UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Ammonia gas dynamics in four Vancouver area landfills Miller, Bradford Hale 1988

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1988_A7 M54.pdf [ 18.93MB ]
Metadata
JSON: 831-1.0062503.json
JSON-LD: 831-1.0062503-ld.json
RDF/XML (Pretty): 831-1.0062503-rdf.xml
RDF/JSON: 831-1.0062503-rdf.json
Turtle: 831-1.0062503-turtle.txt
N-Triples: 831-1.0062503-rdf-ntriples.txt
Original Record: 831-1.0062503-source.json
Full Text
831-1.0062503-fulltext.txt
Citation
831-1.0062503.ris

Full Text

AMMONIA GAS DYNAMICS IN FOUR VANCOUVER AREA LANDFILLS By BRADFORD HALE MILLER B.S., U n i v e r s i t y A THESIS SUBMITTED  of A r i z o n a ,  1984  IN PARTIAL FULFILLMENT  THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF C I V I L  We  accept t h i s to  thesis  ENGINEERING  as c o n f o r m i n g  the r e q u i r e d s t a n d a r d  THE UNIVERSITY OF BRITISH COLUMBIA August ®  1988  B r a d f o r d Hale M i l l e r ,  1988  In  presenting  degree  this  at the  thesis  in  University of  partial  fulfilment  of  of  department  this or  thesis for by  his  or  scholarly purposes may be her  representatives.  permission.  Department The University of British Columbia Vancouver, Canada  for  an advanced  Library shall make it  agree that permission for extensive  It  publication of this thesis for financial gain shall not  DE-6 (2/88)  requirements  British Columbia, I agree that the  freely available for reference and study. I further copying  the  is  granted  by the  understood  that  head of copying  my or  be allowed without my written  ii ABSTRACT A n i n e month measure, p r e d i c t concentrations attempted  field  and l a b o r a t o r y  s t u d y was u n d e r t a k e n t o  and model t h e v a r i a t i o n  in landfill  to characterize  of d e t e c t e d  g a s . An a d d i t i o n a l organic trace  side  ammonia study  contaminants  found i n  l a n d f i l l gas. The  field  extraction analysis  project  w e l l s from  o f NH^-N  common l a n d f i l l boric-acid  of biweekly  four Vancouver-area  gases  f o r the  Methane and o t h e r  in this  gas r e c o v e r y e f f i c i e n c y  s t u d y was e s t i m a t e d t o  o f 50 %.  problems encountered  i n the l a n d f i l l  Other  with t h i s  t e c h n i q u e was t h e h i g h h u m i d i t y and n e g a t i v e inherent  o f gas  were a l s o a n a l y z e d . * The wet c h e m i c a l  t e c h n i q u e used  recovery e f f i c i e n c y ,  sampling  landfills  i n t h e gas and l e a c h a t e .  sampling  have a ammonia  consisted  t h a n a low  sampling  interferences  g a s . L a b o r a t o r y a n a l y s i s of the  c o l l e c t e d NH^-N gas samples was by t h e a u t o m a t e d p h e n a t e method, which c o u l d d e t e c t NH3-N gas c o n c e n t r a t i o n s g r e a t e r t h a n The ppb,  NH^-N c o n c e n t r a t i o n s i n gas were f o u n d  but were more commonly  statistical  and g r a p h i c a l  precipitation  were f o u n d  t o exceed  i n t h e 50 t o 200 ppb r a n g e .  analysis,  10 ppb. 600 In t h e  gas t e m p e r a t u r e and  to correlate  t h e most t o t h e v a r i a t i o n  i n ammonia  gas c o n c e n t r a t i o n , w h i l e l e a c h a t e i o n i c s t r e n g t h  correlated  s t r o n g e s t w i t h most CH^ % a n a l y s i s .  both NH^-N gas and CH^ % by r e g r e s s i o n  P r e d i c t i o n of  a n a l y s i s was f o u n d  t o be  2 s u s p e c t due t o low R Four  different  v a l u e s and n o n - n o r m a l i t y  of some d a t a .  H e n r y ' s Law c o n s t a n t s o f ammonia  gas were  evaluated phase.  to help p r e d i c t the c o n c e n t r a t i o n  The c o m b i n a t i o n  concentrations over  o f a l r e a d y measured NH^-N  and H e n r y ' s Law c o n s t a n t s  and u n d e r p r e d i c t e d  more.  This leads  applicable  the author  ammonia l e a c h a t e  flux  an  gas f l u x  by 2000 f o l d o r  r e a c t i o n mechanisms.  ammonia gas f l u x  rates with  r a t e of l e s s  The NH ~N 3  than  gas f l u x  results  from a s p r e a d s h e e t  emission  convection  and d i f f u s i o n  through the l a n d f i l l  comparison  of t h e e m i s s i o n  model.  model r e s u l t s  from a s i m p l e  were  model e m p l o y i n g  both  cover. A  f o r t h e 20 ha Richmond  (3.862 k g / y r ) compared  r e s u l t s determined  balance  flow  yielded  0.03 % o f t h e t o t a l  calculated  flux  total  r a t e s i n two o f t h e f o u r l a n d f i l l s  l e a c h a t e NHg-N f l u x e s .  area  that  t o b e l i e v e H e n r y ' s Law may n o t be  various other  Comparison o f l a n d f i l l  study  leachate  e n v i r o n m e n t due t o n o n - e q u i l i b r i u m  conditions coupling with  landfill  i n the gas  yielded results  measured NH^-N gas d a t a  in a l a n d f i l l  insignificant  of NH^-N  f a v o r a b l y t o t h e mass  gas g e n e r a t i o n  mass  iv TABLE  OF CONTENTS  ABSTRACT  i i  L I S T OF TABLES  x i i  L I S T OF FIGURES  xv  ACKNOWLEDGEMENTS  xx i  CHAPTER 1 Introduction  1  1. 1  Background  1  1.2  Objectives  1.3  Scope of I n v e s t i g a t i o n  1.4  Scope of C o n t e n t s  2  of Study  3 ....5  1.4.1.  L i t e r a t u r e Review  5  114.2.  Site Description  1.4.3.  Methodology  1.4.4.  Discussion  1.4.5.  C o n c l u s i o n s and Recommendations  6  1.4.6.  References  6  1.4.7.  Appendix  6  and H i s t o r y  6 6  of R e s u l t s . . . .  6  CHAPTER 2 B a c k g r o u n d and L i t e r a t u r e 2.1.  Review  Characteristics  7  2.1.1.  Leachate Production  7  2.1.2.  Landfill  7  . Landfill  Gas P r o d u c t i o n  2.1.2.1.  Decomposition  2.1.2.2.  Temporal S t a g e s  of Refuse i n Gas P r o d u c t i o n  7 10  V  2.1.3.  Factors Affecting  D e c o m p o s i t i o n and  11  Gas P r o d u c t i o n 2.1.3.1.  Refuse C o m p o s i t i o n  11  2.1.3.2.  Nutrient  13  2.1.3.3.  Refuse  2.1.3.4.  Refuse P a r t i c l e  2.1.3.5  Hydrogeology  2.1.3.6.  Landfill  2.1.3.7.  Gas R e c o v e r y  2.1.3.8.  Oxidation Reduction Potential  17  2.1.3.9.  Moisture Content  18  Availability  Emplacement  15  Size  of L a n d f i l l  15 Area  Age  16 System  2.1.3.10. T e m p e r a t u r e 2.1.3.11. A l k a l i n i t y 2.2.  Review o f F i e l d  2.3.  Offsite  2.4.  Gas C o l l e c t i o n  2.5.  16  16  19 a n d pH  Studies  20 23  Gas M i g r a t i o n  25  Systems  28  2.4.1.  Collection  28  2.4.2.  Pretreatment  31  2.4.3.  Gas E x t r a c t i o n  Parameters  2.4.3.1.  Extraction  2.4.3.2.  Gas E x t r a c t i o n  2.4.3.3.  Refuse  2.4.3.4.  Internal  Ammonia  well  Spacing and P r o d u c t i o n R a t e s  Permeability Gas V e l o c i t y  Gas i n L a n d f i l l s  2.5.1.  Physical  Properties  2.5.2.  S o u r c e s and Ambient  33 33 34 35 36 37  o f Ammonia Gas  37  A t m o s p h e r i c L e v e l s o f NH3..38  vi 2.5.2.2.  Natural  2.5.2.2.  Anthropogenic  2.5.2.3.  Ambient  2.5.2.4.  A n a l y t i c a l Techniques  2.5.3.  Sources  Ammonia G e n e r a t i o n  2.5.3.2.  Production  2.5.3.3.  Ammonia S i n k s  2.5.3.4.  Landfill  In  39  Levels  39 40  in Landfills  Sources  Factors  Sources  Atmospheric  2.5.3.1 .  2.5.4.  38  40 40  o f Ammonia  41 43  Ammonia  Balance  43  A f f e c t i n g Ammonia Movement  44  Landfill  2.5.4.1.  Mass T r a n s f e r  i n U n s a t u r a t e d Zone  44  2.5.4.2  Mass T r a n s f e r  i n Saturated  49  2.5.4.3.  Further  Movement  Zone...  in Landfill  50  CHAPTER 3 Site Description 3.1.  3.2.  Matsqui  and  History  - Clearbrook L a n d f i l l  52  3.1.1.  Location  52  3.1.2.  Physical Description  52  3.1.3.  History  52  3.1.4.  Gas E x t r a c t i o n  and C h a r a c t e r i s t i c s o f F i l l System..  S t r i d e Avenue L a n d f i l l • 3.2.1.  Location  3.2.2.  Physical  3.2.3.  History  3.2.4.  Gas E x t r a c t i o n  53 58 58  Description and C h a r a c t e r i s t i c s o f F i l l System  58 59 61  Vll  3.3.  3.4.  Richmond L a n d f i l l  63  3.3.1.  Location  63  3.3.2.  Physical Description  64  3.3.3.  History  64  3.3.4.  Gas E x t r a c t i o n  and C h a r a c t e r i s t i c s o f F i l l  Premier S t r e e t  System  66  Landfill  70  3.4.1.  Location  70  3.4.2.  Physical  3.4.3.  History  3.4.4.  Gas C o l l e c t i o n System  Description  70  and C h a r a c t e r i s t i c s of F i l l  71 73  CHAPTER 4 Methodology 4.1.  4.2.  Field  Methods  and T e c h n i q u e  75  4.1.1.  Instrumentation  4.1.2.  NH3-N Gas S a m p l i n g T e c h n i q u e  78  4.1.3.  V o l a t i l e Organic  82  Sampling  L a b o r a t o r y Methods 4.2.1.  Instrumentation  75  84 and Technique  84  4.2.1.1.  Leachate Constituents  84  4.2.1.2.  S p e c i f i c Conductivity  85  4.2.1.3.  NH3-N D i s t i l l a t i o n  4.2.1.4.  Gas C h r o m a t o g r a p h y / M a s s S p e c t r o m e t r y . . . . 8 6  4.2.1.5.  Methane Gas A n a l y s i s  4.2.2.  Ammonia  Gas A n a l y s i s  - Titration  Analysis.85  87 88  4.3.  Precipitation Stations  91  4.4.  Basic  92  Data Parameters M o n i t o r e d  vi i i 4.5.  Non-Basic Data Parameters  4.6.  Statistical  92  A n a l y s i s Done on  Parameters  B i v a r i a t e Regression  93  4.4.1.  Linear  4.4.2.  Pearson  4.4.3.  K o l m o g o r o v - S m i r n o v G o o d n e s s of F i t T e s t  93  4.4.4.  M u l t i p l e Regression  94  Product-Moment  93  Correlation  Analysis  93  CHAPTER 5 Results 5.1.  5.2.  and  Discussion  Ammonia Gas  Analytical  Technique  5.1.1.  Problems Encountered  5.1.2.  Interferences  99  5.1.3.  Detection  102  5.1.4.  Precision  102  5.1.5.  Recovery E f f i c i e n c y  103  T e m p o r a l and  on  96  Autoanalyzer  Limit  S p a t i a l V a r i a t i o n of  Data  96  106  5.2.1.  V a r i a t i o n i n C o l l e c t e d Data  106  5.2.2.  Non-Metal Leachate C o n s t i t u e n t s  106  5.2.3.  Precipitation  110  5.2.4.  Temperature  115  5.2.5.  Oxidation  5.2.6.  Static  5.2.7.  N2/02 Gas  Gas  Reduction  Potential  116  Flow  119  Ratio  125  5.3.  Variables that  A f f e c t Methane Gas  Pet  129  5.4.  Variables that  A f f e c t Ammonia Gas  Concentration  132  5.4.1.  Introduction  132  5.4.2.  Precipitation  134  ix 5.4.3.  NH3-N i n L e a c h a t e  5.4.4.  L e a c h a t e pH  148  5.4.5.  Methane F l u x  148  5.4.6.  Gas T e m p e r a t u r e  149  5.4.7.  Other  154  5.5.  Landfill  5.6.  Prediction  Parameters  Gas O r g a n i c s  Introduction  5.6.2.  Comparison  147  154  o f NH3-N Gas T h r o u g h H e n r y ' s Law  5.6.1.  160 160  of D i f f e r e n t  H e n r y ' s Law C o n s t a n t s . . 1 6 1  5.6.2.1.  C o r r e c t e d V a p o r P r e s s u r e Method  161  5.6.2.2.  Mole F r a c t i o n  171  5.6.2.3.  G i b b s F r e e E n e r g y Method  172  5.6.2.4.  Solubility  173  5.6.2.5.  Summary o f R e s u l t s  5.6.3.  Method  - E q u i l i b r i u m Method...  Reasons f o r D i s c r e p a n c y Measured  5.7.  ^  Analytical  5.6.3.2.  Landfill  5.6.3.3.  Volume D i l u t i o n  5.6.3.4.  Landfill  5.6.3.5.  Non-Equilibrium  5.6.3.6.  Mass T r a n s f e r  5.6.3.7.  Solubility  5.6.3.8.  Landfill  5.7.1.  i n Predicted vs  177  Ratio  5.6.3.1.  Mass F l u x  175  Emission  Introduction  Technique  Unsaturated  177 Zone  Effect  Heterogenieties Landfill  Limitations  o f Ammonia  179 180 181 E n v i r o n m e n t . . . . 182 183 183  Sinks  186  o f NH3-N Gas  187 187  X  5.7.2.  Model  Introduction.^  188  5.7.2.1.  Farmer's Model  188  5.7.2.2.  T h i b o d e a u x ' s Model  189  5.7.2.3.  Assumptions  190  5.7.2.4.  L i m i t a t i o n s t o Model  5.7.3.  Model  f o r Models  R e s u l t s of L a n d f i l l  ....191  NH3-N Gas  Fluxes  192  5.7.3.1.  Introduction  192  5.7.3.2.  D i s c u s s i o n of R e s u l t s  195  5.7.3.3.  Comparison  197  of Model  Gas G e n e r a t i o n 5.7.4.  Results with  Mass B a l a n c e R e s u l t s  Summary of R e s u l t s  199  a n d Recommendations  200  CHAPTER 6 Conclusions CHAPTER 7 References  208  APPENDICIES A.I.  Results  o f Gas  Partitioner  A.2.  Results  o f Leakage  A.3.  Raw  D a t a o f 6.0  L/min  Flow R e c o v e r y E f f i c i e n c y  219  A.4.  Raw  Data  o f 2.1  L/min  Flow R e c o v e r y E f f i c i e n c y  219  A.5.  Raw  Data  of  A.6.  Results  A. 7.  Summary T a b l e  B. I.  C a l c u l a t i o n o f CH4  Flux  221  B.2.  C a l c u l a t i o n o f C02  Flux  221  B.3.  C a l c u l a t i o n of L a n d f i l l  10.5  Accuracy Results  T e s t s on Gas  L/min  Sample V i a l s  Flow Recovery E f f i c i e n c y  o f pH Meter C o m p a r i s o n of Q u a l i t y A s s u r a n c e T e s t s  Gas D e n s i t y  218 218  .219 220 221  221  xi B.4.  Calculation  of ppb  B.5.  Calculation  of L e a c h a t e  B.6.  Calculation  of L e a c h a t e A c t i v i t y  B.7.  Calculation  of U n i o n i z e d F r a c t i o n  B.8.  Estimation  B.9.  Calculation  of NH3-N i n L a n d f i l l Ionic  Gas  222  Strength  222  Coefficient  222  Of Ammonia  223  of pKa  223  of Aqueous Ammonia M o l a r i t y  224  B.10. E s t i m a t i o n  of H1  B.11. E s t i m a t i o n  o f H2 From Mole F r a c t i o n  B.12. E s t i m a t i o n  o f H3 From G i b b s F r e e E n e r g y  B.13. E s t i m a t i o n  of H4 From S o l u b i l i t y - E q u i l i b r i u m Method...227  B.I 4. D e s c r i p t i o n  From Vapor P r e s s u r e Method  and D e r i v a t i o n  224  Method  225 226  o f T h i b o d e a u x ' s Model  227  B.I 5. Sample C a l c u l a t i o n  of T h i b o d e a u x ' s Model  229  B. 16. Sample C a l c u l a t i o n  o f Gas G e n e r a t i o n Mass B a l a n c e  229  Model C. 1.  Weekly P r e c i p i t a t i o n D a t a F o r T h r e e Weather  D. I.  T a b l e s of B a s i c Data Parameters  i n E a c h Sample W e l l . . . 2 3 2  E. I.  T a b l e s of Parameters C a l c u l a t e d  From B a s i c  F. I.  T a b l e of P r e c i p i t a t i o n Used F o r S t a t i s t i c a l  F.2.  R e s u l t s of Kolmogorov-Smirov N o r m a l i t y T e s t s  F.3.  Matrix  R e s u l t s o f P e a r s o n Product-Moment  Stations..231  Data  243  Analysis..252 253  Correlations.254  XI 1  LIST OF TABLES 2.1  Spatial  2.2  Refuse  2.3  Factors Affecting  2.4  Physical  5.1  R e s u l t s of S i g n a l  5.2  R e s u l t s of Standard A d d i t i o n  5.3  R e s u l t s of Recovery  5.4  Non-Metal L e a c h a t e  C o n s t i t u e n t s From M a t s q u i  108  5.5  Non-Metal L e a c h a t e  C o n s t i t u e n t s From S t r i d e Ave  108  5.6  Non-Metal L e a c h a t e  C o n s t i t u e n t s From Richmond  109  5.7  Non-Metal L e a c h a t e  C o n s t i t u e n t s From P r e m i e r  5.8  Landfill P1  5.9  Variation Empirical  5.11  Compositions  O b t a i n e d From L i t e r a t u r e  Diffusion  11 12 27  P r o p e r t i e s o f Ammonia Gas  38  Response C o m p a r i s o n  97  Tests  Efficiency  101  Tests  105  St  Gas VOC's D e t e c t e d by GC-MS a n d Tenax  109  Trap....156  Gas VOC's D e t e c t e d by GC-MS a n d Tenax T r a p . . . . 1 5 7  Matsqui  5.10 L a n d f i l l F3  Formulas  Refuse  Premier St  Landfill F5  in Typical  Gas VOC's D e t e c t e d by GC-MS a n d Tenax T r a p  158  Matsqui  Landfill  Gas VOC's D e t e c t e d by GC-MS a n d Tenax  Trap....159  C6 Richmond 5.12 R e s u l t s o f H e n r y ' s  Law C o m p a r i s o n .  163  Law C o m p a r i s o n  164  Law C o m p a r i s o n  165  F1 , F2, F3 M a t s q u i 5.13 R e s u l t s o f H e n r y ' s F5, F8 M a t s q u i 5.14 R e s u l t s o f H e n r y ' s F2,  F 3 , F6 S t r i d e A v e .  xiii  5.15  R e s u l t s of F7,  5.16  R e s u l t s of  167  Richmond 168  Richmond  R e s u l t s of H e n r y ' s Law C o m p a r i s o n D.55,  5.19  H e n r y ' s Law C o m p a r i s o n  R e s u l t s o f H e n r y ' s Law C o m p a r i s o n C6, G7  5.18  166  F 8 , 10B S t r i d e Ave.  B8, D9 5.17  H e n r y ' s Law C c m p a r i s o n  169  B.53 Richmond  R e s u l t s of H e n r y ' s Law C o m p a r i s o n  170  P1, P2 P r e m i e r S t . 5.20  Summary M a t r i x  o f A v e r a g e Range o f P r e d i c t e d / M e a s u r e d . . 1 7 5  NH3-N Gas R a t i o s 5.21  Landfill.  S t a n d a r d V a l u e s Used F o r M o d e l l i n g E m i s s i o n s From  5.22  f o r Each  NH3-N Gas  194  Landfills.  Comparing A n n u a l NH3-N Gas Mass F l u x e s  F o r Both  196  Landfills. 5.23  Comparison Fluxes  5.24  Between  For Both  Comparison  Gas a n d L e a c h a t e A n n u a l  Landfills.  o f M o d e l V e r s u s Mass B a l a n c e F l u x  Calculations.  196  199  xiv  THIS IS A BLANK PAGE  XV  L I S T OF FIGURES 2.1.  Landfill  Gas P e r c e n t a g e s a s a F u n c t i o n  2.2  Factors  2.3  Example o f T y p i c a l E x t r a c t i o n W e l l  2.4  Microscopic  2.5  R e l a t i o n s h i p s o f Mass T r a n s f e r  Affecting Landfill  Unsaturated 3.1  Site and  Cross-Section  Landfill  Location  o f Time  Gas P r o d u c t i o n  22 32  Through L a n d f i l l  Refuse  at Saturated-  45 51  Environment  Map Showing M a j o r Waterways, Roads  Metropolitan  10  54  Area  3.2  Location  Map C l e a r b r o o k - M a t s q u i  3.3  Site  3.4  Location  3.5  S i t e Map S t r i d e Avenue L a n d f i l l  62  3.6  Location  65  3.7  Site  3.8  Location  3.9  S i t e Map P r e m i e r  4.1  Schematic  4.2  Indophenol  4.3  Flow Diagram o f T e c h n i c o n  Map C l e a r b r o o k - M a t s q u i  Landfill  55  Landfill  56  Map S t r i d e Avenue L a n d f i l l  60  Map Richmond L a n d f i l l  Map Richmond L a n d f i l l Map P r e m i e r  70  Street L a n d f i l l  72  Street L a n d f i l l  74  of Sampling Apparatus  .80  Blue Reaction  89 Autoanalyzer  II f o r  90  NH3-N A n a l y s i s 5.1  Comparison  of S i g n a l Responses  5.2  Comparison  o f Weekly P r e c i p i t a t i o n  Stations 5.3  In Close  Proximity  98 From Weather  to Landfills  T e m p o r a l V a r i a t i o n o f Weekly P r e c i p i t a t i o n NH3-N g a s G7 Richmond  111  vs  113  xvi 5.4  Temporal  Variation  o f Weekly  P r e c i p i t a t i o n vs  113  P r e c i p i t a t i o n vs  114  P r e c i p i t a t i o n vs  114  NH3-N g a s P2 P r e m i e r St 5.5  Temporal V a r i a t i o n  o f Weekly  NH3-N g a s F3 M a t s q u i 5.6  Temporal  Variation  o f Weekly  NH3-N g a s F7 S t r i d e 5.7  Temporal  Changes  i n Gas and Ambient  Temperature  117  Changes  i n Gas and Ambient  Temperature  117  Changes  i n Gas and Ambient  Temperature  118  i n Gas and Ambient  Temperature  118  F2 M a t s q u i 5.8  Temporal F7  5.9  Temporal G7  5.10  Stride  Richmond  Temporal P1  Changes  Premier  5.11  Gas F l o w  v s . Barometric Pressure  B8 Richmond  120  5.12  Gas Flow  v s . Barometric Pressure  P2 P r e m i e r  120  5.13  Gas F l o w  v s . B a r o m e t r i c P r e s s u r e F8 S t r i d e  121  5.14  Gas F l o w  v s . B a r o m e t r i c P r e s s u r e F2 M a t s q u i  121  5.15  Gas F l o w v s . B a r o m e t r i c P r e s s u r e F3 M a t s q u i  122  5.16  Gas F l o w  122  5.17  Well  5.18  Landfill  Gas N2/02 R a t i o v s . Time - M a t s q u i F1 a n d F3..127  5.19  Landfill  Gas N2/02 R a t i o v s . Time - S t r i d e  5.20  Temporal V a r i a t i o n B8  v s . B a r o m e t r i c P r e s s u r e F4 M a t s q u i  Flow v s . H o u r l y Time F1 M a t s q u i  Richmond  o f Weekly  Precip.  126  F2 a n d F7...127  v s . NH3-N g a s  135  xvi i 5.21  Temporal V a r i a t i o n  o f Weekly P r e c i p .  v s . NH3-N g a s  135  o f Weekly  Precip.  v s . NH3-N g a s  135  o f Weekly P r e c i p .  v s . NH3-N g a s  135  o f Weekly P r e c i p .  v s . NH3-N g a s  136  o f Weekly P r e c i p .  v s . NH3-N g a s  136  o f Weekly P r e c i p .  v s . NH3-N g a s  136  o f Weekly P r e c i p .  v s . NH3-N g a s  136  o f NH3-N L e a c h a t e v s . NH3-N g a s  137  D9 Richmond 5.22  Temporal V a r i a t i o n C6  5.23  Richmond  Temporal V a r i a t i o n D.55  5.24  Temporal V a r i a t i o n F2  5.25  Richmond  Matsqui  Temporal V a r i a t i o n F5 M a t s q u i  5.26  Temporal V a r i a t i o n F2  5.27  Temporal V a r i a t i o n F7  5.28  Stride  Stride  Temporal V a r i a t i o n B8  Richmond  5.29  Temporal V a r i a t i o n  o f pH v s . NH3-N gas B8 Richmond  137  5.30  Temporal V a r i a t i o n  o f CH4 F l u x  v s . NH3-N g a s  137  o f Gas Temp v s . NH3-N gas  137  o f NH3-N L e a c h a t e v s . NH3-N g a s  138  B8 5.31  Temporal V a r i a t i o n B8  5.32  Richmond  Richmond  Temporal V a r i a t i o n D9 Richmond  5.33  Temporal V a r i a t i o n  o f pH v s . NH3-N gas D9 Richmond  138  5.34  Temporal V a r i a t i o n  o f CH4 F l u x  138  D9 Richmond  v s . NH3-N gas  xvi i i 5.35  Temporal V a r i a t i o n D9  5.36  138  o f NH3-N L e a c h a t e v s . NH3-N g a s  139  Richmond  Temporal V a r i a t i o n C6  o f Gas Temp v s . NH3-N g a s  Richmond  5.37  Temporal V a r i a t i o n  o f pH v s . NH3-N gas C6 Richmond  139  5.38  Temporal V a r i a t i o n  o f CH4 F l u x  v s . NH3-N g a s  139  o f Gas Temp v s . NH3-N g a s  139  o f NH3-N L e a c h a t e v s . NH3-N g a s  140  C6 5.39  Temporal V a r i a t i o n C6  5.40  Richmond  Richmond  Temporal V a r i a t i o n D.55  Richmond  5.41  Temporal V a r i a t i o n  o f pH v s . NH3-N g a s D.55 Richmond...140  5.42  Temporal V a r i a t i o n  o f CH4 F l u x  D.55 5.43  5.44  140  o f Gas Temp v s . NH3-N g a s  140  o f NH3-N L e a c h a t e v s . NH3-N g a s  141  Richmond  Temporal V a r i a t i o n D.55  v s . NH3-N g a s  Richmond  Temporal V a r i a t i o n F2 M a t s q u i  5.45  Temporal V a r i a t i o n  o f pH v s . NH3-N gas F2 M a t s q u i  141  5.46  Temporal V a r i a t i o n  o f CH4 F l u x  v s . NH3-N g a s  141  o f Gas Temp v s . NH3-N g a s  141  o f NH3-N L e a c h a t e v s . NH3-N g a s  142  o f pH v s . NH3-N g a s F7 M a t s q u i  142  F2 M a t s q u i 5.47  Temporal V a r i a t i o n F2 M a t s q u i  5.48  Temporal V a r i a t i o n F5 M a t s q u i  5.49  Temporal V a r i a t i o n  xix 5.50 T e m p o r a l V a r i a t i o n  o f CH4 F l u x  v s . NH3-N g a s  ^...142  o f Gas Temp v s . NH3-N g a s  142  o f NH3-N L e a c h a t e v s . NH3-N g a s  143  5.53 T e m p o r a l V a r i a t i o n  o f pH v s . NH3-N gas F2 S t r i d e  143  5.54 T e m p o r a l V a r i a t i o n  o f CH4 F l u x  v s . NH3-N g a s  143  o f Gas Temp v s . NH3-N g a s  143  o f NH3-N L e a c h a t e v s . NH3-N g a s  144  5.57 T e m p o r a l V a r i a t i o n  o f pH v s . NH3-N gas F7 S t r i d e  144  5.58 T e m p o r a l V a r i a t i o n  o f CH4 F l u x  F7 M a t s q u i 5.51  Temporal V a r i a t i o n F7 M a t s q u i  5.52 T e m p o r a l V a r i a t i o n F2  F2  Stride  Stride  5.55 T e m p o r a l V a r i a t i o n F2  Stride  5.56 T e m p o r a l V a r i a t i o n F7  Stride  v s . NH3-N g a s  ....144  o f Gas Temp v s . NH3-N g a s  144  o f NH3-N L e a c h a t e v s . NH3-N g a s  145  5.61 T e m p o r a l V a r i a t i o n  o f pH v s . NH3-N g a s P2 P r e m i e r  145  5.62 T e m p o r a l V a r i a t i o n  o f CH4 F l u x  v s . NH3-N g a s  145  o f Gas Temp v s . NH3-N g a s  145  F7  Stride  5.59 T e m p o r a l V a r i a t i o n F7  Stride  5.60 T e m p o r a l V a r i a t i o n P2 P r e m i e r  P2 P r e m i e r 5.63 T e m p o r a l V a r i a t i o n P2 P r e m i e r 5.64 R e g r e s s i o n  Plot  o f Gas Temp v s . NH3-N gas M a t s q u i  152  xx 5.65 R e g r e s s i o n  P l o t of  Gas Temp v s . NH3-N gas  Stride  5.66  Regression  P l o t of  Gas Temp v s . NH3-N gas  Richmond  5.67  Regression  P l o t of  Gas Temp v s . NH3-N gas  Premier  Ave...152 153 S t . . . 153  xxi ACKNOWLEDGEMENTS This Science  research  was s u p p o r t e d  and E n g i n e e r i n g  For  field-related  by a g r a n t  Research Council activities,  (NSERC).  many t h a n k s go t o t h e  following  persons:  District,  Bob Rasmussen o f t h e N o r t h V a n c o u v e r M u n i c i p a l  and  Ron F o r s y t h e  from t h e N a t u r a l  most o f t h e s t a f f  a t E.H. Hanson & A s s o c i a t e s  G r e g , M i k e and e s p e c i a l l y drive  jeep  sandtrap", For Liptak,  on  t h e Richmond  Landfill.  Paula  Parkinson  idea  technique.  i n sampling  Environmental  some h e l p f u l  of r e s e a r c h  guidance  and g e n e r a l  throughout  f o r t h e UBC  for his  and! a n a l y s i s o f t h e l a n d f i l l i s a l s o acknowledged  computer  h i n t s and i n p u t  i s a l s o thanked  My a d v i s o r , J i m A t w a t e r  inanimate  landfill  T i m Ma, t h e s p e c i a l i s t  GC/MS l a b o r a t o r y ,  wheel  t h a n k s go t o Susan  and Romy So o f t h e UBC  L a b w h o . p r o v i d e d me w i t h  Science  expertise  me h i s f o u r  up on t h e " w o r l d ' s l a r g e s t  special  District  such as E l s o n ,  f o r sampling  my a n a l y t i c a l  Applied  Len Hanson, who l e n t  laboratory a c t i v i t i e s ,  Engineering  of the Matsqui. M u n i c i p a l  gas o r g a n i c s . forh i sorginal  the study.  Two  o b j e c t s worth a c k n o w l e d g i n g a r e t h e weather and systems, which  i n most, c a s e s  were c o o p e r a t i v e  during the  study. •;• L a s t  but not l e a s t ,  i s very  Lene C h r i s t i a n s e n , who h e l p e d text  input while  preparation  tolerating  of t h i s  special  with  t h a n k s t o my f i a n c e '  some o f t h e t e d i o u s  d a t a and  my many temper t a n t r u m s d u r i n g t h e  manuscript.  1 CHAPTER 1 1. 1.1.  INTRODUCTION BACKGROUND Most  dynamics  landfill  and movement o f methane g a s .  have m o s t l y this  gas r e s e a r c h h a s c o n c e n t r a t e d on s t u d y i n g t h e  focused at a l y s i m e t e r - s c a l e .  r e s e a r c h has s h i f t e d  landfill  gas, mainly  characterizing  the t r a c e  contaminants  analysis  gas  from  and R o v e r s landfill  sampling  0.71 ppb o f NH^-N  b u t c o n c e n t r a t e s m a i n l y on t h e  have documented a r e l e a s e  concentration. reported  ammonia a s a t r a c e component i n  Ham  measurement t o  (1979) r e p o r t e d  a c o n c e n t r a t i o n of  gas c o n d e n s a t e ,  t e c h n i q u e used  to determine  b u t does n o t this  The most p r o m i s i n g s t u d y was by W i n t e r  (1979) who  c o n c e n t r a t i o n s o f 0 t o 350 ppb i n l a n d f i l l g a s .  Unfortunately, Winter's report technique  o f ammonia  s u c h a s T a n a s c i . ( 1 9 8 2 ) and F a r q u h a r  i n the l a n d f i l l  the a n a l y t i c a l  volatile  component, namely ammonia g a s .  Authors  claim.  the organic .  characterize  g a s , but p r e s e n t no q u a n t i t a t i v e their  actual  o f q u a n t i f y i n g and  s t u d y does  i n samples,  (1973). "mention  substantiate  mention  This  few i n v e s t i g a t i o n s landfills.  the f i e l d  nature  R e c e n t l y , a p o r t i o n of  g a s components; p r i m a r i l y  o f an i n o r g a n i c  Very  into  f o r the purpose  contaminant . f r a c t i o n . organic  S t u d i e s of t h i s  does  not mention  the a n a l y t i c a l  used.  Al-Omar e t a l . (198.5) r e p o r t e d maximum NH^-N open dump s i t e  levels  that  a t m o s p h e r i c mean and  o f 13 ppb t o 174 ppb were measured a r o u n d an  i n Baghdad, I r a q .  Ham  (1979) m e n t i o n s  that the  2 BKK  co-disposal site  construction planned  of  an  landfill  While  i n West C o v i n a ,  collection  of NH^-N  Atwater,  and  knowledge, t h e r e mass f l u x  favoring  be  from  Jasper  i n - l i n e with  and  lost  leachate  Atwater,  i f the  the  (Cameron,  attempts gas  proper  landfill.  In a  paper  ( B a c c i n i e t a l . , 1987), S w i s s r e s e a r c h e r s  attempt age.  to c o r r e l a t e these  flux,  through the  he  gas  fails  element  study  concerning whether  nitrogen  objectives A. technique B.  of  To  and  an  estimation  the  for  nitrogen flux  gas  i n an  landfill leachate lost  was  STUDY undertaken  ammonia gas flux  leachate  recent  estimated  f l u x e s to r e l a t i v e  to estimate  t r a c e , components  the  have  high  p h a s e v i a ammonia v o l a t i l i z a t i o n .  OBJECTIVES OF This  of  landfill  While B a c c i n i et a l . presents  nitrogen  1.2.  the  could  conditions temp,  in leachate)  the  loss  high  NH^-N  e l e m e n t mass f l u x e s from b o t h  i n the  author's  This  chemical pH,  1979,  to estimate  phase.  ammonia v o l a t i l i z a t i o n ( i e , h i g h were a p p p a r e n t  estimating  1985), t o t h i s  previous  through  significant  their  system.  landfill  have been no  of ammonia  conceivably  considered  have been numerous s t u d i e s done on  t h e mass f l u x 1980  has  ammonia s y n t h e s i s p l a n t  gas  there  CA  to  improve t h e  in l a n d f i l l  flux  develop  study  are  a simple,  t o measure t h e I n v e s t i g a t e the  and  to  base determine  c o n s t i t u t e s a s u b s t a n t i a l percentage  through a l a n d f i l l .  this  gas  data  listed fast  I n c l u d i n g the  above,  the  below: and  concentration  reliable  analytical  of NH^-N  in l a n d f i l l  f a c t o r s that could a f f e c t  the  gas.  temporal  3 variation C.  of NH^-N  and  methane c o n c e n t r a t i o n s  Develop a s t a t i s t i c a l  concentration D.  and  H e n r y s Law  constants  known NH^-N E.  Determine flux  one  apply  NH^-N  i n the  i f NH^-N  from c o l l e c t e d  can  to p r e d i c t  concentration  substantial  model t o h e l p p r e d i c t  methane p e r c e n t  D e t e r m i n e whether  gas.  NH^-N  data.  documented v a l u e s  gas  of  concentrations given  a  leachate.  mass f l u x  component  in l a n d f i l l  i n the  when compared  landfill  gas  is a  t o known mass f l u x e s of  NH3-N i n l e a c h a t e . F.  Determine q u a l i t a t i v e l y  contaminants that e x i s t 1.3.  SCOPE OF To  finishing was  INVESTIGATION  satisfy  laboratory  in early by  April  one;  of  the  enough d a t a  to get  The for  and  15  study gas  four Vancouver-area  bi-weekly  taken  sampling  f l o w , a i r , gas barometric  and  i n c l u d e d : water  The  trace organic  pH  to  i n the  The the  thesis.  extraction wells  landfills. Other  levels, of  period  gather  for doing  from e a c h l a n d f i l l .  leachate temperature,  pressure.  gas  and  landfill.  optimal  sampling  1987  the.study  two;  from e a c h  and  landfill  discussed later  c o n s i s t e d of at  the  change and  considered  study  in July,  l e n g t h of  to monitor  seasonal  samples were t a k e n field  The  sample p e r i o d s  modelling  l e a c h a t e and  during  gas.  beginning  1988.  sample p e r i o d s was  field  of. o r g a n i c  :  attempt  during a f u l l  statistical  landfill  undertaken,  environment  number of  types  t h e above o b j e c t i v e s , a n i n e month f i e l d  p r o j e c t was  governed  i n the  the  the  The data  static  gas  leachate,  contaminant  fraction  and of  4  the  landfill  gas  sample d a t e s .  was  The  sampled  four  Avenue, Richmond and landfills  landfills  Premier  were s e l e c t e d a r e  stated  were c o m p l e t e d  B.  Landfills  had  and  isolate  gas  traps  The  reasons these  and  a c c e s s i b l e by collection  had  on-going  s y s t e m vacuum w h i l e  Landfills  had  a v a r i e t y of c o v e r  E.  Landfills  had  a v a r i e d age  The  laboratory  analysis  and of  containing leachate carbon,  C0 ,  4  specific  ammonia gas  beginning  a c i d s , and  sampling,  c o l l e c t e d data  statistical distribution  P  e  the  the  trapped  by  was  and  b i v a r i a t e and  further analyzed multiple  n  t  a  9  e  s  '  from e a c h during COD,  the  gas  NH^-N  the  total  and  and in  leachate.  the  Also, .  leachatestudy.  The  and  organic  volatile  solids.  automated  landfill  in three  statistical  a n a l y s i s , c o l l e c t e d data and  ^  history.  gas  The  phenate organic  a GC/MS.  analyzed  graphical  c  total by  sampling.  construction  r  to  material.  i n the  done t w i c e  s a m p l e s were a n a l y z e d  with  °2  for a l k a l i n i t y ,  volatile  After  for  valves  of a n a l y z i n g , t h e  conductivity  c o n t a m i n a n t s were a n a l y z e d The  2'  and  non-metal c o n s t i t u e n t s  analyzed  total  N  2  sample w e l l was  was  method.  study c o n s i s t e d  f o r CH ,  the  four  automobile.  wells  individual shut-off  D.  NH^-N  Stride  sampling.  from any  values  three  below:  a c c e s s i b l e gas  C o l l e c t i o n wells  leachate  during  s t u d i e d were M a t s q u i ,  Street.  Landfills  C.  and  Tenax GC  A.  leachate  gas,  by  by  was  different analysis.  checked  for  steps In  the  normal  product-moment c o r r e l a t i o n ,  regression.  This  was  done i n  an  attempt of  to explain  NH "N and C H 3  compare their when  4  or p r e d i c t  in l a n d f i l l  four d i f f e r e n t  potential t h e NH^-N  gas.  t o be u s e d  The s e c o n d  as a p r e d i c t i v e  relative 1.4.  step attempted  l e a c h a t e c o n c e n t r a t i o n i s known.  The l a s t  NH3-N mass f l u x e s  from  gas step  the gaseous  phase  e m i s s i o n model and compare t h e s e e s t i m a t i o n s  This analysis  mass f l u x e s  was a t t e m p t e d  p r o p o r t i o n o f NH^-N  t o t h e mass l o s t  in landfill  t o observe  was b e i n g  lost  i f any  i n t h e gas p h a s e  i n the l e a c h a t e .  SCOPE OF CONTENTS 1.4.1.  LITERATURE  REVIEW  A large  literature  review  because  The  was u n d e r t a k e n  of the b r e a d t h of t o p i c s  concerning  landfill  literature  characteristics  that  review  in landfill  into a detailed  physical  factors  first  in  d e s c r i b e s some  landfills.  decomposition  and r e s u l t a n t  T e c h n o l o g i c a l a s p e c t s o f gas r e c o v e r y  are  then  presented.  final  discussing  ammonia w i t h i n 1.4.2.  p o r t i o n - of .'-the l i t e r a t u r e the p r o p e r t i e s , the l a n d f i l l  then  o f t h e b i o l o g i c a l and  production.  The  :  basic  gas  briefly  thesis  l e a c h a t e and gas.. The r e v i e w  discussion  affecting  in this  had t o be a d d r e s s e d  gas and. ammonia movement  proceeds  on  to  for  f o r NH^-N  w i t h documented e s t i m a t i o n s o f NH^-N  substantial  variation  tool  a simple  leachate.  and s p a t i a l  ammonia gas H e n r y ' s Law c o n s t a n t s  was t o e s t i m a t e l a n d f i l l through  the temporal  review  focuses  landfill systems  primarily  s o u r c e s , s i n k s and mass t r a n s f e r o f environment.  SITE DESCRIPTION AND  HISTORY  6 Presented location, section  and t h e p h y s i c a l  i s devoted  extraction 1.4.3.  and h i s t o r i c a l  to describing  results recovery this  the f i e l d ,  each of the l a n d f i l l ' s  laboratory  t h i s chapter,  o f t h e NH^-N  were c h o s e n  gas  t o sample.  and s t a t i s t i c a l  in this  methods  chapter.  i s a discussion  of the data  gas a n a l y t i c a l t e c h n i q u e .  from d e t e r m i n i n g  interferences,  e f f i c i e n c y and l a s t l y ,  detection  an e v a l u a t i o n  from the  Included are the limit,  of the p r a c t i c a l i t y  technique.  Following statistical various  a s p e c t s of each one. A  DISCUSSION OF RESULTS  Beginning analysis  of the l a n d f i l l  METHODOLOGY  i n the study a r e d i s c u s s e d 1.4.4.  of  are descriptions  s y s t e m and why c e r t a i n w e l l s  In d e t a i l , used  in t h i s chapter  the a n a l y t i c a l d i s c u s s i o n  presentation  of a l l data with  p a r a m e t e r s c o n t r o l NH^-N  landfills. presenting  Immediately  following  i s a graphical  and  t h e e m p h a s i s on how  and CH^ gas c o n c e n t r a t i o n s t h e above  the r e s u l t s of the organic  trace  i s a brief study  in  section  on t h e sampled  l a n d f i l l gas. Following  the t r a c e  the  last  two s t u d y  and  estimation  organic  objectives;  o f NH^-N  r e s u l t s , are discussions  comparison  of Henry's  gas f l u x e s .  1.4.5.  CONCLUSIONS AND  1.4.6.  REFERENCES  1.4.7.  APPENDIX  RECOMMENDATIONS  about  Constants  1' CHAPTER 2 2.  BACKGROUND AND  2.1.  LANDFILL 2.1.1. The  after refuse  CHARACTERISTICS  LEACHATE PRODUCTION  majority  the  LITERATURE REVIEW  of  landfill  moisture holding  i s exceeded.  This  infiltration.  Field  lysimeters  and  has  1980  found  40  the  surface  material.  %)  be  field  per  refuse's  existing  produced  from g r o u n d w a t e r  decomposition chemical,  and  following:  that  refuse  capacity  intrusion,  mean a n n u a l  permeability,  capacity), refuse  in refuse,  2.1.2.  Once s o l i d  landfill  d e p t h of  LANDFILL GAS  2.1.2.1.  biological  and  activity  to apply  d e p t h of about above  refuse 13.5  cm  of  the  leachate  from  at  is also  microbial like  production  include  temperature, cap  material  density,  landfill  (e.g.  initial  (Leckie,  porosity, moisture  1979) .  PRODUCTION  DECOMPOSITION OF wastes are  has  in  (Metry,  waste m a t e r i a l s  leachate  runoff,  content  one  Landfill  liquid  evapotranspiration, field  been s t u d i e d  refuse  water  the  sludges.  landfill  precipitation,  of  precipitation  (1970) f o u n d t h a t  a p p l i c a t i o n of  affect  capacity)  in a given  meter d e p t h of  septic  has  precipitation  moisture content.  sewage or  Factors  of  Burchinal  placed  (field  e i t h e r % moisture content  amount of  Qasim and  i s generated  u s u a l l y happens d u r i n g  capacity  to reach  water c o u l d  capacity  u n i t s of  or  leachate  REFUSE  placed  immediately  in l a n d f i l l s ,  aerobic  b e g i n s to degrade the  organic  waste f r a c t i o n . consolidation,  This aerobic high  internal  phase  results in accelerated  t e m p e r a t u r e s and p r o d u c e s  volumes o f c a r b o n d i o x i d e  gas and d e g r a d e d  (Ham  C0  e t . a l . 1979).  Engineering-Science this  initial This  (1961)  2  gas "bloom" was f i r s t  and c a n r e a c h  large  organics r e f e r r e d by  up t o 90 % volume i n  phase.  aerobic  oxygen d e f i c i t conditions  This  residual  waste  phase l a s t s  f o r a short  period  o f t i m e a s an  b u i l d s up c r e a t i n g s e m i - a n a e r o b i c  which  facultative  conditions;  anaerobes can then begin  to  m e t a b o l i z e and grow. The a  dominant a n a e r o b i c  phase b e g i n s  fauna of o b l i g a t e anaerobes reach  refuse.  This  longstanding  Lawrence a n d M c C a r t y biological  activity  hydrolysis,  a c i d formation,  methanogenic stages  and H u t t i n g h ,  bacterial  fats,  1969).  acids  phases of  The t h r e e  proteins  formation.  f o r the f i r s t These  refuse  saturated  Songonuga  stages are  formation.  fatty  s u b s t r a t e of own  a c i d s with  (1969) i d e n t i f i e d  enzymes  lesser  a l c o h o l s and k e t o n e s  t o be a c e t i c , p r o p i o n i c ,  two  anaerobes  and c e l l u l o s e by t h e i r  ammonia>  bacterial  i s r e f e r r e d t o a s t h e non-  the organic  amounts o f c a r b o n d i o x i d e ,  endproduct  1969).  population  i n t o end-products of mainly  Huttingh,  i s c h a r a c t e r i z e d by  o r g a n i s m s and a r e r e s p o n s i b l e  and m e t a b o l i z e  carbohydrates,  phase  and methane  o f h y d r o l y s i s and a c i d  hydrolyze  and  anaerobic  from two p h y s i o l o g i c a l l y d i f f e r e n t  (Toerien  first  l a r g e numbers w i t h i n t h e  (1964) a s i n v o l v i n g t h r e e  populations  The  s h o r t l y t h e r e a f t e r when  (Toerien  t h e main  b u t y r i c , v a l e r i c and  9 caproic  when s a m p l i n g  dissociated 75  forms o f t h e s e a c i d s  % of the anions  Bacillus  and  organic  fauna  material,  (Eh)  The  first  g r o w t h as  indicated  kj/mol  2  The  c o n s i d e r e d t o be  from  (Large,  decarboxylation shown  gas,  the  salts  and  than  bacteria the  active  a n a e r o b i c c o n d i t i o n s and  -200  mV  formed  (Farquahar  f o r growth by an  which produces  and  from  eight-electron  ample e n e r g y  for  1982).  involves  second  reaction  (CH^COOH) i n t o C H  (Farquhar  and  Rovers,  and  4  1973).  Rovers, two  energy  The  in  genus  by a n e g a t i v e s t a n d a r d f r e e  acid  dominant  C0 The  2  change of the  by a c e t a t e two  reactions  below: C02  Reduction  Acetate Decarboxylation From s t u d y i n g r e s u l t s  30  strict  i s methane  by  c l e a v a g e of a c e t i c  produced  t o be  1969).  i n c r e a s e s enough t o where  T h e s e methanogens o b t a i n e n e r g y  of C 0  sludge,  for approximately  sp. appear  themselves.  of l e s s  The  1969).  which r e q u i r e  reduction  are  (Thompson,  slowly assert  potential  reactions.  -136  Clostridia  the a l k a l i n i t y  Methanobacterium,  1973).  c o u l d account  i n a g i v e n l e a c h a t e (Songonuga,  stage are g e n e r a l l y  redox  2 y e a r s o f emplacement.  these h y d r o l y z e r s continue to s o l u b i l i z e  methanogens can this  found  more l i k e l y  non-methanogen As  refuse after  Zehnder  C0  2CH COOH 3  from  % i s d e r i v e d from CO,  2  > CH  4  > 2CH  4  +  2H 0  +  2C0  on a n a e r o b i c d i g e s t i o n  (1978) c o n c l u d e s  originates  + 4H  2  that  about  ;  70  2  of  2  sewage  % o f t h e methane  a c e t a t e d e c a r b o x y l a t i o n w h i l e the r e d u c t i o n ( f r o m Schumacher,  1983).  other  a  10 2.1.2.2. Farguhar of 2.1  their  and  Rovers  four stages  where gas  emplacement. an  TEMPORAL STAGES IN GAS  anaerobic  environment The  i s a function  IV A n a e r o b i c  FIGURE 2.1  - Landfill  Gas  Completion as  180  time  days  f o u r phases  that after  were: I A e r o b i c ;  Methanogenic  Steady.  Farquahar  as a ' F u n c t i o n and  METHANOGENIC  f o r p h a s e s I , I I and 1970)  maintained  identified  Percentages  (Ramaswamy,  refuse  p r o d u c t i o n model assumes  Methanogenic  NON-METHANOGENIC  little  of t i m e a f t e r  c o u l d be a c h i e v e d and  ( F i g u r e m o d i f i e d from  ^  T h i s i s shown i n F i g u r e  Non-Methanogenic; I I I A n a e r o b i c  Unsteady;  H u  a graphical presentation  production.  T h i s c o n c e p t u a l gas  r e f u s e emplacement. II A n a e r o b i c  (1973) d e s i g n e d  i n gas  composition  PRODUCTION  Rovers,  of  Time  1973)  STAGES  III varies  t o 500  days  from  as  (Beluche,  1968).  11 In  t h e s t e a d y s t a t e phase  generally H , 2  around  Argon,  IV, l a n d f i l l  55 % C H , 4  gas c o n c e n t r a t i o n s a r e  40 % C 0 , w i t h t h e r e s t 2  Ammonia and o t h e r t r a c e  being N , 0 , 2  2  g a s e s made up m o s t l y o f  hydrocarbons. 2.1.3.  FACTORS AFFECTING DECOMPOSITION AND GAS  2.1.3.1.  REFUSE COMPOSITION  Composition rate,  relative  rates.  There  function  of r e f u s e w i l l  affect  the l a n d f i l l  most  2  are large  o f geography  readily  putrescibles which the  variations  i n r e f u s e c o m p o s i t i o n as a  and l i f e s t y l e .  T a b l e 2.1 p r e s e n t s some  degradable portion  (Food +. Garden W a s t e s ) ,  paper,  PLASTICS PAPER AND CLOTH  cloth,  and f i n e s  f o r 70 - 75 % wet w e i g h t o f  Haifa Israe] Raveh ( 1979)  Sonoma Calif. Lecfc i e (1979)  54.7  21.1  Differences  i n Refuse  Pennsy 1 • Water loo Northham. U.S. van i a Ontar io England Average Remson Sm i t h Rovers Rees (1968) (1973) (I960) ( 1975)  ================= PUTRESCIBLES  America.  fraction.  TABLE 2.1 - S p a t i a l  ITEM  North  o f r e f u s e a r e t h e sum o f  i n T a b l e 2.1, g e n e r a l l y a c c o u n t  refuse  decomposition  p e r c e n t a g e s o f CH^ and C 0 , and methane p r o d u c t i o n  common r e f u s e c o m p o s i t i o n s from m o s t l y a r o u n d The  PRODUCTION  4 .4 30.6  4 .6 42.3  15.0 3.8 59 . 4  34.9  24.8  3.2 41.4  WOOD  3.2  1.0  4.2  1. 1  METALS  3. t  9.0  '•5  7. 1  GLASS  3.0  10.9  8. 5  12. 1  FINES  --  8.3  1. 7  0.2  INORGANIC  ••  2.8  0.9  4 .8 38.7  • Inert  include  2.6  24 . 0 2. 1  25. 0 2. 2  50.5  42.9  38. 9  25.0 2 0 49.0  3.7  3.5  2.4  14 . 9  2.0  11.0  8.0  8. 2  8.0  8.2  10.0  7. 5  6.':o  7 .2  --  •-•  1.0  1.5  1. 1  3. 1  12.3 •-  f o o d and g a r d e n  was c o n s i d e r e d U N C L A S S I F I E D w a s t e  23.8  10. 1  4.3  N o t e : PUTRESCIBLES  6. 5 39.4  Davis West L a f . V a n e . C inc inat Calif. B.C . Indiana on i o Tchobanag B i r d & H. P f e f f e r Bel 1 (1977) ( 1963) ( 1978 ) (1974) ._.  6.9  ••  UNCLASSIFIED  24.8  Compositions  waste items  0.5  -  6.0 6.0 2.0  3. 6  12 In a  the  f u t u r e , as more p l a s t i c s  lesser proportion  bacteria.  per  from an  i s done by mass of  (See  elemental  Emcon A s s o c . ,  p e r c e n t a g e of formulas  gas  Inspection  between H and  e l e m e n t s and is a  composition  C,  TABLE 2.2  by  this  which  nitrogen.  r e s u l t a n t of reported  by  have a p r o f o u n d e f f e c t landfill  of  leachate  and  and  4  estimating empirical  table  This  gas  gas  2  the  formula.  are  to the  difference  much ammonia w i l l  exist  F o r m u l a s O b t a i n e d From  C  g 4  H  g 7  0  3 3  C  5 7  H  g 4  0  3 g  ( 1 980) (1977)  (1980)  Estimating s u b j e c t i n g an  the  could  in  the  (1963)  C  84 C  g g  H  120 H  volume p e r c e n t a g e s of  e m p i r i c a l waste f o r m u l a  °53 0  1 4 g  gas  the  ..N N N  1  1  5 g  can  (Cr^a^b*^  be to  in  these  refuse  Rees  Emcon A s s o c .  of  stochiometric  EMPIRICAL FORMULA  (1982) a f t e r B e l l  presented constant  REFERENCE  Gibs  etc.)  phase.  - Refuse E m p i r i c a l Literature.  Tchobanoglous  gas  molar  ratio  wide v a r i a t i o n i n the This  of  Some e m p i r i c a l  fairly  wide r a n g e of  the  refuse.  a volume or  shows a  be  can. be  proteins,  literature  these authors. how  will  a v a i l a b l e to  fats,  i s in contrast  the  on  C0  there  volume p r o d u c t i o n  carbohydrates,  f o u n d or c a l c u l a t e d from t h e  ratio  ratios  (e.g.  from a g i v e n  2.2.  refuse  a n a l y s i s p e r f o r m e d on  1980), or  Table  two  of C H  e i t h e r c a l c u l a t i n g the  component  produced,  r e a d i l y degradable  Theoretical production  estimated This  of  are  done  by  complete  13 anaerobic  degradation  ammonia and reaction  of e n d - p r o d u c t s of C H ,  CO,,,  4  bicarbonate  alkalinity  (Emcon A s s o c . ,  (de/8)CH +  +  4  (2n  (n - c - . s d / 5 - d e / 8 ) C 0  (c - s d / 2 0 ) N H + + :  4  2.1.3.2.  (c -  +  2  (sd/20)C H O N 5  3  phosphate, organic elements.  to the  or or  s)  include:  Ramaswamy  of  percent 1.70  maximum d e c o m p o s i t i o n  i s the  Nutrients  important  sulfate  occurred  for  soluble  and  various  in his  investigation  i n r e f u s e where N,  respectively.  % reported  of o r g a n i c  availability  ammonia n i t r o g e n ,  (1969), concluded  production  0.31,. 0.23 value  uptake.  nitrogen, potassium,  t h e maximum gas  close  (1 -  4  to refuse composition  microbe growth  1 .86,  2  sd/20)HCO ~  to CH  nutrients for b i o l o g i c a l  landfill  ?  NUTRIENT AVAILABILITY  Somewhat r e l a t e d  K were  This  o  converted  that  1980).,  + c - b - 9sd/20 - d e / 4 ) H 0 = ^  Where d = 4n + a - 2b - 3c s = t h e f r a c t i o n of COD s y n t h e s i z e d c o v e r t e d t o c e l l s (= 0.04) e = t h e f r a c t i o n of COD s y n t h e s i z e d  trace  material,  i s shown b e l o w :  C H O, N + n a D c  of  cell  The  N value  by.Alexander  material  in  P is  (1931) f o r  soils.  A common measure u s e d t o e x p l a i n n u t r i e n t a v a i l a b i l i t y , the  C:N  ratio  digestors, optimal  the  refuse.  S a n d e r s and  in l a n d f i l l  production  higher  of a r o u n d  One  ratio could  data  from  (1965) f o u n d  studies, this  i s much h i g h e r .  this  Using  Bloodgood  methane p r o d u c t i o n  presented  tolerate  of  16:1. C:N  reason  and  anaerobic C:N  ratios  However,  ratio  is  from  for optimal  landfill  for data methane  b a c t e r i a might  stem f r o m g e n e t i c  adaptation.  14 Dobson  (1964), found v a r i a t i o n s  samples  o f C:N from  f r o m t h e F a i r m o n t , West V i r g i n i a  34:1 t o 104:1 i n  landfill  (Thompson,  1969). Clement  (1981) c o n c l u d e s t h a t  a commonly  found r a t i o of  COD:N:P o f 1 0.0:0.44:0.08 f o r o p t i m a l gas p r o d u c t i o n satisfied  in landfills  for soluble  rates of d e g r a d a t i o n w i l l (1980) d e m o n s t r a t e s are  P and c o n c l u d e s t h a t  probably occur.  p r e s e n t i n a c c e s s a n d do n o t l i m i t e v e n . w i t h C:N r a t i o s  concludes  that  i s n o t common Even  element, effect  though  has been  on methane p r o d u c t i o n .  demonstrated  sulfides  which  1980).  toxicity  2  g a s ; two, p r o d u c t i o n o f  t o methanogens  c o n c e n t r a t i o n s have been  methane p r o d u c t i o n ,  calcium  ions  digestors  have been  role  such as t h e a d d i t i o n  that  1985).  Failure  sulfides  out c e r t a i n reported to o f 2000 mg/L o f of anaerobic  shown t o o c c u r w i t h v e r y h i g h amounts 2000  mg/L o f a m m o n i a - n i t r o g e n The  by p r e c i p i t a t i n g  (Crawford and Smith,  ( J o n e s , 1983 a n d  t o methanogens,  toxic  inhibit  inhibitory  i s due t o ; one, s u l f a t e  t h e y c a n be t o x i c  salt  leachate,  t o be an e s s e n t i a l  effect  High  (1980)  t h e r e would be  can a l s o have a p o s i t i v e metals.  Rees  i t c a n have an  methanogens f o r H  can cause While  This  N and P  leachates.  i f p r e s e n t i n e x c e s s amounts,  reducers outcompeting  Rees,  landfill  Rees  of l a n d f i l l  i n e x c e s s o f 50:1. exists,  lower  that  o f ammonia a n d P i n l a n d f i l l  i n most  sulfate  approach  the growth  i f an N o r P l i m i t a t i o n  near z e r o c o n c e n t r a t i o n s which  In c o n t a s t ,  through a mass-balance  microbes,  i s not  (McCarty,  hazardous  wastes  1966). p l a y s as p o s s i b l e  inhibitory  15 or  nutrient  area  that  sources  needs t o be  Ways t o addition  i s unclear  of  increase sewage or  landfill  impact  on  precompaction  gas  from  compactors) w i l l density.  anaerobic  agricultural  construction  during  and  production.  leachate  landfill  equipment  landfill  emplacement  density  of  1977).  greater  the  total  total  mass per  gas  density  yields  could  590  effect  landfilling  of  This  has  in p a r t i c l e  a pseudo-homogeneous mass of Shredding w i l l of  decreasing  nutrients. the  also  be,  refuse a  )  (Tchobanaglous, the  should  However, t h i s  enhance increased  transport  of p r o d u c i n g Smith,  greater  to  gas  active at  lower  1985).  SIZE will The  refuse  D e W a l l e and of  have a of  to achieve  which  nutrient  increase  mean d i a m e t e r  amount  preconsolidation,  effect  size  for microbial degradation.  could  emplaced  lbs/yd  ( C r a w f o r d and  REFUSE PARTICLE  A reduction  transfer  by  1983).  an  The  attempt  (1000  hamper m o i s t u r e and  larger periods  2.1.3.4.  kg/m  (Schumacher,  rates  well.  leachate  3  u n i t volume w i l l  areas.  area  lastly,  (i.e. bulldozers,  operators  density  biological over  include  digester  w a s t e s , and  3  the  i s an  1983).  have a d r a s t i c  Usually,  The  and  REFUSE EMPLACEMENT  Method of c e l l major  nutrient a v a i l a b i l i t y  s e p t i c sludge,  (Schumacher,  2.1.3.3.  landfills  studied.  s u p e r n a t a n t , a n i m a l and recirculation  in co-disposal  expose a g r e a t e r  shredding that  alters  of  refuse  surface creates  i t s density  microbial activity,  and  Chian  that  solid  (1979) showed  waste f r o m 250  mm  as mass  t o 25  mm  16 increased  the  m /tonnes-yr also  gas  t o 4.75  introduce  decrease first,  a l o t of  i n c r e a s i n g the  first  y e a r and  for  a longer  The  diluting  the  soluble  Encroaching  water  stimulatory  effect  added m o i s t u r e 2.1.3.6.  certain  disappears, acids,  The  thought  leaving only salts age"  and  during leaching  1979).  table within  a v a i l a b l e to  zone gas  landfills  v i a b l e methanogens  that  of  once the  easily  slightly  t o have a  production  landfill  degradable  because  reaches a  substrate  d e g r a d a b l e humic and  r e f r a c t o r y compounds.  depends on  refuse  a  GAS  landfill  fulvic  This  i n methane  production.  depth, c l i m a t e ,  and  RECOVERY SYSTEM i s equipped with  (discussed  i n more d e t a i l  later),  production  i s c e r t a i n when 0  9  gas  the  extraction  wells  p o t e n t i a l f o r lower  i s introduced  or  methanogens.  composition.  2.1.3.7. If  water  s i g n a l s a l a r g e drop  " i n a c t i v a t i o n age"  refuse  carbon  by  AGE  decomposition  "inactivation  leachate  LANDFILL AREA  unsaturated  LANDFILL  soluble  The  of  Avnimelech,  can  (Hughes, e t . a l . , 1971).  is generally age,  Grinding  amount of  t a b l e s have a l s o been o b s e r v e d on  0.73  system.  organic  w a s h i n g out  substrate  from  1980).  this  (Raveh and  by  CO^)  strength  leached  encroaching  production  the  extending  HYDROGEOLOGY OF  gas  (Rees,  increases  time  an  (mainly  a i r i n t o the  amount of  of  e f f e c t s of  inhibit  It  trapped  secondly,  period  2.1.3.5.  rate  m /tonnes-yr  i n diameter a l s o  the  can  production  i n t o the  CH  4  landfill  of  17 through a i r i n t r u s i o n . in  the  upper  lifts,  causing  differential  landfill  coupled  an  the  with  mV.  concentration the  ORP  data.  or  a complex because in  of  -330  the  in their  mV.  mV  for  the  Rovers  system  and cover  should  decrease  Rovers ORP  (1973) m e n t i o n  (Eh)  This  study  impossible  (1973) e x p e r i e n c e d ORP  to  digestor  even, growth.  e f f e c t s of  equipment the c o l l e c t e d ,  equipment  that  redox p o t e n t i a l i n  (or l a n d f i l l  redox  their  (1978) m e n t i o n s  effective  sludge  uncoupled  when  measurements made a t Zehnder  t o c o n c u r an  several different  due  less  highest  occurred  t o measure t h e  i s mainly  Also,  the  of methanogen  uncertainties within  site.  must be  (1978) s t a t e s an  initiation  w h i c h r e s u l t e d i n no  solution like  levels  leachate),  frequently  occur  same e n v i r o n m e n t .  Lastly,  studies  show t h a t  an  This  encroachment  o x i d i z i n g groundwater  from an  infiltrating  rain  increase  increase  methane p r o d u c t i o n .  from  landfill  lysimeters  Zehnder  have a t t e m p t e d  in l a n d f i l l s .  landfill  i s almost  collection  F a r q u h a r and  of methane gas  F a r q u h a r and  Ontario  A proper  methane g e n e r a t i o n  large analytical  difficulties  it  (1981) and  many s t u d i e s  c h a n g i n g ORP  activity  decomposition  C h i a n e t . a l . (1985) m e n t i o n s t h a t  value  Not  failure  well  d r o p p e d below -200  lower ORP  accelerated  aerobic  air intrusion.  for e f f i c i e n t  t h a n -200  stimulate  OXIDATION-REDUCTION POTENTIAL  Both Clement that  can  settlement.  efficient  p r o b a b i l i t y of 2.1.3.8.  Also,  water.  i n ORP  i n Eh could  decreases be  due  to  s o u r c e or more  likely,  18 2.1.3.9. When inherent  MOISTURE CONTENT  raw r e f u s e i s p l a c e d moisture  content  that w i l l  decomposition  process.  wt.)  be g r e a t e r w i t h  and w i l l  putrescibles without phase  a minimum m o i s t u r e  (Clement, Stone  1981).  (1969),  ranging after  from  larger  1980). content  non-existent Concurring  who f o u n d  content  i s around  25 % (wet  waste f r a c t i o n s o f Mandeville  (1979) adds t h a t  o f 25 % wet wt., t h e a n a e r o b i c  or occurs  with  i t h a s an  a i d i n the i n i t i a l  This moisture  (Emcon A s s o c . ,  i s virtually  i n the l a n d f i l l ,  this  at very  slow  was t h e s t u d y  rates  o f Merz a n d  that,refuse placed at a moisture  30 t o 40 %. wet wt. d e v e l o p e d  w h i c h gas p r o d u c t i o n c e a s e d  until  an i n i t i a l  additional  C0  content bloom  2  moisture  was  added.' Dobson refuse  took  (Thompson, got  (1964) r e p o r t e d t h a t t h e maximum d e c o m p o s t i o n place at approximately 1969).  B o t h Ramaswamy  56 % m o i s t u r e  decomposition.  These v a l u e s agree  content  t h a t t h e maximum r a t e o f d e c o m p o s i t i o n  in  lies  is  parameter  R o v e r s and F a r q u h a r  field  who matter  c o n t e n t , i s t h e most  when e x c e s s i v e  (1972) n o t i c e d C H  infiltration 4  cells  after  snowmelt.  However,  infiltrated  They o b s e r v e d  this  occurs.  concentration  19 t o 4 % when l a r g e v o l u m e s o f water test  of organic  f o r o p t i m i z i n g gas p r o d u c t i o n .  not always the case  from  (1961),  i n t h e range o f 40 t o 80 %.  Many r e s e a r c h e r s c l a i m m o i s t u r e important  (1970)  f o r maximum  with Alexander  reported soils  (wet wt.)  (1970) a n d Songonunga  h i g h e r v a l u e s o f 60 t o 80 % m o i s t u r e  rate i n  decrease their  i n c r e a s e s i n COD,  19 BOD  and  and  pH.  TDS  while  observing  Excessive  bacterial  cells,  m e t a l s and  infiltration  increase  salts.  the  increase  (sewage s l u d g e ,  permeability surface  of  of  the  runoff  cover,  catch  Most  around  30  1969). t o be  the  very  al.,  1983).  optimal  CH^  Most  Hartz  annual  increasing on  the  cover,  1964,  include  waste the  landfill  or d e s i g n  input,  of  a  production  an  do  not  annual  water a t  Farquahar  temperature at a  and  Rovers  refuse  18  to  1980).  appear  During  (Jones  m deep  temperature  to  35°C  1.25  of  samples of  the  et.  41°C  for  refuse.  35°C Lucas  (1985)  in buried  (1973) f o u n d  depth of  43°C  7.5  R o b i n s o n and  i n temp, from  of  3 m below  30  is  , Kotze e t . a l .  appears at  heated  approach the  basis.  1970  (Rees,  first  in laboratory  optimal  temperatures  production  temperature  the  methane p r o d u c t i o n  Ramaswamy,  iandfill,  the  and  (1982) f o u n d a s i m i l a r  noticed a variation meters deep.  inhibitory  Ways t o d e c r e a s e m o i s t u r e  decomposition  extends through  on  ;  into l a n d f i l l s a d d i t i o n of  sludge),  permeability  f o r gas  this  landfills  temperature  input  or c o n s t r u c t i o n  A v e l e y , U.K.  favorable  and  solubilize  s t u d i e s have shown t h a t  (Dobson,  summer c o n d i t i o n s surface  viable  runoff.  