Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The crystal structures of malonamide, cyanoacetamide, a compound C₂₀H₃₃N₃, and acetyltriphenylsilane Chieh, Peter Chung 1969

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1969_A1 C54.pdf [ 9.29MB ]
Metadata
JSON: 831-1.0061896.json
JSON-LD: 831-1.0061896-ld.json
RDF/XML (Pretty): 831-1.0061896-rdf.xml
RDF/JSON: 831-1.0061896-rdf.json
Turtle: 831-1.0061896-turtle.txt
N-Triples: 831-1.0061896-rdf-ntriples.txt
Original Record: 831-1.0061896-source.json
Full Text
831-1.0061896-fulltext.txt
Citation
831-1.0061896.ris

Full Text

THE CRYSTAL STRUCTURES OF MALONAMIDE, CYANOACETAMIDE, A COMPOUND C 2 0 H 3 3 N 3 , AND ACETYLTRIPHENYLSILANE. by PETER CHUNG CHIEH B. Sc., National Taiwan Un i v e r s i t y . M. Sc., National Tsing Hua Uni v e r s i t y . A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS. FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of Chemistry We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1969 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h Columbia, I a g r e e t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and Study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n of t h i s thes.is f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . _ c Chemistry Department o f The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada Date . 2 3 ' M a * 1 9 5 9 To my adopted parents Mr. and Mrs. Sun L i - j e n -•X l • - • ^ < C ^ x -T a l e n t s become b r i g h t t h r o u g h e x t e n d e d p r a c t i c e ; Knowledge i s d e v e l o p e d t h r o u g h a d v e r s i t y ; Courage becomes g r e a t t h r o u g h c a u t i o u s approach,-Judgement i s p e r f e c t e d by wide e x p e r i e n c e . Sun L i - j e n J a n . 20, 1969 i v ABSTRACT S u p e r v i s o r : P r o f e s s o r James T r o t t e r The c r y s t a l s t r u c t u r e s o f malonamide, c y a n o a c e t a m i d e , a m e t h i o d i d e d e r i v a t i v e o f a compound, C 2 0 H 3 3 N 3 , a n d a c e t y l t r i p h e n y l s i l a n e have been d e t e r m i n e d by s i n g l e c r y s t a l X - r a y d i f f r a c t i o n methods. The f i r s t t h r e e a r e o r g a n i c compounds and t h e f o u r t h i s an o r g a n o m e t a l l i c compound. A summary o f t h e c r y s t a l d a t a i s g i v e n below: Compounds a b 1 c 6 Z Space Group Malonamide 13. .07 9. 45 8. .04 73. .0 8 P 2 1 / c Cyanoacetamide 8. .36 13. 56 7. .56 111. .2 8 P 2 1 / c C 2 0 H 3 3 N 3 - C H 3 X 8. .01 17. 70 31. .3 90. .0 8 Pbca (C 6H 5)3S1COCH3 7. .53 28. 7 7. .90 96. .8 4 P 2 1 / c The c e l l d i m e n s i o n s and space groups o f a l l t h e c r y s t a l s were d e t e r m i n e d from r o t a t i o n , W e i s s e n b e r g and p r e c e s s i o n p h o t o g r a p h s and on the G e n e r a l E l e c t r i c S p e c t r o g o n i o m e t e r . The i n t e n s i t i e s o f t h e r e f l e x i o n s o f t h e s e compounds, e x c e p t t h e compound C 2 Q H 3 3 N 3 , were c o l l e c t e d on a G e n e r a l E l e c t r i c XRD-6 A u t o m a t i c S p e c t r o g o n i o m e t e r w i t h s c i n t i l l a t i o n c o u n t e r , Mo-Ka o r Cu-Ka r a d i a t i o n and a 6-2Q s c a n . The i n t e n s i t y d a t a f o r C 2 0 H 3 3 N 3 were c o l l e c t e d on a G. E. XRD-5 Spec-t r o g o n i o m e t e r . The c r y s t a l s t r u c t u r e o f malonamide was s o l v e d by d i r e c t methods. The s i g n s o f 158 r e f l e x i o n s w i t h IE|> 1.50 were d e r i v e d u s i n g t h e s y m b o l i c a d d i t i o n method. The f o u r t e e n h i g h e s t peaks on t h e t h r e e - d i m e n s i o n a l E-map c o r r e s p o n d e d t o two m o l e c u l e s o f malonamide i n t h e a s y m m e t r i c u n i t . W i t h t h e s e c o o r d i n a t e s , t h e d i s c r e p a n c y f a c t o r , R, was 0.38. The hydrogen atoms were l o c a t e d on a d i f f e r e n c e F o u r i e r a t R=0.12. W i t h a l l nonhydrogen atoms a n i s o t r o p i c , t h e r e f i n e m e n t was V complete at R=0.05, using block-diagonal least-squares methods. The two symmetry-unrelated molecules have d i f f e r e n t orientations but s i m i l a r confor-mations. The amide groups are rotated out of the c e n t r a l C-C-C plane, one by 65° and the other 40°. The mean bond distances are C-C, 1.506A;C-N, 1.317A, C=0, 1.242A, and a f t e r correcting for thermal l i b r a t i o n , C-N, 1.334A; OO, 1.254A. The molecules are held together by hydrogen bonds inv o l v i n g a l l eight amino hydrogens, with each oxygen accepting two hydrogen bonds. The structure of cyanoacetamide was solved by Patterson methods combined with information from electron spin resonance measurements and with consider-ations of possible hydrogen-bond formation. The structure contains layers of molecules and t h i s reduces the three-dimensional Patterson to a two-dimensional one. The t r i a l structure had a discrepancy of 0.50 and r e f i n e d to 0.089. Through hydrogen-bonding of the amide group, the two symmetry-unrelated molecules form dimers, which can be considered as packing u n i t s , and other units are generated by a screw axis, 2^. The dimers are bonded to each other by a weak hydrogen bond of the type N-H-**NEC. The layers are r e l a t e d to each other by a centre of symmetry. The structures of C20 H33 N3 " C ^ 1 a n d a c e t y l t r i p h e n y l s i l a n e were solved by the heavy atom method. The p o s i t i o n s of the heavy atoms were obtained from the Patterson functions, and other atoms from consecutive Fourier maps. The compound C20 H33 N3 °^ U Rknown structure was obtained i n an attempted laboratory synthesis of the a l k a l o i d matrine. The structure of the compound was derived by s i n g l e c r y s t a l X-ray structure analysis. Features of the structure are described. In a c e t y l t r i p h e n y l s i l a n e the a c e t y l and three phenyl groups are arranged t e t r a h e d r a l l y around the s i l i c o n atom. The phenyl rings are orientated i n a p r o p e l l e r fashion and the features of the structure are compared with the germanium analogue. v i TABLE OF CONTENTS TITLE PAGE . i ABSTRACT . . . . . . . . . . . '• . . . . . . . Iv TABLE OF CONTENTS v i LIST OF TABLES . v i i i LIST OF FIGURES . . . . x ACKNOWLEDGEMENTS . . . . . . . . x i i GENERAL INTRODUCTION . . . . . . . . . . . . 1 PART I. THE STRUCTURE DETERMINATIONS OF MALONAMIDE AND CYANOACETAMIDE . 3 A. INTRODUCTION . . . . . . . . . . . . . 4 B. THE STRUCTURE OF MALONAMIDE .. . . . . . . . . . . . . . . . 6 Experimental 6 Structure Analysis . . . . . . 7 Results and Discussion 16 C. THE STRUCTURE OF CYANOACETAMIDE 3 3 Experimental 33 Structure Analysis . . . . . . 34 Results and Discussion . . . . . . . . . . 41 PART I I . THE STRUCTURE DETERMINATION OF A COMPOUND, C 2 0 H 3 3 N 3 • • • • 5 5 A. INTRODUCTION . 56 B . THE STRUCTURE OF A COMPOUND, C 2 Q H 3 3 N 3 57 Experimental . 57 Structure Analysis 5 8 Results and Disscussion 62 v i i PART I I I . THE STRUCTURE DETERMINATION OF ACETYLTRIPHENYLSILANE . . . 68 A. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 69 B. THE STRUCTURE OF ACETYLTRIPHENYLSILANE . . . . . . . . . . . 70 Experimental . . . . . . . .70 Structure Analysis 71 Results and Discussion . . . . . . . . . . . . . 74 REFERENCES . . . . . . . . . . . . . . . . . . . . 85 v i i i LIST OF TABLES Malonamide 1. Results of the Wilson p l o t and the d i s t r i b u t i o n of the|E|'s f o r malonamide 8 2. A comparison of the 16 solutions generated by the Phase Determination Program 11 3. The 158 non-zonal r e f l e x i o n s with |E | ^ 1 . 5 0 and signs derived by the Phase Determination Program. . 12 4 . Measured and cal c u l a t e d structure factors f or malonamide 17 5 . P o s i t i o n a l and thermal parameters f o r the atoms of malonamide. . . 19 6 . P r i n c i p a l axes of the thermal v i b r a t i o n e l l i p s o i d s f o r malonamide. 20 7. Bond distances and valency angles i n malonamide : .. . . 22 8. Equations of mean planes and angles between planes i n malonamide.. 24 9 . Bond lengths and angles of the amide group i n some compounds. . . 25 10. Hydrogen bond distances and re l a t e d angles i n malonamide 27 11 . Shortest intermolecular distances i n malonamide 28 Cyanoacetamide 12. Measured and calculated structure factors f o r cyanoacetamide. . . 13 . P o s i t i o n a l and thermal parameters for the atoms of cyanoacetamide 14. Equations of mean planes and interplanar angles i n cyanoacetamide 15. P r i n c i p a l axes of the thermal v i b r a t i o n e l l i p s o i d s and t h e i r o r i e n t a t i o n s for the atoms of cyanoacetamide 16. Bond lengths and valency angles i n cyanoacetamide 17. Hydrogen bond distances and re l a t e d angles i n cyanoacetamide. . . 42 44 45 46 49 51 I X The compound C^H^N^ 18. Measured and ca l c u l a t e d structure factors f o r the methiodide . derivative, of . C H N 3 59 19. P o s i t i o n a l and thermal parameters f o r the atoms of C H N - C H I -xCH OH. 63 20 33 3 3 3 20. Bond distances, valency angles and intermolecular distances i n the methiodide d e r i v a t i v e of C^H^N^ 65 Ac e t y l t r i p h e n y l s i l a n e 21. Measured and ca l c u l a t e d structure factors f o r a c e t y l t r i p h e n y l s i l a n e . 72 22. P o s i t i o n a l and thermal parameters f o r the atoms of a c e t y l t r i p h e n y l -s i l a n e 76 23. Equations of mean planes and angles between planes i n a c e t y l -t r i p h e n y l s i l a n e 77 24. Bond distances and valency angles i n a c e t y l t r i p h e n y l s i l a n e . . . . 78 25. Shortest intermolecular distances i n a c e t y l t r i p h e n y l s i l a n e . . . . 79 26. Comparison of Ph 3Si-CO«CH 3 and Ph3Ge.CO.CH3 81 X LIST OF FIGURES Malonamide 1. Sections of the three-dimensional electron-density d i s t r i b u t i o n and a view, looking down the c-axis, of the two malonamide molecules i n the asymmetric u n i t 14 2. (A). View, along b-axis, of the hydrogen-bonding i n malonamide.. . . 29 (B) . View, along c-axis, of the hydrogen-bonding i n malonamide. . . 30 (C) . Three-dimensional drawing of the hydrogen-bonding i n malonamide.31 Cyanoacetamide 3. The sharpened Patterson function and the t r i a l structure .36 4. The electron-density d i s t r i b u t i o n i n the section through 0 0—, and 4 p a r a l l e l to (l01),and the two corresponding cyanoacetamide molecules. 39 5. The thermal motion e l l i p s o i d s for cyanoacetamide 47 6. The hydrogen-bonds and packing of the molecules i n the layer of cyanoacetamide . . 52 The compound C20 H33 N3 7. (a) Sections of the three-dimensional electron-density d i s t r i b u t i o n , (b) Drawing of the molecule 64 8. View of the structure of the compound C H N -CH I , along a. . . 67 x i Ac e ty11ripheny1s i1ane 9. Sections of the three-dimensional electron-density d i s t r i b u t i o n and a view of the Ph^Si'CO'CH^ molecule. .75 10. View of the structure of a c e t y l t r i p h e n y l s i l a n e along c. . . . . . 83 11. View of the structure of acetyltriphenylgermane along c 84 x i i ACKNOWLEDGEMENTS I wish to express my appreciation to Professor James Tr o t t e r f o r h i s guidance and encouragement during the course of t h i s research. I would also l i k e to thank Professor W. C. L i n for suggesting the problems of malonamide and cyanoacetamide; Professor J . P. Kutney f o r supplying the compound C20 H33 N3' a n d Professor A. G. Brook for providing the sample of a c e t y l t r i p h e n y l s i l a n e , and f o r t h e i r h e l p f u l discussions. Thanks are also due to Dr. R. Hoge and Dr. E. Subramanian for h e l p f u l discussion about the d i r e c t methods; Mr. C. Gibbons for reading of the manuscript and comments; and my wife f o r her encouragement. I g r a t e f u l l y acknowledge the B r i t i s h Columbia Sugar Refining Company f or a scholarship. 1 GENERAL INTRODUCTION In 1895, Roentgen discovered x-rays, electromagnetic r a d i a t i o n with wave-—8 length of 10 cm., and made i t p o s s i b l e for p h y s i c i s t s and chemists to examine the i n t e r n a l structures and arrangements of the molecules i n c r y s t a l s . The f i r s t structure was determined by Bragg 1 i n 1913. Since then many thousands of structures have been determined. The recent growth i n the development and d i s t r i b u t i o n of computers and i n the improvement of instrumentation have made 2 X-ray structure analysis more and more p r a c t i c a l . The basic p r i n c i p l e s of X-ray d i f f r a c t i o n , and the use of the Weissenberg and precession cameras,have been 3_5 5 8 discussed by Buerger. There are also standard references ~ on space group determination and Patterson and Fourier s e r i e s , etc., and these are therefore not described here. A l l the symbols and c r y s t a l l o g r a p h i c nomenclature occuring i n t h i s thesis have t h e i r conventional meaning, described i n the "International Tables for X-ray Crystallography." 8 This thesis consists of three p a r t s . Part I describes the X-ray structure determination of two simple amides, malonamide and cyanoacetamide. There i s no heavy atom i n the structures and they have space group P2-^/c, and therefore afforded opportunities for applying the symbolic addition procedure for phase determination to a centrosymmetric space group. 9 1 1 However, the d i r e c t method did not give a s a t i s f a c t o r y s o l u t i o n to the cyanoacetamide structure, which was deduced from the Patterson function. Hydrogen bonding plays an important r o l e i n these two s t r u c t u r e s . In Part I I , the structure of a synthesized compound, C 2 Q H 3 2 N 3 F i s established by X-ray determination. The structure of the molecule has some s i m i l a r i t y to q u i n o l i z i d i n e a l k a l o i d s i n that i t consists of t e r t i a r y and secondary nitrogens i n the h e t e r o c y l i c six-membered rings. Since there i s no a l k a l o i d found to have a s i m i l a r structure, the compound has 2 no simple, t r i v i a l name. The X-ray structure determination of an organometallic compound, a c e t y l t r i p h e n y l s i l a n e , i s described i n Part I I I , and the structure i s compared with the analogous germanium compound. The methods used to solve the 2 structures i n Part II and III were straight-forward heavy atom methods. 3 PART I THE STRUCTURE DETERMINATIONS OF MALONAMIDE AND CYANOACETAMIDE / 4 A. INTRODUCTION 12 13 14 The c r y s t a l structures of formamide, oxamide and succinamide had been determined but that of malonamide} 5an intermediate member i n the family was unknown. Cyanoacetamide, also c a l l e d malonamidenitrile) 6 i s also c l o s e l y r e l a t e d to the family. I t i s to be expected that hydrogen bonding plays an important r o l e i n the c r y s t a l structure of compounds possessing amide groups and i t seemed of i n t e r e s t to f i n d out how the molecules pack together to maximize hydrogen bonding.lt also seemed of i n t e r e s t to determine whether the nitrogen i n the cyano group, -C=N, would act as an acceptor for a hydrogen bond. 1 5 Rexroad et a l studied the electron spin resonance (e s r) of y - i r r a d i a t e d malonamide c r y s t a l s and concluded that one of the r a d i c a l species formed was NH2COCHCONH2. Their r e s u l t s showed that the C-C-C plane of the molecule almost coincides with the cr y s t a l l o g r a p h i c a-c plane and that the C-H bond of the 17 r a d i c a l points i n the d i r e c t i o n of the c-axis. Cyr and L i n also found that the e s r spectra of a second species could be interpreted as due to H2NCCOCH2CONH with the unpaired e l e c t r o n i n a a - o r b i t a l . In addition, they deduced that the N-H bond of -CONH points approximately i n the d i r e c t i o n of the c-axis (private communication). I t i s known from many e s r studies that i n a c r y s t a l , the 18 r a d i c a l s generally r e t a i n the o r i e n t a t i o n of the parent undamaged molecule. 1 9 Cyr and L i n also studied the X-ray i r r a d i a t e d c r y s t a l of cyanoacetamide and found two r a d i c a l s , NCCHCONH2 and NCCH2CONH. From the p r i n c i p a l values of the hyperfine coupling tensor f o r the ^ - e l e c t r o n radical,NCCHCONH 2, they concluded that the C-C-C plane coincides with the (101) plane and the C-H bond i n the 7r-electron r a d i c a l points i n the d i r e c t i o n of [101] . It i s therefore another purpose of these studies of the c r y s t a l structures \ 5 of malonamide and cyanoacetamide to see i f the correlations found in electron spin resonance do exist . 6 B. THE STRUCTURE OF MALONAMIDE Experimental C r y s t a l s of malonamide are colourless prisms elongated along c and can be r e c r y s t a l l i z e d from water at room temperature. The (100) planes can e a s i l y be i d e n t i f i e d by the c h a r a c t e r i s t i c p e r f e c t cleavage. They di s s o l v e i n water slowly, and the density could be measured by f l o t a t i o n i n aqueous potassium iodide. The un i t c e l l dimensions and space group were determined from r o t a t i o n , Weissenberg and precession photographs and on the General E l e c t r i c Spectrogoniometer. C r y s t a l Data: (A, Cu-Ka = 1.5418A; A, Mo-Ka = 0.7107A) Malonamide, H NCOCH CONH : M, 102.06; m. p.,170°C. . Monoclinic, a = 13.07 ± 0.02A, b = 9.45 ± 0.02A, c = 8.04 ± 0.02A, B = 73.0 ± 0.2° . U = 949.6A3, F( 0oo)= 432. Dm = 1.426 g. cmT3 ( f l o t a t i o n i n K l solution) Z = 8; D x = 1.427 g. cmT3 Absorption c o e f f i c i e n t f o r X-rays: u(Cu-Ka) = 1 ° - 4 cmT1, ^ (Mo-Ka) = 1.30 cmT1. Absent spectra: ho£ when % i s odd;, oko when k i s odd, Space group i s P2 1/c (C 5^) The i n t e n s i t i e s of the r e f l e x i o n s were measured on a General E l e c t r i c XRD-6 Automatic Spectrogoniometer, with a s c i n t i l l a t i o n counter, Mo-Ka ra d i a t i o n (Zr f i l t e r and pulse height analyzer) and a 6 - 29 scan. The i n t e n s i t i e s were corrected f o r background, taken at the beginning and end of each scan. Among 1031 r e f l e x i o n s with 26 (Mo-Ka) < 42.3° (corresponding to a minimum interplanar 7 spacing d = 0.98A), 941 (91%) had an i n t e n s i t y above background. The 90 unobserved r e f l e x i o n s were included i n the structure analysis with | F 0 | = 0.6F (threshold) . The c r y s t a l used f or recording the i n t e n s i t i e s was approximately sph e r i c a l with a diameter of 0.4 mm. and was mounted with c* p a r a l l e l to the $ axis of the goniostat. No absorption c o r r e c t i o n was made. Lorentz and p o l a r i z a t i o n factors were applied and the structure amplitudes were derived. Structure Analysis The c r y s t a l structure of malonamide i s complicated by the f a c t that i t contains eight molecules per un i t c e l l , i . e . two molecules per asymmetric u n i t . A sharpened three-dimensional Patterson synthesis was calculated but i t was very complicated. Many e f f o r t s to derive the structure from the Patterson map met with no success, and d i r e c t methods were attempted. 