Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The analysis and interpretation of the cone pressuremeter in cohesive soils Hers, Ian 1989

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
UBC_1989_A7 H37.pdf [ 12.07MB ]
Metadata
JSON: 1.0062697.json
JSON-LD: 1.0062697+ld.json
RDF/XML (Pretty): 1.0062697.xml
RDF/JSON: 1.0062697+rdf.json
Turtle: 1.0062697+rdf-turtle.txt
N-Triples: 1.0062697+rdf-ntriples.txt
Original Record: 1.0062697 +original-record.json
Full Text
1.0062697.txt
Citation
1.0062697.ris

Full Text

THE ANALYSIS AND INTERPRETATION OF THE CONE PRESSTJREMETER IN COHESIVE SOILS by IAN HERS B . A . S c , The U n i v e r s i t y o f B r i t i s h Columbia, 1986  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE  in THE FACULTY OF GRADUATE STUDIES Department o f C i v i l  We a c c e p t t h i s  Engineering  t h e s i s as c o n f o r m i n g  to the r e q u i r e d  standard  THE UNIVERSITY OF BRITISH COLUMBIA ^September, 1989  © I A N HERS, 1989  In  presenting this  degree at the  thesis  in  partial  fulfilment  of  the  requirements  University  of  British  Columbia,  I agree that the  freely available for reference and study. I further agree that copying  of  department  this thesis for scholarly or  by  his  or  her  for  an  Library shall make it  permission for extensive  purposes may be granted by the  representatives.  It  is  understood  that  publication of this thesis for financial gain shall not be allowed without permission.  Department of The University of British Columbia Vancouver, Canada Date  DE-6 (2/88)  advanced  head of my copying my  or  written  ABSTRACT  The which  cone p r e s s u r e m e t e r  combines  displacement present  the w e l l  known c a p a b i l i t i e s  pressuremeter  results  pressuremeter  i s a p r o m i s i n g new i n s i t u  from  (FDPM).  FDPM  sounding  tests  at three  The  device  o f a piezocone with  focus  of  performed  cohesive  testing  this  as  soil  thesis  part  sites  a  of  full  i s to a  cone  i n t h e Vancouver  area. The  insertion  of a  cone  pressuremeter  results  in a  substantial  amount o f d i s t u r b a n c e and the g e n e r a t i o n o f excess pore p r e s s u r e s . As a result time  o f the changing o r time  effect  delay  between  on the l i f t - o f f  indicate  that  rates  strengths.  insertion  relaxation  r a t e used  resulting  the l e n g t h o f the r e l a x a t i o n  and t e s t i n g  were  periods  limit  made  lead  to  i s also  pressures  between  (SBPM) and d i l a t o m e t e r l i f t - o f f  has a  significant  o f the FDPM c u r v e . R e s u l t s  during a test  i n higher  Comparisons  pressuremeter  conditions,  p r e s s u r e and shape  increased  p r e s s u r e s . The s t r a i n lower  stress  the  lower  lift-off  significant  and u n d r a i n e d FDPM,  with shear  self-boring  and e x p a n s i o n p r e s s u r e s .  FDPM t e s t r e s u l t s a r e a l s o i n f l u e n c e d by the d e s i g n and performance of  the  pressuremeter.  Important  equipment  related  considerations  d i s c u s s e d a r e c o m p l i a n c e , s t r a i n arm d e s i g n and p r e s s u r e m e t e r L/D r a t i o . The  r e s u l t s o f FDPM t e s t s were used t o e s t i m a t e the u n d r a i n e d shear  s t r e n g t h , shear modulus, s t r e s s h i s t o r y and i n s i t u h o r i z o n t a l s t r e s s o f cohesive  soils  dilatometer The test  and when  possible  compared  t o SBPM,  field  vane  and  results.  use o f c a v i t y  i s made  difficult  expansion by  theory  the unknown  f o r the a n a l y s i s stress  conditions  o f the FDPM created  by  iii disturbance. strength  Nevertheless,  were  undrained  made  shear  reasonable  using  strength  estimates  cavity  expansion  generally  greater  o f the u n d r a i n e d methods  than  with  shear  the  the f i e l d  FDPM  vane and  s i m i l a r t o those o b t a i n e d from the SBPM t e s t .  C a v i t y c o n t r a c t i o n theory  was a l s o used  s t r e n g t h w i t h the r e s u l t s  t o e s t i m a t e the u n d r a i n e d  shear  g e n e r a l l y b e i n g l e s s than the f i e l d vane u n d r a i n e d Good comparisons reload  shear  rigidity Two  new  methods limit  techniques  estimate to  moduli.  Both  o b t a i n e d between the FDPM and SBPM the u n l o a d - r e l o a d  shear  moduli  index were shown t o a t t e n u a t e w i t h i n c r e a s i n g shear  pressuremeter Both  were  shear s t r e n g t h .  using  the  rigidity  p r e s s u r e were proposed  appear  t o be p r o m i s i n g .  the i n s i t u h o r i z o n t a l  the r e s u l t s o f other a v a i l a b l e  stress tests.  index  to estimate Attempts  and  unloadand the  strain. normalized  stress  history.  t o use the FDPM t o  were u n s u c c e s s f u l when compared  iv TABLE OF CONTENTS  Page ABSTRACT LIST OF TABLES LIST OF FIGURES ACKNOWLEDGEMENTS 1.0  INTRODUCTION  2.0  EQUIPMENT AND TEST PROCEDURES 2.1 The UBC S e i s m i c Cone Pressuremeter (SCP) 2.1.1 D e s c r i p t i o n o f the UBC SCP 2.1.2 The UBC SCP Data A c q u i s i t i o n System 2.1.3 T e s t Procedures f o r the UBC SCP 2.1.4 UBC SCP Compliance 2.2 The Fugro Cone Pressuremeter 2.3 The Hughes S e l f - B o r i n g Pressuremeter (SBPM)  3.0  TEST SITES AND FIELD PROGRAMME 3.1 Scope 3.2 S i t e D e s c r i p t i o n s and F i e l d Programme 3.2.1 McDonald Farm 3.2.2 L u l u I s l a n d UBC P i l e R e s e a r c h 3.2.3 L a n g l e y Lower 232  4.0  THE 4.1 4.2  4.3 4.4  5.0  i i vi v i i xi 1 5 5 5 11 14 18 21 26 33 33 33 33 38 .41  INTERPRETATION OF THE PRESSUREMETER TEST 45 A n a l y t i c a l Approaches t o the Pressuremeter T e s t 45 F a c t o r s A f f e c t i n g Pressuremeter T e s t I n t e r p r e t a t i o n ....50 4.2.1 E f f e c t s o f Pressuremeter I n s e r t i o n and R e l a x a t i o n Period 53 4.2.2 E f f e c t s o f S t r a i n Rate 57 4.2.3 E f f e c t s of Disturbance 59 4.2.4 E f f e c t s o f Pressuremeter L/D R a t i o 61 Comparison o f SBPM and FDPM T e s t s 63 Parameters O b t a i n e d from the Pressuremeter T e s t ...72 4..4.1 U n d r a i n e d Shear S t r e n g t h 72 4.4.2 Shear Modulus 81 4.4.3 S t r e s s H i s t o r y and I n S i t u H o r i z o n t a l S t r e s s ...86  UNDRAINED SHEAR STRENGTH 5.1 R e f e r e n c e U n d r a i n e d Shear S t r e n g t h 5.2 T h e o r e t i c a l Techniques 5.2.1 Windle and Wroth Average S t r e n g t h Method 5.2.2 A r n o l d Curve F i t t i n g Method 5.2.3 Houlsby U n l o a d i n g Method 5.3 E m p i r i c a l Techniques 5.4 Conclusions  93 93 98 98 101 101 104 113  V  TABLE OF  CONTENTS ( CONT. )  Page 6.0  SHEAR 6.1 6.2 6.3  7.0  STRESS HISTORY AND IN SITU HORIZONTAL STRESS 7.1 Reference O v e r c o n s o l i d a t i o n Ratio 7.2 Stress History 7.3 Reference In S i t u H o r i z o n t a l Stress 7.4 In S i t u Horizontal Stress 7.5 Conclusions  8.0  MODULUS AND RIGIDITY INDEX Shear Modulus R i g i d i t y Index Conclusions  115 115 121 125  ;  CONCLUSIONS AND RECOMMENDATIONS 8.1 F a c t o r s A f f e c t i n g the I n t e r p r e t a t i o n o f the FDPM T e s t 8.2 Parameters O b t a i n e d from FDPM T e s t s 8.2.1 U n d r a i n e d Shear S t r e n g t h 8.2.2 Shear Modulus and R i g i d i t y Index 8.2.3 S t r e s s H i s t o r y and I n S i t u H o r i z o n t a l S t r e s s 8.3 Recommendations  REFERENCES APPENDICES I II III IV V VI  129 129 129 131 133 136 139 .139 141 141 143 ..143 144 146  Pressuremeter T e s t Data a t McDonald Farm Pressuremeter T e s t Data a t L u l u Is-UBCPRS P r e s s u r e m e t e r T e s t Data a t Langley Lower 232 D e r i v a t i o n o f U n l o a d R e l o a d Shear Modulus Shear Modulus V a l u e s In S i t u Test Locations  152 247 363 419 425 430  vi LIST OF TABLES  Table 1.1  2.1  Page C l a s s i f i c a t i o n o f Pressuremeters A c c o r d i n g t o Method o f I n s e r t i o n (adapted from Huang and H a e f e l e , 1988)  2  T e s t Depth and D r i l l i n g Parameters f o r the Hughes SBPM a t McDonald Farm ( adapted from Hughes, 1984 )  30  3.1  S o i l P r o p e r t i e s a t McDonald Farm  37  3.2  I n S i t u T e s t s Performed a t McDonald Farm  38  3.3  S o i l P r o p e r t i e s a t L u l u I s . - UBCPRS  41  3.4  I n S i t u T e s t s Performed a t L u l u I s . - UBCPRS  41  3.5  S o i l P r o p e r t i e s a t Langley  44  3.6  I n S i t u T e s t s Performed a t Langley  4.1  E f f e c t o f R e l a x a t i o n Time on FDPM L i f t O f f P r e s s u r e s a t L u l u I s . - UBCPRS  4.2  N u m e r i c a l S i m u l a t i o n o f SBPM T e s t s w i t h V a r y i n g L/D R a t i o s f o r E l a s t i c P e r f e c t l y P l a s t i c S o i l •( a f t e r B a g u e l i n e t a l , 1986)  4.3  4.4  Lower 232 Lower 232  44  55  .62  E f f e c t o f I n s e r t i o n Method on the Radius o f the P l a s t i c Zone f o r an E l a s t i c P e r f e c t l y P l a s t i c S o i l  63  Comparison o f U n d r a i n e d Shear S t r e n g t h from Pressuremeter, F i e l d Vane and T r i a x i a l T e s t s  80  vii LIST OF FIGURES  Figure  Page  2.1  Schematic o f the UBC  SCP  6  2.2  UBC  2.3  E f f e c t o f D i f f e r e n t S t r a i n Arm  SCP S t r a i n Arm D e s i g n  8 Designs on the L i f t - o f f  Stage o f a P r e s s u r e - D i s p l a c e m e n t Curve 2.4  Schematic Layout o f the UBC  2.5  T y p i c a l S t r a i n Arm  2.6  Membrane C o r r e c t i o n Curve f o r the UBC  2.7  Typical  2.8a,b  R e s u l t s o f a UBC  10  SCP Data A c q u i s i t i o n  C a l i b r a t i o n f o r the UBC  S t r a i n Rate Used f o r a UBC  System  SCP  15  SCP  17  SCP T e s t  19  SCP T e s t I n s i d e a 44 mm  Diameter  Steel Cylinder  20  2:9  Schematic o f the Fugro CP  2.10  The Pressuremeter Component o f the Fugro CP W i t h e r s e t a l , 1986  ( a f t e r W i t h e r s e t a l , 1986  ) ....22  ( after  )  23  2.11  S t r a i n Arm  C a l i b r a t i o n f o r the Fugro CP  2.12  Membrane C o r r e c t i o n Curve f o r the Fugro CP W i t h e r s e t a l , 1986  ....13  25 ( after  )  27  2.13  Hughes SBPM J e t t i n g System  2.14  Membrane C o r r e c t i o n Curve f o r the Hughes SBPM  32  3.1  G e n e r a l L o c a t i o n o f Research S i t e s  34  3.2  T y p i c a l CPTU P r o f i l e a t McDonald Farm  36  3.3  Typical  CPTU P r o f i l e a t L u l u I s . - UBCPRS  40  3.4  T y p i c a l CPTU P r o f i l e a t L a n g l e y Lower 232  43  4.1  E f f e c t o f Pressuremeter I n s e r t i o n Method and R e l a x a t i o n Time on P r e s s u r e E x p a n s i o n Curves ( a f t e r B a g u e l i n e t a l , 1978 ) 52 Comparison Between D i l a t o m e t e r P and P e n e t r a t i o n Pore P r e s s u r e s from P i e z o b l a d e i n N o r m a l l y C o n s o l i d a t e d and L i g h t l y O v e r c o n s o l i d a t e d C l a y s ( a f t e r Lutenegger, 1988) ....54  4.2  ( a f t e r Hughes, 1984  Q  )  28  viii LIST OF FIGURES ( CONT. )  Figure 4.3  Page Comparison Between D i l a t o m e t e r P and P e n e t r a t i o n Pore P r e s s u r e s from P i e z o b l a d e i n O v e r c o n s o l i d a t e d C l a y s ( a f t e r Lutenegger, 1988)  54  E f f e c t o f R e l a x a t i o n Time on FDPM T e s t s a t L u l u I s . - UBCPRS  56  4.5a,b  Comparison o f FDPM and SBPM T e s t s a t McDonald Farm  64  4.6a,b  Comparison o f FDPM and SBPM T e s t s a t L u l u Is.-UBCPRS  66  4.7  Comparison o f FDPM, SBPM and D i l a t o m e t e r Pressures  69  4.4  4.8  4.9  Q  Lift-off  Comparison o f FDPM and SBPM P r a c t i c a l L i m i t and D i l a t o m e t e r P^ V a l u e s  Pressures 71  D e t e r m i n a t i o n o f Undrained Shear S t r e n g t h u s i n g the Windle and Wroth Average S t r e n g t h Method  74  D e t e r m i n a t i o n o f the S t r e s s - s t r a i n Curve u s i n g t h e M o d i f i e d A r n o l d Type 1 A n a l y s i s  76  D e t e r m i n a t i o n o f Undrained Shear S t r e n g t h u s i n g the Houlsby U n l o a d i n g A n a l y s i s  77  Comparison o f Cone B e a r i n g and FDPM P r a c t i c a l L i m i t Pressure  79  H i e r a r c h y and V a r i a t i o n i n U n d r a i n e d S t r e n g t h R a t i o f o r V a r i o u s T e s t Methods ( adapted from Wroth, 1984)  82  4.14  Shear Modulus A t t e n u a t i o n Curves i n Cohesive  84  4.15  V a r i a t i o n i n (q^ - « " ) A ( a f t e r Wroth, 1988 )  4.10  4.11  4.12  4.13  4.16  v o  Values  o f G/S  u  v o  Soils  ' w i t h OCR a t Onsoy 88  P l o t t e d A g a i n s t OCR from CK U DSS Q  T e s t s on Three C l a y s  ( a f t e r Ladd and Edgers,  5.1  F i e l d Vane Undrained  Shear S t r e n g t h  95  5.2  Normalized  Shear S t r e n g t h from F i e l d Vane  96  5.3  Proposed Reference  5.4  FDPM and SBPM Undrained Shear S t r e n g t h from Windle and Wroth Average S t r e n g t h Method  Undrained S  u  1972 )  F o r L u l u I s . - UBCPRS  90  97  99  ix LIST O F FIGURES ( CONT. )  Figure  Page  5.5  5.6  SBPM U n d r a i n e d Shear S t r e n g t h from A r n o l d F i t t i n g Method  Curve 102  FDPM U n d r a i n e d Shear S t r e n g t h from Houlsby U n l o a d i n g Method  5.7  FDPM and SBPM P r e s s u r e m e t e r F a c t o r N - ( P v s Depth  5.8  FDPM and SBPM P r e s s u r e m e t e r F a c t o r N v s Depth - <7 )/S  103 L  - (P  - P )/S Q  U  R  E  F  105 L  - ^  v o  )/S  u  R  E  F  107  5.9  Cone F a c t o r N  k t  - (q  5.10  Cone F a c t o r N  A u  - Au/S  5.11  Comparison o f S  6.1  Unload-Reload, G , and Houlsby U n l o a d i n g , G^, Shear M o d u l i v s Depth  116  Dynamic S m a l l S t r a i n Shear Modulus,  118  t  v o  u  R£F  V  S  j ^ p v s Depth  u  D  E  P  T  N  1  u s i n g FDPM F a c t o r N and Cone F a c t o r N  u  G  m a x  G  ur/ max G  v  s  s  h  e  a  r  S t r a i n a t McDonald  6.4  G  ur/ max  v  s  s  h  e  a  r  S t r a i n a t L u l u Is.-UBCPRS  6.5  G  d  H  o  6  6.7 6.8  G  / u S  u r  G  REF  a  m a x / u REF S  G  / u  REF  /  REF  S  u r  G  U  R  S  U  v  v  n  v  s  s  D  S  s  n  S  u  s  P  E  e  n  l  a  e  T  b  Unloading I  r  119 120  v s Depth  122  H  r  a  v  Farm  r  1  S t r a i n a t McDonald  Farm  S t r a i n a t L u l u Is.-UBCPRS . ...  S t r e s s H i s t o r y from F i e l d Vane a t L a n g l e y Lower 232  7.2  Variation i n  7.3  Variation i n ^ O ' ^ v o ^ v o ' OCR a t L a n g l e y Lower 232  G  FDPM K  Q  m  a  x  /S  u  w i t h OCR a t L a n g l e y Lower 232 a  n  d  ^ t ^ v o ^ v o '  2  4  126  7.1  7.4  1  112  k t  , v s Depth  6.3  -  1  u r  6.2  6  110  w  V a l u e s O b t a i n e d U s i n g E m p i r i c a l Method  i  t  127 130 132  h  132 134  X  LIST OF FIGURES ( CONT. ~)  Figure 7.5  7.6  Page SBPM K V a l u e s O b t a i n e d U s i n g E m p i r i c a l Method a t McDonald Farm  135  Comparison o f D i l a t o m e t e r K  137  Q  D  and FDPM K  p M  Values  xi ACKNOWLEDGEMENT  I would l i k e for  h i s guidance  suggestions Erick  t o thank my r e s e a r c h s u p e r v i s o r , during  and a s s i s t a n c e  Basiw,  Wickremesinghe  Jim  Greig,  a r e much  the  course  with  data  John  of  collection  Howie,  appreciated.  this  John  Dr. R.G. Campanella study. from  r e c e i v e d from A r t Brookes, S c o t t Jackson,  my  Sully,  The e x c e l l e n t  The  helpful  colleagues, and  Damika  technical  support  G l e n J o l l y and H a r a l d  Schrempp  i s a l s o acknowledged. A special  thanks i s extended t o my w i f e , Leanne, whose support and  encouragement throughout t h e d u r a t i o n o f t h i s  r e s e a r c h p r o j e c t has been  much a p p r e c i a t e d . The and  the  t e c h n i c a l and f i n a n c i a l a s s i s t a n c e o f Foundex E x p l o r a t i o n s L t d . financial  acknowledged.  support  provided  by  N.S.E.R.C.  is  gratefully  1  CHAPTER  1  INTRODUCTION  In become  recent years, emphasized  laboratory or f u l l and  interpret  the i n s i t u  as  an  testing  important  of soils  alternative  has  increasingly  and/or  addition  to  s c a l e t e s t s . The purpose o f t h i s t h e s i s i s t o a n a l y z e i n situ  testing  d e v i c e , the cone p r e s s u r e m e t e r . The cone p r e s s u r e m e t e r c o n s i s t s  o f a 60  degree  the performance  , 15 square  of a  relatively  new  cm. p i e z o c o n e , and a p r e s s u r e m e t e r o f e q u a l  diameter  t o the cone s i t u a t e d a s h o r t d i s t a n c e b e h i n d the cone t i p . The f o c u s o f this  study  is  pressuremeter (CP)  to  (FDPM)  sounding.  interpret tests  The  the  results  performed  rational  as p a r t  for  the  of  full  displacement  o f a cone  pressuremeter  development  of  the  cone  p r e s s u r e m e t e r i s d e s c r i b e d below. The c a p a b i l i t i e s o f the p i e z o c o n e p e n e t r a t i o n t e s t well  documented  (Campanella  a l , 1 9 8 5 ) . The CPTU t e s t soil profile.  and a  cohesive  soils  estimate  to varying  Robertson,1988;  tentative  evaluation  c a n be made. The cone degrees  estimate different  of s o i l  of r e l i a b i l i t y  test,  stiffness  o f the s t r e s s  resistance  can a l s o  detailed  in  be used t o  However, the CPTU  stiffness.  i n principle,  and s t r e n g t h  history  the d r a i n e d and u n d r a i n e d  cohesive s o i l s .  t e s t g e n e r a l l y g i v e s a poor e s t i m a t e o f s o i l pressuremeter  a  et  the e v a l u a t i o n o f the f l o w and c o n s o l i d a t i o n  s h e a r s t r e n g t h o f b o t h g r a n u l a r and  The  Jamiolkowski  i s of p a r t i c u l a r value i n providing  Furthermore,  characteristics  and  (CPTU) have been  than  will  provide  the CPTU  test.  a  better Several  types o f p r e s s u r e m e t e r s have been d e v e l o p e d s i n c e Menard  first  2  i n t r o d u c e d the p r e s s u r e m e t e r i n 1954 the  and  can be  i n s e r t i o n method used as shown i n T a b l e  Table  1.1  :  1.1.  C l a s s i f i c a t i o n o f Pressuremeters A c c o r d i n g t o Method o f I n s e r t i o n (adapted from Huang and H a e f e l e , 1988)  1  1  1  Menard OYO LLT  j B a g u e l i n e t a l (1978) j Suyama e t a l (1982)  | j  Self-bored  Camkometer PAF  | Wroth & Hughes (1973) j B a g u e l i n e t a l (1978)  | j  Push-in  Stress  j Henderson e t a l (1979) | F y f f e e t a l (1982)  j j  j Hughes & Robertson(1985) I Howie (1989)  j  1 |  I n s e r t i o n Method  Pressuremeter Type  |  Pre-bored  |  |  |  c l a s s i f i e d a c c o r d i n g to  Full-Displacement  The expanded stress  Menard to  relief  pressuremeter  in  probe  a  soil  i s used  c o r r e l a t e d t o the performance In  an  attempt  disturbance,  the  independently  in  Hughes, 1973) . The  i s placed  pressure-volume  the  data  Probe  FDPM Cone Pressuremeter  style  provide  | Reference  to  in  an  pre-bored Due  the  empirical  to  hole  and  is  disturbance  and  borehole, manner  most  and  Menard  is  directly  of foundations.  overcome  and  a  curve.  surrounding  self-boring France  in  |  the  limitations  pressuremeter  England  (SBPM)  (Baguelin et  SBPM i s s l o w l y pushed  into  created was  al,1972;  the ground  by  soil  developed Wroth  as s o i l  and  a t the  bottom 'of the c y l i n d e r i s chopped up by a r o t a t i n g c u t t e r and f l u s h e d to the  surface.  disturbance,  When the the  SBPM i s i n s e r t e d  capability  exists  to  with  a minimal  derive  the  soil  amount o f  soil  stress-strain  3  behavior,  the  consolidation  in  situ  horizontal  characteristics  stress  o f the s o i l .  and  in  However,  some  cases  t h e SBPM  the  test i s  c o s t l y t o p e r f o r m and takes h i g h l y s k i l l e d p e r s o n n e l t o i n s e r t the probe w i t h the minimum p o s s i b l e amount o f s o i l d i s t u r b a n c e . The  push-in  al,1979; F y f f e hollow probe  pressuremeter  e t al,1982)  open-ended i s pushed  (PIP) o r  stress  probe  (Henderson  et  , developed p r i m a r i l y f o r o f f s h o r e use, i s a  pressuremeter  with  an end a r e a  a s h o r t depth below the bottom  ratio  o f 40 %. The  o f a borehole c r e a t i n g a  s m a l l b u t s i g n i f i c a n t amount o f d i s t u r b a n c e . The  FDPM  disturbed. operator  test  i s performed  However,  the  independent.  in soil  disturbance  Furthermore,  which  has been  created  results  is  from  substantially  repeatable  t h e FDPM  and i s  test  c a n be  d i r e c t l y c o r r e l a t e d t o a d d i t i o n a l d a t a c o l l e c t e d d u r i n g the s e i s m i c cone pressuremeter  sounding  .  p r e s s u r e m e t e r has p r a c t i c a l pressuremeter (Fyffe  et  drilling, The  test.  The  al,1982)  removing insertion  and  drill  In  an  offshore  advantages  SBPM  test  the PIP  over  environment,  the s e l f - b o r i n g  is difficult test  involves  repeated  pressuremeter  into  soil  amount o f d i s t u r b a n c e and complex and dynamic s t r e s s around  t h e p r e s s u r e m e t e r . The p r i m a r y o b j e c t i v e  interpret  the r e s u l t s  o f the FDPM t e s t  i n light  as  comprehensively  of  test. large fields  research i s to  o f t h i s problem  and t o  the u n d r a i n e d  shear modulus and t o a l e s s e r e x t e n t s t r e s s h i s t o r y and  in s i t u horizontal stress obtained  cycles  and s t r a i n  a s s e s s the s u i t a b i l i t y o f u s i n g the FDPM t e s t t o determine shear s t r e n g t h ,  offshore  creates a  of this  cone  or push-in  to perform  rods and p e r f o r m i n g a p r e s s u r e m e t e r  o f a cone  the  part  of  o f cohesive s o i l s . the  cone  a n a l y z e d b u t where  Piezocone and s e i s m i c d a t a  pressuremeter  sounding  a p p r o p r i a t e a r e used  to  are not supplement  4  the  FDPM  test  results.  the  FDPM  test  have  f i e l d vane t e s t  Furthermore,  been  results.  compared  whenever  possible,  t o SBPM, p i e z o c o n e ,  the r e s u l t s  of  d i l a t o m e t e r and  5  CHAPTER 2 EQUIPMENT AND  TEST PROCEDURES  Three p r e s s u r e m e t e r probes were u t i l i z e d Seismic  Cone  (Fugro CP)  Pressuremeter  SCP),  the  Fugro  t e s t p r o c e d u r e s used  study  Cone  and the Hughes S e l f - B o r i n g Pressuremeter  c h a p t e r d e s c r i b e s the t e s t  are  (UBC  for this  equipment, d a t a a c q u i s i t i o n  f o r the  UBC  SCP  but  UBC  Pressuremeter  (Hughes SBPM). T h i s systems  f o r the t h r e e p r e s s u r e m e t e r s . These  considered i n d e t a i l  : the  not  and  the  considerations  f o r the  two  other  p r o b e s . A more d e t a i l e d d e s c r i p t i o n o f the Fugro CP and the Hughes SBPM i s g i v e n by Howie (1990).  2.1  The UBC  2.1.1  SCP  D e s c r i p t i o n o f the UBC  SCP  The major components o f the UBC  SCP  are shown i n F i g . 2.1  and  are  .15  cm^  d e s c r i b e d below. The conical  probe  begins  with  t i p f o l l o w e d by  a  piezocone  a friction  having  a  60  degree,  sleeve having a surface area of  225  2 cm  . Built  resistance transducers  i n load  cells  ( q  and  )  c  located  sleeve f r i c t i o n  just  pore p r e s s u r e s t o be  a l l o w the near  above  the cone  c o n t i n u o u s measurement o f ( f  ) . Two  t i p and  electric  friction  measured d u r i n g cone p e n e t r a t i o n .  The  end  pressure  sleeve allow dissipation  w i t h time o f the pore p r e s s u r e s g e n e r a t e d can be m o n i t o r e d d u r i n g h a l t s in  the  penetration.  piezo-electric vertically  at  Mounted  bender 90  are mounted j u s t  degree below  just  elements  or  below  the  friction  accelerometers  a n g l e s t o each the p r e s s u r e m e t e r  o t h e r . Two body  sleeve  which  are  are  two  aligned  more a c c e l e r o m e t e r s  i n the  same manner.  The  6  n  Adapter to 10 cm2 Cone Rod  PO Electronics  Controlled Change Volume / Change Time  Pressure Developer  Pressure Transducer  (PD)  Pressuremeter (PM)  Pressure Transducer Three Strain Arms  Two Accelerometers PM Electronics Direct Current Regulation, Amplification Cone Electronics  Piezocone Module  F i g . 2.1  :  —  Two Accelerometers Two Pore Pressure Sensors Friction Sleeve ( 225 cm2 ) Bearing ( 1 5 cm2 ) 60 Degree Tip Temperature Slope  Schematic o f the UBC  SCP  7  accelerometers  are used  to o b t a i n  a  seismic p r o f i l e  the downhole s e i s m i c t e c h n i q u e ( R i c e , 1984 To  obtain r e l i a b l e  and  consistent  of  the  soil  ).  CPTU d a t a , the p i e z o c o n e  be p r o p e r l y be c a l i b r a t e d and s a t u r a t e d and s t a n d a r d i z e d t e s t s h o u l d be used. R o b e r t s o n and Campanella  using  (1986) p r o v i d e a  should  procedures  comprehensive  g u i d e l i n e t o p i e z o c o n e equipment, t e s t p r o c e d u r e s and d a t a r e d u c t i o n . The  c e n t e r o f the p r e s s u r e m e t e r  tip.  The  c o r e o f the p r e s s u r e m e t e r  with  threads  on  pressuremeter strain  arms  core are  c o r e a t 120  either  end.  and  s p a c i n g s . The  which  follow  end  Two  m behind  the cone  diameter h o l l o w  cylinder  . Three  channels  cut  vertically  i n the  metal  are c o n n e c t e d  d e s i g n s o f arm  first  o r " o l d " d e s i g n a t t a c h e d the 5 mm  on top o f the end o f the m e t a l the  pressuremeter  imposed ends  of  on  was  fully  strip.  deflated.  the c o n t a c t p l a t e s due  the  metal  strip  to  wide arm  T h i s p r o v e d t o be Vertical  and  t o s o i l and water  "bottom"  out  i n the  strips contact  t o the  contact plates  methods o f a t t a c h i n g the p l a t e t o the m e t a l s t r i p were used The  the  aligned  t o form a c a n t i l e v e r beam. Arm  different  in  pressuremeter  s t r a i n arms are s t r a i g h t  the membrane expansion,  end o f the m e t a l s t r i p .  1.34  t r a n s d u c e r i s mounted  developer  i n shallow  a t t a c h e d t o the cone a t one plates,  i s a 39 mm  pressure  pressure  mounted  degree  A  i s located  free and  ( F i g . 2.2). contact plate  a problem  horizontal  when  forces  s t r e s s e s caused  the  channel  the  cut  in  p r e s s u r e m e t e r c o r e . T h i s i s thought t o have g e n e r a t e d a moment a t p o i n t 0  ( F i g . 2.2  strain  gauge  ) with on  the  the  d e f l e c t i o n o f the s t r a i n The new  end  metal  result  being  a  v o l t a g e output  strip  indicating  an  apparent  from  the  outward  arm.  d e s i g n a l l o w e d the arm c o n t a c t p l a t e s t o " f l o a t " on the end  o f the m e t a l s t r i p ,  the p o i n t o f c o n t a c t b e i n g the rounded  edge o f  the  8  Arm Cover  Plate  NEW DESIGN Not t o S c a l e  Screw  Metal  Strip  ( Cantilever B e a m )  SIDE VIEW  FRONT VIEW F  OLD DESIGN Not t o S c a l e  Metal  SIDE VIEW  F i g . 2.2  FRONT VIEW  Strip  ( Cantilever B e a m )  : UBC SCP S t r a i n Arm Design  9  screw shown i n F i g . 2.2. V e r t i c a l  and h o r i z o n t a l  forces  cause  c o n t a c t p l a t e h o u s i n g t o "bottom" o u t i n s t e a d o f the m e t a l change s o l v e d arms  when  different  the problem  the pressuremeter arm  designs  pressure-displacement arm  o f apparent  design  also  on  was  the  curve  deflated.  lift-off  stage  The  of  seems t o a f f e c t  the i n i t i a l  effect  the  stages  curve  i s found  d i s p l a c e m e n t ( e - AR/R  Q  This  o f the s t r a i n o f the  pressuremeter i n strain  o f the c o r r e c t e d  F o r t e s t s performed w i t h t h e o l d s t r a i n  d e s i g n , a s m a l l b u t p r e v a l e n t bump i n the c o r r e c t e d  expansion  or  fully  strip.  i s shown i n F i g 2.3. The change  pressuremeter expansion curve . arm  outward d e f l e c t i o n s  the arm  between  0  and 4  % cavity  pressuremeter  strain  or  ) . The new s t r a i n arm d e s i g n appears  radial  t o reduce  e l i m i n a t e the s m a l l bump ( f o r comparison purposes, a complete  set of  p r e s s u r e m e t e r e x p a n s i o n c u r v e s a r e found i n appendices I t o I I I ) . Other causes  f o r the s m a l l  bump  i n the p r e s s u r e m e t e r  expansion  curve are  d i s c u s s e d i n s e c t i o n 2.1.3 Two n a t u r a l rubber membranes, each w i t h an average t h i c k n e s s o f 1.2 mm  a r e a t t a c h e d t o the p r e s s u r e m e t e r body u s i n g t a p e r e d m e t a l r i n g s and  retaining  nuts.  Protecting  the membrane  s t a i n l e s s s t e e l metal s t r i p s .  i n the m e t a l  membrane  inflation  pressuremeter  with  strips  and  lantern  The ends o f the s l o t t e d s t r i p s  nut w i t h r a i s e d n i p p l e s and a r e h e l d The" s l o t s  i s a Chinese  f i t over a  i n p l a c e by a t a p e r e d m e t a l  a l l o w the l a n t e r n  deflation.  two membranes  made o f  The  and l a n t e r n  t o move  exact  freely  diameter  strips  was  ring. during  of  the  difficult  to  determine. An average diameter o f 43.6 mm was o b t a i n e d when clamps were used  t o compress  suggest t h a t SCP  probe  the l a n t e r n around  the p r e s s u r e m e t e r body. T h i s  would  t h e probe i s s l i g h t l y u n d e r s i z e d s i n c e the r e s t o f the UBC  has  a  diameter  of  44  mm.  Although  the  length  o f the  10  UBC SCP  300  OLD ARM DESIGN r  T  0.1  0.2  DEFLECTION Fig.  2.3 :  E f f e c t o f D i f f e r e n t S t r a i n Arm Designs on t h e L i f t - o f f Stage o f a P r e s s u r e - D i s p l a c e m e n t Curve  11  pressuremeter to i n f l a t e The  core  i s 385 mm,  i s 220 mm.  T h i s l e a d s t o a L/D r a t i o o f 5.  pressuremeter  pressure  developer.  pressures  as h i g h  t h e l e n g t h o f t h e membrane which i s f r e e  i s inflated  The  83  cm  with  long  silipon  pressure  o i l using  developer  as 6900 kPa ( 1000 p s i ) u s i n g  a  downhole  can  generate  a piston ball  screw  d r i v e n by an e l e c t r i c motor. S i n c e a c l o s e d system i s used, a i r i n the oil of  going  into  the b a l l  negative  solution,  screw  a small l e a k i n the pressuremeter  i n the  pressures.  The  fully  tests  retracted position shown  in  F i g . 2.3  will  or backlash a l l create  indicate  at  the  b e g i n n i n g o f t h e t e s t s , n e g a t i v e p r e s s u r e s o f 20 t o 40 kPa e x i s t e d . T h i s range i s t y p i c a l o f the n e g a t i v e p r e s s u r e s o b t a i n e d a t the b e g i n n i n g and end o f t e s t s performed u s i n g the UBC SCP. I f the p r e s s u r e d e v e l o p e r screw i s h e l d i n the f u l l y time,  r e t r a c t e d p o s i t i o n f o r an extended p e r i o d o f  the negative pressures  a i r going  into solution,  ball  tend t o d i s s i p a t e . To reduce the amount o f  the o i l f o r the p r e s s u r e m e t e r  was f i r s t  placed  under vacuum t o remove as much a i r as p o s s i b l e .  o The  pressure developer  an a d a p t e r  i s a t t a c h e d t o 10 cm  a r e a cone rods  using  e n a b l i n g the probe t o be pushed u s i n g the UBC I n S i t u T e s t i n g  t r u c k which  i s d e s c r i b e d i n d e t a i l by Campanella and Robertson  (1981).  The UBC SCP probe has been s u c c e s s f u l l y pushed t o depths g r e a t e r than 30 m and through  soil  layers with  end b e a r i n g r e s i s t a n c e s g r e a t e r than  200  bar. 2.1.2 The UBC SCP Data A c q u i s i t i o n System  The data;  UBC  SCP has the c a p a b i l i t y  piezocone,  pressuremeter  to c o l l e c t  and  three d i f f e r e n t  seismic.  Three  types o f  separate  data  1 2  a c q u i s i t i o n systems were used w i t h t h e UBC SCP as shown by t h e schematic l a y o u t o f the e n t i r e system shown i n F i g . 2.4 Piezocone (FCS),  data  i s collected  a s u r f a c e 12 b i t d i g i t a l  i s designed  so t h a t the a n a l o g  later  downloading  to  the H o g e n t o g l e r  data a c q u i s i t i o n  field  computer  system. The  piezocone  s i g n a l s which a r e a m p l i f i e d downhole a r e  c o m p a t i b l e w i t h the Hogentogler for  using  a  FCS. Data i s s t o r e d i n a magnetic microcomputer  and  is  also  bubble  immediately  printed. A microcomputer and  process  consists (A/D)  based  pressuremeter  o f an IBM  converter.  PC  system test  developed  data.  compatible  The  a t UBC UBC  data  microcomputer  The microcomputer  uses  an  i s used  to  acquisition  and a n a l o g  Intel  collect  8088  to  (DAS) digital  microprocessor  c a r d and a 8087 math c o p r o c e s s o r . Two m u l t i f u n c t i o n I/O ( i n p u t / o u t p u t ) c a r d s p r o v i d e 512 KB o f memory, two RS232 s e r i a l p o r t s and two p a r a l l e l p o r t s . Two h a l f h e i g h t 360 KB f l o p p y d r i v e s a r e used f o r d a t a s t o r a g e . A Data T r a n s l a t i o n DT2801-A 12 b i t A/D c o n v e r t e r b o a r d analog bit  to d i g i t a l  c o n v e r s i o n . The a n a l o g  representation  represented represents  by  of  their  voltage  4096  states  (  2  an a n a l o g  output  with  signals  which  raised  to  resolution  i s used f o r  are converted  means the  the  12 t  equal  voltages  power  h  t o a 12  t o 0.024  ).  are This  % o f the  s e l e c t e d a n a l o g i n p u t range. The DAS c a n p r o v i d e d a t a c o n v e r s i o n s f o r up to  8 channels. The  being  equal  contents tests  data  sampling  t o .4 seconds.  i s user Data  o f a b u f f e r are being  performed  contents  rate  with  the UBC  selectable  sampling  with  does n o t take  w r i t t e n to a disk. SCP  this  the maximum  created  a  rate  p l a c e when the  For the f i r s t  few  problem  the  since  o f a b u f f e r were o c c a s i o n a l l y w r i t t e n t o the d i s k a t c r i t i c a l  13  Display Monitor  J—  IBM PC Compatible Microcomputer  Keyboard  fi  Wcolet 40S4 16 tilt Digital Oscilloscope  Printer  DT2801 12 bit A/D Converter Analog Signals  If-  Hogentogler Field Computer  Interface Unit Pressuremeter, Seismic or Cone Mode  I.  Strip Chart Recorder  12 V DC Power Supply for PD Motor  + / - 15V DC Power Supply for PM & Cone Electronics Trigger Box  K3  Seismic Source  Reaction Cylinders  j Depth E tooder  Loading Head  fl Hydraulic Volve Switch  F i g . 2.4  :  Lood Switch  I  Schematic Layout o f the UBC System  0  UBC SCP Probe  SCP  Data A c q u i s i t i o n  14  times  during a test,  T h i s problem was  Eg. a t l i f t - o f f  and d u r i n g an u n l o a d - r e l o a d  s o l v e d by c r e a t i n g a l a r g e r b u f f e r and w r i t i n g  disk at n o n - c r i t i c a l  loop. t o the  times.  