for anaerobic  - 37°C  At  and  alkalinity  TEMPERATURE  laboratory  temperature  (Eh),  leachate,  basins.  t h a t maximizes  2.1.3.10.  of  chemical  i n c l u d e c o n s t r u c t i n g a low landfill  ORP  temp.,  a l s o wash out  moisture  following: recirculation  liquids  can  in refuse  .  Techniques to the  decreases  the  m t o be  refuse  average 12°C  with  20  20 seasonal how  fluctuations  r e f u s e depth  found  i n the  C o u n t y , CA  and  a i r temperature  study of s h a l l o w  lower  of temperature not  done  regression.  in  temp, and  However, t h e i r  and  4  (aerobic  temperature  a i r temperature.  A was  (1979) d i d compare v a r i a t i o n s  of b o t h  of % CH  temperature  study.  were i n c o n c l u s i v e .  non-correlation  This  c h a n g e s w i t h p e r c e n t methane  in this  Farquhar  1979).  seasonal v a r i a t i o n s i n ambient  is  c o n s t r u c t e d i n Sonoma  a high i n i t i a l  with v a r i a t i o n s  parameters  cells  example of  r e f u s e temperature  indicates  m i r r o r the v a r i a t i o n  linear  affect  profile  McBean and 4  excellent  Halyadakis,  unfortunately  CH  test  An  P a c e y and  decomp.) f o l l o w e d by  comparison  2 t o 21°C.  (Leckie,  temperature  that  from  One  precipitation  attempt  through  to c o r r e l a t e  possible  landfill  in percent  reason  these  behind  the  temp, c o u l d stem from  ( t h e methanogens) immediate a d a p t a t i o n t o l o w e r  their  seasonal  temperatures. One Ontario caused  disadvantage landfills)  by  moisture that  flow  i s needed reached  2.1.3.11 Optimal  below that  6.4 6.0  i s the  of t h e  field  v a l u e s found  t o 7.4  landfill  f o r maximum gas  as  surface.  flow  This  production in l a n d f i l l s .  capacity.  ALKALINITY AND pH  (such  impedence o f n e c e s s a r y m o i s t u r e  seasonal freezing  have not  around  for cold-climate l a n d f i l l s  pH in anaerobic d i g e s t i o n  with digestor  performance  ( K o t z e e t . a l . , 1969).  methane p r o d u c t i o n c e a s e s  Rhyne and  in a l a n d f i l l  range  collapsing James  at  from pH  (1978) c o n c l u d e  when t h e a v e r a g e  pH  21 d r o p s below  6.2  (Schumacher,  m i c r o e n v i r o n m e n t s and can  occur  a t pH's  generally  fatty  is  less  t h e pH  a c i d s and  coverted  t o HCO^ , t h e the  the  pH  formers  and  volatile  steady  even  as  low  should  alkalinity  t o an 5.0  methane  optimal  due  will  fatty  acid  limit.  The  COj  changes  influx  relationship  production (Stage  than  of  i n c r e a s e s , so does t h e pH  pH  to a  of  acids  while  between  reaches  in  is  methane  a pseudo-  IV).  production  greater  there  to production  consume more o r g a n i c This  production  i s m i n e r a l i z e d and  p r o d u c e CH^.  further.  be  as  of  r e f u s e emplacement,  more s u b s t r a t e  optimum methane gas  alkalinity  the  2000 mg/L  bicarbonate as C a C 0  (Kotze  3  et.  1969). Zehnder  the  only  (1978) b e l i e v e s t h a t t h e important  production. (DeWalle,  However, a  1980  and  especially Carbon)  i n pH  few  Pfeffer,  by  than  Pfeffer  50 mg/L)  +  + Ac"  pH  b u f f e r i n g system  f o r methane  researchers  believe  otherwise.  1974).  where low  consumption H  other  t h a t ammonia can  in l a n d f i l l s  (less  carbonate  system c o n t r o l l i n g  DeWalle concludes  drop  After  s t a t e i n mature l a n d f i l l s  For  is  6.0.  where methanogens can  raising  adaptability,  b u f f e r i n g c a p a c i t y to r e s i s t  -  As  However, b e c a u s e  i n c r e a s e i n pH  As  2  methanogenic a c t i v i t y  al.,  than  c o u l d be  C0 .  established.  point  bacterial  i s a gradual  Originally,  1983).  can of H  + NH  3  +  a c t as a pH  values  exist.  of TIC  (Total  Inorganic  Ammonia c o u n t e r a c t s  i n the  below  = NH + +  Ac-  4  buffer,  this  reaction: .  b e l i e v e s t h a t h i g h c o n c e n t r a t i o n s of c e r t a i n  organic  22 a c i d s and  acid  alkalinity. equation  salts  Pfeffer  for t o t a l  can  c o n t r i b u t e to the  explains this  alkalinity  by  total  system  using McCarty's  (1964)  in d i g e s t o r s . This equation  is  shown below: TA  = BA  +  (0.85) *  0.833(TVA)  Where TA = T o t a l A l k . (mg/L as CaCO,) BA = T o t a l B i c a r b o n a t e A l k . (mg/L as C a C C O TVA = T o t a l V o l a t i l e A c i d s (mg/L as A c e t i c A c i d ) 0.833 i s a c o n v e r s i o n f a c t o r t o mg/L as CaCO, 0.85 a c c o u n t s f o r f a c t t h a t o n l y 85 % of v o l a t i l e a c i d a l k a l i n i t y i s m e a s u r e d by t i t r a t i o n t o pH 4. Note: T h i s equation exist. In  summary, pH  influenced  by  infiltration, methane  (Boyle,  Some of their  values  industrial or t h e  the  assumes no found  b u f f e r i n g systems  in sanitary l a n d f i l l s  waste d i s c h a r g e s ,  relative  production  alkalinity,  of o r g a n i c  may  be  rain  acids  water  and  1976). eleven  factors controlling  i n t e r r e l a t i o n s h i p s are FIGURE 2.3  other  summarized  gas  in Figure  - Summary of F a c t o r s A f f e c t i n g  (Figure modified  production  from F a r q u h a r and  Gas  and  2.3. Production  Rovers,  1973)  23 2.2.  REVIEW OF  F I E L D STUDIES  In c o n t r a s t leachate  and  attempted projects  gas  in a are  techniques  this  the  decomposed, and  fresh  (See  organic  1940  gas  CA.  Inc.  concentrated  finished  in  Gas  This  Later  sampled decomposed nitrogen,  Eliassen,  1967.  mostly  The  in  Gas  the  downward f l u x  in-situ  landfills,  mediate  again  refuse  that  study  on  for ,  moisture  was  and  undertaken  taken.  mainly  CH^  i n the  at  in  Los  Engineering-Science,  Azusa L a n d f i l l .  fills  located  refuse  i n v e s t i g a t i o n of  gases lab  of C O 2 i n t o t h e  test  fast  1942).  the  were t e s t e d  around  s a m p l e s were a l s o  headed by  on  was  Sanitation  refuse  percent  study c o n c e n t r a t e d  s t u d i e s were done on  Calabasas  pH,  month p e r i o d . and  of  performed a compositional  p r o j e c t was  barrier materials  attenuating  field  study  t o d e t e r m i n e how  downward f l u x e s of C O 2 and  upward and  field  below  such  microorganisms that  from d e c o m p o s i n g  Angeles, and  studies  similar  listed  earliest  was  e a r l y t o ' mid-1'960' s an  movements of  these  involve  projects.are  main g o a l  later  o v e r a 48  the  they  York C i t y D e p a r t m e n t  what were t h e  Carpenter, In  Some of  knowledge, the  New  then  microorganisms, temperature  since  The  They o r i g i n a l l y  refuse,  have been much fewer  on  order. author's  by  lysimeter-scale studies,  landfills.  study.  mid-1930•'s.•' T h e i r  process.  there  worth m e n t i o n i n g  to t h i s  undertaken the  production,  full-scale  chronological To  t o numerous l a b or  the  i n L.A.  The  on  estimating  i n the  f o r the  test  County  fill.  purpose  groundwater Palos  project  Verdes (See  of  system. and  24. Engineering In the  1970,  placed  production  was  spring  generation  1972,  a  m  was  Ontario  1973  landfill. were used  was  thaw  period.  in a  D i f f e r e n t moisture a p p l i c a t i o n s  had  five  separate  large-scale  leachate .recycle while  V a r i a b l e s monitored  include average c o n s o l i d a t i o n , gas  another  production  and test had  over  a  thermal  variability  (See  e t a l . , 1979).  Around study  spring  initiated  s e p t i c t a n k pumpings.  Leckie  expected,  above was  i n the  and  infiltration  t o the  of  leachate  no  1973).  application  r e s p o n s e s , and  m d e e p were  Farquhar,  five  period  and  R o v e r s and  of  year  this  gas  Gas  of  As  identify  and  One  three  2.3  landfill. periods  during  to  landfill  i n d i a m e t e r and  greatest  cells  of  snowmelt p e r i o d s . .  s i m i l a r study  construction  cells.  production  slow d u r i n g  Rovers,  Sonoma C o u n t y , CA. cell  1.2  f o u n d t o be  F a r q u a h a r and In  of  the  ground at a l o c a l  impeded d u r i n g  (See  1967).  affect  Three c e l l s  i n the  leachate  Inc.,  Waterloo U n i v e r s i t y undertook a study  parameters that  leachate.  and  Science,  of  1977,  the  Aveley  attempting  microbial  a g r o u p of  (Essex) l a n d f i l l  (Rees,  relative  of h i g h e r  enzyme a c t i v i t i e s a l . , 1984).  1980).  U.K..  This  the  landfill.  methane gas  at depth  thorough project  landfill  They d e v e l o p e d a t e c h n i q u e  microbial activity  measurements t a k e n w i t h i n correlation  i n the  began a  t o d e t e r m i n e what p a r a m e t e r s a f f e c t  activity  estimating  English researchers  by  enzyme Their  production  activity  results indicate a  in areas of  ( J o n e s e t a l . , 1983  of  and  greater  Grainger  et  25 T e c h n i c a l U n i v e r s i t y of program  in early  operation Sanitary  has  1980  on  gas  landfill  B r a u n s c h w e i g , W.  to study and  (See  leachate  began a s t u d y  i n 1982  England.  The  main g o a l  situ)  attenuation  zone.  Before  have been  and  concentration, author's study  The  last  and  of  but  surface  Dept. of  Health  study  on-going  landfill refuse  the  Lingren  1985). Robinson  landfill  study  leachate  i s to monitor ( i n -  over  unsaturated  100  responses, and  (1985)  i n Kent,  i n the  placement,  concentration  i s the  instruments gas  salinity.  most e x t e n s i v e  also 2 b i l l i o n  To  in-situ  Services,  of  the  landfill  due  gas  This  g a l l o n s of  with  the  BKK  landfill  not  only  liquid  hazardous v o l a t i l e s  1983  and  (Stephens e t a l . ,  Landfill  U.S.  CA..  deals  s t u d i e s have c o n c e n t r a t e d  emissions  O F F S I T E GAS  concentration  worth mentioning  i n West C o v i n a ,  four hazardous v o l a t i l e s  component  Stangate East  study  Numerous e a r l i e r  convection  Spendlin,  a  landfill  at  g r o u p h e a d e d by  this  leachate  landfill  landfill  2.3.  production  t o measure t h e r m a l  landfill  r e c e i v e d MSW  of  of  that  initiated  undertaken.  co-disposal  recent  the  knowledge, t h i s  ever  waste.  at  during  installed  effects  Stegmann and  Another E n g l i s h r e s e a r c h  the  the  Germany  Baker and  1986)  looked  between t h e  on  1985), but  the  leachate  determining  (California  McKay, at  hazardous  partitioning  and  gas  stream.  MIGRATION can  migrate  to pressure gradient  from l a n d f i l l s  gradient,  (Mohsen,  c o n s i s t s of Knudseri  and  1980).  flow,  by  two  diffusion The  mechanisms: due  diffusive  molecular  flow  a  and  to a flow surface  26 flow  (EPS,  1977).  B e c a u s e of  internal  pressure  pressure  g r a d i e n t which c a u s e s the  higher  t o lower  migration by  covers  are  Shen,  convection  2.5  t o 5.0  (Crawford the  in Table  t o model t h e  Thibodeaux  of water can  and  Smith,  positive create a  f l o w c o n v e c t i v e l y from  cover  diffusion  1985).  i s mainly through  Vertical controlled  landfill  2.4.  and  of  landfill  Leckie,  e t a l . , 1981)  are d i s c u s s e d  cm  production,  to  emissions  (Findikakis  gas  gas  landfill  Factors affecting  landfills  1981;  through  summarized  Attempts covered  pressure  of gas  diffusion.  heads of  landfill  due  in:more d e t a i l  1979;  gas  Farmer,  to d i f f u s i o n later  through  in this  1980;  and thesis.  27 TABLE 2.4  - Factors Affecting (Table modified  Through a L a n d f i l l  from B a k e r and MacKay,  Cover  1985)  EFFECT  FACTOR Soil  Diffusion  porosity  H i g h p o r o s i t y a l l o w s more d i f f u s i o n and e m i s s i o n . P o r o s i t y i s the c o n t r o l l i n g parameter i n the emission of v a p o r s .  Atmospheric pressure fluctuations  Pumping a c t i o n f r o m p r e s s u r e f l u c t u a t i o n s enhance t h e measured d i f f u s i o n r a t e of benzene t h r o u g h a s o i l l a y e r by 1 3 % .  Temperature g r a d i e n t between l a n d f i l l b o t t o m b o t t o m and s u r f a c e  L a r g e g r a d i e n t s between a warm l a n d f i l l i n t e r i o r and a c o o l s u r f a c e enhance t h e r m a l l y - i n d u c e d diffusion  Temperature  Warm gas can form c o n d e n s a t e l e a v i n g the v a p o r a b s o r b e d i n t h e c o v e r , d e c r e a s i n g the e f f e c t i v e d i f f u s i o n rate  Wind  of c o v e r  speed  I n c r e a s e d wind a t t h e s u r f a c e e n h a n c e s t h e "wick e f f e c t , " s p e e d i n g diffusion.  Anaerobic Decomposition  This elevates internal landfill t e m p e r a t u r e and p r o d u c e s g a s e s , p r i m a r i l y methane, w h i c h a c c e l e r a t e . diffusion.  Chemical  E x o t h e r m i c r e a c t i o n s can thermal d i f f u s i o n .  reactions  increase  T h i c k n e s s of s o i l l a n d f i l l cover  Increased diffusion  thickness increases time.  I n f i l t r a t i o n of s u r f a c e water and r e s u l t a n t s o i l moisture content.  Methane gas p r o d u c t i o n i s e n h a n c e d m o i s t u r e input hence, a c c e l e r a t i n g diffusion. Rapid i n f i l t r a t i o n f i l l s s o i l pores,•slowing diffusion,  28 2.4.  GAS  COLLECTION SYSTEMS  Generally, odors, for  off site  collection  migration  further u t i l i z a t i o n  this  study  because the  leachate. and  gas  Gandolla  utilization  collection,  of  landfill landfill  collection  gas, gas.  used and  f o r c o n t r o l , of  more  importantly,  They a r e  w e l l s are  important  sampled  system  into six possible steps.  pretreatment,  storage,  gas  These  combustion, energy  T h i s author will', mention  only  for  f o r gas  e t a l . (1982) d i v i d e s a l a n d f i l l  energy consumption. in  of  systems are  and  recovery  steps  are:  storage  the  first  and two  detail. . 2.4.1. The  wells  COLLECTION  collection  but  there  are  step  i s u s u a l l y taken care  of  some a l t e r n a t i v e c o l l e c t i o n  by  collection"  methods w o r t h  mentioning. One  method  i s through ground probes t h a t  landfill  and  landfill  in Switzerland,  driven  5 to  methane was  placed  i n 2 months t i m e  landfill  corridors  of  s t e e l - t i p p e d , 5 cm  extracted  (Gandolla  a f f e c t e d by  Another  vacuum.  i n t o the  a d v a n t a g e s of a low after  a subsequent  10 m e t e r s  s q . meter a r e a greatly  on  gravel  configurations  This  (3.5  method  t o 7.5  of b l a n k e t s ,  cm  the  p r o b e s were  in a  recovery  and  collection  into  Croglio  10. p r o b e s  installation  (Gandolla  the  diameter  clogging,  cost  driven  4 0 . t o 60 m/day of  from  e t a l . , 1982).  At  a i r i n t r u s i o n and  completion  gas  r e f u s e and  are  but  system  has  immmediate  1000 is  the  installment  e t a l . , 1982). i s through coarse minus) t h a t  trenches,  can  be  permeable used  s l a n t e d d r a i n s and  in  mounds  29 (Schumacher, be  used  This  In e v e r y c a s e , a p e r f o r a t e d  to transport  constructed water  1983).  during  drains system  intrusion The  the gas.  preferred  extraction  phase  of t h e l a n d f i l l and have  to decrease the p o t e n t i a l  and seepage  wells.  f o r seepage  drill,  collection  less  spindle,  cable  25 m e t e r s  i n depth,  hollow bore auger.  hollow  bore augers  poorly  compacted  1980).  that  refuse,  (Giuliani, method  landfills  require  from  and slow  The  15 cm  rotary  1980).  for drilling  problems  i n refuse  encountered with  r a t e s of p e n e t r a t i o n  b i t i s often  used  debris  debris  (Schumacher,  in California  have  in intervals  1983).  (36. i n . ) . "  installed  t h e use o f a c r a n e mounted a u g e r  when  (Emcon A s s o c . ,  for drilling  (6 i n . ) t o 90 cm  t r u c k mounted r i g ( G i u l i a n i ,  90 meter  Borehole Some deep  r i ginstead  wells  of a  1980).  Once t h e b o r e h o l e s have been installed  1981).  b o r e h o l e c a v e - i n s when d r i l l i n g i n  any c o n s t r u c t i o n range  well  i s t h e t r u c k mounted c o n t i n u o u s  Drilling  include:  A core barrel  diameters  (Shen,  r i g , down h o l e hammer,  through houshold or c o n s t r u c t i o n  containing  deeper  tool  and common  flight  drilling  i s by c a s e d  by a number o f t e c h n i q u e s s u c h a s a  most e f f i c i e n t  than  system  To o p t i m i z e g a s r e c o v e r y , e x t r a c t i o n  or w i t h a h o l l o w bore auger  The  with a i r  build-up.  d e p t h s h o u l d e q u a l 3/4 o f t h e d e p t h o f waste  telescopic  build-up.  i n e x p e n s i v e but has problems  and most common  w e l l s c a n be d r i l l e d  must  Most o f t h e s e s y s t e m s must be  the f i l l i n g  i s relatively  p i p e system  completed,  i n the b o r e h o l e and b a c k f i l l e d  the well  with s o i l  casing i s  or g r a v e l .  30 Well casing  is typically  fiberglass,  polyethylene,  Assoc., to  1980).  15 cm.  casing one of  gas  flow  landfill  Hanson,  1985).  not  slip  i n the  are:  saw  one,  require.excessive  them, and  casing  joint  that  three,  (Emcon A s s o c . ,  casing  that  they  t h e y do  1980).  Above t h e  an  impermeable c o n c r e t e  (60  cm  thick)  90  interval. the  to prevent  Above t h i s head  assembly.  The  well  head a s s e m b l y  equipped  with  special connections  header, into  the  two,  three,  a PVC  collection  tee  to  header  four,  the  i s normally  occur  purchased  bentonite  the  length  through  well  casing.  collection plug  is  installed collection  one,  a well  head  up  sampling  and  the  i n t o the  collection  collection 40  PVC  controls  header pipe  pressure  gas  itself.  that  to  cap  f o r gas  that  they  gas  is backfilled  gate valve  the  for  that  soil  gas  cm  already  t o draw t h e  gravel-filled  Sch.  120  requirements  u n d u l y weaken t h e  at  (E.H.  u n c l o g g e d , two,  losses  route  to  u s u a l l y made i n  primary  c o n s i s t s of  a b u t t e r f l y or  h e a d e r , and  be  impermeable p l u g ,  well  telescoped  d e t e r m i n e d by are  cm  the  the  a i r i n t r u s i o n i n t o the  well  readings,  can  or  to  a c c o m a d a t e up  breakage w i l l  remain  not  interval, to  can  (Emcon  f r o m 7.5  is typically  The  pressure  range  loss within  Perforations  or c a s i n g  that  though  sized according  pressure  manufacturer.  even  diameters  The  well.  or  from t h e  perforations do  a  PVC,  C o l l e c t i o n i n t e r v a l s are  with a d r i l l  perforated  the  of  have a l s o been u s e d  casing  subsidence before  of p e r f o r a t i o n field  and  1983).  to create  steel  is typically  rate  (Schumacher,  point  and  Typical well  Well casing  expected  constructed  takes  flow The the  31 extracted pipe  gas  t o a compressor  i s s i z e d much l i k e  well  t h r o u g h a commonly employed  for further casing  distribution.  Header  with pressure loss estimated  pipe f r i c t i o n  e q u a t i o n (Emcon A s s o c . ,  1980). .  An  example o f a t y p i c a l  assembly  and c o l l e c t i o n  PRETREATMENT  Because  vapor  collection  landfill  will  that  a condensate  (Schumacher, headers  form  1983).  gas  in Figure  typically  the  and problems.  build-up back  A general  i s through  into rule  the  d r a i n s are connected onto  at the lowest p o i n t s  refuse  i s to  f o r e v e r y 60 m o f c o l l e c t i o n  These  by a s i m p l e Tee  2.4  leaves  head  operational  condensate  system.  head  to atmospheric  empty t h e c o n d e n s a t e  trap  with well  i n the w e l l  causing  t e c h n i q u e to, c o n t r o l  away from t h e c o l l e c t i o n  install  i s displayed  headers, e v e n t u a l l y  simplest  well  temperatures r e l a t i v e  condensate  condensate d r a i n s and  saturated  at e l e v a t e d  temperatures,  The  header  2.4.2.  landfill  extraction  header  collection  i n the header  t o maximize d r a i n a g e .  O t h e r ways t o e l i m i n a t e  t h e gas  s c r u b b e r s , d e h y d r a t o r s , o r l o w e r i n g the,  stream  dewpoint  include  o f t h e gas below t h e ambient, c o l l e c t i o n  (Emcon A s s o c . ,  t o s e p a r a t e the C 0  2  common a b s o r b i n g s o l v e n t which  the C 0  (Gandolla  2  line  from  temperature  1980).  In u p g r a d i n g l a n d f i l l has  condensate  pipe  can  et a l . ,  be  and  to pipeline  quality,  other impurities  used  later  1982).  gas  for l a n d f i l l  solvent  usually  f r o m t h e methane.  gas  r e c o v e r e d by. h e a t i n g Other  one  i s triethylamine, up t h e  treatment  solvent  systems  A  32 I  FIGURE  CONTROL VALVE  2.3  - Example  (Reprinted E.H.  Hanson  a BOX  of a T y p i c a l  with  Extraction  permission  and A s s o c i a t e s ,  of 1986.)  Well  33 recently  i n use  propylene  carbonate,  1980).  Trace  systems  s u c h as  landfill  (see  systems are be  include: diglycolamine, selexol,  g a s e s can the  a l s o be  molecular  Bowerman,  fluor  sieve  potassium  solvent  removed by  1977), and  e x p e n s i v e and  dry  system at  carbonate,  (Emcon  absorption Palos  Verdes  a c t i v a t e d carbon.  require very  Assoc.,  All  large l a n d f i l l s  these  to  cost-effective. 2.4.3. The  GAS  EXTRACTION  design  and  some p a r a m e t e r s are:  refuse  2.4.3.1. Well which test  t o be  and  PARAMETERS  modelling  extraction well  rates,  spacing,  cover  is a  i s determined c o n s i s t s of  i n the  field  installation  changes d u r i n g  well.  determine the  extraction  study  estimated.  and  require  Some of  e x t r a c t i o n and  these  production  landfill  well  radius  during  an  gas  velocity.  pumping or  r a d i u s of  (1981) ran faulty  greater  gauge p r e s s u r e  p r o b e n e t w o r k i n g , and  landfill  study  area.  no  into d i f f i c u l t y  pressure  or p r e s s u r e  gas  (RI),  of  probe for  the  responses are  then  used  that extraction  i s drawn t o  than  This  are monitored  recovery  i n f l u e n c e of  i s that  influence  extraction test.  later  These measured p r e s s u r e proper  of  of a p i e z o m e t e r  from a d i s t a n c e  because, of  the  e x t r a c t i o n w e l l , which  b a s i c assumption  Clement  gas  f u n c t i o n of  gauge p r e s s u r e  The  or  e x t r a c t i o n systems  permeability,  the  well.  gas  EXTRACTION WELL SPACING  spacing  extraction  of  determined  network a r o u n d  to  and  hot  the  that wells  determining responses,  an  RI. RI  improper  heterogenieties within  the  in his  34 The several  extraction hours to  Typically,  2 to  to  are  4 wells After  spacing  1983). spaced  t e s t e d per  to help  ideally  outer  the  are  last  used  proper  well  from  rate.  f o r each w e l l  (Emcon A s s o c . ,  landfill  well no  rates  perimeter  control  (given  spacing  spacing  migration  begins  at  the  with  of  RI  (Schumacher,  i s confirmed,  constraints)  2  1980).  inward w i t h o v e r l a p gas  and  inner  wells  are  v e r t i c e s of  triangles.  2.4.3.2.  use  RI,  usually  f o r each e x t r a c t i o n  landfill  landfill  Once t h e  To  days  4 extraction  determining  equilateral  can  several  from t h e  occurring  t e s t s t o d e t e r m i n e RI  GAS  determine the  EXTRACTION AND the  optimal  following  Qw Where Qw K RI t D  =  PRODUCTION RATES  flow  rates  for a given  well,  one  equation:  (K*TT*RI *t*D*Gr) / C  (i)  2  = = = = =  optimal w e l l flow r a t e (L/sec) C o n v e r s i o n F a c t o r (1.157E-08 L / d a y / m l / s e c ) R a d i u s of i n f l u e n c e (m) Refuse t h i c k n e s s (m) i n - p l a c e r e f u s e d e n s i t y (kg/m, m) Gr = methane p r o d u c t i o n r a t e (mL/kg-day) C = F r a c t i o n a l methane c o n c e n t r a t i o n most d i f f i c u l t p a r a m e t e r t o o b t a i n i n e q u a t i o n ( i ) i s 3  The the  methane gas  number of  production  variables already  determined during In  this  intrusion the  the  gas  determination,  attainment  rate  of  the  occurs.  the  (Gr), that  in that  equation.  extraction well  flow  maximum e x t r a c t i o n This  extraction  r a t e a t w h i c h methane  i s dependent  Generally,  t e s t s that rate  on  Gr  determine  is varied  a is  RI.  until  r a t e which minimizes a i r  rate  i s assumed t o be  i s produced within  the  equal  volume of  to  refuse  35 defined by  by  the  wells  a modification  gas  assumes s t e a d y  state conditions  fact,  b a s e d on  recovery,  Pacey  (1976) e s t i m a t e d  One  increase  t h e o r e t i c a l gas  way  the  to  increase  density  of  summary, gas  refuse  4  recovery  extraction  production  Schumacher, production  per  1983). r a t e s are  production  mass b a l a n c e  way  believes  literature  uncertainty  in l a n d f i l l  The  standard  be  may gas  %  production produced in  only  10  extracted would be  to  50  (Boyle, to  range  from 6.8  of  1980;  ( i i ) from  t o 45.0  Clement,  b o t h the and  eqn  gas  mL 1981;and  extraction  error.  and  Emcon A s s o c .  determination  of  t h r o u g h a more t h o r o u g h t h e o r e t i c a l  be  1980).  a better  production  On  the  other  a v a i l a b l e from way  to handle  hand,  this  the the  rates.  PERMEABILITY  coefficient  c h a r a c t e r i s t i c s of  that  100  wells.  s t o c h a s t i c techniques  groundwater  gas  a l l gas  t o make.a more a c c u r a t e  Emcon A s s o c . ,  REFUSE  not  efficiency  uncertainty  r a t e would be (see  2.4.3.3.  of  since  a  e a r l y experience  (Emcon A s s o c . ,  full  and  r a t e s c a l c u l a t e d by  Determination  (1980) s u g g e s t s one  author  day  and  produced w i l l  tests in e x i s t i n g l a n d f i l l s  C H / k g of  the  a landfill,  true  In  the  of  i s never  (L/sec)  recovered.  1976).  gas  which  rate  age  gas  determined  (ii)  2  equation  of  field  (7T*RI *t*D) flow  percent  In  /  efficiency,  be  ( i ) below:  o v e r an  landfill  can  = Optimal well  rates vary be  = Qw  i n mind, Gr  Where Qw  recovery  will  With t h i s  t o eqn.  Gr  This  RI.  the  gas  of  permeability  and  (K)  p o r o u s media  depends on  both  (refuse, cover  or  36 surrounding  soils). K =  Where  of  grain  of  can  be  (tf/u)*Ks  expressed  p e r m e a b i l i t y depends on  and  shapes,  2  )  upon t h e f o l l o w i n g  t h e p o r o u s m e d i a : p o r o s i t y , r a n g e and  sizes,  as:  (iii)  Y= s p e c i f i c wt. of t h e gas (kg/m^) M= s p e c i f i c v i s c o s i t y "" "" (N-sec/m Ks = i n t r i n s i c p e r m e a b i l i t y of r e f u s e and/or cap m a t e r i a l (Darcys)  Intrinsic properties  This coefficient  orientation  and  distribution  packing  of  the  grains. *  The (iii)  coefficient  i n the  P a l o s V e r d e s and  1.04  to  data  to estimate  1.55  m/day.  six  used  r a n g e from  of  GAS  Determining  laminar can  be  well  K  0.88  t h e gas i s very  assumed or n o t .  Gas equation  Ontario  t o 4.82  important  Vr  by  flow.  range  from  from  extraction  the  Cooper-Jacob  T h i s method i s  investigations.  eqn.  at which  His the  (iii).  for determining  If non-darcian  i n t o an  i t enters  i n turn determines  surface surrounding  the  whether  flow  i f darcian  flow  flow e x i s t s ,  well  decrease.  extraction  ( i v ) t h a t assumes t h e  cylindrical  field  equation  m/day, w h i c h a r e w i t h i n  from  velocity  would u n e q u i v o c a l l y  velocity  landfills  landfill  i n groundwater  by  VELOCITY  or t u r b u l e n t , w h i c h  efficiency  Arleta  (1981) employed  the v a l u e s o b t a i n e d  2.4.3.4.  extraction  Sheldon  f o r c o n f i n e d unsteady  for determining  K values  tolerance  Clement  t h e K a t an  a p p r o x i m a t e method often  of p e r m e a b i l i t y (K) d e t e r m i n e d  gas  well  i s determined  f l o w s n o r m a l t o an  the w e l l c a s i n g :  = Qw/Area = Qw/(2T*r*h)  (iv)  by  the  imaginary  is  37 Where V r Qw r h  = = = =  i n t e r n a l g a s v e l o c i t y (m/sec) w e l l f l o w r a t e (m / s e c ) r a d i u s o f imag. c y l i n d e r (m) d i s t a n c e of c o l l e c t i o n i n t e r v a l  Once V r i s d e t e r m i n e d then  be f o u n d  Number  (Re).  Re i s found  Re i s l e s s  laminar, this  than  and D a r c y ' s  proportional  2.5.  1.0 t h e n flow  seems t o o c c u r  that  decreasing  below:  flow  equation  in landfills  flow.  i s generally perceived to applies.  As a g e n e r a l  where f l o w  to large gravel, efficiency  sizes  reach  large  (1980)  sizes  t u r b u l e n t f l o w may p r e v a i l , in extraction  wells.  AMMONIA GAS FROM LANDFILLS 2.5.1.  PHYSICAL PROPERTIES OF AMMONIA GAS  Ammonia  i sa colorless  p u n g e n t odor  i seasily  ammonia m o l e c u l e  g a s under  discernible  has a pyramidal  standard  c o n d i t i o n s , whose  above 50 ppm (NRC, 1979).  structure,  with  atom a t t h e apex and h y d r o g e n atoms a t t h e b a s e . angles 1979). 2.4.  r a t e s a r e low  However, Emcon A s s o c .  i f l a n d f i l l grain  recovery  •  t h e p o r o u s media)  enough t o keep l a m i n a r cautions  the Reynolds  = ($*Vr*D.)/  of  rule,  parameter,  (v) 3 £ = D e n s i t y o f g a s m i x t u r e (kg/m ) D = C h a r a c t e r i s t i c dimension of t h e system ( U s u a l l y t h e mean g r a i n d i a m e t e r  Where  be  ( i v ) , the flow d e s c r i p t i o n can  by u s i n g t h e d i m e n s i o n l e s s  Re  If  from  (m)  between t h e H-N-H have been o b s e r v e d Other  physical  The  the nitrogen The bond  t o be 106°47' (NRC,  p r o p e r t i e s o f ammonia a r e l i s t e d  i n Table  38 TABLE 2.4  - Physical  PROPERTY  Properties  gm gm gm gm gm  2.5.2.  SOURCES AND  2.5.2.1. The  NRC  by  over  99.5  biological  NH3  estimates  natural  the t o t a l  atmospheric  % of  This  s t u d y done by Geadah  decomposition  e m i s s i o n of ammonia.  animal  human b r e a t h . can  released from  (1985)  Geadah  that  f o r 71.2  % of  (1985)  lists  biological  litter  waste, v e g e t a t i o n e m i s s i o n s , f o r e s t  fires,  Ammonia be  to  percentage  emissions account  s o u r c e s of ammonia e m i s s i o n t o be:  decomposition,  atmospheric-  p r o c e s s e s due  o f o r g a n i c waste m a t e r i a l .  with a Canadian  hydrolysis  that  natural  contrasts  decomposition  (1981)  AMBIENT ATMOSPHERIC LEVELS OF  (1979) b e l i e v e s  decomposition  Ammonia  i s from F r e n e y  1981 1981 1981 1979 1979 1981 1979 1979  NATURAL SOURCES  i s produced  the n a t u r a l  SOURCE  17.03 gm/gm-mole API, -77.70 C d e g r e e s API., -33.35 C d e g r e e s API, 132.45 C d e g r e e s NRC, 112.30 a t m o s p h e r e s NRC, 0.7714 kg/m API, 5,581 cal/mole NRC, 8.523 c a l / m o l e - d e g r e e NRC, NH3/100 gm H20 (0 C, 1 atm) NH3/100 gm H20 (10 C, 1 atm) NH3/100 gm H20 (20°C, 1 atm) NH3/100 gm H20 (30°C, 1 atm) NH3/100 gm H20 (40°C, 1 atm)  * A l l s o l u b i l i t y data  and  Gas  VALUE  m o l e c u l a r weight melting point boiling point c r i t i c a l temp. c r i t i c a l press. d e n s i t y (gas) h e a t of v a p o r . s p e c i f i c heat solubility * 89.9 68.4 51.8 40.8 33.8  ammonia  of Ammonia  released  from  soils  due  e s t i m a t e d by Dawson's model  from a n i m a l  waste  the enzyme u r e a s e .  ammonia by c a r n i v o r e s and  i s mainly  due  to  (Geadah,  1985).  to urea  E s t i m a t e d p r o d u c t i o n of  h e r b i v o r e s i s 186.3  and  16.42  gm  of  NH  • per  kg of a n i m a l  assumes t h a t ammonia.  weight  39  per year  10 % of t h e g e n e r a t e d  B e c a u s e of t h i s  levels  around  (usual  ambient  dairy level  farms  emit  combustion  11.2  mg  1985).  urea produces  substantial  This estimation volatilized  amount, a m b i e n t  NH^  have been measured a s h i g h as  around  5 ppb)  have been e s t i m a t e d t o p r o d u c e during  (Geadah,  (Geadah,  (NRC,  0.15  1979).  Forest  gas  450  ppb  fires  kg o f NH^/tonne o f d r y wood  1985).  Human b r e a t h has  NH^/day f o r non-smokers and  16.8  mg  been  found  to  NH^/day f o r  smokers. Geadah activity than  (1985) c o n c l u d e s  emits  Major  g r e a t e r mass o f NH^ sources  that  microbial  i n tonnes/annum  combined.  s o u r c e s o f NH^  include  the  following  (1979):  I n d u s t r i a l s o u r c e s , s u c h as f e r t i l i z e r p l a n t s , . r e f i n e r i e s , o r g a n i c c h e m i c a l p r o c e s s p l a n t s , and mining.  3.  strip  M i s c e l l a n e o u s s o u r c e s , s u c h as c a t t l e f e e d l o t s , f o o d p r o c e s s i n g p l a n t s , use o f NH^ i n i n d u s t r i a l and h o u s e h o l d c l e a n i n g , f e r t i l i z e r a p p l i c a t i o n , and sewage treatment p l a n t s .  2.5.2.3 Ambient  and  study  Combustion p r o c e s s e s i n urban a r e a s , such as domestic h e a t i n g , i n t e r n a l c o m b u s t i o n e n g i n e s , and m u n i c i p a l waste i n c i n e r a t i o n .  2.  ammonia  1980  ANTHROPOGENIC SOURCES  anthropogenic  by NRC 1.  of  10-fold  the t h r e e other n a t u r a l 2.5.2.2.  list  a  i n her  AMBIENT ATMOSPHERIC LEVELS atmospheric  in rural  u n p o l l u t e d a r e a s has  r e s e a r c h e r s (Junge, Kelly  c o n c e n t r a t i o n s of n o n - p a r t i c u l a t e  1963,  e t . a l . , 1984).  NRC,  Their  been measured by a number  1979,  H a r w a r d e t . a l . , 1982,  r e p o r t e d mean NH--N  values  40 range  from  measured  2.2  to  i n urban  10.0  ppb.  N o n - p a r t i c u l a t e ammonia  a r e a s a r e much h i g h e r  (max.  400  levels  ppb)  i n most  c a s e s , w i t h marked maximums i n t h e w i n t e r , owing t o t h e i n c r e a s e d contribution  from c o m b u s t i o n  2.5.2.4.  ANALYTICAL TECHNIQUES  Some o f t h e a n a l y t i c a l low  sources.  atmospheric  levels  t e c h n i q u e s employed  of NH^-N  these  a r e l i s t e d below:  1.  Bubbler t e c h n i q u e s u s i n g a c i d s o l u t i o n s to absorb the NH_, w h i c h i s t h e n a n a l y z e d by c o l o r i m e t r i c - t i t r i m e t r i c methods. T h i s method was u s e d i n t h i s s t u d y on l a n d f i l l gas.  2.  R i n g oven t e c h n i q u e s u s i n g i m p r e g n a t e d f o r d i r e c t a b s o r p t i o n of ammonia g a s .  3.  P h o t o a c o u s t i c d e t e c t i o n o f d e s o r b e d ammonia t e f l o n bead s a m p l e r ( s e e Harward, 1982).  4.  R e a l t i m e measurement u s i n g a c a l i b r a t e d f l u o r e s c e n c e d e r i v a t i z a t i o n technique,. D e t e c t i o n l i m i t i s a b o u t 0.3 ppb ( s e e K e l l y e t . a l . , 1984)  5.  2.5.3.1. The  from  a  LANDFILLS  SOURCES  o v e r w h e l m i n g m a j o r i t y o f ammonia  i s produced  from d e c o m p o s i t i o n  refuse.  fertilizer  Other  from a t m o s p h e r i c  and  decomposition  i s another  input.  minor  landfills  indigenous to  c o u l d be due  p r o d u c t s , ammonium s a l t s , a n i m a l  s l u d g e , or  landfills.  inherent to  of p r o t e i n s  s o u r c e s o f NH^  chemical DNA)  f i l t e r substrate  . R e c e n t d e v e l o p m e n t s i n more s e n s i t i v e , r e l i a b l e and more e x p e n s i v e t e c h n i q u e s s u c h a s F o u r i e r - t r a n s f o r m l o n g - p a t h i n f r a r e d s p e c t r o s c o p y , second derivative s p e c t r o s c o p y , and t h e c o m b i n a t i o n o f gas c h r o m a t o g r a p h y and c h e m i l u m i n e s c e n c e ( s e e NRC, 1979).  2.5.3. AMMONIA GENERATION IN  bulk  t o measure  the  t o l a n d f r i l i n g of  wastes,  sewage o r  Nucleic acid  (RNA  s o u r c e o f ammonia i n .  41 Total to.range 3.0  nitrogen  from a low  o f 0.33  reported % weight  % i n Raveh and A v n i m e l e c h  (Thompson, 1980) 1.7  has been  1969,  report  % required  (Alexander, benefit these  by  % to  Landfills  has been  a n a l y s i s of  1963)  1.25  that  reported  refuse  to a high  of  researchers  Tchobanagolous, % total  1977,  and  nitrogen  of o r g a n i c  are d e f i c i e n t  t h e a d d i t i o n o f sewage s l u d g e ,  Rees,  with  matter  in nitrogen  as p e r c e n t  can  nitrogen  t o be on t h e a v e r a g e a b o u t  3.1  in %  e t . a l . , 1974).  2.5.3.2. The  PRODUCTION OF  generation  mediated procedure activity. stages  Most  f o r maximum d e c o m p o s i t o n  1961).  sludges  (Hobson  from 0.5  (Bell,  (1979).  P f e f f e r , 1974,  values  i n bulk  These  o f ammonia  Protein  from p r o t e i n s  involving multiple  steps  can  basically  o f methane p r o d u c t i o n  reaction  AMMONIA  H O  would  -—  Of  superimposed  be as  > Fatty  Acids  i s attacked  between amino a c i d s .  hydrolysis reaction  The  major  that  hydrolyze  can  be  + NH_  group of organisms  t h e most p r e v a l e n t  digestor  studies  +  C0  9  by'extracellular  the p e p t i d e  bonds  releases  f u r t h e r degraded  1 are the p r o t e o l y t i c b a c t e r i a .  were f o u n d t o be anaerobic  groups  simplified  follows:  that  amino and c a r b o x y l  A  the  -.f;.  reaction, protein  This  on  i n 2.1.2.2..  enzymes known as p r o t e a s e s  reaction  biological  2  the f i r s t  reaction"2.  biologically  H O  2  In  be  discussed  f o r ammonia g e n e r a t i o n enzymes > Amino A c i d s  steps  is a  responsible Clostridium  free by  for species  proteolytic bacteria in  p e r f o r m e d by S i e b e r t  and  Toerian  42 (1969). Separation sources  o f t h e amino a c i d s  in reaction  mechanisms  into  carbon and n i t r o g e n  2 i s done a number o f ways.  a r e shown below u s i n g  t h e amino a c i d  Four  common  Glycine  (CHNH COOH) a s example: 2  1.  2.  Hydrolytic  deamination  Glycine  > RCH=CHCOOH .+ NH^  Reductive deamination Glycine  3.  + H  — - > A c e t a t e - + NH +  2  4  D e c a r b o x y l a t i o n ( l e a d i n g t o subs, a l c o h o l  4. 2 Glycine  Glycine  > Amine  + C0  Strickland  Reaction (coupled deamination)  2  2  susceptible  3  4  t o d e c o m p o s i t i o n t o ammonia..  readily  from a r g i n i n e  ( A l e x a n d e r , 1961).  3  while others are highly F o r example, ammonia i s  and t r y p t o p h a n e , w h i l e  t h r e o n i n e a n d m e t h i o n i n e have a more e x t e n d e d tests  + NH  + A l a n i n e + 3 H 0 - — > 3 A c e t a t e - + 3 NH + + H C 0 ~ + H+  Some amino a c i d s a r e r e s i s t e n t  formed  > Alcohol  fermentation)  Again, C l o s t r i d i a  lysine,  persistence  s p . appear  t o be t h e  most d o m i n a n t m i c r o o r g a n i s m  in reaction  2.  also  to reaction  2 i n Songonunga's  found as a c o n t r i b u t o r  in soil  Anaerobic cocci  were  (1970)  work. The S t r i c k l a n d mechanism  Reaction appears  f o r ammonia f o r m a t i o n .  Clostridia  can obtain  (Thompson,  1967). O t h e r  in  landfills,  energy than  the S t r i c k l a n d  from  t o be t h e c o n t r o l l i n g  At l e a s t  15 s p e c i e s o f  the Strickland Reaction  regulating  t h e f o r m a t i o n o f ammonia  R e a c t i o n i s a major c o n t r i b u t o r t o  43 volatile  fatty  theorized  (Nagase a n d M a t s u o ,  ions, dropping  +  (1),  hydrolytic  releasing  2.5.3.3.  AMMONIA  The m a j o r  sink  nitrogen  o f newly  nitrogen al. ,  The r e a c t i o n  also  i s not f a v o r a b l e . f o r 1970) .  mechanism  Instead,  a t low pH's h e n c e ,  g e n e r a t e d ammonia a p p e a r s t o be due  of b a c t e r i a  that  produce  need N H  + 4  i t i n the  and n o t o r g a n i c  amines, e t c . ) f o r a s s i m i l a t i o n  into  their  ammonia h a s been p r o v e n t o be t h e o n l y  compound needed  f o r growth  i n methanogens  (Hobson e t  1974). Other  t h a n NH^+ a s s i m i l a t e d  other  l e s s common s i n k s o f f r e e  point  form  by c e l l ammonia.  synthesis, They  there are  are listed i n  below:  1.  Cation  2.  Ammonia f i x a t i o n o r " a m m o h y l s i s " by o r g a n i c compounds s u c h a s h a l o g e n a t e d a r o m a t i c s (NRC, 1979) o r c a r b o x y l and o t h e r a c i d i c o r g a n i c g r o u p s t h a t combine w i t h NH3 t o form s o l u b l e s a l t s ( F r e e n e y e t . a l . , 1981)  3.  N i t r i f i c a t i o n could occur be an e l e c t r o n a c c e p t o r .  4.  Volatilization  2.5.3.4.  exchange  LANDFILL  o f NH^+ o n t o r e f u s e  i f free  o f NH^ t h r o u g h AMMONIA  or s o i l  oxygen  colloids.  i s around t o  landfill.  BALANCE  When d e c o m p o s i t i o n a n d g r o w t h become p s u e d o - s t e a d y the  releases  solution.  from t h e b a c t e r i a  The m a j o r i t y  In f a c t ,  f o r methane  SINKS  (amino a c i d s ,  protoplasm.  into  a n d h a s been  needed  2  (2) becomes more p r e v a l e n t  more a l c o h o l s  place.  for H  1982).  t h e pH, w h i c h  growth a s s i m i l a t i o n  first  i n leachate,  d e a m i n a t i o n (Songonunga,  decarboxylation  to  production  t o be a major c o m p e t i t o r  production H  acid  ammonia b a l a n c e w i t h i n  an c o m p l e t e l y  anaerobic  state,  landfill  44 environment  can  be p r e s e n t e d as  follows  ( m o d i f i e d from Waksman,  1931): N decomp. This exceed  (N g r o w t h + N o r g . n i t r o g e n + N s i n k s ) = N a s  balance  indicates  growth requirements  accumulate leached,  fixed,  subtracting from  T h i s accumulation  exchanged or v o l a t i l i z e d  kinetics  treatment  microbes. a net  (.1982) f o r f u r t h e r 2.5.4.  rates.  i n w h i c h ammonia c a n  r e f u s e and  this  biofilm  is a liquid  of the  appears inherent  layer  in Figure  be  system.  solution  Refer  either  been done  by  Michaelis-Menton  (mostly  NH^-N  from  t o page  i n the b i o f i l m  by  deamination) 135  in  Smith  LANDFILLS  The  two  solid  four  phases  refuse. t h e gas  are  the  Surrounding filled  of t h e s e  four  2.4. transfer  t o t h e gas  where t h e m i c r o b i a l  regulate further  of NH +, t h e n  biofilm  of  4  there are  A cross-section  i s a net a c c u m u l a t i o n function  landfill,  f o l l o w e d by  s t e p i n NH^  i n the b i o f i l m  as a  soil  s u r r o u n d i n g the  refuse pores.  rate-limiting to occur  occur.  the b i o f i l m  i s presented  The  uses  to  MASS TRANSFER IN UNSATURATED ZONE  bulk  phases  the  rates  detail.  In t h e u n s a t u r a t e d zone o f t h e  fraction  will  FACTORS AFFECTING AMMONIA MOVEMENT IN  2.5.4.1.  phases  He  t h e ammonia p r o d u c t i o n r a t e uptake  from  begin  o f t h e s e p r o c e s s e s has  to c a l c u l a t e  t h e v a r i o u s NH^-N  decomposition  4  (1982) r e g a r d i n g s o i l  substrate  as p r o t e i n  f o r NH +, ammonia w i l l  as a waste p r o d u c t .  A mathematical Smith  that  NH^-N  NH^+  i t ' sdiffusion  NH^ will  phase  processes  transport.  If there  move t h r o u g h  coefficient.  From  the  45 — -•w  150 — um  Relative concentration line  -•w D'  REFUSE SUBSTRATE x yU Ni c  NH3 GAS  H  z  NH ORGANIC N +  4  NH3 GAS  NH3 GAS  NH ORGANIC N +  AMINES NH In H 0 VAPOR  4  +  4  2  A  Biofilm-refuse  B  Biofilm  C  Liquid  D.  Bulk  E ,  Liquid  F.  Gas  G ,  B u l k Gas  FIGURE  interface  - NH movement t h r o u g h b i o f i l m d e p e n d s o n d i f f u s i o n and b i o f i l m uptake r a t e . +  4  Film  Liquid  Assume l i q u i d i s c o m p l e t e l y m i x e d a n d contains b i o f i l m slough, soluble substrate and b a c t e r i a f l o e . Assume s t e a d y s t a t e g a i n o r l o s s o f NH3-N i n t h i s z o n e .  Film  Film C o n t a i n s H2O v a p o r , components. Assume negligible.  and l a n d f i l l gas p a r t c u l a t e mass i s  2.4 - M i c r o s c o p i c C r o s s - s e c t i on t h r o u g h l a n d f i l l showing mass t r a n s f e r o f NH3-N i n t o b u l k g a s , a s s u m i n g a b i o f i l m model.  46 s t u d i e s done on mixed and coefficient and  ranges  McCarty,  1976,  from and  coefficient  has  the b i o f i l m  (Onuma and  assimilation NH^-N  been  form  due  exists.  gas  4  due  bubble  a  f u n c t i o n of  liquid  thin  thickness with  Sloughing  formation from  is a  fluid  transported 1983):  Other  (part  the  c  This  per  unit  diffusion  pH's  of C:N  an  effective  will  be  i n the  caused  by  fatty  the b i o f i l m  biofilm  where  ammonium acid inadequate  releasing  bulk  liquid  r e s i s t a n c e encountered  i n F i g u r e 2.4)  of Re.  area per  unit  The  s i n k of  NH^-N to C O 2  -  biofilm.  to the  zero with  in  than m i c r o b i a l  The-'liquid  f u n c t i o n of t h e R e y n o l d s Number  turbulence)  (Williamson  be  s h e a r i n g the  the d i f f u s i o n a l  film  diffusion  s l o u g h i n g mechanisms, or due  thickness approaching  greater  1982).  of  /s  1982).  Reaction), especially  to normal  Mass t r a n s f e r  low  the  with v a r y i n g r a t i o s  of t h e NH^-N  to f a i r l y  alkalinity  CH  1.50E-05 cm  Omura,  to vary  Omura,  Most  (Strickland  occur  Onuma and  seen  production  could  1.03E-05 t o  cultures,  o f NH^-N, i o n e x c h a n g e can  in biofilms.  ionized  pure b i o f i l m  (Re)  increasing flux  time  i s mostly  by  the  thin  film  of t h e  values  fluid,  (meaning  or mass of NH^-N  i s g i v e n by  ,  (Grady,  • J  = Dw/Lw*(Cb - Cw)  (vii)  2 Where Dw = l i q u i d f i l m d i f f u s i o n c o e f f . ( cm / s e c ) ( e s t . a t 1.7E-07 from Reddy and P a t r i c k , 1983) Lw Cb Cw  bulk  - liquid film thickness = c o n c e n t r a t i o n of NH_-N = c o n c e n t r a t i o n of NH^-N  Once t h e NH^-N  i s i n the bulk  gas  it's solubility,  d e p e n d s on  (cm) i n b i o f i l m (mg/L) i n b u l k l i q u i d (mg/L)  liquid,  NH^  transfer  H e n r y ' s Law  into  constant  the  (Hx)  .47 and  mass t r a n s f e r c o e f f i c i e n t  part  i n how much o f t h e t o t a l  unionized into  NH^.  the bulk  shown  This  gas.  This  reaction  unionized for  The g o v e r n i n g reaction  equilibria  3  3  ionic  leaving  Other  (1972), Skarheim  variation  of u n i o n i z e d  fraction  Numerous a u t h o r s  such a s  e t . a l . (1974),  (1978) have c a l c u l a t e d t h e  3  parameters.  interface  (D-G on F i g u r e  resistence  encountered  two f i l m  3  across  2.4) i s r e g u l a t e d  i n both the l i q u i d  the water/gas  by t h e d i f f u s i o n a l . and gas t h i n f i l m s .  d i f f u s i o n model was d e v e l o p e d  1924. The model assumes t h a t  mixed  a greater  f r a c t i o n o f NH ~N due t o v a r i a t i o n s i n  Mass t r a n s f e r o f t h e s o l u b l e N H  in  so w i l l t h e  i n temperature, .  (1973), T h u r s t o n  (1974) and Bower and B i d w e l l  The  transport  t h a n pH, t h e u n i o n i z e d  and s a l i n i t y . .  Whitfield  these  i sactually  o f NH^ f o r m a t i o n i s  a s pH i n c r e a s e s ,  i s a f f e c t e d by c h a n g e s  strength  a key  + 0H-  4  i n t o t h e bulk gas.  plays  below:  + H 0 + <====> NH +  indicates that  o f NH ~N  pressure, Trussel  NH^-N i n s o l u t i o n  f r a c t i o n o f NH^-N i n c r e a s e ,  transfer  fraction  3  Solubility  3 >  f r a c t i o n i s then a v a i l a b l e f o r  i n the hydrolysis NH  (K) o f N H  by L e w i s a n d Whitman  the solute  (NH ) i s u n i f o r m l y 3  i n t h e b u l k a i r and g a s p h a s e s a n d e n c o u n t e r s  diffusion  only  i n the thin films  state conditions through each  film  a r e assumed a s w e l l , i s equal  i n the l i q u i d  so t h a t  (Rathbun and T a i ,  mind, t h e o v e r a l l r e s i s t a n c e resistances  (E and F i n F i g u r e  t o mass t r a n s f e r  and g a s f i l m .  molecular 2.4).  t h e mass 1982).  Steady  fluxes  With t h i s i n  i s t h e sum o f t h e  • Rt Where  .  1/Kt Usually laboratory 1987,  = RI + Rg  (vi i i )  RI = 1 / k l  where k l = D l / L l  Rg = 1/Hxkg  where kg = Dg/Lg  So Rt = 1/Kt  Therefore,  48.  Where  the o v e r a l l  Kt i s i n m e t e r s / d a y  mass  transfer  = 1 / k l + 1/Hxkg  coefficient.is:  (ix)  t h i s mass t r a n s f e r c o e f f i c i e n t  i s determined  measurements (Rathbun and T a i , 1982, Murphy e t .  o r MacKay and S h i u , Again,  surrounding  the f i l m fluid,  gas  films.  The  value  most c a s e s  thicknesses  depend on t h e Re o f t h e  w h i c h c a n become q u i t e  liquid,  important  (>>1.0 atm/mole  liquid  film,  have m o s t l y around both  while  gas f i l m  films.  Solutes  fraction),  s m a l l Hx's  thin  with  This  is especially  compound  like  ammonia. below  high Henry's  have r e s i s t a n c e m o s t l y  r e s i s t a n c e (Thibodeaux,  c o n s t i t u e n t s are l i s t e d  determine i n  (<<1.0 atm/mole  films.  can c r e a t e  t r a n s f e r i s i n the  0.5 t o 1.5 a t m / m o l e . f r a c t r e s i s t a n c e s  volatile gas  thin  in l a n d f i l l  flow  (Hx) w i l l  t h e r e s i s t a n c e t o mass  gas o r b o t h  constants the  of H e n r y ' s L a w . c o n s t a n t  whether  al.,  1981).  e n v i r o n m e n t s where t u r b u l e n t methane c o n v e c t i o n thin  through  true  fract.)  1979). may  in will  F o r Hx's o f occur, from  for a highly soluble  Some Hx's f o r common (from  Law  Thibodeaux,  landfill  1979):  49 COMPOUND N  Hx  (atm/mole 86,500.0 57,000.0 54,500.0 .43,800.0 41 ,000.0 1,640.0  2  c8  H»S °2 CH C 0  2  NH  3  Propionic  Acid  O n c e • t h e Kt p h a s e can  be  equation,  one  and  RESISTANCE  frac.)  liquid  0.843  Both  0.0130  Gas  i s determined,  estimated must  Liquid  the  from e q u a t i o n  know or a c q u i r e  p h a s e , and  flux  (Jg)  i n t o the  (x) b e l o w .  Hx  Phases Phase  To  concentrations  a l s o convert  Phase  bulk  use  of  gas  this  the  from atm/mole f r a c .  bulk  gas  to  atm-  m^/mole. Jg Where R T Cg Cw  = = = =  A typical  = Kt(Cw - RTCg/Hx)  (x)  i s gas c o n s t a n t ( i n atm-m /mole-K d e g r e e s ) Temperature i n K B u l k c o n c e n t r a t i o n i n gas phase (mg/L) B u l k c o n c e n t r a t i o n i n l i q u i d p h a s e (mg/L) Hx  f o r NH^  at  25°C c a l c u l a t e d from  Stumm  • 3 and  Morgan  f o r Hx  (1981) i s 1.73E-05. atm-m /mole.  will  be  2.5.4.2.  discussed  MASS TRANSFER  In most c a s e s than  the  in further d e t a i l  soils,  mounding of  the  within  Other  t h a n mounding, h e t e r o g e n i e t i e s w i t h i n  cause perched  creates  z o n e s of  local  creating a l a n d f i l l  leachate  a macroscopic planar  in this  have a p e r m e a b i l i t y  occur  may  landfill,  later  expressions thesis.  SATURATED ZONE  when l a n d f i l l s  surrounding the  IN  Different  the  to develop.  greater  water  saturated landfill This  table  may  zone. refuse  scenario  f e a t u r e where mass t r a n s f e r of  50 ammonia  can occur  regulated  by t h e same t w o - f i l m t h e o r y  macroscopic in  conceptual  F i g u r e 2.5.  affect  at the saturated-unsaturated  already discussed.  model o f t h i s mass t r a n s f e r  Some i m p o r t a n t  equilibria  t h e amount o f ammonia a v a i l a b l e  phase a r e a l s o p r e s e n t e d  i n F i g u r e 2.5.  discussed  later.  i n more d e t a i l  2.5.4.3. Once NH3 landfill or  interface A  i s presented  r e a c t i o n s t h a t can  for transfer These  into  the gas  reactions will  be  FURTHER MOVEMENT IN LANDFILL i s i n the bulk  would be from  r e m o v a l o f NH^  landfill  or cover  landfill  gas  from  g a s , f u r t h e r movement  diffusion the bulk  or c o n v e c t i o n  vapor.  flow.  gas would be from  m a t e r i a l , or r e d i s s o l v i n g  i n the  into  Retardation  sorption  onto  the s a t u r a t e d  51  UNSATURATED  ZONE  N  2  +  0  2  C0 | 2  NH3 + C 0  VOC ' s  H S|  2  2  CH4 + NH3  A  NH3  g CAPILLARY  CH  4  CH  4  ZONE ( ? ) V  NH -C0 | 3  2  H S  «, HS- % S'  2  a q  VOC ' s NH3 | aq  C0 l 2  a  q  H HCO3-  003' NH  3  SATURATED  + H 0 % NH4 H 0 2  NH4"  FIGURE  2.5  SOLID  - Cross - Section mass - t r a n s f e r mass t r a n s f e r  +  2  H  H  +  +  ZONE  CH NH +| 4  4  a q  + OH" OH  -  NH  + 4  + M  a  H  NH M< 4  1 + a  )  o f S a t u r a t e d - U n s a t u r a t e d Zone S h o w i n g and major c h e m i c a l r e a c t i o n s affecting of l a n d f i l l gas.  '52  CHAPTER 3.  S I T E DESCRIPTION AND  3.1  MATSQUI - CLEARBROOK LANDFILL 3.1.1.  LOCATION  Matsqui  - Clear/brook  approximately  The  a glaciofluvial  hydrogeology  till  exhibits fluvial  t o be about  a common  inspection  s a n d s and.  "Sumas D r i f t "  by H a l s t e a d  in a neighboring gravel p i t  indication  local  station  weather 3.1.3.  i s approximately  i n nearby  HISTORY AND  trench-fill  from  shows even  g r a v e l s a r e of levels  cell  1400 mm  CHARACTERISTICS OF  o p e r a t i o n began  c o v e r was a t h i n  The a v e r a g e  layer  opened  annual  taken  from t h e  Abbotsford. .  a west t o e a s t d i r e c t i o n  The l a s t  these  bedding  L o c a l groundwater  of g r a v e l p i t ponds.  on t h e s i t e  gravels.  i s d o m i n a t e d by  12-13 m below t h e l a n d s u r f a c e i n t h e w i n t e r  precipitation  or d a i l y  Clearbrook  Some o f t h e c o a r s e  (channel d e p o s i t i o n ) o r i g i n .  This  approximate  interbedded within f l u v i a l  sands and g r a v e l s .  imbrication,  by d i r e c t  The  just o f f  (See F i g u r e 3.3) where a c u t bank 15 m e t e r s h i g h  interbedded  moving  around  T h e s e d e p o s i t s c a n be f o u n d  operation  Clearbrook  located  i s 45 m above mean s e a l e v e l .  T h e s e d e p o s i t s were t e r m e d  (1986).  appear  i s a 10 ha s i t e  PHYSICAL DESCRIPTION  regional  gravels.  landfill  ( F i g u r e s 3.1. & 3 . 2 ) .  of the s i t e  3.1.2.  HISTORY  3 km n o r t h o f downtown  Tretheway S t r e e t elevation  3  FILL  i n 1974 w i t h a t the s i t e .  landfilling Intermediate  of the trenched  s a n d s and  i n 1983 and ended  in early  1984  53 (Willie  R i e m e r , p e r s . comm.,  The mostly  fill  averages about  o f MSW w i t h  were l a n d f i l l e d were p r i m a r i l y material  in cells  a  layer  landfill the  cover  formation  no  multi-purpose  of the cover  0.70 m.  p h y s i c a l evidence  noticed cut  building  (color  time  (See F i g u r e  Gravel  follow consistently  heavy  rains  Total  documented;  April,  shows  contamination; i s ina  s t r e n g t h s e e p a g e was  1988 i n t h e g r a v e l p i t  This discharge  t h e week  flow a  p i t ponding  of leachate  Low volume, h i g h  area.  cover  t o be a b o u t 35%.  or smell)  t o the f i l l  3.3).  t o regulate the drainage  in early  with  a c t i v i t i e s at  b e l i e v e s the groundwater.gradient  for the f i r s t  3.1.4.  cover)  local  so t h a t t h e .  lot forlocal  of the s i t e ,  direction.  bank a d j a c e n t  board,  On t o p o f t h e f i n a l  o f l e a c h a t e h a s n o t been  100 m e t e r s n o r t h w e s t  north-northwest  types of  1987).  installed,  i s estimated  migration  hence, t h e author  Other  (same a s i n t e r m e d i a t e  however, s t e p s have been t a k e n few  animals  was c o n s t r u c t e d o f h i g h l y compacted  g r a v e l h a s been  that  a n d r e g u l a r dumpings o f  R i e m e r , p e r s . comm.,  c a n be u s e d a s a p a r k i n g  Offsite  The dead  poultry industry.  t h i c k n e s s of about  of crushed  pits.  l a r g e v o l u m e s o f gypsum  sulfide  s a n d s and g r a v e l s  neighboring  porosity  or i n d i v i d u a l  include:  (Willie  •The f i n a l  approximate  l a r g e amounts o f dead a n i m a l s  from t h e l o c a l  landfilled  sewage s l u d g e  12 m i n t h i c k n e s s and c o n s i s t e d  unusually  which c a u s e s g r e a t e r  trenched  1987).  seemed t o  before.  GAS EXTRACTION SYSTEM  Problems with  offsite  methane m i g r a t i o n  were d e t e c t e d i n  FIGURE  3.1  - S I T E L O C A T I O N MAP Showing Major Roads and M e t r o p o l i t a n A r e a s  Waterways,  55  SCALE •FIGURE  3.2  - LOCATION  MAP  Clearbrook-Matsqui  Landfill  56  ANTIQUE  BLOWER  BLDG.  •  HOUSE  CD LEGEND  BARN  0  Sampling  Q  A i r Inject,  O  E x t r a c t i o n and fuel wells  wells wells  M U L T I PURPOSE"  CARETAKER HOUSE  BLDG  •  .  100 SCALE METERS  o  •  •  Fl F6  F5  F4  F2  F3  u  > < a! —  F8  -° FIGURE  3.3  •  -2  - SITE  (Adapted  •  from  O O  MAP  • O  £  J  of Clearbrook-Matsqui  E.H. H a n s o n  & Assoc.,  Landfill  J a n . 1985)  57 1983 b e f o r e Hanson  the l a s t  fill  & A s s o c . began a d e s i g n  utilization  system.  sewer on H a i d a D r i v e greater  than  (See F i g u r e  Hanson & A s s o c . ,  storm  sewer, w h i l e  than  24 h o u r s a f t e r s y s t e m  injection  portion of  with  of the r e f u s e more  r e s p e c t i v e l y ) were wells  6 fuel  are  perforated  the  landfill The  in early at t h i s  wells  1985.  time wells  i n diameter, average  perimeter  the western migration  Also,  two more  (ones u s e d  from  for this i n d e p t h and  1 .5 m e t e r s  gas i s c o l l e c t e d and i s f i r s t  gas ( u n t r e a t e d )  i s piped  fuel  i n t h e more e a s t e r l y  below  surface.  t o the s t o r a g e  east  (7 and 4  9-10 m e t e r s  starting  1985).  o f 16 a i r  and west  located within  The f u e l  i n the  utilization  consisted  on t h e n o r t h  injection-withdrawal  installed  c o m p r e s s o r and s e c o n d compressed  slab  building in less  Because of o f f - s i t e  the e n t i r e l e n g t h  extracted  of  system  o f t h e gas e x t r a c t i o n  wells  layer.  installed  (E.H. Hanson & A s s o c . ,  The s y s t e m o r i g i n a l l y  of t h e l a n d f i l l .  s t u d y ) a r e 7.5 cm  below t h e f o u n d a t i o n  gas e x t r a c t i o n  start-up  ( F 7 , F 8 ) were d r i l l e d  portion  danger  b u i l d i n g and s t o r m  the multi-purpose  and 16 w i t h d r a w a l w e l l s  the l a n d f i l l ,  in greatest  A gas t r a p was  1984, c o n s t r u c t i o n  the l a n d f i l l  and  3 . 