2 0 The i n t e n s i t i e s were scaled by Wilson's method and the o v e r a l l temperature fa c t o r found to be 3.19A? The normalized structure factor magnitudes defined by | F H | 2 l E h l 2 = e 2 f j ( h ) J=1 ~ were ca l c u l a t e d with a program written by Hoge, where e i s 1 for general r e f l e x i o n s and 2 for h0& and OkO r e f l e x i o n s ; 1 0 |F H| i s the structure factor derived from i n t e n s i t i e s by using the scale f a c t o r and applying the Lorentz Q and p o l a r i z a r i o n c o r r e c t i o n i n the standard manner; f j (h) :'-s t* i e a t o m i - c s c a t t e r i n g factor f o r the j*"* 1 atom for the s c a t t e r i n g angle associated with h (h = (hkS.) ) ; N i s the t o t a l number of atoms i n the unit c e l l . The d i s t r i b u t i o n of the IEI's i s l i s t e d i n Table 1. 8 Table 1 Results of the Wilson p l o t and the d i s t r i b u t i o n of the lEI's for malonamide T h e o r e t i c a l 2 Experimental Centro-symmetric Non-centrosymmetric B 3.19 <|E|> 0.797 0.798 0.886 < | E | 2 > 0.988 1.000 1.000 F r a c t i o n with | E| >3 0.0136 0.003 0.0001 | E| >2 0.076 0.050 0.018 | E| >1 0.325 0.320 0.368 The d i r e c t determination of phases f o r the normalized structure factors has been very w e l l reviewed and discussed by Karle and K a r l e 1 0 and Hauptman and Karle^ The basis of the sign determination i s Sayre's r e l a t i o n ? 2 S (Eh) ~ S (Z^Eh Eh-h"'-) where S(') means "sign of'.' For malonamide, which belongs to the space group P2i/c E(hk£) E(hk£) and .k-44. E (hkJl) = ' E(hk A.) The p r o b a b i l i t y that a sign has been c o r r e c t l y determined, i f other signs are c o r r e c t i s P = 0.5 + 0.5 tanh | - I i E h 2 E h, E h _ h . | f 6/z — — — * 2 where N e_ = Z £ j=l and f Q i s the atomic s c a t t e r i n g f a c t o r f o r the j t n atom and N i s the number of atoms. The quantity e / e 3 / 2 i s c a l l e d the p r o b a b i l i t y constant and i s equal to 3 2 0.13332 for malonamide. Ap p l i c a t i o n of d i r e c t methods to hOX, data alone proved unsuccessful as too many equally probable solutions were generated. A program written by Long 1 1 was used to f i n d a l l the vector interactions and apply the above formulae to determine the signs of the normalized structure factors using a s t a r t i n g set of seven signs. The f i r s t three are l i n e a r l y semi-independent modulo 2, and are a r b i t r a r i l y assigned i n order to specify the o r i g i n . Sixteen p o s s i b l e s t a r t i n g sets were considered so that each possible sign combination of the remaining four signs could be t r i e d . The | E | ' S were l i s t e d i n order of decreasing s i z e and the program reordered the refle x i o n s on decreasing s i z e of | Z - E | , where E i s the sum i n the Sayre's equation. The program also reordered the refle x i o n s at the top of the l i s t so that the re f l e x i o n s i n the s t a r t i n g set had the proper p a r i t i e s . The seven reflexions used as s t a r t i n g set given by the program were: h k I E Sign 11 4 4 3.07 + \ 1 o r i g i n -1 3 2 2.47 \ \ determining -10 2 1 3.73 + | 7 4 2 2.99 a -1 7 4 3.35 b 5 2 7 2.75 c -2 3 2 2.23 d . three r e f l e x i o n s were used to determine the o r i g i n and by : the signs of a, b, c, and d, there were sixteen (2 **) sets signs. S t a r t i n g with each of the sixteen s t a r t i n g sets of seven signs, the program predicted the signs for other r e f l e x i o n s on the reordered l i s t , each new p r e d i c t i o n being used i n sign determinations further down the l i s t . When the bottom of the l i s t was reached, the process was repeated. The number of changes i n the l i s t and the number of new additions were counted for each cycle through the l i s t , and the c y c l i n g was continued u n t i l there were no new additions nor changes. For each of the sixteen s t a r t i n g sets, the f i r s t seven signs, the number of cycles and the consistency index are l i s t e d i n Table 2. The consistency index, C, i s defined as <I Eh I E I Eh'• Eh-^\ > C = = = =^ =-< I V | E h ' l ' l E h - h ' l > where the sums are over a l l p a i r s of h' and h-h' and where < > means the average over a l l values of h. The true s o l u t i o n w i l l usually be the most consistent one, i . e . i t w i l l have the highest consistency index. I t also has been shown 1 1 that the correct s o l u t i o n usually requires fewer cycles than other s o l u t i o n s . In view of these two observations, set number 10 of Table 2 appeared to be the true s o l u t i o n to the phase problem of malonamide. The program has options of using more conservative i t e r a t i o n , i . e . newly determined signs are not used to determine a d d i t i o n a l signs u n t i l the next cycle, and t h i s usually needs more cy c l e s . The data given i n Table 2 were obtained i n t h i s way. Using the option of less conservative i t e r a t i o n , i . e . the newly determined signs are used immediatly to determine a d d i t i o n a l signs, set number 10 came out with the same answer; i t required only two cycles while the r e s t of the solutions needed more than two. The consistency index i s also the highest for that set. Solution set number 10 together with the magnitudes of E for 158 non-zonal reflexionsare l i s t e d i n Table 3. Inclusion of zonal 11 Table 2 A comparison of the 16 solutions generated by the Phase Determination Program 1 1 (For 158 non-zonal r e f l e x i o n with E > 1.50) Set No. F i r s t 7 signs No. of cycles Consistency index 1 +_+++++ 10 0.57 2 +-++++- 9 0.54 3 9 0.60 4 +-+++— 9 0.65 5 +-++-++ 9 0.68 6 +_++_+_ i i 0.59 7 +-++—+ 9 0.73 8. +-++ 10 0.72 9 +-+-+++ 9 0.71 10 +-+-++- 8 0.81 11 +-+-+-+ 10 0.52 12 +-+-+— 12 0.75 13 +-+—++ 10 0.54 14 +-+—+- 10 0.59 15 +-+ + 9 0.57 16 +-+ 10 0.50 12 Table 3 The 158 non-zonal r e f l e x i o n s with'|E| >. 1.50 and signs derived by the Phase Determination program} 1 h k a E - 2 2 r. 2 . 2 H - 6 2 8 A 6 A . '..3 13 1 2 - 2 . 7 5 5 I 3 . 7 3 - 2 A 6 A . f. 2 - 3 1 6 2 . 2A A 6 2 . 7 8 -5 5 • - 3 . !•: 1 12 1 1 2 . 2 A 6 9 1 - 1 . 7 8 - 1 0 •? 1 3 . 7 3 - 1 2 ! 1 - 7 . 7 3 10 c; 3 . ?3 10 6 1 - i . * 0 - 2 3 2 - 2 . 7 3 10 . 5 A - 1 . 7 7 10 A ? 3 . AO - 9 A 2 - 2 . 2 1 - 5 1 6 -! . 7 7 - 1 7 A 3 . 3 j 8 t. 2 7 . 7 1 - 2 6 ,) . 7 7 - 8 A 2 3 . 3 I 7 2 7 - 7 . 7 1 A A A -) . 7 7 - 6 7 ? - 3 . 2 1 9 6 - 2 . ) 9 3 9 2 . 7 6 8 6 - 3 . 1 9 - 8 1 1 7 . 1 8 - 7 1 2 - 1 . 7 9 11 A A S . C 7 - 2 9 1 2 . 1 6 3 A . 7 9 - 7 A A - 3 . C 3 9 1 7 - 2 . 1 f. — 5 7 7 - . 7 9 3 ] 7 - 3 . f • 3 A 3 2 2 . 1 3 2 A fc . 7 A 8 7 2 3 . 0 1 A 8 1 - 7 . i l -A / t . 7A 7 A 2 - 2 . C i 9 9 5 5> - 2 . 1 0 3 3 . 7 3 10 2 1 2 . 9 1 - 7 7 ?..< e 5 8 1 - . 12 - 5 A 2 2 . 9 0 - 1 0 2 3 - 7 . 0 6 - 1 . 7 1 -IC A 2 2 . 8 > A 2 A 2 . (j 6 9 1 £. . 7 1 I? /, 2 2 . ." 1 - 9 I A 2 . 0 9 9 6 7 . . 7 1 A e 3 2 . 79 3 8 3 2 . OA - 6 7 3 - . 7 1 5 ? 7 2 . 7 9 9 2 7 2 . 0 3 8 5 2 - . 7 0 C 7 A 2 . 7 ! - 1 6 2 . 0 3 3 9 3 - . 6 9 - 3 8 2 2 . 6 9 2 3 1 - 2 . 0 7 9 S t . '• q - 2 R 2 - 2 . 6 8 p 2 7 - 2 . 0 0 - ? 9 A 1 . 6 8 2 f; 2 - 2 . 6 7 1 1 r 1 - 1 . ' ' 9 - 3 2 1 - . 6 8 - 6 6 2 2 . 6 2 3 2 1 . 9 a 1 9 . 1 L . 6 7 3 9 A 2 . 9 9 10 'A 1. 1 . 9 ; i 7 7 1 - L . 97 5 71 2 - 2 . 7 1 > 3 - 1 . n 8 7 7 1 - . 6 6 9 6 •> - 2 . 9 "5 7 l 2 1 . 9 8 - A 1 1 . 6 6 8' 7 2 . j A - 8 6 1 - 1 . " 8 - A . 6 5 - 4 A A - 2 . 9A 3 it lJ 1 . 9 6 - 3 3 9 -L 8 A - 2 . 3 3 - 6 6 3 1 . ' - 5 7 3 3 L . 6 9 - 2 c; - 2 . 5 1 6 3 fc - 1 . c ' 5 - 6 9 1 I . ' A 3 6 A - 2 . A 9 6 6 5 - 1 . 9 5 10 1 A - 1 . 6 3 - 2 3 6 2 . A 8 7 6 1 1 . <•' 3 - 1 1 - 1 . 6 7 - 1 3 2 - 2 . A V 2 1 6 - 1 . 9 1 - 6 I 1 L. 67 - 1 1 1 2 - 2 . A 7 A 6 3 1 . 9 0 - 1 9 7 I . 60 7 A A 2 . A 5 1 1 7 A - 1 . 8 9 - 1 0 2 ^ . . 6 0 3 5 6 - 2 . A 3 - 2 5 6 - 1 . 8 7 - 9 3 9 9 - 2 7 7 - 2 . A 2 - 1 8 A - 1 . 8 7 7 3 6 I . 9 8 - 3 ^ /, - 2 . A ? 12 2 1 1 . « 7 12 7 7 . 9 7 - 2 6 cr - 2 . A I 1 6 A 1 . 8 7 6 3 1 . 9 7 1C I t 2 . A 1 7 1 A - 1 . 8 6 10 9 7 1 . 9 7 3 3 2 - 2 . A 0 - 5 1 ? 1 . 9 5 1 3 7 - 1 . 9 A 9 1 A - 2 . 3 9 9 /, 6 - 1 . 8 A 6 5 9 . 9 6 8 /, A - 2 . 3 9 6 6 2 - 1 . 8 2 - 3 7 ;j - 1 . '.- 3 A F. 2 - 2 . 3 9 t 7 A I . 8 2 6 7 9 - 1 . 9 2 - 1 7 7 2 . 3 8 1 3 1.1 '? A 7 - 1 . 9 2 - 5 A - 2 . 3 5 6 7 3 1 . 80 8 I I - 1 . 9 1 — A ] - 2 . 3 3 - 7 A 2 1 . 7 9 - 6 A 3 - 1 .91, 7 6 - 2 . 1 - 1 c 9 - 1 . 79 3 7 9 - 1 . 9 1 9 '* A 2 . 3 0 - 2 3 5 - 1 . 7 9 5 9 6 . . •> 0 13 r e f l e x i o n s i n phase determination d i d not give a s a t i s f a c t o r y s o lution; these r e f l e x i o n s usually give more f a i l u r e s among the Sayre's r e l a t i o n s . A three-dimensional Fourier map was calculated using the 158 signed values of E from set number 10, (Table 3) as c o e f f i c i e n t s . The fourteen highest peaks i n the asymmetric u n i t of t h i s E-Fourier map appeared to be two molecules of malonamide. I t was l a t e r demonstrated that a l l 158 signs but one ( i . e . 3 7 5, -1.51 should be +1.51) were c o r r e c t . Refinement of the Structure: The p o s i t i o n s of the atoms were found from the fourteen highest peaks i n the three-dimensional E-map. Assuming a l l the atoms as carbon gave a discrepancy R of 0.38. Three cycles of block-diagonal l e a s t -squares reduced R to 0.18 and the bond lengths and thermal parameters made i t possible to d i s t i n g u i s h oxygen from nitrogen atoms. Six cycles of least-squares refinement with the use of the atomic s c a t t e r i n g factors of International T a b l e s 8 brought R down to 0.12 and a Fourier map was calculated using (F 0-F c) as the c o e f f i c i e n t s . This map gave weak but d i s t i n c t peaks, electron density of 0.37—0.76 e. A 3 i n a map of background ±0.25 e. A~ 3 for hydrogen atoms. The p o s i t i o n s of the twelve highest peaks i n the difference Fourier map are ind i c a t e d by c i r c l e s i n F i g . 1. Including the hydrogens i n the refinement, two more cycles of least-squares gave an R value of 0.095. Five more cycles of least-squares with oxygen, nitrogen and carbon atoms having anisotropic thermal parameters reduced R to 0.066. At t h i s stage, f i v e very strong r e f l e x i o n s s t i l l had bad agreement, with |FDI < IFCI i n a l l cases. A smaller c r y s t a l and weaker X-ray beam were used to check whether t h i s i s due to absorption, e x t i n c t i o n or n o n - l i n e a r i t y of the counter. Not much difference i n i n t e n s i t y r e l a t i v e to the medium intense r e f l e x i o n s was found. These f i v e r e f l e x i o n s were removed from the f i n a l refinement and two cycles of l e a s t -squares reduced R to 0.047 and the bond lengths for s i m i l a r bonds had very F i g . 1. Sections of the three-dimensional e l e c t r o n - d e n s i t y d i s t r i b u t i o n ; (contours at i n t e r v a l s of 1.0 e. A -? p o s i t i o n s of the peaks on the d i f f e r e n c e map are i n d i c a t e d by c i r c l e s ) and a view, l o o k i n g down the c - a x i s , of the two malonamide molecules i n the asymmetric u n i t . (Numbers are f o r convenience i n s t r u c t u r e a n a l y s i s and discussion.) 15 good agreement. With these coordinates, (Table 5), and including the f i v e bad-agreement strong r e f l e x i o n s the f i n a l R i s 0.055. F i n a l measured and calculated structure factors are l i s t e d i n Table 4. No e x t i n c t i o n corrections were made. The function minimized was Iw(F 0-F c) 2 with /w = 0.6 for the unobserved r e f l e x i o n s , /w = 1 when | F q | < 20 and /w = 20/|F Q| when | F o | > 20. The f i n a l p o s i t i o n a l and thermal parameters are l i s t e d i n Table 5 with t h e i r standard deviations. The i s o t r o p i c temperature parameters given for the non-hydrogen atoms were at R = 0.095 and for the hydrogen atoms were obtained from a d i f f e r e n t refinement using the atomic scattering curve of Stewart, Davidson and Simpson 2 3 The anisotropic temperature parameters U^j are components it ic of the v i b r a t i o n tensors, written i n matrix form and referred to axes a, b and c*. The magnitudes of the p r i n c i p a l axes of the v i b r a t i o n e l l i p s o i d s and the o r i e n t a t i o n of the e l l i p s o i d s f o r oxygen and nitrogen are given i n Table 6. Results and Disscussion Molecular Configuration; A view, along c, of the two symmetry unrelated molecules i s shown i n F i g . 1, together with sections of the three-dimensional electron density d i s t r i b u t i o n . The two molecules have d i f f e r e n t orientations i n the c r y s t a l but have s i m i l a r conformations and dimensions. The bond lengths and valency angles are l i s t e d i n Table 7. The distances for s i m i l a r bonds are, within experimental error, the same. The amide groups are rotated out of the ce n t r a l C-C-C plane. The equations of mean planes for the C-C-C and amide groups are l i s t e d i n Table 8. The s i m i l a r i t y i n the twisting of the amide groups for the two molecules can be seen from the interplanar angles: Planes 1 and 4 are the C-C-C plane for the two molecules and planes 2,3, 5 and 6 are the amide group planes. In one molecule, the amide groups are t i l t e d by 68.0° and 39.7° with respect to the ce n t r a l C-C-C plane, and i n the other molecule the corresponding values are 65.3° and 43.1°. The amide groups i n the same molecule are almost Table 4 Measured and c a l c u l a t e d s t r u c t u r e f a c t o r s (xlO) f o r malonamide. (Unobserved r e f l e x i o n s have |F D|=-0.6F(threshold)^ H K L FU FC H K Ft) FC H • K L F 0 FC H K L FC) FC H K L FO FC 0 2 0 4 6 3 - 5 1 7 5 7 1 40 43 - 6 2 2 125 126 8 1 3 183 1 63 1 2 0 4 - 1 2 20 0 4 0 92 78 - 5 7 t - 1 1 - 1 3 6 4 2 119 105 - b I 3 37 20 1 2 2 4 46 - 4 1 0 fa 0 2 2 9 - 2 2 6 6 1 1 221 -222 - 6 4 2 131 124 fi 3 3 83 32 0 1 5 9 / •i 7 0 8 0 5 3 H 564 - 6 1 1 1 55 145 6 6 2 190 - 1 9 6 - b 3 3 34 44 0 3 5 16 I 7 1 C 0 17 13 6 3 1 20 7 - 2 1 0 - 6 6 2 2 2 0 22 1 b 5 3 69 - 74 0 5 72 - 6 4 t 2 c 54 5 3 - 6 3 1 1 79 1 77 6 8 2 45 44 - H 5 1 24 - 2 9 0 7 5 34 10 I 4 0 27 - 2 8 6 5 1 2 '.17 - 2 3 2 7 0 2 146 143 a 7 3 17 - 3 1 I 1 5 1 73 169 1 6 0 - 9 • - 1 0 - 6 5 1 191 189 - ? 0 2 258 266 9 I 3 61 • 66 - 1 1 5 146 1 4 1 I f) 0 49 - 5 4 6 7 I 29 - 2 8 7 2 2 56 59 - 9 1 J 70 74 1 3 5 39 19 2 0 G 234 214 • - 6 7 1 64 - 6 3 - 7 2 2 173 - 1 7 3 9. i 3 12 34 - 1 3 5 42 1? 2 2 0 4 1 7 4 4 7 7 I 1 48 - s ? 7 4 2 414 - 4 2 1 - 9 i 3 26 24 1 5 5 82 8 8 ? 4 0 32B 311 - 7 1 1 177 - 1 79 - 7 4 2 182 184 9 S 3 1 16 1 34 . -I 5 5 1 5fa - 1 5 6 ? 6 0 1 09 L 10 7 3 1 27 - ? 4 7 6 ? 20 - 2 6 10 1 3 5 3 - 5 9 1 7 5 29 12 2 8 0 1 50 153 - 7 3 1 50 49 - 7 6 2 73 - 6 9 - 1 0 1 3 - i 2 0 - 1 7 5 ' 50 5"J 3 r; 0 - 5 I 8 7 5 I 57 - 5 3 7 8 2 - 1 3 - 5 10 3 3 - 1 I 10 2 I 5 20 - 1 I 3 ? 0 49 46 - 7 5 1 1 Id I 20 B 0 2 2 0 9 - 2 0 2 10 5 $ 123 120 -2 1 5 1 62 160 3 4 0 20 - 16 7 7 1 4 4 44 - 8 c 2 1 32 125 11 1 3 1 1 3 I 19 2 3 5 69 o': 1 6 0 1 7 21 - 7 7 1 33 - 4 3 8 2 2 136 136 11 3 3 72 74 - 2 3 5 53 J 3 8 c 25 - 3 6 8 1 1 246 - ? 39 - 8 2 2 34 - 38 11 5 3 - 1 3 12 2 5 23 1 2 4 c 0 7 2 8 € 962 - 8 I 1 294 2 9 0 H 4 2 122 11 3 12 1 3 5 I 4 J - 2 5 144 - 1 41 4 ? 0 SCI - 5 1 2 3 3 1 2 0 - 1 6 - 8 ' 4 2 289 29 2 12 3 3 45 - 4 1 . 2 / 5 - 12 1 4 4 4 0 2 78 282 - 8 3 1 166 - 1 6 5 8 6 2 1 83 13 7 I 3 I 3 79 77 3 1 5 1 1 3 I I 9 4 6 0 2 3 9 -2 34 <] 5 1 39 - 4 0 - 8 fa 2 - 12 I 3 0 0 4 122 - 107 - 3 I 5 51 4 1 4 a 0 1 8 A 186 - a 5 1 56 - 5 5 9 o 2 .31 1 - 3 0 9 c 2 4 364 355 3 3 5 76 7 7 5 0 0 - 7 23 8 7 I - 1 2 - 3 - 9 0 2 98 101 0 4 4 265 - 2 4 8 - 3 3 5 159 - 1 6 3 5 2 c a i 64 -f3 7 1 (•> 8 3 9 2 2 144 140 c 6 4 48 54 3 5 192 192 5 4 0 - 9 6 9 1 1 137 - ! 34 - 9 2 2 49 - 4 7 c 8 4 ?H 30 - 3 5 5 - 12 - 2 3 5 6 0 - 10 - 1 2 - 'j 1 1 66 68 9 4 2 222 - 2 2 3 1 0 4 594, - 6 0 4 3 7 5 103 1 J 7 5 8 0 24 - 2 0 9 3 1 - IC: 6 - 9 4 2 41 40 - 1 0 * 264 - 2 6 2 4 1 5 1 1 1 1 10 6 C 0 - a - 1 3 - 9 3 I 4 9 - 4 9 9 6 2 120 112 I 2 4 :>li 54 - 4 1 5 14 1 - 147 6 2 0 24 25 9 5 1 - 1 1 - 5 10 0 2 1 11 I I 7 - 1 2 4 lb - 8 1 4 3 5 98 ' - 9 4 6 4 0 129 - 3 1 9 - 9 5 I 75 - 8 1 - t u 0 2 144 - 15 1 I 4 4 4 3 - 3 8 - 4 3 5 141 I 4 8 6 £ 0 36 24 10 I I 159 - 1 5 1 10 2 2 39 - 5 1 - I 4 4 4L1 - 4 0 4 5 5 - 1 I - 0 6 fi 0 25 - i d - 1 0 1 1 4'> - 5 0 - 1 0 2 2' 112 1 1 1 I 6 4 1 9 3 1 99 - 4 5 5 3 4 3 3 7 0 c 32 - 2 4 1 0 J 1 I 85 185 10 4 2 292 2 9 7 - 1 6 4 1 3 3 - 1 3 3 4 7 5 - 1 ? - 2 4 7 2 c 4 4 34 - 10 3 1 31 - 1 4 - 10 4 2 172 168 1 8 4 1 6 1 - 162 5 1 5 261 2'>fa 7 4 0 - 10 H 10 5 I 29 - 3 5 10 6 2 34 - 2 4 - 1 fi 4 1 j ti - 107 - 5 I 5 23 1 7 7 6 0 - 1 1 1 3 - 1 0 5 | - 12 27 11 C 2 62 - 6 5 2 0 4 22C 2 0 3 5 3 5 48 49 8 0 0 1 89 - 1 9 2 11 1 1 - 1 1 - 0 - 1 1 0 2 46 4 I - 2 0 4 255 2 5 7 - 5 5 - 1 2 - 1 2 8 2 0 166 - 1 6 0 - 1 1 1 1 44 - 4 4 11 2 2 23 23 2 ? 4 59 - 5 6 5 5 5 72 - L 1 e 'J 30 IM 11 3 I 33 - 3 b - 1 1 2 2 67 - 6 9 - 2 2 4 31 - 3 0 - 5 5 5 234 - 2 2 3 B fa c 1 64 - 1 5 6 - 1 1 3 1 24 i a 11 4 2 32 - 4 3 2 4 4 1 6 - 1 1 5 7 5 32 - 1 9 9 C 0 51 - 8 11 5 1 119 - 1 15 12 0 2 126 - 1 2 9 - 2 4 4 50 - 4 9 6 1 5 190 - 1 a i 9 2 0 24 25 I 2 1 1 l fal 1 59 12 2 2 108 102 2 fa 4 85 95 -fa 1 5 - 1 2 15 9 c 23 I 7 - 1 2 1 1 13 1 - 1 2 6 12 4 2 168 162 - 2 6 4 6 t - 6 2 6 3 5 120 1 24 9 6 c 41 - 3 5 1 ? 3 1 80 - 8 6 1 3 0 2 92 - 8 3 2 A 4 68 70 - 6 3 5 - 1 2 - 1 1 1 0 0 0 234 22 3 Cj o 2 RfaTC- 1113 0 1 3 364 - 3 3 9 3 0 4 4b5 4 7 4 6 5 5 1 3 1 1 V-i 10 2 0 61 61 Q 2 2 1 1 9 - 1 1 0 0 3 3 112 - 106 - 3 0 4 466 - 4 8 1 6 7 5 94 - l u i IC 4 0 542 - 5 6 6 0 4 52 - 4 8 0 5 . 3 145 143 i 2 4 36 37 7 1 5 98 l u i I I C c - 1 1 - 7 0 6 50 - 5 5 0 7 3 64 67 - i 2 4 1HS 132 - 7 1 5 7 7 - c 1 t I 2 0 2a 13 •1 K 2 24H - 2 3 7 1 1 3 180 - 1 8 6 3 4 4 47 - 4 0 7 i 5 120 - 1 2 5 1 1 4 o - 12 - 1 1 1 0 2 67 58 I 1 3 187 - 186 - 3 4 4 276 - 2 8 0 7 5 56 5 5 12 C c 150 - 1 3 8 - 1 0 2 363 3 72 1 3 3 I 19 - 112 3 6 4 2 4 9 - 2 5 1 3' 1 5 121 12^. 12 2 - 0 - 1 2 2 I 2 2 - 6 - H - 1 3 3 7 5 - 7 2 - i A 4 - 12 21 8 3 5 1 I 1 - 1 J -0 1 1 2 16 - 2 0 3 - 1 2 2 62 - 5 9 I 5 3 30 3 - 2 9 9 i a 4 16 5 1 62 8 5 38 c ) I u a 316 1 4 ? 34 ?fl - 1 5 3 97 - 9 5 4 0 4 69 - 7 1 9 1 5 83 8? 0 5 1 1 42 132 - 1 4 269 266 1 7 3 19 - 2 1 - 4 0 4 42 4G 9 3 5 (J B - tO 0 7 [ 79 - 6 7 I 6 2 - 10 7 -I 7 J 61 57 4 2 4 391 379 9 5 5 1 36 - 1 3', c 9 1 37 l b - 1 6 i 42 3^ 2 1 3 110 9 9 - 4 2 4 30 27 10 1 5 73 I 1 1 436 428 1 a ? 21 . 14 - ? 