Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The crystal structures of malonamide, cyanoacetamide, a compound C₂₀H₃₃N₃, and acetyltriphenylsilane Chieh, Peter Chung 1969

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1969_A1 C54.pdf [ 9.29MB ]
Metadata
JSON: 831-1.0061896.json
JSON-LD: 831-1.0061896-ld.json
RDF/XML (Pretty): 831-1.0061896-rdf.xml
RDF/JSON: 831-1.0061896-rdf.json
Turtle: 831-1.0061896-turtle.txt
N-Triples: 831-1.0061896-rdf-ntriples.txt
Original Record: 831-1.0061896-source.json
Full Text
831-1.0061896-fulltext.txt
Citation
831-1.0061896.ris

Full Text

THE  CRYSTAL STRUCTURES OF MALONAMIDE, CYANOACETAMIDE, A COMPOUND C 2 0 H 3 3 N 3 , AND ACETYLTRIPHENYLSILANE.  by PETER CHUNG CHIEH  B. Sc., N a t i o n a l  Taiwan U n i v e r s i t y .  M. Sc., N a t i o n a l  Tsing  Hua U n i v e r s i t y .  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE  REQUIREMENTS. FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n the Department of Chemistry  We a c c e p t t h i s t h e s i s as conforming t o the required  THE  standard  UNIVERSITY OF BRITISH COLUMBIA May, 1969  In p r e s e n t i n g an  this  thesis  advanced degree at  the  Library  I further for  shall  the  his  of  this  agree that  University  of  permission  representatives.  be  available  _  g r a n t e d by  gain  shall  Chemistry  c  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  .  2 3  '  M a  *  1 9 5 9  for  for extensive  permission.  Department of  British  the  It is understood  thes.is f o r f i n a n c i a l  written  Date  f u l f i l m e n t of  make i t f r e e l y  s c h o l a r l y p u r p o s e s may  by  in p a r t i a l  Columbia  requirements  Columbia,  Head o f my  be  I agree  r e f e r e n c e and c o p y i n g of  that  not  the  that  Study.  this  thesis  Department  copying or  for  or  publication  allowed without  my  To my adopted p a r e n t s Mr. and Mrs. Sun L i - j e n  -•X  l  • - • ^  <  C  ^ x -  T a l e n t s become b r i g h t t h r o u g h e x t e n d e d Knowledge i s d e v e l o p e d t h r o u g h  practice;  adversity;  C o u r a g e b e c o m e s g r e a t t h r o u g h c a u t i o u s approach,Judgement i s p e r f e c t e d by wide e x p e r i e n c e .  Sun  Li-jen  J a n . 2 0 , 1969  iv  ABSTRACT  Supervisor:  The  P r o f e s s o r James  crystal  s t r u c t u r e s o f malonamide, cyanoacetamide,  d e r i v a t i v e o f a compound, determined by s i n g l e are  Trotter  C 2 0  H  3 3  N ,  a  n  3  c r y s t a l X-ray  d  a c e t y l t r i p h e n y l s i l a n e have been  d i f f r a c t i o n methods.  o r g a n i c compounds a n d t h e f o u r t h  summary o f t h e c r y s t a l d a t a i s g i v e n  a methiodide  The f i r s t t h r e e  i s a n o r g a n o m e t a l l i c compound. below:  Compounds  a  b1  c  6  Z  Malonamide  13. .07  9. 45  8..04  73..0  8  P2 /c  8..36  1 3 . 56  7..56  111. .2  8  P2 /c  8..01  1 7 . 70  90..0  8  Pbca  7..53  28. 7  96..8  4  P2 /c  Cyanoacetamide C  20 33 3H  N  C H  3  X  (C H )3S1COCH3 6  5  The  c e l l dimensions  from r o t a t i o n ,  t h e compound C Q H 2  3 3  7..90  and space  Weissenberg  Spectrogoniometer.  31..3  groups  1  1  1  o f a l l t h e c r y s t a l s were  of the reflexions  XRD-6  except  Automatic  c o u n t e r , Mo-Ka o r Cu-Ka r a d i a t i o n a n d a 6-  d a t a f o r 2 0 3 3 3 were c o l l e c t e d C  Electric  o f t h e s e compounds,  3  The i n t e n s i t y  determined  and on t h e G e n e r a l  N , were c o l l e c t e d on a G e n e r a l E l e c t r i c  Spectrogoniometer w i t h s c i n t i l l a t i o n 2Q s c a n .  Space Group  and p r e c e s s i o n photographs  The i n t e n s i t i e s  A  H  N  o n a G. E. X R D - 5  Spec-  trogoniometer. The of The  crystal  s t r u c t u r e o f m a l o n a m i d e was s o l v e d b y d i r e c t m e t h o d s .  158 r e f l e x i o n s w i t h IE|> 1.50 w e r e d e r i v e d u s i n g t h e s y m b o l i c a d d i t i o n f o u r t e e n h i g h e s t p e a k s o n t h e t h r e e - d i m e n s i o n a l E-map c o r r e s p o n d e d  m o l e c u l e s o f malonamide i n t h e asymmetric discrepancy  factor,  F o u r i e r a t R=0.12.  R , was 0.38. With  unit.  The h y d r o g e n  With  The s i g n s method. t o two  these c o o r d i n a t e s , the  atoms were l o c a t e d on a d i f f e r e n c e  a l l n o n h y d r o g e n atoms a n i s o t r o p i c ,  t h e r e f i n e m e n t was  V  complete a t R=0.05, u s i n g b l o c k - d i a g o n a l  least-squares  methods.  symmetry-unrelated m o l e c u l e s have d i f f e r e n t o r i e n t a t i o n s but mations. by  65°  C=0,  The  and  amide groups are  the o t h e r 40°.  1.242A, and  1.254A.  The  r o t a t e d out o f the  The  two  m o l e c u l e s and  t h i s reduces the  trial  s t r u c t u r e had  form dimers, which can be  The  The  amide group, the  considered  and  two  considerlayers  to a two-dimensional  symmetry-unrelated molecules other u n i t s  are  dimers are bonded t o each o t h e r by The  -  of  r e f i n e d to 0.089.  as p a c k i n g u n i t s , and  The  with  a weak  l a y e r s are r e l a t e d to each o t h e r by  a  symmetry. structures  Patterson  of 2 0 3 3 3 " C ^ C  H  functions,  N  The  and H  a  n  d  a c e t y l t r i p h e n y l s i l a n e were s o l v e d  o t h e r atoms from c o n s e c u t i v e N  o f the  by  p o s i t i o n s of the heavy atoms were o b t a i n e d from  compound 2 0 3 3 3 °^ C  1  UR  k n o w n s t r u c t u r e was  laboratory  synthesis  d e r i v e d by  s i n g l e c r y s t a l X-ray s t r u c t u r e a n a l y s i s .  are  OO,  methods combined  structure contains  a d i s c r e p a n c y o f 0.50  type N-H **NEC.  the heavy atom method.  The  1.334A;  Patterson  three-dimensional Patterson  a screw a x i s , 2^.  hydrogen bond o f the of  ;  from e l e c t r o n s p i n resonance measurements and  Through hydrogen-bonding o f the  centre  one  hydrogen bonds.  s o l v e d by  a t i o n s o f p o s s i b l e hydrogen-bond f o r m a t i o n .  g e n e r a t e d by  plane,  m o l e c u l e s are h e l d t o g e t h e r by hydrogen bonds i n v o l v i n g a l l e i g h t  s t r u c t u r e of cyanoacetamide was  The  confor-  1.506A C-N, 1.317A,  a f t e r c o r r e c t i n g f o r thermal l i b r a t i o n , C-N,  with information  one.  are C-C,  two  similar  c e n t r a l C-C-C  mean bond d i s t a n c e s  amino hydrogens, w i t h each oxygen a c c e p t i n g The  The  a l k a l o i d matrine.  The  the  F o u r i e r maps.  o b t a i n e d i n an  attempted  s t r u c t u r e of the  compound  F e a t u r e s of the  structure  described. In a c e t y l t r i p h e n y l s i l a n e the  t e t r a h e d r a l l y around the p r o p e l l e r fashion  and  germanium analogue.  the  a c e t y l and  s i l i c o n atom. features  The  o f the  three  p h e n y l groups are  arranged  p h e n y l r i n g s are o r i e n t a t e d  structure  are  compared w i t h  was  in a  the  vi  TABLE OF CONTENTS  TITLE PAGE .  i  ABSTRACT . .  . . . . . . . . . '• . . . . . . . I v  TABLE OF CONTENTS  vi  LIST OF TABLES .  viii  LIST OF FIGURES  . . . .  x  ACKNOWLEDGEMENTS  . . . . . .  GENERAL INTRODUCTION . .  .  .xii  . . . . . . . . . .  1  PART I . THE STRUCTURE DETERMINATIONS OF MALONAMIDE AND CYANOACETAMIDE  .  3  A. INTRODUCTION . .  . . . . . . . . . . .  B. THE STRUCTURE OF MALONAMIDE  4  .. . . . . . . . . . . . . . . . 6  Experimental  6  Structure Analysis  . . . . . .  7  R e s u l t s and D i s c u s s i o n  16  C. THE STRUCTURE OF CYANOACETAMIDE  33  Experimental  33  Structure Analysis R e s u l t s and D i s c u s s i o n  . . .  PART I I . THE STRUCTURE DETERMINATION OF A COMPOUND, C A. INTRODUCTION . B.  34  . . . . . . .  41  33 3 • • • • N  5  5  56  THE STRUCTURE OF A COMPOUND, C Q H 2  Experimental  H 2 0  . . . . . .  3 3  N  3  57 . 57  Structure Analysis  5  R e s u l t s and D i s s c u s s i o n  62  8  vii  PART I I I . THE STRUCTURE DETERMINATION OF ACETYLTRIPHENYLSILANE . . . 68 A. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . .  69  B. THE STRUCTURE OF ACETYLTRIPHENYLSILANE . . . . . . . . . . .  70  Experimental . .  . . . . . .70  Structure Analysis R e s u l t s and D i s c u s s i o n REFERENCES . . . . . . . . .  71 . . . . . . . . . . . . .  74  . . . . . . . . . . .  85  viii  LIST OF TABLES  Malonamide  1.  R e s u l t s o f the W i l s o n p l o t and the d i s t r i b u t i o n o f the|E|'s f o r 8  malonamide 2 . A comparison  o f the 16 s o l u t i o n s generated by the Phase D e t e r m i n a t i o n 11  Program 3.  The 158 non-zonal  r e f l e x i o n s with  |E| ^ 1 . 5 0  and s i g n s d e r i v e d by the  Phase D e t e r m i n a t i o n Program. .  12  4.  Measured and c a l c u l a t e d s t r u c t u r e f a c t o r s f o r malonamide  17  5.  P o s i t i o n a l and thermal parameters  6.  P r i n c i p a l axes o f the thermal v i b r a t i o n e l l i p s o i d s  7.  Bond d i s t a n c e s and v a l e n c y a n g l e s i n malonamide  8.  E q u a t i o n s o f mean p l a n e s and a n g l e s between p l a n e s i n malonamide.. 24  9.  Bond l e n g t h s and a n g l e s o f the amide group i n some compounds.  f o r the atoms o f malonamide. . . 19 f o r malonamide. 20 : .. . . 22  . . 25  10.  Hydrogen bond d i s t a n c e s and r e l a t e d angles i n malonamide  27  11.  S h o r t e s t i n t e r m o l e c u l a r d i s t a n c e s i n malonamide  28  Cyanoacetamide  12.  Measured and c a l c u l a t e d s t r u c t u r e f a c t o r s f o r cyanoacetamide.  13.  P o s i t i o n a l and t h e r m a l parameters  14.  E q u a t i o n s o f mean p l a n e s and i n t e r p l a n a r angles i n cyanoacetamide 45  15.  P r i n c i p a l axes o f the thermal v i b r a t i o n e l l i p s o i d s and t h e i r  . . 42  f o r the atoms o f cyanoacetamide 44  o r i e n t a t i o n s f o r the atoms o f cyanoacetamide  46  16.  Bond l e n g t h s and v a l e n c y angles i n cyanoacetamide  49  17.  Hydrogen bond d i s t a n c e s and r e l a t e d angles i n cyanoacetamide.  . . 51  IX  The  18.  Measured and c a l c u l a t e d . derivative, of . C H N  19.  C^H^N^  structure  f a c t o r s f o r the methiodide 59  3  P o s i t i o n a l and thermal parameters f o r the atoms o f C 20  20.  compound  H N-CHI 33 3 3  -xCH OH. 3  Bond d i s t a n c e s ,  63  v a l e n c y a n g l e s and i n t e r m o l e c u l a r  methiodide d e r i v a t i v e  distances i n the  of C^H^N^  65  Acetyltriphenylsilane  21. Measured and c a l c u l a t e d  structure  factors  for acetyltriphenylsilane. 72  22.  P o s i t i o n a l and thermal parameters f o r t h e atoms o f a c e t y l t r i p h e n y l silane  23.  76  E q u a t i o n s o f mean p l a n e s and a n g l e s between p l a n e s i n a c e t y l triphenylsilane  77  24.  Bond d i s t a n c e s and v a l e n c y angles i n a c e t y l t r i p h e n y l s i l a n e .  . . . 78  25.  Shortest intermolecular  . . . 79  26.  Comparison o f P h S i - C O « C H 3  distances i n acetyltriphenylsilane. 3  and Ph Ge.CO.CH 3  3  81  X  LIST OF FIGURES  Malonamide  1.  S e c t i o n s o f the t h r e e - d i m e n s i o n a l e l e c t r o n - d e n s i t y  distribution  and a view, l o o k i n g down the c - a x i s , o f the two malonamide m o l e c u l e s i n the asymmetric u n i t 2.  14  (A). View,  a l o n g b - a x i s , o f the hydrogen-bonding i n malonamide.. . . 29  (B) . View,  a l o n g c - a x i s , o f the hydrogen-bonding i n malonamide. . .  30  (C) . T h r e e - d i m e n s i o n a l drawing o f the hydrogen-bonding i n malonamide.31  Cyanoacetamide  3.  The sharpened P a t t e r s o n f u n c t i o n and the t r i a l  4.  The e l e c t r o n - d e n s i t y d i s t r i b u t i o n  structure  .36  i n the s e c t i o n through 0 0 — ,  and  4 p a r a l l e l t o ( l 0 1 ) , a n d the two c o r r e s p o n d i n g cyanoacetamide m o l e c u l e s . 39 5.  The t h e r m a l motion e l l i p s o i d s f o r cyanoacetamide  6.  The hydrogen-bonds  47  and p a c k i n g of the m o l e c u l e s i n the l a y e r of  cyanoacetamide  . . 52  The compound 2 0 3 3 3 C  7.  N  (a) S e c t i o n s o f the t h r e e - d i m e n s i o n a l e l e c t r o n - d e n s i t y (b)  8.  H  distribution,  Drawing o f the molecule  View o f the s t r u c t u r e o f the compound C  64 H  N -CH I , along a. . .  67  xi  Ac e ty11ripheny1s i1ane  9.  S e c t i o n s o f the t h r e e - d i m e n s i o n a l e l e c t r o n - d e n s i t y d i s t r i b u t i o n and a view o f the Ph^Si'CO'CH^ m o l e c u l e .  10. View o f t h e s t r u c t u r e o f a c e t y l t r i p h e n y l s i l a n e a l o n g c. 11. View o f the s t r u c t u r e o f a c e t y l t r i p h e n y l g e r m a n e a l o n g c  .75 . . . . .  