UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Calibration of the gravity model using inter-urban truck data in B. C. Baker, James Douglas 1976

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1976_A7 B33_9.pdf [ 14.61MB ]
Metadata
JSON: 831-1.0062471.json
JSON-LD: 831-1.0062471-ld.json
RDF/XML (Pretty): 831-1.0062471-rdf.xml
RDF/JSON: 831-1.0062471-rdf.json
Turtle: 831-1.0062471-turtle.txt
N-Triples: 831-1.0062471-rdf-ntriples.txt
Original Record: 831-1.0062471-source.json
Full Text
831-1.0062471-fulltext.txt
Citation
831-1.0062471.ris

Full Text

CALIBRATION OP THE GRAVITY MODEL USING INTER-URBAN TRUCK DATA IN B.C. by JAMES DOUGLAS BAKER B.ENG. (CIVIL), McGILL UNIVERSITY, 1972 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n the Department of C i v i l Engineering-: We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA January, 1976 (c) James Douglas Baker In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r ee t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r ag ree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y pu rpo se s may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f C i v i l Engineering The U n i v e r s i t y o f B r i t i s h Co lumb ia Vancouve r 8, Canada D a t e September 17, 1975 I ABSTRACT T h i s t h e s i s concerns a survey of i n t e r - r e g i o n a l o r . i n t e r -urban commercial t r u c k t r a f f i c at weigh s c a l e s i n B. C. and how p a r t s of the i n f o r m a t i o n c o l l e c t e d can be used t o c a l i b r a t e a g r a v i t y model of the type proposed by the F e d e r a l Highways A d m i n i s t r a t i o n (U. S. A.)'. The r e s u l t s o f t h e c a l i b r a t i o n of both the 27 and 31 node models are compared w i t h previous, c a l i b r a t i o n e f f o r t s In an i n t r a - u r b a n c o n t e x t . There i s a r e l a t i v e l y d e t a i l e d p r e s e n t a t i o n of the d e s i g n and completion of t h i s type of -survey. A l s o , the r o l e of the g r a v i t y model of t r i p d i s t r i b u t i o n i n the p l a n n i n g p r o c e s s i s e x p l a i n e d . A new method of d e t e r m i n i n g the i n t e r - z o n a l impedance i s used. T h i s impedance i s based on t r i p c ost and takes i n t o ac-count' such t h i n g s as type of t e r r a i n ( l e v e l , r o l l i n g , mountainous). The r e s u l t s i n d i c a t e t h a t the c a l i b r a t i o n was s u c c e s s f u l . The use of the g r a v i t y model of t r i p d i s t r i b u t i o n would appear to be an a p p r o p r i a t e technique i n the a n a l y s i s of i n t e r - u r b a n commercial t r u c k t r a f f i c . T A B L E O F C O N T E N T S INTRODUCTION 1.1 Problem 1.2 Hypothesis 1.3 Data 1.4 Methodology 1.5 Summary TRIP DISTRIBUTION MODELS 2.1 Fratar-Method Growth-Factor Model 2.2 Intervening Opportunities Model 2.3 Competing Opportunities Model 2.4 Gravity Model THE GRAVITY MODEL OF TRIP DISTRIBUTION 3.1 Trip D i s t r i b u t i o n i n the Planning Process 3.2 Gravity Model Theory 3-3 Gravity Model Application 3.4 C a l i b r a t i o n of the Gravity Model. 3.5 Evaluating the Model C a l i b r a t i o n 4. THE SURVEY " 4.1 Purpose of the Survey 4.2 Survey Design 4.3 The Interview Form & Interviewer/Coder Manual 4.4 Operational Aspects 4.5 Results 4.6 Survey Critique 5. RESULTS OF GRAVITY MODEL CALIBRATION 5.1 Data Preparation 5.2 C a l i b r a t i o n of the 31 Node Model 5.3 C a l i b r a t i o n of the 27 Node Model 6. DISCUSSION OF RESULTS 6.1 Comparison of 27 and 31 Node Models 6.2 Comparison with Other G-M C a l i b r a t i o n s 6.3 Comparison with Vancouver G-M C a l i b r a t i o n s 6.4 Comments and Recommendations 7. CONCLUSIONS APPENDIX I—THE INTERVIEW FORM APPENDIX II—THE INTERVIEWER/CODER MANUAL i i i PAGE APPENDIX III—SECTIONS OF D. F. TOWNSEND'S THESIS 90 APPENDIX I V — T H E SURVEY SCHEDULE 1 0 2 APPENDIX V--FACTORS FOR TRIPS/WEEKS 1 1 7 APPENDIX VI--SCALE FORMULAS 1 1 9 APPENDIX VII—MODEL WITH 3 1 NODES 1 2 5 APPENDIX VIII--MODEL WITH 2 7 NODES 1 5 5 L I S T O F T A B L E S 5.2.1 CALIBRATION STATISTICS: 5.3.1 CALIBRATION STATISTICS 6.1.1 CALIBRATION STATISTICS 6.2.1 AVERAGE TRIP COST (LENGTH) DIFFERENCES 6.3.1 CALIBRATION STATISTICS V L I S T O P F I G U R E S PAGE 3.1 THE PLANNING PROCESS 13 4.4.1 SURVEY LOCATIONS 29 5.1.1 NODE LOCATIONS & INTER-NODAL IMPEDANCES 31 5.2.1 SCATTER PLOTS 39 5.2.2 TRIP COST DISTRIBUTIONS 41 5.2.3 FRICTION FACTOR DISTRIBUTIONS : 43 5.3-1 SCATTER PLOTS 45 5.3.2 TRIP COST DISTRIBUTIONS 47 5.3-3 FRICTION FACTOR DISTRIBUTIONS 49 N O T E THE NUMBERS IN PARENTHESES WHICH ARE USED FOR REFERENCING REFER TO THE "REFERENCES" AT THE END OF EACH CHAPTER. v i i ACKNOWLEDGEMENT A sincere note of appreciation goes t o a l l those people who contributed to t h i s t h e s i s . A s p e c i a l acknowledgement belongs to the Transportation Development Agency (MOT) for t h e i r f i n a n c i a l assistance and to the B . C. Department of Highways who conducted the survey"and allowed me access to t h e i r f i l e s . The people who did the interviewing and coding work on the survey deserve a spec i a l thanks along with the t y p i s t who had to put up with my handwriting. I would also l i k e to thank my advisor G. Brown and the readers K. Denike and F. Navin. It goes without saying that any success achieved i n the following pages i s due to t h e i r i n t e r e s t , e f f o r t , suggestions and aid during the whole work period. 1 . INTRODUCTION x 1 . 1 PROBLEM Transportation planning Is concerned with the movement of people and goods; more s p e c i f i c a l l y , with the pr o v i s i o n of f a c i l i t i e s by which the e f f i c i e n c y of t h i s movement i s maxi-mized. The ultimate goal of the transportation planning process i s to predict the impact of future demand l e v e l s on proposed transportation systems. Using a systems approach i n t h i s process enables evaluation of a l t e r n a t i v e transportation systems or a l t e r n a t i v e sets of improvements to the e x i s t i n g trans-portation system; the objective being to sel e c t the best, a l t e r n a t i v e with respect to the goals and objectives of the people, This systems approach to transportation planning involves the use of several groups of mathematical models: 1 . Trip Generation 2. Trip D i s t r i b u t i o n 3. Modal S p l i t and 4 . Network Assignment The use of these models generally involves four phases: 1 . Inventory o f the current system. This i s accom-plished by surveys of one form or another, 2. Analysis o f e x i s t i n g conditions and c a l i b r a t i o n of forecasting techniques, 3.. Forecasting future conditions and 4 . Analysis o f the impacts o f future transportation systems for evaluation and feedback. 2 One of the primary purposes, i f not the primary purpose,, of an i n t e r - c i t y road system i s to enable economic.inter-change between areas. In the planning of i n t e r - r e g i o n a l or i n t e r - c i t y t r a n s p o r t a t i o n networks, t r u c k s ( o f t e n due to a l a c k of data) are given much l e s s c o n s i d e r a t i o n than c a r s . A n a l y s i s and design have emphasised automobile t r a f f i c w i t h t r u c k s assumed t o be some percentage of the t o t a l stream w i t h the same o r i g i n / d e s t i n a t i o n (0/D) c h a r a c t e r i s t i c s . The t r a -d i t i o n a l t r a f f i c models . ( t r i p d i s t r i b u t i o n , e t c .) hav;e not been a p p l i e d t o goods movement. The reasons f o r t h i s neglect could be l a c k of survey techniques and/or l a c k of i n t e r e s t . In any case, i t i s a mistake t o p l a n a highway network without . g i v i n g f u l l c o n s i d e r a t i o n t o goods movement. This t h e s i s c o m b i n e s previous k n o w l e d g e — g r a v i t y model theory and i n t e r - c i t y t r a v e l c o s t s — w i t h new i n f o r m a t i o n obtained from the a p p l i c a t i o n of an o l d survey t e c h n i q u e — r o a d s i d e i n t e r v i e w — t o a new problem ( i n t e r - c i t y goods movement). The f i n d i n g s i n d i c a t e t h a t the data provided by t h i s survey can be used i n the g r a v i t y model t o analyse i n t e r - c i t y t r u c k t r a f f i c w i t h good r e s u l t s . A s i g n i f i c a n t c o n t r i b u t i o n to the f i e l d of t r a n s p o r t a t i o n e n g i n e e r i n g / p l a n n i n g i s the r e s u l t . Planning and design of highway systems can now be based on t r u c k as w e l l as car t r a f f i c u s i n g a n a l y t i c a l methods.such as the g r a v i t y model. P r e v i o u s l y t h i s v a l u a b l e t o o l had not been a p p l i e d i n t h i s c ontext. 3 This thesis i s concerned with the use of i n t e r - c i t y truck t r a f f i c data to c a l i b r a t e the gravity model of t r i p d i s t r i b u t i o n . The c a l i b r a t i o n i s based on data of truck t r i p s between c i t i e s i n B r i t i s h Columbia. That i s , a model of i n t e r n a l - i n t e r n a l t r i p s . The gravity model used can be represented by the following formula as discussed i n d e t a i l i n sect i o n 3-3: P.A.F..K.. T - 1 3 U 1 J i j n Z A F. K. X I X I X x=l • where': T..=the number of t r i p s from zone i to zone j . P^ =trips produced by zone i . A.= t r i p s attracted by zone j . 3 F..=the f r i c t i o n factor for t r a v e l time between 1 J zone i and j . K..=socio-economic adjustment f a c t o r between 1 J zones i and j . n =the number of zones. The design and use of the roadside interview form of survey i s discussed with emphasis on i t s a b i l i t y to provide a base year 0/D table. This analysis also used a new type of impedance which was developed by D. F . Townsend (2 ). Generalized t r i p cost replaces distance or time. 1.2 HYPOTHESIS The question, at which the research i s d i r e c t e d , i s whether t r a d i t i o n a l planning techniques such as the grav i t y model of 4 t r i p d i s t r i b u t i o n can be developed so that the design of road networks between c i t i e s i s more sensitive to truck t r a f f i c . The hypothesis i s that the o r i g i n / d e s t i n a t i o n data from a roadside survey of trucks can be used to c a l i b r a t e a g r a v i t y model of inter-urban truck t r a f f i c i n B. C. The use of data from a roadside survey to c a l i b r a t e a gravity model i s an important element of t h i s t h e s i s . The main variables are the number of t r i p s and interzonal impedance such as t r a v e l cost or t r i p length. Impedance can be defined as that which causes or tends to cause a reduction i n the number of t r i p s or i n t e r a c t i o n between zones. Examples are cost, distance, r e l i e f , separation by water and p o l i t i c a l boundaries. Due to the large d i v e r s i t y i n commodities carried and the lack of a commonly accepted general-purpose commodity c l a s s i f i -cation system, a l l t r i p s are treated using the same model. This ignores the high degree of regional s p e c i a l i z a t i o n common i n basic resource economies. The t r i p length would tend to be determined by the location of areas environmentally suitable to the production and consumption of the commodity. An example of t h i s i s the s o i l and climate conditions necessary for f r u i t production and population groupings of a s u f f i c i e n t s i z e to maintain a viable market. As a r e s u l t , the gravity model's assumption of a c o r r e l a t i o n between s p a t i a l separation and number of t r i p s i s questionable. A s i m i l a r problem occurs when the model i s used t o analyse work t r i p s i n an urban area. The choice of r e s i d e n t i a l l o c a t i o n and p l a c e of work, which determine the. work t r i p l ength are determined by many f a c t o r s i n c l u d i n g the environmental c o n d i t i o n s of the nodal areas (3). The "socio-economic" f a c t o r K i s intended t o a l l o w f o r t h i s e f f e c t . However, i t i s noted that a c e r t a i n amount of controversy surrounds t h i s f a c t o r (Catanese; pg. 209-240).. . 1.3 DATA The main source of data i s a survey done by the Department of Highways of B r i t i s h Columbia during J u l y and August of 1974.. This survey, which the author helped design and conduct, i n v o l v e d i n t e r v i e w i n g t r u c k d r i v e r s at c e r t a i n weigh s c a l e s . . One survey form was completed f o r each t r u c k that stopped at a. s c a l e . The i n t e r v i e w s were conducted f o r approximately one week (5 days) at s e l e c t e d s c a l e s . The i n f o r m a t i o n c o l l e c t e d was used to produce an 0-D t a b l e of weekly (5 day) i n t e r - c i t y t r u c k t r a f f i c . The data on i n t e r z o n a l t r a v e l costs i s that developed by D. F. Townsend ( 2 ) f o r the purpose of r e l a t i n g investment i n highway f a c i l i t i e s t o r e d u c t i o n i n t r u c k (heavy) o p e r a t i n g c o s t s . These f i g u r e s are s e n s i t i v e to the e f f e c t s of: 1. Surface f i n i s h (pavement or gravel),. 2. L e g a l l y r e s t r i c t e d speeds (urban a r e a s ) , 3• Road.width, 4. Type of t e r r a i n ( f l a t , r o l l i n g , mountainous), 5 . T r a f f i c flow volumes,, and 6 . F e r r y d e l a y s . 6 While t h i s work was done using 1971 information i t i s f e l t that the r e s u l t s are suitable for use i n t h i s c a l i b r a t i o n exercise. Only r e l a t i v e t r a v e l costs between zones are relevant for the gravity model. If the interzonal impedances were i n the same proportion at the time of the survey as those calculated f o r 1971, then the use of t h i s data i n c a l i b r a t i o n i s v a l i d . This i s f e l t to be the case i n t h i s instance. 1.4 METHODOLOGY The question of whether or not the gr a v i t y model of t r i p d i s t r i b u t i o n i s suitable for a p p l i c a t i o n i n t h i s s i t u a t i o n i s answered i n a r e l a t i v e context. The model's a b i l i t y to reproduce the base year t r i p table i s compared with that of other, more conventional c a l i b r a t i o n e f f o r t s . -S t a t i s t i c a l measures form the basis of the conclusions reached i n t h i s t h e s i s . Prom the availa b l e s t a t i s t i c s two are chosen for a n a l y t i c a l purposes: 1. Trip length (cost) d i s t r i b u t i o n comparison by means of the chi-squared goodness-of-fit t e s t , and 2. The root mean square error (RMSE) which measures the dispersion between the cal i b r a t e d and the actual number of t r i p s between each pa i r of zones. The values of these two variables are used to compare the 31 and 27 node models developed i n t h i s a n a l y s i s . The comparison of these truck models with other c a l i b r a t i o n e f f o r t s had to be done on the basis of average t r i p length (cost) difference because the two above-noted s t a t i s t i c s were not reported. ..  7. 1 . 5 SUMMARY T h i s chapter b r i e f l y o u t l i n e s t r a n s p o r t a t i o n p l a n n i n g and at what ar e a of the t r a n s p o r t a t i o n p l a n n i n g p r o c e s s t h i s r e s e a r c h i s d i r e c t e d . The p r o j e c t i s d e s c r i b e d i n g e n e r a l terms. The o b j e c t i v e i s t o convey an u n d e r s t a n d i n g of how t h i s work r e l a t e s to the whole f i e l d of t r a n s p o r t a t i o n p l a n -n i n g . The r e s t o f the t h e s i s d e t a i l s each element of t h e work alo n g w i t h the r e s u l t s and i m p l i c a t i o n s f o r p r a c t i c a l a p p l i -c a t i o n and f u t u r e r e s e a r c h . 7A REFERENCES 1. Catanese, A. M. , NEW PERSPECTIVES IN URBAN TRANSPORTATION RESEARCH, D. C. heath and Company, L e x i n g t o n , Massachusetts, 1972. 2. Townsend, D. F., "Highway Investment i n . B. C. .1946-71", M.A. T h e s i s , U n i v e r s i t y of B. C , 1.973-3. W o l f o r t h , J . R., RESIDENTIAL LOCATION AND THE PLACE OF WORK, T a n t a l u s Research L i m i t e d , Vancouver, 1965. 8 2 . T R I P D I S T R I B U T I O N M O D E L S T h i s c h a p t e r d i s c u s s e s t h e d i f f e r e n t m o d e l s o f t r i p d i s t r i b u t i o n . T h e t h e o r y , a d v a n t a g e s a n d w e a k n e s s e s o f t h e m o d e l s a r e p r e s e n t e d . T h e r a t i o n a l b e h i n d f o c u s i n g o n t h e g r a v i t y m o d e l i n t h i s a n a l y s i s i s p r e s e n t e d b e l o w . T h e r e a r e f o u r m a j o r m e t h o d s o f t r i p d i s t r i b u t i o n i n t h e p l a n n i n g p r o c e s s : 1 . F r a t a r - M e t h o d G r o w t h - F a c t o r M o d e l 2 . I n t e r v e n i n g O p p o r t u n i t i e s M o d e l 3. C o m p e t i n g O p p o r t u n i t i e s M o d e l .... 4. G r a v i t y . Model. T h e m a i n e m p h a s i s o f t h i s t h e s i s i s o n t h e g r a v i t y m o d e l . f o r a n u m b e r o f r e a s o n s i n c l u d i n g , t h e f o l l o w i n g : 1.. H i g h w a y n e t w o r k i m p r o v e m e n t s a r e . n o t c o n s i d e r e d i n . t h e F r a t a r m o d e l . T h e r e i s n o d i r e c t p r o v i s i o n f o r t r a v e l t i m e c h a n g e s . 2 . . T h e d i s t a n c e r a n k i n g o f z o n e s f r o m t h e z o n e o f o r i g i n i n t h e i n t e r v e n i n g o p p o r t u n i t i e s m o d e l c a n c h a n g e w i t h s e l e c t i v e i m p r o v e m e n t s t o t h e r o a d s y s t e m . 3- One s i g n i f i c a n t s t u d y ( 3.) f o u n d t h a t t h e c o m p e t i n g o p p o r t u n i t i e s m o d e l w a s d i f f i c u l t t o c a l i b r a t e a n d g a v e r e s u l t s i n f e r i o r t o b o t h t h e g r a v i t y a n d i n t e r -v e n i n g o p p o r t u n i t i e s m o d e l s . T h i s w a s a s u b s t a n t i a l s t u d y u s i n g d a t a f r o m W a s h i n g t o n , D. C. 2 . 1 F R A T A R - M E T H O D GROWTH-FACTOR MODEL ( 2 ) T h i s m o d e l i s b a s e d o n t h e a s s u m p t i o n t h a t t h e f u t u r e t r i p d i s t r i b u t i o n p a t t e r n Is p r o p o r t i o n a l t o t h a t o f t h e b a s e y e a r m o d i f i e d b y t h e g r o w t h f a c t o r s o f t h e z o n e s u n d e r c o n s i d e r a t i o n ( 4 ) . T h e t r i p i n t e r c h a n g e b e t w e e n a n y t w o z o n e s i n t h e f o r e -c a s t y e a r i s d i r e c t l y p r o p o r t i o n a l t o t h e g r o w t h f a c t o r s o f the two zones and inversely proportional to the average attract-ing p u l l of a l l other zones on the zone of o r i g i n (1). n T. .=t, .P.P. x = l ± A i j i j 1 j n E t. F x = l l x x subject to': i F* = T i n k 1 T i1 j = l 3 and w k T. j " i -n k E T?. 1=1 i j where:' k = the i t e r a t i o n , t. . = base year t r i p s between zone i and j . T^j = p r e d i c t i o n year t r i p s between zone i and j . t ^ = base year t r i p productions i n zone i . t. = base year t r i p a t t r a c t i o n s to zone j . J T\ = forecast year t r i p productions i n zone i . T. = forecast year t r i p a t t r a c t i o n s to zone j . F . = growth factor for zone i = T./t. F . = growth factor for zone j = T./t. J J J • n = the number of zones i n the study area. The f i n a l (prediction-year) t r i p d i s t r i b u t i o n pattern i s obtained by an i t e r a t i v e procedure s t a r t i n g with the base-year pattern. This model does not have a separate c a l i b r a t i o n phase 1 0 . 2.2 INTERVENING OPPORTUNITIES MODEL The basic hypothesis of t h i s model i s that the number of t r i p s from an o r i g i n zone to a destination zone i s d i r e c t l y proportional to the number of opportunities (destinations) i n the destination zone and inversely p r o p o r t i o n a l to the number of intervening opportunities or destinations between the zone of o r i g i n and the zone of destination being con-sidered ( 4 ) . The model can be expressed by an equation of. the form: T i j = C i °i ( e x P ( - L V j 3 - e x p ( - L V J + 1 ) ) where': T. . = t r i p s from zone 1 to zone i... 0 ^ = number of t r i p origins i n zone i . V . = t o t a l destinations considered up to zone j . V . . , = t o t a l destinations considered up to and including zone j . L = a constant p r o b a b i l i t y of a destination being accepted i f i t i s considered. C. = a constant for zone i which i s determined by 1 r e q u i r i n g that the constraint, n I T . . = 0 . , be s a t i s f i e d . The c a l i b r a t i o n procedure generates a value or values of L from a set of base year 0/D data. C a l i b r a t i o n . i s usually done using an i t e r a t i v e technique which i s terminated when the computed mean t r i p length f o r each zone i s In s a t i s f a c t o r y agreement with the actual mean t r i p length ( 1 ) . 11. Studies by Ruiter and Pyers ( 7 , 6 ) i n d i c a t e , i n one case, the need to use multiple conditional p r o b a b i l i t y measures L and i n the other, a poor correspondence between the two t r i p -length frequency d i s t r i b u t i o n s . 2.3 COMPETING OPPORTUNITIES MODEL This model's basic assumption i s that the p r o b a b i l i t y that a t r i p o r i g i n a t i n g i n a given d i s t r i c t and ending i n another d i s t r i c t i s given by the r a t i o of destination opportunities within the destination d i s t r i c t to a l l d e s t i n a t i o n opportunities within the same time zone up to and including the destination d i s t r i c t i n question ( 5 ) . The model can be expressed by an equation of the form ( 5 ) : T. . = T J A , j / A x 1.1 I n E(A./A ) n 0 where: T. . = the t r i p s from zone i to zone j . T^ = the number of orig i n s (productions) i n zone i . A. = the number of destinations ( a t t r a c t i o n s ) i n zone j . J A = the t o t a l number of destinations from zone of o r i g i n x i within the time band containing the zone of destination. n = the number of time zones or bands. The suggested method of c a l i b r a t i o n i s adjustment of the time band i n t e r v a l s u n t i l agreement i s obtained between the 0/D t r i p length frequency d i s t r i b u t i o n and that generated by the model ( 5) • 12 The r e s u l t s of a study by Heanue and Pyers (3 ) indicate that the model i s d i f f i c u l t to c a l i b r a t e and that i t produces i n f e r i o r r e s u l t s to the gravity model. 2.4 GRAVITY MODEL The gravity model of t r i p d i s t r i b u t i o n i s described i n d e t a i l i n chapter 3-This analysis i s based on the gravity model fo r a number of reasons including the following: a) The gravity model, while simple i n concept, i s se n s i t i v e to changes i n t r a v e l time or cost. b) Relative to other models the use of the gravity model has been well documented. This information i s used to evaluate the model's performance i n i t s a p p l i c a t i o n . 12A REFERENCES Fi s k , C , "Introduction to Trip D i s t r i b u t i o n Models with • Application to the Central Business D i s t r i c t of Vancouver" Transportation Research Series Report No. 4, Vancouver, B. C., February 1974. Fratar, T. J . , "Forecasting D i s t r i b u t i o n of Interzonal Vehicular Trips by Successive Approximations", Highway Research Proceedings, Vol. 33> 1954. Heanue, K., and Pyers, C , "A Comparative Evaluation of Trip D i s t r i b u t i o n Procedures", HRR 114, 1965. Hutchinson, B. G., PRINCIPLES OF URBAN TRANSPORT SYSTEMS PLANNING, McGraw-Hill, 1974. Paquette, R. J . , Ashford, N., and Wright, P. H., TRANS-PORTATION ENGINEERING, Ronald Press, New York, 1972. Pyers, C. E., "Evaluation of the Intervening Oppor-t u n i t i e s Trip D i s t r i b u t i o n Model," HRR 114, 1965. Ruiter, E. R., "Improvements i n Understanding, C a l i -brating and Applying the Opportunity Model", HRR 165, 1967 13 3• THE GRAVITY MODEL OF TRIP DISTRIBUTION . Now that the research Is focused on the use of the gravity model, t h i s chapter presents a more d e t a i l e d description of the gravity^model i n the transportation planning process. The theory, a p p l i c a t i o n and c a l i b r a t i o n of the model are explained. Also, s t a t i s t i c s • u s e d to evaluate the q u a l i t y of the c a l i b r a t i o n are presented. 