Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The pyridine denitration of cis- and trans-1, 2-cyclohexanediol dinitrates. Zane, Alexis 1958

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
UBC_1958_A6_7 Z2 P9.pdf [ 2.87MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0062227.json
JSON-LD: 1.0062227+ld.json
RDF/XML (Pretty): 1.0062227.xml
RDF/JSON: 1.0062227+rdf.json
Turtle: 1.0062227+rdf-turtle.txt
N-Triples: 1.0062227+rdf-ntriples.txt
Original Record: 1.0062227 +original-record.json
Full Text
1.0062227.txt
Citation
1.0062227.ris

Full Text

THE PYRIDINE DENITRATION OF CIS- AND TRANS-1,2-CYCLOHEXANEDIOL DINITRATES  By  ALEXIS ZANE  A T h e s i s submitted i n P a r t i a l F u l f i l m e n t of Requirements f o r the Degree o f Master o f Science i n the Department o f Chemistry  We accept t h i s t h e s i s as conforming t o the standard requirements from c a n d i d a t e s f o r the degree of Master o f S c i e n c e  Members of the Department The U n i v e r s i t y o f B r i t i s h May, 1 9 5 8 .  o f Chemistry Columbia  ABSTRACT  Refluxing  c i s - and t r a n s - 1 . 2 - c y c 1 o h e x a n e d i o 1  d i n i t r a t e s i n excess anhydrous p y r i d i n e lead  at  ll8°-120°C  to a slow decomposition of the d i n i t r a t e s and the  < f o r m a t i o n of a gaseous p r o d u c t .  I t was found t h a t the  t r a n s - d i n i t r a t e decomposed 1 . $ times f a s t e r than the cis-isomer, 1,2-  and t h a t no 2 - n i t r o x y C y c l o h e x a n o l s or  cyclohexanediols  were detected  were formed.  Nine components  i n the r e a c t i o n mixture by paper  chromatography.  Pyridinium  n i t r a t e , s u c c i n i c and  a d i p i c a c i d s , and a polymer were shown t o be- produced i n the t r a n s - d e n i t r a t i o n m i x t u r e . 3-methylheptane i n p l a c e the  The use of  of p y r i d i n e as s o l v e n t  gave  decomposition p r o d u c t s : o x a l i c , s u c c i n i c and  a d i p i c a c i d s , water, carbonized m a t e r i a l , brown gas and unsaturated of q u i n o l i n e  compounds.  a reddish-  The r e a c t i o n  with the t r a n s - d i n i t r a t e at l6.f? C y i e l d e d  mainly water and a p y r i d i n e  ,0  s o l u b l e polymer.  In p r e s e n t i n g the  this thesis in partial fulfilment  requirements f o r an advanced degree at the  of  University  of B r i t i s h Columbia, I agree t h a t  the  L i b r a r y s h a l l make  it  and  study.  f r e e l y a v a i l a b l e f o r reference  I  further  agree t h a t permission f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may  be granted by the  Department or by h i s r e p r e s e n t a t i v e .  Head o f  my  I t i s understood  t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain  s h a l l not  Department  be allowed without my  of  The U n i v e r s i t y of B r i t i s h Columbia", Vancouver 8 , Canada. Date  written  permission.  ACKNOWLEDGEMENTS  The w r i t e r wishes to express h i s sincere  thanks t o Dr. L. D. Hayward f o r h i s  encouragement and w i l l i n g a s s i s t a n c e  i n the  d i r e c t i o n of t h i s i n v e s t i g a t i o n . The f r i e n d l y advice of Mr. M. Jacks i s l i k e w i s e g r a t e f u l l y acknowledged.  May,  19^8  A l e x i s Zane  TABLE OF CONTENTS Page GENERAL INTRODUCTION HISTORICAL INTRODUCTION  1 .  2 21  DISCUSSION OF RESULTS . .  21  A.  e l s - and t r a n s - C y c l o h e x a n e d i o l D l n l t r a t e s  B.  e l s - and t r a n s - 2 - N i t r o x y c y c l o h e x a n o l s  21  C.  Decomposition of c i s - and t r a n s - 1 , 2 - C y c l o hexanediol D i n i t r a t e s  23  CONCLUSIONS  31  EXPERIMENTAL  33  A.  Materials  33  B.  Syntheses of 1,2- C y c l o h e x a n e d i o l D i n i t r a t e s  C.  Syntheses o f 2 - N i t r o x y c y c l o h e x a n o l s  36  D.  Decomposition of c i s - and t r a n s - 1,2Cyclohexanediol D i n i t r a t e s i n Pyridine Solution  40  (a)  P r e l i m i n a r y Experiments  40  (b)  I s o l a t i o n of t h e Unreacted D i n i t r a t e  (c)  F r a c t i o n a t i o n o f t h e Aqueous-Pyridine Residue  42  (d)  I s o l a t i o n of t h e Mononitrate  45  (e)  Examination of the D i s t i l l a t e from the Reaction Mixture  46  Decomposition of t r a n s - 1,2-Cyclohexanediol D i n i t r a t e i n 3-Methylheptane S o l u t i o n  49  (a)  P r e l i m i n a r y Experiments  49  (b)  I s o l a t i o n of the Unreacted D i n i t r a t e  (c)  Examination of the D i s t i l l a t e from the Reaction Mixture  52  Decomposition of t r a n s - 1,2-Cyclohexanediol Dinitrate i n Quinoline Solution  53  E.  F.  BIBLIOGRAPHY  .  . . .  . . . . . . .  36  41  50  1  GENERAL INTRODUCTION In r e c e n t  years Hay-ward and coworkers have shown  t h a t the a c t i o n of dry p y r i d i n e on the h e x a n i t r a t e s  of  manni.tol and d u l c i t o l s e l e c t i v e l y removed the 3- (or chemi c a l l y equivalent  4-) n i t r a t e : ; group.  A similar partial  d e n i t r a t i o n of the p e n t i t o l p e n t a n i t r a t e s  was  also  The r e l a t i v e r a t e s of these r e a c t i o n s appeared of the c o n f i g u r a t i o n of the a c y l i c In an attempt  observed.  to be a f u n c t i o n  molecules.  t o determine the r e q u i r e d  stereo-  chemical r e l a t i o n s h i p between n i t r a t e ' groups f o r s e l e c t i v e d e n i t r a t i o n , c i s - and t r a n s - 1 , 2 - c y c l o h e x a n e d i o l d i n i t r a t e s of known c o n f i g u r a t i o n were s e l e c t e d f o r study.  As these  isomers may  expected  have d i f f e r e n t conformations, i t was  t h a t they would show some s e l e c t i v i t y and d i f f e r e n c e i n r e a c t i v i t y toward  pyridine.  2 HISTORICAL INTRODUCTION A.  S e l e c t i v e D e n i t r a t i o n of P o l y n i t r a t e E s t e r s Wigner i n 1 9 0 3  (71)  observed t h a t a l c o h o l i c p y r i d i n e  reacted with mannitol hexanitrate t h a t the reagent had the b o i l i n g p o i n t .  no  to give a p e n t a n i t r a t e ,  e f f e c t on d u l c i t o l h e x a n i t r a t e  On the other  hand, he  p y r i d i n e caused a r e a c t i o n accompanied by and  Hayward i n 1 9 5 5  e v o l u t i o n of a  4-)  (4-4) who  p o s i t i o n of the d u l c i t o l  Hayward ( 3 D -1,2,3,5*6D-  had  earlier  p e n t a n i t r a t e was  mannitol hexanitrate  con-  showed t h a t 3-  the  (or  hexanitrate.  shown t h a t D-  obtained  gas  T h i s work was  d e n i t r a t i n g a c t i o n of the p y r i d i n e i s s p e c i f i c t o the equivalent  even at  found t h a t warm, dry  the f o r m a t i o n of d u l c i t o l p e n t a n i t r a t e .  f i r m e d by McKeown and  but  mannitol  by p y r i d i n e r e a c t i o n  at room temperature.  No  on  i n v e r s i o n of  c o n f i g u r a t i o n occured i n these s e l e c t i v e r e a c t i o n s . The  gas  produced from the D- m a n n i t o l h e x a n i t r a t e  analyzed by Brown and the h e x a n i t r a t e n i t r i c oxide, amount and  Hayward ( 1 4 ) .  From a O . 3 6 8 M s o l u t i o n of  i n p y r i d i n e at 3 0 + 5°C> a gas  n i t r o u s oxide,  composition of the  and  n i t r o g e n was  c o n s i s t i n g of evolved.  E s t a b l i s h m e n t of a m a t e r i a l  balance f o r the r e a c t i o n i n d i c a t e d t h a t approximately two of p y r i d i n e s u f f e r e d r i n g cleavage w h i l e 0 . 2 5  was  The  gas mixture were s e n s i t i v e t o  t r a c e s of m o i s t u r e i n the p y r i d i n e .  n i t r a t e was  was  completely d e n i t r a t e d and  0.75  moles  moles of hexa-  moles of  pentanitrate  found. E l r i c k and  collaborators (23)  have r e c e n t l y shown t h a t  3 treatment  of D-mannitol h e x a n i t r a t e w i t h an aqueous  s o l u t i o n o f ammonium carbonate  acetone  a l s o gave a good y i e l d o f the  same D-mannitol p e n t a n i t r a t e . Tichanowitsch  (59) i n 1864 had o b t a i n e d a p e n t a n i t r a t e  of mannitol by p a s s i n g dry ammonia gas i n t o an e t h e r a l  solution  of mannitol h e x a n i t r a t e . Bowering i n 1956  (12) found t h a t the newly s y n t h e s i z e d  a l l i t o l h e x a n i t r a t e r e a c t e d more s l o w l y w i t h d r y p y r i d i n e a t room temperature and produced  than the corresponding D-mannitol d e r i v a t i v e , A 76%  p y r i d i n i u m n i t r a t e but no gaseous p r o d u c t s .  y i e l d of an o i l y product which was thought  t o be the p e n t a n i t r a t e  was o b t a i n e d . Wright  (70) i n 1957  s y n t h e s i z e d and i d e n t i f i e d the  new e x p l o s i v e compounds x y l i t o l , y i b i t o l and L - a r a b i t o l nitrates.  penta-  These c r y s t a l l i n e compounds r e a c t e d w i t h d r y p y r i d i n e  i n much the same manner as the h e x i t o l h e x a n i t r a t e s .  The x y l i t o l  d e r i v a t i v e evolved more gas and gave a r e a c t i o n mixture  darker  i n c o l o r than those obtained w i t h the a r a b i t o l and F i b i t o l pounds.  P a r t i a l l y d e n i t r a t e d syrups were recovered from  com-  each  of the t h r e e p y r i d i n e s o l u t i o n s on d i l u t i o n w i t h water. Jackson t h r e e known 1,4  (35) i n 1957 prepared the d i n i t r a t e s o f t h e  : 3»6- d i a n h y d r o h e x i t o l s (isomannide, i s o -  s o r b i d e and isoic^dide) and t e s t e d t h e i r r e a c t i o n w i t h p y r i d i n e . Isomannide d i n i t r a t e was found to r e a c t more r a p i d l y than i s o s o r b i d e d i n i t r a t e , and the l a t t e r f a s t e r than i s o l o d i d e The  dinitrate.  i n v e s t i g a t i o n of the r e a c t i o n products i s s t i l l going on. The a c t i o n of p y r i d i n e on n i t r o c e l l u l o s e has a l s o been  4 studied.  Angelis(2) found t h a t p y r i d i n e - m o i s t e n e d n i t r o -  c e l l u l o s e gave an 80$ y i e l d o f the o r i g i n a l weight o f n i t r o c e l l u l o s e w i t h a n i t r o g e n content reduced from an o r i g i n a l 12$ to 9-10$ n i t r o g e n i n d i c a t i n g decomposition.  Giannini (26)  extended t h i s work i n 1924, and showed t h a t a gas c o n t a i n i n g carbon d i o x i d e , n i t r i c o x i d e , n i t r o u s o x i d e , and n i t r o g e n was given o f f . In 1944 Gladding and Purves (28) found t h a t pure, d r y p y r i d i n e caused a v i g o r o u s decomposition of d i s s o l v e d ,  stabil-  i z e d gun-cotton at 100°C. P y r i d i n e - i n d u c e d e l i m i n a t i o n r e a c t i o n s were shown t o occur by Lame ( 3 9 ) i n 1953*  Secondary and t e r t i a r y  r e f l u x e d w i t h p y r i d i n e formed o l e f i n s .  nitrates  Thus c y c l o h e x y l n i t r a t e  and t e r t i a r y b u t y l n i t r a t e gave cyclohexene and butylene respectively. salts  Primary n i t r a t e e s t e r s formed quaternary ammonium  (26,39) Ryan and Casey (54) i n 1928 s t u d i e d the e f f e c t o f  primary, secondary and t e r t i a r y amines on v a r i o u s carbohydrate nitrate esters.  Dimethylaniline reacted with mannitol hexanitrate  at an e l e v a t e d temperature t o evolve a gas c o n s i s t i n g o f 70% n i t r o u s oxide and 3 0 $ n i t r o g e n .  T e r t i a r y a l i p h a t i c amines  r e a c t e d a t r e f l u x temperatures w i t h primary n i t r a t e e s t e r s t o form q u a r t e r n a r y s a l t s  (26,39)  In 1946 S e g a l l (55) showed t h a t excess  hydroxylamine  i n p y r i d i n e at room temperature a c t e d on c e l l u l o s e t r i n i t r a t e t o g i v e a c e l l u l o s e d i n i t r a t e w i t h t h e e v o l u t i o n o f one mole o f n i t r o g e n per mole of an-hydroglucose.  The n i t r a t e  groups  5 a t t a c k e d proved  t o be secondary  s t a b l e to p y r i d i n e .  i n nature.  The product  Methorylamine r e a c t e d s i m i l a r l y  was  except  t h a t no n i t r o g e n was e v o l v e d .  With excess hydroxylamine  c h l o r i d e the product appeared  t o be a c e l l u l o s e ketoxime  d i n i t r a t e and the gas evolved c o n s i s t e d of 8 5 $ n i t r o u s and  hydro-  oxide  15% n i t r o g e n . F a l c o n e r and Purves  ( 2 5 ) r e c e n t l y showed t h a t the  h y d r o x y l a m i n e - p y r i d i n e s o l u t i o n at room temperature with c e l l u l o s e t r i n i t r a t e to give c e l l u l o s e - 3 , 6 a baoo s t a b l e  reacted dinitrate,  compound.  