UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A systematic study of the preparation of unsaturated hydrocarbons by elimination of halogen acid from… Bell, Alan 1934

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1934_A8_B3_S9.pdf [ 1.99MB ]
Metadata
JSON: 831-1.0061958.json
JSON-LD: 831-1.0061958-ld.json
RDF/XML (Pretty): 831-1.0061958-rdf.xml
RDF/JSON: 831-1.0061958-rdf.json
Turtle: 831-1.0061958-turtle.txt
N-Triples: 831-1.0061958-rdf-ntriples.txt
Original Record: 831-1.0061958-source.json
Full Text
831-1.0061958-fulltext.txt
Citation
831-1.0061958.ris

Full Text

A S y s t e m a t i c Study of the P r e p a r a t i o n of U n s a t u r a t e d  Hydrocarbons  "by E l i m i n a t i o n of Halogen A c i d f r o m Corresponding H a l i d e  -byAlan B e l l  A T h e s i s s u b m i t t e d i n p a r t requirement f o r the degree  of  M a s t e r of A r t s i n The Department of Chemistry  UNIVERSITY OP BRITISH COLUMBIA  October 1934  .  .  ^.y  V  J  Table of Contents  Introduction  Page 1  Experimental  Page 6  Method of A n a l y s i s  Page 9  Table 1  Page 10  Table 2  Page 11  Table 3  Page 12  Discussion  of R e s u l t s  Page 13  Summary  Page 17  References  Page 18  (1)  A S y s t e m a t i c Study of the P r e p a r a t i o n o f U n s a t u r a t e d Hydrocarbons  "by E l i m i n a t i o n of H a l o g e n A c i d from the Corresponding H a l i d e s .  The o b j e c t o f t h i s r e s e a r c h h a s been t o i n v e s t i g a t e the p o s s i b i l i t i e s of t h e use o f c e r t a i n o r g a n i c bases i n the p r e p a r a t i o n . o f unsaturated hydrocarbons.  The method of  f o r m a t i o n of these compounds by e l i m i n a t i o n of h a l o g e n a c i d from c o r r e s p o n d i n g h a l i d e h a s l o n g been known.  Alcoholic  p o t a s h i s g e n e r a l l y c o n s i d e r e d t o be the b e s t reagent f o r t h i s purpose, a l t h o u g h i n many cases c e r t a i n o r g a n i c bases can be used t o b e t t e r advantage.  No r e f e r e n c e h a s been found i n the  l i t e r a t u r e where an i n v e s t i g a t o r h a s q u a n t i t a t i v e l y compared the use of a l c o h o l i c p o t a s h and these o r g a n i c bases. o b j e c t of t h i s work,  Thus t h e  Wildermann and Aisinmann ( l ) were among  the f i r s t t o measure q u a n t i t a t i v e l y the a c t i o n of a l c o h o l i c potash.  They measured t h e v e l o c i t y o f the a c t i o n o f t h i s  r e a g e n t on h a l o g e n d e r i v a t i v e s of h y d r o c a r b o n s o f t h e aliphatic series.  B r u s s o f f (2) measured r a t e o f f o r m a t i o n of  o l e f i n e d u r i n g the r e a c t i o n o f a l c o h o l i c potash w i t h a l k y l halides. There a r e innumerable i n s t a n c e s i n t h e l i t e r a t u r e where v a r i o u s o r g a n i c bases have been used i n p r e p a r i n g u n s a t u r a t e d compounds.  A few of these deserve mention.  Perkins i n h i s  r e s e a r c h e s on the terpenes s t a t e s i n many cases where an o r g a n i c base g i v e s a t e t t e r y i e l d than a l c o h o l i c potash (2-%) F i s c h e r and Boeder ( 1 0 ) ' f o u n d p y r i d i n e gave a b e t t e r y i e l d  (2)  than c a u s t i c potash i n p r e p a r i n g  uracil.  