Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Quantitative studies of hydrogen bonding in ortho-substituted phenols using proton magnetic resonance. Allan, Ernest Albert 1963

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
UBC_1963_A6_7_A4 Q2.pdf [ 2.62MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0061944.json
JSON-LD: 1.0061944+ld.json
RDF/XML (Pretty): 1.0061944.xml
RDF/JSON: 1.0061944+rdf.json
Turtle: 1.0061944+rdf-turtle.txt
N-Triples: 1.0061944+rdf-ntriples.txt
Original Record: 1.0061944 +original-record.json
Full Text
1.0061944.txt
Citation
1.0061944.ris

Full Text

QUANTITATIVE STUDIES OP HYDROGEN BONDING IN ORTHO-SUBSTITUTED PHENOLS USING PROTON MAGNETIC RESONANCE by ERNEST ALBERT ALLAN B.Sc., The U n i v e r s i t y o f B r i t i s h Columbia, 1959- A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of Chemistry We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY; OF BRITISH COLUMBIA, .APRIL,. 1963. In presenting t h i s ' t h e s i s ' i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e for reference and study. I further agree that per mission for extensive copying of t h i s t h e s i s f o r . s c h o l a r l y purposes may be granted by the Head of my Department or by h i s representatives. I t i s understood that copying, or p u b l i  c a t i o n of t h i s t h e s i s for f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission. Department of The U n i v e r s i t y of B r i t i s h Columbia, Vancouver 8, Canada. i A B S T R A C T The chemical s h i f t of protons i n i n t r a m o l e c u l a r hydrogen bonds has been measured i n ij.1 ortho s u b s t i t u t e d phenol type compounds. The change i n chemical s h i f t " ^ ^OH " on f o r m a t i o n of these hydrogen bonds i s taken as the d i f f e r e n c e between the i n f i n i t e d i l u t i o n chemical s h i f t of the parent phenol compound i n CClj^ s o l u t i o n and the chemical s h i f t measured f o r the p r o t o n i n the i n t r a  m olecular hydrogen bond. This change i n chemical s h i f t i s c o r r e l a t e d with the corresponding frequency s h i f t " £\~VOH " i n the -OH s t r e t c h i n g r e g i o n of the i n f r a - r e d spectrum. The d i l u t i o n chemical s h i f t f o r the -OH p r o t o n i n the o-halophenols has been i n v e s t i g a t e d over a concen t r a t i o n range 1 - 5 mole % i n CS2 and a temperature r e g i o n -53 to 1 0 7 ° C Using the i n f i n i t e d i l u t i o n s h i f t v a l u e s , the e q u i l i b r i u m constants of the c i s - t r a n s c o n v e r s i o n were obt a i n e d . Values f o r £ C I S , the chemical s h i f t of the completely hydrogen bonded form; & TRANS' t h e cilem^c&l s h i f t of the unbonded form, and AR , the enthalpy of formation of the hydrogen bond, were a l s o c a l c u l a t e d . Prom these r e s u l t s a value f o r AH, the enthalpy of f o r m a t i o n f o r the dimer was c a l c u l a t e d , assuming t h a t the major dimer species i n s o l u t i o n was formed from the combination of a c i s and t r a n s bonded form. i i Temperature s t u d i e s of the change i n chemical s h i f t of the -OH p r o t o n f o r 2 , 1 ^ , 6 - t r i h a l o s u b s t i t u t e d phenols i s a l s o r e p o r t e d . The temperature range i n t h i s case was 0°G to 111°0. ABSTRACT APPROVED v i i ACKNOWLEDGMENT I wish to express my thanks to Dr. L. W. Reeves f o r h i s a s s i s t a n c e and s u p e r v i s i o n throughout the course of t h i s work. i i i TABLE OP CONTENTS Page ABSTRACT i ACKNOWLEDGMENT ' v i i LIST OP TABLES v LIST OP FIGURES v i CHAPTER I - INTRODUCTION 1 I) Gen e r a l C o n s i d e r a t i o n s 1 i i ) I n f r a r e d and D i p o l e Moment Studie s o f In t r a m o l e c u l a r Hydrogen Bonds i n Phenols $ CHAPTER I I - EXPERIMENTAL PROCEDURE 8 i ) P r e p a r a t i o n of Samples 8 i i ) S y n t h e s i s o f 2,i}.,6-trisubstituted halophenols 10 i i i ) Measurement of Chemical S h i f t s 12 CHAPTER I I I - EXPERIMENTAL RESULTS l l j . i ) C o r r e l a t i o n of Chemical S h i f t w i t h i n f r a r e d s t r e t c h i n g frequency l lj. i i ) Temperature S t u d i e s of o-Halophenols 20 i i i ) Temperature S t u d i e s of 2,lj.,6-Trisubstituted Phenols 25 CHAPTER IV - DISCUSSION 27 i ) C o r r e l a t i o n o f Chemical S h i f t s with I n f r a r e d S t r e t c h i n g Frequency 27 i i ) C a l c u l a t i o n o f E n t h a l p i e s of Formation f o r the I n t r a m o l e c u l a r Hydrogen Bond i n o-Halophenols 30 TABLE OP CONTENTS i i i ) C a l c u l a t i o n o f E n t h a l p i e s o f Formation o f the C i s - T r a n s Dimer f o r o-Halophenols i v ) V a r i a b l e Temperature S t u d i e s of 2,I|.,6-trisubstituted Phenols BIBLIOGRAPHY V LIST OP TABLES Page TABLE 1 TABLE 2 TABLE 3 TABLE k TABLE 5 TABLE 6 TABLE 7 TABLE 8 TABLE 9 I n f i n i t e d i l u t i o n s h i f t s o f parent phenol compounds 1I4. ^ 0 ^ , M a n ^ A V O H f o r phenol type compounds c o n t a i n i n g an i n t r a m o l e c u l a r hydrogen bond 1 7 Values of the chemical s h i f t c£,in c y c l e s / s e c from cyclohexane f o r o - c h l o r o - phenol i n the range s t u d i e d 2 1 Values of the chemical s h i f t i n c y c l e s / s e c from cyclohexane f o r o-bromo- phenol 2 2 Values of the chemical s h i f t cCi i n c y c l e s / s e c from cyclohexane f o r o-iodo- phenol 2 3 Values of the chemical s h i f t r\ i n c y c l e s / s e c from cyclohexane f o r o - f l u o r o - phenol 2l|. Values of the chemical s h i f t cSM i n c y c l e s / s e c from cyclohexane f o r some 2 , l j . , 6 - t r i h a l o s u b s t i t u t e d phenols 26 Values of K ) f T ) and AH f o r o-chloro, o-bromo and o-iodophenol 3 5 Values of K^,^ f o r o-bromo, o - c h l o r o and o-iodophenol l\2 v i LIST OP FIGURES To f o l l o w page: FIGURE 1 - R e p r e s e n t a t i v e pmr spectrum of o-halophenols showing s i d e bonds a p p l i e d b e f o r e and a f t e r -OH resonance peak. FIGURE 2 - P l o t of A C f M v s f o r the compounds g i v e n i n Table 2. FIGURE 3 - D i l u t i o n chemical s h i f t s f o r the -OH p r o t o n i n o-chlorophenol as a f u n c t i o n of temper a t u r e . FIGURE k - D i l u t i o n chemical s h i f t s f o r the -OH p r o t o n i n o-bromophenol as a f u n c t i o n of temper a t u r e . FIGURE 5 - D i l u t i o n chemical s h i f t s f o r the -OH pr o t o n i n o-iodo and o - f l u o r o p h e n o l as a f u n c t i o n o f temperature. F I G U R E 6 - The i n f i n i t e d i l u t i o n s h i f t " A " of o-bromophenol p l o t t e d a g a i n s t temperature. F I G U R E 7 - Chemical s h i f t s of some 2,lj.,6-trihalo- s u b s t i t u t e d phenols p l o t t e d a g a i n s t temperature. F I G U R E 8 - P l o t of l o g K x C t > a g a i n s t J<£- f o r o-bromo, o-chlor o and o-iodophenol. 