UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Two-stage treatment of a landfill leachate: aerobic biostabilization with lime-magnesium polishing Wong, Phillip Thomas 1980-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1980_A7 W66.pdf [ 5.04MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0062562.json
JSON-LD: 1.0062562+ld.json
RDF/XML (Pretty): 1.0062562.xml
RDF/JSON: 1.0062562+rdf.json
Turtle: 1.0062562+rdf-turtle.txt
N-Triples: 1.0062562+rdf-ntriples.txt
Original Record: 1.0062562 +original-record.json
Full Text
1.0062562.txt
Citation
1.0062562.ris

Full Text

T W O - S T A G E TREATMENT OF A L A N D F I L L L E A C H A T E : AEROBIC BIOSTABILIZATION  WITH L I M E - M A G N E S I U M  POLISHING  by  Phillip B.A.Sc,  University  A THESIS SUBMITTED  Thomas  of  IN  Wong  British  Columbia,  P A R T I A L F U L F I L M E N T OF  THE R E Q U I R E M E N T S FOR THE DEGREE OF M A S T E R OF A P P L I E D S C I E N C E  in  THE F A C U L T Y OF GRADUATE S T U D I E S (The  Department of  We a c c e p t to  the  this  required  Phillip  Engineering)  as  conforming  standard  OF B R I T I S H  June @  Civil  thesis  THE U N I V E R S I T Y  1977  COLUMBIA  19 80  Thomas  Wong,  19 80  In p r e s e n t i n g requirements British freely  of  my  f o r an  Columbia, available  agree t h a t thesis  this thesis  s h a l l make i t  for reference  and  study.  I  for extensive p u r p o s e s may  shall  his  be  publication not  be  Civil  J u n e 9,  19 80  Columbia  this  g r a n t e d by  the  It is  this thesis  a l l o w e d w i t h o u t my  Engineering  The U n i v e r s i t y o f B r i t i s h 2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5  of  further  copying of  representatives.  permission.  Date  of  Library  copying or  Department of  University  the  D e p a r t m e n t o r by  gain  the  the  I agree t h a t  for scholarly  financial  f u l f i l m e n t of  advanced degree a t  permission  stood that  in partial  Head under-  for  written  ABSTRACT  L e a c h a t e i s p r o d u c e d when w a t e r p e r c o l a t e s fills,  e x t r a c t i n g suspendable and s o l u b l e o r g a n i c  constituents surface and  through  from the r e f u s e beds.  of research, This  particularly  medium  studies.  Recently,  has been t h e s u b j e c t  as a f o l l o w - u p  Investigated  o f a great  deal  Columbia  to several of  were t h e t r e a t a b i l i t y o f  s t r e n g t h ' -,(BOD f-6'8090, mg/L) l e a c h a t e 5  bilization,  the control  a t the University o f B r i t i s h  s t u d y was i n i t i a t e d  those previous  and i n o r g a n i c  T h i s may l e a d t o s e r i o u s  and/or ground water p o l l u t i o n .  treatment o f leachate  land-  by a e r o b i c ; b i o s t a -  a t a n u t r i e n t l o a d i n g o f BOD,_:N:P o f 100:3.2:1.1, b  and  then p o l i s h i n g o f t h e f i r s t  magnesium c o a g u l a t i o n .  s t a g e e f f l u e n t s by l i m e -  In the b i o l o g i c a l  ranges o f ambient a i r temperature  treatment stage, the  and s l u d g e age s t u d i e d  were  5° t o 25°C a n d 5 t o 20 d a y s , r e s p e c t i v e l y . In  the b i o s t a b i l i z a t i o n  p h a s e , a BODj-:N:P  loading of  100:3.2:1.1 was f o u n d t o b e " a d e q u a t e " f o r t r e a t m e n t , the  standard  "excessive". nitrate  lent.  n u t r i e n t l o a d i n g o f 100:5:1 was f o u n d t o b e T h i s was e v i d e n t  concentration  reactor. B 0 D  Organic 5  b y t h e much h i g h e r  r e m o v a l by t h e f i r s t  s t a g e u n i t s was e x c e l -  a n d COD r e m o v a l s o f a t l e a s t  99.4 a n d 9 6.4  under a l l c o n d i t i o n s  percent,  investigated,  f o r t h e two u n i t s c l o s e t o w a s h o u t c o n d i t i o n s ( t h e  5-day s l u d g e age u n i t s a t 1 0 ° a n d 5 ° C ) . age  nitrite-  i n t h e e f f l u e n t o f t h e BOD,-:N:P = 100:5:1  r e s p e c t i v e l y , were a c h i e v e d except  while  a l s o had minimal e f f e c t s  Temperature and s l u d g e  on t h e removal o f m e t a l s ,  except  u n d e r t h e two c o n d i t i o n s m e n t i o n e d a b o v e ; r e m o v a l s were  greater  than  reac-  90 p e r c e n t ,  tors only percent,  f o r most o f t h e m e t a l s m o n i t o r e d .  reduced mainly  were n o t h i g h  magnesium c o n c e n t r a t i o n s  The  by 32.5 t o 52.7  b e c a u s e t h e m i x e d l i q u o r pH's  (about  enough f o r magnesium p r e c i p i t a t i o n  8.5)  as magnesium  hydroxide. For with  t h e lime-magnesium p o l i s h i n g  lime  t o pH l e v e l s  a t e a c h pH l e v e l .  enhanced s i g n i f i c a n t l y  was  due, i n p a r t , t o t h e i n i t i a l  20 mg/L  by t h e s e  i n addition, there  o f magnesium  Aerobic  were t h e n  than  magnesium a d d i t i o n s .  low c o n c e n t r a t i o n s  already  t o 10.0),  local  control objectives.  o f con-  existed greater  at a sludge  age g r e a t e r  3°C, f o l l o w e d by l i m e p r e c i p i t a t i o n i s capable  n a n t s o f a medium s t r e n g t h l e v e l s below  This  than  i n the samples.  biostabilization,  or equal  Magnesium  a d d e d t o t h e sam-  15 d a y s , a t BOD^:N:P = 100:3.2:1.1, a n d l i q u i d of at least  dosed  I n g e n e r a l , r e m o v a l s o f i m p u r i t i e s were  not  taminants;  s a m p l e s were  o f 10.0, 10.7, and 11.4.  d o s e s o f 0, 10, 20, 35 and 50 mg/L ples  step,  leachate  of reducing  temperatures ( t o pH most  Columbia)  greater  contami-  (BOD^ = 8090 mg/L)  (Province o f B r i t i s h  than  to  pollution  iv  TABLE OF  CONTENTS  Page ABSTRACT  i i  L I S T OF TABLES  '  vi  L I S T OF FIGURES  viii  ACKNOWLEDGEMENTS  ix  CHAPTER 1  INTRODUCTION  1  2  BACKGROUND  5  2-1  5  2-2  2- 3  Aerobic B i o s t a b i l i z a t i o n 2-1.1 Description of the A c t i v a t e d Sludge Process 2-1.2 Previous Research  . . .  5 9  P h y s i c a l - C h e m i c a l Treatment 2-2.1 Chemical P r e c i p i t a t i o n and C o a g u l a t i o n / 2- 2.2 Lime-Magnesium P r o c e s s . . . .  16  Other Treatment  P r o c e s s e s and  Methods 3  22  EXPERIMENTAL SYSTEM AND METHODS 3- 1 3-2  3-3  16 19  . . . . .  L e a c h a t e S o u r c e and Characteristics B i o l o g i c a l Treatment System 3- 2.1 The B i o l o g i c a l R e a c t o r s . 3-2.2 The E x p e r i m e n t a l A p p a r a t u s 3-2.3 Operation of the Reactors (a) O p e r a t i o n a l P a r a m e t e r s (b) A c c l i m a t i o n (c) D a i l y ? O p e r a t i n g Procedure Lime-Magnesium T r e a t m e n t  . . . .  . . . .  S y s t e m . .-.  24  24 26 26 26 27 27 30 31 32  V  TABLE OF CONTENTS  (continued)  CHAPTER  4  Page  RESULTS AND DISCUSSION  35  4-1  35  4- 2 5  A c t i v a t e d Sludge Treatment Phase . 4-1.1 M i x e d L i q u o r C h a r a c t e r i s t i c s and K i n e t i c s 4-1.2 Removal o f O r g a n i c M a t e r i a l and S o l i d s 4-1.3 Removal o f M e t a l s 4-1.4 Removal o f N u t r i e n t s . . . .  41 47 51  Lime-Magnesium C o a g u l a t i o n P h a s e  .  55  . . . .  63  CONCLUSIONS  AND  RECOMMENDATIONS  35  5- 1  Conclusions  63  5-2  Recommendations  65  REFERENCES  .  APPENDICES A B  71  Determination o f B i o l o g i c a l Treatment K i n e t i c C o e f f i c i e n t s Supplementary R e s u l t s  68  .  . .  72 81  vi  L I S T OF TABLES T a b l e No.  of Typical  Page  1  Composition  2  P a r t i a l D a t a Summary o f N u t r i e n t  Leachates  3  R e q u i r e m e n t S t u d y by Temoin  14  3  Leachate  Characteristics  25  4  K i n e t i c C o e f f i c i e n t s o f T h i s and Previous Investigations Mixed Liquor C h a r a c t e r i s t i c s  36 38  5 6  7  8  9  10  11  12  13  14  Title  O r g a n i c M a t e r i a l ( i n Terms o f BOD a n d COD) and S o l i d M a t e r i a l C o n c e n t r a t i o n s ( i n E f f l u e n t s ) a n d Removals  42  C o m p a r i s o n o f COD v a l u e s o f F i l t e r e d E f f l u e n t s a n d Two-Hour' S e t t l e d E f f l u e n t s from t h e Reactors a t 5 C  45  C o m p a r i s o n o f Oxygen Demanding M a t e r i a l Removals u n d e r V a r i o u s N u t r i e n t L o a d i n g s and F/M R a t i o s  46  M e t a l Removal E f f i c i e n c i e s o f t h e B i o l o g i c a l Reactors  48  Metal Concentrations o f the A e r o b i c a l l y Biostabilized Effluents  50  N i t r o g e n (TKN, NH , a n d N0 ~N0 ) a n d Phosphorus ( T o t a l ; C o n c e n t r a t i o n s ( i n E f f l u e n t s ) a n d Removals by t h e B i o l o g i c a l Reactors  52  pH, A c i d i t y , A l k a l i n i t y , a n d Lime Dosages R e q u i r e d o f t h e Samples Used f o r L i m e Magnesium C o a g u l a t i o n  56  E f f l u e n t O r g a n i c M a t e r i a l ( i n Terms o f BOD,. and COD), S u s p e n d e d S o l i d s , a n d T o t a l P h o s p h o r u s C o n c e n t r a t i o n s a n d Removals by C o a g u l a t i o n  57  Metal Concentrations o f the F i n a l E f f l u e n t s P o l i s h e d by t h e Lime-Magnesium P r o c e s s . . .  60  5  2  vii  L I S T OF TABLES 15 16 17 18  (continued)  M e t a l Removals by Coagulation  Lime-Magnesium  Computation Table f o r the G r a p h i c a l Determination of K i n e t i c C o e f f i c i e n t s  61 . . .  75  K i n e t i c C o e f f i c i e n t s and Minimum Mean C e l l R e t e n t i o n Times .  80  A c i d i t y , A l k a l i n i t y , TC and TOC C o n c e n t r a t i o n s and Removals by t h e B i o l o g i c a l Reactors  83  viii  L I S T OF FIGURES  F i g u r e No.  Title  Page  1  Typical  Laboratory Reactor  2  MLVSS v e r s u s S l u d g e Age  3  D e t e r m i n a t i o n o f k and K Room T e m p e r a t u r e  28 40 at 76  4  D e t e r m i n a t i o n o f Y and b a t Room T e m p e r a t u r e  76  5  Determination  77  6  Determination  a t 15°C s o f Y and b a t 15°C  7  Determination  o f k and K  78  o f k and K  a t 10°C  77  s 8  Determination  o f Y and b a t 10°C  78  9  79  10  D e t e r m i n a t i o n o f k and K a t 5°C s D e t e r m i n a t i o n o f Y and b a t 5°C  79  11  Mixed L i q u o r  82  COD v e r s u s .Sludge Age  ix  ACKNOWLEDGEMENTS  The advisor, advice also  like  wishes t o express  D r . D.S. M a v i n i c ,  during  thesis. Paula  author  The a u t h o r  Parkinson,and  Financial  f o r h i s p a t i e n t g u i d a n c e and  the preparation o f this  t o t h a n k D r . W.K.  Environmental  h i sgratitude to h i s  thesis.  Oldham f o r r e v i e w i n g  i s a l s o very  grateful  support  o f Canada i s g r a t e f u l l y  for t h e i r great  Engineering  assistance.  from t h e N a t i o n a l Research acknowledged.  this  t o Susan L i p t a k ,  Sue Jackman o f t h e C i v i l  Laboratory  He w o u l d  Council  1  CHAPTER 1 INTRODUCTION  Sanitary  landfills  b e e n a c c e p t e d as posal.  a  recovery  simplicity larity.  and  Also,  a residue  techniques  cost of  only  i n use;  resource  landfills  unlike  daily  of  and  leachate  composting  with municipal  from the  refuse  solid  u n d e r g o some d e g r e e o f  gically  and  can  lead to a g r o s s l y  lity  of  leachate  variables ticle  the  size,  and  compaction of  moisture  the  amounts o f  refuse,  the  content of the  generation  and  land-  inorganic  leachate  purification bacteriolo-  The  i s d e p e n d e n t on  - some o f t h e s e a r e :  airborne  through  Although the  self  large  and  concern.  polluted liquid.  produced  waste  However, t h e  soluble organic  beds.  usually  chemically,  yield  problems, lessened  growing  e x t r a c t i n g s u s p e n d a b l e and  constituents  popu-  disposal  does n o t  L e a c h a t e i s p r o d u c e d when w a t e r p e r c o l a t e s fills,  the  Continuous compaction  reduced odour problems. i s a problem of  and  desirable,  s o l i d waste  dis-  disposal.  c o v e r have m i n i m i z e d v e c t o r  litter,  s o l i d waste  landfilling  further  have been overcome.  long  composting, i n c i n e r a t i o n ,  recovery,  which r e q u i r e s  have  have l e d t o t h e i r  "final"  Most p r o b l e m s a s s o c i a t e d landfills  s u c h as  more e n v i r o n m e n t a l l y  i t i s the  method c u r r e n t l y p y r o l y s i s , and  are  low  their modifications  " s a t i s f a c t o r y " method o f  Although other  resource  and  extracted quantity  material  and  a number o f  physical  amount, c o m p o s i t i o n , the  depth of  refuse, the  the  refuse  qua-  par-  degree  beds,  the  of  2  hydrogeology o f the s i t e , Table  1 (6) i l l u s t r a t e s  typical  and t h e c l i m a t e o f t h e r e g i o n .  t h e wide range o f composition  leachates.  Since  l e a c h a t e may b e a s e r i o u s s o u r c e  of surface  ground water p o l l u t i o n ,  environmental  ing  leachate generation  and movement t o go u n c h e c k e d .  are  three  mization  o f t h e l e a c h a t e problem; these  treatment  good s i t e  leachate  are not allowThere  or minimizing  discharge.  leachate production  s e l e c t i o n and d e s i g n , w i t h  operation.  M e a s u r e s e m p l o y e d may  of r e f u s e , s u r f a c e water c o n t r o l , immobilization.  are the reduction of  r e c i r c u l a t i o n , and t h e c o l l e c t i o n  of leachate before  Eliminating  chemical  agencies  and/or  a l t e r n a t i v e s a v a i l a b l e f o r the e l i m i n a t i o n o r mini-  leachate production, and  of  proper  involves  c o n s t r u c t i o n and  include milling  and b a l i n g  ground water c o n t r o l ,  However, w i t h  and/or  some o f t h e above mea-  s u r e s , l o n g t e r m m a i n t e n a n c e may b e r e q u i r e d and t h e p o t e n t i a l for  leachate production  remains  r a t e o f waste s t a b i l i z a t i o n Also,  i n areas  ineffective hibitively  o f high  precipitation,  these  methods may b e  s u c h methods may b e  pro-  high. new t e c h n i q u e  waste s t a b i l i z a t i o n  i s leachate  leachate  during  ever,  because o f the reduced  due t o t h e a b s e n c e o f w a t e r ) .  o r the c o s t s o f employing  A promising  this  (mainly  i s reduced  short period, leachate  f o r a c c e l e r a t i n g the rate of recirculation.  the s t a b i l i z a t i o n  The volume o f  p e r i o d and a f t e r  strength i s g r e a t l y reduced.  a f t e r waste s t a b i l i z a t i o n ,  the r e c i r c u l a t e d  leachate  How-  3  TABLE 1 (6) COMPOSITION OF TYPICAL  Parameter  LEACHATES  Concentrations* Range o f V a l u e s o r ( L a n d f i l l s and T e s t L y s i m e t e r s )  BODp.  9  - 55 000  COD  0  -  Total Total  Carbon Organic  715 715  Carbon  1 000 1 000 0  Total Solids Total Volatile Solids Total Dissolved Solids  0 0  Acidity Alkalinity Aluminum Arsenic Barium Beryllium Calcium Cadmium Chloride Chromium Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nitrogen - t o t a l - NH Nickel Phosphorus - t o t a l Potassium Sodium Sulphates Sulphides Titanium Vanadium Zinc  0 0 0 0 5 0 34 0 0 0.2 0 165 0.06 0 0 0 0 0.01 0 2 .8 0 1 0 0 0 0  pH  Colour  compounds  (chloroplatinate) not  Odour * A l lvalues  except those  —  000  22 22  350 350  45 23 42  000 157 300  9 560 20 900 122 11.6 5.4 0.3 4 000 0.19 2 800 33.4 10 5 500 5.0 15 600 1 400 0.064 0.52 2 406 1 106 0.80 154 3 770 7 700 1 826 0.13 5.0 1.4 1 000  3.7 - 8.5 78 - 1 278 0 - 12 000  3  Tannin-like  —  90  detectable  f o r pH, c o l o u r  to t e r r i b l e  a n d o d o u r a r e i n mg/L.  4  s h o u l d be c o l l e c t e d However, t h i s ing  fill The  f o r ultimate treatment  method h a s o b v i o u s  and d i s p o s a l .  shortcomings  o p e r a t i o n and/or  high p r e c i p i t a t i o n  last  i s the c o l l e c t i o n  alternative  of the leachate generated.  I t i s to this  under c o n t i n u areas.  and t r e a t m e n t  end t h a t  and many o t h e r r e s e a r c h p r o j e c t s  at the U n i v e r s i t y  Columbia  This investigation  have b e e n c a r r i e d  out.  follow-up t o s e v e r a l o f those previous The  purpose  of this  the aerobic treatment  and  p r o c e s s by p h y s i c a l - c h e m i c a l  stage, t h e ranges  s l u d g e age ( o r mean c e l l  5° t o 2 5 C and 5 t o 2 0 d a y s P  Temoin  o f ambient  r e s i d e n c e time)  (19, 20, 27) have f o u n d  In t h e b i o air  temperature  i n v e s t i g a t e d were  respectively.  (31), i n a p r e v i o u s study,  t o b e t h e optimum n u t r i e n t  loading  the e f f l u e n t s  (through lime-magnesium c o a g u l a t i o n ) .  treatment  isa  at a nutrient  5  logical  of British  s t u d y was t o e v a l u a t e t h e t r e a t a b i l i t y  o f BOD :N:P o f 100:3.2.:1.1 and t h e n p o l i s h i n g  treatment  study  studies.  o f a l e a c h a t e by a e r o b i c b i o s t a b i l i z a t i o n  from  this  loading.  found  100:3.19:1.11  Several  investigators  l i m e - m a g n e s i u m c o a g u l a t i o n t o be an  e f f e c t i v e method i n t h e t r e a t m e n t  of  wastewaters.  