83 84  xii  ACKNOWLEDGEMENTS  I wish t o express my a p p r e c i a t i o n t o P r o f e s s o r guidance and encouragement d u r i n g  t h e course o f t h i s  I would a l s o l i k e t o thank P r o f e s s o r problems o f malonamide supplying  C  H  N  a  n  d  research.  W. C. L i n f o r s u g g e s t i n g the  and cyanoacetamide; P r o f e s s o r  t h e compound 2 0 3 3 3 '  James T r o t t e r f o r h i s  Professor  J . P. Kutney f o r  A. G. Brook f o r p r o v i d i n g the  sample o f a c e t y l t r i p h e n y l s i l a n e , and f o r t h e i r h e l p f u l d i s c u s s i o n s .  Thanks  are a l s o due t o Dr. R. Hoge and Dr. E. Subramanian f o r h e l p f u l d i s c u s s i o n about the d i r e c t methods; Mr. C. Gibbons f o r r e a d i n g and  my w i f e  o f the manuscript and comments;  f o r h e r encouragement.  I g r a t e f u l l y acknowledge the B r i t i s h Columbia Sugar R e f i n i n g Company f o r a  scholarship.  1  GENERAL  In 1895,  Roentgen d i s c o v e r e d  INTRODUCTION  x-rays, e l e c t r o m a g n e t i c r a d i a t i o n w i t h wave-  —8 l e n g t h o f 10  cm.,  and made i t p o s s i b l e f o r p h y s i c i s t s and  the i n t e r n a l s t r u c t u r e s and f i r s t s t r u c t u r e was  chemists t o examine  arrangements o f the m o l e c u l e s i n c r y s t a l s . The  determined by B r a g g  s t r u c t u r e s have been determined. The d i s t r i b u t i o n o f computers and  1  i n 1913.  recent  S i n c e then many thousands of  growth i n the development  i n the improvement o f i n s t r u m e n t a t i o n  and  have made  2  X-ray s t r u c t u r e a n a l y s i s more and more p r a c t i c a l . The b a s i c p r i n c i p l e s o f X-ray d i f f r a c t i o n , and the use o f the Weissenberg and p r e c e s s i o n cameras,have been discussed  3_5 by Buerger.  d e t e r m i n a t i o n and not d e s c r i b e d  There are a l s o s t a n d a r d r e f e r e n c e s  Patterson  and  F o u r i e r s e r i e s , e t c . , and  h e r e . A l l the symbols and  i n t h i s t h e s i s have t h e i r c o n v e n t i o n a l T a b l e s f o r X-ray  Crystallography."  crystallographic meaning, d e s c r i b e d  simple amides, malonamide and  heavy atom i n the s t r u c t u r e s afforded opportunities  and  these are  nomenclature i n the  occuring  "International  the X-ray  structure  cyanoacetamide. There i s no  they have space group P2-^/c, and  f o r applying  therefore  8  This t h e s i s c o n s i s t s of three p a r t s . Part I describes d e t e r m i n a t i o n o f two  5 8 ~ on space group  therefore  the symbolic a d d i t i o n procedure f o r phase  d e t e r m i n a t i o n t o a centrosymmetric space g r o u p .  9  1 1  However, the d i r e c t method  d i d not g i v e a s a t i s f a c t o r y s o l u t i o n to the cyanoacetamide s t r u c t u r e , which was  deduced from the P a t t e r s o n  r o l e i n these two  s t r u c t u r e s . In P a r t I I , the s t r u c t u r e o f a  compound, C Q H 2 3 F N  2  3  the m o l e c u l e has o f t e r t i a r y and Since there  f u n c t i o n . Hydrogen bonding p l a y s  i s e s t a b l i s h e d by X-ray d e t e r m i n a t i o n . The  some s i m i l a r i t y  an  important  synthesized structure  of  to q u i n o l i z i d i n e a l k a l o i d s i n t h a t i t c o n s i s t s  secondary n i t r o g e n s  i n the h e t e r o c y l i c six-membered r i n g s .  i s no a l k a l o i d found t o have a s i m i l a r s t r u c t u r e , the compound  has  2  no simple,  t r i v i a l name. The X-ray s t r u c t u r e d e t e r m i n a t i o n  compound, a c e t y l t r i p h e n y l s i l a n e , i s d e s c r i b e d  o f an  organometallic  i n P a r t I I I , and the s t r u c t u r e i s  compared w i t h the analogous germanium compound. The methods used t o s o l v e the 2 s t r u c t u r e s i n P a r t I I and I I I were s t r a i g h t - f o r w a r d heavy atom methods.  3  PART  I  THE STRUCTURE DETERMINATIONS OF MALONAMIDE AND CYANOACETAMIDE  /  4 A.  The  INTRODUCTION  12 13 14 c r y s t a l s t r u c t u r e s of formamide, oxamide and succinamide had been  determined b u t t h a t o f malonamide} an i n t e r m e d i a t e 5  member i n the f a m i l y was  unknown. Cyanoacetamide, a l s o c a l l e d m a l o n a m i d e n i t r i l e )  6  i s also closely  r e l a t e d t o t h e f a m i l y . I t i s t o be expected t h a t hydrogen bonding p l a y s an important r o l e i n t h e c r y s t a l s t r u c t u r e o f compounds p o s s e s s i n g and  amide groups  i t seemed o f i n t e r e s t t o f i n d o u t how t h e molecules pack t o g e t h e r t o  maximize hydrogen b o n d i n g . l t the n i t r o g e n  a l s o seemed o f i n t e r e s t t o determine whether  i n the cyano group, -C=N, would a c t as an a c c e p t o r  f o r a hydrogen  bond. 15 Rexroad e t a l  s t u d i e d the e l e c t r o n s p i n resonance  (e s r ) o f y - i r r a d i a t e d  malonamide c r y s t a l s and concluded t h a t one o f t h e r a d i c a l s p e c i e s  formed was  NH COCHCONH . T h e i r r e s u l t s showed t h a t the C-C-C p l a n e o f t h e molecule almost 2  2  coincides with the c r y s t a l l o g r a p h i c  r a d i c a l points  a-c p l a n e and t h a t t h e C-H bond o f t h e 17  i n t h e d i r e c t i o n o f t h e c - a x i s . C y r and L i n  the e s r s p e c t r a o f a second s p e c i e s with the unpaired  a l s o found t h a t  c o u l d be i n t e r p r e t e d as due t o H NCCOCH CONH 2  2  e l e c t r o n i n a a - o r b i t a l . In a d d i t i o n , they deduced t h a t the  N-H bond o f -CONH p o i n t s a p p r o x i m a t e l y i n t h e d i r e c t i o n o f t h e c - a x i s  (private  communication). I t i s known from many e s r s t u d i e s t h a t i n a c r y s t a l , t h e 18 r a d i c a l s g e n e r a l l y r e t a i n t h e o r i e n t a t i o n o f the p a r e n t undamaged m o l e c u l e . 1 9  Cyr and  and L i n  a l s o s t u d i e d the X-ray i r r a d i a t e d c r y s t a l o f cyanoacetamide  found two r a d i c a l s , NCCHCONH and NCCH CONH. From t h e p r i n c i p a l v a l u e s 2  hyperfine  coupling  tensor  2  o f the  f o r the ^ - e l e c t r o n radical,NCCHCONH , they concluded 2  t h a t t h e C-C-C p l a n e c o i n c i d e s w i t h t h e (101)  p l a n e and the C-H bond i n the  7 r - e l e c t r o n r a d i c a l p o i n t s i n t h e d i r e c t i o n o f [101] . I t i s t h e r e f o r e another purpose o f these s t u d i e s o f the c r y s t a l \  structures  5 of malonamide and cyanoacetamide to see i f the correlations found i n electron spin resonance do e x i s t .  6  B.  THE STRUCTURE OF MALONAMIDE  Experimental  C r y s t a l s o f malonamide a r e c o l o u r l e s s prisms e l o n g a t e d along c and can be r e c r y s t a l l i z e d from water a t room temperature. The (100) p l a n e s can e a s i l y be i d e n t i f i e d by t h e c h a r a c t e r i s t i c p e r f e c t c l e a v a g e . They d i s s o l v e i n water  slowly,  and t h e d e n s i t y c o u l d be measured by f l o t a t i o n i n aqueous potassium i o d i d e . The u n i t c e l l dimensions and space group were determined from r o t a t i o n , and p r e c e s s i o n photographs  C r y s t a l Data:  and on t h e G e n e r a l E l e c t r i c  Weissenberg  Spectrogoniometer.  (A, Cu-Ka = 1.5418A; A, Mo-Ka = 0.7107A)  Malonamide, H NCOCH CONH : M, 102.06; m.  p.,170°C.  . M o n o c l i n i c , a = 13.07 ± 0.02A, b = 9.45 ± 0.02A, c =  8.04 ± 0.02A, B = 73.0 ± 0.2° .  U = 949.6A , F( oo)= 432. 3  0  Dm = 1.426 g . cmT  Z = 8; D  x  3  (flotation i n K l solution)  = 1.427 g . cmT  3  A b s o r p t i o n c o e f f i c i e n t f o r X - r a y s : u(Cu-Ka) ^ (Mo-Ka)  =  =  1 ° - cmT , 4  1  1.30 cmT . 1  Absent s p e c t r a : ho£ when % i s odd;, oko when k i s odd, Space group i s P 2 / c ( C ^ ) 5  1  The i n t e n s i t i e s o f the r e f l e x i o n s were measured on a G e n e r a l E l e c t r i c XRD-6 Automatic Spectrogoniometer, w i t h a s c i n t i l l a t i o n c o u n t e r , Mo-Ka r a d i a t i o n (Zr f i l t e r and p u l s e h e i g h t a n a l y z e r ) and a 6 - 29 s c a n . The i n t e n s i t i e s were c o r r e c t e d f o r background, 1031  taken a t the b e g i n n i n g and end o f each s c a n . Among  r e f l e x i o n s w i t h 26 (Mo-Ka) < 42.3°  ( c o r r e s p o n d i n g t o a minimum i n t e r p l a n a r  7  s p a c i n g d = 0.98A), 941 (91%) had an i n t e n s i t y above background. The 90 unobserved r e f l e x i o n s were i n c l u d e d The  i n the s t r u c t u r e  c r y s t a l used f o r r e c o r d i n g  w i t h a diameter o f 0.4 mm. goniostat.  | F | = 0.6F (threshold) . 0  the i n t e n s i t i e s was a p p r o x i m a t e l y  spherical  and was mounted w i t h c* p a r a l l e l t o the $ a x i s o f the  No a b s o r p t i o n c o r r e c t i o n was made. L o r e n t z and p o l a r i z a t i o n  were a p p l i e d  and the s t r u c t u r e  amplitudes were  Structure  The  analysis with  c r y s t a l structure  factors  derived.  Analysis  o f malonamide i s c o m p l i c a t e d by the f a c t t h a t i t  contains e i g h t molecules per u n i t c e l l ,  i . e . two molecules p e r asymmetric  A sharpened t h r e e - d i m e n s i o n a l P a t t e r s o n s y n t h e s i s v e r y c o m p l i c a t e d . Many e f f o r t s t o d e r i v e met w i t h no s u c c e s s , and d i r e c t  unit.  was c a l c u l a t e d but i t was  the s t r u c t u r e  from the P a t t e r s o n  map  methods were attempted. 20  The  i n t e n s i t i e s were s c a l e d by Wilson's method and the o v e r a l l temperature  f a c t o r found t o be 3.19A? The n o r m a l i z e d s t r u c t u r e  f a c t o r magnitudes d e f i n e d  by |F |  2  H  l hl E  2  =  e  2 j(h) f  J=1  ~  were c a l c u l a t e d w i t h a program w r i t t e n reflexions derived  and 2 f o r h0& and OkO  by Hoge,  reflexions;  from i n t e n s i t i e s by u s i n g the s c a l e  1 0  where e i s 1 f o r g e n e r a l | F | i s the s t r u c t u r e  factor  H  f a c t o r and a p p l y i n g  the L o r e n t z  Q and  polarizarion correction  scattering h  (h =  i n the s t a n d a r d manner;  f j (h) '- * :  s t  i e  a  t  o  m  i -  f a c t o r f o r the j*"* atom f o r the s c a t t e r i n g angle a s s o c i a t e d 1  (hkS.) ) ; N i s the t o t a l number of atoms i n the u n i t c e l l .  o f the IEI's i s l i s t e d i n T a b l e 1.  c  with  The d i s t r i b u t i o n  8 Table Results  1  o f t h e W i l s o n p l o t and t h e d i s t r i b u t i o n o f the lEI's f o r malonamide  Theoretical Experimental  B  Centro-symmetric  2  Non-centrosymmetric  3.19  <|E|>  0.797  0.798  0.886  0.988  1.000  1.000  | E | >3  0.0136  0.003  0.0001  | E | >2  0.076  0.050  0.018  |E|  0.325  0.320  0.368  <|E| > 2  Fraction with  The  >1  d i r e c t determination  o f phases f o r t h e n o r m a l i z e d s t r u c t u r e f a c t o r s  has  been v e r y w e l l reviewed and d i s c u s s e d  and  Karle^  by K a r l e  The b a s i s o f the s i g n d e t e r m i n a t i o n  and K a r l e  1 0  and Hauptman  i s Sayre's r e l a t i o n ?  2  S (Eh) ~ S (Z^Eh Eh-h"'-) where S(') means " s i g n of'.' F o r malonamide, which belongs t o the space group  P2i/c E  (hk£)  E  (hk£)  and  E (hkJl) = The  .k-44. ' (hk .) E  A  p r o b a b i l i t y t h a t a s i g n has been c o r r e c t l y determined, i f other  are c o r r e c t i s  P = 0.5 + 0.5 t a n h | - I i f  6/z 2  E —  h  2 E , E _ . | — — * h  h  h  signs  where e_  and  f  Q  N = Z £ j=l  i s the atomic s c a t t e r i n g f a c t o r f o r the j  atoms. The q u a n t i t y e / e 3 2  t  n  atom and N i s the number o f  i s c a l l e d the p r o b a b i l i t y c o n s t a n t and i s equal t o  3 / 2  0.13332 f o r malonamide. A p p l i c a t i o n o f d i r e c t methods t o hOX, d a t a alone proved u n s u c c e s s f u l as too many e q u a l l y p r o b a b l e  s o l u t i o n s were  A program w r i t t e n by L o n g and  1 1  generated.  