Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The determination of the crystal structures of diferrocenyl ketone, anti-8-tricycle [3,2,1,O2,4] octyl… Macdonald, Alaistair Cumming 1966

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1966_A1 M2.pdf [ 9.28MB ]
Metadata
JSON: 831-1.0062125.json
JSON-LD: 831-1.0062125-ld.json
RDF/XML (Pretty): 831-1.0062125-rdf.xml
RDF/JSON: 831-1.0062125-rdf.json
Turtle: 831-1.0062125-turtle.txt
N-Triples: 831-1.0062125-rdf-ntriples.txt
Original Record: 831-1.0062125-source.json
Full Text
831-1.0062125-fulltext.txt
Citation
831-1.0062125.ris

Full Text

THE DETERMINATION OF THE CRYSTAL STRUCTURES OF DIFERROCENYL KETONE, ANTI-8-TRICYCLO[3,2,1,0 ' ]OCTYL 2  p-BROMOBENZENESULPHONATE,  4  ANTI-7-NORBORNENYL  p-BROMOBENZOATE  AND OCHOTENSINE METHIODIDE by ALAISTAIR CUMMING MACDONALD B.Sc. M.Sc,  (Hons.), The U n i v e r s i t y o f Glasgow (1962) The U n i v e r s i t y of B r i t i s h Columbia (1964)  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n t h e Department of Chemistry  We accept t h i s t h e s i s as conforming t o t h e required standard  THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1966  In presenting this thesis  in p a r t i a l  fulfilment of the  requirements for an advanced degree at the University of B r i t i s h Columbia,  I agree that the Library shall make it freely available  for reference  and study.  I further agree that permission for ex-  tensive copying of this thesis  for scholarly purposes may be granted  by the Head of my Department or by his representatives. understood that copying or publication of this thesis  It  is  for finan-  c i a l gain shall not be allowed without my written permission.  Department of The University of B r i t i s h Columbia Vancouver 8, Canada Date  If)  y/Jl^u  1961  The U n i v e r s i t y  of B r i t i s h  Columbia  FACULTY OF GRADUATE STUDIES  PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE  DEGREE OF  DOCTOR OF PHILOSOPHY  of  ALAISTAIR CUMMING MACDONALD B.Sc, c.,  The U n i v e r s i t y  The U n i v e r s i t y  of Glasgow, 1962  of B r i t i s h Columbia, 1964  TUESDAY, MAY 10th, 1966, AT 10:30.A.M. IN ROOM 261, CHEMISTRY BUILDING  COMMITTEE IN CHARGE Chairman:  M. Darrach  A. Bree J . A. Lund C. A. McDowell  R. E. Pincock R. C. Thompson J. Trotter  E x t e r n a l Examiner: L. H. Jensen U n i v e r s i t y of Washington Research S u p e r v i s o r :  J . Trotter  CRYSTAL STRUCTURE ANALYSIS BY X-Ray DIFFRACTION METHODS ABSTRACT The c r y s t a l s t r u c t u r e of d i f e r r o c e n y l ketone has been analysed u s i n g F e ( K ) X - r a d i a t i o n . The molecule i s symmetrical about a 2 - f o l d a x i s p a s s i n g through the c a r bonyl bond. Coordinates of the i r o n atom were determined from two P a t t e r s o n - H a r k e r s e c t i o n s and c o o r d i n a t e s of the remaining atoms were d e r i v e d from subsequent t h r e e dimens i o n a l F o u r i e r summations. S t r u c t u r e refinement was c a r r i e d out u s i n g ( b l o c k - d i a g o n a l ) least, squares w i t h allowances f o r a n i s o t r o p i c temperature- v i b r a t i o n . The R v a l u e d e r i v e d from t h e f i n a l c o o r d i n a t e s i s 0.09. The c y c l o p e n t a d i e n y l r i n g s not bonded to the keto group are v i b r a t i n g more than those which a r e ; when t h i s i s taken i n t o account the i r o n atom l i e s midway between the c y c l o p e n t a d i e n y l r i n g s which are p l a n a r and 3„30 R a p a r t . The carbon bond l e n g t h s i n these r i n g s are a l l the same l e n g t h (1.45 8) and the conformation of one r i n g w i t h r e s p e c t t o the other i s . almost' e c l i p s e d , The i n t e r m o l e c u l a r c o n t a c t s are a l l of normal l e n g t h K  i r  2'  The m o l e c u l a r dimensions of a n . t i - 8 - t r i c y c l o |3,2,1,0 o c t y l p-bromobenzenesulphonate and a n t i - 7 - n o r b o r n e n y l pbromobenzoate have been measured to a s s i s t i n the i n t e r p r e t a t i o n of the s o l v o l y t i c r e a c t i v i t y i n norbornane d e r i v a t i v e s . Data were c o l l e c t e d (Cu(K ) r a d i a t i o n ) by counter methods i n both c a s e s ; the s t r u c t u r e s were d e t e r mined u s i n g the heavy atom-Patterson method and r e f i n e ments were c a r r i e d out u s i n g d i f f e r e n t i a l syntheses and ( b l o c k - d i a g o n a l ) l e a s t squares. The d i s c r e p a n c y f a c t o r s d e r i v e d from the f i n a l c o o r d i n a t e s are 0.09 and 0.18 r e s p e c t i v e l y . The norbornane and' norbornene s k e l e t o n s have symmetry m and the bond Lengths are normal. The bond angles at the methylene b r i d g e are 97°and 96°respectively, the other angles are a l l l e s s than the t e t r a h e d r a l a n g l e . The angles between the planes formed by d i f f e r e n t p a r t s of the s k e l e t o n are i d e n t i c a l i n both c a s e s . Bond l e n g t h s and angles, i n the remainders of both molecules, a r e of normal dimensions. The c o n f i g u r a t i o n of the c y c l o p r o p y l methylene group i n a n t i - 8 - t r i c y c l o [3,2,1,0^>^loctyl pbromobenzenesulphonate i s exo to the norbornane s k e l e t o n . The r e s u l t s i n d i c a t e that t h e r e i s i n s u f f i c i e n t v a r i a t i o n i n the methylene b r i d g e bond angles to account f o r the d i f f e r e n c e i n s o l v o l y t i c r e a c t i v i t y . c<  The c r y s t a l and m o l e c u l a r s t r u c t u r e of ochotensine methiodide has been i n v e s t i g a t e d i n order to determine the chemical s t r u c t u r e of the m o l e c u l e . The data were r e c o r ded p h o t o g r a p h i c a l l y u s i n g Cu.(K ) r a d i a t i o n and a Weissenberg e q u i - i n c l i n a t i o n camera; e s t i m a t i o n of the i n t e n s i t i e s was c a r r i e d out. by v i s u a l methods and i n t e r f i l m s c a l e s were d e r i v e d from c o r r e s p o n d i n g symmetry r e l a t e d s t r u c t u r e amplitudes. 845 independent r e f l e c t i o n s were measured i n t h i s way. The p o s i t i o n of the i o d i n e atom was determined from a t h r e e d i m e n s i o n a l P a t t e r s o n f u n c t i o n and the p o s i t i o n s of the remaining atoms from t h r e e subsequent t h r e e - d i m e n s i o n a l F o u r i e r maps. Refinement of the temperature and atomic parameters was c a r r i e d out by (block d i a g o n a l ) l e a s t squares; the f i n a l R v a l u e was 0.11. The a n a l y s i s has shown t h a t the s t r u c t u r e of ochotensine i s s i m i l a r to that p o s t u l a t e d f o r ochotens mine and the p o s i t i o n of the p h e n o l i c group on ring- A has been determined. '• A d i f f e r e n c e s y n t h e s i s was c a r r i e d out to v e r i f y the p o s i t i o n s of the atoms. The bond l e n g t h s and angles are normal but s e v e r a l s h o r t i n t e r m o l e c u l a r c o n t a c t s were observed. The planes of the two benzene r i n g s are i n c l i n e d at an angle of 94°. K  GRADUATE STUDIES Field  of Study:  Topics  Chemistry  i n Inorganic  . Crystal  Linear  Solid  N. B a r t l e t t H. C. C l a r k W. R. C u l l e n S.. A. Melzak J. Trotter  Structures  Chemistry of the Related  Chemistry  State  L. G.  Harrison  Studies: Algebra  W.  H.  Simons  PUBLICATIONS A.C.  Macdonald and J . T r o t t e r , "The C r y s t a l and Molecul a r S t r u c t u r e of B i f e r r o c e n y l " , A c t a C r y s t . , _17_, 872 (1964).  A.C.  Macdonald and J . T r o t t e r , "The C r y s t a l and Molecul a r S t r u c t u r e of a n t i - 8 - T r i c y c l o [3,2,1,0 >4] o c t y l p-bromobenzenesulphonate", A c t a C r y s t . , _18, 243 (1965). 2  A.C.  Macdonald and J . T r o t t e r , "The C r y s t a l and Molecul a r S t r u c t u r e of a n t i 7- Norbornenyl p-bromobenzoate", A c t a C r y s t . , 19_ 456~(1965)  S. McLean, M.-S. L i n , A.C. Macdonald and J . T r o t t e r , "The S t r u c t u r e of Ochotensine and Ochotensimine", T e t r a h e d r o n L e t t e r s , p. 185 (1966). A.C.  Macdonald and J . T r o t t e r , " C r y s t a l data f o r monobenzoylosmocene", A c t a C r y s t . , 1_9, 1046 (1965).  A.C.  Macdonald, and J . T r o t t e r , " C r y s t a l l o g r a p h i c data f o r ochotensimine methiodide", A c t a C r y s t . , i n p r e s s .  A.C.  Macdonald and J . T r o t t e r , "The S t r u c t u r e r o c e n y l : Ketone" , A c t a C r y s t . , i n p r e s s .  of D i f e r -  A.C.  Macdonald and J . T r o t t e r , "The S t r u c t u r e of Ochotensine: X-ray A n a l y s i s of Ochotensine M e t h i o d i d e " , submitted f o r p u b l i c a t i o n i n J . Chem. Soc.  ABSTRACT SUPERVISOR: The  P r o f e s s o r JAMES TROTTER  c r y s t a l s t r u c t u r e of d i f e r r o c e n y l ketone has  analysed using Fe(K ) X-radiation . :  a  The  been  m o l e c u l e i s symmetri-  c a l about a 2 - f o l d a x i s p a s s i n g through the c a r b o n y l bond. Coordinates  of the i r o n atom were determined from two  Harker s e c t i o n s and c o o r d i n a t e s of the r e m a i n i n g d e r i v e d from subsequent t h r e e d i m e n s i o n a l S t r u c t u r e refinement  was  vibration. is  0.09.  (block-diagonal)  f o r a n i s o t r o p i c temperature  The R v a l u e d e r i v e d from the f i n a l The  atoms were  F o u r i e r summations.  c a r r i e d out u s i n g  l e a s t squares w i t h allowances  Patterson-  coordinates  c y c l o p e n t a d i e n y l r i n g s not bonded t o the  keto  group are v i b r a t i n g more than those which a r e ; when t h i s i s taken  i n t o account the i r o n atom l i e s midway between the c y c l o -  p e n t a d i e n y l r i n g s which are p l a n a r and 3.30  8 apart.  The  carbon  carbon bond l e n g t h s i n these r i n g s are a l l the same l e n g t h (1.45 A*) and the c o n f o r m a t i o n o t h e r i s almost e c l i p s e d .  The  of one r i n g w i t h r e s p e c t t o the i n t e r m o l e c u l a r c o n t a c t s are a l l  of normal l e n g t h . r The  molecular  2 4i  dimensions of a n t i - 8 - t r i c y c l o L 3 , 2 , 1 , 0 ' J  o c t y l p-bromobenzenesulphonate and a n t i - 7 - n o r b o r n e n y 1  p-bromo-  benzoate have been measured t o a s s i s t i n the i n t e r p r e t a t i o n of the s o l v o l y t i c r e a c t i v i t y i n norbornane d e r i v a t i v e s . collected  Data were  (Cu(K ) r a d i a t i o n ) by counter methods i n both ffl  cases;  the s t r u c t u r e s were determined u s i n g the heavy a t o m - P a t t e r s o n method and r e f i n e m e n t s s y n t h e s e s and  were c a r r i e d out u s i n g  ( b l o c k - d i a g o n a l ) l e a s t squares.  differential The  f a c t o r s d e r i v e d from the f i n a l c o o r d i n a t e s are 0.09  discrepancy and  0.18  iii respectively.  The norbornane and norbornene s k e l e t o n s have  symmetry m and the bond l e n g t h s are normal. at  the methylene b r i d g e are 97° and  The bond angles  96° r e s p e c t i v e l y , the o t h e r  a n g l e s are a l l l e s s than the t e t r a h e d r a l a n g l e . between the  angles  planes formed by d i f f e r e n t p a r t s of the s k e l e t o n  are i d e n t i c a l i n both cases. remainders  The  Bond l e n g t h s and angles i n the  of both molecules are of normal dimensions.  c o n f i g u r a t i o n of the c y c l o p r o p y l methylene group 2 4 tricyclo[3,2,1,0 ' ]octyl the norbornane s k e l e t o n .  The  in anti-8-  p-bromobenzenesulphonate i s ' exo t o The r e s u l t s i n d i c a t e t h a t t h e r e i s  i n s u f f i c i e n t v a r i a t i o n i n the methylene b r i d g e bond a n g l e s t o account  f o r the d i f f e r e n c e i n s o l v o l y t i c  reactivity.  The c r y s t a l and m o l e c u l a r s t r u c t u r e of o c h o t e n s i n e methi o d i d e has been i n v e s t i g a t e d i n o r d e r t o determine s t r u c t u r e of the m o l e c u l e .  The data were r e c o r d e d  the c h e m i c a l photograph-  i c a l l y u s i n g C u ( K ) r a d i a t i o n and a Weissenberg e q u i - i n c l i n a t i o n a  camera; e s t i m a t i o n of the i n t e n s i t i e s was  c a r r i e d out by  methods and i n t e r f i l m s c a l e s were d e r i v e d from symmetry r e l a t e d s t r u c t u r e a m p l i t u d e s . t i o n s were measured i n t h i s way. atom was  determined  The  visual  corresponding  845 independent  reflec-  p o s i t i o n of the i o d i n e  from a t h r e e d i m e n s i o n a l P a t t e r s o n f u n c t i o n  and the p o s i t i o n s of the r e m a i n i n g atoms from t h r e e subsequent t h r e e - d i m e n s i o n a l F o u r i e r maps. and atomic parameters  was  Refinement of the  c a r r i e d out by  s q u a r e s ; the f i n a l R v a l u e was  0.11.  temperature  (block diagonal) least  The a n a l y s i s has shown t h a t  the s t r u c t u r e of o c h o t e n s i n e i s s i m i l a r t o t h a t p o s t u l a t e d f o r ochotensimine  and the p o s i t i o n of the p h e n o l i c group on r i n g A  iv has been determined.  A d i f f e r e n c e s y n t h e s i s was c a r r i e d out  t o v e r i f y the p o s i t i o n s of the atoms.  The bond l e n g t h s  a n g l e s are normal but s e v e r a l s h o r t i n t e r m o l e c u l a r were observed.  and  contacts  The p l a n e s of the two benzene r i n g s a r e i n c l i n e d  at an angle of 94°.  V  TABLE OF CONTENTS PAGE TITLE PAGE  i  ABSTRACT TABLE  i i  OF CONTENTS  v  LIST OF TABLES  v i i  LIST OF FIGURES  ix  ACKNOWLEDGMENTS  xi  INTRODUCTION CHAPTER I .  ; . .  1  THEORY AND METHOD IN X-RAY CRYSTALLOGRAPHY  ELEMENTARY CRYSTALLOGRAPHY - A H i s t o r i c a l Approach..  3  DIFFRACTION FROM A CRYSTAL LATTICE; Laue and Bragg Equations  5  DETERMINATION OF THE UNIT CELL AND SPACE GROUP  8  MEASUREMENT OF INTENSITIES AND STRUCTURE FACTORS ...  13  DIFFRACTION BY A CRYSTAL  15  MEASUREMENT OF THE OBSERVED STRUCTURE AMPLITUDES ...  16  FOURIER REPRESENTATION OF THE ELECTRON DENSITY DISTRIBUTION IN THE UNIT CELL  18  STRUCTURE DETERMINATION  20  REFINEMENT  25  ACCURACY  29  CHAPTER I I . THE CRYSTAL AND MOLECULAR STRUCTURES OF BENZOYL OSMOCENE AND DIFERROCENYL KETONE INTRODUCTION  31  EXPERIMENTAL  34  vi PAGE STRUCTURE ANALYSIS OF DIFERROCENYL KETONE  ,  39  COORDINATES AND MOLECULAR DIMENSIONS  42  DISCUSSION  47  CHAPTER I I I .  THE STRUCTURES OF ANTI-8-TRICYCLO  [3,2,1,0 > ]OCTYL p-BROMOBENZENESULPHONATE AND ANTI-72  4  NORBORNENYL p-BROMOBENZOATE INTRODUCTION EXPERIMENTAL  51 .  54  STRUCTURE ANALYSIS OF ANTI-8-TRICYCLO[3,2,1,0 ' ] 2  4  OCTYL p-BROMOBENZENESULPHONATE  57  ATOMIC PARAMETERS AND MOLECULAR DIMENSIONS ........  59  STRUCTURE ANALYSIS OF ANTI-7-NORBORNENYL p-BROMOBENZOATE  67  ATOMIC PARAMETERS AND MOLECULAR DIMENSIONS  68  DISCUSSION  75  CHAPTER IV. THE CRYSTAL AND MOLECULAR STRUCTURE OF OCHOTENSINE INTRODUCTION  , .  ......  78  EXPERIMENTAL . . . . .  80  STRUCTURE ANALYS IS  83  COORDINATES AND MOLECULAR DIMENSIONS  87  DISCUSSION APPENDIX I : LIST OF BOND LENGTHS APPENDIX I I ; BIBLIOGRAPHY  STRUCTURE FACTOR TABLES  . . . . .. .  94 96 97 106  vii LIST OF TABLES TABLE  PAGE CHAPTER I  I  THE SEVEN CRYSTAL SYSTEMS AND THE FOURTEEN BRAVAIS LATTICES  4  CHAPTER I I II  CRYSTAL DATA FOR BENZOYL OSMOCENE, DIFERROCENYL KETONE AND FERROCENYL RUTHENOCENYL KETONE  III  35  FINAL POSITIONAL AND THERMAL PARAMETERS AND STANDARD DEVIATIONS AND ATOMIC DEVIATIONS FROM THE PLANES  42  IV  BOND LENGTHS AND ANGLES  43  V  SHORTER INTERMOLECULAR DISTANCES . .  VI  MOLECULAR DIMENSIONS OF BIFERROCENYL AND DIFERRO-  44  CENYL KETONE  47  CHAPTER I I I VII  CRYSTAL DATA FOR ANTI-8-TRICYCLO[3,2,1,0 ' ]OCTYL 2  4  p-BROMOBENZENESULPHONATE AND ANT1-7-NORBORNENYL i  p-BROMOBENZOATE VIII  55  COORDINATES AND TEMPERATURE FACTORS FROM THE FINAL LEAST SQUARES CYCLE OF REFINEMENT OF ANTI-8-TRICYCLO[3,2,1,O ' ]OCTYL p-BROMOBENZENESULPHONATE .. 61 2  4  IX  BOND  DISTANCES AND VALENCY ANGLES  X  MEAN PLANES AND DEVIATIONS OF THE ATOMS FROM THESE PLANES IN THE TRICYCLO-OCTANE NUCLEUS  XI  INTERMOLECULAR DISTANCES LESS THAN 4.0 X  XII  FINAL POSITIONAL AND THERMAL PARAMETERS OF ANTI7-NORBORNENYL p-BROMOBENZOATE  63  64, 65  69  viii TABLE  PAGE  XIII  BOND LENGTHS AND ANGLES  . . . . .  XIV  MEAN PLANES AND DEVIATIONS OF THE ATOMS FROM THESE  70  PLANES IN THE NORBORNENE NUCLEUS  72  XV  INTERMOLECULAR CONTACTS LESS THAN 3.8 8  73  XVI  BOND LENGTHS AND INTERPLANAR ANGLES IN THE TRICYCLO-OCTANE AND NORBORNENE NUCLEI  75  CHAPTER IV XVII  FINAL OCHOTENSINE METHIODIDE POSITIONAL AND THERMAL PARAMETERS .  89  XVIII  BOND LENGTHS AND VALENCY ANGLES  91  XIX  EQUATIONS OF THE TWO AROMATIC RING PLANES AND THE DEVIATIONS OF THE ATOMS FROM THESE PLANES  XX  92  TABLE OF INTERMOLECULAR CONTACTS LESS THAN 3.7 A .. 93 APPENDIX I  XXI  FREQUENTLY DETERMINED BOND LENGTHS RELEVANT TO THIS THESIS . . .  96  APPENDIX I I XXII  DIFERROCENYL KETONE; MEASURED AND CALCULATED STRUCTURE FACTORS  XXIII  97  ANTI-8-TRICYCLO[3,2,1,0 ' ]OCTYL p-BROMOBENZENE2  4  SULPHONATE; MEASURED AND CALCULATED STRUCTURE FACTORS XXIV  ANTI-7-NORBORNENYL p-BROMOBENZOATE; MEASURED AND CALCULATED STRUCTURE FACTORS  XXV  98  101  OCHOTENSINE METHIODIDE; MEASURED AND CALCULATED STRUCTURE FACTORS  105  ix LIST OF FIGURES FIGURE  PAGE CHAPTER I  1  (a)  (b)  Laue (dashed and s o l i d l i n e s ) and Bragg (dashed and d o t t e d l i n e s ) D i f f r a c t i o n  6  D i f f r a c t i o n i n R e c i p r o c a l Space  6  CHAPTER I I 2  Superimposed S e c t i o n s of t h e T h i r d F o u r i e r r e v e a l i n g t h e l o c a t i o n of the m i s s i n g atoms t o g e t h e r w i t h a P e r s p e c t i v e Drawing of the Molecule  40  3  P r o j e c t i o n of t h e S t r u c t u r e a l o n g  4  P r o j e c t i o n of One Plane onto t h e Other down the L i n e j o i n i n g the Centres  [010]  45  of the Rings  i n H a l f the M o l e c u l e  49  CHAPTER I I I 5  D e r i v a t i v e s of Norbornane whose Rates of S o l v o l y s i s Vary  6  52  Superimposed S e c t i o n s of t h e E l e c t r o n D e n s i t y from t h e F i n a l Three Dimensional  F o u r i e r of  a n t i - 8 - T r i c y c l o [ 3 , 2 , 1 , 0 ' ] o c t y l p-Bromo2  4  benzenesulphonate t o g e t h e r w i t h a Numbered Diagram of the M o l e c u l e 7  P a c k i n g Diagram of the M o l e c u l e s b  „  60 Projected  along 66  X  FIGURE 8  PAGE Superimposed S e c t i o n s of the E l e c t r o n D e n s i t y p a r a l l e l t o (100) and a Numbered Diagram o f a n t i - 7 - N o r b o r n e n y l p-Bromobenzoate  9  P r o j e c t i o n of t h e M o l e c u l a r P a c k i n g i n t h e U n i t C e l l a l o n g [100]  10  71  Bond Angles  74  i n t h e T r i c y c l o - o c t a n e and Norborn-  ene N u c l e i  76  CHAPTER IV 11  Ochotensine  ( I ) and Ochotensimine ( I I )  12  P e r s p e c t i v e Drawing of Ochotensine  Methiodide  i l l u s t r a t i n g t h e Numbering System used ...... 13  Superimposed S e c t i o n s of t h e  79  85  Three-Dimensional  E l e c t r o n D e n s i t y from t h e f i n a l F o u r i e r of Ochotensine 14  Methiodide.  86  P r o j e c t i o n of t h e S t r u c t u r e a l o n g [ 0 1 0 ] i l l u s t r a t i n g t h e P a c k i n g of t h e M o l e c u l e s i n the Unit C e l l  88  xi ACKNOWLEDGMENTS I w i s h t o e x p r e s s my g r a t e f u l thanks t o P r o f e s s o r James T r o t t e r f o r the guidance and encouragement which he has g i v e n me  i n a l l s t a g e s of t h i s work. I am i n d e b t e d t o M. D. Rausch f o r the sample of d i f e r r o -  c e n y l ketone; t o Dr. R. E. P i n c o c k and Mrs. J. I. W e l l s f o r the samples of ant i - 8 - t r i c y c l o f 3 , 2 , 1, 0•» ^] o c t y l p-bromobenzene2  s u l p h o n a t e and a n t i - 7 - n o r b o r n e n y l p-bromobenzoate and f o r h e l p f u l d i s c u s s i o n , and t o M. S. L i n and Dr. S. McLean f o r the samples of o c h o t e n s i n e and o c h o t e n s i m i n e  methiodides.  I would l i k e t o thank Drs. F. R. Ahmed and G. A. Mair for of  the use of t h e i r I.B.M. 1620 programs and a l s o the s t a f f the U.B.C. Computing Centre f o r a s s i s t a n c e i n u s i n g them. I would a l s o l i k e t o thank Dr. F. E i n s t e i n f o r h i s h e l p  in discussing this  thesis.  My g r a t e f u l thanks are due t o the S c i e n c e Research C o u n c i l of  the U n i t e d Kingdom f o r f i n a n c i a l s u p p o r t i n the form of a  NATO S c h o l a r s h i p .  1 INTRODUCTION T h i s t h e s i s d e a l s p r i n c i p a l l y w i t h t h e e l u c i d a t i o n by X-ray d i f f r a c t i o n of t h e s t r u c t u r e s of f o u r compounds i n t h e i r c r y s t a l l i n e state.  The reasons f o r u n d e r t a k i n g each s t r u c t u r e  a n a l y s i s a r e d i f f e r e n t and so t h e t h e s i s i s l a y e d out i n f o u r chapters.  In each c h a p t e r t h e aim of t h e r e s e a r c h i s s t a t e d  i n t h e i n t r o d u c t i o n and t h e c o n c l u s i o n s drawn from t h e e x p e r i mental f i n d i n g s a r e d i s c u s s e d a t t h e end.  Appendix I c o n t a i n s  a r e f e r e n c e l i s t of bond l e n g t h s and appendix I I c o n s i s t s of the e x p e r i m e n t a l data  (expressed  i n a convenient  form) from  which t h e c o n c l u s i o n s were d e r i v e d . Chapter I d e a l s w i t h elementary designed  c r y s t a l l o g r a p h y and i s  t o g i v e t h e r e a d e r s u f f i c i e n t knowledge of X-ray  c r y s t a l l o g r a p h y t o c o n t i n u e w i t h the s u c c e e d i n g  chapters; i n  i t a l l of t h e terms which a r e used i n t h e l a t e r c h a p t e r s a r e d e f i n e d and e x p l a i n e d .  As t h e s t r u c t u r e s were s o l v e d  the heavy atom method of  using  phase angle d e t e r m i n a t i o n and t h e  l e a s t s q u a r e s method of r e f i n e m e n t  o n l y s h o r t r e v i e w s of some  of t h e o t h e r methods used a r e i n c l u d e d . The  c r y s t a l s t r u c t u r e a n a l y s i s of d i f e r r o c e n y l ketone i s  described i n chapter  I I and an i n t e r e s t i n g comparison of t h e  r e s u l t s i s drawn w i t h those of t h e s t r u c t u r e of b i f e r r o c e n y l . In c h a p t e r  I I I t h e s t r u c t u r e s of two s i m i l a r o r g a n i c com-  pounds , a n t i - 8 - t r i c y c l o [ 3 , 2 , 1 , 0 > ] o c t y l p-bromobenzenesulphonate 2  4  and a n t i - 7 - n o r b o r n e n y l p-bromobenzoate, a r e d e s c r i b e d and a t t e n t i o n i s drawn t o t h e s i m i l a r i t i e s i n c e r t a i n s t r u c t u r a l f e a t u r e s ,  2 namely the bond a n g l e s , which have been used t o e x p l a i n the d i f f e r e n c e i n the r a t e s of s o l v o l y s i s of these compounds. Ochotensine and o c h o t e n s i m i n e are two a l k a l o i d s which can be i s o l a t e d from c o r y d a l i s o c h o t e n s i s .  In c h a p t e r IV the  c r y s t a l s t r u c t u r e s of the m e t h i o d i d e s of t h e s e compounds described.  are  CHAPTER I  THEORY AND METHOD IN X-RAY CRYSTALLOGRAPHY  3 ELEMENTARY CRYSTALLOGRAPHY - A H i s t o r i c a l Approach The unique p r o p e r t i e s of c r y s t a l s have always f a s c i n a t e d mankind  and have been t h e s u b j e c t of o r g a n i s e d  the b e g i n n i n g of the s e v e n t e e n t h  century.  study s i n c e  The e a r l y  l o g r a p h e r s were q u i c k t o r e a l i s e t h a t t h e constancy  crystalof c e r t a i n  f a c e t s of outward appearance a r e due t o t h e r e g u l a r i t y i n shape and s i z e of the p a r t i c l e s of which t h e c r y s t a l s a r e composed. Thus i n 1669 Steno p u b l i s h e d t h e law of constancy  of angles  i n q u a r t z and t h i s was soon extended t o i n c l u d e o t h e r l i n e m a t e r i a l s ; o t h e r workers n o t i c e d t h e constancy  crystal-  i n cleavage  d i r e c t i o n s and i n 1784 Hauy d i s c o v e r e d t h e law of r a t i o n a l indices  (1).  