S e i s m i c shear waves a r e generated by s t r i k i n g a m e t a l pad,  weighted  to the ground, w i t h a s l e d g e hammer. S e i s m i c wave t r a c e s a r e r e c o r d e d by a N i c o l e t 4094 d i g i t a l o s c i l l o s c o p e w i t h 16 b i t a n a l o g t o d i g i t a l r e s o l u t i o n . T h i s u n i t has v e r y a c c u r a t e t i m i n g c a p a b i l i t y  and a  signal trigger  d e l a y c a p a c i t y . Data i s s t o r e d on f l o p p y d i s k s . Two  power  s u p p l i e s a r e needed  f o r the probe  : a  12 v o l t  direct  15 v o l t  direct  c u r r e n t s u p p l y f o r the p r e s s u r e d e v e l o p e r motor and a +/c u r r e n t power s u p p l y f o r the p r e s s u r e m e t e r  2.1.3 T e s t Procedures  The  calibration  transducers  using  f o r the UBC  of  strain  and cone e l e c t r o n i c s .  SCP  arms  using  a dead-weight p r e s s u r e  a  micrometer  tester  was  and  pressure  done r e g u l a r l y .  A  t y p i c a l s t r a i n arm c a l i b r a t i o n i s shown i n F i g . 2.5. Both the s t r a i n arm and  pressure  transducer  calibrations  n o n - l i n e a r i t y . The s l o p e from  showed v i r t u a l l y  a linear  no h y s t e r e s i s o r  regression best f i t line  i s used  to c o n v e r t s t r a i n arm d a t a t o e n g i n e e r i n g u n i t s . B e f o r e the b e g i n n i n g o f each cone p r e s s u r e m e t e r was  placed  in a  44  mm  diameter  r e f e r e n c e v o l t a g e outputs were o b t a i n e d . small  temperature.  was  split  f o r the p r e s s u r e  cylinder  and  the probe zeros  t r a n s d u c e r s and s t r a i n  or arms  Zeros were found t o be r e l a t i v e l y s t a b l e when s u b j e c t t o  temperature  temperature  steel  sounding,  fluctuations.  allowed  As  to come i n t o  Since a l l t e s t s  an  extra  precaution,  equilibrium  included i n this  with  study  the  probe  the o u t s i d e a i r  took  p l a c e between  15  Fig.  2.5  :  Typical  S t r a i n Arm  C a l i b r a t i o n f o r the UBC  SCP  16  December and A p r i l ,  i t is likely  and a i r temperature  was l e s s than 5 degrees  The  membrane  deflating  correction  the pressuremeter  t h a t t h e d i f f e r e n c e between the ground  curve with  was  curve  tests  was  consistent  Furthermore, strain  to  with  curve  d u r i n g expansion f o r cavity  s t e e p n e s s o f the correct  strain  will  attached  o f the membrane  softening  was  was  strains  lantern  inflating  and  in  air  under  not altered  changed.  correction  p r o l o n g e d use.  when  the  The membrane  maximum  correction  between 0 and 4 % i s q u i t e  steep.  a i r i n f l a t i o n c u r v e i s a drawback when i t i s used  pressuremeter  arms  The shape  curve  by  a t a p p r o x i m a t e l y t h e same r a t e as  no apparent  the c o r r e c t i o n  achieved  expansion The  i n the ground.  determined  the Chinese  ( F i g . 2.6 ) . The probe was i n f l a t e d subsequent  Celsius.  affect  tests  since  a  small  the  shape  of  the  shift  i n zeros  corrected  f o r the  pressuremeter  e x p a n s i o n c u r v e . T h i s e f f e c t c o u l d be a c o n t r i b u t i n g f a c t o r t o the s m a l l b u t p r e v a l e n t bump found  i n pressure expansion curves a t c a v i t y  between 0 and 4 %. F o r c a v i t y increases  only  approximately expansion shallow  50  kPa  pressures  depths.  inflation  slightly.  strains  g r e a t e r than  Unfortunately,  c a n be  a  a  significant  obtained during a test  In order  and d e f l a t i o n  to c o r r e c t  a  4 %, the p r e s s u r e  pressure  cohesive  pressuremeter  c u r v e s were f i t t e d  correction  proportion of i n soft  strains  test,  the  of  total  soils at the a i r  using a hyperbolic equation  o f the form :  €  P - Q +  2.1 a + be  The  parameters  choosing  3  a and b and the p r e s s u r e a x i s  points  from  the p r e s s u r e  versus  i n t e r c e p t Q a r e found by cavity  strain  curve.  In  17  UBC SCP  10/12/87  Langley Lower 232 Air Inflation  +  F i g . 2.6  :  Cavity Strain [%] Avg. of Arms 1 -2-3  Membrane C o r r e c t i o n Curve f o r the UBC SCP  18  general  Q  was  close  to  zero  for  a l l membrane  correction  expansion  curves. All  pressuremeter  t e s t s performed w i t h the UBC  SCP  probe were  u s i n g a q u a s i - c o n s t a n t s t r a i n r a t e . An example o f the c a v i t y s t r a i n during  a  representative  test  i s shown  i n F i g . 2.7.  A  summary  run rate  of  the  s t r a i n r a t e s used f o r a l l p r e s s u r e m e t e r t e s t s can be found i n appendices I  through I I I . A maximum c a v i t y s t r a i n o f 27 % can be a c h i e v e d .  2.1.4  UBC  The  SCP  Compliance  UBC  SCP  measurements  and  strips, into run  c r e e p and  solution. inside  curve  is  system is  approximately  caused  affects  primarily  compression  by  both  diameter  included .7  %  in  of  and the  strain lantern  o f the membrane and a i r i n the o i l g o i n g  steel split F i g . 2.8b  cavity  pressure  compression  F i g u r e s 2.8a,b show the r e s u l t s  a 44 mm also  compliance  strain  compression o f the l a n t e r n s t r i p s  (  of a pressuremeter  c y l i n d e r . A membrane for AR  comparison -  .15  mm  test  correction  purposes. ),  very  Below little  i s t a k i n g p l a c e , a r e s u l t o f the probe  b e i n g s l i g h t l y u n d e r s i z e d . For s t r a i n s g r e a t e r than .7 %, a c o n s i d e r a b l e amount o f l a n t e r n the  steel  is  of  expansions  membrane compression o c c u r s f o r p r e s s u r e s l e s s than 500  a p r e s s u r e m e t e r t e s t performed  extremely d i f f i c u l t  pressuremeter t e s t . the  o c c u r s . From p r e s s u r e m e t e r  c y l i n d e r w i t h o u t the l a n t e r n s t r i p s a t t a c h e d , i t appears  very l i t t l e For  compression  that kPa.  i n a saturated cohesive s o i l , i t  t o a s s e s s the e f f e c t o f l a n t e r n compression  It is likely  in  t h a t water w i l l  on a  r a p i d l y flow i n behind  l a n t e r n s t r i p s as e x p a n s i o n proceeds t h e r e f o r e making the  compliance  the l a n t e r n s t r i p s dependent on the e f f e c t i v e s t r e s s s t a t e around  p r e s s u r e m e t e r . T h i s i s an important assumption s i n c e i t i s apparent  the from  19  UBC SCP 3/4/87  c  E  3  Lulu Is.-UBCPRS Depth=6.35 m  20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  CONTRACTION  EXPANSION  UNLOAD-RELOAD LOOP  STRAIN RATE - AVERAGE VALUES FOR 7 DATA POINTS - T —  40  —r 80  -  —I—  120  160  —I—  200  240  TIME ( sec )  Fig.  2.7 :  Typical  S t r a i n Rate Used f o r a UBC SCP T e s t  20  UBC SCP 4/12/87 Inflation in 44 mm Dio. Split Cylinder  2000  a o a.  1500  3  i. 1000  500  EXPANSION  • CONTRACTION  -  Cavity Strain [X] Avg,. of arms 1—2—3  UBC SCP 4/12/87 Inflation in 44 mm Dio. Split Cylinder  500  400 -  300  EXPANSION IN SPLIT CYLINDER •  & 3  c 200  -  100  -  a. •o e TJ  EXPANSION IN AIR  E o  o c => -100 Cavity Strain [X] Avg. of arms 1-2-3  F i g . 2.8a,b  R e s u l t s o f a UBC SCP T e s t I n s i d e a 44 mm Steel Cylinder  Diameter  21  Fig.  2.8b t h a t  a p r e s s u r e drop  due t o a change from  total  s t r e s s e s c o u l d cause a s i g n i f i c a n t r e d u c t i o n i n compliance less  than  strips  approximately  are  governed  200 kPa. by  I f t h e compression  effective  stresses,  the  to effective f o r pressures  o f the l a n t e r n compliance  a p p r o x i m a t e l y be c o n s t a n t f o r an u n d r a i n e d t e s t i n a c o h e s i v e The  effect  o f a i r going  into  solution  and membrane  o b s e r v e d by r a p i d l y i n f l a t i n g the p r e s s u r e m e t e r a  set strain  decrease  and t h e n  is initially  magnitude  o f the  proportional  h o l d i n g the s t r a i n  observed,  pressure  decrease  for a  t o the i n i t i a l p r e s s u r e reached.  attempt  was  t h e complex made  pressuremeter membrane would  to  design  creep  c a n be  i n the s t e e l c y l i n d e r t o  constant. A  rapid  pressure  constant  The e f f e c t s  for this  and  indeterminate  nature  correct  pressuremeter  tests  incorporating  a  time  period i s  o f a i r going  t o be o f minor importance f o r  the p r e s s u r e s r e a c h e d d u r i n g t e s t s performed to  soil.  the r a t e becoming slower w i t h time. The  i n t o s o l u t i o n and membrane creep a r e f e l t  Due  will  pore  pressure  a l l o w f o r a more a c c u r a t e assessment  study. of  compliance,  f o r compliance. transducer  no A  on the  o f the e f f e c t s o f  compliance.  2.2  The Fugro CP  The In  p r o t o t y p e Fugro  CP used  f o r this  study was b u i l t  by Cambridge  s i t u i n c o n j u n c t i o n w i t h Fugro G e o t e c h n i c a l E n g i n e e r s B.V. F i g u r e 2.9  shows  the components  pressuremeter w i l l  o f the Fugro  use a 15 cm  CP.  piezocone  Future  versions  o f the cone  i n s t e a d o f a dummy cone. The  d e t a i l s o f t h e p r e s s u r e m e t e r component o f the Fugro CP a r e shown i n F i g . 2.10.  The d i s t a n c e between  the c e n t e r o f the membrane  and the c o n i c a l  22  PUSH H E A D •  n  w  /-"^  E L E C T R O / H Y D R A U L I C HOSE C O N T R O L E UNIT ' • R E A D OUT  C O N E ROOS C O N D U C T I N G HOSE ' S T A N D A R D CONE R O D CONE ROD ADAPTOR  A M P L I F I E R HOUSING  C O N T R A C T I O N RING '  PRESSUREMETER MODULE  CONTRACTION  RING  CONE SPACER DUMMY  Fig.  CONE  2.9  :  Schematic o f t h e Fugro CP e t a l , 1986 )  ( a f t e r Withers  23  CONTRACTION RING  CONNECTION TO AMPLIFIER SUB  CHINESE LANTERN MEMBRANE CLAMP RING MEMBRANE ARM COVER SLEEVE STRAIN GAUGED SPRING 3 STRAIN SENSING ARMS A T 120° SPACING  INSTRUMENT BODY  MEMBRANE  c  8 O  «-<  E £  s  MEMBRANE CLAMP RING CHINESE LANTERN  CONTRACTION RING CONNECTION TO CONE SPACER AND CONE  Fig.  43.7 mm  2.10 : The P r e s s u r e m e t e r Component o f t h e Fugro CP ( a f t e r W i t h e r s e t a l , 1986 )  24  tip  has  a  through  minimum  value  of  930  mm.  This  distance  can  be  increased  the use o f s p a c e r s .  The  o u t s i d e diameter  o f the Fugro CP  i s 43.7  mm  which  corresponds  o  to the dimensions pressuremeter  o f an almost  displacement  strain  arms, which c o n s i s t  similar  pressure  cm  cone. The  L/D  measures the i n f l a t i o n p r e s s u r e s and  radial  are  15  at  120  i n design  capability  to  of  degree  spacings  the  the  ones  used  and  pressuremeter  is  3  MPa  s t r a i n c a p a c i t y i s 50 %. N i t r o g e n gas was  used  tests  controlled  being  turning  performed  the  pressure  i n f l a t i o n r a t e . Two  in a  quasi-strain  regulator  to  maintain  r e g u l a t o r s were used  for tests requiring a larger The  analog  surface  an  electrical  diameter.  The  analog  monitoring  of  data  translation  microcomputer.  board  a  output  V was  XYY  and  was  standard strip  pressure  weight  s t r a i n arm  cavity  approximately  constant  kPa  (2 - 120  psi)  p s i regulator  to  A  electrical  recorder b i t analog  standard  s t o r e d on  floppy  the  c a b l e and  tonne cone rods  12  a  t r a n s m i t t e d to  the  o f 16  allowed  mm the  to  digital  portable  COMPAQ  disks.  A  scanning  used r e s u l t i n g i n a r e s o l u t i o n o f c l o s e to  transducer  pressure  The  the probe w i t h  (5 - 450)  chart  pressure.  added was  20  The minimum time between d a t a p o i n t s was The  dead  of  strain  Digital  range o f 0 to 1.25 mV.  use  the  .  steadily  downhole and  c a b l e . Both the  i n f l a t i o n hose were p l a c e d i n s i d e inside  SBPM  manner by  - 826  kPa  The  range.  s i g n a l s were a m p l i f i e d  through  an  : a 14  r e g u l a t o r f o r s o f t e r s o i l s and a 34 t o 3100  while  to i n f l a t e  arms.  or  gauged s p r i n g ,  Cambridge  10  The  strain  strain  strain  i n the  i s 10.3.  the c a v i t y  using  o f a p i v o t e d arm  ratio  tester  and and  strain  one  second.  arms were  micrometer  c a l i b r a t i o n i s shown i n F i g . 2.11.  0.3  calibrated  respectively.  A  using  a  typical  S i n c e the s t r a i n arm  data  25  FUGRO CP STRAIN ARM CALIBRATION  3.00  T—I—I—i—I—I—r^~i—i—i—i  E E UJ  O  $fx>s*i—r  * * * * * ARM EXPANSION 0 0 0 0 0 ARM 1 CONTRACTION 111 111 ARM EXPANSION A A A A A ARM CONTRACTION EXPANSION 00000 ARM CONTRACTION I I I I I ARM  2.00  CO Q o: UJ  o cot: t3  1.00  ARM ARM ARM  0.00  1  —0.1 0  0.00  Fig.  2.11  LINEAR R E G R E S S I O N B E S T FIT LINE 1 DISTANCE - 9.700»OUTPUT 0.3213 2 DISTANCE - 9.7B9»0UTPUT 0.1387 3 DISTANCE - 9.679»0UTPUT + 0 . 9 3 3 3  [—T  0.10  0.20  TRANSDUCER OUTPUT  : S t r a i n Arm  i—r  -i—r-  0.40  0.30 Volts  )  C a l i b r a t i o n f o r the Fugro  CP  26  was c o n v e r t e d have been Initial tests one  using a linear  regression best  some e r r o r  i n t r o d u c e d due t o the h y s t e r e s i s and i n i t i a l  z e r o s were t a k e n  were  before  corrected using  each p r e s s u r e m e t e r  a membrane c o r r e c t i o n  shown i n F i g . 2.12. F o r t h i s p a r t i c u l a r  o f f pressure kPa.  f i t line,  The  non-linearity.  test. curve  correction  Pressuremeter similar  curve  t o the  the l i f t -  i s 27 kPa and the maximum h y s t e r e s i s i s a p p r o x i m a t e l y  membrane  approximately  correction  at  20  %  radial  may  displacement  100 kPa which i s t w i c e as much as t h e c o r r e c t i o n  10 is  obtained  w i t h t h e UBC SCP.  2.3  The Hughes SBPM  The Hughes SBPM was b u i l t by Dr. J.M.O. Hughes and except mechanical Situ.  differences  The major  device  to  i s similar  difference  remove  soil  and  then f l u s h i n g the s o i l Figure  or  mud  inside  i s that  and  t r a d i t i o n a l method o f f i r s t  t o the SBPM b u i l t t h e Hughes  advance  the  probe  can be i n s e r t e d  as  opposed  i s that  rods  jetting t o the cutter  i n t o the s o i l  system works. Water  and o u t the j e t t i n g  shoe. An advantage o f t h i s  certain  soils  ports  just  system i s t h a t t h e probe  u s i n g one r o d as opposed t o the double  such  as s t i f f  w i t h the j e t t i n g  or s t i c k y  soils  w i l l not  b r e a k up e a s i l y under water and t h e r e f o r e the f l u s h i n g system w i l l to  In  t o the s u r f a c e .  r o d system used w i t h the Cambridge SBPM. A d i s a d v a n t a g e system  a  c u t t i n g up the s o i l u s i n g a r o t a t i n g  down the d r i l l  the c u t t i n g  b y Cambridge  SBPM employs  2.13 shows how the Hughes SBPM j e t t i n g  i s pumped  f o r a few  tend  clog. The Hughes SBPM has an o u t s i d e diameter  6. The t o t a l  gas p r e s s u r e  inside  the probe  o f 74 mm and a L/D r a t i o o f and pore  pressures  a t two  27  Fig.  2.12  Membrane C o r r e c t i o n Curve f o r the Fugro CP W i t h e r s e t al, 1986 )  ( after  28  Drilling Mud  F i g . 2.13  : Hughes SBPM J e t t i n g System ( a f t e r Hughes, 1984  29  l o c a t i o n s a r e measured u s i n g p r e s s u r e t r a n s d u c e r s w h i l e the d i s p l a c e m e n t i s measured by 3 s t r a i n arms a t 120 degree s p a c i n g s . The a n a l o g  signals  are t r a n s m i t t e d t o the s u r f a c e through an e l e c t r i c a l c a b l e . S e v e r a l d i f f e r e n t d a t a a c q u i s i t i o n systems and t e s t p r o c e d u r e s  were  u t i l i z e d w i t h the Hughes SBPM. F o r t e s t s performed  a t McDonald Farm, the  pressure  and s t r a i n  a digital  plugged  into  the  simultaneous  values  were m o n i t o r e d  control  analog p l o t s  box.  Using  pressure  increase  and  strain  i n pressure.  successive  pressure  corresponds %/min. were later  Instead  analog  surface  using  channels  could  converted  to d i g i t a l  box.  The d i g i t a l  be  greater  cavity  output  test  recorder  s e n s o r s and  after  interval 30  each  between  seconds  took  rate  i n which from  about  which This  o f roughly  no manual  the s t r i p 2  from  reading  chart  minutes  10  to  were  perform  s t r a i n r a t e o f r o u g h l y 1 %/min.  every  output  controlled  than  meter  the r e a d i n g  the  strain  recordings  amplified  downhole  1  Research  and  The  Site  transmitted  signal.  second.  Using analog  this  (PRS) , t o the  system  signals  8  were  u s i n g a 8 b i t A/D c o n v e r t e r i n the c o n t r o l  was s i m u l t a n e o u s l y  computer s c r e e n and output quasi-strain  was  d i v i s i o n multiplexed  output  chart  manually  a t the L u l u Is.-UBC P i l e  were  a time  recorded  were performed  expansion  signals  test  procedure,  expansion  quick  t e s t s performed  strip  volt  t a k i n g about h a l f an hour t o complete.  tests  The  XYY  a standard  were  this  the a n a l o g  r e s u l t i n g an average  the  test  quick  digitized.  For  Using  t o an average  Several  taken.  sensors  increments  r e s u l t e d i n an average  a  o f two o f the t h r e e d i s p l a c e m e n t  t o t a l p r e s s u r e were a l s o made. D u r i n g the  using  plotted  on a microcomputer  t o a f l o p p y d i s k . T e s t s were performed manner  by  r e g u l a t o r t o m a i n t a i n an a p p r o x i m a t e l y  steadily  turning  steady i n f l a t i o n  the  rate.  ina  pressure  30  All anchored of  Hughes SBPM t e s t s were performed u s i n g a l i g h t w e i g h t d r i l l r i g into  the ground.  the j e t t i n g  advance drilling  fluid,  Such v a r i a b l e s  location  s h o u l d be c a r e f u l l y parameters  were  as j e t t i n g  o f the j e t t i n g  monitored  monitored  pressure, v e l o c i t y  ports  and c o n t r o l l e d  a t McDonald Farm  and the r a t e o f i f possible.  The  and a r e shown i n  T a b l e 2.1.  T a b l e 2.1 :  j  Depth  |  (m )  | | | | | | | | |  16.75 17.75 18.76 19.76* -20.76 21.76* 22.76 23.76* 24.76* 25.76  T e s t Depth and D r i l l i n g Parameters f o r the Hughes SBPM a t McDonald Farm ( adapted from Hughes, 1984 ) .  | | 1  Rate o f Penetration ( m/min )  | |  1.0 0.3  | | |  0.5 0.14 0.33 0.32  | |  0.27 0.34 0.21  1  I j  j  Flow  1  ( L/sec )  | | | | | | |  Rate  0.47 0.2 0.15 0.64 0.20 0.18 0.12 0.16 0.17  Mud Pump Pressure ( kPa )  |  160 830 1030 690 620 480 550 480 620 480-690  |  Ram F o r c e  |  |  ( kN )  |  6.4 8.5 6.5  1 |  | | |  j  8.4 8.4 8.4 8.4 8.1 8.4 8.4  |  I 1 |  1  | | | | |  | 0.17 - Q u i c k t e s t s performed i n a p p r o x i m a t e l y 2 minutes. The j e t t i n g p o r t s were s e t 10 mm b e h i n d t h e bottom o f c u t t i n g shoe f o r a l l t e s t s .  No comparable However, to  r e c o r d s were k e p t f o r t h e t e s t s  at Lulu  Is.-UBCPRS.  the mud pump p r e s s u r e and ram f o r c e were p e r i o d i c a l l y  checked  t r y t o ensure t h a t the i n s e r t i o n p r o c e s s was c r e a t i n g as l i t t l e  disturbance  as  and/or  forces  ram  occurred several  possible.  Nevertheless,  indicative  times each  e x c e s s i v e mud  of clogging  time f o r c i n g  pump  o f the SBPM  the probe  soil  pressures  cutting  shoe  t o be r e t r i e v e d f o r  31  cleaning.  The  fibrous  organic  nature  of  appeared t o make the s e l f - b o r i n g p r o c e s s A membrane c o r r e c t i o n curve  the s o i l  at Lulu  Is.-UBCPRS  more s u s c e p t i b l e t o c l o g g i n g .  similar  t o the one shown i n F i g .  was u s e d t o c o r r e c t a l l Hughes SBPM d a t a . The a p p l i e d p r e s s u r e monotonically  as  the s t r a i n  increases  amount o f h y s t e r e s i s when unloaded..  and i s s u b j e c t  to only  2.14  increases a  small  32  H U G H E S  S B P M  Lulu Is. - UBCPRS  100  1 6 / 2 / 8 7  Air Inflation  -i  90 80 70 60 -  0  2  4  6  8  10  12  14-  16  18  20  CAVITY STRAIN (%) Avg. of Arms 1 - 2 - 3  F i g . 2.14 : Membrane C o r r e c t i o n Curve f o r t h e Hughes SBPM  33  CHAPTER 3 TEST SITES AND FIELD PROGRAMME  3.1  Scope  The f i e l d  programme was conducted a t t h r e e s o i l  F r a s e r V a l l e y where  cohesive  soils  performed  possible,  as p a r t  the FDPM t e s t  of a  i n the Lower  predominate as l o c a t e d i n F i g . 3.1.  The f o c u s o f t h i s r e p o r t i s t o p r e s e n t tests  sites  cone  and i n t e r p r e t t h e r e s u l t s o f FDPM pressuremeter  r e s u l t s have been compared  sounding.  Whenever  t o the f o l l o w i n g i n  situ tests :  1. 2. 3. 4. 5.  All  S e l f - B o r i n g Pressuremeter T e s t ( SBPMT ) P i e z o c o n e P e n e t r a t i o n T e s t ( CPTU ) Down-hole S e i s m i c Cone P e n e t r a t i o n T e s t ( SCPT ) F l a t D i l a t o m e t e r T e s t ( DMT ) F i e l d Vane T e s t ( FVT )  t e s t s i n c l u d e d i n t h i s study  except SBPM t e s t s conducted a t McDonald  Farm were performed by the UBC I n S i t u T e s t i n g Group. The SBPM t e s t s a t McDonald Farm were conducted by Dr. J.M.O. Hughes.  3. 2  Site Descriptions  3.2.1  McDonald Farm  McDonald Farm municipality to  protect  i s l o c a t e d a t the n o r t h e r n  o f Richmond. against  The i s l a n d  flooding  e l e v a t i o n o f 1.6 m ( G e o d e t i c table  i s approximately  tidal fluctuations.  from  edge o f Sea I s l a n d i n the  i s contained  the r i v e r .  by a system o f d i k e s  The  site  Datum ) and i s r e a s o n a b l y  1 m below  the ground s u r f a c e  has a  ground  l e v e l . The water  and i s s u b j e c t t o  Fig.  3.1  :  G e n e r a l L o c a t i o n o f Research  Sites  35 McDonald Farm i s w i t h i n the p o s t - g l a c i a l 3.1 ) . The marine d e l t a i c  Fraser River  sediments o f Sea I s . have been f o r m i n g  the r e t r e a t o f the F r a s e r G l a c i a t i o n i c e s h e e t s ago  ( Blunden, 1975). The p r e s e n t  roughly  200  m  and have  rebound  at  a  rate  delta ( Fig.  formed  which  is  some 8000 - 10000  thickness o f the d e l t a i c on b a s a l  greater  layers  than  since  deposits are  undergoing  the  years  isostatic  post-glacial  marine  transgression. The  surficial  distributary glacial  deposits  channel  estuarine  fill and  and  Sea  overbank  marine  r e p r e s e n t a t i v e CPTU p r o f i l e The  of  Island  consist  deposits  sediments  (  of  which  overlie  Armstrong,  from McDonald Farm i s p r e s e n t e d  time f o r 50 % d i s s i p a t i o n o f pore p r e s s u r e  deltaic post  1978).  A  i n F i g 3.2.  measured d i r e c t l y  behind  2 a 10 cm  a r e a cone t i p from s e v e r a l CPTU soundings i s a l s o i n c l u d e d . The  f i n d i n g s i n t h i s r e p o r t a r e l i m i t e d t o the c l a y e y s i l t between 15 and 30 m. The cone b e a r i n g , area r a t i o s pore  The are given  t  ( Campanella and Robertson, 1981). Both the cone b e a r i n g and  pressure  normally  q , i n F i g 3.2 has been c o r r e c t e d f o r unequal end  profiles  consolidated soil  increase  p r o p e r t i e s and i n s i t u  i n Tables  3.1 was  ).  depth  suggesting  t e s t s performed  a t McDonald  3.1 and 3.2. The l o c a t i o n o f the i n d i v i d u a l  measured  Groundwater M o n i t o r i n g 1985  with  a  soil.  t e s t s performed are i n c l u d e d Table  linearly  by  Farm  i n situ  i n appendix V I . The p e r m e a b i l i t y v a l u e i n  a v a r i a b l e head  System b u i l t  by BAT  inflow  test  Envitech  Inc  using  the BAT  ( Petsonk,  U B C  I  M  SI t o Location! McDONALD FARM On Si to L o o MFB5-4 PORE PRESSURE U («. of »oter> 0 100  SLEEVE FRICTION <bcr) 0 .5  S I T U  X E  T  I  M G 1 / 1  CPT Doto i 28/09/85 Cono Usedi UBC #6 STD PP  Pago Noi Commantsi  CONE BEARING Ot (bar)  DIFFERENTIAL P.P,  FRICTION RATIO Rf tt) 0 5  RATIO -.2 0 0  r  AU/Ot  V 10  -  INTERPRETED PROFILE  .8  •sow  Soft Organic Slty Clay  LOOM to Dsnss Coons Sand Soms 10-j Fins Sand  10  Fins Sand Soms SfK 134 158 384 179 2BS 383  20  20  2D Soft N.C. Claysy Slit  133 270 136 163  IBS 120 360  30  -I  1——1  30  L.  Depth Increment Fig.  3.2  . 025 m  Max Dopth i  30  2B. 95 m  T y p i c a l CPTU P r o f i l e a t McDonald Farm  330 101  37  T a b l e 3.1  : S o i l P r o p e r t i e s a t McDonald Farm  Specific Gravity N a t u r a l Water Content (%)  : :  L i q u i d L i m i t (%)  :  P l a s t i c L i m i t (%)  :  Plasticity  :  Sensitivity  Index (%) ( f i e l d vane )  :  Coef. o f C o n s o l i d a t i o n (cm2/s) : ( 2 oedometer t e s t s ) P e r m e a b i l i t y (cm/s) ( 1 BAT i n f l o w t e s t @ 21.5 m )  2.8 Range 23-40 Average 34 Range 25-42 Average 35 Range 22-25 Average 24 Range 3-20 Average 15 Range 2-7 Average 5 Range 0 012-0.018 Average 0.015 4*10-7  0 38  Table  |  No.  |  1 2 3 4 5 6 7 8 9  1 1 1  j  1 |  1 1 1 1 1 1 1 1 1 1 1 1 |  j  I n S i t u T e s t s Performed a t McDonald Farm  In S i t u Test  11 12 13 14 15 16 17 18 I 20 9  21  In S i t u j Device 1  Name  |  j S e i s m i c Cone Pressuremeter | Cone Pressuremeter j S e l f - B o r i n g Pressuremeter | Piezocone P e n e t r a t i o n | Piezocone P e n e t r a t i o n | Piezocone P e n e t r a t i o n | Piezocone P e n e t r a t i o n | Piezocone P e n e t r a t i o n | Piezocone P e n e t r a t i o n | Piezocone P e n e t r a t i o n | Piezocone P e n e t r a t i o n | S e i s m i c Cone P e n e t r a t i o n | S e i s m i c Cone P e n e t r a t i o n | S e i s m i c Cone P e n e t r a t i o n | S e i s m i c Cone P e n e t r a t i o n | S e i s m i c Cone P e n e t r a t i o n | S e i s m i c Cone P e n e t r a t i o n j F l a t Dilatometer | F l a t Dilatometer j F i e l d Vane  1 0  1  3.2  UBC SCP-1 FUGRO C P - 1 SBPM-1 CPTU-1 CPTU-2 CPTU-3 CPTU-4 CPTU-5 CPTU-6 CPTU-7 CPTU-8 SCPT-l(Acc) SCPT-2(Geo) SCPT-3(Acc) SCPT-4(Acc) SCPT-5(Geo) SCPT-6(Geo) DMT-1 DMT-2 FVT-1 FVT-2 1  2  j F i e l d Vane 1 - No s e i s m i c o r p i e z o c o n e d a t a 2 - No p i e z o c o n e d a t a o b t a i n e d Acc - A c c e l e r o m e t e r Geo = Geophone HOG SUPER => Hogentogler Super Cone SBPM = Hughes SBPM  3.2.2  L u l u I s l a n d UBC P i l e Research  The  UBC SCP | FUGRO CP | SBPM j UBC * 1 UBC 4 I UBC 4 1 UBC 6 UBC 8 ; UBC HOG SUPER| UBC 8 I | UBC 8 ] UBC 6 ! UBC 8 | UBC 8 | UBC 6 I HOG SUPER | MARCHETTI | MARCHETTI | GEONOR GEONOR I  I  j  Date  27 JAN 87 7 NOV 85 18 OCT 83  | j j  15 APR 81 23 JULY 82  |  4 AUG 82 26 JAN 84  |  26 SEPT 85 26 SEPT 85 25 SEPT 86 25 SEPT 88 14 MAY 85 17 OCT 85 8 JAN 86 16 OCT 86  j j | | | j | |  14 MAY 86 2 JULY 87 14 MAY 80 2 OCT 86 27 SEPT 83 29 SEPT 83  | j | |  obtained  Site  L u l u Is.-UBC P i l e Research S i t e  (PRS) i s l o c a t e d a t t h e e a s t e r n  end  o f L u l u I s . a t t h e j u n c t i o n o f Boundary and Dike Roads. A group o f  six  piles  installed  by t h e B r i t i s h  and Highways have been used t o study of p i l e s study. fill.  a t t h e UBCPRS. Davies  The g e n t l y s l o p i n g s i t e This  fill  Columbia M i n i s t r y o f T r a n s p o r t a t i o n t h e a x i a l and l a t e r a l l o a d  ( 1987 ) p r e s e n t s i s covered  the r e s u l t s  behavior of this  by 2 t o 4 m o f heterogeneous  was removed and r e p l a c e d w i t h  clean river  sand  i n the  j  j  j  39 general  area  testing.  of  The  the  pile  water  group  table  to  is  facilitate pile  approximately  driving  1.5  m  and  below  in  the  situ  ground  surface. The delta.  L u l u Is.-TJBCPRS i s l o c a t e d w i t h i n the p o s t - g l a c i a l F r a s e r R i v e r  The  s u r f i c i a l deposits  organic clayey s i l t sequence  is  depositional  to a  depth o f  15  m  consist of  peat  d e p o s i t e d i n swamp o r marsh environment. The  underlain  by  environment  a  sand  layer,  possibly being  representing a  former  a  organic  higher  channel  and  energy  bank  of  the  Fraser River. A r e p r e s e n t a t i v e CPTU p r o f i l e Fig.  3.3.  The  o f the  top  15  m o f s o i l i s shown i n  time f o r 50 % d i s s i p a t i o n o f pore p r e s s u r e measured  behind  o a 10 cm  a r e a cone t i p from s e v e r a l CPTU soundings i s a l s o i n c l u d e d .  low  cone b e a r i n g v a l u e s  2.5  and  layers.  5.0 A  depth  water  weight was 5.0m  m  high  suggest  content  of  269  a normally  , several small spikes  %  and  clayey  an  organic  silt  with  content  some of  27  %  by  m depth. Below a depth o f l i n e a r fashion with  i n the cone b e a r i n g p r o f i l e  more dense s i l t  peat  suggest  or d i s c o n t i n o u s s i l t y  and the fine  layers. The  Table  given  organic  approximately  c o n s o l i d a t e d s o i l d e p o s i t . Between 11.5  p r e s e n c e o f perhaps s l i g h t l y  in  and  between  the cone b e a r i n g i n c r e a s e s i n an a p p r o x i m a t e l y  m  sand  f r i c t i o n ratios  o b t a i n e d f o r a s o i l sample from 3.0  depth s u g g e s t i n g 13.5  and  The  in  m a t e r i a l p r o p e r t i e s o f the 3.3  and  Table  the 3.4.  in situ The  organic  tests  locations  performed a r e i n c l u d e d i n appendix V I .  clayey  performed of  the  at  silt  l a y e r i s given  Lulu  Is.-UBCPRS  individual  in  situ  are test  U B C I M S i t e Location! L u l u Is. UBCPRS On S i to Loci PLTSCPT2 PORE PRESSURE  .  SLEEVE FRICTION  Dopth Increment • Fig.  3.3  :  S I T U  T" E S T  I  M G  CPT Data i 09/10/86 Cona Usadt Hog Supar StdPP  Pago Noi 1/2 CoRimantsi CPT3  CONE BEARING  DIFFERENTIAL P.P.  .025 m  FRICTION RATIO  Max Dopth i  16 m  T y p i c a l CPTU P r o f i l e a t L u l u I s . - UBCPRS  INTERPRETED  41  Table  3.3 : S o i l P r o p e r t i e s a t L u l u Is.-UBCPRS  Specific Gravity N a t u r a l Water Content (%)  : :  L i q u i d L i m i t (%)  :  P l a s t i c L i m i t (%)  :  P l a s t i c i t y Index (%)  :  Sensitivity  :  ( f i e l d vane )  Coef. o f C o n s o l i d a t i o n (cm2/s) : ( 2 oedometer t e s t s )  Table  3.4 : I n S i t u T e s t s Performed a t L u l u Is.-UBCPRS  No.  In S i t u Test  1 2 2 4 5 6 7 8 9 10 11 12  Name  S e i s m i c Cone Pressuremeter S e i s m i c Cone Pressuremeter S e l f - B o r i n g Pressuremeter S e l f - B o r i n g Pressuremeter Piezocone P e n e t r a t i o n Piezocone P e n e t r a t i o n Piezocone P e n e t r a t i o n Piezocone P e n e t r a t i o n S e i s m i c Cone P e n e t r a t i o n F l a t Dilatometer F l a t Dilatometer F i e l d Vane 1  3.2.3  -  Langley  The  2.7 Range 64-86 Average 69 49-90 Range Average 64 38-50 Range Average 42 Range 10-47 Average 21 Range 3-19 Average 11 Range 0 032-0.070 Average 0.05  Langley  In S i t u Device  UBC SCP-1 UBC SCP-2 SBPM-1 SBPM-2 CPTU-1 CPTU-2 CPTU-3 CPTU-4 SCPT-l(Acc) DMT-1 DMT-2 FVT-1 1  No s e i s m i c o r piezocone  data  UBC SCP UBC SCP SBPM SBPM UBC 6 UBC 6 HOG SUPER HOG SUPER UBC 8 MARCHETTI MARCHETTI NILCON  Date  3 APR 87 8 JAN 88 11 FEB 87 19 FEB 87 13 JUNE 84 13 AUG 85 9 OCT 86 31 OCT 86 8 OCT 86 23 AUG 85 29 AUG 85 31 OCT 86  obtained  Lower 232  Lower 232 s i t e  i s l o c a t e d a t t h e 232 s t r e e t e x i t o f the  Trans Canada Highway i n Langley.  The s i t e  i s north  o f the highway and  42 west  of  gently  the  overpass.  site  is  F o r m a t i o n . The deposited  located  during  glaciomarine  the  sands  and  An  over  to  1 m  below  the  i n cone b e a r i n g m  relatively  indicate  and  material the  and  the  T a b l e 3.6. included  properties  in situ The  The  fine  i n appendix VI.  the  Fort  and silts  grained  are and  and  clays  soils  Langley clays  occasionally  at  are  the  o f the Lower L a n g l e y s i t e surface  dense surface  of  crust silty  roughly  clay  i s shown i n  3  m  thick  deposit.  The  is  sharp  n e g a t i v e pore p r e s s u r e s measured between  presence  of  several  thin  sand  sand u n i t i s found below 23 of  the  silty  t e s t s performed a t  locations  of  o f marine s i l t s  regressions  homogeneous  i n t e r l a y e r e d s i l t y c l a y and The  extent  desiccation.  consolidated  increases 16  western  CPTU p r o f i l e  by  3.5  i s approximately  formation consists  gravels.  underlain  an  a  the  glacial  due  A representative  13  table  sand l a y e r s . Underneath the  overconsolidated  3.4.  at  Quaternary  interbedded with  Fig.  water  s l o p i n g ground.  The  are  The  the  An  m.  c l a y l a y e r are  L a n g l e y Lower 232  individual in situ  layers.  given are  i n Table given  t e s t s performed  in are  U B C  Site Location! On  SI t o  Loci  PORE PRESSURE U (a. o f »at«r) 0 100  I M  S I T U  LANGLEY  T E S T I N G  CPT D a t e • J 1 - J 9 - B 7 18i 15  LOWER 232  Cona Usedi  SLEEVE FRICTION (bar) 0 .3  HOG  SUPER STO u  CONE BEARING Ot  (bar) 40  FRICTION RATIO Rf (X) 0 5  Pago Noi  1/1  Comment*! C77-8713 DIFFERENTIAL P.P. RATIO AU/flt -.2 0 .6 Ol—I— —'—'—|  5MMFILT  INTERPRETED PROFILE 0  1  SlHy Cloy O.C. near Surfocs 10  •  ID  Occasional Sand Lsnss  20  •  2D  30*  30  Depth  Increment i  Fig.  3.4  :  .025 m  Max D e p t h i  29.85 m  T y p i c a l CPTU P r o f i l e a t Langley Lower 232  44  Table  3.5  : S o i l P r o p e r t i e s a t Langley  2.8  Specific Gravity N a t u r a l Water Content (%)  :  L i q u i d L i m i t (%)  :  P l a s t i c L i m i t (%)  :  P l a s t i c i t y Index (%) Sensitivity  :  ( f i e l d vane )  :  Coef. o f C o n s o l i d a t i o n ( c m 2 / s ) : ( 2 oedometer t e s t s ) P e r m e a b i l i t y ( cm/s ) : ( 1 BAT i n f l o w t e s t @ 7.3 m )  Table  |  1 1 1 1 1 1 1 1 1 1 1  No.  1 2 3 5 9  io 11 12 13 14 15  3.6  j  | | | | | | | |  Range Average Range Average Range Average Range Average Range Average Range Average 8*10-8  : I n S i t u T e s t s Performed a t L a n g l e y  In S i t u Test  J  S e i s m i c Cone Pressuremeter Piezocone P e n e t r a t i o n Piezocone P e n e t r a t i o n Piezocone P e n e t r a t i o n Piezocone P e n e t r a t i o n S e i s m i c Cone P e n e t r a t i o n F l a t Dilatometer F i e l d Vane  j Field j Field | Field | Field  Lower 232  Vane Vane Vane Vane  40  -  20  -  19 2-19 11 .0002-.0003 .00025  Lower 232  In S i t u j Device 1  Name  UBC SCP-1 CPTU-1 CPTU-2 CPTU-3 CPTU-4 SCPT-l(Acc) DMT-1 FVT-1 FVT-2 FVT-3 FVT-4 FVT-5  45  UBC SCP | UBC 4 UBC 6  Date  | 10 DEC 87 | 24 NOV 83 | 6 JULY 84 7 NOV 87 j HOG SUPER j UBC 7 7 NOV 87 7 NOV 87 j HOG SUPER j 20 JUNE 84 UBC DMT NILC0N | 17 NOV 83 11 JAN 84 j NILCON j j NILCON j 20 JAN 84 NOV 83 | NILCON j NILCON 7 NOV 87  j  j  j  | | j |  j  | j  j  |  j  |  CHAPTER 4 THE  4.1  INTERPRETATION OF THE PRESSUREMETER TEST  A n a l y t i c a l Approaches t o the Pressuremeter T e s t  An advantage plane has  strain well  solutions  e x p a n s i o n o f an i n f i n i t e l y  defined  elastic  t o be a p p l i e d  (1945) who inflate  o f the p r e s s u r e m e t e r t e s t  a  developed sphere  a  and  theory  or cylinder  i t approximates the  long cylinder,  plastic  to t h i s  i s that  problem  solutions.  