UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Methylene addition to some 7-norbornadienyl derivatives Haywood-Farmer, John S. 1965

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1965_A6_7 H35.pdf [ 2.97MB ]
Metadata
JSON: 831-1.0061954.json
JSON-LD: 831-1.0061954-ld.json
RDF/XML (Pretty): 831-1.0061954-rdf.xml
RDF/JSON: 831-1.0061954-rdf.json
Turtle: 831-1.0061954-turtle.txt
N-Triples: 831-1.0061954-rdf-ntriples.txt
Original Record: 831-1.0061954-source.json
Full Text
831-1.0061954-fulltext.txt
Citation
831-1.0061954.ris

Full Text

METHYLENE  ADDITION  TO  SOME 7 - N O R B O R N A D I E N Y L  DERIVATIVES  by  JOHN B.Sc.  Honors,  A  HAYWOOD-FARMER  The U n i v e r s i t y  THESIS THE  S.  SUBMITTED  I N PARTIAL  REQUIREMENTS MASTER  in  of B r i t i s h  Columbia,  FULFILMENT  FOR THE DEGREE  OF  OF  OF  SCIENCE  t h e Department of Chemistry  We  accept  required  this  thesis  as conforming  t ot h e  standard  THE U N I V E R S I T Y  OF B R I T I S H  A p r i l ,  1965  COLUMBIA  1963  In the  presenting  requirements  British  mission  f o r reference  f o r extensive  representatives.  cation without  of this  Department o f  the L i b r a r y  and s t u d y ,  forfinancial  permission*  Chemistry Columbia,  shall  I further  of this  by t h e Head  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, C a n a d a  i n partial  fulfilment of  degree a t the U n i v e r s i t y  thesis  that  gain  of•  make i t f r e e l y  agree  that  per-  f o r scholarly  o f my D e p a r t m e n t  I t i s understood  thesis  my w r i t t e n  that  copying  p u r p o s e s may b e g r a n t e d his  thesis  f o r an advanced  Columbia, I agree  available  this  o r by  copying or  shall  n o t be  publiallowed  ABSTRACT The s y n t h e s i s of e x o - a n t l - t r i c y c l o 3,2,1,0^'^  octan-8-ol  (V) and e x o - a n t i - 8 - m e t h o x y - t r i c y c l o 3,2,1,02,4 octane (VI), was c a r r i e d out by the cuprous c h l o r i d e c a t a l y s e d r e a c t i o n o f diazoraethane  with anti-7-norbornenol  (IV).  The m e t h y l e t h e r  (VI) was p r e v i o u s l y thought t o be t h e endo isomer o f ( V ) . Methylene a d d i t i o n t o t h e ayn double bond o f 7 - n o r b o r n a d i e n y l acetate  ( I I I ) was a c c o m p l i s h e d u s i n g t h e above method t o g i v e  a 5 t o 1 mixture  of e x o - s y n - t r i c y c l o [3,2,1,0^*4  oct-6-ene-8-  acetate  (VII) and e n d o - s y n - t r i c y c l o [ 3 , 2 , 1 , 0 ^ * ^ o c t - 6 - e n e - 8 -  acetate  (VIII).  These two a c e t a t e s were i n s e p a r a b l e b u t the  c o r r e s p o n d i n g a l c o h o l s e x o - s y n - t r i c y c l o 3,2,1,02,4 o c t - 6 - e n e -  8-0I  (X) and e n d o - s y n - t r i c y c l o 3,2,1,0  2,4  oct-6-ene-8-ol (XI),  formed by r e d u c t i o n o f the a c e t a t e m i x t u r e w i t h l i t h i u m aluminum h y d r i d e , c o u l d be s e p a r a t e d chromatography.  by g a s - l i q u i d p a r t i t i o n  The s t e r e o c h e m i s t r y o f these  two p r o d u c t s  was d e t e r m i n e d by t h e m u l t i p l i c i t y and by t h e c h e m i c a l  shift  of t h e o l e f i n i c p r o t o n  mag-  s i g n a l s i n t h e i r proton nuclear  n e t i c resonance s p e c t r a .  C a t a l y t i c r e d u c t i o n o f t h e s e two  a l c o h o l s gave e x o - s y n - t r i c y c l o 3,2,1,0 2,4 o c t a n - 8 - o l and e n d o - s y n - t r l c y c l o [ 3 , 2 , 1 , 0 '2,4 oc'tan-8-ol  (XIV).  (XIII) From  the d i a z o m e t h a n e - 7 - n o r b o r n a d i e n y l a c e t a t e r e a c t i o n a d i a d d u c t acetate, t e t r a c y c l o 3,3,1,0 ' ,0 ' 2  4  6  8  n o n a n - 9 - a c e t a t e ( I X ) , was 2,  a l s o o b t a i n e d w h i c h r e d u c e d t o the a l c o h o l t e t r a c y c l o 3,3,1,0 06 , 8 n o n a n - 9 - o l ( X I I ) . was not d e t e r m i n e d .  The s t e r e o c h e m i s t r y  o f these  diadducts  A c e t o l y s i s s t u d i e s on t h e p_-bromobenzene-  sulfonyl  ( b r o s y l a t e ) d e r i v a t i v e of e x o - a n t i - t r i c y c l o |3,2,1,0  octan-8-ol  of a carbonium i o n at 0 3 , which then  formation destroying c o u l d be about 80$  (V) at 200° i n d i c a t e that the r e a c t i o n proceeds by  the c y c l o p r o p y l group.  obtained  rearranges,^  A l t h o u g h unchanged  by l i t h i u m aluminum hydride  reduction  s o l v o l y s e d b r o s y l a t e at 200°, none of the  of complete s o l v o l y s i s c o u l d be  identified.  (V) of  products  Cu Cl 2  II  III  V  VI  2  IV  rOAc  K-OAC  VIII  VII  in  LiAlH,  RTOH  XI Ho/Pt  H /Pt 2  H  rOH  A y XIII  TO v  t6  fr-OBs  rrOH -Q-SOjCl  =p y r i d i n e  XV  XIV  •?  ACKNOWLEDGEMENT  I should l i k e t o express my s i n c e r e thanks and appreciat i o n t o Dr. R. E . Pincock f o r h i s f r i e n d l y , u n s e l f i s h help and  encouragement throughout  this research.  The c o u n s e l of Mr. W. B. S c o t t and Mrs. J . I . Wells i s l i k e w i s e g r a t e f u l l y acknowledged.  TABLE  OF  CONTENTS  INTRODUCTION A.  H i s t o r i c a l  B.  Synthetic  Routes  EXPERIMENTAL A.  General  B.  Synthetic  C.  Product  SUMMARY OP  Studies EXPERIMENTAL  A.  Synthetic  B.  Solvolysis  RESULTS  Studies  DISCUSSION A.  Synthesis  B.  Structural  Proof  C.  Solvolysis  Studies  D.  Conclusion  E.  Suggestions  REFERENCES;  f o r Further  Research  I. A.  INTRODUCTION  HISTORICAL In r e c e n t years  the  s y n t h e s i s and  chemistry  propane compounds has been of c o n s i d e r a b l e of the n o v e l t y a s s o c i a t e d w i t h , and the such a s m a l l  of c y c l o -  i n t e r e s t because  s t r a i n inherent i n  ring.  Coulson and M o f f i t (1) have shown by molecular c a l c u l a t i o n s t h a t the o r b i t a l s forming bonds i n cyclopropanes  the carbon-carbon  are not at an angle  f o r an e q u i l a t e r a l t r i a n g l e but are spread  of 60° as  expected  t o 106°.  Thus,  although  the r i n g i s n e c e s s a r i l y p l a n a r , the annular  are bent  (see f i g u r e 1) and  the o v e r l a p i s not  figure  orbital  true  bonds sp^.  1  Because of the poor overlap i n h e r e n t i n such a bent-bond model, some c f - e l e c t r o n d e l o c a l i s a t i o n occurs c e r t a i n amount of added s t a b i l i t y to the r i n g . d e l o c a l i s a t i o n i s o r i e n t e d i n the annular two  imparting a This  p l a n e , not  in  planes p a r a l l e l t o the r i n g as i n benzene. The  with the  p r o p e r t i e s of cyclopropane  d e r i v a t i v e s are c o n s i s t e n t  idea of a p a r t i a l l y d e l o c a l i s e d s t r u c t u r e (2,3).  conjugated  In  double bond systems i t i s w e l l known t h a t there i s  a t r a n s m i s s i o n of e l e c t r i c a l e f f e c t s a l o n g  the c h a i n .  It  has  - 2 -  also  been found  t h a t c y c l o p r o p y l groups c a n a l s o  support  d e l o c a l i s a t i o n , being weaker i n t h i s r e s p e c t than groups but s t r o n g e r than a s a t u r a t e d dimethylene Ultraviolet  spectroscopy  ethylene group  s t u d i e s on the c o n j u g a t i o n o f c y c l o -  p r o p y l groups w i t h c a r b o n y l compounds (4), aromatic (5),  and o l e f i n s  (6) a l l show bathochromic s h i f t s  that d e l o c a l i s a t i o n o c c u r s .  a l s o support t h i s i d e a .  Chemical  systems  indicating  I n f r a - r e d spectroscopy  (7) and n u c l e a r magnetic resonance  of  (2,3).  (I.R.)  (N.M.R.) s t u d i e s (8) evidence  c y c l o p r o p y l groups w i t h c a r b o n y l groups  (10) and w i t h carbonium i o n i n t e r m e d i a t e s  f o r conjugation (9), with  olefins  (10, 11) a l s o  exists. I n order t o e x p l a i n the behaviour reactions,  to'instein  conjugation.  o f some c h e m i c a l  (12) i n t r o d u c e d the concept  I t was found  t h a t some norbornenyl  of homoderivatives  underwent s o l v o l y s i s r e a c t i o n s In a s t e r e o s p e c i f i c manner a t a much enhanced r a t e t o those analogues  f o r the c o r r e s p o n d i n g  saturated  (13, 1 4 ) . The homoconjugation was viewed as some  i n t e r a c t i o n between the TT - e l e c t r o n s of the u n s a t u r a t e d c e n t e r and the d e v e l o p i n g carbonium i o n from which i t was separated by a methylene group.  T h i s 1,3- i n t e r a c t i o n was  r e p r e s e n t e d i n a s i m i l a r manner t o t h a t f o r the more f a m i l i a r case  of a l l y l i c  resonance  (figure 2a).  © ©  ©  a  b figure 2  -  Woodward and WInstein t o s y l a t e t o be 1 0 ^  -  (14) found  anti-7-norbornenyl  times more r e a c t i v e towards s o l v o l y s i s  than 7-norbornyl t o s y l a t e . t i o n was  3  r e p o r t e d (14).  f o r the c o r r e s p o n d i n g  Complete r e t e n t i o n of c o n f i g u r a -  Roberts  (15)  reported similar r e s u l t s  chlorides.  In order to e x p l a i n the v a s t d i f f e r e n c e i n r a t e between the s a t u r a t e d and unsaturated compounds, W i n s t e i n  (14) formu-  l a t e d a b r i d g e d or " n o n - c l a s s i c a l " i o n ( f i g u r e 2b).  The  geometry o f a n t i - 7 - n o r b o r n e n y l c a t i o n i s very f a v o r a b l e f o r d e l o c a l i s a t i o n of the T f - e l e c t r o n s of the double  bond w i t h  the vacant p - o r b i t a l r e s u l t i n g from f o r m a t i o n o f the carbonium ion at  Cy.  Brown (16), on the other hand, f e e l s that although some i n t e r a c t i o n does occur between the double bond and bonium i o n , i t i s i n the form of c l a s s i c a l i o n structures  (figure  the c a r -  resonance  3):  ©  figure C o n s i d e r i n g the many analogous groups and  3 p r o p e r t i e s of c y c l o p r o p y l  o l e f i n s , Pincock and Wells  (17) decided to study  the p o s s i b i l i t y of p a r t i c i p i t a t i o n o f c y c l o p r o p y l groups w i t h  - 4 -  forming carbonium•ion i n t e r m e d i a t e s by of cyclopropane s u b s t i t u t e d isomer they examined 8-brosylate  was  ( f i g u r e 4a).  studying  the s o l v o l y s i s  7-norbornyl d e r i v a t i v e s .  The  _ e x o - a n t i - t r i c y c l o {3,2,1,0^'^ o c t a n Because the  orbitals available  such p a r t i c i p a t i o n are d i r e c t e d away from the r e a c t i v e by  the arrangement of the cyclopropane r i n g , l i t t l e  was  expected i n s o l v o l y s i s r a t e  from t h a t of the  7-norbornyl b r o s y l a t e  ( f i g u r e 4b).  observed case  The  4c)  on the  (17b).  one  center  would expect a r a t e  brosylate  (figure  and  center  change  saturated  in fact  c o r r e s p o n d i n g endo isomer  other hand,has the  toward the r e a c t i v e  T h i s was  for  the (figure  o r b i t a l s of the r i n g d i r e c t e d i f d e l o c a l i s a t i o n does o c c u r ,  s i m i l a r to that  for antl-7-norbornenyl  4d).  rOBs  a  b  c figure  !  The  purpose of t h i s work was  r o u t e s of s y n t h e s i s 8-brosylate  d  4 to i n v e s t i g a t e  possible  of e n d o - a n t l - t r i c y c l o J3,2,1,0^*^  ( f i g u r e 4c) and  i f possible  octan-  t o study i t s r a t e  of s o l v o l y s i s . B.  SYNTHETIC ROUTES The  synthesis  r i n g systems has The  of cyclopropane r i n g s as p a r t s  been c a r r i e d out i n three  of l a r g e r  g e n e r a l ways.  D i e l s - A l d e r r e a c t i o n between s u i t a b l e c y c l i c  dienes  - 5 -  u s i n g cyclopropene as the d i e n e o p h i l e gives good y i e l d s of the c o r r e s p o n d i n g adduct  (18) ( f i g u r e 5).  