UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Some reactions of metal-metal bonds with fluoro-olefins Tsai, James Hwa-San 1965

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1965_A1 T8.pdf [ 9.88MB ]
Metadata
JSON: 831-1.0062217.json
JSON-LD: 831-1.0062217-ld.json
RDF/XML (Pretty): 831-1.0062217-rdf.xml
RDF/JSON: 831-1.0062217-rdf.json
Turtle: 831-1.0062217-turtle.txt
N-Triples: 831-1.0062217-rdf-ntriples.txt
Original Record: 831-1.0062217-source.json
Full Text
831-1.0062217-fulltext.txt
Citation
831-1.0062217.ris

Full Text

The U n i v e r s i t y of B r i t i s h Columbia  FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  of  JAMES HWA-SAN TSAI  M . S c . Fresno S t a t e C o l l e g e , F r e s n o , C a l i f o r n i a 1962  TUESDAY, OCTOBER 26, 1965 AT 3:00 P.M. IN ROOM 261, CHEMISTRY BUILDING COMMITTEE IN CHARGE Chairman;  K, C. Mann  Wo Ro C u l l e n Jo Po Kutney Co A= McDowell  L„ Wo Reeves Ro Co Thompson Jo T r o t t e r Eo  Peters  Research S u p e r v i s o r E x t e r n a l Examiner.  Ho C. C l a r k R. S= Nyholm  Department o f Chemistry University College, London, England.  SOME REACTIONS OF METAL-METAL BONDS WITH FLUORO-OLEFINS ABSTRACT C u r r e n t i n t e r e s t i n m e t a l - m e t a l bonded systems has been l a r g e l y c o n f i n e d to the s y n t h e s i s of such compoundsj and l i t t l e i s known of the c h e m i c a l b e h a v i o u r of the metal-metal bonds. One of the s i m p l e s t systems t o study was the t i n - t i n bond, and thus the a d d i t i o n s of f l u o r o o l e f i n s to h e x a m e t h y l d i t i n were examined. Such a d d i t i o n s were found to occur r e a d i l y under u l t r a v i o l e t i r r a d i a t i o n which suggest that the f o r m a t i o n of ( C H ) S n r a d i c a l s i s an important f e a t u r e of the r e a c t i o n mechanism. The f o r m a t i o n of adducts such as 3  (CH )3Sn(CF2CF2) Sn(CH )3 3  n  (n = 1 or 2 ) ,  3  (CH )3SnCF2CF(CF3)Sn(CH3) , 3  (CH3)3Sn(CFHCF ) Sn(CH )3  3  2  (n = 1 or 2 ) , and ( C H ) S n ( C H C F ) S n ( C H ) 3  3  3  2  2  n  3  n  3  (n = 1 or 2 ) ,  3  as w e l l as the occurence of secondary r e a c t i o n s l e a d i n g to products of the type (CH3)3Sn(CF2CF2)nH (n = l 2, or 3) (CH3)3SnCF2CF(CF3)H, and o t h e r analogous compounds are d i s c u s s e d . The (CH3)3S*n r a d i c a l was found t o have n u c l e o p h i l i c c h a r a c t e r , and to a t t a c k e x c l u s i v e l y on the group marked w i t h an a s t e r i s k i n the f o l l o w i n g o l e f i n s : s  3  CF2=CFCF3 CF2=CFH, CF2=CH2 and CF2=CFC1„ The f a c t o r s r e s p o n s i b l e f o r the o r i e n t a t i o n of such unsymmetric o l e f i n s w i t h r e s p e c t to the ( C H ) S n r a d i c a l are c o n s i d e r e d . S  S  3  3  The compound (CH3)3Sn-Mn(CO)5, c o n t a i n i n g a mixed metal-metal bond., was a l s o shown to be v e r y r e a c t i v e , but to behave d i f f e r e n t l y toward a v a r i e t y of o l e f i n s « A twocarbon i n s e r t i o n i n t o the tin-manganese bond was r e a d i l y a c h i e v e d by the r e a c t i o n w i t h t e t r a f l u o r o e t h y l e n e a t 50° under u l t r a v i o l e t i r r a d i a t i o n which a g a i n might suggest t h a t a f r e e - r a d i c a l mechanism i s involved,, Two i n t e r e s t i n g dimers, i . e . , the "boat and c h a i r " forms of (CF2=CFMn(CO)4)2, c o n t a i n i n g both <f- and 7T-bonds were formed, presumably through the d e c o m p o s i t i o n o f the adduct (CH3) SnCF2CF Mn(CO)5o With t r i f l u o r o e t h y l e n e , n e i t h e r adduct nor dimer i s o b t a i n e d but the n o v e l f l u o r o v i n y l t r a n s i t i o n m e t a l compounds c i s - and trans-(CFH=CF)Mn(CO)5 were formed. When r e a c t e d w i t h t r i f l u o r o c h l o r o e t h y l e n e , CF2 CFC0Mn(C0)5 was p r e d o m i n a n t l y o b t a i n e d , as w e l l as c i s - and trans-(CFCl=CF)Mn(CO)5 i n s m a l l y i e l d s . The. r e a c t i o n w i t h e t h y l e n e caused the c l e a v a g e of the manganesec a r b o n y l bond r a t h e r than the tin-manganese bond, forming 3  3  =  2  (CH3>3Sn-Mn(CG)4('' -C2H4) 0 The c a t a l y t i c a c t i v i t y o f (CH3)3Sn=Mn(CO)5 i n t h e h y d r o g e n a t i o n o f e t h y l e n e was a l s o examined. D e t a i l e d s p e c t r o s c o p i c s t u d i e s were "made f o r the p r o d u c t s o b t a i n e d i n t h e pure s t a t e . r  GRADUATE STUDIES Field  of Study:  Chemistry  Topics i n P h y s i c a l Chemistry  A. Bree J . R. Coope Seminar i n C h e m i s t r y S. A. Bryce T o p i c s i n I n o r g a n i c Chemistry N. B a r t l e t t . H. C. C l a r k W. R.. C u l l e n Advanced I n o r g a n i c C h e m i s t r y W. R. C u l l e n H. C. C l a r k S p e c t r o s c o p y and M o l e c u l a r S t r u c t u r e A. Bree K„ B. Harvey L„ Wo Reeves Crystal Structures S. Melzak J. Trotter The C h e m i s t r y o f G r g a n o m e t a l l i c Compounds H. Co C l a r k Topics i n Organic Chemistry J . P. Kutney F . McCapra A= I . S c o t t  PUBLICATIONS H.C. C l a r k , J.D. C o t t o n , and J„H. T s a i REACTIONS OF METAL-METAL BONDS. PART I STUDIES WITH THE Sn-Sn BOND I n o r g . Chem., i n p r e s s . H.C. C l a r k and J.H. T s a i REACTIONS OF METAL-METAL BONDS. PART I I THE Sn-Mn BOND I n o r g . Chem., i n p r e s s . H.C. C l a r k , N.N. C y r and J.H. T s a i N.M.R, SPECTRA OF TIN COMPOUNDS, PART I V H and F.N.M.,R. SPECTRA OF A TRIMETHYLTIN DERIVATIVE CONTAINING AN ASYMMETRIC CARBON ATOM Can, J . Chem., i n p r e s s . H.C. C l a r k and J.H. T s a i A TWO-CARBON ATOM INSERTION INTO A METAL-METAL BOND Chem. Comm.,, I l l (1965) H.C. C l a r k , J.H. T s a i and W.S. Tsang FLUOROVINYL DERIVATIVES OF TRANSITION METALS Chem, Comm., 171 (1965) G.B, Kauffman, J.H. T s a i , R.C. Fay and C.K. Jorgensen THE CONFIGURATIONS OF YELLOW AND RED TRICHLOROTRIS (DIETHYLSULFIDE) IRIDIUM ( I I I ) I n o r g , Chem., 2, 1233 (1963). G - B , Kauffman,. and J.H. T s a i TETRAAMMINEPALLADIUM(II) TETRACHLOROPALLADATE(II) AND TRANSDICHLORODIAMMINEPALLADIUM(II) Inorg, Syntheses, V o l . V I I I (Accepted on J u l y 23 1963 G,B, Kauffman and J.H. T s a i SODIUM HEXACHLORORHODATE(III) DIHYDRATE AND POTASSIUM HEXACHLORORHODATE(II) MONOHYDRATE I n o r g . S y n t h e s e s , V o l , V I I I (Accepted on J u l y 23,1963). G.B. Kauffman and J.H,, T s a i CIS- AND TRANS-TETRACHLOROBIS = (DIETHYL SULFIDE) PLATINUM(IV). I n o r g . S y n t h e s e s , V o l . V I I I ( A c c e p t e d on F e b r u a r y 20,19 G,B. Kauffman and J.H. T s a i A HIGH-YIELD CONVERSION OF RHODIUM TO SODIUM HEXACHLO RORHODATE(III), J . Less-Common M e t a l s , 4, 519 (1962). J.H, T s a i PREPARATION OF AMMONIUM SULFATE BY GAS PHASE REACTION C u r r e n t Reports o f Chinese C o u n c i l on S c i e n c e Development, (June 1960). s  s  3  1  5  19  s  s  s  SOME REACTIONS OF METAL-METAL BONDS WITH FLUORO-OLEFINS  by  JAMES HWA-SAN TSAI B.Sc,  Cheng-Kung U n i v e r s i t y , 1955  M . S c , Fresno S t a t e  College,  1962  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE  REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n the Department of Chemistry  We accept t h i s t h e s i s as conforming t o the required  THE  standard  UNIVERSITY OF BRITISH COLUMBIA  September, 1965  In p r e s e n t i n g the  this  Columbia,  available mission  I agree that  f o r extensive  representatives„  cation  the Library  f o r r e f e r e n c e and s t u d y .  fulfilment of  of this  thesis  w i t h o u t my w r i t t e n  Department o f  i t freely  thesis  per-  f o r scholarly  by t h e Head o f my D e p a r t m e n t o r by  It i s understood for financial  permission.  Chemistry  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, C a n a d a October 26,  s h a l l make  I further agree that  copying o f t h i s  p u r p o s e s may be g r a n t e d  Date  in partial  r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f  British  his  thesis  1965  Columbia  that  gain  copying o r p u b l i -  shall  n o t be a l l o w e d  ii  ABSTRACT  Current i n t e r e s t  i n metal-metal bonded systems has been  c o n f i n e d t o the s y n t h e s i s o f such compounds, and l i t t l e the chemical b e h a v i o u r o f the metal-metal bonds. systems t o study was  largely  i s known o f  One o f the s i m p l e s t  the t i n - t i n bond, and thus the a d d i t i o n s o f f l u o r o -  o l e f i n s t o h e x a m e t h y l d i t i n were examined. o c c u r r e a d i l y under u l t r a v i o l e t  Such a d d i t i o n s were found t o  i r r a d i a t i o n which suggests t h a t the  *  formation of (CH3)3Sn r a d i c a l s mechanism.  i s an important f e a t u r e o f the r e a c t i o n  The f o r m a t i o n o f adducts such as  (CH3) Sn(CF CF ) Sn(CH )3 3  2  2  (n = 1 o r 2) ,  3  n  (CH )3SnCF CF(CF )Sn(CH3)3, 3  2  or 2 ) ,  (CH ) S n ( C F H C F ) S n ( C H ) 3 (n = 1  3  3  3  2  n  3  and (CH ) S n ( C H C F ) S n ( C H ) 3 (n = 1 o r 2) , as w e l l 3  3  2  2  n  3  as the o c c u r r e n c e o f secondary r e a c t i o n s l e a d i n g t o p r o d u c t s o f the (n = 1 , " 2 ,  type ( C H ) S n ( C F C F ) H 3  3  2  2  n  o r 3 ) , (CH ) S n C F C F ( C F ) H ,  and  (CH )3Sn r a d i c a l  was  3  o t h e r analogous compounds a r e d i s c u s s e d .  The  3  2  3  3  found t o have n u c l e o p h i l i c c h a r a c t e r , and t o a t t a c k e x c l u s i v e l y on the group marked w i t h an a s t e r i s k i n t h e f o l l o w i n g C F = C F C F , CF =CFH, C F = C H , and 2  3  2  2  2  olefins:  CF =CFC1. 2  The f a c t o r s r e s p o n s i b l e f o r the o r i e n t a t i o n o f such unsymmetric o l e f i n s w i t h r e s p e c t t o the ( C H ) 3 S n r a d i c a l 3  are c o n s i d e r e d .  The compound ( C H 3 ) 3 S n - M n ( C 0 ) 5 , c o n t a i n i n g a mixed metal-metal bond, was  a l s o shown t o be v e r y r e a c t i v e , but t o behave d i f f e r e n t l y toward a  variety of o l e f i n s . was  A two-carbon i n s e r t i o n i n t o the tin-manganese bond  r e a d i l y a c h i e v e d by the r e a c t i o n w i t h t e t r a f l u o r o e t h y l e n e at 50° under  ultraviolet  i r r a d i a t i o n , which a g a i n might suggest t h a t a f r e e - r a d i c a l  mechanism i s i n v o l v e d . forms  Two i n t e r e s t i n g dimers, i . e . , the "boat and c h a i r "  o f [CF2=CFMn(C0) i+] 2 j c o n t a i n i n g b o t h a- and -rr-bonds were  presumably  through t h e decomposition o f the adduct  formed,  (CH )3SnGF CF Mn(C0) . 3  2  2  5  With t r i f l u o r o e t h y l e n e , n e i t h e r adduct n o r dimer i s o b t a i n e d but t h e n o v e l f l u o r o v i n y l - t r a n s i t i o n metal compounds c i s - and trans-(CFH=CF)Mn(CO) were formed. was  When r e a c t e d w i t h t r i f l u o r o c h l o r o e t h y l e n e ,  5  CF2=CFC0Mn(C0)  5  p r e d o m i n a n t l y o b t a i n e d , as w e l l as c i s - and trans-(CFCl=CF)Mn(CO)5 i n  small y i e l d s .  The r e a c t i o n w i t h e t h y l e n e caused t h e c l e a v a g e o f t h e  manganese-carbonyl  bond r a t h e r than t h e tin-manganese bond, forming  (CH ) Sn-Mn(CO) i ( T T - C H ) . 3  t  3  2  lt  The c a t a l y t i c  activity  o f (CH ) Sn-Mn(CO) i n 3  3  5  the h y d r o g e n a t i o n o f e t h y l e n e was a l s o examined. D e t a i l e d s p e c t r o s c o p i c s t u d i e s were made f o r t h e p r o d u c t s o b t a i n e d i n t h e pure  state.  iv  TABLE OF CONTENTS  Page  ABSTRACT  i i  TABLE OF CONTENTS  iv  LIST OF TABLES  viii  LIST OF FIGURES  *  ACKNOWLEDGEMENTS  I.  II.  xi  GENERAL INTRODUCTION  1  REACTIONS OF HEXAMETHYLDITIN WITH FLUORO-OLEFINS  6  A.  Introduction  6  B.  R e s u l t s and D i s c u s s i o n  11  1.  Reaction with  11  2.  Reaction with  hexaf luoropropene '.  3.  Reaction with  trifluoroethylene  and w i t h 4.  tetrafluoroethylene  1,1-difluoroethylene  Reaction with  III.  Reaction with  REACTIONS OF  23  trifluorochloro-  and t r i f l u o r o b r o m o e t h y l e n e 5.  1 8  ethylene  30 34  TRIMETHYLTIN-PENTACARBONYLMANGANESE  WITH FLUORO-OLEFINS  35  A.  Introduction  35  B.  R e s u l t s and D i s c u s s i o n  37  1.  P r e p a r a t i o n and c h a r a c t e r i z a t i o n of (CH ) Sn-Mn(CO) 3  3  5  37  V  Page  IV.  2.  Reaction with t e t r a f l u o r o e t h y l e n e  39  3.  R e a c t i o n with t r i f l u o r o e t h y l e n e  47  4.  R e a c t i o n with t r i f l u o r o c h l o r o e t h y l e n e  50  5.  Reaction with ethylene  55  SPECTROSCOPIC STUDIES A.  58  The I n f r a r e d S p e c t r a o f F l u o r o c a r b o n D e r i v a t i v e s of Trimethyltin 1.  58  I n t r o d u c t i o n t o the i n f r a r e d  bands  a s s o c i a t e d w i t h the t r i m e t h y l t i n group 2.  I n t r o d u c t i o n t o the i n f r a r e d  bands  a s s o c i a t e d w i t h f l u o r o c a r b o n groups 3. B.  Discussion  59 63  The N.M.R. S p e c t r a o f F l u o r o c a r b o n D e r i v a t i v e s of Trimethyltin  C.  58  70  The I n f r a r e d S p e c t r a o f F l u o r o c a r b o n D e r i v a t i v e s o f Pentacarbonylmanganese  90  1.  I n f r a r e d s p e c t r o s c o p y o f manganese c a r b o n y l s  90  2.  Discussion  96  a.  I n f r a r e d bands a s s o c i a t e d w i t h the ( C H ) S n group 3  96  3  b.  The c a r b o n y l s t r e t c h i n g f r e q u e n c i e s (fOcO)  c.  The manganese-carbonyl bands  d.  modes e.  deformation  (SMnCO)  The manganese-carbon  98  104 stretching  (\)Mn-C0)  105  I n f r a r e d bands a s s o c i a t e d w i t h C-F a b s o r p t i o n s  106  vi Page f. D.  VI.  109  The N.M.R. S p e c t r a o f F l u o r o c a r b o n D e r i v a t i v e s of  V.  The C=C s t r e t c h i n g f r e q u e n c i e s  Pentacarbonylmanganese  113  CONCLUSION  132  EXPERIMENTAL  136  A.  B.  C.  D.  G e n e r a l Techniques  136  1.  Vacuum l i n e  136  2.  R e a c t i o n apparatus  136  3.  Analyses o f products  136  S p e c i a l Techniques  139  1.  P r e p a r a t i v e chromatograph  139  2.  Vacuum d i s t i l l a t i o n  140  3.  L i q u i d - p h a s e chromatograph  and s u b l i m a t i o n  !142_  S p e c t r o s c o p i c Techniques  145  1.  Infrared spectra  145  2.  N.M.R. s p e c t r a  145  Reactions o f Hexamethylditin with F l u o r o - o l e f i n s  146  1.  Preparation of hexamethylditin  146  2.  Reactions with t e t r a f l u o r o e t h y l e n e  147  3.  Reactions with hexafluoropropene  152  4.  R e a c t i o n s with t r i f l u o r o e t h y l e n e  154  5.  Reactions with 1,1-difluoroethylene  157  6.  Reactions with t r i f l u o r o c h l o r o e t h y l e n e  161  7.  Reactions w i t h t r i f l u o r o b r o m o e t h y l e n e  163  8.  Reaction with ethylene  165  vii Page  E.  Reactions o f  Trimethyltin-pentacarbonylmanganese  with F l u o r o - o l e f i n s 1.  Preparation o f trimethyltin-pentacarbonylmanganese  2.  167  167  Decomposition o f t r i m e t h y l t i n - p e n t a c a r b o n y l manganese  168  a.  Pyrolysis  168  b.  Photolysis  168  3.  Reactions with t e t r a f l u o r o e t h y l e n e  169  4.  Reactions with t r i f l u o r o e t h y l e n e  173  5.  R e a c t i o n with t r i f l u o r o c h l o r o e t h y l e n e  175  6.  Reactions with ethylene  178  a.  R e a c t i o n w i t h e t h y l e n e a t 1G atm.  178  b.  R e a c t i o n w i t h e t h y l e n e a t 1 atm. i n t h e p r e s e n c e o f hydrogen gas  BIBLIOGRAPHY  179  181  viii  LIST OF TABLES  Page 1.  Reaction Results o f ( C H ) S n  2.  R e a c t i o n R e s u l t s o f (CH ) S n ; and C F = C F C F  3.  Radical A d d i t i o n t o CF =CFCF  3  4.  Reaction Results o f ( C H ) S n  2  5.  Reaction Results o f (CH ) Sn-Mn(C0)  6.  P h y s i c a l P r o p e r t i e s o f Some Carbonylmanganese  3  3  6  6  2  2  2  2  3  6  3  and CF = C F  2  12  2  19  3  22 and CF =CFH  24  2  3  5  and CF = C F 2  2  Derivatives 7.  43  C-F A b s o r p t i o n  Bands  (cm. *) i n t h e IR S p e c t r a  o f Some P o l y f l u o r o - a l k a n e s 8.  C-F A b s o r p t i o n  Bands  60  (cm.  i n t h e IR S p e c t r a  o f P e r f l u o r o a l k y l - m e t a l Compounds 9.  C-F A b s o r p t i o n  Bands  61  (cm.''') i n t h e IR S p e c t r a -  o f P o l y f l u o r o a l k y l - m e t a l Compounds 10.  I n f r a r e d Bands o f t h e R e a c t i o n Containing  11.  62  Products  ( C H ) 3 Sn Group  64  3  I n f r a r e d Bands o f t h e R e a c t i o n  Products  C o n t a i n i n g P o l y f l u o r o a l k y l Group 12.  Chemical S h i f t s and C o u p l i n g Organometallie  13.  X  f o r Some 2  3  2  2  2  2  71  2  Some P o l y f l u o r o a l k a n e s  H and and  15.  Constants  Compounds C o n t a i n i n g HCF CF -Group 3  l  65  H N.M.R. Data o f ( C H ) S n C F ( C F ) C F H and  14.  40  1 9  F Data o f  75  (CH ) SnCF CFHCF 3  3  2  3  (CH ) SnCF CF(CF )Sn(CH; ) 3  3  2  3  Some C o u p l i n g Constants  3  of  3  78  Unsymmetrically  Substituted Polyfluoroalkanes  79  ix  LIST OF TABLES  16.  I n f r a r e d Bands o f t h e R e a c t i o n  (continued)  Products  C o n t a i n i n g Carbonylmanganese Group 17.  I n f r a r e d Bands o f t h e R e a c t i o n  Products  C o n t a i n i n g Carbonylmanganese Group  (continued)  18.  Observed ^CO Modes ( c m . ) f o r Some LMn(CO) Compounds  19.  Assignment o f C-F A b s o r p t i o n s  -1  5  (cm. *)  Due t o CF =CFX Group 2  20.  The C=C S t r e t c h i n g F r e q u e n c i e s o f Some F l u o r o v i n y l Groups  21.  N.M.R. Data o f (CH ) Sn-Mn(C0) and I t s D e r i v a t i v e s .  22.  N.M.R. Data o f Some F l u o r o v i n y l - M n ( C O )  23.  Chemical  3  Shifts  3  5  5  Complexes  (c.p.s.) and C o u p l i n g Constants  (c.p.s.)  o f Some T r i m e t h y l t i n D e r i v a t i v e s 24.  The S p i n - s p i n C o u p l i n g Constants  (c.p.s.)  i n Some F l u o r o - o l e f i n s and T h e i r D e r i v a t i v e s 25.  The F-F C o u p l i n g Constants  (c.p.s.) i n Some  Perfluorovinyl Derivatives: 26.  1 9  27.  1  F Chemical  CF =CFX 2  S h i f t s o f CF =CFX Groups 2  H N.M.R. Data o f Some V i n y l  Compounds  28.  C o l d Baths  29.  A n a l y t i c a l Data f o r t h e R e a c t i o n o f (CH ) Sn-Mn(C0) 3  3  5  and C F = C F 2  2  (  X  LIST OF FIGURES  1.  The Boat and C h a i r Forms o f [ C F = C F M n ( C 0 ) ]  2.  ' H N.M.R. Spectrum o f ( C H ) S n C F C F H C F  2  3  3.  1  4.  1  9  3  1  9  3  2  F N.M.R. Spectrum o f t h e y-CF 3  7.  2  3  3  2  Group i n  3  3  R o t a t i o n a l Isomers o f ( C H ) S n C F C F H C F 3  1  9  3  3  (CH ) SnCF CFHCF 6.  3  2  F N.M.R. Spectrum o f t h e B-CF Group i n (CH ) S n C F C F H C F  5.  2  F N.M.R. Spectrum o f ( C H ) C F C F H C F 3  9  3  h  3  2  F N.M.R. Spectrum o f t h e a - C F (CH ) S n C F C F H C F 3  3  2  3  Group i n  2  3  8.  Possible Configuration o f (CH ) SnCF CFHCF  9.  ir-bonding Isomer o f (cis-CFH=CF)Mn(CO)  3  3  2  3  5  10.  J  1 1 9  11.  J  1 1 9  Sn-CH  3  v s . Vsn-C  f o r Some M e t h y l t i n Compounds  Sn-CH  3  vs. J C-H  3  13  f o r Some T r i m e t h y l t i n  Compounds 12.  §CH  3  vs. J  1 1 9  Sn-CH  and J C - H 13  3  3  f o r Some  T r i m e t h y l t i n Compounds 13.  §CH  3  v s . Radius o f X i n ( C H ) 3  3  SnX Compounds  14.  Sample C o l l e c t i o n C e l l s f o r t h e Gas Chromatograph  15.  High Vacuum D i s t i l l a t i o n  16.  Vacuum S u b l i m a t i o n Apparatus  17.  L i q u i d ^ p h a s e Chromatograph Column  18.  Apparatus  VCO Band I n t e n s i t i e s v s . E l u t i o n Volumes  xi  ACKNOWLEDGEMENTS  I wish t o express my s i n c e r e a p p r e c i a t i o n t o P r o f e s s o r Howard C. C l a r k who suggested t h i s r e s e a r c h guidance d u r i n g  topic,  and who has p r o v i d e d  constant  t h i s work.  Many thanks a r e extended t o Dr. John D. C o t t o n f o r many v a l u a b l e discussions, especially  I am a l s o i n d e b t e d 1 9  F  during  the p r e p a r a t i o n  o f this  manuscript.  t o Mrs. Nancy N. C y r f o r r e c o r d i n g the  N.M.R. s p e c t r a and f o r t h e d i s c u s s i o n s on t h e N.M.R. s p e c t r a o f  (CH ) jSnCFgCFHCF . 3  3  The  f i n a n c i a l a s s i s t a n c e o f t h e U n i v e r s i t y o f B r i t i s h Columbia,  who awarded me a U.B.C. Graduate F e l l o w s h i p  (1964-1965), i s a l s o  acknowledged.  L a s t , b u t not l e a s t , a p p r e c i a t i o n t o my w i f e throughout the years  I would l i k e t o express my h e a r t f e l t  f o r h e r p a t i e n t u n d e r s t a n d i n g and encouragement  o f study.  1  Sec. I  1.  GENERAL INTRODUCTION.  As l o n g ago as 1869 Ladenburg  (1) found t h a t the vapour d e n s i t y of  an e t h y l t i n compound at 225° corresponded to the formula T h i s was  the f i r s t  i n s t a n c e of an o r g a n o m e t a l l i c compound  a metal-metal bond b e i n g r e c o g n i z e d . mercury  (C H )gSn . 2  5  containing  The e x i s t e n c e of the  mercury-  bond i n the mercurous i o n and i n mercurous c h l o r i d e ,  has a l s o been known f o r a l o n g time  (2).  p o s s e s s i n g two or more metals d i r e c t l y  However, i n t e r e s t  linked  developed r a p i d l y o n l y i n r e c e n t y e a r s .  2  Cl-Hg-Hg-Cl, i n compounds  t o each o t h e r has  T h i s i s a t t r i b u t a b l e to the  unusual problems, both t h e o r e t i c a l and e x p e r i m e n t a l , which  such compounds  present. From the t h e o r e t i c a l p o i n t of view, d e s c r i p t i o n s have been g i v e n , i n m o l e c u l a r o r b i t a l terms, of the metal-metal bonding i n the metal k+  c l u s t e r s of complex h a l i d e s p e c i e s such as MogClg C o t t o n and Hass ( 3 ) .  Nyholm and coworkers  and R e C l 3  (4) have c l a s s i f i e d  c o n t a i n i n g m e t a l - m e t a l bonds i n t o f o u r main c l a s s e s condensed  o-  1 2  , by substances  ( i . e . , metals i n the  s t a t e , c o n c e n t r a t e d m e t a l compounds, compounds c o n t a i n i n g  s i n g l e c o v a l e n t metal-metal bonds, and m e t a l donor complexes), and have c o n s i d e r e d the r o l e p l a y e d by the e l e c t r o n c o n f i g u r a t i o n and  electro-  n e g a t i v i t y of the m e t a l atom i n the f o r m a t i o n o f c o v a l e n t metal-metal bonds.  A v e r y r e c e n t review (5) s u b s t a n t i a l l y c o v e r s the metal-metal  i n t e r a c t i o n i n t r a n s i t i o n metal On  complexes.  the e x p e r i m e n t a l s i d e , a t t e n t i o n has been l a r g e l y p a i d  syntheses and c h a r a c t e r i z a t i o n s o f new  to the  m e t a l - m e t a l bonded compounds (4 - 16),  most of which a r e o r g a n o m e t a l l i c i n n a t u r e .  That compounds h a v i n g bonding  Sec.  I  '  sequences i n v o l v i n g t h r e e (7, 8) o r f i v e d i f f e r e n t elements,  (9) metal atoms, o f t h r e e  have now been d e s c r i b e d i l l u s t r a t e s  c o m p l e x i t y , e.g.,  their possible  y\  \  ,QQ  O C - M Q  ^CO  CO  OC OC  CH  Mn  /  3  Sn —  \  OC  CO —  I CO  CH  Sn  Fe  \  OC  CO  <3_  Mo  / 3  CO  CO  CO  CO  oc  oc  A l a r g e number o f such mixed metal to t h e g e n e r a l e q u a t i o n Na ML  Fe-£>  x  Mo—CO  6  complexes can be o b t a i n e d a c c o r d i n g  (6, 17)  +  CI M'L  where M and M' a r e metals  »  LM-M'L  and L i s an a p p r o p r i a t e  +  NaCl  stablizing  In sharp c o n t r a s t t o t h e l a r g e number o f newly prepared m e t a l bonded compounds, o n l y l i t t l e  e f f o r t has been devoted  of the c h e m i c a l p r o p e r t i e s o f metal-metal  bonds.  ligand. metal-  t o t h e study  Some r e p r e s e n t a t i v e  r e a c t i o n s so f a r r e p o r t e d i n c o n n e c t i o n w i t h metal-metal  bonds a r e  summarized as f o l l o w s .  (a)  Cleavage  o f the m e t a l metal bonds w i t h a v a r i e t y o f r e a g e n t s .  S e v e r a l metal-metal v a r i e t y of reagents. metals,  bonds were found  Of t h e - b i m e t a l l i c compounds c o n t a i n i n g Group IV  (C H ) Si-Si(CgH ) g  5  3  t o be r e a d i l y c l e a v e d by a  5  3  (18) i s e a s i l y c l e a v e d by m e t a l l i c  which i s so r e a c t i v e t h a t even a v e r y s t a b l e , s i x membered r i n g compound [ ( C g H ) S i ] g can be c l e a v e d (12). 5  2  c l e a v a g e o f the s i l i c o n - g e r m a n i u m  lithium, silicon  Other examples a r e t h e  bond i n ( C H ) Si-Ge(CgHg) by l i t h i u m 2  5  3  3  (19) and the t i n - t i n bond i n h e x a m e t h y l d i t i n by oxygen, c h l o r i n e ( 2 0 ) ,  Sec. I  3  and by C F I (21 - 24). 3  Compounds c o n t a i n i n g bond(s) between a Group IV m e t a l and a t r a n s i t i o n metal were a l s o examined.  [(C H ) P] Pt[Ge(CgH ) ] 2  5  3  2  5  3  has been shown (25)  2  to be v e r y r e a c t i v e toward hydrogen c h l o r i d e , t o c l e a v e the two p l a t i n u m germanium bonds i n the m o l e c u l e , whereas the i r o n - t i n bond was to be v e r y r e s i s t a n t (CO)^FetPb(CgH ) ] 5  3  l e a d bonds, g i v i n g The study was  2  t o f i s s i o n by the same r e a g e n t .  (26)  Treatment of  w i t h m e r c u r i c c h l o r i d e causes breakage of the i r o n ( C g H ) P b C l and a p o l y m e r i c compound 5  3  [HgFe(CO) ^ ^ ( 2 7 ) .  a l s o extended t o compounds c o n t a i n i n g two Group V atoms  d i r e c t l y bonded; e.g., the a r s e n i c - a r s e n i c bond phosphorus bond  (b)  found  (28) and the phosphorus-  (29) were found to be c l e a v e d by  CF I. 3  Cleavage o f bonds o t h e r than the m e t a l - m e t a l bond. The t i n - i r o n bond i n (CgH ) Sn-Fe (CO) ( T T - C H ) 5  3  2  5  5  (26) i s so s t a b l e  t h a t the c a r b o n - t i n bond r a t h e r than the t i n - i r o n bond i s c l e a v e d by hydrogen c h l o r i d e ,  forming compounds such as C l S n - F e ( C 0 ) ( I T - C H ) . 3  Similar s t a b i l i t y  of the tin-manganese bond was  (CgH ) Sn-Mn(C0)  (26).  5  3  5  2  5  a l s o observed i n  Treatment o f t h i s complex w i t h  triphenylphosphine  causes d i s p l a c e m e n t of carbon monoxide, w h i l e w i t h c h l o r i n e is  (c)  5  CI Sn-Mn(C0) 3  5  obtained.  Cleavage o f m e t a l - m e t a l bonds w i t h h e a t . The y e l l o w - w h i t e compound  (CH Hg) F e ( C 0 ) 3  2  l+  (30) i s v e r y u n s t a b l e . On  h e a t i n g t o ~ 8 0 ° , o r even on s t a n d i n g f o r a s h o r t p e r i o d , t h i s undergoes d i s p r o p o r t i o n a t i o n to g i v e the s t a b l e p o l y m e r i c [HgFe(CO) J n .  compound  derivative  The molybdenum-iron bond i n ( T T - C H ) (CO) Mo-Fe(C0) (IT-C H )  (31) i s r e l a t i v e l y  5  s t a b l e to h e a t , but i t may  5  decompose  3  2  5  5  under more  v i g o r o u s c o n d i t i o n s , l e a d i n g to the c l e a v a g e of the molybdenum-iron bond.  4  Sec.  I  (c)  Carbon i n s e r t i o n s i n t o the metal-metal bonds. I t has  been shown, f i r s t by  u n i t i n s e r t s i n t o the compounds c o n t a i n i n g and  t i n - t i n bond  to compounds c o n t a i n i n g  has  and  Clark,  t h a t the  carbon-carbon  (32), a s i m i l a r r e a c t i o n to those of  phosphorus-phosphorus bonds, w i t h a c e t y l e n e  tetrafluoroethylene  While the  Beg  (34).  Later,  (33)  t h i s type of r e a c t i o n s was  a r s e n i c - a r s e n i c bonds (35,  extended  36).  c h e m i c a l b e h a v i o u r of many metal-metal bonded compounds  yet  to be  examined i n d e t a i l ,  already  being  developed. A  important i n d u s t r i a l a p p l i c a t i o n s  platinum-tin  complex, which i s prepared  t r e a t i n g stannous c h l o r i d e s o l u t i o n w i t h c h l o r o p l a t i n i c a c i d , has shown to be  a very  e f f e c t i v e c a t a l y s t i n the (37), and  pent-l-ene to a m i x t u r e of c i s - and  trans-pent-2-ene  i n the  isomerization (38).  stannous c h l o r i d e .  Cross and  Glockling  (25) have  2  and  has  the  germanium-hydrogen bonds.  In a d d i t i o n to the e x t e n s i v e  a p p l i c a t i o n s of C o ( C O ) 2  (39), C a l d e r a z z o the c a r b o n y l a t i o n  e x c l u s i v e l y to 1 , 3 - d i a l k y l u r e a s . Ziegler-type  2  reported  room temperature w i t h o u t added c a t a l y s t , g i v i n g  both platinum-hydrogen and  also catalyzes  coordination  of c l e a v a g e d i r e c t l y by m o l e c u l a r hydrogen.at  atmospheric p r e s s u r e  hydroformylation  of  to p l a t i n u m atom which i n t u r n i s  t h a t the platinum-germanium bond i n [ ( C 2 H 5 ) 3 P ] P t [ G e ( C g H s ) 3 ] unique p r o p e r t y  been  Cramer et a l .  (37) have suggested t h a t t h i s b e h a v i o u r i s a t t r i b u t a b l e to the  promoted by  by  f a c i l e homogeneous hydro-  g e n a t i o n of e t h y l e n e - a n d a c e t y l e n e  of the o l e f i n s through ir-bonding  are  system  (40)  has  8  as a c a t a l y s t i n  r e c e n t l y found t h a t  2  of primary a l i p h a t i c amines almost More r e c e n t l y , a  cobalt-containing  ( i . e . , p r o d u c t s from treatment of c o b a l t  w i t h t r i e t h y l a l u m i n u m ) was  Mn (C0)  shown (41)  stearate  to r e a c t at room temperature w i t h  carbon monoxide, y i e l d i n g a c y l c o b a l t c a r b o n y l  derivatives.  1 0  Sec.  5  I  The  high  chemical  reactivity, particularly  towards such  important  i n d u s t r i a l s t a r t i n g m a t e r i a l s as the o l e f i n s e t c . , of metal-metal bonds i s a t t r a c t i n g c o n s i d e r a b l e a t t e n t i o n and potential.  A systematic  a s e r i e s of o l e f i n s was  i n v e s t i g a t i o n of some of t h e i r r e a c t i o n s w i t h t h e r e f o r e undertaken i n the hope t h a t  would p r o v i d e b a s i c i n f o r m a t i o n on and  a l s o throw some l i g h t The  first  the c h e m i s t r y  on t h e i r c a t a l y t i c  compound s t u d i e d i s one  compounds', and  has  (CH3)3Sn-Sn(CH ) . 3  3  two  appears to have g r e a t  of m e t a l - m e t a l bonds,  activity.  of the s i m p l e s t m e t a l - m e t a l  t i n atoms d i r e c t l y bonded, namely  ethylene,  CI, or Br, and  are d e s c r i b e d .  as w e l l as w i t h  be used i n d e t e r m i n i n g  the course  because of the c u r r e n t i n t e r e s t and  2  1,1-difluoroethylene  and  of the r e a c t i o n s , and  i n , and  since  a d d i t i o n a l p h y s i c a l methods  high s t a b i l i t y  extended to the r e a c t i o n s of  pentacarbonylmanganese,  (CH )3Sn-Mn(CO) , w i t h 3  secondly  of,  fIuorocarbons  i n Section I I I .  the second r e a c t a n t f o r s e v e r a l r e a s o n s :  m e t a l - m e t a l bond;, secondly.,  In the course prepared.  As  these  of these  T h i s compound was firstly,  i t i s c l o s e l y r e l a t e d to  t h i r d l y , i t would p r o v i d e new which i s of c u r r e n t i n t e r e s t  trimethyltinthe same s e r i e s of  5  f l u o r o - o l e f i n s , as d e s c r i b e d  and  type CF =CFX, where  t h e i r d e r i v a t i v e s (42). T h i s work was  as  this  F l u o r i n a t e d o l e f i n s were chosen, f i r s t l y  the presence of the f l u o r i n e atoms a l l o w s to  hexamethylditin  In S e c t i o n I I of t h i s t h e s i s , the r e a c t i o n s of  compound w i t h a number of f l u o r o - o l e f i n s of g e n e r a l X = F, C F 3 , H,  this  i t has  only  i n connection  with  one  hexamethylditin;  compounds c o n t a i n i n g the m e t h y l t i n  group  spectroscopic studies.  i n v e s t i g a t i o n s , many new  a l s o showed i n t e r e s t i n g  compounds were  features i n their  N.M.R. s p e c t r a , S e c t i o n IV i s devoted to a d i s c u s s i o n of  spectroscopic properties.  chosen  infrared their  6  Sec. I I - A  II.  A.  REACTIONS OF HEXAMETHYLDITIN WITH FLUORO-OLEFINS.  Introduction.  H e x a m e t h y l d i t i n , o b t a i n e d from the r e d u c t i o n o f halides  with m e t a l l i c  r e p o r t e d on the b a s i s  trimethyltin  sodium i n l i q u i d ammonia s o l u t i o n , was  first  o f c r y o s c o p i c m o l e c u l a r weight measurements i n  d i l u t e s o l u t i o n as a " f r e e  t r i m e t h y l t i n group" by Kraus and S e s s i o n s  i n 1925 ( 2 0 ) . F o l l o w i n g the s y n t h e s i s of t h i s compound, these workers performed a s e r i e s o f s t u d i e s In l i q u i d  ammonia, the " f r e e  c o n c e r n i n g i t s simple c h e m i c a l t r i m e t h y l t i n group" r e a c t s  properties.  w i t h sodium as  follows:  ( C H ) S n + Na 3  When the " t r i m e t h y l t i n "  (CH ) SnNa.  3  3  3  i s allowed t o come i n c o n t a c t w i t h a i r ,  oxidation  takes p l a c e a c c o r d i n g t o the e q u a t i o n :  2(CH ) Sn + 1 0 2 3  3  2  ^  (CH ) SnOSn(CH ) 3  3  3  It reacts  r e a d i l y w i t h the halogens a t room temperature.  were a l s o  found t o occur between t h i s compound and m e t a l l i c  With m e r c u r i c c h l o r i d e trimethyltin  chloride  i n ether, a rapid  reaction  and mercury, i n d i c a t i n g that  is sufficiently electropositive In 1941, M o r r i s and Selwood  3  Reactions halides.  occurs to y i e l d "trimethyltin"  t o reduce mercury from i t s c h l o r i d e . (43) r e p o r t e d t h a t ,  i n view o f the  magnetic measurement r e s u l t s , t h e t r i m e t h y l t i n group does not e x i s t as  the monomer i n d i l u t e benzene s o l u t i o n ,  relatively  large  and suggested that the  s i z e o f t h e t i n atom g r e a t l y  reduced t h e s t a b i l i t y  Sec.  of  II-A  7  (CH ),Sn f r e e - r a d i c a l as compared w i t h 3 q 3  suggestion  i s consistent with  the r e s u l t  carbon f r e e - r a d i c a l s . found by Ladenburg  This  (1) as l o n g ago  as 1869 t h a t the vapour d e n s i t y o f h e x a e t h y l d i t i n a t 225° corresponded to the formula Recently,  (C2H ) Sn . 5  6  2  i t was d i s c o v e r e d  independently  by two groups o f workers  (21, 22, 23) that the t i n - t i n bond o f h e x a m e t h y l d i t i n by t r i f l u o r o i o d o m e t h a n e  according  (CH3) Sn-Sn(CH )3 + C F I 3  3  I t was s t a t e d cleavage  Heat  3  80°  *  can be c l e a v e d  t o the e q u a t i o n :  (CH ) SnCF 3  3  +  3  (CH ) SnI. 3  3  (23) that a f r e e - r a d i c a l mechanism i n i t i a t e d by  homolytic  o f the t i n - t i n bond i n the above r e a c t i o n i s u n l i k e l y , s i n c e  there i s no evidence instead a molecular  t h a t such d i s s o c i a t i o n occurs  on h e a t i n g , and  mechanism (or f o u r - c e n t r e d system) was p o s t u l a t e d ,  CF I  CF -f-I  3  3  (CH ) Sn-Sn(CH ) 3  3  3  I I I  ' I I •  ,I (CH ) Sn- ^Sn(CH )  3  3  3  7  3  3  I (CH ) SnCF 3  L a t e r , a r a p i d r e a c t i o n was a c h i e v e d  3  3  +  by u l t r a v i o l e t  (CH ) SnI. 3  i r r a d i a t i o n of  the s i m i l a r r e a c t i o n m i x t u r e a t 25° f o r s i x hours ( 2 4 ) .  These c o n d i t i o n s  were much more m i l d than those u s u a l l y r e q u i r e d f o r f r e e - r a d i c a l from t r i f l u o r o i o d o m e t h a n e ,  formation  and hence i t was suggested t h a t a r a d i c a l - c h a i n  mechanism might be o p e r a t i n g , p r o b a b l y t i n - t i n bond as the f i r s t  3  step,  i n v o l v i n g homolytic  f i s s i o n o f the  Sec.  II-A  8 U.V. (CH ) Sn-Sn(CH ) 3  3  3  i +  3  3  (CH ) Sn-Sn(CH ) 3  Alkyltin  3  3  3  3.  (CH ) Sn + CF I 3  2(CH ) Sn  ^  3  (CH ) SnCF 3  s»  3  3  3  (CH ) SnI+ 3  + I  3  (CH ) Sn,  3  3  etc.  3  compounds are r e a c t i v e toward Lewis a c i d s .  For  example,  R S n compounds r e a c t w i t h t i n t e t r a h a l i d e s to g i v e a l k y l t i n h a l i d e s  (44).  4  Boron t r i c h l o r i d e exchanges c h l o r i n e atoms f o r a C H 2 = CHgroup from t i n (45).  S i m i l a r l y , BF  (CH ) Sn(CF BF ), leading 3  low  3  3  yield  3  attacks  to s a l t s of the  of hexamethylditin  trifluoride  3  (CH ) SnCF 3  (CF3BF3)~  from the r e a c t i o n of  i n d i e t h y l e t h e r was  3  ion  3  or a C F 2 = to a f f o r d  (46).  Thus  3  a t t r i b u t e d to the  3  catalytic  disproportion-  w i t h the Lewis a c i d , p r o d u c i n g y e l l o w  d i m e t h y l t i n polymers and  t e t r a m e t h y l t i n , and  3  (CH )i+Sn + 2 B F  3  3  3  3  (CH ) SnBFi+ 3  3  (CH ) Sn-Sn(CH ) 3  then the l a t t e r  to g i v e C H B F 2 and  ^  (CH ) Sn +  »  (CH ) SnBFi  3  3  coloured  i n turn (47).  3  l[Sn(CH ) ]n n  4  3  the  ( C H ) S n N a w i t h boron  a t i o n of h e x a m e t h y l d i t i n  r e a c t s w i t h boron t r i f l u o r i d e  CF-  3  +  +  2  CH BF . 3  2  S i m i l a r d i s p r o p o r t i o n a t i o n of h e x a e t h y l d i t i n a l s o o c c u r s under m i l d c o n d i t i o n s i n the presence of c a t a l y s t s , such as anhydrous aluminum c h l o r i d e , to g i v e  the i n t e n s e l y c o l o u r e d  Photolysis  light  polymers  (48).  of h e x a e t h y l d i t i n a l s o a f f o r d s , i n a d d i t i o n  gaseous h y d r o c a r b o n s , the violet  organotin  coloured  t i n polymers  (49).  Thus under  a t room temperature f o r 80 hours, the c o l o u r  changed g r a d u a l l y solid  from y e l l o w r e s i d u e was  to r e d , and  The  coloured  shown, on  the  i n t e r a c t i o n with benzoyl peroxide,  finally  to  to an  of  hexaethylditin  intense  cherry-red.  the b a s i s of the p r o d u c t s  to be  a polymeric  ultra-  organotin  from  9  Sec. I I - A  c o n t a i n i n g l o n g c h a i n s o f tin atoms (49). (C H ) Sn-Sn(C H ) 2  5  3  2  5  ~ *  3  2(C H ) Sn 2  ( C H ) S n + (C H )3Sn-Sn(C H )3 2  5  3  2  5  2  5  3  ^  5  (C H KSn + (C H ) Sn-Sn(C H ) 5  2  (C H ) Sn-Sn(C H ) 2  5  3  2  5  + (C H ) Sn-Sn(C H )  2  2  (C H ) 2  2  5  5  3  2  5  2  5  2  3  2  5  2  3  Sn-Sn(C H ) -Sn(C H )  3  5  2  5  3  + (C H ) Sn, e t c . 2  5  3  A l t e r n a t i v e l y , r u p t u r e o f the Sn-C bond may o c c u r ,  f o l l o w e d by f o r m a t i o n  of the Sn-Sn bond (C H )3Sn-Sn(C H )3 2  5  2  ^  5  (C H )3Sn-§n(C H ) 2  (C H ) Sn-Sn(C H ) 2  5  3  2  5  2  5  2  + (C H ) Sn-Sn(C H ) 2  5  3  2  5  3  5  3  2  5  2  2  2  + C H 2  5  &  (C H ) Sn-Sn(C H ) -Sn(C H ) -Sn(C H ) 2  5  5  2  2  5  3  + C H , etc. 2  5  The s u b j e c t o f t h i s s e c t i o n was o r i g i n a l l y i n i t i a t e d by the work o f Beg and C l a r k with  (32). These workers s t u d i e d the r e a c t i o n o f h e x a m e t h y l d i t i n  t e t r a f l u o r o e t h y l e n e under u l t r a v i o l e t i r r a d i a t i o n , but f a i l e d t o  p u r i f y the r e a c t i o n product no i n f o r m a t i o n r e g a r d i n g  (an o i l ) s a t i s f a c t o r i l y and,  consequently,  the c h a r a c t e r i z a t i o n o f the product was  provided. In the p r e s e n t work, t h i s r e a c t i p n was repeated were c a r e f u l l y s e p a r a t e d  and the products  and c h a r a c t e r i z e d unambiguously.  T h i s was  done by the u s u a l methods o f vacuum f r a c t i o n a t i o n , d i s t i l l a t i o n , and s u b l i m a t i o n , and by the e x t e n s i v e use o f gas chromatography i n c o n j u n c t i o n with  infrared,  fractions.  *H and F N.M.R. s p e c t r o s c o p i c s t u d i e s o f the v a r i o u s W  The work was f u r t h e r extended by the study o f r e a c t i o n s  Sec. I I - A  w i t h some unsymmetrical f l u o r o - o l e f i n s of the type CF =CXY. 2  hoped that the  I t was  t h i s might throw some l i g h t on the q u e s t i o n o f o r i e n t a t i o n  o l e f i n d u r i n g the r e a c t i o n s ,  and hence h e l p t o e l u c i d a t e the  b e h a v i o u r o f the t i n - t i n bond under such r e a c t i o n formation of f r e e - r a d i c a l s or four-centred  conditions,  systems.  viz.,  Sec.  B.  11  II-B-1  R e s u l t s and D i s c u s s i o n .  1.  Reaction with  In  tetrafluoroethylene.  a t y p i c a l r e a c t i o n , equimolar q u a n t i t i e s of h e x a m e t h y l d i t l n and  tetrafluoroethylene i n a s i l i c a Hanovia u l t r a v i o l e t summarized i n  tube were i r r a d i a t e d w i t h a 200-watt  lamp at 75° f o r f o u r hours.  The r e s u l t s are  TABLE 1.  C l e a r l y , under these c o n d i t i o n s , r e a c t i o n was based on the r e c o v e r e d h e x a m e t h y l d i t i n . consumed, 13% of the r e a c t a n t appeared t e t r a m e t h y l t i n which must r e s u l t hexamethylditin  (49).  about  60%  complete,  Of the amount of the  ditin  as decomposition p r o d u c t s , m a i n l y  from the photochemical decomposition of .  That t h i s decomposition i s one o f the  secondary  r e a c t i o n s i s confirmed by the f o r m a t i o n o f a d e e p l y c o l o u r e d i n v o l a t i l e r e s i d u e , which was  i n t u r n shown s p e c t r o s c o p i c a l l y to be p o l y m e r i c  o r g a n o t i n compounds.  The o t h e r decomposition p r o d u c t , produced  s i d e r a b l y l a r g e q u a n t i t y , was  i n con-  t r i m e t h y l t i n f l u o r i d e , which c e r t a i n l y  arose from an a - f l u o r i n e atom e l i m i n a t i o n from  fluorocarbon-tin  compounds (23, 50). Two  distinct  types of p r o d u c t s , a l l c o l o u r l e s s l i q u i d s , were  formed  d u r i n g the r e a c t i o n , namely, the adducts, a [l,2-bis(trimethyltin)tetrafluoroethane 1,4-bis(trimethyltin)octafluorobutane, the hydrogen  (a)  a b s t r a c t i o n products  , (CH )3SnCF2CF Sn(CH ) , 3  2  3  and  3  (CH ) SnCF2(CF2)2CF Sn(CH ) ], 3  3  2  3  3  [(polyfluoroalkyl)trimethyltin,  For b r e v i t y , compounds w i l l be named c o r r e c t l y at t h e i r f i r s t i n t r o d u c t i o n i n the t e x t , and w i l l t h e r e a f t e r be r e p r e s e n t e d by t h e i r chemical f o r m u l a s .  and  Sec. II-B-1  12  TABLE 1  REACTION RESULTS OF ( C H ) S n 3  2  2 >  Exp. 2  Exp. 3  Exp. 4  gram (mmole)  gram (mmole)  gram (mmore)  gram (mmole)  6.1  6.8  7.17  7.0  (18.3)  (20.8)  (21.9)  (21.4)  1.85 (18.5)  2.2 (21.7)  2.2 (22.0)  2.2 (22.0)  C a r i u s tube  Pyrex  Pyrex  Silica  Silica  Temperature  25°  25°  25°  75°  Time (hour)  17  60  31  gram (%)  gram (%)  gram (%)  gram (%)  4.7 (77.0)  3.8 (56.0)  4.5 (63.0)  2.6 (37.0)  0.80 (43.0)  0.78 (35.0)  0.11 (5.0)  Trace  3  6  CF =CF 2  Reaction Conditions  AND. C F = C F  2  Exp. 1  (CH ) Sn Starting Material  6  2  (CH ) Sn 3  2  6  2  4  Recovery CF =CF 2  2  Continue t o next page  TABLE 1 (continued)  CF =CF-CF=GF 2  Exp. 1  Exp. 2  Exp. 3  Exp. 4  gram (mmole)  gram (mmole  gram (mmole)  gram I (mmole) J  (0.1)  trace  (0.15)  2  Alkane  Other  -2 6 Trace F  CF =CFCF (0.1)  olefins  2  Product  3  2  2  (CH ) SnCF (CF ) CF H 3  3  2  2  2  2  3  3  2  2  3  0.19 (0.72)  0.05 (0.19)  0.05 (0.19)  0.12 (0.45)  0.31 (0.85)  0.1 (0.27)  0.1 (0.27)  0.08 (0.22)  0.2 (0.43)  0.2 (0.43)  0.6 (1.30)  Trace  Q.1 (0.23)  0.3 (0.70)  S 3  (CH ) SnCF (CF ) CF Sn(CH ) 3  3  2  2  2  a  3  3  2  2  1 2  2  3  3  0.3 (0.29) 0.08 (0.44)  (CH ) SnF 3  0.3 (0.55)  a 3  (CH ) SnCF (CF ) CF Sn(CH ) 3  3  3  0.3 (1.70)  (CHg^SnCF^CFzKCFJH*  (CH ) S n C F C F S n ( C H )  2  F  0.16 (0.91)  3  3  CF =CFCF (1.10)  3 8 (0.05)  0.03 (0.18)  (CH ) L.Sn  (CH ) SnCF CF H  3  C  0.5 (0.49)  0.1 ('ca. 0.1)  1 )1 g-  1.3 (7.1) 9*  poly.  CF =CF 2  2  b  B l a c k i s h brown o i l Metallic  t i n formed  0.35  0.05  None  b  b  None  None  (a)  Q u a n t i t i e s o f t h e s e compounds were e s t i m a t e d from i n f r a r e d , N.M.R. and gas chromatographic d a t a o f t h e i r m i x t u r e .  (b)  Y i e l d was not r e c o r d e d .  (c)  Recovered as a s u b l i m a t i o n  residue.  0.8  C  None  Sec. II-B-1  14  (CH3)3Sn(CF CF )nH 2  2  (CH ) Sn(CF CF ) H 3  3  2  2  3  >  where n = 1, 2, or 3 ] .  