Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Water quality in the lower Fraser River Basin : a method to estimate the effect of pollution on the size.. Brox, Gunter Herbert 1976

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
UBC_1976_A7 B76.pdf [ 5.08MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0062596.json
JSON-LD: 1.0062596+ld.json
RDF/XML (Pretty): 1.0062596.xml
RDF/JSON: 1.0062596+rdf.json
Turtle: 1.0062596+rdf-turtle.txt
N-Triples: 1.0062596+rdf-ntriples.txt
Original Record: 1.0062596 +original-record.json
Full Text
1.0062596.txt
Citation
1.0062596.ris

Full Text

WATER QUALITY  IN THE LOWER FRASER  RIVER BASIN:  A METHOD TO ESTIMATE THE E F F E C T OF POLLUTION ON THE S I Z E OF A SALMON RUN  by  GUNTER HERBERT BROX Dipl.Ing.,  University of Karlsruhe,  A T H E S I S SUBMITTED  W-Germany,  1973  I N P A R T I A L F U L F I L L M E N T OF  THE REQUIREMENTS  FOR THE DEGREE OF  MASTER OF A P P L I E D S C I E N C E  in THE The  We  accept  FACULTY OF GRADUATE  Department  this  of C i v i l  STUDIES  Engineering  t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d  standard  THE U N I V E R S I T Y OF B R I T I S H COLUMBIA  June,  (c)  1976  Gunter Herbert Brox, 1976  In  presenting  an  advanced  the I  Library  further  for  degree shall  agree  scholarly  by  his  of  this  Date  at  University  the  make  that  it  for  partial  freely  permission may  of  University Wesbrook  of  for  It  is  Canada  1W5  June  10,  1976  British  gain  Columbia  for  extensive by  the  understood  Engineering  British  Place  of  be g r a n t e d  financial  Civil  fulfilment of  available  permission.  Vancouver, V6T  in  purposes  thesis  Department  2075  thesis  representatives.  written  The  this  shall  reference  Head  be  requirements  Columbia,  copying  that  not  the  of  agree  and  of my  I  this  or  allowed  without  that  study. thesis  Department  copying  for  or  publication my  ii ABSTRACT  Water q u a l i t y s t u d i e s conducted i n the r e c e n t p a s t i n the Lower F r a s e r R i v e r B a s i n i n d i c a t e d t h a t l o c a l l y some h i g h p o l l u t i o n l e v e l s W i t h f u r t h e r u r b a n i z a t i o n and  i n d u s t r i a l i z a t i o n o f the Vancouver r e g i o n  i n c r e a s e i n waste l o a d i n g s and a d e g r a d a t i o n pected  o f w a t e r q u a l i t y can be  i f no s t r i c t p o l l u t i o n c o n t r o l i s a p p l i e d .  w a t e r q u a l i t y management.  The  salmon runs o f the w o r l d and recreationally valuable fish. could disappear  river  i n organisms o f the food c h a i n .  P o l l u t i o n i s a g r a d u a l l y o c c u r r i n g process. p o t e n t i a l problems i s i m p o r t a n t  ex-  poly-  They a c c u m u l a t e i n the sediments o f the  and the e s t u a r y and become c o n c e n t r a t e d  A n t i c i p a t i o n of  f o r the d e c i s i o n maker r e s p o n s i b l e f o r Fraser R i v e r supports  one o f the l a r g e s t  i s abundant w i t h o t h e r c o m m e r c i a l l y  and  Salmon a r e v e r y s e n s i t i v e t o p o l l u t i o n  and  f r o m the F r a s e r r i v e r system as they a l r e a d y have from  many o t h e r major r i v e r s i f p o l l u t i o n l e v e l s become too h i g h . R i v e r e s t u a r y has  the f u n c t i o n o f a b o t t l e n e c k .  The  Fraser  A d u l t salmon e n t e r  r i v e r t o m i g r a t e upstream t o t h e i r spawning grounds, and  the  j u v e n i l e salmon  s t a y i n the e s t u a r y f o r a w h i l e t o a c c l i m a t i z e themselves t o the s a l i n e environment. I n t h i s t h e s i s a method i s p r e s e n t e d  t o s i m u l a t e the e f f e c t s o f  p o t e n t i a l p o l l u t i o n on the s i z e o f a salmon s t o c k . d a t a from v a r i o u s l i f e stages F r a s e r system i s d e v e l o p e d . t i o n s are accounted f o r .  A model w h i c h uses  o f a p a r t i c u l a r s o c k e y e salmon r u n i n the U n c e r t a i n t i e s due  to environmental  fluctua-  U s i n g t h i s model the e f f e c t s o f an i n c r e a s e i n  m o r t a l i t y r a t e i n two stages  an  Of p a r t i c u l a r c o n c e r n  a r e b i o l o g i c a l l y u n d e g r a d a b l e s u b s t a n c e s such as heavy m e t a l s and c h l o r i n a t e d hydrocarbons.  exist.  o f the sockeye salmon l i f e c y c l e on a d u l t  r e t u r n numbers a r e s t u d i e d .  The a n a l y s i s showed t h a t a t a c e r t a i n m o r t a l i t y  r a t e chances a r e t h a t the s t o c k might not be a b l e t o r e c o v e r . I n l i g h t o f a p l a n n e d salmon enhancement stocks  program t o i n c r e a s e  salmon  i n various P a c i f i c r i v e r s , the f a c t that decreasing water q u a l i t y  could counteract  a l l enhancement  e f f o r t s s h o u l d be a w a r n i n g s i g n a l t o the  d e c i s i o n makers. The development o f a w a t e r q u a l i t y index t o p r e d i c t f u t u r e  condi-  t i o n s i s recommended and a p o s s i b l e p r o c e d u r e t o r e l a t e w a t e r q u a l i t y parameters t o an i n c r e a s e  i n m o r t a l i t y r a t e i s sketched out.  iv  TABLE OF CONTENTS Page ABSTRACT  i i  TABLE OF CONTENTS  iv  LIST OF TABLES  vii  LIST OF FIGURES  viii  ACKNOWLEDGMENTS  x  CHAPTER I  INTRODUCTION  II  THE LOWER FRASER RIVER AND ITS WATER USERS  . . . .  6  A.  Description of the Lower Fraser River  . . . .  6  B.  Water Quality: A Review  C.  The Fraser River and i t s Water Users  14  D.  The Salmon Resource  20  III  1  .  8  LIFE CYCLE OF THE SOCKEYE SALMON  23  A.  Introductions  23  B.  The Chilko River Sockeye  24  1.  2.  3. 4. 5.  Relationship Between Escapement and Female S pawners .  27  Relationship Between Female Spawners and Deposited Eggs  29  Relationship Between the Number of Deposited Eggs and the Number of Fry  29  Relationship Between the Number of Fry and the Number of Smolt  31  Relationship Between the Number of Smolts and the Number of Returning Adults  33  V  CHAPTER  IV  V  Page  A MODEL USING DATA RECORDS WHERE AVAILABLE AND JUDGMENT OF EXPERTS  38  A.  Introduction  38  B.  Uncertainty and Expected Return  40  C.  Choice of a D i s t r i b u t i o n Function  42  D.  Development of the P r o b a b i l i t y Matrices  E.  Conclusions  45  --  A REVIEW  48  A.  Introduction  B.  C r i t i c a l Pollutants i n the Salmon Food Chain  C.  Experimental  48 .  .  Evidence  49 52  SIMULATION OF A SALMON STOCK UNDER VARIED LEVELS OF POLLUTION  58  A.  Introduction  58  B.  Fish Tests i n the Fraser River and the Coastal Zone  59  Effects of Various M o r t a l i t y Rates on the Size of a Sockeye Salmon Stock  61  C.  VII  43  THE POLLUTION EFFECTS ON SALMON - HOW MUCH DO WE KNOW?  : VI  . . . .  THE USEFULNESS OF AN INDEX TO FORECAST WATER QUALITY CHANGES AND THEIR EFFECTS ON WATER USE  73  A.  Pro and Contra for Developing  73  B.  Construction of a Water Quality Index for Fish and Wildlife  74  Forecasting P o t e n t i a l P o l l u t i o n Effects  77  C.  a Water Quality Index  . . . .  CHAPTER  Page  VIII  DISCUSSION AND CONCLUSIONS  BIBLIOGRAPHY  86  91  APPENDIX 1  LOGNORMAL VERSUS NORMAL DISTRIBUTION  2  FLOW CHART OF THE MODEL  96 100  vii  L I S T OF TABLES  Page TABLE 1  FACTORS INFLUENCING THE TOXICITY OF HEAVY METALS TO AQUATIC ORGANISMS  2  50  PARAMETERS AND THEIR IMPORTANCE WEIGHTS FOR CONSTRUCTION OF A WATER QUALITY INDEX FOR FISH AND WILDLIFE  77  viii LIST OF FIGURES  FIGURE  Page  1  LOWER FRASER RIVER  7  2  OFFICIAL REGIONAL PLAN  3  DISTRIBUTION OF SOCKEYE SALMON SPAWNING GROUNDS IN THE FRASER RIVER WATERSHED  4 5  16  .  .  .  .  .  .  .  .  .  .  25  .  CHLLKO LAKE, CHILKO RIVER, AND SPAWNING GROUNDS OF SOCKEYE SALMON  26  RELATIONSHIP BETWEEN ESCAPEMENT AT THE MOUTH OF THE RIVER AND FEMALE SPAWNERS REACHING SPAWNING GROUNDS . ...  28  6  FEMALE SPAWNERS VS EGGS DEPOSITED  30  7  EGGS DEPOSITED VS FRY PRODUCED  32  8  FRY VS SMOLTS  34  9  SMOLTS MIGRATING TO THE OCEAN VS RETURNING ADULT SALMON  36  EXPECTED RETURN (MORTALITY RATE 0%) A POSSIBLE RELATION BETWEEN PHYSIOLOGICAL IMPAIRMENT FOLLOWING INCREASING EXPOSURE TO POLLUTANTS AND THE CONSEQUENT DISABILITY OF THE FISH (AFTER HATCH) . . .  46  12  EXPECTED RETURN (MORTALITY RATE 57»)  63  13  EXPECTED RETURN (MORTALITY RATE 107.)  64  14  EXPECTED RETURN (MORTALITY RATE 207o)  15  EXPECTED RETURN (MORTALITY RATE 307,)  66  16  EXPECTED RETURN (MORTALITY RATE 407 )  67  .17  EXPECTED RETURN (MORTALITY RATE 50%)  68  18  POSSIBLE MANAGEMENT SCHEME TO HARVEST SALMON  19  SUSTAINABLE RUN WITH ESCAPEMENT STRATEGY OF FIG. 18 (EQUILIBRIUM LEVEL)  71  20  WATER QUALITY AS A FUNCTION OF D.O. SATURATION, SUMMER TEMPERATURES  78  10 11  °  .  .  .  .  .  .  65  o  .  .  .  55  .  70  ix  FIGURE 21  Page WATER QUALITY AS A FUNCTION OF TEMPERATURE DEPARTURE FROM AMBIENT  78  22  WATER QUALITY AS A FUNCTION OF pH  79  23  WATER QUALITY AS A FUNCTION OF PHENOL CONCENTRATION .  24 25  WATER QUALITY AS A FUNCTION OF TURBIDITY WATER QUALITY AS A FUNCTION OF DISSOLVED SOLIDS CONCENTRATION  .  79 80 80  26  WATER QUALITY AS A FUNCTION OF AMMONIA CONCENTRATION  .  81  27  WATER QUALITY AS A FUNCTION OF NITRATE CONCENTRATION  .  81  28  WATER QUALITY AS A FUNCTION OF PHOSPHATE CONCENTRATION .  82  29  POSSIBLE RELATIONSHIPS BETWEEN A WATER QUALITY INDEX AND MORTALITY RATE (SOCKEYE SALMON)  84  WATER QUALITY INDEX OVER TIME  84  IA  NORMAL PROBABILITY DISTRIBUTION  99  2A  LOGNORMAL PROBABILITY DISTRIBUTIONS FOR DIFFERENT STANDARD DEVIATION VALUES  99  30  APPENDIX  X  ACKNOWLEDGMENTS  T h i s t h e s i s has been p r e p a r e d i n p a r t i a l f u l f i l l m e n t o f the r e quirements f o r the degree o f a M a s t e r o f A p p l i e d S c i e n c e .  In t h i s study  use was made o f a v a i l a b l e i n f o r m a t i o n from e x p e r t s i n d i f f e r e n t fields.  scientific  They devoted much o f t h e i r v a l u a b l e time p r o v i d i n g i n f o r m a t i o n  and c r i t i c i s m .  Thanks a r e owed t o Dr. J e f f Thompson from the P a c i f i c  Environment I n s t i t u t e , West Vancouver; O t t o Langer from the F i s h e r i e s and M a r i n e S e r v i c e , Environment Canada; Dr. M. T a k a h a s h i , p r e s e n t l y w i t h the CEPEX r e s e a r c h group i n S a a n i c h I n l e t , Vancouver I s l a n d ; Dr. C a r l W a l t e r s from the I n s t i t u t e o f A n i m a l Resource E c o l o g y a t the U n i v e r s i t y o f B r i t i s h Columbia; Dr. Ken H a l l , Anthony Dorcey, and F r e d Koch from the Westwater Research C e n t r e a t U.B.C, and many o t h e r s .  A g r e a t debt i s owed t o Dr.  J i m Woodey from the I n t e r n a t i o n a l P a c i f i c Salmon F i s h e r i e s Commission, Westminster who  p r o v i d e d some o f the i n f o r m a t i o n used f o r the model and  donated much of h i s time i n d i s c u s s i n g the r e s u l t s and making suggestions.  New  helpful  F i n a l l y , I owe a g r e a t debt o f g r a t i t u d e t o P r o f e s s o r  S.O.  R u s s e l f o r g u i d i n g me and h a v i n g time whenever I needed a d v i c e o r encouragement.  S p e c i a l acknowledgment i s made t o Mr. R i c h a r d Brun o f the  o f C i v i l E n g i n e e r i n g who this  thesis.  d i d the d r a f t i n g o f a l l  Department  the f i g u r e s p r e s e n t e d i n  1 CHAPTER I  INTRODUCTION  "The  G r e a t e r Vancouver R e g i o n reached a p o p u l a t i o n o f 1,140,000  people i n 1974. year.  I t i s c u r r e n t l y growing a t a r a t e s l i g h t l y under 37» a  Even a t a lower r a t e o f growth the p o p u l a t i o n w i l l r e a c h n e a r l y  1,500,000 by 1986,  and approach 2,000,000 by the y e a r 2000."  This s t a t e -  ment, made i n the L i v e a b l e R e g i o n P l a n (63) i l l u s t r a t e s the r a p i d growth o f u r b a n i z a t i o n i n an a r e a w h i c h i s a l s o c o n s i d e r e d as one o f the most p r o d u c t i v e e c o l o g i c a l systems on the N o r t h A m e r i c a n c o n t i n e n t : The River  Fraser  Estuary. There has not been o n l y a r a p i d r i s e i n p o p u l a t i o n , but a l s o demand  o f more products w h i c h l e a d s t o i n c r e a s e d p r o d u c t i o n and g e n e r a t i o n by b o t h r producer and consumer. and  i n c r e a s e d waste  T h i s c o n c e n t r a t i o n o f people  i n d u s t r i e s i n a l o c a l i z e d a r e a burdens the environment w i t h v e r y  waste l o a d i n g s . i n keeping  Therefore,  environmental  management has  high  t o be a key f a c t o r  the n a t u r a l environment o f Vancouver i n the s t a t e t h a t has  been  enjoyed by i t s r e s i d e n t s f o r many y e a r s and made Vancouver a major t o u r i s t c e n t r e on the west c o a s t . economically  Environmental  d e t e r i o r a t i o n c o u l d a l s o be  damaging i f i t s t i f l e s development o f some major s e r v i c e  i n d u s t r i e s or r e s e a r c h i n s t i t u t i o n s  (64).  U n f o r t u n a t e l y , e s t u a r i e s have o f t e n been regarded u s e l e s s because o f t h e i r swampy±lands.  by modern man  T h e r e f o r e , he dyked them, l a n d -  f i l l e d them, and o f t e n developed i n d u s t r i a l parks i n these a r e a s . has happened i n many e s t u a r i e s a l l over the w o r l d .  The  This  f a c t s , however,  show t h a t e s t u a r i e s and the n e a r s h o r e c o a s t a l lands a r e the  biologically  as  2 most p r o d u c t i v e areas o f t h e marine ecosystem.  There a r e g r e a t n a t u r a l  v a r i a t i o n s i n t h e f l o r a and fauna o f t h e s e a r e a s . t o l e r a t e and compensate t i d a l movements.  R e s i d e n t organisms c a n  f o r t h e v a r i a b l e c o n d i t i o n s t h a t r e s u l t from t h e  For t h i s reason the c a p a c i t y of e s t u a r i e s to accept  p o l l u t a n t s w h i c h enhance n a t u r a l v a r i a t i o n s i s r e l a t i v e l y g r e a t . there a r e l i m i t s t o t h i s environmental acceptance. t h e s e i n each case o f development  However,  We have t o c o n s i d e r  i f we want t o m a i n t a i n t h e h i g h n a t u r a l  p r o d u c t i v i t y of the estuary. There have been warnings from v a r i o u s s i d e s r e g a r d i n g t h e impact o f proposed development  i n t h e e s t u a r y on f i s h and w i l d l i f e (16, I n t . Pac.  Salmon F i s h . Comm. Annual Report 1974). covered by m u d f l a t s and t i d a l marshland. often underestimated.  Each development reduces t h e a r e a The v a l u e o f these marshlands i s  Many species><rdf f i s h a r e dependent on t h e e s t u a r y  f o r some p a r t o f t h e i r l i v e s .  S h e l l f i s h such as o y s t e r , c r a b , and shrimp,  depend on t h e c o a s t a l e s t u a r i e s as w e l l .  Furthermore, t h e m u d f l a t s and t h e  t i d a l marshland s e r v e as a r e s t i n g p l a c e f o r many s h o r e b i r d s , , and o t h e r w i l d l i f e .  w a t e r f o w l , ...  Thus, i n f u n c t i o n , t h i s h a b i t a t cannot be r e p l a c e d  e a s i l y by some o t h e r l a n d . Westwater, an i n t e r d i s c i p l i n a r y r e s e a r c h group a t t h e U n i v e r s i t y o f B r i t i s h Columbia has conducted a s t u d y d u r i n g t h e p a s t t h r e e y e a r s t o d e f i n e the p o l l u t i o n problem i n t h e Lower F r a s e r R i v e r , t o b r i n g i t t o the a t t e n t i o n o f t h e p u b l i c , and t o d e v e l o p a p o l i c y t o manage t h i s t a n t water system. on t h e h o r i z o n " .  impor-  I n t h e i r c o n c l u s i o n s they found t h a t t h e r e a r e " c l o u d s There i s g r e a t u n c e r t a i n t y about some p o t e n t i a l l y harm-  f u l substances w h i c h have been encountered i n t h e w a t e r , t h e bottom s e d i ments, o r t h e t i s s u e o f f i s h .  O f t e n t h e sources o f these p o l l u t a n t s a r e  not known; one c a n o n l y e s t i m a t e v e r y c r u d e l y t h e q u a n t i t i e s t h a t a r e  p r e s e n t l y d i s c h a r g e d t o the r i v e r ; o n l y p a r t i a l knowledge o f t h e i r ways through  the a q u a t i c system e x i s t s .  path-  S t u d i e s t o determine t h e i r accumu-  l a t i o n r a t e s i n the food c h a i n have j u s t been s t a r t e d (14,30)• There i s g r e a t need f o r r e s e a r c h i n t o the p r o c e s s e s o f p o l l u t a n t s w i t h i n the F r a s e r R i v e r system and  and  pathways  f o r the study o f the  e f f e c t s t h a t c e r t a i n p o l l u t a n t s can have on b i o l o g i c a l communities i n r e l a t i o n t o c o n c e n t r a t i o n and time o f exposure.  Most o f the s t u d i e s t h a t  have been u n d e r t a k e n i n v o l v e d sampling programs.  There e x i s t s a l a c k o f  h i s t o r i c a l d a t a f o r most w a t e r q u a l i t y parameters.  Almost n o t h i n g  known about the c h e m i c a l c o m p o s i t i o n o f the bottom sediments,  was  the concen-  t r a t i o n o f t r a c e elements i n the t i s s u e o f some organisms, and the v a r i e t y and number o f s p e c i e s t h a t i n h a b i t the r i v e r system. v e r y important  H i s t o r i c a l data  i n o r d e r t o d e c i d e whether measured c o n c e n t r a t i o n s  m a i n l y n a t u r a l background l e v e l s o r man-made p o l l u t i o n . u s u a l l y d e s c r i b e d by p h y s i c a l and c h e m i c a l parameters. a r e then r e l a t e d t o the e f f e c t s t h a t they may organisms.  are  reflect  Water q u a l i t y i s The measured v a l u e s  have on man  or a q u a t i c  A t p r e s e n t we a r e m a i n l y concerned t o e v a l u a t e the  existing  water q u a l i t y c o n d i t i o n s . As the r e g i o n o f G r e a t e r Vancouver grows i n p o p u l a t i o n and w i t h i t the economic a c t i v i t i e s  i n c r e a s e , we have t o expect h i g h e r waste l o a d i n g s .  We have t o d e c i d e upon p o l i c i e s and abatement t e c h n o l o g i e s t o cope w i t h the w a t e r p o l l u t i o n problem now  i f we want t o p r e v e n t any d e t e r i o r a t i o n of  the w a t e r q u a l i t y w i t h i n the next 10 or 20 y e a r s . b e t t e r than p a s s i v e a d a p t a t i o n .  I f we  Preventive planning i s  s t a r t c o r r e c t i n g u n d e s i r a b l e water  q u a l i t y c o n d i t i o n s a t a time when everybody can s m e l l o r see or q u a n t i f y the p o l l u t i o n problem, c o s t s w i l l be much h i g h e r than i f we  stretch  an  abatement program over a number o f y e a r s , o r b e g i n time consuming r e s e a r c h  4 now. We have t o d e c i d e -  now:  whether t o go f o r more d r e d g i n g  i n the mouth o f the r i v e r and  thus  d e s t r o y the marshland; -  whether to b u i l d more dykes w h i c h c r e a t e areas o f s t a g n a t i n g w a t e r i n w h i c h s e v e r a l w a t e r q u a l i t y parameters such as t e m p e r a t u r e , s a l i n i t y , pH,  i o n c o n c e n t r a t i o n may  l o n g e r support a q u a t i c -  change t o an e x t e n t t h a t t h i s w a t e r can  no  life;  whether t o t r e a t stormwater r u n o f f t h a t c a r r i e s s t r e e t contaminants  and  washed-out p o l l u t a n t s from the a i r ; whether t o c o l l e c t and t r e a t l e a c h a t e from l a n d f i l l s as they contain very high concentrations  often  o f substances t h a t a r e t o x i c t o  a q u a t i c organisms; -  whether t o reduce i n c r e a s i n g c o n c e n t r a t i o n s o f f e r t i l i z e r s and c i d e s i n a g r i c u l t u r a l r u n o f f b e f o r e i t reaches the  A l l these problems a r e f a c i n g the d e c i s i o n makers who  pesti-  river. are involved i n  management and development o f the Lower F r a s e r R i v e r b a s i n . One way  t o a n t i c i p a t e p o t e n t i a l p o l l u t i o n and t o e s t i m a t e i t s  effects i s described i n this thesis.  As background Chapter I I i l l u s t r a t e s  p r e s e n t w a t e r q u a l i t y c o n d i t i o n s and d i s c u s s e s the v a r i o u s u s e r s o f F r a s e r R i v e r water.  For t h i s t h e s i s salmon were chosen as an example t o  illus-  t r a t e how  f u t u r e p o l l u t i o n c o u l d c u r t a i l b i o l o g i c a l p r o d u c t i v i t y o f the  estuary.  Salmon r e q u i r e w a t e r o f h i g h q u a l i t y , f r e e o f h a r m f u l p o l l u t a n t s  throughout the watershed. has d i s a p p e a r e d  T h i s v a l u a b l e and most s e n s i t i v e s p e c i e s o f  from many European and N o r t h A m e r i c a n r i v e r s due  pollution levels.  Chapter I I I d e s c r i b e s how  fish  to high  i n f o r m a t i o n about a major  salmon run i n the F r a s e r R i v e r system can be brought i n t o a form t h a t  5, a l l o w s d e s c r i p t i o n o f u n c e r t a i n t y i n terms o f p r o b a b i l i t i e s .  This  informa-  t i o n i s used as i n p u t d a t a i n a model w h i c h c a l c u l a t e s expected r e t u r n values  o f a d u l t salmon.  model a r e p r e s e n t e d .  I n Chapter IV the m a t h e m a t i c a l d e t a i l s o f t h i s  Chapter V g i v e s a r e v i e w o f r e s e a r c h  t h a t v a r i o u s p o l l u t a n t s have on salmon.  on t h e e f f e c t s  I n Chapter V I some o f t h e s t u d i e s  on a c u t e t o x i c i t y and s u b l e t h a l e f f e c t s conducted i n t h e Lower F r a s e r and  the c o a s t a l waters a r e reviewed.  computer s i m u l a t i o n s  t h a t have been done t o e s t i m a t e  f i g u r e s when t h e s t o c k i s s u b j e c t e d This increase  I t a l s o presents  River  the r e s u l t s of  f u t u r e salmon r e t u r n  t o v a r i o u s assumed m o r t a l i t y r a t e s .  i n m o r t a l i t y may r e s u l t as t h e salmon has t o pass t h r o u g h  i n c r e a s i n g l y p o l l u t e d w a t e r s o f t h e F r a s e r e s t u a r y as t h i s a r e a t o be developed i n t h e f u t u r e .  