Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A physical and chemical study of Tofino Inlet, Vancouver Island, British Columbia. Coote, Arthur R. 1964

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1964_A6_7 C66.pdf [ 3.72MB ]
Metadata
JSON: 831-1.0062187.json
JSON-LD: 831-1.0062187-ld.json
RDF/XML (Pretty): 831-1.0062187-rdf.xml
RDF/JSON: 831-1.0062187-rdf.json
Turtle: 831-1.0062187-turtle.txt
N-Triples: 831-1.0062187-rdf-ntriples.txt
Original Record: 831-1.0062187-source.json
Full Text
831-1.0062187-fulltext.txt
Citation
831-1.0062187.ris

Full Text

A PHYSICAL AND CHEMICAL STUDY OF TOFINO  INLET, VANCOUVER  ISLAND,  B R I T I S H COLUMBIA  by A r t h u r R. C o o t e  A Thesis of  Submitted  in Partial  Fullfillment  t h e Requirements f o r the Degree o f Master o f Science in  the Department of Chemistry  We a c c e p t to  this  thesis  the required  The U n i v e r s i t y  as c o n f o r m i n g • standard  o f B r i t i s h Columbia  S e p t e m b e r 196^  In presenting  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of  the requirements f o r an advanced degree at the. U n i v e r s i t y of ^ B r i t i s h Columbia, I agree that a v a i l a b l e f o r reference  the L i b r a r y s h a l l make i t freely,  and study* , I f u r t h e r .agree that, per-  m i s s i o n f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head o f my'Department or by his representatives.  I t i s understood that;copying or p u b l i -  c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n  Department of  permission*  '  ,  (^g&ti^cj^.^  The U n i v e r s i t y of B r i t i s h Columbia , •Vancouver 8, Canada 1  Date  ii  ABSTRACT The ties of  distribution  i n Tofino Inlet  o f the p h y s i c a l  i s examined  and c h e m i c a l  i n this  shallow t h r e s h o l d s . i n the entrances  the  e x c h a n g e o f deep w a t e r  o f t h e same d e p t h  i n the i n l e t  and r e s t r i c t s  density year,  o f the o c e a n i c  and a c c o u n t s  occurs  stagnates  with oceanic  water  and becomes a n o x i c .  i n t h e summer, when t h e  the year.  Under t h e s e water  i s used  a decrease  results  dioxide.  c a l c i u m carbonate  and p r o d u c e  i n ah i n c r e a s e I n the a l k a l i n i t y Using  certain  i n these  the,.bottom  w a t e r was l i k e l y  anomalous  due t o t h e d i s s o l u t i o n  relatively  i s calculated  t o determine  calcul-  that the observed  i s mainly  o f oxygen u t i l i z a t i o n  w a t e r and i s used  Event-  The p r o d u c t i o n o f  i n t h e pH o f t h e w a t e r .  i n alkalinity  condit-  use s u l p h a t e as h y d r o g e n  a t i o n s a r e made w h i c h s u g g e s t  rate  Between  up.  assumptions r e g a r d i n g the o x i d a t i v e processes,  of  temper-  stagnant  f o r the o x i d a t i o n of organic matter  substances  increase  o f the  the bottom water i n the upper b a s i n s o f T o f i n o  h y d r o g e n s u l p h i d e and c a r b o n  and  prevents  Replacement  throughout  ually heterotrophic bacteria  these  t o the i n l e t  f o r the r e l a t i v e l y h i g h bottom  i o n s t h e oxygen s u p p l y o f t h i s  acceptor  presence  s u r f a c e water i s h i g h e s t f o r t h e  a t u r e s , which a r e observed replacements  The  the i n t r u s i o n o f oceanic  water t o t h a t o f the s u r f a c e l a y e r . bottom water o f the i n l e t  study.  proper-  acidic  waters.  A  f o r t h e deep b a s i n  whether o r n o t replacement  d u r i n g t h e summer o f  1959.  of  viii ACKNOWLEDGMENTS The author  g r a t e f u l l y acknowledges the a s s i s t a n c e  g i v e n him towards the completion  o f t h i s study.  He would  e s p e c i a l l y l i k e t o thank h i s s u p e r v i s o r , Dr. P. M. W i l l i a m s f o r h i s encouragement and s u g g e s t i o n s .  Thanks a r e a l s o  due t o Dr. G. L . P i c k a r d and Mr. E . V. G r i l l who c r i t i c i z e d the manuscript. Mr. T. H. K i l l a m .  The drawings are the work of  The c o o p e r a t i o n o f members o f the  I n s t i t u t e of Oceanography i s g r e a t l y a p p r e c i a t e d . F i n a l l y the author  i s most g r a t e f u l t o the Marine  S c i e h c e s Branch, o f the Department o f Mines and T e c h n i c a l Surveys,  Canada, f o r g r a n t i n g him e d u c a t i o n a l leave i n  o r d e r t o undertake t h i s  study.  iii TABLE GF CONTENTS Chapter I II  III  page INTRODUCTION  .  F  PHYSICAL DESCRIPTION OF TOFINO INLET Geography and Topography  5  P r e c i p i t a t i o n and F r e s h Water I n f l u x . . . .  7  EXPERIMENTAL METHODS AND TREATMENT OF DATA . . :.«'-^Xt'^>  D e s c r i p t i o n of C r u i s e s O b s e r v a t i o n a l Methods  9  . . .  9  Methods o f A n a l y s i s  9  T o t a l sulphide  10  A n a l y s i s of sulphate  10  Treatment o f Data IV  9  10 12  EXPERIMENTAL RESULTS D i s t r i b u t i o n o f Temperature  ,  12  D i s t r i b u t i o n o f S a l i n i t y and D e n s i t y  . . . .  17  S a l i n i t y o f the s u r f a c e l a y e r  17  S a l i n i t y o f the deeper water . . . . . . .  23  D i s t r i b u t i o n o f D i s s o l v e d Oxygen and Hydrogen Sulphide  2*+  Oxygen c o n c e n t r a t i o n a t the s u r f a c e  . . .  2h  Oxygen and hydrogen sulphide, i n the  deep water . . . . . . . D i s t r i b u t i o n of pH and A l k a l i n i t y  26 . . . . .  D i s t r i b u t i o n o f pH . . . . . . . . . . .  .  29 31  iv Chapter  page Distribution Distribution  V  31  of a l k a l i n i t y  o f Phosphate and S i l i c a t e . .  Distribution  of phosphate  Distribution  of s i l i c a t e  . .  31 32 3  2  35  DISCUSSION OF RESULTS Estuarine Characteristics  of T o f i n o I n l e t .  35  Replacement of the Bottom Water i n 38  Tofino Inlet Rate o f Oxygen U t i l i z a t i o n i n the Stagnant  ^5  Basins of Tofino I n l e t Regeneration o f Phosphate and S i l i c a t e . .  *+6  Oxygen Minima and P h o s p h a t e - S i l i c a t e Maxima i n the Oxygenated Zone  W-9  pH and A l k a l i n i t y R e l a t i o n s h i p s i n the 50  Anoxic Zone o f T o f i n o I n l e t . . .  52  T i t r a t i o n a l k a l i n i t y o f the anoxic zone.  53  E q u a t i o n s f o r the oxygenated zone  VI  .  6h  • . * .  65  CONCLUSIONS  REFERENCES -s- • • ... . , • • . . . . . .  APPENDIX A. Observations o f Sulphide i n T o f i n o I n l e t  69  APPENDIX B. Observations made i n T o f i n o I n l e t i n August 1 9 6 1 APPENDIX C. Wattenburg's Method  70 f o r the D e t e r m i n a t i o n  of the Apparent S o l u b i l i t y Products o f Calcium Carbonate i n Seawater  . . . .  71  V  L I S T OF TABLES Table I II III  Page OBSERVATIONS  TAKEN ON TOFINO  INLET CRUISES . .  SURFACE OXYGEN VALUES!  11 26  A COMPARISON OF OBSERVED ALKALINITY WITH NORMAL SEAWATER VALUES OF ALKALINITY AT STATION TOFINO 1/2 IN SEPTEMBER  IV  I960  .....  29  OXYGEN, TOTAL SULPHIDE, T.T.A., ANOMALOUS ALKALINITY INCREASE AND  pH FOR  THE ANOXIC BASINS OF TOFINO INLET V  .  COMPARISON OF CALCULATED AND  55  OBSERVED  AKALINITY IN THE ANOXIC BASINS OF TOFINO INLET VI  60  ION PRODUCTS OF CALCIUM CARBONATE AT STATION 1/2 IN TOFINO INLET  . . . . . .  62  vi LIST OF FIGURES Figure  Page  1  C o a s t l i n e o f B r i t i s h Columbia showing the l o c a t i o n of Tof ino I n l e t  3  2  Map of T o f i n o I n l e t and i t s approaches showing the l o c a t i o n o f the oceanographic s t a t i o n s . . . . . . . . . . . . .  h  3  k  5 6  7  8  9  10  11  L o n g i t u d i n a l p r o f i l e s o f temperature (°C) f o r T o f i n o I n l e t i n May 1 9 5 9 , J u l y 1 9 5 9 and March I960  lh  L o n g i t u d i n a l p r o f i l e s o f temperature (°C) f o r T o f i n o I n l e t i n June I960, Sept. I960 and Feb. 1961 . . . . . . . . . . . . . . .  15  L o n g i t u d i n a l o f temperature (°C) f o r T o f i n o I n l e t i n A p r i l 1961 . . . . . . . . . . . .  16  L o n g i t u d i n a l p r o f i l e s of s a l i n i t y ( °/oo) f o r T o f i n o I n l e t i n May 1 9 5 9 , March I960 and June I960  18  L o n g i t u d i n a l p r o f i l e s o f s a l i n i t y ( °/oo) f o r T o f i n o I n l e t i n Sept. I960, Feb. 1961 and A p r i l 1961  19  V e r t i c a l p r o f i l e s o f s a l i n i t y and temperature i n T o f i n o I n l e t during c r u i s e s ; 5 9 / 6 May 1 9 5 9 , 6 0 / 8 , June I960, 60/17 S e p t . I960 6 1 / 3 Feb. 1 9 6 1 , 6 1 / 8 A p r i l 1 9 6 1 . The s t a t i o n s are shown at the top . . . . . . .  20  L o n g i t u d i n a l p r o f i l e s o f d e n s i t y (flr) f o r T o f i n o I n l e t i n May 1 9 5 9 , March I960 and June I960  21  L o n g i t u d i n a l p r o f i l e s o f d e n s i t y (<& ) f o r T o f i n o I n l e t i n Sept. I960, Feb. 1961 and A p r i l 1961  22  L o n g i t u d i n a l p r o f i l e s o f d i s s o l v e d oxygen i n mg./l f o r T o f i n o I n l e t i n May 1 9 5 9 , June I960 and Sept. I960  25  vii Figure 12  13  ih  15  16  17  18  19  20  Page L o n g i t u d i n a l p r o f i l e s o f d i s s o l v e d oxygen i n mg./l f o r T o f i n o I n l e t i n Feb. 1961 and A p r i l 1961 . . . . . . . . . . . . . . .  28  V e r t i c a l p r o f i l e s o f oxygen and pH i n T o f i n o I n l e t during c r u i s e s 59/6 May 1959, 60/8 June I960, 60/17 Sept. I960, 61/3 Feb. 1961, 61/8 A p r i l 1961. The s t a t i o n s are shown at the top . . . . . . . . . . . . . . .  30  L o n g i t u d i n a l p r o f i l e s o f t o t a l phosphate and s i l i c a t e (ug.at./l) f o r Tofino Inlet i n Sept. I960 . . . . . . . . . . . . . . . . . . .  33  V e r t i c a l p r o f i l e s of s i l i c a t e , i n o r g a n i c phosphate and t o t a l phosphate i n T o f i n o I n l e t ; c r u i s e 60/8 June i 9 6 0 , 60/17 S e p t . I960, 61/3 Feb. 196I, 61/8 A p r i l 1961. The s t a t i o n s are shown at the t o p .  3h  V a r i a t i o n o f sea-surface s a l i n i t y and temperature at Amphitrite P o i n t . Monthly r a i n f a l l at E s t e v a n P o i n t f o r 1957. . . w . . . . . . .  .  kO  V a r i a t i o n of sea-surface s a l i n i t y and temperature a t Amphitrite P o i n t . Monthly r a i n f a l l at E s t e v a n P o i n t u n t i l Nov. 1958. Monthly r a i n f a l l at T o f i n o A i r p o r t , Dec. 1958. . . . . .  hi  V a r i a t i o n o f sea-surface s a l i n i t y and temperature at Amphitrite P o i n t f o r 1959Monthly r a i n f a l l at T o f i n o A i r p o r t 1959. . . . . . . . .  *+2  V a r i a t i o n o f sea-surface s a l i n i t y and temperature at Amphitrite P o i n t . Monthly r a i n f a l l at T o f i n o A i r p o r t i n I960. . . . . . . . . . . .  hs  Oxygen consumption at f i v e s e l e c t e d depths i n T o f i n o I n l e t between S e p t . I960 and A p r i l I960 . . . . . . . . . . .  4-7  CHAPTER  I  INTRODUCTION  Annual mainland  surveys of  inlets  In  1959  include  the  Many o f  these  previously Inlet  the  30  water  i n the  a marked  s i o n was  present  at  In March, I 9 6 0 , decreased, detailed  and  further  in July,  the  up  not  been  in  Tofino  The  the  surface  of  the  suggested  that  the  might w e l l  inlet  the  and  temp-  15.3°C. at  oxygen content  that  1959  water  at  to  Island.  had  inversion.  to  the  while  the  still  examination of that  in  to  intensity  the  bottom be  same t e m p e r a t u r e  also  that  of  the  to  deep  inver-  15.3°C. water  70-75 m e t e r s i n the b a s i n a t S t a t i o n  i t was  (1)  low  (1959) f o u n d  observations mind;  that  of  since  expanded  Inlet,  then increased  the  Columbia  16.0°C.  of  Institute  of Vancouver  temperature  stagnation  present  coast  Columbia  the  s u r v e y was  found  from a value  basins  Ford  west  by  including Tofino  m e t e r s and  indicated  British  of B r i t i s h  the  I t was  In a d d i t i o n ,  1  of  i n the  inlets,  water  anoxic.  