Hayward ( 3 2 ) i n v e s t i g a t e d the a c t i o n of f r e e xylamine  i n p y r i d i n e on methyl-ifr- and  tetranitrates. xylamine  s o l u t i o n o f hydro-  or no e f f e c t on these compounds, but t h a t  a v i g o r o u s exothermic lamine  p-D-glucopyranoside  He found t h a t an a l c o h o l i c  had l i t t l e  r e a c t i o n ensued on a d d i t i o n o f hydroxy-  i n anhydrous p y r i d i n e t o m e t h y l - p - D - g l u c o s i d e  nitrate.  hydro-  tetra-  N i t r o g e n gas was e v o l v e d i n the r a t i o o f 1 . 3 moles  per mole o f t e t r a n i t r a t e , and the product c o n t a i n e d methyl-p-Dglucoside-2,3,6-trinitrate dinitrate  (33%)»  methyl-B-D-glucoside-3,6-  (53$)»  and an u n i d e n t i f i e d m e t h y l - B - D - g l u c o s i d e  tri-  nitrate. Rooney ( 5 3 ) showed t h a t  methyl-p-D-glucopyranoside  t e t r a n i t r a t e r e a c t e d s l o w l y w i t h hydroxylamine p y r i d i n e a t room temperature  hydrochloride i n  and evolved a gas composed of 70%  n i t r o u s oxide and 30% n i t r o g e n .  The syrupy products o b t a i n e d  c o n s i s t e d o f a mixture of p a r t i a l l y n i t r a t e d and completely d e n i t r a t e d polyoxime  products.  methyl-glucosides  6 Methyl-p-D-glucopyranoside-2,3,6-trinitrate  and a substance  t o be m e t h y l - j B - D - g l u c o p y r a n o s i d e - 2 , 6 - d i n i t r a t e were  believed isolated.  When simple a l k y l n i t r a t e e s t e r s were  heated w i t h  ammonia, or primary or secondary a l i p h a t i c amines, occurred. P i p e r i d i n e by h e a t i n g  (27)  N-alkylation  and d i e t h y l a m i n e have been a l k y l a t e d  w i t h primary, secondary, and t e r t i a r y a l k y l n i t r a t e s . The  a c t i o n of q u i n o l i n e  on methyl-£-D-glucoside  t e t r a n i t r a t e was a l s o i n v e s t i g a t e d by Swan ( 5 8 ) .  Some de-  n i t r a t i o n o c c u r r e d accompanied by e v o l u t i o n o f a gas.  B.  Mechanism o f D e n i t r a t i o n ( 5 , 6 , 4 1 ) have e s t a b l i s h e d the s i m u l -  Recent s t u d i e s  taneous occurrence o f three  d i s t i n c t reactions  cleavage o f n i t r a t e e s t e r s .  These r e a c t i o n s ,  i n the a l k a l i n e illustrated  with  hydroxide i o n , a r e as f o l l o w s : (§) N a c l e o p h i l i c HO"  substitution  + R0W0  tr+>  2  ROH  +  NO^"  (b) E l i m i n a t i o n o f p-hydrogen H0~ + R-CH CH 0N0 2  2  2  — *  RCH - C H 2 •* H 0 + N O 3 " 2  (c) E l i m i n a t i o n of <?c - hydrogen HO"  Neutral philic  hydrolysis agent.  + RCH 0N0 2  2  — »  RCH «  0 + H 0 + N0 ~ 2  2  occurs too, where water a c t s as a n u c l e o -  7 HO  + -C- X  where X =  — ^  HO-C-  + X  0W0 or a halogen. 2  However, i n a l k a l i n e h y d r o l y s i s t h e r e  i s some r e t e n t i o n o f con-  f i g u r a t i o n i n going from n i t r a t e t o a l c o h o l .  The most r e a s o n a b l e  mechanism appears t o be t h a t i n v o l v i n g cleavage o f the 0-N bond, analogous t o t h e usual acyl-oxygen cleavage i n c a r b o x y l a t e esters (22). A base independent carbonium i o n process (SN1) i s a l s o available.  T h i s was shown t o take place  in  alcohol-producing  h y d r o l y s e s o f t e r t i a r y b u t y l n i t r a t e and p a r t i a l l y i n the n e u t r a l h y d r o l y s i s of i s o p r o p y l n i t r a t e ( 5 ) » Olefin-formation hydrolysis  occurs must e x t e n s i v e l y  i n the  ( e i t h e r n e u t r a l or a l k a l i n e ) o f t e r t i a r y b u t y l n i t r a t e  (5)41) but s m a l l amounts of o l e f i n are found i n the a l k a l i n e h y d r o l y s e s o f e t h y l (2$) and i s o p r o p y l (10$) n i t r a t e s ( 5 ) . been d e f i n i t e l y e s t a b l i s h e d t h a t N0 ~ 2  I t has  i s formed d i r e c t l y from the  n i t r a t e e s t e r , and i s not the r e s u l t of a secondary r e a c t i o n i n which a l c o h o l i s o x i d i z e d t o aldehyde  (5).  I t appears that p y r i d i n e , and mixtures o f p y r i d i n e and hydroxylamine, and other;amines, cause n i t r o x y - b o n d cleavage o f nitrate esters.  S e g a l l i n 1946 ( 5 5 ) p o s t u l a t e d  the f o l l o w i n g  r e a c t i o n on the b a s i s of the l a b i l e hydrogen atom i n hydroxylamine:  8 Hayward and  coworkers ( 3 1 , 3 2 , 4 4 ) and Rooney ( 5 3 )  showed t h a t  no i n v e r s i o n s o c c u r r e d i n the d e n i t r a t i o n r e a c t i o n s w i t h p y r i d i n e , and p y r i d i n e and hydroxylamine In  mixtures.  the thermal decomposition  i n v e s t i g a t o r s agree t h a t the i n i t i a l the n i t r o x y bond t o g i v e N0 40,68).  2  of n i t r a t e e s t e r s , most  step i s the s c i s s i o n of (3,50,  and an a l k o x y l r a d i c a l (R0«)  Thermal decomposition  of c e l l u l o s e n i t r a t e  produced  carbon monoxide, carbon d i o x i d e , n i t r i c o x i d e , n i t r o u s o x i d e , n i t r o g e n d i o x i d e , n i t r o g e n , methane, hydrogen, water and hyde ( 6 8 ) .  Working at 3 0 mm  p r e s s u r e Wolfrom ( 6 8 )  water, f o r m i c a c i d , formaldehyde,  g l y o x a l and  as the main thermal decomposition  products.  the i n i t i a l nitrate.  product at any p r e s s u r e was  The  reported  c a r b o n y l compounds He  suggested t h a t  a fragmented o x y c e l l u l o s e  l i g h t e r the ambient p r e s s u r e , the g r e a t e r was  p r o p o r t i o n of t h i s i n i t i a l tion.  formalde-  product undergoing  As the p r e s s u r e i n c r e a s e d above 6 0 mm.,  additional a l l the  the  degradafragmented  o x y c e l l u l o s e n i t r a t e d i s a p p e a r e d and the r a t e of change i n the y i e l d s of the o r g a n i c products w i t h p r e s s u r e decreased, a range of p r e s s u r e ( 2 0 0 - 5 0 0 mm.) pressure independent. decreased  producing  i n which the y i e l d s were almost  The v a l u e f o r the t o t a l c a r b o n y l , however,  s t e a d i l y w i t h p r e s s u r e which c o u l d , he e x p l a i n e d , bp  due t o the f u r t h e r o x i d a t i o n of formaldehyde,  g l y o x a l and  a c i d , and t h a t the t h r e e l a t t e r compounds were produced f u r t h e r d e g r a d a t i o n of the more complex e n t i t i e s The p o s s i b l e mechanisms are shown below:  by  (trioses,  formic the etc.).  CHzONC-i Q  C H t O W O ^  0  c  O N O ^  O H  H-C = 0  H C-C-OR  t H H . /C = 0 c ' c =o P> - o 1  v  B E  ow  c  10 W i t h v i c i n a l d i n i t r a t e s , Kuhn and A n g e l i e ( 3 8 ) t h a t c i s - and t r a n s - 1 , 2 form were degraded  showed  c y c l o h e x a n e d i o l d i n i t r a t e s i n vapour  at 2 6 0 °  -  280°C t o h i g h e r than 70% y i e l d s of  adipaldehyde and n i t r i c o x i d e .  They proposed  the f o l l o w i n g  mechanism: RCH(0N0)-CH(ONO)R — *  RCH(0*)-CH(0N0)R •  2 RCHO + In the l i q u i d  NO  NO.  s t a t e and i n a n i t r o g e n atmosphere, 70% of the  decomposed t r a n s - l , 2 - d i n i t r i t e s c o u l d be i d e n t i f i e d as d i a l d e h y d e , d i o l and  C.  aldehyde,  oc-hydroxy-ketone.  C o n f o r m a t i o n a l S t u d i e s of 1 , 2 - C y c l o h e x a n e D e r i v a t i v e s I t i s w e l l known t h a t a r e l a t i o n s h i p e x i s t s between the  conformation of cyclohexane d e r i v a t i v e s and t h e i r p h y s i c a l p r o p e r t i e s . ( /^>^«- s-Skita R u l e ) . r  workers ( 1 , 8 )  P i t z e r and Beckett (49) and  have shown t h a t f o r  later  c i s - t r a n s - p a i r s of disub-  s t i t u t e d cyclohexanes, the isomer which has the h i g h e r index of r e f r a c t i o n and the h i g h e r d e n s i t y i s the isomer w i t h the lowest conformational  stability.  I t was  shown by O t t a r i n 1947  e q u a t o r i a l oxygen atoms e x i s t hexane-l,2-diols.  t h a t both a x i a l  i n both the c i s - and  and  trans-cyclo-  The d i a x i a l conformation i s understood t o p r e -  dominate i n the case of the t r a n s - d i o l ( P i t z e r , Review 1 9 5 6 ) . In 1 9 5 0 ,  Smith and Byrne ( 5 6 )  showed t h a t the r e l a t i v e  11 r a t e s of e s t e r i f i c a t i o n of cyclohexane-1,2- t r i c a r b o x y l i c a c i d s depend on the g e o m e t r i c a l carboxyl  and  p o s i t i o n a l arrangement of  the  groups, p a r t i c u l a r l y on the number of e q u a t o r i a l groups  available for reaction. acid-catalyzed  From the r a t e constants obtained f o r  e s t e r i f i c a t i o n , the c i s - isomer was  e s t e r i f l e d twice as f a s t as the t r a n s - isomer. t h a t the t r a n s - isomer had the c i s - a c i d was  found to  I t was  be  concluded  an a x i a l - a x i a l conformation, whereas  axial-equatorial.  K i l p a t r i c k and Morse ( 3 6 )  i n 1953  showed t h a t  the  d i s s o c i a t i o n constant of an a c i d depended upon the s t r u c t u r e the molecule and was  a f u n c t i o n of the o r i e n t a t i o n and s p a t i a l  i n t e r a c t i o n of d i p o l a r groups and centers  from the  i o n i z a b l e proton.  d i c a r b o x y l i c a c i d and  and  of the  dipolar  t r a n s - 1 , 2 - cyclohexane-  ethylene g l y c o l ) . the one  -2-  corresponding c l s -  of lower d i ^ e l e c t r i c  the more s t a b l e c o n f i g u r a t i o n was groups was  The  i n water than the  isomers, but weaker i n s o l v e n t s  between the  the d i s t a n c e  the t r a n s - -1- hydroxy-cyclohexane  c a r b o x y l i c a c i d were stronger  (methanol, e t h a n o l ,  I t was  constants  concluded  i n which the  that  distance  l a r g e s t , thus f a v o r i n g the a x i a l - a x i a l  conformation over the e q u a t o r i a l - e q u a t o r i a l f o r the t r a n s Hence, the t r a n s - isomer was i n non-aqueous  of  d i e q u a t o r i a l i n water, but  isomer.  diaxial  solvents.  P a s c u a l (48) of the h y d r o x y l and  i n 1949  carboxyl  showed t h a t the d i f f e r i n g  groups i n 1- hydroxyeyelohexane  c a r b o x y l i c a c i d must be r e l a t e d to the conformation. isomers were found t o be  reactivity  l e s s r e a c t i v e t h a n the  The  -2-  trans-  c i s - isomers.  These d i f f e r e n c e s were a s c r i b e d to the r e l a t i v e l y greater  ease of  12 e s t e r i f l c a t i o n and h y d r o l y s i s of an e q u a t o r i a l as compared w i t h an a x i a l  substituent. The  t r a n s - i s o m e r s o f 1,2- d i h a l o c y c l o h e x a n e were shown  t o e x i s t as e q u i l i b r i u m mixtures o f the d i a x i a l and t h e d i e q u a t o r i a l conformations (10).  T u l i n s k i e and c o l l a b o r a t o r s ( 6 2 ) found  t h a t t h e d i p o l e moment o f t r a n s - 1 , 2 - d i c h l o r a c y c l o h e x a n e i n benzene s o l u t i o n almost e q u a l l e d  i n vapour s t a t e a t 2 3 9 ° C ,  that  showing an absence o f any a p p r e c i a b l e  at 40°C  s h i f t t o another form o f  d i f f e r e n t moment w i t h change of temperature and molecular ment.  The t r a n s - 1,2- d i c h l o r ^ c y c l o h e x a n e  environ-  was estimated t o have  5 6 $ e q u a t o r i a l - e q u a t o r i a l form i n t h e gaseous s t a t e ( 2 3 9 ° C ) and 72$  D.  i n benzene a t 4 0 C . G  E l i m i n a t i o n R e a c t i o n s o f 1,2- Cvclohexane' D e r i v a t i v e s The  e l i m i n a t i o n o f t o s y l (p- t o l v e n e s u l f o n y l )  from the cyclohexane r i n g has been s t u d i e d The  groups  i n some d e t a i l .  most common r e a c t i o n s o f e s t e r s o f . s u l f o n i c a c i d s  are n u c l e o p h i l i c d i s p l a c e m e n t s , by the SN1 and SN2 mechanisms, at  the a l k y l carbon atom.  observed unless  Nucleophilic attack  on s u l f u r i s not  the r e a c t i v i t y a t t h e a l k y l carbon atom i s  markedly decreased.  Bunton and F r e i  (16) i n 1951 showed t h a t t h e 18  a l k a l i n e h y d r o l y s i s of p h e n y l - p - t o l w e n e s u l f o n a t e i n H 0 18 2  s o l u t i o n introduced  the 0  but not the phenolate. C H -S0 -OC H + H 0 7  y  2  6  5  2  atom i n t o t h e p- tolwene  1 8  — * C H S0 0 ?  