3.1 TRIP DISTRIBUTION IN THE PLANNING PROCESS Inherent i n the (transportation) planning process i s an appraisal of a l t e r n a t i v e plans; ranking being on the basis of f u l f i l l m e n t of community goals and objectives. A si m p l i f i e d model of the (transportation) planning process i s shown i n Figure 3-1 • — — • — -^COMMUNITY GOALS & OBJECTIVES r IT,AND USE—TRANSPORTATION PLAN TRIP GENERATION  T fIRIP DISTRIBUTION — MODAL SPLIT I NETWORK ASSIGNMENT 1 • • r j  I— FEEDBACK^ -lANALYSIS OF ; ENVIRONMENTAL IMPACT [RECOMMENDED LAND USE—TRANSPORTATION PLAN * ~ 1 jIMPLEMENT ATION FIGURE 3-1. THE PLANNING PROCESS It i s now generally recognized that both present and future t r a f f i c patterns are a function of: 14 1. The s o c i a l and economic c h a r a c t e r i s t i c s of the people who make t r i p s ; 2. The p a t t e r n of land use i n an are a , i n c l u d i n g the l o c a t i o n and i n t e n s i t y of use; and 3- The type and extent of t r a n s p o r t a t i o n f a c i l i t i e s a v a i l a b l e i n an area. ( 1 ) An e s s e n t i a l part of any systematic p l a n n i n g based on these r e l a t i o n s h i p s i s a method of e s t i m a t i n g the zonal t r i p interchange of a l t e r n a t i v e p l ans. This c a p a b i l i t y i s provided by v a r i o u s mathematical formulas known as " t r i p d i s t r i b u t i o n models". The most common i s the " g r a v i t y model" as d e t a i l e d by the F e d e r a l Highways A d m i n i s t r a t i o n . ( 1 ) 3.2 GRAVITY MODEL THEORY The theory of the g r a v i t y model i s based on the concept of g r a v i t a t i o n a l f o r c e advanced by Isaac Newton i n 1686. This law s t a t e s that the f o r c e of a t t r a c t i o n ( g r a v i t y ) between two q u a n t i t i e s of matter i s d i r e c t l y p r o p o r t i o n a l t o the product of t h e i r masses and i n v e r s e l y p r o p o r t i o n a l t o the square of the d i s t a n c e between them. Ma t h e m a t i c a l l y i t i s expressed as f o l l o w s : F <* M I M 2 where: F = the g r a v i t a t i o n a l f o r c e M 1 = mass of body.#1 M 2 = mass of body #2 D = d i s t a n c e between 1 and 2. B a s i c a l l y , the g r a v i t y model says that t r i p interchanges between zones depends on the r e l a t i v e a t t r a c t i o n of each of 15 the zones and on some function of the zonal s p a t i a l separation ( l ) . The mathematical formulation i s (.3 ): 2 V d ? k k=l where: P. = t r i p s produced by zone i . A3: = t r i p s attracted by zone j . d*] . = s p a t i a l separation between i & j . b 1 ^ = an empirically determined exponent express-ing the average effect of area-wide separation on t r i p interchange between zones. The problem with t h i s formulation i s the determination of the value of the exponent. It must be found e m p i r i c a l l y by t r i a l and error. An analysis of the r e s u l t s of the research and application, of t h i s early form of gravity model indicates four s i g n i f i c a n t findings ( 1 ) : 1. S p a t i a l separation between zones appears to be best measured by "over the road" d r i v i n g time plus some measure of terminal time i n the zones at each end of the t r i p . 2. The exponent of travel-time' appears to be inversely proportional to the importance of the t r i p . 3 . For most t r i p purposes the-exponent of travel-time generally increases as the time i n t e r v a l increases. 4. The exponent of travel-time alone, does not completely explain the propensity for t r a v e l between two points. Travel patterns can also be affected by various zonal s o c i a l and economic linkages. 3.3 GRAVITY MODEL APPLICATION The revised gravity model formula which i s now used i n practice i s (3): 16 T. . = c. P. A. P.. K.. , v i j 1 1 j i j i j (3.3.1) where'1: T..: P.: and A. are previously defined. F . . = f r i c t i o n f a c t o r f o r t r a v e l time between 1 J zones i and j . c. = 1 = a constant for any 1 n o r i g i n zone i Z A F . K. x=l x 1 X 1 X The f r i c t i o n factors ) a r e a measure of the impedance to interzonal t r a v e l due to the s p a t i a i separation between zones (1). The re l a t i o n s h i p between the F factors and i n t e r -zonal impedance (cost a time, distance) i s : F . . cc t : h . where: F ^ and b are previously defined. t . . = a measure of the i n t e r z o n a l impedance or s p a t i a l separation such' as t r a v e l cost, time, or distance. Note that research has found B to be a function of t (4;p. 304). These factors are found by a process of t r i a l and adjust-ment using the base year data. In addition to being more accurate, t h i s revised formula's (3-3.1) computational require-ments are greatly s i m p l i f i e d . There i s no inverse exponential to calculate. During c a l i b r a t i o n there i s a process avai l a b l e where the F factors are assumed to be an exponential function (smoothing function) of the interzonal impedances. I f t h i s assumption i s made, the c a l i b r a t i o n of the model produces the parameters of the smoothing function as output instead of a l i s t of f r i c t i o n factors. 17 The K factor i s a s p e c i f i c zone-to-zone adjustment factor to allow for the incorporation of the- effect on t r a v e l patterns of s o c i a l and economic linkages not otherwise accounted fo r i n the gravity model formulation ( 2 ) . The value of c^ i s established by r e q u i r i n g that the number of t r i p s o r i g i n a t i n g from zone i be equal to P . This ensures that when a l l t r i p interchanges (T^^) have been computed the row sum for each zone equals the t o t a l number of t r i p s produced (productions) by each zone (P^). But, there i s no guarantee that the a t t r a c t i o n t o t a l s (column sums of T^.) are equal to the t o t a l number of t r i p s attracted (attractions) to each zone (A.). An i t e r a t i v e pro-cedure ( a t t r a c t i o n balancing i t e r a t i o n s ) i s used to make the necessary adjustments. After each i t e r a t i o n adjusted a t t r a c t i o n factors are calculated from the following formula ( 3 ) : .k _ A. . k - 1 j l J • • . ( 3 - 3 . 2 ) . C j " where: A^ = adjusted a t t r a c t i o n factor for i t e r a t i o n k. C k = actual a t t r a c t i o n t o t a l (column sum of T..) Aj = desired a t t r a c t i o n t o t a l . 3.4 CALIBRATION OF THE GRAVITY MODEL Ca l i b r a t i o n consists of using the base year 0/D data to produce the f r i c t i o n factors (F) and where necessary the socio-economic factors (K..). To produce f r i c t i o n factors as output the model requires three basic inputs: 18 1. The base year 0/D table giving the number of t r i p s between each pair of zones. 2. A table giving, for each zone, the t o t a l number of t r i p s produced i n a zone (row sum) as well as the t o t a l number of t r i p s attracted by that zone (column sum). These are, r e s p e c t i v e l y , the P's and A's of the gravity model formula. 3. A table containing a measure of the zonal s p a t i a l ' separation between each p a i r of zones. The values, i n t h i s table could represent the t o t a l d r i v i n g plus terminal time, the t o t a l t r a v e l cost, the out-of-pocket cost, or the distance between zones. C a l i b r a t i o n i s started by assuming an i n i t i a l set of factors (P), usually equal to 1.0. These values together with input values of P and A are used i n equations (3.3.1) and 3.3.2) to produce a gravity model d i s t r i b u t i o n of t r i p i n t e r -changes. This set of estimated t r i p interchanges i s compared with the actual t r i p interchanges as given by the 0/D table. Since the gravity model calculations use data d i r e c t l y from f i e l d surveys to express a l l parameters except the assumed f r i c t i o n f a c t o r s , any difference between the two t r i p length frequency d i s t r i b u t i o n s are due p r i n c i p a l l y to a poor assumption as to the i n i t i a l value of these f r i c t i o n f a c t o r s (1). The F factors'are adjusted i t e r a t i v e l y u n t i l the two sets of t r i p interchanges are i n close agreement. Mathematically the procedure can be represented as follows (3): , pk+1 = p k T^ (3.4.1) where: r = the set of zonal Interchanges which by virtue of having the same impedance, have the same F fac t o r . T^ = the desired t o t a l t r i p s f o r group r . 19 the t o t a l t r i p interchange f o r group r obtained using equations (3-3.1) & (3-3.2) and f r i c t i o n f a c t o r F k . the f r i c t i o n f a c t o r a s s o c i a t e d w i t h group r i n c a l i b r a t i o n i t e r a t i o n k. I n i t i a l estimates of F may be s u p p l i e d as data or simply assumed: to be 1.0. A f u r t h e r refinement can be a f f e c t e d by r e q u i r i n g that the f r i c t i o n f a c t o r s represent o r d i n a t e s of a smooth curve of the type (3): F r = al£ e _ c I r (3.4.2) where: a, b, & c are constants produced by f i t t i n g the p o i n t s from equation (3.4.1) to equation (3.4.2) I = the impedance f o r group r In chapter f i v e of Catanese, a d i s c u s s i o n i s presented concerning the use of the socio-economic f a c t o r K i n the g r a v i t y model. The argument f o r e x c l u s i o n of the K f a c t o r i n favor of a c o n c e n t r a t i o n of e f f o r t on the F f a c t o r i s based on a number of t h i n g s : 1. There are r e l a t i v e l y l a r g e e r r o r s of measurement a s s o c i a t e d w i t h the F f a c t o r s . Studies (2; pg. 213) found that t h e ' c o e f f i c i e n t of v a r i a t i o n of the F term was i n every instance greater than one and averaged c l o s e r to f i v e . 2. At t h i s point no evidence e x i s t s to shed l i g h t on what the magnitude of the e r r o r of measurement of the K f a c t o r might be (2: pg. 214). 3. There i s at l e a s t a strong s u s p i c i o n t h a t the K f a c t o r and the f r i c t i o n f a c t o r are c o r r e l a t e d (2; pg. 214). 4. The e r r o r i n the output of a model r e s u l t i n g from bhe e r r o r of measurement a s s o c i a t e d w i t h each of the . input v a r i a b l e s increases r a p i d l y as measurement e r r o r i n c r e a s e s , e s p e c i a l l y i f the i n p u t v a r i a b l e s are c o r r e l a t e d . That i s , as the complexity of the E F k -r 20 model increases the more the errors of measurement accumulate. The gains i n correctness of s p e c i f i -cation i n a more complex model, can be of f s e t by the compounding of measurement errors (2; pg. 213). Accordingly, i t can be concluded that i n order to j u s t i f y t h e i r i n c l u s i o n the K factors would have to provide a "sub-s t a n t i a l " increase i n the p r e d i c t i v e a b i l i t y of the model. The exact amount of t h i s " s u b s t a n t i a l" increase cannot be calculated as there i s yet no way to determine the error of measurement i n the K factors. The main objective of t h i s thesis i s to develop a set of f r i c t i o n factors for i n t e r - c i t y truck t r a f f i c i n B. C. 3.5 EVALUATING THE MODEL CALIBRATION Base year values can be compared with c a l i b r a t e d model simulations using several t e s t s . The two t e s t s used here are (3): 1. The Chi-squared goodness-of-fit test i s used to compare the base year and calib r a t e d t r i p length d i s t r i b u t i o n s . The s t a t i s t i c a l measure can be obtained from the formula (3): x2 - r x (t= - t*)2/t* k=t . m m c where: t^. = calibrated # of t r i p s f o r impedance value 1. t^. = actual # of t r i p s for impedance value k. t . = minimum impedance value mm ^ t = maximum impedance value max ^ 2. . The root mean square error (RSME) i s a measure of the difference between calib r a t e d and actual 0-D values. 21 It i s defined by ( 3 ) RSME = /MSE n n c a 2 2 MSE = £ E (TT .-TT".) /n i = l J - l 1 J 1 J c Where: T..= calibrated t r i p interchange between zones 1 J i and j . T..= actual t r i p interchange between zones i 1 J and j . n = the number of zones. The purpose of these tests i s to evaluate how well the „ calibrated model i s able to simulate base year data ( i . e . the data from the 0/D survey). 2 LA-REFERENCES. 1. Bureau of Public Roads, U.S. Department of Commerce, Off i c e of Planning, " C a l i b r a t i n g and Testing a Gravity Model for any size Urban Area", Washington, D.C., July 1963. . 2. Catanese, A. M., NEW PERSPECTIVES IN URBAN TRANSPORTATION RESEARCH, D. C. Heath and Company, Lexington, Massachusetts, 1972. 3. Fi s k , C , "Introduction to Trip. D i s t r i b u t i o n Models with Application to the Central Business D i s t r i c t of Vancouver", Transportation Research Series Report No. 4, Vancouver, B. C , February 1974. 4. Paquette, R. J . , Ashford, N., and Wright, P. H., • TRANSPORTATION ENGINEERING, Ronald Press, New York, 1972. 22 4. THE SURVEY The gravity model cannot be calibr a t e d without data that has been c o l l e c t e d i n a survey. This chapter describes . i n d e t a i l the survey used to obtain the data i n t h i s t h e s i s . A great deal of credit must go to those who did the Western Canada Truck Origin-Destination Survey i n 1973. The chapter includes a discussion of the r e s u l t s of the survey and a c r i t i q u e o u t l i n i n g the problems of t h i s survey i n r e l a t i o n to i t s use In the gravity model. 4.1 PURPOSE OF THE SURVEY The main objective of the commercial trucking survey i n B. C. i s to determine the volumes of truck t r a f f i c on p r o v i n c i a l highways. The patterns of flow are to be established and analyzed on the basis of o r i g i n / d e s t i n a t i o n , commodity type, weight, truck configuration, license c l a s s , and capacity u t i l i z a t i o n . This survey emphasizes i n t e r - r e g i o n a l flows i n B. C. Compatibility with similar surveys i n other provinces i s also an objective. This enables r e s u l t s to be compiled on an i n t e r - p r o v i n c i a l basis. 4.2 SURVEY DESIGN There are two basic methods of obtaining information of the above-noted type. 1. Questionnaires mailed to and completed by appropriate p a r t i e s . 2. Roadside Interviews. 23 For various reasons including: 1 . The a v a i l a b i l i t y of resources and s u i t a b l e i n t e r -view s i t e s ; . 2 . The nature of the information desired such as com-pleteness with respect to the amount of private c a r r i e r t r a f f i c ; 3- The r e s u l t s of previous surveys of a s i m i l a r purpose; i t was decided to use the roadside interview form of survey, at permanent weight scales. This l i m i t s the survey to vehicles with a registered gross vehicle weight (RGVW) greater than 1 2 , 0 0 0 lbs. because l i g h t e r trucks do not have to report to the scales. The structure of the B. C. survey i s g r e a t l y influenced by that of the Western Canada Truck Origin-Destination Survey. Discussions were held with representatives from the f e d e r a l and p r o v i n c i a l governments involved i n the Western Canada survey to determine various d e t a i l s of planning and operations involved i n that survey. They provided valuable ins i g h t s on •how to organize and run surveys of t h i s type. (e.g. emphasize t r a i n i n g and be an equal opportunity employer) During a l l stages of planning, contact was made with personnel of the Weigh Scale Branch of the Department of Transport and Communications of B. C. The operation\Of a weigh scale was observed to see how much time the interview could take without causing undue delay and to see I f the interview could be done while the truck was being weighed. 24 As a r e s u l t j the interview form was of simple design so that i t could be interpreted and completed i n two minutes or les s . The data c o l l e c t e d was such that i t had the p o t e n t i a l of serving the needs of many interested p a r t i e s such as the Ministry of Transport (Ottawa), the Department of Transport and Communications of B. C , and the Department of Highways of B. C. The interviews could be conducted while the truck was being weighed. A minimum of two interviewers was necessary at each scale while the survey was i n progress. The questionnaire was constructed to allow coding to take place on the form i t s e l f and to allow the coding to be keypunched onto cards d i r e c t l y from the forms. This l o c a l i z e d information and reduced coding paperwork and time. The data was thereby mechanized with greater s i m p l i c i t y and accuracy. The coding system i n use was compatible ( a l b e i t i n some cases at d i f f e r e n t l e v e l s of aggregation) with those used i n previous, s i m i l a r surveys. 4.3 THE INTERVIEW FORM & INTERVIEWER/CODER MANUAL A copy of the interviewer form (questionnaire) and interviewer/coder manual are i n Appendieies I and I I . The manual i s intended to explain to the interviewer how to complete the questionnaire and to enable the coder to code the data c o l l e c t e d by the interviewer. Having one manual suitable for both interviewer and coder s i m p l i f i e s paperwork and gives both people a more complete picture of the whole survey process. 25 The purpose of the sequence number i s to allow indexing of each record (or FORTRAN record) on magnetic tape to i t s corresponding card and questionnaire. The interviewers are t o l d to write the response i n the space provided on the form; the coding being done l a t e r i n the o f f i c e . This decreased the time required f o r each i n t e r -view and allowed the information to be recorded. The origins and destinations i n B.C., A l b e r t a , Saskatchewan, Manitoba, Ontario, Quebec, and the Yukon and North-West T e r r i t o r i e s were coded using S t a t i s t i c s Canada's STANDARD GEOGRAPHICAL CLASSIFICATION system EXCEPT f o r the f i r s t two numbers denoting province, which have been dropped. Other areas . were coded as explained i n the interviewer/Coder Manual i n the Appendix. 4 . 4 OPERATIONAL ASPECTS A copy of the schedule that was used during the survey i s in the Appendix. The survey locations are shown i n Figure 4 . 4 . 1 . Duncan and P a r k s v i l l e were used for t r a i n i n g purposes although v a l i d data was c o l l e c t e d at these points. The remain-ing f i v e weeks of interviews were concentrated along Highway No. 1 and the Alberta border. It was intended to conduct sur-veys at the P a c i f i c scale (at the' U. S. border on HWY. No. 15) but the scale broke down the week before the survey was scheduled to go there. 26 Interviews were completed at each s c a l e f o r one week (5 days), where p o s s i b l e . A 24 hour survey was done, at each s c a l e f o r at l e a s t one day, where p o s s i b l e . At some s c a l e s , due to a l a c k of weigh s c a l e o perators, i t was not p o s s i b l e t o operate c o n t i n u o u s l y f o r 24 hours (3-8 hour s h i f t s ) . As can be seen from the schedule i n . t h e Appendix, the survey crews operated i n two-person s h i f t s , l a s t i n g eight hours. Some s c a l e s , such as the Kamloops North scale,, were lo c a t e d i n an i n d u s t r i a l area. At these p l a c e s , commercial t r u c k t r a f f i c was very heavy w i t h a high percentage, of l o c a l (under 30 k i l o m e t e r s ) t r i p s . This survey ignored these l o c a l t r i p s . No allowance'was made i n the survey f o r s t r i k e s or n a t u r a l d i s a s t e r s such as road or bridge washouts. These events would no doubt a f f e c t the r e s u l t s but i t was very d i f f i c u l t , i f not im p o s s i b l e , t o account f o r t h e i r e f f e c t . There was a s l i g h t problem i n the beginning w i t h the mean-in g of the c a t e g o r i e s l a s t o r i g i n and next d e s t i n a t i o n . T h e i r purpose was t o t r y to determine i f the t r u c k made intermediate stops ( t o load or unload cargo) between i t s o r i g i n a l o r i g i n and f i n a l d e s t i n a t i o n . In most cases, only t r u c k s without intermediate stops (depending on where the stops were) would be able to choose a d i f f e r e n t route i f one was a v a i l a b l e . The o r i g i n a l o r i g i n was the point where the v e h i c l e combination s t a r t e d from and the point where i t was going to 27 was the f i n a l destination. As an example, consider a semi-t r a i l e r being hauled from Vancouver to Merritt.. The semi-t r a i l e r s t a r t s i n Vancouver and goes through Princeton to M e r r i t t , but i n Princeton the driver drops the s e m i - t r a i l e r , leaving i t to be picked up by another t r a c t o r . A second t r a c t o r takes the semi - t r a i l e r to M e r r i t t . When the questionnaire i s completed at Laidlaw, the o r i g i n a l and la s t o r i g i n i s Vancouver; the next and f i n a l d e s t i n a t i o n i s Princeton. The coding of commodities provided some minor problems. There were many instances where the truck c a r r i e d more than one kind of cargo. . In these cases, the code for the cargo that comprised the greater part of the load was used. 4.5 RESULTS About 1 0 , 0 0 0 trucks were recorded. About 3-5% of the re s u l t s had the 0/D or weight part of the survey missing. The reason for t h i s was that empty trucks were not usually weighed (empty logging trucks were not even required to report to the scale) . They just slowed down so the scale operator could see that the truck was empty. In some of these cases, the i n t e r -viewers did not have enough time to stop the truck and di r e c t i t across the scale. This problem was p a r t i a l l y solved using t r a f f i c cones. Also, i f the trucks were backed up causing congestion, some vehicles were l e t through without interviews. In both these cases, the trucks were recorded on a separate sheet. 28 4.6 SURVEY CRITIQUE In general, very l i t t l e f a u l t can be found with the survey. It provides excellent 0/D data f o r g r a v i t y model c a l i -bration as well as being a valuable source of information on axle-load d i s t r i b u t i o n s for pavement and s t r u c t u r a l design. The s e l e c t i o n of survey locations depends on the purpose(s) of the survey. When the survey was scheduled there was not any thought given to i t s use i n t r i p d i s t r i b u t i o n models. In the future, locations could be selected to provide better information for a gravity model of i n t e r n a l t r a f f i c . There are two minor points that should be mentioned: a) Three columns instead of two should have been provided for registered gross vehicle weight, tare weight and actual gross vehicle weight. Coding methods plus a format change program overcame t h i s problem. b) At each location the survey should be conducted for a 24 hour period. This greatly s i m p l i f i e s f a c t o r i n g up the data. B.C. WEIGH SCALE; LOCATIONS 1 1 " ' T Burn* Lota'' VorxlxtKtt f l 1. DUNCAN 2. PERNIE •3- GOLDEN 4. HAIG-5. KALEDEN 6. KAMLOOPS 7. .KAMLOOPS NORTH 8. •LAIDLAW-HUNTES CREEK 9. PARKSVILLE 10. • TERRACE 11. TETE JAUNE CACHE 12. YAHK OlMtf lCf ( Wlltomt Loke 1 Tpk. Q f M KvnMfWy J Trwl .2. 