scope  inlets  decreased  bottom.  University  surveyed.  1 0 . 0 ° C . at  was  the  exhibited  erature  the  have b e e n c a r r i e d out  Oceanography at 1951.  some o f  1/2.  inversion  had  i n evidence.  C o n s e q u e n t l y , a more  the  undertaken.  inlet  were made were  determine  the  was  selected  with  two  physical distribution  The objects of  R i c h a r d s and B e n s o n (1961) have s u g g e s t e d t h a t t h e word a n o x i c be used t o d e s c r i b e n a t u r a l w a t e r s t h a t contain no d i s s o l v e d o x y g e n .  properties (2)  and  f l u s h i n g c h a r a c t e r i s t i c s o f the  to Investigate  the  chemical properties  inlet,  o f the  and  anoxic  basins. It results Inlet ties  i s the  of these  and that  purpose  p h y s i c a l and  to suggest were  of t h i s  found.  reasons  t h e s i s to present  chemical studies  in  the Tofino  f o r the d i s t r i b u t i o n o f prope  130°  the  IZ6°W  Pig. l . Coastline of B r i t i s h l o c a t i o n of T o f i n o i n l e t .  I  Columbia,  showing  the  F i g . 2. Map o f T o f i n o I n l e t and i t s a p p r o a c h e s l o c a t i o n o f the oceanographic s t a t i o n s .  showing  CHAPTER I I PHYSICAL DESCRIPTION OF TOFINO INLET I.  GEOGRAPHY AND  Tofino Inlet i s situated ver  i n the west  I s l a n d at *f9°08«N and 125° +7 W. l  g e n e r a l l o c a t i o n o f the i n l e t . inlet  l  coast o f Vancou-  F i g u r e I shows the  F i g u r e 2 i s a map  o f the  and i t s approaches, c o n t a i n i n g the l o c a t i o n o f the  oceanographic  stations.  The i n l e t of  TOPOGRAPHY  i s separated from the c o a s t a l s h e l f r e g i o n  Clayoquot Sound by Meares I s l a n d .  Two  channels are thus  formed, which connect the i n l e t w i t h the water o f the c o a s t a l s h e l f o f Vancouver one i s deeper.  Island.  Of these two channels the n o r t h e r n  I t begins at Dawley Pass and runs through  Fortune Channel, M a t l s e t Narrows, the southern p o r t i o n o f B e d w e l l Sound and F a t h e r C h a r l e s Channel.  Browning  Passage  forms the s h a l l o w e r , southern c h a n n e l . Tofino Inlet i s 11.5 n a u t i c a l miles long.  From the  two narrow channels o f Dawley Pass and Browning Passage the w i d t h i n c r e a s e s t o a maximum of 2 . 5 m i l e s at S t a t i o n 2 and t h e n p r o g r e s s i v e l y decreases toward the head at Deer The maximum depth, 130 meters, i s at S t a t i o n 1.  Bay.  In Fortune  Channel the maximum depth Is 14-0 meters, at S t a t i o n 5 . g e n e r a l f e a t u r e s o f the bottom topography o f the i n l e t of  The and  the n o r t h e r n passage as f a r as Bedwell Sound are g i v e n  6 in  the l o n g i t u d i n a l p r o f i l e s F i g u r e s 3-5, pages lh and 1 6 .  The v e r t i c a l e x a g g e r a t i o n i s 100 t o I . Carter Columbia,  (1933), i n d e s c r i b i n g the i n l e t s o f B r i t i s h  classified  them as f j o r d s .  These are l o n g , narrow  winding bodies o f water which are connected t o the sea over a s h a l l o w t h r e s h o l d or s i l l . present which d i v i d e the i n l e t Tofino Inlet f a l l s  O f t e n a s e r i e s o f s i l l s are i n t o a number o f b a s i n s .  i n t o the f j o r d  The depth i n the approaches not  classification. t o T o f i n o I n l e t water i s  g r e a t e r than 11 meters, except through F a t h e r C h a r l e s  Channel, where the depth I s 13 meters.  From t h i s p o i n t , the  n o r t h e r n channel deepens i n t o a b a s i n i n Bedwell Sound w i t h a maximum depth o f 110 meters. a 28 meter s i l l .  In M a t l s e t Narrows there i s  The b a s i n formed by Fortune Channel has a  maximum depth o f IkO meters at S t a t i o n 5 and then shallows to  a 33 meter s i l l  which i s formed  i n Dawley Pass.  by Browning Passage,  meters and the s i l l  The southern channel, i s not deeper than 11  depth I n t h i s channel i s 7 meters.  The main b a s i n o f T o f i n o I n l e t g r a d u a l l y deepens from Dawley Pass, u n t i l a t S t a t i o n 1 , the i n l e t reaches a maximum depth o f 130 meters.  S i l l s o f 66 meters, 21 meters and 33  meters  separate the t h r e e anoxic b a s i n s at the head  inlet.  The depth o f these b a s i n s , a t S t a t i o n 1 / 2 ,  0 1/2 and S t a t i o n 0 , i s 96 meters, 4-5 meters and  o f the Station meters,  respectively. The depths, c i t e d above, are taken from Chart No. 364-0  7 p u b l i s h e d by the Canadian HydrographIc S e r v i c e and from t h e i r unpublished lowest  field  normal t i d e s .  sheet.  The depths are reduced t o  At h i g h t i d e the water l e v e l can be 4—5  meters g r e a t e r . II.  PRECIPITATION AND FRESH WATER INFLUX  P r e c i p i t a t i o n In the area i s heavy. taken at E s t e v a n  Measurements  P o i n t p r i o r t o November 1958 and at T o f i n o  A i r p o r t s i n c e then i n d i c a t e the annual r a i n f a l l r e g i o n i s 1 2 0 inches a year  i n this  (Anon. 1 9 5 7 a - 1 9 6 0 a ) .  16 t o 1 9 , pages 4-0 t o 4-3, show the monthly r a i n f a l l r e g i o n d u r i n g the years 1 9 5 7 - 1 9 6 0 .  The r a i n f a l l  d u r i n g the f a l l , winter and s p r i n g and l i g h t summer.  During  Figures i n the  i s heavy  d u r i n g the  the summers o f 1 9 5 8 and I960 there were  p e r i o d s o f s e v e r a l weeks o f d r y weather. The Kennedy R i v e r provides the l a r g e s t source o f f r e s h water, d r a i n i n g approximately discharge  f i g u r e s are a v a i l a b l e but a rough e s t i m a t e ,  r a i n f a l l and drainage 1000 at  1 0 0 square m i l e s .  No using  a r e a , would place the average f l o w at  c u b i c f e e t per second.  the head o f the i n l e t ,  The d i s c h a r g e  o f T o f i n o Creek,  i s s u b s t a n t i a l l y l e s s than the  Kennedy R i v e r . Since the mountains, which are i n the T o f i n o  Inlet  watershed, are o n l y 2 0 0 0 - 3 0 0 0 f e e t h i g h , no l a r g e snowstorage  area e x i s t s and maximum r u n - o f f occurs d u r i n g the  winter,  c o i n c i d i n g w i t h the p e r i o d o f maximum r a i n f a l l .  8 T h i s i s t r u e of a l l the r i v e r s along  the west coast o f  Vancouver I s l a n d and d i f f e r s from c o n d i t i o n s on the mainl a n d , where maximum r u n - o f f occurs d u r i n g the summer  1963).  (Pickard  CHAPTER I I I EXPERIMENTAL METHODS AND TREATMENT OF DATA I.  DESCRIPTION OF CRUISES  The o r i g i n a l work c a r r i e d out by the I n s t i t u t e o f Oceanography a t the U n i v e r s i t y o f B r i t i s h Columbia and by Dr. W. L . F o r d i n T o f i n o I n l e t , d u r i n g May and J u l y o f 1 9 5 9 , formed the b a s i s f o r the s e r i e s o f c r u i s e s t h a t were subsequently undertaken.  Table I c o n t a i n s a l i s t  o f these c r u i s e s , the s t a t i o n s  occupied and the o b s e r v a t i o n s taken on each c r u i s e .  Except  f o r hydrogen s u l p h i d e the d a t a taken on these c r u i s e s i s p u b l i s h e d i n the Data Reports o f the I n s t i t u t e o f Oceanography a t the U n i v e r s i t y o f B r i t i s h Columbia 196lb).  (Anon 1 9 5 9 b -  The hydrogen s u l p h i d e data are i n c l u d e d i n Appendix  A, page 6 9 . II,  OBSERVATIONAL METHODS  Hydrographic c a s t s were made a t each s t a t i o n . Temperatures were measured w i t h a bathythermograph.  w i t h r e v e r s i n g thermometers and M e t e r o l o g i c a l data were r e c o r d e d .  Samples f o r c h e m i c a l a n a l y s i s were withdrawn from the A t l a s sampling b o t t l e s i n an order which minimized the exchange  o f d i s s o l v e d gases w i t h the a i r . III.  METHODS OF ANALYSIS  Except where noted below, the a n a l y t i c a l methods used  10 were those d e s c r i b e d by S t r i c k l a n d and Parsons Total sulphide.  (1961).  Sulphide samples were drawn i n t o 500ml  p l a s t i c b o t t l e s c o n t a i n i n g 2 mis o f 2k-% z i n c a c e t a t e s o l u t i o n and were analyzed by the Iodine v o l u m e t r i c method. (Standard Methods, 1955).  The samples taken d u r i n g the c r u i s e  i n September I960 were kept a t ambient l a b o r a t o r y tempera t u r e aboard  s h i p and brought  ator u n t i l analyzed.  back and s t o r e d i n a r e f r i g e r -  A fungus growth developed  i n these  samples a f t e r about two months but a p p a r e n t l y no r e a c t i o n took place w i t h the p r e c i p i t a t e d  zinc sulphide.  t a k e n on l a t e r c r u i s e s were f r o z e n aboard u n t i l they were analyzed*  Samples  s h i p and kept f r o z e n  These samples were f r e e o f fungus  growth. Analysis of sulphate.  Sulphate  by the method o f Bather and R i l e y t h i s method i s not s u f f i c i e n t  samples were analysed  (195^).  The p r e c i s i o n o f  t o o b t a i n any worthwhile  i n f o r m a t i o n from the sulphate o b s e r v a t i o n s and no use. i s made o f them i n t h i s . p r e s e n t a t i o n . IV.  TREATMENT OF DATA  The data i s presented  g r a p h i c a l l y i n two waysj (1) i n  l o n g i t u d i n a l p r o f i l e along a s e c t i o n which runs through the c e n t e r o f the i n l e t , (2) i n v e r t i c a l p r o f i l e a t each s t a t i o n , showing the v a r i a t i o n o f each p r o p e r t y w i t h  depth.  11 TABLE I OBSERVATIONS TAKEN ON TOFINO INLET CRUISES  Stations Occupied  Observations Taken  Cruise  Date  59/6  May 1959  B e d . 3 , T o f . 5 , Tof.4-, T o f . 3 , Tof.2, T o f . 1 .  S a l i n i t y , Temp. Oxygen.  W.L. Ford  May 1959  Tof.3, Tof.2, T o f . 1/2.  Tof.l,  Temp, by Bathythermograph.  6O/3  March  Bed.3, Tof.5, T o f A , T o f . 3 1/2, T o f . 3 , T o f . 2, T o f . l , T o f . 1/2.  S a l i n i t y , Temp.  60/8  June, I960  Bed.3, T o f . 5 , Tof.4-, T o f . 3 , Tof.2, T o f . l , T o f . 1/2, T o f . 0 1/2, Tof .0  S a l i n i t y , Temp. Oxygen, Phosphate, S i l i c a t a , pH, Current Measurement . N i t r a t e , Nitrite.  60/17  Sept. I960  Tof A, 3 , 2 1/2, 2, 1 1 / 2 , 1, 1/2, 0 1/2, R-2.  S a l i n i t y , Temp., Oxygen, Phosphate, S i l i c a t e , PH, ' Alkalinity, Sulphide.  60/26  Dec. 1960  Tof.2 1/2, 2, 1 1/2, 1, 1/2.  S a l i n i t y , Temp., Oxygen.  61/3  Feb. 1961  Len 1, B e d . 3 , T o f . 5 , 4- 1/2, 4-, 3 1/2, 3 , 2 1/2, 2, 1 1/2, 1, 1/2.  S a l i n i t y , Temp., Oxygen, Phosphate, S i l i c a t e , pH, Alkalinity, Sulphide, N i t r a t e .  61/8  April, 1961  Tof .4-., 3, 2, 1 1/2, 1, 1/2.  S a l i n i t y , Temp., Oxygen, Phosphate, S i l i c a t e , pH, Alkalinity, Sulphide.  CHAPTER IV EXPERIMENTAL RESULTS In t h i s s e c t i o n the o b s e r v a t i o n s o f temperature, s a l i n i t y , d e n s i t y , d i s s o l v e d oxygen, pH, a l k a l i n i t y , phate and s i l i c a t e are d e s c r i b e d .  phos-  The d i s t r i b u t i o n of these  p r o p e r t i e s , e s p e c i a l l y temperature and s a l i n i t y , i s i n d i c a t i v e o f the oceanographic s t a t e o f the i n l e t and can be used t o f o l l o w long-term changes  i n the water masses o f the  inlet.  Chemical p r o c e s s e s o c c u r r i n g i n the i n l e t are r e f l e c t e d I n the d i s t r i b u t i o n o f the chemical c o n s t i t u e n t s , such as oxygen, hydrogen s u l p h i d e , pH, a l k a l i n i t y , phosphate  and  silicate. I.  