7  2  l 8  H  +  C^O"  sulfonate  13 Detosylation  i n carbohydrates w i t h sodium i o d i d e i n  cdcetone s o l u t i o n was found by Oldham and R u t h e r f o r d t o be r e s t r i c t e d t o the primary t o s y l a t e groups.  i n 1932 (47)  Some e x c e p t i o n s  (11,61,46) t o t h i s g e n e r a l i z a t i o n have been r e p o r t e d ,  and i t now  appears t h a t a secondary t o s y l a t e group may be r e a c t i v e towards sodium i o d i d e i f i t i s contiguous t o one i n a primary p o s i t i o n . There are a l s o a few cases (34) o f an i s o l a t e d secondary t o s y l a t e r e a c t i n g w i t h sodium i e d i d e . Cretcher  Quite r e c e n t l y T i p s o n ,  (60) have shown t h a t the t o s y l a t e group of some secondary  a l i p h a t i c a l c o h o l s , and of c y c l o h e x a n o l ,  borneol,  and menthol,  r e a c t e d w i t h sodium i o d i d e t o form sodium t o s y l a t e . the  Clapp and  Evidently  secondary t o s y l a t e groups i n these compounds a r e c o n s i d e r a b l y  more r e a c t i v e than are s i m i l a r groups i n a carbohydrate molecule. The  other products o f the r e a c t i o n were not i d e n t i f i e d . C l a r k and Owen (17) i n 1949 found t h a t t h e t r a n s -2-  hydroxycyelohexyl-p-tolvene sulfonate reacted iodide i n cicetone high y i e l d  r e a d i l y w i t h sodium  s o l u t i o n a t 85°C t o g i v e a f t e r f i v e hours a  o f sodium t o s y l a t e and  trans-2-iedocyclohexanol.  W i n s t e i n and Buckles ( 6 4 , 6 5 )  i n 1942 showed t h a t  trans-1-  bromo-2-acetoxycyclohexane and t r a n s -1,2- dibromocyclohexane with s i l v e r acetate  i n d r y g l a c i a l a c e t i c a c i d produced  trans-  d i a c e t a t e s , whereas w i t h t h e presence of s m a l l amounts o f water i n v e r s i o n took p l a c e . hexylacetate  They a l s o observed t h a t  was u n a f f e c t e d  by s i l v e r a c e t a t e  cis-2-chlorocyclounder c o n d i t i o n s i n  which the trans-isomer r e a d i l y gave t r a n s - d i a c e t a t e .  These workers  a t t r i b u t e d the low r e a c t i v i t y o f the c i s - d e r i v a t i v e s t o i t s i n a b i l i t y t o form an i n t e r m e d i a t e  ring- compound.  14 In 1948,  W i n s t e i n and  coworkers ( 6 7 )  s t u d i e d the r a t e s  of a c e t o l y s i s of t o s y l - o x y c y c l o h e x a n e , I , t r a n s - 2 - a c e t o x y t o s y l o x y I I , and c i s - 2 - a c e t o x y t o s y l o x y c y c l o h e x a n e , I I I , i n  cyclohexane,  g l a c i a l acetic acid.  They showed t h a t the r e l a t i v e  were: I, l*OCy>II, O 3 0 ^ > I I I , 4.5  x 1CT . 4  acetoxy-p-bromo-benzenesulfonoxycyclohexane  reactivities  A l s o , the t r a n s - 2 was  found to be  times more r e a c t i v e than the corresponding c i s - i s o m e r . a c e t o l y s e s y i e l d e d the t r a n s - d i a c e t a t e . the observed  r e a c t i v i t i e s , W i n s t e i n and  63O  Both  In order to c o r r e l a t e  coworkers suggested  that  the r e a c t i o n of the t r a n s - 2 - a c e t o x y c y c l o h e x y l t o s y l a t e , I , p r o ceeded by way  of a one-stage  r i n g c l o s u r e mechanism to y i e l d  the  acetoxonlum i o n , I I , and t h a t t h i s process i n v o l v e d a much more f a v o u r a b l e f r e e - e n e r g y of a c t i v a t i o n than does the f o r m a t i o n of the i o n , I I I ,  by d i s s o c i a t i o n of the c i s - e s t e r , IV, f o r which  p a r t i c i p a t i o n of the neighbouring acetoxy group would i n v o l v e prohibitive  strain.  Furthermore, i n the replacement  the p a r t i c i p a t i o n o f neighbouring  r e a c t i o n s were c a l c u l a t e d  groups  t o be i n the order  of d e c r e a s i n g a c t i v i t y as f o l l o w s : l)>0Ac./> Br y OCH3. bouring c h l o r i n e atom or hydroxy group showed l i t t l e  Neigh-  tendency  f o r p a r t i c i p a t i o n and i n these cases the r a t e - determining i z a t i o n was predominantly  ion-  the f o r m a t i o n of the open carbonium i o n .  where AS = I , OAc, Br, O C H 3 , C I , OH. 1,2- dibromobenzenesulfonoxycyclohexane, a c e t o l y s i s was found t o be e q u a l .  I n c i s - and t r a n s the r a t e constants f o r  Therefore, Winstein  the arenesulfonoxy groups were i n a f f e c t i v e i n t h i s  concluded,  participation.  C l a r k e and Owen (17) i n 1949 supported the views o f W i n s t e i n and coworkers ( 6 7 )  i n intermediate r i n g formation i n  16 trans-2-  t h e i r o b s e r v a t i o n s of the much g r e a t e r r e a c t i v i t y of the hydroxycyclohexyl-p-tolvene  s u l f o n a t e and  trans-2-hydroxycyclohexyl-  methane s u l f o n a t e toward a l k a l i , sodium i o d i d e and as compared to the c i s - d e r i v a t i v e s . The alkali,  lithium chloride  t r a n s - compounds w i t h  sodium i e d i d e or l i t h i u m c h l o r i d e gave cyclohexene  trans-2-l6docyclohexanol tively.  The  or t r a n s - 2 - c h l o r o c y c l o h e x a n o l  oxide,  respec-  c i s - compounds, w i t h a l k a l i , gave cyclohexanone,  w i t h the aqueous reagent,  c i s - c y c l o h e x a n e - 1 , 2 - d i o l , and  and  reacted  only slowly w i t h sodium i o d i d e or l i t h i u m c h l o r i d e . . Replacement of the s u l f o n y l o x y group i n the t r a n s - s e r i e s r e s u l t e d i n o v e r a l l r e t e n t i o n of c o n f i g u r a t i o n , probably  as a r e s u l t of two  successive  i n v e r s i o n s , w h i l s t i n the c i s - s e r i e s , where f o r m a t i o n of an i n t e r m e d i a t e c y c l i c compound was  less l i k e l y , a single inversion  occurred. C r i s t o l and Fran*us ( 1 9 )  i n 1957  s t u d i e d the r a t e con-  s t a n t s f o r a c e t o l y s i s of c i s - and t r a n s - 2 - n i t r o x y - p - t o l v e n e sulfonoxycyclohexane, sulfonoxycyclohexane  and  c i s - and  trans-2-nitroxybromobenzene-  i n a c e t i c a c i d at 88°C.  They found  t h a t the  trans-isomers were l e s s than twice as r e a c t i v e as the c o r r e s ponding c i s - i s o m e r s , and very much l e s s than the acetoxy  compounds s t u d i e d e a r l i e r by W i n s t e i n  corresponding  (67).  The  affect  of the n i t r o x y groups seemed to be l i m i t e d t o t h e i r i n d u c t i v e effect  ( s i m i l a r to the c i s - a c e t o x y and the avenesulfonoxy  of W i n s t e i n  (67))  which thus slowed down the r a t e  An i n t e r m e d i a t e , such as the one f<narai;ed •  shown below may  groups  significantly. have been  17  II  o The  e l i m i n a t i o n p r o c e s s may  be s t e r e o s p e c i f i c , but,  i n c e r t a i n cases at l e a s t , i s not the r a t e determining step of C r i s t o l and coworkers ( 2 0 )  the o v e r a l l r e a c t i o n .  i n 1956  found  t h a t the e l i m i n a t i o n w i t h sodium i o d i d e i n n - p r o p y l a l c o h o l a t 70°C of t r a n s - 1 , 2 - d i b r o m o c y c l o h e x a n e , t o l v e n e s u l f o n a t e , and sulfonate  followed  T h i s appeared  trans-2-bromocyclohexyl-p-  trans-2-bromocyclohexyl-p-bromobensene-  the r e a c t i v i t y r a t i o s o f 1 : 2 3 : 9 0 r e s p e c t i v e l y .  to be c o n s i s t e n t w i t h the c o n c e r t e d e l i m i n a t i o n  process of e q u a t i o n I , where the carbon-X bond i s broken.  -C-CBr  >  1  C-  -C = ! Br  >  IBr + X"  + -c =  I where X  OTs, Br,  :  OBs.  A reasonable path f o r the o v e r a l l slow c i s - e l i m i n a t i o n postulated  as  follows: X  _C-,:CI i Br OTs  +  I  ^  -C- C' • Br  +  OTs"  was  c-  18 C i s - and trans-2-bromocyclohexyl n i t r a t e s were found to have the same r a t e s of e l i m i n a t i o n and were a l s o much slower as compared t o the c i s - atrenesulfonate  derivatives.  Assuming t h a t the r a t e -  determining step i n e i t h e r case i n v o l v e d  displacement of e i t h e r  bromide or n i t r a t e (more l i k e l y bromide) by i o d i d e , then, accordi n g t o C r i s t o l and coworkers,  the f o l l o w i n g mechanism  was  possible.  l  -L  l  -C-CBr 6 N 0  s  l  o  ^ '  w  2  I  0N0  1  2  -C -CI  + Br"  (trans-iodo) I" rapid  I 1  and  1  -C-CBr'  -C  =  C -  +  Br  I"J f a s t  ONOo c  +  2  -  i s  l  o  > w  -c I  -C0N0  2  (cis-iodo)  The c i s - i o d o compound r e s u l t i n g from displacement on the  trans-  isomer might be expected to e p i m e r i s e w i t h i o d i d e i o n i n a r e l a t i v e l y f a s t process and thus render unimportant of whether a c i s - or a t r a n s -  iodo compound was  the q u e s t i o n  formed.  The  lower r a t e c o n s t a n t s of the n i t r a t e e s t e r s were thought to be due to the r e l a t i v e i n e f f e c t i v e n e s s of n i t r a t e as a  displaceable  group compared w i t h bromide or a r e n e s u l f o n a t e s ( i n  trans-  19 e l i m i n a t i o n ) , or t h a t of bromide or n i t r a t e compared w i t h arenesulfonate The  ( i n the f i r s t  step of the process w i t h the c i s - i s o m e r s ) .  concept of displacement preceding  these c y c l i c of Hine and  certain eliminations i n  systems f i n d s c o n s i d e r a b l e Brader ( 3 3 )  support i n recent work  .  Ring c o n t r a c t i o n where a cyclohexane r i n g c o n t r a c t s i n 1950.  A  s h i f t occurs i n which the r i n g bond p l a y s the p a r t of  the  a cyclopentane r i n g was  migrating  group.  s t u d i e d by Barton ( 7 )  The  1,2-  Only an e q u a t o r i a l s u b s t i t u e n t can form p a r t  the t r a n s - system necessary f o r such a 1 , 2 - s h i f t to  to  of  occur.  rearrangements o f 2-amino-cyclohexands nave been  s t u d i e d by P o l l a c k and C u r t i n ( 5 D  and McCasland ( 4 3 ) .  p o s s i b l e conformations of the c i s - and  The  t r a n s - compounds are shown  i n ( I ) and ( I I ) .  CIS-  Q.  TRMMS -  O H  McCasland  (43) i n 1951 found t h a t t h e trans-2-amino-  c y c l o h e x a n o l on treatment w i t h n i t r o u s a c i d gave a h i g h y i e l d of c y c l o p e n t y l m e t h a n o l , which i n d i c a t e d t h a t (IIA)  ( I I ) r e a c t e d as  ( e q u a t o r i a l - e q u a t o r i a l ) , and not as ( I I B ) ( a x i a l - a x i a l )  The cis-2-aminocyclohexanol ( I ) , however, y i e l d e d a mixture of the c y c l o - e n t y l m e t h a n o l and cyclohexanone  i n d i c a t i n g that i t  r e a c t e d p a r t l y as (IA) and p a r t l y as ( I B ) . f o r m a t i o n would g i v e an epoxide.  An a x i a l - a x i a l con  T h i s work and the work of  Barton i n 1950, e x p l a i n e d the f o r m a t i o n o f an epoxide and a Ketone i n C l a r k e and Owen's (17) work o f 1949. Although, most of the t r a n s - l , 2 - d i - s u b s t i t u t e d cyclohexane compounds i l l u s t r a t e d  here were found to be much  more r e a c t i v e than the corresponding c i s - i s o m e r s , a few exceptions d i d occur.  The r a t e s of a c e t o l y s i s of c i s - and  t r a n s - 2 - n i t r oxybr omo.b enz ene s.u I f onoxyc y c 1 ohe.xan e were v e r y much l e s s than the corresponding acetoxy compounds, and i t seemed that the i n d u c t i v e e f f e c t of the n i t r o x y groups were responsible.  The r a t e s of e l i m i n a t i o n w i t h sodium i o d i d e o f c i s -  and t r a n s - 2 - b r o m o c y c l o h e x y l n i t r a t e s were found t o be the same, and were a l s o much slower as compared to the cLs.-arenesulfona.te. d e r i v a t i v e s .  The n i t r a t e seemed to be i n e f f e c t i v e here  as a displaceab.le  group.  21 DISCUSSION OF RESULTS A  «  c i s - and t r a n s - C y c l o h e x a n e d i o l D i n i t r a t e s  These compounds were prepared so t h a t t h e i r behavior w i t h p y r i d i n e could be i n v e s t i g a t e d and compared w i t h the r e s u l t s of p r e v i o u s i n v e s t i g a t i o n s of the p y r i d i n e - d e n i t r a t i o n r e a c t i o n s . (31,39,44) trans-l,2-Cyclohexanediol  d i n i t r a t e was f i r s t  syn-  t h e s i z e d i n 1951 by C h r i s t i a n and Purves (18) by the n i t r a t i o n of the t r a n s - l 2 - c y c l o h e x a n e d i o l . T h e i r compound had m . p . l 8 . 