V e r y l i t t l e n o t i c e seems to have been t a k e n of the a c t i o n of o r g a n i c "bases on a l i p h a t i c h a l i d e s i n p r e p a r a t i o n defines.  of  I n an e a r l y a r t i c l e M e n s c h u t k i n (12) r e p o r t s  a  study of the a f f i n i t y c o n s t a n t of A l k y l i o d i d e s and "bromides w i t h t r i e t h y l amine. ammonium "base was  With primary h a l i d e s a quaternary  formed.  W i t h h a l i d e s of t e r t i a r y  however no ammonium "base was unsaturated  formed, as above, but  alcohols the  compound i s formed.  Semb and M c E l v a i n (14) made a s t u d y of r a t e and  course of  the r e a c t i o n between d i f f e r e n t types of o r g a n i c h a l i d e s and representative p r i m a r y and But  secondary amine, p i p e r i d i n e .  a  They found thsft  secondary bromides r e a c t to f o r m t e r t i a r y amines;  t e r t i a r y a l k y l bromides show a d e c i d e d tendency to l o s e  hydrogen bromide to f o r m u n s a t u r a t e d r e p o r t any y i e l d s o b t a i n e d  compounds.  i n the l a t t e r  N o l l e r and Dinsmore (15)  They d i d  not  case,  i n v e s t i g a t e d r a t e s of r e a c t i o n  between o r g a n i c h a l i d e s and a t e r t i a r y amine, p y r i d i n e . s t a t e d : "the method of removing hydrogen bromide from compounds by means of t e r t i a r y amines would not be to p r i m a r y h a l i d e s and would be  They  organic  applicable  o n l y moderately, s u c c e s s f u l f o r  secondary h a l i d e s , w i t h p o s s i b l e e x c e p t i o n  of  compounds such as c y c l o h e x y l bromide.  tertiary halides i t  For  alicylic  i s q u i t e s a t i s f a c t o r y " . Here a g a i n no y i e l d s were r e p o r t e d . Other means which have appeared i n tfce l i t e r a t u r e , f o r removal of h a l o g e n a c i d , but which a r e not as important a r e ; h e a t i n g up w i t h sodium carbonate (16,17), h e a t i n g up w i t h (18)  and  by the use  of A l c 3  0  (19).  1:  Lime  (3)  I t would "be opportune a t t h i s time t o r e v i e w a few of t h e other methods,. which have appeared i n , the l i t e r a t u r e , f o r the p r e p a r a t i o n of u n s a t u r a t e d h y d r o c a r b o n s , ( l ) Removal of Water f r o m a l c o h o l s , J . B. Sender ens (20-27) p u b l i s h e d a s e r i e s of paper on c a t a l y t i c d e h y d r a t i o n of a l c o h o l s i n wet and d r y ways, C a t a l y t i c d e h y d r a t i o n of a l c o h o l s i n the wet way t o g i v e h y d r o c a r b o n s may be accomplished u s i n g s e v e r a l a g e n t s , namely, aluminium s u l p h a t e , p o t a s s i u m a c i d s u l p h a t e , s u l p h u r i c a c i d and;.phosphoric a c i d . T h i s method (20) h a s advantage  of ease  and r a p i d i t y as compared w i t h c a t a l y t i c d e h y d r a t i o n i n d r y way, a l t h o u g h y i e l d s a r e lower and p r i m a r y p r o d u c t s l e s s pure. the  In  f i r s t of h i s papers on c a t a l y t i c d e h y d r a t i o n of a l c o h o l s  i n the d r y way (21-23) he r e p o r t s t h e use of a n i m a l c h a r c o a l at  350  C. t o a c t almost q u a n t i t a t i v e l y on c e r t a i n a l c o h o l s such  as e t h y l and p r o p y l .  