13 19 21 22 2k 25 26 kl 1 CHAPTER I INTRODUCTION. i ) General C o n s i d e r a t i o n s The study and i n t e r p r e t a t i o n o f f a c t o r s which account f o r the form a t i o n o f a hydrogen bond has been o f c o n s i d e r a b l e i n t e r e s t to chemists f o r some y e a r s . Many experimental techniques, i n c l u d i n g d i e l e c t r i c constant measurements, vapour p r e s s u r e s t u d i e s and s p e c t r o s c o p i c methods, p a r t i c u l a r l y i n the i n f r a r e d r e g i o n , have been adopted f o r the study of such bonding (1) (2) ( 3 ) . Since 1953* the use of n u c l e a r magnetic resonance spectroscopy as a means of s t u d y i n g the hydrogen bond has i n d i c a t e d t h a t t h i s r e l a t i v e l y new method w i l l equal, I f not surpass, o t h e r means f o r o b t a i n i n g i n f o r m a t i o n (Ij.). The r e c e n t l y p u b l i s h e d work of Pimentel and M c C l e l l a n (3) i s p a r t i c u l a r l y u s e f u l , s i n c e a g e n e r a l survey o f a l l p e r t i n e n t l i t e r a t u r e on hydrogen bonding to 1956, as w e l l as some to 1959* i s i n c l u d e d as an appendix. Pimentel and M c C l e l l a n d e f i n e a hydrogen bond i n the f o l l o w i n g manner: "A hydrogen bond e x i s t s between a f u n c t i o n a l group -X-H and an atom or group of atoms Y i n the same or d i f f e r e n t molecule when (a) there i s evidence o f bond f o r m a t i o n ( a s s o c i a t i o n or c h e l a t i o n ) (b) there i s evidence t h a t t h i s new bond l i n k i n g 2 -X-H and Y s p e c i f i c a l l y i n v o l v e s the hydrogen a l r e a d y bonded to X . " # U s i n g t h i s d e f i n i t i o n , one must d i s t i n g u i s h between the two types of hydrogen bonding l i k e l y to occur; the i n t e r m o l e c u l a r , where the f u n c t i o n a l groups -Xr-H and Y are i n d i f f e r e n t molecules, and the i n t r a m o l e c u l a r , where both -X-H and Y are i n the same molecule, with the d i s t a n c e between them f a v o u r a b l e to the f o r m a t i o n o f a bond. In 1953 A r n o l d and Packard (5) (6) d i s c o v e r e d t h a t the chemical s h i f t o f the -OH pr o t o n s i g n a l o f e t h y l a l c o h o l was both c o n c e n t r a t i o n and temperature dependent. Upon d i l u t i o n i n non-polar s o l v e n t s or upon an Increase In temperature the s i g n a l was observed to s h i f t to h i g h e r f i e l d . No s i m i l a r s h i f t was observed f o r the methyl or methylene p r o t o n s . The l i f e t i m e o f the hydrogen bond i s very s h o r t and the h i g h f i e l d s h i f t on d i s s o c i a t i o n of these bonds i s a time average of the v a r i o u s environments i n the s o l u t i o n (7) ( 8 ) . The average s h i e l d i n g parameter thus i n c r e a s e s as hydrogen bonds are broken i n the system, with consequent resonance at h i g h e r f i e l d f o r the p r o t o n i n v o l v e d . F u r t h e r s t u d i e s on e t h a n o l (9)> v a r i o u s phenols ( 1 0 ) , and a c e t i c a c i d (11) seem to co n f i r m t h i s i n t e r  p r e t a t i o n . Pople and M a r s h a l l ( 1 2 ) , i n an attempt to e x p l a i n •K-S.O.Plmentel and A.L.McLellan, The Hydrogen Bond. W.H. ., Freeman & Co., San F r a n c i s c o (I96OJ, p.fe> 3 the low f i e l d s h i f t of a p r o t o n on f o r m a t i o n of a hydrogen bond, c o n s i d e r e d the c o n t r i b u t i o n to the chemical s h i f t o f a hydrogen atom by an e l e c t r i c f i e l d E. The r e s u l t o b t a i n e d cf = - 881 a* E Z (1) 2l5 m c*- where ^ = the chemical s h i f t m s mass of the p r o t o n c «... v e l o c i t y of l i g h t a = the Bohr r a d i u s g i v e s a s h i f t of l\. p.p.m. f o r an e l e c t r i c f i e l d of O.llj. atomic u n i t s , which i s the f i e l d t h a t would a r i s e from a s i n g l e e l e c t r o n a t a d i s t a n c e of l . l f A. Pople, Schneider and B e r n s t e i n (13) a l s o c a l c u l a t e d the c o n t r i b u t i o n to the chemical s h i f t produced by the magnetic f i e l d induced by the Y atom on bonding, but obtained a r e s u l t which p r e d i c t e d a s h i f t o p p o s i t e to that observed. Another term g i v i n g a s i m i l a r r e s u l t would be the amount of c o v a l e n t c h a r a c t e r of the bond X-...H -Y, but t h i s would be d i f f i c u l t to e v a l u a t e q u a n t i t a t i v e l y . Pople (12) concluded that e l e c t r o s t a t i c e f f e c t s were of c o n s i d e r a b l e importance, s i n c e observed chemical s h i f t s are always to lower f i e l d when a hydrogen bond i s known to be formed. The major purpose of t h i s work was to evaluate the chemical s h i f t of the -OH group ( a t low c o n c e n t r a t i o n s , to reduce i n t e r m o l e c u l a r e f f e c t s ) f o r compounds known to c o n t a i n an i n t r a m o l e c u l a r hydrogen bond. The change i n chemical s h i f t A . C £ M from the i n f i n i t e d i l u t i o n chemical s h i f t of the parent compound was then c o r r e l a t e d with the change i n frequency A > ^ H of the -OH s t r e t c h i n g frequency i n the i n f r a r e d r e g i o n . Por some weakly bonded s p e c i e s , a study of the chemical s h i f t as a f u n c t i o n of temperature and c o n c e n t r a t i o n allowed the c a l c u l a t i o n of a heat o f f o r m a t i o n A E f o r the hydrogen bond. An ortho s u b s t i t u e n t on a phenol or n a p t h o l i s f a v o u r a b l y s i t u a t e d f o r the f o r m a t i o n of an i n t r a m o l e c u l a r bond with the -OH group o f the compound. The study was c o n f i n e d to compounds of t h i s type. 5 ( i i ) I n f r a r e d and D i p o l e Moment Studie s o f I n t r a m o l e c u l a r Hydrogen Bonds i n Phenols, . v Evans (1I4.) has r e p o r t e d an estimated b a r r i e r to r o t a t i o n f o r the -OH group i n phenol o f 3 . 7 kcal./mole. Upon p l a c i n g a s u b s t i t u e n t capable of hydrogen bond form a t i o n In the ortho p o s i t i o n the two s i t e s would no 1 l o n g e r be e q u i v a l e n t and the r e l a t i v e p o p u l a t i o n o f the unbonded to the bonded form ( t r a n s / c i s ) - w o u l d depend on the s t r e n g t h o f the hydrogen bond formed, n e g l e c t i n g i n t e r m o l e c u l a r e f f e c t s . In the -OH s t r e t c h i n g r e g i o n two bands are observed due to the trans and c i s forms. I f i n t e n s i t y measurements are used, an estimate o f the e q u i l i b r i u m c o n s t a n t may be made. One o f the f i r s t such s t u d i e s was made by Wulf and L i d d e l i n 1 9 3 5 ( 1 5 ) ( l 6 ) . Using d i l u t e s o l u t i o n s o f o-chlorophenol i n carbon t e t r a c h l o r i d e they observed two bands (7050 cm""' and 69IO cm" 1) i n the I n f r a r e d which were a t t r i b u t e d by P a u l i n g (17) to the frequency f o r a f r e e -OH (trans) and a bonded -OH ( c i s ) . S e v e r a l other workers s t u d i e d s i m i l a r compounds, but most of the work p r i o r to 1 9 5 3 was d i s c o u n t e d by Rossmy, L i i t t k e and Mecke ( 1 8 ) , who made new measurements on c a r e f u l l y p u r i f i e d o-chloro, o-bromo and o-iodophenol and 3tated that a l l e a r l i e r q u a n t i t a t i v e measurements were i n e r r o r due to the f a c t t h a t no s p e c i a l care had been taken by e a r l i e r workers to remove the phenol which was i n v a r i a b l y p r e s e n t . T h e i r 6 values f o r the t r a n s / c i s r a t i o (25° C) i n o - c h l o r o , o-bromo and o-iodophenol i n carbon t e t r a c h l o r i d e s o l u t i o n were' 1/37, and 1/12 r e s p e c t i v e l y . C a l c u l a t e d v a