was used t o f i n d a l l the v e c t o r i n t e r a c t i o n s  apply the above formulae t o determine the s i g n s o f the normalized  structure  f a c t o r s u s i n g a s t a r t i n g s e t o f seven s i g n s . The f i r s t t h r e e a r e l i n e a r l y  semi-  independent modulo 2, and a r e a r b i t r a r i l y a s s i g n e d i n o r d e r t o s p e c i f y the o r i g i n . S i x t e e n p o s s i b l e s t a r t i n g s e t s were c o n s i d e r e d so t h a t each p o s s i b l e s i g n combination  o f the remaining  f o u r s i g n s c o u l d be t r i e d . The | E | ' S were  l i s t e d i n o r d e r o f d e c r e a s i n g s i z e and the program r e o r d e r e d the r e f l e x i o n s on d e c r e a s i n g s i z e o f | Z E | , where E i s the sum i n the Sayre's e q u a t i o n . The -  program a l s o r e o r d e r e d  the r e f l e x i o n s a t the top o f the l i s t  so t h a t the  r e f l e x i o n s i n the s t a r t i n g s e t had the proper p a r i t i e s . The seven r e f l e x i o n s used as s t a r t i n g s e t g i v e n by the program were: h  k  I  11  4  4  3.07  -1  3  2  2.47  E  Sign  + \ 1  \  \ -10  2  1  3.73  +  7  4  2  2.99  a  -1  7  4  3.35  b  5  2  7  2.75  c  -2  3  2  2.23  d  origin determining  |  . t h r e e r e f l e x i o n s were used t o determine the o r i g i n and by :  the s i g n s o f a, b, c, and d, there were s i x t e e n (2 **) s e t s  signs. S t a r t i n g w i t h each o f the s i x t e e n s t a r t i n g s e t s o f seven s i g n s , the program p r e d i c t e d the s i g n s f o r o t h e r r e f l e x i o n s on the r e o r d e r e d new  p r e d i c t i o n b e i n g used i n s i g n d e t e r m i n a t i o n s  the bottom o f the l i s t was changes i n the l i s t  and  c y c l e through the l i s t ,  reached,  and  r e p e a t e d . The number of  a d d i t i o n s were counted f o r each  the c y c l i n g was  continued  u n t i l t h e r e were no  a d d i t i o n s nor changes. F o r each o f the s i x t e e n s t a r t i n g s e t s , the f i r s t s i g n s , the number o f c y c l e s and The  c o n s i s t e n c y index, C,  <  E  E  =  >  =^=-  IV h'l'l h-h'l | E  E  >  where the sums are over a l l p a i r s o f h' and h-h' average over a l l v a l u e s o f h. The c o n s i s t e n t one, been s h o w n  11  2.  i s d e f i n e d as  E  =  new  seven  the c o n s i s t e n c y index are l i s t e d i n Table  <I Eh I I h'• h-^\  C =  each  f u r t h e r down the l i s t . When  the p r o c e s s was  the number of new  list,  and where < > means the  t r u e s o l u t i o n w i l l u s u a l l y be  the most  i . e . i t w i l l have the h i g h e s t c o n s i s t e n c y index.  I t a l s o has  t h a t the c o r r e c t s o l u t i o n u s u a l l y r e q u i r e s fewer c y c l e s than  o t h e r s o l u t i o n s . In view o f these two  o b s e r v a t i o n s , s e t number 10 of Table  2  appeared t o be the t r u e s o l u t i o n t o the phase problem o f malonamide. The program has  o p t i o n s o f u s i n g more c o n s e r v a t i v e i t e r a t i o n ,  i . e . newly  determined s i g n s a r e not used t o determine a d d i t i o n a l s i g n s u n t i l the c y c l e , and  t h i s u s u a l l y needs more c y c l e s . The  o b t a i n e d i n t h i s way.  2 were  U s i n g the o p t i o n o f l e s s c o n s e r v a t i v e i t e r a t i o n , i . e .  the newly determined s i g n s are used immediatly set  data g i v e n i n Table  next  to determine a d d i t i o n a l s i g n s ,  number 10 came out w i t h the same answer; i t r e q u i r e d only two  the r e s t of the s o l u t i o n s needed more than two.  The  c y c l e s while  c o n s i s t e n c y index  i s also  the h i g h e s t f o r t h a t s e t . S o l u t i o n s e t number 10 t o g e t h e r w i t h the magnitudes of  E f o r 158  non-zonal r e f l e x i o n s a r e l i s t e d i n Table  3. I n c l u s i o n of z o n a l  11  Table  2  A comparison o f t h e 16 s o l u t i o n s generated by the Phase D e t e r m i n a t i o n (For 158 non-zonal  Set No.  First  7 signs  r e f l e x i o n with  E  Program  > 1.50)  No. o f c y c l e s  Consistency  1  +_+++++  10  0.57  2  +-++++-  9  0.54  9  0.60  3 4  +-+++—  9  0.65  5  +-++-++  9  0.68  6  +_++_+_  i i  0.59  7  +-++—+  9  0.73  8.  +-++  10  0.72  9  +-+-+++  9  0.71  10  +-+-++-  8  0.81  11  +-+-+-+  10  0.52  12  +-+-+—  12  0.75  13  +-+—++  10  0.54  14  +-+—+-  10  0.59  15  +-+  9  0.57  16  +-+  10  0.50  +  11  index  12 Table  3  The 158 non-zonal r e f l e x i o n s with'|E| >. 1.50 and s i g n s d e r i v e d by the Phase D e t e r m i n a t i o n program}  k  a 6 6  A . '..3 A . f. 2 - 3 . !•: 1  -10 10 10 -1 -8 -6 8 11 -7  •? 6  1 1  A 7 A 7 6 A A  ?  3. 73 - i . * 0 3 . AO 3.3 j 3. 3 I -3.21  A A  3 8 7 10 -5  ] 7 A 2 A A /,  7 2 2 1 2 2 2  A  e  5  ?  C  7 8 R f;  3 7 A  h 8 -2  -5  -IC I?  -3 -2 2 -6 3 5 9 8' -4 L -2 3 -2 -1 -11 7 3 -2 -3 -2 1C 3 9 8 A -1 - 5 —A 7 9  A A 5 •  6 9 71  6  A 2  ?  2 2 2 2 A 2 •>  7  A  A  8 c;  A  6 3 3 1 A 5 7  A 6 2 2 A 6 7  ^  /, cr  6 I 3 1 /, F. 7  t 2 A A 2 7 A  ] '*  6 A  E  -3.1 9 S.C 7 - 3. C3 - 3 . f• 3 3. 0 1 -2. 9 2.91 2 . 90 2. 8 > 2 . ." 1 2 . 79 2.7 9 C  i  2.7! 2.69 - 2. 68 - 2. 67 2. 62 2.9 9 - 2 . 7 - 2 . 9 "5 2 . jA - 2 . 9A -2.33 -2.51 -2 . A 9 2 . A8 - 2. A V -2.A7 2 . A5 - 2. A3 - 2 . A2 - 2 . A ?  -2.AI 2.A1 - 2 . A0 -2.3 9 -2.39 -2.3 9 2 . 38 - 2. 3 5 -2.3 3 - 2 . 1 2.30  -2 13 -3 12 -12 -2 9 8 7 9 -8 -2 9 A A 9 -7 -10 A -9 3 9 -1 2 p 1 1 3 10 1 7 -8 3 -6 6 6 7 2 A 1 1 -2 -1 12 1 7 -5 9 6 t  1 6 - 7 - 1 -2  2 1 1 1 ! 3 A t.  2 1 9 1 3 8 5 7 2 2 I 8 2 3 2 r 'A  > l 6  i  r. 2 6 1 1 2 2 2 7 6 1 1 7 2 1 5> 3 A A 3 7 6 1 7 1 2 1. 3 2 1 J  l  t  6 3 6 6 1 6 7 5 8 2 6 1 1 /, 6 7 3 7 A c 3  3  fc  2.2H -2 .75 2 . 2A 2.2A -7.73 -2.73 -2.2 1 7.71 -7.71 -2.)9 7.18 2.16 - 2 . 1 f. 2.13 - 7 . i l -2.10 ?..< e -7.06 2 . (j 6 2. 0 9 2 . OA 2.0 3 2.03 -2.07 -2.00 - 1 . ''9 1. 9 a 1 . 9;i - 1 . 8 1.9 8 - 1 . "8 1.96 1 .'-5 n  6 2 A  - 1 . ' 5 - 1 .95 1 . <•' 3 -1.91 1.90 -1.89 -1.87 -1.87 1 . «7 1.8 7 -1.86 1. 95 - 1 . 8A - 1. 82 I . 82  3 2 9 5  1.1'? 1 . 80 1.79 - 1 . 79 -1.79  5 1 6 3 A 6 A 1 A A  ?  c  -6 5 A 6 10 10 -5 -2 A 3 - 7  I 6 9 c; . 5 1 6 A 9 1 3  — 5 2 -A  7 A /  3 5 - 1 9 9 -6 8 3 9  3 8  - ?  9 2 9.  -3 1 7 7 - A -A -3 7 -6 10 -1 -6 -1 -10 -9 7 12 6 10 1 6 -3 6 A 8 -6 3 5  1  2 3 2 1 3 A 6  .73 .78  A 2 2 A  ,)  - 1 . 78 . ?3 - 1 .77 -! . 7 7 . 7 7 -) . 7 7 . 76 - 1 . 79 . 79  7  -  1  -  fc  t  1 6  £.  7  3 2 3 S A 1 1  5 9  7 7 1 3 3 9 1 I 9 2 3 3 7 9 3 5 7 7 I A 7 9  7  1  1 1 9 3 1 A 1 1  -  .66 . 65  -  -  6 7 3  L. 69 I . ' A 1.63 1.67 L. 67 I . 60 . . 6 0 99 I . 98 . 9 7  7  I 3 9 6  q  1.68 . 68 L . 67  - L . 97 - . 66  ^  9 7  . 73 . 12 .71 .71 ..71 .71 . 70 . 6 9 t . '•  7  7 9 ;j  . 79 . 7A . 7A  -  1.97 1.97 1.9A . 96 1 .'.- 3 1.92 1.92 1.91 1.91,  - 1.91  . . •> 0  13 r e f l e x i o n s i n phase d e t e r m i n a t i o n  d i d not g i v e a s a t i s f a c t o r y s o l u t i o n ; these  r e f l e x i o n s u s u a l l y g i v e more f a i l u r e s among the Sayre's A three-dimensional o f E from s e t number 10,  F o u r i e r map  was  relations.  c a l c u l a t e d u s i n g the 158  (Table 3) as c o e f f i c i e n t s . The  i n the asymmetric u n i t o f t h i s E - F o u r i e r map  signed  values  f o u r t e e n h i g h e s t peaks  appeared to be two m o l e c u l e s o f  malonamide. I t was should  l a t e r demonstrated t h a t a l l 158  s i g n s but one  ( i . e . 3 7 5,  -1.51  be +1.51) were c o r r e c t .  Refinement o f the S t r u c t u r e : The p o s i t i o n s o f the atoms were found from f o u r t e e n h i g h e s t peaks i n the t h r e e - d i m e n s i o n a l as c a r b o n gave a d i s c r e p a n c y squares reduced R t o 0.18  R o f 0.38.  and  E-map. Assuming a l l the atoms  Three c y c l e s o f b l o c k - d i a g o n a l  the bond lengths and  Tables  8  least-squares  w i t h t h e use o f the atomic s c a t t e r i n g f a c t o r s of I n t e r n a t i o n a l  brought R down t o 0.12  as the c o e f f i c i e n t s . T h i s map o f 0.37—0.76 e. A The  least-  thermal parameters made i t  p o s s i b l e t o d i s t i n g u i s h oxygen from n i t r o g e n atoms. S i x c y c l e s of refinement  the  3  i n a map  and  a F o u r i e r map  was  c a l c u l a t e d using  (F -F ) 0  c  gave weak but d i s t i n c t peaks, e l e c t r o n d e n s i t y o f background ±0.25 e. A~  f o r hydrogen atoms.  3  p o s i t i o n s o f the twelve h i g h e s t peaks i n the d i f f e r e n c e F o u r i e r map  i n d i c a t e d by c i r c l e s i n F i g . 1. I n c l u d i n g the hydrogens i n the  are  refinement,  two more c y c l e s o f l e a s t - s q u a r e s gave an R v a l u e o f 0.095. F i v e more c y c l e s o f l e a s t - s q u a r e s w i t h oxygen, n i t r o g e n and having  carbon atoms  a n i s o t r o p i c thermal parameters reduced R t o 0.066. At t h i s stage,  v e r y s t r o n g r e f l e x i o n s s t i l l had  bad  five  agreement, w i t h |F I < IF I i n a l l c a s e s . A D  C  s m a l l e r c r y s t a l and weaker X-ray beam were used t o check whether t h i s i s due t o a b s o r p t i o n , e x t i n c t i o n o r n o n - l i n e a r i t y o f the counter. i n i n t e n s i t y r e l a t i v e t o the medium i n t e n s e r e f l e x i o n s was r e f l e x i o n s were removed from the f i n a l refinement squares reduced R t o 0.047 and  the bond lengths  and  two  Not much d i f f e r e n c e found. These c y c l e s of  five  least-  f o r s i m i l a r bonds had  very  F i g . 1. S e c t i o n s  o f the t h r e e - d i m e n s i o n a l  distribution;  electron-density  (contours a t i n t e r v a l s o f 1.0  p o s i t i o n s o f the peaks on the d i f f e r e n c e map  e.  A ? -  are  i n d i c a t e d by c i r c l e s ) and a v i e w , l o o k i n g down the c - a x i s , o f the two malonamide m o l e c u l e s i n the asymmetric u n i t . (Numbers are f o r convenience i n s t r u c t u r e a n a l y s i s and  discussion.)  15  good agreement. With these c o o r d i n a t e s , (Table 5 ) , and i n c l u d i n g the f i v e agreement s t r o n g r e f l e x i o n s the f i n a l R i s 0.055. F i n a l measured and  bad-  calculated  s t r u c t u r e f a c t o r s are l i s t e d i n Table 4. No e x t i n c t i o n c o r r e c t i o n s were made. The  f u n c t i o n minimized was  r e f l e x i o n s , /w The  = 1 when | F | < q  Iw(F -F ) 0  c  2  with /w  f o r the  unobserved  20 and /w = 20/|F | when | F | > 20. Q  f i n a l p o s i t i o n a l and thermal parameters  t h e i r s t a n d a r d d e v i a t i o n s . The  = 0.6  o  are l i s t e d  i s o t r o p i c temperature  i n Table 5 with  parameters  g i v e n f o r the  non-hydrogen atoms were a t R = 0.095 and f o r the hydrogen atoms were o b t a i n e d from a d i f f e r e n t r e f i n e m e n t u s i n g the atomic s c a t t e r i n g curve o f Davidson  and S i m p s o n  23  The a n i s o t r o p i c temperature  parameters  Stewart,  U^j are components it  of  ic  the v i b r a t i o n t e n s o r s , w r i t t e n i n m a t r i x form and r e f e r r e d t o axes a, b  c*. The magnitudes o f the p r i n c i p a l axes o f the v i b r a t i o n e l l i p s o i d s and  the  o r i e n t a t i o n o f the e l l i p s o i d s f o r oxygen and n i t r o g e n are g i v e n i n Table  6.  and  R e s u l t s and D i s s c u s s i o n  M o l e c u l a r C o n f i g u r a t i o n ; A view, a l o n g c, of the two symmetry u n r e l a t e d molecules i s shown i n F i g . 1, t o g e t h e r w i t h s e c t i o n s o f the t h r e e - d i m e n s i o n a l e l e c t r o n d e n s i t y d i s t r i b u t i o n . The two molecules have d i f f e r e n t o r i e n t a t i o n s i n the c r y s t a l but have s i m i l a r conformations  and dimensions. The bond l e n g t h s and  v a l e n c y angles are l i s t e d i n Table 7. The d i s t a n c e s f o r s i m i l a r bonds a r e , w i t h i n e x p e r i m e n t a l e r r o r , the same. The amide groups are r o t a t e d out o f the C-C-C listed  p l a n e . The e q u a t i o n s o f mean p l a n e s f o r the C-C-C  central  and amide groups are  i n T a b l e 8. The s i m i l a r i t y i n the t w i s t i n g o f the amide groups f o r the  two molecules can be seen from the i n t e r p l a n a r a n g l e s : Planes 1 and 4 are the C-C-C  p l a n e f o r the two m o l e c u l e s and p l a n e s 2 , 3 ,  p l a n e s . In one molecule,  5 and 6 are the amide group  the amide groups are t i l t e d by 68.0° and 39.7° w i t h  r e s p e c t to the c e n t r a l C-C-C  p l a n e , and i n the o t h e r molecule  v a l u e s are 65.3° and 43.1°. The  the c o r r e s p o n d i n g  amide groups i n the same molecule  are  almost  4  Table  Measured and c a l c u l a t e d s t r u c t u r e f a c t o r s (xlO) f o r malonamide. (Unobserved r e f l e x i o n s have | F | = - 0 . 6 F ( t h r e s h o l d ) ^ D  H 0 0 0 0 1 t I 1  I 2 2 ? ? 