T h i s law i s one of the f o u n d a t i o n s of c r y s t a l -  l o g r a p h y and s t a t e s t h a t i f a n a t u r a l f a c e o f a c r y s t a l c u t s a s e t o f r e f e r e n c e axes a, and c/Z  r e s p e c t i v e l y then t h e r a t i o s of t h e t h r e e v a l u e s h, k  and I a r e s m a l l i n t e g e r s . i n d i c e s of t h e f a c e . proof  b and c a t t h e i n t e r v a l s a/h, b/k  (hk£) a r e s a i d t o be t h e M i l l e r  I t can be shown by a s i m p l e  (1) t h a t a d i r e c t r e s u l t  geometric  of t h i s law i s t h a t a c r y s t a l  can o n l y have r o t a t i o n axes 1, 2, 3, 4, o r 6 and r o t a r y i n v e r s i o n axes 1, 2, 3, 4 and 6.  In 1830 H e s s e l showed t h a t these  symmetry o p e r a t i o n s can be combined t o g e t h e r t o form o n l y 32 s e l f c o n s i s t e n t s e t s c a l l e d t h e 32 p o i n t In a c r y s t a l  the molecules  groups.  a r e packed t o g e t h e r i n an  o r d e r e d , r e g u l a r f a s h i o n and t h e s m a l l e s t volume, which i s repeated, a p a r a l l e l o p i p e d , i s c a l l e d  the u n i t c e l l .  In order  t o d e s c r i b e t h i s l a t t i c e c r y s t a l l o g r a p h e r s use a s e t of r e f e r ence axes a, b, and c c o r r e s p o n d i n g t o t h e edges of the u n i t  4  c e l l and c l a s s i f y the l a t t i c e  a c c o r d i n g t o one of t h e seven  c r y s t a l systems shown i n Table  I below.  The angles between  a and b, b and c, and a. and c a r e c a l l e d Y , ct and 0 r e s p e c t i v e l y . If one c o n s i d e r s a l l t h e p o s s i b l e ways o f i n t r o d u c i n g t h e symmetry elements a l r e a d y d i s c u s s e d i n t o these l a t t i c e s i t can be shown t h a t t h e o n l y p o s s i b i l i t i e s which can occur  without  r e d u c i n g t h e s i z e of t h e u n i t c e l l a r e p r i m i t i v e  (P), face  c e n t r e d (A, B o r C ) , a l l f a c e s c e n t r e d ( F ) , o r body c e n t r e d , ( i ) . B r a v a i s (1850) was t h e f i r s t t o deduce t h i s and showed t h a t o n l y 14 l a t t i c e s c o u l d e x i s t ; t h e i r d i s t r i b u t i o n throughout t h e seven c r y s t a l systems i s shown i n Table I. TABLE I. THE SEVEN CRYSTAL SYSTEMS AND THE FOURTEEN BRAVAIS LATTICES. SYSTEM  a  b  c  a  B  y  TRICLINIC  a  b  c  a  P  Y  MONOCLINIC  a  b  c  90°  P  90°  P, [AC]  ORTHORHOMBIC  a  b  c  90°  90°  90°  P, [ ABC]  TETRAGONAL  a  a  c  90°  90°  90°  P, I  TRIGONAL  a  a  c  90°  90°  120°  (or aaa, aaa )  P  :  BRAVAIS LATTICE P  HEXAGONAL  a  a  c  90°  90°  120°  P.  CUBIC  a  a  a  90°  90°  90°  P, F, I  If  the l a t t i c e i s c o n s i d e r e d t o be composed of i r r e g u l a r  shaped o b j e c t s r a t h e r than p o i n t s then f u r t h e r symmetry r e l a t i o n s can be d e r i v e d , e.g. t h e o b j e c t and i t s m i r r o r image a r e no l o n g e r  5 identical.  Thus i t i s p o s s i b l e t o t r a n s l a t e t h e u n i t c e l l  i d e n t i c a l c o i n c i d e n c e w i t h another  into  p a r t of the l a t t i c e by u s i n g  two f u r t h e r symmetry o p e r a t o r s , the screw a x i s and the g l i d e plane.  A screw a x i s , p , i n v o l v e s a r o t a t i o n of 2n/p q  together  w i t h a t r a n s l a t i o n of q/p i n the d i r e c t i o n of the a x i s .  A  g l i d e plane i s the o p e r a t i o n of a plane of symmetry combined w i t h a t r a n s l a t i o n , g e n e r a l l y of h a l f of the a x i a l l e n g t h , as i n d i c a t e d by the n o t a t i o n . The symmetry o p e r a t o r s , which so f a r have been d i s c u s s e d , t o g e t h e r d e s c r i b e 230 d i f f e r e n t groups i n the  mathematical  sense and these were c a l c u l a t e d by Federow, Barlow and Schoenf l i e s a t the end of the n i n e t e e n t h c e n t u r y b e f o r e the d i s c o v e r y of the n a t u r e of the c r y s t a l at the atomic 1912 u s i n g  l e v e l by Laue i n  X-rays.  DIFFRACTION FROM A CRYSTAL LATTICE; Laue and Bragg  Equations  In o r d e r t o c o n s i d e r the d i f f r a c t i o n of X-rays by a c r y s t a l l a t t i c e i t i s s i m p l e s t t o c o n s i d e r f i r s t the l a t t i c e i n one dimension.  For r e i n f o r c e m e n t  of the waves s c a t t e r e d  from a row of p e r i o d a the path d i f f e r e n c e between each wave must be a whole number of wavelengths.  Thus from F i g u r e 1(a)  (dashed l i n e s ) a(cos«Q - cos«) = n-|X . S i m i l a r l y f o r the o t h e r two l a t t i c e rows the Laue are : b(cos0o ~ cos(3) = n^X c(cosyQ - cosy) = 113A  equations  6  (b) Figure l . ( a ) (b)  Laue (dashed and s o l i d l i n e s ) and Bragg and d o t t e d l i n e s ) d i f f r a c t i o n , D i f f r a c t i o n i n R e c i p r o c a l Space.  (dashed  where the i n c i d e n t wave makes a n g l e s O Q , B Q , Y Q w i t h the l a t t i c e d i r e c t i o n s a, b, c and the d i f f r a c t e d wave the  a n g l e s , 8 and a  I f the i n c i d e n t and d i f f r a c t e d waves are c o n s i d e r e d t o be r e f l e c t e d by the planes of i n t e r p l a n a r s p a c i n g d^  (indicated  by the d o t t e d l i n e s ) a c c o r d i n g t o the Huygens P r i n c i p l e then from the diagram 26 = a -  a  and d-^ = a s i n a •+ a h e Laue 2 e q u a t i o n f o r d i f f r a c t i o n from a row i s a(cos«o - cosa) «• n ^ Q  0  T  hence 2a s i n a + O Q s i n a - aQ = n^X 2 2 thus by s u b s t i t u t i o n 2 d ^ s i n e = n-jX . T h i s i s known as the Bragg e q u a t i o n .  The use of the M i l l e r  i n d i c e s has been extended t o i n c l u d e p l a n e s such as (222) and the Bragg r e f l e c t i o n  from such a plane i s w r i t t e n 222.  The  i n t e r p l a n a r s p a c i n g between the (111) p l a n e s i s t w i c e t h a t of that  (222) p l a n e s . C r y s t a l l o g r a p h e r s f i n d the concept of a r e c i p r o c a l  lattice  (2) c o n v e n i e n t t o use i n d e s c r i b i n g d i f f r a c t i o n phenomena. T h i s "imaginary" l a t t i c e i s d e r i v e d from the "real l a t t i c e a c c o r d i n g t o the f o l l o w i n g c o n s t r u c t i o n :  the normals t o each plane  are produced through an o r i g i n chosen on the r e a l l a t t i c e  and  each p l a n e i s r e p r e s e n t e d by a p o i n t on the normal t o the plane at a d i s t a n c e from the o r i g i n which i s i n v e r s e l y p r o p o r t i o n a l t o the i n t e r p l a n a r s p a c i n g .  The c o n s t a n t of p r o -  p o r t i o n a l i t y u s u a l l y used i s X* the wavelength of the r a d i a t i o n used.  8  The  axes and i n t e r a x i a l a n g l e s of t h e r e c i p r o c a l u n i t  cell  are s t a r r e d t o a v o i d c o n f u s i o n w i t h those of t h e r e a l c e l l ; are r e l a t e d as shown below.  they  V i s t h e volume of t h e u n i t c e l l i n  r e a l space. a* = d  c  *  = d  X 100  =, Xbc s i n a , b* = d  * = 010  ac s i n 3 and v  * = ^ab s i n y . 00l v  DETERMINATION OF THE UNIT CELL AND SPACE GROUP In t h e d e s c r i p t i o n of t h e M i l l e r  indices  of a c r y s t a l  f a c e (hk£) i t was emphasised t h a t h, k and ^_ a r e i n g e n e r a l small  integers.  In p r a c t i c e i t i s o f t e n observed t h a t t h e  (100)  f a c e s a r e t h e b e s t developed.  Thus, u s i n g  these  faces,  the n e e d l e a x i s , o p t i c a l o r t r i a l and e r r o r methods, a s i n g l e c r y s t a l may be mounted h o r i z o n t a l l y t o r o t a t e about a prominent a x i s b say.  I f a f i l m i s p l a c e d i n a c y l i n d r i c a l camera which  i s mounted c o a x i a l l y w i t h t h e r o t a t i o n a x i s of t h e c r y s t a l and i f a beam of monochromatic X - r a d i a t i o n of wavelength X i s i n c i dent p e r p e n d i c u l a r t o t h i s a x i s then a photograph of t h e d i f f r a c t e d r a d i a t i o n w i l l show p a r a l l e l rows of l i n e s , each of which i s t h e l a y e r l i n e  (hk&) c o n t a i n i n g  from a l l t h e p l a n e s w i t h t h e same k index. for  line  t h e beams d i f f r a c t e d The Laue e q u a t i o n  t h i s case reduces t o b s i n ^ = kX where k = 0 a t t h e c e n t r a l  l i n e and i n c r e a s e s  u n i t a r i l y f o r each l i n e towards t h e edge of  the f i l m and \j/ i s t h e angle subtended by t h e c r y s t a l and t h e kth  l a y e r l i n e and i s d e r i v e d  the r a d i u s  from t h e i n t e r l i n e s p a c i n g s and  of t h e camera; thus t h e v a l u e of b can be determined.  9  Each l a y e r l i n e can be expanded on f i l m by f i r s t s c r e e n i n g o f f a l l the unwanted l a y e r l i n e s and c o u p l i n g the camera t o move h o r i z o n t a l l y as the c r y s t a l r o t a t e s .  T h i s i s known as the  Weissenberg method a f t e r i t s o r i g i n a t o r  and the r e s u l t a n t  p i c t u r e g i v e s the r e f l e c t i o n s h a v i n g the same k index i n f e s t o o n s of common h index which i n t e r s e c t those £' index.  The B a n g l e , 1/a*  and  the f i l m of the (ho*) r e f l e c t i o n s .  arrayed of common  1/c* may be measured from S i m i l a r l y , by mounting  the c r y s t a l about a second prominent a x i s the r e m a i n i n g dimensions may be found.  However the Buerger p r e c e s s i o n  camera can be used t o s u p p l y the i n f o r m a t i o n . instrument  cell  In t h i s  the f i l m moves over p a r t of the sphere of r e f l e c -  t i o n and so p r o v i d e s an u n d i s t o r t e d m a g n i f i e d p i c t u r e of the r e c i p r o c a l l a t t i c e from which the measurements of the angles may be taken d i r e c t l y .  Other i n s t r u m e n t s may be used and  some e x c e l l e n t books have been w r i t t e n on t h i s s u b j e c t ( 3 ) , ( / L ) _ • J .  In o r d e r t o o b t a i n the most a c c u r a t e c e l l  a combination  dimensions  of the "8 method" (5) of r e c o r d i n g the i n t e n s i -  t i e s and g r a p h i c a l e x t r a p o l a t i o n of those measurements at 26 >  160° t o the v a l u e a t 26 . 180° (3) can be used.  minimises ing.  taken This  most of the e r r o r s i n h e r e n t i n t h i s method of r e c o r d -  For o r g a n i c c r y s t a l s of low s c a t t e r i n g power a s u i t a b l e  c h o i c e of r a d i a t i o n and l o n g exposures angle r e f l e c t i o n s . 2 8 directly.  w i l l often r e v e a l high  Counter methods are o f t e n q u i c k e r and g i v e  They are f r e e from many of the e r r o r s i n f i l m  measurement and i n c o r p o r a t e the "8 method" i n s e t t i n g the c r y s t a l but o f t e n they are not s e n s i t i v e enough t o v e r y weak h i g h order  reflections.  10 The Bragg e q u a t i o n 2d s i n s = X s i n e = 1 of X = • 2d.  i m p l i e s a maximum v a l u e at  T h i s d e f i n e s the r a d i u s of a l i m i t i n g sphere  f o r the r a d i a t i o n used and a l l planes w i t h i n t h i s sphere can recorded.  Thus i n o r d e r t o i n c r e a s e the number of  be  observable  r e f l e c t i o n s r a d i a t i o n of a s h o r t e r wavelength must be used". In F i g u r e 1(b) AB i s the d i r e c t i o n of; the normal t o the w a v e f r o n t of the i n c i d e n t r a d i a t i o n , and 0 i s the c e n t r e of the reciprocal lattice.  For r e f l e c t i o n t o occur s i n e = X/2d  r e c i p r o c a l l a t t i c e p o i n t P l y i n g X/d from the o r i g i n .  for a  This i s  s a t i s f i e d f o r any p o i n t l y i n g on the s u r f a c e of the sphere where OA The  AOP  i s the r a d i u s of the l i m i t i n g sphere and of l e n g t h 2.  d i r e c t i o n of the r e f l e c t e d r a y from P which makes an  2e w i t h AOB  i s g i v e n by CPQ,  of r e f l e c t i o n .  angle  OC b e i n g the r a d i u s of the sphere  Thus each time a r e c i p r o c a l l a t t i c e p o i n t c u t s  the sphere of r e f l e c t i o n the Bragg e q u a t i o n c o n d i t i o n s are s a t i s f i e d and d i f f r a c t i o n Examination  occurs.  of a Buerger's p r e c e s s i o n or Weissenberg z e r o  l e v e l f i l m s w i l l o f t e n show s y s t e m a t i c a l l y absent s p e c t r a which may  be i n d i c a t i v e of screw axes, c e n t r i n g or g l i d e p l a n e s .  understand  how  To  these a r i s e i t i s s i m p l e s t t o c o n s i d e r a two-  f o l d screw a x i s o c c u r r i n g a l o n g a say.  Thus i n the  crystal  l a t t i c e an o b j e c t which c u t s the a x i s at the p o i n t A i s r e p e a t e d a g a i n at B at a d i s t a n c e a a l o n g the a x i s .  However by  of the screw a x i s the o b j e c t occurs h a l f way  operation  between the two  at  C and so the d i f f r a c t e d wave from C i s e x a c t l y TT/2 out of phase w i t h the d i f f r a c t e d wave from A g i v i n g e x t i n c t i o n . occurs f o r odd o r d e r s of 100.  Similarly  This only  f o r a 4„ or 63  axis.  11 By the same argument a 3 every t h i r d order, a 4^ 65  3 ,  l f  be detected; e.g.  odd  or 6  axis w i l l  4  leave  (hkO)  planes (001)  planes w i l l be absent when h  i f an a g l i d e plane i s i n v o l v e d or when k i s odd  a b g l i d e plane o c c u r s .  if  By t h i s method every c r y s t a l can  a s s i g n e d i t s space group.  be  The 230 space groups together  w i t h t h e i r s y s t e m a t i c absences have been compiled of  only  By a s i m i l a r argument g l i d e  i f a g l i d e plane i s p a r a l l e l t o  then r e f l e c t i o n s from the is  2  or 43 every f o u r t h order and a 6^ or  a x i s every s i x t h order.  may  6  2  i n a volume  the I n t e r n a t i o n a l Tables f o r X-Ray C r y s t a l l o g r a p h y (6) and  u s i n g these t a b l e s the c o r r e c t space However the d i f f r a c t e d X-rays centrosymmetrie  space  g e n e r a l the same as  group can be assigned.  appear t o have come from a  group, i . e . the r e f l e c t i o n  (hk&)  in intensity  (known as  (hkfc) i s i n Friedel's  law) except when the i n c i d e n t wave-length i s very c l o s e t o an a b s o r p t i o n edge (7) f o r a non centrosymmetrical group.  The  space  absence of a c e n t r e of symmetry can o f t e n by d e t e r  mined by the o b s e r v a t i o n of p i e z o - and p y r o - e l e c t r i c (6),  by P a t t e r s o n maps or by s t a t i s t i c a l  intensities  (8)(6).  the 230 space  effects  c a l c u l a t i o n s from  the  A l l but e l e v e n enantiomorphous p a i r s of  groups can be d i s t i n g u i s h e d u s i n g these methods.  The c r y s t a l d e n s i t y can be a c c u r a t e l y measured by  flota-r  t i O n methods (6) and u s i n g t h i s i n f o r m a t i o n t o g e t h e r w i t h the u n i t c e l l volume and molecular weight per u n i t c e l l can be c a l c u l a t e d . i n the values i t may molecular weight  the number of  molecules  T h i s number i s r e s t r i c t e d  take hence an a c c u r a t e e s t i m a t i o n of the  can be d e r i v e d .  T h i s can g i v e i n f o r m a t i o n as  12  t o the number of m o l e c u l e s of s o l v e n t of c r y s t a l l i s a t i o n  and  whether m o l e c u l a r symmetry i s c o i n c i d e n t w i t h some symmetry f e a t u r e of the space group.  13 MEASUREMENT OF INTENSITIES AND STRUCTURE FACTORS Only i n some v e r y s i m p l e c r y s t a l l i n e m a t e r i a l s  (such as  some metals and i o n i c s a l t s ( 9 ) ) i s t h e d e t e r m i n a t i o n of  unit  c e l l dimensions and space group symmetry s u f f i c i e n t t o d e f i n e the p o s i t i o n s of t h e atoms i n t h e u n i t c e l l .  In g e n e r a l the  magnitudes of t h e i n t e n s i t i e s of t h e r e f l e c t e d beams have t o be examined. When an X-ray beam impinges on an atom some of the energy of t h e beam i s l o s t i n Compton s c a t t e r i n g of some this scattered  electrons;  beam then has a l o n g e r wavelength than t h e  i n c i d e n t beam and i s observed as p a r t of t h e background i n i n t e n s i t y estimations.  The coherent s c a t t e r i n g of t h e i n c i -  dent r a d i a t i o n a r i s e s when an e l e c t r o n  i n t e r a c t s with the  e l e c t r o m a g n e t i c f i e l d of t h e X-rays and i s f o r c e d lation.  into  oscil-  Thus t h e e l e c t r o n becomes a s o u r c e of r a d i a t i o n .  a m p l i t u d e A of t h i s r a d i a t i o n a t a d i s t a n c e  r can be  The  derived  from t h e a m p l i t u d e of t h e i n c i d e n t r a d i a t i o n A^ (10) by 2 e A = A 2 rmc 0 u  where e and m a r e t h e charge and mass of t h e e l e c t r o n and c i s t h e v e l o c i t y of l i g h t . is unpolarised  However i f t h e i n c i d e n t  the r e f l e c t e d r a d i a t i o n i s p a r t i a l l y  radiation polarised.  T h i s reduces t h e a m p l i t u d e of t h e r e f l e c t e d r a d i a t i o n by { i ( l + cos 26)}^. 2  An atom of atomic number z a m p l i t u d e of zA e l e c t r o n s .  w i l l thus have a s c a t t e r i n g  This i s only true f o r a point  atom  14  at r e s t ; however, as t h e e l e c t r o n s a r e d i s t r i b u t e d  over an atomic  sphere of f i n i t e s i z e , t h e waves d i f f r a c t e d by each e l e c t r o n w i l l not  be i n phase but w i l l  interfere.  This d e s t r u c t i v e  interfer-  ence v a r i e s w i t h s i n e / A and i s g e n e r a l l y e x p r e s s e d as a graph of f  against sine/A.  The s c a t t e r i n g  terms of t h e s c a t t e r i n g can  factor,  power o f a s i n g l e ,  _f , i s e x p r e s s e d i n free electron.  It  be shown (1) t h a t U(r)  f -  s i n (4TT r s i n  6 / A) dr 4irr s i n 9 / A  OJ  where t h e d i s t r i b u t i o n of t h e e l e c t r o n s i n t h e atom i s g i v e n by the  d i s t r i b u t i o n function,  U ( r ) . U ( r ) d r i s t h e number  of e l e c -  t r o n s c o n t a i n e d between t h e s h e l l s of r a d i i r and r + d r . Scattering factors  have been c a l c u l a t e d  i o n s and a r e l i s t e d i n I n t e r n a t i o n a l in different and  f o r most atoms and t h e i r  Tables ( 6 ) . Unfortunately  environments atoms a r e not s p h e r i c a l l y  symmetrical  f o r many atoms t h e r a d i a l d i s t r i b u t i o n f u n c t i o n s a r e not  known a c c u r a t e l y . The atoms i n a c r y s t a l a r e not a t r e s t but v i b r a t e t h e i r mean p o s i t i o n . and  T h i s spreads  the e l e c t r o n  d e c r e a s e s t h e i n t e n s i t i e s of t h e s p e c t r a .  factor factor f  f o r t h e atom a t r e s t then =  _  fg e _2  coefficient; u  B  S  about  distribution  I f fo i s the  and i i s t h e t e m p e r a t u r e - c o r r e c t e d  i 2e n  — 2 — A  2—9  where B = 8TT u  i s t h e temperature  i s t h e mean square d i s p l a c e m e n t of t h e atom a t  r i g h t a n g l e s t o the r e f l e c t i n g p l a n e .  15 DIFFRACTION BY A CRYSTAL In the e a r l i e r d e s c r i p t i o n of d i f f r a c t i o n i n t h i s t h e s i s the atoms were assumed t o l i e on r e g u l a r  planes which gave  e i t h e r t o t a l reinforcement or e x t i n c t i o n .  In g e n e r a l t h i s i s  not t h e case and atoms may be found a t any p o s i t i o n i n the u n i t c e l l ; the c o o r d i n a t e s of each atom a r e g e n e r a l l y e x p r e s s e d as f r a c t i o n s of the u n i t c e l l edges. C o n s i d e r the one d i m e n s i o n a l case i n which we have n atoms of c o o r d i n a t e s x ^ / a , X g / a ...x /a i n a one d i m e n s i o n a l unit c e l l .  The wave s c a t t e r e d by the j t h atom has a m p l i t u d e  f . and phase a.:. The phase d i f f e r e n c e between the wave s c a t J J t e r e d from the planes of j t h atom and a p a r a l l e l plane through t h e o r i g i n i s g i v e n by  ctj  =  2irhxj  .  The r e s u l t a n t  — a — s t r u c t u r e f a c t o r of the c o n t r i b u t i o n s of a l l the atoms i n the u n i t c e l l F ( h ) i s g i v e n by n  F(h)  =  For t h r e e dimensions  £ f j exp  2iTi  hxj/  t h i s i s extrapolated  a  to  n  F(hk£) = I  f-j exp  2Tri  (hx  J / a  + ky-j/ +  j  D  i  Z  j/  ) c  The s t r u c t u r e a m p l i t u d e | F ( k ) i ) l ^ g i v e n by l ( j ^ £ ) l 2 2 h -1 (A + B ) and t h e phase angle ( h k ^) t a n " (B/A) where s  F  n  n  a  A =  n  =  X f • cos2ir (hx , + ky • + £z . ,„) and B i s the sum of o J j/a J/° J/c the c o r r e s p o n d i n g s i n f u n c t i o n s . /Vl  16 MEASUREMENT  OF THE OBSERVED STRUCTURE AMPLITUDES  The u s u a l method i n measuring the i n t e n s i t y of a r e f l e c t i o n is to rotate  t h e c r y s t a l through the r e f l e c t i n g p o s i t i o n w i t h an  a n g u l a r v e l o c i t y w.  The t o t a l r e f l e c t e d energy E i s r e c o r d e d If I  e i t h e r on f i l m  or by c o u n t i n g methods.  of t h e i n c i d e n t  beam (a measure of the energy per square c e n t i -  Q  i s the i n t e n s i t y  metre per second at t h e c r y s t a l ) then t h e i n t e g r a t e d EO/IQ  i s  intensity  g i v e n by N _e _ F(hk«.)  Eh) I  2  0  L—  mc  2  2  X ( l + cos 26) 1 dV 2 sin2 0 3  2  where N i s the number of u n i t c e l l s per u n i t volume of a very 2 s m a l l c r y s t a l b l o c k dV, 1 + cos 2 6 i s the p o l a r i s a t i o n f a c t o r 2  previously  d i s c u s s e d and t h e o t h e r symbols a r e d e f i n e d as b e f o r e .  The f a c t o r  l / s i n 2 6 i s c a l l e d t h e L o r e n t z f a c t o r and accounts f o r  the  difference  i n r a t e at which d i f f e r e n t p a r t s  of the r e c i p -  r o c a l l a t t i c e pass through t h e sphere of r e f l e c t i o n . is suitable  T h i s form  o n l y f o r the s i t u a t i o n i n which the X-ray beam i s  p e r p e n d i c u l a r t o t h e r o t a t i o n a x i s and where t h e r e f l e c t i o n i s from a plane p a r a l l e l t o t h i s a x i s ; hence i t i s s u i t a b l e f o r r o t a t i o n and Weissenberg photographs. Lorentz factors  f o r other s i t u a t i o n s  known t e x t b o o k s (4) (11) Crystallography  Detailed  accounts of  are given i n s e v e r a l  and i n I n t e r n a t i o n a l  well  T a b l e s f o r X-ray  ( 6 ) . The above e x p r e s s i o n h o l d s not o n l y f o r  s m a l l s u b m i c r o s c o p i c c r y s t a l s but a l s o  i n most s i n g l e  crystals  where the c r y s t a l i s composed of a l a r g e number of e x t r e m e l y s m a l l b l o c k s each o r i e n t e d  at a s m a l l angle t o each o t h e r .  This  17 i n c r e a s e s t h e angle over which r e f l e c t i o n o c c u r s but decreases the e f f e c t of p r i m a r y e x t i n c t i o n .  Primary e x t i n c t i o n occurs  when a r e f l e c t i o n from a l a t t i c e plane i s r e f l e c t e d a g a i n by the o t h e r planes of t h e same s t a c k back i n t o t h e p r i m a r y beam but w i t h a phase l a g of TT thus weakening t h e i n t e n s i t y of t h e p r i m a r y beam by d e s t r u c t i v e i n t e r f e r e n c e .  Where a h i g h degree  of m o s a i c i t y o c c u r s most of t h e planes a r e not a t t h e c o r r e c t angle t o r e f l e c t t h e r e f l e c t e d beam.  The degree of m o s a i c i t y  can be i n c r e a s e d by s u b j e c t i n g t h e c r y s t a l t o t h e r m a l such as d i p p i n g i t i n l i q u i d a i r .  Secondary  shock  e x t i n c t i o n occurs  where t h e upper l a y e r s o r b l o c k s r e f l e c t most of t h e i n c i d e n t r a d i a t i o n and s o weaken t h e i n c i d e n t beam f o r t h e lower  planes  g i v i n g an e f f e c t which i s e q u i v a l e n t t o i n c r e a s i n g t h e absorption.  S y s t e m a t i c c o r r e c t i o n s f o r t h i s e f f e c t can be a p p l i e d . A b s o r p t i o n of t h e X - r a d i a t i o n by t h e c r y s t a l i s p a r t i c u l a r l y  d i f f i c u l t t o a l l o w f o r s i n c e i t i s dependent on t h e s i z e and shape o f t h e c r y s t a l , t h e path l e n g t h s o f t h e i n c i d e n t and d i f f r a c t e d r a y s w i t h i n t h e c r y s t a l , t h e type of atoms i n t h e c r y s t a l and t h e type of r a d i a t i o n .  