were so s i m i l a r  The two adducts and  i n the v o l a t i l i t i e s  s e p a r a t i o n c o u l d not be a c h i e v e d by d i s t i l l a t i o n . difficulty,  that  their  Despite this  e v i d e n c e f o r the presence o f these compounds i n the m i x t u r e  was o b t a i n e d by examination o f the i n f r a r e d , H and 1  1 9  F N.M.R. s p e c t r a , by  gas chromatographic a n a l y s e s , and from the e l e m e n t a l a n a l y s e s (see Sec. VI-D-2). The compounds, ( C H ) S n ( C F C F ) H , 3  isolated  3  2  2  n  n = 1 and 2, were  c h r o m a t o g r a p h i c a l l y i n a pure s t a t e , and t h e i r s t r u c t u r e s were  e s t a b l i s h e d by s p e c t r o s c o p i c data (Sec. IV-A, B) which a r e c o n s i s t e n t w i t h those of t h e analogous compounds (CH ) Sn(CF CF H) 3  2  The because  2  2  2  ( C H ) S n H ( C F C F H ) and 3  2  2  2  (51).  f o r m a t i o n o f these p o l y f l u o r o a l k y l d e r i v a t i v e s was r a t h e r they r e q u i r e a b s t r a c t i o n o f hydrogen, presumably  surprising,  from CH groups. 3  A s e r i e s o f experiments was performed under d i f f e r e n t e x p e r i m e n t a l c o n d i t i o n s t o determine some o f the f a c t o r s i n f l u e n c i n g the r a t e o f reaction,- and the y i e l d s .  The c o n d i t i o n s , t o g e t h e r w i t h the r e s u l t s , a r e  summarized i n TABLE 1. Firstly, investigated. the  t h e e f f e c t o f the wavelength o f the i r r a d i a t i n g l i g h t  was  I t immediately became c l e a r t h a t the ratf?. o f r e a c t i o n a t  same temperature i s almost t w i c e as f a s t i n a s i l i c a  tube  (transparent  o  to  light  o f wavelength  l i g h t o f wavelength  >2200 A) than i n a Pyrex tube ( t r a n s p a r e n t to >3000A) (Exp. 2 and 3 i n TABLE 1 ) .  e f f e c t o f temperature was determined.  Secondly, the  When the temperature was  from 25° t o 75° (Exp. 3 and 4 ) , the r e a c t i o n under i r r a d i a t i o n proceeded much f a s t e r , i n d i c a t i n g  increased (> 2200A)  the important i n f l u e n c e o f temperature  on the r e a c t i o n r a t e , a l t h o u g h another r e a c t i o n a f f o r d e d no p r o d u c t s when c a r r i e d out a t 100° w i t h o u t i r r a d i a t i o n  (see Sec. I I - B - 3 ) .  I t s h o u l d be  Sec.II-B-1  15  noted t h a t , at the h i g h e r (CH3) 3S11CF2CF2H and  the  temperature, 75°,  1:1  adduct were improved markedly.  r e l a t i v e abundance of adducts c o n t a i n i n g a l t h o u g h the o v e r a l l r e a c t i o n was The of the Van  der Kerk and  hexaphenylditin  coworkers at 247  mu  (52)  which was  study, the a b s o r p t i o n  below 210  mu.  ultraviolet  increased,  i s u n d e r s t a n d a b l e i n terms s p e c t r a of d i t i n d e r i v a t i v e s .  ascribed  apparently  to the  l i e s below 215  (013)3 Sn  s u g g e s t i o n s may  hexamethylditin  f o r the  be made.  phase may  ( c . f . , b.p.,  be  was  In  the  observed  i s thus l i k e l y  under  formation  e f f e c t of temperature cannot be  At  room temperature, the- extent  low  due  182°).  of the h e x a m e t h y l d i t i n  r e a c t i o n i n the gas  of  w i l l be h i g h e r  of  temperatures, the vapour leading  ( C H 3 ) 3 S n ( C F 2 C F 2 ) n H does not  e v i d e n c e f o r the e x i s t e n c e  to a homogeneous  the  first  (49).  r a d i c a l a t t a c k of f l u o r o - o l e f i n s on  step, since there  A l s o , there  formation  i s no  i s no  report  the carbon-hydrogen bond, so  the a b s t r a c t i o n of hydrogen from CH3 groups by The  i n v o l v e the  of atomic or m o l e c u l a r hydrogen i n the  d e c o m p o s i t i o n of h e x a m e t h y l d i t i n  is unlikely.  of  to the h i g h b o i l i n g p o i n t  At h i g h e r  given,  phase.  f r e e r a d i c a l H C F 2 - C F 2 as  followed  mu.  light.  r e a c t i o n i n the gas  itself  maximum f o r  t i n - t i n bond system.  maximum f o r h e x a m e t h y l d i t i n  Formation of f r e e - r a d i c a l s  A d e f i n i t e explanation  of the  much  c o r r e s p o n d i n g maximum f o r h e x a b u t y l d i t i n , which i s  present  The  s e v e r a l C2F4 u n i t s was  have observed an a b s o r p t i o n  to s h o r t e r wavelength and  pressure  the  much l e s s complete.  shifted  two  25°,  maxima of the u l t r a v i o l e t  They a l s o noted the  but  At  e f f e c t of the wavelength of l i g h t  absorption  the y i e l d s of  possibility  that  by hydrogen a b s t r a c t i o n , i . e . ,  photoof f r e e that  tetrafluoroethylene  the adducts decompose,  Sec.  II-B-1  16  (CH3) SnCF2(CF CF )nCF Sn(CH )3 3  2  2  2  ^  3  |(CH ) SnCF (CF CF )nCF ; 3  3  2  F atom m i g r a t i o n  \|/  ( C H ) 3 S n C F (CF2C.F2 )n-!CF CF=CF 3  2  c o u l d a l s o be  2  or CF -CFH 2  FSn(CH )3  +  2  3  H atoms a b s t r a c t i o n V (CH ) S n C F ( C F C F ) n C F H  2  3  e l i m i n a t e d because p r o d u c t s  c o n t a i n a -CF=CF2 The  2  3  2  from  2  2  such a r o u t e  involving  t h a t two  the r a d i c a l  adducts,  p r i n c i p a l r e a c t i o n s must occur,  (CH ) SnCF CF . 3  3  2  2  2  This r a d i c a l  these s t e p s may w i t h one  the 1:1  adduct  and  another  a l t e r n a t i v e l y be preceded  The  (CH ) Sn 3  3  radicals  ab-  hexamethylditin  (CH ) Sn radical. 3  3  by combination  o r more t e t r a f l u o r o e t h y l e n e m o l e c u l e s  weight d e r i v a t i v e s .  to assume  the CH3 group, l e a d i n g to the f o r m a t i o n of  ( t e t r a f l u o r o e t h y l ) t r i m e t h y l t i n , or a t t a c k s another giving  both  then e i t h e r p a r t i c i p a t e s i n hydrogen  s t r a c t i o n , presumably from  molecule  1  I t i s thus r e a s o n a b l e  2  at t h i s stage t h a t t h i s s p e c i e s i s formed by the a t t a c k of on C F = C F .  should  group.  2  f o r m a t i o n of the above p r o d u c t s , as w e l l as the  o b v i o u s l y suggested  2  o v e r a l l r e a c t i o n s by  (CH3) SnCF CF  of  3  g i v i n g higher  these two  Both of 2  molecular  r o u t e s can  be  d e s c r i b e d i n terms of the f o l l o w i n g e q u a t i o n s ,  (CH )3Sn-Sn(CH ) 3  3  2  3  Initiation:  (CH )3Sn + CF2=CF2  Propagation:  ( C H ) S n C F 2 C F 2 + CF2=CF2  Chain  *  3  3  3  3  2  2  3  3  (CH ) S n C F C F 3  3  2  2  (CH ) SnCF CF2CF2CF2,  »  3  transfer: (a) (CH ) S n ( C F C F V  (CH ) Sn  3  + (CH ) Sn-Sn(CH ) 3  3  3  *  3  (CH ) S n ( C F C F ) S n ( C H ) 3  or  (b)  (CH ) Sn(CF CF ) 3  3  2  2  n  +  3  2  2  -C-H  etc.  2  3  n  3  3  + (CH ) Sn, etc. 3  3  * (CH ) Sn(CF CF ) H + 3  3  2  2  n  ^C,  etc.  2  Sec.  II-B-1  17  As can be seen from  the above e q u a t i o n s , the p r o p a g a t i o n step w i l l  favoured by c a r r y i n g out the r e a c t i o n a t room temperature  be  because of  the h i g h e r p r o p o r t i o n of t e t r a f l u o r o e t h y l e n e i n gas phase, where most of the r e a c t i o n takes p l a c e , l e a d i n g to an i n c r e a s e i n the v a l u e s of n. At h i g h e r temperatures,  the vapour p r e s s u r e of h e x a m e t h y l d i t i n w i l l  i n c r e a s e d which f a v o u r s the c h a i n t r a n s f e r r e a c t i o n s , thus the p r o d u c t s w i t h lower number of n. the e x p e r i m e n t a l r e s u l t s .  S i m i l a r l y , i n the photochemical  2  2  w i t h n = 1.  none of the l o n g e r carbon c h a i n p r o d u c t s .  irradia-  e x c l u s i v e l y with  However, i t i s a l s o  t h a t under these more v i g o r o u s c o n d i t i o n s , decomposition  Although  reaction,  (180°) w i t h u l t r a v i o l e t  t i o n , the compounds w i t h n = 1 might be formed almost  f l u o r i d e and  controlled  the compound  I t i s p o s s i b l e f o r the p r e s e n t  t h a t a t the b o i l i n g p o i n t of the d i t i n  a d d i t i o n of  the r e a c t i o n was  the r a t i o of the r e a c t a n t s t o g i v e m a i n l y  SiCl3[CF CF ]nH  yielding  T h i s argument i s i n a c c o r d w i t h  t r i c h l o r o s i l a n e to t e t r a f l u o r o e t h y l e n e (53), by f i x i n g  be  likely  to t r i m e t h y l t i n  f l u o r o c a r b o n s would be q u i t e e x t e n s i v e . the p r e s e n t r e s u l t s have shown t h a t u l t r a v i o l e t  i r r a d i a t i o n markedly a f f e c t s the c o u r s e of the r e a c t i o n , t h e r e i s s t i l l no d e f i n i t e evidence t o exclude a m o l e c u l a r , f o u r - c e n t r e d type of mechanism. - Furthermore,  the problem of the mechanism of t h i s  i n v o l v i n g the d i r e c t i o n of r a d i c a l - a t t a c k i s a l s o a matter Q u a l i t a t i v e i n f o r m a t i o n might r e s u l t  p o l a r i n f l u e n c e of the o l e f i n , as w e l l as any apparent.  of u n c e r t a i n t y .  from an i n v e s t i g a t i o n of the  a d d i t i o n of h e x a m e t h y l d i t i n to unsymmetrical  become  addition  f l u o r o - o l e f i n s , s i n c e any s t e r i c e f f e c t , may  then  Sec.  II-B-2  2.  18  Reaction with hexafluoropropene.  Four experiments were performed  under d i f f e r e n t c o n d i t i o n s and the  r e s u l t s a r e summarized i n TABLE 2.  I t i s apparent t h a t the most  f a v o u r a b l e c o n d i t i o n s are those of Exp, 1 i n which the two p r i n c i p a l products (CH ) Sn(C F )nH 3  3  3  and  6  (CH ) Sn(C F )nSn(CH ) 3  were formed  almost  3  3  6  3  where n = l  3  exclusively.  At 90° (Exp. 2) the y i e l d of the 1:1 adduct was decreased  markedly  due to d e c o m p o s i t i o n , w h i l e a t 25° (Exp. 4) the f o r m a t i o n of the 1:1 was almost n e g l i g i b l e . Exp;  adduct  That decompositions o c c u r r e d more r a p i d l y i n  2 i s confirmed by the i n c r e a s i n g y i e l d of t e t r a m e t h y l t i n and by  the d e c r e a s i n g y i e l d the Pyrex tube  of (CH ) Sn(C Fg)H. 3  3  The r e a c t i o n c a r r i e d out i n  3  (Exp. 3) a f f o r d e d o n l y a t r a c e of adducts.  i n d i c a t e s the important e f f e c t o f u l t r a v i o l e t r e a c t i o n of h e x a m e t h y l d i t i n w i t h  This obviously  l i g h t and heat on the  hexafluoropropene.  (1,1,2,3,3,3-Hexaf l u o r o p r o p y l ) t r i m e t h y l t i n j(CH ) S n C F C F (CF ) H and 3  1,2-bis(trimethyltinhexafluoropropane, c o l o u r l e s s l i q u i d s and f a i r l y  3  2  3  t  ( C H ) S n C F C F ( C F ) S n ( C H ) , both 3  3  2  3  3  3  s t a b l e i n a i r , were p u r i f i e d by gas  chromatography and vacuum d i s t i l l a t i o n , r e s p e c t i v e l y .  These two p r o d u c t s  were r e a d i l y c h a r a c t e r i z e d s p e c t r o s c o p i c a l l y as w i l l be d e s c r i b e d i n f u l l d e t a i l i n Sec. IV-A,B. The compound,  (CH ) Sn(C Fe)H, 3  3  may have two p o s s i b l e isomers, based  3  on the s t r u c t u r e of the r e a c t a n t C F = C F C F , 2  namely ( C H ) S n C F C F ( C F ) H 3  3  2  3  HCF CF(CF )Sn(CH ) 2  3  3  3  3  (I) and (II)  Sec.  II-B-2  19  TABLE 2  REACTION RESULTS OF ( C H ) S n 3  -  Starting Material  (CH ) Sn  2  CF =CFCF  3  3  6  2  Carius  tube  6  2  AND  CF =CFCF 2  3 >  Exp. 1  Exp. 2  Exp. 3  Exp. 4  gram (mmole)  gram (mmole)  gram (mmole)  gram (mmole)  7.2 (22.0)  7.1 (21.7)  7.2 (22.0)  7.2 (22.0)  3.84 (25.6)  3.84 (25.6)  3.3 (22.0)  3.45 (23.0)  Silica  Silica  Pyrex  Silica  Reaction Temperature  70°  90°  Time (hour)  8  4  25°  25°  Conditions  gram (%) 0.7  (CH ) Sn  2  CF =CFCF  3  3  6  a  ( ? )  gram  gram  (%)  (%)  0.4  36  130  a  ( ? )  4.7 (65.0)  gram (%) 3.4  a  ( ? )  Recovery 2  1.45 (38.0)  2.38 (62.0)  2.3 (69.5)  2.15 (62.0)  Continue t o next page, (a)  Recovered i n p a r t  i n t h e 0° t r a p .  Sec.  II-B-2  20  TABLE 2  (continued.)  Exp. 1  gram (mmole) CF =CHCF 2  3  trace  Exp.  2  Exp.  gram (mmole) (ca.  0.1)  CF3CFHCF3  (CH ) Sn 3  4  (CH ) SnCF CFHCF 3  Pro-  3  2  3  (CH ) SnCF CF(CF )Sn(CH ) 3  3  2  3  3  3  3  Exp.  4  gram (mmole)  gram (mmole)  —  —  Trace  b  —  (0.1)  (0.3)  0.75 (4.2)  1.1 (6.2)  0.44 (2.5)  0.19 (1.0)  1.2 (3.8)  0.59 (1.9)  0.70 (2.2)  0.76 (2.4)  Trace  0.3  Trace  0.1  None  Yes  None  1.0  1.5  0.85  0.4  —  —  1.30  —  1.2 (2.5)  duct H i g h e r M.W.  adducts  M e t a l l i c t i n formed Black  gum  c  ( C H ) S n F and p o l y m e r i c C-F compounds 3  3  Mixture o f [ ( C H ) S n ] 0 , ( C H ) S n F , and p o l y m e r i c C-F compounds 3  3  2  3  3  d 3.7  d  —  2.7  (b)  Only d e t e c t a b l e by the i n f r a r e d  spectra.  (c)  Recovered as r e s i d u e s from s u b l i m a t i o n . approximate v a l u e s .  (d)  S i n c e t h e c h i e f p a r t o f the u n r e a c t e d ( C H ) g S n remained i n t h e i n v o l a t i l e r e s i d u e , the u n r e a c t e d m a t e r i a l was removed from the p r o d u c t s by means o f O x i d a t i o n w i t h oxygen, c o n v e r t i n g i t t o a s o l i d (oxide) which, as w e l l as ( C H ) S n F , was then c e n t r i f u g e d o f f . The r e c o v e r i e s o f ( C H ) S n and ( C H ) S h F were not determined individually.  The f i g u r e s a r e  3  3  3  3  6  2  3  3  2  None  d No r e c o r d  Sec.  21  II-B-2  Only compound  (1)  was obtained  As d e s c r i b e d e a r l i e r , compound p o s i t i o n of the 1:1  (1)  c o u l d be formed n e i t h e r from decom-  adduct nor by hydrogen a b s t r a c t i o n by the o l e f i n to  g i v e C F - C F ( C F ) H as the f i r s t 2  throughout the f o u r experiments.  3  step.  I t i s thus reasonable  t h a t the ( C H ) S n r a d i c a l a t t a c k s CF =CFCF , probably 3  CF  2  group.  3  2  to assume  e x c l u s i v e l y on the  3  Thus the r e a c t i o n s may be:  (CH ) Sn-Sn(CH ) 3  Initiation:  3  3  ( C H ) S n + CF =CFCF 3  Propagation:  3  2  -Mi  3  3  2  3  s»  3  (CH ) SnCF CF(CF ) 3  2(CH ) Sn  (CH ) SnCF CF(CF ) 3  + CF =CFCF  3  3  2  3  2  3  =.  3  (CH ) SnCF CF(CF )CF CF(CF ), etc. 3  3  2  3  2  3  Chain t r a n s f e r : (a)  (CH ) SnCF CF(CF ) 3  3  2  3  + -HC-H  »»  (CH ) SnCF CF(CF )H 3  3  2  3  + -C,  etc.  or (b)  (CH ) SnCF CF(CF ) 3  3  2  + (CH ) Sn-Sn(CH )  3  3  3  3  >  3  (CH ) SnCF CF(CF )Sn(CH ) 3  3  2  3  3  3  + (CH ) Sn, etc. 3  3  The d i r e c t i o n of a d d i t i o n o f r a d i c a l s to unsymmetrical o l e f i n s may be c o n s i d e r e d free-radical  from two r e l a t e d a s p e c t s : ( i . e . , the extent  ( i ) the r e a c t i v i t y of the a t t a c k i n g  to whcih d e r e a l i z a t i o n of the lone  e l e c t r o n o c c u r s ) ; and ( i i ) the n u c l e o p h i l i c o r e l e c t r o p h i l i c c h a r a c t e r of the a t t a c k i n g r a d i c a l , i n c o n j u n c t i o n w i t h  the s u s c e p t i b i l i t y toward  n u c l e o p h i l i c or e l e c t r o p h i l i c a t t a c k o f the o l e f i n . may be assessed  by i n s p e c t i n g TABLE  3.  These two e f f e c t s  Sec.  II-B-2  22  TABLE 3 RADICAL ADDITION TO CF =CFCF . 2  Attack Free-radical attacking  (CH ) Sn 3  (%) on the carbon atom w i t h a s t e r i s k .  * CF =CFCF 2  3  Exclusively  3  3  CF =CFCF 2  Not  3  detected  Reference  T h i s work  (CH ) S i  96  4  (54)  (CH ) S i H  95  5  (54)  (CH ) S  91  9  (55)  CF  80  20  (54)  76  24  (54)  CF CH S  70  30  (55)  PH  66  34  (54)  60  40  (54)  50  50  (56)  45  55  (55)  3  3  3  3  2  2  3  (CH )SiH 3  3  2  SiH SF  2  3  5  CF S 3  2  Sec.  23  II-B-3  Considering  ( i ) , one would expect t h a t the more r e a c t i v e r a d i c a l  would l e a d to l e s s d i s c r i m i n a t i o n i n the p o s i t i o n of a t t a c k olefin.  Examination of the  •  •  •  3  3  R e a c t i v i t y thus may Regarding i s susceptible  •  (CH ) Si, 3  fails  3  to support t h i s p r e d i c t i o n .  have i t s e f f e c t m a i n l y on  (ii),  the r a t e o f  to n u c l e o p h i l i c a t t a c k ,  (CH ) Si > (CH ) SiH CH S 3  3  3  >  reaction.  the r a d i c a l most r e a c t i v e towards an o l e f i n which should be  most p o w e r f u l e l e c t r o n - r e l e a s i n g s u b s t i t u e n t s ,  3  an  t a b l e where the more r e a c t i v e r a d i c a l s  i n c l u d e C F S , C H S , H S i , and 3  on  2  CF CH S 3  Consequently, the r e v e r s e  2  trend  o l e f i n which i s s u s c e p t i b l e  > (CH )SiH ; 3  >  2  the one  bearing  the  e.g.,  or  CF S. 3  should a l s o be  true for attack  to. e l e c t r o p h i l i c a t t a c k .  TABLE 3  on  an  illus-  t r a t e s c l e a r l y t h a t h e x a f l u o r o p r o p e n e i s v e r y s e n s i t i v e to n u c l e o p h i l i c r a d i c a l s which a t t a c k  e x c l u s i v e l y on the C F  2  group of C F = C F C F . 2  ( C H ) S n r a d i c a l i s thus, i n t h i s sequence, n e a r l y 3  3  ( C H ) S i r a d i c a l towards h e x a f l u o r o p r o p e n e , and 3  3  of n u c l e o p h i l i c  3.  3  as s p e c i f i c as  possesses a high  The the degree  character.  R e a c t i o n s w i t h t r i f l u o r o e t h y l e n e and  with  1,1-difluoroethylene.  As  a third  i l l u s t r a t i o n of o l e f i n a d d i t i o n to the  r e a c t i o n s w i t h some p o l y f l u o r o e t h y l e n e s The are  the  studied.  r e s u l t s of the r e a c t i o n of h e x a m e t h y l d i t i n w i t h t r i f l u o r o e t h y l e n e  summarized i n TABLE 4.  required  have been  t i n - t i n bond,  The  best  conditions,  as shown i n the  a temperature of 85-105° w i t h u l t r a v i o l e t  i r r a d i a t i o n of  table, the  Sec.  II-B-3  24  TABLE 4  REACTION RESULTS OF  (CH ) Sn 3  Exp. 1  Starting Material  6  2  AND  CF =CFH. 2  Exp. 2  Exp. 3  Exp. 4  gram (mmole)  gram (mmole)  gram (mmole  gram (mmole)  7.85 (24.0)  21.0 (64.2)a  6.73 (20.5)  7.0 (21.4)  CF =CFH  1.96 (24.0)  3.8 (46.0)  1.8 (22.0)  1.7 (21.1)  C a r i u s tube  Silica  Silica  Silica  Silica  (CH ) Sn 3  6  2  2  Reaction Temperature  85°  95°  105°  45°  Time (hour)  4  8  14  20  gram (%)  gram  Conditions  (CH ) Sn 3  6  2  gram (%)  gram  2.7 (35.0)  11.0 (33.4)  0.43 (22.0)  0.68 (18.0)  (%)  0.7  b  C  (%) 6.7 (96.0)  Recovery CF =CFH 2  0.54 (30.0)  Not recorded  ,Continue t o next page  (a)  40% i n excess  (18.3 mmole i n e x c e s s ) .  (b)  Recovered i n p a r t i n the 0° t r a p .  (c)  Recovery: 11 g. = 33.6 mmole, 18 mmole i n e x c e s s , % recovery = 3 3 ^ _  z J  L8  x  1  0  Q  =  3  3  -  4  %  _  Sec.  25  II-B-3  TABLE, 4 (continued.)  Exp. 1  gram (mmole)  gram (mmole)  Trace  Trace  C-F gas condensed at -126°  0.35 (1.95)  ( C H ) S n C F H C F H and (CH ) Sn(CFHCF ) H 3  3  3  0.15  2  2  3  gram (mmole)  2  3  0.51 (2.85)  0.57 (3.2)  1.2  —  d  1.1 (2.2)  0.7 (1.4)  1.7 (3.5)  (0.12)  (0.20)  (0.47)  M e t a l l i c t i n formed  Trace  Trace  B l a c k i s h brown o i l  1.0  4.2  Not recorded  3.2  2  2  duct Uncondensable gas  Solid  part  3  : 1  d  ca.  f  The d i s t r i b u t i o n was e s t i m a t e d from p r o t o n N.M.R peaks due t o methyl group were i n t e g r a t e d .  (e)  Recovered from vacuum  (f)  (CH ) SnF  (g)  Mixture o f (CH ) SnF,  3  0.3  3.2  None Not i d e n tified None None Trace  0.8  (d)  3  None  0.08  0.9  —  3  (CH ) Sn(CFHCF ) Sn(CH ) 3  gram (mmole)  None  Pro3  Exp. 4  None  2  (CH ) SnCFHCF Sn(CH ) 3  Exp. 3  (0.21)  (CHaUSn  3  Exp. 2  g  (CH ) SnF 0.15 (0.8) 3  spectrum where  distillation.  and p o l y m e r i c C-F compounds. 3  3  [ (CH ) S n ] 0 , p o l y m e r i c C-F compounds. 3  2  2  3  26  Sec. II-B-3  s i l i c a reaction tube  The two s e r i e s o f p r o d u c t s ( C H ) S n ( C F 3 H ) n H and  0  3  3  2  (CH )3Sn(C2F3H)nSn(CH3)3 a g a i n must r e s u l t from e i t h e r hydrogen a b s t r a c t i o n 3  or by i n s e r t i o n i n t o t h e . t i n - t i n bond,, At 85° w i t h four-hour i r r a d i a t i o n , (CH )3SnCFHCF H, 3  2  and ( 1 , 2 , 2 , 3 , 4 , 4 - h e x a f l u o r o b u t y 1 ) t r i m e t h y l t i n ,  (CH )3SnCFHCF CFHCF H, 3  (1,2,2-trifluoroethyl)trimethyltin,  2  were formed.  2  The evidence f o r these two p r o d u c t s ,  both c o l o u r l e s s l i q u i d s , was o b t a i n e d by H N.M„R* s p e c t r o s c o p i c study 1  (see Sec. VI-D-4), although they c o u l d not be i s o l a t e d i n a.pure s t a t e . Under the same c o n d i t i o n s , the adduct was formed w i t h n=2 1,4-bis(trimethyltin)1,1,2,3,3,4-hexafluorobutane, an a i r s t a b l e , p a l e y e l l o w o i l ,  exclusively;  (CH )3SnCF CFHCF CFHSn(CH ) , 3  2  2  o b t a i n e d as an about 95% pure p r o d u c t , 19  1  was c h a r a c t e r i z e d by means o f both  H and  F N.M.R. and i n f r a r e d s p e c t r a  (See Sec. VI-D-4). Formation o f these two s e r i e s of p r o d u c t s c o n t a i n i n g two u n i t s of - C F 2 C F H - e v i d e n t l y i n d i c a t e s t h a t the f r e e - r a d i c a l mechanism  involves  p r o p a g a t i o n as a second s t e p , U.V, (GH )3Sn-Sn(CH )3 3  2(CH ) Sn  3  3  (CH ) SnCFHCF  ( C H ) S n + CF =CFH 3  3  (CH ) SnCFHCF 3  3  + CF =CFH  (CH3) Sn(CFHCF )nCFHCF 3  3  2  2  2  3  3  2  ( C H ) SnCFHCF CFHCF , e t c .  2  3  \  3  2  2  (GH ) Sn(CFHCF )nCFHCF H  2  +  ~C-H  2  + (CH ) Sn-Sn(CH )  3  3  2  +  2  -C  or (CH ) Sn(CFHCF )nCFHCF 3  3  2  3  3  3  3  (CH )3Sn(CFHCF ) 3  2  n + 1  Sn(CH3) + 3 i  (n=0 or 1).  (CH ) Sn, etc. 3  3  3  3  Sec.  27  II-B-3  The  presence i n the hydrogen a b s t r a c t i o n p r o d u c t s of t e r m i n a l than - C F H 2 groups s t r o n g l y suggests t h a t  groups r a t h e r  (CH ) Sn radical 3  i s p r e d o m i n a n t l y to the CFH  3  This  i s i n accord  Cl Si  the a d d i t i o n  of  group of t r i f l u o r o e t h y l e n e .  w i t h o t h e r r a d i c a l a d d i t i o n s , e.g.,  A c c o r d i n g to the above e q u a t i o n , one gation chain  r e a c t i o n may  of CF^ (57)  be  reduced by an  would p r e d i c t t h a t  increase  t r a n s f e r reagent, hexamethylditin.  excess was  and  adduct was  performed.  Neither  1:1  adduct,  3  2  3  To  1,2-  the  3  lend  f r e e - r a d i c a l concept, a h e a t - o n l y experiment  the  1:1  adduct nor  the  1:2  adduct was  detected  the r e a c t i o n of h e x a m e t h y l d i t i n w i t h t r i f l u o r o e t h y l e n e at 100° the dark f o r more than 10 hours. reduction  the  ultraviolet  o b t a i n e d i n the approximate r a t i o of 2:1.  f u r t h e r support t o the  of  [ ( C H ) S n C F H C F S n ( C H ) ] , and 3  propa-  Thus when h e x a m e t h y l d i t i n i n  f o r e i g h t h o u r s , a m i x t u r e of the  bis(trimethyltin)trifluoroethane  the  i n concentration  t r e a t e d w i t h t r i f l u o r o e t h y l e n e under  i r r a d i a t i o n at 90°  1:2  2  (58).  3  40%  -CF H  At  such h i g h  was from  in  temperature, however,  of h e x a m e t h y l d i t i n seemed q u i t e e x t e n s i v e .  the  Thus t h e r m a l  d e c o m p o s i t i o n of h e x a m e t h y l d i t i n i n the presence of t r i f l u o r o e t h y l e n e gave metallic t i n , tetramethyltin, M e t a l l i c t i n was was  also  and  uncondensable gas,  formed e x t e n s i v e l y  i n Exp.  p r o b a b l y hydrogen.  3 where the  temperature  105°. The  r e a c t i o n between equimolar amounts of h e x a m e t h y l d i t i n  1,1-difluoroethylene to g i v e  l i k e w i s e occurred  3  2  2  (2,2,4,4-tetrafluorobutyl)trimethyltin,  (CH ) SnCH CF CH CF2H] 3  3  irradiation  the h y d r o g e n . a b s t r a c t i o n p r o d u c t s [ ( 2 , 2 - d i f l u o r o e t h y l ) t r i m e t h y l t i n ,  ( C H ) 5 n C H C F H , and 3  at 75° w i t h s i x - h o u r s  and  2  2  difluoroethane,  and  2  the adducts  [1,2-bis(trimethyltin)-2,2-  ( C H 3 ) S n C H C F S n ( C H ) , and  4,4-tetrafluprobutane,  3  2  2  3  3  1,4-bis(trimethyltin)-2,2,  (CH ) SnCH CF CH CF Sn(CH ) ]. 3  3  2  2  2  2  3  3  However, w i t h  Sec.  II-B-3  28  40% of excess seven hours, and  the 1:1  hexamethylditin  under u l t r a v i o l e t  i n a d d i t i o n to the products adduct was  i r r a d i a t i o n at 92° f o r  ( C H ) S n ( C F H C F ) n H w i t h n=l and 3  e x c l u s i v e l y formed.  3  2  This again c l e a r l y  demonstrates  the f r e e - r a d i c a l mechanism i n v o l v i n g r a d i c a l a t t a c k e x c l u s i v e l y on CH  group of 1 , 1 - d i f l u o r o e t h y l e n e  2  f o r the i n i t i a t i n g  f o r the r a d i c a l a t t a c k by C F ( 5 9 ) ,  Br  3  The  considered.  3  two  to possess  (CH ) SnCF CH 3  3  2  and  2  ( C H ) S n C F C F H as 3  £+  r e s u l t s of the o l e f i n p o l a r i z a t i o n s CF =CFH and 2  3  2  r e v e a l s t h a t the n u c l e o p h i l i c c h a r a c t e r may  I t has been p o i n t e d out  the  CF =CH , r e s p e c t i v e l y 2  2  not p l a y too  t r i f l u o r o e t h y l e n e and  as f a r as t h e i r o r i e n t a t i o n s a r e  the  S-  R a d i c a l a t t a c k i n the r e v e r s e d i r e c t i o n , i n the p r e s e n t  a r o l e i n the r e a c t i o n w i t h  be  a h i g h degree of n u c l e o p h i l i c  S-  study,  important  1,1-difluoroethylene  concerned.  (61) t h a t the o r d e r of  free-radical  i s , i n general, primary  «  (-CH ) < secondary 2  where the terms primary, carbon s k e l e t o n but attached  must  S i n c e i n the e a r l i e r r e a c t i o n w i t h h e x a f l u o r o p r o p e n e ,  c h a r a c t e r , one would expect  stability  found  olefins  3  3  the  (54).  2  ( C H ) S n r a d i c a l i n the i n i t i a t i n g s t e p now  ( C H ) S n r a d i c a l has been found  (60).  s t e p , as was  f a c t o r s r e s p o n s i b l e f o r the o r i e n t a t i o n of these  w i t h r e s p e c t to the  3  (60) or PH  •  (=CH)  secondary, and  < Tertiary  »  (=C)  t e r t i a r y r e f e r not  to  the  to the number of atoms or groups o t h e r than hydrogen  to the carbon atom on which the lone e l e c t r o n i s l o c a t e d .  By u s i n g t h i s simple of a d d i t i o n of the  r u l e an e x p l a n a t i o n can be g i v e n f o r the  direction  ( C H ) S n r a d i c a l to these p o l y f l u o r o e t h y l e n e s . 3  3  2,  Sec.  II-B-3  Two  29  s e t s of f r e e - r a d i c a l s  (CH ) SnCFHCF , 3  3  (CH ) SnCF CFH;  2  3  3  (I)  (I')  (CH ) SnCH CF , 3  3  2  (CH ) SnCF CH  2  3  (ID may  and  3  2  2  (II')  a r i s e from f r e e - r a d i c a l a d d i t i o n s . From  u s i n g the above r u l e ,  and  2  (I) and  a comparison of t h e i r  stability  ( I I ) are expected t o predominate over (I')  ( I I ' ) , and t h i s i s as seen e x p e r i m e n t a l l y .  Consequently, the  homopolymers of f l u o r o e t h y l e n e s r e s u l t i n g from the p r o p a g a t i o n step also contain exclusively t a i l  to head  units.  The h e x a f l u o r o p r o p e n e r e a c t i o n may connection.  The two r a d i c a l s  might be expected.  a l s o be r e c o n s i d e r e d i n t h i s  (CH ) SnCF CFCF 3  may  3  2  and  3  (CH ) SnCF(CF )CF 3  :3  3  2  Both r a d i c a l s have a t e r t i a r y carbon atom p o s s e s s i n g  the lone, e l e c t r o n , and thus would have an a p p r o x i m a t e l y e q u a l s t a b i l i t y . In t h i s c a s e , t h e r e f o r e , the n u c l e o p h i l i c c h a r a c t e r of the  (CH ) Sn 3  3  r a d i c a l might become important i n d e t e r m i n i n g the p o s i t i o n of a t t a c k . An attempt by gas chromatrograph to p u r i f y  ( C H ) S n C F H C F H and 3  3  2  ( C H ) S n C H C F H was u n s u c c e s s f u l because they decomposed on the 3  3  2  column  2  under the c o n d i t i o n s where pure ( C H ) S n C F C F H and 3  were i s o l a t e d .  Thermal  3  2  (CH ). SnCF CF(CF )H  2  3  3  3  cannot be d e r i v e d from ( C H ) S n C F C H 3  3  2  2  I t s h o u l d be noted t h a t t h i s  2  3  2  3  olefin  because the m i g r a t i o n of  i s u n l i k e l y , f u r t h e r s u p p o r t i n g the proposed f o r m u l a t i o n . i n s t a b i l i t y of -CFHCF H and -CH CF H groups was 2  2  2  g-hydrogen  The thermal  a l s o found (51) i n  (CH ) SnH(CFHCF H) and ( C H ) S n H ( C H C F H ) j , 1  3  2  2  y i e l d CFH=CFH and CH =CFH, r e s p e c t i v e l y . 2  3  decomposition of ( C H ) S n C H C F H gave  m o n o f l u o r o e t h y l e n e , CFH=CH .  the analogous compounds  2  3  2  2  2  which  H a s z e l d i n e e t a l . (58) have  r e p o r t e d t h a t i n the h y d r o l y s i s of p o l y f l u o r o c a r b o n d e r i v a t i v e s of  Sec.  30  II-B-4  t r i c h l o r o s i l a n e , l o s s of 6-fluorine occurred  when the (3-group i s C F H 2  w i t h CFH as the a-group, but not when 3-group i s C F H w i t h C F 2  2  as the  a-group. The  d i f f e r e n c e i n s t a b i l i t y o f -CFHCF H and -CH CF H 2  compared w i t h - C F C F H 2  2  groups,  2  might be a t t r i b u t e d t o the d i f f e r e n c e i n  2  s t a b i l i t y o f the -CH -, -CFH-, and - C F - groups which i n t u r n may be 2  2  accounted f o r by thermochemical d a t a (62).  F o r the s e r i e s o f e t h a n o l ,  m o n o f l u o r o e t h a n o l , and d i f l u o r o e t h a n o l , the d a t a f o r heat o f f l u o r i n a t i o n show t h a t n i n e K c a l more heat i s l i b e r a t e d when a second hydrogen i s replaced  by a f l u o r i n e atom than d u r i n g  the f i r s t  f l u o r i n a t i o n step  (62).  4.  R e a c t i o n w i t h t r i f l u o r o c h l o r o - and trifluorobromoethylenes.  Trifluorochloroethylene,  reacted  four-hour i r r a d i a t i o n , a f f o r d e d product,  w i t h h e x a m e t h y l d i t i n a t 90° w i t h  e x c l u s i v e l y the hydrogen  abstraction  ( 1 ; 1 , 2 - t r i f l u o r o - 2 - c h l o r o e t h y l ) t r i m e t h y l t i n , (CH3)3SnCF2CFHCl,  and  secondary r e a c t i o n p r o d u c t s such as t e t r a m e t h y l t i n ,  and  trimethyltin fluoride.  careful spectroscopic  trimethyltin chloride  Unexpectedly, no adduct was d e t e c t e d  examination on the r e a c t i o n m i x t u r e .  by a  A fraction,  o r i g i n a l l y a c o l o u r l e s s l i q u i d which condensed i n a 0° t r a p on the vacuum l i n e , changed i n c o l o u r  to y e l l o w , orange, and f i n a l l y became a  brown s o l i d , g i v i n g t e t r a m e t h y l t i n .  T h i s was the f i r s t  time t h i s  phenomenon..was observed i n the p r e s e n t study, and a p p a r e n t l y , colour  from the  changes and t h e consequent f o r m a t i o n o f t e t r a m e t h y l t i n ,  c a t a l y t i c polymerization  (49) o f h e x a m e t h y l t i n has taken  place.  Sec.  31  II-B-4  When a s i m i l a r r e a c t i o n  w i t h an equimolar r a t i o o f r e a c t a n t s  was c a r r i e d out i n n-pentane at 25° under 30-hour i r r a d i a t i o n , a g a i n adduct was n o t d e t e c t e d from the r e s u l t i n g m i x t u r e . conditions, The  the products were ( C H ) S n C F C F H C l , 3  3  2  Under such m i l d  (CH ) SnCl, 3  (CH ) SnF.  3  3  c a t a l y t i c p o l y m e r i z a t i o n of h e x a m e t h y l d i t i n a l s o o c c u r r e d  3  during  the vacuum f r a c t i o n a t i o n o f the v o l a t i l e p r o d u c t s . Clearly,  the r a d i c a l ( C H ) 3 S n C F C F C l was formed as the r e s u l t o f 3  2  r a d i c a l a t t a c k o f ( C H ) S n predominantly on the C F 3  3  trifluorochloroethylene, (CH ) SnCF2CFHCl. 3  f o l l o w e d by hydrogen a b s t r a c t i o n . t o  The o r i e n t a t i o n  3  of t h i s a d d i t i o n  • agreement w i t h many o t h e r r e a c t i o n s , (58),  group o f  2  i s i n good  •  e.g., C F , CC1 3  and VU (54) , where i n a l l cases the i n f l u e n c e 2  (63),  3  r a d i c a l s , RCF CFC1 > RCFC1CF . 2  the-stabilizing be  2  effect  (57).  *  Br (64),  SiCl  T h i s i s understood i n terms o f  (61),  but the d i f f e r e n c e  2  could  i n stability  the former c o n t a i n s the c h l o r i n e  atom  which has a p o w e r f u l s t a b i l i z i n g e f f e c t on the r a d i c a l , whereas the l a t t e r p o s s e s s e s o n l y f l u o r i n e atoms which have a r e l a t i v e l y weak stabilizing The  effect  (57.).  e x p e r i m e n t a l r e s u l t s d i d not d i s c l o s e whether o r n o t the  adduct has been formed i n the p h o t o c h e m i c a l r e a c t i o n . trimethyltin chloride,  as w e l l  evidence f o r the f o l l o w i n g  as t r i m e t h y l t i n  reactions,  3  i n s t a b i l i t y of  The two t e r m i n a l groups -CFC1 and - C F  regarded as t e r t i a r y r a d i c a l s  may a r i s e from the f a c t that  •  o f the d i r e c t i o n o f  r a d i c a l a t t a c k was a t t r i b u t e d m a i n l y t o t h e d i f f e r e n c e the  yield  The presence o f  f l u o r i d e i s a strong  Sec.  32  II-B-4  (CH ) SnCF CFCl 3  3  +  2  (CH ) Sn-Sn(CH ) 3  3  3  1  3  |(CH ) SnCF CF(Cl)Sn(CH ) ; 3  ! (CH ) SnCF -CCl 3  3  2  j +  •FSn(CH ;) 3  3  T h i s may 3  (CH ) Sn 3  3  3  t h e r e was  3  3  no  2  (CH ) SnCF=CFCl or 3  3  i n the r e a c t i o n m i x t u r e . Furthermore,  2  +  ClSn(CH )  3  not be the case because  3  3  (CH ) SnCF=CF .  3  (CH ) SnCF=CF  3  3  (CH ) SnCF=CFCl 3  2  f l u o r i d e and c h l o r i d e might w e l l r e s u l t  trimethyltin  from thermal decomposition of  (CH ) SnCF CFHCl, 3  3  2  N e v e r t h e l e s s , the f a c t  t h a t adducts c o u l d not be o b t a i n e d from  t h i s r e a c t i o n cannot be c l e a r l y e x p l a i n e d w i t h o u t f u r t h e r s t u d y , but a steric effect present  (60) may  be t e n t a t i v e l y suggested to account f o r the  result.  H e x a m e t h y l d i t i n r e a c t s i n a s l i g h t l y d i f f e r e n t manner w i t h fluorobromoethylene. was  When a m i x t u r e of the r e a c t a n t s i n a 1:1  s u b j e c t e d to u l t r a v i o l e t  i r r a d i a t i o n a t room temperature,  p r o d u c t s were ( p e r f l u o r o v i n y l ) t r i m e t h y l t i n , t r i m e t h y l t i n bromide,  ratio the  (CH ) SnCF=CF .tetramethyltin, 3  and t r i m e t h y l t i n f l u o r i d e .  that n e i t h e r a hydrogen  tri-  3  2  I t was  surprising  a b s t r a c t i o n product nor adducts c o u l d  be  d e t e c t e d even under such m i l d c o n d i t i o n s .  These r e s u l t s i n c o n j u n c t i o n  w i t h the concept of f r e e - r a d i c a l s t a b i l i t y  i n d i c a t e that the f o l l o w i n g  r e a c t i o n s may  have taken p l a c e ,  Sec.  II-B-4  33  (CH ) Sn-Sn(CH ) 3  3  3  (CH ) Sn 3  +  3  U 3  ' '  2  V  CF =CFBr  ^  2  (CH ) Sn 3  3  ; (CH ) S n C F C F B r 3  3  2  (CH ) SnCF=CF 3  Br  +  3 - (CH ) S n B r  (CH ) Sn-Sn(CH ) 3  3  3  This i s consistent with under i r r a d i a t i o n these products  3  (54, 57, 61 and 6 4 ) .  +  3  the ease o f f o r m a t i o n  (CH ) Sn, 3  +  2  Br  etc.  3  o f the r e a c t i v e Br r a d i c a l  However, an a l t e r n a t i v e r o u t e to  cannot be e l i m i n a t e d ,  (CH ) Sn-Sn(CH )3 3  3  3  3  3  +  CF =CFBr 2  I (CH 3) 3SnCF C F B r S n (CH 3) 3 ;' 2  (CH ) SnCF=CF 3  A s i m i l a r r e a c t i o n has been r e p o r t e d  (CH ) As-As(CH ) 3  2  3  2  +  2  +  (CH ) SnBr. 3  3  (35)  (CH3) A s C F C F B r A s (CH3) 2  CF =CFBr 2  2  *•  It i s interesting  3  2  (CH ) AsCF=CF 3  2  2  +  (CH ) AsBr 3  2  t o note t h a t a l a r g e amount of brown s o l i d had  formed on the i n s i d e w a l l o f the r e a c t i o n tube by the end of the irradiation. ethylene,  I n the r e a c t i o n o f h e x a m e t h y l d i t i n  trifluorochloro-  t h i s brown s o l i d was a l s o observed, not a t the end o f  i r r a d i a t i o n , but d u r i n g vacuum f r a c t i o n a t i o n . polymerization  of hexamethylditin  trifluorobromoethylene.  has o c c u r r e d  Apparently  more  extensive  i n the r e a c t i o n w i t h  T h i s might i n d i c a t e t h a t some s p e c i e s produced  i n the r e a c t i o n s o f h e x a m e t h y l d i t i n bromoethylenes a c t as powerful methyItin.  with  with  t r i f l u o r o c h l o r o - and t r i f l u o r o -  c a t a l y s t s f o r the p o l y m e r i z a t i o n o f  Sec.  34  II-B-5  5.  Reaction with  ethylene.  In view o f the s u c c e s s f u l a d d i t i o n of a c e t y l e n e s t o o r g a n o t i n hydrides  t o g i v e compounds o f the type R S n C H 2 C H S n R 3 ( 6 5 ) , i t was hoped 3  (CH3)3SnCH CH Sn(CH )  that  2  2  3  3  2  might be formed by the a t t a c k o f the  ( C H 3 ) 3 S n r a d i c a l on e t h y l e n e . When an equimolar  r a t i o o f h e x a m e t h y l d i t i n and e t h y l e n e was  r a d i a t e d a t 25° f o r one week, more than 90% o f r e a c t a n t s were r e c o v e r e d . The  only suspected  product was a c l e a r l i q u i d which condensed a t -76°  and which was shown c h r o m a t o g r a p h i c a l l y including sharp  to c o n s i s t  of f i v e components  t e t r a m e t h y l t i n , b u t no adducts c o u l d be d e t e c t e d .  This i s i n  c o n t r a s t t o the sequence f o r the ease o f r a d i c a l a t t a c k g i v e n by  Haszeldine  et a l . (60), i . e . , C H 2  CH =CF > C F = C F 2  2  2  2  t+  ^ CH =CHCH 2  3  ^ CH CH=CHCH >  > CF =CHC1 > CF =CFC1 > CF =CHCF 2  2  2  3  3  3  > CF =CFCF . 2  3  T h i s c o n t r a d i c t i o n may be t e n t a t i v e l y e x p l a i n e d i n terms o f n u c l e o p h i l i c o r e l e c t r o p h i l i c c h a r a c t e r o f the a t t a c k i n g r a d i c a l s .  The above  o r d e r was e s t a b l i s h e d by employing Br and CFg r a d i c a l s which a r e m  anticipated radical. carbon  t o behave more as e l e c t r o p h i l e s than would the ( C H 3 ) 3 S n Hence the ease o f f r e e - r a d i c a l a t t a c k on the e l e c t r o n - r i c h  atoms o f e t h y l e n e  i s favoured w i t h Br and C F 3 r a d i c a l s , and the  o p p o s i t e t r e n d might be t r u e t h a t the more n u c l e o p h i l i c more r e a d i l y a t t a c k s the e l e c t r o n - p o o r carbon  (CH3)3Sn  radical  atoms o f t e t r a f l u o r o e t h y l e n e .  Sec.  35  III-A  III.  REACTIONS OF TRIMETHYLTIN-PENTACARBONYLMANGANESE WITH FLUORO-OLEFINS.  A.  Introduction  The p r e p a r a t i o n of a n o n - i o n i c o r g a n o m e t a l l i c a t r a n s i t i o n m e t a l and a Group IV m e t a l was al.  (66) i n 1941.  Compounds of t h i s  first  r e p o r t e d by Hein e t  type having  were r e c e n t l y s y n t h e s i z e d by G o r s i c h  compound c o n t a i n i n g  a tin-manganese bond  (26) a c c o r d i n g to the f o l l o w i n g  general r e a c t i o n .  R _ S n C l n + nNaMn(CO) 4  n  —  5  R . S n [ M n ( C O ) ] n + hNaCl. 4  n  5  The tin-manganese compounds were d e s c r i b e d more s t a b l e than of the type  (26) as b e i n g  the analogous lead-manganese compounds.  (CgH ) M-Mn(C0) 5  3  In compounds  where M i s a Group IV m e t a l ,  5  thermally  the o x i d a t i v e  s t a b i l i t y appears to i n c r e a s e i n the s e r i e s S i < Pb < Ge < Sn ( 6 ) . S e v e r a l i n t e r e s t i n g r e a c t i o n s have been c a r r i e d out w i t h the triphenyltin derivative, Heating  (CgH ) Sn-Mn(C0) 5  3  5  (26).  o f t h i s compound w i t h t r i p h e n y l p h o s p i n e or t r i p h e n y l a r s i n e  causes the replacement o f one mole o f carbon monoxide,  (C H ) Sn-Mn(CO) 6  5  3  5  + L(C H ) 6  5  -  3  (C H ) Sn~Mn(CO) L(C H ) 6  5  3  4  6  5  3  + CO  (L = P o r A s ) .  Treatment of (Cg Hg) Sn-Mn(CO) 3  190°  with  5  tetraphenylcyclopenta-dienone  at  causes the replacement o f two moles of carbon monoxide to form  the a i r s e n s i t i v e n-complex  (C Hg ) Sn-Mn(C0) [ tr - C (C g  3  3  5  &  )^ 0] , the  36  Sec. I I I - A  s t r u c t u r e of which i s proposed t o be Of p a r t i c u l a r i n t e r e s t r e a c t i o n between  i s the  (CgH ) Sn-Mn(CO) 5  3  5  and c h l o r i n e , where the c a r b o n - t i n bond r a t h e r than the tin-manganese bond i s c l e a v e d , (C H ) Sn-Mn(CO)5 6  5  —  {  3  + 3C12  CI3Sn-Mn(CO)  3 3  + 3C6H5CI.  5  T h i s i s i n agreement w i t h r e c e n t work which demonstrates the s t a b i l i t y of bonds between t i n and o t h e r t r a n s i t i o n m e t a l s such as p l a t i n u m (37, 67), rhodium, and i r i d i u m ( 6 7 ) . In another c l e a v a g e r e a c t i o n , the d i p h e n y l t i n (C H ) Sn[Mn(CO)5]2 6  5  2  probably f i r s t  (26) undergoes a two-step r e a c t i o n w i t h  (C H ) Sn[Mn(CO)5]2 + 5  chlorine,  i n v o l v i n g r u p t u r e of the c a r b o n - t i n bond, f o l l o w e d by  a t t a c k of the tin-manganese bond by  6  derivative  2  2C1  chlorine,  Cl Sn[Mn(CO)5]2 + 2C6H5CI  *  2  2  Cl3Sn-Mn(C0)5 +  Hydrogen c h l o r i d e i s c o n s i d e r a b l y more s e l e c t i v e . c a r b o n - t i n bonds of ( C ^ ) S n [ M n ( C 0 ) ] 2  5  2  ClMn(CO) . 5  I t c l e a v e s o n l y the  to g i v e C l S n [ M n ( C O ) ] 2  5  2  and  benzene. I t i s c l e a r t h a t the tin-manganese bond behaves d i f f e r e n t l y  towards  a v a r i e t y of r e a g e n t s , but i t s c h e m i c a l r e a c t i v i t y w i t h r e s p e c t to f l u o r o - o l e f i n s was unknown. able conditions  I n view of the easy i n s e r t i o n under  (such as u l t r a v i o l e t  suit-  i r r a d i a t i o n e t c . ) of the o l e f i n s  i n t o the t i n - t i n bond, adducts c o n t a i n i n g a Sn-C-C-Mn s k e l e t o n a r e anticipated  from s i m i l a r r e a c t i o n s of tin-manganese complexes w i t h  olefins,  Sec.  37  III-B-1  B.  Results and Discussion.  1.  Preparation and characterization of (CH ) Sn-Mn(CO) . 3  3  5  This mixed-metal compound was prepared by treating trimethyltin bromide with an equimolar  amount of sodium pentacarbonylmanganate(-I),  according to the method described by Gorsich (26).  (CH ) SnBr + NaMn(CO) 3  3  > (CH ) Sn-Mn(CO)  5  3  The reaction proceeded smoothly  3  5  + NaBr.  i n tetrahydrofuran and the product -3  was p u r i f i e d by d i s t i l l a t i o n at A7°/10  cm. Hg, giving a 74% y i e l d .  Trimethyltin pentacarbonylmanganese, a white s o l i d which melts at 29.5° to give a pale yellow l i q u i d , i s f a i r l y stable i n a i r , i n contrast to the h e x a a l k y l d i t i n compound, which form t i n oxides  [e.g.,  (CH ) Sn-0-Sn(CH ) ] on standing i n a i r for b r i e f periods.  Either on  heating at 130° for prolonged periods, or under u l t r a v i o l e t  irradiation  3  3  3  3  for b r i e f e r periods, decomposition  i s n e g l i g i b l e , although under the  l a t t e r condition an intense purple colour formed. (CH ) Sn-Mn(CO) i s 3  3  5  readily soluble i n most organic solvents, but decomposes,in some of them, e.g., i t y i e l d s a brown s o l i d on prolonged standing i n carbon tetrachloride solution. The infrared spectrum i n the carbonyl stretching region of (CH ) Sn-Mn(C0) 3  3  5  shows three p r i n c i p a l bands with the (2A^ +E) pattern,  which evidently arise from the C (68j 69).  symmetry of the Mn(C0)  group  This, and the locations of these bands, are c h a r a c t e r i s t i c  of pentacarbonylmanganese complexes containing the Mn-M M = Mn,  5  Re (70) or Au (71).  bond, e.g.,  In the far infrared region, there are  absorptions attributable to the Sn-C  asymmetric and symmetric modes  two  Sec.  III-B-1  38  c h a r a c t e r i s t i c of the  (CH ) Sn-M' group [M' = Sn 3  (72)] . T h i s  3  i n d i c a t e s t h a t the t r i m e t h y l t i n group i s a s s o c i a t e d w i t h manganese through a tin-manganese l i n k a g e . manganese bond i n ( C H ) S n - M n ( C O ) 3  3  5  The  clearly  pentacarbonyl-  presence of the t i n -  i s confirmed  by a N.M.R. s p e c t r o s c o p i c  119 study. The v a l u e of the the Sn-C  Sn-CH  3  coupling constant, i n conjunction with  s t r e t c h i n g f r e q u e n c i e s , i n d i c a t e s t h a t the s - c h a r a c t e r of  the  t i n o r b i t a l s used i n the tin-manganese bond i s v e r y s i m i l a r i n magnitude to those  in tin-tin  corresponding  (72), tin-molybdenum, and  tin-iron  (8) bonds i n the  trimethyltin derivatives.  Furthermore, the charge s e p a r a t i o n i n the tin-manganese bond i n (CH ) Sn-Mn(CO) 3  3  s t a t e d t h a t one  5  i s apparently v i r t u a l l y n e g l i g i b l e .  Abel  (17)  has  of the s t r o n g e s t a f f e c t s upon the s t r e t c h i n g f r e q u e n c i e s  o f the t e r m i n a l c a r b o n y l groups i s the presence o f a charge on  the  species.  