2 3 3 3 1 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 8 8 e B 9  9 9 9 1 0 10 IC I I t I 1 1 12 12 0 c 0 0 c I -1 1 -1 1 -1 1 -1 1 -1 2 -2 2 -2 2 -2 2 -2 2 -2 3 - 3 3 - 3 3 - 3 ) - 3 J - j 4 - 4 4 - A  -4 4 5 - 5 5 -5 5 -5  K  2 4  L 0 0 0 0 0 c 0 0 0 G 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 c c 0 0 0 0 'J c 0 0 c c 0 0 0 c 0 o c 0 1 I 1 [ 1 1 1 1 1 1 1 1 1 1 1 I 1 I 1 1 1 I 1 1 [ 1 I 1 1 1 1 ] 1 1 1 1 1 1 1 1 t 1 1 1 1 1  fa  8 C 2 4 6 f)  0 2 4 6 8 r; ? 4 6 8 c  ? 4 6 a 0 2 4 6 8 C 2 4 £  fi 0 2 4 6 0 2  fa  C 2 6 0 2 4 C 2 4  C 2 1 ) 5 7 9 1 1 3 3 5 5 7 7 9 q i l 3 3 5 7 7 4 9 1 1 3 3 5 5 7 7 9 9 1 l 3 3 5 7 7 <1 1 I \ ~i 5 5  I  L [ 1  FU 463 92 229 53H 17 54 27 -9 49  FC -517 78 -226 564 13 5 3 -28 • -10 -54 214 • 234 4 1 7 447 32B 311 1 09 L 10 1 50 153 -5 I 8 49 46 20 - 16 1 7 21 25 -36 962 728€ SCI -512 2 78 282 239 -2 34 1 8A 186 - 7 23 ai 64 -9 6 - 10 -12 24 -20 -a -13 24 25 129 -319 36 24 25 - id -24 32 44 34 H - 10 - 1 1 1 3 1 89 -192 166 -160 30 IM 1 64 -156 51 -8 24 25 I 7 23 41 -35 234 22 3 61 61 542 -566 -7 -11 2a 13 - 12 -11 150 -138 -12 2 2 16 -203 ua 316 1 42 132 79 -67 37 lb 436 428 43 -38 43 -43 69 95 3 3 -32 239 230 18 -18 36 -42 109 104 34 37 409 418 115 1 16 6 34 -660 299 798 -249 266 398 388 64 62 -64 62 24 -6 '12 90 253 -245 57 68 273 256 29 -2tt 266 266 1 1 9 120 - 1 1 10 38 - iii - 12 -lu 54 57 -524 476 484 522 49 - 3 r 74 76 2 40 - 2 31 I 94 185 GH -92 94 IU1 35 - 12 41 1 4 IC 343 353 2 1 5 - 2 10 262 -.262 • - 194 1 93 127 -12 3  H 5 -5 6 -6 6 -6 6 -6 6 -6 7 -7 7 - 7 7 -7 7 -7 8 -8 3 -8 <] -a 8 -f3 9 - 'j 9 -9 9 -9 10 -10 1 0 - 10 10 -10 11 -11 11 -11 11 I 2 -12 1 ? Cj Q 0 0 •1 1 -1 I -1 1 -1 I -1 1 -1 2 -2 2  -? 2 -2 2 -2 2 -2 3 - i 3 -3 3 - 3 -3 3 - 1 4 -4 4 -4 4 -4 4 -4 4 -4 5 -5 5 5 -5 5 -5 5 -5  „  -6 6  K 7 7 1 1 3 3 5 5 7 7 I 1 3 3 5 5 7 7 1 I 3 3 5 5 7 7 1 1 3 3 5 5 I 1 J 3 5 5 1 1 3 3 5 1 1 3 o 2 4 6 K  0 0 2 2 4 4 6 6 a e 0 0 2 2 4 4 6 6a 8 0 0 2 2 4 6 6 R a c 0  I  z  4 4 6 6 e 8 0 c 2 2 4 4  1 t 1 1 1 1 1 1 I 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 I 1 I I 1 1 1 I | 1 1 I 1 1 1 1 1 2 2  2 2 2 2 2  ? 2 i  ? 2  ? 2 •}  2 2 2 2 2 ?. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  fa  6 a H c 0 2  Ft) 40 -11 221 1 55 20 7 1 79 2 '.17 191 29 64 48 177 27 50 57 1 Id 44 33 246 294 20 166 39 56 -12 (•> 137 66 - IC: 49 - 1 1 75 159 4'> I 85 31 29 - 12 - 1 1 44 33 24  FC 43 -13 -222 145 -210 1 77 -232 189 -28 -63 -s? - 1 79 -?4 49 -53 I 20 44 -43 - ? 39 290 -16 -165 -40 -55 -3 83 - ! 34 68 6 -49 -5 -81 -151 -50 185 -14 -35 27 -0 -44  -3b ia - 1 15 119 1 59 lfal 13 1 -126 -86 80 RfaTC- 1 1 1 3 -110 1 1 9 -48 52 -55 50 24H -237 67 58 3 72 363 -6 - H -59 62 34 ?fl 269 266 7 - 10 3^ 42 14 21 . 1 18 1 35 8 4 5 € - 1 037 625 -657 -161 1 60 -28 14 -9 -a -97 90 -89 83 215 223 -220 222 - 2 IB 214 337 -330 1082 8 96 97 - 1U3 - 128 1 36 - 1 74 1 12 26 -28 -24 22 73 -8fa -44 4H 200 20 3 -776 6 82 ID 23 21 10 77 76 149 -156 90 1 0 3 2 17 22 3 - 142 1 31 - 1 94 182 6 21 8 9 3 - 104 9 -109 121 47 42 1 66 -163 -9 -0 406 4C6 18 8? 1 6 -1 1 -17/ I 85 28 20 -54 58 - t 37 !<• 3 50 52  H -6 6 -6 6 -6 6 7  -  ? 7 - 7 7 -7 7 -7 7 B -8 8 -8 H -8' 8 -8 9 -9 9 -9 9 -9 9 10 -tu 10 -10 10 - 10 10 11 -11 11 -11 11 12 12 12 1 3 0 0 0 0 1 I 1 -1 I -1 1 -I 2 -? 2 -2 2 -2 2 -2 3 -3 3 -3 3 -3 3 - 3 4 -4 4 -4 4 -4 4 -4 5 -5 5 -5 5 -5 5 -5 6 -6 6 -6 6 -6 6 7 -7 7 - 7 7 - / 7  • K 2 4 4  L 2  2 2 6 2 6 2 8 2 0 2 0 2 2 2 2 2 4 2 4 2 6 ? 6 2 2 8 0 2 c 2 2 2 2 2 4 2 4 2 6 2 2 o 2 0 2 2 2 2 2 4 2 4 2 6 2 0 2 0 2 2 2 2 2' 4 2 4 2 6 2 2 C 0 2 2 2 2 2 4 2 0 2 2 2 4 2 0 2 3 1 3 3 . 3 5 3 7 3 1 3 1 3 3 3 3 3 5 5 3 3 7 J 7 3 1 3 1 3 3 3 3 5 ) 5 3 7 3 7 . 3 i 1 3 1 3 3 3 3 5 3 5 3 7 3 7 3 1 3 3 1 3 3 3 3 5 3 5 3 7 3 7 3 1 3 3 1 3 3 1 3 5 3 3 5 7 3 7 3 3 1 I 3 3 3 i 3 5 3 5 3 7 1 3 I 1 3 3 '3 3 3 5 J 5 3 7 3  fa  F0 125 119 131 190 220 45 146 258 56 173 414 182 20 73 -13 209 1 32 136 34 122 289 1 83 - 12 .31 1 98 144 49 222 41 120 1 11 144 39 112 292 172 34 62 46 23 67 32 126 108 168 92 364 112 145 64 180 187 I 19 75 30 3 97 19 61 110 37 115 72 213 3 34 -11 71 244 257 95 1 98 251 64 30 81 75 245 106 74 n o 52 50 25 299 87 -9 1 14 26 1 34 27 - 12 48 61 1 10 79 144 42 1 38 2 12 94 243 - 1 I 46 74 42  FC 126 105 124 -196 22 1 44 143 266 59 -17 3 -42 1 184 -26 -69 -5 -202 125 136 - 38 11 3 29 2 13 7 I 3 -30 9 101 140 -4 7 -22 3 40 112 I I 7 - 15 1 -51 1 1 1 297 168 -24 -65 4 I 23 -69 -43 -129 102 162 -83 -339 - 106 143 67 -186 - 186 - 112 -72 -299 -95 -21 57 99 -45 1 t 3 -7? -212 - 3 13 1 ? -75 -230 -242 -91 194 -245 62 35 -82 78 -242 100 -7 7 109 53 52 -28 -287 -82 2 1 123 1 5 129 -23 -8 50 • -59 106 -^0 142 4 I 1-5 -196 97 24 3 4 4 M 74 -49  H 8 -b  K 1 I 3 3 5 5 7 I 1 i i S 1  L 3 3 3 3  1 3 5  3 3 $ 3 3 3 3 3 3 4 4 4 4 4 4  fi  -b b - H  a 9 -9 9. -9 9 10 -10 10 10 11 11 11 12 12 I 3 0 c 0  c  c 1 -1 I -1 I -I I -1 1 -1 2 -2 2 -2 2 -2 2 -2 2 3 - 3 i - i 3 -3 3 - i i 4 -4 4 -4 4 -4 4 -4 4 5 - •> 5 -5 5 -5 5 -5 5 0 -6 6 -c 6 -6 6 7 - 7 7 - 7 7 - 7 7 8 -c ti -0 •e 8 9 -9 9 9 9 10 10 1 I I I 1 1  1 3 5 1 3 I 0 2 4 6 8 0 0 2 2 4 4 6 6 8  3 1 3 3 J 3 3 3 3  *  4 4 4 4 4 4 4 4 4 4 4  fi 0 0 ? 2 4 4  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  fa 6 A 0 0 2 2 4 4 6 A a 0 0 2 2 4 4 6 6 H  0 0 2 2 4 4 6 6 A  .'  0 2 2 4 4 6 0 0 ? ? 4 4  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  fa  •j 'J 2 ? 4 6 9 0 2 4  fa 0 2 <. 0 2  FC) 183 37 83 34 69 24 17 61 70 12 26 1 16 5 3  FC 1 63 20 32 44 - 74 -29 -31 • 66 74 34  - i 2 - 1 I 123 1 1 3 72 - 1 3 5 I 45 79  0 10 120 I 19 74 12 4 J -41 77 - 107 355 -248 54 30 -604 -262 54 -81 -38 -40 1 99  122 364 265 48 ?H  594, 264 >li :  lb  43 4L 1 93 1 33 1 6 1 1 j ti 22C 255 59 1  31 1 6 50 85 6t 68 4b5 466 36 1HS 47 276 249 - 12 16 5 69 42 391 30 252 ?JL\ 26 hi - I 3 1 46 H4 12 1 56 60 1 il 122 43 74 263 68 1 7 82 1 04 19 2 fa. 432 69 Hi 168 2 /4 ?'.5 64 iii 22 80 56 2 17 b4 1 1 7 (14 55 2.1 '.0 - I 1 il 4 11 3 1 202  24 1 34 . -59  -133 - 162 - 107 203 257 -56 -30 -11 -49 95 -62 70 474 -481 37 132 -40 -280 -251 21 1 62 -71 4G 379 27 - 2 36 -254 32 67 6 139 -87 1 19 -49 61 -135 1 30 39 7? 255 69 20 -88 -1J2 -39 32 438 -57 -Sl 1 66 278 -201 -68 93 9 83 -58 -234 69 1 1 7 -92 50 207 -41 1 6 - 30 -5 7 91 - 143 208  H 1 2 1 2 0 0 0 0 I -1 1 -1 1 -I 1 -1 2 -2 2 -2 2 -2 . 2 3 -3 3 -3 3 -3 3 4 -4 4 -4 4 -4 4 5 -5 5 -5 5 -5 5 6  -fa6 -6 6 6 7 -7 7 7 3' 8 8 9 9 9  10 1 0 1 1 I 1 1 2 •0 0 0 0 t -1 1 -1 1 -1 1 2 -2 2 -2 2 -2 2 1 -3 3 - 3 3 - 3 3 4 -4 4 - 4 4 4 5 - 5 5 -5 5 5 6 6 6 6  K 0 2 1 3 7 1 1 3 3 5 5 7 7 I 1 3 3  / 1 I 3 3 5 7 1 1 3 3 5 5 7 1 I 3 5 5 7 1 1 3 3 5 7 1 1 i 1 3 1 3 5 1 3 1 3 1 2 4 6 0 0 2 2 4 4 6 0 0 2 2 4 4 6 0 0 • 2 ? 4 4 6 0 0 2 2 4 6 0 0 2 2 4 6 0 2 4 6  L 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6  FO -12 46 9 / 16 72 34 1 73 146 39 42  FC 20 -4 1 •i 7 I 7 -64 10 169 1 4 1 19 1? 88 82 -1 5 6 1 5fa 29 12 5"J ' 50 20 - 1 I 160 1 62 69 o': J 53 23 1 2 - 1 41 144 1 4 - 12 I I 9 1 1 3 4 1 51 7 7 76 159 -163 192 192 - 12 -2 3 1 J 7 103 1 10 1 1 1 - 147 14 1 ' -94 98 141 I 48 -0 -1 I 3 3 34 -24 - 1 ? 261 2'>fa 1 7 23 48 49 -12 -12 - L 1 72 234 -22 3 - 1 9 32 -1 a i 190 15 -12 1 24 120 - 1 1 -12 1 V-i 1 3 1 94 -lui lui 98 7 7 - c 1 -125 120 55 56 121 1 I 1 38 83 (J B 1 36 73 57 4fa 65 -1 1 209 35 26 49 - 10 284 64  fa fa fa fa 6  6  6  6 6 6 6 6 6 6 6 6 6 6 6  -1 1 97 50 29 49 269 87 27 152 292 2 / 37 63 22 1 OA 3^ E2 60  fa fa  6  6 6 6 6  156 -12 1 1 7 54 1 50 75 75 96 81 2 I 34  fa  6 6 6 t> 6 6 6 6  25 I 33 75 79 3fa  fa 6  12^. - 1 J 8? - tO - 1 3', -i»4-5 2 - 1 1 - 1 6 2-5 - ) 1 24 -47 1 2a7 fa ? 1 1 19 -44 - i'. 49 - 2 76 - n5 -4.1 I 5: 2 9 1 - 2i 3e  -fa? 1 9 1 1 J -  11  92 63 t 56 -24 - t 215 7 1 44 -B 1 ^ j 79 - /9 - 1 7 - 3^ - 1 1 16 - 7« 7) - 3 1  Table  4  (Continued)  H  7 7 7 8 e 8 9  IC 10 I t 1 L 0 0 1 -I 1 -I 2 -2 2 3 -3 3 4 5 5 6 6 7 7 8 a 9 1 1 1 I I 2 2 7 2 2 3 3 3' 3 3 4 4 4 4 4 -4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 10 10 1C 11 11 12 12 0 0 0 0 1 -1 I -1 1 -1 L -1 2 -2 2 -2 2 -7 2 -2  K  0 2 4 0 2 4 0 • 2 4 0 2 0 2 1 3 1 1 3 3 1 L 3 1 I 3 1 3 1 3 1 3 I 3 1 3 1 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 9 1 3 S 7 I 3 5 7 1 1 5 7 1 3 5 7 1 3 5 1 3 5 I 3 1 3 2 4 6 8 2 2  1  4 6 6 e a 2 2  6 6 8 R  L  . FO  6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 r 7 7 7 7 7 7 7 7  28* 20 26 22b 1 20 325 121 1 66 112 61 -12 I 69 51  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c c 0 0 c 0 0 0 c 0 0 c 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 1 1 I 1 1 I I 1 1 L  1 1 1 [ I 1 1 I 1 1  66 48 67 101 1 12 8 7 26 37 -12 257 -12 • 96 23 37 51 57 4 1 feO 37 42 24 52 1 35  f C -285 22 -30 -225 - 124 329 112 -165 - 108 53 6 - 164 50 -61 50 69 -102 -111 93 -15 30 10 -254 2 97 - 1 7 -40 -46 -58 33 -56 -42 -3b -21 -51 -134  27 6 46 -42 64 -64 7 -10 -21 23 - 344 330 6 3 5 6 - 789 402 406 37 31 -3 - 12 -18 22 -48 36 -55 57 -25 36 -61 65 453 508 120 I I 7 -74 71 74 -BI 35 33 42 -35 30 -30 -34 30 -76 85 -5 -11 254 248 555 -585 3 49 351 t 31 - 1 34 -9 -11 -19 16 34 -4 1 20 2 329 331 129 121 -64 68 149 -143 18 -13 31 33 -21 28 284 2 TJ 19? -195 92 8 1 -1 1 8 i -1? 203 - 2 00 94 -83 8 8 5 6 1 230 -187 I 86 227 -222 85 -95 -237 256 292 308 -1 59 165 74 68 91 40 146 -145 101 -101 - 14) 1 38 385 iBZ 169 - 1 59 -9 i 92 22 2 3 1 18 - 1 Id 32 3B -98 46 -49 44  H 3 -3 3 -3 3 -3 3  - ! 4 -4 4 -4 4 -4 4 -4 5 - 5 5 -5 5 -5 5 -5 6 -6 6 -6 6 -6 6 -6 7 -7 7 - 7 7 -7 7 8 -8 9 -8 a -8 9 -9 9 • -9 9 -9 10 -10 10 -ID 10 11 -It 11 12 0 0 0 0 0 1 -1 I  -1 1 -1 1 -1 1 -1 2 -2 2 -2 2  -? 2 -2 2 -2 3 - 1 3 - J 3 -3 3 - 1 3 4 -4 4 -4 4 -4 4 -4 5 -5  FG  K  2 2 4 4 6 6 8 8 2 2 4 4 6 6 8 8 2 2 4 4 6 6 8 8 2 2 4 4 6 6 8 8 2 2 4 4 6 6 8 2 2 4 4 6 6 2 2 4 4 6 6 2 2 4 4 6 2 2 2 I 3 5 7 9 1 I 3 3 5 5 7 7 9 9 1 1 1 > 3 5 5 7 7 9 9 I 1 3 3 5 5 7 7 9 I 1 3 1 5 5 7 7 1 1  1 1 I 1 1 1 1 1 1 I 1 1 I  I 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 t 1 1 I I I I I 1 1 1 1 1 1 I 1 1 1 I I 1 1 1 1 I 1 1  I  2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2  ?  2 ? 2 2 2 2 2 2 2 2 2 2 2 2 ? 7 7 2 2 2  228 51 5 82 64 -10 157 105 30 28 278 117 79 77 8 J 167 31 327 182 -9 140 27 92 124 -12 297 24 1 20 nc 47 30 -12 306 66 60 74 182 55 32 73 49 -10 45 -12 141 142 99 57 6ft 20 24 301 322 30 21 212 5 7 72 -12 127 4(>1 355 65 23 165 429 236 26 65^ 49 275 137 60 -12 25 506 410 364 544 45 I 99 17 1 51 47 29 5 284 636 141 3 3U I I 1 48 I 17 104 366 14 514 <S 5 24 1 54 -11 28 3fl r 3 69  FC  H  219 -546 -87 -71 - IB 153 -114 30 18 300  5 -5 5 -5 5 -5 6 -6 6 -6  -113. -80 81 -04 -169 16 309 1 77 -5 1 36 -23 -94 - 124 -7 ?9B  6 -6  20 - 1 15 1 7 -129 -45 28 4 -301 ft 3 -68 73 179 -49 21 -70 5? 1 3 100 12 -138 1 39 - 101 62 66 10 20 302 330 Jl -0 -210 -48 73 21 123 -484 J 18 - 71 -26 - 1 66 422 231 15 -652 SO  275 -145 -69 6 25 518 407 -156 -556 -35 I 87 I 1 -9 51 47 278 271 -623 1 36 340 -115 -54 - 1 37 103 -361 -20 527 68 -231 -62 -11 JO 377 363  C: R e f l e x i o n s e x c l u d e d  ft  -6 7 -7 7 -7 7 -7 7 -7 8 -8 8 -8 8 -8 8 9 -9 9 -9 9 -9 9 10 - 10 10 -10 to 1 1 -11 1 1 1 1 12 12 13 0 0 0 0 I - 1 I -1 1 -1 I -1 2 -2 2 -2 2 -2 2 -2 3 -3 3 -3 3 -3 3 -3 4 -4 4 -4 4 -4 4 5 -5 5 -5 5 - 5 5 6 -6 6 -6 6 -fe 6 7 -7 7 -7 7 -7 8  3 3 5 5 7 7 1 I 3 3 5 5 7 7 1 1 3 3 5 5 7 7 1 1 3 3 5 5 7 1 1 3 3 5 5 7 1 I 3 3 5 1 1 3 5 I 3 I 2 4 6 8 7. 2 4 4 6 6 a 8 2 2 4 4 6 6 8 1 2 2 4 4 6 6 8  fl 2 2 4 f. 6 6 8 7 2 4 4 6 6 8 ? 2 4 4 6  fe  8 2 2 4 4 6 6 2  I 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2 2  ? 3 3 j 1 3 J J 3 1 3 3 3 •3 J 3 3 3 3 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 i 1 ) ) 3 3 3 i 1 3 3 3 ) j 3 3 *  FO  200 68 20 61 117 131 19 26B -9 97 57 179 22 227 387 240 41 36 -10 32 123 60 234 56 131 -I 1 168 95 205 182 25 48 125 26 57 62 76 53 60 27 11 I 31 1 54 81 49 42 48 136' 211 I 36 205 26 86 264 -9 16 42 77 32 22 61 212 181 1 18 43 83 83 38 1 40 208 75 164 68 47 147 40 335 -9 20 3 to 213 70 1 98 245 129 92 34 12 87 48 32 208 225 145 25 1 36 54 44 26 24 12 7 65 89 200  FC  202 62 15 -64 -117 - 14 1 -13 271 3 -93 52 1 76 - 14 -223 389 -230 4 1 -37 18 - 3 I -130 60 -234 54 126 7 - 16 7 -99 209 177 2 -52 129 26 -60 6 1 -78 52 65 -30 112 21 -149 79 -3 7 -40 47 -133 -213 - 133 193 -21 76 257 16 -18 47 -76 -24 -13 -73 -210 179 - 1 1 3 44 87 -.8 4 47 -129 202 -8 1 -154 69 45 146 -40 -32 7 3 -19 r ro 212 71 198 -24 2 -122 91 -45 36 85 45 -32 -209 22 1 - 14 f 1 2 1 SO -46 3 7 -31 14 -  -  136 -74 90 -204  i n the f i n a l  K  L  FO  FC  -8 8 -8 8 9 -9 9 -9 9 10 -10 10 IU  2 4 4  -1 I - 1 1 20 107 79 23 44 30 177 79  -17 1 3 14  11 11 12 0 0 0 0 1 -1 1 -1 1 -1 I -1 ?. -2 7 -2 7 -2 2 -2 3 - J J -3 3 -3 1 -3 4 -4 4 -4 . 4 -4 4 -4 5 -5 5 -5  2 4 2 1 3 5 7 I I 3 3 5 5 7 t  3 3 3 3 3 1 3 3 1 3 3 3 3 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  S  -5 5 6 -6 0 -6 6 -6 (. 7 - J r - 7 7 7 8 -e 8 -s 8 4 -0 9 9 10 10 10 1 1 1 I 12 12 0 0 1 - I I - 1 1 - 1 ? -7 2 -2 2 -2 \  6 2 2 4 4 6 ? 