a problem  One  of  was by B i s h o p ,  to c a l c u l a t e  i n an e l a s t i c - p l a s t i c  the  Hill  the p r e s s u r e  which first  and Mott  required  strain  to  hardening  material. Menard  initially  pressuremeter  test  attempted  to  analyze  the  i n a pre-bored hole using c a v i t y  of s o i l  of  expansion  b u t found t h a t the r e s u l t s were h i g h l y s e n s i t i v e t o s o i l overcome t h e problem  results  a  theories  d i s t u r b a n c e . To  d i s t u r b a n c e , Menard d e v e l o p e d s t a n d a r d i z e d  t e s t t e c h n i q u e s and d i r e c t l y c o r r e l a t e d p r e s s u r e m e t e r d a t a t o f o u n d a t i o n design. Gibson  and Anderson  (1961)  p r e s s u r e m e t e r which assumed t h a t soil  developed  an a n a l y s i s  the u n d r a i n e d response  f o r t h e Menard of a  saturated  c o u l d be approximated by a l i n e a r e l a s t i c p e r f e c t l y - p l a s t i c  strain  relationship.  Young's modulus obtained using :  For c y l i n d r i c a l  i n the e l a s t i c  cavity  expansion,  stress-  the u n d r a i n e d  r e g i o n o f the p r e s s u r e m e t e r  test  c a n be  46 AP E  AV  V  o  <  1  4.1  *u )  +  1 - i n i t i a l volume o f the probe AV — increment o f volume AP — increment o f p r e s s u r e E ,«/ - u n d r a i n e d Young's modulus and P o i s s o n ' s  where  u  Once the  u "  2  coefficient  U  yield  pressure  P  -  y  P  +  Q  S  has  u  been  reached,  the  following  expression holds :  P = P  + S  Q  u  _  where  AV •  ' G AV 11 + + Inln\ ^ Su V  — Y .  11  -  P = i n s i t u horizontal stress G / S I - r i g i d i t y index V = V + AV — c u r r e n t v o l u m e t r i c r  strain  Q  deriving  vertical  e q u a t i o n 4.2,  stress,  circumferential  a,  is  z  ', Og,  i t i s assumed t h a t a t the y i e l d p r e s s u r e , intermediate  principal  P  Combining e q u a t i o n s 4.2  L " o P  +  between  s t r e s s e s . The  i n f i n i t e e x p a n s i o n o f the c y l i n d r i c a l  s  I  u  and 4.3  1  +  L  when the b o r e h o l e reduced  from  P  Q  equation  l  n  q£*z where  and  r  p r e s s u r e a t which  {  x  r  1  1  4.3  u  Vo P  Gibson  q£  '  Q  ln  f o r the p r e s s u r e m e t e r to  a,  results i n :  + S  4.2,  radial,  limiting  4.4 V  deriving  the  the  c a v i t y o c c u r s i s g i v e n by :  ' AV P - P  In  4.2  _  Q  u  In  u-  S  and  G  Anderson  is drilled,  i s the  unit  also the  weight  assumed  soil of  the  that  stress i s drilling  f l u i d and z i s the depth below the water t a b l e . L i n e a r s o i l u n l o a d i n g i s assumed  to  occur  and  subsequent  i n c r e a s e s i n volume  and  pressure  are  47  measured eq.  from  this  4.4 assuming  s i t u pressure  P  reference state.  t h a t the p r e s s u r e  Windle  and Wroth  (1977) r e d e r i v e d  and volume i s measured  from  the i n  and c o r r e s p o n d i n g volume Vo o f the p r e s s u r e m e t e r .  Q  The  following expression i s obtained :  4.5  For  a SBPM t e s t  plot  of  the pressure  volumetric the  i n an a p p r o x i m a t e l y  strain  average  versus  the n a t u r a l  should y i e l d  undrained  shear  elastic  a straight  perfectly-plastic logarithm  line  of  r e f e r r e d t o as the Windle and Wroth average  from  This  cohesive  al  (1972)  analysis) undrained for  s o i l s was by Palmer ( hereafter who  (1972),  described  independently  as  s t r e n g t h method. test  (1972) and B a g u e l i n e t  s t r e s s - s t r a i n r e l a t i o n s h i p t o be d e r i v e d f o r a s a t u r a t e d  soil  curve,  which  Baguelin the  stress-strain  solution  and  allowed  which no p r i o r assumption  a  c o n c e r n i n g the s t r e s s - s t r a i n  needed t o be made. Assuming t h a t e v e r y same  Ladanyi  the Palmer,Ladanyi  derived  which  i s often  Another major development i n the a n a l y s i s o f the p r e s s u r e m e t e r in  a  the c u r r e n t  relationship  s t r e n g t h c a n be determined.  soil,  the shear  element i n the s o i l  stress  a t the c a v i t y  relationship f o l l o w s the wall  under  p l a n e s t r a i n c o n d i t i o n s i s g i v e n by :  a  r  - a  9  e  g  (1 + e )(2 ff  +  e) 9  dP  4.6  r 2  2  8  48 For  s m a l l s t r a i n s t h i s e q u a t i o n reduces t o :  dP T  €g  "  4.7 dig  The the  s t r e s s - s t r a i n r e l a t i o n s h i p o f the s o i l pressuremeter  test  results  using  c a n be d i r e c t l y d e r i v e d a  graphical  technique  from often  r e f e r r e d t o as the "subtangeht method" ( B a g u e l i n e t a l , 1 9 7 2 ) . A  more  pressuremeter  recent  trend  is  to  first  d a t a u s i n g a mathematical  expression (Fyffe  empirically function  e t a l , 1986) o r h y p e r b o l i c  A l t e r n a t i v e l y , mathematical  are  softening  Prevost  e x p r e s s i o n s which  and  and h a r d e n i n g  Hoeg's  soils  (1975)  and Denby's  or  f i t  as a p o l y n o m i a l  expression (Arnold, assume a s p e c i f i c  s t r a i n r e l a t i o n s h i p f o r a s o i l c a n a l s o be f i t t e d Examples  such  smooth  1981). stress-  to pressuremeter data.  relationships (1978)  for  strain  relationship  which  assumes h y p e r b o l i c s t r e s s - s t r a i n s o i l b e h a v i o r . The be  SBPM t e s t ,  expanded  in a  particularly well  which soil  suited  i n theory allows a pressuremeter at close  to  i t ' s "at rest"  f o r a n a l y s i s by c a v i t y  contrast,  t h e FDPM e x p a n s i o n c u r v e i s d i f f i c u l t  expansion  theory  the  complex  due t o e f f e c t s  stress  p r e s s u r e m e t e r probe.  and  strain  The a n a l y s i s  c u r v e may be one s o l u t i o n present  perhaps  the f i r s t  which  conditions,  expansion  problem.  attempt  theories. In  p e n e t r a t i o n and  are created  o f the u n l o a d i n g p o r t i o n  to this  Houlsby  at developing  around  and W i t h e r s cavity  pressuremeter  and  Withers  model  the  initial  as an e x p a n s i o n o f a c y l i n d r i c a l  insertion  the  o f the FDPM (1987)  contraction  t h e o r y f o r an i n c o m p r e s s i b l e l i n e a r l y e l a s t i c p e r f e c t l y - p l a s t i c Houlsby  is  to analyze using c a v i t y  o f cone p r e s s u r e m e t e r fields  membrane t o  of  cavity within  soil.  the  cone  the s o i l .  49 The  e x p a n s i o n phase o f the pressuremeter  expansion  of  continue  until  Unloading  the  same  cylindrical  large strains  i s assumed  t e s t i s modelled  cavity.  and the l i m i t  to occur  from  a  Expansion pressure,  known  state  as a c o n t i n u e d i s allowed  to  P^, a r e reached. of stress  and t o  s i m p l i f y t h e mathematics, t h e Hencky o r l o g a r i t h m i c d e f i n i t i o n o f s t r a i n i s used f o r the c y l i n d r i c a l c a v i t y c o n t r a c t i o n a n a l y s i s . A t t h e s t a r t o f contraction  the e n t i r e  soil  mass behaves e l a s t i c a l l y  curve f o l l o w s a s l o p e o f 2G. Reverse p l a s t i c i t y cavity  wall  continues,  when  the p r e s s u r e  the p l a s t i c  i s equal  to  zone' moves outward  and the u n l o a d i n g  i n i t i a l l y begins  ( P ^ - 2 S ) . As U  from  the c a v i t y  a t the  unloading  and p l a s t i c  u n l o a d i n g o c c u r s a l o n g the curve d e f i n e d by the f o l l o w i n g e q u a t i o n :  u - e)> - l n { s i n h ( — )}] G S  P - P where  e  Houlsby undrained  - 2S  L  U  [ 1 + ln( sinh( e  L  4.8  - l n ( 1 + AR/R } - l i m i t logarithmic strain Q  and  Withers  present  two  techniques  to  determine  the  shear s t r e n g t h  u s i n g the u n l o a d i n g a n a l y s i s . The f i r s t method  involves d i f f e r e n t i a t i n g  e q u a t i o n 4.8 w i t h r e s p e c t t o e and m u l t i p l y i n g  b o t h s i d e s o f e q u a t i o n the e q u a t i o n by ( e ^ " O  U S  L  which r e s u l t s i n :  - O dP 4.9  u  de  where  f -  4.10 tanh(£L - e)  S i n c e f i s c l o s e t o one f o r r e a s o n a b l e v a l u e s o f ( e ^ - e ) , an e s t i m a t e of  S  u  c a n be made u s i n g a g r a p h i c a l t e c h n i q u e  similar  t o the subtangent  50  method  proposed  expansion  by  second  recognizing  that  approximately  technique  involves  f o r small values  simplifying  plot  Due  of  - 2S  L  [ 1 + ln{e  the p r e s s u r e ,  to d i f f i c u l t y  expected  P,  Su .- e) - l n ( — G  L  against  test.  by f i e l d  the p r e s s u r e m e t e r  tests  insertion  full-displacement  ( Brown, 1985, Robertson  suggest  that  g r e a t e r than process amount  will  excess a  Test  create  pore  total  50 % over  i s indicative of relaxation  excess  cause  e}) a  will  or  the " a t r e s t " of s o i l  linear  theoretically,  i t is  t o a l a r g e e x t e n t when which has  of predicting  from  lateral  e t a l , 1983,1986).  Interpretation  being  needed  probe pore  a minimal  pressure  pressure  time  -  I n s e r t i o n and R e l a x a t i o n P e r i o d  o f any pressuremeter  o f a SBPM s h o u l d  a small  be  4.11  i s the d e r i v a t i o n o f the P-Y curve  E f f e c t s o f Pressuremeter  insertion  by  - e) w i l l  T j  One e m p i r i c a l use o f FDPM d a t a  F a c t o r s A f f e c t i n g Pressuremeter  The  4.8  s h o u l d be o b t a i n e d .  e x p a n s i o n curve f o r the purposes  load capacity of p i l e s  only  o f the  } ]  -lnfe^  i n a n a l y z i n g the FDPM t e s t  the FDPM  been v a l i d a t e d  4.2.1  U  (  t h a t e m p i r i c a l c o r r e l a t i o n s w i l l be used  interpreting  equation  of ( c ^ - e), sinh(e  unloading curve with slope equal to 2 S  4.2  f o r the a n a l y s i s  e q u a l t o one. The f o l l o w i n g e q u a t i o n r e s u l t s :  P - P  a  e t a l (1972)  curve.  The  From  Baguelin  whether  self-boring  pressures.  Ideally  amount  exist.  excess  pore  or the  o f d i s t u r b a n c e and  Canou and Tumay pressure  (1986)  increase of  c o n d i t i o n s d u r i n g the s e l f - b o r i n g forced  to allow  away from pore  the probe.  pressures  The  t o come t o  51  equilibrium  will  relaxation  depend  time  performed  are  on  a  often  soil's  needed  permeability.  even  Several  for self-boring  hours  insertion  carefully.  The  insertion  insertion  will  excess pore  of  result  a  cone  pressuremeter  i n a greater  p r e s s u r e . I n F i g . 4.1  compared  to  o f d i s t u r b a n c e and  SBPM  larger  , B a g u e l i n e t a l (1978) compare the  pressure  expansion  SBPM  tests  performed  w i t h no r e l a x a t i o n p e r i o d and a l o n g r e l a x a t i o n p e r i o d  and a  FDPM t e s t pressure  with  curves  amount  when  obtained  no r e l a x a t i o n  i n soft  period.  clay  from  As expected,  i s the h i g h e s t f o l l o w e d by the SBPM t e s t  the FDPM  lift- off  with  relaxation  no  p e r i o d o r time w a i t . Both  cone  pressuremeters  used  for this  study  d i d n o t have the  capability  t o measure pore p r e s s u r e s a t the p r e s s u r e m e t e r  interface  thereby  conditions  at  making  a  determination  the beginning  and d u r i n g  i n f o r m a t i o n from  the p i e z o - l a t e r a l  piezoblade  can  a l l provide  effective  stress  the  test  s t r e s s cone,  valuable  conditions  a  of  effective  difficult.  stress However,  the d i l a t o m e t e r and the  insights  present  membrane/soil  into  after  the  cone  total  and  pressuremeter  penetration. Azzouz  and  Massachusetts (PLS)  from  Institute  tests  non-sensitive  Morrison  overconsolidated.  present  o f Technology  i n lean  Lower  (1988)  sensitive  Empire  The pore  data  (MIT) p i e z o - l a t e r a l  Lower Boston  clay.  pressures  Both measured  p e n e t r a t i o n h a d stopped were a l a r g e p e r c e n t a g e 85% f o r Boston B l u e c l a y ) . Furthermore, initially  decreased  as  the pore  obtained  Blue  clay  clays  by  the  stress  cone  and p l a s t i c  are  immediately o f the t o t a l  after  dissipated  cone  stress  the e f f e c t i v e h o r i z o n t a l  pressures  lightly  and o n l y  ( >  stress after  52  SOFT CRAN CLAY 150  CL  100  V  Fig.  4.1  E f f e c t o f P r e s s u r e m e t e r I n s e r t i o n Method and R e l a x a t i o n Time on P r e s s u r e E x p a n s i o n Curves ( a f t e r B a g u e l i n e t a l , 1978 )  53  approximately  50  %  dissipation  did  the  effective  horizontal  i n c r e a s e a g a i n to the s t r e s s measured immediately a f t e r PLS  stress  insertion.  A l t h o u g h the geometry o f the d i l a t o m e t e r and cone p r e s s u r e m e t e r different,  it  is  reasonable  insertion w i l l  be  pressure,  and  P, Q  penetration  has  dominated by lightly  similar.  piezoblade  stopped,  ;  pore  created  pressures  effect  the  Fig.  was  to  generated seconds  start  after  the  fact  cone  cm/s.  The  of  4.2). by  this  4.1,  the  1 1/4  research, cone  quick  the  However, pore  pressuremeter to 1 3/4  the  cone  soil  a  value  Q  much  on  4.3. lift-off  the UBC  period horizon  the  o f r e l a x a t i o n time i n c r e a s e s .  lift-off  been  where  may  stopped  tests at  at  the  still  t e s t s were begun  i s pushed  minutes. The  SCP.  has  m  is  the  same  in due  behind  approximately  about  be  15-30  resulting  p r e s s u r e m e t e r body i s 1.34  to  the  smaller  minutes t o t a l r e l a x a t i o n time. T h i s  pressuremeter  is  soils,  time  pressures  penetration  t e s t s were compared  indicate that  after  as shown by F i g  relaxation  t i p passes  lift-off  Robertson,1983,  are  relaxation  the  probe  c o n s o l i d a t e d or  and  insertion  of  P  overconsolidated  l i f t - o f f pressures  t h a t the m i d d l e o f the  t i p and  of  seconds  f o r normally  heavily  lengths  15  dilatometer  c o n e - s o i l i n t e r f a c e . Quick  cone  effects  taken  (Campanella  dilatometer  w i t h r e l a x a t i o n p e r i o d s o f 7-13 table  that  For  i s performed.  the  the  f o r d a t a from L u l u Is.-UBCPRS u s i n g  when the  test  along  approximately the  pressure  clays  varying  assessed  pressuremeter  to  of  purposes  defined  pore  suggest  p e r c e n t a g e o f the d i l a t o m e t e r  For  that  the p e n e t r a t i o n pore p r e s s u r e s  Lutenegger,1988  pressures  expect  Comparisons between the d i l a t o m e t e r  overconsolidated  The  to  are  2  depth  r e s u l t s , which a r e shown i n  pressure  decreases  as  the  length  54  DMT P F i g . 4.2  :  (kPa)  Comparison Between D i l a t o m e t e r P and P e n e t r a t i o n Pore P r e s s u r e s from P i e z o b l a d e i n N o r m a l l y Cons o l i d a t e d and L i g h t l y O v e r c o n s o l i d a t e d C l a y s ( a f t e r L u t t e n e g g e r , 1988) Q  DMT P F i g . 4.3  0  :  0  (kPa)  Comparison Between D i l a t o m e t e r P and P e n e t r a t i o n Pore P r e s s u r e s from P i e z o b l a d e i n O v e r c o n s o l i d a t e d C l a y s ( a f t e r Lutenegger, 1988) Q  55  Table  |  4.1:  Effect of Pressures.  j  Depth  j  j  | |  4.8 4.75  1  1 |  7.9 7.75  | |  10.9 10.75  | |  14.0 13.75  (kPa) H7  1 1 1 |  1 1  1  pore  pressures  dissipation seconds tip.  pressure  tests  that a s i g n i f i c a n t  longer  relaxation  | |  < 1 3/4 9.7  | | | | |  |  H2  |  200  |  170  |  < 1 3/4 13  304  |  < 1 3/4  1  to d i s s i p a t e  j  7.2  after  cone  pressuremeter  the p e r m e a b i l i t y o f the s o i l i n Chapter pore sensor  tests  3,  pressures  with  the  ranged  time from  l o c a t e d a t the base long  relaxation  i s highly f o r 50  %  90 t o 5000 o f t h e cone  periods,  i t  is  amount o f c o n s o l i d a t i o n o c c u r r e d b e f o r e the typical  comparisons  o f quick  to occur.  tests  Although  a t s l i g h t l y d i f f e r e n t s t r a i n r a t e s , the s t e e p e r  c u r v e s and h i g h e r l i m i t periods  c o n s i d e r a b l e importance  |  < 1 3/4 7.5  p r e s s u r e r e l a x a t i o n was a l l o w e d  the t e s t s were performed pressure expansion  j  160  were begun. F i g u r e 4.4 shows  t e s t s where pore  R e l a x a t i o n Time (min)  a l s o cause the s o i l s u r r o u n d i n g the probe t o  ( t^Q ) o f excess  f o r the pore  Lift-off  |  indicated  F o r some o f the FDPM  probable  and  already  j  FDPM  98  c o n s o l i d a t e . A t L u l u Is.-UBCPRS As  on  |  »'  p e n e t r a t i o n has h a l t e d w i l l  variable.  Time  L i f t - o f f Pressure  (m)  Allowing  Relaxation  suggest  that  p r e s s u r e s f o r the t e s t s consolidation  can  be  when i n t e r p r e t i n g the r e s u l t s o f FDPM t e s t s .  with of  56  LULU i  IS.  UBCPRS  PEAT  i i i i i i i i i i i i i i i i i i i i i i i i i i i i  ' i i i i i i i i i i i i i i i i i i i | i i i i | i i i i 0 5 10 15 20 25 30 CAVITY STRAIN LULU  0  IS.  UBCPRS  £  ORGANIC  ( s  )  CLAYEY  SILT  i  t i i i i i i i i i i i i i i i i i i i i i i i i i i i  i  i i i I i i i i I i i i i I i i i i I i i i i I i i i i 5 10 15 20 25 30 CAVITY STRAIN  F i g . 4.4  :  £  ( s  )  E f f e c t o f R e l a x a t i o n Time on FDPM T e s t s a t L u l u I s . - UBCPRS  57  I n summary, i t i s r e a s o n a b l e t o expect immediately  after  cone  pressuremeter  that  the  insertion  p e n e t r a t i o n pore p r e s s u r e s . Furthermore,  stress conditions are  dominated  b o t h the l i f t - o f f  pressure  shape o f the p r e s s u r e m e t e r curve w i l l be a f f e c t e d by the changing conditions  which  occur  during  the  s t a n d a r d i z e d t e s t methods s h o u l d be  4.2.2  Effects of Strain  Most c a v i t y  and  stress  therefore  used.  Rate  test  expansion  the  the  soil  u n d r a i n e d d u r i n g a t e s t . However, h i g h g r a d i e n t s o f excess  pore  i n cohesive  pressure  will  undrained  cause  test.  of  high  becomes more  theories  soils  are  partial  For  this  o f t e n s e v e r a l hundred effect  period  and  to analyze pressuremeter  results remains  relaxation  by  reason,  on  assumption  to  occur  pressuremeter  that  for  tests  are  a  supposedly  run  quickly,  f a s t e r than l a b o r a t o r y t e s t s . A d e t r i m e n t a l  rates  important.  based  consolidation  times  strain  used  is  that  In p r a c t i s e  the  viscous nature  i t i s very  difficult  of  the  to  soil  separate  c o n s o l i d a t i o n and v i s c o u s e f f e c t s . Wroth in  an e l a s t i c  criterion that the  (1984) c o n c e p t u a l l y p r e s e n t s how  c o u l d be  partial soil  surface.  perfectly-plastic  and This  progressively  affected  by  consolidation w i l l i n c r e a s e the will  result  increasing  (1980) u s i n g d a t a from  as  soil  that  partial  the r e s u l t s  obeys a Mohr-Coulomb consolidation.  i n c r e a s e the e f f e c t i v e  shear  stress  i n an  along  "undrained"  failure  of  the  mounted a t the c e n t e r o f the pressuremeter  Wroth  shear  soil  stress  failure  state  Eden  of  failure  s t r e n g t h which  occurs.  test  suggests  the Mohr-Coulomb  a SBPM equipped w i t h a pore  s t r e s s c u r v e s from p r e s s u r e m e t e r  o f a SBPM  and  is Law  pressure transducer  membrane, p r e s e n t  effective  t e s t s which s u p p o r t Wroth's h y p o t h e s i s .  58  Numerical  analysis  has a l s o  p a r t i a l c o n s o l i d a t i o n and creep results  (Anderson  been  used  Co model  the e f f e c t s  o r v i s c o u s e f f e c t s on p r e s s u r e m e t e r  e t a l , 1987; B a g u e l i n  e t a l , 1986). Anderson  (1982) u s e d a f i n i t e element method a n a l y s i s and m o d e l l e d the s o i l the m o d i f i e d  creep  the p r i n c i p a l  were a l s o  analyzed during  of effective  included  coupled  pressuremeter  test  pressure  and t h e d e r i v e d  analysis  described  s t r e s s . The e f f e c t s  S  u  resulted using  i n an  increase  t h e Palmer,  d u r i n g a t e s t reduced the l i m i t p r e s s u r e  on S  obtained  u  Gault  difference method.  clay  in S  The  u  peak  behavior  of deviatoric were  Ladanyi  i n the and  limit  Baguelin  and S . When a n a l y z e d  together,  u  and c o n s o l i d a t i o n tended t o c a n c e l each o t h e r o u t .  from  C a r t e r , 1 9 8 6 and B e n o i t stiff  using  i n c r e a s i n g the amount o f creep  S e v e r a l f i e l d s t u d i e s have been done t o a s s e s s rate  et a l  I n c r e a s i n g the amount o f c o n s o l i d a t i o n  i n s e c t i o n 4.1 w h i l e  the e f f e c t s . o f creep  t o the s k e l e t o n  i n the a n a l y s i s . C o n s o l i d a t i o n and creep  s e p a r a t e l y and t o g e t h e r . a  test  Cam c l a y approach. P a r t i a l c o n s o l i d a t i o n was i n c l u d e d u s i n g  a B i o t type a n a l y s i s w i t h pore p r e s s u r e through  of  SBPM t e s t s  and Wroth, 1977;  Fahey and  and Clough,1986). Windle and Wroth (1977) t e s t e d  using  a  four  was found u s i n g Su  (Windle  the a f f e c t o f s t r a i n  derived  fold  difference  i n strain  the Windle and Wroth average  from  the Palmer,  Ladanyi  and  rate.  No  strength Baguelin  a n a l y s i s showed an i n c r e a s e o f a p p r o x i m a t e l y  25 % as the s t r a i n r a t e was  increased.  t h a t a 2 1/2 f o l d  Fahey and C a r t e r  i n the s t r a i n  (1986) r e p o r t e d  r a t e d i d n o t change the Su o b t a i n e d  Wroth average s t r e n g t h method. B e n o i t stress  c o n t r o l l e d SBPM t e s t s ,  increased  approximately  from 6.9 t o 47.6 kPa/min  and Clough  the Palmer, L a d a n y i  using  increase  the Windle and  (1986) found and B a g u e l i n  16 % when the s t r e s s increments were  that f o r peak  S  u  increased  59  It and  i s believed  FDPM t e s t s .  consolidation  that  s t r a i n rate  One advantage  characteristics  effects  of using  will  be s i m i l a r  f o r SBPM  the cone p r e s s u r e m e t e r  of a s o i l  c a n be e s t i m a t e d  from  i s that the pore  p r e s s u r e d i s s i p a t i o n d a t a o b t a i n e d from the p i e z o c o n e . I t i s l i k e l y  that  the  for  effects  of  pressuremeter  partial  tests  consolidation  will  performed i n the c l a y e y  be  silts  significant  a t McDonald Farm and  L u l u Is-. -UBCPRS s i n c e b o t h p i e z o c o n e p o r e p r e s s u r e d i s s i p a t i o n p l o t s and oedometer t e s t s  give c o e f f i c i e n t s o f consolidation  high f o r a cohesive s o i l  4.2.3  Effects  The  ( see Chapter 3 ) .  o f Disturbance  effect  importance  of soil  when  disturbance  interpreting  the  B a g u e l i n e t a l (1978) t h e o r e t i c a l l y zone o f s o i l and for  the remoulded  so t h a t  the i n i t i a l  reduced,  the t h e o r e t i c a l limits  concluded that  care.  disturbance therefore,  of  analyzed  slope  insertion  insertion than  of  pressure  o f a remoulded  could  possibly  n o t be  curve  that  will  be For  20 % ) , they  also  s h o u l d n o t be a f f e c t e d  when  ( approx.  test  pressuremeter  insertion  properties  affected.  and p r e s s u r e m e t e r cone  Ladanyi  indicated  expansion  should  tests.  the Palmer,  The a n a l y s i s  s t r a i n reached  the proper  disturbance  pressure reached.  a  i s o f major  pressuremeter  the e f f e c t  o f the p r e s s u r e  limit  of cavity  soil.  the p r a c t i c a l l i m i t p r e s s u r e  self-boring The  results  remoulding  i t used d i f f e r e n t s t r e s s - s t r a i n  and unremoulded  although  the  and s o i l  around t h e p r e s s u r e m e t e r by m o d i f y i n g  Baguelin analysis  practical  which a r e r e l a t i v e l y  of  a  reduce  a r e performed  will  create  self-boring the  much probe  practical  with more and limit  60  Disturbance shear  can also  significantly  affect  the d e r i v e d  s t r e n g t h from a SBPM t e s t . Both B a g u e l i n e t a l (1978) and P r e v o s t  (1979) t h e o r e t i c a l l y showed t h a t a remoulded zone around a probe w i l l and  Law  result  (1980)  oversized  SBPM  disturbance  i n a s t r e s s - s t r a i n curve  and B e n o i t cutting  leading  and Clough  shoe  could  u  (1986)  cause  soil  t o an u n d e r p r e d i c t i o n  showed  that  stress  shoe a n a l y z e d  B a g u e l i n method l e d t o u n d r a i n e d h i g h e r than S Wroth determining method  of  Baguelin  u  determined  (1984)  slightly and  o f the i n s i t u h o r i z o n t a l  using  t h a t SBPM t e s t s  the Palmer,  Ladanyi  and  s t r e n g t h s which were 60 - 100 %  from t e s t s u s i n g a normal s i z e d c u t t i n g shoe.  suggested  the average determining  shear  a  relaxation  u  an o v e r s i z e d c u t t i n g  pressuremeter  w i t h a h i g h e r peak S . Eden  s t r e s s and o v e r p r e d i c t i o n o f S . B e n o i t and Clough found with  undrained  that  the  undrained S  and  u  a n a l y s i s i s more  Windle  shear  infers  sensitive  and  strength  that  Wroth is a  of  satisfactory  the Palmer,  t o the i n i t i a l  method  Ladanyi  stress  and  and s t r a i n  datum chosen. The will  vary  effect  o f disturbance  depending  on how  on the d e t e r m i n a t i o n  t h e shear  modulus  o f shear  modulus  i s calculated. Several  d i f f e r e n t shear moduli c a n be o b t a i n e d from SBPM t e s t r e s u l t s :  1. ) An i n i t i a l tangent from the p r e s s u r e m e t e r  o r s e c a n t modulus c a n be c a l c u l a t e d expansion c u r v e .  2. ) A d e r i v e d modulus c a n be c a l c u l a t e d from the d e r i v e d s t r e s s - s t r a i n curve. 3. ) An u n l o a d - r e l o a d loop d u r i n g the l o a d i n g stage can be used, G , o r a r e l o a d - u n l o a d l o o p d u r i n g the u n l o a d i n g s t a g e , u r  ^ru; Of  these  3 techniques,  the u n l o a d  - r e l o a d modulus, G  as the most r e l i a b l e and l e a s t a f f e c t e d by d i s t u r b a n c e  u r  ,  i s considered  ( Jamiolkowski e t  61  al,  1985). The i n s e r t i o n  disturbance Robertson  that  o f a FDPM probe w i l l  the i n s e r t i o n  (1985) p r e s e n t  G  of a  values  u r  SBPM.  from  which a r e i n good agreement s u g g e s t i n g insensitive  4.2.4  The  o f Pressuremeter  analysis  expansion  the p r e s s u r e m e t e r . large  Hughes  that a t least  and  i n sand  f o r sands, G  u r  is  insertion.  L/D R a t i o  o f pressuremeter  theory w i l l  Nevertheless,  SBPM and FDPM t e s t s  t o the method o f p r e s s u r e m e t e r  Effects  c r e a t e c o n s i d e r a b l y more  test results using c y l i n d r i c a l cavity  be somewhat i n e r r o r  due t o the f i n i t e  length of  The problem w i l l be m a g n i f i e d f o r expansions  taken t o  strains. For  an  incompressible  pressure f o r spherical  cavity  P  which w i l l cavity  L - o P  be somewhat  expansion  perfectly-plastic  soil  the  limit  e x p a n s i o n w i l l be :  +  4  /3 S  larger  ( 1 + In I  u  than  the l i m i t  )  r  4.12a  pressure  for cylindrical  :  P  Baguelin  elastic  L  e t a l (1986)  elastic  perfectly-plastic  element  analysis.  ' o P  +  S  u <  analyzed soil  The d e r i v e d  by  1  +  l  n  T  r >  4  the i n f l u e n c e  o f L/D  s i m u l a t i n g SBPM  shear  modulus,  G,  tests  f o r the i d e a l p l a n e s t r a i n case. The r e s u l t s  1  2  ratio  finite  and u n d r a i n e d u o o  a r e g i v e n below :  b  f o r an  using  s t r e n g t h , S , f o r v a r i o u s L/D r a t i o s a r e compared t o G^, and S u  -  shear  obtained  62  Table  4.2  :  N u m e r i c a l S i m u l a t i o n o f SBPM T e s t s w i t h V a r y i n g L/D R a t i o for Elastic Perfectly-Plastic Soil ( a f t e r B a g u e l i n e t a l , 1986).  L/D G/G  | 1.23  w  I  S / u» S  u  The  results  of  6, u s i n g  o f the numerical cylindrical  1  -  by  2  a n a l y s i s i n d i c a t e t h a t f o r a SBPM w i t h L/D  c a v i t y expansion  s l i g h t o v e r p r e d i c t i o n o f G and S The  2  influence of f i n i t e  theory  will  lead  to only  a  u >  L/D r a t i o  on FDPM t e s t r e s u l t s  i s affected  t h e i n s e r t i o n o f the cone p r e s s u r e m e t e r . I f the i n s e r t i o n i s m o d e l l e d  using zone  cylindrical  c a v i t y expansion  f o r an e l a s t i c  theory,  perfectly-plastic  the r a d i u s  soil  i s given  o f the p l a s t i c by Randolph and  Wroth (1979) :  Rp - r where  r I  A typical increase  the  0  ( I  r  >'  5  4  -  1  3  = r a d i u s o f the p r e s s u r e m e t e r - r i g i d i t y index  Q  r  FDPM e x p a n s i o n o f a p p r o x i m a t e l y radius  1.25  r (I )*^.  for  a SBPM t e s t  r  of  the  In contrast, would r e s u l t  elastic-plastic  a typical  25 % c a v i t y s t r a i n boundary  to  at  least  e x p a n s i o n o f 15 % c a v i t y  i n a plastic  zone r a d i u s  would  strain  o f .57r ( I _ ) ~ ' .  r  ,  o  x  r'  T a b l e 4.3 compares the r a d i u s o f the p l a s t i c zone w i t h t h e l e n g t h o f the p r e s s u r e m e t e r probe f o r the FDPM and SBPM probes used f o r t h i s  research.  Maximum expansions o f 15 and 25 % c a v i t y s t r a i n a r e assumed f o r the SBPM  63  and  FDPM probes  respectively  and the s o i l  rigidity  index  i s assumed t o  be e q u a l t o 200.  T a b l e 4.3  :  PM | I | UBC SCP FUGRO CP HUGHES SBPM  The h i g h R p A p  E f f e c t o f I n s e r t i o n Method on the Radius o f the P l a s t i c Zone f o r an E l a s t i c Perfectly-Plastic Soil.  I  I  | PM j Radius I r | ( mm )  | PM | PM | Cavity | Max. Radius | R^ j L/D | Length j S t r a i n j of Plastic j — I I \ I I P l a s t i c Zone | L | | ( m m ) | ( % ) | P ^ ( m m ) |  | |  | j I  | 5 I 10 I 6  | | I  22 22 37  ratio  I  | j I  I  120 220 222  I  | j I  25 25 15  f o r the UBC SCP suggests  expansion  i s n o t an a c c u r a t e  occurring  and  therefore  I  | j I  that  389 389 298  | 3.24 j 1.77 I 1.34  cylindrical  r e p r e s e n t a t i o n o f the a c t u a l  spherical  cavity  I  expansion  may  cavity  expansion be  a  more  a p p r o p r i a t e a n a l y s i s to use.  4.3 Comparison o f SBPM and FDPM T e s t s  FDPM and SBPM e x p a n s i o n - c o n t r a c t i o n c u r v e s a r e compared a t s i m i l a r depths  f o r Lulu  Similar strain  Is.-UBCPRS  rates  and McDonald  were used  Farm  i n Figs.  4.5  and 4.6.  i n a l l cases and u n l e s s o t h e r w i s e  noted  the t e s t s were begun a f t e r a s h o r t r e l a x a t i o n p e r i o d o f a p p r o x i m a t e l y 1 to  5 minutes  the t e s t  d u r a t i o n . S e v e r a l g e n e r a l o b s e r v a t i o n s c a n be made  results.  1.) The shapes o f the FDPM and SBPM e x p a n s i o n c u r v e s a t b o t h s i t e s a r e s i m i l a r f o r c a v i t y s t r a i n s g r e a t e r than a p p r o x i mately 5 %.  about  | j  64  MCDONALD  "i 600  i  i  i  FARM  CLAYEY  SILT  i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—  a  H  r  J  SCP  17.0 m UBC SCP € «= 8.5 */min L/D«=5 16.75 m HUGHES SBPM t - - 1 */min L/D-6 1  1  0  1  i  I i 5  i  i  i  |—i—i—i—i—|—i—i—i—i—|—i—i—i—r 10 15 20 25  CAVITY STRAIN  MCDONALD  FARM  £  ( %  )  CLAYEY  SILT  900  19.0 m UBC SCP i 18.75 m HUGHES SBPM i 19.2 m FUGRO CP t 1  0  1  '  I I  =9.1 */min L/D=5 =-1 « / i L/D=6 = 5 */min L/D=10 m  n  I I I I I I I I I I | I I I I I I I I I 10 20 30  CAVITY STRAIN  £  ( g  )  F i g . 4.5a,b : Comparison o f FDPM and SBPM T e s t s a t McDonald Farm  65  MCDONALD 1 0 0 0  FARM  CLAYEY  SILT  T—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—j—i—i—i—r  a  SBPM  0  1  22.0 m UBC SCP £ - 8.1 «/min L/D=5 21.75 m HUGHES SBPM i «= 10 «/min L/D=6 5.0 */min L/D=10 22.2 m FUGRO CP £ = 5.0 I I I I I I I I I | I I I I I I I I I | I I I I I I I I I | I I II  0  10  20  CAVITY STRAIN MCDONALD  1000  i  i  i  i  i  i  i  i  i  CL  i  i  i T~ i ~r i  •f  a  '  — / s  ^  ( s  )  CUVYEY  •- j  «*"  o  £  FARM  i  30  SILT  I i  i  it**  -  r i  i •~r ~ b .  i  —  •  3 00 00 LU  -  or  CL  25.0 m UBC SCP £ • 7.0 */min 24.75 m HUGHES SBPM e =-10 */min i  i  i  i  F i g . 4.5a,b  I i  5  1 1 1 |  1 0  1 1 I 1 |  CAVITY STRAIN  1 5  £  1 I  L/D=5 L/D=6 i  ( % )  i  I 1 1 1 1  2 0  : Comparison o f FDPM and SBPM T e s t s a t McDonald Farm  2 5  66  LULU IS. UBCPRS PEAT i i i i i i i i i i—i i i i i—i—i i i i i i—i i i—i i i—r  a  4.8 m HUGHES SBPM I a 4.3 «/min 4.8 m UBC SCP t = 10.8 %/mm '  0  I  I  I  I  |  5  I  I  I  I  |  10  I  I  I  I  |  I  I  I  15  I  |  I  I  20  CAVITY STRAIN 6  I  I  |  I  I  I  I  25  30  ( %)  LULU IS. UBCPRS ORGANIC CLAYEY SILT ' i i i i i i i i i i i i i i i i i i i i i i i i i i i i i b  -  " i i i i | i i i i | i i i i | i i i i | i i i i | i i i i (  5  10  15  CAVITY STRAIN  20  25  6 (* )  F i g . 4.6a,b : Comparison o f FDPM and SBPM T e s t s a t L u l u Is.-UBCPRS  30  67  LULU IS. UBCPRS 3 0 0  ORGANIC CLAYEY SILT  i i i i i i i i i i i i i i i i i i i i i i i i i i i i i  a j o Q_ SCP £  1 5 0 - j  CO  cn LU  on a. 7.9 m UBC SCP fc - 10.6»/min 7.9 m HUGHES SBPM fc - 8.5 */min 0  | I I 1 I | I I I I | I I I I | I I I I | I I I I | I I I 1 0  5  1 0 .  1 5  2 0  CAVITY STRAIN  LULU IS. UBCPRS 3 0 0  I  £  ( *  2 5  3 0  )  ORGANIC CLAYEY SILT  I I I I I I I I I I I I I I I I I I I I I I I I I I I I  SCP  9.4 m UBC SCP £ = 12.4*/min 9.4 m HUGHES SBPM £ = 12.1*/min I 0  I I ) | I I 5  I I | I I I I | I I I I | I I I I | I I I I 1 0  1 5  CAVITY STRAIN  2 0  6  ( *  2 5  )  F i g . 4.6a,b : Comparison o f FDPM and SBPM T e s t s a t L u l u Is.-UBCPRS  3 0  68  2. ) A t low s t r a i n s the p r e s s u r e m e t e r e x p a n s i o n c u r v e s a r e s t e e p e r f o r the SBPM t e s t s . 3. ) A t L u l u Is.-UBCPRS, the SBPM e x p a n s i o n p r e s s u r e s a r e g e n e r a l l y s l i g h t l y lower than those o b t a i n e d f o r the FDPM probe. 