In g e n e r a l f o r c r y s t a l s  c o n t a i n i n g l i g h t atoms i t i s most c o n v e n i e n t t o use t h e s m a l l e s t c r y s t a l t h a t i s p r a c t i c a l l y p o s s i b l e ; Buerger  (4) suggests  t h a t t h e maximum s i z e which s h o u l d be used t o g i v e t h e maximum i n t e n s i t y a f f e c t e d by t h e minimum of a b s o r p t i o n has maximum t h i c k n e s s 2/y where y i s t h e l i n e a r a b s o r p t i o n c o e f f i c i e n t i n cm ^ f o r t h e r a d i a t i o n b e i n g used.  Wherever r e s u l t s of h i g h  a c c u r a c y a r e r e q u i r e d c o r r e c t i o n s f o r a b s o r p t i o n must be made f o r each r e f l e c t i o n measured.  I f a beam of i n t e n s i t y I Q  18 t r a v e r s e s a path t i n a c r y s t a l of l i n e a r a b s o r p t i o n  coefficient  y then the i n t e n s i t y i s d e c r e a s e d t o I = Igexp - y t .  The  trans-  m i s s i o n f a c t o r T i s d e f i n e d as the r a t i o of the d i f f r a c t e d which has undergone a b s o r p t i o n  wave  t o the v a l u e which t h i s would have  i f a b s o r p t i o n were n e g l i g i b l e .  Tables of T f o r s p h e r i c a l and  c y l i n d r i c a l shapes have been t a b u l a t e d  (6).  I t i s now  possible  t o apply r i g o r o u s a b s o r p t i o n c o r r e c t i o n s f o r c r y s t a l s of v a r y i n g shapes u s i n g e l e c t r o n i c computers (12). FOURIER REPRESENTATION OF THE IN THE The  ELECTRON DENSITY DISTRIBUTION  UNIT CELL  d i s t r i b u t i o n p a t t e r n of the e l e c t r o n d e n s i t y i n the  u n i t c e l l i s repeated  throughout the c r y s t a l hence the  best  method of d e s c r i b i n g t h i s i s i n the form of a F o u r i e r s e r i e s (13). The  general Fourier expression  i n v o l v e s a sum  of w e i g h t e d exponen-  t i a l s of p o s i t i v e and n e g a t i v e  m u l t i p l e s of the angle <j> :  p(<p  + K e x p ±2$  = KQexp i0<(> + Kjexp il<j>  +  2  + K_^exp i(-l)<)>  +  thus  •••  K_ exp i(-2)<j>  +  2  •••  oo  Zi  K  n  e x  P  i n  *  n = -°° T h i s can be expanded by E u l e r ' s e q u a t i o n  and u s i n g the f a c t t h a t  the d e n s i t y i s everywhere r e a l p( 4»)  £  R  fl  cos  n<(>  +  E  I  n  s i n n<j>  where K  n = -co n = - °° <j) can vary from 0 t o 2 TT and the phase at the p o i n t e x p r e s s e d as /in  n  p  <>f = 2 Tr(hx/a + ky/b  _ -i r r (xyz) =  ZF  (hk£)  e  + iz/c)  and  -i27r(hx + ky + lz) — "b ~ •  = R  n  (nkJl) can  = 1 F( V  n  n k  ^.  +  be Thus  H> n  19 T h i s can be w r i t t e n more  conveniently  p(xyz) = 1 Z-I--Z . |F(hkjO| c o s ( 2 T r h x + y " K % where F  2Trky  + 2ir.iz - a(hk&))  a(hki) i s the phase a n g l e c o r r e s p o n d i n g t o the  amplitude  (hki) • This  l a s t equation  X-ray c r y s t a l l o g r a p h y .  demonstrates the phase problem of The  s t r u c t u r e a m p l i t u d e s can be  accur-  a t e l y measured by r o u t i n e methods but the phase a n g l e cannot and  i t i s i n the e s t i m a t i o n of the phases t h a t the  of the c r y s t a l l o g r a p h e r i s r e q u i r e d .  ingenuity  20 STRUCTURE DETERMINATION I f the p o s i t i o n s of the atoms i n the u n i t c e l l are known then i t i s p o s s i b l e t o c a l c u l a t e the phase c o r r e s p o n d i n g t o each s t r u c t u r e a m p l i t u d e . be known a c c u r a t e l y ,  Not a l l the atomic p o s i t i o n s need  as a F o u r i e r based on the observed s t r u c -  t u r e a m p l i t u d e s and phase a n g l e s d e r i v e d from the knowledge of the approximate p o s i t i o n s  of o n l y a few atoms w i l l o f t e n :  the approximate p o s i t i o n s of the remainder.  F i n d i n g such a " l e a d "  i s the most d i f f i c u l t p a r t of the s t r u c t u r e d e t e r m i n a t i o n once h a v i n g "guessed" a s t r u c t u r e i s i t c o r r e c t ?  and  Apart from  c h e m i c a l knowledge of the s t r u c t u r e the R f a c t o r i s o f t e n as a rough guide f o r the measure where R =  z ( |F | Q  of c o r r e c t n e s s  | F | )/£ |F |. c  Q  and c a l c u l a t e d s t r u c t u r e f a c t o r s .  F  Q  and F  Structures  reveal  c  used  of a s t r u c t u r e  are the observed of R l e s s than  about 0.4 w i l l g e n e r a l l y r e f i n e and those of R l e s s than about 0.2  are g e n e r a l l y c o r r e c t ; however t h i s v a r i e s w i t h the s i z e  and c o m p l e x i t y of the m o l e c u l e and the a c c u r a c y of the I t has been shown (14) t h a t the v a l u e of R when the are c a l c u l a t e d f o r atoms i n random p o s i t i o n s i s 0.83 symmetric space groups and 0.59  data.  F 's c  f o r centro-  f o r non c e n t r o s y m m e t r i c space  groups, The most obvious method of s t r u c t u r e d e t e r m i n a t i o n consider  the geometry  i s to  of the m o l e c u l e and t r y t o pack the mole-  c u l e s i n t o the u n i t c e l l .  T h i s has been done s u c c e s s f u l l y f o r  some compounds such as naphthalene and anthracene i n which i t was n o t i c e d t h a t the c e l l dimensions of b o t h compounds were i d e n t i c a l except t h a t the c a x i s of the anthracene u n i t  cell  J 21 i s 2.5 A* l o n g e r than t h a t f o r n a p h t h a l e n e ; t h i s s u g g e s t e d t h a t the  l o n g axes of the m o l e c u l e s are almost c o i n c i d e n t w i t h the  c axes of the u n i t c e l l s l o n g c h a i n hydrocarbons  (15).  S i m i l a r work has been done f o r  i n which each a d d i t i o n a l carbon atom  i n c r e a s e s the c a x i s by 2.5 8 ( 1 ) .  Wherever the u n i t  makes use of m o l e c u l a r symmetry then the approximate of  cell location  the m o l e c u l e can be deduced i n many c a s e s ; some n o t a b l e  s u c c e s s e s i n t h i s manner have been the e l u c i d a t i o n of the s t r u c t u r e s of c r y s t a l l i n e u r e a , t h i o u r e a and hexamethylene  tetramine  (1). The most p o w e r f u l and most f r e q u e n t l y used method of d e t e r m i n i n g the p o s i t i o n s of the atoms i n the u n i t c e l l i s a c o m b i n a t i o n of the heavy atom and P a t t e r s o n v e c t o r methods. I t i s the method which has been of  this In  used f o r the e x p e r i m e n t a l p a r t  thesis. 1934 P a t t e r s o n (16) showed t h a t the e x p r e s s i o n a b f  A(uvw) = jL . v bJ.  p  ( x y z ) p ( x + u, y + v, z + w)dxdydz  0, 0.  g i v e s the w e i g h t e d average d i s t r i b u t i o n of d e n s i t y of m a t t e r about a p o i n t  ( x y z ) i n the c r y s t a l .  I f p(xyz) and  p(x + u, y + v, z + w) are expanded as F o u r i e r s e r i e s integrated  scattering  and  then  A(uvw) = l_z y2  2  i z F ( h k i i ) e x p - 2 T r i ( h u / a + kv/b +£w/c) -OO  T h i s uses as the F o u r i e r c o e f f i c i e n t s the squares of the s t r u c t u r e a m p l i t u d e s and hence i s independent  of the phase a n g l e .  map  of t h i s f u n c t i o n f o r a c r y s t a l w i l l show peaks where  and  p(x + u, y + v, z + w) are l a r g e , i . e . f o r atoms at (xyz)  A  p(xyz)  22 and  (x + u, y + v, z + w) s e p a r a t e d by the d i s t a n c e (uvw).  the P a t t e r s o n f u n c t i o n d e s c r i b e s a map  Thus  of the s u p e r p o s i t i o n of  a l l the i n t e r a t o m i c v e c t o r s of the c r y s t a l .  For N atoms t h e r e  w i l l be N(N-.l)/2 v e c t o r s p l u s N more which have z e r o d i s p l a c e ment from the o r i g i n .  Thus i f N i s m o d e r a t e l y l a r g e then r e s o l u -  t i o n between the peaks becomes poorer and the s o l u t i o n of the s t r u c t u r e more d i f f i c u l t .  However by u s i n g known i n t e r a t o m i c  d i s t a n c e s angles and m o l e c u l a r c o n f i g u r a t i o n s and t r y i n g p o s s i b l e conformations  f o r the s t r u c t u r e i n q u e s t i o n i t i s o f t e n p o s s i b l e  to f i n d the s o l u t i o n t o the map  f o r simple molecules.  Very o f t e n  the symmetry of the u n i t c e l l can be used t o advantage.  Harker  (17) showed t h a t f o r a t w o f o l d a x i s , say p a r a l l e l t o b, a s e c t i o n of A(uvw) at v = 0 has maxima at (2u, 0, 2w).  This a r i s e s s i n c e  for  every atom (xyz) t h e r e i s one at (-x,  y, - z ) .  Similarly  for  a plane of symmetry p e r p e n d i c u l a r t o the b a x i s the p o i n t  (xyz) i s r e l a t e d t o (x, -y, z ) g i v i n g v e c t o r s (0, 2y, 0 ) . Patterson  v e c t o r d i s t r i b u t i o n maps of l a r g e m o l e c u l e s  i n g e n e r a l t o o c o m p l i c a t e d and too p o o r l y r e s o l v e d t o be preted.  For such s t r u c t u r e s a f u r t h e r a i d can be used.  atom of l a r g e atomic number i s p r e s e n t  i n the u n i t c e l l  i t w i l l dominate the s c a t t e r i n g of the X-rays. H  a  i s s u f f i c i e n t l y heavy then the H  l a r g e s t peaks on the P a t t e r s o n map.  a  - H  a  interI f an then  I f the atom  v e c t o r s occur as  the  T h e o r e t i c a l l y the square  of the atomic number of the heavy atom s h o u l d be e q u a l t o the sum  are  approximately  of the squares of atomic numbers of the  light  atoms, but p r a c t i c a l l y i t can o f t e n be much l e s s than t h i s f o r a three dimensional a n a l y s i s .  Once the  p o s i t i o n of the heavy  23 atom i s known a F o u r i e r a m p l i t u d e s and heavy atom.  i s summed u s i n g  the observed  phase a n g l e s c a l c u l a t e d from the p o s i t i o n of  or a l l of the  (18)  i n the F o u r i e r map.  The  positions  phases c a l c u l a t e d and  (19)  the process r e p e a t e d I f the heavy  atom o c c u r s i n c e r t a i n p o s i t i o n s of symmetry i t may features  which may  t i o n t o the s t r u c t u r e .  electron  of these atoms  a l l the atomic p o s i t i o n s have been r e v e a l e d .  various  and some  l i g h t e r atoms w i l l appear w i t h d i m i n i s h e d  can be measured, new until  the  As the heavy atom dominates the s c a t t e r i n g then  a p p r o x i m a t e l y 75% of the phases w i l l be c o r r e c t  density  structure  give r i s e  a i d or make more d i f f i c u l t  the  to  solu-  Where the heavy atom o c c u p i e s a c e n t r e  of symmetry the c o n t r i b u t i o n t o a l l the s t r u c t u r e f a c t o r s i s p o s i t i v e and  i f t h i s i s greater  than the c o n t r i b u t i o n s  of  l i g h t atoms then a l l the s t r u c t u r e f a c t o r s are p o s i t i v e  the (20).  When a heavy atom l i e s on a s p e c i a l p o s i t i o n such t h a t i t s contributions  to c e r t a i n s t r u c t u r e s  f a c t o r s are  systematically  z e r o then a F o u r i e r based on the c a l c u l a t e d phases of the zero structure factors w i l l  non  i n d i c a t e the p o s i t i o n of each l i g h t  atom accompanied by a symmetry r e l a t e d image, the problem then a r i s e s as t o which are the c o r r e c t atoms t o choose. more p o w e r f u l method o c c u r s where two the same compound are c y a n i n and  N i p h t h a l o c y a n i n (1).  In t h i s case the  and  of  i s due  t o the N i  difference  contribution  as the heavy atom l i e s on a c e n t r e of symmetry AF  tive. two  different derivatives  isomorphous as i n , f o r example, p h t h a l o -  i n the s t r u c t u r e f a c t o r s , AF, and  An even  T h i s reduces the c h o i c e of s i g n s f o r F comparison of A F w i t h the F . N  p h  and  values gives  is posiF  the  N i p h  to  correct  24 choice.  In the cases where the isomorphous atom does not l i e  on a c e n t r e of symmetry the phase angle i s no l o n g e r r e s t r i c t e d to  0 or " but i f the o r i g i n f o r the c o o r d i n a t e s i s chosen at  the r e p l a c e a b l e atom s i t e then AF i s r e a l and r e p r e s e n t s the d i f f e r e n c e i n s c a t t e r i n g power angles  of the two atoms and the phase  (but not t h e i r s i g n s ) can be c a l c u l a t e d .  Thus both  p o s i t i v e and n e g a t i v e s i g n s (21) must be used i n the F o u r i e r which imposes a c e n t r e of symmetry at the  origin.  C e r t a i n r e l a t i o n s h i p s between the s t r u c t u r e a m p l i t u d e s can be d e r i v e d from the u n i t c e l l symmetry and the of the s t r o n g r e f l e c t i o n s . these mathematical methods".  distribution  S t r u c t u r e d e t e r m i n a t i o n s based on  methods have come t o be known as  In g e n e r a l these methods are a p p l i e d t o  "direct centrosym-  m e t r i c space groups where the phase angle i s 0 or TT .  Statistical  methods have been d e v i s e d ( 6 ) ( 8 ) t o i n d i c a t e whether a c e n t r e of symmetry i s p r e s e n t i n space groups i n which i t i s not obvious.  Harker  and Kasper were the f i r s t  i f F(hk£) and F(2h, 2k, 2 1) are  immediately  (22) t o f o r m u l a t e t h a t  both strong r e f l e c t i o n s  then,  s u b j e c t t o the c o n d i t i o n s a l r e a d y s t a t e d , the s i g n of F(2h, 2 1) ity.  i s probably  +.  2k,  T h i s i s d e r i v e d from Cauchy's i n e q u a l -  U s i n g the symmetry f e a t u r e s of the u n i t c e l l they deduced  f u r t h e r i n e q u a l i t i e s and a p p l i e d them i n d e t e r m i n i n g the s t r u c t u r e of decaborane (23).  F u r t h e r advances were made by  workers (24), the most g e n e r a l l y a p p l i c a b l e  other  b e i n g those of  K a r l e and Hauptman (25); they used the c o n d i t i o n t h a t the  dis-  t r i b u t i o n f u n c t i o n , p(xyz), i s everywhere p o s i t i v e and t h a t t h i s imposes r e s t r i c t i o n s on the magnitudes of the s t r u c t u r e factors.  The Harker-Kasper  i n e q u a l i t i e s are s p e c i a l cases  of  25  t h e i r more g e n e r a l f i n d i n g s ( 2 4 ) . S e v e r a l s t r u c t u r e s have been determined  by d i r e c t methods which would have been d i f f i c u l t t o  do by o t h e r methods.  In g e n e r a l as the number of atoms i n the  u n i t c e l l i n c r e a s e s the number of r e f l e c t i o n s which are s t r o n g compared t o the remainder decreases  and so the p r o b a b i l i t y t h a t  the i n e q u a l i t y - e q u a l i t y r e l a t i o n s h i p s h o l d d e c r e a s e s ;  however  l a r g e s t r u c t u r e s ( 2 6 ) have been s u c c e s s f u l l y determined  by t h i s  method and h i g h speed computers have taken a l o t of l a b o u r out of the d e t e r m i n a t i o n ( 2 4 ) .  REFINEMENT When a good p o s t u l a t e of the atomic p o s i t i o n s o b t a i n e d then the c o o r d i n a t e , temperature  has been  and s c a l e parameters  of the atoms must be r e f i n e d t o o b t a i n the best f i t w i t h the e x p e r i m e n t a l data.  The R v a l u e i s used as an i n d i c a t i o n of  how w e l l the r e f i n e m e n t  i s proceeding; very w e l l r e f i n e d  s t r u c t u r e s have R v a l u e s around 0 . 0 5 i f the i n i t i a l data i s s u f f i c i e n t l y accurate.  Examination  of the s t r u c t u r e f a c t o r s  of a r e f i n e d s t r u c t u r e may r e v e a l t h a t the h i g h low-angle  intensity  r e f l e c t i o n s have F Q < F , t h i s may be caused by c  e x t i n c t i o n e f f e c t s o r , when i t o c c u r s o n l y f o r c e r t a i n  orien-  t a t i o n s of an i r r e g u l a r l y shaped c r y s t a l , i t may be due t o absorption.  The d i s t r i b u t i o n of d i f f e r e n t i n t e n s i t i e s of  background r a d i a t i o n may a c t as a guide t o t h i s .  Small s h i f t s  i n the parameters produce l a r g e r changes i n the h i g h o r d e r r e f l e c t i o n s than they do i n those of lower order hence a s t r u c -  26 t u r e which has many h i g h o r d e r r e f l e c t i o n s may  have a h i g h e r R  v a l u e and be more a c c u r a t e than one which has a lower R v a l u e and fewer h i g h o r d e r r e f l e c t i o n s .  Unobserved r e f l e c t i o n s  con-  t r i b u t e t o the numerator but not the denominator of the e x p r e s s i o n and so g i v e s a f i c t i t i o u s l y  h i g h v a l u e of R; f o r such  in centrosymmetrical c r y s t a l s s t a t i s t i c a l  cases  c a l c u l a t i o n s have shown  t h a t the most p r o b a b l e v a l u e f o r the unobserved r e f l e c t i o n s i s h a l f the minimum o b s e r v a b l e v a l u e . The  o v e r a l l temperature  f a c t o r and s c a l e can be  refined  a f t e r each c y c l e of r e f i n e m e n t of the p o s i t i o n a l parameters 2 2 o u s i n g K F Q = F exp - ( B s i n 6)/X where F r e f e r s t o 0 K . A 2 c  c  graph of &n(FQ/F ) v e r s u s s i n 6 f o r v a r i o u s r e f l e c t i o n s s h o u l d c  g i v e a s t r a i g h t l i n e the s l o p e of which p r o v i d e s B and  the  i n t e r c e p t K (27). The  c o o r d i n a t e s can be r e f i n e d by s u c c e s s i v e c y c l e s of  F o u r i e r summations. F o and F  c  I n i t i a l l y when the d i s c r e p a n c i e s between  are l a r g e o n l y those s t r u c t u r e f a c t o r s whose s i g n s  are u n i q u e l y determined  are used, more and more s m a l l s t r u c t u r e  f a c t o r s are i n c l u d e d w i t h each c y c l e u n t i l a l l the s t r u c t u r e f a c t o r s are used.  i n the f i n a l c y c l e s  Refinement i s c o n s i d e r e d  t e r m i n a t e d when t h e r e i s no change i n R when R i s c a l c u l a t e d b e f o r e and a f t e r the l a s t c y c l e . i s a p p r o x i m a t e l y 0. 6 A / 2 s i n 6  m a x  The r e s o l v i n g power of  where 6  m a x  i s the  X-rays  limiting  g l a n c i n g angle up t o which the s p e c t r a are measured.  Thus  for  8  Cu(K ) A  r a d i a t i o n atoms s e p a r a t e d by l e s s than 0.5  cannot be r e s o l v e d .  T h i s does not impose any  limitations  on  t h r e e d i m e n s i o n a l work but f o r a two d i m e n s i o n a l a n a l y s i s the  atoms must be 0.5 8 a p a r t refinement  i n p r o j e c t i o n t o be r e s o l v e d , hence f o r  i n two dimensions the F o u r i e r method can o n l y be a p p l i e d  t o m o l e c u l e s i n which the atoms do not o v e r l a p i n p r o j e c t i o n . Fourier expression  i m p l i e s summation over a l l v a l u e s  The  (hk£) but  t h i s i s not p r a c t i c a l l y p o s s i b l e and g i v e s r i s e t o e r r o r s b o t h i n the c a l c u l a t e d e l e c t r o n d e n s i t y and i n t h e atomic c o o r d i n a t e s . Such s e r i e s t e r m i n a t i o n e r r o r s i n c o o r d i n a t e s f o r by c a l c u l a t i n g a F o u r i e r u s i n g F coordinates. put  c  can be accounted  c a l c u l a t e d from the f i n a l  The c o o r d i n a t e s which t h i s g i v e s d i f f e r from those  i n by ( A X J , A y j , A Z j ) due t o t e r m i n a t i o n of s e r i e s and so  the f i n a l c o o r d i n a t e s s h o u l d be " b a c k - s h i f t e d " by k times  this  amount ( 2 8 ) ; k s h o u l d be taken as 1 f o r c e n t r o s y m m e t r i c and 2 f o r noncentrosymmetric c r y s t a l s (18). R a t h e r than e v a l u a t e the d e n s i t y f u n c t i o n throughout the u n i t c e l l Booth (29) d e v i s e d a method of e v a l u a t i n g i t o n l y a t the maxima t h e r e b y  a v o i d i n g much n e e d l e s s  computation.  The  method i s based on t h e f a c t t h a t at t h e atomic peaks t h e f i r s t d e r i v a t i v e s of P(xyz) a r e z e r o ; i . e . 9p/3x = 0.  From t h i s i t  can be shown t h a t IL 9x and  +  iii 92 X  £  + X  P ~^x^y  s 2  e  y  +  3 P £ 3x9z 2  z  = 0 where e  ez are t h e d i f f e r e n c e between t h e c o o r d i n a t e s  t r u e maxima.  S i m i l a r expressions  x >  the v a l u e s of E J J ,  y  and the  can be d e r i v e d f o r the d e r i v a -  t i v e s w i t h r e s p e c t t o y and w i t h r e s p e c t t o z and from equations  e  £y and e  z  these  can be c a l c u l a t e d .  method i s s u b j e c t t o t e r m i n a t i o n of s e r i e s e r r o r s and the b a c k s h i f t c o r r e c t i o n must be a p p l i e d t o c o r r e c t f o r t h i s .  This  2 8  A F o u r i e r u s i n g as c o e f f i c i e n t s t h e s i g n e d (|FQ|  residuals  - |F |) s h o u l d be f e a t u r e l e s s i f t h e c o o r d i n a t e s  of t h e  C  model used a r e i n the c o r r e c t p o s i t i o n .  In g e n e r a l  r e f i n e m e n t t h i s i s not s o , and t r o u g h s occur where placed  during a inaccurately  atoms o c c u r i n t h e model and peaks a r i s e where t h e atoms  s h o u l d be p l a c e d .  T h i s method i s p a r t i c u l a r l y u s e f u l f o r i n d i -  c a t i n g t h e l o c a t i o n s of hydrogen atoms i n a w e l l r e f i n e d s t r u c t u r e and a l s o t h e asymmetry of any atoms w h i c h has not been accounted f o r . series effects  I t a l s o does not s u f f e r from t e r m i n a t i o n  of  t o the same e x t e n t .  The method of l e a s t s q u a r e s lends i t s e l f  t o refinements  where t h e number of data p o i n t s g e n e r a l l y outweighs t h e number of parameters t o be d e t e r m i n e d and the e r r o r s i n t h e data a r e of normal d i s t r i b u t i o n .  I t has t h e advantages t h a t i t does not  r e q u i r e a l l t h e data (hence does not s u f f e r from  termination  of s e r i e s e r r o r s ) and can be used t o r e f i n e t h e p o s i t i o n a l and  t e m p e r a t u r e parameters ( i s o t r o p i c and a n i s o t r o p i c ) and s c a l e .  V a r i o u s w e i g h t i n g schemes can be g i v e n t o each s t r u c t u r e depending on i t s r e l i a b i l i t y accelerated. respect  and so t h e r e f i n e m e n t can be  The f u n c t i o n m i n i m i s e d i s Ew(hk£)A (hkil) w i t h 2  t o parameters u., where u . a r e atomic  coordinates,  i s o t r o p i c or a n i s o t r o p i c temperature v i b r a t i o n s or s c a l e (introduced  factor  as o p e r a t i n g  on F ) . c  A(hk t) i s u s u a l l y  factor  |F (hkJO| 0  ,|F (hkJl)| and w(hkA) = l / a ( h k J l ) . 2  c  When  R  i s a minimum  9 R / 9 U J  =  0  for j =  1,  2  ••• n and t h e p a r a -  meters must be chosen t o s a t i s f y t h e s e n c o n d i t i o n s .  The normal  29 equations  f o r t h e s m a l l c o r r e c t i o n s E . t o t h e parameters u J  4  to  J  g i v e t h e c o r r e c t s e t are n  where j = 1, 2 • • • n, and 8 A(hk il)  a r e e v a l u a t e d f o r the t r i a l  parameter v a l u e s . This gives n simultaneous  l i n e a r equations  and t h e s o l u t i o n  of t h e s e , p a r t i c u l a r l y where n i s l a r g e , r e q u i r e s a l a r g e amount of c o m p u t a t i o n a l approximation  time.  On the o t h e r hand t o use the d i a g o n a l  of the m a t r i x , i . e . n e g l e c t i n g the o f f d i a g o n a l  terms, does not a l l o w f o r atomic  o v e r l a p (hence i s no use f o r  two d i m e n s i o n a l work and o f t e n g i v e s f a l s e r e s u l t s ) . gram  used i n t h i s t h e s i s uses the b l o c k d i a g o n a l  The p r o -  approximation  i n which 3 x 3 , l x l and 2 x 2 m a t r i c e s are used f o r t h e c o o r d i n a t e , t h e r m a l and s c a l e parameters r e s p e c t i v e l y ( 6 ) ( 3 0 ) ( 3 1 ) .  ACCURACY The e r r o r s which occur i n the f i n a l r e s u l t s a r e of two t y p e s , s y s t e m a t i c and random.  The s y s t e m a t i c e r r o r s a r i s e  l a r g e l y from the e x p e r i m e n t a l c o n d i t i o n s and are due mainly t o a b s o r p t i o n and e x t i n c t i o n and, depending on t h e methods of refinement,  series termination.  