P o s i t i v e charges are found to r a i s e the c a r b o n y l s t r e t c h i n g -1 f r e q u e n c i e s by r o u g h l y 100 cm. (from 2000 cm. where the t e r m i n a l l  c a r b o n y l groups i n n e u t r a l b i n a r y m e t a l c a r b o n y l s a b s o r b ) , negative  charges tend to lower them a l s o , b y about 100  . ~1 [ M n ( C 0 ) r , 2090 cm. ; [ M n ^ O ^ ] " , i 9 5 and 6  8  1863  cm.  cm. ,  1  .  while , The  e.g., ' present  tin-manganese complex shows the average c a r b o n y l a b s o r p t i o n s , at about 2030 cm."  1  , and hence i t i s a n t i c i p a t e d to have a n e a r l y n e u t r a l  manganese atom. D i s c u s s i o n r e g a r d i n g the s p e c t r o s c o p i c study of w i l l be g i v e n i n S e c t i o n IV„  (CH ) Sn-Mn(C0) 3  3  5  Sec.  39  III-B-2  2.  Reaction with t e t r a f l u o r o e t h y l e n e .  A s e r i e s o f r e a c t i o n s o f (CH ) Sn-Mn(CO w i t h te.traf l u o r o e t h y l e n e 3  was performed under d i f f e r e n t  3  5  c o n d i t i o n s , and the r e s u l t s a r e  summarized i n TABLE 5. As c l e a r l y seen i n the t a b l e , the r e a c t i o n o c c u r r e d r e a d i l y i n pentane s o l u t i o n - u n d e r u l t r a v i o l e t  i r r a d i a t i o n a t 50°, w i t h about 70%  consumption o f t h e tin-manganese r e a c t a n t a f t e r s i x hours,the i n t e n s e p u r p l e c o l o u r which was observed (CH ) Sn-Mn(C0) 3  3  5  i n the p h o t o l y s i s o f  a l o n e , d i d n o t appear throughout  of these experiments  (and was a l s o absent  Interestingly  the i r r a d i a t i o n p e r i o d s  i n the r e a c t i o n s w i t h  other  olefins). The  p r i n c i p a l p r o d u c t s were t r i m e t h y l t i n f l u o r i d e , o b t a i n e d i n  approximately  55% y i e l d , p l u s f i v e o t h e r compounds c o n t a i n i n g c a r b o n y l -  manganese groups. The  1:1 adduct,  (CH ) SnCF CF Mn(C0) 3  in  3  2  2  l-trimethyltin-2-pentacarbonylmanganesetetrafluoroethane, ( I I I ) , was o b t a i n e d as a white c r y s t a l l i n e  14% y i e l d . In s l i g h t l y g r e a t e r y i e l d  (21%), a component which was shown on  the b a s i s o f the a n a l y t i c a l r e s u l t s t o have the c o m p o s i t i o n was i s o l a t e d c h r o m a t o g r a p h i c a l l y .  The i n f r a r e d  shows t h a t t h i s component c o n t a i n s an Mn(CO) and  solid  a  5  5  spectrum  C- QF Mn0 , (  (Sec.  g  IV-C)  group o f n e a r l y C ^  a p e r f l u o r o c a r b o n group w i t h a t e r m i n a l C=C bond.  X  v  symmetry  H N.M.R. spectrum i  i n d i c a t e s the complete absence o f hydrogen atoms, w h i l e i t s  9  F N.M.R*  spectrum c o n s i s t s o f f i v e groups o f a b s o r p t i o n s c e n t r e d a t +110.0,  (a)  5  Compounds a p p e a r i n g i n t h i s s e c t i o n w i l l be numbered i n accordance w i t h the sequence used i n S e c t i o n IV-C,D.  Sec. III-B-2 .  40  TABLE 5  REACTION RESULTS OF (CH ),Sn-Mn(CO) 3  (CH ) Sn-Mn(CO) 3  3  5  AND  CF =CF . 2  2  Exp. 1  Exp. 2  Exp. 3  Exp. 4  gram (mmole)  gram (mmole)  gram (mmole)  gram (mmole)  3.3 (9.2)  3.2 (8.9)  2.4 (6.8)  1.7 (4.7)  3.3 (32.8)  2.3 (22.7)  1.1 (11.3)  1.6 (16.2)  Pentane (6 ml.)  Pentane (10 ml.)  None  Pentane (2 ml.)  Starting CF =CF 2  2  Material  Solvent Reaction  U.V.  Conditions  Carius  light  Yes  tube  Silica  Temperature Time  Resulting reaction mixture  (CH ) Sn-Mn(CO) 3  3  5  Yes Silica  Yes  None  Silica  Pyrex  70°  65°  50°  80°  6 hrs.  4 hrs.  4 hrs.  10 days  Pale yellow liquid with white solid  Orange liquid with white solid  Orange liquid with white solid  Colourless liquid with white solid  gram (%)  gram (%)  gram (%)  gram (%)  1.0 (30).  1.1 (34)  <1.0 (42)  1.5 (88)  1.9 (58)  1.4 (61)  0.4 (36)  1.5 (93)  Recovery CF =CF 2  2  C o n t i n u e to next page  41  Sec.III-B-2  TABLE 5 ( c o n t i n u e d ) .  Exp. 1  Exp. 2  Exp. 3  Exp. 4  gram (mmole)  gram (mmole)  gram (mmole)  gram (mmole)  CO (0.51)  CO (0.05)  CO (0.11)  None  0.4 (1.3)  0.3 (1.0)  Trace  None  0.8 (1.9)  0.5 (1.2)  ~0.2 (~0.5)  None  0.6 (1.3)  0.3 (0.7) -  Trace  None  Dimer 1*  0.4 (0.8)  0.3 (0.6)  0.5 (1.0)  None  Dimer 2*  0.2 (0.4)  0.1 . (0.2)  Trace  None  (CH ) SnF  0.9 (5.0)  0.5 (2.7)  ~0.5 (~2.7)  Trace  None  Trace  -0.3  Uncondensable gas CF =CFC0Mn(C0) 2  C F Mn(CO) 5  9  5  5  ( C H ) SnCF CF Mn(CO) 3  ProDuct  3  3  2  2  3  P o l y m e r i z e d C F^ 2  Residue  5  0.1  (gum)  Yes (No r e c o r d ) i  (*) Isomers o f [CF =CFMn(C0) ) 2  Lt  2  0.1 (d.l)  None Yes (No r e c o r d )  Sec.  42  III-B-2  +33.4, +30.8, +17.5, and -14.2 p.p.m. ( r e l a t i v e t o t r i f l u o r o a c e t i c i n d i c a t i n g t h e presence chemically nonequivalent  of at least  acid),  f i v e k i n d s o f f l u o r i n e atoms i n  environments.  U n f o r t u n a t e l y , an attempt t o  o b t a i n a h y p e r f i n e s t r u c t u r e f o r each a b s o r p t i o n was u n s u c c e s s f u l , and hence an assignment o f t h e  1  9  F N.M.R. spectrum  c o u l d n o t be a c h i e v e d .  A c c o r d i n g l y , t h i s component can o n l y be formulated as C5FgMn(CO) ( I V ) , 5  The  o t h e r t h r e e p r o d u c t s c o n t a i n i n g p e r f l u o r o v i n y l groups a r e  perfluoroacryloylpentacarbonylmanganese, two isomers  CF =CFC0Mn(C0) 2  5  ( V I I ) , and the  of dimeric perfluorovinyltetracarbonylmanganese,  [CF =CFMn(C0) ] 2  1+  2  [ ( V I I I ) and ( I X ) ] .  A l l o f these carbonylmanganese complexes a r e f a i r l y f o r prolonged  periods.  stable i n a i r  Some o f t h e i r p h y s i c a l p r o p e r t i e s a r e l i s t e d i n  TABLE 6. The  s t r u c t u r e s of ( I I I ) ,  (VII),  established spectroscopically  ( V I I I ) , and (IX) a r e r e a d i l y  (Sec. IV-C, D).  However, t h e l a s t two  compounds c o u l d n o t be d i s t i n g u i s h e d with r e s p e c t to t h e s p e c i f i c stereo-isomers of the dimeric perfluorovinyltetracarbonylmanganese because t h e i r s o l u b i l i t i e s were too low t o prevent a study o f t h e i r 19 F N.M.R. s p e c t r a .  N e v e r t h e l e s s , the a n a l y t i c a l d a t a and t h e  observed m o l e c u l a r weights  o f both  ( V I I I ) and (IX) a r e c o n s i s t e n t w i t h  the f o r m u l a t i o n [CF =CFMn(C0) ] , which can be regarded 2  1+  2  as a "boat"  or " c h a i r " form o f the d i m e r i c r i n g s t r u c t u r e , as shown i n F i g u r e 1.  Sec.  43  III-B-2  TABLE 6  PHYSICAL PROPERTIES OF SOME CARBONYLMANGANESE DERIVATIVES.  (CH3) SnCF CF Mn(CO) 3  2  2  5  (III)  CgFgMnCCO) .  (IV)  5  CF =CFCOMn(CO) 2  [CF =CFMn(CO)i ] +  2  (VII)  5  Solubility  m.p.  Colour  57.5°  White  v.s.  i n a l l organic solvents.  Pale Yellow  v.s.  i n a l l organic solvents.  White  v.s.  i n a l l organic solvents.  b  41.0°  c  2  Dimer I  (VIII)  >150  o d  White  s. i n acetone, s.s. i n c h l o r o f o r m .  (IX)  >150  od  White  s. i n acetone.  Dimer I I  (a)  v.s.  = v e r y s o l u b l e , s. = s o l u b l e , s . s . = s l i g h t l y  soluble.  (b)  L i q u i d a t room  (c)  Very v o l a t i l e  (d)  Decomposed without m e l t i n g and d i d n o t sublime a t 90°/10  temperature. solid. cm. Hg.  Sec.  III-B-2  44  Figure  1.  The boat and c h a i r forms of  I t was ditions,  [CF =CFMn(C0) ] . 2  1+  2  shown i n TABLE 5 t h a t , under the same i r r a d i a t i o n  an i n c r e a s e  the p r o d u c t s , and  i n temperature  had no e f f e c t  con-  on the f o r m a t i o n of  t h i s became even more obvious when the r e a c t a n t s were  heated i n the dark f o r 10 days, when no r e a c t i o n o c c u r r e d except some polymerization violet  of the o l e f i n .  I t i s thus most s i g n i f i c a n t  i r r a d i a t i o n s h o u l d cause such ready r e a c t i o n and  i n d i c a t e s t h a t a f r e e - r a d i c a l mechanism may I t was  a l s o noted t h a t the absence  be  that u l t r a -  t h i s again  involved.  of s o l v e n t not o n l y causes more  r a p i d decomposition but a l s o p r e v e n t s the f o r m a t i o n of the 1:1 T h i s may  adduct.  w e l l be due t o the f a c t , as suggested e a r l i e r , t h a t a f a c i l e  one-phase r e a c t i o n may  take p l a c e  i n the s o l u t i o n due t o the ready  s o l u b i l i t y of t e t r a f l u o r o e t h y l e n e i n n-pentane. Compound  ( I I I ) , ( C H ) S n C F C F M n ( C 0 ) , i s the f i r s t 3  3  2  2  5  example of  Sec.  45  III-B-2  the I n s e r t i o n o f an o r g a n i c group i n t o a mixed m e t a l - m e t a l bond, particularly metal.  i n t o the bond between a Group IV m e t a l and a t r a n s i t i o n  An i n s e r t i o n of the t e t r a f l u o r o e t h y l e n e m o l e c u l e i n t o the  • t r a n s i t i o n m e t a l - t r a n s i t i o n m e t a l bond has been r e p o r t e d Treatment of o c t a c a r b o n y l d i c o b a l t temperature g i v e s  with t e t r a f l u o r o e t h y l e n e  an orange c r y s t a l l i n e compound  A s i m i l a r compound  (CO)5MnCF CF CF Mn(C0)5 2  2  2  The t h r e e compounds c o n t a i n i n g  at room  (CO) C o C F C F C o (CO) ^. lt  2  2  has been p r e p a r e d  (74) by  (CO) MnC0(CF ) C0Mn(C0)5.  d e c a r b o n y l a t i o n of the p e r f l u o r o g l u t a r y l d e r i v a t i v e  ( V I I I ) , and ( I X ) , are b e l i e v e d  (73).  5  2  3  p e r f l u o r o v i n y l groups, i . e . , ( V I I ) ,  to form from compound  ( I I I ) by an  e l i m i n a t i o n of t r i m e t h y l t i n f l u o r i d e . The o v e r a l l r e a c t i o n o f ( C H ) S n - M n ( C 0 ) 3  may be shown as  3  with  5  tetrafluoroethylene  follows: U.V.  (i)  (ii)  (CH ) Sn-Mn(CO) 3  3  5  + CF =CF 2  (CH ) SnCF CF Mn(CO) 3  3  2  2  -» (CH ) SnCF CF Mn(CO) 3  2  3  2  2  1  5  f CF =CFMn(CO) «.] + (CH ) ^SnF 2  Dimerization  5j  /  /  \  3"  CF =CFCOMn(CO) 2  '*  MntCO)^  / \ .CF  /  CF  q  + CO  CF\  (CO)^Mn  J  Carbonylation  2C0  CF,  ^"3  0  ("boat and " c h a i r " forms)  5  5  Sec.  46  III-B-2  Since  the s t r u c t u r e of compound  u n c e r t a i n , any However, two  suggestion  (IV), C FgMn(C0) , i s 5  as to the route of f o r m a t i o n  p o s s i b l e ways of a c h i e v i n g  (CH ) SnCF CF Mn(CO) 3  3  2  2  C F Mn(CO) 2  (iv)  3  3  3  3  impurity  + C F  5  3  3  6  CF  5  +  5  c a r r y i n g out  3  5  5  (CH ) SnF + C F M n ( C O ) 3  ^  k  considerable  3  3  5  5  C F Mn(CO) . 5  The  9  5  t o t a l amount of  i n the g r e a t  In f a c t , r e a c t i o n s  (iii)  and  as  an  hexafluoro-  excess of o l e f i n ( i v ) may  employed  be proved  the r e a c t i o n w i t h a m i x t u r e of o l e f i n s c o n t a i n i n g  r a t i o of h e x a f l u o r o p r o p e n e .  a  by higher  I t i s i n t e r e s t i n g to note t h a t Stone et  have encountered a s i m i l a r case. A compound of unknown s t r u c t u r e ,  formulated  as C H ( C ^ F ) R e ( C O ) , was  CH Re(C0)  with tetrafluoroethylene  3  2  5  i n the t e t r a f l u o r o e t h y l e n e .  i n the r e a c t i o n .  (95)  3  u n i t s must a r i s e from h e x a f l u o r o p r o p e n e present  propene c o u l d w e l l be  al.  formula:  C F g M n ( C O ) , or  CF 2  3  — - ^  5  impossible.  (CH ) SnF + C F Mn(CO)  6  (CH ) S n ( C F ) M n ( C O )  C F Mn(CO)  The  s»  5  is  t h i s compound are t e n t a t i v e l y  proposed on the b a s i s of the apparent m o l e c u l a r  (iii)  still  5  s  3  g  obtained  5  ( i n 3:80  from the r e a c t i o n of mole r a t i o ) at 130°  for  19  four hours.  T h i s product gave an  groups of peaks, and A l t h o u g h the 1:1 favourable  conditions  was  F N.M.R. spectrum showing  described  adduct  as h a v i n g a f l u o r o c a r b o n  (CH ) SnCF CF Mn(C0) 3  3  2  2  for free-radical addition  i r r a d i a t i o n ) , a number of p u z z l i n g q u e s t i o n s r a d i c a l attack occurred  two  side  chain.  i s formed under  5  (i.e.,  remain.  ultraviolet Firstly,  i f free-  i n v o l v i n g the h o m o l y t i c f i s s i o n of the t i n -  manganese bond, a r a d i c a l  (CH ) SnCF CF 3  3  2  2  should  c o u l d no hydrogen a b s t r a c t i o n p r o d u c t , e.g.,  be  formed.  Why  ( C H ) S n C F C F H , be 3  3  2  2  then isolated?  Sec.  47  III-B-3  Secondly, why  i s there no  evidence f o r the p r o p a g a t i o n step of  the  .reaction, which would form compounds having more than one m o l e c u l e of tetrafluoroethylene? may  become c l e a r by  The  factors responsible  The  olefins.  Reaction with t r i f l u o r o e t h y l e n e .  r e a c t i o n of  (CH ) Sn-Mn(CO) 3  3  with t r i f l u o r o e t h y l e n e also  5  proceeds r e a d i l y under the same c o n d i t i o n s was  p r o d u c t s were o b t a i n e d and main product was  In a d d i t i o n , the c i s - and  were a l s o i s o l a t e d .  the r e c o v e r y of the  carbonyl  Its formulation  tin-manganese  5  (V) and  compound CF =CFMn(CO) 2  5  (VI)],  which  5  Surprisingly,  found f o r the adduct, ( C H ) S n ( C F H ) M n ( C O ) , 3  3  as C F H M n ( C O ) 2  3  5  nor  r e c r y s t a l l i z a t i o n from cyclohexane s o l u t i o n ,  f a i r l y volatile,white needle-like 2  2  products.  (V), p u r i f i e d by  5  i s supported by  m o l e c u l a r weight measurements. S p e c t r o s c o p i c possible structures  reactant.  (trans-CFH=CF)Mn(C0)  groups immediately to form the dimers.  f o r hydrogen a b s t r a c t i o n  o b t a i n e d as  follow.  These isomers e x i s t as a i r s t a b l e monomers, u n l i k e  e v i d e n c e c o u l d be  Compound  Fewer secondary  t r a n s - i s o m e r s of ( l , 2 - d i f l u o r o v i n y l ) p e n t a -  the analogous, p o s s i b l y i n t e r m e d i a t e , eliminates  2  a g a i n t r i m e t h y l t i n f l u o r i d e i n almost  carbonylmanganese [(cis-CFH=CF)Mn(CO)  was  2  the r e a c t i o n i s e a s i e r to  q u a n t i t a t i v e y i e l d based on  no  i n which the - C F C F - u n i t  smoothly i n s e r t e d i n t o the m e t a l - m e t a l bond.  The  observations  e x t e n d i n g i n v e s t i g a t i o n to the r e a c t i o n s w i t h a  v a r i e t y of unsymmetrical  3.  f o r the above  78°.  elemental analyses  and  studies  f o r (V), which are shown as  of the d e r i v a t i o n of these s t r u c t u r e s  c r y s t a l s , m.p.,  i s given  indicate  follows. i n Section  two  A full IV-C,  discussion D.  Sec.  48  III-B-3  OO  1-—C=0  0=C  8  VB  VA The  formation of s t r u c t u r e  analogous  (VB) would not be s u r p r i s i n g because an  s t r u c t u r e has been proposed  (76) f o r C H3COCo(CO) , which  was prepared a c c o r d i n g t o t h e f o l l o w i n g  CH =CHC0C1 + NaCo(CO),  2  3  reaction:  Et 0_ 2  2  /-  .CO C H ^ C o — C O + CO X "^CO 0  The  c o o r d i n a t i o n o f the double bond t o the c o b a l t atom i n C H C 0 C o ( C 0 ) 2  was shown by the i n f r a r e d  spectrum  and by c h e m i c a l evidence  3  (76).  3  In  c o n t r a s t t o t h e c a r b o n y l l i n k a g e i n a s i m p l e a c y l c o b a l t compound which -1  absorbs a t 1720 cm.  -1 .  , t h i s complex has an a c y l c a r b o n y l peak a t 1850 cm.  i n d i c a t i v e o f a h i g h l y s t r a i n e d system. r e a c t i o n mixture  liberated  A d d i t i o n o f i o d i n e t o the  t h r e e moles o f carbon monoxide.  Treatment  of t h i s complex w i t h t r i p h e n y l p h o s p h i n e g i v e s no e v o l u t i o n o f gas, but the 1850 cm.  1  peak d i s a p p e a r e d from the r e s u l t i n g s o l u t i o n , and  i n s t e a d two new peaks were observed  a t 1670 and 1635 cm.  r e s u l t s were a t t r i b u t e d t o a d i s p l a c e m e n t  These  of the double bond r a t h e r  than a t e r m i n a l c a r b o n y l group by t r i p h e n y l p h o s p h i n e , and the two new peaks were accounted  f o r by the u n c o o r d i n a t e d double bond and the a c y l  ,  Sec.  III-B-3  49  group i n C H = C H C 0 C o ( C O ) P ( C g H ) 2  3  5  3  , respectively.  In an attempt to i d e n t i f y s t r u c t u r e employed.  Compound  excess) i n an s o l u t i o n and peak and  no  ether the  new  (V) was  (VB),  refluxed with triphenylphosphine  solution. Infrared  solvent-free  thus appears t h a t the  be  deduced by  r e a c t i o n m i x t u r e showed o n l y double bond and  an X-ray c r y s t a l l o g r a p h i c study which has  studies  (Sec.  IV C, D)  c l e a r l y show (VI)  F  should be  noted that  are among the  few  v i n y l groups  (77).  are CF =CFRe(CO) 2  5  and  w h i l e t h i s work was It of  column, was  to have the  > = <  Mn(C0)  t h i s compound and  only  equations:  can  only  o b t a i n e d as  a  Spectroscopic  structure  5  the dimers of  o t h e r compounds h a v i n g t h i s  CF =CFFe(C0) (ir-C H )., 2  2  5  5  [CF =CFMn(CO) .] 2  1+  a-bonded f l u o r o type of group  which were r e p o r t e d  (78)  i n progress.  ( C H 3 ) S n - M n ( C 0 ) 5 w i t h t r i f l u o r o e t h y l e n e can  following  (V)  F  i s c o n c l u d e d from the above r e s u l t s , t h a t 3  a c y l group.  J. Trotter.  t r a n s i t i o n m e t a l complexes c o n t a i n i n g The  original  been undertaken  than i t s c i s - i s o m e r .  H  It  of Dr.  ( V I ) , p u r i f i e d on a F l o r i s i l  w h i t e s o l i d which i s more v o l a t i l e  (in slight  the  c o r r e c t c o n f i g u r a t i o n of compound  i n t h i s department under the s u p e r v i s i o n Compound  was  examination of b o t h the r e s u l t i n g  peak a t t r i b u t a b l e to the  It  the above method  be  the  overall reaction  r e p r e s e n t e d by  the  Sec.  50  III-B-4  (CH ) Sn-Mn(C0) 3  3  5  s>  + CF =CFH 2  !fCH ) SnCFHCF Mn(C0) | 3  3  2  5  (CH ) SnF 3  3  (CFH=CF)Mn(C0) ( c i s and  I t should be noted  5  trans)  t h a t the d i r e c t i o n of a d d i t i o n i s i n a c c o r d  w i t h t h a t i n the r e a c t i o n of t h i s o l e f i n w i t h h e x a m e t h y l d i t i n , i . e . , the t i n atom i s l i n k e d w i t h the -CFH  group.  would g i v e r i s e to the decomposition  product CF =CHMn(C0)5, which  not  An a l t e r n a t i v e  orientation was  2  observed.  4. R e a c t i o n w i t h  trifluorochloroethylene.  Under the same c o n d i t i o n s as i n the p r e v i o u s r e a c t i o n s , the r e a c t i o n of ( C H ) S n - M n ( C 0 ) 5 w i t h t r i f l u o r o c h l o r o e t h y l e n e a g a i n gave 3  3  t r i m e t h y l t i n f l u o r i d e but i n much s m a l l e r y i e l d  (about 9%).  In  c o n t r a s t , carbon monoxide ( i n v e r y l a r g e amount compared w i t h  the  • r e a c t i o n s w i t h o t h e r o l e f i n s ) , as w e l l as t r i m e t h y l t i n c h l o r i d e i n considerable y i e l d  (about 45%), were o b t a i n e d .  t a i n i n g the Sn-C-C-Mn group c o u l d be i s o l a t e d . product  c o n t a i n i n g carbonylmanganese, was  A g a i n , no adduct I n s t e a d , the  compound  CF =CFG0Mn(C0)5, o b t a i n e d i n more than 60% y i e l d . 2  having-an Mn(CO)5 group, were the c i s - and  con-  principal  (VII), i . e . , Other p r o d u c t s  t r a n s - i s o m e r s of  (1,2-difluoro-2-chlorovinyl)penta-carbonylmanganese  [(cis-CFCl=CF)Mn(C0)5 1  and  (trans-CFCl=CF)Mn(C0)5].  spectra  also  9  These isomers were d e t e c t e d by the  (Sec. V I - E - 5 ) , a l t h o u g h  they c o u l d not be i s o l a t e d  pure s t a t e because of the s m a l l y i e l d s .  i n the  F N.M.R.  Sec.  51  III-B-4  The f o r m a t i o n o f these t h r e e products might proceed  as f o l l o w s :  (CH ) Sn-Mn(CO) 3  i n d i c a t e s that the r e a c t i o n  3  5  + CF =GFC1  ; (CH ) SnC FClCF Mn(C0) 5] t  2  3  3  2  a-chlorine elimination  (CH ) SnCl 3  + [CFCF M.n(CO)  3  2  a-fluorine elimination  ( C H ) S n F + ^CClCF Mn(CO) j  5 !  3  3  CFCl=CFMn(CO)  CF =CFMn(C0)5 2  Dimerization  5  2  , + CO  5  Ccis and trans)  T  CF =CFC0Mn(C0) 2  5  An a l t e r n a t i v e r o u t e t o form (CFCl=CF)Mn(C0) a c h l o r i n e atom may a l s o be c o n s i d e r e d . CHFClCF SiCl 2  position  3  and C F C l C F S i C l 2  3  by m i g r a t i o n o f  5  P y r o l y s e s o f the compounds  (7 9) m a i n l y  gave the f o l l o w i n g decom-  products CHFClCF SiCl  3  CFCl CF SiCl  3  2  2  2  250' *  CHF=CFC1  +FS1CI3  -> CFC1=CFC1 + F S i C l , 3  i n a d d i t i o n t o v e r y s m a l l amounts o f t h e o l e f i n s CHC1=CF  2  and CC1 =CF , . 2  2  r e s p e c t i v e l y , which would be formed by r e l e a s e o f f l u o r i n e atoms from the p - p o s i t i o n w i t h r e s p e c t t o s i l i c o n  atom.  Consequently, t h e  mechanism was d e s c r i b e d (79) such that the i n i t i a l s t e p i n t h e p y r o l y s i s i n v o l v e s i n t e r n a l n u c l e o p h i l i c a t t a c k on a s i l i c o n  atom by a a - f l u o r i n e  atom, f o l l o w e d by m i g r a t i o n o f an atom other than f l u o r i n e from the 8-position,  Sec.  III-B-4  52  (CH3)3Sh-Mn(CO)5 w i t h  Thus the o v e r a l l r e a c t i o n of may  be  revised  i n the  (CH ) Sn-Mn(CO) 3  3  following  way:  + CF =CFC1  5  U - V  2  1  "  0(1  (CH ) SnCF CFClMn(CO)5 3  B-Cl  trifluorochloroethylene  3  2  elimination  a-F  elimination  K  ( C H ) S n F + I^CFCFClMn(CO) 5}  + CO  3  3  3-C1 ( C H ) S n C l + CF =CFCOMn(CO) 3  3  2  I t i s then c l e a r t h a t  t h i s r e a c t i o n p r o v i d e s no  chlorine-abstraction  gives  3  2  information  r i s e to the q u e s t i o n s :  (CH ) SnCF=CF  3  3  3  i  lclMn(CO)J does d i m e r i z a t i o n  r T of jCF =CFMn(C0) ; 2  ».  5  2 |CF =CFMn(C0) j  not  J  2  4  (boat and  These compounds [ ( C H ) S n C F = C F , and 3  2  experiment, a l t h o u g h C l M n ( C 0 ) i n the  reaction residue  5  and  which was  2  2  chair  +  1+  not  2  +  required  explanation  2C0  detected i n t h i s  might w e l l have been p r e s e n t  investigated  further.  given,  to p r o v i d e answers to these q u e s t i o n s .  of the c h l o r i n e - a b s t r a c t i o n by  however, i n terms of bond energy.  energy i s 69 K c a l mole  -1  (80),  smaller  2CO.  forms).  the dimers] were not  [ClHn(C0) ]  5  1  A more d e t a i l e d r e i n v e s t i g a t i o n of the above r e a c t i o n and study are  was  occur?  |cF =CFMn(C0) ]  e-  5  2  3  regarding  (a) Why  + ClMn(C0)  2  r (b) Why  5  by manganese atom?  !(CH ) S n ( C F C l ) M n ( C O ) 5"! 3  migration  CFCl=CFMn(CO)  5  the d i r e c t i o n o f a d d i t i o n , but t h e r e no  ^  A  a kinetic tentative  a s p e c i f i c metal atom c o u l d The  manganese-chlorine bond  than that  of the  tin-chlorine  be  53  Sec.  III-B-4  bond  (76 K c a l mole  -1  ) , so t h a t i n c o m p e t i t i o n f o r bond f o r m a t i o n s , the  l a t t e r bond i s probably  favoured over the former.  In view o f the h i g h y i e l d o f CF =CFC0Mn(C0) , i t i s s i g n i f i c a n t 2  to  c o n s i d e r here  5  the f a c t o r s r e s p o n s i b l e f o r the ease o f c a r b o n y l a t i o n  of CF =eFMn(CO) . 2  5  C e r t a i n a s p e c t s o f the d e c a r b o n y l a t i o n o f acylpentacarbonylmanganese d e r i v a t i v e s have been s t u d i e d i n g r e a t d e t a i l . carbon monoxide have demonstrated  Studies with  labelled  (81) t h a t the carbon monoxide  molecule  which i s l o s t does n o t come from the a c y l c a r b o n y l group, but i n s t e a d from one  o f the t e r m i n a l c a r b o n y l groups.  t h e r e f o r e n o t t o be regarded  as the "popping o u t " o f t h e a c y l  group, as may have been suspected due  This decarbonylation reaction i s  originally.  I n s t e a d , i t appears to be  t o - m i g r a t i o n of the o r g a n i c group, which was a t t a c h e d  c a r b o n y l group- o r i g i n a l l y ,  to the m e t a l  t o the a c y l  atom w i t h simultaneous  ment o f one o f the t e r m i n a l c a r b o n y l groups.  carbonyl  displace-  T h e r e f o r e , the ease o f  d e c a r b o n y l a t i o n w i l l depend on t h e bond s t r e n g t h between t h e o r g a n i c group and the metal The observed  atom compared w i t h t h a t o f M-CO bond.  c a r b o n y l a t i o n o f pentacarbonylmanganese d e r i v a t i v e s has been i n many c a s e s .  F o r example, methylpentacarbonylmanganese  r e a c t s w i t h carbon monoxide under p r e s s u r e a t 25° t o g i v e CH3C0Mn(C0) in  good y i e l d  (82).  C o t t o n e t a l . (83a) have demonstrated t h a t t h i s  carbonylation reaction i s f i r s t and  5  carbon monoxide.  o r d e r w i t h r e s p e c t t o b o t h CH3Mn(CO)5  I n a f u r t h e r study  they have deteirmined  dependence o f t h e e q u i l i b r i u m c o n s t a n t s k i and k  (83b) the  f o r the carbonylation  2  and d e c a r b o n y l a t i o n r e a c t i o n s on the n a t u r e o f the o r g a n i c group.  RMn(CO)  5  + CO  kl  RCOMn(CO)  5  Sec. III-B-4  . 54  The c o n s t a n t k  1 ?  r e p r e s e n t i n g t h e r a t e o f the c a r b o n y l a t i o n , was found  (83b) t o decrease i n the s e r i e s  R =  n-C H 3  >  7  C H 2  5  >  C H 6  5  >  CH  »  3  C H CH 6  5  %  2  CF . 3  I t thus appears t h a t e l e c t r o n e g a t i v e groups f a v o u r the d e c a r b o n y l a t i o n r e a c t i o n over the c a r b o n y l a t i o n r e a c t i o n .  T h i s may a r i s e from t h e  tendency f o r such s u b s t i t u e n t s on the a c y l group t o withdraw e l e c t r o n s to a g r e a t e r e x t e n t from the m e t a l atom, l e a v i n g a lower  electron  d e n s i t y on the m e t a l atom t o p a r t i c i p a t e i n p a r t i a l double-bonding w i t h the t e r m i n a l c a r b o n y l groups.  Thus the bonding between ttie manganese  atom and the t e r m i n a l c a r b o n y l groups i s weakened f a c i l e d e c a r b o n y l a t i o n , s i n c e , as mentioned  ( 4 2 ) , l e a d i n g to  above, the carbon monoxide  which i s l o s t , comes from one of t h e t e r m i n a l c a r b o n y l groups. T h e r e f o r e , i t seems t h a t t h e CF2=CF- group may be r e g a r d e d , i n t h i s r e s p e c t , as a l e s s e l e c t r o n e g a t i v e group than o t h e r p e r f l u o r o a l k y l groups, and hence i n the r e a c t i o n o f (CH3)3Sn-Mn(CO) w i t h 5  trifluoro-  c h l p r o e t h y l e n e , the c a r b o n y l a t i o n was so f a c i l e t h a t carbon monoxide l i b e r a t e d d u r i n g the d e c o m p o s i t i o n o f some o f the compounds i s a b l e t o c a r b o n y l a t e ^CF =CFMn(C0) | 2  ,- -  r  ;:r  o^c  tt  .  CF  OO  t o g i v e CF =CFC0Mn(C0) , 2  -y  ir —  CF  i o=c^  Mn  5  pentacarbonylmanganese  .  >|  J  C S O T \  I  Mn  CF O=C  IOHC'  ^  I  I  T h i s assumption  u  " O O  I  .00  ^ ' Mn  I " O O  5  OBC'  CO  J  i s c o n s i s t e n t w i t h the o b s e r v a t i o n s o f o t h e r workers.  A compound o b t a i n e d from Na[Mri(C0) ] and e t h y l i o d i d e , and o r i g i n a l l y 5  thought t o be C H M n ( C 0 ) 2  5  5  ( 8 4 ) , was l a t e r demonstrated  to be the  Sec.  55  III-B-6  p r o p i b n y l d e r i v a t i v e C H COMn(CO) 2  et  5  5  (85). On the o t h e r hand, C o f f i e l d  a l . (81) r e p o r t e d t h a t the t r i f l u o r o m e t h y l d e r i v a t i v e  c o u l d not be c a r b o n y l a t e d t o CF COMn(CO) . 3  of  5  Furthermore,  CF Mn(CO) 3  5  the y i e l d  carbon monoxide i n the p r e s e n t r e a c t i o n i s much g r e a t e r than that i n  the r e a c t i o n w i t h t e t r a f l u p r o e t h y l e n e .  T h i s i s c o n s i s t e n t w i t h the  r e l a t i v e y i e l d s o f CF2=CFC0Mn(C0)5 i n these two r e a c t i o n s .  5.  Reaction with ethylene. •  The  f i n a l o l e f i n reacted with  r e a c t a n t s were i r r a d i a t e d 80°  f o r 20 hours.  The  •  ( C H ) S n - M n ( C 0 ) 5 was e t h y l e n e . These 3  3  The r e a c t i o n product was a g a i n not an adduct b u t ,  (TT-ethylene)manganese 43% y i e l d ,  •  i n pentane a t 50° f o r f o u r hours, and then a t  u n e x p e c t e d l y , an ethylene-?-bonded  in  •  complex, t r i m e t h y l t i n - t e t r a c a r b o n y l -  [ (CH ) S n - M n ( C O ) 4 ( T r - C ^ H ^ ) ( I I ) ] , was 3  3  isolated  t o g e t h e r w i t h i t s c o r r e s p o n d i n g amount o f carbon monoxide.  r e a c t i o n was shown on the b a s i s o f the carbon monoxide o b t a i n e d , to  be almost  65% complete  a t t h e end o f the f i r s t  four-hour  irradiation  period. Compound  ( I I ) , a p a l e y e l l o w o i l , was s e p a r a t e d by vacuum s u b l i m a t i o n  and decomposes s l o w l y t o g i v e a dark brown s o l i d when i t i s a l l o w e d t o stand  iii a i r .  An attempt  to p u r i f y  ( I I ) on a F l o r i s i l  s u c c e s s f u l because o f d e c o m p o s i t i o n .  column was not  However, the sublimed  product  was shown by e l e m e n t a l a n a l y s e s , a m o l e c u l a r weight measurement, and spectroscopic studies is  (a)  proposed  (Sec. IV-C, D) t o be a pure compound, and i t  that' i t has the -following  structure:  The term " s u b l i m a t i o n used here means that a d i s t i l l a t i o n o f t h i s o i l was performed u s i n g the same t e c h n i q u e as the s u b l i m a t i o n o f s o l i d s (see Sec. VT^-B). 1 1  Sec.  56  III-B-5  CO  CO  \ (CH ) Sn 3  3  / CH Mn^—|  / CO  \  2  (II)  CH  2  CO  Assuming t h a t t h i s m o l e c u l e has  an o c t a h e d r a l  the manganese atom, then c i s - and t r a n s - i s o m e r s the b a s i s o f the  infrared  spectrum, compound  a c i s - i s o m e r r a t h e r than a t r a n s - i s o m e r one  absorption  i n the c a r b o n y l r e g i o n  would have o n l y one a b s o r p t i o n .  c o n f i g u r a t i o n about  are expected.  ( I I ) i s expected t o be  because t h e r e  (Sec.  On  IV-C).  i s more' than  A  trans-isomer  The H N.M.R. spectrum o f ( I I ) ,  however, shows o n l y a s i n g l e peak a t -2.65  p.p.m. (with r e s p e c t t o  t e t r a m e t h y l s i l a n e ) which c o u l d o n l y a r i s e from a t r a n s - i s o m e r . disagreement between the i n f r a r e d arid N.M.R. s p e c t r o s c o p i c  This  results  i  is  t e n t a t i v e l y a t t r i b u t e d t o an e x t r e m e l y r a p i d exchange between  coordinated  and f r e e e t h y l e n e m o l e c u l e s which would g i v e r i s e  s i n g l e peak i n the N.M.R. spectrum. corresponding The  i s not  ,  formation  3  T h i s may be compared w i t h t h e  s i n g l e peak observed for? the Sn-Pt"*- ( n-C Hi ) complex  (CH ) Sn-Mn(C0) 3  to a  5  2  +  (37).  o f ( I I ) through the r e a c t i o n  + CH  2  =  CH  U.V.^ (CH ) S n - M n ( C Q ) ( T T - C ^ ) + CO  2  3  3  h  s u r p r i s i n g because s e v e r a l s i m i l a r complexes i n a d d i t i o n t o t h e  formation  of ( 0 6 % ) Sn-Mn(C0) [ 7 r r - C ( C H ) ^0] 3  5  6  5  (26), have b een  complex ( T r - C H 5 ) M n ( C 0 ) ( T T — C 2 i + ) was prepared  An  ethylene  of  (iT-C5H5)Mn(CO)  H  5  3  L a t e r , an e t h y l e n e synthesized  3  and e t h y l e n e  2  under u l t r a v i o l e t  reported.  by the r e a c t i o n  irradiation  complex c a t i o n [Mn (CO) 5 (TT-C H[ ) ]"*" was a l s o  i n the same manner  2  (87).  +  (86).  Sec. I l l  The  5  fact that  t i o n metal  ethylene  instead of  study of the  denotes a p a i r of iT-electrons  i n s e r t i n g i n t o the  four hours.  The  allowed  irradiation.  f a c i l e homogeneous h y d r o g e n a t i o n o f e t h y l e n e  X-ray studies containing The  (37a).  been r e p o r t e d (37b)  (SnCl3)  t  3  In contrast  t o be  This  attached  difference in catalytic  formed  catalytic  of the  and, simply  over a p l a t i n u m - t i n c o m p l e x was (II)  a b o v e two  bonded  shown  attributed which  to the  facilitates  strong  ( C H ) S n - M n ( C O ) 5 and 3  3  types of  [(Cl Sn) Pt] 3  5  t r a n s - a c t i v a t i n g e f f e c t of the  ligand-exchange reactions  (37b)  .  by  bonds. metal-  3 metal bonded complexes,  a  species  through the p l a t i n u m - t i n  activities  for.  to the present r e s u l t s ,  a five-coordinated platinum  ligands  gas  irradiation  (CH3) S n - M n ( C O ) 4 ( i r - C 2 H i )  a  of  excess hydrogen  a t r a c e o f e t h a n e w h i c h m i g h t w e l l be  through u l t r a v i o l e t  c a t a l y s t has  and  to react under u l t r a v i o l e t  r e a c t i o n p r o d u c t s were  unexpectedly, only  A mixture  3  (CH3)3Sn-Mn(C0)5 i n p e n t a n e , e x c e s s e t h y l e n e , (1 a t m o s p h e r e ) was  transi  tin-manganese bond prompted  (CH )3Sn-Mn(C0)5.  c a t a l y t i c behaviour,of  to the  , may  SnCl ~ 3  be group  58  Sec. IV-A-1  IV.  A.  SPECTROSCOPIC  STUDIES  The I n f r a r e d S p e c t r a o f the F l u o r o c a r b o n  Derivatives of  Trimethyltin.  1.  I n t r o d u c t i o n t o the i n f r a r e d bands a s s o c i a t e d w i t h  the t r i m e t h y l t i n  group.  As t h e p o s i t i o n s o f t h e fundamental v i b r a t i o n s . f o r t h e o r g a n o t i n compounds p o s s e s s i n g  a f o u r - c o - o r d i n a t e , t e t r a h e d r a l c o n f i g u r a t i o n have,  been t h o r o u g h l y e s t a b l i s h e d by many workers  ( 8 8 ) , t h e assignments o f t h e  i n f r a r e d s p e c t r a f o r the compounds c o n t a i n i n g  ( C H 3 ) S n group can be 3  r e a d i l y made. Most  o f t r i m e t h y l t i n d e r i v a t i v e s e x h i b i t i n t h e 4000-600 cm.  r e g i o n t h e c h a r a c t e r i s t i c f r e q u e n c i e s which a r e g i v e n  below.  _1  Frequencies  (cm.  )  Assignments  * 3000 - 2900  C-H asym. and sym.  1450 - 1400  CH  3  asym. d e f . .  1220 - 1200  CH  3  sym. d e f .  790 -  760  * asym, asymmetric;  CH -Sn 3  str.  rocking  sym., symmetric; s t r . , s t r e t c h i n g ; d e f . , d e f o r m a t i o n .  The i n f r a r e d bands a s s o c i a t e d w i t h t i n - c a r b o n s t r e t c h i n g modes i n the very  f a r i n f r a r e d r e g i o n a r e more v a r i a b l e i n t h e i r f r e q u e n c i e s , and .are c h a r a c t e r i s t i c f o r each o f t h e f o l l o w i n g types  compounds:  o f the m e t h y l t i n  ( C H ) S n X where X i s C I , Br, o r f l u o r o c a r b o n ; 3  3  trimethyltin  f l u o r i d e which i s known. (89) t o c o n t a i n e s s e n t i a l l y f i v e - c o - o r o j i n a t e tin  atom surrounded by t h r e e carbon atoms on a t r i g o n a l p l a n e ;  tetra-  Sec.  59  IV-A-2  m e t h y l t i n ; and t r i m e t h y l t i n compounds c o n t a i n i n g a t i n - t i n bond.  These  c h a r a c t e r i s t i c f r e q u e n c i e s , which a r e l i s t e d  important  i n i d e n t i f y i n g the p r o d u c t s  type o f compound  o f ..this  Frequency (cm. Sn-C asym. s t r .  _1  as f o l l o w s , w i l l be  study.  Reference  )  Sn-C sym.  str.  (CH ) SnX  550-54G  (CH ) SnF  553 ;  infrared inactive  (90)  (CHgJ^Sn  524(liquid)  infrared inactive  (91)  3  3  3  3  (88)  530-510  529(gas) Sn-Sn compounds  2.  520-510  (72)  500-495  I n t r o d u c t i o n t o the i n f r a r e d bands a s s o c i a t e d w i t h  fluorocarbon  groups...  Until  r e c e n t l y l i t t l e has been p u b l i s h e d : on^the subjOct o f ' v i b r a -  tional spectra of perfluoro-organometallie band assignments a r e s t i l l  with  (92,93,94), and  d i f f i c u l t t o make because no d e t a i l e d c o r r e -  l a t i o n r u l e s have been f o r m u l a t e d theless, fluorocarbon  compounds  f o r fluorocarbon  frequencies.  groups show very s t r o n g a b s o r p t i o n s  f l u o r i n e - c a r b o n v i b r a t i o n . m o d e s i n the 1400-1000 cm.  the spectrum.  Never-  associated region o f  T h i s p r o p e r t y has been extremely u s e f u l i n t h e i d e n t i -  f i c a t i o n o f fluorocarbon-metal  derivatives.  spectrum o f t h e r e a c t i o n p r o d u c t s ,  By examining:; the i n f r a r e d  i t i s p o s s i b l e t o e s t a b l i s h how f a r  the s y n t h e s i s o f a f l u o r o c a r b o n d e r i v a t i v e o f a metal has proceeded. Even though the d e s i r e d compound i s d i l u t e d c o n s i d e r a b l y by mixing n o n - f l u o r i n e - c o n t a i n i n g substances,  the s t r o n g f l u o r i n e - c a r b o n  with  absorptions  Sec.  60  IV-A-2  are s t i l l  obvious.  Carbon-fluorine carbon compounds  absorption  are l i s t e d  frequencies, o f s e v e r a l s e r i e s o f f l u o r o -  i n TABLES 7, 8 and 9 a c c o r d i n g l y .  TABLE 7 _1  *  C-F,ABSORPTION BANDS (cm. ) IN THE IR SPECTRA OF SOME POLYFLUORO-ALKANES  CH -CH F 3  2  CH -CHF 3  CF . str.  3  3  CC1 -CF 3  1255 1227  3  Cl CFrCF 2  3  1295 1232  CF  1171 1108  str.  C-C  868  3  3  CF -CF 3  1315 1250 1115  1351 1241  830  909  943  982  810  541  561 490-  590  648  715 620  (96)  (96)  (96)  def.  (95)  Ref.  2  1110  880  str  C1CF -CF  1185 1133  1171 1143  2  str.  CF  CH -CF 1280 1233  3  CF  2  (95)  (95)  (96)  •  (*)  A l l bands a r e s t r o n g t o v e r y s t r o n g i n i n t e n s i t y .  The  i n f r a r e d bands l i s t e d  on a t h e o r e t i c a l b a s i s  (95.96).  i n T a b l e 7 were a s s i g n e d by N i e l s o n et a l . Stone.et  a l . (94,22,97) a s s i g n e d  those  i n f r a r e d bands shown i n TABLE 8 by comparing the s p e c t r a o f the p e r - . f l u o r o a l k y l - m e t a l compounds with those  of polyfluoroalkanes^,,  D e t a i l e d assignments o f the i n f r a r e d bands a s s o c i a t e d ^ i t h t h e C-F absorptions  o f p o l y f l u o r o a l k y l - m e t a l d e r i v a t i v e s , as shown i n TABLE 9,  have not y e t been made.  Such assignments, however, can be a c h i e v e d i n  the same e m p i r i c a l f a s h i o n as used by Stone e t a l . (94).  3  Sec.  61  IV-A-2  TABLE 8  C-F ABSORPTION BANDS (cm. IN THE IR SPECTRA  CF  str.  3  CF CF -M  b  3  .  $  OF PERFLUOROALKYL-METAL COMPOUNDS  CF -M  Assignment  a  1  3  CF CF CF -M  C  2  3  1350-1300 1220-1185 1195-1175  1160-1150 1075-1070  -J  1160-1150 1100-1085 1070-1030 1020-1000  a-CF s t r . 2  1040- 990  930- 905  C-C s t r . 3  d  2  1355-1315 1230-1215 1205-1190  3-CF s t r .  CF  2  815- 810  def.  725- 724  735-720  725- 715  j  C-F d e f .  670- 660  (a) „ A l l bands are medium t o s t r o n g i n i n t e n s i t y . (b)  For ( C H ) S n C F  (c)  For ( C H ) P b C F , ( C H ) S n C F  3  3  3  3  2  and (CH ) S n C F C l ( 2 3 ) .  3  3  5  3  C F Fe(CO) I, 2  5  5  2  5  5  C F C0Ni(ir-C H5) 2  (d)  5  For ( C H ) S n ( n - C F ) 2  2  5  (22),.  5  3  7  2  5  7  3  7  5  5  2  5  (98).  2  7  C F C O N i ( T T - C H ) (97). 3  C F C0Mn(C0) ,  and  C F Fe(00)^1, C F Mn(C0) , C F Re(C0) 3  5  (97) .  5  3  3  3  C F Mn(C0) , C F Re(QO) ,  5  C F C0Re(C0) (94), 2  2  5  3  7  5  (94), a n d  5  Sec.  62  IV-A-2  TABLE 9  C-F ABSORPTION BANDS (cm.  1  a )  IN THE IR SPECTRA OF POLYFLUOROALKYL-METAL COMPOUNDS HCF CF -M  Assignment  2  CH CF CF -M  b  2  3  1370-1350  (B-CF  str..)  2  2 (a-CF s t r . )  C  2  C H CF CF2-M 6  5  1385-1380 1275-1265 1205-1200 1160-1155  1 1180-1160 1100-1080  2  6  1045-1000  1272 1177  1075-1035 1031-1000  1058 1025 1009  980- 975 845- 835  953 808  2  3 (C-C  990-  975  640-  635  ,  str.) 4  6  (a)  A l l bands a r e medium t o s t r o n g i n i n t e n s i t y .  (b)  For (CH ) Sn(CF CF H) , (CH ) SnH(CF CF H), 3  2  2  2  2  3  (CH ) SnCl(CF CF H) 3  2  2  2  2  2  2  (51),  2  H C F C F M n ( C 0 ) (99), 2  2  5  HCF CF Re(CO) 2  2  5  (75), and  HCF CF Mo(C0) U - C H ) , HCF CF W(C0) ( T T ^ H S ) (100). 2  2  3  5  5  2  2  3  (c)  F o r C H C F C F M n ( C O ) ( 1 0 1 ) , and C H C F C F R e ( C O ) 5 ( 9 9 ) .  (d)  For C H CF CF Mn(CO)s(lOl).  (e)  These bands do not appear f o r a l l compounds  3  6  2  5  2  2  5  3  2  2  2  listed.  d  Sec.  63  IV-A-3  A l l t h r e e types o f o r g a n o m e t a l l i c compounds, i . e . , HCF2CF2-M,_ C H 3 C F 2 C F 2 - M , and C H C F C F - M , l i s t e d  i n TABLE  9 give r i s e  absorptions, f a l l i n g  regions.  By comparison o f TABLES  6  5  2  2  i n four d i s t i n c t  t o C-F  8 and 9, i t i s c l e a r t h a t the f r e q u e n c i e s i n the r e g i o n s 2 and 3 are c l o s e l y r e l a t e d t o the f r e q u e n c i e s a s s o c i a t e d with the s t r e t c h i n g t i o n s ,of a-CF2 and C-C groups  (94), r e s p e c t i v e l y .  vibra-  I t may-thus be p o s s i b l e  to  a s s i g n the bands i n the r e g i o n s 2 and 3 to the C-F s t r e t c h i n g modes  of  the a - C F  2  group and C-C s t r e t c h i n g mode, r e s p e c t i v e l y .  The a b s o r p t i o n s l i s t e d the type o f compound.  i n r e g i o n 1 are more v a r i a b l e depending on  T h i s may be a t t r i b u t a b l e t o the d i f f e r e n t  groups ( i . e . , H, CH , C H ) a t t a c h e d t o the 3-carbon atom. 3  e  atom or  I t i s reason-  5  a b l e t o assume t h a t the l o c a t i o n s o f a b s o r p t i o n s a r i s i n g from the g-CF groups are more a f f e c t e d by the s u b s t i t u e n t s than t h a t f o r t h e a - C F groups.  s h o u l d be noted  t h a t the bands i n the 1385-1350 cm.  1  2  group I  It  r e g i o n are o n l y  i n the s p e c t r a o f HCF CF -M and C H C F C F - M d e r i v a t i v e s , but are 2  not observed  2  f o r C H 5 C F C F - M compounds. 6  2  2  3  2  2  An assignment o f ;the  frequen-  c i e s i n r e g i o n 4 was not attempted because these a b s o r p t i o n s are i n the s p e c t r a o f the l a s t  3.  2  T h e r e f o r e , i t seems t h a t t h e a b s o r p t i o n s i n r e g i o n 1 are p r o -  b a b l y due t o the C-F a b s o r p t i o n s a s s o c i a t e d w i t h the 3 - C F  present  2  absent  two types o f compounds.  Discussion.  The r e s u l t s o f the i n f r a r e d examinations  o f the p r o d u c t s  o f the  p r e s e n t study are l i s t e d i n TABLES 10 and 11.  The assignments  as  shown i n the t a b l e , f o r those i n f r a r e d bands a s s o c i a t e d w i t h group o f the products  can be made.  (CH ) Sn 3  3  64  Sec. IV-A-3 TABLE 10 INFRARED BANDS OF THE REACTION PRODUCTS CONTAINING (CH ) Sn-Sn(CH ) 3  3  3  ( C H ) S n GROUP. 3  3  I  3  II  (CH ) i+Sn 3  T T T  ( C H ) S n C F C F ( C F ) Sn(CH ) 3  3  2  Assignment  C-H asym. s t r . C-H sym. s t r .  CH  CH  3  3  asym. d e f .  sym. d e f .  CH -Sn 3  rocking  Sri-C asym. s t r . Sn-C sym. s t r .  I  3  3  3  *  II  2978 2908 2349  s s m  2982 2914 2363  s s m  1945  m  1962  w  1692 1455  w m.b  1717 1697 1445  m m s  1348  m  1192 1186  m sh  1190  s  1026 1014  vw •vw  1029  w  759 vvs .b 700 m  764  vvs  680  m  520 499  524 s 504 Raman  s m  s, s t r o n g ; m, medium; w, weak; s h , s h o u l d e r ; (*)  *  Data were taken from r e f .  (72).  III  3020 2955  m m  2395  vw  1695 1430 1386 1360 1281 1242 1200 1160 1136 1068 1050 995 931 910 778 721  w.b w.b m m s m vs .b vs sh m m w w w vs .b sh  614 538 526 512 505 469  s.b s s m m m.b  v, very; b, broad.  Sec. IV-A-3  65  TABLE  11  INFRARED BANDS OF THE REACTION PRODUCTS CONTAINING POLYFLUOROALKYL GROUP (CH ) SnCF CF H 3  3  2  ....  2  .  IV  (CH ) SnCF (CF ) CF H 3  3  2  2  2  (CH ) SnCF CFHCF 3  Assignment  3  asym. d e f .  r  C-F s t r .  j  \  V  CH -Sn 3  2  VI  3  V  IV  C-H asym. s t r . C-H sym. s t r .  CH  3  V  2  rocking  Sn-C asym. s t r . Sn-C sym. s t r .  VI  3000 2940  m m  2995 2910  m m  .3005 2940  m m  2390  w  2355  w  2352  vw  1720 1590 1425  W w w.b  1695  w  1355 1333  s sh  1429 1398 1355  w.b m w  1653 1420 1372 1360  w sh vs sh  1280  w  1280 1205  m s  1310 1280 1200  m s ,b vs ,b  1191 1180  sh s  1090  vs .b  1162 1137 1088  vs s s  1029 977  vs m  1030 971 905  s m w  787 730  vvs ,b m,b  1163 1150 1090 1059 1005 990' 910 881 835 788 735 717  vs sh ' s s ,b s ,b sh m s ,b m vs,b m m  631 555 539 527 513  m sh vs sh s  838 s 788 vvs,b 715 m  622 572 542  w w vs  668 578 539  m w,b vs  523  s  513  m,b  Sec.  IV-A-3  The  66  C-H  asymmetric and  symmetric s t r e t c h i n g v i b r a t i o n s g i v e  rise  _1 to the pealcs at 3020-3000 and asymmetric deformation  2960-2900 cm.  ^respectively.  mode always appears as a weak, broad  The  CH  3  band at  _l 1430-1420 cm.  , while  t i o n mode i s . d i f f i c u l t  the a b s o r p t i o n d,ue to the CH t o i d e n t i f y s i n c e i t occurs  symmetric deforma-  3  i n the r e g i o n  (1200-  _1 1190  cm. The  ,) where the s t r o n g C-F  are expected. _l s t r o n g and broad band i n 790-760 cm. r e g i o n was a s s i g n e d  the CH -Sn r o c k i n g mode.  The  3  absorptions  Sn-C  assymmetric and  to.  symmetric s t r e t c h i n g  _1 v i b r a t i o n s were found at 553-538 and good agreement w i t h the  frequencies  a-bonded t o f l u o r o c a r b o n  (51).  CH -Sn r o c k i n g f r e q u e n c i e s 3  i n c r e a s e i n the f r e q u e n c i e s Brown et a l . (72)  530-513 cm.  , respectively, in  associated with  a ( C H ) S n group 3  I t i s i n t e r e s t i n g to note t h a t  o f the  compounds p r e p a r e d  o f Sn-C  an  asymmetric s t r e t c h i n g v i b r a t i o n s .  have observed t h a t the CH -Sn r o c k i n g f r e q u e n c i e s  in  3  coupling constant.  3  the  increased with  the s e r i e s o f m e t h y l t i n compounds a l s o i n c r e a s e with o f the Sn-CH  3  The  i n c r e a s i n g values  r e l a t i o n s h i p i s , however, not  linear. All  Compounds but  two,  i . e . (CH )gSn 3  2  and  (CH )i Sn, l i s t e d 3  in  +  _1 TABLES 10 and  11 possess i n t e n s e bands between 1400  and  1000  cm.  due _l  to C-F C-C  absorptions,  and medium t o s t r o n g bands between 900-800 cm.  s t r e t c h i n g v i b r a t i o n s . . The  discussed i n d i v i d u a l l y (CH )3SnCF CF H: 3  ?  The  s p e c t r a i n 1400-800 cm.  1  region  due  are  as f o l l o w s .  2  i n f r a r e d spectrum o f t h i s  compound shows f i v e s t r o n g bands i n  _1 the C-F 1180  absorption  cm.  _1  region.  The  ( s t r o n g and b r o a d ) ,  are a s s i g n e d  bands at 1355 and  1090  cm.  _1  cm.  (sharp  and  (very s t r o n g and  on the b a s i s o f TABLE 9 to the HCF - group. The 2  strong), broad)  character-  _1 istic  broadness  ( h a l f band  width 50  cm.  ) o f the t h i r d band was  also  Sec.  IV-A-3  67  observed i n the absorptions  i n f r a r e d spectrum o f ( C H ) S n ( C F C F H ) 3  at 1029  cm.  (medium) were a s s i g n e d group and 631  cm.  the C-C  _1  was  _1  ( s t r o n g and  to the C-F  2  2  2  (51).  2  s l i g h t l y broad) and  The  997  cm.  s t r e t c h i n g v i b r a t i o n o f the  s t r e t c h mode, r e s p e c t i v e l y .  t e n t a t i v e l y assigned  The  -1  a-CF  2  medium band:at  to the C - F d e f o r m a t i o n mode. ;  (CH ) SnCF (CF ) CF H 3  3  2  P  ?  ?  T h i s spectrum shows a s t r o n g , p o o r l y r e s o l v e d t r i p l e t 1162  _1  cm.  The  and  s e v e r a l bands  c a t e s a c o n s i d e r a b l e o v e r l a p o f C-F thus made f o r a d e t a i l  occurred  assignment because o f  ( C H ) S n C F ( C F ) C F H , i t was 3  very  3  2  similar,  straight product (75)  2  2  i n a close region  stretching frequencies.  region. indi-  No  attempt  the-overlapping.  3  3  2  noted t h a t the  2  at  (CF ) CH, CF3(CF ) CF H  By comparing the i n f r a r e d s p e c t r a o f and  _1  (weak to medium) i n 1000-800 cm.  fact that a l l strong absorptions  was  centred  l a s t two  2  (102),  2  spectra  are  i n d i c a t i n g the p r e s e n c e o f a f l u o r o c a r b o n group with  c h a i n i n the l a s t  compound.  o f C F = C F , i . e . , CH 2  2  3  In c o n t r a s t to t h i s ,  (CF ) i+Re (CO) 5, was  shown by  2  a  a reaction  Stone e t a l .  t o have a s i d e c h a i n f l u o r o c a r b o n group whose i n f r a r e d spectrum i s  s i m i l a r to t h a t o f  (CH ) SnCF CFHCF 3  3  2  Despite  the  (CF ) CH. 3  3  3  lack of information  concerning  the a n a l y s i s o f  the  s p e c t r a o f CF CFHCF -X groups, a review o f the s p e c t r a o f CF CFHCF OR 3  2  3  (102), where R i s CH , 3  metal compounds  C H5, or C Hy, and 2  o f the  3  (TABLE 8 ) , p e r m i t t e d  2  n-perfluoropropyl-  a t e n t a t i v e assignment f o r the  i n f r a r e d bands a s s o c i a t e d w i t h the C-F  absorptions  of  (CH ) SnCF CFHCF . 3  3  2  _1 The  band at 1372  cm.  i s probably  due  to the C F  3  group.  The  _l s t r o n g bands i n the r e g i o n 1300-1150 cm.  may  be  ten  assigned  to  C-F  3  Sec.  IV-A-3  68  s t r e t c h i n g frequencies  o f the CF3 group.  The  shoulder  at 1150  cm.  _1  _1  and  the sharp peak at 1090  cm.  may  be due  to the  6-CFH group,  while  _l the b r o a d bands at 1039 the cx-CF  and  1005  cm.  are p o s s i b l y a s s o c i a t e d  with  group.  2  _l The from C-C  medium t o s t r o n g bands i n the 1000 to 800 cm. region s t r e t c h i n g v i b r a t i o n s . The CF3 d e f o r m a t i o n modes give  arise rise  . _l t o a doublet  o f medium i n t e n s i t i e s  a b s o r p t i o n p o s s i b l y due  to a - C F  2  centred  at 726  deformation  was  cm.  , while  the  observed at 668  cm.  (CH J3SnCF2CF(CF )Sn(GH3)a 3  3  The  C-F  absorptions  of this  compound were observed as a group o f  _l s t r o n g m u l t i p l e peaks i n the well separated  13000-1100 cm.  i n f r a r e d bands o f ( C H ) S n C F C F H C F 3 , 3  3  2  replacement o f the hydrogen atom o f the has  region.  caused a l e s s e r number o f C-F  i n terms o f uncoupled C-F  o f the c e n t r a l atom o f the s u b s t i t u t e n t . atom i s i n c r e a s e d , i . e . , from H t o Sn,  As  a (Q^^Sn  which may  s t r e t c h i n g modes due  the  i t appears t h a t  g-CHF group by  absorptions  In view p f  group  be.interpreted  t o the mass e f f e c t  (103)  the mass o f the c e n t r a l  v i b r a t i o n s o f the  -CF CFCF 2  3  group become p u r e r because the h e a v i e r Sn atom moves l e s s than H atom d u r i n g the t r a n s i t i o n s ,  and  l e s s c o u p l i n g i s thus expected.  assignment o f these bands was  not  attempted due  Further  t o the l a c k o f band  separation. Other  products Apart  from the  compounds d i s c u s s e d above,the p r e s e n c e o f the  o t h e r f l u o r o c a r b o n d e r i v a t i v e s o f t r i m e t h y l t i n , which c o u l d not isolated  i n a pure s t a t e , was.  of their infrared spectra,  I 9  F  e s t a b l i s h e d by and  the c r o s s  -^H N.M.R. s p e c t r a , and  be  examinations gas  Sec. IV-A-3 chromatographic analyses.  69  The details of these i d e n t i f i c a t i o n s w i l l  be discussed i n the experimental section.  70  Sec. IV-B  B.  The N.M.R. S p e c t r a o f F l u o r o c a r b o n D e r i v a t i v e s o f T r i m e t h y l t i n .  The 1  3  C,  1 1 7  magnetic n u c l e i  Sn,  and  1 1 9  Sn;  i n these s t u d i e s .  i n the r e a c t i o n products  of t h e s e a n d  8.68%, r e s p e c t i v e l y  hydrogen) and  1 1 5  9  1  F have been observed  (104).  1  3  C ,  1 1 7  Deuterium  Sn,  and  1 1 9  1 9  F,  directly  A l l t h e n u c l e i mentioned above have s p i n  n a t u r a l abundances o f the i s o t o p e s and  1  are H ,  concerned  1/2. The  S n a r e 1.108,  7.67,  (present t o a s m a l l e x t e n t i n  S n (0.35% abundant, and w i t h a s p i n  1/2) d i d not a f f e c t  the N.M.R. s p e c t r a n o t i c e a b l y .  ( C H C J ) .SnCFoCFoH  * H N.M.R. spectrum  (a) The  main f e a t u r e s o f t h e p r o t o n resonance  are l i s t e d  spectrum o f t h i s  i n TABLE 12. F o r comparison, the chemical  s h i f t s and c o u p l i n g  c o n s t a n t s o f some analogous compounds, i . e . , ( C H 3 ) 2 S n ( C F C F H ) 2  2  H C F C F C 0 M n ( C 0 ) , and H C F C F 2  2  The  5  sharp,  2  3  compound  2  (105),  (99), a r e a l s o i n c l u d e d i n t h e t a b l e .  s i n g l e peak 0.36 p.p.m. d o w n - f i e l d from t h e i n t e r n a l  tetramethylsilane  (TMS) r e f e r e n c e i s due t o t h e resonance  o f t h e protons  o f methyl groups a t t a c h e d t o t i n . The s h i e l d i n g o f t h e s e p r o t o n s i s g r e a t e r than is  i n the corresponding protons  i n a c c o r d w i t h t h e o b s e r v a t i o n (106,  replacement  2  is  2  2  This  107) t h a t upon s u c c e s s i v e  tripleted  triplet  decreases.  (intensity ratio  1:2:1) c e n t r e d a t -5.51 p.p.m.  w i t h r e s p e c t t o i n t e r n a l TMS r e f e r e n c e must a r i s e geminal  2  o f methyl groups by more e l e c t r o n e g a t i v e atoms o r groups i n  methyl t i n compounds t h e s h i e l d i n g The  of (CH3) Sn(CF CF H) .  t o two f l u o r i n e  atoms  (Hg),  The f i r s t  from the hydrogen atom  57.5 c.p.s.  splitting  due t o s p i n - s p i n i n t e r a c t i o n o f t h e Hg and Fg, arid each peak i s  Sec. IV-B  71  TABLE 12 CHEMICAL SHIFTS AND COUPLING CONSTANTS FOR SOME ORGANOMETALLIC COMPOUNDS CONTAINING HCF CF 2  Compound  (CH3)3SnCF2CF H  Reference  S c H  3  a 3  T  J J  2  (105)  a 2  - GROUP  (CO) MnC0CF CF H 5  2  (99)  -  2  b  CF CF H 3  b  2  (99)  • -  -0.36  - 0.63  - 5.51  - 5.63  - 5.86  +40.8  +37.9  +41.0  + 9.5  +51.1  +51.2  +63.2  +62.0  57.8*0.2  64.5*0.5  55.4*0.2  61.5*0.5  130.0*0.5  137.3*0.5  C  d  1 1 9  l l 7  Sn-CH  3  Sn-CH  3  J»C-H J  2  This work  SF  SF  .(CH3)2Sn(CF CF H)  a  2  2  1 1 9  9  Sn-F„ a  Jl Sn-F  249.5*1.0  J  274.0*10.0  237.6*1.0  7  a  Jl^SnPg  J  8.0±i.0  • 10.0*2.0 1 ?  SnF  e  •  JttgF0  57.S*D.5  56.5*0.2  52.0  53.0  JH0F  5.5*0.1  5-1*0.1  6.7  3.0  Not resolved.  Not resolved.  9.2  3.0  (a)  (b)  o  Chemical s h i f t , "6", i s expressed i n p.p.m. with respect to tetramethylsilane (TMS) i n t e r n a l s t a n d a r d f o r protons, and an external t r i f l u d r o a c e t i c acid (TFA) was used f o r the standard of f l u o r i n e resonance positions (<J> s c a l e ) . HexaaethyldisilOxahe i n t e r n a l standard was used f o r proton chemical s h i f t . Fluorine chemical s h i f t was converted to the cj) scale. Chemical s h i f t f o r C F group. (d) C o u p l i n g c o n s t a n t s a r e i n c.p.s. :  (c)  3  Sec.  IV-B  7  further s p l i t  into., a t r i p l e t  ( c o u p l i n g constant  5.5 c.p.s.,  2  area r a t i o  1:2:1) due t o the c o u p l i n g o f Hg w i t h F .  The v a l u e s 57;5 and 5.5 c.p.s.  are c o n s i s t e n t w i t h the magnitudes expected  f o r J^H-^F of a polyfluoro-  a  carbon  compound where hydrogen and f l u o r i n e atoms are s e p a r a t e d by one  and two carbon  atoms, r e s p e c t i v e l y  a r e a o f Hg and CH spectrum i s thus  (99, 105). I n t e g r a t i o n o f the peak  groups gave t h e r a t i o  3  1:8.5 ( c a l c . 1:9). The Hg  i n good agreement w i t h t h e f o r m u l a t i o n o f t h e - C F C F H 2  2  group. In a d d i t i o n t o t h e main peaks, s u b s i d i a r y peaks appeared i n the v i c i n i t y o f the CH3 peak because o f d e t e c t a b l e amounts o f t h e f o l l o w i n g : (CH ) 3  1 1 7 3  Sn(CF CF H) 2  (I); (CH )  2  3  ( C H ) ( C H ) S n ( C F C F H ) | . . .. 1 3  3  3  The  2  2  Sn(CF CF H) 2  (II);  2  (III).  s p i n - s p i n c o u p l i n g between the m a g n e t i c a l l y a c t i v e Sn n u c l e i  i n molecules observed  2  1 1 9 3  (I) and (II) and the p r o t o n s . o f t h e methyl groups was  as two p o o r l y r e s o l v e d d o u b l e t s , one on each s i d e o f C H  3  peak.  As the c o u p l i n g constant between two n u c l e i i s p r o p o r t i o n a l t o t h e product it  o f t h e gyro-magnetic r a t i o s o f t h e two n u c l e i concerned  then f o l l o w s t h a t t h e r a t i o o f J"  119  Sn-CH  to t h e r a t i o o f the gyro-magnetic r a t i o o f which i s 1.046. be  J  1 1 9  3  1 1 9  to J"  117  Sn-CH  S n t o that o f  3  1 1 7  T h e r e f o r e , the l a r g e r the c o u p l i n g constant  S n - C H , and t h e s m a l l e r c o u p l i n g constant t h e J ~  117  3  r e c o r d e d c o u p l i n g constant r a t i o was 57.8/55.4 o r 1.044. r a t i o o f a p p r o p r i a t e Sn s i d e bands was  (104),  i s equal Sn, observed  Sn-CH . 3  must  The  The i n t e n s i t y  a l s o i n a c c o r d w i t h the i s o t o p i c  abundance r a t i o o f the two Sn n u c l e i , i . e . , 8.68 t o 7.77% (104). The  s i d e bands a r i s i n g from t h e i n t e r a c t i o n o f  groups i n the molecule  C a n d ^ H o f methyl  ( I I I ) (130.0 c . p . s . ) , were observed  peaks at each s i d e o f the methyl peak. o f i t s low i n t e n s i t y .  1 3  as s m a l l  J C g - H g was n o t d e t e c t e d because 1 3  Sec.  IV-B  (b)  73  1 9  The  F spectrum  chemical  of (CH ) SnCF CF H 3  shifts  3  2  2  and c o u p l i n g c o n s t a n t s o f the  ( C H ) S n C F C F H a r e l i s t e d i n TABLE 12. 3  3  2  2  d o u b l e t s o f equal i n t e n s i t y . 58 c.p.s.,  T h i s spectrum  F spectrum o f  c o n s i s t s o f two  The doublet at h i g h e r f i e l d was s p l i t by  i n a c c o r d with the v a l u e o f  o f t h i s compound.  1 9  as shown i n the ,  spectrum  The doublet at lower f i e l d was s p l i t by 5.5 c.p.s.,  c o r r e s p o n d i n g t o the magnitude o f j H g F .  Thus the resonance  w  at +51.1  p.p.m. was a s s i g n e d t o the f l u o r i n e atoms o f B-CF H group, and,the 2  resonance  at,+40.8 p.p.m. was a t t r i b u t e d t o a - f l u o r i n e atoms.  T h i s assignment was f u r t h e r supported by the o c c u r r e n c e o f t i n s i d e bands at both s i d e s o f the +40.8 p.p.m. d o u b l e t . observed  as a t r i p l e t  ( a p p r o x i m a t e . r a t i o 1:2:1), a p p a r e n t l y an over-  l a p p i n g o f two d o u b l e t s a r i s i n g from of  J  1 1 9  SnF  and >J  a  117  Each s i d e band was  SnF  x  ^ S n and 9  1 1 7  S n nuclei.  were measured as 249.5 and 237.6  a  r e s p e c t i v e l y , whose,ratio  i s 1.049 ( c a l c . 1.046).  The v a l u e s c.p.s.,  Four s h o u l d e r s appear-  i n g at each s i d e o f each component o f t h e +51.1 p.p.m. doublet were due to couplings o f  1 1 9  S n (and  1 1 7  S n ) w i t h Fg.  The c o u p l i n g constant i s  about 10 c.p.s. F u r t h e r s p l i t t i n g due t o the s p i n - s p i n i n t e r a c t i o n between F and a  Fg n u c l e i was not found even i n t h e w i d e l y expanded s p e c t r a o f each component.  T h i s i s a l s o t r u e f o r many o t h e r cases  Abraham and C a v a l l i vicinal  (108) have suggested  F-F c o u p l i n g s r e s u l t  (99, 105, 108).  t h a t the " p e c u l i a r l y s m a l l  from the consequence o f the h i g h l y  e l e c t r o - n e g a t i v e c h a r a c t e r o f the f l u o r i n e atom combined w i t h the r e l a t i v e ease  o f o b t a i n i n g p e r f l u o r i n a t e d ethane.",  although the  s i g n i f i c a n c e o f t h e l a t t e r c l a u s e i s not e x p l a i n e d by these  authors.  Sec; IV-B  74  (CH ) SnCF (CF ) CF H 3  3  2  2  2  2  The p r o t o n chemical s h i f t s and c o u p l i n g c o n s t a n t s f o r t h i s compound, as w e l l as those o f some p o l y f l u o r o a l k a n e s  (109, 110), a r e l i s t e d i n  TABLE 13. The resonance a s s o c i a t e d w i t h methyl p.p.m. (TMS).  The  tripleted triplet  to the resonance o f t h e hydrogen first  c e n t r e d at -5.97 p.p.m. was due  atom o f t h e f l u o r o c a r b o n group.  s p l i t t i n g was due t o c o u p l i n g w i t h two geminal f l u o r i n e  and then s p l i t  again because  f l u o r i n e atoms. 1  groups was observed at -0.45  H and  1 9  The  atoms,  o f another c o u p l i n g with two v i c i n a l  No f u r t h e r c o u p l i n g was observed.  C o u p l i n g between  F n u c l e i s e p a r a t e d by t h r e e carbon atoms has not been observed  i n / t h e system H C F C F C F 2  2  ... C F  2  3  (110).  It was noted t h a t t h e resonance o f the methyl group appears a t lower f i e l d than t h a t o f ( C H ) S n C F C F H , and t h a t the chemical s h i f t 3  3  of the p r o t o n o f - C F ( C F ) C F H 2  2  2  2  2  group o c c u r r e d 0.46 p.p.m. lower than  2  that o f corresponding proton o f (CH ) SnCF CF H. 3  3  2  In t h e s e r i e s o f  2  f l u o r o a l k a n e s o f g e n e r a l formula H C F ( C F ) C F H , w h e n n i n c r e a s e s 2  2  n  2  from  zero t o two, the p r o t o n resonance s h i f t s down f i e l d by 0.43 p.p.m., w h i l e n i n c r e a s e s from zero t o t h r e e , the s h i f t i s 0.53 p.p.m. i n the same direction  (see TABLE 13).  I t was a l s o noted t h a t the v a l u e o f J C - H 1 3  3  f o r t h i s compound i s  l a r g e r than t h a t o f ( C H ) S n C F C F H , whereas the magnitutes 3  and  J~  119  Sn-CH  3  remained  3  2  2  almost unchanged i n both compounds.  o f J"  117  Sn-CH  3  Sec.  75  IV-B  TABLE H N.M.R. DATA OF AND  Compound  3  2  2  J  1 1 7  2  HCF (CF ) CF H 2  2  2  2  HCF (CF ) CF H 2  2  5.9±0.1  5.16±0.6  56.0±0.2  jHFt  2  52.7±0.4  3  V  HCF CF H  52.0'±1.0  Sn-CH  (*)  2  52.0±0.-5  58.0±0.2  J HFg  2  -5.61  3  C  2  -5.51  Sn-CH  JHF  2  -5.97  J3 -H  2  -5.08  -0.41  1 1 9  2  (110)  8cH  J  3  (110)  T h i s work  SH  3  (109)  Reference  3  (CH ) SnCF (CF ) CF H  SOME POLYFLUQROALKANES.  (CH ) SnCF (CF ) CF H 3  13  3  130.4*0.5  3  *  52.1  5.34±0.2  Not r e s o l v e d .  F l u o r i n e atoms geminal t o H are. d e s i g n a t e d as Fg, and v i c i n i c a l t o H are F . F t i s the f l u o r i n e atom s e p a r a t e d from H by t h r e e carbon atoms. v  ±0.4  2  Sec.  IV-B  76  (CH ) SnCF CFHCF 3  3  ?  (a)  *H N.M.R. spectrum  The  3  p r o t o n magnetic resonance spectrum o f t h i s compound i s shown i n  F i g u r e 2a. TABLE 14.  The The  chemical  s h i f t s and c o u p l i n g c o n s t a n t s  resonance a s s o c i a t e d w i t h the CH  3  are l i s t e d i n  groups a t t a c h e d t o the  t i n atom, t o g e t h e r w i t h the s i d e bands a r i s i n g from c o u p l i n g s w i t h 1 1 7  S n , and  1 1 9  Sn  nuclei  3  group (Hg)  In the spectrum o f Hg the l a r g e s t s p l i t t i n g was  the a d j a c e n t doublets  c.p.s.).  Each component was  t o c o u p l i n g between Hg and one a-CF  2  group ( J H g - F '  = 13.9  a  a doublet  to  further s p l i t into a  o f the two  f l u o r i n e atoms on  c . p . s . ) , and s p l i t  2  group ( j H g - F ' '  a  = 11.3  c.p.s.).  The  into  last splitting  o c c u r r e d v i a c o u p l i n g w i t h the t h r e e f l u o r i n e atoms o f the g  due  2b..  a g a i n because o f f u r t h e r i n t e r a c t i o n w i t h the o t h e r f l u o r i n e  atoms o f the a - C F  ( JH -F  The  appeared as .a m u l t i - ,  p l e t at l o w e r f i e l d , and i n expanded form i s the s u b j e c t o f F i g u r e  d o u b l e t due  C,  ( l a s t two were not r e s o l v e d ) were o b s e r v e d .  resonance o f the p r o t o n o f the -CFHCF  Hg-Fg c o u p l i n g (45.9  13  Y  = 6.5  Y CF _  3  group  c.p.s.) .  Nonequivalent coupling constants an alkane p r o t o n and the two  r e s u l t i n g from c o u p l i n g s between  f l u o r i n e n u c l e i on the v i c i n a l C F  2  group  have p r e v i o u s l y been seen i n a number o f compounds, as shown i n TABLE 15. The may  occurrence  be i n t e r p r e t e d  between two  of  nonequivalent  coupling  constants  i n terms o f " r e s t r i c t e d r o t a t i o n " about a s i n g l e bond  carbon atoms.  H i n d e r e d r o t a t i o n about a carbon-carbon s i n g l e  bond i n s a t u r a t e d compounds has been i n v e s t i g a t e d  (104) by a v a r i e t y  p h y s i c a l , t e c h n i q u e s i n c l u d i n g Raman and i n f r a r e d s p e c t r o s c o p y ,  of  microwave  S e c . IV-B  77  Sec. I V - B  78 TABLE J  H AND  1  9  F DATA  14  OF ( C H ) S n C F C F H C F A N D 3  3  2  3  (CH ) SnCF CF(CF )Sn(CH ) 3  3  2  a 3 CH ) SnCF CFHGF  3  3  3  Y  3  SCH  3  ScH  3  3  2  -  3  !(CH ) S n C F C F ( C F ) S n ( C H ) ' 3  3  2  3  - 0.38  0.35  -0.42 -  4.61  + 30.71 + 37.11  J  1 1 9  J  1 1 7  J  1 1 9  J  117  +34.8  - -3.19  -4.4  Sn-CH  3  58.6 ±0.2  Sn-CH  3  56.2 ±0;2  Sn-CH'  3  a  Sn-CH'  3  a  J13 -H C  J  +127.1  1 3  C-H  •  3  53.0±2.0  131.0 ±0.5 a  3  jHgFg  45.9 ±6.4  jHgFg  13.9 ±0.3  jHgFb  11.3 ±0.3  jHgF  r  Y  6.5 ±0.1  JE F'§  7.1 ±0.2  jFgFb  6.5 ±0:.2  B  11.75*0.1 6,5 ±0.2 jF Fb  11.0 ±0.2  vJF F  340.0 ±1.0  y  a  a  JH Sn-Fj 9  JH Sn-F^ 7  J  1 3  C-F  b  b  Y  222.0 ±1.0 302.0 ±1.0  (a)  Not i d e n t i f i e d .  (b)  Observed as a m u l t i p l e t  c e n t r e d a t +30.8 p.p.m.(TFA).  3  3  79  Sec. IV-B  TABLE 15 SOME COUPLING CONSTANTS OF UNSYMMETRICALLY SUBSTITUTED  cu B RCF -CHPQ  Compound  (CH ) SnCF -CHFCF 3  T F  2  3  2  J 13.9  3  U  POLYFLUOROALKANES.  -  J F ' - F "  a  J  11 3  a  Reference  B  a  340  T h i s work  BrCF2-CHBrC6H5  15  6  152  (Ul)  BrCF -CHBrCl  10  7  154  (HI)  9  6  158  (111)  6.3  3 5  177  (112)  168  (113)  2  C1CF -CHC1C H 2  6  5  BrCF -CHFCl 2  BrCF -CHFSi(C H ) 2  2  5  22  3  (CO) MnCF -CFHCl 5  10  12.4  2  .  5 7  (99)  (a)  Appeared as d o u b l e t .  C o u p l i n g c o n s t a n t i n c.p.s.  (b)  Appeared as q u a r t e t .  C o u p l i n g c o n s t a n t i n c.p.s.  *  s p e c t r o s c o p y , and e l e c t r o n d i f f r a c t i o n and d i p o l e moment measurements. In t h e s e compounds the b a r r i e r t o i n t e r n a l r o t a t i o n i s u s u a l l y c o n s i d e r a b l y lower than f o r compounds h a v i n g double bond c h a r a c t e r . and P h i l l i p s  (111) f i r s t  a p p l i e d N.M.R. t e c h n i q u e s  t o the i n v e s t i g a t i o n  of hindered r o t a t i o n i n s u b s t i t u t e d polyfluoroethanes. the H N.M.R. spectrum l  two d o u b l e t s ponding  They found t h a t  i n compounds o f the type RCF -CHPQ c o n s i s t s o f 2  (see TABLE 15), and t h a t the  compound a l s o shows two d o u b l e t s .  t h e r e f o r e , o f the ABX p a t t e r n .  1  9  F spectrum  o f the c o r r e s -  The complete spectrum i s ,  I f the two f l u o r i n e n u c l e i were e q u i -  v a l e n t , i t would be o f A X type, and the p r o t o n spectrum 2  as a t r i p l e t .  Drysdale  I t i s now understood  would appear  t h a t t h e ABX p a t t e r n r e s u l t s  from  Sec.  IV-B  8U  the -CHPQ group i n which t h r e e d i f f e r e n t the carbon  atom, l e a d i n g t o chemical  atoms o f the a d j a c e n t  CF  2  s u b s t i t u e n t s are bonded t o  non-equivalence  group.  S i n c e the s p i n - s p i n c o u p l i n g s between Hg, the p r e s e n t  f o r the two f l u o r i n e  F , Fg, and Fy n u c l e i i n a  compound are v e r y s m a l l compared t o the chemical  d i f f e r e n c e between them i . e . , | ^ F - 5 H / J F H | » 1 ,  shift  |<jFi-oFj/jFiFj | » 1 ,  etc.,  the i n f l u e n c e o f the p r o t o n on the spectrum i s c o n s i d e r e d as a f i r s t order e f f e c t .  Consequently,  the p r e d i c t e d l i n e s ,  by t r e a t i n g t h i s  i . e . , 2x2x2x4, o r 32,  compound as an ABXP system  and t h e i r p o s i t i o n s and i n t e n -  s i t i e s , which are shown i n F i g u r e 2 under the expanded form o f Hg spectrum, were i n good agreement w i t h the observed meters l i s t e d  (b)  1  fluorine  doublet  F N.M.R. spectrum o f ( C H ) S n C F C F H C F  complete  F i g u r e 3.  1  9  The v a l u e s o f chemical  9  3  2  F N.M.R. spectrum o f t h i s  atoms o f t h i s 1  shifts  compound i s shown.in  i n TABLE 14.  3:2:1) c e n t r e d a t -3.2,  The s i n g l e t  a t lowest  field  group.  t o the resonance a s s o c i a t e d  Two peaks o f w e a k . i n t e n s i t y  at each s i d e o f the y - C F  3  Fy atoms and C atoms.  The c o u p l i n g constant  1 3  (104),  situated  peak may be a s s o c i a t e d w i t h  q u a r t e t a t +33 p.p.m. i s a t y p i c a l  and was thus  +33, and +127, p.p.m.  was a s s i g n e d , on the b a s i s  o f e l e c t r o n e g a t i v i t y ( 1 0 4 ) and i t s i n t e n s i t y ,  The  f o r the  F N.M.R. spectrum c o n s i s t s o f a s i n g l e t , a q u a r t e t , and a  respectively.  3  3  and c o u p l i n g c o n s t a n t s  compound are l i s t e d  (intensity ratio  with Y ~ C F  para-  i n TABLE 14 were employed.  3  The  The  9  spectrum when the  a t t r i b u t e d t o a-CF  2  symmetrically  c o u p l i n g between  was .observed.as 302 c.p.s.  spectrum o f the AB system  group.  The chemical  shift  d i f f e r e n c e between the two a - f l u o r i n e atoms i s g i v e n by the f o l l o w i n g  F' H I I C-C^C-F  (CH ) Sn 3  3  F" F F  TFA  —'  1  19  F  / /  •a u  F  '  0  1  +30.71  = 3 0 2 cps  1  +37.11  +127.1 ppm  |_| F i g u r e 3.  1 9  F N.M.R. spectrum o f ( C H ) S n C F C F H C F 3  3  2  3  Sec.  IV-B  82  equation  (104):  ai-Sj)*  Where b o t h  (£i-£j) and  determined by  the  =  4  C  tf h j)*  2 .  Fa  are i n c.p.s  and  a  C,  a constant,  relation:  - Jv^?^  2C  = Separation  between the  l i n e s o f the  The  values  of j F  1 a  F J  in of  1 1 9  and  d i f f e r e n c e was  the v i c i n i t y Sn The  and  1 1 7  Sn  doublet  with  inner  quartet.  the i n n e r l i n e s e p a r a t i o n , o b t a i n e d  157.5  c.p.s., r e s p e c t i v e l y .  c a l c u l a t e d as 362  o f the  c.p.s.  Hence the  a r i s e from  the  c.p.s.).  a - f l u o r i n e n u c l e i (222 f i e l d must be  coupling  constant  from  the  chemical  Four s a t e l l i t e s  i n n e r peaks o f the q u a r t e t  at the h i g h e s t  group s i n c e i t s f i r s t vjHgFg  and  a  spectrum, were 340 shift  is  observed  coupling  a s s o c i a t e d with  the  g-CF  o f 46 c.p.s. i s c o n s i s t e n t  (see F i g u r e 2 on page77'), and because t h i s  group has  the  with  least  electronegativity. All  three  absorptions  groups have h y p e r f i n e the  analyses  due  t o the resonances o f g-CF,  structures.  The  spectrum o f the  couplings,  T h e i r expanded s p e c t r a t o g e t h e r  o f t h e i r components by  mation, were shown i n F i g u r e s 4, g-CF  5,  the use  o f the  first  group shown i n F i g u r e 4 r e s u l t s  doublet-doublet-doublet-quartet,  s  e  Y  respectively.  from  four  to  Only 18 peaks were  because o f an o v e r l a p o f the  \ j F g F a ~ j F g F ^ , was  approxi-  Fg-Fy, which g i v e r i s e  t e n t a t i v e assignment f o r the f o u r coupling" c o n s t a n t s jF H >>jFgF  order  with  and .7 (page 8 7 ) , r e s p e c t i v e l y .  i . e . , Fg-Hg, Fg-F^, Fg-Fy, and  observed i n t h i s • s p e c t r u m  Y - C F 3 , a-CF2  resonances.  i n the  made on the b a s i s o f a f i r s t  sequence order  A  (CH ) S n C F C F H C F •ww  2  X  3  H  J  _ b =  F  F  6.5 cps  Jp _ y  -0  F  F  a=7.l  "d  F  -J  1 9  F  F/rH  F  F  cIpLp =11.7  group i n ( C H ) S n C F C F H C F . 3  2  0  a  Jp _ b=II.O  =46.o-~  N.M.R. spectrum o f the g-CF 3  _ =6.53  F  y  • J _ = 11.75  = 6.53 cps  H  3  Figure 5 .  1  9  F N.M.R. spectrum o f the y - C F  group i n ( C H ) S n C F C F H C F . 3  3  2  3  3  84  Sec. IV-B  approximation. The  seven peaks a s s o c i a t e d w i t h  from f o u r c o u p l i n g s ,  equivalent, lines,  group  3  ( F i g u r e 5) r e s u l t  Fy-Fg, Fy-F^, Fy-F^, and F -Hg, i n which each Y  r i s e t o a doublet. around a s t r o n g  the y-CF  The spectrum has  a symmetrical arrangement o f peaks  c e n t r a l peak, i n d i c a t i n g an o v e r l a p  o r nearly equivalent,  as shown i n F i g u r e  gives  coupling  o f two doublets,  constants.  The f i r s t  5, were superimposed c l o s e l y on the  with  order  observed  spectrum. I t was n o t e d t h a t the magnitude o f j F y F a , 11c.p.s. a c c o r d i n g  t o the  which was found t o be  above assignments, i s r a t h e r too  c o u p l i n g between two f l u o r i n e atoms through f o u r bonds usually  large coupling  constant  c l o s e i n space f o r t h e r e  (114) .  The un-  i s i n t e r p r e t e d i n terms o f the  c o u p l i n g mechanism proposed by Ng and Sederholm t h a t t h i s mechanism i s o p e r a t i v e  large f o r a  (115).  They suggested  when two f l u o r i n e atoms are  t o be a p p r e c i a b l e  overlap  space  sufficiently  of their electronic  clouds. The  f i n d i n g o f a space c o u p l i n g , f o r t h i s  compound l e d t o an attempt  t o p r e d i c t the r o t a t i o n a l c o n f i g u r a t i o n , which would d i s t i n g u i s h the two f l u o r i n e atoms o f the This  01-CF2 group.  compound i s expected t o have t h r e e p r o b a b l e r o t a t i o n a l isomers  as shown i n F i g u r e 6, with  an assumption t h a t  "staggered"  are more s t a b l e than " e c l i p s e d " bnes because o f the There may, however, be another t h r e e to the  above t h r e e  isomers.  i n d i s t i n g u i s h a b l e by N.M.R. I f two o r a l l t h r e e  isomers  effects. corresponding  However, these enantiomorphic p a i r s a r e spectroscopy.  o f the r o t a t i o n a l isomers o f t h i s  were p o p u l a t e d , t h e H N.M.R. spectrum l  optical  steric  configurations  compound  ( F i g u r e 2b) would c o n s i s t  not  85  Sec. IV-B  (I)  Figure  6.  (II)  Rotational  (HI)  Isomers o f (CH3)3SnCF CFHCF3. 2  o f the observed 32 resonances, b u t o f 64 o r 96 l i n e s , r e s p e c t i v e l y , o r perhaps somewhat l e s s because o f a c c i d e n t a l c o i n c i d e n c e s . argument i s a l s o t r u e x  H.and  1  f o r the  1  9  F N.M.R. spectrum.  F N.M.R. s p e c t r a r e c o r d e d  9  The f a c t  that  were found t o have the peaks  from no more than one isomer, p e r m i t t e d the  The same  a conclusion  three p o s s i b l e r o t a t i o n a l configurations  bath  arising  t h a t o n l y one o f  i s p o p u l a t e d a t . 2 5 % at  which temperature i t s spectrum was r e c o r d e d . As  has been noted b e f o r e  constants  appear t o be s e n s i t i v e t o bond angles and h y b r i d z a t i o n o f  the o r b i t a l s . with, r e s p e c t JF -F£ Y  In isomer (I) ,' the-'Y-CF3  The v a l u e s  of J F  would be expected t o be v e r y n e a r l y equal w h i l e the a n d v j H ^ F i would d i f f e r c o n s i d e r a b l y  vJrlgF^, r e s p e c t i v e l y .  e l i m i n a t e d because o f the (TABLE 14 on  Y  situated  - F | J and  coupling  from jF'gFy  and . .• :  Isomer ( I ) , which was expected t o be the most  s t a b l e c o n f i g u r a t i o n from the  on t h e  group i s s y m m e t r i c a l l y  t o the two a - f l u o r i n e atoms.  constants, J F ^ F ^  values.  (116), the magnitudes o f c o u p l i n g  s t e r i c p o i n t o f view, may thus be  c o n t r a d i c t i o n between p r e d i c t e d  page 7 8 ) .  same grounds, l e a v i n g the  and observed  Isomer ( I I ) may a l s o be d i s c a r d e d s t e r i c a l l y u n f a v o u r a b l e isomer ( I I I )  as the most p r o b a b l e , s i n g l e p o p u l a t e d r o t a t i o n a l c o n f i g u r a t i o n o f  86  Sec. IV-B  (CH ) SnCF CFHCF . 3  3  2  If  3  this  i s t h e c a s e , i t appears t h a t t h e p r e d i c t i o n o f t h e f i r s t -  o r d e r s p e c t r a f o r t h e two a - f l u o r i n e atoms can be made. the a - f l u o r i n e atom a t l e f t  In isomer ( I I I )  a b i s d e s i g n a t e d as F , and a t r i g h t , as F . a  a  As shown i n F i g u r e 7c, l i n e s , p o s i t i o n s , and i n t e n s i t i e s f o r t h e f i r s t a order e f f e c t  of F  b and F  a  a  were p r e d i c t e d a c c o r d i n g t o t h e f o l l o w i n g  parameters which were p r e v i o u s l y a s s i g n e d i n F i g u r e s 2,4 and 5. F  a a  b F  spectrum JFa a  =  F  340 c.p.s.  jF^Hg  =  13.9 c.p.s  J F ^ F  6  =  7.1 c.p.s.  J a B  =  JFQF  Y  =  6.5 c;p.s.  jF F  =  JFaHg = F  F  a  The q u a r t e t i n F i g u r e 3 i s r e p e a t e d r e s o l v e d form.  spectrum  a  The components  y  11.3 c.p.s. 6  '  5  C.p.s.  11.0 c.p.s.  i n F i g u r e 7a as a s l i g h t l y  d e s i g n a t e d as A and B appear as t h e  same f i n e s t r u c t u r e , w h i l e component C i s i d e n t i c a l w i t h D.  Since the  i n t e n s i t i e s o f components A and D a r e t o o weak, o n l y the components B and C a r e expanded and a r e the s u b j e c t o f F i g u r e 7b. From both order l i n e s  F i g u r e s 7b and 7c, i t was noted  t h a t F | arid F^ f i r s t  f i t t h e s p e c t r a o f B and C, r e s p e c t i v e l y .  -  T h e r e f o r e , the 3.  low-field  d o u b l e t , i . e . , components A and B, was a s s i g n e d t o F  and t h e u p - f i e l d d o u b l e t  of  F  a  atom,  (component C and D), t o . F ^ atoms.  The agreement between p r e d i c t e d and observed a  a  1 9  F N.M.R. s p e c t r a  b and F  4, and 5. populated  a  atoms f u r t h e r c o n f i r m s t h e assignments made i n F i g u r e s 2,  I t t h e r e f o r e can be concluded  t h a t isomer  c o n f i g u r a t i o n f o r (CH ) SnCF2CFHCF . 3  3  3  ( I I I ) i s the o n l y  I t s h o u l d be noted t h a t  o t h e r a l t e r n a t i v e c o u p l i n g c o n s t a n t s were a l s o a s s i g n e d t o each n u c l e u s  F i g u r e 7.  1 9  F N.M.R. spectrum o f the a - C F  group i n ( C H ) S n C F C F H C F . 3  3  2  3  2  Sec. IV-B  88  o f t h i s compound, and the f i r s t them agreed w i t h t h e observed  order  s p e c t r a were made, but none o f  spectra.  Isomer ( I I I ) , however, may not be a s y m m e t r i c a l l y The  f a c t s t h a t the magnitudes o f J F g F ^ and J F ^ F ^  and  6.5 c . p . s . ) ,  s t a g g e r e d form.  are not equal (7.1  t h a t t h e d i f f e r e n c e between<jHgF^ and J H ^ F ^ i s n o t as  l a r g e as t h a t o f the cases shown i n TABLE 15 (page 79 ) , and t h a t the unusually  l a r g e value  o f J F ^ F ^ which i s understood on the b a s i s o f a F  F  F  I  \/ space c o u p l i n g mechanism, i n d i c a t e t w i s t i n g o f the  C  and  Sn(CH ) 3  C H  3  CF  groups from a symmetric gauche p o s i t i o n t o a p o s i t i o n , as shown i n Figure  8, w i t h t h e l a t t e r group turned  SnrCH ) 3  Figure  8.  s l i g h t l y counter  clockwise.  3  Possible configuration o f (CH ) SnCF CFHCF 3  3  2  3  (CH,Q SnCF CF(CF,)Sn(CH,), • 3  ?  *H and  1  (page 78).  9  F N.M.R. data o f t h i s compound a r e l i s t e d  i n TABLE 14  Two peaks o f n e a r l y equal i n t e n s i t i e s , which appeared i n  i t s U N.M.R. spectrum a t -0.38 and -0.42 p.p.m., were a s s i g n e d l  methyl groups a t t a c h e d  t o the  t o t h e d i f f e r e n t t i n atoms o f t h e compound.  3  Sec. IV-B  89  T i n s i d e bands were observed, b u t c o u l d not be i d e n t i f i e d because o f the broadness. The  1  9  1 3  F N.M.R. spectrum c o n s i s t s o f a s t r o n g s i n g l e t  a multiplet 3:2:1).  S i d e bands due t o C atom were hot d e t e c t e d .  a t +30.8, and a broad s i n g l e t  The f i r s t  a t +34.8 p.p.m. (area r a t i o  two resonances were a s s i g n e d on t h e b a s i s o f t h e  intensity ratio, electronegativity  (104), and a comparison w i t h t h e  N.M.R. spectrum o f ( C H ) S n C F C F H C F , t o t h e y - C F 3  respectively. same b a s i s .  a t -4.4 p.p.m.,  3  2  3  3  and t h e a-CF  2  1  F  groups,  The l a s t resonance c o u l d be a s s i g n e d t o t h e 8-CF group on I t s chemical s h i f t , however, i s a t a remarkably low v a l u e  compared t o that o f t h e c o r r e s p o n d i n g f l u o r i n e atom o f t h e -CF CFHCF 2  group.  9  3  T h i s u n s h i e l d i n g phenomenon may be a t t r i b u t e d t o a decrease o f  e l e c t r o p o s i t i v i t y o f the B-car.bon atom (104) t o g e t h e r w i t h a " r e p u l s i v e unshielding" effect  (117) a r i s i n g from t h e s u b s t i t u t i o n o f t h e hydrogen  atom (Hg) by t h e S n ( C H ) 3  3  group.  Spin-spin couplings of.the  n u c l e i f o r t h i s compound were not s t u d i e d .  fluorine  Sec.  C.  90  IV-C-1  The  Infrared Spectra of Fluorocarbon  Derivatives of  Pentacarbonyl-  manganese.  The  compounds i n v o l v e d i n t h i s  17 i n which t h e i r i n f r a r e d a b s o r p t i o n s may  be  s e c t i o n are shown i n TABLES 16  absorptions  regarded  as a r i s i n g  are a l s o l i s t e d .  groups, namely t r i m e t h y l t i n , f l u o r o c a r b o n , and  groups.  The  r e a d i l y d i s t i n g u i s h e d (17, 88,  f r e q u e n c i e s a s s o c i a t e d w i t h the previous  carbonyl-manganese  v i b r a t i o n s o c c u r i n s p e c t r a l r e g i o n s where these can be  s e c t i o n (Sec.  infrared  from the v i b r a t i o n s o f .three  distinct  absorptions  These  and  92,  118).  group The  infrared  ( C H ) S n group have been d i s c u s s e d i n a 3  IV-A-1).  The  3  C-F  absorptions  a r i s i n g from the  p e r f l u o r o v i n y l group have a l s o been d e s c r i b e d i n d e t a i l by S t a f f o r d and Stone  ( 9 2 ) . . I t i s w e l l known (17, 118)  o f metal c a r b o n y l s molecular  and  s i n c e the compounds d e s c r i b e d h e r e a l l c o n t a i n  an Mn(CO)n group, n = 5 .or. 4,'a  1.  absorptions  t h e i r d e r i v a t i v e s p r o v i d e much i n f o r m a t i o n about  symmetry, and  manganese c a r b o n y l s  t h a t the i n f r a r e d  w i l l be  o f the i n f r a r e d s p e c t r a o f  given.  Infrared spectroscopy  In metal c a r b o n y l  survey  o f manganese c a r b o n y l s .  complexes, f o u r types  o f v i b r a t i o n a l modes are _l  expected  (118).  ( i ) C-0  angle bending, § C M C » ( i v ) M-C-0  a t  s t r e t c h i n g , ^CO* about 100  angle bending, o r CO  g e n e r a l , w i t h i n the  cm.  a  .  has  about 2000 cm.  ( i i i ) M-CO  deformation,§MCO-  lower energy i n t e r v a l  an o v e r l a p o f the two  t  been seen  (119).  (ii)  C-M-C  s t r e t c h i n g , 1^^_QQ' Hi  than^cc  CO  a  although  E d g e l l (119)  t h a t i n most o f the t r a n s i t i o n metal c a r b o n y l s , ^ _ Q Q _1 _ _ l found at 475-350 cm. ' Above 500 cm. , absorptions  ^ ^^  has  s  •"•  n  sometimes stated  frequencies of  carbonyl  are  Sec. IV-C  91  TABLE 16 INFRARED BANDS OF THE REACTION PRODUCTS CONTAINING CARBONYLMANGANESE GROUP (CH ) Sn-Mn(CO) 3  3  I  5  (CH ) Sn-Mn(CO)j (ir-C Hi } 3  3  f  2  C-H asym. s t r . C-H sym. s t r .  -  CO s t r .  "  3  C-F  <  \  CH,-Sn r o c k i n g  f  Mn-CO d e f . I  Sn-C asym. s t r . Sn-C sym. s t r . Mn-C s t r . (a) (b) (c)  w.  a  s vs s  2  2  5  9  vw m m vw  2380  w  2072 1994 1987 1970  a  m sh vs sh  3000 2959  2142  1440  m  ——  1420  w,b  1420  1214  sh  1235  s  m  1192 1182  s m  1080 1030  w,b w  900 768 700  w S w,b m  965 765 700  w,b s,b m,b  665 655  s s  650 643  s s  517 500 480 412  s s s w,b  556 514 500 483 410  m s s s w,b  IV  — —  m m  a  2042 2020  vw w,b  u 1195-f 1185J  IV  III  3100 3015 2925 2880  Ill  5  5  1688 1425  —  asym. d e f .  str.  2460  2009 1970  C=C s t r . CH  m m  3  (C F )Mn(CO) II  3008 2924  2110  3  .. I I  t  I  Assignment  (CH ) SnCF CF Mn(CO) ...  m vs vs  2150 2085 2060 2031 1988  a  m sh vs sh w  1789  s  1352  s  1305  s  1185 1137 1040 1010 992 785  s s vs m m vs  691 658 650 627 578  w s s s w  420  s ,b w,b  w,b  1195 1183  w w  1065 1020' c 1000 975, 788  s s s ,b  698 662  vs vs ,b  539 518 448 422  s m s w,b  —  — — 446  CO s t r e t c h i n g f r e q u e n c i e s were measured i n cyclohexane. Doublet. Poorly resolved t r i p l e t .  Sec. IV-C  92 TABLE 17 INFRARED BANDS OF THE REACTION PRODUCTS CONTAINING CARBONYLMANGANESE .GROUP ( c i s - CFH=CF)Mn(CO) ( t r a n s - CFH=CF)Mn(CO) CF =CFCOMn(CO)  (continued). -. . - V VI VII  5  2  5  TCF =cFMnccou 2  V  a  MIEO  VI w  3000  m m vs s w  2140 2056 2030 1975  vs ss w  1630  s  1670  w  1310 1297  vw m  1310 1272  vw m w  3100 2148 2088 2055 2030 1987  b  vw b  m  kfc=o  1240  1045  vs  968 vs,b  775 750 720  s s w  OMCO  645 vs ,b  IM-co  446 424  (a) (b) (c) (d)  :  5  1088 1035  1010  758  vs w  vs ,b  I S "  ] 2  m  vs ,b w w m  w  420  vw  n  \l  VII  VIII  IX  —  —  — 2155  m  m sh vs vs w  2150 2080 2050 2000  m s s s  1712 1685  s sh  1620  m  1617  m  1265 1240  sh vs  1292 1245  w w.  1287 1243  w w  1183 1150 1111 1076, 1020° 992 965 893  w w s m  1183 1194 1104 1065 1022 990 980 897 885  m  824 743  w s  735  721 657 642  w sh vs  713 655 643  450 445  sh m  453 444  sh m  426  m  427  m  2150 2080 2060 2030 1988  1042  960  b  vs  vs  s  650 563 • 540 437  2 :::•::::::  720 658 646  w vs vs  512 447 427 420  s,b sh m.  s m  C  vs,b  2040  Assignment: v, s t r e t c h i n g ; 6, d e f o r m a t i o n . CO S t r e t c h i n g f r e q u e n c i e s were measured i n cyclohexane. CO s t r e t c h i n g f r e q u e n c i e s were measured i n N u j o l m u l l . Resolved t r i p l e t . (e) P o o r l y r e s o l v e d d o u b l e t .  w  s m s 6  s m m  s m e  vs  Sec.  IV-C-1  93  complexes are thus more p r o b a b l y  due  t o § ^ , Q ° d e s r a t h e r than t o  ^_QQ  m  _l F o r manganese c a r b o n y l compounds, a s t r o n g band i n the 600 and  a medium band i n the v i c i n i t y  basis of v i b r a t i o n a l  analyses  (70)  o f 400  cm.  ^MQQ,  to  a n c  * ^  bands i n low-energy r e g i o n due  to mixing  r a t i o n s i n the  r e g i o n w i l l not be  energy v i b r a t i o n s such as the a b s o r p t i o n a s s i g n e d of  and  5% o f  modes.  £0  as the c a r b o n y l  r e c e n t l y by Adams (118). o f s t r u c t u r e s and The  be  s  assignment o f the The  so pure as the  vib-  higher (70),  c o n t a i n s o n l y 87%  95%  metalof  1^_QQ  symmetry mixed i n . deformation  o f metal c a r b o n y l complexes has complexes i n h i s study  c o n t a i n one  the  » respectively.  s t r e t c h i n g mode i s composed  represent  been made different  t o f i v e c a r b o n y l groups bonded t o  s p e c t r a o f the complexes, c o n t a i n i n g t h r e e  f i t reasonably  w e l l w i t h the number o f  modes p r e d i c t e d t h e o r e t i c a l l y .  However, t h i s  r a t h e r u n c e r t a i n i n the s p e c t r a o f t e t r a -  complexes where they may  The  observed  c a r b o n y l groups o r l e s s ,  appears to be  e  an attempt to c o r r e l a t e t h e c a r b o n y l  modes w i t h the s t e r e o c h e m i s t r y  deformation  d  For i n s t a n c e , i n Co(C0)3N0  with o t h e r v a r i o u s v i b r a t i o n : modes o f the p r o p e r  the metal atoms.  o  o f v i b r a t i o n a l modes.  carbon s t r e t c h i n g mode at lower frequency  types  m  ^.Q, w h i l e the a b s o r p t i o n a s s i g n e d t o the  Despite t h i s d i f f i c u l t y ,  region,  have been a s s i g n e d on  In p r a c t i c e , i t i s d i f f i c u l t to make an exact  lower frequency  cm.  showed fewer  carbonyl  correlation  and  pentacarbonyl  bands than were p r e d i c t e d .  This  a t t r i b u t e d t o . t h e a c c i d e n t a l o v e r l a p p i n g o f the fundamental v i b -  r a t i o n s , o r to the r e g i o n not observed  f a c t t h a t some o f these  absorptions  occurred  in a  by Adams.  As mentioned above, c a r b o n y l s t r e t c h i n g modes, i n the r e g i o n o f _l 2000 cm.  , are not  likely  to undergo s t r o n g mixing  Thus, i n the p a s t the number o f observed  with other v i b r a t i o n s .  f r e q u e n c i e s has been used  Sec.  94  IV-C-1  to o b t a i n a g r e a t deal o f i n f o r m a t i o n r e g a r d i n g t h e g e o m e t r i c a l s t r u c t u r e o f c a r b o n y l s , and t h e e l e c t r o n d i s t r i b u t i o n i n t h e m o l e c u l e s . workers  (68, 69) have developed  theoretical  i n f r a r e d s p e c t r a o f metal c a r b o n y l s  Several  i n t e r p r e t a t i o n s o f the  i n the  r e g i o n which w i l l be  d e s c r i b e d here b r i e f l y . The  r e g u l a r o c t a h e d r a l hexacarbonyl  species o f U  rn  (Doubly degenerate)  to the s e l e c t i o n  (Triply  r u l e s , o n l y the T  i . e . , o n l y one band i s expected complexes.  degenerate)  mode i s i n f r a r e d  There a r e two o t h e r types  o f complexes which show s p e c t r a i . e . , t r a n s - L M (CO) i+  and trans-Li+MfCO)2 where L i s an a x i a l l y symmetric l i g a n d . c a s e s , t h e r e i s o n l y one allowed e x a c t l y to the T  c a r b o n y l v i b r a t i o n which  mode o f t h e hexacarbonyl  A monosubstituted  active,  i n t h e i n f r a r e d s p e c t r a o f hexacarbonyl  comparable w i t h those o f t h e parent h e x a c a r b o n y l s ,  symmetry.  