5  CHAPTER 2 BACKGROUND  2 - 1  Aerobic  2 - 1.1  D e s c r i p t i o n o f t h e A c t i v a t e d Sludge  Activated ment p r o c e s s . aeration sible  Biostabilization  s l u d g e i s an a e r o b i c s u s p e n d e d - g r o w t h The b i o l o g i c a l  and perhaps  dominant primary  floes,  mechanical  f o r t h e removal Under normal  The  kept  mixing,  clining lyse,  i n s u s p e n s i o n by  are primarily  operating conditions, bacteria feeders i n the a c t i v a t e d  The p r i m a r y b a c t e r i a  o r endogenous  and thereby  respon-  growth phases,  release  are the  sludge process.  i s d e p e n d e n t on t h e n a t u r e o f  the o r g a n i c waste and t h e e n v i r o n m e n t a l tanks.  treat-  o f o r g a n i c s i n the wastewater.  species o f the b a c t e r i a  aeration  Process  their  cell  I n t h i s p r o c e s s , raw o r g a n i c m a t t e r  conditions i n the  are maintained  i n t h e de-  c a u s i n g them t o d i e , contents to s o l u t i o n .  i s c o n v e r t e d t o energy  o r s y n t h e s i z e d and r e s y n t h e s i z e d by v a r i o u s groups  o f bac-  teria. Also secondary ter,  common i n a c t i v a t e d feeders.  The b a c t e r i a  and t h e protozoans  o f organisms  sludge are protozoans, the s y n t h e s i z e t h e o r g a n i c mat-  consume t h e b a c t e r i a .  p r e s e n t i n t h e " z o o g l e a l mass" may  y e a s t s , m o l d s , worms, a l g a e , r o t i f i e r s , larvae.  Other  species  include  nematodes, a n d i n s e c t  6  In a d d i t i o n removal is  i s obtained.  average  sludge  composition  mass i s t a k e n  bacterial  cells, C  that  H  N  The c h e m i c a l  spective  of the c e l l  tissue  An e l e m e n t a l  of floc-  (29).  P  i n the zoo-  requirement,  O x i d a t i o n , s y n t h e s i s , and  are the metabolic reactions that  stoichiometric  equations  f o rthese r e -  r e a c t i o n s a r e as f o l l o w s :  C H 0  + 0„ —  C0„ .+ H 0 + e n e r g y  —C H N0 7  2  + 50  C0 —-  2  . . .  0  C H O + 0 „ + NH_, + x y z 2 3  In t h e presence  2  + H P + C H N0 2  5C0  2  5  7  2  + 2 H 0 + NH^ 2  o f enzymes, a b o u t  one-third of the organic  and H 0  f o r the synthesis o f the remaining  2  i n order to provide  2  i s converted to c e l l  two-thirds o f the  material.  For e f f i c i e n t b i o l o g i c a l wastewater treatment, generally  accepted  of approximately nutrients  predominate,  that  a nutrient  loading level  100:5:1 must b e m a i n t a i n e d are available,  resulting  . . (2)  . .,. . . . . . . (3)  energy  that  to C0  .... . . . . .  removed i s o x i d i z e d  organic matter  . . . (1)  energy  matter  ficient  removal  analysis of  i n c l u d e s t h e phosphorus  endogenous r e s p i r a t i o n  5  i s a combination  as C^H^NO^  however, 6 g 8 7 ° 2 3 1 2  occur.  o f metal  and s e t t l i n g ( 5 ) .  The gleal  some d e g r e e  The mechanism by w h i c h m e t a l  achieved i n activated  culation  is,  t o o r g a n i c removal,  (11).  i t is  (BOD,. :N:P) I f insuf-  filamentous b a c t e r i a can  i n s l u d g e b u l k i n g and i n c o m p l e t e  c o n v e r s i o n o f o r g a n i c s t o end p r o d u c t s  (8, 2 9 ) .  Normally,  7  this  i s n o t a p r o b l e m when t r e a t i n g d o m e s t i c sewage  nutrients  are present  i n sufficient  w a s t e w a t e r s , however, o f t e n gen  and phosphorus The  ficient but  quantity  quantity.  are deficient  since  Industrial  and r e q u i r e  nitro-  supplements. o f n u t r i e n t s added i s o f c o n c e r n .  n u t r i e n t s l e a d t o problems as d e s c r i b e d  excess n u t r i e n t a d d i t i o n s  Insuf-  previously,  can a l s o l e a d t o d i f f i c u l t i e s .  Some o f t h e s e a r e : (i)  rising the  sludge  (denitrification  r e a c t o r , where NOj  a n d NO^  N j " gas. w h i c h becomes t r a p p e d causing (ii)  high  poor s e t t l i n g  levels  o f excess nitrogen i n are converted  i n the sludge  to  mass,  i n the c l a r i f i e r ) ,  of nitrogen  and p h o s p h o r u s  i n the f i n a l  e f f l u e n t , which a r e i n excess o f l o c a l p o l l u t i o n control  s t a n d a r d s and w i l l  f e r t i l i z e r e c e i v i n g waters,  and (iii)  higher  costs  storage costs  than necessary  and c h e m i c a l  costs f o r  equipment and o p e r a t i n g  factor that  o f the a c t i v a t e d sludge process.  activity The  feeding  capital  f o r the purchase o f chemicals).  Temperature i s another ciency  (both  generally  decreases with  temperature e f f e c t  c r i b e d by t h e m o d i f i e d  a f f e c t s the e f f i Biological  decreasing  on t h e r e a c t i o n r a t e Arrhenius  metabolic  temperature. i s usually  equation (22):  des-  8  K where K, K  20  e  Other sludge  c o n s t a n t a t temperature  reaction  constant at  temperature  pH,  exist.  T  20°C  sensitivity  coefficient  1.056  f o r a temperature  b e t w e e n 20°  1.135  f o r a temperature  b e t w e e n 4° and  affecting  and  a b o v e 1.5  activated  d i s s o l v e d oxygen.  w i t h i n a r a n g e o f 6.5 s h o u l d be  (4)  reaction  factors  age,  (T-20)  e  20  t o 9.0  t o 2.0  G e n e r a l l y , as  (11).  mg/L,  sludge  30°C 2 0°C  sludge performance pH  The  and  s h o u l d be  are  maintained  d i s s o l v e d oxygen  level  for aerobic conditions to  age  decreases,  effluent  quality  worsens. In i n v e s t i g a t i n g vated sludge process, used:  continuous  treatability  three o p e r a t i o n a l procedures  flow,  f i l l - a n d - d r a w , and  uous f l o w s y s t e m i s f a v o u r e d , the  full-scale  data.  process,  s i n c e i t more c l o s e l y  continuous  prone to o p e r a t i n g d i f f i c u l t i e s The  such  and  as c l o g g e d  e q u i p m e n t and  full-scale  t r e n d s and  The  contin-  simulates  and other  i s therefore  a plug-flow,  f o r determining  commonly  the  o f a f i l l - a n d - d r a w system are s i m i l a r  ful  are  tubing  the k i n e t i c s  Batch  acti-  flow r e a c t o r s are  t r o u b l e f r e e system to operate;  system.  the  comprehensive  f i l l - a n d - d r a w method, on  hand, r e q u i r e s f a r l e s s m e c h a n i c a l a much s i m p l i e r  batch.  as w e l l as p r o v i d i n g ' m o r e  However, b e n c h - s c a l e ,  b r e a k d o w n o f pumps.  systems i n v o l v i n g  Also, to that of  r e a c t o r s are only  approximating  design  use-  values.  9  It tying  i s f o r the  i n t o previous  under the  2 - 1.2  been used Previous  The  earliest  s t u d y was  units  f o r BOD  BOD /day/ft tively.  Their  during  by  of  90,  93,  fill-and-draw  Ham  (4).  and  80  1.39  percent  Sludge b u l k i n g  (5.29 ratio  u n i t s were o p e r a t e d on  the  aerobic  treatment  high  Cook and by  aerobic  nutrient  volumetric  additions,  raw  of  leachate  BOD /day/m ) and 5  1.5  kg  proThis  loading  of  a fill-and-draw  process,  a  food-to-  BOD^/day/kg MLVSS. basis.  s t u d i e s were e n c o u r a g i n g , including high  c a u s e d B o y l e and  Although  several  power Ham  require-  to d i r e c t  their project  toward a n a e r o b i c  treatment.  (9)  the  leachate  evaluated  biostabilization  t h i s s t u d y was the  Foree  kg  exceeding  foaming problems,  major t h r u s t of  effect-  3  The  the  remo-  0.087 l b  u n i t never performed  excessively,  5  ments and  BODr.  r e s u l t i n g i n poor q u a l i t y e f f l u e n t .  0.330 l b B O D / d a y / f t  the  5-day  3  3  disadvantages of  leachate"  kg BODg/day/m. )..,. r e s p e c -  month o f o p e r a t i o n .  (F/M)  of  Their  0.019, 0.036, and  s l u d g e age  a t t r i b u t e d t o an  microorganism  performed  "biostabilization  B o y l e and  achieved  1-day  one  the  of  investigation.  known a e r o b i c  blems predominated, was  system, t h a t  (0 . 30 , ' 0 . 58 , and  3  5  importance  Research  loadings  5  the  t r e a t a b i l i t y work  for this  c a r r i e d out  s l u d g e age  ively  leachate  fill-and-draw  method has  vals  above r e a s o n s , p l u s  and  pH  under v a r i o u s conditions.  "medium" s t r e n g t h . were:  treatment of organic  The  loadings,  leachate  used  in  Some c h a r a c t e r i s t i c s o f  " '  10  COD  = 15,800 mg/L  BOD  =  5  pH  7,100 mg/L  =  5.4  BOD :N:P = 100:2.5:0.18 5  Six bench-scale biological daily  ft  3  stabilization  fill-and-draw  nutrient  a e r o b i c u n i t s were u s e d of the leachate.  to evaluate the  Four  a d d i t i o n s a n d a 10-day s l u d g e age (0.044 l b BOD^/day/ An a d d i t i o n a l  5  fill-and-draw  u n i t was r u n a t a 5-day s l u d g e age and t h e l a s t continuous  f e e d system,  failed,  w i t h a 2-day s l u d g e a g e .  determined.  f a i l u r e was c a l c u l a t e d The  from  10-day u n i t s  9 7.6  percent  u n i t was a Both  o f these  a s p r e d i c t e d by t h e o p e r a t i o n a l a n d k i n e t i c  characteristics for  were  systems o p e r a t i n g w i t h v a r i o u s l i m e and  3 o r 0.70 k g BOD /day/m ) .  units  units  The t h e o r e t i c a l  time  t o be 5.3 d a y s .  a l l performed  percent f o r the unit  for the unit with  detention  well.  COD  removals-iwere  f e d l e a c h a t e o n l y , t o 9 8.1  l i m e and n u t r i e n t s  added.  The  BODj. o f t h e e f f l u e n t s were a l l b e l o w 26 mg/L, c o r r e s p o n d i n g to removal  efficiencies  of at least  99.7 p e r c e n t .  The s e t -  tling  p r o p e r t i e s o f t h e m i x e d l i q u o r were v e r y g o o d .  range  o f s l u d g e volume i n d i c e s  the lime supplemented range solids mg/L,  for total  (SVI) was f r o m  units having  suspended  solids  The  39 t o 55, w i t h  the lowest SVI s. 1  (TSS) a n d v o l a t i l e  The suspended  (VSS) i n t h e e f f l u e n t were 39 t o 77 mg/L a n d 24 t o 57 respectively.  11  The trations in  removal were  o f t h r e e m e t a l s was  reduced  h i g h pH's. units  mainly  to  settling  out of  t h e 10-day u n i t s  were and  lower  due  to the  at this  The  removal  Kjeldahl  The  h i g h pH.  that  of the  nutrient  1  Almost  additions  study  produced  kinetics with using  and Qasim  of landfill  dilute  The  pH  magnesium  liquor  i n the  due  removed nutrient  concentrations of  that  some a m m o n i a  TKN  landfill  a bench-scale  strip-  a l l o f the phosphorus  was  masses, and s e t t l e d  sludge.  t h a t w e r e made w e r e  showed  not needed f o r s u c c e s s f u l Palit  mag-  the concentrations f o r the leachate, w i t h  up i n t h e m i c r o b i a l  and F o r e e s  The  d i d o c c u r was  a m m o n i a n i t r o g e n a n d o r t h o p h o s p h a t e . ..> T h e  Cook  at the  precipitation  n i t r o g e n (TKN) w a s  was  The m i x e d  had taken p l a c e .  be t i e d  attributed  significantly.  precipitation  w i t h o u t a d d e d NH^-N, i n d i c a t i n g  ping  of  T h i s was  a n d NO^-N  units.  than  mg/L,  insoluble.magnesium.  Most of the t o t a l  supplemented  10  concen-  w e r e much h i g h e r i n t h e two  n o t h i g h enough t o cause magnesium h y d r o x i d e .  than  and Foree  c o n c e n t r a t i o n s were n o t reduced  as  to  Cook  t h e c a l c i u m as c a l c i u m c a r b o n a t e  was  to less  Iron  to chemical precipitation  Calcium removals  w i t h a pH o f 8.4.  nesium  in  2 40 mg/L  a l l o f t h e 10-day r e a c t o r s .  the high removals  of  from  examined.  that nutrient  i n the  results  additions  found  form of were  treatment of the leachate.  (24) s t u d i e d leachate. leachate continuous  the biological  T h e i r s t u d y was (diluted  COD  = 365  flow activated  treatment conducted mg/L),  sludge  unit.  12  They c o n c l u d e d t h a t an  leachate  a c t i v a t e d sludge plant.  was  encountered  was  suggested that  removal  several  c a n be b i o l o g i c a l l y Poor s o l i d s - l i q u i d  times during  s t a b i l i z a t i o n ) studies  British  Columbia.  The f i r s t  He a t t e m p t e d t o t r e a t h i g h using  very  concentrations  high  i n v e s t i g a t o r was leachate  mixed l i q u o r v o l a t i l e  (BOD,. =  suspended s o l i d s  Provided  k g BODg/day/kg  that  MLVSS,  COD  removals i n c r e a s e d  BODj. r e m o v a l s were p o s s i b l e  times over  10 d a y s .  attributed  this  that  Metal  pH's  (greater than  o f the mixed l i q u o r s . were u s e d .  the n i t r o g e n  8.5)  Uloth and VSS  o f the e f f l u e n t s  The b i o l o g i c a l  indi-  exces-  without  reactors of  a t the U n i v e r s i t y of B r i t i s h  C o l u m b i a , were o p e r a t e d on a f i l l - a n d - d r a w b a s i s . was  detention  a n d p h o s p h o r u s a d d i t i o n s were  and a l l s u b s e q u e n t s t u d i e s  than  BOD^:N:P r a t i o s o f  Analysis  treatment e f f i c i e n c y .  times  Greater  for solids  s i v e a n d t h e r e f o r e , m i g h t be s u b s t a n t i a l l y r e d u c e d impairing  stable  r e m o v a l s were a l s o h i g h .  to the high  100:5:1 or"';lower  F/M  f r o m 9 6.7 t o  99.6 p e r c e n t  concentrations  35000  were m a i n t a i n e d a t s o l i d s d e t e n t i o n  as 10 d a y s .  (by  Uloth (33).  f o r s l u d g e a g e s f r o m 10 t o 60 d a y s . .  this,  enhance  treatability  99.1 p e r c e n t  cated  It  done a t t h e U n i v e r s i t y o f  (8000 t o 16000 mg/L).  operations  short  leachate  strength  r a t i o s w e r e k e p t b e l o w 0.22  as  the experiment.  efficiencies.  aerobic  reactor  separation  the a d d i t i o n o f n u t r i e n t s would  There have a l s o been s e v e r a l  mg/L)  treated i n  complete a f t e r 2 hours f o r t h i s  study.  Settling  13  An  investigation  work o f U l o t h . phosphorus strength  by  Temoin was  requirements  leachate through  the n u t r i e n t  (31) was  a follow-up to  concerned w i t h the n i t r o g e n  f o r the s u c c e s s f u l  ^optimal" s l u d g e age o f 20 ture,  Temoin  loading  100:3.19:0.12 t o 100:5:1.1.  The  varied  most e f f e c t i v e  a c h i e v e d w i t h a l o a d i n g o f 100:3.19:1.11. (21)  o f Temoin's r e s u l t s Two  quors.  was  The  wage t r e a t m e n t p l a n t . (271 mg/L)  zooglealfloe.  As  g l e a l form s t a r t e d sufficiently settling The  two  and  by  The  90%  was  g i v e n 2h  (14).  Columbia These  Nutrient  days  and  temperatures  10% zoo-  loading  were  For 5/this  study,  :  studies o u t by  l e a c h a t e (COD  at the Zapf-Gilje  concurrently.  = 19000  s l u d g e ages r a n g i n g  r a n g i n g from  l o a d i n g s were s l i g h t l y  phosphorus  hours.  s t u d i e s w e r e done  aerobic biostabilization!with  6 t o 25  occurred.  were c a r r i e d  a medium s t r e n g t h  i n a se-  decreased, the  most r e c e n t l e a c h a t e t r e a t m e n t  Graham  Geodermatophi-  When n u t r i e n t  sludge bulking  l i -  sewage  G e o d e r m a t o p h i l i u s and  to predominate.  reduced,  summary  i n the mixed  actinomycete  loading  was  2.  r e a c t o r s with the high  the phosphorus  of B r i t i s h  They t r e a t e d  treatment  never b e f o r e been i s o l a t e d  a l l had  for effluents  University (34)  s e c o n d was  T h i s b a c t e r i a had  loadings  from  a z o o g l e a l f o r m common t o d o m e s t i c  treatment p l a n t s . lius.  a r e shown i n T a b l e  an  tempera-  A partial  m a i n t y p e s o f b a c t e r i a were f o u n d One  With  and o p e r a t i n g a t room  (BOD,_:N:P) was  and  treatment of high  aerobic b i o s t a b i l i z a t i o n . days  the  mg/L) from  5° t o 2 5 ° C .  i n e x c e s s o f BODj-:N:P =  100:5:1.  TABLE 2  (31)  P A R T I A L DATA SUMMARY OF N U T R I E N T R E Q U I R E M E N T STUDY B Y TEMOIN E F F L U E N T CONCENTRATIONS NUTRIENT LOADING OF R E A C T O R BOD :N:P c  Leachate  BODj(mg/L)  TSS (mg/L)  Cr  Fe  Pb  Zn  (mg/L)  (mg/L)  (mg/L)  (mg/L)  Feed  19330  990  0. 365  100:5.03:1.11  82  380  0.050  100:3.98:1.11  55  133  0.033  100:3.19:1.11  36  47  0.035  100:3.98:0.32  300  1805  0.103  100:3.98:0.12  1430  245  0.040  100:3.19:0.12  560  160  0.033  0.167  49.5 .  0.011  1.31  9 .72  0.006  0.630  4.27  0.003  0.295  27. 3  0.023  2.10  13.5  0.005  0.726  0.015  0.543  960 25.2  6.73  15  Zapf-Gilje polishing  then step  a l s o employed a e r o b i c b i o s t a b i l i z a t i o n forh i s first  Graham's s e c o n d  stage  stage b i o s t a b i l i z e d  polishing  as a  effluents.  o f h i s e f f l u e n t s was b y l i m e  precipitation. Removal o f o r g a n i c m a t e r i a l i n t h e f i r s t exceptionally  good, w i t h b e t t e r t h a n  removals.  Metal  the metals  monitored.  