A b s o r p t i o n e f f e c t s can be  reduced t o a minimum by use of the a p p r o p r i a t e r a d i a t i o n and the s m a l l e s t c r y s t a l p o s s i b l e and i f t h i s i s not a c c u r a t e enough d e t a i l e d c a l c u l a t i o n s (12) may be c a r r i e d o u t ; primary e x t i n c t i o n can be reduced by d e c r e a s i n g t h e degree of c r y s t a l -  30 line  " p e r f e c t n e s s " ' a n d - t h e - e f f e c t of secondary  e x t i n c t i o n can  be c a l c u l a t e d (11). Random e r r o r s a r i s e i n the measurement s i o n s and the i n t e n s i t i e s . o  of the c e l l  C e l l edge e r r o r s can be reduced t o  the order of 0.001 A (4) i n f a v o u r a b l e cases. t i o n s of the s t r u c t u r e amplitudes  d e r i v e d from  Standard  accuracy  devia-  photographic  data may be about 4% and from counter measurements, Standard  dimen-  1%.  s t a t i s t i c a l methods can be used t o e v a l u a t e the  of the p o s i t i o n a l and thermal  parameters where the  e r r o r s being e v a l u a t e d are random e r r o r s .  The standard d e v i a -  t i o n s are c a l c u l a t e d from the l e a s t squares the e x p r e s s i o n 2 / o\ a ( U J ) = - j i ( £w_A_ J \ m-n /  where  a  t i o n of the parameter U J ; i n v e r s e t o (a. .) where  residuals  (6) u s i n g  cr(uj) i s the standard d e v i a -  a j j i s an element of the matrix  ( a ^ ) -= Ew .3 A  3A  and (m - n) i s  the d i f f e r e n c e between the number of independent and the number of parameters determined  (6).  observations  The standard  d e v i a t i o n of a bond l e n g t h AB where the atoms A and B have standard d e v i a t i o n s cr (A) and cr (B) i n the d i r e c t i o n of the bond is °(AB)  =  °  2 ( A )  +  a  2  (  B  )  If p i s the angle formed at B between the bonds AB and BC then ( 0 (f3) =  a (A) ;+ 2  2  AB  2  g ( B ) f _1_ - 2cos B 2  ^ AB  2  AB.BC  + _ J _) BC  +  g (C)  2  2  BC  2  In the c a l c u l a t i o n s of the standard d e v i a t i o n s of the bonds and bond angles  i t i s assumed that the e r r o r s of, the atoms are  uncorrelated.  CHAPTER I I  THE CRYSTAL AND MOLECULAR STRUCTURES OF BENZOYL OSMOCENE AND DIFERROCENYL KETONE  31 INTRODUCTION Electron diffraction  (32) has shown t h a t at 400°C complete  r o t a t i o n of the c y c l o p e n t a d i e n e r i n g s i n f e r r o c e n e can o c c u r . X-ray s t u d i e s  (33) of the compound i n the c r y s t a l l i n e  have shown t h a t the m o l e c u l e possesses D ^  state  symmetry; however  the m o l e c u l e i s c o n s t r a i n e d t o t h i s c o n f o r m a t i o n as  i t occupies  the space group P2^/a w i t h two m o l e c u l e s per u n i t c e l l and w i t h the i r o n atom l y i n g on a c e n t r e of symmetry. neutron d i f f r a c t i o n  Furthermore, a  (34) a n a l y s i s has shown t h a t the m o l e c u l e s  i n the c r y s t a l are not c o n f o r m a t i o n a l l y pure but t h a t 67% of the m o l e c u l e s occupy the s i t e s quoted by D u n i t z , O r g e l and R i c h (33) the remainder b e i n g r o t a t e d by 36° about the molec u l a r a x i s p a s s i n g through the c e n t r e s of the r i n g s .  Determin-  a t i o n s of s i m i l a r s t r u c t u r e s by X-ray d i f f r a c t i o n i n the s e r i e s M(C5R"5)2 where M i s Co  ( 3 5 ) , N i ( 3 5 ) , V (36) or Cr (36) i n d i c a t e  t h a t these compounds are isomorphous (37) and Os  with ferrocene.  The  Ru  (38.) analogues c r y s t a l l i s e i n the orthorhombic  Pnma space group i n such a manner t h a t a m i r r o r plane passes through the c e n t r e s of the c y c l o p e n t a d i e n y 1 r i n g s and the  metal  atom,hence the m o l e c u l e s can o n l y have an e c l i p s e d or s t a g g e r e d c o n f o r m a t i o n or bond l e n g t h s i n the c y c l o p e n t a d i e n y 1 r i n g s not all  of the same l e n g t h .  m o l e c u l e s have D^^  The X-ray a n a l y s i s has shown t h a t the  symmetry.  In a l l the a f o r e m e n t i o n e d cases the c o n f o r m a t i o n s of the c y c l o p e n t a d i e n y l r i n g s are l a r g e l y d i r e c t e d by the c r y s t a l p a c k i n g f o r c e s (39) and l i t t l e can be deduced about the n a t u r a l o r i e n t a t i o n of one r i n g w i t h r e s p e c t t o the o t h e r .  In d i i n d e n y l  32 i r o n (40) and d i b e n z o y l - f e r r o c e n e  (41) X-ray s t u d i e s have shown  the r i n g s t o be i n a s t a g g e r e d c o n f o r m a t i o n whereas i n b i s i n d e n y l r u t h e n i u m (42) the r i n g s are e c l i p s e d and i n d i a c e t y l ruthenocene (43) they are n e a r l y so.  In b i f e r r o c e n y l (44) (45)  the r i n g s were observed t o be midway between t h e s t a g g e r e d conformation  of f e r r o c e n e  and t h e e c l i p s e d of ruthenocene.  In t h e a n a l y s i s of f e r r o c e n e bond l e n g t h s lengths  v a r i e d from 1. 35 t o 1.48 8, t h e d i f f e r e n c e i n bond  being three standard d e v i a t i o n s .  the d i f f e r e n c e s deviations ically  (33) i t was found t h a t the  In b i f e r r o c e n y l (44)  i n bond l e n g t h were found t o be 2.3 s t a n d a r d  and almost e x a c t l y the same i n b o t h c r y s t a l l o g r a p h -  independent r i n g s .  In ruthenocene (37) the bond  v a r y from 1.38 t o 1.47 8, i n b i s [ c y c l o p e n t a d i e n y l tricarbonyl] pentadienyl  lengths  molybdenum  (46) from 1.37 t o 1.44 8 and i n d i h y d r o d i c y c l o molybdenum  (47) from 1.34 t o 1.51 A.  a u t h o r s a t t r i b u t e these d i f f e r e n c e s t i o n or a b s o r p t i o n others consider  Some of the  i n bond l e n g t h s  e f f e c t s (33) or t o s y s t e m a t i c  to extinc-  errors  while  the d i f f e r e n c e s perhaps s i g n i f i c a n t ( 4 4 ) .  The aim of t h i s X-rray i n v e s t i g a t i o n of the s t r u c t u r e s of c r y s t a l l i n e b e n z o y l osmocene and d i f e r r o c e n y l ketone was t o g a t h e r more i n f o r m a t i o n i n ferrocene  about the c o n f o r m a t i o n of the r i n g s  type compounds which were not s u b j e c t  c r y s t a l p a c k i n g f o r c e s as f e r r o c e n e the c y c l o p e n t a d i e n y l same l e n g t h .  t o the same  and a l s o t o v e r i f y whether  r i n g bond l e n g t h s  a r e , or a r e n o t , a l l t h e  In a d d i t i o n i t was of i n t e r e s t t o f i n d out whether  d i f e r r o c e n y l ketone and f e r r o c e n y l r u t h e n o c e n y l ketone (46) were isomorphous, and, i f n o t , the o v e r a l l c o n f o r m a t i o n of d i f e r r o c e n y l ketone.  33 Benzoylosmocene i s s y n t h e s i s e d  (47) i n 60% y i e l d by a  F r i e d e l - C r a f t s r e a c t i o n w i t h b e n z o y l c h l o r i d e and aluminium trichloride  i n methylene c h l o r i d e f o l l o w e d by h y d r o l y s i s  p u r i f i c a t i o n by chromatography.  D i f e r r o c e n y l ketone was  pared (47) i n a s i m i l a r manner by r e a c t i n g f e r r o c e n o y l and f e r r o c e n e  i n the presence of aluminium  trichloride.  and pre-  chloride  34 EXPERIMENTAL C r y s t a l s of b e n z o y l osmocene, m.p.  125°C, c r y s t a l l i s e  as l o n g , p a l e y e l l o w needles from petroleum e t h e r .  The c r y s t a l  used was mounted w i t h t h e needle a x i s a p a r a l l e l t o t h e <j> a x i s of  the goniometer and had dimensions  D i f e r r o c e n y 1 ketone, m.p.  0.03 x 0.03 x 1.54  mm.  204°C (decomp.), when c r y s t a l l i s e d  from 1-prbpanol forms dark brown p l a t e s e l o n g a t e d a l o n g b bounded by (100) and (001). t i o n 0.45 mm  (100) by 0.10 mm.  group were determined graphs and  The c r y s t a l used had c r o s s s e c The c e l l dimensions  and space  from r o t a t i o n and Weissenberg  on the G.E. Spectrogoniometer.  photo-  C r y s t a l data f o r  b e n z o y l osmocene and d i f e r r o c e n y 1 ketone a r e shown i n Table I I t o g e t h e r w i t h the c r y s t a l data f o r f e r r o c e n y l r u t h e n o c e n y l ketone f o r comparison. The i n t e n s i t i e s of 275 OkK. r e f l e c t i o n s of b e n z o y l osmocene were measured on the G e n e r a l E l e c t r i c XRD5 S p e c t r o goniometer u s i n g a p p r o x i m a t e l y monochromatic CuK  a  radiation  w i t h a n i c k e l f i l t e r and p u l s e h e i g h t a n a l y s e r and t h e moving crystal-moving counter technique i n t e n s i t y above background.  ( 4 8 ) ; 222 (81%) of these had  The i n t e n s i t i e s were c o r r e c t e d  f o r background (which v a r i e s w i t h 9), L o r e n t z and p o l a r i s a t i o n f a c t o r s were a p p l i e d and s t r u c t u r e a m p l i t u d e s  were  derived. The y and z c o o r d i n a t e s of the Os atom were c a l c u l a t e d from the a - a x i s P a t t e r s o n p r o j e c t i o n as (0.0347, 0.2311). two d i m e n s i o n a l F o u r i e r s e r i e s was summed u s i n g s i g n s based  A  TABLE I I . CRYSTAL DATA FOR BENZOYL OSMOCENE, DIFERROCENYL KETONE, FERROCENYL RUTHENOCENYL KETONE B e n z o y l Osmocene  D i f e r r o c e n y l ketone  (C H5)Os(C5H )COC H5  [(C H )Fe(C5H4)] C 0  (C H )Fe(C5H4)C0(C H )Ru(C5H5)  397.8  444. 0  5  4  6  5  5  2  424. 5  M.W. Radiation ( 8 ) C r y s t a l System  AND  CuK , a  * = 1. 5418  \ = 1. 9373  FeK , a  Monoclinic  F e r r o c e n y l R u t h e n o c e n y l ketone 5  5  5  4  CuK , x = 1. 5418 a  Monoclinic  Monoclinic  a  (h  6.07 + 0.01  10.50  + 0.02  10.51  + 0.02  b  (X)  1 5 . 4 9 •+ 0 . 0 2  6.18  + 0.01  6.12  + 0.01  14.53+0.02  13.05  + 0.03  13.29  + 0.02 o  o c (A)  106°40* + 0 . 5 ° U(8 )  1308.8  3  _3 D (g. cm. )  2 . 18 (aq. AgNOg )  m  4 D  (g. cm. ) 3  x  111° 0 0 ' + 0 . 5 °  F(000) Absorption coefficient (cm: )  2. 1 5 800 185  (aq. AgNC^ ) 2  4  111 1 7 '  790.6 1.66  1.67-L 408 47  co  01  797 1.86  (aq. AgNOg) 2 1.85 444 167  1  1  TABLE I I (cont'd.)  Absent reflections  B e n z o y l Osmocene  D i f e r r o c e n y l ketone  (hOs,) when % odd  (h0«.) when j, odd  (OkO) when k odd Space group  P2 /c ( C ^ ) 1  F e r r o c e n y l Ruthenocenyl ketone (hOj,) when A odd 4  P2/c ( C ^ ) or Pc (C5)*  The s t r u c t u r e a n a l y s i s was c a r r i e d out u s i n g P2/c.  p r o b a b l y P2/C (C  )  cn  37 on t h e c o n t r i b u t i o n s from t h e Os atom.  The r e s u l t i n g e l e c t r o n  d e n s i t y d i s t r i b u t i o n map showed the o v e r a l l p o s i t i o n s of t h e two c y c l o p e n t a d i e n y l r i n g s i n p r o j e c t i o n but o v e r l a p of the atoms and t e r m i n a t i o n of s e r i e s r i p p l e s from the osmium atom obscured t h e atomic p o s i t i o n s . r i n g c o u l d be found. but these proved  No e v i d e n c e of the b e n z o y l  S e v e r a l t r i a l s t r u c t u r e s were attempted  fruitless.  Rather than attempt a t h r e e d i m e n s i o n a l a n a l y s i s i n which the d i f f r a c t i o n e f f e c t s would decrease t h e a c c u r a c y w i t h which the c y c l o p e n t a d i e n y l r i n g s c o u l d be p l a c e d i t was d e c i d e d t o attempt the a n a l y s i s of d i f e r r o c e n y l ketone which i s not subj e c t t o t h i s d i s a d v a n t a g e nor does i t have such a h i g h a b s o r p t i o n c o e f f i c i e n t f o r X-rays as b e n z o y l osmocene has. The c r y s t a l of d i f e r r o c e n y l ketone was mounted about the b a x i s and a s e r i e s of 4 f i l m - p a c k exposures were taken of t h e l a y e r l i n e s k = 0, method and F e K  a  4,using the Weissenberg  radiation.  equi-inclination  The i n t e n s i t i e s were e s t i m a t e d  v i s u a l l y from t h e s e ; 476 of the 579 e s t i m a t e d had an i n t e n s i t y g r e a t e r than the background.  L o r e n t z and p o l a r i s a t i o n (Lp)  f a c t o r s were a p p l i e d and the s t r u c t u r e a m p l i t u d e s d e r i v e d . The c r y s t a l was then mounted on the G.E.  Spectrogoniometer  w i t h the b a x i s p a r a l l e l t o t h e <>j a x i s of the g o n i o s t a t and s e v e r a l r e f l e c t i o n s of medium i n t e n s i t y from each f i l m pack were r e e s t i m a t e d .  Lp f a c t o r s were a p p l i e d and s t r u c t u r e  amplitudes c a l c u l a t e d .  The i n t e r f i l m s c a l e s were d e r i v e d from  the comparison of t h e c o u n t e r and f i l m s t r u c t u r e a m p l i t u d e s .  38 At a l a t e r date, i n o r d e r t o o b t a i n more a c c u r a t e d a t a , a l l the r e f l e c t i o n s i n t h e range 0 < 2 6 ( F e K ) < 130° o a  (corresponding  t o a minimum i n t e r p l a n a r s p a c i n g d = 1.07 A) were measured u s i n g the s p e c t r o g o n i o m e t e r .  In a d d i t i o n t h e i n t e n s i t i e s of twenty  h i g h e r o r d e r r e f l e c t i o n s were e s t i m a t e d .  The d i f f r a c t e d beams  were f i l t e r e d by a MnC>2 f i l t e r and a p u l s e h e i g h t a n a l y s e r . 662 of t h e 707 (94%) measured had an i n t e n s i t y above t h e background count.  The i n t e n s i t i e s were c o r r e c t e d f o r background,  Lp e f f e c t s and s t r u c t u r e a m p l i t u d e s were d e r i v e d .  Corrections  f o r a b s o r p t i o n were not a p p l i e d hence e r r o r s i n some s t r u c t u r e amplitudes  of up t o 14% may o c c u r .  observed  39 STRUCTURE ANALYSIS OF DIFERROCENYL KETONE As the compound has c r y s t a l l i s e d i n a form such t h a t two molecules  occupy a space group which has f o u r e q u i v a l e n t p o s i -  t i o n s then one h a l f of t h e molecule  must be r e l a t e d t o t h e  o t h e r h a l f by some symmetry o p e r a t i o n p r e s e n t  i n the c e l l .  T h i s can o n l y occur i f the k e t o group l i e s on t h e two f o l d axis. A t h r e e d i m e n s i o n a l P a t t e r s o n f u n c t i o n was summed u s i n g the v i s u a l l y e s t i m a t e d s t r u c t u r e a m p l i t u d e s .  The c o o r d i n a t e s  of the Fe were c a l c u l a t e d from Harker s e c t i o n s at  U = 0 and  V = 0 t o be (0.2583, 0.2500, 0.4042), and s t r u c t u r e f a c t o r s were c a l c u l a t e d from t h e c o n t r i b u t i o n of t h e Fe atom.  As the  i r o n atom l i e s a t y = \ many of t h e c a l c u l a t e d s t r u c t u r e f a c t o r s had s y s t e m a t i c a l l y z e r o v a l u e s and t h e c o r r e s p o n d i n g  F Q terms  were o m i t t e d from the f i r s t t h r e e - d i m e n s i o n a l F o u r i e r summation.  In s p i t e of m i r r o r planes a t y = | and 3/4 t h e p o s i t i o n s  of n i n e atoms c o u l d be i d e n t i f i e d and s t r u c t u r e f a c t o r s were c a l c u l a t e d f o r a l l the hk.fi. r e f l e c t i o n s u s i n g the s c a t t e r i n g f a c t o r s from I n t e r n a t i o n a l Tables f o r X-ray C r y s t a l l o g r a p h y (6) and B = 3.5 A  f o r each atom.  The c o o r d i n a t e s of t h e  m i s s i n g atoms were d e r i v e d from a subsequent t h r e e  dimensional  F o u r i e r . ('Figure 2. j S t r u c t u r e f a c t o r s were c a l c u l a t e d and the d i s c r e p a n c y R was 0.37. The f i r s t c y c l e of ( b l o c k d i a g o n a l ) l e a s t squares r e f i n e ment i n d i c a t e d t h a t y p was < 0.2500. The f u n c t i o n m i n i m i s e d .2 was £ w ( | F | - |F |) w i t h /w = |F |/12 when | F 1 < 12 and e  0  C  0  0  bT  O  2  F i g u r e 2.  Superimposed s e c t i o n s of the e l e c t r o n d e n s i t y d i s t r i b u t i o n of the t h i r d F o u r i e r through the atomic c e n t r e s p a r a l l e l t o (001) r e v e a l i n g t h e l o c a t i o n of the carbon atoms 9, 10 and 11. Contours s t a r t at 2e.A and are at i n t e r v a l s of l e . A . A p e r s p e c t i v e drawing of the m o l e c u l e - i s a l s o shown i n d i c a t i n g the numbering system used; the i r o n atom i s o m i t t e d f o r clarity. -  /w = 1 2 / | F Q I when | F  Q  | > 12.  Two f u r t h e r c y c l e s w i t h the R v a l u e t o 0.20.  isotropic  temperature  f a c t o r s reduced  temperature  f a c t o r s were c a l c u l a t e d and a f t e r f o u r c y c l e s of  r e f i n e m e n t w i t h a n i s o t r o p i c temperature t o 0.16.  Anisotropic  f a c t o r s R was  The s h i f t s i n the p o s i t i o n a l and t h e r m a l  reduced  parameters  at t h i s s t a g e were so s m a l l t h a t r e f i n e m e n t would c o n t i n u e ho f u r t h e r w i t h t h i s d a t a , hence i t was d e c i d e d t o c o n t i n u e the r e f i n e m e n t w i t h c o u n t e r data which had j u s t been c o l l e c t e d . Three c y c l e s of l e a s t squares w i t h i s o t r o p i c temperature  fac-  t o r s reduced R t o 0.12 and f i v e f u r t h e r c y c l e s w i t h a n i s o t r o p i c t h e r m a l parameters reduced  i t t o 0.088.  In the f i n a l c y c l e  the c o o r d i n a t e s h i f t s were a p p r o x i m a t e l y one t h i r d of a s t a n d a r d d e v i a t i o n and so the r e f i n e m e n t was c o n s i d e r e d  terminated."  42 COORDINATES AND MOLECULAR DIMENSIONS The c o o r d i n a t e s , t h e i r s t a n d a r d d e v i a t i o n s and a n i s o t r o p i c temperature  f a c t o r s d e r i v e d from t h e f i n a l l e a s t squares  are g i v e n i n Table  I I I together with the f i n a l  cycle  i s o t r o p i c tempera-  t u r e f a c t o r s ; x, y and z a r e t h e c o o r d i n a t e s of t h e atoms expressed  as a f r a c t i o n of t h e m o n o c l i n i c c r y s t a l axes and  the s t a n d a r d d e v i a t i o n s a r e d e r i v e d from t h e f i n a l squares  r e s i d u a l s and a r e e x p r e s s e d  least  i n 8; t h e b ^ j a r e t h e  a n i s o t r o p i c t h e r m a l parameters i n t h e e x p r e s s i o n 2 2 2 exp - {b-^h + b 2 + 33^ + i 2 13 23 *• k  D  b  h  k  +  b  h £  +  b  k £  2  TABLE I I I . FINAL COORDINATES AND STANDARD DEVIATIONS ( 8 ) ; ISOTROPIC AND ANISOTROPIC (x 1 0 ) THERMAL PARAMETERS AND DEVIATIONS OF THE ATOMS (IN 8 ) FROM PLANES A ( ) AND B ( ^2 ) • 4  A l  Atom Fe 0  cd)C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) CUD Atom Fe 0 CU) C(2) C(3) C(4) C(5)  z  X  y  0 .2495 0 . 0000 0 . 0000 0 . 1270 0 .2 579 0 .3656 0 .3003 0 . 1492 0 . 1393 0 .2660 0 . 3791 0 .3260 0 . 1777  0.2422 0. 7029 0. 5037 0. 3975 0. 4974 0. 3463 0. 1461 0. 1680 0.2339 0. 3604 0.2209 0. 0096 0. 0196  . 1l l b  82 109 86 63 75 112 73  b  22  170 89 56 116 152 143 224  b  33  46 127 34 24 29 36 20  cr ( x )  0. 4038 0. 2500 0. 2500 0. 2657 0. 3078 0. 3132 0. 2716 0. 2414 0. 5083 0. 5577 0.,5629 0,. 5227 0.,4878  0. 0030 —  0. 017 0. 018 0. 021 0. 019 0. 019 0. 020 0. 023 0. 021 0. 022 0. 020 t'13  -18  41 40 -6 23 43 40 48  -  50 -7 -48 32  0.0053 0. 026 0. 039 0. 028 0. 029 0. 029 0. 030 0. 026 0. 041 0. 035 0. 037 0. 034 0. 034  —  l2  b  cr (z)  o-(y)  b  23 -  2  23 62 60 59  0. 0040 —  _.=  0. 023 0. 024 0. 026 0. 023 0. 024 0. 024 0. 026 0. 025 0. 026 0. 026  B(8  2  2.9 5. 1 3.4 1.9 2.2 2.7 2.4 1.9 3.6 3.7 3.6 3.5 3.7  <U>  B(A )  -1. 643 + 0. 012 +0. 002 +0., 001 -0. 004 +0. 005  1. 654  A  2  -  -  43 TABLE I I I (cont'd.) Atom  l l  b  C(6) C(7) C(8) C(9) C(10) C(ll)  b  87 145 122 111 119 117  22  b  99 356 363 293 266 2 74  33  12  b  21 37 21 27 26 39  55 90 6 -16 32 -68  b  13  b  27 120 45 5 25 80  A(A )  B(A )  -0.005  _  X  23  6 55 -16 3 82 96  2  +0.008 -0.014 + 0. 014 -0.009 +0.001  —  —  — —  The bond l e n g t h s and v a l e n c y angles a r e g i v e n i n Table IV together with t h e i r standard deviations. TABLE IV.  BOND LENGTHS AND ANGLES AND STANDARD DEVIATIONS.  Bond  I  Angle  a  O-C(l) C(l)-C(2)  o 1. 1. 23 43 A  0. 0 4 0. 02  C(2)-C(3) C(3)-C(4) C(4)-C(5) C(5)-C(6) C(6)-C(2) C(7)-C(8) C(8)-C(9) 'CO)-C(IO) c(io)-cdi) C(ll)-C(7) Mean C Car  1. 43 1. 45 1. 42 1. 50 1. 49 1. 48 1. 45 1. 44 1. 46 1. 44 1. 45  0. 0 3 0. 03 4 0. 037 0. 02 0. 03 0. 0 3 0. 0 4 0. 0 4 0. 0 3 0. 0 4 0. o i  Fe-C(2) Fe-C(3) Fe-C(4) Fe-C(5) Fe-C(6) Mean Fe-C ( r i n g A)  2.04 2.04 2.08 2.07 2,05 2.05  0.02 0.02 0.02 0.02 0.02 0.01  2.08 2.09 2.04 2.05 2.06 2.O65  0.02 0.02 O.O25 0.03 0.02 O.OI3  a r  Fe-C(7) Fe-C(8) Fe-C(9) Fe-C(10) Fe-C(11)  ;  Mean Fe-C ( r i n g B)  %  7  4  1  9  5  9  0  4  2  5  2  5  4  6 5  3 4  2  2  8  0  7  6  0-C(l)-C(2) C(l)-C(2)-C(3) C(l)-C(2)-C(6)  117.,2° 125. 2 127..9  2-4 I.83 1.96  C(2)-C(3)-C(4) C(3)-C(4)-C(5) C(4)-C(5)-C(6) C(5)-C(6)-C(2) C(6)-C(2)-C(3) C(7)-C(8)-C(9) C(8)-C(9)-C(10) C(9)-C(10)-C(ll) C(10)-C(ll)-C(7) C(ll)-C(7)-C(8) Mean  111., 6 106. 3 110. 0 105. 2 106. 9 107. 4 108. 6 107. 8 108. 65 107. 7 108. 00  1.9 2. 1 1.9 1 85 1 9 2 33 2 52 2 ^0 2.3 2. 5 0. 74  C(2)-Fe-C(7) C(3)-Fe-C(8) C(4)-Fe-C(9) C(5)-Fe-C(10) C(6)-Fe-C(ll) Mean C-Fe-C  105.5 108.3 106.6 106.3 104.4 106.2  0. 9 1.0 0.9 I.O5 1.0! 0. 50  0  4  4 2 0 4 7 3  v  6  9  4  8  7  3  2  2  6  8  44 The  l e a s t - s q u a r e s plane through t h e f i v e carbon atoms  bonded t o t h e k e t o group has e q u a t i o n A: 0.267 X' + 0.264 Y 0.927 Z' + 2.327 = 0 .  The mean plane through t h e o t h e r r i n g  has e q u a t i o n B: 0.283 X' + 0.283 Y - 0.916 Z' + 5.532 = 0 where X', Y and Z' a r e c o o r d i n a t e s i n 8 r e f e r r e d t o o r t h o g o n a l axes a, b and c .  The d e v i a t i o n s o f t h e atoms from t h e p l a n e s a r e  g i v e n i n Table I I I . The angle between t h e normals t o t h e p l a n e s i s 1.5°.  A l l t h e i n t e r m o l e c u l a r c o n t a c t s l e s s than  4.0 8 were c a l c u l a t e d and those l e s s than o r e q u a l are l i s t e d i n T a b l e V.  t o 4.0 %  A p a c k i n g diagram of t h e m o l e c u l e s  i s shown i n F i g u r e 3. TABLE V.  SHORTER INTERMOLECULAR DISTANCES  A l l t h e d i s t a n c e s 4. 0 8 between a s t a n d a r d molecule i t s neighbours a r e g i v e n . Atom (molecule 1)  to  0 0 C(4) C(4) C(5) C(5) C(5) C(5) C(5) C(6) C(6) C(7) C(10) C(10) C(ll) Molecule  Atom  in  1 2 3 4 5 6  at  Molecule 2 2 3 4 5 5 4 5 5 5 5 6 4 4 6  C(6) C(.ll) C(4) C(10) C(7) C(9) C(9) C(10) C(ll) C(7) C(ll) CUD C(9) C(10) CUD X X  1-x 1-x X -X  (1) and  y  i+y '  y -y -y -y  3.,30 3., 58 3., 75 3. 88 3., 99 3. 85 4,, 00 3.,48 3. 59 3. 90 3.,62 3. 69 3,, 92 3, 91 3. 87 z z  1-z  -i+z  1-z  O I F i g u r e 3.  i  2 i  o  i  i  4 A  P r o j e c t i o n of the s t r u c t u r e along [010] i l l u s t r a t i n g the p a c k i n g of the m o l e c u l e s i n the c r y s t a l .  46  The s t r u c t u r e f a c t o r s c a l c u l a t e d from the f i n a l c y c l e of r e f i n e m e n t are l i s t e d a l o n g s i d e the observed s t r u c t u r e f a c t o r s i n Table X X I I .  47  DISCUSSION The  a n a l y s i s has shown t h a t t h e s t r u c t u r e i s isomorphous  w i t h t h a t of f e r r o c e n y l r u t h e n o c e n y l  ketone (Table  II).  There  i s a t w o f o l d a x i s o f symmetry p a s s i n g through t h e c a r b o n y l group of t h e molecule which c o i n c i d e s w i t h t h e y a x i s of t h e u n i t c e l l as shown i n F i g . 2, hence o n l y h a l f of the m o l e c u l e i s unique and t h e o t h e r h a l f f o l l o w s by symmetry. s e v e r a l f e a t u r e s of t h e m o l e c u l a r  There a r e  s t r u c t u r e of d i f e r r o c e n y l  ketone which a r e i n t e r e s t i n g t o compare and c o n t r a s t w i t h s i m i l a r features i n b i f e r r o c e n y l . i n Table VI; A i s d e s i g n a t e d  These a r e t a b u l a t e d below  as t h e f i v e member r i n g which  i s carbon-carbon bonded t o t h e other h a l f of the m o l e c u l e and B i s t h e r i n g which i s n o t . TABLE VI.  MOLECULAR DIMENSIONS OF BIFERROCENYL AND DIFERROCENYL KETONE Biferrocenyl reference  Molecular  Symmetry  (44)  (45) 1  I f  2  Mean B f a c t o r : r i n g A Mean B f a c t o r : r i n g B Angle between planes A and B D i s t a n c e between p l a n e s A andB Fe d i s t a n c e from plane A  4. 3  Fe d i s t a n c e from plane B  1. 66  1. 66  Mean Fe-C(A) bond l e n g t h Mean Fe-C(B) bond l e n g t h Mean C(A)-C(A) bond l e n g t h Mean C(B)-C(B) bond l e n g t h Mean C(A)-Fe-C(B) bond angle Mean p r o j e c t e d C(A)-Fe-C(B) bond angle  2. 03 2. 05 1. 40 1. 41 169. 0 U 17°13'  2. 03 2. 04 1. 43 1.41  6. o 2. 8 ° 3. 30 1. 63  Diferrocenyl ketone  8  2  8  2.7 3.3 1.2°  f  8  3.32 1. 66  2  8  (mean) (mean)  —  16°  2  •>*22 3 .6 1 .5° 3 .30 1 . 64  8  8  1 . 65 2 . 05 2 . 06 1 . 