3 ) . . Methane c o n c e n t r a t i o n s  an a i r i n j e c t i o n  s y s t e m was c o m p l e t e d .  of  1985).  any methane under  In May,  1983, "E.H.  r e s p e c t i v e l y i n the multi-purpose b u i l d i n g  (E.H.  eliminated  were  were t h e m u l t i - p u r p o s e  50% and 20% were d e t e c t e d  washroom d r a i n s  In November,  o f a gas c o l l e c t i o n  The s t r u c t u r e s t h a t  of methane e x p l o s i o n s  and  was c o m p l e t e d .  pressure  sent  tank.  to 8 furnaces  to the The  and a h o t  58 water  tank  furnaces  located within  were r e t r o f i t t e d  w h i c h has Assoc.,  only  their  study  period. 1987  p r o b l e m s , F6 F8.  Figure  •  was  The  level  some 1200 (Atwater,  and  F5  Wells after  and  for leachate  (E.H.  F1  and  heavy  and  location within  Matsqui  contained  F3  gas,  Hanson &  gas  the  leachate  sampling  landfill. throughout  began t o show l e a c h a t e  rains.  discontinued  B e c a u s e of  in  sampling  i n mid-November and  l o c a t i o n s of a l l s a m p l i n g  Avenue south  (See  The filled  replaced  wells.are  located  by on  gravel.  slope  Figure  u p s l o p e of  at approximately  3.1, of  just  3.4). the  This  north  arm  100  8.08  ha  of  the  S.E.  Marine  Drive  m e t e r s above mean landfill Fraser  site  is  River  1980). PHYSICAL DESCRIPTION  main  (See  site  i s located  meters north  ,3.2.2.  silt  value  landfill  LOCATION  Burnaby's  The  untreated  The  STRIDE AVENUE LANDFILL 3.2. 1 .  sea  building.  3.3.  Stride on  easy a c c e s s  w e l l s , F2  3.2.  the  BTU/CF h e a t i n g  w e l l s were u s e d  two  December of  Well  to accept  about a 500  six fuel  b e c a u s e of  the  multi-purpose  1985).  The  Only  the  site  was  original  originally  surface  i n the Surface  the  gully  sandy g r a v e l water  runoff  t h a t has  e l e v a t i o n contours  i s generally underlain Along  a gully  floor  by  post  there  (Atwater, from t h e  glacial  i s evidence  on  since  been  Figure  sands w i t h of  3.4). some  interbedded  1980). site  i s flumed a l o n g s i d e  the  59 fill  and  This  creek  Road.  i s discharged  into  the  gully  eventually discharges  at  into  the  the  T h e r e have been e l e v a t e d c o n c e n t r a t i o n s i n o r g a n i c c o n s t i t u e n t s from l e a c h a t e  creek.  Atwater  concentrations exceeded the water by  measured downstream of  almost  10  seepage from t h e F7  (See  Figure  1270 3.2.3. Stride  closed been  groundwater T h i s author  t h i c k e r p o r t i o n of  3.5)  mm  fill,  1980).  after  Average annual about  heavy  seepage  Byrne  creek into  of  the  manganese  landfill  i n 1979  0.2  in  mg/L  that  irrigation  encountered at a  detected  the  at t h i s  depth  red-coloured  landfill  site  CHARACTERISTICS OF  Avenue opened a r o u n d Since  was  north  of  well  1988.  i s estimated  to  be  1980).  HISTORY AND  reopened  i n the  rains in early A p r i l ,  precipitation  (Atwater,  i n 1969.  fill.  fold.  to the  (Atwater,  of  the  River at  about h i g h  the  recommended c o n c e n t r a t i o n  Adjacent 15 m  (1980) v o i c e d a c o n c e r n  of  Fraser  certain  of  toe  1986,  1910  the  FILL  for refuse disposal  w e s t e r n p o r t i o n of  f o r d i s p o s a l , of g a r d e n w a s t e s and  the  and  fill  has  s l a s h f o r Burnaby  residents. Theoriginal direction The  from t h e  operation  filling north  depth  on  end  gully  the  1980).  data  with  E.H. drill  of fill  western  i s b e l i e v e d to average  deep(Atwater, historical  east  c o n s i s t e d of  deep sand e x c a v a t i o n s fill  operation proceeded the  site  with flank  12-14  hole  (See  southernly Figure  some f i l l i n g (Atwater,  m but  Hanson & A s s o c .  in a  can  be  3.5).  of  1980). up  to  6-9  m The  27  (1985) u s e d  l o g s t o c o n s t r u c t an  isopac  map  m  60  0  SO  Scale in  FIGURE  3.4  - LOCATION  300  2O0  » 0  Melrei  MAP  Stride  Avenue  Landfill  (Map a d a p t e d f r o m A t w a t e r , 1 9 8 0 ) Note: E l e v a t i o n contours are i n f e e t  61 showing this  the  map  north  relative  thickness  i n d i c a t e s the  of  wells  The  fill  cleaning  F6  and  deepest F7  (See  i s m o s t l y MSW,  debris  (road  material  1980).  volume and  total  987,000 m  and  (1980) t o . b e  3  landfill.  portion Figure  cleaning, was  the  with  construction Fill  of  of  the  Inspection  fill  l e s s e r amounts o f  generally  municipal  while demolition  and  d i r e c t e d elsewhere  mass were e s t i m a t e d X  10  just  3.5).  etc.).,  5.3  t o be  of  kg  8  by  (527,000  (Atwater,  Atwater  tonnes)  respectively. Cover  thickness  i s estimated  Hanson & A s s o c . t o a v e r a g e a b o u t surface  samples t a k e n  of  the  from d r i l l 2 meters  i s estimated 3.2.4. E.H.  GAS  completed  for  landfill One in  1985  is  no  at  in late  re-zone the  (See  Figure  incident during  structures  to  this  clay-wood of  the  author.  in  1981.  w i t h a gas 1984.  In  well  1986  t o be  implemented  collection  new  surrounding wells  They  offsite a  system  development  S t r i d e Avenue drilled  north  landfill of  the  3.5).  construction  date.  Near-  investigating possible  of methane e x p l o s i o n  documentation  E.H.  SYSTEM  land  more o b s e r v a t i o n  indicate a  Total porosity  by  S t r i d e Avenue  program complete  proposals.to called  30%  Hanson & A s s o c . began  monitoring was  about  EXTRACTION  methane m i g r a t i o n  that  t o be  by  in thickness.  cover m a t e r i a l  c h i p m i x t u r e w i t h good, c o n s o l i d a t i o n . cover  records  of  a new  d i d occur at  storm  of methane m i g r a t i o n  sewer.  the  landfill  However,  threatening  any  there  offsite  62  0  FIGURE  3.5  (Adapted  - SITE  from  E.H.  MAP  of  Hanson  Stride  Ave.  & Assoc.  50  Landfill  Jan.,  1987)  100  ..' Overall, monitoring wells  to  •  t h e s y s t e m a t S t r i d e Avenue has a t l e a s t  c e r t a i n t i m e s of t h e y e a r , and s e n t  western p o r t i o n of the f i l l the methane as a f u e l slash.  contain  Also,  Sample w e l l s of  these  chosen heavy Well to  wells  rains,  originally  the a c t i v e f i l l  All  wells  other  sampling  This  burner  fuel  except  3.5.  F8 c o n t a i n e d  leachate  chosen  area.  uses  g a r d e n waste  wells help to  The w e l l s  However,  After  i n mid-December  this  w e l l was  s l a s h i n m i d - O c t o b e r and n e v e r i n the a c t i v e f i l l  were  leachate.  b e c a u s e of i t ' s d i r e c t  area  were  Location  1987. proximity  buried sampled  by again.  inaccessible for .  the l e a c h a t e .  RICHMOND LANDFILL 3.3.1.  LOCATION  Richmond L a n d f i l l just  these  (F1  l o c a t e d on t h e  recently deposited  in Figure  F8 began showing  garden  3.5).  wells  migration.  are presented  deposited  fuel  used were F2, F3, F6, F 7 , F8 and B10.  because a l l w e l l s  B10 was  3.3.  f o r burning  methane  i n diameter.  t o the burner housing  when on vacuum,  any o f f s i t e  gas from t h e s e  (See F i g u r e  20  The e x t r a c t i o n - f u e l  from 8 t o 20 m i n d e p t h and a r e 7.5 cm  F8) i s c o l l e c t e d  and  63  w e l l s and 8 e x t r a c t i o n w e l l s .  range At  •  north  i n t h e M u n i c i p a l i t y o f Richmond  o f t h e main arm of t h e F r a s e r  W e s t m i n s t e r Highway consists  i s located  of about This  ( F i g u r e s 3.1).  site.  study  site  north  end o f t h e l a n d f i l l  south  of  property  20 ha c o n s i s t s o f t h e  i s located just  property  and j u s t  The l a n d f i l l  270 h a , w h i c h , a b o u t  study  River  o f f No 8 Road a t t h e  (See F i g u r e  3.6).  The  64 elevation  of the l a n d f i l l  site  i s just  a few  meters  above  sea  level. 3.3.2 The  PHYSICAL DESCRIPTION site  underlain is  by  0.9  underlain  (Atwater,  this  on a p e a t bog  t o 7.3  water  site.  neighboring  has  Fraser  table  levels  clay.  unit  This  silt  of d e l t a i c  and  clay  sands  t o the ground  refuse  loading  River.  Piezometers  the p e a t s  levels  i n t h e sand and  response to t i d a l  (Atwater,  on  surface  i n t h e p e a t s where  become h i g h e r t h a n t h e water  i n the peat u n i t  of the r e f u s e Average  are c l o s e  d e p r e s s i o n t o form  show a p r o f o u n d head  whereas r e s p o n s e load  and  W i t h i n the l a n d f i l l ,  elevation  layers  m of s i l t  is  1980).  has c a u s e d a c o n c a v e table  o f t h i c k n e s s up t o 5 m w h i c h  by up t o a 30 m t h i c k  Regional at  rests  i s ever  of  water the  refuse,  fluctuations,  increasing  due  t o the  1980).  annual p r e c i p i t a t i o n  of t h e s i t e  i s just  over  1000  mm/year. Cut  o f f d i t c h e s were  perimeters divert  of the l a n d f i l l  leachate either  discharged For  into  refer  3.3.3. The  t o the northwest  the F r a s e r  to Atwater  HISTORY AND  landfill  to c o l l e c t  River  (E.H. Hanson & A s s o c . ,  These  the  ditches  a t t h e N e l s o n Road pump  on  on  s t o r a g e lagoons or are  leachate  from  station.  Richmond  (1980).  CHARACTERISTICS OF  operation  leachate  i n the mid-1970's.  a more t h o r o u g h d i s c u s s i o n  landfill,  1986  installed  began 1988).  i n 1971 The  FILL  and  last  ended fill  i n December,  t o be  completed  (Adapted (No  from Atwater, scale given)  1980)  . , 66' "  was  i n the  fill  study area  o p e r a t i o n s under an  Harbour Commission The  filling  mattress  fill  refuse.  An  site.  fill  final  and  cover  thickness cover  densities  Older  fill  has  the  The tonnes)  cover  study  was  site  f o r the  20 ha  m of  20 ha  study  site  before regular was  study have  not  cell  estimated at  415  dredged  F r a s e r R i v e r sand.  The  1.5  m in  (G. H u c k u l a k , p e r s , comm., 1988)  T h i s sand  and  gravel  this  author  l a r g e v o l u m e s of  mounding water fill  was  o f MSW  permeable, with t o t a l  of o v e r . 5 0 % .  up  The  rain  by  over  deposited annually, with up  landfill  property.  to  1978  porosities  high porosity  water  t o 2 m below t h e  characterized  volumes o f c o n s t r u c t i o n and  Of MSW  t o 4.3  of  to average  waste d i s c h a r g e d o n s i t e  the  2.4  m lift  i s estimated  allowed  landfill,  of  t o 2.1  were p l a c e d i n t h e  densities,  i s unconsolidated, highly  cover  1.2  property.  1980). final  on  e s t i m a t e d by  on  lifts  lift  t e c h n i q u e s were p r a c t i c e d ,  (Atwater, Daily  two  the  agreement w i t h t h e F r a s e r R i v e r  f o l l o w e d by a s e c o n d  Estimated  3  agent's  L t d . operated  (FRHC), w h i c h owns t h e l a n d f i l l  additional  construction  Richmond L a n d f i l l ,  o p e r a t i o n c o n s i s t e d of a  been documented.  kg/m  site.  4.4  the  infiltrate  the  landfill p X  large  when t h i s  to  of  10  kg  surface. (435,000  amounts of was  stopped.  d e m o l i t i o n d e b r i s were a l s o The  20 ha  study  site  liquid Large  deposited  consists  solely...  fill. 3.3.4.  About  GAS  EXTRACTION SYSTEM  2 years p r i o r  Hanson & A s s o c .  t o c l o s u r e of t h e a c t i v e  approached  FRHC f o r a c q u i s i t i o n  of  fill  area,  landfill  E.H. gas  67 rights  while  measures.  consulting  along  industrial the Fraser  After of  on l a n d f i l l  Gas c o n t r o l m e a s u r e s were c o n s i d e r e d  reduce or e l i m i n a t e future  the commission  the risk  park  that  o f gas m i g r a t i o n was t o s e r v e  i n an a t t e m p t t o  i n t o the planned  new p o r t  rod-probe t e s t i n g program of over  the p o t e n t i a l developable  area,  E.H. Hanson  in  At t h i s  return  customer  included  point,  f o r a r o y a l t y payment.  combustion Costs  coupled  Industries  t o cement  kilns  landfill  study area  kiln complete 1988).  cost)  and B i o  i s a group of p r i v a t e  f o r i n v e s t o r s was e s t i m a t e d  were v a l u e d  one i n t h e w o r l d  a t over  $500,000.  supplying  landfill  (E.H. Hanson & A s s o c . ,  o f 36 w e l l s  (See F i g u r e  high  from E n e r g y , M i n e s and  t o 18% o f c a p i t a l  o f t h e gas c o l l e c t i o n  the i n s t a l l a t i o n  This  fuel  ( E . H . Hanson & A s s o c . ,  A t t h e t i m e , payback costs  3.6), which  r e t e n t i o n time ensures  of Vancouver, which  Installment with  (contributed  i s the only  (See F i g u r e  requirements).  a long  to find a  as a supplementary  s y s t e m were s h a r e d  Original capital  This project fuel  kilns  energy  with  for this  investors.  as  They were a b l e  o f a l l gas components  R e s o u r c e s , Canada  years.  cement  13% o f t h e i r  temperature  Their  e x t r a c t i n g and b u r n i n g the  f o r t h e gas i n La F a r g e Cement  (supplies  gas.  FRHC gave gas r i g h t s t o E.H. Hanson & A s s o c .  u s e s t h e gas i n t h e i r  Gas  containing,  270 ha  prepared  r e c o m m e n d a t i o n s t o t h e FRHC c o n t r o l o f l a n d f i l l  gas.  facilities  River.  an e x t e n s i v e  recommendations  gas c o n t r o l  s y s t e m began  This  gas  1988).  on t h e e a s t e r n  3.7).  at 3  part  i n J u n e 1986  portion  of the  of the system  68 became o p e r a t i o n a l 1986,  after  on November  disposal  were d r i l l e d  In e a r l y  December o f  o p e r a t i o n s c e a s e d , an a d d i t i o n a l  and put on  gas p r o d u c t i o n  4 t h , 1986.  l i n e by  from t h i s  l a t e December.  64 w e l l  collection  28  In l a t e  s y s t e m was  wells 1987,  the  around  •3 20.5  m /min  & Assoc,  (725 CFM)  w h i l e a v e r a g i n g 56.5%  w e l l s a r e 7.5  a v e r a g e d e p t h of 7.5  m  into  b o r e h o l e i s about  the  i n d i a m e t e r and  20 cm  and  l a n d i l l s studied,  collection  well  above  system c o n s i s t s  where a"20.cm d i a m e t e r h e a d e r  piping.  Each  throughout  row  this  i s valved.  collection  head  Condensate  1.6  km  pipe that  the of  blower  pressure that  kiln. psi.  The  long t r a n s f e r  150  cm  10 cm  diameter  are  row  of  PVC this  spaced  (28  into,a  transports  25  t h e gas t o a  i n ) o f vacuum t o 1988).  On  cm  this  the o u t l e t  d i a m e t e r p r e s s u r e l i n e w i t h about  transports  t h e gas a n o t h e r  1.6  p r e s s u r e o f t h e l i n e when r e a c h i n g  Blow o u t v a l v e s  located  70 cm  (E.H. Hanson & A s s o c . ,  is a  to  system.  diameter  line  the  assemblies in  drains  i s then r o u t e d  transfer  filling  c o n n e c t s t o each  from t h e h e a d e r s  imparts about  6m.  In c o n t r a s t  of rows o f  gas  which  1.5  ground.  The  blower  begin  extend f o r the remaining  i n diameter, with gravel  Richmond L a n d f i l l a r e l o c a t e d The  r e a c h an  Perforations  s p a c e between t h e b o r e h o l e and c a s i n g .  other three  piping  cm  the l a n d f i l l .  m below t h e t o p o f t h e c a s i n g  annular  (E.H. Hanson  1988).  Extraction  The  methane  to r i d condensate  throughout the d i s t r i b u t i o n  km  system.  No  12.5 p s i  t o t h e cement  the k i l n  from t h i s  end of  i s about  l i n e are  p r e t r e a t m e n t of  5  69  LEACHATE  DITCHES  o  METERS  FIGURE  3.7  (Adapted  - SITE  from  E.H.  MAP  Richmond  Hanson  Landfill  & Assoc.  July,  1986)  70 gas  i s employed  system  refer  at t h i s  t o E.H.  Sample w e l l s D.55  and B.53.  3.7.  site.  Hanson & A s s o c . ,  used i n t h i s  Location  and v a r i e d  spatial  differences  of  this  site  were B8,.D9, C6,  i s presented  in Figure  f o r s a m p l i n g b e c a u s e of t h e i r levels.  Also,  for a better  found i n t h i s  G7,  sample  wells  representation  very heterogeneous  easy were  of fill.  PREMIER STREET LANDFILL 3.4.1.  LOCATION  Premier  Street  Vancouver north site 25  landfill  water  spaced around the l a n d f i l l  plan  1988.  of t h e s e w e l l s  T h e s e w e l l s were c h o s e n  accessibility,  3.4  F o r a more d e t a i l e d  Landfill  on t h e e a s t  flank  i s located  of N o r t h  o f Lynn C r e e k , a p p r o x i m a t e l y 2  of Second Narrows. B r i d g e i s a p p r o x i m a t e l y 20 ha  i n the D i s t r i c t  (See F i g u r e  in size  3.8).  The  km  overall  a t a base e l e v a t i o n  of about  m. 3.4.2. The  PHYSICAL DESCRIPTION  landfill  up a 2-9  m terrace  lies just  on  fluvial  above  Underlying  sand and g r a v e l  Previous  upward g r o u n d w a t e r fluvial  seepage  s a n d s and g r a v e l s  This hydrogeologic  discharge  this  This  unit  from t h e t i l l  into  (Golder Assoc.,  into  have  i s very grey  silty  detected  t h e more  permeable  1983).  i s suitable  Lynn C r e e k .  unit  w h i c h make  i s a dense  investigations  environment  d i s c h a r g e s of g r o u n d w a t e r calculation  sands and g r a v e l s ,  Lynn Creek.  c o a r s e and p e r m e a b l e . till.  .  for large  volume  A water b a l a n c e  done by G o l d e r A s s o c . (1983) e s t i m a t e d a g r o u n d w a t e r 3 o f 55,188 m / y r i n t o Lynn C r e e k from t h e newer l a n d f i l l  71 site.  They m e n t i o n , however, many of  balance  are  poorly  defined.  contaminated  by  contained  a dyke and  in  one  by  area  and  dyke a d j a c e n t  leachate  the  t o Lynn C r e e k  to a c e n t r a l c o l l e c t i o n  municipal  sewer  four  about  sites  1880  of  and  i s estimated  HISTORY AND  District  and  ceased operations (See  Figure  study  site  and  c o n s i s t s of an  by  older  fill  and  A  to t h i s  direct  trench  the  f o r f u r t h e r pumping  this  site  i s the  Golder, Assoc.  to  the  greatest  (1983) t o  be  operations  in  of  area  the  study  site  east  normal  fill  area  i s now  fill  i n 1981  fill  up  area  (Peddie, to  dike  i n the  Spring  i s l o c a t e d i n the  t h a t c o n s t r u c t i o n of  1986).  25 m  deep.  the  older  of  loose  older  The  landfill  silty  was  sand  bank of Lynn C r e e k . In a d d i t i o n ,  of a m a t t r e s s  tennis courts.  began  FILL  active f i l l  constructing a 6 m high  gravel along  construction  The  operations  i s understood  preceeded  by  i n the  3.8).  which completed  preceeded  at  of N o r t h V a n c o u v e r  fill,  It  runs p a r a l l e l  CHARACTERISTICS OF  The  1988  fills.  and  mm/yr.  3.4.3.  1959  located  system.  Average annual p r e c i p i t a t i o n the  .  Lynn C r e e k  from o l d e r  point  is  cutoff trench  to contain  water  been m o s t l y  b o u n d a r y and  pipe  t o the  groundwater  w h i c h has  younger  collection  inputs  this  bentonite  landfill  seperating  leachate  leachate; slurry  between t h e  another area perforated  landfill  Much of  the  l a y e r of  operations used  impermeable m i n e r a l  (Golder  Assoc.,  for recreational b a l l  1983). fields  I t i s g e n e r a l l y understood a l l types  of  fill This and material,  FIGURE  3.8  - LOCATION  (Adapted  from  MAP  Premier  Street  Golder  Assoc.,  1983)  Landfill  73 including Street  liquid  waste, were a c c e p t e d  throughout  The  the  landfill  of  cover  around  control The  GAS  1985, Or  flare  the  shale  study  debris  site with  was an  found to  be  estimated  total  25%.  3.4.4. In  Premier  1960's.  c o m p a c t e d a l t e r e d c l a y and porosity  for d i s p o s a l at  COLLECTION SYSTEM  an  e x t r a c t i o n and  flaring  reduce odorous e m i s s i o n s stack  is located  just  s y s t e m was  from P r e m i e r  west of  the  installed  Street  to  Landfill.  w e i g h s c a l e and  was  3 in  March,  extracted  1986  receiving approximately  landfill  Presently in  diameter  on  that  has  been  1986). now  (E.H.  Hanson & A s s o c . ,  site  there  are  average  area  found Plans  this  collection. control that  was  valve  (See very  f o r the  reasons site  pipe  t o be  active portion My  at  fill  was  m /min  gas  through a p e r f o r a t e d completed  8.5  20  A d d i t i o n a l gas  system b u r i e d Figure  3.9).  i n the This  inefficient,(E.H. include well  most  collection  two  assembly  impossible  with  wells"(PI  accessibility  an  to c o l l e c t  site  had  and  P2)  into  the  odors. for  sampling  f o r downhole  leachate  a seperate  inaccessible buried leachate  network  installation  only  on  is  Hanson & A s s o c . ,  for using  wells  cm  recently  f o r f u r t h e r c o n t r o l of  A l l other  7.5  collection  fill  to t h e i r  of  of  the  due  CFM)  1986).  extraction wells  m deep.  future  of  21  (300  from.  .  below well  ground  head  74  FIGURE  3.9  - SITE  MAP  Premier  Street  Landfill  ( A d a p t e d f r o m E.H. H a n s o n & A s s o c . M a r c h , 1986) ( E l e v a t i o n c o n t o u r s s k e t c h e d from G o l d e r A s s o c . ,  1983)  75 CHAPTER 4 4.  METHODOLOGY  4.1.  FIELD METHODS 4.1.1.  INSTRUMENTATION AND TECHNIQUE  Parameters water  level,  that  ambient  were measured on s i t e  include  a i r , gas and l e a c h a t e  temperature,  barometric p r e s s u r e , and l a s t l y , collected  forlabanalysis  f o r gas p a r t i t i o n e r autoanalyzer  following  A.  Leachate  Leachate  analysis,  was c o l l e c t e d  1 meter  fitted  got c l o g g e d , which bailer  was used  larger  bailer  from  i n the f i e l d :  7.5 cm d i a m e t e r  diameter  Leachate plastic  and e a s i l y  PVC b a i l e r s .  check  Water l e v e l s rope t h a t  from  were  2.2 cm  of the b a i l e r  These  removed f o r c l e a n i n g  check  valves  when t h e v a l v e  The s m a l l e r d i a m e t e r St.Landfills  g o t hung up i n t h e s e l a n d f i l l  well  i n 500 mL p l a s t i c  volumes o f l e a c h a t e .  both the b a i l e r  The b a i l e r s  i n diameter  valve.  a t Richmond and P r e m i e r  two b a i l e r  gas e x t r a c t i o n  e n t e r e d t h e bottom  i td i d frequently.  L e a c h a t e was c o l l e c t e d  nylon  and NHg-N gas samples f o r  i n l e n g t h and v a r i e d  t h r o u g h a 4 mm d i a m e t e r  the samples,  gas s a m p l e s  Collection  (ID) t o 3.75 cm ( I D ) .  discarding  Samples  l e a c h a t e samples,  i n s t r u m e n t s were used  w e l l s w i t h two d i f f e r e n t  were l o o s l y  include  gas flow.  analysis.  The  b o t h about  static  l e a c h a t e pH,  because t h e  casings.  bottles  After  and b o t t l e s were a c i d  after  l a b a n a l y s i s of washed.  i n t h e w e l l s were measured by t h e c a l i b r a t e d  lowers  the b a i l e r  into the w e l l .  Originally, a  76 steel so  surveying  i t was  tugging the  motion At  rope.  the  the  the  but  was  bailer  found  spot  measured by A t a r e of  where t h e  m  For  w e l l flows  Gas  static  not  bailer  of a p p r o x i m a t e l y  flows  and  8.0  generally less  m e t e r s were t r i e d .  f l o w m e t e r s were t r i e d , were i n s t a l l e d  but  t o match t h e  had  rope  cm  this  flow  constriction  decreased  I s o l v e d the  p r o b l e m by  (ID)  gas  than crank  diameter flow  1 cm  u s e d t o measure t h e  The of  230  time  To  calculate  i t took  available  RC-230 r e s i d e n t i a l  SCFH  (110  L/min) and  flow  and  to f i l l 15  up  t o 20  at the  dial  outlet In  turn,  erroneous  one-liter to  0.5  a s t o p watch liter  % error,  bag. but  was This  was  the  time.  f l o w meter has a total  the  meter,  adapters  calibrated  rate,  was  pressure  diameter  to s m a l l ,  flow  a  i n the  rates to give  going  i s e r r o r prone, probably technique  the  sample t u b i n g .  liter  feasible  defined  f l o w meter  Both bubble  and  volumes.  over,  bracket  Safeway c o f f e e bags t h a t were e a s i l y  only  length  from t h e  this,  plastic  technique  top  t o a known  L/min and  flow meter's  t h e w e l l head 2.5  1.0  wellhead  problems because t u b i n g  with  results.  tape  on  Flow  g r e a t enough t o t u r n t h e  so a l t e r n a t i v e  r o p e and  felt  i s added t o t o t h i s  I n t e r n a t i o n a l RC-230 r e s i d e n t i a l  was  leachate, a  rope.  Static  For  rusting,  is easily  a carpenter's 1.64  t o be  encounters  surface tension  l e n g t h of t h e  B.  used.  As  time,  f o r the  z e r o mark on  flow  this  the  account  Rockwell  employed,  from l e a c h a t e  i s marked and  l e n g t h on to  was  discontinued.  rope.  match  tape  percent  a r a t e d flow c a p a c i t y e r r o r of  less  than  77 1%.  G r e a t e r e r r o r may  was  measured above C.  was  Airport  C6  flow  Richmond).  the Vancouver  station  on  the way  i n s t r u m e n t was  barometer Intl.  to  sampling  not  manual.  Temperatures air, landfill  measured by a n o r m a l thermometer was l o w e r e d on  this  string  thermometer.  E.  leachate  the w e l l  Leachate  well  casing  temperature  temperatures  g l a s s thermometer.  to record w e l l  include  i n t h e sample  and  i n an u n b r e a k a b l e  within  level  method  gas  mercury-filled  encased  above t h e water  stainless  were This  steel  sheath  t o a p p r o x i m a t e l y 1 to. gas  temperature.  condensate  was  Problems  contacting  measured once  2m  the  the  leachate  bottle.  pH  L e a c h a t e pH  was  determined  collection  to guard a g a i n s t  equilibria  shifts.  p r e s s u r e and brough  Horizon  weeks from  A c c u r a c y of t h i s  i n the user  Ambient  is  and  measured by a " B a r o m a s t e r "  Canada weather  landfill.  D.  was  ( i e , D9  e v e r y two  Environment  documented  with  L/min  p r e s s u r e was  calibrated  Richmond  and  i n some measurements where w e l l  Barometric Pressure  Barometric that  110  exist  These  temperature  up and  less  than  erroneous  equilibria changes  out of t h e w e l l .  5 minutes  r e a d i n g s due shifts  field  #5996-30 b a t t e r y - o p e r a t e d L C D - d i g i t a l  power s o u r c e i s a Ni-Cadmium electrode  u s e d was  a 91-06  when t h e  from sample  pH meter u s e d was display  rechargeable battery.  O r i o n epoxy body  to carbonate  commonly o c c u r  of t h e l e a c h a t e The  after  meter.  The  gel-filled  pH  a The  78 combination  g e n e r a l purpose  w i t h pH 7.0 b u f f e r morning a t s i t e decay.  electrode.  s t a n d a r d was p r a c t i c e d  and was c h e c k e d  Decay was n e v e r  meter was s e t . i n  found  stand-by  a l s o was e q u i p p e d  Calibration  periodically  units  w i t h manual t e m p e r a t u r e  A.7  comparison  and d e t a i l e d 4.1.2.  landfill  g a s was sampled  a trapping solution technique  NRC, 1 979)-, • w h i l e " u s i n g ' H S 0  f o r sampling  4.1.  of t h i s  atmospheric  o f H BC> . 3  3  This  ammonia  The  low NH3-N c o n c e n t r a t i o n s through  the s o l u t i o n  enough t o be d e t e c t e d by  well  solution  simple  sampling  I n summary, l a n d f i l l a t around  4.1) where ammonia  normal  6 L/min  technique  g a s i s pumped into  i s shown i n  from t h e  the gas b u b b l e r  (#8 on  i s p r o t o n a t e d t o NH^ , w h i c h t h e n +  stays  by r e a c t i o n ( i ) :  NH Boric  acid.  techniques.  extraction Fig.  f o r sampling  the s o l u t i o n  A schematic Figure  instead  4  l a r g e v o l u m e s o f gas c a n be p a s s e d  concentrating  in  i s common 2  i s feasible  u s i n g a gas b u b b l e r  o f 20,000 ppm o f b o r i c  (see  analytical  i n Appendix  i n A p p e n d i x A.6.  bubbler  because  R e s u l t s o f an  s t u d y a r e summarized  acid  technique  i s r e p o r t e d a t — 0.01  NH3-N GAS SAMPLING TECHNIQUE  NH3-N from containing  T h i s pH meter  correction.  o f + 0.01 pH u n i t s .  made i n t h i s  every  as long as the  mode between r e a d i n g s .  with a r e s o l u t i o n  accuracy  thing  for calibration  t o be a p r o b l e m  Documented a c c u r a c y of t h e pH meter pH  first  o f t h e meter  3  + H  acid  +  + H B 0 ~ ---> N H 2  i s used  3  + 4  + H B0 ~ 2  3  as the t r a p p i n g s o l u t i o n  (i) because  i t is  79 easy  to handle  inexpensive retention run.  i n the  field  (a v e r y weak a c i d ) ,  t o p r e p a r e , and  capacity  as  0.1N  lastly,  simple  i t showed t h e  H2S04 and  oxalic  acid  and  same NH3-N in limited  tests  . The  gas  bubbler  is  s e a l e d at the  on  the.cap  1.5  mm  into  the b o r i c  cap  t o be  and  Fisher-Milligan by a r u b b e r  flow tube  acid  solution.  solution.  gasket.  W i t h i n the g l a s s  glass  washer"  that  Connected  flows through  f o r maximum d i s p e r s i o n  and  bubbler,  a  out  is a  which maximizes c o n t a c t time  A solution  optimal since  cap  "gas  where pumped gas  flow c o n s t r i c t i o n  network o f c h a n n e l e d  the bubble found  screw-off cap  i s a glass  diameter  spiral  is a glass  volume o f a r o u n d  70 mL  of.  was  g r e a t e r v o l u m e s seemed t o l e a k from  the  gasket. The  "Air  sampling  Cadet"  circulated battery  pump u s e d  pump s p e c i a l l y applications.  power and  can  Maximum vacuum and L/min.  The  gas  12 v o l t  handle  flow with o c c a s i o n a l  ample NH^-N minutes  18  i n . Hg  a capacity  of  15  volt  psig.  and  1/30  12  gas  18.8 hp a t  1650  t h e pump o p e r a t e d a t a r o u n d  flow decrease  f l o w meter was  o f gas  that  mass f o r a n a l y s i s ,  which  and  from  particulate  6  matter  seats.  RD-230 gas  in l i t e r s ,  p r e s s u r e l o a d s of  pump motor has  L/min  volume  max.  the study p e r i o d ,  the v a l v e  for pressure suction  flow are r a t e d at  Throughout  The  designed  diaphragm-operated  T h i s s i n g l e - s p e e d pump r e q u i r e s  RPM.  clogging  i s a C o l e Parmer  results  in just  used  passed  through  sampling under  t o r e c o r d the  200  was  cumulative  the b u b b l e r . carried  liters  out  of t o t a l  To  f o r 30 gas  get  80  1.  Gas e x t r a c t i o n  2.  Special  3.  1"  well  PVC w e l l c a p  ( 2 . 5 cm)  diameter  tygon  4. RD-240  Gas f l o w  meter  5.  Tubing  reducers  from  6.  3/8" t y g o n  7.  " A i r Cadet"  tubing  1" down  t o 3/8"  ( 1 . 0 cm)  tubing 12 v o l t  pump  8. Gas b u b b l e r  FIGURE  4.1  - Schematic  f o r NH3-N  gas  sampling  81 volume b e i n g p a s s e d In  order to decrease  contamination, sample and  through  into  respective  ammonia c o n t a m i n a t i o n After  sampling,  was  Problems encountered intrusion  into  landfill this  gas  especially  the moistened  tube  with  \  Two  sample  was 100  mL  h e l p any,  end  of t h e t u b e .  and  use and  trace  o f NH3-N. filter  thermal  way  cleaning  two, The  2  times run,  the  acid.  included  dirt  and  sand tubes.  where  A major c o n c e r n sorption  o f NH^-N  o f t h e day  by  the with onto  this  flushing  the  water. to decrease  build-up.  condensate  sample t u b e  b u i l d - u p on  l e n g t h , which d i d  a c o t t o n p l u g at the found  to.be  I also rinsed  front  tod porous  in  the c o t t o n p l u g  the a u t o a n a l y z e r o n l y t o f i n d  no  same p r o b l e m s o c c u r r e d when u s i n g a Whatman  instead  of t h e c o t t o n p l u g .  I d i d not  h e a t i n g tape  sample  sampling  a t Richmond l a n d f i l l  to insert  i t on  and  b u i l d - u p .on s a m p l i n g  c o t t o n p l u g was  analyzed The  was  rinsed  a number o f o c c a s i o n s ,  t o s h o r t e n the  condensate  after  One  On  of d i s t i l l e d  was  not  41  every  the p o t e n t i a l  sampled a t t h e end  t h e t u b e s . One  No.  After  i n HC1  apparent  ways were a t t e m p t e d  decreasing  b u b b l e r was  condensate  tubes.  solution  human b r e a t h were c o n s i d e r e d  water.  b u i l d - u p was  rainfall  E v a p o r a t i o n of  i s s a t u r a t e d w i t h water v a p o r .  condensate  condensate  bubbler  d u r i n g sampling  samples and  C o n d e n s a t e was  t o pour  t h e gas  t h r o u g h l y soaked  sample.  f o r a i r and/or  containers.  from  w i t h ammonia-free d i s t i l l e d bubbler  acid  the p o t e n t i a l  f u n n e l s were u s e d  their  negligible.  the b o r i c  t r y i s wrapping  t o keep t h e  t h e sample  temperature  train  with  above t h e dew  point  82 of  the gas w h i l e Other  t h a n u s i n g t h e Whatman 41 f i l t e r  condensate landfill to  sampling.  build  up, I d i d n o t a t any o t h e r t i m e p r e f i l t e r t h e  gas b e f o r e the sampling  particulate  like  landfill  removal could  aerosol.  medium. In  can react  reality total  by  not p r e f i l t e r i n g  sink  The  In l a n d f i l l landfill  for aerosol  characterize  organics present within  this  claim.  i s actually + o f NH^  The c o n t r i b u t i o n  gas s t r e a m s  f o r ammonia  30 % r e s u l t s  gas t h i s  contribution  environment than  that  analysis  when n o t  gas s t r e a m d u r i n g ammonia  nuclei  VOLATILE ORGANIC  main g o a l o f t h i s  qualitatively  g a s where c h l o r i n a t e d  K o i k e e t a l . (1973) f o u n d  of around  the atmospheric  a saturated  4.1.3.  error  ammonia  t o form HC1 on t h e f i l t e r  + (NH^ + NH^).  atmospheric  in a positive  efficient  environments  sorbed  t o be done t o s u b s t a n t i a t e  i s questionable.  NRC, 1979).  because  in landfill  w i t h water  ammonia  my a n a l y s i s  prefiltering  within  of a c i d - c o n t a i n i n g  t h e n , t h e ammonia g a s a n a l y s i s  in  results  may be bound  g a s . Much o f t h i s i n the presence  + 4  T h i s may be t r u e  Work would need  measuring  that  + 4  i s done  g a s , t h e f i l t e r medium c a n become a s u b s t a n t i a l  be p r o t o n a t e d t o N H  hydrocarbons  NH  Prefiltering  However, i n h i g h h u m i d i t y  mechanism o f ammonia  aerosols.  (in  bubbler.  r i d t h e g a s o f any i n t e r f e r r i n g  the  f o r ridding the  sampling  could  be l e s s  i s p r o b a b l y a much more  i n the atmosphere.  SAMPLING  phase of t h e sampling or f i n g e r p r i n t  the l a n d f i l l  was kept v e r y s i m p l e a n d was l i m i t e d  gas.  p r o g r a m was t o  t h e -types' o f n o n - p o l a r The s a m p l i n g  to trapping  only  technique  non-polar  83 organic  contaminants.  adsorption greatly  trap.  The s i m p l i c i t y  train  (1982),  and  Young and P a r k e r The  300  Bruckmann and M u l l e r ( 1 9 8 2 ) , B r o o k e s  Tenax GC m a t e r i a l  January,  later  within the  end of t h e t r a p .  the traps  in this  overnight at  were c a p p e d  by  1988 a t P r e m i e r t h e next  trapped  solely  Sampling  using well  f o r 20 m i n u t e s  to this  and C6 Richmond were  At a l l three w e l l s ,  well  flow  o u t t h e end o f t h e t r a p .  t o p a s s a c u m u l a t i v e volume o f  were a n a l y z e d , p o t e n t i a l  t u b i n g was n o t i c e d ,  To c o r r e c t  f l o w p e r s o n a l sampler D e p t . were l o c a t e d . contamination  in late  the t r a p .  t h e samples  t h e sample  modified.  flow.  sampled  In a d d i t i o n  f r o m F5 M a t s q u i  o f any o r g a n i c b r e a k t h r o u g h  mLs t h r o u g h  were f i r s t  t o a p p r o x i m a t e l y 40 mL/min t o d e c r e a s e t h e  proceeded  After  St. l a n d f i l l .  two samples  t o be r e d u c e d  probability  section).  gas o r g a n i c c o n t a m i n a n t s  sample,  from  t o each  (OD)  f i t t i n g s and r e t u r n e d t o t h e l a b f o r GC-MS a n a l y s i s  Landfill  800  1/4 i n c h  i s packed  t h e Tenax t r a p s were c o n d i t i o n e d  Once s a m p l i n g was c o m p l e t e d ,  (discussed  had  (1983)  (1984).  i n 3.5 i n . l e n g t h s .  t o sampling,  contrasts  and Young  Tenax GC 60/80 t r a p s were c o n s t r u c t e d f r o m  oC.  brass  o f one Tenax GC  s e t u p s s u g g e s t e d , by K r o s t e t  t r a p and b r a s s f i t t i n g s a r e c o n n e c t e d Prior  consisted  o f t h e sample t r a i n  t o the e l a b o r a t e sampling  al.  brass  The sample  since  t h i s problem, pumps from These  contamination  so t h e s a m p l i n g two SKC model  t e c h n i q u e was  222-3  varaible  t h e UBC H e a l t h a n d E p i d e m i o l o g y  pumps a l l e v i a t e d  t h e Tenax t r a p s  could  the problem  of t u b i n g  be p l a c e d d i r e c t l y i n  84 the w e l l was  with suction  i n c r e a s e d t o 40 min  greater  volume of gas  technique  resulted  contaminants b u i l d - u p on  4.2.  through  be  the  of  found  Sample  time  48 mL/min t o g e t a much  traps.  shown l a t e r .  t h e t r a p s was  T h i s improved  sampling  of o r g a n i c  In W e l l C6,  t o be a p r o b l e m  condensate  during  sampling.  LABORATORY METHODS INSTRUMENTATION AND  4.2.1.1. The  analytical  methods u s e d  constituents  Methods,  16 E d i t i o n ,  A.  study  are d e s c r i b e d in d e t a i l except  titration 44  pH  was  where  performed  meter as p e r  B.  Chemical  COD  measurement was  titrimetric  C.  of  non-metal  in Standard  noted.  and  carbon  Total  done by  4.5  end  point  using a  Methods.  (COD) employing f o r UBC  the c l o s e d  refux,  as a l a b s t a n d a r d  Organic  Carbon  forms were measured u s i n g a d u a l c h a n n e l  The  chart  o f t h i s method  from  Methods.  Carbon A n a l y z e r  red d e t e c t o r .  t o t h e pH  16th e d . o f S t a n d a r d  Oxygen Demand  of S t a n d a r d  Total  Both  the  t e c h n i q u e as adapted  13th e d .  Accuracy  in this  Alkalinity  The Beckman  TECHNIQUE  LEACHATE CONSTITUENTS  leachate  915A  at a rate  v i a t h e pump.  i n a much g r e a t e r d e t e c t i o n  as w i l l  4.2.1.  the  being a p p l i e d  (TOCA) w i t h a model 865  r e c o r d e r was  a K i p p and  i s documented a t  Beckman  Beckman  Zonen  1 % of f u l l  infra-  BD41.  scale.  85 D.  Total Volatile  The d i s t i l l a t i o n  Acids  method  employed.  T h i s method  containing  up t o s i x c a r b o n  E.  Total  Leachate  were  where  cm is  electrode.  the accuracy  m e t e r s were a v a i l a b l e  used  accuracy  i s +.0.6  CDC  % of the  than  500 umho/cm,  t o + 1.5 % o f t h e s t a n d a r d  e l e c t r o d e has a c e l l  The m e t e r has a c e l l  before  at the time.  a R a d i o m e t e r CDM3 w i t h a model  i n measurements l e s s  decreases  The p l a t i n u m  + 10 %.  1  used.  Measuring  d e v i a t i o n , except  deviation.  Methods, 16th e d i t i o n .  c o n d u c t i v i t y o f t h e l e a c h a t e were measured i n t h e  The l a b c o n d u c t i v i t y meter was  standard  t o d e t e c t i o n of o r g a n i c a c i d s  Solids  b e c a u s e no f i e l d  304 p l a t i n u m  16th e d . was  S P E C I F I C CONDUCTIVITY  Specific laboratory  Methods,  atoms.  i n Standard  s a m p l e s of 20 mLs  4.2.1.2.  i n Standard  i s limited  and V o l a t i l e  Same method u s e d  (TVA)  sample a n a l y s i s  constant  constant  correction  for calibration  with  of  1.00  dial  0.01  which  N KC-1  solution. 4.2.1.3. Leachate reported  NH3-N DISTILLATION-TITRATION s a m p l e s were a n a l y z e d  i n t h e 16th e d i t i o n ,  Accuracy deviation  N H S0 . 4  as  Methods.  of as g r e a t a s 21.6 % f o r t h e l o w e s t  volume measurement 2  Standard  the technique  of t h i s method has been r e p o r t e d t o have a s t d .  measured o f 1.5 mg/L.  0.02  with  ANALYSIS  concentration  E r r o r s i n t h i s method c o u l d r e s u l t  e r r o r s and i n c o n s i s t e n t  acid  from  n o r m a l i t y of the  86 4.2.1.4.  GAS CHROMATOGRAPHY/MASS SPECTOMETRY ANALYSIS  Qualitative  analysis  of the trapped v o l a t i l e  done on a H e w l e t t - P a c k a r d 7576 P u r g e and T r a p to thermal  o r g a n i c s were  GC/MS model 5985B e q u i p p e d  device.  w i t h a HP  The t r a p p e d o r g a n i c s were s u b j e c t e d  d e s o r p t i o n which  involves the process  of f l a s h  t h e Tenax GC t r a p w i t h a f l o w o f h e l i u m  carrier  releases  a r e subsequently  by  the l a n d f i l l  helium  gas o r g a n i c s t h a t  g a s i n t o a GC column where c h r o m a t o g r a p h i c  takes p l a c e .  T h i s s e p a r a t i o n produces  eluted  from  impact  detector  quadrapole spectra.  t h e column. (EID).  presented  matching  c o n d i t i o n s used  Column Type a n d D i m e n s i o n s  Temperature Interface  Program  :  Temperature  Source  Scanning  subjected to a  seperate organic  mass  compounds  o f t h e EPA/NIH Mass S p e c t r a . w i t h p u b l i s h e d mass s p e c t r a . f o r t h e s e GC/MS a n a l y s i s a r e  below:  D e s o r b T e m p e r a t u r e and Time  Ion  of these  Base, a n d c o m p a r i s o n s  physical  separation  which a n a l y z e s t h e g e n e r a t e d  The i d e n t i f i c a t i o n  The  carried  p e a k s o f compounds when,  The compounds a r e f u r t h e r  mass s p e c t r o m e t e r  Data  This  T h e s e p e a k s a r e d e t e c t e d by a e l e c t r o n  were a c h i e v e d by l i b r a r y Library  gas.  heating  Temperature  Parameters  : :  :  of both  :  Durawax Megabore C a p i l l a r y column 50 % p h e n y l m e t h y l s i l i c o n e , 0.53 mm ( I D ) x 15 m 30(4 min h o l d )  - 265°C @ 5°C/min  250°C 200°C 40-450 a t o m i c  Problems encountered contamination  : 180°C f o r 6 min  with t h i s  mass u n i t s  trap analysis  t u b i n g and t r a p b l e e d  @ 1.5 A/D  i n c l u d e some  ( s t y r e n e s and methyl  87 styrenes  f o u n d ) , and  water v a p o r  METHANE GAS  A Fisher  Model  common l a n d f i l l oxygen  detected  resultant passes  29 Gas  gas  P a r t i t i o n e r . w a s used  components methane, c a r b o n  a thermal two  peaks.  The  i n thermal  cell  two  Originally,  stopcock  t h e gas  have a r u b b e r  inlefoutlet  two  ft x  when a gas  tungsten  the  compound  a Hewlett  calibration,  i n the  septum w i t h d r a w l  valves. from  records  field  by  p o i n t and  Packard these  the v i a l  and  injects  50 mL  glass  plastic  When r e t u r n e d t o t h e  1/4  t o s e p a r a t e gas  i n aluminum p a c k e d 2:  6 1/2  40/60-mesh M o l e c u l a r S i e v e 1, w h i l e  other  gas  detector  gases  are  temperature  summarizing  with  f t x 3/16  lab, a  1  i t directly  separated  i s around  30  components a r e % DEHS on  mL into  through  The 70  °C.  of t h i s method the a c c u r a c y  thermal  column  with  through 2.  column  Carrier  conductivity .  .  i s documented a t +  of .10  column  60/80-mesh  i n aluminum p a c k e d  C O 2 i s separated  13x.  f l o w s a t 40 mL/min.  Reproducibility Results  f o r d e t e c t i o n of  i s collected  columns used  c h r o m o s o r b ; column  helium  are  Partitioner.  The 1:6  peaks  gas.  s y r i n g e w i t h d r a w s gas t h e Gas  dioxide, nitrogen  d e t e c t o r r e c o r d s t h e s e p e a k s on  % volume of  that  and  separate  c o n t a i n i n g four  conductance  3380A I n t e g r a t o r , w h i c h w i t h p r o p e r  vials  to  These e l u t e d  conductivity  f o r r e f e r e n c e and  change  by.  p e a k s as  t o CO^  ANALYSIS  into discernible  by  filaments;  c h r o m a t o g r a p h y , maybe due  interference.  4.2.1.5.  and  poor  injections  of a  1 %. standard  88 gas is  sample a r e l i s t e d presented  i n Appendix  main c o n c e r n time  after  concern vials  resulted  sampling  warranted  the  found  from  and  leakage  Other  over  was  i n A p p e n d i x A.7.  Detailed  in this  analysis  injection  volumes.  analysis  To  ensure  replaced after AMMONIA GAS  section  t h e 70 mL  refridgerated preservation  every  assumed  boric  a t 4°C o f the  or  acid  stay  stable  my  during  the  This  where a l l s i x sample period.  The  that  over  had  gas 80  %  i n the v i a l s  for this  or  test  No  since  from  from  can  the  as  be  25  t o 30  leaky  inconsistent  lab a i r intrusion,  the  injection  injections.  with describing  Headspace l o s s  the Technicon sample d e c a y  boric  acid  o v e r a month.  NH^-N  No  since the  and  field.  .  After  lab, they  analyzed.  needed  4.0.  the l a b o r a t o r y  i n the  samples to the  during transport  sampling.  for well  c o u l d stem  immediately  samples was  negligible  to occur  data  error,  injection.  leakage  samples c o l l e c t e d  Samples were a n a l y z e d on weeks a f t e r  line  test  ANALYSIS  samples were a l r e a d y a t pH considered  no  i s concerned  o f ammonia gas  returning  this  subsequent  septum a l r e a d y m e n t i o n e d  This  sample v i a l s  a 2 day gas  injection  4.2.2.  for this  A.2.  errors  septum was  data  Partioner into  natural  There  i n Appendix  from  b e f o r e Gas  laboratory  Raw  In t e r m s of p o t e n t i a l  f o r leakage  methane by v o l u m e . indicated  A.1.  a investigation  were t e s t e d  s o u r c e was  i n A p p e n d i x A.7.  were  acid boric  o f NH^  s t o r a g e of  Autoanalyzer during this  acid was samples.  II w i t h i n period  3  was  s t a n d a r d s were f o u n d  to  89 The 0.0,  boric  a c i d NH^-N  0.05, 0.1, 0.2,  behind  0.5,  1.0 mg/L  and samples were a n a l y z e d  This autoanalyzer t o t a l ammonia  had NH^-N  autosampler rack.  p h e n a t e method t o  As a l r e a d y m e n t i o n e d ,  be a n a l y z e d a t a r a t e of 60/hr when l o a d e d technique  i s simply  a reaction  and h y p o c h l o r i t e s o l u t i o n quinochloramine called further  compound  indophenol with  blue.  (Na Fe(CN) NO"2H 0). 2  heating  5  in Figure  FIGURE  with  that e x h i b i t s  a distinct  The b l u e c o l o r  formed  of t h e r e a g e n t  a t 50°C.  reaction  NHj  +  Reaction  from NRC,1979)  HOC! =  NH,CI  +  H,0  indophenol blue  The  phenate  T h i s forms a blue  color  sodium n i t r o p r u s s i d e  4.3.:  (Taken  cam.  is intensified  i s c a t a l y z e d by  The i n d o p h e n o l  4.3 - I n d o p h e n o l B l u e  samples c a n  a sodium  conditions.  This indophenol  2  of t h e s o l u t i o n  shown below  o f ammonia  w i t h a 6:1  in alkaline  the a d d i t i o n  All  in t r i p l i c a t e .  uses the automated (NH^-N).  c o n c e n t r a t i o n s of  and were l o a d e d ahead and  t h e samples on t h e T e c h n i c o n  standards  analyze  standards  reaction i s  90  The mm  resultant  tubular  translated chart  color  flow c e l l  intensity  a t 630  by a c o l o r i m e t e r .  o n t o a K i p p and  Zonen BD41  nm  i s analyzed  This chart  signal  i s then  recorder.  A  of t h e c o m p l e t e T e c h n i c o n A u t o a n a l y z e r I I i s shown  in Figure  4.4.  FIGURE 4.4  - T e c h n i c o n A u t o a n a l y z e r Flow C h a r t  (From S t a n d a r d Methods,  16th Ed.,  Proportioning Pump  Sampler 6 0 / h . 6:1  mL/min 2.0 Wash  Washwater to Sampler  W 0.23 A i r ' 0.42 Sample  Mixing C o i l ,  0.8 EDTA Black Mixing Coil !  0.42 Phenolate 0.32 Hypochlorite 0.42 Nitroprusside  Blue  Waste  1.6 Waste  Recorder Heating Bath 50'C Colorimeter 50-mm Flow Cell 630-nm Filter  Digital Printer 'Scrubbed Through 5M H S 0 2  4  1985)  in a  flow  91  The  p e a k s from  calibration  curve  t h e samples a r e t r a n s l a t e d  t o g e t NH^-N  i n t h e sample  ammonia  c o n c e n t r a t i o n i s then m u l t i p l i e d  (around  70 mL)  is  t o g e t t h e mass o f NH^-N  then d i v i d e d  through  into  the t o t a l  landfill  t h e b u b b l e r and m u l t i p l i e d  onto a standard  (mg/L).  This  by t h e sample  volume  i n the sample.  T h i s mass  gas volume t h a t  passed  by 10^ t o c o n v e r t t h e  3 concentration later  i n t o ug/m  i n t o ppb as shown The  advantages  .  T h i s c o n c e n t r a t i o n i s then  i n Appendix  to using this  converted  B.4.  automated phenate t e c h n i q u e f o r  ammonia gas a r e as f o l l o w s : a. The a u t o m a t e d i n d o p h e n o l - b l u e method i s a p r o v e n a n a l y t i c a l t e c h n i q u e f o r t r a c e l e v e l s o f NH3-N g r e a t e r t h a n 0.02 mg/L. •. .  4.3.  b.  Can a n a l y z e a l a r g e amount of s a m p l e s Of t i m e (60 s a m p l e s / h r ) .  c.  Not a l a b o r - i n t e n s i v e t e c h n i q u e , e x c e p t of s t a n d a r d s and r e a g e n t s .  d.  F l e x i b i l i t y o f a n a l y t i c a l t e c h n i q u e t o have t h e freedom t o m o d i f y t h e a n a l y t i c a l set-up., f p r s p e c i a l n e e d s , s u c h a s r e p l a c i n g c e r t a i n r e a g e n t s w i t h o t h e r ones l e s s a f f e c t e d by p o t e n t i a l i n t e r f e r e n c e s . This technique w i l l be d i s c u s s e d i n d e t a i l l a t e r .  PRECIPITATION Precipitation  the c l o s e s t Canada.  period  forpreparation  STATIONS data  certified  f o r each  weather  The t h r e e s t a t i o n s  landfill(s)  i n a small  are l i s t e d  landfill  station  used  Vancouver I n t e r n a t i o n a l A i r p o r t - L a t . L o n g . : 49.11 - 123. 10 - Elevation: 2.0 m  was c o l l e c t e d  o p e r a t e d by  and t h e i r  below:  site  Environment  respective  from  - Landfills:  S t r i d e Ave.  Vancouver Harbour - L a t . Long.: - Elevation: - Landfill:  49.18 - 123.10 Sea L e v e l Premier S t .  Abbotsford Station - L a t . Long.: - Elevation:  49.02 58.0 m  - Landfill: 4.4.  and  Richmond  122.22  Matsqui  BASIC DATA PARAMETERS MONITORED The  data c o l l e c t e d f o r a l l parameters  on t a b l e s  i n Appendix  parameter  is listed  Statistics standard  Associated  below  the b a s i c  statistics data  c a l c u l a t e d f o r each parameter  deviation  statistics  D.  help  i n each w e l l  and % c o e f f i c i e n t  is listed  f o r each  for' e a c h  well.  were max,  min,  mean,  of v a r i a t i o n ( C . V . ) .  i n understanding the variance  of each  The  parameter  collected. 4.5.  NON-BASIC DATA  PARAMETERS  T h e r e a r e a number of p a r a m e t e r s the  basic  lastly, Appendix  were c a l c u l a t e d  d a t a measurements or c o l l e c t e d e l s e w h e r e .  parameters density,  that  include:  leachate site  ionic  gas r a t i o ,  strength  precipitation.  E presented  Statistics  N2/O2  on t h e s e p a r a m e t e r s  them a r e a f u n c t i o n  4  was  B.  2  flux,  gas  coefficient,  the b a s i c  not a t t e m p t e d  data.  Examples  t h e s e p a r a m e t e r s were e s t i m a t e d o r c a l c u l a t e d Appendix  C0  These  and  parameters are l o c a t e d i n  just like  of t h e b a s i c  flux,  and a c t i v i t y  These  in tables  CH  from  data.  s i n c e most of of how  each of  i s presented in  93 4.6.  STATISTICAL ANALYSIS In  addition  were a number describe predict  t o the s t a t i s t i c s  of o t h e r a n a l y s i s  causal  relationships  b o t h NH^-N  parameters. regression,  DONE ON  gas and C H  bivariate  the  UBC MTS  include:  K-S  multiple  leachate,  regression.  a l l other  CH^  These r e g r e s s i o n s  are  2  gas i n a  between p a r a m e t e r s  were r u n on a LOTUS  1-2-3  Parameters that  ionic strength,  NH^-N  were  in  flux.  m a t r i c e s were c a l c u l a t e d  to help  as being  f o r each w e l l  in infering relationships  whose p v a l u e was insignificant.  greater Results  level than  involving  between p a i r s of  P e a r s o n P r o d u c t Moment C o r r e l a t i o n  c o e f f i c i e n t and i t s a s s o c i a t e d  correlations  rejected  were r u n on  PEARSON PRODUCT MOMENT CORRELATION  these v a r i a b l e s .  All  gas temp., pH,  f l u x and C 0  Correlation  correlation  product-  Except f o r  statistics  t o d e t e r m i n e any r e l a t i o n s h i p s  include:  13 v a r i a b l e s  fitted  bivariate  was done on s i x p a r a m e t e r s v e r s u s NH^-N  i n gas.  4.6.2.  of  t e s t s , Pearson  s p r e a d s h e e t and were s p e c i f i c t o e a c h w e l l . analyzed  t o one, h e l p  LINEAR BIVARIATE REGRESSION  attempt  NH^-N  linear  normality  linear regression,  Regression  and  there  mainframe program SPSS:X.  4.6.1.  first  done on t h e d a t a  data,  % through the regression  4  moment c o r r e l a t i o n and l a s t l y , the  done on t h e b a s i c  between p a r a m e t e r s and two, t r y t o  These s t a t i s t i c s non-parametric  PARAMETERS  calculates a  of s i g n i f i c a n c e . 0.025 were  of t h e s e  correlations  summarized i n Appendix F.3. The  p r o d u c t moment c o r r e l a t i o n c o e f f i c i e n t ( r ) i s used t o  94 explain  t h e f r a c t i o n of v a r i a n c e  variable. greater  A high  o f one v a r i a b l e by a n o t h e r  correlation coefficient  commonality  < 1.0000 i n f e r s a  between v a r i a b l e s t h a n a l o w e r o n e .  negative  correlation coefficient  negative  e f f e c t one v a r i a b l e h a s o v e r a n o t h e r  one  variable  This not  method  i s a non-parametric  was e s p e c i a l l y i m p o r t a n t  i n separate, w e l l  non-normality variables. analysis  occurring  in multiple  4.6.4.  data,  f o rnormality. regression,  for accurate  during  combined w e l l  This  which  results. ' A l l with  t e s t s f o r some from  further  I n t h e K-S t e s t , a l l v a r i a b l e s  o f 0.05 were c o n s i d e r e d  non-normal.  Results of  i n A p p e n d i x F.2.  MULTIPLE REGRESSION ANALYSIS  an a t t e m p t  multiple  regression  were r u n on  t e s t s were f o u n d t o be n o r m a l  regression.  tests are l i s t e d  In  for multiple  Tests  Non-normal v a r i a b l e s were d i s c a r d e d  below t h e p v a l u e these  t e s t t o d e t e r m i n e whether o r  t o check  normally d i s t r i b u t e d data  variables  another).  i s normally d i s t r i b u t e d .  s e p a r a t e and t h e n combined w e l l s  requires  of  ( i e , an i n c r e a s e i n  KOLMOGOROV-SMIRNOV GOODNESS OF F I T TEST  each v a r i a b l e  test  high  > -1.0000 e x p r e s s e s a l a r g e  results, i n a decrease  4.6.3.  A  t o p r e d i c t NH^-N gas a n d CH^ % from a v a i l a b l e  regression  equation  used  was u s e d .  The form o f t h e m u l t i p l e  i s below:  Y = A + B.X, + B X + B,X- + .... B X 11 2 2 3 3 n n 0  0  v  Where Y i s t h e d e p e n d e n t v a r i a b l e A i s the Y - i n t e r c e p t (or constant) B i s the p a r t i a l r e g r e s s i o n c o e f f i c i e n t X i s the independent v a r i a b l e n  n  In  this  equation  i t i s shown t h a t  the l a r g e r  the p a r t i a l  95 regression  c o e f f i c i e n t , the  independent dependent  variable  regression  i n t h i s form of  to pass a t o l e r a n c e tolerance  test  accounted  for  The  default After  with  the  0.010),  by; o t h e r  passing  equation  no  variables  Users Manual,  not  the  of  the  of  0.010  has  the  variables  equation.  variable's  t e s t , the  F that  The  variance  i n the  not  equation.  independent  i s entered  into  e x c e e d s Pout  equation  This  first  used.  F value  an  from the  the  independent  variables  was  tolerance  i n the  the  The  and  another  variable the  (set  at  variable  i t e r a t i v e method p r o c e e d s  equation are  eligible  for entry  not  until  (SPSS:X  1983).  was  residual  analysis  to  regression  done on was  regression  the  helpful equation.  non-linearity  equation  residual  n o r m a l p r o b a b i l i t y and  suspect.  predicting  in t h i s a n a l y s i s .  before entering  is tested.  analysis  excessive  or  i s for  p r o b a b i l i t y of  addition  resultant  used  independent  If a variable  the  was  proportion  tolerance  in  the  test  i t i s removed  In  estimating  regression  i s the  lowest  equation.  on  i t s corresponding,  variable.  Stepwise step  has  more i n f l u e n c e  was  statistics,  error  of  the  in determining This  residual found,  was  equation.  the  viability  done by  inspection  scatterplots. the  equation  statistical  was  If  The of of  any  considered  the  96 CHAPTER 5 5.  RESULTS AND  5.1.  DISCUSSION  AMMONIA GAS 5.1.1. Other  ANALYTICAL TECHNIQUE  PROBLEMS ENCOUNTERED ON than  field  sampling  arose  during  the problems a l r e a d y technique,  there  to  Sensitivity 0.05  normal  mg/L, 200  t o 500.  C. 0.5  wandering  5 o r 6 samples To h o p e f u l l y  % potassium  nitroprusside.  the e f f e c t  These  concentrations  was  increased  of down  from t h e  of i n c r e a s i n g t h e  was  added  t o t h e sample  train,  drift.  the indophenol  results  that  signal noise.  to locate baseline  ferrocyanate The  standard  - B l a n k s were added  intensify  gas.  the  below:  on t h e i n s t r u m e n t  increased  concerning  were, a number o f p r o b l e m s  o f low  T h i s had  but a l s o  Baseline  every  - Because  the gain  sensitivity, B.  discussed  t h e l a b o r a t o r y a n a l y s i s of NH^-N  concerns or problems are l i s t e d A.  AUTOANALYZER  blue  in place  however, o n l y  even of  further,  Na-  increased  signal  noise. D.  B e c a u s e my  other at  gain  s e t t i n g s and  lab projects using  t h e end o f t h e day.  problems  from,possible  response. phenate  the a u t o a n a l y z e r , This  aged  late  were d i f f e r e n t my  showed no change  done.  with  reagents  water  s a m p l e s were r u n  and a " t i r e d " and  i n s i g n a l response.  distilled  from  day a n a l y s i s seemed t o c a u s e  However, t e s t s c o m p a r i n g d a y - o l d  autonalyzer always  standards  before  my  signal  freshly  Flushing  sample  ;  made  up  of t h e  analysis  was  97 E.  Suppressed  response rest  from  Signal  Response - C o n c e r n  the b o r i c  side  acids  used  acid.  The  by  side.  commonly  comparison  of  inspection  equal  signal  response  of % s i g n a l  TABLE 5.1  - Results  four  from  i s shown  water-NH^-N  was  two  in  indicate  t h e i r blank  about  below:  H S0  1 .0  36.7  38.5  39.0  38.3  0.5  17.7  21.5  21.0  20.2  0.2  12.8  8.5  8.2  8.1  0.1  4.6  4.5  2.7  4.0  mentioning.  The  pH  (Scheimer,  i t i s highly  make a d i f f e r e n c e . temperature  other  for optimal color 1976).  