UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Chemiluminescence of indolyl peroxides Chang, Yew Chun 1966

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1966_A6_7 C4.pdf [ 3.34MB ]
Metadata
JSON: 831-1.0062176.json
JSON-LD: 831-1.0062176-ld.json
RDF/XML (Pretty): 831-1.0062176-rdf.xml
RDF/JSON: 831-1.0062176-rdf.json
Turtle: 831-1.0062176-turtle.txt
N-Triples: 831-1.0062176-rdf-ntriples.txt
Original Record: 831-1.0062176-source.json
Full Text
831-1.0062176-fulltext.txt
Citation
831-1.0062176.ris

Full Text

CHEMILUMINESCENCE of INDOLYL PEROXIDES by YEW CHUN CHANG B . S c . ( H o n o u r s ) , U n i v e r s i t y of B r i t i s h  Columbia,1964.  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of Chemistry We accept t h i s required  t h e s i s as conforming t o the  standard  THE UNIVERSITY OF BRITISH COLUMBIA August, 1966  In  presenting  requirements Columbia, for  the  understood cial  and  copying Head  gain  Department  an  agree  reference  tensive by  I  for  of that  shall  thesis  in  partial  advanced  degree  at  the  that  the I  this  thesis  further  Department  copying not  be  or  or  for by  shall agree  his  without  of Columbia  fulfilment  University  make  it  that  scholarly  publication  allowed  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada Date  Library  study.  of my  this  of  freely  permission  purposes  may  representatives. of  this  thesis  my  written  for  of  the  British avaiIable for  ex-  be It  granted is  finan-  permission.  ii  ABSTRACT Indolyl be  chemiluminescent  dimethyl the  hydroperoxides i n presence  sulphoxide.  corresponding  have been d i s c o v e r e d of potassium  t-butoxide  A number of d e r i v a t i v e s  peroxide  have been p r e p a r e d  of  o f compound.  the  brightest  a major p r o d u c t , 70%  yield.  product  The  based It  enhance the  was  The  chemiluminescent  hydroperoxides the  amides  e m i t t e r has  on  i n an  (Xlla been  found  Hammett c o r r e l a t i o n  with C f o r  (XV111A) shows a p s e u d o f i r s t (X11A  Energy t r a n s f e r thermochemiluminescence (XXVA) .  and  XV111A)  and X V l l l a ) , identified  intensity.  indolyl  chemiluminescence  of  reaction  effort this  of  two  yielded  i n about  as t h e  amide  that electron-donating substituents  chemiluminescence  concentration  of  and  spectroscopic data.  2-(p-phenyl) s u b s t i t u t e d  The  (X11A  in  of i n d o l e  t o e l u c i d a t e t h e mechanism o f c h e m i l u m i n e s c e n c e class  to  and has of  A study  hydroperoxides  7 of t h e  XV111A)  shows a  compounds.  o f compounds order  of  (XllAand  dependence ( i n excess  been o b s e r v e d  on  the  base).  to occur  i n the  11-tetrahydroperoxyindolenine  iii  TABLE OF CONTENTS page INTRODUCTION PART I:  1 SYNTHESIS AND DECOMPOSITION OF INDOLYL HYDROPEROXIDES  EXPERIMENTAL  13  DISCUSSION  31  A.  S y n t h e s i s of Indoles  B.  S y n t h e s i s of I n d o l y l  C.  Chemiluminescence and Decomposition of Indolyl  PART I I :  32 Hydroperoxides .  Hydroperoxides  CHEMILUMINESCENCE  36  39 AND  FLUORESCENCE STUDY EXPERIMENTAL  45  DISCUSSION  49  A.  Energy T r a n s f e r  49  B.  Emitter I d e n t i f i c a t i o n  51  C.  Substituent E f f e c t  54  PART I I I : KINETICS OF  CHEMILUMINESCENCE  EXPERIMENTAL  57  DISCUSSION  58  BIBLIOGRAPHY APPENDIX  . . . . . . .. . . . . ... . . . .. . ...........  ...................................  64 68  iv  LIST OF TABLES page 1.  I n d o l e s , I n d o l y l Hydroperoxides and 32 Chemiluminescence  Intensity  2.  Rate Constants of I n d o l y l Hydroperoxides  3.  Chemiluminescence  59  I n t e n s i t y and C o n c e n t r a t i o n  R e l a t i o n s h i p of the I n d o l y l Hydroperoxide  (XV111A)  62  V  L I S T OF 1.  Proposed E x c i t e d State  FIGURES o f N,  N,  Tetramethylparaphenylenediamine 2.  Proposed o f 9,  3.  Mechanism o f t h e  N',  N'-  CTMP)  3  Chemiluminescence  10-Diphenylanthracene  Proposed E x c i t e d State  page  (DPA)  of the  4  Chemiluminescence  of Luminol 4.  Proposed  7  Mechanism o f t h e  Chemiluminescence  of Lophine  ...  10  5.  Oxidation  of I n d o l e s  •  6.  Lophine O x i d a t i o n  7.  Decomposition  of  Hydroperoxide  (XXVA)  8.  Decomposition  of I n d o l y l Hydroperoxide  (XA) ....  42  9.  Decomposition  of I n d o l y l Hydroperoxide  (X11A) ••  43  10. D e c o m p o s i t i o n  of I n d o l y l Hydroperoxide  (XV111A)  44  38 Tetrahydrocarbazolyl 40  11. E n e r g y T r a n s f e r  50  12. C h e m i l u m i n e s c e n c e  of I n d o l y l Peroxide  13. C h e m i l u m i n e s c e n c e  Spectrum of  Fluorescence  36  Spectrum  of  (XV111A)  (XVllla)  (XVU1A). •  52  and 53  vi page 14. Chemiluminescence Spectrum of (X11A) and F l u o r e s c e n c e Spectrum of ( X l l a and X l l b ) 15. Graph of Log ( l / l ) v s . 0" 0  53 55  16. Graph of Log I v s . Time f o r the I n d o l y l Hydroperoxide 17. Graph of / J T 1  Hydroperoxide  (XV111A)  60  v s . Time f o r I n d o l y l (XV111A)  61  vii  ACKNOWLEDGMENT  I would l i k e t o express my s i n c e r e g r a t i t u d e t o Dr. Frank McCapra f o r s u g g e s t i n g and  t h i s r e s e a r c h problem  f o r g u i d i n g i t t o i t s completion  encouragement and w i l l i n g  advice.  with  inspiration,  1  INTRODUCTION The phenomenon of chemiluminescence has r e c e n t l y become the s u b j e c t of i n c r e a s e d s t u d y . examples  of chemiluminescence was r e p o r t e d i n 1877 by  Radziszewski lophine  One of the f i r s t  1  who observed l i g h t e m i s s i o n from the r e a c t i o n of  ( 2 , 4, 5 - t r i p h e n y l i m i d a z o l e ) with s t r o n g base and  oxygen.  Chemiluminescence  can a l s o be c o n v e n i e n t l y demonstrated  by adding 3 0 % hydrogen peroxide t o a mixture of equal q u a n t i t i e s of 0.1M p y r o g a l l o l , 1M sodium carbonate and 10M formaldehyde 3  solution.  A faint  Since the f i r s t  r o s y glow i s v i s i b l e  i n complete darkness.  d i s c o v e r y of chemiluminescence of l o p h i n e ,  b r i g h t e r compounds have been e x t e n s i v e l y s t u d i e d and the work . 1,4,5,6 reviewed. ' ' Chemiluminescence o r g a n i c compounds.  i s not c o n f i n e d t o r e a c t i o n s of  Recent r e p o r t s have shown that  luminescence occurs d u r i n g the formation of B r C l  7  chemi-  , and the  8  r e a c t i o n of SO and oxygen.  In a d d i t i o n ,  chemiluminescence  9  was observed even i n G r i g n a r d reagents as e a r l y as 1907. Reactions i n l i v i n g matter sometimes emit l i g h t , known as bioluminescence.  a phenomenon  T h i s a t t r a c t i v e glow i s found i n  luminous b a c t e r i a , glow-worms, f i r e - f l i e s  and some f u n g i . ^ ' 1  In the chemiluminescence of l i q u i d s o l u t i o n s , the c o n v e r s i o n of chemical energy i n t o l i g h t energy i n v o l v e s the formation of a r e a c t a n t , i n t e r m e d i a t e , or product molecule i n an e x c i t e d e l e c t r o n i c s t a t e  (directly  or by energy  transfer)  1 1  2 and  the e m i s s i o n  o f a p h o t o n by t h a t s p e c i e s .  s t a t e s are a l s o reached be  Since e x c i t e d  by t h e a b s o r p t i o n o f l i g h t ,  possible to correlate  i t should  t h e wave l e n g t h d i s t r i b u t i o n  chemiluminescence w i t h t h a t i n phosphorescence, i f a  in triplet  s t a t e were t h e e m i t t e r , o r i n f l u o r e s c e n c e , i f a s i n g l e t s t a t e were i n v o l v e d . The in solution  s t u d y of chemiluminescence of o r g a n i c  i s hampered by t h e l a c k o f a s u f f i c i e n t  r e a c t i o n s which give a b r i g h t emission has  compounds  been s l i g h t l y  a l l e v i a t e d by  12 of s e n s i t i v e equipment  This  problem  the advances i n the c o n s t r u c t i o n  13 '  weak c h e m i l u m i n e s c e n c e .  of l i g h t .  number o f  which would e a s i l y d e t e c t even  However, the p r o b l e m of  quenching  ( a b s o r p t i o n o f t h e e m i t t e d l i g h t by c o l o r e d r e a c t i o n m e d i a ) will  always remain.  the study has  Despite  these  difficulties,  some o r d e r  in  o f c h e m i l u m i n e s c e n c e o f o r g a n i c compounds i n s o l u t i o n  been e s t a b l i s h e d .  c h e m i l u m i n e s c e n c e may  At the p r e s e n t be  a l l organic  d i s t i n q u i s h e d by  t y p e s of r e a c t i o n which produce  three  enough e n e r g y  solution  principle (40-80  kcal/mole)  1'4 to allow emission  of v i s i b l e  light.  r e c o m b i n a t i o n , i o n - r e c o m b i n a t i o n , and  These a r e :  electron-  multiple-bond  rearrange-  ments w i t h l a r g e e n e r g y r e l e a s e . Electron-Recombination. Such a p r o c e s s ( s u c h a s N,  N,  Nt|; N ' - t e t r a m e t h y l p a r a p h e n y l e n e d i a m i n e )  i n low-temperature afterglow.  i s b e l i e v e d t o o c c u r when o r g a n i c  (TMP)  g l a s s are s t r o n g l y i l l u m i n a t e d g i v i n g  E l e c t r o n s a r e l i b e r a t e d by t h e l i g h t  (UV),  amines  an  and  3 become t r a p p e d i n t h e g l a s s medium, f r o m w h i c h t h e y may slowly  t o t h e r e s u l t i n g amine c a t i o n s .  return  The e m i s s i o n i s c h i e f l y 15  phosphorescence (Fig.  and t h e e x c i t a t i o n i s a 2-photon p r o c e s s  1):  Fig. 1  S + htf  Possibly  S*  —-v  -r-  the i o n i z e d molecule  atomic c o n f i g u r a t i o n state T rather  than S  so that  T  •  T + hO  i s frozen the r e t u r n  v  T  + e  +  in i t s triplet-state of the e l e c t r o n  (* = e x c i t e d s t a t e ,  reforms  S= s i n g l e t , T = t r i p l e t ) .  Ion-Recombination. Chemiluminescence  as a r e s u l t o f i o n - r e c o m b i n a t i o n i s 1 fi  common i n i o n i s e d a r o m a t i c h y d r o c a r b o n s . discussed  Hercules  has  p o s s i b l e mechanisms f o r t h e c h e m i l u m i n e s c e n c e  electrogenerated  species  b a s e d on q u a l i t a t i v e  experiments with a platinum electrode aqueous s o l v e n t s .  Electrochemically  hydrocarbon  (such as that  anions  the  hydrocarbon  fluorescence  The  lowest e x c i t e d  of  electrochemical  i n deoxygenated  non-  generated aromatic  formed  from anthracene)  emit  when o x i d i z e d by a n o d i c p r o d u c t s .  singlet state  been s u g g e s t e d as t h e e m i t t i n g  o f a r o m a t i c h y d r o c a r b o n has  species.  C h a n d r o s s and  1 7  Sonntag have r e c e n t l y shown that chemiluminescence occurs when 9, 10-diphenylanthracence anion r a d i c a l (DPA~) i s t r e a t e d with the 9, 1 0 - d i c h l o r i d e o x i d i z i n g agents. produces DPA returning  of DPA  or a v a r i e t y of  They proposed that o x i d a t i o n  i n an e x c i t e d s t a t e  t o the ground s t a t e .  of  DPA  (DPA*) which emits l i g h t i n These r e s u l t s suggest  p o s s i b l e mechanisms f o r the chemiluminescent r e a c t i o n d u r i n g e l e c t r o l y s i s of aromatic hydrocarbons. anion R~ formed at the cathode excited state R  The  two occurring  radical  i s o x i d i z e d d i r e c t l y t o an  at the anode s u r f a c e ,  of an oxidant i s  produced at the anode which r e a c t s with R~ forming R . 