UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The sulfur dioxide, oxygen, sulfuric acid cell Leith, James A. 1946

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1946_A7 L3 S8.pdf [ 2.44MB ]
Metadata
JSON: 831-1.0062164.json
JSON-LD: 831-1.0062164-ld.json
RDF/XML (Pretty): 831-1.0062164-rdf.xml
RDF/JSON: 831-1.0062164-rdf.json
Turtle: 831-1.0062164-turtle.txt
N-Triples: 831-1.0062164-rdf-ntriples.txt
Original Record: 831-1.0062164-source.json
Full Text
831-1.0062164-fulltext.txt
Citation
831-1.0062164.ris

Full Text

ft} THE SULFUR DIOXIDE, OXYGEN, SULFURIC ACID CELL A t h e s i s submit ted i n p a r t i a l f u l f i l l m e n t o f the requi rements f o r the Degree o f Mas ter o f A p p l i e d Sc ience i n the Department o f Chemis t ry JAMES A . L E I T H , B . A . S c . The U n i v e r s i t y o f B r i t i s h Columbia J u n e , 1946. ACKNOWLEDGEMENT I w i sh to acknowledge the h e l p f u l sugges t ions and a s s i s t a n c e o f D r . W.F. Seyer , under whose d i r e c t i o n the presen t work was c a r r i e d o u t . I would a l s o l i k e to thank D r . B . P . Su the r l and o f the C o n s o l i d a t e d M i n i n g and Sme l t i ng Company f o r s u p p l y i n g some much needed equipment which c o u l d no t be ob ta ined from the r e g u l a r sources . TABLE OF CONTENTS, Page INTRODUCTION 1 OUTLINE OF THE PROBLEM 2 HISTORICAL 3 GENERAL THEORY 6 Gas Electrodes • • • 6 Hydrates i n Aqueous Solution 7 PROBABLE MECHANISM OF CELL. REACTION 8 Anode Reactions 8 Cathode Reactions 8 Overall C e l l Reaction 9 DESIGN OF THE CELL 12 OPERATION OF THE CELL ' 14 Plat in iz ing the Electrodes 14 Degassing the Electrodes • • • 14 Changing the C e l l 14 RESULTS 15 Variat ion of C e l l Potential with Cone. . . . . 15 Effect of the Rate of Sulfur Dioxide into the C e l l on the E.M.F 24 CONCLUSION 25 REFERENCES 26 BIBLIOGRAPHY 27 LIST OF ILLUSTRATIONS Page 1. The V a r i a t i o n o f C e l l Vo l t age w i t h Time U s i n g D i f f e r e n t E l e c t r o d e M a t e r i a l 4 2 . T h e o r e t i c a l E . M . F . o f C e l l 11 3 . S u l f u r D i o x i d e , Oxygen, S u l f u r i c A c i d C e l l . . . . 13 4 . C e l l V o l t a g e v s . C o n c e n t r a t i o n o f E l e c t r o l y t e , . 17 5 . F r e e z i n g P o i n t Char t o f S u l f u r i c A c i d H y d r a t e s . 20 6 . The V a r i a t i o n o f C e l l Vo l t age w i t h Time 23 KEY TO SYMBOLS - f ree energy change, c a l o r i e s f - Faraday 96,500 coulombs M - mol f r a c t i o n N - n o r m a l i t y n - va lence T = temperature , degrees Cent ig rade t - t i m e , hours X = per cent a c i d x = n o r m a l i t y o f e l e c t r o l y t e a t t ime "t" J = conve r s ion f a c t o r : 1 c a l . - 4 . 1 8 3 j o u l e s 1 j o u l e = 9.87 cc atm. THE SULFUR DIOXIDE« OXYGEN*. SULFURIC ACID CELL P r o d u c t i o n o f s u l f u r i c a c i d "by p resen t s tandard methods l e aves l i t t l e to be d e s i r e d , e s p e c i a l l y when e lementa l s u l f u r , s u l f i d e ores and some by-p roduc t gases are u sed . However, the u t i l i z a t i o n o f the f ree energy o f s u l f u r d i o x i d e i n the form o f e l e c t r i c a l energy f o r the p r o d u c t i o n o f s u l f u r i c a c i d o f f e r s i n t e r e s t i n g p o s s i b i l i t i e s . The c e l l r e a c t i o n o f such a process i s g i v e n b y : SO., +- $Q% + H t 0 - H 4 SO^ The f ree energy change i n v o l v e d i n t h i s r e a c t i o n i s made up o f the f ree energy o f fo rma t ion o f s u l f u r i c a c i d p l u s the f ree energy o f d i l u t i o n o f s u l f u r i c a c i d . The A F change i n forming pure s u l f u r i c a c i d ' i s •49 ,100 c a l o r i e s per mole , and f o r a more d i l u t e a c i d i t 1 2 would be even g r e a t e r . Any r e a c t i o n which i s accompanied by a l a r g e nega t ive f ree energy change i s spontaneous, hence from the above f ree energy change we r e a l i z e i t would -"be q u i t e p o s s i b l e to produce s u l f u r i c a c i d i n an e l e c t r o l y t i c c e l l and a t the same t ime draw o f f e l e c t r i c a l