2  that  was  t h i s pH  to the d i s t i l l e d Stewart and  were not  investigators  However, no d e c r e a s e  responses  Oxalic  4  found  i s worth  t o be  Because of the p r e s e n c e  doubtful  automated a n a l y s i s . when.compared  Comparison  pH e f f e c t s -- T h e s e e f f e c t s from  (1985) on  found  that  an  response.  Boric  studies  other  Figure  Wa t e r  (mg/L)  to  HgSO'^-and o x a l i c  a r e shown  standards  layed  Response  investigated,.but  found  0.1N  responses  when s u b t r a c t e d  response  T e m p e r a t u r e and  acid,  of the  acid  signal  of S i g n a l  Standard  11.7  signal  distilled  the b o r i c  i n ammonia a b s o r p t i o n ,  Direct  A table  samples was  acid-NH^-N and  Accompanying  5.1.  to  s t a n d a r d s and  when s t a n d a r d s of b o r i c  were run  F.  acid  for a suppressed  was  ever  so pH  11.3  o f a weak reached  in signal  water,  from  i n the  response  e f f e c t s may  is not  t h e o t h e r hand, l o o k e d a t the  initial  temperature  at  98  -2^  Blank  ~=-^  0.1  mg/L 0.2  !  mg/L 0.5  OXALIC  mg/L  ACID  j  .  10  1.0 3  mg/L  SO  Blank  -"i  °:L  m  g  /  L  6.2  0.1  mg/L S^r-i 0 . 5  N  S U L F U R I C ACID:  mg/L 1.0  i "Blank 0.1  13.  mg/L  ; mg/L 0.2  mg/L  BORIC  ACID 80  . 6 0  • ;j] - 0 . 5  mg/L" .j 1 . 0 :  DISTILLED  jl.O  mg/L  WATER  mg/L  -I TO  FIGURE  7:0  5.1  Comparison o f Recorder S i g n a l s TECHNICON AUTOANALYZER G a i n 5 00 No EDTA F e b u r a r y 24, 1988  - Comparison of Signal Four Solutions  Responses  70 - j — ' j j  From  30  Standards  of  99 reagent mixing of  was f o u n d to. d e t e r m i n e  t h e s o l u t i o n and any f u r t h e r  catalyzes  the f i n a l  increase  color  i n temp.  t h e t i m e t o r e a c h maximum a b s o r b a n c e .  interesting, temperature  because mixing standards could  of c h i l l e d  absorbance  (50°C)  only  This i s  samples and room  result in variability  of s i g n a l  response. 5.1.2. INTERFERENCES After  preliminary  analysis  of data  showed NH^-N v a l u e s  t h a n e x p e c t e d , an i n v e s t i g a t i o n was i n i t i a t e d there  i s any n e g a t i v e  Potential 1.  Landfill  of NH^-N  recovery  interferences  e f f i c i e n c y lower  carry  This  volume  This  substantiate  this  with  a c i d h a s been 1982) a n d c o u l d  s o l u t i o n and o u t o f t h e 2  canexceed  45 % by  More work would have t o be done t o  negative  interference  could  g a s components a f f e c t i n g i n d o p h e n o l b l u e  development  bond  claim.  Another p o s s i b l e  soluble  carbamic  i s e s p e c i a l l y t r u e where C 0  i n l a n d f i l l , gas.  r e s u l t i n an  The main c a u s e t o  ( H a l e s and Drewes,  s u b s t a n t i a l amounts o f NH^ from  bubbler.  i n absorbance  which can c o v a l e n t l y  a c i d NH^'CC^.  form:  as a c a r r i e r or  effect could  than e s t i m a t e d .  volatile  i n point  cause a decrease  This  i s aqueous c a r b o n d i o x i d e ,  m e n t i o n e d t o be q u i t e  below  s o l u t i o n by a c t i n g  o f t h e ammonia g a s .  NH^ t o form c a r b a m i c  2.  acid  t o determine i f  i n the a n a l y t i c a l technique.  are l i s t e d  g a s compounds c o u l d  into the boric  complexer  this  negative  interferences  lower  i n the autoanalyzer.  Detailed  been done on t h i s p r o b l e m by B o l l e t e r  result  from  color  investigations  (1961), S c h e i n e r  have  (1976) a n d  100 Ngo  e t a l . (1981) f o r o t h e r  chemical  a p p l i c a t i o n s on  the  autoanalyzer. Soluble gas  and  volatile  that could depress  compounds w i t h sulfide  and  an  compounds t h a t a r e  the  color  formation  amino f u n c t i o n a l  thiol  and  c o u l d be  adsorbed  A more l i k e l y the  gas.  Ngo  the  to  on  If  total  oxidation the  attempt after  from  of t h i s  landfill  sampling  tests  are  i n ppm  t o see  attempt  to r i d the  was  on  is  H S, 2  landfill  reducers the  concentration  i s required for  s u f i d e s can  be  concentrations  t o be  converted  the  from h i s  present  in  i s any sample  this  up  substantial from t h i o l  samples  by  from oxygen study  did  gas,  found  not  i n samples b e f o r e  Richmond L a n d f i l l  p e r f o r m e d on  in l a n d f i l l  to s u l f a t e s  more l i k e l y ,  concentrations  i f there  were a t t e m p t e d  pre-distillation  strong  Unfortunately,  sulfate  apparent  are  causing i n t e r f e r e n c e .  i s going  gas?  matter  suppression  K o r o l e f f (1970) c o n c l u d e s  sample h a n d l i n g and  to determine  In an two  blue.  dioxide.  i n Richmond  could deplete  a n a l y s i s that t o t a l  sulfides  ppm  are  2  odor  Especially  1000  HS  carbon  hydrogen  sub-ppm c o n c e n t r a t i o n s .  h y p o c h l o r i t e , which  i n a sample w i t h o u t  fraction  within  to  compounds and  indophenol  sludge  2 mg/L  what  g r o u p compounds.  strong oxidizer of  acidat  as a m i n e s ,  of p r o t e n a c e o u s  however, f o r c a u s i n g  e t a l . (1982) s u g g e s t s  formation study  boric  been d e t e c t e d a t up  Both t h i o l  that of  suspect  soluble sulfur  w h i c h has  into  lastly,  product  landfill  i n c l u d e the f o l l o w i n g :  group such  g r o u p compounds and  Amines a r e a common d e c o m p o s i t i o n  usually in  and  difference.  reducers  samples.  and  H S, 2  First,  t h a t were t r a p p e d  by  101 boric  acid.  signal  The r e s u l t s  response over  involved adding H 0 2  2  oxidize  any r e d u c i n g  because  i t caused  after  reagents  tests. D.55  test  the u n d i s t i l l e d directly  samples.  The s e c o n d  t o samples b e f o r e  compounds.  increased  showed no i n c r e a s e i n  This  color  test  was  test  autoanalysis to unsucessful,  i n t e r f e r e n c e i n t h e sample  were a d d e d .  A last-ditch were a p p a r e n t  of t h i s  effort  t o determine  i f negative  i n samples was t h e r u n n i n g  interferences  of standard  The samples r u n were f r o m F1 and F3 M a t s q u i ,  addition a n d D9 and  Richmond. The  below  resultant concentrations  i n Table  and t h e i r  d i f f e r e n c e s a r e shown  5.2.  TABLE 5.2 - R e s u l t s o f S t a n d a r d Measured  Well  (mg/L) :  Std.  Addition Tests  % Dif f.  Addition  D9 Richmond  0.500  0.500  D.55  0.200  0.250  + 25.0  Richmond  0.0  F1  Matsqui  0.095  0.1 25  + 31 .0  F3  Matsqui  0.113  0.125  + 11.0  Inspection concentration there be  of the r e s u l t s  t r e a t e d with  t o sample  do i n d i c a t e a d e p r e s s e d  i n some o f t h e s a m p l e s , w h i c h would be common i f  were n e g a t i v e  t o be done.  ..  interferences.  caution  However, t h e s e  s i n c e more s t a n d a r d  a d d i t i o n work  This difference in concentration  variance.  results  should needs  c o u l d a l s o be due  102 5.1.3. The mg/L.  DETECTION  detection  This  limit  compares  limits  t e c h n i q u e was f o u n d t o be 0.03  t o Dawson  g a s volume  t h i s method d e t e c t s  i s around  12 ug/m  A sample  (9 ppb) o f NH3-N  175 l i t e r s .  NH^-N c o n c e n t r a t i o n s  (1979),  So i n summary,  generally  greater  than  ug/m . 3  5.1.4. Tests standard each.  on 0.2 a n d 0.5 mg/L s t a n d a r d s  This  O'Brien  PRECISION  deviation  mentioned  compares  these  favorably  i n S t a n d a r d Methods,  and F i o r e  samples t e s t e d .  indicate a  relative  o f 2.0 and 1.5 % r e s p e c t i v e l y f o r . 1.1 samples with values  o f 0.5, 1.0 and 2.0 %  16th E d i t i o n , Scheiner  (1976) a n d  (1962) r e s p e c t i v e l y .  Reproducibility  was n o t a s g r e a t  Relative  errors  i n the l i m i t e d  ranged  from  number, o f  4.5 t o 8.5 % i n  samples. Accuracy  o f t h e t e c h n i q u e was n o t a t t e m p t e d ,  samples were a t t o o low a c o n c e n t r a t i o n distillation-ti.tration specific  electrode  Scheiner  Results  technique.  was a l s o  accuracy concerning by  (1978) and NRC  o f 0.02 a n d 0.01 mg/L.  o f 0.03 mg/L i s a b o u t  when t h e t o t a l  10  of t h i s  favorably  who m e n t i o n d e t e c t i o n concentration  LIMIT  since a l l  f o r comparison  with the  C o m p a r i s o n w i t h an i o n -  r u l e d out because of q u e s t i o n s  the electrode.  One c o m p a r i s o n  of  h a s been made  (1976) o f t h e i n d o p h e n o l method a n d d i s t i l l a t i o n .  from t h i s  paper  indicate a relative  mg/L, w h i c h was t h e l o w e s t  concentration  error  tested.  o f 5.2 % a t 2  103 5.1.5.  RECOVERY EFFICIENCY .  Originally  when t h i s  t e c h n i q u e would c o l l e c t  NH^-N  c o l l e c t ion e f f i c i e n c y ) . were r u n t o c a l c u l a t e  study  began, I assumed t h a t  in quantitative  However, a f t e r  a recovery r a t i o  form  the bubbler  (100 %  a n a l y z i n g the data, that  t h e measured NHg-N t o g e t a more a c c u r a t e  tests  c o u l d be a p p l i e d t o  corrected  concentration. Determining than of  previously  a recovery r a t i o expected.  The f i r s t  s m a l l v o l u m e s of " p u r e "  that  ammonia  attempt  gas i n t o  was f i l l e d w i t h a i r up t o 180 l i t e r s .  " s t a n d a r d " was t h e n pumped conditions.  These  ammonia, w h i c h  applied  in determining  were d i s a p p o i n t i n g , the a u t o a n a l y z e r . from  cylinder  sample p a t h stored  how  that  with very  directly  the l e c t u r e  ammonia  from  about  field  25 t o 100 uL o f  of ammonia.  High  t e c h n i q u e c o u l d be However, t h e r e s u l t s  technique  gas i s sampled  from  detected.by seemed t o .  the l e c t u r e  ammonia.  Because, o f no  cylinder,  t h e g a s had t o f i r s t  equipped  into  simulating  i f any ammonia  with t h i s  t h e sample v i a l  injected  seem t o r e s u l t  little  The p r o b l e m  i n t o a sample v i a l  then  from  injection  The ammonia  recovery e f f i c i e n c y .  t h e ammonia  into  withdrawn  varied  task  a l a r g e g a r b a g e bag  the bubbler  t o See i f t h i s  c o n t a i n e d pure  then  involved  i s e q u i v a l e n t t o 43 to, 172 ppm  amounts were u s e d  result  through  injections  ammonia  pure  became a more d i f f i c u l t  with a rubber  sample  by t h e s y r i n g e .  the f i l l i n g garbage bag.  i n n o t enough f l u s h i n g  direct  port,  T h i s was The  o f t h e sample v i a l  g a s , o r c o u l d be due t o d i f f u s i o n  be  o f ammonia  errors to get from  104 t h e g a r b a g e bag t o be  next  sample v i a l injection 10 % a t  d i d not  last  time  ug/m  l a b a i r before going through  with prolonged  improve  did indicate 11.5  was  since  an  the  one. and  Each  to determine  t o sample  than  the  apparatus  was  solution  first  first  My  before.  flow  rates.  efficiency %.  modest  averaged  The  The  2.1  of  of  Their  about  data  f o r t h e normal  50  around  to  t e c h n i q u e used  at  the  laboratory a i r  used  (100  in this  one,  the decreased  recoveries  11.5  L/min.  Kanamori  acid,  T h i s type  of  (1971) t e s t i n g  i n a 0.1  Their  test  each  of b o r i c  the  N HjSO^  ammonia  recovery e f f i c i e n c y  standard  .  f o r the  %.  below  i n T a b l e 5.3  f o r the  is listed  i n A p p e n d i x A.3.  6.0  flow  L/min was  % recovery e f f i c i e n c y  into account,  to  L/min.  summarized  raw  uL  was  apparatus  impingers  1.5  This "safe" efficiency 30  The  a i r from  by O k i t a and  30 ppb..  are  the  100  t o c o n t a i n enough ammonia  of g l a s s  at a flow rate  results  from  used  efficiency  impinger  samples of  t h e u s u a l volume of 70 mLs  varied  r e p o r t e d t o be  Two  i n s e r i e s w i t h t h e gas p a s s i n g t h r o u g h  b u b b l e r had  collection  was  bubbler  through  a recovery e f f i c i e n c y  filtered  b l a n k s were f o u n d  a i r f l o w was  o f gas  uncertain recovery e f f i c i e n c y  direction  three bubblers  flushing  results.  ) for a n a l y t i c a l detection.  had  the  L/min.  attempt  in a d i f f e r e n t  lines,  50  attempt  f l o w s of  The  this  the  absorbed. The  go  into  i n the t h i r d  the s t a n d a r d d e v i a t i o n in f i e l d  Recovery  i s estimated at  e s t i m a t e d by  three  around  assuming a very  b u b b l e r and  of t h e s e  c o n d i t i o n s and  taking  results,  two,  t h r e e , many o f  105 t h e NH^-N  gas v a l u e s  c o n c e n t r a t i o n s used  a r e much l e s s in this  than  experiment.  TABLE! 5.3 - R e s u l t s o f R e c o v e r y Flow . (L/min)  Mean C o n c e n t r a t i o n i n e a c h b u b b l e r (ug/M )  10.5  3  1 07.0  28.4  22.9  16.0  61.4%  89. 8  38.5  24.2  16.9  53.0  %  45  %  1 40.3  36.0  58. 1  40.7  "51.0  %  45  %  enough, t h e o t h e r  efficiency  than  that  recovery  this  i s not the case.  efficiency  Okita  and Kanamori  L/min  flow.  indicate  flow  t h e 6.0 L / m i n . should  (1971) u s i n g  100 % r e c o v e r y  0.05 N s u l f u r i c  i n lower  efficiency  a s t h e low f l o w  efficiency  o f no g r e a t e r  concur  with  Kawamura and S a k u r a i  rate.  than  the high  acid  (1966),  who c a l c u l a t e d  0, 20 and 51 % f o r 0.02 s u l f u r i c O k i t a and K a n a m o r i , In s p i t e  acid  and 1.5  flow.  The h i g h recovery  45 %.  These  measured by  efficiency  solution  solution  i n d i c a t e an  50 % and more l i k e efficiencies  by  (1967)  t h e same  The r e s u l t s  flow  f l o w s , but  from a b u b b l e r  and 0.5 L/min  lesser  were  shown t o be t h e c a s e  r a t e o f 10.5 L/min g i v e s a p p r o x i m a t e l y  results  r a t e s show a  0.02 N s u l f u r i c  acid  50 %  My a s s u m p t i o n s  be. g r e a t e r  T h i s was a l s o  efficiency  (in  two f l o w  In c o n t r a s t , Morgan, G o l d e n and T a b o r  almost  containing  "Safe" Eff.  2  Interestingly recovery  Recov. Eff, ,  J  1  .  2.1  E f f i c i e n c y Tests  E s c a p e From 3 r d (ug/M )  3  6.0  t h e ambient a i r NH^-N.  v a l u e s of  and 15 L/min  flow  1971).  of the a n a l y t i c a l  uncertainty, this  50 % r e c o v e r y  1 06 efficiency this  seems t o be  sample t e c h n i q u e g e t s  5.2.  TEMPORAL AND 5.2.1. As  data  representative  mentioned  IN  listed  r e s u l t s on  4,  the  the  i n d i c a t e s i n most  For  instances,  pressure  and  temp, e x h i b i t the  5.4  was  to  and  oxygen demand relationship. a  S t r i d e Ave.  January  max.,  while  lowest  the  % C.V..)  inspection  of  was  pH,  barometric  sample  variance.  constituents  during  relative  study  differences  The  samples are  the  from  gas  i n an  in  attempt  leachate  r e s u l t s comparing  presented  to  the  concurrently  in  5.7. leachate  lowest (COD)  strength  i n the i s one  In M a t s q u i  fairly  high  averages  Avenue's much o l d e r material  leachate  done t w i c e  c h a n g e s and  general,  landfills  indicate  non-metal  between e a c h l a n d f i l l .  September and  In  of  wells  show t e m p o r a l  Tables  of  variability  flow,  basic  NON-METAL LEACHATE CONSTITUENTS  Analysis  strength  gas  the  and  extraction  static  Inspection  instance,  i n NH ~N gas  5.2.2.  DATA  ( i e , min.,  greatest  leachate  recovery  r e s u l t s f o r a l l . the  each parameter  some i n t e r e s t i n g t r e n d s .  3  of  conditions.  i n A p p e n d i x D.  indicate C.V.  kind  COLLECTED DATA  in Chapter  parameters are  the  field  SPATIAL VARIATION OF  VARIATION  statistical  in actual  of  i s probably  older  fill,  age  1000  mg/L.  where most of  s t a b l e humic and  younger Chemical  indicates  landfills,  (average over 150  i n the  S t r i d e Ave.. that  Richmond  l e s s than fill  highest  constituent and  COD  was  the  fulvic  various  mg/L)  This  this  whereas  reflects soluble  acids.  wells  In  Stride organic contrast  1 07 t o COD's, most of t o be  comparable  landfill.  TVA  substrate  to the  i n young  may  be  leachate  of  Matsqui  w h i c h was  landfill  concentrations indicative  of  the  proportions  their An  of TOC,  4  % values  study  the  methane  where any  in  TVA  production  a v a i l a b l e TVA  highest  s i n c e the  TVA  in  amounts were  strongest  leachate  samples.  wells  protein  sludges  (F1  high  and  NH^-N  F5)  and  i n a n i m a l waste t h a t  younger  landfills  reported  point  t o be  period In most  that  this  However, t h i s i n Appendix D  e x c e e d s 40 high  t o a l l of  n o t i c i n g the  from S t r i d e Ave  relative  biodegradable  exhibit  w h i c h may.be a r e s u l t a n t of  interesting  generally  of  Richmond  dumped  the  leachate could was  be dumped a t  high organic  in these  landfills  lifetime.  percentages. CH  expected  Ave.  i s u s u a l l y more  much h i g h e r  from t h o s e  high  would assume a f t e r COD  and  O v e r a l l , the  A l l three  waste and  readily  a l s o e x h i b i t s very  i n two  landfill.  over  most  of  in Stride  T h i s anomalous s i m i l a r i t y  the  i s consumed.  values  leachate  Richmond l a n d f i l l ,  o d o r s u s u a l l y emanated  liquid  the  landfills.  a result  from M a t s q u i ,  this  i n d i c a t e TVA  much y o u n g e r  i s considered  r a t e s e x h i b i t e d by the  results  f o r methanogen u t i l i z a t i o n  abundant values  the  TVA this  %.  values  relative  landfill  i s not  T h i s might already  temporal  a n a l y s i s i s that low  F2, be  values  of TOC  would e x h i b i t low  always the  for wells  extraction well  instances,  this  F3,  case F7,  F8  i f one  or  s y s t e m was variation  and CH^ notices  where CH4  a r e s u l t a n t of  discussed  one  the  because d u r i n g never  between  %  the  operational. samples  taken  108  - Hatsqui Landfill -  Uell No.  DATE  Speci fic  pH  Alt.  NH3-N  Conduct, Fl  Feb. 88  <«g/L)  6.34  21,200  7500  2669.3  COD  TC  TVA  IOC  Total  (•g/L 02) 35,100  Solids 16,300  16,225  Volatile Solids  2 Vol. Residue  21,736  30,350  18,290  60.3  F2  Sept. 87  7.40  3640  1254  252.0  1716  480  295  F2  Feb. 88  6.29  1083  340  70.6  2344  1135  1035  208  3555  1465  41.2  F3  Feb. 68  6.60  1660  375  142.8  712  805  660  201  3710  1060  28.6  F5  Sept. 87  6.82  21,913  6650  1881.6  30,400  10,900  10,637  15,390  28,635  18,575  64.9  F5  Feb. 88  6.17  4405  1120  300.6  5634  . 2240  2065  2784  4530  2440  53.9  F8  Feb. 88  5.79  439  153  1.4  12  500  100  20.0  --  --  - Stride Ave. Landfill -  Uell No.  DATE  pH  Speci fic  AIL  Conduct.  NH3-N  COD  (•g/L)  (»g/L 02)  TC  TVA  TOC  Total  Volatile  Solids  Solids  I Vol. Residue  F2  Sept. 87  6.46  1182  • 577  1.8  200  178  N.D.  40  781  165  21.1  F2  Feb. 88  6.26  1270  594  4.1  60  240  30  112  1410  685  48.6  F3  Sept. 87  6.38  999  472  2.9  64  83  N.D.  60  785  225  23.7  F3  Feb. 88  6.14  977  . 459  7.1  112  217  71  86  985  380  38.6  F6  Feb. 88  5.88  B39  333  15.4  124  147  26  255  1070  690  64.5  F7  Sept. 87  6.25  1089  495  15.4  128  105  39  70  1256  308  24.5  F7  Feb. 88  6.31  1081  504  9.5  248  189  167  251  1490  390  26.2  F8  Feb. 88  5.86  763  351  2.8  92  120  21  237  860  250  29.1  108  Sept. 87  • 6.04  1377  609  1.2  160  120  N.D.  89  1178  387  32.8  Specific Conductance in uiho/cn Alkalinity in og/L as CaC03 TC = Total Carbon (>g/L as 0 TOC = Total Organic Carbon (ig/L as C) TVA  Total Volatile Acids (ig/L as Acetic Acid)  TABLES' 5.4 & 5.5 - NON-METAL L E A C H A T E C O N S T I T U E N T S I N MATSQUI AND S T R I D E A V E . L A N D F I L L S  109  Richiond Landfill -  Utll No. . DATE  pH  Speci fic  Alk.  NH3-N  Conduct.  («g/U  COD  TC  TOC  TVA  («g/L 02)  Total  Volatile  Solids  Solids  I Vol. Residue  88  Sept. 87  $.40  3301  1215  122.1  1137  335  t46  452.  2429  1190  49.0  B8  Feb. 88  6.16  1755  1719  58.2  237  350  20  128  1105  490  44.4  D9  Sept. 87  6.80  8347  2320  378.0  1217  1230  495  348  4766  1410  29.6  09  Feb. 88  6.81  7493  390  425.6  1473  1340  470  360  4300  1365  31.8  C6  Sept. 87  6.42  2732  920  23.5  1321  290  105  452  2142  1473  68.8  C6  Feb. 88  6.17  2177  555  16.8  1175  670  320  592  1980  800  40.4  G7  Sept. 87  6.48  3426  1340  73.9  342  305  109 •  191  2291  843  36.8  67  Feb. 88  6.11  1835  525  25.8  157  - 360  N.D.  80  1280  270  31.1  D.55  Sept. 87  6.74  4243  1760  113.1  653  330  70  209  3030  1015  33.5  D.55  Feb. 88  6.40  3465  1260  101.9  410  730  45  108*  '• 2345  830  35.4  8.53  Sept. 87  6.58  3432  1420  121.0  453  315  108  139  2252  652  29.0  B.53  Feb. 88  6.22  1394  360  22.4  76  205  10  35  770  395  ===s = t "" " = = " = =  51.3  -__  ========= ========= ========  ====-===;  Prenier Street Landfill  Veil No.  DATE  pH  Specific  Alk.  Conduct.  NH3-N  COD  TC  TOC  TVA  (•g/L) (tg/L 02)  Total Solids  Volatile Solids  I Vol; Residue  PI  Sept. 87  6.72  6683  1840  213.9  690  815  350  166  3965  885  22.3  PI  Feb. 8B  6.67  5915  1320  254.2  487  ' 720  130  100  3860  805  20.9  P2  Sept. 87  6.74  6411  1820  221.8  444  768  108  145  3432  P2  Feb. 88  6.75  5459  1200  231.8  447  670  95  120  3065  26.5 610  19.9  Specific Conductance in uiho/ci Alkalinity in rig/I as CaC03 TC = Total Carbon (»g/L as 0 TOC = Total Organic Carbon (»g/L as C) TVA = Total Volatile Acids (ig/L as Acetic Acid)  TABLES 5.6 & 5.7 - NON-METAL LEACHATE CONSTITUENTS IN RICHMOND AND PREMIER S T . LANDFILLS  110 in  September and t h e n  show l a r g e d e c r e a s e s volume d i l u t i o n especially  i n January  in concentrations  from e x c e s s i v e  apparent  landfill  Richmond, h i g h v o l u m e s o f r a i n f a l l  already F7  h i g h water  porous  tables  due t o p r e c i p i t a t i o n  from t h e u n s a t u r a t e d  infiltration.  This i s  w e l l s and F5 M a t s q u i  subsidence.  have d i l u t e d  sand c o v e r  leachate  zone w h i c h a r e then  due t o  In  leachate  coupled  w i t h an  s t r e n g t h , which  infiltration  that  due t o l a r g e  Some w e l l s s u c h a s F2 M a t s q u i ,  Stride indicate increased  likely  The w e l l s  t h e w e l l above t h e l e a c h a t e  i n t h e c a s i n g c a u s e d by l a n d f i l l  because of the l a n d f i l l ' s  low.  are mostly  rainfall  i n Richmond  where f r e s h water has e n t e r e d a crack  is fairly  flushing  F-2 and  i s most  out o r g a n i c s  deposited  into the  leachate. 5.2.3.  PRECIPITATION  Comparison o f weekly p r e c i p i t a t i o n stations data  i s shown below  i s presented  i n Appendix  station  of the t h r e e  1600  precipitation  mm  International  i n Figure  The w e e k l y  In g e n e r a l ,  weather  precipitation  the wettest  i s Vancouver Harbour, which r e c e i v e s per year.  that averages  Inspection  C.  5.2.  from t h e t h r e e  of F i g u r e  just  The d r y e s t over  station  weather over  is.Vancouver  1100 mm/year.  5.2 i n d i c a t e s an u n s e a s o n a b l y d r y and  m i l d autumn and m i d - w i n t e r p e r i o d where m i n i m a l amounts o f precipitation keeping  occurred.  cumulative  throughout  These p e r i o d i c d r y p e r i o d s  precipitation  the study  period.  over  20 % below  helped i n  normal  111 FIGURE 5.2 - C o m p a r i s o n o f Weekly Weather S t a t i o n s Note  Precipitation  : V a n c o u v e r H a r b o r S t a t i o n was d i s c o n t i n u e d  From T h r e e  a t end o f M a r c h  200-  E E c  L e g e n d  z: g  150  Q_  100  I  zn  AIRPORT  EES HARBOR ED  ABB0TSF0RD  (J Ld  cr Q_  50-  Ld Ld  TIME in months The indicate  results  discussed  that excessive  cause t h e g r e a t e s t production.  p r e v i o u s l y and ones p r e s e n t e d  infiltration  changes  i n leachate  A l t h o u g h an i n c r e a s e  found by many a u t h o r s production,  this  study  evident  large precipitation  negative  on t h e s t u d y  correlation  when  This  episodes.  was  h a s been  t o h e l p gas  excessive especially  To s t r e n g t h e n  this  a n a l y s i s ' u s u a l l y indicate a strong  r e l a t i o n s h i p between  parameters  i n moisture content  areas.  may  s t r e n g t h and gas  found the o p p o s i t e  fell  observation,  precipitation  ( s e e C h a p t e r 2 - L i t . Review)  precipitation after  of t h i s  later  precipitation  (See A p p e n d i x F . 3 ) .  The main  and v a r i o u s  reason  for this  other negative  112 correlation or  the  i s probably  p r e c i p i t a t i o n shock  population. One  This  increased  5 %  5.3  (See  Premier  with  decreasing  Results  and  the  r e s t of  clear, since  the  the  vacuum may  The  deeper do  not  well  decreasing was  see  of  well.  decrease  taking  i t out  profound  the  of  (See  may  due  the  F i g . 5.6) to t h i s  in 50  %  to  or  gas  the  The percentage  sample So  to  CH^  plotted in  Fig's  i n CH^  %  study  period.  The  added  in precip.  the C 0  fraction  of  Results  however,  indicate  where some d r o p  but  d r o p , C O 2 % c h a n g e s were  a  % and  the  be  drops  t o methane p e r c e n t .  2  at  these  p r e c i p i t a t i o n would r e s u l t  phase.  never  vacuum d u r i n g  Other w e l l s  to r e s o l u b i l i z e  gas  methane  gas  unsampled  throughout  r e l a t i o n s h i p between C 0  Stride be  i f increased  believed  the  indicate accelerated  CO2 % relative  generally  with  presented  percent  i s on  In a d d i t i o n t o a methane p r o d u c t i o n to  abruptly  a i r from a i r i n t r u s i o n .  i n the  e x h i b i t a general  analyzed  production.  study p e r i o d .  cause the  unrepresentative  5.6  microbial  r a p i d l y from o v e r  i n mid-November.  This  be  leachate  zone  gas  responded q u i t e  % dropped very  atmospheric  concentration  do  St.  of  unsaturated  of p r e c i p i t a t i o n i n d e c r e a s i n g  months.  5.5  effect  the  of  i n l e s s t h a n a month a f t e r a m a j o r  influx  i s not  samples may  5.3,  5.4)  throughout  contribution  diluted  loading  Premier  i n d i c a t e CH^  Figure  recovered  winter  the  from volume d i l u t i o n  precipitation infiltration.  precipitation  P2  has  sample w e l l , P2  Figure  either  p r e c i p . , except  in C 0  2  %  to a m i c r o b i a l l y mediated  in  2  ,  no F7  in Feburary-March phenomenon.  113 FIG.  5.3-  TEMPORAL VARIATION OF WEEKLY PRECIP. vs. GAS % G7 RICHMOND 150-i  ,  •  E  ,-60 -50  — I - 4 0 ZZL  z: o  O - 3 0 Q:  I  -20  i1 1•1 i  Ld  Q_  -10  o  Ld Cd  Q_ Ul  <  -0  Q_  v  ^  A  A  <<r  o  ^  ,<o Qr s.  TIME in m o n t h s P2 PREMIER St. 150-i  -60  125100 A  g  Ld  Q_  -40  CH4  C02  75  Q_ O  -50  Legend  z: o  Ld - 3 0 DC Ld  Q_ - 2 0 Ul  5025-  -10  0 V  i i—  N°  A A ^  /*>  3r &  ^  <  -0 ^  TIME in m o n t h s FIG.  5.4 -  TEMPORAL V A R I A T I O N OF WEEKLY GAS, P2 PREMIER S T R E E T  PRECIPITATION  VS.  NH3-N  1 14 FIG.  5.5  TEMPORAL VARIATION OF WEEKLY PRECIP. vs. GAS % F3 MATSQUI  E c iz o 1— pi i *  —  Q_ O LxJ  -60  •125-  -50  100-  -40  NT  £  150-T  75-  -30  o  Legend 50-  A  CH4  X  C02  -20  mo  0•V  /X.  <o  ^  LxJ i. i LxJ  25-  Q_  ^  -10 JJ  •ny~i  r>  ^  cT ^  /'O  /VJ  <^  Q_ CO  <  -0  *<  ^  ^  ^  ^  f #  ^  TIME in m o n t h s F7 STRIDE 150-  E  125-  C  z o  1—  1  1007550-  K  (J LJ C£ Q_  25-  0-  ^ # # cf ^ <^ ^ ^ TIME in m o n t h s FIG.  5.6 -  TEMPORAL V A R I A T I O N OF WEEKLY GAS, F7 S T R I D E A V E .  PRECIPITATION  VS  NH3-N  115 5.2.4. In  TEMPERATURE  a l l wells,  temperature for  with the c o l d e r  a general decrease w i n t e r months.  four wells are presented i n Figs  g e n e r a l , most gas in  t h e r e was  ambient  temperature  a i r temperature  5.7  the  fluctuations  infiltration T h i s may  be  may  range  located  "threshold  G7,  goes  in different  at these l a n d f i l l s  leachate  (Tw)  like and  D9  gas  D9  be  infiltration  and  wells,  be due  creates  could  colder  i n Richmond.  t o a Tw  of how  ranges  and  by  - 23°C.  the  lower  than a could  lesser  precip. to  decrease in  measured The  D9 and  reason  o t h e r Richmond  biological  system  that  The  differences  i n a l l t h e Richmond  study, w e l l s  much s p a t i a l  well  precipitation  like  heat.  where  more.  the study p e r i o d .  the h i g h e s t  o f 28  even  In c o n t r a s t  very l i t t l e  a i r temperatures  insulating  precipitation  temperature  capacity  (Tg) o v e r  in  o t h e r t h r e e deeper  This  to a very e f f i c i e n t  l a r g e v o l u m e s of  indication  16°C  preceeded  be r e g u l a t e d , b y  temperatures  relatively.unaffected  between t e m p e r a t u r e an  12°C.  were c o n s i s t e n t l y -  Also,  The  Richmond e x h i b i t  from a Tg of 32  Richmond may  than  may  d e c r e a s e t o no  insulating  temperature  Richmond t e m p e r a t u r e s ranged  landfills  fluctuation  months  (See F i g . 5.9)  29 t o 8°C.  of about  to the b e t t e r  some w e l l s  Richmond  from  temperature"  a g a i n be due influx  of the l a n d f i l l .  i n G7  In  This difference  a i r temperature  h e l p i n d e p r e s s i n g gas  the case  temperature wells  ability  fall  a  water  profiles  5.10...  reflect  i n t h e more m i l d  months between gas and  insulating  Temperature  through  by more d i v e r g e n c e i n t h e w i n t e r months. winter  i n gas and  h e t e r o g e n i t y can  occur  give  within  116 the  same l a n d f i l l . Within  gas,  a l l the w e l l s  leachate  minus 3°C The mixed  and  ambient  decrease  pattern  temperature  precipitation  Ave  infiltration  and CH^  T h i s was  especially  precipitation  for  - 7°C and  26  drops d i d not  have  apparent  in effect  in controlling  the c o l d  winter  at Matsqui  landfill  where  be  inhibited  production  important  that effect  by  the  periods.  frozen  effects  caused  related  by c o l d  to precipitation  in controlling  gas  temperatures.  infiltration  methanogens r e q u i r e an Eh o f -200  t o -300  t o changes  in  ORP.  r a i n w a t e r i n most c a s e s has  a positive  Eh  that  to methanogenic  and  p r o d u c t i o n i s ORP.  and a r e v e r y s e n s i t i v e  rates.  large  have h e l p e d gas p r o d u c t i o n w h i l e !  parameter  c a u s e a shock  effect  was  during  Another  Infiltrating  In  both  to temperature  OXIDATION REDUCTION POTENTIAL  p r o p e r growth  seem t o  of t h e c o u p l i n g  5.2.5.  mentioned,  overall  However, t h e e f f e c t  related  could  may  some d e t r i m e n t a l  be v e r y  an  F 3 ) , t h e r e a r e sometimes  because  surface  infiltration  which  may  indicate  f o r most o f t h e w e l l s .  drops.  directly  of the l a n d f i l l  already  28  ranges f o r  %.  observation  offsetting  (F2 and  i s not c e r t a i n  freezing  could  - 7°C,  temperature  the temperature  to temperature  drop  temperature  gas  of methane p e r c e n t a g e  d e c r e a s e s due  surface,  a i r were 32  i n a i r and  %, w h i l e i n S t r i d e  One  the temperature  respectively.  Richmond L a n d f i l l , CH^  studied,  bacteria  hence,  l o w e r i n g gas  Unfortunately, this  i s one  parameter  that  As mV  may  was  117 FIG.  5.7 -  TEMPORAL CHANGES IN GAS AND AMBIENT TEMP. F2 MATSQUI  TIME in m o n t h s FIG. TEMPORAL CHANGES F7 S T R I D E A V E .  5.8 IN GAS  AND  AMBIENT  TEMP.  118 FIG.  5.9-  TEMPORAL VARIATIONS IN GAS vs. AMBIENT TEMP. G7 RICHMOND  2:  CL Ld — I  if) <  25  -25 -20  IMP.  o  p30  15 H  -15  V—  10  -10  Gas Temp  20  5-1  A i r Temp  -5  0  0  -5  -5  AMBI EN1  CO  30-1  TIME in m o n t h s P1 PREMIER St. 25  25  CO  13 *co Q) O  20-  z:  15-  CL Ld hCO  <  O  h20  .  Q_ Ld  M5  h-  10 Ld  10-  CQ  c  5-  -5  0-  0  ^ & c**^  ^  ^  TIME in m o n t h s FIG. TEMPORAL CHANGES P I PREMIER S T .  5.10 -  IN GAS  AND  AMBIENT  AIR  TEMP  <  119 not  monitored  available  at  the  5.2.6. A  few  b e c a u s e a downhole  authors  during  emission  flux  high pressure monitored pressure  relationship (See  low  analysis.  built  static  lower The  reason  which  likely,  two but  landfill.  My  results  w e l l s where f a l l i n g i s the d i r e c t anomaly may  sensitive  due  to changes  a decompression  of  one  pressures  which, t r a n s l a t e s i n t o  observed  i n these  landfill's observed well  cover  characteristics. to barometric  "tight"  clay  cap  could  was  plots  a  pressure. an  be  unusual causing  of what s h o u l d  during  would c a u s e  pressure  four l a n d f i l l s  to respond  constructed  low  may  in barometric  landfill  no  and  to l a n d f i l l  The  why  the  indicate  pressure  regimes.  main r e a s o n  only  flow  landfill  effect  from  no  would o b s e r v e  5.16  pressure  The  latter  the  pumping  Pearson C o r r e l a t i o n  opposite be  increase in  indicate  between gas and  have  T h i s phenomenon  i n not  a l s o i n the  5.15  1981)  comparing.barometric  parameters  correlation  Shen,  to pressure  p e r i o d by  flow.  and  p e r i o d s , an  due  is a relationship,  for this  metabolism being most  gas  of F i g s 5.14,  i n Matsqui  the  study  t o 5.16)  negative  flow,  my  pressure  landfills  inside  between t h e  Inspection pattern  up  If there  significant  e t a l . , 1982  barometric  from c o v e r e d  F i g s 5.11  not  FLOW  (Thibodeaux  throughout with  r e d o x p r o b e was  time.  STATIC GAS  observed  insitu  lower pumping  result  Landfills pressure  be  microbe pressure,  or  lower  lower  internal  static  gas  responses  from e a c h  flows. were  :  t h a t have been  fluctuations  that helps  found.  to b u i l d  up  have a internal  120 FIG.  5.11  GAS FLOW vs BAROMETRIC PRESSURE B8 RICHMOND -103  O  z  "E  UJ -102  Cxi ZD  (/) CO Ld  Cxi  O _j  0_ -101  O cr: Ld  Ld  o  ^ ^ o^ ^  ^  0  ^  ^  ^  ^  <  -100  CD  -104  O 0_  TIME in m o n t h s FIG. 5.12 - GAS FLOW vs BAROMETRIC PRESSURE P2 PREMIER ST. 10-1  '<  -z.  Pressure  8-  -103  -102  O  Ld or: CO CO Ld  Cxi  0_  4H  —I  cr -101  2-  Ld  0 J  ^  |  4  —|  ^  n  ^  —T  <$>  —|  ^  —|  <<s>^  —|  —  ^  1  • -100  ^  r—  Ld  oor: <  121  F I G . 5 . i 3 - GAS FLOW vs BAROMETRIC PRESSURE F8 STRIDE 20-1  -103  a Q_  LxJ or:  -102  ZD CO CO  I I 1 LJU  or: CL  -101  O or i  Ld  o  CrT  -100  ^  <$ ^  ^  <$>  <  ^  TIME in m o n t h s F I G . 5 . i 4 - GAS FLOW V S . BAROMETRIC PRESSURE F2 MATSQUI  100  103  Pressure  o Q_  or 3 CO CO LU or Q_  r-102  |-101  .  o EE i— Ld  ZE  O or < 100 CQ  122 G.  5.15  GAS FLOW vs BAROMETRIC PRESSURE F3 MATSQUI  200-1  -103  150  o  Q_  Ld  cr.  -102 ZD CO CO Ld  iooH  o:  -101  50H  o I 1  Ld  o  0H  -100  <  CD  TIME in m o n t h s IG. 5 . i 6 - GAS FLOW vs. BAROMETRIC PRESSURE F4 MATSQUI  O CrT <  100 CD  123 landfill  pressures,  • '  whereas, i n t h e s e  • .  four l a n d f i l l s ,  were c o n s t r u c t e d of h e t e r o g e n e o u s m a t e r i a l where landfill  pressure  Since changes  may  be  barometric  relieved  pressure  in static ; l a n d f i l l  mechanisms b e h i n d  this  continuously  fluctuation  gas  flow,  n a t u r a l flow.  the  caps  internal  through  cannot  the  explain  t h e r e must be  cover. the  other  I b e l i e v e these  mechanisms  are: 1.  M i c r o b i a l a c t i v i t y - p r o b a b l y t h e most i m p o r t a n t mechanism f o r s t a t i c gas f l o w . Internal l a n d f i l l p r e s s u r e b u i l t up t h r o u g h m i c r o b i a l gas p r o d u c t i o n c a u s e s c o n v e c t i o n f l o w t o w a r d s t h e lower p r e s s u r e . l a n d f i l l surface.  2.  T h e r m a l f l o w - T h i s c o u l d become i m p o r t a n t d u r i n g w i n t e r months when a warmer l a n d f i l l i n t e r i o r and c o o l e r l a n d f i l l s u r f a c e cause thermal c o n v e c t i o n c u r r e n t s t o f l o w upward t h r o u g h t h e l a n d f i l l .  3.  D i f f u s i o n f l o w - May flow i s minimal.  4.  C e l l c o n s t r u c t i o n - The m o r p h o l o g y of t h e c e l l and how i t i s c o n s t r u c t e d can i n f l u e n c e gas p r e s s u r e b u i l d - u p and how t h i s p r e s s u r e i s r e l e a s e d .  The is  fraction  probably  increase during  of  s m a l l , but  of w e l l f l o w s  the  last  construction variability  static  may  are probably of gas  flows  d e t e c t i o n t o over  in Matsqui  (F1, F2,  F3,  registered  the h i g h e s t  and  the  by  convection  thermal  C6  i n Richmond  convection  study.  The  i n each gas  L/min. F4)  and  static  to  the  (see Appendix  effects  of  4)  cell  c o n t r i b u t i n g g r e a t l y to the  static 290  flow caused  where  have c o n t r i b u t e d s u b s t a n t i a l l y  of D9  months of  Measurements of no  the  become i m p o r t a n t  the  spatial  landfill. flows  in t h i s  In most Richmond  study  ranged  instances, certain (D9  flows, while  and  C6)  S t r i d e Ave  always and  from wells  1,24, Premier  St. wells  interesting 31st. at  observation  and Mar.  Why  this  In most  CH  between 4  correlations  with  i n c r e a s e d gas  measurements  how  a n a l y s i s found  increased microbial a c t i v i t y  static  than  R's o f t h e  0.5000.  gas f l o w may  were done a t F1 M a t s q u i  presented  in Figure  increase  o f gas f l o w indicating  factor  The r e s u l t s 5.17.  (in this  from  10 A.M.  pressure,  continual CH^  %  on an h o u r l y  of these  decrease  with  i n flow  so p r e s s u r e  basis  in static  during  5.17  indicates a  two of t h e after  this  time.  i n c r e a s i n g or  pumping c a n n o t  (1981) d i d d e t e c t  i n d i c a t e the p o t e n t i a l gas f l o w .  be a -  for diurnal  Because Thibodeaux e t a l .  a diurnal fluctuation  pressures,  t h e above h y p o t h e s i s  may  field  to substantiate t h i s  claim.  flow  measurements a r e  of F i g u r e  t o 3 P.M.  t h e day,  results.  T h e s e r e s u l t s may fluctuations  case,  significant  change d u r i n g  Inspection  a steadying  barometric  i n these  work  no  The w e l l w i t h  S a m p l i n g p e r i o d s were done on d a y s of s l i g h t l y steadying  to  flow.  sample p e r i o d s .  results  wells  both  C6 Richmond, d i d show a r e s p o n s e of g r e a t e r  To s t u d y  (Dec.  pressure.  were a l l l e s s  flows,  i n a l l sample  by h e a v y r a i n s o r s u b j e c t e d  %) and s t a t i c , gas f l o w .  high  An  i n two sample p e r i o d s  were u n d e t e c t e d  instances, correlation  relationship increased  barometric  flows.  happened i s n o t known, s i n c e  were n o t p r e c e e d e d  unsually high  four  t o n o t e was  3 r d ) , flows  S t r i d e Ave.  periods  u s u a l l y r e g i s t e r e d lower  in internal  landfill  be t r u e , but needs more  125 5.2.7. The  N /0 2  GAS RATIO  2  a n a l y s i s o f gas p e r c e n t a g e  unusual concerning most for  instances,  N /0 2  gas r a t i o s  2  the N / 0 2  ratio  2  these wells  variation  i s around  4.0, w h i c h  ratio  ratio  of these  throughout  i s presented  time.  One t h i n g  sample by t h e gas p a r t i t i o n e r .  1.  This  are l i s t e d  be c a u s e d  in Figs  t o note  the  could  October.  higher  20.0.  For four  5.18 & 5.19.  figures indicate a large v a r i a b i l i t y  in late  The  i s common  i n M a t s q u i and  sometimes e x c e e d  Str  sample w e l l s  In  ( F 1 , F3 Mats a n d F2, F7 S t r ) t h e t e m p o r a l  of t h i s  Inspection  that  something  from some sample w e l l s .  n o r m a l a i r i n t r u s i o n , however, some w e l l s  S t r i d e Ave e x h i b i t r a t i o s of  r e s u l t s uncovered  i s t h e 0.0 r a t i o  o f F7  i s b e c a u s e a i r was n o t d e t e c t e d i n N /0 2  ratios  2  f o r a l l the  i n Appendix E.  proportion by t h r e e  There c o u l d  of the  of N  from t h e gas i n t h e s e  2  processes  listed  be an i n c r e a s e  of N  wells  below: 2  due t o  denitrification. 2.  Consumption operating  3.  nitrate since  the l a n d f i l l  could  redox  processes  occur.  a l s o be consumed by a e r o b i c  microorganisms  the l a n d f i l l .  #1 t o be s u b s t a n t i a l , t h e r e  source of n i t r a t e , electron  within  Oxygen c o u l d in  For  o f oxygen by i n o r g a n i c  acceptor  which d e n i t r i f i e r s for N  2  production.  i s u n l i k e l y t o occur  the n i t r i f i e r s  would have t o be  use as t h e t e r m i n a l The o x i d a t i o n  i n an a n a e r o b i c  are s t r i c t  sufficient  aerobes.  o f ammonia t o  landfill  environment  126  n o . 5.i7 . W E L L FLOW vs. HOURLY TIME F1 MATSQUI 90  20 H 9  1  1  1  10  11  12  r 13  TIME IN hours  1  1  14  15  1 16  127 FIG.  5.18  -  LANDFILL GAS N 2 / 0 2 RATIO vs TIME MATSQUI F1 a n d F 2  & 4 & ^ 4> ^  &^  TIME in m o n t h s STRIDE F2 and F7  TIME in m o n t h s FIG.  5.19  L A N D F I L L GAS N2/02 S T R I D E A V E . F2 AND  -  RATIO F7  VS.  TIME  1 28 Mechanism agents  #2 may o c c u r  such as m e t a l s and s u l f i d e  through  compounds c o u l d  consume  oxygen  b u i l d - u p of N  2  2  #3 i s p r o b a b l y  C>  from l a n d f i l l  in  landfills  gas.  a certain  can  utilize  utilizing  t h e most d o m i n a n t  The c o n s u m p t i o n  i s generally  the early  is  considered  group of a e r o b i c the 0  2  by a e r o b i c  t o be a s h o r t  bacteria  as a t e r m i n a l  2  summarizes  this  called  electron  methane gas a s a g r o w t h  (1982)  of 0  s i n k of gaseous  stages of a completed l a n d f i l l .  process  However,  there  Methanotrophs  C0  The f o l l o w i n g  oxidation  bacteria  term  acceptor  substrate.  produced as a gaseous b y p r o d u c t . Large  reducing  to 0 .  Mechanism  during  amounts where  redox p r o c e s s e s , . h e n c e c a u s i n g a g r e a t e r  relative  2  in.substantial  2  that  while i s then  equation  from  o f methane t o C 0 by 2  methanotrophs: . CH  4  In landfill  ---> CH OH ---> H'CHO .  > H'COOH ---> C 0  3  theory,  these b a c t e r i a  could  gas pumping.  diffusion  through the cover,  F o r a more d e t a i l e d  and t h e i r  Higgins  (1979) and Leak a n d D a l t o n addition  methanotrophs  under the  related  discussion  ecology  nitrogen  nicely  i n t h e upper  e n v i r o n m e n t where ample amounts o f a i r i n t r u s i o n c a n  o c c u r due t o oxygen  In  survive  2  growth a c t i v i t y  t o consuming  can a l s o  to nitrate  source of n i t r a t e s  2  landfill  on m e t h a n o t r o p h  refer  t o Wolfe and  (1986).  and C H  4  a c t as n i t r i f i e r s ,  much l i k e  normal o x i d i z i n g  0  or v i a  f o r growth, oxidizing  ammonia-  n i t r o s o m o n a s a n d n i t r o b a c t e r do  conditions. required  So mechanism  #3 c a n p r o d u c e  f o r #1 t o f u n c t i o n .  This  129 symbiotic N /0 2  r e l a t i o n s h i p p r o d u c e s even more N  r a t i o even  2  analyzed  for  further.  given  methane d e g r a d i n g 2  gas  2  5.3.  CH  4  the  right  g r o u p of  r a t i o observed  addition  %,  other  f l o w can  also  Interestingly  parameters be  enough, pH  strongest  strength  and  CH  may  be  four  was  C0  flux,  2  factor not  found  done on  the  relationship  to  ionic  from 0.35  to  0.70  for  s e p a r a t e and  variables  to  Stride  and  CH^  predict Ave.,  CH  be  strength  studied.  4  % are  ORP  a  factor  between  vs.  Sig  CH  4  4  % = 31.66 R  2  +0.725  = 0.2319  Sig  %  %.  above  ionic in  combined w e l l  gas analysis.  analysis  listed  below  correlation  Strength) -  1.22  (Gas  F < 0.000  N =  49  RICHMOND LANDFILL CH  i n CH^  listed  2  = 0.5725  gas  for  each.  between any  LANDFILL  % = 29.31 + 28.57 ( I o n i c ... + 8.00 (C0 Flux) 2  and  found.  . MATSQUI  R  affecting  fluctuation.  regression  where no  % was  %  occurring  stepwise m u l t i p l e  anomalous  strength  parameters  for  resulting  ionic  i n CH^  R's  except  the  this  PCT.  %.  landfill  causing  landfills  4  equations attempting  CH  of  s u c h as  considered a  the  The  not  conditions,  t o p r e c i p i t a t i o n , t e m p e r a t u r e and  indicate  the  bacteria  i n two  Pearson c o r r e l a t i o n s  ranged  the  l e a c h a t e was  environmental  VARIABLES THAT AFFECT METHANE GAS In  the  increase  nitrate.  Therefore,  N /0  Unfortunately,  to  2  (Tg) F <  PREMIER ST.  + 0.189 0.000  (C0 N  LANDFILL  =  2  86  Flux)  Flow) +  ...  of  130 CH  % = -27.93 + 1.334 ... + 358.47 ( I o n i c R The  = 0.8288  2  results  of v a r i a b l e s expected  (Tg) - 9. 13. (Gas Strength) S i g F < 0.000  of t h e s e  t o CH^  % are  equations from  • •  indicate  the best  correlation  S t . d a t a , which  i n v a r i a b l e s : i s not  was  as e x t r e m e  as  2 Landfill.  normal d i s t r i b u t i o n  of  ionic  B e c a u s e of t h e  T h i s was  also  low  R  strength in Matsqui,  equations are considered suspect  (1980) t r i e d  =30  .  Richmond o r M a t s q u i  sample w e l l .  N  Premier  s i n c e the v a r i a b i l i t y  F l o w ) + 67.19."(CO- F l u x )  for predicting  the case  r e g r e s s i n g 5 day  's and  a l l three  CH^  % in a given  when McBean and  cumulative  precip.  non-  Farquhar  and  ambient " a i r 2  temp, on of  less  their than  methane p e r c e n t d a t a .  indicate  R  's.  0.5.  Regressions b e c a u s e of t i m e was  Their results  on  s e p a r a t e sample w e l l s were not  constraints  and  attempted  t h e sample p o p u l a t i o n  (N =  15)  c o n s i d e r e d too small f o r m u l t i p l e r e g r e s s i o n . Each parameter  briefly 1. Gas  that  appeared  i n the t h r e e e q u a t i o n s  m e n t i o n e d below e x p l a i n i n g Temperature  a concomitant  (Tg)  response  both parameters  The  w i t h an  i s probably  increased microbial temperature  -  (Ta).  activity Decrease  the  2.  Gas  again probably  Flow -  An  a function  result by  has  an  Increase  %:  4  have in  of  i n c r e a s e " i n ambient a i r due  to a  combination  infiltrated.  i n c r e a s e i n both of  %.  CH  shown t o a  of a c o m b i n a t i o n  i s mainly  that  influence  was  i n c r e a s e i n CH^  of Tg  cooler precipitation  t h e y may  i n c r e a s e i n Tg  caused  o f Ta and Static  why  is  gas  f l o w and  increased microbial  CH  4  activity.  % is  131 However, t h e r e d e c r e a s e s CH 3.  CC>2 F l u x  and  CC>2 %,  C  a situation  % b e c a u s e of mass  4  -  T h i s parameter  w h i c h can  where i n c r e a s e d  gas  flow  dilution.  is a  f u n c t i o n of  e i t h e r c a u s e an  increase  static or  gas  flow  decrease  in  •  H 4  4.  might a l s o be  Ionic  Strength  (I) -  leachate  specific  c o n d u c t i v i t y as  was  the  only  regression  i s most into  equation.  Since  i o n s had  the  effect  a result  rainfall  considered  S t r i d e Ave.  methane p e t . results  of  Probably some of  of  was  never  highest  that during  i n s o l u t i o n , an  of  CH  i n c r e a s i n g CH strength  region  originally not  the  in  variable reflects  or  f a c t o r i n CH  w h i c h was  four  the  fact  no  was  a  stayed  4  This the  the  increase  in  %.  increase  This  leachate  less dilution  being of  parameters mentioned above,  the  4  why  o p e r a t i o n a l , so  %.  flushed  leachate  study  external perturbances.  low  of  the  ( A p p e n d i x D) .  consistently exhibited  i n the  period,  steady  assessment made  age  i t ' s advanced  t o have a v e r y  w e l l s was  S t r i d e Ave  landfill  B e c a u s e of  c a s e when an  percentages  the  4  considered  S t r i d e Ave.  t h e main r e a s o n  the  with  t o be  B.5.  infiltration.  In a d d i t i o n t o t h e  age,  shown i n A p p e n d i x  of h i g h e r  methane p r o d u c i n g  from d e c r e a s e d  was  this  of d i s s o l v e d i o n s  likely  the  i s c a l c u l a t e d from  l e a c h a t e - s p e c i f i c v a r i a b l e that  concentration dissolved  T h i s parameter  the  s t a t e CH  4  study well  e x t r a c t i o n system  i s operating.  been o b s e r v e d  t o d r o p r a p i d l y i n some w e l l s  stem  from  extraction  production  However, t h i s  c a s e when t h e  may  i s not CH  (Len  4  system  occurred always  the  percentage  Hanson,  pers.  has  1 32 comm., 1987) a f t e r pumping. result that  of not only  This  the e x t r a c t i o n  S t r i d e Ave may have r e l a t i v e l y  Matsqui  rates  In  r a t e . So even  fluctuations  4  which s t i l l  and F5 M a t s q u i .  i n only Well  the study p e r i o d  Results  the large drop  i n CH  show  combination  probably This  volume d i l u t i o n  4  %  was o p e r a t i o n a l , operational  winter  constant  demand  periods.  % i n P2 may be c a u s e d and decrease  t o t h e system, s i n c e  exceeds a decreased high  rate  o f methane.  may be a f u n c t i o n  accompanying  by a  i n gas  rate  the rate of a i r o f methane  of a i r i n t r u s i o n p r o b a b l y causes a The i n t e r m i t t e n t d r o p s o f C H of i n t e r m i t t e n t  well  4  %in  pumpage  the e f f e c t s of p r e c i p i t a t i o n i n f i l t r a t i o n  and gas  decrease.  VARIABLES 5.4.1.  CH  R e c o v e r y o f t h e methane p e t . may be hampered by t h e  vacuum a p p l i e d  production.  5.4.  4  of p r e c i p i t a t i o n i n f i l t r a t i o n  temperature.  temperature  produce high  w h i l e F5 M a t s q u i had  to i t during  Matsqui  i t s mass  t h e younger  P2 P r e m i e r was on  vacuum a p p l i e d  F5  though  two sample w e l l s ,  intermittent  intrusion  than  % v a r i a t i o n with  were s u c c e s s f u l  vacuum t h r o u g h o u t  constant  rates  methane p e r c e n t a g e s ,  where g a s e x t r a c t i o n  to c o r r e l a t e CH  P2 P r e m i e r  high  % i s probably a  c o n t i n o u s pumping.  the l a n d f i l l s  attempts  flow  4  gas p r o d u c t i o n  o f methane a r e much lower  and R i c h m o n d . l a n d f i l l s  even d u r i n g  i n CH  a i r i n t r u s i o n , but a l s o  l a gfar.behind  production  decrease  THAT AFFECT AMMONIA GAS CONCENTRATION  INTRODUCTION  NH,-N g a s c o n c e n t r a t i o n  ranged  from n o n - d e t e c t a b l e  (< lOppb)  133 to  over  600 ppb d u r i n g  distribution than  from t h e f o u r  expected  higher  than  but w i l l  a general  the  winter  the study,  into  study  forthis  landfill  trend, dropping  began, t h i s  a higher  Higher  NH^-N  was c o n s i d e r e d  that  flow  methane landfill  could  causing  Hence, h i g h e r  NH^-N  infiltration  Post  lowest  moved  levels in  felt  there  were maybe  variation  in leachate,  o f NH^-N g a s methane  The pH o f t h e s o l u t i o n  was  o f NH^ a v a i l a b l e f o r t r a n s f e r i n the leachate  important  was b e l i e v e d t o  because of the p o s s i b i l i t y  be a c t i n g a s a s t r i p p i n g  a c c e l e r a t e d NH^-N methane  transfer into  Lastly,  was g e n e r a l l y c o n s i d e r e d  r a t e s r e l e a s i n g more NH^-N a n a l y s i s on t h e s e  mechanism w i t h i n  f l u x e s were c o n s i d e r e d  NH^-N gas c o n c e n t r a t i o n s .  metabolic  levels  i n t h e g a s a s r e g u l a t e d by H e n r y ' s Law.  Methane f l u x  higher  NHg-N  section.  to their  author  infiltration.  to c o n t r o l the f r a c t i o n  t h e gas phase.  phase.  This  a r e not q u i t e  g a s NHj-N  T h e s e were pH a n d NH^-N  and p r e c i p i t a t i o n  reflect  the  i n S t r i d e Ave.  parameters that a f f e c t e d the temporal  believed  much  months.  concentrations. flux  lower  S t r i d e Ave. e x h i b i t e d v e r y  The r e a s o n s  most  since  i n Richmond w h i l e  be t h e o r i z e d i n a l a t e r  decreasing  When t h i s four  occurred  i n the leachate, while  Throughout in  i n NH^-N g a s  were s u r p r i s i n g  l e v e l s were d e t e c t e d  NH^-N c o n c e n t r a t i o n s .  apparent,  Results  s i n c e Richmond had q u i t e a v e r a g e t o h i g h  concentrations low  study.  landfills  concentrations  expected  was u n u s u a l  t h e 8 month  t h e gas to result i n  precipitation  t o s p e e d up m i c r o b i a l into  the gas phase.  c o n t r o l parameters  i n d i c a t e that  none  1 34 of  the  original  a s s u m p t i o n s were t r u e  Temporal v a r i a b i l i t y study w e l l s  are  i n more d e t a i l temp, was  presented later.  The  wells  F2,  F7  for  plotting  Direct  gas  P2  D9,  the  C6,  NH^-N  through  found  f o r 9 of  5.63  and  t o be  the  gas  parameter a f t e r  variability  D.55  ;  discussed  four parameters,  of NH^-N  Richmond, F2, These w e l l s  possesed complete  the  NH^-N  the  wells,, t h e r e  5.20  gas  through  and  5.27  gas.  F5  Matsqui,  were c h o s e n : sets  show  (15)  of  gas  shown on  concentration,  the  connected  i s a large  standard  deviation  instances,  the  trend  during  first  high  line  i n most  (see  i s NH^-N  bar  plot.  f l u c t u a t i o n of  v a r i a t i o n which  gas  instances  concentrations  i s around  Generally,  between p r e c i p i t a t i o n and  analysis  a l l four this  100  %  i n most  to drop o f f r a p i d l y  p r e c i p i t a t i o n . p e r i o d i n November.  correlation  For  with  In n e a r l y a l l  NH^-N  Appendix D).  chart  P e a r s o n c o r r e l a t i o n a n a l y s i s i n d i c a t e some s l i g h t  t o -0.5391.  the  weekly p r e c i p i t a t i o n i n 8 of  Weekly p r e c i p i t a t i o n i s shown i n t h e  of  the  data.  v a r i a t i o n of NH^-N  the  basis.  these  Premier St..  i n s p e c t i o n of F i g ' s  wells.  the  and  consistent  PRECIPITATION  the  of  i t was  because a l l 9 w e l l s  and  5.20  In a d d i t i o n t o  p l o t t e d were B8,  5.4.2.  temporal  in Figs  a n a l y s i s to e x p l a i n  S t r i d e Ave.  any  these parameters vs.  plotted, since  post-sampling  leachate  of  on  landfills. and  any  precipitation  v a r i a b l e was  precipitation  preceeding  other  taken  the  The  as  given  Nfr^-N gas r values  the  i n combined  range  statistical  negative  from  -0.3745  analysis,  cumulative  sample p e r i o d .  the  2 week This  well  was  P R E C I P I T A T I O N in mm M Ul  P R E C I P I T A T I O N in mm  Ln O  M  o  N H 3 - N IN LANDFILL G A S ppb  N H 3 - N IN LANDFILL G A S ppb  ge i  P R E C I P I T A T I O N in mm  P R E C I P I T A T I O N in mm °  cn  O  0^  J  TIM rn  5' UJ  '0,  ont hs  NH3-N IN LANDFILL GAS ppb  NH3-N IN LANDFILL GAS ppb  LZ  I  pH  GAS T E M P . IN Celsius  3  3 o IT  N H 3 - N IN LANDFILL GAS ppb  N H 3 - N IN LANDFILL G A S ppb  2Z  I  GAS TEMP. IN celsius  NH3-N IN LANDFILL GAS ppb  pH  u  '  NH3-N IN LANDFILL GAS ppb  6£l  19 I  N H 3 - N IN L E A C H A T E  GAS TEMP. IN celsius  N H 3 - N IN LANDFILL G A S ppb  mg/L  pH  °°  2M  N H 3 - N IN LANDFILL G A S ppb  N H 3 - N IN LANDFILL G A S ppb  w  N H 3 - N IN LANDFILL G A S ppb  146 assumed t o inflow was  be  into  the  decided  influx  a  r e l i a b l e estimate s y s t e m between  of  upon b e c a u s e c a l c u l a t i n g  more s i t e - s p e c i f i c Probably  the  most a c c u r a t e  on  would be  through a Box-Jenkins time  attempted  time-dependent  b e c a u s e of  T h e r e a number of d e c r e a s i n g NH^-N form  below:  1.  The  may  effective  decrease  the  transfer  into  2.  The  "wetting  acts  as  an  NH3-N and gas 3.  the  protonating  also  been c o l l e c t e d to  do  series  a  required  for  this  statistical variable  analysis,  precipitation  concentrations.  and  NP^-N  which  was  the  They a r e  influx  listed  l e a c h a t e and  may  in  be  point  unsaturated  ammonia mass a v a i l a b l e  for  zone  mass  phase.  front"  effective  precipitation  cumbersome and  way  scenario  constraints.  d i l u t i o n of  gas  This  effective  precipitation  r e a s o n s why  amount of  Precipitation  less  of  sink  the  l o w e r pH  f o r NH^-N  this  i s the  could  fauna that  NH^-N  Out #2  time  precipitation  to  NH^  +  gas  infiltrating  rainfall  by.resolubilizing  hence,  removing  the  i t from  the  phase.  microbial in  gas  an  t h a n had  analysis  not  this  variables  effective  sample p e r i o d s .  t h r o u g h a water b a l a n c e was  study.  the  of  " c h o k i n g " or  p r o d u c e NH^-N  available these  be  three  to  loading  a waste p r o d u c t ,  the resulting  transfer.  reasons, probably  dominant, mechanism  concentrations.  as  shock  in a f f e c t i n g  the  coupling  NH^-N  gas  of  #1  and  147 5.4.3.  NH3-N IN  In most c a s e s , throughout are  the  semi-inverse may  vary  l e a c h a t e NH^-N  study  exceptions  LEACHATE  p e r i o d much l i k e  s u c h as  Richmond  r e l a t i o n s h i p and  reflect  concentrations  this  down t o  i n F5 M a t s q u i  followed  by  t h o u g h some of  the  The  mg/L  to  indicates  any  correlation  was  t o be  (Fig.  5.52)  significant a fairly  o n l y c o r r e l a t e s t o an  One the  low  shows a p r o f o u n d  significant  since  reason  variation  r of  0.4258.  m a s k i n g of  why  NH^-N  p of  could  t h e mass t r a n s f e r of NH^-N  into  the  i n the  different occur. describe than  zone  (esp.  v a r i a t i o n s and  Therefore, the  sampling  the  gas  at  casing  certain  ( F i g . 5.48).  Even  interrelationship Landfill  two  The  well,  parameters  regarded  r  F2 but  as  0.025. not  d e s c r i b e more of  from t h e  gas  fact  t h a t most  phase p r o b a b l y  d e e p e r w e l l s ) where  concentrations leachate  of NH^-N may  and  not  whole ammonia s y s t e m , e s p e c i a l l y  Richmond) where u n s a t u r a t e d  exist.  leachate  i s not  stem  the  i n the  variability  S t r i d e Ave  the  i n l e a c h a t e may  gas,  values  between v a r i a b l e s . One  0.5605 and  There  to a cracked  gas,, o n l y Richmond  i t exceeds the  i n NH^-N  unsaturated  the  plots indicate a possible and  found  t h e NH^-N  for this  strength  between NHg-N i n l e a c h a t e  does.  whose l e a c h a t e  related  dilute  full  decreasing  which d i s p l a y s a  but  reason  i s again  rainwater  recovery  (Fig.5.36)  150  is  the.NH^-N gas  F5 M a t s q u i ,  change.  where l a r g e volumes of times  C6  from 2000 mg/L  d o e s not  concentration  zones g r e a t e r  occurs entirely  pH  may  entirely  in wells than  (other  8 meters  of in  1 48 5.4.4.  