18 studies,  Further  1Q »  i n f a c t , have narrowed,,to  the mechanism which  i n v o l v e s the formation of an oxidant at the anode.  Oxidizing  agents such as bromine and c h l o r i n e were t e s t e d and shown t o 18 be d i r e c t l y i n v o l v e d i n the chemiluminescent r e a c t i o n of DPA The chemiluminescent r e a c t i o n of DPA" with DPA d i c h l o r i d e T O  prompted Sonntag and co-worker  2 0 21  to postulate  f o l l o w i n g mechanism t o be the most reasonable one  DPA  +  DPAC1  involves  (Fig. 2) .  DPAC1 +  DPA  T h i s i s probably the simplest known.  the  chemiluminescent  The formation of e l e c t r o n i c a l l y e x c i t e d  reaction molecules  only the t r a n s f e r of an e l e c t r o n from the r a d i c a l  anion t o another r a d i c a l which serves as an o x i d i z i n g agent  i n a process r e l a t e d t o recombination chemiluminescence. M u l t i p l e - B o n d Rearrangement  with Large Energy Release.  These are mostly b a s e - c a t a l y s e d a u t o x i d a t i o n s . best known i s the o x i d a t i o n of luminol  The  (I) (3-amino-  p h t h a l h y d r a z i d e ) with peroxide and sodium h y p o c h l o r i t e i n weak a l k a l i n e aqueous s o l u t i o n or by oxygen  i n dimethyl sulphoxide  and sodium hydroxide. 22 The study of the chemiluminescence of luminol complete i n many r e s p e c t s ; the e m i t t e r has been  is  identified,  the order of the chemiluminescent r e a c t i o n determined and the quantum y i e l d measured.  Furthermore the s u b s t i t u e n t  pattern  and s t e r i c hindrance have a pronounced e f f e c t on luminol chemiluminescence. The chemiluminescence of luminol was f i r s t r e p o r t e d by Albrecht.  23  However recent f i n d i n g s have brought more u s e f u l 24,25,26 knowledge of the chemiluminescence. The f o l l o w i n g scheme i l l u s t r a t e s the o v e r a l l course of the r e a c t i o n  _ XO-2 N a  2NaOH ^  °2  N + 2  "  2 H 0 + h\> 4-T 2  |  ^V^COo"~Na NH <L  2  CD  +  +  24 (Eq. 1 ) :  6  The  products  of the r e a c t i o n are n i t r o g e n and sodium  aminophthalate  (II).  The i d e n t i t y of the chemiluminescence  spectrum of l u m i n o l with the f l u o r e s c e n c e spectrum of ( I I ) leaves l i t t l e  doubt as t o the i d e n t i t y of the e m i t t i n g  molecule.  The maximum of both chemiluminescence and f l u o r e s c e n c e i n water i s 424 mu. and i n dimethyl  s u l p h o x i d e , 485 m\^. For  maximum chemiluminescence and f l u o r e s c e n c e the presence of dimethyl of  sulphoxide  solvent i s e s s e n t i a l .  Very high s t r e n g t h  base a p p a r e n t l y was r e q u i r e d . When the chemiluminescent o x i d a t i o n of l u m i n o l was 18  c a r r i e d out with 0  e n r i c h e d oxygen gas, i t was found  over 85% of the l a b e l ended up i n aminophthalate confirms  that  (Ij) .() . r  This  t h a t the o r i g i n of the oxygen i n ( I I ) i s oxygen gas  and not hydroxide  i o n or the water present  i n dimethyl  25  sulphoxide.  F u r t h e r study  showed that the emission  f o l l o w e d o v e r a l l f i r s t order k i n e t i c s . ^  (Eq. 1)  I t i s i n t e r e s t i n g that  the quantum y i e l d f o r the chemiluminescence of l u m i n o l i n dimethyl of  sulphoxide  i s only about 5%; but t h i s r e p r e s e n t s one  the h i g h e s t y i e l d s y e t measured f o r a chemiluminescent 97  reaction*'. The  p r e c i s e mechanism of formation of an e x c i t e d  s t a t e s p e c i e s from a ground s t a t e molecule i n s o l u t i o n a t room temperature  ( F i g . 3) i s unknown f o r m u l t i p l e - b o n d  type of chemiluminescent r e a c t i o n .  However s i n c e  oxygen i s a r e a c t a n t and has a t r i p l e t et  25 al suggested  rearrangement molecular  ground s t a t e , White  t h a t adducts of oxygen may e x i s t as t r i p l e t  7  28 state the  complexes  adduct  state  of  could  the  isoenergetic of  or  diradicals.  lead  potential level  a photon would  of then  to  Thus  a vibrationally  emitter. the  excited singlet  complete  the  a,  b,  paths  e and  c,  and  d =  of  nitrogen  excited  Intersystem  Fig. paths  loss  process  triplet  crossing  state  from  and  (Fig.  to  an  emission  3).  3  chemiluminescence;  d = fluorescence  of  emitting  species.  Lowest  Lowest  Triplet  Excited Singlet  TAdduct 1  0,  2  OH  Ground State Emitting  Singlet Species  of  8 Various  substituents  i n the benzene r i n g of luminol  have a pronounced e f f e c t on the chemiluminescence. these s u b s t i t u t e d l u m i n o l s  Study of  showed that the chemiluminescence  was enhanced b y . e l e c t r o n - r e l e a s i n g s u b s t i t u e n t s nucleus of the phthalhydrazide  i n the benzene  system, and weakened by e l e c t r o n -  29 attracting substituents.  Such e f f e c t s are i l l u s t r a t e d by  the f o l l o w i n g d e r i v a t i v e s of l u m i n o l  ( I I I ) and (IV) i n which  the quantum y i e l d of the chemiluminescence of ( I I I ) and (IV) was found t o exceed that of luminol  by 13 and 30% r e s p e c t i v e l y .  24  I , -NH  JH2  8  Decreased chemiluminescence y£quantum t o s t e r i c hindered  substituents.  y i e l d has been a t t r i b u t e d  S e v e r a l examples of t h i s e f f e c t  30 have been found t o occur. The  chemiluminescence of l o p h i n e s  (Va) and l o p h i n e  p e r o x i d e s (Via) i s s i m i l a r i n many r e s p e c t s  t o that of l u m i n o l .  L i k e l u m i n o l , l i g h t y i e l d s i n c r e a s e d with e l e c t r o n - r e l e a s i n g substituents.  In f a c t , when the r e l a t i v e  intensities (  ( l o g . */Io, I = the i n t e n s i t y observed f o r the d e r i v a t i v e and Io = i n t e n s i t y f o r l o p h i n e  oxidation)  s e r i e s of s u b s t i t u t e d l o p h i n e s  31 obtained.  by a s i m i l a r  were p l o t t e d a g a i n s t the  c o r r e s p o n d i n g Hammett s u b s t i t u e n t r e l a t i o n s h i p was  emitted  constants,  & , a linear  9  The  study of the b r i g h t e r chemiluminescent  derivatives  of l o p h i n e (Vb,c) and l o p h i n e p e r o x i d e s (Vlb,c) brought much insight  i n t o the i d e n t i t y of the e m i t t e r and the mechanism 32  of the chemical r e a c t i o n s . lophine  In each case the r e a c t i o n of  (Vb,c) i n potassium hydroxide s o l u t i o n and i n presence  of oxygen, and l o p h i n e peroxides (Vlb,c) on treatment with potassium produced  a long-lived emission.  r e a c t i o n gave degraded  However the  p r o d u c t s , whereas the l a t t e r  mostly dibenzoylbenzamidine s a l t s  (Vllb,c)  former  gave  ( c a . 80%).  The almost p e r f e c t match of the f l u o r e s c e n c e s p e c t r a of the dibenzoylbenzamidine s a l t s  ( V l l b , c ) and the  chemiluminescence  s p e c t r a of the l o p h i n e s (Vb,c) and l o p h i n e p e r o x i d e s (Vlb,c) suggested that the e x c i t e d s t a t e s of ( V l l , b , c ) were the 32  light emitters.  White  proposed that a s i n g l e t e x c i t e d  would be more l i k e l y than a t r i p l e t  state  s i n c e l i g h t e m i s s i o n from  l o p h i n e s and the p e r o x i d e s was u n a f f e c t e d by oxygen or by carotene, both of which are e f f i c i e n t t r i p l e t  state  (S-  quenchers.  10  The  f a c t t h a t lophine peroxides  base t o y i e l d l i g h t by f i r s t  (Vlb,c) r e a c t e d with  order k i n e t i c s , and t h a t the  i n t e g r a t e d l i g h t y i e l d s of lophine peroxides  (Vlb,c) were  p r o p o r t i o n a l t o the amount of lophine peroxides out a pathway i n which two  (Vlb,c),  lophine peroxide molecules  rules  or  32  e x c i t e d s t a t e molecules  combine t o emit a photon.  The  suggested mechanism i s shown ( F i g . 4) as o c c u r r i n g v i a the four-membered c y c l i c peroxide  intermediate  Fig. 4  (V11A).  11  In w>s  the r e a c t i o n s of l u m i n o l , l o p h i n e and l u c i g e n i n i t  e s t a b l i s h e d that i n a l l cases a major product of o x i d a t i o n  i s a compound with a newly formed carbonyl group.  A further  f e a t u r e i n common i s the i m p l i c a t i o n of a peroxide i n t e r m e d i a t e . A s e r i e s of a c r i d i n i u m s a l t s chemiluminescent  ( V l l l ) , which are p o w e r f u l l y  on the a d d i t i o n of a l k a l i n e hydrogen peroxide  have r e c e n t l y been discovered.^based on a general theory of these chemiluminescent  r e a c t i o n s suggested by McCapra and  6  Richardson. methylacridone  The  s o l e i s o l a t e d product of the r e a c t i o n ,  (V111A), was  C o n f i r m a t i o n was  N-  i d e n t i f i e d as the e m i t t e r .  based on s p e c t r o s c o p i c measurements.  reasonable t o suppose that l u c i g e n i n  (IX) and these compounds  ( y i l l ) are r e l a t e d i n t h e i r chemiluminescent g i v i n g r i s e t o the mechanism shown.  g  It i s  reactions,  12  2 WT7A  U n l i k e most of the w e l l known  chemiluminescent  compounds such as l u m i n o l , l u c i g e n i n and lophine apparently  which  p l a y no r o l e i n bioluminescence ,the i n d o l e nucleus 33  i s d e f i n i t e l y i n v o l v e d i n such systems. the l i t e r a t u r e  A c a r e f u l survey of  f a i l e d t o show any r e p o r t of l i g h t e m i s s i o n  d u r i n g the r e a c t i o n of i n d o l y l hydroperoxide  and base.  In  our l a b o r a t o r y a s e r i e s of i n d o l e hydroperoxides s i m i l a r to lophine  hydroperoxide has been s t u d i e d i n e x t e n s i v e  detail.  s e r i e s of 2 0 i n d o l y l hydroperoxides has been prepared.  The  possible emitter  has been i d e n t i f i e d and the mechanism of the  chemiluminescent  r e a c t i o n has been s t u d i e d .  I t i s hoped that  t h i s e f f o r t w i l l b r i n g about a b e t t e r understanding of the mechanism i n v o l v e d i n b i o l u m i n e s c e n t r e a c t i o n s .  A  PART I:  SYNTHESIS AND DECOMPOSITION OF INDOLYL HYDROPEROXIDES  13  EXPERIMENTAL A l l m e l t i n g p o i n t s were determined u s i n g a R e i c h e r t hot stage m e l t i n g p o i n t apparatus, The  microanalyses  and are u n c o r r e c t e d .  were performed by Dr. A.  and h i s a s s o c i a t e s , M i k r o a n a l y t i s c h e s Laboratorium P l a n c k - I n s t i t u t e f u r Kohlenforschung, and by Mr. P. Borda, Chemistry  Bernhardt im Max-  433 Mulheim, West Germany,  Department, U n i v e r s i t y of B r i t i s h  Columbia. The u l t r a v i o l e t s p e c t r a were recorded Cary-14 r e c o r d i n g spectrophotometer i n e t h a n o l The  i n f r a r e d s p e c t r a were recorded  on a Cary-11 or (95%) s o l u t i o n .  on a P e r k i n Elmer-21  spectrophotometer c a l i b r a t e d with r e f e r e n c e t o the 1601 cm'" -  1  peak of p o l y s t y r e n e . The  n u c l e a r magnetic resonance  (NMR) s p e c t r a were  recorded and i n t e g r a t e d by Mrs. A. Brewster on a V a r i a n A-60 NMR  spectrometer.  Chemical s h i f t s are given i n taus ( t )  downfield from t e t r a m e t h y l s i l a n e .  The s o l v e n t used was  deuteriochloroform. The  mass s p e c t r o m e t r i e analyses were perfomed by Mr.  