continues  I n Chapter V I I t h e c o n s t r u c t i o n o f a w a t e r  q u a l i t y i n d e x f o r salmon as a major w a t e r u s e r i s proposed.  Such a w a t e r  q u a l i t y i n d e x c o u l d be used t o p r o j e c t t h e e f f e c t s o f f u t u r e development i n t h e r i v e r b a s i n r a t h e r than f o r e c a s t i n g l o a d i n g s o f each s i n g l e p o l l u tant.  P o s s i b l e r e l a t i o n s h i p s between such a w a t e r q u a l i t y i n d e x and an  i n c r e a s e i n m o r t a l i t y r a t e a r e suggested. c u s s i o n and summarizes t h e c o n c l u s i o n s .  Chapter V I I I c o n t a i n s  a dis-  6  CHAPTER I I  THE  A.  LOWER FRASER RIVER AND ITS WATER USERS  D e s c r i p t i o n o f the Lower F r a s e r R i v e r The Lower F r a s e r system extends about 8 5 m i l e s from Hope t o t h e  S t r a i t o f Georgia. s i d e channels, system. mately  I t comprises s e v e r a l t r i b u t a r i e s , s m a l l backwaters,  s l o u g h s , and marshes.  F i g u r e 1 g i v e s a n overview  of the  A t New W e s t m i n s t e r , t h e F r a s e r branches i n t o the M a i n Arm ( a p p r o x i 907o  o f the f l o w ) and the N o r t h Arm ( a p p r o x i m a t e l y  o f the flow) .  1 0 7 °  The N o r t h Arm b i f u r c a t e s a t Sea I s l a n d thus c r e a t i n g a n o t h e r arm w h i c h i s r e f e r r e d t o as the M i d d l e Arm. Flow i n the F r a s e r R i v e r and i t s l a r g e r , mountain t r i b u t a r i e s i s c h a r a c t e r i z e d by a w i n t e r minimum and a l a t e s p r i n g maximum a s s o c i a t e d w i t h r u n o f f from snow m e l t . as  9 4 , 6 0 0  The mean d i s c h a r g e a t Hope has been r e c o r d e d  c f s w i t h extremes o f  5 3 6 , 0 0 0  c f s and  1 2 , 0 0 0  cfs  ( 6 ) .  Present  uses and f u n c t i o n s o f the e s t u a r y a r e determined t o a l a r g e e x t e n t by t h e New Westminster-Vancouver m e t r o p o l i t a n a r e a . accommodates about  507o  The G r e a t e r Vancouver R e g i o n  o f the p o p u l a t i o n o f B r i t i s h Columbia.  i t s p o p u l a t i o n i s p r e d i c t e d f o r t h e t u r n o f the c e n t u r y ( 6 3 ) . new  growth w i l l  t a k e p l a c e t o t h e s o u t h and e a s t o f Vancouver.  p l a c e a heavy emphasis on the r i v e r w i t h r e g a r d to r e s i d e n t i a l , and  i n d u s t r i a l development.  I t c a n be expected  Doubling of Most o f t h e This  will  commercial,  t h a t the Lower F r a s e r w i l l  a t t r a c t more i n d u s t r i e s i n t h e f u t u r e because o f i t s access  t o t h e open sea.  More goods w i l l be p r o c e s s e d a l o n g the w a t e r f r o n t , and h a r b o u r  facilities  w i l l be expanded as Canada's f o r e i g n t r a d e i n c r e a s i n g l y s h i f t s t o the West  FIGURE 1 LOWER FRASER RIVER  S c o t * < l"«  1  I O  Mil**  i t  Approx.  ' K> I I I I U I I H  8  (48).  A l l this  development w i l l  t h e r e a r e many a n d s o m e t i m e s the  impact  doing  years  with  on w a t e r  reflecting  to establish  quality  the G r e a t e r physical, vincial  the establishment  chemical,  and b a c t e r i o l o g i c a l  H e a l t h Branch.  Commission  that  In the past this  data  20  basis.  A review  of recent  C o n t r o l Board  (PCB) a n d  District  (GVS & DD)  data were c o l l e c t e d  t h e main stem o f t h e Lower o f BOD  content;  however,  existing  i n 1956,  by t h e ProControl  F r a s e r was  1963 a n d 1966 t h e I n t e r n a t i o n a l P a c i f i c  (IPSFC) conducted of this  on w a t e r q u a l i t y  a survey  before  some p u l p m i l l s This  of possible pollutants.  of organics  other parameters  found  Board t o be  bacteriological  Salmon  the  population o f bottom-dwelling  and  bacterial  s l i m e s was a l s o  Fisheries  quality  and bottom  organisms  to provide  background  informa-  began o p e r a t i o n s  on t h e Upper  s t u d y was n o t a c o m p r e h e n s i v e Samples  taken were a n a l y s e d  ( m e a s u r e d a s BOD a n d COD), d i s s o l v e d  that are related  more c o m p r e h e n s i v e  o f water  s t u d y was m a i n l y  a n d Thompson r i v e r s .  types  content  For  of the natural  A r e p o r t p u b l i s h e d by t h e P o l l u t i o n  i n terms  The purpose  Fraser  that  were u n d e s i r a b l y h i g h ( 1 9 ) . Between  (54).  of the P o l l u t i o n  V a n c o u v e r Sewerage and D r a i n a g e  " c l e a n stream"  levels  pattern?  As  investigations.  1967 c o n c l u d e d  all  quality  s e v e r a l s t u d i e s have been undertaken  Until  tion  be a s s e s s e d .  i s required.  Water Q u a l i t y - Change o f t h e p o l l u t i o n  in  quality  water  quality.  i t i s important  o n l y minor changes  water  a  new d e v e l o p m e n t  or a t least  f o rwater  c o n f l i c t i n g water uses  so a sound b a s i s o f d a t a  stream  B.  of every  have i m p l i c a t i o n s  to pulp m i l l organisms,  determined.  wastes.  including  This  one d u r i n g w h i c h samples were  of  for their  oxygen,  and s e v e r a l  The c o m p o s i t i o n  of  macroinvertabrates  s t u d y was taken  survey  f o l l o w e d by a  i n the spring of  1966, for  1967, a n d 1968 a t some l a k e o u t l e t s ,  young salmon,  analysed oids.  The p a r a m e t e r s  included  hydrocarbons  t r a t i o n s were d e t e c t e d . concentration found  that  spring sources in  of less  than  are mainly  BOD was  i n this  community tion  can reveal  are indicated  a n d 3.1  levels  thus  by changes  that  Roberts  from  conducted  1969-1971 was  Bank, S t u r g e o n  DO  levels  in  t h e N o r t h Arm were  primarily  Bank,  were g e n e r a l l y  l o n a Beach,  g r e a t e r than  lower  levels  season  concerned  with  English  that  the  encountered devel-  of the b i o l o g i c a l Changes i n p o l l u community as  c o n d i t i o n s than others.  Service,  during the summer-fall  I t was  of industrial  shifts  to polluted  A m o n i t o r i n g program by t h e F i s h e r i e s  period  indicates  i n composition of the b i o l o g i c a l  a r e more s e n s i t i v e  concen-  were g r e a t e r d u r i n g t h e  the effects  emphasized  and  showing a  the highest value.  more t h a n c h e m i c a l w a t e r a n a l y s e s .  some o f t h e o r g a n i s m s  Environment,  surfactants,  o f p o l l u t i o n were  showing  were  t o salmon-  No h a r m f u l  of the year which  Higher  This study  ppm  areas  samples  toxic  907„ o f t h e s a m p l e s  and s o l i d s  during the rest  reach.  cyanides,  and h e r b i c i d e s ) .  low w i t h  turbidity  t h e N o r t h Arm o f t h e r i v e r  opment  heavy metals,  (pesticides  natural.  These  c o n s i d e r e d as p o t e n t i a l l y  t h a n 2 ppm  organic load,  freshet  serve as n u r s e r y  a n d a t M i s s i o n on t h e F r a s e r R i v e r .  f o r various substances  chlorinated  which  Department  over  BOD  a three  a n d DO  Only  year  levels  Bay, a n d F a l s e  907, s a t u r a t i o n .  of the  i n the  Creek  a t some  areas.  stations  (777,-907, s a t u r a t i o n ) p e r i o d i c a l l y  detected (6). Another reaches  report  done b y B.C. R e s e a r c h  on water  b e l o w P o r t Mann B r i d g e d u r i n g t h e f a l l  Provincial sampling,  Power S t u d y and p r o f i l e  o f 1972 sampling  In general, the dissolved  (4).  o f 1971  This survey a l s o  at selected  stations  oxygen l e v e l s were  found  quality  i n the  lower  i s contained i n the included  sediment  over a t i d a l t o be n e a r  cycle.  saturation,  10  except  f o r bottom samples  and samples  low  d i s s o l v e d oxygen l e v e l s  and  backwaters  water bodies erated  and  lead  warm up more  As p a r t conducted  were  than  there  i s hardly  significant  considered  sampling  C h i l l i w a c k Creek,  Nicomen Slough,  detrimental  Consequently,  basins.  I t a l s o showed  metals, ducts  PCB's  likely  than  The  that  potentially  i n the water  itself,  February  weekly  from 9 s t a t i o n s i n t h e Lower  cides.  t h r o u g h May,  remarkably  o r DDT  (22) was  1973, when f l o w s Fraser  good  of these  i n the Fraser  two p r o g r a m s River.  and  of the  five  tribu-  River,  small  s u c h as  and  River tributary  heavy  i t s degradation  pro-  and t i s s u e o f a q u a t i c relative  based  were  on these  insolubility. findings.  low, s a m p l e s w e r e  taken  a n d 15 s t a t i o n s i n s e l e c t e d  A n a d d i t i o n a l 70 s a m p l e s w e r e  The r e s u l t s  on t h e s e  because o f t h e i r  q u a l i t y study  During  Brunette  toxic materials  i n the sediment  that  (6)  samples  the Lower F r a s e r  s t u d i e s were c o n d u c t e d  t o appear  second water  tributaries.  q u a l i t y than  survey  were h i g h ,  revealed  con-  Centre  and t h e mouth  Sumas R i v e r ,  (polychlorinated biphenyls),  a r e more  organisms  Salmon R i v e r ,  showed  life.  In a preliminary  study  In  zinc,  Westwater Research  b e t w e e n Hope  This  is accel-  o f copper,  to fish  1972, when f l o w s  stations.  later  study  programs.  showed a l o w e r w a t e r  itself.  shallow  a n y w a t e r movement.  concentrations  River  o f J u l y and August,  a n d a t 24 t r i b u t a r y  taries,  These  however, most a n a l y s e s  t a k e n a t 22 s t a t i o n s o n t h e F r a s e r  river,  levels.  sloughs  Pollutants are often not  o f i t s Lower F r a s e r  t h e months  c a n be e x p e c t e d as  o x y g e n i s consumed.  those  two m a j o r w a t e r  some  of biodegradation  i n some s a m p l e s w e r e r e p o r t e d ; lower  This  where  r a p i d l y , the process  some b i o l o g i c a l l y  centrations  during  obtained.  out o f the system because  study  isolated,channels  sensitive to raised pollution  a n d t h e r e f o r e more  flushed this  a r e more  were  from  t a k e n t o be a n a l y s e d  showed  Dissolved  that water oxygen  for pesti-  q u a l i t y was  levels  i n the Main  11  Arm were c l o s e t o s a t u r a t i o n and s l i g h t l y lower i n t h e N o r t h Arm.  Present  BOD l o a d i n g s and p r o j e c t e d waste d i s c h a r g e s a r e n o t e x p e c t e d t o a f f e c t these h i g h d i s s o l v e d oxygen l e v e l s d r a s t i c a l l y .  T h i s r e s u l t was observed  from a s t u d y where a m a t h e m a t i c a l model was used t o s i m u l a t e d i s p e r s i o n and d e g r a d a t i o n o f o r g a n i c wastes  (27).  However, some d e p r e s s e d oxygen l e v e l s  were encountered i n s e v e r a l o f t h e s m a l l t r i b u t a r i e s where f l o w s a r e n o t s u f f i c i e n t t o d i l u t e t h e wastes d i s c h a r g e d t o t h e r i v e r .  A major w a t e r  q u a l i t y problem appears t o e x i s t i n t h e h i g h l e v e l s o f i n d i c a t o r m i c r o organisms i n t h e F r a s e r and some t r i b u t a r i e s .  I t was found t h a t t h e bac-  t e r i o l o g i c a l q u a l i t y o f t h e w a t e r g r a d u a l l y d e t e r i o r a t e d from Hope t o t h e S t r a i t o f Georgia.  These h i g h numbers o f i n d i c a t o r m i c r o o r g a n i s m s  m a i n l y t o r e s u l t from d i s c h a r g e o f u n t r e a t e d d o m e s t i c sewage.  A f t e r com-  p l e t i o n o f t h e A n n a c i s I s l a n d treatment p l a n t t h e b a c t e r i o l o g i c a l i s expected t o improve.  appear  situation  C o n c e n t r a t i o n s o f some heavy m e t a l s were o c c a s i o n -  a l l y h i g h but none reached l e v e l s t h a t a r e c o n s i d e r e d a c u t e l y t o x i c t o f i s h . S i n c e i n t h i s s t u d y o n l y grab samples were t a k e n once a week, these r e s u l t s have t o be i n t e r p r e t e d w i t h some c a u t i o n .  As m e t a l d i s c h a r g e s by  some i n d u s t r i e s a r e u s u a l l y s p o r a d i c i n n a t u r e a p o t e n t i a l l y s h o r t - t e r m t o x i c s i t u a t i o n , c l o s e t o t h e o u t f a l l , might a r i s e .  Also, i n periods of  low f l o w , a body o f w a t e r i n t h e lower reaches o f t h e r i v e r may move up and down t h e r i v e r t h r o u g h s e v e r a l t i d a l c y c l e s b e f o r e r e a c h i n g t h e sea, g i v i n g r i s e to the accumulation of p o l l u t a n t s .  Metal concentrations i n a highly  s e d i m e n t - l o a d e d r i v e r a r e u s u a l l y not v e r y h i g h as t h e m e t a l s become adsorbed t o t h e p a r t i c u l a t e m a t e r i a l and s i n k t o t h e r i v e r bottom. ment samples a r e t h e r e f o r e much more i n d i c a t i v e o f t r a c e m e t a l  Sedi-  contamina-  tion. However, i t i s d i f f i c u l t t o d e c i d e w h i c h f r a c t i o n o f m e t a l i s  12 attributable soils  to leaching  i n the a l l u v i a l  attributable centrations River  levels. Mercury  i n the water  lead  Also  o f the F r a s e r  and  drains  showed  zinc  be  Valley  sources.  h i g h and  concentrations  as  i n the water were a l l l e s s  encountered  area  strongly  is  levels.  The  con-  i n the Brunette Particularly  fluctuating  i n the t r i b u t a r y  than d e t e c t i o n  and  fraction  (23,24).  concentration background  found between t h e P o r t  background  ranges  of the h i g h e r metal  were o f t e n above n a t u r a l  i n the water  explained  and w h i c h  Most  the sediment were  o f G e o r g i a were h i g h e r t h a n  therefore not  i n the mountain  an u r b a n - i n d u s t r i a l  fairly  concentrations  the S t r a i t  cides  plain  to urban-industrial  Basin which  copper and  of mineral deposits  level.  Mann B r i d g e a n d  s y s t e m and  can  analyses for pesti-  limits  except  f o r one  sample. As  pesticides  are very insoluble  particulate material very rapidly, Between F e b r u a r y and August, Sumas r i v e r s Branch  the B r u n e t t e b a s i n .  p r o d u c t s , and  t h e most p r o m i n e n t  basin  (23).  and face  To  surface  analyzed. samples  near  samples  materials The  as  the  impact  most  by  the  contaminated sediments  biphenyls  i n this of land  were c o l l e c t e d  become a d s o r b e d  from  urban use four  i n stream  concentrations  plant.  A  A  major  and  Water  Quality  river  basin  contained  (PCB's),  DDT,  the  last  was  its ones  industrial  drainage  upon sediment  quality,  different  same c h l o r i n a t e d h y d r o c a r b o n s w e r e f o u n d  occurred  to  samples.  from t h e B r u n e t t e , Salmon,  its river  contaminants  sewage o u t f a l l s .  Sewage T r e a t m e n t  from  The  and  d e c i d e d t o take sediment  residues  polychl orinated  determine  Trace metal high  1974  Canada.  Samples  being  street  i t was  were a n a l y s e d f o r p e s t i c i d e of Environment  degradation  i n water  land  use  i n street  areas sur-  sediments. found  i n the sediments  discharger  s t u d y done by  B.C.  i n this Research  were  regard i n 1973  particularly i s the (5)  Iona  reported  13  that  concentration levels  background  levels  m e a s u r e d some d i s t a n c e  T h e r e was a 1 - 6 - f o l d and  a 21-fold  higher  possibility fish,  that  these  thus  i n some a n i m a l s  adjacent  Roberts  species tions (44).  t r a c e metals  from Sturgeon  mercury  Sculpin,  found  with  copper,  These  source  of this  levels  i n salmon,  f o r cobalt, nickel,  copper,  to their  accumulate food  two f i s h  o f mercury,  shellfish, A  than  silver, samples  during and  from  iron,  sources.  a n d manganese  in virtually  O f most c o n c e r n  ranging  14  concentraa l l fish  fish,  to other  above t h e a c c e p t e d food  Trace  the high  levels  level  fish metal  i n Canadian  f o r man.  The  concentration  were v e r y low.  rivers  i n North regard  America  t o be c l e a n w i t h  there  f o r i n c r e a s e s as i s i n d i c a t e d  t o most  drain the metropolitan area should  were  s p e c i e s , Squawfish and P r i c k l y  was n o t o b v i o u s .  a migratory  which  representing  o f t h e F r a s e r R i v e r showed  F r a s e r R i v e r appears  main channel  no p r o b l e m s  oxygen,  or nutrient concentrations  BOD,  as t h e  i t i s hardly p o s s i b l e to t r a c e the accumulated  contamination  rivers  i n crabs,  iron,  showed  f o r human c o n s u m p t i o n .  species a r e not themselves  In comparison  tributary  and  also  b e o f some c o n c e r n  o f 348 s p e c i m e n s  fish  i n two r e s i d e n t f i s h  i s a potential  and z i n c  Bank w e r e h i g h e r  tissue  zinc,  concentrations  food.  mudflats.  Bank ( 4 7 ) .  move a r o u n d ,  back  significantly  the contaminated  that concentrations  o f r e s i d e n t and m i g r a t o r y  As f i s h  quite  community o f t h e F r a s e r R i v e r m u d f l a t s  o f the muscle  o f mercury,  should  substances  animal  from  Chromium,  contaminating  summer o f 1972 r e v e a l e d  Analyses  of  f o r lead.  of the benthic  copper the  exists  exceeded  background  These concentrations  and waterfowl,  survey the  i n c r e a s e over  increase  levels.  o f some m e t a l s  and Europe t h e Lower  toxic  materials, but  by t h e r e s u l t s  from  some  o f Vancouver.  In the  be met i n t h e f u t u r e a s f a r a s d i s s o l v e d a r e concerned.  H o w e v e r , we c a n  14 expect  l o c a l i z e d s i t u a t i o n s o f oxygen d e p l e t i o n , n u t r i e n t enrichment,  high  b a c t e r i a l l e v e l s , t r a c e m e t a l s , and c h l o r i n a t e d h y d r o c a r b o n s i n some t r i b u t a r i e s , backwaters, and  C.  The  sloughs.  F r a s e r R i v e r and  i t s Water Users  I n an a r e a l i k e the Lower F r a s e r R i v e r b a s i n a m u l t i t u d e o f a c t i v i t i e s p l a c e demands on the w a t e r r e s o u r c e . impact t h a t each o f them has  I t i s important  to recognize  on water q u a l i t y i n o r d e r t o p r e v e n t  the  or m i n i -  mize c o n f l i c t s between the d i f f e r e n t u s e r s . The Lower F r a s e r has h i s t o r i c a l l y been an i m p o r t a n t waterway f o r the t r a n s p o r t o f l o g booms from the u p r i v e r areas on the e s t u a r y .  t o the s a w m i l l s l o c a t e d  A l s o , the e s t u a r y has always s e r v e d as a l o g s t o r a g e  area,  a use w h i c h can sometimes c o n f l i c t w i t h c e r t a i n r e c r e a t i o n a l demands such as b o a t i n g and s p o r t s f i s h i n g .  The r i v e r i s used by l o g r a f t s , barges,  deep sea v e s s e l s and p r o v i d e s d o c k i n g f a c i l i t i e s a l o n g i t s banks.  and  The  s h a l l o w - d r a f t N o r t h Arm w i l l l i k e l y c o n t i n u e t o s e r v e as a waterway f o r the v a r i o u s f i s h p r o c e s s i n g and woodproduct i n d u s t r i e s w h i c h a r e l o c a t e d along i t s waterfront.  The h a r b o u r i n the main stem o f the F r a s e r R i v e r i s  p r e s e n t l y Western Canada's second most i m p o r t a n t  deep sea p o r t .  I t has  become the focus o f c o n s i d e r a b l e i n d u s t r i a l i n t e r e s t because t h e r e a r e e x t e n s i v e areas o f l a n d vacant a l o n g the w a t e r f r o n t . f a c i l i t i e s f o r a new  At present  c o n t a i n e r t e r m i n a l a r e under c o n s t r u c t i o n .  t o reduce the amount o f d r e d g i n g n e c e s s a r y  still  dock In order  t o keep the c h a n n e l a t a depth  of 33 f t , p l a n s a r e b e i n g c o n s i d e r e d t o c o n s t r u c t t r a i n i n g w a l l s t o cont r a c t the c r o s s e c t i o n and thus i n c r e a s e the v e l o c i t y w h i c h would make the r i v e r s e l f - s c o u r i n g . U n f o r t u n a t e l y t h i s measure would c u t o f f many f i s h s p e c i e s from the r e a r i n g and  f e e d i n g areas  i n the backwaters and sloughs  of  15  the  estuary. Of  for  the  133  miles  a g r i c u l t u r e or  are  of harbour waterfrontage,  undeveloped,  recreational,  47, i s r e s i d e n t i a l ,  Regional Plan  w h i c h was  Planning  Board,  for a  great  degree waste  water  development  to  be  at  mudflats Roberts on  fish  Besides  include  Bank a n d Sea  and  a  Island be  and  by  the  and  port,  used  67, i s  (48).  The  Lower M a i n l a n d  the  Official  Regional  P r o v i n c i a l Government,  2.  Land use  quality.  important  and  transport  i n Figure  water  a very  determines  Municipal  planning  zoning  tool with  to  a  there-  regard  to  the  followed  second  parallel  (16).  New  a  transportation  is often  waste water  stop  Iona  the  Island  i n 1973  plants  ecology  expansion of  runway a t  of  the  Vancouver  dykes would have  thus  regarded means  gallons  to  be  the  marshlands  bulk  terminal  International  constructed  further reducing  valuable  as  industrial  by  receive  institutional  around  the  dumping  of  a  servant  f o r barges  and  and  raw  habitat  and land  sewage t o  most  sources,  Island  STP  and  the  Annacis  of t h e i r waste water and  provide  sea  (STP)  primary  The  sources  alarmingly  purposes.  vessels  day.  as  i t has  to  Fraser well  as  River storm  high b a c t e r i o l o g i c a l  of metropolitan  Sewage T r e a t m e n t P l a n t Lulu  sea  every  industrial  Because of beaches  for deep  of waste water  from domestic  a g r i c u l t u r a l runoff.  to  the  wildlife.  i n the water  decided  disrupt  ferry terminal,  filled,  away m i l l i o n s o f  counts  and  i n 1966  which could  new  river  w a t e r and  three  a  A  receives  1963  as  projects  l a r g e areas would  carry  37, i s f o r  indicated  composition  industrial  767. a r e  quality.  Airport  for  as  considered  Possible and  and  are  i t s member m u n i c i p a l i t e s  calls  f o r e has  adopted  11%  presently  Vancouver,  and  to  started  Island  STP  the  its  treatment  was  river.  