4. ) A t McDonald Farm, the SBPM e x p a n s i o n p r e s s u r e s a r e h i g h e r t h a n those o b t a i n e d f o r the FDPM probe. A t low s t r a i n s t h e pressuremeter expansion curves are s i g n i f i c a n t l y steeper f o r the SBPM t e s t s . 5. ) Most o f t h e FDPM e x p a n s i o n c u r v e s have a s l i g h t bump f o r c a v i t y s t r a i n s between 0 and 4 %. The p r o b a b l e cause o f t h i s e f f e c t i s a c o m b i n a t i o n o f p r e s s u r e m e t e r s t r a i n arm d e s i g n , i n - a c c u r a t e z e r o r e a d i n g s f o r the s t r a i n arms and d i f f i c u l t y i n a c c u r a t e l y d e t e r m i n i n g the membrane c o r r e c t i o n a t low s t r a i n s . T h i s problem i s c o v e r e d i n more d e t a i l i n Chapter 2. 6. ) As expected, lower p r a c t i c a l l i m i t p r e s s u r e s a r e o b t a i n e d f o r the FUGRO CP w i t h a p r e s s u r e m e t e r L/D o f 10 as compared t o the UBC SCP w i t h a L/D o f 5.  An the  interesting  SBPM probe a t McDonald Farm a r e h i g h e r t h a n t h e FDPM p r e s s u r e s b u t  lower f o r t e s t s led  performed  to t h i s r e s u l t  p r o b a b l y produced at  r e s u l t i s t h a t the e x p a n s i o n p r e s s u r e s o b t a i n e d f o r  McDonald  through  i s that  due  the f i b r o u s  sensitive  the  clayey  g r e a t e r degree  the s e l f - b o r i n g  a g r e a t e r degree  Farm  Furthermore,  a t L u l u Is.-UBCPRS.  to  peat  organic silt  which  at  would  Lulu be  all  test  tests  strain  silt  Is.-UBCPRS affected  by  arm and then  taking  self-boring Is.-UBCPRS.  is a  moderately  disturbance  to a  a t McDonald Farm.  p r e s s u r e s a r e compared f o r a l l  i n F i g . 4.7. The p r e s s u r e m e t e r  were o b t a i n e d by v i s u a l l y  in  at Lulu  than the s l i g h t l y s e n s i t i v e c l a y e y s i l t  sites  the s e l f - b o r i n g  encountered  and o r g a n i c c l a y e y  FDPM, SBPM and d i l a t o m e t e r l i f t - o f f three  p r o c e d u r e a t L u l u Is.-UBCPRS  o f d i s t u r b a n c e than  the d i f f i c u l t y  silt  A f a c t o r which may have  lift-off  pressures f o r  d e t e r m i n i n g the l i f t - o f f  the average.  Unless  otherwise  f o r each  noted, the  MCDONALD  FARM  LIFT OFF PRESSURE ( kPa ) 200  15-  400  i i ,| I i i i I i i  600 800 i I i i i I •  i  LULU  IS. U B C P R S  LANGLEY  LIFT OFF PRESSURE ( kPa )  1000  100 ' I i I ' '  200 300 ' I i • i ' •  1  LOWER 2 3 2  LIFT OFF PRESSURE ( kPa )  400  150 ' ' Il  I I  300 i i I  450 600 I i • • • l  DILATOMETER PO  DILATOMETER PO DILATOMETER PO  20 H  5H  25H  10H  UJ Q  Q. LU  a  30  H  v>u.  15-1  * FUGRO CP • UBC SCP ~ 1.5 MIN RELAXATION a HUGHES SBPM  35-  • ' ' ' I '  * UBC SCP -1.5 MIN RELAXATION + UBC SCP~7-13 MIN RELAXATION a HUGHES SBPM  i ii i i i i  Fig.  4.7  :  20-  ' I '  i i i i !  Comparison o f FDPM, SBPM and D i l a t o m e t e r Pressures  + UBC SCP ~ 7-30 MIN RELAXATION on-  I  I I I i l IIi i i t  Lift-off  I  I  I  I  i i •  M  ,  70  pressuremeter  tests  approximately  1 t o 5 minutes d u r a t i o n .  The FDPM  were  SBPM l i f t - o f f  lift-off  pressures  performed  pressures  pressures  and  are s i g n i f i c a n t l y  variability  of  the SBPM  after  short  are i n general at  McDonald  r e l a x a t i o n periods  slightly  Farm,  more v a r i a b l e t h a n  lift-off  pressures  numerous t e s t s t h e SBPM and FDPM r e s u l t s  the  lower t h a n the SBPM  t h e FDPM  and  lift-off  results.  the f a c t  a r e almost  of  The  that f o r  t h e same suggests  t h a t t h e i n s e r t i o n o f the SBPM may have c r e a t e d a s u b s t a n t i a l amount o f disturbance. The  dilatometer  and  FDPM  lift-off  compare due t o the d i f f e r e n c e s i n probe pressures  are  pressures shorter  measured.  are higher  For  pressures  are d i f f i c u l t  geometry and the way  a l l sites,  than the FDPM v a l u e s .  the This  r e l a x a t i o n p e r i o d f o r the d i l a t o m e t e r  dilatometer  to  lift-off lift-off  may be due i n p a r t t o  test  and s m a l l e r  amounts  o f s t r e s s r e l a x a t i o n o c c u r r i n g d u r i n g d i l a t o m e t e r p e n e t r a t i o n due t o the less  abrupt  change  i n geometry  between  the t i p and b l a d e  o f the  dilatometer. The  practical  l i m i t pressure,  P^, i s d e f i n e d as the p r e s s u r e  a t 20  % c a v i t y s t r a i n f o r the FDPM probes and 15 % f o r the SBPM probe a t L u l u Is.-UBCPRS and 10 % a t McDonald Farm. F o r p r e s s u r e m e t e r  t e s t s i n which  the maximum c a v i t y s t r a i n o b t a i n e d was s l i g h t l y l e s s t h a n 10,15 o r 20 %, the  pressuremeter  expansion  curves  were e x t r a p o l a t e d  s t r a i n by eye. The p r a c t i c a l l i m i t  pressure  SBPM and t h e d i l a t o m e t e r  a r e compared f o r a l l t h r e e  Fig.  4.8.  obtained.  A  good  P^ v a l u e  comparison  between  obtained  to the r e q u i r e d  the FDPM  u s i n g the FDPM and  and  sites i n  dilatometer  is  MCDONALD  0 15-  FARM  LULU  J  I  I  600  1  1  1 L  900  _J  I  i_  -  LANGLEY  UBCPRS  PRACTICAL LIMIT PRESSURE ( kPa )  PRACTICAL LIMIT PRESSURE ( kPa ) 300  ISLAND  0  125 250 375 500 ' i i i I i i i ' I i i i i l i i i i  1200  PRACTICAL LIMIT PRESSURE ( kPa ) 200  0-1—I—I—X—I—I  5-  20-  LOWER 2 3 2  I  DILATOMETER P1  I  I  i  i  600 I  i  5DILATOMETER PI  —DILATOMETER PI -  25-  400  I  10-  10a. Ld  a  • P20 FUGRO CP • P20 UBC SCP aP10 HUGHES SBPM  35  15-  15-  30  i  i  «  I  I  I  1  • P20 UBC SCP *- 1.3 MIN RELAXATION • P20 UBC SCP ~ 7-13 MIN RELAXATION OP15 HUGHES SBPM 1  1  1  20-  L  F i g . 4.8  :  i i i i i i i i i i i i i i i i  I  i i  Comparison o f FDPM and SBPM P r a c t i c a l P r e s s u r e s and D i l a t o m e t e r Values  + P20 UBC SCP 7-30 MIN RELAXATION 20-  Limit  -I—I—I—I  I  1  I  •  t  i  tJ i  72  4.4  Parameters O b t a i n e d from the P r e s s u r e m e t e r T e s t  The  results  geotechnical situ  o f FDPM  parameters:  horizontal  section  of  stress  and SBPM  tests  a r e used  t o determine  undrained  shear  strength,  shear  and  the t h e s i s  stress  history.  i s to explain  The main  t h e methods  four  modulus, i n  focus  employed  of  this  and t h e  assumptions made i n d e t e r m i n i n g these parameters. To a l e s s e r e x t e n t , a r e v i e w has been made o f comparisons  between parameters  obtained using  the p r e s s u r e m e t e r and o t h e r i n s i t u and l a b t e s t s .  4.4.1  U n d r a i n e d Shear S t r e n g t h  There a r e two approaches which c a n be used t o o b t a i n t h e u n d r a i n e d shear  strength  from p r e s s u r e m e t e r t e s t s  ; a theoretical  approach  based  on c a v i t y e x p a n s i o n o r c o n t r a c t i o n t h e o r y o r an e m p i r i c a l approach. Both approaches a r e c o n s i d e r e d i n t h i s The  u n d r a i n e d shear  f o l l o w i n g methods the a n a l y s i s  strength  : the Windle  thesis. i s theoretically  and Wroth  average  method  hyperbolic  e q u a t i o n as s u g g e s t e d b y A r n o l d  expansion  method  s t r e n g t h method f o r  o f SBPM and FDPM e x p a n s i o n c u r v e s , the Palmer,  Baguelin  SBPM  o b t a i n e d u s i n g the  using  curves  f o r the a n a l y s i s  pressuremeter  and the Houlsby  data  empirically  L a d a n y i and f i t using  a  (1981) f o r the a n a l y s i s o f  and W i t h e r s  o f FDPM c o n t r a c t i o n  (1987) u n l o a d i n g  c u r v e s . S i n c e the s t r e s s  c o n d i t i o n s a r e unknown a t the b e g i n n i n g o f a FDPM t e s t ,  strictly  cavity  e x p a n s i o n methods s h o u l d n o t be used f o r FDPM t e s t s . N e v e r t h e l e s s , t h e r e are i n d i c a t i o n s which suggest t h a t a r e a s o n a b l e e s t i m a t i o n o f S  u  c a n be  made d e s p i t e the d i s t u r b a n c e c r e a t e d by FDPM i n s e r t i o n . I n s e c t i o n 4.2 , comparisons  o f SBPM and FDPM t e s t s performed a t the same depth  that the expansion curves are s i m i l a r  f o rcavity  strains  indicate  greater than 5  73  %. A l s o e n c o u r a g i n g and  a r e good comparisons between S  u  determined  from SBPM  PIP t e s t s u s i n g the Windle and Wroth average s t r e n g t h method  (Fyffe  e t a l , 1982). The 4.9  Windle  and Wroth  for typical  SBPM  average s t r e n g t h  and FDPM  test  technique  results.  i s shown i n F i g .  The c u r r e n t  volumetric  s t r a i n i s r e l a t e d t o t h e c a v i t y s t r a i n by t h e f o l l o w i n g e q u a t i o n :  AV  1 1  V  4.13  + AV  Q  eg)  (1 +  2  The A r n o l d (1981) type 1 a n a l y s i s uses a h y p e r b o l i c r e l a t i o n s h i p ;  8  €  P - Q +  to  empirically  offset  on  horizontal numerical curve.  f i t the pressuremeter  the  pressure  stress  while  procedure  The  axis  curve.  using  three p o i n t s curve  from  which  represents and b  the  in  are obtained  the e x p e r i m e n t a l  i s derived  _  assuming  situ by  a  expansion  small  aeg ( a + be  point  a  Q r e p r e s e n t s the  strains  The f o l l o w i n g e q u a t i o n r e s u l t s :  T  A  The v a l u e  ideally  the parameters  stress-strain  ( e q u a t i o n 4.7).  and  4.14  a + beg  i s often  overlooked  s t r a i n s e q u a t i o n 4.15 w i l l  4  1  5  )  2  &  i s that  f o r even  s i g n i f i c a n t l y underpredict  relatively the shear  small stress.  F o r example, a t 10 % c a v i t y s t r a i n the shear s t r e s s i s u n d e r p r e d i c t e d by approximately slightly  16 %. F o r t h i s  modified  to allow  reason  the A r n o l d type  the s t r e s s - s t r a i n  curve  1 a n a l y s i s has been t o be d e r i v e d u s i n g  74  HUGHES SBPM Site : Lulu Is. UBCPRS  0.1  Depth : 6.35 m  Dote :  11/2/87  1 10 LOG CURRENT VOLUMETRIC STRAIN x  100  UBC SCP Site : Lulu Is. UBCPRS  0.1 F i g . 4.9  :  Depth : 6.35 m  Dote :  1 10 LOG CURRENT VOLUMETRIC STRAIN %  3/4/87  100  D e t e r m i n a t i o n o f U n d r a i n e d Shear S t r e n g t h u s i n g the Windle and Wroth Average S t r e n g t h Method  75  the  more  accurate  equation  4.6.  The  resulting  equation  f o r the  shear  stress i s :  ae  1  (  +  )(2  e  e)  +  4.16  T  2 ( a + be )  A SBPM e x p a n s i o n resulting  curve  fitted  stress-strain  curve  f i t t i n g a h y p e r b o l i c curve is  naturally  last  unloading slope  pressure  i n F i g . 4.10.  t o the expansion  The  and the  process  pressure-cavity strain  which becomes more  difficult  of data  as the  d a t a d e v i a t e s from the h y p e r b o l i c form. theoretical  analysis.  equal  a hyperbolic relationship  i s shown  a s u b j e c t i v e process  pressuremeter The  using  2  to  2S  technique  Figure U  i s plotted  4.11  used  illustrates  for cylindrical against  i s the Houlsby  ( -ln{e  how  unloading L  -  e)  a  and  linear  curve  i s obtained  ), where  e  Withers  when  i s the  L  with the limit  s t r a i n . F i g u r e 4.11 a l s o shows how the r i g i d i t y index can be o b t a i n e d . Two  e m p i r i c a l methods a r e used  to determine  S  u  from  FDPM and SBPM  t e s t s . The f i r s t method i n v o l v e s u s i n g a r e l a t i o n s h i p o f t e n used a n a l y s i s o f Menard pressuremeter  i n the  data :  4.17  where  P^ — l i m i t p r e s s u r e as d e f i n e d as the p r e s s u r e a t AV / ( V + AV) - 1 Q  Amar e t a l (1975) r e p o r t e d t h a t a N f a c t o r e q u a l t o 5.5 r e s u l t s which compares w e l l t o f i e l d vane and t r i a x i a l 50 kPa ) c o h e s i v e as  defined  soils.  i n section  test  S  for soft  u  F o r t h i s r e s e a r c h the p r a c t i c a l  4.2  i s used  i n equation  found u s i n g the f i e l d vane as the r e f e r e n c e S  .  4.17.  in a  limit  The  N  ( S  S u  u  <  pressure factor i s  HUGHES SBPM  11/2/87  Lulu Is. UBCPRS Depth = 6.35 m  200 | 190 -  ~l  1  1  1  0  2  ——  Data Points  F i g . 4.10  1  4  1  1  6  1  1  1  1  1  1  B 10 12 Covfty Strain ( X ) + Arnold Curve Fit  1  1  U  1  1  1  16  : D e t e r m i n a t i o n o f the S t r e s s - s t r a i n Curve u s i n g the M o d i f i e d A r n o l d Type 1 A n a l y s i s  18  77  UBC SCP 2 7 / 1 / 8 7 McDONALD FARM Houlsby Cylindrical Unloading D = 22 m  0  4  2  6  8  - l n ( E - E) E=Natural Strain u  F i g . 4.11  : D e t e r m i n a t i o n o f U n d r a i n e d Shear S t r e n g t h u s i n g the Houlsby U n l o a d i n g A n a l y s i s  10  78  The second e m p i r i c a l method uses t h e f o l l o w i n g e x p r e s s i o n f o r S  :  u  4.18  The p r a c t i c a l  l i m i t p r e s s u r e i s a g a i n used f o r P^. A l t h o u g h t h i s method  is  identical  virtually  which uses q FDPM  test  relationship  f o r the piezocone  i n p l a c e o f P^ i n e q u a t i o n 4.18, i t i s f e l t t h a t u s i n g the  t  d a t a may h e l p  bearing.  The v a l i d i t y  c o n f i r m the S  of this  r e l a t i o n s h i p between q in  t o the common  method  obtained j u s t  i s supported  using  b y the c o n s i s t e n t  a p p r o x i m a t e l y 1.3 t o 2.0 were  undrained  shear  strength  c a v i t y e x p a n s i o n methods a r e s i g n i f i c a n t l y h i g h e r t h a n S or laboratory tests.  of experimental test the  field  vane  pressuremeter pressuremeter field  vane.  Gothenburg Bay  u  also  test.  included.  n o t shown  u  obtained using review  the s e l f - b o r i n g p r e s s u r e m e t e r t o  For  One  result  most  test  for  i n Table  4.4,  a  prebored  comparisons,  i s between 1 and 2 times h i g h e r t h a n  Although  site  the  the t r i a x i a l o r  the r e s u l t s  from  the  t e s t e d by Wroth and Hughes (1974) and t h e San F r a n c i s c o  - S i t e 1 t e s t e d by Clough and Denby (1980) i n d i c a t e t h a t as the c l a y  approaches  the  pressuremeter triaxial As soil  S  triaxial  obtained using  T a b l e 4.4 i s a comprehensive  r e s u l t s comparing  and  is  found  sites.  In general, pressuremeter  other i n s i t u  the cone  and P2Q f o r n o r m a l l y c o n s o l i d a t e d s o i l s as shown  t  F i g . 4.12. R a t i o s r a n g i n g from  f o r the t h r e e t e s t i n g  u  normally  strength  consolidated  increasingly  condition  becomes  higher  at than  depth,  the  the vane  or  s t r e n g t h . T h i s e f f e c t may be due t o s o i l a n i s o t r o p y . discussed i n section  annulus  4.2, c o n s o l i d a t i o n  effects,  a  remoulded  around the p r e s s u r e m e t e r and c a v i t y e x p a n s i o n which  i s not  1  MCDONALD  FARM  LULU  Qt / P» J  L  J  I  1 I  IS.  -  qt / P» l_  J  I  J  l_  I  I  L  UBCPRS  2  J  LANGLEY  0.0  L  J  LOWER 2 3 2  qt / P» 1.0  I  1  1  1  I  2.0  I  u +  H  + +  5H  100.  CL UJ O  UJ  a  Sand Layer  1SH . P :UBC SCP 1.5 MIN RELAXATION +++*+* .Pa) :UBC SCP 7-13 MIN RELAXATION. a  ••••• q, Avg. 8 CPT Teat*. P „ UBC SCP » » > q, Avg. 8 CPT Teat*. P „ Fugro CP —I  1  1  1  I  I  '  •  Fig.  1  20-  +  15H  J  l_  J  I  L  J  l_  q, ,P» .-UBC SCP 7-30 MIN RELAXATION  20-  4.12 : Comparison o f Cone B e a r i n g and FDPM P r a c t i c a l L i m i t Pressure  J  I  1  I  i  i  J  L  J  Table  Slca  Type o f Used  S o i l Type  PH  4.4:  Comparison of Undrained Shear Strength fron Pressuremeter, F i e l d Vane and T r i a x i a l Teata  Type o f Teat  PK  Plasticity Index  Msthod of Interpretation  Number of PH Tests  S  u  PH  S  u  PH  S  u  FV  S  u  TC  (UU) Gothenburg  S o f t Clay  Cran Cran  S o f t Clay Hed. P l a s t i c Slit Hed. S i l t Soft C l a y Alluvial Silt with Peat S t i f f Clay Soft Clay P l a s t i c Clay Organic Plastic Peat  Plancoet Provlna Provlna Bosse C a l l n Lanestar Begles S a i n t Andre de Cubzac Canvey I s . Hadlngly Hendon NRC S i t e ( Leda ) Hatagaml South Gloucester San Francisco Sltel San Franc l a c o alte2 Onsoy  Soft Clay Soft S l l t y Clay S t i f f Cault Clay S t i f f Sticky Clay Soft Senaltlve Clay P l a s t i c Clay  Caabrldge SBPH PAFSOR  * * m m  Cambridge SBPH  •  Soft Clay  m  Soft Clay  •  1.2 1.5  2.0 1.8  -  20 10 -  • •  -  .75 1.25 1.25  1.5 1.67 1.67  -  80 80  •  -  .78 1.8  Stress Controlled »  •  Burswood l a  P l a s t i c Clay S l l t y Clay S l l t y Clay S t i f f Hard Clay S o f t Clay  Bangkok  Harlne  •  -  •  35 45 U&U  44  Palmer  36 9.S  kPa/aln  9.8  kPe/mln  •  34 •  29  *  0  U  Osnby  45 3.AS  9.1  1.04  27 5  1.45 1.22  PH  S  u  TC  Reference  (CK U) 0  U l n d l e & Wroth (1974) Anar e t a l (1975)  •  Baguelin e t a l (1972)  *  Hughes e t a l (1975)  18  1.0  13  1.3  U l n d l e & Wroth (1977)  3  1.3  4  1.72  •  5  1.8  •  Eden & Law  10  1.14  kPa/30 aec 30-35  •  15  1.43  2B+-8  tf&U  12  1.99  1.72  6 14 12 7  1.92 1.15 3-1.2  1.63 1.07 3.2-1.4 1.25  -  12  1.85  60  46  1.20  •  1.11  kPa/aln  -  -  Pressureaeter T r i a x i a l Compression Unconsolidated Undrained - K C o n s o l i d a t e d Undrained  30 30+-2 47+-3 27+-3  a  "  m  Lacaase e t a l (1981) •  •  Chlonna e t al(1981) • •  Fahey & C a r t e r (1986) Bergado & Khaleque (1986)  Palmer - Derived S Using Palmer, Ladanyi and Baguelin (1972) Hethod W&U - Ulndle and Uroth (1977) Average S Hethod Denby - Denby (1978) S Hethod G&A - Gibson and Anderson (1961) S Hethod u  u  u  (1980)  Clough & Denby (1980)  kPa/30 aac  Stress Controlled 20 &. SO kPa/aln 0Y0 LLT Prebored  Clay  kPa/aln  5  u  2.25 .94 1.43  •  40  3.45  PH TC UU Ck  -  Strain * Controlled  9.1  1.3-2.5  •  •  •  6  80 30  •  Soft Sensit i v e Clay Soft Clay  Draoraen Porto T o l l e Panlgaglla Taranto  -  •  m  Palmer  Stress Controlled 3.45 kPa/30 sec  S  81  truly  cylindrical  some  of  the  Furthermore, higher  will  a l l lead  reasons when  strain  f o r the  comparing  rate  t o an o v e r p r e d i c t i o n o f S differences  pressuremeter  i s g e n e r a l l y used  observed  u  in  and t r i a x i a l  f o r pressuremeter  and may be table  tests, tests  4.4.  a  much  and  this  may l e a d t o h i g h e r e s t i m a t e s o f S . u  The measured S  u  will  a l s o be a f f e c t e d by the i n s i t u o r l a b o r a t o r y  method used  and the s t r e s s  path  states  the d e f i n i t i o n  of S  that  followed during a test. as h a l f  u  Wroth  the d i f f e r e n c e  (1984)  between the  major and minor p r i n c i p a l s t r e s s does n o t a l l o w f o r t h e i n f l u e n c e o f the i n t e r m e d i a t e p r i n c i p a l s t r e s s and does n o t d i s t i n g u i s h between d i f f e r e n t types soil  of tests samples.  which  can r e s u l t  I n an attempt  i n different  t o overcome t h i s  r e s u l t s o f d i f f e r e n t t e s t s by r e l a t i n g S normally consolidated  u  /  < 7  strengths f o r i d e n t i c a l  problem, v  o  '  Wroth l i n k e d the  t o the p h i a n g l e . F o r a  s o i l he suggested a p o s s i b l e p r o f i l e  of strength  would be as i n d i c a t e d i n F i g . 4.13. Ladd e t a l (1979) s u g g e s t e d t h a t the pressuremeter  S  u  s h o u l d l i e between the r e s u l t s  and p l a n e s t r a i n compression  of direct  simple  shear  loop,  G ,  tests.  4.4.2 Shear Modulus  The  shear  modulus  obtained  from  an  unload-reload  performed d u r i n g the e x p a n s i o n phase o f a p r e s s u r e m e t e r  t e s t appears t o  be the l e a s t a f f e c t e d by d i s t u r b a n c e when compared t o o t h e r of shear moduli linear  elastic,  ( J a m i o l k o w s k i e t a l , 1985). cylindrical  cavity  o b t a i n the f o l l o w i n g e q u a t i o n f o r G  Assuming  expansion .  theory  u r  soil  definitions response i s  c a n be  used  to  82  a)  U k a l y v a r i a t i o n i n undralnad atrangth r a t i o f o r diffarant t a s t Mtnooa  TEST PH K TCOSS 0  4.13  )  U k a l y Marareny , rain«cJ ttrangtn ratio f o r dtffarant t a a t aatnotis 0  u r # 3  TYPES  P r a s s u r a matar K consolidatad triaxial P l a i d Van* Otraet stmpla snaar 0  Hierarchy Various  b  comprassfon  and V a r i a t i o n i n U n d r a i n e d S t r e n g t h  T e s t Methods  ( adapted  from Wroth,  Ratio f o r  1984)  83  AP G  ( 1 + e  )  -  u r  4.19 2 Ae  where  e  — c a v i t y s t r a i n a t the mid p o i n t o f the u n l o a d - r e l o a d loop  m  A d e r i v a t i o n o f e q u a t i o n 4.19 When p e r f o r m i n g exceed soil  an  i s found i n appendix  unload-reload  the " e l a s t i c " l i m i t o f the s o i l .  the maximum t h e o r e t i c a l  loop, care  IV. must  be  For an e l a s t i c  reality  soil  increments  behavior  used  for  not  amount o f u n l o a d i n g which can o c c u r  is  non  linear  unload-reload  even  loops.  for  ( Wroth  U  the  Jamiolkowski  before ,1982).  small et  strain  al  (1985)  p r e s e n t e d SBPM t e s t r e s u l t s f o r the P o r t o T o l l e and P a n i g a g l i a s o f t s i t e s which i n d i c a t e t h a t G  u r  tends  to  perfectly-plastic  the i n i t i a t i o n o f f a i l u r e a t the c a v i t y w a l l i s AP = 2 S In  taken  t o i n c r e a s e as the s t r a i n  clay  increment  a t the c a v i t y w a l l d e c r e a s e s . Several  r e s e a r c h e r s have  attenuates with  i n c r e a s i n g shear  are shown i n F i g . 4.14 the  dynamic  small  relationship  attempted  s t r a i n f o r cohesive  strain  modulus.  on  both  Based  on  a  the  data  pressuremeter  measured a t the  data  the  the  shear  soils.  Two  modulus results  Seed and  i s based  and  Idriss  monotonic on c y c l i c  (1970) tests  while  triaxial  shown h e r e ,  cavity  the  tests.  shown i n F i g . 4.14,  relationship  between  It two  shear  t o be approximate and not w e l l d e f i n e d .  unload-reload wall.  the  by  average  t h e r e s h o u l d be such a l a r g e d i f f e r e n c e between the  modulus and shear s t r a i n appears During  The  cyclic  Kokusho e t a l (1982) r e l a t i o n s h i p  curves.  show how  i n which the shear modulus has been n o r m a l i z e d  i s based  i s n o t c l e a r why  to  To the  loop,  the  strain  increment  a l l o w a b e t t e r comparison o f G average  strain  increment  u r  i n the  is with soil  84  SHEAR MODULUS ATTENUATION CURVES  0.0001  0.001  0.01  0.1  SHEAR STRAIN y  F i g . 4.14  1  ( *  )  : Shear Modulus A t t e n u a t i o n Curves i n C o h e s i v e S o i l s  10  85  s h o u l d be determined. has  addressed The  depends, soil  alia,  SBPM t e s t  i n which  test  likely  contrast,  soils.  i s f u r t h e r c o m p l i c a t e d by the f a c t  u r  on the mean normal e f f e c t i v e  a t the b e g i n n i n g  will  i s unaware o f any p u b l i s h e d work which  t h i s d i f f i c u l t problem f o r c o h e s i v e  use o f G inter  The author  o f and d u r i n g a t e s t  drainage  be c l o s e  i s minimal,  t h a t the modulus  stress  i f drainage  the e f f e c t i v e  t o the i n s i t u  effective  the i n s e r t i o n o f a cone p r e s s u r e m e t e r  will  state  o f the  occurs.  stress stress  For a  during a state.  create high  In  excess  pore p r e s s u r e s and a low e f f e c t i v e s t r e s s s t a t e a t the c a v i t y w a l l . Some drainage  will  inevitably  occur  surrounding the pressuremeter will  be d i f f i c u l t  due the h i g h  pore  pressure  and t h e r e f o r e the average  t o determine  d u r i n g a FDPM t e s t .  gradients  effective  stress  F o r the purposes  of  t h i s r e s e a r c h i t has been assumed t h a t f o r b o t h FDPM and SBPM t e s t s , the mean e f f e c t i v e  s t r e s s stays approximately  e q u a l t o the i n s i t u All  effective  unload-reload  loops  stress. were  t a k i n g p l a c e i n under 5 seconds. w i t h no d e l a y between expansion after and  c o n s t a n t d u r i n g a t e s t and i s  performed  quickly  with  SBPM t h e p r e s s u r e  loop  Most u n l o a d - r e l o a d l o o p s were  performed  and the l o o p . A few t e s t s were  performed  a s t a n d i n g p e r i o d o f between 2 and 17 minutes.  Hughes  a full  remained  constant  F o r t h e Fugro CP  during  t h e creep  phase  w h i l e the c a v i t y s t r a i n i n c r e a s e d . The o p p o s i t e e f f e c t took p l a c e d u r i n g the creep phase i n v o l v i n g the UBC SCP probe. The  second  method  utilizing  the r i g i d i t y  unloading  analysis  calculated unloading :  using  of  determining  index  obtained  f o r FDPM t e s t s  the u n d r a i n e d  the using  shear  modulus  the Houlsby  ( F i g . 4.11 ) . The shear  shear  strength obtained  and  involves Withers  modulus i s  for cylindrical  86  G  A  drawback  of  this  method  u  - I  r  i s that  S  4.20  u  i t is difficult  to accurately  a s s o c i a t e a s t r a i n increment w i t h the modulus o b t a i n e d . In those  g e n e r a l , shear  o b t a i n e d from  compared and  moduli  laboratory tests.  t o the r e s u l t s  Wroth  (1977)  o b t a i n e d from  computed  from  of laboratory tests  and Kay and P a r r y  those  Windle  (1982)  found  triaxial  (1977)  equal  to  also  Gur  tests.  f a c t o r s which l i k e l y  during  of clay  volumetric  4.4.3  a  the  G  u r  higher  presented SBPM  plate  simple  strain  Gur  loading  shear  by is  test.  (DSS) t e s t s  1.5 t o 3 times  increment  used.  c o n t r i b u t e t o the l a r g e d i f f e r e n c e s  higher  Several  i n moduli a r e  a n i s o t r o p y , the d i f f e r e n c e i n s t r a i n r a t e o r s t r e s s  between SBPM and l a b o r a t o r y t e s t s  on m o d u l i  to  u r  the magnitude o f the r a t i o b e i n g a f f e c t e d by the  o f the u n l o a d - r e l o a d  paths  that  t h a t the SBPM modulus was a p p r o x i m a t e l y  the e f f e c t s  G  Windle  t e s t s f o r London  The r e s u l t s  indicated  measured  soils.  SBPM  been  (1985) compared Gur from SBPM t e s t s i n s o f t c l a y s a t P o r t o  than t h e DSS modulus, size  compared  than  u r  were 2.5 t o 3.0 times  u r  and P a n i g a g l i a t o G^Q from" CKoU d i r e c t  Tolle and  during  Wroth  approximately Jamiolkowski  f o r cohesive  an u n l o a d - r e l o a d l o o p d u r i n g UU t r i a x i a l  obtained  and  are higher  I n o n l y a few cases has G  and G a u l t c l a y and found t h a t the SBPM G than  SBPM t e s t s  and the e f f e c t s  o f disturbance  c a l c u l a t e d from l a b o r a t o r y t e s t s .  Stress History  The p i e z o c o n e stress  history  or  has been used  to a limited  overconsolidation  preconsolidation pressure  ratio  ) o f a cohesive  date has f o c u s e d on c o r r e l a t i n g t h e B  (  extent OCR  -  t o e s t i m a t e the a  -p'/ vo' a  '  a  p'  =  s o i l . Much o f the r e s e a r c h t o  parameter :  87  B  Au 4.21  q  *t to  the o v e r c o n s o l i d a t i o n r a t i o  and R o b e r t s o n e t a l , 1985). p r e d i c t OCR the  " vo a  ( Wroth, 1984;  J a m i o l k o w s k i e t a l , 1985;  S u l l y e t a l (1988) p r o p o s e d a new  method t o  u s i n g the n o r m a l i z e d d i f f e r e n c e i n pore p r e s s u r e measured a t  t i p , u^, and d i r e c t l y b e h i n d the t i p , U2>  l  u  PPD -  as d e f i n e d by :  * 2 : o u  4.22  u  The  new  method,  called  the  pore  pressure  difference  or  PPD  method,  appears t o be q u i t e p r o m i s i n g f o r o v e r c o n s o l i d a t i o n r a t i o s l e s s than 15. The  author  i s unaware  any  published research  tests  are  directly  results  of  history  of a cohesive s o i l .  use  d a t a o b t a i n e d from  the  pressuremeter  of  Two a  correlated  in to  which the  the  stress  c o r r e l a t i o n methods a r e p r o p o s e d  cone p r e s s u r e m e t e r  and  which  seismic piezocone  soundings. The  first  method  relates  the  practical  limit  pressure  with  OCR  u s i n g the f o l l o w i n g e x p r e s s i o n :  P  OCR  - f>  L  " *vo  4.23  "vo T h i s method  i s similar  to the  c o r r e l a t i o n w i t h OCR  (1988) which uses the p i e z o c o n e q  t  s u g g e s t e d by  i n p l a c e o f P^ i n e q u a t i o n 4.23.  Wroth From  i n f o r m a t i o n r e p o r t e d by L a c a s s e e t a l (1981), Wroth c a l c u l a t e d v a l u e s o f (q  t  -  a  vo^/ vo' a  ^  o r  depths  of  a g a i n s t r e l e v a n t v a l u e s o f OCR  2  to  20  m  at  Onsoy  from oedometer t e s t s  and  plotted  ( F i g . 4.15  ).  them  88  F i g . 4.15  : Variation i n ( q - S ) / S ( a f t e r Wroth, 1988 ) t  v o  V Q  ' w i t h OCR  a t Onsoy  89  The  rational  by Wroth to  f o r u s i n g e q u a t i o n 4.23 i s i d e n t i c a l  (1988) except  that  i s used  i n place of q  t  t o the one g i v e n s i n c e P^ appears  be p r o p o r t i o n a l t o q . By m o d i f y i n g e q u a t i o n 4.23 so t h a t : t  P  L  " a  CT  vo  P  L  _  a  vo'  vo  S  u  a b e t t e r a p p r e c i a t i o n i s g i v e n why OCR.  The u n d r a i n e d  shear  S  u S  S  - N  u  vo'  equation  CT  vo'  4.23 s h o u l d be r e l a t e d t o  S /CT  strength r a t i o  4.24  p  U  v o  ' varies  with  OCR  w e l l d e f i n e d way. The r e l a t i o n s h i p between OCR and Np i s s i m i l a r r e l a t i o n s h i p between OCR and N ^ The  second  a g a i n s t OCR. al  (1984a),  For  from  method  i t appears I  OCR.  r  that I  initially  correlates  F i g u r e 4.16  rigidity  t o the  five. index,  I , r  o f l a b o r a t o r y d a t a by Wroth e t  g e n e r a l l y decreases  gives  with increasing  and t h e n  the r e l a t i o n s h i p  decreases  between  I  r  the average dynamic shear  modulus, G  m a x  ,  OCR. with  and OCR  on t h r e e c l a y s . The d e f i n i t i o n o f I  Q  r e s e a r c h uses  the  increases s l i g h t l y  CK U DSS t e s t s performed  this  as w i l l be shown i n c h a p t e r  From a comprehensive review  some t e s t s  increasing  in  proposed  t  in a  r  used  obtained  from dowhhole s e i s m i c t e s t i n g and the f i e l d vane S . S e i s m i c t e s t i n g was u  performed of  d u r i n g some o f the UBC SCP t e s t  the s e i s m i c p i e z o c o n e  p e n e t r a t i o n s a d j a c e n t t o t h e cone  t e s t h o l e s . The f i e l d vane S vane  profiles  pressuremeter The the  S  u  that  relaxation  was used  u  more  comprehensive  and  has become a w e l l a c c e p t e d  horizontal  total  the i n s t a l l a t i o n  time  s i n c e i t was f e l t  pressuremeter t h a t the f i e l d  reliable  than  the  profiles.  SBPM t e s t  i n situ  provided  were  p e n e t r a t i o n s and d u r i n g some  i s allowed  stress  of a  i s performed  f o r stresses  technique soft  cohesive  carefully  around  o f determining  and  soil,  a  fa , 0  sufficient  the p r e s s u r e m e t e r  to  F i g . 4.16  : Values of G/S P l o t t e d Against OCR from CK U DSS Tests on Three Clays ( a f t e r Ladd and Edgers, 1972 ) u  D  91  reach  an  equilibrium.  ( Jamiolkowski evaluating a  Experience  e t a l , 1985  in  stiff  clays  more  limited  ). S e v e r a l t e c h n i q u e s have been proposed f o r  from SBPM and Menard p r e s s u r e m e t e r  n o  is  tests. A  comprehensive  r e v i e w o f t h e s e methods are g i v e n by L a c a s s e and Lunne (1983) and Denby and Hughes  (1982).  Lacasse for  and  Lunne  determining  a  (1983) suggested could  n Q  be  "initial"  approaches initial valid  or  "lift-off"  which use  the  divided  i n t e r p r e t a t i o n methods : approaches the  that  into  three  available  classes  of  r e l a t e d t o the d i r e c t measurement o f  pressure;  the complete  techniques  empirical  pressuremeter  curve  approaches;  and  t o determine  the  p r e s s u r e . Of these t h r e e c l a s s e s , o n l y the e m p i r i c a l approach i s for  because  the  of  disturbance rational  tests  the  short  created  holds  performed  for  with  relaxation  during the  the  times  the  UBC  SCP  and  Fugro  CP  used  and  the  large  amount  insertion  Hughes  SBPM  of  these  although  probes.  i t is  probes  The  likely  same  that  d i s t u r b a n c e c r e a t e d w i l l be l e s s s e v e r e . The e m p i r i c a l approach  of  the  i s based  on the l i m i t p r e s s u r e o b t a i n e d f o r the i n f i n i t e e x p a n s i o n o f a c a v i t y i n an e l a s t i c - p e r f e c t l y  plastic  soil  ( Gibson  and Anderson,  1961).  The  in  s i t u h o r i z o n t a l s t r e s s f o r c y l i n d r i c a l c a v i t y expansion i s :  a  ho ' L ' V  1  P  +  l n { I r  >  >  4  -  2 5  4  -  2 6  w h i l e the e q u a t i o n f o r s p h e r i c a l c a v i t y e x p a n s i o n i s :  a  The 4.26  results since  displacement  of it  ho " L - /  FDPM t e s t s is  felt  insertion,  4  P  are that  3  V  1  +  l  n  (  I  r  )  >  analyzed u s i n g both because  spherical  of  cavity  the  equations  effects  expansion  may  of  4.25 the  more  and full  closely  92  model  the  empirical undrained For using S and  u  actual approach  is  that  process. er  n o  is  A  this and I  approach, r  the  in situ  used  associated with  to  the  values  of  the the  index.  horizontal  o b t a i n e d from the Houlsby pressure  drawback  sensitive  shear s t r e n g t h and the r i g i d i t y  the l i m i t  strain.  expansion  stress  and Withers  i s the expansion  is  calculated  unloading  pressure  a t 20  analysis %  cavity  93  CHAPTER 5 UNDRAINED SHEAR STRENGTH  5.1  R e f e r e n c e U n d r a i n e d Shear S t r e n g t h  The  field  vane  reference  strength  the  common  most  undrained  for this in situ  shear  strength  has been  r e s e a r c h . The f i e l d method  chosen  vane t e s t  f o r measuring  as the  i s currently  the u n d r a i n e d  shear  s t r e n g t h and has been p r o v e n t o be a r e l i a b l e and h i g h l y r e p e a t a b l e method. There a r e a l s o s e v e r a l d i s a d v a n t a g e s through blades of  coarse  grained  or s t i f f  and t h e r e f o r e p r e b o r i n g  soils.  Furthermore,  cohesive  with soils  the t e s t .  the v e r t i c a l i t y  Penetration  c a n damage  i s u s u a l l y r e q u i r e d through  test  t h e vane  these  types  o f the vane p e n e t r a t i o n c a n n o t  be c o n t r o l l e d o r measured. The N i l c o n and Geonor f i e l d vanes used have vane h e i g h t t o diameter ratio  o f 2 as recommended  D2573).  