2 4 6  1 I 3 3 5 5 7 7 I 1 3 3 5 5 7 1 I 1 3 3 5 5 7 7 1 I * 1 5 5 7 1 1 1 1 5 5 7 1 1 3 1 5 7 1 1 ) 3 5 I 1 1 5 1 1 5 1 i I 1 2 4 6 2 2 4 4 6 6 7 2 4 4 6 2  121 24 75 2 7 42 69 34 1 37 -10 57 171 ?b7 321 126 46 c>2 -12 255 - 8 47 2 J 9 3 72 1 75 27 38 230 1 66 307 75 1 14 9 1 61 37 64 67 36 81 3 1 29 5 1 54 282 20 12? 2 17 52 79 202 62 145 73 70 144 5 1 124 28? (9 143 2 7 11 34 64  102 82 30 48 -23 -175 -82 -126 -23 81 -20 38 -80 33 - 1 36 4 68 - 172 -266 302 - 127 -98 -65 -9 255 -16 50 27 -99 66 178 18 -87 -276 -168 294 75 - 142 90 58 35 66 71 30 -83 79 - 36 -53 56 -284 - 16 - 1 2<* -241 -59 79 202 -68 151 HO  -83 -14 1 49 122 -283 44 1 43 23 25 ii4 -6U 16 - 13 29 - 16 - 12 -15 61 68 15 -35 1 20 1 1 7 2 35 -234 60 56 -158 \ •>''-. 71 1 8 1 I 3 -110 27 - 1 3 H.C 95 25 29 -13 -10 - 154 1 58 66 66 -12 - 10 1 7^ - 166 54 -51 - 71 11 I IH 1 I 7 1 1 25 12 25 167 1 tti 272 276 34 36 69 60 1 1 9 -124 1.5 6 -I 62 64 64  refinements.  H  3 -3  2 4 4  3 -3 4 -4 4 -4 4  6 6 2 2 4 4 6  5 -5 5  2 2 4  -5 5 6 -6 6 -6  4 6 2 2 4 4 6 2 2 4 6 2 4 6 2 4 2 4  -3  ft  7 -7 7 7 8 8 8 9 9 10 10 11 12 0 0 0 1 -1 I -I I -1 2 -2 2 -2 2 -2 3 -3 3 -3 3 4 -4 4 -4 4 5 -5 5 5 6 6 6 7 7 7 8 8 8 9 9 10 10 11 0 0 I I -1 I -2 2 3 3 4 4 5 5 6 6 7 7 8 9  2 2 1 3 5 1 I 3 3 5 5 1 1 3 3 5 5 I I 3 3 1 \ 3 3 5 1 1 1 1 5 1 3 5 1 3 5 1 3 I 3 1 4 2 4 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 2  L  FO  FC  5 5 5 5 5 5 5 5 5 5  49 110 20 36 - 12 86 1 14 48 27 48  -51 1 IV 1 5 -32 -3. -86 122 44 17 -50  5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6  -10 53 44  17 64  6 6 6 6 6 6 6 6 6 b h 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 b 6 b 7 7 7 7 7 7 7 7 7 r 7 7 7 7 7 7 7 7 7 7  66 1 1 3 67 184 177 29  -12 94 77 31 22 -12 1 39 34 -12 67 35 265 21 200 49 92 73 2 7 27 7 1 70 I 86 90 67 49 78 174 95 99 219 105 30 1 98  187 1 49 171 42 63 -12 48 1 18 HI 1 06 1 3 f 175 61 32 131 151 128 53 78 1 34 26 I 76 54 68 52 -13 69 -12 162 -12 1 5 1 2b 59 26 20 20 217 26 -12 31 156 -13 I 30 121  50 2 -96 81 -28 1 J 14 - 1 39 39 3 -63 16 269 10 -200 - 44 101 - Jb - 16 -  IC  82 73 184 -88 74 -44 - 74 I 73 93 -49 -214 -I 15 29 1 98 -64 -115 74 1 88 185 29 78 14ft - V 70 51 -6 * -2 55 -11 7 -80 114 -1 16 - 1 70 59 33 I 1 7 -147 1 16 -49 74 L4 2 11 I /9 t>2 - Ii, -52 - 1 1 -t>7 12 I 59 19 -1  - 1 56 -2 1 -6? -25 25 - 1? 214 -17 1 -25 -160 -9 -1  11 1 1 4  Table  5  P o s i t i o n a l ( f r a c t i o n a l ; x l O f o r O, N, C; xlO- f o r H) and thermal parameters f o r the atoms o f malonamide. (standard d e v i a t i o n s are g i v e n i n parentheses.) 3  0  C N C C  0 0 c N  N C  c N  0 H H H H H H H H H H H H  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)  z  x  y  -0367(3) -0020(4) -0479(4) 0975(4) 1927(4) 2003(3) 2662(4) 4657(3) 4978(4) 4462(4) 6004(4) 6939(4) 7685(4) 6999(3) -033(5) -102(5) 088(4) 116(4) 329(4) 258(4) 472(6) 387(5) 617(4) 596(4) 763(5) 835(6)  2739(4) 3853(6) 5091(5) 3821(6) 3457(6) 3968(4) 2604(5) 2574(4) 3724(6) 4916(5) 3792(6) 3413(6) 2582(5) 3910(4) 570(7) 515(7) 312(6) 478(6) 250(6) 226(6) 568(8) 495(7) 478(6) 312(6) 219(6) 234(9)  Atoms  0 C N C C  0  N  0 c N C C N  0  aav  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)  U  11  U  u  12  ,.  12 3  (xlO U  22  296 234 394 246 221 299 287 284 234 383 259 226 287 340  -12 3 57 -19 -39 33 65 21 -5 52 22 -61 103 2  -106 -21 -68 -30 -99 -136 -169 -32 -357 -89 -92 -71 . -79  266 256 287 293 235 380 408 249 240 257 335 246 478 400  23  22  18  26  4  (A ) 2  2.62(14) 1.68(18) 2.84(18) 1.92 (19) 1.78(18) 2.30(14) 2.60(18) 2.73(14) ' 1.93(19) 3.50(20) 2.21(20) 1.55(17) 2.76(18) 2.52(14) 4.94(1.7) 3.96(1.6) 3.61(1.5) 2.39(1.3) 4.36(1.6) 3.23(1.4) 4.24(1.6) 4.58(1.7) 3.42(1.4) 3.69(1.4) 3.81(1.5) 5.66(1.7)  3567(5) 2796(7) 3254(6) 1275(7) 1904(7) 3285(4) 0930(6) 1928(5) 2322(7) 2349(7) 2806(7) 1266(6) 1535(6) -0188(5) 250(9) 423(8) 044(7) 072(6) 123(7) -000(7) 267(9) 203(8) 312(6) 372(6) 251(7) 055(9)  A n i s o t r o p i c thermal parameters Atoms  B*  A ) 2  U  23  U  33  41 4 25 16 22 -38 -124 -36 8 -55 1 0 80 59  404 274 409 252 250 277 386 611 303 939 293 257 336 315  21  25  Table Principal  Atom  6  axes o f the t h e r m a l v i b r a t i o n e l l i p s o i d s  Axis(i)  U^(A)  1 2 3  0.153 0.170 0.227  C (2)  1 2 3  0.142 0.160 0.169  N (3)  1 2 3  0.162 0.183 0.235  C (4)  1 2 3  0.154 0.160 0.174  C (5)  1 2 3  0.133 0.161 0.172  0 (6)  1 2 3  Vector  f o r malonamide.  Anglef(°)  Vector  Anglet(°)  C(2)-0(l) C(2)-0(l) C(2)-0(l)  21 71 83  0(1)+N(3)  89  C(2)-N(3) C(2)-N(3) C(2)-N(3)  9 82 85  0(l)-*-N(3)  84  0.161 0.170 0.200  C(5)-0(6) C(5)-0(6) C(5)-0(6)  12 84 80  0(6)+N(7)  77  1 2 3  0.160 0.165 0.230  C(5)-N(7) C(5)-N(7) C(5)-N(7)  46 44 89  0(6)->N(7)  82  1 2 3  0.155 0.163 0.248  C(9)-0(8) C(9)-0(8) C(9)-0(8)  55 36 80  0(8)+N(10)  87  C (9)  1 2 3  0.148 0.156 0.186  N(10)  1 2 3  0.151 0.171 0.309  C(9)-N(10) C(9)-N(10) C(9)-N(10)  8 82 90  0(8)->-N10)  86  C(ll)  1 2 3  0.157 0.171 0.185  C(12)  1 2 3  0.127 0.160 0.172  0 (1)  N (7)  0 (8)  ./continued  Table  N(13)  0(14)  6  (continued)  1 2 3  0.151 0.176 0.241  C(12)-N(13) C(12)-N(13) C(12)-N(13)  7 87 84  N(13)->0(14)  89  1 2 3  0.169 0.186 0.209  C(12)-0(14) C(12)-0(14) C(12)-0(14)  17 75 83  N(13)-KD(14)  85  * V e c t o r s are d e f i n e d by the two atoms i n d i c a t e d , t A n g l e s between p r i n c i p a l axes and v e c t o r s .  Table Bond d i s t a n c e s (A) and v a l e n c y  C (2)=0 (1) C (5)=0 (6) C (9)=0 (8) C(12) =0(14)  1.242 1.242 1.240 1.242  t l .255] [1 .254] [1 .252] [1 .255]  mean  1.242  [1 .254]  C (2) -N (3) C (5) -N (7) C (9)-N(10) C(12) -N(13)  1.318 1.321 1.309 1.318  [1 .334] [1 .333] [1 .335] [1 .335]  mean  1.317  [1 .334]  C=0  C-N  C (2)-C (4) C (4)-C (5) C (9)- C ( l l ) C ( l l ) -C(12)  1.503 1.513 1.503 1.507  mean  1.507  C-C  7  angles (degrees) i n malonamide.  0 (1)-C (2)-N (3) 0 (6)-C (5)-N (7) 0 (8)-C (9)-N(10) 0(14)-C(12)-N(13) O-C-O  mean  N-H  C (4)-H(17) C((4) -H(18) C ( l l ) -H (23) C ( l l ) -H(24) mean  C-H  0.82 0.89 0.93 0.86 0.87 0.88 0.85 1.02  N  (3)-C (2)-C (4) (7)-C (5)-C (4) N(10)-C ( 9 ) - C ( l l ) N(13)-C(12)-C(ll) N  N-C-C  0.99  117.4 117.9 117.0 117.9 117.6  (2)-C (4)-C (5) (9)-C(ll)-C(12)  109.4 110.3  C-C-C  109.9  C (2)-N,(3)-H(15) C (2)-N (3)-H(16) C (5)-N (7)-H(19) C (5)-N (7)-H(20) C (9)-N(10)-H(21) C (9)-N(10)-H(22) C(12)-N(13)-H(25) C(12)-N(13)-H(26)  115.7 118.4 116.7 119.5 118.8 120.9 112.8 120.7  C-N-H  0.89  0.98 1.01 1.01 0.96  119.8 119.9 119.9 119.8 119.9  O-C-C  mean N (3) -H(15) N (3)-H(16) N (7) -H(19) N (7) -H(20) N(10) -H(21) N(10) -H(22) N(13) -H(25) N(13) -H(26)  122.6  0 (1)-C (2)-C (4) 0 (6)-C (5)-C (4) 0 (8)-C ( 9 ) - C ( l l ) 0(14)-C(12)-C(11)  C C  122.8 122 .2 123.1 122.3  117.9  H(15)-N (3)-H(16) H(19)-N (7)-H(20) H(21)-N(.10)-H.(22) H(25)-N(13)-H(26)  125 123 120 116  mean  H-N-H  121  H(17)-C (4)-H(18) H(23)-C(ll)-H(24)  111 113  H-C-H  112  ./continued.  Table  C C C C  (2)-C (2)-C (5)-C (5)-C  (4)-H(17) (4)-H(18) (4)-H(17) (4)-H(18)  7  109 113 111 104  (continued)  C (9)-C(11)-H(23) C (9)-C(ll)-H(24) C(12)-C(ll)-H(23) C(12)-C(ll)-H(24) mean C-C-H  Standard d e v i a t i o n s (xlO A f o r C=0 7 C-N 7 C-C 8 C-H 63 N-H 63  109  bond lengths) Angles n o t i n Angles i n v o l v Angles i n v o l v  112 108 104 109  24  Table  8  E q u a t i o n s o f mean p l a n e s and a n g l e s between p l a n e s i n malonamide,  E q u a t i o n o f mean p l a n e s i n the form:  £X + mY + nZ = p  where X, Y and Z a r e c o o r d i n a t e s i n A r e f e r r e d t o o r t h o g o n a l axes a, b , and c*  Plane  Atoms C(2) ,C(4) ,C(5) 0(1) ,C(2) ,N(3) ,C(4) C(4) ,C(5) ,0(6) ,N(7) C(9) ,C(11) ,C(12) 0(8) ,C(9) ,N(10) ,C(11) C ( l l ) ,C(12) ,N(13) ,0(14) C(2) ,N(3) ,H(14) ,H(16) C(5) ,N(7) ,H(19) ,H(20) C(9) ,N(10) ,H(21) ,H(22) C(12),N(13),H(25),H(26)  1 2 3 4 5 6 7 8 9 10  m  SL  0 .1947 0 .7744 0 .3643 0 .0271 0 .2373 0 .5762 0 .857 0 .279 0 .273 0 .559  n  0 .9719 0 .1459 0 .7869 0 .9621 0 .1572 0 .7955 0 .285 0 .795 0 .176 0 .789  0 .1325 0 .6157 -0 .4981 -0 .2715 -0 .9586 0 .1874 0 .429 -0 .539 -0 .946 0 .255  Max . d i s p  P 3 .9462 2 .3490 2 .9256 3 .0921 0 .5127 8 .1538 2 .511 2 .630 0 .854 8 .032  Interplanar angles;  (degrees)  1 1 2 -  68.0 39.7 84.8  4 4 5  5 6 6  65.3 43.1 85.3  14.2 5.4  5 - 9 6 •10  2.4 4.0  23-  7 8  1 - 4 2 - 6 3 - 5  25.3 47.3 46.6  0 (A) 0 .004 0 .004 0 0 .001 0 .009 0 .05 0 .03 0 .003 0 .01  25 p e r p e n d i c u l a r t o each o t h e r  ( 85°)  i n b o t h c a s e s . The  t h r e e bonds around  the  n i t r o g e n atom i n malonamide are c o p l a n a r w i t h maximum d i s p l a c e m e n t from the mean p l a n e o f 0.05A. The  a n g l e s between -CNH  -C\° p l a n e s are a l s o l i s t e d i n T a b l e 8. One  2  planes  (planes number 7-10)  o f t h e s e , 2-7,  i s 14.2° and  and the  r e s t are o n l y 2—5? The m o l e c u l a r c o n f i g u r a t i o n found i n malonamide i s d i f f e r e n t from  oxamide  13  14 and succinamide,  which were both found t o be p e r f e c t l y p l a n a r . The bond l e n g t h s  and v a l e n c y angles found i n s i m i l a r compounds are compared i n T a b l e 9. The o f 109.9° found f o r the c e n t r a l C-C-C t e t r a h e d r a l angle w h i l e 113.9° was be due  value  angle i n malonamide i s c l o s e t o the  found f o r succinamide. T h i s d i f f e r e n c e might  t o the packing o f the m o l e c u l e s  i n the c r y s t a l s . The bond angles  around  the amide carbon i n malonamide v a r y i n the same o r d e r as oxamide, cyanoacetamide and orthorhombic  acetamide  found i n succinamide  2 I +  i .e. C-C-N  < C-C-0  < N-C-O. But the l a r g e s t  angle  and t r i g o n a l a c e t a m i d e i s C-C-0. 2 5  Table  9  Bond l e n g t h s (A) and a n g l e s (degrees) o f the amide group i n some compounds  Compound Acetamide Oxamide Malonamide Succinamide Cyanoacetamide 2 4  13  1  Examination  C-C  C=0  C-N  _  1.260 1.243 1.242 1.238 1.226  1.334 1.315 1.317 1.333 1.326  1.507 1.512 1.522  C-C -N  C-C=0  N-C=0  C-C- -C  117 114 117 115 115  119.6 119.5 119.9 122.4 121.0  123.1 125.7 122 .6 122 .0 123.9  109 .9 113 .9 112 .1  .2 .8 .6 .6 .1  o f the p r i n c i p a l axes o f the v i b r a t i o n e l l i p s o i d s  shows the f o l l o w i n g r e s u l t s :  (1) A l l the carbon atoms are much l e s s  than any o f the t e r m i n a l n i t r o g e n o r oxygen atoms. (2) The axes, U , 3  i n Table 6 anisotropic  longest p r i n c i p a l  f o r oxygen and n i t r o g e n atoms are p e r p e n d i c u l a r t o the p l a n e o f the  amide groups s i n c e they are almost p e r p e n d i c u l a r t o the C=0  and C-N  bonds  ( s m a l l e s t angle o f 80°) and make an angle o f g r e a t e r than 77° w i t h the v e c t o r d e f i n e d by the t e r m i n a l atoms, N-K). T h i s can be. e x p l a i n e d as due t o r o t a t o r y o s c i l l a t i o n around  t h e C-C(amide) bonds. (3) The s h o r t e s t p r i n c i p a l axes, U^,  f o r most o f the t e r m i n a l atoms, i . e . except N(7) and 0(8) which are almost i s o t r o p i c i n t h e p l a n e o f the amide group, are a p p r o x i m a t e l y i n the d i r e c t i o n of  t h e bonds. The d i s p l a c e m e n t o f the peak maximum caused by a n i s o t r o p i c thermal motion  has been d i s c u s s e d by C r u i c k s h a n k to  and Busing and L e v y ? I t seems r e a s o n a b l e  2 6  7  assume the t e r m i n a l atoms r i d e on t h e carbon atom i n the amide group, and  c o r r e c t i o n s f o r bond l e n g t h s were c a l c u l a t e d a c c o r d i n g t o Busing and Levy . 2  The  c o r r e c t i o n s range  are  given i n Table 7 i n brackets.  from 0.011A t o 0.026A and the c o r r e c t e d bond d i s t a n c e s  Arrangement o f t h e M o l e c u l e s and Hydrogen Bonding: cyanoacetamide  7  hydrogen  i n malonamide, hydrogen  In oxamide, succinamide and  bonds h o l d t h e m o l e c u l e s t o g e t h e r t o form l a y e r s w h i l e bonds h o l d t h e m o l e c u l e s t o g e t h e r i n a t h r e e d i m e n s i o n a l  framework. A l l e i g h t amino-hydrogens a r e i n v o l v e d w i t h each oxygen a c t i n g as an a c c e p t o r f o r two hydrogen  bonds.  T a b l e 10 c o n t a i n s the bond d i s t a n c e s and angles r e l a t e d t o the hydrogen bonding. Two v i e w s , a l o n g t h e b - a x i s and c - a x i s , o f t h e hydrogen shown i n F i g u r e s 2(A) and 2 ( B ) , and a t h r e e d i m e n s i o n a l drawing Fig.  2 ( C ) . The two m o l e c u l e s i n t h e asymmetric  hydrogen  bonding are i s shown i n  u n i t are h e l d t o g e t h e r by one  bond, N ( 7 ) " * " 0 ( 8 ) . Both m o l e c u l e s form dimers w i t h o t h e r m o l e c u l e s  r e l a t e d t o them by c e n t r e s o f symmetry i n a bonding  C-CH -C ' z  0 N-H H  H  ,0  H-N  £-CH -C, 2  O  NH  2  scheme o f  Table  10  Hydrogen bond d i s t a n c e s and r e l a t e d angles i n malonamide.  