G. D. Gunn u s i n g a MS9 and an A t l a s high r e s o l u t i o n mass spectrometer. Thin l a y e r chromatography (TLC) was c a r r i e d out on silica  g e l G.  14 The  f l u o r e s c e n t and chemiluminescent  s p e c t r a were  measured on an Aminco-Bowman s p e c t r o f l u o r o m e t e r . The e f f i c i e n c y of the chemiluminescent  reactions  was  measured on a type-564 storage o s c i l l o s c o p e , i n which a voltage of 700 v o l t s was The  a p p l i e d t o the p h o t o m u l t i p l i e r  i n d o l e s (X t o XV111) were s y n t h e s i z e d from phenyl-  hydrazine and the corresponding ketone Witkop and  tube.  by the method of  co-worker.^  3-Methyl-2-phenylindole (X). To a mixture of propiophenone  (6.7 g, 0.05  mole),  prepared from d r i e d benzene and p r o p i o n y l c h l o r i d e by the method of R e a d , ^ and phenylhy. drazine (5 ml, 0.05 added approximately 20g of p o l y p h o s p h o r i c a c i d . was  mole) was The  s t i r r e d by a mechanical s t i r r e r f o r 15 minutes.  v i s c o u s mixture was  mixture The  hot  poured i n t o ice-water (100 ml) and a white  p r e c i p i t a t e appeared.  The p r e c i p i t a t e was  washed s e v e r a l times with water.  Yield:  f i l t e r e d o f f and 6g,  (58%).  This  p r e c i p i t a t e was  r e c r y s t a l l i z e d from petroleum e t h e r (P.E. 60-80°)  as prisms, m.p.  91 -92°  (XA):  Hydroperoxide All  (lit.  m.p.  93°).  of (X).  the i n d o l y l h y d r o p e r o x i d e s were prepared by  d i s s o l v i n g the i n d o l e i n s u f f i c i e n t hot petroleum e t h e r (60-80°) t o prevent r a p i d c r y s t a l l i z a t i o n of the compound on c o o l i n g and a t r a c e of one was  added t o the s o l u t i o n .  of the i n d o l e n i n y l S t i r r i n g was  hydroperoxides  continued u n t i l  15  s e p a r a t i o n of the crude c r y s t a l l i n e hydroperoxide appeared t o be complete, the product was c o l l e c t e d and r e c r y s t a l l i z e d as q u i c k l y as p o s s i b l e from e t h y l a c e t a t e / petroleum e t h e r . Indole  (X) (1.0 g) d i s s o l v e d i n petroleum e t h e r (100ml)  was s t i r r e d by a magnetic  s t i r r i n g bar f o r one day i n a i r .  The y e l l o w p r e c i p i t a t e which came down was r e c r y s t a l l i z e d from e t h y l a c e t a t e / p e t r o l e u m e t h e r (1:3), m.p. 144-145° (lit.  m.p. 157°).  3 6 a  (612,850),  Yield:  245(16,000),  0.9 g, (86%).  239(17,500),  Xmax 314 mu,  230(15,500).  2-(p-Hydroxphenyl)-3-methylindole ( X I ) . p-Hydroxypropiophenone phenylhydrazine  (7.5 g, 0.5 mole) and  (5 ml) condensed  5.5 g, (50%) y e l l o w s o l i d .  i n the u s u a l way a f f o r d e d  I t was r e c r y s t a l l i z e d  from  petroleum e t h e r as y e l l o w f i b r o u s needles,m.p. 102-103°. Anal. Calcd. f o r C H NO: 15  13  C, 80.69; H, 5.87; N, 6.27.  Found:  C, 80.54; H, 5.67; N, 6.07.  (X1A):  Hydroperoxide Indole  of ( X I ) .  (XI) (0.3 g) i n petroleum e t h e r (200 ml) was  s t i r r e d f o r 2 days.  Y i e l d of crude product 0.29 g, (87%).  R e c r y s t a l l i z a t i o n from e t h y l a c e t a t e / petroleum e t h e r gave m.p. 207-208°.  Xmax 330 mM. (£18,600), 250 (sh. , 9,500),  240(sh., 15,700), 235(16,300).  Anal. Calcd. f o r C^H^NOg:  C, 70.58; H, 5,13; N, 5.49. Found: N, 5.69.  C, 70.85; H, 5.36;  16 2-(p-Methoxypfaenyl)-3-methylindole  (Xll).  p-Methoxypropiophenone (8.2 g, 0.5 mole) and phenylhydrazine red  (5 ml) i n p o l y p h o s p h o r i c a c i d gave 9.5 g, (80%)  solids.  ether  A f t e r e x t r a c t i n g the crude product with  (60-80°), subsequent  petroleum  r e c r y s t a l l i z a t i o n from e t h y l acetate o  37  petroleum e t h e r gave y e l l o w c r y s t a l s m.p. 123-124 ( l i t . m.p. 124°). (XllA) :  Hydroperoxide Indole  5 hours.  of (Xll) .  ( X l l ) (1.0 g) i n P.E. (100 ml) was s t i r r e d f o r  F i n a l y i e l d of powdery peroxide 0.96 g, (85%).  R e c r y s t a l l i z a t i o n from e t h y l a c e t a t e / P.E. gave m.p. Xmax (KBr d i s k ) 3050 c m ( s ) , - 1  135-136°.  2780(s), 1602(s), I920(w),  1650(m), 1505(s), 1450(m), 1425(s), 1370(w), 1306(m), 1260(s), 1180(s) , 1100(m) , 1030(m) , 840(m) , 765(m) . Xmax 328 mu, (€15,600), for  C  1 6  H  1 5  250(8,900), 240(14,400), 234(15,600).  N0 : 3  Anal. Calcd.  C, 71.36; H, 5.61; N, 5.20. Found:  C, 71.27;  H, 5.55; N, 5.30. 2-(p-Dimethylaminopheriyl)-3-methylindole  (Xlll).  p-Dimethyiaminopropiophenone (3g, 0.017 mole), prepared from d i s t i l l e d  d i m e t h y l a n i l i n e and p r o p i o n y l c h l o r i d e  by the method df Nineham,  was d i s s o l v e d i n benzene  T h i s mixture was s t i r r e d with phenylhydrazine u s u a l way and c o n d i t i o n . 3.5  (5 ml) i n the  R e c r y s t a l l i z a t i o n from P.E. gave  g, (83%), m.p. 128-129°.  C, 81.56; H, 7.25. Found:  (7 m l ) .  Anal. Calcd. f o r C C, 81.54; H, 7.20.  1 7  H  N: 18 2  17  (X111A):  Hydroperoxide of ( X l l l ) . Indole  (Xlll)  (0.3 g) i n P.E. (175 ml) was s t i r r e d t o  give a peroxide with m.p. 150-151° a f t e r from e t h y l  recrystallization  acetate / P . E . Xmax 370 mu, (€ 20,000) , 260(sh., 8,500),  247(11,300),  230(12,000).  H, 6.43; N, 9.92.  Found:  Anal. Calcd. f o r  C  H 1 7  1  8  N 2  °2  :  C  '  7 2  -  3 2  '  C, 72.17; H, 6.44; N, 9.89.  2-(3', 4 , 5 - t r i m e t h o x y p h e n y l ) - 3 - m e t h y l i n d o l e (XIV). 1  1  3,4,5-Trimethoxypropiophenone  (2.5, 0^013 mole),  prepared from diethylcadmium and 3, 4, 5-trimethoxybenzoyl 39 c h l o r i d e by the method of Gutsche e_t aJL  , was condensed with  p h e n y l h y d r a z i n e > (7 ml) i n p o l y p h o s p h o r i c a c i d . (68%) crude product was r e c r y s t a l l i z e d  When 2.5 g,  from benzene / P.E.  m.p. 160-161° was o b t a i n e d . NMR a b s o r p t i o n at 7.55"C(3H, s i n g l e t ) , 6.14 (6H, s i n g l e t ) , 6.08 (3H, s i n g l e t ) ,  3.20 (2H, s i n g l e t ) ,  2.30-2.80 (4H, m u l t i p l e t ) , 1.80(1H, s i n g l e t ) . Anal. Calcd. f o r C HVQNO ': C, 72.70; H, 6.44. Found: C, 72.60; H, 6.40. 18 19 3 ' (X1VA):  Hydroperoxide of (XIV). Due t o incomplete c o n v e r s i o n from t h i s l i n d o l e  r e s p e c t i v e hydroperoxide, no r e p r e s e n t a t i v e a n a l y t i c a l  into i t s sample  was o b t a i n e d . 2-(p-Bromophenyl)-3-methylindole (XV). p-Bromopropiophenone hydrazine  (5 g, 0.175 mole) and p h e n y l -  ( 7 ml) r e a c t e d i n the u s u a l way g i v i n g  crystalline  prisms with m.p. 168-169°.  C .H, NBr:  C, . 6 2 , 9 0 ; H, 4.23; B r , 27.92.  1t  9  6.3 g,  (85%)  Anal C a l c d . f o r ' Found:  C, 63.26;  18 H, 4 . 4 5 ; B r , 28.20. (XVA):  Hydroperoxide of (XV). Indole  (XV) ( 1 g) i n P.E. ( 1 0 0 ml) s t i r r e d i n the  u s u a l way gave 0 . 9 g prisms,  (82%) with m.p. 166-167°.  Xmax 317 m^ (€ 1 6 , 0 0 0 ) , 2 5 0 ( 1 5 , 0 0 0 ) , 241(15,800), 234(14,700). A n a l . C a l c d . f o r C-gH^NOgBr: Found:  C, 56.62; H, 3.80; N, 4.40.  C, 56.50; H, 3 . 9 5 ; N, 4.42.  2-(p-Chlorophenyl)-3-methylindole Chior^  (  5  S» ° '  (XVI). mole) and phenylhydrazine  0 3  ( 7 ml) r e a c t e d t o give 5 g, (69%) white c r y s t a l s 172-173°.  NMR, 7 . 6 X ( 3 H , s i n g l e t ) , 2 . 3 - 3 . 0 ( 9 H , m u l t i p l e t )  Anal. Calcd* f o r C ^ H ^ N C l :  C, 7 4 . 5 3 ; H, 5 . 0 1 ; N, 5.80.  Found:  C, 74.69; H, 5 . 3 9 ; N, 5.76.  QCVIA) :  Hydroperoxide of (XVI) . Indole (XVI)  ( 1 g) i n P.E. ( 1 0 0 ml) s t i r r e d i n the  u s u a l way gave 0.88 g white prisms,  (78%).  from e t h y l a c e t a t e / P.E. m.p. 135-136°.  When  1 5  H  i 2  recrystallized  \max 317 m/^ (e 16,500),  248(18, 0 0 0 ) , 2 4 1 ( 1 9 , 0 0 0 ) , 234(sh., 17,700). C  with m.p,  N 0 C l : C , 65.82; H, 4.42; N, 5 . 1 2 . 2  Anal. Calcd. f o r  Found:  C, 65.81;  H, 4.51; N, 5 . 2 2 . 2-(p-Fluorophenyl)-3-methylindole p-Fluoropropiophenone phenylhydrazine  ( 5 g, 0.033 mole), and  ( 7 ml) condensed i n the u s u a l way gave 7 . 0 g,  ( 9 3 % ) white s o l i d s . P.E.  (XVII).  white prisms  When r e c r y s t a l l i z e d  o had m.p. 142-143 .  from e t h y l acetate /  Anal. Calcd. f o r C15H12NF:  19  C, 79.97; H, 5.37; (XV11A):  N, 6.22.  Hydroperoxide of Indole  Found:  C, 80.25; H, 5.19;  (XVII) (1 g) i n P.E.  (100 ml) gave 0.95  g,  R e c r y s t a l l i z a t i o n from e t h y l a c e t a t e / P.E.,  137-138°.  Xmax, 314 m^ (e 11,000), 250(sh., 12,300), 230(sh., 13,300).  C, 70.03; H, 4.70; N,  N, 5.45.  (84%)  m.p.  Anal. Calcd. f o r C i H N 0 F : 5  Found:  C, 70.03; H,  1 2  2  4.69;  5.23.  2,3-Dimethylindole  (XV111).  2-Butanone (5 g, 0.07  mole) and phenylhydrazine (10 ml)  were s t i r r e d i n p o l y p h o s p h o r i c a c i d . way  6.17.  (XVII).  peroxide.  238(14,500),  N,  gave  9.5  g, (92%) of white s o l i d s .  from methanol (lit.  4 0  m.p.  Work up i n the u s u a l Recrystallization  / water a f f o r d e d white prisms with m.p. 106-107°) NMR  7.8  , 7.75 X(6H,  103-104°  doubleO „ 2.3-3.0  (5H, m u l t i p l e t ) . (XV111A):  Hydroperoxide of  Indole  (XV111).  (XV111) (1 g) d i s s o l v e d i n P.E.  s t i r r e d i n the u s u a l way.  (100 ml)  The r e a c t i o n mixture was kept cooled  by i c e bath and a s m a l l stream of oxygen gas was it  bubble d i i j i t o  so that decomposition of the peroxide formed was  Yield:  1.10  g, (90%) of white prisms with m.p.  (lit.  m.p.  113°; y i e l d 25%). Xmax 280 m^  4 1  262(3,860),  225(sh., 14,000), 218(21,500),  nil.  118-119°  (sh. , £ 3,160) , 215(19,500).  The i n d o l e s (XIX t o XXIV) were s y n t h e s i z e d from ©(.-bromoketone  was  and a n i l i n e by the method of C l e r c - B o r y .  20  5- Methoxy-3-methyl-2-phenylindole A mixture of p - a n i s i d i n e ot-bromopropiophenone  (XIX). (5 g, 0.04 mole) and  (2 g, 0.009 mole), prepared from p r o p i o 42  phenone by the method of Aldous e t a i r were s t i r r e d and heated i n a s i l i c o n e o i l - b a t h maintained a t a temperature 180?. A f t e r 10 min. the r e a c t i o n mixture was poured i n t o 1NHC1 The r e s u l t i n g granular:  product was f i l t e r e d o f f and r e c r y s t a l l i z e d  from g l a c i a l a c e t i c a c i d .  Yield:  1.8 g, (81%) y e l l o w  c r y s t a l l i n e f l a k e s , with m.p. 115-116° ( l i t . (X1XA):  m.p.  115°).  (XIX) (0.5 g) d i s s o l v e d i n P.E. (175 ml) formed  0.51 g, (90%) of white peroxide with m.p. 4 1  3 5 b  Hydroperoxide of ( X l X ) . indole  (lit.  (50 m l ) .  148-150°  m.p. 148-150°).  6- Methoxy-3-methyl-2-phenylindole (XX). m-Anisidine  (5 g, 0.04 mole) and  ot-bromopropiophenone  (2 g, 0.009 mole) were s t i r r e d and heated t o give 1.6 g, (72%) i n d o l e with m.p. 164-165° ( l i t . (XXA):  3  5  m.p. 1 6 4 ° ) .  b  Hydroperoxide of (XX). Indole (XX) (0.5 g) i n P.E. (175 ml) was s t i r r e d  until  white peroxide came out. The crude peroxide r e c r y s t a l l i z e d from e t h y l a c e t a t e / P.E., 0.49 g, (86%) had m.p. Anal. Calcd. f o r C H N 0 : l g  Found:  1 5  156-157°.  C, 71.36; H, 5.61; N, 5.20.  C, 71.29; H, 5.76; N, 5.32.  7- Methoxy-3-methyl-2-phenylindole o-Anisidine  (XXI).  (3 g, 0.024 mole) and o^-bromopropiophenone  21  (4 g, 0.019 mole) r e a c t e d i n the u s u a l way t o give 3.5 g, (79%) white s o l i d s . a c i d as square  T h i s r e c r y s t a l l i z e d from g l a c i a l  c r y s t a l s with m.p. 90-91°.  acetic  NMR 7 . 6 t (3H, s i n g l e t ) ,  6.1(3.H, s i n g l e t ) , 2 . 3 - 3 . 4 ( 8 H , m u l t i p l e t ) , 1.7(IH, broad singlet) . N,6;90. (XX1A):  Anal. Calcd. f o r C H NO: lg  Found:  15  C, 80.98j.  H, 6.37;  C, 80.83; H, 6.22; N, 5.72.  Hydroperoxide  of (XXI).  Due t o d i f f i c u l t y i n forming the peroxide, no r e p r e s e n t a t i v e a n a l y t i c a l sample was o b t a i n e d . p-Methoxy-o6-brdmoprOpiophenone. p-Methoxypropiophenone  (63 g, 0.390 mole) was 43  brominated a c c o r d i n g t o the procedure ketone i n c h l o r o f o r m 63.5  of Heizelman  . The  (100 ml) was s t i r r e d with l i q u i d bromine  g, 0.397 mole) a l s o i n c h l o r o f o r m  (30 ml).  Stirring  was continued f o r 1 1/2 h r . d u r i n g which time the r e a c t i o n mixture  was kept c o o l i n an i c e - b a t h .  The r e a c t i o n mixture  was washed s e v e r a l times with water and upon removal of chloroform, the remaining prisms.  o i l c r y s t a l l i z e d out as y e l l o w  T h i s was r e c r y s t a l l i z e d from e t h a n o l , a f f o r d i n g 90 g,  (94%) y e l l o w prisms with m.p. 66-67°. C H 1 0  1 : L  0 Br: 2  Anal. Calcd. f o r  C, 49,41; H, 4.56; B r , 32.87.  Found:  C, 49.58;  H, 4.76; B r , 32.72. 5-Methoxy-2-(p-methoxyphenyl-3-methylindole p-Anisidine  (XXI1).  (5 g, 0.04 mole) and p-methyl-«<.-  bromopropiophenone (2 g, 0.008 mole) heated  i n the usual way  22 gave 1.8 g, (81%)white s o l i d s .  R e c r y s t a l l i z a t i o n from g l a c i a l  a c e t i c a c i d a f f o r d e d white needles with m.p. 44 (lit.  139-140°  n  m.p. 139°).  (XX11A):  Hydroperoxide of (XXII). Indole  (XXII) (1 g) i n P.E. (100 ml) formed the  c o r r e s p o n d i n g peroxide i n 0.80 g, (71%) y i e l d . R e c r y s t a l l i z a t i o n from e t h y l with m.p. 129-130°. H, 5.73; N, 4.68.  a c e t a t e / P.E. a f f o r d e d prisms  Anal. Calcd. f o r C Found:  1 7  H  1 7  N0 : 4  C, 68.21;  C, 68.06; H, 5.94; N, 4.95.  7-Methoxy-2-(p-methoxypehnyl)-3-methylindole Reaction of o - a n i s i d i n e  (XX111).  (10 g, 0.08 mole) and  p-methoxy-oC-bromopropiophenone (4 g, 0.016 mole) a f f o r d e d 2.5 g, (56%) white c r y s t a l s from g l a c i a l a c e t i c a c i d , m.p. 114-115°.  NMR7.7T,(3H, s i n g l e t ) , 6.3(3H, s i n g l e t ) ,  6.2(3H, s i n g l e t ) , 2.5-3.5(7H, m u l t i p l e t ) , 1.9(1H, broad s i n g l e t ) . Anal. Calcd. f o r C Found:  1 7  H  1 7  N0 : 2  C, 76.38; H, 6.41; N, 5.24.  C, 76.67; H, 6.31; N, 5.42.  (XX111A):  Hydroperoxide of (XX111).  Indole  (XX111) (1 g) i n P.E. (100 ml) formed the  c o r r e s p o n d i n g peroxide i n 0.82 g, (71%) y i e l d . t i o n from e t h y l 132-133°. N, 4.68.  a c e t a t e / P.E. a f f o r d e d prisms with m.p.  Anal. Calcd. f o r C Found:  Recrystalliza-  1 7  H  1 7  N0 : 4  C, 68.21; H, 5.73;  C, 68.50; H, 5.73; N, 4.39.  23 2-Phenyl-3-methyl-5,6-benzaindole j8-Naphthylamine (1  (XXIV).  (2 g, 0.014  mole) and o(.-bromopropiophenone  g, 0.005 mole) heated i n the u s u a l way  s o l i d from g l a c i a l a c e t i c a c i d , m.p.  152-153°.  (3H, s i n g l e t ) , 2 - 2 . 7 ( l l H , m u l t i p l e t ) , 1.4, Anal. Calcd. f o r C  1 9  C, 88.48; H, 5.53;  H  1 5  N:  C, 88.68; H,  N, 5.15.  a crystalline  NMR  5.88;  N, 5.44.  formation  (XXVA):  Found: was  unchanged.  (XXV).  T h i s compound, prepared from phenylhydrazine cyclohexanone  7.2 t  1.5(1H, d o u b l e t ) .  Hydroperoxide  u n s u c c e s s f u l , and the i n d o l e remained Tetrahydrocarbazole  produced  had m.p.  120-121° ( l i t .  4 5  m.p.  and  116-117°).  11-Hydroperoxtetrahydrocarbazolenine, hydroperoxide of (XXV) ." The most s a t i s f a c t o r y p r e p a r a t i o n of t h i s compound  i n v o l v e d the s t i r r i n g of a s a t u r a t e d s o l u t i o n of tetrahydror<carbazole  (XXV)  i n P.E.  (60-80°) at room temperature  good c o n t a c t with the atmosphere. conversion o c c u r r e d i n 2 hours. acetate / P.E. m.p.  Almost  in  quantitative  R e c r y s t a l l i z a t i o n from e t h y l  gave white prisms, m.p.  134-135°  (lit.  4 6  134°).  6-Aminotetrahydrocarbazole  (XXVI).  T h i s compound, prepared from t e t r a h y d r o c a r b a z o l e by n i t r a t i o n and r e d u c t i o n with Pd/C 149-151  °  47  ( l i t . m.p.  r.  152°).  i n e t h y l acetate had  m.p.  24 (XXV1A): l l - H y d r p p e r o x y - 6 - a m i n o t e t r a h y d r o c a r b a z o l e n i n e , hydroperoxide of (XXVI).' 6-Aminotetrahydrocarbazole i n benzene hours.  The:  peroxide was  o b t a i n e d by f i l t r a t i o n 133-135°  (0.23 g ) . Xmax 332(sh.,£ 2,700), vmax(ntfjol) 3400 c m 12 12^2°2 H  H, 6.60;  :  -1  as brown  (with decomposition)  295(6,000),  (NH, -00H) .  C, 66.02; H, 6.47;  230(10,300).  Anal. Calcd. for  N, 12.84.  Found:  C, 66.20;  N, 12.72.  Lophine Hydroperoxide Lophine  (Via).  (0.35 g) was  d i s s o l v e d i n c h l o r o f o r m (300  i n a quartz f l a s k and haemafopprphy.rih f l a s k was G.E.  dissolved  (100 ml) and s t i r r e d i n contact with a i r f o r 5  m i c r o c r y s t a l l i n e n e e d l e s , m.p.  C  (0.50 g) was  20W  (0.03 g) added.  ml) The  i r r a d i a t e d at 20° ( a i r c o o l i n g ) f o r 5 h r . with four f l u o r e s c e n t tubes, p a s s i n g oxygen through the s o l u t i o n  i n a slow stream.  Removal of the s o l v e n t in_ vacuo, treatment  with c h a r c o a l and r e c r y s t a l l i z a t i o n from e t h e r / P.E. at low temperature gave white prisms (0.10 g ) , m.p. ( v a r i e s with r a t e of heating) ( l i t . 3,4,5-triphenylpyrazole co - N i t r o s t y r e n e  m.p.  160-165°  170°).  (XXV11). (10.7 g, 0.18  mole)?, prepared from 49  benzaldehyde  and nitromethane by the method of  and diphenyldiazomethane  Worrall,  (15 g, 0.096 mole), prepared by  50 oxidation  of benzophenone hydrazone  with HgO  were allowed 51  t o r e a c t a c c o r d i n g t o the procedure of Parham e t aJL. yield:  9 g, (50%) white needles with m.p.  164-165°  Total  25  (lit.  m.p.  5 1  165°).  Attempt s y n t h e s i s of 3, 4, 5 - t r i p h e n y l p y r a z o l e Hydroperoxide. Attempts t o form a hydroperoxide from p y r a z o l e , u s i n g the same c o n d i t i o n s and q u a n t i t i e s as i n the lophine hydroperoxide,  was u n s u c c e s s f u l .  The p y r a z o l e  remained  unchanged. Attempted s y n t h e s i s of N-methyltryptamine Hydroperoxide. Attempts t o form the hydroperoxide of N-methyltryptamine52  >  u s i n g the same c o n d i t i o n s and q u a n t i t i e s as f o r  lophine hydroperoxide, methyltryptamine  were u n s u c c e s s f u l .  The N-  (XXV111) decomposed s l o w l y .  1, l ' - B i ( 2 , 4, 5 - t r i p h e n y l i m i d a z o l e ) T h i s compound, prepared  (XXIX).  from l o p h i n e by o x i d a t i o n with  potassium f e r r i c y a n i d e / potassium hydroxide m.p.  195-196,° y e l l o w prisms ( l i t .  268 m/^ (622,400).  M.W.  m.p.  5 3  s o l u t i o n had  199-201°).  Xmax  (osmometric) 605, mass s p e c t r a l  major peaks at 590 and 295.  A n a l . C a l c d . f o r C^iH^jjNg:  C, 85.40; H, 5.12; N, 9.49.  Found:  N, 9.49.  T h i s compound i s u n s t a b l e  5% KOH and t-BuOOH; forming Potassium  lophine  C, 85.42; H, 5.09; i n 5% HC1, H /PdC. 2  i n a l l cases.  t-butoxide.  T h i s s t r o n g base was prepared Vogel.  5 4  by the method of  26  Products of Chemiluminescent  Reaction.  11-Hydroperoxytetrahydrocarbazolenine in  (XXVA) (3.8 g)  xylene (75 ml) was heated a t 110° and h e l d at t h i s  u n t i l luminescence had ceased (10 min).  temperature  Removal of the xylene  under reduced pressure and t r i t u r a t i o n with e t h e r gave the lactam  (XXX) 6.80 g) as prisms m.p. 156-157° ( l i t .  156-157°).  4 6  m.p.  Chromatography of the r e s i d u e on grade I I I alumina  (100 g) gave eight c r y s t a l l i n e compounds, not a l l of which were i n v e s t i g a t e d . identical  The p r i n c i p l e products (see F i g . 7) were 4fi  i n p r o p e r t i e s t o those d e s c r i b e d by Witkop. °  Base treatment of 2-phenyl-3-methyl-3-hydroperoxyindolenine (X) and products of chemiluminescent r e a c t i o n . The hydroperoxide  (XA) (0.239 g) i n dimethyl sulphoxide  (DMSO) (100 ml) was added excess 0.1M potassium t-butoxide i n DMSO (15 ml), and s t i r r e d u n t i l luminescence had ceased. (10 min).  At once the r e a c t i o n mixture was quenched with water,  and e x t r a c t e d s e v e r a l times with d i e t h y l ether. the  e t h e r gave a brown v i s c o u s o i l which was  on grade  I I I alumina  (100 g ) .  Removal of  chromatographed  E l u t i o n with benzene / P.E.  (2:8) gave three f r a c t i o n s i n d i c a t i n g 3 compounds, by T.L.C. 2-Benzamidoacetophenone (Xa) ( f i r s t  fraction).  A white s o l i d , r e c r y s t a l l i z e d from P.E. m.p. 88-90° ( l i t .  5 5  m.p. 9 8 ° ) .  (69%  of the 3 f r a c t i o n s ) .  1600  cm  - 1  (C=0) .  Total yield:  Omax ( c h l o r o f o r m ) :  as needles,  0.32 g, 3300 c m  - 1  (-NH),  NMR 7.21, (3H, s i n g l e t ) , 2-3 (9H, m u l t i p l e t ) .  A n a l . C a l c d . f o r C^H^JTC^:  C, 75.30; H, 5.48; N, 5.85. Found:  27  C, 75.52; H, 5.64; N, 5.97. 2-Methyl-2-phenyl-^-indoxyl  (Xb) (second  fraction).  A y e l l o w s o l i d , r e c r y s t a l l i z e d from benzene / P.E. as y e l l o w needles with m.p. 110-111°. (11%).  Anal. Calcd. f o r C H NO: 15  N, 6.27.  Found:  13  Total y i e l d :  0.052 g,  C, 80.69; H, 5.87;  C, 80.61; H, 6.01; N, 6.50.  Rearrangement of 2-phenyl-3-methyl-3-hydroperoxyindolenine 2-Methyl-2-phenyl- /'-indoxyl <  i n 80% y i e l d when hydroperoxide (10 ml) and 20% sodium hydroxide  (XA).  (Xb) was a l s o s y n t h e s i z e d  (X) (0.19 g) i n methanol (5 ml) was r e f l u x e d f o r 3  days, f o l l o w e d by e t h e r e x t r a c t i o n .  The s p e c t r a l data of  these two compounds were i d e n t i c a l .  However u s i n g a s i m i l a r 36  procedure  ( i n 2N sodium hydroxide) Witkop  d i d not o b t a i n any  product.  NMR 8.3 t ( 3 H , s i n g l e t ) , 4.9 (IH, broad  singlet),  2.3-3.3 (9H, m u l t i p l e t ) . 2-Phenyl-3-methyl-3-hydroxyindolenine Alcohol procedure:  (Xc) ( t h i r d  fraction).  (Xc) was a l s o s y n t h e s i z e d u s i n g the f o l l o w i n g  hydroperoxide  (XA) (0.5 g) d i s s o l v e d i n e t h y l  acetate  (75 ml) was reduced with Pd/C and 53 c c . hydrogen.  Yield:  0.3 g, (67%).  P h y s i c a l and s p e c t r o s c o p i c data of  these two compounds were i d e n t i c a l . Base treatment of 2-(p-methoxyphenyl)-3-methyl-3-hydroperox y i n d o l e n i n e ( X l l A ) and products of chemiluminescent r e a c t i o n . To the hydroperoxide sulphoxide  (X11A) (0.269 g) i n dimethyl  (100 ml) was added excess 0.1M potassium  28 t-butoxide / DMSO (18 ml) and s t i r r e d u n t i l luminescence had ceased (10 min.).  Immediately the r e a c t i o n was quenched  with water, and e t h e r e a l e x t r a c t i o n s and removal of e t h e r gave an amorphous s o l i d which was chromatographed on grade I I I alumina  (150 g ) .  E l u t i o n with benzene / P.E. (2:8) gave two  major f r a c t i o n s , and a t r a c e of yellow compound. 