ranges  r e m o v a l s were b e t t e r t h a n F o r the temperature  studied, the differences  t o r s were n o t v e r y at  the lowest  filtered  consistent effluent,  was  90% f o r most o f a n d s l u d g e age  particularly  a t the lower  was o b s e r v e d .  The  was  sludge  settling  o f a l l t h e mixed l i q u o r s were h i g h l y v a r i a b l e .  Hence, Z a p f - G i l j e  settled  and 95% COD  The e x c e p t i o n t o t h i s  a g e s , where r e a c t o r i n s t a b i l i t y  a  5  was  i n performance o f the r e a c -  significant.  temperature,  characteristics  99% BOD  stage  and f i l t e r e d  t h e samples  i n order  to obtain  w h e r e a s Graham c o l l e c t e d b o t h  effluents.  Whatman No.. 4  2-hour  filter'paper  used. Zapf-Gilje  effluents residual  found  biological  notofeasible  at high  polishing  a t the lowest  temperature  where 4 5 p e r c e n t BOD,- and 80 p e r c e n t r e d u c t i o n o f some m e t a l found  lime p o l i s h i n g  stage  t e m p e r a t u r e s , due t o t h e low  concentration of biodegradable  only marginal  of the f i r s t  organics.  I t was  investigated  COD r e m o v a l ,  plus a  c o n c e n t r a t i o n s was a c h i e v e d .  t o be e f f e c t i v e ;  d o s a g e s r e q u i r e d were o f t e n v e r y  high.  (9°C),  Graham  however, t h e l i m e  16  2-2  Physical-Chemical  Treatment  2 - 2.1  Chemical P r e c i p i t a t i o n  Chemical p r e c i p i t a t i o n cals and  to a l t e r facilitate  cases  the  itself  their  a d d i t i o n of  d i s s o l v e d and  r e m o v a l by and  suspended  sedimentation.  chemi-  matter  In  some  r e m o v a l i s e f f e c t e d by  entrap-  a p r e c i p i t a t e c o n s i s t i n g p r i m a r i l y o f the  coagulant  (22).  Several leachate  sulfide,  i n v e s t i g a t o r s have c o n d u c t e d c h e m i c a l experiments.  alum, and  coagulation lime.  s t a t e of  Coagulation  i n v o l v e s the  change i s s l i g h t ,  ment w i t h i n  of  the  and  Ho  ferric  chemicals.  at high  chemical  obtained results  and  c h l o r i d e as  The  However, m e t a l and doses.  e t a l . (16)  best  colour No  treatment  used l i m e ,  their precipitation  r e s u l t s were o b t a i n e d  significant  organic  was  f o l l o w e d by  produced.  lime  only  r e m o v a l s were  i n d i c a t e d that a combination of b i o l o g i c a l levels,  and  with  r e m o v a l s were p o s s i b l e  a l a r g e amount o f s l u d g e  to reduce organic  sodium  The treatment  precipitation  was  promising. Various  chemicals  d o s a g e were t r i e d by were:  hydrated  polyelectrolyte,  using various  Cook and  Foree  l i m e , alum, f e r r i c and  Foree concluded  and  effectively  high  c o u l d be  concentration  strength  (9).  of  c o u l d n o t be  The  chemicals  chloride, ferric  sodium h y d r o x i d e .  p e r f o r m e d , Cook and colour  c o m b i n a t i o n s o f pH  From t h e  sulfate,  solids  reduced, but because of  significantly  the  reduced.  total  used  studies  t h a t suspended  soluble organics,  and  the  organic  17  T h o r n t o n and B l a n c l e a c h a t e by c h e m i c a l regard  the  on a low s t r e n g t h l e a c h a t e  u s e o f a l u m and l i m e , w i t h  ed w i t h  sus-  effectiveness.  r e m o v a l s were  At  approxi-  Due t o t h e s u p e r i o r  alum, a l l f u r t h e r t e s t s were  strength leachate  d o s e was  only  effective  From t h e i r  of increased  For this  leachate,  conduct-  of calcium  However, s i g n i f i c a n t  leachate a 9 00  mg/L  concluded  by l i m e  o f lime to r a i s e carbonate  of the  t h e pH f o r t h e p r e -  and m e t a l  removals o f other  and  precipitation.  T h e s e r e d u c t i o n s were a f u n c t i o n o f t h e a l k a l i n i t y  cipitation  also  i n c o l o u r , suspended s o l i d s ,  c a t i o n s c a n be a c h i e v e d  sample and t h e a b i l i t y  was  f o r a 60% r e m o v a l o f s u s p e n d e d  s t u d i e s , T h o r n t o n and B l a n c  substantial reductions  multivalent  (COD = 12923 mg/L)  t o determine the e f f e c t s  s t r e n g t h on l i m e r e q u i r e m e n t s .  that  involved  lime.  used i n order  solids.  Initial  r e m o v a l o f c o l o u r and  50% f o r a l u m a n d 75% f o r l i m e .  A higher  lime  iron,  (COD = 50 33 mg/L)  suspended s o l i d s  performance o f lime over  with  and c o l o u r .  as a measure o f c h e m i c a l  d o s e s o f 300 mg/L, mately  o x y g e n demand,  magnesium, s u s p e n d e d s o l i d s ,  pended s o l i d s  of  c o a g u l a t i o n and p r e c i p i t a t i o n  t o removals o f b i o c h e m i c a l  calcium, tests  (32) e x a m i n e d t h e t r e a t m e n t  hydroxides.  dissolved solids  and  s o l u b l e o r g a n i c s , which c o n s t i t u t e the major p o r t i o n o f BOD,  were n o t a c h i e v e d Bjorkman;.  by t h e l i m e  treatment.  (3) , a t t h e U n i v e r s i t y o f B r i t i s h  conducted a comprehensive study  Columbia,  on t h e p h y s i c a l - c h e m i c a l  18  t r e a t m e n t and  disinfection  s t u d i e d were:  lime,  alum,  of leachate. ferric  powdered a c t i v a t e d c a r b o n , and chemicals,  three  were t e s t e d as COD  of the  high  coagulation  leachate  110  mg/L  resulted  o f P,  99.98% o f Fe, 39%  o f Pb,  From t h e  0%  and  99.9%  feasible.  coupled  other  tion, is  of  The  of  lime.  using  This  f o l l o w i n g removals:  99.8%  20%  o f Mn,  0%  leachate  I t can  o n l y be  pretreatment  by  o f COD,  26%  o f Na,  98.5%  itself  l i m e , w h i c h a p p e a r s t o be  that does  processes,  t h a t would first.  t h e most f a v o u r a b l e  r e q u i r e d i n such massive dosages t h a t the chemical  not  cost effective i f  r e d u c e o x y g e n demanding m a t e r i a l  g e n e r a t e d w o u l d make t h e  9 7.9%  Zn.  treatment of  a p p e a r t o be  stantially  treatment  of colour,  o f K,  the  mg/L.  overall  the  90%  enhancers.  above i n v e s t i g a t i o n s , i t i s a p p a r e n t  physical-chemical  with  14000  2350 mg/L  and  turbidity,  Supplemental to  settling  the b e s t  in disinfection  of pretreatment o f Cu,  and  o z o n e , f o l l o w e d by  sulfate,  weight s y n t h e t i c polymers  s t u d i e d was  Bjorkman a c h i e v e d  chemicals  chloride, ferric  ozone.  molecular  The  In  raw  addi-  chemical,  c o s t s and  treatment of  sub-  sludge  leachate  a poor a l t e r n a t i v e . Ho the  pH  e t a l . (16) to  9.0  and  added l i m e  11.0,  for leachate  cally  f o r 10  d a y s , as w e l l  cally  f o r 10  days and  For  the  in sufficient  as  other  doses to  pretreated  raise  anaerobi-  samples t r e a t e d  anerobi-  then a e r o b i c a l l y f o r 5 a d d i t i o n a l days.  anaerobically treated leachate,  a lime  dose  of  19  2700 mg/L  was  required to raise  dose, e s s e n t i a l l y COD  complete i r o n  r e m o v a l were a c h i e v e d .  treated  leachate,  essentially Before  a high  a l l of the iron  and  366 mg/L  and  anaerobic-aerobic  logically  For the  anaerobically-aerobically  t h e c o n c e n t r a t i o n s were COD  effluents,  respectively.  investigated  the p o l i s h i n g  r e m o v a l s was  linity,  and t h e t o t a l suspended s o l i d s  d e p e n d e n t upon t h e i n f l u e n t  reduce r e s i d u a l  effluents,  2 - 2.2  high  involves  chelation,  adequate COD,  alka-  and metals  To  i n the b i o required.  and c o a g u l a t i o n by t h e l i m e precipitation,  flocculation  removal o f d i s s o l v e d ,  Adsorption,  com-  and e n t r a p m e n t i n t h e  F o r t h e removal o f heavy  p r i m a r y mechanism i s d i r e c t  metal hydroxides.  adsorption,  c o l l o i d a l , and suspended m a t t e r  w a t e r s and w a s t e w a t e r s .  are  He  Lime-Magnesium P r o c e s s  magnesium p r o c e s s  the  organics  bio-  o f t h e sample.  l i m e d o s a g e s were o f t e n  Chemical p r e c i p i t a t i o n  plexation,  of a  t h e dosage o f l i m e r e q u i r e d t o a c h i e v e  organic  effectively  = 55 8  f o r the anaerobic  s t a b i l i z e d l e a c h a t e by l i m e p r e c i p i t a t i o n .  found t h a t  treated  removed  and 30 p e r c e n t o f t h e COD.  and Fe = 20.0 and 15.0 mg/L,  (14) a l s o  At this  r e m o v a l a n d a b o u t 10 p e r c e n t  l i m e d o s e o f 1400 mg/L  lime p r e c i p i t a t i o n ,  Graham  t h e pH t o 11.0.  precipitation flocculation  of  from  metals, insoluble  and e n t r a p m e n t  t h e i m p o r t a n t mechanisms i n t h e r e m o v a l o f o r g a n i c s .  T h i s removal i s p a r t l y magnesium h y d r o x i d e ,  due t o t h e i n - s i t u p r e c i p i t a t i o n  a gelatinous  f l o e , which aids  of  solids  20  removal as i t s e t t l e s .  In t h i s  cess o f f e r s b e t t e r treatment  way, t h e l i m e - m a g n e s i u m  than  lime treatment  pro-  a l o n e (19,  27) . The magnesium a d d i t i o n salt,  i s i n the form  p r e f e r a b l y magnesium c a r b o n a t e .  magnesium h y d r o x i d e  C0  2  + Ca(OH)  —--• C a C 0 l  2  3  precipitate out. i s very  The f o l l o w i n g e q u a t i o n s  + HO  (5)  Ca(HC0 )  2  + Ca(OH)  2  — -  2CaC0 »  Mg(HC0 )  2  + Ca(OH)  2  —  MgC0  3  3  3  + 2H 0  + C a C O ^ + 2H 0 2  MgC0  3  + Ca(OH)  2  —  Mg(0H) l + CaCO^  MgS0  4  + Ca(OH)  2  -—  Mg(OH) l  + CaS0  CC> a n d HCC> 2  3  magnesium h y d r o x i d e Equations  conversion of a l l the  3  ( i f any p r e s e n t )  concentration  The c o n v e r s i o n o f magnesium b i c a r b o n and c a l c i u m h y d r o x i d e  and c a l c i u m carbonate  (7) and ( 8 ) .  A reaction  such  to precipitated  i s illustrated in  as E q u a t i o n  o c c u r s when magnesium i s n o t added i n t h e f o r m carbonate  coagulant,  t h a t when magnesium c a r b o n a t e  t h e r e i s no i n c r e a s e i n d i s s o l v e d  (9)  o f magnesium  o r i f n o n c a r b o n a t e magnesium/hardness  s h o u l d be n o t e d  (8) (9)  4  t o C 0 ~ a n d E^O b e f o r e t h e OH  ( o r pH) c a n i n c r e a s e .  . . . (7)  . . . . . . .  2  2  (6)  2  E q u a t i o n s • (5) a n d (6) show t h e n e c e s s a r y  It  both  the process (27):  3  ate  will  o f t h e lime-magnesium p r o c e s s  s i m i l a r t o t h a t o f water s o f t e n i n g . summarize  T h i s i s so t h a t  and c a l c i u m c a r b o n a t e  The c h e m i s t r y  o f a magnesium  i s present. i s the  solids.  21  Another carbonate from  strong feature of this  trihydrate  t h e s l u d g e and  process  (MgCO^ 3H 0) and  l i m e c a n be  1  2  recycled.  i s that  recovered  Black et a l . recently  a relatively  simple  and  i n e x p e n s i v e method f o r t h e  o f magnesium  (27).  The  method i n v o l v e s :  moval o f Mg(OH) s l u d g e by solution  ( t o s o l u b l e Mg(HCO^) ),  2  2  c a r b o n a t i o n , the c l a r i f i c a t i o n ( u s u a l l y by  35°to 40°C and precipitates t e r e d and  then  out.  filtration), aeration,  , The  d r i e d . . The  sludge can  Recovery  and  an  economic  factor,  important  sludge handling costs. dewatering  c o u l d be  t u r e o f the Mg(OH) Most e a r l y  2  difficult  of the  primary  MgfHCO^^  heating to  MgCG^-3H 0 2  t h e n be  vacuum  recalcined  a f f e c t i n g both  re-  fil-  to r e lime i s  chemical  and sludge  b e c a u s e o f the g e l a t i n o u s na-  floe.  l a n t s have not been used  o f the lime-magnesium  process  Magnesium compounds as  e x t e n s i v e l y because of t h e i r  However, t h e a d v e n t  i n n o v a t i o n by  the  I f recovery i s not p r a c t i s e d ,  applications  sludge e l i m i n a t i o n  t h e n be  recovery  r e c y c l e o f magnesium and  have b e e n i n w a t e r t r e a t m e n t .  costs.  from  a t which time can  developed  the s e l e c t i v e  f o l l o w e d by  precipitate  cover lime.  magnesium  coaguhigh  o f mandatory w a t e r - s o f t e n i n g  i n many a r e a s and  t h e magnesium  B l a c k e t a l . means a new  low-cost  recovery  source  of  magnesium. Rush  (27)  p u l p and  paper  ducted.  They  reports that  a number o f i n v e s t i g a t i o n s  m i l l wastewater c l a r i f i c a t i o n found  t h a t magnesium h y d r o x i d e  have been formed  in con-  in-situ  22  allowed  much l o w e r  were u s e d a l o n e colour.  i n the  effluents  l i m e t o be  r e m o v a l o f COD,  Rush a l s o f o u n d  Kraft-mill and  doses o f  used than  i f lime  suspended s o l i d s ,  that better decolourization of  c o u l d be  achieved  u s i n g low  magnesium  l i m e c o n c e n t r a t i o n s , as o p p o s e d t o t h r e e t o f i v e  much l i m e  times  as  alone.  Rush o f raw  and  (27)  r e p o r t s DuBose's p i l o t  p l a n t treatment  studies  m u n i c i p a l w a s t e s showed t h a t much g r e a t e r r e d u c t i o n s i n  phosphate,  suspended s o l i d s ,  p e r c e n t more COD bicarbonate that the  and  c o u l d be  c o l o u r , and  removed w i t h  l i m e , r a t h e r than  superiority  a l o n e was  and  of the  ten to  r e c y c l e d magnesium  lime alone.  He  also  lime-magnesium p r o c e s s  e v e n more p r o n o u n c e d w i t h  thirty-  found  over  lime  i n c r e a s i n g wastewater  strength. MacLean  (20)  a p p l i e d lime-magnesium c o a g u l a t i o n t o  remove h e a v y m e t a l s that in  the  effect  o f magnesium was  conjunction with  (19)  s t u d i e d the  w a s t e w a t e r s by  from m u n i c i p a l wastewaters.  low  lime  treatment  2-3  (pH = 1 0 . 0 ) .  lime-magnesium p r o c e s s .  c a t e d t h a t e n h a n c e d r e m o v a l , due was  found  most s i g n i f i c a n t when u s e d  r e m o v a l o f trace.;, o r g a n i c s  the  He  from His  to the presence  Leung  municipal results  indi-  o f magnesium,  minimal. Other Treatment Processes  and  While aerobic b i o s t a b i l i z a t i o n precipitation  and  examined i n t h i s  c o a g u l a t i o n are investigation,  Methods and  the  lime-magnesium  the o n l y treatment  i t i s important  to  processes recognize  23  that  t h e r e a r e a number o f o t h e r t r e a t m e n t  available.  The  investigations  following i s a brief of these  alternative  alternatives  synopsis of leachate  previous  treatment  processes. Boyle treatment  and  Ham  o f raw  (4)  and  Poorman  leachate.  (25)  Although  studied  reasonably  ment e f f i c i e n c i e s were o b t a i n e d , h i g h r e s i d u a l (165  to  3000 mg/L)  necessary  indicated  t o meet a p p r o p r i a t e d i s c h a r g e  Physical-chemical discussed be  further effluent  treatment  i n the p r e v i o u s  a viable  alternative  values  treatment  T h e s e do n o t  for treating  removed by  BOD,,  treat-  was  levels.  raw  removal.  activated  appear  to  l e a c h a t e , because  organics  can  16,  c o s t e f f e c t i v e n e s s would probably  18),  be  good  schemes have a l r e a d y b e e n  section.  o f p o o r o x y g e n demanding m a t t e r  anaerobic  Although  carbon  soluble  absorption rule this  (9,  process  out. Boyle treatment found  and of  Ham  (4) and  leachate with  Temoin  (31)  domestic  sewage.  that leachate additions of at least  ( l e a c h a t e COD  =  10000 mg/L)  aeration plant, without  c o u l d be  seriously  sewage i n p r o p o r t i o n s v a r y i n g f r o m volume o f l e a c h a t e p l u s sewage. t h e combined w a s t e w a t e r s was  combined  Boyle  and  5 p e r c e n t by  a d d e d t o an  mg/L)  0 t o 20  Very  with  found.  volume  quality.  domestic  percent of  effective  Ham  extended  impairing effluent  Temoin combined l e a c h a t e (BODj. = 19 330  all  looked at  total  treatment  of  24  CHAPTER 3 EXPERIMENTAL SYSTEM AND METHODS  3 - 1  L e a c h a t e Source and C h a r a c t e r i s t i c s The  five  l e a c h a t e used i n t h i s  o f sixteen simulated  University  of British  of a long-term tion  Columbia.  T h i s p r o g r a m was i n i t i a t e d Department o f C i v i l watering The  five  These l y s i m e t e r s a r e p a r t  o f leachate  and o t h e r  was d i s c o n t i n u e d .  H, R, T, W, a n d X) p r o d u c i n g t h e  s t r e n g t h l e a c h a t e s were w a t e r e d  of  t o generate  The  watering  twice  stored  at  r a t e o f 5.65 I m p e r i a l  per year.  i n 20 l i t r e  biological all  enough l e a c h a t e  f o r 2% weeks i n J u n e  for this gallons  a week was e q u i v a l e n t t o 90 i n c h e s  pitation  polyethylene  investigation.  (25.7 l i t r e s )  (2 30 mm)  L e a c h a t e was c o l l e c t e d  activity.  parameters.  A t t h e e n d o f J a n u a r y \. <•  o f the l y s i m e t e r tanks (tanks  precipitation,  i n 19 71 b y D r . R.D. Cameron o f t h e  Engineering.  