The u n d r a i n e d  by  shear  the s t a n d a r d  strength  according  t o ASTM  i s calculated using  ( ASTM  the s t a n d a r d  expression :  S where  Several disturbance vane  u  - 6T/7*D  5.1  3  T - a p p l i e d torque D - diameter o f the vane  factors  such  due t o vane  penetration  and  as  soil  anisotropy,  strain  i n s e r t i o n and the l e n g t h o f time d e l a y shearing  a l l affect  the  comprehensive d i s c u s s i o n o f the importance o f these Grieg  (1985).  rate  measured  effects, between S . u  A  f a c t o r s i s g i v e n by  94  Researchers proposed  such  correction  as Bjerrum  factors  (1973)  for field  e x c a v a t i o n and embankment f a i l u r e s available. from  They  found  that  factors  research since  have  vane  S  been  et  on a  vane  factor  to the p l a s t i c i t y applied  a l (1986)  based  u  f o r which f i e l d  the t h e o r e t i c a l  1 and c o u l d be c o r r e l a t e d  correction  and Aas  have  review  of  s t r e n g t h s were  of safety  differed  index o f t h e c l a y .  to the f i e l d  vane  data  t h e u n d r a i n e d shear s t r e n g t h o b t a i n e d from  No  f o r this  pressuremeter  tests i s not corrected. The  undrained  shear  normalized  undrained  are  i n F i g . 5.1  shown  McDonald  Farm  shear  strength  from  the  strength p r o f i l e s  and  5.2  and a t L a n g l e y  232 below  of scatter  in S  u  a t Langley  Lower  S /CT  The  U  16 m  i n d i c a t e an a p p r o x i m a t e l y n o r m a l l y c o n s o l i d a t e d s o i l amount  vane  f o r the three  respectively.  Lower  field  v o  and t h e  test  '  sites  values  at  a r e c o n s t a n t and d e p o s i t . The s m a l l  232 i n d i c a t e s  a  relatively  homogeneous d e p o s i t . The S to  and S / c  u  u  interpret.  between  v o  ' p r o f i l e s a t L u l u I s . - UBCPRS a r e more  I n Chapter  2.5 and 5.0 m  3  i t was  consists  suggested  of highly  that  organic  difficult  the s o i l silt  profile  or. peat.  This  would a c c o u n t f o r t h e h i g h S ' s measured a t these depths. Both Kaderabek u  at  a l (1986) and Landva (1986) s t a t e t h a t t h e f i e l d vane t e s t  difficult than  the S  undrained silty  to interpret  sand  u  obtained  shear  and t h e S from  u  other  obtained i s often in situ  s t r e n g t h a t 13 m depth  tests.  i n peat i s  erratic  and h i g h e r  The h i g h  field  may have been caused  by a  vane thin  layer.  To h e l p make a more a c c u r a t e assessment s h e a r s t r e n g t h a t L u l u Is.-UBCPRS,  o f the r e f e r e n c e undrained  t h e cone b e a r i n g d a t a from  t e s t s i s u t i l i z e d as shown i n F i g . 5.3. A cone f a c t o r o f N  k t  five  CPTU  e q u a l t o 10  MCDONALD  FARM  LULU ISLAND - UBCPRS Su Field Vane ( kPa )  Su Field Vane ( kPa ) 15-  i  i  i  i  25  » i  i  i  i  50  .1 i  i  t  i  75 l  i  i t  100  20 •1  I  I  40 I  I  I  I  LANGLEY  60 I  I  I  I  80 I  .  0.0  •  LOWER  232  Su Field Vane ( kPa ) -I—I—I  20.0 I  I  i  i  40.0 I  I  60.0 I  I  -R«f. S.-/  5H •* •  79 E w  .  E  a.  •  a  •  a  •  +++++ Fvr-1 • • • • • FVT-2  ooooo FVT-3 +++++ FVT-4 • • • • • FVT-5  10-  UJ  23  • o •  o  L ° >B>  ••••a FVT— 1  t>i>>>> p/f—2  a o  15-  H  15H  20 H  +++++ rvT-i 70  1 1 1  '''  1 1 1 1  '' '''' ' ' 1  1  20-  25-  F i g . 5.1 :  F i e l d Vane Undrained Shear Strength  -I—l—I—I—l—I—I  I  '  •  •  • •  MCDONALD  S  u  0.0 15- i  FARM  LULU  Ovo'  Ft /  0.2 i  i  i i- i  i  0.4  I t i  i  i  i  i  i  0.0  I i  J  1  ISLAND  -  1.0 1 I  1  LANGLEY LOWER 232  UBCPRS  I  i  i  •  2.0  0.0  I  I  '  I  s.w / o\.'  0.5  I I I  I  I  1.0  I I I  I  I  1.5  I I  2.0  o  •> •  3H  5H  a  +  20 H  +  • O-B OO  H  o o  10H (S. / cj)  10H  m  S 0.4  J  (S. / <W)» - 0.33 O  25 H  +++•+ FVT-1 •••••FVT-2 Woter Table - 1.0 m  30-  ' ' ' ' ' '  >o o  15H  O  i  •••••FVT-1 Water Table - 1.5 m  + i  i  i i  i  F i g . 5.2  20-  °J)m  - 0.26  o  + •  i  (S. /  a •> o •>  13H +  aaaao FVT—1 p/T—2 oooooFVT-3 +•+++ FVT-4 ••••• FVT-5  J  1  1  l  i  •  o  20 H  o  Water Table - 1.0 m 25-  i  i  : N o r m a l i z e d F i e l d Vane Undrained Shear S t r e n g t h  i i i i i t i t t i  i i  i • i  J  97  LULU ISLAND - UBCPRS S ( kPa ) u  J  I  20  L  4 0  J  I  L  J  I  L  60  J  I  L  8 0  1 0 -  Q_ UJ O  1 5 -  +++++ FIELD  VANE  PROPOSED AVG. S  2 0  Fig.  J  5. 3 :  l  I  S„  =  u  I  (qt  I  REFERENCE  FROM -  I  5  CPT  o\o)/NKt  I  i  i  Proposed R e f e r e n c e S  i  u  S  u  TESTS ;  N„t  i  USING  =  '  10  '  '  '  For L u l u I s .  UBCPRS  98  is  used  field  to calculate  vane  S  since  u  and CPTU d a t a  this  produced  f o r depths  a good match between the  g r e a t e r than  5 meters.  U s i n g the  combined d a t a from t h e f i e l d vane and CPTU, a r e f e r e n c e u n d r a i n e d  shear  s t r e n g t h f o r L u l u Is.-UBCPRS i s proposed.  5.2  T h e o r e t i c a l Methods  Three  theoretical  strength outlined and  Wroth  (Houlsby  (1977)  suggested  average  data  4 were u t i l i z e d strength  empirically (1981)  the c a l c u l a t i o n  of S  u  and  were a p p l i e d  Withers  to both  (1987)  FDPM and  L a d a n y i and B a g u e l i n a n a l y s i s u s i n g  used  using  a  hyperbolic  f o r SBPM these  test  equation  data.  techniques  as  A l l plots  are included i n  and Wroth Average S t r e n g t h Method  u n d r a i n e d shear strength  s t r e n g t h determined  technique  i s shown  i n d i c a t e d , a l l t e s t s were performed to  shear  f o r t h i s s t u d y . The Windle  and Houlsby  f i t using  was  the u n d r a i n e d  I to I I I .  Windle  The  obtaining  unloading analysis  by A r n o l d  appendices  5.2.1  average  of  r e s u l t s w h i l e the Palmer,  pressuremeter  showing  i n Chapter  f o r short)  SBPM t e s t  techniques  from  the Windle  i n F i g . 5.4.  Unless  and Wroth otherwise  with short r e l a x a t i o n periods equal  1 t o 5 minutes d u r a t i o n . At  times  McDonald Farm the p r e s s u r e m e t e r higher  than  distinguish tests  the r e f e r e n c e  S  S .  u  i s a p p r o x i m a t e l y 1.25 t o 2.25  The  u  superscript  s  i s used  r u n a t a p p r o x i m a t e l y 5 t o 10 % s t r a i n p e r minute  to from  t e s t s where the s t r a i n r a t e i s l e s s than o r e q u a l t o 2 %/min. I t appears that  the  slower  consolidation  tests  occurring  result during  in  a  the t e s t .  higher  S  The SBPM  u  possibly and FDPM  due  to  undrained  MCDONALD  15-  S„ 50 I I I  ii  FARM  LULU  ( kPa ) I  100 150 ' • t i l l  p.  0  |-1  i  i  i  ISLAND  S„ 25 I i i  -  ( kPa ) i  50 i I I  Re  5-  20-  LANGLEY  UBCPRS  1  i  75 i I I  I  I  I  100 1  '* ^*/anm  1  1  20  S,,  1  1  LOWER  232  ( kPa ) 1  1  40 I  1  1  1  60 I  1  •  5-  • R«f. S. rv  25-  10-  Ius  10-  o  30-  15-  aooaaUBC SCP »*>»>»•»> FUGRO CP + • + • + H u g h 6 » SBPM  •  »  •  •  •  J  I  Fig.  I  I  5.4  I  I  :  20-  •  A  ;  •  R«f. S»iv15-  aooaaUBC SCP 1.5 min RELAXATION ••••• UBC SCP 7-13 min RELAXATION • • + + + H u g h M SBPM  SUPERSCRIPT S INDICATES TEST PERFORMED SLOWLY WITH A STRAIN RATE < 2 %/nin  35-  \  i i i i i i i i i i i i ^  FDPM and SBPM U n d r a i n e d Shear S t r e n g t h from and Wroth Average S t r e n g t h Method  SCP~7-30 min i  i  Windle  i  i  i  • i  i  i  :  RELAXATION i  i  i  i  100  shear  strengths  are s i m i l a r  the r e f e r e n c e u n d r a i n e d pressuremeter  test  and appear t o i n c r e a s e a t t h e same r a t e as  shear s t r e n g t h . Furthermore, t h e s c a t t e r f o r the  results  i s similar  to that  obtained  f o r the f i e l d  vane. A t L u l u Is.-UBCPRS, the FDPM t e s t s performed w i t h s h o r t periods  and the m a j o r i t y  s t r e n g t h s which shear  o f the SBPM t e s t s  a r e c l o s e t o the r e f e r e n c e  s t r e n g t h s c a l c u l a t e d a t depths e q u a l  possibly  caused  by  a  relatively  greater  result  i n undrained  S . The low SBPM  technique the of  t o 9.4, 10.9 and 12.4 m were amount  of s o i l  of  o f SBPM i n s e r t i o n d i f f i c u l t cutting  to accomplish  i n Chapter  shoe. I t appears  without  3, the  shear  strengths  a d d i t i o n a l problems  clogging of  that allowing a longer period  r e l a x a t i o n between p e n e t r a t i o n and a c t u a l t e s t i n g  tests  disturbance  o f the s o i l d e p o s i t a t L u l u Is.-UBCPRS makes t h e j e t t i n g  self-boring  undrained  shear  undrained  u  c r e a t e d b y the i n s e r t i o n o f the SBPM. As a l r e a d y n o t e d organic nature  relaxation  f o r the FDPM t e s t .  results  Furthermore,  i n higher  f o r several  i n i n t e r p r e t a t i o n were c r e a t e d b y the p e r i o d  c r e e p a l l o w e d b e f o r e an u n l o a d - r e l o a d l o o p was performed. I d e a l l y , no  u n l o a d - r e l o a d l o o p s s h o u l d be performed f o r t e s t s i n which o b t a i n i n g the undrained The  shear s t r e n g t h i s t h e p r i m a r y o b j e c t i v e . measured  approximately The  undrained  twice  as h i g h  shear  strengths  as the r e f e r e n c e u n d r a i n e d  d i f f e r e n c e between the p r e s s u r e m e t e r  have been l e s s tests.  a t Langley  Lower shear  and r e f e r e n c e S  u  232 a r e strength.  would  likely  i f s h o r t e r r e l a x a t i o n p e r i o d s had been used f o r the FDPM  101  5.2.2  A r n o l d Curve F i t t i n g Method  The SBPM u n d r a i n e d fitting (  can  curve  t e c h n i q u e m o d i f i e d t o a l l o w f o r a more a c c u r a t e d e r i v a t i o n o f S  as d i s c u s s e d  values  shear s t r e n g t h c a l c u l a t e d u s i n g the A r n o l d  i n section  o f the m o d i f i e d  be  found  undrained values.  The S  At  and u n m o d i f i e d  i n appendices  shear  technique  4.4.1 ) i s shown  I  and  Arnold I I . On  i n F i g . 5.5. Comparative undrained  shear  average,  the  strengths are approximately  5 % lower  obtained  and Wroth  u  using  the Windle  u  strength unmodified  than the m o d i f i e d average  strength  i s i n c l u d e d t o a l l o w a comparison o f the two methods.  McDonald  Farm  r e s u l t s i n undrained  and L u l u  Is.-UBCPRS  the m o d i f i e d  Arnold  method  shear s t r e n g t h s which a r e g e n e r a l l y s l i g h t l y  higher  than t h e Windle and Wroth method. T h i s t r e n d i s r e v e r s e d f o r a few t e s t s at  shallow  depths a t L u l u Is.-UBCPRS.  In general  a good agreement was  o b t a i n e d between the two methods. A t McDonald Farm, the curve f i t t i n g o f the  pressure-cavity strain  number  o f data  acquisition  points  system  data  acquired  used.  was made more due  i t is felt  Houlsby U n l o a d i n g  The  undrained  cylindrical At  McDonald  strength  strength  o f the FDPM u n l o a d i n g  and  ratio  Lulu  ranges  f o r most  calculated  Is.-UBCPRS,  curve  data  the s u b j e c t i v e shear  strengths  tests.  using  u  while  undrained  a t Langley  from 65 t o 110 %. Furthermore,  McDonald Farm and L u l u Is.-UBCPRS  the  Houlsby  i s shown i n F i g . 5.6.  the Houlsby  i s 55 t o 75 % o f the r e f e r e n c e S  the p e r c e n t for  Farm  u  o f the  Method  shear  analysis  that  l e a d s t o range o f u n d r a i n e d  which i s no g r e a t e r than 5 % o f the g i v e n S  5.2.3  by t h e s m a l l  t o the l i m i t a t i o n s  Nevertheless,  p r o c e s s o f the curve f i t t i n g  difficult  shear  Lower 232  t h e Houlsby  S  u  i n c r e a s e s w i t h depth a t a s i m i l a r  MCDONALD  1 S  0 | i  i  i  i  Su 50 I i  ( kPa ) i  i  LULU ISLAND - UBCPRS S„ ( kPa )  FARM  i  100 I  i  i  i  i  25 50 75 100 i i-i i I i i i i I i i i i I i i i i  150 I.  20-  5-  25  10Ref. Safv/tow -  15-  30- +++++Windle and Wroth Avg. S,  ••••• Arnold Curve Fit S» (modified) +•••• windle and Wroth Avg. S. ••••• Arnold Curve Fit S, (modified)  SUPERSCRIPT S KJtCATES TEST PERFORMED  SUmY WITH A STRAIN RATE < 2 u/rrin  35  i  Fig.  «  I  5.5  :  l  l  I  I  I  20-  SBPM U n d r a i n e d Shear S t r e n g t h F i t t i n g Method  l l  from A r n o l d  • ' ' ' ' • ' i i ' '  Curve  McDONALD FARM S„ ( kPo ) 15-  25 I  I  I  I  50  I >  I  I  I  » I  75 I  I  I  I  100 I  t  0  L I  LULU ISLAND - UBCPRS S« ( kPa ) i  20  40  60  i i I i i i I i i i i i i  LANGLEY LOWER 232 S ( kPa ) u  80  J  I  20 I I I  o o  5-  20-  R«f.  S, ft/tarn  •/  5-  I  a  10-  I  60 I  I  Ref. S ,  w  10-  • \ 15-  30-  i  ' «  oooooUBCSCP •••••UBC SCP I  l i t  F i g . 5.6  :  -  15-  aaaaaUSC SCP e>**M> FUGRO CP 35-  :  •  if 25-  40 I I  I  /  • • Ref. S, »y .  I  i  1.5 min RELAXATION 7-13 mln RELAXATION  i i i i i i i i i i  20-  FDPM U n d r a i n e d Shear S t r e n g t h from Houlsby U n l o a d i n g Method i  1  1  1  i  .  l  l  l  l  .1.  .1., i  i  I..  104  r a t e to the r e f e r e n c e S .  I n c o n t r a s t , the Houlsby S  u  Lower 232 tests  does n o t  near  shape may S  u  due  the  have a  ground  similar  surface  shape  at  Langley  have i n p a r t been caused by  the  non-linear  nature  of  to  the  the  the  p r o f i l e at  u  reference  Lower  232,  unloading  S.  For  u  the  difficulty  Langley the  dis-similar  i n estimating  curve  using  the  the  method  o u t l i n e d i n Chapter 4 ( a l s o see appendix I I I ). The  generally  low  undrained  analysis  can  perhaps  unloading followed  during  the  rapidly  decreases  stress.  This  test.  and  extension  undrained  shear s t r e n g t h s a r e results  reference  S  from  from the  u  attributed  becomes  and  may  to  Also  the  radial  than  the  the  stress  the  Houlsby  stress total  stress  tangential  conditions  the  paths  total  during  Houlsby  unloading  sites  f i e l d vane t e s t .  to note  showed This  less  scatter  t r e n d may  than  have been  d u r i n g the l o a d i n g p o r t i o n o f  i s that  i t appears  that  the  5.3  amount  the of  affect  shear s t r e n g t h measured.  E m p i r i c a l Methods  The  p r e s s u r e m e t e r f a c t o r s o b t a i n e d u s i n g the f i r s t  d e s c r i b e d i n s e c t i o n 4.4.1 was  the  caused  r e l a x a t i o n time b e f o r e a t e s t i s performed does not s i g n i f i c a n t l y the u n d r a i n e d  a  low.  a l l three  interesting  the  why  from  to  less  explain  by a p a r t i a l l o s s i n s o i l h e t e r o g e n i t y test.  strength  unloading,  analogous  triaxial  The  test  be  During  quickly  i s somewhat  shear  are shown i n F i g . 5.7.  The  e m p i r i c a l method  following  equation  u s e d to c a l c u l a t e N :  S  P S  L  u  u  - < L P  - o P  - practical limit •= r e f e r e n c e Su  > /  N  pressure  4  -!7  MCDONALD 2.0  0.0 I  I  I  I  I  N 4.0 I  FARM  LULU  6.0 '  •  •  I  i  •  IS.  UBCPRS  LANGLEY  N  8.1  0.0 0 I  •  '  4.0  2.0 1  I  J  I  I  I  I  I  I  u  0.0 0-L-L  6.0  LOWER  232  N 5.0  2.5  7.5  10.0  i I i i i i I i i i i I i i i i  »3  a  5-  5-  *> •  a  a+ + a 10-  +  a+ o  o. LU Q  + a  15-  ooooo UBC SCP  J  U  J  I  I  I  I  l_  F i g . 5.7 :  +  «  15-  1.5 min REUOGATION  ••••• UBC SCP N - (P»-P.)/S, „  UBC SCP. N - (P»-P.)/S.r//w« 7-13 min RELAXATION  +++•+Hughes SBPM N =• (Pi -Pj/S.  SUPERSCRIPT S INDICATES TEST PERFORMED SLOWLY WITH A STRAIN RATE ^ 2 a/mln I  a  aaaaa UBC SCP N - (P»-P.)/S. „/wm  N - (P»-PJ p-fft-f FUGRO CP N - (P»-PJ ++•++ Hughes SBPM N - (V,»-PJ/  J  10-  B  20-  J  I  I  I  L  _L  min RELAXATKJN  7-30  „w 2Q  FDPM and SBPM Pressuremeter F a c t o r N - ( P v s Depth  L  1  1  1  1  1  - P )/S Q  I  1  U  R  E  F  I  I  I  I  I  I  I  106  Assuming t h a t be  related  soil  the p r e s s u r e m e t e r l i m i t p r e s s u r e and the r e f e r e n c e S  using  the above e q u a t i o n ,  characteristics  such as OCR,  i.e., N  i s independent  of  can  u  other  the i d e a l c o r r e l a t i o n would r e s u l t i n  a N f a c t o r e x h i b i t i n g a minimal amount o f s c a t t e r  and r e m a i n i n g c o n s t a n t  w i t h depth. At quite  McDonald  Farm  the c o r r e l a t i o n  obtained  using  the UBC  SCP i s  good w i t h a N v a l u e r a n g i n g between 2.5 and 3.0. The range f o r the  Fugro CP i s 2.2 t o 3.5. The SBPM N v a l u e s show c o n s i d e r a b l y more then the FDPM N v a l u e s homogeneous and  a  soil  range  relaxation  a t McDonald Farm. A t L u l u  deposit  from  results  2.25  time i s a l s o  to quite  A poor c o r r e l a t i o n i s a l s o from 4.5  i n a N profile  5.25.  The  noticeable  result  Is.-UBCPRS,  with of  the l e s s  a l o t of  varying  f o r the t e s t s w i t h the UBC  t o 8.5. The poor c o r r e l a t i o n  pore p r e s s u r e s and hence P2Q  5.8. The  first the  over the f i r s t  inhibiting  quality  o f the c o r r e l a t i o n  tests  shear  SCP.  several  meters a t saturated  the g e n e r a t i o n o f  large  values.  o f the second  empirical  FDPM  soil  results  reference undrained  of  o b t a i n e d a t L a n g l e y Lower 232 where N ranges  o f the o v e r c o n s o l i d a t e d  The  scatter  amounts  L a n g l e y Lower 232 i s perhaps due to the f i s s u r e d and p a r t i a l l y nature  scatter  empirical  strength  technique  a r e shown  i nFig.  between the p r e s s u r e m e t e r and the  i s perhaps  slightly  method p r e s e n t e d . The most c o n s i s t e n t a t McDonald Farm where Np  range  poorer  t h a n the  correlation i s for  from  3.4  to 4 f o r the  Fugro CP and 4.2 t o 5.1 f o r the UBC SCP. A t L u l u Is.-UBCPRS the range i s between 3.7 and 6. A g a i n a poor c o r r e l a t i o n i s o b t a i n e d a t L a n g l e y Lower 232 where Np ranges from 5 t o 11.5. The  results  appear t o i n d i c a t e  of  the  that  second  empirical  t h i s method  i s less  method  at  affected  Lulu  Is.-UBCPRS  by the amount o f  LULU IS. UBCPRS  McDONALD FARM 0.0 15-  I  I  N  2.0  I I  I  I  P  4.0  I L_l  8  I  6.0  I I  2  8,  I  I  1  4 I  I  I  I I  LANGLEY LOWER 232  6 I  I  3.0  0.0  I i_  6.0 6.0  9.0 J  I  L.  12.0  s  +  20-  5-  3a  4-  +•  . 10-  25-  E 10-  o  0.  Ul Q  UJ  a  15-  30DOODOUBC SCP » » » » » FUGRO  SUPERSCRfT S INDICATES TEST PERFORMED SUDWLY WITH A STRAIN RATE 4- 2 */ndn I  I  I  I  I  15-  JD  +++++ Hughei SBPMfl,- ( P V £ ) / S L w  35-  O / s . n/oam oaaaa UBC SCP N.-(P --< lELAXATION ••••• UBC 1.5 min SCP R N,=(P»-0/S. CI FVAXXC 7-13 min RELAXATION +++++Hugh«9 SBPM N,=(Pi -o«)/S, nr/tac  I  I  I  I  I  I  I  I  F i g . 5.8 :  UBC SCP N, - (Pa-oJ/S, 7-30 min RELAXATION  8  20-  I  I  I  I  I  I  I  I  I  I  I  I  I  l  FDPM and SBPM Pressuremeter F a c t o r N v s Depth  20-  p  - (P  L  J  - a  I  v o  I  )/S  l_  u  REF  J  I  l_  n  108  r e l a x a t i o n time a l l o w e d when compared t o the f i r s t  e m p i r i c a l method. For  b o t h methods, s t a n d a r d i z i n g the amount o f r e l a x a t i o n time b e f o r e a i s performed  would make the i n t e r p r e t a t i o n o f the t e s t s l e s s  An advantage o f the cone pressuremeter excess  pore  a l s o be  to estimate  the u n d r a i n e d  shear  e m p i r i c a l e x p r e s s i o n f o r the u n d r a i n e d  difficult.  i s t h a t the cone b e a r i n g  p r e s s u r e measured d u r i n g cone p r e s s u r e m e t e r  used  test  p e n e t r a t i o n can  s t r e n g t h . The  shear  and  traditional  strength of cohesive  soils  uses a b e a r i n g c a p a c i t y type e q u a t i o n o f the form :  1 c where  q  With the advent for  unequal  c  S  u  N  k  +  * v o  o f the p i e z o c o n e , end  the  cone  area  literature. suggests  The  From  there  corrected  more  wide  review appears  that  recent  the  range  of  the  to be  t  type  s t r e n g t h and  increasing p l a s t i c i t y  a l s o appears A  a  depend on  shear  tested. A  that  factor with it  factor w i l l  soil  of  of test  the  are  literature,  a  trend of  For  of  N  Au «- u - u  Q  A u =  u  /  S  u  and  obtained  Greig  of  the  in  the  (1985)  decreasing  a given p l a s t i c i t y  cone  index,  sensitivity.  correlation  A  to  reported  available  index.  method  used  characteristics  values  general  bearing  and N^-p. r e s p e c t i v e l y .  increases with increasing proposed  cone  involves using  excess pore p r e s s u r e i n the f o l l o w i n g e q u a t i o n ( R o b e r t s o n  where  2  the cone b e a r i n g i s u s u a l l y c o r r e c t e d  effects.  reference undrained  cohesive  -  - cone b e a r i n g - cone f a c t o r  c o r r e s p o n d i n g cone f a c t o r are d e s i g n a t e d as q The  5  the  et al,1985):  5  -  3  109  The  N^  measured  u  will  depend  on  the  location  element on the cone and the s t i f f n e s s ,  of  the  pore  pressure  s e n s i t i v i t y and s t r e s s h i s t o r y  of  the s o i l b e i n g t e s t e d . The  values  f i g u r e 5.9 U2,  and  of  and  5.10.  N^  The N ^  for this  study  are  shown i n  c o r r e l a t i o n uses the excess pore  u  pressure,  measured j u s t b e h i n d the cone t i p . The  The  best  and  N^  correlations  u  cone f a c t o r s are a p p r o x i m a t e l y  narrow  range.  moderate  At  amount  approximately  Langley of  Lower  scatter  the N ^ u  values  u  pressure load  to  the  the  cell  shear average Farm  undrained  that  cone  in  Fig.  values  from  the  u  u  and  an  i n the  bearing  u  spaced  with  with  soft 20  can  to  30  f a c t o r s N and Np  do.  In c o n t r a s t ,  exception of The  full  be  partially  output  less  the  difference i n  clayey s i l t  %  a in  probably  organic  show  depth  the  i s operating at  the while  than  1  %  pore the full  reliable.  5.11.  are compared to the r e f e r e n c e u n d r a i n e d The  profiles  FDPM  N  values  i n F i g . 5.7.  correlation  a wide range. and  are w i t h i n a  values  u  considerably  The  the r e f e r e n c e S  The  between  A t L u l u Is.-UBCPRS, a c o n s t a n t N ^  number o f FDPM S ' s  and  Farm.  s t r e n g t h e m p i r i c a l l y c a l c u l a t e d u s i n g the FDPM  excellent  p r o f i l e with  N^  probe a t s e v e r a l depths.  the cone f a c t o r  indicate  cone S  shear  strength  reference S .  vary  i s operating at  measuring  f a c t o r N and  the  correlations  o u t p u t and t h e r e f o r e i s l e s s The  232  but  SCP  two  fact  transducer  a t McDonald  c o n s t a n t w i t h depth  are much more c l o s e l y  between  attributed  obtained  v a l u e s v a r y over a l a r g e range.  o b t a i n e d from the UBC  quality  are  the same manner as the pressuremeter  A t L u l u Is.-UBCPRS, the  N^  calculated  u  t  are  the  results the  calculated at  FDPM,  McDonald cone  e q u a l t o 10 produces a  c o r r e l a t i o n between the u  appears  and  to be  limited  s l i g h t l y better.  McDONALD N J  15-  I  FARM  M  15  10 I I I I  L  LULU IS. UBCPRS N«  I I I I  5 I I  I I I  10 I 1  15 I  I I I  20  LI I I  I  LANGLEY LOWER 232 Nkt  25  I I  I I I I  '  i  5 10 I ' ' ' ' I i •  •  a 5-  > a •+ 20-  5-  <x»a*+  30-  35-  OOD «Oft>«-  4 X  •  '  i  I  I  I  o»a  •  I  »• ft* »•» + •*» +  •  +  o  4 •  a  « *• fto+ a  a •  i  15-  r*  I—I—I—L  Fig.  20-  5.9 :  o  OH> +  «•> t>  + «a o*.  SCP  • <11> 4 4  a is•  4  o-oa •> a +  4  4  B>4H-  20-  4  mo  o n of av  4  •  Ofta«4  25-  ' •' ' ' •' ' ••' ' ' ' ' •' i ' i i i i i  k t  4  Id  •  oooaa CPTU—1 fr>>t>t» CPTU—2 ooooo CPTU-3 4 4 4 4 4 CPTU-4 UBC SCP-2  Cone F a c t o r N  •  a.  • o i>  o •  20  O +0 •  • a> ©•  •• «o+  *•  I I  «+ o > > o> 4 0 >B>  4 4 4 4 4 UBC  E  4  o •  a  ( Qt - or» ) -  I  10-  a  NO+  I  o  15 ' l•  i  +0-O  aaaaa CPTU-1 »>»>»>B>e> CPTU-2 ooooo CPTU-3 ••••• CPTU-4  4 •  Oft-  i  Ma + >a+ •> ota +  I  > <m t>a  0*>D*» •>*•• +  o o o o o o ooooo CPTU—1 o O O O D O CPTU—2 - o *>»»-»-»> CPTU-3 ooooo CPTU-4 ft**** CPTU-5 4 4 4 4 4 CPTU-6 K K K K M CPTU—7 ••••• CPTU-B  a o» >a  • ot>D •>  25-  •  '  - (q - * t  1  v o  )/S  u R  E  F  I I  v s Depth  I I I I  ''''''  -  MCDONALD  FARM  ( Ni„ >  15-  J  I  I  I  2  5 I i  i  i  I  10 1 t  LULU t  i—i—i l  • o» <•<><*• ••a ot>  20 H  • «  • •W  • -K>  -I  I  1  I  I  I  Q  L  I  I  I  I  5-H  I  u  O  tan-  I  I  I  I  L  Fig.  232  .1  I  15 I I  I  i.i  M  >•  -  DO  • t» • t> • i>  -  a o oa  -  oo oo  • >I>«lo •  t> oa  +  20-  5.10  I  I  I  I  15H  QWs -  AU, Sg PV o  • o  I  •  I  : Cone F a c t o r N  -  o t> a  I  A u  t» a o a  20 H  • O O O D CPTU—1 »»»»» CPTU-2 ooooo CPTU-3 +++++ CPTU-4 •••••UBC SCP-2 J  20  a o  • •  w  -I  (N«u)l 10 I I I  5 I I  10H  15-  L  J  0 I  LOWER  AU,  SE™-? (N*)« -flu,/ s,  i_  u  15  <X>  ooooo CPTU—1 O O O O D CPTU—2  J  i  10  >•>•  O *  •CPTU-4 ••••• CPTU-6 ••••• CPTU-8 35-  i  LANGLEY  »o « Ofr  •B «• HO l>  30 H  UBCPRS  *> •  •+o <» •fa e * o » o * o » o •+ o > +o «  25H  -  (N*j)2  5  15  i  ISLAND  I  I  aaaaa CPTU-1 e»*e>t»t> CPTU-2 • CPTU-3 UBC SCP  wo • O  I  I  - Au/S  u  1  I  R  E  L  F  25-  vs Depth  i i ' i  »i  I  I  I  I  I  I I  MCDONALD  15  25  S„ ( kPa )  50  LULU  FARM  75  IS.  UBCPRS  LANGLEY  S„ ( kPa ) 20 40 60 _J I I I I i i i I  100  i i »' I i i i i I i i i i I i i t i I  S„ ( kPa )  20 ' '  0  80  0 I  LOWER 2 3 2  '  •  40 • • '  60 I  I  I I  -Ref. S. n Ref. S»  20-  n/ -  3-  5-  RANGE OF S, FROM 3 CPTU TESTS USING S» - (p,-aJ/H, : NM - ID  RANGE OF S. FROM 5 CPTU TESTS USING S, - (q, - aJ/N*, ; Ntt 13 a  10-  25-  i  RANGE OF S. FROM 8 CPT TESTS USING  a  Ni  •*  LU  13-  30B  1  i i ' i i i i t i i i i i i i i i i i i  15•DODO  UBC SCP S -(P »-P0/N : N-2.80T t>t>t>»-t> FUGRO CP S.=»(P,o-Pl;/N ; N»2.89. DDOQO  35-  & a  Ref. S« n/oom  a  7.9  10-  20-  UBC SCP 5, - (P.-PJ/N ;N=>2.85 1.5 min RELAXATION UBC SCP S» - (P«,-P-)/N :N-4.5 7-13 min RELAXATION i - i.. i  F i g . 5.11 : Comparison o f S  u  i  i  i  i  i  i  i  i  i  i  ••••• UBC SCP S. - (P.-PJ/N ;N=6.447-30 min RELAXATION 20-  J—I  I—I  l  u s i n g FDPM F a c t o r N and Cone F a c t o r N|  I  I  I  I  i  i  t  i  t  113  At Langley  Lower 232, a f a i r  cone and r e f e r e n c e  S  correlation  but unfortunately  u  i s obtained  between t h e FDPM,  the p r e s s u r e m e t e r  p r o f i l e does n o t f o l l o w the same t r e n d as the r e f e r e n c e  5.4  S  u  S . u  Conclusions  In general,  the u n d r a i n e d  shear s t r e n g t h o b t a i n e d  and Wroth average s t r e n g t h method ranged from b e i n g to  and cone  the f i e l d vane S  McDonald  Farm  u  the Windle  approximately  equal  a t L u l u Is.-UBCPRS t o 1.25 t o 2.25 times h i g h e r a t  and L a n g l e y  Lower  232. A  between FDPM and SBPM t e s t s u s i n g analysis.  using  was  obtained  t h e Windle and Wroth average  strength  The p r e s s u r e m e t e r u n d r a i n e d  good  comparison  shear s t r e n g t h f o r McDonald Farm,  when compared t o t h e r e f e r e n c e Su, f o l l o w s the same t r e n d w i t h depth and has  a s i m i l a r amount o f s c a t t e r .  data  i s likely  v a r i a b i l i t y . When t e s t s were p e r f o r m e d  using  v a r i a b l e s t r a i n r a t e s , the slow t e s t s r e s u l t e d i n h i g h e r u n d r a i n e d  shear  strengths  due t o s o i l  A t L u l u I s . - UBCPRS the s c a t t e r i n the  which  were l i k e l y  caused by c o n s o l i d a t i o n d u r i n g  Furthermore, when r e l a x a t i o n times p r i o r undrained Windle valid  shear s t r e n g t h a l s o i n c r e a s e d s i g n i f i c a n t l y .  and Wroth  theoretically  generally Windle  scatter  cavity  strength  method  appears  i n c r e a s e d , the I n summary, the  t o be  f o r the a n a l y s i s o f FDPM d e s p i t e  expansion  methods  should  n o t be  a  reasonably  the f a c t used  that  when the  s t r e s s c o n d i t i o n s a r e n o t known.  The  the  average  method when u s e d  initial  t o a t e s t were  the t e s t s .  Houlsby u n l o a d i n g less  than the reference  and Wroth  which  analysis resulted i n S  may  be  average  S . u  strength  due t o a  loss  l o a d i n g p o r t i o n o f the p r e s s u r e m e t e r  u  values  which  were  When compared t o t h e r e s u l t s o f method, of s o i l  test.  the r e s u l t s heterogenity  showed during  less the  1 14  An  excellent  empirical  method  reference  S  of  for  u  a p p r o x i m a t e l y 2.2 rates.  At Lulu  more v a r i a b l e . Lower  232  correlation  u  calculating  McDonald  and 3.0  obtained the  Farm  with  undrained N  likely  a  result  crust.  presented  on  soil  of  t e s t procedures areas.  factors  strength  ranging  the  232  overconsolidated  means  are followed  of estimating and c o r r e l a t i o n s  S  u  strain  and  the e m p i r i c a l provided  are l i m i t e d  were  a t Langley  appear t o e x h i b i t  I n summary,  and  between  the N f a c t o r s  When compared to the cone parameters  characteristics.  are a u s e f u l  shear  traditional  the ground s u r f a c e  the p r e s s u r e m e t e r parameters N and Np  dependence  the  f o r t e s t s were conducted u s i n g s i m i l a r  The poor c o r r e l a t i o n near  was  between  I s . - UBCPRS and L a n g l e y Lower  n a t u r e o f the s o i l N^ ,  was  that  fissured and the same methods standard  to l o c a l i z e d  1 15  CHAPTER 6 SHEAR MODULUS AND RIGIDITY INDEX  6.1  Shear Modulus  The u n l o a d - r e l o a d calculated  using  the Houlsby  shear  modulus, G ,  the r i g i d i t y  index  modulus, GJJ,  and t h e shear  u r  and u n d r a i n e d  shear  strength  from  c y l i n d r i c a l u n l o a d i n g a n a l y s i s i s p r e s e n t e d i n F i g . 6.1. The  shear modulus i s n o t a d j u s t e d f o r v a r y i n g s t r e s s o r s t r a i n l e v e l s . showing the c a l c u l a t i o n o f the shear modulus c a n be found  Plots  i n appendices  I t o I I I w h i l e a summary o f the shear modulus v a l u e s a r e i n appendix V. The  results  approximately similar.  a t McDonald Farm  constant  with  indicate  depth  The h i g h u n l o a d - r e l o a d  and t h a t  shear  w i t h the Fugro CP c a n be a t t r i b u t e d f o r t h e u n l o a d i n g l o o p s . A t 27.5m f o r t h e UBC SCP a r e most l i k e l y around the p r e s s u r e m e t e r unload-reload  loop  was performed.  For s e v e r a l other  ranging reload  from loop  moduli  the h i g h G  obtained  u r  Since  a t 16.2 m increments  and GJJ v a l u e s  stress  no pore  depth used  calculated  state  The s h o r t  short  to occur  periods  measurements  was made t o c o r r e c t  o f the s o i l  tests  allowed  phase b e f o r e the  pressure  , no attempt  unload-reload  performed.  modulus i s  and G^ v a l u e s a r e  u r  t o the s m a l l s t r a i n  test  2 t o 5 minutes were was  the G  probe d u r i n g a 17 min creep  changes i n the e f f e c t i v e  probe.  t h e shear  caused by the c o n s o l i d a t i o n o f the s o i l  were made d u r i n g a p r e s s u r e m e t e r for  that  s u r r o u n d i n g the  periods before  o f creep  of  creep  the unload-  appear  not to  s i g n i f i c a n t l y a f f e c t the shear modulus o b t a i n e d . The indicate  shear a  moduli  softer  at Lulu  soil  than  I s . -UBCPRS the s o i l  vary  tested  over  a wide  range  and  a t McDonald  Farm.  The  MCDONALD  LULU  FARM  SHEAR MODULUS ( MPa )  0 10 20 30 15 I i ' ' i I i ' ' i J i i i i I i » i  IS.  UBCPRS  LANGLEY  SHEAR MODULUS ( MPa )  40  2  4  6  0  LOWER 2 3 2  SHEAR MODULUS ( MPa )  1  1 2 3 4 5 i 1 I 111l i 1i I 11 1I 11 1  D  a 20-  5-  *  a  oa  * #  50  oo  * 25-  10-  CL UJ  a  t>tr  *  10-  * *  *  >  *  *  0  fc Q  a >  a  » 30-  fc a  *  o° *  *-  15-  aaaaa UBC SCP GH Houlsby Unloading >t,t>» UBC SCP C +++++ FUGRO CP GH Houlsby Unloading ••••• FUGRO CP C 35-  °o  _l_  I  UBC SCP GH Houlsby Unloading " UBC SCP Gl * * * * * Hughes SBPM G » DDOOD  20- . . l . J  I I I I I I I I I I I I I  Fig.  6.1  15-  :  1 1  1  1  1  1  1  1  1  1 1  DOOOO  GH  Houlsby Unloading  1 1 1 1 1 1 1 1 1 1 1 1  20-  Unload-Reload, G , and Houlsby Unloading, G , Shear Modulus vs Depth u r  UBC SCP  H  1  1 17  Houlsby  unloading  shear moduli  appears  t o be on  average  s l i g h t l y higher  than the u n l o a d - r e l o a d modulus. the GJJ v a l u e s i n d i c a t e a s o i l which appears  A t L a n g l e y Lower 232 have  approximately  the  same  stiffness  as  the  Lulu  d e p o s i t . U n f o r t u n a t e l y , u n l o a d - r e l o a d shear moduli this  Is.-UBCPRS  4.19  are not a v a i l a b l e f o r  )  Is  the  equation  derived using a  for  the  linear  unload-reload  elastic  soil  shear  model,  modulus  unload-reload modulus small  loops.  a  better  o b t a i n e d by n o r m a l i z i n g G  can be  strain  Therefore  modulus,  G  shear s t r a i n increment.  and  m a x  plotting  T h i s has  understanding U  R  6.2.  A t McDonald Farm and  of  of  G  the e x t r e m e l y  low  G  M  A  U  R  normalized  with  unload-reload  shear s t r a i n increment Figs.  6.3  this  level  and  manner  for  strain  6.4.  the  shear  increment  cavity  wall  cavity  depth.  from  Also  interesting  G  G  M  A  X  in Fig. appears  max  a non  linear  t o note  are  or peat at L u l u  depth. shear  modulus  plotted  against  the  f o r McDonald Farm and L u l u Is.-UBCPRS i s shown i n  The  due  the  i s found  L u l u Is.-UBCPRS below 5 meters,  Is.-UBCPRS between 3 and 5 meters The  dynamic  An approximate average  v a l u e s i n the o r g a n i c c l a y e y s i l t  X  shear  a l r e a d y been done f o r shear moduli  f o r the n o r m a l i z a t i o n o f G  i s observed  F F L A X  soil  the  against  i n c r e a s e l i n e a r l y w i t h depth w h i l e a t L a n g l e y Lower 232,  increase  the  ratio  eq.  used f o r the  w i t h r e s p e c t t o the  the  c y c l i c and monotonic l a b t e s t s i n F i g . 4.14. p r o f i l e a t each s i t e used  (  in reality  b e h a v i o r i s n o n - l i n e a r even f o r the s m a l l s t r a i n increments  in  soil  site. Although  to  to  Houlsby  to  u n l o a d i n g shear  difficulty  modulus.  It  are n o t  i n a c c u r a t e l y determining should  be  from  an u n l o a d - r e l o a d loop  and  not  the  moduli  average  emphasized i s the  strain  that  strain  increment  analyzed a the  strain shear  increment in  the  at  soil.  MCDONALD  FARM  LULU  Gmax ( MPa )  50  100  i b i i I  L_ J  l  L  IS.  Gmax  150  20  J  1  Gmax - pV. V. - Shear Wave , Velocity J  1  U B C P R S  LANGLEY  ( MPa ) i  i  40 i  Q  i  LOWER  2 3 2  Gmax ( MPa )  0  20  I  I  I  I  t  I  I  I  I  I  40 I  Gmax - pV, V, - Shear Wove Velocity  I  I  I  I  I  I  I  Gmax - pV.