energy. By the use o f s u l f u r d i o x i d e i n the method i n d i c a t e d , a number o f o b j e c t i v e s c o u l d be ach i eved . These i n c l u d e p r o d u c t i o n o f cheap d i l u t e a c i d f o r i n d u s t r i a l uses such as p i c k l i n g s t e e l or l e a c h i n g copper o r o ther o r e s ; p r o d u c t i o n o f concent ra ted a c i d where economic ( rondi t ions war ran t , and abatement o f atmospheric p o l l u t i o n . OUTLINE OF THE PROBLEM I n the f o l l o w i n g experiments i t was proposed to determine the e l ec t romo t ive fo rce o f a c e l l s i m i l a r to P t , SO,,: H^SO,,.: Oj, , P t a t v a r i o u s concen t r a t i ons o f s u l f u r i c a c i d . The above c e l l was s t u d i e d i n 1945 by T . C . A s s a l y , and from h i s work i t was shown t h a t four hydra tes o f s u l f u r i c a c i d were s t a b l e i n s o l u t i o n . The w r i t e r proposed to s tudy the same c e l l w i t h d i f f e r e n t e l e c t r o d e m a t e r i a l to t e s t the v a l i d i t y o f A s s a l y ' s r e s u l t s . The o v e r a l l e f f i c i e n c y o f the p l a t i n u m - e l e c t r o d e c e l l was below 50 per cent over the g r e a t e r p a r t o f the a c i d range, so a p r e l i m i n a r y s tudy was made to f i n d an e l e c t r o d e combinat ion which would increase the c e l l e f f i c i e n c y . Lead e l e c t r o d e s were used f i r s t but were soon d i s c a r d e d s ince an ox ide f i l m formed immediate ly on bo th the anode and cathode p roduc ing a v e r y low v o l t a g e . Tes t s were then c a r r i e d out u s i n g tan ta lum meta l a t bo th e l e c t r o d e s and a cons tan t v o l t a g e was ob ta ined a f t e r about 24 hour s . The e f f i c i e n c y o f t h i s c e l l was below t h a t o f A s s a l y ' s bu t i t appeared t h a t a combinat ion o f p l a t i n u m and tan ta lum might g i v e the d e s i r e d r e s u l t s . A c e l l made up o f a p l a t i n u m anode and a tan ta lum cathode was then t e s t e d bu t t h i s s t i l l was not s a t i s f a c t o r y . The e l e c t r o d e combinat ion was then r e v e r s e d , and w i t h tan ta lum as anode and p l a t i n u m as cathode a g r ea t inc rease i n e f f i c i e n c y was o b t a i n e d . F i g . 1 shows these r e s u l t s g r a p h i c a l l y . As a r e s u l t o f these experiments i t was dec ided to determine the a c t u a l e l e c t r o m o t i v e fo rce o f the c e l l : T a , S 0 4 : H^SO^: 0,,, P t a t v a r i o u s concen t r a t i ons o f s u l f u r i c a c i d . \. HISTORICAL I n 1916 M e s s r s . M . De Kay Thompson and IT. J . Thompson* i n v e s t i g a t e d the c u r r e n t e f f i c i e n c i e s o f the o x i d a t i o n o f su l fu rous a c i d and they showed t h a t t h i s o x i d a t i o n t akes p l ace w i t h h i g h c u r r e n t e f f i c i e n c i e s even 5 i n s t rong s u l f u r i c a c i d s o l u t i o n s . A l s o f o r a g i v e n s u l f u r i c a c i d c o n c e n t r a t i o n the c u r r e n t e f f i c i e n c y decreases w i t h i n c r e a s i n g cu r r en t d e n s i t y . M e s s r s . M . De Kay Thompson and A . P . S u l l i v a n s t u d i e d the d e p o l a r i z a t i o n e f f e c t s o f s u l f u r d i o x i d e i n an e l e c t r o l y t i c c e l l u s i n g a p l a t i n u m anode. They found t h a t i t was p o s s i b l e to decrease the p o l a r i z a t i o n a t the anode and thus decrease the e q u i l i b r i u m v o l t a g e o f the c e l l by the a d d i t i o n o f s u l f u r d i o x i d e . I t appeared from t h e i r experiments t h a t the p o l a r i z a t i o n was due to the accumula t ion o f f ree oxygen a t the anode. On a d d i t i o n o f s u l f u r d i o x i d e to the ano ly te a r e a c t i o n occur red between t h i s gas and the f ree oxygen r e d u c i n g the p o l a r i z a t i o n e f f e c t s . M r . T. C . A s s a l y s t u d i e d the a c t u a l e l e c t r o m o t i v e fo r ce o f the c e l l : P t , S 0 l : H^SO A : 0 X , P t a t v a r i o u s concen t r a t i ons o f s u l f u r i c a c i