tanks  time,  highest 19 79  from  or "lysimeters" at the  o f leachate with  material, recycling  1979,  landfills  was g e n e r a t e d  r e s e a r c h program t o i n v e s t i g a t e t h e produc-  and c o m p o s i t i o n  cover  study  containers  twice  of precia week a n d  a t 4°C t o r e t a r d  When 450 l i t r e s o f l e a c h a t e w e r e  collected,  o f t h e l e a c h a t e was c o m b i n e d , w e l l m i x e d a n d r e - s t o r e d 4°C i n o r d e r  t o have a c o n s i s t e n t wastewater t o use through-  out  the study  period.  are  shown i n T a b l e  3.  The c h a r a c t e r i s t i c s  of this  leachate  25  TABLE 3 LEACHATE  CHARACTERISTICS  PARAMETER  CONCENTRATION*  PH BOD  5-4 8090  5  COD  13000  TSS  460  TVSS  280  TS  6910  TVS  3680  Acidity  as C a C 0  Alkalinity  3  (pH = 8.3)  as C a C 0  (pH = 3.7)  3  C a r b o n - TC -  3160 3820  TOC  3800  N i t r o g e n a s N - TKN  Phosphorus -  2060  172  -  NH  -  N0 -N0  130  3  2  3  total  <0.05 5.3  Cadmium  0.22  Calci'um  495  Chromium  0.08  Iron  955  Lead  0.03  Magnesium  39 .2  Manganese  9.46  Nickel  0.083  Zinc * A l l units  27.0 i n mg/L,  e x c e p t pH.  26  3 - 2  Biological  3 - 2.1  The B i o l o g i c a l  Bench-scale,  daily  r e a c t o r s were u s e d chate.  Treatment  System  Reactors f i l l - a n d - d r a w (or semi-continuous)  i n the f i r s t  stage  treatment  of the lea-  T h e s e r e a c t o r s were e m p l o y e d t o s i m u l a t e a f u l l -  scale,  plug-flow,  The  reasons  Some o f t h e s e (i)  activated  sludge  f o rusing this  process.  t y p e o f s y s t e m a r e many.  factors are:  t h e r e a r e fewer o p e r a t i o n a l problems w i t h draw s y s t e m t h a n w i t h  a continuous  a  fill-and-  flow system.  For  example, pumps a n d t i m e r s c a n m a l f u n c t i o n a n d f l u i d lines (ii)  c a n c l o g up,  the apparatus  was a v a i l a b l e  r e s e a r c h had been c a r r i e d British (iii)  system allows  investigation University 3 - 2.2  of British  The E x p e r i m e n t a l  Nine, were u s e d glass  to previous  10 l i t r e  diffuser  e q u i p m e n t , and  f o r the tying  stones  the necks o f t h e j a r s .  Apparatus t h e i r bottoms  through  Oil-free  f l o w was m a i n t a i n e d  supply  line.  with  removed,  coarse  bubble  them, were p l a c e d i n  a i r was s u p p l i e d t o t h e  r e a c t o r s by t h e l a b o r a t o r y compressed a i r system. air  a t the  Columbia.  Rubber s t o p p e r s , w i t h  fitted  i n of this  research performed  glass jars with  as r e a c t o r s .  leachate  out at the University of  Columbia u s i n g t h i s  using this  since previous  A constant  an a i r r e g u l a t o r on t h e a i r  S i n c e one a i r s u p p l y  line  served  four or five  27  reactors, by  a: v u n i f o r m r a t e o f a i r t o e a c h  adjustable  unit.  screw  clamps  within  the reactors  A schematic diagram  3 - 2.3  cell (T). This  produced  o f f o o d and m i c r o -  reactor  foaming.  i s shown i n F i g u r e 1.  Operation of the Reactors  control  parameters  r e t e n t i o n time  i n this  i n v e s t i g a t i o n were mean  (MCRT) o r s l u d g e a g e ( © ) a n d t e m p e r a t u r e c  The s l u d g e ages i n v e s t i g a t e d were 20, 15, 10 and 5 d a y s . s t u d y o f s l u d g e ages was done a t a m b i e n t  1 9 ° t o 2 4 ° (room  100:3.2:1.1.  temperature),  room t e m p e r a t u r e  monitored  alkalinity,  a control  unit  and t h e con-  r a t e o f 100:5:1 was o p e r a t e d .  included:  pH, COD, TSS, TVSS, TS, and 5  (TC a n d TOC), n i t r o g e n (TKN,  phosphorus,  and a number o f m e t a l s  (Cd, Ca, C r , F e , Pb, Mg, Mn, N i , a n d Zn) i n e f f l u e n t s t h r o u g h Whatman No. 4 f i l t e r Initially  SVI s 1  The  pH, BOD , COD, TSS, TVSS, TS, TVS,  carbon  NH^, and NOj.-NO^) , t o t a l  These  r a t e o f BOD<.:N:P o f  w i t h a s l u d g e age o f 20 days  o f t h e mixed l i q u o r ;  acidity,  a i r temperatures  1 5 ° , 1 0 ° , and 5°C.  t o these units,  loading  5  parameters  loading  In addition  v e n t i o n a l B0D :N:P  TVS  individual  and h e l p e d t o r e d u c e  of a typical  r e a c t o r s had a n u t r i e n t  at  ensured  O p e r a t i o n a l Parameters The  of  t o each  cone-drive s t i r r e r s  m i x i n g and u n i f o r m d i s t r i b u t i o n  organisms  (a)  on t h e a i r l i n e  Mechanical, surface,  complete  r e a c t o r was  filtered  paper.  were a l s o m o n i t o r e d .  s i n c e t h e r e s u l t s were n o t m e a n i n g f u l .  T h i s was abandoned  They r a n g e d  f r o m 25 t o  28  electric motor driven s t i r r e r  volumetric grodua tion  porous glass air d i f f u s e r  rubber stopper  flexible plastic tubing  adjustable screw clamp  o i I - free air  to other reactors  FIGURE I TYPICAL  LABORATORY  REACTOR  29  55;  the l o w e s t SVI's  sludges.  These  pended s o l i d s BOD,,  remained  gical  inhibition  tion  (14, 33,  (1).  of t h e i r  Ash  shown t h a t  n o t done. apparent  biolo-  l i q u o r BOD,,  effluents  test  values.  showed no s i g n o f  01:3).  The  inhibi-  dilutions.) a c c o r d i n g t o S t a n d a r d Methods  d i g e s t i o n procedure  f o r metals  analysis  t a k e n f r o m Methods f o r C h e m i c a l A n a l y s i s o f W a t e r  Wastes  Pre-  to high metal concentrations)  v a r i a b l e mixed  t e s t s were p e r f o r m e d  The Wet  l i q u o r s was  had  ( p r o b a b l y due  i n highly tests  34)  o v e r a wide range o f All  was  suspended.  t e s t i n g on t h e m i x e d  research  (The BOD,,  settling  v a l u e s were low s i n c e much o f t h e s u s -  vious  resulted  corresponded to the worst  laboratory  instruments used  and  for analysis  were: i)  F i s h e r Accumet M o d e l 210  pH M e t e r  f o r pH  determina-  tions, ii)  Y e l l o w S p r i n g s I n s t r u m e n t Co., Oxygen M e t e r  iii) iv) v)  f o r BOD^  I n c . , YSI Model  54  determinations,  S a r t o r i u s M o d e l 2442 b a l a n c e f o r s o l i d s d e t e r m i n a t i o n s , Technicon^Auto.'. A n a l y z e r I I f o r NO^NO^ d e t e r m i n a t i o n s , Bausch  and Lomb S p e c t r o n i c  88  for total  phosphorus  determinations, vi)  P e r k i n - E l m e r 703  Atomic  f o r metals a n a l y s i s , vii)  Jarrell  Ash  810  Absorption Spectrophotometer  and  Atomic A b s o r p t i o n Spectrophotometer  f o r m e t a l a n a l y s i s when h i g h s e n s i t i v i t y was  required.  30  (b)  Acclimation The  bacterial  activated in  sludge  seed used  from  S q u a m i s h , B.C.  for  i n v e s t i g a t i o n was  t h e Mamquam sewage t r e a t m e n t  studies.  MLVSS o f t h e s e e d was a p p r o x i m a t e l y  much h i g h e r t h a n reactors.  I t was f e l t  t h a t by d i l u t i n g  t h e seed, t h e state conditions  T h e r e f o r e , t h e r e a c t o r s were s t a r t e d  2.5 l i t r e s  o f s e e d and 2.5 l i t r e s  r e a c t o r s were t h e n next  13000 mg/L,  t h e e x p e c t e d MLVSS o f t h e e x p e r i m e n t a l  r e a c t o r s would a c c l i m a t e and r e a c h steady faster.  plant  T h i s had a l s o been t h e s o u r c e o f seed  several previous The  i n this  up w i t h  about  water.  The  of d i s t i l l e d  a e r a t e d and s t i r r e d  overnight.  Over t h e  five  days,  t h e amount o f l e a c h a t e f e e d was  increased  daily  ( w i t h t h e e q u i v a l e n t volume o f m i x e d  withdrawn j u s t b e f o r e feeding) u n t i l s p o n d e d t o t h e s l u d g e age o f e a c h A regular operating procedure s e c t i o n ) was t h e n started.  room t e m p e r a t u r e When  corre-  unit. (described  i n the next  f o l l o w e d f o r 24 d a y s b e f o r e t e s t i n g was t o become  and t h e MLVSS t o s t a b i l i z e .  Initially,  (a)).  liquor  t h e volume a d d e d  T h i s was t o a l l o w t h e m i c r o o r g a n i s m s  acclimated  gradually  nine reactor  a t these temperatures  was > c o m p l e t e , t h e  u n i t s were s h u t down a n d t h e c o l d  perature gradually u n i t s were t h e n  up; f i v e a t  a n d f o u r a t 15°C (as d e s c r i b e d i n 3 - 3.1  testing  room t e m p e r a t u r e  u n i t s were s t a r t e d  dropped  t o 10°C o v e r t h r e e d a y s .  a c c l i m a t e d t o the temperature  room temThe  f o r 10 d a y s .  31  By  t h e end o f t h i s  period,  steady state  c o n d i t i o n s were  reached. COD  a n d TVSS o f t h e m i x e d  continually  monitored.  "Stabilized"  were u s e d as an i n d i c a t o r When o p e r a t i o n d u r e was (c)  a t 10°C was  f o r t h e 5°C  After  the i n i t i a l  o p e r a t i n g p r o c e d u r e was  Take l e a c h a t e o u t o f t h e 4°C c o l d  a  regular  This procedure  perature  i n the mixed  con-  d e p e n d e d on what  T h i s was  l i q u o r would  and  loss of solids  Turn o f f mixers 5.0  and  L with d i s t i l l e d  Turn mixers  so t h a t  and  unit.  a i r supply. water  o  the micro-  Top  signi-  liquor, reactors o f f to  to replace evaporation l o s s .  on.  Allow to s e t t l e  liquor  f o r about h a l f  t h r o u g h Whatman No.  appropriate  (NH„) HP0„  tempera-  s t i r r i n g bar to prevent  from the mixed  and a i r b a c k  then f i l t e r  Pipet  the  n o t r e c e i v e a tem-  W i t h d r a w t h e a p p r o p r i a t e volume o f m i x e d each  leave at  shock.)  Scrape r e a c t o r w a l l ficant  room and  f o r up t o an h o u r b e f o r e f e e d i n g  (The t i m e i n t e r v a l  organisms  v)  t h e same p r o c e -  up p e r i o d ,  followed.  t u r e t h e r e a c t o r s were a t .  iv)  conditions.  of:  reactors.  iii)  and TVSS v a l u e s  complete,  5-day s t a r t  room t e m p e r a t u r e  ii)  COD  were  run.  Operating Procedure  sisted  and e f f l u e n t s  of steady state  Daily  daily  i)  used  liquors  volume o f n u t r i e n t  and NH.C1) t o e a c h  unit.  an  4 filter feed  from  hour paper.  (diluted  32  vi)  Add t h e a p p r o p r i a t e (250, day  amount o f l e a c h a t e t o e a c h  reactor  333, 500 a n d 1000 ml t o t h e 20, 15, 10, and 5-  s l u d g e age u n i t s , r e s p e c t i v e l y ) .  When t e s t i n g was r e q u i r e d , from s t e p  ( i v ) was u s e d .  some o f t h e m i x e d  Any f i l t e r e d  liquor  e f f l u e n t n o t used i n  t e s t i n g w a s ; s t o r e d a t 4°C f o r t h e l i m e - m a g n e s i u m  polishing  phase. The  f r e q u e n c y o f t e s t i n g was a p p r o x i m a t e l y t w i c e a week  for  pH, BOD,., COD, TSS, TVSS, TS, a n d TVS.  the  o t h e r monitored parameters  t i o n o f the reactors 3 - 3  testing  procedure  speed r e q u i r e d tion  f o l l o w e d was l a r g e l y  Also  ( 2 0 ) . He u s e d Rush's (27)  rapid mixing,  floccula-  e x a m i n e d were t h e methods a n d d o s a g e s  volumes o f e f f l u e n t  collected  I t was f e l t  each e f f l u e n t ,  that  from t h e b i o l o g i c a l r a t h e r than  a much more c o m p r e h e n s i v e  c o u l d b e done b y c o m b i n i n g effluents  from  addition.  r e a c t o r s were l i m i t e d .  filtered  adopted  and i n v e s t i g a t e d t h e t i m e and m i x i n g  magnesium and l i m e  polish  System  f o r pH s t a b i l i z a t i o n ,  and s e t t l i n g .  The  to  temperature.  methods d e v e l o p e d b y MacLean  r e s e a r c h as a b a s i s  of  was done a t t h e e n d o f o p e r a -  Lime-Magnesium T r e a t m e n t The  the  a t each  The a n a l y s i s f o r  several  effluents.  attempt study  Hence, t h e  f r o m a l l t h e 20, 15 a n d 10-day  reactors  were combined  t o f o r m SAMPLE 1 (low s t r e n g t h ) a n d a l l t h e  5-day r e a c t o r  effluents  All  formed  SAMPLE 2 ( h i g h  strength).  j a r t e s t i n g was done a t room t e m p e r a t u r e on a P h i p p s a n d  B i r d Laboratory  Stirrer.  33  Lime  (Ca(0H)2)  was added  p r o c e d u r e was a d o p t e d b e c a u s e reagent grade Ca(0H) lime s l u r r y . The pH  2  MacLean  gave b e t t e r  Presumably,  l i m e dosages  i n t h e powdered  this  form.  This  (20) f o u n d t h a t dry-  reproducibility  i s due t o s l u r r y  u s e d were s u c h as t o r a i s e  than a  settling.  t h e sample  t o 10.0, 10.7, a n d 11.4. 3 Magnesium was added  p a r e d by d i s s o l v i n g in  as a 10  ++ mg/L Mg  solution,  MgSO^-7H P  1.01 grams o f r e a g e n t g r a d e  100 ml o f d i s t i l l e d  water.  MacLean  2  (20) f o u n d  better  r e m o v a l was o b t a i n e d when c o a g u l a t i o n was p e r f o r m e d Mg  + +  than Mg(0H) . 2  theory so  that  that  Mg  + +  The  i)  follows  the generally  t h e magnesium must be added  i tprecipitates  dosages  sisted  This  "in-situ",  lime-magnesium  F o r each  accepted  i n the ionic  form  f o r optimum r e m o v a l .  coagulation  test  sequence  The  1 litre  duated c y l i n d e r . calculate  beakers, using  One o f t h e s a m p l e s  the Ca(OH)  2  dosage.  10.0, 10.7, o r 11.4. and f i v e  samples a 1 litre  additions  into  were gra-  was m i x e d a t  m o n i t o r e d t o a pH  The l i m e r e q u i r e m e n t was  s u c h d o s e s were m e a s u r e d o u t .  0.0, 1.0, 2.0, 3.5, a n d 5.0 m l o f t h e M g were p i p e t t e d  con-  was u s e d t o  The sample  10 0 rpm a n d t h e pH was c o n s t a n t l y  calculated  used  procedure:  run, a s e t o f 6,3-1.0 l i t r e  measured i n t o  ii)  using  u s e d w e r e 0, 10, 20, 35, a n d 50 mg/L.  o f the following  of  pre-  the remaining f i v e  + +  solution  samples.  These  c o r r e s p o n d e d t o 0, 10, 20, 35 a n d 50 mg/L  Mg^*~, r e s p e c t i v e l y .  The s a m p l e s  were s t i r r e d  for1  34  minute iii)  a t 100 rpm t o d i s p e r s e t h e Mg  ions,  The l i m e a d d i t i o n s were made a n d t h e s a m p l e s g i v e n a 15 m i n u t e  were  r a p i d m i x a t 100 rpm f o r pH  stabilization, iv)  The s a m p l e s period  v)  settling,  supernatants: and a number  settling  trations  the following  a n a l y s e s were done on t h e  pH, BOD , COD, TSS, TVSS, t o t a l 5  o f metals  phosphorus,  ( C d , Ca, C r , F e , Mg, Mn, N i , a n d Z n ) .  Lead  (Pb) was n o t i n c l u d e d  of a l l the f i r s t  minimum d e t e c t i o n  s i n c e t h e Pb c o n c e n -  s t a g e e f f l u e n t s were a l r e a d y  procedure, less  1 litre  o f e a c h s u p e r n a t a n t was a v a i l a b l e  limited  t h e number o f a n a l y s e s w h i c h  Hence, o n l y  alkalinity,  formed  L a c k o f sample  This  c o u l d be p e r f o r m e d . essential  prohibited determinations  TS, TVS, c a r b o n a n d n i t r o g e n  i n the aerobic b i o l o g i c a l  than  f o r testing.  t h e p a r a m e t e r s w h i c h were c o n s i d e r e d  were d e t e r m i n e d .  below  level.  Due t o t h e n a t u r e o f t h e j a r t e s t  of  period  a n a l y t i c a l p r o c e d u r e s f o r t h e s e a n a l y s e s a r e as d e s c r i b e d  previously.  the  were g i v e n a 30 m i n u t e  0 rpm.  After  The  flocculation  a t 15 t o 20 rpm.  The samples at  were g i v e n a 10 m i n u t e  phase).  (which were p e r -  35  CHAPTER RESULTS AND 4 - 1  A c t i v a t e d Sludge  4 - 1.1  Mixed  The Appendix munity, The  4  DISCUSSION  Treatment  Liquor Characteristics  kinetic  coefficients  A, a r e f i x e d  k, K ,  s e t of environmental coefficients  s l u d g e a g e s a r e shown i n A p p e n d i x  s l u d g e ages  it  s t u d y i n T a b l e 4.  ( t h e mean c e l l  temperature,  a n d minimum  F o r comparison,  coef-  ^The c a l c u l a t e d  minimum  r e s i d e n c e time a t which  reactor  were 1.8, 1.8, 4.0, and 5.4  above t e m p e r a t u r e s  temperatures temperatures.  :  than  f o r room  1 5 ° , 1 0 ° , and 5°C, r e s p e c t i v e l y .  Room t e m p e r a t u r e s  ranged  a r e ambient  from  a i r temperatures.  1 9 ° t o 25°C.  The m i x e d l i q u o r .  were f r o m 2 ° t o 5°C -lower t h a n t h e a m b i e n t a i r f  The h i g h e r t e m p e r a t u r e s  ferences between t h e l i q u i d for this  conditions.  o c c u r s , due t o t h e b i o m a s s b e i n g removed./fas t e r  can reproduce)  The  A.  com-  from p r e v i o u s i n v e s t i g a t i o n s a r e i n c l u d e d w i t h t h e  from t h i s  failure  Y, and b , as d e f i n e d i n  g  determinations of the k i n e t i c  values  and K i n e t i c s  f o r a s p e c i f i e d waste b i o l o g i c a l  and a p a r t i c u l a r  ficients  Phase  temperature  and a i r t e m p e r a t u r e s .  difference  p r o v i d e oxygen t o t h e r e a c t o r s . c o o l e d t h e mixed l i q u o r s , heat o f r e s p i r a t i o n .  had t h e g r e a t e s t  i s the compressed The a i r was c o l d  dif-  The r e a s o n a i r used t o and i t  t h u s more t h a n c o m p e n s a t i n g  f o rthe  TABLE 4 KINETIC COEFFICIENTS OF THIS AND PREVIOUS  INVESTIGATIONS  KINETIC COEFFICIENTS INVESTIGATIVE .?'AUTHORS  LEACHATE COD (mg/L)  BASIS FOR KINETIC COEFFICIENTS  k (days "*")  BOD,.  