1 3 37 - 4 5 4 4 4 252 - 2 36 1 0 3 5 57 - i » 4 -- 1 1 1 43 - 3 8 - 1 e 2 1 35 1 18 2 3 3 115 1 t 3 - 4 4 4 ?JL\ - 2 5 4 1 1 1 5 4fa - 5 2 1 3 1 43 - 4 3 2 0 ? 8 4 5 € - 1 037 - 2 3 3 72 - 7 ? 4 6 4 26 32 I 1 3 5 65 - 1 1 - 1 3 1 95 69 - 2 0 2 6 2 5 - 6 5 7 2 5 ) 213 - 2 1 2 - 4 6 4 h i 67 1 2 1 5 - 1 1 - 1 6 1 5 1 3 3 - 3 2 2 2 1 60 - 1 6 1 - 2 5 3 3 34 - 3 13 4 H 4 - I 3 6 •0 6 209 2 - 5 - 1 5 1 2 3 9 2 3 0 -? 2 •} 14 - 2 8 2 7 3 - 1 1 1 ? 5 0 4 1 46 139 0 2 6 3 5 - ) 1 1 7 1 18 - 1 8 2 4 - a - 9 - 2 7 . 3 71 - 7 5 - •> 0 4 H4 - 8 7 0 4 6 26 24 - 1 7 1 36 - 4 2 - 2 4 90 - 9 7 3 1 i 244 - 2 3 0 5 2 4 12 1 1 19 0 6 6 49 - 4 7 1 9 1 109 104 2 6 2 83 - 8 9 - 3 1 3 257 - 2 4 2 - 5 2 4 56 - 4 9 t 0 fa - 10 1 - 1 q 1 34 37 - 2 6- 2 223 215 3 3 3 9 5 - 9 1 5 4 4 60 61 - 1 0 6 284 2a7 2 i I 4 0 9 4 1 8 2 a 2 222 - 2 2 0 - 3 3 3 1 98 194 - 5 4 4 1 i l - 1 3 5 1 2 fa 64 fa ? - 2 l 1 115 1 16 - 2 8 2 214 - 2 IB 3 5 3 251 - 2 4 5 5 6 4 122 1 30 - 1 2 6 - 1 1 1 1 2 3 I 6 34 - 6 6 0 3 0 2 337 - 3 3 0 - 3 5 3 64 62 - 5 6 4 43 39 1 4 fa 97 19 - 2 3 1 798 2 9 9 - i 0 ?. 8 96 1082 3 7 3 30 35 5 A 4 74 7? - 1 4 6 50 - 4 4 2 5 1 266 - 2 4 9 3 2 2 97 - 1U3 - 3 7 3 81 - 8 2 0 .' 4 2 6 3 2 5 5 1 6 fa 29 - i'. - 2 1 398 388 - 3 2 2 1 36 - 128 4 1 3 75 78 - 6 0 4 68 69 2 0 6 49 49 2 7 I 64 62 3 4 2 1 12 - 1 74 - 4 1 3 2 4 5 - 2 4 2 6 2 4 1 7 20 - 2 0 6 269 - 2 76 - 2 7 1 62 - 6 4 - 3 2 26 - 2 8 4 3 3 106 100 - c 2 4 82 - 8 8 2 2 6 87 - n5 2 4 1 24 - 6 6 2 22 - 2 4 - 4 3 3 74 - 7 7 6 4 4 1 04 - 1 J 2 - 2 2 6 27 -4.1 - 2 9 [ '12 90 - 3 6 2 73 -8fa 4 5 3 n o 109 - 6 4 4 19 - 3 9 2 4 6 152 I 5 : 3 1 1 253 - 2 4 5 3 R 2 4H - 4 4 - 4 5 3 52 53 6 6 4 2 fa. 32 - 2 4 6 292 2 9 1 - 3 1 I 68 57 - 1 a 2 20 3 200 4 7 3 50 52 7 0 4 432 438 2 6 6 2 / - 2 i 3 3 1 2 7 3 256 4 c 2 6 82 - 7 7 6 - 4 7 3 25 - 2 8 - 7 0 4 69 - 5 7 1 0 6 37 3e - 3 3 1 29 -2t t - 4 0 2 23 ID 5 1 3 2 9 9 - 2 8 7 7 ? 4 Hi - S l - 3 0 • 6 63 -fa? 3 5 1 266 266 4 I 2 21 10 - 5 1 3 87 - 8 2 - 7 ? 4 168 1 66 3 2 6 22 1 9 - 3 5 1 1 1 9 120 - 4 z 2 76 77 5 3 3 - 9 2 1 7 4 4 2 /4 278 - 3 ? 6 1 OA 1 1 J ) 7 ] - 1 1 10 4 4 2 149 - 1 5 6 - 5 3 1 1 14 123 - 7 4 4 ?'.5 - 2 0 1 3 4 6 3^ - 11 - 3 7 1 38 - iii - 4 4 2 1 0 3 90 5 5 3 26 1 5 7 fa 4 64 - 6 8 - 3 4 fa E2 92 J 9 1 - 12 - l u 4 6 2 2 2 3 2 17 - 5 5 3 1 34 129 8 •j 4 iii 93 3 6 6 60 63 - j 9 1 54 57 - 4 6 2 1 31 - 142 5 7 3 27 - 2 3 - c 'J 4 22 9 4 0 fa 156 t 56 4 1 1 476 - 5 2 4 4 e 2 182 - 1 94 - 5 7 3 - 12 - 8 ti 2 4 80 83 - 4 0 6 - 1 2 - 2 4 - 4 l 1 484 522 - 4 8 2 21 6 6 1 3 48 50 • - 0 ? 4 5 6 - 5 8 4 2 6 1 1 7 - t 21-4 3 1 49 - 3 r 5 0 2 893 - 104 9 - 6 I 3 61 - 5 9 •e 4 4 2 17 - 2 3 4 - 4 2 6 54 5 7 - A 3 1 76 74 - 5 c 2 121 - 1 0 9 6 3 3 1 10 106 8 6 4 b4 6 9 4 4 6 1 50 1 44 5 1 2 40 - 2 31 5 2 2 47 4 2 - 6 3 i 7 9 - ^ 0 9 9 4 1 1 7 1 1 7 4 6 fa 75 - B 1 t I 94 185 2 2 1 66 - 1 6 3 6 5 3 144 142 - 9 0 4 (14 - 9 2 5 0 6 7 5 ^ j 7 1 GH - 9 2 5 4 2 - 9 - 0 - 6 5 3 42 4 I 9 2 4 5 5 50 - 5 0 6 96 7 9 - 4 7 1 9 4 IU1 - 5 4 2 4C6 406 6 7 1 1 38 1 - 5 9 4 4 2 . 1 2 0 7 5 2 6 81 - /9 4 <1 1 35 - 12 5 fa 2 8? 18 7 I 3 2 12 - 1 9 6 9 fa 4 ' .0 - 4 1 - 5 2 t> 2 I - 1 7 5 1 1 4 IC 41 1 - 5 6 2 - 1 1 1 6 - 7 1 3 94 97 0 4 - I 1 1 6 5 4 6 34 - 3^ - 5 I 1 353 343 5 a 2 I 85 - 1 7 / 7 '3 3 243 24 3 10 2 4 i l - 30 5 6 6 25 - 1 5 \ I 2 1 5 - 2 10 - 5 H 2 28 20 - 7 3 3 - 1 I 4 10 <. 4 4 - 5 7 6 0 6 I 33 1 16 - 5 ~i L 262 - .262 • „ c 2 58 - 5 4 7 5 J 46 4 M 1 I 0 4 11 3 91 6 2 6 75 - 7 « 5 5 [ 1 93 - 194 - 6 0 2 !<• 3 - t 37 - / 5 3 74 74 I I 2 4 1 - 143 6 4 fa 79 7) - 5 5 1 127 - 1 2 3 6 2 2 50 52 7 7 3 42 - 4 9 1 1 202 208 6 6 6 3fa - 3 1 Table 4 (Continued) H K L . F O f C H K F G F C H I F O F C K L F O F C H L F O F C 7 0 6 2 8 * - 2 8 5 3 2 1 228 219 5 3 2 2 0 0 202 - 8 2 3 - 1 I - 1 7 - 3 2 5 4 9 - 5 1 7 2 6 20 22 - 3 2 1 51 5 - 5 4 6 - 5 3 2 68 62 8 4 3 - 1 1 1 3 3 4 5 110 1 IV 7 4 6 26 - 3 0 3 4 I 82 - 8 7 5 5 2 20 15 - 8 4 3 20 14 - 3 4 5 20 1 5 8 0 6 22b - 2 2 5 - 3 4 1 64 - 7 1 - 5 5 ? 61 - 6 4 8 6 3 107 102 3 6 5 36 - 3 2 e 2 6 1 20 - 124 3 6 1 - 1 0 - IB 5 7 2 117 - 1 1 7 9 2 3 79 82 - 3 6 5 - 12 - 3 . 8 4 6 3 2 5 329 - 3 6 1 157 153 - 5 7 2 131 - 14 1 - 9 2 1 23 30 4 2 5 86 - 8 6 9 0 6 121 112 3 8 1 105 - 1 1 4 6 1 2 19 - 1 3 9 4 3 44 48 - 4 2 5 1 14 122 • 2 6 1 66 - 1 6 5 - ! 8 1 30 30 - 6 I 2 26B 271 - 9 4 3 30 - 2 3 4 4 5 48 44 4 6 112 - 108 4 2 1 28 18 6 3 2 - 9 3 9 6 1 177 - 1 7 5 - 4 4 5 27 17 IC 0 6 61 53 - 4 2 I 278 300 - 6 3 2 97 - 9 3 10 ? 3 79 - 8 2 4 6 5 48 - 5 0 10 2 6 - 1 2 6 4 4 1 117 - 1 1 3 . 6 5 2 57 52 - 1 0 2 3 121 - 1 2 6 5 2 5 - 1 0 17 I t 0 6 I 69 - 164 - 4 4 1 79 - 8 0 - 6 5 2 179 1 76 10 4 3 24 - 2 3 - 5 2 5 53 64 1 L 2 6 51 50 4 6 I 77 81 ft 7 2 22 - 14 IU 6 3 75 81 5 4 5 44 50 0 1 7 66 - 6 1 - 4 6 I 8 J - 0 4 - 6 7 2 227 - 2 2 3 11 2 1 2 7 - 2 0 - 5 4 5 - 1 2 2 0 3 7 48 50 4 8 1 167 - 1 6 9 7 1 2 387 389 11 4 3 42 38 5 6 5 94 - 9 6 1 1 7 67 69 - 4 8 1 31 16 - 7 1 2 240 - 2 3 0 12 2 3 69 - 8 0 6 2 5 77 81 - I 1 7 101 - 1 0 2 5 2 1 327 309 7 3 2 41 4 1 0 1 4 3 4 33 - 6 2 5 31 - 2 8 1 3 7 1 12 - 1 1 1 - 5 2 I 182 1 77 - 7 3 2 36 - 3 7 0 3 4 1 37 - 1 36 6 4 5 22 1 J - I 3 7 8 7 93 5 4 1 - 9 - 5 7 5 2 - 1 0 18 0 5 4 - 1 0 4 - 6 4 5 - 1 2 14 2 1 7 26 - 1 5 - 5 4 1 140 1 36 - 7 5 2 32 - 3 I 0 7 4 57 68 ft 6 5 1 39 - 1 39 - 2 L 7 37 30 5 6 1 27 - 2 3 7 7 ? 123 - 1 3 0 1 I 4 171 - 172 7 2 5 34 39 2 3 7 - 1 2 10 - 5 6 1 92 - 9 4 - 7 7 2 60 60 - 1 I 4 ?b7 - 2 6 6 - 7 2 5 - 1 2 3 3 1 7 2 5 7 - 2 5 4 5 8 1 124 - 124 8 1 2 234 - 2 3 4 1 3 4 321 302 7 4 5 67 - 6 3 - 3 I 7 - 1 2 2 - 5 8 1 - 1 2 - 7 - 8 1 2 56 54 - 1 3 4 126 - 127 7 6 5 35 16 3 3 7 • 96 97 6 2 1 2 9 7 ?9B 8 3 2 131 126 1 5 4 46 - 9 8 8 2 5 265 269 4 1 7 23 - 1 7 - 6 2 1 24 20 - 8 3 2 -I 1 7 - 1 5 4 c>2 - 6 5 8 4 5 21 10 3 7 37 - 4 0 6 4 I 1 20 - 1 15 8 5 2 168 - 16 7 I 7 4 - 1 2 - 9 8 6 5 200 - 2 0 0 5 1 r 51 - 4 6 - 6 4 1 1 7 - 8 5 2 95 - 9 9 - 1 t 4 255 2 5 5 9 2 5 49 - 44 5 3 7 57 - 5 8 6 6 1 n c - 1 2 9 8 7 2 2 0 5 2 0 9 ?. 1 4 - 8 - 1 6 9 4 5 92 101 6 1 7 4 1 3 3 - 6 6 1 47 - 4 5 9 1 2 182 - 177 -2 I 4 47 50 10 2 5 73 - Jb 6 3 7 feO - 5 6 6 8 1 30 28 - 9 1 2 25 2 7 3 4 2 J 27 10 4 5 2 7 - 16 7 I 7 37 - 4 2 - 6 8 1 - 1 2 4 9 3 2 48 - 5 2 -2 3 4 9 3 - 9 9 11 2 5 27 - I C 7 3 7 42 - 3 b 7 2 1 306 - 3 0 1 - 9 3 2 125 129 7 5 4 72 66 12 2 5 7 1 82 8 1 7 24 - 2 1 - 7 2 t 66 ft 3 9 5 2 26 26 -2 5 4 1 75 178 0 1 6 70 73 a 3 7 52 - 5 1 7 4 1 60 - 6 8 - 9 5 2 57 - 6 0 2 7 4 27 18 0 3 6 I 86 184 9 1 7 1 35 - 1 3 4 - 7 4 1 74 73 9 7 2 62 6 1 -2 7 4 38 - 8 7 0 5 6 90 - 8 8 7 6 I 182 179 10 1 2 76 - 7 8 3 I 4 230 - 2 7 6 1 1 6 67 74 1 1 0 27 6 - 7 6 I 55 - 4 9 - 10 I 2 53 52 - J 1 4 1 66 - 1 6 8 -1 I 6 49 - 4 4 1 3 0 46 - 4 2 7 8 I 32 21 10 3 2 60 6 5 J 3 4 307 294 I 3 6 78 - 74 1 5 0 64 - 6 4 8 2 I 73 - 7 0 - 1 0 3 2 27 - 3 0 - 3 3 4 75 75 -I 3 6 174 I 73 I 7 0 - 1 0 7 - 8 2 I 49 5? t o 5 11 I 112 3 5 4 1 14 - 142 I 5 6 95 93 I 9 0 23 - 2 1 9 4 1 - 1 0 1 3 1 1 1 31 21 - 3 5 4 9 1 90 -1 5 6 99 - 4 9 2 1 0 3 3 0 - 344 - 8 4 1 45 100 - 1 1 1 2 1 54 - 1 4 9 1 7 4 61 58 2 1 6 219 - 2 1 4 2 3 0 6 3 56 - 789 a 6 1 - 1 2 12 1 1 3 2 81 79 - 3 1 4 3 7 35 -2 1 6 105 -I 15 7 5 0 402 4 0 6 - 8 6 1 141 - 1 3 8 1 1 5 49 - 3 7 4 I 4 64 66 2 3 6 30 29 2 7 0 31 37 9 2 1 142 1 39 12 I 42 - 4 0 - 4 1 4 67 71 - 2 3 6 1 98 1 98 2 9 0 - 12 - 3 - 9 2 1 99 - 101 12 3 48 47 4 3 4 3 6 30 2 5 6 66 - 6 4 3 1 0 22 - 1 8 9 4 I 57 62 13 I ? 136' - 1 3 3 - 4 3 4 81 - 8 3 -2 5 6 1 1 3 - 1 1 5 3 3 0 36 - 4 8 • - 9 4 1 6ft 66 0 2 3 211 - 2 1 3 . 4 5 4 3 1 79 3 I 6 67 74 3' 5 0 57 - 5 5 9 6 1 20 10 0 4 3 I 36 - 133 - 4 5 4 2 9 - 36 - 3 I 6 184 1 88 3 7 0 36 - 2 5 - 9 6 1 24 20 0 6 j 205 193 4 7 4 5 1 - 5 3 3 3 6 177 185 3 9 0 65 - 6 1 10 2 I 301 302 0 8 1 26 - 2 1 - 4 7 4 54 56 - 3 3 6 29 29 4 1 0 4 5 3 508 - 1 0 2 I 322 330 I 7. 3 86 76 5 1 4 282 - 2 8 4 3 6 187 -1 78 4 3 0 I I 7 120 10 4 1 30 J l - 1 2 J 264 257 - 5 I 4 20 - 16 4 1 6 1 49 14ft 4 5 0 71 - 7 4 - I D 4 1 21 - 0 I 4 J - 9 16 5 * 4 12? - 1 2<* - 4 \ 6 171 - V 70 4 7 1 0 74 - B I 10 6 1 212 - 2 1 0 - 1 4 3 16 - 1 8 - 5 1 4 2 17 - 2 4 1 4 3 b 42 51 4 9 c 33 35 11 2 1 5 7 - 4 8 1 6 1 42 47 S 5 4 52 - 5 9 - 4 3 h 63 - 6 * - 4 9 c 42 - 3 5 - I t 2 I 72 73 - 1 6 3 77 - 7 6 - 5 5 4 79 79 4 5 6 - 1 2 -2 5 1 0 30 - 3 0 11 1 - 1 2 21 I a 32 - 2 4 5 7 4 202 202 5 1 6 48 55 5 3 0 30 - 3 4 12 2 1 127 123 - 1 8 3 22 - 1 3 6 1 4 62 - 6 8 - 5 1 6 1 18 -11 7 5 S c 85 - 7 6 0 I 4(>1 - 4 8 4 2 2 3 61 - 7 3 - 6 1 4 145 151 5 1 6 HI - 8 0 5 7 0 - 1 1 - 5 0 3 355 J 18 - 2 2 •3 212 - 2 1 0 0 1 4 73 H O 5 6 1 06 114 6 I 0 254 248 0 5 I 65 - 71 2 4 J 181 179 - 6 1 4 70 - 8 3 6 1 6 1 3 f -1 16 6 3 0 555 - 5 8 5 0 7 23 - 2 6 -2 4 3 1 18 - 1 1 3 6 5 4 144 - 1 4 1 6 6 175 - 1 70 6 5 c 3 49 351 0 9 165 - 1 66 2 6 3 43 44 - 6 5 4 5 1 49 6 5 6 61 5 9 6 7 0 t 31 - 1 34 1 1 4 2 9 422 -2 6 3 83 87 (. 7 4 124 122 7 1 6 32 33 7 1 0 - 9 - 1 1 - 1 I 2 236 231 2 8 3 83 -.8 4 7 1 4 2 8 ? - 2 8 3 7 3 6 131 I 1 7 7 1 c 16 - 1 9 I 3 26 15 - 2 1 3 38 47 - J 1 4 (9 44 7 5 6 151 - 1 4 7 7 5 0 34 - 4 1 -1 3 ? 6 5 ^ - 6 5 2 3 2 3 1 40 - 1 2 9 r 3 4 143 1 43 8 1 6 128 1 16 7 7 0 20 2 1 5 2 49 S O - 3 2 3 208 202 - 7 1 4 2 7 23 8 3 6 53 - 4 9 8 1 0 329 331 - 1 5 2 275 2 7 5 3 4 3 75 - 8 1 7 5 4 11 25 8 5 6 78 74 8 3 0 129 121 1 7 2 137 - 1 4 5 - 3 4 J 164 - 1 5 4 7 7 4 3 4 ii4 9 1 6 1 34 L4 2 8 5 0 68 - 6 4 - 1 7 2 60 - 6 9 3 6 3 68 6 9 8 1 4 64 - 6 U 9 3 6 26 11 8 7 0 149 - 1 4 3 1 9 2 - 1 2 6 - 3 6 3 47 4 5 - e 1 4 16 - 13 10 I b I 76 I /9 9 1 0 18 - 1 3 - 1 9 2 25 25 3 8 3 147 146 8 ) 4 29 - 16 10 3 6 54 t>2 9 3 0 31 33 2 1 2 506 518 - 3 fl 3 40 - 4 0 - s 3 4 - 12 - 1 5 11 1 b 68 - Ii, 9 5 0 28 - 2 1 - 2 1 2 4 1 0 407 4 2 3 3 3 5 - 3 2 7 8 5 4 61 68 0 7 52 - 5 2 10 1 c 284 2 T J 2 1 2 364 - 1 5 6 - 4 2 3 - 9 3 4 I 4 15 - 3 5 0 4 7 - 1 3 - 1 1 10 3 0 19? - 1 9 5 - 2 > 3 2 544 - 5 5 6 4 4 3 20 3 - 1 9 r - 0 1 4 1 20 1 1 7 I 2 7 69 -t>7 1C 5 0 92 8 1 2 5 2 45 - 3 5 - 4 f. 3 to ro 9 1 4 2 35 - 2 3 4 I 4 7 - 1 2 12 11 I 0 -1 1 8 -? 5 2 I 99 I 87 4 6 3 213 212 9 5 4 60 56 -1 2 7 162 I 59 11 3 0 - 1 ? i 2 7 2 17 I 1 - 4 6 3 70 71 10 1 4 \ •>''-. - 1 5 8 I 2 7 - 1 2 19 12 1 0 2 0 3 -2 00 - 2 7 ? 1 - 9 4 8 3 1 98 198 10 1 4 71 1 8 -2 2 7 1 5 1 - 1 56 12 3 0 94 - 8 3 2 9 2 51 51 5 7 3 245 - 2 4 2 10 5 4 1 I 3 - 1 1 0 2 4 7 2b - 2 1 0 2 1 8 8 5 6 1 2 3 0 - 2 9 ? 47 47 - 5 2 3 129 - 1 2 2 1 1 1 4 27 - 1 3 3 2 7 59 - 6 ? 0 4 1 I 86 - 1 8 7 3 I 2 29 5 278 5 4 3 92 91 1 I i 4 H.C 95 3 4 r 26 - 2 5 0 6 I 2 2 7 - 2 2 2 - 1 1 2 284 271 - 5 4 3 34 - 4 5 12 I 4 25 2 9 4 2 7 20 2 5 0 8 1 85 - 9 5 3 3 2 636 - 6 2 3 5 6 i 12 36 12 1 4 - 1 3 - 1 0 4 4 7 20 - 1? 1 2 1 256 - 2 3 7 - J 3 2 141 1 36 - 5 6 1 87 85 2 5 1 58 - 154 5 2 7 2 1 7 214 - 1 2 I 308 292 3 5 2 3 3U 340 5 8 ) 48 45 0 4 5 66 66 5 4 7 26 -17 I I 165 -1 59 - 3 5 2 I I 1 - 1 1 5 6 ? ) 32 - 3 2 0 6 5 - 1 2 - 10 6 2 7 - 1 2 1 -1 4 1 74 68 3 7 2 48 - 5 4 - 6 2 3 208 - 2 0 9 1 2 5 1 7^ - 166 6 4 7 31 - 2 5 1 6 1 40 91 - 1 7 2 I 17 - 1 37 6 4 3 225 22 1 - I 2 5 54 - 5 1 7 2 7 156 - 1 6 0 - 1 6 L 146 - 1 4 5 3 9 2 104 103 - 6 4 3 145 - 14 f I 4 5 11 - 71 7 4 7 - 1 3 - 9 L e 1 101 - 1 0 1 4 I 2 366 - 3 6 1 6 6 i 25 1 2 - 1 4 5 1 I 7 I IH 8 2 7 I 30 -1 11 - 1 a 1 1 38 - 14) - 4 1 2 14 - 2 0 -fe fe 1 1 36 1 SO 1 6 5 1 1 25 9 2 7 121 1 1 4 2 2 1 iBZ 385 4 3 2 514 527 6 8 3 54 - 4 6 - 1 6 5 12 25 -2 2 [ 169 - 1 59 - 4 1 ? <S 5 68 7 2 3 44 3 7 ? 7 5 1 tti 167 2 I 92 - 9 i 4 5 7 24 1 - 2 3 1 - 7 2 3 26 - 3 1 -7 2 5 272 276 -2 1 22 2 3 - 4 5 7 54 - 6 2 7 4 ) 24 14 2 4 5 34 36 2 6 1 1 18 - 1 Id 4 7 2 - 1 1 -11 - 7 4 j 12 7 - 136 -2 4 5 60 6 9 -7 6 I 3B 32 - 4 7 2 28 JO 7 6 3 65 - 7 4 2 6 5 1 1 9 - 1 2 4 2 8 1 46 - 9 8 5 1 2 3fl r 377 - 7 6 3 89 90 -2 5 1.5 6 -I 62 -2 R 1 44 - 4 9 - 5 1 3 69 363 8 2 * 200 - 2 0 4 \ 2 5 64 64 C: R e f l e x i o n s e x c l u d e d i n the f i n a l r e f i n e m e n t s . Table 5 P o s i t i o n a l ( f r a c t i o n a l ; xlO f o r O, N, C; xlO-3 for H) and thermal parameters for the atoms of malonamide. (standard deviations are given i n parentheses.) Atoms x y z B* (A 2) 0 (1) -0367(3) 2739(4) 3567(5) 2.62(14) C (2) -0020(4) 3853(6) 2796(7) 1.68(18) N (3) -0479(4) 5091(5) 3254(6) 2.84(18) C (4) 0975(4) 3821(6) 1275(7) 1.92 (19) C (5) 1927(4) 3457(6) 1904(7) 1.78(18) 0 (6) 2003(3) 3968(4) 3285(4) 2.30(14) N (7) 2662(4) 2604(5) 0930(6) 2.60(18) 0 (8) 4657(3) 2574(4) 1928(5) 2.73(14) ' c (9) 4978(4) 3724(6) 2322(7) 1.93(19) N (10) 4462(4) 4916(5) 2349(7) 3.50(20) C (11) 6004(4) 3792(6) 2806(7) 2.21(20) c (12) 6939(4) 3413(6) 1266(6) 1.55(17) N (13) 7685(4) 2582(5) 1535(6) 2.76(18) 0 (14) 6999(3) 3910(4) -0188(5) 2.52(14) H (15) -033(5) 570(7) 250(9) 4.94(1.7) H (16) -102(5) 515(7) 423(8) 3.96(1.6) H (17) 088(4) 312(6) 044(7) 3.61(1.5) H (18) 116(4) 478(6) 072(6) 2.39(1.3) H (19) 329(4) 250(6) 123(7) 4.36(1.6) H (20) 258(4) 226(6) -000(7) 3.23(1.4) H (21) 472(6) 568(8) 267(9) 4.24(1.6) H (22) 387(5) 495(7) 203(8) 4.58(1.7) H (23) 617(4) 478(6) 312(6) 3.42(1.4) H (24) 596(4) 312(6) 372(6) 3.69(1.4) H (25) 763(5) 219(6) 251(7) 3.81(1.5) H (26) 835(6) 234(9) 055(9) 5.66(1.7) Anisotropic thermal parameters (xlO 4 A 2) Atoms U U u, . U U U 11 12 1 3 22 23 3 3 0 (1) 296 -12 2 266 41 404 C (2) 234 3 -106 256 4 274 N (3) 394 57 -21 287 25 409 C (4) 246 -19 -68 293 16 252 C (5) 221 -39 -30 235 22 250 0 (6) 299 33 -99 380 -38 277 N (7) 287 65 -136 408 -124 386 0 (8) 284 21 -169 249 -36 611 c (9) 234 -5 -32 240 8 303 N (10) 383 52 -357 257 -55 939 C (11) 259 22 -89 335 1 293 C (12) 226 -61 -92 246 0 257 N (13) 287 103 -71 478 80 336 0 (14) 340 2 . -79 400 59 315 aav 23 22 18 26 21 25 Table 6 P r i n c i p a l axes of the thermal v i b r a t i o n e l l i p s o i d s f o r malonamide. Atom A x i s ( i ) U^(A) Vector Anglef(°) Vector Anglet(°) 0 (1) 1 2 3 0.153 0.170 0.227 C(2)-0(l) C(2)-0(l) C(2)-0(l) 21 71 83 0(1)+N(3) 89 C (2) 1 2 3 0.142 0.160 0.169 N (3) 1 2 3 0.162 0.183 0.235 C(2)-N(3) C(2)-N(3) C(2)-N(3) 9 82 85 0(l)-*-N(3) 84 C (4) 1 2 3 0.154 0.160 0.174 C (5) 1 2 3 0.133 0.161 0.172 0 (6) 1 2 3 0.161 0.170 0.200 C(5)-0(6) C(5)-0(6) C(5)-0(6) 12 84 80 0(6)+N(7) 77 N (7) 1 2 3 0.160 0.165 0.230 C(5)-N(7) C(5)-N(7) C(5)-N(7) 46 44 89 0(6)->N(7) 82 0 (8) 1 2 3 0.155 0.163 0.248 C(9)-0(8) C(9)-0(8) C(9)-0(8) 55 36 80 0(8)+N(10) 87 C (9) 1 2 3 0.148 0.156 0.186 N(10) 1 2 3 0.151 0.171 0.309 C(9)-N(10) C(9)-N(10) C(9)-N(10) 8 82 90 0(8)->-N10) 86 C ( l l ) 1 2 3 0.157 0.171 0.185 C(12) 1 2 3 0.127 0.160 0.172 ./continued Table 6 (continued) N(13) 1 0.151 C(12)-N(13) 7 2 0.176 C(12)-N(13) 87 3 0.241 C(12)-N(13) 84 N(13)->0(14) 89 0(14) 1 0.169 C(12)-0(14) 17 2 0.186 C(12)-0(14) 75 3 0.209 C(12)-0(14) 83 N(13)-KD(14) 85 * Vectors are defined by the two atoms indicated, t Angles between p r i n c i p a l axes and vectors. Table 7 Bond distances (A) and valency angles (degrees) i n malonamide. C (2) =0 (1) 1.242 t l .255] 0 (1)-C (2)-N (3) 122.8 C (5) =0 (6) 1.242 [1 .254] 0 (6)-C (5)-N (7) 122 .2 C (9) =0 (8) 1.240 [1 .252] 0 (8)-C (9)-N(10) 123.1 C(12) =0(14) 1.242 [1 .255] 0(14)-C(12)-N(13) 122.3 mean C=0 1.242 [1 .254] O-C-O 122.6 C (2) -N (3) 1.318 [1 .334] 0 (1)-C (2)-C (4) 119.8 C (5) -N (7) 1.321 [1 .333] 0 (6)-C (5)-C (4) 119.9 C (9) -N(10) 1.309 [1 .335] 0 (8)-C (9)-C(ll) 119.9 C(12) -N(13) 1.318 [1 .335] 0(14)-C(12)-C(11) 119.8 mean C-N 1.317 [1 .334] O-C-C 119.9 C (2) -C (4) 1.503 N (3)-C (2)-C (4) 117.4 C (4) -C (5) 1.513 N (7)-C (5)-C (4) 117.9 C (9) - C ( l l ) 1.503 N(10)-C (9)-C(ll) 117.0 C ( l l ) -C(12) 1.507 N(13)-C(12)-C(ll) 117.9 mean C-C 1.507 N-C-C 117.6 C (2)-C (4)-C (5) 109.4 C (9)-C(ll)-C(12) 110.3 mean C-C-C 109.9 N (3) -H(15) 0.82 C (2)-N,(3)-H(15) 115.7 N (3) -H(16) 0.89 C (2)-N (3)-H(16) 118.4 N (7) -H(19) 0.93 C (5)-N (7)-H(19) 116.7 N (7) -H(20) 0.86 C (5)-N (7)-H(20) 119.5 N(10) -H(21) 0.87 C (9)-N(10)-H(21) 118.8 N(10) -H(22) 0.88 C (9)-N(10)-H(22) 120.9 N(13) -H(25) 0.85 C(12)-N(13)-H(25) 112.8 N(13) -H(26) 1.02 C(12)-N(13)-H(26) 120.7 mean N-H 0.89 C-N-H 117.9 H(15)-N (3)-H(16) 125 H(19)-N (7)-H(20) 123 H(21)-N(.10)-H.(22) 120 H(25)-N(13)-H(26) 116 mean H-N-H 121 C (4) -H(17) 0.98 C((4) -H(18) 1.01 H(17)-C (4)-H(18) 111 C ( l l ) -H (23) 1.01 H(23)-C(ll)-H(24) 113 C ( l l ) -H(24) 0.96 mean C-H 0.99 H-C-H 112 ./continued. Table 7 (continued) C (2)-C (4)-H(17) 109 C (9)-C(11)-H(23) 112 C (2)-C (4)-H(18) 113 C (9)-C(ll)-H(24) 108 C (5)-C (4)-H(17) 111 C(12)-C(ll)-H(23) 104 C (5)-C (4)-H(18) 104 C(12)-C(ll)-H(24) 109 mean C-C-H 109 Standard deviations (xlO A for bond lengths) C=0 7 Angles not in C-N 7 Angles involv C-C 8 Angles involv C-H 63 N-H 63 24 Table 8 Equations of mean planes and angles between planes i n malonamide, Equation of mean planes i n the form: £X + mY + nZ = p where X, Y and Z are coordinates i n A ref e r r e d to orthogonal axes a, b, and c* Plane Atoms SL m n P Max . disp 1 C(2) ,C(4) ,C(5) 0 .1947 0 .9719 0 .1325 3 .9462 0 (A) 2 0(1) ,C(2) ,N(3) ,C(4) 0 .7744 0 .1459 0 .6157 2 .3490 0 .004 3 C(4) ,C(5) ,0(6) ,N(7) 0 .3643 0 .7869 -0 .4981 2 .9256 0 .004 4 C(9) ,C(11) ,C(12) 0 .0271 0 .9621 -0 .2715 3 .0921 0 5 0(8) ,C(9) ,N(10) ,C(11) 0 .2373 0 .1572 -0 .9586 0 .5127 0 .001 6 C ( l l ) ,C(12) ,N(13) ,0(14) 0 .5762 0 .7955 0 .1874 8 .1538 0 .009 7 C(2) ,N(3) ,H(14) ,H(16) 0 .857 0 .285 0 .429 2 .511 0 .05 8 C(5) ,N(7) ,H(19) ,H(20) 0 .279 0 .795 -0 .539 2 .630 0 .03 9 C(9) ,N(10) ,H(21) ,H(22) 0 .273 0 .176 -0 .946 0 .854 0 .003 10 C(12),N(13),H(25),H(26) 0 .559 0 .789 0 .255 8 .032 0 .01 Interplanar angles; (degrees) 1 -1 -2 -68.0 39.7 84.8 4 4 5 5 6 6 65.3 43.1 85.3 2 - 7 3 - 8 14.2 5.4 5 6 - 9 •10 2.4 4.0 1 - 4 25.3 2 - 6 47.3 3 - 5 46.6 25 perpendicular to each other ( 85°) i n both cases. The three bonds around the nitrogen atom i n malonamide are coplanar with maximum displacement from the mean plane of 0.05A. The angles between -CNH2 planes (planes number 7-10) and -C\° planes are also l i s t e d i n Table 8. One of these, 2-7, i s 14.2° and the r e s t are only 2—5? The molecular configuration found i n malonamide i s d i f f e r e n t from oxamide 1 3 14 and succinamide, which were both found to be p e r f e c t l y planar. The bond lengths and valency angles found i n s i m i l a r compounds are compared i n Table 9. The value of 109.9° found f o r the c e n t r a l C-C-C angle i n malonamide i s close to the tetrahedral angle while 113.9° was found for succinamide. This difference might be due to the packing of the molecules i n the c r y s t a l s . The bond angles around the amide carbon i n malonamide vary i n the same order as oxamide, cyanoacetamide and orthorhombic acetamide 2 I +i .e. C-C-N < C-C-0 < N-C-O. But the larges t angle found i n succinamide and t r i g o n a l acetamide 2 5is C-C-0. Table 9 Bond lengths (A) and angles (degrees) of the amide group i n some compounds Compound C-C C=0 C-N C-C -N C-C=0 N-C=0 C-C- -C Acetamide 2 4 _ 1.260 1.334 117 .2 119.6 123.1 Oxamide 1 3 - 1.243 1.315 114 .8 119.5 125.7 Malonamide 1.507 1.242 1.317 117 .6 119.9 122 .6 109 .9 Succinamide 1 1.512 1.238 1.333 115 .6 122.4 122 .0 113 .9 Cyanoacetamide 1.522 1.226 1.326 115 .1 121.0 123.9 112 .1 Examination of the p r i n c i p a l axes of the v i b r a t i o n e l l i p s o i d s i n Table 6 shows the following r e s u l t s : (1) A l l the carbon atoms are much less anisotropic than any of the terminal nitrogen or oxygen atoms. (2) The longest p r i n c i p a l axes, U 3, for oxygen and nitrogen atoms are perpendicular to the plane of the amide groups since they are almost perpendicular to the C=0 and C-N bonds (smallest angle of 80°) and make an angle of greater than 77° with the vector defined by the terminal atoms, N-K). This can be. explained as due to rotatory o s c i l l a t i o n around the C-C(amide) bonds. (3) The shortest p r i n c i p a l axes, U^, for most of the terminal atoms, i . e . except N(7) and 0(8) which are almost i s o t r o p i c i n the plane of the amide group, are approximately i n the d i r e c t i o n of the bonds. The displacement of the peak maximum caused by anisotropic thermal motion has been discussed by Cruickshank 2 6 and Busing and Levy ? 