2-(p-methpxybenzamido)acetophenone  (Xlla) ( f i r s t  fraction).  The white s o l i d c r y s t a l l i z e d from P.E. as needles m.p. 128-129°. Xmax 336 m  H  Total yield:  0.100 g, (60% of the 2 f r a c t i o n )  (G8,370) , 280(17,510) , 251(25,500), 218(22,600).  ^max (KBr d i s k ) 3200 c m  -1  (m), 1672(m),  1585(m), 1530(m), 1506(m), 1450(m),  1646(s),  1604(m),  1365(m) , 1306 (m) , 1250 (s) ,  1190(m), 1106(w), 1025(m), 960(w), 900(w), 850(w), 680(w).  Anal. Calcd. f o r C  N, 5.53. Found:  1 6  H  1 5  N0 : 2  760(m),  C, 75.87; H, 5.97;  C, 76.00; H, 6.15; N, 5.64.  2-(p-Methoxyphenyl)-3-methyl-3-hydroxyindolenine (second f r a c t i o n ) . :  (Xllb) "  T o t a l y i e l d of 70 mg, (40%) was r e c r y s t a l l i z e d from e t h y l acetate / P.E., m.p. 152-153°. 250(6,700), 240(12,800), 235(13,750). C  1 6  H  1 5  Xmax 330 m*< (£18,600), Anal. Calcd. f o r  N 0 : C, 75.87; H, 5.97; N, 5.53. Found: 2  C, 76.00;  H, 6.15; N, 5.64. Hydrogenation of 2-(p-methoxyphenyl)-3-methy1-3-hydroperoxyi n d o l e n i n e (X11A). Alcohol  ( X l l b ) was a l s o s y n t h e s i z e d by hydrogenation  of hydroperoxide (X11A)„(0.5 g) was added t o p r e s a t u r a t e d  29  10% Pt/C i n e t h y l acetate and 46 c c . of hydrogen  was  The s o l u t i o n was  solvent  was  f i l t e r e d through c e l i t e  removed t o give a gum.  acetate / P.E.  and the  taken  up.  R e c r y s t a l l i z a t i o n from e t h y l  a f f o r d e d 0.30  g, (64%) prisms.  data of these two compounds were  Spectral  identical.  Rearrangement of 2-(p-methoxyphenyl) -3-methyl^-3-hydroperoxyi n d o l e n i n e (X11A). Hydroperoxide (5 ml) was  (X11A) (0.10 g) d i s s o l v e d i n glyme  r e f l u x e d with 0.1NHC1 (5 ml) f o r 1 h r .  (0*075 g) c r y s t a l l i z e d out as n e e d l e s .  (Xlla)  The s p e c t r a l data of  t h i s s y n t h e t i c sample were i d e n t i c a l t o the one from the column. Base treatment of 2, 3-dimethyl-3-hydroperoxyindolenine (XV111A) and products of the chemiluminescent r e a c t i o n . The  hydroperoxide  (XV111A) (0.177 g) d i s s o l v e d i n  dimethyl sulphoxide (100 ml) was  added t o excess 0. 1N :  t-butoxide  (15 ml) and s t i r r e d u n t i l luminescence had  (5 min.).  E x t r a c t i o n and work up i n the u s u a l way  brown o i l , which was alumina  (100 g ) .  E l u t i o n with benzene / P.E.  The remaining was  (1:4) gave a  of t o t a l i s o l a t e d from  afforded  crystalline  72-73° which i s 2-acetamidoacetophenone  Anal. Calcd. f o r C C, 67.71; H,  afforded a  a brown t a r . R e c r y s t a l l i z a t i o n  of the s o l i d s from e t h y l acetate / P.E. needles, m.p.  6.42.  H 1 0  ceased  chromatographed on n e u t r a l grade I I I  f r a c t i o n of white s o l i d s (0.120 g, 67.5% the column).  potassium  11  N 0  2  :  C, 67.78; H, 6.26.  (XVllla).  Found:  30 S y n t h e s i s of 2-acetamidoacetophenone o- Aminoacetophenone anhydride  ( 5ml) was  (XVllla).  (0.10 g) i n excess  acetic  warmed g e n t l y f o r 15 min. on a steam bath.  A d d i t i o n of ice-water t o the r e a c t i o n mixture caused p r e cipitation.  The white p r e c i p i t a t e was  r e c r y s t a l l i z e d from e t h a n o l / water. n e e d l e s , (85%).  The  f i l t e r e d o f f and Yield:  0.110  g white  s p e c t r a l data of the s y n t h e t i c sample  i d e n t i c a l to the sample i s o l a t e d from the column.  Mixed  was m.p.  gave no change. Hydrogenation  of 2,3-dimethyl-3-hydroperoxyindolenine  The hydroperoxide s a t u r a t e d 10% Pd/C  added t o p r e -  i n e t h y l acetate and 72 c c . hydrogen  taken up upon s t i r r i n g . celite  ( X V l l l A ) ( 0 . 5 g) was  The s o l u t i o n was  and the s o l v e n t was  filtered  removed t o give an  a f f o r d e d white prisms. 0.30 41  m.p.  i - i  136-139 ) .  hydroxyindolenine  g, (57%), m.p.  was  through  oil.  R e c r y s t a l l i z a t i o n of the o i l from e t h y l acetate /  (lit.  (XV111A).  P.E.  130-131°  T h i s compound i s 2,3-dimethyl-3-  (XVlllb).  31 DISCUSSION The  l i g h t emitted  chemical r e a c t i o n has chemiluminescence.  from e x c i t e d molecules formed by  p r e v i o u s l y been d e f i n e d  as  This i s a p a r t i c u l a r l y challenging  because of i t s numerous d i f f i c u l t i e s .  The  field  r e a c t i o n s have t o  be very e n e r g e t i c , so that e l e c t r o n i c a l l y e x c i t e d Molecules (40-80 kcal/mole) may  be formed.  D i f f i c u l t i e s can  encountered i n i d e n t i f y i n g the e m i t t e r ; fluorescence  the l a c k of d e t a i l i n  bands i s here a l i m i t a t i o n .  Emission may  from e x c i t e d r e a c t a n t s , products or some other present.  Since  whiles  and  the r e a c t i o n i t s e l f may  y i e l d i n g s e v e r a l products, e m i t t i n g process may  molecule  sometimes exceedingly take more than one  low, course  the p r e c i s e chemistry of  be very e l u s i v e .  Few,  if  come  substance  o v e r a l l l i g h t y i e l d s (quanta per  r e a c t i n g ) a r e u s u a l l y low,  a l s o be  the  any,  chemiluminescent r e a c t i o n s can be s a i d t o be f u l l y understood. The  study of i n d o l y l peroxides was  particularly  a t t r a c t i v e s i n c e decomposition of peroxides t o a d i c a r b o n y l compound i s w e l l known, l a r g e l y due  t o the  i n v e s t i g a t i o n of  36 Witkop.  Recent r e p o r t s of tryptamine  bioluminescent and  (indole) residues i n  systems, such as C y p r i n d i n a  Renillo reniformis  33  hilgendrofii  make the d i s c o v e r y  of chemiluminescence  i n i n d o l y l peroxides p a r t i c u l a r l y i n t e r e s t i n g . of i n d o l y l peroxide chemiluminescence was stages: and  the f i r s t  o b j e c t i v e was  6 0  The  investigation  d i v i d e d i n t o three  to s y n t h e s i z e  these  6  indoles  t h e i r peroxides (Part I ) ; then the chemiluminescence  and  61.62 ' ^'  32  f l u o r e s c e n c e measurements were made t o determine and the r e g i o n s of e m l s s i b h :  the e m i t t e r  (Part I I ) ; f i n a l l y the  mechanism of the chemiluminescent  r e a c t i o n was s t u d i e d by  k i n e t i c methods (Part I I I ) . A)  S y n t h e s i s of I n d o l e s . Before the chemiluminescence of i n d o l y l  peroxides  can be p r o p e r l y s t u d i e d i n any great d e t a i l , a very b r i g h t chemiluminescent  reaction i s required.  not o n l y minimizes  A bright  the problem of s e l f quenching,  reaction but a l s o ;  i n c r e a s e s the accuracy of the chemiluminescence em±ssi»6h-~ determination.  Consequently  a s e r i e s of 20 i n d o l e s and t h e i r  corresponding peroxides was prepared.  T h i r t e e n of these  i n d o l e s and t h e i r peroxides are a p p a r e n t l y u n r e p o r t e d i n the literature.  A l l of these compounds gave s a t i s f a c t o r y elemental  a n a l y s e s , i n f r a r e d , u l t r a v i o l e t and n u c l e a r magnetic  resonance  a b s o r p t i o n s p e c t r a , as w e l l as s a t i s f a c t o r y chemiluminescence (Table 1, c o l o r and i n t e n s i t y of chemiluminescence i n potassium t-butoxide / DMSO). Table 1.  indole  indolyl  peroxide  chemiluminescence color I  C o n t i nued  33 (X), R=H  (XA), R=H;  yellow  weak  ( X I ) , R=OH  (XIA), R=OH  yellow  medium  ( X l l ) , R=OEH .o  (X11A), R=OCH  yellowish green  strong  yellow  strong  yellow  weak  3  ( X l l l ) , R=N(CH ) 3  2  (XIV)  (XI11 A ) , R=N(Cff ) 3  2  (XIVA)  H  XDCK,  OCH3  (XV), R=Br  (XVA), R=Br  1!  (XVI), R=C1  (XV1A) R=C1  M  (XVI1), R=F  (XV11A), R=F  II  (XVlll)  .(XVI11 A)  If  M  HLCOOH  N  H  (XIX), R =OCH ,  (XIXA) , R j O C H g  R2 R2 R H  R2 R3 R H  1  =  T  =  11—f  3  =  =  R-r^N R}  =  f  yellowish green  strongest  yellow  weak  =  H ; 5  L  ^  X  R  Contimued  34  (XXA),  R =OCH ,  (xx),  2  3  R R^ =R2 H ==  R R^ =  =  (XXI)j  3  = = 2  1  (XX111), =  R H  =  3  11  ii  R=R =OCH ,  it  M  R=R OCH ,  it  H  R =OCH , 3  (XXIIA),  R=R =OCH ,  R3=H  weak  3  2  1  R  yellow  3  R=Rl=R =H  R=R =R2=H  (XXI1),  2  (XX1A),  R =OCH , 3  R =OCH  3  R  i  R=R =OCH , 3  R2 H  3  = 2  R  3  = =  (xxiv) r ^ j j  2  3  H  (XI11A), R^ R  =  =  1  = =  3  3  H  Not a pure sample  (XXIV) not formed  -inert  (XXVA)  (XXV)  OoD Odo OOH  blue weak on h e a t i n g i n xylene,  H  (XXVIA)  (XXVI)  wo 5 6 //  WD  Cxxvm)i ;  H  (XXVI1 A), not formed  \\ % 5  C  H  H  it  OOH  (XXVII) H H  II  -inert  (XXV111A), not forme i -inert C o n t i n ued  (Va)  5  6 A  lAc H 6  5 5  N  6  5  6  5  ^NJ-C H 6  ti  5  e s t a b l i s h e d procedures  s y n t h e s i z e the i n d o l e s . 34  5  (XX1XA) as above not i s o l a t a b l e  5  H / \ ^Ji-C H  Two  H^/^OOH CH G  (XXlX)^ ^j|-C H  weak  yellow  (Via)  '  were employed to  F i r s t l y , u s i n g the method of Witkop  ,  et a l ,  (condensation  u s i n g polyphosphoric produced.  of a hydrazine  a c i d ) i n d o l e s (X to XV111) were  This cyclodehydration  r e a c t i o n , and  and ketone mixture  was  a vigorous  exothermic  a c o l o r change from orange t o dark brown took  place d u r i n g the course  of the r e a c t i o n .  e s p e c i a l l y s u i t a b l e f o r producing  T h i s method  i n d o l e s with s u b s t i t u t i o n  i n the 2-phenyl r i n g .  S u r p r i s i n g l y , polymerization  very low,  an average of 70% y i e l d was  The  consequently  o v e r a l l course  The  was  was obtained.  of the r e a c t i o n i s as f o l l o w s :  other procedure a p p l i e d f o r s y n t h e s i z i n g the  remainder of the  i n d o l e s (XIX  to XXVI) was  t h a t of Bory.  36  T h i s procedure  r e q u i r e s the h e a t i n g of an a n i l i n e  bromoketone mixture.  I t proved most convenient  i n d o l e s with s u b s t i t u e n t s i n the benzenoid p o s i t i o n of the molecule,  and  f o r producing  r i n g of the i n d o l e  s i n c e s u b s t i t u t e d a n i l i n e s are more  e a s i l y a v a i l a b l e than s u b s t i t u t e d phenylhydrazines. use of these two procedures  By  the  v a r i o u s s u b s t i t u t e d i n d o l e s were ma  available. B)  S y n t h e s i s of Indole The  s y n t h e s i s of i n d o l y l peroxides has been s t u d i e d AG  Q C  by Witkop  Peroxides.  A"I  '  of peroxides  and Beer (Eq. 2) was  chain r e a c t i o n  6 3  '  6 4  independently.  The  formation  envisaged as a r i s i n g from a r a d i c a l  (Fig. 5 ) . Fig. 5  OOH  H  Most of the peroxides were formed simply by s t i r r i n g a c l e a r s o l u t i o n of i n d o l e i n petroleum e t h e r with a i r . Due  (60-80°)  i n contact  t o slow e v a p o r a t i o n and p r o g r e s s i v e formation  of p e r o x i d e , the powdery peroxide p r e c i p i t a t e s out. methods such as s t a n d i n g a petroleum in a i r ,  64  Other  ether s o l u t i o n of i n d o l e  c a t a l y t i c o x i d a t i o n u s i n g platinum c a t a l y s t ,  and  48 irradiation  i n presence  to low y i e l d and e x t e n s i v e  of oxygen, were u n s a t i s f a c t o r y decomposition.  due  37  Attempts and  t o prepare peroxides from i n d o l e s (XXIV)  (XXV111) by s t i r r i n g i n the open a i r have not been  s u c c e s s f u l ; these i n d o l e s appear  t o be r e l a t i v e l y  resistant  to the a c t i o n of oxygen.  