O A  /t>  +  — figure 5  Such r e a c t i o n s u s u a l l y g i v e the endo adduct by k i n e t i c  control  (19) a l t h o u g h the exo isomer I s the more s t a b l e and can o f t e n be formed from the endo one by thermal I s o m e r i s a t i o n .  This  has been observed i n the cases of c y c l o p e n t a d i e n e dimer (20) and  of the adduct  o f c y c l o p e n t a d i e n e w i t h maleic  anhydride  (21). Carbenes w i l l add t o o l e f i n s cyclopropyl derivative  to g i v e the c o r r e s p o n d i n g  (22). D i h a l o c a r b e n e s can be prepared  by the r e a c t i o n o f haloform w i t h a s t r o n g base  (22) or i n  b e t t e r y i e l d s by r e a c t i n g e t h y l t r i h a l o a c e t a t e w i t h a s t r o n g base  (23). The r e s u l t i n g gem-dihalocyclopropanes  however a r e  u n s t a b l e and r e a r r a n g e t o the r i n g expanded product q u i t e easily  (24).  Methylene h a l i d e s a l s o r e a c t w i t h s t r o n g base  g i v i n g the monohalocarbene which forms  monohalocyclopropanes  by r e a c t i n g w i t h o l e f i n s (25). The procedure  of Simmons and Smith  (26) a l s o uses a  methylene h a l i d e , s p e c i f i c a l l y methylene i o d i d e , as the source of carbene  but z i n c - c o p p e r couple i s employed as a  g e n e r a t i n g agent and r e s u l t s i n u n s u b s t i t u t e d carbene tion.  forma-  The methylene i o d i d e may be s u b s t i t u t e d by one or two  - 6 -  a l k y l o r a r y l groups g i v i n g r i s e t o t h e c o r r e s p o n d i n g l y subs t i t u t e d c'yclopropanes.  T h i s r e a c t i o n i s thought t o proceed  t h r o u g h a complex between t h e methylene  i o d i d e and z i n c ( 2 6 d ) .  I n 1963, von E. D o e r i n g and R o t h (27) r e p o r t e d t h a t c y c l o p r o p a n e s c a n be formed by r e a c t i n g diazomethane w i t h o l e f i n s i n t h e presence o f cuprous c h l o r i d e .  s  gas  The  r e a c t i o n I s thought t o proceed t h r o u g h a t t a c k on the double bond by a carbene-copper complex ( 2 8 ) .  T h i s complex i s  formed by bonding o f the n u c l e o p h i l i c c a r b o n atom o f d i a z o methane t o the v a c a n t o r b i t a l s o f c o p p e r .  Simultaneous or  successive s p l i t t i n g o f f of n i t r o g e n occurs t o l e a v e the carbene-copper complex.  As w i t h t h e Simmons-Smith r e a c t i o n ,  s u b s t i t u t e d d e r i v a t i v e s can be made by u s i n g t h e a p p r o p r i a t e diazomethane.  T h i s r e a g e n t has been found t o be much more  e f f e c t i v e t h a n t h e Simmons-Smith r e a g e n t w i t h r e s p e c t t o a d d i t i o n t o norbornenes and n o r b o r n a d i e n e s (17b) a n d has been found t o be a c t i v e enough t o add t o a r o m a t i c (27).  systems  The r o l e p l a y e d by the cuprous c h l o r i d e c a t a l y s t i s  one o f d e a c t i v a t i o n s i n c e i n t h e presence o f l i g h t , v a r i o u s i n s e r t i o n r e a c t i o n s a l s o o c c u r a t -75° when i t s e l f i s used  (29).  l i n g o f diazomethane  diazomethane  The danger a s s o c i a t e d w i t h t h e hand(30) has been r e d u c e d t o a m i n i m a l  l e v e l by a p r o c e d u r e d e v e l o p e d by P i n c o c k and W e l l s (17b). The D i e l s - A l d e r r e a c t i o n w h i c h l o o k s t h e most p r o m i s i n g of a l l  on a s t e r e o c h e m i c a l b a s i s i s n o t a p p l i c a b l e here  because no s u i t a b l e oxygen s u b s t i t u t e d c y c l o p e n t a d i e n e i s a v a i l a b l e , and because c y c l o p r o p e n e i s d i f f i c u l t t o p r e p a r e and t o h a n d l e .  The Simmons-Smith procedure i s n o t t o o  - 7 -  a p p l i c a b l e t o the norbornene and norbornadiene s e r i e s (17). In view of these f a c t s i t was d e c i d e d t o i n v e s t i g a t e the diazomethane a d d i t i o n t o 7 - n o r b o r n a d i e n y l a c e t a t e 7-norbornenol  ( f i g u r e 6) as p o s s i b l e r o u t e s t o the  of e n d o - a n t i - t r i c y c l o 3,2,l,0 » ]'octan-8-ol 2  4  rOAc  figure 6  and  anti-  synthesis  (figure 4c).  - 8-  - 9 -  II. A.  EXPERIMENTAL  GENERAL I n f r a - r e d s p e c t r a (I.R.) were t a k e n on a P e r k i n - E l m e r  137 I n f r a c o r d s p e c t r o p h o t o m e t e r  with frequencies l i s t e d i n  cm"^; w = weak, m = medium, s = s t r o n g .  S p e c t r a were o b t a i n e d  on neat l i q u i d samples o r on n u j o l m u l l s o f s o l i d  samples  u s i n g sodium c h l o r i d e o p t i c s i n b o t h c a s e s . N u c l e a r magnetic resonance s p e c t r a (N.M.R.) were o b t a i n e d on a V a r i a n A-60 s p e c t r o m e t e r in T  w i t h resonance f r e q u e n c i e s g i v e n  u n i t s , based on t e t r a m e t h y l s i l a n e a t 1 0 T , i n c a r b o n  t e t r a c h l o r i d e s o l u t i o n ; s = broad  s i n g l e t or u n r e s o l v e d  m u l t i p l e t , m = m u l t i p l e t only p a r t i a l l y r e s o l v e d , 2 = d o u b l e t e t c . A l l peaks i n t e g r a t e d f o r the c o r r e c t number of protons unless otherwise s t a t e d .  The resonance p o s i t i o n s  o f the h y d r o x y l p r o t o n s were unambiguously a s s i g n e d by o b s e r v i n g t h e i r s h i f t upon a d d i t i o n o f p y r i d i n e t o the samples. M i c r o a n a l y s e s were done by A. B e r n h a r d t  of Mulheim and  by C. J e n k i n s of t h i s department. G a s - l i q u i d chromatography (V.P.C.) was done on t h r e e columns; a f i v e f o o t 20$ A p i e z o n J on 60/80 mesh f i r e b r i c k column, a f i v e f o o t 20$ l , 2 , 3 - T r i s ( 2 - c y a n o e t h o x y ) p r o p a n e  on .  45/60 mesh chromosorb P (T.C.E.P.) column, and a f i v e f o o t 25$ Carbowax 20M  ( a c i d washed) on 60/80 mesh chromosorb W  column u s i n g h e l i u m as t h e c a r r i e r gas a t a f l o w r a t e o f 42 m l . p e r min. (48 p . s . i . ) . A l l c h e m i c a l s used were o f r e a g e n t grade and used w i t h o u t f u r t h e r p u r i f i c a t i o n unless otherwise s t a t e d .  - 10 -  Thin-layer B.D.H. of  s i l i c a  chromatography  g e lG  (3D.  Column  chromatographic s i l i c a  B.  SYNTHETIC  1.  7-t-Butoxynorbornadiene To  of  a  grade) 500  and  gen,  was added  (Matheson, benzene by  to  Coleman  over  formation  tion.  After  room  about o f a  benzene  with  Coleman  This  chloride  aqueous  acid  was washed solution  After  by  evaporation  b.pt., 64-67°/l2 mm.,  most  i n 100  was  ml. o f  accompanied  o f t h e benzene  solu-  was  cooled  funnel  solution  anhydrous  and  u n t i l  and saturated  o f t h e benzene  (reported,  n i t r o -  perbenzoate  The r e s u l t i n g  over  the resulting  P r a c t i c a l  under  separatory  water  35°.  moles)  the solution  removed.  a t about  from  on  bromide i n  flask  carbonate  and dried  f i l t e r i n g ,  was d i s t i l l e d  t o a  with  1.  addition  o f reflux,  had been  (1.62  and B e l l ,  grade)  coloration  sodium  g.  of t-butyl  Practical  green hour  was done  o f cuprous  moles)  one h o u r .  sulfate.  (II)  (0.63  and B e l l ,  deep  10$  solution  rotary  o f 149  three-necked, 2  g.  a further  the benzoic  sodium  mixture  temperature, transferred  extracted a l l  122.5  by t h e method  chromatography  0.325 g . (0.00226 m o l e s ) i n a  yellow aqueous  magnesium  was  removed  7-^-Butoxynorbornadiene viscous  brown o i l ;  70-72°/l4 mm.  (32)).  Y i e l d  25.5 g . (25$). I.R.:  2950 ( s ) , 1540 ( w ) , 1390 ( m ) , 1360 ( s ) , 1320 ( m ) , 1190 ( s ) , 1105 ( s ) , 730 ( s ) .  N.M.R.:  olefinic  3.49  of  g e l .  ( I ) (Matheson,  m l . o f benzene  made  on plates  ( I I ) (32):  s t i r r e d refluxing  norbornadiene  was done  ( f o r T.L.C,) a n d were  Bishop and Tate  B.D.H.  (T.L.C.)  ( 3 ) , 3.62  (m); bridge  6.32  ( s ) ;  - 11 -  bridgehead 6.73 2.  (m); t - b u t y l 8.93 ( 1 ) . (III) (32):  7-Norbornadienyl a c e t a t e  An i c e - c o o l e d s o l u t i o n of 20 g. (0.122 moles) of 7-t-butoxynorbornadiene  ( I I ) i n 40 ml. of a c e t i c anhydride  and 200 ml. of g l a c i a l a c e t i c a c i d was added t o 27 g. o f 70$ p e r c h l o r i c a c i d which had p r e v i o u s l y been c o o l e d t o 0 ° . A f t e r e x a c t l y one minute the r e s u l t i n g deep r e d s o l u t i o n was poured i n t o a mixture of about 650 g. of water and i c e i n a separatory funnel.  A f t e r warming  to melt the remaining i c e ,  t o room temperature  the orange s o l u t i o n , from which  had s e p a r a t e d an orange l i q u i d , w a s e x t r a c t e d w i t h four  100  ml. p o r t i o n s of dichloromethane. The organic  was  solution  s e p a r a t e d , washed w i t h water, s a t u r a t e d aqueous sodium b i c a r bonate s o l u t i o n , water, and f i n a l l y s a t u r a t e d aqueous chloride  solution.  sodium  A f t e r d r y i n g over anhydrous magnesium  s u l f a t e the die h i or ome thane was  taken o f f by r o t a r y evapora-  t i o n at about 35° and the r e s u l t i n g deep orange, v i s c o u s o i l d i s t i l l e d to give 15.1 g. (82.5$) of 7 - n o r b o r n a d i e n y l acetate  ( I I I ) ; b . p t . 7 6 - 7 9 ° / H mm.,  (reported:  65°/8  mm.  (32)): I.R.:  2950 ( s ) , 1730 1245  N.M.R.:  ( s ) , 1040 olefinic  (w), 1370  ( s ) , 910 (m), 835  3.35  bridgehead 6.46 3.  ( s ) , 1540  (3),  3.53  (m), 1320  (m), 735  (m),  ( s ) , 680  (m).  (m); b r i d g e 5.55 ( s ) ;  (m); a c e t a t e 8.13 ( 1 ) .  anti-7-Norbornenol  (IV) (32):  7-Norbornadienyl a c e t a t e  ( I I I ) , 5.0 g. (0.033 m o l e s ) ,  i n 100 ml. of anhydrous d i e t h y l ether was added a t room  - 12 -  temperature  to a magnetically s t i r r e d  suspension of 2.0  g.  (0.053 moles) of f i n e l y d i v i d e d l i t h i u m aluminum hydride i n 100 ml. o f anhydrous d i e t h y l e t h e r i n a 500 ml.  three-necked  f l a s k f i t t e d w i t h a condenser and an a d d i t i o n f u n n e l over a p e r i o d of about  f i f t e e n minutes.  A f t e r a f u r t h e r hour  s t i r r i n g at room temperature, water and  of  i c e were s l o w l y  added t o hydrolyse any excess l i t h i u m aluminum h y d r i d e . The r e s u l t i n g suspended  white aluminum s a l t s were d i s s o l v e d  by the a d d i t i o n o f 10$ aqueous s u l f u r i c a c i d .  The  ether  l a y e r and washings were washed w i t h 10$ aqueous sodium c a r bonate  s o l u t i o n , water, and s a t u r a t e d aqueous sodium c h l o r i d e  s o l u t i o n , and d r i e d over anhydrous magnesium s u l f a t e . e t h e r was  evaporated t o g i v e 3.2  semi-crystalline material.  g.  The  (87.5$) of a y e l l o w i s h  P u r i f i c a t i o n by V.P.C. on the  A p i e z o n J column at 150° gave pure a n t l - 7 - n o r b o r n e n o l ( I V ) ; m.pt., 115-116°,  (reported:  or 7 - n o r b o r n a d i e n o l i s formed I.E.: 1  117-118° (32)). i n this reaction  3300 ( s ) , 2950 ( s ) , 1630 1120  N.M.R.:  ( s ) , 1070 olefinic  ( s ) , 870  4.10  (w), 1570  (32).  (w), 1330  (m); endo/exo 8.22  (m), 9.07  R e a c t i o n s o f o l e f i n s w i t h diazomethane (17):  a)  General procedure  which was  (m),  (1); b r i d g e  4.  Diazomethane was  isomer  (m), 710 ( s ) .  ( 3 ) ; h y d r o x y l 6.42  ( s ) ; bridgehead 7.54  No syn  6.55 (m).  (17b): generated from  N-methyl-N-nitrosourea  prepared by the method of Arndt  (33) i n 60$  The generator c o n s i s t e d o f a 250 ml., three-necked,  yield.  ice-cooled  - 13 -  f l a s k c o n t a i n i n g 50 ml. of a m a g n e t i c a l l y s t i r r e d 50$ aqueous potassium hydroxide s o l u t i o n and 100 ml. of d i e t h y l e t h e r . A d d i t i o n o f N-methyl-N-nitrosourea generated diazomethane The diazomethane  i n approximately 1 g. l o t s  which d i s s o l v e d i n the e t h e r l a y e r .  was c a r r i e d t o the r e a c t i o n f l a s k through  a d r y i n g tube of potassium hydroxide p e l l e t s by a continuous stream o f d r y n i t r o g e n which bubbled through the e t h e r l a y e r i n the generator f l a s k . The r e a c t i o n v e s s e l c o n s i s t e d of a 100 ml. three-necked, ice-cooled f l a s k containing a magnetically s t i r r e d of o l e f i n i n 50 ml. of anhydrous  solution  d i e t h y l e t h e r w i t h about  0.15 moles o f cuprous c h l o r i d e as c a t a l y s t , through which the n i t r o g e n stream passed.  The o u t l e t was through a water-  c o o l e d condenser f i t t e d w i t h a d r y i n g tube.  The e t h e r l a y e r s  i n b o t h f l a s k s were maintained by a d d i t i o n of s o l v e n t when required.  The r e a c t i o n was f o l l o w e d by V.P.C. o f the e t h e r  s o l u t i o n and was c o n t i n u e d f o r s e v e r a l hours u n t i l the o l e f i n was consumed.  The r e a c t i o n mixtures were worked up by simple  f i l t r a t i o n o f the c a t a l y s t f o l l o w e d by e v a p o r a t i o n o f the solvent.  During the r e a c t i o n s i t was n o t i c e d that the  c a t a l y s t changed from green t o a dark m e t a l l i c  reddish  brown but r e t u r n e d t o i t s normal c o l o r when the diazomethane g e n e r a t i o n was stopped. c o n n e c t i o n s because  Rubber stoppers were used i n a l l  o f the danger  of e x p l o s i o n s w i t h d i a z o -  methane on ground-glass s u r f a c e s (30).  The danger o f  e x p l o s i o n s and p o i s o n i n g was a l s o minimized by the steady n i t r o g e n stream which kept the c o n c e n t r a t i o n o f diazomethane q u i t e low.  - 14 -  b)  R e a c t i o n with a n t i - 7 - n o r b o r n e n o l e x o - a n t i - t r i c y c 1 o 3,2,1,0 ' 2  4  (IV):  preparation of  octan-8-ol  (V)  (17b)  Diazomethane was r e a c t e d w i t h 10.5 g. (0.0955 moles) o f anti-7-norbornenol  (IV) i n the presence of 1.2 g. o f cuprous  c h l o r i d e as c a t a l y s t f o r 12 hours.  The progress o f the r e a c -  t i o n was f o l l o w e d by V.P.C. on the Apiezon F i l t r a t i o n and e v a p o r a t i o n o f the ether  J column a t 1 5 0 ° .  s o l u t i o n gave a  g r e e n i s h o i l from which two p r o d u c t s were I s o l a t e d by V.P.C. on the T.C.E.P. column at 130°, the major one o f which was  r  shown t o be i d e n t i c a l t o a u t h e n t i c octan-8-ol  2,.  exo-anti-trlcyclo13,2,1,0  (V) by comparison o f I.R. and N.M.R. s p e c t r a and  by mixed m e l t i n g p o i n t with a n a u t h e n t i c samples o f the a l c o h o l (17). The  minor product  was f u r t h e r p u r i f i e d by V.P.C. on  T.C.E.P. a t 103° and was shown by the I.R..-and N.M.R. s p e c t r a to be a methyl ether c o n t a i n i n g a c y c l o p r o p y l group. compound was l a t e r confirmed ~  This  t o be e x o - a n t l - 8 - m e t h o x y - t r i c y c l o  2 4~  3,2,1,0 '  octane ( V I ) , (see s e c t i o n 7 below).  Previous  workers (17) had thought that t h i s compound was the endo isomer of ( V ) . The  o r i g i n a l g r e e n i s h o i l was seeded w i t h an a u t h e n t i c  sample o f the a l c o h o l (V) and a f t e r s t a n d i n g f o r hours a t 0 ° a f f o r d e d 4.3 g. (36.4$) of g r e e n i s h R e c r y s t a l l i s a t i o n was e f f e c t e d from petroleum  twenty-four crystals.  ether  (b.pt.,  65-110°) g i v i n g white c r y s t a l s of the a l c o h o l ; m.pt., 68.570°,  (reported:  75-76° (17b)).  Some of the a l c o h o l remained  In the mother l i q u o r but no attempt was made t o i s o l a t e i t .  - 15 -  The  t o t a l y i e l d was  estimated from a v e r y complex V.P.C. t r a c e  to be about 9 0 $ w i t h the main i m p u r i t i e s b e i n g s t a r t i n g (IV) and methyl  ether  (VI).  Wo attempt  was  alcohol  made to c h a r a c t e r i s e  other p r o d u c t s . 3 4 0 0  I.R.:  1040 N.M.R.:  (s),  (s),  ' 1 4 5 0  (w),  (m), 1000  1025  1 1 3 0  (m),  (m),  955  (m), 810  (m), 8.71  (s),  (m), 740  Reaction with 7-norbornadienyl  (m); c y c l o p r o p y l 9.29 acetate  2  acetate  (VII), endo-syn-tricyclo J3,2,1,0 »  acetate  ( V I I I ) , and  tetracyclo 3 , 3 , 1 , 0  2 , 4  7.95 (m).  41 oct-6-ene-8-  p r e p a r a t i o n of e x o - s y n - t r i c y c l o 3,2,1,0 ' 2  (m).  (III):  r i)  1 0 9 0  (s),  ( 1 ) ; b r i d g e 6 . 4 6 ( s ) ; bridgehead  h y d r o x y l 7.09  ( s ) ; endo/exo 8.28 c)  1260  oct-6-ene-8-  4  ,0 * 6  8  nonan-8-  acetate (IX): 7-Norbornadienyl and  0.4  g. o f cuprous  acetate  (4.3 g.)  the r e a c t i o n .  (0.024 moles),  u s i n g a T.C.E.P. column a t  From the r e s u l t i n g green o i l  i s o l a t e d by V.P.C. on the T.C.S.P. column a t  130° a non-separable  mixture  o f (VII) and  time twenty-seven m i n u t e s ) , and pure  (VIII)  (retention  (IX) ( r e t e n t i o n time  minutes). The V.P.C. t r a c e on T.C.E.P. a t 1 3 0 °  showed t h a t a t  l e a s t two components were present i n the mixture and  130°  o b t a i n e d by f i l t r a t i o n and e v a p o r a t i o n o f the e t h e r  s o l u t i o n was  sixty  g.  c h l o r i d e c a t a l y s t were r e a c t e d w i t h  diazomethane f o r 9 hours to monitor  (III) 3 . 6  of  (VII)  ( V I I I ) but although other c o n d i t i o n s were t r i e d none  found  t h a t would separate them s u f f i c i e n t l y  was  for collection.  - 16 -  N.M.R. showed t h a t a 5 t o 1 mixture  o f (VII) t o (VIII) was  present. I.R. (on m i x t u r e ) :  3100 ( w ) , 3000 (m), 1740 ( s ) , 1600 (w),  1550 (w), 1440 (w), 1360 (m), 1240 ( s ) , 1040 ( s ) , 900 (m), 850 (w), 780 (m), 720 (m), 690 (m). N.M.R. ( V I I ) : 7.11  olefinic  3.67 ( 3 ) ; b r i d g e 6.05 ( a ) ;  bridgehead  ( s ) ; a c e t a t e 8.11 ( l ) ; c y c l o p r o p y l 9.0 (m).  N.M.R. ( V I I I ) :  olefinic  4.35 ( 3 ) ; b r i d g e 5.58 ( s ) ; b r i d g e -  head 7.11 ( s ) ; acetate 8.11 ( 1 ) ; c y c l o p r o p y l 9.0 (m). Analysis  (on m i x t u r e ) :  calculated f o r Cio 12°2 H  :  c  = 73.15, H = 7.37  found  : C = 73.15, H = 7.39.  The  l i q u i d acetate  (IX) was determined  V.P.C. on T.C.E.P. a t 130° but i s o f unknown I.R.:  t o be pure by stereochemistry.  3000 (m), 2950 (m), 1740 ( s ) , 1450 (w), 1420 (w), 1360 (m), 1320 (w), 1240 ( s ) , 1220 (m), 1170 (w), 1100 (m), 1070 (m), 1040 (m), 980 (m),910 (m), 860  1  (w), 820 (w), 790 (m), 770 (w), 710 (m).  N.M.R.: 8.12  b r i d g e 5.90 ( s ) ; bridgehead  7.59 ( s ) ; a c e t a t e  ( 1 ) ; c y c l o p r o p y l 8.89 (m) ( s i x p r o t o n s ) , 9.68  (m) (two p r o t o n s ) ; other 8.5 (m) (one p r o t o n ) . Analysis:  calculated f o r C n R x ^ :  C = 74.30, H = 7.92  :  C = 73.57, H = 7.92.  found  - 17 -  ii)  p r e p a r a t i o n o f e x o - s y n - t r i c y c l o 3,2,1,0 ' 2  8-ol' (X), e n d o - s y n - t r i c y c l o [3,2,1,O ' y  2  (XI), and t e t r a c y c l o [ 3 , 3 , 1 , 0 » , 0 2  7^Norbornadienyl  acetate  4  6 , 8  4  4  oct-6-ene-  oct-6-ene-8-ol  nonan-9-ol  (XII):  ( I I I ) , 10.5 g. (0.07 moles), and  1.2 g. of cuprous c h l o r i d e c a t a l y s t were r e a c t e d w i t h d i a z o methane f o r 12 hours as g i v e n above, the c a t a l y s t  filtered  o f f , and the e t h e r s o l u t i o n slowly added a t room temperature t o 6.0 g. (0.159 moles) of f i n e l y d i v i d e d l i t h i u m aluminum hydride suspended i n 100 ml. of m a g n e t i c a l l y s t i r r e d anhydrous d i e t h y l ether c o n t a i n e d i n a 250 ml. three-necked f i t t e d w i t h a condenser and an a d d i t i o n f u n n e l .  flask  A f t e r the  a d d i t i o n was complete, the r e a c t i o n mixture was s t i r r e d f o r an a d d i t i o n a l hour at room temperature. then added t o hydrolyse any remaining hydride.  l i t h i u m aluminum  The r e s u l t i n g white suspension  was separated  Water and i c e were  o f aluminum s a l t s  i n a separatory f u n n e l and the e t h e r  solution  washed w i t h water, and s a t u r a t e d aqueous sodium c h l o r i d e s o l u t i o n , and d r i e d over anhydrous magnesium s u l f a t e .  Evaporation  of the e t h e r gave 7.4 g. (86$ based on a d d i t i o n o f one mole of diazomethane) of a c l e a r , c o l o r l e s s o i l . 2.0 g. o f t h i s o i l was separated by column chromatography on 175 g. o f s i l i c a g e l u s i n g as s o l v e n t a 2 t o 1 mixture o f petroleum  ether  (b.pt. 30-60°C.) t o d i e t h y l e t h e r , both of  which were d r i e d and d i s t i l l e d before use.  by standard methods (34)  The column s e p a r a t i o n , which was monitored  T.L.C. u s i n g the same s o l v e n t system, gave three  by  fractions.  - 18 -  The  first, R  f  0 . 5 2 , was separated by V.P.C. on T.C.E.P. a t  130° i n t o two components.  The more v o l a t i l e  o f these two  ( r e t e n t i o n time t w e n t y - f i v e minutes) was i d e n t i f i e d a s a l c o hol  (X), m.pt.  I.R.:  33-34° ( s e a l e d t u b e ) .  3300 ( s ) , 3050 (w), 3000 (w), 1650 (w), 1080 ( s ) , 1010  (w), 940 (w), 875 (w), 830 (m), 770 (m), 720 (m),  685 ( s ) . N.M.R.:  olefinic  bridgehead Analysis:  The  3.62 (3); h y d r o x y l 5.95 ( 1 ) ; bridge 6.68 ( s ) ;  7.18 ( s ) ; c y c l o p r o p y l 8.9 (m).  c a l c u l a t e d f o r CgH.^0:  C = 78.68, H = 8 . 2 5 , 0 =  13.10  found  C = 78.39, H = 8.38,  13.22  :  other component of R  (XII) ( r e t e n t i o n time c h e m i s t r y , m.pt. I.R.:  f  0 =  0 . 5 2 was i d e n t i f i e d as a l c o h o l  s i x t y - t h r e e minutes) o f unknown s t e r e o -  61-63° ( s e a l e d t u b e ) .  3200 ( s ) , 2900 ( s ) , 1100 ( s ) , 1040 ( s ) , 1030 (m), 970  ( s ) , 925 (m), 855 (w), 805 (m), 785 ( s ) , 750 (w),  690 ( s ) . N.M.R.: 1  h y d r o x y l 6.33 ( D ; bridge 6.67 (m);  bridgehead  7.63 ( s ) ; c y c l o p r o p y l 8.80 (m) ( s i x p r o t o n s ) , 9.60 (m) (two p r o t o n s ) ; other 8.03 (m) (one  Analysis:  The  proton).  calculated f o r CqH 0:  C = 79.37, H = 8.88  found  C = 79.03, H = 9.09.  12  :  appearance of the extraneous  s p e c t r a o f both a c e t a t e to a second isomer.  peaks i n the N.M.R.  (IX) and a l c o h o l (XII) may be due  Formation  o f the exo and endo  (X) and (XI) i n d i c a t e s t h a t a t l e a s t two isomers  isomers  should be  - 19 -  formed by a d d i t i o n o f another methylene  group and the c y c l o -  p r o p y l protons o f the s m a l l e r isomer may r e s o n a t e a t a s l i g h t l y lower f i e l d . second f r a c t i o n , R f 0.39, was f u r t h e r p u r i f i e d by  The V.P.C.  on T . C . E . P . a t 130° and was u n e q u i v o c a l l y shown by  I.R. comparison w i t h t h a t o f an a u t h e n t i c sample o f the a l c o hol  (32) t o be 7-norbornenol  (IV) a r i s i n g from r e d u c t i o n o f  unreacted 7-norbornadienyl a c e t a t e The t h i r d f r a c t i o n , R  f  (III).  M.pt.  116.5 - 117°C.  0.29, was a l s o p u r i f i e d by V . P . C .  