5 ° o 19 C. S o f f e r and coworkers ( 5 7 ) and Brook and Wright ( 1 3 ) T  reported  b . p . 9 2 ° - 93°C at 1 mm.  and n ^  7  -  1 * 4 7 3 2 , and b.p. 118°C  20 at 5«5 mm. and nip  1*4756 r e s p e c t i v e l y .  The t r a n s - d i n i t r a t e  prepared f o r t h i s work was a c o l o r l e s s o i l w i t h b.p.66° - 67°C at 0 . 0 3 mm.  and n  2 7 D  * ^ 1*4732.  c i s - 1 , 2 - C y c l o h e x a n e d i o l d i n i t r a t e was a l s o  originally  made by C h r i s t i a n and Porves ( 1 8 ) by the n i t r a t i o n o f t h e c l s 1 , 2 - c y c l o h e x a n e d i o l i n a n i t r i c - s u l f u r i c a c i d mixture a t o°C (m.p.  24.5° - 25°C).  S o f f e r and coworkers ( 5 7 ) , using a n i t r i c -  a c e t i c a c i d - a c e t i c anhydride mixture, o b t a i n e d an o i l a f t e r vacuum d i s t i l l a t i o n of the crude product, b.p. 1 0 6 ° - 108°C a t 1 mm. and i ^ ? 1 * 4 7 5 8 . 2  The c i s - d i n i t r a t e was prepared f o r t h i s  work according  t o S o f f e r ' s method and had b.p. 1 0 6 ° - 108°C a t  1 mm. and  . 1»4757.  B.  c i s - and t r a n s - 2 - N i t r o x y c y c l o h e x a n o l s S i n c e c i s - and t r a n s - 2 - n i t r o x y c y c l o h e x a n o l s  were l i k e l y  22 products  i n the p y r i d i n e r e a c t i o n on the corresponding  dinitrates,  samples of these compounds were s y n t h e s i z e d by e s t a b l i s h e d methods. t r a n s - 2 - N i t r o x y c y c l o h e x a n o l was and Wright ( 1 3 )  i n 1951  epoxycyclohexane.  100°  -  obtained as a c o l o r l e s s o i l  105°C at 3 . 5  mm.  t r a n s - 2 - n i t r o x y c y c l o h e x a n o l prepared  0.75  mm.),  and n  2  0  D  1»4789.  f o r t h i s work was  by t r e a t i n g t r a n s - 2-bromocyclohexanol ( 6 4 ) i n dry a c e t o n i t r i l e at 0°C.  1,2-  n i t r i c a c i d n i t r a t i o n of  T h e i r product was  ( 5 5 $ y i e l d ) w i t h b.p. The  by a 1 0 0 $  f i r s t prepared by Brook  with s i l v e r  After d i s t i l l a t i o n  made  nitrate  (b.p. ?8°C  at  the o i l r e a d i l y c r y s t a l l i z e d out i n the c o l d t o a  colorless solid  (m.p.  29°  -  31°C)  c i s - 2 - N i t r o x y c y c l o h e x a n o l was  prepared  b e f o r e the s y n t h e s i s of C r i s t o l and Franzus the j o u r n a l s i n 1 9 5 7 *  cis- 1,2-  appeared i n  C y c l o h e x a n e d i o l was  a c e t y l a t e d by the method of W i n s t e i n ( 6 5 ) o i l y product  (19)  f o r t h i s work  a f t e r vacuum d i s t i l l a t i o n ,  partially  to g i v e a c o l o r l e s s  (b.p. 103°C at 4 . 5  mm.  24 *J and n  *  J  D  1*4572).  the monoacetate and product at - 1 0 ° C  T h i s o i l i s b e l i e v e d to be a mixture the d i a c e t a t e ( 1 9 , 6 5 ) .  N i t r a t i o n of t h i s  i n a n i t r i c acid-phosphorus  y i e l d e d a c o l o r l e s s o i l (b.p. 93°C at 1 » 3 C r i s t o l and Franaus ( 1 9 ) ,  of  mm.  pentoxide and n  using a n i t r i c - s u l f u r i c  2 4 D  mixture 1*4537).  '^  acid  mixture  at - 7 0 ° C o b t a i n e d a c o l o r l e s s o i l a f t e r d i s t i l l a t i o n w i t h 6 8 ° - 7 3 ° C at 0 » 5 mm. diacetate.  b.p.  These products probably contained some  D e a c e t y l a t i o n of the c i s - l - a c e t o x y - 2 - n i t r o x y c y c l o -  hexane was  c a r r i e d out i n d i l u t e barium methylate-methanol  solution.  C r i s t o l and Franeus ( 1 9 )  using a l*4M-sodium  hydroxide  23 solution i n 75$  e t h a n o l , and o b t a i n e d a 5 4 $ y i e l d  o i l w i t h b.p. 63°C  at 0 . 3  methylate-methanol  method gave a 3 6 $ y i e l d o f the mononitrate.  C.  of c i s - and t r a n s - 1 , 2 -  Decomposition  mm.  and n  2 D  0  1«4797.  of a c o l o r l e s s  The  barium  Cyclohexanediol  Dinitrates. R e f l u x i n g the r e s p e c t i v e d i n i t r a t e s i n excess d r y p y r i d i n e at 116° w i t h time. was  -  120°C caused a decrease i n d i n i t r a t e content  (Figure 1 . ) .  The decomposition o f the d i n i t r a t e s  a " F i r s t Order R e a c t i o n " i n t h a t the p l o t of the l o g a r i t h m  of the c o n c e n t r a t i o n of unreacted d i n i t r a t e a g a i n s t r e a c t i o n time gave a s t r a i g h t isomers.  l i n e f o r both the c i s - and the t r a n s -  The t r a n s - d i n i t r a t e decomposed 1.8  times f a s t e r  the c i s - d i n i t r a t e as shown by the c a l c u l a t e d h a l f - l i f e (23.9  and 43.J hours  than  times  respectively).  R e f e r r i n g to the work of C h r i s t i a n and Purves the t r a n s - d i n i t r a t e was  (18),  shown to be about t w i c e as u n s t a b l e  t h e r m a l l y as the c i s - d i n i t r a t e at 106°C, but the c i s - isomer r e a c t e d more r a p i d l y w i t h 0 » 1 M  sodium hydroxide at 100°C i n 5 0 $  aqueous e t h a n o l s o l u t i o n than the t r a n s -  isomer.  S u s p e c t i n g thermal decomposition we  heated the d i n i t r a t e  w i t h a hydrocarbon s o l v e n t , 3-methyIneptane, which had almost the same r e f l u x i n g temperature  as  the p y r i d i n e - d i n i t r a t e m i x t u r e .  A f t e r a f o r t y - e i g h t - h o u r r e f l u x i n g p e r i o d , i t was about 3 0 $ of the d i n i t r a t e remained the p y r i d i n e run.  observed t h a t  unchanged as a g a i n s t 2 5 $ f o r  In the 3-methylheptane  case, i n s o l u b l e b l a c k  4  8  12-  16  20  Z4-  ZQ  3Z  4-0  36  TIME  IN  44 HOURS  48  24 product ( 1 1 $ by weight were formed  of d i n i t f a t e used) and a c o l o r l e s s  i n the r e a c t i o n mixture.  The b l a c k product  and d i d not d i s s o l v e i n s u l f u r i c a c i d and and was was  liquid  burned  N,N-dimethylformarnlde,  thought to be l a r g e l y f r e e carbon.  The c o l o r l e s s  liquid  non-flammable and i n s o l u b l e i n benzene but s o l u b l e i n water  and b e l i e v e d to be water. powder was  In the p y r i d i n e r u n , 9«3$ of a b l a c k  a l s o formed, but i t was  centrated s u l f u r i c acid.  found t o be s o l u b l e i n con-  I t i s most probable t h a t thermal decom-  p o s i t i o n does occur t o a l a r g e e x t e n t , and t h a t i n the case of the p y r i d i n e run, the b a s i c media aided i n the p o l y m e r i z a t i o n of the d i n i t r a t e and p y r i d i n e decomposition p r o d u c t s . The presence of s m a l l amounts of water ( 1 $ - 3$  by  volume of p y r i d i n e used) seemed to i n h i b i t the decomposition of the d i n i t r a t e s .  Table I shows the r e s u l t s at one hour  reaction  time f o r the c i s - d i n i t r a t e w i t h p y r i d i n e c o n t a i n i n g 1-3$ of water.  With i n c r e a s e i n water content t h e r e was  d i n i t r a t e decomposition.  by volume  a decrease i n  Less i n t e n s e l y c o l o r e d r e a c t i o n mixtures  were o b t a i n e d w i t h an i n c r e a s e i n water content from 1 $ to 1 0 $ . T h i s was  observed i n runs c a r r i e d out at 8l°C and at r e f l u x  temperatures. The quenching  of the p y r i d i n e r e a c t i o n mixture i n excess  c o l d water f o l l o w e d by removal of the unreacted d i n i t r a t e w i t h ether e x t r a c t i o n s gave the s o - c a l l e d "aqueous-pyridine  solution".  On e v a p o r a t i n g i t to dryness, an aqueous-pyridine r e s i d u e was behind.  The y i e l d of t h i s dark m a t e r i a l was  left  over twice g r e a t e r  f o r the t r a n s - than f o r the c i s - isomer, and i n c r e a s e d exponenti a l l y w i t h r e a c t i o n time ( T a b l e I I ) .  TABLE I . DECOMPOSITION OF THE DINITRATES  Run'  Reflux time (nr.)  Moles Water added  D i n i t r a t e Recovered % Recovered n  2 D  i  ^  (CIS-) 1  1  nil  96.9  14763  2  k  nil  93,6  1.V763  nil  70.0  1.4763  nil  kk-k  14763  3  48  k* 5  1  0.0083  96.6  1.4763  6  1  0.0170  97-3  1.4764  7  1  0.031+0  9 8 . .  1  (TRA NS -)... l " ' " " T  r  3  0  1.47.63  nil  93.9  1.4747  k  nil  85.4  1.4745;  24  nil  50.8  1-4743  48  nil  25.5  1.474^  $N**  % diol  13.15 13.4^ 13.35 13.56  -—  —  —  13.22 13.27 —  —  13.84 13.84 —  —  —  96 99  Moles of d i n i t r a t e / m o l e s of p y r i d i n e used = 0 . 0 4 """"" N i t r o g e n analyses done by the method of Brown and Purves ( l 5 ) and Ma and Zuazaga ( 4 2 ) . F r e s h l y prepared c i s - and t r a n s d i n i t r a t e s had n i ) 2 4 o I.I4.763 and n j ) 2 4 o 1.4743* r e s p e c t i v e l y , and 1 3 . 6 2 , 13.59% N ( T h e o r e t i c a l l y 1 3 . 5 9 # N . ) R e a c t i o n mixture quenched  i n excess water.  26  TABLE I I . AQUEOUS PYRIDINE RESIDUE  Weight Dinitrate (gm.)  Run  (CIS-)  (TRKNS-)  Aqueous Pyridine Residue (gm.)  8  lj.,0  3  . 2 . 1  i  ]+.-0  £ 0  min.  0 . 0 9  6  i | . 0  7 0  min.  0 . 1 1  7  k..o  2 8  k -  Reflux time (nr.)  •  k '  0 . 1 0  0 . 1 6  k  .0.37  k  0.31^ 0.14-3  1 0  3 . 0  ^8  -  0 . 6 1  27 Examination of t h i s m a t e r i a l showed the presence o f pyridinium n i t r a t e , adipic  and s u c c i n i c  acids,  and the  absence  of the d i o l s and the mononitrates. P y r i d i n i u m n i t r a t e was the presence of moisture (14). when the r e f l u x reaction  condenser  shown t o be produced During the p r e s e n t  investigation,  and d r y i n g tube were detached from the  f l a s h , p y r i d i n i u m n i t r a t e c r y s t a l l i z e d out  on the "wet"  only i n  upper h a l f of the r e a c t i o n  The f o r m a t i o n o f a d i p i c  acid  immediately  flask. could be e x p l a i n e d on  the b a s i s of p r e v i o u s works on thermal decomposition of n i t r a t e and n i t r i t e  esters ( 3 8 , 6 8 , 6 9 ) .  The decomposition of our  would have undergone the f o l l o w i n g  N  I O  steps:  nitrate  28  The adipaldehyde i s e a s i l y o x i d i z e d by a i r t o a d i p i c a c i d , and would be probably immediately o x i d i z e d i n the hot r e a c t i o n mixture c o n t a i n i n g d i f f e r e n t oxides o f n i t r o g e n ( 1 4 ) . The f o r m a t i o n o f s u c c i n i c a c i d should be accompanied w i t h the p r o d u c t i o n of o x a l i c a c i d i f an e l i m i n a t i o n r e a c t i o n or thermal decomposition o c c u r r e d .  The i n t e r f e r e n c e o f p y r i -  dinium n i t r a t e prevented the d e t e c t i o n o f the o x a l i c  acid.  According t o Hughes and I n g o l d ( 3 7 ) , e l i m i n a t i o n r e a c t i o n s take p l a c e i n d i s u b s t i t u t e d compounds w i t h a x i a l - a x i a l ( t r a n s - ) and a x i a l - e q u a t o r i a l ( c i s - ) conformations —- more r e a d i l y i n the former case.  Thermal decomposition o f e s t e r s g i v e o l e f i n s o n l y  i n the cases where the conformation o f the 1 , 2 - s u b s t i t u e n t s are a x i a l - e q u a t o r i a l ( c i s - ) and a x i a l - a x i a l ( t r a n s - ) , and where a planar t r a n s i t i o n s t a t e i s p o s s i b l e .  In e i t h e r case, the  reactions probably are:  OXCllic  and  succinic  acids  29 1,3-cyclohexadiene  r e a d i l y polymerizes when exposed  Under the o x i d a t i v e c o n d i t i o n s  to l i g h t .  i n the r e a c t i o n mixture, the  diene was p r o b a b l y o x i d i z e d t o o x a l i c and s u c c i n i c a c i d s . In 3-methylheptane  with trans-l,2-cyclohexanedioI  d i n i t r a t e at about the same r e f l u x temperature  as t h a t o f the  p y r i d i n e - d i n i t r a t e mixture, i t was shown t h a t o x a l i c , s u c c i n i c and a d i p i c a c i d s were formed  as decomposition p r o d u c t s .  Again,  thermal decomposition, e l i m i n a t i o n and o x i d a t i o n r e a c t i o n s would account f o r these p r o d u c t s . The r e a c t i o n products a l s o i n c l u d e d  some l e a d - t e t r a -  a c e t a t e - o x i d i z a b l e m a t e r i a l which d i d not correspond to the c i s and t r a n s - d i o l s .  I f any d i o l was formed by thermal decom-  p o s i t i o n o f the d i n i t r a t e , i t may have undergone o x i d a t i o n t o the adipaldehyde and then t o t h e a d i p i c a c i d s t a g e . The presence o f c a r b o n y l compounds i n the p y r i d i n e r e a c t i o n products was demonstrated  by the f o r m a t i o n of s e v e r a l  c o l o r e d spots w i t h p - a n i s i d i u e reagent. known to be produced the r i n g ( 7 1 ) .  