He a l s o r e p o r t s the use of phosphorus and  phosphates, e s p e c i a l l y aluminium phosphate, and s i l i c a and silicates.  H i s next paper (23) d e a l s w i t h c a t a l y t i c power of  s i l i c a and a l u m i n a .  He s t a t e s t h a t the a c t i o n of these v a r  c a t a l y s t s i s p r o b a b l y due t o f o r m a t i o n of i n t e r m e d i a t e  ' 1UUS  h y d r o x i d e s and h y d r i d e s i n which a hydrogen atom i s r e p l a c e d by an e t h y l or ethoxy group, (2) Removal of a m o l e c u l e of h a l o g e n from a d i h a l i d e , T n e i l e (28) removed a m o l e c u l e of h a l o g e n from t h e d i h a l i d e by means of z i n c i n a l c o h o l i c s o l u t i o n . (3) A c t i o n of Monosodium A c e t y l e n e . M. P i c o n i n a s e r i e s of papers (29-33) d e s c r i b e s the a c t i o n of monosodium a c e t y l e n e on a l i p h a t i c h a l i d e s .  The r e a c t i o n t a k e s  (4)  p l a c e "between monosodium a c e t y l e n e and a primary i o d i d e i n l i q u i d ammonia, a t - 5 0 C with, f o r m a t i o n of a c e t y l e n e s .  However i  case of o t h e r h a l i d e s t h e r e i s no f i x a t i o n of C E H group, but by the e l i m i n a t i o n of h a l o g e n  a c i d t h e r e are formed  h y d r o c a r b o n s of e t h y l e n e type. ows:  H i s c o n c l u s i o n s were as  foll-  I f a s i d e c h a i n does not e x i s t RCH2 CH2 X g i v e s a com-  pound by f i x a t i o n of a c e t y l e n e t y p e . e i t h e r on the h a l o g e n  But i f a s i d e c h a i n i s  carbon atom or on the a d j a c e n t  carbon  atom there i s b b t a i n e d an e t h y l e n e h y d r o c a r b o n by e l i m i n a t i o n of hydrogen i o d i d e . Thus i s o b u t y l i o d i d e g i v e s 95% h e x y l i o d i d e g i v e s 79%  i s o b u t y l e n e and  secondary  hexylene.  (4-) R e a c t i o n of Sodamide i n presence of l i q u i d ammonia. E.  Chablay (34) i n v e s t i g a t e d a c t i o n of sodamide on  halides.  alkyl  A l k y l h a l i d e s were g r a d u a l l y added t o suspensions  sodamide i n l i q u i d ammonia.  of  M e t h y l i o d i d e gave m e t h y l amine,  o t h e r h a l i d e s gave c o r r e s p o n d i n g  defines.  Ethylene,  p r o p y l e n e and b u t y l e n e were o b t a i n e d i n e x c e l l e n t y i e l d s . S t a r t i n g from e t h y l y i e l d i n c r e a s e s up the s e r i e s and i s always g r e a t e r u s i n g c h l o r i d e than the i o d i d e .  I n the r e a c t i o n  sodamide resembles a l c o h o l i c potash i n i t s b e h a v i o r . (5)  R e a c t i o n of sodaammonium (NaEH^) to form e t h y l e n e .  Chablay (35)  r e p o r t s that ethylene d i c h l o r i d e reacts with  sodaammonium t o g i v e e t h y l e n e . w i t h the d i b r o m i d e s  S i m i l a r r e s u l t s are r e p o r t e d  of p r o p y l e n e , i s o b u t y l e n e or t r i methylene.  However i n o t h e r cases t h e s a t u r a t e d p a r a f f i n s are formgd. (Compare t h e r e s u l t s of tebeau (36) j W h O j u s i n g same reagent always o b t a i n s p a r a f f i n  hydrocarbons.  (5)  Our e x p e r i m e n t a l work i n v o l v e d o r g a n i c "bases; q u i n o l i n e ,  the use of the f o l l o w i n g  a n i l i n e , d i methyl a n i l i n e , d i e t h y l  a n i l i n e , . p y r i d i n e and p i p e r i d i n e , i n comparison w i t h potash.  