7 I t seems reasonable to assume the terminal atoms r i d e on the carbon atom i n the amide group, and corrections f or bond lengths were calculated according to Busing and Levy2. 7 The corrections range from 0.011A to 0.026A and the corrected bond distances are given i n Table 7 i n brackets. Arrangement of the Molecules and Hydrogen Bonding: In oxamide, succinamide and cyanoacetamide hydrogen bonds hold the molecules together to form layers while i n malonamide, hydrogen bonds hold the molecules together i n a three dimensional framework. A l l eight amino-hydrogens are involved with each oxygen acting as an acceptor for two hydrogen bonds. Table 10 contains the bond distances and angles r e l a t e d to the hydrogen bonding. Two views,along the b-axis and c-axis,of the hydrogen bonding are shown i n Figures 2(A) and 2(B), and a three dimensional drawing i s shown i n F i g . 2(C). The two molecules i n the asymmetric unit are held together by one hydrogen bond, N(7)"*"0(8). Both molecules form dimers with other molecules r e l a t e d to them by centres of symmetry i n a bonding scheme of C-CH -C ' z 0 N - H H H H - N ,0 £-CH 2-C, O N H 2 Table 10 Hydrogen bond distances and r e l a t e d angles i n malonamide. Hydrogen bond from Distances(A) Angles (°) atoms atom of eq. posn. of eq. posn. i ° N...0 N — H H...0 C-N-0 H-N-0 N (3)-H(15) O (1) i i 2.95 0.82 2.20 122.7 20 N (3)-H(16) O (6) i i i 3.04 0.89 2.20 129.6 16 N (7)-H(20). O (6) i v 2.92 0.86 2.10 115.1 13 N (7)-H(19).....0 (8) i 2.94 0.93 2.02 113.1 6 N(10)-H(21) 0 (8) v 2.89 0.86 2.03 121.1 6 N(10)-H(22) 0(14) v i 3.14 0.93 2.37 133.6 26 N(13)-H(25) 0(14) v i i 2.95 1.02 2.08 113.2 13 N(13)-H(26) 0 (1) v i i i 2.89 0.85 1.94 115.7 7 Equivalent po s i t i o n s ( eq. posn.) 1 X y z i i -X (1/2)+y (1/2)-z i i i -X 1-y 1-z i v X U/2)-y (-l/2)+z v 1-x (l/2)+y d / 2 ) - z v i 1-x 1-y -z v i i x ( l / 2 ) - y (1/2)+z v i i i 1+x (1/2)-y (-1/2)+z i x -1+x (1/2)-y (1/2)+z 28 The centre of symmetry i s indic a t e d by a dot i n F i g . 2(A). Each molecule uses one hydrogen bond i n forming a dimer and the other three point i n d i f f e r e n t d i r e c t i o n s , one along the screw axis i n the b d i r e c t i o n , N(3)''*0(l), N(10) •;-0(8) ; one i n the a d i r e c t i o n , N ( 7 ) " ' 0 ( 8 ) , N (13) • •-0 (1) ; and one i n the c d i r e c t i o n N(7)...o(6), N(13)•..0(14). The next shortest intermolecular distance C(4)-0(14) = 3.OA, given i n Table 11 i s s l i g h t l y less than the van der Waals separation, but other non-hydrogen atomic distances between molecules are greater than 3.21A. The distances given i n Table 11 in v o l v i n g hydrogen atoms are normal. Table 11 Shortest intermolecular distances i n malonamide. From to It Distances atom of molecule i atom of molecule (A) C(5) 0(14) v i 2.99 0(1) H(17) v i i 2.64 C(2) H(26) ix 2.82 0(6) H(17) v i i 2.75 0(8) H(24) i v 2.73 0(14) H(18) v i 2.62 0(14) H(24) i v 2.65 H(16) H(26) i x 2.61 * As indicated i n Table 10. Comparison with e s r Results: Planes 1 and 4 of Table 8 are ce n t r a l C-C-C planes for the two symmetry unrelated molecules. They make angles of 13.6° and 15.8° with the c r y s t a l l o g r a p h i c a-c plane. The interplanar angle of 25.3° shows the planes are t i l t e d i n opposite d i r e c t i o n s . The average d i r e c t i o n of these planes would be closer to the a-c plane, (010). The bisectors of C-C-C angle for the two molecules make angles of 10.5° and 14.7° with the c-axis. From F i g . l , i t can also be seen that some of the N-H bonds are roughly i n the d i r e c t i o n of the F i g . 2(A). View, along b - a x i s , of the hydrogen-bonding i n malonamide. F i g . 2 ( B ) . View, a l o n g c - a x i s , o f the h y d r o g e n - b o n d i n g i n malonamide. w o c-axis. These results show that the electron spin resonance method detects averaged effects and the correlations found i n e s r are essentially correct. But there are different ly oriented molecules in the c rys ta l . 33 C. THE STRUCTURE OF CYANOACETAMIDE Experimental Cr y s t a l s of cyanoacetamide grown from water sol u t i o n are colourless plates; the d i r e c t i o n of the b-axis can be recognized from the e x t i n c t i o n when b i s p a r a l l e l to the microscope p o l a r s . The c r y s t a l showed pe r f e c t cleavage along ( l o i ) . Space group data and c e l l dimensions were derived from s i n g l e - c r y s t a l r o t a t i o n , Weissenberg and precession f i l m s . The c e l l dimensions were refined by least-squares methods based on the 26's of f i f t e e n r e f l e x i o n s for Cu-Kaj and Cu-Ka 2 r a d i a t i o n measured on the General E l e c t r i c Spectrogoniometer. C r y s t a l Data: (X, Cu-Ka = 1.5418A; Cu-Kai = 1.54051A, Cu-Ka 2 = 1.54433A; X, Mo-Ka = 0.7107A.) Cyanoacetamide also c a l l e d malonamidenitrile. NCCH2CONH2; M = 84.05; m. p. = 119.5°C; 1 6 Monoclinic, a = 8.359A, O - 0.004A; b = 13.556A, a = 0.015A; c = 7.562A, a = 0.004A; 6 =111.18°, a = 0.04° U = 799.06A3 F(000) = 352. D m = 1.40 g. cm.3 ( f l o t a t i o n i n aqueous Kl) Z = 8; D x = 1.397 g. cmT3. Absorption c o e f f i c i e n t f o r X-rays: u(Cu-Ka) = 9.33 cm.} y (Mo-Ka ) = 1.18 cm. "3-Absent r e f l e x i o n s : h0£ when % i s odd, OkO when k i s odd. Space group i s P2i/c (C 5 ) 2h The i n t e n s i t i e s of the r e f l e x i o n s were measured on a General E l e c t r i c XRD-6 Automatic Spectrogoniometer, with a s c i n t i l l a t i o n counter, Cu-Ka ra d i a t i o n (Ni f i l t e r and pulse height analyzer), and a 9 —26 scan. Among 1493 independent r e f l e x i o n s with 26(Cu-Ka) <. 140° (corresponding to a minimum interplanar 3 4 spacing d = 0 . 8 2 A ) , 1 1 2 9 ( 7 6 % ) had an i n t e n s i t y greater than the background by twice the standard deviation of the counts. The 3 6 4 unobserved r e f l e x i o n s were included i n the structure analysis with | F | = 0.6 F(threshold). The c r y s t a l used f o r c o l l e c t i n g the i n t e n s i t i e s was shaped with a moistened tissue to a cyl i n d e r diameter of 0 . 3 mm. and length of 0.4 mm.. The b-axis was perpendicular to the c y l i n d r i c a l axis of the c r y s t a l and the c r y s t a l was mounted with b p a r a l l e l to the $ axis of the goniostat. Since the absorption c o e f f i c i e n t ( 9 . 3 cmT1) i s low, no absorption correction was attempted. Lorentz and p o l a r i -zation factors were applied i n the normal way to derive the structure amplitudes. Structure Analysis Hoping that the structure of the malonamidenitrile could be solved e a s i l y by the symbolic addition method, which gave successful phase solutions f o r malonamide, d i r e c t methods were attempted and applied i n the same way as for malonamide. For 1 6 4 non-zonal r e f l e x i o n s with |E|>1.31, two possible sets of solutions had s i m i l a r consistency indexes ( 0 . 7 5 ) , but the E-maps calculated by using these solutions showed part of the molecules only, i . e . the amide group, and no a d d i t i o n a l peaks were found i n the Fourier map using the signs of the "p a r t l y solved s t r u c t u r e " . I t was believed that the images of the amide groups were at the wrong place because they were too close to each other. How-ever, the E-maps from both sets showed a layer structure with layers p a r a l l e l to ( 1 0 1 ) and int e r c e p t i n g the c-axis at ± and z. . The images of the amide groups had one bond perpendicular to the b-axis. A f t e r the structure was solved by Patterson methods, the symbolic addition method was applied to derive the signs of 1 2 1 non-zonal refl e x i o n s with |E| > 1 . 5 0 . The s o l u t i o n with the correct s t a r t i n g set of seven signs had the highest consistency index, 0 . 8 5 , but 4 4 ( 3 6 . 4 % ) of the signs were i n c o r r e c t . 35 A sharpened Patterson function was calculated using sharp -B(sin 2ej/x 2 obs as the c o e f f i c i e n t for the Fourier synthesis. A l l the Patterson peaks l i e i n two layers p a r a l l e l to the (101) plane. One of the layers therefore passes through the o r i g i n and the other layer intercepts c at —. The sharpened Patter-2 son function i s shown i n F i g . 3(A) and (B). I t can be seen that the d i s t r i b u t i o n s of the peaks f o r both sections are e s s e n t i a l l y the same, but the i n t e n s i t y of the peaks i s d i f f e r e n t . A t r i a l structure (Fig. 3(C)) was derived based on the following c o n s i -derations: (i) From the proton hyperfine coupling tensor of the r a d i c a l NCCHC0NH 2i 9 i t i s known that the c e n t r a l C-C-C plane i s p a r a l l e l to the (101) plane with the b i s e c t o r of the C-C-C angle almost perpendicular to the b-axis. The highest peak i n the Patterson function, except the o r i g i n , at i i i , 2 4 2 suggested the s i m i l a r i t y of the o r i e n t a t i o n of the amide groups i n the two molecules. The peaks around the o r i g i n of F i g . 3(A) also support the above statements and the o r i e n t a t i o n s of the molecules are established, ( i i ) There are two possible ways to place the layers i n the u n i t c e l l : (a) one layer passing through the o r i g i n and one i n t e r c e p t i n g c-axis at i r ; (b) the two layers i n t e r c e p t i n g c-axis at — and — as they were on the E-maps. Assuming the 4 4 orientations of the molecules were correct, e f f o r t s were made to pack them i n such a way that the amino-hydrogens were a l l involved i n hydrogen-bonding, with other intermolecular separations at about van der Waals distances. Symmetry elements of the space group were also used as a l i m i t a t i o n for the packing. Both cases (a) and (b) were considered and a reasonable t r i a l structure were obtained only i n case (b). The vectors given by the t r i a l structure of F i g . 3(C) had very good agreement with the Patterson function, but only one amino-hydrogen i s involved i n hydrogen-bonding and the oxygen 36 Fig-. 3. The sharpened Patterson function and the t r i a l structure. (A) . The section of the Patterson function through the o r i g i n and p a r a l l e l to the plane (101). The contours are at a r b i t r a r y equal i n t e r v a l s except for the o r i g i n . (B) . The section of the Patterson function p a r a l l e l to (A) through the point 0 0^.. (C) . The t r i a l structure. 37 (C) accepts only one hydrogen bond, and these fa c t s made the structure seem not so p l a u s i b l e . I t was hoped that there would be some weak hydrogen bond between the amide-nitrogen, - N I ^ , and the cyano-nitrogen, N E C - , and the bond perpendi-cular to the b-axis i n the amide group was assigned to the C = 0 bond, and t h i s l a t e r proved to be the r i g h t choice. Refinement of the Structure: Based on the coordinates derived from the t r i a l s t ructure, (Fig. 3 ( C ) ) , and a temperature parameter of 3.OA2 for a l l atoms, structure factors were c a l c u l a t e d . The agreement between the calculated and 2 0 observed structure f a c t o r s , the l a t t e r being scaled by Wilson's method, was not very good, the discrepancy f a c t o r R being 0 . 5 0 ; however a cycle of l e a s t -squares refinement s h i f t e d a l l the atoms i n the same molecule i n the same d i r e c t i o n and t h i s suggested that the molecules were s l i g h t l y misplaced. i 8 With the use of the International Tables s c a t t e r i n g f a c t o r s , one cycle of block-diagonal least-squares refinement brought R down to 0 . 3 5 . The function minimized was EW(|FQ| - | F c | ) 2 , with /w = 0.5 for unobserved r e f l e x i o n s , /w = 1 when | F O | .<. 8.0 and /w = 8/|FOJ'when | F Q | > 8 . 0 . Several further cycles gave an R of 0 . 2 0 with i s o t r o p i c temperature fac t o r s , and the agreement could not be further improved. A dif f e r e n c e Fourier was calculated at t h i s stage, and the only s i g n i f i c a n t peaks, 1.3 e. A - 3 , were found to be on both sides of the layer around two oxygen atoms. Oxygen was given anisotropic thermal parameters, and several further refinement cycles brought R down to 0 . 1 7 . One strong r e f l e x i o n , i . e . 2 0 2 , was found to have bad agreement and was excluded from further refinements. Assumina a l l atoms as anisotropic, the lowest R value was 0 . 1 0 . A Fourier synthesis was calculated using ( F 0 - F C ) as the c o e f f i c i e n t s . Eight highest peaks, with electron d e n s i t i e s of 0 . 4 1 — 0 . 6 5 e. A - 3 were found on the differe n c e map which had random fluctuations of - 0 . 5 0 — 0 . 3 0 e. A - 3 . The po s i t i o n s of these peaks are shown i n F i g . 4 by c i r c l e s , and are a l l at l i k e l y hydrogen atom p o s i t i o n s . The hydrogen atoms 39 F i g . 4. The electron-density d i s t r i b u t i o n i n the section through 0 0 1. and p a r a l l e l to (101), (Contours at i n t e r v a l s of 1.0 e. A? 3; eight highest peaks on the dif f e r e n c e map are represented by c i r c l e s ) and the two corresponding cyanoacetamide molecules (numbers are for convenience i n structure analysis and d i s c u s s i o n ) . 40 41 were included i n the refinements, but they d i d not behave very well and the parameters f o r hydrogen atoms were f i x e d a f t e r one cycle of least-squares refinement. The refinement of the structure was complete at R = 0.081, excluding the 2 0 2 r e f l e x i o n , and the f i n a l discrepancy factor f o r a l l the ref l e x i o n s l i s t e d i n Table 12 was 0.089. The p o s i t i o n a l and temperature, parameters are given i n Table 13. Results and Discussion Molecular Configuration: The c r y s t a l consists of a layer structure, but the molecules are not p e r f e c t l y planar. The equations of mean planes and interplanar angles are l i s t e d i n Table 14. Plane 7 i s the mean plane f o r a l l the non-hydrogen atoms and the maximum displacement of the atoms from the plane i s 0.16A. Molecule 1 ( atoms 1 - 6 ) seems bent a l o t more than molecule 2 ( atoms 7 - 1 2 ), since the inter p l a n a r angles f o r 1 - 2 and 4 - 5 i.e.the angles between N=C-C-C plane and the amide, C - c f ° , plane d i f f e r f o r the two molecules, Table 14. The angles of 4.0° and 6.2° are the angles between the amide planes, C-C^, and amino planes, C-N^ . Larger values f o r 1 - 3 and 4 - 6 than 1 - 2 and 4 - 5 interplanar angles ind i c a t e that the amino groups, -NH2, twist i n the same d i r e c t i o n as the amide groups with respect to the c e n t r a l , N=C-C-C, plane. The longest p r i n c i p a l axes of the thermal v i b r a t i o n e l l i p s o i d s are almost perpendicular to the plane of the molecules and t h i s i s to be expected, because the atoms move out of the plane e a s i l y . The p r i n c i p a l axes and t h e i r orienta-tions are l i s t e d i n Table 15 and a drawing i s shown i n F i g . 5. Carbons C(2) and C(8) are the -C= (sp) type and carbons C(4) and C(10) are the -C (sp z) type and these atoms are held t i g h t e r i n the plane of the molecule than other atoms and t h e i r v i b r a t i o n e l l i p s o i d s are smaller. The s i m i l a r i t y of the thermal Table 12 Measured and c a l c u l a t e d s t r u c t u r e f a c t o r s f o r cyanoacetamide. (Unobserved r e f l e x i o n s have | F O | = - 0 . 6 F ( t h r e s h o l d ) ) 322 171 I 29 134 - J 2 5 1319 - 2 1 1 4 210 - 1 9 3 241 - 2 4 G ?44 409 254 154 102 62t 160 6") 4 9B5 160 861 - 1 0 2 H I T l - 1 7 2 445 - 5 2 4 U 5 - 1 3 8 435 - 4 4 6 140 - 1 9 0 214 277 364 143 - 1 6 7 - 2 5 4 - 2 3 5 239 257 157 205 - 2 4 0 -264 -1 66 -2 i /0 -106 2 72 105 110 112 456 219 212 2 l f l - 2 1 2 I O - 1 4 4 - I 12 - 4 3 - 6 5 -i>4 115 - 1 7 2 126 Table 12 43 (Continued) ?08 -2b 187 ISA 12? -1^)B -1*8 - il 1*1 -163 44 Table 13 P o s i t i o n a l ( f r a c t i o n a l ; xlO1* f o r C, 0 and N; x l O 3 for H) and thermal parameters for the atoms of cyanoacetamide. (Standard deviations are given i n parentheses?) Atoms X y z B {AZ) N (1) 2058(6) 2557(3) 4837(8) 4.41(17) . C (2) 1377(6) 1889(4) 3971(8) 2.83(14) C (3) 0538(7) 1042(4) 2876(8) 3.26(15) C (4) 1361(6) 0075(4) 3779(8) 2.87(14) N (5) 0471(6) -0734(3) 3056(7) 3.34(14) 0 (6) 2767(5) 0071(3) 5059(6) 3.78(22) N (7) 7101(7) -0034(3) 9826(8) 4.47(18) C (8) 6363(6) 1640(3) 9073(7) 2.76(13) C (9) 5379(6) 1495(4) 8081(7) 3.30(16) C (10) 6305(6) 2456(3) 8845(7) 2.85(14) N (11) 5435(5) 3263(3) 8071(7) 3.64(15) 0 (12) 7729(6) 2467(3) 10112 (7) 3.78(22) H (13) -056 099 267 3.61 H (14) 042 109 138 4.92 H (15) 523 145 675 4.04 H (16) 419 155 831 2.99 H (17) 097 -136 356 3.27 H (18) -059 -063 219 4.57 H (19) 631 373 880 5.09 H (20) 435 324 736 2.25 An i s t r o p i c thermal parameters (xlO 4 A 2) Atoms U l l U12 U13 U22 U23 °33 N (1) 581 18 -6 267 2 664 C (2) 361 33 59 226 27 412 C (3) 390 -9 43 209 27 427 C (4) 340 7 106 218 5 415 N (5) 389 -13 52 250 -6 563 0 (6) 465 26 -117 277 2 667 N (7) 520 -0 47 307 13 -. 696 C (8) 349 -49 37 258 -63 447 C (9) 454 -18 -24 246 -1 453 C (10) 358 -18 18 221 -1 417 C (11) 388 16 -43 293 37 601 0 (12) 434 -42 -67 231 -22 595 °av 23 18 20 20 20 26 * For H's (T(x) = 0.008, tr(y) = 0.006, <r(z) = 0.01, <r(B) = 1.6 ** At R = 0.17 f o r C and N; R = 0.20 for O 45 Table 14 Equations of mean planes and interplanar angles (degrees) i n cyanoacetamide. Equation of mean planes i n the form: HX + mY + nZ + p = 0 where X, Y and Z are coordinates i n A re f e r r e d to orthogonal axes a, b and c Plane Atoms a m n P Maximum d i s -placement (A) 1 N(l) ,C(2) ,C(3) ,C(4) 0. 8567 0 .0400 -0 .5143 1. 2764 0.004 2 C(3) ,C(4) ,N(5) ,0(6) 0. 7414 -0 .0676 -0 .6676 1. 7007 0.007 3 C(4) ,N(5) ,H(17) ,H(18) 0. 6994 -0 .0375 -0 .7138 1. 8278 0.019 4 N(7),C(8),C(9),C(10) 0. 7453 -0 .0484 -0 .6650 2. 