DISTRIBUTION OF TEMPERATURE  The temperature c h a r a c t e r i s t i c s observed i n T o f i n o I n l e t d u r i n g seven c r u i s e s are shown i n l o n g i t u d i n a l F i g u r e s 3-5» i n Figure 8 ,  V e r t i c a l p r o f i l e s are g i v e n f o r each  station  page 2 0 .  The temperature s t r u c t u r e i n the i n l e t except i n September  I960.  i s complex  The complexity i s g r e a t e s t  the head and becomes l e s s pronounced Dawley Pass.  profile,  toward  toward the mouth at  In Fortune Channel, the water below the  s u r f a c e t h e r m o c l i n e i s i s o t h e r m a l at a l l t i m e s . produced by the 3-h  Turbulence,  knot c u r r e n t s i n the two narrow  passages  x  3  at e i t h e r end o f Fortune Channel, p r o v i d e s enough mixing t o b r i n g about u n i f o r m i t y o f temperature.  The v a r i a t i o n o f  s e a - s u r f a c e temperature at A m p h i t r i t e P o i n t , f o r the years 1957-1960, i s presented i n F i g u r e s 16-19, pages ^0 t o V3 (Anon, 1 9 5 8 c - 1 9 6 l c ) .  These temperatures should be r e p r e -  s e n t a t i v e o f s e a s o n a l changes o c c u r r i n g i n the oceanic s u r f a c e F i g u r e 8, page 2 0 ,  water, o u t s i d e T o f i n o I n l e t .  i n the s p r i n g , summer and f a l l , i n Tofino Inlet  a temperature minimum occurs  at i n t e r m e d i a t e depths.  f o r S t a t i o n 1, June i 9 6 0 ,  shows that  The v e r t i c a l p r o f l i e s 1  illustrate this.  The temperature  decreases from 1 5 . 0 ° C a t the s u r f a c e t o a minimum o f 9.0°C at ho meters and then i n c r e a s e s t o 13«9°C at 120 meters.  In  September I960, the temperature minimum i s not pronounced and below ko meters the temperature remains constant at 13»5°C.  I n F e b r u a r y 1961, w i n t e r c o o l i n g has reduced the  temperature o f the s u r f a c e water below t h a t o f the i n t e r mediate water and no temperature minimum appears.  In A p r i l  1961, the s u r f a c e water has heated up and a temperature minimum Is a g a i n i n e v i d e n c e . t o two c o n d i t i o n s ;  (1)  The temperature minimum i s due  the presence o f warm bottom  water  which remains r e l a t i v e l y unchanged i n the basiris f o r long p e r i o d s , and (2)  the warming o f the s u r f a c e water d u r i n g the  warmer seasons o f the y e a r .  Note t h a t between September  I960 and A p r i l 1961, the temperature o f the 100 meter water, at S t a t i o n 1, decreased from 13.4-8°C t o 'l3, f0 C.,- and the l  D  110 meter water decreased from'13.*f8°C- t o 13.M+°C.  This i s  F-'g. 3 . (°C) f o r Tofino i . o r c h I960.  Longitudinal I n l e t i n May  p r o f i l e s of temperature 1959, J u l y 1959 and  15  F i g . »f. L o n g i t u d i n a l p r o f i l e s o f t e m p e r a t u r e (°C) f o r T o f i n o I n l e t i n June I960, S e p t . I960 and F e b . 1961.  16 in  contrast  to the period  1959  t o June- I 9 6 0 ;  during  t i m e t h e 1 0 0 m e t e r w a t e r d e c r e a s e d f r o m 15.4-°C. t o  this  Tofino  Fig. 5 Longitudinal Profile I n l e t i n A p r i l 1961. At  S t a t i o n 1/2,  o f Temperature  the temperature p r o f i l e s  and J u n e , I 9 6 0 , ' e x h i b i t the  f r o m May  an a d d i t i o n a l f e a t u r e .  temperature o f the water i n the b a s i n  ature 13.5°C  t o 12.6°C a t the bottom. t o Ik.0°  increased at the The  two  (°C) f o r  for July, In J u l y ,  increased  maximum o f 1 5 . 3 ° C , between 68 m e t e r s and 75 m e t e r s decreased  13.9°C.  1959 1959  to a and  I n J u n e , I960 t h e  temper-  a t 75 m e t e r s and d e c r e a s e d t o  bottom. upper b a s i n s ,  S t a t i o n 0 1/2  and S t a t i o n 0 were  not  s u r v e y e d on e v e r y c r u i s e b u t when o b s e r v e d , i n June  and  September  the  intermediate  I960  I960, t h e y showed t h e t e m p e r a t u r e minimum i n water.  17 11.  DISTRIBUT ION OF SALINITY , AND  DENSITY  The s a l i n i t y c h a r a c t e r i s t i c s observed i n T o f i n o f o r s i x c r u i s e s are shown i n l o n g i t u d i n a l p r o f i l e , 6 and 7, and i n v e r t i c a l p r o f i l e i n F i g u r e 8. shown i n l o n g i t u d i n a l p r o f i l e i n F i g u r e s  Inlet  Figures  Density i s  9 and 10.  In  oceanographic work a q u a n t i t y c a l l e d O* d e f i n e d as 1000  x  ( s p e c i f i c g r a v i t y minus one) i s used t o s p e c i f y the d e n s i t y of  seawater. As i n other B r i t i s h Columbia  I n l e t s the d i s t r i b u t i o n  o f mass and hence the movement o f water i n T o f i n o  Inlet  depends almost e n t i r e l y on the s a l i n i t y d i s t r i b u t i o n 194-9, P i c k a r d 1961,  1963).  p r o f i l e s o f temperature and d e n s i t y  Comparison  (Tully  o f the l o n g i t u d i n a l  (Figure 4-), s a l i n i t y  (Figure 10), i n F e b r u a r y 1961,  (Figure 7 ) ,  illustrates  this.  While the temperature i n c r e a s e s from the s u r f a c e t o the bottom, the i n c r e a s e In temperature does not overcome the s t a b i l i t y i n d e n s i t y which f o l l o w s the d i s t r i b u t i o n o f salinity. S a l i n i t y o f the s u r f a c e l a y e r .  The l o n g i t u d i n a l  p r o f i l e s o f s a l i n i t y show t h a t the value i n the  surface  l a y e r i n c r e a s e s from a few p a r t s per thousand at the head, t o t e n t o f i f t e e n p a r t s per thousand a t Dawley Pass. S t a t i o n 3 there  i s a decrease i n s u r f a c e s a l i n i t y  w i t h the r u n - o f f from the Kennedy R i v e r . the  surface  s a l i n i t y increases  At  associated  In Fortune Channel  s h a r p l y as a r e s u l t of m i x i n g .  18  Fig. 6 . Longitudinal profiles of salinity (Voo) for Tofino Inlet in May 1959, March I960 and June I960.  19  F i g . 7. L o n g i t u d i n a l p r o f i l e s o f s a l i n i t y (°/oo)for T o f i n o I n l e t i n Sept. I960, Feb. 1961 and A p r i l 19*1.  F i g . 8. V e r t i c a l p r o f i l e s o f s a l i n i t y and temperature i n T o f i n o I n l e t during c r u i s e s : 59/6 May 1959, 60/8, June I960, 60/17 Sept. I960 61/3 Feb. 1961, 61/8 A p r i l 1961. The The s t a t i o n s are shown at the top.  21  F i g . 9 . L o n g i t u d i n a l p r o f i l e s of d e n s i t y (c£ ) f o r Tof ino I n l e t i n May 195.9, March I960 and June I 9 6 0 .  22  F i g . 10. L o n g i t u d i n a l p r o f i l e s o f d e n s i t y (Ct) T o f i n o I n l e t i n Sept. I960, Feb. 1961 and A p r i l 1961.  for  23 From Fortune Channel through Bedwell Sound the s a l i n i t y o f the surface water Increases, approaching the value o f c o a s t a l s u r f a c e water.  F i g u r e s 16 t o 19, pages kO t o 4-3,show the  s u r f a c e s a l i n i t y v a r i a t i o n at Amphitrite 1960 (Anon. 1 9 5 8 c - 1 9 6 l c ) .  They show that the s a l i n i t y o f the  c o a s t a l s u r f a c e water i s h i g h e r  i n summer than i n w i n t e r .  T h i s f e a t u r e has been d e s c r i b e d by T u l l y MacLeod  (1953)  and Lane ( 1 9 6 2 ) .  h i g h s a l i n i t y water induced coupled  1957-  P o i n t from  (19^9), P i c k a r d and  I n summer, the upwelling o f  by the p r e v a i l i n g northwest winds,  with reduced f r e s h water r u n - o f f g i v e s h i g h e r  salinities.  In winter  lower s u r f a c e s a l i n i t i e s are due t o  g r e a t e r land drainage  and t o the p r e v a i l i n g southeast  which hold the l i g h t  s u r f a c e water a g a i n s t the shore.  Salinity  surface  o f the deeper water.  The v e r t i c a l  winds  profiles  o f s a l i n i t y , F i g u r e 8 , show the s a l i n i t y f e a t u r e s i n the deeper water. depth p r o f i l e s .  Normally two h a l o c l i n e s can be seen i n the An upper h a l o c l i n e having  a l a r g e gradient  extends from the s u r f a c e t o 2 . 5 meters and has i t s o r i g i n i n the e s t u a r i n e c i r c u l a t i o n o f the i n l e t . the  s a l i n i t y g r a d u a l l y i n c r e a s e s down t o 50 t o 60 meters.  Here a second h a l o c l i n e appears. not  Below 2 - 5 meters  T h i s deep h a l o c l i n e does  appear i n Fortune Channel, where i n t e n s i v e mixing r e s u l t s  i n constant  d e n s i t y below 20 meters.  In September, I960 the  deep h a l o c l i n e was absent i n the i n l e t .  From June t o  September the s a l i n i t y i n c r e a s e d from 26.9°/oo t o 28.9°/oo  k  2  at 60 meters.  Below 5 meters, the s a l i n i t y  distribution  was homogeneous at 28.9°/oo at t h i s time, showing t h a t a  major i n t r u s i o n o f dense c o a s t a l seawater had o c c u r r e d . The main f e a t u r e s shown by the s a l i n i t y are;  (1)  a shallow  distribution  s u r f a c e l a y e r o v e r l y i n g a more s a l i n e  zone, (2) h i g h s a l i n i t y deep water which  intermediate  the basins at the head o f the i n l e t  fills  (3) uniform s a l i n i t y i n  the water below the h a l o c l i n e i n Fortune Channel, and t h a t a massive i n t r u s i o n o f oceanic water occurred  during  the summer o f I960. III.  DISTRIBUTION OF DISSOLVED OXYGEN AND HYDROGEN SULPHIDE  F i g u r e s 11  and 12,  pages 2 5 and 28, give the l o n g i -  t u d i n a l p r o f i l e s o f d i s s o l v e d oxygen, i n mg/1; June I960, September  I960, February 1961  f o r May 1 9 5 9 ,  and A p r i l  1961.  F i g u r e 1 3 , page 3 0 , shows the v e r t i c a l p r o f i l e s f o r the same periods. Oxygen c o n c e n t r a t i o n a t the s u r f a c e .  The  concentra-  t i o n o f oxygen i n the s u r f a c e water decreases from the head t o the mouth o f the i n l e t . higher  I n p a r t , t h i s may be due t o the  s o l u b i l i t y o f oxygen i n the f r e s h water which e n t e r s  at the head o f the i n l e t .  As s a l t  i s e n t r a i n e d by the  s u r f a c e water moving down the i n l e t , the s o l u b i l i t y i s decreased.  Photosynthesis  a l s o c o n t r i b u t e s t o the h i g h  25  in  Fig. 11. L o n g i t u d i n a l p r o f i l e s of d i s s o l v e d oxygen o g . / l f o r T o f i n o I n l e t i n May 1 9 5 9 , June I960 and  Sent. I960.  26 values o f oxygen found i n the s u r f a c e  layer.  TABLE I I SURFACE OXYGEN VALUES mg./l Station Date  Bed "4  Tof . 5  10,2  10.9  June I960  8.6  Sept.I960  1.  1/2.  0.  1.0.8 10.0 10.1  10.5  10.5  11.3  10.1  10.1  10.1  11.0  9.2  9.7  4-. **..•  9.6  9.7  2.  Dec. I960 Feb. 1961 April  9.7  1961  9.6 11.2  11.1  11.1  11.2  10.2 11.8  12.1  12.1  12.1  Oxygen and, hydrogen sulphide i n the deep water.  The  c o n c e n t r a t i o n o f oxygen i n c r e a s e s t o a maximum 2 - 5 meters below the s u r f a c e and then decreases with depth.  The maximum  i s a t t r i b u t a b l e t o the p r o d u c t i o n of oxygen by p h o t o s y n t h e t i c organisms, which are present depths.  i n g r e a t e s t numbers a t these  I n the b a s i n s , at S t a t i o n 1 / 2 , S t a t i o n 0 - 1 / 2 , and  S t a t i o n 0, the c o n c e n t r a t i o n of oxygen decreases t o z e r o . In these b a s i n s hydrogen sulphide i s present t i o n s up t o 1 3 . 9 mg./l.  The s u l p h i d e - c o n t a i n i n g anoxic zones  are shown by c r o s s - h a t c h i n g , highest  i n concentra-  i n F i g u r e s 1 1 and 1 2 . The  c o n c e n t r a t i o n o f s u l p h i d e , 1 3 . 9 mg./l, was observed  a t S t a t i o n 0 - 1 / 2 , i n September  I960.  In Fortune Channel oxygen i s e s s e n t i a l l y constant i n  27 the water below the h a l o c l i n e .  As w i t h temperature and  s a l i n i t y , the mixing caused by the t i d a l c u r r e n t s maintains uniform oxygen c o n c e n t r a t i o n s w i t h depth. In September  I960, the d i s t r i b u t i o n was  d i f f e r e n t from what i t was i n June I960.  