alcoholic  (6) E x p e r i m e n t a l Work. I n t h e p r e p a r a t i o n of t h e h y d r o c a r b o n s where the product was a gas, 5 grams of t h e h a l i d e were employed.  I n t h e cases  where the p r o d u c t was a l i q u i d 10-15 grams of h a l i d e were used The f o l l o w i n g h a l i d e s were used; e t h y l bromide,  ethyl  i o d i d e , n p r o p y l bromide, sec p r o p y l bromide, n b u t y l c h l o r i d e n b u t y l bromide;, i s o b u t y l c h l o r i d e , i s o b u t y l bromide, sec b u t y l bromide, sec b u t y l i o d i d e , t e r b u t y l c h l o r i d e j t e r b u t y l bromide, t e r b u t y y l c h l o r i d e , n h e x y l bromide, n h e p t y l bromide 2 brom octane, p h e n y l e t h y l bromide, c y c l e h e x y l c h l o r i d e , c y c l o h e x y l bromide, 2 brom 1 methyl c y c l o hexane, 3 brom 1 methyl c y c l o hexane^4 brom 1 m e t h y l c y c l o hexane, menthyl bromide, limonene hydrobromide and brom camphor„ The u n s a t u r a t e d h y d r o c a r b o n s were p r e p a r e d from a l c o h o l i c potash u s i n g 1 mol of h a l i d e t o !•§- mol of p o t a s s i u m h y d r o x i d e , P r e l i m i n a r y i n v e s t i g a t i o n showed t h i s t o be b e s t .  I n the p r e -  p a r a t i o n of cyclohexene f r o m c y c l o h e x y l bromide t h e f o l l o w i n g y i e l d s were o b t a i n e d ; 1 m : 1 m  - $$%\ .  1 m : l£ m - 8o. *>% 1 m : 2 m  - 8l.  W h i l e i n p r e p a r a t i o n of p h e n y l e t h y l e n e f r o m p h e n y l e t h y l bromide, the f o l l o w i n g y i e l d s r e s u l t e d ; -1 m : l i m - 85?£ • 1 m : 2  m - 85^  Thus an excess of p o t a s s i u m h y d r o x i d e i s n e c e s s a r y but a l a r g e excess does n o t i n c r e a s e t h e y i e l d a p p r e c i a b l y .  The b e s t con-  c e n t r a t i o n of a l c o h o l i c p o t a s h was f o u n d t o be, 25 grams of  p o t a s s i u m h y d r o x i d e t o 1 0 0 grams of e t h y l a l c o h o l . was made f r e s h f o r each d e t e r m i n a t i o n .  The m i x t u r e  The a b s o l u t e a l c o h o l  used, was p r e p a r e d from 95% a l c o h o l by r e f l u x i n g over l i m e f o r two days.  I n the p r e p a r a t i o n of the u n s a t u r a t e d h y d r o c a r b o n s  s  the h a l i d e was added drop by drop t o the b o i l i n g s o l u t i o n of a l c o h o l i c potash.  The m i x t u r e was then r e f l u x e d on a water b a t h ,  f o r a t i m e which v a r i e d f r o m 1-3 h o u r s , depending on the r a p i d i t y of a c t i o n .  In cases where the p r o d u c t was gaseous i t was  coll-  e c t e d over water which had been p r e v i o u s l y s a t u r a t e d w i t h the gas.  I f ttore p r o d u c t was a l i q u i d and c o m p l e t e l y i n s o l u b l e i n  w a t e r , i t was  s e p a r a t e d f r o m t h e a l c o h o l by a d d i t i o n of water,  o t h e r w i s e the m i x t u r e was  fractionated.  I n the p r e p a r a t i o n of the h y d r o c a r b o n s u s i n g o r g a n i c bases the p r o p o r t i o n employed was 1 mol of h a l i d e to 2 mol of o r g a n i c base.  P r e l i m i n a r y i n v e s t i g a t i o n showed the above r a t i o t o be  most advantageous.  