1818 0.001 5 C(9),C(10),N(11), 0(12) 0. 7202 -0 .0174 -0 .6936 2. 3372 0.009 6 C(10),N(11),H(19),H(20) 0. 6412 -0 .0256 -0 .7670 3. 0295 0.050 7 A l l non-hydrogen atoms 0. 7887 0 .0060 -0 .6148 1. 6101 0.163 (101) 0. 7816 0 .0000 -0 .6238 1. 6332 — Interplanar angles (degrees): 1 - 2 12.6 4 - 5 2.8 2 - 3 4.0 5 - 6 6.2 1 - 3 15.3 4 - 6 8.5 7 - 1 7.2 7 - 4 4.9 7 - 2 5.9 7 - 5 6.1 (loi ) - 7 0.5 (101) - 1 7.9 (lOl) - 4 4.1 Table 15 P r i n c i p a l axes of the thermal v i b r a t i o n e l l i p s o i d s and t h e i r o r i e n t a t i o n s f o r .the atoms of cyanoacetamide. Atoms A x i s ( i ) N (1) 1 2 3 U ± (A) 0.163 0.212 0.314 Angles made to the vectors a + c b 86c 4 90 4C 86 89 C (2) 1 2 3 0.146 0.183 0.228 72 19 86 19 71 90 C (3) 0.143 0.164 0.266 81 9 89 10 81 86 C (4) 1 2 3 0.147 0.184 0.210 87 21 70 4 87-90 N (5) 1 2 3 0.158 0.190 0.263 83 14 77 7 83 90 O (6) 1 2 3 0.163 0.179 0.330 67 24 86 23 67 89 N (7) 1 2 3 0.175 0.214 0.300 88 9 82 2 88 89 C (8) 0.146 0.187 0.240 56 35 82 34 56 85 C (9) 0.156 0.178 0.273 81 10 86 10 81 88 C(10) 0.148 0.172 0.241 80 10 88 10 80 88 N ( l l ) 0.165 0.181 0.294 53 38 82 37 53 88 0(12) 0.146 0.182 0.304 68 22 86 22 68 89 The thermal vibration e l l i p s o i d s for cyanoacetamide. 48 motion for the atoms between the two molecules can also be seen i n t h e i r i s o -t r o p i c temperature factors i n Table 13. The bond lengths and valency angles are l i s t e d i n Table 16, i n which the interatomic distances averaged over ther-0 7 mal motion for the terminal bonds are given i n brackets. The two molecules have s i m i l a r dimensions. The bond lengths f o r the amide groups i n malonamide and cyanoacetamide are s l i g h t l y but not s i g n i f i c a n t l y d i f f e r e n t : C - C C = 0 C - N malonamide 1.507 1.242 [1.254] 1.317 [1.334] cyanoacetamide 1.522 1.226 [1.247] 1.327 [1.339] The bond lengths corrected f o r anisotropic motion agree better. The bond lengths f o r the amide groups and the normal C-C bonds for cyanoacetamide are also compared with other s i m i l a r compounds as well as malonamide i n Table 9, (page 25). The mean bond length of 1.138A for CEN i s normal compared with the electron d i f f r a c t i o n data but the corrected bond distance of 1.162A agrees better.with the spectroscopic data: 2 Q C=N bond lengths (A) Compound Spectroscopic data Electron d i f f . data HC=N 1.1530 1.13 C1C=N 1.163 1.13 BrC=N 1.158 The mean bond length of 1.451A for the C-C bond i n the C—C=N group i s also i n good agreement with those found i n other compounds, and the bond shortening can be a t t r i b u t e d to states of h y b r i d i z a t i o n , and i n f a c t , the C-C bond inv o l v i n g a given state of h y b r i d i z a t i o n has a f a i r l y constant length i r r e s p e c t i v e of the types of adjacent atoms? 9 Some examples are: CH3-C=CH 1.459A CF3-C=CH 1.464A CH 3-C=N 1.458 C F 3 - C E C C H 3 1.455 CH3-C=CC1 1.458 CC13-CEN 1.460 CH3-CECBr 1.460 Me3C-C=N 1.460 CF3~C=N 1.461 CH3-C=CCN 1.454 Table 16 Bond lengths (A) and valency angles (degrees) i n cyanoacetamide. N (1)-C (2) N (7)-C (8) 1.142 1.134 [1.167] [1.156] N (1)-C (2)-C (3) 179.3 N (7)-C (8)-C (9) 178.7 mean N=C 1.138 [1.162] NEC-C 179.0 C (2)-C (8) •C (3) •C (9) 1.440 1.461 [1.446] [1.469] C (2)-C (3)-C (4) 112.4 C (8)-C (9)-C(10) 111.7 mean NC-C 1.451 [1.458] C-C-C 112.1 C (3)-C (9)' •C (4) •C(10) 1.524 1.519 C (3)-C(4)-N (5) 115.6 C (9)-C(10)-N(ll) 114.6 mean C-C 1.522 C-C-NH- 115.1 C (4)-C(10)-•N (5) -N(ll) 1.326 1.327 [1.337] [1.341] C (3)-C (4)-0 (6) 120.5 C (9)-C(10)-O(12) 121.6 mean C-NH- 1.327 [1.33.9] C-C=0 121.1 C (4)-0 (6) C(10)-O(12) 1.223 1.229 [1.248] [1.245] N (5)-C (4)-0 (6) 124.0 N(ll)-C(10)-0(12) 123.7 mean C=0 1.226 [1.247] N-C=0 123.9 N (5)-H(17) N (5)-H(18) N(ll)-H(19) N(ll)-H(20) 0.96 0.90 0.98 0.87 C (4)-N (5)-H(17) 118 C (4)-N (5)-H(18) 115 C(10)-N(ll)-H(19) 96 C(10)-N(ll)-H(20) 122 C(3)-H(13) C(3)-H(14) C(9)-H(15) C(9)-H(16) 0.88 1.11 0.97 1.07 H(17)-N (5)-H(18) 127 H(19)-N(U)-H(20) 141 Standard deviations: bond lengths not invo l v i n g H ,a = 0.007A valency angles not involving H ,a = 0.4° bond lengths in v o l v i n g H, o=0.07A angles i n v o l v i n g one H, o=4° angles involving two H, o=6°. 50 Hydrogen Bonding: The hydrogen bond distances and r e l a t e d angles are given i n Table 17 and a schematic drawing of the hydrogen bonds i s shown i n F i g . 6. The lengths f o r N-H...0 hydrogen bonds are normal compared with other compounds as well as malonamide: N—H'--0 N—H---N(=C) 2.94 - 2.96A 3.14A 2.89 - 3.14 2.94 2.94 The distances of 3.14A f o r N-H"'-N(=C) suggest weak hydrogen bonds between the amide- and cyano- nitrogens. The hydrogen bonds make an angle of 144° to the C=N bond. The dimer, which i s formed through hydrogen bonding of the two symmetry unrelated molecules, can be considered as a packing u n i t i n the layer; the units are lin k e d together through the weak N-H...N(=C) hydrogen bond. The symmetry element that generates other units of the layer i s a screw axis, 2 j , and the layers are r e l a t e d to each other by a centre of symmetry with i n t e r -layer distance of 3.27A. Cyanoacetamide Malonamide Oxamide 1 3 Succinamide 1^ Table 17 Hydrogen bond distances (A) and r e l a t e d angles (degrees) i n cyanoacetamide Hydrogen bond from Distances(A) Angles(°) atom of eq. posn. i t o a t o m o f ec*- P o s n - N...0 N-H H. . .0 H-N-0 C-N-0 C-N-H N(5) -H(12) 0(12) i i 2.94 0.96 1.98 5.9 112.1 118.0 N(ll)-H(19) 0 (6) i i i 2.96 0.98 2.04 16.6 111.7 96.2 N...N N-H H...N H-N-N C-N-N C-N-H N(5)-H(18) N(7)(EC) i v 3.14 0.90 2.25 10.7 106.5 115.2 N(ll)-H(20) N(1)(EC) i 3.14 0.87 2.35 21.3 106.7 121.6 N (5) . . : N(l) (=C) 3.36 N ( l l ) . . N(7) (=C) 3.36 Equivalent positions (eq. posn.) i x y z i i 1-x (-l/2)+y (3/2)-z i i i 1-x (1/2)+y (3/2)-z i v -1+x y -1+z 52 F i g . 6. The hydrogen-bonds and packing of the molecules i n the layer of cyanoacetamide. (The section through 0 o | and p a r a l l e l to (101); the N-H---0 hydrogen bonds are indicated by broken l i n e s , and N-H---N(=C) hydrogen bonds are indicated by dotted lines.) F i g . 6 . 54 Comparison with e s r Results; The layers i n the c r y s t a l of cyanoacetamide are p a r a l l e l to the (101) plane and the mean plane, plane 7 of Table 15, for a l l the non-hydrogen atoms makes an angle of only 0.5° with the (101) plane. The mean planes f o r the NSC-C-C plane of the two molecules make angles of 7.9° and 4.1° to the (loi) plane. The b i s e c t o r s of the C-C-C angle of the two molecules make angles of 87.7° and 87.2° with the b-axis. A l l these r e s u l t s are consistent with the c o r r e l a t i o n s found i n ele c t r o n spin resonance within experimental e r r o r . 55 PART II THE STRUCTURE DETERMINATION OF A COMPOUND C o nH,„N 56 A. INTRODUCTION Alk a l o i d s are a very heterogeneous class of natural products. The majority of a l k a l o i d s are basi c , nitrogen containing organic compounds found i n plants. The nitrogen i s usu a l l y part of a h e t r o c y c l i c system? 0 A large v a r i e t y of struc-ture types e x i s t s i n t h i s c l a s s of natural products. Studies of how some of these molecules are formed i n plants have been c a r r i e d on i n t e n s i v e l y f o r the past decade and are s t i l l going on. The biochemistry of the intermediate steps for the formation of some of the a l k a l o i d s i s s t i l l a mystery. In an attempted laboratory synthesis of the a l k a l o i d matrine (I), C 1 5 H 2 4 N 2 0 , which i s an impor-tant q u i n o l i z i d i n e a l k a l o i d , a compound C 2 Q H 2 3 N ^ of unknown molecular structure was i s o l a t e d 3 1 I t would be very i n t e r e s t i n g to know i f the end product i s r e l a t e d to an a l k a l o i d and what mechanism would lead to a formation of such a compound. The X-ray i n v e s t i g a t i o n of a methiodide d e r i v a t i v e was undertaken and the structure was established as (II) and i t s o p t i c a l enantiomorph, the c r y s t a l being a racemate. (I) (II) 57 B . T H E S T R U C T U R E O F A COMPOUND C 2 Q H 3 3 N 3 Experimental C r y s t a l s of the methiodide, C 2 Q H 3 3 N 3 * C H 3 I ' X C H 3 O H , from methanol, are colourless p l a t e s , elongated along b with (001) developed. Unit c e l l and space group data were determined from various Weissenberg and precession films and on the General E l e c t r i c Spectrogoniometer. C r y s t a l Data: (A, Cu-Ka = 1.5418A; A, Mo-Ka = 0.7107A). C 2 0 H 3 3 N 3 " C H 3 I " x C H 3 O H ( x ^ ' M ' 4 7 3 - 2 ( f o r x = J> • Orthorhombic, a = 8.01 ± 0.03A, b =17.70 ± 0.05A, c = 31.3 ± 0.1A U = 4438 A 3 F(000) = 1960 (for x = 1) 2 D m = 1.42 g. cmT3 ( f l o t a t i o n i n aqueous K l ) . Z = 8; B = 1.37 (for x = 0), 1.42 (for x = -) x 2 Absorption c o e f f i c i e n t s , u(Cu-Ka) = 117 cmT1, u(Mo-Ka) = 15 cmT1. Absent spectra: 8kSL when k i s odd, hOl when I i s odd, hkO when h i s odd. Space group i s Pbca (D^fj) • The i n t e n s i t i e s of the r e f l e x i o n s were measured on a General E l e c t r i c XRD 5 Spectrogoniometer, using a s c i n t i l l a t i o n counter, Mo-Ka r a d i a t i o n (Zr f i l t e r and pulse height analyser), and a d-26scan. Of 2144 refle x i o n s with 29(Mo-Ka) <. 40.5^ (minimum interplanar spacing, 1.03A), 1876 were observed. The 268 unobserved r e f l e x i o n s were included i n the analysis with |F q| = 0.6F (threshold). The c r y s t a l measured 0.20 x 0.45 x 0.18 mm. along a, b and c re s p e c t i v e l y , and was mounted with b p a r a l l e l to the $ axis of the goniostat; no absorption corrections were made. A l l the i n t e n s i t i e s were corrected for background (which was found to be approximately a function of 6 only), Lorentz and p o l a r i z a t i o n factors were applied, and the structure amplitudes were derived. 58 Structure Analysis The iodide ion p o s i t i o n was determined from the three-dimensional Patterson function, and a l l the l i g h t e r atoms i n the molecule (exeept hydrogens) were located from three successive three-dimensional electron-density maps. At t h i s stage the nitrogen atoms could not be distinguished on the basis of electron-density, and a rather poorly resolved region suggested the presence i of some methanol of c r y s t a l l i z a t i o n , but these atoms could not be positioned r e l i a b l y . The structure was r e f i n e d by block-diagonal least-squares methods, with the use of the International Tables' 8 s c a t t e r i n g f a c t o r s , and with minimization of ZW(|FQ| - | F c | ) 2 , with /w = 1 when | F q | .< F*, and /w = F * / | F q | when|FQ| > F*. Examination of the values of w ( [ F Q | - | F c | ) 2 during the course of refinement suggested F* = 4 0 as being appropriate. R, i n i t i a l l y 0 . 3 1 , was reduced a f t e r four cycles to 0 . 2 0 . At t h i s stage three-dimensional F D (Fig. 7) and ( F Q - F c) syntheses indicated the probable p o s i t i o n of the oxygen atom of the methanol molecule, the electron-density corresponding approximately to one-half of a molecule, as suggested by the measured density ( 1 . 4 2 g.cm. 3) of the c r y s t a l s . The carbon atom of the methanol was not well defined, and refinements with t h i s atom i n several possible p o s i t i o n s close to the oxygen gave high thermal para-meters, so that t h i s carbon atom seems to have a variable p o s i t i o n i n the c r y s t a l . This i s not inconsistent with the f a c t that the c r y s t a l used appeared to have only one-half of a molecule of methanol of c r y s t a l l i z a t i o n , so that the methanol seems to be rather loosely held, and e a s i l y removed. Refinement of the structure was completed i n s i x cycles, with the use of anisotropic thermal parameters for the iodide ion i n the f i n a l cycles. F i n a l measured and calculated structure factors are l i s t e d i n Table 1 8 (R=0.17 for the 1876 observed r e f l e x i o n s ) . Table 18 Measured and c a l c u l a t e d structure factors of C 2 o H33 N3. (Unobserved r e f l e x i o n s have for the methiodide de r i v a t i v e J = -0.6F (threshold) ) 10 8 1 31 .B -133.1 10 10 50.1 -61 .5 10 12 24.0 6.2 10 14 94.4 60. 7 10 16 86. 3 80. 7 10 18 98.0 9d. / 10 20 61 . / 57.4 10 2 2 -8.5 12.9 10 24 - 8 . 8 - 1 .4 12, 2 6d.b -72.0 12 4 48.rt -52.0 12 6 44. 1 -72.2 12 8 4 3.9 -51.2 12 10 39. 1 - 19.6 12 12 -7.7 10.9 12 14 54.2 4 5. / 12 16 16.9 11 .it 12 18 30.2 21.7 12 20 60. 1 4d. 1 14 2 - 7. J 7.6 14 4 20. 7 H3 .') 14 6 52. 7 50.9 14 8 4 1.0 4 4.6 14 1 2 17. 1 - i l . / 14 14 25.0 -20.4 14 16 34 . i -22.1 16 2 19.3 40.5 16 4 96. 5 69.4 16 6 40.0 30.4 _16. 8. 1-9.1} 46.9 2 1 u o . / -111./ 2 1 244. 1 -2 71.3 2 5 1*9.6 - 140.3 2 / 46.4 65. a 2 9 167.2 176.3 2 1 1 196. 6 204. 1 2 1 1 159. / 175.9 2 15 160.4 165.2 2 IT 18.8 12.1 2 1* 79.4 -85.2 2 21 101. 7 -94.5 2 2 J 108.4 -91.6 2 25 62. 3 -67. 3 2 27 24. J -19. / 2 29 -8.7 l . l 4 I 236.4 -25 3.6 4 3 159.2 -157.1 4 5 54. 7 -28.9 4 7 •J4.6 6 9. / 4 9 137.3 t 29 .2 4 1 1 115.4 142 . » .. 4 1 3 156. 1 151,1. 4 15 93. 1 104.3 4 17 17. 1 8.9 19 47.9 -55.7 4 21 37.9 -23.5 4 ?) 80.4 -62. 3 4 25 4 1.6 -64.6 4 27 25.9 -21.9 4 29 16.3 -16.3 6 1 139.6 127.6 6 3 4 7.0 61.3 6 5 -5.2 2/.7 6 7 2 7. 3 -22. 3 6 9 5 6.3 -51.1 6 I 1 88. 4 -91.9 S 13 )7. 6 -101.a 6 15 4d.2 -4 7 . K 6 17 19.3 -14.0 6 19 3 i.d 45.5 6 21 3d.6 27.4 23 32.9 2 1.4 6 25 36.0 3 1.2 6 27 25.3 19.1 a 1 19 7.1 17/.5 8 J 255. 1 2 10.6 d 5 3 7.3 38. 3 8 7 d 0. 1 -71.9 8 9 15 7.6 - 140. 5 d 11 182.7 - 1 84.2 d 13 1 44. 1 - 14 7.5 H 15. b2.0 -fc5 .4 d 17 1 1.8 -13.6 a 19 5 3.4 40.5 8 21 65. o 66. 1 0 2 1 4d.4 '.6.5 8 2 4 B).« / J .4 10 I 35.0 3.6 10 1 - 50. 6 J ». 1 10 5 11./ / .2 1J 7 20. / -7o .4 10 9 -6. ' 1. 1 10 1 t 4 t . 'i. - \ t . 1 10 t ) l:j.<. -9.6 1(1 1 5 4 i.C -40. / l'J 1 7 20. 4 -11.* 10 I ) 40. 1 4 5.') lo 2 1 -y. i 7 .<• 1') 2 1 — Awl/ 1 J.9 12 [ LM.2 - 9f. 12 1 7 f.H -'•1.1 1 2 i 2o.r, - il ,ti 12 4 1 . H HI. i 1 2 9 70. 1 12 1 I ) 6 . 4 92 .'j 12 I 1 Jd.O /ii .0 12 15 ) / . 4 4.' .9 12 I 7 -0. 1 4 .4 L2 1 1 40.4 - lit . 1 16 7 18.0 7.7 lb 9 -8.8 -22.5 h°2 0 0 132.2" -14 5.3 0 2 290.6 -292.2 0 4 I ' l . l - 194.6 0 4. 92.5 85.8. 0 8 ">?. 7 54 .H 0 10 1 15.5 152.9 0 12 2 1 J.2 260.9 0 14 14 L . a 151.4 0 19 3 1.6 50.0 0 18 32.0 - Id.4 0 20 12 .4 - 12.5 0 22 65.9 -74. 7 0 24 /4. / -86 . 1 0 26 - a . 2 -2 1.2 59. /... _-51 , [j 2 0 214.6 -205.2 2 2 65. / -44. (J 2 4 8.5 2. / 2 6 5 1.6 -69. d 2 8 90.4 92 .6 2 10 125.3 12 7.4 2 12 3 3 . ) 16.U 2 14 15.0 22.8 2 16 19. ) 22 .y 2 18 1 9.G 12.4 2 23 65. 3 -52. / 2 2? 40.8 -4d.O 2 24 ld.C -16.1 2 26 17.2 -15.3 2 28 -3.6 3.U 4 0 139.6 1 54 .6 4 2 204. 5 206.6 4 4 53.6 64.0 4 6 22 .1 21.4 4 e 49. 5 -50. 3 4 10 22 7.6 -224.9 4 12 l id./ - 124. 7 4 14 f.9. / -89. 1 4 16 32.2 -36. 1 4 Id 2-1.2 19.8 4 20 ) 1.4 11 .0 4 22 49.9 79 . 5 4 24 •)4. 1 53 . 1 4 26 20. 6 19.0 4 2 8 2 3.0 22. 3 6 2"0.4 20. . ( . 2 I'., 4. 0 117.1 6 4 41.2 4 1.J 6 (, U t.2 4 .4 (> H 103.2 -106. 1 (, 10 9 'j . li -114.0 <, 12 7 1 . H -70.9 6 14 109.6 - U)b . 1 6 16 4 7.2 -46.3 6 Ui 16.6 24 .4 t 20 '.4 . 1 39.4 6 22 M .6 90.0 6 24 15.3 30. 1 6 26 1 I..U 20. 3 8 0 15. <> - 35. 7 t. 2 t 1 .0 30.6 U 4 10. 1 -27.) 6 11./ 6.4 8 d 4 i . 6 10 3 7.0 -42.9 12 19.1 2 4.2 I h - / .4 -11 ".2 U l» - l . l , 12.9 1  2 0 2 f.i, -SU.il tl 22 -0.2 24 - l i . i - !..' tl) 0 1 4 0. 6 -14 r... io > 92.2 -98 .0 10 12 . 1 -4 1.0 10 f. 12. tl -1.2 H. • J /J.H /2 .•> io 10 7 4.1 74.4 10 i.» 1 Jl . 1 i n i . i to 1H 86. 1 7 4.0 l 0 16 12.4 24.2 10 111 - d. 1 1 3.d L0 20 40.0 -47.4 Io 22 ..2.0 -60 .4 1 j 0 89. 7 -66.6 1 i 2 '.2. 1 -44.4 12 '9.2 -25. 1 1 2 6 2 ). 4 -11.0 I7 <i •> I .2 I /. 1 1 2 ui 00.2 114.2 12 12 11./ Sl . i 1 2 14 -8. 1 22.4 1 2 I* 2 / .9 24.2 1 2 1 ii -a . 4 - 10. / 12 .'0 4 . 1 -14.2 I 9 4 6. ) 4 1). 1 I'( 2 .4.2 4 7.4 j-. 4_ 16. 1 9 . 4 14 - o . 1 IO. * 1 ' i n 1 4 . i -7.1 14 10 .2 . •' -'•-'». 2 X'' 12 I L . (. -29 . 7 14 14 .' /. ) - ' 4 ' 0 16 i! •;»•;• 2d. 4 I 4 4 iO. 2 l i '} "•!*4 -'!) 2 [ 1 1 I . 4 •115.6 1 72H . 1 2 26 I . S 2 7 1 76. i 1 -i e . » 2 ) 42 . 1 4 7.0 2 1 1 . / -24.1 2 1 > 2 4.3 - '. 2 . •'. k 1 o^bs 'calc h = 0 U 2 188.6 l 68.4 (1 4 H 1. 1 -59. 1 0 6 160.6 152.0 0 H 4U1.4 -4/7.5 0 10 286.0 -2/O.b 0 12 339.b -3U;.4 0 1 4 251.1 -20'*.0 0 16 66. C -?/. 1 0 1 H 42. 1 -10 .5 0 20 9 3.9 79. 7 0 22 15b.8 176. 3 0 24 116.6 95. 1 0 26 1 16.2 M / . 4 0 28 42.6 2 7. I\ 2 19 167. 1 139 7 2 21 7 3. 6 33 2 2 2 3 33.3 20 2 2 25 4 0.5 -34 ? 2 7 6 7.1 -5$ « 2 29 72.4 -60 6 31.4 .11.5 87.6 100. 1 92. I 24. ft 36. 1 22 91 4 6 7.3 2 24 31 y 13.9 2 26 2 3 6 16.0 2 2d 24 7 4 .f. 2 "10 -:i -.1.7 4 0 1 lu 2 -3 16.1 * .2 1 ? 2 . d 1 7 .ii 40. 7 - 4 / . 5 - I 1 1 .0 -77 . n 70.8 -64 2 1.0 .10b. 6 -2 6) 226.2-201 9 1.1 14.2 113.3 201 . 1 209. I 13 1-7 -7.0 C6. J i ? :> . o (12 .0 ' 11.7 40.6 9J. 7 122.5 .1 / . n '.2.4 19.9 /I . I 4 0.6 1 1 .6 19.U M . 7 (.0.3 -8.0 -8 . 7 232 . I 140. 1 16 7.1 J4. ) 72 . 1 4 6 . 9 - 1.2 •10.8 61.2 12 1.6 B /. l._ 46.''. 64 .3 -1 l'J.4 -72. . 7 -29.1 20.0 -49. I -;:9.b 2 6.0 -54.6 14 52.9 -64. I -69.0 19.9 48.4 4 4.0 75 .2 14 2.4 54. U 21.2 -0.4 -40 . 1 -14.9 -90. / - 1/.2 -24 . I -90.9 -47.? / i.y .V.J -104.1 -65.5 3. / 14.3 <i.S 150.9 -5 3«L.9 -369.7 2 /b.U 117.4 70. I 62.5 147.7 •290. 141.1 -62 .0 51.8 149^  I 169.4 295.0 21-1.5 1 7.0 127.4 160.O 2b. 6 12JI.9 141.H 10.0 101.7 12. i 26. 1 - 17.4 -b? . / 19.4 7b.4 12. 7 1 / . 1 25.2 76. I 1 /0.2 229. 2 241. 1 16ft .(> 2 60.6 2 2 5.0 H)b. / 5.2 .-29.5 48 .0 10. 1 10. 1 10.2 39.fi, ... 62. 1 11.3 114.2 70. 7 i l .4 11 . i 108. J 111.2 M3.i 18.1 - 7.3 -31-'-10.9 11.7 -1 7-r. -L9 >. 1 -9 1.7, ...-/i'AiX -02.2 - I O.I. / 4 . J 1 72.0 8.9 12.4 10.0 94.6 41.1 -41 .<. .1 l i .0 19 . / 1 00 . [ 1 /. 1 - ICO - 3 . 7 82 .0 1 64 . 5 12 7.1 -8.7 t-0. 3 67.6 -16.0 - 2 2 . 6 -13.1 -67.2 -6ii. 3 31.3 6.8 _20_ - 6 . 7 1 1.4 5T.6 16.0 77.2 39.6 15.1 -U.4 1 10.6 66.5 68. 1 9.3 -6.0 68. 1 29.0 /5. 3 11 J- / 11.2 r>2 . / 16.9 32 .6 10.2 I / /. 1 143. ) )2. 1 58. 1 40. 7 -.6.2 - 19 .0 -16.1 21.'--8 . / -I 70. ) -L 10.4 - d 6 . 1 -14.1 99.4 -21.1 -1-1.6 -9.4 - I 3.2 61* . 1 L2_^ 14. 1 / • / - 3 ». 4 101 .4 90. / _£ \1 ?9.0 60.3 24.5 - 7.9 -8-2 29.6 31.6 39.4 46.6 35.6 12.8 -/.I 20.6 54.o -8.0 -8.3 3.6 28.9 -2 7.0 51 .8 58.0 29. / -19.4 - 1.0 -19.1 -53 .b -5.1 14.0 -d.6 34. 7 28.6 26. / i / . 9 .11./ -19.0 -60.2 7 1 7 -7.1 11.5 1 I 12 4 7.0 3 9.1 / 19 16.9 -4.6 I 1 14 -7.7 -10.b 7 21 24.9 -24.4 11 16 2b.4 31. t 7 2 3 43. 1 -40 .2 1 1 IB 22.7 11.9 7 -8.4 2 .6 1 1 20 14.6 -20.5 7 2 / -O.H 1 | 22 -8.7 12. 7 9 1 1 24. 4 1 04 . t '» 3 3 1.9 -32.0 I 1 2 31.1 -34 . 7 9 5 -6 . i 6.5 1 1 6 41.9 -4 1.0 •) 7 -6.4 - 11 . 6 13 8 27.8 -25.8 9 9 2 3.7 -26.7 1 1 10 19.1 -12.1 9 1 I 26.0 - W. 7 1 i 1 ? 36.4 -37.5 9 13 45. 1 -42 .5 13 14 46. 5 3 d. 4 '> 15 13.5 -19.1 11 16 2*. 