d and a t d i f f e r e n t temperatures . He found t h a t i n p l o t t i n g c e l l v o l t a g e ve r sus c o n c e n t r a t i o n o f e l e c t r o l y t e t h a t a s tep-wise curve was formed; each o f the four s teps cor responding to a hydra te o f s u l f u r i c a c i d . Other exper imenters have shown evidence f o r the ex i s t ence o f three o f these hydra tes by f r e e z i n g methods. The e l e c t r o l y t i c method i n d i c a t e s t h a t the s u l f u r i c a c i d o hydra te s are s t ab l e a t 25 C as w e l l as a t t h e i r f r e e z i n g p o i n t s . The e l ec t romo t ive fo rce o f the above c e l l was shown to be dependent on the temperature o f the e l e c t r o l y t e . - 6 The v o l t a g e i nc rea sed s l i g h t l y w i t h a decrease i n temperature and approached a cons tant va lue a t low temperatures , GENERAL THEORY GAS ELECTRODES Gas e l e c t r o d e s commonly c o n s i s t o f a s o l i d f i r s t -c l a s s conductor , i n which a gas has been absorbed. Recent i n v e s t i g a t o r s have shown t h a t the emf developed by s o - c a l l e d gas e l e c t r o d e s i s a f u n c t i o n o f the f i r s t - c l a s s conductor i n which the gas i s con ta ined as w e l l as o f the gas i t s e l f . I n o ther words, gas e l e c t r o d e s are r e a l l y gas -meta l e l e c t r o d e s s ince meta ls are commonly used to absorb these gases . The p o t e n t i a l s developed by such gas -meta l e l e c t r o d e s are s p e c i f i c f o r the p a r t i c u l a r meta l and gas , and are r e l a t e d to the absorb ing power o f the meta l f o r the gas . The p o t e n t i a l s are known to v a r y g r e a t l y w i t h the nature o f the e l e c t r o l y t e i n which the e l e c t r o d e s are immersed. I t has a lso been found t h a t there i s a somewhat d i f f e r e n t p o t e n t i a l developed when the e l e c t r o d e i s s t a t i o n a r y than when i t i s i n m o t i o n . T h i s l a t t e r e f f e c t may be shown by moving the e l e c t r o d e or by keep ing i t s t a t i o n a r y and moving the e l e c t r o l y t e . The e l e c t r o l y t e may be moved by s t i r r i n g , caus ing the e l e c t r o l y t e to f l o w pas t the e l e c t r o d e , o r by b u b b l i n g the gas through the e l e c t r o l y t e . I t has been observed t h a t the amount o f gas needed to b r i n g about i t s e f f e c t on the p o t e n t i a l o f a meta l , i s v e r y 1 s m a l l indeed . I n f a c t , the p ressure o r s o l u b i l i t y o f the gas has l i t t l e o r no e f f e c t on the p o t e n t i a l . When a gas i s b e i n g pumped out o f the s o l u t i o n l i t t l e e f f e c t i s observed on the p o t e n t i a l u n t i l the b u b b l i n g out o f the gas causes a s t i r r i n g e f f e c t . HYDRATES IN AQUEOUS SOLUTION The number o f molecules o f water i n combinat ion w i t h one molecule o f the d i s s o l v e d substance , f r e q u e n t l y i nc r ea se s from the most concent ra ted to the most d i l u t e s o l u t i o n s , as w i t h magnesium c h l o r i d e , manganese c h l o r i d e and copper c h l o r i d e . Wi th some substances the number o f molecules o f water h e l d i n combinat ion by one molecule o f the d i s s o l v e d substance may pass through a w e l l - d e f i n e d maximum as the d i l u t i o n i s i n c r e a s e d . I n o ther cases , the number o f molecules o f water h e l d i n combinat ion by one molecule o f the d i s s o l v e d substance may reach a maximum v a l u e as the d i l u t i o n i s i n c r e a s e d ; t h i s maximum va lue may then remain p r a c t i c a l l y cons tant w i t h f u r t h e r i nc reases i n the d i l u t i o n . The q u e s t i o n a r i s e s whether these hydra tes are t rue c h e m i c a l compounds o r whether they r ep resen t some l e s s s t a b l e form o f combina t ion . That they are uns t ab l e i s shown by the ease w i t h which they are broken down by h e a t . Most o f the water can be d r i v e n o f f from the above s o l u t i o n s a t a o temperature o n l y a l i t t l e above 