In p r e p a r a t i o n of c y c l o hexene f r o m c y c l o  h e x y l bromide the f o l l o w i n g y i e l d s were o b t a i n e d ; p y r i d i n e 1 m : 1 m - 20% 1 m  : 2 m - 4-6%  d i e t h y l a n i l i n e 1 m : 1 m - 4-1% 1 m  : 2m-  75%  d i m e t h y l a n i l i n e 1 m ; 1 m - 67% 1 m  : 2 m - 70%  A f u r t h e r i n c r e a s e i n the . q u a n t i t y of base used d i d not i n crease the y i e l d . fore using.  The o r g a n i c bases were always r e d i s t i l l e d  The h a l i d e h e r e a g a i n was added g r a d u a l l y to the  b o i l i n g o r g a n i c base and the m i x t u r e r e f l u x e d . t i o n was  A f t e r the ac-  complete the m i x t u r e was f r a c t i o n a t e d i f a l i q u i d or  be-  (8)  collected  over water  i f  a  gas.  (9)  Methods of  Analysis.  (1) I f product i s a l i q u i d . T h i s i s the method of t i t r a t i n g a double bond w i t h bromiQe i n carbon t e t r a c h l o r i d e ,  A t the same time as a n a l y z i n g the un-  known, a n a l y z e a known amount of the pure p r o d u c t and compare results. used.  A A-f? s o l u t i o n of bromide  i n carbon t e t r a c h l o r i d e  In a n a l y z i n g the p r o d u c t the f o l l o w i n g procedure  followed;  One  was  was  c u b i c c e n t i m e t e r of the unknown was d i l u t e d to  ten c u b i c c e n t i m e t e r s w i t h carbon t e t r a c h l o r i d e .  Two c c s . of  t h i s s t o c k s o l u t i o n were t a k e n and d i l u t e d w i t h f i v e c c s . of carbon t e t r a c h l o r i d e . was used. a t a time.  Bromine was added s i m u l t a n e o u s l y to b o t h , 1/20 The end p o i n t was r e a c h e d when the orange  p e r s i s t e d f or 30 (2)  A s i m i l a r amount of the pure product cc.  color  seconds.  I f p r o d u c t i s a gas. A sample of the gas was a n a l y z e d f o r u n s a t u r a t e d hydro-  carbon by p a s s i n g i n t o a Hempel p i p e t t e , which c o n t a i n e d a s a t u r a t e d s o l u t i o n of bromine  water.  (10)  © c  -H  •ti •  oO  •H  O  \f\ts-  O r n ^ c O O!  <0 Pi •rH  ft •H  rH ^ rH  •H  £  [>- I>-  r  rH 5>» © -t-» - H •rH  10  r—J  G O - O N CM  O -  ®  •rt'S  '"'CO ON ON  © c  •H  rH *  OOOfOOOcOON'tlAal'd-OON'^ <H rH CO t>- CM  O  © a  -H  r-i 'O-  0 * A l t \ W A O J - U v l A n M D nl ftl n  O O^"*  •3 • G?  O -H  rH O  O 5 iH  ^ ^ V r x r o ^ o C^tH IfAcM ^ ^ l r \ OJ CM i r v Hrico rH ^ c o o N ^ i s ^ H S a j a ) 0  <5  <> r © • H O  3) rH  ©  <D  13 T J Q) -H Q> d)  -H g - H O « O t J H  •H O -H M S M J H - ' H O  fl>  -H  TJ "H g  <D  - H T j -H ® fi*Ci-Hrt  £  O f q o g H o ^ o ^ o o g o i d  0> h  •CS  <i> ©  S-rH  O pn  r H O ^ ^ p q M O h r - l O f - i + ' . H  WOW-  ,  rH rH rH  rH pq pq  O ^&" ;, O  o p - P : - P 3 3 pq pq pq 2 pq K ft H r H r-i U 3 pq Pq PQ <L> V P4 c>> >> >> ft -rpq pq , ... -WW A  rH  j^jxl S  M ; S & K H  CQ C Q - E H - E H  EH  j2}-^i CM  K  (11)  © •H  O CM  U  O  tS-  © Pi •H  CM  CO  ft ©  E  •H  O  •H  co  M  ft rH  >» v  ,E E +> -rt  lCN tS  CD r-f •ri  CM  E  •H  CM  CO  ON  !