4.4.1 SURVEY•LOCATIONS REFERENCES "Western Canada Truck O r i g i n - D e s t i n a t i o n Survey" Trimac, M i n i s t r y of T r a n s p o r t , Ottawa, 1973-3 0 5- RESULTS OP GRAVITY MODEL CALIBRATION In the previous chapters the elements of t h i s r e s e a r c h , such as s e l e c t i o n of the g r a v i t y model and the design of the survey, were dis c u s s e d . In t h i s chapter d e t a i l e d d e s c r i p t i o n s of the a c t u a l input data and model are gi v e n . The form and content of the models are c a r e f u l l y presented t o a i d i n under-standing the d e t a i l s of the a n a l y s i s . A l s o , t he r e s u l t s of the c a l i b r a t i o n are documented. 5.1 DATA PREPARATION In order t o make e f f i c i e n t use of Townsend's ( 1 ) t r a v e l -cost network the g r a v i t y model's zones of o r i g i n and d e s t i n a t i o n are made to correspond t o the nodes of h i s network. The g r a v i t y model i s c a l i b r a t e d u s i n g i n t e r n a l ( i . e . w i t h i n B. C.) t r u c k t r a f f i c data between these nodes or urban areas. The nodes or urban areas are ( i n a l p h a b e t i c a l o r d e r ) : 1. BURNS LAKE (BL) 21. MERRITT (M) 2. CACHE,CREEK (CC) 22 . NANAIMO (N) 3- CAMPBELL RIVER (CR) 2 3 . NELSON (N) 4. CLINTON (C) 24. OS0Y00S (0) 5 . COURTENAY (C) 25. PENTICTON (P) 6. CRANBROOK (Cb) 26. PRINCE GEORGE (PG) 7 . CRESTON (Cs) 27. PRINCE RUPERT (PR) 8. FERNIE (F) 2 8 . PRINCETON (P) 9- GOLDEN (G) 29. QUESNEL (Q) 10. GRAND FORKS (GP) 30. RADIUM HOT SPRINGS (R) 11. GREENWOOD (GR) .3.1. REVELSTOKE (R) 12. HAZELTON (H) 32. ROSSLAND-TRAIL (R-T) 13. HOPE (H) 3 3 . SALM0 (S) 14. KAMLOOPS (K) 3 4 . SALMON ARM (SA) 15- KELOWNA (K) 3 5 . SMITHERS (S) 1 6 . KEREMEOS (Ke) 3 6 . TERRACE (T) 1 7 . KIMBERLEY (K) 3 7 . VANCOUVER (V) 1 8 . KINNAIRD-CASTLEGAR (K-C) 3 8 . VANDERHOOF (V) 1 9 . KITIMAT (K) 3 9 . VERNON (V) 20. LYTTON (L) 40. VICTORIA (Vi) 41. . WILLIAMS LAKE (WL) . The node l o c a t i o n s and l i n k impedances are shown i n F i g u r e 5.1-1. 32 For each survey l o c a t i o n three 0/D t a b l e s were produced (one per 8 hr. s h i f t ) c o n t a i n i n g the t o t a l number of t r i p s i n t e r v i e w e d . Then usi n g the schedule (Appendix I V ) , each t a b l e was factored-up to o b t a i n the t o t a l weekly (5 day; 24 hrs./day) t r a f f i c f o r that s h i f t at that s c a l e . Adding the three factored-up t a b l e s (one t a b l e per s h i f t ) g i v e s the t o t a l weekly t r a f f i c , between each 0/D, that goes through each s c a l e . The s c a l e l o c a t i o n s where surveys were completed are (in-a l p h a b e t i c a l o r d e r ) : 1. DUNCAN 2. FERNIE 3. GOLDEN 4. HAIG 5. KALEDEN 6 . KAMLOOPS 7. KAMLOOPS NORTH 8. LAIDLAW-HUNTER CREEK 9. PARKSVILLE 10. TERRACE 11. TETE JAUNE CACHE 12. YAHK To o b t a i n the t o t a l weekly t r a f f i c between each 0/D the r e s u l t s from each s c a l e must be combined such t h a t t r i p s are counted once and only once ( e l i m i n a t i o n of double-counting, e t c . ) . At the same time, e f f i c i e n c y r e q u i r e s maximum p o s s i b l e data usage ( i . e . whole groups of data should not be ignored because of the p o s s i b i l i t y of double-counting some 0/D com-b i n a t i o n s ) . To accomplish t h i s , a separate formula must be developed f o r each 0/D combination. This must be done manually using a road map c o n t a i n i n g the node and s c a l e l o c a t i o n s . 33 These equations are used to merge the factored-up r e s u l t s at each scale giving the t o t a l number of truck t r i p s per week between each p a i r of nodes ( 0 / D ) . An example of one formula i s t T = H + L + Y . K + G • 2 — " + Where: T = t o t a l trips/week from Vancouver to Cranbrook •. - . = value of T (Vancouver, Cranbrook) i n the f i n a l 0/D table. H = trips/week from Vancouver to Cranbrook recorded at Haig. L = trips/week from Vancouver to Cranbrook recorded at Laidlaw-Hunter Ck. Y = trips/week from Vancouver to Cranbrook recorded at Yahk. K = trips/week from Vancouver to Cranbrook recorded at Kamloops. G = trips/week from Vancouver to Cranbrook recorded at Golden. Tables of the factors used to derive t o t a l weekly t r i p s at each scale and of the formulas used to combine the r e s u l t s at each scale are i n Appendix V and VI r e s p e c t i v e l y . The impedance values used are those of Townsend ( 1 ). Appendix III contains the part of his thesis dealing with these costs. The sum of the travel-cost on the l i n k s of the cheapest path between each pair of nodes i n Townsend's network divided . b y ten i s the value of the impedance used i n model c a l i b r a t i o n . The t r a v e l costs between the nodes on Vancouver Island are 3 4 derived by the author using Townsend?s algorithm. The i n t r a -nodal impedances are set at a value ( s e m i - a r b i t r a r i l y chosen as. 6 0 ) greater than the largest value of inter-nodal impedance. Townsend's method of c a l c u l a t i n g the t r a v e l cost along each l i n k can be summarised as follows: 1 . Determine miles (D) of surfaces, paved (P) and gravel (G). 2 . Determine miles of l e g a l l y r e s t r i c t e d speeds (L). 3. Determine widths of various sections, convert to factors (W) as i n Table XI (Appendix I I I ) . 4. Count the t o t a l number of times the road r i s e s or f a l l s 1 0 0 feet from contour maps. Convert to factors for speed (H) and f u e l consumption (N) according to Table XII (Appendix I I I ) . 5 . Take t r a f f i c flow from published counts., convert to factors (V) according to Table XIII (Appendix I I I ) . 6. Determine ferry delays (Y). 7 . Set base speeds at 5 0 mph for P, and 3 8 mph for G. 8. T o t a l D-legal D= (D p + D g). 9 . Legal D v 2 0 mph = time over l e g a l D 1 0 . 5 0 (Wp) (V) (H) = speed over paved, allowing f o r W, and V. 1 1 . 3 8 (W )(V)(H) = speed over gravel, allowing f o r W, H, anS B. 1 2 . Dp/(Step 1 0 ) = time over paved section. 1 3 . D /(Step 1 1 ) = time over gravel section. 14. Sum of steps 9, 1 2 , and 1 3 = l i n k time 1 5 . D/(link time) = average running speed. 1 6 . Find consumption at average running speed,, see Table XIV (Appendix I I I ) . 1 7 . Add extra grade factor (Table XII i n Appendix III) to 18 19 20. 21. 22. consumption (Table XIV i n Appendix I I I ) to get average consumption. ( T o t a l D)(Average Consumption) = fuel.consumed. ( F u e l consumed) ($0. 40) = f u e l , cost on link.. (Step 14) + Y = t o t a l l i n k time. (Link time)($7-50 per hr.) = d r i v e r and t r u c k cost on l i n k . (D + l e g a l D)(paved r e p a i r c o s t s ) = r e p a i r costs on paved. 23. ( D ) ( g r a v e l r e p a i r cost) = r e p a i r cost on g r a v e l s e c t i o n s 24. Sum of Steps 19, 21, 22, and 23'. = TOTAL LINK COST The nodal (zonal) p r o d u c t i o n and a t t r a c t i o n s used are the row sums and column sums, r e s p e c t i v e l y , of the 0/D t a b l e . 5.2 CALIBRATION OF THE 31 NODE MODEL ; The model input and output i s i n c l u d e d i n Appendix V I I . F i g u r e s 5-2.1, 5-2.2, and 5-2.3 show the s c a t t e r p l o t s , the t r i p cost d i s t r i b u t i o n s , and the smoothing f u n c t i o n (3.4.2) parameters r e s p e c t i v e l y . Note t h a t the f i g u r e s are l a b e l l e d i n terms of t r i p " l e n g t h " . In t h i s e x e r c i s e these l a b e l s are r e a l l y t r i p cost i n t e n d o l l a r u n i t s (e..g. I f the a b s c i s s a s c a l e reading i s a t r i p " l e n g t h " of 21.0 t h i s i s i n t e r p r e t e d as a t r i p cost of $210). Tables of the f r i c t i o n and socio-economic f a c t o r s are i n c l u d e d i n Appendix V I I . 36 The nodes i n c l u d e d i n t h i s c a l i b r a t i o n are ( i n numerical o r d e r ) : 1. CRANBROOK 16. MERRITT 2. NELSON 17. LYTTON 3. KINNAIRD-CASTLEGAR 1 8 . REVELSTOKE 4. ROSSLAND-TRAIL 1 9 . CACHE CREEK 5. GRAND FORDS 20. CLINTON 6. OSOYOOS 2 1 . KAMLOOPS 7- KEREMEOS 22. KELOWNA 8. PRINCETON 2 3 . VERNON 9- PENTICTON 24. GOLDEN 10. HOPE 2 5 . SALMON ARM 1 1 . VANCOUVER 2 6 . WILLIAMS LAKE 12. VICTORIA 27- QUESNEL 13- NANAIMO 28. PRINCE RUPERT 14. COURTENAY 2 9 . KITIMAT 15- CAMPBELL RIVER 30. TERRACE ' 3 1 . SMITHERS The t o t a l number of weekly t r u c k t r i p s i n t h i s c a l i b r a t i o n a f t e r f a c t o r i n g - u p at each s c a l e and summing ( w i t h the d e r i v e d formulas) across a l l s c a l e s i s 4067-The average t r i p cost from the survey data i s $ 9 1 . 0 8 . The average t r i p cost of i t e r a t i o n #3 i s $ 8 7 - 7 2 (chi-squared s t a t i s t i c = 1 5 5 8 ) . This i s a d i f f e r e n c e of - 3 - 7 $ . However, the f o u r t h i t e r a t i o n gave a value of chi-squared = 1529 and an average t r i p cost d i f f e r e n c e of - 8 . 3 $ • AVG. TRIP COST CHI-SQUARE % DIFFERENCE Survey ! $91.08 I t e r a t i o n #3 i $87-72 I t e r a t i o n #4 1 $85-30 1558 1529 -3.7 -8.3 TABLE 5-2.1 CALIBRATION STATISTICS 37 5.3 CALIBRATION OF THE 27 NODE MODEL In t h i s c a l i b r a t i o n the nodes on Vancouver Island have been eliminated. The model input and output i s included i n Appendix VIII. Figures 5-3.1, 5.3.2, and 5-3-3 show the scatter p l o t s , the t r i p cost d i s t r i b u t i o n s , and the smooth-ing function (3-4.2) parameters r e s p e c t i v e l y . Note that the figures are l a b e l l e d i n terms of t r i p "length". In t h i s exercise, these labels are r e a l l y t r i p cost i n ten d o l l a r units (ex. i f the abscissa scale reading i s a t r i p . " l e n g t h " of 21.0 t h i s i s interpreted as a t r i p cost of $210). Tables of the f r i c t i o n and socio-economic fac t o r s are included i n Appendix VIII. The nodes included i n t h i s c a l i b r a t i o n are ( i n numerical order): 1. CRANBROOK 14. REVELSTOKE 2. NELSON 15. CACHE CREEK 3- KINNAIRD-CASTLEGAR 16. CLINTON 4. ROSSLAND-TRAIL 17- KAMLOOPS 5- GRAND FORKS 18. KELOWNA 6. 0S0Y00S 19- VERNON 7- KEREMEOS 20. GOLDEN 8. PRINCETON 21. SALMON ARM 9- PENTICTON 22. WILLIAMS LAKE 10. HOPE 23- QUESNEL 11. VANCOUVER 24. PRINCE RUPERT 12. MERRITT 25- KITIMAT 13- LYTTON 26. TERRACE 27- SMITHERS The t o t a l number of weekly truck t r i p s i n t h i s c a l i b r a t i o n a f t e r f actoririg-up at each scale and summing. (with the derived formulas) across a l l scales i s 3313-38 The average t r i p cost from the survey data i s $ 98 . 02 . The average t r i p cost of i t e r a t i o n #9 i s $102.07 ( c h i -squared s t a t i s t i c = 9 17 ) . This i s a di f f e r e n c e of +4.1%. However, the f i f t h i t e r a t i o n gave a value of chi-squared = 893 and an average t r i p cost difference of + 5 - 5 % -AVG. TRIP COST CHI-SQUARE % DIFFERENCE Survey $ 98.02 I t e r a t i o n #5 $103.42 893 +5.5 I t e r a t i o n #9 $102.07 917 + 4.1 TABLE 5.3-1 CALIBRATION STATISTICS 3 9 GRRVITY MODEL CALIBRATION • ITERATION NO.3 CORRELATION BETWEEN ACTUAL AND COMPUTED VALUES RMSE = 14 1000 _ i n LU a UJ I — a o 3 C 13 0/D ACTUAL VALUES IOOO F i g u r e $ . 2 . 1 ( a ) S c a t t e r P l o t — I t e r a t i o n # 3 40 GRAVITY -MODEL CALIBRATION ITERATION NO A CORRELATION BETWEEN flCTURL AND COMPUTED VALUES RMSE = 14 F i g u r e 5.2.1(b) S c a t t e r P l o t — I t e r a t i o n #U 1)1 GRAVITY MODEL CALIBRATION. ITERATION NO.3 TRIP LENGTH DISTRIBUTION XT TRIP LENGTH F i g u r e 5.2.2(a) T r i p C o s t D i s t r i b u t i o n — I t e r a t i o n 7 . „#3 12 GRRVITY MODEL CALIBRATION ITERATION NO.4 TRIP LENGTH DISTRIBUTION TRIP LENGTH F i g u r e ?.2.2(b) T r i p C o s t D i s t r i b u t i o n — I t e r a t i o n . #h GRAVITY MODEL CALIBRATION ITERATION NO.3 FRICTION FACTOR DISTRIBUTION F i g u r e 5 . 2 . 3(a) F - f a c t o r D i s t r i b u t i o n — I t r p a t i o n - : j f 3 GRAVITY MODEL CALIBRATION ITERATION NO.4 FRICTION FACTOR DISTRIBUTION 45 GRAVITY MODEL CALIBRATION ITERATION N0.5 CORRELATION BETWEEN ACTUAL AND COMPUTED VALUES RMSE = 8 1000 0/D flCrURL VfLUES F i g u r e 5 . 3 . 1 ( a ) S c a t t e r P l o t — I t e r a t i o n ff$ 46 GRAVITY MODEL CALIBRATION ITERATION NO.9 CORRELATION BETWEEN flCTURL AND COMPUTED VALUES RMSE = 8 F i g u r e 5 . 3 . 1(b) S c a t t e r P l o t — I t e r a t i o n #9 1 7 GRAVITY MODEL CALIBRATION ITERATION NO.5 TRIP LENGTH DISTRIBUTION C O to m in a. *-* oc CQ tn CO CM 0.0 MEAN = 10,367 STD DEV =7.834 CHI SQ = 911 12.1 X 24.2 TRIP LENGTH 3d.3 " 2 T "so.! F i g u r e 5.3.2(a) T r i p C o s t D i s t r i b u t i o n — I t e r a t i o n #5 48 GRAVITY MODEL CALIBRATION ITERATION NO.9 TRIP LENGTH DISTRIBUTION cn _ TRIP LENGTH F i g u r e 5.3.2(b) T r i p C o s t D i s t r i b u t i o n — I t e r a t i o n . ' . # 9 19 GRAVITY MODEL CALIBRATION ITERATION NO.5 FRICTION FRCTOR DISTRIBUTION 00 in o in in CN m cn OS u a in r 1 O J an a C D co CO o cn GO o a 0.0 12.1 24.2 3T.3 TRIP LENGTH 60.5 F i g u r e 5.3.3(a) F - f a c t o r D i s t r i b u t i o n — I t e r a t i o n - # 5 50 GRAVITY MODEL.CALIBRATION ITERATION NO.9 FRICTION FACTOR DISTRIBUTION CO in TRIP LENGTH F i g u r e 5 .3 .3(b) F - f a c t o r D i s t r i b u t i o n — i t e r a t i o n #9 50A REFERENCES Townsend, D. F. , "Highway Investment i n B.-C. 1946-71" M.A. T h e s i s , U n i v e r s i t y of B.C., 1973-5 1 6. DISCUSSION OP RESULTS • This chapter presents a comparison of the r e s u l t s of t h i s research with that of others. Also, comments and recommendations are made concerning the r e s u l t s of the c a l i b r a t i o n , the r e s u l t s of other research and the survey. 6.1 COMPARISON of 27 & 31 NODE MODELS MODEL ITERATION CHI-SQUARE. RMSE AVG. TRIP COST DIFFERENCE 2 7 Node 5 8 9 3 8 + 5 . 5 % 2 7 Node 9 9 1 7 8 + 4 . 1 % 3 1 Node 3 1 5 5 8 14 - 3 . 7 % 31 Node 4 1 5 2 9 - 1 4 - 8 . 3 % TABLE 6.1.1* CALIBRATION STATISTICS The c r i t e r i a are inconsistent i n i n d i c a t i n g the best c a l i b r a t i o n or set of f r i c t i o n f a c t o r s. Using average t r i p , cost alone indicates that the t h i r d c a l i b r a t i o n i t e r a t i o n of the 31 node model gives the best r e s u l t s . Both the c h i -squared and RMSE s t a t i s t i c s indicate that the f i f t h i t e r a t i o n of the 27 node model gives the best r e s u l t s . It i s the opinion of the author that the chi-squared and RMSE s t a t i s t i c s are better measures of performance than the average t r i p cost difference. Therefore, i t i s regrettable that the performance of gravity model c a l i b r a t i o n s have been analysed i n terms of average t r i p cost (or length) d i f f e r e n c e . There are three d i s t i n c t peaks (or v a l l e y s depending on your p e r s p e c t i v e ) i n the t r i p cost d i s t r i b u t i o n s . The f i r s t peak occurs at a t r i p cost of $20 and r e s u l t s from the r e l a t i v e l y high number of t r i p s between Terrace and Ki t i m a t (170) which have a cost of $20. The v a l l e y at $40 i n the 31 node model r e s u l t s from the l a c k of data on t r i p s between V i c t o r i a and Vancouver. There was no survey s t a t i o n ( s c a l e ) that d i r e c t l y measured t h i s l i n k . The peak at $50 and $60 i n the 31 node d i s t r i b u t i o n i s caused by t r i p s on Vancouver I s l a n d and t r i p s between Terrace and Smithers ($60) The highest peak at $110 stems from the Vancouver-Kamloops and Vancouver-Penticton t r i p costs both being $110. These two l i n k s have'a t o t a l of 580 t r i p s per week. 6.2 COMPARISON WITH OTHER G-M CALIBRATIONS The other g r a v i t y model c a l i b r a t i o n s ( 1 , 2, 4, 6, 7) were developed on the b a s i s of average t r i p l e n g t h (cost) d i f f e r e n c e , t h e r e f o r e , they are compared t o the "best" c a l i b r a t i o n i n t h i s e x e r c i s e based on the same c r i t e r i a . In terms of t r i p purpose the c l o s e s t category (con-c e p t u a l l y ) t o that of the B. C. study i s non-home-based t r i p s . I t can be seen from Table 6.2.1 t h a t the r e s u l t s of the B. C. study compare f a v o r a b l y w i t h those of previous c a l i b r a t i o n s . The d i f f e r e n c e s of 3.6$ and 4.1% are w e l l w i t h i n the previous range of 2.9% to 6.5%-53 NODES AVG. TRIP COST TRIP STUDY TOTAL TRIPS (ZONES) (LENGTH) D I F F . PURPOSE S i o u x F a l l s (1) 29,882 28 - 0 . 9 % Home-Wbrk P i t t s b u r g ( 10) 2,336,312 - 1 . 2 % A l l H u t c h i n s o n ( 1 8 ) 71,242 83 ? A l l II ? 83 - 0 . 5 % Home-Work II ? 83 +0.8% Home-Other II 83 + 3.6% Non-Home H o n o l u l u (14) 590,250 13 9 A l l II ? 13 0.00% M i l i t a r y Work II ? 13 +0.5% C i v i l i a n Work II ? 13 +1.1% S h o p p i n g II '? 13 +2.6% S o c i a l - R e c . II ? 13 - 1 . 3 % M i s c . II 1 13 - 2 . 9 % Non-Home W a s h i n g t o n (2) 2,482,000 47 1 A l l II 1 47 -2 . 6% Home-Work ti 1 47 - 7 . 6 % S h o p p i n g ti 1 47 0.0% S o c i a l - R e c II 1 47 +2.5% S c h o o l II ? 47 - 4 . 4 % M i s c . it 1 47 +6.5% Non-Home B.C. 4,067 31 - 3 . 7 % T r u c k B.C. 3,313 27 1 +4 . 1 % T r u c k TABLE 6.2.1 AVERAGE TRIP COST (LENGTH): DIFFERENCE Reference 3 (pg- IV-41) suggests t h a t the d i f f e r e n c e between the average t r i p l e n g t h ( c o s t ) should be l e s s than 5 percent f o r acceptance of the c a l i b r a t i o n . This c r i t e r i o n i s met by both the 27 and 31 node models i n the B. C. study. 6.3 COMPARISON WITH VANCOUVER G-M CALIBRATION DOWNTOWN VANCOUVER ( 5 ) B. C. I B. C. STUDY . j STUDY T o t a l T r i p s 6 7 , 1 2 8 4067 i 3313 Nodes (zones) 14 31 27 Avg. T r i p Cost (Time) D i f f e r e n c e - 0 . 3 % - 8 . 3 % +5.5% Chi-Squared 56 j 1529 \ 893 RMSE 56 14 j 8 T r i p Purpose Home-Work i Commercial j Commercial | Truck ; Truck TABLE 6.3.1 CALIBRATION STATISTICS These s t a t i s t i c s (Table 6.3-1) i n d i c a t e that the t r u c k study model i s s i m u l a t i n g the i n t e r - n o d a l movements much b e t t e r than that of the downtown Vancouver study. However, the downtown Vancouver model's s i m u l a t i o n of the t r i p length (cost) frequency d i s t r i b u t i o n i s much s u p e r i o r t o that of the tru c k study. 6.4 COMMENTS AND RECOMMENDATIONS 6.4.1. These g r a v i t y model c a l i b r a t i o n s produce s t a t i s t i c s i n the same range as the other s t u d i e s (of i n t r a - u r b a n 55 car travel) i n spite of the fact that the survey was not very well designed for c a l i b r a t i o n of a gravity model of i n t e r n a l truck t r a f f i c . Three of the 12 (25%) survey locations (scales) were located along p r o v i n c i a l boundaries. Two of the remaining nine scales were used for t r a i n i n g and experimentation purposes (Duncan and P a r k s v i l l e ) . Therefore, t h i s study r e a l l y uses only 7 out of 12 survey locations to t h e i r f u l l capacity or a minimum of 58% of the t o t a l survey people-hours. As mentioned e a r l i e r , the chi-squared and root mean square error s t a t i s t i c s are f e l t to be much.better indicators of model performance than average t r i p cost (length) differences. As a r e s u l t , the f i n d i n g must be based p r i m a r i l y on comparisons of average t r i p cost differences. Since the formulas for c a l c u l a t i n g the chi-squared and RMSE s t a t i s t i c s both include the number of nodes for a comparison of these s t a t i s t i c s to be of great value the number of nodes i n the d i f f e r e n t studies must approximate each other. Surveys of t h i s type (inter-urban truck t r a f f i c ) could be valuable f o r decision-making purposes involving investment i n the highway system. The 56 methodology can be used to develop flow charts of truck t r a f f i c between c i t i e s s i m i l a r to desire l i n e charts. This would seem to be a more comprehensive basis on which to decide where and when to make road network improvements than standard screenline counts alone. Economic and transportation linkages become clear. Having t h i s picture of truck t r a f f i c would help i n deciding where new routes or improvements to old routes should be located to maximize benefits and minimize costs. It i s the heavy trucks (axle loads) that determine the c r i t i c a l values of pavement and roadbed design parameters. 6 . 4 . 5 The p o t e n t i a l of t h i s form of analysis i n terms of the transportation planning process i s greatly increased i f the gravity model is. link e d to a suitable t r i p generation model of truck t r i p s . Truck t r i p generation equations are more complicated than those for person t r i p s . As yet, there does not seem to be a s a t i s f a c t o r y model available ( 5 ) • 6 . 4 . 6 This type of survey provides other data such as commodity type, axle weight, etc. The information . on weights could be valuable for pavement design and maintenance scheduling. Compilation to give loading frequency d i s t r i b u t i o n s would be u s e f u l i n analysing the performance of d i f f e r e n t types of road construction under d i f f e r e n t loading patterns (in.terms of axle load r e p e t i t i o n s ) . 57 6 .4 .7 In l i g h t of the above, i t i s f e l t that the p o t e n t i a l of t h i s form of survey i s s u f f i c i e n t to j u s t i f y i t s continuation by an agency responsible f o r road transport. The present investment i n resources w i l l be judged to have been well spent when the f i n a l produce—a decision-making t o o l — i s required. 6.4 .8 Constructing the 0/D table from the survey data requires by f a r the most time and e f f o r t i n t h i s kind of project. E d i t i n g the data f i l e for the selected o r i g i n s and destinations i s the f i r s t step. The second step i s to factor-up the data to weekly truck t r i p s at each scale.. Experience here leads to the firm recommendation that the survey be done for at least one 24 hour period at each survey l o c a t i o n . In both steps the problems are r e l a t i v e l y easy to solve; under one condition i n the case of step two. A tabulation program must be a v a i l a b l e that w i l l allow the elements i n a table to be m u l t i p l i e d by a REAL number (weighting-factor). Also i t must be capable of summing the weighted tables. UBC MVTAB was used but It only allows integer weighting-factors. This problem can be p a r t i a l l y overcome by multiplying the r e a l number weighting-factor by 10 raised to an appropriate power. This r e s u l t s i n a table for each scale that gives t r i p s per 10 or 1 0 0 weeks. 58 6.4.9 The l a s t step i n b u i l d i n g the 0/D table i s to combine the r e s u l t s at each scale to obtain t o t a l weekly truck t r i p s between each 0/D combination without "double-counting". Automation of t h i s step would require a program that enables each t r i p record to be . m u l t i p l i e d by a factor ( r e a l number) based on: . (1) the s h i f t during which the t r i p interview was: completed; ( 2 ) the scale where the t r i p interview took place; ( 3 ) the o r i g i n of the t r i p ; and ( 4 ) the destination of the t r i p . The weighted t r i p record i s then added to the 0/D table. This would necessitate the option of an i n d i v i d u a l weighting-factor (r e a l number) for each element of the f i n a l 0/D. table. This compares with the requirement of comment 6.4.8 which would require only one weighting-factor (re a l number) for a l l elements of the 0/D table at each scale. 