46 1 .45 106.2 4 57' (  J  U  48 F i g u r e 4 shows t h e p r o j e c t i o n of one plane upon t h e o t h e r down the m o l e c u l a r a x i s which passes through the c e n t r e  of t h e r i n g s .  Each of t h e f i v e member carbon atom r i n g s i s p l a n a r and p a r a l l e l w i t h i n e x p e r i m e n t a l e r r o r and t h e i r o n atom i s approxi m a t e l y e q u i d i s t a n t from each of t h e r i n g s .  The temperature  f a c t o r s of r i n g B i n d i c a t e t h e atoms i n t h i s r i n g a r e undergoing more v i b r a t i o n than i n r i n g A and t h i s may account f o r t h e observation  t h a t t h e i r o n atom seems t o be s l i g h t l y n e a r e r t o  the atoms of r i n g A i n both b i f e r r o c e n y l and d i f e r r o c e n y l ketone though t h e d i f f e r e n c e i n the mean Fe-C bond l e n g t h i s of t h e o r d e r of t h e s t a n d a r d e r r o r . bond l e n g t h (1.41  i s 1.45 8, s l i g h t l y longer  A) o r f e r r o c e n e  than i n b i f e r r o c e n y l  d i c a r b o x y l i c a c i d (1.42 8)(49).  d i f f e r e n c e between t h e l o n g e s t lengths  The mean carbon-carbon  The  and s h o r t e s t carbon-carbon bond  i n both r i n g s i s 0.08 8; t h i s i s 1.6 times t h e s t a n d a r d  d e v i a t i o n of t h e mean hence (50) t h i s d i f f e r e n c e i s not c o n s i d ered s i g n i f i c a n t . lengths  Thus i n t h e c y c l o p e n t a d i e n y l  a r e a l l t h e same l e n g t h -  r i n g s t h e bond  1.45-8.  The most prominent d i f f e r e n c e between t h e b i f e r r o c e n y l and  d i f e r r o c e n y l ketone s t r u c t u r e s i s t h e d i f f e r e n c e i n con-  formation  which t h e r i n g s adopt.  In b i f e r r o c e n y l t h e r i n g s  are a p p r o x i m a t e l y midway between t h e e c l i p s e d (0°) and f u l l y s t a g g e r e d (36°) p o s i t i o n s t h e mean angle b e i n g 17°.  In d i f e r r o -  c e n y l ketone t h i s angle i s reduced t o 5° hence t h e r i n g s a r e i n an almost f u l l y e c l i p s e d c o n f o r m a t i o n ( t h e a n g l e s were found t o v a r y from +0°35' t o +7°57') s i m i l a r t o t h a t found i n f e r r o c e n e  49  F i g u r e 4.  P r o j e c t i o n of one r i n g onto the plane of the o t h e r down the l i n e j o i n i n g the c e n t r e s of the r i n g s i n h a l f of the molecule.  50 d i c a r b o x y l i c a c i d (mean angle 1.6°). mum  intermolecular contact 8;  t o be 3.67 distances  In b i f e r r o c e n y l the m i n i -  ( e x c l u d i n g hydrogen atoms) was  i n d i f e r r o c e n y 1 ketone t h e r e are f i v e  found  contact  l e s s than t h i s , hence i n t e r m o l e c u l a r f o r c e s p l a y a  l a r g e r part i n determining  the c o n f o r m a t i o n  of the r i n g s i n  d i f e r r o c e n y 1 ketone. The  r e s u l t s of t h i s i n v e s t i g a t i o n s u p p o r t the  experimental  previous  f i n d i n g s t h a t the carbon-carbon bond l e n g t h s  the c y c l o p e n t a d i e n y l r i n g s are a l l of the same l e n g t h .  in  In the  n o n - c r y s t a l l i n e s t a t e the r i n g s undergo f r e e r o t a t i o n but i n the c r y s t a l l i n e s t a t e the c o n f o r m a t i o n t o the o t h e r  of one r i n g w i t h  i s determined by the i n t e r m o l e c u l a r f o r c e s .  i s i n agreement w i t h the t h e o r i e s of Cotton and M o f f i t t (52).  and W i l k i n s o n  respect This (39)  (51) and w i t h the r e s u l t s of N.M.R. i n v e s t i g a t i o n s  CHAPTER I I I  THE STRUCTURES OF ANTI-8-TRICYCLO p-BROMOBENZENESULPHONATE  [3,2,1,0 ' ]OCTYL 2  4  AND ANTI-7-NORBORNENYL  p-BROMOBENZOATE  51 INTRODUCTION The r a t e s of s o l v o l y s i s of the compounds I, I I , I I I and IV ( F i g u r e 5, R = p-bromobenzenesulphony1) are i n the r a t i o 1:10 :10 :10 , 4  1 1  (53).  1 4  One of the t h e o r i e s p o s t u l a t e d t o  account f o r t h i s l a r g e v a r i a t i o n i s dependent on the bond a n g l e at the C(7) b r i d g i n g atom, q u a n t i t a t i v e e v i d e n c e b e i n g d e r i v e d from c a l c u l a t i o n s i n v o l v i n g i n f r a r e d s t r e t c h i n g f r e q u e n c i e s (53) or m o l e c u l a r models (54) assuming s t a n d a r d lengths  and  bond  angles.  The t h e o r y  postulates that increases  at C(7) are r e s p o n s i b l e  i n the b r i d g e  f o r the i n c r e a s i n g s o l v o l y t i c  angle  reactivity 2  on the b a s i s t h a t , as the t r a n s i t i o n s t a t e i n v o l v e s s p  hybrid-  i s a t i o n at atom 7, the compounds i n which the b r i d g e angle i s c l o s e s t t o 120° w i l l a c h i e v e t h i s s t a t e most r e a d i l y and hence r e a c t most r a p i d l y . P i n c o c k and W e l l s (55) have shown t h a t the r e a c t i o n of anti-7-norbornenol  w i t h diazomethane g i v e s one isomer of a n t i 2 4  8 - t r i c y c l o [3,2,1,0 ' j o c t a n o l i n 60% y i e l d and t h a t the r a t e of s o l v o l y s i s of e s t e r s of t h i s compound are of the same order as those of I.  Thus the a n a l y s e s  of I I I and V (R = p-bromo-  benzoate and p-bromobenzenesulphonate r e s p e c t i v e l y ) were undert a k e n t o e s t a b l i s h the c o n f i g u r a t i o n of the c y c l o p r o p y l methylene group of V and t o p r o v i d e  more d i r e c t measurements  c u l a r dimensions t o a s s i s t i n the i n t e r p r e t a t i o n  of the moleof the  s o l v o l y t i c r e a c t i v i t y i n norbornane d e r i v a t i v e s . For c l a r i t y and ease of r e f e r e n c e the numbering system of 2 4 a n t i - 8 - t r i c y c l o [3,2,1,0 ' j o c t y l p-bromobenzenesulphonate has  52  53 been changed t o be c o m p a t i b l e as shown i n F i g u r e 6.  w i t h t h a t of  anti-7-norbornenol  The compound w i l l be r e f e r r e d t o by i t s  c o n v e n t i o n a l name as numbered i n F i g u r e 5 ( V ) .  54 EXPERIMENTAL C r y s t a l s of a n t i - 8 - t r i c y c l o [ 3 , 2 , 1 , 0 ' ] o c t y l 2  4  p-bromo-  benzenesulphonate a r e c o l o u r l e s s needles e l o n g a t e d a l o n g b. The c r y s t a l used was 0.4 cms l o n g and 0.1 mm i n diameter. C r y s t a l s of a n t i - 7 - n o r b o r n e n y l p-bromobenzoate a r e c o l o u r l e s s prisms when grown by s u b l i m a t i o n but c r y s t a l l i s e as f l a t p l a t e s e l o n g a t e d a l o n g the a a x i s w i t h (001) developed grown from 30-40° petroleum  ether.  The c r y s t a l  finally  chosen had dimensions  0.1 x 0.6 x 1.4 mm.  s i o n s were determined  from r o t a t i o n and Weissenberg  graphs and checked on the G e n e r a l E l e c t r i c  when  The c e l l dimenphoto-  Spectrogoniometer.  The c r y s t a l data are g i v e n i n Table V I I . For both c r y s t a l s the i n t e n s i t i e s of the r e f l e c t i o n s were measured on a G e n e r a l E l e c t r i c XRD5  Spectrogoniometer  w i t h S i n g l e C r y s t a l O r i e n t e r and the moving c r y s t a l - m o v i n g counter technique.  The d i f f r a c t e d beam (Cu r a d i a t i o n ) was  f i l t e r e d by means of a n i c k e l f i l t e r and p u l s e h e i g h t a n a l y s e r before being  counted. 2 4  The c r y s t a l of a n t i - 8 - t r i c y c l o [ 3 , 2 , 1 , 0 ' ] o c t y l  p-bromo-  benzenesulphonate was mounted w i t h b p a r a l l e l t o the cb a x i s of the g o n i o s t a t . A l l the r e f l e c t i o n s i n the range o . 0 < 26 < 90 ( c o r r e s p o n d i n g t o a minimum i n t e r p l a n a r s p a c i n g o of d = 1.09 A) were measured and of the 1,062 examined, 1,034 (97%) had an i n t e n s i t y above background. h O i r e f l e c t i o n s were a l s o measured.  Eleven higher  The c r y s t a l of a n t i - 7 -  n o r b o r n e n y l p-bromobenzoate used was mounted w i t h a t o the $ a x i s of the g o n i o s t a t .  order  parallel  Of the 2,506 r e f l e c t i o n s i n  TABLE V I I . CRYSTAL DATA (\, CuK ANTI-8-TRICYCL0[3,2,1,0 > ] OCTYL p-BROMOBENZENESULPHONATE (EXO ISOMER) 2  Formula  M.P. C r y s t a l System a(8) b(°0 c(8) 6 U(8 ).. Dm (aq. KI) g.cmr Z D g.cmr F (000) Absorption coefficient y Absent r e f l e c t i o n s 3  x  Space group  343.2  293.2  1 4  57 cm. hkjj, when (h + k ) i s odd hOl when £ i s odd 4 6 C c ( C ) or C2/c ( C ) * s  ANTI-7-NORBORNENYL p-BROMOBENZOATE C H 02Br  1 5  86°C Monoclinic 23.76 + 0.02 7.06 + 0.01 19.49 + 0.02 120.26° + 3' 2825 1.62 8 1.614 1392  3  = 1.5418 A)  C H 03SBr 1 4  M.W.  4  a  2 h  A n a l y s i s proceeded s a t i s f a c t o r i l y u s i n g C2/c,  l 3  70-73°C Monoclinic 8.81 + 0.02 10.17 + 0.02 14.10 + 0.03 99°51* + 5' 1245 1.54 4 1.561 592 _^ 48 cm. hO£ when h i s odd OkO when k i s odd P2 /a 1  56 the range 0 < 2Q < 145° (minimum i n t e r p l a n a r s p a c i n g d 2,059 (82%) had i n t e n s i t y  above background however  number were of low i n t e n s i t y .  =0.81  a large  No c o r r e c t i o n s were made f o r  a b s o r p t i o n hence some of the i n a c c u r a c i e s  i n the measured  s t r u c t u r e a m p l i t u d e s can be a t t r i b u t e d t o t h i s cause. s e t s of i n t e n s i t i e s were c o r r e c t e d f o r background e f f e c t s , and s t r u c t u r e a m p l i t u d e s were d e r i v e d .  Both  and Lp  57 STRUCTURE ANALYSIS OF anti-8-TRICYCLO[3,2,1,0 ' ]OCTYL p-BROMOBENZENESULPHONATE 2  From t h e 137 hO& data a b - a x i s  Patterson  4  p r o j e c t i o n was  computed and from t h i s the x and z c o o r d i n a t e s of t h e Br and S atoms were e s t i m a t e d .  Structure  f o r t h e hO£ r e f l e c t i o n s u s i n g and  f a c t o r s were c a l c u l a t e d  t h e s c a t t e r i n g f a c t o r s of Br  S g i v e n i n t h e I n t e r n a t i o n a l Tables f o r X-ray C r y s t a l -  l o g r a p h y and w i t h B = 4.5 based on t h e c o n t r i b u t i o n s  f o r each atom.  The hO£ F o u r i e r  of t h e Br and S atoms i n d i c a t e d  c l e a r l y t h e p o s i t i o n s of t h e r e m a i n i n g atoms. two  Even a l t h o u g h  of t h e atoms of the c y c l o p r o p y l  r i n g o v e r l a p p e d t h e pro-  j e c t i o n showed t h a t t h e c y c l o p r o p y l  methylene group had t h e  exo  configuration.  factors derived  The d i s c r e p a n c y of t h e h0£ s t r u c t u r e  from t h e c o n t r i b u t i o n s  of a l i t h e atoms was  c a l c u l a t e d t o be R = 0.188. A three dimensional Patterson  f u n c t i o n was c a l c u l a t e d and  the x, y and z parameters of t h e Br and S atoms were c a l c u l a t e d . x  Br  a n c  * B^ Z  w  projection. two  e  r  e  ^  n  agreement w i t h those d e r i v e d  from t h e hO I  As y g was almost z e r o the y c o o r d i n a t e s of t h e r  carbon atoms o f t h e benzene r i n g t o which t h e Br and S  were bonded were c a l c u l a t e d (56))  (assuming normal bond  distances  i n o r d e r t o a s s i s t i n t h e d e t e r m i n a t i o n of t h e s i g n s of  the s t r u c t u r e f a c t o r s .  Structure  f a c t o r s based on t h e con-  t r i b u t i o n s of these f o u r atoms, were c a l c u l a t e d and a t h r e e d i m e n s i o n a l F o u r i e r of t h e observed s t r u c t u r e  amplitudes  t o g e t h e r w i t h t h e s i g n s of t h e c a l c u l a t e d s t r u c t u r e was  summed.  factors  From t h e r e s u l t i n g t h r e e d i m e n s i o n a l e l e c t r o n  58  d e n s i t y d i s t r i b u t i o n a l l t h e atoms were c l e a r l y r e s o l v e d and x, y  and z c o o r d i n a t e s  were measured f o r each atom.  Assuming  a temperature f a c t o r of B = 4 . 5 8 , s t r u c t u r e f a c t o r s f o r a l l 2  the r e f l e c t i o n s were c a l c u l a t e d u s i n g a l l the atoms and t h e discrepancy,  R, was 0 . 2 8 .  Refinement of t h e p o s i t i o n a l and i s o t r o p i c t h e r m a l p a r a meters proceeded i n i t i a l l y u s i n g the method of d i f f e r e n t i a l syntheses ( 5 7 ) .  C a l c u l a t e d s y n t h e s e s were a l s o computed i n  o r d e r t o a p p l y the " b a c k s h i f t " c o r r e c t i o n s t o the atomic c o o r d i nates and r e f i n e the i s o t r o p i c temperature parameters. c y c l e s of t h i s reduced R t o  0 . 1 2 5 .  Five  Refinement t o c o m p l e t i o n  was c a r r i e d out i n t h r e e c y c l e s by ( b l o c k d i a g o n a l ) l e a s t s q u a r e s ; i n the f i n a l c y c l e , a n i s o t r o p i c t h e r m a l parameters were used f o r those atoms whose t h e r m a l motion was The f u n c t i o n m i n i m i s e d was  EW(|FQ|  - IF  c  greatest.  | ) , w i t h Jw =  when | F Q | < 4 4 and /w = 4 4 / | F Q j when | F Q | > 4 4 .  The  |FQ  |/44  coordinate  s h i f t s i n the f i n a l c y c l e were z e r o f o r Br and S and f o r the C and  0  atoms the mean s h i f t s were  0 . 0 0 4 ,  i n the x. Y and z d i r e c t i o n s r e s p e c t i v e l y . crepancy, R, was  0 . 0 9 3  f o r the  1,045  0 . 0 0 5  and  0 . 0 0 4  The f i n a l  dis-  observed r e f l e c t i o n s .  °.  2  59  ATOMIC PARAMETERS AND MOLECULAR DIMENSIONS The c o o r d i n a t e s and temperature l e a s t squares  f a c t o r s from t h e f i n a l  a r e g i v e n i n Table V I I I , x. y and z a r e t h e  f r a c t i o n a l c o o r d i n a t e s r e f e r r e d t o t h e a, b, and c axes respectively.  B a r e t h e i s o t r o p i c temperature  f a c t o r s and  b ^ j t h e a n i s o t r o p i c t h e r m a l parameters o f t h e atoms of g r e a t est  i n t e r e s t i n the expression: 2  ^33^  +  b  23 ^ n  +  b  l3  n J i  +  k-j^hk).  T  n  exp - { b ^ h ^ e  + h22^  +  bond d i s t a n c e s and  valency angles together w i t h t h e i r standard d e v i a t i o n s (computed from t h e l e a s t squares Table  IX. The l e a s t squares  r e s i d u a l s ) are given i n  planes which a r e of i n t e r e s t  i n t h e t r i c y c l o o c t a n e n u c l e u s were computed and a r e g i v e n i n Table X t o g e t h e r w i t h t h e d i s p l a c e m e n t s  of t h e atoms from  these planes and t h e a n g l e s between t h e p l a n e s . o e q u a t i o n s X', Y and Z  ?  In t h e  are coordinates i n A r e f e r r e d t o  o r t h o g o n a l axes a, b and c .  The most s i g n i f i c a n t  m o l e c u l a r d i s t a n c e s <4.0 8 a r e l i s t e d  inter-  i n Table X I .  A f i n a l t h r e e d i m e n s i o n a l F o u r i e r was summed and s u p e r imposed s e c t i o n s of t h e e l e c t r o n d e n s i t y through t h e atomic c e n t r e s p a r a l l e l t o (010) a r e shown i n F i g u r e 6 t o g e t h e r w i t h a p e r s p e c t i v e drawing system used.  of t h e molecule  i n d i c a t i n g t h e numbering  The p a c k i n g of t h e m o l e c u l e s  i s i l l u s t r a t e d i n F i g u r e 7. f i n a l cycle are l i s t e d  i n the u n i t  cell  The s t r u c t u r e f a c t o r s from t h e  i n appendix I I , Table X X I I I .  c  Oi  o  F i g u r e 6.  Superimposed s e c t i o n s of the f i n a l t h r e e - d i m e n s i o n a l e l e c t r o n d e n s i t y d i s t r i b u t i o n t h r o u g h t h e atomic c e n t r e s p a r a l l e l t o (010). Contours s t a r t at 2 e A and are a t i n t e r v a l s of l e . A f o r Cand 0, 2 e . A f o r S and 5e.A~ f o r B r . A p e r s p e c t i v e drawing i n d i c a t i n g the numbering system adopted i s a l s o shown. - 3  3  - 3  - 3  61 TABLE V I I I .  Atom  FINAL POSITIONAL (FRACTIONAL) AND THERMAL PARAMETERS z  ]B  (8  X  y  Br  0.. 1131  0., 0085  0. 3837  S  0..2367  0., 6539  0., 6484  3 . 15  0(1)  0.. 1731  0,.7434  0,,6382  (3 .29)  0(2)  0.,2736  0., 5709  0., 7260  (4 .20)  0(3)  0.,2651  0. 8014  0.,6243  (4 .88)  C(l' )  0. 1520  0. 2010  0. 4625  4 . 01  C(2 ' )  0. 1620  0. 3794  0.,4408  4 . 65  C(3 ' )  0. 1890  0. 5176  0. 4974  4 .05  C(4' )  0.,2066  0. 4703  0. 5772  3 . 14  C(5')  0. 1983  0.2911  0. 5969  4 . 16  C(6')  0. 1717  0. 1543  0. 5421  4 .43  C(l)  0. 0687  0. 5776  0. 5930  4 .69  C(2)  0. 0309  0. 5082  0. 6319  (5 . 95)  C(3)  0. 0568  0. 6318  0. 7071  (6 .36)  C(4)  0. 1069  0. 7625  0. 7023  4 .86  C(5)  0. 0688  0. 9054  0. 6361  6 . 05  C(6)  0. 0407  0. 7838  0. 5599  5 .82  C(7)  0. 1337  0. 6328  0. 6637  (3 . 75)  C(8)  0. 0673  0. 4213  0. 7138  (7 .29)  2  (5 . 50)  62 ANISOTROPIC THERMAL PARAMETERS ( x l O ) Atom  I'll  Br  P-33  k-23  ^13  35  ^22 264  50  -15  44  ^12 2  0(1)  18  190  31  6  29  22  0(2)  24  227  32  9  24  4  0(3)  27  210  51  21  42  -3  C(2)  30  303  54  -58  36  -23  C(3)  32  383  58  -104  48  -39  C(7)  21  204  30  2  26  3  C(8)  39  448  64  -1  62  -57  63 TABLE IX.  BOND DISTANCES AND STANDARD DEVIATIONS (ft), AND VALENCY ANGLES (DEGREES).(THE STANDARD DEVIATIONS OF THE ANGLES VARY FROM 0.6° t o 1.9°).  Bond  l_  Bond  a  Br-C(l')  1 90  0 01  6  S-O(l)  1 55  0 oi  0  S=0(2) S=0(3) Mean S=0  1 44 1 44 1 44  0 oil 0 oi  S-C(4*)  1 77  0 oi  C(l')-C(2') C(2')-C(3') C(3 ' )-C(4 * ) C(4')-C(5') C(5')-C(6') C(6')-C(l') Mean C - C  1 1 1 1 1 1 1  0. 0 2 0. 0 2 0. 02 0. 02 - i 0. 0 2 0. 0 2 0. o i  a r  a r  39 37 43 37 34 42 39  2  6  3  3  2  0(1) -C(8)  1 48  0. 0 2 i  C ( l ) -C(2) C(2) -C(8) C(8) -C(3) C(2) -C(3) C(3) -C(4) C(4) -C(5) C(5) -C(6) C(6) -C(l) C(l) -C(7) C(4) -C(7) Mean C-C  1 1 1 1 1 1 1 1 1 1 1  0. 02 8 0. 0 3 ! 0. 0 3 ! 0.03! 0. 02 0. 02o 0. 0 3 ! 0. 03 0 0. 0 2 0. 0 2 o.oi  52 51 50 54 55 52 54 59 51 51 53  fi  8  g  0  4 4  0  e  Angle  £_  Angle  e  Br-C(l')-C(2') Br-CCl )-C(6*) S-C(4')-C(3') S-C(4')-C(5') C(l')-C(2')-C(3 ) C(2')-C(3')-C(4') C(3' )-C(4')-C(5 ) C(4')-C(5')-C(6 ) C(5')-C(6 )-C(l ) C(6")-C(l')-C(2' ) Mean  119 118 117 121 119 118 121 121 118 122 119  5 4 6 2 2 1 2 4 0 2 7  C ( l ) -C(2) -C(3) C(4) -C(3) -C(2) C ( l ) -C(6) -C(5) C(4) -C(5) -C(6) C(2) - C ( l ) -C(6) C(2) - C ( l ) -C(7) C(6) - C ( l ) -C(7) C(3) -C(4) -C(5) C(3) -C(4) -C(7) C(5) -C(4) -C(7)  103. 8 103. 4 103. 3 103. 3 105. 3 102. 5 99. 2 107. 5 101. 4 101. 5  0(l)-S-0(2) 0(l)-S-0(3) 0(1)-S-C(4') 0(2)-S-0(3) 0(2)-S-C(4') 0(3)-S-C(4') Mean a t S  109 104 102 120 108 110 109  8 4 5 0 6 1 2  C ( l ) -C(2) -C(8) C(4) -C(3) -C(8)  119. 4 119. 9  C(2) -C(8) -C(3) C(8) -C(3) -C(2) C(8) -C(2) -C(3)  61. 5 59. 5 59. 0  S-0(l)-C(8)  118. 6  0(1)-C(7)-C(1) 0(1)-C(7)-C(4)  110 9 110. 0  C(l)-C(7)-C(4)  96. 7  1  !  64 TABLE X.  EQUATIONS OF VARIOUS PLANES , DEVIATIONS OF THE ATOMS FROM THE PLANES (&), AND ANGLES BETWEEN THE NORMALS.  Equations A:  C ( l ) , C(4), C(5), C(6) 0.979X' + 0.197Y - 0.058Z' + 3.889 = 0  B:  C ( l ) , C(2), C(3), C(4) 0.528X' - 0.670Y + 0.522Z' - 0.271 = 0  C:  C ( 2 ) , C ( 3 ) , C(8) 0.992X' + 0.124Y + 0.011Z' + 4.870 = 0  D:  C ( l ) , C ( 4 ) , C(7) 0.367X' + 0.774Y - 0.515Z* + 3.530 = 0  Deviat ions Atom C(l) C(2) C(3) C(4) C(5) C(6) C(7)  ^A 0.006 -0.006 0.007 -0.009  C(8)  B  0 -0.007 +0.006 0  A  C 0 0  0  Angles A  A  \ B  111°  A/\ p  123°  B /"\ D  126°  B /"\C  117°  A  D 0 0 0  65 TABLE XI.  SHORTER INTERMOLECULAR DISTANCES  (A)  A l l i n t e r m o l e c u l a r d i s t a n c e s < 4°. between a standard (1) and neighbouring molecules were c a l c u l a t e d ; only the more s i g n i f i c a n t c r y s t a l l o g r a p h i c a l l y - i n d e p e n d e n t s e p a r a t i o n s are l i s t e d .  Atom (molecule 1)  to  Br Br S 0(1) 0(2) 0(3) 0(3) C(l) C(5) C(4)  Atom  in  Molecule  0(3) C(4') 0(2) 0(2) C(5') C(2') C(3') CQ) 0(2) 0(2)  6 6 5 5 5 10 10 2 5 5  Molecule 1  x  y  z  2  -x  i-y  1-z  5  4-*  i+y  2~z  6  i-x  1  1-z  10  i-x  2  3  V  y  2"  y  3  1-z  o d(A) 3.69 3.96 3.92 3.25 3.53 3.45 3.33 3.62 3.53 3.28  F i g u r e 7.  P a c k i n g diagram  of the molecules  p r o j e c t e d a l o n g b.  67 STRUCTURE ANALYSIS OF anti-7-NORBORNENYL  p-BROMOBENZOATE  Three a x i a l P a t t e r s o n p r o j e c t i o n s were summed and from each of these t h e x, y and z c o o r d i n a t e s of the Br atom were d e r i v e d ; u n f o r t u n a t e l y i t l a y i n t h e pseudo s p e c i a l o2 (0.25, 0.07, 0.23).  A v a l u e of B = 4.0 A  position  was assumed f o r  the Br atom and s t r u c t u r e f a c t o r s were d e r i v e d u s i n g the s c a t t e r i n g f a c t o r curve g i v e n i n the I n t e r n a t i o n a l T a b l e s . The R f a c t o r , E l 0> - l c / E | F | , was 0.586. T h i s h i g h F  F  0  v a l u e was due t o the l a r g e number of s y s t e m a t i c a l l y s m a l l v a l u e s of F  c  which o c c u r r e d f o r r e f l e c t i o n s i n which (h + k)  was even when (h + I) was odd and f o r (h + k) odd when (h + £) was even.  A t h r e e d i m e n s i o n a l F o u r i e r was summed u s i n g a l l  the observed s t r u c t u r e f a c t o r s save those i n which the s i g n s were not u n i q u e l y determined  ( a p p r o x i m a t e l y 500 o m i t t e d ) .  In t h i s way the f a l s e symmetry a r i s i n g from the pseudo s p e c i a l p o s i t i o n of the Br atom was p a r t i a l l y d e s t r o y e d i n the r e s u l t i n g e l e c t r o n d e n s i t y d i s t r i b u t i o n and t h e p o s i t i o n s of a l l t h e r e m a i n i n g atoms were a b l e t o be i d e n t i f i e d .  Structure factors  were c a l c u l a t e d u s i n g B r , 0 and C s c a t t e r i n g curves from I n t e r n a t i o n a l Tables and assuming B = 4.0 % atoms.  f o r a l l the  The i n i t i a l d i s c r e p a n c y , R, was 0.39 f o r t h e observed  r e f l e c t ions. Three c y c l e s of d i f f e r e n t i a l syntheses w i t h c o r r e c t i o n s f o r s e r i e s t e r m i n a t i o n e r r o r s by the " b a c k s h i f t " method R t o 0.22.  Two c y c l e s of l e a s t squares w i t h i s o t r o p i c  parameters reduced R t o 0.20.  The f u n c t i o n m i n i m i s e d  reduced thermal  was  68  Ew( | F | - |F |) 0  when  2  c  |FQ|»20.  TWO  w i t h /w = | F |/20 when |F | < 20 and 4 = 20/|F | 0  Q  further cycles with anisotropic  parameters reduced R t o 0 . 1 8 .  Q  thermal  F u r t h e r r e f i n e m e n t was attempted  by c a l c u l a t i n g observed and c a l c u l a t e d d i f f e r e n t i a l s y n t h e s e s but these i n d i c a t e d no change i n t h e c o o r d i n a t e s of t h e Br and o n l y s h i f t s of  0.002,  0.002,  0.001  8 i n t h e x, y and  t i o n s r e s p e c t i v e l y of t h e oxygen and carbon atoms.  z  direc-  Structure  f a c t o r s were not r e c a l c u l a t e d on the b a s i s of these s h i f t s .  ATOMIC PARAMETERS AND MOLECULAR DIMENSIONS The f i n a l c o o r d i n a t e s and a n i s o t r o p i c temperature are g i v e n i n Table X I I t o g e t h e r w i t h t h e i r r e s p e c t i v e deviations residuals.  factors standard  which have been c a l c u l a t e d from t h e l e a s t squares  FINAL POSITIONAL PARAMETERS WITH STANDARD DEVIATIONS (8) AND ANISOTROPIC THERMAL PARAMETERS ( b i j x 1 0 )  TABLE X I I .  4  z  a(x)  0..0733 0. 0652 0.2393 0. 0945 0. 0171 0. 0349 0. 1264 0. 1976 0. 1841  0,,2343 0., 7065 0.,6569 0.,3600 0.,4352 0, 5252 0. 5450 0.4673 0.3761  0 .0021 0 . 012 0 . 016 0., 012  0. 1501 0. 1716  0. 6399 0. 8630  C(4) C(5) C(6)  0. 1383 0. 0149 0. 1912 -0. 0389 0.3645 -0. 0501 0.4216 0. 0951  C(7)  0. 1483  Atom Br 0(1) 0(2) C(l') C(2')  X  0.2540 0. 1719 0. 0241 0.2085  C(3') C(4') C(5')  0.2817 0.2472 0. 1400 0. 0589  C(6' ) C(7' )  0. 0977 0. 1050  C(l) C(2)  0.2679 0.2373 0. 1848  C<3)  y  0.0861  0,. 018 0 .014 0.. 0,. 0., 0., 0.,  o(y)  0 . 0023 0 .011 0 . 013 0 . 014 0 . 018 0 . 015 0 . 014 0 .016  o(z)  bll  b  0 .0016 0 . 009 0 .012 0 . 009 0 . 015  193 155  135 93 88 146  31 55 32  73 47 77 74  48 44 34 37  93 93 90 132  37 42 33  239 113 170  0 .015 0 . 014 0 . 014 0 . 013 0,. 014 0,. 015  96 131 145 139 98 248  0,.018 0. 013  237 127 145  22  b  33  48  016 016 016 015  0 .016 0 . 015  0.9628 0.9609  023 0., 022 0. 019  0 .017 0 . 020 0,. 018  0. 8620  0. 020  0.8532 0.8561  0. 015 0. 018  0 . 017 0.. 017 0,. 024  0., 015 0., 014 0. 017  102 159  95 99  47 60  0.8038  0. 016  0,.016  0., 013  174  79  35  179 100  42 31 44  b  23  b  13  b  12  -19 25 -15 -45 -12 10 5 6  55 6 24 6 -11 -12 -8 -62  -36  11 -63 28  11 50  5 -11  13 10  7 -28 3  51 62 62  -8 1 -34  29 23  -6  9  17 30 68  -19  32  29  -18  55  126 10 45  26  70 The bond l e n g t h s and a n g l e s and t h e i r s t a n d a r d d e v i a t i o n s are g i v e n i n Table X I I I . TABLE X I I I .  