symmetry  modes as f o l l o w s :  (Singlet)  According  complexes have t h r e e  2  In these two corresponds  complexes.  octahedral pentacarbonyl  complex would have  Group t h e o r y p r e d i c t s f o u r c a r b o n y l s t r e t c h i n g v i b r a t i o n s o f  the f o l l o w i n g symmetries:  Sec.  IV-C-1  95  2  1  i  A  The  B  a  E  x  two ki and E s p e c i e s a r e both  B\ mode i s Raman a c t i v e o n l y .  ~ k\  i n f r a r e d and Raman a c t i v e , w h i l e the  Q u a n t i t a t i v e arguments  (68) have made i t  p o s s i b l e t o p r e d i c t t h e i n t e n s i t i e s and approximate f r e q u e n c i e s o f t h e bands. S i n c e t h e E v i b r a t i o n a r i s e s from t h e f o u r r a d i a l and  corresponds  c l o s e l y t o t h e T^  mode o f t h e hexacarbonyl. complex, i t  s h o u l d appear as t h e most i n t e n s e band of absorption). o f the t o t a l  intensity  i n t e n s i t y because i t i s a s s o c i a t e d w i t h t h e unique  1/5  axial  On t h e o t h e r hand, t h e k\ mode s h o u l d be f o r b i d d e n s i n c e  i s made up from t h e symmetrical  groups.  (about 4/5 o f t h e t o t a l  S i m i l a r l y , t h e A i mode s h o u l d show t h e r e m a i n i n g  c a r b o n y l group. it  c a r b o n y l groups,  v i b r a t i o n o f the r a d i a l  carbonyl  However, weak a b s o r p t i o n due t o t h e k\ mode i s expected  o f n o n - c o p l a n a r i t y o f t h e metal  i n terms  atom and t h e r a d i a l c a r b o n y l groups, and  e l e c t r o n i c m i g r a t i o n a l o n g t h e f o u r - f o l d a x i s accompanying the symmetrical s t r e t c h i n g o f the r a d i a l  c a r b o n y l groups.  between t h e two A^ modes i s a l s o expected a  In a d d i t i o n , i n t e r a c t i o n t o cause the t r a n s f e r o f  b  i n t e n s i t y from Ax t o A^ band. C-0  f o r c e constant  calculations  appear at a h i g h e r frequency 120  cm.  _l .  between them.  (120) suggest  t h a t t h e k\ band must  than t h e E band, w i t h an i n t e r v a l o f 100-  Analogous  arguments  (69, 120) show t h a t t h e  Sec.  IV-C-1  96  A i band s h o u l d  be  observed at a lower f r e q u e n c y than the  mentioned above, although i t i s s t a t e d the A i band cannot  be  cis-Tetracarbonyl C2  V  and  C  t h a t the  bands  exact l o c a t i o n o f  predicted. complexes, cis-L2M(C0) i+, and  symmetry, r e s p e c t i v e l y .  s  (68)  two  The  cis-LL'M(CO) i ^ . have  fundamental v i b r a t i o n s  are  shown below:  X  <  y  ,a Ai  Since  b Ai A  the  two  A i modes are expected t o i n t e r a c t (68), a l l v i b r a t i o n s 3.  i n c l u d i n g the It should  symmetrical  s t r e t c h i n g o f the A i mode are  a be noted t h a t Aj and  modes c l o s e l y c o r r e s p o n d to A  E v i b r a t i o n s o f p e n t a c a r b o n y l complexes. i n a s i m i l a r manner as d e s c r i b e d LL'MfCO)^ s p e c i e s region,  would g i v e  i . e . , a very  100-120 cm.  -  strong  two  above, t h a t  (BiJ and  bands  r e l a t i v e p o s i t i o n o f the  b (Aj and  last.two  C-0  2.  a.  f o r c e constants  predicted,  U^Q  a weak (Aj) bands s e p a r a t e d B) 2  and  cis-L^MfCO) i+ and c i s -  o f medium i n t e n s i t y .  bands cannot be  t h i s depends on the magnitude o f the the  I t c o u l d thus be  b r  r i s e to f o u r i n f r a r e d bands i n the  1  , and  infrared active.  by The  deduced because  i n t e r a c t i o n constant  relative  to  (68).  Discussion  I n f r a r e d bands a s s o c i a t e d w i t h the  (CH3) Sn  Three compounds shown i n TABLE 16 c o n t a i n  3  group.  (CH3) Sn 3  group(s).  The  97  Sec. IV-C-2  locations of absorptions associated with the f i v e fundamental modes of the (CH )3Sn group ( i . e . , C-H 3  asymmetric and symmetric stretchings, CH3  asymmetric and symmetric deformations, able frequency  and CH -Sn rocking i n the a v a i l 3  region are i n good agreement with the previous discussion  (Sec.,IV-A-1). The C-H stretching vibrations occur i n the range 3008.1 2924 cm. and are medium i n i n t e n s i t y . The CH asymmetric deformation 3  _l mode i s observed as a weak and broad band i n the 1440-1420 cm. while the CH3 asymmetric deformation as a doublet. 3  appears i n the v i c i n i t y of 1190  cm.  In fact, the last mode could be i d e n t i f i e d only for  (CH ) Sn-Mn(C0) ( I ) and 3  region, _1  5  rocking frequency  (CH ) Sn-Mn(C0) (T\-C H ) 3  3  2  u  ( I I ) . The CH -Sn 3  k  could be readily i d e n t i f i e d as the c h a r a c t e r i s t i c  _l strong and broad band i n the 790-760 cm. The Sn-C  region.  stretching frequencies show more v a r i a t i o n , depending on  whether the Sn atom of the (CH ) Sn group i s attached to an Mn atom or 3  to a fluorocarbon group.  3  In both compounds (I) and  ( I I ) , i n which a  Sn-Mn bond i s retained, Sn-C  asymmetric and symmetric stretching vib_1 rations were observed at 517-514 and 500 cm. , respectively. On the other hand, for (CH )SnCF CF Mn(CO) (III), i n which a -CF CF - group is inserted into the metal-metal bond, these modes appear at 539 and _1 3  518 cm.  2  2  5  2  2  , respectively. A s i m i l a r trend of band s h i f t , with respect  to the substituent group of the (CH )3SnX derivatives, was 3  for hexamethylditin  also observed  and i t s fluorocarbon d e r i v a t i v e s . A l i n e a r r e l a t i o n -  ship between the Sn-C  stretching frequencies  (both asymmetric and  symmetric) and the percentage s-character i n the t i n o r b i t a l used i n bonding (as deduced by the values of et a l . (72). frequency  119  Sn-CH ) was 3  observed by Brown  This r e l a t i o n s h i p indicated that the Sn-C stretching  increases with increasing s-character i n the t i n o r b i t a l s .  Sec.  It  IV-C-2  98  i s i n t e r e s t i n g t o note t h a t the Sn-C  (CH ) Sn-Mn(CO) 3  3  fall  5  closely  m e t h y l d i t i n were observed the h y b r i d i z e d o r b i t a l s  s t r e t c h i n g frequencies  i n the r e g i o n s where those  (see F i g u r e 10 on page 117),  o f the Sn  of  o f hexa-  i n d i c a t i n g that  atoms used i n the bonding f o r these  metal-metal compounds are remarkably s i m i l a r i n percentage s - c h a r a c t e r . .  b.  The  Two  carbonyl  types  s t r e t c h i n g frequencies  (  UQQ)•  o f compounds, w i t h r e s p e c t t o the symmetry o f the  groups, are r e p r e s e n t e d  i n TABLES 16 and  17 v i z . , penta-  carbonyl  and t e t r a c a r b o n y l  complexes. Of the p e n t a c a r b o n y l V, VI,  and V I I ) , a l l but  complexes l i s t e d compound  s i s t e n t w i t h the expected t h r e e major VQQ Mn(C0)  I, I I I , IV,  bands, con-  o c t a h e d r a l s t r u c t u r e o f Ci+y symmetry.  The  depending on whether the  l i n k e d t o a ( C H ) S n group o r t o a f l u o r o c a r b o n 3  but  are remarkably constant  for  the  of  (V) have t h r e e major VQQ  v i b r a t i o n s vary i n frequency  group was  5  i n TABLE 3 ( i . e . ,  3  in location  fluorocarbon d e r i v a t i v e s .  The  these t h r e e bands are 6-10%. 70%,  s e p a r a t i o n between the two  higher  and  their relative  intensities  approximate r e l a t i v e  and  intensities  20-24%, r e s p e c t i v e l y .  frequencies  group,  The  i s i n the range o f 90  to  _l 100  cm.  which i s the u s u a l o r d e r o f magnitude expected  carbony lmanganese complexes  (68).  It i s of interest  f o r most  that perfluoro-  propenylpentacarbonylmanganese, CF CF=CFMn(C0) , a l s o has 3  t e r i s t i c VQQ  5  three  bands o f the same p a t t e r n d e s c r i b e d above at 2133  2045 ( v s ) , 2021  (s) cm.  these  bands are consequently  t h r e e UQQ  relative intensities  -1  (93).  On  penta-  charac(m),  the b a s i s o f t h e o r e t i c a l p r e d i c t i o n s , assigned  as i n TABLE 18.  The  o f the bands are shown i n p a r e n t h e s i s . _1  The  v e r y weak band i n the neighbourhood o f 1980  cm.  f o r compounds  Sec. IV-C-2  99  TABLE 18 1  OBSERVED VQQ MODES (cm." ) FOR SOME LMn(CO) 5 COMPOUNDS.  Compound  Ai  E  .a Ai  A(A?-E) 101  2110 (10%)  2009 (70%)  1970 (20%)  (III)  2142 (7)  2042 (70)  2020 (23)  (IV)  2150 (10)  2060 (60)  2031 (22)  90  (VI)  2140 (6)  2056 (70)  2030 (23)  94  (VII)  2150 (8)  2060 (60)  2030 (30)  90  (C H )CF CF Mn(CO) *  2130  2039  2011  91  C H C F C F Mn(CO) *  2134  2041  2012  93  (CH ) Sn-Mn(CO) 3  3  (I)  5  (CH ) SnCF CF Mn(CQ) 3  3  2  2  (C F )Mn(CO) 5  9  5  5  (trans-CFH=CF)Mn(CO)  CF =CFC0Mn(C0) 2  6  3  (*)  5  2  2  5  2  5  5  5  Data were taken from r e f e r e n c e  (120) .  ,  100  Sec. IV-C-2  100  (V) and (VI) may be due t o t h e C - 0 s t r e t c h i n g v i b r a t i o n ( 9 4 ) . 1 3  D e s p i t e t h e s i m i l a r i t y o f the UQQ band p a t t e r n s f o r t h e compounds shown TABLE 18, t h e a b s o r p t i o n s s h i f t  s i g n i f i c a n t l y toward h i g h e r  energy i n t h e o r d e r : (I) < ( I I I ) < (VI) ~ ( V I I ) ~ (IV) This s h i f t  i n UQQ f r e q u e n c y i s an i n d i c a t i o n t h a t i n d u c t i v e e f f e c t s and  i r - a c c e p t o r c a p a c i t y , which are b e l i e v e d (120) t o be r e s p o n s i b l e f o r r a i s i n g the UQQ f r e q u e n c i e s o f metal c a r b o n y l complexes, are much smaller i n the (CH ) Sn 3  stated  group than i n f l u o r o c a r b o n group.  3  (121) t h a t C F  3  C o t t o n has  and C 2 F 5 groups p o s s e s s a s m a l l , but a p p r e c i a b l e ,  T r - a c c e p t o r c a p a c i t y i n t h e i r pentacarbonylmanganese  derivatives,  which 3-  is  f u r t h e r s u p p o r t e d by the r e c e n t X-ray study o f  (122).  I t i s a l s o i n t e r e s t i n g t o note t h a t  shows the t h r e e UQQ bands  [HCF CF Co(CN) ] 2  2  methylpentacarbonylmanganese  a t 2109 (m), 2010 ( v s ) , 1989 (s)  which a r e v e r y s i m i l a r t o those o f  5  cm.  -1  (120),  (CH ) Sn-Mn(C0) . 3  3  5  The d i f f e r e n c e i n t h e f r e q u e n c i e s o f ( C H ) S n C F C F M n ( C O ) 5 and 3  (trans-CFH=CF)Mn(CO)5 may  only e x i s t  i n the l a t t e r  \o /  may be r a t i o n a l i z e d  C=  ^  y  <  I  2  i n terms o f resonance which  Y) /  VI  c+)  :C - C=Mn-K>=0  I  VI' on t h e metal atom a r e l e s s  n-bonding w i t h t h e c a r b o n y l groups. i n the m e t a l - c a r b o n y l  2  compound:  C - Mn - C = 0  In s t r u c t u r e V I ' , e l e c t r o n s  3  Hence, f o r t h e m e t a l - c a r b o n bond  l i n k a g e , the resonance h y b r i d  Mn=C =  0  <  available for  •  Mn +- C = 0  Sec.  101  IV-C-2  on the r i g h t s i d e o f the above e q u a t i o n w i l l be i n c r e a s e i n the C-0 proposal  o r d e r , and  i s supported  a l o w e r i n g i n the Mn-C  by the f a c t t h a t the  are lower f o r compound (VI) than suggestion with  observed  leading, t o an  bond o r d e r . T h i s M-CO  frequencies  f o r ( I I I ) , i n a c c o r d w i t h the  o f changes i n bond o r d e r .  a s i m i l a r proposal  favoured,  This suggestion  f o r RfC0Mn(C0)  (94,  5  I t i s worth mentioning t h a t , although  i s also consistent  120). the p r i n c i p a l UQQ, b  c i e s o f CF2=CFC0Mn(C0) weak s h o u l d e r  are e s s e n t i a l l y o f the A  5  at 2080 cm.  1  above  :  frequen-  a + E + A  :  pattern, a  and broadness o f the E band were  observed,  i n d i c a t i n g a l a c k o f a x i a l symmetry o f the molecule which i s r e s p o n s i b l e f o r the s p l i t t i n g o f the E t r a n s i t i o n and o f the Bi mode with  low  intensity  t h a t a l l a c y l metal c a r b o n y l s  (68).  the simultaneous  appearance  Stone e t a l . (120)  reported  e x h i b i t t h i s s p l i t t i n g o f the E mode, as  h i g h as 12 cm. \accompanied by the appearance o f the weak Bj band. F o r the p r e s e n t might be  achieved  compound a g r e a t e r r e s o l u t i o n o f the UQQ  i f i t were r e c o r d e d  u n a t e l y , o n l y the P.E.  on P.E.  21 spectrometer  was  421  spectrometer.  bands Unfort-  a v a i l a b l e at the time o f t h i s  study. Compound ( V ) , (cis-CFH=CF)Mn(CO) , shows f i v e bands w i t h 5  the  r e l a t i v e i n t e n s i t i e s as f o l l o w s : 2143, (4%)  2085, (8%)  Three p o s s i b i l i t i e s complexity  o f the UQQ  2050, (55%)  can be suggested  2025, (30%)  which may  1987. (2%)  be  responsible for this  bands:  (i)  presence o f i m p u r i t i e s ;  (ii)  l a c k o f a x i a l symmetry  (along C=C-M a x i s ) c a u s i n g i n f r a r e d  f o r a l l f o u r fundamental v i b r a t i o n s (2ki  activity  + Bj + E ) , as p r e d i c t e d  102  Sec. IV-C-2  by t h e o r y (68); (iii)  f o r m a t i o n o f s t r u c t u r a l isomer  F  (VB) r a t h e r than  (VA).  F.  H'  0=C.  VB  VA F i g u r e 9.  7r-bonding  isomer o f (cis-CFH=CF)Mn(CO)  5  The v a l i d i t y o f each o f these t h r e e p o s s i b i l i t i e s as f o l l o w s . and H :  ( i ) i s u n a c c e p t a b l e because  N.M.R. s p e c t r a showed an absence  u n l i k e l y because  the simultaneous  would c o r r e s p o n d t o the 2085 cm. o f the E mode (120,  123) which was  ( i i i ) may  of impurities,  F  o f the B± v i b r a t i o n , which  not observed i n t h i s 1  1 9  ( i i ) i s very  band, must be accompanied by  more, the i n t e n s i t y o f the 2085 cm. (68, 120) .  the a n a l y t i c a l d a t a and  appearance 1  can be assessed  case.  splitting Further-  band i s f a r g r e a t e r than expected  be p o s s i b l e because  the observed VQQ  frequencies  agree w i t h the p a t t e r n ( i n t e n s i t y and band s e p a r a t i o n ) expected t o a r i s e from a molecule h a y i n g C  s  symmetry, i . e . cis-[LL'M(CO) i+] .  I f t h i s were  the case, i t f o l l o w s t h a t one would expect t o see two peaks (1) w i t h the c o o r d i n a t e d C=C 1400  cm.  1  (124)  and  associated  s t r e t c h i n g v i b r a t i o n i n the r e g i o n o f  (2) with the k e t o n i c s t r e t c h i n g frequency i n the  r e g i o n o f 1660-1640 cm.  1  (94) .  In the 1800-1400 cm.  compound (V) shows o n l y one sharp peak at 1630  cm.  1  .  1  r e g i o n , however,, The presence  only one peak c o u l d p o s s i b l y be e x p l a i n e d i n terms o f an a c c i d e n t a l l a p p i n g o f C=C  1600-  of over-  and k e t o n i c s t r e t c h i n g f r e q u e n c i e s , which i s most u n l i k e l y  (see d i s c u s s i o n s e c t i o n on the V _ N  R  frequencies).  Theory  also predicts  Sec.  IV-C-2  (69)  that  103  the  terminal  carbonyl  s t r e t c h i n g force constants  d e c r e a s e s t e a d i l y as t h e t e r m i n a l by  other  ligands  prediction  only  between s t r u c t u r e s has this  very  little  information  u  replaced  electrons.  This  f o rd i s t i n g u i s h i n g  (VA) a n d (VB) s i n c e t h e C=C b o n d i n f l u o r o - o l e f i n s  ir-bonding c h a r a c t e r  a strong  CO g r o u p s a r e s u c c e s s i v e l y  w h i c h make l e s s demand f o r m e t a l d  affords  should  ( 4 2 ) a n d h e n c e i t may c o m p e n s a t e f o r  demand. Despite  (76)  the fact that  an a n a l o g o u s s t r u c t u r e C H = C H C 0 C o ( C 0 ) 3 2  h a s b e e n p r o p o s e d on t h e b a s i s  scopic  evidence, the correct  o f c h e m i c a l and t h e i n f r a r e d  c o n f i g u r a t i o n o f compound ( V ) , e i t h e r  CFH=CFMn(CO)5 o r C F H = C F C 0 M n ( C 0 ) ,  c a n n o t be deduced w i t h  the  this  h  present  information.  study f o r t h i s  spectro-  To s o l v e  c e r t a i n t y from  p r o b l e m an X - r a y c r y s t a l l p g r a p h i c  compound as mentioned e a r l i e r , ?  i s now u n d e r t a k e n i n t h i s  department. It (CH3)  3  Sn-Mn(CO)  ligands cis-  i s r e a s o n a b l e t o assume t h a t t h e s t r u c t u r e o f compound ( I I ) , ^(77-02!!^)  , i s b a s e d on an o c t a h e d r a l  a r o u n d t h e Mn atom.  and t r a n s -  symmetry s h o u l d  isomerism.  This  According  ponding to A  rotate b  along  a n d E.  V J  c l e a r then that  (Ci^  the axial  (124),  the cis-isomer  C  s  modes ( 2 A i + B i + B ) w h e r e a s 2  axis) should  to lowering  the determination  with  of  symmetry a s s u m i n g t h e two s u b s t i t -  a n d h e n c e an i n c r e a s e  i n g m e r e l y o n t h e UQQ  to the p o s s i b i l i t y  show two b a n d s  n-bonding c h a r a c t e r  free r o t a t i o n o f the ethylene  complex i s u n l i k e l y , l e a d i n g  plex, probably C2 is  t o theory,  In view o f t h e strong  C=C b o n d i n e t h y l e n e the  rise  h a v e f o u r i n f r a r e d a c t i v e UQQ  t h e more s y m m e t r i c a l t r a n s - i s o m e r uents f r e e l y  Would g i v e  arrangement o f the  correso f the  molecule i n  o f t h e s y m m e t r y o f t h e com-  i n t h e number o f UQQ b a n d s . I t  o f t h e c o n f i g u r a t i o n o f ( I I ) depend-  vibrations i s u n l i k e l y t o provide  a c l e a r answer.  Sec.  In  IV-C-2  fact,  104  compound  ( I I ) ,i n this  series  o f c o m p o u n d s , shows t h e m o s t  p o o r l y r e s o l v e d VQQ b a n d s , a medium b a n d a t 2072 c m . and b r o a d at  b a n d c e n t r e d a t 1987 cm.  1994 a n d 1970 c m . .  This  - 1  must b e p r e s e n t , ruled  out.  although  1  spectrum i n d i c a t e s  that the cis-isomer  o f the trans-isomer  cannot  less  rr-electron  group.  This  i s i n d i c a t e d b y t h e l o w e r i n g o f t h e a v e r a g e VQQ  ( I I ) , as t h e r e s u l t  d e n s i t y from  nonpolar  solubilities  acetone  reliable,  o f compounds  to assign.  thus  s i n c e many w o r k e r s  o f t h e VQQ  i n these  o f t h e VQQ  f r e q u e n c i e s on  polar solvents i s not  i n such  solutions.  This results i n  No a s s i g n m e n t s o f t h e VQQ b a n d s  The m a n g a n e s e - c a r b o n y l d e f o r m a t i o n  b a n d was o b s e r v e d  i n T A B L E S 16 a n d 1 7 , i n t h e v e r y T h i s band s h o u l d be a s s i g n e d e t a l . (70) found  deformation  can be improved  were  two c o m p o u n d s .  A s t r o n g and b r o a d  Flitcrqft  the metal  ( 1 2 0 , 1 2 5 , 126) h a v e r e p o r t e d t h e o c c u r -  frequencies.  made f o r t h e s e  frequency  are consequently  the s o l u b i l i t y  or chloroform the interpretation  c.  nyl  does t h e c a r b o n y l  ( V I I I ) and ( I X ) , t h e d i m e r s , i n  Although  o f solute--solvent interactions  shifts  e  (121).  the b a s i s o f the s p e c t r a obtained  rence  than  s o l v e n t s a r e s m a l l , and c a r b o n y l a b s o r p t i o n s  weak a n d d i f f i c u l t in  the metal  o f g r e a t e r t r a n s f e r o f i r - e l e c t r o n s from  i n t o t h e f o u r c a r b o n y l groups The  o  that the coordinated ethylene o f (TI)  accepts  of  strong  w h i c h i s a c c o m p a n i e d b y two s h o u l d e r s  the presence  I t i s noteworthy  and a v e r y  - 1  band i s m a i n l y  complexes and l e s s ,  constant  bands  (§MnC0) .  f o r e a c h compound  listed  r e g i o n o f 6 4 2 - 6 6 5 cm.  t o the manganese-carbonyl deformation that the location  mode.  of the metal-carbonyl  a f f e c t e d by t h e c e n t r a l metal  atom o f c a r b o -  o r even n o t a t a l l , by t h e s u b s t i t u e n t s .  One  Sec.  interesting with  feature here i s that  a separation  (VIII), (V),  105  IV-C-2  and  and  t h i s band i s r e s o l v e d  o f a b o u t 10 c m .  - 1  , i n compounds  (IX), but the s p l i t t i n g  i s n o t o b s e r v e d i n compounds  SMC0 b a n d s w e r e a l s o o b s e r v e d i n t h e v i c i n i t y 2  M i s Mo  or W  d.  2  to Edgell's  suggestion  (119),  C o n s e q u e n t l y , t h e most  vibrations.  are t e n t a t i v e l y  pentacarbonyl 1  It  assigned  halides  should  1  (70).  A b a n d was  region  m o  ^ * e  i n t h e 483-440  t o t h e UQQ  cm.  1  A d d i t i o n a l support  observed f o r  decacarbonyls  (CO) Mn-Mn(C0) 5  5  frequency than the analogous compound M n ( C Q ) I . 5  be n o t e d t h a t t h e g e n e r a l  the observation  trend  of  QQ b a n d p o s i t i o n s  mode o f t h e same s p e c i e s ,  f o r (CO) Mn-Mn(C0) 5  5  and M n ( C 0 ) I 5  i n good (70).  r e l a t i o n s h i p o f t h e e f f e c t o f s u b s t i t u e n t s on t h e UQQ  frequencies  i s understood  iT-systems.  A f a c t o r which i s r e s p o n s i b l e  order,  c a u s e a d e c r e a s e i n t h e M-CO  will  k  ( ^Mn-CO-) '  i n t e n s e bands  t o the ^n-CO  i n the corresponding  e x a c t l y the opposite  ment w i t h  3  to the r a d i a l metal-carbon s t r e t c h -  which i s located at higher  b a n d a t 429 cm.  inverse  2  assignment i s a v a i l a b l e from the s p e c t r a o f dimetal  a t 470 cm.  is  or' A s ( C H ) , a n d  t  one e x p e c t s t h a t t h e m o s t  ing  and  for  O f t h e e x p e c t e d Lfa-Qo modes i n t h i s  region.  be due p r i n c i p a l l y  of this  5  2  1  a weak b a n d w e r e o b s e r v e d i n t h e  i n t e n s e b a n d may  region  2  The m a n g a n e s e - c a r b o n s t r e t c h i n g modes  cm;  according  o f 600 cm.  (118).  A medium a n d b r o a d b a n d p l u s 483-412  3  (III),  S p l i t t i n g s - o f the  P (CH )^, P (C H )i ,  2  5  doublet,  ( I ) , ( I I ) , (IV), (VII),  ( V I ) ( s e e TABLES 16 a n d 17 on p a g e ) .  (CO) 5M-L Rt+-M(CO) , w h e r e L R i f - i s  into a  agree-  This  and  ^-CO  i n terms o f e l e c t r o n i c i n t e r a c t i o n s i n t h e f o r an i n c r e a s e bond o r d e r ,  o f t h e CO  as e x p l a i n e d  by  bond  Sec.  IV-C-2  106  means o f r e s o n a n c e m e c h a n i s m s i n a p r e v i o u s I n a d d i t i o n t o t h e V^QQ two  s e c t i o n (Sec.  IV-C-2-b).  mode m e n t i o n e d a b o v e , one  would  w e a k e r b a n d s i n t h e same r e g i o n , a s s o c i a t e d w i t h t h e modes  to the A tical  and  a  A  transitions  b  treatment of these  e.  3  2  2  The  v i b r a t i o n s i s not  last  spectrum of  ( I I I ) i n the  t o C-F may  1065,  t h r e e w e r e o b s e r v e d as  f o u r bands are  assigned  compounds l i s t e d  H-CF CF Mn(CO) the  2  5  and  1000,  3  2  the  (CH ) SnCF CF(CF )Sn(CH ) 2  3  of the uncoupling  C5FqMn(C0)  5  This  975  (TABLE  -CF -CF - group. 2  16)  cm. , of which - 1  These  a r g u m e n t made i n S e c . Further  2  of these  absorptions  of  i n TABLE 9 on p a g e  IV-A-2,  assignments  bands.  An  ( I I I ) and 62,  2  obser-  i t s closely  i.e.,  5  t e r m i n a l s u b s t i t u e n t e.g.  t r e n d shown by  3  and  region  a p a r t i a l l y resolved t r i p l e t .  a p p e a r e d t o d e c r e a s e t h e n u m b e r o f t h e C-F  3  (70).  C H - C F C F M n ( C 0 ) , i s t h a t i n c r e a s i n g t h e mass  c e n t r a l atom o f the  w i t h the  theore-  absorptions.  absorption  1020,  v a t i o n d r a w n f r o m c o m p a r i s o n o f C-F  2  C-F  r e l i a b l e because o f o v e r l a p p i n g  corresponding  However, a  a v a i l a b l e at p r e s e n t  on t h e b a s i s o f t h e  s t r e t c h i n g modes o f t h e  n o t be  similar  (HI)  5  shows f o u r s t r o n g b a n d s a t the  vibrations.  I n f r a r e d b a n d s a s s o c i a t e d w i t h C-F  (CH ) SnCF CF Mn(CO ) 3  o f t h e VQQ  expect  3  3  o f t h e C-F  Sn,  a b s o r p t i o n bands, i n  i n f r a r e d spectra of (Sec. I V - A - 3 ) .  from H t o C to  (CH ) SnCF CFHCF 3  T h i s was  s t r e t c h i n g modes  3  2  of  accord 3  and  i n t e r p r e t e d i n terms  (103).  (IV)  compound shows s e v e n v e r y  b a n d s i n t h e C-F  absorption  v i d u a l b a n d s c a n n o t be  region  s t r o n g and  (TABLE 1 6 ) .  well resolved infrared Assignments f o r  made w i t h c e r t a i n t y b e c a u s e o f t h e  indi-  complexity  Sec.  IV-C-2  of the  1 0  spectra.  Fluorovinyl  derivatives  (V),  (VI), (VII),  (VHI),  and  (IX).  T h e s e compounds show a s t r o n g t o medium p e a k i n t h e r e g i o n and  s e v e r a l s t r o n g bands i n the r e g i o n  on p a g e 9 2 ) . where M  S t o n e , e t a l . (92)  i s B,  distinctive and  7  Sn,Ge, S i , A s ,  series  of stong  reported  o r Hg,  t h a t the band which appears i n the  t o t h e C=C  stretching  reasonable  to assign those  for  ( I X ) , to the  (V)  to  1 4 0 0 - 7 0 0 cm.  i n the molecule,  region  i n the  bands i n the  C-F  stretching  range  group.  1400^-700 cm. vibrations;  1  and  very  is  cm. , 1  due  I t i s thus  region  1  a  1800-900  1 7 9 2 - 1 6 9 5 cm.  mode o f t h e p e r f l u o r o v i n y l  17  group,  2  occurs  cm.  (TABLE  1  t h a t when a C F = C F - M  i s present  absorptions  1750-1600  observed  the,peak i n  the  _l r a n g e 1 7 5 0 - 1 6 0 0 cm. be  discussed  arises  i n the  following  A c o n s i d e r a t i o n of the o f t h e ,CF =CFM g r o u p  (92)  2  an the  empirical,assignment 1 4 0 0 - 8 0 0 cm. I t s h o u l d be  of  (VII) gives  lower  in  the  and  literature  and  ( s e e TABLE 19)  corresponding o t h e r two  fairly  constant  not  be  treatment  deduced w i t h  The  C-F  available  f o r the  v i b r a t i o n which  to analyses (127,  three  frequency  128)  spectra of  spectra  permits  s t r o n g bands i n  to the  acyl  which occurs  peaks o f the (CF  group  a t much  compounds l i s t e d 2  regions. Although  and  o f the  asym. and this  sym.)  s h i f t may  acyl  group  (94), there  i s no  the  exact  effect in this  (cis-CFH=CF)Mn(CO) , 5  (V),  and  in fall be  adequate  case  certainty.  absorption  will  (VII).  bond v i c i n a l  frequencies  a t t r i b u t e d t o i n t e r a c t i o n with the theoretical  related  spectrum of  to a stretching  that the  stretching  trifluoroethylenes  n o t e d t h a t t h e C-F  rise  expected,  C=C  section.  r e g i o n o f the  1  energy than the  TABLE 19,  from  can-  Sec.  108  IV-C-2  TABLE 19 ASSIGNMENT OF C-F ABSORPTIONS  (cm.  _1 .  )  DUE TO C F = C F - X GROUP. 2  CF = (asym.)  =CF-  2  Compound  CF = (sym.)  Reference  2  CF = CFCOMn(CO) ( V I I )  1240  1042  960  CF =CFH  1326  1264  929  (128)  CF =CFD  1323  1200  855  (128)  CF =CFC1  1336  1215  1058  (127)  CF =CFBr  1330  1203  1027  (127)  CF =CFM*  13271274  11781121  10491004  (92)  2  5  2  2  2  2  2  (*)  This  M i s B, A s , Hg, S i , Ge, o r S n .  (trans-CFH=CF)Mn ( C O ) , ( V I ) , a r e v e r y 5  assign  similar  t h e s e b a n d s was made b e c a u s e t h e r e  comparable The spectra.  (TABLE 1 7 ) . No a t t e m p t t o  i s very  little  two d i m e r s ,  ( V I I I ) a n d ( I X ) , a l s o show s i m i l a r C-F  on  absorption  H o w e v e r , t h e s e s p e c t r a a r e u n e x p e c t e d l y much more c o m p l e x 2  This  information  compounds.  t h o s e o f t h e a n a l o g u e s s u c h as C F = C F C 0 M n ( C 0 ) o r C F = C F M i s i n contrast  the  similarity  The  complexities  5  2  compounds  than (92).  t o t h e f a c t . t h a t t h e number o f CF =GF- g r o u p s i n t h e  same m o l e c u l e h a s no e f f e c t  2  on t h e C-F a b s o r p t i o n  i n the spectra o f (CH ) Sn(CF=CF ) 3  2  2  p a t t e r n , a s shown b y 2  and Sn(CF=CF )i ( 9 2 ) . 2  l  o f t h e s p e c t r a o f ( V I I I ) a n d ( I X ) may b e u n d e r s t o o d i n  terms o f t h e symmetry o f t h e CF =CF- groups.. 2  no  work  The d i m e r ' s C F = C F 2  l o n g e r p o s s e s s t h e same s y m m e t r y as i n m o n o m e r i c C F = C F - M 2  groups  g r o u p due  Sec.  IV-C-2  109  t o complex f o r m a t i o n o f t h e CF =CF- groups  through t h e i r double  2  a n d t h e i r c o n s e q u e n t l y l o w e r e d s y m m e t r y may  lead  bonds,  t o a more c o m p l e x  spectrum.  f,  The  The  C=C  C=C  stretching  frequencies.  s t r e t c h i n g b a n d s due  carbonylmanganese  t o the f l u o r o v i n y l groups  compounds a r e more" v a r i a b l e  (TABLES 16 and  of the 17).  T h e s e b a n d s a r e r e p r o d u c e d i n TABLE 20 t o g e t h e r w i t h t h o s e o f some o t h e r f l u o r o v i n y l compounds f o r c o m p a r i s o n . The  C=C  stretching  frequencies of perfluorovinyl  have been used t o determine (92).  In a s e r i e s  the n a t u r e o f the n-system  stretching  f r e q u e n c y , w h i c h was  i n c r e a s e i n t h e B-C  stretching  f r e q u e n c y , Was  t i o n has been i n t e r p r e t e d o f . t h e CF2=CF- g r o u p  i n terms  also  and C-B  known i n c o n j u g a t e d d i e n e s y s t e m s  observed.  ordinary hydrocarbon  C=C  b o n d w i t h t h e C=0  band o f about  35 cm.  stretching  (131).  F. H  and  (IX).  o l e f i n s t o 1600  cm.  atom,  Mn(C0) , 5  leading  frequencies i s  1660  the cm.  C=C 1  in  Conjugation of the  bond l e a d s t o a s i m i l a r d i s p l a c e m e n t o f t h e 1  (131).  Assuming  the c o n f i g u r a t i o n  i n ( V ) , ( V I ) , (VII).,  o f (V) t o be  F N  an  This observa-  For example,  It i s considered that & s i m i l a r effect exists (VIII),  by  bond o r d e r s , r e s p e c t i v e l y .  v i b r a t i o n o f 1 , , 3 - b u t a d i e n e moves f r o m a b o u t  the  apparent  accompanied  and t h e empty p ^ - o r b i t a l o f a b o r o n  e f f e c t o f c o n j u g a t i o n oh t h e C=C  stretching  an  o f i n t e r a c t i o n between the n - e l e c t r o n s  a d e c r e a s e a n d an i n c r e a s e i n C=C The  compounds  o f t h e compounds  of p e r f l u o r o v i n y l boron d e r i v a t i v e s ,  l o w e r i n g o f t h e C=C  to  metallic  then  both  (V) and  ( V I ) w o u l d h a y e t h e same  Sec.  110  IV-C-2  TABLE 20 THE C=C STRETCHING  FREQUENCIES  OF SOME FLUOROVINYL GROUPS.  Compound  C F Mn(CO) .. 5  9  C=C  (IV)  5  CF =CF-C0-Mn(C0) 2  (trans-CFH=CF)Mn(CO)  5  (cis-CFH^=CF)Mn(CO) 5  [CF =CFMn(C0) ] Dimer 1 Dimer 2 2  k  -1  1789 s  (VII)  5  (cm. )  Reference  T h i s work  1712 s*  (IV)  1670 w  (V)  1630 s  2  (VIII) (IX)  1620 m 1617 m  CF =CFX (X=CF , C F , o r H)  1800 s  (129)  CF =CFM (M=Ge, Sn, o r Hg)  17391719 s 16471645 s  (92)  2  3  2  5  2  CF CF=CFM'(CO) 3  (*)  (M'=Mn o r Fe)  5  (94)  (VII) shows a s t r o n g a b s o r p t i o n at .1712 cm. w i t h a s h o u l d e r at 1685 cm. . S i n c e the C=C s t r e t c h i n g f r e q u e n c i e s a s s o c i a t e d with CF =CFM d e r i v a t i v e s , as shown i n t h i s t a b l e , a r e l o c a t e d at 1740-1720 cm. , and because t h e a c y l c a r b o n y l s t r e t c h i n g v i b r a t i o n s were r e p o r t e d t o occur i n t h e , r e g i o n 1660-1640 cm. (94, A N D 130), t h e 1712 and 1685 cm." bands were a s s i g n e d t o VC_C VQ=0 frequencies, respectively. 1  2  l  1  conjugated system  {S^C-^n— C = 0  ®  ^  y  \ C-) (+)  :C—C=Mn—C=0  which has been p o s t u l a t e d i n S e c t i o n IV-C-2-b, whereas (VII) may have two conjugated systems  Sec.  111  IV-C-2  'I I  C = C — C — Mn— C=Q 0  v I () +  C = C — C—Mn<— C = 0  C=C— C—Mn—C=0 0  (-)  0  (-)  V) I  C—C=C—Mn— C = 0  ic-)  '  \-) I  :C—C=C—Mn—C=0  By c o m p a r i s o n o f t h e a b o v e r e s o n a n c e s , bability (3). and  o f (T)  i s h i g h e r than  (T) b e c a u s e t h e l a t t e r s h a r e s i t w i t h  Hence, t h e l o w e r i n g o f f r e q u e n c y i s l i k e l y (VI) than i n (VII).  and ( I X ) c o n t r i b u t e t h e i r  2  C=C b o n d i n i r - b o n d i n g ,  t o b e g r e a t e r i n (V)  In addition t o the conjugated e f f e c t , the  CF =CF- groups o f ( V I I I )  and  one w o u l d e x p e c t t h a t t h e p r o -  s o t h a t t h e C=C s t r e t c h i n g  ir-electrons  o fthe  frequencies o f (VIII)  ( I X ) s h o u l d b e much l o w e r t h a n i n t h e above, t h r e e compounds. ( I V )  contains  an u n c o n j u g a t e d  C=C b o n d a n d t h u s t h e VQ=Q f r e q u e n c y i s  e x p e c t e d t o be t h e h i g h e s t o n e .  Sec.  112  IV-C-2  The  results,  a s shown i n . T A B L E 2 0 , a r e i n g o o d a g r e e m e n t w i t h t h e  a b o v e a r g u m e n t s e x c e p t f o r t h e b a n d d u e t o ( V ) . The d i f f e r e n c e o f t h e frequencies ference  between  f o r c i s - and t r a n s - i s o m e r s .  (CH CH=CH) As 3  1620  (V) a n d ( V I ) i s f a r g r e a t e r t h a n  3  cm.  - 1  The c i s - and t r a n s - i s o m e r s  , respectively.  C u l l e n e t a l . (133) r e p o r t e d  large difference i n frequencies  formation  dif-  of  ( 1 3 2 ) show t h e C=C s t r e t c h i n g v i b r a t i o n s a t 1610 a n d  f o r t h e C=C b a n d s o f t h e c o r r e s p o n d i n g This  the reported  o f t h e CFH=CF-  isomers o f  1622 a n d 1642 cm.  (CF CH=CH)As(CH )2• 3  may be a t t r i b u t e d  3  t o t h e ir-bond  g r o u p i n . ( V ) , a s t h e s t r u c t u r e (VB) i n F i g u r e  9 o n p a g e 102 , w h i c h was s u g g e s t e d o n t h e b a s i s o f o b s e r v e d UQQ  fre-  quencies . The C=C s t r e t c h i n g v i b r a t i o n of  ( C H ) S n - M n ( C O ) i+ (-n-C2iik}>  at  1440 c m . .  and It  3  The c o r r e s p o n d i n g  (C2Hi PtCl2)2 +  should  H-C2HI+)  5  ( I I ) also gives  b a n d i n t h e n e i g h b o u r h o o d o f 1400 cm. mode.  ethylene  b a n d s o f TT-C H Mn(CO) 2(ir-C Hi ) ( 8 6 ) 5  2  ( 1 2 4 ) w e r e o b s e r v e d a t 1499 a n d 1506 c m .  be m e n t i o n e d t h a t  metric deformation  from t h e ir-complexed  ( H ) , was o b s e r v e d a s a weak a n d s h a r p b a n d  3  - 1  arising  1  rise  , respectively.  t o a weak a n d b r o a d  associated with  F o r t u n a t e l y , t h e 1440 cm.  c o u l d , be i d e n t i f i e d b e c a u s e o f i t s  - 1  +  1  sharpness.  the CH  peak  3  ( UQ_Q  asymof  Sec. IV-D D.  113  The N.M.R. S p e c t r a o f F l u o r o c a r b o n D e r i v a t i v e s o f Pentacarbonylmanganese.  H and listed  9  F N.M.R. d a t a o f compounds p r e p a r e d  i n TABLES 21 a n d 2 2 .  The i s o m e r s  i nt h i s study a r e  o f [CF =CFMn(CO) ] 2  examined owing t o t h e i r low s o l u b i l i t y .  4  were n o t  2  E a c h compound p r e s e n t e d i n  TABLES 21 a n d 22 i s d i s c u s s e d i n d e t a i l  individually  as f o l l o w s .  ( C H Q c,Sn-Mn(CO) , ( I ) , a n d ( C H Q ^Sn-MnCCOJufTr-CpHtJ, ( I I ) . s  The H N.M.R. s p e c t r a o f ( I ) a n d ( I I ) a r e v e r y s i m i l a r .  -They  l  consist o f CH  3  resonances  a d d i t i o n t o s i d e bands coupling with It at  1 1 9  Sn,  and t e t r a m e t h y l t i n 3  SnCl  3  i nthe v i c i n i t y S n , and C  of  3  resonances  (-0.01) ( 1 3 5 ) b u t  3  Sn-CH , J  ?  3  3  SnBr  (134)  than those o f  (-0.74) ( 1 3 5 ) .  S n - C H , and J 3  C-H  3  On t h e  for (I)  ( I I ) a r e s i m i l a r t o those o f t h e corresponding c o u p l i n g constants Sn-Sn  compounds ( 7 2 , 134) . o f m e t h y l t i n group p r o t o n s  spin i n t e r a c t i o n s o f methyl  protons with  1 1 9  have been o f c o n s i d e r a b l e c u r r e n t i n t e r e s t t h e bonding  protons  i n m e t h y l t i n compounds.  found  atoms  later that electronegativity  the unshielding o f theprotons.  effect  Sn,  1 1 ?  and t h e s p i n -  Sn,  and C 1 3  nuclei  i nconnection with the nature  The s h i e l d i n g o f t h e m e t h y l  o f G r o u p IVA compounds was f i r s t  electronegativity of the central  for  for (II)].  o f ( I ) and ( I I ) occur  at higher f i e l d  (-0.62 p.p.m.) (136) a n d ( C H )  The c h e m i c a l s h i f t s  of  peak due t o  was n o t o b s e r v e d  1 3  3  3  (TMS) i n  t h a n t h o s e o f h e x a m e t h y l d i t i n (-0.2 p.p.m.)  o t h e r hand, t h e v a l u e s o f J and  o f the CH  [J C-H  1 3  i so f interest that the CH  much l o w e r f i e l d  (CH )  1 1 ?  i n t h e r e g i o n -0.46 t o -0.48 p.p.m.  correlated with the  (106).  Brown a n d W e b s t e r ( 1 0 7 )  i snotthe only factor responsible H y p e r c o n j u g a t i o n , d^-p^-bonding  (137), a n i s o t r o p y o r d i s p e r s i o n e f f e c t o f t h e s u b s t i t u e n t (136)  114  Sec. IV-D  TABLE  21  N.M.R. DATA OF (CH ) Sn-Mn(.C0) 5 3  3  AND ITS DERIVATIVES.  (CH ) Sn-Mn(C0) 5 3  I  3  (CH ) sSn-MnCCOKCTT^HO  ...  (CH ) Snc:F2CF Mn(C0)  ... I l l  3  3  a 3  6c H 2  2  .  5  III  II  I  Assignment  ScH  3  II  -0.32±0 01  -0 48±0.01  -0.46*0.01  -2 65*0.01  H  b  c SF J J  B  1 1 9  Sn-CH  d 3  -26.0±0 . 2  b  +22.5*0 2  b  58.0*0 .5  48.8*0.2 >46 0*1.0  1 1 7  J  Sn-CH  1 3  C-H  3  3  46.3*0.2 128.8*0.5  /  56.0*0 .5 ?  6  (a)  T e t r a m e t h y l s i l a n e i n t e r n a l s t a n d a r d (p.p.m.).  (b)  Singlet.  (c)  T r i f l u o r o a c e t i c acid external  (d)  C o u p l i n g c o n s t a n t i n c.p.s.  (e)  Absent.  s t a n d a r d (p.p.m.).  e  Sec.  115  IV-D  TABLE  22  N.M.R. DATA OF SOME FLUOROVINYL-Mn(CO)5  (Dp  (3 F  \=c (  V  2  >  (D  H  /  F  X  N  Mn(CO)  ( 5  2  c=c V  V  1  SH  2  1  SF  2  SF  3  M  n (  (3)  5  '  C-Mn(CO)  5  0  VIII  VI  a  -8. 1*0 05 - 5.7*0 05  JH^  2  JH^  3  +50.1*0  + 7.4*0.1  2  d  -  c  -  c  +51.0*0.1 +64.9*0.1  8 6 . 5*0 .1 10. 2*0 .1  JH F!  (=  F^ )  80.0*0 .1  JH F  3  (=  F H )  25.0*0 .1  JF*F  2  (=  F F )  jFlp3  (  F  JF F  (  2  2  C0)  F  VII  +14.2*0 .2  2  F  \=c(  V  b  SF  F  /  VI  Assignment  SH  X  ( i )  (3)  COMPLEXES  3  =  2  3  2  2  92.5*1  1  3pl)  40.6*1  = 2.4  -  p3p2)  c  (a)  TMS i n t e r n a l s t a n d a r d ( p . p . m . ) . E a c h r e s o n a n c e was o b s e r v e d as a d o u b l e t e d d o u b l e t .  (b)  TFA e x t e r n a l s t a n d a r d ( p . p . m . ) . E a c h r e s o n a n c e was o b s e r v e d as a d o u b l e t e d d o u b l e t .  (c)  Not measured.  (d)  Coupling constant  (c.p.s.).  111.5*1  Sec.  IV-D  116  have been suggested  as some o f t h e o t h e r  factors involved.  I t h a s b e e n shown ( 1 3 8 ) t h a t t h e F e r m i c o n t a c t s p i n - s p i n coupling constant to the product P ( 0 )  x  N  between two n u c l e i  P ( 0 ) ^ w h e r e P(°)^  d e n s i t i e s o f t h e two b o n d i n g o r b i t a l s .  the  usually i s considered  H  P ( 0 ) ^ a r e the e l e c t r o n  t o b e t h e same as f o r t h e h y d r o g e n atom i n  F o r o t h e r atoms a s i m p l e  Is s t a t e (139).  i s directly proportional  F o r c o v a l e n t l y bonded hydrogen,  ;  P(0)  and  c o n t r i b u t i o n t o the  LCAO t r e a t m e n t  that P(0)^r i s p r o p o r t i o n a l to the percentage s-character h y b r i d i z e d atomic o r b i t a l first  used i n the bonding.  predicts  i n the  This r e l a t i o n s h i p  was  a p p l i e d t o m e a s u r e q u a n t i t a t i v e l y t h e s - c h a r a c t e r o f t h e Sn-C-H  bonding i n the s e r i e s o f m e t h y l t i n c h l o r i d e s from t h e observed t i n 119.  proton  coupling constants  constants  (139).  Recently,  the  Sn-CH^ c o u p l i n g  were found t o have a l i n e a r r e l a t i o n s h i p w i t h  Sn-C  a s y m m e t r i c and s y m m e t r i c s t r e t c h i n g f r e q u e n c i e s ( 7 2 ) . It i s interesting,  on t h e b a s i s o f t h e a b o v e t y p e  t o examine t h e bond t y p e  o f t h e Sn-C b o n d , a n d , t e n t a t i v e l y , o f ,the  Sn-Mn b o n d , i n ( C H ) S n - M n ( C O ) 3  of discussion,  3  5  and (CH ). SnMri(CO)i (ir-C Hi ), 3  +  3  t h e i r N.M.R. d a t a w i t h t h e r e p o r t e d v a l u e s  J  +  by  comparing  f o r other methyltin  l19  s y m m e t r i c modes o f o r g a n o t i n  2  Sn-CH  3  and  Sn-C  compounds.  asymmetric and  compounds a r e w e l l i l l u s t r a t e d  i n Figure  10, w h e r e t h e compounds c o n t a i n i n g a S n - S n o r Sn-Mn b o n d o b e y t h e relationship  closely.  I t has been p o i n t e d o u t (72) t h a t b o t h  the force  TI 1 9  constant  o f t h e Sn-C b o n d a n d J  o f t h e Sn-C b o n d . t o t h e Mn  I t then  3  10.  fall  reflect  follows that the orbitals  atom a r e s i m i l a r t o t h o s e  because t h e i r values Figure  Sn-CH v a l u e s  closely  the  s-character  engaged i n b o n d i n g  i n t h e Sn-Sn b o n d o f h e x a m e t h y l d i t i n  i n t h e same r e g i o n , as shown i n  A s s u m i n g t h e s - c h a r a c t e r o f Sn-C b o n d s t o b e 2 5 % i n  .._ _ _ .  ,  ,  Jl 1 9 S n - C H  3  v a l u e o f 54  c.p.s.  Sec. IV-D  117 1.  (CH ) SnLi;  2.  [(CH ) Sn] ;  3.  (CH ) Sn ;  4.  (CH ) Sn;  5.  (CH ) SnBr;  6.  (CH ) SnCl;  7.  (CH ) SnCl ;  8.  (CH ) SnCl(aqueous);  9.  3  3  3  2  3  6  6  3  2  l t  3  3  3  3  3  2  3  2  3  ( C H ) Sn-Mn(CO)5; 3  3  iu-C H ) (CH ) Sn-Mn (CO), 2  10.  3  4  3  From 1 - 8 , d a t a w e r e taken from r e f . (72) From 9 - 1 0 , t h i s  J^Sn-CHg  (c.p.s.)  work.  —  F i g u r e 10. J S n - C H v s . l^Sn-C f o r some m e t h y l t i n compounds. 1 1 9  3  Tl  (139), t h e observedj  19  Sn-CH  formation o f t h emetal-metal Sn-C-H b o n d i n g in  system.  3  values  ( 4 6 - 48 c . p . s . ) r e v e a l t h a t t h e  b o n d i n o r g a n o t i n compounds i n f l u e n c e s t h e  This results  i n a reduction o f the s-character  t h e Sn-C b o n d , a n d i n c r e a s e s t h e s - c h a r a c t e r i n t h e S n - S n o r Sn-Mn  b o n d t o more t h a n  25%.  T h e a n o m a l y o f t h e Sn-C b o n d i n h e x a m e t h y l -  d i t i n h a s b e e n shown p r e v i o u s l y b y p l o t s chemical  shift  against J  1 1 9  and  o f t h emethyl  Sn-CH  3  (135).  12, r e s p e c t i v e l y ,  T  o f the values o f J  1  3  C-H v e r s u s 13 p r o t o n s ( 1 3 4 ) , and t h e v a l u e s o f J C-H 3  These methods a r e r e p r o d u c e d  and a comparison  3  i n F i g u r e s 11  o f h e x a m e t h y l d i t i n w i t h Sn-Mn  Sec.  IV-D  118  119  Sec. IV-D  TABLE  23  CHEMICAL S H I F T S ( c . p . s . ) AND COUPLING CONSTANTS ( c . p . s . ) OF SOME TRIMETHYLTIN  No. 1  SCH  Compound  3  (CH ) SnCl 3  DERIVATIVES.  3  J C-H 13  3  J  1 1 9  Sn-CH  -37.6  133  58.5  2  -Br  -44.2  134  58.4  3  -I  -53.0  134  58.0  -14.2  129  56.0  Ref.  3  >(136) 4  [(CH ) Sn] 0 3  3  2  5  -S  -23:8  131  56.3  6  -Se  -34.5  132  56.0  - 4.8  129  56.9  \  - 4.2  127  54.0  J  7  (CH ) SnH 3  3  )  Wl35)  8  -CH  9  -C2F i|H  -21.5  130  57.8  10  -C F H  -21.0  131  58.6  11  -C F Mn(C0)  -19.2  -  58.0  12  -Mn(CO)  -27.3  129  48.8  13  -Mn(C0) (Tr-C2H )  -28.6  -  46.0  14  -Sn(CH )  -12.0  129  49.6  (134)  15  -Sn(C H )  -18.9  130  48.8  (135)  16  -MO(CO) (TT-C H )  -26.4  -  48.5  (8)  3  3  6  This 2  lt  5  >  work 5  H  4  3  2  5  3  3  3  5  5  Sec.  120  IV-D  b o n d e d compounds r e g a r d i n g has  the chemical  shifts  and c o u p l i n g  constants  now b e e n made. The compounds p r e s e n t e d  i n Figure  i n agreement w i t h  11 a l l c o n t a i n  the (CH ) 3  group.  The r e s u l t ,  clearly  i n d i c a t e s t h e anomalous n a t u r e o f a l l m e t a l - m e t a l bonded  m e t h y l t i n compounds. hexamethylditin i.e., J  C-H  i 3  In Figure the  3  J  U 9  3  5  (135),  tri-  are very  similar i n this  respect,  Sn-CH . 3  12, where t h e c h e m i c a l  shift  two compounds c o n c e r n e d do n o t f a l l  both t h e i r values  et a l .  be n o t e d t h a t t h e anomalous b e h a v i o u r o f  and ( C H ) S n - M n ( C 0 )  versus  3  I t should  t h a t observed by C l a r k  Sn  3  are f a r apart  consideration i s involved,  i n t h e same r e g i o n ,  from those o f o t h e r  although  organotin  compounds.  The d i f f e r e n t a n d a n o m a l o u s b e h a v i o u r o f t h e s e two m e t a l - m e t a l compounds becomes more c l e a r when t h e c h e m i c a l  shifts  protons are p l o t t e d against  o f t h e c e n t r a l atoms  of  the  substituent  shown i n F i g u r e It  l  shifts Sn  1  9  groups  X i n (CH ) SnX 3  3  compounds,  as  Sn-CH  t h e r e f o r e , that the f a c t o r s which determine the 3  do n o t make I m p o r t a n t c o n t r i b u t i o n s t o t h e  o f methyl protons.  The ir —  group i n ( C H ) S n - M n ( C 0 )  quency study  radii  13.  i s obvious,  J  the covalent  o f the methyl  3  3  5  e l e c t r o n acceptor  was shown on t h e b a s i s  t o be a l m o s t n e g l i g i b l e ,  power o f t h e ( C H ) 3  o f t h e VCO  to the anisotropy  t h e o b s e r v e d N.M.R. d a t a ,  fre-  hyperconjugation  1 3 , i t i s a l s o u n l i k e l y t o b e due  o r d i s p e r s i o n e f f e c t o f the Mn(CO)  yet p o s s i b l e to estimate  5  group.  