5 8 A REFERENCES Ben, C , Bouchard, R. J . , and Sweet, C. E., J r . , "An Evaluation of Simplified Procedures f o r Determining Travel Patterns i n a Small Urban Area", HRR 88. Bouchard, R. J . , and Pyers, C. E., "Use of Gravity Model for Describing Urban Travel," HRR 88. Bureau of Public Roads, U.S. Department of Commerce, Offi c e of Planning, " C a l i b r a t i n g and Testing a Gravity Model for any size'Urban Area", Washington, D.C., July 1 9 6 3 . Heanue, K. E., Hamner, L. B., and H a l l , R. M., "Adequacy of Clustered Home Interview Sampling f o r Calibrating a Gravity Model D i s t r i b u t i o n Formula", HRR 88. Hutchinson, B. G., PRINCIPLES OF URBAN TRANSPORT SYSTEMS PLANNING, McGraw-Hill, 1 9 7 1 * . Jarema, F. E., Pyers, C. E., and Reed, H. A., "Evalu-ation of Trip D i s t r i b u t i o n and C a l i b r a t i o n Procedures", HRR 1 9 1 . Smith, Bob L., "Gravity Model Theory Applied to a Small City Using a Small Sample of Origin-Destination Data", HRR 88. 59 7- CONCLUSIONS T h i s c h a p t e r c o n t a i n s m o r e g e n e r a l c o n c l u s i o n s r e l a t e d t o t h e r e s e a r c h d o n e i n t h i s t h e s i s a n d some t h o u g h t s a b o u t t h e i m p l i c a t i o n s o f t h e f i n d i n g s f o r f u t u r e r e l a t e d . r e s e a r c h i n t r a n s p o r t a t i o n p l a n n i n g . I t was c o n c l u d e d f r o m t h e r e s u l t s o f t h e c a l i b r a t i o n , f r o m e x p e r i e n c e w i t h t h i s t r u c k s u r v e y a n d f r o m e x p e r i e n c e w i t h o t h e r r o a d s i d e s u r v e y s o f p a s s e n g e r v e h i c l e s t h a t t h i s f o r m o f s u r v e y i s v e r y u s e f u l i n t h e a n a l y s i s o f i n t e r -r e g i o n a l o r i n t e r - u r b a n t r a f f i c ( t r u c k o r c a r ) . W i t h p a s s e n g e r v e h i c l e s t h e s u r v e y l o c a t i o n s c a n be a l m o s t a n y -w h e r e a l o n g a- r o a d ( s a f e t y b e i n g a p r i m e c o n s i d e r a t i o n ) a n d a p e r c e n t a g e o f t h e t r a f f i c i s i n t e r v i e w e d . T h i s a p p l i c a t i o n o f t h e g r a v i t y m o d e l t o c o m m o d i t y f l o w s was s u c c e s s f u l . A b e t t e r c h o i c e o f s u r v e y l o c a t i o n s a n d m o r e d a t a w o u l d i m p r o v e t h e r e s u l t s a n d a l l o w s e p a r a t e m o d e l s f o r d i f f e r e n t c o m m o d i t i e s o r g r o u p s o f c o m m o d i t i e s t o be b u i l t . T h e c o s t a p p r o a c h t o i m p e d a n c e s h o w s p r o m i s e i n i n t e r -u r b a n - o r i n t e r - r e g i o n a l t r a f f i c s i m u l a t i o n . I t w o u l d seem r e a s o n a b l e t h a t i m p e d a n c e v r a u l d b e s e e n m o s t l y i n t e r m s o f t r i p c o s t t o a c o m m e r c i a l t r a n s p o r t o p e r a t i o n . I n t e r m s o f f u t u r e r e s e a r c h t h i s p r e s e n t e f f o r t i n d i c a t e s g o o d p o s s i b i l i t i e s i n s e v e r a l a r e a s : 60 a) A p p l i c a t i o n of the g r a v i t y model to i n t e r - u r b a n car t r a f f i c u s i n g r o a d s i d e s u r v e y s . b) A p p l i c a t i o n of the g r a v i t y model t o commodity flows on a more s e l e c t i v e b a s i s i . e . b u i l d i n g separate models f o r each commodity or group of commodities. c) F u r t h e r development of the cost concept of imped-ance and i t s comparison w i t h the u s u a l d i s t a n c e or time parameters e s p e c i a l l y when used as input to the g r a v i t y model. In l i g h t of the above ( a n a l y s i s and c o n c l u s i o n s ) i t i s concluded t h a t t r a d i t i o n a l p l a n n i n g t e c h n i q u e s such as the g r a v i t y model of t r i p d i s t r i b u t i o n can.be developed so that. the d e s i g n of road networks between c i t i e s i s more s e n s i t i v e to t r u c k t r a f f i c . IMPORTANT PLEASE NOTE THAT MOST OF THE MATERIAL IN THE APPENDICES IS RELEVANT ONLY TO THOSE TRYING TO REPEAT THIS ANALYSIS IN DETAIL. 6'0.2. APPENDIX I THE INTERVIEW FORM 60.3 BRITISH COLUMBIA TRUCK OR IG IN -DEST INAT ION S U R V E Y I N T E R V I E W ER. SURVEY LOCATION D A T E O F F I C E U S E O N L Y S E Q U E N C E N U M B E R DIRECTION OF TRAVEL TIME OF DAY (HR. ENDING) # OF TRIPS TRUCK DESCRIPTION APPENDIX I I THE INTERVIEWER/CODER MANUAL INTERVIEWER/CODER MANUAL FOR BRITISH COLUMBIA TRUCK ORIGIN-DESTINATION SURVE 6 0 . 6 G e n e r a l N o t e s 1. The i n t e r v i e w e r i s t o i n i t i a l and d a t e e a c h f o r m . 2. PRINT (CLEARLY) a l l i n f o r m a t i o n on t h e q u e s t i o n n a i r e b e f o r e c o d i n g . 3. T r y t o d e v e l o p a d e t a i l e d k n o w l e d g e o f t h e c o d e s . 4. F i l l i n as much as p o s s i b l e on t h e q u e s t i o n n a i r e b e f o r e t h e t r u c k a r r i v e s and as much as y o u c a n w i t h o u t a s k i n g t h e d r i v e r . 5. A l l c o d i n g i s t o be r i g h t j u s t i f i e d . 6. D i r e c t a l l v e h i c l e s a c r o s s t h e s c a l e i n o r d e r t o f a c i l i t a t e i n t e r v i e w i n g . T h i s c a n be done u s i n g t r a f f i c c o n e s t o b l o c k b y - p a s s l a n e s . 7. I f t r u c k c o n g e s t i o n b u i l d s up c a u s i n g a s a f e t y h a z a r d , e x c e s -s i v e d e l a y s o r o p e r a t i o n a l p r o b l e m s f o r t h e w e i g h s c a l e o p e r a t o r s , w a i v e t h r o u g h some o f t h e t r u c k s . R e c o r d t h o s e t r u c k s w a i v e d t h r o u g h on t h e TRUCKS NOT SURVEYED/REPEAT f o r m . 8. Any t r u c k n o t i n t e r v i e w e d b e c a u s e i t d i d n ' t s t o p s h o u l d be r e c o r d e d on t h e TRUCKS NOT SURVEYED/REPEAT TRIPS f o r m . 9. Watch f o r r e p e t i t i v e t r i p s i n t h e same d i r e c t i o n by t h e same t r u c k . ._ . . . _. ;... .: _ Eg : A dump t r u c k h a u l i n g g r a v e l o u t o f a n e a r b y p i t . O n l y f i l l o u t 1 q u e s t i o n n a i r e f o r t h e t r u c k i n e a c h d i r e c t i o n and r e c o r d e a c h s u c c e s s i v e t r i p i n t h e same d i r e c t i o n on t h e TRUCKS NOT SURVEYED/ REPEAT TRIPS f o r m . 10. R e c o r d t h e l i c e n s e number o f t h e t r a c t o r o r t r u c k a t t h e t o p of e a c h i n t e r v i e w f o r m . 11. I f t h e s c a l e i s l o c a t e d i n an a r e a w h e r e t h e r e a r e many t r i p s o f a l o c a l n a t u r e s u c h as w i t h i n t h e i n d u s t r i a l a r e a o f a c i t y , i g n o r a l l o f t h e l o c a l t r i p s o f l e s s t h a n a b o u t 30 k i l o m e t e r s . (20 m i l e s ) 60.7 SEQUENCE NUMBER - TO BE COMPLETED LATER IN THE OFFICE Column 1: The day of t h e week on w h i c h t h e s u r v e y was done. EG: Monday T u e s d a y e t c . Columns 2-5: F o r e a c h s t a t i o n , e a c h d i r e c t i o n , t h e i n t e r v i e w s done d u r i n g e a c h day a r e numbered i n c h r o n o -l o g i c a l o r d e r . The s e q u e n c e n u m b e r i n g i s done s e p a r a t e l y f o r e a c h s t a t i o n ( H u n t e r C r e e k - L a i d l a w i s one s t a t i o n ) f o r e a c h d a y . F o r e a c h day o f i n t e r v i e w s a t one s t a t i o n ( H u n t e r C r e e k and L a i d l a w c o m b i n e d i s one s t a t i o n ) t h e s e q u e n c e numbers s t a r t w i t h 1 i n c o l u m n 5 f o r t h e f i r s t i n t e r v i e w o f t h e d a y . Column 1 c o n t a i n s 1, 2, 3, 4, o r 5 d e p e n d i n g on w h e t h e r t h e day was Monday, T u e s d a y , Wednesday, T h u r s d a y , o r F r i d a y r e s p e c t i v e l y . The day s t a r t s a t 0001 h o u r s (one m i n u t e p a s t m i d n i g h t ) i . e . t h e s e q u e n c e n u m b e r i n g s t a r t s w i t h t h o s e i n t e r v i e w s done b e t w e e n 0001 and 0100 h o u r s o r w h e n e v e r t h e f i r s t s h i f t s t a r t e d t h a t d a y . The i n t e r v i e w s h e e t s a r e t h e n numbered i n c h r o n o l o g i c a l o r d e r h o u r by h o u r f o r t h e r e s t o f t h e day ( t i l l 2400 h o u r s when a new day s t a r t s and t h e s e q u e n c e numbers s t a r t i n g o v e r a g a i n a t 1 i n c o l u m n 5 and t h e a p p r o p r i a t e number i n c o l u m n 1.) F o r e x a m p l e , a t L a i d l a w - H u n t e r C r e e k t h e i n t e r v i e w s done b e t w e e n 0800 and 0900 h o u r s a t L a i d l a w a n d / o r H u n t e r C r e e k a r e s e q u e n c e numbered b e f o r e t h o s e done b e t w e e n 0900 and 1000 h o u r s a t L a i d l a w a n d / o r H u n t e r C r e e k . NOTE : L a i d l a w - H u n t e r C r e e k i s c o n s i d e r e d t o be one s t a t i o n . 60.8 2. SURVEY LOCATION - COLUMN 6-7 Each survey l o c a t i o n has a code which w i l l be supp l i e d by the su p e r v i s o r . Saanich 01 Duncan 02 P a r k s v i l l e 03 P a c i f i c 04 Deas Tunnel N & S 05 P a t t u l l o B r i d g e 06 Port Mann W & E 07 Abbotsford 08 Laidlaw-Hunter CK. 09 Ruskin . 10 Haig 11 Cache Creek 12 Kamloops 13 Kamloops N. 14 Sicamous 15 Vernon 16 Rutland 17 Kaleden 18 Rossland • .19 Midway — - -• 20 K i n n a i r d 21 Yank 22 P e r n i e 23 Golden 24 Wi l l i a m s Lake 25 Tete Jaune Cac :he 26 Quesnel 27 P r i n c e George S. 28 P r i n c e George N. . 29 Vanderhoof 31 Terrace 32 Chetwynd 33 Fort St. John 34 Dawson Creek 35 Tupper Creek 36 Fort Nelson . 37 Radium Hot Springs 38 .61 • 3. DIRECTION OF TRAVEL Column 8: The d i r e c t i o n i n w h i c h t h e t r u c k b e i n g s u r v e y e d i s h e a d e d -N o r t h -1 • E a s t -2 S o u t h -3 West -4 62 T I M E OF DAY (HR. E N DING) Columns 9 - 10: The h o u r o f t h e day b a s e d on t h e 24 h o u r c l o c k E g : 3 p.m. = 15 A l l t r u c k s i n t e r v i e w e d b e t w e e n 1400 a n d 1500 h o u r s w o u l d h a v e 15 e n t e r e d i n c o l u m n s 9 and 1 0 . 63 NAME OF CARRIER = NO CODE I f i t i s n o t p r i n t e d on t h e s i d e o f t h e t r u c k a s k t h e d r i v e r who t h e r e g i s t e r e d owner o f t h e v e h i c l e i s . I f t h e t r u c k i s r e n t e d ( H e r t z , U - H a u l , R y d e r , e t c . ) r e c o r d t h e name o f t h e p e r s o n who r e n t ed i t . # OF TRIPS - Column 11 T h i s i s t h e number o f t r i p s made by t h e same v e h i c l e i n t h e SAME DIRECTION on t h e same day as n o t e d i n g e n e r a l n o t e number 9. # o f T r i p s i n Same D i r ' n CODE 1 1 o r b l a n k 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 o r more 9 64 6. TRUCK DESCRIPTION Column 12 T r u c k D e s c r i p t i o n Code S t r a i g h t T r u c k (ST) 1 T r a c t o r S e m i - T r a i l e r (TST) 2 T r u c k and T r a i l e r (TT) 3 T r u c k and T r a i l e r s (TTS) 4 T r a c t o r S e m i - T r a i l e r and T r a i l e r ( T S T T ) ; 5 T r a c t o r S e m i - T r a i l e r and T r a i l e r s (TSTTS) 6 O t h e r ( T r a c t o r o n l y , Tow T r u c k , e t c .) 7 STRAIGHT TRUCK TRACTOR SEMI-TRAILER TRUCK AND TRAILER TRACTOR SEMI-TRAILER AND TRAILER — N o t e s : 1. L o a d e d l o g g i n g t r u c k s a r e t o be c o d e d as T r a c t o r S e m i -T r a i l e r ( 2 ) . 2. Empty l o g g i n g t r u c k s (2 up - 3 down) a r e t o be c o d e d as O t h e r ( 7 ) . 65 TRUCK BODY - Column 13 Body o r T r a i l e r Type Code Common Van 1 l o w b e d 2 F l a t - D e c k o r H i b e d 3 L i q u i d Bulk Tank 4 D r y Bulk Tank 5 Dry Bulk Dump 6 R e f r i g e r a t e d U n i t 7 L i v e s t o c k U n i t 8 Other (Logging, Pole C a r r i e r , T r a c t o r o n l y , Tow Truck) 9 Common Van - a " s t r a i g h t " t r u c k , t r a i l e r , or s i m e - t r a i l e r Lowbed - "J\ /Q Flat-Deck - J : L i q u i d Bulk Tank - tank t r u c k c a r r y i n g l i q u i d s Dry Bulk Tank - tank t r u c k c a r r y i n g dry bul k . I t u s u a l l y has an unloading mechanism underneath the t r u c k c a l l e d a "belly-dump". Dry Bulk Dump - dump truck c a r r y i n g dry bulk. Truck body u s u a l l y t i p s to unload. R e f r i g e r a t e d U n i t - look f o r r e f r i g e r a t i o n u n i t at f r o n t or underneath of t r a i l e r , or s e m i - t r a i l e r . L i v e s t o c k Unit - tr u c k c a r r y i n g l i v e s t o c k . 8. TOTAL AXLES - Column 14 D e s c r i p t i o n Code 2 Axles 2 3 Axles 3 4 Axles 9 Axles 9 10 Axles 1 NOTE: 1. The number of a x l e s i s equal t o the number of t i r e s showing on one. s i d e that are i n contact w i t h the road. 2. In the case of an empty l o g g i n g t r u c k (2 up - 3 down) the number of a x l e s u s u a l l y i s 3. €7 VEHICLE REGISTRATION - Columns 15-16 The place where the v e h i c l e i s r e g i s t e r e d i s given by the base l i c e n c e which i s u s u a l l y l o c a t e d i n the l i c e n c e p l a t e h o l d e r provided by the v e h i c l e manufacturer. I f the v e h i c l e i s r e g i s t e r e d i n B.C. and. p r o r a t e d f o r use i n other places the l i c e n c e number w i l l have a P p r e f i x . I f r e g i s t e r e d elsewhere and p r o r a t e d f o r use i n B.C. there w i l l be a backing p l a t e ( l o c a t e d on the f r o n t of the t r u c k ) w i t h a B.C. d e c a l on the v e h i c l e . L o c a t i o n Non-Prorated Pror a t e d B.C. 01 51 A l b e r t a 02 52 Saskatchewan 03 53 Manitoba 04 54 Ontario 05 55 Quebec 06 56 A t l a n t i c P r o v i n c e s 07 57 Yukon & N.W.T.. 08 58 DND or Canada - .... 09 59 -A l a s k a 11 61 Washington-- 12 62 Oregon 13 63 C a l i f o r n i a 14 64 Montana, Idaho, Wyoming 15 65 Nevada, Utah, Colorado, A r i z o n a & New Mexico 16 66 N. Dakota. .S. Dakota, Nebraska, Iowa, Minnesota, Wisconsin, I l l i n o i s & Michigan 17 67 Kansas, M i s s o u r i , Arkansas, Oklahoma, Texas & L o u i s i a n a 18 68 Indiana, Ohio, Kentucky, W. V i r g i n i a Tennessee, N. C a r o l i n a , S. C a r o l i n a , Georgia, Alabama, M i s s i s s i p p i & F l o r i d a 19 69 Pennsylvania, New York, New J e r s e y , Maryland, Washington, D.C, Delaware, Conn., R.I., Mass., Vermont, New Hampshire & Maine 21 71 Mexico & Others 22 72 68 10. LICENCE CLASS - Column 17 Class Code Example Common or For H i r e C a r r i e r 1 Smith, Trimac, CP Express P r i v a t e C a r r i e r 2 Eaton's, D a i r y l a n d , Safeway Government 3 DND, E t c . Check Lice n c e or ask d r i v e r Farm 4 Check L i c e n c e or ask d r i v e r NOTES 1. A common or f o r h i r e c a r r i e r i s the h o l d e r of a v a l i d p u b l i c commercial v e h i c l e l i c e n c e i s s u e d by any province or s t a t e which allow s him to haul f o r any shi p p e r . Any common or f o r h i r e , c a r r i e r r e g i s t e r e d i n B.C. (and sometimes those r e g i s t e r e d o u t s i d e B.C.) must have a motor c a r r i e r l i c e n c e . This i s a blue l i c e n c e p l a t e wrth white l e t t e r i n g u s u a l l y l o c a t e d on the f r o n t of the t r u c k . This p l a t e i s about 50% to 75% the s i z e of the. s t a n -dard p r o v i n c i a l l i c e n s e p l a t e . However, i n some cases the motor c a r r i e r p l a t e might have f a l l e n o f f or not yet have been placed on the v e h i c l e . A l l moving vans (United, North American, Mayflower, et c . ) are com-mon c a r r i e r s . - .- - •. 2. A p r i v a t e c a r r i e r i s a t r u c k i n g o p e r a t i o n which i s owned or c o n t r o l l e d by the shipper of the goods and which i s h a u l i n g o n l y the s h i p p e r s ' goods. Rented t r u c k s such as He r t z , U-Haul, Ryder, e t c . , are p r i v a t e c a r r i e r s . 3. Governmnnt v e h i c l e s are those combinations such as DND, m a i l and l o c a l (municipa]) government t r u c k s . 4. A l l farm v e h i c l e s r e g i s t e r e d i n B.C. have l i c e n c e p l a t e s w i t h the p r e f i x "A" on them. 69 ORIGIN-DESTINATION - Columns 18 - 37 O r i g i n a l O r i g i n Last O r i g i n Next D e s t i n a t i o n F i n a l D e s t i n a t i o n 18-22 23-27 28-32 33-37 ORIGINAL ORIGAN - where the v e h i c l e combination s t a r t e d from FINAL DESTINATION - where the v e h i c l e combination w i l l terminate i t s t r i p LAST ORIGIN - the l a s t stop made f o r the purpose of l o a d i n g or unloading cargo which would c o n t r o l route s e l e c t i o n NEXT DESTINATION - the next stop made f o r the purpose of l o a d i n g or unloading cargo which would c o n t r o l route s e l e c t i o n Two columns are f o r CENSUS DIVISION and two columns are f o r CENSUS SUBDIVISION i n each 0/D box. Column 5 i s f o r province or s t a t e . NOTES FOR CODING I f an o r i g i n or d e s t i n a t i o n i s i n : Column 5 i s : B r i t i s h Columbia Blank A l b e r t a 9 Saskatchewan 8 Manitoba 7 Ontario 6 Quebec 5 Maritimes 4 Yukon, N.W.T. 3 Washington 2 Other U.S.A. 1 The coding system used f o r O/D's i n t h i s survey f o r B.C., A l b e r t a , Saskatchewan, Manitoba, O n t a r i o , Quebec, Yukon and N.W.T. i s S t a t i s t i c s Canada's STANDARD GEOGRAPHICAL CLASSIFICATION system EXCEPT f o r the f i r s t two (2) d i g i t s denoting p r o v i n c e , which have been dropped. For the Areas of the Maritimes, and other U.S.A., the f i r s t column i s coded according to the f o l l o w i n g t a b l e s . FOR MARITIMES ( i . e . "4" i s Column 5) Province Columns 1-2 Nova S c o t i a 10 New Brunswick 20 P r i n c e Edward I s l a n d 30 Newfoundland 40 FOR WASHINGTON ( i . e . "2" i n Column 5) Area (See Attached Map) Columns 1-2 North-west Washington (near border) 10 North-west Washington 20 Western Washington 30 Northern h a l f of Washington 40 Southern h a l f of Washington 50 Unknown Blank FOR OTHER U.S.A. ( i . e . "1" i s Column 5) (See Attached Table) Example: ORIGINAL ORIGIN LAST ORIGIN NEXT DESTINATION FINAL DESTINATION Fairbanks, A l a s k a Beaver Cr., Yukon Bellingham, Wash P o r t l a n d , Oregan 0 2 1 0 1 1 6 3 1 0 2 3 6 1 72 FOR OTHER U.S.A. ( i e . "1" i n Column 5) STATE Alabama Alaska A r i z o n a Arkansas C a l i f o r n i a Colorado Connecticut Delaware F l o r i d a Georgia Idaho I l l i n o i s Indiana Iowa Kansas Kentucky L o u i s i a n a Maine Maryland Massachusetts Michigan Minnesota M i s s i s s i p p i M i s s o u r i Montana Columns 1-2 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 STATE Nebraska Nevada New Hampshire New Jersey New Mexico New York North C a r o l i n a North Dakota Ohio Oklahoma Oregon Pennsylvania Rhodev I s l a n d South C a r o l i n a South Dakota Tennessee Texas Utah Vermont Washington, D.C. West V i r g i n i a Wisconsin Wyoming Columns 1-2 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 EXAMPLE: . A t r i p i s being made from Vancouver to Calgary. Stops to load or unload cargo w i l l be made i n Cache Creek, Kamloops, and Banff. Questionnaire at Laidlaw - Hunter Creek O r i g i n a l O r i g i n Last O r i g i n Next D e s t i n a t i o n F i n a l D e s t i n a t i o n Vancouver Vancouver Cache Creek Calgary Questionnaire at Cache Creek (weigh s c a l e beyond cargo lo a d l o c a t i o n ) O r i g i n a l O r i g i n Last O r i g i n Next D e s t i n a t i o n F i n a l D e s t i n a t i o n Vancouver Cache Cr. s ..Kamloops Calgary Questionnaire at Sicamous O r i g i n a l O r i g i n L ast O r i g i n Next D e s t i n a t i o n , F i n a l D e s t i n a t i o n Vancouver Kamloops Banff Calgary Questionnaire at Golden O r i g i n a l O r i g i n L ast O r i g i n Next D e s t i n a t i o n F i n a l D e s t i n a t i o n Vancouver Kamloops Banff Calgary COMMODITY CODE - Columns 38 - 41 The commodity codes used are given by the attached appendix. The commodity being c a r r i e d i s g i v e n on the b i l l of l a d i n g which the d r i v e r must have w i t h him. Only ask about the b i l l of l a d i n g i f the d r i v e r does not know what i s being c a r r i e d . HAZARDOUS MATERIALS Columns 42-43 Ask the d r i v e r i f he i s c a r r y i n g cargo that i s considered hazardous. I f yes, ask the d r i v e r how much of the t o t a l cargo i s considered a hazardous m a t e r i a l . Column 42: D e s c r i p t i o n Code No H-M 1 Less then 50% of load H-M 2 More than 50% of l o a d H-M 3 T o t a l l o a d i s H-M 4 Attempt to i d e n t i f y the type of hazardous m a t e r i a l by rea d i n g o f f the v a r i o u s c a t e g o r i e s l i s t e d below. Column 43: Type of H-M Code I f no H-M Blank E x p l o s i v e 1 Compressed Gas 2 Inflammables 3 Poison 4 Ra d i o a c t i v e M a t e r i a l 5 C o r r o s i v e 6 76; VOLUME USEAGE - Column 44 Estimate q u i c k l y how much of the v o l u m e t r i c c a p a c i t y of the truck i s being used. Ask the d r i v e r i f necessary. Volume Useage Code Empty - 1/4 F u l l 1 1/4 f u l l - 1/2 f u l l 2 1/2 f u l l - 3/4 f u l l 3 3/4 f u l l - f u l l 4 Unknown 5 This i s an estimate of volume use ONLY and NOT weight. When the t r u c k i s a c l o s e d van and the d r i v e r does not know how f u l l i t i s , u s e Code 5 f o r "Unknown". When the t r u c k i s recorded on the "TRUCKS NOT SURVEYED/REPEAT TRIPS" form as a t r u c k not surveyed, use code 5 _IF the volume useage i s not known. IT REGISTERED (LICENCED) G.V.W. The maximum al l o w a b l e weight of the v e h i c l e i n k i p s . This should be w r i t t e n on the s i d e of the v e h i c l e . R.G.V.W. (Lbs.) Code 100,000 01 101,000 01 102,000 02 103,000 03 104,000 04 105,000 05 106,000 06 107,000 07 108,000 08 109,000 09 110,000 10 111,000 11 112,000 12 7> TARE WEIGHT This i s the weight of the v e h i c l e combination ready to " r o l l " without i t s payload. The u n i t s are k i p s . I f the t a r e weight i s not p r i n t e d on the s i d e of the tr u c k the d r i v e r or the s c a l e operator should know. N.B. Tare weight should never be more than the a c t u a l G.V.W. 17. ACTUAL GROSS VEHICLE WEIGHT The a c t u a l t o t a l weight in'kips as taken by the w e i g h t - s c a l e . I f the A c t u a l G.V.W. i s greater than 99,000 l b s . code as fo l l o w s : . A.G.V.W. (Lbs.) CODE 100,000 01 101,000 01 102,000 02 103,000 03 104,000 04 105,000 05 106,000 06 107,000 07 108,000 08 109,000 09 110,000 10 111,000 11 112,000 12 80 18. AXLE WEIGHTS These are the weights on each a x l e which are taken as the truck d r i v e s o f f the s c a l e one a c l e at a time, some s c a l e s are equipped to give the a x l e weights a u t o m a t i c a l l y . 