markedly  In the b a s i n at  S t a t i o n 1, the oxygen c o n c e n t r a t i o n was between 5»5 mg./l i n September I960, whereas 0.9  - ^.0 mg./l.  the upper l i m i t to 83 meters.  i n June i t was  5*8  between  During t h i s same p e r i o d at S t a t i o n  1/2,  of the anoxic zone deepened from 70 meters The oxygen d i s t r i b u t i o n a l s o e x h i b i t e d a  minimum centred at 20 meters which extends from the head t o S t a t i o n 3 (Figure I 3 ) .  T h i s f e a t u r e has been noted i n  o t h e r i n l e t s i n B r i t i s h Columbia ( P i c k a r d , 1961), (Thompson and Barkey, 1937).  Thompson and Barkey a t t r i b u t e d the mid-  depth oxygen minimum that they observed i n Seymour I n l e t t o the movement o f low-oxygen water from over the sediments o f Seymour's t r i b u t a r y arms Into the mid-depths o f Seymour Inlet. In the deep water o f Fortune Channel the oxygen concentration .is  7*2 mg./l i n September  1 . 5 mg./l l e s s than the value i n June.  I960.  This i s  The s a t u r a t i o n value  f o r the deep water In Fortune Channel i n September i s 8 . 5 mg./l  ( T r u e s d a l e , Downing and Lowden, 1 9 5 5 ) .  The value  o f 7.2 mg./l r e p r e s e n t s an u n d e r s a t u r a t i o n o f 12°/o. These f e a t u r e s o f the oxygen d i s t r i b u t i o n i n September  are d i s c u s s e d i n Chapter V, page 4-9, where they  2 8  are  attributed  t o an  i n t r u s i o n of  coastal  surface  water.  Pig. 1 2 . L o n g i t u d i n a l P r o f i l e s o f d i s s o l v e d Oxygen i n . m g / 1 , f o r T o f i n o I n l e t i n F e b . 1 9 6 1 and A p r i l 1 9 6 1 .  29 IV.  DISTRIBUTION OF pH AND  ALKALINITY 13.  The v e r t i c a l p r o f i l e s d f pH are shown i n F i g u r e T a b l e m c o n t a i n s the a l k a l i n i t y v a l u e s found i n September I960 and would r e s u l t  at S t a t i o n  1/2  compares them with the v a l u e s t h a t  from the d i l u t i o n o f normal seawater w i t h pure  water to the c h l o r i n i t y observed has a s p e c i a l  oceanographic  at S t a t i o n 1/2.  Alkalinity  c o n n o t a t i o n ; i t i s the amount o f  s t r o n g a c i d r e q u i r e d t o t i t r a t e a l l the t i t r a b l e bases i n seawater.  1  The v a l u e s g i v e n i n Table I I I are c o r r e c t e d f o r  borate. TABLE I I I A COMPARISON OF OBSERVED ALKALINITY WITH NORMAL SEAWATER VALUES OF ALKALINITY AT STATION TOFINO IN SEPTEMBER I 9 6 0 Normal Seawater Chlorinity Alkalinity  .  ,1/2  Depth 0 m.  5 10 20 4-0 60 70 80 85  5 . 1 °/oo  15.3 15.6 15.8 16.0  16.0 16.0  16.1  16.4-  "  0 . 6 3 m. e q u i v / 1  1.86 1.89 1.92 1.941.941.941.95 1.98  Observed Alkalinity 0 . 6 9 m. 1.91  1.92  1.96 1.95 1.95 1.93  2. OH3.03  The amount o f borate present i n seawater i s r o u g h l y p r o p o r t i o n a l t o the c h l o r i n i t y . Tables have been p u b l i s h e d which give borate as a f u n c t i o n of c h l o r i n i t y , temperature and pH, a l l o w i n g c o r r e c t i o n s t o be made. ( S t r i c k l a n d and Parsons, 1961).  equ  •CO. i  tor. 5 .  «;  Fig. 13. V e r t i c a l p r o f i l e s of oxygen and pH i n T o f i n o I n l e t d u r i n g c r u i s e s 59/6 Kay 1959, 60/8 June I960, 60/17 S e p t . I960, 61/3 Feb. 1961, 61/8 A p r i l ' 1 9 6 1 . The s t a t i o n s are shown at the t o p .  o  31 D i s t r i b u t i o n of P H .  The  pH o f the s u r f a c e water i s  8.0.-8.1 except toward the head o f the i n l e t where i t f a l l s t o 7*k near the o u t l e t o f T o f i n o Creek.  The  pH r i s e s t o a  maximum of 8 . 2 - 8 . 3 at a depth o f 2 - 5 meters as a r e s u l t p h o t o s y n t h e s i s i n the water immediately layer.  below the s u r f a c e  Below t h i s the pH f a l l s t o 7 . 8 - 7 . 9 .  In the anoxic  b a s i n s the pH f a l l s to v a l u e s between 7.0-7.6.  1/2, i n September I960, the pH  i s - 7.7  At S t a t i o n  at 20 meters.  i s the depth at which an oxygen minimum of H-.7  mg./l  At S t a t i o n 0-1/2, where the 20 meter minimum i s 3 . 3 the pH a s s o c i a t e d with i t i s 7«6. low the pH i s a l s o low.  This occurs.  mg./l,  Where oxygen v a l u e s are  In the anoxic b a s i n at S t a t i o n  0 - 1 / 2 , the pH decreases t o a minimum value of 7.0. due  of  to the p r o d u c t i o n of carbon d i o x i d e by the  o x i d a t i o n of o r g a n i c matter.  This i s  bacterial  (See Chapter V ) .  D i s t r i b u t i o n of a l k a l i n i t y .  The v a r i a t i o n of a l k a -  l i n i t y w i t h depth, shown i n Table I I I , i s t y p i c a l of the inlet.  The  a l k a l i n i t y i n c r e a s e s w i t h depth.  h i g h v a l u e s i n the anoxic b a s i n s ; 3 . 0 3  m. e q u i v . / l at 8 5  meters a t S t a t i o n 1/2 i n September I960. e q u i v . / l g r e a t e r than would be expected normal seawater.  I t reaches  This i s 1.05  m.  from the d i l u t i o n of  The reasons f o r t h i s i n c r e a s e i n a l k a -  l i n i t y are d i s c u s s e d i n chapter V . V.  DISTRIBUTION OF PHOSPHATE AND  V e r t i c a l p r o f i l e s o f phosphate and  SILICATE s i l i c a t e are g i v e n  32 i n Figure 15,  F i g u r e 14 d e p i c t s the l o n g i t u d i n a l p r o f i l e s p  o f t o t a l phosphate  and s i l i c a t e f o r September I960.  D i s t r i b u t i o n o f phosphate. i n o r g a n i c phosphate i s lowest from 0.3-rl.O u g . a t . / l .  The c o n c e n t r a t i o n of  i n the s u r f a c e l a y e r , ranging  Between 5 meters and 50 meters the  concentration increases to 1.5-2.0 ug.at./l. water, but s t i l l above the anoxic to 2 . 0 - 3 . 0 u g . a t . / l . rapidly increases.  I n the deeper  zones, phosphate i n c r e a s e s  In the anoxic  zone the c o n c e n t r a t i o n  A maximum value o f 14.7 u g . a t . / l i s  observed at 90 meters i n September i 9 6 0 at S t a t i o n 1/2.  In  September I 9 6 0 , and a g a i n i n A p r i l 1961, there i s a phosphate maximum i n the oxygenated zone.  I n September the  maximum.is at 20 meters and i s present  at a l l s t a t i o n s except  1 - 1 / 2 , and i n A p r i l the maximum v a r i e d between 4-0 - 60 meters. D i s t r i b u t i o n of s i l i c a t e .  The d i s t r i b u t i o n of s i l i -  cate i s s i m i l a r t o t h a t o f phosphate. 10  I t i s r e l a t i v e l y low,  - 30 u g . a t . / l , i n the s u r f a c e l a y e r , and g r a d u a l l y  The i n o r g a n i c phosphates determined i n September I960 were preserved w i t h c h l o r o f o r m aboard s h i p and analyzed l a t e r on shore. T h i s method o f p r e s e r v a t i o n was not s u c c e s s f u l and many e r r a t i c and low r e s u l t s were o b t a i n e d . The t o t a l phosphate assays have been used t o i l l u s t r a t e the phosphate maximum at 20 meters i n September I 9 6 0 . Most o f the observ a t i o n s i n d i c a t e there i s r e l a t i v e l y constant d i f f e r e n c e between the two forms.  33 increases in  i n c o n c e n t r a t i o n with depth to  the deeper water.  values value  rise was  t o over  284- u g .  In the 100  at  ug.  . / l ,  at  anoxic at 85  ,/l.  50  - 60  "basins t h e The  ug.  at . / l  silicate  highest  observed  m e t e r s , S t a t i o n 1/2,  in  September. The anoxic  and  regeneration  basins  and  the  20  o f p h o s p h a t e and  s i l i c a t e i n the  m e t e r maxima i s d i s c u s s e d  in  F i g . Iho L o n g i t u d i n a l P r o f i l e s of t o t a l Phosphate S i l i c a t e (ug. at / l ) f o r T o f i n o I n l e t i n Sept. I960.  •CD J  *  *i  TOF J 100  .»./t  T"  IIP.-.*  0  1  \  •  \  "ft i  o 0  MO  n  Pt.*/t  o  sio,-* o  ip »o.-»  MO  wo  o 0  OO  ip ti0«-ti  *  i •  » •  SILICATE  IMORC TOT.  »0,»/L  PHOSPHATE  PHOSPHATE  Si O. -Si  p«.A/L  PO.-P  pa.A/L  PO,-P  *-  F i g . 15. V e r t i c a l p r o f i l e s of s i l i c a t e , i n o r g a n i c phosphate and t o t a l phosphate i n Tofino I n l e t ; c r u i s e 60/8 June I960, 60/17 S e p t . I960, 51/3 Feb. 1961, 61/8 A p r i l 1961. The s t a t i o n s are shown at the t o p .  CHAPTER V DISCUSSION OF RESULTS The  data presented  i n the p r e v i o u s s e c t i o n s b r i n g out  a number o f f e a t u r e s which are d i s c u s s e d i n t h i s The  d i s t r i b u t i o n o f p r o p e r t i e s , observed  i n d i c a t e that a replacement  chapter.  i n September I960,  o f the bottom water i n T o f i n o  I n l e t took place i n the summer o f I960.  During the  succeeding w i n t e r , t h i s bottom water stagnated, as shown by d e c r e a s i n g oxygen c o n c e n t r a t i o n s .  The change i n oxygen  a l l o w s an oxygen u t i l i z a t i o n r a t e t o be c a l c u l a t e d .  High  phosphate, s i l i c a t e , a l k a l i n i t y , and low pH i n the anoxic bottom water o f the upper b a s i n s o f T o f i n o I n l e t  provide  i n f o r m a t i o n about the o x i d a t i o n o f o r g a n i c matter  and regen-  e r a t i o n o f n u t r i e n t s i n these b a s i n s . I.  ESTUARINE CHARACTERISTICS OF TOFINO INLET.  Cameron and P r i t c h a r d "a semi-enclosed  (1963) d e f i n e an e s t u a r y as  c o a s t a l body o f water having a f r e e  c o n n e c t i o n w i t h the open sea and w i t h i n which the seawater i s measureably d i l u t e d w i t h f r e s h water d e r i v i n g from land drainage." estuary.  They r e c o g n i z e the f j o r d  as a s p e c i a l type o f  Tofino Inlet i s a fjord-type i n l e t , with  shallow  s i l l s and narrow connecting passages which r e s t r i c t c o n n e c t i o n w i t h the open s e a . The shallow s i l l s  restrict  36 the of  incoming seawater t o that the oceanic  surface  o f t h e u p p e r 11  layer.  The n a r r o w  - 13  meters  connecting  passages  o f F o r t u n e C h a n n e l and B r o w n i n g P a s s a g e , w h i c h have 3-h tidal  currents  i n their  entrances, form mixing  regions,  where t h e i n c o m i n g s e a w a t e r i s r e d u c e d i n s a l i n i t y ture  with brackish One  the  surface  of the f i r s t  fjord-type  i s that  I n l e t , Vancouver  ture  inlet;  quantitative  studies  He  f i n d s that  o f an i n l e t  i t has a  t i d a l m i x i n g and f r e s h w a t e r  distinguishable  by t h e i r  salinity  higher  The  salinity  only  Alberni Inlet, lateral  These  The  lateral  down t h e i n l e t .  gradients  I n a narrow  a  zone,  meters,  seawater. gradients  exist  mouth a t t h e head  disappear a short  inlet,  which  extending  bottom  d e p t h o f 16  12  I t has  gradient The  salinity  o f the r i v e r  water  o f the i n l e t .  e s s e n t i a l l y unmodified c o a s t a l  i n the v i c i n i t y  inlet.  are  seaward-moving,  oceanic  t o t h e mouth o f t h e i n l e t .  w h i c h e x t e n d s downward f r o m t h e s i l l  In  that  struc-  middle zone, about  though l e s s pronounced, s a l i n i t y  contains  This  characteristics.  a n e t movement t o w a r d s t h e head  f r o m t h e head  within  w a t e r , w h i c h becomes p r o g r e s s i v e l y more s a l i n e  meters t h i c k , contains  similar,  forces  l a y e r s o r zones o f water  t o w a r d s t h e mouth o f t h e i n l e t .  has  of  vertical  Influx.  u p p e r z o n e , some h m e t e r s t h i c k , c o n t a i n s low s a l i n i t y  admix-  made by T u l l y (194-9) i n A l b e r n i  Island.  consists of three  by  water from the I n l e t .  s t r u c t u r e w h i c h c a n be r e l a t e d t o t h e d y n a m i c the  knot  o f the  distance  such as T o f i n o ,  lateral  37 gradients  c a n be  neglected.  