 6 .2 7 .0 125 6 .6 41 13 9 22 Avenue 64 4 . 0 9 .7 415 5 .5 73 25 20 45 Avenue 52 5. .5 9. .0 800 4 ,B 91 31 20 51 Latimer 1 , .3 10. . 3 503 5 .9 209 77 37 1 14 * Flow = 136 L/m1n mS/m) ; N02. N03, NH3 mg/L as N ; ORTH P mg/L as P N02 N03 NH3 ORG N TKN TOT N ORTH P TOT P <0. .005 <0 .02 O. 103 1 .02 1 . 12 1 . 14 0 .030 0 . 293 <0. .005 0 .08 1 . 350 1 .05 2 .40 2 .48 0 .023 0 .050 0. .070 0 .28 0. 220 3 .36 3 .58 3 .93 0 .049 0 . 136 0. ,009 o .03 1 . 120 1 .97 3 .09 3 . 13 0. .061 o .086 0. . 127 3, .02 28. 000 60 .30 88 .30 91 .50 21 . 000 23. .000 0. 022 1. .63 0. 102 0 .99 1 . .09 2 .74 0. .053 0. .089 0. .016 10. .80 0. 128 1 . 17 1 . .30 12 . 10 0. .007 0. .026 0. 140 1 1 . .40 0. 655 1 .77 2. .42 13 .90 0. .042 0. .073 0. 020 <0 .02 4 . 600 8 .80 13. .40 13 .40 1 . .720 2 . 1 10 0. ,023 1 , .40 0. 090 0 .89 0. .98 2 .40 0. .098 0. 136 0. ,012 6 .44 0. 094 1 .45 1 . ,54 7 .99 0. .023 0. 053 0. 032 1 1 , OO 0. 506 2 .02 2. ,53 13 .50 5 . 650 5 . 980 o. 098 4 , . 15 0. 745 4 .81 5. .56 9 .81 0. .309 0. 481 APPENDIX IV SEDIMENT ANALYSES (1985) 116 SEDIMENT SAMPLES, AUGUST 26, 1985 PARAMETER RESULTS (ug/g d r y wt) • SITE 12 SITE 13 Aluminum 11,000 10,700 A r s e n i c 36 30 Barium 39 38 C a l c ium 3,760 4,640 Cadmium < 1 < 1 Chromium 39 38 Cobalt 12 1 3 Copper 27 22 I ron 27, 100 26,100 Magnesium 9,020 9,290 Manganese 309 319 Molybdenum 14 1 4 N i c k e l 40 39 Lead 39 41 Selenium 1 3 < 10 Strontium 29 29 T i n < 5 42 Zinc 1 16 76 N i t r o g e n (TKN) 1300 890 Phosphorus T o t a l 802 751 Carbon T o t a l 20,600 16,200 1 17 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062716/manifest

Comment

Related Items