LEACHATE pH  In most i n s t a n c e s , t h e pH f o l l o w s t h e same p a t t e r n s NH^-N  during  the study  precipitation  infiltration  c a u s e s an a c c u m u l a t i o n rainwater  may  This  i s probably  decreasing  i n organic  also help  cause the system organic  period.  gas p r o d u c t i o n ,  t o be more s u s c e p t i b l e t o pH d r o p  results  of.the  Pearson c o r r e l a t i o n  no s i g n i f i c a n t  statistical  gas  concentrations  i n any o f t h e l a n d f i l l s .  from  controlling  the formation  The  T h e r e may  NH^-N  gas as r e g u l a t e d by t h e  already  of a i r s t r i p p i n g  was n o t i c e d  discussed.  by methane f l u x  i n a few w e l l s  c a u s e d by gas  s u c h a s B8, D9, C6 R i c h and  i n d i c a t e some e l e v a t e d c o n c e n t r a t i o n s  increased CH  4  Pearson c o r r e l a t i o n  p l o t s i n d i c a t e some  coefficients  wells  show a s i g n i f i c a n t  found  t o have s i g n i f i c a n t which e x h i b i t  Potential  These  o f NH3-N gas w i t h  flux.  though these  Matsqui,  NH^-N  be a  S t r i d e ( F i g ' s 5.30, 5.34, 5.38 and 5.58 r e s p e c t i v e l y ) .  Even  there  METHANE FLUX  effect  production  i n d i c a t e that  o f pH and l e a c h a t e  o f NH^-N  equilibrium expression  5.4.5.  plots  This  these  r e l a t i o n s h i p s between pH and  r e l a t i o n s h i p due t o a c o m b i n a t i o n  F4  t h e pH.  the b u f f e r i n g a l k a l i n i t y t o  are  F7  which  acids.  The  ammonia  due t o  a c i d s to suppress  to d i l u t e  as t h e  reasons  i n t e r r e l a t i o n s h i p , the  indicate that  correlation  (r).  none o f t h e f o u r  The o n l y two w e l l s  r ' s were two n o n - l e a c h a t e  wells., F1 and  r ' s o f 0.6439 a n d 0.6144.  why CH. f l u x  does n o t e x p l a i n any  149 variability  i n NH^-N  gas a r e l i s t e d  in point  form b e l o w :  2 1.  The  increased  f l u x i n kg CH^/cm -day may  large  volume d i l u t i o n  turn,  lower  NH^-N 2.  gas  grains  variation  i n many GAS  When t h i s considered i n gas.  rates  study  o f ammonia  expected  flow  a v a r i a b l e that  t o a c c e l e r a t e the  i n t o t h e gas p h a s e .  b e g a n , gas t e m p e r a t u r e could  o f NH^-N  (Tg) was  a f f e c t concentrations  However, a f t e r t h e s t a t i s t i c a l the parameter  that  and  best  of  graphical  describes  the  i n gas.  of the p l o t s e x h i b i t a f a i r l y  interrelationship  around the  f l u x e s a r e due t o a n a l y t i c a l  originally  variation  a  than  TEMPERATURE  i t has become  NH^-N  .  wells.  analysis,  All  with higher  i s n o t a s u b s t a n t i a l enough f o r c e  transfer  5.4.6.  NH^-N  are in  be t h e c a s e a t S t r i d e Ave  o f t h e methane  The v a r i a t i o n i n methane  not  could  fluxes are associated  internal velocities  n o r m a l mass 3.  This  a  concentrations.  The  refuse  o f g a s e o u s components so v a l u e s  than e x p e c t e d .  where low methane  actually create  between f a l l i n g  gas c o n c e n t r a t i o n .  consistent  gas t e m p e r a t u r e and  The s t a t i s t i c a l  decreasing  analysis also  indicates  strong  c o r r e l a t i o n between t h e two v a r i a b l e s . In t h e l i n e a r 2 r e g r e s s i o n a n a l y s i s , R 's g e n e r a t e d from t h e l e a s t s q u a r e s method were a l w a y s g r e a t e r f o r Tg t h a n t h e o t h e r p a r a m e t e r s a n a l y z e d (pH,  NH^-N  leachate,  ionic  strength,  CH  4  and CG>2 f l u x ) .  2 The  average R  Premier  from e a c h l a n d f i l l  S t . to a high  ranged  from a low of 0.2504 a t  o f 0.5247 a t M a t s q u i  landfill.  Results  150 from t h e Pearson c o r r e l a t i o n analyzed  exhibit  All  combined w e l l  four  correlations of  ranging  8 o u t o f 18 w e l l s  analysis  also  variables.  exhibit significant  f r o m a low o f 0.4716 i n Richmond t o a h i g h  0.6668 i n S t r i d e A v e . .  interrelated variable  that  exception  these  regression  also  indicates  t o NH^-N g a s a s i t was t h e o n l y  (Tw) r e p l a c e d of  that  a s i g n i f i c a n t c o r r e l a t i o n between  Stepwise m u l t i p l e  one  indicate  f i t into the equation  Tg a s t h e l o n e  stepwise  MATSQUI  are l i s t e d  variable.  = 0.4551  The r e s u l t s  LANDFILL  3  2  temp  below:  NH -N GAS (ppb) = -267.61 + 33.2 R  NH^-N g a s . The  S t . where l e a c h a t e  independent  regressions  independent  predicting  t o t h i s rule.was Premier  Tg i s somewhat  S i g F<0.000  (Tg)  N =49  STRIDE AVE. LANDFILL NH -N GAS (ppb) = -70.06 + 22.15 3  R  = 0.3366  2  S i g F<0.000  (Tg)  N = 44  RICHMOND LANDFILL NH -N GAS (ppb) = -68.42 + 10.84 3  R  = 0.2224  2  S i g F<0.000  (Tg)  N = 86  PREMIER ST LANDFILL NH -N GAS (ppb) = -908.77 + 48.10 (Tw) 3  R  2  = 0.3171  Inspection  S i g F=0.001  o f t h e above, r e s u l t s  w h i c h makes i t v e r y d i f f i c u l t predicting  N =30 indicate  some v e r y  low R 's  t o have any c o n f i d e n c e i n  NH.-N g a s c o n c e n t r a t i o n s  from t h e s e e q u a t i o n s .  In  151 addition  to f i n d i n g minimal  variables, Matsqui  results are  a non-normal d i s t r i b u t i o n  and  equations  Richmond NH^-N  were r e d u c e d  .  r e l a t i o n s h i p between  was  Since  discovered these  be  5.64  s c a t t e r around  expressed through  the  .  best  i n both  multiple  to a b i v a r i a t e r e g r e s s i o n  in Figures  large point  is  data.  f o r e a c h w e l l can  located  .  statistical  equation,  graphically.  5.67.  of v e r y  low  R  the  These p l o t s  These p l o t s e x h i b i t a  f i t line.  This point  2  indicative  regression  scatter  . 's l i k e  the  ones c a l c u l a t e d i n  this  analysis. The could 1.  somewhat l i n e a r  be  due  The  to three  higher  r e l a t i o n s h i p between Tg  reasons which are  landfill  gas  r a t e s , or v i c e - v e r s a .  more NH^-N  f o r mass t r a n s f e r i n t o t h e  The  greater  greater the  the  H e n r y ' s Law  solubility.  This  transfered  i n t o the  3.  The  lower  precipitation sink  or Tw  most  gas.  higher  be  a general  gas  So  microbial  temperature,  i s b e c a u s e of a d e c r e a s e  temperatures are which, a l r e a d y  of  phase.  mass of NH^-N  phase e l e v a t i n g NH^-N  in t h i s  increase  cause a r e l e a s e  leachate  causes a greater  gas  to  the in be  concentrations.  a r e s u l t a n t of discussed  s c e n a r i o , Tg  factor causing  mechanism #2,  temperatures. increase  or  gas  gas  o r Tw  could are  be  a  indirect  variation.  important  i s probably  by  gas  gas  constant  infiltration  f o r NH^-N  The  effect  landfill  f o r NH^-N  causes  landfill  T h i s may  NH^-N  below:  temperature c o u l d  metabolism  2.  listed  and  For  i n NH,-N  #1  NH^-N  gas  variation  by  Tg  where mass t r a n s f e r i s e n h a n c e d t o be i n the  valid,  there  leachate,  would t e n d  w h i c h was  not  to  152 5.64  FIG.  -  REGRESSION PLOT OF GAS TEMP VS. NH3-N IN GAS MATSQUI LANDFILL 1500 CL CL  <  1000-  I  500  CO  NH3-N GAS - -267.61 + 33.2 R  - 0.4551  2  x ) & m m  0  (Tg)  5  10  *  x  15  20  25  30  GAS TEMP in celsius 5.65  FIG.  -  REGRESSION PLOT OF GAS TEMP vs. NH3-N IN GAS STRIDE AVE LANDFILL 1000 NH3-N GAS - -70.06 + 22.15  CL  a-  750-j  R  CO  <  2  (Tg)  - 0.3366  X  X x X  I  X  x X * x  ^ x j ^ x  T  5  10  15  X  x  X  X  20  GAS TEMP in celsius  25  30  1 53 5.66  FIG .  REGRESSION PLOT OF GAS TEMP vs. NH3-N IN GAS RICHMOND LANDFILL 800 X  Q_  Q. 600CO  NH3-N  GAS -  -68.42  + 1 0 . 8 4 (Tg)  <  O  z  400-  z 1 1  200-  hO ~T  X  )0|0Q( )0|(  £  n  10  5  15  20  x  X  x  )0|000( |  25  30  35  GAS TEMP in Celsius REGRESSION PLOT OF LEACHATE TEMP vs. NH3-N IN GAS PREMIER ST. LAND 500 NH3-N  g; 400 -|  GAS R2 -  -908.77  + 4 8 . 1 0 (Tw)  0 .3171  ^  CO  ^  300H 200-1  z  I  X  1000  x x x  —T  18  20  x  1  ¥  22  24  LEACHATE TEMP in celsius  26  1 54 found.  However, t h i s  could  happen  i n the unsaturated  which  would n o t be n o t i c e d  i n my r e s u l t s .  #3 may be i m p o r t a n t ,  b u t b e c a u s e p r e c i p i t a t i o n was r e j e c t e d  the is  regression  temporal  ionic  parameters monitored  variability  strength An  o f p r e c i p i t a t i o n on NH^-N gas  g a s were, s t a t i c  i n gas flow  was o r i g i n a l l y  t o c a u s e an i n c r e a s e  t o mass d i l u t i o n .  Results  minimal c o r r e l a t i o n with An believed  increase  i n NH^-N  an i n c r e a s e  interrelationship  i n t h e gas p h a s e  indicate static  strength  only  o f NH^-N one w e l l  flow  showed  i n c o r r e l a t i o n with  (Appendix  measurements  ionic  strength  from a c o m p l e t e  5.5.  LANDFILL GAS ORGANIC  was g e n e r a l l y  i n the leachate In  (F2 M a t s q u i ) e x h i b i t e d any  conductivity  from t h r e e  from  i n t o t h e gas phase.  of e s t i m a t i n g  gases  of leachate  o f NH^-N  NHg-N g a s may be a r e s u l t  data  like  c a u s e a d e c r e a s e due  between t h e v a r i a b l e p a i r w i t h  Deficiency  Qualitative  b e l i e v e d much  NH^-N g a s .  the s o l u b i l i t y  of the data,  0.6026.  however,  i n the ionic  t o decrease  thereby causing analysis  g a s f l o w and  of the l e a c h a t e .  increase  flux,  o f NH^-N  t o see i f they c o n t r i b u t e d t o  a c c e l e r a t e d mass t r a n s f e r o r c o n s e q u e n t l y ,  of  from  OTHER PARAMETERS  Two o t h e r  CH^  t h e impact  r e l a t i o n s h i p of  uncertain. 5.4.7.  the  equation,  The i n d i r e c t  zone  ionic  ionic  a significant r s t r e n g t h and  strength  from  B.5) i n s t e a d o f c a l c u l a t i n g  leachate  ionic  analysis.  CONTAMINANTS  c o l l e c t e d from Tenax GC t r a p a n a l y s i s on  of the four  landfills  is listed  in tables  5.8  155 through  5.11.  The t a b l e s a r e o r d e r e d  d e t e r m i n e d by t h e t y p e o f compound. are  described 1.  CH ,  2.  Halogenated  3.  Benzene and T o l u e n e  4.  Alcohols  5.  Saturated  6.  Miscellaneous  4  C0 , N , 2  2  0  The d i v i s i o n s o f t h e t a b l e  percentages  2  Hydrocarbons Compounds  and u n s a t u r a t e d  a n a l y s i s was done on S t r i d e Ave. gas b e c a u s e o f  would be d e t e c t e d  Compounds t h a t in sufficient  assumption  in this  older  were n o t d e t e c t e d  concentration  ( s u b ppm)  g r o u p compounds.  thiol  g r o u p compounds c o n s t i t u t e a major  found  (Young and P a r k e r , since  daughter  degradation  Vinyl chloride  C r i d d l e and M c C a r t y ,  1987).  as  in landfill  to detect  while  f r a c t i o n of l a n d f i l l  a potential interference  industry  gas a t c o n c e n t r a t i o n s  for their source  gas  t o be  and a l s o a  anaerobic  (Refer  V i n y l c h l o r i d e has been  not o n l y  to  c h l o r i d e and  i s carcinogenic  landfills  a s t u d y by S t e p h e n s e t a l . ( 1 9 8 6 ) .  important  considered  hydrocarbons ( i e ,  common t o t h e s e  in  were v i n y l  of the m i c r o b i a l l y mediated  of c e r t a i n h a l o g e n a t e d  abundant  landfill.  o f t h e PVC  tetrachloroethylene)  quite  n o t many  1984).. V i n y l c h l o r i d e was e x p e c t e d  i t i s a waste p r o d u c t  product  that  but g e n e r a l l y  thiol  odor  hydrocarbons  compounds  t i m e c o n s t r a i n t s and t h e g e n e r a l  be  sequence  below:  No o r g a n i c  organics  in a specific  to Vogel, f o u n d t o be  up t o 12,800  ppm  T h i o l g r o u p compounds were odor p r o p e r t i e s  i n t h e NH,-N  but a l s o  gas a n a l y t i c a l  156  WELL PI PREMIER ST  January  20, 1988  Tr 9.9% 70.7% 19.4%  Methane Carbon D i o x i d e Nitrogen Oxygen Tetrachloroethylene  Benzene a n d i s o m e r s (3) E t h y l Benzene Toluene Hexane a n d isomer C y c l o h e x a n e i s o m e r s (4) Heptane isomer Cycloheptane B i c y c l o h e p t a n e isomer 3-methyl pentane M e t h y l - c y c l o p e n t a n e i s o m e r s (2) C10-C12 h y d r o c a r b o n s Pentene isomer Xylenes * F u r a n isomer Cyclohexanone Benzaldehyde  isomer  * Appearance  of t h i s  TABLE 5.8 - L a n d f i l l  could  be due t o t r a p  bleed  g a s VOC's d e t e c t e d by GC-MS a n d Tenax  Trap  157  WELL F5 MATSQUI LANDFILL, A p r i l  13, 1988  Methane Carbon D i o x i d e Nitrogen Oxygen 1 ,2-dichloroethene Tetrachloroethylene Difluorodimethyl Silane Benzene a n d i s o m e r s ( 8 ) Toluene Phenol Nonane C y c l o h e x a n e i s o m e r s (2) X y l e n e and isomer * B e n z a l d e h y d e a n d isomer 1-phenyl Ethanone  * Appearance  of t h i s  TABLE 5.9 - L a n d f i l l  could  be due t o t r a p  Gas VOC's d e t e c t e d  bleed  by GC-MS a n d Tenax  Trap  158 WELL F3 MATSQUI LANDFILL, A p r i l  Methane Carbon D i o x i d e Nitrogen Oxygen  22, 1988  50. 1 % 32.5 % 17.4 % Tr  1,2-dichloroethane Trichlorofluoromethane 1.1- d i c h l o r o e t h e n e 1.2- d i c h l o r o e t h e n e Trichloroethylene Tetrachlorethylene Dichlorobenzene Trichlorobenzene Benzene a n d i s o m e r s (10) T r i m e t h y l Benzene T e t r a m e t h y l Benzene i s o m e r s (3) Toluene Phenol Phenol isomers Dimethyl Cyclooctanemethanol  isomer  Hexane Heptane C y c l o h e x a n e i s o m e r s (3) Tetradecane Octane isomer Nonane a n d i s o m e r s (2) Decane a n d isomer B i c y c l o - h e p t a n e i s o m e r s (2) Cycloundecane isomer Dodecane 1,3,5-cycloheptatriene 4-ethyl-2-octene Xylenes * Indene i s o m e r s (4) 1,1 D i e t h y l E t h e r 1,1'-Biphenyl N a p h t h a l e n e a n d i s o m e r s (5) P h e n y l - O x a z o l e isomer B e n z o f u r a n isomer  * Appearance of t h i s TABLE 5.10 - L a n d f i l l  could  be due t o t r a p  bleed  g a s VOC's d e t e c t e d by GC-MS a n d Tenax  Trap  159 WELL C6 RICHMOND LANDFILL, A p r i l Methane Carbon D i o x i d e Nitrogen Oxygen  56.5 43.5 0.0 0.0  22 and A p r i l  13, 1988  Methane Carbon D i o x i d e Nitrogen Oxygen  % % % %  54.3 41.8 3.1 0.7  Trichlorofluoromethane Methylene c h l o r i d e 1,2-dichloroethene Trichloroethylene Tetrachloroethylene 1,2-dichlorobenzene Trichlorobenzene Fluorene  Trichlorofluoromethane dichloromethane 1,2-dichloroethene Trichloroethylene Tetrachloroethylene  Benzene and i s o m e r s (5) T r i m e t h y l benzene isomer T e t r a m e t h y l benzene i s o m e r s (3) p r o p y l benzene^ Toluene p - i s o b u t y l Toluene  Benzene a n d i s o m e r s (6) E t h y l Benzene  P h e n o l i s o m e r s (2) B i c y c l o - o c t a n o l isomer  Phenol Benzenemethanol-ethenyl  Hexane H e p t a n e and i s o m e r Nonane and i s o m e r T r i c y c l o h e p t a n e isomer Decane a n d T r i d e c a n e i s o m e r s Xylenes * B i c y c l o h e x e n e isomer 3,9-Dodecadiene Indene i s o m e r s (3) T r i m e t h y l d i h y d r o Indene  Cyclobutane isomers Pentyl Cyclopropane Cyclopentane isomer  E t h y l and M e t h y l E s t e r B u t a n o i c N a p h t h a l e n e a n d i s o m e r s (6) Disulfide i s o m e r s (2) T r a n s - C y c l o h e x a n o n e isomer B e n z o f u r a n isomer 1,1'-Biphenyl Methyl Benzofuran Dibenzofuran Acenaphthylene isomer  * Appearance  of t h i s  TABLE 5.11 - L a n d f i l l  could  % % % %  Xylenes *  Methyl  Indene  and isomer  Acid Benzaldehyde 1-phenyl-Ethanone 2,2'-bifuran  be due t o t r a p  bleed  Gas VOC's d e t e c t e d by GC-MS a n d Tenax  Trap  160 technique The due  already discussed. reason(s)  to analytical  trapped  vinyl  limitations  organics.  and  effective  (1983),  Inspection chlorinated abundant  related  of T a b l e s  o f compounds  technique  was r e f i n e d .  by B r o o k e s  5.8 t h r o u g h  5.11 i n d i c a t e  were d e t e c t e d .  Probably  t h a t up t o 8  t h e most  were t h e s u b s t i t u t e d  i n C6 Richmond a f t e r  benzenes  5.11 i s t h e g r e a t e r  the sampling  PREDICTION OF NH3-N GAS THROUGH HENRY'S LAW 5.6.1. The  INTRODUCTION  law t h a t g o v e r n s t h e p a r t i t i o n i n g  compound between  t h e g a s a n d aqueous p h a s e s  t o a s H e n r y ' s Law. many u n i t s , of  on Tenax GC m a t e r i a l .  Also n o t i c a b l e i n Table  detection  5.6.  g r o u p compounds a r e  o f t h e c o n d e n s a t e may be more  of o r g a n i c s found  isomers.  desorption of the  thiols.  hydrocarbons  class  i s probably  a s Porapak Q a s s u g g e s t e d  or a n a l y s i s  in detecting  hand, t h i o l  t o be t r a p p e d  t r a p p i n g m a t e r i a l such  Young  and  likely  was n o t d e t e c t e d  during thermal  On t h e o t h e r  more p o l a r a n d l e s s Other  chloride  The c o n s t a n t  but i s u s u a l l y  the v o l a t i l e  i s commonly  Hx  r e p o r t e d as the p a r t i a l  p r e s s u r e (Pa)  = Pa/Xa  listed  The.use of vapor  (Xa)  i n equation ( i ) : V (i)  H e n r y ' s Law c o n s t a n t s a r e measured common t e c h n i q u e s  referred  t o H e n r y ' s Law (Hx) comes i n  c o m p o u n d . d i v i d e d by i t ' s mole f r a c t i o n  t h e a q u e o u s p h a s e a s shown  1.  of a v o l a t i l e  below  i n t h e l a b by t h r e e .  (From MacKay a n d S h i u ,  p r e s s u r e and s o l u b i l i t y  1981):  data.  in  161 2.  D i r e c t measurement  3.  Measurements  of r e l a t i v e  one p h a s e , w h i l e with A novel Closed  the other  affecting  This  concentrations.  in concentration  a near-equilibrium  within  exchange  phase.  (EPICS),  technique  organics.  changes  f o u r t h approach, c a l l e d  Systems"  accurate  of a i r and aqueous  has been  "Equilibrium Partitioning  sited  f o r m e a s u r i n g Hx's,  technique  by many t o be a more especially  i s discussed  in  for volatile  i n more d e t a i l  by  Gossett  (1987). The main aqueous should ideally mole  a s s u m p t i o n f o r H e n r y ' s Law  and g a s e o u s p h a s e s must be behave  ideally  In t h i s  10 *V so H e n r y ' s  phase g i v e n After  ( i e . , leachate) a l l mole  for their t h e NH^-N  potential  concentration  observed  NH3-N gas  concentrations.  different  i n the  0.05  than  between  the r a t i o  Hx's  will  i n t h e gas  results,  a s e c t i o n in. t h i s reasons  of p r e d i c t e d v e r s u s  for  measured  CONSTANTS  CORRECTED VAPOR PRESSURE METHOD  T h i s method calculating  (<  leachate.  COMPARISON OF DIFFERENT HENRY'S LAW  5.6.2.1.  non-  f r a c t i o n s are less  be d e v o t e d t o d i s c u s s i n g t h e p o t e n t i a l  5.6.2.  gas.phase  is dilute  t o p r e d i c t NH^-N  e v a l u a t i n g the spreadsheet  will  The  the  is valid.  deviation  for  data,  i s that  phase c a n behave  the f o l l o w i n g s e c t i o n , four e n t i r e l y  be e v a l u a t e d  thesis  law  in equilibrium.  t h e aqueous  a s l o n g as t h e s o l u t i o n  fraction).  In  while  t o be v a l i d  i s employed  by MacKay and S h i u  Henry's Constants  (1981) and  from a v a i l a b l e s o l u b i l i t y  others and  162 vapor  pressure  data.  Equation H  Where Pc  ( i i ) i s presented  = Pc/S  1  below:  (ii)  = c o r r e c t e d vapor  pressure  (atm)  S = S o l u b i l i t y of Ammonia i n d i s t i l l e d water ( m o l e s / L )  than  The  c o r r e c t e d vapor  the  r e f e r e n c e vapOr p r e s s u r e  ideal  and  dilute.  temperature  and  Regression and  solubility  equations  are also  Possible include  the  1.  accurate  because the  is  and  used  pressure  non-  i s a f u n c t i o n of  is calculated to c a l c u l a t e  system  i n Appendix  both  the  i n Appendix  introduced into  the  B.10.  solubility:  p r e s s u r e as a f u n c t i o n of t e m p e r a t u r e .  errors  These  B.10. calculating  this  constant,  following:  Unfortunately, The  estimate  are  listed  Variation  2.  i s c o n s i d e r e d more  C o r r e c t e d vapor  r e f e r e n c e vapor  equations  pressure  i n the  r e f e r e n c e vapor  no c o e f f i c i e n t  small v a r i a t i o n  solubility.  The  Of  pressure  variation  i n the  was  calculation.  documented.  regression equation  coefficient  of v a r i a t i o n  (%  to  C.V.)  is  2 less  than 3.  1.0  Solubility  so e r r o r s of NH^  % with  are  has  gas.  i s taken  a respectible from  0.999806.  pure water  of t h e  usual  with  increasing  overpredict solubility  t h a t p t . #4  than The  being  been shown t o d e c r e a s e  Inspection  higher  data  r  measurements,  u n c e r t a i n when c o n s i d e r i n g a l e a c h a t e .  so t h i s method may  indicate  the  results  in Tables  i s most l i k e l y  ratios  strength,  systems.  through  5.19,  t h e major c a u s e b e h i n d  between p r e d i c t e d and  o v e r p r e d i c t i o n of NH_-N  ionic  i n non-pure 5.12  Solubility  i n gas  the  measured NH^-N  i s most l i k e l y  due  in to  an  163  DATE  NH3-N  HI  UH3 BY HI RATIO  SAS  dolts/  (ppb)  (L-itt)  (ppb)  Hl/HEAS  H2  KH3 BY H2 RATIO (ppb)  (ati/I)  H2/HEAS  H3  NH3 by H3 RATIO  ( M U S /  (ppb)  H4 by  H3/KEA5  (L-ati)  NH3 by H4 RATIO  FORHUU  (ppb)  H4/HEAS  AS f(T)  F l MATSQUI 01/12/88  44.8  27.1  1823.3  40.6832  0.57  507.5  11.3232  143.7  344.4  7.6840 3.84E+03  158.7  3.5422  01/26/88  39.4  19.3  2561.8  63.0311  0.69  843.2  21.4049  116.6  424.7  10.7803 3.23E+03  188.7  4.7913  02/09/88  30.2  20.8  1842.9  60.9780  0.67  644.6  21.3278  119.6  320.6  10.6080 3.30E*03  150.9  4.9931  03/01/88  140.4  15.3  23(6.8  16.8561  0.78  676.0  4.8145  100.0  36S.9  2.6059 2.83E»«3  177.6  1.2650  03/29/88  37.1  20.6  1186.1  31.9394  0.69  399.6  10.7587  116.6  210.1  5.6578 3.23Ei03  102.8  2.7678  F2 HATS8UI 08/0S/87  204.7  9.0  9218.9  45.0424  0.87  1465.9  7.1620  86.0  968.4  4.7312 2.52C+40  416.1  2.0332  08/25/87  408.4  9.3  7053.3  17.2725  0.87  1144.3  2.8021  86.0  763.4  1.8695 2.52E+03  322.0  0.7885  09/08/87  397.4  8.3  10815.4  27.2178  0.90  1602.6  4.0330  81.9  1092.5  2.7494 2.42E*03  458.9  1.1547  09/22/87  311.4  9.3  9773.9  31.3837  0.87  1560.6  5.0110  86.0  1057.9  3.3968 2.52E««3  448.8  1.4410  10/06/87  166.5  9.6  11834.8  71.0840  0.90  2049.0  12.3069  81.9  1390.5  8.3S21 2.42£*03  584.2  3.5090  10/20/87  143.1  11.6  10136.7  70.8429  0.87  2025.2  14.1539  86.0  1363.4  9.5282 2.52E*03  575.3  4.0208  11/10/87  135.7  11.9  12268.7  90.4243  0.84  2429.3  17.9050  90.4  1616.8  688.0  5.0707  :33393.5 834.3575  0.84  6907.2 172.5808  90.4  11.9166 2.63E+03 4691.7 117.2254 2 . 6 3 M 3  1958.7  48.9402  16.5  0.6395  160.5  8.8190  11/24/87  40.0  12.7  12/08/87  25.8  19.3  12/29/87  18.2  17.0  01/12/88  23.7  23.7  477.8  01/26/88  38.7  15.5  117.9  02/09/88  33.2  16.0  03/01/88  69.3  15.0  03/29/88  72.1  15.5  1314.1  220.0  8.5443  0.69  56.9  2.2108  116.6  36.5  1.4164 3.23£*03 19.6465 3.23E+03  2453.9 134.8581  0.69  562.0  30.8862  116.6  357.5  20.1736  0.60  128.5  5.4267  136.3  83.0  3.0430  0.75  25.2  0.6509  105.2  17.4  46.8  1.4124  0.79  10.9  0.3298  97.5  7.7  2509.9  36.2206  0.75  555.9  8.0223  105.2  359.0  0.2313 2.80EHI3 5.1810 2.97E+03  18.2185  0.75  284.3  3.9417  105.2  194.1  2.6911 2.97E«03  92.7  1.2854  3.5052 3.&8EHK3 0.4495 2.97E+03  38.8  1.6370  7.8  0.2002  3.3  0.1008  164.6  2.3758  F3 HATSQUI 12/08/87  19.8  21.0  1600.1  81.0053  0.66  443.0  22.4275  122.8  273.8  13.8607 3.3TE+03  129.7  6.5668  12/29/87  35.9  21.0  939.2  26.1848  0.66  258.0  7.1935  122.8  160.7  4.4805 3 . 3 7 M 3  77.2  2.1533  01/12/88  26.7  21.0  S45.8  20.4326  0.66  145.0  5.4266  122.8  93.4  3.4962 3.37E+03  43.6  1.6332  01/26/88  29.6  15.0  S31.0  17.9519  0.78  116.9  3.9515  100.0  79.4  2.6859 2.85E*03  36.9  1.2469  02/09/88  52.0  17.1  158.8  3.0532  0.78  40.0  0.7685  100.0  27.1  0.5216 2.82*03  12.1  0.2333  03/01/88  135.9  12.3  92.4  0.6801  0.87  18.5  0.1358  86.0  13.3  0.0976 2.52£*03  6.4  0.0472  03/29/88  44.7  16.1  151.3  3.3834  0.75  33.7  0.7S40  105.2  23.1  0.5163 2 . 9 7 M 3  11.4  0.2547  TABLE  -  5.12  - R e s u l t s o f H e n r y ' s Law F l , F 2 , F3 M a t s q u i  Comparison  Henry's  Law  Constant  Corrected  H2  - Henry's  Law  Constant  Mole  H3  = Henry's  Law  Constant  Gibbs  H4  - Henry's  Law  Constant  Solubility-Equilibrium  Vapor  Fraction Free  Pressure  Meth<  Method  Energy  Method Method  164  DATE  NH3-N  HI  SAS  doles/  XH3 8Y HI RATIO  (ppb)  (L-iti)  (ppb)  Hl/HEAS  H2  NH3 BY H2 RATIO  (iti/I)  (ppb)  H2/NEAS  H3 (ul«/ (L-iti)  =========:==========—~~=~  NH3 by H3 RATIO (ppb)  H3/KA5  H4 by NH3 by H4 rORHULA  (ppb)  RATIO .H4/XEAS  AS f(T) . . . . . . . . . . . ========  .--.=-5==-.  ;  F5 HATSOUI 08/05/87  22.0  9.9  08/23/87  601.6  9.1  19743.9  09/08/87  75.9  9.9  09/22/83  143.9  10/06/87  99.1  10/20/87 11/10/87  4575.0 207.7523  0.87  901.5  40.9395  86.0  526.2  23.8932 2.52E+03  227.0  32.8197  0.90  3980.2  6.6162  81.9  2182.0  3.6271 2.42E+03  938.8  1.5603  19145.1 252.2225  0.87  3986.3  52.5164  86.0  2201.8  29.0076 2.52E+03  956.8  12.6057  8.5  14740.2 102.4617  0.87  2624.8  18.2455  86.0  1459.4  10.1446 2.52E+03  634.5  4.4107  8.8  23934.9 241.4131  0.90  4597.0  46.3668  81.9  2S66.4  25.8856 2.42E+03  1109.8  11.1942  276.9  9.9  16482.6  59.S349  0.87  3442.5  12.4342  86.0  1895.6  6.8470 2.52£t03  867.1  3.1320  167.6  13.5  2553.1  15.2349  0.81  591.0  3.5263  95.1  363.7  2.1704 2.74E+03  162.8  0.9717  11/24/87  37.3  16.0  33.1  0.8876  0.78  8.1  0.2183  100.0  5.3  0.1418 2.8SE+03  2.4  0.0647  12/08/87  13.7  16.5  62.7  4.S932  0.78  16.1  1.1779  100.0  10.4  0.7588 2.85E+03  4.7  0.3437  10.3100  12/29/87  72.9  17.7  4335.8  39.4643  0.78  1404.1  19.2569  100.0  766.3  10.3098 2.8SE*03  352.8  4.8391  01/12/88  30.8  16.0  9305.9 302.42B3  0.76  2769.4  90.0030  102.6  1452.2  47.1960 2.91E+03  675.5  21.9541  01/26/88  36.0  17.1  348.0  9.6723  0.79  96.8  61.0  1.6948 2.80EMJ3  —  20.4  250.9  —  0.72  72.6  2.6918 —  97.5  02/09/88  110.7  46.3  - - 3.10E+03  28.2 —  0.7840 —  03/01/88  69.1  14.5  2680.3  38.7702  0.81  697.3  10.0869  95.1  407.6  5.8952 2.74E+03  03/29/88  —  16.5  845.4  —  0.78  230.9  —  100.0  139.7  -  -  169.2  2.4472  2.85E+03  —  —  r a Miseui  11/10/87  102.9  12.0  0.4  0.0036  0.87  0.1  0.0007  86.0  0.1  0.0002  40.0  14.5  0.1  0.0014  0.81  0.0  0.0003  95.1  0.0  0.0005 2.52E+03 0.0002 2.74E+03  0.0  11/24/87  0.0  0.0001  12/08/87  19.9  17.8  0.0  0.0020  0.73  0.0  0.0004  107.9  0.0  0.0003 3.04E+03  0.0  0.0002  12/29/87  32.4  19.7  1.0  0.0294  0.73  0.2  0.0075  107.9  0.2  0.0054 3.04E+03  0.1  0.0025  01/12/88  28.3  0.63  0.1  0.0020  129.3  0.0  0.0014 3.52£»03  0.0  0.0007  59.8  0.2 0.4  0.0067  01/26/88  27.2 22.4  0.0071  0.66  0.1  0.0018  122.8  0.1  0.0013 3.37E+03  0.0  0.0006  02/09/88  27.3  32.1  0.0092  0.57  20.0  0.0000  0.69  0.0031 —  116.6  0.1 —  0.0021 3.84E*03  82.4  0.1 —  143.7  03/01/88  0.3 —  3.23E+03  0.0 —  0.0010 —  03/29/88  70.3  25.4  ~  0.0000  0.63  —  —  129.3  —  - - 3.52E»03  —  —  T A B L E 5.13  R e s u l t s o f H e n r y ' s Law F 5 , F8 M a t s q u i  -  Comparison  165 ==========:================= =========::========;===================:=================:=========:  DATE  KH3-H ~"  XH3 BY HI RATIO  HI  6AS  (Mltf/  (ppb)  (L-iti)  (ppb)  =========  Hl/HEAS =========  H2 Uti/I)  XH3 BY H2 RATIO (ppb)  H2/KEAS  . . . . . . . . . ==========:========  H3 (MlK/  (ppb)  =========  :=========  NH3 b y H3 RATIO H3/REAS  (L-att)  H4 b y KH3 b y H4 RATIO FOKXUU AS f(T>  :=========:=========  (ppb)  H4/DEAS  ----------  F2 STRIDE 08/27/87  101.3  12.0  0.0067  100.0  0.5  0.0046 2.8SEt03  0.2  0.0025  12.8  0.0511  0.78 0.78  0.7  192.5  3.9 9.8  0.0385  09/10/87  1.8  0.0094  100.0  1.3  0.0065 2.85E*03  0.7  0.0035  OS/24/87  156.8  12.7  7.2  0.0456  0.81  1.3  0.0O86  95.1  1.0  0.0061 2.74£»03  0.5  0.0031  10/07/87  209.4  11.6  6.7  0.0320  0.78  1.1  0.0054  100.0  0.8  0.0037 2.85E+03  0.4  0.0018 0.0014  10/22/87  72.8  15.7  1.3  110.7  0.2  0.0025 3.10E*O3  0.1  16.2  3.5  0.72  0.3 0.7  0.0037  98.9  0.0179 0.0350  0.72  11/12/87  0.0075  110.7  0.5  0.0051 3.10E+03  0.3  0.0028  11/26/87  74.7  18.0  0.2  0.0029  0.70  0.1  0.0007  113.6  0.0  0.0005 3.17E»03  0.0  0.0003  12/15/87  42.6  18.6  0.2  0.0045  0.70  0.0  0.0011  113.6  0.0  0.0007 3.17E»03  0.0  0.0004  12/31/87  77.5  19.2  2.5  0.0317  0.70  0.6  0.0079  113.6  0.4  0.0054 3.17EI03  0.2  0.0028  01/14/88  46.0  21.2  2.3  0.0502  0.70  0.6  0.0137  113.6  0.4  0.0094 3.17E+03  0.2  0.0051  01/28/88  101.6  5.3  0.0524  0.73  1.3  0.0127  107.9  0.9  0.0086 3.04E+03  0.4  0.0040  02/11/88  117.3  17.8 17.9  6.5  0.0558  0.72  1.6  0.0133  110.7  1.1  0.0090 3 . 1 0 M 3  0.5  0.0046  03/03/88  86.1  18.4  6.0  0.0699  0.73  t.5  0.0174  107.9  1.0  0.5  0.0057  03/31/88  91.0  17.9  4.2  0.0457  0.72  1.0  0.0109  110.7  0.7  0.0119 3.04E»03 0.0074 3.10E+03  0.3  0.0037  0.0013  F3 STRIDE 08/27/87  210.6  14.7  3.7  0.7  0.0034  110.7  0.5  0.0023 3.10C*03  0.3  242.6  13.9  ~ 8.6  0.0175 0.0354  0.72  09/10/87  0.72  1.6  0.0065  110.7  1.1  0.0044 3.10E+03  0.6  0.0024  09/24/87  162.6  14.1  9.3  0.0573  0.75  1.8  0.0110  105.2  1.3  0.0077 2.97E»03  0.6  0.0039  10/07/87  70.6  15.2  7.0  0.0994  0.72  1.4  0.0199  110.7  1.0  0.0137 3.10EX>3  0.5  0.0069  10/22/87  128.7  16.3  6.2  0.0478  0.70  1.3  0.0100  113.6  0.9  0.0069 3 . 1 7 W 3  0.5  0.0038  11/12/87  133.3  16.2  9.7  0.0728  0.72  2.0  0.01S3  110.7  1.4  0.0107 3.1K+03  0.8  0.0058  11/26/87  110.5  18.6  0.0567  0.70  1.6  0.0142  113.6  1.0  0.0093 3.17E*03  0.6  0.0051  12/15/87  59.5  18.5  6.3 4.2  0.0705  0.72  1.0  0.0172  110.7  0.7  0.0118 3.10E+03  0.4  0.0061  12/31/87  75.8  19.0  4.8  0.0636  0.73  1.2  0.0161  107.9  0.9  0.0112 3.04E*03  0.5  0.0060  01/14/88  56.4  19.1  1.3  0.0228  0.72  0.3  0.0055  110.7  0.2  0.0039 3.10E+03  0.1  0.0021  01/28/88  215.4  16.6  7.6  0.0352  0.73  t.7  0.0079  107.9  1.2  0.0054 3.04EHX3  0.6  0.0027  02/11/88  62.2  17.2  6.3  0.1006  0.73  1.4  0.0230  107.9  1.0  0.0160 3.04E+03  O.S  0.0082  03/03/88  53.8  17.9  7.8  0.1442  0.72  1.8  0.0329  110.7  1.3  0.0233 3.10E+4J3  0.6  0.0116  03/31/88  77.9  17.1  11.8  0.1514  0.75  2.8  0.0355  105.2  1.9  0.0247 2.97E+03  1.0  0.0123  F6 STRIDE 10/22/87  113.6  12.4  30.7  0.2705  0.76  5.6  0.0494  102.6  3.7  0.0327 2.91E*03  1.7  0.0152  11/12/87  245.4  14.5  18.4  0.0750  0.78  3.8  0.0154  100.0  2.7  0.0109 2.85E+03  1.3  0.0051  11/26/87  202.2  18.4  3.0  0.0147  0.73  0.7  0.0036  107.9  O.S  0.0025 3.04EH8  0.2  0.0012  12/15/87  82.3  20.4  2.7  0.0330  0.73  0.7  0.0090  107.9  0.5  0.0062 3 . 0 4 M 3  0.2  0.0029  12/31/87  60.2  24.0  5.2  0.0866  0.66  1.5  0.0247  122.8  1.0  0.0169 3.37EM)3  0.5  0.0082  01/14/88  35.5  24.0  3.4  0.0958  0.66  1.0  0.0273  122.8  0.7  0.0187 3.37E+03  0.3  0.0078  01/28/88  ,257.4  19.8  7.1  0.0275  0.70  1.8  0.0070  113.6  1.2  0.0048 3.17E+93  0.6  0.0023  02/11/88  H.D.  22.1  6.3  —  0.69  1.8  —  116.6  1.2  03/03/88  65.1  19.8  6.8  0.1037  0.70  1.7  0.0262  113.6  1.2  TABLE  3.23E«03  —  —  0.0181 3.17Ef03  0.6  0.0086  -  5.14 - R e s u l t s o f H e n r y ' s Law C o m p a r i s o n F 2 , F 3 , F6 S t r i d e A v e .  166  ==========  DATE  =========:=========::========:=========: s = = = = s = = = :: s = = = = = = ; :========:=========:: = = = = = z = s  =========:  HI  KH3-N  KH3 BY HI RATIO  6AS  (•OIM/  (ppb)  (L-iti)  (ppb)  Hl/HEAS  H2 Uti/I)  NK3 BY H2 RATIO (ppb)  H2/KEAS  H3  KH3 by H3  RATIO  H4 by  NH3 by H4  RATIO  (•ol*s/  (ppb)  K3/HEAS  fORNUlA  (ppb)  H4/KEAS  (L-ati)  AS f(T)  F7 STRIDE 08/27/87  239.8  12.8  30.8  0.1286  0.78  5.6  0.0235  100.0  3.9  0.0164 2.85E*03  2.0  09/10/87  244.4  10.6  52.7  0.2156  0.81  8.3  0.0338  95.1  5.9  0.0239 2.74E+03  2.9  0.0120  09/24/87  120.7  13.6  21.6  0.1793  0.78  4.2  0.0345  100.0  2.9  0.0244 2.85E+03  1.5  0.0125  0.0082  10/07/87  97.3  13.9  17.7  0.1822  0.72  3.2  0.0332  110.7  2.2  0.0228 3.10E+03  1.2  0.0121  10/22/87 11/12/87  179.0  13.2  18.4  0.1029  0.78  3.4  0.0193  100.0  2.4  0.0135 2.85C+03  1.3  0.0070  193.8  13.6  29.7  0.1531  0.76  5.6  0.0289  102.6  3.9  0.0203 2.91E+03  1.9  0.0100  11/26/87  228.2  15.0  2.3  0.0100  0.75  0.0  0.0002  105.2  0.3  0.0014 2.97E+03  0.2  0.0007  12/15/87  49.2  16.0  20.3  0.4117  0.81  4.9  0.0992  95.1  3.4  0.0692 2.74E+03  1.7  0.0355  12/31/87  42.9  16.0  18.5  0.4307  0.78  4.3  0.0994  100.0  2.9  0.0688 2.85E»03  1.4  0.0335  01/14/88  43.7  14.5  23.7  0.5436  0.81  5.1  0.1174  95.1  3.6  0.0827 2.74E+03  1.8  0.0410  01/28/88  161.4  15.5  0.1117  0.78  4.0  0.0247  100.0  2.8  0.0173 2.85E»03  1.5  0.0095  02/11/88  299.4  15.5  18.0 28.4  0.0950  0.78  6.4  0.0213  100.0  4.4  0.0147 2.85E+03  2.6  0.0088  03/03/88  69.2  14.9  71.4  1.0331  0.79  15.7  0.2270  97.5  11.0  0.1583 2.80E+03  5.9  0.0847  03/3.1/88  39.6  14.9  38.4  0.9708  0.79  8.4  0.2122  97.5  5.9  0.1488 2.80£*03  2.8  0.0711  0.0015  F8 STRIDE 12/15/87  30.1  19.7  0.6  0.0191  0.72  0.1  0.0049  110.7  0.1  0.0034 3.I0E+O3  0.0  12/31/87  75.7  19.7  3.0  0.0390  0.72  0.8  0.0099  110.7  0.5  0.0070 3.10E+03  0.3  0.0038  01/14/88  50.9  20.4  3.9  0.0758  0.72  1.0  0.0200  110.7  0.7  0.0140 3.10E+03  0.4  0.0074  01/28/88  188.3  18.5  1.4  0.0073  0.72  0.3  0.0018  110.7  0.2  0.0012 3.10E+03  0.1  0.0006  02/11/88  71.2  24.0  0.5  0.0071  0.1  0.0020  0.0014 3.37E+03  0.1  0.0008  69.8  18.5  0.8  0.0120  0.2  0.0028  122.8 110.7  0.1  03/03/88  0.66 0.72  0.1  0.0020 3.10E+03  —  —  03/31/88  71.3  21.7  1.1  0.0147  0.66  0.3  0.0038  122.8  0.2  0.0026 3.37E+03  0.1  0.0013  10B STRIDE 08/27/87  278.8  12.0  1.3  0.0046  0.78  0.2  0.0008  100.0  0.2  0.0006 2.85E+03  0.1  0.0002  09/10/87  283.1  11.1  3.2  0.0112  0.75  0.5  0.0017  105.2  0.3  0.0012 2.97E»03  0.1  0.0005  09/24/87  98.0  13.3  1.4  0.0141  0.75  0.3  0.0026  105.2  0.2  0.0018 2.97E+03  0.1  0.0008  10/07/87  112.0  11.4  2.0  0.0176  0.75  0.3  0.0028  105.2  0.2  0.0019 2.97E+03  0.1  0.0008  TABLE  5.15 - R e s u l t s o f H e n r y ' s Law C o m p a r i s o n F 7 , F 8 , 10B S t r i d e A v e .  167  DATE  NH3-N 8AS (ppb)  HI  NH3 BY HI  ( M W S /  (ppb)  H2  RATIO Hl/HEAS  U  U  NH3 BY H2 /  D  (ppb)  RATIO  H3  H2/HEAS  (Ml**/  (L-iti)  KH3  by  H3  (ppb)  RATIO H3/HEAS  (L-ati)  H4  by  FORMULA  NH3  by  H4  (ppb)  RATIO H4/HEAS  AS f(T)  BS RICHMOND 09/01/87  253.4  6.4  991.4  3.9126  0.96  121.5  0.4797  74.3  85.5  0.3375 2.24E+03  36.0  09/15/87  75.5  8.6  1407.9  18.6564  0.93  226.3  2.9993  78.0  154.4  2.0465 2.33E+03  65.6  0.8691  09/29/87  231.8  7.4  1366.4  5.8960  0.96  196.6  0.8485  74.3  136.2  0.5878 2.24E+03  57.4  0.2478  10/13/87  102.8  8.1  1394.4  13.5610  0.93  215.6  2.0970  78.0  144.0  1.4007 2.33E+03  61.0  0.5937  11/03/87  128.9  8.9  2818.3  21.8575  0.96  491.3  3.8105  74.3  337.1  2.6144 2.24E+03  141.1  1.0946  11/17/87  N.D.  10.0  266.8  0.91  47.5  33.2  - - 2.38E+03  14.2  —  N.D.  12.3  31.6  0.8S  6.4  — —  79.9  12/01/87  — —  88.2  4.4  - - 2.58E+03  1.9  0.1421  -  12/24/87  29.1  14.9  35.5  1.2168  0.79  8.0  0.2735  97.5  5.4  0.186S 2.80E+03  2.4  0.0828  01/06/88  30.2  16.0  52.6  1.7438  0.81  12.8  0.4236  93.1  8.8  0.2930 2.74£»03  3.9  0.1294.  01/19/88  36.5  16.5  38.1  1.0431  0.78  9.1  0.2504  100.0  6.3  0.1723 2.85E«03  2.8  0.0769  02/02/88  24.1  23.8  37.5  1.5550  0.67  11.4  0.4739  119.6  7.5  0.3096 3.30£*03  3.4  0.1422  02/24/88  61.9  15.0  8.7  0.1405  0.75  1.7  0.0282  105.2  1.2  0.0201 2.97E+03  0.6  0.0090  03/15/88  334.9  13.6  13.7  0.0409  0.78  2.6  0.0079  100.0  1.9  0.0056 2.85E+03  0.9  0.0026  04/05/88  19.6  19.8  7.2  0.3643  0.70  1.8  0.0934  113.6  1.2  0.0636 3.17E+03  0.6  0.0308  09 RICHHOM 09/01/87  280.3  4.2  17593.4  62.7740  1.17  1894.3  6.7590  53.3  1390.6  4.9616 1.7IE+03  546.9  1.9312  09/15/87  79.0  5.4  11599.5 146.7584  1.14  1560.0  19.7370  55.8  1115.8  14.1171 1.77E+03  443.1  5.6067  09/29/87  118.5  4.6  18289.3 1S4.335S  1.17  2134.4  18.0115  33.3  1571.9  13.2649 1.7IEHB  621.8  5.2470  10/13/87  35.9  4.5  97381.0  2716.08  1.14  10688.B 298.1247  55.8  7892.4 220.1303 1.77E+03  3072.7  83.7010  11/03/87  72.6  5.2  28361.6 390.7305  1.14  3373.6  49.2328  53.8  2649.7  36.5045 I.77E+03  1046.3  14.4140  11/17/87  170.7  4.6  17157.6 100.5137  1.20  2011.3  11.7828  50.9  1566.7  9.1780 1.64E+03  609.9  3.5731  12/01/87  N.D.  4.7  2190.6  1.18  245.0  —  52.1  199.7  - - t.68E*03  78.1  —  12/24/88  39.8  6.2  68.7  1.7289  1.14  9.1  0.2278  55.8  7.7  0.1932 1.77E+03  3.1  0.0777  01/06/88  11.7  5.9  8816.7 730.6831  1.14  31.7747  01/19/88  44.7  8.1  02/02/88  34.4  7.5  S3.8  927.1  78.9386 1.77E+03  373.2  14.4320  1.05  107.7  2.4091  64.3  81.5  1.8229 1.99E+03  33.8  0.7569  9324.1 270.8809  1.08  1631.5  47.3978  61.3  1140.7  33.1395 1.91E+03  468.2  13.6033  644.9  1241.6 105.7148  02/24/88  N.D.  6.9  12082.9  1.09  1980.9  —  59.9  1389.2  03/15/88  205.7  6.3  23771.1 115.5444  1.11  3724.0  18.1012  58.5  2572.0  04/05/88  N.D.  9.5  0.96  401.7  —  74.3  271.2  TABLE  2129.4  5.16  R e s u l t s o f Henry's B8, D9 R i c h m o n d  Law  1.88E*03  565.5  —  12.5016 1.84E+03  1114.5  5.4171  121.5  —  --  2.24E+03  Comparison  168  DATE  KH3 BY HI SAT 10  NH3-N  HI  SAS  dolts/  (ppb)  (L-iti)  (ppb)  Hl/HEAS  H2 Uti/I)  HH3 BY H2 RATIO (ppb)  H2/HEAS  H3 dolts/  KH3 by K3 RATIO (ppb)  H3/HEAS  H4 by FORKUU  NH3 by H4 RATIO (ppb)  H4/HEAS  AS H I )  <L-4tl>  ===========================;================ =========:=========::=========================:=======::========::=========::=======•  C6 RICHMOND 09/01/87  141.1  5.7  304.0  2.1549  1.08  36.8  0.2607  61.3  28.3  09/15/87  77.6  6.5  437.9  5.6428  1.05  59.1  0.7618  64.3  44.6  0.2008 1.91E*03 0.5746 1.99E*03  09/29/87  266.2  6.0  62.3  0.2342  1.05  7.7  0.0289  64.3  5.8  0.0218 1.99E+03  2.4  0.0089  10/13/87  5.6 6.1  76.4  9.4  0.0789  58.5  7.3  0.0615 1.84E+03  2.9  0.0247  423.1  0.6404 5.6584  1.11  11/03/87  119.2 74.8  1.08  54.3  0.7259  61.3  41.8  0.5592 1.91E«03  16.7  0.2234  11/17/87  73.4  6.2  14.1  0.1924  1.08  1.8  0.0245  61.3  1.4  0.0196 I.91EMJ3  0.6  0.0080  12/01/87  N.D.  10.6  12.2  —  0.91  2.3  1.6  14.4  --  79.9  12/24/87  16.5  15.0  1.0441  0.79  3.7  0.2599  97.5  2.5  01/06/88  11.5  15.5  9.5  0.8252  0.78  2.1  0.1869  100.0  01/19/88  62.6  13.6  19.8  0.3162  0.84  4.3  0.0680  90.4  —  11.4  0.0811  ia.i  0.2333  2.38E+03  0.7  —  1.1  0.0786  1.5  0.1769 2.80EHI3 0.1276 2.85£*03  0.7  0.0575  3.0  0.0474 2.63C*03  1.3  0.0210  02/02/88  14.9  14.5  25.4  1.7072  0.81  5.7  0.3851  95.1  3.9  0.2596 2.74E*03  1.7  0.1153  02/24/88  40.6  12.3  35.5  0.8743  0.81  6.7  0.1658  95.1  4.6  2.0  0.0503  03/15/88  118.9  8.7  59.0  0.4962  0.99  9.8  0.0823  70.8  7.3  0.1132 2.74E+03 0.0610 2.15E+03  —  —  04/0S/88  14.2  13.6  5.8  0.4073  0.84  1.3  0.0894  90.4  0.9  0.0611 2.63E+03  0.4  0.0288  67 RICHMOND 09/01/87  271.2  5.8  922.1  3.4006  1.02  108.6  0.4006  67.4  79.0  0.2913 2.07E+03  32.6  0.1200  09/15/87  80.5  6.4  1131.0  14.0527  0.99  14S.5  (.8081  70.8  102.9  1.2782 2.I5E*03  43.1  0.5351  09/29/87  173.1  6.5  1524.3  8.8054  1.02  203.2  1.1736  67.4  146.5  0.846S 2.07E+03  61.0  0.3524  10/13/87  124.8  6.2  11.9264  I.OS  195.8  1.S681  64.3  142.9  1.1448 1.99E»03  S8.7  0.4699  11/03/87  74.4  6.9  1489.0 2488.8  33.4312  1.02  354.4  4.7607  67.4  253.8  3.4096 2.07E«03  10S.4  1.4153  11/17/87  18.8  7.9  1781.0  94.7868  l.OS  299.5  15.9388  64.3  218.0  11.6000 1.99E+03  89.3  4.7S38  12/01/87  N.D.  10.4  136.7  —  0.94  26.1  18.6  2.2K+03  7.9  —  10.6  16.S  18.2  1.7217  0.81  4.5  ~  76.1  12/24/87  0.4300  93.1  3.2  0.2993 2.74E+03  1.4  0.1335  —  01/06/88  25.2  9.6  97.4  3.8659  0.99  17.3  0.68S1  70.8  13.2  0.5228 2.15E+03  5.5  0.2170  01/19/88  20.0  10.1  64.6  3.2263  0.96  11.6  0.5804  74.3  8.8  0.4381 2.24E+03  3.7  0.1850  02/02/88  N.D.  12.0  51.8  —  0.90  10.7  —  81.9  7.6  2.42E+03  3.3  10.8  53.3  0.96  10.2  74.3  7.7  2.24M3  3.3  — —  0.0458 2.24E+03  3.9  0.0208  —  —  02/24/88  -  03/15/88  186.3  9.5  67.0  0.3594  0.96  11.4  0.0613  74.3  8.5  04/05/88  N.D.  16.5  2.4  —  0.76  O.S  —  102.6  0.4  TABLE  5.17 - R e s u l t s o f H e n r y ' s C6, G7 R i c h m o n d  — — —  2.9IE*03  Law C o m p a r i s o n  169  ========= =================:=========:==================:=========:==================:=========::=======:==========:=========::=======:  DATE  NH3-N  HI  6AS  dolts/  (ppb)  (L-att)  NH3 BY HI RATIO (ppb)  Hl/KEAS  H2 (ati/X)  NH3 BY H2 RATIO (ppb)  H2/KEAS  H3 doles/  (ppb)  K3/REAS  (L-ati) ========= ================== ===================  ==========  NH3 by H3 RATIO  H4 by NH3 by H4 FORMULA  (ppb)  RATIO H4/NEAS  AS f(T) :=========:  :=========::=======:  D.55 RICHMOND 09/01/87  156.8  5.2  3201.8  20.4204  1.08  369.2  2.3347  61.3  273.8  09/15/87  N.D.  5.7  2001.8  —  1.08  252.8  —  61.3  186.6  09/29/87  85.3  5.0  2427.5  28.4721  t.ll  275.3  3.2285  58.5  10/13/87  101.8  5.2  2477.5  24.3264  1.11  290.8  2.8555  11/03/87  125.5  6.1  2843.3  22.6495  1.11  392.8  3.1290  11/17/87  19.3  6.9  1563.3  80.8784  1.11  245.3  12.6891  12/01/87  N.D.  9.5  996.4  —  0.96  183.1  —  12/24/87  14.7  10.2  851.2  57.9230  0.99  171.9  01/06/88  36.6  8.3  1541.5  42.1301  1.03  01/19/88  77.4  9.6  11.9421  0.99  02/02/88  29.2  9.7  923.8 500.4  17.1148  1.7463 1.91E+03  —  112.1  0.7149  1.91E+03  76.4  —  207.7  2.4366 1.84E+03  84.3  0.9892  58.5  218.1  2.1418 1.84E+03  88.2  0.8660  58.5  298.5  2.3777 1.84E*03  119.4  58.5  183.3  9.5967 1.84EI03  0.9315 3.8809  74.3  126.9  11.6991  70.8  267.6  7.3134  176.3  2.2791  0.93  91.3  —  75.0  2.24E+03  53.6  —  122.9  8.3604 2.15E+03  52.0  3.5409  65.8  194.8  5.3245 2.03E+03  77.4  2.1160  70.8  124.9  1.6149 2.15E+03  52.0  0.6720  78.0  62.1  2.1244 2.33£»03  26.8  02/24/88  —  8.2  999.9  —  0.99  160.0  3.1230 ~  70.8  115.5  2.15E+03  46.6  0.9169 ~  03/13/88  74.1  10.3  440.8  5.9477  0.93  84.4  1.1384  78.0  58.3  0.7866 2.33E»03  26.9  0.3635  04/05/88  93.8  14.0  41.3  0.4400  0.82  8.9  0.0943  92.7  6.2  0.0664 2.68E+03  3.0  0.0315  1.0146 1.91E+03  83.6  0.4105  1.84E+03  106.2  1.84E+03  70.7  — —  —  B.33 RICHMOND 09/01/87  203.7  4.7  2701.7  13.2611  1.08  273.5  1.3423  61.3  206.7  09/15/87  N.D.  5.3  2922.7  1.11  346.8  264.8  N.D.  5.2  1991.4  1.11  227.1  — —  58.5  09/29/87  — —  58.5  173.3  10/13/87  171.1  S.6  977.1  5.7103  1.08  117.1  0.6842  61.3  88.5  0.5170 1.91E+03  35.8  0.2090  11/03/87  29.6  5.7  1272.9  43.0637  1.14  161.4  5.4398  55.8  129.9  4.3947 1.77E+03  51.9  1.7563  11/17/87  6.5  1405.2  26.8419  1.11  200.9  3.8372  58.5  156.7  2.9941 1.84E+03  393.9  1.05  67.3  —  1.2096  8.4  —  63.3  12/01/87  52.4 N.D.  64.3  51.4  12/24/87  20.4  13.8  129.6  6.3586  0.90  30.6  1.5033  81.9  21.8  01/06/88  38.2  12.9  153.2  4.0150  0.90  33.6  0.8807  81.9  01/19/88  31.5  14.5  99.7  3.1678  0.78  21.2  0.6732  100.0  02/02/88  17.0  14.5  42.2  2.4780  0.84  9.6  0.5626  02/24/88  —  11.6  37.3  0.88  6.8  03/15/88  58.6  10.9  17.4  0.2963  0.87  3.0  04/05/88  —  17.1  3.1  —  0.79  1.2  —  TABLE  ~  — —  —  l.99£»03  21.1  —  1.0676 2.42E+03  9.7  0.4739  24.0  0.6301 2.42E+03  10.7  0.2799  14.4  0.4588 2.85E+03  6.6  0.2092  90.4  6.8  0.3971 2.63E«03  3.0  0.1785  —  83.9  5.2  —  86.0  2.2  - 2.47E+03  2.3  0.0503  1.0  0.0164  97.5  0.9  —  —  0.0374 2.52E»03  —  2.B0E+03  5.18 - R e s u l t s o f H e n r y ' s Law C o m p a r i s o n D.55, B.53 R i c h m o n d  170  DATE  HK3-N  HI  KK3 BY HI  SAS  (iol«s/  (ppb)  (ppb)  (l-iti)  RATIO Hl/HEAS  H2 (ati/I)  NH3 BY H2 RATIO (ppb)  H2/NEAS  H3 (IOIK/  RH3 by H3 RATIO (ppb)  (L-jUl  H3/HEAS  H4 by rtKHUU  NH3 by H4 RATIO (ppb)  H4/HEAS  AS f(T)  PI PREMIER 08/20/87  96.4  6.9  3644.9  37.7923  1.02  545.9  5.6598  67.4  371.7  3.8544 2.07E+03  159.1  1.6501  09/03/87  81.6  7.2  5397.4  66.1317  1.05  864.2  10.5890  64.3  601.8  252.8  3.0979  09/17/87  184.6  6.8  3193.2  17.2958  1.08  501.3  2.7156  61.3  355.9  7.3737 1.99E+03 1.9279 1.91E+03  148.6  0.8048  10/01/87  7.3  2547.0  22.8779  1.02  402.6  3.6164  67.4  275.9  1.0477  8.0  2425.3  32.1572  1.02  421.8  5.5926  67.4  288.1  2.4780 2.07E+03 3.8198 2.07E*03  116.6  10/15/87  111.3 75.4  122.4  1.6231  11/05/87  141.6  8.1  2560.8  18.0882  1.03  455.3  3.2162  65.8  313.6  0.9354  84.3  8.8  1646.5  19.5323  1.02  312.8  3.7109  67.4  215.0  12/03/87  17.9  9.6  0.99  390.3  21.8239  70.8  266.5  12722/87  42.7  10.6  1970.3 110.1788 2502.7 58.5619  2.2149 2.03E+03 2.5507 2.07E+03 14.8996 2.15E+03  132.4  11/19/87  1.00  570.4  13.3479  69.1  385.4  3.8435  63.8  10.2  3096.7  48.5514  0.99  655.9  10.2836  70.8  447.0  9.0183 2.I1E+03 7.0077 2.15E+03  164.3  01/05/88  192.3  3.0157  01/20/88  45.1  9.8  2893.9  64.1195  1.03  617.4  13.6792  65.8  430.1  3.8642  58.9  8.8  3054.8  51.8665  1.02  578.3  9.8189  67.4  398.9  9.5305 2.03E+03 6.7733 2.07E+03  174.4  02/04/88  172.2  2.9241  02/23/88  134.5  9.5  2246.6  16.7060  1.03  457.9  3.4053  65.8  323.1  138.1  1.0273  03/17/88  82.8  7.9  3152.4  38.0492  1.05  547.8  6.6124  64.3  385.8  2.4025 2.03E+03 4.6564 1.99E+03  166.9  2.0148  04/07/88  45.3  9.7  1446.2  31.9009  1.02  296.1  6.5325  67.4  208.2  4.5917 2.07E+03  89.3  1.9697  91.7  1.0881  114.9  6.4229  P2 PREMIER 08/20/87  145.0  7.2  4098.9  28.2589  1.05  655.5  4.5190  64.3  457.0  3.1509 1.99EMJ3  197.1  1.3591  09/03/87  86.0  6.6  6008.2  69.8636  1.08  912.4  10.6098  61.3  649.6  7.5535 1.91E+03  276.7  3.2177  09/17/87  174.5 K.D.  6.0  4545.6  26.0485  1.11  636.9  3.6501  58.5  463.1  2.6538 1.84E+03  200.5  1.1492  6.4  4571.2  1.08  672.1  —  61.3  479.5  1.91E+03  203.6  10/01/87 10/15/87  112.5  7.0  3545.2  31.5206  1.08  S74.2  5.1052  61.3  407.5  3.6232 1.91E+03  172.4  1.5325  11/05/87  191.1  6.6  3900.3  20.4100  1.08  593,6  3.1062  61.3  421.7  2.2067 1.9IE*03  177.5  0.9288  11/19/87  48.4  7.4  2283.4  47.1801  1.06  379.9  7.8485  62.8  270.8  5.5942 1.95EM73  114.9  2.3748  12/03/87  74.0  9.9  1511.7  20.4338  0.99  303.6  4.1038  70.8  211.2  2.8544 2.15E*03  91.8  1.2406  12/22/87  44.3  11.2  1999.5  4S.1436  0.97  465.7  10.5134  72.5  309.0  6.9760 2.19£»03  134.8  3.0438  01/05/88  143.7  8.4  3433.7  23.8962  1.05  623.8  4.3411  64.3  447.7  3.1160 1.99E+03  190.9  1.3284  01/20/88  32.2  8.8  2622.4  81.5086  1.02  486.6  15.1250  67.4  342.5  10.6443 2.07E+O3  144.0  4.4758  02/04/88  46.8  9.7  3064.3  65.5094  1.02  633.7  13.5485  67.4  441.1  9.4293 2.07£tO3  189.8  4.0580  02/23/88  43.1  9.3  2081.5  48.3383  1.00  395.4  9.1836  69.1  281.0  6.5267 2.1IE*03  112.3  2.6073  03/17/88  104.6  8.8  2905.6  27.7838  1.02  539.6  5.1598  67.4  379.4  3.6283 2.07E+O3  04/07/88  29.7  10.8  703.9  23.7070  0.96  146.0  4.9174  74.3  102.0  3.4361 2.24E+03  TABLE  5.19  - R e s u l t s o f H e n r y ' s Law P I , P2 P r e m i e r S t .  Comparison  171 underprediction  in  In M a t s q u i an  average  low  Landfill,  range of  considered. very  solubility.  F8  30  t o 60  Matsqui  ammonia  (< 2.0  gas.  t h i s method o v e r p r e d i c t s NH^-N  NH^-N  i n the  NH^-N  g a s e s from h i g h e r  mg/L)  Again,  sampling  and  higher  method  still  closest gas  than  landfill, N gas  the  i n F8  of  NH^-N  the  Matsqui,  the  this  S t r i d e Ave.  high  of  higher  10  fold.  over  leachate  Even  values,  method  by  NH^-N  values.  exhibited  a  landfill.  concentrations  gas  i t had  migration  though  values this  i t approaches  f o u r methods f o r p r e d i c t i n g S t r i d e  extreme h e t e r o g e n e o u s n a t u r e  t h i s method g r o s s l y o v e r p r e d i c t s and  concentrations  w e l l s do  the Ave.  of  up  show a r e l a t i v e  t o 2600 and  agreement  with  25  of  Richmond  underpredicts  respectively.  H , 1  notably  NH^-  Some  B8,C6  and  wells. The  ratio  overprediction 5.6.2.2. As for  to l a t e r a l  i s not  since  still  by  values. B e c a u s e of  B.53  due  NH^-N  underpredicts of  anomaly,  w e l l s e x h i b i t e d low  expected  agreement  be  much l i k e  underpredicts  Matsqui  l e a c h a t e , but  ammonia a r e a s  consistently these  when F8  i s a b i t of an  T h i s may  In S t r i d e Ave,  fold,  gas  in Premier of NH^-N  St.  gas  landfill,  concentrations  by  2 0 - f o l d or  greater.  MOLE FRACTION METHOD  mentioned p r e v i o u s l y , t h i s  expressing  showed a c o n s i s t e n t  H e n r y ' s law H  2  Where Pa  by  the  = Pa/Xa  method below  i s u s e d most  commonly  relationship: (iii)  = P a r t i a l p r e s s u r e of gas above t h e aqueous s o l u t i o n  (atm)  172 Xa Two  = Mole f r a c t i o n of c h e m i c a l i n aqueous s o l u t i o n  s o u r c e s of H e n r y ' s law  t o o b t a i n an  equation  used  data  were a v e r a g e d  to predict  a and  at a given  regressed  temperature. 2  The  resulting  0.996236. located  r e g r e s s i o n equation.has  P r e s e n t a t i o n of t h e d a t a and  i n Appendix  Potential t o the  3 % and  r  of  regression equation  is  B.11. .  i n a c c u r a c i e s and  The  large variation  values coupled contribute 2.  errors  with  the v a r i a t i o n  significantly  Literature  ( o v e r 30  to  i n t h i s method may  be  due  3.  Roundoff  The  ratios  generally  about  method a g r e e s low  NH^-N  5.6.2.3.  i n r e g r e s s i o n parameters  from  spreadsheet  of p r e d i c t e d v s . measured 3 times  better  less  than  H  sampling  pure-,  for this  technique  w h i c h means  adapted and  from  l e a c h a t e w e l l s and  Stumm and  enthalpy data  enthalpy data are taken  lesser  c o r r e c t e d f o r temperature exothermic  equilibrium  (1981)  to c a l c u l a t e  between t h e aqueous and from  Morgan  the  gas  who  the  phase.  This  thermodynamic  dependency.  reaction  are  this  GIBBS FREE ENERGY METHOD  entropy  basic  from  wells.  constant  The  may  calculations.  ratios  1  w i t h h i g h e r NH^-N  equilibrium  and  literature  :  errors  standard entropy  literature  between t h e  s o u r c e c o n s t a n t s were c a l c u l a t e d  T h i s method was  and  %)  error.  water measurements.  used  of  following:  1.  with  a % C.V.  between NH3|aq  173 and  NH3|g can  change w i t h ( v i ) ) and  be  estimated  the e n t r o p y  In H  first  and  enthalpy  to equation  data  (y)  = - AG  3  /  0  in this  (S)  free  energy  (equation  :  RT  (v)  i s the Gibbs  errors  the  ( iv)  example of t h i s method  Potential  calculating  = H - TAS  Where AG° An  (H)  subjecting this AGo  by  Free  Energy  is listed  i n Appendix  method can  result  B.12.  from  the  following: 1. method  Stumm and  Morgan q u a l i f y  t h a t the q u a l i t y  variable"  and  best  available."  data  temp, and internal 2.  The ratios  was  water  last  d i s c u s s i o n on  data  i s "highly  c l a i m t o have c r i t i c a l l y  A l l data  w h i c h may  chosen  not 1  be  this  is valid  at  selected standard  the state  true  in l a n d f i l l s  where  again  calculated  using a  atm.  data  was  5.12  through  solution.  results  in Tables 2-fold  less  than  and  5.19  indicate H  6-fold less  3  predicts  than  H . 1  SOLUBILITY-EQUILIBRIUM METHOD method compared  of a t m o s p h e r i c  adapted  constant  not  thermodynamic  5.6.2.4.  modelling  thermodynamic  p r e s s u r e s do' e x c e e d  that are  The  "do  pressure  The  distilled  they  of  in their  from  the  ammonia.  study  i s dimensionless  aqueous and. gas  phase H  4  =  i s used  by H a l e s and  i n the  The  3  Drewes  by  (1.979).  dynamic  this  author  This  t h e m o l a r i t y of b o t h  equation:  [NH |aq]/[NH |g] 3  method u s e d  and  relates below  q u i t e o f t e n i n the  the  174  Hale  The  constant  and  Drewes  i s temperature  (1979) f o r 30  d e p e n d e n t and  data  pairs  was  regressed  t o o b t a i n an  by  expression 2  for  calculating  was  never  errors  U^.  documented.  in this  0.1  N  sulfuric  determine acid  how  the  measure t h e  and  can  acid  NH^-N  has  Drewes  a C.V.  less  (1979) do m e n t i o n  than  10  .  Small  CC^  an  r  that  concentrations  changes w i t h a d d i t i o n  rain  effects).  The  system t o normal atmospheric  sample c a l c u l a t i o n  10 % and  were a l s o a d d e d t o t h e ammonia  solubility  response  of  become e x c e s s i v e when d e a l i n g w i t h -9  that are  ( i e , simulating acid  subjected  a  Hale  equation  aqueous m o l a r i t i e s of  This equation  had  on H^.  The  of  authors  levels  solution  to  strong  also  of CC^  to  regression equation  of t h i s method  i s presented  errors  method a r e a . r e s u l t  and  i n Appendix  B. 13. As 1. in  expected High  the  C.V.  i n the Henry's c o n s t a n t  large variations, 2.  i s not  resulting  This w i l l Inspection  indicate  t h a t H^  a l s o agrees  indicate  i n much g r e a t e r t h a n  of t h e  results  further  in Tables  generally less  than  3.0.  The  Premier ratios  Also  p r e d i c t e d , gas. p h a s e later.  5.12  some Richmond and  q u i t e favorably with  water, which  l a r g e changes i n  underpredicts Stride  with  result  solutions.  of a l e a c h a t e s y s t e m .  be d i s c u s s e d i n more d e t a i l  a g r e e i n g more c l o s e l y  are  indicative  of:  could  i n the v e r y d i l u t e  measurements done w i t h CC^  solubility NH^.  especially  equation  Measurements were done i n p u r e d i s t i l l e d  mentioned before, their  of t h i s  through Ave.  data  Matsqui  St. data  5.19  data.  where  calculated  while H^  ratios  by H.  are  as  175 generally  2-fold  less  t h a n H^  ratios  and  12-fold  less  than  H  1  ratios. 5.6.2.5. A table in  tables  SUMMARY OF summarizing  5.12  through  TABLE 5.20  1  •  H  30-60 0.05-0.5  RICHMOND  0.3-100 ST.  2  0.05-20  0 .025-10  5-20  2  = Mole F r a c t i o n  H  3  = Gibbs Free Energy  2.5-10  Method Method  That  Method  in matrix are predicted/measured  that  o f T a b l e s 5.12  a r e worth  through  between  mg/L  5.20  up  ratios)  some  c o n s t a n t s and  below:  c o n s t a n t s a r e not a p p l i c a b l e  NH^-N) w i t h h i g h pH's  l e a c h a t e s (< 20 mg/L  NH3-N gas  bring  the d i f f e r e n t  mentioning  documented H e n r y ' s (> 250  1 .3-5.0  P r e s s u r e Method  = Solubility-Equilibrium  relationships  2.5-5.0  0. 1-35  H  h i g h ammonia  5-10  4  0 .005-0.05  = C o r r e c t e d Vapor  Inspection  H  0.01-0.1  1  (Note: V a l u e s  3  0.02-2.0  H  interesting  H  1 0-20  1 5-60  H.  landfills  CONSTANTS  1  STRIDE  ammonia  i s p r e s e n t e d below:  HENRY S  MATSQUI  t r e n d s of the d a t a p r e s e n t e d  - Summary M a t r i x o f t h e A v e r a g e Range of R a t i o s (Predicted/Measured) found i n each landfill.  H  i.  the major  5.19  LANDFILLS  PREMIER  RESULTS  NH--N) t h a t  (>6.6) and  have low  pH's  low  (<6.2).  to  176 Many sample w e l l s t h a t subjected to high  f i t under  volume r a i n  In c o n t r a s t , S t r i d e Ave. still  Stride  Ave.  period.  data  underpredicted  w e l l s were not  2.  The  from t h e  m e t e r s and  ratio  could  be  variability  the  NH^-N  this  done by  S t e p h e n s e t a l . (1986) on  study  agree  i n West C o v i n a ,  t o 2.5  f o r benzene.  that  the  discrepancy  one;  d i s e q u i l i b r i u m between t h e non-valid,  the  or  chloride  measurements a r e  chloride  (due  rate  than  the  questionable extremely In  Calif..  of  not  and  1.0  in  only  to  technique,  another  volatile The  from  aqueous and the  low  ratio  to a greater  found  0.002 i n  vinyl  rate.  The  volatilization  concluded was  would use  due  to  p h a s e s make  found  in  vinyl  production  of TCE  from  they  values  gas  study  organics  ratios  predicted/measured  due  author  but  which  of  ?) a t a  second cause  r a t e of v i n y l  vinyl  greater is  chloride is  high.  summary, t h i s  the  conductivity  S t e p h e n s e t a l . (1986)  two;  volatilization  pH  ranged  to m i c r o b i a l degradation  s i n c e the  and  throughout  favorably with  concentrations  chloride  H e n r y ' s Law  diluted  concentration.  recently  of  leachate.  Henry's constants  i n the  of  of p r e d i c t e d / m e a s u r e d  were  still  subjected  ammonia d i s t i l l a t i o n - t i t r a t i o n  landfill  pH  method t h a t  1  results  BKK  their  to a r a t i o  The  the  of  leachate  in formulating  analytical  leachate  ones t h a t  10-fold.  discussed  determines the  are  sufficiently  C l o s e s t agreement  calculated ratios  errors already  NH^-N  r e s u l t e d from t h e H  the  label  water d i l u t i o n  e x h i b i t e d c o n s i s t e n t l y low  8 month s t u d y  also  this  extreme c a u t i o n  in  177 applying  documented H e n r y ' s c o n s t a n t s  leachate  values  the data  support  should  be  landfill  this  heeded system  phases, which If  in a l a n d f i l l  one  constants  environment.  conclusion.  results  for prediction  The  from t h e  method or H  the  variation Also, why of  H  and  choice  which  i s that these other  constants  are  H^  suspect  a l l higher  standard  equilibrium-solubility  whereas t h e  both 1  4  may NH^-N  be  two  H  caution  2  do  t h e mole The  l e a c h a t e w e l l s and  f r e e e n e r g y change o c c u r s behavior  law.  Henry's  fraction  main  have a  f r e q u e n t l y used. from H^'s  a  iandfill  reason  reported  methods have u n c e r t a i n  stem  not  gas  Henry's  in a  method.  constants  t h e most  i s somewhat s u s p e c t  why  4 different  concentration  I would have t o c h o o s e e i t h e r  this  behind  would have t o c h o o s e between t h e of gas  believes  t h e aqueous and  fundamental assumption  for prediction  or  u n c e r t a i n t y of whether or  environment,  behind  T h i s author  main r e a s o n  i s i n e q u i l i b r i u m between  i s the  of gas  variation.  Other  reasons  gross o v e r p r e d i c t i o n  H^'s  assumption  i n a gas  that  t h a t behaves  in a varied l a n d f i l l  the  ideally, gas  mixture. 5.6.3  REASONS FOR  DISCREPANCY IN PREDICTED/MEASURED RATIO  In a d d i t i o n t o the e r r o r - p r o n e be  other  ratio  more i m p o r t a n t  factors  Henry's c o n s t a n t s ,  f a c t o r s are d i s c u s s e d  5.6.3.1. The technique  may  that c o n t r i b u t e to t h i s d i v e r g i n g  of p r e d i c t e d v s . measured NH^-N  potential  there  gas  values.  