N CH-  X~XTV However the anion of (XXV111)  52  gave a f a i r l y s t r o n g  e m i s s i o n from o x i d a t i o n with oxygen, u s i n g the now  almost  standard dimethyl sulphoxide - potassium t-butoxide We  feel  system.  1  t h i s compound serves as a p a r t i c u l a r l y good model f o r 33  luciferins  c o n t a i n i n g the i n d o l e nucleus s i n c e  i s almost c e r t a i n l y a p r e c u r s o r of these. uptake  I t i s known t h a t  of oxygen by p r o t e i n s can be a s c r i b e d t o the gE  moiety,  tryptophan  cc  » '  luminescence  tryptophan  cn  and we  suggest t h a t the g e n e r a l l y  of p r o t e i n s with o x i d i z i n g agent  observed  i s due  t o the  phenomenon d e s c r i b e d here.,, It i s i n t e r e s t i n g and s i g n i f i c a n t t h a t f e a t u r e s which i n h i b i t i n d o l e s e r i e s , v i z ; a)  structural  or prevent peroxide formation i n the N - s u b s t i t u t i o n , b) the presence  s t r o n g l y e l e c t r o n - a t t r a c t i n g groups i n the benzene r i n g , c) the presence  of and  of a phenyl group i n the 3 - p o s i t i o n , have been  found t o be necessary or d e s i r a b l e f o r s u c c e s s f u l o x i d a t i o n of 68  i n d o l e s t o o-acylamino-ketone  with chromic a c i d .  I t has  38 been suggested t h a t such o x i d a t i o n depends on the stabilization  of the imino-tautomer  (XXXI) i n the imino-  ketemine system ( X X X l ^ XXX11).  H  (XXXI1)  (XXXI) In a d d i t i o n , r e p o r t s of i n d o l y l at  peroxides  without s u b s t i t u e n t s :  the 2 - p o s i t i o n are r a r e , whereas peroxides  v a r y i n g from m e t h y l  4 1  to phenyl  6 3  with  and b e n z y l ^ are common. 6  D i f f i c u l t y i n c o n v e r t i n g 3, 4, 5 - t r i p h e n y l p y r a z o l e to i t s peroxide similarities  substituents  was a l s o encountered.  (XXV11)  Despite the  i n s t r u c t u r e and c o n j u g a t i o n  t o l o p h i n e (Va)  p e r o x i d a t i o n was not i n i t i a t e d upon i r r a d i a t i o n  i n presence  of oxygen. Fig. 6  ^v  5  "6 5 n  5 6.  (X X V I I )  (Va)  '6 5 KOH  ^ K^eCCN) ,0. 6  5 6 " H  OH'  H+ LOPHINE  (Va)  H  2/Pd C  t-BuOOH  C  V C  6  H  5  56" H  C  5 6 - "N H  C  5*%' G  N  (XXI X )  39  F u r t h e r chemical s t u d i e s showed t h a t (XXV11) i s completely i n e r t t o o x i d a t i o n i n KOH/KgFe(CN)g and oxygen, whereas 70  lophine  under such c o n d i t i o n s formed a dimer  (XXIX)  ( F i g . 6 ) , which i s u n s t a b l e i n a c i d , base, heat, hydrogenation  and peroxide  catalytic  (t-BuOOH) forming lophine i n a l l  cases. I t must be p o i n t e d out t h a t i f f a v o u r a b l e c o n d i t i o n s are found f o r the formation of p e r o x i d e , the y i e l d can i n c r e a s e d and decomposition case with the peroxide r e a c t i o n mixture  was  y i e l d from 2 5 %  to  c)  4 1  can be minimized.  Such was  the  of 2, 3 - d i m e t h y l i n d o l e , i n which the  kept c o o l , t h e r e f o r e i n c r e a s i n g the 90%.  Chemiluminescence and Decomposition The  be  decomposition  of Indole P e r o x i d e s .  of i n d o l y l peroxides i n aqueous  46 41 medium has been s t u d i e d independently by Witkop and Beer 64 and co-workers. Beer e_t a l showed that t e t r a h y d r o c a r b a z o l y l hydroperoxide,and  c e r t a i n of i t s d e r i v a t i v e s e m i t t e d a blue 33  f l a s h at the m e l t i n g p o i n t .  T h i s and the r e c e n t r e p o r t  that b i o l u m i n e s c e n t systems such as c y p r i d i n a l u c i f e r i n thought  are  t o c o n t a i n an i n d o l e nucleus, encouraged us to  r e i n v e s t i g a t e a s i m i l a r s e r i e s of i n d o l y l p e r o x i d e s . primary concern was chemiluminescence,  Our  t o f i n d the best p o s s i b l e c o n d i t i o n s f o r and consequently  i n d o l y l peroxides was  the decomposition  i n v e s t i g a t e d by p y r o l y s i s and i n  aqueous and nonaqueous c o n d i t i o n s .  of  40  T e t r a h y d r o c a r b a z o l y l hydroperoxide i n xylene at 120° emits l i g h t at 500 mu  (XXVA) on h e a t i n g  ( c f . Part I I ) .  r e s u l t i n g product mixture i s extremely complex.  The  However the  major components ( F i g . 7) are the lactam (XXX), t e t r a h y d r o carbazole  (XXV), the h y d r o x y q u i n o l i n e s (XXXa), and  the s p i r o k e t o n e (XXXc) and the dimer  (XXXb),  (XXXd).  Fig. 00 H N (XXVA)  0  TZD°  +  XYLENE  H  hv  U  SECONDARY REAC/flON  (XXX)  (XXV)  (XXXc")  (XXXd) (XXXb)  The d i s t r i b u t i o n of products i s f a i r l y s i m i l a r t o that of 46  a c i d c a t a l y z e d decomposition as r e p o r t e d by Witkop e_t aJL In a c i d , where the y i e l d of lactam (XXX) was e m i t t e d .  i s high no  light  Examination of v a r i o u s s o l v e n t s f o r the  thermochemiluminescent  decomposition of t h i s hydroperoxide  showed that p y r i d i n e , chlorobenzene and diglyme were a l l  41 satisfactory.  C o n s i d e r a b l y l e s s luminescence  was observed  i n hot dimethyl sulphoxide and dimethyl formamide. Treatment of the t e t r a h y d r o c a r b a z o l y l hydroperoxide e t h a n o l i c base gave no l i g h t , but treatment d r i e d potassium  with  t-butoxide i n DMSO gave a b r i g h t  with  carefully short-lived  flash. The i n d o l e n y l 3-hydroperoxides  (XA, X11A, XV111A and  those i n Table 1) have been shown t o emit l i g h t or on treatment sulphoxide  with potassium  (DMSO).  No l i g h t  on h e a t i n g ,  t^-butoxide i n dimethyl  i s emitted i n basic h y d r o x y l i c  s o l v e n t s , although the products are the same.  Hydroperoxide  (XA) i n potassium  t-butoxide i n DMSO  gave a y e l l o w emission and three r e a c t i o n products which are s i m i l a r t o those i s o l a t e d from the decomposition h y d r o c a r b a z o l y l hydroperoxide  of t e t r a -  (XXVA) (Fig.7 ) . However only  three components, the d i c a r b o n y l compound (Xa) , the spiroketone  (Xb) and the a l c o h o l (Xc) were produced, thus  the process of i d e n t i f y i n g the p o s s i b l e e m i t t e r i s very much f a c i l i t a t e d .  I t i s i n t e r e s t i n g t h a t the d i c a r b o n y l  (Xa) was i s o l a t e d i n 69% y i e l d .  42 Fig. 8  (Xc)  2 0 56  Secondary R e a c t i o n :  T.L.C. a n a l y s i s i n s t a n t l y a f t e r the decomposition showed no spiroketone  (Xb).  of  (XA)  I t i s l i k e l y t h a t the  s p i r o k e t o n e i s formed as a r e s u l t of a secondary r e a c t i o n under prolonged (Xb) was  basic conditions.  s y n t h e s i z e d by treatment  with base.  The  a l c o h o l (Xc) was  In f a c t the  spiroketone  of the a l c o h o l obtained by  of the hydroperoxide  (XA).  the s p i r o k e t o n e {Xb)  c o u l d be the e m i t t e r .  (Xc)  hydrogenation  Therefore, i t i s u n l i k e l y that  i s not f l u o r e s c e n t i n s t r o n g base.  Furthermore i t  4'3  S i m i l a r treatment of the hydroperoxide  (X11A) gave  a green e m i s s i o n and two r e a c t i o n products ( X X l l a ) and ( X X l l b ) i n which the s t r u c t u r e s were confirmed by s y n t h e s i s and by the u s u a l s p e c t r o s c o p i c procedures  (Fig. 9).  Fig. 9  I t must be p o i n t e d out that the hydroperoxide  (X11A) i n  a c i d gave the same two r e a c t i o n products but no l i g h t emitted.  was  However s i m i l a r base treatment of the  hydroperoxide  (XV111A), g i v i n g the b r i g h t e s t green e m i s s i o n  of a l l the i n d o l y l p e r o x i d e s s t u d i e d , produced r e a c t i o n product, d i c a r b o n y l product  only one  ( X X V l l l a ) , i n 68%  y i e l d , although s m a l l amounts of degradation products from the c o r r e s p o n d i n g a l c o h o l were a l s o present ( F i g . 10).  44  Fig.  10  QOH BASE  (XVI  IIA)  (XVI11 a)  There i s s t r i k i n g s i m i l a r i t y t o the behaviour of hydroperoxide  -t-  3  hO  68 °/o  lophine  (Vlb,c) with e t h a n o l i c base, i n which the  dibenzoylamidine  ( V l l b , c ) i s produced i n high y i e l d  and  32  which has been i d e n t i f i e d as the e m i t t e r . alone, one  Based on analogy  can p r e d i c t t h a t the d i c a r b o n y l products  and X V l l l a ) are the l i k e l y e m i t t e r s .  (Xa, X l l a ;  PART I I :  CHEMILUMINESCENCE AND FLUORESCENCE STUDY  45 EXPERIMENTAL Measurement of Chemiluminescence. The  chemiluminescence from the i n d o l e  r e a c t i o n was measured with an Aminco-Bowman fluorometer equipped  peroxide-base  spectrophoto-  with a 1P28 p h o t o m u l t i p l i e r tube.  In  order t o achieve h i g h s e n s i t i v i t y the r e a c t i o n was c a r r i e d out i n a quartz o p t i c a l c e l l  p l a c e d i n the p h o t o m u l t i p l i e r  s h u t t e r compartment d i r e c t l y i n f r o n t of the p h o t o m u l t i p l i e r tube . Thermochemiluminescence of 11-hydroperoxytetrahydrocarbazolenine (XXVA) and s e n s i t i z e r . 5 6 Hydroperoxide (15 ml) at 120°.  Blue l i g h t e m i t t e d was measured at 500 mu. .  Hydroperoxide diphenylanthracene  (XXVA) (20 mg) was added t o xylene  (XXVA) (20 mg) and 9, 10-  (20 mg) added t o xylene  (15 ml) a t 120°,  gave emission peaks a t 442 nu< and 500 m/4 . Chemiluminescent spectrum of 2-(p-methoxypfoenyl) -3-methylhydroperoxy5.ndolenine (XJTA) . To hydroperoxide a quartz c e l l  2  was added potassium -3  (0.6 ml of 4 x 10 at  (X11A) (3 ml of 10" Min DMSO)  in  t-butoxide i n DMSO  M s o l u t i o n ) . . T h e emission peak was observed  495 mm .  F l u o r e s c e n t spectrum phenone ( X l l a ) . The cell  diketone  of 2-(p-methoxybenzamido)aceto( X l l a ) (3 ml of 10~ M/DMSO) i n a quartz  was added potassium  3  t-butoxide/DMSO (0.6 ml of  46 4 x 10  M/DMSO).  The e m i s s i o n peak was observed at 495 m/^.  T h i s f l u o r e s c e n t spectrum was superimposable on the chemiluminescent spectrum of the hydroperoxide (X11A) i n equal c o n c e n t r a t i o n and s e n s i t i v i t y . F l u o r e s c e n t spectrum o f 2-(p-methoxyphenyl)-3-methy3-hydroxyindolenine ( X l l b ) . With s i m i l a r c o n c e n t r a t i o n and c o n d i t i o n s as p r e v i o u s f l u o r e s c e n t spectrum, an e m i s s i o n peak was observed at 485 m^. Chemiluminescent spectrum of 2, 3-dimethyl-3-hydropero x y i n d o l e n i n e (XV111AJT With s i m i l a r c o n c e n t r a t i o n and c o n d i t i o n s as p r e v i o u s chemiluminescent spectrum, an e m i s s i o n peak was observed at 518 m/{. superimposable upon the f l u o r e s c e n t spectrum o f 2-(acetamido)acetophenone  (XVllla).  The chemiluminescence i n t e n s i t y of (XV111A) (10~ M, 0.001 v o l t ) e q u a l l e d the chemiluminescence 3  of X11A) (10~ M, 0.001 v o l t ) . 2  intensity  T h e r e f o r e the e f f i c i e n c y of  the l a t t e r i s approximately t e n times the former. The f l u o r e s c e n t spectrum o f q u i n i n e s u l f a t e (10~ M i n 1NH S04) was measured at 451 m./^. 5  2  When the i n t e g r a t e d  i n t e n s i t y o f q u i n i n e s u l f a t e and diketone ( X V l l l a ) was compared, a quantum y i e l d o f 0.016 was o b t a i n e d f o r ( X V l l l a ) as 57 c a l c u l a t e d by the method of C a l v e r t <et a_l.  