Tully also finds ient  tained  mixing of s a l t  by t i d a l  salinity  between t h e s e z o n e s and  o f the  i s main-  As a r e s u l t  of  i n the o u t f l o w i n g  water o f  u p p e r zone and a c o m p e n s a t i n g f l o w o f h i g h e r  salinity  water occurs  i s entrained  grad-  i s the r e s u l t  a c t i o n and r i v e r r u n - o f f .  t h i s mixing, salt  i n the middle zone.  by the e n t r a i n m e n t p r o c e s s , In  a fjord-type  is  e q u a l t o the f r e s h water The  unmodified for  the v e r t i c a l  b e t w e e n t h e u p p e r and m i d d l e zone  turbulent  the  that  c i r c u l a t i o n , generated  i s the e s t u a r i n e  circulation.  e s t u a r y the net f l o w i s out o f the i n l e t  bottom  influx less  contains  seawater which tends t o remain  long  i s observed i n t h i s  exchange  of salt  bottom  with the l e s s  the b a s i s  o f an e s t u a r i n e  structure  of Tofino  Inlet  (1)  an upper, b r a c k i s h  the  surface,  zone due  s a l i n e middle  On  unchanged  to a zone.  into  three  zone e x t e n d i n g 2 t o 3 m e t e r s  zone e x t e n d i n g b e l o w t h i s  to s i l l  basins,  that  zone  °/00,  modi-  slow  c i r c u l a t i o n the  c a n be d i v i d e d  s a l i n i t y range 3 - 1 5  (3) a b o t t o m  essentially  p e r i o d s o f time, though a g r a d u a l  fication  and  evaporation.  z o n e , on t h e o t h e r hand  coastal  relatively  This  (2) a n  vertical zones; below  intermediate  depth i n each o f the  lies  below  sill  depth i n each  basin. The  most  bottom water side  important f a c t o r  Involved  i s the d e n s i t y o f the c o a s t a l  the i n l e t .  I f the o u t s i d e  i n replacing  the  seawater o u t -  s e a w a t e r , a t o r above  the  38 depth  o f the s i l l ,  i s denser t h a n  the bottom  the  i n l e t , i t flows i n over the s i l l  the  inlet.  lighter  o c c u r s and t h e b o t t o m which west  water  water  c o a s t o f Vancouver  ations  i n the i n l e t ,  salinities  other times.  periods..  bottom  (Tully  bottom  water  flow  Upwelling,  194-9, P i c k a r d and  a r e h i g h e r and t h e w a t e r  In a f j o r d ,  which  o f the bottom  In Alberni Inlet  i s Inferred  water.  seawater,  water  by a s h a l l o w  an annual f l u s h i n g  by T u l l y .  In Tofino  o f the  Inlet  an  i n the replacement  o f the  of the intruding  w i t h low s a l i n i t y  t o p e r i o d s o f low r u n - o f f .  than  i s confined to  s u r f a c e water i n  two c o n n e c t i n g c h a n n e l s , may r e s t r i c t  section,  fluctu-  more d e n s e  i s protected  The r e d u c t i o n i n s a l i n i t y  by admixture  replacement  is  no s u c h  periods of up-welling the in-shore  a d d i t i o n a l f a c t o r may be i n v o l v e d  next  depth i s  becomes i s o l a t e d .  Island  During  the replacement  these  the  the basin o f  1953, Lane 1961) i s c a p a b l e o f c a u s i n g a n n u a l i n salinity.  surface  sill  at s i l l  within  o c c u r s p r e d o m i n a n t l y d u r i n g t h e summer months a l o n g t h e  MacLeod  at  and f i l l s  I f , however, t h e s e a w a t e r  than the bottom  water  the time  of the  As d i s c u s s e d i n t h e  t h e r e i s some e v i d e n c e t o s u g g e s t  that  this  so.  II.  REPLACEMENT OF THE BOTTOM WATER IN TOFINO INLET  In (Ford  July  1959a),  o f 1959 D r . W. L . F o r d ' s F i g u r e 3, show t h a t  temperature  15.3°C water  data,  was p r e s e n t  39 below 90 meters at S t a t i o n 1 and that t h i s water formed a 7 meter l a y e r , sandwiched between c o l d e r water at S t a t i o n 1/2.  Ford  (1959)  suggested that the 1 5 . 3 ° C water had  the i n l e t during the summer o f 1 9 5 8 , r e p l a c i n g c o l d e r  entered  water o f 1 2 . 5 ° C  L o c a l r e s i d e n t s had informed him that the  summer o f 1 9 5 8 had been u n u s u a l l y warm and d r y . f a c t o r s l e d him t o p o s t u l a t e  These  that?,  . " . .' . High s u r f a c e temperatures and low r u n - o f f , hence h i g h s u r f a c e s a l i n i t y , l a s t Summer permit the hypothesis that the 1 5 water was generated i n the shallow and narrow passages i n the approaches throughmixing of h i g h s a l i n i t y warm ocean water probably 31 ( /oo) with the e x c e p t i o n a l l y warm and s a l i n e upper l a y e r waters. I f so t h i s water i s o n l y one year o l d . . . ." p  The annual v a r i a t i o n s o f s a l i n i t y and temperature o f the  surface  c o a s t a l water a t Amphltrite  Point,  (Anon.  1958C - 1961c) f o r the years 1957-1960, are presented i n Figures 16-19.  These F i g u r e s a l s o show the annual v a r i a t i o n  o f monthly r a i n f a l l f o r the T o f i n o r e g i o n .  The h i g h e s t  s a l i n i t i e s and temperatures i n the c o a s t a l surface occur d u r i n g  the June t o September  lowest d u r i n g  this  period.  water  Rainfall i s  period.  In the summer o f 1 9 5 8 there was 0 . 2 " o f r a i n i n June and 0 . 1 inches  i n July.  I n mid-July the s u r f a c e  ature o f the c o a s t a l water was 1 5 ° - 16°C.  temper-  Ford's  suggestion  t h a t the 1 5 ° water, which he observed i n J u l y 1 9 5 9 , had intruded  i n the summer o f 1 9 5 8 , d u r i n g a d r y p e r i o d , i s  substantiated  by t h i s  data.  20  S %•  SALINITY  30  25  N  JAN  FEB.  MAR.  APR  MAY  JUNE  C  l  H  E  19 57  S  JULY  AUG.  F i g . 16. V a r i a t i o n o f s e a - s u r f a c e s a l i n i t y and Point. I l o n t h l y r a i n f a l l at E s t e v a n P o i n t f o r 1957.  SEPT  temperature  OCT  at  NOV.  Amphitrite  DEC.  -r  o  i  JAN  i  FEB.  •  MAR  i  L  APR  L_  MAY  JUNE  F i g . 17. V a r i a t i o n of sea-surface Point. Monthly r a i n f a l l at Estevan Point T o f i n o A i r p o r t , Dec. 1958.  L_  .  JULY  1  I—:  AUG.  ; SEPT.  1  -1 OCT  ——I  NOV  s a l i n i t y anc! t e m p e r a t u r e a t A m p h i t r i t e u n t i l Nov. 1 9 5 8 . M o n t h l y r a i n f a l l a t  DEC.  T—  1  1  —r  i  1  r~  '  i  T  r~  0  I JAN  Point  FEB.  i _  F i g . 18. f o r 1959.  MAR.  |  APR.  f  i MAY  JUNE  ~r  r  •  i JULY  I AUG.  I SEPT  V a r i a t i o n o f s e a - s u r f a c e s a l i n i t y and temperature M o n t h l y r a i n f a l l at T o f i n o A i r p o r t 1959.  ; OCT  -1  •  • ' !  J NOV.  at.Amphitrite  =1 DEC.  JAN.  Point.  FEB.  MAR.  APR.  MAY  JUNE  JULY  AUG.  SEPT.  OCT.  NOV.  F i g . 19. V a r i a t i o n of sea-surface s a l i n i t y and temperature at A m p h i t r i t e Monthly r a i n f a l l at T o f i n o A i r p o r t i n I 9 6 0 .  DEC.  ¥+  An i n t r u s i o n of dense c o a s t a l water took place during the summer of I960.  This i s supported  by the marked changes  i n temperature, s a l i n i t y and oxygen d i s t r i b u t i o n s from June I960 to September i 9 6 0 .  (Figures h, 7 and 11).  This  i n t r u d i n g water replaced a l l the bottom water i n the i n l e t , w i t h the exception of part of the anoxic b a s i n water at S t a t i o n s 1/2 and 0-1.2. sigma-t =21  Water having a d e n s i t y greater than  i s confined below the s i l l - d e p t h of these  basins  i n June, while i n September I960, water having t h i s d e n s i t y or greater i s present below 5 meters throughout the i n l e t (Figures 9 and 10).  This could only have r e s u l t e d from a  massive i n t r u s i o n of dense c o a s t a l seawater.  The r a i n f a l l  between J u l y 1 5 and August 15was 0.1  The temper-  inches.  ature of the c o a s t a l surface water was 13.5 the f i r s t two weeks of August (Figure 18).  - 15.0°C. during This c o r r e s -  ponds to the e s s e n t i a l l y homogeneous 13.5°C-water found throughout the i n l e t i n September I960 and would place the date of the i n t r u s i o n at t h i s time. An i n t r u s i o n of c o a s t a l seawater has since been observed i n August 1961  (Anon. 1961b).  This i n t r u s i o n a l s o  occurred during a period of low r a i n f a l l (See Appendix B ) . Thus there i s d i r e c t evidence of dense c o a s t a l surface water i n t r u d i n g i n t o Tofino I n l e t , during the summers of I960 and 1961.  The  i n t r u s i o n s appear to c o i n -  cide with periods of dry weather.  Examination  of sea-  surface temperature and s a l i n i t y at Amphitrite P o i n t ,  i n d i c a t e s that a s i m i l a r i n t r u s i o n occurred during a dry period i n the summer of 1958 (Figure 1 1 ) .  Ford ( 1 9 5 9 b ) ,  suggested that replacement of Tofino bottom water might not occur during the wet summer o f 1 9 5 9 , when r a i n f a l l , f o r June, J u l y and August, was 12 inches or 2 inches above normal (Anon. 1 9 5 9 a ) .  However, even during t h i s wetter than normal  summer there was a three-week d r y p e r i o d . The oxygen data observed i n the stagnant basins of Tofino I n l e t can be used t o determine i f ah i n t r u s i o n of c o a s t a l seawater was l i k e l y i n the summer of 1 9 5 9 .  At 100  meters, at S t a t i o n 1 , the oxygen concentration i s 1 . 3 mg./l, i n June I960, before the i n t r u s i o n , and 5 . 0 mg./l i n September I960, a f t e r the i n t r u s i o n . the  (Figure 11). Using  oxygen u t i l i z a t i o n r a t e of 0 . 0 1 5 mg./l/day, which i s  c a l c u l a t e d i n the next s e c t i o n , an estimate can be made of what the oxygen concentration was In September 1 9 5 9 , subsequent t o a postulated i n t r u s i o n . to be 5.4- mg./l.  This value i s c a l c u l a t e d  I t i s close t o the value found i n September  I960 and i n d i c a t e s replacement of the bottom water i n the summer of 1 9 5 9 *  However, no conclusion can be drawn as t o  whether or not t h i s i n t r u s i o n was as extensive as that of the  summer of i960. I I I . ' RATE OF OXYGEN UTILIZATION IN THE STAGNANT BASINS OF TOFINO INLET Using the oxygen data, c o l l e c t e d i n the stagnant  basins of Tofino I n l e t between September i960 and A p r i l 1961,  he the r a t e o f oxygen u t i l i z a t i o n can be c a l c u l a t e d .  Figure  20  p l o t s oxygen c o n c e n t r a t i o n a g a i n s t time f o r f i v e s e l e c t e d depths i n the i n l e t , where oxygen was At S t a t i o n 1, oxygen decreased The  100 meters, the c o n c e n t r a t i o n of  oxygen at S t a t i o n 1/2, and  80 meters, decreased  April.  to zero i n  a f t e r t h i s the water became  other p l o t s , f o r S t a t i o n s 1/2  and  60 - 70 meters the oxygen decreased F e b r u a r y and  decrease.  f o r the whole period September t o  e a r l y January 1961 The  observed t o  anoxic.  1-1/2, show t h a t at  from September t o  then i n c r e a s e d between February and  T h i s r e s u l t s from an i n t r u s i o n of water, of h i g h e r content,  i n t o the i n l e t at these  intermediate  water i n the b a s i n s at S t a t i o n s 1 and The stagnant  oxygen  depths.  Deeper  i s not a f f e c t e d .  c a l c u l a t e d r a t e of oxygen consumption f o r the  basins  i n T o f i n o I n l e t i s 0.015  value agrees with Barnes and consumption r a t e s ranging Puget Sound.  Collias  IV.  mg./l/day.  (1958), who  From L a z i e r ' s (1963) d a t a , f o r P r i n c e s s mg./l/day i s o b t a i n e d . SILICATE  v e r t i c a l p r o f i l e s of phosphate and  ( F i g u r e 13).  found  1  REGENERATION OF PHOSPHATE AND  ( F i g u r e 15)  This  from 0.007 - 0.02 * mg./l/day i n  L o u i s a I n l e t , a value o f 0.015  The  1/2  1961.  April  silicate  show an i n v e r s e r e l a t i o n s h i p t o those Richards  o f oxygen  and Vaccaro (1956) have demon-  s t r a t e d t h a t the r e g e n e r a t i o n o f phosphate i s q u a n t i t a t i v e l y r e l a t e d t o the oxygen consumed d u r i n g the o x i d a t i o n of  ^7  9  © TOFINO ijj, 8-  •  TOFINO  & TOFINO  !fc 60m I  100 m  A TOFINO \ O TOFINO 6  60m  70 m  V 80 m 2  UJ O >X  o r- o UJ  > -i  1_  O <0 CO  o o E  MAY JUNE JUL AUG S E P OCT NOV DEC J A N  F E B MAR APR  F i g . 