100 C . The more complex hydra tes a r e , t hen , decomposed i n s o l u t i o n a t a compara t ive ly low temperature and the water i s g i v e n o f f i n the form o f vapour . I n the l i g h t o f these f a c t s the hydra tes can s c a r c e l y be regarded as t r ue chemica l compounds. I f however, we i n s i s t on c a l l i n g them chemica l compounds, we must admit t h a t they r ep resen t a v e r y low order o f s t a b i l i t y . I t i s the gene ra l o p i n i o n t h a t bo th molecu les and ions combine w i t h wate r , forming h y d r a t e s . I t seems t h a t the molecu les are c e r t a i n l y capable o f fo rming h y d r a t e s , because i n v e r y concent ra ted s o l u t i o n s where the i o n i z a t i o n i s v e r y s m a l l , we o f t en have cons ide rab le h y d r a t i o n . That ions are capable o f combining w i t h water i n s o l u t i o n i s shown by the magnitude o f the h y d r a t i o n i n many o f the d i l u t e s o l u t i o n s , where c h i e f l y i ons and o n l y a few molecules are p r e sen t . PROBABLE MECHANISM OF CELL REACTIONS ANODE REACTIONS The s u l f u r d i o x i d e f i r s t d i s s o l v e s i n the s u l f u r i c a c i d e l e c t r o l y t e and then adsorbs on the sur face o f the e l e c t r o d e : SO t (gas ) = SO^(so lu t i on ) (1) The s u l f u r d i o x i d e then combines w i t h water as i n equa t ion (2) ' S O z + H J L 0= S0~ + 2 H % ^ ^ (2) CATHODE REACTIONS S i m i l a r l y , oxygen i s d i s s o l v e d i n the e l e c t r o l y t e and then adsorbed on the surface o f the e l e c t r o d e . • 0 4 ( g a s ) '=:" O^Csolu t ion) (3) The oxygen then combines w i t h water as i n equa t ion £ O F C * H .0 +• 2 ( - ) - 20H (4) OVERALL CELL REACTION The o v e r a l l c e l l r e a c t i o n i s g i v e n by : S 0 2 + £ O i mH^O - Hj,S0 4 (N = X) (5) The c e l l r e a c t i o n can be d i v i d e d i n t o two p a r t s as such: SO 2. +• J 0 a +- H t O = H^SO^. (6) 2 H % SO^ mHaO - H^SO^. (N - X ) (7) SO z +• io^ + mHtO = H z SO^ ( N =• X) (8) A d d i t i o n o f equat ions (6) and (7) g i v e s the o v e r a l l c e l l r e a c t i o n . Hence a d d i t i o n o f the f ree energy o f r e a c t i o n s o f equat ions (6) and (7) w i l l g i v e the o v e r a l l f ree energy change w i t h i n the c e l l . The v a l u e o f A F f o r equa t ion (6) i s ob ta ined from the d i f f e r e n c e o f the f ree energy o f fo rma t ion o f s u l f u r i c a c i d and the sum o f the f ree energ ies o f fo rmat ion o f s u l f u r . d i o x i d e , water and oxygen. A is* H z s o + - ~ 176,000 c a l o r i e s ^is" \s.o£, - - 71,740 c a l o r i e s ^ F * * ° u » o - - 56,690 c a l o r i e s O j . - zero Therefore A F change = - 49,100 c a l o r i e s . The number o f accura te measurements from which the f ree energy o f d i l u t i o n o f s u l f u r i c a c i d may be c a l c u l a t e d i s l i m i t e d . Tables are a v a i l a b l e on the f ree energy o f d i l u t i o n o f the a c i d o n l y f o r d i l u t e s o l u t i o n s . 8 Brons ted s t u d i e d the f ree energy o f d i l u t i o n over a r a t h e r wide range o f concen t r a t i ons o f s u l f u r i c a c i d bu t a t • 9 temperatures r a n g i n g o n l y up to 9 C . Harned and S t u r g i s I O and L e w i s and R a n d a l l a l s o s t u d i e d the f ree energy o f t h i s a c i d , bu t o n l y over a s m a l l range o f c o n c e n t r a t i o n . A s a t i s f a c t o r y t a b l e o f the f ree energy o f d i l u t i o n a t 25°C f o r concen t r a t i ons up to 0 .2 mol f r a c t i o n s u l f u r i c a c i d has been worked out by R a n d a l l and Cushman.* T h e i r r e s u l t s which are the f ree energ ies * F , o f the r e a c t i o n : 2H + + S 0 ^ + mH z0 = R \ S 0 4 (N-X) (7) are g i v e n i n the t h i r d column o f Table I , and the cor respond-i n g v a l u e s o f mol f r a c t i o n M and per cent a c i d X i n the f i r s t and second columns r e s p e c t i v e l y . TABLE I M X(%) A F . Ccal.") A F , (k c a l . ) E ( v o l t s ) 1.00 100.00 0 - 4 9 . 1 1.065 .20 57.70 5270 - 4 3 . 