Glutaconaldehyde i s  from p y r i d i n e by the o x i d a t i v e opening o f  I n a c i d s o l u t i o n i t has the yellow-brown d i -  aldehyde s t r u c t u r e and i n the b a s i c media i t i s i n the form of the dark r e d e n o l a t e i o n . OHC- CH - CH = 2  CH - CHO  K  OCH =  CH - CH = CH-CHO -  (acid)  + H*  In the present case, glutaconaldehyde, i f formed polymerized or condensed dinitrate.  (base)  probably  w i t h t h e decomposition products from the  30 When the p y r i d i n e - r e a c t i o n mixture was vacuum d i s tilled  at room temperature a f t e r one hour of r e f l u x i n g , a  c o l o r l e s s d i s t i l l a t e was c o l l e c t e d .  T h i s s o l u t i o n , when a c i d i f i e d  w i t h h y d r o c h l o r i c a c i d , r e a c t e d w i t h a n i l i n e t o produce a r e d solution.  Paper chromatography  showed t h e presence o f a new r e d  d e r i v a t i v e which d i d not correspond t o glutaconaldehyde dianllide  (71).  P h e n y l h y d r a s i n e gave no c r y s t a l l i n e  derivative  w i t h the d i s t i l l a t e but h e a t i n g produced a r e d c o l o r  indicating  a g a i n t h a t some c a r b o n y l compounds may have been p r e s e n t . The presence o f u n s a t u r a t e d compounds and ( o r ) e a s i l y o x i d i z a b l e low molecular weight aldehydes and a l c o h o l s was demons t r a t e d by permanganate-carbonate  r e d u c t i o n o f the d i s t i l l a t e .  A c i d i f i c a t i o n of the reduced s o l u t i o n produced some n o n - a c i d i c m a t e r i a l m e l t i n g at 130° - 140°C. The d i s t i l l a t e  of the 3-methylheptane-dinitrate  r e a c t i o n mixture a l s o showed u n s a t u r a t i o n w i t h b o t h bromine and permanganate s o l u t i o n s .  Presence o f some e a s i l y  oxidizable  m a t e r i a l was a l s o n o t i c e d when a s m a l l amount o f an a c i d i c stance p r e c i p i t a t e d out o f the d i s t i l l a t e  sub-  a f t e r standing f o r a  few days at room temperature. The r e a c t i o n w i t h q u i n o l i n e of t h e t r a n s - d i n i t r a t e a t 165°C produced water and some dark p y r i d i n e - s o l u b l e  polymer.  CONCLUSIONS The decomposition of c i s - and t r a n s -  1,2-cyclohex-  a n e d i o l d i n i t r a t e s by p y r i d i n e , 3-methylheptane and produced  quinoline  o x a l i c , s u c c i n i c and a d i p i c a c i d s , p y r i d i n i u m n i t r a t e ,  water, aldehydes, a l c o h o l s , unsaturated compounds, polymeric m a t e r i a l s and a gaseous p r o d u c t .  The absence  of the 2 - n i t r o x y -  c y c l o h e x a n o l s and 1,2-cyclohexanediols among the products  was  noted i n a l l c a s e s . Although water was  produced  and q u i n o l i n e r e a c t i o n s , i t was pyridine reactions.  i n the 3-methylheptane  not shown t o be present i n the  I t s presence I n d i c a t e d v i g o r o u s o x i d a t i o n  c o n d i t i o n s i n the r e a c t i o n m i x t u r e s , and a l s o the p o s s i b i l i t y of the f o r m a t i o n of other fragmentary products such as f o r m a l dehyde, f o r m i c a c i d , g l y o x y l i c a c i d and carbon d i o x i d e which were not d e t e c t e d . O x a l i c a c i d was products because i t was  not d e t e c t e d i n the p y r i d i n e r e a c t i o n  of the i n t e r f e r e n c e of the p y r i d i n i u m n i t r a t e ;  b e l i e v e d t o be produced however, t o g e t h e r w i t h s u c c i n i c  a c i d through thermal decomposition and  (or) elimination reactions.  A d i p i c a c i d o r i g i n a t e d from the r i n g opening of the d i n i t r a t e s by thermal d e n i t r a t i o n f o l l o w e d by o x i d a t i o n . The v a r i o u s polymers  formed  appeared  to be  secondary  decomposition products from the d i n i t r a t e and the p y r i d i n e . When a b a s i c media was  not p r e s e n t , as i n the 3-methylheptane  r e a c t i o n s , c a r b o n i z a t i o n was  observed r a t h e r than p o l y m e r i z a t i o n .  The absence of 2 - n i t r o x y c y c l o h e x a n o l s and 1,2-cyclohexanediols c o u l d not be a t t r i b u t e d to a l a c k o f f r e e p r o t o n because  of the profound decomposition s u f f e r e d by both the  32 p y r i d i n e and the d i n i t r a t e . The conformation of the t r a n s - 1 . 2 - c v c l o h e x a n e d i o l d i n i t r a t e must be a t l e a s t p a r t i a l l y a x i a l - a x i a l i n order t o e x p l a i n the p r o d u c t i o n of o x a l i c h y d r o l y s i s work of C h r i s t i a n  and s u c c i n i c  and Purves  acids.  The  (18) supported t h i s  view. The r a t e s of decomposition depended upon the conf o r m a t i o n of the isomers; the t r a n s l . S times f a s t e r  d i n i t r a t e decomposed  than the c i s - isomer i n p y r i d i n e  solution.  33 EXPERIMENTAL A.  Materials N i t r i c A c i d ; Red fuming n i t r i c  a c i d , s u p p l i e d by  Baker and Adams, was d r i e d by d i s t i l l i n g i n vacuo from i t s weight o f concentrated s u l f u r i c Pyridine;  twice  acid.  Reagent-grade p y r i d i n e was d r i e d by  r e f l u x i n g w i t h t e c h n i c a l grade barium  oxide and d i s t i l l e d .  The f r a c t i o n b o i l i n g between 114° and 115°C was c o l l e c t e d and s t o r e d over c a l c i u m h y d r i d e .  I t was d i s t i l l e d  from c a l c i u m  h y d r i d e under anhydrous c o n d i t i o n s j u s t b e f o r e use. Quinoline:  Reagent grade q u i n o l i n e was d i s t i l l e d  i n vacuo and the middle f r a c t i o n c o l l e c t e d t o g i v e a p a l e y e l l o w l i q u i d , b.p. 1 1 5 ° - 116°C 3-Methylheptane;  at 18  mm.  T e c h n i c a l grade Bios L a b o r a t o r y  product was washed w i t h c o n c e n t r a t e d s u l f u r i c a c i d washings were c o l o r l e s s ) and then w i t h water.  ( u n t i l the  I t was d r i e d  over anhydrous magnesium s u l f a t e and then over c a l c i u m h y d r i d e before being d i s t i l l e d . 117°C was  The f r a c t i o n b o i l i n g between 116° and  used. Hexane-Methanol Chromatography S o l v e n t ;  Technical-  grade hexane was washed s e v e r a l times w i t h concentrated  sulfuric  a c i d , then w i t h water, and d r i e d over anhydrous magnesium sulfate.  The f r a c t i o n d i s t i l l i n g between 67° and 69°C was  s a t u r a t e d w i t h reagent-grade paper chromatography.  methanol and used i n p a r t i t i o n  34 c i s - and t r a n s - 1 , 2 C y c l o h e x a n e d i o l was  Cyclohexanediols:  cis- 1,2-  prepared from cyclohexene by the method  of C l a r k and Owen ( 1 7 ) .  I t was  r e c r y s t a l l i z e d from e t h y l  a c e t a t e and melted c o r r e c t l y at 9 7 ° trans- 1 , 2 -  -  98°C.  C y c l o h e x a n e d i o l was  a l s o prepared from  cyelohexene by a m o d i f i c a t i o n o f method o f Roebuch and Adkins (52).  R e c r y s t a l l i z a t i o n from e t h y l a c e t a t e y i e l d e d a c o l o r l e s s  product, m.p.  102°  -  103°C.  Barium Methylate; r e a c t i o n was  Barium methylate f o r d e a c e t y l a t i o n  prepared by r e f l u x i n g 2 5 gm.  50 ml. a b s o l u t e methanol f o r two hours. hydroxide was  filtered  barium oxide w i t h The i n s o l u b l e barium  o f f , and the f i l t r a t e d i l u t e d to 1 0 0  w i t h a b s o l u t e methanol.  T i t r a t i o n w i t h IN- s u l f u r i c  ml.  acid  e s t a b l i s h e d the n o r m a l i t y of the s o l u t i o n . Palladized Charcoal Catalyst;  The p a l l a d i u m on  c h a r c o a l c a t a l y s t f o r hydrogenobysis of n i t r a t e groups prepared by the method o f Hartung Alumina;  Merck's  column-chromatographic  (30).  acid-washed  gm.  esters.  prepared a f t e r the  (45).  Lead T e t r a c e t a t e Spray Reagent: tetraacetate 1 . 0  used f o r  Diphenylamine reagent f o r  t e s t i n g f o r the presence of n i t r a t e was method of M u l l i k e n  alumina was  s e p a r a t i o n of n i t r a t e  Diphenylamine Reagent;  was  i n benzene ( 1 0 0  c h a r c o a l and f i l t e r e d .  A s o l u t i o n of l e a d  ml.) was  shaken w i t h  The dry paper chromatograma were  moistened w i t h a l i t t l e x y l e n e , sprayed w i t h the reagent and d r i e d at room temperature.  Wherever g l y c o l s were p r e s e n t , the  35 l e a d r e v e r t e d t o the b i v a l e n t  s t a t e whereas the brown l e a d  d i o x i d e p r e c i p i t a t e d on the r e s t of the paper. on a brown background  White patches  were c o n s i d e r e d t o be a p o s i t i v e  test.  p_- A n i s i d i n e Spray Reagent; p - A n i s i d i n e reagent was  prepared by d i s s o l v i n g  5  gm.  pure p - a n i s i d i n e i n 166 ml. n- b u t a n o l , and then adding 3 . 8 of c o n c e n t r a t e d h y d r o c h l o r i c a c i d .  The  chromatogram was  then sprayed w i t h t h i s reagent and developed at 1 3 0 ° an oven f o r a few minutes.  T h i s reagent i s f r e q u e n t l y  f o r d e t e c t i n g aldohexoses, ketohexoses, acids.  D i f f e r e n t shades  -  o f c o l o r s are  was  dried,  150°C i n used  aldopentoses and u r o n i c produced.  Bromocresol Green Spray Reagent; Bromocresol (0.04 gm.)  ml.  d i s s o l v e d i n 9 5 $ e t h a n o l to g i v e a green  green solution.  T h o r o u g h l y - d r i e d chromatograms were sprayed w i t h t h i s reagent. Y e l l o w patches on a green background  were c o n s i d e r e d to be  p o s i t i v e t e s t s f o r the presence of a c i d s . P a p e r - P a r t i t i o n Chromatography; (1)  Organic A c i d s :  The chromatography s o l v e n t s  Butanol-Formic A c i d - Water ( 4 : 1 : 5 ) (4:1:5),  Acid-Water  and  and Phenol-Formic  (2:1:1),  Acid-Water  Butanol-Acetic (75:1:25)  were  used f o r the s e p a r a t i o n and i d e n t i f i c a t i o n of o r g a n i c a c i d s present i n the r e a c t i o n p r o d u c t s . (2) s o l v e n t was was  N i t r a t e E s t e r s : Hexane-Methanol Chromatography  used to separate the n i t r a t e e s t e r s .  developed  T h i s method  i n t h i s l a b o r a t o r y by M i c h a e l Jackson.  36 Syntheses of 1 , 2 - C y c l o h e x a n e d i o l  B.  Trans-l,2-Cyclohexanediol  (a)  Dinitrates Dinitrate  t r a n s - 1 , 2 - C y c l o h e x a n e d i o l D i n i t r a t e was by  and coworkers ( 5 7 ) .  the method o f S o f f e r  trans-1,2-  h e x a n e d i o l was n i t r a t e d by an anhydrous n i t r i c and  a c e t i c anhydride mixture.  prepared Cyclo-  acid, acetic  acid  The y e l l o w n i t r a t e product was  p u r i f i e d by vacuum d i s t i l l a t i i o n t o g i v e a c o l o r l e s s , mustyo i l , b.p. 6 6 ° -  smelling  nD2?-5  1.4732  cis- 1,2-  (°)  67°C a t 0 . 0 3  mm. 67$.  Yield =  Cyclohexanediol  Dinitrate  The same method of n i t r a t i o n was c a r r i e d out on the cis- 1,2-  cyclohexanediol.  The y e l l o w i s h  o i l y product was  p u r i f i e d by f r a c t i o n a l d i s t i l l a t i o n t o g i v e a c o l o r l e s s , mustyo i l , b.p. 7 4 °  smelling 1 mm.  n  2  7  ,  D  0  -  76°C at 0 . 0 3 mm.  or 1 0 6 ° -  1.4757.  Hydrogenation of about 1 gm.  samples of the t r a n s -  and  cis- 1,2-  and  room temperature using 40 ml. a l c o h o l  c y c l o h e x a n e d i o l d i n i t r a t e s a t 40 p . s . i .  t h e o r e t i c a l amount of t h e r e s p e c t i v e  hydrogen  as s o l v e n t and 1  of palladizeefc c h a r c o a l as c a t a l y s t , y i e l d e d  C.  108°C a t  9 5 $ to 9 8 $ o f the  dliols.  Syntheses of 2 - N i t r o x y c y c l o h e x a n o l s (a)  trans-  2-  Nitroxycyclohexanol  Twenty-five grams ( 0 . 1 5 m.) dissolved  gm.  of s i l v e r  n i t r a t e was  i n 3 1 ml. o f d r y reagent-grade a c e t o n i t r i l e .  The  37 o f the mixture was lowered t o 0°C, and t r a n s - 2 -  temperature  bromocyclohexanol  ( 2 5 gm., 0.14 m.) ( 6 6 )  with gentle s w i r l i n g .  was added  The mixture was then kept at 0°C f o r  48 hours and then at room temperature  f o r another 2 1 hours.  The w h i t i s h p r e c i p i t a t e was then f i l t e r e d  o f f , and the c l e a r  s o l u t i o n warmed up t o 85°C f o r 5 minutes. t h a t formed was f i l t e r e d with dry ether. 