5.0  15800  COD  365  COD  U l o t h (33)  48000  BOD  Z a p f - G i l j e (34)  19250  s o l u b l e BOD..  0.74  This Investigation a t Room Temp.  13000  s o l u b l e BOD,.  This Investigation a t 15°C  13000  soluble  BOD  This Investigation a t 10°C  13000  soluble  This Investigation a t 5°C  13000  Note:  a r e room t e m p e r a t u r e  Typical Activated S l u d g e P r o c e s s (22) Cook a n d F o r e e (9) Palit  a n d Q a s i m (24)  a l l temperatures  Y  K s: (mg/L)  b (days "*")  60  0.6  0.06  0.60  175 -  0.4  0.05  1.8  182 '  0.59  0.115  0. 332  0.0025  19.6  0.374  0.015  1.16  81. 8  0.49  0 .009  1.12  63.8  0.51  0.018  BOD b r  0.51  34.6  0.51  0.006  s o l u b l e BODr-  0.35  17.0  0.55  0.002  0.75  5  r  :  - 21375.  unless stated otherwise.  37  The per in  values  f o r maximum r a t e o f s u b s t r a t e  u n i t w e i g h t o f m i c r o o r g a n i s m s , k, a r e l o w e r a typical  due, cal  inhibition.  rates  biologi-  with  decreasing  since biological reaction  per unit weight o f c e l l s  a l s o decreased  The  with  growth y i e l d  temperature.  t h e maximum, T h i s i s due  temperature. coefficient,  Y, i n c r e a s e d w i t h  T h i s i s because a t lower ( w i t h no s o l i d s  s u b s t r a t e was u t i l i z e d . philic  i s one-half  d e c r e a s i n g temperature.  MLVSS's were m a i n t a i n e d  decreas-  temperatures,  higher  r e c y c l e ) and l e s s  T h i s c o u l d be due, i n p a r t , t o p s y c h r o -  o r g a n i s m s b e c o m i n g more d o m i n a n t as t e m p e r a t u r e d e -  creased.  Table  of the leachate The This  causing  The v a l u e o f k a l s o d e c r e a s e d  to k decreasing with  ing  This i s probably  concentrations  T h i s was e x p e c t e d ,  that  s u b s t r a t e c o n c e n t r a t i o n when t h e r a t e o f s u b s t r a t e  utilization g  process.  than  s l o w down a s t e m p e r a t u r e i s l o w e r e d . The  K ,  a c t i v a t e d sludge  i n p a r t , t o high metal  temperature.  all  utilization  4 a l s o i n d i c a t e s Y i s d e p e n d e n t on t h e s t r e n g t h feed.  endogenous d e c a y c o e f f i c i e n t s ,  i s the case of the c e l l s  f o r most h i g h  strength leachates  are i n the log-growth  amount o f o r g a n i c s  available).  b, a r e q u i t e low.  phase  since  almost  (due t o t h e l a r g e  T h u s , t h e r e i s no h e e d f o r  auto-oxidation to occur. Mixed twice  l i q u o r pH, COD, and s o l i d s were m o n i t o r e d  a week t h r o u g h o u t  presented  i n Table  5.  the i n v e s t i g a t i o n .  about  The r e s u l t s a r e  No m i x e d l i q u o r BODj. a n a l y s e s  were  TABLE 5 MIXED LIQUOR CHARACTERISTICS REACTOR DESCRIPTION c  Room Temp.  15  10  5  COD  PH  9 (days)  T(°C)  TSS  (mg/L)  (mg/L)  TVSS  TS  (mg/L)  (mg/L)  (mg/L)  TVS  (days )  F/M -1  20*  8.3  4700  5940  3630  7050  3620  0.111  20  8.6  4480  5980  3490  6660  3400  0.116  15  8.6  4730  5820  3470  6560  3390  0.155  10  8.6  5030  6240  3650  6960  3600  0.222  5  8.5  5810  6540  4000  7420  3930  0.405  20  8.5  4900  6050  3690  6610  3640  0.110  15  8.5  5000  5750  3430  6710  3550  0.157  10  8.5  5200  5940  3520  6990  3840  0.2 30  5  8.4  6200  6250  3790  7560  4190  0.427  20  8.6  5380  6070  3810  7010  4040  0.106  15  8.7  6050  6530  3860  7360  4100  0.140  10  8.7  6540  6960  4220  8300  4800  0.192  5  . 8.5  6880  6300  4040  7050  4450  0.400  20  8.5  6310  6580  4070  7420  4300  0.099  15  8.4  6590  6820  4350  7670  4490  0.124  10  8.4  10460  7300  4790  7970  4770  0.169  5  8.3  6710  6240  4320  7710  4910  0.375  * reactor n u t r i e n t loading B0D :N:P = 100:5:1, a l l others are 100:3.2:1 5  Note:  the figures presented are mean values obtained from 2 to 4 analyses. As a t y p i c a l example of the ranges obtained, the ranges of the 10-day, 15°C reactor were: pH = 8.4 to 8.5, COD=4840 to 5470 mg/L, TSS = 5710 to 6270 mg/L, TVSS = 3200 to 3770 mg/L, TS = 6740 to 7310 mg/L, and TVS = 3390 to 3940 mg/L.  39  performed  since previous investigations  that b i o l o g i c a l mixed  inhibition  s l u d g e age f r o m 0.59  solids  solids  t o 0.65  The  started  and  5°C.  on  mixed  This  duration  i n Figure  The  2.  and  As  room  suspended  c a n be  seen i n  lower temperatures,  most d r a m a t i c c h a n g e  i s e x p l a i n e d by  the f a c t  that  a t 5°C was  As  the  was  the pre-  calculated  a c c l i m a t i o n o f t h e sewage s l u d g e t o o k a b o u t 2 weeks, s e v e r e f o a m i n g p r o b l e m s  l i q u o r s were e n c o u n t e r e d . of t h i s  5-day s l u d g e age Temperature  the f i n d i n g s and C a r l s o n  this  time,  4  of a l l  f o r the  persisted only  i n the  reactors. acclimation, complete  o f Graham (2).  After  study, foaming problems  and MLVSS, was  as measured by m i x e d  within  two  weeks.  (14), Z a p f - G i l j e  B e n e d i c t and C a r l s o n  ration  r a t e p e r gram o f b i o m a s s  steady  state  solids  liquor  This  confirms  ( 3 4 ) , and B e n e d i c t used endogenous  respi-  as t h e i n d i c a t o r  of  conditions.  The s e t t i e a b i l i t y o f t h e m i x e d problems  (14) and  volatile  t h e minimum s l u d g e age  F o r the f i r s t  the mixed  decreased from  liquor  to drop.  increased  days.  Cultural weeks.  TVSS/TSS r a t i o  t h e v e r g e o f "washout" c o n d i t i o n s .  stated,  5.4  increased with decreasing  The  a t t h e l o w e s t s l u d g e age  r e a c t o r was viously  levels  as t h e t e m p e r a t u r e  t o 5°C.  levels  5 days  tling  h a v e shown  made a c c u r a t e d e t e r m i n a t i o n o f  temperature.  (MLVSS) a r e p l o t t e d  F i g u r e 2,  t o be  a l l solids  and/or  temperature  COD  34)  l i q u o r BODj. i m p o s s i b l e . In g e n e r a l ,  at  (14, 33,  l i q u o r s was  poor.  a l s o o c c u r r e d i n the i n v e s t i g a t i o n s  Zapf-Gilje  (34).  Zapf-Gilje  by  SetGraham  used documentation  from  5000  30001—J 5  :  " 10 SLUDGE  AGE,  ' 15 6 (days)  ' 20  C  o  FIGURE 2 MLVSS VERSUS SLUDGE AGE  41  literature the  t o argue t h a t t h e sludge  fill-and-draw process.  effluent Graham No.  comparable t o t h a t o f a continuous  4 filter  paper.  This author  The Whatman No. 4 f i l t e r coarse  4 - 1.2  solid All  except  and g e l a t i n o u s  c  = 5-day  filter  was s t i l l COD  with  9 7.7  5  BOD^  levels,  r a t h e r than  by  largely  t h e COD  levels  by a t l e a s t  higher  total  of the 0  than  of organics  temperature.  percent,  Although  percentage  their remo-  solids,  paper.  removal  = 5 days  r a t e s o f suspended  occurred. solids Once  This  being again,  was  filtered out t h e 5-day  temperatures,  exhibited  rates.  the general and s o l i d s  c  As  the rest.  removal  due t o s u s p e n d e d  lower  As e x p e c t e d , rates  levels  age r e a c t o r s , a t t h e two l o w e s t  substantially  9 9.4  f r o m 9 8.9 t o 9 3.2 p e r c e n t .  much h i g h e r  t h e Whatman No. 4 f i l t e r  sludge  COD,  percent.  Of t h e s o l i d s ,  probably  speed and  o f BOD^,  r e a c t o r s a t 5° a n d 1 0 ° C .  r e a c t o r s were s i g n i f i c a n t l y  solids,  procedure.  study.  removal rates ranged  t h e BOD  Whatman  precipitates.  BODY'S were c o n s i d e r a b l y h i g h e r , t h e minimum val  through  M a t e r i a l and S o l i d s  m a t e r i a l from t h i s  the 9  flow reactor,  f o l l o w e d t h e same  6 shows t h e r e m o v a l e f f i c i e n c i e s  r e a c t o r s reduced  t o o b t a i n an  filtration  paper has a high  Removal and Organic  Table and  Hence, i n o r d e r  and Z a p f - G i l j e used g r a v i t y  retains  b u l k i n g i s an e f f e c t o f  t r e n d was d e c r e a s i n g with decreasing  sludge  removal age and/or  However, o f t h e c o n d i t i o n s i n v e s t i g a t e d (sludge  TABLE 6 ORGANIC MATERIAL  (IN TERMS OF BOD,-  AND COD) AND SOLID MATERIAL  CONCENTRATION (IN EFFLUENTS) AND REMOVALS REACTOR DESCRIPTION T 6 c (days) <°C) Leacha te Feed RT  15  10  5  J  mg/L  TSS  COD  BOD..  mg/L  %  REMOVAL  %  TVSS  mg/L  %  460 4  99.1  98.7  8  98.5  10  209  98.4  11  365  97.2  22  7 >99 .9  216  98.3  7  9  99.9  252  98.1  16  20  99.8  271  99.4  462  97.9 96.4  18  51  23  20  9  99.9  201  98.5  15  16  99. 8  215  98.3  10  17  99.8  308  5  112  98. 6  633  20  14  99.8  15  20  99.8  8090  13000  %  mg/L  280  %  %  REMOVAL 3680  6910 98.6  1660  76.0  420  88.6  98.3  5  98.2  1080  84.4  280  92.4  97.8  6  97.9  1060  84. 7  290  92.1  97.6  6  97.9  1040  84.9  290  92.1  9 5.2  11  96.1  1340  80.6  490  86.7  98.5  7  97.5  1050  84.8  290  92.1  96.5  9  96.8  1150  83.4  320  91. 3  96.1  8  97.1  12 30  82.2  330  91.0  95.0  14  95.0  1340  80.6  480  87.0  9  98.0  6  97.9  1080  84.4  300  91. 8  6  98.7  5  98.5  1080  84.4  310  91.6  97.6  8  98.3  5  98.5  1100  84.1  350  9 0.5  95.1  55  88.0  36  87.1  1480  78.6  660  82.1  270  97.9  14  97.0  8  97.1  1140  83.5  400  89.1  317  97.6  8  98.3  5  98.5  1150  83.4  420  88.6  1240  82.1  500  86.4  1780  74.2  840  77.2  148  98.9  20  9  99.9  173  15  11  99 .9  200  10  25  99.7  5  44  99 .5  20 15 10 5  10  42  99.5  425  5  188  97.7  888  96.7 93.2  23  95.0  10  96.4  148  67.8  72  74.3  * reactor n u t r i e n t loading BOD :N:P = 100:5:1, a l l others are 100:3.2:1.1 5  Note:  mg/L  REMOVAL  REMOVAL 4  7 >99.9  20*  mg/L  REMOVAL  REMOVAL  TVS  TS  the concentration figures presented are the mean concentrations obtained from 2 to 4 analyses. As a t y p i c a l example of the ranges obtained, the ranges of the 10-day, 15°C reactor were: BOD = 15 to 24 mg/L, COD = 245 to 310 mg/L, TSS = 13 to 22 mg/L, TVSS = 4 to 10 mg/L, TS = 1090 to 1440 mg/L, and TVS = 286 to 362 mg/L. 5  43  ages  f r o m 5 t o 20 days  perature)  the o v e r a l l  exceptions occurred 5 ° a n d 10°C.  Even  of  W  removal  r a t e s were v e r y s i m i l a r ; t h e  f o r t h e l o w e s t s l u d g e age r e a c t o r s a t though  washout c o n d i t i o n s , still  a n d t e m p e r a t u r e s o f 5 C t o room tem-  t h e s e two r e a c t o r s were a p p r o a c h i n g  they performed s u r p r i s i n g l y w e l l .  h a d an a v e r a g e BOD^ r e m o v a l o f 9 8 p e r c e n t , COD  94 p e r c e n t , a n d s o l i d s  control objectives streams, r i v e r s ,  removal  r e m o v a l o f a b o u t 75 p e r c e n t .  The most s t r i n g e n t o f t h e B r i t i s h  to  They .  Columbia  pollution  (10) ( L e v e l AA, r e c e i v i n g w a t e r s a r e  and e s t u a r i e s w i t h d i l u t i o n  200:1) a l l o w s e f f l u e n t BOD  r  ratios  f r o m 20  = 30 mg/L a n d SS = 40 mg/L.  3  All  effluents,  e x c e p t f r o m t h e two r e a c t o r s n e a r w a s h o u t ,  met o r were c l o s e  t o these  guidelines.  The Whatman No. 4 f i l t e r effluents  retains  sludge b u i l d s  particles,  field  conditions  system.  under  field  i n a continuous flow a c t i v a t e d  on s l u d g e filunder  sludge  i n order to obtain effluent of a quality  as p o s s i b l e  conditions,  t o t h a t which would  the f i l t e r f o rthis  was  t o allow s e v e r a l hours o f s e t t l i n g due t o t i m e c o n s t r a i n t s  anaerobic "conditions.  be o b t a i n e d  p a p e r was c h a n g e d  only other a l t e r n a t i v e  'of  solids  out i n a c l a r i f i e r  The  feasible  impingement  As  Some o f t h e t h e s e s o l i d s  probably not s e t t l e  Therefore,  as c o m p a r a b l e  p a p e r , more a n d more  o u t due t o s t r a i n i n g ,  and f l o c c u l a t i o n .  t e r e d o u t would  filter  c o a r s e and g e l a t i n o u s p r e c i p i t a t e s .  up on t h e f i l t e r  would be f i l t e r e d  paper used t o g r a v i t y  poor s e t t l i n g time.  frequently.  mixed  liquor  T h i s was n o t  and t h e po'ssible  development  44  As sible on  a check t o a s c e r t a i n t h a t f i l t r a t i o n  f o r the high removal r a t e s o b t a i n e d ,  filtered  effluents  mixed l i q u o r s collected results in  to settle  o b t a i n e d by a l l o w i n g t h e  f o r 2 hours.  a t t h e same t i m e  These e f f l u e n t s ;  are tabulated i n Table  (31) and Graham  2 t o 4 times  higher  7.  Generally, the differences  (14) f o u n d than  settled  filtered  0.2 p e r c e n t . that  the f i l t e r i n g  In o r d e r level,  procedure  BOD  5  (for the  BOD^'s were w i t h i n  used i s q u i t e acceptable  i n the  study.  the c h a r a c t e r i s t i c s  a n d t h e MLVSS l e v e l s  studies  e f f l u e n t BOD's t o  minor d i f f e r e n c e s , i t i s f e l t  to determine the e f f e c t s  Since  o f 2.3 p e r c e n t .  The d i f f e r e n c e s i n r e -  and s e t t l e d  a s u i t a b l e b a s i s o f comparison  used.  chates  filtered  I n view o f these  context of t h i s  of the nutrient loading to other  s t u d i e s must  and s t r e n g t h o f t h e l e a -  i n the previous  leachate  treatment  v a r i e d g r e a t l y , t h e most r e l e v a n t p a r a m e t e r i s t h e  food-to-microorganism son  The e x c e p t i o n was  effluent  r e a c t o r s which performed e f f e c t i v e l y ) . moval r a t e s o f these  were  f r o m t h e r e a c t o r s a t 5°C., The  t h e 5-day r e a c t o r , w h i c h h a d a d i s c r e p a n c y  Temoin  be  COD t e s t s were r u n  r e m o v a l r a t e s were w i t h i n 0.5 p e r c e n t .  for  be  and e f f l u e n t s  was n o t r e s p o n -  (F/M) r a t i o .  Table  8 presents  a  compari-  o f o x y g e n demanding m a t e r i a l r e m o v a l o f a number o f a e r o b i c  biostabilization F/M r a t i o s  studies, with  ( a t room  From T a b l e  v a r i o u s n u t r i e n t l o a d i n g s and  temperature).  8, i t i s d i f f i c u l t  t o draw c o n c l u s i o n s o f t h e  e f f e c t on t h e removal o f o r g a n i c m a t t e r by t h e n u t r i e n t l o a d ing  level.  nutrient  From t h e l i m i t e d  l o a d i n g has l i t t l e ,  data  available,  i f any, e f f e c t  i t appears  that  on t h e o r g a n i c  TABLE  7  COMPARISON OF COD V A L U E S OF F I L T E R E D E F F L U E N T S AND TWO-HOUR S E T T L E D E F F L U E N T S FROM THE REACTORS AT 5 ° C SLUDGE AGE, day s  COD OF E F F L U E N T S FILTERED S E T T L E D FOR 2 HOURS mg/L % REMOVAL mg/L % REMOVAL  20  294  97.7  15  342  10 5  .  338  97.4  97.4  398  96.9  465  96.4  521  96.0  914  93.0  1212  90.7  TABLE 8 COMPARISON OF OXYGEN DEMANDING MATERIAL REMOVALS UNDER VARIOUS NUTRIENT LOADINGS AND F/M RATIOS NUTRIENT LOADING, BOD :N:P  F/M, kg BOD /day  Cook and Foree (9)  100:3.9:0.18  0.161  100:11:1.6  Uloth (33)  100:5:1.3  Temoin (31)  INVESTIGATIVE AUTHORS  Graham (14) This Investigation  Note:  kg MLVSS  SLUDGE AGE, days  EFFLUENT BOD,. %  EFFLUENT COD %  mg/L  REMOVAL  10  26  99.6  0.141 0.119  10 20  10 32  100:3.19:0.12  0.148  20  56  99 .7  569  98.1  100:3.98:0.12  0.137  20  85  99.6  1162  96.2  100:3.98:0.32  0.124  20  28  99 .9  585  98.1  100:3.19:1.11  0.117  20  14  >99.9  476  98.4  100:3.98:1.11  0.123  20  26  99 .9  335  98.9  100:5.03:1.11  0.119  20  44  99.8  273  99.1  100:5:1  0.174  20  6  >99.9  300  98.4  100:5:1  9 6  20  99.9  470  97.6  100:5:1  0.345 0.487  26  99.8  580  97.0  100:5:1  0.175  25  4  >99.9  331  98.3  100:5:1  0.293  15  10  99.9  352  98.2  100:5:1  0.111  20  7  >99.9  148  98.9  100:3.2:1.1  0.116  20  9  99.9  173  98.7  100:3.2:1.1  0.155  15  11  99.9  200  98.5  100:3.2:1.1  0.222  10  25  99.7  209  98.4  100:3.2:1.1  0.405  5  44  99.5  365  97.2  5  Zapf-Gilje (34)  5  REMOVAL  360  97.6  99.9  310  98.0  99.9  594  98.8  Cook and Foree's and Uloth's effluents are s e t t l e d e f f l u e n t s . A l l others are f i l t e r e d e f f l u e n t s . A l l reactors were at room temperature.  mg/L  47  removal e f f i c i e n c y rus l e v e l s .  A much more c o m p r e h e n s i v e  range o f l o a d i n g s , loading  o f t h e p r o c e s s , e x c e p t a t v e r y low  levels  c a n be made.  and w i t h e m p h a s i s  study, covering  on t h e l o w e r  include  the e f f e c t s  conclusions  of nutrient  and t h e minimum l o a d i n g  l e v e l before process e f f i c i e n c y  paired.  of these t e s t s  Also,  a series  various organic the e f f e c t  loading  of nutrient  levels loading  a wider  nutrient  i s r e q u i r e d b e f o r e more d e f i n i t i v e T h i s would  phospho-  loading i s im-  s h o u l d be c o n d u c t e d a t  o r s l u d g e ages  t o determine i f  changes  changes.  