8 .950 .13 44 .90 2915 - 4 6 . 2 1.000 .10 37.70 1645 - 4 7 . 5 1.030 .08 31.60 702 - 4 8 . 4 1.048 .065 27.55 -85 - 4 9 . 2 1.067 .05 22.28 -865 - 5 0 . 0 1.084 .03 14.42 -2048 - - 5 1 . 1 1.108 .02 10.00 -2735 -51 .8 1.122 .01 5.21 -3702 - 5 2 . 8 1.143 .002 1.08 -5613 - 5 4 . 7 1.185 .0009 .487 -6547 - 5 5 . 6 1.204 A F A r ep re sen t s the o v e r a l l c e l l r e a c t i o n £x Fx r ep re sen t s the f ree energy o f d i l u t i o n By s u b s t i t u t i o n i n the fo rmu la , E - - & F ) ( J ) a c a l o r i e s n f J = 4 .183 j o u l e s / c a l o r i e © assuming a temperature o f 25 C , the t h e o r e t i c a l v a l u e s o f the emf t h a t would be ob ta ined i n a comple t e ly r e v e r s i b l e c e l l are o b t a i n e d . The v a l u e s are g i v e n i n column 5 o f Table I . I n F i g , 2 the v a l u e s o f the emf g i v e n i n Table I are p l o t t e d as o r d i n a t e s a g a i n s t c o n c e n t r a t i o n o f s u l f u r i c a c i d as a b s c i s s a . A h y p o t h e t i c a l curve was drawn from 0 .2 M to 1 M s u l f u r i c a c i d , the range o f c o n c e n t r a t i o n where i n f o r m a t i o n on the f ree energy o f d i l u t i o n was u n o b t a i n a b l e . DESIGN OF THE. CELL-A diagrammatic ske tch o f the c e l l i s g i v e n i n F i g . 3 . I t c o n s i s t e d o f two s toppered f r i t t e d g l a s s v e s s e l s , anode and cathode compartments, each c o n t a i n i n g s u l f u r i c a c i d o f the same c o n c e n t r a t i o n . Each o f these v e s s e l s had a g l a s s tube ex tend ing from i t , about two inches above the f r i t t e d d i s c . These v e s s e l s were connected by means o f a rubber tube c o n t a i n i n g a c l a y diaphragm. E l e c t r i c a l con tac t was made by two mercury f i l l e d g l a s s l e a d s . One end o f each l e a d was sea led to the stem o f i t s p a r t i c u l a r e l e c t r o d e ; the anode b e i n g a s t r i p o f t an ta lum and the cathode a p l a t i n i z e d p l a t i n u m gauze. The p o t e n t i a l was measured by a po ten t iome te r . The whole c e l l was s e t i n a cons tant temperature o ba th which main ta ined the temperature w i t h i n 0 .05 C o f the d e s i r e d v a l u e . 13 OPERATION OF THE CELL 14 PLATINIZING THE ELECTRODES The p l a t i n u m e l e c t r o d e s were coated w i t h a l a y e r o f p l a t i n u m "black depos i t ed e l e c t r o l y t i c a l l y from a three per cent s o l u t i o n o f c h l o r o p l a t i n i c a c i d . The e l e c t r o d e s were f i r s t c leaned i n warm chromic a c i d and then lowered i n t o the s o l u t i o n . A 1 2 - v o l t c i r c u i t was used and a commutator a l lowed the cu r r en t to be r e v e r s e d a t d e s i r e d i n t e r v a l s . By means o f a s l i d i n g r e s i s t a n c e , the c u r r e n t was r e g u l a t e d so as to produce a moderate e v o l u t i o n o f gas . The d i r e c t i o n o f the c u r r e n t was r eve r sed every minute u n t i l a b l a c k and v e l v e t y c o a t i n g appeared on the surface o f the e l e c t r o d e s . DEGASSING THE ELECTRODES A f t e r each r u n the e l e c t r o d e s were removed from the c e l l , washed i n d i s t i l l e d wa te r , and degassed by e l e c t r o l i z -i n g them i n 6 N s u l f u r i c a c i d f o r approx imate ly one hour . The d i r e c t i o n o f the c u r r e n t was r e v e r s e d every t e n minutes f o r the f i r s t f i f t y minutes , then every minute f o r the l a s t t e n minutes . The p l a t i n u m e l e c t r o d e s were then b o i l e d i n d i l u t e n i t r i c a c i d f o r t e n minutes forremove any p o i s o n i n g agents . F i n a l l y a l l the e l e c t r o d e s were washed i n b o i l i n g d i s t i l l e d water f o r f i f t e e n minutes . CHANGING THE CELL The oxygen and s u l f u r d i o x i d e i n l e t and o u t l e t 15 connec t ions to the c e l l were opened and the two h a l f - c e l l s were removed from the cons tant temperature b a t h . A f t e r f l u s h i n g w i t h warm d i s t i l l e d wa te r , the h a l f - c e l l s were d r i e