2 0 . Oxygen consumption at f i v e selected depths i n 'Tofino I n l e t between Sept. I 9 6 0 and Aoril 1 9 6 1 .  H-8  organic matter.  In the oxygenated water of the  Cariaco  Trench they found that 270 atoms of oxygen were consumed f o r each atom of phosphorous r e l e a s e d .  In the  anoxic  zone the r a t i o was 235 to 1 i n terms of the oxygen equival e n t of the sulphate u t i l i z e d . the oxygenated zone was  The r a t i o they found f o r  close t o the t h e o r e t i c a l f o r the  complete o x i d a t i o n of plankton having the average carbon t o phosphorous r a t i o of 1 0 6 s l .  The r a t i o df 235.sl found 5  i n the anoxic zone, r e s u l t s from the f a c t that amine n i t r o g e n i s not o x i d i z e d to n i t r a t e but i s released as ammonia while any preformed n i t r a t e o r i g i o n a l l y present i s reduced to n i t r o g e n i n these waters (Richards and Benson 1961). high phosphate concentrations found i n the anoxic  The  basins  r e s u l t from the release of phosphate during the o x i d a t i o n o f organic matter. The regeneration of s i l i c a t e does not seem t o be d i r e c t l y associated with the consumption of oxygen ( R e d f i e l d et a l . 1963). inium may  Lewin (1961) has shown that i r o n and alum-  be responsible f o r the r e s i s t a n c e of diatom  skeletons to d i s s o l u t i o n , since she found that c h e l a t i n g agents, which complex iron,, a c c e l e r a t e the release of cate.  sili-  She a l s o suggested that i n anoxic environments hydrogen  sulphide could combine with i r o n and aid i n the d i s s o l u t i o n of s i l i c a from diatom w a l l s .  In Tofino I n l e t , s i l i c a t e  -increases from 30 - ho ug. a t . / l i n the oxygenated zone t o 100 - 300 ug. a t . / l i n the anoxic b a s i n s .  This e v i d e n t l y  »*9 r e s u l t s from s o l u b l e s i l i c a t e d e r i v e d from diatom t e s t s and supports Lewin's s u g g e s t i o n . accumulation accompanying V.  However, t h i s may  be o n l y an  stagnation.  OXYGEN MINIMA, AND  PHOSPHATE -SILICATE MAXIMA  IN THE OXYGENATED ZONE In-September  i 9 6 0 , oxygen minima and phosphate-  s i l i c a t e maxima appear i n the oxygenated zone at 20 meters. These f e a t u r e s appear i n the l o n g i t u d i n a l p r o f i l e s - ( F i g u r e s h and lh)  and i n the v e r t i c a l p r o f i l e s  Lazier  (1963) p o s t u l a t e d  ( F i g u r e s 13 and 1 5 ) .  that the i n t r u s i o n of dense,  h i g h - s a l i n i t y water i n t o i n l e t s with shallow  sills  place  T h i s water  i n the form of s u c c e s s i v e  tidal  jets.  under the l i g h t e r water i n s i d e the i n l e t . i s thus r a i s e d t o intermediate the  inlet.  takes flows  The l i g h t e r water  depths, where i t flows out o f  I f t h i s mechanism operates i n  T o f i n o I n l e t , the  oxygen minima and the p h o s p h a t e - s i l i c a t e maxima at 20 meters, can be a t r a c e r o f t h i s type o f c i r c u l a t i o n .  The low  oxygen, h i g h p h o s p h a t e - s i l i c a t e water o f the anoxic  basins  presumably i s r a i s e d t o 20 meters depth by the i n t r u d i n g water. In a d d i t i o n t o the anoxic  basins  at the head o f  T o f i n o I n l e t , there  i s an anoxic  ( F i g u r e 2, page h),  which has a 16 meter s i l l .  anoxic  basin i n Tranquil Inlet  below ho meters (Anon. 1960b).  g e o g r a p h i c a l l y separated  It i s  Thus there are two  sources of anoxic water, one of  which i s s i t u a t e d c l o s e t o the mouth o f T o f i n o  Inlet.  50  An a l t e r n a t e source f o r the high p h o s p h a t e - s i l i c a t e water i s i n the sediments, which could be s t i r r e d i n t o suspension by the i n t r u d i n g water. are  The sediments i n Tofino  anoxic even when the o v e r l y i n g water contains oxygen.  R i t t e n b e r g , Emery and Grr (1955) have shown that a c t i v e regeneration of phosphate and s i l i c a t e occurs i n basin s e d i ments.  The phosphate maxima, which appeared between H-0-60  meters i n A p r i l 1961, could p o s s i b l y have a sediment source, since a mid-depth i n t r u s i o n of water took place between February and A p r i l , as evidenced by an increase i n oxygen. The 20 meter depth appears to be a depth of minimum motion i n the i n l e t .  This i s supported not only by the  oxygen, phosphate and s i l i c a t e data, but a l s o by temperature data i n September I960 and at other times (Figures 3 and h).  The 20 meter depth i s about the depth of the  temperature minimum i n the i n l e t . VI.  ALKALINITY - pH RELATIONSHIPS IN THE ANOXIC ZONE OF TOFINO INLET  Oxygen i s supplied to seawater by exchange with the atmosphere and by photosynthetic organisms.  I t i s consumed  i n seawater by the o x i d a t i v e processes of r e s p i r i n g organisms, which i n the deeper water are mainly h e t e r o t r o p h i c bacteria.  I n b a s i n s , such as e x i s t i n Tofino I n l e t , i n t o  which oxygenated seawater enters and i s subsequently trapped i n a manner described i n S e c t i o n  V, the f o l l o w i n g events  51  occur; (1) the oxygen i s depleted by b a c t e r i a l r e s p i r a t i o n producing carbon d i o x i d e , (2) when the oxygen has disappeared, other hydrogen acceptors such as n i t r a t e and sulphate are u t i l i z e d by b a c t e r i a producing hydrogen sulphide and carbon dioxide (Zobell (1957),  (3)  (19^6),  Postgate (1951), McKinney and Conway  i n extreme cases, when the entrapment l a s t s many  y e a r s , methane i s produced (Williams et a l . ,  1961).  Representative equations, n e c e s s a r i l y o v e r s i m p l i f i e d , covering these o x i d a t i o n r e a c t i o n s which are c a r r i e d on by the h e t e r o t r o p h i c b a c t e r i a , are given by R e d f i e l d , Ketchum and Richards  (1963).  I n t h i s work, they c i t e evidence from  the Black Sea and the Cariaco Trench, that sulphate i s the source of the sulphide found i n anoxic basins and that the r e a c t i o n products, carbon d i o x i d e and hydrogen s u l p h i d e , accumulate i n proportions that are i n accordance w i t h the s t o i c h i o m e t r y of equations 7 and 8 , given below.  The equa-  t i o n s covering these r e a c t i o n s ares Equations f o r the oxygenated zone. (i)  Biochemical O x i d a t i o n  CH2O+O2. - CO2 + f/stO  Equation ( 1 )  where CH2O represents carbohydrate, which i s presumed t o be the average o x i d a t i o n state of carbon i n the organic matter being oxidized.  52  (ii)  Carbon Dioxide E q u i l i b r i a H>0  COz t' htiO  -  H*'OH'  =  //2CO3  Equation (2) (3)  (toCOa) /\t  Cfi'/oo =  T*'3S°C,  0+b)  KWo,) ~ o.8x/o" (strickland and 6  HCOf  =  Parsons, 1961)  ^ + CQi  XaflWOj) = CH*3  (5a)  (col)  (HCOJ)  At  Ciloc--'<>,  (5b)  T " 3 . 5 ° C , CtH*cos)= 0.5//o"  q  CaC0 (5)= Co" ^ C G ? 3  At  CJ?7oo=/&,  T= /3-5°C, K'spUCOi --  ( S t r i c k l a n d and Parsons, 1961) '  V-SAICT  (6) 7  (Appendix C)  Equations f o r the anoxic zone. (i)  Biochemical O x i d a t i o n  ZCH*O+so* = zcoz+s***d*°-  $C^b  -t 4N01 = SCOi  (7).  +  + COz •+ O H ' =  (ii)  (iii)  (8a)  ^/r03'  (8b)  Carbon Dioxide E q u i l i b r i a (as i n A ( i i ) above) Hydrogen Sulphide E q u i l i b r i a (9a)  OlxST" At  Q°L  KllM)  s  - /.2//fi- (Skopintsev, 7  *  1957)  + 5"  (10a) (10b)  (HS~)  At  (9b)  Equation  K^f/iS) = f . f x /fl~' '(skopintsev, 1957)  O^Voo  5  In equations *+b, 5b, 9b and 10b above, the v a r i o u s K* values represent "apparent" d i s s o c i a t i o n constants and not thermodynamic constants.  The terms i n square brackets i n these  equations are a c t i v i t i e s , while those i n round brackets are concentrations.'  The values of  and K 2 f o r hydrogen  sulphide are taken from a paper by Skopintsev (1957).  As f a r  as i s known these are the only values a v a i l a b l e f o r seawater but t h e i r temperature  dependence i s not known.  T i t r a t i o n a l k a l i n i t y of the anoxic zones.  I n normal  seawater the t i t r a t i o n a l k a l i n i t y i s given by T i t r a t i o n A l k a l i n i t y = (dcOS)* Z(cbj)  + " (H%TL\<X\ + lOH')-(H*)  (Harvey, 1955)  (11)  In the anoxic waters of Tofino I n l e t the t i t r a t i o n a l k a l i n i t y i n c l u d e s the h y d r o l y s i s products of sulphide i o n and d e n i t r i f i c a t i o n r e a c t i o n s i n a d d i t i o n to the normal components. About 20 u g . a t . / l  NO3-N i s a v a i l a b l e  (Anon. 1961, A p r i l ) .  for denitrification  This represents an increase i n a l k a -  l i n i t y of 0.02 m. e q u i v . / l , according to equation (8b), and  5*+ is  allowed  f o r In the f o l l o w i n g d i s c u s s i o n .  w a t e r e q u a t i o n 11  Anoxic  Titration Alkalinity  C M S " ) + 2(5*) correcting  cation,  and  negligible  f o r borate  at the  pH  o f the  =  Examination  after  a t 80 m e t e r s , had  2.0h  m.  T.A.A. had  (Harvey, (OH')  alkalinity  m.  equiv./l  (12)  denitrifi-  ( S ) , which  are  s  becomes  +(HS )  (13)  m  i n the  For  anoxic  than  c o n t r i b u t i o n s of  an a l k a l i n i t y  would  borate,  example,  Station  corrected f o r borate By F e b r u a r y ,  equiv./l,  1961,  accompanied  of s u l p h a t e . o f 0.18  This m.  by  of  the the  represents  equiv./l.  s u l p h i d e c o n c e n t r a t i o n s , T.A.A., anamolous  i n c r e a s e s , and  of Tofino Inlet,  and  shows t h a t t h e y a r e h i g h e r  increased to 2.33  III lists  and  (HCOs) + Z(C0f)  anomalous i n c r e a s e i n a l k a l i n i t y  Table  1955)  a n o x i c w a t e r , e q u a t i o n 12  i n September I 9 6 0 .  r e d u c t i o n o f O . l l ^ m. an  + Equation  sulphate reduction.  1/2,  equiv./l  (OH-)- (H*)  a l l o w i n g f o r the  d e n t r i f i c a t i o n and  T.A.A. =  o f t h e T.A.A. v a l u e s f o u n d  waters of T o f i n o I n l e t expected  +  =  O.OZ  +  n e g l e c t i n g (H*),  T.A.A,  be  anoxic  becomes  («COi) + Z(CDt)+(fabO;) After  I n the  pH,  observed  i n the  as w e l l as o x y g e n f o r S t a t i o n  m e t e r s , i n September  I960.  anoxic 1/2,  basins 80  55 TABLE IV OXYGEN, TOTAL SULPHIDE, T.T.A., ANOMALOUS ALKALINITY INCREASE AND pH FOR THE ANOXIC BASINS OF TOFINO INLET  Stat i o n Depth Date  Total  Oxygen  pH  Sulphide <r j at  1/2 1/2 1/2 1/2 0 1/2 1/2 1/2 1/2  80m. Sept.1960 80m. Feb. 1961 80m. Apr. 1961 85m. Sept.I960 4-5m. Sept.I960 90m. Feb. 1961 90m. Apr. 1961 95m. Apr. 1961  2.02 0 0 0 0 0 0 0  r cr ^  All  'KM  0.0  1.82 2.22 9.53 13.89 11.5 11.1 12.98  0.0 0.0 0.057 0.11 0.069 0.13 0.293 0.59 0.4-35 0.87 O.36O [0.72 0.34-5 0.67 0.4-05 0.81  2.04-  2 -J 2 0.00 0.18 0.26 0.37 0.20 0.4-5  3.01 3.11 3.21 3.17 0.4-3 3.33 0.4-9  7.57 7.29 7.01 7.31 7.35 7.36  There are two p o s s i b l e sources f o r t h i s anomalous increase i n a l k a l i n i t y ; (1) d i f f u s i o n of oxygen down i n t o the anoxic zone could r e s u l t i n an a l k a l i n i t y increase  according  t o the f o l l o w i n g r e a c t i o n s : Equation ZOH'  (2)  + 2.C Oz. = Z  (14-a) (14-b)  HCOi  the increase could r e s u l t from the s o l u t i o n of calcium  carbonate, according t o CaCOxm COz + HzO =  Co.** +  2  hlCOl  (15)  56  I t Is p o s s i b l e to determine the a l k a l i n i t y components that would be present under e i t h e r of the above c o n d i t i o n s . King  (195+-) r e p o r t s a means of c a l c u l a t i n g the concentral  t i o n s of species present i n complex b u f f e r mixtures.  