as F/M  and S h r o e d e r  (29) and S i k e s  the n u t r i e n t  requirements o f a f o o d - p r o c e s s i n g wastewater  a Kraft-mill  e f f l u e n t were a f u n c t i o n o f t h e s l u d g e  4  1.3  and N i e m i n e n  Sherrard  activated  factors  sludge process.  affect  factors.  be  divided  moval,  dissolved  oxygen  concentration,  sical  and c h e m i c a l f a c t o r s  ture,  pH,  valency,  into  plant and  O p e r a t i n g parameters which have been  m e t a l r e m o v a l a r e S V I , s l u d g e age,  suspended  and s e t t l i n g  a f f e c t i n g metal removal  c o n c e n t r a t i o n o f complexing factor  e x t r a c e l l u l a r polymers  solids  re-  time.  Phy-  are  tempera-  metal  a g e n t s , and p a r t i c l e  i s the c o n c e n t r a t i o n  of  size.  bacterial  (5).  The m e t a l r e m o v a l e f f i c i e n c i e s a r e p r e s e n t e d i n T a b l e 9. the ranges  biolo-  shown t o  metal ion concentration, metal s o l u b i l i t y ,  main b i o l o g i c a l  metals.  age.  or chemical factors,  affect  in  and  the removal o f metals i n the  T h e s e may  o p e r a t i n g parameters, p h y s i c a l  The  that  Removal o f M e t a l s  Many d i f f e r e n t  gical  (30) h a v e f o u n d  In g e n e r a l ,  s t u d i e d , had minimal  However, s i m i l a r  o f the b i o l o g i c a l  reactors  t e m p e r a t u r e and MCRT,  effect  to the organic  on t h e r e m o v a l removal  of  discussed  TABLE 9 METAL REMOVAL E F F I C I E N C I E S REACTOR DESCRIPTION T(°C)  © (days)  R.T.  20*  10  5  * reactor  PERCENT REMOVAL OF THE METAL Ca  Cr  Cd >9 8.2  66.3  91.3  >99.9  20  >98 .2  88.2  87.5  15  >98.2  91.3  10  >98.2  5  Mg  Mn  Ni  Zn  >80.0  35.8  97.3  71.1  99 .7  99.8  >80.0  48 .6  99.0  69.9  99.7  86.3  >99 .9  >80 .0  52.7  99 .4  66.3  99.7  92.0  82.5  >99.9  >80.0  47.3  98 . 8  59.0  99 .6  >98.2  93.0  81. 3  99.3  >80.0  47.1  98.0  51.8  98.8  20  >98.2  87.7  87.5  >99.9  >80.0  50.6  98.5  65.1  99.7  15  >9 8. 2  89.2  86.3  >99.9  >80.0  49 .4  98.3  38.6  99.2  10  >9 8.2  89.9  81.3  >99.9  >80.0  42.7  97.7  56.6  99 .4  5  >9 8.2  90.9  62.5  99.4  >80.0  41.7  96.2  51.8  98.8  20  >98 .2  89.6  82 .5  >99.9  >80 .0  41.4  98.5  53.0  99.4  15  >98 .2  91.1  82.5  >99.9  >80.0  45.5  98.7  48.2  99 .5  10  >98 .2  90.6  81.3  >99 .9  >80.0  41.7  98.4-  54 .2  99.4  5  73.6  88.4  77.5  97.7  >80.0  35.3  94.9  47.0  96.1  20  95.6  89.9  81.3  >99.9  >80.0  43.5  98.1  51.8  99 .5  15  95.6  90.8  77.5  >99.9  >80.0  43.5  98.4  53.0  99 .7  10  95.6  89.1  78.8  99 .6  >80.0  36.6  97.9  42.2  99.3  5  73.6  88.3  72.5  97.2  >80.0  32.5  93.1  27.7  96.0  c  15  OF THE BIOLOGICAL REACTORS  nutrient loading  Fe  Pb  BOD,-:N:P = 100:5:1, a l l o t h e r s  a r e 100:3.2:1.1  49  earlier, the  s e v e r a l metal  r e m o v a l s were s i g n i f i c a n t l y  5-day s l u d g e age r e a c t o r s  cadmium, i r o n , centrations The  a t 1 0 ° and 5 ° C .  manganese, a n d z i n c .  appear  dependent  p e r c e n t removals  ranged  and T = room t e m p e r a t u r e  largely  excellent  Chromium and n i c k e l  o f most m e t a l s  f o r the metals.  by t h e s l u d g e , w i t h s u b s e q u e n t A l s o , because  the metals  removal.  extracellular  This  o f h i g h pH l e v e l s  resulted  chemical p r e c i p i t a t i o n  and t h e s t r i c t e s t  c o n t r o l board  are not included,  (10).  temperature 99.9  uptake  settling. metal  probably occurred.  t h e pH was n o t h i g h o f magnesium h y d r o x i d e .  then n e a r l y  a l l operating  usually  objectives  of the l o c a l close  conditions. exceed  Only  the o b j e c t i v e s ;  a r e met  a n d magneand even  t h e low s l u d g e age a n d / o r  A l t h o u g h most i r o n  percent, the very high i r o n  iron  pollu-  t o washout  a l l o f the objectives  o c c u r r e d under  conditions.  concentrationsof  I f t h e two r e a c t o r s  sium c o n c e n t r a t i o n s g r e a t l y then, t h i s  i n metal  i n t h e mixed l i q u o r ,  T a b l e 10 p r e s e n t s t h e r e s i d u a l m e t a l  under n e a r l y  acted  a n a l y z e d , magnesium h a d t h e l o w e s t p e r c e n t a g e  enough t o c a u s e  tion  polymers  groupings that  removal by s l u d g e  The r e a s o n f o r t h i s was t h a t  the e f f l u e n t s  = 5 days and  i s p r e s u m e d t o be  h y d r o x i d e and m e t a l c a r b o n a t e p r e c i p i t a t i o n Of  c  days  As f o u n d by o t h e r r e s e a r c h e r s  p r o v i d e d many f u n c t i o n a l  sites  con-  respectively.  (5, -7, 9, 3 4 ) , h i g h m o l e c u l a r w e i g h t  as b i n d i n g  20  c  t o 72.5 a n d 2 7.7 a t 9  removal  included  f r o m 87.5 and 69.9 a t G =  due t o two mechanisms.  of the b i o f l o c  These  on s l u d g e age and t e m p e r a t u r e .  T = 5°C f o r chromium and n i c k e l , The  lower f o r  removals  concentration  exceeded  (955 mg/L) i n  TABLE 10 METAL CONCENTRATIONS  OF THE AEROBICALLY BIOSTABILIZED EFFLUENTS  REACTOR DESCRIPTION T(°C)  0 (days) c  Leach? i t e F e e d R.T. 20* 20 15 10 5 15 20 15 10 5 20 10 15 10 5 20 5 15 10 5 PCB** 1  METAL CONCENTRATION Cd  Ca'  0.22 <0.004 <0.004 <0 .004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 0.058 0.009 0.009 0.009 0.058 0.005  495 167 58.2 43.0 39.8 34.8 60. 7 53.3 49.9 45.2 51.4 44. 3 46.5 57.6 49.9 45.3 54.0 57.9  Cr 0.08 0.007 0.010 0.011 0.014 0.015 0.010 0.011 0.015 0.030 0.014 0.014 0.015 0.018 0.015 0.018 0.017 0.022 0.1  Fe  * r e a c t o r n u t r i e n t l o a d i n g BOD :N:P = 100:5:1, a l l o t h e r s ** B r i t i s h ***  Columbia P o l l u t i o n  sample c o n t a m i n a t e d -  Control  Objectives  Mg  Mn  Ni  39.2 25.1 20.1 18 .5 20.6 20.7 19.3 19 .8 22.4 22. 8 22.9 21.3 22.8 25.3 22.1 22 .1 24.8 26.4  9.46 0.253 0.096 0.061 0 .114 0.187 0.140 0.157 0.215 0.364 0.140 0.126 0.154 0.487 0.178 0 .153 0.202 0.654 0.05  0.083 0.024 0.025 0.028 0.034 0.040 0.029 0.051 0.036 0.040 0.039 0.043 0.038 0.044 0.040 0.039 0.048 0.060 0.3  Pb  0.03 955 0.21 <0.006 <0.006 1.70 <0.006 0.75 0.85 O.006 <0.006 7.10 O.006 0.47 0.57 <0.006 <0.006 0.87 <0.006 6.07 2.0 8***<0.006 0.24 <0.006 0.78 <0.006 21.7 <0.006 0.73 <0.006 0.67 <0.006 3.80 <0.006 26.8 <0 .006 0.3 0.05  5  (mg/L)  a r e 100:3.2:1.1  ( 1 0 ) , L e v e l AA  Objectives  Zn 27.0 .0,07 0.09 0.09 0.11 0.33 0.09 0.22 0.15 0.32 0.16 0.13 0.15 1.04 0.13 0.09 0.20 1.09 0.5  51  the  leachate  probably  r e s u l t e d i n the high  e f f l u e n t concen-  trations. From t h e l i m i t e d d a t a , loadings  u s e d made l i t t l e  i t appears that  the n u t r i e n t  d i f f e r e n c e i n metal removal  effi-v  ciencies. 4 - 1.4  Removal o f  The  Nutrients  removals o f the b a s i c  phorus, are presented is  i n Table  the n u t r i e n t concentration  and  of the f i n a l  (to b r i n g  This  the greatest  concern feed  added  to the proper l e v e l ) are not  i n the c a l c u l a t i o n of the percentage  removals.  method o f c a l c u l a t i o n i s a l s o more c o n s e r v a t i v e  were  than  i f the n u t r i e n t  (in additions  included. Total  Except  of  Since  e f f l u e n t , the n u t r i e n t supplements  terms o f p e r c e n t a g e r e m o v a l s )  all  11.  and phos-  of the i n f l u e n t leachate  the n u t r i e n t loading  incorporated  nutrients, nitrogen  Kjeldahl nitrogen  excellent.  f o r t h e 5°C, 5-day s l u d g e age r e a c t o r - r e m o v a l s  greater  t h a n 94.8 p e r c e n t ,  8.9 mg/L.  Residual detection 5°C,  (TKN) r e m o v a l s were  level  r e m o v a l s were a l s o  were a l l b e l o w  The p e r c e n t  f o r t h e low t e m p e r a t u r e ,  The  (NH^)  1.0 mg/L  f o r the  r e m o v a l s o f TKN and  NH^  low s l u d g e age r e a c t o r were 78.8 and  respectively.  major d i f f e r e n c e between t h e c o n t r o l - r e a c t o r  (BOD :N:P = 100:5:1) 5  100:3.2:1.1) was  high.  ( t h e minimum  f o r t h e sample s i z e used) e x c e p t  5-day r e a c t o r .  82.3 p e r c e n t ,  corresponding to a residual  Ammonia n i t r o g e n  concentrations  were  and the o t h e r  reactors  (BOD :N:.P =  the e f f l u e n t n i t r i t e - n i t r a t e  5  nitrogen  TABLE 11 NITROGEN  (TKN, NH^, AND NOj-NO ) AND PHOSPHORUS  (TOTAL) CONCENTRATIONS  (IN EFFLUENTS) AND REMOVALS BY THE BIOLOGICAL REACTORS  REACTOR DESCRIPTION e T c (days) <°C) Leacha te R.T.  15  10  5  Feed 20* 20 15 10 5 20 15 10 5 20 15 10 5 20 15 10 5  TKN  % **  mg/L  mg/L  172 5.4 4.9 5.3 5. 8 6.7 6.0 6.5 7.0 7.4 5.9 6.2 8.1 8.1 7.3 8.1 8.9 36.4  130 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 23  96.9 97.2 96.9 96.6 96.1 96.5 96.2 95.9 95. 7 96.6 96.4 95.3 95.3 95.8 95.3 94.8 78. 8  BOD :N:P 5  9o  NO~- NO-, 2 3 9mg/L o  * *  REMOVAL  REMOVAL  * reactor nutrient loading ** N o t e :  NH. 3  M  .  •  >99.2 >99 .2 >99 .2 >99.2 >99.2 >99.2 >99.2 >99 .2 >99 .2 >99 .2 >99.2 >99.2 >99.2 >99.2 >99 .2 >99.2 82. 3  100:5:1,  TOTAL PHOSPHORUS **  mg/L  < < < <  0 0 0 0  < 0 < 0 < 0 < < < < < < < <  v  -x  0 0 0 0 0 0 0 0  5.3 0.07 0.28 0.15 0.13 0.68 0.29 0.24 0.15 . 0.61 0.19 0.14 0.19 1.66 0.15 0 .19 0.36 2.52  98.7 94.7 97.2 97.5 87.2 94.5 95.5 97.2 88. 5 96 .4 97.4 96 .4 68.7 97.2 96.4 93.2 52.5  are 100:3.2:1.1  a l l others  t h e n u t r i e n t a d d i t i o n s a r e n o t i n c l u d e d i n the % removals, 7-fs V - R F M O V A T - ELEACHATE FEED] - [EFFLUENT] (ie. ts REMOVAL - — (-LEACHATE FEED] ° X  * *  REMOVAL  REMOVAL <0.05 43 0.17 0.12 0.07 <0.05 0.16 0.18 0.06 <0.05 0.11 0.12 0.12 0.16 0.12 0.06 0.09 0.19  9o  1  0  0  ]  to  53  (NOj-NO^) c o n c e n t r a t i o n s . c o n c e n t r a t i o n , was all  other  4 3 mg/L,  reactors  could  was  of  20:1  i s 'low.  rising  curs when.nitrites  and  in  the  nitrogen  chemical  converted  nitrogen  O'Connor  problems  tank.  This  to n i t r o g e n  s l u d g e mass.  The  ocgas,  sludge  l e a d i n g to poor s o l i d s - l i q u i d  a d d i t i o n s were i n t h e  separation  (12)  f o r m o f NH^  s t a t e t h a t when a n u t r i t i o n a l  be  used, s i n c e i t i s r e a d i l y a s s i m i l a b l e .  reports  for biological  processes,  diam-  Eckenfelder  supplement  ammonia n i t r o g e n Hattingh  should  (15)  t h a t s e v e r a l i n v e s t i g a t o r s have found t h a t a l l i n o r -  nitrogen  and  only  a portion of organic  available  f o r sludge growth.  available  varied widely,  suggested that, during in his leachate mixed  (as  ammonium c h l o r i d e ) .  required  also  a  loading  costs,  settling  is  pH  100:3.2:1.1  occur.  i n the  i n the  monium h y d r o g e n p h o s p h a t e and  ganic  BOD^:N:P =  not  c l a r i fiber..  The  and  to  n i t r a t e s are  w h i c h t h e n becomes t r a p p e d t h e n becomes b u o y a n t ,  i n the  With t h i s  sludge  indicates  I t i s evidence that  i n a d d i t i o n to unnecessary a r i s e with  This  of  c o n t r o l - r e a c t o r and  present  is significant.  concentrations  mg/L.  i n the  for nitrification  result  BODj.:N r a t i o level,  whereas the  occurred  enough e x c e s s n i t r o g e n  This  control-reactor effluent  e f f l u e n t s were b e l o w 0.2  that n i t r i f i c a t i o n  loaded  The  the  portion of organic  d e p e n d i n g on  the waste.  have been s t r i p p e d o u t  vigorous  aeration.  nitrogen  the  of  their  (33)  ammonia  the  Cook and  e n c o u n t e r e d some ammonia s t r i p p i n g d u r i n g  is  Uloth  h i s i n v e s t i g a t i o n , much o f  f e e d may  l i q u o r by  The  nitrogen  high  Foree  (9)  studies.  54  Therefore,  i t appears t h a t  although  a nitrogen  o f BOD^:N = 100:3.2 was a p p l i e d t o t h e r e a c t o r s investigation, microbial This  to the question  of this  i n v e s t i g a t i o n and t h a t  5  of  leachate this  gen  i s NH^ n i t r o g e n .  o f Temoin's (31)  Temoin r e p o r t s  that  Thus, a l t h o u g h t h e a v a i l a b l e  were p r o b a b l y  s i m i l a r , the s i m i l a r i t y  r e m o v a l o f p h o s p h o r u s was good.  s l u d g e age r e a c t o r s , percent.  As  of the nutrient  portion nitro-  cannot be  verified. The  52.5  occur.  TKN = 616 mg/L, b u t does n o t r e c o r d what  loadings  fully  was a v a i l a b l e f o r  of "similarity"  optimum o f BOD :N:P = 100:3.19:1.11. his  i n this  a s s i m i l a t i o n i f any ammonia s t r i p p i n g d i d  leads  loadings  not a l l of the nitrogen  loading  a l l r e m o v a l s were g r e a t e r  The 5-day r e a c t o r  percent  Excluding  - progressively  removals ranged  t h e 5-day  t h a n 9 3.2  from  87.2 t o  w o r s e as t h e t e m p e r a t u r e  decreased.  expected, t h e c o n t r o l r e a c t o r , which had t h e l e a s t phos-  phorus added, d e m o n s t r a t e d t h e b e s t the  two r e a c t o r s  met  the l o c a l  1.5  mg/L.  removal.  Not i n c l u d i n g  n e a r washout, a l l r e s i d u a l phosphorus l e v e l s  p o l l u t i o n c o n t r o l "AA" l e v e l o b j e c t i v e  A possible  explanation  (10)  a s t o why t h e low BOD^:N:P  of  load-  i n g o f 100:3.2:1.1 was s o e f f e c t i v e i n t h e t r e a t m e n t o f t h e leachate  could  matophilius during loading floe  be t h e p r e s e n c e o f t h e a c t i n o m y c e t e  b a c t e r i a , mentioned p r e v i o u s l y .  Temoin's  (31) i n v e s t i g a t i o n , a t t h e h i g h e r  o f BOD:P = 100:1.11, 9 0 p e r c e n t  consisted  As  Geoder-  reported, phosphorus  of the b i o l o g i c a l  o f G e o d e r m a t o p h i l i u s , which had n e v e r been  55  isolated  i n a sewage t r e a t m e n t  knowledge). position  i s probably  activated lius  Although  sludge  c o u l d be  ference  the Geodermatophilius similar  sufficiently different  study  examination  this  learn  completion  4 - 2  o f the  of the  pH,  required  f o r the  samples t h a t underwent the  sired The  high  shown i n T a b l e by  adding  level.  As  d r o p i n pH  10.0),  low  lime  indicates  was  a l k a l i n i t y and  12.  The  lime u n t i l the  the M g  + +  pH  (0 mg/L)  (pH = 11.4)> t h a t MgtOH^/  the  until  after  pH  d o s e , up  dosages  lime-magnesium shown were  stabilized  u n i t s a t the  probably  of  study.  lime dosages  h i g h magnesium and  mixed  done b e c a u s e  lime  dose i n c r e a s e d , the  a b o u t 0.1  magnesium  precipitates, The  acidity,  dif-  Phase  initial  determined  not  laboratory portion of t h i s  The  are  of the  Geodermatophilius  Lime-Magnesium C o a g u l a t i o n  process  for this  to confirm the presence  T h i s v e r t i f i c a t i o n was  the  com-  Geodermatophi-  to account  Geodermatophilius. d i d not  tissue  (26) .  microscopic  done i n t h i s  author  cell  author's  t o t h a t o f b a c t e r i a common t o  i n n u t r i e n t requirements  was  (to t h i s  p l a n t s , the metabolism o f the  Unfortunately,/no liquor  system b e f o r e  a t the  final low  t o 1.0  pH  (50 mg/L) other metal  pH  lime  de-  dropped. (pH  =  units at dose.  the  This  hydroxide  formed.  results  o f o r g a n i c m a t e r i a l , suspended s o l i d s ,  p h o s p h o r u s c o n c e n t r a t i o n s and  removals appear i n Table  though the p e r c e n t  r e m o v a l s o f BOD,-  ple  fairly  (SAMPLE 1)  are  high  from the  (particularly  lower  and 13.  Al-  s t r e n g t h sam-  a t the h i g h  lime  TABLE  12  p H , A C I D I T Y , A L K A L I N I T Y , AND L I M E DOSAGES R E Q U I R E D OF THE S A M P L E S U S E D FOR L I M E - M A G N E S I U M C O A G U L A T I O N  PARAMETER  SAMPLE  pH  7.7  A c i d i t y to as C a C 0  pH = 8 . 3 (mg/L)  Alkalinity as C a C 0  t o pH = (mg/L)  3  3  3.7  1  SAMPLE 2 7.2  16  37  384  414  Ca(OH) Dosage for pH 1 0 . 0  (mg/L)  228  329  Ca(OH) Dosage for pH 1 0 . 7  (mg/L)  307  408  Ca(OH) Dosage for pH 1 1 . 4  (mg/L)  433  549  2  2  2  TABLE 13 EFFLUENT ORGANIC MATERIAL (IN TERMS OF BOD AND COD), SUSPENDED SOLIDS, AND TOTAL PHOSPHORUS CONCENTRATIONS AND REMOVALS BY COAGULATION 5  BOD  SAMPLE DESCRIPTION SAMPLE NUMBER 1  7.7 10.0  10.7  11.4  2  M g * DOSE (mg/L) +  pH  7.2 10.0  10.7  11.4  Not Polished 0 10 20 . 35 50 0 10 20 35 50 0 10 20 35 50 Not Polished 0 10 20 35 50 0 10 20 35 50 0 10 20 35 50  mg/L  % REMOVAL  mg/L  % REMOVAL  % REMOVAL  mg/L  % REMOVAL  mg/L  % REMOVAL  0.19  3  6  204  7.5  mg/L  TOT AL P  TVSS  TSS  COD  5  3.5 3.5 3.0 3.3 2.9 3.3 2.0 2.0 2.0 2.1 2.0 1.7 1.6 1.3 1.5 52  53 53 60 56 61 56 73 73 73 72 73 77 79 83 80  194 196 192 188 192 192 192 194 190 190 192 190 190 186 186 462  5 4 6 8 6 6 6 5 7 7 6 7 7 9 9  48 47 77 54 63 33 24 24 42 29 36 58 74 105 105 100  <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0  3 2 3 3 4 3 2 4 5 2 4 7 10 12 13 58  0 33 0 0 <0 0 33 <0 <0 33 <0 <0 <0 <0 <0  0.08 0.08 0.06 0.08 0.10 0.09 0.09 0.09 0.09 0.07 0.10 0.06 0.09 0.10 0.09 1.14  58 58 68 58 47 53 53 53 53 63 47 68 53 47 53  45 36 41 36 37 27 27 29 28 30 50 41 40 41 x  13 31 21 31 39 48 48 44 46 42 4 21 23 21 31  421 433 425 421 437 433 449 433 431 429 421 413 401 397 423  9 6 8 9 5 6 3 6 7 7 9 11 13 14 8  92 109 83 82 102 98 101 102 96 98 71 54 48 42 51  8 <0 17 18 <0 2 <0 <0 4 2 29 46 52 58 49  15 19 13 17 20 18 17 18 16 24 24 21 19 15 22  74 67 78 71 66 69 71 69 72 59 59 64 67 74 64  0.51 0.64 0.44 0.45 0.51 0.63 0.63 0.65 0.72 0.58 0.52 0.36 0.29 0.28 0.26  55 44 61 61 55 45 45 43 37 49 54 68 75 75 77  Ln  58  dosage) , t h e a b s o l u t e of  just  6 mg/L  r e m o v a l s were v e r y  resulted  h i g h e r s t r e n g t h sample percent  (SAMPLE 2 BOD  BOD,, r e m o v a l was  (pH = 1 0 . 