i n more d e t a i l  These  below.  ANALYTICAL TECHNIQUE  main c o n c e r n  dealing with  c e n t e r s around  the  u n c e r t a i n t y i n the  possible error that  low  analytical NH3-N  gas  178 values  may  exhibit.  t o the  detection  variation  Because the there  could  causing gas.  limit  i n data  i s a n o t h e r major  be  of  low the  values  of  sampling  technique  appreciable  Even  could  Stride  close  large  efficiency  the  pre-filter  results  determination  the  of  NH^-N  c o n t r i b u t i o n t o be  i n S t r i d e Ave.  l e a d me  a s u b s t a n t i a l c o n t r i b u t o r to high  gas,  aerosols  +  very  to  believe  measured  values  Ave values  3  Premier  S t . may  autoanalyzer  by  one;  t h a t may  is  not  subseqently  due  two;  i n t o the  A n o t h e r p o t e n t i a l major, s o u r c e analytical  procedure  is variation  unionized  fraction  of  hydrogen  ion concentration,  fraction  In c a l c u l a t i o n s done by a pH  increase of  of  unionized  increase  i n the  of  Thurston  0.5  of  unionized  into a 3-fold  increase  the  i s at e q u i l i b r i u m .  Richmond  in  the  high  CO^  with  ammonia  that  boric acid solution. of  error contributed results.  ammonia of  Since  i s dependent  the  pH  meter  e t a l . (1974) i t can  units w i l l  fraction  of  complex  o f pH  accuracy  translated system  effects  form a v o l a t i l e  adsorbed  in Matsqui,  to s i g n a l suppression  i n t e r f e r e n c e s or  concentrations  3-fold  recovery  4  Lower t h a n e x p e c t e d NH ~N gas  fraction  the  amounts of N H - c o n t a i n i n g  t h o u g h I would assume t h i s  be  Also,  d i d not  a p o s i t i v e i n t e r f e r e n c e i n the  this  that  the  bordering  uncertainty.  i n s p e c t i o n of  and  were o f t e n  autonanalyzer.  for determination  low,  in  These  subsequently  ammonia by ammonia i n NH^-N  over  fraction gas  by  the  the on  the  is a be  must. observed  increase  the  3-fold.  This  can  be  concentration  if  179 5.6.3.2. The  LANDFILL UNSATURATED ZONE  values  of  leachate  conductivity  may  not  their  may  differ  values  unsaturated  be  indicative  ammonia and  of t h e  considerably  instances without  concentrations  of  leachate  exceed c o n c e n t r a t i o n s especially  highest  total  whole l a n d f i l l  from t h o s e  true  found  i n the  rainfall  i n the  found  dilution,  unsaturated  i n the  dryer  NH3-N c o n c e n t r a t i o n s  unsaturated  planar  unsaturated  months of  this  0.10.  there  This  study,  where  gas  values  2  .  landfill  effective This  had  unsaturated area  air-filled This landfill  may the  gas  found  effective p h a s e than  b o t t o m of  in  the  surface the  pseudo-  saturated  25  ha  the  area  zone.  i n area  with  landfill  ' i s roughly  figure  become l e s s d u r i n g p o r o s i t y may  simplified water  an  a i r - f i l l e d p o r o s i t y of  zone would have  an  10. t i m e s  the  • area a v a i l a b l e  s a t u r a t e d zone.  active rainfall  B o t h of  periods  since  decrease.  example  t a b l e , the  .  a v a i l a b l e f o r mass t r a n s f e r of  p h a s e mass t r a n s f e r i n t h e will  will  would be .an., e f f e c t i v e , area, f o r mass t r a n s f e r of  In c o n t r a s t , t h e  250,000 m  the  10 m below t h e  assuming the  hypothetical  for  i s also a greater  in a hypothetical l a n d f i l l ,  table  the  zone.  a v a i l a b l e f o r mass t r a n s f e r from t h e  water  25,000 m  the  were m e a s u r e d .  f o r mass t r a n s f e r i n t o  instance,  a planar cover,  zone, t h e r e  area  For  in  since  refuse pores  In a d d i t i o n t o g r e a t e r mass c o n c e n t r a t i o n s  available  specific  zone.  In most  be  pH,  indicates that  greater  the  deeper  contribution exists  the in  the  these the  180 unsaturated  zone  5.6.3.3. Not gas  f o r NH^-N g a s g e n e r a t i o n .  VOLUME DILUTION EFFECT  much i s known a b o u t  concentrations  production.  from e f f i c i e n t  This d i l u t i o n  than  for  lower  and  Richmond, s i n c e t h e i r  much g r e a t e r An look  t h e p o s s i b l e mass d i l u t i o n methane a n d c a r b o n  could very  p r e d i c t e d gas v a l u e s  than  CH^ a n d C 0  2  reason  i n Matsqui  f l u x e s were f o u n d  t o be  S t r i d e Ave. f l u x e s .  example o f t h i s mass, o r volume d i l u t i o n  a t a s l a b of r e f u s e  completely  NH^-N  dioxide  w e l l be a major  from some w e l l s  of  anaerobic  phenomenon  10 m X 10 m X 1 m t h a t  landfill  environment  with  exists  i s to  in.a :  a d e n s i t y o f 700  3 kg/m of  .  This  slab i s subjected  25 mL C H / k g  production  t o an a v e r a g e CH^ g e n e r a t i o n  4  o f r e f u s e p e r day t h a t  rate  i n t h e s l a b o f 1750 L C H ^ / s l a b - d a y .  Mass t r a n s f e r o f ammonia o u t w a r d s estimated  translates into a C H ^  from t h e s l a b c a n be  by u s i n g t h e common d i f f u s i o n e q u a t i o n F l u x NH--N = (D/L) * (C, - C ) 3 1 g  below:  Where D = the, a p p a r e n t d i f f u s i o n c o e f f i c e n t cm / s from G a r d n e r ( 1 9 6 6 ) . L  = the liquid-gas f i l m  C-^ = c o n c e n t r a t i o n  thickness  in liquid  rate  taken  taken  a s 0.025  a s 0.01 cm  3 (ug/cm ) 3  Cg If neglect  = concentration  C I i s 1.0 ug/cm  (ug/cm )  ( i e , 1 ppm) a n d Cg i s s m a l l  enough t o  then: • Flux  Flux So  i n g a s phase  NH .-N' = 25,000 ug/m -day o r 0.25 gm/slab-day 2  3  NH -N = .0.33 L N H / s l a b - d a y 3  the r e s u l t s  3  i n d i c a t e a volume d i l u t i o n  o f ammonia g a s t o  181 be  over  5000 f o l d  substantial production Low  when one was  gas  explain  why  expected Premier  not  values high  gas  S t . was i n most  volumetric atmospheric  wells  and  Because i t may  leachate  leachate not  be  leachate  system.  months as  not  values,  This  be  but  could  evidenced  by  to  see  S t r i d e Ave.  since  the  ratios,  than  measured  solely  due  to  maybe a l s o due  e x t r a c t i o n system  i n a sample w e l l  representative  Matsqui  helping  concentrations  landfills  not  are  to  pulling  be e s p e c i a l l y CH  percentages  4  in  to give  of  i s only the  a point  surrounding  source leachate  This, i s e s p e c i a l l y true where l a r g e  spatial  of  in  differences in  apparent.  of c o n c e r n  i s the  erroneous  i n d i c a t i v e of  mentioned, t h i s  5.6.3.5.  gas  than  would expect  r e a s o n may  heterogenities.  Another point  already  higher  However, when s t u d y i n g  from t h e  ammonia v a l u e s  migration  one  are  could  LANDFILL HETEROGENIETIES  landfill  Richmond and  a lesser dilution  behave much l i k e  The  gas  2  P2.  5.6.3.4.  to  or NH^-N  winter  to C0  t o e x h i b i t much g r e a t e r  a i r i n t o the  i n the  due  data  instances.  apparent P1  gas  due  is quite  estimation.  values  Conversely,  fluxes.  dilution  gas  This  dilution  rates causing  observed  pH  case.  in this  measured NH^-N  landfill  relative  data,  considered  i n S t r i d e Ave.  b o t h have low  simplified  observes that  production the  St.  Premier  in t h i s  could  be  e f f e c t s of  l a t e r a l , gas  r e s u l t s of NH^-N  i t s corresponding the  case  NON-EQUILIBRIUM LANDFILL  i n F8  gas leachate.  Matsqui.  ENVIRONMENT  As  182 The  landfill  i s a dynamic  environment  internal  and e x t e r n a l  question  o f whether o r n o t t h e l a n d f i l l  equilibrium and  liquid  that are  1.  can ever  the l a n d f i l l  from  be a  e s t a b l i s h an the gaseous  f l u c t u a t i n g . Some f a c t o r s reaching  an e q u i l i b r i u m  state  below:  temporally  f l u x e s of b i o g a s b e i n g  and  1 atmospheric  that  vary  both  rainy  pressures  that  exceed  standard  conditions.  L a r g e and v a r i e d the  generated  spatially.  Internal, l a n d f i l l  3.  However, i t c o u l d  environments are f o r e v e r  Large  2.  responds to  between t h e aqueous and gas p h a s e s s i n c e  can prevent noted  perturbances.  that  p r e c i p i t a t i o n fluxes  season c a u s i n g  chemical  observed  during  and b i o l o g i c a l  changes. Other factors  than  that  1.  factors there  The p r o d u c t i o n  unionized  equilibration  rate  o f ammonia  o r gas t r a n s f e r  ammonia  there  a r e some ammonia  may c a u s e n o n - e q u i l i b r i u m .  volatilization  since  these  of the system  These a r e l i s t e d i s much g r e a t e r  rate, causing  i n the leachate.  If,this  i s probably  specific  than the  an a c c u m u l a t i o n o f i s true,  then  d i f f u s i o n rate  e x i s t s an ample c o n c e n t r a t i o n  below:  gradient  limited  available for  mass t r a n s f e r . 2. leachate  Initial  concentrations  have n o t v o l a t i l i z e d  combination greater  elevated  to equilibrium.  o f p t . #1 w i t h t h i s  f r a c t i o n o f NH_|aq  o f ammonia  mechanism would  i n the leachate  i n the  .  I f true, the leave  a much  than would n o r m a l l y  be  183 predicted  by H e n r y ' s Law,.  5.6.3.6.  MASS TRANSFER LIMITATIONS  There a r e other subsequent  f a c t o r s that  equilibrium  chemical nature Leachate  ionic  strength  Holdcroft  (1963) ( i n R e i d  h a s been  d i f f u s i o n rate  diffusion coefficient  could  such as the  of t h e l e a c h a t e .  liquid  linerly  t h e d i f f u s i o n r a t e and  o f t h e aqueous a n d g a s p h a s e s  effective  the  limit  w i t h an i n c r e a s e  also conceivably  gases a r e s o l u b l e  found t o decrease the  i n e x p e r i m e n t s by R a t c l i f f a n d  a n d Sherwood, of C 0 in salt  2  1966).  They  found  gas i n s o l u t i o n  decreases  concentration.  This  phenomenon  o c c u r w i t h NH^ i n s o l u t i o n s i n c e  non-electrolytes  that  both  a n d behave somewhat a l i k e i n  solut ion. Another diffusion liquid  factor that  rate  i s the a d d i t i o n  thin film  NH^-N t r a n s f e r  that  i n leachate  organics  that  effect  could  float  that  5.6.3.7. than  apparent  c a u s e a weak b a r r i e r t o  This  would e s p e c i a l l y be  c o n s i s t s o f l e s s dense  insoluble  a t the saturated-  a b a r r i e r t o mass t r a n s f e r .  i n surface  This  impoundments by i n c l u d i n g a  f o r the o i l f i l m  (see  Ehrenfeld,  1986).  SOLUBILITY OF AMMONIA sampling  l a r g e amount o f time this  conceivably  interface causing  mass t r a n s f e r c o e f f i c i e n t  i n attenuating the  of t h i n o i l f i l m s surrounding the  above t h e l e a c h a t e  h a s been m o d e l e d  Other  be s u b s t a n t i a l  i n t o t h e g a s phase..  apparent  unsaturated  could  and p e r f o r m i n g  in this  discrepancy  study  t h e a n a l y t i c a l work, a  was s p e n t  trying to explain  between t h e p r e d i c t e d / m e a s u r e d  NH,-N  184 concentrations. the  solubility  Most of  the  d y n a m i c s of  e f f o r t s focused  ammonia  on  i n non-pure  understanding  solutions  such  as  leachate. The ionic  major  f a c t o r s that  strength,  solution.  In  unionized  pH,  the  calculations. ionic  Whitfield,  solution.  from  and  ionic  Salinity  1974). (see  The  units  this  NH^-N  rate  of  share the  B.4)  that  due  could the  was  the  a large  to  1 atm  which  low  a portion  the  rate  to e q u i l i b r i u m occur  of  in may  gas. be  removed  Since  of  most (<  In  removal exceeds Possible to  1.0  reacting  of NH^-Njaq.  leachate  to  the  concentrations  shifts.  in a l a n d f i l l  into  NH^-N  c e r t a i n compounds c a p a b l e  that  is close  i s a mystery. at  (see  ideal  then c o n v e r t e d predicted  problem  activity  f o r a non  f r a c t i o n (NH^Iaq)  already  the  salinity  converted  to c o r r e c t  in  with  this the  chemical  remove  following:  Complexation unpaired  from  t o be  e f f e c t s of  reactions  are  i t i s assummed  NH^|aq i n c l u d e 1.  of  considered  any  r e s u l t i n r e m o v a l of  formation  reactions  riot  unionized  values  salinity  were c o r r e c t e d  f r a c t i o n was  chemical  mg/L), a c c u m u l a t i o n  scenario,  the  f o r c a l c u l a t i o n of  s o l u t i o n by  NH^Iaq may  c a l c u l a t i o n s for estimating  assumed t o be  unionized  much o f  unionized  the  strength  Appendix  and  include: of  strength  includes  Ionic  temperature  solubility  in solution, e f f e c t s  was  P r e s s u r e was  correct.  How  spreadsheet  strength  coefficients  proper  pressure,  f r a c t i o n of NH^-N  t e m p e r a t u r e , pH  since  e f f e c t ammonia  of NH^  electrons  with other of  the  compounds t h a t  nitrogen  atom of  covalently  NH_.  This  185 reaction The  i s commonly c a l l e d  t y p e s of  s u c h as The  c o p p e r and  of  +• 4NH  + +  This  Cu  below t h a t ammonium a.  t i e up  >  i s commonly  Reaction 3  chlorinated  NH3  chloride  are  1.0  some m e t a l s  mg/L  may  below:  + +  as  to  > Cl~ + NH  2  w/acid c h l o r i d e s  chloride  + 2NH  reactions  releasing  a  o r g a n i c s and  to  form t h e  state  of  could  are  an  and  shown  protonated  +  1979) ClHgNH  (Brown W.H.,  2  198  become common  in  abundance  landfills of  compounds.  m e t h y l ammonium  is usually  ) + Cl~  + 4  methane m o l e c u l e w i t h  soluble  conditions,  + 4  c o n t a i n s an  chlorine  the  (NRC,  > Acetamide + N H  3  reactions  Complexing  substantial  the  ion  ammonia  (CH NH ). +  3  4  n o n - r e a c t i v e w i t h compounds  there could  r e m o v a l mechanism of  the  gas  phase.  4.  In  addition  opposite  form  "ammonolysis"  be  enough  reaction  NH |aq a v a i l a b l e 3  t o methane c o m p l e x i n g ,  occurring  between C 0  9  and  for  t h e r e may NH_  at  random  o c c u r r a n c e s where methane bonds w i t h ammonia t o p r o v i d e  into  occur.  4  to  Two  while  3  1979).  with organics  referred  w/mercuric  Even t h o u g h methane standard  of  reaction.  Richmond, where l e a c h a t e  molecule  3  NH  Both c h e m i c a l  3.  over  i s shown  2 m o l e s of  + HgCl  Reaction  Acetyl  like  reaction  Cu*(NH )  reaction  (NRC,  ion:  2NH b.  w i t h NH^  3  s i m i l a r to a h y d r o l y s i s  reaction  for this  where v a l u e s of  substitution  amide g r o u p . is  zinc  reaction Cu  A  addition  compound a v a i l a b l e  addition  2.  an  that  a  transfer  be  an  instead  of  186 complexing This  reaction  volatile be  ammonia  i s the  being  vs.  landfills. values  i n mind, t h e  has  C0  large  much l o w e r  of  NH |aq by  high  3  5.6.3.8.  are  1. soil  function adsortion  exceed  gas a  40  in contrast,  % and  may  i n r a t i o s between  % while  20  may  well.  percentages  2  % can  be  to chemical  listed  other  briefly  Adsorption  of  C0  acid  solution  Stride  Ave the  measured  Stride  a much h i g h e r  concentrations.  s u b s t a n t i a l removal  sinks sinks  between p r e d i c t e d  within  boric acid  high  a  carbamic  a n a l y t i c a l p r o b l e m s as  NH^-N may  This  form  Ave.  ratio So  of  in  mechanism  concentrations.  2  a number of  discrepancy These are  there  to  solution.  i n Richmond and  l e s s than  C0  the  NHg  of  LANDFILL SINKS  In a d d i t i o n there  acid.  than p r e d i c t e d ;  measured v e r s u s p r e d i c t e d Richmond l a n d f i l l ,  2  i t out  and  2  e f f e c t of  measured NH^-N  % generally  2  C0  differences exist  In Richmond, C 0  are  of  carbamic  adsorbed causing  a r e a s o n why  predicted  strip  enough t o p a s s t h r o u g h  With t h i s be  complexing  compound c a l l e d  volatile  without  i n s o l u t i o n , may  the  of  that  within  could  help  the  leachate,  cause  this  m e a s u r e d NH^-N  concentrations.  landfill  material  below:  NH^|g  landfill.  i t ' s adsortion  of NH^  and  located  onto The  rate at  isotherm  refuse  which t h i s  can  happen  (Fruedlich.isotherm).  is especially possible  or  i n more a l k a l i n e  is a  This landfill  environments. 2.  Assuming  ammonia t h e n NH_|g  the can  unsaturated be  zone  i s not  r e s o l u b l i z e d i n the  a primary  source  unsaturated  zone  of  187 +  fluid  t o NH |aq  and r e p r o t o n a t e d  3  further  utilized  onto c o l l o i d s  or s o l i d  mentioned p r e v i o u s l y , e x c e s s i v e a wetting  front  resolubilizing lower  that migrates  exists  inside  landfill  rainfall  downward  exchanged  substrate.  infiltration  As can c r e a t e  i n the l a n d f i l l  into  the a c i d i c  gas condensate  that  MASS FLUX EMISSION OF NH3-N GAS INTRODUCTION  how much,  emitted  the  goals  i f any, n i t r o g e n  through  presented  that estimates  four study  landfills.  flux  emissions later  was t o g e t an i d e a  i n t h e form o f NH^-N was b e i n g In t h e f o l l o w i n g s e c t i o n , d a t a i s of NH^-N t h r o u g h  two o f  T h i s e s t i m a t i o n was c a l c u l a t e d  of  mass f l u x e s a r e then  thesis  t h e mass f l u x  model u s e d u n t i l  organic  of t h i s  the gas phase.  simplified  this  time  exculsively  from covered compared  landfills.  to estimated  by a .  for modelling The r e s u l t i n g f l u x e s o f NH^-N  the l e a c h a t e . The  to  o r more l i k e l y ,  the well c a s i n g .  One o f t h e o r i g i n a l  in  c a n be  a n d r e p r o t o n a t i n g NH^-N gas due t o i t ' s r e l a t i v e l y  Resolubilization  5.7.1.  of  T h i s NH^  pH. 3.  5.7  t o NH^ .  by m i c r o b i a l a c t i v i t y  in solution  +  study  through  model was o r i g i n a l l y the emission the l a n d f i l l  conceived  r a t e s o f h e x a c h l o r o b e n z e n e by d i f f u s i o n cover  soil.  model t o i n c l u d e t h e a f f e c t s ' o f landfill with  cover.  convection  by Farmer e t a l . (1981)  He v e r i f i e d  Thibodeaux convective  (1981 ) m o d i f i e d  t r a n s p o r t through the  Farmer's hexachlorobenzene  flow and a l s o s i m u l a t e d  this  the emission  results  f l u x e s of  188 four  other  organic  chemicals,  namely benzene, c h l o r o f o r m ,  chloride  and PCB ( A r o c l o r 1248).  own  i n 1982 by s i m u l a t i n g t h e e m i s s i o n  work  including  the barometric  Thibodeaux then  pressure  pumping  landfills.  The s i m u l a t i o n was c a r r i e d  (Continuous  Systems M o d e l l i n g  The  assumptions,  models a r e d i s c u s s e d Modelling in  work i s s i t e  specific  5.7.2.  diffusion  through  that  a porosity factor  has m o s t l y  been  done  of t h i s  ;  the hexachlorobenzene by d i f f u s i o n  (M/(L -T) = (De/L)*(Cs 2  1 , 3 3  o n l y , and  Law of D i f f u s i o n . : on t h e d i f f u s i o n  coefficient  t o the 4/3rd.  Where De = D o * P a Where J Do De Pa Cs C2 L  of these  i n the chapter.  the majority  the cover  obeyed F i c k ' s F i r s t  the reference d i f f u s i o n  J  aspects  steps.  FARMER'S MODEL  B e c a u s e t h e p o r o u s media had an e f f e c t  by  time  and e m p i r i c a l .  w a s t e s were t r a n s p o r t e d  length,  t h e IBM CSMP  f e e d l o t e m i s s i o n s and  Unfortunately,  In F a r m e r s model, he assumed  this  i n some  MODEL INTRODUCTION  5.7.2.1.  that  later  sector concerning  applications.  various  and d e t a i l e d  i n more d e t a i l  found  o u t by u s i n g  ammonia gas f l u x e s i n s o i l s  the a g r i c u l t u r a l  fertilizer  limitations  modified h i s  f l u x e s o f benzene by  effect  Program) o v e r  vinyl  path  (Do) was m u l t i p l i e d  T h i s model - C2)  - .  i s shown  below:  (vi) (vii)  2 i s t h e g a s f l u x u s u a l l y i n gm/m -day i s t h e d i f f u s i o n c o e f f i c i e n t i n a i r i n m /day i s t h e e f f e c t i v e d i f f u s i o n c o e f f i c i e n t i n m /day i s A i r - f i l l e d porosity ' i s s a t u r a t e d v a p o r c o n c e n t r a t i o n i n gm/m ^ i s v a p o r c o n c e n t r a t i o n a t l a n d f i l l s u r f a c e i n gm/m i s t h i c k n e s s of l a n d f i l l cover i n m 2  189 The  effective  diffusion  equation  (1981) f o r d e s c r i b i n g d i f f u s i o n 5.7.2.2. In a  due  was  to c o n v e c t i o n  diffusion  created  is listed  d e r i v e d are N =  of ammonia gas  from  through  Parton  soils.  m o d i f i c a t i o n t o Farmer's model, Thibodeaux  term to the  This equation  taken  THIBODEAUX'S MODEL  slight  a product  ( v i i ) was  from  (De/L)*(Ca  Where  N  Where Ca C  2  internal  below.  presented  equation  that accounted landfill  Specifics  i n Appendix -C )*  gas  of how  i s g^s f l u x gm/m -day  from  flow  generation. (ix)  B.14. (ix)  landfill  surface usually in  i s concentration  of compound a  i s concentration  of a a t  Where R =  for  equation  (Rexp(R)) (exp(R)-1)  ?  added  the  (gm/m  )  landfill  (L*v/De)  surface  (x)  Where L v  i s l a n d f i l l cover t h i c k n e s s i n m i s l a n d f i l l c o v e r gas v e l o c i t y •.( i e ' n o t D a r c i a n v e l o c i t y ) i n m/day. (Rexp(R)) i s r e f e r r e d by t h i s a u t h o r as t h e G - f a c t o r , (exp(R)-1)  The which  is a multiplying factor  convection  flow  factor  been c a l l e d  has  Baker and landfill  Mackay gas  literature,  relative  the  (1985).  production, the  of  factor  d e s c r i b i n g the  the  landfill This  and  can  flux  as  due gas  factor found  exceed  6.0  flux  due  to  to d i f f u s i o n . enhancement  increases with in t h i s  study  f o r a normal  This  factor  by  greater and  other  landfill  environment. In equation  reality,  equation  ( v i ) except  ( i x ) i s the  i t is multiplied  same a s by  F a r m e r ' s model  the G - f a c t o r .  So  the  190 relative that  differences  F a r m e r ' s model  generation  between only  s o l v e s f o r systems without  where d i f f u s i o n  w h i l e T h i b o d e a u x ' s model  F a r m e r ' s and T h i b o d e a u x ' s model i s  i s the c o n t r o l l i n g  i s a combined  gas  transport process,  diffusion-convection flux  model 5.7.2.3. A.  ASSUMPTIONS FOR  Assume gas phase  compound B.  MODELS  i s saturated with  r e s p e c t t o the  in question. T h i b o d e a u x model  assumes s t e a d y  state  diffusional  and  .  convective transport. C.  T h i b o d e a u x model  gas e x i s t s landfill D.  assumes  at elevated pressures  infinite just  source  under  of  generated  t h e b a s e of  the  cover. T h i b o d e a u x model  production  u s e d assumes a c o n s t a n t  r a t e and no b u i l d - u p of i n t e r n a l  landfill  landfill  gas.  i s behaving i n a u n i d i r e c t i o n a l  flow  gas  pressures. E.  Assumes gas  negligible F. air  of t h e compound w h i l e  A l l diffusion  boundary G.  flux  reaction  layer  Thermal  being  transported.  r e s i s t a n c e i s i n the s o i l  and none i n t h e  a t t h e s u r f a c e of t h e l a n d f i l l  g r a d i e n t s a r e assumed t o have  with  cover.  no e f f e c t  on t h e  rate. H.  No  adsorption, degradation  assumed t o o c c u r I. proper  Model  i n the cover  or c h e m i c a l  is  soil.  i s solved for a s i n g l e - c e l l e d  boundary c o n d i t i o n s .  exchange  landfill  with  the  191 5.7.2.4. LIMITATIONS TO When d e a l i n g w i t h like  ammonia,  there are  model t h a t has limitations A.  for  only  are  emission  organic  vapor p r e s s u r e B.  gas  diffusion D.  2  Some of  in their  a  these  of  take  solution  into  flow  than  than  1  and  into  of  unsolvable  of ammonia e x c e e d s the  type-landfills  is  greater  1  atm.  1 atm,  gas,  but  this  atm..  for one-dimensional take  evaluation  T h i b o d e a u x model  much l e s s  d o e s not  to convection  must assume t h a t  reflectant t h i s may  dispersed  vapors.  vapor p r e s s u r e s  nature  i s probably  and  to a p p l y i n g  account  vertical lateral  emissions  ( i e , Richmond). account  and  any  thermal  temperature  d e p e n d e n c e of  the  coefficient. One  E.  C  gas  the  vapor p r e s s u r e  M o d e l does not  contribution  cover,  with  non-ideal  in a r e a - f i l l  C.  are  (1985) m e n t i o n  Model o n l y a c c o u n t s  movement of of  the  organic  species  below:  Mackay  chemicals  the  some o v e r l y i n g l i m i t a t i o n s  models, t h a t  In many r e s p e c t s b e c a u s e of  inorganic r e a c t i v e molecular  been t e s t e d on  listed  B a k e r and  surface  an  MODEL  of t h e not  once a t  is essentially  atmosphere,  the  gas  the  component  landfill  zero.  I d i d not  NH^-N  concentration  a l w a y s be  Assumes t h e  the  concentrations  at the  case.  b a s e of  t o be  landfill  i n s t a n e o u s l y mixed  s u r f a c e , so t h e  assume t h i s  the  •  t o be  B e c a u s e NH^-N  measured  concentration  i s ubiquitous zero,  but  in  and of  the  i n s t e a d assumed  3 C  2  to.be  20  ug/m  , which  i s a common c o n c e n t r a t i o n  a t m o s p h e r e a r o u n d urban a r e a s .  There c o u l d  be  found  large  in  the  1 92 uncertainties F. to  the  in this  M o d e l does not s u r f a c e by  diffusion  important  mode of  internal  pressure  soil  diffusion Because  i n water than  However, t h i s  could  cover  transport  the  gas,  become  i s water  this  was  an  logged  during  periods.  gas  take  and  i n t o account  pressure  model by  build-up  any  pores.  t r a n s p o r t when t h e  landfill 1982  account  a r e much l e s s  M o d e l does not  updated  into  i n the  negligible.  high p r e c i p i t a t i o n g.  take  liquid  coefficients  assumed t o be  The  assumption.  due  to  any  build-up  internal  gas  T h i b o d e a u x does a c c o u n t  of  production. for  i t ' s derivation is also listed  internal i n Appendix  B. 1 4. -. 5.7.3. . MODEL RESULTS OF 5.7.3.1. Input models are  : total  the  air-filled cover  a t base of l a n d f i l l  and  gas  procedure done u s i n g  is listed  rate.  These t h r e e an  St.  internal t o get  calculated.  i n Appendix  a LOTUS '1-2-3  Premier  porosity, reference  landfill  diffusion  concentration  of NH3-N  A d d i t i o n a l input parameters  to a c a l c u l a t i o n  is easily  Thibodeaux's  : refuse density, thickness  p o r o s i t y to get  subjected G-factor  include  Farmer and  t h i c k n e s s and  cover.  generation  combined w i t h then  and  landfill  T h i b o d e a u x ' s model fill  FLUXES  INTRODUCTION  p a r a m e t e r s common t o b o t h  coefficient, gas  LANDFILL NH3~N GAS  R.  parameters gas  of  refuse  are  velocity  Once R  for  which i s  i s found,  then  Sample c a l c u l a t i o n s f o r  B.15.  A l l c a l c u l a t i o n s were  spreadsheet. was  not  this  included  i n t h e model  runs  193 since  t h e sample  wells,  s u r f a c e was j u s t  a fraction  cover c h a r a c t e r i s t i c s and  never  the  model r u n s b e c a u s e  landfill  fully  was  The  understood.  which  difference  and  in this lists  that  heterogeneous  was n o t i n c l u d e d i n flux  data of t h i s  for calculating  F o r example,  a l l the parameters  This  of t h a t  o r from  direct  rates  one n o t i c e s  age.  gas v a l u e s much c l o s e r  reference  a large  between S t r i d e A v e .  i s m a i n l y due to> t h e a s s u m p t i o n  of i t ' s a d v a n c e d  in landfills  particular  i f one l o o k s a t T a b l e  chosen,  gas g e n e r a t i o n  gas f l u x e s of  S t r i d e Ave has v e r y low g a s g e n e r a t i o n  a result  The  used  t o be r e p r e s e n t a t i v e  study.  in internal  exhibits  rates  Matsqui L a n d f i l l  A l s o , the  available.  and Richmond L a n d f i l l .  mostly  were v e r y  through p r e v i o u s documentation  observation  already  landfill  i n an a r e a whose  surface.  no documented l e a c h a t e  standard parameters  landfill,  of the l a n d f i l l  at this  ammonia were c o n s i d e r e d  5.21  P1 and P2 were l o c a t e d  Richmond  made  capacity  i s much  younger:  t o documented g a s p r o d u c t i o n  of a comparable age. gas d i f f u s i o n  coefficient  o f NH^ i n a  landfill  2 gas m i x t u r e was c h o s e n a t 1.750 m / d a y mentioned 1. in  f o r the three  reasons  below: • Binary  gas c o e f f i c i e n t s 2  f o r a l l . major  landfill  gases a r e  t h e r a n g e o f 1.25 t o 2.00 m /day ( F i n d i k a k i s and L e c k i e ,  1979). 2 2. A Do o f 1.987 m / d a y was r e p o r t e d i n R e i d a n d Sherwood (1966) f o r t h e N - N H b i n a r y s y s t e m . 2 3. A Do o f 1.598 m / d a y was m e n t i o n e d i n P a r t o n (1981) a s 2  3  194 being  a r e p r e s e n t a t i v e d i f f u s i o n c o e f f i c i e n t o f NH^  TABLE 5.21  - S t a n d a r d V a l u e s Used F o r M o d e l l i n g E m i s s i o n s From L a n d f i l l s .  Parameter  NH^-N  Stride  Ave.  Diffusion coeff icient  1.750  m /day  Total  0.30  0.50  Air-filled porosity  0.20  0,40  L a n d f i l l cover Thickness  2.0 m  1.5  Internal Velocity  0.01728 m/day  0.59962  Gas P r o d u c t i o n R a t e (mL/kg-day)  5.0  40.0  Refuse  537.0  Porosity  Gas  Density  Landf i l l  Depth  14.0 m  Landfill  Area  80,000  The  source  which g i v e s  1 .750  600.0  3  10.0 m  200,000  2  f o r the leachate  f l u x data  r e l i a b l e estimations  aqueous l e a c h a t e phase  Gas  Richmond  2  kg/m  in soils.  f o r both  was A t w a t e r  o f ammonia Stride  mass  flux  (1980), through  the  Ave. and Richmond  Landf i l l s . To  calculate  t h e mass  f l u x per l a n d f i l l  per year,  i t was 2  assumed t h e s u r f a c e a r e a assuming Landfill. gas  the study  at S t r i d e  surface area  To c a l c u l a t e  concentration values  Ave. t o be 80,000 m  o f 200,000 m  an a n n u a l  NH^-N  were a v e r a g e d  , while  i n Richmond  emission f o r each  flux,  the  landfill  NH^-N  to get  195 an  average  y e a r l y NH^-N  gas  concentration.  The  average  3 concentrations 3 ug/m  found  were  f o r Richmond L a n d f i l l .  T h i b o d e a u x ' s model t o an daily  flux  was  multiplied gas.  by  365  In t h e s e  is a static  by  f o r both  the  daily  calculations gas  Ave.  flux  and  the average  of NH^-N  annual  are l i s t e d  gas.  flux below  through  into This  and of  NH^-N  in Table  i t i s assumed t h a t Richmond  extraction  92.8  inputed  l a n d f i l l , surface area  landfills  Landfill  the w e l l system i s  taking place. 5.7.3.2. DISCUSSION OF The  NH^-N  results  indicate  f l u x e s are very  much l e s s  of NH^-N  indicate  how  Landfill  versus  flows  through flux  Stride  i n both  landfills,  In r e a l i t y ,  thick  the  landfill  i s due  Ave.  diffusion  r a t e s and  helps  diffusion  that  small.  much t h e  being  production cover  RESULTS  this  i f t h e model would have a c c o u n t e d  consumption  gas  for Stride  T h e s e v a l u e s were t h e n  days t o get  s y s t e m and  ug/m  average  multiplied  Flux values  5.22.  not  198.3  This  path.  annual  value could  be  for adsorption  cap.  The  and  results  to. c o n v e c t i o n  i n Richmond  i s mainly  to S t r i d e  d o m i n a t e d due landfill  t o slow down d i f f u s i o n  the  to  cover.  due  i t ' s low The  b e c a u s e of a  also  Ave.  gas  thick  landfill  lengthened  196 TABLE 5.22 - Comparing A n n u a l NH.-N Gas Mass F l u x e s F o r Both L a n d f i l l s . DIFFUSION--ONLY Annual Daily Flux (kg/yr) (ug/m2-day)  CONVECTION & DIFFUSION Annual Daily Flux (kg/yr) (ug/m2-day)  Landfill  S t r i d e Ave  19.9  0.582  18.3  0.536  Richmond  52.9  3.862 .  25.1  1 .832  R e s u l t s comparing NHg-N f l u x results flux  from  are reported  i n kg/yr.  o f NHg-N i n l e a c h a t e from  ammonia  site  t h e 20 ha s i t e  leached.  kg NH-j-N/yr study  t h e documented e s t i m a t i o n s of  i n t h e l e a c h a t e a r e shown below  assumed t h a t of  fluxes  To c a l c u l a t e  5.23. A l l  the p r o p o r t i o n of  t h e Richmond s t u d y  site,  1 980),  16,425  was 82,125  s o t h e t o t a l mass f l u x  from t h e  kg/yr.  TABLE 5.23 - C o m p a r i s o n between Gas a n d L e a c h a t e F l u x e s o f NHg-N, B o t h L a n d f i l l s . Gas V a l u e s (kg/yr)  Richmond  3.862  Stride Ave.  0.582  The lost the  results  through  Leachate (Atwater,  Value 1980)  16,425  kg/yr  1 ,975  indicate  a very  t h e gas phase.  l e a c h a t e ammonia  i t was  c o n t r i b u t e d t o 1/5 o f t h e t o t a l mass  The t o t a l mass l e a c h e d p e r y e a r  (Atwater, totaled  i n Table  fluxes  Less  Annual  Percent of l e a c h a t e mass f l u x 0.024 0.029  s m a l l f r a c t i o n o f NH^-N than  f o r both  being  3/100 t h o f 1 p e r c e n t o f  Stride  A v e . and Richmond  197 Landfills.  As  maximum f l u x  mentioned b e f o r e ,  values  are probably  o b t a i n a b l e , s i n c e t h e model d o e s not  adsorption  or c o n s u m p t i o n  surface  the  of  these  5.7.3.3.  of ammonia b e f o r e  the  account  i t reaches  for  any  the  landfill. COMPARISON OF  MODEL RESULTS WITH GAS  GENERATION  MASS BALANCE RESULTS Since  t h e r e a r e many l i m i t a t i o n s  T h i b o d e a u x ' s model, a c o m p a r i s o n results  and  comparison model  a simple was  gas  landfill  done t o c h e c k  generation  the  to  made between t h e mass b a l a n c e  validity  gas  produced  generation  estimated  of  model  model.  the  This  Thibodeaux  1.  finite  r a t e throughout i s then  r a t e can  be  mass of  the  emitted  model assumes t h a t a  through  inferred  discussed  model a r e  listed  Assume gas  microbiologically  i n Chapter below  2.  gas  the  from t h e  refuse.  landfill  assumptions  2.  Assume n e g l i g i b l e  3.  Assume t h e  cover. or  A  be  was f o r the  f o r t h e Richmond L a n d f i l l  e x t r a c t i o n i s r e c o v e r i n g a l l of  generated  All  literature,  r a t e s , which  The  covered  ( i e , CH^'CO^r  landfilled  from e x t r a c t i o n w e l l pumping  previously balance  mass b a l a n c e  produces a c e r t a i n  e t c . ) at a given  gas  generation  assumptions  results. The  this  gas  was  and  mass  case:  the  gas. a i r intrusion  during e x t r a c t i o n .  same a v e r a g e ammonia c o n c e n t r a t i o n  (92.8  3 ug/m  ) i n the  generated  gas  as  used  i n Thibodeaux  model  calculations. 4.  Assume a l l g e n e r a t e d  gas  i s migrating  vertically  through  198 the  landfill  via  the bottom of the l a n d f i l l 5.  c o v e r , and t h a t  none o f t h e gas i s b e i n g o r by t h e  Assume a gas e x t r a c t i o n  pumping  removed  leachate. rate  o f 725 CFM (20.5  3 m /min) f o r t h e s t u d y a r e a a t Richmond L a n d f i l l Associates, . 6.  1988).  Assume no b i o l o g i c a l s i n k  leaving  the surface  listed  of the g e n e r a t e d  gas b e f o r e  of the l a n d f i l l .  With these assumptions emitted  (E.H. Hanson &  i n mind, t h e r e s u l t s  f o r NH^-N  mass  due s o l e l y t o gas p r o d u c t i o n a t Richmond L a n d f i l l i s i n Table  Appendix In  5.24.  Details  o f t h e c a l c u l a t i o n c a n be f o u n d i n  B.16. addition,  production  rate  a calculation  used  i s included  i n t h e model  run w i t h  t o c h e c k t h e gas t h e gas p r o d u c t i o n  rate calculated production rate  f o r t h e mass b a l a n c e m o d e l . T h i s mass b a l a n c e was c a l c u l a t e d from t h e Richmond L a n d f i l l pumping 3  extraction  ( i e , 20.5 m / m i n ) .  indicates  rate that  t h e gas p r o d u c t i o n  Richmond L a n d f i l l production assuming  rate  run  calculation  100% pumped  Results  rate  t h e pumping gas;  24.6 ml/kg-day when  o f any g e n e r a t e d g a s . rates  were n o t a v a i l a b l e  o f t h e same 5 ml/kg-day  i n t h e mass b a l a n c e of comparing  comparison  o f 40 ml/kg-day u s e d f o r  since  i s at least  recovery  a gas p r o d u c t i o n was u s e d  rate  was n o t i n e r r o r ,  S i n c e pumping e x t r a c t i o n Ave.,  The f i n a l  f o r t h e model  calculation.  the f l u x  mass b a l a n c e m o d e l s a r e l i s t e d  for Stride  f o r t h e T h i b o d e a u x model and  below  in Table  5.24:  199 TABLE 5.24 - C o m p a r i s o n o f M o d e l V e r s u s Mass B a l a n c e Calculations. Mass B a l a n c e (kg/yr)  Model F l u x (kg/yr)  Landfill  Flux  Difference  Flux  S t r i d e Ave.  0.582  0. 1 92  3-fold  Richmond  3.862  1 .000  3.8-fold  The  results  indicate at least a 3-fold  difference  between t h e model and mass b a l a n c e c a l c u l a t i o n s . difference  i s probably  extraction  o f g e n e r a t e d gas i s i m p o s s i b l e  as  stated  i n Chapter  less  since  that  o f t h e t h e o r e t i c a l gas p r o d u c e d w i l l  1976).  I f t h i s i s the case,  gas  g e n e r a t i o n mass b a l a n c e w i l l  decrease two  i n gas e x t r a c t i o n  model  5.7.3.4. The indicate  Therefore,  the  ammonia  results landfill  these  be e x t r a c t e d  (Boyle,  flux using  If t h i s i s true,  the  with a then the  favorably.  lost  indicate  fluxes  apparent  indicate  that  b a l a n c e on t h e s e  through that  approximations  gas e m i s s i o n s a r e n o t a s i g n i f i c a n t p o r t i o n  results  or n i t r o g e n  ammonia  10 t o 50  proportionally  r e s u l t s o f t h e f i r s t - o r d e r mass f l u x that  In f a c t ,  SUMMARY OF RESULTS  (<0.03%) o f t h e ammonia  ammonia  efficiency.  r e s u l t s may a g r e e q u i t e  only  the c a l c u l a t e d increase  o f 100%  to achieve.  percent  then  However, t h i s  the assumption  2, P a c e y e s t i m a t e s  exists  in landfill  when e s t i m a t i n g  landfills,  i s not a s u b s t a n t i a l  gas c o n t a m i n a t e d a i r a r o u n d c o v e r e d  an o v e r a l l  one c a n  t h e gas e m i s s i o n p h a s e .  ammonia  leachate.  neglect  A l s o , the contributor  landfills.  to  200  CHAPTER 6 6.  CONCLUSIONS AND The  landfill  analytical gas  was  RECOMMENDATIONS technique used  the wet-chemical  Samples were c o l l e c t e d landfill L/min.  gas  through  i n the  a boric  Problems encountered  from  sampling  and  gas  about  0.03  limit  of around  The  mg/L  accurate was  fast, this  matter  technique  include  d u r i n g h a n d l i n g of  both  negative  6.0  sample samples,  interferences  the a c c u r a c y of  t e c h n i q u e was  This value translates 3  of l a n d f i l l  gas  the  found  into a  under  t e c h n i q u e was  a quantitative  suggest  to  be  detection  normal  gas  o f about  environment.  to a combination  t h i s ammonia gas  sampling  stated  This recovery  analysis  technique  is a valid  in l a n d f i l l  gas.  method  be efficiency  flows  i n the l a n d f i l l and  in  Laboratory  50 % t o  o f h i g h pumping  c o n c e n t r a t i o n s o f NH^-N  a l l the c r i t e r i a  t o be d e f i c i e n t  r e c o v e r y o f NH3-N g a s .  a recovery e f f i c i e n c y  in a l a n d f i l l  low  proven  and  gas.  technique  i n the study o b j e c t i v e s ( i e ,  inexpensive, simple to use), t h i s author  ammonia  unfiltered  t r a p at a flow of around  of t h e a n a l y t i c a l  10 ug NH^/m  sampling  Since exceeded  technique.  method.  o f NH^-N.  e x p e c t e d due  already  by pumping  from  conditions.  approaching results  acid  affecting  analytical  Detection- l i m i t  sampling  field  b u i l d - u p i n sample t u b i n g , and  the l a n d f i l l  ammonia  automated phenate  with t h i s  c o n t a m i n a t i o n of p a r t i c u l a t e condensate  f o r measuring  for detection  However, one  can  conclude  that  and  measurement  s h o u l d be c a u t i o u s when  of  201 interpreting  the data  accuracy  may  be hampered by t h e h i g h  negative  i n t e r f e r e n c e s apparent  The  g r e a t e s t NH^-N  landfill of  over  2000 mg/L  from  humidity  in landfill  NH^-N  gas v a l u e s .  less  than  leachate  of. a r o u n d  200 mg/L  and  values  O v e r a l l , most NH^-N  were  values  consistent 6.60.  strength leachate  i t always e x h i b i t e d higher  and methane  landfills  and  gas f l o w s  The  high  flows  with  than  with expected  gas c o n c e n t r a t i o n s  of over  flux  was  found  20 kg/cm2-day  rates causing  build-up.  Also,  a build-up  some f l o w found  S t r i d e Ave. and P r e m i e r  may  the g r e a t e s t  i n some w e l l s  and f l u x e s a r e m o s t l y  f l u x e s were  t o be g r e a t e s t  Richmond e x h i b i t i n g  production  Most CH^  i n Matsqui  were  150 ppb.  Gas f l o w younger  15 mg/L,  while  S t . had f a i r l y  W h i l e S t r i d e Avenue e x h i b i t e d t h e . l o w e s t than  found  NHg-N gas c o n c e n t r a t i o n s  Premier  and pH v a l u e s  less  gas.  and gas was  i n Richmond L a n d f i l l  10 t o 500 mg/L.  NH^-N  and s o l u b l e  o f up t o 650 ppb and l e a c h a t e  were d e t e c t e d .  lowest  l e a c h a t e NH^-N  from t h i s method s i n c e t h e  in leachate  where gas v a l u e s  consistently ranged  analyzed  a result  be due t o t h e r m a l  t o be under  St. exhibiting  5.0  fluxes  (C6 and D 9 ) .  of h i g h  of i n t e r n a l  i n the  gas  landfill  pressure  convection.  2 kg/cm -day, w i t h ,  f l u x e s u s u a l l y under  1.0  2 kg/cm - d a y . The  v a r i a b l e found  gas  concentration  not  only  was  most o f t e n  t o cause a change i n  gas t e m p e r a t u r e  (Tg).  T h i s was  NH^-N  discovered  i n the m u l t i p l e r e g r e s s i o n a n a l y s i s , but a l s o i n the  Pearson c o r r e l a t i o n  analysis.  The v a r i a b l e t h a t may  be  causing  202 some o f t h e o b s e r v e d  cooling  precipitation.  infiltrating  the e f f e c t  This  i n gas t e m p e r a t u r e  o f d e c r e a s i n g NH^-N  unsaturated  zone from  is infiltrating  precipitation  may a l s o  cause  gas c o n c e n t r a t i o n s i n t h e  NH^ a b s o r p t i o n  into  t h e lower  pH  (< 6.0)  rainwater. Other  parameters such  were f o u n d  t o e x p l a i n a minimal  concentrations.  The r e s u l t s  on CH^ % i n d i c a t e dependent v a r i a b l e The  major  non-normality  In  variation  found  t o o l , f o r NH^-N  with  and C H  non-normal d a t a  collected  in this  i n barometric  c o n c e n t r a t i o n s i s one, t h e two, t h e r e s u l t a n t low  found  i n the equations.  gas by  statistical  t o t h e h i g h l y v a r i a b l e and  study.  p r e s s u r e was d i s c o v e r e d n o t t o  increase  static  observed  i n o t h e r documented with  4  o f CH^ % and NH^-N  u n c e r t a i n due m a i n l y  responded  using regression analysis  error  methods i s v e r y  gas f l o w  o c c u r r e d between t h e  strength.  and t h r e e , t h e l a r g e r e s i d u a l  wells  i n ammonia gas  i n some o f t h e d a t a ,  conclusion, prediction  leachate  of t h e m u l t i p l e r e g r e s s i o n a n a l y s i s  CH^, and i o n i c  present  Decrease  pH and NH^-N  the g r e a t e s t r e l a t i o n s h i p  limitations  as a p r e d i c t i v e  R2's  as. C H ^ - f l u x ,  r a t e s by a low p r e s s u r e pumping  lower  l a n d f i l l s . . In f a c t ,  f l o w s d u r i n g lower  some  effect  Matsqui  atmospheric  pressure. One o t h e r abnormal N / 0 2  Stride  2  o b s e r v a t i o n w o r t h n o t i n g was t h e d e t e c t i o n o f an landfill  Ave. sampling  means oxygen  i s being  gas r a t i o  wells.  apparent  i n a few M a t s q u i  R a t i o s sometimes e x c e e d e d  consumed by some p r o c e s s .  and  20, w h i c h  This process i s  203 possibly uptake CH^  a combination  from a e r o b i c  and  0  Matsqui  of  that  the  over  wells  inorganic  redox  bacteria called  to produce C0  2  Results indicate  of  the 50  after  reactions  detected.  landfill  gas  sampling  A maximum of  organic  contaminant  biphenyls,  Results constants  of  measured gas NH^-N  of  i n the  leachate The  measured  over  gas  the  generally  reasons ratio  Henry's c o n s t a n t s .  gas  Other  The  analytical  2.  The  NH -N l e a c h a t e  reflective  the  zone where t h e p h a s e may  be  heterogenieties  may  200  and  of  gas  and  underpredict  while exhibit  NH^-N  between p r e d i c t e d  not  due  be  just  NH^-N  to  summarized  i s not  Combined w i t h  lateral  predicted  mg/L.  concentration  fraction  occurring.  large  in wells that  NHg-N c o n c e n t r a t i o n  major  Henry's.Law  discrepancy  technique  3  of  than  include  compounds.  show some  reasons are  1.  were d e t e c t e d  from S t r i d e Ave.  large  of  saturated  A l l methods g r o s s l y  greater  of NH^-N  that  between t h e  concentration  for t h i s  Most  naphthalene  i n gas  fraction  gas  improved.  between documented  2000 f o l d  concentrations.  overpredicting in  p h e n o l and  comparison  and  c h l o r i n a t e d h y d r o c a r b o n s were  interest  f o r p r e d i c t i n g NH^-N  discrepancies  the  the  analysis  i n Richmond  t e c h n i q u e was  eight  O t h e r compounds of  some f u r a n s ,  consume  gas.  2  t h e s e compounds were s u b s t i t u t e d benzene and hydrocarbons.  oxygen  Methanotrophs that  compounds were d e t e c t e d  the  and  invalid  below:  accurate., i s not  inherent  necessarily  i n the  mass t r a n s f e r this  migration  and  are  that  unsaturated to the  gas  landfill p o s s i b l y make  the  204 gas  sample n o n - i n d i c a t i v e o f t h e measured NH^-N  the  leachate. 3.  The aqueous and gas p h a s e s o f ammonia a r e n o t i n  equilibrium 4.  5.  i s due t o l i m i t a t i o n s  Unpredicted  r a t e s of. gas  o f NH^-N  mass t r a n s f e r  Discrepancy  Probably majority  o f NH^-N  comparing  the emission  result  c h a n g e s o f ammonia  result  than  NH3-N g a s e m i s s i o n  t h e NH^-N  gas f l u x e s w i t h  fraction  of l a n d f i l l  o f NH^-N gas.  mass b e i n g  In a s i t u a t i o n  0.03 % o f t h e ammonia  implications effect  landfills.  model a l s o a g r e e d  this  author  that a r i s e  leachate lost considered  favorably with  mass b a l a n c e  climates  results.for the r e s u l t s  model.  a r e some  work on l a n d f i l l  t h a t c l i m a t e h a s on p r o d u c t i o n  was  l e a c h a t e mass f l u x i n Mass f l u x  believes there  from t h i s  In c o l d e r , wetter  NH^-N  t h e ammonia gas f r a c t i o n  from a gas g e n e r a t i o n  summary,  zone.  between p r e d i c t e d and measured NH^-N g a s .  S t r i d e Ave. and Richmond L a n d f i l l s .  In  from  o f p t s . 1 , 2 , 3 , 4 and 6 c a u s e t h e  i n maximum e m i s s i o n s ,  t o be l e s s  calculated  resulting  from a d s o r p t i o n and  i n the unsaturated  a combination  show a n e g l i g i b l e  through  found  could  of d i s c r e p a n c y  Results fluxes  solubility  chemistry.  ^solubilization  the  by h i g h  i n some w e l l s .  leachate  both  volume d i l u t e d  t h e gas p h a s e .  7.  to  environment.  i s being  Discepancy  6. the  in a landfill  The NH^-N  production  into  concentration in  important  gas.  o f methane i n  such as Vancouver,  One, i s  205 controlling  the  effects  of c l i m a t e would be  designing  a successful l a n d f i l l  Secondly,  i s the  known l e a c h a t e constant. using  study's  T h i s has  t o p r e d i c t gas  disappointing  data  imply  easily  measured  predicting  far reaching  leachate  results  the  ammonia and  landfill variation  below a r e  author  feels  work.  1.  Set  monitors  the  monitoring  up  and  continuous  can  be  capital  of  may  be  Law  possible in a  volatile  Lastly,  statistical  p a r a m e t e r s may  the  trying  hazardous  varied  and  a n a l y s i s indicate that not  in concentration  of  be  useful in  gas  components  a  field  be  The  undertaken  apparatus  in leachate  simulated  pH  main a d v a n t a g e  data on  future research to b e t t e r  i n an  and  a computer  to t h i s  gas  system  flow  Other system  than  that while  and  i s the  temporal  this  well  redox p o t e n t i a l  to t h i s  later.  improve  observation  in l a n d f i l l  o f f e r e d showing s m a l l  c o s t , a. d i s a d v a n t a g e  In c o m b i n a t i o n  instruments  such  projects  methane  real  trends the  s u c h as  with  the  high  i s the p o t e n t i a l  tensiometers  above, would be and  time  that  vandalism. 2.  .  accurate p r e d i c t i o n  not  certain  values.  the  from  i m p l i c a t i o n s f o r persons  some p o t e n t i a l  should  changes  percent.  concentrations  t h a t an  possible diurnal trend  gas  project.  methane.  Listed  study's  of  in  usage o f a documented H e n r y ' s  concentrations  w a s t e s from g i v e n  this  by  a documented H e n r y ' s c o n s t a n t  landfill.  as  utilization  i s s u e of p r e d i c t i n g gas  values  This  gas  paramount  to set  suction lysimeters  up to  for  206  monitor  c h a n g e s of m o i s t u r e  unsaturated  zone.  precipitation scale  T h i s would h e l p  infiltration  To  determine  methanotrophs sampling their  and  i n the soil  metabolic 4.  chemistry  i n the  i n s t u d y i n g the  effects  on methane p r o d u c t i o n  i f there  landfill  extraction  in a  that full-  listed  culture  active  environment study  should  p o p u l a t i o n of  an  unsaturated  be  attempted  zone  to  isolate  l a b o r a t o r y p r o j e c t s worth  mentioning  below: A study  should  surrounding  in microcolonies. trying  i s an  enzyme Methane Monooxygenase.  Various potential  -  on  has  and  landfill. 3.  are  content  f o c u s on  whether t h e r e  r e f u s e or  i s the  Determining  this  bacteria  is a  population  would have g r e a t  t o model t h e mass t r a n s f e r  biofilm  of v o l a t i l e  mostly  consequences  compounds  like  ammonia. S t u d y how greater system  gas  production  r a t e s by  ( i e Richmond L a n d f i l l ) .  subjecting  gas -  an The  a sample of d e c o m p o s i n g  conditions. while during  t h e methanogens may  a p p l y i n g the  be  stimulated  o p e r a t i n g gas study  into  extraction  would c o n s i s t  r e f u s e under  of  anaerobic  u s u a l vacuum s t r e s s e s a p p l i e d  extraction. D e t e r m i n e what v a l u e  of H e n r y ' s c o n s t a n t  in a l a n d f i l l  environment  by  This probably  can  in a closed anaerobic  be  done  u s i n g ammonia as  the  is applicable study  compound.  volatilization  chamber. -  Perform  more d e t a i l e d  research  into  t h e d y n a m i c s of  207 ammonia  chemistry  5. flux,  in leachate.  To v e r i f y  I would  the modelled  NH^-N  domes.  there  mass a d s o r b e d  should  a l s o be p e r f o r m e d  chosen  f o r standard  pressure systems.  Lastly,  while  T h i s would b e s t  element m o d e l l i n g  i n the l a n d f i l l  schemes.  to verify  be u p g r a d e d  solving  by  i s discussed in  the f r a c t i o n cover.  Tests  the values  ( i e , p o r o s i t y , gas p r o d u c t i o n  t h e model s h o u l d  pumping e f f e c t s  i n the f i e l d  to estimate  on t h e l a n d f i l l  parameters  mass  To improve t h e a c c u r a c y o f  be a s t u d y  o r consumed  should  etc...).  This technique  by B a l f o u r e t a l . ( 1 9 8 7 ) .  t h e model r u n s , of  o f g a s e o u s NH^-N  recommend q u a n t i f y i n g t h e e m i s s i o n s  t h e use o f v o l a t i l i z i n g more d e t a i l  results  to simulate  for n-layered  be done by f i n i t e  rate  and 2-d  d i f f e r e n c e or  finite  208 CHAPTER 7 7. REFERENCES A l e x a n d e r , M., S o n s : New  Introduction Y o r k , 1963.  to S o i l  Microbiology,  John W i l e y  Al-Omar, M.A. e t a l . , "Impact o f S a n i t a r y L a n d f i l l On A i r Q u a l i t y i n Baghdad," i n W a t e r , A i r , and S o i l P o l l u t i o n , (1987) 55-61 . Ammonia, p r e p a r e d by N a t i o n a l R e s e a r c h C o u n c i l , Ammonia, U n i v e r s i t y Park P r e s s , B a l t i m o r e , A t w a t e r , J.W., Fraser River Estuary of L a n d f i l l s , EPS, E n v i r o n m e n t  Subcommittee 1979  Study Water Q u a l i t y , Canada, 1980.  and  32 on  Impact  B a c c i n i , P., e t a l , "Water and E l e m e n t B a l a n c e s o f M u n i c i p a l S o l i d Waste L a n d f i l l s " Waste Management & R e s e a r c h ( 1 9 8 7 ) , 5, 483-499. . B a k e r , L.W. and MacKay, K.P., " S c r e e n i n g M o d e l s f o r E s t i m a t i n g T o x i c A i r P o l l u t i o n Near a H a z a r d o u s Waste L a n d f i l l , " i n t h e J . of t h e A i r P o l l u t i o n C o n t r o l A s s o c i a t i o n , V. 35, no. 11, Nov. 1985, pp.1190-1195. B a l f o u r , W.D. e t a l . , " S a m p l i n g A p p r o a c h e s F o r t h e Measurement o f V o l a t i l e Compounds a t H a z a r d o u s Waste S i t e s , " J o u r n a l of• :, •' H a z a r d o u s M a t e r i a l s , 14(1987)135-148. . Bell,  J.M., Development of a Method f o r S a m p l i n g and A n a l y z i n g R e f u s e , Purdue U n i v e r s i t y , Ph.D d i s s e r t a t i o n , 1963.  B e l u c h e , R.A. D e g r a d a t i o n of S o l i d S u b s t r a t e s i n a S a n i t a r y L a n d f i l l , U n i v e r s i t y of S o u t h e r n C a l i f o r n i a , Ph.D dissertation, 1968. Bird  and H a l e , L t d . , 1978 M u n i c i p a l R e f u s e : S t a t i s t i c s for C a n a d i a n Communities of o v e r 100,000 ( 1 9 7 6 - 1 9 7 7 ) . A report p r e p a r e d f o r t h e Waste Management B r a n c h , EPS.  B o l l e t e r , W.T., et a l , " S p e c t r o p h o t o m e t r i c D e t e r m i n a t i o n of Ammonia a s I n d o p h e n o l , " i n A n a l . Chem., V o l . 33, No. 4, 1961. Bowerman, F.R., e t a l . , A Case S t u d y of t h e P a l o s V e r d e s L a n d f i l l . Gas Development P r o j e c t , E c o l o g i c a l R e s e a r c h S e r i e s , EPA 6003-047, J u l y , 1977. B o y l e , W.C., "Energy Recovery from S a n i t a r y L a n d f i l l s - a . Review," i n M i c r o b i a l E n e r g y C o n v e r s i o n , e d . by S c h l e g e l ,  209 H.G. and B a r n e a , J . , P r o c e e d i n g s from a s e m i n a r h e l d i n G o t t i n g e n , West Germany, O c t . , 4-8, 1976, Pub. by E r i c h G o l t z e K.G., G o t t i n g e n , 1976. B r o o k e s , B and Young, P . J . "The D e v e l o p m e n t o f S a m p l i n g Methods and GC/MS A n a l y t i c a l P r o c e d u r e s t o I d e n t i f y and D e t e r m i n e M i n o r O r g a n i c Components o f L a n d f i l l Gas" T a l a n t a , V o l . 30, No. 9, S e p t . 1983, pp 665-676. B r o s s e t , C , P o s s i b l e Changes i n A e r o s o l C o m p o s i t i o n Due t o D e p a r t u r e from E q u i l i b r i u m C o n d i t i o n s D u r i n g S a m p l i n g , The D i v i s i o n o f E n v i r o n m e n t a l C h e m i s t r y , ACS, H a w a i i , A p r i l 1-6, 1979. Brown, W.H. I n t r o d u c t i o n t o O r g a n i c C h e m i s t r y , 3 r d E d i t i o n , W i l l a r d G r a n t P r e s s : . B o s t o n , Mass., 1982. Bruckman, P. and M u e l d e r , W. "Der G e r h a l t an O r g a n i s c h e n Spurenstoffen i n Deponiegasen," S c h r i f t e n r e i h e d e r L a n d e s o n t a l t Immissionshutz Landes N o r d r h e i n , Westfalm, 55 (1982) . " . ~ ~ ~  Heft  C a r p e n t e r , L.V. and S e t t e r , L.R., "Some N o t e s on S a n i t a r y . , L a n d f i l l s , " i n A m e r i c a n J . of P u b l i c H e a l t h , V o l . .30, A p r i l , 1940, pp. 385-393. C h a i n , E.S.K., and D e W a l l e , F. B .>; "'Sanitary - L a n d f i l l L e a c h a t e s and T h e i r T r e a t m e n t , " i n J o u r n a l of t h e E n v i r o n m e n t a l E n g i n e e r i n g D i v i s i o n , ASCE, V o l . 102, No. EE2, A p r i l , 1976, pp 411-432. C h a i n , E.S.K., e t a l . , " L e a c h a t e G e n e r a t i o n and C o n t r o l a t L a n d f i l l D i s p o s a l S i t e s , " from V o l 1 p r o c e e d i n g s of New D i r e c t i o n s and R e s e a r c h i n Waste T r e a t m e n t and R e s i d u a l s Mgt., J u n e 22-28, 1985, U n i v e r s i t y of B r i t i s h C o l u m b i a , V a n c o u v e r , B.C., 1985. C l e m e n t , B.N., Methane P r o d u c t i o n and M i g r a t i o n a t Waste S i t e s , W a t e r l o o U n i v e r s i t y , M a s t e r s T h e s i s , 1981.  Disposal  C r a w f o r d , J . F . and S m i t h , P.G., L a n d f i l l T e c h n o l o g y , B u t t e r w o r t h s Pub. Co.: K e n t , E n g l a n d , 1983.. Dawson, G.A. " I o n i c C o m p o s i t i o n of R a i n D u r i n g S i x t e e n C o n v e c t i v e Showers," i n A t m o s p h e r i c E n v i r o n m e n t , V o l . 12, 1991-1998, 1978. E h r e n f e l d , J.R., e t a l . , C o n t r o l l i n g V o l a t i l e E m i s s i o n s a t H a z a r d o u s Waste S i t e s , Pub. NOYES DATA C o r p : Park R i d g e , N.J., 1986. Eliassen,  R.,  "Decomposition  of L a n d f i l l s , "  i n American  J . of  210 Public  H e a l t h , V o l . 32,  Sept.,  1942,  pp.  1029-1037.  Emcon A s s o c i a t e s , Methane G e n e r a t i o n and R e c o v e r y from L a n d f i l l s , P u b l i s h e d by Ann A r b o r S c i e n c e P u b l i s h e r s , I n c . , 1980. E n g i n e e r i n g S c i e n c e , I n c . , E f f e c t s of R e f u s e Dumps on G r o u n d w a t e r Quality, C a l i f . S t a t e Water P o l l u t i o n C o n t o l B o a r d , Pub. No. 24, Aug., 1961. I b i d . . . , I n - S i t u I n v e s t i g a t i o n of Movements o f G a s e s Produced From Decomposing R e f u s e , C a l i f . S t a t e Water P o l l u t i o n C o n t r o l B o a r d , Pub. No. 31, 1965. I b i d . . . , F i n a l R e p o r t of I n - S i t u I n v e s t i g a t i o n o f Movements o f G a s e s P r o d u c e d From Decomposing R e f u s e , C a l i f . S t a t e Water P o l l u t i o n C o n t r o l B o a r d , Pub. No. 35, A p r i l , 1967. F a r m e r , e t a l . , Land D i s p o s a l o f H e x a c h l o r o b e n z e n e Wastes C o n t r o l l i n g Vapor Movement i n S o i l , EPA - 600/2-80-119, 1980. F a r q u h a r , G.J. and R o v e r s , F.A., "Gas p r o d u c t i o n D u r i n g R e f u s e D e c o m p o s i t i o n , " i n Water, A i r and S o i l P o l l u t i o n , 4(1974)482-495. F i n d i k a k i s , A.N. and L e c k i e , J . 