on the T . C . E . P . column a t 130° and was i d e n t i f i e d as a l c o h o l  60-62°  ( X I ) , m.pt. I.R.:  3350 1070 755  N.M.R.:  (s),  (s),  (sealed  3050  1010  tube).  (w), 29OQ ( s ) ,  (m),  960  1600  (w), 1220 ( s ) ,  (ra), 920 (m),  870  ( s ) , 790 ( s ) ,  ( s ) , 730 ( s ) , 720 ( s ) . o l e f i n i c 4.33 (3); bridge 6.2  bridgehead 7.42  ( s ) ; h y d r o x y l 7.12 (m);  ( s ) ; c y c l o p r o p y l 8.58 (m) (two p r o t o n s ) ,  9.3 (m) (two p r o t o n s ) . calculated f o r CQH100:  Analysis: '  found  :  C  = 78.65,  H  = 8.25  C  = 77.69,  H  = 8.07.  Although the a n a l y s i s i s u n s a t i s f a c t o r y , the N.M.R. spectrum showed the c o r r e c t i n t e g r a t i o n , and the a n a l y s i s f o r the s a t u r ated a l c o h o l  (XIV) d e r i v e d d i r e c t l y from t h i s compound was  acceptable.  Other samples  by d i r e c t  o f ( X ) , (XI) and (XII) were obtained  s e p a r a t i o n o f the o r i g i n a l r e a c t i o n mixture by V . P . C .  on T . C . E . P . a t 130°.  The a l c o h o l s were a l s o obtained by reduc-  t i o n o f the c o r r e s p o n d i n g a c e t a t e s f i e d by V . P . C .  on T . C . E . P . a t 135°.  (VII),  (VIII) and (IX) p u r i -  The r a t i o o f a l c o h o l s (X)  - 20 -  and on  ( X I ) was e s t i m a t e d t h e V.P.C.  5.  8-0I g.,  crude  mixture  dioxide  a t about hydrogen  took  1.1  atmospheres.  with  alcohols  were  3350  I.R.:  .  (  940  N.M.R.:  (w),  6.55  10.1  This  Crude  0.106  After  evaporated  (m),  g. o f  u p 30.0 m l . minutes and  pumping  t h e system  0.166  t o hydrogen  thirty-five  o f f the  thecatalyst  t o give  comparison  O.I46  g.  on T.C.E.P. a t  conclusively that  was c o n f i r m e d  830  the two  b y I . R . a n d N.M.R.  tube).  (m),  770  ( s ) ;hydroxyl  1080  (s),  ( m ) , 720 6.79  1010  (m),  (w),  685 (  s ) .  ( s ) ;b r i d g e h e a d  ( m ) ;c y c l o p r o p y l  9.2  (m)  7.9  (three  (m) ( o n e p r o t o n ) .  calculated f o r  Preparation  (XIII):  (XII),  0.0155  with  and exposed  (V) showed  CeH^O:  found  6.  ethanol,  V.P.C.  1150  8.75  ]nonan-9-ol  minutes.  (s),  (w),  endo/exo  protons), Analysis:  2900  875  bridge  (s);  isomer  different.  (s),  6 , 8  over  M . p t . 44-46° ( s e a l e d  comparisons.  octan-8-ol  The s o l u t i o n took  o f f and theethanol  t h ea n t i  ,0  a i r t o enter  of a c l e a r c o l o r l e s s o i l . A 130°  2 , 4  95$  fashion  up t o n i n e t y  and allowing  '  them.  2  as catalyst,  I n a linear  f i l t e r e d  3,2,1,0  areas  exo-syn-tricyclo[3,2,1,0 *oct-6-ene-  i n 10 m l . o f added  up n o more  hydrogen was  of  t h epeak  outand weighing  of exo-syn-tricyclo  was d i s s o l v e d  gas  c u t t i n g them  (X)and t e t r a c y c l o 3,3,l,0  platinum  of  trace.by  Preparation A  t o be 5 t o 1 b y comparing  C =  77.38,  H =  9.74, 0 = 12.88  : C =  77.58,  H =  9.70, 0 = 12.81.  of e n d o - s y n - t r i c y c l o  endo-syn-tricyclo  g . , was d i s s o l v e d  3,2,l,0  3,2,1,02,4  i n 10 m l . o f  2 , 4  Joctan-8-ol  (XIV):  oct-6-ene-S-ol ( X I ) ,  95$  ethanol  with  0.0147  g  - 21 -  of p l a t i n u m d i o x i d e added as c a t a l y s t .  Exposure t o hydrogen  gas a t 1.1 atmospheres r e s u l t e d i n a l i n e a r uptake o f 12.0 ml. o f gas i n f i f t e e n minutes w i t h no f u r t h e r uptake f o r t h e next t h i r t y m i n u t e s .  A f t e r removal o f hydrogen, f i l t r a t i o n  o f c a t a l y s t and e v a p o r a t i o n o f s o l v e n t , 0.0816 g. o f a c l e a r c o l o r l e s s o i l remained.  A c o m p a r i s o n o f t h i s o i l by V.P.C.  on t h e T.C.E.P. column a t 120° showed t h a t t h e main peak was n e i t h e r of the exo Isomers (V) o r ( X I I I ) . by I.R. a n d N.M.R. c o m p a r i s o n s . I.R.:  T h i s was c o n f i r m e d  M.pt. 125-127° ( s e a l e d t u b e ) .  3300 ( s ) , 2900 ( s ) , 1130 ( s ) , 1060 ( s ) , 990 (w), 930 (w), 800 (w), 780 (m), 750 (w), 720 ( s ) .  N.M.R.:  b r i d g e 6.0 ( s ) ; h y d r o x y l 6.32 (m); b r i d g e h e a d 8.05  ( s ) ; endo/exo 8.6 (m); c y c l o p r o p y l 8.9 (m). Analysis:  7.  calculated for C H 0:  C = 77.38, H = 9.74  found  C = 77.05, H = 9.64.  Q  1 2  :  Preparation of exo-anti-8-methoxy-tricyclo[3,2,1,0  2 > 4  ].  octane ( V I ) : (  D r i e d a l c o h o l ( V ) , 1.0 g. (0.0081 m o l e s ) , i n 10 m l .  of anhydrous glyme (1,2-dimethoxyethane) was s l o w l y  added  t o a s t i r r e d s u s p e n s i o n o f 0.4 g. (0.0167 moles) o f sodium h y d r o x i d e i n 50 m l . o f anhydrous glyme and r e f l u x e d f o r one hour i n a 100 m l . t h r e e - n e c k e d f l a s k f i t t e d w i t h a condenser and a n a d d i t i o n f u n n e l .  A f t e r c o o l i n g the r e a c t i o n m i x t u r e  t o room t e m p e r a t u r e , 3.0 g. (0.0211 moles) o f m e t h y l i o d i d e i n 10 m l . o f anhydrous glyme was added f o l l o w e d by s t i r r i n g a t room t e m p e r a t u r e f o r one hour.  Water and d i e t h y l e t h e r  - 22 -  were added t o the mixture and the e t h e r l a y e r and washings s e p a r a t e d , d r i e d w i t h s a t u r a t e d aqueous sodium c h l o r i d e s o l u t i o n and anhydrous magnesium s u l f a t e and e v a p o r a t e d t o g i v e 0. 92 g. (82.5%) ether  (VI).  o f a y e l l o w i s h o i l w h i c h was shown t o be  V.P.C. on T.C.E.P. a t 80° showed t h a t  this  e t h e r was I d e n t i c a l t o the one i s o l a t e d f r o m the r e a c t i o n of a n t l - 7 - n o r b o r n e n o l  (IV) w i t h diazomethane.  N.M.R. s p e c t r a c o n f i r m e d  t h i s assignment.  I.R. and  B.pt.  184°/ 750  mm. 1. R.:  2950 ( s ) , 1120 ( s ) , 1070 (m), 1040 (w), 1005 (w), 995  (w), 955 (w), 900 (w), 880 (w), 810 (m), 745 (m),  710  (w),  N.M.R.:  m e t h y l 6.93 ( 1 ) ; b r i d g e 7.00 (m); b r i d g e h e a d 7.86  ( s ) ; endo/exo 8.4 (m), 8.8 (m); c y c l o p r o p y l 9.3 (m) ( t h r e e p r o t o n s ) , 10.1 (m) (one Analysis:  proton).  calculated for C H 0CH : 8  1 1  5  C = 78.21, H = 10.21, OCH3 = 22.41  found  :  0CH  1  : 8.  C = 78.11, H = 10.16, 3  = 22.67  C = 78.27, H =  10.07  P r e p a r a t i o n o f e x o - a n t i - t r i c y c l o J5,2,l,0 ' ~] octan-82  brosylate  (XV)  4  (17):  A l c o h o l ( V ) , 1.0 g. (0.0081 m o l e s ) , was d i s s o l v e d i n 5 ml. o f anhydrous p y r i d i n e and s l o w l y added t o a s o l u t i o n o f 2.2 g. (0.0081 moles) o f p - b r o m o b e n z e n e s u l f o n y l c h l o r i d e  - 23 -  (brosyl chloride) temperature. resulted.  i n 5 ml.  of anhydrous p y r i d i n e at room  A s l i g h t warming of the c l e a r orange  A f t e r standing at room temperature f o r t h i r t y  minutes, c r y s t a l s of p y r i d i n e h y d r o c h l o r i d e from the s o l u t i o n . mixture  solution  was  heated  began t o  separate  A f t e r standing o v e r n i g h t , the r e a c t i o n b r i e f l y t o 100°, c o o l e d to 0° and  the  p y r i d i n e h y d r o c h l o r i d e c r y s t a l s d i s s o l v e d by a d d i t i o n of water.  The  r e d o i l which separated upon adding water  scratched u n t i l c r y s t a l l i s a t i o n occurred. 1.91  g.  (69$)»were f i l t e r e d  The  (b.pt. 65-110°).  crystals,  o f f , washed w i t h water, d r i e d  by drawing a i r through them and r e c r y s t a l l i s e d ether  was  Comparison of I.R.  from  petroleum  s p e c t r a and  m e l t i n g p o i n t w i t h an a u t h e n t i c sample of the e s t e r showed c o n c l u s i v e l y that the product was  indeed  mixed  (17a)  (XV).  M.pt.  84-85°. I.R.:  2900 (w), 1570 ( s ) , 1095  N.M.R.:  (m), 1065  aromatic  2,33  ( s ) ; endo/exo 8.5 *  The  (m), 1450  (w), 1350  ( s ) , 985  ( s ) , 905  ( s ) ; b r i d g e 5.86 (m),  9.2  b r o s y l c h l o r i d e was  ( s ) , 1260  (w),  (rn), 880  1170  (m), 865  ( s ) ; bridgehead  (m); c y c l o p r o p y l 9.3  (m).  7.74  (m).  p u r i f i e d by d i s s o l v i n g the crude  compound i n d i e t h y l e t h e r , washing w i t h 10$ aqueous sodium c a r bonate s o l u t i o n to remove the a c i d , d r y i n g the e t h e r w i t h s a t u r a t e d aqueous sodium c h l o r i d e s o l u t i o n and magnesium s u l f a t e , and due was m.pt.  evaporating  the e t h e r .  r e c r y s t a l l i s e d from petroleum  74-75°, r e p o r t e d  (35), 75°.  ether  The  (b.pt.  solution anhydrous  white r e s i 30-60°);  - 24 -  C.  PRODUCT STUDIES  I.  Acetolyses of e x o - a n t i - t r i c y c l o  jj),2,l,0 ' 2  4  octan-8-brosylate  (XII) at 200° (17): a)  six hours (2.4 half l i f e s (17a))  i)  Brosylate (XV), 0.75 g. (0.0022 moles), was dissolved i n  15 ml. of 0.11 N sodium acetate i n g l a c i a l acetic a c i d , sealed In a thick-walled glass tube and placed In a s t e e l bomb preo heated  to 200  i n a s i l i c o n e o i l bath.  A f t e r six hours the  bomb was removed, cooled and the tube opened.  A large amount  of black s o l i d material had separated from the solution. Excess water was added to the tube, the contents transferred to a separatory funnel and extracted with d i e t h y l ether.  The  black s o l i d dissolved i n the ether r e s u l t i n g i n a dark yellow solution.  This solution was washed with water, 10$ aqueous  sodium carbonate  s o l u t i o n and f i n a l l y with saturated aqueous  sodium chloride solution.  The deep yellow solution was  decolorised by three treatments with activated charcoal, f i l t e r e d , d r i e d over anhydrous magnesium sulfate and evaporated.  The r e s u l t i n g pale yellow o i l , 0.27 g. (75$ based  on t o t a l conversion t o acetate) was separated on T.C.E.P. at 130° into two main f r a c t i o n s , (B) and (C), and one smaller one,  (A), of shorter r e t e n t i o n time.  to (B) to (C) was 3 to 44 to 53*  Ratio of peak areas, (A)  The retention times were:  (A), eleven minutes; (B), fourteen minutes, and (C), sixteen minutes.  The I.R. spectra of the two larger peaks were con-  sistent with those expected f o r o l e f i n acetates but neither was  the t r i c y c l i c acetate (XVI) (17a).  - 25 -  I.R.:  (B): 3020 (w), 2950 (m), 1730 ( s ) , 1620 (w), 1440 (m), 1380  (m), 1240 ( s ) , 1190 (w), 1120 (w), 1080 (w), 1040 (m),  1020  (m), 975 (w), 960 (w), 910 (w), 850 (w), 710 (m).  (C): 1220  3000 (m), 2900 (m), 1730 ( s ) , 1440 (w), 1370 (m), ( s ) , 1180 (w), 1060 (m), 1020 (m), 960 (w), 935  (w), 900 (w), 810 (w), 730 (m), 715 (w). (XVI) (17a): 1240  3000 (w), 2920.(m), 1730 ( s ) , 1360 (m),  ( s ) , 1140 (w), 1080 (m), 1040 (m), 1000 (w), 960  (w), 910 (w), 810 (w), 745 (w). li)  Brosylate (XV), 0.5 g. (0.0015 moles), was dissolved i n  12 ml. of 0.11 N sodium acetate i n g l a c i a l a c e t i c acid, sealed i n a thick-walled glass tube and placed i n a s t e e l bomb preheated to 200° i n a s i l i c o n e o i l bath.  After six hours the  bomb was removed from the bath, cooled, the tube opened and the contents poured into water.  Black s o l i d material had  again separated from the s o l u t i o n .  The aqueous mixture and  washings were extracted with d i e t h y l ether affording a dark yellow solution into which the black p a r t i c l e s had dissolved, After separation of the aqueous phase, the ether solution and washings were washed with water, 10$ aqueous sodium carbonate solution and saturated aqueous sodium chloride solution.  