7 ) . sample was process  achieved  The maximum COD  14 p e r c e n t .  reason  for this  fluent  a t t h e medium  i s not apparent.  process.  solids  levels  matter.  However, i t i s n o t an concern i s  o f t h e o x y g e n demand by t h e e f -  l e v e l s were i n c r e a s e d  T h i s was due t o t h e i n i t i a l  and t h e f a c t  p o o r f o r SAMPLE 2.  "reasonable"  low s u s p e n d e d  t h a t some o f t h e c h e m i c a l s  generally  The r e m o v a l o f t o t a l At the high  removal o f t o t a l  added  suspended s o l i d s  was  l i m e d o s a g e , however,  r e m o v a l s o f up t o 58 p e r c e n t were  achieved.  phosphorus d i d not f o l l o w a t r e n d  t h e v a r y i n g l i m e a n d magnesium d o s a g e s ; b u t , t h e h i g h e s t  three percentage highest  removals d i d occur  a t the high  t h r e e magnesium d o s a g e s f o r SAMPLE 1.  phosphorus  r e m o v a l was  phosphorus r e s i d u a l local  organic  degrad-  waters.  suspended.  total  dose  for either  resistant  s i n c e the primary  remained  with  50  r e m o v a l ) up t o a b o u t s e v e n t e e n - f o l d by t h e c o a g u -  lation  The  lime  i n removing b i o l o g i c a l l y  F o r SAMPLE 1, t h e s u s p e n d e d s o l i d s (<0 p e r c e n t  For the  t h a t the lime-magnesium  than b i o l o g i c a l l y  i s an i n d i c a t i o n  on r e c e i v i n g  removal.  removal  = 52 mg/L), a l m o s t  This indicates  i t e m o f extreme importance BOD,. - t h i s  5  A BOD,,  removal o b t a i n e d  was much more e f f e c t i v e  able o r g a n i c matter, The  i n a 80 p e r c e n t  low.  "AA"  level  remaining  (10) o f 1.5  l i m e and The r a n g e o f  f r o m 3 7 t o 77 p e r c e n t . was mg/L.  0.72 mg/L,  The h i g h e s t  w e l l below t h e  59  The  results  presented not  o f the metal  i n Tables  14 a n d 1 5 .  i n c r e a s e markedly  dosages. initial lative Zn,  with  o f metal  since these  coagulation process. effluents  from  In  The l e v e l measured  in  samples,  magnesium  This  o f SAMPLE  than  1.  significantly  20 mg/L  before  of Mg  + +  any magnesium  precipitation  occurred  addi-  even  additions.  indicates  i n solution  CaCO^ a n d M g f O H ^ -  Therefore,  say, and  Greater  remained  first  the local  14 s h o w s a g a i n i n c o n c e n t r a t i o n s o f C a a n d Mg f o r  Mg a d d e d  removals  concentrations  exceeded  were n o t enhanced  i n both  some o f t h e e f f l u e n t s .  as  iron  f o r the  Also, several of the effluents  hence, magnesium h y d r o x i d e  Table  14, o n l y  f o rthe effluents  t h e samples without  and  were added t o t h e samples  "AA" o b j e c t i v e s a r e m e t f o r a l l t h e  t h e magnesium a d d i t i o n s .  tion;  C d , Mn, F e ,  t h e a l l o w a b l e Mn c o n c e n t r a t i o n o f  g e n e r a l , removals  was a l r e a d y p r e s e n t  were:  15, t h er e -  C a a n d Mg h a d t h e l o w e s t  SAMPLE 2 s u b s t a n t i a l l y  SAMPLE 2 e x c e e d e d  parameters  efficiencies  From T a b l e  "AA" o b j e c t i v e s . ( 1 0 ) .  0.05 mg/L.  by  from  From T a b l e  As expected,  metals  magnesium  due, i n p a r t , t o the very low  removal  C r , N i , C a , a n d Mg.  level  lime and/or  concentrations o f the metals. order  are  I n g e n e r a l , t h e removals d i d  increasing  T h i s was p r o b a b l y  removals  of  c o n c e n t r a t i o n s and removals  t h a t some o f t h e C a  and d i d n o t p r e c i p i t a t e o u t t w o means o f  by t h e l i m e - c o a g u l a t i o n process  improving  are apparent.  The  w o u l d b e t o i n c r e a s e t h e l i m e d o s a g e t o a pH l e v e l o f , 12.0.  This would  the other metallic  lead to greater precipitation hydroxides.  The  precipitation  of Mg(0H)  2  60  TABLE 14 METAL CONCENTRATIONS OF THE FINAL EFFLUENTS POLISHED BY THE LIME-MAGNESIUM PROCESS SAMPLE DESCRIPTION Mg++ DOSE SAMPLE NUMBER (mg/L) PH Not Polished 0 10.0 10 20 35 50 10.7 0 10 20 35 50 11.4 0 10 20 35 50 Not Polished 2 10.0 0 10 20 35 50 10.7 0 10 20 35 50 11.4 0 10 20 35 50 P.C.B . Objectives* 1  1  METAL CONCENTRATION (mg/L) Cd  Ca  Cr  Fe  Mg  Mn -  Ni  Zn  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005  40 20 32 33 42 45 22 26 38 45 44 31 38 45 59 68 44 36 39 40 38 43 34 37 39 40 38 23 21 25 26 34  0.011 0.007 0.007 0.010 0.005 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.008 0.007 0.007 0.016 0.011 0.010 0.010 0.009 0.008 0.010 0.013 0.010 0.009 0.013 0.011 0.011 0.007 0.008 0.009 0.1  0.66 0.21 0.17 0.18 0.22 0.13 0.14 0.14 0.17 0.15 0.13 0.19 0.18 0.17 0.14 0.28 20.4 6.8 10.8 6.7 6.7 6.5 9.9 10.7 10.3 9.7 8.5 7.8 4.2 3.4 2.0 3.2 0.3  20.1 17.4 29.0 39.3 54.0 65.4 16.1 25.5 35.3 50.6 63.5 14.1 20.0 26.0 35.5 52.9 23.2 19.9 30.3 39.5 54.3 65.1 17.2 28.6 38.7 51.7 61.5 10.7 11.8 16.3 23.6 52.5  0.10 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0. 38 0.10 0.09 0.08 0.08 0.08 0.19 0.14 0.13 0.12 0.10 0.17 0.10 0.08 0.05 0.06 0.05  0.039 0.035 0.034 0.039 0.038 0.037 0.033 0.031 0.030 0.031 0.030 0.030 0.030 0.028 0.028 0.028 0.041 0.038 0.039 0.037 0.037 0.035 0.034 0.032 0.033 0.033 0.031 0.029 0.025 0.025 0.016 0.027 0.3  0.16 0.08 0.09 0.09 0.16 0.07 0.10 0.09 0.23 0.14 0.42 0.11 0.14 0.11 0.43 0.19 0.79 0.22 0.19 0.23 0.23 0.30 0.20 0.34 0.29 0.32 0.25 0.18 0.15 0.09 0.17 0.28 0.5  * B r i t i s h Columbia P o l l u t i o n Control Objectives (10), Level AA Objectives  61  TABLE 15 METAL REMOVALS  BY LIME-MAGNESIUM  SAMPLE DESCRIPTION Mg DOSE SAMPLE NUMBER' (mg/L) PH  COAGULATION  PERCENT REMOVAL OF THE METAL  + +  1  10.0  10.7  11.4  2  10.0  ' 10.7  11.4  0 10 20 35 50 0 10 20 35 50 0 10 20 35 50 0 10 20 35 50 0 10 20 35 50 0 10 20 35 50  Cd  Ca  Cr  Fe  Mg  Mn  Ni  Zn  36 36 9 55 45 45 45 45 36 36 36 36 27 36 27 31 38 38 44 50 38 19 38 44 19 31 31 56 50 44  68 74 73 67 80 79 79 74 77 80 71 73 74 79 58 67 47 67 67 68 51 48 50 52 58 62 79 83 90 84  13 <0 <0 <0 <0 20 <0 <0 <0 <0 30 1 <0 <0 <0 14 <0 <0 <0 <0 26 <0 <0 <0 <0 54 50 30 <0 <0  90 90 90 80 90 80 80 80 80 80 70 70 70 80 80 74 76 79 79 79 50 63 66 68 74 55 74 79 87 84  10 13 0 3 5 15 21 23 21 23 23 23 26 26 26 7 5 10 10 15 17 22 20 20 24 29 39 39 61 34  50 44 44  66 62 58 61 61 67 69 73 89 89 >90 >90 >90 >90 >90  50 20 18 <0 <0 45 35 5 <0 <0 23 5 <0 <0 <0 18 11 9 14 2 23 16 11 9 14 48 53 43 41 23  Mo  56 38 44 0 13 0 32 13 32 <0 <0 72 76 71 71 62 75 57 63 59 68 77 81 89 78 65  62  o f Mg(0H)2 w o u l d a l s o suspended  solids  Secondly, r a i s e d by  a i d i n the removal  of organics  (as d i s c u s s e d i n S e c t i o n 2 -  i f the a l k a l i n i t i e s  adding  carbonate,  and  2.2).  o f the.samples  were  a l l (as much as p r a c t i c a l l y  pos-  ++ sible)  o f t h e Ca  carbonate  would p r e c i p i t a t e  i s soluble  whereas C a  + +  t o the e x t e n t o f about  The  t i o n w o u l d be  through  sufficient  alkalinity  17 mg/L  (28),  indicating  n o t due  noted  to just  this  mg/L  defi-  concentra-  the r e s u l t s The run.  q u i r e d b e f o r e more d e f i n i t i v e  carbonate  added. 400  to the carbonate  that  one  have t o be  2 were a r o u n d  phase are v e r y p r e l i m i n a r y . the j a r t e s t i n g  a carbonate  the carbonate  I n some c a s e s t h o u g h ,  o f SAMPLES 1 and  s h o u l d be  (= 170  t h e use o f r e c y c l e d magnesium, i n t h e  and more may  t h a t much o f i t was It  thus  b e s t method o f i n c r e a s i n g  f o r m o f MgCO^'Sl^O. n o t be  Calcium  c o n c e n t r a t i o n s were as h i g h as 68 mg/L  as CaCO^) i n t h e e f f l u e n t s , ciency.  o u t as CaCO^-  Although  mg/L,  may the  i t appears  system.  form the  lime-magnesium  l a c k o f sample volume A more d e t a i l e d  c o n c l u s i o n s c a n be  study drawn.  limited i s re-  63  CHAPTER 5 CONCLUSIONS AND 5 - 1 1)  RECOMMENDATIONS  Conclusions  Aerobic biostabilization contaminants  i s an e f f e c t i v e means o f  f r o m a medium  strength  leachate  removing  (BOD,- =  809 0 mg/L). 2)  In the ranges o f temperature from  (ambient  a i r temperatures  2 5 ° t o 5°C and c o r r e s p o n d i n g l i q u i d  from 18° t o  3 ° C ) a n d s l u d g e ages  investigated, nally  the removals  dependent  temperatures  ( f r o m 20 t o 5 days)  o f c o n t a m i n a n t s were o n l y n o m i -  on t e m p e r a t u r e  and s l u d g e a g e .  t i o n s were when t h e s l u d g e ages were c l o s e the  a t a given temperature.  s l u d g e age r e a c t o r s  filtered  effluents  for nearly  local  operational  usually  conditions.  greatly  exceeded  Only  conditions, paper)  control objectives  m o n i t o r e d , under iron  (10)  con-  and even  adverse c o n d i t i o n s  then,  (low  temperature). treated,  was  The e f f i c i e n c i e s o f t h e r e a c t o r s  this  met  nearly  and magnesium  For the leachate "adequate".  para-  excellent.  4 filter  the o b j e c t i v e s ,  o n l y o c c u r r e d under  s l u d g e age a n d / o r  t o washout  pollution  a l l o f the parameters  centrations  4)  close  ( u s i n g Whatman No.  t h e most s t r i n g e n t  than  T h i s o c c u r r e d f o r t h e 5-day  o f t h e r e a c t o r s was  E x c l u d i n g t h e two r e a c t o r s  this  t o o r lower  a t 1 0 ° and 5 ° C .  The t r e a t m e n t p e r f o r m a n c e  all  excep-  "minimum" s l u d g e age as p r e d i c t e d by t h e k i n e t i c  meters  3)  The  a B0D :N:P l o a d i n g o f 100:3.2:1.1  l o a d i n g were c o m p a r a b l e  5  under  to the c o n t r o l - r e a c t o r ,  which  64  had  a standard  BODj-:N = 2 0 : 1 control by was  l o a d i n g was  The  conventional  f o u n d t o be l o w .  In the  reactor, the surplus nitrogen, not a s s i m i l a t e d  the microorganisms,  resulted i n nitrification.  e v i d e n t by t h e n i t r i t e - n i t r a t e  i n the c o n t r o l reactor e f f l u e n t .  nitrate  concentrations  o f a l l the other  The  nitrite-  r e a c t o r s were  mg/L.  The a d d i t i o n s o f magnesium i n t h e l i m e - m a g n e s i u m d i d n o t enhance r e m o v a l e f f i c i e n c i e s was  due, i n p a r t ,  to the i n i t i a l  t h a n 2 0 mg/L  process  significantly.  low c o n c e n t r a t i o n s  c o n t a m i n a n t s and a l s o b e c a u s e t h e r e greater  This  concentration of  4 3 mg/L  b e l o w 0.2 5)  l o a d i n g o f 100:5:1.  already  This of  existed  o f magnesium i n t h e s a m p l e s .  Better  p e r f o r m a n c e o f t h e l i m e - m a g n e s i u m ^ p r o c e s s c o u l d be accomp l i s h e d by i n c r e a s i n g t h e l i m e b e t t e r magnesium h y d r o x i d e the  alkalinity  carbonate 6)  Aerobic  (Province tives .  (for better  ( t o pH g r e a t e r  of reducing (BOD  r  a t a sludge  raising  calcium  age g r e a t e r  temperature o f a t l e a s t  lime p r e c i p i t a t i o n  leachate  p r e c i p i t a t i o n ) and/or  by a d d i n g c a r b o n a t e  biostabilization  capable  ( t o pH = 12j-/ f o r  precipitation).  days and l i q u i d  is  dosage  than  15  3°C, f o l l o w e d by  than o r equal  t o 10.0)  c o n t a m i n a n t s o f a medium  strength  = 809 0 mg/L), t o l e v e l s b e l o w t h e l o c a l  of B r i t i s h  Columbia) p o l l u t i o n  control  objec-  65  5-2 1)  Recommendations Although  a l o w BOD :N:P l o a d i n g  shown t o b e e f f e c t i v e , may  o f 100:3.2:1.1 h a s b e e n  5  be j u s t  an e v e n l o w e r n u t r i e n t  as e f f e c t i v e .  Although  tempt t o o p t i m i z e t h e n u t r i e n t comprehensive  study  loadings of less  loading  i s required.  than  Temoin  loading  (31) d i d a t -  level,  a more  In p a r t i c u l a r ,  100:3.19 a n d B0D :P  l o a d i n g s between  5  100:0.32 a n d 100:1.11 s h o u l d b e more t h o r o u g h l y gated.  The e f f e c t  requirements 2)  o f s l u d g e age ( o r F/M r a t i o )  a l s o warrants  conducted. organism bly,  nutritional  of microorganisms  requirements  normally  found  By f o l l o w i n g  and thus,  than  a procedure XVIII  possi-  the population  i n a domestic  minor m o d i f i c a t i o n s ) i n Experiment mental  a study o f the  discussed, the Geodermatophilius  may h a v e a d i f f e r e n t m e t a b o l i s m ,  sludge plant.  on n u t r i e n t  o f t h e l e a c h a t e t r e a t m e n t p r o c e s s s h o u l d be  As p r e v i o u s l y  different  investi-  further research.  I n c o n j u n c t i o n w i t h t h e above r e c o m m e n d a t i o n , stoichiometry  BOD^:N  activated  as o u t l i n e d  (with  - 1 o f "Environ-  E n g i n e e r i n g U n i t Operations and U n i t Processes  Laboratory  Manual"  (2 3 ) ,  can be determined.  the stoichiometry o f the processes  This w i l l  n o t o n l y c o n f i r m o r deny  d i f f e r e n t m e t a b o l i s m s as a r e a s o n quirements, the p r o c e s s .  but w i l l  also  In addition,  lead  to a better  understanding o f  an a s s a y o f t h e G e o d e r m a t o p h i l i u s  s h o u l d be done t o c o n f i r m t h a t oxygen c o n t e n t i s s i m i l a r  f o r t h e low n u t r i e n t r e -  the carbon-hydrogen-nitrogen-  t o that o f t h e microorganisms  n o r m a l l y p r e s e n t i n an a c t i v a t e d  sludge p l a n t  (CVH-NOi) .  66  3)  The  problem  addressed  o f poor  i n more d e t a i l .  encountered leachate" crucial and  solids-liquid  Settling  i n a number o f  studies.  (14)  likely  t o be  whether t h i s  attribute  the s e t t l i n g  problems  to the f e e d .  i s the major cause.  Foree  to  procedure,  Although  this  and  Palit  and  Qasim  (24)  ran  sludge bulking occurred several  (9), Uloth  ( 3 3 ) , and  Temoin  (31)  serious  problems.  as a p o s s i b l e  were l e s s  (34)  mainly  u s e d t h e f i l l - a n d - d r a w p r o c e d u r e w i t h o u t any  E c k e n f e l d e r and ing  Zapf-Gilje  an i m p o r t a n t r e a s o n , i t i s q u e s t i o n a b l e  Cook and  settling  of  i s extremely  l o a d i n g s of the f i l l - a n d - d r a w  a continuous flow system  all  have b e e n  "aerobic b i o s t a b i l i z a t i o n  r a t h e r than t o biomass r e a c t i o n  times.  problems  i n the o p e r a t i o n of the p r o c e s s .  Graham  s h o u l d be  Good s l u d g e s e t t l e a b i l i t y  the r e p e a t e d shock  is  separation  Ford  (11)  list  excessive organic load-  cause o f sludge b u l k i n g .  t h a n 0.17  ^ ? BOD /day 5  f  Q  The  three  r  F/M  ratios  troublefree  kg MLVSS s t u d i e s mentioned (24),  Zapf-Gilje  g r e a t e r than  above. (34)  0.17  k  The  s y s t e m s of P a l i t  and Graham  BOD^/day^  g  I  (14) a l l had  and  Qasim  F/M  ratios  investigation  n  kg MLVSS the lower settling  s l u d g e age problems.  (5 and These  10  reactors  c l o s e t o o r e x c e e d i n g 0.17. and  20 days)  reactors  days)  a l l had  The F/M  reactors  a l l had  F/M  experienced ratios  h i g h e r s l u d g e age ratios  less  than  (15 0.16.  67  The  above e v i d e n c e  might  be  more i m p o r t a n t t h a n  (continuous  flow or  Another three  seems t o i n d i c a t e  t h e mode o f o p e r a t i o n  factor  i n which  no  may  be  settling  temperature. problems  t e r e d were o p e r a t e d a t room t e m p e r a t u r e . Zapf-Gilje, at  decreased, of  ganism  species  The  temperature  and/or  are  adding  Two  5)  The  carbonate  to the  and  and  Mg  season  leachate  also  decreases  rather  the  different  that  t h e pH  or-  more  should  level  to improve  of  CaCO^ and  to  be 12.0,  the  to season. as  Mg(OH) . 2  leachate generated The  t h e age  than having a  be  along with domestic To  have been conducted rigorous  of  aspects  of  realized  a landfill  the increases.  separate leachate  in existing  combined treatment. i s warranted.  treat-  a savings i n  date, only rudimentary  investigation  highly  i f l e a c h a t e c o u l d be  wastewater,  on  is  strength of  i t seems r e a s o n a b l e t h a t  ment c o s t s m i g h t  sludge plants.  Thus,  investigated  samples,  as  quantity  from  ment f a c i l i t y ,  temperature  ++  variable  Therefore,  s h o u l d be  a l i m e dosage t o r a i s e  o f Ca  quality  effect  operated  versus psychrophiles) should  additional  ++ removals  As  of  further.  