l u e s of were l . i j . kcal/mole f o r o-iodophenol and 2.1 kcal/mole f o r o-bromophenol. I t was s t a t e d t h a t the value f o r o-chlorophenol would be h i g h e r . Probably the most r e l i a b l e , and the most complete, i n f r a r e d data on the -OH s t r e t c h i n g r e g i o n of ©-substi t u t e d phenols i s t h a t o b t a i n e d by Baker and co-workers (19-22). Fo r the o-halophenols, a f t e r p u r i f i c a t i o n by s e v e r a l passes through a gas chromatograph, Baker o b t a i n e d a c c u r a t e -OH s t r e t c h i n g f r e q u e n c i e s and from the band i n t e n s i t i e s c a l c u l a t e d t r a n s / c i s r a t i o s of 1/56, 1/38 and 1/13.5 f o r o - c h l o r o , o-bromo and o-iodophenol r e s p e c t i v e l y at 25° C. Subsequently, he i n v e s t i g a t e d the change i n frequency ( ) r e l a t i v e to phenol f o r a s e r i e s o f o - s u b s t i t u t e d phenols and concluded t h a t A HT« i s rough l y a measure of the s t r e n g t h o f the hydrogen bond formed. He f u r t h e r s t u d i e d 2 , 1 ^ , 6 - t r i h a l o s u b s t i t u t e d phenols where two bands are observed I f the halogens at the 2,6 p o s i t i o n s are d i f f e r e n t . Jones and Watkinson (23), i n t h e i r s t u d i e s of o-halophenols, obtained r e s u l t s markedly d i f f e r e n t from Baker's. Ri c h a r d s and Walker (2i|.-27) have i n v e s t i g a t e d a s e r i e s of s i m i l a r o r t h o - s u b s t i t u t e d compounds i n v a r i o u s s o l v e n t s and, where p o s s i b l e , have attempted to c o r r e l a t e 7 t h e i r d i p o l e moment measurements with the i n f r a r e d data of Baker. They have measured the t r a n s / c i s r a t i o s f o r the o-halophenols (26) In carbon t e t r a c h l o r i d e , c y c l o  hexane, benzene and dioxan. The order i n cyclohexane and carbon t e t r a c h l o r i d e was found to be I > F > B r and C l ; i n benzene I ? B r > C l and F; and i n dioxan I > B r > C l > P . A p r e v i o u s d i p o l e moment study i n carbon t e t r a c h l o r i d e by A n g i l o t t l and Gurran (28) gave the order F > C l > B r f o r the three o-halophenols s t u d i e d . 8 CHAPTER I I . EXPERIMENTAL PROCEDURE. i ) P r e p a r a t i o n of Samples. Commercially a v a i l a b l e compounds ( i . e . Eastman Kodak or A l d r i c h Chemicals) known to c o n t a i n an i n t r a  m o l e c u l a r hydrogen bond of the type -OH—Y were p u r i f i e d by f r a c t i o n a l d i s t i l l a t i o n o r r e c r y s t a l l i z a t i o n from s u i t a b l e s o l v e n t s such as cyclohexane, chloroform, ether, a l c o h o l or acetone. The s y n t h e s i z e d 2 , 1 ^ , 6-trihalo- s u b s t i t u t e d phenols were p u r i f i e d by r e c r y s t a l l i z a t i o n from n-heptane or pentane. F o r the temperature s t u d i e s , o - c h l o r o , o-bromo and o - f l u o r o p h e n o l were p u r i f i e d by two passes through a Beckman Megachrom gas chromatograph. Reagent grade carbon t e t r a c h l o r i d e and carbon d i s u l p h i d e which had been d r i e d over phosphorus pentoxide and d i s t i l l e d were used as s o l v e n t s i n the p r e p a r a t i o n of samples. In each case approximately one mole % o f i n t e r n a l standard (cyclohexane or t e t r a m e t h y l s i l a n e ) was added to the f r e s h l y d i s t i l l e d s o l v e n t , which was s t o r e d i n g l a s s e t h e r b o t t l e s . A l l s o l u t i o n s were made up by weight u s i n g a standard M e t t i e r a n a l y t i c a l balance and the mole f r a c t i o n o f phenol c a l c u l a t e d . In most cases s o l u t i o n s of approximately 5 ml. volume were made up and a p o r t i o n of the s o l u t i o n t r a n s f e r r e d to 5 mm. pyrex tubes which had been d r i e d and s t o r e d i n a d e s s i c a t o r over phosphorus 9 pentoxide. The tube was tranferred to a vacuum system, the solution was frozen i n l i q u i d nitrogen, and the tube sealed af t e r a i r over the sample had been pumped o f f . Two tubes of each solution were made. For the work on c o r r e l a t i o n of chemical s h i f t with infrared stretching frequency, carbon tetrachloride was used as solvent, but since i t s melting point i s too high for low temperature work (-23° G), carbon disulphide was used for the subsequent temperature studies (m.p. -108°C). Benzene, acetone, chloroform, or sim i l a r solvents are unsuitable f o r this type of study, since hydrogen bonding with solvent molecules would occur. 10 i i ) S y nthesis o f 2,1|.,6 t r i s u b s t i t u t e d h a lophenols. (a) 2-Fluoro-lj.,6-diiodophenol and 2-Ghloro- I4., 6 - d i i o dophenol The procedure f o l l o w e d was e s s e n t i a l l y that o u t l i n e d by Baker (21). E i g h t grams of potassium hydroxide and 0.10 mole o f the 6-halophenol were d i s s o l v e d i n 150 ml. of water. In a second beaker, $i\ gm. of p u l v e r i z e d i o d i n e were d i s s o l v e d i n a c o l d s o l u t i o n of 26 gm. of potassium hydroxide i n lj.00 ml. of water and immediately added to the phenol s o l u t i o n . Cold, 2$% s u l p h u r i c a c i d was added dropwise u n t i l a pH of 7- was reached. The excess of Iodine was removed by the a d d i t i o n o f s o l i d sodium t h i o s u l p h a t e . The o i l which formed s o l i d i f i e d on c o o l i n g i n i c e and was r e c r y s t a l l i z e d twice from n-heptane. m e l t i n g pt.(obs.) r e p o r t e d (21) ( c o r r . ) 2-fluoro-l J.,6-diiodophenol 56-56.5° C; 56-57° C 2-chloro -I|.,6-diiodophenol 93-95° 0 96 0 C (b) 2-Pluoro-ij.,6-dibromophenol and 2-Chloro-lj.,6- dibromophenol Prepared by the method o f R a i f o r d and Le Rosen(29). Twenty ml. of g l a c i a l a c e t i c a c i d and 0.10 mole of the ortho halophenol were cooled i n i c e and 12 ml. o f bromine were slowly added. The s o l u t i o n was l e f t 11 f o r one hour and was then poured i n t o i c e water. A 20%> s o l u t i o n of sodium b i s u l p h i t e was added to remove excess bromine. The crude product was d i s s o l v e d i n a $% s o l u t i o n o f sodium hydroxide, d e c o l o r i z e d w i t h c h a r c o a l , and f i l t e r e d . The r e s u l t i n g s o l u t i o n was a c i d i f i e d w i t h d i l u t e s u l p h u r i c a c i d to p r e c i p i t a t e the product, which was r e c r y s t a l l i z e d twice from n-heptane. m.p. (obs.) m.p.