0 . , " N u m e r i c a l S i m u l a t i o n o f Flow i n S a n i t a r y L a n d f i l l s , " i n t h e J o u r n a l of t h e E n v i r o n m e n t a l E n g i n e e r i n g D i v i s i o n , ASCE, V o l . 105, No. EE5, O c t o b e r , 1979, pp. 927-945.  Gas  F r e n e y , J.R. and Simpson, J.R., "Ammonia V o l a t i l i z a t i o n , " i n E c o l o g y B u l l e t i n ( S t o c k h o l m ) , e d . by C l a r k , F . E . and R o s s w a l l , T., 33:291-302. G a n d o l l a , M., e t a l , " P o s s i b i l i t i e s of Gas U t i l i z a t i o n w i t h S p e c i a l E m p h a s i s on S m a l l S a n i t a r y L a n d f i l l s , " E x p e r i e n t i a 38 ( 1 9 8 2 ) . G a r d n e r , W.R. "Movement of N i t r o g e n i n S o i l , " i n S o i l N i t r o g e n , e d . by Bartholomew, W.V. and C l a r k , F.E., A m e r i c a n S o c i e t y o f Agronomy, 10, pp. 550-572. Geadah, M.L. N a t i o n a l I n v e n t o r y o f N a t u r a l and A n t h r o p o g e n i c S o u r c e s and E m i s s i o n s of Ammonia ( 1 9 8 0 ) , R e p o r t EPS 5/IC/1, F e b r u a r y , 1985. G i b s , J . , S c h o e n b e r g e r , R . J . and S u f f e t , I.H. "A B u f f e r C a p a c i t y Model F o r S a n i t a r y L a n d f i l l Water R e s e a r c h , V o l . 16, pp.699-705, 1982.  Simplified Leachate," in  G i u l i a n i , A. J . " A p p l i c a t i o n o f C o n v e n t i o n a l O i l and Gas Drilling T e c h n i q u e s t o t h e P r o d u c t i o n of Gas from G a r b a g e , "  21 1 P r o c e e d i n g s , T r a n s m i s s i o n C o n f e r e n c e , S a l t Lake C i t y , May 5-7, 1980, pub. by A m e r i c a n Gas A s s o c i a t i o n . G o l d e r A s s o c i a t e s , R e p o r t t o A s s o c . E n g . S e r v i c e s , LTD on H y d r o q e o l o q i c a l I n v e s t i g a t i o n Premier S t r e e t L a n d f i l l , V a n c o u v e r , B.C., September, .1983.  Utah,  North  G o s s e t t , J.M., "Measurement o f H e n r y ' s Law C o n s t a n t s f o r C1 and C2 C h l o r i n a t e d H y d r o c a r b o n s , " i n E n v i r o n . S c i . T e c h n o l . , V o l . 21, No. 2, 1987. G r a d y , C.P.L. " M o d e l i n g o f B i o l o g i c a l F i x e d F i l m s - A S t a t e of the A r t . R e v i e w , " i n F i x e d F i l m B i o l o g i c a l P r o c e s s e s f o r W a s t e w a t e r T r e a t m e n t , P o l l u t i o n T e c h n o l o g y Review, No. 104, ed. by Wu, Y.C. and S m i t h E.D., pub. by NOYES DATA C o r p . , 1 983. G r a i n g e r , J.M., J o n e s , K.L., H o t t e n , P.M. and Rees, J . F , " E s t i m a t i o n and C o n t r o l o f M i c r o b i a l A c t i v i t y i n L a n d f i l l s , " i n M i c r o b i o l o g i c a l Methods F o r E n v i r o m e n t a l B i o t e c h n o l o g y , 1984, pp. 259-273.. H a l e s , J.M. and Drewes, D.R., " S o l u b i l i t y o f Ammonia i n Water a t Low C o n c e n t r a t i o n s , " i n A t m o s p h e r i c E n v i r o n m e n t , V o l . 13, pp. 1133-1147, 1979. H a l s t e a d , E.C. Ground Water S u p p l y - F r a s e r L o w l a n d , B r i t i s h C o l u m b i a , N a t i o n a l H y d r o l o g y R e s e a r c h I n s t i t u t e P a p e r No. 26, IWD S c i e n t i f i c S e r i e s No. 145, S a s k a t o o n , Sasketchewan, .1 986. Ham,  R.K., and o t h e r s , Gas from S a n i t a r y  R e c o v e r y , P r o c e s s i n g and U t i l i z a t i o n o f L a n d f i l l s , EPA - 600/2-79-001, 1979.  Hanson, E.H. & A s s o c . , L t d . , M a t s q u i L a n d f i l l Gas System O p e r a t i o n and M a i n t e n a n c e , R e p o r t p r e p a r e d f o r D i s t r i c t o f Matsqui, January,1985. Hanson, E.H. & A s s o c . , L t d . , P r e m i e r S t r e e t L a n d f i l l , L a n d f i l l Gas System O p e r a t i o n s , R e p o r t p r e p a r e d f o r . D i s t r i c t o f N o r t h V a n c o u v e r , M a r c h , 1986. Hanson, E.H. & A s s o c . , L t d . , S t r i d e Avenue L a n d f i l l Gas M i g r a t i o n C o n t r o l , Report p r e p a r e d f o r the D i s t r i c t of Burnaby, J a n u a r y , 1987. Hanson, E.H. & A s s o c . , L t d . , Richmond B.C. L a n d f i l l an i n - o f f i c e r e p o r t , 1988.  Gas P r o j e c t ,  Hobson, P.N.., e t a l . , " A n a e r o b i c D i g e s t i o n o f O r g a n i c M a t t e r , " i n CRC C r i t i c a l R e v i e w s i n E n v i r o n m e n t a l C o n t r o l , CRC P r e s s , Boca R a t o n , F l o r i d a , J u n e , 1974, pp. 131-191.  212 Hughes, G.M., e t a l . , H y d r o g e o l o g y of S o l i d Waste D i s p o s a l S i t e s in Northeastern I l l i n o i s , I l l i n o i s State G e o l o g i c a l Survey, EPA Rpt. (SW - 1 2 d ) , 1971. J o n e s , K.L., Rees, J . F . and G r a i n g e r , J.M., "Methane Generation and M i c r o b i a l A c t i v i t y i n a D o m e s t i c R e f u s e Landfill, Site," i n t h e E u r o p e a n J o u r n a l of A p p l i e d M i c r o b i o l o g y and Biotechnology, (1983) 18:242-245. ~ ~ ~ ~~~~ " J u n g e , C.E., A i r C h e m i s t r y and R a d i o a c t i v i t y , Volume 4 of t h e I n t e r n a t i o n a l G e o p h y s i c s S e r i e s , e d . by Mieghem, J.V., Academic P r e s s : New Y o r k , 1963. Klee,  A . J . and C a r r u t h , D. "Sample W e i g h t s i n S o l i d Waste Management," i n J o u r n a l of S a n i t a r y E n g i n e e r i n g , ASCE, (SA4) 945-954, Aug., 1970.  Kotze, et a l . , "Anaerobic C o n t r o l of A n a e r o b i c (1969).  D i g e s t i o n 11. The C h a r a c t e r i s t i c and Digestion," Water R e s e a r c h , V o l . 3  K r o s t , K . J . , e t a l . , " A n a l y s i s of H a z a r d o u s O r g a n i c i n A n a l . Chem., 1982, 54, 810-817. Large, P.J., Aspects  96  Emissions,"  "Methylotrophy and M e t h a n o g e n e s i s , " i n V o l . 8 of of M i c r o b i o l o g y , e d . by C o l e , J.A., e t a l . , 1982.  L e a k , D.J. and D a l t o n , H., "Growth Y i e l d s of M e t h a n o t r o p h s , " i n A p p l i e d M i c r o b i o l o g y and B i o t e c h n o l o g y , (1986) 23: 477481 . L e c k i e , J.O., Pacey J.G. and H a l v a d a k i s , C., "Landfill Management W i t h M o i s t u r e . C o n t r o l , " i n J o u r n a l o f E n v i r o n m e n t a l E n g i n e e r i n g , ASCE, V o l . 105, No. EE2, 1979, pp. 337-355. Lu,  April,  J.C.S., e t a l , L e a c h a t e From M u n i c i p a l L a n d f i l l s P r o d u c t i o n and Management, P o l l u t i o n T e c h n o l o g y Review No. 119, Noyes p u b l i c a t i o n , C a l s c i e n c e Research, Inc., Huntington Beach, Calif., 1985.  MacKay, D. and S h i u , W.Y. "Henry's Law C o n s t a n t s " P h y s i c a l and C h e m i c a l R e f e r e n c e D a t a , 1 0 ( 4 ) , ,1981 .  i n J o u r n a l of 1175-1199,  McBean, E.A. and F a r q u a h a r , G.J., "An E x a m i n a t i o n of T e m p o r a l / S p a t i a l V a r i a t i o n s In L a n d f i l l - G e n e r a t e d Methane Gas," i n Water, A i r , and S o i l P o l l u t i o n , 13(1980)157-1 Merz, R.C., " I n v e s t i g a t i o n of L e a c h i n g of a S a n i t a r y L a n d f i l l , " C a l i f o r n i a S t a t e Water P o l l u t i o n C o n t r o l  Board,  213 Publication  #10,  S a c r a m e n t o , CA.,  1954.  M e t r y , A. and C r o s s , F.L. J r . , L e a c h a t e C o n t r o l and T r e a t m e n t , V o l . 7 of t h e E n v i r o n m e n t a l Monograph S e r i e s , a T e c h n o m i c P u b l i c a t i o n , W e s t p o r t , Conn., 1978. Mohsen, M.F.N., F a r q u a h a r , G . J . and Kouwen, N., "Gas . M i g r a t i o n and Vent D e s i g n a t L a n d f i l l S i t e s , " i n Water, A i r and S o i l P o l l u t i o n ,•'1 3 (1 980)79-97 . M i l l i n g t o n , R . J . , and Q u i r k , J.M., S o l i d s , " T r a n s . F a r a d a y Soc.,  " P e r m e a b i l i t y of Porous 57:1200-1207 ( 1 9 6 1 ) .  Nagase M. and Matsuo T., " I n t e r a c t i o n s Between A m i n o - A c i d D e g r a d i n g B a c t e r i a and M e t h a n o g e n i c B a c t e r i a i n A n a e r o b i c D i g e s t i o n , " i n B i o t e c h n o l o g y and B i o e n g i n e e r i n g , V o l . XXIV, pp. 2227-2239 ( 1 982) . -- .• Ngo,  T.T., e t a l , " I n t e r f e r e n c e i n D e t e r m i n a t i o n o f Ammonia w i t h t h e H y p o c h l o r i t e - A l k a l i n e P h e n o l Method of B e r t h e l o t , " i n A n a l . Chem., V o l . 54, No. 1, J a n u a r y , 1982.  O k i t a , T. and K a n a m o r i , S., " D e t e r m i n a t i o n of T r a c e C o n c e n t r a t i o n of Ammonia i n t h e A t m o s p h e r e U s i n g P y r i d i n e - P y r a z o l o n e Reagent," i n Atmospheric Environment, 1971, V o l . 5, pp 621627. . Onuma, M. and Omura, T., M i c r o b i a l Systems," pp 553-568, 1982.  "Mass-Transfer C h a r a c t e r i s t i c s Within i n Water S c i . T e c h . , V o l . 14, Capetown,  Par ton., W.J.-, e t a l . " N H 3 - V o l a t i l i z a t i o n M o d e l , " i n S i m u l a t i o n , of M i t r o q e n B e h a v i o r i n S o i l - P l a n t S y s t e m s , ed. by F r i s s e l , M.J. and van Veen J.A., C e n t r e f o r A g r i c u l t u r a l P u b l i s h i n g and D o c u m e n t a t i o n , Wageningen, 198-1 P e d d i e , C.C. RBC T r e a t m e n t o f a M u n i c i p a l L a n d f i l l P i l o t S c a l e E v a l u a t i o n , U n i v e r s i t y of B r i t i s h Masters T h e s i s , Oct., 1986. P e r r y , J.H., C h e m i c a l New Y o r k , 1963.  Leachate: Columbia,  A  E n g i n e e r s Handbook, 4 t h ed., M c G r a y - H i l l :  P f e f f e r , J . T . , " T e m p e r a t u r e E f f e c t s on A n a e r o b i c F e r m e n t a t i o n of D o m e s t i c R e f u s e , " i n B i o t e c h n o l o g y and B i o e n g i n e e r i n q , V o l . XVI, pp 7.71-787, 1974. :  Qasim S.R. and B u r c h i n a l , J.C., " L e a c h i n g From S i m u l a t e d l a n d f i l l s , " i n J o u r n a l WPCF, V o l 42, No. 3 , P a r t 1, pp. 379, M a r c h , 1970. Ramasaway, F.L.,  Analysis  of A c i d  and  Gas  From  Simulated  371-  214 Landf i l l , 1969.  University  o f West V i r g i n i a ,  Ph.D.  Dissertation,  R a t h b u n , R.E. and T a i , D.Y., " V o l a t i l z a t i o n of K e t o n e s From W a t e r , " i n Water, A i r and S o i l P o l l u t i o n , 17 (1982) 281-293. Raveh A. and A v n i m e l c h Y., " L e a c h i n g of P o l l u t a n t s From S a n i t a r y L a n d f i l l M o d e l s , " i n J o u r n a l WPCF, V o l . 51, No. Nov. 1979, pp. 2705-2716.  11,  Reddy & P a t r i c k , " A e r a t i o n E f f e c t s on S o i l , " i n C h e m i s t r y M o b i l i t y and R e a c t i v i t y i n S o i l Systems, SSSA S p e c i a l P u b l i c a t i o n No. 11, 1983. Rees, J . F . , "The F a t e of C a r b o n Compounds i n t h e L a n d f i l l D i s p o s a l of O r g a n i c M a t t e r , " i n J o u r n a l of C h e m i c a l T e c h n o l o g y and B i o t e c h n o l o g y , 1980, 30, 161-175. R o b i n s o n , H.D. and L u c a s , J . L . , '"The B e h a v i o r and A t t e n u a t i o n of L e a c h a t e from D o m e s t i c Waste i n a L a n d f i l l w i t h a D e s i g n e d and E n g i n e e r e d U n s a t u r a t e d Zone. I n s t r u m e n t a t i o n and Research at Stangate East L a n d f i l l , i n Kent, England," i n V o l . 1, P r o c e e d i n g s of New D i r e c t i o n s and R e s e a r c h i n Waste T r e a t m e n t and R e s i d u a l s Mgt., June 23-28, 1985, U n i v e r s i t y of B r i t i s h C o l u m b i a , V a n c o u v e r , B.C., .1985. R o v e r s , F.A. and F a r q u a h a r , G . J . , " I n f i l t r a t i o n and L a n d f i l l B e h a v i o r , " i n J o u r n a l of t h e E n v i r o n m e n t a l E n g i n e e r i n g D i v i s i o n , ASCE, EE5, O c t o b e r , 1983, pp. 671-690. Saxena, P., e t .'al, '."A-Comparative S t u d y of E q u i l i b r i u m A p p r o a c h e s to the Chemical C h a r a c t e r i z a t i o n of Secondary A e r o s o l s , " i n A t m o s p h e r i c E n v i r o n m e n t , V o l . 20, No. 7, pp 1471-1483, 1986. S c h e i n e r , D., " D e t e r m i n a t i o n of Ammonia and K j e l d a h l N i t r o g e n by I n d o p h e n o l Method," i n Water R e s e a r c h , V o l . 10, pp 31-36, Pergamon P r e s s , 1976. Schumacher, M.M., L a n d f i l l Methane R e c o v e r y , P u b l i s h e d by D a t a C o r p o r a t i o n , Park R i d g e , New J e r s e y . Shen, T.T. , " C o n t r o l T e c h n i q u e s f o r Gas E m i s s i o n s From Waste L a n d f i l l s , " i n J o u r n a l o f t h e A i r P o l l u t i o n A s s o c . , V o l . 31, No. 2, F e b r u a r y , 1981 .  Noyes  Hazardous Control  Shen, T.T., " A i r Q u a l i t y A s s e s s m e n t f o r Land D i s p o s a l of I n d u s t r i a l W a s t e s , " i n E n v i r o n m e n t a l Management, V o l . 6, No., 4, pp 297-305, 1982. S h e n d r i k a r , A.D. and Lodge, J . P . , " M i c r o d e t e r m i n a t i o n of Ammonia by t h e R i n g Oven T e c h n i q u e and i t s A p p l i c a t i o n t o A i r P o l l u t i o n S t u d i e s , " i n A t m o s p h e r i c E n v i r o n m e n t , V o l . 9, pp  215 431-435,  1975.  S k a r h e i m , H.P., " T a b l e s o f t h e F r a c t i o n of Ammonia i n t h e U n d i s s o c i a t e d . F o r m f o r PH 6 t o 9, T e m p e r a t u r e 0-30 C, TDS 03000 mg/1, and s a l i n i t y 5-35 g/kg," SERL R e p o r t , No. 73-5, pp 33, S a n i t a r y E n g i n e e r i n g R e s e a r c h L a b o r a t o r y , U n i v e r s i t y of C a l i f o r n i a , B e r k e l e y . . S m i t h , O.L., S o i l M i c r o b i o l o g y : A Model of D e c o m p o s i t i o n and N u t r i e n t C y c l i n g , CRC S e r i e s i n M a t h e m a t i c a l M o d e l s i n M i c r o b i o l o g y , CRC P r e s s , I n c . , Boca R a t o n , F l o r i d a , 1982. S n o e y i n k , V.C., Sons: New  and J e n k i n s , 0., York, 1980.  Water C h e m i s t r y , John W i l y &  Songonuga, O.O.0., A c i d Gas & M i c r o b i a l D y n a m i c s of S a n i t a r y L a n d f i l l s , U n i v e r s i t y o f West V i r g i n i a , Ph.D. Dissertation, 1 970. S t a n d a r d Methods f o r t h e E x a m i n a t i o n o f Water and W a s t e w a t e r , S i x t e e n t h E d i t i o n , p u b l i s h e d by APHA, Wash. D.C., 1985. Stegmann, R. and S p e n d l i n , H.H. " R e s e a r c h A c t i v i t i e s on Enhancement of B i o c h e m i c a l P r o c e s s e s i n S a n i t a r y L a n d f i l l s , " i n V o l . 1 of P r o c e e d i n g s of New D i r e c t i o n s and R e s e a r c h i n Waste T r e a t m e n t and D e s i d u a l Mgt., June 23-28, 1985, U n i v e r s i t y of B r i t i s h C o l u m b i a ( V a n c o u v e r , B.C., 1985. S t e p h e n s , R.D., B a l l , N.B. and Mar, D.M. "A M u l t i m e d i a S t u d y o f H a z a r d o u s Waste L a n d f i l l Gas M i g r a t i o n , " i n P o l l u t a n t s i n a M u l t i m e d i a E n v i r o n m e n t , e d . by Cohen, Y., Plenum P r e s s : New Y o r k , J a n . , 1986. S t e w a r t , B.M., " E f f e c t o f T e m p e r a t u r e on t h e F o r m a t i o n o f I n d o p h e n o l B l u e i n A S p e c t r o p h o t o m e t r y Method f o r D e t e r m i n a t i o n of Ammonia," Water R e s o u r c e s , V o l 19(11) 1445, 1985.  1443-  Stumm, W. and Morgan, J . J . , A q u a t i c C h e m i s t r y , a • W i l e y - Interscience Publication, 1981. SPSS:X U s e r s G u i d e , by New Y o r k , 1983 The  Spss,  I n c . , pub.  by M c G r a w - H i l l , New  York,  S o u r c e s , C h e m i s t r y , F a t e and E f f e c t s of Ammonia i n A q u a t i c Environments, Prepared f o r American Petroleum I n s t i t u t e , . by E c o l o g i c a l A n a l y s t s , I n c . , S p a r k s , Maryland,. 1981. ,  T a n a s c i , B.S., " S a n i t a r y L a n d f i l l - L e a c h a t e s and Gas i n Wastes Management, O c t . , 1982.  Control,"  Tchobanoglous,  Wastes,  G.,  Thiesem,  H.  and  Eliassen,  R.  Solid  216 E n g i n e e r i n g P r i n c i p l e s and Management I s s u e s , Book Company: New Y o r k , 1977.  McGraw-Hill  T c h o b a n o g l o u s , G. and S c h r o e d e r , E.D., Water Q u a l i t y , W e s l e y P u b l i s h i n g C o . : R e a d i n g , Mass., 1985. T h i b o d e a u x , L . J . , Chemodynamics, a Publication, 1979.  Addison-  Wiley-Interscience  T h i b o d e a u x , L . J . , " E s t i m a t i n g t h e A i r E m i s s i o n s of C h e m i c a l s H a z a r d o u s Waste L a n d f i l l s , " i n J o u r n a l of H a z a r d o u s M a t e r i a l s , 4(1981) 235-244, 1980. T h i b o d e a u x , L . J . , "Models of Mechanisms f o r t h e V a p o r E m i s s i o n of H a z a r d o u s C h e m i c a l s From L a n d f i l l s , " of H a z a r d o u s M a t e r i a l s , 7 ( 1 9 8 2 ) 6 2 - 7 4 .  From  Phase in Journal  Thompson, F.C., M i c r o b i o l o g y and F a t t y A c i d P r o d u c t i o n i n S a n i t a r y L a n d f i l l s , West V i r g i n i a U n i v e r s i t y , M a s t e r s Thesis, 1969. T h u r s t o n , R.V., e t a l , Aqueous Ammonia E q u i l b r i u m C a l c u l a t i o n s , T e c h n i c a l R e p o r t No. 74-1, F i s h e r i e s B i o a s s a y Laboratory, Montana S t a t e U n i v e r s i t y , J u l y , 1974. T o e r i e n , D.F. and H a t t i n g h , W.H.J., " A n a e r o b i c D i g e s t i o n I . M i c r o b i o l o g y of A n a e r o b i c D i g e s t i o n , " Water R e s o u r c e s , 3(1969) 385-416.  The  V o g e l , T.M., C r i d d l e , C.S. and M c C a r t y , P.L., "Transformation of H a l o g e n a t e d A l i p h a t i c Compounds," E n v i r o n . S c i . T e c h n o l . 21(8)722-736, 1987. Waksman, S.A., 1931 .  et a l , S o i l  M i c r o b e s and  Their  Identification,  W h i t f i e l d , M., "The H y d r o l y s i s of Ammonium I o n s i n Sea Water - A T h e o r e t i c a l S t u d y , " i n M a r i n e B i o l . A s s . U.K., (1974) 54,565-580. W i n t e r , K., " K r i t e r i e n b e i b a u l i c h e n E i n r i c h t u n g e n au'f D e p o n i e n h i n s i c h t l i c h der Gefahrdung durch Gase," i n F o r s c h u n g s b e r i c h t Nr. 103 02 102, E r i c h S c h m i d t V e r l a g , Berlin, 1979. W o l f e , R.'S. and H i g g i n s , I . J . , " M i c r o b i a l B i o c h e m i s t r y of Methane - A S t u d y i n C o n t r a s t s , " i n M i c r o b i a l b i o c h e m i s t r y , V o l . 21, ed. by Q u a y l e , J.R., 1979. Young, P. and P a r k e r , A., " V a p o r s , O d o r s and T o x i c G a s e s from L a n d f i l l s , " i n H a z a r d o u s and I n d u s t r i a l Waste Management and Testing: T h i r d Symposium, ASTM STP 851, e d . by J a c k s o n LP.  217 et  a l . , Philadelphia,  1984, pp  24-41.  Zehnder, A . J . B . , " E c o l o g y of Methane F o r m a t i o n , " i n Water P o l l u t i o n M i c r o b i o l o g y , V o l . 2, e d . by M i t c h e l l , R.,  1978.  218  SAMPLE  CH4  C02  X  N2  1  94 . 1  3  .  1  2 3 4  94 . 5 94 . 3  3 3  .  1  .  1  8  9 3 .6 93 . 4 9 2 .. 3 9 2 ..0 91 .. 4  9 10  9 0 ..6 89 .. 4  5 6 7  MEAN  X  =92.6  APPENDIX  TIME t hours)  VIAL  1  VIAL  71.2  0  19.6 88.04  2. 25  6 75.4  4.5  16.4 76. 1  6 . 75  15.8 9  21.5  28.5  Appendix  A2  0. 6 0 ..6  3 .0  2 .6  0.  3 .0 3..0 2 . 8  2 .5 3..4 4 0 4.. 1 4. 8 5. 6  1 .1 1 .3 1 .2 1 .5 1 .7 2 .0  DEV.  A.I. - Results  X  2 . 1 1 .8 . 2 .0  3..0 2. 9 2 .9 STD.  02  X  =  o f Gas  2  7  0  a  1.61  Partitioner  VIAL  3  VIAL  Testing  4  VIAL  5  VIAL  6  72.9 18.4  54.2 33. 7  78. 1  87 . 7  14.2  9.3  76.7 15.4  82.7  83.6  10.2  10  60. 1 28.8  77. 1 14.8  82. 3 10.6  81.8 1 1  68. 3 22. 1  76 . 3 15.4  75.7  73. 1  63.5  79.5  16.2  18. 1  26. 3  12.9  70. 7  66.4  75 16.6  85  81.2 11.8 84 . 4  8.5  9.2  73.7  67  72  17.4  22.9  18.8  20  68.6 21.6  63.2 26. 1  67.5  68.6 21.6  60.5 28. 1  64.2  22. 5  64.9  60.4  64.6  24.7  .28.3  24.8  63.8 25.4  54.6 32.9  57 :6 30.5  - Results  of Leakage  Tests  on  Gas  23.4  Sample  25.2  Vials  219  APPENDIX A.3.- R e c o v e r y e f f i c i e n c y RUN 1  BUBBLER NO. 2  d a t a f o r 6-0 L/min ESCAPE  RECOVERY  3  1 2 3 4  82.1 98.2 102.8 144.8  47.6 22.0 22.0 21.8  26.2 22.0 21.7 21.8  18.3 15.4 15.2 15.3  47.1 62.3 63.6 71.0  MEAN STD. DEV. % C.V.  107.0 26.7 25.0  28.4 6.5 23.0  22.9 2.2 9.5  16.0 1.4 9.5  61.4 10.0 16.3  APPENDIX A. 4.- R e c o v e r y E f f i c i e n c y  d a t a f o r 2.1 L/min  1 2 3  92.9 183.9 144.0  38.1 38.0 32.0  37.5 82.8 54.0  26.3 58.0 37.8  47.7 50.7 53.8  MEAN STD. DEV. % C.V.  140.3 45.6 32.5  36.0 3.5 9.7  58.1 38.3 65.9  40.7 16.0 39.4  51.0 3.1 6.0  APPENDIX A. 5.- R e c o v e r y e f f i c i e n c y  d a t a f o r 10. 5 L/min  1 2 3  86.5 91.1 91.8  30.1 40.5 44.9  30.4 21.5 20.6  21.3 15.1 14.4  41.4 54.2 53.5  MEAN STD. DEV. % C.V.  89.8 2.9 3.2  38.5 7.6 19.7  24.2 5.4 22.4  16.9 3.8 22.4  53.0 1.5 2.8  220 APPENDIX A.6.  - RESULTS OF  pH METER COMPARISON  In an attempt t o c a l c u l a t e t h e a c c u r a c y of t h e H o r i z o n f i e l d pH meter a c o m p a r i s o n was made between t h i s and t h e l a b r e f e r e n c e Beckman 44 pH m e t e r . The Beckman 44 has an L C D - d i g i t a l d i s p l a y readout and i s equipped with a calomel combined r e f i l l a b l e electrode. Comparison of the two m e t e r s was made w i t h v a r i o u s pH b u f f e r s o l u t i o n s and d i s t i l l e d w a t e r . R e s u l t s of the comparison a r e shown below: Beckman  Sample Distl.  water  5.39  Horizon  %  Error  5.28  -2.0  1 1 .54  10.34  •10.4  A l i q u o t of disodium tetraborate Na B 0 '10H 0  9.17  8.94  -2.5  Aliquot  4.67  4.43  -5. 1  K H P 0 . + Na.B.O,.10H-0 2 4 2 4 7 2  6.16  6.30  + 2.3  Above m i x t u r e + a l i q u o t of 0.02N NaOH  6.30  6.43  + 2.0  Boric  4.59  3.49  -24.0  5.63  5.0-2  •10.8  D i s t l . water + 0.2 ml a l i q u o t of 6N NaOH  2  4  ?  2  of K H P 0 2  4  o  Distl.  acid  (20,000 ppm)  water  pH  7 buffer  6.99  6.76  -3.3  pH  4 buffer  4.00  3.89  -2.8  I n s p e c t i o n of t h e s e r e s u l t s show t h e g r e a t e s t e r r o r t o o c c u r l a t e i n the c o m p a r i s o n w i t h the b o r i c a c i d . In g e n e r a l however, the r e l a t i v e e r r o r of the H o r i z o n pH meter i s l e s s t h a n + 5 % i n t h e l e a c h a t e pH range encountered in this study and u s u a l l y underpredicts the pH. Errors are p r o b a b l y due t o the O r i o n electrode not having enough time to equilibrate with the contacting ionic solution. To guard against electrode sensitivity decay, the Orion e l e c t r o d e was "rejuvenated" in s a t u r a t e d KCl s o l u t i o n a l m o s t e v e r y two weeks.  221  APPENDIX A.7. - SUMMARY TABLE OF QUALITY ASSURANCE METHOD  TESTS  ACCURACY RESULTS  H o r i z o n F i e l d pH meter (Compared t o Beckman 44 Lab pH meter)  % E r r o r of +2.3 t o -24.0 % U s u a l l y l e s s than + 5 % of one pH u n i t ( D e t a i l e d i n A p p e n d i x A.6.)  Ammonia D i s t i l l a t i o n T i t r a t i o n Method  20 mg/L NH3-N sample 200 mg/L sample (6 Samples e a c h )  Fisher  % E r r o r o f + 1.74 % (10 sample i n j e c t i o n s ) ( D e t a i l e d i n A p p e n d i x A.1.)  Methane  Gas P a r t i t i o n e r  gas sample  vials  Note: A c c u r a c y discussed  4.2 % 2.2 %  % Leakage was 21.3 t o 35.8 % o v e r a 28 h r . p e r i o d . Mean l e a k a g e v a l u e was 26.8 % ( D e t a i l e d i n A p p e n d i x A.2.)  t e s t s o f t h e NH3-N gas a n a l y t i c a l method a r e i n C h a p t e r 5.  221 APPENDIX  B. - SAMPLE CALCULATIONS  OF SOME OF THE  PARAMETERS  B. 1 . CALCULATION OF CH4 FLUX THROUGH SAMPLE WELLS Known p a r a m e t e r s a r e : -  CH4 % by volume M o l e c u l a r w e i g h t o f CH4 = 16.0 gm/mole S t a t i c gas f l o w i n L/min C r o s s - s e c t i o n a l a r e a t h r o u g h measurement t u b e r = 1.27 cm. A = 5.07 cm Gas temp, i n K Gas c o n s t a n t , R = 0.082057 L-atm/K-mol Assume gas i s b e h a v i n g i d e a l l y i d e a l gas law pV .= nRT Where V = Flow * Time So Q (Flow) = V / t Assume p = 1 atm. So p/R = 12.195 K-mol/L  -  2 To g e t CH. F l u x i n kg CH./cm -day t h e n m u l t i p l y by p r o p e r c o n v e r s i o n f a c t o r s t o g e t from volume p e r c e n t i n t o mass.  -  Therefore, CH  4  Flux  =  55.6 * (Q/T°K) * ( C H  Example C a l c u l a t i o n CH  4  CH4 F l u x i s : 4  %/l00)  is :  Suppose I have a w e l l f l o w o f 20 L / m i n . , Gas Temp, o f 290°K, o f 50 %, t h e n w i l l g e t : CH  4  Flux  = 55.6 * (0.1034) * (0.50) = 2.8800  kg  CH /cm -day 2  4  B.2. CALCULATION OF C02 FLUX I s t h e same p r o c e d u r e as f o r CH. F l u x e x c e p t t h e m o l e c u l a r w e i g h t i s i n c r e a s e d t o 44.0 gm/mole t o c h a n g e t h e e q u a t i o n below: C0  2  Flux  i n kg C0 /cm2-day 2  B.3. CALCULATION OF LANDFILL GAS  = 152.52 * (Q/T°K) * ( C 0  2  %/l00)  DENSITY  Summation o f t h e f o u r main l a n d f i l l g a s c o n s t i t u e n t s , CH., C0 , N , 0 were assumed t o be i n d i c a t i v e o f t h e t o t a l l a n d f i l l gas c o n c e n t r a t i o n . D e n s i t y f o r e a c h gas t a k e n from t h e l i t e r a t u r e ( l i s t e d below) was summed i n t h e s p r e a d s h e e t t o g e t t o t a l gas d e n s i t y f o r e a c h w e l l i n e a c h sample p e r i o d . 2  2  2  222  GAS  DENSITY  CH  0 .714  kg/m  5  Emcon A s s o c .  (1980)  1 .950  kg/m  3  Emcon A s s o c .  (1980)  1 .248  kg/m  3  1 .427  kg/m"  CRC Handbook o f Chem. a n d P h y s i c s Same a s above  4  co  2  N °2 Total Gas  gas d e n s i t y  SOURCE  3  was c a l c u l a t e d a s f o l l o w s :  d e n s i t y = ((CH % / l 0 0 ) * 0 . 7 1 4 ) + ((C0 %/100)*1.950) ...... + ( ( N V 1 0 0 ) * 1 .248) •+ ( ( 0 % 7 1 0 0 ) * 1 .427) 9  2  B.4.  (1979)  +  2  CALCULATION OF PPB IN GAS  P a r t s p e r b i l l i o n o f NH--N g a s was c a l c u l a t e d by d i v i d i n g t o NH--N g a s c o n c e n t r a t i o n i n t o t h e t o t a l g a s d e n s i t y t o g e t . c o m p a r a b l e mass u n i t s : ug/kg =  uq/nJ- NH3-N kg/m  = ppb  Density  ' 3 Sample C a l c u l a t i o n o f NH3-N o f 200 ug/m . and d e n s i t y  = 1 . 3 0 kg/m  200 ug/m= 153.8 ppb 1.30 kg/m3 . . B.5.  CALCULATION OF IONIC STRENGTH  From Snoeynk and J e n k i n s (1980) i s a c o n v e r s i o n c o v e r t i n g s p e c i f i c conductance, i n t o i o n i c s t r e n g t h : Spec. B.6.  factor for  • -5 C o n d u c t . * 1.6 x 10 = Ionic. Strength  CALCULATING ACTIVITY  COEFFICIENTS  The D e b y e - H u c k l e a p p r o x i m a t i o n was u s e d a n d t h e e q u a t i o n below i s v a l i d where i o n i c s t r e n g t h do n o t e x c e e d 0.1, w h i c h i s a p p r o p r i a t e f o r my r e s u l t s s i n c e o n l y two w e l l s , F1 and F5 M a t s q u i e x c e e d e d t h e 0.1 I . 2 log  0 5  0 5 1 + Ba*I * u  Where A = 0.50 B =. 0.326E+08 .  z = 1.0 f o r NH. a = 3.0E-08 f o f NH^ +  +  ions  3  223 Sample c a l c u l a t i o n : the a c t i v i t y c o e f f i c i e n t log  l e a c h a t e o f 2000 umho/cm  = - (0,50*1.0*0.032 ' )/ 0  = B.7.  suppose is:  antilog  1 +  5  then  (0.978*0.032°* ) 5  (-0.076) = 0 . 8 4  CALCULATE FRACTION OF UNIONIZED AQUEOUS  AMMONIA  T h u r s t o n e t a l (1974) r e g r e s s e d t h e d a t a o b t a i n e d from P i n c h i n g a n d B a t e s i n t o w o r k a b l e e q u a t i o n s e s t i m a t i n g pKa a n d f r a c t i o n o f ammonia b e l o w : pKa  = 0.0901821  + 2729.92/T°K  T h i s e q u a t i o n i s f o u n d t o have a b o u t a 5 % C.V., w h i c h i s exceptable. The f r a c t i o n i s t h e n c a l c u l a t e d below: f = 1/(10  p  K  a  "  p  H  + 1)  T h i s f r a c t i o n c a n t h e n be m u l t i p l i e d by t h e t o t a l ammonia measured t o g e t t h e c o n c e n t r a t i o n , m o l a r i t y a n d mole f r a c t i o n f*C(NH -N) = C(NH ) 3  3  C ( N H ) / 1 7 . 0 4 g/mole = [ N H | a q ] / 5 5 . 6 m/L = X ( N H ) 3  B.8.  3  ESTIMATION OF pKw  The i o n i z a t i o n c o n s t a n t o f water i s a f u n c t i o n o f t e m p e r a t u r e from t h e below e q u i l i b r i u m e x p r e s s i o n : Kw = [ H ] * [ O H ~ ] +  The d a t a u s e d t o p r e d i c t , t h e pKw a s a f u n c t i o n o f t e m p e r a t u r e was t a k e n from F r e n e y ( 1 9 8 1 ) : Temp, i n c e l s i u s 0 5 10 15 20 25 30 35 40 The  resultant  pKw 14.944 14.734 14.535 14.346 14.167 13.997 13.833 13.680 13.535  regression  equation i s :  3  224 pKw  = 24.50198 - 0 . 0 3 5 1 7 ( T ° K ) r  B.9  = 0.996584  2  standard error  i s 2.2 % i n t h i s e q u a t i o n  CALCULATION OF AQUEOUS AMMONIA FROM EQUUILIBRIUM EXPRESSION  T h i s method i s an a l t e r n a t i v e t o T h u r s t o n ' s c a l c u l a t i o n . i s b a s e d on t h e e q u i l i b r i u m e x p r e s s i o n o f ammonia and water below: NH .+ H 0 3  K  1  <====> N H  2  = ([NH  Kw =  + 4  ]*  + 4  It  + OH~  *[OH~J)/[NH |aq] 3  [H ]*[OH~] +  Where pK^ = pKw .- pKa Where So  [OH ] i s e s t i m a t e d from  [NH |aq] = [NH +]* 3  4  antilog(-(pKw-pH)  *[OH-]  Example i s a l e a c h a t e o f 200 mg/L t o t a l a pH o f 6.5 and a l e a c h a t e T o f 15 d e g r e e s . [NH pKa  + 4  ]=  0.200 g/L/17.04 gm/mole  = 9.569  pKw  = 14.373  pK-  = 0.012  3  o f 0.80,  m/L  = 4.80 o r R  [OH~] = a n t i l o g ( - 7 . 8 7 ) = 1.34E-08 [NH |aq] =8.11E-06  ammonia a  ]  = 1.58E-08  m/L  m/L  B.10 ESTIMATION OF HENRY'S CONSTANT METHOD  ( H i ) FROM THE VAPOR  PRESSURE  a.  Must f i r s t c a l c u l a t e t h e r e f e r e n c e v a p o r p r e s s u r e as a f u n c t i o n o f t e m p e r a t u r e ( f r o m NRC, 1979):  log  P  r e f  =9.95028  - 0.003863(T) - 1473.12/T  Where T = K P  ref  =  m  m  H  9  ;  V  To g e t i n t o a t m o s p h e r e s m u l t i p l y b.  mm  Hg by 0.0013  C a l c u l a t e s o l u b i l i t y a s a f u n c t i o n o f t e m p e r a t u r e from F r e n e y (1981) d a t a t o g e t r e g r e s s i o n e q u a t i o n b e l o w :  225 log  S =  1.307360 + 934.63/T where T = K r  =0.999806  2  Standard  error  i s only  0.04  %  c. Must c a l c u l a t e c o r r e c t e d v a p o r p r e s s u r e (P_) s i n c e a d i l u t e s o l u t i o n d o e s n ' t obey R a o u l t ' s Law of an i d e a l s o l u t i o n , so a c o r r e c t e d v a p o r p r e s s u r e as a f u n c t i o n of i t ' s s o l u b i l i t y i s employed (MacKay and S h i u , 1981). P  c  = P  , * ref  Where w ammonia Therefore: d.  (1 -  w)  i s t h e f r a c t i o n of s o l u b i l i t y i n a g i v e n w e i g h t of w a t e r . H  1  i n atm-L/mole =  Example c a l c u l a t i o n  of  the weight  Pc/S  for solution  at  25  degrees  H = (9.32 atm * (1 - ( 2 6 . 9 2 / 5 5 . 6 ) ) ) / 2 6 . 9 2 H J = 0.1786 atm-L/mole B.11  ESTIMATION OF  Two function  H2  FROM THE  complete sources of t e m p e r a t u r e .  Temp  celsius  m/L  MOLE FRACTION METHOD  of d a t a were u s e d t o e s t i m a t e H2 The s o u r c e s a r e l i s t e d b e l o w :  Tchobanaoglous (1985)  0 10 20 25 30 40 50  0.48 0.78 1.25 1.56 1.96 2.94  of  Perry (1963)  :  as  a  Thibodeaux (1979)  0.38 0.62 0.99 1.24 1 .57 • 1.96 2.70  — 0.84 —  At 25 d e g r e e s , a s t a t i s t i c a l c o m p a r i s o n of t h e t h r e e s o u r c e s y i e l d s a h i g h l y v a r i a b l e mean of 1.104 w i t h a s t a n d a r d d e v i a t i o n of 0.396 and a % C.V. of 36 %. When a v e r a g i n g regression equation H  2  = -7.83  t h e two below:  complete  + 0.03(T) where T = K  s e t s of d a t a  one  gets  the  226 r  = 0.996236  2  Standard E r r o r i s over 3 % Example c a l c u l a t i o n a t 25 d e g r e e s : H  = 1.104 atm/X  2  .;. 0.906X*55.6 m/L 50.37 m/L H  H  = 0.902 X/atm  2  = H' *atm 2  = H *atm 2  = 0.01986 atm-L/mole  2  B.12.ESTIMATE H3 FROM GIBBS FREE ENERGY METHOD From e n t h a l p y and e n t r o p y d a t a i n Stumm and Morgan ( 1 9 8 1 ) , one c a n c a l c u l a t e t h e e q u i l i b r i u m c o n s t a n t between t h e aqueous and gas p h a s e s o f ammonia. . Species  H  f  (Kcal/mol)  S  (Kcal/K-mol)  NH |g  -11 .04  46.01E-03 \  NH |aq  -19.32  26.30E-03  3  3  An  example c a l c u l a t i o n a t 25 d e g r e e s  :  H = -19.32 - (-11.04) = -8.28 K c a l / m o l S = 26.30 - 46.01 = -19.7 c a l / K - m o l . T  S  = (298.16)*(-19.7)  = -5.88 K c a l / m o l  T h e r e f o r e the standard free F r e e E n e r g y below: AG° So H^  =  energy  i s based  on G i b b s  H - TAS = -8.28 - (-5.88) = -2.40 K c a l / m o l  i s calculated  from e q u i l i b r i u m  -RTlnK  K =  -AG 2.303*T*R 0  e x p r e s s i o n below:  = AG° .  Where R = 1.987E-03  log  change  Kcal/K-mol  227 .  log K =  2.40/1.364  K = [NH |aq]/P 3  H  N H 3  = 1.76  K or H  =57.3  = 57.5 mol/atm-L  = 1.73E-02 atm-L/mol  3  B. 1 3.CALCULATE H4 FROM THE SOLUBILITY EQUILIBRIUM METHOD ., T h i s method c a l c u l a t e s a d i m e n s i o n l e s s c o n s t a n t a s a r a t i o between t h e aqueous and g a s e o u s m o l a r i t i e s o f ammonia. T h i s can t h e n be c o n v e r t e d t o t h e a p p r o p r i a t e u n i t s . H  4  = [NH |aq]/[NH |g] 3  3  In p u r e water s t u d i e s by H a l e and Drewes ( 1 9 7 9 ) , Over 30 d a t a p a i r s were r e g r e s s e d a s a f u n c t i o n o f t e m p e r a t u r e and i s shown b e l o w : log  H  4  = -1.694 + 1477.7/T  where T = K  2 No r  was g i v e n  Example of c o n v e r s i o n H  and s t d . e r r o r  was  9.7 %  t o a p p r o p r i a t e u n i t s a t 25  degrees:  = 1842.0  4  [ N H | g ] = 1842 * [ N H | a q ] / 3  3  H  4  Xg = [ N H | g ] / 2 2 . 4 m/L and assume 1 atm p r e s s u r e g e t : H. = 2.443E-5 atm-L/mole, w h i c h i s s i g n i f i c a n t l y l e s s t h a n t h e o t h e r h e n r y ' s c o n s t a n t s d i s c u s s e d so f a r , 3  B.14.DESCRIPTION AND DERIVATION OF THIBODEAUX'S MODEL FOR GAS EMISSIONS FROM COVERED LANDFILLS WITH INTERNAL LANDFILL PRESSURE BUILD-UP. a.  F o r a u n i f o r m c o m p o s i t i o n o f gas w i t h i n a l a n d f i l l c e l l , t h e e q u a t i o n o f c o n t i n u i t y c a n be e x p r e s s e d below:  ,  n"dC = - C*v + r dt • ~h~ . 9  Where n C t v h r b.  The  = = = = = =  equation  (i)  a i r - f i l l e d porosity c o n c e n t r a t i o n i n ug/m time (days) s u p e r f i c i a l o u t w a r d v e l o c i t y (m/day) l a n d f i l l c e l l d e p t h (m) r a t e o f g a s g e n e r a t i o n i n c e l l , (ug/m -day) 3  3  that d e s c r i b e s the one-dimensional  flow of  226 gas t h r o u g h Law b e l o w :  the c e l l  v = Where v u R L p b  = = = = = =  or l a n d f i l l  K * ( p - b) u*L  cover  i s by  Darcy's  (ii)  m/day gas v i s c o s i t y (cP) p e r m e a b i l i t y , o f c o v e r (m /day) t h i c k n e s s o f c a p (m) pressure w i t h i n cap barometric pressure at l a n d f i l l 2  So t h i s e q u a t i o n pressure induced  surface  d e s c r i b e s c o v e c t i o n flow caused flow.  by  C o m b i n i n g e q u a t i o n s i , i i and a b i o l o g i c a l gas r a t e ( r g ) , one c a n g e t an e x p r e s s i o n f o r t h e r a t e o f change of i n t e r n a l l a n d f i l l p r e s s u r e . To g e t t h i s e x p r e s s i o n , t h e gas d e n s i t y must be s o l v e d u s i n g t h e i d e a l gas l a w . The e x p r e s s i o n i s b e l o w : dP dt  =  rg.*e*p n  - Kp(p-b) n*h*L*u  ( i i i )  E q u a t i o n ( i i ) c a n be combined w i t h t h e below e q u a t i o n t h a t d e s c r i b e s s t e a d y s t a t e i n t e r n a l g a s f l o w i n one direction. D e * d C - v*dC = 0 dZ dZ  (iv)  2  Where De i s e f f e c t i v e  diffusion  coefficient  I f h and z = s u r f a c e and base o f l a n d f i l l c o v e r , t h e n can s o l v e t h e above e q u a t i o n by i n t e g r a t i n g a t b o u n d a r y c o n d i t i o n s o f Ca a t z and C a t h t o g e t : C  9 z  The  = Ca - (Ca - C ^ ) * ( 1 - e x p ( z * v / D e ) ) • (1-exp(h*v/De)) flux  Na = v *  e x p r e s s i o n then  is :  Ca - C^ + v*Ca exp(h*v/Da) - 1  T h i s e x p r e s s i o n c o n t a i n s both c o n v e c t i v e f l u x term. Equation equation emission  "(v)  (vi)  a d i f f u s i v e and  ( v i ) i s t h e n c o n v e r t e d i n t o t h e more w o r k a b l e t h a t by i t s e l f i s used t o e s t i m a t e f l u x r a t e s from l a n d f i l l s t h a t a r e assumed t o have  229 no i n t e r n a l  pressure  build-up.  This  i s shown below:  Na = (De/L')*(Ca - C 2 ) * ( R e x p ( R ) ) (vii) (exp(R) - 1) ...... Where L = L a n d f i l l R = L*v/De Na  = Mass  B. 15. SAMPLE CALCULATION a.  cover  flux  thickness  (m)  i n M/L -T 2  OF.'THIBODEAUX'S MODEL, RICHMOND LANDFILL  Calculate Effective diffusion coefficient d i f f u s i o n c o e f f i c i e n t i n a i r (Do) = 1.750 and a i r - f i l l e d p o r o s i t y = 0.40 De  = Do*(n  1  *  3 3  )  = 0.517  wi,th irT/day  m /day 2  3 b.  Calculate  G-factor  R = L*v/De R =  =  2.11  C a l c u l a t e NH^-N  flux  = (0.517 m / d a y / l . 5 M ) * ( 9 2 . 8 - 2 0 . 0 ) * 2 . 1 1  N  = 52.9 ug NH -N/m -day  N  2  2  3  f o r without  = 25.1  Calculate  gas g e n e r a t i o n  ( i e , F a r m e r ' s model)  ug NH -N/m -day 2  3  annual  52.9 * 200,000  m  flux 2  from t h e  landfill  * 365 d a y / y r /  N = 3.862 k g / y r B.16.SAMPLE CALCULATION OF GAS RICHMOND LANDFILL a.  from gas  N  The r e s u l t s  d.  and v = 0.5996 m/day  1.74  G-Factor c.  where L - 1.5m  1 X  10  9  ug/kg  GENERATION MASS BALANCE MODEL AT  3 Assume gas pumping r a t e o f 20.5 m /min and an ammonia gas c o n c e n t r a t i o n o f 92.8 ug/m . 20.5 m /min 3  * 92.8  1902.5 ug/min  ug/m  3  = 1902.5  ug/min  * 1440 min/day * 1 X 1 0 -  9  kg/ug.  230 = 0.00273 kg N K / d a y 3  = 1.00 kg N H / y e a r 3  Check c a l c u l a t i o n o f gas p r o d u c t i o n T h i b o d e a u x model r u n . Get = 20.5  r e f u s e mass = 200,000 m 1.2 X 1 0  9  kg o f r e f u s e  m3/min = 2.95 X  Therefore  10  gas p r o d u c t i o n  1 0  2  * 10m*  r a t e used i n 600 kg/m  3  fill mL/day rate = flow/refuse  mass  = 24.6 mL/kg-day w h i c h compares t o assumed v a l u e 40 mL/kg-day u s e d i n model r u n s .  231  Vancouver  Intl.  Airport  Vancouver Harbor  Abbotsford  0.0 25.8 0.0 Tr  Tr 15.0 0.2 Tr  0.0 13.9 0.0 Tr  Sept. 87  13.2 9.6 2.2 3.4  11.4 11.1 0.0 5.6  11.6 12.0 0.0 1.4  Oct.  87  0.2 0.0 0.0 20.2  1.2 0.0 Tr 31.4  1.6 0.0 Tr 18.2  Nov.  87  0.6 74.8 48.4 13.0  5.2 91.1 77.5 9.0  1.8 69.0 31.5 9.0  Dec. 87  73.0 46.4 16.6 13.6  137.9 48.6 32.0 10.6  95.8 73.8 28.8 15.1  Jan.  88  0.0 40.8 15.8 9.6  0.0 83.4 16.4 16.6  0.0 75.1 15.9 19.8  Feb. 88  18.3 46.2 3.6 3.6  32.8 77.1 9.4 6.0  40.0 57.9 6.2 3.4  Mar.  88  25.2 23.0 43.0 47.0  32.1 35.3 53.6 63.7  33.3 26.6 33.7 61.1  Apr.  88  71.6 Tr 2.4 17.2  n.d. n.d. n.d. n.d.  105.6 Tr 8.2 48.0  Aug.  87  NOTE: P r e c i p i t a t i o n  in millimeters  APPENDIX C . I . - Weekly P r e c i p i t a t i o n Data F o r Weather P r o x i m i t y t o L a n d f i l l Study S i t e s . Note: V a n c o u v e r Harbour was P e r m a n e n t l y a t t h e End o f Marcn, 1988.  Stations i n Close  Discontinued  232 APPENDIX  DATE  - TABLES  TEW  B.L. (itttrs)  £2£===SSS  D  TEW  LEACH  pH  6AS  OF  BASIC  FROM  EACH  SAMPLE  WELL  KH3-X  SPEC.  NH3-N  6AS  BAftO.  LEACH  CONDUCT.  6AS  aoii  PRESS.  (UIBO/CI)  (ppb)  (L/iin)  (•OA)  --—T77Tr—---------  DATA  I CH4  Z C02  1 N2  I 02  <KP»)  El MTSQUI 08/05/67 08/25/87  — —  09/08/87 09/22/87 10/06/87 10/20/87 11/10/87 11/24/87 12/08/87 12/29/87  — — — — — — —  —  -  — — — — — — — —  — — 25.0 21.0 19.0 18.0 16.0 14.0 13.0 13.0  — — — — — — — — — —  — — —  -  — — — — — —  — — — — — — — — — —  108.6  45.9  39.1  13.8  1.3  28.2  —  678.2  48.4  36.2  14.2  1.3  65.9  101.78 101.64  500.2  46.4  37.0  15.2  1.4  56.6  408.4  41.9  34.8  21.4  2.0  62.9  101.64  256.4  38.5  33.0  26.9  1.7  48.5  102.28  104.4  38.6  32.4  26.8  2.2  40.4  102.35  184.2  38.0  32.7  26.5  2.7  4B.5  101.84  73.4  38.9  31.5  23.5  6.0  54.8  101.24  51.4  40.0  30.3  24.2  5.3  19. B  100.73  35.0  50.2  36.5  10.5  2.8  13.3  101.07  01/12/88  9.69  7.0  13.0  6.49  2637.6  24040.0  44.8  30.2  33.4  32.8  3.7  30.9  101.78  01/26/88  9.69  11.0  12.0  6.34  2669.3  21200.0  39.4  32.9  34.7  29.2  3.2  62.9  102.49  02/09/88  9.67  10.5  11.0  6.27  2548.0  22550.0  30.2  45.0  32.5  18.4  4.1  25.0  102.32  03/01/88  14.0  12.0  6.25  1848.0  16290.0  140.4  47.6  33.0  17.3  2.1  15.2  102.25  03/29/88  9.75 9.70  11.0  10.0  6.19  1786.0  16023.0  37.2  37.8  28.6  29.2  4.4  7.4  102.05  lUiiwi  9.75  14.0  25.0  6.49  2669.3  24040.0  678.2  50.2  39.1  32.8  6.0  65.9  102.49  Niniiui  9.69  7.0  6.19  1786.4  16023.0  30.2  30.2  28.6  10.5  1.3  7.4  100.73  Kan  9.70  10.7  10.0 13.2  6.31  2297.8  20020.6  179.6  41.4  33.7  22.0  2.9  38.7  101.82  Std. Otr.  0.03  2.2  1.0  0.10  395.1  3281.5  191.6  5.6  2.6  6.5  1.4  19.3  C.V.  0.28  20.8  6.7  1.63  17.2  16.4  106.6  13.5  7.8  29.6  48.4  49.8  0.51 0.50  36.2  F2 luisau 08/05/87  8.80  17.0  23.0  7.10  406.0  4000.0  204.6  34.3  31.0  31.5  3.2  08/25/87  8.99  17.0  22.0  7.20  252.0  3640.0  408.4  23.3  29.5  92.8  2.4  70.8  09/08/87  9.05  18.0  25.0  7.16  347.2  3400.0  397.4  25.2  28.3  44.0  2.5  65.4  101.71  09/22/87  9.09  17.0  23.0  7.24  313.6  3066.0  311.4  28.6  30.1  40.2  1.2  73.9  101.61  101.84  10/06/87  9.09  18.0  19.0  7.24  369.6  3614.0  166.4  27.4  29.6  41.9  1.1  85.0  102.28  10/20/87  9.03  17.0  15.0  7.35  316.4  3373.0  143.0  27.3  30.1  41.9  0.7  68.0  102.38  11/10/87  9.11  16.0  16.0  7.54  274.4  3371.0  135.6  26.2  28.8  42.8  2.2  73.9  101.88  11/24/87  9.09  16.0  14.0  7.95  308.3  3200.0  40.0  23.2  27.0  46.2  3.7  70.8  101.17  12/08/87  9.05  11.0  12.0  6.50  124.7  2400.0  25.8  25.0  27.1  44.4  3.5  53.1  100.70  12/29/87  9.10  11.0  16.0  7.22  235.2  2715.0  18.2  27.0  27.3  42.6  3.1  43.6  100.93  01/12/88  9.06  8.0  14.0  6.94  149.0  1750.0  23.6  22.7  25.0  48.6  3.8  58.6  101.74  01/26/88  9.03  13.0  14.0  6.29  70.6  1083.0  38.8  22.5  25.0  48.3  4.3  75.5  102.45  02/09/88  8.90  14.5  10.0  5.97  53.8  1118.0  33.2  23.3  27.1  46.4  3.2  37.8  102.28  03/01/88  9.05  13.0  15.0  7.05  271.0  2952.0  69.2  24.3  26.6  46.1  3.0  45.9  102.21  03/29/88  8.88  13.0  14.0  6.93  182.6  1396.0  72.2  39.0  30.7  28.3  2.0  47.2  101.94  Ibiiiui  9.11  18.0  23.0  7.95  406.0  4000.0  408.4  39.0  31.0  92.8  4.3  85.0  102.45  Niniiui  8.80  8.0  10.0  5.97  53.8  1083.0  18.2  22.5  25.0  28.3  0.7  36.2  100.70  Htin  9.02  14.6  16.8  7.05  245.0  2738.7  139.2  26.8  28.2  45.7  2.7  60.4  101.79  Std. C.V.  dtv.  0.09  2.9  4.4  0.47  103.9  932.4  130.4  4.4  1.9  13.7  1.0  14.9  0.52  0.98  19.9  25.9  6.71  42.4  34.0  93.7  16.3  6.7  30.0  38.6  24.6  0.51  APPENDIX  D  233 APPENDIX D ====================================================::==========:=================X S 3 3 S = = £ = r ======== =========:=======,;  OATE  y.L.  TEMP  TEMP  (Mttri)  LEACH  6AS  pH  NH3-N  SPEC.  NH3-N  6AS  BARO.  LEACH  CONDUCT.  GAS  ROM  PRESS.  (ppb)  (L/iin)  (*j/L)  (uiho/ci)  I CH4  I C02  I N2  I 02  (KPa)  ============================================= =;======:1 = 3 3 3 = = = = = = : :================3 8 3 3 3 S 3 3 3 3 : ==================:========::=======:  F3 MATSQUI  11/24/87  — —  — — — — — — — —  12/08/87  9.56  10.0  08/03/87 08/23/87 09/08/87 09/22/87 10/06/87 10/20/87 11/10/87  — — — — —  --  — — 21.0 22.0  — ~  -  — — —  — — —  — — —  14.0  —  —  12.0  6.94  398.7  3400.0  1B.0 15.0  --  56.5  33.7  8.5  1.3  94.3  361.4  43.9  33.8  20.7  1.6  130.7  101.81  198.6  50.8  35.8  12.5  0.9  121.4  101.71  51.5  35.8  11.5  1.2  138.7  101.61  82.6  48.1  33.3  15.8  0.8  147.8  102.33  551.2  45.2  33.8  19.2  1.8  121.4  102.45  142.0  48.2  14.4  1.7  130.7  101.88  388.8  — — — —  19.0  211.2  — —  •  136.2  43.8  33.3 33.4  20.9  1.9  130.7  101.14  19.8  45.5  32.6  19.2  2.7  100.0  100.70  12/29/87  9.58  10.0  12.0  6.85  285.6  3104.0  3S.8  48.2  32.2  17.1  2.5  83.0  100.90  01/12/88  9.60  10.0  12.0  6.83  168.0  2054.0  26.8  43.5  33.8  19.8  2.9  115.6  101.68  01/26/88  9.58  14.0  13.0  6.60  142.8  1660.0  29.6  47.1  30.5  18.4  4.0  147.8  102.38  02/09/88  9.55  14.0  9.0  6.31  95.2  1680.0  52.0  24.5  23.6  46.7  5.2  47.2  102.25  03/01/88  9.60  17.0  13.0  5.86  88.5  1384.0  135.8  52.4  32.3  12.7  2.6  93.1  102.25  03/29/88  9.35  13.0  13.0  6.22  110.9  1298.0  44.8  44.9  29.7  23.1  2.3  103.6  101.94  Huitui  9.60  17.0  22.0  6.94  398.7  3400.0  551.2  56.5  35.8  46.7  5.2  147.8  102.45  Hinitui  9.55  10.0  " 9.0  5.86  88.5  1298.0  19.8  24.5  23.6  8.5  0.8  47.2  100.70  Ikaa  9.57  12.6  14.8  6.52  184.2  2082.9  161.2  46.3  32.B  18.7  2.2  113.9  101.79  Std. Otv.  0.02  2.5  3.8  0.37  107.4  776.8  153.2  6.8  3.0  8.5  l.l  26.2  0.53  C.V.  0.21  19.9  25.5  5.68  58.3  37.3  95.1  14.7  9.2  43.2  51.3  23.0  0.53  37.8  F4 HATSBU 08/03/87 08/25/87 09/08/87 09/22/87 10/06/87 10/20/87 11/10/87 11/24/87 12/08/87 12/29/87 01/12/88 01/26/88 02/09/88 03/01/88 03/29/88 Kiiiiui Hioitui Hta* Std. 0«v. C.V.  — — — — — — — — — — — —  --  — —  -— — — —  — — — — — — — — — — —  — — 22.0 21.0 20.0 18.0 15.0 12.0 14.0 14.0 14.0 13.0 ~  — — —  12.0  —  22.0  --  12.0  —  12.0  15.4 3.4  —  — — — — -— — — — — — — — —  22.3  — — — — —  — — — — — — — — — — — — — — —  — — — — — — — — — — — — — — —  — —  — — — — —  —  61.6  58.7  38.2  3.1  0.0  396.0  49.2  33.7  15.3  1.8  85.8  101.91  234.4  59.0  33.3  4.5  1.2  70.8  101.78  202.0  59.6  35.8  3.9  0.8  77.2  101.67  269.4  52.2  37.8  10.0  0.0  77.2  102.28  189.6  49.5  36.6  13.0  0.8  58.6  102.52  157.2  43.7  34.0  19.9  2.4  68.0  103.6  39.4  31.3  25.8  3.5  62.9  101.88 101.14  8.0  44.5  38.6  14.9  2.0  34.7  100.70  33.8  52.4  36.7  9.9  1.0  39.5  100.83  42.4  50.8  33.6  14.4  1.2  69.4  101.61  36.6  50.7  33.0  12.4  —  —  70.8  102.28  130.6  -—  1.9  23.2  47.3  33.6  16. S  2.7  11.8  102.32  5.8  46.5  32.4  17.5  3.6  23.3  101.91  396.5  59.6  38.6  25.8  3.6  85.8  102.52  8.0  39.4  31.3  3.1  0.0  11.8  100.70  134.8  50.3  35.2  12.9  1.6  56.3  101.76  109.4  5.7  2.1  6.1  1.1  21.8  0.55  81.1  11.4  6.1  47.4  67.0  38.8  0.54  —  —  . —  234 APPENDIX D  DATE  y.L.  TEMP  TEMP  titters)  LEACH  6AS  s  — ========  KH3-H  pH  LEACH  —  —  (ig/L)  SPEC. OBGHICT.  NH3-N  (uiso/ci)  (ppb)  I  CH4  I C02  1 N2  I 02  8AS  ..................  :=====:=  6AS  BARO.  FLOW  PRESS.  (L/iin)  (KPa)  rs RATSOUI 08/05/87  5.98  17.0  20.0  6.60  787.5  12000.0  22.0  3B.7  33.8  26.4  1.1  34.0  —  08/75/87  5.98  18.0  21.0  6.82  1881.6  21913.0  601.6  S6.9  43.1  0.0  0.0  18.9  101.98  09/08/87  5.98  17.0  20.0  6.85  196O.0  18500.0  76.0  56.9  43.1  0.0  0.0  18.3  101.88  09/22/85  5.96  . 17.0  25.0  6.75  1624.0  17546.0  143.8  57.0  43.0  0.0  0.0  23.6  101.54  10/06/87  5.97  18.0  22.0  6.86  1982.4  19207.0  99.2  54.0  40.2  4.7  1.2  40.5  102.25  10/20/87  5.88  17.0  20.0  6.78  1988.0  18877.0  276.8  58.9  35.9  4.7  0.4  21.8  102.49  11/10/87  6.08  15.0  14.0  6.81  397.6  5960.0  167.6  56.3  40.6  2.4  0.7  43.6  101.88  11/24/87  5.74  14.0  11.0  5.41  154.0  2906.0  37.4  37.9  27.4  27.1  7.6  N.D.  101.10  12/08/87  5.83  14.0  10.0  5.47  264.9  3200.0  13.6  48.0  37.5  12.0  2.5  8.6  100.73  12/29/87  5.83  14.0  8.0  6.74  1243.2  14746.0  73.0  56.3  37.7  4.6  1.3  10.0  100.80  01/12/88  6.44  13.5  12.0  6.86  1971.2  19132.0  30.8  51.9  33.9  11.5  2.7  41.4  101.57  01/26/88  5.61  14.5  a.o  6.17  300.6  4405.0  36.0  54.7  35.4  7.7  2.2  53.1  102.25  02/09/88  5.60  12.0  8.0  6.47  151.2  2864.0  —  —  —  —  —  —  —  03/01/88  5.73  15.0  12.0  6.59  778.1  9807.0  69.2  0.4  21.3  61.9  16.3  N.D.  101.94  03/29/88  5.54  14.0  10.0  6.37  478.8  6424.0  —  —  —  —  —  —  ~  Hiiitui  6.44  18.0  25.0  6.86  1988.0  21913.0  601.6  58.9  43.1  61.9  16.3  53.1  102.49  Minim  5.54  12.0  8.0  5.41  151.2  2864.0  13.6  0.4  21.3  0.0  0.0  N.D.  100.73  Htm  5.88  15.3  14.7  6.50  1064.2  11832.5  126.6  48.3  36.4  12.5  2.8  24.1  101.70  Std. Dtv.  0.22  1.8  5.7  0.46  737.8  6841.9  154.2  15.3  6.1  16.7  4.4  16.5  0.55  C.V.  3.71  11.6  38.8  7.07  69.3  57.8  121.7  31.7  16.9  133.2  157.4  68.5  0.54  F6 MTSBU 08/05/87 08/25/87 09/08/87 09/22/87 10/06/87 tO/20/87  — — ~ — — —  11/10/87 lUiidu Minim Htu Std. C.V.  D M .  — — — — --  — — — — — — — — — — —  — — — 22.0 19.0 19.0 14.0 22.0 14.0  — — — — —  — — — — — — —  — — — — — —  — —  — — — — —  — — — — —  18.5 2.9 15.5  • — • —•  92.4  35.5  23.0  33.1  8.5  5.0  447.4  —  —  ~  —  6.9  102.05  83.6  40.4  27.3  25.4  6.8  N.D.  101.81  108.2  27.5  20.0  40.8  11.7  N.D.  101.54  N.D.  56.5  36.9  5.4  1.2  27.9  102.15  309.8  56.4  37.1  5.3  1.2  12.0  102.49  120.0  54.1  37.0  7.0  1.8  18.1  101.84  449.2  56.5  37.1  40.8  11.7  27.9  102.49  N.D.  27.5  20.0  5.3  1.2  N.D.  101.54  166.0  45.1  30.2  19.5  5.2  10.0  101.98  144.0  11.3  7.1  14.3  4.1  9.4  0.30  86.8  25.0  23.5  73.4  78.2  94.6  0.29  235 APPENDIX D ========== ========= =========!===============3sss33xss3saas===a:= ========== = = = = = 3 3  DATE d«Wrs)  TEHP  TEHP  LEACH  6AS  pH  NH3-N LEACH (ig/L)  SPEC. CONDUCT. (utho/ci)  NH3-N  I CH4  : co2  I N2 ,  I  02  SAS  =================  6AS  BARO.  FUN  PRESS.  (L/mn)  (ppb)  ==================:========:=========:===============:= = = = = ..======== :========3 = = = = = = =  f  £ 3 3 3 3 3 3 = 3 3 3 = 5 3 3 5 3 3  =3=3=3====  (KPi)  ======= ========== = = = = = 5 5  F8 BATS8UI  11/10/87  5.20  17.0  14.0  5.39  1.0  860.0  103.0  24.5  20.4  44.8  10.3  2.0  101.81  11/24/87  5.59  15.0  12.0  4.70  1.0  291.0  40.0  26.3  21.2  42.3  10.2  30.3  101.17  12/08/87  4.09  12.0  11.0  4.71  1.0  400.0  19.8  20.5  20.0  48.5  10.0  5.1  100.73  12/29/87  4.09  12.0  8.0  5.92  1.7  566.0  32.4  20.4  12.9  52.3  14.4  4.6  100.83  01/12/88  4.02  9.0  7.0  S.62  1.2  377.0  28.2  26.6  19.5  42.4  11.5  6.0  101.51  01/26/88  3.59  10.0  10.0  5.79  1.4  439.0  59.8  23.2  20.5  36.6  9.7  6.0  102.22  02/09/88  3.22  7.0  8.0  5.78  1.6  1023.0  27.2  35.7  18.6  3S.6  10.1  5.0  102.23  03/01/88  3.78  11.0  11.0  5.74  N.D.  620.0  82.4  23.0  13.2  50.1  13.6  1.3  102.28  03/29/88  2.88  9.0  9.0  5.22  N.D.  243.0  70.4  23.6  18.7  47.7  10.0  1.3  101.94  1023.0  103.0  35.7  21.2  52.3  14.4  30.3  102.28  243.0  19.8  20.4  12.9  35.6  9.7  1.3  100.73  NaxiMII  5.59  17.0  14.0  5.92  Hiniuii  2.88  7.0  7.0  4.70  He an  4.05  11.3  10.0  5.43  1.0  535.4  51.4  24.9  18.3  44.5  11.1  6.8  101.64  Std. Dtv.  0.82  2.9  2.1  0.44  0.6  247.0  27.2  4.3  2.9  5.5  1.6  8.5  0.57  20.22  26.0  21.1  8.05  58.9  46.1  52.8  17.4  16.0  12.3  14.8  124.0  0.56  C.V.  1.7 N.D.  236 APPENDIX  D  : = = = 3 S £ S 3 8 ;  DATE  H.L.  TEMP  TEMP  (itttrs)  LEACH  GAS  pH  NH3-N  SPEC.  NM3-N  LEACH  CONDUCT.  6AS  (uiho/ci)  (ppb)  (ifl/1)  I CH4  I C02  I N2  I 02  SAS FUH (L/iin)  BARO. PRESS. (KPi)  F2 STRIDE 08/09/67  7.06  12.0  20.0  6.40  2.1  —  96.4  57.0  15.8  23.2  4.0  4.5  08/27/87  7.07  12.0  20.0  6.26  1.8  1182.0  101.2  55.6  16.1  26.3  2.0  2.0  101.78  09/10/87  7.11  12.0  18.0  6.33  4.1  1149.0  192.6  59.9  17.1  22.0  0.9  0.8  101.24  09/24/87  7.16  12.0  16.0  6.26  3.2  972.0  156.8  48.6  16.3  30.1  3.1  4.0  101.24  10/07/87  7.21  "12.0  21.0  6.18  3.6  1167.0  209.4  56.3  27.9  14.7  1.2  2.4  101.91  10/22/87  7.32  12.0  16.0  6.18  1.1  1127.0  72.8  S8.5  16.9  22.2  2.3  3.0  102.88  11/12/87  7.42  12.0  15.0  6.38  1.9  1107.0  98.8  55.6  15.9  25.3  3.3  6.0  101.81  11/26/87  7.01  11.5  13.0  5.67  0.7  952.0  74.6  59.6  15.7  22.9  1.9  12.0  102.21  12/15/87  6.78  11.5  12.0  5.47  1.0  786.0  42.6  32.0  15.4  .48.9  3.6  5.0  100.90  12/31/87  6.77  11.5  11.0  6.22  2.4  1107.0  77.4  42.0  13.8  38.7  5.5  N.D.  101.78  01/14/88  6.76  11.5  8.0  6.20  2.6  1029.0  46.0  58.8  19.8  21.4  0.0  37.8  100.63  01/28/88  6.79  12.S  11.0  6.26  4.1  1270.0  101.6  22.8  20.2  50.3  6.8  5.4  101.44  02/11/88  7.00  12.0  12.0  6.32  4.6  1329.0  117.2  41.0  16.0  38.4  4.6  6.0  102.49  03/03/88  7.18  12.5  10.0  6.24  5.0  1245.0  86.0  8.8  3.7  69.4  18.1  N.D.  102.01  03/31/88  6.66  12.0  12.0  6.28  3.2  1341.0  91.0  29.9  18.1  52.0  0.0  1.9  102.53  Huiiui Niniiui  7.42 6.66  12.5 11.5  . 21.0 8.0  6.40  5.0 0.7  1341.0  209.4  59.9  27.9  69.4  18.1  37.8  102.88  5.47  786.0  42.6  8.8  3.7  14.7  0.0  N.D.  100.63  Ntan  7.02  11.9  14.3  6.18  2.8  1125.9  104.4  45.8  16.6  33.7  4.0  6.1  101.78  Std. Dtv.  0.22  0.3  3.9  0.25  1.3  148.2  46.4  15.3  4.7  14.9  4.3  9.0  0.62  C.V.  3.11  2.6  27.2  4.03  47.2  13.2  44.4  33.5  28.4  44.1  107.7  148.3  0.61  F3 STRIDE 8.54 8.57  12.0  18.0  6.30  6.3  —•  224.0  56.6  17.0  25.4  1.0  1.9  08/27/87  12.0  18.0  6.18  2.9  999.0  210.6  57.2  16.3  25.0  1.4  2.0  101.84  09/10/87  8.59  12.0  20.0  6.12  7.3  999.0  242.6  60.9  18.1  21.0  0.0  1.5  101.17  09/24/87  8.59  12.0  17.0  6.24  5.6  829.0  162.6  32.0  10.4  46.8  10.8  N.D.  10/07/87  8.60  12.0  17.0  6.13  6.4  1030.0  70.6  56.7  25.9  15.9  1.5  4.0  101.84  10/22/87  8.61  11.5  16.0  6.21  5.2  995.0  128.8  60.6  16.0  22.1  1.3  4.0  102.08  11/12/87  8.63  12.0  15.0  6.40  5.0  815.0  133.4  54.7  14.6  27.2  3.5  8.6  101.78  11/26/87  8.06  tl.S  12.0  6.21  6.3  1982.0  110.4  58.0  15.4  24.2  2.4  10.0  102.23  12/15/87  7.30  12.0  11.0  5.84  9.1  1091.0  59.6  4B.7  17.7  30.0  3.5  3.3  100.80  12/31/87  7.15  12.5  9.0  6.01  6.9  841.0  75.8  52.3  14.6  29.2  3.9  N.D.  01/14/88  7.14  12.0  10.0  5.92  2.3  497.0  56.4  48.6  13.5  32.7  5.2  1.9  100.33  01/28/88  7.10  12.5  13.0  6.14  7.1  977.0  215.4  25.4  7.9  54.3  12.4  1.3  101.47  08/09/87  101.24  101.78  02/22/88  6.82  12.5  12.0  6.17  5.6  835.0  62.2  34.5  9.6  46.2  9.7  03/03/88  7.53  12.0  12.0  6.32  5.2  600.0  53.8  17.1  4.9  61.8  16.2  N.D.  102.03  03/31/88  7.28  13.0  11.0  6.34  6.9  1018.0  77.8  24.6  12.1  57.5  5.8  2.0  102.59  Naiiiui  8.63  13.0  20.0  6.40  9.1  1982.0  242.6  60.9  25.9  61.8  16.2  10.0  102.59  Niniiui  6.82  11.5  9.0  5.84  2.3  497.0  53.8  17.1  4.9  15.9  0.0  N.D.  100.53  Htan  7.90  12.1  14.1  6.17  5.9  964.9  125.8  45.9  14.3  34.6  3.2  2.9  101.71  Std. Dtv.  0.69  0.4  3.3  0.15  1.6  325.8  66.6  14.4  4.8  14.2  4.7  2.8  0.58  C.V.  8.76  3.1  23.4  2.41  27.8  33.8  53.0  31.4  33.8  41.0  89.3  96.5  0.57  3.3  102.45  237 APPENDIX D ==================:=======:=======333333rss=========:s33«aa»ama: £ 3 3 3 3 3 3 3 : 3 3 X 3 3 3 3 3 3  DATE  H.L.  TEHP  TEHP  (Httrs)  LEACH  6AS  pH  KH3-H  SPEC.  RH3-H  LEACH  CONDUCT.  6AS  (•9/L)  (uiks/ci)  (ppb)  = = = = = = ========:=========:=========================  Z CH4  133=333333  I C02  I N2  ======== ========== 3 3 3 3 3 3 2 :  1 02  . GAS  BARO.  aou  PRESS. (CPi)  (L/iin)  ======== ======= ==================================:  F6 STRIDE 10/22/87  17.10  6.11  22.4  2098.0  113.6  22.9  16.3  48.7  12.2  2.4  16.28  13.5 14.0  20.0  11/12/87 11/26/87  15.0  6.08  15.3  934.0  245.4  7.6  3.5  70.1  18.8  3.0  101.74  16.10  12.5  10.0  19.0  1001.0  202.2  0.0  77.9  21.0  1.5  102.25  102.15  12/13/87  13.52  12.5  7.0  5.35 5.47  14.6  1066.0  82.2  0.0  1.1 0.4  78.2  21.4  1.3  100.77  12/31/87 01/14/88  16.32 16.43  10.0  8.0  5.89  15.0  753.0  60.2  0.0  0.0  78.3  21.7  1.1  101.81  10.0  8.0  5.71  14.8  746.0  35.6  0.0  11.0  78.6  20.4  4.6  100.50  01/28/88  11.5 11.0  10.0  S.88  15.4  839.0  257.4  0.0  21.1  2.0  101.54  5.78  20.2  983.0  —  21.1  8.0  —  1.2  02/11/88  15.75 15.39  03/03/88  15.68  11.5  10.0  5.85  15.7  829.0  63.2  0.0  0.0  78.6  21.4  N.D.  102.15  —  —  —  —  fori M »  17.10  14.0  20.0  6.11  22.4  2098.0  257.4  22.9  16.3  78.6  21.7  4.6  Ninitui  15.39  10.0  7.0  5.35  14.6  746.0  35.6  0.0  0.0  21.1  12.2  N.D.  102.25 100.50  Hun  16.06  11.8  10.7  1027.7  132.8  3.8  101.61  2.7 15.9  392.8  83.2 31.3  7.6  19.7  19.8 3.0  2.0  4.0  4.2 5.7  66.4  1.3 11.3  5.79 0.24 4.11  16.9  0.51 3.16  200.2  136.5  29.6  15.1  1.3 65.3  0.61 0.61  Std. D«v. C.V.  37.2  -  38.2  F7 sniDE  08/27/87  18.05  14.0  15.4  1089.0  239.8  53.9  24.4  20.3  1.4  2.4  101.81  18.10  15.0  18.0 22.0  6.25  09/10/87  6.28  18.8  244.4  56.7  18.5  2.1  3.0  18.16  14.0  17.0  6.16  14.0  120.8  —  22.6  09/24/87  1055.0 894.0  —  101.24 101.27  10/07/87  18.19 18.27  12.0 14.0  20.0  6.17  13.4  970.0  97.4  62.2  23.1  13.4  1.3  8.6  101.78  17.0  11.6  978.0  179.0  60.9  23.1  14.5  102.11  13.0  17.0  12.3  845.0  193.8  52.5  25.8  20.2  I.S 1.6  14.9  18.25  6.16 6.37  24.6  101.74  18.27  13.0  15.0  5.40  10.0  644.0  228.2  44.8  23.2  30.0  2.0  34.0  102.25  12/13/87  17.54  15.0  9.0  6.18  14.0  1362.0  49.2  60.5  23.3  15.6  0.5  6.0  100.73  12/31/87  17.44  14.0  6.17  01/14/88  17.45  15.0  11.0 12.0  14.0 13.4  1245.0 1167.0  42.8 43.6  43.2 51.4  21.2 22.5  31.2 26.0  4.5 0.0  N.O. 3.7  101.78 100.50  01/28/88  17.08  14.0  12.0  6.31  9.5  1081.0  161.4  49.4  7.7  34.0  8.9  1.6  101.57  02/11/88  17.96  14.0  12.0  6.28  12.9  1301.0  299.4  69.7  10.1  16.3  03/03/88  18.33 18.11  14.5  12.0  6.31  35.3  1282.0  69.2  52.5  18.9  22.9  3.9 5.7  7.5 N.D.  102.45 102.11  14.5  12.0  6.27  20.7  1183.0  39.6  24.9  15.8  49.3  10.0  2.9  102.59  10/22/87 11/12/87 11/26/87  03/31/88  6.22  —  —  —  Nai i m i Ninitui  18.19  15.0  22.0  6.28  18.8  1089.0  299.4  62.2  24.4  20.3  2.1  8.6  101.81  17.08  12.0  9.0  5.40  9.5  644.0  39.6  24.9  7.7  13.4  0.0  N.D.  100.50  HMD  17.94  14.0  14.7  6.19  15.4  1078.3  142.4  52.5  20.1  23.0  3.3  Std. Dtv.  8.4  101.71  0.38  0.8  3.7  0.23  192.3  85.8  10.6  5.4  9.7  3.0  9.9  0.59  C.V.  2.12  5.9  25.1  3.72  6.2 40.5  17.8  59.8  20.2  26.7  40.4  90.8  117.7  0.58  238 APPENDIX D BATE  y.L.  TEW  (itt*rs)  LEACH  TEKP  pH  GAS  KH3-D  SPEC.  LEACH  CONDUCT.  (ijll)  (uiho/ci)  NH3-N  I CH4  I CM  I K2  Z 02  GAS  GAS am  (ppb)  BARO. PRESS.  (L/tin)  (KPa)  f8 STRIK  08/27/87 09/10/B7 09/24/87 10/07/87 10/22/87 11/12/B7 11/26/87 12/15/87 12/31/87 01/14/88 01/28/88 02/11/88 03/03/88 03/31/88  — — — — — — — 13.71 13.72  K i l l Mil Hinitui  Una Std.D*Y. C.V.  13.69 13.94 14.00 14.05  — ~ — — — — 12.0 12.0 12.0 12.0 10.0 12.0 10.0  20.0 26.0 17.0 19.0 16.0 15.0 14.0 9.0 9.0 8.0 11.0 9.0 11.0 11.0  — — — — — — — 5.56 5.94 5.97 5.86 5.65 5.78 5.98  14.05 13.69 13.83 0.15 1.08  12.0 10.0 11.4 0.9 7.9  26.0 0.0 10.8 7.3 67.4  5.98 5.56 5.82 0.15 2.62  13.63  -  2.5 5.3 6.7 2.8 2.5 2.0 2.2  — — 853.0 685.0 740.0 763.0 610.0 557.0 667.0  184.6 354.8 219.0 159.0 67.4 176.2 122.0 30.0 75.8 50.8 188.4 71.2 69.8 71.4  52.7 57.6 62.0 50.5 24.1 30.0 49.7 44.1 65.9 66.4 54.3 60.7 — 30.6  24.6 24.7 25.0 24.1 11.5 14.4 23.2 37.1 20.8 26.3 20.9 14.1 — 14.7  20.8 16.2 12.1 22.8 52.0 47.3 24.4 15.6 11.3 7.3 19.9 20.3 — 46.2  1.9 1.5 0.9 2.5 12.3 8.3 2.7 3.1 1.7 0.0 4.9 4.8 — 8.5  101.91 101.24. 