* V, - Shear Wave Velocity  5-^  3H  Avg. Gmax  10H  Avg. Gmax ••••• SCPT--1 ••••+ SCPT-•2 ooooo SCPT--3 SCPT-•4 oaooo SCPT--5 ooooo SCPT-•6 -I  I  L  15H  Acc] Geo Ace] Ace, Geo 'Geo, -I  L  -I  I  L  F i g . 6.2  20-  :  ••••• SCPT-1 (Acc) +++++UBC SCP-2 (Acc oooooUBC SCP-2 (Acc UBC SCP-2 (Acc aoooa UBC SCP-2 (Acc' _l_  i  10H  a  Avg. Gmax 1SH ••••• SCPT-1 (Geo) +•+•• UBC SCP-1 (Acc) UBC SCP-1 (Acc) 20-  I  i  i  i  i  Dynamic Small S t r a i n Shear Modulus, G . v s Deoth ' max' r  i  i  i  i  i  i  i  i  i  i  i  i  •  i  119  M C D O N A L D  o.o  -j  1  1—i  i i i i 11  1—i—i  0.1  0.01  SHEAR  Fig.  6.3  :  G  /G  FARM  I I I I 11  1—I—I  1  STRAIN y  v s Shear  = 2e„ ( %  I I I I 11  10  )  S t r a i n a t McDonald Farm  120  LULU IS.  0-00  -j 0.01  1  i i i i 11 0.1  1—i  1  UBCPRS  1—i  S H E A R STRAIN y  Fig.  6.4  :  G  /G  I I i i 11 1  = 2z  v  -  1—i—i i i i i 11 10  ( % )  v s Shear S t r a i n a t L u l u Is.-UBCPRS  121  Therefore, results  a direct  and the Seed and I d r i s s  curves  reproduced  qualitative  cavity  wall.  between  the pressuremeter  and Kokusho  F i g . 4.14  shear  c a n n o t be  c a n be made  realizing  G  made.  that  At  McDonald  Farm,  attenuates  u r  values  I1T  with  t h e average  the n o r m a l i z e d  G  u r  /G  increasing  shear  strain a t the  values  m a x  a  are  .08 and .24. The  strain  in a  manner  f o r Teganuma s o f t c l a y . A t L u l u Is.-UBCPRS, the  a r e between from  G  ur  .07 and .22. A good comparison  the FDPM and SBPM t e s t s  i s obtained  and the n o r m a l i z e d  a g a i n a t t e n u a t e s i n a s i m i l a r manner t o Teganuma s o f t 6.2  G  u r  clay.  R i g i d i t y Index  The r i g i d i t y first  two methods  index, I , was c a l c u l a t e d i n t h r e e d i f f e r e n t ways, the r  shown i n F i g . 6.5. The f i r s t  d e r i v e d from the Houlsby ratio  rigidity the  Nevertheless,  H i d A.  between G / m a x  the  attenuation  l i k e l y be a c o n s t a n t r a t i o o f the s t r a i n increment  t o the b e h a v i o r  G ./G  unload-reload  modulus  .08 and .65 w i t h most p o i n t s f a l l i n g between  normalized similar  from  comparison  increment w i l l  \JL JL  comparison between  o f the G index  reference  shear modulus and r e l i a b l e  i s not adjusted f o r varying s t r a i n S  u  from  tests  u  parameters  vane  i s used  s t r e n g t h . The  levels.  with  Furthermore,  the u n l o a d - r e l o a d i s more c o n s i s t e n t  u  o b t a i n e d u s i n g the p r e s s u r e m e t e r . r  f o r most t e s t s  index i s a p p r o x i m a t e l y  the Houlsby  using G  the f i e l d  shear  s i n c e i t i s f e l t t h a t the r e f e r e n c e S than S  uses  u n l o a d i n g a n a l y s i s w h i l e the second method uses  and the f i e l d vane u n d r a i n e d  u r  A t McDonald Farm I rigidity  method  unloading  I  ranges  between 80 and 220. The  c o n s t a n t below a depth o f 20 m. F o r most r  i s slightly  higher  than  I  r  calculated  MCDONALD  FARM  RIGIDITY INDEX ( l ) 400 200 i i I I I i I I  LULU  r  i  UBCPRS  LANGLEY  LOWER 2 3 2  RIGIDITY INDEX ( l ) r  r  0  600 I—I—L  IS.  RIGIDITY INDEX ( l ) 50 100 150 200 J u -I I i L  50  100  1  +•  200  150 _L_  • •+ *  5H  I  oo  10o *  a  »  ooooo UBC SCP l Houlsby Unloading ••••^ UBC SCP \r=G„/S mr ry +++++ FUGRO CP l Houlsby Unloading • ••••FUGRO CP l G„/S mr ry r  J  I  I  I  u  I  I  I  I  Fig.  I  a »a'  15H  r  u  _l_  &  ooooo UBC SCP l Houlsby Unloading UBC SCP Ir-Ggr/S, mr rv/eac »»»>»» Hughes SBPM I^Ctj/S pv/eaw  r  =  J  u« >  15H  r  5H  L  6.5 :  u r  /S  20  _l_  20-  G  ooooo UBC SCP  u  R  E  p  and Houlsby U n l o a d i n g I  f  J  v s Depth  '  >-  L Houlsby Unloading J  I  I  L  J  1 23  At  L u l u Is.-UBCPRS t h e r i g i d i t y  rigidity and  index  vary  calculated  between  20  using G  index v a r i e s over a wide range. The f o r t h e SBPM and FDPM a r e s i m i l a r  u r  and 135 w h i l e  t h e Houlsby  unloading  I  ranges  r  between 65 and 210. At 140. I  r  L a n g l e y Lower 232 t h e Houlsby  Although  above 7 m depth  rigidity  the p r o f i l e  i n d e x ranges  from  85 t o  i s n o t c o n s i s t e n t , below 7 m  i n c r e a s e s c o n s i s t e n t l y w i t h depth. Figure  using  6.6 shows t h e t h i r d  t h e average  rigidity  index  expected  for a  G  and t h e r e f e r e n c e  m a x  i s approximately normally  s o i l deposit i s believed only  lightly  velocities peat.  r  m a x >  e r r o r due t o i n c o r r e c t  i s t o be  Lulu  which  Is.-UBCPRS t h e  the  plasticity  c o n s t a n t w i t h depth one  due t o t h e e x t r e m e l y  obtained  m a x  since  w i t h depth. The low r i g i d i t y  the s u r f a c e are l a r g e l y  on G  depth  At  a r e b e l i e v e d t o be f a i r l y  and t h e r e f o r e G  effect  Farm t h e  t o be c l o s e t o n o r m a l l y c o n s o l i d a t e d and above  Even below 5 m the o r g a n i c n a t u r e  slight  index  s i n c e below a p p r o x i m a t e l y 6 t o 7 m, t h e  would e x p e c t l e s s o f a change i n I near  with  the r i g i d i t y  A t McDonald  u  o v e r c o n s o l i d a t e d . Furthermore,  i n d e x and s e n s i t i v i t y  obtained  constant  S .  consolidated s o i l .  r e s u l t s a r e somewhat unexpected  this  method o f o b t a i n i n g  The r i g i d i t y s o i l densities  indices  low shear  i n the organic c l a y e y s i l t  or  o f t h e d e p o s i t may have had a  index  could also  be s l i g h t l y  in  assumed i n the c a l c u l a t i o n o f the  G max v a l u e s . At depths  Langley and  decreases  Lower  increase  a t lower  232 t h e r i g i d i t y to a  depths.  maximum  index  at 8  The change  m  i s quite depth  low a t s h a l l o w  and t h e n  i n rigidity  index  slightly i s t o be  e x p e c t e d s i n c e t h e degree o f o v e r c o n s o l i d a t i o n i s d e c r e a s i n g w i t h depth. It  i s a l s o i n t e r e s t i n g t o note  t h a t the r i g i d i t y  index p r o f i l e  from t h e  MCDONALD  FARM  LULU  RIGIDITY INDEX ( I, )  IS.  UBCPRS  LANGLEY  RIGIDITY INDEX ( l ) r  0 250 500 750 1000 15 I i i i i I i i i i I i i i i I i i i i I |  0  232  RIGIDITY INDEX ( l ) f  200 400 600 800 ' I i i i I » i i ' ' • i ' •  O-i-L.  LOWER  0  0  250 500 750 1000 I i i i I i i i i I i i i i I i • • • |,  -• 20  5H  i  25 H Q. UJ  Q  10H  icH Q. UJ  a  a 30 H  13H Avg. Gmax l  r  35-  '  I, =  = Ref.  S  u  15H  FV/OONE  ' i ' ' ' ' i ' • '  i i i i  20-  Fig.  •' ' 1  6-6 :  Avg. Gmax Ref.  S  u  Ir =  FV/OONE  1 1  G  Avg. Gmax Ref. S„ rv/coNE  ?Q.I I I I I I I I I I t l i l i i i i i i  m a x  /S  u  R  E  p  v s Depth  M  125  Houlsby  unloading  using G  analysis  i n F i g . 6.5  i s u n l i k e the p r o f i l e  and the r e f e r e n c e S . The d i f f e r e n c e i n t h e two p r o f i l e s  m a x  u  the ground s u r f a c e may i n p a r t r e s u l t from the l i n e a r p o r t i o n o f the Houlsby Consequently,  t h e Houlsby  S  u  shear  rigidity  strain  index  increment  u n l o a d i n g curve  d e f i n e d as G  laboratory At  both  Idriss  ( see s e c t i o n 5.2.3 ).  /S  gj-p i s p l o t t e d  u  and L u l u  relationship  between  the  a g a i n s t the  Is.-UBCPRS  i n Figs.  i s included to provide a  results  of  pressuremeter  and  tests. McDonald  attenuates with and  u r  f o r McDonald Farm  comparison  i n estimating  index.  6.7 and 6.8. The Seed and I d r i s s qualitative  the d i f f i c u l t y  near  may have been u n d e r p r e d i c t e d l e a d i n g t o an  o v e r p r e d i c t i o n o f the r i g i d i t y The  obtained  Farm  and L u l u  i n c r e a s i n g shear  relationship.  I s . -UBCPRS  the r i g i d i t y  s t r a i n i n a manner s i m i l a r  A t L u l u Is.-UBCPRS  index  t o the Seed  a good comparison between  SBPM and FDPM r e s u l t s a r e o b t a i n e d .  6.3  Conclusions  A good comparison was o b t a i n e d between the r e s u l t s unloading  shear  unload-reload showed in  modulus  modulus.  that f o r both  higher  values,  analyzed A  limited  methods likely  modulus  a  was n o r m a l i z e d  attenuate  as  the  normalized  unload-reload  cylindrical  amount  unloading  o f data  from  result  magnitude data  of  consolidation.  FDPM and SBPM G with  respect  of  the  was  found  a t t e n u a t i o n c u r v e s by Seed and I d r i s s  u r  to G  cavity  and the  McDonald  a l o n g creep phase b e f o r e a t e s t  comparison was o b t a i n e d between reload  using  o f the Houlsby  An  Farm  resulted excellent  v a l u e s . The unloadm a x  and was  strain  shown t o  increased.  t o be between  (1970) and Kokusho  The  the l a b o r a t o r y e t a l (1982).  126  M C D O N A L D  1000-  *  IIIIIIII  Gmax/S  I IIIIIIII  u  1 ||||||||  i  1 1 1 lll|  1 11 1 1 II!  —  REF FV  >  Avg. Relationship for Cohesive Soil6 f Seed and Idriss, 1970 )  t -  •  +  i  X LxJ  I I I  f  FARM  Mini  100 • •••a UBC SCP +++++ FUGRO CP  Cr:  10 l 0.0001  Millli|  0.001  I liiilii|  i  'r Ir  = =  G /S REF FV G / S REF FV ur  u  ur  u  1 1 1 1 III]  0.01  0.1  S H E A R STRAIN y = 2t  9  Fig.  6.7 :  G  u r  /S  u R  £  F  v s Shear  -  1111111) 1  1  1 i i 11 in  { %)  S t r a i n a t McDonald Farm  10  1 27  LULU IS.  S H E A R STRAIN y  Fig.  6.8  :  G  u r  /S  u  R  £  F  UBCPRS  =  2e  v  ( % )  v s Shear S t r a i n a t L u l u Is.-UBCPRS  1 28  However,  i t s h o u l d be emphasized t h a t t h e p r e s s u r e m e t e r  the  strain  the  soil.  a t the c a v i t y w a l l and n o t the average Three  different  compared. The Houlsby G  u r  definitions  unloading  d i v i d e d by the r e f e r e n c e S  test.  On average  t h e Houlsby  calculated using G The produced  u r  rigidity values  u  rigidity  proportional  the r i g i d i t y  index  and I  r  index  were  calculated  using  unloading  I  r  was s l i g h t l y  higher  than I  r  u  index  calculated from  calculated  t o the o r g a n i c  using  approximately  using  range t e s t e d w i t h  I  r  m a x  and  100 near  the r e f e r e n c e the ground  S  u  surface  Lower 232 and McDonald Farm. The G  content  G  appears  m a x  to  be  inversely  and o v e r c o n s o l i d a t i o n r a t i o .  McDonald Farm , the n o r m a l l y c o n s o l i d a t e d s o i l over the depth  increment i n  and the r e f e r e n c e S .  ranging  index  strain  ranged between 75 and 200 f o r most FDPM  a t L u l u s.-UBCPRS t o 1000 a t L a n g l e y rigidity  of  shear s t r a i n i s  is relatively  At  homogeneous  c o n s t a n t and a p p r o x i m a t e l y  equal to  1000. The r i g i d i t y  index  shown t o a t t e n u a t e w i t h the  Seed and I d r i s s  calculated  using G  i n c r e a s i n g shear  (1970) average  u r  and the r e f e r e n c e S  was  strain  i n a similar  manner t o  relationship  f o r cohesive  soils.  e x c e l l e n t comparison was o b t a i n e d between the SBPM and FDPM I L u l u I s . - UBCPRS.  u  r  An  values at  129  CHAPTER 7 STRESS HISTORY AND  7.1  IN SITU HORIZONTAL STRESS  Reference O v e r c o n s o l i d a t i o n  The  results  state  soil  shear  strength  of laboratory  Ratio  tests  (Ladd  e t a l , 1977)  mechanics concepts have shown t h a t can be  and  the n o r m a l i z e d  r e l a t e d t o the o v e r c o n s o l i d a t i o n  critical undrained  ratio  ( OCR  )  u s i n g the f o l l o w i n g e x p r e s s i o n :  ( S w/ e vo r ' j 'oc - ( Su'/cr ) vo ' 'nc v  The OCR crp'/  C T v o  ratio '  )  a  n  i s defined  the r e f e r e n c e OCR  strain  ' 7.1  A  i n terms o f e f f e c t i v e v e r t i c a l  d A i s the p l a s t i c v o l u m e t r i c  For t h i s study  * OCR  v  s t r e s s ( OCR  =  ratio.  i s o b t a i n e d by matching f i e l d  vane  d a t a t o the r e s u l t s o f oedometer t e s t s on tube samples as shown i n F i g . 7.1. F o r the Lower L a n g l e y A  -  0.9  results.  produces This  field  good  f i t between  i s a reasonable  w e l l documented for  a  232 s i t e a p l a s t i c v o l u m e t r i c  value  the  field  when compared  vane  s t r a i n ratio of and  oedometer  to a review o f  nine  c l a y s by J a m i o l k o w s k i e t a l (1985) which i n d i c a t e d t h a t  vane shear c o n d i t i o n s , A ranges between 0.77  and 1.51  with  a  mean o f 1.03.  7.2  Stress History  The  reference  OCR  i s correlated against  s e i s m i c p i e z o c o n e t e s t s a t the Lower L a n g l e y o f 2 and 13 m.  The v a r i a t i o n i n G  m a x  /S  u  the r e s u l t s  o f FDPM  and  232 s i t e between the depths  with  OCR  i s shown i n F i g . 7.2  130  LANGLEY LOWER 2 3 2 J  L  «  5 H  OCR 5  J  L  J  10  L  >  >*  1(H  > » » OEDOMETER TESTS * * * * * FIELD VANE  #  x i—  CL  SANDY SILT LAYER «  20 H  25  Fig.  7.1 :  « « * « * *  _L_  OCR  J  I (s>;)J I  L  (S«/a ) w  J  M  =.26,A = 0.9  L  S t r e s s H i s t o r y from F i e l d Vane a t Lower L a n g l e y 232  131  while  the v a r i a t i o n  i n the n o r m a l i z e d  limit  pressure  and cone  bearing  w i t h OCR i s shown i n F i g . 7.3. I n F i g . 7.2 the r i g i d i t y dynamic shear  small  strain  strength,  more r e l i a b l e  shear  index  i s c a l c u l a t e d by u s i n g  modulus,  S . The f i e l d  vane  u  S  G  m a x  ,  and t h e average  i s used  u  the average  since  undrained  i t i s felt  and c o n s i s t e n t than the l i m i t e d number o f FDPM S  obtained.  The  decreases  in a  rigidity  index  initially  linear  fashion  increases  as the OCR  slightly  increases.  This  t o be values  u  and  then  result i s  s i m i l a r t o the t r e n d o b s e r v e d f o r Boston Blue c l a y i n F i g . 4.16. In (  q -a t  F i g . 7.3 )/  v o  < 7 v o  '  a  ,  *id  OCR  c o r r e l a t i o n increases to  level  Also  manner  u  vo  obtained  7.3  between  a r e compared.  ^20' vo  (  S  u  a  o  r  V  that  the FDPM  l e s s r a p i d l y than the CPT c o r r e l a t i o n and appears  except  where  )/ o'  ff  I t i s apparent  for a slight  i s from  increases  d i p a t an OCR o f  i n c l u d e d f o r comparison purposes  N^ *S /<7 ' t  correlation  o f f as the OCR i n c r e a s e s . The CPT c o r r e l a t i o n  consistent 2.8.  the  the f i e l d  i s the curve vane.  A  good  in a  approximately  produced  using  comparison i s  e x c e p t t h a t the p l o t o f N ^ * S / a ' i s more concave up shaped. t  u  V Q  Reference I n S i t u H o r i z o n t a l Stress  The  determination  o f the i n s i t u h o r i z o n t a l s t r e s s , ^  n o  , using i n  s i t u t e s t methods i s a c h a l l e n g i n g t a s k . I n s o f t c l a y s , the SBPM t e s t i s perhaps high  t h e most  method  o f determining  q u a l i t y SBPM t e s t s were n o t performed  dilatometer soft  promising  test  also yields  reasonable  and medium non-cemented c l a y s  several  dilatometer  a  during  values  of K  n Q  .  this Q  Unfortunately, research.  and hence a  The n  o  in  ( J a m i o l k o w s k i e t a l , 1985 ) . S i n c e  t e s t p r o f i l e s were made a t t h e r e s e a r c h  s i t e s , the  132  LANGLEY LOWER 2 3 2 1200  C/? 900-  — 'T  1  • * *  1  -  I  I  1  I  "  S„ FROM FIELD VANE  * *  x o E  *  UJ  * • /(Su/oW)oo>  ^  OCR =  I (S„/One  =  .26. A =  .9  t  •  U S u / O n J •  a  7  •  10  OCR F i g . 7.2 :  Variation  i n Gmax/S  u  w i t h OCR a t L a n g l e y Lower 232  LANGLEY LOWER 2 3 2 15-  1~ + » 12.5  }  10-  0-  b -g i t)  5-  *****  » "ao UfcJU S O r  {jX~0^)/0^o  Tests ~i—i—r 7 8 9  OCR F i g . 7.3  Variation i n (P - vo>/ vo' OCR a t L a n g l e y Lower 232 S  2 0  S  a  n  d  <*t- vo>/ vo' S  S  w  10 i  t  h  133  dilatometer  K  and  Q  hence  a  n  Q  was  chosen  as  the  r e f e r e n c e cr^o'  M a r c h e t t i ' s (1980) c o r r e l a t i o n :  K  is  used  to c a l c u l a t e  K . Q  - ( K /1.5 ) 0  Q  4  - 0.6  7  D  Brooker  and I r e l a n d ' s  7.2  c o r r e l a t i o n between  o b t a i n e d d u r i n g c o n s o l i d a t i o n t e s t s and OCR and p l a s t i c i t y i n c l u d e d f o r comparison  7.4  K  Q  index i s a l s o  purposes.  In S i t u Horizontal Stress  The tests  i n s i t u h o r i z o n t a l s t r e s s and t h e r e f o r e K  i s shown  empirical practical cavity  i n Fig.  approach limit  strain  as  pressure  and S  u  7.4.  The K  suggested  values  Q  by  Lacasse  Q  c a l c u l a t e d from FDPM  are obtained and  Lunne  i s d e f i n e d as the e x p a n s i o n  and I  r  a r e from  using (1983).  pressure  the Houlsby U n l o a d i n g  the The  a t 20 % analysis.  S e v e r a l o b s e r v a t i o n s c a n be made :  1. ) The FDPM K  Q  v a l u e s a r e i n g e n e r a l much t o o h i g h .  2. ) The FUGRO CP w i t h a pressuremeter L/D o f 10 p r o d u c e d K v a l u e s which were lower than the UBC SCP w i t h a L/D o f 5.  Q  3. ) The FDPM K v a l u e s a r e h i g h l y s e n s i t i v e t o t h e S used. The K v a l u e s a r e i n p a r t t o o h i g h because o f the low S o b t a i n e d u s i n g the Houlsby U n l o a d i n g a n a l y s i s ( see Chapter 5 for d e t a i l s ). Q  u  Q  The  results  u  also  appear  may be more a p p r o p r i a t e  to indicate  that  spherical  f o r the a n a l y s i s o f FDPM  expansion tests  with  theories low L/D  ratios. The the f i e l d for  same t e c h n i q u e vane S  u  i s used t o o b t a i n K  and a c o n s t a n t  I  r  equal  Q  from SBPM t e s t s except  that  t o 200 a r e used. The r e s u l t s  McDonald Farm i n F i g . 7.5 i n d i c a t e a f a i r l y  good c o r r e l a t i o n between  MCDONALD 0.0 15 _l  I  I  I  0.5 i I  K. I  J  LULU  FARM  i  1.0 I L  J  I  1.5  0.0  l_  20-  _l_  I  I  i  Q  UBCPRS  1.0 I  +  5-  25-  IS.  I  +  I  I  •  •  LANGLEY 2.0 I  L  K. 2.0 I I  1.0  0.0  LOWER  i  232 3.0  I  4.0  L_L_  5-  10"  10-  u 15-  30UBC S C P CYLINDRICAL UBC S C P SPHERICAL oaaaa FUGRO C P CYLINDRICAL »»t>t>» FUGRO C P SPHERICAL DILATOMETER Morchetti flflBO) Brooker ft Irelartd(l965). PI=1S.  35-  —I—I  I—I  I  I  I  I  I  I  I  I  ••••• UBC S C P CYLINDRICAL +++++UBC S C P SPHERICAL R Morchetti ( 1 9 8 0 ) DILATOMETER Brooker ft lreland(1965). P I - 2 1 . O C R - 1  OCR-1 I  15-  t  20-  FDPM K, - —  J  I  I  I  I  1  I  i  '  Brooker a n d Ireland (1965). P I - 2 0 • • • • • U B C SCP CYLINDRICAL t i n t UBC S C P SPHERICAL DILATOMETER MarchetM (1980)  20-  -J—I—I—I  PL-^CZ+mJ/J^Cl+tnLj-u,  Ir and S, Houlsby Unloading , m - 1 CYLINDRICAL m - 2 SPHERICAL DILATOMETER  F i g . 7.4  :  Ko\ K» - ^—j - 0.6  FDPM K  047  V a l u e s O b t a i n e d U s i n g E m p i r i c a l Method \  I  I—I  I  I  I  I  I  I  I  I  135  M C D O N A L D K 0.0  15  J  I  I  I  0.5 I  I  FARM  0  I  1  I  1.0  I  I  I  I  I  1.5  20-  25Q_ Lul Q  30  *#*#• Hughes SBPM CYLINDRICAL DILATOMETER Morchetti (1980) Brooker & lreland(1965;. Pl=15. 0CR=1 35  J  SBPM Ko •  I  I  —  I  I  L  DILATOMETER 7.5 :  I  '  '  '  ; a * ' = P -S *(1+lnl )-u / K\  Fig.  I  0  4  u  r  i  0  i  i  i  . I =200 . S -FV f  U  7  - f — J - 0.6  SBPM K V a l u e s O b t a i n e d U s i n g E m p i r i c a l Method a t McDonald Farm Q  136  the  dilatometer  and SBPM. When t h i s  same t e c h n i q u e  i s used  t e s t s a t the L u l u Is.-UBCPRS e x t r e m e l y low o r n e g a t i v e obtained. obtained The  It i s likely  that  the low SBPM  values  practical  results  of K  limit  a t L u l u Is.-UBCPRS a r e the major cause o f the poor  f o r SBPM are  Q  pressures  results.  i n d i c a t e t h a t the e m p i r i c a l method o f d e t e r m i n i n g  K is Q  a poor one. T h i s same c o n c l u s i o n was r e a c h e d by L a c a s s e and Lunne (1983) when  they  techniques  compared  the  horizontal  dilatometer K .  From  p M  of  the e m p i r i c a l  site  to  which may be b e t t e r s u i t e d t o d e t e r m i n i n g  stress  from  FDPM  tests  and FDPM a r e compared u s i n g the r e s u l t s  a t McDonald  comparison  o f the K  and K p  D  i s shown  identical  Farm  appears t h a t Kp^ c o u l d be c o r r e l a t e d t o K poorer  method  M  i n Fig.  equations  and the L u l u Q  the i n  7.6. The for  testing at this  site.  the  and FDPM  dilatometer  i n a s i m i l a r manner t o K . A D  profiles  a t the Lower L a n g l e y  occurs  during  Another f a c t o r which c o u l d test  profiles  dilatometer  i s that  penetration  during  cause a d i f f e r e n c e i n less  stress relaxation  due t o l e s s  change  which r e l a t e parameters o b t a i n e d  from a  o f the d i l a t o m e t e r .  Conclusions  Two methods were p r e s e n t e d seismic  cone  correlation  pressuremeter  was  obtained  sounding  between  to stress  the r i g i d i t y °  history. index  An  defined  J  d i v i d e d by t h e f i e l d correlating limit  232  abrupt  i n geometry between the t i p and b l a d e  7.5  and  Is.-UBCPRS, i t  c o u l d be i n p a r t due t o the l o n g r e l a x a t i o n times employed  likely  other  f o r h i g h q u a l i t y SBPM t e s t s .  Another t e c h n i q u e situ  results  vane  the n o r m a l i z e d  pressure  S  u  and the OCR. The second method  cone b e a r i n g  and the p r e s s u r e m e t e r  t o the OCR. The n o r m a l i z e d  cone b e a r i n g  excellent as G max involved practical  and t o a l e s s e r  MCDONALD  Ko 10  &  FARM  KPM  LULU  2.0  3.0  0.0  DILATOMETER K  Fig.  7.6 :  1.0  D  =  K  D  (P -U )/<J„' 0  0  IS.  UBCPRS  & Km 2.0  LANGLEY  3.0  4.0  0.0  FDPM Kp*, =  Comparison o f D i l a t o m e t e r K  D  and FDPM K  Jn  (P -u )/o", 0  p M  0  Values  Ko  LOWER  & KPM an  232  nn  138  e x t e n t the p r a c t i c a l l i m i t p r e s s u r e showed a f a i r l y as  t h e OCR  increased.  investigated  the  "empirical"  was  estimated  that  are promising  of i n situ horizontal  stress  method d e s c r i b e d by Lacasse f o r FDPM  cavity  test  expansion  i t i s sensitive  expressions  techniques  increase  and s h o u l d  be  further.  The d e t e r m i n a t i o n  spherical  Both  consistent  f o r cavity  results  theory.  to  the  expansion  i s difficult.  and Lunne  assuming  (1983) , t h e a  both  cylindrical  The method has s e v e r a l  S  u  and  I  are based  r  Using  chosen.  n  Q  and  drawbacks i n  Furthermore,  on t h e assumption  the  t h a t the  s t r e s s c o n d i t i o n s a r e known a t the b e g i n n i n g o f a t e s t . When compared t o laboratory  and  cylindrical  cavity  expansion  expansion  a r e much h i g h e r .  "empirical" technique  dilatometer  K  values,  the  and t o a l e s s e r  FDPM  K  extent  I n summary, the r e s u l t s  method o f c a l c u l a t e d  f o r FDPM t e s t s .  Q  Q  results  spherical indicate  the i n s i t u h o r i z o n t a l  stress  for  cavity  t h a t the i s a poor  139 CHAPTER 8 CONCLUSIONS AND  The the  main o b j e c t i v e  results  o f FDPM  of this  tests  RECOMMENDATIONS  r e s e a r c h was t o i n t e r p r e t  performed  as p a r t  o f a cone  and e v a l u a t e pressuremeter  sounding. The f o l l o w i n g s e c t i o n s summarize the most s i g n i f i c a n t  findings  of this research.  8.1  F a c t o r s A f f e c t i n g the I n t e r p r e t a t i o n o f the FDPM T e s t  FDPM t e s t r e s u l t s a r e i n f l u e n c e d by b o t h t h e d e s i g n and performance o f the p r e s s u r e m e t e r and the p r o c e d u r e s used d u r i n g an a c t u a l Important  equipment r e l a t e d c o n s i d e r a t i o n s which were d i s c u s s e d a r e  compliance,  strain  curves  pressuremeter  L/D  o f the l a n t e r n  strips  and  compression for  test.  arm  design  the UBC SCP by i n f l a t i n g  and c a l i b r a t i o n s ,  membrane  ratio.  resulting  Compliance  and rubber membrane was  the p r e s s u r e m e t e r  inside  correction from  the  investigated  a 44 mm  diameter  s p l i t c y l i n d e r . I t was shown t h a t a l t h o u g h t h e a c t u a l d e f l e c t i o n s due t o compression the  are small,  s m a l l diameter  o f the UBC  i n t e r p r e t a t i o n which soils,  compliance  effective  stress  the s t r a i n s  SCP. D e s p i t e  compliance  has  only  recorded are s i g n i f i c a n t  c a n cause,  a  minor  conditions  which  the p o t e n t i a l  i t is felt  effect remain  on  test  that  because o f problems  in  i n cohesive  results  approximately  due t o constant  throughout a t e s t . The d e s i g n o f the p r e s s u r e m e t e r s t r a i n e f f e c t on e s p e c i a l l y the i n i t i a l  arms c a n have a s i g n i f i c a n t  p o r t i o n o f the p r e s s u r e m e t e r  expansion  c u r v e . F o r t h e UBC SCP, an improvement i n the d e s i g n o f t h e s t r a i n appeared  t o e l i m i n a t e apparent  outward  deflections  fora fully  arms  deflated  140  pressuremeter  thereby  allowing  a  more  rational  interpretation  o f the  pressuremeter expansion curve. The  importance  of  the  L/D  ratio  was  discussed  i n Chapter  4.  Comparisons o f t h e l i m i t p r e s s u r e s from t e s t s w i t h t h e Fugro CP h a v i n g a L/D r a t i o o f 10 and the UBC SCP h a v i n g a L/D r a t i o n o f 5 i n d i c a t e d higher  limit  pressures are obtained with  the UBC  SCP. T h i s  that  i s t o be  expected since  according to c a v i t y expansion theory, the l i m i t pressure  for  cavity  spherical  cavity will  expansion.  create  result  a  in a  deviation  expansion  I t was  zone  postulated  of failed  subsequent  from  also  i s greater  soil  that  that  cylindrical  for cylindrical  the i n s e r t i o n  surrounding  pressuremeter  the i d e a l  than  expansion  the probe which  o f a FDPM which  shows  will  a greater  e x p a n s i o n when compared t o a SBPM  probe w i t h an i d e n t i c a l L/D r a t i o i n s e r t e d w i t h l i t t l e d i s t u r b a n c e . Several are  the disturbance c r e a t e d  strain  relaxation off  considerations  which  relate  to t e s t  procedures  t h e amount o f r e l a x a t i o n time a l l o w e d b e f o r e a p r e s s u r e m e t e r t e s t i s  performed, the  important  rate time  pressure  subsequent process. that  employed  during a  pressuremeter  a l l o w e d has a s i g n i f i c a n t  f o r FDPM  high  I t was  during pressuremeter  pore shown  the l i f t - o f f  tests  due  pressure  to high  gradients  for a limited  pressure  effect  The  pore  created  by  of tests  substantially  the  also  appears  allowed.  For  tests  pressure  expansion  t o be with curves  affected relatively are  by  the l e n g t h longer  the l e n g t h  steeper  possibly  consolidation occurring before a test i s started.  being  periods, a  SCP of  expansion  of relaxation  relaxation  and  insertion  the UBC  r e l a x a t i o n time was i n c r e a s e d . The shape o f the p r e s s u r e m e t e r curve  lift-  pressures  with as  and  amount o f  on t h e measured  excess  number  decreased  test.  insertion  result  time the of  141  A  substantial  but repeatable  amount o f d i s t u r b a n c e  i s c r e a t e d by  FDPM i n s e r t i o n . A v a r i a b l e amount o f d i s t u r b a n c e o f t e n r e s u l t s from SBPM insertion  due t o t h e d i f f i c u l t y  d i s t u r b i n g the s u r r o u n d i n g s o i l . lift-off  pressures  the degree o f d i s t u r b a n c e  Also  interesting  t o note  and FDPM  without  than  the FDPM r e s u l t s  suggesting  c r e a t e d by SBPM i n s e r t i o n was v a r i a b l e .  were  lift-off  t h e SBPM probe  I n g e n e r a l , the v a r i a b i l i t y o f the SBPM  were much g r e a t e r  that  dilatometer  i n inserting  the good pressures  comparisons  obtained  between  and the FDPM p r a c t i c a l  limit  p r e s s u r e and the d i l a t o m e t e r P^ p r e s s u r e . Most i n t e r p r e t a t i v e methods used t o a n a l y z e in  cohesive  undrained tested pore  during  pressure  created  analyzed  limited  number  tests  on the assumption  F o r the r e l a t i v e l y  research,  i ti s felt  some  o f pressuremeter  t h a t slower  tests  a r e based a test.  for this  results in  soils  partial  tests  the p r e s s u r e m e t e r that  permeable  Windle  of test  remains  cohesive  soils  t h a t t h e h i g h g r a d i e n t s o f excess consolidation during  test.  The  a t McDonald Farm appear t o c o n f i r m  this  r e s u l t e d i n a higher undrained  using  the s o i l  test  and Wroth's  results  also  average  indicate  shear  a  strengths f o r  strength  that  method.  A  the u n l o a d - r e l o a d  modulus i n c r e a s e s i n p r o p o r t i o n t o the l e n g t h o f the creep phase  before  the u n l o a d - r e l o a d t e s t i s begun.  8.2  Parameters O b t a i n e d  8.2.1  Undrained  A shear  good  Shear  comparison  strength  values  From FDPM T e s t s  Strength  was  obtained  analyzed  using  s t r e n g t h a n a l y s i s o f t h e pressuremeter the  pressuremeter  produces  between  higher  FDPM  the Windle expansion  Su v a l u e s  and SBPM and Wroth  curve.  than  undrained average  F o r most  the f i e l d  tests  vane. I t  142  should  be n o t e d  theory  f o r the a n a l y s i s o f FDPM t e s t s  stress  c o n d i t i o n s caused  tests  performed  resulted excess  after  pressures  FDPM u n d r a i n e d  by s o i l a  shear  sense,  the use o f c a v i t y  i s incorrect  shear  due t o t h e unknown  relatively  Su v a l u e s  long  period  indicating  has a s i g n i f i c a n t  of  that  effect  relaxation a l l  the d i s s i p a t i o n o f  on the c a l c u l a t i o n o f  s t r e n g t h s u s i n g c a v i t y expansion  theory.  i n general r e s u l t s i n  s t r e n g t h s which a r e g e n e r a l l y lower  than  the f i e l d  Compared t o t h e o t h e r t h e o r e t i c a l methods, the Houlsby S  u  l e s s v a r i a b l e and e x h i b i t l e s s The  merits  undrained affected well  strength  techniques  are d i f f i c u l t  chosen.  used  to assess  t o v a r y i n g degrees by the f a c t o r s  as t h e t e c h n i q u e  u  values are  The Windle  to calculate since  S  reasons  reference  and FDPM  trends  with  promising  ; the SBPM  depth.  S  u  values  and FDPM exhibit  The Houlsby  i n that i t provides  and Wroth  average  similar  are similar, amounts  technique  a conservative estimate  u  i n normally  u  f o r the and the  appears of S  u  and  somewhat  which does  allowed.  good c o r r e l a t i o n was o b t a i n e d between the t r a d i t i o n a l  e m p i r i c a l method f o r c a l c u l a t i n g the p r e s s u r e m e t e r S  be  strength  of scatter  n o t appear t o be a f f e c t e d by the l e n g t h o f r e l a x a t i o n time A moderately  the  d i s c u s s e d i n s e c t i o n 8.1 as  results  unloading  will  u  method appears t o be a r e a s o n a b l y sound method o f c a l c u l a t i n g S following  vane  scatter.  o f the a n a l y t i c a l  shear  expansion  d i s t u r b a n c e . A l i m i t e d number o f FDPM  Houlsby a n a l y s i s o f the c o n t r a c t i o n curve  undrained S .  i n a strict  i n much h i g h e r  pore  The  that  S  u  and the f i e l d vane  c o n s o l i d a t e d s o i l s . A t McDonald Farm and L u l u Is.-UBCPRS  the FDPM N v a l u e c a l c u l a t e d u s i n g the f o l l o w i n g e q u a t i o n :  N  -  ( P  2 Q  - P  Q  ) / S  u  pv  8.1  143  ranged  between  approximately  2.25  r e l a x a t i o n p e r i o d s . The average 2.9 f o r L u l u Is.-UBCPRS.  and  N value  t o be s i m i l a r t o t h a t shown f o r  8.2.2  Shear Modulus and R i g i d i t y Index  moduli  were  cavity  strain  m a x  shear  increment  u  shear  modulus  was  shear  normalized  i n c r e a s e d . A good comparison was a l s o  unload  modulus  shear  i s that  different  modulus  and G  u r  i t is difficult  unloading  definitions  rigidity  200 and on the average  G  d i v i d e d by the f i e l d  G  and N ^ .  and was shown t o a t t e n u a t e as t h e magnitude o f the  and u r  characteristics i s  .  obtained  A drawback w i t h the  to associate a  strain  l e v e l w i t h the shear modulus.  Three Houlsby  short  was 2.8 f o r McDonald Farm and  The u n l o a d - r e l o a d  increment  between t h e Houlsby Houlsby  with  comparison between FDPM and SBPM u n l o a d - r e l o a d  obtained.  with respect to G  f o r tests  The dependence o f N on s o i l  thought  An e x c e l l e n t  3.75  max d i v i d e d  of r i g i d i t y  index  index  were  f o r most FDPM t e s t s  ranged  was s l i g h t l y h i g h e r t h a n I vane  by the f i e l d  McDonald  Farm  and L a n g l e y  resulted  i n highly variable  S . The r i g i d i t y u  vane Lower  S  u  produced  r  index  values  between 75  calculated using calculated  as h i g h  232. A l l d e f i n i t i o n s  results  compared. The  a t L u l u Is.-UBCPRS  using  as 1000 a t  o f the r i g i d i t y and t o a l e s s e r  degree a t L a n g l e y Lower 232.  8.2.3  S t r e s s H i s t o r y and I n S i t u H o r i z o n t a l S t r e s s  The  overconsolidation  pressuremeter  practical  ratio  was  correlated  to  both  the  l i m i t p r e s s u r e and the cone b e a r i n g f o r d a t a a t  L a n g l e y Lower 232 u s i n g the f o l l o w i n g e x p r e s s i o n :  OCR  -  f ( (q  f c  or P  2 0  - a  V Q  ) / a  V Q  ' )  8.2  144  The  normalized  cone  bearing  and  to  a  lesser  extent  the  normalized  p r a c t i c a l l i m i t p r e s s u r e showed a f a i r l y c o n s i s t e n t i n c r e a s e as the increased.  An e x c e l l e n t  correlation  was  obtained  between  OCR  the r i g i d i t y  index d e f i n e d as the dynamic s m a l l s t r a i n  shear modulus d i v i d e d by the  field  index  vane  S  u  then d e c r e a s e d The  and the OCR.  The r i g i d i t y  increased s l i g h t l y  and  s t e a d i l y as the OCR i n c r e a s e d .  i n situ horizontal  e q u a t i o n f o r the l i m i t c a v i t y expansion  s t r e s s and hence K  p r e s s u r e assuming b o t h  was e s t i m a t e d u s i n g the  Q  cylindrical  and s p h e r i c a l  t h e o r y . The method has s e v e r a l drawbacks i n t h a t i t i s  sensitive  t o the value  strength  used.  o f the l i m i t  Furthermore,  pressure  the  and t h e u n d r a i n e d  expressions  for  shear  spherical  and  c y l i n d r i c a l c a v i t y e x p a n s i o n a r e based on known s t r e s s c o n d i t i o n s a t the beginning of a test. rigidity  index  The Houlsby  was used  unloading undrained  f o r the e s t i m a t i o n o f the i n s i t u  s t r e s s f o r FDPM t e s t s . S p h e r i c a l c a v i t y expansion most  reasonable  values  shear s t r e n g t h and  of K  when  Q  compared  horizontal  t h e o r y r e s u l t e d i n the  to dilatometer K  Q  values  u s i n g M a r c h e t t i ' s (1980) c o r r e l a t i o n .  