The  yellow color was removed by three treatments with activated charcoal and the solution dried over anhydrous magnesium sulfate. The solution was reduced i n volume to about 15 ml. and added slowly at room temperature to a magnetically s t i r r e d suspension of 0.1 g. (0.0026 moles) of f i n e l y divided lithium aluminum hydride i n 25 ml. of anhydrous d i e t h y l ether contained  - 26 -  i n a 100 ml. t h r e e - n e c k e d f l a s k f i t t e d w i t h a condenser an a d d i t i o n f u n n e l . temperature  and  A f t e r s t i r r i n g the m i x t u r e a t room  f o r a f u r t h e r hour, e x c e s s water and i c e were  added t o h y d r o l y s e any r e m a i n i n g l i t h i u m aluminum h y d r i d e . The r e s u l t i n g aqueous s u s p e n s i o n o f w h i t e aluminum s a l t s was  s e p a r a t e d f r o m the c l e a r e t h e r l a y e r and washed s e v e r a l  times w i t h d i e t h y l e t h e r , the e t h e r s o l u t i o n and washings b e i n g combined.  The e t h e r s o l u t i o n was  washed w i t h water  and s a t u r a t e d aqueous sodium c h l o r i d e s o l u t i o n and over anhydrous magnesium s u l f a t e . gave 0.108  g.  (60%)  T h i s o i l was  dried  Removal o f the s o l v e n t  of a y e l l o w i s h  oil.  shown t o be a m i x t u r e o f t h r e e a l c o h o l s  by V.P.C. on the T.C.E.P. column a t 140°.  The I.R. s p e c t r a  of these compounds showed t h a t t h e f i r s t two,  (D) and ( E ) ,  were s i m i l a r o l e f i n i c a l c o h o l s , the t h i r d a u t h e n t i c e x o - a n t i (V). (D), f o u r t e e n m i n u t e s ;  The r e t e n t i o n t i m e s were:  ( E ) , seventeen m i n u t e s , and  t w e n t y - t h r e e m i n u t e s , and t h e peak r a t i o s ,  (V),  (D) t o (E) t o  (V):14 t o 60 t o 26.. I.R.:  (D): 1410 905  3350 ( s ) , 3050 (m), 2900 ( s ) , 1650  (m), 1310 (w), 870  (m), 1240  (w), 845  (m), 1180  (w), 810  (w), 1450  (m), 1090  (ra), 775  (m),  ( s ) , 1000  (w), 730  ( s ) , 710  (w), 670 ( s ) . (E): 1340  3300 ( s ) , 3070 (m), 2900 ( s ) , 1630 (m), 1260  (m), 1000 b)  (m), 970  t h i r t y hours Brosylate  (w), 1180  (w), 1140  (m), 940  (w), 1440  (w), 1080  (m), 880  (m),  (w), 710  (m), 1060  (m).  (12 h a l f l i v e s ( 1 7 a ) ) :  (XV), 0.75  g. (0.0022 m o l e s ) , was  (w),  dissolved  - 27 -  i n 15 ml. of 0.11 N sodium a c e t a t e i n g l a c i a l a c e t i c  acid,  s e a l e d i n a t h i c k - w a l l e d g l a s s tube and p l a c e d i n a s t e e l bomb which had been preheated  t o 200° i n a s i l i c o n e  o i l bath.  After  t h i r t y hours the bomb was removed from the bath, c o o l e d , and the g l a s s tube opened.  A v e r y l a r g e amount of s o l i d  and brown m a t e r i a l was i n the tube.  black  The tube was washed  w i t h water and d i e t h y l e t h e r , the e t h e r l a y e r d i s s o l v i n g the b l a c k r e s i d u e .  The e t h e r l a y e r was separated and washed  w i t h water, 10% aqueous sodium carbonate t e d aqueous sodium c h l o r i d e s o l u t i o n .  s o l u t i o n and s a t u r a -  The very dark c o l o r of  the c l e a r e t h e r s o l u t i o n was removed by repeated with a c t i v a t e d charcoal.  treatment  The s o l u t i o n was d r i e d over anhy-  drous magnesium s u l f a t e and the e t h e r removed t o g i v e 0.08 g. (22%)  of a s l i g h t l y yellowish o i l . V.P.C. o f t h i s o i l on T.C.E.P. a t 140° showed t h a t three  components, (A), (B) and (C), were present (A) t o (B) t o (C) equals  15 t o 49 t o 36.  i n the r a t i o s : The two l a r g e r  peaks were shown by I.R. comparison t o be i d e n t i c a l t o the t w o ' c o l l e c t e d from the s i x hour s o l v o l y s i s , The run.  (B) and  s m a l l e r peak may be the t r a c e (A) present Retention  times:  (A), twelve  (C).  i n the s h o r t e r  minutes; (B), f o u r t e e n  minutes; and (C), seventeen minutes. 2.  Reduction  of e x o - a n t i - t r i c y c l o [3,2,1,0 ' 2  4  octan-8-brosylate  (XV). Brosylate  (XV), 0.09 g . (0.00026 moles),  was d i s s o l v e d i n  10 ml. o f anhydrous d i e t h y l e t h e r and s l o w l y added t o a mag-  - 28 -  n e t i c a l l y s t i r r e d s u s p e n s i o n o f 0.1 g. (0.0026 moles) o f f i n e l y d i v i d e d l i t h i u m aluminum h y d r i d e i n 15 m l . of anhydrous d i e t h y l e t h e r c o n t a i n e d i n a 100 m l . t h r e e - n e c k e d f l a s k f i t t e d w i t h a condenser and an a d d i t i o n f u n n e l . the  A f t e r a d d i t i o n was c o m p l e t e d ,  m i x t u r e was s t i r r e d a t room t e m p e r a t u r e f o r one hour.  Water and i c e were t h e n added, w i t h s t i r r i n g , t o h y d r o l y s e the e x c e s s l i t h i u m aluminum h y d r i d e .  The w h i t e aluminum  s a l t s suspended i n t h e aqueous l a y e r were s e p a r a t e d and the e t h e r l a y e r and washings washed w i t h water and s a t u r a t e d aqueous sodium c h l o r i d e s o l u t i o n .  A f t e r d r y i n g over anhy-  drous magnesium s u l f a t e , the e t h e r was removed by r o t a r y e v a p o r a t i o n t o g i v e 0 . 0 4 g. (91.6$) o f a y e l l o w i s h  oil.  V.P.C. on the a c i d washed Carbowax column a t 155° showed one peak.  T h i s compound was shown by V.P.C. c o m p a r i s o n and by  I.R. s p e c t r o s c o p y , t o be e x o - a n t i - t r i c y c l o | j S , 2 , l Q t  2 > 4  octan-  8-ol (V). 3.  A c e t o l y s i s of e x o - a n t i - t r i c y c l o 3 , 2 , l , 0  2 , 4  ]octan-8-ol  (V) a t 2 5°: A l c o h o l ( V ) , 0.3 g. (0.0024 m o l e s ) , was d i s s o l v e d a t room temperature i n 25 m l . of g l a c i a l a c e t i c a c i d and 3 m l . (0.0319 moles) o f a c e t i c a n h y d r i d e w i t h 0.66 g. o f 70$ aqueous p e r c h l o r i c a c i d added t o t h e s t i r r e d  solution.  A f t e r f i f t e e n hours of s t i r r i n g a t 2 5 ° water was added t o the s l i g h t l y y e l l o w i s h s o l u t i o n .  The aqueous s o l u t i o n was  e x t r a c t e d w i t h d i e t h y l e t h e r , t h e e t h e r l a y e r and washings washed w i t h 10$ aqueous sodium c a r b o n a t e s o l u t i o n , w a t e r ,  - 29 -  and saturated aqueous sodium chloride solution.  A f t e r drying  the ether s o l u t i o n over anhydrous magnesium sulfate the s o l vent was removed by rotary evaporation to give 0.5 g. (125$) of a s l i g h t l y yellowish o i l .  V.P.C. on the T.C.E.P. column  at 140° showed only two peaks, ( F j and (G), widely  separated  i n retention time ( ( F ) , nine minutes, and ( G ) , one hundred and eleven minutes). were acetates.  The I.R. spectra showed that both products The ^.M.R. spectra showed that ( F ) (25$ of the  mixture) was an acetate with an endocyclic o l e f i n group as evidenced by the m u l t i p l i c i t y o l e f i n i c protons  and chemical s h i f t of the  (36). The i n t e g r a t i o n indicated that two  o l e f i n i c protons were present.  (G), (75%) was a diacetate  as shown by the N.M.R. spectrum. I.R.:  ( F ) : 3000 (m), 2950 (m), 1740 ( s ) , 1640 (w), 1440 (m), 1380 (m), 1360 (m), 1240 ( s ) , 1180 (m), 1040 ( r o ) , 1020 (m), 970 (w), 910 (w), 890 (w), 825 (w), 735 (m), 695 (w), 675 (w). (G):  !  2950 ( s ) , 1730 ( s ) , 1440 (m), 1360 ( s ) , 1300 (m),  1220 ( s ) , 1180 (m), 1160 (m), 1100 (w), 1080 (m), 1050 (m), 1020 ( s ) , 960 (m), 900 (m), 840 (w), 825 (w), 770 (w), 670 (w).  N.M.R.:  ( F ) : olefinic  4.29 (m) (one proton), 4.66  (m)  (one  proton); bridge 5.14 ( s ) ; acetate 8.08 (1); others 7.67 (m), 8.19 (m) (eight protons). (G):  adjacent to acetate groups 5.05 (s) (one proton),  5.22 (m) (one proton); acetates 8.05 ( D , 8.12 (1); others 7.8 (m) (two protons); 8 . 5 (m) (eight protons).  - 30 -  The acetate mixture, 0.18  g., i n 10 ml. of anhydrous  d i e t h y l ether was added to a magnetically s t i r r e d  suspension  of 0.1 g. (0.0026 moles) of f i n e l y divided lithium aluminum hydride i n 25 ml. of anhydrous diethyl ether at room temperature contained i n a 100 ml. three-necked condenser and an addition funnel.  f l a s k f i t t e d with a  Following t o t a l addition  the mixture was s t i r r e d for a further two hours.  An excess  of water and ice was then slowly added to hydrolyse remaining  any  lithium aluminum hydride and to disperse the pre-  c i p i t a t e d aluminum s a l t s .  The aqueous layer was separated  and washed with d i e t h y l ether.  The ether layer and washings  were washed with water and saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate and evaporated to give 0.05  g. of a s l i g h t l y yellowish o i l .  This o i l  was p u r i f i e d on T.C.E.P. at 140° to give a pure s o l i d alcohol (H), m.pt. I.R.:  108-109° (sealed tube).  3250 ( s ) , 1640  (w), 1180 (m), 1070  (s), 1060 ( s ) , 1010  (s), 965 (m), 955 (m), 895 (m), 870 (ra), 825 (m), 735 (a), 1  700 (w), 680 (m).  N.M.R.:  o l e f i n i c 4.35 (m) .(one proton), 4.70 (m) (one proton);  bridge 6.05 (s); hydroxyl 6.81 (s); a l i p h a t i c 7.95 (m); endo/exo 8.3 (m) (two protons), 8.8 (m) (two protons). Reported (37) f o r a n t i - b i c y c l o 3,2,lJoct-2-ene-8-ol: m.pt. 110-111°. I.R.:  3628, 3489, 1179, 1072,  N.M.R.:  1059,  1013, 962.  4.44 (m); 5.87 (s); 6.76 (m); 7.84 (m).  The  r e p o r t e d s p e c t r a f o r the syn isomer  the observed  spectra.  are incompatible  with  III.  A.  SUMMARY OP EXPERIMENTAL RESULTS  SYNTHETIC synthesis of a n t i - 7 - n o r b o r n e n o l  The  a c c o r d i n g t o the procedure of Story obtained  commercially,  was  (V) was  (32).  carried  out  Norbornadiene ( I ) ,  r e a c t e d w i t h commercial t - b u t y l  perbenzoate i n benzene to give the e t h e r 7-^-butoxynorbornadiene  (II).  A c i d cleavage  of the e t h e r w i t h g l a c i a l  a c i d , a c e t i c anhydride and 7-norbornadienyl  acetate  Reacting  No  L i t h i u m aluminum h y d r i d e (IV) e x c l u s i v e l y .  e x o - a n t l - t r i c y c l o[ |33, 2 , 2,,11,, 0" ' 2  exo-anti-8-methoxy-tricyclo  [3,2,1,0*"*^  t r a c e of the d e s i r e d endo isomer of  this  4  octan-8-ol  octane  (V) c o u l d be  (VI).  found In  reaction. When 7 - n o r b o r n a d i e n y l  diazomethane and two  (III).  (IV) w i t h diazomethane i n the presence of  cuprous c h l o r i d e gave (V) and  7 0 $ p e r c h l o r i c a c i d gave the e s t e r  ( I I I ) gave a n t i - 7 - n o r b o r n e n o l  reduction of  acetic  acetate  ( I I I ) was r e a c t e d  with  cuprous c h l o r i d e a 5 to 1 mixture, of the oct-6-ene-8-  monoadducts e x o - s y n - t r i c y c l o  acetate  (VII) and  acetate  (VIII) were formed, a l o n g w i t h a diadduct t e t r a c y c l o  j^3,3,l,0 istry.  2 , 4  ,0 "» D  8  Reduction  endo-syn-tricyclo  nonan-9-acetate  [3,2,1,0 »^] oct-6-ene-82  (IX) o f unknown stereochem-  o f the a c e t a t e mixture with l i t h i u m aluminum  hydride gave the o l e f i n i c a l c o h o l s e x o - s y n - t r i c y c l o oct-6-ene-8-ol  (X) and  endo-syn-tricyclo  |3,2,l,Q j 2,4  J3,2,l,0 ^j 2 ,  oct-6-ene-  33  -  8-ol  3,3,1,0 'V' ] 2  (XI) and the s a t u r a t e d a l c o h o l t e t r a c y c l o  nonan-9-ol istry and  -  (XII) of unknown s t e r e o c h e m i s t r y .  of the o l e f i n i c  products  8  The stereochem-  was e s t a b l i s h e d by c h e m i c a l  n u c l e a r magnetic resonance spectroscopy  evidence.  Reduc-  t i o n o f (X) w i t h hydrogen gas and p l a t i n u m r e s u l t e d i n f o r m a t i o n of e x o - s y n - t r i c y c l o J 3 , 2 , l , 0 ' 2  treatment  octan-8-ol  4  (XIII).  