(reported) ( c o r r . ) 2-Pluoro-if,6-dibromophenol 33-3k-5°c 3k~35°G 2-Chloro-lf,6-dibromophenol 70-71°G; 12 i i i ) Measurement o f Chemical S h i f t s . A standard V a r i a n I4.O Mc/sec Vij.300 High R e s o l u t i o n Spectrometer was used f o r a l l measurements, except where noted. In order to achieve the base l i n e s t a b i l i t y - r e q u i r e d f o r measurements a t c o n c e n t r a t i o n s o f one mole %, a twelve v o l t b a t t e r y was p l a c e d i n p a r a l l e l with the f i l a m e n t supply to the V - ^ I O V a r i a n RF u n i t . Chemical s h i f t s were measured u s i n g the s i d e band technique, and sid e band f r e q u e n c i e s were measured si m u l t a n e o u s l y by adopting the c i r c u i t recommended by V a r i a n NMR Instrument Owner B u l l e t i n , February 1, i 9 6 0 , which allowed the H e w l i t t Packard model 522B E l e c t r o n i c Frequency Counter to co n t i n u o u s l y monitor the s i d e bands a p p l i e d . A H e w l i t t Packard 200 CD O s c i l l a t o r was used to supply s i d e bands. The v a r i a b l e temperature apparatus was t h a t d e s c r i b e d by R e i d and Connor (30). For the work on c o r r e l a t i o n o f chemical s h i f t s with -OH s t r e t c h i n g frequency, the measurements were made by superimposing a sideband f o r the i n t e r n a l cyclohexane standard upon the phenol -OH band u s i n g a Dumont type 30I4- AR O s c i l l o s c o p e . Two measurements on each o f the two samples were c o n s i d e r e d s u f f i c i e n t . The estimated accuracy i s 1.5 c y c l e s / s e c , or O.Ol}. p.p.m. Si n c e chemical s h i f t s were r e q u i r e d to £ 0.1 c y c l e s / s e c f o r the temperature s t u d i e s , another technique was adopted. The phenol -OH band 1 3 was recorded on c h a r t paper with s i d e bands before and a f t e r i t , u s i n g a Speedomax model H r e c o r d e r (see f i g u r e 1 ) . The s i d e band was switched o f f and changed while sweeping through the -OH band. The d i s t a n c e between s i d e bands was from 1 0 - 1 2 c y c l e s / s e c and sweep r a t e s were such that the l e n g t h on the c h a r t paper was approximately 1 cm./cycle. F i v e to e i g h t measurements were taken f o r each sample a t a l l temperatures. The i n t e r n a l standard f o r the o-halophenols was cyclohexane, while f o r the 2,1].,6 t r i s u b s t i t u t e d h a l o - phenols t e t r a m e t h y l s i l a n e was used and the valu e s reduced to that f o r cyclohexane. As measured i n t h i s l a b o r a t o r y , the cyclohexane s i g n a l i s 57.6 c y c l e s / s e c (ij.0 Mc/sec RF) or l.i|i). p.p.m. to low f i e l d from t e t r a m e t h y l s i l a n e . The average standard d e v i a t i o n f o r o-chloro and o-bromophenol measurements was i 0 . 1 c y c l e s / s e c ; f o r o - f l u o r o p h e n o l 0 . 2 c y c l e s / s e c . and f o r the t r i s u b s t i t u t e d phenols i 0 . 5 c y c l e s / s e c . / I \( Figure 1, Representative pmr spectrum ofo-halophenols showing sidebands applied before and after the phenol -OH resonance peak. The sample i n t h i s case was o-chloro- phenol (2 mole%) at 27 C. The sweep rate was .86 cm./cycle, . / 111. CHAPTER I I I EXPERIMENTAL RESULTS. I) C o r r e l a t i o n of Chemical S h i f t w i t h i n f r a r e d s t r e t c h i n g frequency. The v a l u e s f o r the chemical s h i f t at i n f i n i t e d i l u t i o n and the -OH s t r e t c h i n g frequency f o r the parent compounds phenol, 1-naphthol and 2-naphthol are giv e n i n Table 1 below: TABLE 1 Compound ( r e f e r r e d to i n f i n i t e d i l u t i o n i n CCl^) ( i ) (Observed) p.p.m. (2) (Corrected) p.p.m. (3) cm"1 phenol 3.12 2.80 3604 1-naphthol 3.78 2.86 3594 2-naphthol 3.k9 2.66 3601 Column 1 g i v e s the observed i n f i n i t e d i l u t i o n s h i f t of the compound, while column 2 g i v e s the chemical s h i f t c o r r e c t e d f o r r i n g c u r r e n t u s i n g the model of Pople (31). The c i r c u l a t i n g c trons of the benzene r i n g l e a d to an a d d i t i o n a l magnetic f i e l d a t the protons near the r i n g which r e i n f o r c e s the main f i e l d H Q, l e a d i n g to resonance at lower v a l u e s of H D than would normally be the case. This l e a d s to an approximate c o r r e c t i o n f o r the chemical s h i f t , g i v e n by: 15 Ao-= - e2- a 2 - 2 m c * R where: e = charges on the e l e c t r o n m - mass of an e l e c t r o n a - r a d i u s o f the benzene r i n g ( 1 . 1 ) . A) c a v e l o c i t y o f l i g h t R = d i s t a n c e from the pro t o n under c o n s i d e r a t i o n to the centre of the r i n g A C T S the change i n chemical s h i f t due to the i n f l u e n c e o f the ~fT e l e c t r o n s . These c o r r e c t i o n s were a l s o made f o r the compounds c o n t a i n i n g i n t r a m o l e c u l a r hydrogen bonds. The e x p e r i  m e n t a l l y observed v a l u e s , along with c o r r e c t e d v a l u e s f o r CT are g i v e n i n Table 2 . Column 3 gives the value o f A O ~ H ( c o r r e c t e d ) from the parent compound w h i l e column Ij. g i v e s the change i n frequency A V o H (cm" 1). A graph of AV£H a g a i n s t & 0 ^ H i s giv e n i n f i g u r e 2 , the numbers on the graph r e f e r r i n g to the compounds i n Table 2 ( 3 2 ) . I n f r a r e d data were ob t a i n e d on a P e r k i n Elmer model 2 1 Double Beam i n f r a r e d spectrometer u s i n g yearn., or 1 m m . sodium c h l o r i d e c e l l s . A l l measurements were checked, where p o s s i b l e , w i t h those o f Baker ( 2 0 ) ( 2 1 ) . With the e x c e p t i o n o f A\Crt f o r o - n i t r o p h e n o l , where Baker's value of 3k& cm"' di s a g r e e s with aur value of 361). cm"', there was good agreement. The 2 , ^ , 6 t r i h a l o s u b s t i t u t e d phenols, where the 2 , 6 p o s i t i o n s c o n t a i n d i f f e r e n t halogens, are not i n c l u d e d i n f i g u r e 2 , s i n c e two bands are observed i n the i n f r a r e d , corresponding 16 to the two d i f f e r e n t "bonds formed. As stated previously, the magnetic resonance signal observed i s an average of these two forms (8). 17 TABLE 2. Compound ACT AV O M c o r r e c t e d c o r r e c t e d p.p.m. p.p.m. p.p.m. cm" 1. S a l i c y l a l d e n y d e -9i5i -8.83 6.71 471 2. 5-N i t r o s a l i c y l a l deny de -10.05 -9.37 7.25 500 3. 5-Br omo s a l 1 c y l a l deny de -9.38 -8.70 6.58 454 4. o-Nitrophenol -9.14 -8.1+6 6.34 l o t 5. 2,4 D i n i t r o p h e n o l -9.64 -8.96 6.84 388 6. Methyl S a l i c y l a t e -9.12 -8.44 6.32 395 7. o-Bromo Benzoic A c i d -11.25 -10.70 8.58 570, 96 8. o-Chlorophenol -3.97 -3.2? 1.17 61 9. 2,4 D i c h l o r o p h e n o l -3.99 -3.31 1.19 63 10. 2,4,6 T r i c h l o r o p h e n o l -4.20 -3.52 1.40 75 11. o-Bromophenol -3.95 -3.27 1.15 92 12. 2,4-Dibromophenol -3.98 -3.30 1.18 83 13. o-Iodophenol -3.68 -3.00 O.98 105 l4. o-Me thoxyphenol -3*98 -3.30 1.18 60 15. 2,6 DImethoxyphenol -3.82 -3.14 1.02 56 16. o - A l l y l p h e n o l -3.87 -3.19 1.07 63 17. o - C r e s o l -3.12 -2.44 0.32 -8 -» c f . r e f . 20. 18 TABLE 2 (cont'd) Compound p.p.m. c o r r e c t e d c o r r e c t e d p.p.m. p.p.m. cm -1 18. -12.^9 -11.54 942 (Overlaps (-C-H (stret<ch ( 3000cm-« 19. -11.27 -10.59 847 20. -11.13 HC=N -1045 8.33 5kk 21. -11.36 -10.68 8.56 532 22. -11.03 -10.08 7.96 531 19 TABLE 2 (cont'd) Compound ( V - <Fj < <T - 0"OH) ^ p.p.m. c o r r e c t e d p.p.m. c o r r e c t e d p.p .m. cm" 23. l - N i t r o - 2 - n a p h t h o l -10.53 -9.70 7.04 538 24. 2,1+ D i n i t r o - l - n a p h t h o l -11.20 -10.28 7.42 543 25. 2,5 D i c h l o r o p h e n o l -I+.02 -3.34 4- 1.22 65 26. o-Fluorophenol -3.62 -2.94 0.82 18 27. o-Phenylphenol -3.67 -2.99 0.87 45 28. lj>-Chloro-2-nitrophenol -9.06 -8.38 6.26 354 29. 2-Bromo-l+-phenylphenol -3.93 -3,25 1.13 75 30. 1-Bromo-2-naphthol -4.45 -3.62 1.79 82 31. 2,4-Dibromo-l-naphthol -4.4o -3.48 1.54 89 32? o ( M e t h y l t h i o ) p h e n o l -4.67 -3.99 1.87 194 33 a 2 Methyl-6(Methylthio) phenol -5.20 -4.52 2.40 208 31^ 0 - ( i s o p r o p y l t h i o ) p h e n o l -5.18 -4.50 2.30 205 35. 