To  c a l c u l a t e the pH of sueh a b u f f e r system, the concentrations of a l l the charged species are determined  by s u b s t i t u t i n g a  "knowledgeable guess" of the e q u i l i b r i u m hydrogen i o n a c t i v i t y i n t o the a n a l y t i c a l expression f o r the concentration of each species.  I f the p H s e l e c t e d i s c o r r e c t the sum of the  species s a t i s f i e s the e l e c t r o n e u t r a l i t y r u l e .  charged  I f not,  succeeding approximations are made u n t i l the e l e c t r o n e u t r a l i t y condition i s s a t i s f i e d .  I n the c a l c u l a t i o n s presented here,  the sum of the c a l c u l a t e d a l k a l i n i t y components must equal the a l k a l i n i t y of the anoxic water (Equation 1 3 ) . The generalized expression f o r the concentration of each changed species given by King i s s (r/*8 ')= C j J  where (H^B )  *  K, K x . . . K*n-k L > J  the concentration of the k the p o l y b a s i c a c i d HjnBO  Equation  t n  (16)  member of  the t o t a l concentration of species containing B3 K1K2  the i o n i z a t i o n constants of the various weak a c i d s .  57  The numerator o f the f r a c t i o n i s the r a t i o of the concentrations o f a l l the species containing the base the concentration o f H  m  This f r a c t i o n i s therefore the  B . J  f r a c t i o n which i s present as H deriving and  the expressions f o r  (CO^),  as f o l l o w s :  to  k  This i s i l l u s t r a t e d by  B . J  i n the case o f  (H^B ) 3  Rearranging equation  (5b)  (HCOp  we o b t a i n  = K\Wo> CHT'ltkCOi)'Equation  (MCOs)  (17)  3  Now Q$ i s the concentration o f a l l species containing the base CO3 so that  Ccos  ~ tixCOs) +  Jsl  (HCOi)+(C0l)  -f le'tu^M"**'  KiWJi^COt)  (18)  Combining equations 17 and 18 we f i n d : (MOD  = r  c  K! & T '  a  1 + K:atr+KXO€~*  1 -f <SGiV+  tiKlOd"  (19)  1  (20)  For hydrogen sulphide a s i m i l a r expression i s obtained: (US')  -C.*  f  I + KiCHj"'  (21)  Where KJ Ki[HT'b s been l e f t out o f the denominator, since i t a  L  approximately equals 1 0 " at the pH's found i n the anoxic 8  basins.  The sulphide i o n concentration i s n e g l i g i b l e f o r the  same reason.  58  The a l k a l i n i t y , c a l c u l a t i o n i s i l l u s t r a t e d here f o r equat i o n s 14- and 15, S t a t i o n 1 / 2 , at 80 meters, i n February 1961. The f o l l o w i n g q u a n t i t i e s , needed f o r the c a l c u l a t i o n are known or were measured. 1. • K( (H S)  equation (9b)  2  2.  K / (HjtCOj) and  3.  Cs*  (H C0i ) z  equations (4-b and  5b)  i s known a n a l y t i c a l l y and i s given i n Table IV.  4-. [H3  was measured aboard s h i p and corrected to i t s i n s i t u value ( S t r i c k l a n d and Parsons, 1 9 6 1 ) .  The q u a n t i t y C<-|is not known a n a l y t i c a l l y and must be 6  obtained by making the f o l l o w i n g  assumption:  where C' Q* =. the t o t a l COjg present i n September I960 obtained from the t a b l e s of S t r i c k l a n d and Parsons ( 1 9 6 1 ) . C  and where Ctf ~ the G 0 production r e s u l t i n g from the u t i l I z a t i o n o f - 2 . 0 2 mg./l ( O.O63 m.mols./l) of oxygen according t o equation ( 1 ) . 2  3  Qoj - the CO2 production r e s u l t i n g from the u t i l i z a t i o n of 0.037 m. m o l s . / l of sulphate according t o equation ( 7 ) . C%.3  the amount of the base COo introduced by; (1) the o x i d a t i o n of sulphide and r e a c t i o n of hydroxy1 i o n w i t h CO2, 0.18 m. m o l s . / l i n t h i s case, or (2) the amount of the base CO? introduced by the s o l u t i o n of 0.09 m. m o l s . / l of CaC03, according to equation ( 1 5 ) , i t I s h a l f the a l k a l i n i t y i n c r e a s e .  59  S u b s t i t u t i n g the appropriate values i n t o equation (22) i n case ( 1 ) , Ceo) -  2 . 0 6 + 0 . 0 6 3 + 0.114+ 0 . 1 8  = 2.4-5 m. m o l s / 1 while i n case ( 2 ) , Cco$ = 2.06+ 0 . 0 6 3 + 0.114+ 0 . 0 9 = 2 . 3 3 m. mbls/1 On s o l v i n g f o r the various a l k a l i n i t y components, using equations  (19), ( 2 0 ) and ( 2 1 ) , the observed pH of 7 . 5 5 ,  Cg* o.O57 m. m o l s / 1 and the values o f C - obtained above, CG  we f i n d that f o r case ( 1 ) , T.A.A. - (HS" ) +  (HCO3) +  2(00^)  *p,05 + 2.32 + •0.08  = 2.4-5  m. e q u i v . / l  while i n case ( 2 ) , T.A.A.•= 0 . 0 5 + 2 . 2 1 - 2.34  + 0.08  m. e q u i v . / l  For the a l k a l i n i t y v a l u e , obtained using the observed pH, t o t a l sulphide measurement, and the assumptions regarding the production of carbon d i o x i d e and s o l u t i o n of calcium carbonate, case ( 2 ) i s c l o s e s t t o the observed value 2 . 3 3 m.equiv./l.  Table V, which contains a comparison between the  observed and c a l c u l a t e d values of a l k a l i n i t y at other depths i n the anoxic b a s i n s , shows that the c a l c u l a t i o n s i n v o l v i n g  60 the assumption of the s o l u t i o n of calcium carbonate obtain the c l o s e s t agreement with the observed a l k a l i n i t i e s .  In making  the other c a l c u l a t i o n s i n Table V, i n the absence of more precise knowledge, i t Is assumed that the i n i t i a l oxygen and a l k a l i n i t y are the same as f o r S t a t i o n 1/2, at 80 meters i n September I960. TABLE V COMPARISON OF CALCULATED AND OBSERVED ALKALINITY IN THE ANOXIC BASINS OF TOFINO INLET Alkalinity m.equiv./l Case (2) Observed  Death  1/2  80m  Feb.  1961  7.55  2.4-5  2.34-  2.33  1/2  80m  Apr.  1961  7.4.6  2.51  2.38  2.4-4-  1/2  85m  Sept.I960  7.29  3.28  3.01  3.01  > 1/2  4-5m  Sept.I960  7.01  3.13  3.05  3.II  1/2  90m  Feb.  1961  7.31  3.4-2  3.20  3.21  90m  Apr.  1961  7.35  3-39  3.18  3.17  95m  Apr.  1961  7.36  3.60  3.37  3.33  1/2  Date  Observed oH  Case  Station  (1)  The e f f e c t of experimental e r r o r s i n the determination of pH and hydrogen sulphide on these c a l c u l a t i o n s can be estimated.  The pH a f f e c t s the r e s u l t s i n two ways, i n the  measurement of the a l k a l i n i t y , and i n the c a l c u l a t i o n of the  61 alkalinity  components.  alkalinity  error  10 °/o 0,12  o f 0.02  differences  i s less  by  0.01.  at  80 m e t e r s ,  i n pH  of these.  Two  the  t h e s e v a l u e s , 2.¥f  is  5 meters or l e s s diffusion  w a t e r had  The  of oxygen i n t o  the  in alkalinity  appears  carbonate  3.11  t o be  i n the water,  of carbon d i o x i d e .  that  this  i s so.  i n September, (1) and exists,  f o r by t h e  oxygenated  both 0.06  solution  i n each instance  zone so t h a t  turbube  t o the o b s e r v a t i o n s ,  as d e s c r i b e d p r e v i o u s l y .  fr om t h e s e ;  calculations,  anoxic water  just  a n o x i c zone,  e x p l a i n e d by t h e made r e l a t i v e l y There  (2).  t h e a n o x i c w a t e r would n o t  inlet  o f the  1/2  fall  m.equiv./l, are  accounted  water o f the  tion  calculated  and  differ  Station  that  a c r o s s the a n o x i c boundary r e s u l t s  In the deeper increase  values  v a l u e s i n T a b l e V,  In both i n s t a n c e s , p r i o r  oxygen d i f f u s i n g  of  calculated  Four  o b s e r v a t i o n depth  below the  intruded into  of  an e r r o r  and  of experimental error  i s some i n d i c a t i o n ,  increase  instance.  S t a t i o n 0-1/2  g r e a t e r t h a n c a n be  calcium carbonate.  difficult.  and  m.equiv./l  of  an  An e r r o r  values according to cases  possibility  m.equiv./l  i n each  o f the observed in April  causes  alkalinity.  between the o b s e r v e d  t h a n 0.1  between c a l c u l a t e d  There  i n each  i n the c a l c u l a t i o n o f  values  lent  o f 0.02  i n the d e t e r m i n a t i o n o f s u l p h i d e causes  The  While  An e r r o r  i n an  below.  the  alkalinity  s o l u t i o n of calcium acid  by the. p r o d u c -  i s other evidence  to  suggest  I f i o n products f o r calcium carbonate  a c c o r d i n g t o t h e method  of Wattenburg  are  (1933) f o r  62 normal seawater and f o r the anoxic waters o f Tofino I n l e t , i t i s found that the anoxic zone i s unsaturated with respect to calcium carbonate.  An o u t l i n e of Wattenburg's method f o r  determining i o n products, a r e v i s e d t a b l e of h i s log C  1  values  and a t a b l e , o f the apparent second d i s s o c i a t i o n constant o f carbonic acid (Lyman, 1957) i s given i n Appendix C.  This  enables apparent s o l u b i l i t y products t o be c a l c u l a t e d f o r seawater ranging i n s a l i n i t y from 0-20 ^oo and i n temperature from k-20°C.  Table VI contains the i o n products., f o r  the anoxic zone, and three values f o r the oxygenated zone. I t shows s l i g h t s u p e r s a t u r a t i o n at 60 meters and 70 meters i n the oxygenated zone and undersaturation at 80 meters, where the oxygen was 2.02 mg./l I n September, I960.  The anoxic  zone i s undersaturated with respect t o calcium carbonate. TABLE VI ION PRODUCTS OF CALCIUM CARBONATE AT STATION 1/2 IN TOFINO INLET Station 1/2 1/2 1/2 1/2 0-1/2 1/2 1/2  Depth 60m* 70m* 80m*  ,85m ^5m  80m 90m  Date Sept. I960 » " » « Feb. 1961 "  Ion Product 5 . 7 x 10~£ 6.0 x 10-7 3.2 x 10-7 2.5 x 10-A l.i+ x 10-7 3 . 5 x 10-7 2.9 x 10-7  +-.5 x 1 0 f o r a l l depths shown since s a l i n i t y . and temperature changes are i n s i g n i f i c a n t . l  * Oxygenated water.  Calcareous s h e l l s are found i n the sediments of Vancouver Island i n l e t s i n greater number than i n the mainland i n l e t s (Pickard 1963), but calcareous species of f o r a m l n i f e r a are not found i n the upper b a s i n sediments of Tofino I n l e t (Cockbain, personal communication).  In the  h i g h l y anoxic Powell Lake, no inorganic carbonates are present i n the bottom sediments (Williams, personal communication).  From these observations i t seems l i k e l y that  calcium carbonate, p o s s i b l y derived from f a l l i n g organisms or r i v e r sediment, has d i s s o l v e d i n the low pH water of the basins leading t o the observed increase i n a l k a l i n i t y . This has the e f f e c t of r a i s i n g the pH of the anoxic waters.  64  CHAPTER V I CONCLUSIONS The study of the chemical c h a r a c t e r i s t i c s of the anoxic basins i n Tofino Inlet- shows that the pH and a l k a l i n i t y changes which occur i n them, r e s u l t from the production of . carbon d i o x i d e and hydrogen s u l p h i d e .  These products  from the b a c t e r i a l o x i d a t i o n of organic matter.  arise  The  r e s u l t i n g pH i s lower and t h e . a l k a l i n i t y i s higher than i n normal seawater. anoxic b a s i n s . feature.  The a l k a l i n i t y i s anomalously high i n the Two proposals are advanced t o e x p l a i n t h i s  Near the anoxic boundary, the mixing of oxygen  down i n t o the anoxic zone, where i t o x i d i z e s sulphide t o f r e e sulphur, could be responsible f o r at l e a s t part of the increase.  Deeper i n the anoxic zone the s o l u t i o n of calcium  carbonate  accounts f o r the anomalous increase i n a l k a l i n i t y .  The regeneration of phosphate and s i l i c a t e that takes place i n the anoxic zone r e s u l t s i n high values of these c o n s t i t uents.  I n the case of s i l i c a t e , hydrogen sulphide may a i d i n  i t s regeneration by combining w i t h I r o n , which i s present i n the s i l i c e o u s skeletons of diatoms. The replacement of bottom water takes place annually i n the summer, when m e t e o r o l o g i c a l c o n d i t i o n s produce high s a l i n i t i e s i n the water at s i l l depth at the entrance to. the inlet.  