lime-magnesium process  included  the  ( i e . mesophiles  investigated  t o 2 5°C.  encoun-  studies  i n v e s t i g a t i o n were 5°  The  were  The  s e t t l e a b i l i t y grew worse.  comprehensively.  and  this  ranging from  sludge  effect  be .4)  Graham and  temperatures  loading  fill-and-draw).  possible  studies  t h a t F/M  treat-  treated,  activated  studies A much  (4,  31)  more  68  REFERENCES 1.  APHA, AWWA, and WPCF, " S t a n d a r d Methods f o r t h e E x a m i n a t i o n o f W a t e r and W a s t e w a t e r " , 1 4 t h e d i t i o n , 1975.  2.  B e n e d i c t , A. H. and C a r l s o n , D. A., "Temperature A c c l i m a t i o n i n A e r o b i c B i o - o x i d a t i o n Systems", J o u r n a l o f t h e W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 45, No. 1, J a n u a r y 1973, pp. 10-24.  3.  B j o r k m a n , V. B., " P h y s i c a l - C h e m i c a l T r e a t m e n t D i s i n f e c t i o n o f a L a n d f i l l L e a c h a t e " , M.A.Sc. U n i v e r s i t y o f B r i t i s h C o l u m b i a , May 1979.  4.  B o y l e , W. C. and Ham, R. K., " B i o l o g i c a l T r e a t a b i l i t y o f L a n d f i l l L e a c h a t e " , J o u r n a l o f the Water P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 46, No. 5, May 1974, pp. 860- ' 872.  5.  Brown, M. J . and L e s t e r , J . N., " M e t a l Removal i n A c t i v a t e d S l u d g e : The R o l e o f B a c t e r i a l E x t r a c e l l u l a r P o l y m e r s " , W a t e r R e s e a r c h , V o l . 13, No. 9, 1979, pp. 817-837.  6.  Cameron, R. D., "The E f f e c t s o f S o l i d Waste L a n d f i l l L e a c h a t e s on R e c e i v i n g W a t e r s " , p a p e r p r e s e n t e d a t t h e 19 75 B r i t i s h C o l u m b i a Water and Waste A s s o c i a t i o n C o n f e r e n c e , H a r r i s o n Hot S p r i n g s , B. C , April 1975, 14 p a g e s .  7.  Cheng, M. H., P a t t e r s o n , J . W., and M i n e a r , R. A., "Heavy M e t a l s U p t a k e by A c t i v a t e d S l u d g e " , J o u r n a l o f t h e W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 47, No. 2, F e b r u a r y 1975, pp. 362-376.  8.  C l a r k , J . W., V i e s s m a n , W., and Hammer, M. J . , "Water S u p p l y and P o l l u t i o n C o n t r o l " / . I n t e r n a t i o n a l T e x t b o o k Company, S c r a n t o n , 2nd e d i t i o n , 19 71.  9.  Cook, E . N. and F o r e e , E . G., " A e r o b i c B i o s t a b i l i z a t i o n o f S a n i t a r y L a n d f i l l L e a c h a t e " , J o u r n a l o f t h e Water P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 46, No. 2, F e b r u a r y 1974, pp. 380-392.  and thesis,  10.  D e p a r t m e n t o f L a n d s , F o r e s t s , and W a t e r R e s o u r c e s , " R e p o r t on P o l l u t i o n C o n t r o l O b j e c t i v e s f o r M u n i c i p a l Type Waste D i s c h a r g e s i n B r i t i s h C o l u m b i a " , W a t e r R e s o u r c e s S e r v i c e , V i c t o r i a , B r i t i s h C o l u m b i a , September 1975.  11.  E c k e n f e l d e r , W. W. and F o r d , D. L . , "Water P o l l u t i o n C o n t r o l " , J e n k i n s Book P u b l i s h i n g Company, A u s t i n and New Y o r k , 1970.  69  12.  E c k e n f e l d e r , W. W.: and O'Connor, D. J . , " B i o l o g i c a l Waste T r e a t m e n t " , Pergamon P r e s s , New Y o r k , 1961.  13.  EPA, "Methods f o r C h e m i c a l A n a l y s i s o f W a t e r W a s t e s " , EPA-600/4-79-02, March 1979.  14.  Graham, D. W., " B i o l o g i c a l Chemical Treatment o f L e a c h a t e " , M.A.Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, f i n a l r e p o r t i n p r o g r e s s .  15.  H a t t i n g h , W. H. J . , "The N i t r o g e n and P h o s p h o r u s Requirements o f Microorganisms i n A c t i v a t e d Sludge", Ph.D. t h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , A u g u s t 1962.  16.  Ho, S., B o y l e , W. C , and Ham, R. K. , " C h e m i c a l T r e a t ment o f L e a c h a t e s f r o m S a n i t a r y L a n d f i l l s " , J o u r n a l o f t h e W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 46, No. 7, J u l y 1974, pp. 1776-1791.  17.  L a w r e n c e , A. W. and M c C a r t y , P. L., " U n i f i e d B a s i s f o r B i o l o g i c a l T r e a t m e n t D e s i g n and O p e r a t i o n " , J o u r n a l o f t h e S a n i t a r y E n g i n e e r i n g D i v i s i o n , V o l . 96, No. SA3, J u n e 1970, pp. 757-778.  18.  L e e , C. J . , " T r e a t m e n t o f a M u n i c i p a l L e a c h a t e " , M.A.Sc. t h e s i s , U n i v e r s i t y C o l u m b i a , J a n u a r y 19 79.  19.  Leung, Y . - C , "The Removal o f O r g a n i c s f r o m M u n i c i p a l W a s t e w a t e r s by Lime-Magnesium C o a g u l a t i o n ' ! , M.A.Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , J u n e 1978.  20.  MacLean, B. H., "The Removal o f Heavy M e t a l s f r o m M u n i c i p a l W a s t e w a t e r s by Lime-Magnesium C o a g u l a t i o n " , M.A.Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , J u n e 1977.  21.  M a v i n i c , D. S., " L e a c h a t e T r e a t m e n t Schemes - R e s e a r c h A p p r o a c h " , p a p e r p r e s e n t e d a t t h e EPA S o l i d and Haza r d o u s Waste R e s e a r c h D i v i s i o n , F i f t h A n n u a l R e s e a r c h Symposium, O r l a n d o , F l o r i d a , March 19 79, 17 p a g e s .  22.  M e t c a l f and Eddy, I n c . , "Wastewater E n g i n e e r i n g : T r e a t ment, D i s p o s a l , Reuse", M c G r a w - H i l l Book Company, 2nd e d i t i o n , 19 79.  23.  O'Connor, J . T., e d . , " E n v i r o n m e n t a l E n g i n e e r i n g U n i t O p e r a t i o n s and U n i t P r o c e s s e s L a b o r a t o r y M a n u a l " , Association of Environmental Engineering Professors, July.1972.  24.  P a l i t , T. and Qasim, S. R., " B i o l o g i c a l T r e a t m e n t K i n e t i c s of L a n d f i l l Leachate", Journal of the Environm e n t a l E n g i n e e r i n g D i v i s i o n , V o l . 10 3, No. EE2, A p r i l 1977, pp. 353-366.  and  Landfill of B r i t i s h  70  25.  Pborman, B. L . , " T r e a t a b i l i t y o f L e a c h a t e f r o m a Sani t a r y L a n d f i l l by A n a e r o b i c D i g e s t i o n " , M.A.Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , A p r i l 19 74.  26.  Ramey, W. D. , D e p a r t m e n t o f M i c r o b i o l o g y , U n i v e r s i t y of B r i t i s h Columbia, p e r s o n a l communication, A p r i l 19 80.  27.  Rush, R. J . , "Magnesium-Lime P r o c e s s f o r D e c o l o u r i z a t i o n o f K r a f t M i l l E f f l u e n t s " , M.A.Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , A p r i l 1976.  28.  Sawyer, C.N. a n d M c C a r t y , P. L . , " C h e m i s t r y f o r S a n i t a r y E n g i n e e r s " , M c G r a w - H i l l Book Company, 2nd e d i t i o n , 19 67.  29.  S h e r r a r d , J . H. and S c h r o e d e r , E . D., " S t o i c h i o m e t r y o f I n d u s t r i a l B i o l o g i c a l Wastewater Treatment", J o u r n a l o f t h e W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 48, No. 4, A p r i l 1976, p p . 742-747.  30.  S i k e s , J . E . G., and N i e m i n e n , G. A., "Economic C o n s i d e r a t i o n s i n the S e l e c t i o n o f a B i o l o g i c a l Treatment S y s t e m " , 19 75 E n v i r o n m e n t Improvement C o n f e r e n c e , C a n a d i a n P u l p a n d P a p e r A s s o c i a t i o n , O c t o b e r 1975.  31.  Temoin, P. E . , " N u t r i e n t R e q u i r e m e n t s f o r B i o s t a b i l i z a t i o n o f a L a n d f i l l L e a c h a t e " , M.A.Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h Columbia, f i n a l r e p o r t i n p r o g r e s s .  32.  T h o r n t o n , R. J . a n d B l a n c , F . C , " L e a c h a t e T r e a t m e n t by C o a g u l a t i o n and P r e c i p i t a t i o n " , J o u r n a l o f >• t h e E n v i r o n m e n t a l E n g i n e e r i n g D i v i s i o n , V o l . 99, No. E E 4 , A u g u s t 197 3, p p . 5 35-544.  33.  U l o t h , V. C., " A e r o b i c B i o s t a b i l i z a t i o n o f a H i g h S t r e n g t h L a n d f i l l L e a c h a t e " , M.A.Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , F e b r u a r y 1976.  34.  Z a p f - G i l j e , R., " E f f e c t s o f T e m p e r a t u r e on Two-Stage B i o s t a b i l i z a t i o n o f L a n d f i l l L e a c h a t e " , M.A.Sc. t h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , O c t o b e r 19 79.  APPENDICES  72  APPENDIX A Determination The strate  of Biological  Treatment K i n e t i c C o e f f i c i e n t s  r e l a t i o n s h i p between b i o l o g i c a l  utilization  i s formulated  growth and sub-  i n two b a s i c e q u a t i o n s  by  L a w r e n c e and M c C a r t y ( 1 7 ) . The  first  treatment  equation,  developed e m p i r i c a l l y from waste  studies, describes  t h e r e l a t i o n s h i p between n e t  r a t e o f growth and r a t e o f s u b s t r a t e  utilization:  dX where  = n e t growth r a t e o f microorganisms p e r u n i t volume o f r e a c t o r (mass p e r v o l u m e - t i m e ) Y = g r o w t h y i e l d c o e f f i c i e n t (mass o f m i c r o o r g a n i s m s p e r mass o f s u b s t r a t e u t i l i z e d ) dF dt  rate of microbial substrate u t i l i z a t i o n per u n i t volume (mass p e r v o l u m e - t i m e )  b = m i c r o o r g a n i s m decay c o e f f i c i e n t X = m i c r o b i a l mass c o n c e n t r a t i o n volume The strate and  second equation  utilization  (mass p e r  r e l a t e s the rate of m i c r o b i a l  to the concentration  the concentration  ( t i m e "*")  of substrate  sub-  o f microorganisms  surrounding  the micro^  organisms: dF dt where  =  kxs.  K +S s  (A.2)  k = maximum r a t e o f s u b s t r a t e u t i l i z a t i o n _^ p e r u n i t w e i g h t o f m i c r o o r g a n i s m s (time ) S = concentration of substrate surrounding m i c r o o r g a n i s m s (mass p e r volume)  the  73  = h a l f v e l o c i t y c o e f f i c i e n t , equal to the s u b s tt rr aattee ccoonn c e nntt r a t i o n when d F / d t = {h)1<L (mass p e r volume)  s  Using  t h e two b a s i c e q u a t i o n s ,  Y, b , k, a n d K  can be g r a p h i c a l l y  g  the k i n e t i c determined  coefficients  from l a b o r a t o r y  data (22). D i v i d i n g both  s i d e s o f E q u a t i o n A . l by X g i v e s :  dX/dt  =  dF/dt  Y  A  Substituting  _  b  (  A  .  3  )  X  dX/dt  1  x  ,  " e  a  n  a  c  dF _ o ~ dt e c S  S  (where S = c o n c e n t r a t i o n o f s u b s t r a t e i n i n f l u e n t ) i n t o E q u a t i o n A.3 g i v e s : Q  1  ( S  o"  c  S )  c 1  Therefore,  from  a plot of c  S -S versus ^ — ' the y - i n t e r c e p t c  = - b and t h e s l o p e = Y Rearranging  E q u a t i o n A.2 and s u b s t i t u t i n g  dF  =  o c  gives: X9^  K  C  S -S o  k  . 1 -vi + k ' S  (A. 5)  X© Therefore,  from  a plot of  1 K = T- a n d t h e s l o p e = s  c S -S °  versus  . _1, t h e y - i n t e r c e p t S  F"  *  After  the k i n e t i c  coefficients  t h e o r e t i c a l minimum mean c e l l process  failure  have b e e n d e t e r m i n e d ,  retention  the  M time, 9 , a t which ' c  o c c u r s , c a n be c a l c u l a t e d .  74  A materials balance  f o r a r e a c t o r i s w r i t t e n as  (17): /Net Rate o f Change\ \ o f M i c r o b i a l Mass J  V  ( f l )  =  n  (  f  Y  ~  b  X  =  (  )  V  G  r  o  "  When s t e a d y  t  h  e  n  state  1_  =  Y  t  h  R  a  Q  where V = r e a c t o r volume Q = flow r a t e  w  t  )  _  (  W  a  s  h  o  u  t  •  X  R  '  a  t  e  )  •  (  A  '  6  )  (volume)  (volume p e r  conditions exist,  dlZdt _  e  time) ("^r) \ 'n  =  0,  b  m  m  m  ( A > 7 )  c s i n c e Q/V  = 6  c  when t h e r e i s no  S u b s t i t u t i n g E q u a t i o n A.2 1 0  i n t o E q u a t i o n A.7  YkS~ - b k +S c s: M When 0 =9 * ( t h e mean c e l l c c  to the , 1  The ficients  k  of the  at which  system f a s t e r  i n f l u e n t waste c o n c e n t r a t i o n , S . Q  the  than  t h e e f f l u e n t w a s t e c o n c e n t r a t i o n , S,  2-  +S s o  they  is  Hence,  - b  used  i s shown i n T a b l e  coefficients  Table  (A.9)  laboratory data  coefficient in  r e s i d e n c e time  YkS =  C  o f the  , (A. 8)  a r e washed o u t  reproduce),  equal  gives:  _  microorganisms can  recycle.  17,  results  16.  to determine The  the k i n e t i c  graphical determination  i s shown i n F i g u r e s 3 t o 10. and  the  coef-  M calculated © 's c  The  kinetic  are t a b u l a t e d  TABLE 16 COMPUTATION TABLE FOR THE GRAPHICAL DETERMINATION OF KINETIC COEFFICIENTS REACTOR DESCRIPTION T 6 c (°C) (days) R.T.  15  10  5  Note:  S  o  S o (mg/L)  X  S (mg/L)  (mg/L)  1 e c (days "*•)  1 s  :  (L/mg)  S -S o xe c (days )  xe c S -S o (day s)  20  8090  9  3490  0.050  0.111  0.116  8.64  15  8090  11  3470  0.067  0.091  0.155  6.44  10  8090  25  3650  0.100  0.040  0.221  4.53  5  8090  44  4000  0.200  0.023  0.402  2.49  20  8090  7  3690  0.050  0.14 3  0.110  9.13  15  8090  .9  3430  0.067  0.111  0.157  6. 37  10  8090  20  3520  0.100  0.050  0.229  4. 36  5  809 0  51  3790  0.200  0.020  0.424  2. 36  20  8090  9  3810  0.050  0.111  0.106  9.43  15  8090  16  3860  0.067  0.063  0.139  7.17  10  8090  17  4220  0.100  0.059  0.191  5.23  5  8090  112  4040  0.200  0.009  0.395  2. 53  20  8090  14  4070  0.050  0.071  0.099  10.08  15  8090  20  4350  0.067  0.050  0.124  8.09  10  8090  42  479 0  0.100  0.024  0.168  5.95  5  8090  188  4320  0.200  0.005  0. 366  2.73  a n d S a r e s o l u b l e BOD c o n c e n t r a t i o n s 5 r  .'. b = 0 . 0 0 9 d o y s  0  0.1  0.2  0.4  0.3  0.5  (days" ) 1  FIGURE DETERMINATION AT  ROOM  OF k AND  TEMPERATURE  K  g  4  D E T E R M I N A T I O N OF Y A N D ROOM  TEMPERATURE  b AT  0.20h  0.15  -  s l o p e " Y = 0.51  0.10  (A >»  o  -|<D  0.05  0.00 y - intercept = - b =- 0 . 0 0 6 d a y s b = 0 . 0 0 6 days  -0.05  _J  -1  L  0.2 S  o " X  S  0  0.3 (days" ) 1  C  FIGURE DETERMINATION  OF k A N D  AT IO°C  K  8  0.4  8  D E T E R M I N A T I O N OF Y A N D b AT I 0 ° C  0.20  8  0. 15  o  10  0. 10  7 (A >»  a  in  TJ  -  / x  co /  /  d K slope - j p = 5 7 . 0 :  .". K  e  s  .'. k = 1.12 d a y s "  0.04  _|CD 0.05  8  = 63.8mg/L  y-intercept =  1  7 L/mg  1  1  0.08  0.00  = 0. 8 9 days  1  0.12  0.16  -0.05 S  S  l  mg'  FIGURE  5  D E T E R M I N A T I O N OF k A N D AT 15° C  0.4  0,2  o "  S  xeT  ( d a y r l )  FIGURE K,  6  D E T E R M I N A T I O N OF Y A N D b AT I5°C  0.5  0.20  0.15  tn  0.10  >» o -|<D  slope = Y = 0 . 5 5 0  0 5  0.00  r f a  y - intercept = - b = - 0 . 0 0 2 d a y s .'. b = 0 . 0 0 2 d a y s  -0.05  FIGURE DETERMINATION  9 OF k AND  AT 5°C  0. I  -I  - I  0.2  0.3  0.4  F I G U R E 10 K  $  D E T E R M I N A T I O N OF Y A N D b AT 5°C  vo  TABLE 17 KINETIC COEFFICIENTS AND MINIMUM MEAN CELL RETENTION TIMES £  TEMPERATURE  k  c  K  ; Y  t; s b  c (days)  (°C)  (days ^)  s. (mg/L)  R.T.  1.16  81. 8  0.49  • 0.009  1.8  15  1.12  63.8  0.51  0.018  1.8  10  0.51  34.6  0.51  0.006  4.0  5  0. 3.4  17.0  0.55  0.002  5.4  (days "*")  Appendix B Supplementary  Results  4000 — 1  1  1  5  10 SLUDGE  1 15 A 6 E , 6 ( days)  I I 20  C  K comment-three replicate samples were analyzed  FIGURE II MIXED LIQUOR COD VERSUS SLUDGE AGE  00 NJ  TABLE 18 A C I D I T Y , A L K A L I N I T Y , T C , AND TOC CONCENTRATIONS AND REMOVALS BY THE B I O L O G I C A L REACTORS  REACTOR nRRPRTPTION e T c (°C) (days) Leacha t e R.T.  15  ACIDITY mg/L a s CaCO., (pH = 8 . 3 )  Feed 20*  ALKALINITY mg/L a s C a C 0  %  3  REMOVAL  (PH =  3.7)  1PC %  100  0  Tr  mg/L  REMOVAL  REMOVAL  1roc % REMOVAL  3800  3820  3160  2060  mg/L  %  148.  95.3  101  97.4  55  98.6  142  96.3  67  98.2  67  98.2  20  0  100  335  89.4  15  0  100  350  88.9  149  96.1  10  0  100  363  88.5  175  95.4  89  97.7  5  0  100  338  89.3  226  94.1  142  96.3  20  0  100  345  89.1  162  95. 8  81  97.9  15  0  100  373  88.2  177  95.4  86  97.7  10  0  100  387  87.8  190  95.0  92  97.6  5  0  100  39 3  87.6  271  92.9  180  95.3  20  0  100  415  86.9  170  95.5  74  98.1  15  0  100  390  87.7  182  95.2  88  97.7  10  0  100  388  87.7  223  94.2  129  96.6  5  0  100  39 3  87.6  371  90.3  281  92.6  20  0  100  411  87.0  217  94.3  117  96.9  15  0  100  390  87.7  232  93.9  135  96.4  10  0  100  412  87.0  278  92.7  177  95.3  5  0  473  87.6  366  90.4  10  5  *reactor  nutrient  100  l o a d i n g BOD :N:P 5  493  84.4  = 100:5:1, a l l o t h e r s a r e  100:3.2:1.1  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Country Views Downloads
China 27 4
United States 6 1
France 3 0
Germany 3 0
Singapore 2 0
Malaysia 1 0
Japan 1 0
City Views Downloads
Hangzhou 13 0
Shenzhen 9 4
Unknown 6 5
Ashburn 4 0
Guangzhou 2 0
Singapore 2 0
Chicago 2 0
Kunming 2 0
Kuala Selangor 1 0
Changsha 1 0
Tokyo 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062562/manifest

Comment

Related Items