In  operation,  i n 1975.  from r e s i d e n t i a l ,  i t  These  commercial,  (sedimentation)  17  and c h l o r i n a t i o n f o r the waste water p r i o r t o d i s c h a r g i n g i t t o the r i v e r . T h i s can c r e a t e a problem as c e r t a i n c h l o r i n a t e d o r g a n i c compounds, t o x i c t o f i s h , a r e formed (e.g. c h l o r a m i n e s ) .  Dechlorination i s therefore applied  a t L u l u I s l a n d and b e i n g c o n s i d e r e d f o r the A n n a c i s plants.  I s l a n d and the  Iona  However, d e c h l o r i n a t i o n might not be e f f e c t i v e i n b r e a k i n g down  some compounds such as the group of c h l o r i n a t e d phenyls treatment  (31).  Primary  reduces m a i n l y suspended s o l i d s , but does not remove t o x i c mater-  i a l s such as heavy m e t a l s , PCB's, and o t h e r c h l o r i n a t e d h y d r o c a r b o n s v e r y effectively.  A d d i t i o n a l treatment p r o c e s s e s w i l l have t o be c o n s i d e r e d as  the waste volume o f these t o x i c substances  increases.  A t p r e s e n t 83  g a l / d a y of i n d u s t r i a l e f f l u e n t a r e d i r e c t l y d i s c h a r g e d t o the r i v e r . of i t i s c o o l i n g water.  However, one study done a t two p a i n t  million Most  manufacturing  companies r e v e a l e d t h a t e f f l u e n t s t a n d a r d s , s e t by most m u n i c i p a l i t i e s i n t h e i r by-laws,  a r e not v e r y s t r i c t l y e n f o r c e d ( 9 ) .  Control i s often only  a p p l i e d t o remove the suspended s o l i d s , the v i s i b l e f r a c t i o n o f p o l l u t a n t s . A t p r e s e n t e s t i m a t e s o f the q u a n t i t i e s o f p o l l u t a n t s t h a t a r e d i s c h a r g e d by i n d u s t r y a r e not a v a i l a b l e .  I n d u s t r i a l wastes v a r y i n t h e i r  I t i s known t h a t a number o f i n d u s t r i e s generate flammable wastes,  composition.  s m a l l amounts of t o x i c  some o f w h i c h a r e d i s p o s e d of through sewers and  and  outfalls  (18). A problem o f g r e a t c o n c e r n i s the c o n t r o l o f s t o r m w a t e r r u n o f f . Many storm sewers d i s c h a r g e d i r e c t l y t o the r i v e r . combined u r b a n r u n o f f r e c e i v e s primary t r e a t m e n t .  Where sewer systems a r e However, d u r i n g r a i n  storms, when f l o w s a r e h i g h , most of the incoming waste w a t e r i s d i v e r t e d t o the r i v e r and r e c e i v e s no treatment a t a l l .  Westwater's s t u d i e s i n d i -  c a t e d t h a t t h e r e a r e c o n s i d e r a b l e q u a n t i t i e s o f some t r a c e m e t a l s water,  i n storm  p a r t i c u l a r l y d u r i n g the f i r s t f l u s h i n g a f t e r a l o n g p e r i o d o f no  18  rainfall  (30). A  first  the c o n s t r u c t i o n and  gradually  prevail, levels  industries The  gals/day  water better  quality  sloughs,  In  through  fisheries.  flood levels  where w a t e r  purposes  F o r example,  has been improved event  receded  They would  would  d e s t r o y most  the marshes,  is available water  ponds  two c a s e s  from  At present from  totalling  o n l y few  the river. t o about  61  i n order to prevent o f the industry. for public  Sufficient  water o f  to a l l municipalities. taken  from  the t r i b u t a r i e s ,  are registered with  exists  t h e Water  between a g r i c u l t u r e and  Chilliwack  reaches  o f t h e low f l o w  flows.  (Vedder  During  capacity  the last  o f the n a t u r a l  canalized,  of various fish  installations  River  g o t v e r y u p s e t when w a t e r  t o see the whole r i v e r  d y k i n g and pumping  temperature  the F r a s e r R i v e r f o r i r r i g a t i o n .  i n the upper  o f the spawning areas  the  i s not used  to allow f o r higher flood  like  low f l o w s  system  i s mainly  of interest  o n l y s l o w l y because  bed.  settling  t h e bed o f t h e lower  i n 1975, f a r m e r s  mass  loadings, Fraser River  i n the piping  Only  i s taken  basins a c o n f l i c t  river  of  other sources  o r groundwater w e l l s .  Branch  20 p e r m i t s  i n t h e Lower F r a s e r V a l l e y .  agricultural  some r i v e r  Canal)  from  stored  where  directly  t h e F r a s e r and i t s t r i b u t a r i e s  s u p p l y anywhere  For  Rights  from  to calculate  raise  fish.  Because o f i t s h i g h s i l t  a b r a s i o n and s e d i m e n t a t i o n problems Water  might  of cooling  has i s s u e d about  first  be  plant.  to tributaries  by s a l m o n o i d  f o r t h e purpose  w a t e r h a s t o be p a s s e d  r u n o f f c o u l d be  be r e q u i r e d  t o a minimum a s t h i s  (68).  would  of pollutants.  c a n n o t be t o l e r a t e d  take water  first  to the treatment  discharges, particularly  Water R i g h t s Branch  million  later  groups  s h o u l d be k e p t  which  some o f t h e s e p o l l u t a n t s  m o n i t o r i n g programs w i l l  forcritical Thermal  to control  o f h o l d i n g tanks where t h i s  be r e l e a s e d  Detailed balances  step  something  species.  have a l r e a d y  that  Draining  reduced  19  habitat  of fish  and w a t e r f o w l .  Damming  o f some s m a l l e r  purposes  often  submerges  rivers  spawning grounds.  warm up more r a p i d l y a n d s o m e t i m e s nutrient ing  input  salmonoid  from a g r i c u l t u r a l species  to store water Also,  show s i g n s  sources.  for irrigational  these  stagnating  waters  o f e u t r o p h i c a t i o n due t o  These areas  which need c l e a r c o o l waters  are lost  f o r spawn-  and u n p o l l u t e d  gravel  beds. Future Valley. as  needs might  To i n c r e a s e  insecticides  force people  t o grow more f o o d  p r o d u c t i v i t y more f e r t i l i z e r s  to protect  the crop.  This w i l l  agricultural  runoff.  the  T h e r e a r e some h o g a n d p o u l t r y  valley.  farms  are usually very  serious  pollution Bad  problem. major a  Presently vegetables  problem  logging  Siltation  threats  serious  The  practices  o f the spawning grounds  fishing,  pleasure  i s perhaps driving,  seeing  quality will  be v a l u e d  Debris  from  these  arise. or debris  t o be one o f t h e  i n t h e Lower F r a s e r i s  and f i s h n e t s has been  horse  riding,  more h i g h l y time  River  i s not very  the major r e c r e a t i o n a l a c t i v i t y ,  esti-  I t c a n be e x p e c t e d  At present  and the s h o r e l i n e  r e c r e a t i o n resources  a r e used  there  strong at  besides bar-  a n d p i c n i c k i n g o n some  i n t h e f u t u r e as incomes  t o spend.  to the waterfront, As o t h e r  of the Fraser  such a mighty r i v e r .  h a v e more l e i s u r e  trialized.  (36) .  of  Otherwise a  cause a s i l t  i s considered  T h e damage d o n e t o b o a t s  People enjoy  roads  Animal wastes  rivermight  often  loadings  predominate i n  t o be t r e a t e d .  tributary  i n the v a l l e y  r e c r e a t i o n a l aspect  Boating  access  farms.  farming  as w e l l  a s $500,000 p e r y e a r ( 1 5 ) .  present.  also  i n a small  be a p p l i e d ,  increase waste  and d a i r y  and have  t o salmon i n the f u t u r e  problem.  mated as h i g h  concentrated  will  i n the Fraser  dykes.  that rise  water and p e o p l e  a r e n o t t o o many  i s predominantly to capacity,  indus-  more  20  attention w i l l  have  t o be  given  developing  parks  and  beaches  along  the  river. The kinds  estuary  of birds.  i s famous  There are at  common h a b i t a t i s t h e source  migration corridor.  up  i n the  fishermen B.C.  an  catch  ing.  By  dent  (16).  especially  economy  The  (only  their  inhabit  crab  prized  i n 1973  fish  sockeye, by  British  importance  whose m a j o r  use  i t as  a  food  flyway the  or  largest  the Lower F r a s e r R i v e r . The  F r a s e r and  serve  fishery  i s commercial,  important  others  o f b i r d s whose  i s known t o s u p p o r t  or r e s i d e n t .  $281,000  and  many  i n Canada.  fish  The  for viewing  species  waters  Still  organisms which  region:  Salmon  and  as  food  i n the  recreational,  are  the  pink,  five  in relation  to  of  and  estuary  to other major  gave  the  total  food  salmon,  chinook  people  also  organisms  Indian  species  and  the  20.57. o f  and  chum, c o h o ,  Columbians,  i t s estuary  Fraser  represented  They  even  fishresi-  salmon. often  sectors of  B.C.'s  Resource  F r a s e r R i v e r has  the Yukon R i v e r  stream  (43).  and  (49).  The  migration  averaged Virtually Next  most  different  i t s adjacent  of  chain.  There  i n the P a c i f i c  overestimate  D.  aquatic  income o f  f a r the  They a r e  species  food  88  Lower F r a s e r R i v e r  semi-migratory  many o t h e r  higher  or  population of waterfowl  migratory,  support  least  estuary  The  Thirty-eight are  river  o r i g i n a t e s i n the  wintering  f o r i t s duck h u n t i n g  supports  of adult  fish  nearly six million no  fish  i n numerical  the  enter  the  importance  a  second  largest  bigger  run).  a l l year  fish river  t o spawn  come t h e  There  around.  i n every  odd  salmon run  Pink  is a  i n the  world  continuous  salmon r e t u r n s  uphave  numbered y e a r  since  1957.  i n e v e n numbered  years  (43).  sockeye  salmon w i t h  b e t w e e n one  and  21 ten m i l l i o n million about  adult  juveniles.  27  million important  near or  i n the  has  valued is  by  $73  and  a  by  has  and  the  (1973  boats It  high  The and  spawning  improvement  rivers  t o be of  the  w h i c h made t h e  a  dominant recovered Fraser  record 01  the  coast  sockeye  C a n y o n by  of  support  an  the  Probable next (46).  15-20  fell  salmon, 30  to a v e r y  Construction the  spawning  annual  current  of  (41).  annual  i n the  fish.  level  boxes,  International Pacific  run,  i n succeeding  fishways  at  survey  commercial and  processto  various  maintain  production  construction  i n the  value  industry.  and  total  of  various $250 t o  i n various  rock  Canyon  One  fish  million,  fishermen  disastrous  sockeye run  highly  catch  The  f o r programs  Fraser  both  500,000  $186  fleet  investments would  the  of  salmon  the  incubation  years  is also  to a household  service  involve  salmon  grounds.  about  sports  important  million low  and  and  commercial  commercial of  45  fisheries  average  in its fishing  Before  the  food  of  river  chinook  minimum c a t c h  Marine Service  hatcheries,  over  The  average  the  River  Indian  according  commercial  increase  over  since.  an  program which would  catch  cycle,  A  an  Coho s a l m o n  River  million,  passage a t H e l l ' s Gate  upstream migrating yielded  by  measures.  Pacific  fish.  investments  channels,  spent  Fraser  coast.  Fraser  and  move up  recreational value  $101  gear  to  artificial  the  F i s h e r i e s and  fishing  enhancement  the  fishermen.  a  expenditures  through an  million  of  capital  i s planned  along  salmon r e p r e s e n t s  prices),  Canada,  The  some 480,000  o r i g i n a t e from  put  plants.  stream  as  sports  Environment  their  well  preservation value  fishery ing  as  commercial  million  chum a d u l t s  r e c r e a t i o n a l , and  at  Altogether,  c y c l e year)  move d o w n s t r e a m .  commercial,  river  to  the  Some h a l f m i l l i o n  been e s t i m a t e d  estimated  of  ( d e p e n d i n g on  smolts  support  catch  fish  slide  $300 salmon  in  impossible  1913 for  Fraser River the  previous  years points  Salmon F i s h e r i e s  had  and in  has the  Commission  never  22 t o g e t h e r w i t h a f i n e l y tuned management program has h e l p e d t o g r a d u a l l y i n c r e a s e the t o t a l s t o c k o f most c y c l e y e a r s a g a i n .  I t i s hoped t h a t  through f u r t h e r enhancement programs the F r a s e r R i v e r may  see the o l d  r e c o r d runs someday a g a i n . However, enhancement w i t h o u t p r e s e r v a t i o n o f p r e s e n t w a t e r q u a l i t y , w h i c h i s a l r e a d y q u i t e low i n some t r i b u t a r i e s and a r e a s o f the e s t u a r y , w i l l most l i k e l y be a f a i l u r e .  Salmon a r e v e r y s e n s i t i v e f i s h and cannot  adapt t o h i g h e r r i v e r temperatures or i n c r e a s i n g p o l l u t a n t P o l l u t i o n may a l s o t h r e a t e n i t s food organisms.  loadings.  Even i f we keep t h e up-  stream spawning grounds of the salmon i n p e r f e c t l y good c o n d i t i o n , t h e salmon runs might s t i l l the  decrease as w a t e r q u a l i t y i n the Lower F r a s e r and  estuary deteriorates.  very c r i t i c a l adjustment.  The t r a n s i t i o n from f r e s h t o s a l i n e w a t e r i s a  s t a g e i n a salmon's  life  involving considerable physiological  I f f u r t h e r s t r e s s e s i n the form o f i n c r e a s i n g p o l l u t i o n  are  a p p l i e d t h e r e , e f f e c t s on the f i s h may  his  s u r v i v a l chances i n the ocean.  levels  be d e t r i m e n t a l w i t h r e g a r d t o  A d e c r e a s e i n w a t e r q u a l i t y w i l l show i t s e f f e c t s on a f i s h population.  As f i s h are a major u s e r of the F r a s e r R i v e r w a t e r and have p a r t i c u -  l a r r e q u i r e m e n t s w i t h r e g a r d t o water q u a l i t y , i t was the  e f f e c t s o f p o l l u t i o n on salmon.  F r a s e r system was of  decided to i l l u s t r a t e  A p a r t i c u l a r sockeye salmon r u n o f the  chosen s i n c e most o f the n u m e r i c a l knowledge  the sockeye salmon's  l i f e c y c l e i s r e l a t e d to t h i s run.  t h a t we have  23  CHAPTER  L I F E C Y C L E OF  A.  w h i c h was sion.  curves  a  The  Chilko  River  i n the  Fisheries and  salmon  the  numbers adults fish,  life  Fraser  United  scribe  system.  (IPSFC), has  cyclic  abundance v a r i e s  sockeye. these  It  life  each  1949  conducted  each year.  discusses  the  information  results  confidence  i n the  i s the  of a  strict  limits,  Chilko River to process  eggs, The  River  stock the  but  rather  system. such  informa-  t o 65%  the  thoroughly  International Pacific i n 1937  adults  by  Canada  measurements. and  dominate,  Mortality rates  i n each  life  4-year-old  but  i n the  Sheehan  The  range  The  returning  within  different (55)  stage  gives  for  f u n c t i o n a l r e l a t i o n s h i p s to  data.  the  studied  t r e a t y between  smolts,  to  catch  Salmon  m a t u r e p r i m a r i l y as  factors  observed  of  Fraser  o r i g i n a t e s from  most  (17,33,34,52,69).  uncertainty  using  i s the  emerged f r y ,  i s p o s s i b l e to develop stages  25  system  abundance p a t t e r n  significantly  l a r g e s t i n the  detailed survival  substantially.  the  second  four about  established  estimated  4 year  stock of  Since  are  vary  observed  Chilko River  deposited  may  derived  entire Fraser  spawners,  summary a n d River  out  of  stages  i n t e r p r e t e d as  on  S a l m o n F i s h e r i e s Commis-  d e m o n s t r a t i n g a method  sockeye  years  States,  a  were based  exactitude.  The  Commission  be  analytically  from the  (71).  causing  cycles  two  chapter  International Pacific not  on  Chilko River In  i n this  of values  placed  numerical  system.  sockeye  should  indication  t h a n on  River  the  analysis with  M o r e e m p h a s i s was  run  from  These curves  general  tion  described  obtained  statistical  of  SOCKEYE SALMON  Introduction The  as  THE  III  a  Skeena de-  of u n c e r t a i n t y  can  24  be  i n d i c a t e d by u p p e r a n d l o w e r  boundary  lines.  such r e l a t i o n s h i p s f o r the C h i l k o R i v e r input  i na probabilistic  graphs The  presented  life  numbers  B.  i n this  lies  Mountains  Coast  the  mouth o f t h e F r a s e r  C h i l k o Lake bottom.  the  native As  run  year")  runs  every  with a  eggs  takes  seines,  catch  other  from  The t h e IPSFC.  below.  f o u r t h year.  o f view,  380 m i l e s  of Fraser  from  i n the gravel of the river i n late  inApril  remain  September.  o r May a f t e r  n a t a l stream.  The C h i l k o s t o c k  upstream one o r  1% t o 3 %  Passing  through  States  fisher-  When m i g r a t i n g  sockeye,  In the  migrate  i n t h e sea from  o r by t r o l l i n g .  up t h e  f o r food.  a large  ( o r "dominant")  h a s two s m a l l e r  ("off-  r u n ("subdominant") between dominant  the ranges  a continuous  over  ranges o f  located a t the outlet of  a p o r t i o n o f t h e escapement  races  the curves  point  the help  by C a n a d i a n a n d U n i t e d  of the three  analysis.  the i n t e n t i o n of including p o l l u t i o n  biological  IV.  emerge a n d l a t e r  place  The sockeye  a n d a medium s i z e d  to allow  i n Chapter  and the C h i l c o t i n  r u n occurs  are harvested  purse  Indians  When d e v e l o p i n g together  they  nets,  i n most  returns  their  maturing and r e t u r n i n g t o t h e i r  gill  a r e u s e d as  sockeye migrate  from t h e eggs,  Smolt m i g r a t i o n  c o a s t a l waters  river  Adult  of this  of lake residence.  before  The curves  are described  t o t h e spawning grounds  spring f r y hatch  years  men w i t h  (Figure 3).  ( F i g u r e 4) t o d e p o s i t  the lake.  9 show  sockeye salmon and r e l a t i o n s h i p s between t h e  between t h e P a c i f i c  The peak spawning  following  with  5 to Figure  Sockeye  the  years  i s described  e n t e r i n g and l e a v i n g each stage  C h i l k o Lake  two  sockeye.  p a p e r were d e v e l o p e d  cycle of the Chilko  The C h i l k o R i v e r  into  model w h i c h  Figure  the f i r s t  The f i v e effects  relationship  run sizes life later  were  stages  years.  pieced  were  chosen  i n t h e model.  relating  From  t h e number o f  4. - Chilko Lake, Chilko River, and spawning grounds of sockeye salmon  27  female spawners t o t h e escapement might n o t be c o n s i d e r e d as a l i f e  stage.  However, as t h e s u r v i v a l o f f u t u r e salmon g e n e r a t i o n s depends on t h e s a f e passage o f a d u l t salmon through  i n c r e a s i n g l y p o l l u t e d waters  o f t h e Lower  F r a s e r R i v e r , t h i s " l i f e s t a g e " was i n c o r p o r a t e d i n t o t h e model.  B. 1 . In  R e l a t i o n s h i p Between Escapement and Female Spawners c o n v e n t i o n waters  c a t c h and escapement i s r e g u l a t e d by t h e IPSFC.  A t t h e b e g i n n i n g o f t h e f i s h i n g season a r e t u r n f i g u r e i s p r o j e c t e d f o r each s t o c k based on t h e number o f smolts m i g r a t i n g t o t h e s e a , t h e number o f j a c k s (mature 3 - y e a r - o l d males) t h a t r e t u r n e d t h e y e a r b e f o r e , and o t h e r data.  A t a r g e t escapement i s e s t a b l i s h e d .  on a day t o day b a s i s .  The a c t u a l escapement i s managed  The escapement f i g u r e s a r e e s t i m a t e d by means o f  t e s t f i s h i n g , and more r e c e n t l y by echo sounding The  i n t h e Lower F r a s e r R i v e r .  spawning p o p u l a t i o n i s enumerated u s i n g t h e P e t e r s o n mark r e c a p t u r e  method.  A f t e r t h e y have spawned the salmon d i e .  Between  the c a r c a s s e s a r e r e c o v e r e d and t h e tags a r e counted. female spawners and t h e i r success  207o  and  407o  of  The p r o p o r t i o n o f  i n spawning i s d e t e r m i n e d .  Counting the  tags t h e t o t a l p o p u l a t i o n number can be e s t i m a t e d u s i n g t h e r e l a t i o n s h i p N = Hi t where N = t o t a l p o p u l a t i o n n = number o f r e c o v e r e d T = number o f i n i t i a l  fish  tags  t = number o f r e c o v e r e d  tags  The p r o b a b i l i t y band i n F i g u r e 5 accounts  f o r u n c e r t a i n t y f a c t o r s such as  v a r i a b i l i t y i n s e x r a t i o , I n d i a n c a t c h , and t h e m o r t a l i t y en r o u t e t o spawning grounds. v a r y between  497,  The p o r t i o n o f females and  607,  ( 2 9 , 7 1 )  out o f t h e t o t a l escapement c a n  w i t h a n average o f 5 3 7 , t o  577»  ( 2 0 ) .  Gill  S — U p p e r confidence limit u  5 — Medium value M  S  L  — Lower confidence limit Chosen Matrix [l6 x 15]  100  200  300  400  500  620  Escapement in thousands  RELATIONSHIP BETWEEN ESCAPEMENT AT THE MOUTH OF THE RIVER AND F E M A L E SPAWNERS REACHING SPAWNING GROUNDS.  29  netting, form of on  the  f o r example, capture.  size  published the as  selective,  Indian  removal  run.  harvest  The  data  A  p r o p o r t i o n caught  by  effects  temporarily  B.2.  obstruct  to  spawners.  is a  Spawning This  i s based  females.  on  dead  several  p o s s i b l e reasons.  play  important  as  role  escapements  10,000 t o 328,000 a n d  B.3.  It from  be  eggs not  Water  i n the s u c h as  the  caused  length.  240,000  fish  the  ratio  and  was  made,  escapements.  En-  small landslides  i n terms  a l l females  Deposited  Eggs  regression analysis sample o f  of  50  "effective" carcasses  of  narrow  bacterial  spawning and  109,000 d u r i n g  the  re-  Other  during  band  past  25  factors  is  upnot  i n Figure  years  Eggs  may  the  females) have ranged  the  to  infection  fecundity  probability  (effective  female  s u c c e s s f u l l y spawn due  to p o l l u t e d waters of  females  6.  from  (20).  and  the  Fry  i s necessary the  using  sex  pre-spawning m o r t a l i t y problem.  at Chilko River  this depending  f o r the  by  A  for a  t e m p e r a t u r e and  relatively  averaged  25%  5 were c o n s t r u c t e d  r e t a i n e d i n the  exposure  to  route.  