Similar  of (XI) gave the endo isomer e n d o - s y n - t r i c y c l o  3,2,1,0 ' 2  4  octan-8-ol  (XIV).  Both o f the s a t u r a t e d a l c o h o l s  (XIII) and (XIV) were shown t o be d i f f e r e n t from the known (17b)  exo-anti-tricyclo[3,2,1,0  octan-8-ol  2 , 4  a l c o h o l i c and e s t e r compounds prepared p u r i f i e d by gas chromatography. octan-8-brosylate  ( V ) . A l l the  were separated and  e ^ - a j r v ^ i - T r i c y c l o 3,2,1,0 ' 2  (XV) was prepared  4  by r e a c t i n g a l c o h o l (V)  with £-bromobenzene s u l f o n y l c h l o r i d e i n anhydrous p y r i d i n e , and  p u r i f y i n g by r e c r y s t a l l i s i n g  from petroleum e t h e r  (b.pt.  65-110°). B.  SOLVOLYSIS STUDIES The  a c e t o l y s i s of b r o s y l a t e  (XV) was s t u d i e d i n an attempt  1  to determine the r a t e c o n t r o l l i n g step o f the r e a c t i o n . 200° i n a s o l u t i o n o f 0.11 N sodium a c e t a t e a c i d a l l the products  were r e a r r a n g e d  a c e t i c a c i d , a c e t i c anhydride, hol  (V) gave two p r o d u c t s ,  acetates.  one the known a c e t a t e  o f a d d i t i o n t o (XVII).  acetic  At 2 5 ° i n an  p e r c h l o r i c a c i d mixture a l c o -  bicyclo 3,2,ljoct-2-ene-8-acetate ducts  i n glacial  At  (37) anti-  (XVII) and the other  Acetate  pro-  (XVII) was reduced t o  the a l c o h o l ( 3 7 ) a n t l - b i c y c l o J 3 , 2 , l j o c t - 6 - e n e - 8 - o l  (XVIII)  0$  by l i t h i u m aluminum h y d r i d e .  -  A c e t a t e (XVII) was  the s o l v o l y s i s r e a c t i o n s a t high temperature. i n d i c a t e that carbonium  the r a t e c o n t r o l l i n g  Formation o f the carbonium  by rearrangement  These r e s u l t s  step i s f o r m a t i o n o f a  i o n a t Cs, r a t h e r than i n i t i a l  propyl ring.  not found i n  opening of the c y c l o i o n may  be f o l l o w e d  thereby d e s t r o y i n g the c y c l o p r o p y l r i n g .  - 35 -  IV. A.  DISCUSSION  SYNTHESIS ) The work o f S t o r y (32)  bornadienes and norbornenes  i n p r e p a r i n g 7 - s u b s t i t u t e d norp r o v i d e s an easy method f o r such  syntheses i n c o n t r a s t t o the p r e v i o u s m e t h o d — t h a t of D i e l s A l d e r c o n d e n s a t i o n of cyclopentadienes w i t h v a r i o u s dienophiles.  s y n t h e s i s of 7 - n o r b o r n a d i e n y l a c e t a t e and  The  7-norbornenol  was  q u i t e s t r a i g h t f o r w a r d and  through the low y i e l d of the f i r s t butoxynorbornadiene. perbenzoate  suffered  anti-  only  step o f p r e p a r i n g 7 - t -  Since norbornadiene  and  t-butyl  are r e a d i l y a v a i l a b l e commercially, t h i s i s  not too great a disadvantage. Among the three g e n e r a l s y n t h e t i c r o u t e s t o c y c l o p r o p y l s u b s t i t u t e d norbornenes  and norbornadienes,  Doering and Roth procedure  (27) was  only the von E.  found t o be u s e f u l .  The  D i e l s - A l d e r r e a c t i o n which one would expect t o g i v e predomi n a n t l y the d e s i r e d endo isomer  (19)  i s not  useful,because  the oxygen s u b s t i t u t e d c y c l o p e n t a d i e n e r e q u i r e d i s not  stable,  and because cyclopropene i s d i f f i c u l t  oxygen  s u b s t i t u e n t cannot  to p r e p a r e .  The  be added a f t e r f o r m a t i o n of the c y c l o p r o p y l  group because the a c i d i c c o n d i t i o n s used i n S t o r y ' s procedure (32)  are severe enough t o d e s t r o y the three membered r i n g . The  Simmons-Smith procedure  some norbornenes  (26) i s not a p p l i c a b l e t o  and norbornadienes  (17b).  I t w i l l not  add  r e a d i l y t o a n t l - 7 - n o r b o r n e n o l although s m a l l y i e l d s of an adduct  of unknown s t e r e o c h e m i s t r y have been r e p o r t e d by Cope  - 36 -  (38).  The Simmons-Smith reagent i s a d e a c t i v a t e d  carbene,the r e a c t i v e s p e c i e s (26) formed couple.  b e i n g iodomethyl z i n c Iodide  by r e a c t i o n o f methylene i o d i d e w i t h z i n c  Although carbene  copper  i t s e l f r e a c t s i n d i s c r i m i n a t e l y by  i n s e r t i o n and a d d i t i o n r e a c t i o n s by a d d i t i o n s t e r e o s e l e c t i v e l y . will  form of  i t s deactivated  forms r e a c t  The Simmons-Smith reagent  not r e a c t w i t h aromatic systems but adds t o norbornene  i n a h i g h l y s t e r e o s p e c i f i c manner (18, 26d, 27) i n d i c a t i n g some c o o r d i n a t i o n  between the o l e f i n and the reagent (39).  A l t h o u g h the reagent i s r e a d i l y decomposed by water and saturated 3-ol  alcohols  (26c), i t w i l l r e a c t w i t h cyclohexene-  (39) i n d i c a t i n g t h a t  some c o m p e t i t i o n between methylene  t r a n s f e r and d e s t r u c t i o n o f the reagent may be Simmons and Smith r e p o r t and  oxygen atoms may form  b  operative.  that a complex between the reagent ( f i g u r e 7)  (26c).  a  c  figure 7 The  complex  ( f i g u r e 7a) can decompose e i t h e r by the methylene  t r a n s f e r r e a c t i o n t o 7b or by decomposition t o 7 c .  I t i s clear  - 37 -  t h a t methylene t r a n s f e r can occur only i f the s t e r e o c h e m i s t r y of the complex 7a i s c o r r e c t , but i n the case  of anti-7-norbor-  n e n o l , the methylene group i n the complex i s t o o remote from the double although expect  bond t o undergo methylene t r a n s f e r i n t r a m o l e c u l a r l y ,  intermolecular transfer i s possible.  low y i e l d s o f adducts  w i t h t h i s reagent.  Thus one should  by r e a c t i n g a n t i - 7 - n o r b o r n e n o l  T h i s has been confirmed  by Cope (38).  On the other hand, the cuprous c h l p r i d e c a t a l y s e d r e a c t i o n of diazomethane w i t h a n t i - 7 - n o r b o r n e n o l quite r e a d i l y .  L i k e the Simmons-Smith reagent  form o f carbene i s i n v o l v e d b u t i n t h i s case r e a c t i v e enough t o add t o aromatic A mechanism has been proposed p h i l i c carbon  a deactivated  the carbene i s  (28).  (28) i n which the n u c l e o -  from one o f the resonance forms o f diazomethane  f i l l s t h e vacant  orbital of Cu  © © CH =N=N « — 2  systems  occurs  1  (figure 8 ) :  © ©  ©  > N=N-CH  2  ©  » Cl-Cu-CH -N^N 2  figure 8 Simultaneous or s u c c e s s i v e s p l i t t i n g o f f o f the n i t r o g e n occurs to leave a carbene-copper complex which a t t a c k s the double  bond  ( f i g u r e 9).  ;  figure 9  H  2  +CuCI  - 38 -  Support  f o r t h i s type of mechanism comes from the f a c t  that  the r e a c t i o n mixture becomes dark with a m e t a l l i c c o a t i n g on the s i d e s of the f l a s k i n d i c a t i n g r e d u c t i o n of the copper acceptance  of e l e c t r o n s .  by  The predominance of exo product i n  r e a c t i o n w i t h norbornenes  i s expected  on grounds of p r e f e r r e d  exo a t t a c k on the norbornene s k e l e t o n (40). r e a c t i o n of norbornene i t s e l f w i t h iodomethyl  Indeed  i n the  zinc  iodide,  Simmons and Smith r e p o r t (26d) no f o r m a t i o n of the endo isomer at a l l . to 1 mixture  Norbornadiene  however, r e a c t s t o g i v e a  of exo to endo adducts  (26d).  Since a d d i t i o n  to 7-norbornadienyl a c e t a t e ( I I I ) occurs only at the double  5.7  syn  bond (see STRUCTURAL PROOF below) i t seems that the  a c e t a t e group p l a y s some r o l e i n d i r e c t i n g the a t t a c k o f t h i s reagent as do a l c o h o l groups w i t h the Simmons-Smith reagent B.  (26c).  STRUCTURAL PROOF: The p r o o f of s t r u c t u r e of the compounds prepared f o r  t h i s work was  done through c h e m i c a l evidence and N.M.R.  s p e c t r a l evidence.  The  syn double bond o f 7 - n o r b o r n a d i e n y l  a c e t a t e i s r e a d i l y reduced w i t h the e s t e r group by aluminum hydride (32) that syn-7-norbornenol  ( f i g u r e 10a).  I t has a l s o been shown  w i l l reduce w i t h l i t h i u m aluminum  hydride t o 7-norbornanol isomer i s i n e r t  lithium  ( f i g u r e 10b) whereas the a n t i  ( f i g u r e 10c)  (41).  - 39 -  figure I t was  felt  10  that methylene a d d i t i o n p r o d u c t s should  undergo  s i m i l a r r e d u c t i o n o f syn o l e f i n i c groups while a n t i double bonds would be expected t o remain unreduced  figure  11  (figure  11).  -  40  -  No d i f f e r e n c e i n r e d u c t i o n p r o p e r t i e s were expected the exo and endo isomers two  o f methylene a d d i t i o n p r o d u c t s .  o l e f i n i c a c e t a t e s (VII) and (VIII) when reduced  l i t h i u m aluminum hydride gave the c o r r e s p o n d i n g alcohols  between The  with  olefinic  (X) and (XI) i n d i c a t i n g t h e t the a c e t a t e f u n c t i o n  was a n t i t o the double  bond i n both cases  (figure 1 2 ) :  f i g u r e 12 F u r t h e r chemical evidence  f o r t h i s assignment r e s u l t e d  the c a t a l y t i c r e d u c t i o n of both  from  (X) and ( X I ) , n e i t h e r o f  which gave the a l c o h o l (V) o f known s t e r e o c h e m i s t r y (17b) ( f i g u r e 13).  - 41 -  V figure  13  The N.M.R. s p e c t r a f u r t h e r supported In a r e c e n t paper,  Snyder and Franzus  this  assignment.  (42) r e p o r t that l o n g  range c o u p l i n g occurs between the o l e f i n i c protons and b r i d g e proton i n norbornenes at  C„  (figure  and norbornadienes  the  substituted  14)  figure  14  They' p o i n t out that the c o u p l i n g i s much g r e a t e r i n the cases i n which the b r i d g e p r o t o n i s a n t i to the double bond 14a) for  than i n the c o r r e s p o n d i n g syn cases 14a  one expects the l o n g range  multiplet for R2.  ( f i g u r e 14b).  s p l i t t i n g R^-Hy  For  line  to g i v e a  7-.t-butoxynorbornadiene  (II) and 7-norbornadienyl a c e t a t e ( I I I ) two One  Thus  In 14b the s p l i t t i n g H2-H7 Is q u i t e s m a l l  r e s u l t i n g i n a t r i p l e t f o r R^.  were observed.  (figure  approximated  sometimes s l i g h t l y  olefinic  peaks  a t r i p l e t , w i t h the i n n e r  s p l i t , whereas the o t h e r , a t  slightly  - 42 -  higher  f i e l d , approximated a p a i r o f t r i p l e t s  considerably  broader.  The product a c e t a t e s ,  and the c o r r e s p o n d i n g a l c o h o l s ,  (42) and was (VII) and ( V I I I / ,  (X) and ( X I ) , a l l had o l e f i n i c  peaks t h a t were t r i p l e t s , not complex m u l t i p l e t s . dence i n d i c a t e d t h a t the assignment  This  evi-  o f the double bond a n t l  to the Cg s u b s t i t u e n t was c o r r e c t . The  stereochemistry  o f the c y c l o p r o p y l  be determined from the N.M.R. spectrum.  group can a l s o  I n the case o f the  adducts between norbornadiene and e t h y l d i a z o a c e t a t e 15),  Sauers and Sonnet  (43) r e p o r t  ( f i g u r e 15b) has an u p f i e l d s h i f t o l e f i n i c protons w i t h r e s p e c t (figure  (figure  t h a t the endo isomer o f 0.6 T u n i t s f o r the  t o those o f the exo isomer  15a).  /J^COOEt  f i g u r e 15 They a t t r i b u t e t h i s chemical s h i f t t o induced s h i e l d i n g of the  olefinic  group  i n 15b,  protons by the r i n g c u r r e n t  s i n c e t h i s isomer has the best  such an i n t e r a c t i o n (43). exo-tricyclo J 3 , 2 , l , 0 ' 2  reported,  of the  4  at 4.36T, an u p f i e l d s h i f t  geometry f o r  A l t h o u g h the N.M.R. spectrum o f  oct-6-ene  the endo isomer  cyclopropyl  ( f i g u r e 16a) has n o t been  ( f i g u r e 16b) has the o l e f i n i c  peak  o f 0.3 T u n i t s from t h a t o f nor-  - 43  bornene  ( f i g u r e 16c)  -  (18).  