8 25.0 9 1 7 - 7.5 - 10.9 1 J 18 -ii. / 15.6 ^ 19 - 7.8 -13.9 15 2 -8.2 - 1 1.9 •j 21 4 1.1 42.3 15 4 -8.2 10.5 9 2 3 40.7 J'l .7 15 6 7 7.7 -75.0 9 2 5 -8 . 7 -4. 1 15 -8 -d.4 -2.6 1 1 1 56. ft 4 4.4 15 12 -d.6 -17.9 I 1 3 (.0.7 0 7 . tl 15 14 -8.8 -9.7 1 1 5 -6.9 -0.7 1 7 2 -8.8 13.6 I I 7 15.8 -4 (..4 1 I 9 34.7 - 3 0 .2 0 195. 3 -434.6 11 It 19.3 - I .4 0 ,', 26 7 . 7 - 179.5 11 13 52.0 -44.6 0 6 254. / -265.4 11 15 -7.8 -4.4 0 ii 372.0 -360.0 11 17 -8.0 12.7 0 10 159.8 - 130.6 11 19 -b. 3 - r . . i 0 12 15.6 -21 Sa U 21 -b.6 7.5 0 14 19/. 4 195.8 11 2 1 -8.8 19.4 0 16 1U1.2 183.3 1 i 1 32.6 3.6 0 18 10 1.2 . 138.3 I l J 3 3.5 -1.3 0 20 143.0 142.0 I 1 4 - 7.6 -4.0 0 2.2 3 7.1 40. 3 1 1 / Id.9 2H .6 0 24 15.9 -10.4 1 1 9 -7.b 1 .0 0 2<< 60.7 -53.(1 11 11 49.0 -51.0 0 2U 60.6 -4b. / 11 11 21.4 2.1.4 0 30 61.2 -45 . 7 11 15 -8 . 3 -4.5 2 2 35.9 -49.0 t 1 17 -8.5 -0.9 74 . 1 48 . 3 i I 19 — H . d 22.0 2 6 216.9 -212.7 15 t '•1.4 -40.2 2 e 2 3.4 -31.1 15 1 -d.2 -14.2 2 10 (>5.6 14 4 -d.2 -Id./ 2 12 20.1 1.4 14 7 - 1 . J 26.8 2 14 7 6. >, 73.6 15 9 1 i.6 2 5.9 2 16 2 4.4 2 5.8 15 11 -8.6 11.1 2 11' Ui. 2 59 . .1 t i 13 22. ) I 1. t 2 20 r-b .2 58 .6 17 I - t i . J -6.4 2 2.' -7.3 10.4 1 / 1 -8.9 -14.0 2 24 J2.9 -26. i 2o 15.0 -16.1 -28. 9 -14.7 I4i.2 22C.0 242.4 202 .b 114.5 -51.1 102 . / HI.') '•t?.l> -VJ.6 2 12.2 2 06^ J_ 114.9 71.1 1 I 1. 1 142.4 2 lb. 7 102.6 14d.II 2.0 9. c, -ii-.. 1 - 142 . 4 -89.5 - 1 12.0 -11.4 4 1.4 1 4.2 5 7.2 39. I 7d.ti 2 1.0 Id. L 2 3.4 2 5.7 112.9 -12).5 - 140 .9 40.it _6£.._i 74.1 72 .5 4 1. V Table 18 (Continued) 60 CONTINUED k I rob$ h = 1 5 0 . 2 - 7. 7 rcalc - 1 2 3 . J - ) S . 7 - 5 9 . .1 - 1 2 . 0 40 . 8 4 0 . , - 4 . • J 144 . 4 4 fa . 0 20 . 9 14 8 . 4 I 75.4 114. ' ) 09 . 1 51 . - 1 .1 - M . J - I CO.. t - 6 2 , . 8 - 7 5 . J - I ) . 'J - 6 . 0 - 1 2 . '» 3 I. I 2 0 ) . 4 I Jo . •"> - 1 1 . 3 ' 1.1 5.ri 2 . 7 - 4 5.2 - 1 5 7 . 7 - 1 6 7 . 2 - 104 . 3 - 8 7 . 8 7.4 Lt>. 2 4 4 . 1 1 3 . / f.d.t, .'2 . 1 " 1 5 . U - 5 . 7 1 2 . 6 29 . 8 94 . 7 1 . 5 I I . 0 - I <i . 6 - 1 7 it 2 . 9 - 5 . 1 1 2 3 . U i ; " i . 'i i t) l . n 102. i mmmkmm - 1 0 . / IU± l r>. 19. I 6 3 . 0 7 7 .8 3 8 . I - 4 8 . 5 - 6 6 . / - U 2 . 4 5 2 . 3 4 b . J 75 . L I '.I 5 4 . 5 i 1 . 0 , - 7.3 . 1 1 . * 7 0 . 0 - 1'>.4 4 7. 5 2 7 . 7 6 7 .9 - 7 5 . (i 2 0 . 7 11.3 11 I 1 I. i 14 9 1 •> 4 0 . J 45 1 1 •) 5 3 3 . 1 U 8 1 'l 7 fi 5 . 4 6H 1 r. •I 1 -1. 5 1 / 2 L 1 I - 8 . 7 - 2 1 5 1 „ 7.a - 35 5 1 2 1 5 8 . 7 - 1 5 2 1 • 4 10.8 - 2 6 0 1 6 H . l -5(1 0 1 ' 5 2 . 2 39 7 I to L3U.4 I 19 3 L 12 6 8 . 0 6i; 1 1 1'. 9 0 . 7 107 6 1 16 3 3 . 2 30 ') 1 1 8 ? o . 9 -21) 7 1 20 1 9 . 8 - 5 3 0 1 22 4 3 .5 - 3 4 1 t 24 M . 1 - 6 j i t 26 - 8 . 2 - 1 1 2 1 28 2 3 . 9 28 4 i 0 ?. 1 .3 . 8 - 2 2 6 1 i /. 1 16.9 - 1 3 8 7 j 4 125. 6 - 1 3 1 7 j f> 4 4 . 4 38 8 3 M •18 . 4 92 4 K i 1 l-l. ') 1 12 5 J 1 2 1 7 0 . 2 187 r> J (•7.2 7 5 0 J 1(. 4 3 . 5 4 f 0 3 if; 2 J . - l , - 1 4 7 3 20 7 0 . 6 - 7 8 6 3 22 62 . 3 - 6 5 4 1 13 .0 - 2 4 3 '•'.<• 14. 5 - 3 1 0 3 c'H l b . 0 - 2 2 b 5 (J 1 9 , 6 2? 7 5 2 2 0 . 9 - 1 5 4 6 4 6 1 . 1 - 5 5 I 5 I, 1 4 . 3 7 2 5 y 7 6 . 6 6 1 I ii l - 5 . 9 - 1 1 5 12 2 5 .1 - 1 ' 7 S 1,4 - d . 5 2 ft s 16 1 4 . 1 - 12 3 1 V. 1 6 . 2 17 P. 6 2U - 7 . 5 - 10 4 5 2 1.7 10 7 -•4 1 6 . 9 17 4 26 1 4 . 3 - 2 7 1 f) j i ; - l i . H - 0 2 7 0 15.0 .2 163 5 7 2 • 9 0 . 4 96 0 1 4 l ' i2 . 1 i n ? fi 1 12 .4 5 1 1 tr I V l . ' J - 1 3 5 . 7 I l u 42.7. - 9 7 . i ! l ? 7 / . fl - 8 0 .tt 1 14 7 0 . 0 - H \ 5 7 16 - 7.2 - 0 .2 T K! 2 5 . 0 20 . 1 I 2') 4 7.3 15 . 8 1 2 2 U . 7 49 , : i r 24 - 8 . 4 1 2 . 3 i 26 10. J 12 . 1 i 0 8 0 . d 69 . J •) 2 4 5 . 7 42 . 9 9 /, 2 8 . 8 2 4 . 8 •) 4 4 . 1 5(1 . 3 5 7 . 3 4 9 . 3 - 7 . 9 - 5 5 . 7 - 5 6 . 5 - 3 0 . 6 - 6 7 * 6 - 1 8 . 5 5 . 7 2 7.2 3 4 . I - 8 . 7 4 4 . 2 4 2 . 9 2 4 . 7 - 2 7 . 7 - 1 4 . 9 - 1 9 . 9 1 :J . 4 18.4 - 1 1.0 36. I ( .0.0 6 6 . 5 2 8 . 7 - 7.5 - 1 5 - 5 . 8 - 1 8 . 2 - 5 2 - 2 6 . 5 1 <J . 6 6 . 0 4 1 . 9 I 1.8 1 2 8 . 6 - 14 I I . ) 7 0 . 2 0 0 . 1 1 2 0 . 0 ( .1.7 2 d . I 2 1 0 . '•• 2 5 - t ' j . 3 2 7 1 9 . 7 i ' ; 6 . 2 1 M . 9 5 1 5 . 5 7 6 9 . f. 1 7 .0 2 0 . 8 3 1 . 0 3 6 . 2 - 7 . 1 1 3 . 8 - 1 6 1 . 1 - 1 7 . 1 1 0 ) . 4 . 7 J . 1 1 1 2 . 1 _W_A_ 56..1 1-. .8 - 1 7 . ) - 7 4 . 4 - 2 2 . ' 11 .9. -4 0 . 2 - 1 J . 6 7 . 7 -7.0 1 I. 2 5 . t-. - 1 3 . 1 1 7 .4 16? .(. 1 14 . f. 1 I r . . 5 1 70. J ) 8 . 0 70. 6 - I I - 124 .7i - 1 7 1 . 7 - 1 2 1 . 9 - 6 6 . 1 - 2 4 . 0 - 1 7 . 3 - I U . 4 111.2 - 1 1 . 0 - 2 / .it •) 1.6 7 2 . r 12. / - 2 6 . 1 2 6 . 2 1 5 . 1 1 5 . 6 2 6 . 7 ^ 8 . 1 57 . 3 , 2 8 . 1 2 7 . - 3 1 . 0 - 4 5 . 5 1 2 6 8 . 3 7 2 . 1 1 4 9 1.5 1 0 5 . 8 1 6 1 1 2 . 2 1 1 2 . 4 L 0 1 0 7 . 5 1 1 5 . 0 I 10 103.0 110 . (1 1 12 6 8 . 2 - 7 1 . 4 I • 14 6 9 . 4 - 6 8 . 2 1 16 6 1 .1 - 6 1 .4 1 18 5 9 . 7 - 7 0 . 6 I 4 6.') - 4 1 . « I 22 14 .7 - 4 1 . 7 1 24 1 7 . 0 30.2 1 26 15. ) 1 3.4 I >n 2 ). *i 2 ). ) 1 2 121> .4 14 L . 1 1 4 1 7 j . 1 192 . 6 1 '., 112.2 1 M , 0 J 8 1 1 1 . 2 17.8.0 \ 1 0 17. 1 3 6 . 2 i 1 7 L 1 .;] - 2 . 3 1 14 5 ' » . 9 - 5 1 . 6 j t 6 1 0 ) . f. - 1 1 3 . 4 1 1:1 4 3 . 6 - 4 1 . 4 3 20 6 ' . . *> - 7 2 .2 3 22 I 4 - 1 . -i 1 ?<t - 8 . 2 - . 1 . 1 1 2 6 1 J.O 11 .') 5 2 10. 7 1 7 . 0 'j 4 - 5 . 9 l ' t .4 5 6 11.4 7 4 . 1 -> 0 -<». 1 - 2 0 . 1 1Q 1 h.rt - 1 8.7> 5 12 2'J.3 17 .7 y 14 2 0 . 2 - 1 1 . 7 5 16 - 7 . 2 6 . 1 5 U U . ) - 1.2 'i 20 n . n - 14 . fl 22 - o . i - 1 .C j 24 2 4 . 7 2 I ,f. 5 7h . . 1 - 1 4 . 1 ' 7 ?. 4 0 . 8 - 117 . 1 7 i, 14 1.1 - 1 4 7.6 7 (> 1 h i. - 1 70. c 7 8 n 7.6 - 9 ' j .4 7 10 10 .4 - 1 1 . 4 7 12 2 9 . 1 1 8 . 1 7 14 S 5 . 8 4 4 . 6 7 16 15.5 6 5 . 5 7 18 6 1 . ) 79 . 6 7 29 M . 2 6 1 . 4 1 22 - 8 . 1 17.. 2 t ^4 2 S . 4 - 1 8 . ? 4 2 2 6 . 8 - 10.9 4 4 8 2 . 1 - l ' . 8 . 2 9 h 7 2 . J - 8 2 . 4 ') [i 6 2 . 8 - 5 3 . 0 9 10 4 2 . 6 - 3 4 . 3 4 12 - 7.4 - 6 . P >J 14 3d . i 3 2 . 0 9 16 •>(,.'• 9 1 8 4 ^ . 7 30 . 5 ') 20 M . 2 6 1 . ) 4 22 Lti.O 2 6 . 1 11 2 2 1 . 7 2 5 .2 1 1 4 - 4 0 . Z 4 ' . '. 1 I (j 6 4 . 7 72 . ' . 1 1 il 2 2 . 4 1 1 . 9 1 1 1 0 2 1.9 - K . . 2 1 1 12 - 7 .9 4 . d 1 1 L4 2 3 . ) - 1 1 . 2 1 1 Ifa' 1 9 . 0 - 1 9 . 1 1 I 18 \ 1 . 0 - 1 7 . 4 1 1 29 .! 7. 1 - 2 4 . 7 1 1 2 4 4 . 4 4 3 . 0 1 3 t. i . 6 7 0 . 1 13 /, •^2.6 40 . 5 1 3 8 6 5 . 4 5 i l . 1 1 1 10 4 2 . 3 41 . ' . 13 12 2 0 . 8 -/..?. 1 1 14 12. t - 2 'I . 7. 1 J 16 ->ti. 0 - 5 * .'i 15 2 - b . 6 6 . i . 15 4 24 . 0 10.4 15 7j 2 5 . 5 2 1 .7 15 8 10. •> 2 6 . 2 0 2 6 S . ;i 63 . 0 0 4 2 0 . 7 - 2 1 .1 0 6 20 1 . 8 2 it ,H 0 fl 1 1 0 . ) 121 .7 0 10 8 4 . 8 1.1 ".. 5 0 12 8 7.2 85 . 7 0 14 82 . 6 - 1 0 1 . 4 0 16 4 4 . 5 - 1 0 9 . 4 0 1 0 8 7 . 5 - 70 . 7 0 20 .14.2 - 8 6 . 1 0 22 1 6 . 2 1 2 . 7 0 24 - 8 . 1 7. 1 0 25 - 8 . 5 - 9 . 4 0 28 3 5 . 7 4 5 . 8 2 2 7 0 . 6 8 4 . 6 2 4 J 4 . 2 - H . 6 2 6 IB. 1 .1 7 .9 2 1 7 5 . 0 7 7.5 2 10 3 0 . 5 - 3 7.0 I 2 ' 1 4 . 1 - L 1 . 3 2 r. I 1.6 - 1 0 . 9 2 16 t o . 4 - 10 .4 18 •> 7.5 - 2 1 . 6 2 20 19. 7 - 1 . . . 0 2 22 - 7 . 8 - 7 . 7 2 24 . 1 3 . 2 10. 7 2 26 iO.) 4 . 6 2 2 0 . 7 - 2 2 2 2 . t - 2 5 . 2 1 9 . 3 - 5 4 . 2 123.4 4 4 . 1 1 5 . ) - o . 8 4 8 . 9 ( .7.2 Z 1 . 1 2 5 . 5 5 i - 0 - 1 0 . 0 2 . 9 r *6.0 70. 1 72. •) 1 7 .4 - 1 4 1.1 - 5 6 . 1 - 7 4 . 8 2 J . 2 - 8 . 2 17 .7 - 1 0 . 1 2 . 7 2 5 . 2 - 2 . 4 1 0 . 9 - 1 6 . 6 1 1 . 0 - 1 2 . 2 - 9 . I M . 7 71.2 8 9.r> i-7.._L_ 42 . 1 2 8 . 0 6 7.4 7 1 . 6 36. 1 63'.4 74 . 7 2 7 , 1 - 8 . 1 11 .4 12. I 2 7. 1 155 . 4 102. 7 - _ 3 - 0 „ - 7 0 . - 6 . 1 100.4 - 3 3 . 1 - 2 . 1 - 107 .H - 5 4 . 9 - 1 0 . 7 1 7 . 8 - 1 . 1 - U . n 1 6 . 1 Table 18 -(Continued) 61 1 CONTINUED 9 15 1 0 4 . 0 - 9 8 . 7 1 I 7 2 1 . 2 7 . 5 I h F O b i = 4 Fcolc 9 9 17 19 5 6 . 2 1 7 . 9 2 8 . 0 3 ( i . 4 - 4 7 . 2 - 1 2 . i 2 9 . 8 3 0 . 8 . 1 5 5 19 2 1 1 > 4 5 . 8 1 4 . 6 94. 7 1 1 4 . 6 - 3 9 . 0 . - 9 . 2 - 1 0 2 . 1 - 1 5 4 . 0 t [ 9 1 . 5 83 .It -i 5 1 5 . 0 6 . 4 i 2 5 . 7 1 6 . 7 2 4 . 2 - 3 5 . 3 \\ 7 4 6 . 0 3 9 . 1 1 0 0 . 6 3 7 . 6 5 7 9 4 7 . 7 78.•> 5 0 . 5 6 9 . 8 u 5 / 5 2 . 2 4 0 . 3 2 7. I - 5 1 . 1 - 1 4 . 7 - 2 6 . 6 j| 1 1 I 1 l'"> 2 5 . 1 2 2 . 0 - ? 4 . 6 - 1 7 . 3 5 1 t 11 15 8 6 . 8 7 9 . 2 1 5 . 0 1 0 1 . 1 8 0 . 5 1 6 . 1 4 i i 2 r i . 7 -2).'i ; j 1 ' 5 6 . 4 -4 -> . fc 5 1 7 2 3 . 0 2 0 . 6 4 i i i > 2 2 . / 2 4 . 7 - 1 1 . ) 2 9 . 4 ;.; I 1 2 3 . 2 - 8 . 4 - 2 5 . 4 9 . 4 I 9 2 1 2 2 . 1 4 6 . 8 - 1 9 . 8 - 5 1 . 0 '* t 7 14 15. 5 4 2 . 2 32 . 6 4 1 . 6 II 7 2 ? . 1 2 3 . 2 - 1 1 . 2 7 7 I 1 1 7 . 9 4 1.4 - 6 1 . 2 - 4 6 . 8 4 21 2 1 .4 1 1.4 i i • i - 8 . 6 - 7 . 2 7 i 1 2 . 1 6 . 1 4 2 1 - - ) . 5 - C . 1 1 | 1 4 . 1 - 8 . 1 7 . 7 1 8 . d 24 . 1 * 2 5 1 n . 4 - 8 . 8 - 10. -) , 0 •)).'. 11 J . 5 7 7 1 1 1 1 4 . 4 4 9 . 9 1 2 . 6 4 8 . 2 u 1 2 >.5 . ' 0 . 7 i 2 5 1 . 1 (i'i . ' . 7 1 1 2 7 . 1 1 7 . 4 6 5 3 1 . 5 62 . 1 i 4 6 8 . 7 4 1 . 0 t 1 5 1 6 . 6 4 7 . 4 6 7 I l . ' J 1 1 . 7 L f, 11 . •'» 1 6 . 3 I 1 7 1 5 . 8 6 . 4 ; 2 1.5 12 . 0 1 i 6 J .4 - 4 9 . u I I J 1 . 0 - 3 4 . 8 11 2 ) . ) 2(1 .2 L 10 7 6 . 2 - 9 1 . 4 9 1 8 8 . 6 1 0 6 . 4 4 l t 1 ? . 5 - 1 9 . T 1 1 2 1 6 . 4 - 10 7 . 0 4 1 1 4 . 4 I I . 4 6 15 12. "I - 15 . .1 I 14 4 1. •'• - 4 'i . 6 , 8 2 6 . 6 2 -: • 4 Ii i i - 7 . '> - 6 . 9 I 16 16 . > It . 1 9 7 1 8 . 0 - 4 1 6 l > l b . 5 - 2 0 . 7 1 18 4 5 . 7 - U; . 2 . "7 •) 2 7 . ) - 5 2 . 4 6 2 I - 8 . 4 - 8 . 0 1 2 0 2 4 , 1 1 ^ . 7 4 I 1 •<ij. 7 - 3 5 . 4 6 2 1 - 5 . 7 5 .7 L 22 6 6 . 4 '6 7.6 ) 1 1 M . 4 - 5 1 . 1 ii I 1 - 7 . 1 2 7. J , i . 7 2 0 . 7 [ 2 4 . 6 2 8 . 4 2 0 . 3 1 ; ) .4 9 4 I 5 1 7 * J . 1 2 0 . 1 -•'>>.'• ri 5 1 1 . 2 24 . ) 1 o 19 1 . 5 2 4 ' i . 8 1 1 1 '18. 5 .U> . 1 I) 1 3 7 .7 1' . . 7 i 2 1 4 ) . 9 17.8 . 4 1 1 i . - ) ,2 7 3 . l Ii 1 1 1 . n 2 4 . 1 1 4 4 , , . 7 62 .7 I 1 '. 1 1 . 1 [(>.'> 1 I - 7 . . 1 4 . 6 - 1 h . 7 1 1 7 2 7 . 2 - 2 0 . 7 .1 1 1 2 0 . 4 . ' 2 . 5 1 8 7 2 . U - lUj . 6 1 \ •J .19 .O - I L . 3 .) 1 • 1 2 . 8 - I . '"( 1 i n 12 1.6 - 1 i s . 9 1 1 ! 1 43 . 6 - 4 8 . <-,) 1 1 '"> 1 . 1 - 4 j . 4 1 12 12 2 . 7 - 1 4 1 .2 I t 1 1 3 2 . ( - 4 4 . 6 ri 1 - i i 7. 5 - 2 1 . 0 S L 4 4 0 . 6 - 105 . 4 t J 1 ' 4 . 2 - i 2 . 1 i, 2 1 - 8 . 7 - 7 . ' . 1 16 16 . 4 -4 ' ) . 4 1 1 t L 8 . 3 1 7 . 4 1o t : » i . 5 - 1 2 . 5 J l a 1 5 . 7 1 7 . 4 . 1') i i 1 4 . 6 J 2 0 2 o . 7 1 5 . 4 I 2 4 7 . 7 - 6 0 . 6 UJ _ i o 7 1 O . D \ 24 7 o . O 6 1 .4 7 6 . 1 . 1 1 7. ( .4 .8 - f 1 . 7 • - 7 6 . 7 l u • I ; 5 . ' ' •> 0 - 6 . 4 - 1 0 . 1 1 r. 18. 3 - 4 * . .1! 1 u ID 1 1 1 .i - 2 ' > . 0 |; 2 5 1 . 9 2 5 . 7 5 2 . 7 - t I . 7 I 1 1 0 i ? - 7 . 4 - 2 0 . / 7 . 8 10 1 1 - 8 . 4 >, . 4 5 & 1 7 . 4 2 5 . 1 - 1 1 . 4 2 0 .'2 1 t 16 3 8 . 2 2 5 . 3 4 6 . 6 8 . 6 to 14 - I l . 6 1 1.1. U l - 50 . 2 \ 18 2 7 . 2 2 1 . 9 12 I 2 7 .0 - 32 . 2 12 1 8 . 8 4 . 0 1 2 0 4 6 . 7 4 6 . 7 . 1 2 i - 8 . 1 - l '-.f. 14 1 6 . 8 II. 1 1 22 2 4 . 0 . ' 1 . 2 1? 5 ] L .'• - 1 4 . 0 16 2 i . i - 2 8 . 5 1 2 8 6 . 0 - 1 0 1.1 1 2 7 27 . 6 - 2 4 . 5 18 2 9 . 7 - 9 . 4 3 l i . O . 8 - 1 1 6 . 4 12 9 l 5 , '< o ; 5 2.) 2 0 . 1 1 0 . 2 i 6 (>8 . 1 - 1 2 2 . 4 11 - i 1 . 5 7 . 9 22 1 5 . / 1 6 . 0 1 tl 0 9 . 5 - 4 8 . 4 1/ 1 ) - 8 . 6 0 . 1 2 4 - tl . ii 10 . 4 1 10 ' . 7 . 8 -r. 1 .2 12 t 4 1 4 1 - 1 : . L> 1-1,1-('.. G ? 0 . 2 ; 0 .. 2 10 7 . ) 1 2 7 . t - 1 2 2 . 4 - 1 3 9 . 4 . 3 3 1? 1 4 2 2 . 1 6 4 . 7 . - 1 G . 1. 7 1 . 2 14 j i (..( ' - 8 . 1 7 4 4 2 . 5 - - 1 8 . 8 3 1 6 8 4 . ) e 8 . 4 1 4 ; 2 1 . " - 1-3. 1 7 6 1 7,2 1 1 . 1 3 ; L 5 3 . 9 6 2 . 4 14 1 - (... 8 6 2 0 6 1 . 9 ' • 5 . 4 1 1 3 5 . 0 - 2 2 . 6 j t o 1," 1 0 7 . . / 5 0 . •* I Id . 8 7 7 . 0 J 22 2 - 6 . 7 - ( . V 1 7 . 2 I 1 9 1.4 1 1 4 . 3 7 14 J 6 . 1 o 1.4 5 2 6 . 4 1 5 . ) 1 •i 18 7 . - . 1 0 9 . 1 7 16 6 2 . ' . 46 . (1 b (] 2 1 . 4 - 1 4 . ( , 1 7 10 7 . 1 1 H . . I 18 - 8 . 2 I . 0 5 2 9 . J - 2 1 . 4 1 ) 9 2 . 4 H i . 0 >0 - 14 . 5 5 10 2 9 . 7 - 2 7 . 5 1 1 1 2 >. 1 2 1.2 22 5 8 . 1 - 6 5 . - 1 1 2 2 0 . 1 1 7 . 0 1 1 I - 6 2 . 6 11 i . . ' - 1 0 9 . r . i c o 1 1 5 4 7 . ' . - T. 7 . 2 ) -. f 7 . t 5 16 - 4 . 1 1 1 1 7 19 1 1 0 . 7 8 2 . 1 - 1 2 4 . 5 -•14 .2 4 4 4 . 8 2 ; . d '•> 1 . 5 6 S 18 20 l 6 . 0 1 .4 I V I L 6 . 7 ' » . 0 ., 7 0 . 1 1 7 . 8 7 2 '"• 7 . 1 6 1 . 4 1 2 1 3 1 . 0 - 1 7 . 6 i t o 6 8 . 7 6 4 . 1 7 4 4 . 1 4 . . y 1 2 5 2 2 . 8 2 0 . 0 ) U 8 4 . 6 8 1 . 8 7 (, 4 7 . 2 104 . ' i 3 1 1 J . >'. - 2 5 . 6 l ' i 1 4 . 1 3 1 . 8 7 t i _ 3 J 2 . . > - 4 0 . 4 16 2 7 . 7 l o . 1 f 10 4 1 . 1 4 4 . 6 3 2 . 0 - 1 6 . 2 18 - 3 . i 6 . 4 . 7 12 16 2 1 . 0 - 0 . 8 1 7 •; 6 1 . 4 1 1 . ? - 6 3 . 1 1 . 1 2 0 0 1 9 . ) 2 3 . 0 - ; ' i . 7 1 6 . 2 7 7 4 0 . 1 7 i . 1 - 3 7 . 2 i 11 1 0 . » — J . 1 1 1 2 12.4 1 8 . 1 7 18 8 9 . 4 - 5 5 . 2 1 1 1 3 15 2 6 . 3 4 0 . 6 - 2 8 . 1 .1 7 . 6 || 4 1 1 . 0 1 6 . . i l . 5 - I 9 . 8 4 4 3 9 . 7 5 2 . 4 6 0 . " . 5 1 .1 1 1 7 4 8 . 1 4 4 . 1 I I 8 2 6 . 8 - ? 3 . 6 '} 6 6 3 . 4 6 3 . 2 1 1 1 3 0 . ) 34 . 6 1 I 10 3 0 . 1 - 2 3 . 6 9 8 74 . 1 7 6 . 1 1 21 - 8 . 1 - 4 . 5 1 | 12 2 6.;^ - I 7 . 0 •) t o 2 7 . 5 1 5 . 0 J 2 J - 8 . 4 0 . > 1 1 1 4 - 6 . 6 - 4 . 9 12 - 8 . 4 - 6 . 1 J 5 I J 2 2 . 4 7 5 . 4 - 7 . 1 - 2 1 . 6 - r i 4 . 9 || 16 0 2 2 8 . 0 1 1 7 . 5 54 - 2 4 . 4 M 1 . 7 4 4 . 1 i I 14 16 2 4 9 , 5 1 0 . 7 '.i.2 - 4 7 . 0 - 1 1 . 2 t 7 . 1 ' 6 7 0 15 5 . 1 4 0 . 1 1 1 0 . 2 - 1 7 1 . 6 - 1 4 7 . 1 - 1 2 5 . 1 2 6 i a . 6 1 5 . 7 4 4 . 3 I C . 7 1 6 . 0 1 I i i 11 6 8 1 8 . 8 24 . 7 2 1. 7 - t 7 . 6 1 1 1 9 . 6 - 2 1 . 1 1 1 8 Vi.i - 5 0 . 6 11 1 0 : ! 6 . 6 - 1 .1 .rt 1 J (.4 . 7 ,' 0 . 0 7 1 . 0 6 ; . . 3 || 10 12 1 / .•„ 1 8 . 4 - 4 6 . 4 - 5 6 . 1 11 11 12 2 . : o . o 1 6 . 1 1 5 . ; - 5 7 . 4 5 1 7 4 8 . 2 1 0 l i . 4 1 7 . 6 - 6 - , . •> i 1 ') 2 I I 74. 1 4 0 . 8 1 4 . 2 7 1.1 l u . 6 - U . 7 2 1- 0 i 1 1 h = 5 » 1 . 5 8 9 . 6 1 1 4 . 7 1 1 0 . 1 0 2 1 ^ . 0 1 4 . 2 l ' i . 2 - 1 . 6 - 1 . 0 1 6 . 6 s 1. 0 1 5 2 6 . 4 2 1 . 7 0 u 1 7 . 1 1 1 . 7 5 7 1.6 - 7 8 . 6 I 7 2 0 . •> - 2 9 . 1 0 1 0 4 9 . 7 - 4 1 . 2 i 7 - 4 0 . 2 7 3 . 0 - 8 f t . / 0 12 M . 7 34 . 9 i ') 1 1 1 :>. 1 - 3<J . 6 - 1 ) . 1 J 11 1 1 I i . 1 5 8 . 9 - 1 1 6 . 1 - 6 0 . 0 0 n 14 16 1 ' - . 1 4 7 . 1 - 34 . ' , - 4 7 . 3 1 'i 1 4 . 1 - 1 . 2 L6 ) 2 . 7 - 8 1 . 5 0 18 i i . 7 1 9 . 1 \ 1*. 1 7 ' 1 - I 5 7 . 7 5 . . . 2 17 19 2 7 . 8 6 2 . 5 - 1 4 . 7 56 . 1 0 2 0 2? 1 0 . 1 2 2 . 1 2 . 0 M . I 1 "J ; v . 2 1 6 . 8 21 2 1 1 i.'.. 1 3 0 . 2 ? 2 1 5 . 5 - 1 . 1 r 21 - 8 . 6 21 . 7 1 8 . 4 ; 4 7 . 7 4 0 . 5 4 7 . 1 - - . 4 . 1 2 2 6 1 8 . 1 1 1 . 2 - 1 . 7 - 1 . 2 1 1 4 . 5 2 8 . 9 1 1 8 . 2 - 1 1 . 6 8 2 4 . 7 2 0 . 4 s 6 1 . 6 6 i> . ? i 5 1 1 . 2 - 2 1 . 0 2 10 2 1 . 1 - 0 . 4 0 1 6 0 . 0 5 6 . 4 4 2 . f- J 7 7 3 0 . 1 - 1 . 4 2 4 . n 2 < 12 14 1 8 . 1 • . 2 . 1 - 1 1 . 2 ! ' . . 1 J t1 i i 1*1. 8 2 6 . 0 4 4 . 4 1 0 . 6 I 1 1 11 4 J . i L 4 . 2 5 7 . 6 1 1 . 8 2 2 16 i n 2 2 . 0 2 6 . 2 - 1 2 . 4 - 1 2 . 4 2 4 .'J 1 15 1 7 . 1 4 1 . 8 2 2 0 I 7 . 6 0 . 2 2 2 2 ' ' 1 7 . 8 - 9 . 5 . 4 2 I 7 . 2 - 2 4 . 3 t, 4 2 9 . 1 - 1 1 . 4 4 6 2 1 . 0 - 2 1 . 8 <v 8 1 7 . 7 - n . 4 (. to - 7 . 4 - 2 . 1 4 12 2 0 . 0 7 . 1 1, 14 2 1 . 8 1 8 . 7 4 16 1 4 . 9 - 2 . 0 4 IB 2 i . 5 5 . 3 4 2 0 1 5 . 9 - 4 , 8 4 22 - 8 . 8 - 7 .9 6 ' 2 3 9 . 5 1 9 .4 6 4. 3 2 . 7 - 2 J . 5 6 6 11. 1 - 2 8 . 6 6 8 1 9 . 8 1.6 6 10 1 6 . 0 6 . 9 6 12 2 0 . 6 - 2 1 . 1 6 . 14 2 3 . 6 - 2 4 . 2 I,1) 1 1 .4 ? 9 . R 6 18 1 3 . 5 2 7 . 9 6 2 0 1 4 . 1 - 7 . 1 8 2 1 7 . 4 - 1 8 . 6 8 4 3 1 . 2 15 . 0 j 3 2 0 . T 1 7 . 5 10 1 8 . 2 1 6 . 7 H 12 2 1.5 - 1 8 . 2 d 14 1 7 . 4 1 9 . 8 8 16 2 2 . 6 - 1 6 . 1 M 18 2 9 . 4 - 1 9 . 9 10 2 1 1 . 8 - 3 0 . 8 . 10 4 4 0 . 6 19.0 10 6 - 5 . 2 - 6 . 7 10 B 1 7.2 - 8 . 1 10 10 - 8 . 4 1 1 . 2 IC 12 1 7 . 8 - 7 . 5 10 14 2 2.1 1 2 . 0 • u I 1 J . ^ - 4 . 0 12 1 9 . 6 - 1 4 . ) 12 ij - 8 . 7 0 . 1 12 a - 8 . 8 '•.T2 2 t 1 4 . 6 14 . h 2 i 1 4 . 2 - 1 4 . 1 2 6 - 6 . 4 ? . 6 2 7 2 1 . 6 - 1 6 . 4 2 9 1 7 . 7 - 9 . 4 2 I 1 1 7 . 1 1 5 . 0 2 1 1 2 1 . 1 - 1.4 2 I 5 2 2 . 4 2 . 1 2 I 7 10 .7 - 2 4 . ) 2 I 4 i 5 . 6 - 1 4 . 7 2 21 2 6 . 1 19.4 2 2 3 - j . 8 •) . 1 4 t 2 9 . 0 15 .<) 4 1 16. 1 - 4 1 . T 4 - 7 . 1 1 . 6 4 7 1 7 . 7 - 1 . 0 i, 9 1 4 . 1 - 1 4 . 1 4 1 1 1 4 . 3 1 . i 1 4 1 1 2 1 . 6 - 1 1 . 7 4 1 5 ••1.0 26 . ' . 4 17 12. 1 2 6 . 2 1 7 2 4 . 7 - 2 1 . 6 4 2 I - 8 . 7 - 1 . 4 6 • 1 1 9 . 1 - 1 . 8 6 1 2 6 . 3 - 2 6 . 8 7. . - 9 . 1 2 9 . 6 6 7 , 4 . 1 1 7 . 1 6 9 2 0 . 0 - 1 1.4 (, 1 1 2 3 . 4 7 . 2 6 1 1 >. (.. 4 - 1 i . 4 6 16 «."fi . n J . 6 6 1 7 1 3 . 5 8 . 1 f. 14 ? 6 . 5 ti 1. 10. 9 - 2 6 . 7 P 3 l 5 . v I t . 2 ;t f. 7 1 . 5 9 . 6 0 7 2 8 . t - 2 2 . 7 8 <; 1 4 . : i l 6 . i : 11 1 4 . 9 1 2 . 6 H 1 1 ' 3 . 1 - 4 . ,• o 15 31 . 4 - 2 8 . ; , 8 1 7 1 6 . 1 - 1 0 . 1 10 1 - 6 . 1 - 1 1 . t to 1 l o . ; ; 1 . •• 10 .1. 7 - 2 3 . 2 10 7 1 6 . 1 1 6 . ' , 10 4 1 5 . 6 - 0 . ( . 10 1 t 2 6 . 8 - 5 . 7 10 1 1 1 6 . 1 1 6 . 2 10 1 5 - 8 . 8 6 . 6 1 2 12 t 1 1 6 . 9 7 . 5 1 2 5 I 3 . 4 6 . 1 12 7 1'. .11 - 1 2 . 7 1 2 '» - i . i t 0 . 8 h = 6 0 2 . ' 7 . 4 2 4 . 6 0 „ 0 :i 2 2 . 8 - i v . O 10 25 . 4 - 1 7 . •. 0 12 17.4 - 3 1 . 2 0 14 15. 1 - 1 2 . S 0 16 1 7 . ( , - l ' i . I) 18 2 2 . 8 1 8 2 0 1 4 . 0 2 2 1 8 . 6 1 1 . 6 ' 2 4 2 0 . C 2 ; . 1 2 6 1 7 . 5 4 . \ 2 rt .12. i - 2 1 . 6 2 10 2 2 . 1 - 1 6 . 1 2 12 1 6 . 8 I.H 1 4 . ' 0 . '. - 1 7 . ) 2 16 1 9 . 1 - 2 . 6 2 1 L! ' 1 —U. . ; .. 0 - 2 . 1 - I I .4 — — _ 2 5 . 4 2 8 - 2 H . J 1 6 . 4 1 4 . 3 2 2 . 6 . IB.i 27.6 !•>. 7 1 9 . 8 I 1 6 . 8 1 1 . i i d . . ; n o . 3 2 6 . 1 3 7 . 1 ; i .4 1 6 . I 1 6 . 4 2 6 . 0 14. 5 1 9 . 1 7 . 9 - 4 . 2 1 9 . 9 - l t . 1 2 9 . I 2 8 . 6 2 2 . 7 3 1 . 2 1 8 . 1 6 6 . 4 5 3 . 0 1 1 . 6 - 6 1 . 7 - S 4 . 1 - 7 5 . 5 - 5 2 . 8 - 1 5 . I 2 1 . 1 5 1 . H 5 0 . 3 1 7 . 2 1 . 0 1 1 . 0 8 . 4 1 . 3 - ! o . 9 - 1 . 5 . 6 1 7 . 1 12 ±,U_ 2 7 . 6 - 5 . 4 1 . 2 0 . 1 - 2 0 . 2 - S f . 1 1 - 4 2 . 7 1 4 . 0 3 f l - 9 2 5 . 7 2 8 . 2 l i e 4 1 . 1 - 4 . 1 i 0 101 . 1 - 1 2 6 . 5 3 2 4 5 . 4 - 4 7 . 2 3 4 . 3 1 . 1 - 2 6 . 5 J 6 2 9 . 7 - 3 1 . 6 3 8 4 i . o 4 6 . 6 3 10 7 . 8 54 . ? 1 12 72 . 1 8 1 . 4 I 1 4 5 / . 5 6 1.7 3 16 1 ' . 4 1 1 . 6 j t(3 1 >. » 4 . 6 5 0 2 4 . 0 - 2 7.2 •> 2 7 0 . 6 12 . 0 5 2 ) . 1 - 2 0 . 6 i 6 10. 4 - 1 5 . 2 8 4 I . 0 4 2 . 1 5 10 1 8 . 6 - 1 . 4 5 12 I >.o 1 8 . 0 5 14 10. 6 17.5 6 u» 1 2 . 4 - 1 0 . 7 I 0 6 1 .1 4 9 . 1 7 2 1 I. 1 4 2 . 1 7 4 14.7 3(1.2 7 6 1 1 . ) 2 7 . 6 7 8 12. 1 - 1 0 . 1 7 10 4 J . 1 - 4 5 . 3 12 h.l.h - _ 6 _ L » A 7 14 6 6 . 4 - 6 ' 1 . 8 0 8 2 . 2 6 6 . 1 1 2 3'3 .4 3 0 . 0 4 4 3 1 . 6 2 6 . 1 ') 6 1 7.fi 6 . o 4 8 3 6 . 8 - 1 1 . 7 » to 1 2 - 6 - 5 4 . 6 1 1 0 U .2 - 2 . 1 I i h = 7 1 ). 9 1 ( 3 9 . ) - 1 t . 8 1 6 \ •>. : - 5 . 1 1 1 7 ) 2 2 . 2 22 . . 1 7 . 1 1 I 1 1 1 1 u . 2 t 1 1 >.' 1 6 1 1 - 1 . 2 1 7 2 1 .7 J - t . l 2 1 . 2 7 . 4 5 1 j l W W . - i 7 '"'/.:> - 2 0 . 1 4 9 4 0 . •! - '. 6 . 5 _ _ 1 .2 5 . 1 1 >.Ji-7 1 - b - 9 l l . 0 7 5 1 8 . 6 - 0 . 4 1 ? 2 4 . 1- 1 7 . 9 I 4 V 1 . t ! 2 . 6 1 6 4 . 0 50 . 6 1 2 . 7 11.2 _ 1 10 l i - . O - 1 i , '• 1 1 2 1 6 . 2 w ' < -3 2 4 . / ) G . 4 1 6 4 1 . 1 1 9 . 4 3 n 19.0 <. 7 . 4 t 1 0 2 1.1 L i . i l 1 - 0 . 4 6 2 1 6 . ) 0 . 8 5 * T/'') 6 . 5 <-! U . 1 19 2 0 . 1 - 0 . 2 7 1 6 . 1 - 4 . 4 7 l i t . 4 - ' . 1 . 2 0 2 . ' 1 . 7 -2-) . 