of  Hydrogen bond from atoms atom o f eq. posn. e q . posn. i °  N (3)-H(15) N (3)-H(16)  O (1) O (6)  Distances(A) N...0  N—H  Angles (°)  H...0  C-N-0  H-N-0  i i i i i  2.95 3.04  0.82 0.89  2.20 2.20  122.7 129.6  20 16  N (7)-H(20). O (6) N (7)-H(19).....0 (8)  iv i  2.92 2.94  0.86 0.93  2.10 2.02  115.1 113.1  13 6  N(10)-H(21) N(10)-H(22)  0 (8) 0(14)  v vi  2.89 3.14  0.86 0.93  2.03 2.37  121.1 133.6  6 26  N(13)-H(25) N(13)-H(26)  0(14) 0 (1)  2.95 2.89  1.02 0.85  2.08 1.94  113.2 115.7  13 7  vii viii  Equivalent positions ( eq. posn.) 1  ii iii iv v vi vii viii ix  X -X -X X 1-x 1-x x 1+x -1+x  y  (1/2)+y 1-y U/2)-y (l/2)+y 1-y (l/2)-y (1/2)-y (1/2)-y  z  (1/2)-z 1-z (-l/2)+z d/2)-z  -z (1/2)+z (-1/2)+z (1/2)+z  28  The  c e n t r e o f symmetry i s i n d i c a t e d by a d o t i n F i g . 2 ( A ) . Each molecule  uses  one hydrogen bond i n forming a dimer and the o t h e r t h r e e p o i n t i n d i f f e r e n t d i r e c t i o n s , one a l o n g t h e screw a x i s i n the b d i r e c t i o n ,  N(3)''*0(l),  N(10) •;-0(8) ; one i n the a d i r e c t i o n , N ( 7 ) " ' 0 ( 8 ) , N (13) • •-0 (1) ; and one i n the c d i r e c t i o n N(7)...o(6),  N(13)•..0(14).  The next s h o r t e s t i n t e r m o l e c u l a r d i s t a n c e C(4)-0(14) T a b l e 11 i s s l i g h t l y  = 3.OA, g i v e n i n  l e s s than the van der Waals s e p a r a t i o n , b u t o t h e r non-  hydrogen atomic d i s t a n c e s between molecules  a r e g r e a t e r than 3.21A. The  d i s t a n c e s g i v e n i n T a b l e 11 i n v o l v i n g hydrogen atoms are normal.  Table  11  S h o r t e s t i n t e r m o l e c u l a r d i s t a n c e s i n malonamide.  From atom o f molecule i  to It atom of molecule  Distances (A)  C(5)  0(14)  vi  2.99  0(1) C(2) 0(6) 0(8) 0(14) 0(14)  H(17) H(26) H(17) H(24) H(18) H(24)  vii ix vii iv vi iv  2.64 2.82 2.75 2.73 2.62 2.65  H(16)  H(26)  ix  2.61  * As i n d i c a t e d i n T a b l e 10. Comparison w i t h e s r R e s u l t s : Planes 1 and 4 o f T a b l e 8 are c e n t r a l C-C-C p l a n e s for  the two symmetry u n r e l a t e d m o l e c u l e s . They make a n g l e s o f 13.6° and 15.8°  w i t h the c r y s t a l l o g r a p h i c a-c p l a n e . The i n t e r p l a n a r angle o f 25.3° shows the planes are t i l t e d  i n o p p o s i t e d i r e c t i o n s . The average  would be c l o s e r t o the a-c p l a n e ,  d i r e c t i o n o f these p l a n e s  (010). The b i s e c t o r s o f C-C-C angle f o r the  two m o l e c u l e s make a n g l e s o f 10.5° and 14.7° w i t h the c - a x i s . From F i g . l ,  i t can  a l s o be seen t h a t some o f the N-H bonds a r e r o u g h l y i n the d i r e c t i o n o f the  F i g . 2 ( A ) . View, a l o n g b - a x i s , o f the hydrogen-bonding i n malonamide.  Fig.  2 ( B ) . View, a l o n g c - a x i s , o f the hydrogen-bonding i n malonamide.  w o  c - a x i s . These results show that the electron spin resonance method detects averaged effects  and the correlations found i n e s r are e s s e n t i a l l y c o r r e c t .  But there are d i f f e r e n t l y oriented molecules i n the c r y s t a l .  33 C.  THE STRUCTURE OF CYANOACETAMIDE  Experimental  Crystals the  o f cyanoacetamide  grown from water s o l u t i o n are c o l o u r l e s s  plates;  d i r e c t i o n o f the b - a x i s can be r e c o g n i z e d from the e x t i n c t i o n when b i s  p a r a l l e l t o the microscope p o l a r s . The c r y s t a l showed p e r f e c t  cleavage along  ( l o i ) . Space group d a t a and c e l l dimensions were d e r i v e d from s i n g l e - c r y s t a l r o t a t i o n , Weissenberg  and p r e c e s s i o n f i l m s . The c e l l dimensions were r e f i n e d  by l e a s t - s q u a r e s methods based on the 26's o f f i f t e e n r e f l e x i o n s and Cu-Ka  2  f o r Cu-Kaj  r a d i a t i o n measured on the G e n e r a l E l e c t r i c Spectrogoniometer.  C r y s t a l Data:  (X, Cu-Ka = 1.5418A; Cu-Kai = 1.54051A, Cu-Ka  2  = 1.54433A;  X, Mo-Ka = 0.7107A.) Cyanoacetamide  also c a l l e d malonamidenitrile.  M = 84.05; m. p. =  119.5°C;  NCCH CONH ; 2  2  16  M o n o c l i n i c , a = 8.359A, O - 0.004A; b = 13.556A, a = 0.015A; c = 7.562A, a = 0.004A; 6 =111.18°, U = 799.06A D  m  = 1.40  Z = 8; D  g . cm.  3  3  F(000) =  a = 0.04°  352.  ( f l o t a t i o n i n aqueous K l )  = 1.397 g. cmT . 3  x  A b s o r p t i o n c o e f f i c i e n t f o r X - r a y s : u(Cu-Ka) = 9.33 y (Mo-Ka ) = 1.18  cm.}  cm. "3-  Absent r e f l e x i o n s : h0£ when % i s odd, OkO when k i s odd. Space group i s P 2 i / c  (C ) 2h 5  The i n t e n s i t i e s o f the r e f l e x i o n s were measured on a G e n e r a l E l e c t r i c Automatic Spectrogoniometer, w i t h a s c i n t i l l a t i o n counter, Cu-Ka r a d i a t i o n filter  and p u l s e h e i g h t a n a l y z e r ) ,  r e f l e x i o n s w i t h 26(Cu-Ka) <. 140°  and a 9 — 2 6  scan. Among 1493  ( c o r r e s p o n d i n g t o a minimum  XRD-6 (Ni  independent  interplanar  34  spacing  d = 0.82A),  t w i c e the s t a n d a r d included  1 1 2 9 ( 7 6 % ) had an i n t e n s i t y g r e a t e r  than the background by  d e v i a t i o n o f the c o u n t s . The 3 6 4 unobserved r e f l e x i o n s were  i n the s t r u c t u r e a n a l y s i s w i t h  | F | = 0 . 6 F ( t h r e s h o l d ) . The c r y s t a l  used f o r c o l l e c t i n g the i n t e n s i t i e s was shaped w i t h a moistened t i s s u e t o a c y l i n d e r d i a m e t e r o f 0 . 3 mm.  and l e n g t h o f 0 . 4 mm..  The b - a x i s was  perpendicular  t o the c y l i n d r i c a l a x i s o f the c r y s t a l and the c r y s t a l was mounted w i t h b parallel  t o the $ a x i s o f the g o n i o s t a t .  ( 9 . 3 cmT ) i s 1  low, no a b s o r p t i o n  Since  the a b s o r p t i o n  coefficient  c o r r e c t i o n was attempted. L o r e n t z and p o l a r i -  z a t i o n f a c t o r s were a p p l i e d i n the normal way t o d e r i v e  the s t r u c t u r e  amplitudes.  Structure  Analysis  Hoping t h a t the s t r u c t u r e o f the m a l o n a m i d e n i t r i l e by  c o u l d be s o l v e d  easily  the symbolic a d d i t i o n method, which gave s u c c e s s f u l phase s o l u t i o n s f o r  malonamide, d i r e c t methods were attempted and a p p l i e d i n the same way as f o r malonamide. F o r 1 6 4 non-zonal r e f l e x i o n s w i t h o f s o l u t i o n s had s i m i l a r c o n s i s t e n c y by u s i n g  indexes  | E | > 1 . 3 1 , two p o s s i b l e (0.75),  b u t the  these s o l u t i o n s showed p a r t o f the m o l e c u l e s o n l y ,  E-maps c a l c u l a t e d  i . e . the amide  group, and no a d d i t i o n a l peaks were found i n the F o u r i e r map u s i n g o f the " p a r t l y s o l v e d  s t r u c t u r e " . I t was b e l i e v e d  sets  the s i g n s  t h a t the images o f the amide  groups were a t the wrong p l a c e because they were too c l o s e t o each o t h e r . However, the E-maps from b o t h s e t s showed a l a y e r s t r u c t u r e w i t h l a y e r s to  ( 1 0 1 ) and i n t e r c e p t i n g the c - a x i s  groups had one bond p e r p e n d i c u l a r  a t ± and z. . The images o f the amide  t o the b - a x i s .  A f t e r the s t r u c t u r e was s o l v e d by P a t t e r s o n method was a p p l i e d t o d e r i v e |E|  parallel  methods, the symbolic  addition  the s i g n s o f 1 2 1 non-zonal r e f l e x i o n s w i t h  > 1 . 5 0 . The s o l u t i o n w i t h the c o r r e c t s t a r t i n g s e t o f seven s i g n s had the  highest  consistency  index, 0 . 8 5 , b u t 4 4 ( 3 6 . 4 % )  o f the s i g n s were i n c o r r e c t .  35 A sharpened P a t t e r s o n  f u n c t i o n was  sharp  as the two  calculated  - B ( s i n 2 ej/x  2  using  obs  c o e f f i c i e n t f o r the F o u r i e r s y n t h e s i s . A l l the P a t t e r s o n  l a y e r s p a r a l l e l t o the  through the o r i g i n and  (101)  p l a n e . One  peaks l i e i n  o f the l a y e r s t h e r e f o r e  the o t h e r l a y e r i n t e r c e p t s c a t —. The  passes  sharpened  Patter-  2 son  f u n c t i o n i s shown i n F i g . 3(A)  o f the peaks f o r b o t h s e c t i o n s  and  (B). I t can be  seen t h a t the d i s t r i b u t i o n s  are e s s e n t i a l l y the same, but  the  i n t e n s i t y of  the peaks i s d i f f e r e n t . A t r i a l structure derations: NCCHC0NH i  ( F i g . 3(C))  was  (i) From the p r o t o n h y p e r f i n e 9  2  coupling  i t i s known t h a t the c e n t r a l C-C-C  p l a n e w i t h the b i s e c t o r o f the C-C-C The  d e r i v e d based on the  h i g h e s t peak i n the P a t t e r s o n  tensor  following  consi-  of the r a d i c a l  p l a n e i s p a r a l l e l to the  angle almost p e r p e n d i c u l a r  to the  f u n c t i o n , except the o r i g i n , a t  (101) b-axis.  i i i ,  2 4 2 suggested the s i m i l a r i t y o f the o r i e n t a t i o n o f the amide groups i n the m o l e c u l e s . The  peaks around the o r i g i n o f F i g . 3(A)  a l s o support the  statements and  the o r i e n t a t i o n s o f the m o l e c u l e s are e s t a b l i s h e d ,  are two  p o s s i b l e ways t o p l a c e  the  l a y e r s i n the u n i t c e l l :  passing  through the o r i g i n and  one  i n t e r c e p t i n g c-axis  intercepting c-axis  at i r ;  above  ( i i ) There  (a) one  layer  (b) the two  a t — and — as they were on the E-maps. Assuming  4  two  layers  the  4  o r i e n t a t i o n s o f the m o l e c u l e s were c o r r e c t , e f f o r t s were made to pack them in  such a way  t h a t the amino-hydrogens were a l l i n v o l v e d i n hydrogen-bonding,  with other intermolecular  separations  a t about van  der Waals  distances.  Symmetry elements of the space group were a l s o used as a l i m i t a t i o n f o r p a c k i n g . Both cases  (a) and  (b) were c o n s i d e r e d  s t r u c t u r e were o b t a i n e d o n l y s t r u c t u r e of F i g . 3(C) but only one  had  i n case  (b). The  and  a reasonable  vectors  g i v e n by  trial  the  v e r y good agreement w i t h the P a t t e r s o n  amino-hydrogen i s i n v o l v e d  i n hydrogen-bonding and  the  trial function,  the  oxygen  36  Fig-. 3. The  sharpened  (A) . The  P a t t e r s o n f u n c t i o n and the t r i a l  structure.  s e c t i o n o f the P a t t e r s o n f u n c t i o n through  o r i g i n and p a r a l l e l t o the plane  (101). The  the  contours  are a t a r b i t r a r y e q u a l i n t e r v a l s except f o r the origin. (B) . The  s e c t i o n o f the P a t t e r s o n f u n c t i o n p a r a l l e l t o  (A) through (C) . The  trial  the p o i n t 0  structure.  0^..  37  (C)  accepts only  one hydrogen bond, and t h e s e f a c t s made the s t r u c t u r e  p l a u s i b l e . I t was hoped t h a t the  seem n o t so  t h e r e would be some weak hydrogen bond between  a m i d e - n i t r o g e n , - N I ^ , and t h e c y a n o - n i t r o g e n , N E C - , and t h e bond p e r p e n d i -  c u l a r t o t h e b - a x i s i n t h e amide group was a s s i g n e d t o the C = 0 bond, and t h i s l a t e r p r o v e d t o be t h e r i g h t Refinement o f t h e S t r u c t u r e : structure,  (Fig. 3 ( C ) ) ,  structure  choice. Based on t h e c o o r d i n a t e s d e r i v e d  and a temperature parameter o f 3.OA  2  from the t r i a l f o r a l l atoms,  f a c t o r s were c a l c u l a t e d . The agreement between the c a l c u l a t e d and 2 0  observed s t r u c t u r e not  f a c t o r s , the l a t t e r b e i n g s c a l e d by W i l s o n ' s method,  was  v e r y good, the d i s c r e p a n c y f a c t o r R b e i n g 0 . 5 0 ; however a c y c l e o f l e a s t -  squares r e f i n e m e n t s h i f t e d a l l t h e atoms i n t h e same molecule i n the same d i r e c t i o n and t h i s s u g g e s t e d t h a t the m o l e c u l e s were s l i g h t l y i8 With the use o f t h e I n t e r n a t i o n a l block-diagonal least-squares  2  /w = 1 when  c  T a b l e s s c a t t e r i n g f a c t o r s , one c y c l e o f  r e f i n e m e n t brought R down t o 0 . 3 5 . The f u n c t i o n  m i n i m i z e d was EW(|F | - | F | ) , Q  misplaced.  w i t h /w = 0 . 5 f o r unobserved r e f l e x i o n s ,  | F | .<. 8 . 0 and /w = 8/|F J'when O  O  | F | > 8 . 0 . Several Q  further  cycles  gave an R o f 0 . 2 0 w i t h i s o t r o p i c temperature f a c t o r s , and the agreement not  be f u r t h e r improved. A d i f f e r e n c e  and  the only  the  l a y e r around two oxygen atoms. Oxygen was g i v e n  One s t r o n g  F o u r i e r was c a l c u l a t e d a t t h i s stage,  s i g n i f i c a n t peaks, 1 . 