2,3,4,6- Te t r a c h l o r o p h e n o l - 4 . 1+3 -3.75 I.63 80 36. 2-Chloro-l+,6-dibromophenol -4.27 -3.59 1.47 - • 37. 2-Chloro-l+,6-diiodophenol-l+.32 -3.64 1.52 - 38. 2,]+, dichloro-6-iodophenol-4* 28 -3.60 1.48 - 39. 2-Fluoro-4>6-dibromo- phenol -3.85 -3.17 1.05 - 1+0. 2-Fluoro-4> 6-di iodophenol-4* C-6 -3.38 1.26 - 1+1. 2,1+ dibromo-6-iodophenol -4.27 -3.59 1.47 - (a) I wish to express my thanks to Dr. A.W. Baker f o r s u p p l y i n g these compounds. 500- 3001- 100 Z3» 22* •? 2* I* 3* •28 32 • 33,34 13* 10 ,25 •26 I I 1 • I I I I I I I I I I I I I I I I 8 9 10 ACT PP-M- OH F i g u r e 2. P l o t o f A C£ wvs f o r the compounds given i n T a b l e 2. Numbered p o i n t s r e f e r t o compounds as l i s t e d . 20 i i ) Temperature S t u d i e s o f o-Halophenols. The r e s u l t s o f the chemical s h i f t measurements ( r e l a t i v e to cyclohexane) a t v a r i o u s temperatures are gi v e n i n t a b l e s 3 to 6, along with the values o f C^,^ , the e x t r a p o l a t e d i n f i n i t e d i l u t i o n s h i f t . The g r a p h i c a l r e s u l t s f o r o b t a i n i n g C^,^ a r e g i v e n i n f i g u r e 3 f o r o - c h l or ophenol., f i g u r e 4 f o r o-bromophenol, and f i g u r e 5 f o r o-iodophenol and o - f l u o r o p h e n o l . F i g u r e 6 shows a p l o t of C^oo a g a i n s t temperature f o r o-bromophenol, which was used to o b t a i n a t r i a l v a lue f o r <C , the chemical s h i f t of the phenol -0-H when completely hydrogen bonded. S i m i l a r p l o t s were made f o r o-chlo r o and o-iodophenol (see d i s c u s s i o n ) . The s o l i d p o i n t s on the graph f o r o - f l u o r o p h e n o l ( f i g . 5>) r e p r e s e n t data o b t a i n e d by L . W . Reeves a t 60 Mc/s d u r i n g a v i s i t to the N a t i o n a l Research C o u n c i l i n the summer o f 1961. The measurements were reduced to I4.0 Mc/s f o r i n c l u s i o n i n the same f i g u r e . 2 1 Table 3. Values o f chemical s h i f t i n c y c l e s / s e c from cyclohexane obtained a t v a r i o u s c o n c e n t r a t i o n s and temperatures f o r o-chl o r o p h e n o l , a l o n g w i t h the e x t r a p o l a t e d v a l u e s f o r &^ obt a i n e d front F i g u r e 3» C O N C E N T R A T I O N ( M O L E % ) TEMPERATURE 0 1.22 2.02 3.Id 4.03 4.99 107°C 151.2 151.5 152.3 152.6 153.1 153.4 82°C 152.6 153.2 153.5 154.0 154.6 155.3 6S°c 153.3 - 154.7 155.5 155.9 27°C 156.1 153.6 159.6 160.0 161.1 162.3 . -1°C 157.4 159.7 161.5 163.5 165.5 166.9 -53°C 159.2 - 176.6 16*5.9 - 196.9 CONCENTRATION (MOLE %) Figure 3» D i l u t i o n chemical s h i f t s at s i x temperatures f o r the -0-H proton i n o-chlorophenol at 1-5 mole fo of the phenol i n carbon disulphide. The numbers r e f e r to cyclohexane as an i n t e r n a l standard. 22 Table 4. Values o f chemical s h i f t Sn i n c y c l e s / s e c from cyclohexane obtained a t v a r i o u s c o n c e n t r a t i o n s and temperatures f o r o-bromophenol, a l o n g w i t h the e x t r a p o l a t e d v a l u e s f o r c$*iv»^ » o b t a i n e d from F i g u r e 4. C O N C E N T R A T I O N ( M O L E % ) TEMPERATURE 0 1.16 2.02 3.13 3.74 4.61 107°G 150.4 - 151.5 - 152.0 152.8 82°C - 152.4 153.1 153.3 154.1 154.3 63o c 152.7 153.2 153.7 154.0 154.7 155.3 27°C 154.5 155.5 156.2 157.2 157.9 159.0 -1°C 155.4 156.8 153.1 159.4 160.7 161.9 -18°C 156.0 157.8 159.0 161.6 - 164.1 -53°C 156.6 162.5 167.9 173.0 177.4 133.5 1 4 6 P_ - BROMOPHENOL I S O - 1 5 2 ———2-— -o-J°7 ° C I S 4 _ ~ ° — ~ —__2___ 68 °C 1 5 6 I S S 27 °C "UJ 1 1 6 0 -1 °C 8 1 6 2 FR O M  1 6 4 -18 °C o i 'S EC  1 6 6 - CO - J jj 1 6 8 c\ u I— I T O £ C O i 172 ICA I 1 7 4 1 • 1 L U • X o 1 7 6 1 7 8 1 6 0 -53 °C 1 8 2 , 1 . 1 , 1 . 1 . 1 , 1 . 1 . X . I , 1.0 20 3.0 4.0 5.0 CONCENTRATION ( M O L E % ) F i g u r e 4. D i l u t i o n chemical s h i f t s a t s i x temperatures f o r the -0-H proton i n o-bromophenol. 23 Table 5. Values of chemical s h i f t c£ M i n cycles/sec from cyclohexane at various concentrations and temperatures f o r o-iodophenol, along with the extrapolated values f o r C^^^ obtained from Figure 5. C O N C E N T R A T I O N ( H O L E % ) TEMPERATURE 0 1.37 2.11 3.00 4.21 4.73 107 GC 141.5 142.2 - 142.6 143.5 143.6. 82°C 142.3 143.4 143.6 143.9 144.5 145.0 63°C - 144.3 145.7 146.6 27°C 145.3 147.0 147.6 143.2 149.9 150.7 -1°G 146.5 143.4 149.3 151.2 153.2 154.7 -22°C 152.4 152.3 154.6 160.0 161.6 -53°C - 157.3 164.9 163;6 179.5 132.7 2k T a b l e 6. Values o f chemical s h i f t ^ i n c y c l e s / s e c from cyclohexane o b t a i n e d a t v a r i o u s c o n c e n t r a t i o n s and temperatures f o r o - f l u o r o p h e n o l . C O N C E N T R A T I O N ( M O L E % ) TEMPERATURE O.966 1.91 2.85 3.62 5.35 50°C - 136.4 140.1 143.1 149.0 a27°C 133.5 144.6 149.5 152.6 160.9 23°C - 144.7 150.7 153.7 162.1 -1°C - 156.8 166.1 171.7 182.6 -l3©c - 165.1 173.3 133.2 136.9 a Data o b t a i n e d by L.W. Reeves a t 60 Mc/sec w h i l e a t the N a t i o n a l Research C o u n c i l , Ottawa, i n August 1961. Values are reduced t o those f o r 40 Mc/sec f o r comparison. CONCENTRATION ( K O L E ^ ) I Figure 5. D i l u t i o n chemical s h i f t s f o r the -G-H proton i n o-iodo and o-fluorophenol. C-BROMOPHENOL The values of O k . — o b t a i n e d from F i g u r e I4. p l o t t e d a g a i n s t temperature 25 i i i ) Temperature S t u d i e s o f 2 , 1 + , 6 - T r i s u b s t i t u t e d Phenols. Chemical s h i f t measurements over the temperature range 0 to 110° C f o r 2-fluorb-i | . , 6-dIbromophenol, 2 - f l u o r o - l | . , 6 - d i i o d o p h e n o l , 2-chloro-l | . , 6-dibromophenol, and 2-chloro-i | . , 6-diiodophenol are g i v e n i n t a b l e 7. In these cases the chemical s h i f t s were independent of c o n c e n t r a t i o n i n the range s t u d i e d (to 1+ mole % ) . F i g u r e 7 i s a graph of these r e s u l t s p l o t t e d a g a i n s t temperature. 26 TABLE 7 Values of chemical shift SH in cycles/sec from cyclohexane for some' 2,4»6-trisubstituted phenols at various temperatures. The chemical shift was independent of concentration in the range studied. COMPOUND TEMPERATURE o°c 25°c 5l°C 73°G 111GC 2-Chloro-l|.,6-diiodophenol 174*6 173.6 171.6 169.1 168.9 2-Chloro-4»6-dibromophenol 174»3 172.3 167.O 167.O - 2-Fluoro-4,6-diiodophenol l68.3 161.5 155.0 152.6 149.9 2-Fluoro-4»6-dibromophenol 165.2 154'0 150.0 45.7 147.6 TEMPERATURE °C 27 CHAPTER IV. DISCUSSION. i ) C o r r e l a t i o n o f Chemical S h i f t s w i t h I n f r a r e d S t r e t c h i n g Frequency. An o r t h o - s u b s t i t u t e d phenol or naphthol i s f a v o u r a b l y s i t u a t e d f o r the f o r m a t i o n of an i n t r a  m o l ecular hydrogen bond wi t h the -OH group of the phenol. I f the p o s s i b i l i t y o f a s t r o n g hydrogen bond e x i s t s , the measured chemical s h i f t w i l l be t h a t of the hydrogen bonded s p e c i e s (33) (3k)» D u t f o r the weakly bonded compounds, an e q u i l i b r i u m o f the type Trans C i s w i l l e x i s t , and the chemical s h i f t w i l l be a weighted average of the two forms (8). I f the chemical s h i f t i s measured i n a non p o l a r s o l v e n t at low c o n c e n t r a t i o n s ( ^ 1 mole %) the value obtained w i l l be v e r y n e a r l y t h a t of the