1 0 2li . 7 0 6 1 t . 1 . 4 0 8 7 0 . 8 - 1 6 .'I 0 U l 2 7 . . 5 - 1 9 . . . 0 12 2 1 . 4 - :••. 4 2 1 6 . ' , - ' .1) 2 4 - 7 . 1 2 6 In . 1 - 4 . . . 7 2 t< 2 i . . 2 - J t l , t 2 10 I 6 . 0 1 ' . . 7 2 12 1 8 . 2 . 1 1 7 . ' . 4 2 7 . 1 1-- .2 6 ••4,2 4 ' . . 1 4 11 1 6 . 0 - 1 . 9 4 Ut 1 6 . 1 U - . 6 O 1 4 . 0 _1.6.._2_ 6 6 6 j . 0 h 1 2 . 8 1 4 . 1 I 4 0 . 8 - 4 n . 5 2 ! l n . 0 - 16 . 0 2 5 I ) . 1 - I >. 2 7 1 6 . 7 - ' • . 1 2 4 1 1 2 I 1 2 6 . 0 1 . ' 7 . 2 2 0 , 4 - 1 7 . 4 1 7 . 4 7 1 ' ' . 5 2'- .2 - C . J - 2 2 . 1 1 1 4 5 . 6 '•<• . 6 I M ' 1 , 6 . 0 _ 6 _ _ 1 - • 1 6 9 62 The f i n a l p o s i t i o n a l and thermal parameters are given i n Table 19, the atom numbering (Fig. 7) being for convenience i n the c r y s t a l a n a l y s i s . I t was not possible to d i s t i n g u i s h two of the nitrogen atoms from the carbons, and N(12) and N(13) have been assigned from chemical and mechanistic considerations (see discussion below). The bond distances and valency angles, and the more s i g -n i f i c a n t intermolecular distances are summarized i n Table 20. Results and Discussion The f i n a l step i n the analysis involved the assignment of the nitrogen atoms, as i t d i d not prove possible to d i s t i n g u i s h them on the basis of the electron-density d i s t r i b u t i o n (Fig. 7) or of bond distances and angles (Table 20). N(l) i s r e a d i l y assigned on the basis of the p o s i t i o n of the methyl group. The method of synthesis of the compound 3 1 l i m i t s the choice of nitrogen p o s i t i o n s to atoms (12) and (13) or (7) and (18) . There i s no d i r e c t X-ray evidence for the designation of N(12) and N(13) as nitrogens, but there are three independent pieces of evidence, one c r y s t a l l o g r a p h i c , the second chemical, and the t h i r d mechanistic, which taken together are f a i r l y conclusive. F i r s t l y , the methanol of c r y s t a l l i z a t i o n i s close to N(12); the N(12) ... 0 distance i s 3.56A, too long for a hydrogen bond, but the presence of the methanol molecule i n t h i s region of the c e l l does suggest that N(12) might be nitrogen. Secondly, since only a monomethiodide i s obtained, only one of the nitrogen atoms i n the parent molecule appears to be reactive; t h i s i s i n accord with structure I I , since N(12) and N(13) are i n s t e r i c a l l y hindered p o s i t i o n s . I f atom (18) was a secondary nitrogen i t would be r e a c t i v e since i t i s i n a r e l a t i v e l y unhindered p o s i t i o n . Further e v i -dence for a hindered secondary nitrogen was the f a i l u r e of attempts to prepare acetamide, benzamide, 4-bromobenzamide and 3,5-dinitrobenzamide d e r i v a t i v e s . F i n a l l y , a p l a u s i b l e mechanism for the formation of the compound can be postu-Table 19 P o s i t i o n a l ( f r a c t i o n a l ) and thermal (A 2) parameters f o r the atoms of C 2 0 H 3 3 N 3 ' C ^ 1 " xCH3OH. (Standard deviations are a(x) = a(y) = a(z) = 0.003A for I", 0.03 - 0.06A for C, N; 0.08A f o r 0; a(B) = 0.09A2 f o r I", 0.7 - 1.2A2 for C, N, and 1.7A2 for 0). Atom X Y z B N (1) 0.380 0.325 0.069 3.6 C (2) 0.308 0.284 0.108 3.2 C (3) 0.162 0.331 0.125 2.8 C (4) 0.032 0.341 0.091 2.6 C (5) 0.119 0.373 0.049 5.3 C (6) 0.257 0.325 0.035 5.7 C (7) 0.088 0.293 0.165 2.4 C (8) -0.037 0.340 0.184 1.4 C (9) -0.107 0.305 0.224 4.5 C(10) -0.178 0.227 0.214 3.0 C ( l l ) -0.061 0.176 0.194 3.0 N(12) 0.016 0.214 0.156 6.5 N(13) 0.202 0.425 0.183 3.6 C(14) 0.019 0.420 0.196 4.0 C(15) -0.095 0.474 0.176 4.6 C('16) -0.035 0.560 0.188 4.5 C(17) 0.160 0.561 0.179 3.5 C(18) 0.254 0.499 0.199 4.4 C(19) 0.234 0.411 0.139 3.0 C(20) 0.421 0.416 0.129 4.2 C(21) 0.514 0.357 0.154 3.7 C(22) 0.452 0.401 0.080 4.4 C(23) 0.450 0.272 0.141 3.0 C(24) 0.519 0.275 0.048 6.3 0(26) -0.228 0.111 0.080 7.2 C(27) not located 1(25) 0.1983 0.0964 0.0429 5.6* Anisotropic: exp - 10h [243h 2 - lOhk - 2hH + 43k 2 + Ik I + 15£ 2] F i g . 7. (a) Sections of the three-dimensional electron-density d i s t r i b u t i o n . (Contours at 2,3,4,... e.A~3 at C,N,0 and 1,10,20,... e.A - 3 at I -) (b) Drawing of the molecule. cr. Table 20 Bond distances, valency angles, and intermolecular distances i n the methiodide de r i v a t i v e of Cor.H-0N-, C-C = 1.43 - 1.65, mean 1.53A L at C = 105 - 117, mean 110< C-N = 1.43 - 1.57, mean 1.51A L at N = 100 - 116, mean 110c Shortest intermolecular distances: N ... O = 3.56A C ... N = 3.82A C C = 3.68A C ... I~= 3.85A C ... O = 3.69A 6 6 l a t e d , but no route seems pos s i b l e to the compound with nitrogen at posit i o n s (7) and (18). We are therefore confident that the nitrogens have been c o r r e c t l y positioned, and that the methiodide has the structure shown i n F i g . 7; the parent molecule i s (I I ) , together with the o p t i c a l enantiomorph, the compound being a racemate. The molecule has an i n t e r e s t i n g and unusual structure. Ring D (atoms N ( l ) , C(2), C(3), C(19), C(20), C(22), see F i g . 7 and (II)) has a boat conformation as a r e s u l t of the two-atom, C(21) and C(23), bridge, so that t h i s part of the molecule consists of three boat-rings. Ring B i s also a boat, and the three other ri n g s , A, C, and E, have chair conformations. The mean bond distances and valency angles (Table 20) are normal, and a l l the intermolecular distances correspond to van der Waals i n t e r a c t i o n s . The packing of the molecules i n the c r y s t a l i s shown i n F i g . 8. BART III STRUCTURE DETERMINATION OF ACETYLTRIPHENYLSILANE 69 A. INTRODUCTION An X-ray c r y s t a l structure a n a l y s i s 3 2 of acetyltriphenylgermane, Ph^Ge'CO-CH^. has revealed i n t e r e s t i n g differences between Ge-C bond lengths, G e - C ( p h e n y l ) being 1.945A (a = 0.008A) and G e - C ( a c e t y l ) = 2.011A (a = 0.015A). Since the Ge-C bond distance i n CH 3GeH 3 i s 1.945A, 3 3 the G e - C ( a c e t y i ) bond i n acetyltriphenylgermane i s apparently longer (by 4a) than a single bond. This leng-thening had been explained by a contribution from a resonance structure i n which there i s no formal bond between germanium and the carbonyl carbon atom. Comparison of these bond length measurements with the r e s u l t s of sp e c t r a l and b a s i c i t y studies on the c t - s i l y l and a-germyl ketones 3 1* 3 7 and with electronega-t i v i t y v a l u e s ? 8 suggests that the analogous s i l i c o n compound should e x h i b i t a s i m i l a r , and po s s i b l y s l i g h t l y greater lengthening of the S i - C ( a c e t y i ) bond. The structure of a c e t y l t r i p h e n y l s i l a n e was determined to investigate the lengthening of the S i - C ( a c e t y T ) bond. 70 B. THE STRUCTURE OF ACETYLTRIPHENYLSILANE Experimental C r y s t a l s of a c e t y l t r i p h e n y l s i l a n e from petroleum ether are colourless plates with (010) developed, smaller (100) and (001), and elongated along c. U n i t - c e l l and space group data were determined from r o t a t i o n , Weissenberg and precession f i l m s , and on the G. E. Spectrogoniometer. C r y s t a l Data: (A, Cu-Ka = 1.5418A; X, Mo-Ka = 0.7107A). 39 A c e t y l t r i p h e n y l s i l a n e , (CgH 5) 3Si-CO-CH^- M, 302.4; m.p., 126-127°. Monoclinic, a = 7.53 ± 0.03A, b = 28.7 ± 0.1A, c = 7.90 ± 0.03A; B = 96°50 1 ± 1 0 ' U = 1695A3; F {QQQ ) = 640. D m = 1.182 g. cm. 3 ( f l o t a t i o n i n aqueous K l ) . Z = 4, D x = 1.185 g. cmT3. Absorption c o e f f i c i e n t s f o r X-rays: V(c u-Ka) = H - 8 cmT1, P(Mo-Ka)= !- 4 cm? 1. Absent r e f l e x i o n s : hOi when I i s odd, OkO when k i s odd. Space group: P2 1 / c ( c | h ) . The i n t e n s i t i e s of the r e f l e x i o n s were measured on a General E l e c t r i c XRD 6 Automatic Spectrogoniometer, with a s c i n t i l l a t i o n counter, Mo-Ka r a d i a t i o n (Zr f i l t e r and pulse-height analyzer), and a 8 - 28 scan. The i n t e n s i t i e s were corrected f o r background, taken at the beginning and end of each scan. Of 1837 r e f l e x i o n s with 2 0 ( M o _ K a ) < . 42.3° (corresponding to a minimum interplanar spacing d = 0.98A), 1699 (91%) had an i n t e n s i t y above background. The 168 unobserved r e f l e x i o n s were included i n the structure analysis with |F q| =0.6 F(threshold)• The c r y s t a l used for recording the i n t e n s i t i e s had dimensions 0.3 x 0.3 x 0.5 mm., p a r a l l e l to a, b and c, and was mounted with c* p a r a l l e l to the $ axis of the 71 goniostat. Since the absorption c o e f f i c i e n t f o r Mo-Ka r a d i a t i o n i s very low (1 .4 cm. 1), no absorption c o r r e c t i o n was made. Lorentz and p o l a r i z a t i o n factors were applied and the structure amplitudes were derived. Structure Analysis The p o s i t i o n of the s i l i c o n atom was determined from the three-dimensional Patterson function, and a l l the carbon and oxygen atoms were located from two successive three-dimensional electron-density maps. The oxygen atom was disti n g u i s h a b l e from the methyl carbon by both peak height and bond length. Structure factors were ca l c u l a t e d with a l l 22 atoms, and s c a t t e r i n g factors of the International Tables? with B = 4.OA2; R was 0.21. The p o s i t i o n a l and i s o t r o p i c thermal parameters and an o v e r a l l scale factor were r e f i n e d by block-diagonal least-squares methods. The function minimized was Ew( JF Q|-|F c|) 2, with /w = 1 f o r the unobserved r e f l e x i o n s , /w = 1 when |F 0| <. 20 and /w = 20/|F o| when | F 0 | > 20. Four cycles of least-squares r e f i n e -ment reduced R to 0.16. A comparison of the measured and calculated structure factors showed that twenty 0k£ re f l e x i o n s had serious disagreement. A l l these r e f l e x i o n s had high backgrounds, due to proximity to neighbouring r e f l e x i o n s , r e s u l t i n g from the long b-axis, and they were reestimated from f i l m s . Another four least-squares cycles with i s o t r o p i c temperature factor for a l l the atoms reduced R to 0.13. Two further cycles with anisotropic temperature factors for S i , and f o r the oxygen and methyl carbon atoms(both of which had high i s o t r o p i c thermal parameters) reduced R to 0.12. At t h i s stage an ( F Q - F c) synthesis revealed the positions of a l l f i f t e e n phenyl hydrogen atoms, but the methyl hydrogens could not be located. Refine-ment of 37 atoms with /w = 0.35 for the unobserved refle x i o n s reduced R to 0.10. Measured and cal c u l a t e d structure factors are l i s t e d i n Table 21. The electron-Table 21 Measured and c a l c u l a t e d structure factors f o r a c e t y l t r i p h e n y l s i l a n e . (Unobserved r e f l e x i o n s have |FO| = - 0 . 6 F ( t h r e s h o l d ) ) h k Fo Fc 2.3 - 6 0 . 5 - 1 3 . 2 - 1 8 . 5 14.6 20 . B - 2 2 . 5 - 2 3 . T - * 0 , 7 - 1 0 . T - 2 6 . 2 2.B * 5 . 3 38.6 23.8 -21 .B 33.8 10. 5 28 .5 13.1 11.7 10.1 2 * . 3 32.2 -10.3 -2-7.9 15.6 0 .6 19. a 20 . 5 2 1 . T 17.6 10.7 - 2 0 . 2 - 1 7 . 7 * 7 . J - * * . 9 - 1 8 . 2 19. S 17.8 34. 7 31.5 - 3 5 . 3 -30 .2 10.7 10.6 31 .0 *2 .1 - 2 6 . 0 - 1 5 . 9 - 6 . 6 16.2 21.T 10.2 13. T I * . 3 -13.2 -13.6 - 1 . 2 - B . S -42.5 8.7 , 32.8 - 1 0 . 3 - 2 . 2 - 3 . * 0.2 - 1 8 . 5 16.6 15.5 20.6 - 2 2 . 7 12.5 6 .9 - 2 . 2 12.1 10. I -S 20.3 - H 27.8 21 6.2 { * 3 . l - 4 2 . 8 14.0 -15 .5 21.B - 2 2 . 2 - 1 6 . 2 22.2 - * . 5 Table 21 (Continued) CONTINUED I 61.9 -61.6 2 ' 14.1 -11 .1 1 1« I 15.3 -13.0 3 4 14.7 -12.3 12 5 - 0 . 9 0.4 I , f—_ z 1 54*2 55*2 2 - 1 . 0 2*4 1 I B 1 - 0 . 9 1.6 ' 1 5 4 29*7 - i 14 5 -1*0 3.1 n < I rO rC 1 6.7 8.8 2 6.4 7.7 - 1 18 3 7.8 . 1D.1 5 4 1.7 -3 .2 16 5 8 .3 - 7 . 9 1 15.4 -14.8 2 5.8 4 .2 1 20 S - 0 . 9 -1 .7 2 7 4 8.4 10.4 ~1 16 5 6.7 - 9 . 7 - _ - 7 3.0 _ _ 4 . 7_ I 55.9 53.1 2 13.4 -13 .9 -1 20 1 24.3 -22.9 " | 7 4 3.2 3.0 I B 5 - 1 . 1 2.0 f 12.4 7 i .e -12*0 3.6 " 2 i I 3 .9 1 24.5 3 .9 24.5 2 2 T i l l 8.5 -69.5 9.9 -1 22 I 24 19. 7 3 6.7 -20.3 -7 .7 -\ , 4 - 0 . 8 4 6.9 l . l 8.5 -_\ 20 2 5 5 J. 7 35.0 7.7 -34.5 7 2.3 0.2 1 50.0 -49.0 -1 24 3 10.0 10.0 4 5.7 " -3 .6 5 " - i .<r 5.4 7 2.2 0.3 1 10.7 9.8 2 61.B - 5 7 . 4 1 26 3 - 1 . 1 - 3 . 9 3 4 5.1 4.2 5 3.0 -2 .2 7 3.7 - 2 . 6 - 2 1 I 31.7 -30.7 2 27.1 25.5 - 1 26 3.8 -2 .1 -2 1 4 12.8 -11.9 . 6 5 8*6 5 .9 ' -l.*0 7 4.1 0.6 3 .9 2 1 1 -a's 1 1 .7 2*0 3.7 2 2 53*8 44.8 -54*4 41.6 -2 2 13.7 32.8 17.1 32.1 2 I 4 2.7 4 11.0 -2 .2 -11.9 8 5 5 9.9 -9*5 -6 .1 1 - l . l 0.6 1 6.2 7.4 2 5.8 3 .3 -2 * 37.0 -37.6 4 8.2 6.1 10 5 1.4 \ .8 — ! 7 7, io j -10 .3 2 2 1 14.5 16.3 - 2 20.4 -19 .9 2 6 42.1 42.8 2 1 4 11.0 12.6 -4 10 5 9.7 - 9 . 2 ' 3 . 8 3.8 -2 2 1 14.6 -14.9 2 5*5 6.3 -2 b 25.8 -23.0 -2 1 4 8.3 -10.4 12 5 2.C 0.0 f 9.9 9.8 -2 2 1 7.4 9.1 2 5.9 4.6 -2 8 39*1 36.6 -2 \ 4 -1*0 0.5 |* 5 V\ -5*7 8 . 1 3.3 -2 2 1 12.2 13.4 . 2 7*3 -6*3 -2 10 4*8 5*7 - T 2 4 11.2 11 .0 -4 16 5 6, 7 -6 .6 7, ___>.C _ 2 . l 2 2 I 8 .3 9.1 - 2 20.0 23.4 2 12 5.3 7.7 3 4 16.6 -17.7 -* 18 5 3.0 1.8 7' " \.i 6. 1 -2 2 1 2.3 - 2 . 9 2 13.5 14.3 -2 12 3.7 3.0 4 8.9 8*7 * 10*5 -12*9 • 6*1 7 8 . 8 6 .9 10.0 "j 1 15*7 1 7.3 15.* 6 - 5 . 6 2 2 - 0 . 9 18.1 - o ! 9 -2T.7 _ -2 14 _ 2 16 4.5 18,7 - 5 . 3 -18.2 ~\ 4 11.9 4 12.0 -11.9 13.0 . 5 .4 5_ 3.1 16.6 - 4 . 8 16. 9 " 7 10.8 9.7 1 6.9 B . 9 2 15.2 -16.7 -2 16 25.0 23.1 4 5.1 6.1 5 9.7 -13.3 7 4.5 4.9 I 3.0 5 .3 2 6.4 4.7 2 18 7.1 7.9 4 5.9 -7 .1 6 5 2.8 -3 .1 7 10.1 -10 .5 - 3 I " 9 . 1 -10.9" 2 4.9 - 5 . 9 -2 18 16.0 16.9 - 3 4 - 0 . 8 1.7 •* 8 5 1.9 0.1 1 2 .9 0 39.9 - 0 . 3 -33 .5 ] , 1 39*4 1 16.5 -39*0 -16.9 2 2 6.4 35.8 - 8 . 0 -38.4 -2 20 - i . . 22.. . 22.7 6.0 -23.8 - 6 . 7 'I , 4 24.9 4 4.5 -25.3 5.2 l\ _ .12 14 5 5 9.0 - l . l 10.2 1 .3 0 41.6 0 40.7 -41.8 38.7 3 I 1 9.1 1 12.4 - 8 . 5 12.0 - - —\ 2 2 25.5 4 3.7 -26 .9 -4473 ' -2 22 2 24 6.2 6 . 8 - 6 . 5 - 6 . 0 3 1 4 6.6 4 6.4 5.9" 6,6 - 6 2 5 5 - l . C 6. 1 0.6 5.9 0 30.4 . 31.4 -3 1. 1 5.7 4.6 2 14.7 14.5 -2 24 - 1 . 0 - 1 . 1 - 3 1 4 10.8 9.6 it 5 10.8 -10 .4 1 3.5 0 9.5 - 4 . 8 9.7 "i ii I 1)'.* 1 3.3 14*.4 - 2 . 9 2 2 5.2 8.0 4 .3 8.8 3 2 - 3 2 16.3 7.0 -13.8 - 7 . 5 "i ! 4 2.0 4 9.2 - 0 . 7 -10.3 0 1 0 3 ~6" S. 3 B . 7 8.7 5 .2 0 14.5 -13.7 - 3 i' I 8.1... 7.9 - 2 14.5 -15.7 1 4 36.7 37.8 - 3 i 4 , 3.9 - 2 . 7 0 5 6 16.2 -17.4 0 26.5 -25.8 1 2.0 - 2 . 3 2 8.3 - 8 . 6 3. 1 3.2 4 4.5 3.3 0 7 6 0 .6 9 21.6 20.9 -3 11 1 11.3 - 1 1 . 1 2 21.7 20.6 3 6 B . 5 - 5 . 0 - 3 I 4 6.4 -6 .0 0 9 6 17.2 14.3 l 2 L 9 3 5.9 -2o'.2 - 4 . 5 ~i i' 1 3.3 1 8.7 1.6 8 .8 - 2 2 4.4 11.6 5*1 18.8 3 e -3 8 7.3 2.0 7.3 -2 .7 "i I 4 10.9 4 - l . l 10.5 - 2 . ) a 0 1 3 15 I 10.7 -7*2 3.6 0 18.5 18.8 - 3 ?! _ 5.3 _ - 2 5.1 5.5 3 10 5.3 6.3 4 4 19.6 20.4 0 1 7 6 10.1 10.3 0 50.3 0 3.8 46.5 5.5 - 1 r 1 - 1 . 0 1 2 .9 - 1 . 1 1.8 -2 2 12.8 - 6 . 9 14.3 - 3 10 3 12 8.4 6.1 9.4 7.2 ]; 4 31.3 4 28.5 - 1 2 . 6 29.4 0 1 6 6.6 5 .6 8.6 -5 .1 i i o ! a 3 50.2 -12*5 -35 .5 -i i', 1 4.1 1 18.4 3*6 18.5 2 2 6. 3 4.3 - 4 . 4 4.7 3 14 -3 14 12. B 2.1 14.1 - l . l 4 3.9 4 2B.5 -2*7 28.1 3 I 2.3 5 .0 12.1 1 0 6.1 3 0 33 .3 -8 .6 35.0 1 11.0 -12.3 - __ 19 2 2 2.9 6.7 0.8 6.6 3 16 - 3 16 22.2 3.9 -24.3 1.7 4 2.8 4 2 .B - 1 . 9 5 I 3.8 -3 .9 s D 5.6 3.4 1 13.3 -12 .5 - 2 4*5 -10.0 3 I B 6.0 - 8 . 3 4 4 .0 -4!s 7 t 5.3 7.1 1 ' 33^3 3 3.3 33.4 - 1 . 8 -j 1 36! 8 1 7.7 36.5 6.2 - 2 2 14.3 - l . l -14.1 -3 .4 3 20 -3 20 9.6 7.0 9,0 4.3 - 4 1 4 6 .0 4 - 0 . 9 6.8 .} 9 9 I 3.4 24.8 3.2 25.3 3 0 9.1 - 8 . 6 2 3.8 5.0 1 22 - 1 . 0 - 0 . 9 4 2.4 1.7 1 1 1.7 - 3 . 2 5 0 4.8 - 1 . 4 1 1.8 -2 .9 2 2.8 4.0 -3 22 5.8 -6 ,6 4 5.5 5.5 1 1 6 T .9 J 0 2.4 l . l 1 17.3 -18 . 3 - 2 24.9 -29.9 - 3 24 8 .0 - 6 . 8 -4 I 4 6 .9 - 7 . 5 13 £ 12.1 10.7 3 0 25*1 1' 0 9 . 8 22*3 • 9.2 j; 1 16.9 1 - 0 . 9 16.1 1.1 -2 _ „ „ 2 _ 30.1 .1**0--28.3 - 1 2 . * . -4 4 2.9 - 0 . 8 3*0 -3 .2 " ^ 4 ~ i 4 4*3 4 7.7 3.4 -6 .1 .; 15 15 6 10. 3 7 .9 -10 .2 7.7 7 0 9.2 - B . 2 i ' 1 12.9 13.4 - 2 3.7 - 3 . 5 4 6 3.7 -5 .2 - 4 it 4 5.5 5.1 17 6 10. 1 - 12.4 9 0 31.6 1 0 8 . 1 31.5 e . i 1 21.5 1 *0.9 22.6 - 3 9 . B -2 2 3.2 15.0 5.0 17.2 4 B 19.6 3.6 21.8 2.9 ~-l' 4 4 .2 4 3.4 4 .7 \l 19 6 5.9 - 5 . 2 - 8 . 8 5 0 l l l l 1 0 13.1 - B " O -11 .0 -; j 1 2.2 1 3.1 1 14.8 -3*.2 -14.3 - 2 2*. 4 _J7_._5_ -4*2 -16,7 4 10 -4 10 6.7 9.3 5*. 6 9.1 •-\~ 4 18.0 4 23.6 17*. 4 -23.5 \\ 3 3 6 6 17.0 7.1 16.9 9 0 4.9 - 4 . 7 . ..1 J.2.? . _ - 2 4,8 1.9 4 12 9.0 -10 .9 -5 4 7.1 - 6 . 8 5 6 *2*5 16.1 3 0 - l . C 2.1 -'- 1. 1 1.8 1 .6 - 2 16*7 16.3 4 14 2*6 1*7 4 11.3 -8*8 7 3.7 - 6 . 1 L 0 9*9 3 0 13.8 - 3 . 4 -11 .9 -\ >: 1 3.0 1 3.9 5.1 3.6 - 2 2 10.2 9.7 -11.3 8.8 4 16 -4 16 3 - l . C 0.8 - 4 . 6 ^ — 4 21 .1 4 10.9 22.1 -10.5 9 6 21.2 2.8 - 2 1 . 8 -1 .3 5 .0 2J. 3 -23.1 -5 1 15*B -15 .3 - Z - 0 . 9 1.2 4 18 - I . O ' 0.1 5 1 4 5.7 6.0 1 1 6 4 .2 -2 . 5 7 0 12.8 9 0 32.1 -12.4 33.3 -I ' 1 16.8 1 4.2 -16.2 4 .7 - . 2 2 6.4 19.7 - 6 . 4 18.9 -4 18 3 4 20 3 3.1 1.7 - 3 . 7 0. 1 l ' 4 - 1 . 0 4 16.2 0.4 -16.8 13 6 - 1 . 0 19.9 -0 . 1 20.5 3 0 26.6 5 0 19.6 -28.1 19.5 '' I 15.7 1 17.4 20.0 - 2 2 2*9 2 .3 2.7 - 3 . 6 -4 22 9 2 3 8 . 5 20.1 -8*9 • 20.5 -11 4 -1 Io 4 2.0 2.0 -0 .0 19 15 6 2.1 - 1 . 0 0.5 1.5 7 . .0. 3JuS_ 34,9 -5 1 1 -0*8 2.2 - 2 15.7 - 1 6 . * " - 3 2 4,9 - 4 . 8 6 4 2.4 - 1 . 1 - 2 1 I b 5 .9 4.5 9 0 - 1 . 0 1 0 17.S 2.6 -17.5 -\ \\ 1 7.0 1 19.8 6.4 -18.1 -2 2 32.3 8.3 31.B - 8 . 7 1 I 13.4 8.4 -11.5 B . l H ; 4 3.2 4 17.1 -16.9 -1 ! 6 6 14.7 3.1 - 3 . ! I 0 22.7 3 0 12.3 22.6 -11 .7 -\ 1 1 3*8 -3*6 - 2 2 - 0 . 8 24. T -2*3 . -26.8 " 3 " " e " " " : 23.6 13.2 25.2 15.5 it-- • 4 2.7 4 - I . O " -3 .7 "2 .2 -] 3 ~ 5 6 9.8 0.9 10.7 3 16.5 -16.3 - 5 I ' 1 10*3 12.6 - 2 5.5 4.9 -5 8 3 8 . 2 - 8 . 2 -6 1 4 4.9 4 .9 - j 5 6 12.7 11.9 7 0 2.9 9 0 39.9 2.0 40.3 -5 i t I 5.2 1 23.4 7.8 * -23 .3 -2 2 11.2 24.2 9.7 24.5 3 10 3 -5 10 1 2 . 0 21.3 11.7 -22 .5 -7 4 - l . C -6 .3 0.7 7 I 6 6 5 .2 11.8 12.6 1 24.6 -23 !9 - 5 1< I 4,4 9*9 2 7.7 - 7 . 0 r5. .12 . ...17.8 . 16*7 . 0 5 16.7 15*4 . i 9 6 - i ! o 0.5 3 7 . 10.0 4.0 9.7 6.7 - 5 2! 1 3 . 4 1 21.7 -5."l 20.3 — 2 2" 4.5 5.7 -4 .3 - 5 . 6 5 14 - 5 14 8.9 2.4 -10.1 - 3 . 4 0 6 0 8 5 7.5 3 6.0 -7 .2 - 5 . 6 _j || 6 3.5 2.1 - 3 . 1 1.1 9 0 2.6 1 0 23.5 - 0 . 8 -22.6 -t ; 1 15.0 1 9.3 14.9 - 4 . 9 - 2 2 14.1 22.5 -12.9 24.0 5 16 -5 16 3 5.2 - 1 . 0 5.2 a ic 0 12 3 2 . 8 3 8.9 4.1 -13.8 - 3 1 3 1 3 6 6 12.2 2 . " 11.7 5 . * 3*2 - 6 1 5*5 -6*5 _ 2 14.8 -13.1 - 5 20 7.4 -0.*3 0 16 3 13.5 12.3 -I, ~~l T~ ~~b - '|;^- -10.0 S 12.3 -12 . 1 ~6 I 1 16.0 2 4.7 5 .B 6 2 - 1 . 0 0.1 0 18 5 2.6 -2 .7 1 fc 2.7 7 10.3 -9 .B - 6 , 1 5.9 - 6 . 4 - 2 3.8 -3 .1 - 6 2 - 0 . 9 - 3 . 6 0 20 5 11.8 •10.2 -4 1 6 1 .1 2 .3 9 0 8.2 1 0 8 . 2 8 . 3 - 3 . 6 - 6 ! 1 13.4 1 2.0 14.7 2.2 -2 2 3.1 9.9 - 5 . 0 9.2 -6 : 16.6 8.4 12.9 - B . 6 0 22 5 9.8 9 13.4 12.2 I 1.4 ~: 1 5 6 6 - 1 . 0 3 .0 2.1 3 - *'\ 12*5 -fc \'l 1 " 4 " ' "*3*5 2 19.1 19. 6 -6 6 - 0 . 9 - 2 . 