101.24 101.81 102.11 101.78 102.25 100.66 101.78 100.50 101.64 102.45 N.D. 102.05 3.7 102.59  6.7 2.0 3.4 1.7 49.1  858.0 557.0 697.1 92.8 13.3  354.8 30.0 131.4 85.2 64.8  66.4 24.1 49.9 13.4 26.9  37.1 11.5 21.6 6.6 30.6  52.0 7.3 24.4 14.1 37.8  12.3 0.0 4.1 3.5 85.4  15.4 102.60 100.50 5.8 101.70 4.7 0.60 81.0 59.77  --  — — — — — --  —  — --  2.6 2.3 6.0 1.5 6.0 7.5 15.0 8.8 N.O. 15.4 4.3 8.6  N.D.  10B STRIDE 08/09/87  8.44  14.0  20.0  6.20  1.0  —  254.8  13.9  34.2  50.7  1.2  2.0  08/27/87  8.63  14.0  20.0  6.04  1.0  1377.0  278.8  17.7  29.7  49.9  2.6  N.D.  101.68  09/10/87  8.68  13.0  25.0  6.00  2.7  1465.0  283.0  19.3  29.8  47.7  3.2  1.0  101.10  09/24/87  8.79  13.0  19.0  6.14  1.0  1152.0  98.0  15.8  28.9  53.3  1.9  2.4  101.27  10/07/87  8.B4  13.0  24.0  5.98  1.8  1463.0  112.0  22.4  31.0  43.9  2.7  2.0  101.74  lUiiiut  8.84  14.0  25.0  6.20  2.7  1463.0  70.8  22.4  34.2  53.3  3.2  2.4  101.74  Niniiui  8.44  13.0  19.0  5.98  1.0  1132.0  24.5  13.9  28.9  43.9  1.2  N.D.  101.10  Htm  8.68  13.4  21.6  6.07  1.3  1364.3  51.4  17.8  30.7  49.1  2.3  1.5  101.45  S t d . D*v.  0.14  0.3  2.4  0.08  0.7  127.6  20.7  2.9  1.9  3.2  0.7  0.9  0.27  C.V.  1.61  3.7  11.2  1.39  45.0  9.4  40.2  16.4  6.1  6.4  30.0  S9.0  0.27  239 APPENDIX BATE  U.L. fitters)  TEHP  TEHP  LEACH  6AS  pH  NH3-H  SPEC.  LEACH comer. <»g/L) (utho/»)  D  KH3-I  I CH4  I C02  I X2  1 02  SAS .  GAS  BARO.  FLON  PRESS.  (L/tin) (KPi)  (ppb)  B8 RICHHQJO 08/14/87  3.36  19.0  23.0  6.36  100.8  -  33.0  55.0  41.9  2.8  0.3  6.0  09/01/87  3.47  20.0  29.0  6.40  122.1  3301.0  253.4  56.3  43.7  0.0  0.0  21.3 15.1  — 102.25 101.84  09/15/87  3.57  19.0  21.0  6.62  152.3  3B6S.0  75.4  53.8  42.0  3.4  0.9  09/29/87  3.51  20.0  24.0  6.51  153.4  3930.0  231.8  54.9  42.5  2.0  0.6  9.5  102.22  10/13/87  3.54  19.0  23.0  6.52  182.6  4798.0  102.8  53.5  42.1  3.5  0.9  10.9  101.91  11/03/87  3.55  20.0  18.0  6.83  183.7  4412.0  129.0  46.4  37.9  12.3  3.4  6.0  11/17/87  3.48  18.5  17.0  6.32  67.2  263S.0  52.7  40.6  5.2  1.4  5.0  102.IS 101.54  12/01/87  3.33  16.S  14.0  5.73  43.7  2100.0  N.D. N.D.  47.1  38.6  11.0  3.2  18.1  100.86  12/24/87  3.50  14.5  12.0  5.97  39.2  1712.0  29.2  43.1  34.7  17.3  4.9  58.6  102.05  01/06/88  3.26  15.0  9.0  6.08  46.1  1528.0  30.2  46.5  37.0  12.9  3.7  45.9  102.32  01/19/88  3.01  14.0  7.0  6.07  37.8  1370.0  36.4  50.4  39.3  8.2  2.1  27.4  101.98  02/02/88  2.88  10.5  7.0  6.16  58.2  1755.0  24.2  40.3  33.5  20.5  S.8  25.7  102.32  02/24/88  3.11  13.0  15.0  5.70  19.0  600.0  61.B  56.6  43.4  Tr  0.0  38.6  102.59  03/15/88  3.28  14.0  16.0  5.84  18.5  929.0  33S.0  48.4  37.2  11.2  3.2  73.9  102.79  04/05/88  2.82  11.5  10.0  5.89  15.4  1105.0  19.6  50.7  40.6  8.8  0.0  56.6  102.11  HlIIKU  3.57  20.0  29.0  6.83  183.7  4798.0  335.0  56.6  43.7  20.5  5.8  73.9  102.79  Hiniatn  2.82  10.5  - 7.0  5.70  15.4  600.0  N.D.  40.3  33.5  0.0  0.0  5.0  100.86  Attn  3.31  16.3  16.3  6.20  82.7  2431.1  90.8  50.4  39.7  7.9  2.0  27.9  102.07  Std. D«v.  0.24  3.2  6.5  0.33  59.0  1336.8  99.4  4.8  3.0  6.0  1.8  21.2  0.45  C.V.  7.27  19.5  39.6  5.32  71.4  55.0  109.6  9.5  7.6  75.9  90.3  76.0  0.44  D9 RICHKQND 08/14/B7  5.09  27.0  27.0  6.73  442.4  —  23.8  52.4  42.2  3.9  1.5  94.4  —  09/01/87  4.83  27.0  32.0  6.80  378.0  8347.0  280.2  52.4  41.8  4.5  1.2  106.2  102.28  09/15/87  4.40  26.0  25.0  6.72  411.6  8679.0  79.0  52. B  42.0  4.1  1.1  89.4  101.88  09/29/87  4.85  27.0  29.0  6.83  397.6  8135.0  118.6  51.9  41.2  5.5  1.5  94.4  102.28  10/13/87  4.93  26.0  31.0  7.57  406.0  7785.0  35.8  56.1  43.9  0.0  0.0  49.2  101.94  11/03/87  4.85  28.0  26.0  7.10  394.8  6566.0  72.6  44.5  36.9  14.6  4.0  73.9  102.11  11/17/87  4.99  28.0  27.0  6.86  318.2  5949.0  170.6  51.0  41.0  6.3  1.7  121.4  101.57  12/01/87  5.01  27.5  20.0  6.33  137.2  3229.0  X.O.  51.5  42.0  5.0  1.5  183.7  100.86  12/24/88  4.22  26.0  22.0  5.48  41.4  1251.0  39.8  48.0  37.2  11.6  3.3  141.6  102.05  01/06/88  4.31  26.0  22.0  6.72  327.6  5893.0  11.8  44.7  34.5  16.1  4.7  144.0  102.28  01/19/88  3.92  23.0  16.0  6.21  123.2  2673.0  44.6  52.5  39.0  6.7  1.7  94.4  102.08  02/02/88  3.92  24.0  17.0  6.81  425.6  7493.0  34.4  48.7  36.6  11.7  3.0  149.0  102.32  02/24/88  3.52  24.5  19.0  6.84  459.2  7980.0  N.O.  57.3  42.7  Tr  0.0  147.8  102.59  03/15/88  3.99  25.0  21.0  6.98  596.4  10493.0  205.8  49.1  35.8  11.9  3.1  174.3  102.92  04/05/88  3.19  20.0  16.0  6.64  232.4  5361.0  N.D.  44.8'  34.7  16.2  4.3  163.4  102.11  Hiiiiua  5.09  28.0  32.0  7.57  S96.4  10493.0  43.9  16.2  4.7  183.7  102.92  3.19  20.0  16.0  5.48  41.4  1251.0  280.2 I.B.  57.3  Hiaisoa  44.5  34.5  0.0  0.0  49.2  100.86  Htin  4.40  25.7  23.3  6.71  339.4  6416.7  74.4  50.5  39.4  7.9  2.2  121.8  102.09  Std. Dtv.  0.58  2.1  5.1  0.44  142.5  2483.9  81.4  3.7  3.1  5.2  1.4  38.1  0.46  13.08  8.0  21.8  6.61  42.0  38.7  109.2  7.4  7.8  66.4  65.5  31.2  0.45  C.V.  240 APPENDIX D DATE  H.l.  TEMP  TEMP  (itttrs)  LEACH  6AS  PH  ==================zzzzzzzzzz ========= 5 =  =  =  =  =  =  =  NH3-N  SPEC.  NH3-N  LEACH  CONDUCT.  6AS  (•g/L)  (uiho/ci)  (ppb)  ;  I CH4  I C02  I N2  I 02  ..........  ....... ..  SAS  BARO.  flOH  PRESS.  (L/iin)  (KPi)  s  C6 RICHMOND 08/14/87  2.14  23.0  24.0  6.39  33.6  —  N.D.  54.2  42.5  2.6  0.7  130.7  03/01/87  2.07  24.0  26.0  6.42  23.5  2732.0  141.0  53.0  42.6  3.5  0.9  194.2  102.28  09/15/87  2.13  23.0  23.0  6.65  24.6  2826.0  77.6  55.4  44.6  0.0  0.0  44.7  101.88  09/29/87  2.22  23.0  26.0  6.23  8.4  2695.0  266.2  54.1  42.6  2.6  0.7  94.4  102.3B  10/13/87  2.50  25.0  25.0  6.01  14.0  2982.0  119.2  55.8  44.2  0.0  0.0  58.6  101.84  11/03/87  2.63  24.0  24.0  6.43  33.9  2740.0  74.8  50.3  40.4  7.3  2.0  85.0  102.08  11/17/87  2.37  24.0  23.0  5.78  5.0  1633.0  73.4  53.0  41.2  4.5  1.2  169.9  101.61  12/01/87  2.04  18.5  25.0  5.90  8.4  1927.0  N.D.  50.5  39.6  7.6  2.3  51.5  100.83  12/24/87  2.23  14.5  9.0  6.28  9.0  1772.0  14.4  49.8  38.7  8.9  2.7  20.0  102.05  01/06/88  3.10  14.0  12.0  6.11  8.1  1544.0  11.4  47.7  35.9  12.9  3.5  18.5  102.25  01/13/88  2.26  16.0  12.0  6.24  9.5  1658.0  62.6  44.2  34.7  17.1  4.0  25.7  102.05  02/02/88  2.31  15.0  6.17  16.8  2177.0  14.8  44.2  34.5 '  16.9  4.4  236.0  102.29  02/24/88  2.48  15.0  12.0 17.0  6.24  16.8  1850.0  40.6  57.2  42.8  Tr  0.0  195.4  102.72  03/1S/88  2.46  21.0  17.0  6.08  18.5  2268.0  119.0  57.2  42.8  Tr  0.0  288.0  102.96  04/05/88  2.63  16.0  12.0  5.70  9.8  2287.0  14.2  53.6  39.7  5.4  1.3  278.6  102.01  Hjiiiui  3.10  25.0  26.0  6.65  33.9  2982.0  266.2  57.2  44.6  17.1  4.4  288.0  102.96  Minimi  2.04  14.0  9.0  5.70  5.0  1544.0  N.O.  44.2  34.5  0.0  0.0  18.5  100.83  Htan  2.38  19.7  19.1  6.18  16.0  2220.B  68.6  52.0  40.5  6.0  1.6  126.1  102.09  Std. Dtv. C.V.  0.28  4.1  6.1  0.25  8.9  482.2  69.2  4.0  3.2  5.6  1.5  91.4  0.48  11.53  20.7  31.8  4.00  55.9  21.7  100.8  7.B  7.8  94.8  92.0  72.5  0.47  67 RICHMOND 08/14/87  3.96  21.0  23.0  6.58  44.8  —  156.6  53.2  40.2  6.0  1.6  10.5  —  09/01/87  4.05  22.0  29.0  6.48  73.9  3426.0  271.2  52.6  41.9  4.3  1.1  21.3  102.32  09/15/87  4.27  21.0  27.0  6.41  128.8  3810.0  80.4  56.6  43.4  0.0  0.0  4.0  101.88  09/29/87  4.27  22.0  25.0  6.53  123.2  3756.0  173.2  55.6  42.0  1.9  0.5  12.0  102.49  10/13/87  4.28  23.0  25.0  6.47  123.2  4023.0  124.8  52.6  40.7  5.6  1.5  8.6  101.88  11/03/87  4.41  22.0  23.0  6.64  166.3  4068.0  74.4  49.6  38.5  9.3  2.6  12.0  102.08  11/17/87  4.43  23.0  17.0  6.52  168.0  4166.0  18.8  47.4  38.0  11.5  3.1  25.7  101.57  12/01/87  4.20  19.5  14.0  6.12  52.6  2514.0  N.D.  49.4  38.2  9.6  2.8  12.0  100.86  12/24/87  4.15  15.0  8.0  6.13  14.6  1397.0  10.6  46.7  35.S  14.1  3.7  2.2  102.05  01/06/88  4.12  21.0  14.0  6.13  29.1  1460.0  25.2  46.0  3B.2  12.4  3.4  12.0  102.22  01/19/88  4.10  20.0  14.0  6.02  28.0  1313.0  20.0  48.9  38.2  18.8  4.3  4.3  102.18  02/02/88  4.10  18.0  12.0  6.11  25.8  1835.0  N.D.  45.1  35.0  16.0  4.0  22.0  102.32  02/24/88  3.93  20.0  12.0  6.08  21.3  1152.0  —  45.2  34.5  16.3  4.0  8.6  102.65  03/15/68  3.55  20.0  16.0  6.03  26.9  1621.0  186.4  51.7  38.6  7.7  1.9  27.0  102.96  04/05/88  3.64  13.5  11.0  5.92  3.4  657.0  N.D.  --  —  —  —  2.4  101.98  Raiim  4.43  23.0  29.0  6.64  168.0  4166.0  271.2  56.6  43.4  18.8  4.3  27.0  102.96  Minim  3.S5  13.5  8.0  5.92  3.4  657.0  N.D.  45.1  34.5  0.0  0.0  2.2  100.86  Mtu  4.10  20.1  18.0  6.28  68.7  2514.1  76.2  50.0  38.8  9.5  2.5  12.3  102.10  Std. Dtv.  0.24  2.6  6.4  0.24  55.5  1248.9  83.6  3.6  2.6  5.4  1.3  7.9  0.48  CV.  5.89  13.1  35.8  3.75  80.B  49.7  109.9  7.2  6.6  57.1  54.0  64.1  0.47  241 APPENDIX SATE  K.L. (•tttrs)  TEW LEACH  TEW  pH  KK3-H  SPEC.  LEACH CONDUCT.  GAS  (•g/L)  (uiho/cil  D  NK3-K  GAS  BARO.  GAS  I CH4  Z C02  Z 02  Z 02  FLOW  PRESS.  (ppb)  (L/kin)  (KPa)  O.SS RICHMOND 47.2  53. B  42.1  4.0  0.0  15.0  -  156.8  S3.6  40.3  4.8  1.3  35.4  102.15  N.D.  57.2  42.8  0.0  0.0  85.0  102.11  85.2  52.4  39.6  6.3  1.7  20.0  102.32  101.8  54.2  41.7  4.0  0.0  12.0  102.00  4046.0  125.6  52.2  40.1  6.1  1.7  12.0  102.08  4219.0  19.4  50.7  39.2  7.9  2.2  35.4  101.57  110.9  3915.0  N.O.  S3.8  41.3  3.8  1.2  15.0  100.89  81.8  3426.0  14.6  S4.4  39.6  4.6  .1.4  15.0  102.05  6.64  119.8  3776.0  36.6  42.4  41.1  13.1  3.3  8.6  102.22  14.0  6.55  113.1  3735.0  77.4  41.2  3B.9  15.9  4.0  10.0  102.24  17.0  6.40  101.9  3965.0  29.2  37.7 ~  14.9  4.7  15.0  102.29  08/14/87  3.41  23.0  25.0  6.71  117.6  09/01/87  3.58  24.0  29.0  6.74  113.1  4243.0  ~  09/15/87  3.75  24.0  26.0  6.50  134.4  4397.0  09/29/87  3.82  25.0  29.0  6.54  121.0  4295.0  10/13/87  3.86  25.0  28.0  6.56  122.1  4579.0  11/03/87  4.08  25.0  22.0  6.72  114.2  11/17/87  4.11  25.0  18.0  6.61  91.8  12/01/87  3.60  20.0  12/24/87  3.01  21.0  16.0 12.0  6.62 6.68  01/06/88  3.30  22.5  16.0  01/19/88  3.26  21.0  02/02/88  3.12  19.0  02/24/B8  3.00  21.0  19.0  6.62  87.4  3067.0  —  43.7 ~  —  —  7.5  102.72  03/15/88  2.97  19.0  15.0  98.6  3496.0  74.2  56.8  41.1  2.1  0.0  47.2  102.92  04/05/88  2.99  15.5  12.0  6.38 6.14  26.3  1359.0  93.8  53.9  39.6  5.2  1.3  5.0  102.01  Haiitui  4.11  25.0  29.0  6.74  134.4  4579.0  156.8  57.2  42.8  15.9  4.7  85.0  102.92  Niniiui  2.97  15.5  12.0  6.14  26,3  1359.0  N.D.  41.2  37.7  0.0  0.0  5.0  100.89  Htan  3.46  22.0  19.9  6.56  103.6  3751.3  57.4  51.5  40.4  6.6  1.6  22.5  102.11  Std. Ot«.  0.39  2.7  5.9  0.15  24.9  773.7  47.4  13.7  10.2  4.7  1.5  20.3  0.46  11.26  12.4  29.8  2.33  24.0  20.6  82.6  28.5  26.9  76.5  95.7  90.1  0.45  C.V.  B.53 RICHMOND 08/14/87  2.52  24.0  27.0  6.68  145.6  —  22.2  44.6  46.4  7.2  1.8  23.0  09/01/87  2.26  24.0  33.0  6.58  121.0  3432.0  203.8  49.5  39.8  8.4  2.3  18.9  102.11 102.11  ~  09/15/87  2.43  25.0  27.0  6.56  145.6  3800.0  N.D.  50.9  40.8  6.6  1.8  13.6  09/29/87  2.23  25.0  28.0  6.49  112.0  3362.0  N.D.  55.0  42.5  1.9  0.5  12.1  102.32  10/13/87  2.40  24.0  27.0  6.30  98.6  3400.0  171.2  54.1  43.3  2.7  0.0  8.8  101.84  11/03/87  2.22  26.0  23.0  6.48  73.9  2620.0  29.6  52.8  41.2  4.7  1.3  7.0  102.05  U/17/B7  2.33  25.0  20.0  6.45  108.6  2973.0  52.4  52.0  40.4  6.0  1.6  7.9  101.61  12/01/87  1.79  23.0  15.0  6.34  57.1  2410.0  N.D.  48.4  38.0  10.5  3.1  8.6  100.89  12/24/87  1.71  18.0  8.0  6.44  34.7  1972.0  20.4  21.1  14.B  50.2  13.9  1.7  102.05  01/06/88  2.70  18.0  10.0  6.38  43.7  1779.0  38.2  14.7  11.3  59.1  14.9  N.D.  102.18  01/19/88  2.68  14.0  14.0  6.33  48.2  1586.0  31.4  12.6  9.9  64.5  13.0  2.0  102.35  02/02/88  1.79  16.0  10.0  6.22  22.4  1394.0  17.0  Tr  2.2  19.9  1.5  102.25  02/24/88  2.06  17.5  14.0  6.46  7.8  654.0  —  77.9  0.0  0.0  78.5  21.5  N.D.  102.75  03/15/88  1.56  17.0  17.0  6.22  6.2  845.0  58.6  0.0  6.4  73.5  20.0  N.D.  102.92  04/05/8B  1.67  14.5  8.0  6.20  3.6  821.0  ~  —  —  —  —  --  Haiinu  2.70  26.0  33.0  6.68  145.6  3800.0  203.8  55.0  46.4  78.5  21.5  23.0  102.92  NiniNi  1.56  14.0  8.0  6.20  3.6  654.0  N.D.  0.0  0.0  1.9  0.0  N.D.  100.89  Htan  2.16  20.7  18.7  6.41  68.6  2217.7  46.0  32.6  26.9  32.3  8.3  7.5  102.11  Std. Dtv.  0.36  4.2  8.0  0.14  48.5  1037.4  60.8  22.0  17.3  31.1  8.1  7.1  0.48  16.74  20.3  42.7  2.14  70.7  46.8  132.1  67.7  64.3  96.5  97.8  94.2  0.47  C.V.  ~  242 APPENDIX  D  =£S=SS33£=SSS  DATE  y.L.  TEHP  deters)  LEACH  TEHP  pH  GAS  I CH4  MK3-N  SPEC.  NH3-N  GAS  BARO.  LEACH  CONDUCT.  GAS  FLOH  PRESS.  (IUBO/CI)  (ppb)  (Uiin)  (KPi)  (•g/L)  X C02  I N2  I 02  Pt PSEH1ER 08/20/87  13.48  22.0  23.0  6.72  213.9  6683.0  96.4  25.0  17.1  45.3  12.6  0.6  101.64  W/03/87  13.47  23.0  20.0  6.80  254.8  6512.0  81.6  28.9  21.5  39.4  10.2  0.6  102.43  09/17/B7  13.48  24.0  20.0  6.47  285.6  6409.0  184.6  13.6  11.8  58.4  16.2  2.4  102.25  10/01/87  14.13  22.0  21.0  6.54  238.6  6264.0  111.4  33.1  24.9  33.5  8.6  3.0  101.78  10/15/87  14.28  22.0  18.0  6.57  233.3  6460.0  75.4  27.0  20.0  41.6  11.4  3.0  102.42  11/05/87  14.07  22.5  17.0  6.61  218.4  6537.0  141.6  30.3  22.3  37.1  10.2  2.4  101.78  11/19/87  13.82  22.0  15.0  6.48  212.B  6069.0  84.2  24.4  17.7  45.3  12.8  2.4  101.98  12/03/87  14.33  21.0  14.0  6.63  208.3  5470.0  17.8  7.2  6.4  67.9  18.8  1.3  100.83  12/22/87  13.40  21.5  10.0  6.72  235.2  6601.0  42.8  20.6  15.1  50.5  13.8  2.1  101.71  01/05/88  13.44  231.5  5622.0  63.8  12.1  10.S  60.5  16.9  1.3  101.84  13.70  12.0 11.0  6.81  01/20/88  21.0 22.5  6.69  246.4  5890.0  45.2  Tr  9.9  70.7  19.4  0.9  102.25  02/04/88  13.34  22.0  15.0  6.67  254.2  S915.0  58.8  4.7  3.9  72.5 .  18.6  3.3  103.00 102.55  02/23/88  13.32  22.5  12.0  6.56  246.4  5188.0  134.4  10.6  7.6  64.1  17.7  2.0  03/17/88  13.12  23.0  17.0  6.60  255.7  6063.0  82.8  18.0  13.3  54.2  14.4  1.5  102.86  04/07/88  13.34  22.0  12.0  6.54  175.5  5125.0  45.4  0.0  0.9  77.7  21.4  1.2  102.59  rUiinii  14.33  24.0  23.0  6.81  285.6  6683.0  184.6  33.1  24.9  77.7  21.4  3.3  103.00  Hiniiui  13.12  21.0  ~ 10.0  6.47  175.5  5125.0  17.8  0.0  0.9  33.5  8.6  0.6  100.83  He air  13.65  22.2  15.8  6.63  234.0  6053.9  84.4  17.0  13.5  54.6  14.9  1.9  102.13  0.37  0.7  3.9  0.10  25.2  494.0  42.4  10.7  6.9  13.6  3.8  0.9  0.54  2.73  3.4  24.6  1.54  10.7  8.2  50.3  62.7  50.8  24.9  25.3  45.7  0.53  Std. Dev. C.V.  P2 PREMIER 08/20/87  11.04  23.0  20.0  6.74  221.8  6411.0  145.0  61.7  38.3  0.0  0.0  1.4  102.01  09/03/87  11.07  24.0  21.0  6.79  249.2  6350.0  86.0  S8.8  36.9  3.4  0.9  1.4  102.35  09/17/87  11.19  25.0  23.0  6.54  280.0  6193.0  174.6  50.5  32.1  13.6  3.8  3.0  102.IB  10/01/87  11.33  24.0  22.0  6.68  236.3  6180.0  N.D.  58.8  37.7  2.8  0.8  6.0  101.98  10/15/87  12.55  24.0  19.0  6.61  237.1  6467.0  112.4  52.4  34.2  10.4  2.9  5.0  102.52  11/05/87  11.94  24.0  21.0  6.63  234.1  6413.0  191.0  52.7  35.1  9.5  2.6  8.6  101.81  11/19/87  11.46  23.5  18.0  6.47  227.4  5633.0  48.4  35.5  23.5  32.1  8.9  3.3  101.98  12/03/87  10.68  21.0  13.0  6.60  173.6  4544.0  74.0  3.9  2.6  73.1  20.3  2.1  100.83  12/22/87  10.79  20.5  10.0  6.72  212.8  6601.0  44.2  20.7  13.8  51.5  14.0  1.5  101.71  Ot/OS/88  10.04  23.0  15.0  6.76  201.6  4860.0  143.6  7.5  S.l  68.6  18.9  1.7  101.88  01/20/88  10.37  22.0  15.0  6.67  213.9  4873.0  32.2  Tr  4.2  75.2  20.6  1.3  102.15  02/04/88  10.28  22.0  12.0  6.75  231.8  5459.0  46.8  7.4  7.0  69.2  16.4  2.7  103.03  02/23/88  9.78  21.5  14.0  6.67  182.9  4009.0  43.0  Tr  13.5  68.1  18.5  3.3  102.59  03/17/88  9.79  22.0  15.0  6.66  242.7  5133.0  104.6  Tr,  8.1  72.2  19.6  2.0  102.96  04/07/88  9.58  20.0  12.0  6.51  113.9  3743.0  29.6  Tr  2.0  76.8  21.2  1.7  102.59  lUiiiui  12.SS  25.0  23.0  6.79  280.0  6601.0  191.0  61.7  38.3  76.8  21.2  8.6  103.03  Hiniiui  9.58  20.0  10.0  6.47  113.9  3743.0  N.D.  Tr  2.0  0.0  0.0  1.3  100.83  10.79  22.6  16.7  6.65  217.3  5524.6  85.0  27.3  19.6  41.8  11.3  3.0  102.17  Std. Dev.  0.81  1.4  4.0  0.09  37.4  918.2  56.0  25.0  14.2  30.7  8.3  2.0  0.53  C.V.  7.55  6.3  24.1  1.37  17.2  16.6  65.7  91.7  72.2  73.6  73.4  66.7  0.52  Hun  243  APPENDIX  DATE  E  - T A B L E S OF V A R I A B L E S FROM B A S I C DATA  N2/02  CH4 F L U X C 0 2 FLUX  RATIO  ( k g CH4/  ( k g C02/  day-ci2) day-ci2)  6AS  IONIC  DENSITY STRENGTH  ACTIVITY  CALCULATED  pKa  pKl  COEFF.  (kg/t3>  pKv  ESTIMATED  NH3-N dolar  gaua  Fl  OR  NH3-N U/  gaua)  6AHRA (ug/L)  MATSQUI  —  08/05/87  10.62  2.4132  5.6390  1.281  08/25/87  10.92  5.9866  12.2826  1.247  09/08/87  10.86  4.8962  10.7100  1.262  09/22/87  10.70  4.9803  11.3468  1.273  10/06/87  15.82  3.5527  8.3534  1.278  10/20/87  12.18  2.9773  6.8552  1.273  11/10/87  9.81  3.5430  8.3634  1.278  11/24/87  3.92  4.1266  9.1664  1.271  12/08/87  4.57  1.5385  3.2180  1.258  12/29/87  3.75  1.2970  2.5868  1.241  01/12/88  8.86  1.8128  5.4996  1.329  0.3846  0.64  9.84  4.87  14.71 4 . 9 5 E - 0 5  843.4  01/26/88  9.13  4.0341  11.6714  1.322  0.3392  0.65  9.70  4.86  14.56 4 . 9 5 E - 0 5  843.5  — — — — — — — — —  02/09/88  4.49  2.2008  4.3601  1.243  0.3608  0.64  9.72  4.86  14.58 3 . 8 3 E - 0 5  653.5  03/01/88  8.24  1.4104  2.6823  1.229  0.2606  0.68  9.60  4.86  14.46 3 . 6 6 E - 0 5  623.4  03/29/88  6.64  0.5491  1.1397  1.255  0.2564  0.68  9.70  4.86  14.56 2 . 4 5 E - 0 5  417.3  F2  MATSMIl  08/05/87  9.84  2.3305  5.7779  1.288  0.0640  0.79  9.50  4.85  14.35 8 . 3 3 E - 0 5  1419.7  08/25/87  3B.67  3.3734  10.7900  1.948  0.05B2  0.80  9.50  4.85  14.35 6 . 5 7 E - 0 5  1119.3  09/08/87  17.60  3.0726  9.4654  1.317  0.0544  0.80  9.47  4.85  14.32 8 . 9 5 E - 0 5  1524.6  09/22/87  33.50  3.9670  11.4527  1.310  0.0491  0.81  9.50  4.85  14.35 9 . 1 0 E - 0 5  1551.0  10/06/87  38.09  4.4313  13.1316  1.311  0.0578  0.80  9.47  4.85  14.32 1 . 1 4 E - 0 4  1940.5  10/20/87  59.86  3.5811  10.8311  1.315  0.0540  0.80  9.50  4.85  14.35 1.17E-04  1998.9  11/10/87  19.45  3.7221  11.2235  1.314  0.0539  0.80  9.54  4.85  14.39 1 . 4 6 E - 0 4  2491.3  11/24/87  12.49  3.1797  10.1509  1.322  0.0512  0.80  9.54  4.85  14.39 4 . 2 4 E - 0 4  7229.3  12/08/87  12.69  2.5878  7.6950  1.311  0.0384  0.82  9.70  4.86  14.56 4 . 2 5 E - 0 6  72.4  12/29/87  13.74  2.2630  6.2768  1.301  0.0434  0.82  9.70  4.86  14.56 4 . 1 7 E - 0 5  710.0  01/12/88  12.79  2.5750  7.7794  1.310  0.0289  0.84  9.81  4.86  14.67 1 . 1 3 E - 0 5  192.9  01/26/88  11.23  3.2884  10.0229  1.312  0.0173  0.87  9.64  4.86  14.49 1 . 8 3 E - 0 6  31.2  02/09/88  14.50  1.7290  5.5165  1.320  0.0179  0.87  9.59  4.86  14.44 7 . 4 8 E - 0 7  12.7  03/01/88  15.37  2.1516  6.4609  1.310  0.0472  0.81  9.64  4.86  14.49 3 . 7 8 E - 0 5  643.5  03/29/88  14.15  3.5634  7.6946  1.259  0.0223  0.86  9.64  4.86  14.49 2 . 0 4 E - 0 5  347.9  244  APPENDIX DATE  M 2 / 0 2 ^ CH4 FLUX C02 FLUX RATIO  GAS  IONIC  ( k g CH4/ ( k g CQ2/  OENSITY STRENGTH  day-ci2)  (kg/a3>  day-ci2)  6.54  10.0341  16.4176  1.185  08/25/87  12.94  10.8426  22.8999  1.254  09/08/87  13.89  11.6540  22.5291  1.230  09/22/87  9.58  13.4525  25.6523  1.226  10/06/87  19.75  13.5262  27.2305  1.240  10/20/87  10.67  10.4762  21.4898  1.247  11/10/87  8.47  12.1526  24.5528  1.240  ACTIVITY  pKl  pKa  pKw  NH3-N  COEFF.  (•olar  gaua  F3  08/05/87  E NH3-N tt  gana)  6AHHA (ug/L)  HATSQUI  —  • — --  .—  — • — — — —  --  — —  — — — — —  — — —  —  —  — —  —  —  — — — — —  — —  11/24/87  11.00  11.0818  23.1808  1.252  —  —  12/08/87  7.11  8.8697  17.4326  1.239  0.0544  0.80  9.74  4.86  14.60  3.36E-05  572.7  12/29/87  6.84  7.9866  14.6359  1.221  0.0497  0.81  9.74  4.86  14.60  1.97E-05  336.2  01/12/88  6.83  9.8026  20.8939  1.258  0.0329  0.83  9.74  4.86  14.60  1.15E-05  195.4  01/26/88  4.60  13.5229  24.0213  1.21B  0.0266  0.85  9.60  4.86  14.46  7.94E-06  135.4  02/09/88  8.98  2.2782  6.0200  1.292  0.0269  0.85  9.60  4.86  14.46  2.71E-06  46.2  03/01/88  4.88  9.4767  16.0242  1.200  0.0221  0.86  9.50  4.85  14.35  1.14E-06  19.4  03/29/88  10.04  9.0361  16.3960  1.221  0.0208  0.86  9.64  4.86  14.49  2.43E-06  41.4  —  —  —  —  —  --  —  — — —  F4  08/05/87  —  4.2073  08/25/87  8.50  09/08/87  3.75  09/22/87 10/06/87  7.5106  1.203  7.9501  14.9377  1.225  7.8669  12.9114  1.183  4.88  8.6947  14.3266  1.184  —  7.6412  15.1786  1.235  10/20/87  16.25  5.5380  11.2325  1.241  11/10/87  8.29  5.7324  12.2344  1.258  11/24/87  7.37  4.8311  10.5278  1.264  12/08/87  7.45  2.9892  7.1125  1.285  12/29/87  9.90  4.0067  7.6979  1.228  01/12/88  12.00  6.8247  12.3824  1.215  01/26/88  6.53  6.9729  13.2046  1.226  --  —  03/01/88  6.11  1.0880  2.1201  1.237  03/29/88  4.86  2.1121  4.0369  1.234  02/09/88  —  —  HATSBUI  — ' — —  — —  ~  • — — — — —  ~  —  — —  --  —  — —  «  — — • — — — — —  •  — — ~  «  —  —  —  — — —  —  -->  — — — —  — — —  —  — — — — — — —  --  —  —  —  --  245  APPENDIX DATE  N2/02  CH4 FLUX C 0 2 FLUX  RATIO  ( k g CH4/ ( k g C 0 2 / D E N S I T Y STRENGTH day-ci2)  day-ci2)  6AS  IONIC  08/05/87  24.00  pKl  pKa  pKv  NH3-N ( • o l a r U/  COEFF.  gana)  gaua  NH3-N 6AHMA (ug/L)  •  MATSQUI  2.4950  5.9775  1.281  0.1920  0.70  9.50  4.85  14.35 4.53E-05  771.4  —  2.0322  4.2226  1.247  0.3506  0.65  9.47  4.85  14.32  1.79E-04  3045.0  1.9744  4.1025  1.247  0.2960  0.66  9.50  4.85  14.35 1.89E-04  3228.2  —  2.5079  5.1898  1.245  0.2807  0.67  9.50  4.85  14.35  1.26E-04  2139.7  09/08/87 03/22/85  ACTIVITY  (kg/i3)  F5  08/25/87  E  10/06/87  3.92  4.1188  8.4110  1.245  0.3073  0.66  9.47  4.85  14.32 2.10E-04  3581.4  10/20/87  11.75  2.4347  4.0707  1.185  0.3020  0.66  9.50  4.85  14.35  1.63E-04  2779.2  4.7518  9.3998  1.234  0.0954  0.76  9.57  4.85  14.42 3.46E-05  589.2  --  1.252  0.0465  0.81  9.60  4.86  14.46 5.29E-07  0.8104  1.7367  1.259  0.0512  0.80  9.60  4.86  14.46  11/10/87  3.43  11/24/87  3.57  12/08/87  4.80  —  1.04E-06  9.0 17.7  12/23/87  3.54  1.1131  2.0447  1.213  0.2359  0.68  9.60  4.86  14.46 7.66E-05  1305.6  01/12/88  4.26  4.1885  7.5049  1.214  0.3061  0.66  9.62  4.86  14.48 1.49E-04  2537.8  01/26/88  3.50  5.7427  10.1948  1.208  0.0705  0.78  9.59  4.86  14.44 5 . 9 4 E - 0 6  101.3  0.0458  0.81  9.67  4.86  14.53 5.12E-06  87.3  0.1569  0.72  9.57  4.85  14.42 3.87E-05  660.2  0.1028  0.75  9.60  4.86  14.46 1.40E-05  237.9  02/09/88 03/01/88 03/29/88  — 3.80  —  — 0.0000  —  — 0.0000  —  — 1.323  —  F 6 HATSQUI  08/05/87 08/25/87  3.89  —  0.3332  —  0.5921  1.236  --  --  09/08/87  3.74  0.0000  0.0000  1.235  09/22/85  3.49  0.0000  0.0000  1.262  —  _  10/06/87  4.50  2.9992  5.3732  1.207  10/20/87  4.42  1.2877  2.3236  1.209  —  11/10/87  3.89  1.8955  3.5562  1.221  —  F 8 HATSQUI  11/10/87  4.35  0.0949  0.2167  1.279  0.0138  0.88  9.50  4.85  14.35  4.48E-09  0.1  11/24/87  4.15  1.5534  3.4350  1.275  0.0047  0.93  9.57  4.85  14.42  8.26E-10  0.0  12/08/87  4.85  0.2045  0.5474  1.284  0.0064  0.92  9.65  4.86  14.51  6.90E-10  0.0  12/29/87  3.63  0.1855  0.3218  1.255  0.0091  0.90  9.65  4.86  14.51  1.87E-08  0.3  01/12/88  3.69  0.3167  0.6368  1.263  0.0060  0.92  9.77  4.86  14.63  5.13E-09  0.1  01/26/88.  3.77  0.2733  0.6624  1.161  0.0070  0.91  9.74  4.86  14.60  9.53E-09  0.2  02/09/88  3.52  0.3529  0.5044  1.206  0.0164  0.87  9.84  4.87  14.71  8.04E-09  0.1  03/01/88  3.68  0.0585  0.0921  1.241  0.0099  0.90  9.70  4.86  14.56  03/29/88  4.77  0.0604  0.1314  1.271  0.0039  0.93  9.77  4.86  14.63  — —  246 APPENDIX DATE  N2/02  CH4 FLUX C02 FLUX  RATIO  ( k g CH4/  GAS  IONIC  ( k g C02/  DENSITY  day-c»2) day-c«2)  (kg/a3)  5.80  0.4864  0.3698  1.062  08/27/87  13.15  0.2109  0.167S  1.068  ACTIVITY  STREN6TH  pKa  pKI  pKv  COEFF. gaiaa  F2  08/09/87  E NH3-N  NH3-N  ( a o l a r H7  6AHHA  gana)  (ug/L)  STRIDE  — 0.0189  0.87  9.67  4.86  14.53 7.45E-08  1.3  9.60  4.86  14.46 4 . 6 8 E - 0 8  0.8 2.1  09/10/87  24.44  0.0915  0.0716  1.049  0.0184  0.87  9.60  4.86  14.46 1.25E-07  09/24/87  5.90  0.3737  0.3438  1.113  0.0156  0.88  9.57  4.85  14.42 9 . 0 9 E - 0 8  1.5  10/07/87  12.25  0.2553  0.3471  1.147  0.0187  0.87  9.60  4.86  14.46 7 . 7 9 E - 0 8  1.3  10/22/87  9.65  0.3374  0.2674  1.057  0.0180  0.87  9.67  4.86  14.53 2.05E-08  0.3  11/12/87  7.67  0.6435  0.5048  1.070  0.0177  0.87  9.67  4.86  14.53 5.61E-08  1.0  11/26/87  12.05  1.3893  1.0039  1.045  0.0152  0.88  9.69  4.86  14.55 3.91E-09  0.1  12/15/87  13.58  0.3119  0.4118  1.190  0.0126  0.89  9.69  4.86  14.55 3.56E-09  0.1  12/31/87  7.04  0.0000  0.0000  1.130  0.0177  0.87  9.69  4.86  14.55 4.71E-08  0.8  01/14/88  21.40  4.3944  4.0592  1.073  0.0165  0.87  9.69  4.86  14.55 4.90E-08  0.8  01/28/88  7.40  0.2409  0.5854  1.281  0.0203  0.86  9.65  4.86  14.51 9 . 4 6 E - 0 8  1.6  02/11/88  8.35  0.4795  0.5134  1.150  0.0213  0.86  9.67  4.86  1 4 . 5 3 1.17E-07  2.0  03/03/88  3.83  0.0000  0.0000  1.259  0.0199  0.S7  9.65  4.86  14.51  1.11E-07  1.9  03/31/88  52.00  0.1107  0.1839  1.215  0.0215  0.86  9.67  4.86  14.53 7.43E-08  1.3  3.0  F3  STRIDE  —  08/09/87  25.40  0.2053  0.1692  1.067  9.67  4.86  1 4 . 5 3 1.78E-07  08/27/87  17.86  0.2184  0.1707  1.058  0.0160  0.88  9.67  4.86  14.53 5.43E-08  0.9  09/10/87  21.00  0.1732  0.1412  1.050  0.0160  0.88  9.67  4.86  1 4 . 5 3 1.19E-07  2.0  09/24/87  4.33  0.0000  0.0000  1.169  0.0133  0.89  9.64  4.86  14.49 1.32E-07  2.2  10/07/87  10.60  0.4345  0.5444  1.130  0.0165  0.87  9.67  4.86  1 4 . 5 3 1.07E-07  1.8  10/22/87  17.00  0.4660  0.3375  1.039  0.0159  0.88  9.69  4.86  1 4 . 5 5 l.OOE-07  1.7  11/12/87  7.77  0.9075  0.6644  1.065  0.0130  0.89  9.67  4.86  1 4 . 5 3 1.57E-07  2.7  11/26/87  10.08  1.1306  0.8235  1.051  0.0317  0.84  9.69  4.86  1 4 . 5 5 1.16E-07  2.0  12/15/87  8.57  0.3144  0.3134  1.117  0.0175  0.87  9.67  4.86  14.53 7.75E-08  1.3  12/31/87  7.49  0.0000  0.0000  1.078  0.0135  0.88  9.65  4.86  14.51 9 . 1 7 E - 0 8  1.6  01/14/88  6.29  0.1813  0.1381  1.093  0.0080  0.91  9.67  4.86  14.53 2.45E-08  0.4  01/28/88  4.38  0.0641  0.0547  1.190  0.0156  0.88  9.65  4.86  14.51 1.26E-07  2.2  02/11/88  4.76  0.2219  0.1694  1.149  0.0134  0.89  9.65  4.86  14.51  1.08E-07  1.8  03/03/88  3.81  0.0000  0.0000  1.220  0.0096  0.90  9.67  4.86  1 4 . 5 3 1.38E-07  2.4  03/31/88  9.91  0.0962  0.1299  1.212  0.0163  0.88  9.64  4.86  14.49 2.02E-07  3.4  F6  STRIDE  10/22/87  3.99  0.1042  0.2035  1.263  0.0336  0.83  9.62  4.86  14.48  3.81E-07  6.5  11/12/87  3.73  0.0440  0.0556  1.266  0.0149  0.88  9.60  4.86  14.46  2.67E-07  4.5  11/26/87  3.71  0.0000  0.0089  1.293  0.0160  0.88  9.65  4.86  14.51  5.47E-08  0.9  12/15/87  3.65  0.0000  0.0028  1.289  0.0171  0.87  9.65  4.86  14.51  5.52E-08  0.9  12/31/87  3.61  0.0000  0.0000  1.287  0.0120  0.89  9.74  4.86  14.60  1.25E-07  2.1  01/14/88  3.85  0.0000  0.2744  1.487  0.0119  0.89  9.74  4.86  14.60  8.17E-08  1.4 2.4  01/28/88  —  0.0000  0.0129  0.588  0.0134  0.88  9.69  4.86  14.55  1.40E-07  02/11/88  --  —  —  —  0.0157  0.88  9.70  4.86  14.56  1.40E-07  2.4  03/03/88  3.67  0.0000  0.0000  1.286  0.0133  0.89  9.69  4.86  14.55  1.34E-07  2.3  247  APPENDIX DATE  N2/02 RATIO  CH4 FLUX C 0 2 FLUX  SAS  IONK  ( k g CH4/ ( k g C 0 2 /  DENSITY STREKSTH  day-ca2) day-ci2)  (kg/i3)  E  ACTIVITY  pKa  pKl  pKw  JIH3-H  COEFF.  dolar  gaua  F7  NH3-N U/  gaita)  6AHHA (ug/L)  STRIDE  08/27/87  14.50  0.2470  0.3067  1.134  0.0174  0.87  3.60  4.86  14.46 3 . 3 3 E - 0 7  6.7  03/10/87  8.81  0.3203  0.3503  1.106  0.0163  0.87  3.57  4.85  14.42 5 . 5 6 E - 0 7  3.5  03/24/87  --  ~  0.0143  0.88  3.60  4.86  14.46 2 . 3 4 E - 0 7  5.0  10/07/87  10.31  1.0143  1.0333  1.080  0.0155  0.88  3.67  4.86  14.53 2.46E-07  4.2  10/22/87  3.67  1.7384  1.8088  1.088  0.0156  0.88  3.60  4.86  14.46 2.42E-07  4.1  11/12/87  12.62  2.4742  3.3354  1.153  0.0135  0.88  3.62  4.86  14.48 4 . 0 5 E - 0 7  6.3  ~  —  11/26/87  15.00  2.3384  4.1741  1.175  0.0103  0.30  3.64  4.86  14.43 3.44E-08  0.6  12/15/87  31.20  0.7152  0.7555  1.088  0.0218  0.86  3.57  4.85  14.42 3 . 2 4 E - 0 7  5.5  12/31/87  6.33  0.0000  0.0000  1.175  0.0133  0.86  3.60  4.86  14.46 2.35E-07  5.0  0.3707  0.4452  1.130  0.0187  0.87  3.57  4.85  14.42 3.43E-07  5.8 4.7  01/14/88  —  01/28/88  3.82  0.1541  0.0653  1.054  0.0173  0.87  3.60  4.86  14.46 2 . 7 3 E - 0 7  02/11/88  4.18  1.0130  0.4051  0.354  0.0208  0.86  3.60  4.86  14.46 4 . 4 0 E - 0 7  7.5  03/03/88  4.02  0.0000  0.0000  1.111  0.0205  0.87  3.53  4.86  14.44 1.07E-06  18.2  03/31/88  4.33  0.1408  0.2450  1.244  0.0183  0.87  3.53  4.86  14.44 5 . 7 4 E - 0 7  3.8  F8  STRIDE  — —  08/27/87  10.35  0.2538  0.3327  1.143  03/10/87  10.80  0.2462  0.2836  1.116  03/24/87  13.44  0.7127  0.7883  1.034  10/07/87  3.12  0.1441  0.1887  1.151  10/22/87  4.23  0.2780  0.3633  1.221  11/12/87  5.70  0.4340  0.5715  1.204  — — —  11/26/87  3.04  1.4431  1.8473  1.150  ~  12/15/87  5.03  0.7646  1.7644  1.277  12/31/87  6.76  0.0000  0.0000  1.044  01/14/88  —  2.0217  2.1366  — — — —  —  —  — —  --  — —  — — — — — —  — — — —  0.01  0.88  3.67  4.86  14.53  1.13E-08  0.2  0.01  0.83  3.67  4.86  14.53  5.83E-08  1.0  ° 1.078  0.02  0.83  9.67  4.86  14.53  7.87E-08  1.3  2.55E-08  0.4  --  --  --  ~  --  — — — —  --  —  01/28/88  4.06  0.4568  0.4823  1.114  0.01  0.83  9.67  4.86  14.53  02/11/88  4.27  1.0284  0.6553  1.033  0.01  0.30  3.74  4.86  14.50  1.21E-08  0.2  0.01  0.94  3.67  4.86  14.53  1.54E-08  0.3  0.01  0.94  9.74  4.86  14.50  2.28E-08  0.4  03/03/88 03/31/88  ~ 5.44  — 0.2215  — 0.2313  ~ 1.203  10B  STRIDE  08/03/87  42.25  0.0527  0.3558  1.416  —  —  3.60  4.86  14.46  2.61E-08  0.4  08/27/87  13.13  0.0000  0.0000  1.365  0.0220  0.86  3.60  4.86  14.46  1.55E-08  0.3  03/10/87  14.31  0.0360  0.1524  1.360  0.0234  0.86  3.64  4.86  14.43  3.52E-08  0.6  03/24/87  28.05  0.0721  0.3620  1.363  0.0184  0.87  3.64  4.86  14.49  1.83E-08  0.3  10/07/87  16.26  0.0838  0.3181  1.351  0.0234  0.86  3.64  4.86  14.43  2.24E-08  0.4  248  APPENDIX DATE  N2/02 RATIO  CH4 FLUX C 0 2 FLUX  GAS  IONIC  ( k g CH4/ ( k g C 0 2 /  D E N S I T Y STRENGTH  day-ci2) day-ca2)  (kg/i3)  E  ACTIVITY  pKa  pKI  pKw  COEFF.  NH3-N (tolar  gana  NH3-N U/  gaaia)  GAMMA (ug/L)  B8 RICHMOND  08/14/87  9.33  0.6194  1.2944  1.249  09/01/87  —  2.2061  4.6972  1.254  ~ 0.0528  0.80  9.44  4.84  14.28 5 . 5 4 E - 0 6  94.3  9.41  4.84  14.25 6.35E-06  108.2  09/15/87  3.78  1.5352  3.2875  1.258  0.0618  0.79  9.44  4.84  14.28 1.20E-05  09/29/87  3.33  0.9756  2.0718  1.254  0.0629  0.79  9.41  4.84  14.25  205.2  1.01E-05  172.4  10/13/87  3.89  1.0945  2.3627  1.259  0.0768  0.77  9.44  4.84  14.28 1 . 1 2 E - 0 5  191.4  11/03/87  3.62  0.5315  1.1909  1.272  0.0706  0.78  9.41  4.84  14.25 2.50E-05  426.6  11/17/87  3.71  0.5048  1.0668  1.253  0.0421  0.82  9.46  4.85  14.30 2.66E-06  45.2  12/01/87  3.44  1.6503  3.7100  1.272  0.0336  0.83  9.52  4.85  14.37 3 . 8 9 E - 0 7  6.6  12/24/87  3.53  4.9235  10.8735  1.270  0.0274  0.85  9.59  4.86  14.44 5.30E-07  9.0  01/06/88  3.49  4.2049  9.1781  1.267  0.0244  0.85  9.57  4.85  14.42 8.40E-07  14.3  01/19/88  3.90  2.7110  5.7989  1.259  0.0219  0.86  9.60  4.86  14.46 6 . 2 9 E - 0 7  10.7  02/02/88  3.53  2.0550  4.6861  1.280  0.0281  0.84  9.72  4.86  14.58 8 . 9 3 E - 0 7  15.2  02/24/88  --  4.2146  8.8649  1.265  0.0096  0.90  9.64  4.86  14.49 1.31E-07  2.2  03/15/88  3.50  6.8759  14.4970  1.256  0.0149  0.88  9.60  4.86  14.46  1.86E-07  3.2  04/05/88  8.80  5.6335  12.3750  1.264  0.0177  0.87  9.69  4.86  14.55 1.42E-07  2.4  —  1723.9  09 RICHMOND  —  08/14/87  2.60  9.1606  20.2373  1.267  9.19  4.81  14.00 1.01E-04  09/01/87  3.75  10.1367  22.1815  1.263  0.1336  0.73  9.19  4.81  14.00 7.41E-05  1262.8  09/15/87  3.73  8.8003  19.2026  1.263  0.1389  0.73  9.22  4.82  14.04 6 . 2 3 E - 0 5  1061.5  09/29/87  3.67  9.0131  19.6269  1.264  0.1302  0.73  9.19  4.81  14.00 8.3BE-05  1427.5  10/13/87  —  5.0442  10.8279  1.257  0.1246  0.74  9.22  4.82  14.04 4 . 4 1 E - 0 4  7508.3  11/03/87  3.65  6.1105  13.8992  1.277  0.1051  0.75  9.22  4.82  14.04  1.48E-04  2520.8  11/17/87  3.71  11.4659  25.2854  .1.267  0.0952  0.76  9.16  4.81  13.97 7 . 9 7 E - 0 5  1358.6  12/01/87  3.33  17.5201  39.1946  1.271  0.0517  0.80  9.17  4.81  13.98 1.04E-05  177.2  12/24/88  3.52  12.8878  27.3986  1.260  0.0200  0.86  9.22  4.82  14.04 4 . 2 9 E - 0 7  7.3  01/06/88  3.43  12.1224  25.6654  1.260  0.0943  0.76  9.22  4.82  14.04 5.18E-05  882.0  01/19/88  3.94  9.5274  19.4146  1.243  0.0428  0.82  9.31  4.83  14.14 5 . 2 4 E - 0 6  89.2  02/02/88  3.90  13.9014  28.6588  1.250  0.1199  0.74  9.28  4.83  14.11 7 . 0 0 E - 0 5  1192.0  02/24/88  —  16.1134  32.9389  1.242  0.1277  0.73  9.27  4.82  14.09 8 . 3 2 E - 0 5  1417.8  03/15/88  3.84  16.1723  32.3461  1.241  0.1679  0.71  9.25  4.82  14.07  1.50E-04  2563.9  04/05/88  3.77  14.0726  29.9001  1.260  0.08S8  0.77  9.41  4.84  14.25 2.01E-05  343.3  249  APPENDIX DATE  N2/02  CH4 F L U * C 0 2 FLUX  RATIO  ( k g CH4/ ( k g C 0 2 / DENSITY STRENGTH day-c«2)  day-c«2)  ,8AS  IONIC  E  ACTIVITY  pKa  pKl  pKw  COEFF.  (kg/i3)  NH3-N (tolar  gaiia  NH3-N U/  gatia)  6AHHA (ug/L)  C6 RICHMOND  —  —  08/14/87  3.71  13.2513  28.5034  1.258  9.31  4.83  14.14 2.65E-06  45.1  09/01/87  3.89  19.1247  42.1674  1.266  0.0437  0.82  9.28  4.83  14.11 1.74E-06  29.6  09/15/87  —  4.6480  10.2645  1.265  0.0452  0.81  9.31  4.83  14.14 2.87E-06  48.9  09/29/87  3.71  9.4894  20.4974  1.259  0.0431  0.82  9.31  4.83  14.14 3.74E-07  6.4  10/13/87  —  6.0962  13.2462  1.260  0.0477  0.81  9.25  4.82  14.07 4.29E-07  7.3  11/03/87  3.65  7.9978  17.6211  1.267  0.0438  0.82  9.28  4.83  14.11 2.56E-06  43.7  11/17/87  3.75  16.9012  36.0403  1.255  0.0261  0.85  9.28  4.83  14.11 8 . 8 1 E - 0 8  1.5  12/01/87  3.30  5.0170  10.7919  1.260  0.0308  0.84  9.46  4.85  14.30 1.29E-07  2.2 4.2  12/24/87  3.30  1.9622  4.1829  1.260  0.0284  0.84  9.59  4.86  14.44 2.48E-07  01/06/88  3.69  1.7202  3.5515  1.252  0.0247  0.85  9.60  4.86  14.46 1.47E-07  2.5  01/19/88  4.28  2.2144  4.7688  1.263  0.0265  0.85  9.54  4.85  14.39 2.68E-07  4.6  02/02/88  3.84  20.3343  43.5387  1.262  0.034B  0.83  9.57  4.85  14.42 3.67E-07  6.3  02/24/88  —  21.4123  43.9500  1.260  0.0296  0.84  9.57  4.85  14.42 4.37E-07  7.4  31.5596  64.7780  1.248  0.0363  0.83  9.38  4.84  14.21 5 . 1 3 E - 0 7  8.7  29.1100  59.1447  1.243  0.0366  0.83  9.54  4.85  14.39 7.82E-08  1.3  80.6  03/15/88 04/05/88  4.15  67  08/14/87  3.75  I.04B5  2.1733  1.261  —  9.38  4.84  14.21 4 . 7 3 E - 0 6  09/01/87  3.91  2.0611  4.5038  1.262  0.0548  0.80  9.34  4.83  14.18 5.33E-06  90.8  09/15/87  --  0.4193  0.8819  1.250  0.0610  0.79  9.38  4.84  14.21 7 . 2 8 E - 0 6  124.0  ~  09/29/87  3.80  1.2439  2.5775  1.247  0.0601  0.79  9.34  4.83  14.18 9 . 8 8 E - 0 6  168.4  10/13/87  3.73  0.8434  1.7901  1.261  0.0644  0.79  9.31  4.83  14.14 9.19E-06  156.6  11/03/87  3.58  1.1172  2.3787  1.258  0.0651  0.79  9.34  4.83  14.18  1.71E-05  291.7  11/17/87  3.71  2.3337  5.1322  1.267  0.0667  0.79  9.31  4.83  14.14  1.40E-05  238.8  12/01/87  3.43  1.1475  2.4342  1.257  0.0402  0.82  9.42  4.84  14.27  1.42E-06  24.1  12/24/87  3.81  0.2031  0.4236  1.254  0.0224  0.86  9.57  4.85  14.42 3.00E-07  01/06/88  3.65  1.0686  2.4342  1.277  0.0234  0.86  9.38  4.84  14.21  01/19/88  4.37  0.4070  0.8722  1.390  0.0210  0.86  9.41  4.84  14.25 6.52E-07  11.1  02/02/88  4.00  1.9342  4.1175  1.261  0.0294  0.84  9.47  4.85  14.32 6.23E-07  10.6  02/24/88  4.08  0.7578  1.5866  1.256  0.0184  0.87  9.41  4.84  14.25 5.74E-07  9.8  03/15/88  4.05  2.6835  5.4959  1.245  0.0259  0.85  9.41  4.84  14.25 6.34E-07  10.8  —  0.0105  0.90  9.62  4.86  14.48 4.03E-08  0.7  04/05/88  9.32E-07  5.1 15.9  250  APPENDIX DATE  N2/02  CH4 FLUX  RATIO  ( k g CH4/ ( k g C 0 2 / D E N S I T Y STRENGTH day-ci2)  C 0 2 FLUX  day-ci2)  GAS  IONIC  (kg/t.3)  E  ACTIVITY  pKa  pKl  COEFF.  pKv  NH3-N (•olar  gana  NH3-N H/  gaaaa)  GAMMA (ug/L)  0 . 5 5 RICHMOND  08/14/87 09/01/87  ~ 3.69  1.5045  3.2296  1.255  3.4906  7.1993  1.247  —  —  0.0679  0.78  9.31  4.83  14.14 1.93E-05  329.7  9.28  4.83  14.11 1 . 6 8 E - 0 5  286.1 195.0  09/15/87  —  9.0341  18.5430  1.243  0.0704  0.78  9.28  4.83  14.11 1 . 1 4 E - 0 5  09/29/87  3.71  1.9279  3.9968  1.249  0.0687  0.78  9.25  4.82  14.07 1.22E-05  207.1  10/13/87  —  1.2005  2.5336  1.250  0.0733  0.78  9.25  4.82  14.07 1.28E-05  217.5  11/03/87  3.59  1.1797  2.4860  1.255  0.0647  0.79  9.25  4.82  14.07 1.75E-05  297.6  11/17/87  3.59  3.4266  7.2675  1.256  0.0675  0.78  9.25  4.82  14.07 1.09E-05  184.9  12/01/87  3.17  1.5514  3.2669  1.254  0.0626  0.79  9.41  4.84  14.25 9.43E-06  160.6  12/24/87  3.29  1.5907  3.1764  1.238  0.0548  0.80  9.38  4.84  14.21 8 . 6 9 E - 0 6  148.1  01/06/88  3.97  0.7010  1.8639  1.315  0.0604  0.79  9.33  4.83  14.16 1.28E-05  218.6  01/19/88  3.98  0.7975  2.0656  1.308  0.0598  0.79  9.38  4.84  14.21 8.84E-06  150.6  02/02/88  3.17  1.2558  2.9718  1.300  0.0634  0.79  9.44  4.84  14.28 4.84E-06  82.5  14.21 8 . 1 7 E - 0 6  139.2  02/24/88  —  0.0000  0.5245  1.288  0.0491  0.81  9.38  4.84  03/15/88  —  5.1718  10.2655  1.233  0.0559  0.80  9.44  4.84  14.28 4.55E-06  77.5  0.5254  1.0588  1.240  0.0217  0.86  9.55  4.85  14.41 5.7BE-07  9.8  04/05/88  4.00  B.53 RICHMOND  —  —  08/14/87  4.00  1.8997  5.4214  1.339  9.28  4.83  14.11 2 . 4 0 E - 0 5  409.2  09/01/87  3.65  1.6986  3.7464  1.267  0.0549  0.80  9.28  4.83  14.11 1.27E-05  216.0  09/15/87  3.67  1.2820  2.8188  1.267  0.0608  0.79  9.25  4.82  14.07 1.55E-05  264.0  09/29/87  3.80  1.2284  2.6037  1.252  0.0538  0.80  9.25  4.82  14.07 1.03E-05  174.8  10/13/87  —  0.8817  1.9357  1.264  0.0544  0.80  9.28  4.83  14.11 5 . 4 2 E - 0 6  92.4  11/03/87  3.62  0.6937  1.4849  1.258  0.0419  0.82  9.22  4.82  14.04 7.25E-06  123.6  11/17/87  3.75  0.7789  1.6601  1.257  0.0476  0.81  9.25  4.82  14.07 9.17E-06  156.3  12/01/87  3.39  0.8030  1.7293  1.262  0.03B6  0.82  9.31  4.83  14.14 3.30E-06  56.3  12/24/87  3.61  0.0709  0.1365  1.264  0.0316  0.84  9.47  4.85  14.32 1.78E-06  30.4  01/06/88  3.97  0.0000  0.0000  1.275  0.0285  0.84  9.47  4.85  14.32 1.97E-06  33.6  01/19/88  4.96  0.0488  0.1051  1.273  0.0254  0.85  9.60  4.86  14.46 1.44E-06  24.6 10.4  02/02/88  3.91  0.0000  0.0178  1.276  0.0223  0.86  9.54  4.85  14.39 6.12E-07  02/24/88  3.65  0.0000  0.0000  1.286  0.0105  0.90  9.49  4.85  14.34 4.33E-07  7.4  03/15/88  3.68  0.0000  0.0000  1.327  0.0135  0.89  9.50  4.85  14.35 1.89E-07  3.2  0.0131  0.89  9.59  4.86  14.44 8 . 6 7 E - 0 8  1.5  04/05/88  —  —  •—  251  APPENDIX DATE  N2/02  CH4 FLUX C 0 2  RATIO  ( k g CH4/  ( k g C02/  FLUX  D E N S I T Y STRENGTH  day-«2)  day-«2)  (kg/s3)  GAS  IONIC  E ACTIVITY  pKa  pKl  pKw  COEFF.  NH3-N (•olar  gatna  NH3-N U/  gaaia)  6AHHA (ug/L)  P I PREMIER  08/20/87  3.60  0.0282  0.0528  1.259  0.1069  0.75  9.34  4.83  14.18 2 . 5 1 E - 0 5  427.2  09/03/87  3.86  0.0329  0.0671  1.263  0.1042  0.75  9.31  4.83  14.14 3.87E-05  659.4  09/17/87  3.60  0.0619  0.1473  1.287  0.1025  0.75  9.28  4.83  14.11  2.18E-05  371.9  10/01/87  3.90  0.1876  0.3872  1.263  0.1002  0.75  9.34  4.83  14.18 1.86E-05  317.0  10/15/87  3.6S  0.1546  0.3142  1.265  0.1034  0.75  9.34  4.83  14.18  1.94E-05  331.1  11/05/87  3.64  0.1393  0.2813  1.260  0.1046  0.75  9.33  4.83  14.16 2.06E-05  351.9  11/19/87  3.54  0.1130  0.2248  1.267  0.0971  0.76  9.34  4.83  14.18  1.45E-05  247.1  12/03/87  3.61  0.0181  0.0442  1.292  0.0875  0.76  9.38  4.84  14.21  1.89E-05  321.3  12/22/87  3.66  0.0849  0.1708  1.269  0.1056  0.75  9.36  4.84  14.20 2.66E-05  453.7  01/05/88  3.58  0.0307  0.0730  1.287  0.0900  0.76  9.38  4.84  14.21 3 . 1 6 E - 0 5  538.9  01/20/88  3.64  0.0000  0.0478  1.295  0.0942  0.76  9.33  4.83  14.16 2 . 8 3 E - 0 5  482.6  02/04/88  3.90  0.0299  0.0681  1.280  0.0946  0.76  9.34  4.83  14.18 2.69E-05  458.5  02/23/88  3.62  0.0413  0.0813  1.276  0.0830  0.77  9.33  4.83  14.16 2.13E-05  362.5  03/17/88  3.76  0.0517  0.1048  1.270  0.0970  0.76  9.31  4.83  14.14 2.48E-05  422.7  04/07/88  3.63  0.0000  0.0058  1.293  0.0820  0.77  9.34  4.83  14.18  239.2  1.40E-05  P 2 PREMIER  08/20/87  3.78  0.1638  0.2789  1.187  0.1026  0.75  9.31  4.83  14.14 2.94E-05  500.8  09/03/87  3.58  0.1556  0.2678  1.195  0.1016  0.75  9.28  4.83  14.11 3 . 9 8 E - 0 5  678.8  09/17/87  3.50  0.2844  0.4958  1.210  0.0991  0.75  9.25  4.82  14.07 2.71E-05  461.6  10/01/87  3.59  0.6644  1.1686  1.201  0.0989  0.75  9.28  4.83  14.11 2 . 9 4 E - 0 5  501.1  10/15/87  3.65  0.4985  0.8925  1.212  0.1035  0.75  9.28  4.83  14.11 2 . 5 0 E - 0 5  425.8  11/05/87  3.61  0.8565  1.5648  1.216  0.1026  0.75  9.28  4.83  14.11 2 . 5 9 E - 0 5  440.6  11/19/87  3.60  0.2237  0.4061  1.239  0.0901  0.76  9.30  4.83  14.12 1.70E-05  289.7  12/03/87  3.68  0.0159  0.0291  1.281  0.0727  0.78  9.38  4.84  14.21  1.49E-05  254.6 381.7  12/22/87  3.63  0.0610  0.U15  1.259  0.1056  0.75  9.39  4.84  14.23 2.24E-05  01/05/88  3.65  0.0246  0.0459  1.279  0.0778  0.77  9.31  4.83  14.14 2 . 8 8 E - 0 5  490.6  01/20/88  4.22  0.0000  0.0289  1.318  0.0780  0.77  9.34  4.83  14.18 2.31E-05  393.6  02/04/88  3.68  0.0389  0.1011  1.287  0.0873  0.76  9.34  4.83  14.18 2 . 9 7 E - 0 5  506.9  02/23/88  3.68  0.0000  0.2366  1.315  0.0641  0.79  9.36  4.84  14.20  1.94E-05  330.8  03/17/88  3.62  0.0000  0.0857  1.310  0.0821  0.77  9.34  4.83  14.18 2.56E-05  436.1  04/07/88  3.68  0.0000  0.0182  1.308  0.0599  0.80  9.41  4.84  14.25 7.5BE-06  129.1  1  MATSQUI PRECIP. STRIDE PRECIP. S B B B B B iBe e s s B B B S B B B B B E B B B S S B B E EBBS  RICHMOND PRECIP.  PREMIER ST. PRECIP  08/05/87 08/25/87 09/08/87 09/22/87 10/06/87 10/20/87 11/10/87 11/24/87 12/08/87 12/29/87 01/12/88 01/26/88 02/09/88 03/01/88 03/29/88  08/14/87 09/01/87 09/15/87 09/29/87 10/13/87 11/03/87 11/17/87 12/01/87 12/24/87 01/06/88 01/19/88 02/02/88 02/24/88 03/15/88 04/05/88  08/20/87 09/03/87 09/17/87 10/01/87 10/15/87 11/05/87 11/19/87 12/03/87 12/22/87 01/05/88 01/20/88 02/04/88 02/23/88 03/17/88 04/07/88  15. 4 15. 2 11. 6 12. 0 3. 0 0. 0 30. 0 99. 1 96. 0 116. 7 23. 0 69. 0 76. 2 51. 1 121. 4  08/09/87 08/27/87 09/10/87 09/24/87 10/07/87 10/27/87 11/12/87 11/26/87 12/15/87 12/31/87 01/14/88 01/28/88 02/11/88 03/03/88 03/31/88  EBBBBBB BEBBB = = B = BBB = E = = = EB = = =  6 .4 25 .8 13 .2 11 .8 3 .6 0 .0 56 .0 98 .6 121 .8 30 .2 39 .6 23 .4 38 .1 51 .8 123 .4  25..8 0..0 22. .8 5..6 0..2 20..2 74 .4 . 61 ,2 . 136. ,0 13..6 44 . 2 23. .3 67 ,0 . 51 .8 118. .2  se  APPENDIX F . l . - P r e c i p i t a t i o n d a t a (  millimeters)  used i n S t a t i s t i c a l  analysis  15.2 11.4 11.1 5.6 1.2 36.2 92.6 123.8 114.8 10.6 101.8 33.9 110.7 73.4 222.9  253  MATSQUI ALL N =: 49 VARIABLE PRECIP W.L . TW TG PH NH3-N L E A C H NH3-N GAS FLOW PRESSURE X CH4 CH4 FLUX C02 FLUX IONIC S T .  MEAN  STO. O I V .  58. . 33 7 ,43 13. 61 14 ..02 6.4575 648. 88 197 . 33 43. 16 101 . 80 35. 76 3. 10 7 .03 0. 10  K -S  z  STAT.  40. 8 1 2.21 3. 15 4.80 0.7086 827.00 236.06 35.00 0.578 13.71 2.96 5.77 0. 12  1. 151 1 .977 1.014 1 . 369 0.871 2. 308 1 . 747 0. 762 1 .046 1.247 1.215 0. 782 2.191  2 TAILED PROB . 0 .14 1 0 .001 0 .256 0 .04 7 0 .434 0 .000 0 .004 0 .608 0 .224 0 .089 0 . 105 0 . 574 0 .000  STRIDE AVE. ALLN = 44 VARIABLE PRECIP W.L. TW TG PH NH3-N L E A C H NH3-N GAS FLOW PRESSURE I CH4 CH4 FLUX C02 FLUX IONIC S T .  MEAN  STD. D I V .  43. 74 10. 80 12. 65 14 .36 6. 18 7. 83 2 4 3 . 04 5. 54 101 . 74 46. 75 0. 56 0. 58 0. 0 2  K -S 2 STAT. 1. 328 2. 322 1.94 1 1.437 1 . 746 1.271 1.131 1 .810 0.906 1. 365 1.899 1.94 0. 703  40.09 4 . 98 1.09 3.69 0.22 6.56 140. 7 8.13 0.59 15.81 0.86 0.97 0.01  2 TAILED PROB.. 0..059 0. 0 0 0 0. 001 0. 032 0. 005 0. 079 0. 155 0. 0 0 3 0. 384 0. 0 4 8 0. 001 0. 001 0. 707  ==========:==  RICHMOND ALL N VARIABLE PRECIP W.L. TW TG PH NH3-N LEACH NH3-N GAS FLOW PRESSURE X CH4 CH4 FLUX C02 FLUX IONIC S T .  MEAN  STD. D I V .  42. 31 3. 33 20. 87 19. 51 6 .39 117. 03 143. 17 55. 22 102. 09 47 .96 5. 37 11. 43 0. 05  B6 K -S  z  40. 14 0.89 4.34 6.76 0. 34 128. 3 155.34 $7.09 0.45 11.94 6.71 14.05 0.03  STAT. 2.020 0.791 1.209 1.074 0.533 1.979 1.654 2.246 1.505 2. 303 2. 169 2. 180 1. 140  2 TAILED PROB. 0. 001 0. 558 0. 108 0. 199 0. 939 0. 001 0. 0 0 8 0. 0 0 0 0. 0 2 2 0. 0 0 0 0. 000 0. 0 0 0 0. 149  PREMIER ST. ALLN = 30 VARIABLE PRECIP W.L. TW TG PH NH3-N LEACH NH3-N GAS FLOW PRESSURE X CH4 CH4 FLUX C02 FLUX IONIC ST .  MEAN 64 .35 12. 22 22. 42 16. 23 6. 64 225 ,. 7 169 . 4 2. 43 102. 15 221.2 0.1320 0.2601 0 0926  APPENDIX F . 2 . -R e s u l t s o f  STD. O I V . 62.01 1.59 1 . 18 4 .04 0. 10 33.54 101.0 1 .67 0.54 20. 3 0.2034 0.3572 0.0127  K •S  z  STAT. 1.141 1.217 0.937 0.839 0.485 0.826 0.716 1 . 104 0.595 0. 750 1.413 1 . 331 0.918  2 TAILEO PROB. 0. 148 0. 103 0. 344 0. 482 0. 973 0. 503 0. 685 0. 174 0. 871 0. 627 0. 037 0. 058 0 .0368  K o l a o g o r o v - Sm i r o v G o o d n e s s Of F i t T e s t  254  APPENDIX  F.3 - MATRIX R E S U L T S CORRELATIONS  OF PEARSON  PRODUCT-MOMENT ^  n IUTSSUI VARIABLES  ppt.  8.L.  Tw  tg  pH  NH3-N  NH3-N  FLOW  PRESS.  I CH4  V7  V8  V9  V10  Vll  V12  -0.5791  X  X  X  X  X  ,  X  I  I I  X  X  X  CH4 FLUX C02 FLUX IONIC ST.  Leach VI  V2  V3  I  ,  ,  V4  V5  V6  I  I  ,  ,  V13  VI  X  n  I  I  V3  X  I  X  X  I  I  X  I  X I  I  X  X  V4  -0.7618  I  I  X  I  I  0.7672  0.5878  X  X  0.6933  0.6236  I  X I  X  X I  X  0.6439  I  X  X  X  I  I  X  X  X  1  X  I  I  I  I  0.6439  -0.7618 X  V5  1  I  V6  I  I  V7  -0.5791  X  X  0.7672  I  I  I  V8  X  I  X  0.5878  1  X  I  I  I  I  0.7944  0.6763  X  X  I  0.9637  0.9444  X  V9  X  X  X  X  I  X  X  X  X  X  X  I  X  V10  X  I  X  I  I  1  I  X  X  I  X  I  I  Vll  X  X  I  0.6933  X  I  0.7944  0.9637  I  I  I  0.9700  X  V12  X  I  I  0.6236  I  I  0.6763  0.9944  I  I  0.9700  X  I  V13  X  1  X  X  I  X  X  1  *  1  1  1  F2 KATS8UI -  VI  X  X  V2  X  I  X  X  X  V3  X  I  X.  0.6277  I  0.6826  V4  -0.6265  X  0.6277  X  X  V5  X  X  X  I  I  V6  X  X  0.6826  0.7387  0.7757  V7  -0.6602  I  0.8925  X  0.5605  V8  X  0.6341  0.7105 I  X  I  V9  X  X  X  X  V10  I  -0.5886  I  I  -0.6265  X  -0.6602  I  X  ....  -  - - -  -  ....  I  x  X 0.6559  X  0.7105  X  X  X  I  0.7387  0.8925  I  0.69S9  I  I X  I  X  X I  X  0.7757  1  x  -0.7375  I  I  I  X  X  X  X  0.9123  X  X  I  I  X  X  0.6026  X  X  I  I  X X  I I  0.8497 1  0.9712 X  I  I  X X  X  I  X  X  X  X  I  I  X  -0.5886  Vll  X  I  I  X  X  I  X  0.8497  I  I  X  V12  I  I  I  X  I  I  I  0.9712  X  I  0.9258  V13  -0.5741  X  *  1  0.6559  0.6962  -0.5741  0.6341 X  0.7375  0.9123  0.6026  0.9258 I  X X I X  ._.!._..  F3 KATSOW -  VI  -0.7325  ....... .......  ....  ....  -  =--—. i  V2  X  I  I  I  I  I  X  i  I  V3  X  I  I  X  I  X  X  i  X  V4  -0.7325  I  I  X  I  X  0.6834  i  I  0.6047  V5  X  I  X  X  I  I  I  i  I  VS  X  I  I  X  I  I  I  i  V7  -0.6275 X  X  I  0.6B34  X  x  I  t  I  I  X  I  I  I  i  V9  I  I  I  I  I  I  X  V10  X  X  I  0.6047  I  X  X  V8  .  ....  -  I  i  i  I  I  i  i  I  0.6112  i  I  I  I  i  I  I I  I X  I  i  I  I  X  X  I I  0.9524 I  0.9828 I  X  X  X I  I  X  I  0.7097  I  I  I  Vll  X  I  I  0.6112  X  X  X  0.9524  I  0.7097  I  V12  X  I  I  0.5727  I  X  X  0.9828  I  I  0.9551  0.9551 X  I  I  V13  X  X  X  X  X  I  X  X  1  X  X  X  I  =========1========================================== .========== ================================== ===========================  255  A P P E N D I X F.3 F4 flATSQUI :========= ==================  = = = =========== =========: ================= =========- =========================== = = = = = = = = ===  VARIABLES  ppt.  W.L.  Tu  VI  V2  V3  V4  V5  pH  NH3-K  NH3-N  Leach  6K  V6  V7  1 CH4 CH4 FLUX C02 FLUX IONIC ST.  FLOU  PRESS.  V8  V9  VIO  Vll  V12  V13  r  VI  I  I  I  -0.7669  I  I  -0.6714  -0.6377  -0.5940  X  I  I  I  I  1  X  I  i  -0.6268 I  I  V2  X  X  X  X  V3  I  '  I  I  X  I  I  I  i  I  I  X  X  X  V4  -0.7469  I  I  I  I  I  i  I  0.7034  0.690S  0.6087  X  i  X  X  X  X  X  i  X  I  X  I  1  I  0.6049  0.5998  X  0.9905  X  V5  I  I  I  I  I  I  0.2503 I  %  I  I  I  I  I  X  I  V7  -0.6714  I  I  1  X  I  V8  I  I  I  I  I  X  0.6149  I  I  X  0.9613  V9 VIO  -0.6268  I  I  I  I  I  I  I  I  X  X  I  I  I  I  0.7034  I  I  I  I  X  I  I  I  X  VII  -0.6377  I  I  0.6908  i  I  0.6049  0.9613  I  X  X  0.9700  X  V12  -0.5940  I  I  0.6087  I  I  0.5998  0.9905  I  X  0.9700  I  X  V13  I  I  I  I  I  X  X  I  I  X  I  I  X  NH3-N  NH3-N  FLOU  PRESS.  Ltach  &s  V6  V7  VB  V9  0.7503  0.6149  I  X  F5 NATSQUI VARIABLES  ppt. VI  y.L. V2  Tu V3  pH V4  V5  "7  VI  X  I  -0.7720  -0.8416  -0.6988  -0.6955  I  V2  I  I  I  X  I  I  I  V3  -0.7720  I  X  0.9167  X  X  X  X  V4  -0.8416  I  0.9167  I  I  0.6456  I  V5  -0.6988  X  X  I  X  0.7459  I  V6  -0.6755  X  X  0.6456  0.7459  X  X  I CH4 VIO  CH4 FLUX C02 FLUX IONIC ST. Vll  VI2  V13 -0.6762  ===-_=__  X  X  X  I  I  I  X  X  0.6427  I  0.6297 X  X  X  X  0.6768  X  X  X  I  I  0.7929  X  X  X  I  X  0.9782 I  x  -0.7707 I  I  V7  X  I  X  X  I  I  X  X  X  X  X  V8  I  I  X  X  I  X  I  X  X  I  0.9840  V9  -0.7707  X  -0.6297  I  I  I  X  X  I  I  X  I  X  VIO  I  I  I  I  I  X  I  X  X  I  I  X  X  0.9882  I 0.9905  X  VII  I  I  X  X  I  I  X  0.9540  X  I  X  V12  I  I  X  X  X  X  I  0.9905  0.5581  I  0.9882  I  X  -0.6762  I  0.6427  0.6768  0.7929  0.9782  X  I  X  X  X  I  X  V13  X  :========================== ================== ========= =======3 = = = = = = = = = ========== ================= ========= =========  256  APPENDIX  F.3  F2 STRIDE VARIABLES  pp  Tv  pH  V3  V5  NH3-M  NH3-N  Leach  Gas  V6  V7  -0. 251  VI  V2 V3  0.6558  V4 V5  251  V6  0.6558  V7  377  V8  FLOW  PRESS.  V8  V9  H4 CH4 0  LUI C02 FLUX IONIC ST.  v:  V12  V13  X  I  X  I  X  X 0.6730  X  X  0.6477  X  I  I  0.7464  X  X  0.6S50  I  X  X  0.9960  X  X  0.9943  I  V9  X  I  X  VIO  X  I  X  Vll  X  943  VI2  I  960  V13  0.6730  464  0.6550  I  0.9909  X  0.9909  X  I  X  I  I  F3 STRIDE VI V2  101  V3 V4  -0.6022  X  I  X  0.8627  I  X  I  X  X  X  X  -0.6101 -0.6022  X  0.8627  519  1  V5  X  V6  I  V7  519  X  V9  171 0.5867  171  X  V8 VIO  -0. 1867  9879  X  X  X  X  I  X  0 9624  0.6424  I  X  X  X  I  I  Vll  0.9579  V12  0.9624  710  X  V13  0.6424  ,617  6554  .9710  0.6617 0.6554 I  257  APPENDIX  F.3  F7 STMOE VARIABLES  pp  pH  U.L.  NH3-N  NH3-N  FLOW  V7  va  PRI SS.  H4  CH4 FLUI C02 FLUX IONIC ST.  LMCB  V  V2  V5  V6  Vll  V12  V13  VI  X  i  X  X  V2  I  x  X  X  V3  X  X  X  0.6280  V4  X  X  I  -0.5983  V5  I  -0.6505  -0.6367  0.6156  VS  X  X  X  1  V7  I  X  X  X  V8  -0.6505  I  0.9921  -0.7215  -0.9858  V9  X  X  X  X  VIO  I  X  I  X  Vll  X  0.985B  0.9738  -0.6731  V12  -0.6367  0.9921  X  0.7442  0.6156  -0.7215  -0.7442  X  V13  0.6280  -0  983  F8 S RIDE VI  I  X  V2  X  I  X  X  V3  X  X  X  V4  I  X  I  V5  X  X  V6  I  I  I  I  X  V7  X I  I I  I I  V9  X  I  I  VIO  I  X  Vll  X  I  X  V12  X  X  V13  I  I  I  X  I  I  X  I  I  :  x  I  I  X  X  I  I  X  I  I  I  I  X  I  I  X  X  i  X  I I  I I  I I  I I  X  I  I  I  X  I  I  1  I  0.9236  I  I  I  X  I  I  X  X I  0.8442 j  I  I  I X  X X J  X I I  I  X  I 1  I  I  X I  I I  I I  I  X  I I  I  I I  0.8442 X I  I  X I I  X  I  I I I  X  X I  V8  I  I  I  1 1  I I  :  0  I  X  I  X  I  . 3457  X  X  0.9128  I  I  0. 9236  I  I  I  I  X  I  I  I  I  X  X  258  APPENDIX F.3 Be RICHKOK) VARIABLES  ppt.  H.L.  Tw  pH  NH3-N  NH3-N  FLOW V8  PRE! S.  X CH4 CH4 FLUX C02 FLUX IONIC ST.  L««h V!  V2  V3  V4  V5  V6  V7 X  VIO  Vll  V12  V13  X  -0.6002  VI  X  X  X  -0.6083  -0.6672  I  I  V2  X  0.8766  0.7210  0.6107  0.6965  X  X  X  V3  0.8766  I  0.8434  0.7568  0.B186  -0.7031  I  -0.6985  -0.7102  0.8628  X  0.5781  0.7056  0.5418  I  X  I  0.7264  I  0.9278  I  -0.6971  I  -0.7133  -0.7156  0.9054  -0.7198  X  -0.7263  X  0.9775  V4  X  0.7210  0.8434  V5  -0.6083  0.6107  0.7568  0.5781  V6  -0.6672  0.6965  X  0.7056  0.9278  X  0.6989  0.7355  V7  I  I  X  I  I  X  X  X  -0.7304  X  V8  0.5625  0.8186  I  -0.6971  -0.7195  X  I  0.9914  X  -0.7653  V9  I  I  I  X  X  I  X  X  0.9934  I  VIO  X  I  0.6989  I  X  I  X  X  I  I  -0.7031  I  -0.7133  X  X  0.9993  -0.7799  -0.7156  -0.7263 -0.7304  0.9914  -0.6985 X  I  0.9934  I  0.9993  X  -0.7817  0.9054  0.9775  I  -0.7653  I  -0.7799  -0.7817  I  Vll V12 V13  X  0.5624 -0.6002  I 0.7355  ,  -0.7002  0.7264  D9 R1CHH0XD -0.5559  I  I  I  X  1  I  -0.5882  0.8957  0.7899  I  X  I  I  I  1  I  I  X  0.8957  I  0.7179  X  5  I  I  I  1  I  X  I  I  0.7899  0.7179  I  X  X  I  -0.6548  X  1  -0.6451  V5  -0.6559  X  I  I  X  0.7823  I  X  I  1  X  -0.6024 I  0.7696  V6  I  I  I  I  0.7823  I  X  I  0.6075  X  X  0.9723  V7  I  X  I  I  X  X  I  X  I  1  I  I  X  V8  I  I  X  X  X  I  I  I  I  I  X  I  I  X  0.6075  I  X  I  1  0.9667 I  X  V9  0.9718 I  VIO  I  I  I  X  X  X  1  X  X  1  I  I  X  VI V2  I  V3  I  V4  I  X  Vll  I  I  X  X  X  X  X  0.9718  I  X  V12  I  I  I  I  I  X  I  0.9667  X  0.9919  V13  -0.5882  1  1  1  0.9723  I  X  0.7696  I  0.9919 I  I  I  X X I X  C6 RICHnTHS VI V2  ...... I  ......... ..... X  ........  I  X  .....  I  I  I  V3  X  X  I  0.8833  X  I  V4  I  X  0.8833  I  I  X  X I 0.5767 X  . . . .=  ' " ] i  "  "  "  "  X  I  I  I  X  I  I  I  0.7276  X  I  X  x  0.6454  X  I  V5  I  X  I  I  X  0.6B50  I  X  X  X  I  I  V6  I  I  X  I  0.6850  X  I  I  X  X  I  0.6544  0.5767  V7  I  I  I  X  X  X  I  X  X  I  X  V8  I  I  I  X  1  I  I  X  x  0.9918  I  V9  I  X  I  I  X  I  I  I  I  X  0.9943 X  VIO  I  I  I  X  X  X  I  I  X  X  X  I  X  0.9991 I  I  I  I  Vll  I  I  I  I  I  I  I  0.991B  I  V12  I  I  I  X  I  I  X  0.9943  X  V13  I  I  0.6454  X  0.6544  X  I  0.7276  I  0.9991 I  X I  =====================================================-•======================================================================  259  APPENDIX  F.3  67 RICHMOND VARIABLES  ppt.  U.L.  Tv  19  pH  KH3-H  NH3-N  Inch  6JS  V6  V7  VI  V2  V3  V4  VI  I  I  V2  I  I  -0.7703 I  -0.7256 X  0.6282  0.7404  0.7364  0.7294  I  0.8025  0.6595  0.7600  V5  VB  PRE!  X CH4 CH4 FLUX CQ2 FLUX IONIC ST VIO  Vll  I  -0.5881  I  X  X  X  X  0.6761  0.7335  X  0.7985  I  0.81% 0.9079  I 0.7449  FLOM  V3  -0.7703  I  I  V4  -0.7256  I  0.7404  V5  I  0.6282  0.7364  0.8025  I  0.8216  X  I  X I  V6  I  0.7449  0.7294  0.6595  0.8216  I  I  X  X  V7  X  I  I  0.7600  X  X  X  I  X  V8  I  I  I  I  I  X  I  I-  0.9930  I  0.9930  V13  0.9444 X 0.9947  X  V9  i  I  I  I  I  I  I  X  X  VIO  -0.5881  I  0.7335  I  I  X  I  1  X  Vll  I  I  I  I  I  X  I  X  X  V12  I  I  I  I  I  X  I  X  0.9984  X  V13  (  0.9079  I  X  X  X  0.6761  I  0.8196  0.9444  1947  X X 0.99B4  X  D.55 RICHMOND VI I  V2  X  -0.7509  -0.7862  -0.6996  0.8381  0.6430  X  X  0.6264  0.7528  0.72BB  0.7250  0.8275  I  0.6271  0.6729  V3  I  0.8381  I  V4  -0.7509  0.6430  0.7528  I  V5  I  .7288  X  I  0.6354  0.7051  V6  0.7862  .7250  0.6271  0.6352  X  0.9170  V7  X  X  X  X  I  V8  X  I  I  I  X  V9  X  I  I  I  X  X  VIO  X  I  X  I  X  X  Vll  X  I  I  X  X  V12  I  I  I  X  X  V13  -0.6996  0.7051  0.9170  0.6264  0.8275  0.6729  X 0.9981  X  991 993  X  0.9991  X  X  X  B.53 RICHMOND VI  X  I  I  I  X  I  I  X  V2  I  X  X  X  I  I  X  X  X  V3  I  0.7271  I  0.7974  0.7204  0.9473  0.7978  0.7289  0.8685  V4  0.7721  X  0.6199  0.8353  0.8357  0.7534  0.8818  0.8244  0.8243  V5  0.6423  0.6199  X  0.8306  0.8304  0.6587  0.8173  0.8292  0.7604  V6  0.7974  0.83S3  0.8306  X  0.8966  0.8229  0.9196  0.8927  0.9589  V7  I  X  I  X  I  V8  0.7204  0.8557  0.8304  0.8966  I  I 0.7191  I 0.9897  I  I  X  0.9937  0.8466  V9  I  I  I  X  X  I  X  X  X  VIO  0.9473  0.7534  0.6387  0.8229  0.7191  I  0.7925  0.7133  0.9122  0.9835  Vll  0.7978  0.8818  0.8173  0.9196  0.9897  0.7925  0.9835  V12  0.7289  0.8244  0.8292  0.8927  0.9937  0.7133  0.8917  I  0.8356  V13  0.86B8  0.8243  0.7604  0.9589  0.8466  0.9122  X  0.8356  I  0.8917  260  APPENDIX F.3 PI PRXHIH = = = = = ======= ============================================.======= ============= ============= ===========================  •.RUBLES  ppt. VI  U.L. V2  T* V3  T| V4  pH V5  NN3-N  NH3-N  Inch  6«  V6  V7  FLOH  PRE ;s.  X CH4  V8  V<  VIO  CH4 FLUX C02 FLUX IONIC ST. Vll  V12  V13  :======:= = = = = = =========================================::=. ====== ============ .=== ========.================= =========  -0.6810  I  I I I I I  -0.5754  X  0.6296  V7  X  I  0.7086  X  V8  I  X  I  X  VI  I  1  V2  I  V3  I I  V4  -0.6810  X  V5  I  V6  X  -0.5734  X  I I I I  X  X  X  X  x I I  X  X X  X 0.6296  I  I I I X  I  I x I I I  V9  X  -0.5994  X  X  X  X  -0.6108  I  0.6521  0.5740  V12  X  0.5968  0.5968  X  I I I  I  X  I I  V13  -0.6612  X  X  0.6102  1  0.7086.  X  VIO Vll  X  I I  X X  I  I X  I I x I I x  - o . : 994  -0.6108  X  X  X  0.5740  0.5468  I  X  X  X  0.6162  0.6521  X  X  X  X  I I  X  X  X  I  X  -0.6612  I  I I I I  0.6941  0.7794  X  0.9939  I  0.6979  0.7406  0.9939  X  0.7452  I  I I  X  1  X  I  X  0.6941  0.6979  X  I 0.7794  X X  X 0.7452  X  P2 PREMIER :ss===£  :================= ==================================== ====== ========  VI  I  -0.5622  -0.8416  -0.6922  I  -0.8211  V2  -0.5622  I  0.6960  0.6565  X  I  V3  -0.8416  0.6960  X  0.9250  X  V4  -0.6922  0.6565  0.9250  V5  X  X  I  I I  V6  -0.8211  I  0.6528  0.6528  ===== ============ ==========================  X  -0.6737  X  X  -0.7026  0.6192  0.8153  0.7925  0.7512  0.7861  0.7984  x I I  X  0.7900  0.6669  0.6410  0.6445  X  0.6528  X  X  0.8578  I I  0.6818  0.5866  I  X  X  X  I  X  X  i i i i  0.7055  I I  0.6012  X  X  0.7667  X  I  X  X  X  X  0.9204  0.9519  X  V7  X  X  I  I  X  V8  I  0.6192  X  X  I I  V9  X  I  X  X  I I  X  X  X  I  X  X  X  VIO  -0.6737  0.8153  0.8578  0.8578  X  0.6012  I  0.7367  0.7367  I  0.8368  Vll  X  0.7925  0.7055  0.7055  X  0.9204  I  X  0.9913  0.6096  V12  X  0.7511  0.6818  0.6818  I I  I I  X  X  0.9519  0.9913  0.9913  0.5539  V13  -0.7026  0.7861  0.5866  0.5866  X  0.7667  I  X  0.6096  0.6096  I I  ---------  ======= ========= ========= ========== ================ ======= ======== ===========================  X =========  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062503/manifest

Comment

Related Items