d i n a warm oven then washed w i t h s u l f u r i c a c i d e l e c t r o l y t e . The c e l l was then se t up aga in and connec t ions made to the s u l f u r d i o x i d e and oxygen t a n k s . S e v e n t y - f i v e c u b i c cen t ime te r s o f t e s t s u l f u r i c a c i d was then added to each h a l f -c e l l and the e l e c t r o d e s p l a c e d i n t h e i r r e s p e c t i v e h a l f - c e l l s . The s u l f u r d i o x i d e and oxygen were ob t a ined from pressure t a n k s . The d e s i r e d c o n c e n t r a t i o n o f s u l f u r i c a c i d f o r each r u n was ob ta ined by d i l u t i n g C P . a c i d w i t h d i s t i l l e d wate r . The exac t s t r e n g t h o f the a c i d was determined by t i t r a t i n g a g a i n s t a s tandard NaOH s o l u t i o n u s i n g p h e n o l -p h t h a l e i n as i n d i c a t o r . RESULTS VARIATION ffl? mgrfT.- POTENTIAL WITH CONCENTRATION Measurements were made o f c e l l p o t e n t i a l a t v a r i o u s o a c i d c o n c e n t r a t i o n s , ,-ajad a t 25 C , and these are shown i n Table I I . The f i r s t and second columns g i v e the n o r m a l i t y N and the per cent a c i d X and the t h i r d column the measured emf o f the c e l l . The v a l u e s o f the emf g i v e n i n Table I I are the v a l u e s ob ta ined a f t e r the s u l f u r d i o x i d e and oxygen had bubbled through the c e l l f o r n e a r l y 24 hours and the c e l l p o t e n t i a l approached a cons tan t v a l u e . 16 TABLE I I I X 1 I E ( v o i t s ) 0 .98 4 . 6 9 0.8270 3.04 13.94 0.8120 4 .80 21.23 0.8000-6.22 26.75 0.7990-8.10 33.60 0.7960--10.24 40 .82 0.7927 12.20 46 .90 0.7896— 14.05 52.35 0.7889: 17.30 61.11 0.7882-18.20 63.37 0.7690 21.35 70.79 0.7674-24.31 77.17 0.7620^ 25.50 79.50 0 .7121^ 26.61 81.70 0.678Q, 29.00 86.18 0 .6752-32.00 90.80 0.5800„ 33.20 93.90 0.4770 . 35.60 97.10 0.4657 The v a l u e s o f the emf g i v e n i n Table I I are p l o t t e d i n F i g . 4 as o r d i n a t e u s i n g the n o r m a l i t y o f the a c i d as a b s c i s s a . The exper imen ta l r e s u l t s f a l l on a s t ep -wise curve w i t h each o f the four s teps cor respond ing to a hydra te o f s u l f u r i c a c i d . The f i r s t s tep a t 30 .9 N corresponds to H 2S0^- H a 0 ; the second a t 24.4 N to H a S 0 ^ 2 H t 0 ; the t h i r d a t • 18 17 .1 N to H 4 S 0 4 - 4 H Z 0 ; the f o u r t h a t 5 .01 If to H 2 S 0 4 - 20 R \ 0 . I t should no t be a t a l l s u r p r i s i n g t h a t hydra tes o f s u l f u r i c a c i d are i n d i c a t e d i n an e l e c t r o l y t i c c e l l . Hydra tes o f s u l f u r i c a c i d are known to e x i s t i n s o l u t i o n . S ince the fo rmat ion o f a hydra te i n s o l u t i o n i s , a s s o c i a t e d w i t h a cons ide rab le f ree energy change, i t should be a s s o c i a t e d w i t h a marked p o t e n t i a l change i n an e l e c t r o l y t i c c e l l . The p o t e n t i a l should v a r y w i t h the nature o f the hydra te formed, hence i t should be p o s s i b l e to d e t e c t the presence o f hydra tes o f s u l f u r i c a c i d i n an e l e c t r o l y t i c c e l l . L e t us cons ide r the curve shown i n F i g . 4 . We w i l l f i r s t cons ide r the c e l l v o l t a g e a t a v e r y low a c i d concen t r a -t i o n . A t t h i s c o n c e n t r a t i o n we have a d e f i n i t e c e l l p o t e n t i a l , and as we inc rease the a c i d c o n c e n t r a t i o n we have a decrease i n the o v e r a l l f ree energy change caus ing the p o t e n t i a l to d rop . The drop i s f a i r l y cons tan t up to a c o n c e n t r a t i o n o f -5 N and over t h i s range we have the hydra te H z SO^ 2 0 H a 0 . Beyond t h i s c o n c e n t r a t i o n we do no t have enough water p resen t to form t h i s hydra te so we have another hydra te fo rming , namely ^ 3 0 ^ - 4 ^ 0 . From 5 N to 17 .1 N the s lope o f our curve i s cons tant and over t h i s range we have the hydra te H^S0^4H^0. Beyond 17 .1 N we do no t have enough water p resen t to form t h i s hydra te so t h a t we have a change over t o H t S O ^ 2 H i 0 accompanied by a marked change i n p o t e n t i a l . The o the r s teps can be e x p l a i n e d s i m i l a r l y . The p o r t i o n o f the t an t a lum-p la t i num curve A-B shown i n F i g . 