BOND DISTANCES AND STANDARD DEVIATIONS (8) AND BOND ANGLES  The a n g l e s have s t a n d a r d d e v i a t i o n s i n t h e range 0.9° - 1.6° . Bond  ii  Br-C(l')  1,.90  0,, o i 2  C ( l ' )-C(2 ' ) C(2 ' )-C(3 ' ) C(3')-C(4') C(4 • )-C(5< ) C(5')-C(6' ) C(6')-C(l' ) Mean C - C  1,,39 1,,37 1,.39 1,, 40 1,,39 1.,38 1. 39  0,,02 0, 0 2 0,. 02 0., 02J 0,. 02 ! 0,,01 0.,00  C(4')-C(7') C(7')-0(2) C(7 )-0(l) 0(1)-C(7)  1.,44 1.,20 1.,34 1..44  0,,02! 0., 017 0.,01 0,,01  C(l)-C(2) C(3)-C(4) C(4)-C(5) C(5)-C(6) C(6)-C(l)  Mean C-C  1,, 52 1.,51 1. 56 1., 56 1., 58 1,, 50 1. 52 1., 54  0., 0 2 0.. 0 2 0. 0 2 0.,02 0.,02 0.,02 0.,02 0.,00  C(2)-C(3)  .1. 34  0.,02  a r  f  C(l)-C(7) C(4)-C(7)  a r  a  Angle  0  2  x  9  8  8  8  3  5  7  3  3  9  6  7 4  6(°)  Br-C(l')-C(2') Br-C(i')-C(6') C(6»)-C(l')-C(2') C(l')-C(2')-C(3') C ( 2 ' ) - C ( 3 ' )-C(4') C(3')-C(4')-C(5') C(4')-C(5')-C(6') C(5')-C(6')-C(l*) C(3')-C(4<)-C(7') C(5')-C(4 »)-C(7')  120. 3 119. 8 119. 8 119. 1 122. 9 117. 5 119. 8 120. 5 124. 0 118. 5  C(4')-C(7')-0(2) C(4»)-C(7')-0(l) 0(1)-C(7')-0(2)  122. 6 113. 9 123. 5  C(7')-0(l)-C(7) 0(1)-C(7)-C(1) 0(1)-C(7)-C(4)  117. 2 114. 4 109. 1  C(2)-C(l)-C(6) C(2)-C(l)-C(7) C(6)-C(l)-C(7) C(l)-C(2)-C(3) C(2)-C(3)-C(4) C(3)-C(4)-C(5) C(3)-C(4)-C(7) C(5)-C(4)-C(7) C(4)-C(5)-C(6) C(5)-C(6)-C(l) C(l)-C(7)-C(4)  103. 7 99. 6 101. 9 107. 9 107. 0 107. 0 98. 6 100. 0 104. 2 101. 1 95. 6  The e q u a t i o n s o f t h e p l a n e s i n t h e n o r b o r n e n y l n u c l e u s , t h e atom d e v i a t i o n s from t h e s e p l a n e s and t h e a n g l e s between t h e p l a n e s are g i v e n i n Table XIV;  X', Y and Z * t o t h e o r t h o g o n a l axes a, b and c .  f  a r e i n 8 and a r e r e f e r r e d  0,2  I i i i i I  0 F i g u r e 8.  I  I  I  I  2  3  4  I  5 A  Superimposed s e c t i o n s of t h e t h r e e - d i m e n s i o n a l e l e c t r o n - d e n s i t y d i s t r i b u t i o n through the atomic c e n t r e s p a r a l l e l t o (100). Contours s t a r t at 2 e . A and are a t i n t e r v a l s of l e . A f o r C and 0 and 5 e . A f o r B r . A numbered p e r s p e c t i v e drawing i s a l s o shown. -3  - 3  -3  72 TABLE XIV.  EQUATIONS OF VARIOUS PLANES, DEVIATIONS OF THE ATOMS FROM THE PLANES (A) AND ANGLES BETWEEN THE NORMALS.  Equations A:  C ( l ) , C ( 4 ) , C ( 5 ) , C(6) -0.064X' + 0.034Y - 0.997Z* + 11.924 = 0  B:  C ( l ) , C ( 2 ) , C ( 3 ) , C(4) -0.908X' + 0.300Y - 0.290Z' + 3.288 = 0  D:  C ( l ) , C ( 4 ) , C(7) 0.766X' - 0.237Y - 0.598Z' + 7.366 = 0  Deviations Atom  A  A  C(l) C(2) C(3) C(4) C(5) C(6) C(7)  0.007  A  -0.008 0.011 -0.011  Angles  A/\B  B  0.016 -0.025 0.021 -0.012  A  D  0 0 0  111° 123° 126°  A l l the i n t e r m o l e c u l a r d i s t a n c e s l e s s than 3.80 A are l i s t e d i n Table XV. interactions.  These c o r r e s p o n d t o normal van der Waals  73 TABLE XV.  SHORTER INTERMOLECULAR DISTANCES  A l l i n t e r m o l e c u l a r d i s t a n c e s < 3. between a s t a n d a r d molecule (1) and i t s neighbours are g i v e n Atom (molecule 1)  Atom  to  0(1) 0(1) 0(2) C(l') C(2») C(2 ' ) C(3' ) C(3 ») C(3') C(4' ) C(4') C(4') C(3) Br Br Molecule  in  Molecule 2 2 3 2 3 2 3 2 2 3 2 2 5 4 4  C(l') C(6» ) C(6) C(7') C(5') C(7*) 0(2) C(4') C(5') 0(2) C(4') C(5') C(3) C(5) C(6) 1  x  y  z  2  -x  -y  1-z  2 +  4  1-X  -y  1- z  5  -X  -y  2- z  2-y  A f i n a l t h r e e - d i m e n s i o n a l F o u r i e r was imposed s e c t i o n s through  summed and  Figure 9 i l l u s t r a t e s  c u l e s i n the u n i t c e l l .  super-  the atomic c e n t r e s are shown i n  F i g u r e 8 t o g e t h e r w i t h a numbered p e r s p e c t i v e drawing the molecule.  70 53 52 72 77 79 62 76 60 74 64 72 62 78 74  z  3  x  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  the p a c k i n g of the mole-  The f i n a l observed  s t r u c t u r e f a c t o r s are l i s t e d  of  and  calculated  i n Appendix II: Table XXIV.  75 DISCUSSION The e s s e n t i a l f e a t u r e s of t h e t r i c y c l o - o c t a n e and norbornene n u c l e i a r e summarised i n F i g u r e 10 and Table XVI. TABLE XVI.  CORRESPONDING INTERPLANAR ANGLES AND  BOND LENGTHS i n t h e TRICYCLO-OCTANE and NORBORNENE NUCLEI C(l)-C(2)  1.52 8  1.52 8  C(3)-C(4)  1.55  1.51  C(l)-C(6)  1.59  1.58  C(4)-C(5)  1.52  1.56  C(5)-C(6)  1.54  1.56  C(l)-C(7)  1.51  1.50  C(4)-C(7)  1.51  1.52  C(2)-C(3)  1.54  1.34  I I I °  iii°  Angles A  A  B  A/N.D  123°  123°  B  126°  126°  A  D  The a n a l y s i s has shown t h a t t h e c o n f i g u r a t i o n of t h e c y c l o p r o p y l methylene group i s exo. symmetry m w i t h i n e x p e r i m e n t a l e r r o r .  Both s k e l e t o n s have In both s t r u c t u r e s  the carbon carbon s i n g l e - b o n d l e n g t h s a r e normal, t h e mean v a l u e b e i n g 1.53 8.  The carbon carbon double bond l e n g t h  was measured t o be 1.34 8.  The c o r r e s p o n d i n g i n t e r p l a n a r  a n g l e s i n b o t h n u c l e i a r e i d e n t i c a l but t h e bond a n g l e s a r e  gure 1 0 .  Bond a n g l e s i n the t r i c y c l o - o c t a n e and norbornene n u c l e i  77 a l l l e s s than the t e t r a h e d r a l angle i n both s t r u c t u r e s they are considerably propyl  strained.  The bond a n g l e s i n the c y c l o -  r i n g are a l l a p p r o x i m a t e l y 60°.  t h a t the i n t r o d u c t i o n  hence  The a n a l y s i s  indicates  of a double bond between C(2) and C(3) i n  the norbornane s k e l e t o n  causes a s l i g h t i n c r e a s e  i n the  C ( l ) - C ( 2 ) - C ( 3 ) and C ( 2 ) - C ( 3 ) - C ( 4 ) bond a n g l e s but does not change s i g n i f i c a n t l y the C ( l ) - - - C ( 4 )  distance  nor the C(7)  b r i d g e h e a d angle (2.26 8 and 97° i n the t r i c y c l o - o c t a n e ton and 2.24 8 and 96° i n the norbornene s k e l e t o n ) .  skele-  Electron  d i f f r a c t i o n r e s u l t s (58) have shown a l s o t h a t the b r i d g e h e a d angle i n n o r b o r n a d i e n e ( ( I V ) where 0 R = H) i s 97°. A n t i - 7 - n o r b o r n e n y l p-bromobenzenesulphonate undergoes s o l v o l y s i s 10** times f a s t e r than t h e c o r r e s p o n d i n g  derivative  of a n t i - 8 - t r i c y c l o [ 3, 2 , 1 , 0 ' ] o c t a n o l , however, t h i s v a r i a t i o n 2  cannot be e x p l a i n e d  4  i n terms of the d i f f e r e n c e  i n the C(7)  b r i d g e h e a d a n g l e s between the two n u c l e i as t h e r e i s i n s u f f i c i e n t v a r i a t i o n between the two a n g l e s as measured i n the crystalline  state.  CHAPTER IV  THE CRYSTAL AND MOLECULAR STRUCTURE OF OCHOTENSINE  78 INTRODUCTION The a l k a l o i d s o c h o t e n s i n e ( F i g u r e 11(11)) were f i r s t by Manske  ( F i g u r e 11(1)) and ochotensimine  i s o l a t e d from c o r y d a l i s o c h o t e n s i s  (59) who showed t h a t o c h o t e n s i m i n e was t h e methyl  e t h e r o f o c h o t e n s i n e and who i s o l a t e d m e t a h e m i p i n i c as an o x i d a t i o n product of o c h o t e n s i m i n e .  a c i d (60)  The s t r u c t u r e of  o c h o t e n s i m i n e has been p o s t u l a t e d as I I (60) l a r g e l y on t h e b a s i s of P.M.R. d a t a . F u r t h e r e v i d e n c e i n s u p p o r t of t h e s t r u c t u r e was o b t a i n e d by h y d r o g e n a t i o n of t h e compound f o l l o w e d by two s u c c e s s i v e Hofmann degradations w i t h c h a r a c t e r i s a t i o n of t h e p r o d u c t s a t each s t a g e by p r o t o n magnetic resonance the p o s i t i o n of t h e methylenedioxy  spectroscopy.  However  f u n c t i o n i s not f i r m l y  e s t a b l i s h e d as t h e same r e s u l t s would a p p l y i f i t were p l a c e d a t p o s i t i o n s C16 and C17 on r i n g D ( F i g u r e 12;). The c r y s t a l s t r u c t u r e a n a l y s i s of o c h o t e n s i n e was thus undertaken  methiodide  t o v e r i f y t h e above a n a l y s i s of o c h o t e n s i -  mine and t o e s t a b l i s h t h e p o s i t i o n s of t h e methylenedioxy f u n c t i o n and t h e p h e n o l i c group on t h e a l k a l o i d n u c l e u s .  79  F i g u r e 11.  Ochotensine  (I)  and  ochotensimine ( I I ) .  80 EXPERIMENTAL:  OCHOTENSIMINE  METHIODIDE  Ochotensimine m e t h i o d i d e c r y s t a l s when c r y s t a l l i s e d methanol are dark brown e l o n g a t e d a l o n g a, m.p. 225°C  from  (decomp.).  The u n i t c e l l parameters and space group were determined from r o t a t i o n and Weissenberg photographs.  The d e n s i t y of the  c r y s t a l s was measured by f l o t a t i o n i n aqueous p o t a s s i u m  iodide.  C r y s t a l data (x(CuK ) = 1.5418 8) C  23 26°4 H  N I :  M  W  -  = 507.0  Orthorhombic: a = 7 . 6 7 + 0 . 0 2 , b = 1 1 . 9 1 + 0 . 0 2 , c = 52.1 + o o3 0.1 A; U = 4,759 A . _3  D  m  = 1.50 g.cm  , D  1.504 g.cm  x  (8 m o l e c u l e s  hOO when h i s odd, OkO when k i s odd,  00£ when a i s odd. 4  P2 2 2 1  per u n i t c e l l ) =  -3  S y s t e m a t i c absences:  Space group  CH3OH  1  1  (D )  81 EXPERIMENTAL:  OCHOTENSINE METHIODIDE  C r y s t a l s of o c h o t e n s i n e m e t h i o d i d e are b r o w n i s h - y e l l o w when c r y s t a l l i s e d from methanol.  The c r y s t a l used was mounted  a l o n g b; the u n i t c e l l dimensions and space group were d e t e r mined from r o t a t i o n , Weissenberg and p r e c e s s i o n photographs. The d e n s i t y of the c r y s t a l s was measured by f l o t a t i o n i n aqueous p o t a s s i u m i o d i d e . C r y s t a l data (X(GuK ) = 1.5418 8) c  22 24 H  O N I  ;  M  - -  493.0  w  m.p.  215°  a = 12.65 + 0. 03, c = 25.89 + 0. 06 8, U = 4,143 8 -3 -3 Dm = 1.60 g.cm , D = 1.58 g.cm , Z = 8;  Tetragonal  x  F(000) =  1,984  A b s o r p t i o n c o e f f i c i e n t f o r X-rays S y s t e m a t i c absences:  y = 136  -  00£ when £ not d i v i s i b l e by 4  hOO when h odd. 4 8 Space group: P 4 2 2 (D^) or P4g2 2 ( D ) . 1  cm *  1  1  4  The a n a l y s i s  was  c a r r i e d out u s i n g P 4 i 2 i 2 .  The i n t e n s i t i e s were r e c o r d e d on I l f o r d G  Industrial  X-ray f i l m u s i n g the m u l t i p l e pack t e c h n i q u e on a Nonius e q u i i n c l i n a t i o n Weissenberg camera w i t h the X-ray beam p e r p e n d i c u l a r t o the b a x i s of the c r y s t a l .  A s e r i e s of n i n e d i f f e r e n t h k i  l a y e r s were r e c o r d e d , k v a r y i n g from 0 t o 8.  1,339  intensities  were e s t i m a t e d v i s u a l l y u s i n g the f i l m a b s o r p t i o n f a c t o r s of Rossman (61) and G r e n v i l l e - W e l l s  (62).  L o r e n t z and  polarisa-  t i o n f a c t o r s were a p p l i e d and the squares of the s t r u c t u r e  82 amplitudes derived.  From the symmetry r e l a t e d r e f l e c t i o n s  i n t e r l a y e r s c a l e s were d e r i v e d u s i n g a m o d i f i c a t i o n of K r a u t ' s (63) method.  The s c a l e s were a p p l i e d and t h e c o r r e s p o n d i n g  symmetry r e l a t e d s c a l e d s t r u c t u r e a m p l i t u d e s were averaged, differences greater reestimated.  than 10% i n s t r u c t u r e a m p l i t u d e b e i n g  T h i s r e s u l t e d i n the measurement of 845 (671  observed) independent, r e f l e c t i o n s .  83 STRUCTURE ANALYSIS The c o o r d i n a t e s of t h e i o d i d e i o n were determined from a t h r e e d i m e n s i o n a l P a t t e r s o n f u n c t i o n as (0.030, 0.154, 0.130). A temperature f a c t o r of 4.5 A* was assumed and s t r u c t u r e 2  f a c t o r s were c a l c u l a t e d from t h e c o n t r i b u t i o n of t h e i o d i n e atoms u s i n g t h e i o d i n e s c a t t e r i n g curve from I n t e r n a t i o n a l Tables.  R, t h e d i s c r e p a n c y f a c t o r , was 0.39.  An e r r o r was  d i s c o v e r e d i n t h e phase r e l a t i o n s h i p s g i v e n i n t h e I n t e r n a t i o n a l Tables from which t h e F o u r i e r e x p r e s s i o n s were d e r i v e d ; f o r groups 2 and 4 t h e e x p r e s s i o n s a(hk£) = - a(hk"£) s h o u l d a(hk l) = IT - a(hk i).  read  Using the c o r r e c t e d F o u r i e r expressions  a t h r e e d i m e n s i o n a l F o u r i e r was summed u s i n g a l l t h e observed s t r u c t u r e amplitudes  and phases d e r i v e d from t h e i o d i d e i o n s .  On t h e r e s u l t i n g e l e c t r o n d e n s i t y d i s t r i b u t i o n map t h e p o s i t i o n s of f o u r t e e n atoms c o u l d be p i c k e d out w i t h o u t f o r chemical c o n s i d e r a t i o n s .  regard  S t r u c t u r e f a c t o r s were c a l c u -  l a t e d and a second t h r e e d i m e n s i o n a l F o u r i e r summed.  From  t h i s t h e c o o r d i n a t e s of t w e n t y - f i v e atoms were o b t a i n e d .  The  remaining  The  t h r e e atoms were d e r i v e d from a t h i r d F o u r i e r .  s c a t t e r i n g f a c t o r curve f o r I  was d e r i v e d g r a p h i c a l l y from  the curve f o r uncharged I by comparison of t h e X and X~ curves (X = Br and C l ) ( 6 ) ; i t was then c o r r e c t e d f o r anomalous d i s p e r s i o n a c c o r d i n g t o t h e e x p r e s s i o n (6) f j _ (corrected) = curve of N B and B  +  +  [(f - + A f £ )  2  +  (Af'p ]\ 2  The _f  was d e r i v e d from t h e f curves of N, 0 and 0 and  i n a manner s i m i l a r t o t h a t used f o r I " .  +  Structure  f a c t o r s were c a l c u l a t e d u s i n g s c a t t e r i n g f a c t o r s f o r C and 0 (6)  84 i n a d d i t i o n t o those d e r i v e d above; temperature f a c t o r s of Q  2  B = 4.5  A  b e i n g assumed f o r a l l the atoms.  R, was  0.28.  Refinement of the p o s i t i o n a l and and  the o v e r a l l s c a l e f a c t o r was  diagonal)  l e a s t squares.  £w(|F | -  |F |)  0  2  C  The  The  discrepancy,  temperature parameters  c a r r i e d out by  (block  f u n c t i o n minimised  was  w i t h /w = |F |/80 when |F | < 80  and  0  /w = 8 0 / | F | when | F | ^ 8 0 . Q  Q  Q  Four c y c l e s of r e f i n e m e n t  w i t h i s o t r o p i c temperature parameters and e i g h t c y c l e s  with  a n i s o t r o p i c t h e r m a l parameters reduced R t o 0.108, the  shifts  i n the f i n a l c y c l e b e i n g about §a. F o u r i e r was  A f i n a l three  dimensional  summed and s e c t i o n s of the r e s u l t i n g e l e c t r o n  d e n s i t y d i s t r i b u t i o n t a k e n through the atomic c e n t r e s pendicular dimensional  t o the b a x i s i s shown i n F i g u r e d i f f e r e n c e s y n t h e s i s was  showed no s p u r i o u s  13.  A  three  c a l c u l a t e d but  e l e c t r o n d e n s i t y i n the r e g i o n of  the maximum f l u c t u a t i o n s observed were +1.9  0(2);  -1.3e°t  I  both observed and  c a l c u l a t e d , are shown i n Appendix I I ,  XXV.  The  this  the r e g i o n of the  Table  ion.  and  per-  in  f i n a l s t r u c t u r e amplitudes,  F i g u r e 12.  P e r s p e c t i v e drawing of o c h o t e n s i n e methiodide i l l u s t r a t i n g numbering system used.  the  F i g u r e 13.  Superimposed s e c t i o n s of the t h r e e - d i m e n s i o n a l e l e c t r o n - d e n s i t y from the f i n a l F o u r i e r taken through the atomic c e n t r e s p a r a l l e l t o (010). Contours s t a r t at l e . A and are at i n t e r v a l s of l e . A ~ f o r C, N, 0 and 10e.A-3 f o r 17 - 3  3  87 COORDINATES AND MOLECULAR DIMENSIONS The f i n a l p o s i t i o n a l and a n i s o t r o p i c t h e r m a l are l i s t e d o  parameters  i n Table XVII t o g e t h e r w i t h t h e s t a n d a r d d e v i a t i o n s  ( i n A) of t h e p o s i t i o n a l parameters; from t h e l e a s t - s q u a r e s r e s i d u a l s .  t h e l a t t e r were c a l c u l a t e d  The p o s i t i o n a l  parameters  are e x p r e s s e d as a f r a c t i o n of t h e u n i t c e l l edges and b ^ are t h e a n i s o t r o p i c t h e r m a l parameters exp - ( b  1 ] L  h  2  + b  2 2  k  2  + b  3 3  a  2  i n the e x p r e s s i o n :  + b h k + b h £ + b k £ }. 1 2  1 3  23  The  bond l e n g t h s and v a l e n c y angles and t h e i r s t a n d a r d d e v i a t i o n s are g i v e n i n Table X V I I I .  The e q u a t i o n s of t h e planes of t h e  two a r o m a t i c r i n g s and t h e i r s u b s t i t u e n t s a r e g i v e n i n Table XIX t o g e t h e r w i t h t h e d e v i a t i o n s of t h e atoms from t h e p l a n e s . X, Y and Z a r e i n 8 and a r e r e f e r r e d t o t h e o r t h o g o n a l axes a, b and c. 94°.  The angle between t h e normals  A l l t h e i n t e r m o l e c u l a r d i s t a n c e s <4.0 8 were c a l c u l a t e d ;  those l e s s than 3.7 % a r e l i s t e d of  t o t h e planes i s  i n Table XX.  The p a c k i n g  t h e mo l e c u l e s i n t h e u n i t c e l l i s shown i n F i g u r e 14.  88  the p a c k i n g of the m o l e c u l e s  i n the  crystal.  89 TABLE X V I I .  FINAL POSITIONAL PARAMETERS WITH STANDARD DEVIATIONS AND ANISOTROPIC THERMAL PARAMETERS (D-M X 1 0 ) AND FINAL ISOTROPIC TEMPERATURE FACTORS (BJ AND STANDARD DEVIATIONS 4  X  y  z  0 0318 0 3240  0 1522 0 342 5  0 1297  0 . 0040  0 . 0040  0 . 0031  0 1972  0 . 036  0 . 042  0 030  0 0555  0 4672 0 5603  0 043 0 038 0 034 0 037 0 052 0 066  0 033  C(l) C(2)  0 2654 0 3518 0 0256 -0 0446 0 2316 0 2285  0 037  0(2) 0(3) 0(4)  0 6844 0 5765 0 3484 0 4353  C(3)  C(6) C(7) C(8)  0 0 0 0 0 0  C(9) C(10)  Atom I N 0(1)  0 0495 0 0884 0 172 5 0 2081 0 1641  a(x)  0 . 036 0 042 0 036 0 057 0 057  0 2665 0 3145 0 3182 0 2775 0 2825 0.2297  0 058 0 044 0 070 0 051 0 040 0 044  0 4092 0. 5077  0 1005 0 1133 0 1590 0 2163 0 2749 0.2748 0 2754 0. 3318  0. 1810 0. 1535  C(ll)  0. 4898  0.2994  C(12)  0 4202  C(13)  o(z)  0 0 0 0 0  029 027 027 042 056  0 0 0 0 0 0  058 033 048 040 046 049  0 059 0 038  0 051 0 045 0 050 0 043 0 047 0 060 0 051 0 046  0 046 0 036  0. 0925  0 044  0 042  0 036  0 2350  0 0909  0 052  0 048  0 043  0. 3822  0. 1703  0. 1465  0 046  0 061  0 034  C(14)  0 4027  0. 1814  0. 0378  0 059  0 042  C(15)  0. 4584  0. 2324  -0. 0014  0 044  0 067 0 043  0 037  C(16)  0 5156 0 5465 0 5868  0. 3161  0. 0058  0 059  0. 3618 0. 3794  0 049 0 040  0 048 0 031 0 041  0 2692  0. 3782  0. 0560 0. 1680 0. 1503  0 053 0 044 0 049  0 049  0 057  C(20)  0. 3674  0.4319  0. 7535  0. 0760  0 057 0 075  0 041  C(21)  0.2272 0.2242  0 039 0 041  0. 087  0 047  C(22)  0. 3583  0. 0885  -0. 0335  0 079  0 083  0 052  C(4) C(5)  C(17) C(18) C(19)  5903 5262 4385 3860 2980 2419  a(y)  90 TABLE XVII At om I N 0(1) 0(2) 0(3) 0(4) C(l) C(2) C(3) C(4)  (cont'd.) b  l l 122 53 128 119 177 120 110 91 131 104  b  22  97 83 166 118 69 135 84 193 38 132  b  23 15 15 19 18 12 13 15 25 36 8 20 12 29  b  12  b  13  b  23  B  °(B)  5 .3 2.5 6 .8 6.0 5.1 5 6  0. 09 1.1 1.4  17 -3 111  -13 -30 31  0 -40 38  91 -72 -105 3 112 95 164  40 6 -19 -76 57 18 -81  21 5 -6 60 18 18 94  206 -53 68  -11 -25 -8  -45 12 53  32 0 -61 -22  54 -11 2 -36  48 27  9 -88  -116  -51 -58  25 0  4 5 4 0  12 -10  -26  5 2 3 9  C(5)  230  ' C(6) C(7)  120 7  C(8)  19 150 56 92 132  173 70 82  26 11  -139 -74 -18  79 52  11 14  -89 88  88 124  305  5  217 68  9 12  -338 -110  149 95  120  21  49  7  2 -7  106 145  21 8  -130 15  -48  C(19)  14 72  5 0  -6  C(20)  142  26  20  -69  C(21)  206  378  173  C(22)  216  236  9 17  C(9) C(10) C(ll) C(12) C(13) C(14) C(15) C(16) C(17) C(18)  76  74 26 70  !7  -124  3 7 5 .6 4 4 4.5 5 3 4 5 3 .4 6 6 4 3 5 4  1 1 6 4 7 6  1.3 1.2 1.3 1.6 2.0 1.9 1.8 1.9 1.8 1.7 2.2 2.1 1.6 1.5 1.8 1.7 1.8 1.6 1.7 1.5 1.8  -23  4 9 4 7  36  26  4 7  65 22  59 -26  7 7 7 4  1.8 2.2  1.7  2.2  91 TABLE X V I I I .  BOND LENGTHS AND STANDARD DEVIATIONS (8) AND MEAN BOND ANGLES AND STANDARD DEVIATIONS (DEGREES)  Bond  1  a  N-C(8) N-C(9) N-C(19) N-C(20)  1., 59 1. 44 1. 47 1. 48  0. 0 6 0. 0 6 0. 0 5 0. 0 5  0(1)-C(3) 0(1)-C(21) 0(2)-C(4) 0(3)-C(14) 0(3)-C(22) 0(4)-C(15) 0(4)-C(22)  1. 32 1. 40 1. 41 1. 38 1. 53 1. 40 1. 47  0. 0 6 0. 0 7 0. 0 5 0. 05! 0. 08! 0. 0 7 0. 0 8  C(6)-C(7)  1. 34 1. 54 1. 60 1. 73 1. 64 1. 65 1. 72  0. 0 6 0. 0 6 0. 0 6 0. 0 7 i 0. 07! 0. 0 5 0. O 6 4  C(7)-C(8) C(9)-C(10) C(9)-C(l) C(9)-C(13) C(1G)-C(11) C(12)-C(13)  Bond 3 6 7 8  8  2  3  0  5  4  5  sp  C  ar Mean C 3 - — N sp  C(3) Mean C  C  1 .31 1 . 58 1 .33 1 .49 1 .26 1 .44 1 .20 1 .42 1 . 55 1 .40 1 .30 1 .48 1 .39  0..08! 0., 0 6 0. 0 8 0. O 6 9 0. 0 7 0. 0 7 0. 0 6 0. 0 5 0. O 6 9 0. 0 6 0. 0 7 0. O 6 4 0. 021  C(10)-C(18)  1 .23  0. 03  a r  a r  3  / \  sp3-Y 'ar  " sp 0(1)—C(21) C  sp2-C  3  s p  2  a  C(l)-C(2) C(l)-C(6) C(2)-C(3) C(3)-C(4) C(4)-C(5) C(5)-C(6) C(ll)-C(12) C(ll)-C(17) C(12)-C(14) C(14)-C(15) C(15)-C(16) C(16)-C(17) Mean C - C  7  Bond a n g l e Mean C 3 -  I  o(°)  104. 8 119. 6  1.4 1.4  109. 4  1.6  119. 9  4.4  128. 8  3.9  7  2  6  0  6  7  7  0  5  7  TABLE XIX.  EQUATIONS OF THE PLANES OF THE AROMATIC RINGS AND THEIR SUBSTITUENTS AND THE DEVIATIONS OF THE ATOMS FROM THESE PLANES (8)  EQUATION A:  0.486X + 0.819Y 4. 0.304Z = 6.852 C(l),  DEVIATIONS  EQUATION B:  DEVIATIONS  -0.003  C(2), -0.094  C(3), -0.080  f o r atoms  C ( 4 ) , C(5), C(6), -0.035  0.002 0.051  0.799X - 0.595Y + 0.092Z = 2.893 C(10),  C(ll),  C(12), C(13),  -0.106  -0.024  0.199  -0.036  C(7), C(9), -0.053  0.056  0(1) and 0 ( 2 ) -0.023  0.023  f o r atoms  C(14),  C(15),  C(16),  0.099  0.013  0.047  C(17), -0.040  0(3)and 0 ( 4 ) -0.102  -0.023  93 TABLE XX.  SHORTER INTERMOLECULAR DISTANCES  These v a l u e s a r e the i n t e r m o l e c u l a r d i s t a n c e s <3.7 A between a s t a n d a r d molecule (1) and i t s n e i g h b o u r s . Atom (molecule 1)  to  Atom  I I 0(4) 0(2) C(14) C(15) C(16) C(16) C(16) C(16) C(17) C(19) C(20) C(21)  in  0(1) 0(2) C(13) C(28) C(5) C(6) C(6) C(7) C(8) C(16) C(7) 0(3) 0(3) C(21)  Molecule  d  2 2 3 4 3 3 3 3 3 5 3 6 6 7  3.59 3. 62 3.41 3. 54 3.67 3. 67 3. 65 3.65 3.43 3. 58 3. 58 3.60 3.37 3.33  Molecule 1 2 3 4 5 6 7  at  x -y |+y 1-x y |-x 1-y  y  1-x |-x -y x |+y 1-x  z  h-z -1+z  |+z -z \-z \-z  94 DISCUSSION The a n a l y s i s has shown t h a t the s t r u c t u r e of  ochotensine  i s I ( f i g u r e 11) and hence c o n f i r m s the s t r u c t u r e of o c h o t e n s i mine as I I (59).  The absence of any peaks i n the v i c i n i t y of  0(2) or troughs near 0(1) and C(21)  i n the d i f f e r e n c e s y n t h e s i s  c o n f i r m s t h a t 0(2) i s p h e n o l i c and 0(1) i s an e t h e r l i n k a g e . The carbon atoms C ( 7 ) , C(8) and C(9) are a p p r o x i m a t e l y  coplanar  w i t h the a r o m a t i c r i n g A whereas the n i t r o g e n atom l i e s above the p l a n e .  Carbon atoms (10) and  (13) are almost  coplanar  w i t h the a r o m a t i c r i n g D whereas C(9) l i e s above t h i s p l a n e ; the angle between the normals t o the two a r o m a t i c r i n g o  planes  i s 94 . The bond l e n g t h s and a n g l e s are a l l normal c o n s i d e r i n g the large standard deviations.  T h i s has o c c u r r e d p a r t l y because  a l a r g e number of parameters  have been determined  from a  l i m i t e d amount of data and p a r t l y because the c r y s t a l  was  decomposing i n the X-ray beam when the photographs were b e i n g taken.  These e f f e c t s may  a l s o account  f o r the d i s c r e p a n c i e s  i n the v a l u e s d e r i v e d f o r the a n i s o t r o p i c temperature  factors  which seem t o be p h y s i c a l l y u n r e a l i s t i c .  The f i n a l  temperature  seem more s e n s i b l e .  The  factors  (which g i v e R = 0.13)  i o d i d e i o n i s 3.6  8 from each of the oxygen atoms  but t h e r e i s no e v i d e n c e t h a t hydrogen bonding 0(1) and  I . -  isotropic  o c c u r s between  The d i s t a n c e between the carbon atoms of the  methyl groups i n n e i g h b o u r i n g m o l e c u l e s much l e s s than the v a l u e of 3.9  i s o n l y 3.3  8;  C(21)  this is  8 u s u a l l y found f o r methyl  95  groups.  T h i s e v i d e n c e might suggest t h a t C(21) i s wrongly  l o c a t e d however, i f such was would have i n d i c a t e d so.  the c a s e , the d i f f e r e n c e s y n t h e s i s  Several other i n t e r m o l e c u l a r  of 3.4 A f o r C ( 1 3 ) - 0 ( 4 ) and C(8)-C(16) a l s o e x i s t .  