i s expressed the  15%, a n d  R e l a t i o n s h i p B e t w e e n t h e Number o f D e p o s i t e d Number o f  tion  between  at higher  i s done  V a r i a t i o n i n success  i n d i c a t e d by  Spawning  can  female  length  However,  become i m p o r t a n t  stream migration. large  more p r o n e  f o r about  less  migration  body  success  covered  could  the  was  stage  f u n c t i o n of  f e c u n d i t y and  each year.  an  life  are  extreme v a l u e s  i n slope  Indians  this  vary  i n Figure the  change  males  R e l a t i o n s h i p Between Female Spawners and  Fecundity relating  on  and  as  can  curves  (29)  rate.  vironmental which  the  escapement  Indian the  of  The  i s sex  t o d i s c r i m i n a t e between the  actual deposition.  As  female  c a l c u l a t e d egg  spawners w h i c h a r r i v e  deposilater  will  Chosen Matrix [15 x 16] 800  50  FIG. 6  100 Female  150 spawners  200 250 in thousands  F E M A L E SPAWNERS VS. EGGS  300  DEPOSITED o  31  o f t e n d i g out eggs d e p o s i t e d  by e a r l i e r spawning f e m a l e s , t h e number o f  a c t u a l eggs i n t h e g r a v e l a t c o m p l e t i o n o f spawning w i l l be lower t h a n estimated.  I n t h e c a s e o f o v e r c r o w d i n g t h i s e f f e c t c a n be v e r y s u b s t a n t i a l  and has a compensatory m o r t a l i t y e f f e c t .  H i g h escapement numbers t h e r e f o r e  can cause damage t o t h e p r o c e s s o f egg d e p o s i t i o n on t h e l i m i t e d a r e a o f the spawning ground.  There i s a c a r r y i n g c a p a c i t y f o r each spawning  ground. E n v i r o n m e n t a l f a c t o r s such as w a t e r f l o w , w a t e r t e m p e r a t u r e , s e d i ment l o a d o f t h e stream, c o n c e n t r a t i o n s  o f NH4, NC>2, NO3, CG^, and oxygen,  as w e l l as i c e f o r m a t i o n a l l a f f e c t t h e number o f f r y t h a t w i l l h a t c h from the eggs. problem.  As C h i l k o Lake i s o l i g o t r o p h i c w a t e r q u a l i t y p r e s e n t l y i s n o t a I n t h e w i n t e r o r c o l d n i g h t s r a d i a t i o n a l c o o l i n g o f bottom  may r e s u l t i n t h e f o r m a t i o n  o f anchor i c e .  Anchor i c e p r e v e n t s t h e ex-  change between s t r e a m w a t e r and i n t e r g r a v e l f l o w . enough oxygen and t h e r e f o r e d i e .  rocks  The eggs may n o t o b t a i n  Low f l o w c o n d i t i o n s c a n r e s u l t i n t h e  f r e e z i n g o r d e s s i c a t i o n o f eggs d e p o s i t e d  on t h e h i g h e r  s t r e t c h e s o f the  g r a v e l banks. I n t h e p a s t 25 y e a r s t h e s u r v i v a l r a t e f o r t h e e g g s - t o - f r y has  v a r i e d between 47. and 147. (69) .  stage  The p r o b a b i l i t y band i s i n d i c a t e d i n  F i g u r e 7.  B. 4.  R e l a t i o n s h i p Between t h e Number o f F r y and t h e Number o f Smolt  A f t e r emerging from t h e stream g r a v e l t h e C h i l k o s o c k e y e f r y a r e c a r r i e d downstream t o a q u i e t w a t e r a r e a where they r e m a i n f o r a s h o r t p e r i o d o f time.  F r y t h e n m i g r a t e upstream a l o n g  t i e s i n t o the lake.  t h e shores i n low v e l o c i -  The number o f f r y was d e t e r m i n e d f o r a number o f y e a r s  using a photographic technique.  The camera was i n s t a l l e d above t h e w a t e r  33  s u r f a c e and a w h i t e board  i n the r i v e r bed was  More r e c e n t l y an i n d e x count has been used. regular intervals.  used as a c o n t r a s t medium.  V i s u a l e s t i m a t e s a r e made a t  These counts a r e then r e l a t e d t o p a s t e s t i m a t e s  and  e x t r a p o l a t e d to a t o t a l f r y e s t i m a t e . Once sockeye f r y have e n t e r e d the r e a r i n g l a k e , two main f a c t o r s appear t o g o v e r n the s u r v i v a l r a t e : food s u p p l y and p r e d a t o r s . may  be most i m p o r t a n t when the f r y e n t e r the l a k e .  Food s u p p l y  I f they e n t e r the l a k e  v e r y e a r l y i n the y e a r t h e r e might not be s u f f i c i e n t food a v a i l a b l e t o them as the p r o d u c t i v i t y o f the l a k e i n c r e a s e s w i t h i n c r e a s i n g temperature solar radiation.  Goodlad e_t al_.  and  (20) h y p o t h e s i z e d t h a t v a r i a t i o n i n the  l e n g t h o f t h e growing p e r i o d and i n i n i t i a l i n f l u e n c e s on growth than o t h e r f a c t o r s .  r e a r i n g temperature  The  i n s e c t s and l a t e r on c r u s t a c e a n z o o p l a n k t o n .  fry first  have g r e a t e r  feed on emerging  I n the o l i g o t r o p h i c C h i l k o  Lake t h e r e i s a c o m p a r a t i v e l y low s t a n d i n g c r o p o f z o o p l a n k t o n as has measured f o r s e v e r a l y e a r s .  been  W i t h r e g a r d t o p r e d a t i o n , the s i z e o f the  p r e d a t o r compared t o i t s p r e y i s most i m p o r t a n t .  A p p a r e n t l y , C h i l k o Lake  has a v e r y low p o p u l a t i o n o f p r e d a t o r s w h i c h f e e d on the sockeye f r y . a consequence the s u r v i v a l r a t e i n t h i s l i f e s t a g e i s v e r y h i g h and  As  has  ranged from about 32% t o 73%, as i n d i c a t e d i n t h e p r o b a b i l i t y band o f F i g u r e 8.  B. 5.  R e l a t i o n s h i p Between the Number of Smolts and t h e Number o f Returning Adults  A f t e r one y e a r of l a k e r e s i d e n c e , most o f the young sockeye b e g i n t h e i r j o u r n e y to the ocean. graphically.  The number of migrants  i s enumerated  photo-  The sockeye smolts a p p a r e n t l y move f a i r l y q u i c k l y out t o the  open sea a f t e r r e a c h i n g the r i v e r mouth.  The s u r v i v a l r a t e i n the ocean  Chosen Matrix [lOX 1 0 ]  35  appears during  to depend migration  relationship  on  time.  a  higher  the  level  Water  numbers  proportion The  threat  their  survival  the  size  of  the  tion  studies  tion  of  the  terminal) the  of  phytoplankton  fairly  quickly  chain which The salmon  can  vary  band  between the  significantly  genetics  In  the  indicates a  and  subsequent  importance  i f the  There already It  exists  is believed  d i v i d e d between the  the  thus  the  sockeye  that  arms  in  i n the  form of  light  absorption be  organisms  how  f a r the  (62)  of  thus  reached  by  are  first  the  the  that  the  young step  to  effect  in  from a  reduce  in  feeding  found  Georgia  c o a l dust  and  compared  significant  Parsons Strait  i t s predators  smolt  becomes a  river.  which can  against  important  i n the  not  well  i s very  17, a n d  over  estuary.  river  simulapollu-  new  coal  growth  of  salmonoids  in a  food  salmon).  ocean are  probability  information  of  f a c t o r s which might have an  the  importance.  size  (e.g.  area  critical  young smolt  growth  (phytoplanktonic  supports  i n the  As  i n an  the  (69)  migration  reaches.  i t is quite  mouth o f  i n the  (43).  Growth r a t e  c o a s t a l waters change  the  the  phytoplankton  could  i n the  presently  flows  Therefore,  away f r o m t h e  are  of  much on  predator.  mortality rate.  grounds a r e  smolts  smolt  become o f  i n t h e N o r t h Arm  chances  ocean depend v e r y  during  increase  respective  the  in  to  of migrating to  discharge  quality could  continues  pollution  factors prevailing  C o r r e l a t i o n a n a l y s i s by W i l l i a m s  between r i v e r  marine s u r v i v a l . pollution  some e n v i r o n m e n t a l  the  wide  understood. ( F i g u r e 9)  It  the  i s not  showing a  survival  of  the  s u r p r i s i n g that survival  rate  that  227.. of past  the 25  C h i l k o Lake years,  f o l l o w i n g chapter  i n a model  i n f l u e n c e on  that  stock  a l l the  collected  a method  incorporates  the  have a p p a r e n t l y data  are  not of  is outlined for using  effects  of u n c e r t a i n t y .  changed equal this With  Chosen Matrix [lO X 15]  20 30 Smolts in millions  FIG. 9  40  SMOLTS MIGRATING TO THE OCEAN VS. RETURNING ADULT S A L M O N .  00  t h i s model changes i n the s t o c k / r e c r u i t m e n t r e l a t i o n s h i p  c a n be  estimated  g i v e n t h a t the c o n d i t i o n s f o r s u r v i v a l i n the above l i f e s t a g e s change. Thus, p o s s i b l e consequences o f enhancement  techniques  c a n be e v a l u a t e d as  w e l l as p o t e n t i a l l y d e t r i m e n t a l e f f e c t s due t o d e c r e a s i n g w a t e r q u a l i t y .  38  CHAPTER  IV  A MODEL USING DATA RECORDS WHERE A V A I L A B L E AND  A.  EXPERTS  Introduction  Many e f f o r t s  h a v e b e e n made i n t h e  cycle  (32,33,34,35,52,67).  istic  with  stochastic  environmental produces factors also  a  spectrum  - and  only  thus  p o i n t e d out  unlikely  that an  observed "one  indeed a  direction"  interactions  model. expect  a  spectrum is rather " . . .  the  makes no  same w i l l  (32)  can  salmon  be v i e w e d  as  of the  fluctuation  of  would  tend  to argue  p a t t e r n i s good, w h e r e a s to decide whether of environmental  quite unusual  sequence  such  one  which  the  random  a  is  that  pushed  the  He  model  i f the p a t t e r n  effects  as  data."  that  the model  that  life  determin-  f o r random p r o c e s s e s  untestable using h i s t o r i c a l  c a s e s we  sequence  the  d e s c r i b e d h i s model as  - because  is left  o f more b u i l d i n g does n o t  seem t o  b l o c k s and  o f answers obvious  and  appears  'poor'  or  occurred system  the process  has  been proposed  theoretical  i n the  i n an  c h a i n and  accept  r e c r u i t m e n t and  p r e t e n c e a t u n d e r s t a n d i n g nor  An  escape  proceed  beyond  deof  t h e r e f o r e we from  on  kind  the of  a can  this  (35).  t h e p a s t as  This correlative  prediction  to  capacity  by L a r k i n h i m s e l f  assumptions,  future.  equations  predictive  of varying p r o b a b i l i t i e s .  between s t o c k and happen  further  i n c r e a s e the  seem t o g o v e r n  a v o i d the  the a s s o c i a t i o n  models  to model  (35).  Random f a c t o r s  dilemma  that  i n most  past  to account  Larkin  o f answers  Introduction scribe  components  the p a r t i c u l a r  n a t u r a l l y was  existing  i t is"virtually  infrequently,  whether  The  variability.  which reproduces  of  JUDGMENT OF  evidence basis  approach  the a v a i l a b l e  range  39  of o b s e r v a t i o n .  I t has the m e r i t of s i m p l i c i t y and w i t h modern  computing  f a c i l i t i e s , p r e s e n t s no d i f f i c u l t i e s o f e m p i r i c a l a n a l y s i s . " Most o f the e x i s t i n g d a t a a r e on s t o c k and r e c r u i t m e n t .  ( I n the  f o l l o w i n g these w i l l be termed escapement and r e t u r n i n g a d u l t s . ) c u r v e can be f i t t e d through the data p o i n t s and an e m p i r i c a l  A smooth  probability  d i s t r i b u t i o n o f r e c r u i t m e n t f o r each c o n c e i v a b l e spawning s t o c k can be calculated.  W a l t e r s (67) argued t h a t t h i s p r o b a b i l i t y d i s t r i b u t i o n s h o u l d  be approximated  by a l o g n o r m a l d i s t r i b u t i o n f u n c t i o n as  environmental  e f f e c t s a r e m u l t i p l i c a t i v e i n n a t u r e and can be c o n s i d e r e d t o be more o r l e s s independent  o f one another.  d i s c u s s e d more e x p l i c i t l y  (The l o g n o r m a l d i s t r i b u t i o n f u n c t i o n i s  i n Appendix  1.)  A l s o , R i c k e r (52) had p o i n t e d  out t h a t the d i s t r i b u t i o n f u n c t i o n s h o u l d be skewed i n shape. v a r i o u s t h e o r e t i c a l r e p r o d u c t i o n curves f o r the mean c u r v e s and posed r a n d o m l y - o c c u r r i n g e n v i r o n m e n t a l v a r i a b i l i t y  He  used  superim-  by u s i n g a random  s e l e c t i o n o f m u l t i p l i e r s whose f r e q u e n c i e s were n o r m a l l y d i s t r i b u t e d .  This  procedure r e s u l t s i n an a s y m m e t r i c a l d i s t r i b u t i o n o f the progeny numbers. E x i s t i n g d a t a on s t o c k / r e c r u i t m e n t curves have been a n a l y s e d f a i r l y w e l l for  the Skeena R i v e r sockeye salmon (56,57,67),  and a l o g n o r m a l  distribution  seems t o d e s c r i b e the observed f l u c t u a t i o n s a p p r o p r i a t e l y . For the purpose of t h i s t h e s i s the a u t h o r has attempted  t o go  one  s t e p f u r t h e r and s t u d y the e f f e c t s of changing e n v i r o n m e n t a l c o n d i t i o n s on each l i f e s t a g e o f the salmon c y c l e .  This procedure i s promising f o r a  number o f a p p l i c a t i o n s such as i n the s t u d y of enhancement t e c h n i q u e s w h i c h improve the s u r v i v a l r a t e s a t any one s t a g e o f the salmon l i f e c y c l e , o r as i n the p r e s e n t s t u d y , i n the s i m u l a t i o n o f the o v e r a l l e f f e c t s of p o l l u t i o n i f poor w a t e r q u a l i t y c o n d i t i o n s a f f e c t one l i f e s t a g e i n p a r t i c u l a r . I n Chapter I I I the f u n c t i o n a l r e l a t i o n s h i p s f o r each l i f e s t a g e f o r  40  the  C h i l k o R i v e r salmon r u n were p r e s e n t e d  been p o i n t e d only  out that  b e e n made  mean, u p p e r , For sent  since  the data  base  i n the form o f graphs.  is still  quite  small  1949) a n d c e r t a i n d i f f i c u l t i e s  and lower  I t has  (estimates  exist  i n d e r i v i n g the  curves.  t h e f o l l o w i n g d i s c u s s i o n i t i s assumed  that  these  graphs  the best  information  presently a v a i l a b l e f o r the Chilko River  They d e s c r i b e  our present  understanding  tainties  associated with  next  step  stock/recruitment return in  given  study  We  This  salmon r e t u r n .  as  predation  should  expected value  stages  later  this  stock.  and the uncero f t h e band  expected  the survival  rate  e f f e c t s and  By b e t t e r  the uncertainty  procedure  into a single  as a n  or p o l l u t i o n  i n a reduced u n c e r t a i n t y  band  control  i n some  of the f i n a l  i n mathematical  out-  terms.  Return  by w e i g h i n g  p o s s i b l e values  T h e same c a n be d o n e  i f we w e r e a b l e  or changing  to this  enhancement  t o narrow  occurrence.  Even  life  Then one c a n change  i s often described  a s p o s s i b l e we w o u l d  pected) values The  result  and Expected  of their  stage  i n r e t u r n i n g a d u l t numbers.  to formalize  Uncertainty  cisely  refer  simulating  a l s o be a b l e  would  now w a n t  Uncertainty  likelihood  (We s h a l l  changes  we m i g h t  stage.  come.  B.  thus  the r e l a t i v e  techniques life  curve.  stage  life  repre-  lines.  i s to i n t e g r a t e the f i v e  a c e r t a i n escapement.)  each l i f e  o f each  e a c h o f them a r e i n d i c a t e d b y t h e w i d t h  between t h e upper and lower c o n f i d e n c e The  have  still  to formulate  have  environmental  to account conditions.  t h e r e f o r e have p r o b a b i l i t i e s  with  the  in predicting a  a l l i n t e r a c t i o n s as conf o r random p r o c e s s e s  such  A l l predicted  ( o r ex-  associated with  them.  E ( X ) o f a d i s c r e t e random v a r i a b l e X i s d e f i n e d a s : E(X)  = E X. p 1  (X.) x  1  (A)  41  where tive  are  p o s s i b l e values  A  specify  r e t u r n c l a s s e s we  r e t u r n i n g salmon being simple  example w i l l Given  return are to  an  1.6  illustrate  salmon,  of each r e t u r n c l a s s .  their  occurrence. How  model?  As  do we an  leaving  biologist  has  linear  fitting  the  done a  ask  t o know t h e  given a  that  fixed  probabilistic take  fry  the  graph  hatched  respec-  probability  escapement  value.  salmon  t o h i s mean v a l u e s , he observed  has  many a d u l t s  number  1.2,  1.2  we  take  but to  will  rather 1.4,  the  1.4  median  calculate  the  probabilities  nature  the  problem  the  f e e d i n g f o r about on  to  the x^  which  from  how  exact  1.0  For  model w i l l  regression analysis  either  like  f o r an  return.  of  illustrates eggs and  a year  relation-  (Figure 8). data  life  In  stage. the  of  our  t h e number  h i s observed  indicated  in  the  and  of The  has  addition  given to  range of p o s s i b l e  extreme d a t a p o i n t s o r b e s t  i s common i n a p p l i c a t i o n s  two-,  and  boundaries  standard between  Our  lake after  can be  After  used  their  estimates  time. It  "one-,  of  class  probabilities  l e t us  number  the  a curve  that  cannot  function describing this  values which at  We  i n c l u d e the  example  between the  smolts  a  are  x  this:  etc., w i l l  value  us  p  o f 420,000 a d u l t s a l m o n ,  time?  t o know t h e  million  would  in a certain  escapement  i n four years  interested  ship  x and  likelihoods. I f we  of  f o r the v a r i a b l e  three  which  sigma  cover  in their  957,,  or  some e x p e r i m e n t a t i o n w i t h  given  confidence  modeling  three  theory  bounds" o f a random v a r i a b l e ,  657,,  d e v i a t i o n s thereby the  of p r o b a b i l i t y  to  thus  99.77, o f a l l o b s e r v e d the model  i t was  speak o f  the  considering  values.  decided  to use  two  a s s u m i n g t h a t 957. o f a l l p o s s i b l e e v e n t s l i e limits.  Hershman  (25)  standard  d e v i a t i o n s and  and a  Sheehan  (55)  skew n o r m a l  had distri-  42  bution function.  I t was f e l t  f o r t h i s s t u d y t h a t i m p e r f e c t knowledge o f  the n u m e r i c a l v a l u e s i n each l i f e s t a g e would n o t w a r r a n t such The next s t e p i s t o f i n d a p r o b a b i l i t y  distribution  precision.  f u n c t i o n which  b e s t d e s c r i b e s t h e d a t a observed between t h e c o n f i d e n c e l i n e s .  I n t h e case  where we have enough data i t c a n be a n a l y s e d and f i t t e d t o a common t y p e o f distribution  f u n c t i o n such as a normal,  l o g n o r m a l , o r Gamma d i s t r i b u t i o n .  T h i s d i s t r i b u t i o n f u n c t i o n then can be used f o r a l l f u t u r e a n a l y s e s .  C.  Choice of a D i s t r i b u t i o n  It  Function  i s o f t e n v e r y c o n v e n i e n t t o use a p a r t i c u l a r  i t i s w e l l known, w e l l  t a b u l a t e d , and e a s i l y worked w i t h .  t i o n s we a r e i n c l i n e d t o t r y a normal d i s t r i b u t i o n i n working w i t h i t . a normal d i s t r i b u t i o n  d i s t r i b u t i o n because  Especially  I n many s i t u a -  f i r s t because o f t h e ease  i n t h e case where we have l i t t l e o r no d a t a ,  i s o f t e n adopted as a "not u n r e a s o n a b l e "  f i r s t model.  For t h e C h i l k o Lake s t o c k o n l y s l i m d a t a have been c o l l e c t e d so far.  To m a t h e m a t i c a l l y d e r i v e any d i s t r i b u t i o n f u n c t i o n from t h e s e would  have been premature. guaranteed. enumeration  A l s o , t h e a c c u r a c y o f t h e d a t a p o i n t s c o u l d n o t be  W i t h t h e echo sounding t e c h n i q u e r e p l a c i n g t h e p h o t o g r a p h i c p r o c e d u r e more d a t a w i l l become a v a i l a b l e  from a number o f l a k e systems.  w i t h i n t h e next y e a r s  A frequency a n a l y s i s o f t h e d a t a from t h e s e  l i f e stages c o u l d t h e n be done and a p r o b a b i l i t y  d i s t r i b u t i o n c o u l d be  derived. As t h i s paper i s m a i n l y concerned  t o demonstrate  a methodology  where new i n f o r m a t i o n c a n e a s i l y be i n c o r p o r a t e d , t h e s i m p l e c a s e o f a normal d i s t r i b u t i o n was chosen. choice w i l l  i n f l u e n c e our r e s u l t s  However, we have t o be aware t h a t t h i s to a c e r t a i n  extent.  We s h o u l d t h e r e f o r e  not compare s i m u l a t e d r e s u l t s w i t h observed d a t a i n a t o o c r i t i c a l way.  43  The  simulated  reality  numbers h a v e o n l y  i f the In a  input  later  i n t o the  stage  of  b u t i o n would have p r o b a b l y discussion  of  the  two  illustrative  model were  this  work  described  distribution  value  t o be  i t was the  and  only  reflect  improved.  felt  that  variability  functions  can  has  a  lognormal  in a  distri-  b e t t e r way.  therefore  A  been added  to  the  Appendix. When a n o r m a l m o d e l may  b r e a k down o u t s i d e  the  are  much more s e n s i t i v e t o  i s adopted,  i t should  r e g i o n about  i t s mean.  errors  i n the  model  be  noted  Tails  that  its validity  the  distribution  of  formulation  than the  central  region.  D.  Development  The be the  the  f o r the  ( 4 0 , 0 0 0 ) 620,000 20,000 l i n e we  length  of  lines.  go the  and  to determine  in graphical  female  at  Figure 5  15  classes  the  To  i n any  steps  of  interval,  having  160,000 t o  and  200,000  bilities  i s 0.591, a n d  for a l l other  i t was  (Figures 5  decided  the  15  an  probability of  180,000 r a n g e  zero.  that  p (X) x  To The  i s 0.376,  220,000  for  spawners. 20,000  from  the  escapement v a l u e an a  of  interval normal  over  the  demonstrate probability between  i s 0.033.  to  16  the  starting  classes with  i s chosen.  spawner c l a s s e s a r e  female at  has  form  choose  distributions  integral  b e t w e e n 200,000 a n d  to  resulting  w r i t i n g means  have  t o 9)  i n a useable  i s 20,000 s p a w n e r s .  f i g u r e o f 420,000  i n the  be  f o r the  the  f o r e g o i n g an e s c a p e m e n t spawners  to  40,000 u n t i l  determine  Interval length  form  probability  s p a w n e r a x i s we  20,000 s p a w n e r s .  is required.  i n order  (This abbreviated  in interval  random v a r i a b l e l i e s val  Looking  escapement  t h e r e f o r e have  On  contained  i n t o d i s c r e t e numbers  computer program.  620,000).  