I t i s not  the e s s e n t i a l contributions responsible f o r and f u r t h e r i n v e s t i g a t i o n s o f  organometallie  compounds c o n t a i n i n g m e t a l - m e t a l b o n d s a r e r e q u i r e d t o a n s w e r t h i s question.  3  so t h a t t h e u n s h i e l d i n g o f t h e  m e t h y l p r o t o n s can.no l o n g e r be i n t e r p r e t e d i n terms o f o r i r - b o n d i n g , a n d , a s shown i n F i g u r e  chemical  Sec.  121  IV-D  0 <  ccS  OS  -60 Figure  ScH,  13.  in  Element  Covalent^ R a d i u s (A)  Ref.  vs. radius of X  ( C H ) S n X compounds. 3  3  Element  Covalent R a d i u s (A)  Ref.  CI  0.99  C  0.70  Br  1.14  Sn  1.40  I  1.33  Mn  1.31  (141)  0  0.66  Mo  1.33  (142)  S  1.04  Se  1.17  >(140)  }(140)  .  Sec.  122  IV-D  Nevertheless, the  essential  tained,  t o o l s i ndetermining  infrared  from F i g u r e  spectra are  whether t h e m e t a l - m e t a l bond i s r e -  10 t h r o u g h F i g u r e  F o r example, by  1 3 , i t becomes c l e a r  immediately  t h e Sn-Mn b o n d i n ( C H ) S n - M n ( C 0 ) 4 ( T T — C0H4). i s r e t a i n e d b e c a u s e i t s  that  3  andScH  Sn-CH ,  1 9  i n conjunction with  o r h a s b e e n b r o k e n , i n a new r e a c t i o n p r o d u c t .  following  J*  N.M.R. d a t a  3  while  t h eadduct,  to those  values  3  3  follow closely  those  o f t h e parent  ( C H ) S n C F C F M n ( C O ) , g i v e s N.M.R. d a t a 3  3  of trimethyltin  2  2  compound,  very  5  similar  fluorocarbon derivatives.  ( C H ) SnCFoCFoMnCCO) ( i l l ) 3  3  s  The  *H N.M.R. s p e c t r u m o f t h i s  a t - 0 . 3 2 p.p.m. with  absorption  (TMS) a n d t h e s i d e b a n d s d u e t o c o u p l i n g o f t h e m e t h y l  119 protons  compound shows a m e t h y l  117 Sn and  Sn i s o t o p e s , i n t h e v i c i n i t y  o f the methyl  1 3 peak.  The  ScH , J  1  3  those 13  1  C-H Sn-CH  3  3  c o u p l i n g was n o t o b s e r v e d .  The o b s e r v e d v a l u e s o f  and U  (III) areconsistent  Sn-CH  found f o rt r i m e t h y l t i n  and 14, and F i g u r e  arising  3  from  fluorocarbon  d e r i v a t i v e s ( s e e TABLES 1 2 ,  10 a n d 1 2 ) s u p p o r t i n g ?  compound, a s m e n t i o n e d e a r l i e r .  with  t h eformulation o f t h i s  The f o r m u l a t i o n i s f u r t h e r  supported  19 by  the  The -26.0  F N.M.R. 19  data.  F N.M.R. s p e c t r u m o f ( I I I ) c o n s i s t s o f t w o r e s o n a n c e s a t  a n d +22.5 p.p.m.  derivatives,  (TFA).  I n many f l u o r o c a r b o n - t r a n s i t i o n m e t a l  t h e resonances o f the f l u o r i n e  atoms o f t h e a-CF  2  groups  (the group d i r e c t l y bonded t o t h e t r a n s i t i o n m e t a l ) have been found t o occur  i ntheregion  50 p.p.m. t o l o w e r  -15 t o -20 p.p.m. field  than  theusual  d i r e c t l y b o n d e d t o a Group I V A atom fluorine F-C-M  (TFA) ( 7 4 , 143), region  (143).  which i s about  f o r t h e CF  This  2  group  unshielding o f the  atoms h a s b e e n i n t e r p r e t e d i n t e r m s o f t h e f a c t  that, i n the  (M = t r a n s i t i o n m e t a l ) s y s t e m , t h e p a r a m a g n e t i c c o n t r i b u t i o n t o  Sec.  IV-D  '  the screening constant diamagnetic  of the fluorine nuclei  c o n t r i b u t i o n (143).  ( I I I ) was t h u s  123  i s more s i g n i f i c a n t  than t h e  T h e -26.0 p.p.m. r e s o n a n c e a r i s i n g  assigned t o the fluorine  atoms o f t h e C F  2  group  from  directly  l i n k e d t o t h e Mn a t o m , w h i c h i s i n g o o d a g r e e m e n t w i t h t h e r e p o r t e d for the corresponding  fluorine  atoms i n ( C O ) 5 M n C F 2 C F C F 2 M n ( C 0 ) 5  t o t h e S n atom.  (74).  2  +22.5 p.p.m. p e a k was c o n s e q u e n t l y  assigned t o the f l u o r i n e  No f i n e s t r u c t u r e c o u l d b e o b s e r v e d  value  atoms  The  geminal  f o r t h e s e two  resonances.  (cis-CFH=CF)Mn(CO) , s  ( V ) , and (trans-CFH=CF)Mn(CO) , ( V I ) . s  A compound w i t h t h e c h e m i c a l  formula C F HMn(Cp) 2  2  may h a v e  5  three  possible structures  F  \ /  / C  =c  H  F  H  \  x  Mn(C0)  F  F  The  Mn(C0)  F  5  (Q)  The n - b o n d i n g i s o m e r s  are reproduced  each case JHF(geminal)  in  t h e range o f  5  in  at present.  i n s e v e r a l f l u o r o - o l e f i n s and  analogous  t o t h e above t h r e e  struc-  I n s p e c t i o n o f TABLE 24 r e v e a l s t h a t  jHF(geminal)  = 7 2 - 8 1  JHF(trans)  = 12 - 34 c . p . s .  jHF(cis)  =  This f i n d i n g suggests  Mn(C0)  n o t be c o n s i d e r e d  > jHF(trans) > jHF(cis),  1 ~  x  a n a l o g o u s t o s t r u c t u r e (VB)  will  i n TABLE 2 4 .  in  H  (R)  r e p o r t e d H-F c o u p l i n g c o n s t a n t s  their organometallie derivatives tures  /  c=c  a d d i t i o n t o t h e n-bonding isomers  F i g u r e 9.  \  v  F  5  (P) in  /  >=c  and t h e i r values a r e  c.p.s.  8 c.p.s.  that the JHF values  a s s o c i a t e d w i t h s t r u c t u r e (P)  w o u l d b e 82 - 81 a n d 12 ~ 34 c . p . s . w h i l e s t r u c t u r e (Q) may g i v e  rise  Sec.  IV-D  124  TABLE 24 THE S P I N - S P I N COUPLING CONSTANTS  (c.p.s.)  IN SOME FLUORO-OLEFINS AND T H E I R D E R I V A T I V E S  Compound  HFC=CC1 HFC=CF  trans  2  2  H C=CFC1 2  HC1C=CF H C=CF 2  2  2  cis-HFC=CFH  JHF gem.  trans  cis  -  81  12  72  <3  119  -  -  8  -  13  -  <3  -  34  -  ~1  -  -  JFF gem.  cis  -  -  -  87  d44)  33 -  Ref.  (144) -  (144)  41  -  (144)  37  -  (144)  20.1  71.9  -  -  -  18.6  (145)  -  -  -  -  -  37.5  (146)  trans-FClC=CClF  -  -  -  129.6  -  (CF )C1C=CF  -  -  -  a  Cis-FC1C=CC1F  3  ;  2  -  16.6  (146) a  (147)  (CF )FC=CFX  b  -  -  -  127  -  -  (93)  (CF )FC=CFX'  b  -  -  -  131  -  -  (93)  25  80  -  -  -  2.4  c  d  c  3  3  Compound ( V ) Compound ( V I )  -  (a)  jF-CF (trans)  (b)  X i s Mn(CO) have " t r a n s "  (c)  This  3  5  86,5  10.2  = 9.2 c . p . s . ,  jF-CF (cis) 3  a n d X i s Fe (CO) ( T T - C H ) . configurations. 2  w o r k . Compound ( V ) ,  Not measured.  5  = 23.8 c . p . s .  5  C=C /  d  B o t h compounds  1  H (d)  d  Compound X  Mn(CO)  5  ;  (VI)  /C=C. F  Mn(CO),  Sec.  IV-D  1 2 5  to J H F values o f 7 2 ~ 8 1 and 1 ~ 8 c.p.s.  The J H F v a l u e s  (R) w o u l d n o t t h e n b e h i g h e r t h a n 4 0 c . p . s . and  t h e observed  The +14.2  (Q),  1  9  (i.e.,  1  [ J ( ) , 7 9 . 6 c.p.s.; 3  JT3) v a l u e s  2 5 . 4 c.p.s.; J*- -*, 4  proton, respectively.  lie  a " c i s " form),  J( ), 2  and t o (VI) t h e  = 2 c.p.s.] and a t + 5 0 . 1  2 . 4c.p.s.], r e s p e c t i v e l y .  a r e i n e x c e l l e n t agreement w i t h t h o s e  assigned t o the fluorine  In  a doublet  Each component o f t h e s e [ J12) a n d  The j C ) and 1  observed  i n t h e *H  t o the v i c i n a l  two d o u b l e t s  i s further  ] d u e t o t h e F-F i n t e r a c t i o n .  and p e r f l u o r p - o l e f i n s  d e r i v a t i v e s , s o f a r s t u d i e d , as reproduced  " t r a n s " F-F c o u p l i n g c o n s t a n t s  fall  and t h e i r  organometal-  i n TABLES 2 4 and 2 5 , t h e  i n the very constant  range  c.p.s., c o n s i d e r a b l y g r e a t e r than t h e couplings o f "geminal"  that  atoms.  The o b s e r v e d  t h e two f l u o r i n e  pounds. not  arose  i n (V) a t l e a s t  or " c i s "  indicated  that  J F F v a l u e i n (V) i s t o o s m a l l f o r j F F ( c i s )  the ( J F F ( c i s ) values vary markedly i n d i f f e r e n t  The s t r u c t u r a l  known.  value o fJJFF  110-130  atoms o f (V) a r e n o t " t r a n s " t o e a c h o t h e r . How-  ever, i t s h o u l d be noted values, although  p.p.m.  two resonances a r e r e a d i l y  atoms " t r a n s " a n d " g e m i n a l "  a l l the polyfluoro-  fluorine  data  a "trans"configuration).  N.M.R. s p e c t r u m o f ( V ) , a n d h e n c e t h e s e  into  By c o m p a r i s o n o f t h e s e  F N.M.R. s p e c t r u m o f (V) c o n s i s t s o f t w o s e t s o f d o u b l e t s a t  p.p.m. [ J t ) ,  split  from  *H N.M.R. s p e c t r a o f (V) a n d ( V I ) , i t i s r e a s o n a b l e t o  a s s i g n t o (V) t h e s t r u c t u r e ( P ) , ( i . e . , structure  arising  significance  I t w i l l b e remembered  ofthis  abnormally  ( p a g e 101) t h a t s i m i l a r  com-  small value  i s  difficulties  i n t h e i n t e r p r e t a t i o n o f t h e i n f r a r e d s p e c t r u m o f (V) i n t h e UQQ  region. molecular  These d i f f i c u l t i e s , structure.  again, j u s t i f y  an X - r a y d e t e r m i n a t i o n o f t h e  Sec.  IV-D  126  TABLE 25 THE F-F COUPLING CONSTANTS ( c. p . s i ) IN SOME PERFLUORO-VINYL D E R I V A T I V E S :  Compound ( X )  2  J F F  J F F  trans  C F = CFX  gem,  cis  trans  gem.  C I S  Ref.  -(CF )  120  57  40  8  13  21  (147)  -(CF C1)  118  56  39  6  19  31  (93)  -(CI), -(Br)  115, 124  78, 75  58, 57  -  -  -  (144)  -(H)  119  87  33  12  72  <3  (144)  110118  6279  2634  -  -  -  (148)  113115  7081  2634  -  -  -  (113)  111. 5  92.5  40.5  -  -  -  This work  3  2  -(X'R4_ ) n  -[X (C H ) ] ,  2  5  3  -[COMn(CO) ] 5  (*)  *  X* i s S i , Ge, o r S n .  Sec. IV-D  The  1  127  9  F N.M.R. s p e c t r u m o f ( V I ) i s n o t d i s c u s s e d b e c a u s e ( V I )  decomposed b e f o r e i t s s p e c t r u m c o u l d be o b t a i n e d .  CF?=CFCOMn(CO) ( V I I ) s  I f the chemical s h i f t s vinyl  group  o f the three fluorine nuclei  g r o u p may b e t r e a t e d a s a n ABC s y s t e m  f o r which a t w e l v e - l i n e spectrum i s expected. compound  intensity  ratio  respectively,  The  1  9  F N.M.R. s p e c t r u m  consisted o f three sets o f quartets  (each w i t h  relative  1:1:1:1) c e n t r e d a t +7.4, +51.0, a n d +64.9 p.p.m. ( T F A ) ,  a typical  s p e c t r u m o f a n ABC s y s t e m .  r e s o n a n c e t o a. s p e c i f i c comparison  ;  a r e l a r g e i n comparison w i t h t h e c o u p l i n g constants, between  t h e m , t h e N.M.R. s p e c t r u m o f t h i s  of this  i n a perfluoro-  fluorine  o f i t s chemical s h i f t  Assignment  o f each  a t o m may b e made o n t h e b a s i s o f and c o u p l i n g c o n s t a n t s w i t h those o f  o t h e r analogous molecules. For a rigorous substituents made. in  in  on t h e s e p a r a m e t e r s  I t was n o t e d , f r o m TABLE  a l l cases f o l l o w  that  assignment, a c o n s i d e r a t i o n o f t h e e f f e c t  t h e t r e n d Si  an anomalous c h e m i c a l s h i f t  the vinyl  group  i sdirectly  o f the  o f t h e t h r e e f l u o r i n e n u c l e i must be 26, that t h e f l u o r i n e < §2 < S3.  chemical  shifts  I t was a l s o n o t e d , h o w e v e r ,  a r i s e s when o n e o f t h e c a r b o n  atoms  attached t o a t r a n s i t i o n metal. (2)  In t h e p e r f l u o r o - v i n y l the is  series t h eF  a t o m becomes u n s h i e l d e d a s  v  atom i s r e p l a c e d b y a t r a n s i t i o n m e t a l c a r b o n y l group. illustrated  i n the following  (3)  (CO) Mn^  tF (+29.5 p.p.m.)  (147), (C H ) ( C 0 ) F e 5  5  •C=C  compounds  v  5  2  x  :c=c  C2) /' F  3  (+18.5 p.p.m.)  (+9.5 p.p.m.)  "CF3  This  Sec. IV-D  128  TABLE 26 1 9  F  CHEMICAL S H I F T S OF C F = CFX GROUPS 2  (Dp  F  (3)  Chemical S h i f t * p(2)  X  -C1,-H,-C H 6  -CF ,-CF C1 3  2  -MR^-n  b  -M(C H ) 2  5  C 3  -COMn(CO)  5  5  F  25 5 - 2 8  5  44.5 - 56 5  16 5 - 1 8  5  29.5  3 6 - 11 6 6  24 5 - 2 5 7.4  I n p.p.m. w i t h  respect  (b)  Representative o f formula S i , Ge, o r S n .  (c)  M i s S i , Ge, o r Sn. benzotrifluoride.  Ref.  68 5 - 116 5  (148)  30 5  108 5 - 115 5  (93)  36.2  46 8  116 2 - 123 2  (148)  53.7  60 6  130 .1 - 135 1  (10 3)  51.0  (a)  (3)  64.9  t o TFA, u n l e s s  denoted  (CF =CF) MR4_ 2  N  Chemical s h i f t  N >  otherwise.  where M i s  related to  This work  Sec.  129  IV-D  This unshielding e f f e c t  arising  m e t a l on t h e g e m i n a l f l u o r i n e interpreted  from t h e i n f l u e n c e o f a t r a n s i t i o n  atom o f t h e p e r f l u o r o v i n y l  group has been  i n terms o f the importance o f the paramagnetic  to the screening constant of f l u o r i n e The u n s h i e l d i n g e f f e c t  contribution  atoms ( 9 3 ) .  o f a t r a n s i t i o n metal has been a l s o  i n - v i n y l - t r a n s i t i o n m e t a l compounds n u c l e u s o f t h e above s e r i e s  observed,  ( 1 3 0 ) , b u t n o t on t h e c o r r e s p o n d i n g  (TABLE 27) t h e c h e m i c a l s h i f t  increases i n  TABLE 27 X  H N.M.R. DATA OF SOME V I N Y L COMPOUNDS. (3)  (1) H (21 ^H L  / — \ C  -COW(CO) C H 5  a 5  -COFe(CO) C H 2  5  -FE(C0) C H 2  -C H 6  (a) (b) (c)  5  5  5  C 5  Chemical s h i f t (p.p.m.) Absent. Chemical s h i f t  the o r d e r  M  Chemical s h i f t (p.p.m.)  M  3  J l 2 - Jgem  C  <B  3  < §  2  = J  J23  = Jtrans  c  i  s  Coupling constant (c.p.s.)  Ref.  Ss  &  8.  Jgem  -6.4  -5.4  -5.1  2  10  17  -6.5  -5.2  -4.8  2  10  17  -6.9  -5.3  -5.8  -  8  17  -1.4  -0.4  0.1  1.2  b  Jcis  Jtrans  10.6  17.2  K130)  (104)  related to internal standard of hexamethyldisilozane  r e l a t e d t o water  <§i,  cases where t h e v i n y l  Ji3  (p.p.m.)  a s i m i l a r t r e n d t o t h a t found i n most o f the  group i s d i r e c t l y bonded t o a main group  such as c a r b o n , whereas t h e sequence o f t h e S i  and S  2  i-  s  element  inverted, i . e . ,  S e c . IV-D  130  the proton  " t r a n s " t o t h e t r a n s i t i o n metal  when t h e v i n y l  group i s d i r e c t l y  As f a r as c o u p l i n g c o n s t a n t s perfluorovinyl  for  and v i n y l >  jHH(trans)  > jHH(cis)  JFF(gem) >  fluorine  are concerned, both the  J F F ( c i s ) and  >  jHH(gem)  The s u b s t i t u e n t s t h u s  on t h e c o u p l i n g c o n s t a n t  Therefore,  metal.  show t h e t r e n d  JFF(trans)  o r no e f f e c t ,  unshielded  linked to the transition  (TABLES 25 and 27)  series  a l l their derivatives.  becomes more  i ti s reasonable  appear t o have  sequences..  t o assign the three quartets t o the  atoms o f ( V I I ) o n t h e b a s i s o f t h e c o u p l i n g c o n s t a n t  «*•  S(D; 93  r  cps.  little,  \  values.  \(3)  rA  T — r7  II  cps  0  The the  t w o +51 p.p.m. a n d +65 p.p.m. q u a r t e t s  two f l u o r i n e  tings  atoms " t r a n s " t o e a c h o t h e r b e c a u s e t h e i r  a r e 111.5 c . p . s . , t h e c h a r a c t e r i s t i c  second s p l i t t i n g s F ^  o f these  coupling constants  to  value  of the perfluorovinyl  1  2  first  split-  for JFF(trans).  According  group  t h e +51 p.p.m. q u a r t e t i s a s s i g n e d  F^ -'. i . e . , F^ -',  assigned t o  The  two r e s o n a n c e s due t o f u r t h e r i n t e r a c t i o n  a r e 93 a n d 4 0 . 7 c . p . s . , r e s p e c t i v e l y .  Jcis),  are readily  with  t o the trend i n  ( i . e . , J t r a n s > vJgem  t o the fluorine  atom  a n d t h e +65 p.p.m. q u a r t e t , t o t h e F ^  >  "geminal"  atom.  f 21 The  +7.4 p.p.m. r e s o n a n c e was s p l i t  by F  w i t h 92.5 c . p . s . and  f 3) further split  b y F^  obtained  f r o m F^  assigned  t o the F ^  J  J  w i t h 40.6 c . p . s . , i n good agreement w i t h t h e v a l u e s  a n d F^  1  atom.  f r o m t h e above a s s i g n m e n t s  .  Therefore  this  lowest  f i e l d q u a r t e t was  The s e q u e n c e o f t h e c h e m i c a l i s F3 > F  f o r m u l a t i o n o f V I I , as s u g g e s t e d  2  > F  1 ?  shift  obtained  further supporting the  by t h e i n f r a r e d s p e c t r o s c o p i c  study,  Sec.  i.e.,  IV-D  131  the p e r f l u o r o v i n y l  r a t h e r t h a n t o t h e Mn  group i s d i r e c t l y bonded  atom ( p a g e 1 1 1 ) .  t o the acyl  group  Sec.  V  132  V.  The  CONCLUSION  i m p o r t a n c e o f t h e p r e s e n t work l i e s  establishes  (a)  that simple  tin-tin  the  tin-manganese bonds,  and  o l e f i n s can be  Sn-Sn bond p r o b a b l y i n v o l v e s t i n - t i n b o n d and in  the  (b)  fact that i t  i n s e r t e d d i r e c t l y across  that  such a d d i t i o n w i t h  f r e e - r a d i c a l s y s t e m s , and  tin-manganese bond are  very  the  the  (c) that, the  r e a c t i v e but  behave  a d i f f e r e n t manner. The  formation  of  compounds  (CH ) SnCF (CF CF )nCF H 3  3  2  2  2  2  (CH ) SnCF (CF CF )mCF Sn(CH ) 3  from the the  3  2  2  2  r e s u l t o f two  principal  (CH ) SnCF CF ..  fission  of the  3  ( C H ) S n on 3  The  2  3  3  2  the  3  2  and  2)  (m  1,  and  2),  = 0,  3  2  a d d u c t and  t e t r a f l u o r o e t h y l e n e was  species  i s believed the  groups, leading  t o form by  attack  to the  the  3  3  fashion  initiation  also reacted  1,1-difluoroethylene,  as w i t h step  with  and  tetrafluoroethylene. were:  a  freehomolytic  initiation  step.  molecule  unit of  hexafluoropropene,  abstrac-  of  P r o p a g a t i o n can  b o t h c a s e s , g i v i n g p r o d u c t s c o n t a i n i n g more t h a n one  ethylene,  clearly  of the r a d i c a l  formation  another hexamethylditin  another r a d i c a l (CH ) Sn.  Hexamethylditin  and  then e i t h e r p a r t i c i p a t e s i n hydrogen  2  (CH ) SnCF CF H, or attacks 2  1,  t e t r a f l u o r o e t h y l e n e m o l e c u l e as  t i o n , presumably from CH 3  and  t i n - t i n bond, followed.by  3  1:1  3  (n = 0 ,  r e a c t i o n s both o f which i n v o l v e the  This  2  radical (CH ) SnCF CF  3  3  reaction of hexamethylditin  radical  the  i n the  giving occur C2F4.  trifluoro-  t r i f l u o r o c h l o r o e t h y l e n e i n the The  in  r a d i c a l s formed i n  the  same  Sec.  V  133  (CH ) SnCF CF(CF )  r a t h e r than  (CH ) SnCF(CF )CF ;  (GH ) SnCHFCF  2  r a t h e r than  (CH ) SnCF CHF;  (CH ) SnCH CF  2  r a t h e r than  (CH ) SnCF CH ;  3  3  3  2  3  3  3  3  2  (CH ) SnCF CClF 3  3  e.g., B r , C F , 3  (CH ) SnCF CHF 3  (such  3  3  3  radical  character  and  2  3  3  3  as h i g h  3  was  other  factor  3  of the  stability  the  i s more  2  initiation  3  3  to  of hexamethylditin  when  [e.g.,  In the present  case,  a degree o f n u c l e o p h i l i c  radical was  (54).  That the  f u r t h e r confirmed  (CH ) Sn 3  by  3  the  ethylene. with trifluorobromoethylene yielded instead (CH ) SnCF=CF 3  t o the ease o f f o r m a t i o n  3  was  2  o f Br r a d i c a l s  formed. i n the  irradiation. formation  of (CH ) SnCF CF Mn(CO) 3  3  2  2  5  from 2  readily  into  s e v e r a l new  products  favoured  by  t  (CH ) Sn-Mn(CO) 3  3  5  m o l e c u l e can a l s o  t h e tin-manganese bond under  c o n d i t i o n s , b u t t h e 1:1  be  of  i s further  The  3  and t e t r a f l u o r o e t h y l e n e i n d i c a t e s t h a t t h e C F t  may  those  (CH ) SnCHFCF  3  found t o have  as t h e ( C H ) S i  attributed  of  [e.g.,  2  no h y d r o g e n a b s t r a c t i o n p r o d u c t ,  inserted  2  and t h i s  and t h e n a t u r e  i s n u c l e o p h i l i c i n behaviour  The  3  2  (CH ) SnCF GF(CF )].  ( C H ) S n was  Reaction  course  3  and P H ,  radical  etc.],  2  resistance of hexamethylditin  This  (CH ) SnCClFGF .  r a d i c a l s have n e a r l y equal  (CH ) SnCF(CF )CF  radical  3  and  2  as n u c l e o p h i l i c o r e l e c t r o p h i l i c ) becomes i m p o r t a n t  intermediate  the  2  f o r t h e o r i e n t a t i o n o f a d d i t i o n s i s b e l i e v e d t o be  o f the intermediate  s t a b l e than  3  3  a-  SiCl ,  2  2  t o e l i m i n a t e t h e f o u r - c e n t r e d mechanism.  stability  the  3  3  • • •  responsible  radical  3  d i r e c t i o n s of attack are c o n s i s t e n t with  free-radicals, evidence  3  3  r a t h e r than'  2  These  3  be  free-radical  adducts undergoes secondary r e a c t i o n s t o g i v e  and t r i m e t h y l t i n  i t s high  crystal  fluoride, stability.  the formation  o f which  Sec.  V  134  ( C H 3 ) 3 S n - M n ( C 0 ) 5 r e a c t e d u n d e r t h e same c o n d i t i o n s w i t h ethylene  t o give only decomposition  trimethyltin  fluoride,  indicating  products  3  3  tin  (25).  This, together  the  reaction yields,  but  there  the fact  2  group a t t a c h e d  to polarization  that u l t r a v i o l e t  light  a four-centred  this  question.  With ethylene  to the  considerations  type  readily affects be.involved, o f mechanism.  o f (CH3)3Sn-Mn(C0)5 w i t h t r i f l u o r o c h l o r o e t h y l e n e  was.not c l e a v e d ,  In  direction  y e t t o exclude  information regarding  ethylene  the CF  i n d i c a t e s a f r e e - r a d i c a l m e c h a n i s m may  i s no e v i d e n c e  Reaction no  with  adduct, 2  t o b e t h e CFH g r o u p r a t h e r t h a n  atom, w h i c h i s t h e o p p o s i t e  1:1  The o r i e n t a t i o n o f C F = C F H i s  2  believed  (CFH=CF)Mn(CO)5 a n d  that the unstable  (CH ) SnCFHCF Mn(CO)5,might be formed.  trifluoro-  provided  t h e Sn-Mn b o n d  i n s t e a d o n e m o l e o f c a r b o n m o n o x i d e was r e p l a c e d b y  w h i c h i s b o n d e d t o t h e manganese atom t h r o u g h i r - s y s t e m . . (CH3)3Sn-Mn(C0)5,  t h e c a r b o n - t i n , t i n - m a n g a n e s e , and manganese-  carbonyl  bonds a r e t h e p o t e n t i a l p o i n t s o f a t t a c k .  cleavage  o f these  I t i s now c l e a r t h a t  b o n d s d e p e n d s v e r y much o n t h e n a t u r e  o f the reagents,  e.g.,  H G 1  '  C 1  CF =CF 2  Z2  m  cVsn S  n  _ p C  2  C  p _ 2  M  n  (insertion)  C-Sn-Mn-CO • • An  -  2  C  H  2  =  C  H  2  •  j adducts?!  —  Sn-VMn.  MnVcO  i m m e d i a t e q u e s t i o n w h i c h a r i s e s i s what f a c t o r s d e t e r m i n e t h e v a r i o u s  possibilities  o f r e a c t i o n s shown a b o v e . o f (CH3)3Sn-Mn(C0)5 w i t h  Reactions  trifluoroethylene,  and w i t h  t r i f l u o r o c h l o r o e t h y l e n e gave t h e monomeric f l u o r o v i n y l i c d e r i v a t i v e s (C F H)Mn(C0) 2  2  5  and ( C F C l ) M n ( C O ) , r e s p e c t i v e l y . 2  2  5  Why, t h e n ,  d i d not  Sec.  V  135  the r e a c t i o n w i t h  [(CF =CF)Mn(CO)4]  than a dimeric interesting  t e t r a f l u o r o e t h y l e n e g i v e monomeric 2  2  (CF -CF)Mn(C0) 5 r a t h e r 2  o r (CF =CF)C0Mn(C0)5?  t o n o t e t h a t S t o n e e t a l . (78) p r e p a r e d , t h e  transition-metal  d e r i v a t i v e s CF =CFRe(CO) 2  t r e a t i n g the carbonyl  anions  It is  2  5  trifluorovinyl  and C F = C F F e ( C O ) ( T T - C H ) , b y 2  i n tetrahydrofuran with  5  2  5  trifluorochloro-  ethylene.  They a l s o r e p o r t e d  ( 7 8 ) , h o w e v e r , t h a t t h e same r e a c t i o n w i t h  [Mn(CO). 5]  a f f o r d e d a h y d r o g e n a b s t r a c t i o n compound H C F C l C F M n ( C 0 ) 5 2  r a t h e r than CF =CFMn(CO)5. 2  The e x t e n s i o n and  of this  study  t o o t h e r m e t a l - m e t a l bonded  to a wider v a r i e t y of fluoro-olefins  above q u e s t i o n , polarity  should help  t o answer t h e  and f u r t h e r , t o d e t e r m i n e t h e r o l e p l a y e d  o f a mixed metal-metal  bond.  compounds  by t h e  Sec.  VI-A  136  VI.  A.  General  1.  Techniques.  Vacuum  line.  Reactants vacuum s y s t e m and  EXPERIMENTAL  and r e s u l t i n g p r o d u c t s (149).  were m a n i p u l a t e d  Purification of volatile  in a  standard  r e a c t a n t s (b.p.< 0 ° ) ,  rough s e p a r a t i o n o f r e a c t i o n mixtures were a c h i e v e d by p a s s i n g  vapour mixtures A list TABLE  through  of suitable  s e v e r a l c o l d t r a p s u n d e r 1-10 mm.  cold baths  Hg.  these  pressure.  used t o c o o l the t r a p s i s given i n  28.  2.  Reaction  Reactions  apparatus.  were c a r r i e d o u t i n s e a l e d P y r e x  100 m l . c a p a c i t y ) o r i n a s i l i c a C a r i u s t u b e s A 200-watt u l t r a v i o l e t  lamp ( w h i c h  used f o r i r r a d i a t i o n .  The u l t r a v i o l e t  w e r e m o u n t e d i n a drum  ( 2 5 cm.  r e a c t i o n t u b e was  also placed.  C a r i u s tubes  (about  (about  70 m l . c a p a c i t y ) .  a l s o a c t e d as a h e a t  source)  was  lamp, t o g e t h e r w i t h an a i r p i p e ,  I.D., 30 cm.  i n length)  The t e m p e r a t u r e  i n which the  o f the r e a c t i o n tube  c o u l d be c o n t r o l l e d by a d j u s t i n g t h e r a t e o f c o l d a i r f l o w over t h e reaction  3.  tube.  Analyses  o f the products.  Microanalyses  were c a r r i e d  L a b o r a t o r y , W o o d s i d e 7 7 , N.Y.,  out by the Schwarzkopf M i c r o a n a l y t i c a l U.S.A. ( f l u o r i n e  a n a l y s i s f o r t i n compounds)  TABLE  28  COLD B A T H S .  a  Bath  Temperature  Ice-water slush  0  Ice-NaCl  0 t o -20  solution slush  Carbon t e t r a c h l o r i d e s l u s h  -23  Liquid  -33 t o -45  ammonia  Chlorobenzene  slush  Chloroform s l u s h Dry  -45.2 -63.4  b  ice-acetone  Ethyl  -78.5  acetate slush  Toluene s l u s h  -83.6  b  -95  b  Carbon d i s u l f i d e  slush  Methylcyclohexane n-Pentane s l u s h  -111.6  b  slush  b  -126.3 -130  b  iso-Pentane s l u s h Liquid nitrogen  (°C)  b  -160.5 -196  D a t a were t a k e n from r e f . (149) . These baths a r e p r e p a r e d by s l o w l y nitrogen t o the s t i r r e d liquid.  adding  liquid  Sec. VI-A  1 3 8  and b y A l f r e d B e r n h a r d t , M i k r o a n a l y t i s c h e s L a b o r a t o r i u m i m Institut  f u r Kohlenforschung, Miilheim  f o r carbonylmanganese d e r i v a t i v e s ) . all  p r o d u c t s were p e r f o r m e d  ( R u h r ) , Germany ( f l u o r i n e C a r b o n and h y d r o g e n  i n the M i c r o a n a l y t i c a l  Department o f C h e m i s t r y , U n i v e r s i t y  of B r i t i s h  M o l e c u l a r w e i g h t s o f some i n v o l a t i l e benzene s o l u t i o n s Inc.,  by t h e R e g n a u l t  method.  analysis  analyses f o r  Laboratory of  Columbia.  compounds w e r e m e a s u r e d i n  on a V a p o r P r e s s u r e O s m o m e t e r , M o d e l 301A  C a l i f o r n i a , U.S.A.).  Max-Planck-  Molecular weights  (Mechrolab  o f gases were measured  Sec.  B.  139  VI~B~1  S p e c i a l Techniques,  Three main techniques for  the p u r i f i c a t i o n of the  1.  Preparative  A Beckman Gas  preparative Of  the  C h r o m a t o g r a p h , M o d e l GC-2A ( B e c k m a n I n s t r u m e n t s used f o r the  gas  The  volatile  standard  size  (1/4-inch  30%  column (packed w i t h  company ( C a t . No.  on C-22  45407)'.  These c e l l s  cooled  cell  easily.  volatile bath,  and  out  very  the modified  collecting  cell  1  shown i n F i g u r e  by m o i s t u r e  s u p p l i e d by  this  n e i t h e r be  used f o r  14a  cells was  (>-5°) s i n c e t h e  shown i n F i g u r e designed cell  A smaller c e l l  air-stable  component.  they  inlet  After collection,  tubing  14.  with a liquid  14b  be  were overcome  f o r a gaseous o r  shown i n F i g u r e  the  evaporates  can  t r a n s f e r r e d i n t o t h e vacuum s y s t e m w i t h o u t  or a i r .  less v o l a t i l e  sample c e l l s  These d i f f i c u l t i e s  sample which i s condensed i n the can be  also  4 2 / 6 0 mesh.  r e a c h e s room t e m p e r a t u r e , n o r  of the  i s blocked  phthalate  was  v o l a t i l e component b e c a u s e t h e p r o d u c t  component  The  dinonyl  feet i n length)  Firebrick,  can  used f o r a h i g h e r m e l t i n g p o i n t  using  20%  columns  f o u n d t o b e . t h e most  t u b i n g , 10  were e n c o u n t e r e d w i t h the  c o l l e c t i o n of a very  cell  and  separation of methyltin fluorocarbon derivatives.  dinonyl phthalate  Difficulties  the  analyses  tubing, 6 feet i n length)  p r e p a r a t i v e column ( 5 / 8 - i n c h  a s - s o o n as  liquid  Ine.,  purposes.  column f o r the  packed w i t h  by  and  c h r o m o s o r b - w , a c i d - w a s h e d , 4 2 / 6 0 mesh) was  effective  of this i n v e s t i g a t i o n  products.  available, a dinonyl phthalate on  course  chromatograph.  C a l i f o r n i a , U.S.A.) was for  were used i n the  was this  very  nitrogen contamination used f o r a tube can  be  Sec.  VI-B-2  140  centrifuged to c o l l e c t  the  t h e n be p i p e t t e d o u t w i t h  The  component i n t h e n a r r o w t i p a hypodermic  liquid  can  needle.  I _r  B-10  cone  4-mm stopcork  B-10  cone  B-5  cone  2-mm stopcork  i  o  u_ MS 1  1  v  <  Figure  2.  >  14.  12  Sample c o l l e c t i o n  l i q u i d mixtures  w h i c h c o u l d n o t be  distillation introduced  unit,  i n t o the  distillation  f o r t h e gas  chromatograph.  from the  reactions  f l u o r o - o l e f i n s were u s u a l l y o b t a i n e d  In order and  cells  weight products  and  product  mm  sublimation.  hexamethylditin  liquid  15  —  higher molecular  t i o n apparatus.  mm  mm  Vacuum d i s t i l l a t i o n and  The  10  collect as  separated  to separate  the  15, was  a special high used.  container A with a long-capillary  t e m p e r a t u r e i s c o n t r o l l e d by  viscous  conventional  components o f t h e  them e f f i c i e n t l y ,  shown i n F i g u r e  with  as  of  The  distilla-  viscous vacuum  mixture  is  s y r i n g e , and  a nichrome h e a t i n g  coil  the  Figure  15.  H i g h vacuum apparatus.  distillation  Figure  16.  Vacuum s u b l i m a t i o n for  viscous  apparatus  liquids.  Sec.  Vl-B-3  142  adjusted  through a power^stat.'  operates  both the  the  l a r g e and  c o n t a i n e r A.  The  During  small magnetic bars  component s e p a r a t e d  column condenses onto the c o o l e d B,  or  a p p a r a t u s was  used  highly viscous  liquid  Liquid-phase  The o l e f ins  stirrer  o i l bath  and  in  fractionation  is collected in  container  products  t o be  The  short range evaporation  separated  3  in volatility, the  and  components. because they  s u c c e s s f u l , and  column (shown i n F i g u r e  17a)  was  a stainless  steel  prevent  rod  of the of the  of the  infrared  and  C o l u m n s o f 50 g.  c o l u m n , and  traces  photometer.  ( F i g u r e 17b).  a water-jacket,  s e p a r a t i o n o f a b o u t 0.5 top  Since are  liquid.  and  5  these  solids  p a c k e d by  pouring  n-pentane w i t h  A f t e r the  x 2 cm.  of a mixture.  Fractions,(about  and  r o d was  by  used.  slurry  slow s t i r r i n g slowly The  of  removed,  column lower  was to  were found s a t i s f a c t o r y . f o r The  mixture  a scan of the  eluate, using  3 ml.)  pure  15  in a  was  pipetted  e l u t e d under a head o f n-pentane.  spectrum of the  components  i n the  k e p t a t room t e m p e r a t u r e o r  component w e r e d e t e c t e d  fluoro-  i n Figures  v i b r a t e d t o e n s u r e homogeneous p a c k i n g .  bubbling.  the  l i q u i d - p h a s e c h r o m a t o g r a p h y was  (100/2Q0 mesh) i n d i s t i l l e d  with  permits  cooling finger  3  a p p a r a t u s as d e s c r i b e d  of F l o r i s i l  fitted  the  from the r e a c t i o n between (CH ) Sn-Mn(CO)  similar  c o l u m n was  c o n d e n s e d on  sublimation  chromatograph.  g e n e r a l l y not  The  and  a c o n t a i n e r to r e c e i v e the dropping  state, a separation using 16 was  a m o d i f i c a t i o n o f a vacuum  a l w a y s c o n t a i n more t h a n two  are very  the  i n the  through the  f i n g e r and  products,  (Figure 16).  which i s attached  3.  the  a magnetic  C. F o r t h e more v i s c o u s  to  distillation,  an  The  carbonyl  Infracord  were t h e n c o l l e c t e d .  the  onto first  region  spectroThe  carbonyl  Sec.  143  VI-B-3  Stirring  rod  o 9 Packing  c  Temperature  level  O  e £ O if)  controlled water bath  c  o  o  o  O o  LO  20  mm  0 16  mm  (b)  Figure  region of the  17.  s p e c t r u m was  g r a p h i c b a n d s c o u l d be intensities in  Figure  against the 18.  Liquid-phase  then  obtained  chromatographic  f o r each f r a c t i o n ,  i d e n t i f i e d by p l o t t i n g  elution  volumes.  A typical  the  clolumn.  and  the  carbonyl  chromatoband  run i s i l l u s t r a t e d  Figure  18.  ZAX) b a n d i n t e n s i t i e s elution  volumes.  vs.  Sec.  C.  VI-C-1  145  Spectroscopic  1.  Techniques  Infrared spectra.  I n f r a r e d s p e c t r a were o b t a i n e d  i n Nujol mulls  as n e a t . f o r  liquids,  f o r gases.  The s p e c t r a o f r e a c t i o n p r o d u c t s ,  hexamethylditin  o r i n a 10-cm. g a s c e l l  (potassium  on a  compounds,  b r o m i d e windows)  (sodium c h l o r i d e o p t i c s ) .  on a  2. ;  M o d e l 137 P o t a s s i u m B r o m i d e  The s p e c t r a i n t h e on a  Spectrophotometer.  N.M.R. s p e c t r a .  The  *H N.M.R. s p e c t r a w e r e m e a s u r e d o n a V a r i a n A s s o c i a t e s A-60  spectrometer  using  carbon t e t r a c h l o r i d e ( f o r the  c a r b o n compounds) o r d e u t e r o c h l o r o f o r m derivatives) The  The  Perkin-Elmer  f a r i n f r a r e d r e g i o n o f a l l compounds m e n t i o n e d a b o v e w e r e r e c o r d e d Perkin-Elmer  from  Perkin-Elmer  (sodium c h l o r i d e o p t i c s ) .  s p e c t r a o f carbonylmanganese d e r i v a t i v e s were r e c o r d e d M o d e l 21 s p e c t r o p h o t o m e t e r  solid  w h i c h were o b t a i n e d  and f l u o r o - o l e f i n s , were r e c o r d e d  M o d e l 137 ( I n f r a c o r d ) s p e c t r o p h o t o m e t e r  f o r the  1  9  Associates  carbonylmanganese  as s o l v e n t , and t e t r a m e t h y l s i l a n e as an i n t e r n a l  F N.M.R. s p e c t r a w e r e r e c o r d e d V-4300 s p e c t r o m e t e r .  with respect capillary  ( f o r the  trimethyltin-fluoro-  a t 56.4 M c . / s e c . o n a V a r i a n  F l u o r i n e chemical  t o an e x t e r n a l t r i f l u o r o a c e t i c  tube.  reference.  s h i f t s were  acid reference  obtained  i na sealed  Sec.  D.  VI-D-1  1 4 6  Reactions of Hexamethylditin  1.  Preparation  of  Hexamethylditin Clark N.  and  Willis  J . , Code No.  s u p p l i e d by  hexamethylditin.  was  (23). 1996,  prepared according Methyl  Fisher Scientific (260  freshly d i s t i l l e d n-butyl  necked f l a s k gen  gas.  and  t h e n 1160  slowly  equipped with  The  i o d i d e was  r e a g e n t grade;:  Magnesium t u r n i n g s and  with Fluoro-olefins.  Co., g.,  (8.17  N..J., Cat. 10.7  ether  c h l o r i d e was  vigorous of the  stirring  r e a c t i o n , the  allowed  to stand  d i s t i l l a t i o n and  Allied  and  chloride  315  3.5  with  l i t e r s of  (1.21  a heating  During the  mole) o f above  with  p u r i f i e d by o f 202  g.  On  mantle,  (95%  on  were  the b a s i s  on  an  the  anhydrous  the  Tetramethyltin  redistillation  nitro-  reactions,  r e f l u x e d at.80° f o r . two stirring.  dried  three-  A f t e r f o u r h o u r s , when  a c o o l i n g b a t h were r e q u i r e d . s o l u t i o n was  was  previously flushed with  g.  Co.,  T-140.  into a 5-liter,  t o c a . . 50°  by.  Chemical  mole) o f f r e s h l y d i s t i l l e d methyl i o d i d e  overnight  w h i c h gave a y i e l d  completion  hours, was  separated  efficient  of stannic  then  column  chloride  taken),  71-72°. A mixture of tetramethyltin  dichloride  ( c a . 30g.)  f i t t e d with (89.5  g.,  90°.  was  (202  introduced  g.,  1.13  a d d i t i o n was  dimethyltin  a dropping funnel.  c h l o r i d e , were s l o w l y  reaction, caused the  A f t e r the  m o l e ) and  i n t o a 500-ml., t h r e e - n e c k e d  a c o n d e n s e r , a thermometer., and  0.344 m o l e ) s t a n n i c  heat of the ca.  were p l a c e d  added d r o p w i s e .  and  No.  - atom) and  added t h r o u g h a d r o p p i n g f u n n e l .  stannic  b.p.,  g.  a stirrer  r e a c t i o n m i x t u r e became d e e p b l a c k ,  by  s u p p l i e d by  :Anhydrous: s t a n n i c  c o n t e n t s w e r e warmed up g.  t o the method d e s c r i b e d  temperature of the complete, the  a d d e d and liquid  m i x t u r e was  40  the  flask ml. initial  to rise  to  heated  to  Sec.  VI-D-2  147  160-170° f o r f o u r h o u r s , f o l l o w e d by to  a f f o r d 165  g.  of t r i m e t h y l t i n  c h l o r i d e t a k e n ) , b.p., was  obtained  by  m e t h y l t i n , and A of  19  liquid g.  the  f o l l o w i n g the  A second crop  residue with  atmosphere o f dry n i t r o g e n .  m o l e ) was  liter  of l i q u i d  a d d e d as  r e s i d u e was  solid,  and  the  ammonia was  by  the  stannic  78°/2.2 cm.  The  c h r o m a t o g r a p h y t o be on s t a n d i n g  (a)  typical  and  (1.85  18.5  g.,  mmole), (which  ture of l i q u i d  0.75  evaporate.  under  c o l l e c t e d and (81  g.,  68%)  was  water  reduced shown  which  by  solidi-  follows.  g.,  18.3  by  solid)  (A).  The  light  dry  condensed  a t 25°  f o r 17  on. hours.  f r a c t i o n s , which condensed  involatile  -196°  with  a  i g n i t i o n o f T e f l o n i n vacuo  vacuum f r a c t i o n a t i o n ) ,  volatile  into  the tube, t e t r a f l u o r o e t h y l e n e  p l a c e d under u l t r a v i o l e t gave t h r e e  introduced  p r e v i o u s l y been f i l l e d  prepared  - 1 9 6 ° , r e s p e c t i v e l y , and and  mmole) was  evacuating  was  w a s - p u r i f i e d by  Vacuum f r a c t i o n a t i o n and  (6.1  f r e e z i n g and  s e a l e d t u b e was  -46°,  g.,  e x t r a c t washed w i t h  distilled  pure hexamethylditin  (70 m l . ) , w h i c h h a d  after  a t c a . 6 0 0 ° , and  f r a c t i o n was  r e a c t i o n s w e r e as  tube  nitrogen,  flask  with tetrafluoroethylene.  Hexamethylditin  Pyrex Carius  Hg.  to  ether,  a t room t e m p e r a t u r e .  Reactions  Two  tetra-  addition  three-necked  then allowed  e x t r a c t e d w i t h e t h e r , the e t h e r  pressure.  0°,  prepared  T r i m e t h y l t i n c h l o r i d e (150  d r i e d o v e r s o d i u m s u l f a t e and  The  the b a s i s of  of t r i m e t h y l t i n chloride  ammonia i n a 2 - l i t e r ,  several times,  2.  column  (0.826 g.-atoms) m e t a l l i c s o d i u m w e i g h e d u n d e r p e t r o l e u m  u n d e r an  fied  efficient  a p r o p o r t i o n a l amount o f  ammonia s o l u t i o n o f s o d i u m was  one  gas  an  above p r o c e d u r e .  i n t o ca.  The  on  c h l o r i d e , ( 6 0 . 2 % on  138-142°.  treating  distillation  residue  f r a c t i o n was  at  (an o r a n g e m i x -  tetrafluoro-  Sec.  VI-D-2  ethylene and  1  (7.95  molecular  mmole, 4 3 % r e c o v e r y ) , i d e n t i f i e d b y i t s i n f r a r e d w e i g h t measurement  t i o n was a c o l o u r l e s s l i q u i d gas  (0.54  components.  found:100).  spectrum  T h e -46° f r a c -  g.) w h i c h was s e p a r a t e d  The f i r s t  o f helium  component  tetrafluoroethyl)trimethyltin, c h a r a c t e r i z e d by i t s i n f r a r e d [calc.  f o r CsH^F^Sn:  4.1;  M.W.,  251].  as c a r r i e r  gas,  ( r e t e n t i o n time  f u r t h e r by  (CH ) SnCF CF H  a  3  3  2  a n d *H a n d  1  C, 22.6;  9  t o g i v e two major  3.4 min.) (0.19  2  was ( 1 , 1 , 2 , 2 -  g . , 0.72 m m o l e ) ,  F N.M.R. s p e c t r a a n d a n a l y s e s  H, 3 . 9 ; M.W.,  265;  found:  T h e s e c o n d c o m p o n e n t , 6.8 m i n .  shown b y i t s i n f r a r e d  C, 2 2 . 6 ;  r e t e n t i o n t i m e , was  a n d •'•H N.M.R. s p e c t r a t o b e ( 1 , 1 , 2 , 2 , 3 , 3 , 4 , 4 - o c t a -  fluorobutyl)trimethyltin, The  100;  8  c h r o m a t o g r a p h y o n a p r e p a r a t i v e d i n o n y l p h t h a l a t e c o l u m n , a t 140°  u n d e r 15 l b . / i n ? p r e s s u r e  H,  (calc.  4  (CH ) SnCF (CF ) CF H 3  0° f r a c t i o n was u n r e a c t e d  3  2  2  2  (0.31  2  hexamethylditin  (2.1  g . , 0.85 m m o l e ) .  g . , 6.4 m m o l e ) , i d e n -  tified spectroscopically. The the white  l i q u i d - s o l i d mixture solid  ( A ) was t r e a t e d w i t h  ( B ) , w h i c h was s e p a r a t e d  c e n t r i f u g i n g , was w a s h e d s e v e r a l t i m e s The  (35°/76 cm. H g ) .  Hg) g a v e h e x a m e t h y l d i t i n  portions o f ether.  tetrachloride  transferred into  (2.6  residue i n the  distillation  under reduced pressure  (78°/2.2  g . , 7.95 m m o l e ) , l e a v i n g a t r a c e o f apparatus.  The w h i t e  f r e e f r o m h e x a m e t h y l d i t i n , was e x t r a c t e d w i t h h o t  ride several times.  (a)  2-ml.  a n d t h e e t h e r was r e m o v e d b y  Further d i s t i l l a t i o n  an o r a n g e o i l - l i k e was  with  e t h e r , and  ether s o l u t i o n by  combined e t h e r s o l u t i o n and t h e w a s h i n g s were t h e n  a distillation-apparatus,  cm.  from the  10 m l .  T h e r e s i d u e was d e s i g n a t e d  e x t r a c t was e v a p o r a t e d  solid  carbon  as ( C ) .  (B), which  tetrachlo-  The c a r b o n  w i t h a flow o f dry n i t r o g e n gas  F o r b r e v i t y , compounds w i l l b e named c o r r e c t l y a t t h e i r f i r s t i n t r o d u c t i o n i n t h i s s e c t i o n , and w i l l t h e r e a f t e r be r e p r e s e n t e d by t h e i r c h e m i c a l formulas.  Sec.  VI-D-2  until  149  a white  cloudiness  0.3 g. o f w h i t e s o l i d .  a p p e a r e d , t h e n was c h i l l e d i n i c e t o a f f o r d The i n f r a r e d  s p e c t r u m o f t h i s w h i t e s o l i d shows _1  strong  a n d b r o a d C-F a b s o r p t i o n s  bands a s s o c i a t e d w i t h group  found: be  C  2 0  H  1 8  F  2 8  3  [calc:  2  o f adducts e q u i v a l e n t  Treatment o f the r e s i d u e s o l i d whose i n f r a r e d fluoroethylene crystalline [calc.  Elemental  Sn ,  analyses  are consistent with the  C, 2 3 . 4 ; H, 1.7; F, 5 1 . 8 ; S n , 2 3 . 1 ;  3  9  :  t o the formula  (C) w i t h h o t m e t h a n o l  (0.05 g . , ) .  f o r C H. FSn  This  white s o l i d could  On e v a p o r a t i o n  fluoride,  3  left  2  3  +  3  3  a trace o f a white o f polymerized  tetra-  o f t h e methanol e x t r a c t , white  (CH ) SnF, 3  thus  (CH ) Sn(C Fi ) ySn(CH ) .  s p e c t r u m was i d e n t i c a l t o t h a t  trimethyltin  fluorocarbon  3  C, 2 3 . 1 ; H, 1.6; F; 5 1 . 0 ; S n , 2 3 . 9 ] .  a mixture  i n addition t o the  ( C H ) S n group d i r e c t l y bonded t o a  (see Sec. IV-A-1).  formulation  a t .1211, 1150 cm.  3  ( 0 . 0 8 g . , 0.44 mmole)  C, 1 9 . 8 ; H, 4.9; f o u n d :  C, 1 9 . 7 ; H, 4 . 0 3 ) , was  obtained. (b) (2.2  Hexamethylditin  ( 7 . 0 g . , 21.4 mmole) a n d t e t r a f l u o r o e t h y l e n e  g . , 22 mmole) i n a s e a l e d  silica  tube  (70 m l . ) ,  75° u n d e r u l t r a v i o l e t i r r a d i a t i o n g a v e a ; r a t h e r ducts. and  The -196° f r a c t i o n  perfluoropropane,  graphy.  by i t s i n f r a r e d  The -126° f r a c t i o n was m a i n l y  2  2  complex mixture  o f pro-  spectrum  spectra  and gas chromato-  perfluoro-l,3-butadiene,  (M.W.) c a l c :  unambiguously by i t s i n f r a r e d characteristic  four hours a t  ( 0 . 1 0 mmole) c o n s i s t e d o f t e t r a f l u o r o e t h y l e n e  analyzed  C F = C F - C F = C F , - ( 0 . 1 5 mmole)  after  162; found:  159), i d e n t i f i e d  (102) w h i c h c o n s i s t s o f t h e  b a n d s at. 1780 ( s ) , 1330 ( v s ) , 1 1 9 0 ( s ) , 1140 ( s ) a n d 965, '  _1 ( s ) cm.  The -76° f r a c t i o n was t e t r a m e t h y l t i n , (CH )i+Sn ( 0 . 3 g . , 1.7 3  mmole), i d e n t i f i e d by i t s i n f r a r e d identification  o f t h e -76° f r a c t i o n  spectrum  (see Sec. IV-A-1).  The  i s f u r t h e r s u p p o r t e d by t h e gas  c h r o m a t o g r a p h i c a n a l y s i s on t h e d i n o n y l p h t h a l a t e  column  ( 6 f t . ) a t 140°  Sec.  VI-D-2  1  u n d e r 15 l b . / i n ? p r e s s u r e f r a c t i o n under such  o f helium  gas.  gave  (CH ) SnCF (CF ) CF H 3  3  2  identical,  2  2  2  2.6 g'. o f u n r e a c t e d distillation  under reduced  pressure  hexamethylditin  as d e s c r i b e d i n e x p e r i m e n t  (a)..  Evaporation  residue  (A) l e f t  ( 1 . 3 g . , 7.1 m m o l e ) .  