contacts  APPENDIX I  96  TABLE XXI.  FREQUENTLY DETERMINED BOND LENGTHS RELEVANT TO THIS THESIS  The v a l u e s l i s t e d a r e t a k e n from " I n t e r a t o m i c D i s t a n c e s " ; C h e m i c a l S o c i e t y , S p e c i a l P u b l i c a t i o n Number 18 ( 1 9 6 5 ) . BOND  LENGTH  C-H  0. o i 1..09 1.. 08 + 0. 01  C-C  1.. 54 + 0. 01 1.. 51 + 0. 01 1..47 + 0. 02  Crr^C  1.,39 + 0. 0 0 1.,43 + 0. 03  DESCRIPTION 8  paraff i n i c aromatic sp 3 — s p 1 ° 6 5 C H -C=0 C  -  C  H  6  5  benzenoid (C H ) M 5  5  2  C=C  1.,34 + 0. 01  e.g.  C-N  1.,48 + 0. 0 0  4-covalent  C-0  1.,43 1. 36 1. 2 3  +_ 0. 01 + 0. 0 0  1. 3 1  + 0. 0 0  C=0  1. 2 1  + 0. 0 0  C-S  1. 8 0 + 0. 01  C-Br  1. 8 5  + 0. 01  S-0  1. 43  4-  0. 01  0. 02  CH -CH=CH-CH 3  3  nitrogen  paraff i n i c aromat i c c a r b o x y l i c a c i d s and e s t e r s , bond) ': c a r b o x y l i c a c i d s and e s t e r s , bond)  (shorter (longer  aldehydes and ketones a l k y l sulphoxides  and sulphones  aromat i c S0  o  and  S0o  APPENDIX I I  STRUCTURE FACTOR  97  TABLE X X I I DIFERROCENYL KETONE; MEASURED AND CALCULATED STRUCTURE FACTORS (Counter Data) The v a l u e s l i s t e d under F Q and F ^ are on one h a l f of t h e a b s o l u t e s c a l e ; unobserved r e f l e c t i o n s l i s t e d as 0 have 7.6  h k I F.  52.8 2i7  -50.2 -4.1 -lt.O 5.5  20.0  23.3 14.7 56.9 15.0  10.a  15.7 37.2 9.4 It.5  17.3  20.2 38 . 8 5.0 14.6 22.8 42.5 _?«_.<•__ 15.8 0. 21.0 61.2 43. /  53.9 -39.5  23.4 5.5  46.3 63.8  57.6  28.4 35.6  IT. 6 61 . 8 36.1 5.2  42.6  "975""  127.4 ei.e  B 10 1 0 1 0 t 0 1 0 1 0 1 0 2 0 2 0 2 a 2 0 2 li a o 3 0 3 0 3 0 1 0 3 0 4 0 4 0 4 0 4 0 4 0 5 0 5 0 5 0 5 0 5 ' 0 6 0 6 0 6 0 6 a 7 0 7 0 7 0 8 0 8 0 8 0 9 0 -9 1 -9 1 -9 1 -9 -9  -4  -9 -9  -8 -8  -8 -8 -B -8 -8 -8 -7 -7 -7  1 • 1 1 1 1 1 1 1 1 • 1 1 1 . 1 1 t 1  0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 0 2 4 0 2 4 0 t 2 3 4  ft  6 7 8 9 I 2 3 4 5 6 7 8 9 1 2 3  4.4  9.4  -4.8 17.3  13.0 -31.1  23. H 9.6 17.8 8.0  12.7 -19.7 5.0 3.5 -15.5  .3  6.B 26.2 •40.4 5.9  -83.0 -12.1  35.9  8.7 22.0  16. 1  20.0  B.5  37.0  22.4  37.4 4.6  24.7  -24.2 a.o -4S.7 -62.2 9.8 33.9 14.2" 61.6 28.6 -36.6 -R1.3 14.4 14.6 -61.4  1.5 4.9 64.5 10.2 1.6 5.4 52.9"" 20.6 31.3 6.5 7.2 13.2 ""58.7" 13.3 25.2 13.7 47.6  -45.8  _ °" 49.5 2.4 36.9  64.8 12.3 . ino.2 1.5 9.0 S2.0 -69.1 15.3 27.3  24.4 28.6 54.9 55.0 18.6 25.2 36-8 -37.0 30.6 -29.6 9.0 -9.3 134.5 - 1 5 6 . B 42.9 -44.4 72.8 69.9 39.5 40.4 10.1 11.2 29.7 -30.0 25.4 22.2 74.1 -B6.9 32.4 -37.4 9.2 11.9 21.1 21.2 49.3 48.5 9.5 10.0 62.8 -63.9 36.6 -38.0 -13.7 U.9 5.0 -1.8 . 57.B S3.6 29.6 24.2 -13.2 13.5 26.0 -26.3 22.6 -27.5 21.1 -19.3 47.9 St.8 22.7 19.8 22.9 23.3 51.? -48.5 B.3 9.5 55.1 50.6 4.0 -3.4 16.1 -14.9 6.7 -3.0 27.7 -25.4 11.4 9.0 3.3 -4.5 15.3 -15.9 25.3 23.3 14. B 14.7 6.6 5.9 12.0 -12.9 9.1 -9.8 1 24.1 -21.4 . 5.3 5.4 36.9 -33.9 20.6 -20. 8 0. 1.6 5.2 -7.0 27.3 26.9 4.2 -4.9 18.4 20.0 35.B 36.7 0. -3.0 0. -1.0  0.  9.7 12.2 78.5 16.8 9.9 44.5 I 1.4  5.3 120.2 27.3 7.9 51.5 37.6  "  44.2 8.0 29.3 6.9 18.6 3.6 U9.5 66.9 9.8  10.4  64.2 22.1 26.1 5.0 10.6 12.4 119.4 3.3 22.0 11.5 58.7 4.9  9.0 21.5 6.2 29. 5 17.2 57.5 5.3 08.3 14.6 20.3  8.8  31.1  4.4 5.5 14.2 66.1  7.6 8.1  -23.3 -10.3 -3.7 -B5.2 -7.9 -2.3 2.9 50.1 19.0 32.5 6.1 -7.7 _ 15 -J 71.6" 13.2 -25.4 10.5 -47.8 -1.4 -47.8' -6.4 35.5 1.8 7. 1  -36.6 10.2 2.0_ -92.7 -46. 1 -41.2 5.9 3.1 -123V9 26.9 -5.0 -44.7 39.1 29.3 44^8 -6.3 -28.9 -17.3 -87.3 63.1 -18.2 16.5 1.5 JO.9  ~6476* 21.9 26.5 4.2 -15.5 T26.8 5.3 -22.7 11.6 -57.4 _ 3 - l -29.8 -8.3 21.0 6.5 29.8 -18.2 64.1 4.5 57.6 -14.2 16.4 10.9 -M.6 -7.3 -11.1 -0.5 -12.4 -37.4 -0.5 12.2 -14.1 71.7 -5.4 9.7  6.1 2.6 13.0 11.5 21.2 12.9 7.0  '4.9"  25.0 7.8 23.8 13.9 19.3_ 20.6  -22.2 3.0 -32.0 6.1 -21.6 15.6 20.9 6.7 32.5 6.3 -3.7 8.3 -3.6 -40.3  —rrr 11.3 -11.4 -18.9 -12.6 H.3  ~-3.r  20.0 -6.9 21.0 15.1 -22.9 -2i ;o 5.1 -29.5 -7.2 15.7 4.1 -1.4 9.0 , -11.4 -27.9 27.9 14.4 - 1 3 . 7 -32.1 32.9 3.'8 5.3 38.1. -34.1 16.8 -17.8 21.0 21.5 3.7 4.0 15.6  T7.6  23.0 46.5 4.0  2.1 14.0 5.7 54.2 IB.6 64.4 5.0" 4.7 2.7 16.0 9.0 6.2 ""52.1"" 12.8 52.1 0. 34.7  7.B  56.0 8.5 5.7 3.1 18.2 10.fl 52.9 9.B 75.5 19.3 0. 8TT 6.7 tT.9 10.1 55.8 3.8  10.2 -40.8 2.0 -33.7 11.4 7.7 -5.5 25.4 7.3 49.1 23.6 51.3 -1.2  -13.1 2.2 -2.4 -2271 -19.0 1.8 56.4 -16.8 _6U4  3.9  -4.6 -1.7 -13.1 10.9 -a.a -54.0 -U.2 -51.6 -2.9 34.1 6.6 53.1 10.2 3.3 2.0 10.5 19.9 97? -49.9 11.3 -78.3 -19.0 3.3 a.6 5.5 -21.7 -9.0 53.5 -7.7  - 1 - 1 - 1 - 1 - 1 - 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 1 I  ^ 2 2 2 2 2  4  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  5 6 7 8 9 10 11 0 1 2 3 4 5 6 7  8  9 10 0 1 2 3 4 5 6 7  V 1 2 1 2 1 2 1 2 1 2 1 2 8 1 2 9 1 2 10 2 2 0 2 2 1 2 2 2 2 2 3 2 2 4 2 2 f t 2 2 6 2 2 7 2 2 8 2 2 9 3 2 0 '3 2 1 3 2 2 3 2 3 3 2 4 3 2 5 3 2 6 "3 " 2 T 3 2 8 4 2 0 4 2 1 4 2 2 4 2 3 4 2 4 3 4 2 5 4 2 6 4 2 7 5 2 0 5 2 1 5 2 2 5 2 3 5 2 4 5 2 5 5 2 * 6 2 0 6 2 1 6 2 2 6 2 3 6 2 4 6 2 5 6 2 6 7 2 0 7 2 1 7 2 2 7 2 3 7 2 4 8 2 0 8 2 1 6 2 2 9 2 0 -9 3 4 -B 3 1 -B 3 2 -8 3 3 -8 5 4 -8 3 1 -8 3 6 -7 3 I -7 3 2 -7 3 3 -7 3 4 -7 3 5 -7 3 6 -7 3 7 -7 3 8 -6 3 1 -6 3 2 -6 3 3 -6 3 4 -6 3 ft -6 3 6 -6 3 7 -6 3 8 - 6 3 9 1 7 -5 3 1 -6 3 2 -5 3 5 -5 3 4 -B 3 t -5 3 6 -5 3 7 -5 3 8 -5 3 9 -5 3 10 -4 3 1 -4 3 2 -4 3 3 -4 3 4  3 3 . 6 . 36.8 10.6 7.3 *5.4 -45.1 13.2 - 1 2 . 5 51.2 - 5 0 . 3 6.0 -7.7 8.5 -7.5 4.5 -3.4 82.4 -80.7 15.3 -17.9 25.1 - 2 2 . 5 3.5 -0.8 54.9 53.2 19.6 - 2 0 . 5 68.0 67.7 15.1 16.3 0. -1.3 5.2 -6.1 23.2 -21.7 4.0 1.1 15.3 -10.4 54.9 - M . i 6.4 8.2 52.2 -48.9 5.4 -7.0 26.5 26.4 0. 2.1 28.6 28.1 10.5 10.3 o. -6.2 44.3 51.4 16.8 1S.T 17.4 21.0 9.6 9.9. 54.4 -56.5 i i . 4 12.7 44.7 -43.4 9.0 6.5 10.9 11.9 3.2 -8.3 4.5 0.5 6.9 - l . " 0 55.6 58.2 19.4 22.3 48.8 51.5 11.9 -12.8 15.8 -16.2 9.0 1076 22.6 -21.7 36.2 -36.7 32.2 -27.1 23.6 -24.4 7.1 -6.B 1 " . 7 " 31.4' 11.1 -7.9 25.1 24.1 5.7 -4.9 6.9 -6.5 0. 1.7 37.8 - 3 7 . 3 9.0 -8.4 93.1 - 3 0 . 8 3.6 4.3 18.7 10.0 37.1 41.6 0. -1.7 28.5 2B.5 16.3 16.2 17.3 -14.0 5.7 -5.9 2 U 4 "-1977 2.7 -1.1 l t . O -10.6 23.3 20.4 3.2 2.3 12.1 12.8 39.B - 3 4 . 6 7.2 5.3 18.1 -17.3 5.4 3.2 10.3 6.9 U . 9 8.5 6.0 -5.3 30.7 29.7 5.4 -3.9 0. -1.8 2.1 -2.1 56.3 -34.4 J.6 5Tf 14.2 12.1 9.5 -9.0 26.9 24.4 0. 1.8 17.4 16.8 0. -213 23.0 -22.7 4.0 -1.2 40.8 -36.6 2.7 -1.5 7.6 - 1 0 . 4 3.7 2.9 14.4 15.0 4.8 -4.2 . B 17.5 33.3 32.9 11.3 9.9 24.1 - 2 6 . 3 3.8 -0.2 35.5 -39.1 14.6 16.9 25.2 -24.2 7.6 -6.3 23.8 24.8 3.5 4.6 26.6 .31.3 19.9 17.5 49.5 53.2 10.6 10.6  -4 -4 -4 -4 -4 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -I - 1 - 1 -I - 1 - 1 -1 -1 - 1 -1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 "1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3  4  4 4 4 4 4 4 5 5 5 5 5 5 6 6 6  6  6 7 7 7 8~ -7 -7 -7 -7 -6 -6 -6 -6  3 3 3 3 3  1  3  3 3 3 3  3 3 3 3 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " 3 3 3 3 3 3 3 3 f 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " 4 4 4 4 4 4  4  4  -3 -5 '5 -5 -5 -5 -5 -5  -4 -4 -4  4 5 6 7  8  9 10 t 2 3 4 5 6 B 9 10 0 1 3 4 5 6  1  8 9 0  I  2 3 4  5  -4  -6  2  3  -4  -6  I  2 3 4 5 6 7 8 9 10 1 2 3  T  3 3 3  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  -6  5 6 7 8 9 10  4  6 7  8  9 0 1 2 3 4 5 6 7  8  0 1 2 3 4 "ft 6 7 0 1 7 3 4 t 6 0 I 2 3 4 5 0 1 2 9 4 0 1 2 6 2 3 4 7 1 2 3  4  5 6 7 1 2 9  4  5 6 7  8  1 2 3 4 B  13.3 9.0 28.3 4.5 IB.9 4.8 31.0 26.2 24.B 7.2 51.7 12.0 18.6 B.4 17.8 0. 35.5 79.8 66.1 11.7 4.9 17.6 46.1 0. 24.8 6.5 47.4 19.3 9.5 5.9 62.5 2.7 9.0 7.5 12.4 0. 0. 8.0 29.4 71.0 7.5 8.6 24.5 29.4 4.5 24.7 5.3 61.6  14.0 4.1 -27.2 £.2 -20.3 -4.2 -38.6 -30.6 21.7 6.3 4B.5 -12.7 18.9 6.9 -18.5 2.5 -35.8 -28.9 -55.2 -10.6 -6.1 -17.2 45.9 -0.3 23.9 -B.6 43.8 18.9 A.7 3.3 -61.1 O.B -8.1 -6.9 11.3 0.4 -6.1 11.3 24.6 70.B 4.9 -776 22.8 -28.7 -4.9 -26.0 -5.3 -59.4 8.5 - 1 0 . 1 20.7 18.9 9.6 -6.4 46.6 45.1 7.7 -6.1 17.6 16.6" 1.5 3.3 IB.8 -21.4 11.6 11.6 3^.7 - 3 6 . 1 3».S -29.1 52.0 -54.4 3.4 -0.5 12.4 -12.7 4.6 -2.8 20.4 20.2 0. -1.5 B.3 8.0 28.0 29.9 17.5 IB.2 16.1 -17.9 0. 0.9 31.8-36.1" 14.4 14.7 11.5 - 1 0 . 9 12.0 - 1 2 . 3 34.9 36.3 8.1 2.6 43.8 43.7 2.7 0.9 11.6 11.2 13.1 -15.1 2.7 7.0 26.1 - 2 5 . 8 23.4 -23.7 8.3 6.3 5.5 6.2 27.2 25.8 U . 9 11.8 25.0 -24.3 13.7 IS.1 77.1 -25.0 2.9 -3.5 8.0 -11.8 23.5 20.8 14.4 14.1 776" " - 7 . 2 28.7 26.9 9.9 -10.6 13.5 11.8 4.6 -5.5 2.3 2.4 4.8 3.9 10.4 -B.8 31.7 30.6 4.6 0.2 22.1 24.6 2.0 -0.6 0. 1.6 49.0 -49.8 10.4 -7.1 3.7 -7.9 5.6 -4.2 - 0 . -11. B 4.5 -4.3 30.2 31.6 10.7 8.3 10.1 - 1 3 . 6 10.4 11.6 23.3 -23.1 5.9 3.6  -4  4  6  4 4 4 4  7 8 1 2 3 4 5 6 7 8 i 2 3 4 5 6 7 8 1 2 9 4 5 6 T 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 0 1 7 3 4 S 6  29.1  -27.3 l.T 4.2 6.4 5.3 -3 5.4 -7.2 -3 37.5 41.0 -3 11.9 4 14-. 1 -3 4 33.2 30.5 -3 4 6.6 2.2 -3 4 2 0 . 8 -19.1 4.8 4 5.5 -3 4 24.2 -23.a 4 a.a -6.8 -2 -33.9 4 34.4 -a 4 15.7 -14.9 -2 4 34.8 33.7 -2 4 4.7 1.1 -2 4 10.2 6.6 5.9 4 6.6 -2 4 4.5 -3.4 -I 4 19.1 21.2 4 47.1 -46.1 -1 4 15.6 -13.4 -1 4 25.1 -25.2 -1 4 4.7 -0.2 -I 23.7 4 23.1 -9.7 4 9.6 -I 4 28.5 29.1 0 4 57.8 56.2 0 4 23.8 21.6 0 4 34.5 38.4 0 -9.1 4 9.7 0 4 25.7 -24.9 0 4 18.2 16. B 0 4 IB.9 -15.4 0 4 17.5 " -17.7 0 4 5.1 5.0 1 4 5.4 4.8 1 4 11.2 10.2 1 4 36.7 39.3 4 5.4 -7.8 1 4 30.3 29.7 I 4 16.7 18.0 1 4 11.5 -12.2 1 1.0 4 0. 2 4 42.7 -42.2 4 5.4 -4.1 4 T7.9 -1778 2 4 6.6 -6.4 2 4 31.8 32.6 2 4 6.a -7.3 2 4 14.5 17.5 2 _ 4 2. 7 I J.O 3 4 0 "i7o "3.5 3 4 1 5.4 -1.9 3 4 2 32.4 -54.9 3 4 3 3.7 -3.5 3 4 4 15.8 -15.5 4 5 6.6 -4.7 4 6 6.1 -6.0 9 4 0 4J.3 47.6 4 4 1 8.0 5.5 4 -15.4 4 2 14.0 4 4 3 13.8 10.7 ' 4" 4 4" IB.'l" - 1 5 . 8 4 -1.9 4 5 2.0 5 4 0 D.B 13.5 5 -8.5 4 H.2 6 4 2 32.2 29.1 5 4 3 0. l.l 4 6 25.1 -24.2 6 4 1 5.2 4.5 6 7 7 .0 4 0 0. •4 -70.4 5 1 W . l -4 5 2 17.6 15.9 -4 5 3 t -->.7 -27.8 -4 5'"' 4 " T 4 7 1 -18^6 -4 5 5 5.7 -3.4 -3 5 1 75.3 25.5 -3 21.1 5 2 20.3 -3 -10.6 5 13.5 -3 5 4 5.6 -4.0 5 " 5 2 7*4' - 2 8 . 3 -2 5 1 12.9 11.0 -2 -6.7 5 B.7 -2 5 3 40.6 39.6 -2 5 4 8.9 -7.3 -2 -8.4 5 S 7.4 ^ 2 " 5" 6 5.4* 3.0 -1 5 1 33.5 -31.0 5 2 7.2 -2.1 r-l -1 5 3 5.6 -3.6 -1 5 4 8.3 -6.4 -1 5 5 32.2 31.4 - l " 5 6 ' 11.4 12.4 0 5 0 11.3 15.1 0 5 I 6.9 -4.1 0 5 2 17.1 16.5 0 5 3 44.5 -41.7 0 5 4 5.a 0.7 5 fi" V.4 3.9 o~ 1 5 0 3.7 -3.5 1 2 6.6 5 1 30.5 1 5 2 5.6 2.9 1 5 3 3.4 -2.7 1 5 4 8.5 5.4 5 5 73.2 -24.4 2 5 0 17.3 -16. B 2 5 1 18.2 19.7 2 5 2 4.2 1.6 -2 5 3 27.2 29.6 2 5 4 3.6 -2.3 s 5 0 13.a -13.4 3 5 1 18.4 -17.0 3 5 2 11.3 11. 5 10.6 9 S 3 10.6 4 5 0 16.0 -15.0 4 5 1 26.1 -27.3 5 5 0 7.1 -7.8 0 6 0 6.7 -6.7  2  t  t  2  98.  TABLE XXIII.  on«t-8-TRICYCLO[3,2,l,OM]OCTYL p-BROMOBENZENESULPHONATE  Measured and calculated structure factors The values listed are h k, l i\F \ and ±F ; unobserved reflexions, which are listed as 00, have l\F \ < 2 f  62.0 31.7 39.9  23.0 7.8 15, 6  -  68.a 31.9 61.2 20.0 1.2 9.0 - 26. j 9,2 15.9 3.3 1 1 .6 3.6 -27.1 - 25.3 7.5 139.5 -  t  0  C  0  18.9 30.1 25.2 5.9 5.7 8.0 6.9 11.5 22.5 15.9  2<-,7 7, I 0.0  8.B 15.5 8.7  12^2  ' '  5.7 1.1 5.2 ' 6.1 29.8 3.5 31.0 3.7 22.0 62. 1 7.8 66.0 i.9 5 1.6 12.6 39,5 16.5 25.8 19.7 1 1.6 16,<. 9.1 6.1 2.5 15.1 • 10.5 7.6 12.7 10.0 5.5 2.0  18.b 23.0 55.9 20.6 0.0 25. 2 17.5 20. 2 57,7 79.0  7, 1 21 . 6 *.b . 7 16. 1 29, 7 5.1 6.9 T.O 6.1 12.6  66.2 16.9 26.0 8.2 5.3 • 8.7 6,6 12.1  It).* 2.0 60. 3 21.2 62.0 29,V 29.0 5b. 1 72.6  30.1 57.6 77.6  0.5 3.7 10.1 3.6 1 .8 1.7 26 . j 0.6 15.5 32.5 19.7 60.7 9.7 32.0 11.0 19.0 . a.7 10.9 7 . 1 lb. 1 6,3 2.2 5.7 9.7 0.3 1 .6 It,It  23.9 0.0 13.8  19.0 30. &  67. 1 2<.. 1 65.9 3.2 0.0 72.t) 10.9 25.a 66. 0 29. 7 W.9 16.a 23.0 3.6 18.6 5.5 16.2  u 12 12 12 12  i* 16  15.5 0.0 16.9 7.9 1.7 20. 11 . a 6.0 9.5 9.0 7.2 25. 1 12.? 29. 1  60 < 3 17.3 23.2 1.7 17.7 6.5 17.1 20.0 12.7 9,7 3,6 26.6  61.9 29. 1 50.3 21.2 32.2 13.0 20.« 16.V  65.5 23.2 39.9 58.6 8.8 18.3 16.6 21.6  13.1 11.0 19.5 2.6 19.6 25.3  '  • •  •  1  lo. 1 <?5.6 26,3  «0 . J  11.7 12.1 16.a 15.6 5.2 7.2 11.7 17.1 16.2 17,7 6.3 30.2 6.5 15.1 16.5 32.0 2.6 6.7 7.9 1.0 6, 1 2.7  2.6 12.1 76. 1  56. J 26. I  10 10 10 10 10 10 10 10 10 10 12 12 12 12 12  6.2 5.0 3. 1 19,7 17.7 6,7 0.7 23.2 16.<• 26.0 61.2 19.7  • • ' • • •  •  i*.Z 9.3 10.0 7 .2 22.6 12.9 28.7 t.9.5 1 1 .6 t.2.8 26.1 69.5 19.5 35.2  • ' •  • •  2.7 1.9 5.6 9,6 3.0 2.0 5.8 6.9 7.3 6.0 10.1 10.2 12.6 20.5 9.5 6.<> 2.6 1.5 1.3 7.6 33.6 28,2 3B.9 26, b  •  9.3 15.0 7.6 6.0 2.1 2.2 2.5 13.9 10.6 21.6 6.8 29.7 26.8 5.B 66.3 21.9 27.0 10.9 36.0 2.0 6.0 8.7 It.I 2 1 .2 12.0 26,6 19.3 6.1 18.2 22.3 16,0 1.7 16.8  12.3 39.3 12.7 31.3 JO. 9 36.7 30.7  99 Table XXIII 2 6 a 10 -16  -- 1 2  -10 - 8 - 6  -- fa 2 0 2  fa  6 r 8 -16 - 14 -12 -10 - 8 - 6 - 4 - 2 0 2 6 8 -15 -lfa - 12 -10 - 8 - 6  - 02fa -  2  fa  6 -16 - 14 -12 -10 - d - 6  - fa 2 -  0 2  fa  -16 -14 -12 -10 - a - 6  - 02fa -  2 -16 - 14 -12 -10 - B - 6  - fa 2 -  0 -16 -14 -12 -10 - 8 - 6  - fa  - 2 -lfa -12 -10 - 8 - 6 - 4 1 3 5 T 9 11 13 15 " -15 -13 -11 .-"9 - 7 - 5 - 3 - 1 1 3 5 7 9 11 13 15 -15 -13 -11 - 9 - 7 - 5 - 3 - 1 1 3 5 7 9 11 13  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ,3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  8 8 a a 8 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 ic 10 10 :o 10 10 •10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 12 I2 12 12 12 12 12 12 12 12 12 13 1J 13 13 13 13 13 1 j 13 lfa 1 fa 1 fa 16 14 16 16 16 16 15 15 15 1 5 15 15 15 I5 16 16 16 16 16 16 0 0 0 0 0 o . 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2  6.2 27.2 fa . fa >3.6 2.a 3. J 2.9 5.8 9. 1 2.3 2.5 5.7 16.rt 6•3 15.3 15.5 fa .4 8.2 23.0 2.3 1". i 13.0 27.0 21.2 7.'j 29.5 25.8 13.5 8.0 12.3 5.9 ] 2.b 9.5 J.B 15.2 18. 1 5.9 • 9.9 11. t 16.0 a. 1 fa.O 6.1 6. 1 23.5 6.6 - 18.5 6.7 26.8 5.4 17. J 7.7 2.7 11.8 6.9 2.0 2.0 2. J 4.2 4.9 6.2 2.5 4,8' 13.6 5.0 16.0 2.4 19.4 ' 7,7 16.6 a.6 8.6 9.3 6.3 1.7 11.1 18.4 15.6 7.7 5.0 17.1 3.8 18. 7 3.6 7.2 5.6 26.3 27. 3 36.7 0.0 63.3 16,0 3.4 12.2 2.2 6.4 2.6 6.7 2.3 15.7 4.3 7.5 2.3 5. 1 2.0 2.9 3.5 6.9 3.7 8.6 13.5 7.4 25.6 8.6 26.6 2.9 35.8 29.7 9.5 68.6 27.2 10.4 ' 0*0 27.6 3*0  -  --  -  -  -  --  -  -  -  -  -  -  ---  -  --  -  5.4 2t>. 1 fa . 4 16.5 1 .a 0.9 1 .2 6.6 7. J 2.3 0.7 4.5 15.'. 6, 1 1 5 , *• 15.4 6.2 9.2 .4 2.5 2 1.1 12.6 27.5 19. » 7.9 2^. 3 23.6 lfa.» 9.2 11.6 5.6 11.5 8.9 4. 1 1 J.8 16.2 6.6 10.3 11.8 13.8 9.5 5.0 3.5 5 .2 25.8 3.8 19. J 7.8 2 7 , fa 5.9 19.8 5.6 0.4 12.3 5.fa 2.1 1.2 2.5 2.0 4. 1 6.3 11.0 i .a fa. 3 13.9 7.0 16.fa 2.0 18,9 7.0 16.1 10.0 7.3 7.2 4.3 0.2 12,2 17.6 15.9 9.1 3. 1 1 7.2 1 .7 19.0 0.7 5.5 3.6 25.3 26. 7 3J.6 0.9 fa3.0 lfa.6 2.9 12.fa 1.2 6.5 0.1 3.6 2.6 15.7 5. 1 7.1 2.8 5.6 0.5 0.7 1.6 7.0 5.3 7.fa 13.2 8,0 27.9 a. i . 23.3 ' 1.2 3fa.4 25.9 10.7 49.7 26.6 11.1 0.6 29.4 o.e  15 -15 -l'J -11 - 9 - 7 - 5 - 3 - 1 I 3 5 7 9 1 1 13 -15 - 13 -11 - 9 - 7 - 5 - 3 - 1 1 3 5 7 9 11 13 -15 - 13 -11 - 9 - J - 5 - 3 - 1 1 3 5 7 9 11 -15 -13 -11 - 9 - 7 - 5 - 3 - 1 1 3 5 7 '9 11 -15 -13 -11 - 9 - 7 - 5 - 3 - 1 1 3 5 7 9 -15 -13 -11 - 9 - 7 - 5 - 3 - i 1 J 5 7 9 -15 -13 -U - 9 - 7 - 5 - 3 - 1 1 3 5 7 -15 -13 -11 - 9 - 7 - 5 - 3 - 1 1 . 3 5 -15 - 13 -11 _ <j - 7 - 5 - 3 - 1 1 3 5 -\ -15 -13 -11 -. 9 - 7 - 5 - 3  3 3 J J 3 3 3 3 3 3 2 3 J J '3 'J i 2 ? 1 3 3 3 3 3 3 i 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 i 3 3 •j 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 •$ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 . 3 3  2 3 3 3 3 3 3 3 3 3 1 ? j 3 j u  fa fa fa fa fa fa fa fa fa fa fa It fa 4  5 $ 5 5 'j 5 5 5 5 5 5 5 5 5 6 6 t, 6 b 6 6 6 6 b 6 6 6 6 7 7  7 7 7 7 7 7 7 7 7 7 tj 8 8 8 a a 8 8 a 6 6 6 8 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 . 10 11 11 11 11 11 11 11 11 11 11 11. 12 12 'l2 12 12 12 12  .  a.2 b. J 3.0 9.5 16.5 13.6 a. j 10.3 9 .9 1 3. B 3.4 16. t 10.8 ' b.V 2. 1 9. 2 21 . ] 9.2 4.6 42.b 5.3 17.7 fal . 2 56,4 H . '. 37.b 20. 1 8.2 19.0 6.0 6 . fa 0.0 5.7 lb. 1 2b. 7 11.9 6.3 13.6 2 1.4 3. 1 11.0 2.8 6.9 5,6 11.2 16. 1 16.2 12.5 6.7 33.8 1. 5 46.9 2.2 17.5 26.3 17.6 9.8 3.0 21.4 4. 7 (.. 'J J.O 2.5 3.fa 2. 1 7.0 6.3 12.6 5.2 6.6 0.0 3.6 19. a a.5 2.2 faB.b 30.5 20.6 19.6 36.9 4.1 10.0 1fa. 5 15.0 t.8 5.2 2.3 5.8 21 . 6 16.0 16.2 10.6 2. 1 fa. 1 0.0 0.0 5.6 22.6 2 3.5 10. 1 6.6 29,2 11.2 15.7 1 .'-> 20.5 10.9 11,7 6.6 11.0 2.3 6.6 10.6 6* L 5.1 2.6 3.5 3.4 6.7 16.5 6.1 a. 1 26.1 28.3 9.0 5.1  -  -  -  -  -  -, -  -  -  -  -  .  7.7 SH \. J 7.9 17.6 1 \<> t.3 9.4 8.4 1*6 1. 3 le.9 9, 3 5.1 C. j H. 7 20. e 9. <• 5,5 4 4.9 4,3 17.3 39,7 52.3 7.5 35.7 20.0 7. fa 20.5 J.6 6.8 1.8 5.4 I*. 6 25.3 U.9 7.7 12.1 19.,; 0.6 10.5 I. 1 4,9 6,b 10.4 16.1 16.6 12.5 4,7 36.1 0.9 43.6 4.1 15.7 26.3 15. B 10.1 0.4 22.0 2.5 6.T 1 .8 3.8 3.0 7,5 6.2 10.9 5.7 . 6.0 0.5 1.2 19. 1 9.1 1.9 faB.4 2B.3 17.8 19.5 33.7 5.1 11.5 15.1 15,8 7.7 3,9 0.5 4.e l>-.9 1 7.6 11.9 10.4 0.9 2.2 0.0 0.6 *.2 19.7 2*.2 11.T 6.3 31.8 10.0 17.7 J.5 23.0 ] 1 .8 11.4 7.1 11.2 D.3 S.8 11.9 9.0 2,5 1.5 2.5 5.9 3.3 13.8 6.6 6.4 s.h.b ;a,6 8.6 5.3  -  1  i -15 -13 - 11 - y - 7 - 5 - 3 - 1 1 -15 - n -ii - 9 - 7 - 5 - 3 - j - 13 - 11 - 9 - 7 - 5 0 2 4 6 8 10 12 lfa -16 -12 MO - B - 6 - 4 - 2 0 2 4 6 8 10 12 14 -14 -12 -10 - a - 6 - 4 - 2 0 2  fa  6 8 10 lc -lfa -12 -10 - 6 - 6  -- 2fa " 0 2 4 6 a 10 12 -lfa -12 -10 - 8 - 6 - 4 - 2 0 2 4 6 6 10 -16 -12 -10 - a -, t> - 6 - 2 0 2 4 6 8 10 -16 -12 -10 - 8 - b  -- fa 2 0 2  (cont'd) 3 3 3 3 j J 3 3 3' 3 A 3 J Ii 3 J ,i J J 3 3 •i 3  i  fa fa fa fa 4 fa fa fa fa 4 fa fa 4 4 4 4 4 4  fa 4 4 4 4 4  fa 4fa 4fa 4 6 4 4 4 4 4 4 4  fa fa  4 4 6 4 6  fa 4 fa fa fa 4 4 fa fa '• 6  fa  4 4 4 4 4 4  fa 6 4fa fa fa 4 4 4  fa fa fa 4 4 4 6  fa  * 4 4 4  fa 6fa fa 4fa  6 8 -16 -12 -10 - a - 6 - 4 - 2 0 2  fa  .6 'e  6 6 4  fa fa 4 4 4 4  12 12 12 1i 13 l'J 1J 1J 13 13 13 13 14 14 14 14 16 14 16 16 15 15 15 15 15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 I 2 2 2 2 2 2 2 2 2 2 3 J 3 3 3 3 3 3 3 3 3 3 3 i 6 ,4 6 6 4 6 4 6 4 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 b 6 6 6 6 6 b b b b 7 7 7 7 7 7 7 7 7 7 7 1  16. J 6.6 2.2 6.6 3.9 2.7 6.U 6. I 2.9 2. 1  -  Id.9 2 7 . <j J.2 2.5 15.2 b.4 7.3 7.5 4,V 3.3 5.3 4. 7 fa.O '32 . 6 7.7 28.6 6. 1 10.2 25.3 16,3 • 16.0 12.2 11,0 6. J 6.2 5.6 6.2 3.7 2.6 fa. 5 . 15.5' 0.0 3.7 2. 1 7.fa 5.8 5.3 5.4 20.6 23.7 19. 1 11.5 28.3 13.6 25. 5 19.1 27.9 19. J 18.2  -  -  fa 9. 1 . i -  4,3 11.6 10. 7 0,0 11.1 3.0 10.0 0.0  -  -  -  -  -  -  -  -  -  --  -  fa .fa -  2.6 13.0 10. 7 0.0 8. a 14,9 0.0 lb.O 10.7 12.7 25. 1 10.2 28.9 6.5 27. 1 10.0 7.0 13.5 5.0 2.7 6.9 9.1 6.7 4.0 5.3 17. r 11.7 1.6 6.8 6.8 8.3 4.5 13.9 26.5 39.5 8.6 10.1 2 7.0 14.9 16.5 5.7 22.6 5.0 6.6 11.5 3.33.> 9.2 11.6 5.8 6.5 9.3 11,5' 2.6 6.1  -  -  -  -  --  ---  --  -  -  -  16.5 3.7 6.2 6.8 J.6 0.7 5.6 6. 1 2.1 1 .3 3. 1 7. 7 M.9 2d.5 1. 7 .'.0 \-J.H 1.2 7.2 h ,6 2.6 0.9 2,8 0-0 2.6 28.0 H.O 30.6 2.7 9.5 27.0 16.9 16.1 ) 2.2 12. 1 3.6 3.0 6.7 5.3 2.a 3.0 2.7 15.6 1.5 1•B 0.5 B.O 5.3 5.0 5.1 22.1 23.7 20.2 9.7 30.6 11.7 23.2 17.7 28.4 18.5 18. 1 J.7 1 J.J 11.7 0.2 1 1.4 '3.3 9.8 2.7 6.3 0.5 1 < > . f a 12.2 0.5 7.1 15.9 1.0 15.6 6.9 12.1 25.5 11.0 25.3 5.7 26.7 10.3 7.5 13.7 fa.3 0.4 6. 7 7.B a.5 6.7 4,2 16.5 12.2 2.1 6.2 b.b 6.0 1.7 15.2 2fa.2 40.6 9.7 10.0 27.4 13.7 15.1 b.9 26. 5 6.3 5.3 11.0 6.3 3.1 , 8.6 , 9.9 6.3 4.6 7.2 11*0 0.6 2.9  -16 -12 -10 - 8 - 6  4 4  4fa fa - 02fa 4fa fa 2 fa 4 4 6 fa -14 4 -  -12 -10 - 6 - 6  -- fa 2  0 2 4 -14 -12 -10 - a - 6 - fa - 2 0 I  fa  -16 -12 -10 - 8 - b - (, - 2 0 2 -16 -12 -10 - 8 - 6  - fa  - 2 0 -12 -10 - a - 6 - b - B 1 3 5 7 11 -11 _ 7 _ j _ _ i 1 3  7 11 -11 - 9 - 7 - 5 - 3 ' - i 1 7 -11 - 9 - 7 - 5 . 3 - i 1 7 -11 - 7 _ 5 - 3 _ j ] j 5 7 -11 - 9 - 7 _ 5 _ 3 - 1 1 3 5 7 -11 _ 9 _ 7 - 5 -' 3  3 3  -11 - 9 - 7  4 6 4 4 4 4 4 4 4  fa 6 fa 4 4fa fa fa 4 4 4 4  fa  4 4 4  fa 4 4 4  fa 6 fa 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  8. 8 6 8 6 6 6 8 a 6 6 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 12 12 11 • 12 12 12 12 j3 ' 13 13 13 1J 14 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 ' 2 3 3 3 3 3 3 3 3 3 3 3 4 { 4 ' fa  fa fa 4 fa 4 4  6 5 5 5 5 5 5 5 5 5 5 6 6 6 6 b 6 6 6 6 .7 7 7  22.2 6.5 7.6 10.7 7.2 13.5 6.1 22.6 2,5 25. 1 a.2 9.7 7.9 6.2 3.0 9,9 5.fa 5.9 6.8 7.4 3.9 5.5 10.2 3.4 26.7 3.6 9.6 23.5 18.9 6.6 3.7 8.0 13.2 2.9 5.6 10.6 15. b 16.9 6.8 5.6 16.2 b. 1 5.4 20.0 15.4 11.4 14. 5 11. 6 4.7 12.4 12.a 4.4 fa.9 20.8 18.9 9.3 27.6 13.3 7.9 fa. 1 13.7 4. J 6.0 4.1 5.8 7.3 0.0 5.3 12.9' 18.9 8.4 7.9 18.4 3.3 15.1 10.7 19.0 12.6 20.3 15.5 12.5 6.8 3.4 5.4 12.2 10.6 9.0 5.4 6. 1 17.4 3*4 3.3 7.1 5.7 8.1 16.2 fa. 1 27.6 8.7 19.5 3.1 11.6 9.5 8.6 14.7 5.4 4.5 6.4 5.6 7.3 ' fa. 1 1. 3 3.1 6.0 14.2 2.5 12.5 4.7 19.5 3.6 17.6 14.9 6.5 3.9 a.7 1T.0  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  _  --  _  -  -  -  -  -  _ -  _  _ _  -  22. f 5.3 6.5 12.1 5.fa 13.1 6.3 22.1 1 .tl 24.9 8.5 8.1 9.2 1. 1 1.6 11.1 3.0 5.8 6.9 7.6 2.8 2.9 10.3 3.0 28.3 0.8 9.9 25.4 18.6 3.1 o.e 6.0 )fa.2 3 .fa B.O 1 1 .fa 14.6 14.9 4.9 2.8 17.2 5.9 4.7 21.3 14.9 11.4 12.7 10.8 0.7 9.9 11.9 0.6 2.0 20.0 19.1 8.5 29.2 1 3.a 7.3 1.3 15.3 0,3 5.a 1 .9 5.0 7.6 1.6 6.3 14.7 20.7 10.1 7.3 19.6 0.9 lfa.7 10.8 19.3 12.6 1 7.a 15.5 12.3 6.7 0.3 6.Q 12.1 10. 1 10.8 4.8 5.6 18.5 6.9 2.5 b.9 6.3 7.3 16.3 2.a 27.3 8.1 19.6 1. 1 10.7 9.5 7.9' 17.2 5.2 • 5.0 6.3 5.1 8.4 6.2 0.6 CO 7.2 15.3 1.1 13.8 6.0 19.6 3.3 17.2 15.2 5.7 0.3 9.0 10.T  100  Table 'XXIII (cont'd) -  5 3 1 1 3 5 -11 - 9 - 7 - 5 - 3 - 1 1 3 -11 - 9 - 7 - 5 - 3 - 1 1 -11 - 9 - 7 - 5 - 3 - 1 - 9 - 7  - 05 2  -  fa  6 6  - 02fa -  2  -  u 6 6  - 02fa -  2  - fa 6 -- 2fa 0 2  -  6 6 2 0 2 6  - fa 2 -  -  0 6 6 2  5 5 5 5 5 5 5 5 5  7 7 7 7 7 7 a e a 8  5  a  5 5 5 5 5 5 5 b b b b 5 5 5 5 5 5  6 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 0 0 0 0 1 1 1 I 1 1 1 2 2 I 2 I 2 3 3 i  b  6 6 ' 6 6 b 6 6 6 6 t> b 6 b b b b b 6 6 6 6 6 b b 6 •b b b b b 6 6 b 6  B  a 3  12.0 3.6 5.8 13.9 4.8 3.7 1 6 . fa 16.0 2.7 23.3 3.0' 6.6 2.6 7.0 ; 10.9 9.0 7.6 6. 1 6.0 3.5 9.0 10.a 7.0 7.6 5.5 13.7 6.5 6.2 10.0 6. J 2 2.6 6.7 7.0 a. i 9. J 6.2 6.8 12.0 8,5 3. 1 5. 1 16.2 12.0 17.6 7.0 16. I 2.9 5.6 5.9 7.5 13.6 7.6 5.7 16.9 6. 1 6.5 17,7 6,7 12.7 6.7 5.6 6.a 12.8 10.3 9.2  fa fa fafa u b b b 5 6 b b  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  13.5 6.1 5.5 13.3 5.6 2.9 16.6 13.7 0.2 23.6 1.7 5.6 '2.1 '5.6 10.1  io.a  a.o 5.5 fa. 9 2.2 6.7 10.6 5. 1 6.9 :t. 7 14.2 1.1 5.7 9.0 7.7 19.1 6.8 6.6 7.3 9.7 0.3 0.6 12.4 a. 2 1 . !• 2.2 16.7 11.3 In.6 5. 7 1 J .6 3.6 1.3 3.5 b.6 12.6  H.'.l  3.8 16.7 1 . 1 1 . 7 17.5 5.7 14. 1 7.6 0.2 2.5 13.9 10.5 7.6  101 TABLE XXIV ant i-7-N0RB0RNENYL p-BROMOBENZOATE; MEASURED AND CALCULATED STRUCTURE FACTORS  |FQI and h^c' unobserved reflections threshold values in the  The values l i s t e d are \ f o r which 4 Fi il i s l i s t e d as O.O, have range J | F | = 2 - 4 . 0  h  k  I F.  ,'(T • " o i 0 •0 '0 0 0 ~0" 0 ' 0 U • 0 0  0 0 D 0 0 ~0 0 0  0 0 0 0 o 0 0 0  J  1  1 1. ) ) [  V  0 0 u 0 0 u 0 o 0 0 0 ~o 0 0  -o  0 0 -o 0 Q 0 0 0 0 0 . 0 0 0 0  u 0 0 0 0 0 u  0 0 0 0 0 u 0 0 -(J——  '  1I 1  1 2 I  t  2 3 if 5 6 1 8 9 "0 1 2 5 4 0 1 2 3  0  cole  — i o . o ~ ~iBvr  0 0. u i 0  0 2 99.0 . - 48.3 TJ 3 23*9 - 2**5 4 21.4 22.2. 0 3 19.9 18.B 0 6 4.1-5.4' u 7" " 2 O i 8 19 , V 0 B 30.5 29.2 0 9 28.0 23.6 0 0 10 38. ' - 34.' 0 . 11 22.8 - 19.4 12 10.9 — 10.4 0 r j 18.2 16.r 0 .14 4.3 2.2 "0 16 4.8 0 13 12.6 - 2,7 12.0 17 8.7 7.4 0 1 2.3 - 0.8 2 5T5 r."6" 0 3 29,6 25.9 0 4 18.4 22.7 0 9 41*9 - 26.9 0 6 10.5 - 13.0 7 Z6.1 23.5 -o « 12.7 12.0" 0 9 7.1 - 6.1 0 10 4.1 - 3.1 0 11 2*9 2.2 0 12 12.2 11.4 D 13 4.8 - 4.4 14 11.0 - 9"."3" 0 15 2.9 1.4 0 16 9,4 3.0 -p IT 1 r> " — 0 . 9 0 0 0 66.2 64.3 0 70*3 65.0 •o 1 2*7* 20.3- 0 2 35.6 - 30.1 0 3 36.3 - 31.3 0' 4 91.2 39*3' 0 0 5 11.8 9.8 6 22.7 - 24,2 I 5.6 - "V.&0 8 7.7 8.1 .0. _ 9 7,4 7.2 0 ID 6.4 - r.i 0 11 18.6 - 16.4 0 12 1.0 0.2 '0 0 13 "9.7 ~ H ; B " 0 14 2.1 0.6 0 15 9.6 - 9.5 0 lb i,b 0.9 0 17 3.9 3.2 1 52.6 - 45.1 0 2 S.9 - 4.4 0 3 46.9 39.7 0 4 U.2 9.2 3 8.3 - 10.6 o 6 28.1 - 28.7 0 7 31.5 33.6 B 2 0 7 6 23.8 9 20.2 - 21.2 10 26,0 - 26.1 11 12 14.3 14.0 13 3.* " 4.3  13 16 0 1 0 . 2 "30 4 0 5 0 6 0 7 0 6 ~0 9 0 10 0 11 0 12 0 . 13. 0 . . 1* "15 0 16 . 0 1 0 2 0 3 0 4 ( -5 0 6 0 7 11 0 9 0 » 10 o 0 11 0 12 0 13 TM . o • "1 19 0 0 0 1 0 0 2 0 t 9 ft U ( 3 0 t 6 . 0 < 0 « . ' 0 t 6 0 ( 9 ~o— 1r rrj 0 11 0 t . 12 "TJ 1 13 0 . t 14 0 t 15 r ~o——1 . l'X~Z". 0  \ o u • o  obs  0 0  F  M  4 3 -6 7 6 9 0 1 7 0 1  r-  1 1 1i3 1 1 4 1 }...... 