P r o b a b i l i t y Matrices  information  transformed  classes We  of  interthe of  180,000 The  proba-  44  This bilities  The i n t e g r a l  area under  normalize  the next  integration  we h a d a n o r m a l  We  t h e normal  probabilities  parallel  parallel  by u s i n g  t h a t a normal  for  the confidence  this  two s t a n d a r d  limits  o f 16 x 15  i s geometrically  d e v i a t i o n s f o r our  and t h e r e f o r e have t o a d d u p t o 1.0.  distribution  on t h e x - a x i s .  To  f u n c t i o n (remember  that  t o t h e " s p a w n e r " a x i s a n d now h a v e a  i s taken  d e p o s i t e d " a x i s as w e l l ) t h e a s t h e new  procedure  distribution  and the proba-  at a matrix  so t h a t they  t o t h e "eggs  o f each spawner c l a s s  fact  arrive  t h e spawners a r e r e p r e s e n t e d  distribution  the  levels  d i s t r i b u t i o n which  By u s i n g  o f a two-dimensional  in precision  thus  we h a v e c u t o f f t h e t a i l s  step  distribution  mean v a l u e loss  curves  s e t escapement  form.  i s 1.0.  the c a l c u l a t e d  In  normal  over  the curve  upper and lower  avoid  f o r a l l other  are w r i t t e n i n matrix  elements. the  i s done  integration  i s c o n s i d e r e d minor  function with  compared t o  two s t a n d a r d  h a d been assumed w i t h o u t  l i n e . The  deviations  any a n a l y s i s  of the  data. To  continue  our  a l g o r i t h m we now a r e i n t e r e s t e d  eggs w i t h w h i c h p r o b a b i l i t y w i l l spawners, as  how many  f o r other  bility  result  this  170,000  190,000 a n d 2 1 0 , 0 0 0 .  spawner v a l u e s  combine  These  (= 3-60,000 + probabilities  a r e w r i t t e n down i n f o r m  from  t h e two l i f e  a given  means m u l t i p l i c a t i o n in  from  o f a second  many  180,000^ as w e l l proba-  matrix. To  will  from  result  t o know how  product  stages  one c o u l d a s k d i r e c t l y  escapement v a l u e .  Mathematically  o f t h e two p r o b a b i l i t y  matrix  is calculated  matrices.  Each  how many  speaking,  eggs  this  e l e m e n t C-y  corresponding to  n C. . = E a., b, . ij where C ^ j i s t h e s c a l a r c o l u m n v e c t o r o f B.  k  =  1  ik  product  Thus,  kj of the i  multiplication  t  n r  o  w  of a  vector  o f A and t h e j  (16 x 15) m a t r i x w i t h  t  n  a  45  (15  x  16)  product After  matrix w i l l  matrix  Appendix  2 a  and  thus  (A).  Figure  dence  E.  an  flow  a given  chart  are  now  of  the  multiplied  plot  g i v e n as  matrix.  we  the  next  step  d e s c r i b i n g the  eggs  to  arrive  In  at a matrix which  to v a r i o u s  computer program with  the  shows  16)  escapement  10  are  x  a matrix  return value  limits  of  return classes.  i s given.)  t h e mean v a l u e  expected  f r y stage.  contains  the (In  A l l these  of each  return  is constructed corresponding this  this  r e t u r n curve  to  and  class  equation  the  confi-  well.  Conelusions  matical  tion  new  probability  distribution  variable  a  steps  the  t o be  estimated  to v e r i f y  parameters  the v a l i d i t y  of  the  number o f s p a w n e r s  tween the  The  expected  water  to study  quality  the  again after  lognormals  This  known m a t h e distributed  n  multiplica-  i s lognormal  governing  distribution  data.  line  to the  i s the  catch and  the  the  stock  been  each  again(7)). life  f u n c t i o n would o n l y way  included.  stock at  is calculated  to  have  judge  as  be  size.  This  i t s existing  value  replacement  of p o t e n t i a l l y the  has  replacement  a methodology w i l l  c o n d i t i o n s on  lognormally  distribution  to maintain  equal  effects  of  f o l l o w any  model.  r e t u r n curve VI  not  of a  result  probability  maximum a v e r a g e  In Chapter used  lognormal  "replacement"  or  case  should  available  necessary  r e t u r n i s lower  permitted.  a  proposed  I n F i g u r e 10 t h e  the  does  of a product  for this  using the  In  distribution  (the d i s t r i b u t i o n  stage  the  distribution  function.  lognormal  In order  is  by  expected  This  If  (16  multiplications  relating  probabilities  a  is multiplied  four matrix  probabilities  yield  no  the  the  level.  c a t c h can difference  be be-  line.  developed  whereby  the  model  i n c r e a s e d m o r t a l i t y due First,  is  however,  a  to  review  poor of  FIG. 10  l i t e r a t u r e on the e f f e c t s o f p o l l u t i o n on salmonoid f i s h i s i n s e r t e d g i v e the r e a d e r an i d e a o f the complex n a t u r e o f the  problem.  48 CHAPTER V  THE POLLUTION EFFECTS ON SALMON HOW MUCH DO WE KNOW? --  A.  A REVIEW  Introduction From s t u d i e s u n d e r t a k e n by v a r i o u s agencies we know t h a t m a t e r i a l s  are discharged  t o t h e F r a s e r R i v e r w h i c h c a n be t o x i c t o some a q u a t i c  organisms a t c e r t a i n c o n c e n t r a t i o n l e v e l s .  I n order t o p r e d i c t p o t e n t i a l  damage t o salmon i n t h e f u t u r e we have t o i d e n t i f y c r i t i c a l p o l l u t a n t s , study how they a f f e c t those s p e c i e s o f t h e ecosystem w h i c h support t h e salmon, and a l s o what d i r e c t e f f e c t s they have on t h e f i s h .  Since there i s  c u r r e n t l y a g r e a t d e a l o f i n t e r e s t i n t h e f u t u r e development o f t h e Lower Mainland  i n B r i t i s h Columbia, i t appears t h a t knowledge about t h e b e h a v i o u r  o f a salmon s t o c k exposed t o v a r y i n g and i n c r e a s e d p o l l u t i o n l e v e l s  should  be o f importance t o v a r i o u s d e c i s i o n making groups. I n f i s h e r y l a b o r a t o r i e s around t h e w o r l d t e s t s w i t h many p o l l u t a n t s and v a r i o u s s p e c i e s o f f i s h i n d i f f e r e n t l i f e stages have been u n d e r t a k e n d u r i n g t h e p a s t 20 y e a r s .  I n t h i s s e c t i o n some o f t h e s t u d i e s w h i c h r e l a t e  t o salmon and i t s food organisms a r e reviewed.  These show t h a t i t i s n o t  p o s s i b l e t o d e v e l o p a s i m p l e model w h i c h d e s c r i b e s t h e t o x i c and s u b l e t h a l e f f e c t s o f a l l t h e v a r i o u s p o l l u t a n t s on salmon.  I n o r d e r t o study p o s s i b l e  changes i n t h e p o p u l a t i o n o f a sockeye salmon s t o c k , r e s u l t i n g from p o l l u t i o n , given the present be made.  l e v e l o f knowledge, some rough a p p r o x i m a t i o n s  must  49 B.  C r i t i c a l P o l l u t a n t s i n the Salmon Food C h a i n E f f l u e n t s from i n d u s t r i a l , d o m e s t i c , and s t o r m sewers c o n t a i n many  c h e m i c a l s w h i c h can be t o x i c once t h e y r e a c h a c e r t a i n c o n c e n t r a t i o n l e v e l i n the a q u a t i c environment or i n the t i s s u e o f an organism.  However, t h e  b i o l o g i s t i s not j u s t i n t e r e s t e d i n the p o l l u t a n t s a t l e v e l s of c o n c e n t r a t i o n s w h i c h would be l e t h a l t o f i s h w i t h i n h o u r s .  This type of p o l l u t i o n  e f f e c t i s v i s i b l e , and the p u b l i c would c e r t a i n l y be v e r y u p s e t by such i n c i d e n t s and demand an i n v e s t i g a t i o n .  S c i e n t i s t s a r e o f t e n more concerned  about c h r o n i c or s u b l e t h a l c o n c e n t r a t i o n l e v e l s where i t i s o f t e n d i f f i c u l t t o r e l a t e cause and e f f e c t .  These s u b l e t h a l t o x i c c o n c e n t r a t i o n s  impose  added s t r e s s e s on an o r g a n i s m w h i c h reduce the l i k e l i h o o d t h a t i t w i l l s u r v i v e i n a c o m p e t i t i v e environment.  The weakened f i s h w i l l be more prone  t o p r e d a t i o n or d i s e a s e and w i l l a l s o not be a b l e t o compete as f o r a l i m i t e d food s u p p l y .  effectively  Important p o l l u t a n t s w h i c h have been s t u d i e d  most f r e q u e n t l y a r e l i s t e d i n groups and d i s c u s s e d below.  1.  Heavy M e t a l s  The most t o x i c m e t a l s t o a q u a t i c organisms a r e mercury,  silver,  and copper f o l l o w e d by cadmium, z i n c , l e a d , chromium, n i c k e l , and c o b a l t . T h i s o r d e r o f t o x i c i t y v a r i e s somewhat f o r d i f f e r e n t s p e c i e s and i t depends on the s i z e o f the organism, i t s l i f e - s t a g e , i t s a b s o r p t i o n , s t o r a g e , and r e g u l a t o r y mechanisms ( 1 0 ) .  excretion,  Heavy metals p r e c i p i t a t e out o f  t h e w a t e r a f t e r e x c e e d i n g t h e i r s o l u b i l i t y p r o d u c t o r a r e adsorbed t o sediment p a r t i c l e s .  B e n t h i c organisms w h i c h l i v e a t the bottom o f the  r i v e r and i t s e s t u a r y t h e r e f o r e have o f t e n v e r y h i g h c o n c e n t r a t i o n s accumul a t e d i n t h e i r body t i s s u e .  I n T a b l e 1 the f a c t o r s i n f l u e n c i n g the t o x i c i t y  o f heavy m e t a l s t o a q u a t i c organisms a r e  summarized.  50 TABLE 1 Factors Influencing  the T o x i c i t y  o f Heavy M e t a l s t o A q u a t i c Organisms ion complex chelate compound  soluble Form o f m e t a l i n w a t e r  precipitate { adsorbed  particulate  antagonistic P r e s e n c e o f o t h e r metals or p o i s o n s  additive  effects  effects  synergistic  effects  f salinity temperature Factors i n f l u e n c i n g p h y s i o l o g y o f organism and p o s s i b l y form o f metal i n water  dissolved  oxygen  PH hardness pother pollutants,  e.g. h y d r o c a r b o n s , phenols  s stage i n l i f e - h i s t o r y changes i n l i f e - c y c l e C o n d i t i o n o f the organism  s i z e o f organism a c t i v i t y o f organism I. a c c l i m a t i z a t i o n  t o metals  Pesticides Depending on the a p p l i c a t i o n we d i f f e r e n t i a t e between i n s e c t i c i d e s , herbicides,  and f u n g i c i d e s .  t u r e , and the v e t e r i n a r y  Pesticides  a r e used i n a g r i c u l t u r e ,  and m e d i c a l f i e l d .  horticul-  Many o f them end up i n our  r i v e r s and u l t i m a t e l y i n the sea.  As  w a t e r q u a l i t y a n a l y s i s w i l l o f t e n not problem.  Sediment and  p e s t i c i d e s are very i n s o l u b l e a t e l l us  i f we  f i s h t i s s u e a n a l y s e s have t o be done a d d i t i o n a l l y .  O n l y a l i m i t e d number o f a n a l y t i c a l t e c h n i q u e s i s ing residues  face a contamination  a t the low l e v e l s o c c u r r i n g  a v a i l a b l e f o r determin-  i n the environment.  Acute t o x i c i t y  g e n e r a l l y r e s u l t s o n l y from h i g h shock l o a d s to the r e c e i v i n g w a t e r a f t e r a c c i d e n t a l s p i l l a g e s or c a r e l e s s we  disposal of surplus  concentrates.  However,  can a l s o observe some l o n g - t e r m e f f e c t s of c e r t a i n p e s t i c i d e s on  aquatic  f l o r a and  acute t o x i c i t y .  fauna a l t h o u g h t h e s e g e n e r a l l y a r e not accompanied A h e r b i c i d e may  d e s t r o y the r o o t e d v e g e t a t i o n  t u r b e d , and species  The  s t r u c t u r e of the f i s h p o p u l a t i o n  the i n v e r t e b r a t e  many  species  thus be d i s -  fauna w h i c h c o n s t i t u t e s the food o f many  of f i s h can be s e r i o u s l y reduced.  l a r l y t o x i c t o z o o p l a n k t o n and duce the food s u p p l y o f  may  by  of a s t r e a m  or pond, d r a s t i c a l l y changing the environment of s m a l l f i s h and of i n v e r t e b r a t e s .  the  Some i n s e c t i c i d e s a r e p a r t i c u -  i n s e c t l a r v a e , and  their destruction w i l l  re-  fish.  Very o f t e n p e s t i c i d e s a r e more t o x i c t o the food of f i s h than to f i s h themselves.  Interference  w i t h the d i v e r s i t y or abundance o f  b r a t e fauna can have f a r - r e a c h i n g  3.  C h l o r i n e and  For h y g i e n i c charge.  The  population.  Chloramines  reasons sewage e f f l u e n t i s c h l o r i n a t e d p r i o r t o d i s -  r e s i d u a l c h l o r i n e may  the o r g a n i c m a t e r i a l .  consequences f o r a f i s h  inverte-  One  undergo c h e m i c a l r e a c t i o n s w i t h some o f  c l a s s o f t h e s e r e a c t i o n p r o d u c t s , the  mines, a r e e x t r e m e l y t o x i c f o r a q u a t i c  organisms  (53).  chlora-  4.  Ammonia,  detergents  survival  C.  A  chances  aquatic like  of  variety  an  and  fish  (40,58).  level  the  high water  o f b a c t e r i a i n the  have been  found  to  temperawater,  impair  the  (1,50).  about  from  changes  the  the  effects  field  very  difficult.  chronic the  community  sediment  or  of  s i n c e an  have a the  will  to  fish  indirectly  relating  the  organism to experimental  the  the  the  seasonal  river  i n f l u e n c e of  u s u a l l y pass  or  would  environment w i t h i t s  regime of  possible risk by  on  p o p u l a t i o n numbers,  Consequently, effects  We  the  i n c r e a s e above  serious effect  aquatic  temperature  toxic  p o l l u t a n t s on  laboratory studies.  interrelationships, f l o w and  have to e s t a b l i s h  from  likely  i n the  i n causing  of hazardous  observations  complexity  their  undertaking  the water,  organisms  i n the water,  concentrations  facts  However,  freshwater  i t s food  some  Evidence  of species,  pollutants  or  concentrations  m o r t a l i t y r a t e w o u l d most  annual  such  high  (polychlorinated biphenyls)  environment have been a c q u i r e d  population.  the  fish  t o h a v e more d a t a  natural  and  values,  of  Experimental  to  d i s s o l v e d oxygen  dissolved solids  Most  We  low  e x t r e m e pH  excessive  PCB's  h a v e b e e n shown t o x i c  5. tures,  phenols,  to other  measured  make some  unrecognized.  components  of  concentrations  observations  i n the  in  labora-  tory. Bioassays are  t h e most  are  exposed  centrations killed  to study  acute  f r e q u e n t l y used f o r time of  during  the the  periods  toxicity  tests.  In  varying  f r o m 24  p o l l u t a n t under experiment  caused  these  one  tests t o 96  investigation  i s recorded.  by  Most  a d u l t or hours  and of  o r more  the  the  chemicals  juvenile  fish  to d i f f e r e n t  con-  number o f  available  fish  acute  53 toxicity  data are reported  signifies  i t has  been  characteristics poison  to  time span,  shown ( 2 , 2 1 , 3 8 )  o f the water  levels  tants. only  of dissolved  the i o n i c  that  fraction  amino a c i d s ,  the  of copper  toxicity  By u s i n g  on  copper  The  (70). we  Thus,  trout  or salmon  i n the  nymphal,  one  organism.  (failure  o f eggs  Some p e s t i c i d e s to hatch).  have a d v e r s e e f f e c t s  on  larval,  therefore, have been  be  about  the  frac-  Therefore,  fish.  Also  solely  on  have on  the organism.  rivers  o f heavy  be b a s e d  usually  to the t o t a l  i n the  grounds.  mixtures  of  c o n t a i n more  toxicity  on  reproduc-  metals  the spawning which  Many  or f r y stage.  shown(26) t o a f f e c t  deposited  polluted  test  molting,  cannot  problem area i s the study o f e f f e c t s  o f e a c h one  to poisons; i n  stages of organisms.  Another  poison the c o n t r i b u t i o n  as  High concentrations  t h e eggs  As  can  talk  than salmonid J species.  a r e most  to a species,  pollu-  agents  when we  resistance  organisms  of t o x i c i t y  and  (37).  a r e more r e s i s t a n t  sensitive  toxicity  compounds  have t o determine  vary i n their  are being conducted using  the  to  Organic  complexing  life  poisons  of a  been h y p o t h e s i z e d t h a t  of the various  water  physical  of the water, of f i s h  is toxic.  copper.  organisms  available of f i s h  i t has  i s the s e n s i t i v i t y  tion  acutetoxicity  than i n hard,  important  the adult  survive  the t o x i c i t y  the temperature  or polypeptides  to aquatic  species  coarse f i s h  Evaluation  which  i n t h e c h e m i c a l and  effect  f o r example,  dissolved  is biologically  Different  many t e s t s  organisms  decrease the r e s i s t a n c e  of the t o t a l  humic a c i d s ,  general,  changes  i n s o f t water  v a l u e and  oxygen  shown t o c h e l a t e  t i o n which  i n 96 h o u r s .  (LC50)  fish.  In the case of copper,  have been  concentration  of the t e s t  have a marked  ammonia v a r i e s w i t h t h e pH  low  50%  usually  H e a v y m e t a l s a r e more t o x i c of  lethal  the c o n c e n t r a t i o n a t which  within a specified tests  as median  needs  to  than be  assessed.  We  have to d i f f e r e n t i a t e between s y n e r g i s t i c , a n t a g o n i s t i c ,  additive effects.  By s y n e r g i s t i c a c t i o n the combined i n f l u e n c e  of  several  substances r e s u l t s i n g r e a t e r t o x i c i t y t o the organism t h a n the sum i n d i v i d u a l e f f e c t s taken independently. centrations  t e s t s cannot s i m p l y be t r a n s f e r r e d substances might i n t e r a c t w i t h city.  On  of  Therefore, l e t h a l threshold  determined f o r v a r i o u s p o l l u t a n t s to the  separately  in  the  con-  laboratory  f i e l d where a wide v a r i e t y  each o t h e r and  and  of  r e s u l t i n a much h i g h e r t o x i -  the o t h e r hand, c e r t a i n c o m b i n a t i o n s of compounds a c t to r e p r e s s  the d e l e t e r i o u s  e f f e c t s of one  another ( a n t a g o n i s t i c ) .  I t has  t h a t the r a t i o i n w h i c h the p o l l u t a n t s a r e p r e s e n t i s q u i t e  been found  important  (59).  W h i l e the s t u d y of l e t h a l e f f e c t s of p o i s o n s on f i s h i s f a i r l y straightforward'?:/  experiments to study s u b l e t h a l e f f e c t s a r e much more  d i f f i c u l t to design.  Sublethal  e f f e c t s i n c l u d e changes i n h i s t o l o g y ,  p h y s i o l o g y , growth, swimming a b i l i t y , r e s p i r a t i o n r a t e s , b e h a v i o u r , reproduction.  There a r e t h r e e major types of t e s t s to s t u d y  e f f e c t s : the p h y s i o l o g i c a l t e s t , the b e h a v i o u r t e s t , and  the  and  sublethal life-cycle  test. A p h y s i o l o g i c a l t e s t can c o n s i s t , f o r example, i n the measurement of increased  u r i n e p r o d u c t i o n by the  f i s h as a response t o  increasing  ammonia c o n c e n t r a t i o n (38), or the measurement of the change i n the consumption r a t e , or o b s e r v a t i o n of an e x c e s s i v e mucus s e c r e t i o n s gills  (13,40).  The  l i m i t a t i o n s of t h i s type of approach a r e t h a t  p h y s i o l o g i c a l response s h o u l d be b o t h e s s e n t i a l t o the w e l l - b e i n g f i s h as well-.,as b e i n g the one Hatch (reported  i n 38)  (Figure  11).  on  the  the of  the  most s e n s i t i v e t o the p o i s o n under t e s t .  devised a graphical  i n p h y s i o l o g i c a l s t r e s s and  oxygen  r e l a t i o n s h i p between an  the degree of impairment of b o d i l y  increase  function  55  normal adjustment compensation breakdown physiological impairment  failure  FIG. II A P O S S I B L E R E L A T I O N B E T W E E N PHYSIOLOGICAL I M P A I R M E N T FOLLOWING I N C R E A S I N G E X P O S U R E TO P O L L U T A N T S A N D THE C O N S E Q U E N T D I S A B I L I T Y OF THE FISH ( A F T E R H A T C H ) .  56 In behaviour tests the threshold concentration i s determined at which f i s h , given a choice between contaminated and clean water, is able to avoid the polluted region.  Usually there is a clear interface between the  two conditions and no external s t i m u l i .  This, of course, is not t y p i c a l  for natural waters where a clear-cut l i n e between polluted and unpolluted areas does not necessarily exist.  Other behaviour patterns, such as  migrating or t e r r i t o r i a l behaviour, may have an overriding effect. example, i t was  found that salmon on their  For  upstream migration were turned  back only when the combined levels of a copper/zinc concentration were 20 times higher than the ones found i n a laboratory test where non-spawning salmon had been used as a test f i s h (60).  Another test to find out the  behaviour of f i s h to a reduction i n the dissolved oxygen l e v e l i s reported in (38).  Here the number of f i s h are counted leaving an area which becomes  suddenly depressed  i n dissolved oxygen.  Lethargic behaviour of juvenile  sockeye i s reported by S e r v i z i (40) when the f i s h were exposed to detergent levels which were nontoxic to them. In a l i f e - c y c l e test f i s h are exposed to constant levels of poisons for periods up to 11 months to determine the concentration at which the growth rate and breeding success is similar to that of control f i s h .  The  drawbacks of this test are: (a) It is time consuming and extensive testing f a c i l i t i e s are required. (b) Fish are fed with a r t i f i c i a l food and treated with a n t i b i o t i c s to prevent disease. (c) Fish are exposed to constant levels of poison, whereas i n their natural environment the concentration normally fluctuates.  57 Summarizing we can  say:  A c u t e t o x i c i t y t e s t s can be used t o measure the e f f e c t o f c h e m i c a l and p h y s i c a l v a r i a b l e s on the t o x i c i t y o f p o i s o n s and on the r e s i s t a n c e o f f i s h t o them. experiments  I n o r d e r t o use data o b t a i n e d from s h o r t - t e r m l a b o r a t o r y  t o s e t up w a t e r q u a l i t y c r i t e r i a t o guarantee  ment f o r f i s h , a p p l i c a t i o n f a c t o r s s h o u l d be used.  a healthy environ-  An a p p l i c a t i o n  factor  c o n v e r t s l e t h a l c o n c e n t r a t i o n s found i n a s h o r t - t e r m t e s t t o a c o n c e n t r a t i o n w h i c h i s harmless  under c o n d i t i o n s o f l o n g - t e r m exposure ( 5 1 ) .  Results  from s u b l e t h a l t e s t s can g i v e an i n s i g h t i n t o the mechanism o f t o x i c a c t i o n and experiments  s h o u l d be designed t o show the l e v e l o f no a d v e r s e  effect.  