There remained a white  through  this  Evaporation  solid  gave w h i t e  o f t h e carbon  ether solution, t o convert  of the ether l e f t  ferred into  a h i g h vacuum d i s t i l l a t i o n evacuated  crystalline tetrachloride  (B)< a n d o x y g e n  centrifuging.  ( F i g u r e 15 ) .  When t h e  cm. H g ) , t h e t e m p e r a t u r e A l l volatile  i n t o t h e vacuum s y s t e m .  Similarly,  tetrafluoro-  thevlast trace of  removed by  apparatus  (10  was c o n d e n s e d o n t o t h e c o o l e d f i n g e r t h e s i d e arms.  ( 0 . 3 5 g.)  a v i s c o u s b r o w n o i l w h i c h was t h e n t r a n s -  was g r a d u a l l y i n c r e a s e d t o 4 0 ° .  b e l o w 40° w e r e t a k e n  which  solid.  Evaporation  was c o m p l e t e l y  solid  to that of polymerized  h e x a m e t h y l d i t i n t o t h e o x i d e , W h i c h Was. t h e n  contents  a white  e t h e r e x t r a c t was c o m b i n e d w i t h , t h e o i l r e s i d u e  was b u b b l e d  apparatus  and a brown o i l o f  t e t r a c h l o r i d e , and then w i t h h o t methanol,  o f the methanol s o l u t i o n  a f f o r d e d o n l y a t r a c e o f brown The  (78°/2.2 cm. Hg) t o g i v e  (37% recovery)  whose i n f r a r e d s p e c t r u m was i d e n t i c a l  3  separated  residue (B).  was t r e a t e d i n t u r n w i t h c a r b o n  ethylene.  l i q u i d , w h i c h was  (A) b y c e n t r i f u g i n g , w e r e c o m b i n e d , a n d t h i s  Ether extraction of the s o l i d  3  Because t h e i r s p e c t r a were  t h e 0° f r a c t i o n a n d t h e i n v o l a t i l e  was d i s t i l l e d  (CH ) SnF  ( 0 . 1 2 g . , 0.45 mmole) a n d  2  ( 0 . 0 8 g . , 0.22 m m o l e ) .  2  from t h e s o l i d products mixture  3  with  Gas C h r o m a t o g r a p h i c s e p a r a t i o n o f  (CH ) SnCF CF H 3  0  o f t h e -76°  c o n d i t i o n s w a s . f o u n d t o b e 2.2 m i n . , i n a c c o r d  t h a t shown b y p u r e t e t r a m e t h y l t i n . t h e -46° f r a c t i o n  The r e t e n t i o n t i m e  5  parts  t h e 60-80° f r a c t i o n  evaporated  The 40-60° f r a c t i o n  (0°) a n d was c o l l e c t e d ( 0 . 5 g.) was  of the  ( 1 . 2 g.)  i n t o one o f collected  VI-D-2  Sec.  151  into  arm, and a t 8 0 ° about  another side  remained  i nt h e apparatus.  spectra which  consist  A l l three fractions  3  show c o m p l e x  and Sn-C. s t r e t c h i n g v i b r a t i o n s .  characterization o f the 60-80°  fraction  40-60°  the  bands i nt h e C - F a b s o r p t i o n r e g i o n a t 1 2 0 5 ( s , b ) ,  a colourless  l i q u i d ; , shows w i t h t h e b e s t  (s) , 1 0 4 0 ( s ) , a n d 1 0 2 0 ( s ) cm..." . 1  at -0.34,  peaks  triplet first  -0.40,  proton +39.45,  a n d - 0 . 4 2 p.p.m,. ( T M S ) , a s w e l l  at higher f i e l d  resonances. +37.8,  The  +36.0,  1  +34.6,  p.p.m.  - C F H group 2  1 4 0 ° , 1 5 . l b . / i n ? h e l i u m gas)  components i n t h e a p p r o x i m a t e 12,  21.5,  tive  as a t r i p l e t e d  = 5.1  c.p.s.).  ratio  The  o f the methyl at +53.3,  (TFA), w i t h  +45.8,  t h e peak a t  This  con-  ( s e e T A B L E S 12 a n d 1 3 J (dinonyl  phthalate  suggested, t h e presence o f 1 : 3 : 1 with  column,  o f three  r e t e n t i o n times o f  a n d 3 7 m i n . , b u t t h e : v e r y low: v o l a t i l i t i e s  separation.  consists o f  a J^p. v a l u e o f 5 2 c . p . s .  attempted, gas c h r o m a t o g r a p h i c , s e p a r a t i o n ft.,  F  are characteristic  and + 2 5 . 8  firms the presence o f a terminal  6  H  F s p e c t r u m , shows s e v e n p e a k s  9  + 5 3 . 3 p.p.m. b e i n g a d o u b l e t w i t h  An  l  1  resolution,  1 1 5 0 (s,b), 1 0 8 0  I t s H N.M.R. s p e c t r u m  a t - 6 . 0 8 p.p.m. ( J H F = 5 1 . . 8 c . p . s . , J  t h r e e peaks  No f u r t h e r  a n d t h e r e s i d u e was a c h i e v e d .  The  fraction,  infrared  to C-H stretching,C - F  o f bands a t t r i b u t a b l e  CH -Sn rocking,  stretching,  1 - 2 g. o f v i s c o u s r e s i d u e  prevented prepara-  The s e p a r a t i o n on a h i g h e r t e m p e r a t u r e  column  could  not be a c h i e v e d because  t h e r e was. a n e v i d e n c e o f d e c o m p o s i t i o n o n t h e  column.  data found f o r t h i s  H,  The a n a l y t i c a l  3 . 4 5 ; F, 3 0 . 0 ; M . W . , 4 4 1 . I t a p p e a r s  evidence that  are:  C, 22.0;  p r o b a b l e from t h e above  t h e o n e c o m p o n e n t was p o l y f l u o r o h e x y l t r i m e t h y l t i n ,  [(CH3)3SnCF (CF2)i CF H, 2  fraction  +  F, 4 9 . 2 ; M . W . , 4 6 5 ) ] , tetrafluoroethane,  for: C H  (calc.  2  9  1 0  F  1 2  Sn:  C, 23.2; H ,  2.16;  a n d t h e o t h e r two c o u l d b e 1 , 2 - b i s ( t r i m e t h y l t i n ) -  [(CH ) SnCF CF Sn(CH ) 3  3  2  2  3  3 (calc.  for C ^ Q F S n h  z  : C,22.5;  152  S e c . VM-D-3  H,  4.25;  F,  17.8; M.W.,  4 2 8 ) ] and  [(CH )3SnCF (CF2)2CF2Sn(CH )3 3  2  F, 2 8 . 8 ;  (calc.  3  M.W.,  527)].  1,4-bis(trimethyltin)octafluorobutane for C  1 0  H  1 8  F Sn : 8  C,  2  2 2 . 8 ; H,  3.42;  Species containing,longer fluorocarbon.chains  w o u l d h a v e a much h i g h e r f l u o r i n e , c o n t e n t and m o l e c u l a r w e i g h t , as as more p e a k s The  i n the  results  1 9  F  different  conditions  a r e summarized  The  r e a c t i o n was  olefin,  as  follows.  s u p p l i e d by C o l u m b i a O r g a n i c C h e m i c a l Co.,  contaminated  with  impurities  a n d was  C.,  was  a t -126°  was  taken f o r  reactions. Hexamethylditin  fluoropropene  (7.2 g.,  (3.84 g . ,  under u l t r a v i o l e t  25.6  22 mmole) was  allowed to react with  mmole). i n a s e a l e d s i l i c a  irradiation..  f r a c t i o n s which  condensed  A f t e r e i g h t , h o u u s t h e t u b e was  a t - 1 2 6 ° , -76°., - 4 6 ° ,  l e a v i n g a b l a c k i s h brown r e s i d u e  (liquid  i n f r a r e d s p e c t r u m o f t h e -126°  e x h i b i t e d bands, a t t r i b u t a b l e  and 0 ° ,  and. s o l i d )  o f a CF =C^  chromatography  2  group  gave  respectively,  t o u n r e a c t e d h e x a f l u o r o p r o p e n e and  (129) .  T h i s f r a c t i o n was  t o be 9 5 % p u r e h e x a f l u o r o p r o p e n e w i t h  A p p a r e n t l y a t r a c e o f a s e c o n d o l e f i n , was. p r o d u c e d . e v i d e n c e t o g e t h e r w i t h t h e M.W.  four  i n the r e a c t i o n  cm.  1  70°  attached  f r a c t i o n . ( 1 1 . 9 mmole, f o u n d M.W.,  a d d i t i o n a l weak b a n d s i n c l u d i n g , a C.=C. b a n d a t 1751 cteristic  hexa-  Carius tube at  and o p e n e d i n t o t h e vacuum s y s t e m a n d vacuum f r a c t i o n a t i o n  The  S.  therefore fractionated i n  t h e vacuum s y s t e m and t h e f r a c t i o n w h i c h c o n d e n s e d the  i n TABLE 1 .  Reactions with hexafluoropropene.  A typical  usually  N.M.R. s p e c t r u m t h a n w e r e o b t a i n e d .  o f t h e a b o v e two. e x p e r i m e n t s t o g e t h e r w i t h , t h o s e .of two  o t h e r experiments under  3.  well  which  tube. 147)  several  i s chara-  a l s o shown b y  gas  a second  component.  From t h e  infrared  measurement t h e second o l e f i n  could  be  Sec.  VI-D-3  153  1,1,3,3,3-pentafluoroprop-l-ene, The  -76° f r a c t i o n was i n j e c t e d  (80°).  The f i r s t  CF =CHCF 2  (calc.  3  f o r C H F : M.' W., 3  i n t o a d i n o n y l p h t h a l a t e p r e p a r a t i v e column  component was  1,1,1,2,3,3,3-heptafluoropropane,  CF CFHCF (0.1 mmole),characterized by i t s i n f r a r e d spectrum 3  3  M.W. m e a s u r e m e n t last its  (calc.  f o r C F H: 3  7  1,70;  found:  c o m p o n e n t was, t e t r a m e t h y l t i n . ( 0 . 7 5 i n f r a r e d spectrum.  132).  5  (102) a n d  1 7 6 ) . The second  g . , 4.2  and.  mmole), i d e n t i f i e d by  1  T h e -46° f r a c t i o n was a m i x t u r e o f t w o m a j o r  c o m p o n e n t s a n d i t s s e p a r a t i o n , . o n a. p r e p a r a t i v e d i n o n y l p h t h a l a t e c o l u m n (80°)  gave h e x a m e t h y l d i t i n a n d . ( 1 , 1 , 2 , 3 , 3 > 3 - h e x a f l u o r o p r o p y l ) t r i m e t h y l t i n ,  ( C H ) S n C F C F . ( C F ) H , (1.2 g . , 3.8 mmole) . . [ c a l c . f o r . C H 3  H,  3  2  3  6  1 0  3.2; M.W., .315.; .found:.. C, .22.7; H, 3.0 M.W , 3 0 5 ] . ;  spectrum  F Sn: 6  C, 2 2 . 9 ;  The i n f r a r e d  r  s h o w e d t h a t t h e 0° f r a c t i o n was. u n r e a c t e d h e x a m e t h y l d i t i n  ( 0 . 7 g . ) . 10 m l .  o f carbon  t e t r a c h l o r i d e , was.added t o t h e b l a c k i s h  brown  r e s i d u e , a n d o x y g e n g a s was b u b b l e d t h r o u g h , t h e r e s u l t i n g , s o l u t i o n f o r 30 m i n u t e s mixture and  when a m i l k y w h i t e s u s p e n s i o n f o r m e d .  g a v e 3.4 g. o f w h i t e  (CH ) SnF. 3  s o l i d , which  The s u p e r n a t a n t  3  liquid,  C e n t r i f u g a t i o n o f the  was a m i x t u r e o f  evaporated  [(CH ) Sn] 0 3  3  2  under a flow o f dry  -3  air  t o a minimum v o l u m e , was d i s t i l l e d , u n d e r 10  vacuum d i s t i l l a t i o n  apparatus..  tin)hexafluoropropane, (calc. C,  for C H 9  22.3;  of this  1 8  F Sh : 6  2  T h e 40-80° f r a c t i o n w a s  (CH ) SnCE CF(CF )Sn(CH ) 3  3  C, 2 2 . 6 ;  2  3  f r a c t i o n r e v e a l s the presence was p o s s i b l y  h e x a m e t h y l d i t i n i n carbon  tetrachloride  which  was p o s s i b l y  Although  l,2-bis(trimethy-  (1.2 g . , 2.5 mmole)  3 >  the  o f h i g h e r M.W.  me.thyl.tin . c h l . o r i d e , w h i c h  to: a f f e c t  3  H, 3.8; F , 2 3 . 8 5 ; M.W.,  H, 3 . 5 ; F, 2 3 . 8 7 ; M. W., 4 8 6 ) .  low i n q u a n t i t i e s  cm.Hg i n the high  1  478;  found  H N.M.R.  adducts  spectrum  and t r i -  formed d u r i n g the o x i d a t i o n o f solution  thea n a l y t i c a l  a m i x t u r e o f h i g h e r M.W.  data.  (49,150), t h e y w e r e t o o A b l a c k gum ( c a . . l g . )  adducts  and p o l y m e r i z e d  Sec.  154  VI-D-4  dimethyltin,  remained i n the d i s t i l l a t i o n  apparatus,  a n d was n o t s t u d i e d  further. The summary  o f t h e above r e s u l t s  experiments under d i f f e r e n t  4.  Reactions  A steel  with  together with those  conditions are presented  o f three  other,  i n TABLE 2.  trifluoroethylene.  cylinder containing trifluoroethylene  (Columbia  Organic  C h e m i c a l C o . , S. C.) was a t t a c h e d , t o : t h e v a c u u m s y s t e m a n d t h e o l e f i n was f r a c t i o n a t e d u n d e r vacuum, t h r o u g h The -150°  fraction,  t h e - 1 2 6 ° , - 1 5 0 ° , a n d -196°  traps.  shown b y gas c h r o m a t o g r a p h i c a n a l y s i s t o b e p u r e  t r i f l u o r o e t h y l e n e , was u s e d . . f o r t h e r e a c t i o n s . . (a) (1.96  Hexamethylditin  (.7.-85 g . , 24.0 mmole) a n d t r i f l u o r o e t h y l e n e  g . , 24.0 mmole) i n a s i l i c a t u b e w e r e i r r a d i a t e d  hours.  a t 85° f o r f o u r  Vacuum, f r a c t i o n a t i o n . , f o l l o w e d b y g a s c h r o m a t o g r a p h i c a n d  spectroscopic examinations fluoroethylene  showed, t h a t t h e . v o l a t i l e p a r t c o n t a i n e d  , and a  (0.15  c o u l d n o t be  it  g.) w h i c h c o n d e n s e d a t - 4 6 T h e  -46°  fraction  gas c h r o m a t o g r a p h i c a l l y . b e c a u s e , o f . d e c o m p o s i t i o n  may b e i d e n t i f i e d  bands f o r t h e ( Q ^ ^ S n group o f t r i m e t h y l t i n f o r hexamethylditin  (see Sec. IV-A-1,3).  fraction puri-  on t h e c o l u m n , b u t  on t h e . b a s i s , o f t h e f o l l o w i n g e v i d e n c e .  i n f r a r e d s p e c t r u m shows s t r o n g C-F a b s o r p t i o n s  and  tri-  ( 0 . 4 3 g«, 2 2 % r e c o v e r y ) , a t r a c e o f f l u o r o c a r b o n g a s ,  t e t r a m e t h y l t i n . (0.35. g . , 1.95 m m o l e ) , h e x a m e t h y l d i t i n  fied  infrared  Its  i n a d d i t i o n to the  fluorocarbon  expected  derivatives,  The. *H N.M.R. s p e c t r u m  s h o w s , i n a d d i t i o n t o t h r e e m e t h y l p e a k s a t -0.2  ( h e x a m e t h y l d i t i n ) , -0.25,  and  i n which seven  (a)  -0.30 p.p.m., a c o m p l e x a b s o r p t i o n  (34 l i n e s  lines  T h i s f r a c t i o n , c o n d e n s e d i n t h e 0° t r a p , was o n l y a p a r t o f t h e t o t a l recovery.  S e c . VI-D-4  result  155  f r o m o v e r l a p p i n g ) c e n t r e d a t -5.0 p.p.m. ( T M S ) .  appears  essentially  low f i e l d ,  a s a d o u b l e t ( J = 3.4 c . p . s . ) .  taken i n t o account w i t h t h e v o l a t i l i t y ,  This  signal  S u c h a r e s o n a n c e , at. . suggested that  this  f r a c t i o n may c o n t a i n s p e c i e s s u c h , as, ( 1 , 2 . , 2 - t r i f l u o r o e t h y l ) t r i m e t h y l t i n , i.e., i.e.  ( C H ) S n C F H C F H , and 3  3  (1,2,2,3,4,4-hexafluorobutyl)trimethyltin,  2  ( C H ) S n C F H C F C F H C F H , (and h e x a m e t h y l d i t i n . i n d i c a t e d b y t h e -0.2 3  3  2  2  p.p.m. p e a k ) a n d n o t . t h e . s p e c i e s , c o n t a i n i n g .a l o n g e r f l u o r o c a r b o n c h a i n . o r t h e b i s ( t r i m e t h y l t i n ) , adducts..  I t . s h o u l d be n o t e d t h a t t h e above two  s t r u c t u r e s h a v e t h e a s y m m e t r i c , c a r b o n .atom. ( o r . a t o m s ) , r e s u l t i n g quivalent  environment  i n none-  of. .the: f l u o r i n e , a t o m ( s ) o f t h e - C F - g r o u p ( s ) . 2  T h e r e f o r e t h e s e t w o s t r u c t u r e s , a r e e x p e c t e d .to show a d o u b l e t e d d o u b l e t due t o t h e v i c i n a l . H-F s p l i t t i n g s .  The a l t e r n a t i v e s t r u c t u r e s o f t h e  above t w o , s u c h  (CH ), SnCF CFHCF CFH , e t c . ,  as. ( C H ) S n C F C F H , 3  3  2  2  3  s h o u l d show t h e v i c i n a l H-F s p l i t t i n g s ;  absent  2  2  as t r i p l e t s ,  2  which were c o m p l e t e l y  from the. observed, spectrum.  Part tile  3  o f t h e u n r e a c t e d h e x a m e t h y l d i t i n was r e c o v e r e d f r o m t h e i n v o l a -  part by d i s t i l l a t i o n  a t 76°/2 cm. Hg. ( t o t a l  and t h e r e s i d u e was e x t r a c t e d w i t h  r e c o v e r y , 2.7 g . , 3 5 % ) ,  carbon t e t r a c h l o r i d e .  b u b b l e d t h r o u g h the. r e s u l t i n g s o l u t i o n t o remove t h e l a s t h e x a m e t h y l d i t i n as t r i m e t h y l t i n  .Oxygen was trace of  oxide,, a n d a f t e r e v a p o r a t i o n o f t h e s o l -  v e n t u n d e r a s t r e a m o f d r y a i r , , t h e r e m a i n i n g o i l was s e p a r a t e d b y —3 vacuum d i s t i l l a t i o n ranges  (10. cm. Hg). i n t o , f r a c t i o n s w h i c h  45-60°., and. 60-90°, r e s p e c t i v e l y .  fractions (1.1 g . ) .  gave i d e n t i c a l  In. t h i s  distilled  experiment,  both  i n f r a r e d , s p e c t r a , and hence were combined  T h e H. >LM.R~ s p e c t r u m , shows t w o m e t h y l r e s o n a n c e s 1  i n the  a t -0.30  a n d - 0 . 3 3 p.p.m.. (TMS) ( a n d a weak p e a k a t -0.2 p.p.m. due t o t h e methyl p r o t o n s o f h e x a m e t h y l d i t i n ) i n a d d i t i o n t o an u n r e s o l v e d band  Sec. VI-D-4  centred  156  a t -5.0 p.p.m.  combined  fractions  This, with  analytical  c o n t a i n more t h a n 9 5 % o f 1 , 4 - b i s ( t r i m e t h y l t i n ) - 1 , 1 , 2 , 1 2  3,3,4-hexafluorobutane, C  1 0  H  F Sn :  2 0  6  477).  3  4  (CH )3SnCF CFHCF CFHSn(CH3) 3  2  C, 2 4 . 4 ; H, 4 . 1 ; M.W.,  2  data, suggested t h a t the  I ts h o u l d be noted t h a t  2  (calc. f o r  3  4 9 0 ; f o u n d : C. 2 4 . 7 ; H, 3.5;M.W.,  i n t h e above f o r m u l a t i o n t h e r e a r e t w o  t y p e s o f m e t h y l g r o u p s , a c c o u n t i n g f o r t h e two m e t h y l p e a k s .  The  1  9  F  N.M.R. s p e c t r u m shows r e s o n a n c e s , c e n t r e d a t +163, +138, +52, +46, + 4 1 , + 3 6 , +31, a n d +25 p.p.m. ;(TFA)..  Since the unshielding o f a fluorine  atom i s a f f e c t e d b y t h e amount o f c h a r g e w h i c h draw f r o m a c a r b o n a t o m assigned t o F ^ +25  C^ 2  ofF and  1  (b) olefin  2  result  The peaks  may b e  i n t h e +52 t o  from t h e o v e r l a p p i n g o f t h e two  ^ and F ^ a t o m s , which  i nturn a r i s e  2  from t h e asymmetry  atoms.  H e x a m e t h y l d i t i n ( 2 1 . 0 g . , 6 4 . 2 mmole, 4 0 % i n e x c e s s ) a n d t h e  ( 3 . 8 g . , 46 mmole) i n a s i l i c a t u b e w e r e i r r a d i a t e d  eight hours.  The d i s t r i b u t i o n  a t 95° f o r  and n a t u r e o f t h e p r o d u c t s o b t a i n e d were -3  much t h e same a s i n . (a) e x c e p t t h a t v a c u u m d i s t i l l a t i o n the  atom i s a b l e t o  t h e +163 a n d +138 p.p.m. p e a k s  a n d F^). atoms r e s p e c t i v e l y .  p.p.m. r e g i o n p o s s i b l y  quartets of  (104)>  fluorine  ( 1 0 cm. Hg) o f  i n v o l a t i l e . o i l , f o l l o w e d b y s p e c t r o s c o p i c , e x a m i n a t i o n , showed t h e  p r e s e n c e o f s e v e r a l : components.  T h e 45-60° a n d 60-90° f r a c t i o n s  gave  identical  infrared  and:N.;M.R... s p e c t r a : w i t h . ' t h b s e o f t h e c o r r e s p o n d i n g  fractions  i n . (a)..  The. f r a c t i o n . w h i c h : d i s t i l l e d  addition  t o the. peaks  e x p e c t e d from, e x p e r i m e n t  shows, i n t h e p r o t o n : s p e c t r u m t w o q u a r t e t s = 30 c . p . s . , J H F ( v i c i n a l . ) the  internal  ( a ) f o r t h e 1:2 a d d u c t ,  a t - 6 . 5 p.p.m. [ J L J P ( g e m i n a l )  - 10 a n d 8 c . p . s . ] , w h i c h m i g h t b e a s s i g n e d t o  p r o t o n o f t h e 1:1: a d d u c t ,  consistent with  a t 35-45°, h o w e v e r , i n  t h e appearance  i nthe  (CH ) SnCFHCF Sn(CH ) . 3  1  9  3  2  3  3  This. is...  F s p e c t r u m o f t h r e e new p e a k s  Sec. VI-D-5  157  a t +160,  +'51,  assigned  to the f l u o r i n e  m i g h t be  components o f t h e q u a r t e t  the  and +47  p.p.m., o f w h i c h t h e h i g h e r a t o m o f t h e -CFH-  21.1  Hexamethylditin  (7.0 g . , 21.4  a n d o t h e r two  from the f l u o r i n e  peaks  atoms o f  mmole) a n d t h e o l e f i n  mmole) i n a s e a l e d t u b e w e r e a l l o w e d  overnight. metallic  The  l i q u i d was  (6.4 g., 92%  Reactions  The  o l e f i n , was  (a)  0.55  (a) and  (b), together  was  employed  and  with other i n TABLE  two 4.  fraction  f o r the reactions.  H e x a m e t h y l d i t i n . : ( 1 5 . 4 g.., 46.5-mmole) a n d mmole.):: w e r e - s e a l e d i n .a s i l i c a  15 g . ) . a n d C-F  The  1,1-difluoroethylene  t u b e w h i c h was  a t 75° . f o r : s i x ; hours..  the irradiation.-'  of original  mmole), a f r a c t i o n  then  placed  A trace of metallic  Vacuum f r a c t i o n a t i o n  gave  30%  olefin,...(.13-5 mmole) , . . t e t r a m e t h y l t i n ( 0 . 6 g.,  ( 0 . 8 g.) -46°  which  condensed  a t -46°,  and a brown  f r a c t i o n . , , e x h i b i t i n g . i n f r a r e d b a n d s due  s t r e t c h i n g v i b r a t i o n s . , and..the. CH^-Sn r o c k i n g  i n j e c t e d i n t o the preparative, dinonyl. phthalate  first  mmoles),  p u r i f i e d , i n t h e vacuum s y s t e m a n d t h e  appeared d u r i n g  Sn-C,  gave t r i f l u o r o e t h y l e n e  c o n d i t i o n s , a r e summarized  under u l t r a v i o l e t : i r r a d i a t i o n  (ca.  only  e x p e r i m e n t s w e r e p e r f o r m e d as f o l l o w s :  g. , 44.4  recovery  100°  1,1-difluoroethylene.  c o n d e n s e d ' a t . -196° Two  (2.84  with  contained  g.,  recovery).  results, of experiments  5.  (1.7  i n the dark at  c o l o u r l e s s and  Vacuum f r a c t i o n a t i o n  experiments under d i f f e r e n t  which  to stand  r e c o v e r y ) , t e t r a m e t h y l t i n ( 0 . 1 g.,  hexamethylditin The  resulting  t i n (0.2 g . ) .  ( 1 . 6 g., 9 4 %  was  arising  p e a k m i g h t : be.  -CF'F"-group. (c)  tin  group  field  component a p p e a r e d  a t 5.5  min.,  column  3.4 residue  to  C-H,  vibration, a t 150°.  The.  and e x h i b i t s a b s o r p t i o n bands a t  Sec.  VI-D-5  1670  ( s ) , 1650 ( s ) , 1171 ( v s ) , 1 1 5 5 ( ) , 1146 ( v s ) , 1138 ( s ) , 9 3 5 ( s , b ) ,  158  s  _1 865  ( s ) , a n d 715 (m) cm.  f l u o r o e t h y l e n e , . CFH=CH second  2  , a c h a r a c t e r i s t i c spectrum (calc. ,for,C H F: 2  M.W.,  3  (151)  46; found:  58.2).  The  c o m p o n e n t , a p p e a r i n g a t 11.0 min...,. shows i n f r a r e d b a n d s a t 3030  (m) (C-H s t r . ) ,  1690 ( v s ) (C=C str,.,) ,. 1405 ( s ) , 13.75 ( s ) , 1310 ( s ) , 1260  (m) 1210 ( v s ) , 1170 ( s ) , 1120 ( v s ) , 1085 ( v v s ) , 9 5 2 ( s , b ) , cm. * . (calc.  A suggested formulation f o r C^HsF^:  appears which  o f mono-,  that  M.W.,  for this  component i s C F H - C H - C F = C H 2  110; found: ; 108.5).  t h e s e two. c o m p o n e n t s . w e r e d e r i v e d  decomposed on t h e column^  a n d 870 ( v s , b )  The. t h i r d  I f this  2  2  i s the case, i t  from .(CH3)3Sn(CH CF ) H 2  and l a s t  2  c o m p o n e n t was  n  identi-  f i e d b y i t s r e t e n t i o n , t i m e as h e x a m e t h y l d i t i n , . C e n t r i f u g a t i o n o f t h e . i n v o l a t i l e p a r t g a v e 1.8 g. whose i n f r a r e d of(CH3) SnF. 3  distillation  s p e c t r u m , and. a n a l y t i c a l , d a t a w e r e c o n s i s t e n t w i t h The . s u p e r n a t a n t . l i q u i d was p u t i n t o  fractionating  column..  f u r t h e r s e p a r a t e d b y v a c u u m d i s t i l l a t i o n . . . (10.  (2.5 g.: a n a l y s e s , f o u n d :  those  packed,  H e x a m e t h y l d i t i n (8.2 g., 53%  r e c o v e r y ) , l e a v i n g , a brown, o i l r e s i d u e ("Dm") .  ( 0 . 6 g.) w h i c h , d i s t i l l e d  solid  a reduced pressure  a p p a r a t u s w h i c h was. a s s o c i a t e d . w i t h a g l a s s - b e a d  high efficiency  fraction,  o f a white  The r e s i d u e "Dm" cm. Hg) i n t o  was  a fraction  a t 30-60° and. a b l a c k i s h b r o w n gum a s r e s i d u e C, 3 0 . 1 ; H, 4,4; M.W.,  7 4 0 ) . The 30-60°  a. p a l e : y e l l o w l i q u i d . , , shows i n t h e . i n f r a r e d  spectrum  several  s t r o n g a n d v e r y b r o a d , b a n d s i n t h e C-F. a b s o r p t i o n r e g i o n i n a d d i t i o n t o the  c h a r a c t e r i s t i c bands, o f t h e .(CH.^/jSn. group, o f , t r i m e t h y l t i n - f l u o r o -  c a r b o n compounds:.  I t s .^H N.M.R.. s p e c t r u m : c o n s i s t s  m u l t i p l e peaks, i n t h e m e t h y l at  resonance  -1.6,-. - 2 . .7:, a n d H6.3: p.p.m.  respectively.  (TMS),  o f , i n addition tothe  region,, three, a b s o r p t i o n s c e n t r e d with  The -1.6 p.p.m., r e s o n a n c e  an i n t e n s i t y appears  ratio  as a b r o a d  o f 5:2:1, triplet,  Sec.  VI-D-5  apparently The  -2.7  159  due  to superposition of several nearly equivalent  p.p.m. r e s o n a n c e i s a m u l t i p l e t , w h i l e  tion is a tripleted  triplet  associated with  terminal  these three  the  resonance, (see  ( J = 55  (I)  -6.3  c . p . s . , J ' = 4.8  - C F H group..  B a s e d on  2  experiment b ) ,  c o n s i d e r a t i o n , t h i s , f r a c t i o n may  the  triplets.  p.p.m. a b s o r p -  c.p.s.), the  obviously  assignment  intensity ratio,  and  of  volatility  contain:  (2,2,4,4-tetrafluorobutyl)trimethyltin, (CH ) SnCH CF CH CF H; 3  (II)  3  2  2  2  2  1,2-bis(trimethyltin)-2,2-difluoroethane, (CH ) SnCH CF Sn(CH ) ; 3  (III)  3  2  2  3  3  1,4-bis(trimethyltin)-2,2,4,4-tetrafluorobutane, (CH ) S n C H C F C H C F S n ( C H . ) . 3  3  2  This  suggestion  293;  f o r ( I I ) , 392;  It should  its  to  noted t h a t the  study  olefin  Hg)  measurement  higher  intensity  [calc.  g:.., 62..2  (2..84 g.,  44.4  for (I),  30-60° f r a c t i o n : ratio  of the  (0.81  g..,  32%  ( I I ) because  i n e x c e s s ) was  mmole) u n d e r u l t r a v i o l e t  Vacuum f r a c t i o n a t i o n ,  f o l l o w e d by  recovery) , CF. HCH CF=CH  g.,.3.4 m m o l e ) , and -46°  same m a n n e r as  fraction  2  the. components  i n experiment  i n ( a ) , reduced pressure  gave h e x a m e t h y l d i t i n  (12.5  g.,  47%  p.p.m.  absorption.  mmole, 40%  2  418].  -1.6  i n d i c a t e d the presence i n the v o l a t i l e p a r t  s i m i l a r t o those of the the  (20.4  f o r seven hours.  t e t r a m e t h y l t i n . (0.6  cm.  t h e M.W.  2  spectroscopic  By  3  -CH -. g r o u p i s . r e s p o n s i b l e , f o r t h i s  Hexamethylditin  a t 92°  original  3  f o r ( I I I ) , . 4 5 8 ; found f o r the  1,1-difluoroethylene  tion  2  i s . an i n d i c a t i o n , o f t h e p r e d o m i n a n t p r e s e n c e o f  internal (b)  2  i s consistent with  a l s o be  absorption  2  (0.42  2  (-46°  added  irradiainfrared of  mmole), fraction)  (a). d i s t i l l a t i o n (76°/2  recovery),  and  then high  .  _3  vacuum d i s t i l l a t i o n  (10  cm.  Hg)  afforded  a f r a c t i o n which d i s t i l l e d  at  Sec.  VI-D-5  160  30-60° ( 1 . 6 6 g.) a n d l e f t " a b l a c k i s h white s o l i d indicated  (3.7 g . ) .  A  ( 4 . 2 g . ) , w h i c h was s e p a r a t e d p r i o r to, t h e d i s t i l l a t i o n , was  spectroscopically  fluorocarbon  b r o w n gum a s r e s i d u e  t o contain  c h i e f l y (CH3)3SnF as w e l l as  polymers.  The 30-60° f r a c t i o n shows t h e i n f r a r e d , b a n d s o b s e r v e d f o r t h e c o r r e s p o n d i n g f r a c t i o n i n (a) w i t h absorption region, (s),  consist  resolution  i n t h e C-F  w h i c h a r e a t .1380 ( m ) , 1 1 8 8 ( v s , b ) ,  9 9 6 ( s ) , .950 ( s , b ) ,  spectra  a better  a n d 876 ( m , b ) . c m . . _ 1  o f the following  The H l  1120 ( s ) , 1033  and  1  9  F N.M.R.  resonances:  *H N.M.R. s p e c t r u m CH3 Chemical  resonance  region  shift  (p.p.m., TMS)  -0.3  -0.32  -0.34  Intensity  (1.0)  (1-5)  (1-5)  ratio  Lower f i e l d Chemical s h i f t (p.p.m.) Coupling constant (c.p.s.)  Intensity  1 9  F  ratio  -1.62  triplet 25.3  region  -1.65  triplet 23.5  -2.7  multiplet 15.2 6.1 4.0  (1.5)  (1.0)  (1.0)  +11.5  +16.2  +34.6  N.M.R. s p e c t r u m  Chemical s h i f t (p.p.m., T F A ) Coupling constant (c.p.s.)  Intensity  ratio  multiplet  (1.0)  triplet 25.0  (1.5)  tripleted doublet 54.5 12.0 (1.0)  -6.3  tripleted triplet; 55.1 4.5 (0.5)  Sec.  161  VI-D-6  I t i s e v i d e n t t h a t o n e o f t h e c o m p o n e n t s must h a v e a t e r m i n a l . T C F H  group  2  which i s r e s p o n s i b l e (  1 9  F  spectrum)  f o r t h e -6.3 p.p.m. ( H s p e c t r u m )  a n d +34.6 p.p.m.  X  resonances.  This, with  ances w i t h unequal i n t e n s i t i e s  the fact that only three reson-  were o b s e r v e d i n t h e  1 9  F spectrum,  sug-  gested the presence o f  4.  1 2 3 (I.),  (CH ) SnCH CF CH CF H; 3  3  2  2  2  (II),  2  W i t h t h e s e f o r m u l a t i o n s t h e N.M.R  (CH ) SnCH CF Sn(CH ) . 3  3  2  X  a n d +16.2 p.p.m. (  1 9  F)  3  3  s p e c t r a can be a s s i g n e d on t h e b a s i s  o f t h e c o u p l i n g c o n s t a n t s and t h e i n t e n s i t y ( H)  2  ratios.  The -1.62-p.p.m.  r e s o n a n c e s , w h i c h may a r i s e f r o m t h e same  s p e c i e s , were a s s i g n e d t o t h e i n t e r n a l p r o t o n s . a n d f l u o r i n e (II),  respectively.  atoms o f  The -1.65 p.p.m. (*H) m i g h t b e a s s i g n e d t o t h e H  atoms o f ( I ) b e c a u s e o f t h e s i m i l a r e n v i r o n m e n t t o t h a t o f i n t e r n a l group  o f (II) .  T h e -2.7 a n d - 6 . 3 p.p.m. r e s o n a n c e s i n t h e H 2  ^  and H ^  atoms, r e s p e c t i v e l y .  s p e c t r u m t h e +36.6 p.p.m. r e s o n a n c e  While i n t h e  T C H  1 9  c o u l d w e l l be a s s i g n e d t o t h e F (2)  a t o m s ; l e a v i n g t h e +11.5 p.p.m. m u l t i p l e t t o a c c o u n t f o r t h e F  6.  ^ 2  -  spectrum  X  were a s s i g n e d t o H  2  F f 4)  2  ' atoms.  2  Reactions w i t h t r i f l u o r o c h l o r o e t h y l e n e . :  The o l e f i n / w a s and -196° t r a p s . (a)  introduced into  t h e v a c u u m s y s t e m t h r o u g h -76°,, -126°.,  Pure. CF =CFC1 condensed a t t h e t h e s e c o n d 2  H e x a m e t h y l d i t i n ( 7 . 5 6 g . , 22.9 mmole) a n d CF =CFC1 (2.64. g. , 2  22.61 m m o l e ) , i n a s i l i c a a t 90° f o r f o u r h o u r s .  t u b e , were s u b j e c t e d t o u l t r a v i o l e t  Vacuum f r a c t i o n a t i o n  t h e -126°, - 7 6 ° , a n d 0° t r a p s .  irradiation  afforded three fractions  T h e -126° f r a c t i o n ,  r e d s p e c t r a , was m a i n l y u n r e a c t e d . ^ o l e f i n as a s m a l l  trap.  i n ,  a s shown b y t h e i n f r a -  ( 1 . 6 4 g., 6 3 % r e c o v e r y ) as w e l l  amount o f . s e c o n d o l e f i n w h i c h m i g h t b e p r o d u c e d  The l a t t e r was i n d i c a t e d b y t h e a p p e a r a n c e  i n t h e reaction..  o f new b a n d s a t 3070  (C-H s t r . )  Sec. VI-D-6  !°  2  _.l and  1710 cm.  (C=C s t r , ) ,  i n t h e i n f r a r e d spectrum.  a c o l o u r l e s s l i q u i d , was i d e n t i f i e d  The -76° f r a c t i o n ,  spectroscopically  ( 0 . 5 2 g . , 2.8 m m o l e ) . • T h e 0° f r a c t i o n ,  a colourless  as t e t r a m e t h y l t i n liquid  originally,  became a y e l l o w , o r a n g e , , a n d f i n a l l y b r o w n . s o l i d .on s t a n d i n g u n d e r light  sun-  f o r .only 3 0 minutes... , The r e m a i n i n g c l e a r l i q u i d , w h i c h was s e p a r a -  t e d f r o m the. b r o w n s o l i d , b y  c e n t r i f u g i n g , shows i n f r a r e d b a n d s a t .14.70 ( m ) , _i  1220  ( m ) , 1075 ( v s . , b ) , a n d 1000 (m) cm*  associated with  i n . a d d i t i o n t o t h o s e bands  t e t r a m e t h y l t i n , h e x a m e t h y l d i t i n , and t h e ( C H ) S n 3  of trimethyltin-.fluorocarbon derivatives.  T h e tt N.M.R. s p e c t r u m  p.p.m..  The f i r s t ,  eight  lines  defined  chloride  - 0 . 2 , -0.325, and  second, and l a s t peak were a s s i g n e d t o t h e methyl  proton resonances o f t e t r a m e t h y l t i n trimethyltin  consists  l  o f f o u r p e a k s , i n t h e m e t h y l r e s o n a n c e r e g i o n at. - 0 . 0 1 , -0.62  groups  3  (135), hexamethylditin  ( 1 3 6 a n d t h i s work),.  o f equal i n t e n s i t i e s  ( 1 3 4 ) , and  I n t h e lower f i e l d  c e n t r e d a t . - 6 . 3 p.p.m., w h i c h  as a d o u b l e t - d o u b l e t - d o u b l e t , p a t t e r n  there are c o u l d be  (J.j = 4 8 . 5 c . p . s . , J  2  a c.p.s., and J  3  = 7.0 c . p . s . ) .  group, i n which the, s i g n a l  = 8.1 6  T h i s s u g g e s t e d t h e p r e s e n c e o f -CF -CFC1H 2  o f Hg atom, i s e x p e c t e d t o b e s p l i t  into a  l a r g e d o u b l e t due t o c o u p l i n g w i t h F ,. a t o m a n d e a c h component* i s f u r t h e r e  split  i n t o d o u b l e t e d d o u b l e t , due t o i n t e r a c t i o n w i t h t h e t w o h o n e q u i v a l e n t  F a atoms w h i c h i n t u r n a r i s e the r e l a t i v e is  about  intensity  from t h e asymmetry o f 8-carbon  of the H  g  3  group d i r e c t l y , bonded t o a.-CF2-  TABLES 12,14 ),. t h e r e f o r e , , t h e r e s o n a n c e s believed, t o arise  i s characteristic  group  (135 , a n d  a t -0.32 a n d -6.2 p.p.m. w e r e  from t h e same.species.which  (l,l,2-trifluoror2-chloroethyl)trimethyltin, From t h e i n v o l a t i l e  Since  r e s o n a n c e a n d t h e p e a k a t -0.325 p.p.m.  1:10, and, t h e c h e m i c a l s h i f t , o f . t h e l a t t e r  f o r the (CH3) Sn  atom..  might be (CH ) SnCF GFHCl.  residue hexamethylditin  3  3  2  (76°/2 cm. Hg) ( 5 g . , 6 6 %  163  Sec.VI-D-7  recovery) and.trimethyltin presence  o f a d d u c t s was  among a l l t h e - f r a c t i o n s formed  in this  (b)  An  f l u o r i d e were i s o l a t e d .  shown b y  t h a t no  light  a t 25°  adducts has  in a silica  b e e n formed...  The  reactants,  rum  as t r i m e t h y l t i n  gas  chromatographic.and  spectroscopically.  f l u o r i d e , , and  as t h e  showed  solvent, the  g a v e 0.8  g.  of  Centrifugation of  a c l e a r l i q u i d w h i c h was  chloride.  a b s o r p t i o n i n the i n f r a r e d spectrum  the  indicated  The  by  a mixture complete .  o f the c l e a r  liquid  adducts.  Reactions w i t h t r i f luorobromoethylene..  Since a s l i g h t  amount o f C F — C O F was  trifluorobromoethylene usually  found i n the s t e e l  3  (Columbia Organic Chemical  c o n d e n s e d i n t h e -.126° t r a p , was  f r a c t i o n a t i o n s e v e r a l times through (a)  as w e l l  i n f r a r e d s p e c t r o s c o p i c s t u d i e s t o be  i n d i c a t e d t h e absence, o f  olefin,  to  i d e n t i f i e d by the i n f r a r e d , s p e c t -  u n r e a c t e d h e x a m e t h y l d i t i n and t r i m e t h y l t i n  7.  was  A f t e r exposure  f o l l o w e d by v a c u u m f r a c t i o n a t i o n  2  a b s e n c e o f C-F  not  Evaporation of the solvent i n t o  i n v o l a t i l e . r e s i d u e gave a w h i t e s o l i d ,  of  tube.  the o l e f i n  t u b e , and t h e r e a c t i o n c o n t i n u e d u n d e r  (CH ) SnCF CFClH, i d e n t i f i e d  of  was  f o r 30 h o u r s , a q u a l i t a t i v e , i n v e s t i g a t i o n  f o r a n o t h e r 40 h o u r s .  t h e vacuum s y s t e m , 3  gum  reaction.  were r e s e a l e d i n a s i l i c a  3  Blackish  e q u i m o l a r m i x t u r e o f h e x a m e t h y l d i t i n and  same c o n d i t i o n s  evidence o f the  spectroscopic examination  o f the r e a c t i o n mixture.  d i s s o l v e d i n 30 ml., o f p e n t a n e ultraviolet  a careful  No  H e x a m e t h y l d i t i n (7.15  -76°,  g.., 2.1.8  Co.,  S.  p u r i f i e d by  -126°, and  -196°  cylinder C ) ,  vacuum  traps.  mmole) and t h e o l e f i n  mmole) i n a s i l i c a t u b e w e r e i r r a d i a t e d  a t 25°  f o r 27 h o u r s .  h o u r s , on t h e t o p o f t h e i n s i d e w a l l  of the tube  appeared  the  ( 3 . 6 g.,  Within an  10  orange  2.2  \  Sec.  164  VI-D-7  solid  w h i c h was  not  l i q u i d p h a s e was  c o l o u r l e s s at the end  o r a n g e on s t a n d i n g olefin 4.4  (2.7  observed i n a l l reactions with  g.,  overnight.  75%  were d e t e c t e d by a clear liquid (0°  gas  of i r r a d i a t i o n ,  Vacuum f r a c t i o n a t i o n  recovery)  mmole) as w e l l as  (-126° t r a p ) ,  c h r o m a t o g r a p h i c and g.)  (-46°  trap),  the  and  olefins.  and  gave  The  turned  to  unreacted  t e t r a m e t h y l t i n (0.78  a trace of fluorocarbon  (0.66  other  gas  (-76°  trap),  g.,  which  i n f r a r e d spectrum  a colourless liquid  analyses, (0.9  g.)  trap). The  -46°  f r a c t i o n shows i n f r a r e d  a b s o r p t i o n s ,at 1725  ( v s ) , 1280  (s),  _ l  1122  ( s ) , and  1010  ( s ) , cm.  i n a d d i t i o n t o the e x p e c t e d bands f o r  ( C H ) S n group l i n k e d t o a f l u o r o c a r b o n 3  3  Since  the bands i n the  C-F  -CF=CF2 g r o u p  (92),  trimethyltin,  (CH ) SnCF=CF .  gas  3  t o be  3.1  suggestion -46°  3  :  The solid  2  0°  and  3  3  c h a r a c t e r i s t i c of  145°  w i t h the  with  i n t h e vacuum l i n e  i n f r a r e d s p e c t r u m t o be involatile  brown s o l i d unreacted  15  value  by  a mixture  hexamethylditin,  c h r o m a t o g r a p h i c and  The  by  obtained  of  2  under  from the  re-  (152) .  o n l y f o r 10 m i n . ,  finally  was  evacuated  and  tetramethyltin.  a colourless liquid  l i q u i d p o r t i o n was  t r i m e t h y l t i n bromide,  spectroscopic studies.  brown  shown b y i t s  of hexamethylditin  part was.separated i n t o  centrifuging.  lb./in  prepared  g i v e s m a l l p o r t i o n , o f c o l o u r l e s s l i q u i d w h i c h was  The  (perfluorovinyl)-  f r a c t i o n , w h i c h became a y e l l o w , o r a n g e , and  on s t a n d i n g  a  i s f u r t h e r supported  3  (CH ) SnBr  IV-A-1,3).  f r a c t i o n showed i t s r e t e n t i o n  column at  min.,. i n a c c o r d  (see Sec.  s u g g e s t e d t o be  same c o n d i t i o n s f o r ( C H ) S n C F = C F 2 w h i c h was  a c t i o n o f C F = C F B r , Mg,  gas  The  a 6-ft. dinonyl phthalate  c a r r y i n g gas  to  This  2  bond  r e g i o n are  f r a c t i o n was  chromatographic a n a l y s i s .  t i m e on  the  3  this  absorption  v i a Sn-C  the  a mixture  and of  ( C H ) S n B r , shown 3  The  3  solid  a  portion  by was  Sec.  165  VI-D-8  treated with was  e x t r a c t e d w i t h methanol s e v e r a l times.  extracts for  c a r b o n t e t r a c h l o r i d e t o remove s o l u b l e m a t e r i a l , and  l e f t ,a w h i t e  i t s yield)..  absorption (b) (3.54  iation.  r e g i o n , and  just  ultraviolet  g. , 2 2  on  standing  (0.13  (0.16  g.,  0.53  obtained. came  The  g.,  0.9  originally  overnight.  as  . c l e a r l i q u i d was  fluorocarbon  8.  Reaction  1100)  g.,  22:.2  week.  On  The  C-F.  polymers.  under u l t r a v i o l e t 14 h o u r s when an  irradorange  The  develop-  c o l o u r l e s s l i q u i d phase transferring  the  o l e f i n . (2.86...,g.., 8 1 %  g. o f a c l e a r l i q u i d  tube  recovery), gas,  i n the  involatile  part  contained  (CH3)3SnBr,  tetra-  (CH3) SnCF=CF 3  0° t r a p  unreacted  (CH ) SnF, 3  was.  contents,  q u i c k l y r e m o v e d f r o m the, t r a p b u t  c h i e f c o m p o n e n t , and  with  3  were  soon  be-  hexaand  ethylene.  (99.91 mole p e r was  cent  used for. t h i s  Hexamethylditin (0.62  (no . r e c o r d  3SnF  polymers.  Ethylene L o t NO.  the  methanol  trifluorobromoethylene  mmole), a t r a c e , o f f l u o r o c a r b o n  mmole),, and .1.1  an o r a n g e s o l i d .  methylditin  (CH3)  i n s i d e w a l l of the tube.  t h e vacuum s y s t e m , u n r e a c t e d  methyltin  mmole) a n d  removed a f t e r  the  orange c o l o u r i n the  observed again  as ,  fluorocarbon  t o r e a c t a t 20°  lamp was  s t a r t e d t o f o r m on  ment o f an  into  thus p o s s i b l y contains  22 mmole) w e r e a l l o w e d The  identified  o f the  e x t r a c t e d r e s i d u e shows a b r o a d b a n d i n t h e  H e x a m e t h y l d i t i n : (7.2  g.,  solid  The  s o l i d w h i c h was  Evaporation  then,  (.7.2  g..,  22  purity,  Phillips  experiment without mmole) was  allowed  P e t r o l e u m Co., further  for  one  No  and  l i q u i d phases.  c h a n g e i n a p p e a r a n c e was Vacuum f r a c t i o n a t i o n  observed  purification.  to react with  mmole), i n a s i l i c a t u b e u n d e r u l t r a v i o l e t  light  f o r both  gave a n e g l i g i b l e  Okla.,  ethylene  a t 25°  gaseous,  amount  of  .  2  Sec.  166  VI-D-8  uncondens.able gas,  unreacted o l e f i n  w h i c h c o n d e n s e d a t -76°  (0.4  g.),  95%  trap  and  r e c o v e r y ) i n . t h e 0° Gas  w i t h He  the  and  gas  flow  rate  recovery),  involatile  dinonyl phthalate  3.1,  4.1,  1,  3,  5%,  respectively.  The  their  other  studied  f u r t h e r because of t h e i r  if  i s e x p e c t e d to. h a v e a l o n g e r  r e t e n t i o n time.  of hexamethylditin,  because these three expected f o r the reaction. The  The  three  and  9.2  Since: the  r e t e n t i o n time than  adduct, i t thus appears t h a t  a d d u c t was  not  i n v o l a t i l e p a r t show i t t o be  gas  adduct, as  and that  found i n  chromatographic a n a l y s i s of  a b s o l u t e l y pure  identi-  not  ,  i n f r a r e d s p e c t r u m and  min. min..  r e t e n t i o n time  min.» u n d e r a b o v e c o n d i t i o n s ,  components have s h o r t e r  com-  9.2  respectively,  limited quantities.  i . e , 9.2  2.3  5.7,  components were  or equivalent  g.,  150°  c o m p o n e n t s w h i c h a p p e a r e d a t 2.3,  f i e d by  this  column at  f r a c t i o n t o be  hexamethylditin,  that  (6.8  part.  c o m p o n e n t s w e r e t e t r a m e t h y l t i n and  any,  a fraction  -76°  1,  lb./in?  90%  showed t h e  r a t i o o f 90,  o f 15  g.,  unreacted hexamethylditin  i n the  c h r o m a t o g r a p h i c a n a l y s i s on  posed of f i v e with  (0.56  hexamethylditin.  the  167  Sec.  VI-E-1  E.  Reactions o f Trimethyltin-pentacarbonylmanganese  with  Fluoro-olefins.  1. P r e p a r a t i o n o f t r i m e t h y l t i n - p e n t a c a r b o n y l m a n g a n e s e .  This  compound was p r e p a r e d  d e s c r i b e d by G o r s i c h (26). Co.,  according t o a modification  Decacarbonyldimanganese,  o f t h e method  the g i f t  D e t r o i t , . U. S. A., was u s e d w i t h o u t s u b l i m a t i o n .  of Ethyl  Trimethyltin  b r o m i d e was a p r o d u c t o f O r g m e t , H a m p s t e a d , N. H. T e t r a h y d r o f u r a n (THF) was r e f l u x e d and  distilled To  over s u f f i c i e n t  lithium.aluminum hydride f o rseveral  p r i o r t o use.  500 g. o f m e r c u r y i n a 5 0 0 - m l . f l a s k ,  metallic  5 g. ( 2 1 7 mmole) o f s l i c e d  s o d i u m was s l o w l y a d d e d , f o l l o w e d b y Mn2(CO)io ( 1 9 . 5 g . , 50  mmole), i n 250 m l . o f THF.  The r e a c t i o n m i x t u r e , w h i c h  u n d e r a n i t r o g e n a t m o s p h e r e i n t h e d r y b o x , was s t i r r e d ture  f o r one h o u r .  The r e s u l t i n g b r o w n i s h - g r e e n  from mercury by d e c a n t a t i o n . 100  hours  mmole) was a d d e d .  Subsequently,  After stirring  was  maintained  a t room t e m p e r a -  s o l u t i o n was  separated  t r i m e t h y l t i n bromide  a t room t e m p e r a t u r e  (24.0 g.,  f o r one  hour,  t h e r e a c t i o n m i x t u r e was a l l o w e d t o , s t a n d o v e r n i g h t , aoid t h e s u p e r n a t a n t s o l u t i o n was d e c a n t e d . tions  o f THF s e v e r a l  The r e m a i n i n g s o l i d was w a s h e d w i t h 1 0 - m l .  times  a n d s e p a r a t e d f r o m t h e THF w a s h i n g s b y  porcentri-  fuging. The  t o t a l volume o f combined s u p e r n a t a n t  w a s h i n g s was r e d u c e d resulting pressure.  t o 50 m l . by. d i s t i l l a t i o n  solution  (64°/76 cm. H g ) , a n d t h e  s o l u t i o n was r e d i s t i l l e d , on. an; e f f i c i e n t The l a s t  t r a c e o f THF a n d u n r e a c t e d  a t 47°/10  column under  (CH3)3SnBr were  a t 25°/3 cm. Hg a n d a t 30°/l cm. H g , r e s p e c t i v e l y . was c o l l e c t e d  a n d t h e THF  reduced removed  The f r a c t i o n  cm. Hg was a p a l e y e l l o w l i q u i d , w h i c h  which became  Sec.  168  VI-E-2  a white s o l i d  o n s t a n d i n g a t room t e m p e r a t u r e .  pentacarbonylmanganese, yield  on.the b a s i s  H, 2.5; M.W.,  (CH ) Sn-Mn(CO) , 3  o f (CH ) SnBr 3  [ 2 6 . 0 g . , 72.5 mmole, 7 2 . 5 % (calc.  9  5  3 6 1 . 5 ) ; m.p.,  C, 2 6 . 8 ; 29.5°  spectrum a f t e r stand-  weeks.  Decomposition o f trimethyltin-pentacarbonylmanganese.  Pyrolysis. tin-manganese  appearance  g a v e 0.01  8  no c h a n g e i n i t s i n f r a r e d  compound (0.83. g . , 2.31 mmole) i n a s e a l e d  was h e a t e d a t 130° i n t h e d a r k f o r . 4 8 h o u r s . its  f o rC H SnMn0 :  3 0  ing i n a i r f o rseveral  The  taken],  3  trimethyltin-.  p ' , .1.62 g . / m l .  This product.showed  a.  5  3 5 8 . 8 ; f o u n d : C, 2 7 . 0 ; H, 3,3j M.W.,  (uncorrected);  2..  3  T h i s was  No a p p r e c i a b l e c h a n g e i n  was o b s e r v e d t h r o u g h o u t t h e h e a t i n g .  mmole o f u n c o n d e n s a b l e  tube  Vacuum  fractionation  gas, i d e n t i f i e d by i t s i n f r a r e d spec- .  t r u m andM.W.. ( f o u n d , 27) as c a r b o n m o n o x i d e g a s , a t r a c e o f t e t r a methyltin  condensed  i n a -76° t r a p ,  shown b y i t s . i n f r a r e d s p e c t r u m , be  unchanged  b.  The silica  (CH ) Sn-Mn(C0) 3  3  5  and an i n v o l a t i l e  residue which  was  and by gas c h r o m a t o g r a p h i c a n a l y s i s t o  (0.81 g., 9 7 % r e c o v e r y ) .  Photolysis.  tin-manganese  compound (.1.. 12 g . , 3.04 mmole) i n a s e a l e d  t u b e was i r r a d i a t e d w i t h u l t r a v i o l e t  l a m p ) a t 50° f o r one h o u r .  