>>  E  O IN-  CO -H  S -H  rH  •H  m co  CM  tS-  (S-  ON  ON  E  CO  c  UN  •H iH  ts-  CO  vO  o  rH  r-J  CO  ON  CO  co  •H  E  CD  E •ri  o  rH  a  c  CO  rn  'ts-  CO  (S-  o  ON  3 a? o  £D -ri >CS rH rH O •H O  O  rH CO  o  ON  IS-  a)  ©  "a •ri  •H rH  O  a  rH  ft  6  o  rH CD  o  rH O  o  M © o rH O >*  o  CD  c c8 K  c K  c8  CD  CO  H-|  <-i-i  rH  CO  IS-  © c  o  . ' W ©  •cs  ©  © •  ©  ^  o CM  o  J-I  rn  o  a  •o  o  ft  s  u m  -H"  rH  S  ON  ©  X ©  rH  CO ON  o pq  .E E ©  © E © E  O a  •H  a o  ft  (12)  Table 3 c o h o l i c P o t a s h and Q u i n o l i n e on A l i p h a t i c Bromid Alcoholic E t h y l Br omide  KOH  Quino.line  4  10  N. P r o p y l Bromide  15  45  N. B u t y l Bromide  10  55  I s o . B u t y l Bromide  6l  62  N. H e x y l Bromide  10  36  N. H e p t y l  12  42  Sec. P r o p y l Bromide  83  84  Sec. B u t y l Bromide  85  76  Ter. B u t y l Br omide  74  85  2 Brom Octane  82  74  Bromide  (13)  D i s c u s s i o n of R e s u l t s . A l c o h o l i c p o t a s h i s w i d e l y recommended by most t e x t books and  l a b o r a t o r y manuals f o r t h e removal of h a l o g e n a c i d f r o m  halides.  The r e a c t i o n i s as f o l l o w s :  KOH -+- C^H Br  > C-^H g + K Br + HgO  However, a t the same time, a s i d e r e a c t i o n takes p l a c e wi t h f o r m a t i o n of an e t h e r , C H^0K + C y ^ B r 2  ^ C - ^ O C ^ + K Br  Sometimes t h i s s i d e r e a c t i o n a t t a i n s such p r o p o r t i o n s t h a t it  i s i n r e a l i t y the main r e a c t i o n .  I n the case of normal  h e p t y l bromide, a 12% y i e l d of normal heptene i s obtained and a 7 0 ^ y i e l d of n h e p t y l e t h y l e t h e r .  Where the h a l i d e i s a  s t r a i g h t chasm compound, t h e main r e a c t i o n i s f o r m a t i o n of an ether.  I f a s i d e c h a i n e x i s t s the u n s a t u r a t e d  dominates.  compound p r e -  Normal b u t y l bromide y i e l d s 10% b u t y l e n e while, i s o  b u t y l bromide g i v e s a 6l% y i e l d of b u t y l e n e .  I n the case of  secondary and t e r t i a r y h a l i d e s almost g u a n t i t a t i v e y i e l d s of unsaturated hydrocarbons are obtained.  Thus, t h i s method of  p r e p a r i n g d e f i n e s f r o m a l k y l h a l i d e s w i t h a l c o h o l i c potash i s i n a p p l i c a b l e i n case of t h e s t r a i g h t c h a i n h y d r o c a r b o n s , b u t exc e l l e n t when a s i d e c h a i n e x i s t s . W i t h c y c l i c compounds t h e r e i s v e r y l i t t l e tendency t o form ethers.  Here t h e c y c l i c compounds behave as secondary  h a l i d e s and e x c e l l e n t y i e l d s of u n s a t u r a t e d  compounds a r e ob-  tained , In t h e p r e p a r a t i o n of the a l k y l e n e compounds from o r g a n i c bases, t h e primary r e a c t i o n i s the f o r m a t i o n of an a d d i t i o n  (14) product.  P r  example, t e r t i a r y b u t y l bromide and p y r i d i n e y i e  0  p r i m a r i l y a q u a t e r n a r y Ammonium base.  +  ( CH3 )  CEr-  (CH.) 5  3  C-N-Br  i s b e i n g u n s t a b l e breaks down when h e a t e d .  -f (CHo)  C-N-Br  C - CH  H-H-Br  •3  \  (CR%)  That such compounds as these q u a t e r n a r y ammonium bases do  e x i s t j has been shown by many i n v e s t i g a t o r s . and M c E l v a i n (14)  R e c e n t l y Semb  s t u d i e d the r a t e s of r e a c t i o n of o r g a n i c  h a l i d e s and p i p e r i d i n e .  