completely hydrogen bonded form. P l o t t i n g the v a l u e s o b t a i n e d f o r A O £ w , the change i n chemical s h i f t , a g a i n s t A\£ H , the change i n i n f r a r e d s t r e t c h i n g frequency, shows t h a t there i s a degree of c o r r e l a t i o n ( f i g u r e 2), i n s p i t e of s c a t t e r . One may say t h a t the g r e a t e r the change i n chemical s h i f t , the g r e a t e r the change i n s t r e t c h i n g frequency, 28 and the s t r o n g e r the bond formed. Upon examination of f i g u r e 2, one can see t h a t the compounds measured f a l l i n t o three main c l a s s e s . The f i r s t c l a s s c o n s i s t s p r i m a r i l y of f i v e membered hydrogen bonded r i n g s of the type: where X can be 0, G l , Br, I or P. The second group c o n s i s t s of f i v e membered r i n g s c o n t a i n i n g an -0-H...S bond, which;appears to be s t r o n g e r than the p r e v i o u s s e r i e s . I t i s p o s s i b l e t h a t the l a r g e r sulphur atom makes the d i s t a n c e s f o r bonding more f a v o u r a b l e . The t h i r d c l a s s c o n s i s t s of s i x membered r i n g s w i t h the hydrogen bonded to an oxygen or n i t r o g e n atom, e.g. o - n i t r o p h e n o l . The l a r g e r s i z e of the r i n g and the d i r e c t i o n a l nature of the donor o r b i t a l s favours a s t r o n g e r hydrogen bond p r o v i d i n g one assumes that the predominant term i s e l e c t r o s t a t i c (35) (36). J . R. M e r r i l l (38) has r e c e n t l y p u b l i s h e d a c o r r e l a t i o n of A C f O H w i t h A V £ H f o r s e v e r a l s u b s t i  t u t e d o-hydroxybenzophenones, and Gutowsky (39) n& s e s t a b l i s h e d a s i m i l a r c o r r e l a t i o n of A C f O H w i t h A ^ 0 « the change i n c a r b o n y l s t r e t c h i n g frequency, f o r a s e r i e s of compounds, w i t h r e s u l t s s i m i l a r to those i n f i g u r e 2. 29 Two exceptions to the c l a s s e s g i v e n above must be noted. o - A l l y l p h e n o l has a 6-§- membered r i n g w i t h the hydrogen bond formed with the Tf e l e c t r o n s of the a l l y l group and i s found i n the weakly bonded f i r s t c l a s s . The l a r g e chemical s h i f t o b t a i n e d f o r o-bromobenzoic a c i d i s b e l i e v e d to be due to the f o r m a t i o n of a hydrogen bonded dimer r a t h e r than an i n t r a m o l e c u l a r bond w i t h the bromine. The chemical s h i f t i s approximately t h a t which would be expected f o r a dimer (37) (11) and the i n f r a r e d spectrum shows frequency s h i f t s of 9° and 570 cm"' r e s p e c t i v e l y . The f i r s t , a very weak bond, i s that which would be expected f o r an -0-H...Br bond (21) ( t a b l e 2 ) , while the second i s t h a t expected f o r a dimer ( 11) . One may conclude t h a t even a t c o n c e n t r a t i o n s of one mole % there i s l i t t l e f o r m a t i o n of an i n t r a m o l e c u l a r bond. 30 i i ) C a l c u l a t i o n o f E n t h a l p i e s of Formation f o r the I n t r a m o l e c u l a r Hydrogen Bond i n o-Halophenols. The observable chemical s h i f t f o r a compound c o n t a i n i n g a s t r o n g I n t r a m o l e c u l a r hydrogen bond i s t h a t of the hydrogen bonded s p e c i e s (33) (3^) (38), and the chemical s h i f t i s independent of c o n c e n t r a t i o n as l o n g as there are no i n t e r m o l e c u l a r c o n t r i b u t i o n s . However, f o r a weakly bonded s p e c i e s (the f i r s t c l a s s d i s c u s s e d i n the previous s e c t i o n ) a t any c o n c e n t r a t i o n there w i l l e x i s t an e q u i l i b r i u m Trans C i s which w i l l c o n t r i b u t e to an average chemical s h i f t . A f u r t h e r c o n t r i b u t i o n w i l l be o b t a i n e d from any i n t e r m o l e c u l a r bonding. By measuring the chemical s h i f t ( <£M ) over a range of c o n c e n t r a t i o n s one i s able to o b t a i n an e x t r a p o l a t e d I n f i n i t e d i l u t i o n s h i f t ( C $ n o 0 ) which may be a t t r i b u t e d to the e q u i l i b r i u m as i n (1), s i n c e the e x t r a p o l a t i o n w i l l e l i m i n a t e i n t e r m o l e c u l a r e f f e c t s . U s i n g the a n a l y s i s of Gutowsky and S a i k a (8), one may express the i n f i n i t e d i l u t i o n s h i f t c £ M a 0 a s : X - f C ^ -V " X c c f t (2 ) I 31 where ")/ - mole f r a c t i o n of the phenol i n the trans form. Y. s mole f r a c t i o n of the phenol i n the c i s form. = chemical s h i f t of the trans form. <£c = chemical s h i f t of the c i s form. Sc and d .^ are assumed to be invariant. The equilibrium expression f o r (1) at any temper ature may be written TTRANSI W T I - V c l (3) K . C T ) = [CIS] " t X c ] • [ X c ] since XT )^<.~ -^ • From (2), one obtains (4) Substituting for X C I N (3)» an expression for the equilibrium constant K , ^  at any temperature (T) i s obtained i n terms of , and £ : ^ineo ^ n o w n ^ r o m the extrapolations of figures 3» k- and f> for the compounds o-chloro, o-bromo and o-iodophenol, If one observes the slopes of the l i n e s for o-fluorophenol 32 ( f i g u r e 5), i t i s e v i d e n t t h a t they d i f f e r from those of the p r e v i o u s three compounds and i n f a c t resemble the curve one obtains f o r phenol (33), where there i s no p o s s i b i l i t y of an i n t r a m o l e c u l a r hydrogen bond being formed. This was taken as evidence that the i n t r a  m o l e c u l a r bond formed, i f any, i s so weak t h a t the p r e v i o u s a n a l y s i s would not apply, s i n c e i n t e r m o l e c u l a r e f f e c t s are s t i l l c o n s i d e r a b l e a t 1 mole % t which i s the l i m i t of s e n s i t i v i t y f o r the spectrometer used. F o r the o t h e r three phenols, lower temperatures w i l l s h i f t the e q u i l i b r i u m so t h a t the c o n c e n t r a t i o n of the c i s form i s i n c r e a s e d . At s u f f i c i e n t l y low temper a t u r e s the phenol w i l l be almost 100$ c i s form, which w i l l g ive a value f o r <£ c . In order to o b t a i n a value f o r , C^ijvioo f°r each phenol was p l o t t e d a g a i n s t temperature as i n f i g u r e 6, and an e x t r a p o l a t i o n to the maximum val u e made. The r e s u l t s were a l s o f i t t e d to an e q u a t i o n of the type X - A -V- BT CT 2" (6) where T = temperature °K A, B, G are constants to be determined. I t was p o s s i b l e to f i t experimental values of c T n ^ o t o equation 6 w i t h i n i .1 c y c l e s / s e c f o r o-bromo and o-chlorophenol and to w i t h i n "± .2 c y c l e s / s e c f o r o-iodophenol. The equations obtained were: 33 f o r o-bromophenol, c £ , _ = 151.6 -M5.75 * I O " X ) T _ (1.60 x i o _ , Q ) T L f o r o - chlorophenol, £ = 153.6 -*-(6.83 x 10" 2)T - (2.00 x 1 0 " * ) T X and f o r o-iodophenol, X = Ikl.k 4-(2.i|l x 10" l)T - (9.86 x 1 0 - S ) T X . Using these equations, one may o b t a i n an estimated value f o r t£ , s i n c e i t i s p o s s i b l e t o determine the value f o r which the eq u a t i o n i s a maximum; that i s , when ACS*.) ~ICrf = ° Having found the temperature a t which Q ^ ^ i s a maximum, "TOO one can s u b s t i t u t e back i n t o the equ a t i o n to o b t a i n C^rvieo (max.)