F i e l d o b s e r v a t i o n s can p r o v i d e v a l u a b l e i n f o r m a t i o n on the l e v e l s o f p o l l u t a n t s a t w h i c h f i s h e r i e s a r e u n a f f e c t e d and,  i n some c a s e s , the graded  e f f e c t o f i n c r e a s e d p o l l u t i o n on the d e t e r i o r a t i o n o f a f i s h p o p u l a t i o n . I t can be s a i d t h a t t h e r e i s no such t h i n g as the c o n c e n t r a t i o n o f a p o i s o n above w h i c h f i s h w i l l be absent and below w h i c h they w i l l  flourish.  R a t h e r , t h e r e i s a range of i n c r e a s i n g c o n c e n t r a t i o n s w i t h i n w h i c h  fish-  e r i e s w i l l l i k e l y show a p r o g r e s s i v e d e t e r i o r a t i o n , e i t h e r i n q u a l i t y or i n numbers or both. The next d e s i r a b l e s t e p i s t o process the amount o f i n f o r m a t i o n a v a i l a b l e from a l l  these t e s t s and o b s e r v a t i o n s i n a way w h i c h i s comprehen-  s i b l e t o the d e c i s i o n maker who c o l o g y , or a q u a t i c c h e m i s t r y .  might not be an e x p e r t i n f i s h e r i e s ,  toxi-  I n o r d e r t o s i m u l a t e p o l l u t i o n e f f e c t s on a  salmon s t o c k and t o make a f o r e c a s t o f the p r o b a b l e numbers o f r e t u r n i n g a d u l t s when the s t o c k has been exposed t o d i f f e r e n t p o l l u t i o n l e v e l s , a' common " y a r d s t i c k " f o r a l l the v a r i o u s p o l l u t a n t s i s needed.  58  CHAPTER V I  SIMULATION OF A SALMON STOCK UNDER VARIED LEVELS OF POLLUTION  A.  Introduction I n the p r e v i o u s c h a p t e r some o f the many p o l l u t a n t s w h i c h can have  a d v e r s e e f f e c t s on salmon a t c e r t a i n c o n c e n t r a t i o n l e v e l s were d i s c u s s e d . I t was  p o i n t e d out how d i f f i c u l t i t i s t o d e s c r i b e the s y n e r g i s t i c  effect  o f the m u l t i t u d e o f p o l l u t a n t s encountered i n the waste d i s c h a r g e s from an urban i n d u s t r i a l area.  S u b l e t h a l e f f e c t s a r e v e r y i n s i d i o u s i n n a t u r e but  they do not r e s u l t i n an immediate  increase i n mortality.  Their cumulative  e f f e c t , however, can be seen i n a lower o v e r a l l r e t u r n r a t e .  A weakened  organism w i l l be more prone t o p r e d a t i o n i n the ocean, i t s l i f e may  be s h o r t e n e d , and i t s f e c u n d i t y may  expectancy  be reduced.  I n the F r a s e r R i v e r i t s e l f t h e r e have been no documented f i s h due t o a c u t e t o x i c i t y c o n d i t i o n s i n the w a t e r . with sublethal effects.  kills  Problems a r e more l i k e l y  Water q u a l i t y w i l l v a r y w i t h p l a c e and time  because o f changes i n s t r e a m f l o w , t i d a l a c t i o n , s e a s o n a l d i f f e r e n c e s i n temperature, and f l u c t u a t i n g waste d i s c h a r g e s , b o t h i n volume and  strength.  Long-term a v e r a g e s , f o r i n s t a n c e , do not r e f l e c t t h e s h o r t - t e r m s t r e s s t h a t may  be imposed on an organism by a shock l o a d o f a h a r m f u l m a t e r i a l .  The b e s t way  t o m o n i t o r w a t e r q u a l i t y o v e r t i m e i s t o use an organism w h i c h  depends on good w a t e r q u a l i t y , f o r example,  salmon.  The organism i n t e g r a t e s  i t s response t h r o u g h time and r e a c t s t o a l l s y n e r g i s t i c and a n t a g o n i s t i c e f f e c t s o f combined p o l l u t a n t s o r s t r e s s e s .  This being recognized^,in s i t u  b i o a s s a y s a t p o i n t s i n the r i v e r where c r i t i c a l w a t e r q u a l i t y c o n d i t i o n s a r e expected a r e p r e s e n t l y the most p o p u l a r method t o r e l a t e measured  59 p h y s i c a l and c h e m i c a l parameters t o t h e s u r v i v a l or p h y s i o l o g i c a l w e l l being of f i s h .  B.  F i s h T e s t s i n the F r a s e r R i v e r and the C o a s t a l Zone E v e r y time the P o l l u t i o n C o n t r o l Board r e c e i v e s an a p p l i c a t i o n f o r  a p e r m i t t o d i s c h a r g e waste w a t e r t o the F r a s e r R i v e r , o t h e r government a g e n c i e s i n c l u d i n g the f e d e r a l F i s h e r i e s S e r v i c e and E n v i r o n m e n t a l P r o t e c t i o n S e r v i c e , the I n t e r n a t i o n a l P a c i f i c Salmon F i s h e r i e s Commission ( I P S F C ) , and v a r i o u s p u b l i c i n t e r e s t groups a r e asked t o comment.  I n cases where  t h e s e wastes might c o n t a i n s u b s t a n c e s w h i c h a r e b e l i e v e d t o be t o x i c t o salmon, IPSFC u s u a l l y conducts b i o a s s a y t e s t s i n i t s l a b o r a t o r y . s t u d i e s , f o r example,  Such  i n v e s t i g a t e d l e t h a l and s u b l e t h a l e f f e c t s on j u v e n i l e  sockeye and p i n k salmon due t o d e - i n k i n g wastes from a proposed new m i l l u s i n g waste newspaper as i t s major raw m a t e r i a l ( 4 0 ) . exposed t o a s e r i e s o f d i l u t i o n s .  The f i s h were  Results i n d i c a t e d t h a t these d e - i n k i n g  wastes were even more t o x i c than wastes from k r a f t p u l p m i l l s . i t was  paper  Furthermore,  found t h a t the d e t e r g e n t s i n t h e s e d e - i n k i n g wastes caused l e t h a r g y ,  e x c e s s i v e mucous s e c r e t i o n on t h e g i l l s , and depressed oxygen o f the salmon f r y a t c o n c e n t r a t i o n s l e s s t h a n the l e t h a l  consumption  level.  A t major sewage o u t f a l l s , f o r example near the t h r e e m u n i c i p a l treatment p l a n t s w h i c h d i s c h a r g e t o the F r a s e r , i n s i t u b i o a s s a y t e s t s have been done r e c e n t l y on an a n n u a l b a s i s t o a s s e s s a c u t e t o x i c i t y .  Researchers  from the F i s h e r i e s S e r v i c e o f Environment Canada keep coho f i n g e r l i n g salmon i n cages near t h e A n n a c i s I s l a n d sewage o u t f a l l , e v e r y y e a r two weeks p r i o r t o the b e g i n n i n g o f the f r e s h e t ( 3 1 ) . IPSFC has u n d e r t a k e n s e v e r a l b i o a s s a y s t u d i e s t o a s s e s s acute t o x i c i t y o f m u n i c i p a l sewage t o f i n g e r l i n g sockeye and p i n k salmon (39,53).  60 It was demonstrated that effluent from a primary municipal sewage treatment plant is toxic to f i s h , especially when chlorinated.  Dechlorination was  considered necessary to eliminate this t o x i c i t y resulting from several newly formed chlorinated organic compounds. Recently, more attention has been given to the analysis of muscle tissue from f i s h and other commercially valuable marine organisms. Analyses are made for heavy metals, p a r t i c u l a r l y mercury and cadmium, PCB's and pesticides i n tiss,ue samples.  The high content of mercury found i n the  tissue of crabs was cause for the closure of the commercial fishery i n Howe Sound (66).  Later on this decision was revised so that migratory  species, such as salmon, could be caught. Our knowledge about the accumulation of toxic materials through the food chain i s very poor.  At present an international research team at  Saanich Inlet ( o f f the coast of Vancouver Island) are trying to evaluate the pathways of some heavy metals, such as copper, mercury, cadmium, and lead through the ecosystem.  The experiments are done i n huge p l a s t i c bags  which are open at the top so that the exchange with the atmosphere can continue.  E f f o r t s are made to have the marine environment undisturbed as  much as possible.  Concentrations of the heavy metal added to the water  i n this enclosed ecosystem were sometimes as high as 250 times natural background l e v e l .  Samples are taken from the water, the detritus, the  phyto- and the zooplankton as well as cultured chum f i n g e r l i n g salmon (only in some experiments) to determine the d i s t r i b u t i o n of the metal. In another study possible s h i f t s i n the ecosystem due to increased levels of hydrocarbons, such as refinery o i l and fuel, are investigated. In the case of phytoplankton i t was observed that a s h i f t from big c e l l s to small c e l l s occurred (61).  This finding i s - o f great importance as larger  z o o p l a n k t e r s , w h i c h form t h e main d i e t f o r f i s h , do n o t feed on t h e s e small phytoplankton c e l l s .  C o u l d t h i s mean a d i m i n i s h i n g food s u p p l y f o r  f i s h as a r e s u l t o f i n c r e a s i n g p o l l u t i o n i n t h e ocean?  The s t u d i e s a r e  b e i n g c o n t i n u e d and more d a t a w i l l e i t h e r c o n f i r m o r d i s p r o v e t h i s hypothes i s . A l l these s t u d i e s i n d i c a t e how much r e s e a r c h work s t i l l has t o be done i n o r d e r t o g e t good d a t a on w h i c h f u t u r e  hypotheses and models c a n  be based.  C.  E f f e c t s o f V a r i o u s M o r t a l i t y Rates on t h e S i z e o f a Sockeye Salmon Stock As has been p o i n t e d out i n t h e d i s c u s s i o n o f p r e v i o u s s e c t i o n s ,  present understanding  i s not s u f f i c i e n t t o r e l a t e p o l l u t i o n l e v e l s i n the  w a t e r t o p o s s i b l e changes i n t h e s t o c k / r e c r u i t m e n t r e l a t i o n s h i p .  We do  not know what e f f e c t s some waste c h e m i c a l s have on t h e upstream m i g r a t i n g spawners.  Do they have a masking e f f e c t , thus i n t e r f e r i n g w i t h t h e  salmon's s e n s i n g system w h i c h enables homestream?  t h e f i s h t o f i n d i t s way.back t o i t s  ( I t i s b e l i e v e d t h a t salmon a r e a b l e t o r e c o g n i z e t h e chemical'  c h a r a c t e r i s t i c s o f t h e w a t e r and sediment and f i n d t h e i r way back.)  We do  not know i f t h e s u r v i v a l chances o f j u v e n i l e salmon m i g r a t i n g downstream and h a v i n g t o pass p o l l u t e d w a t e r a r e reduced the organism.  due t o a d d i t i o n a l s t r e s s on  What a r e t h e e f f e c t s o f i n c r e a s e d p o l l u t i o n l e v e l s on o t h e r  organisms i n t h e e s t u a r y w h i c h a r e a food s o u r c e f o r t h e j u v e n i l e salmon? I t i s known t h a t young salmon f e e d on r i v e r i n v e r t e b r a t e s d u r i n g t h i s downstream.  journey  Some salmon s p e c i e s ( n o t so much sockeye j u v e n i l e s ) s t a y up t o  t h r e e months i n t h e e s t u a r y and f e e d t h e r e (16,43).  Could t h e r e be a de-  c r e a s e i n r e t u r n i n g a d u l t s due t o such changes o f t h e e s t u a r y environment?  62  For t h e f o l l o w i n g s i m u l a t i o n s t u d i e s i t was p o s t u l a t e d t h a t i n t h e f u t u r e , as i s t h e case now, a c u t e t o x i c i t y c o n d i t i o n s w i l l n o t be t h e normal case but r a t h e r be l i m i t e d t o a c c i d e n t a l s p i l l s temporarily unfavourable water q u a l i t y c o n d i t i o n s .  t h a t c a n cause  More i m p o r t a n t i s t h e  w a t e r q u a l i t y g e n e r a l l y encountered w h i c h c a n be c h a r a c t e r i z e d by i t s BOD, temperature, d i s s o l v e d and suspended s o l i d s , ammonia, e t c . doubt t h a t i n c r e a s i n g waste d i s c h a r g e s  There i s no  t o t h e F r a s e r R i v e r w i l l cause a  d e t e r i o r a t i o n o f w a t e r q u a l i t y i f a t t h e same t i m e e f f o r t s a r e n o t made t o reduce t h e l o a d i n g s o f p o l l u t a n t s through a p p r o p r i a t e  treatment  processes.  Poor w a t e r q u a l i t y c o n d i t i o n s a r e assumed t o a f f e c t b o t h t h e upr i v e r m i g r a t i n g a d u l t spawners and t h e young s m o l t s m i g r a t i n g and  t o t h e ocean  thus r e s u l t i n lower s u r v i v a l r a t e s d u r i n g these two l i f e s t a g e s .  The  o n l y parameter used t o express t h e u n d e r l y i n g s u b l e t h a l e f f e c t s was i n c r e a s e i n n a t u r a l m o r t a l i t y r a t e (or decrease i n s u r v i v a l r a t e ) . i n f o r m a t i o n from d a t a s e v e r a l a l t e r n a t i v e v a l u e s  L a c k i n g any  f o r the reduction i n sur-  v i v a l r a t e d u r i n g these two l i f e s t a g e s were t r i e d .  The e f f e c t s o f v a r i o u s  m o r t a l i t y r a t e s o f up t o 507, on t h e s t o c k s i z e were c a l c u l a t e d u s i n g t h e computer model w h i c h has been d e s c r i b e d  i n d e t a i l i n Chapter IV.  m o r t a l i t y r a t e s r e s u l t i n lower e x p e c t e d r e t u r n v a l u e s . shown i n F i g u r e s 12 t o 17..  Increasing  The r e s u l t s a r e  I t w i l l be n o t e d t h a t a t a m o r t a l i t y r a t e o f  307 t h e r e e x i s t s a 57, p r o b a b i l i t y t h a t t h e s t o c k s i z e reaches such a low o  l e v e l from t h a t i t may n o t r e c o v e r The and  again.  a l l o w a b l e c a t c h i s t h e d i f f e r e n c e between t h e expected r e t u r n  t h e n e c e s s a r y escapement t o c o n t i n u e  the cycle.  T h i s d i f f e r e n c e be-  comes f u r t h e r d e p r e s s e d w i t h i n c r e a s i n g m o r t a l i t y r a t e . As a n e x t s t e p t h e e q u i l i b r i u m l e v e l s c o r r e s p o n d i n g t o d i f f e r e n t m o r t a l i t y r a t e s were computed.  T h i s e q u i l i b r i u m l e v e l i s t h e salmon r u n  100  FIG. 12  .200  300  400  500  600 Escapement in thousands  E X P E C T E D RETURN [MORTALITY R A T E  5%.]  100  200  300  400  500  600 Escapement in thousands ON  FIG. 13  E X P E C T E D RETURN [MORTALITY RATE 10%.]  return  I Q  0  FIG. 14  200  300  400  500  600 Escapement in thousands  E X P E C T E D RETURN [MORTALITY RATE 20%.]  100  FIG. 15  200  300  EXPECTED  400  500  600 Escapement in thousands  R ETUR N [MORTALITY RATE  30%.]  3.0  100  200  300  400  500  600 Escapement in thousands ON  FIG. 16  E X P E C T E D R E T U R N [MORTALITY RATE  40%.]  3.0  100  FIG. 17  2 00  300  400  500  600 Escapement in thousands  E X P E C T E D R E T U R N [MORTALITY RATE  50%.]  69 s u s t a i n a b l e under w a t e r q u a l i t y c o n d i t i o n s w h i c h would cause a c e r t a i n m o r t a l i t y t o p a s s i n g salmon.  In order to c a l c u l a t e t h i s e q u i l i b r i u m i t i s  n e c e s s a r y t o assume a r e l a t i o n s h i p between r e t u r n i n g a d u l t s and escapement.  T h i s l a s t r e l a t i o n s h i p c l o s e s the salmon l i f e c y c l e .  18 proposes such a mangement scheme f o r h a r v e s t i n g salmon. r e t u r n ranges the manager w i l l 507o  a l l o t t e d t o the f i s h e r m e n .  I n the  lower  a h i g h e r p e r c e n t a g e can be  ( T h i s s t r a t e g y s h o u l d not be c o n f u s e d w i t h  p r e s e n t s t r a t e g y used t o manage F r a s e r salmon and m a i n t a i n subdominant, o f f - y e a r p a t t e r n .  I t was  e f f e c t o f reduced r e p r o d u c t i o n  due  matrix  Figure  t r y t o b u i l d the s t o c k up by a l l o w i n g up t o  escapement whereas f o r b i g g e r r e t u r n v a l u e s  the s t o c k  the chosen  rather devised  the  i t s dominant,  to counteract  t o p o l l u t i o n problems and  the  to r e b u i l d  size.)  The  i n f o r m a t i o n from t h i s s e t o f c u r v e s i s brought a g a i n  form.  Now the computer model can c a l c u l a t e c o n t i n u o u s l y  into  as many  salmon l i f e c y c l e s as a r e n e c e s s a r y t o s t a b i l i z e r e t u r n v a l u e s a t a n e q u i l i b r i u m f o r each s p e c i f i e d m o r t a l i t y r a t e . l e v e l t o w h i c h one  This e q u i l i b r i u m i n d i c a t e s  can s u s t a i n the s t o c k w i t h the proposed management  scheme and under the g i v e n m o r t a l i t y r a t e .  Results o f these  were used t o draw the c u r v e s i n F i g u r e ,19.  I t can be n o t i c e d a g a i n  at a m o r t a l i t y r a t e of The a first  307  o  the s t o c k s i z e reaches a c r i t i c a l  simulations that  level.  c a l c u l a t i o n s done i n t h i s s i m u l a t i o n s t u d y can be r e g a r d e d as  attempt t o d e s c r i b e the i n t e r d e p e n d e n c e o f p o l l u t i o n and  o f a salmon s t o c k .  M o r t a l i t y r a t e was  quality conditions.  the s i z e  the o n l y parameter used t o demon-  s t r a t e the change i n the s t o c k / r e c r u i t m e n t  the two  the  Constant reductions  l i f e stages under c o n s i d e r a t i o n .  r e l a t i o n s h i p due  t o poor w a t e r  i n s u r v i v a l had been assumed i n I f the n a t u r e o f changes due t o  s u b l e t h a l e f f e c t s were b e t t e r known a new s e t of c u r v e s c o u l d be c o n s t r u c t e d  600  Chosen Matri) [l5 x 16]  LO 2.0 Returning adults in millions  FIG. 18 POSSIBLE  3.0  MANAGEMENT SCHEME TO HARVEST SALMON  FIG. 19 SUSTAINABLE RUN WITH ESCAPEMENT STRATEGY OF FIG. 18 [EQUILIBRIUM L E V E L ] •. • .  72  and used as i n p u t t o t h e model.  A n o t h e r h y p o t h e s i s i s t h a t p o l l u t i o n might  cause a s h i f t i n t h e d i s t r i b u t i o n f u n c t i o n between c o n f i d e n c e l i m i t s i n g t o a more a c c e n t u a t e d skewness.  F o r example,  i t i s known t h a t r a i s e d  w a t e r temperature has an e f f e c t on prespawning m o r t a l i t y . such o b s e r v a t i o n s c o u l d be f e d i n t o t h e model.  lead-  Figures  from  I n the next chapter the  p o s s i b i l i t y o f c o n s t r u c t i n g a p o l l u t i o n i n d e x from a v a r i e t y o f w a t e r q u a l i t y parameters and r e l a t i n g i t t o an i n c r e a s e i n m o r t a l i t y i s d i s cussed.  73  CHAPTER V I I  THE USEFULNESS OF AN INDEX TO FORECAST WATER QUALITY CHANGES AND THEIR EFFECTS ON WATER USE  A.  P r o and C o n t r a f o r D e v e l o p i n g a Water Q u a l i t y Index There i s a growing need t o t u r n from management by r e a c t i o n t o  management by a n t i c i p a t i o n o f problems. management r e q u i r e s t e c h n i q u e s  T h i s a n t i c i p a t o r y approach t o  f o r f o r e c a s t i n g . We a r e s t i l l  i n a very  p r i m i t i v e s t a g e w i t h r e s p e c t t o d e v e l o p i n g adequate f o r e c a s t i n g models. I n o r d e r t o p r e d i c t f u t u r e events a thorough a n a l y s i s o f t h e p a s t and t h e present i s r e q u i r e d .  One way t o aggregate  and t o summarize t h e a v a i l a b l e  data on a p a r t i c u l a r problem i s t o c o n s t r u c t an index. v e r y e f f e c t i v e way t o aggregate the p o l i c y - m a k e r s  Indices are a  and communicate i n f o r m a t i o n on t r e n d s t o  and t h e g e n e r a l p u b l i c .  They a r e a d e v i c e f o r e s t a b l i s h -  i n g where we a r e and how we a r e p r o g r e s s i n g .  For y e a r s we have been opera-  t i n g w i t h i n d i c e s i n economics and s o c i a l s c i e n c e s t o demonstrate change and t r e n d s .  Only r e c e n t l y has an i n t e r e s t been t a k e n i n d e v e l o p i n g e n v i r o n -  mental i n d i c e s (11,65). U n f o r t u n a t e l y , many s c i e n t i s t s have v e r y s t r o n g r e s e r v a t i o n s about a n u m e r i c a l i n d e x i n g procedure.  They f e e l t h a t the problem i s f a r t o o  complex t o be a d e q u a t e l y r e p r e s e n t e d by a s i n g l e v a l u e .  However, c o l l e c -  t i n g an abundance o f data on t h e c h e m i c a l , p h y s i c a l , and b i o l o g i c a l  con-  d i t i o n o f a r i v e r and r e l a t i n g a l l these data t o something such as w e l l b e i n g o f f i s h g e n e r a l l y confuses  t h e p o l i c y - m a k e r s and t h e g e n e r a l p u b l i c .  An index would f a c i l i t a t e communication between t h e s c i e n t i s t and t h e nons c i e n t i f i c community.  I t would a l s o h e l p t o h i g h l i g h t major t r e n d s .  By  u s i n g an index t o d e s c r i b e the c o n d i t i o n o f a r i v e r we have t o a c c e p t some reduction i n precision.  However, we g a i n i n our a b i l i t y t o communicate.  An index can always be backed up by more d e t a i l e d data t o a l l o w s p e c i f i c analys i s . One way  t o c o n s t r u c t a p o l l u t i o n i n d e x i s d e s c r i b e d by Nemerov ( 4 2 ) .  Each v a l u e f o r a p o l l u t a n t i s r e l a t e d t o a s t a n d a r d v a l u e w h i c h i s , i n most c a s e s , the p e r m i s s i b l e w a t e r q u a l i t y l e v e l .  These r e l a t i v e terms a r e a l l  summed up assuming an a d d i t i v e p o l l u t i o n e f f e c t o f the s e v e r a l p o l l u t a n t s . T h i s approach i s o f t e n t a k e n t o d e s c r i b e the t o t a l t o x i c i t y when s e v e r a l t o x i c m a t e r i a l s (T^, T£, T3,  ...)  c o e x i s t i n a w a t e r body.  s i b l e l e v e l s (TL^, TL2,  ...)  a r e determined  TL3,  Their  permis-  i n bioassay tests.  Total  t o x i c i t y then e q u a l s :  TT  =  Tl TL-L  I f t h i s sum exceeds the v a l u e o f 1.0, t o x i c f o r the s p e c i f i c use.  +  T  2  TL  + 2  T  3  +  ...  TL3  the w a t e r i n q u e s t i o n i s c o n s i d e r e d  S y n e r g i s t i c or a n t a g o n i s t i c e f f e c t s can  i n c l u d e d by m u l t i p l y i n g some components w i t h a p p r o p r i a t e w e i g h t i n g  be  factors.  A n o t h e r method t o c o n s t r u c t a w a t e r q u a l i t y i n d e x r e l a t i n g t o the s p e c i f i c w a t e r use o f f i s h and w i l d l i f e i s d e s c r i b e d by O'Connor i n h i s d i s s e r t a t i o n (45).  T h i s seems t o be a p r o m i s i n g s t e p i n the r i g h t  t i o n and w i l l t h e r e f o r e be p r e s e n t e d  B.  direc-  i n the c o n t e x t o f t h i s paper.  