1 6 1 7  J  1 1 1 1 1 1 1 1 1 1 1 1  9 0 1 2 3 l» 3 6 7 6 0 1 2 3 4 3 -17 6 5 4  1 ...  — 11 1  3.0 - 1.7 6.6 6.3 1877" -"13TT 12.9 - 8.0 24.2 16.5 9.2 3.7 7.0 " 6*3 13,5 - 12.1 6.6 6,4 10.0 7.2 4,6' - 6.3 l.T --- 2.8 . 0.0 2.0 0.0 - 0.2 9.6 4*0 4.9 - 4.9 1.9 - 1.4 3.ff" " J }. ! 1.7 0.0 32.5 - 25.9 24.5 - 20.T 11*3 10.4 21,9 19.4. IB.T"16.9 7.9 - 8.1 18.3 19.2 .9.9 4.7 14,6 - 18.9 14.2 - 19.1 10.4 11.7 10*0 9.2 2,0 0*9 BT7 =—873" 2.5 1.9 35.6 - 28.9 ™3.» - 3iT 52.0 42.8 6.9 4.9 2V.9 • 21.1 8.6 - 9.0 10.4 U . l 13.4 13.7 6.0 - 8.5 9.6 - U.9 Z78 ZTF }' 9.3 8.4 6*2 - 3.6 6.0 - 8.2 2.1 - 1.3 4.6 5.9  i —  J  :  i  1 .  I  •j j ! J  I ;  *  -  1  !  -  1  ! !  6.4  1  »  u.o  2.9 0*2  o.y  ""27*  0.0 6.8 "2.0 '  17.9 "TT.-90.0 12.4 —0.0 20.1 1.4 -T6TO—  - 2*3 8.6 2T9" - 10.6 - 1.8 |,q 6.9- 0,4 a.r 10.6 - 7.4  2.1 - 1.6 9.9 10.7 9,4 " 9 7 7 0.0 - 2.0 6.6 - 12.0 8TB ' 10.8 1.9 0*4 2.1 - 0.1 3.3 4V40.0 - 3.2 2.4 - 0.6 t0.0 .a- . r.e 2.7 0*0 , 0*6 3.7 2.6 2.2 - 1.1 1.6 - 0.7 2.2 1.6 2.1 3.4 2.3 Z7Z~ 9,4 3.1 1.6 0.0 2.6 1.3 3.9 1.7 T J . 2.1 2.1 12*1 3.7 13.1  3" — 6 i 3  j —  3.9 0.9  .2.1 2.7 O.O - 1.8 Z'ii 1.0 3.8 ' 2.7 2*3 - 2.0: (J.O U.9 2.1 - 0.6 20.4 2.1 - 18.1 2.7 22,6 20.3 8.1 8.9  3 3.6 6 B.3 7 "9T0 B 7.9 9 0.0 " •g— ••— 1 3.9 2 2,4 j 6,3 1 11.9 2 .7,6  73  1  0.9 1.2 6.5 - 6.9 j-. 5.3" 4.6 4.9 3.4 3.0  B ,  0.3 2.4 2.1 3.7 - 6.2 - 372 6.4 3.1 - 3.6 - 2.2 .2.9 2.3 - 7.1 1.7 0 0 . 1 3.6 1.3 - 10.4 - 3.3 14.3  5.6  2 17.1 - 17.0 1 13,3 - 13.7 U 23.2 21.8 9 7.9 7,9 6 36.3 - 39.0 7 ' 31.9 '—- 33.1 6 37.3 37.3 3 91.2 39.1 4 12.8 - 16.3 3 40.0 - 38.6 2 33.3 - 24.0 1 5.7 5i6" 0 23.6 21.6 1 38.5 - 36.6 I 35". 3 27. T 3 66.3 66.3 4 21,8 26.8 3 2V.1 r J4.6' 6 26.3 - 30.9 7 34.6 33.8 8 • U.V il.t 9 10.3 - 8.4 0 16.8 • 13.4 1 23.1 2277 2 4.9 ' i 2.2 3 7.5 - 7.6 4 13.1 -' 14.6 9 2.1 1.7 6 6.4 8.8 t l.i - 6.3 6 1.9 1.4 11.8 11.4 i9 * 0T0 079" 3 ' 11.8 -' 10*2 2 3,2 1.2 1 11 .V 12.0 0 1*.9 14.7 9 12.3 - 13.0 B 1778 "T3Y4" 6 14.1 17.3 3 26.3 - 24.9 4 43.4 - 3V.1 3 13.0 11.5 2 33.9 44.5 I 2~Ti TTT 0 119.1 . -108.7 1 20.3 15.8 2 3T.0 90.3' 9 B . l - 2.8 4 * 36.0 ~ 31.4 5 977 • 13.0 6 16.1 20.9 7 i 24.2 23.4  0.0 0.0 o.o0.0  90.0 23.2 " 90.6 1.1 59.7 3TT23.7 20.2  ~T»7T~ 7,2 9.1 —4.519 8.2 -19 1.7 ~=143.9 -19 0.0 -12 lt.O -11 " "0.0 -10 14.0 U.l 12 13 l t r  -Toll  —9rt~ 23.2 10.0 20.7 15.1 19.9 —9rr~ 6.3 .17,7. "15. 6 4.6 10.7 10.6 0.0  1  18.6  - X9,9_  • 49.0 13.5 '40.2 2.1 • 33.6 '—97Tr 24.2 21.6 ' "770" ' 16.0 ' 0.9 '~14-78' - 6.4 • 9.2 3.6 9.3 ' 1.3 '—577* ' 0.0 10.9 " 3.2 - 16.8 - 14.6 -IT. 3 14.7 ' 10*8 '• 12.7 ' 4.4 20.4 '~8rr ' 20.0 B.O -16.9 13.9 • 19.4  0.0 0.0 0.0 "070 0.0  12.4 15.8  4.3 14.6 ~TTT 19.3 14.3 *-10f* 9,9 14.7 "9.1 - 4.3 - 6.5 3.2 6.0 4.3 - 2.7 0.2' T.7 3.7 4.4  2.3 5.5 "~=—573 - 3.8 4.3 7.3 - 0.6 - 3.6 —= 07T 1.4 - 3.2 ~ - 0.6 2.9 4.6  4.5 -3.2 4.0  «rr  7.3 -_»T>9 ^15.2 • 7.3 12.0 BV?~ • 6.4 ' 10.0 3.7 1.9 2.6 1.2 3.4 3.9 —Z.Z" 3.6 • 3.8 ' 0*3 ' 6.9 5.6 ~T0T9-  5.6 - 18.0 ITT  -  :  27.3 «T«—  1.9 - 6.3 2.6 8.6 —3i9" 13.2 16.4 T5.3 13.1 17.0 16.7  4.1 6.1 —977" 11.7 12.1 —572" 11.1 3.3  0.0 0.0  u.o—  -o.D— 0.0 0.0 "O.O-  5TD" 1.2 2.4  7  0~  "13  102  continued h k  obs  cole  17.3  - 12.1  .0  -  •1  0*5  46.4 6.3 10.4 10.4  46,1 20.1 20.7 10.ft • 21.6 ;  9.0 3.9 5.2 o*2' 10.0 - 1.3 - 2.7  -  - J5.6 - b.9 7.7 H.l  - 6 - 5 - 4 -13 -12 -11 -10  2.8 2.1 0.0 0*0 2*4 -  16.3 6.0 29.6 23.2 31.3 10.0 30.4 27.2  0.0 10.9 0.9 10.0 2.1 6,9  •6  1.4  6,3 7.0 0.0 1.3 10.1 0.0 12. 1 3.1 0.0  26.4 14.0 39.2  '3.7" 0.0 0*0 0.0 0.0 0.0 0,0 0.0  4,5 10.2 15.6 18.6 13.7 24,3 12.0 31.5  -  -  10.6 9.9 2.7 S.4  1 .2 1.5 0.1 2.3 3.5 4.2 5.7 1.4 4.3 4.9 4.0 2.9 2.9 5.4 1.3 4.3 2.0 6.4 0.1 4.9 1.8 2.6 2.1 3.8 1.9 2.0 0*4 3.9 0.2  0.0 13.7 4.1 9.6 4.0 19.2 13.3 2B.0 30.2 14.9 36. 1 26.0 26.7 1.7 11.6 13.6 41.2 12.1 26.7 7.6 37.4 6.3 12.5 23.2 8.3 16.2 11.6 21.2 11.6 7.4  5.0 17.0 13.6  30*4 32.9 3.6 16.4 16.6 35.9  2.7 6.5  - 10 12 1 - 7.6  8.0  4.8 5.2 16.6  0.0 1**3 8.3  24.1 16,8 32,7 12.0  23.3 '3.4 24,6 9.3 15.3 20.3 10.2 13.4 10,6 5.5 2.1 11.4  - 3 - 4 -  3  - 2  " 1.6 3.6 1.2 1.9 4.1 2.3 r.2 0*4 2.3 1.2  3.0 2.2 0.6  2.6 7.0 3.0  3.3  1.1 > IS,2 3,0 22.6 14,0 22.5 7.8 27.0. 28.7 26.1 18.6 21.3 27.1 1.6  -  6.1 7.7 8.4 10.9 12.1 4.0 19. 1 6*9 18.2 1.5  2.6 2.0 6.4 6.9 7.6 l.l 3.0  3.9 3.2 3.4 0.4  .3  0.7 0.0 0.0 0.0 0.0 "2.2  8  4.1 2.6 0.0  O.S 7.9 0.0  5.3 12.6 0.4 38.7 0.4 24,0 13.5 14.1  0.8 4.1 1.6 2.3 4.2  - 7 - 6 - 3  9.8 2.9 6.0 9.9  -  -14 -13 -12 -11  -  • O'.TJ " 1.4 0.0 . 0.0 0.0 0.0 • o.o 0*0 3.0 2.0 -  -  6 5 4 3 2  - 7 - 6 -  3  ' - 4 - 3  2.7 0,0 5.6 1.6 5.5 0.0 1.3 0.0 2.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0  0.0 1.4 0.0  -13 -12 -11 -in  14.9 3.6 10.2 5.4 4.0 6.4 1.3 1.8  6,6 4.5 7.6 3.4 10.0 1 .1  -  16.5 4.5  - 12.7 - 5.3  -  7.9 4.3 6.6 3,5 7.6 12.6 17,9 10.6 24.0  - 3 - 2 - 1  7.4 10.6 0.9  103 continued : h  k  L  obs  ~4T24.5 2.B  cole  5 .9 5 5 5 3 5  2 I - 1 2 0 2 1 2 2 2 3 2 4 2• 5 3 2 6 5 2 7 5 2 8 5 2 9 0 2 10 3 ' I ' 11 3 2 12 3 2 13 3 3 -16 3 3 - 1 5 3 3 -14 "5~ 3 -ii 3 3 -12 5 3 - U 3 3 -10 5 3 9 5 3 8 5  * 0.7 0.8 3.9  7.9 21.6 -tart— 20.4 17.1 IS.2 20.9 B.2 -•4T.t)~' 21.9 00.0 ~ 1 7 o "" 30.0 7.1 -TBVJ 3.7 11.7 10.1 9.3 10.7 ~BT3 1.6  0.0 0,0 2.7  30.7 6.2 19.6  0.0  11.9 —9TB—  -  0.B 0.7 3.6  0.0 0.0  -(T.TJ1.0 9.6 O.B 7.6 3.9 — B 7 T 13.6 3.3 14,4  •1.7 " 7.6  .0*0.. 0,0  0.5 3.6 7VT  0.0  16.1 1.7  6.5 19.0 —9TD~22.4 0.0 0.0 20.1 9.3 71.6 ~ 2.6 13.3 .6.1 10.7 5,8 -3V95,9 3.8 4.3 0.0 1.2 — 6 T 8 — 0.0 3.0 4.6 0.0 U . l -T9V4 17.6 9.3 10.7 3.7 10.3 -yn17.2 7.2 26.2 11.3 10.2 TTT6.9  — B T T 15.3 0.2 0.2 | 13.0 8.7 2 1 . 6~ 1.3 6.6 12.2 0.9  —*.?  3,0 3.9 1.0 0.1 0.7 —TvO 2.1 3.2 7.4 B.7 13.3 T8.9 17,4 8,3 • 10.0 2.6 13.0 "076 15.6 3.6 22.8 U.O 10.3 TTT 3.4 11.6 ™773 10.3 3.6 — 4 T T 3.6 0.6 3T63.2 4.4 —QT9" 1.8 2.2 —IT6" :  1  3*4  -  6,3  3 "55 3 3 3 3 3 5 3 5 5 3 3 3 5 3 3 "3 5 3 3 5  2  18.2 10.0 6,6 - 8.4 29.1 - 20.4 6.6 - 5.2 16.3 19.7 4.5 9.0 11.2 - 10.9. "' 0 . 0 " 0.5 4,8 7.0 8,6 7.1 9.7 - 9.3 8.1 - 9,4 7.6 6.7 U . l " TI.3' 9.1 - 3.1 4.0 - 3.6 2.7 - 1.2 1.3 - 0.1 3. 1 1.9 0.0 - 1.2 8.4 - 8.3 3.Z - 3.2 "7.6 6.8 3,1 - 1.2 9.6 11,7 4,4 - 4.TT 3 - 6 9.0 6*3 3> - - 5 0.0 - 0.3 3 " - 4 3.4 •-—3,0 3 3 3.9 - 2.6 3 2 13.6 10.9 3 1 IT.4 v.s 3 0 9.6 6.3 3 1 8.2 - 7,2 3 2 6,4 - 5.7 3 3 3.9 3.7 3 4 10,1 - 10.0 3 5 0.0 " 0.7 3 6 4,4 0.7 3 7 3.9 4.4 3 "~ B~- - 3 , 6 3.0 3 9 3.6 - 2.4 3 10 9.3 - 8.2 triT 3 U "lt.O— 3 12 4.0 - 3.9 3 13 2.7 3.0 -8,9" 7.4 4 -14 2.4 0.2 4 - 1 3 13,1 - 12.0  1  _  ""-1'5" -14 -13 -12 -11 -10  -  - 6  0.0 2.4 1.7 2.7  —m—  4  r  T.'i "  -  -9  - 3.4 4.9 4 .9 1.9  9  M  -  9  9  4,4 0.7 0.2 0.4 2.6  0.3 5.7 4.3 6.6 1.3 •"•13. V 9.3 • U9 . 2. l •7.7 15.2 12,9 10.7 9.0 8.3 8*5 4,2 -2.7- 4.2 5.4 0.9 1.1 6,9 6.9 7.3 8.6 13.4 10.2 — T . T 5T9 ' 14.8 12.7 1.2 1.7 1.3 7.4 • 2.8 276" 4.6 2. 1 • 6.7 3.7 • 8.7 —or? 9.0 • 0.5 • 14.3 1.6 9.0 11.2 11.H —I4T0" 10.7 10.1 21.0 21.0 7.9 3.9 17.6 17.1 6.9 3.1  0.0  5.9 4.1 7.2 1 .7 —rsvtr  •  6.3 17,0 0.0 • 26.8 2.8 ~T5TV 7.1 6.2 5.2 1.7 3.5 ' 2,4' 2.2 3.5  5 5 "5 5 3 5 5 5 3 5 5  4 - l l 14.1 13.1 4 -10 9.2 8.6 4 - 9 9.3 - U.O. 7,9 4 . 8 1 9 . 3 1 7.2 7.7 4 7 11.3 U . l 8.8 4 - 6 18,0 18.2 4 - 5 19.4 - 17.8. 4 - 4 16.3 - 10.6 4 - 3 17.4 16.2 .4 - 2 19.6 17.1 3.1 1.0 4 1 3,5 - 4.5 0.0 23.9 *• 1 8 . J —0.0 5 4 1 1.0 0.2 0.0 5 4 2 20.1 17.6 0.0 5 4 3 2.0 2.3 0.0 3 4 4 12.1 - 10.3 0.0 5 4 5 2.7 - 1.6 0.0 3.6 -5 1 0 9.9 8*0 —1.0 3 4 - 7 8.9 8.0 O.H 0.2 3 4 8 11,7 - 10.6 2.3 0.6 5 -4 9 9.6 - 9.3 1.7 O.B 10,0 9.6 0.0 11 0 O.B 55 4 1 6.2 6.2 2.0 9 4 12 4.3 " * 4 * 9 ' T . T 5 4 13 4.1 - 4.3 0.0 0.3 5 5 -14 7.9 - 7.6 0.8 O.B 3 3 -13 0.0 - 1,8 0.0 0.9 5 3 -12 9.0 7.1 0.0 3 5 -11 0.0 - 1,0 0.0 _j ^ srfo OYO— —5i l 0.0 0 0 9 2.1 - 2.2 0.0 6.4 0 0 - 8 6.9 6.2 0.0 0.8 3 5 - 7 6.2 3*9 3.5 3.4 5 3 6 7,3 - 7.7 1.8 5 5 - 0 0.2 9.2 - 9.9 4.8 4.8 -0 — • -• > - "---4 ttvi— tt.l 0 0 3 17,8 19.6 ~076 0 0 - 2 - 1.4 0.0 0 0 1 12.8 - 10.7 3 3 0 7,2 - 3.4 3 5 1 21.4 16.7 ~9 -5 23.1 5 3 3 1 4.9 3,4 - 13.3 3 5 4 2*1 - 1.4 3 5 9 ' 5.9 5 9 6 5.8 3.4 5 9 7 . 7.6 - 6.2 12.8 5 5 H -= 6 T B '—TT6 5 5 9 3.4 1.9 20.9 17*0 5 0 10 3.6 3.9 16.6 12.8 5 0 11 1*9 - 3.1 " I67T -"13.9" 9 9 12 3.1 - 1.2 24.3 23.9 3 6 - 1 3 9.9 - 5.2 3.6 0.0 iti 9 6 -12 JaH 46.8 ' 56.1 ' 3 6 -11 0*0 O.B 6 . 2 7.6 6 -10 4.8 6.8 ' 24.6 9 26.4 5 ' ' "6 - " 9 - " 3 . 2 ~ -- - " " 3 i 2 ;—2~7 3 6 - 8 0.0 - 0.1 23.2 5 6 - 7 1.8 1.7 5.7 5 6 ** 6 3.U - 1.3 5 6 - 5 4.3 - 4.1 1.1 5 6 - 4 7.4 - 6.3 13.2 3 6 - 3 10.4 U.O — S T B 5 6 - 2 U . l 9.9 10.4 3 6 - 1 0.0 1.0 12*8— • it,ir 9 6 1 10.3 6 0 10.4 5 6 2 10.7 - 6.8 1 5 6 3 8.8 y.v " 3.0 9 6 .4 0.0 9.8 5 6 5 3.3 2.4 9 6 6 3.3 9 6 7 1.2 3 6 8 6.6 - 6.9 1.9 *• 2 . 3 9 66 1 09 0.0 3.2 9.3 3 6 11 0.0 - 0.3 21.7 5 T " I S " — — o r o — ~ —TT* TTTJ TDTT 9 - 7 -12 9.2 7.6 12.6 14.0 3 7 -11 - 1.7 0.0 16.7 - 16.9 —*T&— ~——5rV 17.0 1.7 - 3.6 ~5 -tO 17.4 3 .7 7 - - 89 .5.0 6.3  '  3.4 2,6 " 4,9 6.2 2.7 7.8 5.5 1,3 —3V9 1.1 1.4 3.0 1.1 7.6 13.6 9,2 8.3 3.7 1 ,2 0.2 0.6 1.1 4.2 1.6 5.2  3.0 — 5i9 0.0 0.0 0.0 3.6 8.0 13.6 7.9 6.B 3.0 0.0 0,0 - " 2 7 4 '• 3.6  4,9 ' 1.3 • B.B 3.8 5.5 — 9 7 V ' 11.5 • 8.0 0.7 6.3 • 3.0 1  12,1 7.6  -0.0  1.3 17.9 2.8 16.3 4.6 STB* 3.9 1*3 • 174" 0.9 4,2 —9VT 7.1 2.0 T07T 4,3 8.7 5736.2 12.7 "47112.5 7.2 —njT7" 6,7 4,3 —3-37,9 2.1 77754.9 '  1  ; _  104  7.4 3.3 ~3".'7  c o n t i n u e d :— h  k  L  F. F 003 calc  0.4 3.8 2.7  3.1 "z;6 1.3 5.3  3.6 1.9 3.4  2.6 8.7  -0i5  5,4 0.7 5-0  .6  -  8.9  - 7 - 6  - *  9,3  - 3 - 2  —ffve 10.5 13.5 10.7 12.6 0*0 — T 1V. 59"  4.2 2.9 0.6 A .2 2.9 4.0 0.0 5.4  1.0 - 5.0 - 2.0 1.-*  i.O  1.1 - 1.0  -10 - 9 - 8  0.6 0.4 0.9 0.2 2.0  -10 - 9  7.1 2.7 0.4  '.0  -  1.5  .7  0.2 2T3- 0.0 - 3.0  4.5 1.0 3.0 2.6 0.6 — i v r 11.2 13.1 13.0 7.3 12.8 TTT 18.1 2.7 12.9 . 1*2 15.9 3TB~ 10.1 1.0 5.3 3.4 3.0 —TiTT 1.3 < 0.1 10.4  12.7 4.6 14.4  15.2 5.8 " 8.2  i.O  - 1.8  »T~---*—srr  0.2 4.9 3.4 1.0 2.1 1.0 "OV*' 2*1 3.8 2.9 2.5  • 5.0 2.6 4.2 •~«i3 3.2 9.4 0.3 "TI.T 4.0 4.1 0.3 3.8 2.5  "Z.3 3.4 2.4 "4.2  TTT,  3.6 0.0  1.1 1.8 0.5 1*5 - -3.5" 3.8 2.0 2.2  105 TABLE XXV OCHOTENSINE METHIODIDE, MEASURED AND CALCULATED STRUCTURE FACTORS The v a l u e s l i s t e d a r e 10|F |and 1 0 F , unobserved r e f l e c t i o n s f o r which 1 0 | F Q I i s l i s t e d as 0 have t h r e s h o l d v a l u e s i n t h e range | F Q | = 12 - 43. 0  k&F £ ti * o  4 641 8 3351 12 2 1 1 0 16 641 20 972 1 703 103 910 993 103 124 089 537  0  788 3507 2315 67B 1102  127 801 479 318 679 1299 510 268 184 579 534 331 404 4? 337 806 900 413 289 724 289  351 558 227 372 1530 3041 2006 393 2730  11 1 7 7 9 12 1 0 5 5 13 1 9 8 6  452  319 679 357  13  298 1854 2849 1881 462 2454 "1463 1741 43 1664 1029 1909  151 15 1 2 2 0 1 2 9 9 16 1 2 2 0 1 2 2 7 BOB 17 765  366  172 558 289 496 496 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  641 1055 3165 268 1365 2068 2606 1717 910 1303 1613 1820 310 806 744 703 641 662 786 579 206 889 0 455 599 786 124 599 1303 413 413 744 724 206 165 455 558 579 310 848 724 268 0 331 351 413  1021  561  703 242 539 609  898 1316 3310 146 1612 1955 2458 1720 798 1357 151\_ 1814 376 838 692 807 681 755 784 6T8 292 960 329 610 626 904 85 641 1349 462 385 830 778 174 275 577 610 548 390 815 685 341 67 376 433 420  1 I 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 I 2 3 4 5 6 7 8 9 10 tl 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 1 2 3 4 5 6 7  0  0 0  c  0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 •2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3  H  310 413 0 393 2544 1199 2275 1220 331 3082 682 1613 1241 1513 475 1675 0 1696 765 1406 455 1137 0 5J7 0 434 0 537 0 310 « 3 724 475 558 268 165 82 1324 1034 0  0  1717 55B 475 0 455 1117 0 0 434 786 351 331 0 268 165 972 2917 1717 1427 993 2213 1082 434 827 1075 786 413 1241 1675 558 599 4 75 848 517 0 351 351 2275 1013 1510 1365 1075 786 537 0 724 1199 1199 372 703 662 434 0 579 786 662 0 0 310 2110 1013 0 599 2648 165 517 372  374 553 331 472 2746 1499 2288 1347 442 2788 713 1737 1215 1421 352 1402 127 1634 773 1188 39* 1016 252 642 265 470 215 522 233 532 902 614 751 445 427 63 1252 910 67 7 1433 597 547 234 397 1081 51 2 39 399 781 648 383 308 436 369 1209 3336 1708 1505 905 202 3 1417 385 950 952 766 368 1146 1531 634 561 409 933 506 311 458 546 2600 1078 1559 1790 1076 707 560 100 649 1238 1197 288 685 593 378 241 521 733 S23 66 277 382 2332 1136 147 556 27B5 270 508 200  2875 2280 1344 1495 0 106 331 374 1344 1 2 4 9 13 351 3 6 9 14 0 38 15 393 363 16 0 0 9 824 17 0 331 ' I i I . . I ' I  455 331 « 4 662 993 2275 806 310 1303 2089 331 310 10S5 2503 910 537 972 951 0  I  16 17 18 19 20 21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4  0 0 289 144 310 910 B27 744 930 889 0 310 1220 744 579 703 006 068 0 434 744 455 0 620 310 1655 848 558 744 868 765 910 993 1303 951 579 1409 1013 827 786 889 765 475 0 662 579 703 351 124 475 620 930 186 840 786 1241 268 1096 599 1137 372 579 413 806 0 455 765 682 1034 0 351 724 1489  495 428 646 104B 2562 861 215 1227 1970 384 397 1019 2175 835 497 941 872 156  32 110 228 325 382 1173 835 751 922 083 140 336 1150 780 551 726 006 827 294 489 764 442 92 649 320 1C94 1092 «>66 842 829 733 946 944 1151 889 584 U99 701 692 619 842 632 411 286 631 594 704 290 183 553 714 902 174 774 662 1180 277 1076 554 1075 407 614 335 750 65 444 689 677 1129 216 530 707 1708  5 6 7 0 9 10 11 12 13 14 15 16 17 18 19  4  4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1  I 1 I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2  z z 2 z z z 2 z z 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  J  S  3 3 4 4 4  . _4 4 4 4  H  1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 16 17 10 19 20 21 22 a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 19 20 21 0 1 2 3 4 5 6 7 8 9 10 11 12 H 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6  0 0 620 706 434 0 393 B06 413 a 724 006 a a 620 5 434 144 B06 0 2027 0 724 0 1261 951 0 0 006 0 186 0 1055 0 0 0 455 331 682 951 2B9 1075 806 1303 268 1592 475 1406 103 724 372 1096 248 599 455 827 0 558 144 599 186 579 I75B 206 599 310 1261 413 0 331 951 910 455 372 993 413 475 289 724 517 1096 724 1034 1117 124 04 B 910 930 537 724 351 006 517 496 269 910 434 0 0 372 1737 124 786 860 951 930 144  C  442 305 64 3 726 431 155 474 808 446 219 620 730 242 137 505 491 46 777 115 1B9B 194 711 66 1177 1045 164 15B 733 216 296 96 1013 155 178 11? 428 397 694 1042 409 995 784 1153 215 1222 426 1258 207 718 245 955 198 581 432 820 222 615 261 662 406 507 1639 359 683 321 1125 415 169 455 048 079 492 367 654 408 496 237 75 3 554 1100 836 1032 1027 70 TOO 961 775 564 702 431 774 537 491 152 843 487 401 180 466 1000 240 792 767 830 822 196  5 5 5 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0  7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  H  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 1 2 3 4 5 6 7 -8 9 10 11 12 13 14 IS 16 17 16 19 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13  _»*15 0 1  890 910 1117 1015 289 398 0 120 848 654 993 001 0 425 a 235 662 540 009 878 687 662 446 209 41 0 599 5ii6 0 !>5 703 739 331 366 006 716 0 153 496 469 641 637 662 579 29 0 361 393 0 32 7 413 357 • 6 641 832 260 414 579 691 434 428 1427 1 4 9 7 579 503 496 385 331 231 827 767 766 792 537 440 310 276 951 1001 413 434 268 163 0 108 027 675 615 413 227 223 413 516 599 773 744 893 513 413 786 891 B06 837 517 508 655 682 498 558 701 848 089 701 0 210 623 682 662 548 703 62 3 55B 519 0 341 124 182 579 610 0 101 393 301 289 259 1158 1234 595 517 648 929 744 774 372 160 703 729 910 907 786 762 786 713 329 266 752 806 599 585 579 627 140 0 558 4B3 620 586 550 365 0 138 351 330 2 67 Jtl 351 437 455 303 951 1067 496 560 1034 1037 806 075 1150 1124 248 247 1055 899 0 244 662 644 413 364 931 770 310 364 614 662 -.0 537 393 246 312 45S 460  4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 a 0 0 0 0 i x 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3  2 7 72 910 3 216 268 337 4 310 579 530 5 6 455 486 430 7 537 8 372 .10 7 9 319 0 744 552 10 375 11 351 147 12 165 13 372 442 14 496 486 0 868 949 584 1 537 2 42 3 393 3 335 331 4 1241 1117 5 809 815 6 331 494 7 537 521 0 951 836 9 2 76 0 10 432 517 537 550 11 701 12 744 13 579 617 14 0 235 15 133 0 16 744 657 0 558 602 360 I 331 2 0 116 342 3 0 4 475 494 5 488 4 75 6 358 351 7 0 123 B 372 368 9 517 435 7 H • 1 475 689 326 2 413 3 703 79) 4 0 94 5 537 456 6 0 24 584 7 517 8 146 0 9 662 477 243 10 372 768 11 806 41) 310 12 13 413 392 14 0 179 IS 702 662 189 16 0 17 227 321 18 285 0 19 578 413 20 185 0 76 21 0 313 22 393 448 23 206 0 1117 11B9 310 1 0 827 8^9 2 250 3 331 4 703 662 5 227 297 599 6 766 244 7 372 8 1055 839 9 124 165 10 517 402 314 11 372 564 12 70 3 13 0 180 14 538 662 456 15 556 16 434 310 17 356 289 302 IB 289 255 19 289 0 785 70) 269 1 310 656 2 496 3 372 328 4 786 702 470 5 455 583 6 703 7 304 331 8 1055 1086 9 461 475 641 568 10 433 11 391 479 12 496 13 376 0 14 351 381 15 320 227 16 614 662 17 0 260 18 579 470 19 220 0 to 393 421 0 176 0 153 1 0  599 62 7 9 10 0 1)0 3 248 226 11 3 496 351 12 3 13 724 661 3 14 331 177 3 ' 15 0 234 3 16 455 468 4 0 0 240 4 310 368 1 0 89 2 4 3 310 368 4 4 0 73 4 455 419 5 4 6 0 162 4 7 331 246 4 8 0 24 4 331 248 9 5 0 0 20 5 1 0 206 972 871 2 5 0 222 5 3 5 4 0 2)7 5 0 360 5 748 BB9 5 6 5 7 0 195 B 0 32 3 5 9 a 4 47 5 5 10 1 0 5 5 894 5 0 216 11 5 12 0 113 5 0 53 13 5 14 786 583 H • 9 206 521 0 1 a 0 211 2 a 413 519 3 0 4 206 172 a 5 206 265 a 6 206 124 0 7 475 640 0 0 114 0 9 310 461 0 0 10 227 418 0 310 265 11 351 249 0 l 434 358 1 i 2 3 5 1 335 i 240 356 3 i 334 4 248 372 456 5 6 268 36 3 5 3 7 7 522 i 372 337 8 i 9 268 209 i 10 0 304 l 2 6 8 393 11 i i 289 12 346 13 289 275 i 14 289 203 i 2 0 806 726 2 0 208 1 2 0 280 3 0 288 4 413 446 2 5 0 156 2 6 0 200 2 7 0 83 0 610 615 2 9 610 418 2 10 0 231 0 139 11 2 434 532 12 3 289 258 0 3 2 0 9 3 46 1 3 289 329 2 3 269 191 3 3 4 0 170 3 5 301 310 3 6 310 370 3 7 110 244 4 0 0 11 4 331 411 1 2 579 552 4 3 475 459 H * 10 434 0 0 541 0 1 227 162 0 2 372 254 0 3 227 43 0 193 390 0 5 0 62 0 6 393 260 0 7 0 58 0 8 393 529 1 0 268 120 .1 1 266 268 2 0 310 268 2 310 216 1 2 434 368 2 2 0 3 142 2 4 537 369 2 5 a 193 2 6 0 316 2 7 0 196 2 8 0 162 2 9 0 165 2 10 537 473  )  4  i i i  z  4  475 331 599  539 256 768 110 560 149 21B 195 657 17 470 224 431 245 698 241 575 601 551 210 126 32 7  4  106 BIBLIOGRAPHY 1.  J. M. Robertson,  "Organic C r y s t a l s and M o l e c u l e s " .  U n i v e r s i t y P r e s s , I t h a c a , New 2.  (1953).  M. J. Buerger, " V e c t o r Space and i t s A p p l i c a t i o n i n Crystal Structure Analysis".  3.  York  Cornell  W i l e y , New  N. F. M. Henry, H. L i p s o n and W.  York  (1959).  A. Wooster, "The  p r e t a t i o n of X-ray D i f f r a c t i o n Photographs",  Inter-  2nd  ed.,  W i l e y , New  York  M a c M i l l a n , London (1960). 4.  M.  J. Buerger,  "X-ray C r y s t a l l o g r a p h y " .  (1942). 5.  0.  Weisz, W.  Cochran and W.  F. C o l e ; Acta C r y s t . 1,  83  (1948). 6.  " I n t e r n a t i o n a l T a b l e s f o r X-ray C r y s t a l l o g r a p h y " , V o l . I (1952), V o l . I I (1959) and V o l . I l l (1962). Press,  Kynoch  England.  7.  J. M. B i j v o e t , Endeavour 14, 71  8.  A. J. C. W i l s o n , Research 4, 141  9.  L. Bragg,  "The  (1955). (1951).  C r y s t a l l i n e S t a t e " , V o l . 1.  B e l l and Sons,  London (1962). 10.  R. W.  James, "The  O p t i c a l P r i n c i p l e s of the D i f f r a c t i o n  of X-Rays", V o l . I I of "The  Crystalline State", B e l l  and Sons, London (1962). 11.  M.  J. Buerger, York  "Crystal-structure Analysis".  Wiley,  New  (1960).  12.  W.  R. B u s i n g and H. A. Levy, A c t a C r y s t . 10, 180  13.  W.  H. Bragg, Trans. Roy.  Soc. A215,  253  (1915).  (1957).  107 14.  A. J . C. W i l s o n , A c t a C r y s t . 3, 397 (1950).  15.  J. C. Brand and J. C. Speakman, " M o l e c u l a r S t r u c t u r e . The P h y s i c a l Approach",  226-228, A r n o l d , London (1959).  16.  A. L. P a t t e r s o n , Z. K r i s t .  90, 517 (1935).  17.  D. Harker, J . Chem. Phys. 4, 381 (1936).  18.  H. L i p s o n and W. Cochran,  "The D e t e r m i n a t i o n of C r y s t a l  S t r u c t u r e s " , p. 207, V o l . I l l of "The C r y s t a l l i n e S t a t e " , B e l l and Sons, London (1953). 19.  A. D. Booth, " F o u r i e r Technique  i n X-ray Organic S t r u c t u r e  A n a l y s i s " , Cambridge U n i v e r s i t y P r e s s .  England  (1948).  20.  J . M. Robertson and I. Woodward, J . Chem. Soc. 36 (1940).  21.  C. Bokhoven, J . C. Schoone and J . M. B i j v o e t ,  Acta C r y s t .  4, 275 (1951). 22.  D. Harker and J . S. Kasper,  23.  D. Harker, C. M. Lucht and J . S. Kasper, A c t a C r y s t . 3, 436  24.  A c t a C r y s t . 1, 70 (1948).  (1950).  M. M. Woolfson, England  " D i r e c t Methods i n C r y s t a l l o g r a p h y " ,  Oxford,  (1963).  25.  J . K a r l e and H. Hauptman,  Acta C r y s t . 3, 181 (1950).  26.  J . K a r l e and H. Hauptman,  A c t a C r y s t . 11, 257 (1958).  27.  A. J . C. W i l s o n , Nature 150, 152 (1942).  28.  A. D. Booth, Proc. Roy. Soc. A188, 77 (1946)  29.  A. D.  Booth, Trans. Faraday Soc. 42, 444 (1946), a l s o  " F o u r i e r Technique  i n X-ray Organic S t r u c t u r e A n a l y s i s " ,  Cambridge U n i v e r s i t y P r e s s , England 30.  (1948);  D. W. J. C r u i c k s h a n k , "Computing Methods and t h e Phase Problem i n X-ray C r y s t a l A n a l y s i s " , Pergamon, London (1961)  108 31.  D. W. J . Gruickshank, Acta C r y s t . 9, 754 (1956).  32.  E. A. S e i b o l d  and L. E. S u t t o n , J . Chem. Phys. 23, 1967  (1955) . 33.  J . D. D u n i t z , L. E. O r g e l and A. R i c h ,  Acta C r y s t . 9, 373  (1956) . 34.  B. T. M. W i l l i s , U. K. Atomic Energy Research, H a r w e l l Report no. R3708.  35.  (1961)-,  G. W i l k i n s o n , P. L. Pauson and F. A. C o t t o n , J . Am. Chem. Soc. 76, 1970 (1954).  36.  Von E. Weiss and E. 0. F i s c h e r , Z. Anorg. Chem. 278, 219 (1955).  37.  G. L. Hardgrove and D. H. Templeton, Acta C r y s t . 12, 28 (1959).  38.  Z. J e l l i n e c k , Z. N a t u r f o r s c h 14b, 737 (1959).  39.  F. A. C o t t o n and G. W i l k i n s o n , P r o g r e s s i n I n o r g a n i c Chemistry  (1959), V o l . I , p. 82.  Interscience Publishers  40.  J . T r o t t e r , A c t a C r y s t . 11, 355 (1958).  41.  Yu. T. S t r u c h k o v , Dokl. Akad. Nauk, S.S.S.R. 110, 67 (1956)  42.  N. C. Webb and R Annual meeting,  E. Marsh, Program and A b s t r a c t s , A.C.A. Paper H-9 (1962).  43.  J . T r o t t e r , A c t a C r y s t . 16, 571 (1963).  44.  A. C. Macdonald and J . T r o t t e r , A c t a C r y s t . 17, 872 (1964).  45.  Z. L. K a l u s k i , Yu. T. S t r u c h k o v and R. L. Avoyan, J . S t r u c t . Chem. 5 (5) , 683. (1364).  46.  J . T r o t t e r and G. J . S m a l l , Can. J . Chem. 42, 1746 (1964).  47.  M. D. Rausch, E. 0. F i s c h e r and H. G r u b e r t , J . Am. Chem. Soc. 82, 76 (1960).  109 48.  T. C. Furnas, S i n g l e C r y s t a l O r i e n t e r I n s t r u c t i o n Manual. G.E. Co., Milwaukee  49.  (1957).  G. J . P a l e n i k , A b s t r a c t s of A.C.A. Annual Meeting, Paper M5, March (1966).  50.  J . T r o t t e r , Roy. I n s t . Chem. 1964 L e c t u r e S e r i e s 2, 2.  51.  W. M o f f i t , J . Am. Chem. Soc. 76, 3386 (1954).  52.  L. N. Mulay, E. G. Rochow and E. 0. F i s c h e r , J . Inorg. N u c l . Chem. 4, 230 (1957).  53.  P. von R. S c h l e y e r and R. D. N i c h o l a s , J . Am. Chem. Soc. 83, 182 (1961).  54.  C. F. W i l c o x , J . Am. Chem. Soc. 82, 415 (1960).  55.  R. E. P i n c o c k and J . I. W e l l s , J . Org. Chem. 29, 965 (1964).  56.  "Tables of I n t e r a t omic D i s t a n c e s and C o n f i g u r a t i o n s i n M o l e c u l e s and Ions", Chemical S o c i e t y S p e c i a l c a t i o n No. 11 (1958) and Supplement  57.  Publi-  (1965).  F. R. Ahmed and D. W. J . C r u i c k s h a n k , A c t a C r y s t . 6, 765 (1953).  58.  T. W. Muecke and M. I. D a v i s , A b s t r a c t s of A.C.A. Annual Meeting, Paper F l (1966).  59.  R, H. F. Manske, Can. J. Research B18, 75 (1940).  60.  S. McLean and M. S. L i n , T e t r a h e d r o n L e t t e r s 50, 3819 (1964).  61.  M. G. Rossmann, A c t a C r y s t . 9, 819 (1956).  62.  H. J . G r e n v i l l e - W e l l s , A c t a C r y s t . 8, 512 (1955).  63.  J . K r a u t , A c t a C r y s t . 11, 895 (1958).  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0062125/manifest

Comment

Related Items