^ W h i c h i s approximately equal to . The r e s u l t s of t h i s method are giv e n below: o-bromophenol: cTM4o(max.) * ^ m 156.8 c y c l e s / s e c a t 172°K b-chlorophenol: cf M «o^ m a x «)~ <$*c • 159.5 c y c l e s / s e c at 171°K o-iodophenol: (max.) 2 B ii+8.9 c y c l e s / s e c a t 121°K Thus, i n order to determine values f o r the e q u i l i b r i u m constant K«^ T) , i t remains to evaluate C ^ - » t n e chemical s h i f t o f the trans form. In order to do t h i s , one may make use of the f o l l o w i n g r e l a t i o n s h i p : A F = A H - T A S = - R T JL K K T ) (7) 34 According to J a f f e (38), entropy terms f o r these systems are very c l o s e to zero, so one may w r i t e ^ • (8) A reasonable value f o r cTT w i l l be t hat which makes (8) approximately constant f o r a l l measured temperatures. In a d d i t i o n , one then o b t a i n s a value f o r A H, the enthalpy of f o r m a t i o n o f the hydrogen bond, which should be r e a s o n a b l y good. The r e s u l t s of t h i s a n a l y s i s f o r the three o-halophenols s t u d i e d are g i v e n i n Table 8. Values of K , ( T ) a t 2$°C agree r e a s o n a b l y w e l l w i t h those of Baker (21), and a l s o w i t h those of Rossmy, Lilittke and Mecke, but not w i t h those of Jones and Watkinson (23). However, n.m.r. data do not support Baker's c o n t e n t i o n t h a t the -0-H..P bond i s stronger than the -0-H...I bond i n these phenols. J 35 TABLE 8. Values of K { ^ and A H f o r o- c h l o r o , o-bromo and o-iodophenol. o-Chiorophenol Temp., ° K K , ( T > A H ( c a l mole" 1) 380 1/23 2334 355 1/27 2320 3lp. 1/30 2308 300 1/56 2392 272 1/91 2^32 mean value A H - 2356 c a l mole" t£c = -l59»5 c y c l e s / s e c from cyclohexane <£ T = -V- 3k- c y c l e s / s e c from cyclohexane o-Bromophenol Temp., ° K K U T > AH ( c a l mole -' ) 380 l/lk 2011 3kl 1/22 2095 300 1/38 2l6l 272 1/58 2182 253 1/87 2254 mean value AH a 2llp. c a l mole""* -«- £ = -157.2 c y c l e s / s e c from cyclohexane £ ^ = - 51.9 c y c l e s / s e c from cyclohexane 36 TABLE 8 (cont'd) o-Iodophenol Temp., °K K , ^ AH ( c a l mole" 1 ) 380 1/7.6 1529 355 1/9.5 1581 300 1/19 17^8 272 1/26 17I46 mean value A H = 1650 c a l mole" Q £ = -lij.8.9 c y c l e s / s e c from cyclohexane _ 84.9 c y c l e s / s e c from cyclohexane -«- In order to o b t a i n more reasonable v a l u e s f o r o-bromophenol, i t was found necessary to change the value of c£ by O.lj. c y c l e s / s e c to -157.2 c y c l e s / s e c . This i s w i t h i n the e r r o r i n e x t r a p o l a t i o n . The value i n i s extremely s e n s i t i v e to s m a l l changes i n , s i n c e K | ( T) i s so s m a l l . However, A H i s not a p p r e c i a b l y a l t e r e d by t h i s , and t h e r e f o r e the values f o r AH are more r e l i a b l e than those f o r £ 37 i i i ) C a l c u l a t i o n of E n t h a l p i e s of Formation of the C i s - t r a n s Dimer f o r o-Halophenols. I f one assumes t h a t the change i n chemical s h i f t from the e x t r a p o l a t e d i n f i n i t e d i l u t i o n s h i f t a t low c o n c e n t r a t i o n s i s due p r i n c i p a l l y to the f o r m a t i o n of dimers of the type CIS TRANS CIS TRANS a f u r t h e r a n a l y s i s may be made to o b t a i n e n t h a l p i e s of f o r m a t i o n f o r these dimers. I t Is c o n s i d e r e d t h a t the c o n c e n t r a t i o n of the t r a n s - t r a n s dimer i s always very much l e s s than t h a t of the c i s - t r a n s dimer, s i n c e the concen t r a t i o n of the t r a n s form i s low, as shown by the values f o r K t ( T ) i n t a b l e 8. One f u r t h e r assumes that t h i s value of K ^ ( T) Is a p p l i c a b l e a t c o n c e n t r a t i o n s o f one mole %. I f there are i n i t i a l l y 'a' moles of phenol and 'ms' moles of CS^, and one l e t s 'm^ ' - number of moles o f c i s form and 'm^ ' 8 number of moles of dimer, one may w r i t e as the number of moles p r e s e n t a t e q u i l i b r i u m f o r each form: 3 8 Trans (a-m c-mj) C i s ( m c - uij) Moles Mole F r a c t i o n (a - m c - nij) (a - m^) Hr m s (n^ - m^) (1) (a - mj ) + m s C i s . . . t r a n s m, dimer (a - mj) + m s One can then d e f i n e an e q u i l i b r i u m constant K ^ ^ j i n mole f r a c t i o n u n i t s : [ c i s . . . t r a n s ] - m^  (a - mj-mi^) (2) K ZCT) ~ C c i s l { t r a n s ] £ a - m c - mj ^  £ m c - mjy The f o l l o w i n g chemical s h i f t s are needed: Q = measured chemical s h i f t at f i n i t e concen- M c t r a t i o n 'c' ^ = chemical s h i f t s of the trans and c i s forms, chemical s h i f t s of the trans and c i s forms i n the dimer. r e s p e c t i v e l y , as determined i n s e c t i o n ( i i ) ° T « J , 0 C a  One may then w r i t e (8): where )Cr} X c ; a r e r e s p e c t i v e l y the mole f r a c t i o n s ( 3 ) of t r a n s , c i s and dimer forms. S u b s t i t u t i n g , one obtains: 39 4 Assuming that the chemical s h i f t of the c i s proton i n the dimer i s approximately equal to t h a t of the f r e e c i s proton; t h a t i s , r j £ ^ 2t (£ • , i t i s p o s s i b l e to r e w r i t e (1+) as: Prom the p r e v i o u s s e c t i o n , A l s o , r \ > A as w % , > O Since m^ i s s m a l l , i f one assumes that a - m^&a equation (5) may be r e w r i t t e n as: <£wT" ( a - m ^ C ^ . + ( I^SnJ) C ^ T A S o l v i n g f o r ny, d L e t A _ ko S u b s t i t u t i n g i n the e x p r e s s i o n f o r KjjfT) ( 2 ) > K 2 ( T ) = aA (a - a A t a < ) (1) (a - m c - aA) (mc * aA) Prom the p r e v i o u s s e c t i o n ( i i ) , m c = a (10) S u b s t i t u t i n g t h i s i n ( ), and n e g l e c t i n g terms i n 1 x. - - (K t ( T j ) and (A) , which are small, the f o l l o w i n g e x p r e s s i o n i s obt a i n e d f o r KJ»(T) : A ( (11) With the e x c e p t i o n of the chemical s h i f t f o r , a l l value s are known. Prom the work done i n s e c t i o n ( i ) , a reasonable value f o r a pro t o n i n an -0-H..0- hydrogen bond would be approximately 8 p.p.m. or 320 c y c l e s / s e c . Therefore, t h i s value was used i n c a l c u l a t i n g K j, ^ . Values f o r <^^ c were taken from f i g u r e s , 3, k a n d 5 at one mole %. The a n a l y s i s w i l l not apply f o r the h i g h e r temperatures (108°G), s i n c e the c o n c e n t r a t i o n o f the trans form i s a p p r e c i a b l e , which w i l l make the assumptions made i n d e r i v i n g K ^ ) i n v a l i d . By p l o t t i n g l o g K x ^ a g a i n s t l / T , one obt a i n s A H from the slope of the s t r a i g h t l i n e formed. kl The graph of these r e s u l t s i s given i n figure 8. As would be expected, A H f o r the dimer i s more or less independent of a p a r t i c u l a r phenol, since the X substituent would play l i t t l e part i n dimer formation. The estimated accuracy i s £ .5 k a l mole. The values of 5.8, 5.6, S.k kcal-mole" 1 f o r the o-bromo, o-chloro, and o-iodophenol dimer are what would be expected for an - 0 - H . . . 