They found t h a t p r i m a r y and  secondary  bromides r e a c t to f o r m q u a t e r n a r y ammonium bases, w h i l e the t e r t i a r y bromides showed a d e c i d e d tendency to l o s e hydrogen bromide w i t h f o r m a t i o n of u n s a t u r a t e d compounds. Dinsmore (15) sults.  Noller  and  u s i n g p y r i d i n e as t h e base r e p o r t e d s i m i l a r r e -  Tnus the f a c t , t h a t q u a t e r n a r y ammonium bases are p r i -  m a r i l y formed., i s e s t a b l i s h e d .  Therefore i t depends on  the  s t a b i l i t y of these compounds whether an u n s a t u r a t e d product i s obtained.  A c c o r d i n g l y , owing to s t e r i c h i n d r a n c e , an open  c h a i n h a l i d e w i t h the base would be most s t a b l e .  The more s i d e  c h a i n s and the longer the c h a i n s t h e l e s s s t a b l e the compound would be.  Thus f o r normal h a l i d e s and lower  secondary h a l i d e s  the y i e l d of u n s a t u r a t e d compound should be poor. . The h i g h e r secondary  and t e r t i a r y h a l i d e s s h o u l d g i v e e x c e l l e n t y i e l d s .  d5) The  c y c l i c compounds, "being secondary h a l i d e s , should  g i v e good y i e l d s .  also  As can he seen f r o m t a b l e s 1 & 2 these con-  c l u s i o n s are c o r r e c t , except i n the case of q u i n o l i n e . Q u i n o l i n e g i v e s good y i e l d s w i t h almost a l l h a l i d e s , even w i t h the p r i m a r y h a l i d e s .  P r o p y l bromide g i v e s a  b u t y l bromide a 55^ y i e l d . s u l t i n g t a b l e 3•  y i e l d and  Other examples can be seen b y con-  The p o s s i b l e e x p l a n a t i o n f o r t h i s i s , t h a t  a q u a t e r n a r y ammonium base w i t h q u i n o l i n e i s l e s s s t a b l e than w i t h t h e other  o r g a n i c bases.  t h a t q u i n o l i n e has  This p r o b a b l y i s due t o the f a c t  an e x t r a benzene r i n g i n i t s s t r u c t u r e .  Thus, owing t o s t e r i c h i n d r a n c e , a compound such as N-Br ^-CHgCIIgCH^ i s l e s s s t a b l e than the f o l l o w i n g one, H-BT  0-CH CH2CH3. 2  Quinoline  i s thus recommended f or the p r e p a r a t i o n  of t h e  d e f i n e s from primary h a l i d e s . As a study of t a b l e s 1 & 2 w i l l i l l u s t r a t e , bromides and i o d i d e s g i v e much b e t t e r y i e l d s than c h l o r i d e s .  In f a c t t h e  c h l o r i d e s are almost u s e l e s s i n p r e p a r i n g u n s a t u r a t e d pounds.  com-  W h i l e i o d i d e s and broraides g i v e e q u a l l y good y i e l d s ,  the bromides are recommended.  The i o d i d e s are d i f f i c u l t to  o b t a i n i n the pure s t a t e and q u i c k l y decompose. As we have s t a t e d q u i n o l i n e i s bes£ f o r p r e p a r a t i o n of d e f i n e s f r o m normal h a l i d e s and lower secondary h a l i d e s . other  cases a l c o h o l i c potash i s e q u a l l y good, as are the  o r g a n i c bases.  In other  Where the p r o d u c t was gaseous the y i e l d s i n  a l l cases were pure.  I f the product was a l i q u i d i t was  (16)  e a s i e r t o o b t a i n i t i n the pure s t a t e when a l c o h o l i c p o t a s h was used.  (1?)  SUMMARY •1.  