4 was p l o t t e d by measuring the c e l l p o t e n t i a l s t a r t i n g 19 a t a low c o n c e n t r a t i o n o f a c i d and work ing up to a c o n c e n t r a t i o n o f 17 IT. The o ther end o f the curve was p l o t t e d by measuring the c e l l p o t e n t i a l u s i n g C P . a c i d then work ing back to 18.3 N . T h i s gave the curve C - D - E . An apparent d i s c r epancy i n the curve i s shown do t t ed between D and E . To check t h i s p a r t o f the curve t e s t s were c a r r i e d out w i t h 18 .3 N , 22 .1 N and 24 .2 N a c i d . A f t e r 20 h o u r s , v a l u e s were ob ta ined f a l l i n g on the d o t t e d p o r t i o n o f the curve bu t a f t e r another 12 hours these approached the s o l i d p o r t i o n o f the curve D-E and remained cons tan t f o r over 5 h o u r s . The curve ob ta ined by A s s a l y i s a l s o shown i n F i g . 4 f o r comparison w i t h t h a t ob ta ined by the w r i t e r . The e f f i c i e n c y o f the t an ta lumrp la t inum c e l l i s c l e a r l y shown to be much g rea t e r than t h a t o f A s s a l y 1 s over most o f the a c i d range . The g rea t drop i n e f f i c i e n c y a t the h i g h a c i d c o n c e n t r a t i o n i s p robab ly due t o the t an ta lum d i s s o l v i n g i n the s u l f u r i c a c i d . Other exper imenters have shown evidence o f th ree hydra t e s o f s u l f u r i c a c i d by f r e e z i n g methods. P i c k e r i n g ob t a ined the hydra te H a S O ^ ^ O ; Giron^found the hydra te HgSO^SHaO; and Donk ob ta ined c r y s t a l l i n e s u l f u r i c a c i d monohydrate H f e S O v R^O. The f r e e z i n g p o i n t c h a r t o f s u l f u r i c a c i d hydra tes i s shown i n F i g . 5 . B , D and G are the eryohydrate p o i n t s and C , E and H are the m e l t i n g p o i n t s o f the hydra t e s R \ S 0 4 . 45^0, Hj,S0 + . 2 H t 0 and R\S0,_- H x 0 r e s p e c t i v e l y . From B to C , D to E 10 o 10 20 3o J O to 70 8° 9o Fig.5 21 and G to H these r e s p e c t i v e hydra tes s o l i d i f y o u t . The ex i s t ence o f H^SO^- 20H t 0 i s no t i n d i c a t e d i n the graph bu t would p robab ly be de tec t ed between A and B on c l o s e r examina t ion . Measurements were made o f emf w i t h t ime f o r s e v e r a l concen t r a t i ons o f a c i d . , The measurements f o r th ree concen-t r a t i o n s are g i v e n i n Table I I I . The f i r s t column g i v e s the t i m e , the second, t h i r d and f o u r t h g i v e the emf measured w i t h 0 .98 N , 27.2 N a i d 35.5 N a c i d r e s p e c t i v e l y . T ime-vol tage curves f o r these a c i d concen t r a t i ons are shown i n F i g . 6. The i n i t i a l v o l t a g e i n a l l cases was v e r y h i g h , d ropp ing o f f to a cons tant va lue a f t e r about 24 h o u r s . A t the b e g i n n i n g an e q u i l i b r i u m - e x i s t e d between the tan ta lum meta l and the s u l f u r d i o x i d e i n s o l u t i o n bu t as t ime goes on an ox ide f i l m forms on the tan ta lum and an e q u i l i b r i u m i s se t up between the tan ta lum ox ide and the s u l f u r d i o x i d e i i i s o l u t i o n . The i n i t i a l drop i n v o l t a g e occu r s w h i l e the ox ide f i l m i s forming then the v o l t a g e g r a d u a l l y approaches a cons tant v a l u e . 22 TABLE III t E(0.98N) EC27.2N) E(35.6N) u r s mins . v o l t s v o l t s v o l t s 0 1.1000 1.0553 1.0240 15 1.0235 0.9352 0.8500 40 0.9500 0.8755 0.7150 1 00 0.9250 0.8503 • 0.6680 1 30 0.9100 0.8255 0.6320 2 00 0.8995 0.8110 0.6100 2 30 0.8900 0.7950 0.5920 3 00 0.8810 0.7825 0.5710 3 30 0.8770 0.7685 0.5530 4 00 0.8650 0.7552 0 .5270 5 00 0.8550 0.7490 0.4930 7 00 0.8500 0.7355 0.4730 1 0 00 0.8308 0.7185 0.4710 15 00 0.8270 0.6978 0.4680 20 00 0.8260 0.6750 . 