While the bottom water i n the upper basins of the  i n l e t i s not completely replaced every year, i n each year f o r  65  which there i s adequate data, extensive replacement of the bottom water occurs. During the winter f o l l o w i n g the i n t r u s i o n the bottom water i s i s o l a t e d . to low v a l u e s .  The oxygen then decreases  The mechanism of replacement i s s t i l l obscure.  The i n t r u d i n g water may come i n through Fortune Channel, Browning Passage or both. the  In order to determine the path of  i n t r u s i o n , moored o b s e r v a t i o n a l instruments are r e q u i r e d .  When these f a c i l i t i e s are not a v a i l a b l e i t i s p o s s i b l e to use the chemical p r o p e r t i e s , oxygen, phosphate and s i l i c a t e , to trace the water movements. The oxygen u t i l i z a t i o n r a t e f o r the stagnant basins i s c a l c u l a t e d and i t agrees with published values obtained i n other i n l e t s .  This r a t e has been used t o c a l c u l a t e the age  of bottom water i n order to determine a replacement time.  66 REFERENCES Anon. 1957a - 1 9 6 l a . Monthly Record. Meteorological Observations I n Canada. Canada Department of Transport, M e t e o r o l o g i c a l Branch, Toronto. Anon. 1959b - 1961b. Data Reports. I n s t i t u t e of Oceanography. U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B. C. Numbers 16, 17, 19. Anon. 1958c. Observations of seawater temperature and s a l i n i t y on the P a c i f i c Coast of Canada. Manuscript Report S e r i e s . Oceanographic and L i m n o l o g i c a l . No. 23. 1959c.  Ibid.  No. M3.  1960C.  Ibid.  No. 67.  1961c.  Abstracted from o r i g i n a l data. F i s h . Res. Bd. B i o l o g i c a l S t a t i o n , Nanaimo, B. C.  Canada.  '  Barnes, C. A., and E. E. C o l l i a s . 1958. Some considerations, of oxygen u t i l i z a t i o n r a t e s i n Puget Sound. J . Mar. Research 17. 68-80. Bather, J . M.. and J . P. R i l e y . 195*+. Sulphate-chloroi n i t y r a t i o s o f the I r i s h Sea. J . Cons. E x p l o r . Mer. 20 (2) , 1^-5-152.  Cameron, W. M., and D. W. P r i t c h a r d . 1963. E s t u a r i e s . • The Sea. Interscience P u b l i s h e r s , New York. 55H-pp. Carter,, N. M. 193*+• Physiography and oceanography o f some B r i t i s h Columbia f i o r d s . Proc. 5th Pac. S c i . Cong.. 1233.  V o l . I , pp. 721-733.  Cockbain. (Personal communication). Present address: Dept. of Geology, U n i v e r s i t y of Canterbury, Christchurch 1, New Zealand. F o r d , W. L. 1959a. Bathythermograph data oh f i l e . Institute of Oceanography, U n i v e r s i t y o f B r i t i s h Columbia, Vancouver, B. C. Ford, W. L. 1959b. Personal communication. On f i l e . I n s t i t u t e of Oceanography, U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B. C.  67  Harvey, H. W. 1955. The chemistry and f e r t i l i t y of seawaters. Chap. 10, pp. 153-182.Cambridge U n i v e r s i t y P r e s s . 224- pp. K i n g , E. L. 195+• C a l c u l a t i n g the concentrations of the species present i n complex b u f f e r s . J . Chem. Ed.. 31. 183-187.  Lane, R. K. 1962. A review of the temperature and s a l i n i t y s t r u c t u r e s i n the approaches t o Vancouver I s l a n d , B r i t i s h Columbia. J . F i s h . Res. Bd. Canada. 19 ( 1 ) , 45-91. L a z i e r , J . R. N. 1963. Some aspects of the oceanographic s t r u c t u r e i n the J e r v i s I n l e t system. M.Sc. T h e s i s . U n i v e r s i t y df B r i t i s h Columbia, Vancouver, B.C. Lewin, J . C. 1961. D i s s o l u t i o n of s i l i c a from diatom w a l l s . Geochim. et Cosmdchlm. Acta. 21. 182. Lyman, J . 1957. B u f f e r mechanism of seawater. U n i v e r s i t y of C a l i f o r n i a , Los. Angeles.  Ph.D. T h e s i s .  McKinney, R. E. and R. A. Conway. 1957. Chemical oxygen i n b i o l o g i c a l waste treatment. Sewage and I n d u s t r i a l Wastes. 29, 1097-1106. P i c k a r d , G. L., and D. C. McLeod. 1953. Seasonal v a r i a t i o n of temperature and s a l i n i t y of surface waters of the B r i t i s h Columbia coast. J . F i s h . Res. Bd. Canada. 10. 125-14-5.  P i c k a r d , G. L. 1961. Oceanographic f e a t u r e s of i n l e t s i n the B r i t i s h Columbia coast. J . F i s h . Res. Bd. Canada. 18,  907-999.  P i c k a r d , G. L. 1963. Oceanographic c h a r a c t e r i s t i c s of i n l e t s of Vancouver I s l a n d , B r i t i s h Columbia. J . F i s h . Res. Bd. Canada. 20, 1109-114-4-.  R e d f i e l d , A. C , Ketchum, B. H., and F. A. R i c h a r d s . 1963The i n f l u e n c e of organisms on the composition of seawater. The Sea, V o l . 2, p. 4-3. I n t e r s c i e n c e P u b l i s h e r s , New York. 55^PP. R i c h a r d s , F. A., and R. F. Vaccaro. 1956. The Cariaco Trench an anaerobic basin i n the Caribbean Sea. Deep Sea  Res..  3,  214-228,  68 Richards, F. A., and B. B. Benson. 1961. Nitrogen/argon and n i t r o g e n isotope r a t i o s i n two anaerobic environments, the Cariaco Trench i n the Caribbean Sea and Dramsfjord, Norway. Deep Sea Res.. 7, 254-264-. R i t t e n b u r g , S. C., Emery, K. 0 . , and W. L. Orr. 1955« Regeneration of n u t r i e n t s i n sediments of marine b a s i n s . Deep Sea Res., 3 22-4-5. T  Skppintsev, B. A. 1 9 5 7 . The Oxidation-Reduction P o t e n t i a l i n Waters of the Black Sea. Gidrokim. M a t e r i a l y . 27. 21-36. Standard Methods. 1 9 5 5 . Standard methods f o r the a n a l y s i s of water, sewage and i n d u s t r i a l wastes, p. 2 7 3 * American P u b l i c Health A s s o c i a t i o n Inc., New York. 522 pp. S t r i c k l a n d , J . D. H., and T. R. Parsons. 1961. A manual of seawater a n a l y s i s . F i s h . Res. Bd. Canada. B u l l . No. 125. 185 PP. Thompson, T. G., and K. T. Barkey. 1 9 3 8 . Observations i n f j o r d waters. Trans. Amer. Geophys. Union. 19, 254-. Truesdale, G. A., Downing, A. L., and G. F. Lowden. ' • 1 9 5 5 . The s o l u b i l i t y of oxygen i n pure water and i n seawater. J . App. Chem.. .2, 53« T u l l y , J . P. 194-9. Oceanography and p r e d i c t i o n of pulp m i l l p o l l u t i o n i n A l b e r n i I n l e t . F i s h . Res. Bd. Canada. B u l l . No. 8^. 169 PP. Wattenburg, H. 1933. Uber d i e t i t r a t i o n s a l k a l i n i t a t und den karbonatgehalt des meerwassers. Deutsche A t l a n t i s c h e Exped. Meteor 1925-1928. Wiss. E r g . , Bd. 8, 2 T e i l , 122-231.  W i l l i a m s , P. M., Mathews, W. H., and G. L. P i c k a r d . 1961. lake i n B r i t i s h Columbia containing o l d seawater. Nature. 191, 83O-832. W i l l i a m s , P. M. Personal communication. Present address, I n s t i t u t e of Marine Resources, Scripps I n s t i t u t e of Oceanography, La J o l l a , C a l i f o r n i a .  A  APPENDIX  69 APPENDIX A OBSERVATIONS OF SULPHIDE IN TOFINO INLET  Station  Depth  Date  Concentration of Sulphide mg./l  0 1/2  4-5m  Sept. I960  1/2  85m  Sept. I960  9.53  1/2  80m  Feb. 1961  1.82  1/2  90m  Feb. 1961  1/2  80m  A p r i l 1961  1/2  90m  A p r i l 1961  11.1  1/2  95m  A p r i l 1961  12.98  13.89  11.5  2.22  70  APPENDIX B OBSERVATIONS MADE IN TOFINO INLET IN AUGUST 1961 Two c r u i s e s were made to Tofino I n l e t i n August 1961, on August 15 - 16, and on August 30 - 31.  On both these  occasions there i s evidence from s a l i n i t y and oxygen data that dense water i s i n t r u d i n g i n t o the i n l e t (Anon. 1961b). Oxygen observations show s i m i l a r conditions t o that p r e v a i l i n g i n September  i960.  i n the bottom water.  At. S t a t i o n 1, the oxygen i s again high While dense water shows up i n both  Browning Passage and Fortune Channel, the d e n s i t y d i s t r i b u t i o n f o r August 15 - 16 i n d i c a t e s more c o n t i n u i t y s t r u c t u r e between Tofino I n l e t and Fortune Channel than between Tofino I n l e t and Browning Passage.  This suggests that the major  p o r t i o n of the i n t r u d i n g water may come i n through the deeper northern channel. Why t h i s should be i s c e r t a i n l y not c l e a r . The e l u c i d a t i o n of the replacement mechanism f o r bottom water of Tofino I n l e t w i l l undoubtedly require d i r e c t current observations.  71 APPENDIX C  WATTENBURG'S METHOD FOR  THE  S O L U B I L I T Y PRODUCT OF  (1933)  Wattenburg product  different and  solid  - 6.h2.  the  THE  APPARENT  SEAWATER  apparent  solubility-  i n seawater e x p e r i m e n t a l l y with  I n e a c h c a s e he  seawater  chose a  the  analytical  The  e q u a t i o n f o r the  of  C02«  concentration of  amount; h i s e q u i l i b r i u m  pH's  ranged  thermodynamic  by  constant  pressure f o r each d e t e r m i n a t i o n of  done t o r e d u c e  a negligible  6.02  determined  c a l c i u m carbonate  chlorinities.  high p a r t i a l  T h i s was to  CALCIUM CARBONATE IN  o f c a l c i u m carbonate  equilibrating  DETERMINATION OF  CO^  from  solubility  product  Ksp (CaCOj ^ lOr\ [CO/J c a n be  arranged  product  t o g i v e the f o l l o w i n g apparent  i n terms of e a s i l y  measured  = Wattenburg determined ured  u s i n g a quinhydrone  procedures 1932,  he  Equation  available  estimated  C ' x KitHnCOs)  (HCO3)  by  t i t r a t i o n and  electrode.  (Ca" ' ) f r o m t  +  solubility  quantities  f o r determining  the  (a)  Since  the  c a l c i u m was  the  following  measanalytical  difficult relation  in  72  which holds f o r normal seawater at pH's l e s s than 7«1«  ^  Cat' + ^ J g i J Z  = 0.000 47 7 G ? % o  Equation +  (c) (d)  (A/^jJ  Since Wattenburg used the Sorenson Scale of pH, the t a b l e of l o g c' values included here on page 73 are corrected f o r the d i f f e r e n c e between the modern and Sorenson pH scales f>H  - pH%  Using these values of l o g C apparent  -1-0.04-  (e)  and pK2 f o r carbonic a c i d , the  s o l u b i l i t y product f o r seawater of varying c h l o r -  i n i t i e s and temperatures  can be c a l c u l a t e d .  Modern values  of pKi(^0,) are l i s t e d on page 74- (Lyman 1957) o In determining the i o n product of calcium carbonate i n the anoxic basins the concentration of calcium i o n was estimated by Wattenburg's method f o r normal seawater, equation (d) above. determined  The concentration of carbonate i o n was  from the r e l a t i o n given i n Harvey (1955)» where (CO3 ) - carbonate a l k a l i n i t y  x  (f)  73  TABLE A WATTENBURG'S LOG C VALUES CORRECTED FOR CHANGE TO THE MODERN pH SCALE. THEY ARE GIVEN FOR 0 - 20 %>o C l 7  AND h - 20°C.  X.  T°C  Cl % c > \  gO  12°  16°  20°  0  2.36  2.29  2.21  2.13  2.05  1  2.70  2.63  2.55  2.^7  2.39  2  2.79  2.72  2.6U,  2.56  2.he  k  2.90  2.83  2.75  2.67  2.59  6  2.99  2.92  2.8»+  2.76  2.68  8  3.0h  2.97  2.89  2.81  2.73  10  3.08  3.01  2.93  2.85  2.77  12  3.10  3.03  2.95  2.87  2.79  lh  3.12  3.05  2.97  2.89  2.81  16  3.1^  3.07  2.99  2.91  2.83  18  .3.15  3-Q9  3.00  2.92  2.Qk  20  3.15  3.09  3.00  2.92  2.8^-  74-  TABLE B K ' (H2CO3) FOR 0 - 17°/oo IN CHLORINITY AND 0 - l6°C. FROM LYMAN (1957) BUFFER MECHANISM OF SEAWATER. Ph.D. THESIS UNIVERSITY OF CALIFORNIA AT LOS ANGELES 2  \ T° :i/oo\ 0  C  4° 10.56  12° 10.51  10.4-7  16° 10.4-2  INTERPOLATION NOT PRACTICAL BETWEEN 0 AND 1 ° /'00 Cl°/oo 1 2 3  10.00  9 ..91 9.82  9.95 9.86 9.78  9.91 9.82 9.74-  9.86 9.77 9.69  4  9.73 9.70 9.67  9.69 9.66 9.63  9.65  9.60  5 6  9.59  9.57 9.54-  7 8 9  9.62  9.65  9.60  9.59  9.58 9.54-  9.56 9.53 9.4-9  9.51 9.4-8 9.4-5  9.51 9.4-9 9.4-6  9.4-7 9.4-5 9.4-2  9.4-2 9.4-0 9.37  9.4-6  9.4-0 9.37 9.35  9.35 9.32 9.30  9.33 9.30  9.28 9.26  10 11 12  9.56  13  9.4-9  15  9.44  9.4-49.4-2 9.4-0  16 17  9.41  9.37  9.5H9.51  9.39  9.3^  9.62  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062187/manifest

Comment

Related Items