18,900 10,800 ACTUAL GVW = 29,700 Ste ering Axles Single Tandem Single Tand em S ingle Tonde m Single 10,800 18,900 11_H WL. Jm • . • L U C J L J L J i i i i i i - 81 -31,600 9,500 ACTUAL GVW = 41,100 S f e e r i n g Axles S i n g l e T a n d e m S i n g l e T a n d e m S ing le T a n d e m Single 9 ,500 • 31 ,600 2 1 1 0 | [ 1 6 | j 1 6 | 1 1 1 1 i Z J E l J I l J L J 1 1 - 82 -33,450 30,600 11,300 A C T U A L GVW = 7 5 , 3 5 0 S t e e r i n g A x l e s S i n g l e T a n d e m S i n g l e T a n d e m S i n g l e T a n d e m S i n g l e 1 1 , 3 0 0 30 , 600 32 ,450 2 2 FTTTI 1 M i 1 i 1 1 11,700 ACTUAL GVW = 126,900 S t e e r i n g Axles S i n g l e T a n d e m S i n g l e T a n d em S ing le T a n d e m Single 1 1 , 7 0 0 34 , 2 0 0 3 3 , 7 0 0 19 , 3 0 0 28 0 0 0 2 2 2 L i i J i H I l i Z M Z Z J L J E J E J i T T H T 7 i I1 I 1 1 - 84 -42,000 29,000 9,400 A C T U A L GVW = 8 0 , 4 0 0 Ste ering Axles Single Tandem S ing le Tand em Single Tandem Single 9,400 29\ ,000 42 000 T T 4 J - 85 -COMMODITY CODE CODE 1 01 GENERAL FREIGHT More than one b i l l of l a d i n g (LTL) One b i l l , of l a d i n g - mixed f r e i g h t Waste m a t e r i a l s (ex. returned b o t t l e s ) Other - s p e c i f i y CODE 1 02 FOODSTUFFS (NON-PERISHABLE) Food pr e p a r a t i o n s (can, box, b o t t l e , bag) Non-alcoholic beverages ( b o t t l e or can) A l c o h o l i c beverages Tobacco Other - s p e c i f y CODE 1 03 FOODSTUFFS (PERISHABLE) Meat and meat prep a r a t i o n s F i s h and seafood Dairy produce, (not bu]k) Bakery products Fresh f r u i t s and vegetables Frozen f r u i t s and vegetables Other - s p e c i f y CODE 1 04 HEAVY MACHINERY Co n s t r u c t i o n and maintenance machinery and equipment O i l i n d u s t r y equipment and machinery ( i n c l u d e s f i e l d equipment) Automobiles and t r u c k chasses Automobile p a r t s and a c c e s s o r i e s I n d u s t r i a l machinery A g r i c u l t u r a l machinery and equipment Other - s p e c i f y CODE 1 05 METAL PRODUCTS Scrap metal S l a g , drosses, e t c . Iro n and s t e e l products Precious metals ( g o l d , mercury, etc.) Other - s p e c i f y CODE 1 87 06 PETROLEUM PRODUCTS Petroleum (crude) N a t u r a l gas and propane Gasoline D i e s e l , l u b e , and f u e l o i l s L i q u i d gas Other gas (ex. oxyacetylene) Asphalt and road o i l s P l a s t i c s and rubber products Other - s p e c i f y CODE 2 01 02 03 04 05 06 07 08 09 CODE 1 07 BULK LIQUIDS AND CHEMICALS Acids A l c h o l o l s (bulk i n d u s t r i a l ) Hydrated limes Anhydrous ammonia C h l o r i n e P a i n t Solvents Water M i l k (bulk) L i q u i f i e d gases O i l s and f a t s (non-petroleum) Other - s p e c i f y CODE 2 01 02 03 04 05 06 07 08 09 10 11 12 CODE 1 08 BULK DRY CHEMICALS AND MINERALS F e r t i l i z e r Sulphur Lime Potash Cement (dry) Gypsum Ores and ore concentrates Coal Sand and g r a v e l Alum Other - s p e c i f y CODE 2 01 02 03 04 05 06 07 08 09 10 11 CODE 1 09 FOREST PRODUCTS Logs Woodchips or sawdust Firewood Planks and boards ,C0DE 2 01 02 03 04 88 Posts and poles 05 Plywood products 06 Cardboard 07 Newsprint ( r o o l s ) 08 Paper products 09 Waste paper 10 Other - s p e c i f y 11 CODE 1 10 LIVESTOCK CODE 2 Animals ( c a t t l e , swine, horses, etc.) 01 P o u l t r y ( c h i c k e n s , t u r k e y s , ducks, e t c . ) 02 Other - s p e c i f y 03 CODE 1 11 CONSTRUCTION MATERIALS CODE 2 B r i c k s of b l o c k s 01 Cement (bags) 02 Landscaping m a t e r i a l s (sod, t r e e s , etc.) 03 Tar products ( r o o f i n g ) 04 F l o o r i n g 05 Gypsum products ( d r y w a l l ) 06 I n s u l a t i o n 07 Precast concrete 08 Prefab housing components 09 Ready Mix Concrete 10 Other - s p e c i f y 11 CODE 1 12 SEED, FEED AND FEED PRODUCTS v CODE 2 Feed g r a i n s . 0 1 Seed g r a i n s 02 M i l l i n g g r a i n s 03 I n d u s t r i a l g r a i n s 04 Prepared feed 05 Meal 06 Other - s p e c i f y 07 CODE 1 13 TRAILER-MOBILE HOMES ,. .. ., .. CODE 2 R e c r e a t i o n a l t r a i l e r s 01 House t r a i l e r (over 20 f e e t ) 02 Co n s t r u c t i o n b u i l d i n g s 03 Prefab modular homes 04 Other - s p e c i f y 05 89 C Q D E 1 CODE 2 14 HOUSEHOLD GOODS 01 (eg. Moving vans) C 0 D E 1 CODE 2 15 MAIL 0 1 C O m 1 CODE 2 16 OTHER Empty truck 01 Other - specify 02 APPENDIX I I I THE SECTIONS OF D.F. TOWNSEND'S M.A. THESIS DEALING WITH THE TRAVEL COSTS THAT WERE USED FOR IMPEDANCE IN THE GRAVITY MODELS 91 NOTE: THIS IS A REPRODUCTION OF SECTIONS OF D. F. TOWNSEND'S THESIS 6.4 METHOD OF SIMULATION OF TRUCK OPERATING COSTS The accuracy of a simulation depends On the quality of data available, on the strength and s t a b i l i t y of l o g i c a l l y - or empirically-supported relationships, and on the successful arrangement in steps of natural or induced processes that are generally f l u i d and continuous. Qualtities and relationships have to vary by measureable degrees, or be ignored by the simulation. The finenass of measurement depends mainly on the purposes of the simulation. If one i s seeking the "truth" in travel costs between places, then the simulation includes such detail as o i l consumption, gear changes, rise and f a l l in feet, drivers' response to congestion, drivers' fringe benefits, and so on. Less detail would be required to provide a fleet operator with an estimate of his running costs. For most studies of spatial relationships i n Geography, even more generalized measurements have been made, using only time or total distance 92 d a t a . I t was s u g g e s t e d i n an e a r l i e r c h a p t e r t h a t t h e d e t e r -r e n t component i n t h e g r a v i t y m o d e l o u g h t t o be more t h o r o u g h l y d e s c r i b e d and q u a n t i f i e d — b u t n o t t o t h e e x t e n t o f h a v i n g a f i n e m e a s u r e i n t h e d e n o m i n a t o r as a g a i n s t a g r o s s m e a s u r e i n t h e n u m e r a t o r . S i n c e t h e r e l a t i o n s h i p s b e t w e e n t r a v e l c o s t , f r e q u e n c y i o f t r a v e l , p r i c e s o f goods and g e n e r a l e c o n o m i c a c t i -v i t y a r e n o t c l e a r l y d e f i n e d n o r n e c e s s a r i l y d e t e r m i n a t e d , i t w o u l d be i n c o n s i s t e n t t o a p p l y a s t r i c t e s t i m a t e o f c o s t s t o a r a t h e r v a g u e a s s e s s m e n t o f r e s p o n s e . I n d i c a t i v e q u a n t i t i e s o n l y a r e r e q u i r e d f o r t h i s s t u d y , t o p i c k o u t t h e v a r y i n g d e g r e e of c h a n g e f o r l i n k s i n t h e n e t w o r k . The most d e t a i l e d s i m u l a t i o n s o f t r u c k c o s t s h a v e come f r o m t h e c i v i l e n g i n e e r s , some w o r k i n g on e n g i n e and 23 v e h i c l e d e s i g n , o t h e r s on t h e d e s i g n o f f a c i l i t i e s . I n c r e a -s i n g r e f i n e m e n t o f t h e p a r a m e t e r s u s u a l l y e n t a i l s a m u l t i p l i -c a t i o n o f t h e d a t a r e q u i r e m e n t s , h e n c e t h e r e s t r i c t i o n o f 24 e m p i r i c a l t e s t s t o v e r y s m a l l s e c t i o n s o f h i g h w a y s . H i g h w a y 25 economy s t u d i e s g e n e r a l i z e f r o m t h e b a s i c r e s e a r c h . G u i d e -l i n e s f o r use on e v a l u a t i o n o f p r o j e c t s g e n e r a l i z e f u r t h e r , a d j u s t i n g t o t h e d a t a a v a i l a b l e and t o t h e p u r p o s e s o f t h e e v a l u a t i o n . R o b e r t s ( 1 9 6 6 ) u s e d a s u b s t a n t i a l amount o f d e t a i l i n p r e p a r i n g a s i m u l a t i o n f o r t r u c k c o s t s i n d e v e l o p i n g c o u n t r i e s . The 8 v a r i a b l e s f o r t h e l i n k and 12 f o r t h e t r u c k r e q u i r e some d a t a n o t g e n e r a l l y a v a i l a b l e i n t h a t s i t u a t i o n . The f i n e n e s s of t h e s i m u l a t i o n and t h e e f f o r t r e q u i r e d , seem o u t o f b a l a n c e w i t h t h e t y p e and d e g r e e of r e s p o n s e w h i c h one m i g h t e x p e c t i n t h o s e c i r c u m s t a n c e s . A s i m i l a r c r i t i c i s m m i g h t be a p p l i e d t o 93 the s i m u l a t i o n used by G r i f f i t h s (1968) , which i n c l u d e d very f i n e margins of f u e l , o i l , and t y r e c o s t s i n a model f o r a s s e s s i n g road development p r o j e c t s i n Dahomey. Gauthier d e s c r i b e d the d i f f i c u l t y of o b t a i n i n g i n f o r m a t i o n on t r a n s -p o r t a t i o n c o s t s i n B r a z i l , mainly because the i n d u s t r y " i s c h a r a c t e r i z e d by a l a r g e number of very small f i r m s " (1968, p. 108). Using l o c a l l y generated e s t i m a t e s , Gauthier i n c l u d e d overhead charges, i n i t i a l equipment c o s t s and a d m i n i s t r a t i v e expenses to d e r i v e a set of v a l u e s r e l a t i n g t r a n s p o r t c o s t s to l e n g t h of haul over d i f f e r e n t types of s u r f a c e . The r e l a -t i o n s h i p between t r a v e l cost and a d m i n i s t r a t i v e and overhead costs was d i s c u s s e d by Stevens (1961) and Adkins et a l ... (1967) g e n e r a l l y , the r e l a t i o n s h i p i s too weak or indeterminated to 27 f i x a measure of gain due to road improvement. K i s s l i n g (1966) r e l i e d mainly on the g u i d e l i n e s of Stevens (1961) and AASHO (1960) i n o b t a i n i n g running speeds and o p e r a t i n g c o s t s f o r Nova S c o t i a , from a highway i n v e n t o r y t a k i n g i n 10 v a r i a b l e s . For l a c k of time and i n f o r m a t i o n , the present study takes i n only 7 v a r i a b l e s d e s c r i b i n g the l i n k , to d e r i v e running speeds, 2 8 l i n k time and cost f o r a 70,000 l b . gross tandem s e m i - t r a i l e r . E l a b o r a t i o n of the content and mechanics of the s i m u l a t i o n i s provided i n Appendix I I I . The d e s c r i p t i o n of l i n k s i n the B.C. road system has been compiled from topographic maps, t o u r i s t maps, and by t r a c i n g the development h i s t o r y of each l i n k through the accounts i n the Annual Reports. The years 1952, 1962, and 1971 have been chosen to mark stages i n highway development. Route data before 1952 are s c a r c e ; investment data are a v a i l a b l e only u n t i l March 1971, 94 '• at the time of w r i t i n g . D i s t a n c e s and f e r r y delays have been taken from p u b l i s h e d t o u r i s t maps. Zones of l e g a l speed r e s t r i c t i o n s have been estimated from t o p o g r a p h i c maps and, i n the l a t e s t year, from p e r s o n a l o b s e r v a t i o n s . The type and c o n d i t i o n of s u r f a c e s has been taken from t o u r i s t maps, topo-graphic maps, r e f e r e n c e s i n the accounts, and p e r s o n a l obser-v a t i o n . Lane and roadway width-- f o r which the data are l e a s t r e l i a b l e — h a v e been estimated from t o p o g r a p h i c maps, r e f e r e n c e s i n the accounts and p e r s o n a l o b s e r v a t i o n . Grades have been estimated r a t h e r c r u d e l y from topographic maps, c a l c u l a t i n g the t o t a l r i s e and f a l l over a l i n k , and m o d i f y i n g the gr a d i e n t f a c t o r where r e f e r e n c e s i n the accounts suggested c u t - a n d - f i l l or r e d e s i g n o p e r a t i o n s had taken p l a c e . Curves could not be estimated from the a v a i l a b l e i n f o r m a t i o n . Volume of t r a f f i c was measured from the Department of Highways summer t r a f f i c counts of 1953, 1954, 1962, and 1971. Average "running speeds on s t r a i g h t , l e v e l , unimpeded 29 s u r f a c e s were set at 50mph. f o r paved and 38mph. f o r g r a v e l . 30 Speeds w i t h i n l e g a l zones were set at 20mph. - l e g a l zones i n d i c a t e a higher frequency of i n t e r s e c t i o n s , c rosswalks, t r a f -f i c l i g h t s , stop s i g n s , o n - s t r e e t p a r k i n g e t c . , which reduce speeds w i t h i n urban areas. P e r s o n a l o b s e r v a t i o n on a Thursday i n September, 1972, of t r u c k s p a s s i n g through Kamloops and Vernon, supported the 20mph. es t i m a t e . Lane and roadway widths reduce d e s i r e d or f r e e speed. 31 From the sources r e f e r r e d t o , a range of f a c t o r s was d e r i v e d f o r Table XI. I n d i c a t i o n s from comparison of c a l c u l a t e d and observed speeds suggest that g r e a t e r r e s t r i c t i v e i n f l u e n c e 95 should apply on narrow and r e s t r i c t e d roads i n the e a r l i e r y e a r s . TABLE XI PERCENTAGE OF FREE SPEED, UNDER WIDTH RESTRICTIONS D e s c r i p t i o n Range Open: 12' l a n e s , good s h o u l d e r s , g o o d v i s i o n 9 6 - 1 0 0 Narrow: 10'-12' l a n e s , poor s h o u l d e r s , adequate v i s i o n 88 95 R e s t r i c t e d : l e s s than 10' l a n e s , poor s h o u l d e r s , poor v i s i o n 82 - 88 The danger i s that the width f a c t o r i s a p p l i e d with the grade and volume f a c t o r i n h i l l y winding s e c t i o n s , g i v i n g an u n r e a l -i s t i c cumulative r e s t r a i n t ; whereas the presence of a grade f a c t o r more or l e s s c a n c e l s out the e f f e c t of a width f a c t o r ; as the v e h i c l e i s slowed by g r a v i t y r a t h e r than by d r i v e r ' s c a u t i o n -A measurement of the t o t a l r i s e and f a l l was taken from maps, i . e . each time the road crossed a 100' contour l i n e . The average r i s e and f a l l , a s l i g h t l y b e t t e r i n d i c a t o r of seve-r i t y , was found by d i v i d i n g the t o t a l by the l i n k d i s t a n c e . T h i s measure i s not as p r e c i s e as K i s s l i n g ' s ' c r i t i c a l g r a d i e n t ' (1969, p. 114) i n measuring the e f f e c t s on truck speed. A range 32 of f a c t o r s was de r i v e d from experiments elsewhere. Grades a l s o i n c r e a s e the ra t e of f u e l consumption by a g r e a t e r margin than that caused by a decrease i n speed, due to gear r e d u c t i o n . So a f a c t o r f o r e x t r a f u e l consumption on grades was added, (see Table X I I ) , 96 TABLE XII INDICES OF FREE SPEED AND NORMAL CONSUMPTION, DUE TO INCREASING RISE AND FALL Rise and F a l l * ( t o t a l R.and F. • m i l e s ) Modern paved Old paved G r a v e l Consumption 1 2 3 4 5 6 95 85 74 62 53 46 93 82 71 5 7 47 40 98 92 81 72 66 60 110 120 145 170 200 230 * T o t a l Rise and F a l l i s found by counting the number of times the road c r o s s e s 100' contour l i n e s , then m u l t i p l y i n g by 1000 to supply the s c a l e with an i n t e g e r . 5280' Note: r e d u c t i o n s of speed on g r a v e l are l e s s severe because of the lower base speeds a t t r i b u t a b l e to g r a v e l roads. The r e d u c t i o n s on modern pavements are r e l a t i v e l y l e s s severe because of the r e a l i g n i n g of curves, grades and c u t t i n g s d u r i n g r e c o n s t r u c t i o n . I n c o r p o r a t i o n of a f a c t o r to r e f l e c t volume of t r a f -f i c was most d i f f i c u l t . The t r a f f i c counts are patchy and do not t e l l of the frequency of t r u c k s i n the t o t a l stream. The summer counts o v e r s t a t e the average annual d a i l y flow. Without knowing the h o u r l y d i s t r i b u t i o n s of t r a f f i c , i t i s i m p o s s i b l e to deduce the l e n g t h of p e r i o d s when flow i s approaching capa-c i t y . A l s o , one can only g e n e r a l i z e very b r o a d l y i n saying that t r u c k d r i v e r s and owners w i l l avoid congested p e r i o d s by r e s c h e d u l i n g . Such r e s c h e d u l i n g c a r r i e s an e x t r a p e n a l t y to the operator i n overtime or n i g h t s h i f t r a t e s , so the a p p l i c a t i o n of a f a c t o r f o r daytime congestion i s not e n t i r e l y i n d i s c r i m i -nate (Table X I I I ) , F u e l consumption v a r i e s a c c o r d i n g to running speed, g r o s s weight, engine power, g r a d i e n t s and so on. 97 TABLE XIII PERCENTAGE OF FREE SPEED, UNDER AVERAGE DAILY FLOWS Volume Paved G r a v e l <3500 per day, 2 lane 100 100 3500 - 5500 98 97 >5500 92 90 Note: the f a c t o r s are somewhat i n f l a t e d f o r t h i s s i m u l a t i o n , s i n c e they are a p p l i e d a f t e r width and grade f a c t o r s . : the g r e a t e r hazard of v i s i o n and: i n c r e a s e d spacing reduces the speed on g r a v e l s u r f a c e s by a s l i g h t l y wider margin. : r e f . Saal (1950), p. 21; AASHO (1960), p. 29, 66, 80; and de W e i l l e (1966), p. 49. For s i m p l i c i t y , t h i s s i m u l a t i o n t i e s consumption to speeds and g r a d i e n t s o n l y . Consumption decreases f o r speeds from 20 to 35mph., then s t a r t s to i n c r e a s e (see Table XIV). Fu e l i s one cost whose t o t a l might r i s e because of improvements to road f a c i l i t i e s . Cost per g a l l o n i s set at 40 c e n t s . TABLE XIV. INDICATIVE FUEL CONSUMPTION AT AVERAGE RUNNING SPEEDS ( v e h i c l e 3-S-2, d i e s e l , 70,0001b. gross) Speed 20 25 30 35 40 45 50 Ga l l o n s per mile .26 .23 .20 .20 .22 .26 .28 The c a l c u l a t i o n of h o u r l y cost of v e h i c l e s and d r i v e r s has p r o v i d e d widely d i f f e r i n g v a l u e s . K i s s l i n g (1966) used $3.00 per hour; F i e i s c h e r (1962) used $3.90; Adkins et a l . (1967) used $4 to $8; Winfrey and Z e l l n e r used $3.75; and Koppelman used $6.00. Based on the e x i s t i n g Teamsters' Union c o n t r a c t , d r i v e r s ' wages i n B.C. are set at $5.00 per hour, and 98 an average of $0.60 i s allowed f o r s u b s i s t e n c e (meals and o v e r n i g h t s t o p s ) . F o l l o w i n g the example of Adkins et a l . (1967, p. 36), $2 has been added f o r d r i v e r s ' w e l f a r e ( h o l i -35 days, workers' compensation, e t c . ) and v e h i c l e d e p r e c i a t i o n . The j u s t i f i c a t i o n f o r these i n c l u s i o n s i s t h a t on an improved l i n k , l e s s time i s spent, and t h e r e f o r e l e s s of the d i r e c t o p e r a t i n g cost i s a t t r i b u t a b l e to that s e c t i o n . The t o t a l time cost a p p l i e d i n t h i s s i m u l a t i o n i s $7.50 per hour. V e h i c l e maintenance and r e p a i r c o s t i s a complex f u n c t i o n of average speed, weight, l o a d s , s u r f a c e s , s t o p s , speed changes, curves and grades. Using evidence gathered 36 i n t e s t s e c t i o n s elsewhere, the cost of r e p a i r s , maintenance and t y r e s was set at 18 cents per m i l e f o r o l d g r a v e l , 17 cents f o r normal g r a v e l , 13 cents f o r o l d . pavement, ..and. 12 cents f o r pavement under 8 years o l d (where t h i s i n f o r m a t i o n was a v a i l a b l e from maps and the f i n a n c i a l a c c o u n t s ) . 99 APPENDIX I I I CONTENT AND METHODS OF THE SIMULATION OF TRUCK COSTS* I d e n t i f y l i n k . I d e n t i f y m i l e s (D) of s u r f a c e s , P paved and G g r a v e l . . I d e n t i f y m iles of l e g a l l y r e s t r i c t e d speeds ( L ) . I d e n t i f y widths f o r v a r i o u s s e c t i o n s , convert to f a c t o r s (W) as i n Table XI. Count up t o t a l r i s e and f a l l i n f e e t from 100' contour maps, d i v i d e by l i n k d i s t a n c e , to get average r i s e and f a l l ; convert to f a c t o r s f o r speed (H) and f o r f u e l consump-t i o n (N) ac c o r d i n g to Table X I I . Take t r a f f i c flow from p u b l i s h e d counts, convert to f a c t o r s (V) a c c o r d i n g to Table X I I I . Add i n any f e r r y delays (Y). Set base speeds at 50mph. f o r P, and 38mph. f o r G. STEPS: 1. 2 . 3. 4 . 5 . 6 . 7 . 8 . 9, 10. 11, 12 , 13, 14 , 15 . 16 . 17 18 19 20 21 T o t a l D Le g a l D 50 x Wp 38 x step step step step step step sum Wg 3 x 4 5 6 7 8 steps time - l e g a l D = (Dp + Dg) i 20mph. = time over l e g a l D. = speed over paved s e c t i o n s , a l l o w i n g f o r W. = speed over g r a v e l s e c t i o n s , a l l o w i n g f o r W. H = speed over paved, a l l o w i n g f o r W and H. g r a v e l , a l l o w i n g f o r W and H. paved, a l l o w i n g f o r W, H and V. g r a v e l , a l l o w i n g f o r W, H and- V paved s e c t i o n s . g r a v e l s e c t i o n s , l i n k time, running speed. H = speed V . = speed V = speed Dp = time Dg = time 2,9, and over over over over over 10 = D = average l i n k F i n d consumption at t h i s speed, see Table XIV. Add e x t r a grade f a c t o r to consumption (Table XIV) to get average consumption, t o t a l D x average consumption = f u e l consumed, f u e l consumed x $0.40 = f u e l cost on l i n k , step 11 + Y = t o t a l l i n k time. l i n k time x $7.50 per hour = d r i v e r and truc k cost on l i n k . (Dp + l e g a l D) x paved r e p a i r c o s t s =; r e p a i r cost on paved, Dg x g r a v e l r e p a i r cost = r e p a i r cost on g r a v e l s e c t i o n s , sum steps 16, 18, 19, 20 = t o t a l l i n k c o s t . * Computer Programme put together by L a r r y Meyer, Dept. of Geography, U.B.C. 23. 8.2 102.9 20.8. 11.1 "costs here not exactly true, because of simplification of network structure; Vernon-Kamloops link is really Vernon-Monte Cr.; and Merritt-Lytton is really Merritt-Spences Bridge. "^ 45.9 midrrort Mann Bridge 57.0 Fig 17. Total Cost of Links in the Trunk System 1946-71 $ million (surveys, right-of-way, construction, paving, improving). I . • -Fig 21. Simulated Heavy-Truck Costs, 1971 Links, ($ rounded) APPENDIX IV THE SURVEY SCHEDULE 103 DUNCAN DAY 2400-0300 0800 - 1 6 0 0 1600-2400 MONDAY 8 JUL 74 TUESDAY 9 JUL 74 WEDNESDAY 10 JUL 74 1000 - 1600 A,B,C, 1600 - 2200 D,E,F THURSDAY 11 JUL 74 A,B,C, D,E,F FRIDAY 12 JUL 74 NOTE: Each l e t t e r r e p r e sents an i n t e r v i e w e r on duty. 104 PARKSVILLE DAY 2400-0800 0800-1600 1600-2400 MONDAY 8 JUL 74 T U E S D A Y 9 JUL 74 WEDNESDAY 19 JUL 74 1100 - 1600 G,H,I 1600 - 2200 J,K,L THURSDAY 11 JUL 74 G , H , I J,K,L F R I D A Y 12 JUL 74 105 LAIDLAW (15 - 19 JULY) DAY 2400-0000 0800-1600 1600-2400 MONDAY 1200 - 1800 A,B 1800 - 2400 E,F TUESDAY A,B, WEDNESDAY A,B G,H THURSDAY E,F A,B FRIDAY E,F A,B 106 HUNTER CREEK (15 - 19 JULY) DAY 2400-0300 0800-1600 1600-2400 MONDAY 1200 - 1800 C,D 1800 ~ 2400 G,H TUESDAY C,D G,H V/EDNESDAY E,F, C,D . . THURSDAY C,D G,H FRIDAY C,D G,H 107 HAIG (22 - 26 JULY) DAY 2400-0000 0800-1600 1600-2400 MONDAY C,D G,H TUESDAY C,D A S B WEDNESDAY G,H C,D A ,B THURSDAY C,D G,H FRIDAY A,B C,D G,H 108 KALEDEN (22 - 26 JULY) DAY 2400-0G00 0800-1600 1600-2400 MONDAY TUESDAY E,F i/EDNESDAY E,F THURSDAY E,F FRIDAY E,F 109 KAMLOOPS (29 JULY - 2 AUGUST) DAY 2400-0800 0800-1600 1600-2400 MONDAY A,B E,F TUESDAY G,H WEDNESDAY G,H A,B THURSDAY FRIDAY E,F G,H 110 KAMLOOPS NORTH (29 JULY - 2 AUGUST) DAY 2400-0800 0800-1600 1600-2400 MONDAY C,D TUESDAY C,D A,B WEDNESDAY E,F G,D THURSDAY C,D FRIDAY C,D -I l l CACHE CREEK (29 JULY - 2 AUGUST) DAY 2400 -0800 0800 -1600 1600-2400 MONDAY TUESDAY WEDNESDAY THURSDAY E,F G,H FRIDAY A,B -112 GOLDEN ( 5 - 9 AUGUST) DAY 2400-0800 0800-1600 1600-2400 MOMDAY TUESDAY C , D WEDNESDAY C , D THURSDAY G , H C , D E , F FRIDAY G , H C , D E , F 113 TETE JAUNE CACHE ( 5 - 9 AUGUST) DAY 2400-OGOO 0800-1600 1600-2400 MONDAY TUESDAY A,B G,H WEDNESDAY A,B THURSDAY A,B FRIDAY A,B 114 FERNIE (12 - 16 AUGUST) DAY 2400 -0800 0800-1600 1600-2400 MONDAY C,D E,F' TUESDAY C,D E,F WEDNESDAY C,D E,F THURSDAY G,H C,D E,F FRIDAY C,D 1 1 5 YAHK ( 1 2 - 16 AUGUST) DAY 2400-0800 0800-1600 1600-2400 MONDAY TUESDAY WEDNESDAY A,B THURSDAY • FRIDAY A,B G.H 116 TERRACE DAY 2400-0000 0800-1600 1600-2400 MONDAY 19 AUG 74 TUESDAY 20 AUG 74 WEDNESDAY 21 AUG 74 THURSDAY 22 AUG 74 X,Y,Z FRIDAY 23 AUG 74 NOTE: Each l e t t e r represents an i n t e r v i e w e r on duty. APPENDIX V FACTORS FOR TRIPS/WEEK SCALE SHIFT FACTOR Duncan II 08 - 16 1 6 - 2 4 (1..43 + 2 . 8 6 ) * . . 3.08 F e r n i e G o lden n 2 4 - 0 8 08 - 1 6 1 6 - 24 2.5 1.25 2.5 H a i g II II 24 - 08 0 8 - 1 6 1 6 - 2 4 2.5 1 1 K a l e d e n 0 8 - 1 6 (1.38 + 1 . 2 5 ) * Kamloops • n 08 - 16 1 6 - 2 4 (1.25 + 1 . 2 5 ) * 1 . 6 7 Kamloops N o r t h II it 24 - 08 08 - 1 6 1 6 - 2 4 5 1 5 L a i d l a w -Hunter Creek 2 4 - 0 8 08 - 1 6 1 6 - 2 4 5 1 . 