C o n s t r u c t i o n o f a Water Q u a l i t y Index f o r F i s h and W i l d l i f e O'Connor based h i s r e s e a r c h on a study w h i c h had been  by Brown e t al_. ( 8 ) .  undertaken  I n t h i s s t u d y e x p e r t s were asked t o d e s i g n a t e p a r a -  meters t o be i n c l u d e d i n an i n d e x , t o weigh these parameters i n terms o f  t h e i r r e l a t i v e importance t o o v e r a l l w a t e r q u a l i t y , and t o draw curves i n d i c a t i n g w a t e r q u a l i t y as a f u n c t i o n o f each parameter on a s c a l e r e a c h i n g from 0 t o 100.  The r e s u l t was an a d d i t i v e index o f o v e r a l l w a t e r  q u a l i t y i n v o l v i n g n i n e , parameters.  Many e x p e r t s p a r t i c i p a t i n g i n t h i s  s t u d y agreed t h a t i t i s e a s i e r and more m e a n i n g f u l t o c o n s t r u c t an index f o r a s p e c i f i c w a t e r use.  Judgments c o n c e r n i n g parameter . i n c l u s i o n , w e i g h t -  i n g , and s c a l i n g v a r y as a f u n c t i o n o f the w a t e r use.  O'Connor t h e r e f o r e  t r i e d t o develop i n h i s d i s s e r t a t i o n v a l i d i n d i c e s f o r v e r y d i v e r g e n t uses of w a t e r and determined how much the r e s u l t i n g numbers d i f f e r e d f o r d i f f e r ent u s e r s when he computed the i n d i c e s of s e l e c t e d w a t e r samples.  One  i n d e x chosen d e s c r i b e d the q u a l i t y of a s u r f a c e body o f raw w a t e r s u s t a i n i n g a f i s h and w i l d l i f e p o p u l a t i o n .  O'Connor d e f i n e d the problem o f  d e v e l o p i n g a w a t e r q u a l i t y i n d e x as one o f ". . . f i n d i n g a s u i t a b l e m a t h e m a t i c a l f u n c t i o n , i n v o l v i n g an a p p r o p r i a t e s e t of parameters, w h i c h a s s i g n s t o a complex m u l t i - a t t r i b u t e d s t i m u l u s , a s u r f a c e body o f raw w a t e r , a number w h i c h a d e q u a t e l y r e p r e s e n t s f o r a p a r t i c u l a r d e c i s i o n maker and w i t h r e s p e c t t o a p a r t i c u l a r c r i t e r i o n , the w o r t h o f t h a t stimulus." The m a t h e m a t i c a l f u n c t i o n was assumed t o be a d d i t i v e and w r i t t e n i n the form: W(X.)  n = £  v.  a).  (X. .)  where: X^ = a n - d i m e n s i o n a l s t i m u l u s cijj = t h e v a l u e of the q u a l i t y c u r v e f o r parameter l e v e l X ^ j v . = the average importance w e i g h t a s s i g n e d t o the j  t  n  (utility)  dimension.  To d e r i v e t h e u t i l i t y q u a l i t y were c o n s u l t e d .  f u n c t i o n , s i x e x p e r t s i n t h e f i e l d o f water  A t e s t c o n t a i n i n g over 30 parameters  a s s o c i a t e d w i t h w a t e r q u a l i t y was p r e s e n t e d t o them.  generally  O'Connor used a  m o d i f i e d v e r s i o n o f t h e " D e l p h i ? t e c h n i q u e (12) where t h e p a r t i c i p a n t s a r e c o n f r o n t e d w i t h a s e r i e s o f q u e s t i o n n a i r e s . A f t e r each round o f quest i o n n a i r e s , O'Connor informed t h e members o f t h i s group about t h e i r answers w i t h o u t r e v e a l i n g names o f t h e i n d i v i d u a l s h o l d i n g t h e s e o p i n i o n s .  He  a l s o e v a l u a t e d t h e r e s u l t s and proposed a compromise f o r t h e next d i s c u s s i o n round. critical  I n t h e f i r s t q u e s t i o n n a i r e t h e e x p e r t s had t o agree upon some  parameters  t o be i n c l u d e d i n t h e i n d e x .  I f t o o many  parameters  a r e used t o c o n s t r u c t t h e i n d e x , t h e d e c i s i o n - m a k e r ' s c a p a c i t i e s down o r p e r f o r m s u b - o p t i m a l l y .  The n i n e parameters  break  d e c i d e d upon f o r  i n c l u s i o n i n t o t h e f i s h and w i l d l i f e w a t e r q u a l i t y i n d e x and t h e i r t a n c e w e i g h t s v'j i n n o r m a l i z e d form a r e g i v e n i n T a b l e 2.  impor-  The q u a l i t y  curves y i e l d i n g t h e a)j f o r t h e a n a l y s i s a r e shown i n F i g u r e s 20 t o 28. These curves a r e compromise c u r v e s proposed by O'Connor a f t e r d i s c u s s i o n and were a c c e p t e d by t h e e x p e r t s . In O'Connor's approach i n nature. range.  t h e f u n c t i o n W(X^) i s r e g a r d e d t o be a d d i t i v e  T h i s o n l y h o l d s i f t h e parameters  measured a r e i n a r e a s o n a b l e  F o r extreme parameter v a l u e s , t h e e f f e c t would be t h e same as w i t h  t o x i c substances.  They t h e n cannot be t r a d e d o f f a g a i n s t o t h e r  i n terms o f water q u a l i t y .  dimensions  F o r example, extreme v a l u e s f o r d i s s o l v e d  oxygen c o n c e n t r a t i o n , temperature, pH, ammonia, n i t r a t e s , and phenols have been found t o i n d i c a t e w a t e r q u a l i t y c o n d i t i o n s w h i c h a r e l e t h a l t o f i s h . O'Connor t h e r e f o r e d e c i d e d t o s e t t h e i n d e x v a l u e t o z e r o i f w a t e r reached z e r o on any o f t h e n i n e dimensions.  quality  I n t h e presence o f t o x i c  m a t e r i a l s , such as heavy m e t a l s and p e s t i c i d e s , t o l e r a n c e v a l u e s have t o be  77  TABLE 2  Parameters  and  T h e i r Importance  o f a Water  Quality  Parameters Dissolved  Index  f o r F i s h and  Importance  oxygen  Weights f o r  Construction Wildlife  Weight  Normalized  100  .206  Temperature  82.5  .169  PH  69  .142  Phenols  48  .099  Turbidity  43  .088  Ammonia  41  .084  36  .074  Nitrates  36  .074  Phosphates  31  .064  Dissolved  used.  I f the concentration  the water  C.  solids  q u a l i t y i s set to  Forecasting  How Fraser  i s above  i t sc r i t i c a l  value,  zero.  Potential Pollution Effects  could  River As  o f any t o x i c a n t  Weight  s u c h a n i n d e x be u s e d  to sublethal  has been  stated  e f f e c t s on previously  to r e l a t e water  q u a l i t y i n the  salmon? there  are several  substances which  are  p o t e n t i a l l y h a r m f u l t o salmon a t c e r t a i n c o n c e n t r a t i o n s .  and  sometimes  tedious  work  i s necessary to determine present  each s i n g l e p o l l u t a n t i n the r i v e r .  Some w o r k  i n this  Extensive loadings  d i r e c t i o n has  of been  78  15  30  45  60  Dissolved  FIG. 20  -15  90  105  120  135  150  165  Oxygen ( % S a t u r a t i o n )  WATER Q U A L I T Y AS A F U N C T I O N OF D.O. SATURATION,SUMMER TEMPERATURES.  -10  -5  Temperature  FIG.21  75  0  5  10  15  departure from Ambient ( ° C )  WATER QUALITY AS A F U N C T I O N OF TEMPERATURE.DEPARTURE FROM AMBIENT.  FIG .23 W A T E R PHENOL  QUALITY AS A FUNCTION CONCENTRATION.  OF  100 90 80 70 60 D 3 o  50 40  o  30 20 1 0 0 10  20  30  40  50  60  70  80  90  100  T u r b i di ty (Jackson Turbidity Units)  FIG.24 WATER Q U A L I T Y AS A TURBIDITY .  0  500  FUNCTION  OF  1000 1500 2 0 0 0 2500 3000 3500 4000 4500 5000 Dissolved  Solids(mg/l)  F I G . 2 5 WATER Q U A L I T Y A S A F U N C T I O N OF D I S S O L V E D SOLIDS C O N C E N T R A T I O N  100  0  I  2  3  4  5  6  7  8  9  10  Ammoni a (mg/ I )  FIG.26 WATER Q U A L I T Y AS A F U N C T I O N AMMONIA CONCENTRATION.  OF  N i t r a t e s (mg/1)  FIG.27 W A T E R Q U A L I T Y A S A FUNCTION NITRATE CONCENTRATION.  OF  82  FIG.28 W A T E R  QUALITY  PHOSPHATE  AS  A FUNCTION  CONCENTRATION.  OF  83  d o n e by W e s t w a t e r Fraser  River  tration the  i n i t s studies  (30).  It  levels of  sediment,  and  the  sources  food  and  i s , however,  organisms  of  future  treatment,  charged  to  involved  the  discharges  Fraser.  A water  q u a l i t y i n d e x as  tion.  Figure  growth,  29  time.  The  The water  next  in this  need the  plants.  To  u r b a n and have o n l y  one  curves  based  activities  i n the  be  region, can  be  on  of  waste dis-  t h o s e who  are  of  the  in that  status.  reflect  changes  industrial  p r e d i c t i n g trends  can  processes,  assessment  could  the  effluents  give  changes  is  in  field  waste to  chapter,  future  problem of  trend  develop-  parameter,,  i n water p o l l u -  such an  forecasts  index of  of  by  could  population  w a s t e d i s p o s a l methods, taken care  an  using  and upper  again. important  mortality  rate  due  to  sublethal  standing  of  the  step  rate  can  e f f e c t s of  problem,  on  then,  increase  the  consists  in relating  in mortality  also  be  rate  regarded  as  some p o l l u t a n t s .  intuitive  functional relationship. i s based  the  These  q u a l i t y i n d e x t o an  I  a  water,  little  rates  i n the  development  This  Curve  of  concen-  production  what p o s s i b l e  ality).  such  innovations  a p r e d i c t i o n of  problem of u n c e r t a i n t y  l o w e r bounds  New  Lower  i n the  Too  illustrates  industrial  forth.  and  and  outlined  the  river.  the  future  accumulation  composition  r e s u l t i n g from  facilitate  feeds.  t o o l which allows  b e t t e r waste treatment  show o v e r  so  q u a l i t y status  p o l l u t i o n patterns  the  is definitely  i n d e c i s i o n making a  index, would  of  to p r e d i c t  salmon  pathways, to  the  There  water  ment o r  impossible  technological  a l l b e a r on  present  in  p o l l u t i o n aspects  on w h i c h  pollutants,  changed consumer h a b i t s , water  the  each s i n g l e , p o t e n t i a l l y t o x i c substance  known a b o u t chain,  on  judgment w i l l  Possible  assumption  that  curves a  are  decrease  declining  (above n a t u r a l a  With be  a  reduced our  required  reproduction  present to  under-  develop  shown i n F i g u r e i n water  mort-  quality  30. will  FIG.30  POSSIBLE RELATIONSHIPS BETWEEN A W A T E R Q U A L I T Y INDEX AND MORTALITY RATE ( SOCKEYE SALMON).  85 not cause an immediate s t e e p r i s e i n the m o r t a l i t y  rate  (optimistic view).  Curve I I i l l u s t r a t e s a l i n e a r r e l a t i o n s h i p , something w h i c h may be used as a f i r s t a p p r o x i m a t i o n .  Curve I I I i l l u s t r a t e s the case where even a  s l i g h t d e c r e a s e i n w a t e r q u a l i t y r e s u l t s i n a sharp i n c r e a s e o f the mort a l i t y rate  (pessimistic view).  A s e t o f such c u r v e s cannot be c o n s t r u c t e d i n a d e t e r m i n i s t i c Perhaps a f i s h e r y b i o l o g i s t who  i s f a m i l i a r w i t h p o l l u t i o n e f f e c t s on  would be w i l l i n g t o express h i s s u b j e c t i v e The c u r v e s i n F i g u r e 30 a r e h y p o t h e t i c a l been i n c l u d e d  way. fish  judgment i n form o f such graphs.  a t t h i s p o i n t i n time and have not  i n t h e model p r e s e n t e d i n t h i s paper.  86 CHAPTER V I I I  DISCUSSION AND CONCLUSIONS  I n t h i s t h e s i s an attempt was made t o d e s c r i b e p o t e n t i a l  pollution  problems i n t h e Lower F r a s e r R i v e r and t o d e l i n e a t e what e f f e c t s a i n w a t e r q u a l i t y may have on salmon.  I t was argued t h a t  decrease  environmental  d e g r a d a t i o n s h o u l d n o t have t o be p r o v e n beyond a r e a s o n a b l e doubt b e f o r e c o r r e c t i n g measures a r e t a k e n .  P o l l u t i o n i s a g r a d u a l process and i n -  c r e a s e s as p o p u l a t i o n and u r b a n i n d u s t r i a l a c t i v i t i e s i n c r e a s e .  When  p l a n n i n g p r e s e n t p o l l u t i o n abatement programs, we have t o c o n s i d e r uncertainties.  Environmental  s t r a t e g i e s have t o be p r e v e n t i v e r a t h e r t h a n  corrective. We have j u s t begun t o u n d e r s t a n d  about t h e danger o f some modern  s y n t h e t i c c h e m i c a l p r o d u c t s and t h e i r p e r s i s t e n c e i n t h e environment.  The  a c c u m u l a t i o n o f t o x i c m a t e r i a l s such as heavy m e t a l s , PCB's, and p e s t i c i d e s i n some l a k e and stream sediments i n O n t a r i o s h o u l d be an e a r l y warning  s i g n a l t o the decision-makers  i n B r i t i s h Columbia.  who a r e r e s p o n s i b l e f o r w a t e r q u a l i t y  O i l p o l l u t i o n i s a p o s s i b i l i t y i n t h e c o a s t a l waters  as soon as t a n k e r s s t a r t t r a n s p o r t i n g A l a s k a n o i l a l o n g t h e P a c i f i c to r e f i n e r i e s i n Western Washington.  coast  O f f - s h o r e o i l d r i l l i n g on t h e c o a s t  o f Washington i s c o n s i d e r e d and might cause o i l s p i l l s as w e l l .  A l s o , the  p a s t has shown t h a t t h e r e a r e adverse e n v i r o n m e n t a l and e c o l o g i c a l e f f e c t s a s s o c i a t e d w i t h most l a r g e - s c a l e e n g i n e e r i n g e f f o r t s such as m i n i n g and l o g g i n g o p e r a t i o n s i n t h e upper w a t e r s h e d o f a r i v e r o r i n c r e a s e d a c t i v i t i e s i n the estuary.  harbour  We c e r t a i n l y have t h e c a p a c i t y t o s i g n i f i c a n t l y  a l t e r e c o l o g i c a l systems but i n most i n s t a n c e s we a r e n o t a b l e t o p r e d i c t  87  the e x t e n t and n a t u r e o f such changes. I n the case o f the F r a s e r R i v e r s t u d i e s conducted d u r i n g the  past  t h r e e years by Westwater Research C e n t r e showed t h a t waste l o a d i n g s t o the r i v e r a r e i n c r e a s i n g and t h a t c o m p o s i t i o n more complex.  o f the waste water i s becoming  Westwater's s t u d i e s p o i n t e d out p o t e n t i a l l y h a r m f u l  pollu-  t a n t s , where t o l o o k f o r them, and what c o n t r o l o p t i o n s a r e a v a i l a b l e t o the d e c i s i o n makers. t r i b u t a r y sub-basins  Water q u a l i t y was  found t o be much lower i n some  than i n the main r i v e r .  A l s o , the a c c u m u l a t i o n  of  some substances found i n sediments or i n the t i s s u e o f bottom d w e l l i n g organisms i s a m a t t e r o f concern, effects.  as t h i s may  have l o n g - t e r m  biological  For example, the e l i m i n a t i o n o f s m a l l e r s t r e a m organisms may  l a r g e l y undetected  but w i l l be c r i t i c a l  be  f o r the stream's c a p a c i t y t o sus-  t a i n f i s h some of w h i c h a r e o f g r e a t commercial and r e c r e a t i o n a l i n t e r e s t . V a r i o u s planned developments c o u l d p l a c e a heavy demand on the m u d f l a t s marshland a r e a s , thus changing the l a n d use p a t t e r n i n the e s t u a r y . our p r e s e n t u n d e r s t a n d i n g  o f the complex i n t e r r e l a t i o n s h i p s i n the  and  With Fraser's  ecosystem we a r e not a b l e t o q u a n t i f y most consequences t h a t i n c r e a s e d waste l o a d i n g s or a r e d u c t i o n i n h a b i t a t may Fraser  have on the p r o d u c t i v i t y o f  the  estuary. D e c i s i o n s w i t h r e g a r d t o l a n d use,  s t a n d a r d s , waste treatment  technology  i n d u s t r i a l development, e f f l u e n t  and so f o r t h , have t o be made now  order to perserve water q u a l i t y i n a r a p i d l y developing  estuary.  in  In this  t h e s i s salmon has been i d e n t i f i e d as a major u s e r o f the F r a s e r R i v e r w h i c h r e q u i r e s w a t e r o f good q u a l i t y .  The  the w o r l d ' s l a r g e s t producers o f salmon. ment program w i t h p o s s i b l e e x p e n d i t u r e s i s i n i t s p l a n n i n g stage.  F r a s e r R i v e r system i s one At present  of  time, a salmon enhance-  of hundreds o f m i l l i o n s o f d o l l a r s  For a f i s h e r i e s manager, t h e r e f o r e , i t seems t o  88 be q u i t e important, t o have an u n d e r s t a n d i n g of the dynamics of a salmon run.  He would l i k e t o know i n w h i c h l i f e s t a g e of the salmon he  c o n c e n t r a t e h i s e f f o r t s and  should  i n c r e a s e s u r v i v a l r a t e s , or where he has  c a r e f u l l y monitor conditions  to  i n o r d e r t o a v o i d d e g r a d a t i o n o f the salmon's  habitat. I n t h i s t h e s i s a s p e c i f i c sockeye run was method whereby the l i f e c y c l e was a r e a of u n c e r t a i n t y bounds.  chosen t o a p p l y a  new  d i v i d e d i n t o f i v e major l i f e s t a g e s .  i n each l i f e s t a g e was  i n d i c a t e d by upper and  lower  As d i s t r i b u t i o n f u n c t i o n a normal d i s t r i b u t i o n f u n c t i o n was  between these bounds.  M a t h e m a t i c a l l y the f i v e l i f e  were combined by m u l t i p l y i n g m a t r i c e s .  As a r e s u l t , an expected  v a l u e f o r each g i v e n escapement value.was computed and  The  assumed  T h i s can be changed as soon as more d a t a a l l o w  a n a l y s i s of the d i s t r i b u t i o n f u n c t i o n .  t a i n t y was  The  stages  return  the range of u n c e r -  indicated. advantage of h a v i n g the l i f e c y c l e d i v i d e d i n t o l i f e  l i e s i n the f a c t t h a t changes i n each l i f e s t a g e due p o l l u t i o n e f f e c t s can be b u i l t i n t o the model.  The  t o enhancement or model t h e n c a l c u l a t e s  the o v e r a l l e f f e c t of such changes on a d u l t r e t u r n . the p o s s i b l e i n c r e a s e the e s t u a r y was  i n m o r t a l i t y due  investigated.  I t was  stages  For the p r e s e n t s t u d y  t o poor w a t e r q u a l i t y c o n d i t i o n s assumed t h a t due  the number o f s u c c e s s f u l spawners a f t e r m i g r a t i n g p o l l u t e d estuarine waters would'decline.  in  to s u b l e t h a l e f f e c t s  through i n c r e a s i n g l y  A l s o , s u r v i v a l r a t e s of j u v e n i l e  sockeye i n the ocean were assumed t o be lower a f t e r b e i n g exposed on t h e i r downstream m i g r a t i o n Fraser  to s u b l e t h a l concentrations  of p o l l u t a n t s i n the Lower  River. I n t h i s s t u d y w a t e r q u a l i t y was  not d i r e c t l y r e l a t e d t o s u r v i v a l  r a t e s as too l i t t l e i s known about s u b l e t h a l e f f e c t s .  Increase i n m o r t a l i t y  89 r a t e was tions. 307o  the o n l y parameter used t o r e f l e c t worsened w a t e r q u a l i t y c o n d i The  s i m u l a t i o n r e s u l t s i n d i c a t e d t h a t a t a m o r t a l i t y r a t e of about  a p r o b a b i l i t y of  57.  e x i s t e d t h a t the s i m u l a t e d salmon s t o c k d e c l i n e d  t o such a low l e v e l t h a t i t might not be a b l e t o r e c o v e r . the numbers can be debated.  d e v i a t i o n i n f l u e n c e the  As more data become a v a i l a b l e and as we  ledge about p o l l u t a n t c o n c e n t r a t i o n s  and  v a l u e s be updated.  problem t o be f u r t h e r i n v e s t i g a t e d i s the p r e d i c t i o n of  water q u a l i t y c o n d i t i o n s without having pollutant.  g a i n more know-  t h e i r p h y s i o l o g i c a l e f f e c t s on  f i s h t h i s a n a l y s i s can be reviewed and n u m e r i c a l One  of  F a c t o r s such as d i s t r i b u t i o n f u n c t i o n and  a r e a of u n c e r t a i n t y e x p r e s s e d by i t s s t a n d a r d a c t u a l numbers.  The v a l i d i t y  future  t o f o r e c a s t l o a d i n g s of each s i n g l e  A w a t e r q u a l i t y index t o be developed f o r salmon as a major  w a t e r u s e r has been proposed.  Such an index c o u l d be p r o j e c t e d on  basis of information about"population  the  growth, i n d u s t r i a l development o f  the r e g i o n , f u t u r e waste d i s p o s a l methods and so f o r t h .  As  not q u a n t i f y s u b l e t h a l e f f e c t s i n an easy manner, i t may  be n e c e s s a r y t o  hypothesize  l o n g as we  v a r i o u s r e l a t i o n s h i p s between such a w a t e r q u a l i t y index  increases i n m o r t a l i t y rate.  S u b j e c t i v e judgment by the e x p e r t has  can-  and to  be  used where a n a l y t i c a l d a t a a r e not a v a i l a b l e . The  i n t e n t i o n of t h i s t h e s i s was  t o d i s c u s s the many u n c e r t a i n t i e s  and c o m p l e x i t i e s encountered by the d e c i s i o n maker when managing a l a r g e r i v e r system f o r m u l t i p l e w a t e r use.  I n c r e a s i n g waste l o a d i n g s and  l i n e l a n d demands a r e t h r e a t e n i n g the salmon i n i t s abundance.  shore-  Obviously  i t i s not p o s s i b l e t o have a v e r y p r o d u c t i v e salmon r i v e r and a cheap w a s t e c a r r i e r a t the same time. marshland areas w i t h o u t salmon has  disappeared  We  cannot i n d u s t r i a l l y develop the m u d f l a t s  r e d u c i n g the h a b i t a t of f i s h and w i l d l i f e .  The  from many r i v e r s i n the w o r l d because of s e v e r e  and  90 d e g r a d a t i o n of i t s environment.  The l a r g e amounts of n a t u r a l m a t e r i a l  c a r r i e d by the F r a s e r w h i c h g i v e the w a t e r o f t e n a v e r y muddy appearance i s no excuse f o r u s i n g the r i v e r as a dumping ground f o r complex and o f t e n undegradable wastes from h o u s e h o l d and  industries.  I n a n c i e n t days the B e l l a C o o l a I n d i a n s used t o a p p l y c a p i t a l punishment  t o anyone who  c o n t a m i n a t e d the r i v e r by t h r o w i n g waste i n t o i t .  They r e c o g n i z e d the importance o f the w a t e r f o r s u s t a i n i n g t h e i r and way o f l i f e .  I t s h o u l d a l s o be mandatory  livelihood  f o r us t o p r o v i d e t r e a t m e n t  f o r a l l d i s c h a r g e s t o the r i v e r such t h a t t o x i c s u b s t a n c e s a r e removed or t h e i r c o n c e n t r a t i o n s a r e reduced t o a l e v e l w h i c h d o ' l not i m p a i r t h e p h y s i o l o g i c a l w e l l - b e i n g of f i s h . man  i n h i s various recreational  Such w a t e r q u a l i t y w i l l a l s o b e n e f i t  activities.  91  BIBLIOGRAPHY  (1)  Alabaster, Royal  J.S.  Soc.  (2)  Alabaster, (1972)  (3)  Anderson,  (1972)  London,  A l i s o n A.,  mercury  (5)  B.C.  solids  and  fisheries,"  Jay M a r t i n Anderson, to i d e n t i f y  contamination," Oikos  Research  Council.  (1971)  Lydia  "Water q u a l i t y  s u r v e y o f the Lower  Appendix  Ltd.  Research  Report  M o n t r e a l E n g i n e e r i n g Co.  Council.  prepared  (1973)  f o r The  (1973) needs:  24:231-238.  B.C.  I-A,  E. Mayer.  environmental research  F r a s e r R i v e r , " P r o v i n c i a l Power Study,  B.C.  Proc.  180:395-406.  J . S . , J.H.N. G a r l a n d , I . C . H a r t , J . F . de L.G. S o l b e ! "An a p p r o a c h t o t h e p r o b l e m o f p o l l u t i o n a n d f i s h e r i e s . "  "System s i m u l a t i o n  (4)  "Suspended Britain,  "Environmental  G r e a t e r Vancouver  Energy  studies  Board,  Vol.  a t Iona  Sewerage and  3,  Island,"  Drainage  District. (6)  B e n e d i c t , A.H., K . J . H a l l , F.A. K o c h . (1973) "A p r e l i m i n a r y w a t e r q u a l i t y s u r v e y o f t h e L o w e r F r a s e r R i v e r s y s t e m , " W e s t w a t e r Res e a r c h C e n t r e , U.B.C., T e c h n i c a l R e p o r t No. 2.  (7)  B e n j a m i n , J.R., a n d C.A. C o r n e l l . ( 1 9 7 0 ) 'Probability, and D e c i s i o n s f o r C i v i l E n g i n e e r s . M c G r a w - H i l l , New  (8)  Brown, R o b e r t M. Water and  (9)  Brox,  G.H.  ing  Bryan,  quality  index;. - do we  dare?"  1970. s u r v e y o f two  i n the G r e a t e r Vancouver  paint  manufactur-  a r e a , " Term Paper  for  567. G.W.  (1971)  on m a r i n e Britain, (11)  "A w a t e r  (1975) " I n d u s t r i a l w a s t e  industries  C.E. (10)  e t a_l. (1970)  Sewage W o r k s , A u g u s t  Statistics York.  Council  B  "The  effects  of heavy metals  other estuarine  organisms,"  N.,  (other  than  mercury)  P r o c . R o y a l Soc.  London,  177:389-410.  on E n v i r o n m e n t a l Q u a l i t y ,  Office, (12) D a l k e y ,  and  Wash., D . C , and  0.  3rd Annual  Report,  U.S.  Gov.  Print.  1972.  Helmer.  (1963)  t h e D e l p h i method t o t h e u s e  "An  experimental a p p l i c a t i o n  of  o f e x p e r t s , " Management S c i e n c e ,  9:458-467. (13)  D a v i s , J.C. effluent Fish.  (1973) on  Res.  "Sub-lethal  respiration Bd.  Canada,  and  effects  of bleached k r a f t  circulation  30:269-377.  i n sockeye  pulp  salmon,"  mill J.  92  ( 1 4 ) D o r c e y , A. " P o l i c y m e c h a n i s m s f o r w a t e r q u a l i t y management i n a m e t r o p o l i t a n r e g i o n , " p u b l i s h e d i n The p r a c t i c a l a p p l i c a t i o n o f economic i n c e n t i v e s t o t h e c o n t r o l o f p o l l u t i o n : The c a s e o f B r i t i s h C o l u m b i a , U.B.C. P r e s s , i n p r e p a r a t i o n . (15)  Fairbairn, in  B r u c e , a n d K e n P e t e r s o n . (1975)  Technical (16)  (17)  Foerster,  debris  R e p o r t No. 5.  R.E. ( 1 9 6 8 ) 162..  Goodlad,  (1973)  (1967)  Board,  growth  "Environmental quality  "Pollution  M.  Munich,  i n Greater Greater  and t h e F r a s e r  G j e r n e s . (1974)  i n four  Bd. Canada,  Advances  R e s . Bd. C a n a d a ,  Vancouver,"  Vancouver  - Report  I," Pollution  B.C.  J . C . , a n d T.W.  . salmon  (21) Grande,  Fish.  District.  C.A.  Control  Res.  salmon,"  p r e p a r e d f o r t h e P l a n n i n g Department,  Regional (19) G o l d i e ,  "The s o c k e y e  - \ll  F r a n s o n , M a r y A. study  (20)  sawlog  . (1975) " F i s h e r i e s r e s o u r c e s a n d f o o d web c o m p o n e n t s o f t h e F r a s e r R i v e r e s t u a r y and an assessment o f t h e impacts o f proposed expansion o f the Vancouver I n t e r n a t i o n a l A i r p o r t and other developments o n t h e s e r e s o u r c e s , " V o l s . I a n d I I , D e p t . o f t h e E n v i r o n m e n t , F i s h e r i e s and Marine S e r v i c e , Vancouver/Nanaimo.  Bull. (18)  "Controlling  t h e L o w e r F r a s e r R i v e r , " W e s t w a t e r R e s e a r c h C e n t r e , U.B.C.,  (1967)  lakes  "Factors  of the Fraser River  affecting  sockeye  system," J . F i s h .  31:871-892. "Effect  i n water  o f copper and z i n c  pollution  W-Germany,  research,  on salmonoid  fishes,"  V o l . I , P r o c . 3 r d I n t . Conf.,  S e p t . 1966.  ( 2 2 ) H a l l , K . J . , F.A. K o c h , a n d I . Y e s a k i . ( 1 9 7 4 ) "Further investigations i n t o water q u a l i t y c o n d i t i o n s i n t h e Lower F r a s e r R i v e r system," W e s t w a t e r R e s e a r c h C e n t r e , U . B . C , T e c h n i c a l R e p o r t No. 4. (23) H a l l ,  K.J., I. Yesaki,  nated hydrocarbons  and J . Chan.  (1976)  i n the sediments  Westwater Research Centre, U.B.C,  "Trace metals and c h l o r i -  of a metropolitan Technical  watershed,"  R e p o r t No. 10.  (24) H a l l , K . J . , a n d K. F l e t c h e r . ( 1 9 7 4 ) "Trace metal p o l l u t i o n from a m e t r o p o l i t a n a r e a : Sources and a c c u m u l a t i o n i n t h e Lower F r a s e r R i v e r a n d e s t u a r y , " P r o c . o f t h e I n t e r n a t i o n a l C o n f e r e n c e on t r a n s p o r t o f p e r s i s t e n t c h e m i c a l s i n a q u a t i c ecosystems, Ottawa. (25) Hershman, S t a n l e y .  (1974)  "An a p p l i c a t i o n  q u a l i t y management," M a s t e r ' s  thesis,  of decision  theory t o water  U.B.C., D e p a r t m e n t  of C i v i l  Eng. (26) H o l d e n , A.V. ( 1 9 7 2 ) "The e f f e c t s o f p e s t i c i d e s on l i f e i n f r e s h w a t e r s , " P r o c . R o y a l S o c . L o n d o n , B r i t a i n , 180:383-394.  93  ( 2 7 ) J o y , C.S. ( 1 9 7 5 ) Westwater (28)  "Water  . International "Interim report  (29)  models  U.B.C,  Pacific  o f t h e Lower  Technical  Salmon  on t h eC h i l k o  . International Reports,  quality  Research Centre,  Fraser  River,"  R e p o r t No. 6.  Fisheries  Commission, 1949,  River watershed."  Pacific  Salmon  Fisheries  Commission, A n n u a l  1949-1974.  ( 3 0 ) K o c h , F.A., K . J . H a l l , a n d I . Y e s a k i . ( 1 9 7 6 ) "Toxic substances i n wastewater o f a m e t r o p o l i t a n a r e a , " Westwater Research Centre, U.B.C, Technical Report i n preparation. (31) L a n g e r , 0.  Department  Service,  (32) L a r k i n , P.A. ( 1 9 7 1 ) salmon," J . F i s h . (33) L a r k i n , the  o f the Environment, F i s h e r i e s  " S i m u l a t i o n s t u d i e s o f t h e Adams R i v e r R e s . Bd. Canada, 28:1493-1502.  P.A., a n d A . S . H o u r s t o n . population  Canada, (34) L a r k i n ,  biology  (1964)  of Pacific  "A m o d e l  sockeye  for simulation of  salmon," J . F i s h .  Res.  Bd.  21(5):1245-1265.  P.A., a n d W.E. R i c k e r .  tained  and Marine  Vancouver, p e r s o n a l communication.  yields  (1964)  from f l u c t u a t i n g  "Further  i n f o r m a t i o n on sus-  environments," J . Fish.  Res.  Bd.  Canada, 2 1 ( 1 ) : 1 - 7 . (35) L a r k i n ,  P.A. ( 1 9 7 3 )  cruitment  "Some o b s e r v a t i o n s  relationships  1'exploration  for fishes,"  de l a mer, e x t r a i t  on models Conseil  des r a p p o r t s  o f stock and r e -  International  pour  e t proces-verbaux,  V o l . 164. (36) L a r k i n ,  P.A., a n d G r a d u a t e S t u d e n t s .  water  fisheries  Culturist, (37) L e w i s ,  o f man-made  (1959)  activities  "The e f f e c t s  on f r e s h  i n B.C.," C a n a d i a n F i s h  25:1-33.  A.G., a n d P.H. W h i t f i e l d .  of copper i n t h e sea," report  (1974) prepared  "The b i o l o g i c a l  importance  f o r the International  Copper Research A s s o c i a t i o n . (38) L l o y d ,  R. ( 1 9 7 2 )  freshwater  "Problems i n d e t e r m i n i n g water q u a l i t y  fisheries,"  Proc.  R o y a l Soc. London,  criteria for  Britain,  180:439-  449. ( 3 9 ) M a r t e n s , D.W.,  and J.A. S e r v i z i .  sewage t o f i n g e r l i n g Progress  "Acute t o x i c i t y  o f municipal Fish.  Comm.  R e p o r t No. 2 9 .  (40) M a r t e n s , , D.W., treatment  (1974)  sockeye salmon," I n t . P a c . Salmon  R.W.  Gordon,  a n d J.A. S e r v i z i .  o f d e - i n k i n g wastes  Salmon F i s h .  Comm. P r o g r e s s  containing  (1971)  " T o x i c i t y and  detergents,"  R e p o r t No. 2 5 .  Int.  Pac.  94  (41)  Meyer, P h i l i p  A.  (1974)  associated with Canada, (42)  (43)  New  Northcote,  "Recreational  salmon of  Information  Nemerov, N.L. Hill,  the  Report  (1974)  Scientific  (1974)  T.G.,  N.T.  concentrations Centre,  preservation River,"  values  Environment  PACIN-74-1.  stream p o l l u t i o n  analysis,  ;  McGraw-  York.  T.G.  Northcote,  and  Fraser  S e r i e s No.  "Biology  Westwater Research Centre, (44)  the  of  J o h n s t on,  and  i n Lower F r a s e r  U.B.C,  the Lower F r a s e r  U.B.C,  Technical  River: A  T e c h n i c a l R e p o r t No.  K.  Tsumura.  River  R e p o r t No.  (1975)  Review,"  3.  "Trace  f i s h e s , " Westwater  metal  Research  7.  (45)  O ' C o n n o r , M.F. (1972) "The a p p l i c a t i o n o f m u l t i a t t r i b u t e s c a l i n g p r o c e d u r e s t o t h e d e v e l o p m e n t o f i n d i c e s o f w a t e r q u a l i t y , " Ph.D. t h e s i s , U n i v e r s i t y o f M i c h i g a n , Ann Arbor.  (46)  . " P a c i f i c s a l m o n i d enhancement program," i n f o r m a t i o n paper, Department o f t h e E n v i r o n m e n t , F i s h e r i e s and M a r i n e S e r v i c e , May  1975.  (47)  P a r s o n s , T.R., CA. Bawden, a n d W.A. H e a t h . (1973) "Preliminary s u r v e y o f m e r c u r y and o t h e r m e t a l s c o n t a i n e d i n a m i n a l s from the F r a s e r R i v e r m u d f l a t s , " J . F i s h . R e s . Bd., 30:1014-1016.  (48)  Pearson,  (49)  P e t e r s o n , K., a n d T. O ' R i o r d e n . "Water q u a l i t y i n the Lower F r a s e r : O p i n i o n s and p r e f e r e n c e s o f Lower M a i n l a n d r e s i d e n t s , " u n p u b l i s h e d .  (50)  Pippy, to  N.  (1972)  J.H.C., a n d bacterial  Soc, (51)  "Fraser  G.M.  .  (1973)  R i c k e r , W.E. ments and  (53)  Servizi,  "Relationship of  i n salmon and  suckers,"  river  Trans.  "Proposed water q u a l i t y i n f o r m a t i o n , "  of  and  J.A.,  of water system  D.W.  Am.  pollution Fish.  and  R.A.  to  Martens.  (1974)  of  Eng.  the  (1970)  bottom-dwelling  "Decision Babine  "Preliminary  s o c k e y e and R e p o r t No.  Burkhalter.  1968," I n t . Pac.  (1976)  management of C i v i l  Volume. I I ,  20460.  Comm. P r o g r e s s  q u a l i t y and  1963 S.  D.C  c h l o r i n a t e d sewage t o  Salmon F i s h .  Servizi,  Sheehan,  study."  (1958) "Maximum s u s t a i n e d y i e l d f r o m f l u c t u a t i n g e n v i r o n m i x e d s t o c k , " J . F i s h . R e s . Bd. C a n a d a , 1 5 ( 5 ) : 9 9 1 - 1 0 0 6 .  J.A.,  toxicity  (55)  (1969)  development  98:685-690.  (52)  (54)  Hare.  infection  US/EPA, W a s h i n g t o n ,  Pac.  River harbour  "Selected  organisms  as  a  tool  system," Master's  survey  of  salmon,"  Int.  30.  Salmon F i s h .  theory  pink  of  measurements the  Fraser  River  Commission. i n sockeye  thesis,  salmon  U.B.C,  Dept.  95  (56) S h e p a r d ,  M.P.,  resultant  and  F. C  Withler.  production  (1958)  f o r Skeena  "Spawning  stock  sockeye," J . Fish.  size  Res.  and  Bd.  Canada,  15(5):1007-1025. (57) S h e p a r d , M.P., F.C. W i t h l e r , J . M c D o n a l d , a n d K.V. A r o . (1964) " F u r t h e r i n f o r m a t i o n on spawning s t o c k s i z e and r e s u l t a n t p r o d u c t i o n f o r S k e e n a s o c k e y e , " J . F i s h . R e s . Bd. C a n a d a , 2 1 : 1 3 2 9 - 1 3 3 1 . (58) S p r a g u e , J o h n B., a n d D o n a l d E . D r u r y . (1969) "Avoidance r e a c t i o n s of s a l m o n i d f i s h to r e p r e s e n t a t i v e p o l l u t a n t s , " Advances i n water p o l l u t i o n r e s e a r c h , P r o c . of the 4 t h I n t . Conf., Prague, 1969. (59) S p r a g u e ,  J o h n B.  Water Res.  (1969)  "Measurement  of p o l l u t a n t  toxicity  to  fish,"  3:793-821.  (60) S p r a g u e , J . B . (1964) " A v o i d a n c e o f c o p p e r - z i n c s o l u t i o n s by y o u n g s a l m o n i n t h e l a b o r a t o r y , " J . Wat. P o l l u t i o n C o n t r o l F e d . , 3 6 : 9 9 0 - 1 0 0 4 . (61) T a k a h a s h i , M.  Institute  o f Oceanography  U.B.C,  personal  communication.  (62) T a k a h a s h i , - M., K. F u j i i , a n d T.R. P a r s o n s . (1973) "Simulation study o f p h y t o p l a n k t o n p h o t o s y n t h e s i s and growth i n the F r a s e r R i v e r e s t u a r y , " M a r i n e B i o l o g y , V o l . 19, No. 2:102-116. (63)  .  "The  growth  District, (64)  L i v e a b l e R e g i o n 1976/1986," p r o p o s a l s  of Greater Vancouver,  -•  Lower M a i n l a n d ' s  Planning  ( 6 5 ) Thomas, W i l l i a m A. Plenum  t o manage  the  Greater Vancouver R e g i o n a l  1975.  "The District  The  economy," G r e a t e r V a n c o u v e r R e g i o n a l  Department,  (1972)  1970.  "Indicators  of environmental q u a l i t y , "  Press.  (66) Thompson, J .  Pacific  Environment  E n v i r o n m e n t , West V a n c o u v e r ,  Institute,  personal  Department  of the  communication.  (67) W a l t e r s , C a r l J . (1975) "Optimal h a r v e s t s t r a t e g i e s f o r salmon i n r e l a t i o n t o e n v i r o n m e n t a l v a r i a b i l i t y and u n c e r t a i n p r o d u c t i o n p a r a m e t e r s , " J . F i s h . R e s . Bd. C a n a d a , 3 2 ( 1 0 ) : 1777-1784. (68)  ,;.  Water Rights  Branch,  British  Columbia,  personal  communica-  tion. (69) W i l l i a m s , the  I.V.  survival  Fish.  (1969)  "Implication  of Fraser River  Comm. P r o g r e s s R e p o r t No.  (70) W i l s o n , R.C.H.  (1972)  water," J . Fish. (71) Woodey, J . personal  "Prediction  Res.  I n t . Pac.  Bd.  quality  and  salinity  in  Salmon  22. of copper t o x i c i t y  Canada,  Salmon F i s h .  communication.  of water  sockeye s m o l t s , " I n t . Pac.  in receiving  29:1500-1502.  Commission,  New  Westminster,  B.C.,  96  APPENDIX 1  LOGNORMAL VERSUS NORMAL DISTRIBUTION  Very o f t e n t h e u n c e r t a i n t y i n a p h y s i c a l v a r i a b l e r e s u l t s from t h e f l u c t u a t i o n o f many f a c t o r s each o f w h i c h i s d i f f i c u l t observe.  t o i s o l a t e and t o  I n t h e case o f salmon, f o r example, some l i f e stages a r e governed  by v a r i o u s e n v i r o n m e n t a l f a c t o r s , such as temperature,  oxygen, water f l o w ,  l a k e p r o d u c t i v i t y ( i n i t s e l f a composite o f many f a c t o r s ) , p r e d a t i o n , and so f o r t h .  I f we know t h e mechanism by w h i c h these f a c t o r s a f f e c t t h e  v a r i a b l e o f i n t e r e s t we c a n d e r i v e t h e d i s t r i b u t i o n f u n c t i o n f o r t h i s v a r i a b l e without studying i n d e t a i l the i n d i v i d u a l e f f e c t s .  I f the i n d i -  v i d u a l causes a r e a d d i t i v e i n n a t u r e a p p l i c a t i o n o f t h e C e n t r a l L i m i t Theorem w i l l l e a d t o a normal d i s t r i b u t i o n ;  i f they a r e m u l t i p l i c a t i v e i n  n a t u r e we w i l l a r r i v e a t a lognormal d i s t r i b u t i o n ( 7 ) .  F o r both cases i t  i s n e c e s s a r y t h a t t h e number o f causes be e i t h e r l a r g e o r t h a t each o f them have o n l y a s m a l l e f f e c t on t h e sum ( p r o d u c t ) . of  I n o t h e r words, none  them s h o u l d be d o m i n a t i n g . A normal d i s t r i b u t i o n c a n be w r i t t e n i n i t s s t a n d a r d form a s : 1  (1)  f(x) =  exp [-| ( " ° ) ] X  x a  l  x  2  x  , t h e s t a n d a r d d e v i a t i o n , and m^  s  t h e mean v a l u e , a r e two parameters  which d e s c r i b e t h i s d i s t r i b u t i o n f u n c t i o n ( F i g u r e 1A).  The normal d i s t r i - .  b u t i o n i s s y m m e t r i c a l w i t h r e g a r d t o t h e mean v a l u e . In  t h e case o f t h i s s t u d y a normal d i s t r i b u t i o n f u n c t i o n was  assumed t o d e s c r i b e t h e v a l u e s between upper and lower c u r v e s .  The d i s -  tance between mean and upper o r lower bound was assumed t o be two s t a n d a r d  97  deviations. as 1.0.  The a r e a under the normal d i s t r i b u t i o n f u n c t i o n i s d e f i n e d  By c u t t i n g o f f the t a i l s one has t o i n t r o d u c e a c o r r e c t i o n f a c t o r  w h i c h n o r m a l i z e s a l l computed p r o b a b i l i t i e s . this factor i s  U s i n g two s t a n d a r d d e v i a t i o n s  1 . 1 - 0.0455  W h i l e a normal d i s t r i b u t i o n r e s u l t s from the summation o f many s m a l l e f f e c t s , i t i s d e s i r a b l e a l s o t o c o n s i d e r the d i s t r i b u t i o n f u n c t i o n w h i c h a r i s e s as the r e s u l t of the m u l t i p l a t i v e  n a t u r e of random e v e n t s .  A  f r e q u e n t l y used example i s t h a t o f sediment t r a n s p o r t i n streams where the f i n a l s i z e of a p a r t i c l e r e s u l t s from a number o f c o l l i s i o n s o f p a r t i c l e s of many, s i z e s t r a v e l l i n g a t d i f f e r e n t v e l o c i t i e s .  Each c o l l i s i o n  the p a r t i c l e by a random p r o p o r t i o n o f i t s s i z e a t the time. the s i z e Y to  a f t e r the n -* c o l l i s i o n i s the product o f Y _^ 1  n  1  n  t h a t c o l l i s i o n ) and W  ( t h e random r e d u c t i o n f a c t o r ) .  n  we can f o r m u l a t e t h i s c h a i n p r o c e s s (2) Y  n  = Y _ n  x  W  n  = Y . n  2  W_ n  x  W  n  reduces  Therefore,  ( i t s size prior Mathematically,  as:  = . .. . Y ^ ^ .  . . .W  n  The p r o c e s s e s g o v e r n i n g the salmon's l i f e c y c l e can be thought  analogously.  As an example, l e t us c o n s i d e r the l i f e s t a g e Eggs d e s p o s i t e d / F r y produced. V a r i o u s random p r o c e s s e s a f f e c t t h i s l i f e s t a g e .  The  f i n a l number o f s u r -  v i v i n g f r y w i l l be the number o f eggs i n i t i a l l y d e p o s i t e d m u l t i p l i e d by s u r v i v a l r a t e a f t e r each random process has o c c u r r e d .  For example, the  number o f eggs w h i c h have s u r v i v e d an u n f a v o u r a b l e w a t e r temperature low^oxygen c o n c e n t r a t i o n may  the  or a  a l s o be s u b j e c t e d t o washouts due t o extreme  f l o w c o n d i t i o n s o r p r e d a t i o n by o t h e r f i s h , or may,  i n a d d i t i o n , become  exposed t o s e v e r e i c e c o n d i t i o n s . In a l l t h e s e cases where the v a r i a b l e of i n t e r e s t Y can be as the product o f a number o f v a r i a b l e s we can a p p l y t h e f o l l o w i n g .  expressed Taking  98  the n a t u r a l l o g a r i t h m s o f both s i d e s i n e q u a t i o n (2) leads t o : In Y  = I n Y„ + I n W, + I n W + o 1 /  In W : n  9  n  S i n c e the Wn a r e random v a r i a b l e s , the f u n c t i o n s I n W variables.  a r e a l s o random  n  A p p l y i n g t h e C e n t r a l L i m i t Theorem, one can say t h a t t h e sum  a number o f these v a r i a b l e s w i l l be a p p r o x i m a t e l y n o r m a l l y d i s t r i b u t e d . t h i s case, then we expect I n Y t o be n o r m a l l y d i s t r i b u t e d .  of In  A random  v a r i a b l e Y whose l o g a r i t h m s a r e n o r m a l l y d i s t r i b u t e d i s s a i d t o have a lognormal  distribution.  The most common form t o w r i t e the lognormal p r o b a b i l i t y  distribu-  tion function i s : <> 3  =  w  y v ^ c , y  where mv  e  x  p  {  -i  lny  kr-  l  lny  f :  n  )  ]  2  }  ffi^  i s the median o f the random v a r i a b l e Y and  deviation.  The median  m  a  ^ y n  i s the s t a n d a r d  i s d e f i n e d as t h a t v a l u e below w h i c h o n e - h a l f o f  y the p r o b a b i l i t y mass l i e s . In comparison skewed i n shape.  t o a normal d i s t r i b u t i o n a lognormal d i s t r i b u t i o n i s  Depending on the v a l u e f o r ^ y  more or l e s s a c c e n t u a t e d .  a  n  t h i s skewness can  F i g u r e 2A i l l u s t r a t e s some c a s e s .  The  be  lognormal  d i s t r i b u t i o n i s o f t e n used as a model where the observed d a t a a r e found to be skewed.  I n o r d e r t o v e r i f y a lognormal d i s t r i b u t i o n g o v e r n i n g some  stages i n the l i f e c y c l e o f sockeye salmon, more d a t a than p r e s e n t l y a v a i l a b l e a r e r e q u i r e d t o do a s t a t i s t i c a l  analysis.  99  f (x)  FIG.IA  0  FIG.2A  NORMAL  PROBABILITY  DISTRIBUTION.  Y  LOGNORMAL PROBABILITY DISTRIBUTIONS FOR DIFFERENT STANDARD DEVIATION VALUES (After Benjamin and Cornell.)  Appendix 2  F l o w C h a r t o f t h e model  Start i  Calls Main Program  subroutines  S P U N ,  INTGV  SUMINT,  I  BAL,  PRMAT, MULT  EXPRET  READ i n D a t a P o i n t s o f Lower, m e d i a n and u p p e r c u r v e . F i t s a cubic polynomial curve through the p o i n t s . Calculates interpolated values a t a number o f i n p u t a b s c i s s a e  S P U N  Reads i n number o f I n t e g r a t i o n l i n e s and l e n g t h o f i n t e g r a t i o n intervals. Uses T r a p e z - F o r m u l a t o approximate areas under normal curve W r i t e s p r o b a b i l i t i e s i n m a t r i x form  INTG  SUMS UP areas, u n d e r n o r m a l distribution  SUNINT  Balances l a s t elements m a t r i x where n e c e s s a r y a r e a e q u a l s 1.0  BAL  i n rows o f so t h a t t o t a l  P r i n t s balanced probability matrix  PRMAT  101  MULT  Yes  G i v e n an e s c a p e m e n t v a l u e EXPRET c a l c u l a t e s e x p e c t e d r e t u r n s by multiplying probabilities of last p r o d u c t m a t r i x w i t h median o f each r e t u r n c l a s s a n d f o r m i n g t h e sum  (  STOP  ^  EXPRET  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
Canada 72 3
United States 14 1
Japan 5 0
China 4 0
Morocco 4 0
Iran 2 0
Peru 2 2
France 2 0
Russia 1 0
Ukraine 1 0
United Kingdom 1 0
City Views Downloads
Vancouver 26 2
Unknown 24 4
Surrey 5 0
Mountain View 5 0
Tokyo 5 0
Beijing 4 0
Richmond 4 0
Montreal 3 0
Tiran 2 0
Lima 2 2
Red Deer 2 0
White Rock 2 0
Maple Ridge 2 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062596/manifest

Comment

Related Items