a  b  c  .figure  16  I t i s expected that the isomer 16a w i l l resonate at about 3.65 T, a downfield nene ( f i g u r e 16c). acetates  (VII) and  with s h i f t s The  of 0.58  s h i f t of about 0.4 T  S i m i l a r r e s u l t s were obtained (VIII) and T  stereochemical  and  Smith (26d)  f o r the a l c o h o l s  u n i t s and  r a t i o s o f the two  the  from that o f norbor-  0.71 T  r e p o r t that a d d i t i o n of the  t o 1, and  Is c o n s i s t e n t w i t h p r e f e r r e d exo  of the  Simmons-Smith  Since  the mechanisms  the cuprous c h l o r i d e  been taken as evidence o f formation  of isomers.  this  ratio  of an exo-endo p a i r  On these bases the s t e r e o c h e m i s t r y  c y c l o p r o p y l group, v i z , whether i t was assigned.  endo  to endo p r o d u c t s  c a t a l y s e d diazomethane a d d i t i o n are s i m i l a r , has  and  a t t a c k on the norbornene  5 to 1.  Simmons-Smith r e a c t i o n and  Simmons  f e e l that t h i s r e s u l t  In t h i s work the r a t i o o f exo  been e s t a b l i s h e d to be  (XI)  monoadducts a l s o i n d i c a t e s t h a t  assignments were i n f a c t c o r r e c t .  adducts i n the r a t i o of 5.7  has  (X) and  two  units respectively.  reagent to norbornadiene gave a mixture of exo  skeleton.  f o r the  of  the  endo or exo  was  - 44 -  The N.M.R. spectrum was  u s e f u l i n two  other ways.  protons of the 7-oxygen s u b s t i t u t e d norbornene a l l q u i t e unique are  s k e l e t o n are  i n t h e i r chemical s h i f t s although the peaks  o f t e n badly s p l i t .  of resonance  peaks was  For t h i s r e a s o n the f a m i l i a r p a t t e r n taken as evidence that the  norbornene  s k e l e t o n had not been broken up d u r i n g any r e a c t i o n . appearance  o f peaks at above 8.8 T was  some peaks appeared  The of for  at lower f i e l d .  used to c o n f i r m the  I.R.  although  In such cases the  inte-  assignment.  s p e c t r a were used mainly as a p h y s i c a l constant  the compound i n q u e s t i o n .  The  u s u a l r e g i o n s were examined  h y d r o x y l , a c e t a t e and o l e f i n i c groups.  r e p o r t s t h a t the presence  the r i n g s h i f t s the C-H  number by about  Bellamy  (44)  of a c y c l o p r o p y l group can be  d e t e c t e d i n two r e g i o n s of the I.R. of  The  taken as evidence of  c y c l o p r o p y l groups b e i n g present i n the molecule  g r a t i o n was  The  150 cm"\  spectrum.  The  s t r e t c h i n g mode t o h i g h e r wave Thus one expects a band a t about  3050 cm"-'- f o r compounds w i t h c y c l o p r o p y l p r o t o n s . band' of i n t e r e s t i s a weak one a t about 1020 r i n g deformation mode (44b)  strain  cm"^-  but some workers (44c)  The due  other to a  feel  i t alone i s not s u f f i c i e n t evidence to enable assignment a c y c l o p r o p y l r i n g e s p e c i a l l y i n oxygenated  compounds.  t h i s work the s p e c t r a were obtained on a Perkin-Slmer cord w i t h only moderately good r e s o l u t i o n .  that of In  Infra-  T h i s f a c t together  w i t h the occurrence of l a r g e bands on e i t h e r side of the expected weak bands expected f o r c y c l o p r o p y l compounds d i d  -  not enable  one t o observe  45 -  these bands i n a l l cases.  with a b e t t e r spectrophotometer  Perhaps  t h i s d i f f i c u l t y c o u l d be  overcome. The  s t e r e o c h e m i s t r y o f the d i a d d u c t a c e t a t e  the c o r r e s p o n d i n g a l c o h o l (XII) was not proved.  (IX) and The N.M.R.  spectrum I n d i c a t e s that the compounds a r e probably  mixtures  of a t l e a s t two isomers a l t h o u g h the V.P.C. t r a c e i n d i c a t e d no s e p a r a t i o n .  From the i s o l a t i o n o f the endo and exo, s y n  monoadducts one would expect formed.  that a t l e a s t two Isomers a r e  Simmons and Smith's work on norbornene  the present work on a n t i - 7 - n o r b o r n e n o l the exo product  (26d) and  i n d i c a t e t h a t only  i s formed on a d d i t i o n t o norbornenes. I f  t h i s case i s analogous one would expect  only exo a d d i t i o n  to the second double bond o f n o r b o r n a d i e n y l a c e t a t e r i s e u l t i m a t e l y t o only two isomers  of d i a d d u c t .  spectrum i s c o n s i s t e n t with that expected [3,3,1,0 ' ,0 » 2  4  6  8  nonane s k e l e t o n .  giving  The N.M.R.  f o r the t e t r a c y c l o  R e c e n t l y , Baylouny and  Jaret  (45) r e p o r t spontaneous rearrangement o f such a s k e l e r 2,8 4,61 t o n ' t o the t e t r a c y c l o [3,3,1,0 ,0 J s k e l e t o n which i s expected  t o have a much s i m p l i f i e d N.M.R. spectrum.  aspect w i l l be d i s c u s s e d l a t e r  This  (see SUGGESTIONS FOR FURTHER  RESEARCH, page 51 below). C.  SOLVOLYSIS STUDIES In 1964, Pineock and Wells  (17a) s t u d i e d the r a t e s o f  a c e t o l y s i s o f e x o - a n t l - t r i c y c l o [3.2.1.0 ' ' o c t a n - 8 - b r o s y l a t e 2  (XV), 7-norbornyl  4  b r o s y l a t e and a n t i - 7 - n o r b o r n e n y l b r o s y l a t e ,  - 46 -  R e c e n t l y LaLonde and catalysed  have s t u d i e d  cleavage of cyclopropane r i n g s .  t h i s r e a c t i o n has stable  coworkers (46)  been i n t e r p r e t e d  The  of a p r o t o n t o the  a c e t i c a c i d would not at 46.5° f o r one were added  acetolysis  found however,  open the c y c l o p r o p y l  that  r i n g of norcarane  Batelka  and  (46d)  report  I s o l a t i o n of r i n g c l e a v e d  of f i v e p o o r l y r e s o l v e d  acetates  (80$)  to the carbonium Ion formed i n the a c i d of e x o - t r l c y c l o j j ? , 2 , l , 0 ^ ' j o c t a n e 4  olefins figure The  the e l e c t r o p h i l i c  (46a).  (20$)  by a d d i t i o n  I t was  most  week u n l e s s s m a l l amounts of a s t r o n g a c i d  LaLonde and olefins  ring.  acid  mechanism of  i n terms of the  carbonium i o n i n t e r m e d i a t e s formed by  addition  the  o l e f i n mixture was  to s i x a l c o h o l s  and  not  catalysed  (figure  17).  acetates  17  analysed.  analysed  formed  (figure  The  a c e t a t e s were reduced  18).  three isomeric methylbicyclo 2 , 2 , 1 heptanols  i?  28$  trace figure  18  28$  - 47 -  S e v e r a l product s t u d i e s of the a c e t o l y s i s of (XV)  were c a r r i e d out  c o n t r o l l i n g step was  i n an attempt to show t h a t the formation  The  p e r c h l o r i c a c i d at 25° r e s u l t e d i n com-  smaller  f r a c t i o n (25$  was  alcohol  oct-2-ene-8-ol ( X V I I I ) , t o be a n t i - b i c y c l o  |3,2,l] oct-2-ene-8-acetate was  products,  of the mixture),  subsequently shown by r e d u c t i o n t o the known (37) a n t i - b i c y c l o 3,2,1  A  (V) i n a c e t i c a c i d ,  p l e t e cleavage of the c y c l o p r o p y l r i n g t o give two both a c e t a t e s .  rate  o f a carbonium i o n at Cg.  s o l v o l y s i s of the corresponding a l c o h o l a c e t i c anhydride and  brosylate  (XVII).  The  other  product  a d i a c e t a t e r e s u l t i n g from a d d i t i o n of a c e t a t e  the carbonium i o n intermediate  A C  (46d)  (75$)  i o n to  ( f i g u r e 19).  dlacetates  °~TV  XVII figure Because no other  o l e f i n acetates  19 were found i t was  assumed  that the c y c l o p r o p y l r i n g opens almost e x c l u s i v e l y i n a specif i c manner to g i v e the r i n g expanded carbonium Ion.  Failure  - 48 -  t o I s o l a t e the o l e f i n a c e t a t e w i t h the b i c y c l o 2,2,2 octane s k e l e t o n i s taken as evidence e i t h e r t h a t the e q u i l i b r i u m i s not very  important or that the r e s u l t a n t carbonium i o n does  not e l i m i n a t e a p r o t o n very r e a d i l y . The  occurrence o f only one compound upon r e d u c t i o n o f  the a c e t a t e mixture has been i n t e r p r e t e d i n t h i s work as r e d u c t i o n o f the d i a c e t a t e t o a d i o l which remains on the gas chromatography column.  I n support  of t h i s claim i s  the o b s e r v a t i o n t h a t the d i a c e t a t e has such a l o n g r e t e n t i o n time, and the f u r t h e r o b s e r v a t i o n  t h a t the a l c o h o l s  among the compounds prepared have much longer r e t e n t i o n times than do the corresponding  acetates.  t h a t a mixture of d i a c e t a t e s was present  I t i s possible because the gas  chromatography columns a v a i l a b l e are not very e f f i c i e n t f o r separation  of acetates.  None o f the c y c l o p r o p y l a c e t a t e from the h i g h temperature s o l v o l y s i s . inum hydride  (XVI) c o u l d be i s o l a t e d However l i t h i u m alum-  r e d u c t i o n o f the mixture of products  obtained  a f t e r a c e t o l y s i s a t 200° f o r s i x hours r e s u l t e d i n a mixture c o n t a i n i n g s.ome c y c l o p r o p y l a l c o h o l ( V ) . T h i s a l c o h o l was subsequently shown t o r e s u l t from r e d u c t i o n o f the s t a r t i n g brosylate  (XV) which does not i t s e l f come o f f the gas chrom-  atography column.  T h i s product makes up 26% of the mixture  whereas t h a t expected f o r 2.4 h a l f l i v e s i s 19%. d i f f e r e n c e s i n concentrations Wells  Slight  from the k i n e t i c work o f  (17a) on t h i s compound or d i f f e r e n c e s i n d e t e c t o r  s e n s i t i v i t y t o d i f f e r e n t compounds may account f o r t h i s difference.  - 49 -  O  Although none of the expected e x o - a n t i - t r i c y c l o |_5,2,1,0 * octan-8-acetate  (XVI) was i s o l a t e d from the s o l v o l y s l s r e a c -  tions, i t i s currently f e l t i n fact formation  that the r a t e c o n t r o l l i n g step Is  o f a carbonium i o n a t Cg.  supported by f o u r o b s e r v a t i o n s .  Firstly,  no c y c l o p r o p y l r i n g opening unless the s o l v o l y s i s s o l u t i o n s . was present  This r e s u l t i s  LaLone (46a)  gets  strong a c i d i s present i n  Because no s t r o n g e l e c t r o p h i l e  i n our s o l u t i o n s i t i s f e l t t h a t c y c l o p r o p y l  r i n g opening was a secondary r e a c t i o n . Secondly, no d l a c e t a t e s were found i n the high ture s o l v o l y s i s products. be present  tempera-  I f any d i a c e t a t e i s formed i t may  i n the l a r g e amount of charred  material l e f t i n  the r e a c t i o n t u b e s .  T h i s m a t e r i a l probably r e s u l t s i n the  low y i e l d s obtained,  e s p e c i a l l y i n the l o n g e r r u n s .  cleavage occurred  e i t h e r before  or a f t e r formation  If ring of a car-  bonium Ion a t Cg, one would expect t o i s o l a t e a d i a c e t a t e analogous t o the one i s o l a t e d from the a c i d c a t a l y s e d r i n g opening a t room temperature.  For t h i s reason i t i s f e l t  that the primary r a t e c o n t r o l l i n g process i s g e n e r a t i o n o f 1  a carbonium i o n a t Cg which then undergoes rearrangement c l e a v i n g the c y c l o p r o p y l group.  A great number of products  are p o s s i b l e since r e a c t i v e s i t e s a r i s e from both the brosyl a t e group as w e l l as the c y c l o p r o p y l group. some o f the p o s s i b i l i t i e s .  