8.3  Recommendations  The which full  cone p r e s s u r e m e t e r  has g r e a t  potential.  displacement  obtained further  during research  i s a promising A  comprehensive  pressuremeter, a  cone deal  i n t e r p r e t a t i v e methods.  piezocone  pressuremeter with  new  equipment  i n situ  amount and  sounding. design,  testing  o f data  seismic  data  device  including c a n be  Recommendations f o r test  procedures  and  145  1) The cone p r e s s u r e m e t e r probe. T h i s w i l l  s h o u l d have a pore p r e s s u r e s e n s o r next t o t h e  a l l o w a b e t t e r e s t i m a t i o n o f the s t r e s s c o n d i t i o n s  p r i o r to a test. 2)  Consideration should with  be g i v e n  a low L/D r a t i o  t o c o n s t r u c t i n g a cone  and u s i n g  spherical  expansion  pressuremeter  t o a n a l y z e the  results. 3)  The e f f e c t should  of varying  be  further  lengths  of relaxation  investigated.  This  time  is  prior  to a  test  for  both  important  t h e o r e t i c a l l y and e m p i r i c a l l y based i n t e r p r e t a t i v e methods. I t may be b e n e f i c i a l t o e s t a b l i s h g u i d e l i n e s f o r the l e n g t h o f r e l a x a t i o n  time  p r i o r t o a FDPM t e s t s i m i l a r t o those f o r a d i l a t o m e t e r t e s t . 4)  Further  research  should  be d i r e c t e d  towards  trying  t o q u a n t i f y the  e f f e c t s o f c o n s o l i d a t i o n and s t r a i n r a t e on FDPM c u r v e s . 5) The Houlsby u n l o a d i n g of determining Further  work  validate  this  both should  a n a l y s i s appears t o be a v e r y p r o m i s i n g  the u n d r a i n e d be  done  shear  in a  method and t o compare  s t r e n g t h and shear  variety  o f cohesive  the r e s u l t s  method  modulus. soils  to undrained  to  shear  s t r e n g t h s o b t a i n e d u s i n g o t h e r i n s i t u and l a b o r a t o r y methods. 6) F u r t h e r r e s e a r c h s h o u l d be d i r e c t e d correlations dilatometer 7)  Further  using  parameters  research  other  between G soils.  cyclic u r  similar  to  t o e s t a b l i s h FDPM  those  used  f o r the  test. should  focus  modulus t o a s t r a i n increment of  towards t r y i n g  and G  the u n l o a d - r e l o a d  l e v e l and t o compare G  and monotonic m a x  on r e l a t i n g  laboratory  tests.  u r  shear  t o the r e s u l t s  The  relationship  s h o u l d a l s o be e s t a b l i s h e d f o r o v e r c o n s o l i d a t e d  146  REFERENCES  Aas.G.,' Lacasse,S., Lunne,T. and Hoeg.K. (1986): "Use o f I n S i t u T e s t s f o r F o u n d a t i o n D e s i g n on C l a y " . Proceedings o f ASCE Conference on Use of In S i t u Tests i n Geotechnical Engineering, Blacksburg, V i r g i n i a , B l a c k s b u r g , V i r g i n i a , June. Amar.S., B a g u e l i n , F . , J e z e q u e l , J . F . and Le Mehaute.A. (1975): " I n s i t u Shear R e s i s t a n c e o f C l a y s " . Proc. o f the Conference on I n S i t u Measurement o f S o i l P r o p e r t i e s , ASCE, R a y l e i g h , N. C a r o l i n a , V o l . 1, pp.22-44. Anderson,W.F., Pyrah.I.C. and A l i . F . H . (1987): "Rate Effects in Pressuremeter Tests i n Clay". Journal of the Geotechnical E n g i n e e r i n g D i v i s i o n , ASCE, Volume 113, No. 11, November. Armstrong,J.E. (1978): "Post Vachon W i s c o n s i n Lowland, B r i t i s h Columbia". G e o l o g i c a l Survey 332.  Glaciation, Fraser o f Canada, B u l l e t i n  Arnold,M. (1981): "An E m p i r i c a l E v a l u a t i o n o f P r e s s u r e m e t e r T e s t Canadian G e o t e c h n i c a l J o u r n a l , V o l . 18, No. 3, pp.455-459.  Data".  Azzouz,A.S. and Morrison,M.J. (1988): " F i e l d Measurements on Model P i l e i n Two C l a y D e p o s i t s " . J o u r n a l o f the G e o t e c h n i c a l Engineering D i v i s i o n , ASCE, V o l . 114, N o . l , J a n u a r y . B a g u e l i n , F . J . , Frank,R.A. and Nahra.R. (1986): "A T h e o r e t i c a l 'Study o f the Pore Pressure Generation and Dissipation Around the P r e s s u r e m e t e r " . The Pressuremeter and I t s Marine A p p l i c a t i o n s , Second I n t . Symp. : ASTM STP 950, J . L . B r i a u d and J.M.E. A u d i b e r t , Eds. American S o c i e t y f o r T e s t i n g and M a t e r i a l s , pp. 169-186. B a g u e l i n , F . , J e z e q u e l , J . - F . , and S h i e l d s , (1978): "The Pressuremeter and F o u n d a t i o n E n g i n e e r i n g " . Trans Tech P u b l i c a t i o n s , C a u s t h a l , Germany. Baguelin,F., Jezequel,J.F., Le Mee.E. and Le Mehaute.A. (1972): "Expansion o f C y l i n d r i c a l Probes i n Cohesive S o i l s " . J o u r n a l o f the Geotechnical Engineering Division, ASCE, V o l . 98, No. SM11, November. B e n o i t , J . and Clough,W. (1986): " S e l f - B o r i n g P r e s s u r e m e t e r T e s t s i n S o f t C l a y " . J o u r n a l o f the G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE, Volume 112, No.1, January. Bergado.D.T. and Khaleque,M.A. (1986): "Correlation of LLT Pressuremeter, Vane and Dutch Cone T e s t s i n Bangkok Marine C l a y , T h a i l a n d " . The Pressuremeter and I t s Marine A p p l i c a t i o n s , Second I n t . Symp. : ASTM STP 950, J . L . B r i a u d and J.M.E. A u d i b e r t , Eds. American S o c i e t y f o r T e s t i n g and M a t e r i a l s .  147  Bishop,R.F., H i l l . R . and Mott.N.F. (1945): "The Theory o f I n d e n t a t i o n and Hardness T e s t s " . P r o c . o f the P h y s i c a l S o c i e t y , V o l . 57, p. 147. Bjerrum.L. (1973): "Problems o f S o i l Mechanics and C o n s t r u c t i o n on S o f t C l a y s and S t r u c t u r a l l y U n s t a b l e S o i l s ( C o l l a p s i b l e , Expansive and O t h e r s ) " . P r o c e e d i n g s o f the 8 t h ICSMFE, Moscow, U.S.S.R., V o l . 3, pp. 111-159. Blunden.R.H. (1975): "Urban Geology o f Richmond, B r i t i s h Columbia". Adventures i n E a r t h S c i e n c e s S e r i e s No. 15, B.C. Govt P u b l i c a t i o n s . Brown,P.T. (1985): " P r e d i c t i n g L a t e r a l l y Loaded P i l e C a p a c i t y U s i n g the P r e s s u r e m e t e r " . M.A.Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h Columbia. Campanella.R.G. and Robertson,P.K. (1988): " C u r r e n t S t a t u s o f the Piezocone T e s t ". Proc. o f t h e F i r s t I n t e r n a t i o n a l Symposium on P e n e t r a t i o n T e s t i n g , ISOPT-1, Orlando, March, Volume 1, pp. 93-116. Campanella.R.G. and Robertson,P.K. (1981): " A p p l i e d Cone Research". Symposium o f Cone P e n e t r a t i o n T e s t i n g and E x p e r i e n c e , G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE, October, pp. 343-362. Canou.J. and Tumay.M.T. (1986): " F i e l d E v a l u a t i o n o f F r e n c h S e l f - B o r i n g Pressuremeter PAF 76 i n a S o f t Deltaic Louisiana C l a y . The P r e s s u r e m e t e r and I t s Marine A p p l i c a t i o n s , Second I n t . Symp. : ASTM STP 950, J . L . B r i a u d and J.M.E. A u d i b e r t , Eds. American S o c i e t y f o r T e s t i n g and M a t e r i a l s . Clough,G.W. and Denby,G.M. (1980): " S e l f - B o r i n g P r e s s u r e m e t e r Study o f San F r a n c i s c o Bay Mud". J o u r n a l o f the G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE, Volume 106, No. GT1, January, pp. 45-63. Davies.M.P. (1987): "Predicting Axially and L a t e r a l l y Loaded Pile B e h a v i o r U s i n g I n S i t u T e s t i n g Methods". M.A.Sc. T h e s i s , Department of C i v i l E n g i n e e r i n g , U n i v e r s i t y o f B r i t i s h Columbia, September. Denby,G.M. and Hughes,J.M.O. (1982): " H o r i z o n t a l S t r e s s I n t e r p r e t a t i o n of Pressuremeter Tests". Eng. F o u n d a t i o n Conf. on Updating S u b s u r f a c e Sampling o f S o i l s and Rock and t h e i r I n - s i t u T e s t i n g . Santa Barbara, C a l i f o r n i a , pp. 227-244. Denby,G.M. (1978): " S e l f - B o r i n g Pressuremeter Study o f the San F r a n c i s c o Bay Mud". PhD. T h e s i s , Department o f C i v i l E n g i n e e r i n g , S t a n f o r d U n i v e r s i t y T e c h n i c a l Report CE232. Eden and Law (1980): "Comparison o f U n d r a i n e d Shear S t r e n g t h O b t a i n e d by Different T e s t Methods i n Soft Clays". Canadian G e o t e c h n i c a l J o u r n a l , Volume 17, pp. 369-381. Fahey,M. and C a r t e r , J . P . (1986): "Some E f f e c t s o f Rate o f L o a d i n g and Drainage on Pressuremeter T e s t s i n C l a y " . S p e c i a l i t y Geomechanics Symposium, A d e l a i d e , August, pp. 50-55.  148  F y f f e . S . , Reid.W.H., and Summers,J.B. (1986): "The P u s h - i n Pressuremeter : 5 Y e a r s O f f s h o r e E x p e r i e n c e " . The P r e s s u r e m e t e r and I t s Marine A p p l i c a t i o n s , Second I n t . Symp. : ASTM STP 950, J . L . B r i a u d and J.M.E. A u d i b e r t , Eds. American S o c i e t y f o r T e s t i n g and M a t e r i a l s . Fyffe.S., Reid.W.M. and St. John.H.D. (1982): "The Use Pressuremeter i n Offshore Site Investigation". Proc. Oceanology I n t e r n a t i o n a l Conference, B r i g h t o n , March.  of of  the the  Ghionna.V., Jamiolkowski,M., Lacasse,S., L a n c e l l o t a . R . and Lunne,T. (1983): " E v a l u a t i o n o f S e l f - B o r i n g P r e s s u r e m e t e r " . P r o c e e d i n g s o f the I n t e r n a t i o n a l Symposium on I n S i t u T e s t i n g , P a r i s , Lome 2, pp.294-301. Gibson,R.E. and Anderson,W.F. (1961): " I n s i t u Measurement o f Soil P r o p e r t i e s w i t h the Pressuremeter". C i v i l E n g i n e e r i n g and P u b l i c Works Review , 56, No. 658, May, pp. 615-618. Grieg,J.W. (1985): " E s t i m a t i n g U n d r a i n e d Shear S t r e n g t h o f C l a y from Cone P e n e t r a t i o n T e s t s " . M.A.Sc. T h e s i s . C i v i l E n g i n e e r i n g Dept., U n i v e r s i t y o f B r i t i s h Columbia, September. Henderson,G., Smith.P.D.K., and S t . John.H.D. (1979): "The Development of the P u s h - i n Pressuremeter f o r O f f s h o r e S i t e Investigation". P r o c e e d i n g s o f the S.U.T Conference, O f f s h o r e S i t e I n v e s t i g a t i o n , London, March, 1979. Houlsby,G.T. and Withers,N.J. (1987): "Analysis of the P r e s s u r e m e t e r T e s t i n C l a y " . U n i v e r s i t y o f O x f o r d , Report No. 1703/87. Howie,J. (1990): PHD Thesis , in U n i v e r s i t y o f B r i t i s h Columbia.  preparation.  Civil  Cone OUEL  Engineering,  Huang,A.B. and Haefele.K.C. (1988): "A P u s h - i n Pressuremeter/Sampler". P r o c . o f the F i r s t I n t e r n a t i o n a l Symposium on P e n e t r a t i o n T e s t i n g , ISOPT-1, Orlando, March, Volume 1, pp. 533-538. Hughes,J.M.O. and Robertson,P.K. (1985): "Full-displacement Pressuremeter T e s t i n g i n Sand". Canadian G e o t e c h n i c a l J o u r n a l , V o l . 22, pp. 298-307. Hughes,J.M.O. (1984): "Pressuremeter R e s u l t s O b t a i n e d U s i n g the Western Geosystem Inc. S e l f - B o r i n g Pressuremeter a t McDonald Farm".Report f o r the N a t i o n a l Research C o u n c i l o f Canada by Western Geosystems Inc., February, 1984. Hughes,J.M.0. , W r o t h , C P . and Pender,M.J. (1975): "A Comparison o f the R e s u l t s o f S p e c i a l Pressuremeter T e s t s on a D e p o s i t o f S o f t C l a y a t Canvey I s l a n d " . P r o c . 2nd A u s t r a l i a - N e w Z e a l a n d Conference on Geomechanics, B r i s b a n e , J u l y , pp. 292-296.  149  J a m i o l k o w s k i , M., Ladd, C.C., Germaine, J.T., and L a n c e l l o t a . R . (1985): "New Developments i n F i e l d and L a b o r a t o r y T e s t i n g o f S o i l s " . S t a t e o f the A r t Report, XI ICSMFE, San F r a n c i s c o . Kaderabek.T., B a r r e i r o . D . and Call,M.A. (1986): " I n S i t u F l o r i d a Peat". Proceedings o f ASCE Conference on Use Tests in Geotechnical Engineering, Blacksburg, B l a c k s b u r g , V i r g i n i a , June, pp. 649-667. Kay,J.N. and Parry,R.H.G. (1982): "Screw Ground E n g i n e e r i n g . Volume 15, No. 6,  Plate Tests September.  T e s t s on a of In S i t u Virginia,  in Stiff  Clay".  Kokusho.T., Yoshida.Y. and E s a s h i . Y . (1982): " P r o p e r t i e s o f S o f t C l a y f o r Wide S t r a i n Range". S o i l s and Foundations, Volume 22, No. 1, March, pp. 1-18. Lacasse.S. and Lunne.T. (1983): "In Situ P r e s s u r e m e t e r T e s t s " . NGI P u b l i c a t i o n Nr.  Horizontal 146, O s l o .  Stress  from  L a c a s s e . S . , Jamiolkowski,M., L a n c e l o t t a . R . and Lunne.T. (1981): "In S i t u C h a r a c t e r i s t i c s o f Two Norwegian C l a y s " . P r o c e e d i n g 10th ICSMFE, Stockholm, V o l . 2, pp. 507-511. Ladanyi,B. (1972): "In s i t u D e t e r m i n a t i o n of Undrained S t r e s s - S t r a i n Behavior of S e n s i t i v e Clays with the P r e s s u r e m e t e r " . Canadian G e o t e c h n i c a l J o u r n a l , V o l . 9, pp. 313-319. Ladd.C.C, Germaine,J.T., Baligh.M.M and Lacasse.S.M. (1979): " E v a l u a t i o n o f S e l f - B o r i n g Pressuremeter T e s t s i n Boston Blue Clay". MIT R e s e a r c h Report, No. R.79-4, Cambridge, Mass. L a d d . C . C , Foott.R. , I s h i h a r a . K . , S c h l o s s e r . F . and Poulos.H.G. (1977): " S t r e s s D e f o r m a t i o n and S t r e n g t h C h a r a c t e r i s t i c s " . S t a t e o f the A r t Report, Proc. o f IX ICSMFE, Tokyo. Ladd.C.C. and Edgers.L. (1972): " C o n s o l i d a t e d - u n d r a i n e d D i r e c t Simple Shear T e s t s on S a t u r a t e d C l a y s " . MIT Research Report, R72-82. Landva.A. (1986): "In S i t u T e s t i n g o f Peat". Proceedings o f ASCE Conference on Use o f In S i t u T e s t s i n G e o t e c h n i c a l Engineering, B l a c k s b u r g , V i r g i n i a , B l a c k s b u r g , V i r g i n i a , June, pp. 191-205. Lutenegger,A.J. (1988): " C u r r e n t S t a t u s o f the M a r c h e t t i Dilatometer T e s t " . Proc. o f the F i r s t I n t e r n a t i o n a l Symposium on P e n e t r a t i o n T e s t i n g , ISOPT-1, Orlando, March, Volume 1, pp. 137-155. M a r c h e t t i , S . (1980): "In S i t u T e s t s by F l a t D i l a t o m e t e r " . J o u r n a l o f G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE, Volume 106, No. GT3, 299-321. Petsonk.A.M. (1985): "A Device f o r In S i t u Measurement C o n d u c t i v i t y " . P r e s e n t e d t o AGO Symp. on Advances T e s t i n g and T r a c e r Methods, San F r a n c i s c o .  of in  the pp.  Hydraulic Hydraulic  150 P r e v o s t . J . H . (1979): "Undrained Shear T e s t s on C l a y s " . J o u r n a l o f G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE, Volume 105, No.GTl, 49-64.  the pp.  P r e v o s t . J . H . and Hoeg.K. (1975): " A n a l y s i s o f Pressuremeter i n S t r a i n s o f t e n i n g S o i l " . J o u r n a l o f the G e o t e c h n i c a l E n g i n e e r i n g D i v i s i o n , ASCE, V o l . 101, No. GT8, pp. 717-732. Rice,A.H. (1984): "The Department o f C i v i l  S e i s m i c Cone Penetrometer". M.A.Sc. T h e s i s , E n g i n e e r i n g , U n i v e r s i t y o f B r i t i s h Columbia.  Robertson,P.K., Hughes,J.M.O., Campanella,R.G., Brown,P. and McKeown.S. (1986): "Design o f L a t e r a l l y Loaded P i l e s u s i n g the P r e s s u r e m e t e r " . The Pressuremeter and I t s Marine A p p l i c a t i o n s , Second I n t . Symp. : ASTM STP 950, J . L . B r i a u d and J.M.E. A u d i b e r t , Eds. American S o c i e t y f o r T e s t i n g and M a t e r i a l s . 2 1 Robertson,P.K. and Campanella,R.G. (1986): "Guidelines f o r Use and I n t e r p r e t a t i o n o f the CPT and CPTU". S o i l Mechanics S e r i e s No. 105, Department o f C i v i l E n g i n e e r i n g , U n i v e r s i t y o f B r i t i s h Columbia. Robertson,P.K., Campanella,R.G., G i l l e s p i e , D . , a n d G r e i g . J . (1985): "Use o f Piezometer Cone Data". S o i l Mechanics S e r i e s No. 92, Department of C i v i l E n g i n e e r i n g , U n i v e r s i t y o f B r i t i s h Columbia. Randolph,M.F. and W r o t h , C P . (1979): "An A n a l y t i c a l S o l u t i o n f o r the C o n s o l i d a t i o n Around a P i l e " . I n t e r n a t i o n a l J o u r n a l f o r N u m e r i c a l and A n a l y t i c a l Methods i n Geomechanics. Volume 3, pp.217-229. Robertson,P.K., Hughes,J.M.O., Campanella,R.G. and Sy,A. (1983): "Design of Laterally Loaded Displacement Piles using a Driven P r e s s u r e m e t e r " . ASTM STP 835, D e s i g n and Performance o f L a t e r a l l y Loaded P i l e s and P i l e Groups, June, Kansas C i t y , Mo. Seed.H.B. and I d r i s s . I . M . (1970): " S o i l M o d u l i and Damping F a c t o r s f o r Dynamic Response A n a l y s i s " . R e p o r t No. EERC 70-10, C o l l e g e o f E n g i n e e r i n g , U n i v e r s i t y o f C a l i f o r n i a a t B e r k e l e y , December. S u l l y , J . P . , Campanella,R.G. and Robertson,P.K. (1988): " I n t e r p r e t a t i o n of P e n e t r a t i o n Pore P r e s s u r e s t o E v a l u a t e S t r e s s H i s t o r y i n C l a y s " . P r o c . o f the F i r s t I n t e r n a t i o n a l Symposium on P e n e t r a t i o n T e s t i n g , ISOPT-1, Orlando, March, Volume 2, pp. 993-1000. Suyama.K., Imai.T., and Ohya.S. (1982): "Development o f LLT and I t s A p p l i c a t i o n i n P r e d i c t i o n o f P i l e B e h a v i o r Under H o r i z o n t a l Load". P r o c . Symposium on the Pressuremeter and I t s Marine A p p l i c a t i o n s , P a r i s , pp. 61-67. Windle,D. and Wroth,CP. (1977): "The Use P r e s s u r e m e t e r t o Determine the U n d r a i n e d Ground E n g i n e e r i n g , September, pp. 37-46.  of the Properties  Self-Boring of Clays".  W r o t h , C P . (1988): " P e n e t r a t i o n T e s t i n g - A More R i g o r o u s Approach I n t e r p r e t a t i o n " . Proc. o f the F i r s t I n t e r n a t i o n a l Symposium  to on  151  Penetration 311.  Testing,  ISOPT-1, Orlando,  March, Volume  W r o t h , C P . (1984): "The I n t e r p r e t a t i o n o f I n S i t u Rankine L e c t u r e , Geotechnique 34, pp. 449-489.  Soil  1, pp.  303-  Tests".  24th  Wroth, C P . , Randolph, M.F. , Houlsby, G.T, and Fahey, M. (1984a): "A Review o f the E n g i n e e r i n g P r o p e r t i e s o f S o i l s w i t h P a r t i c u l a r R e f e r e n c e to the Shear Modulus". O.U.E.L. R e p o r t No. 1523/84, S o i l Mechanics R e p o r t No. SM049/84. Wroth,CP. (1982): "British Experience with the Self-Boring P r e s s u r e m e t e r " . P r o c . o f the Symposium on the P r e s s u r e m e t e r and I t s Marine A p p l i c a t i o n s , P a r i s , pp. 143-164. Wroth.CP. and Hughes, J.M.O. (1974): "Development o f a Special Instrument t o Measure the S t r e n g t h and S t i f f n e s s of Soils". P r o c e e d i n g s ASCE S p e c i a l i t y Conference on S u b s u r f a c e E x p l o r a t i o n f o r Underground E x c a v a t i o n and Heavy C o n s t r u c t i o n , Henniker, NH, pp. 295-311. W r o t h , C P . and Hughes,J.M.O. (1973): "An Instrument f o r the I n s i t u Measurement o f the P r o p e r t i e s o f S o f t C l a y s " . 8 t h ICSMFE, Moscow.  APPENDIX I PRESSUREMETER TEST DATA AT MCDONALD FARM  1*3  Site : McDonald Farm Date : 27/1/87 Pressuremeter : UBC SCP On S i t e L o c a t i o n : JAN27 Comments : No p i e z o c o n e or s e i s m i c Strain controlled test  Depth ( m ) 17.0 19.0 22.0 25.0 27.5 30.0  S t r a i n Rate ( %/min ) 8.5 9.1 8.1 7.0 7.2 7.6  measurements  Approx. R e l a x a t i o n P e r i o d ( min ) 1.5 1.5 1.5 1.5 1.5 1.5  UBC SCP  27/1/87 REPLOT 27/10/87 McDonald  Farm-17.0m  600  500  D Q.  £ n n  H  400  300  H  200  H  £ S  •o a> +> o © k. «~  o  o  100  -100  Average Strain %  Cavi4y -Strain  UBC SEISMIC CONE Site  : McDonald  Farm  -Inf  Depth  PRESSUREMETER :  17.0  m  Date  LOG CURRENT VOLUMETRIC STRAIN  :  27/1/87  UBC SCP 2 7 / 1 / 8 7 Houlsby Unloading Cyi McDonald Farm—17.0m 600  500  H  400  5 ^ =  24x5 kPa  300  200  H  100  i  2  1  — r  T 6  —ln(eo — e ) ©=ncrtural strain  8  10  U B C  S C P  2 7 / 1 / 8 7 McDonald  R E P L O T  Farm—Depth=19.0m  700  600  H  500  H  400  H  300  4  200  H  100  -4  o  Q. O  i_  n ro  £  U  O  -M  O  © l_ 1.  0 O  -100  A v e r a g e S t r a i n (%)  2 7 / 1 0 / 8 7  i <5<d>  UBC SEISMIC CONE PRESSUREMETER Site : McDonald Form -Inf  Depth : 19.0  m  Date : 27/1/87  700  650  600  550  500  450 1  10  LOG CURRENT VOLUMETRIC STRAIN  10*  UBC SCP 2 7 / 1 / 8 7 McDONALD FARM Houlsby Unloading Cyl D = 1 9 . 0 m  100  -  i  o  r 0  1  2  1  1  1  4 -ln(E0 -  1—  1  6 E) E=Natural  1  - i 8  Strain  i  I  10  UBC SCP  27/1/87 REPLOT 28/10/87 McDonald Farrn-Depth==22.0rn  800 -i  ~ioo H  -2  r  1  r-—i  2  1  6  1  T  10  1  1 — — i  14  Average Strain (%) Cav/i-Vy 5+rain.  1  18  1  r  22  16\  UBC SEISMIC CONE Site : McDonald  Farm  -lnf  Depth  PRESSUREMETER : 22.0  m  Date  :  27/1/87  UBC SCP 2 7 / 1 / 8 7 McDONALD FARM H o u l s b y U n l o a d i n g Cyl  D=22.0M  800  700  4  600  4  0  £  = 46.1 IcPa  500 S  3  e  400  4  300  4  200  4  100  4  r  ^4u.-  B  n  a s k  -  3 4 S  Vft  134  6 , - 134*5^1 -4.18 MPa  O O  T 2  T 4 -In(E0 -  6 E)  E=Notural Strain  8  10  UBC SCP  -  27/1/87  McDonald F a r m —  22.0m  750 740 730 720 710 700 690 0  680 670 660  n 0 0  loo  650  «  5.o5MP.  640 If  630 o o  620 610 600 590 580 570 560 550 -2  22  N«Ki«4 Data Points  Strain  UBC SCP  27/1/87 McDonald  900  n  r—  REPLOT 2 8 / 1 0 / 8 7  Farm-Depth=25.0m  —  A v e r a g e s t r a i n (%)  Cavity  S+rain  UBC SEISMIC CONE Site  : McDonald  1  Farm  -Inf  Depth  10  PRESSUREMETER : 25.CV  m  Date  LOG CURRENT VOLUMETRIC STRAIN  :  27/1/87  10  2  \6£  UBC SCP  -  27/1/87  McDonald Farm — 2 5 . 0  -1  1  3  5  7 Nov.W<0 -  Data Points  9 Strain  11  m  13  15  17  19  A v e r a g e S t r a i n {%) Cav/rq  "Strain.  UBC SCP 2 7 / 1 / 8 7 McDONALD FARM Houlsby Unloading Cyl D = 2 7 . 5 m  1  6 ~240*Su«jl« H-ZMPJ  8 -ln(E0 Natural Strain  E)  E=Notural Strain  10  Corrected  Pressure  (kPa)  UBC SCP- 27/1/87 McDonald  REPLOT 28/10/87  Farm-Depth=30.0m  1100  o Q_  1000  H  900  -\  800  H  700  H  600  4  500  -4  x  ©  L. 3 (D 0)  £  Q. © O © IL.  0  o  400  A v e r a g e S t r a i n (%)  Cavil j 5^31 A  UBC SEISMIC CONE Site  : McDonald  1  Farm  -Inf  Depth  10  PRESSUREMETER : 30.0  m  Date  LOG CURRENT VOLUMETRIC STRAIN  :  27/1/87  10  2  UBC SCP 27/1/87 Houlsby Unloading Cyi McDonald  Farm—Depth=30.0m  -ln(EO -  E) E=Naturol Strain  U B C  S C P  2 7 / 1 / 8 7  MCDONALD  F A R M D=3O.O  Cavity Data Points  m  Strain %  1^5  Site Date Pressuremeter On S i t e L o c a t i o n Comments  McDonald Farm 7/11/85 FUGRO CP N0V7 No piezocone measurements Quasi-strain controlled test  Depth ( m )  S t r a i n Rate ( %/min )  16.2 18.2 19.2 20.2 22.2  1.1 1.9 5.2 5.0  Approx. R e l a x a t i o n P e r i o d ( min ) 1-5 1-5 1-5 1-5 l'-5  8 6 / 0 1 / 1 0 DEPTH = 16.2 m. McDONALD FARM CORRECTED  FOR  MEMBRANE  1000  30  CAVITY  STRAIN (%)  40  FUGRO CONE Site  : McDonald  Farm  LOG  CURRENT  PRESSUREMETER Depth  :  16.2 m  VOLUMETRIC  Date  STRAIN  :  S  10/1/86  8 6 / 0 1 / 1 0 DEPTH=16.2 m. McDONALD FARM fugro  16  17  18 CAVITY STRAIN %  19  20  8 6 / 0 1 / 1 0 DEPTH=16.2 m. McDONALD FARM fugro  o Q. \ ^  hi OH  20hl.|oc66-ln  D  I-W61  V) in  hi a:  -41  o.  Q  hi hi OH OH O O  Gur-  130  2 t In l.03*Mn 103381  8 CAVITY STRAIN %  T 10  -  8 6 / 0 1 / 1 0 DEPTH=16.2 m. McDONALD FARM FUGRO HOULSBY UNLOADING CYL  0  2  -ln£o-€)  4  r £ = NATURAL STRAIN  6  8  '  10  8 6 / 0 1 / 1 0 DEPTH=18.2 m. McDONALD FARM Corrected for Membrane 1000  —  900  -  800  -  —  —  "  CAVITY  STRAIN (%)  FUGRO Site  : McDonald  i  600  H  CONE PRESSUREMETER Depth  Farm  1  1—i  i  i i i |  :  18.2  I  m  Date  1  :  10/1/86  1—ryi i i i  5.303  1  1-  'i  i i i i1 10  LOG CURRENT VOLUMETRIC STRAIN S  •Z3\  10  8 6 / 0 1 / 1 0 DEPTH=18.2 m. McDONALD FARM Corrected for Membrane  i I  o  Q. hi  or  D (/) V)  bJ  Q.  i  21.4  1  T  r~  23  21.8 CAVITY STRAIN %  T ~ 23.4  8 6 / 0 1 / 1 0 DEPTH-18.2 m. McDONALD FARM Corrocted for Membrane  CAvrrr  STRAIN  %  86/01/10 DEPTH=18.2 m. McDONALD FARM F U G R O H O U L S B Y UNLOADING C Y L  4 0  ,  1  2  1  r— 4  - I n (EO -  1  H  1  6 E ) E = N A T U R A L STRAIN  1  8  1  1 10  CAVITY  STRAIN (%)  (8^  FUGRO CONE PRESSUREMETER Site  : McDONALD  700  FARM  1  i  Depth  : 19.2 m  1  i  1—i  Date  1—i  :  10/1/86  i i i  650  D  CL 600  LxJ  Sg= 584-40O - 8ao kfk  cr  2-303  § 5 5 0  LU  CcL CL j< 5 0 0  O  H  r-  450 H  400  1  T  1  1  l l l l |  T  1  1  I I I I I  10  ib LOG  CURRENT  VOLUMETRIC  STRAIN  S  8 6 / 0 1 / 1 0 DEPTH-19.2 M McDONALD FARM F U G R O H O U L S B Y UNLOADING C Y L  100  -]  o _j 0  j  1  [—  -j  2  r  4 —LN(EO -  E)  E = N A T U R A L STRAIN  1  6  1  1 8  1000  900  -  800  -  700  -  CAviTY  STRAIN (%)  I 3o  FUGRO CONE PRESSUREMETER Site  : McDonald  Farm  Depth  : 20.2  m  Date  700  glared-4OQ 650  o CL •* 6 0 0  a: § 5 5 0 LLI  a: Q-  ^  500 +  o •  ++  +  450  400-j 1  10  LOG CURRENT VOLUMETRIC STRAIN  CORRECTED PRESSURE ( kPa )  o  II  Z  I  XI  f 73  >  8 6 / 0 1 / 1 0 D E P T H = 2 2 . 2 m McDONALD FARM Corrected for Membrane  2 0 0  -  1 0 0  -  0  _ _.. T  ....  f  '"I"  "1 2 0  1 0  (CAVITY  STRAIN  MF3V2r~U  3 0  (%)  FUGRO  CONE PRESSUREMETER Depth  s  f  t  e  :  McDonald  22.2  m  Date  :  10/1/86  Farm  LOG  CURRENT VOLUMETRIC STRAIN *  0 DEPTH=22.2m McDONALD  FARM  FUGRO HOULSBY UNLOADING CYL  5 u p U =- 33.8 5  61  -  I36*5ucyl  _! 4 —LN(E0 -  6 E) E = N A T U R A L STRAIN  8  IcPa  I  =6.12 Nfli  j 10  8 6 / 0 1 / 1 0 DEPTH=22.2m McDONALD FARM FUGRO 560  \  550  /  \ / 540  530  -i  520  -1  l^icAA^=  510  r — [ — 3.6  .23%  ~i  r  3.8  CAVITY STRAIN %  T 4  1  T" 4.2  86/01/10 DEPTH=22.2m M c D O N A L D FARM FUGRO 710  /1 700  -} /  o Q. hi tY.  \ \  690  "1  680  -t  D  V  U) V) hi tn  l i  I  CL  Q Id  Hnl.2274-Wil.725ll -13.6 MPa ?  a: or o o LJ  670  A ^ A j - 0.29%  H  660  __  " i — i — r — r 22  22.2  22.4  22.6  22.8  23  1  j  23.2  CAVITY STRAIN %  r  . . _  f  23.4  ;  j  23.6  1  r  23.8  1  j  24  Site : McDonald Farm Date : 18/10/83 Pressuremeter : Hughes SBPM On S i t e L o c a t i o n : 0CT18 Comments : S t r a i n r a t e i s rough a p p r o x i m a t i o n Stress C o n t r o l l e d Test  Depth ( m ) 16.75 17.75 18.75 19.75 20.76 21.76 22.76 23.76 24.76 25.76  S t r a i n Rate ( %/min ) 1 1 1 10 1 10 1 10 10 1  Approx. R e l a x a t i o n P e r i o d ( min )  .  1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5  McDONALD FARM Hughes SBPM D= 16.75 rn  CAVITY STRAIN  ( %  )  199  HUGHES SBPM  10/18/83  McDONALD FARM D « 16.75 m  +++  ++++  ++  +  (5,= 3 ? k  T  O  1  1  Data Points  1  1  3 * .02.38  i  1  1  1  1—i 10  1—i 12  Cavfty Strain (SQ + Arnold Curv» FH  1 14  1  1 16  1  1 18  r 20  fro  HUGHES SBPM  1 8 / 1 0 / 8 3 Mod Arnold  McDONALD FARM D" 16.75 m  Cavtty Strain W  SELF - BORING Site : McDonald Farm - JH  1  PRESSUREMETER  Depth : 16.75 m  10  Date : 10/18/83  LOG CURRENT VOLUMETRIC STRAIN %  10*  McDONALD FARM SBPM Feb. / 8 4 D« 1 6 . 7 5 m H o u l s b y U n l o a d i n g C y l  58o  600  500  -  400  H  300  ~t  S u ^ l - 583 ka P j  o a.  560- C-^ -  32 -2^4  o  (0 CO  tt.  200  100  -  6 -ln(E0 -  E ) E«Natural S t r a i n  8  McDONALD FARM Hughes SBPM D= 17.75 m T  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1!  0-j—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i 0 5 10 CAVITY STRAIN  15 ( %  )  20  HUGHES SBPM  McDONALD FARM D = 17.78 m  800  700  10/18/83  H . 4 . ^  600  H  500  H  +  cS^  400  H  300  Jf  200  +  +  4It  ^  +  +  +  + 4-+ + + °  +  +  +  °  5«l  a - .CM5Z.  ~i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r 2 D  Dote Points  4  6  8 10 12 Cavtty Strain (*) 4- Arnold Curv* Fit  14  16  18  20  Cavfty Strain (X)  10<o  SELF - BORING PRESSUREMETER Site : McDonald Farm - JH  Depth : 17.75 m  Date : 10/18/83  LOG CURRENT VOLUMETRIC STRAIN %  McDONALD FARM SBPM FEB.  /84  D = 17.75 m Houlsby Unloading Cyl  £43  o o.  0  /  2  4 -ln(E0 -  6 E) E=NAtural Strain  8  10  McDONALD FARM Hughes SBPM D= 18.75 m  o O  200  ~i—i—i—i—j—i—i—i—i—1—i—i—i—i  5  I  10  CAVITY STRAIN  15 ( %  )  "  '  1  r  HUGHES SBPM  10/18/83  McDONALD FARM D = 18.75 m  900  +++  +  800 H  700  600  500  H  400  H  300  a-Oil! b= .C.G2-T-r  0 D  2 Data Points  T 4  - r  —t—  8  10  —r  -  12  CavHy Strain (*) + Arnold Curve Fit  —r— U  16  18  20  Covfty Strain (X)  9-w  1  10  LOG CURRENT VOLUMETRIC STRAIN *  10*  McDONALD FARM SBPM FEB. / 8 4 823  D= 18.75 m Houlsby Unloading Cyl  900 800 700  - + 600 o  0-  500  H  400  H  2 B 0)  2  Q.  VP Cwo = 8 Z ! ^ 4^>  300  200  4  100 -4  8 -ln(E0 - E) E=NaturaI Strain  McDONALD FARM H u g h e s S B P M 1000  0  D= 19.75 m  -i—-|—i—i—i—i—i—i—i—i—i—r—i—i—i—i—i—i—i—i—I  f  0  i—i—i—i—I—i—r—i—i—|—~i—i—i—i—j—i—i—i—i—I 5  10  CAVITY STRAIN  15  ( %  )  20  3-\4  HUGHES SBPM  10/18/83  McDONALD FARM D » 19.76 m  900  ++++ 800  a  700 H  & I  3  <5 = 6 4 0 V  I  600 H  a  L.  8  500 H  400  Ko^eA  300  -r2 •  Data Polnta  /Wold - r  4.  8  ^Ll^ax" -T— 10  — i — r 12  Cavity Strata ( X ) + Arnold Curve Fit  101  1+  KPa  16  -1—r 18  20  SELF - BORING PRESSUREMETER Site : McDonald Form -  550 H 1  1  1—i  JH  i  Depth : 19.76 m  i i i i | 10  1—-i  Date : 10/18/83  »  i i i ' i '  LOG CURRENT VOLUMETRIC STRAIN %  1  McDONALD FARM SBPM FEB. / 8 4 D = 1 9 . 7 6 m Houlaby Unloading Cyl  o H 0  —i  1 2  1— —i——i :  4 -ln(E0 -  1 6  E) E=Natural Strain  1  1 8  r  1 10  915  HUGHES SBPM  10/18/83  McDONALD FARM D => 20.76 m  900  800  +++ o I  + +  ^  +  +  +  700 -4  I  £  3 •  0  o  600  500  400  H  ~  4  11 1  1  b-  300  T  1  -0022_ 1  2 D  Data Points  1  4  6) = 4to  1  1  6  1  1  1  1  1  1—1  8 10 12 Cavity Strain (%) + Arnold Curve Fit  1  14  1  1  16  1  1  18  r  20  7.7-0  Ccvhy Strain (X)  SELF -  BORING  Site : McDonald Farm - JH 850  i  PRESSUREMETER  Depth : 20.76 m  Date : 1 0 / 1 8 / 8 3  1—I—T—rr-n  800 H -t  o 750-  H j i  700 H  or  ZD  CO CO Ld  cr  a. Q  450  10  LOG CURRENT VOLUMETRIC STRAIN %  10  2  McDONALD FARM SBPM FEB. / 8 4 D = 2 0 . 7 6 m H o u l s b y U n l o a d i n g Cyl  0  2  4 —ln(EO — E ) E = n a t u r a l s t r a i n  6  8  <rc£  2lA  HUGHES SBPM  McDONALD FARM D = 21.76 m  900  +++  800 -\  700  10/18/83  ++  4  600  Arnold . S c W * 100^3  500  400 H  \o =- .00:14  -i—i—i—i—i—i—r—i—i—'—'—  300  2 D  Data Pointa  4  6  1  8 10 12 Cavity Strain (X) +• Arnold Curva Fit  1  1+  r  16  1—i—r 18  20  1%Z  HUGHES SBPM  1 8 / 1 0 / 8 3 Mod Arnold  McDONALD FARM D-21.76 m  o  92  Covtty Strain (X)  SELF - BORING Site : McDonald Farm - JH 900  PRESSUREMETER  Depth : 21.76 m 1  T——i  1—r-i  i i  T  Date : 1 0 / 1 8 / 8 3 [ - T / T T T T  n  850 —i  -t  D CL  H  800  :  -1  H -j  750  3  LU  cr:  J4  —i« co 700CO LU  or Q_  < ho r—  650600  — -i  550-i 500  i—i—i  r rrr, 10  T—r~T~mrr  LOG CURRENT VOLUMETRIC STRAIN %  10  2  McDONALD FARM SBPM FEB. / 8 4 833  D = 2 1 . 7 6 m H o u l s b y U n l o a d i n g Cyl 900  800  700  4  600  Q.  l_ 3 CO Of)  500  400  C f . g33-(~54)  4  h p  (9  5  -54  z  1_ Q.  - 3eo KPa  300  200  4  100  4  2 -ln(E0 -  E) E = N a t u r a l S t r a i n  6  8  McDONALD FARM Hughes S B P M D=20.75 m i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i  1  O  i  i  i  i  i  5  i—i—i—i—|—i—i—i—i—|—i—i—i—i—j  10  CAVITY STRAIN ( % )  15  20  HUGHES SBPM  10/18/83  McDONALD FARM D - 22.76 m  900  +. + + 800  ++  H  qi + + + +  +  +  700 I  a  600  0.  5  500  6 5 - 840  £  3  = IZ  (3r- k P  400  •wax  300  T  1  1  2 •  Data Polnta  1 4  1  1 6  1—1—1 1 1 1 1 8 10 12 Covfty Strain (X) + Amotd Curve Fit  1 14  1  d  150 K P a 1 16  1  1 1B  r~  20  S13  HUGHES SBPM  0  1 8 / 1 0 / 8 3 Mod  McDONALD FARM D=22-76 m  SELF -  BORING  Site : McDonald Farm - JH  PRESSUREMETER  Depth : 22.76 m  Date : 1 0 / 1 8 / 8 3  LOG CURRENT VOLUMETRIC STRAIN %  McDONALD FARM SBPM FEB 84 0=22.76 m HouW3byJJrac^^  _ln(EO - E) E=NoturaI Strain  McDONALD FARM Hughes SBPM D=23.75 m 1000-1—i—i—i—i—i—i—i—i—i—i—>  H  o  800  LU cn ZD  600 H  CL  to CO LU cr:  Q. cr o o  400  200  -t  «  1  1  1  1  1  1  ~I  r  HUGHES SBPM  10/18/83  Vk DONALD FARM D « 23.76 m  ++++  +  -4- + +  +  +  +  S  +  0  a  HockW  l_l I  Arnold  •  I  a.  12  300 H 200  4  b = .-O0Z2.  ioo H  n  Data Points  Cavity Strain (X) + Arnold Curve Frt  12.0 KPa  ^ 3 ^  HUGHES SBPM  McDONALD FARM D=23.76 m  130 -i  0 -j 0  1 8 / 1 0 / 8 3 Mod Arnold  1  1  2  1  1  +  1  1  6  1  j  8  1  1  10  CovHy Strain (5Q  1  1  12  1  r U  1  T 16  SELF - BORING PRESSUREMETER Site 900  ..McDonald  I  T  Farm - JH 1  1  Depth : 23.76 m  ~i  TrTTTJ  Date : 1 0 / 1 8 / 8 3  1—i7-T-n-r-rrj  850 H  800-i  o  4 6u  CL  - ^ 3 . 9 - 500 - 1 l < U  k&  750^  LU  4  cr:  3  CO co LU  cr: CL  700  3  . 650 H  MCDONALD FARM SBPM FEB 84 836  D = 2 3 . 7 6 m H o u l s b y U n l o a d i n g Cyl 900  -•  800  -  700  -  +  /  600  -  500  -  400  -  300  -  200  -  100  -  n  -  +  F  o Q. CD 3  i_  01 0) CP l_  CL  —-A-  r—  1  •  —,  1  1  ~ i  r— 8  -ln(E0 -  E) E = N a t u r a l S t r a i n  <b<ct  23  9  HUGHES SBPM  10/18/83  McDONALD FARM D - 24.76 m  1 "I  II  1—i—i 0 D  :  2 Data Points  i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r 4  6  8  10  12  Cavity Strain (*) + Arnold Curve Fit  14  16  18  SELF - BORING ,u Site : McDonald Farm - JH  PRESSUREMETER  Depth : 2 4 . 7 6 m Depth  Date : 1 0 / 1 8 / 8 3  1000-r  i T T T \  10*  '  L  0  G  C U R R E N T V O L U M E T R I C STRAIN %  McDONALD FARM SBPM feb 84 D = 2 4 . 7 6 m H o u l s b y U n l o a d i n g Cyl  481 left.  T 2  4 -ln(EO -  E) E = N a t u r a l S t r a i n  6  McDONALD FARM Hughes SBPM D=25.75 m  i—i—i—i—|—i—i—i—i—|—i—i—i—i—|—i—i—i—r 5  10  CAVITY STRAIN ( *  15  )  .  20  •MA  HUGHES SBPM  10/18/83  McDONALD FARM D - 25.76 m + +  0.9  +  +•+  +  H  0.8 H  0.7 H  ©>  68a  62.=  833  0.6 -1  ^  4  0.5 H3 3  0.4  b - .0019 T—1  1  2 •  Data Points  1  4  1  1—1  1—1  6  8 10 12 Covfty Strain (X) + Arnold Curve Fit  1  1  1  1  1  U  1—i 16  1  1  18  r  20  SELF - BORING PRESSUREMETER Site : McDonald Farm - JH  Depth : 25.76 m  Date : 1 0 / 1 8 / 8 3  HUGHES SBPM  1 8 / 1 0 / 8 3 Mod Arnold  McDONALD FARM D=*25.76 m  .  