U n s a t u r a t e d h y d r o c a r b o n s of 25 h a l i d e s have been prepared  by t h e use of the f o l l o w i n g : a l c o h o l i c p o t a s h , q u i n o l i n e , a n i l i n e , d i m e t h y l a n i l i n e , d i elfchyl a n i l i n e , p y r i d i n e  and  piperidine. 2.  A q u a n t i t a t i v e comparison of the above methods i s p r e s e n t e d .  3. A l c o h o l i c p o t a s h g i v e s poor y i e l d s w i t h the normal h a l i d e s owing t o f o r m a t i o n of e t h e r s . 4.  Q,uinoline i s recommended f o r p r e p a r a t i o n of u n s a t u r a t e d  h y d r o c a r b o n s f r o m normal h a l i d e s . 5.  A l c o h o l i c p o t a s h and a l l the o r g a n i c bases g i v e  excellent  y i e l d s from h i g h e r secondary, t e r t i a r y and c y c l i c h a l i d e s . 6.  Bromides and i o d i d e s g i * e b e t t e r y i e l d s t h a n c h l o r i d e s .  (13)  References 1.  Wildermann and Aisinmann, Z e i t . f u r Fny. Chem. , 8, 66l,  (l89ir2.  Br u s s o f f , i b i d 34, 129, (1900)  3.  W. H. P e r k i n s J u n . , Chem. Soc. T. , 85, 654, (1904)  4.  W. H. P e r l i n s Jun. and S. S. P i c k l e s , i b i d  5.  W. H. P e r k i n s Jun. and T u t t e r s a l , i b i d  1091, (1905)  6.  W. H. P e r k i n s Jun. and T u t t e r s a l , i b i d  49 0,  7  K. P i s h e r and W. H. P e r k i n s Jun. i b i d  545, (1905)  (I907)  1877, (1908)  8.  W. H. P e r k i n s Jun. and 0. W a l l a c h , i b i d  9.  Haworth, P e r k i n s and W a l l a c h , i b i d  1443, (1910)  124, (1911)  10. F i s c h e r and Roeder, Ber. , 34, 3751, (1901) 11. W a l l a c h , Ann. Chim. Phy., 23©, 233, (1885) 12. M e n s c h u t k i n , Z e i t . f u r Phy. Chem. , 5, 589 (1890) 13. Long, J . Chem. Soc. , 99, 2164, (1911) 14. Semb and M c E l v a i n , J . A. C. S., 53, 690, (1931) 15. H o l l e r and Dinsmore, i b i d  54, 1025, (1932)  16. W. H. P e r k i n s Jun. , Chem. Soc. T. , 85, 17. W. H. P e r k i n s Jun. , and J . P. Thorpe, i b i d (190  6)  18. J . K l i m o n t , Ch. Z e i t . , 4 6, 521, (1922) 19. Mouneyrat, B u l l .  Soc. Chim., (3), 19, 182.  20. J . B. Senderens, Ann. Chim., 18, 117,(1922) 21. J . B. Sender ens,  Cbmpt.iRendljC144, 381.  2§. J . B. Senderens, i b i d  144, 1109•  23. J . B. Senderens, i b i d  14 6, 125.  24. J , B. Senderens, i b i d  14 6, 1211.  (190^ 85, 128, 142  (19)  25.  J . B. Sender ens, B u l l .  26.  J . B. Sender e n s , A n n . Chim. Play. , 2 5 , 44Q.  27.  J . B. Sender ens, B u l l .  2 8 .  T h i e l e , L i e b i g Ann.,  29.  L e g e a u and P i c o n , Compt. Bend. 1 5 6 , 1 0 7 7 -  30.  M. P i c o n , i b i d  158, 1184.  3 1 .  M. P i c o n ,  ibid  1 6 8 ,  8 2 5 ,  ( 1 9 1 9 )  3 2 .  M. P i c o n ,  ibid  1 6 8 ,  8 9 4 ,  ( 1 9 1 9 )  33-  M. P i c o n , i b i d  1 6 9 ,  3 2 ,  3 4 . E. Chablay, i b i d 35.  E. Chablay, i b i d  3 6.  P a u l Lebeau, i b i d  Soc. Chira. , ( 4 ) , 1 , 637 •  Soc. Chim., (4) 3 , 6 3 3  3 0 8 ,  3 3 9 ,  ( 1 8 9 9 )  ( 1 9 1 9 )  156, 327. 142, 9  3 ,  ( 1 9 0 6 )  140, 1042,  ( 1 9 0 5 )  The author  t a k e s t h i s o p p o r t u n i t y t o express h i s  s i n c e r e indebtedness  to  Dr. R. H.  Clark  f o r h i s encouragement and c o - o p e r a t i o n w i t h o u t which t h r e s e a r c h would not have been p o s s i b l e .  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0061958/manifest

Comment

Related Items