1 1 1.43 P a r k s v i l l e II 0 8 - 1 6 1 6 - 2 4 • • (1.54 + 3.08)* 3.08 T e r r a c e 0 8 - 1 6 ( 5 + 5 ) * T e t e Jaune Cache Yahk II II 24 - 08 08 - 16 16 - 24 _/ 5 5 *NOTE: At s c a l e s where the s u r v e y war not done f o r a t l e a s t one 24 hour p e r i o d the 08 - 16 s h i f t was f a c t o r e d - u p as compensation. The f i r s t number i n the b r a c k e t s i s t h i s s p e c i a l a d j u s t m e n t . APPENDIX VI SCALE FORMULAS 120 An ex p l a n a t i o n of these formulas i s i n s e c t i o n 4.1 of the t h e s i s . Note that the formula f o r T ( i , j ) i s the same as the formula f o r T ( j , i ) . VARIABLES: T ( i , j ) = t o t a l trips/week from i to j . = value of T ( i , j ) i n the f i n a l 0/D t a b l e . D = trips/week from i to j recorded at the Duncan s c a l e . F = trips/week from i to j recorded at the F e r n i e s c a l e . G = trips/week from i to 3 recorded at the Golden s c a l e . H trips/week from i to j recorded at the Haig s c a l e . KL = trips/week from i to j recorded at the Kaleden s c a l e . K trips/week from i to j recorded at the Kamloops s c a l e . KN = trips/week from i to j recorded at the Kamloops North s c a l e . L = trips/week from i to j recorded at the Laidlaw-Hunter Ck. P = trips/week from i to 3 recorded at the P a r k s v i l l e . . s c a l e . T = trips/week from i to j recorded at the Terrace s c a l e . TJC = trips/week from i to j recorded at the Tete Jaune Cache s c a l e Y = trips/week from i to 3 recorded at the Yahk s c a l e . LINK FORMULA Cranbrook - Nelson „ - K i n n a i r d , C a s t l e g a r ,, - Rossland, T r a i l „ - Vancouver ,, - Kamloops „ - Kelowna „ - Vernon „ - Golden „ - Salmon Arm „ - - Terrace T ( i , j ) = Y = Y = Y = H+L+Y + G+K 2 4 ' = G = G + Y = G + Y = G = G = G+K+T 3 Nelson - Grank Forks „ - Vancouver „ - Kamloops T ( i , j ) = KL = H + L = KL + K + KN -K i n n a i r d , C a s t l e g a r - P e n t i c t o n ,, - Vancouver T ( i , j ) = KL = H + L Rossland, T r a i l - P e n t i c t o n II • • - Vancouver T ( i , j ) = KL = H + L Grand Forks - P e n t i c t o n „ - Vancouver T ( i , j ) = KL T ( i , j ) = H + L Osoyoos — P e n t i c t o n ,, -Vancouver „ - Kelowna „ - Vernon T ( i , j ) = KL = H + L = KL • = KL Keremeos - P e n t i c t o n ,, - Vancouver „ - Kelowna „ - Vernon ,, - Golden . T ( i , j ) = KL = H + L = KL = KL = KL P r i n c e t o n - P e n t i c t o n ,, - Vancouver „ ' - Kelowna ,, - Vernon T ( i , j ) = KL = H + L = KL = 'KL P e n t i c t o n - Hope ,, - Vancouver „ - V i c t o r i a ,, - Nanaimo T ( i , j ) = KL = H + L + KL 2 = H + L + KL 2 = H + L +KL 2 LINK FORMULA P e n t i c t o n - Campbell R i v e r T ( i j ) = KL + H + L + P 3 II - M e r r i t = KL II -• Kamloops = KL + K + KN II - Kelowna = KL II - Terrace". KL + K + T 2 Vancouver — Hope T ( i »j) = H + L II - V i c t o r i a = D „ - Nanaimo = D II - Courtenay = P II - Campbell R i v e r = P it - M e r r i t = H + L II - L y t t o n = H + L II - Revelstoke = K + H + L 2 it - Cache Creek = H + L II - C l i n t o n = H + L ti - Kamloops = KL + K + H + L 2 II - Kelowna = H + L + K + KL 2 II - Vernon = H + L + K + KL 2 II - Golden = K + H + L 2 it - Salmon Arm = K + H + L + KL 2 ii - W i l l i a m s Lake H + L ii - Quesnel = H + L ii - P r i n c e Rueert = H + L + T 2 II - K i t i m a t = H + L + T 2 II - Terrace = T + H + L 2 n - Smithers = H + L V i c t o r i a - Nanaimo T ( i ,3) = D II - Courtenay = D + P 2 II - Campbell R i v e r = D + P 2 II - Kamloops =• K + H + L 2 II - Kelowna = H + L + K + KL 2 II - Vernon = H + L + K + KL 2 12 3 LINK FORMULA Nanaimo - Courtenay " - Campbell R i v e r " - Kelowna " - W i l l i a m s Lake T ( i , j ) = D = P = H + L + K + KL 2 = H + L Courtenay -; Kamloops T ( i , j ) = K + H + L + P 3 Campbell R i v e r - Kamloops ti - Kelowna „ - Salmon Arm T ( i , j ) = K + H + L + P 3 = H + L + K + KL + P 3 = K + H + L + P 3 M e r r i t - Kamloops T ( i , j ) = K + KN Revelstoke - L y t t o n „ - Kamloops „ - Kelowna ,, - W i l l i a m s Lake T ( i , j ) = K = K + KN = K = K Cache Creek - P e n t i c t o n ,, - Revelstoke ,, - Kamloops T ( i , j ) = K = K = .K C l i n t o n - Kamloops T ( i , j ) = K Kamloops - Rossland, T r a i l „ - Osoyoos ,, - P r i n c e t o n „ - Hope ,, - Nanaimo „ - L y t t o n ,, - Kelowna ,, - Vernon „ - Golden ,, - Salmon Arm „ - W i l l i a m s Lake „ - Terrace T ( i , j ) = K • = KL + K = K + KN = K + KN 2 = H + L + K 2 = K = K + KN = K + KN = G + KN 2 = K + KN = K = T + K 2 Kelowna - Hope „ - Courtenay T ( i , j ) = KL = K + KL + H + L + P 3 12 4 LINK | FORMULA i i Kelowna - C l i n t o n ,, - Golden ,, - W i l l i a m s Lake „ - Quesnel •„ - Terrace T ( i , j ) = K = G = K = K = T + K 2 Vernon - Kelowna „ - Golden „ -r'.WIlliams Lake T ( i , j ) = K = G = K Golden - P e n t i c t o n • • " Hope „ - Nanaimo „ - W i l l i a m s Lake T ( i , j ) = G = K = K + H + L + KL 2 = K W i l l i a m s Lake - P e n t i c t o n „ - V i c t o r i a „ - Terrace ' T ( i . j ) = K = H + L = T Quesnel - P r i n c e Rupert T ( i , j ) = T P r i n c e Rupert - V i c t o r i a „ - Smithers T ( i , j ) = H + L = T K i t i m a t - Terrace T ( i , j ) = T Terrace - P r i n c e Rupert „ - Smithers T ( i , j ) = T = T Smithers - Cranbrook ,, - K i t i m a t T ( i , j ) = K + G 2 = T APPENDIX V I I MODEL WITH 31 NODES 126 ***** G R A V I T Y M O D E L ***** C CALIBRATION MODE ) INPUT/OUTPUT SPECIFICATIONS NUMBER OF CALIBRATION ITERATIONS = 4 NUMBER OF ATTRACTION BALANCING ITERATIONS 8 SMOOTHING OPTIONS IN EFFECT (1=YES,0=NO) = 1 PRINT OUT OF INPUT DATA (l=YES»0=NO) = 1 PRINT OUT OF INTERMEDIATE OUTPUT U=YEStO=NO) •= 0 PLOT OUTPUT tl=YES,0=NO) •= 1 K-FACTOR DATA INPUT (l=YEStO=NO) 0 K-FACTOR PUNCHED OUTPUT TO UNIT 7 (1=YES,0=NO) - 0 TRIP MATRIX PUNCHED (l=YES,0=NO) 0 *** INPUT DATA LISTINGS *** PRODUCTIONS AND ATTRACTIONS ZONE PRODUCTION ATTRACTION 1 66o00 58.00 2 18.00 23.00 3 19.00 39.00 4 44.00 38.00 5 25o00 31.00 6 142.00 185.00 7 53.00 63.00 8 126.00 99.00 9 316.00 231.00 10 0.0 85.00 11 968.00 994.00 12 153.00 185.00 13 221.00 243.00 14 114.00 96.00 15 141.00 136.00 16 29o00 46.00 17 2.00 13.00 18 71.00 73.00 19 51.00 41.00 20 16.00 35.00 21 491.00 337.00 22 216.00 224.00 23 141.00 138.00 24 41.00 33.00 25 0.0 35.00 26 85.00 76.00 27 32.00 16.00 28 33.00 41.00 29 71.00 124.00 30 314.00 137.00 31 68.00 192.00 BASE YEAR 0/D PATTERN 128 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 5 5 25 0 0 0 0 0 0 2 0 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 0 4 15 0 0 0 0 0 0 0 11 0 5 0 0 0 0 0 0 0 0 5 0 6 0 0 0 0 0 0 0 0 58 0 7 0 0 0 0 0 0 0 0 24 0 8 0 0 0 0 0 0 0 0 34 0 9 3 3 3 0 5 105 24 29 0 8 10 0 0 0 0 0 0 0 0 0 0 11 18 12 31 11 23 25 21 66 80 68 12 1 0 0 0 0 0 0 0 1 0 13 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 1 0 15 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 3 0 17 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 2 0 20 0 0 0 0 0 0 0 0 0 0 21 3 3 0 2 0 5 0 1 3 3 22 3 0 0 0 0 37 13 0 0 3 23 5 0 0 0 0 13 5 3 0 0 24 4 0 0 0 0 0 0 0 3 3 25 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 3 0 27 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 30 5 0 0 0 0 0 0 0 0 0 31 1 0 0 0 0 0 0 0 0 0 SUM 58 23 39 38 31 185 63 99 231 85 INE 11 12 13 14 15 16 17 18 19 20 1 10 0 0 0 0 0 0 0 0 0 2 10 0 0 0 0 0 0 0 0 0 3 16 0 0 0 0 0 0 0 0 0 4 18 0 0 0 0 0 0 0 0 0 5 20 0 0 0 0 0 0 0 0 0 6 42 0 0 0 0 0 0 0 0 0 7 10 0 0 0 0 0 0 0 0 0 8 78 0 0 0 0 0 0 0 0 0 9 114 4 1 0 1 5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 11 0 4 12 34 55 17 6 1 20 1 12 19 0 98 9 20 0 0 0 0 0 13 0 107 0 51 59 0 0 0 0 0 14 25 32 54 0 0 0 0 0 0 0 15 32 30 75 0 0 0 0 0 0 0 16 23 0 0 0 0 0 0 0 0 0 17 2 0 0 0 0 0 0 0 0 0 18 3 0 0 0 0 0 3 0 0 0 19 28 0 0 0 0 0 0 3 0 0 20 2 0 0 0 0 0 0 0 0 0 21 207 3 1 1 1 24 4 66 21 32 22 1 3 1 1 1 1 0 0 0 3 0 2 23 83 1 0 0 0 0 0 0 0 0 24 6 0 1 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 26 50 1 0 0 0 0 0 0 . 0 0 27 22 0 0 0 0 0 0 0 0 0 28 21 2 0 0 0 0 0 0 0 0 29 1 0 0 0 0 0 0 0 0 0 30 14 0 0 0 0 0 0 0 0 0 31 7 0 0 0 0 0 0 0 0 0 CSUM 994 185 243 96 136 46 13 73 41 35 ZONE 21 22 23 24 25 26 27 28 29 30 1 3 3 8 3 3 0 0 0 0 1 2 5 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 6 0 29 13 0 0 0 0 0 0 0 7 0 1 1 . 3 ' 5 0 0 0 0 0 0 8 O i l 3 0 0 0 0 0 0 0 9 5 5 0 0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 0 0 11 179 115 71 2 14 36 13 21 4 6 12 3 1 1 0 0 0 0 0 0 0 13 0 3 0 0 0 1 0 0 0 0 14 2 0 0 0 0 0 0 0 0 0 15 1 2 0 0 1 0 0 0 0 0 16 3 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 18 53 4 0 0 0 8 0 0 0 0 19 1 8 0 0 0 0 0 0 0 0 0 20 14 0 0 0 0 0 0 0 0 0 21 0 34 23 6 17 23 0 0 0 8 22 7 0 0 8 0 2 3 0 0 1 23 16 3 0 9 0 3 0 0 0 0 24 5 3 13 0 0 3 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 26 18 0 3 0 0 0 0 0 0 10 27 0 0 0 0 0 0 0 10 0 0 28 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 70 30 5 0 0 0 0 0 0 10 100 0 31 0 0 0 0 0 0 0 0 20 40 CSUM 337 224 138 33 35 76 16 41 124 137 ZONE 31 RSUM 1 0 66 2 0 18 3 0 19 4 0 44 5 0 25 6 0 142 7 0 53 8 0 126 9 0 316 10 0 0 11 2 968 12 0 153 13 0 221 14 0 114 15 0 141 16 0 29 17 0 2 18 0 71 19 0 51 20 0 16 21 0 491 22 0 216 23 0 141 24 0 41 25 0 0 26 0 85 2 7 0 32 28 10 33 29 0 71 30 180 314 31 0 68 CSUM 192 IMPEDANCE MATRIX ZONE 1 2 3 4 5 6 7 8 9 10 1 60 7 9 7 11 15 16 18 16 22 2 7 60 1 2 5 9 10 12 11 16 3 9 1 60 1 3 7 9 11 9 15 4 7 2 1 60 4 8 9 11 10 15 5 11 5 3 4 60 4 6 7 6 11 6 15 9 7 8 4 60 1 3 2 7 7 16 10 9 9 6 1 60 2 1 6 8 18 12 11 11 7 3 2 60 3 4 9 16 11 9 10 6 2 1 3 60 7 10 22 16 15 15 11 7 6 4 7 60 11 26 20 34 19 15 11 10 8 11 4 12 29 23 37 23 17 13 11 12 13 5 13 28 22 36 22 18 14 12 11 14 6 14 32 26 40 25 21 17 16 14 17 10 15 33 27 41 26 22 18 17 15 18 11 16 20 14 13 13 10 5 4 2 5 5 17 22 16 14 15 11 7 6 4 7 3 18 12 18 17 17 13 9 9 10 7 13 19 20 18 17 17 13 9 8 6 8 5 20 21 19 18 18 14 10 9 7 9 6 21 18 16 15 15 11 7 7 5 6 7 22 17 13 11 12 8 4 4 5 2 9 23 16 14 13 13 9 5 5 7 3 9 24 7 14 15 13 17 15 14 16 13 18 25 15 16 14 15 11 7 6 8 5 10 26 25 23 22 22 19 14 13 11 13 10 27 28 26 25 25 22 17 16 14 16 13 28 50 48 47 48 44 40 38 37 38 36 29 47 46 44 45 41 37 35 34 35 3 3 30 46 44 43 43 39 35 34 32 34 31 31 40 38 37 38 34 30 28 27 28 26 3NE 11 12 13 14 15 16 17 18 19 20 1 26 29 28 32 33 20 22 12 20 21 2 20 23 22 26 27 14 16 18 18 19 3 34 37 36 40 41 13 14 17 17 18 4 19 23 22 25 26 13 15 17 17 18 5 15 17 18 21 22 10 11 13 13 14 6 11 13 14 17 18 5 7 9 9 10 7 10 11 12 16 17 4 6 9 8 9 8 8 12 11 14 15 2 4 10 6 7 9 11 13 14 17 18 5 7 7 8 9 10 4 5 6 10 11 5 3 13 5 6 11 60 4 3 6 7 9 7 17 9 10 12 4 60 5 8 9 12 10 20 13 14 13 3 5 60 3 5 11 9 19 12 13 I V 6 8 3 60 1 14 13 23 15 16 15 7 9 5 1 60 16 14 24 16 17 16 9 12 11 14 16 60 2 8 4 5 17 7 10 9 13 14 2 60 10 2 3 18 17 20 19 23 24 8 10 60 8 9 19 9 13 12 15 16 4 2 8 60 1 20 10 14 13 16 17 5 3 9 1 60 21 11 15 14 17 18 2 4 6 2 3 22 13 17 16 19 20 6 8 5 6 7 23 13 17 16 19 21 5 6 4 4 5 24 22 26 25 28 30 14 15 6 13 14 25 14 18 17 20 21 5 7 3 5 6 26 14 18 17 20 22 8 7 13 5 4 27 17 21 20 23 25 11 10 16 8 7 28 40 43 42 45 47 33 33 38 30 29 29 37 40 39 43 44 30 30 35 28 27 30 35 39 38 41 42 29 28 34 26 25 31 30 33 32 35 37 23 23 28 20 19 3NE 21 22 23 24 25 26 27 28 29 30 1 18 17 16 7 15 25 28 50 47 46 2 16 13 14 14 16 23 26 48 46 44 3 15 11 13 15 14 22 25 47 44 43 4 15 12 13 13 15 22 25 48 45 43 5 11 8 9 17 11 19 22 44 41 39 6 7 4 5 15 7 14 17 40 37 35 7 7 4 5 14 6 13 16 38 35 34 8 5 5 7 16 8 11 14 37 34 32 9 6 2 3 13 5 13 16 38 35 34 10 7 9 9 18 10 10 13 36 33 31 11 11 13 13 22 14 14 17 40 37 35 12 15 17 17 26 18 18 21 43 40 39 13 14 16 16 25 17 17 20 42 39 38 14 17 19 19 28 20 20 23 45 43 41 15 18 20 21 30 21 22 25 47 44 42 16 2 6 5 14 5 8 11 33 30 29 17 4 8 6 15 7 7 10 33 30 28 18 6 5 4 6 3 13 16 38 35 34 19 2 6 4 13 5 5 8 30 28 26 20 3 7 5 14 6 4 7 29 27 25 21 60 3 2 11 3 7 10 33 30 28 22 3 60 1 11 3 11 14 36 33 31 23 2 1 60 10 2 9 12 35 32 30 24 11 11 10 60 8 18 21 44 41 39 25 3 3 2 8 60 10 13 35 33 31 26 7 11 9 18 10 60 3 25 22 21 27 10 14 12 21 13 3 60 22 19 18 28 33 36 35 44 35 25 22 60 6 5 29 30 33 32 41 33 22 19 6 60 2 30 28 31 30 39 31 21 18 5 2 60 31 23 26 25 34 25 15 12 10 7 6 ZONE 3 1 1 40 2 38 3 37 4 38 5 34 6 30 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 28 27 28 26 30 33 32 35 37 23 23 28 20 19 23 26 25 34 25 15 12 10 7 6 60 EXISTING TRIP LENGTH DISTRIBUTION & INITIAL F-FACTOR TL TRIPS F-FACTOR 1 51.00 1.00 2 443.00 1.00 3 284.00 1.00 4 185.00 1.00 5 413.00 1.00 6 416.00 1.00 7 232.00 1.00 8 190.00 1.00 9 158.00 1.00 10 80.00 1.0,0 11 674.00 1.00 12 0.0 0.0 13 419.00 1.00 14 110.00 1.00 15 54.00 1.00 16 28.00 1.00 17 54.00 1.00 18 16.00 1.00 19 30.00 1.00 20 24.00 1.00 21 11.00 1.00 22 18.00 1.00 23 0.0 0.0 24 0.0 0.0 25 1.00 1.00 26 28.00 1.00 27 0.0 0.0 28 13.00 1.00 29 1.00 1.00 30 9.00 1.00 31 I.00 1.00 32 0.0 0.0 33 0.0 0.0 34 48. 00 1.00 35 20.00 1.00 36 0.0 0.0 37 5.00 1.00 38 0.0 0.0 39 0.0 0.0 40 43.00 1.00 41 0.0 0.0 42 0.0 0.0 43 2.00 1.00 44 0.0 0.0 45 0.0 0.0 46 6.00 1.00 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 o.o: 57, 0 . 0 0 .0 58 0 . 0 0 . 0 59 0 . 0 0 . 0 60 0 . 0 0 .0 1 36 *** GRAVITY MODEL OUTPUT *** CALIBRATION ITERATION = 1 O/D TABLE AFTER ITERATION 1 ZONE I 2 3 4 5 6 7 8 9 10 1 0 0 0 0 0 3 1 1 4 1 2 0 0 0 0 0 1 0 0 1 0 3 0 0 0 0 0 1 0 0 1 0 4 0 0 0 0 0 2 0 1 3 1 5 0 0 0 0 0 1 0 0 1 0 6 2 0 1 1 1 0 2 3 8 3 7 0 0 0 0 0 2 0 1 3 1 8 2 0 1 1 1 6 2 0 8 3 9 4 1 3 3 2 15 5 8 0 7 10 0 0 0 0 0 0 0 0 0 0 11 18 7 12 11 9 58 19 31 72 26 12 2 0 1 0 1 8 2 0 10 3 13 4 I 0 2 2 12 0 6 16 5 14 0 0 1 1 0 5 1 3 7 2 15 0 0 0 1 1 7 2 4 9 3 16 0 0 0 0 0 1 0 0 1 0 17 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 3 1 1 4 1 19 0 0 0 0 0 2 0 1 3 1 20 0 0 0 0 0 0 0 0 0 0 21 8 3 5 5 4 25 8 13 32 11 22 3 1 2 0 1 10 3 5 13 5 23 2 0 1 1 1 6 2 3 8 3 24 0 0 0 0 0 2 0 1 2 0 25 0 0 0 0 0 0 0 0 0 0 26 1 0 0 0 0 3 1 2 4 1 27 0 0 0 0 0 1 0 0 2 0 28 0 0 0 0 0 2 0 1 0 0 29 0 0 0 0 0 4 1 2 5 0 30 5 0 3 3 0 18 6 0 23 8 31 1 0 0 0 0 4 1 0 5 2 CSUM 61 21 41 39 32 217 70 98 257 99 ZONE 11 12 13 14 15 16 17 18 19 20 1 18 3 4 0 0 0 0 0 0 0 2 5 0 1 0 0 0 0 0 0 0 3 5 1 0 0 0 0 0 0 0 0 4 13 0 3 1 1 0 0 0 0 0 5 6 1 1 0 0 0 0 0 0 0 6 3 6 6 8 3 4 1 0 2 1 1 7 14 2 0 8 36 0 8 9 82 15 20 10 0 0 0 11 0 58 76 12 45 0 11 13 68 12 0 14 31 5 7 15 40 7 9 16 8 0 1 17 0 0 0 18 19 3 4 19 13 2 0 20 4 0 0 21 139 25 34 22 58 10 14 23 36 6 9 24 10 2 2 25 0 0 0 26 21 3 5 27 8 1 2 28 14 2 0 29 24 4 0 30 101 0 0 31 23 0 0 CSUM 891 180 229 ZONE 21 22 23 1 6 4 2 2 1 1 0 3 1 1 0 4 4 0 1 5 2 1 0 6 12 8 5 7 4 3 1 8 12 8 5 9 28 18 11 10 0 0 0 11 106 70 43 12 15 10 6 13 23 15 9 14 10 7 4 15 13 9 5 16 2 1 1 17 0 0 0 18 6 4 2 19 4 3 1 20 1 0 0 21 0 31 19 22 19 0 8 23 12 8 0 24 3 2 1 25 0 0 0 26 7 4 2 27 2 1 0 1 1 0 0 3 4 1 0 7 11 3 1 0 0 0 0 30 42 14 4 4 6 0 0 6 9 3 0 0 4 1 0 3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 13 19 6 1 5 8 2 0 3 5 1 0 1 1 0 0 0 0 0 0 2 2 0 0 0 i 0 0 0 0 0 0 2 0 1 0 0 0 4 1 2 3 0 0 97 133 51 15 24 25 26 27 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 2 0 0 0 1 0 1 1 2 0 2 2 6 1 0 0 0 0 10 11 23 5 1 i 3 0 2 2 5 1 1 I 2 0 1 1 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 4 4 10 2 1 2 4 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 1 1 6 3 2 0 0 0 22 12 11 3 1 1 5 0 2 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 5 4 4 2 2 2 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 7 4 3 1 0 0 79 46 41 28 29 30 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 1 4 5 0 1 1 1 4 0 0 10 11 0 0 0 12 39 43 1 5 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 2 2 0 1 1 0 0 0 0 17 19 0 0 8 1 0 5 0 0 0 0 0 0 0 2 2 0 1 1 28 0 0 2 0 0 1 0 0 1 2 29 8 0 0 0 0 1 0 1 0 3 30 34 22 14 0 3 7 1 4 12 0 31 0 5 3 0 0 1 0 0 2 3 iUM 348 246 157 34 41 90 17 27 114 118 138 ZONE 31 RSUM 1 3 65 2 0 17 3 1 18 4 0 43 5 1 24 6 7 141 7 2 52 8 0 125 9 15 315 10 0 0 11 60 967 12 0 152 13 0 220 14 6 113 15 7 140 16 0 28 17 0 1 18 3 70 19 2 50 20 0 15 21 0 490 22 11 215 23 7 140 24 2 40 25 0 0 26 4 84 27 0 31 28 2 32 29 4 70 30 19 313 31 0 67 CSUM 165 TRIP LENGTH DISTRIBUTION TL TRIPS 1 39.91 2 132.01 3 273o93 ANO FRICTION FACTOR F-FACTOR 152 • 7.1 99o51 76.43 4 177.24 62.80 5 140.45 53.53 6 192.35 46.71 7 223.42 41.42 8 101.04 37.17 9 107.55 33.65 10 81.34 30.69 11 5 73.28 28.15 12 0.0 0.0 13 297.32 23. 99 14 200.26 22.27 15 105.05 20.74 16 89.07 19.36 17 176.18 18.11 18 105.21 16.97 19 60.31 15.94 20 52.27 14.99 21 28.17 14.12 22 48.89 13.31 23 0.0 0.0 24 0.0 0.0 25 30.29 11.24 26 70.02 10.65 27 0.0 0.0 28 100.21 9.57 29 12.57 9.09 30 146.88 8.63 31 43.15 8.20 32 0.0 0.0 33 0.0 0.0 34 83.02 7.07 35 204.18 6.73 36 0.0 0,0 37 91.80 6.12 38 0.0 0.0 39 0.0 0.0 40 48.63 5.32 41 0.0 0.0 42 0.0 0.0 43 21.28 4.63 44 0.0 0.0 45 0.0 0.0 46 9.74 4.05 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 0.0 0.0 58 0.0 0.0 59 0.0 0.0 60 0.0 0.0 CALIBRATION ITERATION = 2 O/O TABLE AFTER ITERATION 2 ZONE 1 2 3 4 5 6 7. 8 9 1 0 1 0 1 2 2 1 3 1 1 4 0 2 1 0 2 1 0 1 0 0 1 0 3 1 1 0 2 0 1 0 0 1 0 4 2 1 5 0 1 2 0 1 3 0 5 0 0 1 0 0 2 0 0 2 0 6 2 1 2 2 2 0 6 5 18 2 7 0 0 0 0 0 7 0 2 8 0 8 1 0 1 1 - 1 . 9 3 0 1 2 2 9 5 2 4 3 3 31 13 12 0 4 10 0 0 0 0 0 0 0 0 0 0 11 15 6 4 10 8 46 14 32 59 39 12 1 0 0 0 0 3 1 0 4 3 13 1 0 0 1 0 4 0 2 5 3 14 0 0 0 0 0 2 0 1 2 1 15 0 0 0 0 0 3 0 2 3 1 16 0 0 0 0 0 1 0 1 1 0 17 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 3 1 1 5 0 19 0 0 0 0 0 1 0 1 2 0 20 0 0 0 0 0 0 0 0 0 0 21 8 2 4 4 3 23 6 16 33 8 22 3 1 2 0 . 1 13 3 6 27 2 23 2 0 1 1 1 6 1 2 12 1 24 2 0 0 0 0 1 0 0 2 0 25 0 0 0 0 0 0 0 0 0 0 26 1 0 0 0 0 2 0 1 3 1 27 0 0 0 0 0 1 0 0 1 0 28 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 1 0 30 2 0 1 1 0 5 1 0 6 2 31 0 0 0 0 . 0 . 1 0 0 2 0 CSUM 58 23 39 38 31 185 63 99 231 85 ZONE 11 12 13 14 15 16 17 18 19 20 1 18 1 2 0 0 0 0 0 0 0 2 4 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 4 12 0 1 0 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0 0 6 39 3 4 1 2 1 0 2 0 0 7 13 1 0 0 0 0 0 0 0 0 8 44 0 4 .1 2 2 0 2 1 0 9 83 8 8 3 5 3 0 7 2 1 10 0 0 0 0 0 0 0 0 0 0 11 0 115 155 45 68 12 4 17 11 9 12 97 0 10 3 5 0 0 1 0 0 13 144 11 0 8 10 1 0 1 0 0 14 54 5 11 0 18 0 0 0 0 0 15 72 6 12 16 0 0 0 0 0 0 16 8 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 18 18 1 2 0 0 0 0 0 0 0 19 15 1 0 0 0 0 0 1 0 1 20 4 0 0 0 0 0 0 0 0 0 21 151 13 15 6 9 12 2 15 11 8 22 49 4 5 2 3 2 0 6 2 1 23 28 2 3 1 1 1 0 4 1 1 24 10 0 1 0 0 0 0 2 0 0 25 0 0 0 0 0 0 0 0 0 0 26 25 2 2 1 1 0 0 1 1 1 27 9 0 1 0 0 0 0 0 0 0 28 4 0 0 0 0 0 0 0 0 0 29 8 0 0 0 0 0 0 0 0 0 30 49 0 0 0 0 1 0 3 .1 1 31 15 0 0 0 1 0 0 1 0 0 5UM 994 185 243 96 136 46 13 73 41 35 NE 21 22 23 24 25 26 27 28 29 30 1 6 3 2 2 0 1 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 3 1 1 0 0 0 0 0 0 0 0 4 3 0 1 0 0 0 0 0 0 0 5 2 1 0 0 0 0 0 0 0 0 6 13 10 5 1 1 1 0 0 0 2 7 4 3 1 0 0 0 0 0 0 0 8 14 7 3 0 0 2 0 0 0 0 9 31 35 15 2 3 4 0 0 2 5 10 0 0 0 0 0 0 0 0 0 0 11 100 45 25 7 6 21 4 5 11 26 12 7 3 1 0 0 1 0 0 0 0 13 9 4 2 0 0 2 0 0 0 0 14 4 2 1 0 0 1 0 0 0 0 15 6 3 1 0 0 1 0 0 0 0 16 5 1 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 18 10 6 4 1 1 1 0 0 0 1 19 10 2 1 0 0 1 0 0 0 1 20 2 0 0 0 0 0 0 0 0 0 21 0 49 35 5 8 13 2 0 5 12 22 35 0 21 2 3 3 0 0 0 4 23 27 22 0 1 2 2 0 0 0 2 24 5 2 1 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 26 10 3 2 0 0 0 1 0 1 4 27 3 1 0 0 0 2 0 0 1 2 28 0 0 0 0 0 0 0 0 4 12 29 2 0 0 0 0 1 0 4 0 34 1 42 30 15 7 4 0 1 6 1 24 83 0 31 0 2 1 0 0 2 0 3 8 21 CSUM 337 224 138 33 35 75 15 40 123 136 ZONE 31 RSUM 1 2 65 2 0 18 3 0 18 4 0 43 5 0 25 6 3 142 7 1 53 8 0 126 9 7 316 10 0 0 11 36 968 12 0 153 13 0 221 14 2 114 15 2 141 16 0 28 17 0 1 18 2 71 19 1 50 20 0 16 21 0 491 22 5 216 23 3 141 24 1 40 25 0 0 26 6 85 27 0 31 28 7 32 29 14 71 30 90 313 31 0 67 C SUM 191 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR TL TRIPS F-FACTOR 1 127.27 267 022 2 349.49 171.25 3 502.29 128.73 4 312.71 103.30 5 180.99 85.91 6 338.70 73.09 7 304.37 63.16 8 107.40 55.21 9 100.70 48.68 10 80.11 43.22 11 542.23 38.59 12 0.0 0.0 13 204.87 31.16 14 119.20 28. 15 15 76.80 25.50 16 45.65 23.16 17 105.00 21.08 18 63.56 19.22 19 36.47 17.56 20 29.07 16.06 21 17.35 14.72 22 33.06 13.50 23 0.0 0.0 24 0.0 0.0 25 15. 92 10.49 26 49.39 9.66 27 0.0 0.0 28 50.63 8.21 29 5.47 7.58 30 74.01 7.00 31 15. 02 6.47 32 0.0 0.0 33 0.0 0.0 34 31.22 5.13 35 92.71 4.75 36 0.0 0.0 37 27.77 4.08 38 0.0 0.0 39 0.0 0.0 40 16.69 3.26 41 0.0 OoO 42 0.0 0.0 43 6. 12 2.61 44 0.0 0.0 45 0.0 0.0 46 4.75 2.10 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 0.0 0.0 58 0.0 0.0 59 0.0 0.0 60 0.0 0.0 CALIBRATION ITERATION = 3 1 4 4 O/D TABLE AFTER ITERATION 3 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 2 3 4 1 4 1 1 4 0 2 1 0 2 1 0 1 0 0 1 0 3 1 1 0 3 0 1 0 0 1 0 4 4 2 6 0 1 3 0 1 3 0 5 1 0 1 1 0 2 0 0 2 0 6 2 1 2 2 2 0 7 6 21 2 7 0 0 0 0 0 7 0 2 9 0 8 1 0 1 1 1 10 3 0 12 2 9 5 2 4 3 3 35 15 13 0 4 10 0 0 0 0 0 0 0 0 0 0 11 13 5 2 9 7 46 14 33 58 44 12 0 0 0 0 0 3 1 0 3 3 13 1 0 0 0 0 3 0 2 4 3 14 0 0 0 0 0 1 0 1 2 1 15 0 0 0 0 0 2 0 1 2 1 16 0 0 0 0 0 1 0 1 1 0 17 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 3 1 1 6 0 19 0 0 0 0 0 1 0 1 2 0 20 0 0 0 0 0 0 0 0 0 0 21 8 2 4 4 3 23 6 16 34 8 22 3 1 2 0 1 14 4 6 30 2 23 2 0 1 1 1 7 1 2 13 1 24 4 0 0 0 0 1 0 0 2 0 25 0 0 0 0 0 0 0 0 0 0 26 1 0 0 0 0 2 0 1 3 1 27 0 0 0 0 0 0 0 0 1 0 28 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 30 1 0 0 0 0 2 0 0 3 1 31 0 0 0 0 0 1 0 0 1 0 CSUM 58 23 39 38 31 185 63 99 231 85 ZONE 11 12 13 14 15 16 17 18 19 20 1 16 1 1 0 0 0 0 0 0 0 2 4 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 4 10 0 0 0 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0 0 6 39 3 3 1 1 1 0 2 0 0 7 13 1 0 0 0 0 0 0 0 0 8 46 0 3 1 . 2 2 0 2 1 0 9 83 6 6 2 3 3 0 7 2 1 10 0 0 0 0 0 0 0 0 0 0 11 0 129 171 5 0 76 12 4 15 11 9 12 108 0 9 3 4 0 0 0 0 0 13 15 8 10 0 8 10 0 0 1 0 0 14 60 4 11 0 20 0 0 0 0 0 15 80 6 11 18 0 0 0 0 0 0 16 8 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 18 16 1 1 0 0 0 0 0 0 0 19 15 1 0 0 0 0 0 1 0 1 20 4 0 0 0 0 0 0 0 0 0 21 152 10 11 4 7 13 2 16 12 8 22 46 3 3 1 2 2 0 7 2 1 23 26 1 2 0 1 1 0 5 1 1 24 9 0 0 0 0 0 0 2 0 0 2 5 0 0 0 0 0 0 0 0 0 0 26 26 1 2 0 1 1 0 1 1 1 27 9 0 0 0 0 0 0 0 0 0 28 2 0 0 0 0 0 0 0 0 0 29 3 0 0 0 0 0 0 0 0 0 30 29 0 0 0 0 0 0 1 1 1 31 10 0 0 0 0 0 0 0 0 0 994 185 243 . 96 136 46 13 73 41 35 INE 21 22 23 24 25 26 27 28 29 30 1 6 3 2 4 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 3 1 1 0 0 0 0 0 0 0 0 4 3 0 1 0 0 0 0 0 0 0 5 2 1 0 0 0 0 0 0 0 0 6 13 11 5 1 1 1 0 0 0 1 7 3 3 1 0 0 0 0 0 0 0 8 14 7 3 0 0 1 0 0 0 0 9 32 39 16 2 3 4 0 0 0 3 10 0 0 0 0 0 0 0 0 0 0 11 100 41 23 6 6 21 4 2 4 16 12 5 2 1 0 0 1 0 0 0 0 13 7 3 1 0 0 1 0 0 0 0 14 3 1 0 0 0 0 0 0 0 0 15 5 2 1 0 0 1 0 0 0 0 16 6 1 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 18 11 7 4 2 1 1 0 0 0 1 19 11 2 1 0 0 1 0 0 0 0 20 3 0 0 0 0 0 0 0 0 0 21 0 53 39 6 8 15 2 0 2 8 22 39 0 23 2 3 3 0 0 0 2 23 30 24 0 1 2 2 0 0 0 1 24 5 2 1 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 26 12 3 2 0 0 0 1 0 1 3 27 4 1 0 0 0 3 0 0 0 2 28 0 0 0 0 0 0 0 0 4 16 29 1 0 0 0 0 0 0 3 0 43 1 4 6 2 0 0 5 1 29 96 0 0 0 0 2 0 3 9 31 337 224 13 8 33 35 75 15 40 123 136 30 10 4 31 0 1 UM 1NE 31 RSUM 1 1 65 2 0 18 3 0 19 4 0 44 5 0 24 6 1 142 7 0 52 8 0 126 9 4 315 10 0 0 11 22 968 12 0 153 13 0 221 14 1 114 15 1 141 16 0 28 17 0 1 18 1 71 19 1 51 20 0 16 21 0 490 22 3 216 23 2 141 24 0 40 25 0 0 26 6 85 27 0 31 28 7 32 29 15 71 30 116 314 31 0 67 CSUM 191 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR TL TRIPS F-FACTOR 1 144.18 312.81 2 398.93 195.32 3 549.71 144.43 4 347.93 114.46 5 189.11 94.22 6 390*91 79.44 7 332.68 68.09 8 109.69 59.08 9 101.6.9 51.74 10 80.88 45.64 11 541.08 40.50 12 0.0 0.0 13 187.65 32.34 14 106.05 29.06 15 68.73 26.19 16 39.32 23.66 17 90.29 21.43 18 53.92 19.45 19 29. 85 17.68 20 22.73 16.10 21 14.40 14.69 22 26.65 13.41 23 0.0 0.0 24 0.0 0.0 25 11.40 10.28 26 40.02 9.43 27 0.0 0.0 28 33.37 7.95 29 3.57 7.3.1 30 46.27 6.73 31 8.91 6.19 32 0.0 0.0 33 0.0 0.0 34 17.70 4.85 35 54.05 4.47 36 0.0 0.0 37 12.48 3.81 38 0.0 0.0 39 0. 0 0.0 40 7.73 3.01 41 0.0 0.0 42 0. 0 0.0 43 2.65 2.39 44 0.0 0.0 45 0.0 0.0 46 2.48 1.9.0 47 0.0 0.0 48 0. 