0.4637 23 30 0.8250 0.6740 0.4635 25 30 0.8249 0.6738 0.4634 24 EFFECT OF THE RATE OF SULFUR DIOXIDE AND OXYGEN INTO THE CELL ON THE EMF I n the p resen t work a r a t e o f f l o w o f 60 bubbles pe r minute was used f o r bo th the s u l f u r d i o x i d e and oxygen. Al though t h i s method o f c o n t r o l was o n l y q u a l i t a t i v e i t served i t s purpose s ince o n l y v o l t a g e was b e i n g s t u d i e d and ho t r a t e s o f fo rmat ion o f a c i d . On i n c r e a s i n g the r a t e o f f l o w o f s u l f u r d i o x i d e i n t o the c e l l from 60 bubbles per minute to 120 bubbles per minute the v o l t a g e inc reased from 0.8000 to 0.8007 a f t e r s e v e r a l hou r s . T h i s va lue r e tu rned to 0.8002 on dec rea s ing the r a t e back to 60 bubbles per minu te . Decreas ing the r a t e to 30 bubbles per minute cu t the emf to 0.7991 which r e t u r n e d to 0.8001 on i n c r e a s i n g the r a t e to 60 bubbles per minute . On i n c r e a s i n g the r a t e o f f l o w o f oxygen i n t o the c e l l from 60 bubbles per minute to 120 bubbles per minute the v o l t a g e decreased from 0.8000 to 0 .7990. On dec rea s ing the r a t e to 60 bubbles per minute the emf went up to 0.7997 w h i l e s h u t t i n g o f f the oxygen c o m p l e t e l y , caused the emf to inc rease s l o w l y to 0 .8015. 25 CONCLUSION From the work o f T, C . A s s a l y and the w r i t e r i t has been shown t h a t the u t i l i z a t i o n o f the f ree energy o f s u l f u r d i o x i d e i n the form o f e l e c t r i c a l energy has c o n s i d e r -ab le p o s s i b i l i t i e s . The present work has been concent ra ted e n t i r e l y on the v o l t a g e developed i n a s u l f u r d i o x i d e - o x y g e n c e l l but i n fu tu re the r a t e o f fo rmat ion o f s u l f u r i c a c i d i n such a c e l l should be s t u d i e d . I f t h i s r a t e c o u l d be made app rec i ab l e then t h i s c e l l would have d e f i n i t e p o s s i b i l i t i e s f o r the p r o d u c t i o n o f s u l f u r i c a c i d and e l e c t r i c a l energy on a commercial s c a l e . 26 REFERENCES.. 1. Chem. and Met . E n g . , 15,677 (1916) . 2 . Chem. and Met . E n g . , 18,178 (1918) . 3 . T . C . A s s a l y , The Behaviour o f S u l f u r D i o x i d e , Oxygen, S u l f u r i c A c i d and Water i n an E l e c t r o l y t i c C e l l . 4 . Trans . Am. E lec t rochem. S o c . , 56,201 (1929. 5 . Lewis and R a n d a l l , Thermodynamics, 554 (1923) . 6. P e r r y , Handbook o f Chem. Eng . E d . I I , ' 5 6 3 (1941) . 7 . P e r r y , Handbook o f Chem. Eng . E d . I I , 553, (1941) . 8 . Z . P h y s i k . Chem., 68,693 (1910) . 9 . J . A . C h . S . , 47,945 (1925) . 10 . J . A . C h . S . , 36,804 (1914) . 1 1 . J . A . C h . S . , 40,393 (1918) . 1 2 . F i n d l a y , P r a c t i c a l P h y s i c a l Chemis t ry , 152 (1923) . 13 . Chem. News, 60 ( 6 8 ) . 14 . B u l l . Soc . C h i m . , 1913, 13,1049. 1 5 . Chem. Weekblad, 10 ,956 , A b s t . Am. Chem. S o c . , 1 9 1 4 , 2 , 1 9 2 6 . 27 BIBLIOGRAPHY. 1. Abegg 1 s Handbuch der Anorganischen Chemie, I V , (1927) , 2 . Adam, N . K . , P h y s i c s and Chemis t ry o f Su r f ace s , 3 . C r e i g h t o n and K o c h l e r , E l e c t r o c h e m i s t r y , E d . I I , V o l . 1 1 ( A p p l i c a t i o n s ) . 4 . F r e n c h , S. J . , and Kah lenbe rg , L . , Trans , o f Am. E l e c t r o -chem. Soc . ,54 ,163-199 (1928) . 5 . Getman and D a n i e l s , O u t l i n e s o f P h y s i c a l Chemis t ry , E d . V I I . 6 . G l a s s t o n e , P h y s i c a l Chemis t ry . 7 . Gregg, S. J . , A d s o r p t i o n o f Gases by S o l i d s . 8. J o n e s , H . C , Hydra tes i n Aqueous S o l u t i o n . 9 . Kreuger , A . C , and Kah lenberg , L . , T rans . Am. E l e c t r o -chem. S o c , 58,107-152 (1930) . 10 . L a t i m e r , O x i d a t i o n P o t e n t i a l s . 1 1 . L e w i s and R a n d a l l , Thermodynamics and the Free Energy o f Chemica l Substances . 12 . M c B a i n , S. W. , S o r p t i o n o f Gases . 1 3 . P e r r y , Handbook o f Chemica l E n g i n e e r i n g , E d . I I . 14 . Wyld . W. , S u l f u r i c A c i d and S u l f u r D i o x i d e . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0062164/manifest

Comment

Related Items