3 e. A  parameters, and s e v e r a l  could  - 3  , were found t o be on both s i d e s o f anisotropic  thermal  f u r t h e r r e f i n e m e n t c y c l e s brought R down t o 0 . 1 7 .  r e f l e x i o n , i . e . 2 0 2 , was found t o have bad agreement and was  e x c l u d e d from f u r t h e r r e f i n e m e n t s . Assumina a l l atoms as a n i s o t r o p i c , the l o w e s t R v a l u e was 0 . 1 0 . A F o u r i e r  synthesis  as  peaks, w i t h e l e c t r o n d e n s i t i e s o f 0 . 4 1 —  the c o e f f i c i e n t s . E i g h t h i g h e s t  0.65  e. A  - 3  were found on t h e d i f f e r e n c e map which had  o f - 0 . 5 0 — 0 . 3 0 e. A circles,  was c a l c u l a t e d u s i n g  - 3  . The p o s i t i o n s  ( F  0  - F  C  )  random f l u c t u a t i o n s  o f these peaks a r e shown i n F i g . 4 by  and a r e a l l a t l i k e l y hydrogen atom p o s i t i o n s . The hydrogen atoms  39  F i g . 4. The  e l e c t r o n - d e n s i t y d i s t r i b u t i o n i n the  through 0 0 1. and p a r a l l e l to i n t e r v a l s o f 1.0 d i f f e r e n c e map  e. A ? ; 3  (101),  section  (Contours at  e i g h t h i g h e s t peaks on  are r e p r e s e n t e d  by  c i r c l e s ) and  two  c o r r e s p o n d i n g cyanoacetamide molecules  are  f o r convenience i n s t r u c t u r e a n a l y s i s  discussion).  the the  (numbers and  40  41  were i n c l u d e d i n the r e f i n e m e n t s , b u t they d i d n o t behave v e r y w e l l and the parameters  f o r hydrogen atoms were f i x e d a f t e r one c y c l e o f l e a s t - s q u a r e s  refinement. The r e f i n e m e n t o f the s t r u c t u r e was complete  a t R = 0.081, e x c l u d i n g the  2 0 2 r e f l e x i o n , and the f i n a l d i s c r e p a n c y f a c t o r f o r a l l the r e f l e x i o n s l i s t e d i n T a b l e 12 was 0.089. The p o s i t i o n a l and temperature,  parameters are  g i v e n i n T a b l e 13.  R e s u l t s and D i s c u s s i o n  M o l e c u l a r C o n f i g u r a t i o n : The c r y s t a l c o n s i s t s o f a l a y e r s t r u c t u r e , b u t the molecules  are n o t p e r f e c t l y p l a n a r . The e q u a t i o n s o f mean p l a n e s and i n t e r p l a n a r  a n g l e s a r e l i s t e d i n T a b l e 14. Plane 7 i s the mean p l a n e f o r a l l the nonhydrogen atoms and the maximum d i s p l a c e m e n t o f the atoms from the p l a n e i s 0.16A. M o l e c u l e 7-12  1 ( atoms 1 - 6 ) seems bent a l o t more than molecule  ) , s i n c e the i n t e r p l a n a r a n g l e s f o r 1 - 2  N=C-C-C p l a n e and the amide, C - c f ° , p l a n e d i f f e r  and 4 - 5  i . e . t h e angles between  f o r the two m o l e c u l e s , Table 14.  The a n g l e s o f 4.0° and 6.2° a r e the a n g l e s between the amide p l a n e s , and amino p l a n e s , C-N^ . L a r g e r v a l u e s f o r 1 - 3 4-5  2 ( atoms  and 4 - 6  i n t e r p l a n a r a n g l e s i n d i c a t e t h a t the amino groups,  C-C^,  than 1 - 2 and  -NH , t w i s t i n the 2  same d i r e c t i o n as the amide groups w i t h r e s p e c t t o the c e n t r a l , N=C-C-C, p l a n e . The l o n g e s t p r i n c i p a l axes o f the thermal v i b r a t i o n e l l i p s o i d s are almost p e r p e n d i c u l a r t o the p l a n e o f the molecules  and t h i s i s t o be expected, because  the atoms move o u t o f the p l a n e e a s i l y . The p r i n c i p a l axes and t h e i r t i o n s are l i s t e d i n T a b l e 15 and a drawing and C(8) a r e the -C=  orienta-  i s shown i n F i g . 5. Carbons C(2)  (sp) type and carbons C(4) and C(10) are the -C  and these atoms a r e h e l d t i g h t e r i n the p l a n e o f the molecule  ( s p ) type z  than o t h e r atoms  and t h e i r v i b r a t i o n e l l i p s o i d s are s m a l l e r . The s i m i l a r i t y o f the thermal  Table  12  Measured and c a l c u l a t e d s t r u c t u r e f a c t o r s f o r cyanoacetamide. (Unobserved r e f l e x i o n s have | F | = - 0 . 6 F ( t h r e s h o l d ) ) O  322 171 I 29  134 1319 210 241  -J25 -2114 -193 -24G  ?44 409  62t  254  160  6") 4 9B5 160  239 257 157 205 143 -167 -254 -235  861 ITl 445 U5 435 140  -102H -172 -524 -138 -446 -190  2 72 105 110  154 102  -240 -264 -1 66 -2i/0 -106  214 277 364  112 456 219 212  - I 12 -43 -65 -i>4  IO  2lfl  -212  115 -172 126  -144  43  Table 12 (Continued)  -2b 187  ?08  ISA  12? -1^)B -1*8  - il  1*1  -163  44  Table  13  P o s i t i o n a l ( f r a c t i o n a l ; xlO * f o r C, 0 and N; x l O f o r H) and thermal parameters f o r the atoms o f cyanoacetamide. (Standard d e v i a t i o n s a r e g i v e n i n parentheses?) 1  Atoms N C C C N 0 N C C C N 0 H H H H H H H H  3  X  2058(6) 1377(6) 0538(7) 1361(6) 0471(6) 2767(5) 7101(7) 6363(6) 5379(6) 6305(6) 5435(5) 7729(6) -056 042 523 419 097 -059 631 435  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)  y  z  2557(3) 1889(4) 1042(4) 0075(4) -0734(3) 0071(3) -0034(3) 1640(3) 1495(4) 2456(3) 3263(3) 2467(3) 099 109 145 155 -136 -063 373 324  4837(8) 3971(8) 2876(8) 3779(8) 3056(7) 5059(6) 9826(8) 9073(7) 8081(7) 8845(7) 8071(7) 10112 (7) 267 138 675 831 356 219 880 736  A n i s t r o p i c thermal parameters ( x l O Atoms N C C C N 0 N C C C C 0 °av  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)  U  l l  U  12  U  13  U  22  581 361 390 340 389 465 520 349 454 358 388 434  18 33 -9 7 -13 26 -0 -49 -18 -18 16 -42  -6 59 43 106 52 -117 47 37 -24 18 -43 -67  267 226 209 218 250 277 307 258 246 221 293 231  23  18  20  20  U  4  B  Z  4.41(17) . 2.83(14) 3.26(15) 2.87(14) 3.34(14) 3.78(22) 4.47(18) 2.76(13) 3.30(16) 2.85(14) 3.64(15) 3.78(22) 3.61 4.92 4.04 2.99 3.27 4.57 5.09 2.25  A ) 2  23  {A )  °33  2 27 27 5 -6 2 13 -. -63 -1 -1 37 -22 20  * F o r H's (T(x) = 0.008, tr(y) = 0.006, <r(z) = 0.01, <r(B) = 1.6 ** A t R = 0.17 f o r C and N; R = 0.20 f o r O  664 412 427 415 563 667 696 447 453 417 601 595 26  45  Table  14  E q u a t i o n s o f mean p l a n e s and i n t e r p l a n a r a n g l e s  (degrees) i n  cyanoacetamide.  E q u a t i o n o f mean p l a n e s i n the form:  HX + mY + nZ + p = 0  where X, Y and Z a r e c o o r d i n a t e s i n A r e f e r r e d t o o r t h o g o n a l axes a, b and c  Plane 1 2 3 4 5 6 7 (101)  a  Atoms N ( l ) ,C(2) ,C(3) ,C(4) C(3) ,C(4) ,N(5) ,0(6) C(4) ,N(5) ,H(17) ,H(18) N(7),C(8),C(9),C(10) C(9),C(10),N(11), 0(12) C(10),N(11),H(19),H(20) A l l non-hydrogen atoms  I n t e r p l a n a r angles  0.8567 0. 7414 0.6994 0. 7453 0. 7202 0. 6412 0. 7887 0. 7816  m 0 .0400 -0 .0676 -0 .0375 -0 .0484 -0 .0174 -0 .0256 0 .0060 0 .0000  n  P  -0 .5143 -0 .6676 -0 .7138 -0 .6650 -0 .6936 -0 .7670 -0 .6148 -0 .6238  1.2764 1.7007 1.8278 2. 1818 2. 3372 3. 0295 1.6101 1.6332  Maximum d i s placement (A) 0.004 0.007 0.019 0.001 0.009 0.050 0.163 —  (degrees):  1- 2 2- 3 1 - 3  12.6 4.0 15.3  4-5 5-6 4 - 6  2.8 6.2 8.5  7 - 1 7-2  7.2 5.9  7 - 4 7-5  4.9 6.1  (loi) - 7 (101) - 1 (lOl) - 4  0.5 7.9 4.1  Table  15  P r i n c i p a l axes o f the thermal v i b r a t i o n e l l i p s o i d s and t h e i r o r i e n t a t i o n s f o r .the atoms o f cyanoacetamide.  Atoms  Axis(i)  U  ±  (A)  Angles made t o the v e c t o r s  a + c N  b  (1)  1 2 3  0.163 0.212 0.314  86 4 90  4 86 89  C (2)  1 2 3  0.146 0.183 0.228  72 19 86  19 71 90  0.143 0.164 0.266  81 9 89  10 81 86  C (3)  c  C  C (4)  1 2 3  0.147 0.184 0.210  87 21 70  4 8790  N (5)  1 2 3  0.158 0.190 0.263  83 14 77  7 83 90  O (6)  1 2 3  0.163 0.179 0.330  67 24 86  23 67 89  N (7)  1 2 3  0.175 0.214 0.300  88 9 82  2 88 89  C (8)  0.146 0.187 0.240  56 35 82  34 56 85  C (9)  0.156 0.178 0.273  81 10 86  10 81 88  C(10)  0.148 0.172 0.241  80 10 88  10 80 88  N(ll)  0.165 0.181 0.294  53 38 82  37 53 88  0(12)  0.146 0.182 0.304  68 22 86  22 68 89  The thermal v i b r a t i o n e l l i p s o i d s f o r cyanoacetamide.  48  motion f o r the atoms between the two m o l e c u l e s can a l s o be seen i n t h e i r t r o p i c temperature f a c t o r s i n T a b l e 13. The bond l e n g t h s and v a l e n c y are  listed  iso-  angles  i n T a b l e 16, i n which the i n t e r a t o m i c d i s t a n c e s averaged over  ther-  0 7  mal motion f o r the t e r m i n a l bonds  are g i v e n i n b r a c k e t s . The two m o l e c u l e s  have s i m i l a r d i m e n s i o n s . The bond l e n g t h s f o r the amide groups i n malonamide and  cyanoacetamide a r e s l i g h t l y b u t n o t s i g n i f i c a n t l y C-C  different:  C = 0  C-N  malonamide  1.507  1.242  [1.254]  1.317  [1.334]  cyanoacetamide  1.522  1.226  [1.247]  1.327  [1.339]  The bond l e n g t h s c o r r e c t e d f o r a n i s o t r o p i c motion agree b e t t e r . The bond for  lengths  the amide groups and the normal C-C bonds f o r cyanoacetamide are a l s o  compared w i t h o t h e r s i m i l a r compounds as w e l l as malonamide  i n T a b l e 9,  (page 2 5 ) .  The mean bond l e n g t h o f 1.138A f o r CEN i s normal compared w i t h the e l e c t r o n d i f f r a c t i o n d a t a b u t t h e c o r r e c t e d bond d i s t a n c e o f 1.162A agrees b e t t e r . w i t h the  spectroscopic data:  2  Q  C=N bond l e n g t h s (A) Spectroscopic data Electron d i f f .  Compound HC=N  1.1530  1.13  C1C=N  1.163  1.13  BrC=N  data  1.158  The mean bond l e n g t h o f 1.451A f o r the C-C bond i n the C—C=N group i s a l s o i n good agreement w i t h those found i n o t h e r compounds, and the bond can  be a t t r i b u t e d t o s t a t e s o f h y b r i d i z a t i o n ,  a g i v e n s t a t e o f h y b r i d i z a t i o n has a f a i r l y types o f a d j a c e n t atoms?  9  and i n f a c t ,  shortening  the C-C bond  c o n s t a n t l e n g t h i r r e s p e c t i v e o f the  Some examples a r e :  CH -C=CH  1.459A  CF -C=CH  CH -C=N  1.458  CF -CECCH  CH -C=CC1  1.458  CC1 -CEN  1.460  CH -CECBr  1.460  Me C-C=N  1.460  CF3~C=N  1.461  CH -C=CCN  1.454  3  3  3  3  involving  1.464A  3  3  3  3  3  3  1.455  Table  Bond l e n g t h s  N N  (1)-C (7)-C  (2) (8)  (A) and v a l e n c y angles  1.142 1.134  [1.167] [1.156]  1.138  [1.162]  C (2)•C (3) C (8) •C (9)  1.440 1.461  [1.446] [1.469]  mean  1.451  [1.458]  mean  C C  N=C  NC-C  (3)•C (4) (9)' •C(10)  mean  C-C  1.524 1.519  N N  i n cyanoacetamide.  (1)-C (2)-C (3) (7)-C (8)-C (9) NEC-C  C (2)-C (3)-C (4) C (8)-C (9)-C(10) C-C-C  C-C-NH-  C (4)•N (5) C(10)- - N ( l l )  1.326 1.327  [1.337] [1.341]  mean  1.327  [1.33.9]  C (4)-0 (6) C(10)-O(12)  1.223 1.229  [1.248] [1.245]  mean  1.226  [1.247]  C=0  (degrees)  C (3)-C(4)-N (5) C (9)-C(10)-N(ll)  1.522  C-NH-  16  C (3)-C (4)-0 (6) C (9)-C(10)-O(12) C-C=0 N (5)-C (4)-0 (6) N(ll)-C(10)-0(12) N-C=0  179.3 178.7 179.0 112.4 111.7 112.1 115.6 114.6 115.1 120.5 121.6 121.1 124.0 123.7 123.9  N (5)-H(17) N (5)-H(18) N(ll)-H(19) N(ll)-H(20)  0.96 0.90 0.98 0.87  C (4)-N (5)-H(17) C (4)-N (5)-H(18) C(10)-N(ll)-H(19) C(10)-N(ll)-H(20)  118 115 96 122  C(3)-H(13) C(3)-H(14) C(9)-H(15) C(9)-H(16)  0.88 1.11 0.97 1.07  H(17)-N (5)-H(18) H(19)-N(U)-H(20)  127 141  Standard  deviations:  bond l e n g t h s n o t i n v o l v i n g H , a = 0.007A v a l e n c y angles n o t i n v o l v i n g H , a = 0.4° bond l e n g t h s i n v o l v i n g H, o=0.07A angles i n v o l v i n g one H, o=4° angles i n v o l v i n g two H, o=6°.  50 Hydrogen Bonding: The hydrogen bond d i s t a n c e s and r e l a t e d a n g l e s a r e g i v e n i n T a b l e 17 and a s c h e m a t i c drawing o f t h e hydrogen bonds i s shown i n F i g . 6. The l e n g t h s f o r N-H...0 hydrogen bonds a r e normal compared w i t h o t h e r compounds as w e l l as malonamide:  N—H'--0 Cyanoacetamide  2.94 - 2.96A  Malonamide  2.89  Oxamide  N—H---N(=C) 3.14A  - 3.14 2.94  13  Succinamide ^ 1  2.94  The d i s t a n c e s o f 3.14A f o r N-H"'-N(=C) suggest weak hydrogen bonds between the amide- and cyano- n i t r o g e n s . The hydrogen bonds make an angle o f 144° t o t h e C=N bond. The dimer, which i s formed through hydrogen bonding o f t h e two symmetry u n r e l a t e d m o l e c u l e s , can be c o n s i d e r e d as a p a c k i n g u n i t i n t h e l a y e r ; the u n i t s a r e l i n k e d t o g e t h e r through t h e weak N-H...N(=C) hydrogen bond. The symmetry element t h a t g e n e r a t e s o t h e r u n i t s o f t h e l a y e r i s a screw a x i s , 2 j , and t h e l a y e r s a r e r e l a t e d t o each o t h e r by a c e n t r e o f symmetry w i t h i n t e r l a y e r d i s t a n c e o f 3.27A.  