5 0 ml. water  The ether e x t r a c t  ( 1 9 . 2 gm.)  ( 1 0 0 ml.) was washed w i t h  The product remaining was a  On d i s t i l l a t i o n ,  was o b t a i n e d , b.p. 78°C at 0 . 7 5 mm. 5 2 $ of t h e o r e t i c a l y i e l d .  The p r e c i p i t a t e  o f f and the f i l t r a t e was e x t r a c t e d  and evaporated.  yellowish o i l .  dropwise  a colorless o i l  Y i e l d was 1 1 . 7  gm. or  T h i s o i l c r y s t a l l i z e d out i n t o a  white s o l i d w i t h m.p. 2 9 ° . o - 3 1 ° . O C .  Hydrogenation o f a  sample o f t h i s product u s i n g p a l l a d i z e d c h a r c o a l as a c a t a l y s t gave a c o l o r l e s s c r y s t a l l i n e product t h a t melted from 1 0 0 ° t o 102°C.  R e c r y s t a l l i z a t i o n from e t h y l a c e t a t e gave a new m e l t i n g  p o i n t o f 105°C and a mixed m e l t i n g p o i n t w i t h an a u t h e n t i c sample o f t r a n s - l , 2 - c y c l o h e x a n e d i o l was not depressed, (b)  c i s - 2 - Nitroxycyclohexanol cis-2-  following  scheme.  N i t r o x y c y c l o h e x a n o l was prepared by t h e  38 A c e t y l a t i o n of c i s - 1 . 2 - C y c l o h e x a n e d i o l  (i)  The monoacetate of c i s - l , 2 - c y c l o h e x a n e d i o l was p r e pared by the method o f W i n s t e i n ( 6 5 ) .  A c o l o r l e s s o i l was  obtained w i t h b.p. 103°C at 4 . 5 mm. and n oil  i s understood  2 4 D  * ^ 1.4572.  This  t o be made up mostly o f t h e monoacetate and  to have a c i s - o r i e n t a t i o n . N i t r a t i o n of c i s - 2 -  Hi)  Acetoxycyclohexanol  To 1 6 . 8 gm. ( o . 2 7 m.) of i c e - c o l d nitric was  a c i d was added 1 2 ml. o f d r y c h l o r o f o r m .  T h i s mixture  c o o l e d t o about - 1 0 ° C b e f o r e 0 . 6 gm. o f phosphorus  pentoxide was added w i t h s t i r r i n g . was  fuming anhydrous  then added s l o w l y (dropwise)  a c e t a t e ( 2 1 . 0 gm.).  To t h i s n i t r a t i o n  and w i t h S t i r r i n g t h e mono-  A d d i t i o n took 3 0 minutes,  and the r e a c t i o n  mixture was then l e t t o stand f o r 7 5 minutes a t 0 ? C. then poured  mixture  I t was  i n t o 3 0 0 ml. of i c e - c o l d water, where an o i l y  product separated out on the bottom.  Two ether e x t r a c t i o n s  of 1 5 0 ml. each was f o l l o w e d by washing w i t h 2 0 ml. o f 5% sodium carbonate  s o l u t i o n , and twice w i t h 3 5 ml. o f water.  Drying f o r h a l f an hour over anhydrous sodium s u l f a t e and then distilling  o f f the ether produced  a l i g h t yellow-colored o i l .  Vacuum d i s t i l l a t i o n y i e l d e d a c o l o r l e s s o i l w i t h b.p. 93°C a t 1.3  mm.  and n  D  2 4  (iii)  *5  1.4537.  Yield:  1 4 . 9 gm.  D e a c e t y l a t i o n o f the c i s - 1 -  Acetoxy-2-nitroxy-  cyclohexane. About 5 . 8 gm. o f the n i t r a t e d a c e t a t e was d i s s o l v e d i n 1 2 0 ml. of a b s o l u t e methanol and the s o l u t i o n c o o l e d t o 0°C.  39 Then 4 . 3 ml. of 0 . 2 7 5 N barium methylate was s o l u t i o n s w i r l e d and l e f t s u l f u r i c a c i d was  added and  the  to stand f o r 24 hours at 0 ° C .  added t i l l  the s o l u t i o n was  p h t h a l e i n f o l l o w e d by reagent grade barium n e u t r a l i z e any excess a c i d p r e s e n t .  The  IN-  a c i d i c to phenol-  carbonate t o  s o l u t i o n was  filtered  and then evaporated down t o g i v e a y e l l o w i s h o i l t h a t  partly  c r y s t a l l i z e d out.  product  Hexang e x t r a c t i o n removed the o i l y  from the c r y s t a l l i n e m a t e r i a l t h a t was 98°C.  0.20,  at  R  R  0.51.  f  the unreacted n i t r a t e d a c e t a t e  and, what i s c o n s i d e r e d to be the mononitrate  benzene-ethanol  (20:1),  cyclohexane was  e l u t e d o f f b e f o r e the  Any c i s - 1 , 2 column.  at  By pouring t h i s o i l on a dry alumina column and  e l u t i n g i t w i t h , f i r s t , a benzene-ethanol the unreacted  ( 5 0 0 : 1 ) mixture,  then,  cis-l-acetoxy-2-nitroxycis-2-nitroxycyclohexanol.  c y c l o h e x a n e d i o l present would have stayed on the  On e v a p o r a t i o n of the s o l v e n t , a y e l l o w i s h o i l was  collected  (1.64  gm.)  or 3 6 $ .  Hydrogenation  (40 p . s . i . hydrogen) of a sample o f  t h i s o i l at room temperature  u s i n g p a l l a d i z e d c h a r c o a l as  c a t a l y s t , y i e l d e d a c o l o r l e s s c r y s t a l l i n e product w i t h 93°-  -  The hexane e x t r a c t showed two n i t r a t e spots i n hexane-  methanol paper chromatography — f  found t o melt at 9 7 °  96°C.  Mixed m e l t i n g - p o i n t w i t h genuine  cis-1,2-  h e x a n e d i o l d i d not lower the m e l t i n g p o i n t of the  m.p. cyclo-  latter.  40 D.  Decomposition of c i s - and t r a n s - 1 , 2 - C y c l o h e x a n e d i o l Dinitrates i n Byrldine (a)  Solution  P r e l i m i n a r y Experiments: 1,2-  cyclohexanediol d i n i t r a t e  ( 3 gm.)  was  i n 3 0 ml. of d r y p y r i d i n e , and the c o l o r l e s s s o l u t i o n r e f l u x e d at 1 1 8 °  -  120°C i n anhydrous  conditions.  was  At about  100°C the s o l u t i o n s t a r t e d to t u r n y e l l o w , and a f t e r minutes of r e f l u x i n g i t was  dissolved  forty  dark amber, and c r y s t a l l i n e  pyri-  dinium n i t r a t e and a brownish-red gas appeared i n the r e f l u x condenser.  Lengthy r e f l u x i n g produced i n s o l u b l e b l a c k r e s i d u e  and more c o l o r e d gas.  When a d r y - i c e - a c e t o n e t r a p ( - 8 5 ° C )  was  attached t o the s t r a i g h t water-cooled r e f l u x condenser, o n l y a blue s o l i d  (^O^)  was  collected.  the r e a c t i o n mixture was  After a given refluxing  period,  allowed to c o o l to room temperature,  f i l t e r e d , and then poured i n t o about 2 5 0 - 3 0 0 ml. of i c e - c o l d water where a heavy o i l s e p a r a t e d out i n an amber-colored solution.  S e v e r a l ether e x t r a c t i o n s of t h i s aqueous-pyridine  s o l u t i o n removed the c o l o r e d o i l . quenching step was mixture was  omitted.  In s e v e r a l runs, t h i s water-  I n s t e a d , the p y r i d i n e - r e a c t i o n  d i s t i l l e d at room temperature under vacuo t o g i v e  a c o l o r l e s s p y r i d i n e - l i k e d i s t i l l a t e and a d a r k - c o l o r e d residue.  T h i s o i l y r e s i d u e was  first  oily  checked f o r the presence  of any mononitrate by paper-chromatography  u s i n g Hexane-Methanol  s o l v e n t , and then e i t h e r taken up w i t h some ether and washed w i t h an e q u a l amount of c o l d water, or immediately on an alumina  column.  chromatographed  41  S e v e r a l runs were made w i t h p y r i d i n e c o n t a i n i n g 0.5$  from  t o 3 * 0 $ by volume of water, and t h e r e a c t i o n r a t e s were  found t o be i n h i b i t e d .  With i n c r e a s e i n r e f l u x i n g time, the  amount of i n s o l u b l e j e t - b l a c k m a t e r i a l t h a t formed i n the r e f l u x i n g r e a c t i o n mixture i n c r e a s e d .  A 3 gm. (0.0.45 m.)  sample o f the t r a n s - 1 , 2 - c y c l o h e x a n e d i o l d i n i t r a t e i n 3 0 ml. dry p y r i d i n e a f t e r two days o f r e f l u x i n g gave 0 . 2 8 gm. o f a b l a c k powder t h a t was found t o be i n s o l u b l e i n p y r i d i n e ,  ether,  acetone, formamide, dimethylformamide, 3 0 $ NaOH, and concent r a t e d h y d r o c h l o r i c a c i d , b a t was s o l u b l e i n c o l d  concentrated  °y  s u l f u r i c a c i d t o give a dark s o l u t i o n .  7 4 . 5 $ the t r a n s -  d i n i t r a t e r e a c t e d and o n l y 0.610 gm. of a h a r d - p l a s t i c - l i k e m a t e r i a l was found i n the aqueous-pyridine s o l u t i o n a f t e r vacuum d i s t i l l a t i o n  o f the s o l v e n t .  A 2.1 gm. (0.0.02 m.) sample o f t h e c i s - l , 2 - c y c l o h e x a n e d i o l d i n i t r a t e i n 21 cc (0.26m.) d r y p y r i d i n e a f t e r two days o f r e f l u x i n g gave 0.24 gm. of the b l a c k p r e c i p i t a t e t h a t was  a l s o found t o be s o l u b l e o n l y i n c o n c e n t r a t e d  acid.  5 5 * 6 $ o f the c i s - d i n i t r a t e r e a c t e d ,  of the aqueous-pyridine r e s i d u e was (b)  and only 0.164 gm.  obtained.  I s o l a t i o n of t h e Unreacted D i n i t r a t e ; About one gram of the o i l y r e s i d u e ,  obtained  sulfuric  by vacuum d i s t i l l a t i o n  previously  of the r e a c t i o n mixture a t  room temperature, was poured on top of a d r y alumina column ( 1 . 8 x 5 0 cms.) and e l u t e d w i t h e t h e r .  The d i n i t r a t e r a n  w i t h the f r o n t , l e a v i n g dark yellow, b l u i s h green, and r e d  42 Normally i t took 2 5 - 3 0  bands at the top of the column. of  minutes  d r i p p i n g time f o r a l l the d i n i t r a t e t o come through.  After  a l a p s e of another 3 0 minutes, any mononitrate present would b e g i n coming through too.  The  ether was  vacuum d i s t i l l a t i o n at room temperature o i l y r e s i d u e (the d i n i t r a t e ) which was  t h e n removed by to give a c o l o r l e s s  checked as t o i t s  r e f r a c t i v e index and n i t r o g e n v a l u e s , and d i o l c o n t e n t . (c)  F r a c t i o n a t i o n of the Aqueous-Pyridine The r e a c t i o n mixture was  Residue:  d i l u t e d w i t h c o l d water and  e x t r a c t e d w i t h ether t o remove the unreacted d i n i t r a t e . o r a t i o n of the aqueous-pyridine s o l u t i o n at 40° - 45°C left  Evap(bath)  a dark-brown amorphous r e s i d u e whose weight i n c r e a s e d  e x p o n e n t i a l l y w i t h r e a c t i o n time.  The m a t e r i a l was  s o l u b l e i n methyl a l c o h o l , and over bQ% hot water.  completely  s o l u b l e i n acetone or  Most of the m a t e r i a l c o u l d be d i s s o l v e d by  first  e x t r a c t i n g i t w i t h acetone and then hot water, the f i n a l r e s i d u e was  soluble i n pyridine.  Most of the c o l o r was  aqueous and p y r i d i n e e x t r a c t s . chromatographically.  r e t a i n e d i n the  These f r a c t i o n s were s t u d i e d  The c o l o r e d e x t r a c t s were c o n c e n t r a t e d  i n vacuo o n i i h e steam b a t h t o a volume of 5 - 10 ml and s p o t t e d on a Whatman No. with d i f f e r e n t (i)  1. chromatographic  paper, and  then eluted  solvents. Butanol-Ethanol-Ammonia-Water S o l v e n t (40:10:1:49)  Between seven t o n i n e b l u e , p u r p l e , r e d , green and y e l l o w spots showed up under u l t r a - v i o l e t cis-  and t r a n s - runs.  Diphenylamine  light  from both the  reagent brought out o n l y  43  the p y r i d i n i u m n i t r a t e reagent  (R  f  0.26),  and the p - a n i s i d i n e - H 6 1  exposed two spots f o r Run 5 ( 5 0 min. r e f l u x i n g ) — —  a reddish-brown spot a t R at R  f  0.46.  f  0 . 2 6 , and a yellowish-brown  spot  The reagent was found t o have no e f f e c t on t h e  pyridinium n i t r a t e .  An aqueous-pyridine  r e s i d u e obtained  a f t e r f o u r hours o f r e f l u x i n g d i d not g i v e any s p o t t i n g s w i t h the p - a n i s i d i n e reagent, but showed e i g h t t o nine spots o f v a r i o u s c o l o r s under u l t r a - v i o l e t a l s o p i c k e d up a strong a c i d Run  and R  f  Bromocresol  spot j u s t below t h e s t a r t i n g  green  front.  s t r o n g a c i d spots at Rf 0.10 and  ( t h e l a t t e r was a l s o p o s i t i v e t o diphenylamine corresponded  reagent  t o p y r i d i n i u m n i t r a t e ) , a weak a c i d spot a t  0 . 3 3 and a strong b a s i c spot  corresponding  green  3 ( c i s - d i n i t r a t e ) , a f t e r 48 hour r e f l u x i n g p e r i o d ,  gave w i t h bromocresol 0.20  light.  acetone  (blue patch) at Rf 0.42.  e x t r a c t of Run 1 ( t r a n s - d i n i t r a t e ) ,  A after  an hour of r e f l u x i n g , showed a weak a c i d spot at R^ 0 . 1 2 , and a strong one at Rf 0.22 ( a l s o p o s i t i v e t o diphenylamine  t e s t and  corresponding t o p y r i d i n i u m n i t r a t e ) and a weak a c i d spot at R  f  0.44.  