light  A p u r p l e c o l o u r formed  the tube t o t h e u l t r a v i o l e t l i g h t ,  instantly  a n d t h e t u b e c o n t e n t was  p u r p l e i n c o l o u r a t t h e end o f t h e i r r a d i a t i o n . gave c a r b o n monoxide  ( H a n o y i a 200 w a t t  ( 0 . 0 5 7 mmole) a n d ( G H ) i S n 3  +  Vacuum  on e x p o s i n g blackish  fractionation  ( 0 . 0 2 g . , 0.11 mmole)  Sec.  as  169  VI-E-3  the  v o l a t i l e products.  r e c o v e r y ) was  g.  of black  Reactions with  As  are  part  of this  study, the  allowed silica  listed  solvent,  etc.)  The  g.,  3  on  the  conditions,  9.2  results  purified  mmole) i n 6 ml... n - p e n t a n e  tetrafluoroethylene  (3.3  g.,  No  33  f o r m e d on  r e a c t i o n m i x t u r e was. c o o l e d  t o -196°  new as was  mmole) i n a  noticeable  sealed  change i n  the.  A f t e r f o u r h o u r s , when  i r r a d i a t i o n was. s t o p p e d , a .pale, y e l l o w , l i q u i d , r e s u l t e d and amount o f w h i t e s o l i d h a d  (i.e.,  d i s t r i b u t i o n and  reaction i s described  tube u n d e r . u l t r a v i o l e t i r r a d i a t i o n *  siderable  94%  residue,  A l l experimental  r e a c t i o n m i x t u r e , was. . o b s e r v e d i n h a l f an h o u r . the  g.,  involatile  a n a l y t i c a l data o f the  i n TABLE 29 ..A t y p i c a l  to react with  (1.05  5  reaction  investigated.  (GH ) S n M n ( G 0 ) 5 (3.3 3  o f the  e f f e c t of the  light,  s u m m a r i z e d i n TABLE 5 .  compounds a r e  3  tetrafluoroethylene.  o f r e a c t i o n , p r o d u c t s was  follows.  3  gum.  temperature, u l t r a v i o l e t yield  (CH ) Sn-Mn(G0)  recovered from s u b l i m a t i o n  l e a v i n g 0.05  3.  Unchanged  the  a  con-  of  the,  opening the  tube  inside wall  tube. The to the by  vacuum l i n e ,  0.5.mmole o f u n c o n d e n s a b l e g a s ,  i t s i n f r a r e d , s p e c t r u m and  m o n o x i d e , , was. obtained... i n t o one  o f . vacuum l i n e  M...W. m e a s u r e m e n t  Transfer traps,  unchanged t e t r a f l u o r o e t h y l e n e n - p e n t a n e i n b o t h -126° a -10° (s), (vs),  trap. 1685 1010  The  (m),  and  992  followed  -76°  and  g.,  traps,  w h i c h was  ( f o u n d * 29)  v o l a t i l e -part by  ( s ) , 1240 960  carbon Hg  vacuum f r a c t i o n a t i o n , gave  19.3 and  as  identified  a t -10°/10 cm.  mmole) i n 0.1  g.  (m) , 1185  the  -196°  trap,  of a clear l i q u i d  showed i n f r a r e d bands at  ( s ) , 1305 (m),  of the  (1.93  clear liquid  ( s h ) ,, 1352  and, on  1789  ( s ) , 1042  ( s ) , i n a d d i t i o n t o the  (s), (sh) ,  expected  in  1712. 1039  Sec.  170  VI-E-3  absorptions RfMn(CO)5 with  the  of  (CH ) Sn-Mn(CO) 3  3  (see Sec.  IV-C-2b,d).  i n f r a r e d frequencies  l i q u i d was  identified  (CH ) Sn-Mn(CO) ,  (ii)  C F Mn(CO) , 5  By  3  and  the Mn(C0)  comparison of the  l i s t e d . i n ; T A B L E S 16 and  as. a m i x t u r e  (i)  3  (TABLE. 16)  5  5  group  above  of  spectrum  17, t h i s  clear  of  5  9  5  and (iii) It  should  C=C  [ i . e , CF2=CFC0Mn(C0)5].  perfluoroacryloylpentacarbonylmanganese be  noted that  the  s t r e t c h i n g , mode.s o f t h e  c h a r a c t e r i s t i c b a n d s a s s o c i a t e d '.with last  two  compounds a t .1789  and  1712  the (with  _1 a shoulder  a t 1685)  spectrum.  Further  described It  was  the  later..  f o u n d by  1-ml.  by  column  P)  e x a m i n a t i o n on  t h a t t e t r a m e t h y l t i n was  was  separated  (2 x 50  cm.)  c h r o m a t o g r a m was  not  involatile  t i o n i n the  carbonyl  e x a m i n a t i o n was s h o w n , by  The  r e s i d u e , was white s o l i d  of Q with  w h i c h was  first  as d e t e c t e d  plotting  by  individually  the  (1.6  g.  the  the  with  g.,. as gas  Florisil  f o r each p o r t i o n .  collection  of  5-ml.  t r a c e of carbonylmanganese d e r i v a t i v e s an  s t r e t c h i n g region..  repeated  rinsed  a stream of dry n i t r o g e n  c h r o m a t o g r a p h e d on  of  reaction.  from the pentane s o l u t i o n (designated  d e v e l o p e d w i t h n - p e n t a n e and  eluate  be  each f r a c t i o n  formed i n t h i s  i n f i v e p o r t i o n s , i . e , a b o u t 0.6  s t a r t e d when t h e  appeared i n the  g.)  compounds w i l l  this,  VI-E-5, r e s e p c t i v e l y ) .  a careful spectroscopic  a b r o w n o i l (3.15  -fractions  was  Sec.  centrifuging... Evaporation  afforded  The  and  p o r t i o n s o f n-pentane several.times,. as  c l e a r l y observed i n  c h a r a c t e r i z a t i o n o f t h e s e two  Carius. tube, c o n t a i n i n g the  designated Q)  , r e s p e c t i v e l y , are  (TABLE 2 9  v o l a t i l e part The  cm.  intensities  infrared spectroscopic The  on  examina-  same i n f r a r e d s p e c t r o s c o p i c  a l l 5ml.-fraction eluates.  o f the  carbonyl  It  s t r e t c h i n g bands  Seci  171  VI-E-3  a g a i n s t "the e l u t e d v o l u m e , ,that: t h e brown, o i l c h r o m a t o g r a p h i c : bands,.  F o u r more r u n s  was  separated into, four  o f the chromatographic  separation,  w e r e made, u s i n g , t h e o t h e r p o r t i o n s o f ..the brown, oil.,.' a n d a l l f r a c t i o n s o f t h e , c o r r e s p o n d i n g , component (-10°/10 cm... Eg).. (CH ) Sn-Mn(CO) 3  was  3  The, f i r s t 1 g.) .  5  recrystallized  w e r e , combined, a n d n - p e n t a n e was  e l u t e d band c o n t a i n e d mainly A white solid, recovered  in. cyclohexane  (0.6  g . , 1.3 m m o l e ) , m.p.,  l i q u i d , was cal data volatile  CsFgMnfCO^,  a n d M.W.  57.5°.  the unreacted  from, t h e s e c o n d  t o a f f o r d the.1:1  tin-2-pentacarbonylmanganese-tetrafluoroethane,  evaporated  band  adduct, 1 - t r i m e t h y l -  (CH ) SnCF2CF2Mn(C0)5 3  3  The t h i r d e l u t e d component, a p a l e  which i s f o r m u l a t e d on the b a s i s o f e l e m e n t a l a n a l y t i -  measurement  ( 0 . 8 g . , 1^8 m m o l e ) .  s o l i d o b t a i n e d as t h e l a s t  e l u t e d component  The w h i t e , was  very  sublimed  —3  (25°/10-  cm.. H g ) , t o g i v e : p e r f l u o r o a c r y l o y i p e n t a c a r b o n y l m a n g a n e s e ,  G F = G F C 0 M n ( C 0 ) 5 .(0.4 .g.,.1*7 mmole.)., nup.., ...41°... 2  :  A brown r i n g r e m a i n i n g with  on t h e t o p o f t h e c o l u m n Was  a 10% m e t h a n o l - p e n t a n e m i x t u r e -  vacuum y i e l d e d  a b o u t 0.1  finally eluted  Evaporation o f the s o l v e n t s under  g. o f a b l a c k i s h b r o w n gum..  Its infrared _1  spectrum  showed  a b r o a d band of,medium i n t e n s i t y  ( a c y l , b r i d g e d c a r b o n y l , or/and broad  C=C  c e n t r e d a t 1700  stretching, vibrations)  a n d s t r o n g b a n d s c e n t r e d a t 1 1 5 0 . a n d 1000 cm.  cm  and two  very  (C-F s t r e t c h i n g  modes) i n a d d i t i o n t o t h e a b s o r p t i o n s a s s o c i a t e d w i t h c a r b o n y l m a n g a n e s e group. The w h i t e s o l i d  r e s i d u e (P.) was  e x t r a c t e d s e v e r a l times with  p o r t i o n s o f acetone.,  leaving a white  crystalline  i d e n t i f i e d by i t s i n f r a r e d , spectrum 4.95  mmole).  r e s i d u e (R) w h i c h , was  as t r i m e t h y l t i n  No p o l y m e r i z e d t e t r a f l u o r o e t h y l e n e was  i n f r a r e d spectroscopic examination*  The a c e t o n e  1-ml..  fluoride  ( 0 . 9 g..,  detected in(R)by  e x t r a c t s were  combined  Sec.  172  VI-E-3  TABLE  29  A N A L Y T I C A L DATA FOR THE REACTION PRODUCTS OF (CH ) Sn-Mn(CO) 3  3  5  AND  M.W. calc.  C F Mn(CO)  CF =CF . 2  2  %C found  %H  c a l c . found . c a l c .  16,7  16.6  30.7  23.0  23.5  29.8  23.0  24.9  28.2  28.4  458.2  482  26.2  26.5 26.3  [CF =CFMn(C0) ] (l)  496  489  29.0  [ C F = C F M n ( C 0 ) 4 ] (2)  496  466  29.0  5  (CH ) SnCF CF Mn(CO) 3  3  2  2  2  1 +  2  and  5  2  2  a c e t o n e was r e m o v e d c o m p l e t e l y  The r e s u l t i n g  with  1.96 ,.  1.89 1.65  a flow o f dry n i t r o g e n gas.  r e s i d u e was t h e e x t r a c t e d w i t h - f o u r t o f i v e  o f h o t carbon, t e t r a c h l o r i d e ,  found  40.0,  435.  9  calc  40.2  426  5  %F found  2-ml. p o r t i o n s  and f i n a l l y washed t w i c e w i t h  chloroform.  The r e s i d u e , a. w h i t e s o l i d , , was f o u n d t o b e one o f , t h e i s o m e r s o f t h e dimeric perfluorovinyltetracarbonylmanganese, as D i m e r 2, ( 0 . 2 g . , 0.42 m m o l e ) .  [CF =CFMrt(C0)\ ] 2  The v o l u m e o f t h e c o m b i n e d  t e t r a c h l o r i d e ; e x t r a c t s ; was r e d u c e d u n t i l  a white cloudiness  A f t e r c h i l l i n g t h e s o l u t i o n i n i c e f o r about an h o u r ,  2  ,  designated  carbon  formed..:  filtration  a f f o r d e d , t h e o t h e r i s o m e r o f [CF. = CFMn(CO) 4 ] , d e s i g n e d as D i m e r 1, 2  ( 0 . 4 g . , 0.8 m m o l e ) . decomposed  at  Both i s o m e r s have no d e f i n i t e m e l t i n g p o i n t .  150° t o g i v e 3  e v e n a t 90°/10  2  cm. Hg.  a brown s o l i d .  They a l s o do n o t s u b l i m e  They  Sec  173  VI-E-4  4.  Reaction with  trifluoroethylene.  When ( C H ) S n - M n ( C O ) 3  3  ( 1 . 7 g . , 4.7 mmole) i n 4 m l . o f n - p e n t a n e  5  was a l l o w e d t o r e a c t w i t h t r i f l u o r o e t h y l e n e sealed s i l i c a the  final The  gas,  tube under u l t r a v i o l e t  r e a c t i o n mixture  M.W.,  and s e p a r a t e d  ethylene and  a t 63° f o r f o u r  containing white  t o t h e vacuum l i n e  hours,  solid.  and u n c o n d e n s a b l e  . 2 5 . 5 ) ( 0 . 8 mmole) was r e m o v e d .  p a r t of* t h e r e a c t i o n m i x t u r e Hg,  irradiation  was a b r o w n l i q u i d  r e a c t i o n t u b e was a t t a c h e d  CO g a s , ( f o u n d :  ( 1 . 9 g . , 23.2 mmole) i n a  The v o l a t i l e  was t r a n s f e r r e d i n t o a t r a p a t -10°/10 cm.  b y vacuum f r a c t i o n a t i o n  t o give unreacted  trifluoro-  ( 1 . 7 g . , 20.2 mmole) i n a -196° t r a p , t h e s o l v e n t i n b o t h  -76° t r a p s , a n d 0.2 g. o f p a l e y e l l o w  iiquid  i n a -46° t r a p .  i n f r a r e d s p e c t r u m o f t h e -46° f r a c t i o n s h o w e d b a n d s i n t h e C-F  -126° The  absorp-  t i o n r e g i o n : ,1720 ( w ) , 1670 ( s ) , 1518 ( w ) , 1275 ( s , b ) , 1232 (m),1144 ( s ) ,  _1 1120  ( s h ) , 1090 ( s , b ) 1015 ( s , b ) a n d 1010 ( s h ) cm.  the expected  absorptions  o f (CH ) Sn-Mn(C0) , 3  3  where X i s a f l u o r o c a r b o n group. Sec. 1088,  5  Since  ; i n addition to  ( C H ) S n X , and X M n ( C 0 ) 3  3  the (trans-CFH=CF)Mn(CO) (see 5  IV-C and below) g i v e s r i s e t o s t r o n g i n f r a r e d bands a t 1670, 1272,  _1  1010 a n d 760 cm.  g r o u p , and b e c a u s e  .  i n a d d i t i o n t o t h e b a n d s due t o t h e M n ( C 0 )  (CH ) SnCF=CF 3  infrared absorptions  3  ( s e e S e c . V I - D - 7 ) shows  2  a t 1 7 2 5 , 1 2 8 0 , 1122 a n d 1010 cm.  absorptions  associated with  identified,  on t h e b a s i s o f s p e c t r o s c o p i c e v i d e n c e ,  trans-(CFH=CF)Mn(CO) , 5  IV-C)  5  ( C H ) S n group, the p a l e y e l l o w 3  3  3  3  2  3  3  l i q u i d was  as a m i x t u r e 5  of  (see Sec.  r e l a t i v e r a t i o o f 4:1:4.  i n v o l a t i l e p a r t was t r e a t e d w i t h a c e t o n e  to leave a white  together with the  ( C H ) S n C F = C F , and ( C H ) S n - M n ( C 0 )  i n the approximately The  1  5  strong  (3 ml.) s e v e r a l  times  s o l i d , w h i c h was shown b y i t s i n f r a r e d s p e c t r u m ( s e e  174  Sec.  VI-E-4  Sec.  IV-A-1) to.be  chiefly  (CH ) SnF 3  ( 0 . 5 5 g . , 3 mmole) .  3  a c e t o n e s o l u t i o n s w e r e . c o m b i n e d , a c e t o n e was e v a p o r a t e d  The r e s u l t i n g . .  a t -10°/4 cm. H g . ,  _3  and  t h e r e s u l t i n g r e s i d u e was s u b l i m e d  w h i c h went t h r o u g h  t h e cooled probe  was c h r o m a t o g r a p h e d . o n a F l o r i s i l  a t 25°/10  ' cm. Hg.  (10°) a n d c o n d e n s e d i n a -46° t r a p  column u s i n g n-pentane as t h e eluant,.  The  m a j o r component  as  (trans-1,2-difluorovinyl)-pentacarbonylmanganese,  (0;„05 g,.., ,0.2. mmole) o f t h e e l u a t e was i n d e n t i f i e d  (trans-CFH=CF.)Mn(CO) , o n t h e b a s i s o f i t s i n f r a r e d 5  This  compound d e c o m p o s e d i n d e u t e r o c h l o r o f o r m  before not  1 9  from i t s s o l u t i o n  obtain analytical  data, t h eformulation o f t h i s  from t h e f o l l o w i n g evidence: a dimer,  f o r analysis..  ( i ) the v o l a t i l i t y  a n a l o g o u s t o [CF. =CFMn(C0) i^] 2  2  a n d H N.M.R. s p e c t r a . . l  on p r o l o n g e d  i t s . F , N~M..R.. s p e c t r u m c o u l d b e s t u d i e d .  recovered  A fraction  standing,  T h e s a m p l e was t h u s  Despite  thefailure, t o  compound was d e d u c e d indicates that i ti s not  w h i c h does n o t s u b l i m e  even a t  _3  90°/10 its  cm. H g ; ( i i ) i t s i n f r a r e d , s p e c t r u m i s v e r y , s i m i l a r t o t h a t , o f  c i s - i s o m e r . ( s e e S e e . I V - C a n d below.);. ( i i i )  showed a q u a r t e t , o f i n t e n s i t y r a t i o  i t s *H N.M.R. s p e c t r u m  1:1:1:1 ( J i , 86.5 c . p . s . ; J  c . p . s . ) c e n t r e d at. -8.06 p.p.m. w i t h r e s p e c t t o TMS i n t e r n a l in  a c c o r d w i t h t h e , s p e c t r u m of. a trans-.CFH=CF- g r o u p The  sublimed  solid  o n the. c o o l e d  p r o b e was w a s h e d w i t h  three  i n cyclohexane  the. white, c r y s t a l l i n e . ( , c i s . - l . , 2 . - d i f l u o r o v i n y l ) . - p e n t a c a r b o n y l -  manganese, (cis-CFH=CF)Mn(C0)  5  ( 0 . 3 5 g.., 1^4 m m o l e ) , ( c a l c .  C, 3 2 . 5 5 ; H, 0.38; F, 14..74; M.W., F,  standard,  (see Sec. IV-D).  0.5-ml. p o r t i o n s , of. c o l d n.-pentane,.and r e c r y s t a l l i z e d to y i e l d  10.2  2  1 4 . 8 5 ; M.W.,  258; found:  2 9 5 ) , m.p. 78° ( u n c o r r e c t e d ) .  f o r C F HMn0 : 7  2  C, 3 2 . 6 4 ; H, 0 . 6 4 , Evaporation  (-10°/10 cm.  Hg.) o f t h e p e n t a n e w a s h i n g s g a v e 0.4 g . , ( 1 . 1 mmole) o f u n r e a c t e d (CH ) Sn-Mn(C0) . 3  3  5  The s u b l i m a t i o n r e s i d u e  (0.2 g . ) , a b l a c k i s h  brown  5  Sec.  gum,  VI-E-5 _1 a t 1700 a n d 1610 cm.  s h o w e d t w o i n f r a r e d b a n d s o f medium i n t e n s i t y _1  a n d a s t r o n g a n d b r o a d b a n d c e n t r e d a t 1100 cm. a b s o r p t i o n s o f carbonylmanganese made o f t h i s  group.  adduct  fraction.  throughout t h i s  analogous  3  least  2  experiment  a n d *H N.M.R. s p e c t r a o f a l l  f a i l e d t o d e t e c t any t r a c e o f t h e  t o (CH ) SnCF CF Mn(CO) . 3  3  (CH ) Sn(CFHCF ) Mn(C0) , 3  as t h e expected  No f u r t h e r i n v e s t i g a t i o n was  A complete e x a m i n a t i o n on the i n f r a r e d fractions  as w e l l  n  2  2  The a d d u c t ,  5  s h o u l d s h o w , i n i t s H N.M.R. s p e c t r u m a t X  5  one t r i p l e t e d d o u b l e t a s s o c i a t e d w i t h t h e p r o t o n o f t h e  carbon group, and a methyl resonance resonance o f (CH ) Sn 3  occur.  3  i n the r e g i o n where t h e m e t h y l  group o-bonded t o a f l u o r o c a r b o n group, s h o u l d  I n i t s i n f r a r e d spectrum, two a b s o r p t i o n s a r i s i n g  s t r e t c h i n g modes o f t h e t y p e ( C H ) S n R f , 3  obtained i nthis  Reaction with  The  r e a c t i o n between  ultraviolet  3  (CH ) Sn-Mn(CO)5 3  3  combination o f absorptions.  ( 2 . 3 g . , 6.3 mmole) I n 5 m l .  ( 4 . 7 g . , 4 0 . 2 mmole)  under  a t 70° f o r t h r e e h o u r s g a v e 0.82 mmole o f  carbon monoxide, urireacted o l e f i n the f a i l u r e t o i s o l a t e  Spectra  trifluorochloroethylene.  and t r i f l u o r o c h l o r o e t h y l e n e irradiation  f r o m Sn-C  are also expected.  e x p e r i m e n t d i d n o t show t h i s  5.  of n-pentane  polyfluoro-  ( w h i c h Was n o t m e a s u r e d b e c a u s e o f  i t from the s o l v e n t ) ,  and an i n v o l a t i l e  blackish  browrt o i l ( a b o u t 2.8 g.) c o n t a i n i n g a s o l i d . Treatment  o f t h e s o l i d , w h i c h was s e p a r a t e d f r o m t h e  b r o w n o i l b y c e n t r i f u g i n g , w i t h t h r e e 2-ml. f o l l o w e d b y f i v e 2-ml.  portions  portions  o f acetone, y i e l d e d  blackish  o f n-pentane, a white  w h i c h was shown b y i t s i n f r a r e d s p e c t r u m t o c o n t a i n o n l y  Solid  trimethyltin  SEC.  VI-E-5  fluoride  (0.1  g.,  0.55  Evaporation nitrogen the  gas  mmole).  of acetone  g a v e 0.3  f r a c t i o n i n the  g.  from the  of black  gum.  show any  treated  the  reaction  gum  of  dry  corresponds  from  which the  dimers.  This  gum  was  to  dimers, does  not  further. removed  r e s u l t i n g o i l was  graphic separation afforded  three first  added t o  o f the  fractions  o i l on as  the  Hg)  Florisil  mmole), i d e n t i f i e d s p e c t r o s c o p i c a l l y .  f r a c t i o n was  t h r e e components i n d i c a t e d  tions  are  ( s , b ) ^ 1068  1790  (m),  (m), 1050  1690 (m),  brown o i l .  column  Chromato-  (n-pentane  liquid by  (0.1  g.),  was  eluant)  1640  (m),  ( m , b ) , 960  1345  (s,b),  (0.5  5  g.,  a mixture of  i t s i n f r a r e d spectrum.  (vs,b), 1040  (CH3)3Sn-Mn(C0)  unchanged  fraction, a clear  least  at  combined.washings  follows:  1.4  second  from the  blackish  The  The  eluted  (-10°/10 cm.  (i)  (ii)  a flow  I n t h i s c a s e , h o w e v e r , t h i s gum  a b s o r p t i o n expected f o r the  n - P e n t a n e was and  with  This black  tetrafluoroethylene  [ C F 2 = C F M n ( C 0 ) J 2 , were i s o l a t e d . not  extracts  (m),  The  1300  at  absorp-  (m),  825  (s,b),  785  the  absorptions  1220 (m),  740  _1 (w),  550  ( m , b ) , and  associated -  cm.  _ l  with  may  arise  acyl or  be  eliminated.  5  f r o m C=C  cm.  group.  in addition The  to  t h r e e bands a t  stretching  1790,  1690,  v i b r a t i o n , although the  carbonyl bridged derivatives Trap-by-trap  components but  indicated, C=C  Mn(C0)  (w)  and  1640  • '  of  the  508  on  the  absorptions  the basis  e x i s t i n g i n the  f r a c t i o n a t i o n d i d not  infrared spectra  of  the  mixture  due  to  S i n c e t h e r e w e r e no  C-H  stretching  fractions  t h r e e d i f f e r e n t compounds and  cannot  c l e a r l y separated i n each  of t h e i r r e l a t i v e i n t e n s i t i e s , that  are  possibility  Qi3-Sn rocking  the  trap three  respectively. absorptions,  the  _]  bands at  550  and  508  cm.  could  not  be  a t t r i b u t e d to  the  Sn-C  stretching  177 Sec,  VI-E-5  modes.  T h e H N.M.R. s p e c t r u m o f t h e  resonance, consisted from  clear  A  s u p p o r t i n g the  above o b s e r v a t i o n .  Its  groups.  1  The t h r e e q u a r t e t s  r a t i o o f 1:1:1:1) c e n t r e d a t +7.4,  9  F N.M.R., h o w e v e r ,  were u n d o u b t e d l y  arising  (each w i t h  5  c e n t r e d a t +23.6 a n d +43.6 p.p.m. (TFA)  IV-D).  The two d o u b l e t s  ( J p , 126 c . p . s . ) may b e p  t o (trans-1,2-difluoro-2-chlorovinyl)pentacarbonylmanganese,  ( t r a n s - C F C l = C F ) M n ( C O ) , on the b a s i s o f the  l a r g e m a g n i t u d e o f t h e F-F  5  coupling constant  (93,113).  The two d o u b l e t s  c e n t r e d a t -10.1  p.p.m. (Jp.p.» 5 8 . 5 c . p . s . ) , r e s p e c t i v e l y , may b e a t t r i b u t e d cis-l,2-difluoro-2-chlorovinyl 1-chlorovinyl  group, cis-CFCl=CF-,  group, CF2=CC1-.  characteristic  chemical  directly  to a transition  linked  resonances  shift  atoms  were t e n t a t i v e l y  36%  mixture  in,the •  1  9  through  assigned  remarkable  nucleus  o f t h e C-F g r o u p  a carbon-metal  F N.M.R. s p e c t r u m , t h e mass  were 5 5 % CF =CFC0Mn(C0)5, 2  bond  (143),  to (cis-l,2-difluoro-2-  (Cis-CFCl=CF)Mn(CO)5.  chlorovinyl)pentacarbonylmanganese, t h e peak i n t e n s i t i e s  t o either the  (-10.1 p.p.m.) w h i c h i s a  for a fluorine metal  a n d +10.95  o r the 2 , 2 - d i f l u o r o -  However, i n view o f the  u n s h i e l d i n g o f one o f t h e f l u o r i n e  in this  res-  associated withperfluoroacryloylpenta-  2  these  intensity  +51.0, a n d +64.9 p.p.m. ( T F A ) ,  carbonylmanganese, CF =CFCOMn(CO) , (see Sec.  assigned  showed no p r o t o n  o f three d i s t i n c t sets o f absorptions apparently  three fluorovinyl  pectively,  liquid  Judging  from  distributions'  9% ( t r a n s - C F C l = C F ) M r i ( C O ) , a n d 5  (eis-CFCl=CF)Mn(CO) . 5  _3  (iii) Hg) (1.1  The l a s t  and the major f r a c t i o n  was f u r t h e r s u b l i m e d  (25°/10  cm.  o n t o a c o o l e d p r o b e a t -76° t o g i v e W h i t e c r y s t a l l i n e CF =*CFC0Mn(C0) 5 2  g . , 3.6 mmole) ( c a l c .  found: The  f o r C F M n O : . C, 3 1 . 6 ; 8  C, 3 1 . 4 0 ; F, 1 8 . 8 5 ; M.W., c o l u m n was f i n a l l y  3  e  299),  eluted with  F , 18.8;  M.W.,  3u4.0  m.p., 41° ( u n c o r r e c t e d ) . 10% m e t h a n o l - p e n t a n e  mixture  Sec.  VI-E-6  x  '°  _3  to  g i v e a b o u t 0.7 g. o f b r o w n r e s i d u e .  the residue afforded white f i e d by t h e i n f r a r e d  (25°/10  cm. Hg), o f  o n t h e -76° p r o b e w h i c h w e r e i d e n t i 1  s p e c t r u m a n d *H N.M.R. s p e c t r a (,§CH , -37 c . p . s . , 3  TMS) a n d m e l t i n g p o i n t (0.55  crystals  Sublimation  (37°) t o b e t r i m e t h y l t i n  chloride,  (CH ) SnCl 3  3  g . , 2.8 m m o l e ) . Spectroscopic  isolated  products,  decomposition  c o m p a r i s o n s between t h e o r i g i n a l b l a c k o i l and t h e CF = CFC0Mn(C0) 2  had taken  5  and ( C H ) S n C l , 3  3  place during t h e course  indicated  t h a t no  o f s e p a r a t i o n and p u r i -  fication. Pyrolysis  o f CF =C0Mn(C0) . 2  5  When C F = C F C 0 M n ( C 0 ) 2  5  the dark f o r three hours, v o l a t i l e product.  ( 0 . 0 1 g . , 0.032 mmole) was h e a t e d carbon monoxide  Sublimation  a t 100° i n  ( 0 . 0 2 5 mmole) was t h e o n l y  o f t h e i n v o l a t i l e r e s i d u e a f f o r d e d un-  c h a n g e d s t a r t i n g m a t e r i a l ( 0 . 0 0 3 g . , 0.01 mmole) a n d 0.006 g. o f b l a c k oil. to  The i n f r a r e d  those  and  s p e c t r u m o f t h e l a t t e r showed a b s o r p t i o n s  of the black  gum i s o l a t e d  trifluorochloroethylene,  [CF =CFMn(C0)4] 2  2  very  similar  from the r e a c t i o n o f (CH ) Sn-Mn(C0) 3  3  b u t n e i t h e r Dimer 1 n o r Dimer 2 o f  c o u l d be d e t e c t e d .  I t s h o u l d be noted  that  these  d i m e r s do n o t d e c o m p o s e b e l o w 150°.  6.  Reaction with  a.  ethylene,  R e a c t i o n with- e t h y l e n e  (CH ) Sn-Mn(C0)5 3  allowedto  3  a t 10 a t m .  ( 1 . 4 g . , 3.96 mmole) i n 3 m l . o f n - p e n t a n e was  react with ethylene  ( 0 . 6 g . , 21.7 mmole) i n a s e a l e d  t u b e u n d e r u l t r a v i o l e t i r r a d i a t i o n a t 50° f o r f o u r h o u r s . the t u b e t o t h e vacuum l i n e , c a r b o n monoxide  On  silica opening  ( 0 . 8 mmole) a n d e t h y l e n e  5  179 Sec.  VI-E-6.  (21.0  mmole) w e r e r e c o v e r e d .  T h e s o l v e n t was e v a p o r a t e d ,  y e l l o w o i l w h i c h showed i t s i n f r a r e d a b s o r p t i o n s  a t 1435 ( w ) , 1230  -l ( s , s h a r p ) , a n d 555 (m,b) cm. ponding with those The  • ! i n addition t o the absorptions  3  3  5  y e l l o w o i l a n d e t h y l e n e , (21.0  t u b e a n d e x p o s e d to, t h e u l t r a v i o l e t  well  became b r o w n i s h  T r e a t i n g t h e r e a c t i o n t u b e i n t h e same m a n n e r a s d e s c r i b e d  a b o v e , gave c a r b o n monoxide  ( 0 . 5 mmole) a n d e t h y l e n e  as a brown o i l - s o l i d m i x t u r e  e x t r a c t e d w i t h n-pentane by  mmole) t o g e t h e r w i t h 3 m l . o f  a t 80° f o r 20 h o u r s when t h e r e a c t i o n m i x t u r e  orange.  corres-  o f (CH ) Sn-Mn(C0) .  pentane were r e s e a l e d i n a s i l i c a light  leaving a  centrifuging.  extracts  ( L . 2 g . ) . The l a s t  (6 m l . ) , a n d a b l a c k s o l i d  Evaporation  ( 1 8 . 0 m m o l e ) , as fraction  was  ( 0 . 1 g.) was r e m o v e d  (-10°/10 cm. Hg) o f t h e c o m b i n e d p e n t a n e  a f f o r d e d 1.1 g. o f b r o w n o i l w h i c h was t h e n  sublimed  at  \ \  _3  25°/10  cm. Hg.  The f i r s t  sublimate  ( 0 . 5 g.) o n t h e c o o l e d  probe. _3  (-76°) was r e m o v e d , a n d c o n t i n u a t i o n o f t h e s u b l i m a t i o n  (30°/10  cm. Hg)  gave t h e y e l l o w o i l o f t r i m e t h y l t i n - t e t r a c a r b o n y l ( n - e t h y l e n e ) m a n g a n e s e , (CH ) Sn-Mn(G0) i ( 7 r - C H ) 3  t  3  2  l t  C, 3 0 . 1 ; H, 3.6; M.W., Resublimation of  ( 0 . 4 g . , 1.1 m m o l e ) , ( c a l c .  358.8 f o u n d :  o f the f i r s t  sublimate  (CH ) Sn-Mn(C0) i+(Tr-C Hi ) 3  2  3  t h e b a s i s o f (CH ) SniMn(CO) 3  (CH ) Sn-Mn(C0) . 3  3  5  3  5  3  1  C, 3 0 . 0 ; H, 4 . 2 7 ; M.W., 3 4 9 ) . y i e l d e d another  [gave a t o t a l y i e l d  +  f o r C< H sSnMnO^:  0.2 g. ( 0 . 6 mmole)  o f 1.7 mmole, 4 3 % o n  t a k e n ] a n d 0.3 g. o f u n c h a n g e d  The s u b l i m a t i o n r e s i d u e , b l a c k o i l ( 0 . 1 g . ) , and t h e  e x t r a c t e d b l a c k s o l i d were n o t s t u d i e d . b.  Reaction with ethylene  a t 1 atm. i n t h e p r e s e n c e o f  hydrogen gas. (CH ) Sn-Mn(C0) 3  3  5  ( 1 . 5 g . , 4.2 mmole) a n d e t h y l e n e  ( 0 . 2 5 g. ,  Sec.  180  VI-E-6  8.8 mmole) a n d 13 m l . o f n - p e n t a n e w e r e c o n d e n s e d i n a 5 0 0 - m l . tube,  a n d 9 mmole o f h y d r o g e n g a s i n t r o d u c e d .  means o f a p a c k l e s s with at  a metal-glass  metal seal.  60° f o r f o u r h o u r s ,  bellows  silica  The t u b e was s e a l e d b y  v a l v e w h i c h was u n i t e d t o t h e t u b e  A f t e r exposing  t h e tube t o u l t r a v i o l e t  uncondensable gases  light  (7.3 mmole), a f r a c t i o n  which  c o n d e n s e d i n a -196° t r a p , a n d t h e s o l v e n t w h i c h c o n d e n s e d i n b o t h t h e -126° a n d -76° t r a p s , w e r e o b t a i n e d .  Gas c h r o m a t o g r a p h i c  i n d i c a t e d t h a t t h e uncondensable gases c o n t a i n e d  analyses  carbon monoxide ( 1 5 % ,  1.1 mmole) a n d h y d r o g e n g a s ( 8 5 % , 6.2 m m o l e ) , a n d t h a t t h e -196° was a m i x t u r e  o f ethylene  mmole), and b o t h Sublimation (0.8  ( 9 0 % , 7.0 mmole) a n d e t h a n e , C Hg, ( 1 0 % , 2  were f u r t h e r i d e n t i f i e d by t h e i r i n f r a r e d  of the i n v o l a t i l e  r e s i d u e gave unchanged  g . , 2.2 mmole) a n d (CH ) S n - M n ( C 0 ) i ( T r - G H i )  identified  3  3  t  2  +  0.8  spectra.  (CH ) Sn-Mn(C0) 3  3  5  ( 0 . 3 g . , 0.85 m m o l e ) ,  spectroscopically, leaving the sublimation residue  a black o i l .  fraction  ( 0 . 3 g.)  181  BIBLIOGRAPHY  1.  A. L a d e n b u r g , A n n . S u p p l .  ( 1 8 6 9 ) , 8_, 6 9 .  2.  R . J . H a v i g h u r s t , J . Am. Chem. S o c . ( 1 9 2 6 ) , 48_, 2 1 1 3 .  3.  F:A. C o t t o n a n d T.E. H a a s , I n o r g . Chem. ( 1 9 6 4 ) , 3_>  4.  C.E. C o f f e y , J . L e w i s a n d R.S. N y h o l m , J . Chem. S o c . ( 1 9 6 4 ) , 1 7 4 1 ; and t h e r e f e r e n c e s c i t e d t h e r e i n .  5.  J . Lewis, Pure  6.  R.B. K i n g , A d v . i n O r g a n o m e t a l . Chem., 2, e d i t e d b y F.G.A. S t o n e a n d R. W e s t , A c a d e m i c P r e s s , N.Y., 1 9 6 4 , p . 1 5 8 - 2 5 6 ; a n d t h e references cited therein.  7.  S.V. D i g h e a n d M. , O r c h i n , J . Am. Chem. S o c . ( 1 9 6 4 ) , 8 6 , 3 8 9 5 .  8.  H.R.H. P a t i l  9.  S.V. D i g h e a n d M. O r c h i n , J . Am. Chem. S o c . ( 1 9 6 5 ) , 87_, 1 1 4 6 .  1 0  -  a n d A p p l . Chem. ( 1 9 6 5 ) , 10_, 1 1 .  a n d W.A.G. G r a h a m , J . Am. Chem. S o c . ( 1 9 6 5 ) , 87_, 6 7 3 .  10.  R.J. Cross  a n d F. G l o c k l i n g , J . O r g a n o m e t a l .  Chem. ( 1 9 6 5 ) , 3_, 1 4 6 .  11.  R.J. Cross  a n d F. G l o c k l i n g , J . O r g a n o m e t a l .  Chem. ( 1 9 6 5 ) , 3_, 2 5 3 .  12.  H. G i l m a n  a n d G.L. S c h w e b k e , J . O r g a n o m e t a l .  Chem. ( 1 9 6 5 ) , 3_, 3 8 2 .  13.  W.P. Neumann a n d K. K b n i g , Angew. Chem. ( 1 9 6 5 ) , 76_, 8 9 2 .  14.  W.P. Neumann a n d K. K u h l e i n , T e t r a h e d r o n  15.  I.G.M. C a m p b e l l , 1389.  G.W.A. F o w l e s  a n d L . A . N i x o n , J . Chem. S o c ; ( 1 9 6 4 ) ,  16.  I.G.M. C a m p b e l l ,  G.W.A. F o w l e s  a n d L.A. N i x o n , . J . Chem. S o c . ( 1 9 6 4 ) ,  Letters  (1963),  Z3,1541.  3026. 17.  E.W. A b e l , Q u a r t . R e v . ( 1 9 6 3 ) , . 17_, 1 3 3 ; a n d t h e r e f e r e n c e s c i t e d  therein,  18.  D. W i t t e n b e r g  19.  C A ; Kraus  a n d W.K. N e l s o n , J . Am. Chem. S o c . ( 1 9 2 4 ) , 46_,  20.  C A . Kraus  a n d W.V. S e s s i o n s , J . Am. Chem. S o c . ( 1 9 2 5 ) , 4 7 , 2 3 6 1 .  21.  H.D. K a e s z , J . R . P h i l l i p s 1409.  a n d F.G.A. S t o n e , Chem. I n d . ( L o n d o n )  22.  H.D. K a e s z , J . R . P h i l l i p s 82, 6228.  and- F.G.A. S t o n e , J . Am. Chem. S o c . ( 1 9 6 0 ) ,  a n d H. G i l m a n , J . Am. Chem. S o c ; ( 1 9 5 8 ) , 80_, 2 6 7 7 . 195.  (1959),  182  23.  H.C. C l a r k a n d C . J . W i l l i s , J . Am. Chem. S o c - (1-960), 8_2,  24.  R.D. C h a m b e r s , H.C. C l a r k a n d C . J . W i l l i s , (1960) , 7 6 .  1888.  Chem. I n d . ( L o n d o n )  , '  25.  R.J. Cross  a n d F. G l o c k l i n g , P r o c . Chem. S o c  26.  R.D. G o r s i c h , J . Am. Chem. S o c . ( 1 9 6 2 ) , 84_, 2 4 8 6 .  27.  F. H e i n  28.  W.R. C u l l e n , C a n . J . Chem. ( 1 9 6 0 ) , 38_, 4 3 9 .  29.  M.A.A. B e g a n d H.C. C l a r k , C a n . J . Chem. ( 1 9 6 2 ) , 40_,  30.  F. H e i n a n d E. H e u s e r , Z. a n o r g . Chem. ( 1 9 4 2 ) , 2 4 9 , 2 9 3 .  31.  R.B. K i n g , R.M. T r i e c h e l  ;  (1964), 143.  a n d H. S c h e i t e r , Z. a n o r g . Chem. ( 1 9 4 9 ) , 2 5 9 , 1 8 3 .  283.  a n d F.G.A. S t o n e , Chem. I n d . ( L o n d o n )  (1961) , 747. 32.  M.A.A. B e g a n d H.C. C l a r k , Chem. I n d . ( L o n d o n )  33.  A.B. B u r g , J . Am. Chem. S o c . ( 1 9 6 1 ) , 83_, 2 2 2 6 .  34.  L.R. G r a n t , Ph.D. T h e s i s , U n i v e r s i t y o f S o u t h e r n L.A.,  (1962), 140.  California,  C a l i f . , 1961.  35.  W.R. C u l l e n  36.  W.R. C u l l e n , D.S. Dawson a n d G.E. S t y a n , J . O r g a n o m e t a l . Chem. (1965) , 3 ^ 406. ( a ) R.D. C r a m e r , E . L . J e n n e r , R.V. L i n d s e y , J r . , a n d U.G. S t o l b e r g , J . Am. Chem. S o c . ( 1 9 6 3 ) , 85_, 1 6 9 1 ; ( b ) R.V. L i n d s e y , J r . , G.W. P a r s h a l l a n d U.C. S t o l b e r g , J . Am. Chem. S o c . ( 1 9 6 5 ) , BI, 6 5 8 ; a n d t h e r e f e r e n c e s c i t e d therein.  37. 38.  a n d N.K. H o t a ,  C a n . J . Chem. ( 1 9 6 4 ) , 4 2 , 1 1 2 3 .  38.  G.C. B o n d a n d M. H e l l i e r , Chem. I n d . ( L o n d o n )  39.  H. A d k i n s  40.  F. C a l d e r a z z o . , I n o r g . Chem. ( 1 9 6 5 ) , 4_,  41.  P. S z a b o a n d L. Mark6, J . O r g a n o m e t a l .  42.  P.M. T r e i e h e l  a n d G. K r s e k , J . Am. Chem. S o c . ( 1 9 4 8 ) , 7 0 , 3 8 3 . 293. Chem. ( 1 9 6 5 ) , 3_> 3 6 4 .  a n d F.G.A. S t o n e , A d v . i n O r g a n o m e t a l .  e d i t e d b y F.G.A. S t o n e p. 143-220. 43.  (1965), 35.  H. M o r r i s a n d P.W.  Chem., 1_,  a n d R. W e s t , A c a d e m i c P r e s s , N.Y., 1 9 6 4 ,  S e l w o o d , J . Am. Chem. S o c . ( 1 9 4 1 ) , 6 3 , 2 5 0 9 .  183 44.  J.G.A. L u i j t e n a n d G.J.M. v a n d e r K e r k , " I n v e s t i g a t i o n s F i e l d o f Organotin Chemistry", T i n Research I n s t i t u t e , E n g l a n d , 1955.  45..  H.D. K a e s z , S.L. S t a f f o r d a n d F.G.A. S t o n e , J . Am. Chem. S o c . ( 1 9 5 9 ) , 81_, 6 3 3 6 .  46.  R.D. C h a m b e r s , H.C. C l a r k 82,  i n the Middlesex,  a n d C . J . W i l l i s , J . Am. Chem. S o c . ( 1 9 6 0 ) ,  5298.  47.  A.B. B u r g  and J.R. S p i e l m a n ,  J . Am. Chem. S o c . ( 1 9 6 1 ) , 83_, 2 6 6 7 .  48.  G.A. R a z u v a e v , N.S. V y a z a n k i n , Y u . I . D e r g u n o v a n d O.S. D y a c h k o v s k a y a , D o k l . A k d . N a u k , U.S.S.R. ( 1 9 6 0 ) , 152^ 3 6 4 .  49.  G.A. R a z u v a e v , N.S. V y a z a n k i n (1962), 18, 667.  50.  R.N. H a s z e l d i n e , M . J . N e w l a n d a n d J . B . P l u m b , P r o c . Chem. S o c . (1960) , 147.  51.  H.C. C l a r k , S.G. F u r n i v a l a n d J . T . Kwon, C a n . J . Chem. 4 1 , 2889.  52.  W. D r e n t h , M . J . J a n s s e n  a n d O.A. S h c h e p e t k o v a ,  and"G.J.M. v a n d e r K e r k , J .  Tetrahedron  (1963),  Organometal.  Chem. ( 1 9 6 4 ) , _2>_ 265 . 53.  R.N. H a s z e l d i n e a n d R . J . M a r k l o w , J . Chem. S o c . ( 1 9 5 6 ) , 9 6 2 .  54.  G.M.  B u r c h , H. G o l d w h i t e  a n d R.N. H a s z e l d i n e , J . Chem. S o c . ( 1 9 6 3 ) ,  1083. 55.  J.F. Harris, J r .  a n d F.W.  S t a c e y , J . Am. Chem. S o c . ( 1 9 6 1 ) , 83_, 8 4 0 .  56.  J . R . C a s e , N.H. R a y  57.  R.N. H a s z e l d i n e a n d B.R. S t e e l e , J . Chem. S o c . ( 1 9 5 7 ) ,  58.  R.N. H a s z e l d i n e a n d J . C . Y o u n g , J . Chem. S o c . ( 1 9 6 0 ) ,  59.  R.N. H a s z e l d i n e a n d B.R. S t e e l e , J . Chem. S o c . ( 1 9 5 4 ) , 9 2 3 .  60.  R.N. H a s z e l d i n e a n d J . E . O s b o r n e , J . Chem. S o c . ( 1 9 5 6 ) , 6 1 .  61.  R.N. H a s z e l d i n e , J , Chem. S o c . ( 1 9 5 3 ) ,  62.  J . R . L a c h e r , J . J . M c K i n l e y , C. W a l d e n , K. L e a a n d J . D . P a r k , J . Am. Chem. S o c . ( 1 9 4 9 ) , 71_, 1 3 3 4 ; a n d t h e r e f e r e n c e s c i t e d therein.  63.  R.N. H a s z e l d i n e a n d B.R. S t e e l e , J . Chem. S o c . ( 1 9 5 3 ) , 1 5 9 2 .  64.  R.N. H a s z e l d i n e a n d B.R. S t e e l e , J . Chem. S o c . ( 1 9 5 4 ) ,  a n d H.L. R o b e r t s , J . Chem. S o c . ( 1 9 6 1 ) , 2800. 4503.  3565.  3747.  2070.  184  65.  J . G . N o l t e s a n d G.J.M. v a n d e r . K e r k , " F u n c t i o n a l l y S u b s t i t u t e d O r g a n o t i n Compounds", T i n R e s e a r c h I n s t i t u t e , M i d d l e s e x , E n g l a n d , 1958.  66.  F. H e i n , H. P o b l o t h a n d E . H e u s e r , Z. a n o r g .  67.  A.G. D a v i e s , G. W i l k i n s o n a n d J . F . Y o u n g , J . Am. Chem. S o c . ( 1 9 6 3 ) ,  Chem. ( 1 9 4 1 ) , 2 4 8 , 8 4 .  85, 1692. 68.  L . E . O r g e l , I n o r g . Chem. ( 1 9 6 2 ) , 1_,  25.  69.  F.A. C o t t o n a n d C.S. K r a i h a n z e l , J . Am. Chem. S o c . . ( 1 9 6 2 ) ,  84_, 4 4 3 2 .  7 0 . . N. F l i t c r o f t , D.K. H u g g i n s ' a n d H.D. K a e s z , I n o r g . Chem. ( 1 9 6 4 ) , 3_, 1123; a n d t h e r e f e r e n c e s c i t e d t h e r e i n . 71.  A . S . K a s e n a l l y , J . L e w i s , A.R. M a n n i n g , J . R . M i l l e r , and M.H.B. S t i d d a r d , J . Chem. S o c . ( 1 9 6 5 ) ,  R.S. N y h o l m  3407.  72.  T . L . Brown a n d G.L. M o r g a n , I n o r g : Chem. ( 1 9 6 3 ) , 2:,  736.  73.  K . F . W a t t e r s o n a n d G. W i l k i n s o n , Chem. I n d . ( L o n d o n )  (1960), 1358.  74.  R.B. K i n g , J . Am, Chem. S o c . ( 1 9 6 3 ) , 85_, 1 9 1 8 .  75.  J.B. W i l f o r d  76.  R.F. H e c k a n d D.S. B r e s l o w , J . Am. Chem. S o c . ( 1 9 6 1 ) , 83_,  77.  H.C. C l a r k , J . H . T s a i a n d W.S. T s a n g , Chem. Comm. ( 1 9 6 5 ) , 1 7 1 .  78.  P.W. J o l l y  79.  R.N. H a s z e l d i n e a n d J . C . Y o u n g , P r o c . Chem. S o c . ( 1 9 5 9 ) , 3 9 4 .  80.  T . L . C o t t r e l l , "The S t r e n g t h s o f C h e m i c a l B o n d s " , B u t t e r w o r t h s S c i e n t i f i c P u b l i c a t i o n s , London, 1958. T.H. C o f f i e l d , J . K o z i k o w s k i a n d R.D. C l o s s o n , Chem. S o c . ( L o n d o n ) S p e c . P u b l . . ( 1 9 5 9 ) , 13_, 1 2 6 .  81.  a n d F.G.A. S t o n e ,  a n d F.G.A. S t o n e ,  I n o r g . Chem. ( 1 9 6 5 ) , A , 9 3 . 1097.  Chem. Comm. ( 1 9 6 5 ) , 8 6 .  82.  R.D. C l o s s o n , J . K o z i k o w s k i a n d T.H. C o f f i e l d , 22_, 5 9 8 .  J . O r g . Chem.  83.  ( a ) F. C a l d e r a r r o a n d F.A. C o t t o n , I n o r g . Chem. ( 1 9 6 2 ) , 1_, 3 0 . (b) F. C a l d e r a z z o a n d F.A. C o t t o n , P r o c . 7 t h I n t e r n . C o n f . Chem.,, S t o c k h o l m ( 1 9 6 2 ) .  (1957),  Coord.  84.  W. H i e b e r a n d G. W a g n e r , A n n . Chem. ( 1 9 5 8 ) , 6 1 8 , 2 4 .  85.  W. H i e b e r , G. Braum a n d W. B e c k , Chem. B e r . ( 1 9 6 0 ) , 9 1 , 9 0 1 .  86.  H.P. K o g l e r a n d E.O. F i s c h e r , Z. N a t u r f o r s c h g . ( 1 9 6 0 ) , 1 5 b , 6 7 6 .  185  87.  E.O. F i s c h e r a n d K. O f e l e , Angew. Chem. ( 1 9 6 1 ) , 7 3 , 5 8 1 .  88.  R.J; O'Brien,  Ph.D. T h e s i s , U .B .C.,  1963; and t h e r e f e r e n c e s  cited  therein. 89.  H.C. C l a r k , R . J . O ' B r i e n  90.  R. O k a w a r a , D.E. W e b s t e r a n d E.G. Rochow, J . Am. Chem. S o c . ( 1 9 6 0 ) , 82,  a n d J . T r o t t e r , J . Chem. S o c . ( 1 9 6 4 ) ,  2332.  3287.  91.  W.F.  92.  S.L. S t a f f o r d  93.  E; P i t c h e r a n d F.G.A. S t o n e ,  Spectrochim. Acta  ( 1 9 6 1 ) , L 7 , 1244.  94.  E. P i t c h e r a n d F.G.A. S t o n e ,  Spectrochim. Acta  ( 1 9 6 2 ) , 18_, 5 8 5 .  95.  D.C. S m i t h , R.A. S a u n d e r s , J . R . N i e l s e n a n d E . E . F e r g u s o n , J . Chem. Phys. (1952), 20, 847. J . R . N i e l s e n , C.Y. L i a n g , R.M. S m i t h a n d D.C. S m i t h , J . Chem. P h y s .  96.  Edgell  a n d C . H . W a r d , J . Am. Chem. S o c . ( 1 9 5 5 ) , 77_, 6 4 8 6 . a n d F.G.A. S t o n e ,  Spectrochim. Acta  ( 1 9 6 1 ) , 17_, 4 1 2 .  ( 1 9 5 3 ) , 21_, 3 8 3 . 97.  D.W.  98.  H.C. C l a r k a n d D. Whyman, P r o c . 2nd I n t e r n . M e e t i n g F l u o r i n e Chem. E s t e s P a r k , C o l o r a d o , 1962. P.M. T r e i c h e l , E. P i t c h e r a n d F.G.A. S t o n e , I n o r g . Chem. ( 1 9 6 2 ) , 1,. 5 1 1 :  99.  McBride,  E. Dudek a n d F.G.A. S t o n e , J . Chem. S o c . ( 1 9 6 4 ) , 1 7 5 2 .  100.  P.M. T r e i c h e l , J . H . M o r r i s a n d F.G.A. S t o n e , J . Chem. S o c . ( 1 9 6 3 ) , 720.  101.  J . B . W i l f o r d , P.M. T r e i c h e l ( 1 9 6 4 ) , 2, 1 1 9 .  102.  D.G. W e i b l e n ,  a n d F.G.A. S t o n e , J . O r g a n o m e t a l .  Fluorine Chemistry,  Chem.  2_, e d i t e d b y J . H . S i m o n s , A c a d e m i c  P r e s s , N.Y., ( 1 9 5 4 ) , p . 4 4 9 - 5 0 1 . 103.  W.F.  Edgell  a n d C.H. W a r d , J . M o l . S p e c t r o s c o p y  ( 1 9 6 2 ) , 8_, .343.  104.  J . A . P o p l e , W.G. S c h n e i d e r a n d H . J . B e r n s t e i n , " H i g h - r e s o l u t i o n N u c l e a r M a g n e t i c R e s o n a n c e " , M c G r a w - H i l l , : N.Y., '1959.  105.  H.C. C l a r k , J . T . Kwon, L.W.  R e e v e s • a n d E . J . W e l l s , C a n . J . Chem.  ( 1 9 6 3 ) , 41_, 3 0 0 5 . 106.  A.L. A l l r e d  a n d E.G. Rochow, J . I n o r g . N u c l . Chem. ( 1 9 5 8 ) , 5_, 2 6 9 .  107.  M.P. Brown a n d D.E. W e b s t e r , J . P h y s .  108.  R . J . A b r a h a m a n d L. C a v a l l i , M o l . P h y s .  Chem. ( 1 9 6 0 ) , 64_, 6 9 8 . ( 1 9 6 5 ) , 9, 6 7 .  186 109.  D.D. E l l e m a n , L.C. B r o w n . a n d D. W i l l i a m s , J . M o l . . S p e c t r o s c o p y , ( 1 9 6 1 ) , ]_, 3 0 7 .  110.  D.D. E l l e m a n , L.C. Brown a n d D. W i l l i a m s , J . M o l . S p e c t r o s c o p y ( 1 9 6 1 ) , ]_, 3 2 2 .  111. 112.  J . J . D r y s d a l e a n d W.D.  Phillips,  J . Am. Chem. S o c . ( 1 9 5 7 ) , 79_, 3 1 9 .  , J . L e e a n d L.H. S u t c h i f f e , T r a n s . F a r a d a y  113.  D. S e y f e r t h , T. Wada a n d G.E. M a c i e l ,  114.  A.H. L e w i n , J . Am. Chem. S o c . ( 1 9 6 4 ) , . 8 6 ,  115.  S. Ng a n d £.H; S e d e r h o l m , J . Chem. P h y s .  preferences  cited  I n o r g . Chem. ( 1 9 6 2 ) , 1_,-232. 2303. ( 1 9 6 4 ) , 4£, 2090; and t h e  therein.  116.  W.D.  117.  G.V.D. T i e r s , J . Am. Chem. S o c . ( 1 9 5 6 ) , 7 8 , 2 9 0 .  118.  D.M.  119.  W.F. E d g e l l , I n t e r n a t i o n a l C i n c i n n a t i , . Ohio, 1962.  120.  J . B . W i l f o r d a n d F.G.A. S t o n e ,  121.  F.A. C o t t o n , I n o r g . Chem. ( 1 9 6 4 ) , _3> 7 0 2 .  122.  R. M a s o n a n d D . R . R u s s e l l , Chem. Comm. ( 1 9 6 5 ) , 1 8 2 .  123.  J.B. W i l f o r d  124.  J . C h a t t a n d L.A. D u n c a n s o n , J . Chem. S o c . ( 1 9 5 3 ) ,  125.  C.C. B a r r a c l o u g h , J . L e w i s  126.  W.D.  127.  D.E. Mann, N. A c q u i s t a a n d E.K. P l y l e r , J . Chem. P h y s . and  Phillips,  S o c . ( 1 9 5 8 ) , 54, 308.  J . Chem. P h y s .  (1956), 25, 949.  Adams, J . Chem. S o c . ( 1 9 6 4 ) , 1 7 7 1 . Symposium on F a r I n f r a r e d  I n o r g . Chem. ( 1 9 6 5 ) , 4_, 3 8 9 .  a n d F.G.A. S t o n e , J . O r g a n o m e t a l .  Chem. ( 1 9 6 4 ) , 2_, 3 7 1 . 2939.  a n d R.S. N y h o l m , J . Chem. S o c ( 1 9 6 1 ) ,  H o r r o c k s , J r . a n d R.H. M a n n , S p e c t r o c h i m . A c t a  the references cited  Spectroscopy,  2582.  ( 1 9 6 5 ) , 21_, 3 9 9 . ( 1 9 5 4 ) , 22_, 1 1 9 9 ;  therein.  128.  D.E. Mann, N. A c q u i s t a a n d E.K. P l y l e r , J . Chem. P h y s .  129.  R.N. H a s z e l d i n e , J . Chem. S o c . ( 1 9 5 3 ) ,  ( 1 9 5 4 ) , 22_,  1586;  3559.  130.  R.B. K i n g a n d M.B. B i s n e t t e , J . O r g a n o m e t a l .  131.  W. B r u g e l , "An I n t r o d u c t i o n t o I n f r a r e d S p e c t r o s c o p y " , t r a n s l a t e d b y A.R. K a t r i t z k y a n d A . J . D . K a t r i t z k y , J o h n W i l e y a n d S o n s , I n c . , N.Y., 1 9 6 2 . A.N. N e s m e y a n o v , A . E . B o r i s o v a n d A . I . B o r i s o v , I z v . A k a d . N a u k , " U.S.S.R., O t d . K h i m , Nauk ( 1 9 6 2 ) , 1 1 9 9 .  132.  Chem. ( 1 9 6 4 ) , 2_, 1 5 .  187  133.  W.R. C u l l e n , D.S. Dawson a n d G;E. S t y a n , C a n . J . Chem. in press.  (1965),  134.  H.C. C l a r k , J . T . Kwon, L.W. R e e v e s a n d E . J . W e l l s , C a n . J . (1964), 42, 941.  135.  H.C. C l a r k , J . T . Kwon, L.W. R e e v e s a n d E . J . W e l l s , I n o r g . Chem. ( 1 9 6 4 ) , Z, 9 0 7 .  136..  H. S c h m i d b a u r a n d I . R u i d i s c h , I n o r g . . Chem. ( 1 9 6 4 ) , 3_, 5 9 9 .  137.  H. S c h m i d b a u r , J . Am. Chem. S o c ; ( 1 9 6 3 ) , 85_, 2 3 3 6 .  138.  N.F. Ramsey, P h y s .  139.  J . R . H o l m e s a n d H.D. K a e s z ,  Chem.  R e v . ( 1 9 5 3 ) , 91_, 3 0 3 . , J . Am. Chem. S o c . ( 1 9 6 1 ) , 8 3 , 3 9 0 3 .  140. . L. P a u l i n g , "The N a t u r e o f t h e C h e m i c a l B o n d s a n d t h e S t r u c t u r e of M o l e c u l e s and C r y s t a l s " , C o r n e l l U n i v e r s i t y P r e s s , I t h a c a , N.Y., 1 9 6 0 . 141.  B.T. K i l b o u r n a n d H.M.  P o w e l l , Chem. I n d . ( L o n d o n ) ,  142.  F.A. C o t t o n , I n o r g . Chem. ( 1 9 6 5 ) , 4_, 3 3 4 .  143.  E. P i t c h e r , A.D,. B u c k i n g h a m a n d F.G.A. S t o n e , J . Chem. ( 1 9 6 2 ) , 36, 124.  144.  H.M. M c C o n n e l l ,  CA. Reilly  ( 1 9 6 4 ) , 1578.  Phys.  a n d A.D. M c L e a n , J . Chem. P h y s .  (1956),  24_, 4 7 9 . 145. 146.  T.D. C o y l e , S.L.. S t a f f o r d  a n d F.G.A. S t o n e , J . Chem. S o c . ( 1 9 6 1 ) , 7 4 3 .  G.V.D. T i e r s , J . Chem. P h y s .  ( 1 9 6 2 ) , 36_,  1110.  147.  J.D. Swalen and C A . R e i l l y ,  J . Chem. P h y s .  148.  T.D. C o y l e , S.L. S t a f f o r d ( 1 9 6 1 ) , 17, 968.  149.  W.L. J o l l y , " S y n t h e t i c I n o r g a n i c C h e m i s t r y " , N.J., 1960.  150.  J . B . P e d l e y , H.A. S k i n n e r a n d C L . C h e r n i c k , T r a n s . ( 1 9 5 7 ) , 5J5, 1 6 1 2 .  151.  B. Bak a n d D. C h r i s t e n s e n , S p e c t r o c h i m . A c t a  152'.  A.D. B e v e r i d g e , H . C in press.  a n d F.G.A. S t o n e ,  (1961), 34, 2122. Spectrochim.  Acta  P r e n t i c e - H a l l , .Inc., '  Faraday Soc.  ( 1 9 5 8 ) , 1_2, 3 5 5 .  C l a r k a n d J . T . Kwon, C a n . J .  Chem.  (1965),  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062217/manifest

Comment

Related Items