8 ^ ', 3 5.6 4*4 J * 2 .3 -0 .8 7 6.4 5 .2 ' 6 1, 1 _ J * . J _ 2*8 - 2 5.2 8.5 6 8 4 .7 2.5 - 1 4 3 10.5 8.9 . « 7 6 3.4 1 _ 0. 9.9 - 9 . 7 -6 1, 1 - 1 . 0 0 . 8 2 3.4 5*7 - 6 8 4.7 5.2 -1 ! 5 10.4 8.6 -* 9 6 11 .5 -11 .1 5 0 3.6 ' 4 * 6 - 6 1 1 4*7 i:i 2 4.2 -2*3 -6 10 - l . C " - 1 . 0 1 1 5 26. 1 - 2 5 . B ~-\ 13 6 11.7 10.6 1 o - i ! o 'o 'e - 6 l! 1 8*5 ^ 8 0 2 2.0 1.0 _ - 6 14 2*1 - 3 . 4 5 B . 9 - 9 ! ? -I; 3 " 6 *9* 7 6 .3 I 0 - K l -1.1 7 1 7^1 -6*7 - 2 9.0 -8 .4 -6 16 4. 1 4 ,7 -1 H 5 I B . a 19.8 5 8 . * 8 . * 0 25. 1 35.6 1 24.1 29.4 2 ' 3.4 -1 .8 -7 2 5.4 4 .4 3 10.1 1 - 0 . 2 6 31.C -44.7 7 1 - 1 . 0 0.2 2 **9 4.2 -7 4 5.1 -5 .1 " l [ 5 27.2 -26 .4 6 b.B - B . 3 0 -0.*5 -18*5 ~i '< 1 5.7 3*9 - 2 - 1 . 0 -1*0 -7 8 9.9 9*7 -I V 5 23.3 -23.5 J .4 7 -";[. - 7 . 5 0 1 14.9 -12 .8 - 7 ! 1 2.6 3.4 - 2 5.0 5.3 *0 " 3 38*3 35 . 9 -1 \'< 5 14.7 14.9 c « 7 itl* " l 4 * 8 0 I 18.3 16.9 1 - 1 . 0 - 0 . 2 2 8.2 6.8 a 5 5.7 2.8 9 B . 6 -7.B a i a 7 3.1 - 4 . 7 0 1 - 0 . 8 7.6 0 2 25.9 -26.9 2 10. J - 1 1 . B 0 7 14.4 -13.2 1 7 3 6.1 - 5 . 9 0 12 T 3.3 2.1 0 2 6.9 - 3 . 4 0 2 48*5 -53.1 - 2 2 1 . 1 20.9 0 11 5.9 11.8 =Jt_-?J 5 5_.S_ - - 5 . 8 _ -1 2 7 31.9 30ll 0 2 - 1 . 0 o!o 0 1 0 1 2 - 0 . 6 2 12.3 23*8 " ~2 "15.3 12*6 d is -O" 9"" 2 5 5.6 - 6 . 2 -\ I J 1.9 1.2 0 2 0 ~2 13.2' 9 . 8 0 1 0 1 2 27.9 2 14.9 -27.8 20.2 -2 2 10. 1 3.2 8 . 4 - 4 . 7 0 17 0 19 17. 1 41.8 23.4 -29.8 5 2.6 5 14.9 18.3 -! 6 7 3.2 14,6 5.5 -14 .6 _ 27.6 24.3 0 1 2 2.6 - 3 . 3 _ 2 10.0 9 .B 0 23 - 1 . 0 3*9 2 5 30.0 31 . 3 _, 8 7 ?! 1 ' B ' 6 100.1 109.3 0 I I 2 - 0 . 9 - 6 . 7 3__ _16.T .14.1 0 25 5.4 0.3 5 27. B -27.5 10 2 .7 2.3 - 129. 1 170.3 0 2 2 5.4. _ -0_ .5_ 0 ' 3 10.5 13. 1 - 1 1 20.5 -21.5 -2 ! 5 28.5 -27 .1 -1 12 7 B.O 8 . 6 - 9. 7 -9*.9 0 2 2 11.4 13.9 i 3 8*0 8.3 1 3 l . B - 2 . 1 2 ' 5 8 .2 - T . B -I 12 -1.1 - 2 . 4 43.7 76.0 -40.7 -72.1 -1 • 2 48*2 -43*8 0 12 0 14 3 3 38.1 15.8 - 3 7 . 4 10.6 -1 5 5 .1 20.5 -6 .1 -20.2 - 2 — f 5 - 0 . 9 5 4 .3 1 . 1 ~ '2.6 2 2 1 8 . 8 13.6 - B . l 13.5 - 14 .8 13.3 2 9.4 -10.2 0 16 3 6.0 9.0 ~"l " 7 - o . a - 0 . 3 2 1 9 6 .2 5.2 7 2.2 - 19.3 19.9 20.8 -17.2 2 15.0 2 2.9 13.1 1.9 0 I B 0 20 3 3 18.7 - 0 . 9 13.0 - 3 . 5 -1 7 13.B 20.2 -12.9 -18.8 2 I 5 7.4 5 15.3 8.2 -16 .1 1 ] 5 .2 8.C 4 . 0 6.1 - 20.2 12.4 17.9 - 1 . 7 2 9.9 9*0 0 24 0 26 3 3 3.9 7.4 6.1 - 6 . 3 1 11 -1 11 15.1 17.3 6.2 J i 5 9.3 5 2.8 -11.3 - 0 . 1 8 9 J 2 .5 1 .0 _ _13,7_ 14*1 1 2 20.6 - 2 1 . 8 3 38.3 -34 .1 1 13 4.1 9 .7 2 2 5 20.4 18.1 10 1 2 .5 13.6 12.3 -I I 2 39.2 33.9 - 3 23.6 22.2 " l 15 18*6 -20 . 1 I J 5 10.7 " t o - ; 12 1 . T - 0 . 0 - 14*6 -15*6 -1 I 2 18*5 -16.6 - 3 63*4 -59.6 -1 15 19.2 16.3 _ 3 5 22.4 -24 .2 -. 4 7 4*4 - 5 . 0 3.8 -1 .4 - 1 1 2 37.0 -23.0 3 22*0 -24*7 -I ~ 17 19.0 15.1 ~i ' "5 7.6 - 1 0 . B '_. 8 J 2. ) - 2 . 0 20.0 -21.3 1 I 2 4.7 - 3 . 9 3 9 .3 - 6 . 9 1 19 6.1 - 6 . 5 -3 5 7.1 8.4 . ; I C 7 5,4 - 7 . 9 T 19.3 19.0 - 1 I 2 5.6 T \ « ~ 28.4 27.6 -I 19 8.4 17.7 -10.4 1 9 8 .4 7.6 -' 2 1 2 ,4 1.6 - 14.4 - i s l e -! I 2 24*5 25.6 - 3 49.0 46.6 -1 21 3 .0 - 3 . 3 '1 5 1.2 - 3.9 -' I 7 10.* 8."J ' 4 .8 74.9 - 5 . 1 - 7 3 . 9 -| | : 2 1.9 2 - 0 . 9 - 2 . 0 3.6 3 3 _30._?_ -31.2 4.0 - 1 23 -I 23 13.7 2 .9 13*5 tf - ; " 5 8 . 7 5 12.0 - T . 7 - 9 . 9 9. 3 10.6 - 1 2 2 18.0 -15.4 3 6.4 6.0 -2 I 20.0 20.1 3 1 3 10.5 11.3 74 density d i s t r i b u t i o n i s shown i n F i g . 9 f together with a drawing of the molecule g i v i n g the atom numbering used. The f i n a l p o s i t i o n a l and thermal parameters and t h e i r standard deviations are given i n Table 22; x, y and z are f r a c t i o n a l coordinates referred to the monoclinic c r y s t a l axes, and U^j are the components of the v i b r a t i o n tensors, written i n matrix form, and re f e r r e d to the axes a* b* and c*. The equations of the mean planes of the three phenyl rings and the ace t y l group are given i n Table 23, along with the C(3)-Si-C(phenyl) planes, and the interplanar angles. Bond distances and valency angles with t h e i r standard deviations are l i s t e d i n Table 24. The shortest intermolecular distances are given i n Table 25; a l l these correspond to van der Waals i n t e r a c t i o n s . F i g . 10 i l l u s t r a t e s the packing of the molecules i n the c r y s t a l . Results and Disscussion The molecular structure of a c e t y l t r i p h e n y l s i l a n e i s very s i m i l a r to that of the germanium analogue? 2 The ace t y l and three phenyl groups are arranged t e t r a h e d r a l l y around the s i l i c o n atom, with a small but s i g n i f i c a n t d i s t o r t i o n from exact tetrahedral geometry, the phenyl groups being s l i g h t l y spread out so that the average C ( a c e t y i ) _ S i - C (phenyl) a n 9 " l - e i s 107.4°, and the average c(phenyl)-Si-C(phenyl) angle i s 111.3° (the corresponding values i n a c e t y l t r i -phenylgermane are 108.3° and 110.7°). The angles between the C ( a c e t y i ) , S i , C(phenyl) planes are 120°, 121° and 119°. The three phenyl rings are planar (maximum deviation of carbons from r i n g planes i s 0.04A), with a mean C-C bond distance of 1.388A (a = 0.005A), and a mean C-C-C angle of 120.0° (a = 0.3°). The mean C-H distance i s 1.04A (a = 0.06A). The rings are oriented i n a p r o p e l l e r fashion about s i l i c o n with angles between the r i n g planes and the C ( a c e t y T ) , S i , C ( p h e n y i ) planes of 58°, 55° and 55° f o r C(5), C ( l l ) and C(17) rings, respectively (Table 23). These O 1 2 3 o • i i I A Si O C H O o o ° 2 4 a / 2 a/2 F i g . 9. S e c t i o n s o f t h e t h r e e - d i m e n s i o n a l e l e c t r o n - d e n s i t y d i s t r i b u t i o n ( c o n t o u r s a t i n t e r v a l s o f 1.2 e.A" 3 f o r c a r b o n and oxygen, and a t i n t e r v a l s o f 2.4 e.A -3 ui f o r s i l i c o n ) and a v i e w o f t h e Ph3Si-CO-CH3 m o l e c u l e . 76 Table 22 P o s i t i o n a l ( f r a c t i o n a l ; xlO1* f o r S i , 0, C; x l O 3 f o r H) and thermal (A 2) parameters f o r the atoms of a c e t y l t r i p h e n y l s i l a n e . (Standard deviations are given i n brackets) Atoms X y z B S i (1) 1590 (5) 1379 (1) -0219 (5) 2.96 (7) 0 (2) 3608(16) 2160 (4) 0185(15) 7.03 (32) C (3) 3125(19) 1835 (5) 0995(18) 3.99(29) C (4) 3764(31) 1810 (7) 2859(24) 7.54(54) C (5) -0029(16) 1696 (4) -1769(16) 3.08(24) C (6) -1876(18) 1665 (5) -1746(17) 3.97(28) C (7) -3065(20) 1927 (6) -2846(20) 4.80(32) C (8) -2434(21) 2226 (6) -4007(20) 4.93 (32) C (9) -0592(20) 2257 (5) -4101(19) 4.58(31) C (10) 0592(18) 1990 (5) -2986(17) 3.87(27) C (11) 3101(17) 0994 (5) -1297 (16) 3.27 (25) C (12) 4555(20) 0781 (5) -0361(19) 4.40(30) C (13) 5716(23) 0490 (6) -1164(22) 5.73(37) C (14) 5457(24) 0419 (6) -2829(23) 6.00(39) C (15) 4056(26) 0621 (7) -3819(25) 6.80(44) C (16) 2857(20) 0916 (5) -3037(19) 4.54(31) C (17) 0430(17) 1038 (5) 1339(16) 3.22(25) C (18) 0514(18) 0547 (5) 1396(18) 4.20(29) C (19) -0390(24) 0297 (7). 2544(24) 6.03 (39) C (20) -1360(26) 0544 (7) '3633(25) 6.62 (43) C (21) -1470(24) 0999 (7) 3635(23) 5.97(39) C (22) -0587(20) 1260 (6) 2452(20) 4.67(31) H (23) -227 146 -087 1.4 H (24) -438 187 -275 6.6 H (25) -339 253 -487 7.6 H (26) 001 259 -500 5.8 H (27) 195 202 -282 9.5 H (28) 474 091 094 6.8 H (29) 639 034 . -038 2.3 H. (30) 613 022 -373 5.9 H (31) 362 064 -467 3.2 H (32) 172 108 -390 2.9 H (33) 125 037 072 0.6 H (34) -017 -011 255 6.9 H (35) -179 045 466 23* H (36) -176 124 429 7.5 H (37) -065 162 249 1.5 aH mean 24 6 23 4.0 u i r u 1 2 U 1 3 u 2 2 U 2 3 U 3 3 S i (1) 0.0393 (18) 0.0003 (16) 0.0037 (16) 0.0375 (20) 0.0003 (16) 0.0393 (18) 0 (2) 0.1111 (93) -0.0495 (57) 0.0137 (66) 0.1017 (70) 0.0112 (63) 0.0876 (75) C (4) 0.1407(161) -0.0326(124) 0.0422(109) 0.0909(129) 0.0032(100) 0.0619(104) * Although t h i s hydrogen atom was c l e a r l y resolved i n the ( F Q - F Q) synthesis, and the p o s i t i o n a l parameters r e f i n e d to reasonable values, the thermal parameter increased to an unreasonably high value. 77 Table 23 Equations of mean planes and angles between planes i n a c e t y l t r i p h e n y l s i l a n e Equation of mean planes i n the form IX + mY + nZ + p = 0 where X, Y and Z are coordinates i n A it r e f e r r e d to orthogonal axes a, b and c Maximum d i s -Plane Atoms £ m n p placement (A) 1 1, 5 - 10 0.036 -0.756 -0.653 2.794 0.042 2 1, 11 - 16 -0.595 -0.790 0.145 3.872 0.009 3 1, 17 - 22 -0.737 -0.055 -0.674 1.006 0.011 4 1, 3, 5 -0.721 0.072 0.690 0.712 0 5 1, 3, 11 0.016 -0.596 0.803 2.476 0 6 1, 3, 17 0.745 -0.661 0.094 1.722 0 7 1 - 4 0.830 -0.521 -0.197 1.017 0.003 Angles between planes: Planes Angles 1 - 4 58.0° 2 - 5 54.7 3 - 6 54.9 4 - 5 120.0 4 - 6 121.3 5 - 6 118.7 4 - 7 39.5 5 - 7 80.4 6 - 7 19.2 Table 24 Bond distances (A) and valency angles (degrees) i n a c e t y l t r i p h e n y l s i l a n e with standard deviations. C(3)-Si-C (5) 107.6 a = 0.6 C( 3 ) - S i - C ( l l ) 105.5 0.6 C(3)-Si-C(17) 109.1 0.6 mean C a c e t y l - s i - c p h e n y i 107.4 mean Si-C phenyl 1.864 0.008 C( 5 ) - S i - C ( l l ) 112.2 0.6 C(5)-Si-C(17) 111.3 0.6 C(ll)-Si-C(17) 110.5 . 0.6 mean C p h e n y I S i - C p h e n y l 111.3 Phenyl : rings C (5) - C (6) 1.40 C(10)-C(5)-C(6) 117.5 C (6) - C (7) 1.39 C(5)-C(6)-C(7) 121.7 C (7) - C (8) 1.38 C(6)-C(7)-C(8) 120.3 C (8) - C (9) 1.40 C(7)-C(8)-C(9) 119.7 C (9) - C(10) 1.40 C(8)-C(9)-C(10) 119.4 C(10) - C (5) 1.40 C(9)-C(10)-C(5) 121.4 C ( l l ) C(12) 1.39 C(16)-C(ll)-C(12) 117,. 5 C(12) - C(13) 1.41 C(ll)-C(12)-C(13) 120.8 C(13) - C(14) 1.32 C(12)-C(l'3)-C(14) 120.8 C(14) - C(15) 1.37 C(13)-C(14)-C(15) 121.1 C(15) - C(16) 1.43 C(14)-C(15)-C(16) 119.2 C(16) - C ( l l ) 1.38 C(15)-C(16)-C(ll) 120.6 C(17) - C(18) 1.41 C(22)-C(17)-C(18) 117.6 C(18) - C(19) 1.40 C(17)-C(18)-C(19) 120.7 C(19) - C(20) 1.39 C(18)-C(19)-C(20) 118.2 C(20) - C(21) 1.31 C(19)-C(20)-C(21) 123.4 C(21) - C (22) 1.42 C(20)-C(21)-C(22) 119.3 C(22) - C(17) 1.39 C(21)-C(22)-C(17) 120.9 mean C !ar c a r 1.38 8 a = 0.005 C-C-C 120.0 C-H 0.85 1.29 0.25 mean C-H 1.04 0.06 Acetyl group C(3)-CH 3 1.50 0.026 Si-C(3)-0(2) 117.4 C(3)-0 1.21 0.021 Si-C(3)-CH 3 124.1 0(2)-C(3)-CH 3 118.5 Si-C(3) 1.926 a = 0.014 ac e t y l Si-C (5) 1.860 0.014 Si-C(11) 1.864 0.014 Si-C(17) 1.867 0.014 Table 25 Shortest intermolecular distances (A) i n a c e t y l t r i p h e n y l s i l a n e . Atom (of molecule 1) to Atom of molecule Distance C(13) C(13) 2 3.59 C (5) H(26) 3 2.47 0 (2) C (8) 3 3.45 0 (2) H(25) 4 2.43 S i ( l ) H(26) 3 3.20 H(30) H(35) 5 2.24 Molecule 1 x y z 2 1-x -y -z 3 x (l/2)-y (l/2)+z 4 1+x (1/2)-y (1/2)+2 5 1+x y -1+z 80 may be compared with the corresponding o r i e n t a t i o n a n g l e s 3 2 of 62°, 41° and 58° i n the germanium compound (Table 26). The two molecules therefore have very s i m i l a r , but not quite i d e n t i c a l shapes, the s i l i c o n compound p r o p e l l e r being rather more regular. The a c e t y l group i n the s i l i c o n compound has an or i e n t a t i o n which i s the same as that i n the germanium analogue, i t s plane being approxi-mately at r i g h t angles (80°) to the C(3), S i , C ( l l ) plane. I t seems l i k e l y there-fore that the deviation from a symmetrical p r o p e l l e r i n Ph^Ge-CO'CH-^ i s a r e s u l t of intermolecular, rather than intramolecular, i n t e r a c t i o n s . The dimensions of the a c e t y l group i n a c e t y l t r i p h e n y l s i l a n e , C=0, 1.21A (a = 0.02A) and C-CHg, 1.50A (a = 0.03A) are s i m i l a r to those i n the germanium analogue (1.20A and 1.51A), and to the distances normally found i n ketones. The s i l i c o n - c a r b o n bonds are not a l l equivalent, the differences being exactly analogous to those found proviously i n the germanium compound. 3 2 The Si-C(phenyl) bond distance of 1.864A (a = 0.008A) may be compared with the value 1,870 ± 0.005A reported f o r Si-CH 3 bonds and with the distance 1.843 ± 0.005A f o r S i - C 6 H 5 bonds'}0 The Si-C ( a c e t y l ) b o n d length of 1.926A (a = 0.014A) i s 0.062A (4a) greater than the Si-C(phenyl) distances. The corresponding d i f f e r e n c e f o r the germanium compound i s 0.066A (4a). The S i - C ( a c e t y i ) and G e - C ( a c e t y l ) bonds therefore appear to be longer than single-bonds, and the elongation can beexplained.by resonance structures s i m i l a r to those given f o r the germanium analogue? 2 In acetyltriphenylmethane, the contribution of resonance structure I l a o : cp"! Ph 3C-C-CH 3 -<->- Ph 3C-C-CH 3 l a H a i s expected because of the difference i n e l e c t r o n e g a t i v i t i e s of carbon and oxygen i n the carbonyl group. For a c e t y l t r i p h e n y l s i l a n e and a c e t y l t r i p h e n y l -81 Table 26 Comparison of Ph 3Si-CO-CH 3 and Ph3Ge-CO-CH3 Ph 3Si-CO-CH 3 Ph3Ge-CO-CH3 Unit c e l l a 7.53A 15.30A b 28.70 14.53 c 7.90 7.68 3 96.8° 94.8° Space group P21/c P2 1/c Bond lengths M-C (phenyl) M _ c ( a c e t y l ) 1.864A 1.926 1.945A 2.011 Angles c ( p h e n y l ) " M - c ( p h e n y l ) 111.3° 110.7° c ( a c e t y l ) ~ M - C ( p h e n y l ) Ph CMC planes 107.4 58.0 108.3 61.5 54.7 40.6 54.9 57.5 germane, the atom M (M = S i or Ge) i s more e l e c t r o p o s i t i v e than the carbon and the p o s i t i v e charge i s more l i k e l y to reside on the M than on the carbon. Con-t r i b u t i o n from the r e s u l t i n g resonance structure, I l l b , if :? : : ? f + . Ph 3M-C-CH 3 «-»- Ph 3M-C-CH 3 Ph 3 M :C-CH3 •*-»• Ph 2 M :C-CH3 Ib l i b I l l b IVb with no formal bond between the M and the a c e t y l carbon atom explains the long M - C ( a c e t y i ) bond lengths. Further d i s s i p a t i o n of the p o s i t i v e charge to the ortho- and para- carbons of the phenyl rings i s also p o s s i b l e , IVb. This explanation i s i n accord with the r e s u l t s of s p e c t r a l and b a s i c i t y s t u d i e s ? 1 * - 3 7 and with e l e c t r o n e g a t i v i t y d i f f e r e n c e s 3 8 a l l of which suggest i n f a c t that the s i l i c o n compound should e x h i b i t an elongation of the S i - C ( a c e t y 1 j bond which i s r e l a t i v e l y a l i t t l e greater than that of the G e - C ( a c e t y q ) bond. The measured elongations i n Ph3M-CO*CH3 (M = Ge, Si) are i n f a c t equal within experimental erro r . Detailed differences obviously depend on the way i n which Ge-C and Si-C bonds vary with bond order (in the region of bond order less than u n i t y ) . Although the u n i t c e l l dimensions of Ph3Ge-CO-CH3 and Ph 3Si-CO-CH 3 appear to be rather d i s s i m i l a r (Table 26), the two structures are i n f a c t very c l o s e l y r e l a t e d . Both c r y s t a l s contain i d e n t i c a l b u i l d i n g units of two molecules related by a c-glide plane (Fig. 10 and F i g . 11), and these b u i l d i n g units have iden-t i c a l o rientations but are situated d i f f e r e n t l y with respect to the 2^  axes. This gives r i s e to s l i g h t l y d i f f e r e n t stacking, such that i a G e and b„. ^ 2b . S i Ge 9 1 ? ? * "2 View of the structure of a c e t y l t r i p h e n y l s i l a n e alon. (The c axis points away from viewer.) 84 85 REFERENCES 1. W. L. Bragg, Proc. Cambridge P h i l . Soc. 17, 43 (1913). 2. G. H. Stout and L. H. Jensen, "X-ray Structure Determination," The Macmillan Co., New York, (1968). 3. M. J . Buerger, "X-ray Crystallography," Wiley, New York, (1942). 4. M. J . Buerger, "The Precession Method," J . Wiley and Sons, Inc., New York, (1964). 5. M. J . Buerger, " C r y s t a l Structure Analysis," J . Wiley and Sons, Inc., New York, (1960) 6'. M. J . Buerger, "Vector Space," J . Wiley and Sons, Inc., New York, (1959). 7. H. Lipson and W. Cochran, "The C r y s t a l l i n e State. V ol. I l l : The Determination of C r y s t a l Structures," 3rd. ed., G. B e l l and Sons Ltd., London, (1966). 8. "International Tables for X-ray Crystallography," V o l . I, (1952), V o l . I I , (1959), V o l . I l l , (1962), Kynoch Press, Birmingham. 9. H. Hauptman and J . Karle, "The Solution of the Phase Problem — I. The Centrosymmetric C r y s t a l , " American Crys t a l l o g r a p h i c Ass., (1953). 10. J . Karle and I. L. Karle, Acta Cryst., 2^ L, 849 (1966). 11. R. E. Long, Ph. D. Thesis, U n i v e r s i t y of C a l i f o r n i a at Los Angles, (1965). 12. J . L a d e l l and B. Post, Acta Cryst., 1_, 559 (1954). 13. E. M. Ayerst and J . R. C. Duke, Acta Cryst., 1_, 588 (1954). 14. D. R. Davies and R. A. Pasternak, Acta Cryst., 9_, 334 (1956). 15. H. N. Rexroad; Y. H. Hahn and W. J . Temple, J . Chem. Phys., 42_, 324 (1965). 16. P. G. Stecher; The Merck Index, 8 t h e d i t i o n Merck & Co., Inc. Rahway N . J . , U. S. A., (1968). 17. N. Cyr and W. C. L i n , Chem. Comm., 192 (1967) 18. H. M. McConnel, C. H e l l e r , T. Cole and R. W. Fessenden, J . Am. Chem. S o c , 8 6 8 2 , 7 6 6 ( 1 9 6 0 ) . 1 9 . N. Cyr, Ph. D. Thesis, U n i v e r s i t y of B r i t i s h .Columbia, ( 1 9 6 7 ) . 2 0 . A . J . C. Wilson, Nature, 1 5 0 , 1 5 1 ( 1 9 4 2 ) . 2 1 . R. Hoge, Ph. D. Thesis, Un i v e r s i t y of B r i t i s h Columbia, ( 1 9 6 8 ) . 2 2 . D. Sayre, Acta Cryst., 5_, 6 0 ( 1 9 5 2 ) . 2 3 . R. F. Stewart; F. R. Davidson and W. T. Simpson, J . Chem. Phys., 4 2 , 3 1 7 5 ( 1 9 6 5 ) . 2 4 . W. C. Hamilton, Acta Cryst., 1 8 , 8 6 6 ( 1 9 6 5 ) . 2 5 . F. Senti and D. Harker, J . Am. Chem. S o c , 6 2 , 2 0 0 8 ( 1 9 4 0 ) . 2 6 . D. W. J . Cruickshank, Acta Cryst., 9_,151 ( 1 9 5 6 ) ; 1 4 , 8 9 6 ( 1 9 6 1 ) . 2 7 . W. R. Busing and H. A. Levy, Acta Cryst., 17_, 1 4 2 ( 1 9 6 4 ) . 2 8 . G. W. Wheland, "Resonance i n Organic Chemistry," J . Wiley and Sons, Inc., New York, ( 1 9 5 5 ) . 2 9 . L. N. Ferguson, "The Modern S t r u c t u r a l Theory of Organic Chemistry," P r e n t i c e - H a l l , Inc., Englewoods C l i f f s , N. J . , ( 1 9 6 3 ) . 3 0 . P. Bernfeld, "Biogenesis of Natural Compounds," Pergamon Press, Macmillan Co., ( 1 9 6 3 ) . 3 1 . J . P. Kutney and W. J . Cretney, i n preparation. 3 2 . R. W. Harrison and J . T r o t t e r , J . Chem. S o c , (A), 2 5 8 ( 1 9 6 6 ) . 3 3 . V . W. Laurie, J . Chem. Phys., 30_, 1 2 1 0 ( 1 9 5 9 ) . 3 4 . A. G. Brook, J . Am. Chem. S o c , 7 9 , 4 3 7 3 ( 1 9 5 7 ) . 3 5 . A. G. Brook, M. A. Quigley, G. J . D. Peddle, N. V . Schwartz, and C. M. Warner, J . Am. Chem. S o c , 8 2 , 5 1 0 2 ( 1 9 6 0 ) . 3 6 . A. G. Brook and G. J . D. Peddle, J . Organometallic Chem., 5_, 1 0 6 ( 1 9 6 6 ) . 3 7 . K. Yates and F. A g o l i n i , Canad. J . Chem., 4 4 , 2 2 2 9 ( 1 9 6 6 ) . 3 8 . F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," J . Wiley and Sons, Inc., New York, ( 1 9 6 2 ) . 3 9 . D. Wittenberg and H. Gilman, J . Am. Chem. S o c , 80_, 4 5 2 9 ( 1 9 5 8 ) . 87 40. "Tables of Interatomic Distances and Configuration i n Molecules and Ions," Chem. Soc. Special Publ., No. 11, (1958), and No. 18, (1965). 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0061896/manifest

Comment

Related Items