Nothing was p i c k e d up w i t h l e a d t e t r a a c e t a t e spray, (ii)  Butanol-Acetic-Acid-Water  p - A n i s i d i n e reagent  brought  Solvent  (2:1:1)  out two spots f o r Run 5  ( 5 0 min. r e f l u x i n g ) and f o u r spots f o r Run 6 ( 7 0 min. r e f l u x i n g ) . The Rf values were 0 . 2 6 (dark r e d ) ; 0.62 0.77  (yellowish-brown)  (yellowish-brown),  and 0.91 (dark r e d ) .  and 0 . 7 7 were both found  i n the two runs.  showed between f o u r to f i v e  The R  f  values 0 . 6 2  Ultraviolet  s p o t s , and t h e diphenylamine  p i c k e d up the p y r i d i n i u m n i t r a t e @ Rf 0.20.  Bromocresol  light reagent green,  however, showed a s t r o n g a c i d spot at R^ 0 . 8 4 corresponding to a d i p i c a c i d (iii)  (Run 8 , 1 0 h r . r e f l u x i n g ) B u t a n o l - A c e t i c A c i d Water Solvent  (4:1;5)  Acetone e x t r a c t of Run 8 ( 1 0 h r . r e f l u x i n g ) and t h e aqueous e x t r a c t of Run 4 ( 4 8 h r . r e f l u x i n g ) both gave strong a c i d spots w i t h bromo-cresol  green at Rf O . 8 3 corresponding  to a d i p i c a c i d .  spot appeared at R^ 0 . 7 3 c o r r e s -  A weak a c i d  ponding t o s u c c i n i c a c i d .  The presence  of any o x a l i c a c i d was  camoflaged by a c i d i c p y r i d i n i u m n i t r a t e . ( i v ) Phenol-Formic  Acid-Water Solvent  (75:1:25)  (Upward Blow) F o r acetone  e x t r a c t of Run 8 and aqueous e x t r a c t o f  Run 4 , s t r o n g a c i d spots were d e t e c t e d w i t h bromo-cresol at Rf 0 . 7 4 , corresponding t o a d i p i c a c i d , and weak a c i d at Rf 0 . 6 3 j  corresponding  to s u c c i n i c a c i d .  green spots  Oxalic acid, i f  p r e s e n t , should show up at Rf 0 . 3 2 , but a g a i n a c i d i c p y r i d i n i u m nitrate  interferred. (v)  Xylene-Methyl-ethyl-ketone-Water  Solvent  (1:1:1)  In the aqueous e x t r a c t of Run 4 ( 4 8 hours r e f l u x i n g ) , l e a d - t e t r a a c e t a t e reagent  p i c k e d up only a narrow white  extending from the s p o t t i n g l i n e . cyclohexane,  Standard  streak  t r a n s - and c i s -  1 , 2 - d i o l s s p o t t i n g s d i d not correspond w i t h t h a t  streak. Bromo-cresol s t r e a k extending almost  green, however, showed a heavy y e l l o w half-way  down t h e paper.  A standard  p y r i d i n i u m n i t r a t e spot d i d not move from i t s o r i g i n a l s p o t t i n g p o s i t i o n and was d e t e c t e d by the diphenylamine  reagent.  45 (vi)  Butanol-Formic acid-Water S o l v e n t (4:1:5)  Aqueous e x t r a c t o f Run^4 showed a s t r o n g a c i d spot at R  0.87,  f  and a weak one at R  f  and s u c c i n i c a c i d s r e s p e c t i v e l y .  0.76  c o r r e s p o n d i n g to a d i p i c  Acidic pyridinium nitrate  again i n t e r f e r e d i n the d e t e c t i o n of any o x a l i c (d)  acid.  I s o l a t i o n of the Mononitrate One  gram sample of the c o l o r l e s s c i s - 1,2-eyclo-  h e x a n e d i o l d i n i t r a t e was  d i s s o l v e d i n 10 ml. of dry p y r i d i n e ,  and the s o l u t i o n was w e l l stoppered and l e f t to stand f o r 33 the  days at room temperature.  Samples were taken out a f t e r  f i r s t , second, and t h i r d hour, and then at twenty-four  p e r i o d s , and chromatographed  against standard d i n i t r a t e and  mononitrate i n hexane-methanol s o l v e n t . d i o l was  No mononitrate or  d e t e c t e d at any time by diphenylamine reagent and  lead t e t r a a c e t a t e .  A f t e r 3 3 days, the s o l u t i o n became orange-  y e l l o w i n c o l o r and c o n t a i n e d some p y r i d i n i u m n i t r a t e . About 0 . 3  gm.  samples  of f r e s h l y d i s t i l l e d  trans-  1,2-cyclohexanediol d i n i t r a t e were d i s s o l v e d i n 3 ml. of f r e s h l y d i s t i l l e d p y r i d i n e c o n t a i n i n g from 0% to 10$ of water by volume.  These were heated at 81°C f o r 4 days, and  samples  taken out at v a r i o u s time i n t e r v a l s and chromatographed hexane-methanol s o l v e n t .  No mononitrate was  in  ever d e t e c t e d .  The sample c o n t a i n i n g dry p y r i d i n e became y e l l o v / i s h i n 45 minutes, reddish-brown i n 48 hours, and dark-amber a f t e r hours.  96  Samples c o n t a i n i n g water were a l l l i g h t e r i n c o l o r  a f t e r 9 6 hours.  46 About 3 gm.  of f r e s h l y prepared t r a n s - 1 , 2 - e y c l o r e f l u x e d w i t h 3 0 ml. p y r i d i n e  hexanediol d i n i t r a t e was  t a i n i n g 2 5 $ by volume of water.  A f t e r a 6 0 minute  con-  period,  the s o l u t i o n turned o n l y y e l l o w i n c o l o r , and paper chromatography showed no mononitrate. When 3 0 ml. of BaO-dried p y r i d i n e was  decanted o f f  dry potassium hydroxide p e l l e t s and r e f l u x e d w i t h 3 gm« of t r a n s 1 , 2 - c y c l o h e x a n e d i o l d i n i t r a t e f o r an hour, no mononitrate d e t e c t e d i n the r e s i d u a l o i l ,  a f t e r the r e a c t i o n mixture  vacuum d i s t i l l e d at room temperature. of a s m a l l amount o f water  o i l against (HF  0.80)  methanol.  T h i s was  was  But, w i t h the a d d i t i o n  (1 - 3 $ by volume) f o l l o w e d  r e f l u x i n g f o r ann hour, some mononitrate was residual o i l .  was  by  d e t e c t e d i n the  shown by chromatographing  the r e s i d u a l  standard t r a n s - 1 , 2 - c y c l o h e x a n e d i o l d i n i t r a t e  and t r a n s - 2 n l t r o x y c y c l o h e x a n o l (Rf 0 . 3 3 ) Alumina column chromatography  i n hexane-  u s i n g d r y ether as  eluant c o u l d g i v e a good s e p a r a t i o n of the mononitrate from the d i n i t r a t e i n the r e s i d u a l o i l . r e s i d u a l o i l was 5 0 cm.)  sample o f the  poured on top of a dry alumina column ( 1 . 8 x  and d r y ether added.  f r o n t , and was  About 1 gm.  The d i n i t r a t e flowed w i t h the  washed o f f i n about 3 0 minutes, w h i l e the mono-  n i t r a t e o n l y appeared a f t e r an i n t e r v a l of 3 0 to 40 minutes. Diphenylamine  reagent was  used t o check f o r the appearance  and  disappearance of the n i t r a t e s . (e) Examination of the D i s t i l l a t e from the R e a c t i o n M i x t u r e ; About 4.1  gm.  of t r a n s - 1 , 2 - c y c l o h e x a n e d i o l d i n i t r a t e  47 was  r e f l u x e d f o r 5 0 minutes w i t h 40 ml. o f A n a l a r Reagent  p y r i d i n e t h a t was not p r e v i o u s l y d r i e d over barium o x i d e . Then the r e a c t i o n mixture was d i s t i l l e d a t 30°C pressure t o give a c o l o r l e s s d i s t i l l a t e of  and reduced  t h a t smelled s t r o n g l y  pyridine. To 3 ml. of t h i s d i s t i l l a t e was added some concen-  t r a t e d h y d r o c h l o r i c a c i d t o make the s o l u t i o n a c i d i c .  Then  about0.2 ml. of f r e s h l y d i s t i l l e d , c o l o r l e s s a n i l i n e was added. The  s o l u t i o n turned p i n k immediately.  tographed i n Butanol-Water  T h i s mixture was chroma-  s o l v e n t a g a i n s t genuine  dehyde d i a n i h i d e - h y d r o c h l o r i d e ( 7 1 ) .  glutaconal-  The l a t t e r r a n a t R f 0 . 7 5  as an reddish-orange s p o t , w h i l e t h e former as a r e d spot a t R  f  0.45. To 2 ml. of the d i s t i l l a t e , about 4 ml. of g l a c i a l  a c e t i c a c i d was added t i l l  t h e s o l u t i o n was a c i d i c and then  about 1 ml. o f phenylhydrazine s o l u t i o n .  The s o l u t i o n turned  y e l l o w , and h e a t i n g j u s t below t h e b o i l i n g temperature it  red.  turned  No c r y s t a l l i z a t i o n o c c u r r e d i n the f r i g i d a i r e o v e r n i g h t . The d i s t i l l a t e was found t o reduce 1%- potassium  permanganate i n 2% sodium carbonate s l o w l y a t room To 20 ml. o f t h e d i s t i l l a t e  temperature.  a t 40° - 50°C was added s l o w l y about  20 ml. of t h i s 1% permanganate-carbonate  solution.  When t h e  d e c o l o r i z a t i o n seemed t o have stopped, the manganese d i o x i d e was filtered  off.  Concentrated h y d r o c h l o r i c a c i d was then added  the s o l u t i o n was a c i d i c ;  till  Some c r y s t a l l i n e m a t e r i a l appeared as  a suspension i n the y e l l o w i s h s o l u t i o n .  E t h e r e x t r a c t i o n removed  the c r y s t a l l i n e suspension and most of t h e y e l l o w i s h c o l o r .  The  48 e v a p o r a t i o n o f the ether e x t r a c t y i e l d e d a mixture c r y s t a l s and orange-colored melted  powder.  and burned when heated  tography  ( 0 . 1 2 5 gm.)  o f white This m a t e r i a l  l e a v i n g a c h a r r e d mass.  i n Butanol-Water gave a y e l l o w i s h spot at R  an a c i d spot at R  0.84 and  0.04 ( s t a n d a r d s u c c i n i c , g l u t a n i c and a d i p i c  f  a c i d s had h i g h e r R  f  Chroma-  f  values).  When some o f t h e ether e x t r a c t o f  t h i s c r y s t a l l i n e m a t e r i a l was added to an  aqueous-pyridine  s o l u t i o n , some l i g h t , f l a k e - l i k e , golden c r y s t a l s appeared, which a f t e r f i l t r a t i o n melted not to be a c i d i c .  a t 130° t o 140°C, and were found  49 E.  Decomposition of t r a n s - 1,2-Cyclohexanediol D i n i t r a t e i n 3-lfethylheptane (a)  Preliminary  Solution Experiments:  t r a n s - 1,2-Cyclohexanediol d i n i t r a t e ( 1 . 9 9 d i s s o l v e d i n 2 5 ml.  3-methylheptane at room temperature,  the c o l o r l e s s mixtures/was  r e f l u x e d at 1 1 9 °  40 hours i n anhydrous c o n d i t i o n s . gas  that smelled  hours, the  gm.)  - 120°C g e n t l y f o r  evolved.  s o l u t i o n became o n l y s l i g h t l y y e l l o w  After eight  and  some c o l o r 3-methyl-  l e s s d r o p l e t s were n o t i c e d to condense out w i t h the heptane i n the c o o l e r p a r t of the r e f l u x condenser.  t o the bottom and  Next  i n s o l u b l e m a t e r i a l appeared adhering  s i d e s of the r e a c t i o n f l a s k , together  some c o l o r l e s s c r y s t a l l i n e m a t e r i a l i n the condenser. c r y s t a l l i n e product was  and  Immediately a brownish-red  of n i t r o g e n d i o x i d e was  morning, a c o a t i n g of b l a c k ,  was  a c i d i c to bromocresol green.  s w i r l e d up,  from the i n s o l u b l e b l a c k r e s i d u e .  T h i s was  and  This With pro-  longed r e f l u x i n g more i n s o l u b l e b l a c k r e s i d u e formed. 48 hours, the r e a c t i o n mixture was  with  After  decanted  then washed twice  w i t h s m a l l amounts of 3-methylheptane, vacuum-dried at room temperature, and  then e x t r a c t e d w i t h 3 0 ml.  w i t h an a d d i t i o n a l 20 ml. color. (0.22  The gm.)  found to be  a i r - d r i e d o v e r n i t e and  of  weighed.  i n s o l u b l e i n acetone, a l c o h o l ,  e t h e r , N,N-dimethylformamide, 3 0 $ - NaOH and sulfuric  again  i n order to remove the l a s t t r a c e  b l a c k r e s i d u e was I t was  p y r i d i n e , and  concentrated  acid. The  red-colored  p y r i d i n e e x t r a c t was  evaporated down  50 at 4 5 ° -  50°C t o g i v e a dark gummy m a t e r i a l .  (0.090  gm.)  T h i s substance was e x t r a c t e d w i t h a t o t a l o f 5 0 ml. o f hot water, and t h e e x t r a c t s evaporated down a t 4 5 ° -  50°C t o g i v e  a y e l l o w o i l y m a t e r i a l , which, a f t e r s t a n d i n g o v e r n i t e i n vacuo and over phosphorous p&ntoxide, p a r t i a l l y c r y s t a l l i z e d out (0.050)  gm.)  Paper  A c e t i c Acid-Water  chromatography o f t h i s m a t e r i a l i n B u t a n o l -  (4:1:5)  showed the presence o f t h r e e a c i d s  t h a t corresponded t o o x a l i c adipic  (Rf 0 . 8 4 ) .  (R 0 . 2 6 ) , f  succinic  ( R O . 7 6 ) , and f  I f an e t h e r i n s t e a d o f a p y r i d i n e  extraction  was c a r r i e d out on the b l a c k r e s i d u e , f o l l o w e d by an aqueous e x t r a c t i o n o f the ether e x t r a c t , then the aqueous e x t r a c t would On e v a p o r a t i o n t o dryness a t 4 5 ° -  be almost c o l o r l e s s .  almost c o l o r l e s s c r y s t a l l i n e m a t e r i a l was o b t a i n e d . graphy i n Phenol-Formic  (75:1:25)(upward  Acid-Water  Chromatoflow)  y i e l d e d t h r e e a c i d spots corresponding a g a i n t o o x a l i c succinic  (Rf 0 . 6 1 ) ,  and a d i p i c a c i d  i n Xylene-Methylethylketone-Water  (R 0 . 