0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 0.0 0.0 58 0.0 0.0 59 0.0 0.0 60 0.0 0.0 CALIBRATION ITERATION = 4 148 O/D TABLE AFTER ITERATION 4 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 2 3 4 1 4 0 1 4 0 2 1 0 3 1 0 1 0 0 1 0 3 1 2 0 3 0 1 0 0 1 0 4 4 2 7 0 1 3 0 1 3 0 5 1 0 1 1 0 2 0 0 2 0 6 2 1 2 2 2 0 7 6 22 2 7 0 0 0 0 0 8 0 2 10 0 8 1 0 1 1 1 10 3 0 13 2 9 5 2 4 3 3 36 15 13 0 4 10 0 0 0 0 0 0 0 0 0 0 11 13 4 2 8 7 45 13 34 57 * 45 12 0 0 0 0 0 2 0 0 3 2 13 1 0 0 0 0 3 0 2 3 2 14 0 0 0 0 0 1 0 1 1 1 15 0 0 0 0 0 2 0 1 2 1 16 0 0 0 0 0 1 0 1 1 0 17 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 3 0 1 6 0 19 0 0 0 0 0 1 0 1 2 0 20 0 0 0 0 0 0 0 0 0 0 21 8 2 4 4 3 23 6 16 34 8 22 3 1 2 0 1 14 3 6 31 2 23 2 0 1 1 0 6 1 2 13 1 24 5 0 0 0 0 1 0 0 2 0 25 0 0 0 0 0 0 0 0 0 0 26 1 0 0 0 0 2 0 1 3 1 27 0 0 0 0 0 0 0 0 1 0 28 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 30 1 0 0 0 0 2 0 0 3 1 31 0 0 0 0 0 0 0 0 1 0 CSUM 58 23 39 38 31 185 63 99 231 85 ZONE 11 12 13 14 15 16 17 18 19 20 1 15 1 1 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 4 10 0 0 0 0 0 0 0 0 0 5 6 0 0 0 0 0 0 0 0 0 6 39 2 2 1 1 1 0 2 0 0 7 12 1 0 0 0 0 0 0 0 0 8 46 0 3 1 1 2 0 2 1 0 9 82 6 5 2 3 3 0 8 2 1 10 0 0 0 0 0 0 0 0 0 0 11 0 133 175 50 77 12 4 15 11 9 12 111 0 9 2 4 0 0 0 0 0 13 162 10 0 8 9 0 0 1 0 0 14 60 4 10 0 22 0 0 0 0 0 15 82 5 11 19 0 0 0 0 0 0 16 8 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 18 16 1 1 0 0 0 0 0 0 0 19 15 0 0 0 0 0 0 1 0 1 20 4 0 0 0 0 0 0 0 0 0 21 152 9 10 4 6 13 2 17 13 9 22 45 2 3 1 2 2 0 7 1 1 23 26 1 1 0 1 1 0 5 1 1 24 9 0 0 0 0 0 0 3 0 0 25 0 0 0 0 0 0 0 0 0 0 26 26 1 .1 0 1 1 0 1 1 1 27 9 0 0 0 0 0 0 0 0 0 28 2 0 0 0 0 0 0 0 0 0 29 3 0 0 0 0 0 0 0 0 0 30 26 0 0 0 0 0 0 1 1 1 31 10 0 0 0 0 0 0 0 0 0 UM 994 185 243 96 136 46 13 73 41 35 INE 21 22 23 24 25 26 27 28 29 30 1 6 o 2 4 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 3 1 1 0 0 0 0 0 0 0 0 4 3 0 1 0 0 0 0 0 0 0 5 2 1 0 0 0 0 0 0 0 0 6 13 11 5 1 1 1 0 0 0 1 7 3 3 1 0 0 0 0 0 0 0 8 14 7 2 0 0 1 0 0 0 0 9 32 40 16 2 3 4 0 0 0 2 10 0 0 0 0 0 0 0 0 0 0 11 99 40 22 6 6 21 4 1 4 14 12 5 2 1 0 0 1 0 0 0 0 13 6 2 1 0 0 1 0 0 0 0 14 3 1 0 0 0 0 0 0 0 0 15 4 1 0 0 0 0 0 0 0 0 16 6 1 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 18 12 7 4 2 1 1 0 0 0 1 19 12 2 1 0 0 1 0 0 0 0 20 3 0 0 0 0 0 0 0 0 0 21 0 55 40 6 9 15 2 0 2 8 22 40 0 24 2 3 3 0 0 0 2 23 31 25 0 1 2 2 0 0 0 1 24 5 2 1 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 26 12 3 2 0 0 0 2 0 1 3 27 4 1 0 0 0 4 0 0 0 2 28 0 0 0 0 0 0 0 0 4 17 29 1 0 0 0 0 0 0 3 0 45 3 0 9 3 2 0 0 5 1 . 2 9 9 8 0 3 1 0 1 0 0 0 2 0 3 8 3 3 C S U M 3 3 7 2 2 4 1 3 8 3 3 3 5 7 6 1 5 4 0 1 2 2 1 3 6 ZONE 3 1 RSUM 1 1 6 5 2 0 1 8 3 0 1 9 4 0 4 3 5 0 2 4 6 1 1 4 2 7 0 5 2 8 0 1 2 6 9 4 3 1 6 1 0 0 0 1 1 2 1 9 6 8 1 2 0 1 5 3 1 3 0 2 2 1 1 4 0 1 1 4 1 5 1 1 4 1 1 6 0 2 8 1 7 0 1 1 8 1 71 1 9 1 5 0 2 0 0 1 6 2 1 0 4 9 0 2 2 3 2 1 6 2 3 2 1 4 1 2 4 0 4 0 2 5 0 0 2 6 6 85 2 7 0 3 1 2 8 7 3 2 2 9 1 4 7 0 3 0 1 2 0 3 1 4 3 1 0 6 7 C S U M 1 9 0 T R I P L E N G T H D I S T R I B U T I O N AND F R I C T I O N F A C T O R T L T R I P S F — F A C T O R 1 1 5 2 . 1 2 3 2 2 . 5 2 2 4 1 2 . 0 6 1 9 8 . 7 9 3 5 6 2 . 3 9 1 4 5 . 9 1 4 3 5 6 . 4 0 1 1 5 . 0 4 5 1 8 8 . 7 3 9 4.3.2 6 398,23 79.28 7 336,29 6 7.78 8 109,50 58.68 9 100,41 51.29 10 79,91 45.17 11 536,65 40.03 12 0.0 0.0 13 181.20 31.88 14 102.67 28.61 15 66.45 25.76 16 37.43 23.26 17 86.82 21.05 18 51.58 19.09 19 28.32 17.34 20 21.37 15.78 21 13.67 14.39 22 25.48 13.13 23 0.0 0.0 24 0.0 0.0 25 10.59 10.05 26 38.5 0 9.22 27 0.0 0.0 28 30.40 7.77 29 3.25 7.14 30 42.32 6.57 31 7.89 6.04 32 0. 0 0.0 33 0.0 0.0 34 15.75 4.73 35 48.68 4.36 36 0.0 0.0 37 10.66 3.72 38 0.0 0.0 39 0.0 0.0 40 6.80 2.93 41 0.0 0.0 42 0.0 0.0 43 2.26 2.32 44 0.0 0.0 45 0.0 0.0 46 2.22 1.85 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0, 0 0.0 56 0.0 0.0 5 7 0.0 0.0 58 0.0 0.0 59 0.0 0.0 60 0.0 0.0, K - F A C T O R T A B L E Z O N E 1 2 1 1.0 1.8 2 1.0 1.0 3 1.0 1.0 4 4.6 1.0 5 1. 0 1.0 6 1.0 1.0 7 1.0 1.0 8 1.0 1.0 9 0.5 1.4, IC - 1.0 1.0 l l 1.4 2.4 12 1.2 1.0 13 1. 0 1.0 14 1.0 1.0 15 1.0 1.0 16 1.0 1.0 17 1.0 1.0 18 1. 0 1.0 19 1.0 1.0 20 1.0 1.0 21 0.4 1.3 22 0.9 1.0 23 2.4 1.0 24 0.8 1.0. 25 1.0 1.0 26 1.0 1.0 27 1.0 1.0. 28 1.0 1.0 29 1. 0 1.0 30 4.0 1.0 31 1.9 1.0 INE 11 12 1 0.6 1.0 2 4.5 1.0 3 71.2 1.0 4 2.3 1.0 5 11.4 1.0 6 1.1 1.0 7 0.7 1.0. 8 2.8 1.0 9 1.6 0.6 10 1.0 1.0 ; 11 1. 0 0.0 12 0.1 1.0 13 1.0 19.8 14 0.2 10.0 15 0.2 6.2 16 8. 8 1.0 17 1.0 1.0 18 0.1 1.0 19 2.7 1.0 3 4 5 6 1.4 8. 0 1.0 1.0 1.0 1.0 6.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0. loO 1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.3 3.8 1.0 1.0 1.0 1.0 12.7 1. 2 3.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0. 1.0 1.0 1.0 1.0 1.0 1.0 1. 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.2 1.0 1.0 1.0 2.8 1.0 1.0 1.0 1.9 1.0 1. o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1,0 1.0 13 14 15 16 1.0 1. 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 1. 0 0.3 1.4 1.0 1.0 1.0 1.0 0. 1 0.7 0.7 1.4 28.3 3. 1 4.8 1.0 1.0 7.6 7.9 1.0 8.5 1.0 1.0 1.0 13.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7 8 9 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 •1.0 1.0 2,0 1.0 •1.0 1.0 4.5 1.0 1.0 1.0 2.5 1.0 1.0 1.0 3.8 1.0 1.0 1.0 3.4 1.0 1.0 1.0 3.2 1.0 1.6 2.2 1.0 1. 8 1.0 1.0 1.0 1.0 1.5 2.0 1.4 1.5 1.0 1.0 0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 •1.0 1.0. 1.0 1.0 1.0 1.7 1.0 1.0 1.0 1.0 lo 0 1.0 1.0 1.0. 1.0 1.0 1.0 0.9 1.0 1,0 1.0 1.0 1.0 1.0 0.1 0.1 0.4 3.4 1.0 1.0 1.3 2.7 1.2 1.0 1.0 •1.0 1.0 1.2 7.6 1.0 •1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 •1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0. 1.0 1.0 1.0 17 18 19 20 1.0 loO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 loO 1.0 1.2 0.1 1.8 0. 1 1.0 1.0 1.0 1.0 1.0. 1.0 1.0" 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 L5.3 1.0 1.0 1.0 1.0 3.0 1.0 1.0 20 0o3 1.0 1.0 1.0 21 1.6 0.3 0. 1 0.2 22 5.8 0.4 0.3 0. 8 23 6.3 0.6 1.0. loO 24 0.6 1.0 1.5 1.0 25 1.0 1.0. 1.0 1.0 26 3.1 0.6 1.0 1.0 27 4.9 1.0 1.0 1.0 28 26.7 13.9 1.0 1.0 29 0.3 1.0 1.0 1.0 30 0.5 1.0 1.0 1.0 31 0.6 1.0 1.0 1.0 ZONE 21 22 23 24 1 0.4 0.8 4.0 0.6 2 5.6 1.0 1.0 1.0 3 1.0 1.0: 1.0 1.0 4 1.0 1.0 1.0 1.0 5 1.0 1.0 1.0 1.0 6 1.0 3.0 2.7 1.0 7 1.0 3.9 2.1 16.6 8 1.0 1.5 1.0 1.0 9 0.1 0.1 1.0 1.0 10 1.0 1.0 1.0 1.0 11 2.0 3.1 3.4 0.3 12 0.6 0.5 0.9 1.0 13 1.0 1.1 1.0 1.0 14 0.6 1.0 1.0 1.0 15 0.2 1.0 1.0 1.0 16 0.4 1.0. 1.0 1.0 17 1. 0 1.0 1.0 1.0 18 14. 0 0.5 1.0 1.0 19 1.8 1.0 1.0 1.0 20 28.6 1.0 1.0 1.0 21 1.0 0.6 0.5 1.0 22 0.1 1.0 1.0 3.7 23 0.4 0.1 1.0 6. 5 24 0.9 .1.1 10.7 1.0 25 1. 0 1.0 1.0 1.0 26 1.5 1.0 1.1 1.0 27 1.0 1.0 1.0 1.0 28 1. 0 1.0 1.0 1.0 29 1.0 1.0. 1.0. 1.0 30 0.5 1.0 1.0 1.0 31 1.0 1.0 1.0 1. 0 ZONE 31 1 1.0 2 1. 0 3 1.0 4 1.0 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 1.8 1.6 4.3 1.6 3.6 1.0 1.0 1.0 0.4 1.0 1.2 1.0 1.0 1.0 1.0. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 •1. o 1.0 1.0 1.0 1.0. 1.0. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 25 26 27 28 29 30 4.1 1.0 1.0 1.0 1.0 1.2 1.0 1.0 1.0 •1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.7. 3.1 10.9 1.0 0.4 1.0 1.0 1.0 1.0 loO 1.0 1.0 0.7 1.0 1.0 1..0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0. 1.0 1.0 1.0 1.0 1.0 5.8 1.0 1.0 1.0 1.0 1.0. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.9 1.5 1.0 1.0 1.0 1.0 1.0 0.6 4.6 1.0 1.0 0.4 1.0 1.2 1.0 1.0 1.0 1.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0 43. 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 40. 0 1.0 1.0 1.0 0.3 1.0 1.0 1.0 1.0 1.0 1.0 2.8 1.5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1.0 1.0 1.0 1. 0 1.0 0. 1 1.0 1. 0 1.0 1.0 1.0 1. 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. 0 1.0 1.0 •1.4 1. 0 2.2 1.0 154 APPENDIX V I I I MODEL WITH 27 NODES 156 * * * * * G R A V I T Y M O D E L * * * * * ( C A L I B R A T I O N MODE ) I N P U T / O U T P U T S P E C I F I C A T I O N S N U M B E R O F C A L I B R A T I O N I T E R A T I O N S 9 N U M B E R O F A T T R A C T I O N B A L A N C I N G I T E R A T I O N S = 4 S M O O T H I N G O P T I O N S I N E F F E C T < 1 = Y E S , 0 = N O ) 1 P R I N T O U T O F I N P U T D A T A U = Y E S , 0 = N O ) 1 P R I N T O U T O F I N T E R M E D I A T E O U T P U T ( 1 = Y E S , 0 = N O ) = 0 P L O T O U T P U T < 1 = Y E S , 0 = N O ) = 1 K — F A C T O R D A T A I N P U T U = Y E S , 0 = N O ) = 0 K - F A C T O R P U N C H E D O U T P U T T O U N I T 7 ( 1 = Y E S , 0 = N O ) 0 T R I P M A T R I X P U N C H E D ( 1 = Y E S , 0 = N O ) 0 *** INPUT DATA LISTINGS *** 157 TRIP PRODUCTIONS AND ATTRACTIONS ZONE PRODUCTION ATTRACTION 1 66.00 57. 00 2 18.00 23.00 3 19.00 39.00 4 44. 00 38.00 5 25.00 31.00 6 142.00 185.00 7 53.00 63. 00 8 126.00 99.00 9 310.00 229.00 10 0. 0 85.00 11 863.00 918.00 12 29,00 46.00 13 2.00 13.00 14 71.00 73.00 15 51.00 41.00 16 16. 00 35.00 17 485.00 331.00 18 213.00 218.00 19 140.00 137.00 20 40.00 33.00 21 0.0 34.00 22 84.00 75.00 23 32.00 16.00 24 31.00 41.00 25 71.00 124.00 26 314.00 137.00 27 68.00 192.00 BASE YEAR 0/D PATTERN ZONE 1 2 3 4 5 6 7 8 9 1 0 1 0 5 "5 25 0 0 2 0 0 0 0 3 0 3 0 0 0 0 0 0 4 15 0 0 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 8 0 0 0 0 0 0 9 3 3 3 0 5 105 10 0 0 0 0 0 0 11 18 12 31 11 23 25 12 0 0 0 0 0 0 13 0 0 0 0 0 0 14 0 0 0 0 0 0 15 0 0 0 0 0 0 16 0 0 0 0 0 0 17 3 3 0 2 0 5 18 3 0 0 0 0 37 19 5 0 0 0 0 13 20 4 0 0 0 0 0 21 0 0 0 0 0 0 22 0 0 0 0 0 0 23 0 0 0 0 0 0 24 0 0 0 0 0 0 25 0 0 0 0 0 0 26 5 0 0 0 0 0 27 1 0 0 0 0 0 CSUM 57 23 39 38 31 185 0 0 0 0 0 0 0 0 0 0 3 0 0 0 11 0 0 0 5 0 0 0 58 0 0 0 24 0 0 0 34 0 24 29 0 8 0 0 0 0 21 66 80 68 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 3 3 13 0 0 3 5 3 0 0 0 0 3 3 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63 99 229 85 INE 11 12 13 14 15 16 17 18 19 20 1 10 0 0 0 0 0 3 3 8 3 2 10 0 0 0 0 0 5 0 0 0 3 16 0 0 0 0 0 0 0 0 0 4 18 0 0 0 0 0 0 0 0 0 5 20 0 0 0 0 0 0 0 0 0 6 42 0 0 0 0 0 0 29 13 0 7 10 0 0 0 0 0 0 11 3 5 8 78 0 0 0 0 0 0 11 3 0 9 114 5 0 0 0 0 5 5 0 0 10 0 0 0 0 0 0 0 0 0 0 11 0 17 6 1 20 1 179 115 71 2 12 23 0 0 0 0 0 3 0 0 0 13 2 0 0 0 0 0 0 0 0 0 14 3 0 3 0 0 0 53 4 0 0 15 28 0 0 3 0 0 18 0 0 0 16 2 0 0 0 0 0 14 0 0 0 17 20 7 24 4 66 21 32 0 34 23 6 18 131 0 0 3 0 2 7 0 0 8 19 83 0 0 0 0 0 16 3 0 9 20 6 0 0 0 0 0 5 3 13 0 21 0 0 0 0 0 0 0 0 0 0 22 50 0 0 0 0 0 18 0 3 0 23 22 0 0 0 0 0 •o 0 0 0 24 21 0 0 0 0 0 0 0 0 0 25 1 0 0 0 0 0 0 0 0 0 26 14 0 0 0 0 0 5 0 0 0 27 7 0 0 0 0 0 0 0 0 0 159 CSUM 918 46 13 73 41 35 331 218 137 33 ZONE 21 22 23 24 25 26 27 RSUM 1 3 0 0 0 0 1 0 66 2 0 0 0 0 0 0 0 18 3 0 0 0 0 0 0 0 19 4 0 0 0 0 0 0 0 44 5 0 0 0 0 0 0 0 25 6 0 0 0 0 0 0 0 142 7 0 0 0 0 0 0 0 53 8 0 0 0 0 0 0 0 126 9 0 0 0 0 0 1 0 310 10 0 0 0 0 0 0 0 0 11 14 36 13 21 4 6 2 863 12 0 0 0 0 0 0 0 29 13 0 0 0 0 0 0 0 2 14 0 8 0 0 0 0 0 71 15 0 0 0 0 0 0 0 51 16 0 0 0 0 0 0 0 16 17 17 23 0 0 0 8 0 485 18 0 2 3 0 0 1 0 213 19 0 3 0 0 0 0 0 140 20 0 3 0 0 0 0 0 40 21 0 0 0 0 0 0 0 0 22 0 0 0 0 0 10 0 84 23 0 0 0 10 0 0 0 32 24 0 0 0 0 0 0 10 31 25 0 0 0 0 0 70 0 71 26 0 0 0 10 100 0 180 314 27 0 0 0 0 20 40 0 68 ;UM 34 75 16 41 124 137 192 IMPEDANCE MATRIX ZONE 1 2 3 4 5 6 7 8 9 10 1 • 60 7 9 7 11 15 16 18 16 22 2 7 60 1 2 5 9 10 12 11 16 3 9 1 60 1 3 7 9 11 9 15 4 7 2 1 60 4 8 9 11 10 15 5 11 5 3 4 60 4 6 7 6 11 6 15 9 7 8 4 60 1 3 2 7 7 16 10 9 9 6 1 60 2 1 6 8 18 12 11 11 7 3 2 60 3 4 9 16 11 9 10 6 2 1 3 60 7 10 22 16 15 15 i i - 7 6 4 7 60 11 26 20 34 19 i s 11 10 8 11 4 12 20 14 13 13 10 5 4 2 5 5 13 22 16 14 15 11 7 6 4 7 3 14 12 18 17 17 13 9 9 10 7 13 15 20 18 17 17 13 9 8 6 8 5 16 21 19 18 18 14 10 9 7 9 6 17 18 16 15 15 11 7 7 5 6 7 18 17 13 11 12 8 4 4 5 2 9 19 16 14 13 13 9 5 5 7 3 9 20 7 14 15 13 17 15 14 16 13 18 21 15 16 14 15 11 7 6 8 5 10 22 25 23 22 22 19 14 13 11 13 10 23 28 26 25 2 5 22 17 16 14 16 13 24 50 48 47 48 44 40 38 37 38 36 25 47 46 44 45 41 37 35 34 35 33 26 46 44 43 43 39 35 34 32 34 31 27 40 38 37 38 34 30 28 27 28 26 INE 11 12 13 14 15 16 17 18 19 20 1 26 20 22 12 20 21 18 17 16 7 2 20 14 16 18 18 19 16 13 14 14 3 34 13 14 17 17 18 15 11 13 15 4 19 13 15 17 17 18 15 12 13 13 5 15 10 11 13 13 14 11 8 9 17 6 11 5 7 9 9 10 7 4 5 15 7 10 4 6 9 8 9 7 4 5 14 8 8 2 4 10 6 7 5 5 7 16 9 11 5 7 7 8 9 6 2 3 13 10 4 5 3 13 5 6 7 9 9 18 11 60 9 7 17 9 10 11 13 13 22 12 9 60 2 8 4 5 • 2 6 5 14 13 7 2 60 10 2 3 4 8 6 15 14 17 8 10 60 8 9 6 5 4 6 15 9 4 2 8 60 I 2 6 4 13 16 10 5 3 9 1 60 3 7 5 14 17 11 2 4 6 2 3 60 3 2 11 18 13 6 8 5 6 7 3 60 1 11 19 13 5 6 4 4 5 2 1 60 10 20 22 14 15 6 13 14 11 11 10 60 21 14 5 7 3 5 6 3 3 2 8 22 14 8 7 13 5 4 7 11 9 18 23 17 11 10 16 8 7 10 14 12 21 24 40 33 33 38 30 29 33 36 35 44 25 37 30 30 35 28 27 30 33 32 41 26 35 29 28 34 26 25 28 31 30 39 27 30 23 23 28 20 19 23 26 25 34 INE 21 22 23 24 25 26 27 1 15 25 28 50 47 46 40 2 16 23 26 48 46 44 38 3 14 22 25 47 44 43 37 4 15 22 25 48 45 43 38 5 11 19 22 44 41 39 34 6 7 14 17 40 37 35 30 7 6 13 16 38 35 34 28 8 8 11 14 37 34 32 27 9 5 13 16 38 35 34 28 10 10 10 13 36 33 31 26 11 14 14 17 40 37 35 30 12 5 8 11 33 30 29 23 13 7 7 10 33 30 28 23 14 3 13 16 38 35 34 28 15 5 5 8 30 28 26 20 16 6 4 7 29 27 25 19 17 3 7 10 33 30 28 23 18 3 11 14 36 33 31 26 19 2 9 12 3 5 32 30 25 20 8 18 21 44 41 39 34 21 60 10 13 35 33 31 25 22 10 60 3 25 22 21 15 23 13 3 60 22 19 18 12 24 35 25 22 60 6 5 10 25 33 22 19 6 60 2 7 26 31 21 18 5 2 60 6 27 25 15 12 10 7 6 60 EXISTING TRIP LENGTH DISTRIBUTION £ INITIAL F-FACTOR TL TRIPS F-FACTOR 1 51.00 1.00 2 443.00 1.00 3 167.00 1,00 4 162.00 1.00 5 74.00 1.00 6 357.00 1.00 7 145.00 1.00 8 149.00 1.00 9 108.00 1.00 10 80.00 1.00 11 674.00 1.00 12 0.0 0.0 13 414. 00 1.00 14 108.00 1.00 15 48.00 1.00 16 24.00 1.00 17 45.00 1.00 18 12.00 1.00 19 29. 00 1.00 20 22.00 1.00 21 10.00 1.0.0 22 18.00 1.00 23 0.0 0.0 24 0.0 0.0 25 0.0 0.0 26 28.00 1.00 27 0.0 0.0 28 13,00 1.00 29 0.0 0.0 30 9.00 1.00 31 1.00 1.00 32 0.0 0.0 33 0.0 0.0 34 48.00 1.00 35 20.00 1.00 36 0.0 0.0 37 5.00 1.00 38 0.0 0.0 39 0.0 0.0 40 43.00 1.00 41 0.0 0.0 42 0.0 0.0 43 0.0 0.0 44 0.0 0.0 45 0.0 0.0 46 6.00 1.00 47 0.0 0.0 48 0. 0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 OoO OoO 58 OoO 0.0 59 0. 0 0.0 60 0.0 0.0 164 *** GRAVITY MODEL OUTPUT *** CALIBRATION ITERATION = 1 O/D TABLE AFTER ITERATION 1 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 0 0 0 0 4 1 2 5 1 2 0 0 0 0 0 1 0 0 1 0 3 0 0 0 0 0 1 0 0 1 0 4 0 0 0 0 0 3 1 1 3 1 5 0 0 0 0 0 1 0 0 I 0 6 2 1 1 1 1 0 2 4 10 3 7 0 0 0 0 0 3 0 1 3 1 8 2 0 1 .1 1 8 2 0 10 3 9 5 2 3 3 3 18 6 10 0 8 10 0 0 0 0 0 0 0 0 0 0 11 20 8 14 13 11 66 22 35 82 30 12 0 0 0 0 0 1 0 0 2 0 13 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 4 1 2 5 1 15 0 0 0 0 0 2 0 1 3 1 16 0 0 0 0 0 0 0 0 1 0 17 10 4 6 6 5 32 11 17 40 14 18 4 1 2 0 2 13 4 7 16 6 19 2 1 1 1 1 9 3 4 11 4 20 0 0 0 0 0 2 0 1 3 1 21 0 0 0 0 0 0 0 0 0 0 22 0 0 1 1 0 4 1 2 6 2 23 0 0 0 0 0 2 0 1 2 0 24 0 0 0 0 0 3 0 1 0 0 25 0 0 0 0 0 5 1 2 6 0 26 6 0 0 0 0 20 6 0 25 9 27 1 0 1 0 0 5 1 0 6 2 CSUM 62 22 40 35 32 217 74 101 251 99 ZONE 11 12 13 14 15 16 17 18 19 20 1 20 1 0 0 0 0 7 4 3 0 2 6 0 0 0 0 0 2 1 0 0 3 5 0 0 0 0 0 2 1 0 0 4 15 0 0 1 0 0 5 0 2 0 5 7 0 0 0 0 0 2 1 1 0 6 41 2 0 3 1 1 15 9 6 1 7 15 0 0 1 0 0 5 3 2 0 8 40 2 0 3 1 1 14 9 6 1 9 93 4 1 7 4 3 33 22 13 3 10 0 0 0 0 0 0 0 0 0 0 1 1 0 16 4 2 6 1 4 1 2 1 1 9 7 8 4 9 1 1 1 2 9 0 0 0 0 0 3 2 1 0 1 3 0 0 0 0 0 0 0 0 0 0 1 4 2 0 1 0 0 0 0 7 4 3 0 1 5 1 4 0 0 1 0 0 5 3 2 0 1 6 4 0 0 0 0 0 1 1 0 0 1 7 1 6 1 8 2 1 2 7 6 0 3 8 2 4 5 1 8 6 7 3 0 5 3 2 2 4 0 1 0 2 1 9 4 5 2 0 3 2 1 1 6 1 0 0 1 2 0 1 2 0 0 0 0 0 4 2 1 0 2 1 0 0 0 0 0 0 0 0 0 0 2 2 2 4 t 0 1 1 0 8 5 3 0 2 3 1 0 0 0 0 0 0 3 2 0 0 2 4 1 5 0 0 0 0 0 0 0 2 0 2 5 2 6 1 0 2 1 0 9 0 0 0 2 6 1 0 1 0 1 8 4 0 3 6 2 4 1 5 0 2 7 2 6 0 0 2 1 0 0 6 0 0 SUM 7 8 7 4 8 1 5 8 4 4 9 3 7 3 3 0 2 3 6 1 5 0 3 4 3 N E 2 1 2 2 2 3 2 4 2 5 2 6 2 7 R S U M 1 0 0 0 0 0 3 4 6 5 2 0 0 0 0 0 0 0 17 3 0 0 0 0 0 0 1 1 8 4 0 1 0 0 0 0 0 4 3 5 0 0 0 0 0 0 1 2 4 6 1 3 0 1 5 6 8 1 4 1 7 0 1 0 0 2 2 3 5 2 8 1 3 0 1 5 0 0 1 2 5 9 3 7 1 0 1 2 1 3 1 9 3 0 9 1 0 0 0 0 0 0 0 0 0 1 1 1 2 2 7 5 1 4 4 4 4 9 6 9 8 6 2 1 2 0 0 0 0 1 0 0 2 8 1 3 0 0 0 0 0 0 0 1 1 4 0 1 0 0 2 3 4 7 0 1 5 0 1 0 0 1 2 2 5 0 1 6 0 0 0 0 0 0 1 1 5 1 7 5 1 3 2 0 2 1 2 4 0 4 8 4 1 8 2 5 1 0 0 1 0 1 4 2 1 2 1 9 1 3 0 2 0 6 0 1 3 9 2 0 0 1 0 0 0 0 2 3 9 2 1 0 0 0 0 0 0 0 0 2 2 0 0 0 0 3 3 5 8 3 2 3 0 0 0 0 1 1 0 3 1 2 4 0 0 0 0 2 2 3 3 0 2 5 0 2 0 1 0 3 5 7 0 2 6 3 8 1 4 13 0 2 1 3 1 3 2 7 0 2 0 1 3 3 0 6 7 S U M 3 9 8 5 1 7 2 8 1 2 3 1 3 6 1 6 7 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR TL TRIPS F-FACTOR 1 39o02 100.49 2 160.41 85.17 3 140.04 75.72 4 87.80 68.65 5 113.51 62.91 6 149., 66 58.05 7 171.57 53.81 8 104.11 50.05 9 108« 82 46.68 10 90.74 • 43.62 11 623.67 40.83 12 0.0 0.0 13 287.11 35.92 14 84,66 33.75 15 62.88 31. 73 16 35.3 6 29.85 17 81.17 28.11 18 31.41 26.48 19 35.23 24.96 20 21.88 23.53 21 13.68 22.20 22 36.99 20.95 23 0.0 0.0 24 0.0 0.0 25 . 0.0 0.0 26 70.95 16.67 27 0.0 0.0 28 103.98 14.89 29 0.0 0.0 30 166.97 13.32 31 47.46 12.60 32 0.0 0.0 33 0.0 0.0 34 94.04 10.67 35 210.64 10. 10 36 0.0 0.0 37 87.64 9.05 38 0.0 0.0 39 0.0 0.0 40 40.73 7.69 41 0.0 0.0 42 0.0 0.0 43 0.0 0.0 44 0.0 0.0 45 0.0 0.0 46 10.86 5.56 47 0. 0 0.0 48 0.0 0,0 49 0.0 0.0 50 0.0 0. 0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 167 55 O o O 0 . 0 56 0 . 0 0 . 0 57 0 . 0 0 . 0 58 0 . 0 0 . 0 59 0 . 0 0 . 0 6 0 0 . 0 0 . 0 CALIBRATION ITERATION = 2 168 O/D TABLE AFTER ITERATION 2 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 1 2 2 1 3 1 1 4 1 2 0 0 1 0 0 1 0 0 1 0 3 1 0 0 1 0 1 0 0 1 0 4 2 1 2 0 0 3 0 1 3 0 5 0 0 0 0 0 1 0 0 1 0 6 2 1 2 2 1 0 3 4 13 2 7 0 0 0 0 0 4 0 1 5 0 8 1 0 1 1 1 7 2 0 9 2 9 5 2 4 4 3 22 8 10 0 5 10 0 0 0 0 0 0 0 0 0 0 11 20 8 7 15 11 71 23 45 91 46 12 0 0 0 0 0 1 0 1 1 0 13 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 3 1 1 5 1 15 0 0 0 0 0 1 0 1 2 0 16 0 0 0 0 0 0 0 0 0 0 17 8 2 5 5 3 24 7 14 33 9 18 3 1 3 0 2 12 4 6 20 3 19 2 0 1 1 1 7 2 3 11 2 20 2 0 0 0 0 1 0 0 2 0 21 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 2 0 1 3 1 23 0 0 0 0 0 1 0 0 1 0 24 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 1 0 0 1 0 26 2 0 0 0 0 6 2 0 8 3 27 0 0 0 0 0 1 0 0 2 0 CSUM 57 23 39 38 31 185 63 99 229 85 ZONE 11 12 13 14 15 16 17 18 19 20 1 24 0 0 0 0 0 6 4 2 2 2 7 0 0 0 0 0 1 1 0 0 3 3 0 0 0 0 0 1 1 0 0 4 18 0 0 0 0 0 3 0 1 0 5 9 0 0 0 0 0 2 1 0 0 6 58 1 0 2 1 1 13 9 5 1 7 20 0 0 0 0 0 4 3 1 0 8 59 1 0 2 1 1 12 7 3 0 9 125 3 0 7 2 2 30 26 14 2 10 0 0 0 0 0 0 0 0 0 0 11 0 18 5 24 16 14 143 75 45 11 12 12 0 0 0 0 0 3 1 1 0 13 0 0 0 0 0 0 0 0 0 0 14 25 0 0 0 0 0 8 5 3 I 15 21 0 0 0 0 0 6 2 1 0 16 7 0 0 0 0 0 2 0 0 0 17 215 8 1 12 7 o 0 40 27 5 13 79 2 0 5 2 1 28 0 13 2 19 50 1 0 4 1 1 20 14 0 1 20 14 0 0 1 0 0 4 2 1 0 21 0 0 0 0 0 0 0 0 0 0 22 34 1 0 1 1 1 9 4 2 0 23 13 0 0 0 0 0 3 1 0 0 24 6 0 0 0 0 0 0 0 0 0 25 14 0 0 0 0 0 3 0 0 0 26 73 0 0 3 2 0 18 9 5 0 27 21 0 0 i 0 0 0 2 0 0 ;UM 917 46 13 73 41 35 331 218 137 33 3NE 21 22 23 24 25 26 27 RSUM 1 0 0 0 0 0 1 2 65 2 0 0 0 0 0 0 0 18 3 0 0 0 0 0 0 0 19 4 0 0 0 0 0 0 0 44 5 0 0 0 0 0 0 0 24 6 1 2 0 0 1 2 3 142 7 0 0 0 0 0 0 1 53 8 0 2 0 0 1 0 0 126 9 3 4 0 0 3 6 8 310 10 0 0 0 0 0 0 0 0 11 10 29 6 7 20 38 51 862 12 0 0 0 0 0 0 0 28 13 0 0 0 0 0 0 0 1 14 1 1 0 0 0 1 2 71 15 0 1 0 0 0 1 2 51 16 0 0 0 0 0 0 0 16 17 6 12 2 0 7 14 0 484 18 2 3 0 0 0 5 6 213 19 1 2 0 0 0 3 0 140 20 0 0 0 0 0 0 1 39 21 0 0 0 0 0 0 0 0 22 0 0 0 0 2 4 6 84 23 0 1 0 0 1 2 0 31 24 0 0 0 0 5 10 7 30 25 0 1 0 4 0 25 15 70 26 1 6 2 22 67 0 79 314 27 0 2 0 3 9 17 0 67 SUM 34 75 15 40 123 136 190 169 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR 170 TL TRIPS F-FACTOR 1 55o74 240.23 2 261 093 171.74 3 150.06 137.30 4 102.30 114.91 5 124.95 98.61 6 215.84 85.98 7 165.22 75.79 8 127.28 67.34 9 114.08 60.21 10 103.11 54.09 11 755.65 48.78 12 0.0 0.0 13 284.29 40.04 14 88.52 36.41 15 59.93 33.17 16 27.89 30.28 17 83.51 27.68 18 26. 67 2 5.33 19 37.73 23.22 20 2 0.79 21.30 21 12.21 19. 56 22 33.41 17.98 23 0.0 0.0 24 0.0 0.0 25 0.0 0.0 26 58.70 12.93 27 0.0 0.0 28 52.47 11.00 29 0. 0 0.0 30 101.07 9.38 31 18.94 8.67 32 0.0 0.0 33 0.0 0.0 34 39.01 6.86 3 5 130.05 6.34 36 0.0 0.0 37 39.17 5.44 38 0.0 0.0 39 0.0 0.0 40 18.26 4.32 41 0. 0 0.0 42 0.0 0. 0 43 0.0 0.0 44 0.0 0.0 45 0.0 . 0.0 46 4.22 2.75 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 OoO OoO 58 0.0 0.0 59 0.0 0.0 60 0.0 OoO CALIBRATION ITERATION = 3 172 O/D TABLE AFTER ITERATION 3 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 2 3 3 1 3 0 1 4 0 2 1 0 2 - 1 0 1 0 0 1 0 3 1 1 0 2 0 1 0 0 1 0 4 3 1 5 0 1 2 0 1 2 0 5 0 0 1 0 0 2 0 0 1 0 6 2 1 2 2 2 0 5 4 16 1 7 0 0 0 0 0 5 0 1 7 0 8 1 0 1 1 1 8 2 0 10 2 9 4 1 4 3 3 27 11 10 0 3 10 0 0 0 0 0 0 0 0 0 0 11 20 8 5 15 12 76 24 50 95 58 12 0 0 0 0 0 1 0 1 1 0 13 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 3 0 1 5 0 15 0 0 0 0 0 1 0 0 1 0 16 0 0 0 0 0 0 0 0 0 0 17 7 2 4 3 3 21 6 13 30 6 18 3 1 2 0 1 13 3 5 24 2 19 2 0 1 1 1 6 1 2 12 1 20 3 0 0 0 0 1 0 0 2 0 21 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 2 0 1 3 1 23 0 0 0 0 0 0 0 0 1 . 0 24 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 26 1 0 0 0 0 3 0 0 4 1 27 0 0 0 0 0 1 0 0 1 0 CSUM 57 23 39 38 31 186 63 99 230 85 ZONE 11 12 13 14 15 16 17 18 19 20 1 24 0 0 0 0 0 5 3 2 3 2 6 0 0 0 0 0 1 0 0 0 3 2 0 0 0 0 0 1 1 0 0 4 17 0 0 0 0 0 2 0 1 0 5 10 0 0 0 0 0 1 1 0 0 6 62 1 0 2 0 0 11 10 5 0 7 2 1 0 0 0 0 0 3 3 1 0 8 66 2 0 1 0 0 11 6 2 0 9 131 3 0 7 2 1 27 31 14 2 10 0 0 0 0 0 0 0 0 0 0 11 0 20. 7 25 18 15 154 72 42 11 12 13 0 0 0 0 0 4 1 0 0 13 1 0 0 0 0 0 0 0 0 0 14 26 0 0 0 0 0 9 6 4 1 15 23 0 0 0 0 1 8 2 1 0 16 7 0 0 0 0 0 2 0 0 0 17 229 10 1 13 9 7 0 44 32 5 18 76 2 0 6 1 1 31 0 18 2 19 47 1 0 4 1 1 24 19 0 1 20 14 0 0 2 0 0 4 2 1 0 21 0 0 0 0 0 0 0 0 0 0 22 39 0 0 1 1 1 9 3 2 0 23 14 0 0 0 0 0 3 1 0 0 24 3 0 0 0 0 0 0 0 0 0 25 7 0 0 0 0 0 1 0 0 0 26 51 0 0 1 1 0 10 4 3 0 27 18 0 0 0 0 0 0 1 0 0 iUM 918 46 13 73 41 35 333 219 137 33 D N E 21 22 23 24 25 26 27 RSUM 1 0 0 0 0 0 0 1 66 2 0 0 0 0 0 0 0 18 3 0 0 0 0 0 0 0 19 4 0 0 0 0 0 0 0 44 5 0 0 0 0 0 0 0 24 6 1 1 0 0 0 1 1 142 7 0 0 0 0 0 0 0 52 8 0 1 0 0 0 0 0 125 9 2 3 0 0 1 2 4 309 10 0 0 0 0 0 0 0 0 11 10 33 6 3 9 27 36 862 12 0 0 0 0 0 0 0 28 13 0 0 0 0 0 0 0 1 14 1 1 • 0 0 0 1 1 71 15 0 1 0 0 0 0 1 50 16 0 0 0 0 0 0 0 16 17 7 12 2 0 2 8 0 484 18 2 3 0 0 0 2 3 213 19 2 2 0 0 0 1 0 140 20 0 0 0 0 0 0 0 40 21 0 0 0 0 0 0 0 0 22 0 0 1 0 1 3 5 84 23 0 2 0 0 0 2 0 31 24 0 0 0 0 4 14 7 30 25 0 0 0 4 0 38 15 70 26 0 5 1 27 88 0 104 314 27 0 2 0 3 9 26 0 67 SUM 34 75 16 39 119 133 136 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR TL TRIPS F-FACTOR 1 79o67 336.40 2 329.95 209.09 3 163,26 154.31 4 116.06 122.17 5 127.43 100.53 6 243.89 84.76 7 158.84 72.68 8 137.01 63.09 9 116.29 55.28 10 103.59 48,80 11 793.92 43.34 12 0.0 0.0 13 267.24 34.67 14 94. 54 31.18 15 55.08 28.13 16 23.63 25.45 17 85.02 23.07 18 23.20 20.96 19 35. 05 19.08 20 18.55 17.40 21 9.94 15.89 22 30.51 14. 52 23 0.0 0.0 24 0.0 0.0 25 0.0 0.0 26 53,66 10.27 27 0.0 0.0 28 29. 81 8. 68 29 0.0 0.0 30 67.64 7.36 31 9.72 6.79 32 0.0 0.0 33 0.0 0.0 34 21.97 5.34 35 86.86 4.93 36 0. 0 0.0 37 18.46 4.22 38 0.0 0.0 39 0.0 0.0 40 9.84 3.34 41 0.0 0.0 42 0.0 0.0 43 0.0 0.0 44 0.0 0.0 45 0.0 0.0 46 2.34 2.12 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0. 0 0.0 52 0.0 0.0 53 0.0 0.0 54 0,0 0.0 55 0,0 0.0 56 0.0 0.0 57 OoO OoO 58 OoO 0.0 59 0.0 0.0 60 0.0 0.0 CALIBRATION ITERATION = 4 176 O/O TABLE AFTER ITERATION 4 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 2 3 4 1 3 0 1 3 0 2 1 0 3 1 0 0 0 0 0 0 3 1 2 0 3 0 1 0 0 1 0 4 3 2 7 0 1 2 0 0 2 0 5 0 0 1 0 0 2 0 0 1 0 6 2 1 2 2 2 0 6 5 18 1 7 0 0 0 0 0 7 0 2 8 0 8 1 0 1 1 1 8 3 0 1 0 1 9 4 1 4 3 3 31 13 10 0 3 10 0 0 0 0( 0 0 0 0 0 0 11 21 8 4 15 12 76 23 52 95 64 12 0 0 0 0 0 1 0 1 1 0 13 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 3 0 1 5 0 15 0 0 0 0 0 1 0 0 1 0 16 0 0 0 0 0 0 0 0 0 0 17 6 1 3 3 2 19 5 12 27 5 18 2 0 2 0 1 12 3 4 27 1 19 1 0 1 0 0 6 1 2 12 1 20 4 0 0 0 0 1 0 0 2 0 21 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 2 0 1 2 0 23 0 0 0 0 0 0 0 0 1 0 24 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 26 1 0 0 0 0 2 0 0 3 0 27 0 0 0 0 0 0 0 0 1 0 CSUM 57 23 39 38 31 186 63 100 231 86 ZONE I I 12 13 14 15 16 17 18 19 20 1 25 0 0 0 0 0 5 3 2 4 2 6 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 1 1 0 0 4 16 0 0 0 0 0 2 0 0 0 5 10 0 0 0 0 0 1 1 0 0 6 62 1 0 2 0 0 10 9 4 0 7 20 0 0 0 0 0 3 2 1 0 8 68 2 0 1 0 0 11 6 2 0 9 130 3 0 6 1 1 25 34 14 2 10 0 0 0 0 0 0 0 0 0 0 11 0 20 7 25 18 16 157 68 39 11 12 13 0 0 0 0 0 5 1 0 0 13 1 0 0 0 0 0 0 0 0 0 14 26 0 0 0 0 0 9 6 4 2 15 24 0 0 0 0 1 9 2 1 0 16 7 0 0 0 0 0 2 0 0 0 17 233 11 1 14 10 7 0 45 35 5 18 73 1 0 6 1 1 33 0 22 2 19 44 1 0 4 1 1 26 23 0 1 20 14 0 0 2 0 0 4 2 1 0 21 0 0 0 0 0 0 0 0 0 0 22 42 0 0 1 1 1 9 3 2 0 23 15 0 0 0 0 0 3 1 0 0 24 3 0 0 0 0 0 0 0 0 0 25 6 0 0 0 0 0 1 0 0 0 26 48 0 0 1 0 0 8 3 2 0 27 18 0 0 0 0 0 0 1 0 0 SUM 918 46 13 73 41 35 334 219 138 33 3NE 21 22 23 24 25 26 27 RSUM 1 0 0 0 0 0 0 1 65 2 0 0 0 0 0 0 0 18 3 0 0 0 0 0 0 0 19 4 0 0 0 0 0 0 0 43 5 0 0 0 0 0 0 0 24 6 0 1 0 0 0 0 1 142 7 0 0 0 0 0 0 0 52 8 0 1 0 0 0 0 0 126 9 2 3 0 0 0 2 3 309 10 0 0 0 0 0 0 0 0 11 10 35 6 3 6 24 35 862 12 0 0 0 0 0 0 0 28 13 0 0 0 0 0 0 0 1 14 1 1 0 0 0 0 1 71 15 0 1 0 0 0 0 1 50 16 0 0 0 0 0 0 0 16 17 7 12 2 0 1 6 0 484 18 3 2 0 0 0 1 2 213 19 2 2 0 0 0 1 0 140 20 0 0 0 0 0 0 0 40 21 0 0 0 0 0 0 0 0 22 0 0 1 0 0 2 5 84 23 0 3 0 0 0 1 0 32 24 0 0 0 0 4 15 7 31 25 0 0 0 3 0 42 14 71 26 0 4 1 27 93 0 110 314 27 0 2 0 3 8 28 0 67 SUM 34 75 16 39 118 131 185 177 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR 178 TL TRIPS F-FACTOR 1 99.73 380.04 2 362.71 217.23 3 170.33 152.97 4 120.76 117.33 5 124.42 94.30 6 245.88 78.06 7 150.98 65.96 8 139.78 56.57 9 113.26 49.08 10 99.96 42.96 11 796.66 37.88 12 0.0 0.0 13 250.68 29.96 14 97.3 7 26. 