F i g u r e 20 shows  A  - 50  figure  -  20  T h i r d l y , Wells (17a) has s t u d i e d the rearrangement of exo-antl-tricyclo J3»2,l,0 acid containing  0.11  2>4  J octan-8-acetate  (XVI) i n a c e t i c  N sodium a c e t a t e a t 200° and found the  r a t e o f rearrangement t o be c o n s i d e r a b l y  slower ( h a l f  9 hours) than the r a t e o f s o l v o l y s i s o f the b r o s y l a t e . observation  life This  has been i n t e r p r e t e d as i n d i c a t i n g t h a t the p r i -  mary p r o c e s s i s f o r m a t i o n of the carbonium i o n a t Cg (17a). L a s t l y , the f a c t t h a t the p r o d u c t s from the room temp e r a t u r e , a c i d c a t a l y s e d c y c l o p r o p y l r i n g cleavage r e a c t i o n are  d i f f e r e n t from the products of high temperature  acetoly-  s i s i n d i c a t e s t h a t a d i f f e r e n t mechanism of r i n g opening i s in effect.  Since one expects the most s t a b l e carbonium i o n  - 51  -  i n t e r m e d i a t e t o be formed i n both cases i t seems c l e a r t h a t the h i g h temperature not the primary  one  r i n g cleavage i s a secondary  s i n c e i f the same r e a c t i o n were o c c u r r i n g ,  the same r i n g opened products should be D.  reaction  formed.  CONCLUSIONS I t appears  that no ready method i s a v a i l a b l e f o r s y n t h e s i s  of e n d o - a n t l - t r i c y c l o [[ 3 , 2 , 11,,0" ' < o c t a n - 8 - o l . 2  t i o n to anti-7-norbornenol  Methylene a d d i -  (V) gave o n l y the exo adduct.  Addi-  t i o n t o the diene 7 - n o r b o r n a d i e n y l a c e t a t e ( I I I ) r e s u l t e d i n monoaddition  to only the syn double bond w i t h f o r m a t i o n o f  both endo and exo isomers i n the r a t i o o f 1 t o 5 . formation also occurred. c o n f i g u r a t i o n about  Diadduct  I t might be p o s s i b l e t o i n v e r t the  C3 of the  syn monoadducts but as a r o u t e  t o p r e p a r a t i o n o f the amounts o f a l c o h o l s necessary f o r k i n e t i c studies t h i s  seems formidable because of the problems o f sep-  a r a t i n g and p u r i f y i n g the p r o d u c t s — a l l o f which has been done by gas  chromatography up t o  The  now.  s o l v o l y s i s s t u d i e s s t r o n g l y i n d i c a t e d t h a t the r a t e  c o n t r o l l i n g step i n the a c e t o l y s i s of b r o s y l a t e (XV) i s format i o n o f a carbonium  ion at C . Q  T h i s i o n then r e a r r a n g e s to '  d e s t r o y the c y c l o p r o p y l moiety. E.  SUGGESTIONS FOR  FURTHER RESEARCH  Although Baylouny  and  Jaret  (45)  report that  norborna-  diene r e a c t s w i t h methyl d i a z o a c e t a t e to g i v e two d i a d d u c t s that spontaneously rearrange t o the t e t r a c y c l o [ 3 , 3 , 1 , 0 nonane s k e l e t o n from the expected  tetracyclo[3,3,1,0  2 , 8  2 , 4  ,0 '°] 4  ,0^' J 8  - 52 -  nonane s k e l e t o n ( f i g u r e 21), no such rearrangement  was observed  i n the p r e s e n t r e s e a r c h .  MeOOC  CuSO,  MeOOC COOMe  MeOOCCHN  COOMe  800  MeOO  COOMe  C O O M e MeOOC  f i g u r e 21 I n view  of these r e s u l t s i t should be i n t e r e s t i n g t o look a t  p o s s i b l e rearrangements  o f the s u i t a b l e  compounds prepared  i n t h i s work. I t does not appear f r u i t f u l attempt  that thermal i s o m e r i s a t i o n w i l l be a  because  the d i a d d u c t s prepared have a l l been  p u r i f i e d by V.P.C. with i n j e c t o r and d e t e c t o r temperatures above 200°.  Norbornadiene  (47) and 7-norbornadienyl a c e t a t e  (48) have been shown t o undergo photochemical to t e t r a c y c l o [ 2 , 2 , 1 , 0 ' , 0 2  acetate  (figure 22).  6  5 , 5  rearrangement  heptane and the c o r r e s p o n d i n g  - 53  -  figure Because c y c l o p r o p y l  22  groups have mobile  s i m i l a r t o those of double bonds (2,3), that c y c l o p r o p y l  electrons  i t i s expected  groups w i l l p h o t o c h e m i c a l l y r e a r r a n g e i n  an analogous manner to the r e a c t i o n of 7-norbornadienyl acetate Jaret  ( f i g u r e 22)  ( f i g u r e 21).  in figure  and  t o the r e a c t i o n pf Baylouny  and  The  p o s s i b l e rearrangements are  given  23.  figure  23  - 54 -  The  N.M.R.  s p e c t r a o f these  compounds should  d i s t i n c t and g r e a t l y s i m p l i f i e d from those acetates.  be q u i t e  o f the s t a r t i n g  Any i n t e r a c t i o n between the r i n g c u r r e n t s o f the  two c y c l o p r o p y l . r i n g s should be e x e m p l i f i e d by a d o w n - f i e l d s h i f t o f the methylene protons  i n an analogous manner t o the  s h i f t s f o r para-cyc1ophanes (49). T h i s work w i l l be undertaken s h o r t l y .  i  - 55 V.  REFERENCES P h i l . Mag., 40, 1, (1949).  1.  C.A. Coulson and W.E. Moffit:  2.  E.N. Trachtenberg and G. Odain: 4018, (1958).  3.  R. Fuchs and J. Bloomfield: J . Org. Chem., 28, 910, (1963).  4a. J.D. Roberts and C. Green: (1946).  J . Am. Chem. S o c , 68, 214, J . Am. Chem. S o c , 79, 5500,  b. H.E. Smith and R.H. Eastman: (1957). 5.  L.I. Smith and E.R. Rogier:  J . Am. Chem. S o c , 80,  J . Am. Chem. S o c , 73, 3840,  (195D. 6.  I.M. Klotz:  J . Am. Chem. S o c , 66, 88, (1944).  7.  R.J. Mohrbacher and N.H. Cromwell:  J . Am. Chem. S o c ,  79, 401, (1957). 8a. D.J. Patel, M.E.H. Howden and J.D. Roberts:  S o c , 85, 3218, (1963).  b. 9,  K.B. Wiberg and B.J. Nist:  (1963).  J . Am. Chem. S o c , 85, 2788,  F,N, Baumgartner and R.C, Fuson:  3255, (1952).  10a. H. Hart and M. Sandri:  J . Am. Chem.  J . Am. Chem. S o c , 70,  ~~  J . Am. Chem. S o c , 81, 320, (1959).  b. R.A. Sneen and A.L. Baron: (1961).  J . Am. Chem. S o c , 83, 614, ~"  c. R. Breslow, J . Lockhart and A. Small:  J . Am. Chem. S o c ,  84, 2793, (1962). 11.  H. Hart and P. Law:  J . Am. Chem. S o c , 84, 2462, (1962).  12.  S. Wlnstein and M. Dimmonetta:  J . Am. Chem. S o c , 7 6 ,  18, (1954). 13. 14.  S. Winstein and M. Shatavsky: Chem. and Ind. 56 (1956). S. Winstein, M. Shatavsky, C.J. Norton and R.B. Woodward:  J. Am. Chem. S o c , 77, 4183, (1955). 15.  J.D, Roberts, F.O. Johnson and R.A. Carboni:  S o c , ]6, 5692, (1954).  J . Am. Chem.  -  56 -  16a. H.C. Brown: " T r a n s i t i o n S t a t e " S p e c i a l P u b l i c a t i o n No. 16, The Chemical S o c i e t y , London (1962), 140-158, 174-178. b. H.C. Brown and H.M. B e l l : (1963). 17a. J . I . W e l l s : 1964. '  J . Am. Chem. S o c , 85, 2324, ~~  M. Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h  Columbia,  b. R.E. Pincock and J . I . W e l l s :  J . Org. Chem., 29, 965, (1964).  c. R.E. P i n c o c k and J . I . W e l l s :  unpublished r e s u l t s .  18.  K. B. Wiberg:  J . Am. Chem. S o c , 82, 6375, (I960).  19.  R. B. Woodward and T . J . Katz:  Tetrahedron, 5, 70, ( 1 9 5 9 ) .  20a. B.S. Khambata and A. Wassermann: (1936).  Nature, Lond. 138, 368,  b. G.B. K i s t i a k o w s k y and W.H. Mears: 1060 (1936). c  R.B. M o f f i t t : New York.  21a. D. C r a i g :  Organic Syntheses, 32, 41, (1952).  J . Am. Chem. S o c , 7 3 , 3889,  b. J.A. Berson and R.D. Reynolds: 4434,  J . Am. Chem. S o c , 58,  J . Am. Chem. S o c , 7 7 , ~ ~  c. J.A. Berson, R.D. Reynolds and W.M.  Jones:  J . Am. Chem.  (1956).  d. J . E . Baldwin and J.D. Roberts: 115,  (1951).  (1955).  S o c , 78, 6049,  Wiley,  J . Am. Chem. S o c , 85,  (1963).  i  .  22a. W. von E . D o e r i n g and A. K. Hoffmann: 76,'6162, ( 1 9 5 4 ) . b. P. S. S k e l l and A. Y. Garner:  J . Am. Chem. S o c ,  J . Am. Chem. S o c , 78, 3409,  (1956).  —  23.  W.E. Parharaand P.C. Loew:  24.  W.R. Moore, W.R. Moser and J.E. LaPrade: 28, 2200, ( 1 9 6 3 ) .  25a. G.L. C l o s s and L.E. C l o s s : (1960). .  J . Org. Chem., 23, 1705,  (1958).  J.. Org. Chem.,  J . Am. Chem. S o c , 82, 5723, ~~  -  57 -  b. G.L. C l o s s and G.M. Schwartz: 5729, (1960).  J . Am. Chem. S o c , 8 2 ,  26a. H.E. Simmons and R.D. Smith: 5323, (1958).  J . Am. Chem. S o c , 8 0 ,  b. H.E. Simmons and R.D. Smith:  J . Am. Chem. S o c , 8 1 ,  4256,  (1959).  c. H.E. Simmons and E.P. B l a n c h a r d : 86, 1337, (1964).  J . Am. Chem. S o c ,  d. H.E. Simmons, E.P. B l a n c h a r d and R.D. Smith: S o c , 86, 1347, (1964). 27.  W. von E. D o e r i n g and W.R. Roth:  J . Am. Chem.  T e t r a h e d r o n , 19, 7 1 5 ,  (1963).  28.  ~~  E. M u l l e r and H. F r i c k e :  Ann., 6 6 1 , 38, (1963).  29a. W. von E. D o e r i n g , R.G. B u t t e r y , R.G. L a u g h l i n and N. C h a u d h u r i : J . Am. Chem. Soc., 78, 3224, (1956). b. W. von E. D o e r i n g and P. LaFlamme: 78, 5447, (1956). c. J.H. Knox and A.F. Trotman-DIckson: 1039,  J . Am. Chem. S o c , Chem. and I n d . ,  (1957).  J . Am. Chem. S o c , 80, 5005,(1958).  d. H.M. F r e y : 30.  Th. J . de Boer and H.J. Backer: C o l l . Vol. I V , 250, (1963).  Organic  Syntheses,  31.  M.E. Tate and C T . B i s h o p : , (1962).  32.  P.R. S t o r y :  33.  P. A r n d t :  34.  L.F. F i e s e r : E x p e r i m e n t s i n Organic C h e m i s t r y , T h i r d E d i t i o n , 287, 288, (1957). D.C. Heath and Co., B o s t o n , Mass.  35.  Handbook o f C h e m i s t r y and P h y s i c s , F o r t y - s e c o n d E d i t i o n , 844, (1960-1961). Chemical Rubber P u b l i s h i n g Co., C l e v e l a n d , Ohio.  36.  L.M. Jackman: A p p l i c a t i o n s o f N u c l e a r Magnetic Resonance S p e c t r o s c o p y i n Organic C h e m i s t r y , 6 1 , (1959). Pergamon P r e s s , New Y o r k , N.Y.  Can. J . Chem., 40, 1043, ~~  J . Org. Chem., 26, 287, (1961).  Organic S y n t h e s e s , C o l l . V o l . I I , 461, (1959).  -  58 -  37.  N.A. LeBel and L.A. Spurlock:  38.  A.C. Cope, S. Moon, C.H. Park and G.L. Woo: Soc,  39.  84, 4865,  Tetrahedron, 20, 215, (1964). J . Am. Chem.  (1962).  J . Am. Chem. S o c , 85, 468,  W.G. Dauben and G.H. Berezin: (1963) .  Stereochemistry o f Carbon Compounds, 303, McGraw-Hill Book Co. Inc., Toronto, Ont.  40.  E.L. E l i e l : (1962) .  41.  B. Pranzus and E.I. Snyder: D i v i s i o n of Organic Chemistry of the American Chemical Society, Abstracts of Papers Presented at the 148th Meeting of the American Chemic a l Society, Abstract 82. 46S, (1964).  42.  E.I. Snyder and B. Franzus:  J . Am. Chem. S o c , 86, 1166,  (1964) .  "~  43.  R.R. Sauers and P.E. Sonnet:  Chem. and Ind., 786, (1963).  44a.  L.J. Bellamy: The Infra-red Spectra of Complex Molecules, Second E d i t i o n , 29, (1958). Methuen and Co. Ltd., London, England.  b. J.M. Derfer, E.E. Pickett and C.E. Boord:  J . Am. Chem.  S o c , 71, 2482, (1949). c. A.R.H. Cole:  J. Chem. S o c , 3807, (1954).  d. A.R.H. Cole: J . Chem. S o c , 3810, (1954). 45. R.A. Baylouny and R. Jaret: D i v i s i o n of Organic Chemistry of the American Chemical Society, Abstracts of Papers Presented at the 149th Meeting of the American Chemical , Society, Abstract 51, 24P, (1965). 46a.  R.T. LaLonde:  J . Org. Chem., 27, 2275,  b. R.T. LaLonde and L.S. Forney: (1963) .  c. R.T. LaLonde and M.A. Tobias: (1963) .  d. R.T. LaLonde and J . J . Batelka:  (1962).  J . Am. Chem. S o c , 85, 3767, ~~  J . Am. Chem. S o c , 85, 3771, ~"  Tetrahedron Letters, 9, 445,  (1964) .  e. R.T. LaLonde and M.A. Tobias:  J . Am. Chem. S o c , 86, 4068,  (1964).  47.  W.G. Dauben and R.L. C a r g i l l :  Tetrahedron, 15, 197, (1961).  - 59 -  48.  H.G. Richey J r . and N.C. Buckley:  J . Am. Chem. S o c ,  85, 3057, (1963). 49.  D.J. Cram and L.A. S i n g e r :  (1963)*  i  J . Am. Chem. Soc., 85, 1084,  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0061954/manifest

Comment

Related Items