0 hydrogen bond. S 9 i k i k j j %~k 6 ~i i i i ~ § i i i ~*>f©6n 3 IO 3 3 4 2 TABLE 9. Compound Temperature K i ^ - r } °K ' o-bromophenol 380 2.57 3lA 3.78 » 300 11.22 '< 272 24.10 » 253 46.89 o-chlorophenol 355 4*54 » 34L 7.04 » 300 23.48 » 272 55.08 o-iodophenol 380 1.5 355 1.52 tt 300 5.24 272 12.9 1 1+3 i v ) V a r i a b l e Temperature S t u d i e s of 2 , 4 , 6 - t r i s u b s t i t u t e d phenols. As s t a t e d p r e v i o u s l y , the chemical s h i f t o f the -OH pro t o n o f the 2 , 4 , 6 - t r i s u b s t i t u t e d phenols was found to be independent of c o n c e n t r a t i o n i n the range s t u d i e d (2-ij. mole This may be a t t r i b u t e d to the f a c t t h a t the bulky e f f e c t o f the halogens prevents i n t e r m o l e c u l a r a s s o c i a t i o n . I t was thought that such compounds might a l s o have a chemical s h i f t which would be independent o f s o l v e n t , but a study of 2 , 4 , 6 - t r i e h l o r o p h e n o l showed t h a t t h i s was not the case, s i n c e a s h i f t was observed. Although the chemical s h i f t of the phenol p r o t o n Is the same f o r i n e r t s o l v e n t s such as C S 2 , 0 0 1 ^ and cyclohexane ( -4 .32 p.p.m.), there i s a s h i f t i n benzene to - 3 . $ 3 p.p.m., i n chl o r o f o r m to -4 .2i j . p.p.m., and i n acetone, to 8.94 p.p.m., i n d i c a t i n g that there i s s t i l l s o l v e n t i n t e r a c t i o n . In phenol i t s e l f there i s a very strong c o n c e n t r a t i o n dependence ( 1 0 ) but the i n f i n i t e d i l u t i o n s h i f t should be independent of temperature, s i n c e there i s a symmetrical b a r r i e r f o r the r o t a t i o n o f the hydroxy group about the C-0 bond (lij.). T h i s should a l s o be tr u e f o r any phenol symme t r i c a l l y s u b s t i t u t e d a t the 2 , 6 p o s i t i o n s . However, where the s u b s t i t u e n t s a t the 2 , 6 p o s i t i o n s are d i f f e r e n t , and there i s a p o s s i b i l i t y o f hydrogen bonding or s t e r i c h indrance, the b a r r i e r to r o t a t i o n w i l l be unsyrametrical. This should r e s u l t i n a temperature dependent chemical s h i f t f o r the phenol proton, s i n c e the p o p u l a t i o n s a t each ortho p o s i t i o n w i l l vary with temperature. I f the d i f f e r e n c e i n energy between the two forms i s l a r g e r , one should expect a l a r g e temperature dependence; while a s m a l l e r dependence would be expected i f the energy d i f f e r e n c e i s s m a l l . At h i g h e r temperatures the chemical s h i f t w i l l tend to become temperature independent. An examination of the r e s u l t s f o r the f o u r compounds s t u d i e d ( f i g u r e 7) w i l l show t h a t t h i s i s the r e s u l t obtained. For 2-chloro-4 , 6-dibromphenol and 2 - c h l o r o - l+ , 6 - d i i o d o p h e n o l , where the d i f f e r e n c e i n energy between the two hydrogen bonded forms i s s m a l l , the chemical s h i f t becomes independent of temperature a t about 5 0 ° C. f o r 2-chloro-J+ , 6-dibrompphenol and a t about 70°C. f o r the o t h e r . Since the energy d i f f e r  ence i s g r e a t e r f o r the c h l o r o - i o d o compound, one would expect a constant chemical s h i f t to occur at a h i g h e r temper ature, as i s the case. For 2-fluoro-ij . , 6-dibromophenol and 2 - f l u o r o - i j . , 6 - d i i o d o p h e n o l , where the d i f f e r e n c e i n energy i s much g r e a t e r , there i s no i n d i c a t i o n t h a t the measured chemical s h i f t i s tending to a constant value i n the range s t u d i e d . Baker ( 2 1 ) measured i n f r a - r e d i n t e n s i t i e s f o r these compounds at v a r i o u s temperatures and r e p o r t e d s i m i l a r behaviours. BIBLIOGRAPHY 1. J . A. A. K e t e l a a r ; Chemical C o n s t i t u t i o n , E l s i v i e r . P u b l i s h i n g Company, Amsterdam, ( 1 9 5 8 ) , pp. 403-420" 2. D. Hadzi, ed.; Hydrogen Bonding, Permagon P r e s s , New York, (1959). 3. George C. Pimentel, Aubrey L. Mc L e l l a n ; The Hydrogen Bond, W.H. Freeman and Co., San.Francisco, ( i 9 6 0 ) . 4« J . A. Pople, W. G. Schneider, and H . J . B e r n s t e i n ; H i g h - r e s o l u t i o n Nuclear Magnetic Resonance, McGraw H i l l Book Company, Inc., New York, (1959)• 5. M. E. Packard and J . T. Arnold; Phys. Rev., 8^, 210, (1951). 6. J . T. Arnold, and M. E. Packard; J . Chem. Phys., 1°,, 1608, (195D. 7. U. L i d d e l , and N. F. Ramsay; J . Chem. Phys., l g , 1608 (1951). 8. H. S. Gutowsky and A. Sa i k a ; J . Chem. Phys., 21, 1688 (1953). 9. E. D. Becker, U. L i d d e l , and J.N. Shoolery; J . Mol. Spectroscopy, 2, 1, (1958). 10. C M . Huggins, G. C. Pimentel and J . N. Shoolery; J . Chem. Phys., 60, 1311, (1956). 11. L. W. Reeves and W. G. Schneider; Trans. Faraday S o c , i l t , 314, (1958). 12. T. W. M a r s h a l l and J . A. Pople; Mol. Phys., 1, 199, (1958). 13. W. G. Schneider, H. J . B e r n s t e i n and J . A. Pople; J . Chem. Phys., 28, 6 o i , . (1958). 14. J . C. Evans; S p e c t r o c h i m i c a Acta, l 6 , 1382, ( i960) . 15. 0. R. Wulf and U. L i d d e l ; J . Am. Chem. S o c , ££, 11(64, (1935). 16. G. F. H i l b e r t , 0. R. Wulf, S.B. Hendricks and U. L i d d e l ; J . Am. Chem. S o c , ^ 8 , 548» (1936). 17. L. P a u l i n g ; J . Am. Chem. S o c , j>8, 94, (1936). 18. G. Rossmy, W. L u t t k e , and R. Mecke; J . Chem. Phys., 21, 1606, (1953). BIBLIOGRAPHY 1 9 . A. W. Baker; J . Phys.. Chem., 6 2 , 7kk> ( 1 9 5 8 ) . 2 0 . A. W. Baker and T. S h u l g i n ; J . Am. Chem. S o c , 8 0 , 5 3 5 8 , ( 1 9 5 8 ) . ~ ~ 2 1 . A. W. Baker and W. W. Kaeaing; J . Am. Chem. S o c , 8 l , 590i+, ( 1 9 5 9 ) . 2 2 . A. W. Baker; J . Am. Chem. S o c , 8 0 , 3 5 9 8 , ( 1 9 5 8 ) . 2 3 . D. A. K. Jones and J . G. Watkinson; Chemistry and Industry, 6 6 l , ( i 9 6 0 ) . 21).. J . H. Richards and S. Walker; Trans. Faraday S o c , £ 7 , 3 9 9 , ( I 9 6 D . 2 5 . J . H. Richards and S. Walker; Trans. Faraday S o c , . 1+06, ( I 9 6 D . 2 6 . J . H. Richards and S. Walker; Trans. Faraday S o c . 5 7 . 1+12, ( I 9 6 D . . . 2 7 . J . H. Richards and S. Walker; Trans. Faraday S o c , J57_, i+18, ( 1 9 6 1 ) . 2 8 . F. A n g i l o t t i and W. Curran; J . Am. Chem. S o c , 6 £ , 6 0 7 , ( 1 9 4 3 ) . 2 9 . L. C. R a i f o r d and A. L. Le Rosen; J . Am. Chem. S o c , 6 6 , 2 0 8 0 , ( I 9 i)4). . . 3 0 . C. Re i d and T. M. Connor; J . Mol. Spect., 1 , ^ 2 , ( 1 9 6 1 ) . 3 1 . J . A. Pople; J . Chem. Phys., 21]., 1 1 1 1 , a 9 5 6 ) . 3 2 . L. W. Reeves, E. A. A l l a n , and K. 0 . Str^mme; Can. J . Chem., J 8 , 121+9, ( i 9 6 0 ) . 3 3 . C. M. Huggins, G. C. Pimentel, and J . N. Shoolery; J . Chem. Phys., 2 3 , 3 1 1 , ( 1 9 5 5 ) . 3 4 . L. W. Reeves; Can. J . Chem., ^ 8 , 7 ^ 8 , ( i 9 6 0 ) . 3 5 . J . Lennard-Jones and J . A. Pople; Proc. Roy. S o c , 20J>A, 1 5 5 , ( 1 9 5 D . 3 6 . W. G. Schneider; J . Chem. Phys., 2 £ , 2 6 , ( 1 9 5 5 ) . BIBLIOGRAPHY 37. L. W. Reeves; Can. J . Chem., 1711, (1961). 38. J . R. M e r r i l l ; J . Phys. Chem., 6£, 2023, (1961). 39» A » L» Porte, H. S. Gutowsky, and I. M. Muusberger J.. Am. Chem. S o c , 82, 5057, (i960). k-0. H. H. J a f f e ; J . Am. Chem. S o c , . 2373, (1957). 

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 32 11
United States 8 0
France 3 0
Japan 3 0
Turkey 1 0
City Views Downloads
Beijing 21 0
Guangzhou 6 0
Shenzhen 5 11
Ashburn 5 0
Unknown 4 1
Tokyo 3 0
Sunnyvale 1 0
Pasadena 1 0
Mountain View 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0061944/manifest

Comment

Related Items