83 15 52.25 24.11 16 20.94 21.74 17 86.03 19.66 18 21.08 17.82 19 33.67 16.19 20 17.51 14.74 21 8.71 13.44 22 30.36 12.28 23 0.0 0.0 24 0.0 0.0 25 0.0 0.0 26 54.25 8.67 27 0.0 0.0 28 23.67 7.34 29 0.0 0.0 30 62.58 6.23 31 7.25 5.75 32 0.0 0.0 33 0.0 0.0 34 18. 16 4. 54 35 78.31 4.20 36 0.0 0.0 37 14.63 3.60 38 0.0 OoO 39 . 0.0 0.0 40 9.02 2. 87 41 0.0 0.0 42 0.0 0.0 43 0.0 0.0 44 0.0 0.0 45 0.0 0.0 46 2.05 1.84 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 OoO 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0. 0 0.0 55 0.0 0.0 56 0.0 0.0 57 58 59 60 OoO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 179 CALIBRATION ITERATION = 5 O/O TABLE AFTER ITERATION ZONE 1 2 3 4 1 0 2 3 4 2 1 0 3 1 3 1 2 0 4 4 3 2 8 0 5 0 0 1 1 6 2 1 2 1 7 0 0 0 0 8 1 0 1 0 9 4 1 3 3 10 0 0 0 0 11 22 8 4 14 12 0 0 0 0 13 0 0 0 0 14 0 0 0 0 15 0 0 0 0 16 0 0 0 0 17 6 1 3 3 18 2 0 2 0 19 1 0 0 0 20 4 0 0 0 21 0 0 0 0 22 0 0 0 0 23 0 0 0 0 24 0 0 0 0 25 0 0 0 0 26 1 0 0 0 27 0 0 0 0 CSUM 57 23 39 38 ZONE 11 12 13 14 1 26 0 0 0 2 5 0 0 0 3 2 0 0 0 4 15 0 0 0 5 10 0 0 0 6 62 1 0 2 7 20 0 0 0 8 70 2 0 1 9 129 2 0 6 10 0 0 0 0 11 0 20 7 26 12 13 0 0 0 5 5 6 7 8 9 10 1 3 0 1 3 0 0 0 0 0 0 0 0 1 0 0 1 0 1 2 0 0 2 0 0 2 0 0 1 0 2 0 7 5 19 1 0 7 0 2 9 0 0 8 3 0 10 1 3 33 15 10 0 2 0 0 0 0 0 0 13 76 22 53 94 66 0 1 0 1 1 0 0 0 0 0 0 0 0 3 0 1 5 0 0 1 0 0 1 0 0 0 0 0 0 0 2 18 4 12 26 5 1 12 3 4 28 1 0 5 1 1 11 0 0 1 0 0 2 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 1 0 31 187 63 100 231 86 15 16 17 18 19 20 0 0 5 2 1 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 10 9 4 0 0 0 2 2 1 0 0 0 10 5 2 0 1 1 24 36 14 2 0 0 0 0 0 0 18 16 158 66 37 11 0 0 5 1 0 0 1 3 1 0 0 0 0 0 0 0 0 0 1 4 2 7 0 0 0 0 0 1 0 6 4 2 1 5 2 4 0 0 0 0 1 1 0 1 1 0 1 6 8 0 0 0 0 0 2 0 0 0 1 7 2 3 4 1 2 1 1 4 1 1 7 0 4 6 3 6 4 1 8 7 1 1 0 6 1 1 3 3 0 2 4 1 1 9 4 2 1 0 4 1 1 2 8 2 6 0 1 2 0 1 4 0 0 2 0 0 4 2 1 0 2 1 0 0 0 0 0 0 0 0 0 0 2 2 4 3 0 0 1 1 1 9 3 2 ' 0 2 3 1 6 0 0 0 0 0 3 1 0 0 2 4 3 0 0 0 0 0 0 0 0 0 2 5 6 0 0 0 0 0 0 0 0 0 2 6 4 7 0 0 1 0 0 7 3 1 0 2 7 1 8 0 0 0 0 0 0 1 0 0 ;UM 9 1 8 4 6 1 3 7 3 4 1 3 5 3 3 4 2 2 0 1 3 8 3 3 DNE 2 1 2 2 2 3 2 4 2 5 2 6 2 7 RSUM 1 0 0 0 0 0 0 1 6 5 2 0 0 0 0 0 0 0 1 8 3 0 0 0 0 0 0 0 1 9 4 0 0 0 0 0 0 0 4 4 5 0 0 0 0 0 0 0 2 4 6 0 1 0 0 0 0 1 1 4 2 7 0 0 0 0 0 0 0 52 8 0 1 0 0 0 0 0 1 2 6 9 2 3 0 0 0 1 3 3 0 9 1 0 0 0 0 0 0 0 0 0 1 1 1 0 3 6 7 3 6 2 3 3 5 8 6 2 1 2 0 0 0 0 0 0 0 2 8 1 3 0 0 0 0 0 0 0 1 1 4 1 1 0 0 0 0 1 7 1 1 5 G 1 0 0 0 0 0 5 0 1 6 0 0 0 0 0 0 0 1 6 1 7 8 1 2 2 0 1 5 0 4 8 4 1 8 3 2 0 0 0 1 2 2 1 3 1 9 2 2 0 0 0 1 0 1 4 0 2 0 0 0 0 0 0 0 0 3 9 2 1 0 0 0 0 0 0 0 0 2 2 0 0 1 0 0 2 4 84 2 3 0 3 0 0 0 1 0 3 1 2 4 0 0 0 0 4 1 5 7 3 0 2 5 0 0 0 3 0 4 4 1 3 7 1 2 6 0 4 1 2 8 9 6 0 1 1 1 3 1 4 2 7 0 2 0 3 7 29 0 6 7 SUM 3 4 7 5 1 6 3 9 1 1 8 1 3 0 1 8 5 1 8 2 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR TL TRIPS F-FACTOR 1 112,28 406.55 2 379,90 221.84 3 173.76 152.23 4 122.50 114.73 5 122.05 91.04 6 244.58 74.62 7 146.12 62.55 8 140.84 53.31 9 110.75 46.00 10 97.20 40.09 11 795.10 35.22 12 0.0 0.0 13 240.65 27.70 14 98.79 24.75 15 50.82 22.20 16 19.49 19,99 17 86.71 18.05 18 19.98 16.35 19 32.94 14.84 20 16.99 13.50 21 8.11 12.31 22 30.60 11.25 23 0.0 0.0 24 0.0 0.0 25 0.0 0.0 26 55.30 7.94 27 0.0 0.0 28 21.37 6. 73 29 0.0 0.0 30 62.17 5.72 31 6.30 5.28 32 0.0 0.0 33 0. 0 0.0 34 16. 84 4.18 35 76.25 3.87 36 0.0 0.0 37 13.50 3.33 38 0.0 0.0 39 0.0 0.0 40 9.10 2.66 41 0.0 0.0 42 0.0 0.0 43 0.0 0.0 44 0.0 0.0 45 0. 0 0.0 46 2.00 1.73 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 58 59 60 0«0 OoO OoO OoO OoO 0,0 OoO OoO 183 CALIBRATION ITERATION = 6 184 O/D TABLE AFTER ITERATION 6 ZONE 1 2 3 4 5 6 7 8 9 1 0 1 0 2 3 4 1 3 0 1 3 0 2 1 0 3 1 0 0 0 0 0 0 3 1 2 0 4 0 1 0 0 1 0 4 3 2 9 0 1 2 0 0 2 0 5 0 0 1 1 0 2 0 0 1 0 6 2 0 2 1 2 0 7 5 20 1 7 0 0 0 0 0 8 0 2 10 0 8 1 0 1 0 0 8 3 0 10 1 9 4 1 3 2 3 34 15 11 0 2 10 0 0 0 0 0 0 0 0 0 0 11 23 8 4 14 13 76 22 54 94 68 12 0 0 0 0 0 1 0 1 1 0 13 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 2 0 1 5 0 15 0 0 0 0 0 1 0 0 1 0 16 0 0 0 0 0 0 0 0 0 0 17 6 1 3 2 2 17 4 12 26 4 18 2 0 1 0 1 12 3 4 29 1 19 1 0 0 0 0 5 1 1 11 0 20 4 0 0 0 0 1 0 0 1 0 21 O O O O O O O O O O 22 0 0 0 0 0 1 0 1 2 0 23 O O O O O O O O O O 24 O O O O O O O O O O 25 O O O O O O O O O O 26 1 0 0 0 0 2 0 0 2 0 27 0 0 0 0 0 0 0 0 1 0 CSUM 57 23 39 38 31 187 63 100 231 86 ZONE 11 12 13 14 15 16 17 18 19 20 1 2 7 0 0 0 0 0 4 2 1 4 2 5 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 1 0 0 0 4 15 0 0 0 0 0 2 0 0 0 5 10 0 0 0 0 0 1 1 0 0 6 62 1 0 2 0 0 9 9 4 0 7 19 0 0 0 0 0 2 2 1 0 8 70 2 0 1 0 0 10 5 2 0 9 128 2 0 6 1 1 24 37 14 2 10 O O O O O O O O O O 11 0 20 7 26 18 16 159 65 36 11 12 13 0 0 0 0 0 5 1 0 0 13 1 0 0 0 0 0 0 0 0 0 14 27 0 0 0 0 0 10 6 4 2 15 24 0 0 0 0 1 10 1 1 0 16 8 0 0 0 0 0 2 0 0 0 17 235 12 1 14 11 8 0 46 37 4 18 70 1 0 6 1 1 34 0 • 26 1 19 41 1 0 4 1 1 29 27 0 1 20 15 0 0 2 0 • 0 4 2 1 0 21 0 0 0 0 0 0 0 0 0 0 22 44 0 0 1 1 1 9 2 2 0 23 16 0 0 0 0 0 3 1 0 0 24 3 0 0 0 0 0 0 0 0 0 25 5 0 0 0 0 0 0 0 0 0 26 47 0 0 1 0 0 7 3 1 0 27 19 0 0 0 0 0 0 1 0 0 SUM 918 46 13 73 41 35 334 220 138 33 DNE 21 22 23 24 25 26 27 RSUM 1 0 0 0 0 0 0 1 65 2 0 0 0 0 0 0 0 18 3 0 0 0 0 0 0 0 19 4 0 0 0 0 0 0 0 43 5 c 0 0 0 0 0 0 24 6 0 1 0 0 0 0 1 142 7 0 0 0 0 0 0 0 52 8 0 1 0 0 0 0 0 126 9 2 2 0 0 0 1 2 309 10 0 0 0 0 0 0 0 0 11 10 36 7 3 6 23 35 862 12 0 0 0 0 0 0 0 28 13 0 0 0 0 0 0 0 1 14 1 1 0 0 0 0 1 71 15 0 1 0 0 0 0 0 50 16 0 0 0 0 0 0 0 16 17 8 12 2 0 1 5 0 484 18 3 2 0 0 0 1 2 213 19 2 1 0 0 0 0 0 140 20 0 0 0 0 0 0 0 40 21 0 0 0 0 0 0 0 0 22 0 0 2 0 0 2 4 84 23 0 3 0 0 0 1 0 31 24 0 0 0 0 3 15 7 30 25 0 0 0 3 0 45 13 71 26 0 4 1 28 97 0 112 314 27 0 2 0 3 7 29 0 67 SUM 34 75 16 39 118 130 185 185 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR TL TRIPS F-FACTOR 1 119.44 452.09 2 389.07 240.45 3 175.47 162.66 4 123.26 121.42 5 120.63 95.67 6 243.52 77.99 7 143.41 65. 10 8 141.37 55.28 9 109.24 47.56 10 95. 55 41.35 11 793.88 36.26 12 0.0 0.0 13 235.10 28.43 14 99.55 25.37 15 50.08 22.74 16 18.71 20.45 17 87. 11 18.46 18 19.39 16.71 19 32.54 15.16 20 16.70 13.79 21 7.80 12.57 22 30.78 11.48 23 0.0 0.0 24 0.0 0.0 25 0.0 0.0 26 56.01 8.12 27 0.0 0.0 28 20.29 6.88 29 0.0 0.0 30 62.32 5.85 31 5.85 5.41 32 0.0 0.0 33 0.0 0.0 34 16.22 4.28 35 75.49 3.97 36 0.0 0.0 37 13.02 3.42 38 0.0 0.0 39 0.0 0.0 40 9.22 2.74 41 0.0 0.0 42 0. 0 0.0 43 0.0 0.0 44 0.0 0.0 45 0.0 0.0 46 1.98 1.79 47 0.0 0.0 48 0.0 0. 0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0. 0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 OoO OoO 58 0.0 OoO 59 0„0 OoO 60 OoO OoO CALIBRATION ITERATION = 7 188 O/O TABLE AFTER ITERATION 7 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 2 3 4 1 3 0 1 3 0 2 1 0 4 1 0 0 0 0 0 0 3 1 2 0 4 0 1 0 0 1 0 4 3 2 9 0 1 2 0 0 2 0 5 0 0 1 1 0 2 0 0 1 0 6 2 0 2 1 2 0 8 5 21 1 7 0 0 0 0 0 8 0 2 10 0 8 1 0 0 0 0 8 3 0 10 1 9 4 1 3 2 3 35 16 11 0 2 10 O O O O O O O O O O 11 23 8 4 14 13 76 21 54 94 68 12 0 0 0 0 0 1 0 1 1 0 13 O O O O O O O O O O 14 0 0 0 0 0 2 , 0 1 4 0 15 0 0 0 0 0 1 0 0 1 0 16 O O O O O O O O O O 17 6 1 3 2 2 17 4 12 25 4 18 2 0 1 0 1 12 3 4 30 1 19 1 0 0 0 0 5 1 1 11 0 20 4 0 0 0 0 1 0 0 1 0 21 O O O O O O O O O O 22 0 0 0 0 0 1 0 1 2 0 23 O O O O O O O O O O 24 O O O O O O O O O O 25 O O O O O O O O O O 26 1 0 0 0 0 1 0 0 2 0 27 0 0 0 0 0 0 0 0 1 0 CSUM 57 23 39 38 31 187 63 100 231 86 ZONE 11 12 13 14 15 16 17 18 19 20 1 27 0 0 0 0 0 4 2 1 4 2 5 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 1 0 0 0 4 15 0 0 0 0 0 1 0 0 0 5 10 0 0 0 0 0 1 1 0 0 6 62 1 0 2 0 0 9 9 4 0 7 19 0 0 0 0 0 2 2 1 0 8 70 2 0 1 0 0 10 5 2 0 9 128 2 0 6 1 1 23 37 14 2 10 O O O O O O O O O O 11 0 19 7 26 18 16 159 64 35 11 12 13 0 0 0 0 0 6 1 0 0 13 1 0 0 0 0 0 0 0 0 0 14 27 0 0 0 0 0 10 6 4 2 15 24 0 0 0 0 1 10 1 1 0 16 8 0 0 0 0 0 2 0 0 0 17 236 12 1 14 11 8 0 46 38 4 18 69 1 0 6 1 1 34 0 27 1 19 40 1 0 4 1 1 29 28 0 1 20 15 0 0 2 0 0 4 2 1 0 21 0 0 0 0 0 0 0 0 0 0 22 44 0 0 1 1 1 9 2 2 0 23 16 0 0 0 0 0 3 0 0 0 24 3 0 0 0 0 0 0 0 0 0 25 5 0 0 0 0 0 0 0 0 0 26 47 0 0 1 0 0 7 2 1 0 27 19 0 0 0 0 0 0 1 0 0 SUM 918 46 13 73 41 35 335 220 138 3 3 3NE 21 22 23 24 25 26 27 RSUM 1 0 0 0 0 0 0 1 65 2 0 0 0 0 0 0 0 18 3 0 0 0 0 0 0 0 19 4 0 0 0 0 0 0 0 43 5 0 0 0 0 0 0 0 24 6 0 1 0 0 0 0 1 142 7 0 0 0 0 0 0 0 52 8 0 1 0 0 0 0 0 126 9 2 2 0 0 0 1 2 309 10 0 0 0 0 0 0 0 0 11 10 36 7 3 5 22 35 862 12 0 0 0 0 0 0 0 28 13 0 0 0 0 0 0 0 1 1 4 1 1 0 0 0 0 1 71 15 0 1 0 0 0 0 0 50 16 0 0 0 0 0 0 0 16 17 8 12 2 0 1 5 0 484 18 3 2 0 0 0 1 2 213 19 2 1 0 0 0 0 0 140 20 0 0 0 0 0 0 0 3 9 21 0 0 0 0 0 0 0 0 22 0 0 2 0 0 2 4 84 23 0 4 0 0 0 1 0 32 24 0 0 0 0 3 15 7 30 25 0 0 0 3 0 45 13 71 26 0 4 1 28 97 0 112 314 27 0 2 0 3 7 29 0 67 SUM 34 75 16 39 118 129 185 189 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR 1 9 0 TL TRIPS F-FACTOR 1 123o44 479.73 2 394.05 251.54 3 176.36 168.82 4 123.63 125.35 5 119.83 98.38 6 242.89 79.96 7 141.91 66. 58 8 141.67 56.43 9 108.38 48.47 10 94.61 42.09 11 793.17 36.86 12 0.0 0.0 13 232.04 28.85 14 99.97 25.73 15 49. 69 23.05 16 18.29 20.73 17 87.34 18.70 18 19.07 16.92 19 32.31 15.35 20 16.55 13.96 21 7. 63 12.73 22 30.89 11.62 23 0.0 0.0 24 0.0 0.0 25 0.0 0 .0 26 56.42 8.22 27 0.0 0.0 28 19.72 6.97 29 0.0 0.0 30 62.46 5. 93 31 5.62 5.48 32 0.0 0.0 33 0.0 0.0 34 15.90 4.35 35 75.12 4.03 36 0.0 0.0 37 12.77 3.47 38 0.0 0.0 39 0.0 0.0 40 9.30 2.79 41 0.0 0.0 42 0.0 0.0 43 0.0 0.0 44 0.0 0.0 45 0.0 0.0 46 1.97 1.82 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 OoO 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 OoO OoO 58 0.0 0.0 59 0.0 0.0 60 0.0 0.0 CALIBRATION ITERATION = 8 O/D TABLE AFTER ITERATION 8 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 2 3 4 1 3 0 1 3 0 2 1 0 4 1 0 0 0 0 0 0 3 1 2 0 4 0 1 0 0 1 0 4 3 2 10 0 1 2 0 0 2 0 5 0 0 1 1 0 2 0 0 1 0 6 2 0 2 1 2 0 8 5 21 1 7 0 0 0 0 0 8 0 2 10 0 8 1 0 0 0 0 8 3 0 10 1 9 4 1 3 2 3 35 16 11 0 2 10 O O O O O O O O O O 11 23 8 4 14 13 76 21 54 93 69 12 0 0 0 0 0 1 0 1 1 0 13 O O O O O O O O O O 14 0 0 0 0 0 2 0 1 4 0 15 0 0 0 0 0 0 0 0 1 0 16 O O O O O O O O O O 17 6 1 3 2 2 17 4 11 25 4 18 2 0 1 0 1 12 3 4 30 1 19 1 0 0 0 0 5 1 1 11 0 20 4 0 0 0 0 1 0 0 1 0 21 O O O O O O O O O O 22 0 0 0 0 0 1 0 1 2 0 23 O O O O O O O O O O 24 O O O O O O O O O O 25 O O O O O O O O O O 26 1 0 0 0 0 1 0 0 2 0 27 0 0 0 0 0 0 0 0 1 0 CSUM 57 23 39 38 31 187 63 100 231 86 ZONE 11 12 13 14 15 16 17 18 19 20 1 27 0 0 0 0 0 4 2 1 4 2 5 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 1 0 0 0 4 15 0 0 0 0 0 1 0 0 0 5 10 0 0 0 0 0 1 1 0 0 6 62 1 0 2 0 0 9 9 3 0 7 19 0 0 0 0 0 2 2 1 0 8 71 2 0 1 0 0 10 5 2 0 9 128 2 0 6 1 1 23 37 14 2 10 O O O O O O O O O O 11 0 19 7 26 18 16 159 64 35 12 12 13 0 0 0 0 0 6 0 0 0 13 1 0 0 0 0 0 0 0 0 0 14 27 0 0 0 0 0 10 6 4 2 15 24 0 0 0 0 1 10 1 1 0 16 8 0 0 0 0 0 2 0 0 0 17 236 13 1 14 11 8 0 47 38 4 18 69 1 0 6 1 1 34 0 27 1 19 40 1 0 4 1 1 29 29 0 1 20 15 0 0 2 0 0 4 2 1 0 21 0 0 0 0 0 0 0 0 0 0 22 44 0 0 1 1 1 9 2 2 0 23 16 0 0 0 0 0 3 0 0 0 24 3 0 0 0 0 0 0 0 0 0 25 5 0 0 0 0 0 0 0 0 0 26 47 0 0 1 0 0 7 2 1 0 27 19 0 0 0 0 0 0 1 0 0 ;UM 918 46 13 73 41 35 335 220 138 33 3NE 21 22 23 24 25 26 27 RSUM 1 0 0 0 0 0 0 1 65 2 0 0 0 0 0 0 0 17 3 0 0 0 0 0 0 0 19 4 0 0 0 0 0 0 0 44 5 0 0 0 0 0 0 0 24 6 0 1 0 0 0 0 1 142 7 0 0 0 0 0 0 0 52 8 0 1 0 0 0 0 0 126 9 2 2 0 0 0 1 2 309 10 0 0 0 0 0 0 0 0 11 10 37 7 3 5 22 35 862 12 0 0 0 0 0 0 0 28 13 0 0 0 0 0 0 0 1 14 1 1 0 0 0 0 1 71 15 0 1 0 0 0 0 0 50 16 0 0 0 0 0 0 0 16 17 8 12 2 0 1 4 0 484 18 3 2 0 0 0 1 2 213 19 2 1 0 0 0 0 0 140 20 0 0 0 0 0 0 0 40 21 0 0 0 0 0 0 0 0 22 0 0 2 0 0 2 4 84 23 0 4 0 0 0 1 0 31 24 0 0 0 0 3 15 7 30 25 0 0 0 3 0 46 13 71 26 0 4 1 28 97 0 112 313 27 0 2 0 3 7 29 0 67 SUM 34 75 16 39 118 129 185 1 94 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR TL TRIPS F-FACTOR 1 125o68 495.96 2 396.80 257.99 3 176, 84 172.38 4 123.82 127.62 5 119.39 99.93 6 242. 53 81.09 7 141.08 67.43 8 141.83 57.08 9 107.90 49. 00 10 94.09 42.51 11 792.78 37.21 12 0.0 0.0 13 230.35 29.09 14 100.2 0 25.94 15 49.47 23.23 16 18.06 20.88 17 87.47 18.84 18 18. 89 17.04 19 32. 1 8 15.46 20 16.46 14.06 21 7.53 12.82 22 30.96 11.70 23 0.0 0.0 24 0.0 0.0 25 0.0 0.0 26 56.65 8.28 27 0.0 0.0 28 19.42 7.02 29 0. 0 0.0 30 62.55 5.97 31 5.5 0 5.52 32 0.0 0.0 33 0.0 0.0 34 15.72 4.38 35 74. 93 4.06 36 0.0 0.0 37 12.64 3.50 38 0.0 0.0 39 0.0 0.0 40 9.34 2.81 41 0.0 0.0 42 0.0 0.0 43 0.0 0.0 44 0.0 0.0 45 0.0 0.0 46 1.97 1.84 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 OoO 0,0 58 0.0 0.0 59 0.0 0.0 60 0.0 0.0 C A L I B R A T I O N ITERATION = 9 196 O/D TABLE AFTER I T E R A T I O N 9 ZONE 1 2 3 4 5 6 7 8 9 10 1 0 2 3 4 1 3 0 1 3 0 2 1 0 4 1 0 0 0 0 0 0 3 1 2 0 4 0 1 0 0 1 0 4 3 2 10 0 1 2 0 0 2 0 5 0 0 1 1 0 2 0 0 1 0 6 2 0 2 1 2 0 8 5 21 1 7 0 0 0 0 0 8 0 2 11 0 8 1 0 0 0 0 8 3 0 10 1 9 4 1 3 2 3 35 16 11 0 2 10 O O O O O O O O O O 11 23 8 4 14 13 76 21 54 93 69 12 0 0 0 0 0 1 0 1 1 0 13 O O O O O O O O O O 14 0 0 0 0 0 2 0 1 4 0 15 0 0 0 0 0 0 0 0 1 0 16 O O O O O O O O O O 17 6 1 3 2 2 17 4 11 25 4 18 2 0 1 0 1 12 3 4 30 1 19 1 0 0 0 0 5 1 1 1 1 0 20 4 0 0 0 0 1 0 0 1 0 21 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 1 0 1 2 0 23 O O O O O O O O O O 24 O O O O O O O O O O 25 O O O O O O O O O O 26 1 0 0 0 0 1 0 0 2 0 27 0 0 0 0 0 0 0 0 1 0 CSUM 57 23 39 38 31 187 63 100 231 86 ZONE 11 12 13 14 15 16 17 18 19 20 1 27 0 0 0 0 0 4 2 1 4 2 5 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 4 15 0 0 0 0 0 1 0 0 0 5 10 0 0 0 0 0 1 1 0 0 6 62 1 0 2 0 0 9 9 3 0 7 19 0 0 0 0 0 2 2 1 0 8 71 2 0 1 0 0 10 5 1 0 9 127 2 0 6 1 1 23 38 13 2 10 O O O O O O O O O O 11 0 19 7 26 18 16 159 63 34 12 12 13 0 0 0 0 0 6 0 0 0 1 3 1 0 0 0 0 0 0 0 0 0 1 4 2 7 0 0 0 0 0 1 0 6 4 2 1 5 2 4 0 0 0 0 1 1 0 1 1 0 1 6 8 0 0 0 0 0 2 0 0 0 1 7 2 3 6 1 3 1 1 4 1 2 8 0 4 7 3 8 4 1 8 6 9 1 0 6 1 1 3 4 0 2 7 1 1 9 3 9 1 0 4 1 1 2 9 2 9 0 1 2 0 1 5 0 0 2 0 0 4 2 1 0 2 1 0 0 0 0 0 0 0 0 0 0 2 2 4 4 0 0 1 1 1 9 2 1 0 2 3 1 6 0 0 0 0 0 3 0 0 0 2 4 3 0 0 0 0 0 0 0 0 0 2 5 5 0 0 0 0 0 0 0 0 0 2 6 4 7 0 0 1 0 0 6 2 1 0 2 7 1 9 0 0 0 0 0 0 1 0 0 ;UM 9 1 8 4 6 1 3 7 3 4 1 3 5 3 3 5 2 2 0 1 3 8 3 3 )NE 2 1 2 2 2 3 2 4 2 5 2 6 2 7 RSUM 1 0 0 0 0 0 0 1 6 5 2 0 0 0 0 0 0 0 1 7 3 0 0 0 0 0 0 0 1 9 4 0 0 0 0 0 0 0 4 3 5 0 0 0 0 0 0 0 2 4 6 0 1 0 0 0 0 1 1 4 2 7 0 0 0 0 0 0 0 5 2 8 0 1 0 0 0 0 0 1 2 5 9 2 2 0 0 0 1 2 3 0 9 1 0 0 0 0 0 0 0 0 0 1 1 1 0 3 7 7 3 5 2 2 3 6 8 6 2 1 2 0 0 0 0 0 0 0 28 1 3 0 0 0 0 0 0 0 1 1 4 1 1 0 0 0 0 1 7 1 1 5 0 1 0 0 0 0 0 5 0 1 6 0 0 0 0 0 0 0 1 6 1 7 8 1 2 2 0 1 4 0 4 8 4 1 8 3 2 0 0 0 1 2 2 1 3 1 9 2 1 0 0 0 0 0 1 4 0 2 0 0 0 0 0 0 0 0 4 0 2 1 0 0 0 0 0 0 0 0 2 2 0 0 2 0 0 2 4 8 4 2 3 0 4 0 0 0 1 0 3 2 2 4 0 0 0 0 3 1 5 7 3 0 2 5 0 0 0 3 0 4 6 1 3 7 1 2 6 0 4 1 2 8 9 8 0 1 1 2 3 1 4 2 7 0 2 0 3 7 2 9 0 6 7 SUM 3 4 7 5 1 6 3 9 1 1 8 1 2 9 1 8 5 198 TRIP LENGTH DISTRIBUTION AND FRICTION FACTOR TL TRIPS F-FACTOR 1 126.93 505.33 2 398.34 261.69 3 177.11 174.42 4 123.92 128.91 5 119.13 100.82 6 242.32 81.73 7 140.62 67.91 8 141.92 57.46 9 107. 63 49.29 10 93.79 42.75 11 792.56 37.40 12 0.0 0.0 13 229.40 29.23 14 100.33 26.05 15 49.35 23. 33 16 17.93 20.97 17 87.54 18.91 18 18. 80 17.11 19 32.11 15.52 20 16.41 14.12 21 7.48 12.87 22 30.99 11.75 23 0.0 0.0 24 0.0 0.0 2 5 0.0 0.0 26 56.78 8.31 27 0.0 0.0 28 19.25 7.04 29 0.0 0.0 30 62.61 6.00 31 5.43 5.55 32 0.0 0.0 33 0.0 0.0 34 15.62 4.40 35 74.82 4.08 36 0.0 0.0 37 12.56 3.52 38 0.0 0.0 39 0.0 0.0 40 9.37 2.83 41 0.0 0.0 42 0.0 0.0 43 0.0 0.0 44 0.0 0.0 45 0.0 0.0 46 1.9.6 1.85 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 51 0.0 0.0 52 0.0 0.0 53 0.0 0.0 54 0.0 0.0 55 0.0 0.0 56 0.0 0.0 57 OoO OoO 58 0.0 0.0 59 0.0 0.0 60 0.0 OoO K-FACTOR TABLE JNE 1 2 3 1 1. o 2. 0 1.5 2 loO 1.0 1.0 3 1.0 1.0 1.0 4 5.5 1.0 1.0 5 1.0 1.0 1.0 6 1. 0 1.0 1.0 7 1.0 1.0 1.0 8 1.0 1.0 1.0 9 0. 7 2.1 0.9 10 1.0 1.0 1.0 1.1 0.8 1.5 6.9 12 1.0 1.0 1.0 13 1.0 1.0 1.0 14 1.0 1.0 1.0 15 1.0 1.0 1.0 16 1.0 1.0. 1.0 17 0. 5 2.0 1. 0 18 1.2 1.0 1.0 19 3.2 1.0 1.0 20 0. 8 1.0. 1.0 21 1.0 1.0 1.0 22 1. 0 1.0 1.0 23 1.0 1.0 1.0 24 1.0 1.0 1.0 25 1, 0 1.0 1.0 26 4, 1 1.0. 1.0 27 1.9 1.0. 1.0 DNE 11 12 13 1 0.2 1.0 1.0 2 2.7 1.0 1.0 3 40.2 1.0 1.0 4 1.3 1.0 1.0 5 5.3 1.0. 1.0. 6 0.5 1.0 1. 0 7 0.4 1.0. 1.0 8 1.2 1.0 1.0 9 0.8 1.8 1.0 10 1.0 1.0. 1.0 11 1.0 0.8 0.8 12 4.2 1.0 1.0 13 1.0 1.0 1.0. 14 0.1 1.0 21.5 15 1.3 1.0 1.0 16 0.1 1.0 1.0 17 0.8 1.9 2. 1 18 3.3 1.0 1.0 19 3.6 1.0 1.0 20 0.3 1.0 1.0 21 1.0 1.0 1.0 22 1.3 1.0 1.0 23 2.1 1.0 1.0 200 4 5 6 7 8 9 10 8.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.7 1.0 1.0 1.0 1.0 1.0 1.0 6.7 1.0 1.0 1.0 1.0 1.0 1.0 3.1 1. o 1.0 1.0 1.0 1.0 1.0 3.9 1.0 1.0 1. 0 1.0 1.0 1.0 3.1 1.0 1.0 1.0 loO 1.0 1.0 4.0 1.0 1.0 1.6 3.9 1.5 2.8 1.0 3.3 1.0 1.0 1.0 1.0 1.0 1.0 1. 0 0.7 1.7 0.3 1.0 1.2 0. 8 1.0 1.0 1.0 1.0 1.0 1.0 2.3 •1.0 1.0 1.0 1.0 1.0 1.0 1. 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.0 loO 1.0 1.0 1.0 1.0 0. 7 1.0 0.3 1.0 0.1 0.1 0.7 1.0 1.0 3.4 4.5 1.0 1. 0 2.4 1.0 1.0 2.5 3.8 1.7 1.0 1.0 1.0 1.0. 1.0 1.0 1.0 1.6 13.5 1.0 1.0 1.0 1.0 1.0 1.0 1. 0 1.0 1.0 1.0 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. 0 1.0 1.0. loO 1.0 1.0 1.0 1.0 14 15 16 17 18 19 20 1.0 1.0 1.0 0.6 1.1 5.3 0.6 1.0 1.0 1.0 9.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.7 3.5 1.0 1.0 1.0 1.0 1.0 5.4 2.9 23.2 1.0 1.0 1.0 1.0 2.2 1.5 1.0 1.0 1.0 1.0 0.2 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.1 0.1 1.2 1.9 2.1 0.2 1.0 1.0 1.0 0.4 1.0 1.0 1. 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. 0 1.0 1.0 17.7 0.6 1.0 1.0 3.9 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 33.6 1.0 1.0 1.0 5. 1 1.8 4.1 1.0 0.7 0.6 1.3 0.4 1.0 1.7. 0.2 1.0 1.0 4.6 1.0 1.0 1.0 •0.5 0.1 1.0 8. 1 1.0 1.0 1.0 1.2 1.5 14.1 1.0 1.0 1.0. 1.0 1.0 1.0 loO 1.0 1.0 1.0 1.0 2.1 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 24 14o2 1.0 1.0 1.0 25 0.2 1.0 1.0 1.0 26 0.3 1.0 1.0 1.0 2 7 0.3 1.0 1.0 1.0 ZONE 21 22 23 24 1 5o2 1.0 1.0 1.0 2 1. 0 1.0 1.0 1.0 3 1.0 1.0 1.0 1.0 4 1.0 1.0. 1.0 1.0 5 1. 0 1. 0 1.0 1.0 6 1.0 1.0 l . O 1.0 7 1.0 1.0 1.0 1.0 8 1. 0 1.0 1.0 1. 0 9 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 11 1.4 1.0 1.8 6.2 12 1.0 1.0 1.0 1.0 13 1.0 1.0 1.0 1. o 14 1.0 7.3 1.0 l . O 15 1.0 1.0 1.0 1.0. 16 1. 0 1.0 1.0 1.0 17 2.1 2.0 1.0 1.0 18 1.0 0.8 6.4 1.0 19 1. 0 1.6 1. 0 1.0 20 1.0 5.1 1.0 1.0 21 1.0 1.0 1.0 1.0 22 1.0 1.0 1.0 1.0 23 1.0 1.0 1.0 58.8 24 1.0 1.0 1.0 1.0 25 1.0 1.0 1.0 1.0 26 1.0 1.0. 1.0 0.3 27 1. 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 25 26 27 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 •1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 1.0 1.0 1.0 1.0 0.7 0.3 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.6 1.0 1.0 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.5 1.0 1.0. 1.0 1.0 1.0 1.0 1.6 1.0 37.3 1.0 1.0 1.0. 2.4 3.5 1.9 1.0 202 BIBLIOGRAPHY 1. Ben, C , Bouchard, R. J . , and Sweet, C. E. J r . , "An E v a l u a t i o n of S i m p l i f i e d Procedures f o r Determining T r a v e l P a t t e r n s i n a Small Urban A r e a " , HRR .88. 2. Bouchard, R. J . , and Pyers, C. E., "Use of G r a v i t y Model " f o r D e s c r i b i n g Urban T r a v e l , " HRR 88. 3. Bureau of P u b l i c Roads, U.S. Department of Commerce, O f f i c e of P l a n n i n g , " C a l i b r a t i n g and T e s t i n g a G r a v i t y Model f o r any s i z e Urban Area", Washington, D . C , J u l y 1 9 6 3 . 4. Catanese, A. M., NEW PERSPECTIVES IN URBAN TRANSPORTATION-RESEARCH, D. C. Heath and Company, L e x i n g t o n , Massachusetts, 1972. 5. F i s k , C , " I n t r o d u c t i o n t o T r i p D i s t r i b u t i o n Models with A p p l i c a t i o n t o the C e n t r a l Business D i s t r i c t of Vancouver", T r a n s p o r t a t i o n Research S e r i e s Report No. 4, Vancouver, B.C. , February 1974. 6. F i s k , C , and Brown, G. R. , "A Note on the Entropy Formulation- of Commodity D i s t r i b u t i o n Models," Transpor-t a t i o n Research S e r i e s Report No. .7, Vancouver, B.C., January 1975• 7. F i s k , C , and Brown, G. R. , "A Re-examination of the Entrophy Formalism i n T r i p D i s t r i b u t i o n M o d e l l i n g " , T r a n s p o r t a t i o n Research S e r i e s Report No. 7, Vancouver, B. C., January 1975. 8. F r a t a r , T. J . , " F o r e c a s t i n g D i s t r i b u t i o n of I n t e r z o n a l : V e h i c u l a r T r i p s by S u c c e s s i v e Approximations", Highway Research Proceedings, V o l . 33, 1954. . 9. Hansen, W. G., " E v a l u a t i o n of G r a v i t y Model T r i p D i s t r i -b u t i o n Procedures", HRBB.347. 10. Heanue, K. E., Hamner, L. B., and H a l l , R. M., "Adequacy of C l u s t e r e d Home Interview Sampling f o r C a l i b r a t i n g a G r a v i t y Model D i s t r i b u t i o n Formula", HRR 88. 11. Heanue, K. , and Pyers, C , "A Comparative E v a l u a t i o n of T r i p D i s t r i b u t i o n Procedures", HRR 114, 1965. 12. Hutchinson, B. G., PRINCIPLES OF URBAN TRANSPORT SYSTEMS PLANNING, McGraw-Hill, 1974. 13. Hutchinson, B. C , " F o r e c a s t i n g I n t e r r e g i o n a l Commodity Flows",.Proceedings, NATO Conference on the A p p l i c a t i o n of O p e r a t i o n a l Research to T r a n s p o r t Problems, Sande.fjord, Norway, August 1972. 203 14. Jarema, P. E., Pyers, C. E., and Reed, H. A., "Evalu-ation of Trip D i s t r i b u t i o n and C a l i b r a t i o n Procedures", HRR 191. 15- Paquette, R. J . , Ashford, N., and Wright, P. H., TRANS-PORTATION ENGINEERING, Ronald Press, New York, 1972. 16. Pyers, C. E., "Evaluation of the Intervening Opportunities Trip D i s t r i b u t i o n Model," HRR 114, 1965. 17- Ruiter, E. R., "Improvements i n Understanding, C a l i -brating and Applying the Opportunity Model", HRR 165, 1967 18. Smith, Bob L., "Gravity Model Theory Applied to a Small C i t y Using a Small Sample of Origin-Destination Data", HRR 88. 19. Stouffer, S. A., "Intervening Opportunities: A Theory Relating Mobility and Distance", American S o c i o l o g i c a l Review, Vol. 5, No. 6, 1940. 20. Tomazinis, A. R., "A New Method of T r i p D i s t r i b u t i o n i n an Urban Area, HRBB 3^ 7, 1962. 21. Townsend, D. P., "Highway Investment i n B. C. 1946-71", M.A. Thesis, University of B. C , 1973-22. Voorhees, A. M., "A General Theory of T r a f f i c Movement", Proceedings of the I n s t i t u t e of T r a f f i c Engineers, New Haven, 1955. 23. Voorhees, A. M., and Morris, R., "Estimating and Pore-casting Travel for Baltimore by Use of a Mathematical Model,"HRBB 224. 24. "Western Canada Truck Origin-Destination Survey", Trimac, Ministry of Transport, Ottawa, 1973-25. Wolforth, J. R., RESIDENTIAL LOCATION AND THE PLACE OF WORK, Tantalus Research Limited, Vancouver, 1965. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0062471/manifest

Comment

Related Items