Pressure ( kPa ) (Thousands)  £4T  APPENDIX I I PRESSUREMETER T E S T DATA AT L U L U I S . - UBCPRS  £ 4 6  Site Date Pressuremeter On S i t e L o c a t i o n Comments  Depth ( m ) 3.0 4.0 4.8 6.35 7.9 9.4 10.9 12.4 14.0  : : : :  L u l u I s - UBCPRS 3/4/87 UBC SCP APR3 : No s e i s m i c o r p i e z o c o n e S t r a i n C o n t r o l l e d Test  S t r a i n Rate ( %/min ) 11.1 11.2 10.8 10.6 10.6 12.4 10.3 10.3 9.3  data  Approx. R e l a x a t i o n P e r i o d ( min ) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5  UBC SCP  3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 D=3.0 M Lulu Ts  -  UBCPRS ^7~V  .++  +rH+ 4f»-+  T~  + + + +  +  r  T  8  UNCOR  C-/VMTY  12  +  STRAIN % COR  1  16  -  20  a  ARM1  +  COR PRESSURE (kPa) ARM2 • ARM3  9.5 \  UBC SEISMIC CONE Site : LuluB-UBCPRS- Inf Strain  Depth :  PRESSUREMETER 3.0  m  Date :  3/4/87  UBC SCP  0  2  3 / 4 / 8 7 HOULSBY UNLOADING CYL  4  8  -ln(E0 - E) E»Notura! Strain  8  10  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 A n n a c i s Pile D = 4 . 0 m  AnnSc^ Pile  <= U d a  Ts-OBCPf^  300  0  250  ~\  200  -j  150  H  CD i_  m  m  CD i_ Q.  7J  100  50  H  -50 18 Infinitesimal S t r a i n % uncor  +  cor  22  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 Annacis Pile D=4.0 m  -40  0 •  arm1  40 +  80  Cor Pressure (kPa) arm2 O arm3  120  160  UBC SEISMIC CONE Site : Annacis Pile - Inf  10 ~  Depth :  1  1  PRESSUREMETER 4.0  m  10  Date :  LOG CURRENT VOLUMETRIC STRAIN  +  3/4/87  10  s  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 2 o  -.  -60  H  6  0  PILE D = 4 . 8 M  ANNACIS  1  r  4  ,  1—-1 8  1  1  12  1  18  INFINITESIMAL S T R A I N % UNCOR  +  COR  ANNKI5 PIL£~  •  1  1  20 CCAVITV)  1  LuluXs-UBcP^ ,  r  24  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 ANNACIS PILE D = 4 . 8 M i  >  t  »o w-  >•  S  I -50  I  I  -30  I -10  I  I  10  I 30  I  1 50  1  I  I  70  I 90  COR P R E S S U R E (KpA) O  ARM1  +  ARM2  •  ARM3  1  1 110  I  1  1  130  1  i 150  -  UBC SEISMIC CONE PRESSUREMETER Site : Annacis Pile - Inf  10 "  +  1  Depth :  1  4.8  m  10  Date :  LOG CURRENT VOLUMETRIC STRAIN  3/4/87  10  2  Corrected Pressure ( kPa )  o  -  o  i  M U > 0 l O l M 0 0 t D O ~ ' M 0 i f O I 0 1  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  v  J C 0 ( O O  o  o  o  o  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 ANNACIS PILE D = 6 . 3 5 M  AWNAC15  Pll_£-  Lulu I<S  USCPRS  o hi (Z  D V) in  u tr o.  <5^  INFINITESIMAL STRAIN UNCOR  +  COR  %  Ccavi+j)  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 Annacis Pile D=6.35 M  0.5  E E c o o  0.4  4  0.3  4  0.2  4  e  Q  0.1  -0.1  1°  4  -40  0 O  arm1  40  80  Cor Pressure (kPa) arm2 • arm3  120  160 *>  c• * •4J  2^3  UBC SEISMIC CONE Site : Annacis Pile - Inf  10 -  +  1  PRESSUREMETER  Depth : 6.35  1  m  10  Date :  LOG CURRENT VOLUMETRIC STRAIN  3/4/87  10  2  Average Strain +  Corrected  Navfu-ral  S+rain  UBC SCPM 3 / 4 / 8 7 HOULSBY UNLOADING CYL AN NAC IS PILE D=>6.35M  20  4  0 -J 0  ,  1 2  1  1 4  1  f  6  -ln(E0 - E) E=NATURAL STRAIN  1  1 8  1  1  10  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7  uncor  Infinitesimal Strain % + cor  U B C S C P M 3 / 4 / 8 7 REP LOT 2 6 / 1 0 / 8 7 A N N A C i S PILE D = 7 . 9 m 0.5  0.4  0.3  -i  E E c o  o  /  0.2  4/ M  H—  o  ///  Q 0.1  St-. -  H— 0 > 0  ...  ^~4i  ....  aii!  ' ft ft  ^* -0.1 40  -40  •  arm1  +  120  80 Corrected Pressure  kPa  arm2  ARM3  O  ~r  —  3  IS 160  O  UBC SEISMIC CONE Site : Annacis Pile - Inf  10  Depth :  1  - 1  PRESSUREMETER 7.9  m  10  Date :  LOG CURRENT VOLUMETRIC STRAIN  +  3/4/87  10  2  UBC Seismic Cone Pressuremeter-3/4/87 Annacis Pile Sfte-Depth=7.9m  240 -,  230  -j  160  4  :  1  1  6  7 +  1  1  1  1  8 9 Average Strain (%) Corrected NaWral S+rain*  1  1 10  UBC SCPM 3 / 4 / 8 7 HOULSBY UNLOADING CYL Annacis Pile D«=7.9 m  o H 0  1  r~ 2  1  1 4  1  r— 6  -!n(EO - E) E=Noturol Strain  1  1 8  1  1  10  UBC SCPM 3/4/87 REPLOT 26/10/87 ANNACIS PILE D=9.4m  400 —i  0  4  8 UNCOR  12  18  Infinitesimal Strain % + COR  20  24  UBC SCPM 3/4/87 REPLOT 2 6 / 1 0 / 8 7 ANNACIS PILE D = 9 . 4 m  IP—B—~_  P  ;  -  K  -  1 -40  -  — H  —  r - . 0  . , . / ^ - * /  1  40  1  1  80  1  1 1  120  COR P R E S S U R E (KpA) •  ARM1  .+  ARM2  O  ARM3  i  1  160*  1 -  1  200  1  2.7-3  UBC SEISMIC CONE Site : Annacis Pile - Inf  Depth :  PRESSUREMETER 9.4  m  Date :  LOG CURRENT VOLUMETRIC STRAIN  +  3/4/87  UBC SCPM 3 / 4 / 8 7 HOULSBY UNLOADING CYL Annacis Pile D=9.4 m  Su-  \A>°S Vfo  6 -ln(E0 - EO)  E=Notural Strain  spk  10  UNCOR  Infinitesimal Strain % + COR  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 ANNACIS PILE D= 1 0 . 9 m 0.5  0.4  -  0.3  0.2  -  0.1  0.0  -0.1 120  -40  COR P R E S S U R E (KpA) •  ARM1  +  ARM2  O  ARM3  UBC SEISMIC CONE Site : Annacis Pile - lnf  PRESSUREMETER  Depth : 10.9  m  Date : i—r  1  10  3/4/87 i ii i  T — i — I I I I  LOG CURRENT VOLUMETRIC STRAIN  10*  Corrected  Pressure  (kPa)  UBC SCPM 3 / 4 / 8 7 HOULSBY UNLOADING CYL Armada Pile Stte—Depth=10.9m  500  400  4  300  H  200  4  100  4  /->» o  ft 3  m  ?  Q.  O  o  -In(E0 - E) E»Natural Strain  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 600  -T  -100  H 0  ANNACIS PILE D=»12.4 M  1  1 4  1  1 8  UNCOR  1  —l 12  r——i——I 16  Infinitesimal Strain % + COR  1 20  r  T" 24  UBC SCPM 3 / 4 / 8 7 REPLOT 2 6 / 1 0 / 8 7 ANNACIS PILE D«12.4 m  0.5  0.4  4  0.3 2 Z  o  0.2  4  CP  § u Q  0.1  4  0.0  -0.1 200 •  ARM1  +  COR PRESSURE (KpA) ARM2 • ARM3  au  OJ OS  ^ 8 Z  UBC SEISMIC CONE Site : Annacis Pile - Inf  1  PRESSUREMETER  Depth : 12.4  10  m  Date :  LOG CURRENT VOLUMETRIC STRAIN  3/4/87  10  2  UBC Seismic Cone Pressuremeter—3/4/87 Annacla Pile Sfte-Depth=12.4m  Natural Strain  Average Strain (%)  UBC SCPM 3 / 4 / 8 7 HOULSBY UNLOADING CYL ANNACIS PILE D=12.4 U  500  400  o  H  300  5u5* •  CL O  3-lQ  kfo left qpk  L.  3  S)  n  200  -i  100  4  CO  CL  2  -r 4 -ln(E0 - E)  6  E=Notural Strain  8  10  UNCOR  Inftnlteatlmal Strafn ( % ) 4- COR  UBC SCPM 3 / 4 / 8 7 REPLOT 1 7 / 1 2 / 8 7 ANNACIS PILE D=14.0 M  to  0^  0  200 •  arm1  CORRECTED PRESSURE ( kPa ) + drm2 • arm3  400  UBC Seismic Cone Pressuremeter-3/4/87 Annacis Pile Stte-Depth«= 14.0m  CO  +-4-  PM  Average Strain (%) Natural  S+rain«  UBC SEISMIC CONE %  Site : Annacis Pile - Inf 500-j  1  PRESSUREMETER  Depth : 14.0 m  1—i—i—i i i i |  -j  Date : 1—i—i—i  LOG CURRENT VOLUMETRIC STRAIN %  3/4/87 tiii  UBC SCPM 3 / 4 / 8 7 HOULSBY UNLOADING CYL Annaci8 Pile D=14.0 m  50  4  0 H 0  1  r~  2  1  1 4  -ln(E0 - E)  1  1 6  E=Natural Strain  1  1 8  1  1  10  Site Date Pressuremeter On S i t e L o c a t i o n Comments  Depth ( m ) 4.75 7.75 10.75 13.75  L u l u I s - UBCPRS 8/1/88 UBC SCP JAN8 S t r a i n Controlled Test  S t r a i n Rate ( %/min ) 14.7 13.4 12.9 12.9  Approx. R e l a x a t i o n P e r i o d ( min ) 7.5 9.7 13 7.2  Cavity Strain Avg. of arms 1-2—3  [%]  SCPM  8/1/88  Annacfs Pile D=4.75 m  1  0.5 . A m Deflection [mm] Arm #2 <• Arm #3 r  •  Arm  #1  +  ^ 9 3  UBC SEISMIC CONE PRESSUREMETER Site : Annacis Pile 300  D Q_  Depth : 4.75 m  i  i  i  i  ,  3/.5kft  1  i i i n  Date : 1—l—II  8/1/88 i i r  250 H 5 = a  172-loo 2.303  LU  m  §200 LU  cr:  CL  o r-  150 H , +++ +  ++  100  T  I  +  +  I  I  l l l l |  10  -1  1  1 1 | | ||  LOG CURRENT VOLUMETRIC STRAIN %  10  8  SCPM 8 / 1 / 8 8 Houlsby Unloading Cyl Annacis Pile  -j 0  ,  1_,  2  ,  , 4 -ln(E0 - E)  ,  D=4.75 m  ,  j 6  E=Natural Strain  j  j 8  j  j  10  SCPM  8/1/88  A n n a c i s Pile D = 7 . 7 5  200  m  J  0.5 Arm Deflection [ m m ] •  A r m #1  +  A r m #2  •  Arm  #3  296  UBC SEISMIC CONE PRESSUREMETER Site : Annacis Pile  Depth : 7.75 m  Date :  8/1/88  Seismic Cone Pressuremeter 8/1 / 8 8 Annacis Pile  5  7  D=7.75 m  9  Cavity Strain Avg. of arms 1 - 2 - 3  11 [%]  13  15  s c r M a/i/oo H o u l s b y U N i o a d i n g Annacis Pile  0  2  uyi  D=7.75 m  4 -ln(E0 - E) E=Natural Strain  6  8  Seismic Cone Pressuremeter 8 / 1 / 8 8 Annacis Pile  D= 10.75 m  i—i—i—i—i—T—i—i—i—i—i—i—i—i—i—i—r 3 5 7 9 11 13 Cavity Strain — Avg. of arms 1-2-3  [%]  15  17  19  SCPM Annacis  260 240  -  220  -  8/1/88  Pile D = 1 0 . 7 5  m  200 180 160 o  CL © L.  3 a n  £ Q.  140 120  -  100  -  80  -  60 40  -  20  -  0 -20  r~  -0.1  •  Arm #1  0.3  0.1  +  Arm  Arm  #2  Deflection  [mm]  o  Arm  #3  3oi  UBC SEISMIC CONE PRESSUREMETER Site : Annacis Pile  Depth : 10.75 m  Date :  8/1/88  SCPM 8 / 1 / 8 8 Houlsby Unloading Cyl 400  -i  Annacis Pile  D= 10.75 m  ~ln(E0 - E) E=Natural Strain  Seismic Cone Pressuremeter 8 / 1 / 8 8 Annocl8 Pile  1  1  r—i  i  3  i  1 7  1  j  9  D=13.75 m  1  Cavity Strain Avg. of arms 1 - 2 - 3  1 11  \%]  j  ,  13  ,  ,  15  r  SCPM  •  Arm #1  +  8/1/88  Arm Deflection [mm] Arm #2 O r m #3 A  UBC SEISMIC CONE Site : Annacis Pile  PRESSUREMETER  Depth : 13.75 m  Date :  LOG CURRENT VOLUMETRIC STRAIN s  8/1/88  Corrected Pressure  [kPa]  Site Date Pressuremeter On S i t e L o c a t i o n Comments  Depth ( m ) 4.8 6.35 7.9 9.4 10.9 12.4  S t r a i n Rate ( %/min ) 4.3 8.1 8.5 6.4 8.0 2.6  : L u l u I s - UBCPRS : 11/2/87 : Hughes SBPM : FEB11 : Quasi-Strain Controlled Test S t r a i n range i s the range i n c a v i t y s t r a i n o v e r which the s t r a i n r a t e has been c a l c u l a t e d .  S t r a i n Range ( % ) 0-9.5 0-16 0-16.9 0-13.3 0-16.4 0-16.4  Approx. R e l a x a t i o n P e r i o d ( min ) 1-5 1-5 1-5 1-5 1-5 1-5  Self-Boring P r e s s u r e m e t e r - 1 1 / 2 / 8 7 UJ«* I * - U 8 C P R S - D e p t h : 4 . 8 m  FtbU.Ocfl  •1  &ur * 0 . 7 Z MPa •  0 Q.  A**  X  3.3%  .3V.  £ 3  n  m ©  Arnold  Q"O O  StW  = Zl.3kP<i |  ModW Arnold S u ^ - Hi  kPa  t  +>  o  £ L.  0  o  50 40  <3 •, •= O.fMPa  30 20  -ffi  0 0  a - i o 2 . * VJ&  0 — —  10 0  T"  •  Measured  +  "1  T"  4  6  8  Average Strain (%) Arnold "fype-l Stress-Strain Curve Ft+  10  Na+ur-al 6-V  12  0 CD  Self-Boring P r e s s u r e m e t e r - 1 1 / 2 / 8 7 Lulu, 35-U6CPfS-Depth:4.8m  120 —  160  Pressure (kPc) Arm 2  200 Arm 3  240  3l  o  SELF - BORING Site :  1  Lulu I s - U B C P R S  Depth ;  PRESSUREMETER 4.8 m  Date : 1 1 / 2 / 8 7  10  LOG CURRENT VOLUMETRIC STRAIN  10*  Self-Boring Pressuremeter—1 / 2 / 8 7 Fcbll.oo3  Hi-UBCpR5-.Depth:6.35m  LUIIA  Arnold S u ^ - 23.0 kPa ModrrVa A^old 5 u ^ = 24.4 K  W  05  6 t - 1.1 MPa A  7  p  6  r  j  T  r  8  0 0 o o 0  10  12  1 14  A v e r a g e S t r a i n (%) Measured  Arnold  Ttjpe. V  <>  Stress-Strain  "7—r 16  18  kPa.  Self-Boring Pressuremeter- i i / ^ / " ' LuAu I s - U&CPKS-Depth:6.35m  -0.62Hfa  lur  "120  160  Pressure (kPa) Arm 1  Arm 2  Arm 3  SELF - BORING Site :  L u l u Is-U8CPR5>  PRESSUREMETER  Depth : 6.35  m  Date : 1 1 / 2 / 8 7  LOG CURRENT VOLUMETRIC STRAIN  Self-Boring Pressuremeter-11 / 2 / 8 7 Lulu I*.-uecpRS -Depth:7.9m  0  2  4  6  8  10  12  Average Strain (%) Measured  +  Arnold Type 1 Cu»*ve  FIT  O  1  14  C  Stress-Strain  16  ,  0  0  4  18  20  3  a o © CM  SBPM 1 1 / 2 / 8 7 lulul3-UBCPR5D=7.9m  ARNOLD TYPE 1 SUavg=23.4 em«=10  a  a  4-  Natural Strata % Strain  2\Tr  SELF Site : L u l u T s - UBCPRS  BORING PRESSUREMETER Depth : 7.9  m  Date : 1 1 / 2 / 8 7  SBPM 1 1 / 2 / 8 7 Houlsby Unloading Cyl La\ul6-U8CPR5 -Depth:7.9m  1 0  1  1 2  1  1 4  ~ln(E0 - E)  1  1 6  E=Natural Strain  1  1 8  1  1 10  Self-Boring Pressuremeter-11 / 2 / 8 7 Uiu  300  o n  2  280  -  260  -  240  -  220  -  200  -  180  -  160  -  0)  140  £  120  -  100  -  Ts-  UBCPRS - D e p t h : 9 . 4 m  febli.ooS  I  54  n  Q.  80 60 40 20  o  --  T  1 4  1  1 6  1  r 8  ~i 10  r  A v e r a g e S t r a i n (%) ( M a t u r e , l ) Measured  +  Corrected  T 12  r14  Self-Boring Pressuremeter-11 / 2 / 8 7 UIUJA- U B C P R S -Depth:9.4m  260 240  -  220  -  I " tnf ja^orx 64  200 o CL  180  ©  160  n m  140  X  © t_  H Arnold ModiW  D.  120  -  Thi* (t>  +-> O ©  100  -  3 S^eMr  •<uD 0  o  d -l83 z  80  1.9?  5IA^  X  * 22 kPa - Z3.I k P a  lovv Su.J fo55iblu cksfu.r\)eA  4^5f «'  b« .OMZ-33 6u- W  60  a  Siw  Hfe  40 20  H  2 - Measured  4  T 6  8  10  Average Strain (%) ( N a t u r a l ) + Arnold Type I Curve. F I T  12  -r14  Self-Boring Pressuremeter-11 / 2 / 8 7  0  40 Arm 1  80  120  160  Pressure (kPa) Arm 2  200 Arm 3  240  280  SELF - BORING PRESSUREMETER Site : L a l u I s - U6CPRS  Depth :  9.4 m  Dote ; 11 / 2 / 8 7  Corrected Pressure  (kPa)  Self-Boring P.M., 1 1 / 2 / 8 7 Lulu I5- OBCPRS  -Depth:10.9m  Average Strcfn (%) —  - Co rr. Press. (kPa)  (KJaKxral  F t B U-OOfi  Self-Boring P r e s s u r e m e t e r - 1 1 / 2 / 8 7 8 Lulu T s - U8CPR5 -Depth: 10.9m  ro  SBPM 1 1 / 2 / 8 7 ARNOLD TYPE 1 LuluXs.UBCPR5D=10.9  250 240 230 220 210  0  Q. 0  Cor Pr essi  i_  m S U m a x = 2 4 . 3 kPA  -  + + +  200 190  _  180 170  —  160  —i  Arwold  The. SM. ob+ai^cl Is |otO. 5ome, disWbance occurred. A U o p^lonaexJl pttn'cdj of" Creep before t W w / ( ° p * do KO+ KVTSIPC- 4WS -res)-- VRKJ  way Uavc  140  120 110 100  (T  Modrpfed A*>o  150  130  VP  Sawv^^ 24.3 kPa  J  -  r  0  5cLikbW. -for C^CLLISTIUI^ 5tt-;  ~r 2  I 6  8  10  Natural Strain % Data Points  12  14  16  18  SBPM 1 1 / 2 / 8 7 ARNOLD TYPE 1 LuKuftlPRS  D=10.9 m SUavg=19.7 kPa em=10  Natural Strain % Strain  3 2 8  SELF - BORING Site : LJIU I s - U B C P R S  1  PRESSUREMETER  Depth :  10  10.9 m  Dote : 1 1 / 2 / 8 7  LOG CURRENT VOLUMETRIC STRAIN  10*  Self-Boring P.M., Lulu lb.-UBCPR5  500  400  11/2/87  -Depth: 12.4m  febll.OO^  -4  300  200  "4  100  -j  H Corr. Pressure kPa  Average Strain (%)  18 (NJaWaf)  22  Self-Boring Pressuremeter-11 / 2 / 8 7  C  20 19 18 17 16 15 H 13 12 11 10 9 8 7 6 5 4 3 2 1 0  Lulu 36.-UBCPRS -Depth:12.4m  Po =  255 K?3  0  This Po -i3 considerable hfcjW 4han +V\c Po calculated T T O ' V A ploh of -Hit co/vee-fed pressure, vs average plof on "Hoc ' previous pagc.Tl'ii*. oonjd o t c W +o stale af u/U f court (* puffed,  A U P M £ P o J f 23o is  Ta^cio  TO be Corvttk  200 Arm 1  Pressure (kPa) Arm 2  400 Arm 3  SBPM 11/2/87 ARNOLD TYPE 1 ANNACIS D = 1 2 . 4 m S U m a x = 3 2 . 1 k P A  360 350 340 330 320 o Q.  o l_  ZJ  n  310  280  0  270  O  3 2.1 fcPa.  MfltltfW Arnold  290  m v  Q. i_  *  300  Th&  "6u is low. Some Dr-s-K^kance1  o-p c r e e p  mr|  vwakd.  4U15  260 250 240  £3 230 220  -1  3  11 Natural Strain % Data Points  13  15  17  0» V>3  Natural Strain % Strain  3^3  SELF - BORING Site : U U I s - O B c P R S  I  1  i  PRESSUREMETER  Depth : 12.4 m  Date : 1 1 / 2 / 8 7  T  i  i  i  i i i |  1  1—~i—I  I  I I I  i  i  i  i  i i i |  1  1  i  i i i  10  1—i  LOG CURRENT VOLUMETRIC STRAIN  1  10  2  3 3 <4  Site : L u l u I s - UBCPRS Date : 19/2/87 Pressuremeter : Hughes SBPM On S i t e L o c a t i o n : FEB19 Comments : Quasi- S t r a i n C o n t r o l l e d Test S t r a i n range i s the range i n c a v i t y s t r a i n o v e r which t h e s t r a i n r a t e has been c a l c u l a t e d .  Depth ( m )  S t r a i n Rate ( %/min )  S t r a i n Range ( % )  4.9 6.3 7.9 9.4 10.7 12.5 14.0  4.3 2.8 9.5 6.4 4.2 2.1 2.5  0-18.5 0-3.5 0-19.2 0-13.3 0-12 0-17.4 0-17.4  Approx. R e l a x a t i o n Period ( 1-5 1-5 32 1-5 1-5 1-5 1-5  SBPM 19/2/87 260  REPLOT 28/10/87  l u k x X s , - U B C P R S -Depth:4.9m  TeB\9.0tfL  o  0.  m m ©  Q.  •o 9  IS  I  O O  20  Average Strain (%) — Cavi+w  strain  Self-Boring Pressuremeter-19/02/87 Lulu l3.~U8CPGS-Depth:4.9m.SBPM#3  "pry^ 120 — Arm 1  160  Pressure (kPo) Arm 2  r 200 Arm 3  240  E  <5 o O  Q  o CM  O CM CM  O CM  O O CM  O O)  O  00  O  o  CO  o  lO  o  SBPM 1 9 / 2 / 8 7 ARNOLD TYPE 1 D=43 m SUavg=17.9kPa em=10  Cavjiti^ • Strain  Strain %  SELF Site : Lulu  X 5 - U B C P R S  BORING PRESSUREMETER Depth :  4.9  m  Date : 1 9 / 2 / 8 7  SBPM 1 9 / 2 / 8 7 REPLOT 2 9 / 1 0 / 8 7 Lulu. Tjs.- 0 6 C P R 5  -Depth:6.3m  o Q. 3  to 0)  0.  "-f->8  o© b o o  8 -Cawrtij Strain  10  Average Strain  12 (%)  3*1  '  T  SBPM 1 9 / 2 / 8 7  ARNOLD TYPE 1  b l u I D - U B C P R S D=6.3M SUmax=20.0 kPa  v  a. 3 «  m CL  "O 9 +»  o P.  0  o  C^avi+ij Data Points  Strafn X  SBPM 1 9 / 2 / 8 7  T  1  I  I  3  I  1 5  1  1 7  1  1 9  CavHHj Strain  ARNOLD TYPE 1  1  1  1  11  Strain %  1 13  1  1 15  1  1 17  1  1 19  1  1 21  344  SELF - BORING PRESSUREMETER Site : L o U X ^ - U B C P R S T 200  1—I  I I I 1 11  Depth : —I  1—I  6.3  m  I I ITT]  Date : 1  19/2/87  1—nTTTTT  H  o 5u.~ r7B,6-t54  Lul  or z>  00 CO Ld 150 OL  o  r-  100  1 10 -  1—I  TTTTTp  1  LOG  '' I  1 CURRENT  1—I I I I M | 10 VOLUMETRIC  —r—i—i  IIIII 10*  STRAIN  34 5"  Self — Boring Pressuremeter—TS/ LuW T s - U B C P R S -Depth:7.9m  26  7  "1  24 22  P.*l3H  134+ 14?* 143Kfe  20 18 16 14 D •*->  12 10 8 6 4 2 0 100 Arm 1  200 Pressure (kPa) Arm 2  300 Arm 3  400  SELF -  BORING PRESSUREMETER  Site : L u k l s - U J & P R S  ouu-  I  I  Depth ; I  I  1l  m  Date : 1 9 / 2 / 8 7  i  I 1[  i  O i  i  TT"  \ "  i  i  I  /?\1  J  II  < 200-  £  /  I  t  ro  PRESSURE  8.  J y  ; 2303  150-  100 1 W W 1  ^ 45A IcPa  i  i  1  I  1 1 1 I |  10  •  i  i  i  LOG CURRENT VOLUMETRIC STRAIN  J i i  r  10  SeIf~3or!ng  Pressuremeter-19/02/87  Lulu Is-UBCFRs ~Depth:7.9m(repeat) 5fc-iYrfl&koM  T~T~"~T—r  4  6  ~r 8  R-b |$.005"  -T"  10  12  Average Strcfn (J5)  14  16  18  20  Self-Boring P r e s s u r e m e t e r - 1 9 / 0 2 / 8 7 20 19 18 17  16  Lulu Is- UBCPRS~Depth:7.9m(repect)  £ _ ,v,ftah e  —  -  15 14 13 12  11  c 2 OT  10  -  9 ... 8 6 5 4 3  2  1  -  0  —I—  0  280 Arm 1  Pressure (kPa) Arm 2  •  Arm 3  Self-Boring Pressuremeter— 1 9 / 2 / 8 7 Lota I s -  Average  ~Depth:9.4 m  Strain  {%)  (^MaKtral  Feb 19-006  SBPM 19/2/87 ARNOLD TYPE 1 Lulu Is-UBCH^ D=9.4m SUavg=32.2kPa em=10 %  i  r 3  1  1  5  1  1 7  1  r—i  1  9  11  Natural Strain % Strain  T  Self-Boring Pressuremeter-19/2/87 20  1198  Lulu Is - UBCPRS -Depth:9.4 m  i  —  -  17  -j  15  4  16 -j  u  13 12  —|  H 4  11 -j 10 -4 9 4 8  H i  '  ^  6  4  5 4 3  4  4 4  f /  !  / ft /  //^7//  •?/  / /  /  /  3  / . /  - Mo ttk _  2 -1 I 1  o  4  100 — Arm 1  '  200  Pressure (kPa) Arm 2  300 Arm 3  j 400  SELF : b k Is- UBCPR5  BORING PRESSUREMETER Depth :  9.4 rn  Date : 1 9 / 2 / 8 7  Self-Boring P r e s s u r e m e t e r - 1 9 / 2 / 8 7  Average Strain (%) (rOaW&l^ .  Self  Boring Pressuremeter— 19/2/87 Lola Hs-UBCFfcS  3 f . =  I4S  |cp  /  8  /  /  I  ~ Arm  80  S^ZJhf  /  120  '7  160  Pressure (kPa)  1  m  /  / /  40  ~-Dopth:10.7  - Arm 2  200  240  Average Strain  (%)  Self-Boring P r e s s u r e m e t e r - 1 9 / 2 / 8 7 600  -r  500  -  1  0  Ulul6-u8CP£S-Depth:12.5 m —  I  I  2  I  1  4  r—I—l—I—1  6  8  1  10  1  1  12  1  1  1  14  1  18  Average Strain (%) C N a W a I ) s  j  1  18  1  20  Strain ( « )  0 - » M ( d ^ W O I M f f l ( 0 0 - ' M O l ^ O l O ) M 0 1 f f l O  Self-Boring  U I u. J s - 06C PRS  500  » 4>  Pressuremeter-19/2/87  400  -  300  -  200  -  100  -  Correced Pressure  -Depth:!4.0 m  Average Strain (%) ( Ma+uraf) +• Arnold  SBPM 1 9 / 2 / 8 7 ARNOLD TYPE U U t s - u & C P K S . D= 14.0m SUavg=41.4 kPa em=10  ^ 4  j .  6  r  -  -  -  i  j 8  1  1  10  Natural Strain % Strain  --1  r~ 12  Self-Boring P r e s s u r e m e t e r - 1 9 / 2 / 8 7 L o k X s -OBCPRS -Depth: 14.0 m  Pressure (kPa) Arm 2  Arm 3  SELF Site : L u \ u • 500  -i  1  BORING PRESSUREMETER Depth : 14.0 m  I S - ( J B £ P R 5  T  1—i  J-  IT  rri  10  1  Date : 1 9 / 2 / 8 7 r  — 1 I T T T T ]  LOG CURRENT VOLUMETRIC STRAIN %  10*  3^3  APPENDIX I I I PRESSUREMETER TEST DATA AT LANGLEY LOWER 232  36n  Site : Langley Lower 232 Date : 10/12/87 Pressuremeter : UBC SCP On S i t e L o c a t i o n : DEC10 Comments : Strain Controlled Test  Depth ( m )  S t r a i n Rate ( %/min )  1.0 2.0 3.0 5.0 7.0 9.0 11.0 13.0 14.1 16.0  11.5 8.3 12.6 12.2 12.3 12.3 12.1 12.0 10.2 11.4  Approx. R e l a x a t i o n P e r i o d ( min ) >20 >20 18 8.3 9.6 7.0 10.3 8.0 >30 >30  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 D=1.0 m 350  i  •  —  Cavity Strain ( % )  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 D=1.0 m  -0.1 •  Arm #1  0  0.1 +  Arm Deflection [mm] Arm #2 O Arm #3  UBC SEISMIC CONE PRESSUREMETER Site : Langley Lower 232  Depth : 1.0 m  Date : 1 0 / 1 2 / 8 7  LOG CURRENT VOLUMETRIC STRAIN s  SCPM 1 0 / 1 2 / 8 7 Lower Langley 232 Houlsby Unloading Cylindrical D=1.0 m  0  2  4 -ln(E0 - E)  6  E=Natural Strain  8  10  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 D=2.0 m 200  -i  190  -  r  Cavity Strain Avg. of arms 1—2—3  [%]  SCPM 1 0 / 1 2 / 8 7  •  Arm #1  +  Arm Deflection Arm #2  [mm] O Arm #3  3*1  UBC SEISMIC CONE Site : Langley Lower 232 1  ~r  PRESSUREMETER  Depth : 2.0 m  r-T—r-rr-n  r  Date : 1 0 / 1 2 / 8 7 r~-r—r-T-rTT  1  1  10  LOG CURRENT VOLUMETRIC STRAIN %  10  2  SCPM 1 0 / 1 2 / 8 7 Lower Langley 232 Houlsby Unloading Cylindrical D=2.0 m  0  a. x  i—i  I  3 O  a  I  Q.  l.9l  ©  0 © t 0 O  "T 2  -ln(EO ~ E)  E=Natural Strain  MPa  UBC SCPM 1 0 / 1 2 / 8 7 HOULSBY UNLOADING CYL 120  Langley Low 232 D=2.0 m SU=16.6 kPa  -i  0  2  4 Natural Strain % Data Points  6  8  10  UBC SCPM 1 0 / 1 2 / 8 7 Houlsby Unloading Cyl Langley Low232 D=2.0 m  Natural Strain % Strain  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 D=3.0 m 300 280 260  -I  240  -  1  :  -  Cavfty Strain [X] Avg. of arms 1-2-3  •  Arm #1  +  Arm Deflection [mm] Arm #2 O Arm #3  SCPM- 1 0 / 1 2 / 8 7 Lower Langley 232 Houlsby Unloading Cylindrical D=3.0 m  260 240  -  220  -  200  -  180  -  I  160  -  0) 0)  140  -  D.  120  -  I—I  o  0. X  I  £ o  •D 0 +>  o £ L.  0  o  +  100 80  -  60 40  -  20  -  0 8 +  -ln(E0 - E) EO = .1716  E=Natural Strain  10  SCPM 1 0 / 1 2 / 8 7 Lower Langley 2 3 2  +  ~ln(E0 - E) EO = .174  E=Natural Strain  Cavity Strain Avg. of arms 1-2-3  [%]  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 D=5.0 m 260  -i  j  :  -0.1 •  Arm #1  0.1 +  Arm Deflection [mm] Arm #2 O Arm #3  0.3  3© i  UBC SEISMIC CONE PRESSUREMETER Site : Langley Lower 232 350 - i  1  1—i—i  Depth : 5.0 m i i i i i  1  Date : 1 0 / 1 2 / 8 7 1—i—>  i i i i i  LOG CURRENT VOLUMETRIC STRAIN *  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 Houlsby Unloading Cylindrical D-5.0 m  »ln(E0 - E)  E=Natural Strain  UBC SCPM 1 0 / 1 2 / 8 7 HOULSBY UNLOADING CYL Langley Low 232 D=5,0 m SU=21.3 kPa  0  n  PI ©  "Hviptrl?olcc  Curve  frr  ©  CP  o © 0  o  8  Natural Strain % Data Points  10  UBC SCPM 1 0 / 1 2 / 8 7 Houlsby Unloading Cyi Langley Low232 D«5.0 m  Natural Strain % Strain  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 D=7.0 m  400 350 300  J  250 -\ 200 150  -i  100 50  -I  o  4 1  Arm  3  Arm Deflection [mm] Arm #2 ~ Arm #3  SCPM 1 0 / 1 2 / 8 7 Lower Langley 232 D=7.0 m 400 350  -  300  -  250  -  200  -  150  J  100  -  50  -  o  Q.  £ 3  n  0)  £  CO  D_  ©  o £ 0  o  _— l  2  n  , 4  ,  , 6  1  1 8  1  1  1  10  Cavity Strain Avg. of arms 1-2—3  1 12 [%]  1  i 14  i  r 16  i  i 18  r~ 20  Pressure [kPa]  > -i 3  ho  o o 5*  •1 i  >  i  04  i  36©  UBC SEISMIC CONE PRESSUREMETER Site : Langley Lower 232  1  Depth : 7.0 m  Date : 1 0 / 1 2 / 8 7  10  LOG CURRENT VOLUMETRIC STRAIN x  10*  SCPM 1 0 / 1 2 / 8 7 Lower Langley 232 Houlsby Unloading Cylindrical D=7.0 m  350  +++ 300  0 Q.  2 3  n  -\  250 -4  6/^-87  200 -4  0)  e  Q.  •o  150 -4  ©  o 2 i_ o o  100  -4  50  ~\  8  +  -ln(E0 - E) E=NaturaI Strain E0 = .1596  SCPM 1 0 / 1 2 / 8 7 Lower Langiey 232 Houlsby Unloading Cylindrical D=7.0 m  +  + + +  I—  -ln(E0 - E) E=Natural Strain EO = .162  SCPM 1 0 / 1 2 / 8 7 Lower Langley 232 Houlsby Unloading Cylindrical D - 7 . 0 m  +  -ln(E0 -- E) E=Natural Strain EO = .164  UBC SCPM 1 0 / 1 2 / 8 7 HOULSBY UNLOADING CYL Langley Low 232 D=7.0 m SU=22.0 kPa 150  -  0  i  _ _ _ _ _  2  ...  4 Natural Strain % Data Points  6  8  UBC SCPM 10/12/87 Houteby Unloading Cyl Langley Low232 D=7.0 m  /-s O Q.  I  Natural Strain % Strain  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 D=9.0 m  400 350  H  300 250 ~\ 200  -\  150  H  100 -\ 50 -i*  Cavity Strain Avg. of arms 1-2-3  [%]  SCPM  •  Arm #1  +  10/12/87  Arm Deflection [mm] Arm #2 O Arm #3  334  UBC SEISMIC CONE PRESSUREMETER Site  : Langley  400 - j -  o  350  -A  Lower 2 3 2  Depth  : 9.0  m i  r  1—i—i  Date  :  1—i—i  10/12/87  i i/i r  I I I I I  5.i~3oa.4- l o o  CL  lxl Dd tf> 3 0 0  CO 1x1  on a.  250  200  1  r—i—i  i i i i' 10  LOG CURRENT VOLUMETRIC STRAIN *  1  SCPM 10/12/87 Lower Langley 232 Houlsby Unloading Cylindrical 0=9.0 m  400 350  H  300  H  0  Q. i  i  c _  250  9)  n  c  200  Q. © ©  b o o  150 100  -f  50  H  + + 8  -ln(E0 - E) EO = .1642  E=Natural Strain  SCPM 10/12/87 Lower Langley 232 Houlsby Unloading Cylindrical D=9.0 m  400 350  o  H  300 -4  Q.  X  _ 3  0) V)  £  250  -i  200 -\  CL  •o 0 +»  o  _ O o  CP  150 -4 100 50  -4  + + 8 -In(E0 - E) 4- E0 = .164  E=Ncrtural Strain  UBC SCPM 10/12/87 HOULSBY UNLOADING CYL Langley Low 232 D=9.0 m SU=21.0 kPa  1 0  1  1 2  1  1  1  4 Natural Strain % Data Points  1 6  1  1 8  1  1  10  UBC SCPM 1 0 / 1 2 / 8 7 Houlsby Unloading Cyl 26  —J  0  :  2  Langley Low232 D = 9 . 0 _ _  4  6 Natural Strain %  Strain  m  8  10  Cavity Strain Avg. of arms 1-2-3  [%]  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 D=11.0 m  ' n  ~1  -0.1  •  Arm #1  1 0.1  1  +  1 0.3  1  1 0.5  1  1 0.7  Arm Deflection [mm] Arm #2 • Arm #3  1  r  0.9  UBC SEISMIC CONE PRESSUREMETER Site : Langley Lower 232  Depth : 11.0 m  Date : 1 0 / 1 2 / 8 7  LOG CURRENT VOLUMETRIC STRAIN %  SCPM 10/12/87 Lower Langley 232 Houlsby Unloading Cylindrical D=11.0 m  400  + +  350 -\ 300  H  o  Q. a a 9  250 -4 200 -4  •o 9 +>  o  I  v_ O O  150  4  100  4  50  4  + T" 4  2 -ln(E0 - E)  E=Notural Strain  6  8  UBC SCPM 1 0 / 1 2 / 8 7 HOULSBY UNLOADING CYL Longley Low 232 D-f1.0 m SU=23.4 kPa  Natural Strain % Data Points  Natural Strain % Strain  SCPM 10/12/87 Langley Lower 232 D=13.0 m  500  400 -4 o  a. © L.  3  300 -4  0)  n  _ Q.  •o ©  O  I0  200  H  100  -4  o  Cavity Strain Avg. of arms 1-2-3  [%]  SCPM  10/12/87  Langley Lower 2 3 2 D=13.0 m 450  -  1  ~0.1 O  Arm #1  0.1 +  Arm Deflection [mm] Arm #2 • Arm #3  0.3  Ao<=\  UBC SEISMIC CONE PRESSUREMETER Site : Langley Lower 232  Depth : 13.0 m  Date : 1 0 / 1 2 / 8 7  SCPM 10/12/87 Houlsby Unloading Cyl Langley Lower 232 D=13.0 m  500  +  +  400 -\ 0  D_  X  3 0) 0)  300  ^  c  o  Q.  •o 0  200  H  100  H  -  3.3 8 HPa.  L.  0  o  4-  T  4  6  -lnn(E0 - E)  E=Natural Strain  8  10  UBC SCPM 1 0 / 1 2 / 8 7 HOULSBY UNLOADING CYL 200  Langley Low 232 D=13.0 m SU=25.6 kPa  190  180 170 160 150 o  0_  140  X  130  n n  110  £ £  Q.  •o <D +>  120 100 90  70  _.  50  o o  'Curve  4-  80  0  £  Crr UftlracUtAj  60  40 30 20  10 0  4  ~T~  Natural Strain % Data Points  6  T 8  10  UBC SCPM 1 0 / 1 2 / 8 7 Houlsby Unloading Cyl Langley Low232 D=13.0 m  Natural Strain % Strain  SCPM 1 0 / 1 2 / 8 7 Langley Lower 232 D=14.1 m  700  600  0  +  -1  Pressure [ k P a ]  Cavity Strain Avg. of arms 1 —2—3  [%]  SCPM 10/12/87 Langley Lower 232 D=16.0 m  500  400  o  Q.  !p -&9- left  H  0  300 -i  £  m n £  200 -4  Q.  100 -i  -0.1  0.1  0.3  Arm Deflection [mm] Arm #2 O Arm #3  0.5  UBC SEISMIC CONE PRESSUREMETER Site : Langley Lower 232  1  Depth : 16.0 m  10  Date : 1 0 / 1 2 / 8 7  LOG CURRENT VOLUMETRIC STRAIN %  10*  Corrected  Pressure  [kPa]  A\9-  APPENDIX IV DERIVATION OF UNLOAD RELOAD SHEAR MODULUS  DE-RWATiON  chapW  In  d.er(\/a4fovi  CCovi^icler in  -file,  IjiAeav  Stress e 5 Poydiv/e, dmaTes drfCol  4ollov/us  expansion  fs  —^  °  :  wlvacdiow  r  Viowio^t^eoas  9  vie a  o*f a  3nd  o^i^cWfcal  C-ui-Vtj  rviedi.ui/n.  \5oWop\c  Ec^AiUb  c©/vn press £ l'S&-> 0 :  statuses  are,  a^d  u s e d . For  4ke  exp&wsicm .  5 +  as  C^35T(C  F o R 6ur  i-i-sOi  APT  is  3,4  cavi-ta^  EQUATION  m ec^. A.-Y)  'Tour (Sur=  -fhe  Op  OV - 6 e  _  ctj(i/dvica\ strnsll  o  dd-forwad Cons  6^u.a-rio/\  ^OIIOU^VKJ  spta«nca\ ^ip-  f  3»od culin  results •  A4. I  O  ram's  The, t-h'v/e.  Caujcla^  cU-f ivnvliov^  '_Kvd -ovyj-racTiovo  "tar^cnTial  £r  These. notes  e^uaTior\s 4W  As/Su^imc^  U+  spp]u  U l ^ e d . Bon^axion  ec|a_rVioms  -TDV  1-5 pos-  r a d i a l avA  - f o l l o w s *.  du - d r 22 dr  ov\lu  <d»'5p)ace^v\€^-T  Cpi^5-TiTiAT\\ye  pal  -  vnegs4we. TV»e  as  -5-Vra'm  i*5  0-f 5-Vram  —AX-  A.. ___  . A 4.2,  ^mall  5rramsand  =-  JXJV  a-f  dr  radiums  >u. d e -  r.  Elgi^a-hon,  a  Co\r\d'\\'\o\a  6-WaiV\ d i r e c 4 c o i A S  are  o f radial radial  0  p\awe  Ta\/^e»/vria.I  $4rai^-,4Ue  princi-  and w a i .  £r  - ± far - »Ad -JJ Ad^)  "  &  E - x^AcTe - i>&6r -2>k6^)  A 4.5  e  = ( l - i ^ r - ^ O + ^ f r  E £ * ~ 0-^L\<5*  -  SubsTiTurceaualfo^s AM.9  A4.0  >  a  (  r"  2  -\-Ue_  diLL  t-  Lmeay  A  4  .  9  -  A 4 . 2 3IACJ, A 4 . 3 in eou3T-fo s M  OWB.^S  :  An.10 B ^ d A 4 . U i M o  5uiWli-U.-\-(n^  Soly/iiA^  'one  J  A 4.8  A4.1 r e ^ l - f e  -o  YCLL -  i/i  A4.IZ  Problem  ELVa^Tfc  5oUin^ fo<- 4lrte ca^e o*f a cult/id/real cav/"4-uj wi-rU \»oi4ral radium  The.  fo  4^>e. general  tau^lav^  co\nA\\\ov\<>  6V-P •awd ck^ <5& . T V w e W  UXlOVl  srl-  |<>  4"Ue  fo-.^/f,, fX equals  O.  U/3II  o £  4W  cavf-kj 3 r d .  42/2L A4  4he wall To" .  crF 4 W  r  cv -  AT 4 W vvjall  A4-Z  G  4 Ue re-fore.  8 = >Ooro=  -f  £_c_v  Po  +  Ack  of 4V\e cayrV^ 0  au\d  A^-IO  £e  -4-v»decrial  6  -  O v i d A4-II O ^ .  -5"W<9ivi  _4 4Vie.  _  Po  p = p for Q4  r  3  e-_.u.a-f<"oins  C^O/nb^ina  =  Cauda  1  r*--  -t 2 < _ ^  pre^5u.r-ery\eT-er fWe. CBvi-ru^ VAJBW 3  2  s4v<_fn  4civvdjevi-lial  Vo 7  _^d.  £  &  - W°/ _ r  A4(8  u n l o a d / r e l o a d \t$\ T ^ e radius f>W>v*m \wv ecj. A4.18 *5 KVO4  Psdvu.5 _rf ~f^e <Drtssuve welter in 4Ue. J-ullu defla.+ecl po5\Vioi/\ T y ^ e a d i4 d k e radius <g-P 4-Ke, /vwddle <--r + W u n l o a d / r&loadi loop. #  42^  fuJIij (de-fU-red  ^oe-'iTi'ov^  6ar -  i-5 de-Pmed  P-?c  as  3o  , The.  A4.I5  11  257  Au "Sf  Au _ 0  2L  £ » - €«. 2.  where,  "Hoe U6i^  AP= Po-Po 6^ - (£. + £ 0 / z  unload/^e[oadl msTural  3 hear modulus can si so be oWaf S4VSM6 w<dv\ 4-W -fallowing ecjua-Won '  AP  Ifeiflcj  +He  Mada^riVs  Series  W  +W ina+ural sfraivi one.  42.4  l«0+*J4.")-  & £ p - ~ .  Z  3  2.  3  4  * • *  4V\eiA  e<\u£-l-iem  A C * - £)-£i  r\4-22  3  iimpU-$ne£  +o  -42-5"  APPENDIX V SHEAR MODULUS VALUES  SHEAR MODULUS FROM HOULSBY CYLINDRICAL UNLOADING ANALYSIS  Site : McDonald Farm Date : 27/1/87 Pressuremeter : UBC SCP On S i t e L o c a t i o n : JAN27 Comments : No piezocone o r s e i s m i c measurements Strain controlled test Depth ( m )  G  (Houlsby) ( MPa )  G  H  17.0 19.0 22.0 25.0 27.5 30.0  10.63 7.62 6.18 8.59 14.18 6.78  H/  s u  REF  r  1  185.0 122.1 88.0 110.1 167.8 74.5  <  H o u l s b  y)  325 207 134 164 240 105  Site : McDonald Farm Date : 7/11/85 Pressuremeter : FUGRO CP On S i t e L o c a t i o n : JAN27 Comments : No piezocone measurements Quasi-strain controlled test Depth ( m )  G  (Houlsby) ( MPa )  G  R  16.2 18.2 19.2 20.2 22.2  10.10 7.07 7.03 6.23 6.13  H/  S U  REF  X  183.3 117.2 112.7 95.1 86.7  r (  H o u l s b  y)  221 185 179 159 136  Site : L u l u I s - UBCPRS Date : 3/4/87 Pressuremeter : UBC SCP On S i t e L o c a t i o n : APR3 Comments : Strain Controlled Test Depth ( m ) 3.0 4.0 4.8 6.35  G  (Houlsby) ( MPa )  H  2.40 1.58 1.58 2.36  G  H/  s u  REF  60.4 52.0 61.5 88.4  I  r (  H o u l s b  122 83 109 165  y)  ATI7.9 9.4 10.9 12.4 14.0  3.72 2.91 5.50 3,85 3.89  126.1 90.1 155.8 79.1 79.9  197 146 209 104 148  Site : L u l u I s - UBCPRS Date 8/1/88 Pressuremeter : UBC SCP On S i t e L o c a t i o n : JAN8 Comments : Strain controlled test Depth ( m )  G  (Houlsby) ( MPa )  H  4.75 7.75 10.75 13.75  1.35 3.54 5.25 4.05  Site Date Pressuremeter On S i t e L o c a t i o n Comments Depth ( » ) 2.0 3.0 5.0 7.0 9.0 11.0 13.0 16.0  V  G  S  u  REF  X  r (Houlsby)  52.1 121 150.3 85.6  95 178 199 157  : Langley Lower 232 : 10/12/87 : UBC SCP : DEC10 : Strain controlled  (Houlsby) ( MPa ) H  1.91 2.36 2.25 2.14 2.01 2.36 ' 3.38 4.59  G  H/ U S  REF  72.1 102.6 118.4 115.7 98.0 96.3 112.7  I  r  (Houlsby)  90 142 121 87 92 101 117 131  UNLOAD RELOAD SHEAR MODULUS  Site : McDonald Farm Date : 27/1/87 Pressuremeter : UBC SCP On S i t e L o c a t i o n : JAN27 Comments : No piezocone o r s e i s m i c measurements Strain controlled test  Cavity S t r a i n ur ( MPa ) Increment (%)  Depth ( m )  G  22 22 25 25 27.5 27.5 27.5 30 30  5.58 9.03 6.96 9.72 6.98 8.19 16.9 7.19 8.96  .97 .57 1.02 .69 .81 1.14 .34 .79 1.03  Time Wait ( sec )  G  u r / u REF S  79.5 128.6 89.2 124.6 82.6 96.9 200 79 98.5  1040  Site : McDonald Farm Date : 7/11/85 Pressuremeter : FUGRO CP On S i t e L o c a t i o n : NOV7 Comments : U n l o a d r e l o a d l o o p s a r e v e r y s m a l l and poor q u a l i t y Quasi-strain controlled test Depth ( m )  Cavity S t r a i n ur ( MPa ) Increment (%) G  13.4 35.7 21.7 7.84 9.72  16.2 16.2 16.2 18.2 18.2  .40 .072 .22 .58 .40  Time Wait ( sec )  Cavity S t r a i n ur ( MPa ) Increment (%) G  6.35 7.9 10.9 10.9 12.4 14.0 14.0  1.1 1.32 2.79 3.65 2.94 3.38 3.30  Site  u r / u REF S  200 200 300 380 230  Site L u l u I s - UBCPRS Date 3/4/87 Pressuremeter UBC SCP On S i t e L o c a t i o n APR3 Comments : Strain controlled Depth ( m )  G  243. 2 647. 9 393. 8 130 161. 2  test  Time Wait ( sec )  2.14 3.63 1.02 1.21 2.21 1.72 2.14  L u l u I s - UBCPRS  G  u r / u REF S  41.2 44.7 79.0 103.3 60.4 73.3 71.6  Date : 11&19/2/87 Pressuremeter : Houghes SBPM On S i t e L o c a t i o n : FEB11 & FEB19 Comments : Quasi-strain controlled test Depth  ( m ) 4.8 6.35 7.9 10.9 10.9 12.4 6.3 7.9 9.4 10.7 10.7 12.5 12.5 14 14  ur ( MPa ) G  .72 .57 1.38 .91 1.6 1.37 1.1 2.5 1.62 .89 2.9 2.91 6.1 6.5 4.5  Cavity Strain Increment (%) 3.49 7.89 2.17 5.72 3.0 4.91 5.04 1.06 4.17 4.43 2.0 3.2 .91 .58 2.17  Time Wait ( sec )  125 125 200 315  220 150  G  u r / u REF S  28.0 21.3 46.9 25.8 45.3 28.1 43.1 84.7 50.2 25.5 83.2 59.4 124.5 141.0 97.6  APPENDIX V I IN SITU TEST LOCATIONS  224  JN  GZAVBL  1  srztL 3  B£FtUNl£ tox>T  General Area  8-  f o r UBC SCP t e s t s  I  2  General Area f o r General Area f o r -  Hughes SBPM t e s t s  Fugro CP t e s t s  4 M  LEGEND  fsiOTE '• A L L L P C A T t o j ?  •  PIEZ0UZ7EJL  m  *AT WE:  COhlt T£6T  0tLATOM£IBt. TEST  SITE PLAN OF McDONALD * s FARM  m  DIKE ROAD  FRASER RIVER  ©  ©  VO  ©  ©  I  ©  I  VO  I  DMT-2  -&  0  MO  MO  I  ©  r  -0  DKT-1  X-FVT-l  UBC SCP-1  J  4 L  S  C  P  T  .  l(Acc)  •©  •©  UBC SCP-2 t I R l  •© 1300  1300  4  SCALE  LEGEND i  P/£ZOCOM£  TEST  LULU IS.-UBCPRS SITE PLAN  1 : 50  43B>  fr-FVT-5 FVT-4  1  CPTU-3 -  A  /-CPTU-4 -  SCPT-1 (Acc)-1 UBC SCP-1  MoT M  A_  O  Pi  T  E  .  fcfcO  C O »vJT£  T O  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 22 2
United States 11 0
Japan 5 0
Netherlands 1 0
Canada 1 5
Algeria 1 0
Taiwan 1 1
Brazil 1 0
City Views Downloads
Beijing 7 0
Shenzhen 7 2
Tokyo 5 0
Unknown 4 3
Ashburn 4 0
Fuzhou 2 0
Changchun 2 0
Orange 2 0
Hangzhou 2 0
Omaha 1 0
Charlotte 1 0
University Park 1 0
Rio de Janeiro 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062697/manifest

Comment

Related Items