7 5 ) . f  (1:1:1),  50°C,  (Rf 0 . 3 2 ) ,  Chromatography  and development o f  the paper chromatogram w i t h l e a d t e t r a a c e t a t e spray reagent r e v e a l e d a white s t r e a k a t Rf 0 . 1 3 , whereas genuine c i s - and t r a n s - d i o l s r a n a t Rf 0 . 3 0 and Rf 0 . 2 0 r e s p e c t i v e l y .  (b)  I s o l a t i o n o f t h e Unreacted  Dinitrate:  The decanted y e l l o w r e a c t i o n s o l u t i o n from the b l a c k r e s i d u e was d i s t i l l e d  a t 6 5 ° - 70°C at 8 0 mm. t o g i v e a c o l o r l e s s  d i s t i l l a t e and a y e l l o w i s h o i l y r e s i d u e . 1.435  gm., and when chromatographed  The l a t t e r weighed  i n Hexane-Methanol s o l v e n t ,  showed, b e s i d e s the unreacted d i n i t r a t e , t r a c e amounts o f t h e  trans- 2-nitroxyeyclohexanol. was  put on an alumina  dry e t h e r .  The  T h i s o i l y r e s i d u e (1.184  column (1.8 x 5 0 )  s o l u t i o n , 0 . 5 7 2 gm.  2 4  *5  eluted with  On e v a p o r a t i o n of the ether  of a c o l o r l e s s o i l was  Chromatography showed the presence D  and  d i n i t r a t e t r a v e l l e d w i t h the f r o n t l e a v i n g the  y e l l o w - c o l o r e d m a t e r i a l behind.  n  cms.  left  behind.  of the d i n i t r a t e o n l y .  = 1.4675 (should be about 1.4745 i f pure d i n i t r a t e ) .  T h i s o i l was  then s u b j e c t e d to h i g h vacuum of 3 mm.  at 60°C  f o r h a l f an hour, and then f o r an hour at 2 mm.  at room  temperature.  2 4  A 0.468 gm.  Weighing gave (0.497 gms.) sample of the o i l was  5 0 ml. e t h a n o l and  1 gm.  and n j ) * ^ = 1.4719.  then hydrogenated w i t h  p a l l a d i z e d c h a r c o a l at 48 p . s . i .  hydrogen at room temperature.  A f t e r 5 hours the  f i l t e r e d , washed, and  45° - 50°C.  Light-brown  evaporated  96° - 100°C.  yield  of 0 . 2 6 3 gm.  98° - 101°.  (100$  0.278 gm.  and  A f t e r d i s s o l v i n g these c r y s t a l s i n e t h y l -  a c e t a t e f o l l o w e d by f i l t r a t i o n , washing and new  at  After drying i n  vacuum over phosphorus p e n t o x i d e , the y i e l d was m.p.  reagent.  down to dryness  c r y s t a l s formed.  of  colorless  s o l u t i o n showed no n i t r a t e t e s t w i t h diphenylamine I t was  gm.)  evaporation, a  of c o l o r l e s s c r y s t a l s was  diol yield).  genuine t r a n s - d i o l gave m.p.  obtained  m.p.  Mixed m e l t i n g p o i n t s w i t h  103°-4° .  P u r i f i c a t i o n with  c h a r c o a l , f o l l o w e d by t h r e e c o n s e c u t i v e f r a c t i o n a l l i z a t i o n s o n l y y i e l d e d m a t e r i a l of m.p.  103°  crystal-  - 104°C.  On  the  b a s i s of h y d r o g e n o l y s i s , then, 30.2$ of the t r a n s - 1,2-cycloh e x a n d i o l d i n i t r a t e remained  unreacted.  52 (c)  Examination of the D i s t i l l a t e from the R e a c t i o n Mixture: trans- 1,2-Cyclohexanediol d i n i t r a t e  d i s s o l v e d i n 3 0 ml. 3-methylheptane 8 8 % hours.  The r e a c t i o n s o l u t i o n was  t h i s d i s t i l l a t e was being d i s c h a r g e d .  The c o l o r l e s s s o l u t i o n was  r e f l u x e d at 120°C f o r  then decanted o f f the  added bromine t i l l About 0 . 1  gm.)  at 6 5 ° - 70°C and 8 0 mm.  b l a c k r e s i d u e , and d i s t i l l e d  and 6 0 mm.  was  (2.62  the c o l o r  To  stopped  ml. of l i q u i d bromine was  used.  then evaporated o f f at 6 5 ° -  70°C  to l e a v e a l i g h t y e l l o w , m e d i c i n e - s m e l l i n g o i l  ( 0 . 0 7 2 gm.).  3rMethylheptane d i d not d i s c h a r g e the bromine  color. In an e a r l i e r run, the d i s t i l l a t e was d e p o s i t a s m a l l amount ( 1  mg.)  found t o  of white c r y s t a l l i n e  a f t e r s t a n d i n g stoppered f o r a few days at room These c r y s t a l s were a c i d i c to bromocresol  To 1 ml. of the d i s t i l l a t e was  any d e c o l o r i z i n g  up.  d i s c h a r g e d immediately.  drops were a l s o d e c o l o r i z e d . effects.  then c a r r i e d  added a drop of 2%  potassium permanganate s o l u t i o n and shaken the permanganate was  temperature.  green.  Baeyer's t e s t f o r u n s a t u r a t i o n was out.  material  3-methylheptane  The c o l o u r of S e v e r a l more d i d not show  53 F.  Decomposition  of t r a n s - 1 , 2 - C y c l o h e x a n e d i o l D i n i t r a t e  i n Quinoline Solution; t r a n s - 1 , 2 - C y c l o h e x a n e d i o l d i n i t r a t e ( 0 . 6 gm.) was mixed w i t h 6 cc o f q u i n o l i n e , and the temperature mixture was r a i s e d to 165°C w i t h i n the f i r s t tained at 1 6 0 ° -  165°C t i l l  of the  hour, and main-  t h e end o f t h e second hour.  During  t h a t time some c r y s t a l l i n e m a t e r i a l c r y s t a l l i z e d out i n t h e condenser, and a c o l o r l e s s i n s o l u b l e l i q u i d was seen to r e f l u x i n the condenser.  No mononitrate nor d i n i t r a t e was d e t e c t e d  i n the mixture by paper chromatography.  D i s t i l l a t i o n at 160°C  y i e l d e d a few d r o p l e t s o f a c o l o r l e s s l i q u i d which was found to be i n s o l u b l e i n q u i n o l i n e and benzene, but s o l u b l e i n water. Heating of 2 . 6 2 gm. of t r a n s - 1 , 2 - c y c l o h e x a n e d i o l d i n i t r a t e i n 2 5 ml. o f q u i n o l i n e f o r 7% hours between 145° 165°C y i e l d e d some blue s o l i d  ( N 2 O 3 )  i n a d r y - i c e trap  (-85°C).  No d i o l nor mononitrate was d e t e c t e d i n t h e b l a c k r e a c t i o n mixture —  o n l y the unreacted d i n i t r a t e .  About 1 2 0 cc of  sodium-dried henzene was added t o the r e a c t i o n mixture, and the heavy p r e c i p i t a t i o n o c c u r r e d .  Aseotroping of t h i s  mixture  f o r 6 hours y i e l d e d 0 . 6 ml. o f a c o l o r l e s s l i q u i d which showed a l l the p r o p e r t i e s o f water.  On f i l t e r i n g  the benzene-quino-  l i n e s o l u t i o n , 1 . 0 7 gm. o f a dark-brown m a t e r i a l was c o l l e c t e d . T h i s substance was i n s o l u b l e i n water, acetone, and v e r y s o l u b l e i n p y r i d i n e .  s l i g h t l y soluble i n  BIBLIOGRAPHY 1.  A l l i n g e r , N.L., Exp., 1 0 , 3 2 8 , ( 1 9 5 4 ) .  2.  A n g e l i c A., Z. ges. S c h i e s s - S p r e n g s t o f f w . 1 7 : 1 1 3 , 1 9 2 2 .  3.  Adams. G. and Bawn, C.E., Trans. F a r . S o c , 4 £ , 494,  915, (1956).  J . Org. Chem. 2 1 ,  (1949).  4.  Baker, J.W. and Nathan, W.S., J . Chem. S o c , 2 3 6 , (1936).  5.  Baker, J.W. and E a s t y , D.M., J . Chem. S o c , 1193,  6.  Baker, J.W. and E a s t y , D.M., Nature, 166, 156,  7.  Barton, D. Exp. 6, 316, (1950).  8.  Barton, D. Quart. Revs., 1 0 , 44, (1956).  9.  Barton, D. J . Chem. S o c , 1197, (1943).  10.  6, 96,  (1946).  11.  B e l l , D.J. -afid Friedmann, E . and W i l l i a m s , S.,  12.  Bowering, W. and Hayward, L.D. M S c Univ. o f B r i t . C o l . 1956.  13.  Brook, A.G. and Wright, G.F.  ;  J . Chem. S o c 2 5 2 , (1937).  (1951).  15.  (1950).  B a s t l e n s e n , 0 . and H a s s e l , 0 . T i d s s k r . Ktf.enii Berguesen Met.  14.  (1952).  Brown, J.R. and Hayward, L.D. (1955).  Thesis  Can. J . Chem. 29, 308, Can. J . Chem. 1 3 ,  1737,  Brown, R.K. and Purves, C.B.  Pulp and Paper Mag. of  16.  Brenton, C.A. and F r e i , Y.F.  J . Chem. S o c , I 8 7 2 ,  17.  C l a r k , M.F. and Owen, L.N.  18.  C h r i s t i a n , W.R.  19.  C r i s t o l , S.J. and F r a n z u s , B.J. Am. Chem. S o c , £2, 2 4 8 8  Canada, May (1947).  926,  (195D.  (1957).  (195D.  J . Chem. S o c , 3 1 8 , ( 1 9 4 9 ) .  and Purves, C.B.  Can. J . Chem. 2 2 ,  20.  C r i s t o l , S.J. and Weber, J . and B r i n d e l l , M.J. Am. Ghem. S o c , Z§, 5 9 8 ( 1 9 5 6 ) .  21.  C r o s s l e y , A.W.  22.  Day, J.N. and I n g o l d , C.K., Trans. F a r . Soc. 32, 6 8 9 , (1941).  23.  E l r i c k , D.E.,«ftd Marans, N.S. and P r e c k e l , R.F. J . Am. Chem. Soc. 26, 1 3 7 3 , (1954).  24.  E n g l i s h , J . and Barber, J.W. 3310, (1949).  25.  F a l c o n e r , E.L. and Purves, C.B., J . Am. Chem. Soc. 79, 5308 ( 1 9 5 7 ) .  26.  G i a n n i n i , G. Gazz. Chem. I t a l . £ 4 , 7 9 , 2810, (1924).  27.  Gibson, D.T. and MacKeth, A.K. J . Chem. S o c , 119, 438 ( 1 9 2 1 ) . —  28.  G l a d d i n g , E.W. and Purves, C.B. J.Am. Chem. S o c 6 6 , 76, (1944).  29.  H a s s e l , 0 . Research  30.  Hartung, W.J.  31.  Hayward, L.D., J . Am. Chem. S o c , 22>  32.  Hayward, L.D. Can. J . Chem., ^ 2 , 1 9 ,  33.  Hine, J . and Brader, W.J. J.Am.Chem.Soc, 2Z» 3 6 1 ,  34.  Hockett, R.C., J . Am. Chem. S o c , 68, 9 3 0 , (1946).  35«  Jackson, M.  36.  K i l p a t r i c k , M. and Morse, J.G. 1846, (1953).  37.  Klyne, W. P r o g f e s s i n S t e r e o c h e m i s t r y . V o l . 1 . Acad. P r e s . Inc., New York, 1 9 5 4 .  38.  Kuhn, L.P. and De A n g e l i s , L. (1954).  39.  Lawe, E.S.  40.  Levy, S.B. J . Am. Chem. S o c , 2 i , 3 2 5 4 ,  J . Chem. S o c , 1403, (1904).  J . Am. Chem. Soc. 2i»  (1924). C . A . 1 8 ,  (London) 3 , 5 0 4 , ( 1 9 5 0 ) .  J.Am. Chem. S o c , 6 8 , 1 6 2 1 (1946)  Private  1974 ( 1 9 5 D . (1954). (1955).  communication. J.Am. Chem. S o c , 75.  J . Am.Chem. S o c , 26, 3 2 8 ,  J . Chem. S o c , 1 1 7 2 ,  (1953). 3790,  (1954).  41. 42.  Lucas, G.R. and Hammett, L.P.  1928, (1942).  Ma, T.S. and Zuazaga, G.  Ed., 14, 280, (1942).  J.Am. Chem. S o c , 64,  ~~  Ind. and Eng. Chem., A n a l .  £3»  2293, (195D.  43.  McCasland, G.E., J . Am. Chem. S o c ,  44.  McKeown, G.G. and Hayward, L.D. Can. J . Chem., 33, 1392, (1955).  45.  M u l l i k e n - H u n t r e s s , "Mannal o f the I d e n t i f i c a t i o n o f Organic Compounds", M.I.T., p. I63, (1937).  46.  Ness, A.T.,e»4 Harm, R.M. and Hudson, C.S. J . Am. Chem. S o c , 66, 1901, (1944).  47.  Oldham, J.W. and R u t h e r f o r d , J.K. 54, 366, (1932).  48.  Pascual, J .  49.  P i t z e r , K.S. and B e c k e t t , C.W.T.  50.  P h i l l i p s , L.  51.  P o l l a k , P.I. and C u r t i n , D.V., J . Am. Chem. S o c , 72, 961, (1950).  52.  Roebuck, A. and Adkins, H., Org. Syn. V o l . I l l , p. 217.  53.  Rooney, C.S.  54.  Ryan, H. and Casey, M.T.  Scien. P r o c  Royal. Dublin  55.  S e g a l , G.H. Ph.D. T h e s i s  M c G i l l Univ.  1946.  56.  Smith, A.S. and Byrne, P.P., J . Am. Chem. S o c , 2£, 4406, (1950).  57.  S o f f e r , L.M.,^Gd-Parrotta, E.W. and DiDomenico, J . ,  58.  Swan, E.P.  59.  T i c h a n o w i t s c h , S.Z., J . Chem. Pharm., 482, (1864). J . F o r t s e h r i t t e Chem., 582, (1864).  60.  J . Chem. S o c , 1943, (1949).  977, (1947).  Soc,  J.Am. Chem. S o c ,  Am. Chem. S o c , 6£,  Nature, I 6 5 , 564, (1950).  Ph.D. T h e s i s , M c G i l l Univ. 1952.  i&, 101, (1928-30).  J . Am. Chem. S o c , £4, 5301, (1952).  B.A. T h e s i s , Univ. of B r i t . C o l . 1952.  T i p s o n , R.S.,-eftd-Clapp, M.A. and C r e t c h e r , L . J . ,  J . Org. Chem. 12, 133, (1947).  61.  T i p s o n , R.S. and C r e t c h e r , L . H . , J . Org. Chem., 8 , 9 5 , (1943).  T u l i n s k i e , A.  63.  Wigner, J.H. Ber., 3 6 , 7 9 4 , ( 1 9 0 3 ) .  64.  W i n s t e i n , S. and B u c k l e s , R.E.  J . Am. Chem. S o c ,  W i n s t e i n , S. and B u c k l e s , R.E.  J . Am. Chem. S o c ,  64,  65.  2780,  2787,  64,  66.  J . Am. Chem. S o c , Zli  3552,  62.  (1942).  (1942).  (1953).  W i n s t e i n , S.,-and-Hess, H.V. and B u c k l e s , R.E., J.  Am. Chem. S o c , 6 4 , 2 7 9 6 ,  (1942).  67.  W i n s t e i n , S. ,-aftd- Grunwald, E . and B u c k l e s , R.E. J . Am. Chem. S o c , 2 0 » 8 l 6 , ( 1 9 4 8 ) .  68.  Welfrom, M . L .  J . Am. Chem. S o c , 2 2 > 6 5 7 3 ,  (1955).  69.  Wolfrom, M . L .  J . Am. Chem. S o c , 2 £ , 4 6 9 5 ,  (1956).  70.  Wright,  71.  I.  B.A. T h e s i s Univ. of B r i t . C o l . 1 9 5 7 .  Z i n c k e , T. and Heuser, G. and H o l l e r , Ann.  333:296,  (1904).  W.  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 25 0
India 18 7
United States 11 1
Canada 4 0
Japan 2 0
France 1 0
Russia 1 0
Unknown 1 0
Germany 1 1
City Views Downloads
Beijing 23 0
Unknown 19 4
Ashburn 6 0
Ottawa 4 0
Mountain View 4 0
Tokyo 2 0
Shenzhen 2 0
Saint Petersburg 1 0
San Mateo 1 0
Strasbourg 1 0
Frankfurt am Main 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062227/manifest

Comment

Related Items