The r e f e r e n c e  quantum y i e l d of 0.510 f o r q u i n i n e s u l f a t e was taken from 58 the paper by Melhuish.  47 Comparative chemiluminescence i n d o l e n y l hydroperoxides. The chemiluminescence  e f f i c i e n c y determination of e f f i c i e n c y of i n d o l e n y l p e r o x i d e  was measured on a T e k t r o n i x type-564 storage o s c i l l o s c o p e , i n which a net v o l t a g e of 700 v o l t s was p h o t o m u l t i p l i e r tube.  a p p l i e d t o the  The chemiluminescent  reaction  unit,  p l a c e d 10 cm away from the p h o t o m u l t i p l i e r tube, c o n s i s t e d of a beaker  (10 ml) w i t h a magnetic  s t i r r i n g bar.  potassium t-butoxide/DMSO 3 ml, 10~ M) was 2  once i n t o the beaker c o n t a i n i n g the s t i r r e d  Each time  poured a l l at hydroperoxide  i n DMSO (2 ml, 10~ M), and s i m u l t a n e o u s l y the o s c i l l o s c o p e 3  was  triggered.  Scanning time was  out by the chemiluminescence p e r o x i d e was  0.1  sec/cm.  The area t r a c e d  e m i s s i o n of the i n d o l y l  cut out and weighed.  The weight  hydro-  of 2-(p-  dimethylamin o;phenyl)-3-^methyl-3-hydroperoxyindolenine was  a r b i t r a r i l y set at 100  units.  (X111A)  48  Wt.(g)  R  Hydroperoxide  Sens.(volt)  Unit, 100  <r  59  -.600  0.3452  2  0.0835  10  82.5  -.268  OH  0.1110  5  66.5  -.357  XV11A  F  0.1120  0.2  3.5  -.062  XA  H  0.0300  0.05  1.8  XVA  Br  0.2642  0.05  0.5  + .227  XV1A  CI  0.2640  0.05  0.5  + .232  X111A  N(CH )  X11A  OCH  X1A  3  3  2  0  49  DISCUSSION A)  Energy  Transfer 61  One  possible explanation  of o r g a n i c  of the  chemiluminescence  compounds i s that an intermediate  molecule decomposes e x o t h e r m i c a l l y i n an e x c i t e d s t a t e . the carbonyl  t o form a carbonyl  product i s f l u o r e s c e n t , or t r a n s f e r of  thermochemiluminescence of  hydroperoxide  (XXVA) was  fluorescent.  We  a d d i t i o n of 9,  intensity  (emission  (XXX)  .  450  mt\) one  light  of the spiroketone which was  increase  500  respectively).  mR  peak  suggestion that a  source i s o c c u r r i n g .  s o l u t i o n can  account f o r the  s h i f t to l o n g wavelength of both the spiroketone the diphenyl-anthracene  the  i t is  i s formed d u r i n g the r e a c t i o n and  S e l f - a b s o r p t i o n by the yellow  (XXXc)  a l s o added.  of the  T h i s supports the  t r a n s f e r of energy from some other  major  which i n f a c t  hundred-fold, and  gradual  as the r e a c t i o n proceeds.  415  The  10-dipihenyl a nthracene i n c r e a s e s  p o s s i b l e to observe the  that the e m i t t e r  m^  f i n d that the i n t e n s i t y of  which i s formed i n the r e a c t i o n and The  tetrahydrocarbazolyl  the lactam  i s p r o p o r t i o n a l t o the c o n c e n t r a t i o n  the  a l s o occur.  measured at 500  product of t h i s r e a c t i o n was i s not  group  Emission of l i g h t from t h i s s t a t e i f  energy t o another f l u o r e s c e n t molecule can The  peroxide  (XXXc) and  ( f l u o r e s c i n g normally at 465  inland  Thus r i g o r o u s  i d e n t i f i c a t i o n of  the  e m i t t i n g molecule i s made d i f f i c u l t .  However based on  the  analogy of the l i g h t - p r o d u c t i n g step of lophine  and  indolyl  50 peroxides  (Ref. p.52)> i n which the carbonyl product  e m i t t e r , we lactam  (XXX)  can suggest  t h a t the e x c i t e d s t a t e of the  i s the e m i t t e r i n which the energy  t o n e i g h b o u r i n g molecules diphenylanthracehe  i s the  such as s p i r o k e t o n e  which are p r e s e n t .  i s transferred  (XXXc) or  This process  can  be  represented d i a g r a m a t i c a l l y ( F i g . 1 1 ) : Fig.  11  OOH  H 0  ->-4 50mu  Although  the mechanism of the " l i g h t " and  r e a c t i o n s has not yet been proven, data suggest  two p o s s i b l e working  t h a t chemiluminescence  the present mechanisms.  "dark"  experimental The  fact  occurs only e i t h e r by h e a t i n g or  by the a c t i o n of dry potassium j^-but oxide /DMSO suggests that the r e s u l t i n g decomposition  c o u l d occur v i a an e n e r g e t i c  f o u r - c e n t e r e d t r a n s i t i o n s t a t e as f o l l o w s : OOH  120° X YL.  51  Since no l i g h t  i s observed  i n s o l v e n t s with water present or  i n e t h a n o l , t h i s suggests an i n t e r n a l base c a t a l y s e d decomposition.  T h i s may be a route which i s not e n e r g e t i c  enough t o e l e v a t e the c a r b o n y l product t o an e l e c t r o n i c a l l y excited state  (Eq. 3 ) .  +•  NO LIGHT -)OTHER PRODUCTS  B)  Emitter The  Identification. chemiluminescence study of two of the b r i g h t e s t  l i g h t producing  i n d o l y l peroxides has i d e n t i f i e d the e m i t t i n g  s p e c i e s i n t h i s s e r i e s of i n d o l y l peroxides as the d i c a r b o n y l product.  A b r i g h t green l i g h t  of a s o l u t i o n with potassium  (10~ M) of e i t h e r 4  i s observed  on treatment  (X11A) or (XV111A) i n DMSO  t-butoxide a l s o i n DMSO (IO~ M) ( F i g . 1 2 ) .  Stronger s o l u t i o n s  3  (10 M) were e a s i l y v i s i b l e -1  i n daylight.  As mentioned p r e v i o u s l y (Part I ) the only products were shown t o be (XXa),  isolated  (XXb) and ( X l l c ) from the r e a c t i o n of  (XI A) and. ( X V l l l a ) from the r e a c t i o n of (XV111A) . ( X l l b ) i s s l o w l y formed from  The compound  ( X l l c ) under the i n f l u e n c e of  base and t h e r e f o r e i s probably not a product of the l i g h t reaction.  52  The major product of the r e a c t i o n i s the d i c a r b o n y l compound (60-70%) i n both cases.  The f l u o r e s c e n c e spectrum of  ( X V l l l a ) has a maximum at 518 m^ chemiluminescence  , superimposable upon the  spectrum of XV111A) ( F i g . 13).  53 Fig.  13  Intensity •400  '  • 500  1  • 600  (I) F l u o r e s c e n c e of o-acetamidoacetophenone ( X V l l l a ) (II) Chemiluminescence o f 2, 3-dimethyl-3-hydroperoxyi n d o l e n i n e (XV111A), both i n Kt-BuO/DMSO. Fig.  14  Intensity  300  400  500  600  (I)  F l u o r e s c e n c e o f 2-(p-methoxybenzamido )acetophenone (Xlla). (II) Chemiluminescence o f 2-(p-methoxyphenyl-S-methylS-hydroperoxyindolenine (X11A). (III) F l u o r e s c e n c e o f 2-(p-methoxyphenyl)-3-methyl-3-hydroxyindolenine ( X l l c ) a l l i n Kt-BuO/DMSO. S i m i l a r l y , the chemiluminescence o f (XIIA) i s i d e n t i c a l t o the  f l u o r e s c e n c e o f ( X l l a ) , the maximum of both o c c u r r i n g  at 495 m/<(Fig. 14). T h i s correspondence between the fluores^ cence and chemiluminescence s p e c t r a leaves l i t t l e  doubt as  54 t o the i d e n t i t y o f the e m i t t e r . of the a l c o h o l  Furthermore, the p o s s i b i l i t y  ( X l l c ) being an e m i t t e r  f l u o r e s c e n c e maximum comes at 485 m/4.  i s eliminated since i t s Although the chemi-  luminescence s p e c t r a o f the remaining i n d o l y l peroxides  were  not measured due t o t h e i r low chemiluminescent i n t e n s i t y ( s e l f - a b s o r p t i o n would be acute) i t i s c o n f i d e n t l y suggested that the e x c i t e d s t a t e o f the c o r r e s p o n d i n g  d i c a r b o n y l anions  would be the e m i t t i n g s p e c i e s o f t h i s s e r i e s o f i n d o l y l  per-  oxides. C)  Substituent Within  Effect. the group o f p a r a - s u b s t i t u t e d  lophines,  '  the l i g h t y i e l d s i n c r e a s e d w i t h the e l e c t r o n - r e l e a s i n g a b i l i t y o f the s u b s t i t u e n t s . to occur study.  A similar effect  has been shown  i n the chemiluminescence o f i n d o l y l peroxides  under  55 Fig.  15  3.0  -.70  -.50  -.30  -.10  cr  p l o t of l o g V l o vs:<yfor i n d o l e substituents Figure  (15)  i n the  .10  .30  peroxide d e r i v a t i v e s with  para-  2-phenyl group.  p r e s e n t s a Hammett p l o t of l o g  (I/lo)  against  7 1  values o f t a k e n f o r the  from J a f f e .  derivative  2-phenyl).  Io i s the  i n d o l y l peroxide whether the  (substituted  (XA).  at the  i n t e n s i t y f o r the At  the  r e l a t i o n s h i p i s due  enhanced f l u o r e s c e n c e  I i s the i n t e n s i t y observed para-position  the  unsuibstituted  present i t i s not to r a t e  of  clear  ( c f . Part  I I I ) or  e f f i c i e n c i e s , as the l a t t e r have  not  been measured. I t i s i n t e r e s t i n g that the  r a t i o of the  chemiluminescence  56 of (X11A): (XV111A) i s equal  t o the r a t i o of f l u o r e s c e n c e  i n t e n s i t i e s of the corresponding (XVllla)  (about  e x c i t e d products  10:1 i n each c a s e ) .  (Xlla):  I t i s of s i g n i f i c a n c e  to p o i n t out t h a t we are working with r e l a t i v e l y  efficient  chemiluminescent compounds, as the chemiluminescent of  (XV111A) i s estimated  than lophine peroxide.  intensity  t o be hundred times more e f f i c i e n t The f l u o r e s c e n t quantum y i e l d of 58  ( X V l l l a ) i s 0.016  (1.6%) u s i n g quinine s u l f a t e as r e f e r e n c e .  T h i s value r e p r e s e n t s  only one-tenth the magnitude of the  f l u o r e s c e n c e quantum y i e l d of the aminophthalate i o n '(II); (10%) 27  r e c e n t l y measured.  With such a low f l u o r e s c e n c e  quantum  y i e l d f o r ( X V l l l a ) i t i s l i k e l y t h a t t h i s q u a n t i t y c o u l d be i n c r e a s e d by s u i t a b l e s u b s t i t u t i o n .  PART  III:  K I N E T I C S OF  CHEMILUMINESCENCE  57 EXPERIMENTAL K i n e t i c Method. The appartus used was the same as that chemiluminescence  f o r measuring  e f f i c i e n c i e s . However the l i g h t  source was 35 cm away from the p h o t o m u l t i p l i e r  emitting  tube f o r the  2,2-dimethyl-3-hydroperoxyindolenine (XVIIIA) and 2-(p-methoxyphenyl)-3-methy1-3-hydroperoxyindolenine  (XIIA).  The p e r o x i d e (XIIA) and the hydroperoxides c o n t a i n i n g  halogen  s u b s t i t u e n t s were 10 cm away s i n c e these are much lower i n intensity. A t y p i c a l run was c a r r i e d out as f o l l o w s : a curve t r a c e d from the chemiluminescent and excess  r e a c t i o n of (XVIIIA)  (2ml,10 °M )  (10 f o l d ) potassium t - b u t o x i d e (3 ml, 10 M) a l l -2  i n DMSO was p l o t t e d as l o g I (1= i n t e n s i t y O c m ) versus time (sec).  From the graph the p s e u d o - f i r s t order constant i s  c a l c u l a t e d . A l l the r e a c t i o n s were c a r r i e d out at room temperature.  58 DISCUSSION The  chemiluminescence  showed a f i r s t and  (XV111A)  was  ( i n the presence  o f an e x c e s s  A l s o , on d i l u t i n g  p e r o x i d e s , the l i g h t  proportional  t o t h e amount  mechanism o f t h e l i g h t II).  yield  Peroxide  light  (XV11A)  potassium  reaction  of the peroxide  emission  step  order k i n e t i c s .  used.  our view of the ( F i g . 12.  (X11A) and (XV111A) r e a c t  by f i r s t  mixtures of  e m i s s i o n u n d e r t h e same c o n d i t i o n s  K i n e t i c measurements s u p p o r t  Part  (XXA) and  o r d e r dependence on t h e c o n c e n t r a t i o n o f (X11A)  t^-butoxide/DMSO.) these  o f compound  w i t h base t o  The r a t e s were -3  followed  by m e a s u r i n g  the l i g h t  emission  from  10  M to  of the p e r o x i d e s t r e a t e d  with  an e x c e s s  -5 10  M solutions  of  -2 potassium /t-butoxide i n dimethyl room t e m p e r a t u r e ; log  light  for  both  time  the data  intensity compounds  ( F i g . 16).  sulphoxide  are given  (10  i n Table  2.  M) a t P l o t s of  (a measure o f c o n c e n t r a t i o n ) v s . t i m e were s t r a i g h t  over  80% of the r e a c t i o n  59 Table 2  M o l a r C o n c n . ( i n DMSO)  First rate  Relative  Order constant(sec  )  Intensity  Comp.  KBuO  XVIIIA  0,4xlO" M  -1.0.37  1000  0.4xlO~ M  -10.37  100  0.4.xlO M  - 7.35  10  0.4xlO~ M  - 3.22  100  0.4xlO" M  - 3.40  10  0.4xlO M  - 3.22  1  XVII A  0.4xlO~ M  - 4.79 (<T= -.062)  0.029  XV1A  0.4xlO~ M  - 4.14 (<r= +.227)  0.004  XVA  0.4xlO" M  - 3.86 (ct= +.230)  0.004  1  3  4  -5  XIIA  3  4  _ 5  3  3  3  - 1  60 F i g . 16  Log  (I) v s . time ( s e c ) ,  All  in  DMSO  1= i n t e n s i t y , of (XIIA)  at room temperature.  +0.9  LogI  0  0.1  0.2  0.3  0.4  0.5  Time(sec.) -3 1. 2. 3.  cone. 0.4x10  M (0.2 v o l t , 35 cm. d i s t a n t from phototube) cone. 0.4xlO" M (0.2 v o l t , 10 cm. d i s t a n t from phototube) c o n e 0.4xlO" M (0.05 v o l t , 10 cm. d i s t a n t from phototube) 4  5  61  F i g . 17  J T v s . time ( s e c ) , I = i n t e n s i t y of (X11A) All  0.90  i n DMSO a t room temperature  F  0.80  0.70 1  if  0.60  0.50  0.40  0.30  1.  0.1  0.2 0.3 Time(sec.)  0.4  0.5  cone. 0.4xlO" M ( 0 . 2 v o l t , 35 cm from phototube) 3  62 In other checks on the mechanism o f the r e a c t i o n , we have measured the i n t e g r a t e d l i g h t y i e l d s o f 2-(p-methoxyphenyl)-3-methyl-3-hydroperoxyindolenine  (XIIA) as a f u n c t i o n  of d i l u t i o n . The r e s u l t s shown on Table 3 demonstrate the p r o p o r t i o n a l i t y of t o t a l l i g h t y i e l d t o the c o n c e n t r a t i o n of  (XIIA). T h i s f a c t e l i m i n a t e s a mechanism i n v o l v i n g the  c o l l i s i o n of two peroxide d e r i v e d molecules i n the p r o d u c t i o n of  light.  T a b l e 3.  T o t a l Light Y i e l d s  Chemiluminescence System  Comp. (XIIA) i n Kt-BuO/DMSO  0.4xlO~ M 3  1.00  (arbitrary  0.4xlO~ M  0.4xl0" M  0.10  0.001  4  5  units)  63  As first  a further  c h e c k , t h e same d a t a , w h i c h  order r e l a t i o n s h i p  when p l o t t e d ^/J^fvs.  showed a c u r v e when p l o t t e d Thus t h i s  provided  a second order Our discovery similar  reaction yield.  available isotopic  labelling  matter.  that  ( F i g . 17) .  light  e m i s s i o n i s not  the t o t a l l y  of i n d o l y l  product which Here  of i n d o l y l  t h e mechanism  to establish  living  time  identified  intensity.  systems.  In v i e w  '  3 2  i n con-  d o n a t i n g groups The order  of the data  i s suggested.  work i s c o n t i n u i n g  2 5  as the a n i o n of  p e r o x i d e s showed a f i r s t  ( F i g . 12)  Further  i n our l a b o r a t o r y i n  t h e p r o p o s e d mechanism and of o r g a n i c  new  peroxide i s  i s produced  also, electron  on t h e c o n c e n t r a t i o n .  chemiluminescence in  has been  the chemiluminescence  dependence  l o g (I) v s . time,  known c h e m i l u m i n e s c e n t  the e m i t t e r  chemiluminescence  order  demonstrated  to other well  siderably high  a  function.  work has  dicarbonyl  enhance  proof that  of the chemiluminescence  In e f f e c t , the  further  show  to link  the  compounds w i t h b i o l u m i n e s c e n c e  64  BIBLIOGRAPHY 1.  "A symposium on L i g h t and L i f e " , Ed. W. D. McElroy and B. G l a s s , Johns Hopkins P r e s s , B a l t i m o r e , ( 1 9 6 1 ) .  2.  B. R a d z i s z e w s k i , Chem. Ber., 10, 70 ( 1 8 7 7 ) .  3.  P. Lenard and M. Wolf, Wied. Ann., 34, 918 ( 1 8 8 8 ) .  4.  T. I . Quickenden,  J . New Zealand I n s t . Chem., 28, 10  (1964)  5.  K. D. Gundermann, Angew. Chem. I n t . Ed., 4, 566 ( 1 9 6 5 ) .  6.  F. McCapra, Quart. Revs. (London), f a l l  7.  M. A. A. Clyne and J . A. Coxon, Chem. Comm., 285 ( 1 9 6 6 ) .  8.  C. J . H a l s t e a d and B. A. Thrush, Photochem. and P h o t o b i o l . ,  9.  E. Wedekind, Z. Wiss. Phot., 5, 29 ( 1 9 0 7 ) .  issue  (1966).  4, 1.007 (1965)  10. E. N. Harvey,  "Bioluminescence", Acad. P r e s s , N. Y. ( 1 9 5 2 ) .  11. E. H. White, F. McCapra, G. F. F i e l d and W. D. McElroy, J.  Am. Chem. S o c , 83, 2402  (1961).  12. E. J . Bowen and R. A. L l o y d , Proc. Roy. S o c , Ser. A, 275,  465 ( 1 9 6 3 ) .  13. J . S t a u f f , Photochem. and P h o t o b i o l . , 14. E. J . Bowen, Chemistry i n B r i t a i n , 15. W. M. McClain and A. C. A l b r e c h t ,  4, 1199 ( 1 9 6 5 ) .  2, 249 ( 1 9 6 6 ) . J . Chem. Phys., 4 3 , 465  (1965) .  16. D. M. H e r c u l e s , S c i e n c e , N. Y., 145, 808 ( 1 9 6 4 ) . 17. E . A. Chandross 86,  and F. I . Sonntag, J . Am. Chem. S o c ,  3179 ( 1 9 6 4 ) .  18. K. S. V. Santhanam and A. J . Bard, J . Am. Chem. S o c , 87,  139 ( 1 9 6 5 ) .  19. E. A. Chandross 1089  20. E. A. Chandross 3179  and F. I . Sonntag, J . Am. Chem. S o c , 88  (1966).  and F. I . Sonntag, J . Am. Chem. S o c , 86  (1964).  21. E. A. Chandross,  J . W. Longworth,and R. E. V i s c o , J . Am.  Chem. S o c , 8 7 , 3259  (1965).  65  22. E . H. W h i t e ,  r e f . 1 p. 184  23.  H. 0. A l b r e c h t ,  Z. p h y s i k . Chem., 136, 321  24.  £ . H. W h i t e , 0. Z a f i r i o u , H. H. K a g i and J . H. M. J . Am. Chem. S o c , 86, 940 ( 1 9 6 4 ) .  25. E . H. White and M. M. B u r s e y , 941 ( 1 9 6 4 ) .  (1928). Hill,  J . Am. Chem. S o c , 86,  26.  K. D. Gundermann a n d M. D r a w e r t , (1962) .  27.  J . L e e a n d H. H. S e l i g e r , 4, 1015 ( 1 9 6 5 ) .  28.  D. K e a r n s (1962).  Chem. B e r . , 95, 2018  Photochem. and P h o t o b i o l . ,  a n d S. E h r e n s o n ,  J . Am. Chem. S o c , 84, 739  29. B. E . C r o s s and H. D. K. Drew, J . Chem. S o c , 1532 ( 1 9 4 9 ) . 30.  r e f . 5 p . 570  31. G. E . P h i l b r o o k and M. A. M a x w e l l , No. 19, 1111 ( 1 9 6 4 ) .  Tetrahedron  Letters,  32. E . H. W h i t e and J . C. H a r d i n g , Photochem and P h o t o b i o l . , 4, 1129 ( 1 9 6 5 ) . 33.  M. J . C o r m i e r and C. E c k r o a d e , 64, 340 ( 1 9 6 2 ) .  34. H. M. K i s s m a n , D. W. F a r n s w o r k , Chem. S o c , 74, 3948 ( 1 9 5 2 ) .  Biochem. B i o p h y s . and B. W i t k o p ,  Acta  J . Am.  35. W. T. Read, J . Am. Chem. S o c , 44, 1746 ( 1 9 2 2 ) . 36.  a) B. W i t k o p and J . B. P a t r i c k , J . Am. Chem. S o c , 74, 3856 ( 1 9 5 2 ) . , b) M M. C l e r i c - B o r y , B u l l . Chem. S o c F r a n c e , 88-90 ( 1 9 5 5 ) . m e  37.  C. M e n t z e r ,  38.  A. W. Nineham, J . Chem. S o c . , 635  39. D. G u t s c h e (1950). 40.  Compt. Rend. 222, 1176-8  (1946).  (1952).  and F. A. H a y e s , J . Am. Chem. S o c , 72, 4285  N.Rabjohn and E . R. R o g i e r , J . O r g . Chem., 11_, 781 (1946)  41. R. J . S. B e e r , T. D o n a v a n i k S o c , 4139 ( 1 9 5 4 ) .  a n d A. R o b e r t s o n , J . Chem.  66  42. D." L. Aldous, J . L. Riebsomer and R.N. C a s t l e , J . Org. Chem., 25, 1151 (1960). 43. R. V. Heinzelman,  J . Am. Chem. S o c , 74, 921 (1953).  44. Mm. C.Mentzer. D. Molho and Y. Berguer, B u l l . Chim. Soc. France, 555 (1950). 45. C. U. Rogers and B. B.Corson, 90 (1950).  Organic Syntheses, 30,  46. B. Witkop and J . B. P a t r i c k , J . Am. Chem. S o c , 73 2196 (1951). 47. W. H. P e r k i n and S. G. P. P l a n t , J . Chem. S o c , 1825 (1921). 48. C. D u f r a i s s e and J . M a r t e l , Compt. Rend., 244, 3106 (1957). 49. D. E. W o r r a l l , J . Am. Chem. S o c , 56, 1556 (1934). 50. L. I . Smith and K. L. Howard, Organic Syntheses, 3_, 351 (1955) . 51. W. E. Parham and W. R. Hasek, J . Am. Chem. S o c , 76_, 799 (1954) . 52. A. I . S c o t t , F. McCapra, and E . S. H a l l , J . Am. Chem. S o c , 86, 302 (1964);. 53. T. Hayashi and K. Maeda, B u l l . Chem. S o c Japan, 33, 565 (1960). 54. A . I . V o g e l , " P r a c t i c a l Organic Chemistry", 3rd. Ed. John Wiley and Sons. Inc., N.Y. , p. 921 (1962). 55. B. Witkop, J . B. P a t r i c k and M. Rosenblum, J . Am. Chem. S o c , .73, 2641 (1951) . 56. T h i s was measured on a RCA V i c t o r 7265 p h o t o m u l t i p l i e r and a Bausch and Lomb g r a t i n g monocbromator i n Dr. O g r y z l o ' s l a b o r a t o r y with the c o - o p e r a t i o n of J . A r n o l d ; the author wishes t o thank them both. 57. J . C. C a l v e r t and J . N. P i t t s "Photochemistry", John Wiley, N.Y. p. 799 (1966). 58. W. H. Melhuish, J . Phys. Chem. 65, 229 (1961). 59. H. H. Jaffe,Chem. Revs., 53, 191 (1953).  67  60. Y. H i r a t a , 0. Shimomura and S. Eguefai, Tetrahedron L e t t e r s , No. 5, 4 (1959). 61. F. McCapra, D.G.Richardson and Y. C. Chang, Photochem. and p h o t o b i o l . , 4, 1111 (1965). 62. F. McCapra and Y. C. Chang, Chem. Comm., i n p r e s s .  (1966).  63. B. Witkop and J . B. P a t r i c k , J . Am.Chem. S o c , 73 2188 (1951). 64. R. J. S. Beer, L. McGrath and A. Robertson, J . Chem. S o c , 2118 (1950) . 65. D. T. H a r r i s , Biochem. J . 20, 280 ( 1 9 2 6 ) . 66. B. L . S t r e h l e r , E. N. Harvey, J. J . Chang and M. J . Cormier, Proc. N a t l . Acad. S c i . U. S. 40, 10 (1954). 67. W. D. McElroy and H. H. S e l i g e r , Advanc. 25, 144 (1961).  Enzymol.,  68. C. M. A t k i n s o n , J . C. E. Simpson and A. T a y l o r , J . Chem. S o c , 165 (1954). 69. F..Y. H. Chen and E . L e e t e , Tetrahedron L e t t e r s , No. 29, 2013  (1963).  70. T. Hayashi and K. Maeda, B u l l . Chem. Soc. Japan, 36, No. 8, 1052 (1963). 71. H. H. J a f f e , Chem. Revs., 53, 191 ( 1 9 5 3 ) .  68 APPENDIX Derivation i n excess base.  of the rate e x p r e s s i o n  f o r the k i n e t i c s  Assume a r e a c t i o n of order "n" i n reagent  "R" (where [R] =  i n d o l y l concentration  , [P]] =  dicarbonyl  and * = e x c i t e d s t a t e ) d e s c r i b e d  by the f o l l o w i n g steps  (where s o l v e n t  included).  quenching i s a l s o  nR  ^  P*  k  2  P*  k  Q  P*  (1)  P + h  (2)  P  (3)  If reaction  (1) i s r a t e c o n t r o l l i n g , under steady s t a t e  conditions  (krj^k^)  d_P* = 0 = ^ R " P*  = kj  R  k 4-k 2  since  dP dt  substitute  =  (  k  ~ |  Q  * 0  f  r  o  m  (  2  a  n  d  3  )  (  6  )  (7)  =  k P*  from  2  = k k-| 2 Q ?  R  n  (2)  from ( 5 )  (8) (9)  + k  = ko + kQ k  -dR dt  (5)  n  since  k  n  (4)  Q  = ^R"  or I R  ) p  + k )P*  2  ( 5 ) i n t o (6) and o b t a i n  Furthermore =  k  *  M~  1  - (k  j  l 2 k  = k,R 1  n  from  (1)  (10)  69  if  n=l, F i r s t  order  (9) becomes  R= k  + k  2  Q  j  a  n  d  differentiating  2  ^1 with respect to (t) dR d  t  =  substitute  a  (11)  ^ (10)  (9) i n t o  and e q u a t e t o (11) t o g e t  dt  t  41. dt In if  kn di  + ^1^2  t  = k, I 1  I = kit  n = 2 , Second (10)  integrating  +  c  order  becomes -dR dt  =  k  R  2 integrating  and g e t  ±  ( 1 2 )  1 = k, t + C R 1  then  (9) becomes R  2  =  k _j_k 2  K  J  s  u  b  1 2  ( 1 2 ) and g e t  into 1_  Q  K  =  k ' t + C where k' = k-^  ko + kQ kik 2  s  t  i  t  u  t  l  n  g  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062176/manifest

Comment

Related Items