Table  Hydrogen bond d i s t a n c e s  (A) and r e l a t e d angles  Hydrogen bond from atom o f eq. posn. i *- P t  o  a  t  o  N(5) -H(12)  0(12)  N(ll)-H(19)  0  m  o  f  ec  (6)  17  (degrees) i n cyanoacetamide  Distances(A) o s n  -  N...0  N-H  Angles(°)  H. . .0  H-N-0  C-N-0  C-N-H  i i  2.94  0.96  1.98  5.9  112.1  118.0  i i i  2.96  0.98  2.04  16.6  111.7  96.2  N...N  N-H  H...N  H-N-N  C-N-N  C-N-H  N(5)-H(18)  N(7)(EC)  iv  3.14  0.90  2.25  10.7  106.5  115.2  N(ll)-H(20)  N(1)(EC)  i  3.14  0.87  2.35  21.3  106.7  121.6  N  (5) . . :  N(ll) . .  N ( l ) (=C)  3.36  N(7) (=C)  3.36  Equivalent positions (eq. posn.) i  x  y  z  ii  1-x  (-l/2)+y  (3/2)-z  iii  1-x  (1/2)+y  (3/2)-z  iv  -1+x  y  -1+z  52  Fig.  6. The hydrogen-bonds the  and p a c k i n g o f the m o l e c u l e s i n  l a y e r o f cyanoacetamide.  0 o | and p a r a l l e l  (The s e c t i o n through  t o (101); the N-H---0 hydrogen  bonds a r e i n d i c a t e d by broken l i n e s , and N-H---N(=C) hydrogen bonds are i n d i c a t e d by d o t t e d l i n e s . )  Fig.  6.  54  Comparison w i t h e s r R e s u l t s ; The l a y e r s i n the c r y s t a l o f cyanoacetamide  are  p a r a l l e l t o the (101) p l a n e and the mean p l a n e , p l a n e 7 o f T a b l e 15, f o r a l l the non-hydrogen atoms makes an angle o f o n l y 0.5° w i t h the (101) p l a n e . The mean p l a n e s f o r t h e NSC-C-C p l a n e o f the two molecules make a n g l e s o f 7.9° and 4.1° to t h e ( l o i ) p l a n e . The b i s e c t o r s o f the C-C-C angle o f the two molecules make a n g l e s o f 87.7° and 87.2° w i t h the b - a x i s . A l l these r e s u l t s are c o n s i s t e n t w i t h the c o r r e l a t i o n s found i n e l e c t r o n s p i n resonance w i t h i n e x p e r i m e n t a l error.  55  PART  II  THE STRUCTURE DETERMINATION  OF  A COMPOUND C H , „ N o n  56 A.  Alkaloids  a r e a v e r y heterogeneous c l a s s o f n a t u r a l p r o d u c t s . The m a j o r i t y  of a l k a l o i d s are b a s i c , The ture  nitrogen  INTRODUCTION  nitrogen  containing  i s u s u a l l y p a r t o f a h e t r o c y c l i c system?  0  A large variety of struc-  types e x i s t s i n t h i s c l a s s o f n a t u r a l p r o d u c t s . S t u d i e s o f how some o f  these m o l e c u l e s a r e formed i n p l a n t s decade and a r e s t i l l the  o r g a n i c compounds found i n p l a n t s .  have been c a r r i e d on i n t e n s i v e l y f o r the p a s t  g o i n g on. The b i o c h e m i s t r y o f the i n t e r m e d i a t e s t e p s f o r  f o r m a t i o n o f some o f the a l k a l o i d s i s s t i l l  laboratory  synthesis  o f the a l k a l o i d matrine  a mystery. In an attempted  (I), C  1 5  H24N 0, 2  which i s an impor-  t a n t q u i n o l i z i d i n e a l k a l o i d , a compound C 2 Q H 2 N ^ o f unknown m o l e c u l a r 3  was i s o l a t e d  3 1  structure  I t would be v e r y i n t e r e s t i n g t o know i f the end p r o d u c t i s  r e l a t e d t o an a l k a l o i d and what mechanism would l e a d t o a f o r m a t i o n o f such a compound. The X-ray i n v e s t i g a t i o n o f a methiodide d e r i v a t i v e was undertaken and  t h e s t r u c t u r e was e s t a b l i s h e d  as (II) and i t s o p t i c a l enantiomorph, the  c r y s t a l b e i n g a racemate.  (I)  (II)  57  B.  THE STRUCTURE OF A  COMPOUND  C QH 2  3  3  N  3  Experimental  C r y s t a l s o f the m e t h i o d i d e , C 2 Q H  3 3  N * C H I ' X C H O H , from methanol, are 3  3  c o l o u r l e s s p l a t e s , elongated along b with  3  (001) developed. U n i t c e l l and space  group d a t a were determined from v a r i o u s Weissenberg on the G e n e r a l E l e c t r i c  C r y s t a l Data: C  H  Spectrogoniometer.  (A, Cu-Ka = 1.5418A;  20 33 3" N  C H  3 "  Orthorhombic,  I  x C H  3  O H  ( x  m  = 1.42 g. cmT  Z = 8; B  x  ^  A, Mo-Ka = 0.7107A). ' ' M  4  7  3  -  2  (  f o r  x  =  J> •  a = 8.01 ± 0.03A, b =17.70 ± 0.05A, c = 31.3 ± 0.1A U = 4438 A  D  and p r e c e s s i o n f i l m s and  = 1.37  3  3  F(000) = 1960  ( f o r x = 1) 2  ( f l o t a t i o n i n aqueous K l ) . ( f o r x = 0 ) , 1.42  ( f o r x = -) 2  A b s o r p t i o n c o e f f i c i e n t s , u(Cu-Ka) = 117 cmT , 1  u(Mo-Ka) = 15  cmT . 1  Absent s p e c t r a : 8kSL when k i s odd, hOl when I i s odd, hkO when h i s odd. Space group i s Pbca  (D^fj) •  The i n t e n s i t i e s o f the r e f l e x i o n s were measured on a G e n e r a l E l e c t r i c XRD 5 Spectrogoniometer, u s i n g a s c i n t i l l a t i o n c o u n t e r , Mo-Ka r a d i a t i o n (Zr f i l t e r and p u l s e h e i g h t a n a l y s e r ) , and a d-26scan.  Of 2144 r e f l e x i o n s w i t h  29(Mo-Ka) <. 40.5^ (minimum i n t e r p l a n a r s p a c i n g , 1.03A), 1876 were observed. The 268 unobserved  r e f l e x i o n s were i n c l u d e d i n the a n a l y s i s w i t h  ( t h r e s h o l d ) . The c r y s t a l measured 0.20 x 0.45 x 0.18 mm.  | F | = 0.6F q  a l o n g a, b and c  r e s p e c t i v e l y , and was mounted w i t h b p a r a l l e l t o the $ a x i s o f the g o n i o s t a t ; no a b s o r p t i o n c o r r e c t i o n s were made. A l l the i n t e n s i t i e s were c o r r e c t e d f o r background  (which was found t o be a p p r o x i m a t e l y a f u n c t i o n o f 6 o n l y ) , L o r e n t z  and p o l a r i z a t i o n f a c t o r s were a p p l i e d , and the s t r u c t u r e amplitudes were d e r i v e d .  58 Structure  The  i o d i d e i o n p o s i t i o n was  Patterson  f u n c t i o n , and  a l l the  Analysis  determined from the  l i g h t e r atoms i n the molecule  were l o c a t e d from t h r e e  successive  t h i s stage the n i t r o g e n  atoms c o u l d not be  electron-density,  and  three-dimensional  three-dimensional  a rather poorly  (exeept hydrogens)  e l e c t r o n - d e n s i t y maps. A t  d i s t i n g u i s h e d on the b a s i s  resolved region  suggested the  of  presence  i  o f some methanol o f c r y s t a l l i z a t i o n , but  these atoms c o u l d not be  positioned  reliably. The the  use  s t r u c t u r e was o f the  o f ZW(|F | -  r e f i n e d by b l o c k - d i a g o n a l  I n t e r n a t i o n a l Tables'  | F | ) , w i t h /w 2  Q  c  E x a m i n a t i o n o f the v a l u e s suggested F* = 4 0 as b e i n g  8  least-squares  methods, w i t h  s c a t t e r i n g f a c t o r s , and w i t h  = 1 when | F | .< F*,  and  q  of w ( [ F | - | F | ) Q  2  c  appropriate.  R,  during  /w  the  initially  four c y c l e s to 0 . 2 0 . At t h i s stage three-dimensional  = F * / | F | when|F | > F*. q  course o f 0 . 3 1 , was F  D  minimization Q  refinement reduced a f t e r  ( F i g . 7) and  s y n t h e s e s i n d i c a t e d the p r o b a b l e p o s i t i o n o f the oxygen atom o f the m o l e c u l e , the e l e c t r o n - d e n s i t y m o l e c u l e , as suggested by The  (F  carbon atom o f the methanol was  ( 1 . 4 2 g.cm.  not w e l l d e f i n e d ,  and  3  )  of the  crystals.  i n c o n s i s t e n t w i t h the  only one-half seems t o be  f a c t t h a t the  loosely held,  Refinement o f the  and  s t r u c t u r e was  1876  completed i n s i x c y c l e s , w i t h the use i o d i d e i o n i n the  c a l c u l a t e d s t r u c t u r e f a c t o r s are  observed r e f l e x i o n s ) .  so t h a t the methanol  e a s i l y removed.  a n i s o t r o p i c thermal parameters f o r the measured and  crystal.  c r y s t a l used appeared to have  o f a molecule of methanol o f c r y s t a l l i z a t i o n ,  rather  this  thermal para-  meters, so t h a t t h i s carbon atom seems t o have a v a r i a b l e p o s i t i o n i n the T h i s i s not  c  of a  refinements with  atom i n s e v e r a l p o s s i b l e p o s i t i o n s c l o s e t o the oxygen gave h i g h  F )  methanol  c o r r e s p o n d i n g a p p r o x i m a t e l y to o n e - h a l f  the measured d e n s i t y  -  Q  listed  f i n a l cycles.  of  Final  i n Table 1 8 (R=0.17 f o r  the  Table Measured and c a l c u l a t e d s t r u c t u r e of C o 3 3 3 . H  N  2  k U (1 0 0 0 0 0 0 0 0 0 0 0 0  1 ^obs  'calc  h=0  2 4 6 H 10 12 14 16 1H 20 22 24 26 28  -5  23«L.9 /b.U -369.7 •290. 117.4 141.1 70. I -62 .0 62.5 51.8 147.7 149^ I  188.6 l 68.4 2 H 1. 1 -59. 1 19 167. 1 160.6 152.0 2 21 7 3. 6 4U1.4 -4/7.5 2 2 3 33.3 286.0 -2/O.b 2 25 4 0.5 339.b -3U;.4 2 7 6 7.1 2 251.1 -20'*.0 29 169.4 72.4 66. C -?/. 1 295.0 42. 1 -10 .5 21-1.5 9 3.9 79. 7 15b.8 176. 3 116.6 95. 1 1 16.2 M / . 4 42.6 31.4 2 7. I\ .11.5 87.6 100. 1 92. I  139 33 20 -34 -5$ -60  * .2 1 ?2 .d 1 7 .ii 40. 7 -4 / .5 - I 1 1 .0 -77 . n 70.8 -64 2 1.0 .10b. 6 -2 6) 226.2-201 9 1.1 14.2 113.3 201 . 1 209. I 13 1-7 -7.0 C6. J l'J.4 i ? :> . o-1-72. .7 (12 .0 -29.1 ' 11.7 40.6 9J. 7 122.5 1. / . n '.2.4 20.0 19.9 -49. I /I . I 4 0.6 -;:9.b 1 1 .6 2 6.0 19.U -54.6 14 M . 7 52.9 (.0.3 -8.0 -8. 7 232 . I 140. 1  16 7.1 J4. ) -64. I 72 . 1 -69.0 19.9 48.4 4 4.0 75 .2 14 2.4 54. U 4 6 . 9 21.2 -0.4 - 1.2 •10.8 -40 . 1 61.2 -14.9 12 1.6 -90. / B /. l._ - 1/.2 46.''. 64 .3 -24 . I -90.9 -47.? / i.y .V.J -104.1 -65.5  3. /  14.3 <i.S  «  6  1 7.0 127.4 160.O  150.9  10.0 101.7 12. i 19.4 7b.4 12. 7 1/.1 25.2 76. I 1 /0.2 229. 2 241. 1  26. 1 - 17.4 -b? . /  16ft .(> 2 60.6 2 2 5.0 H)b. / 5.2 .-29.5  48 .0 10. 1 10. 1 10.2 39.fi, ... 62. 1 11.3 -31-'10.9 11.7 -1 7-r. -L9 >. 1 -9 1.7,  114.2 ...-/i'AiX 70. 7 -02.2 il .4 - I O.I. 11 . i 108. J 111.2 M3.i 18.1 - 7.3 -41 .<. .1 li .0 19 . / 1 00 . [ 1 /. 1 - ICO -3. 7  / 4 . J 82 .0 1 72.0 1 64 . 5 12 7.1 8.9 12.4  -16.0 _£ \1 -22.6 -8.7 -13.1 t-0. 3 -67.2 67.6 -6ii. 3 31.3 6.8 _20_ 5T.6 16.0 77.2 -6.7 1 1.4 39.6 15.1 -U.4 1 10.6 66.5 68. 1 9.3 -6.0 68. 1 29.0  7 2 2?  2b. 6 12JI.9 141.H  22 91 4 6 7.3 24 31 y 13.9 26 2 3 6 16.0 2d 24 7 4 .f. -.1.7 "10 -:i 0 1 lu 2 -3 16.1  f a c t o r s f o r the methiodide  (Unobserved r e f l e x i o n s have  24. ft 36. 1  2 2 2 2 4  18  7 17 / 19 7 21 7 23 7 7 2/ 9 1 '» 3 9 5 •) 7 9 9 9 1I 9 13 > ' 15 9 17 ^ 19 •j 21 9 23 9 25 11 1 I1 3 11 5 II 7 1I 9 11 It 11 13 11 15 11 17 11 19 U 21 11 2 1 1i 1 Il J I1 4 11 / 11 9 11 11 11 11 11 15 t 1 17 i I 19 15 t 15 1 14 4 14 7 15 9 15 11 t i 13 17 I 1/ 1  -7.1 11.5 16.9 -4.6 24.9 -24.4 43. 1 -40 .2 -8.4 2 .6 -O.H 1 24. 4 1 04 . t 3 1.9 -32.0 -6. i 6.5 -6.4 - 11 . 6 2 3.7 -26.7 26.0 - W. 7 45. 1 -42 .5 13.5 -19.1 - 7.5 - 10.9 - 7.8 -13.9 4 1.1 42.3 40.7 J'l .7 - 8 . 7 -4. 1 4.4 56. ft4 (.0.7 0 7 . tl -6.9 -0.7 15.8 -4 (..4 34.7 - 3 0 .2 19.3 - I .4 52.0 -44.6 -7.8 -4.4 -8.0 - 12.7 -b. 3 r . . i -b.6 7.5 -8.8 19.4 32.6 3.6 3 3.5 -1.3 - 7.6 -4.0 Id.9 2H .6 -7.b 1 .0 49.0 -51.0 21.4 2.1.4 -8. 3 -4.5 -8.5 -0.9 — H . d 22.0 '•1.4 -40.2 -d.2 -14.2 -d.2 -Id./ - 1 . J 26.8 1 i.6 2 5.9 -8.6 11.1 22. ) I 1. t -ti. J -6.4 -8.9 -14.0 /5. 3 11 J- / 11.2 r>2 . / 16.9  - 19 .0 -16.1 32 .6 21.'10.2 -8 . / I / /. 1 -I 70. ) 143. ) -L 10.4 )2. 1 -d6. 1 58. 1 -14.1 99.4 40. 7 -.6.2  -21.1 -1-1.6 -9.4 - I 3.2 61* . 1 L2_^  10.0 94.6 41.1  1I I1 11 11 11 1 |  12 14 16 IB 20 22  I1 11 13 11 1i 13 11 1J 15 15 15 15 15 15 17 0 0 0 0 0 0 0 0 0 0 0 0 00 0 2 2 2 2 2 2 2 2 22 2  2 6 8 10 1? 14 16 18 2 4 6 -8 12 14 2 ,',  6 ii 10 12 14 16 18 20 2.2 24 2<< 2U 30 2 6 e 10 12 14 16 11' 20 2.' 24 2o  ?9.0 - 7.9 -8-2 29.6 31.6 39.4 46.6 35.6 12.8 -/.I 20.6 54.o -8.0 -8.3 -d.6 34. 7 28.6 26. / i /.9 .11./ 4 7.0 -7.7 2b.4 22.7 14.6 -8.7  J = -0.6F (threshold) 60.3 24.5  3.6 28.9 -2 7.0 51 .8 58.0 29. / -19.4 - 1.0 -19.1 -53 .b -5.1 14.0 -19.0 -60.2 3 9.1 -10.b 31. t 11.9 -20.5 12. 7  10 10 10 10 10 10 10 10 10 12, 12 12 12 12 12 12 12 12 12 14 14 14 14 14 14 14 16 16 16 _16. 2 2 2 2 2 2 2 2 22 22  31.1 -34 . 7 41.9 -4 1.0 27.8 -25.8 19.1 -12.1 36.4 -37.5 46. 5 3 d. 4 2*. 8 25.0 -ii. / 15.6 -8.2 - 1 1.9 -8.2 10.5 2 7 7.7 -75.0 -d.4 -2.6 2 2 -d.6 -17.9 -8.8 -9.7 4 4 -8.8 13.6 4 195. 3 -434.6 4 26 7 . 7- 179.5 4 254. / -265.4 4 372.0 -360.0 .. 4 159.8 - 130.6 4 15.6 -21 Sa 4 19/. 4 195.8 1U1.2 183.3 4 10 1.2 . 138.3 4 143.0 142.0 4 3 7.1 40. 3 4 15.9 -10.4 4 60.7 -53.(1 6 60.6 -4b. / 6 61.2 -45 . 7 6 6 35.9 -49.0 74 . 1 48 . 3 6 216.9 -212.7 6 S 2 3.4 -31.1 (>5.6 6 20.1 1.4 6 6 7 6. >, 73.6 2 4.4 2 5.8 6 Ui. 2 59 . .1 -b .2 58 .6 6 -7.3 10.4 6 a J2.9 -26. i 15.0 -28. -16.19 8 d -14.7 8 I4i.2 8 22C.0 d 2 12.2 242.4 2 06^J_ 202 .b dH 114.9 114.5 d 71.1 -51.1 102 . / 8a HI.') 0 8 10 '•t?.l> -VJ.6 10 10 1J 10 1 I 1. 1 102.6 10 142.4 14d.II 10 1(1 2 lb. 7 2.0 9. c, l'J 10 -ii-.. 1 lo 1') - 142 . 4 12 -89.5 - 1 12.0 12 1 -11.4 122 4 1.4 1 2 1 4.2 12 5 7.2 12 39. I 12 7d.ti 12 L2 r  2 1.0 Id. L 14. 1 /•/ - 3 ». 4 101 .4 90. /  2 3.4 2 5.7 112.9  derivative  -12).5 - 140 .9  1 31 .B -133.1 50.1 -61 .5 24.0 6.2 94.4 60. 7 86. 3 80. 7 98.0 9d. / 61 . / 57.4 -8.5 12.9 -8.8 - 1 .4 6d.b -72.0 48.rt -52.0 44. 1 -72.2 4 3.9 -51.2 39. 1 - 19.6 -7.7 10.9 54.2 4 5. / 16.9 11 .it 30.2 21.7 60. 1 4d. 1 - 7. J 7.6 20. 7 H3 .') 52. 7 50.9 4 1.0 4 4.6 1 2 17. 1 - il . / 14 25.0 -20.4 16 34 . i -22.1 2 19.3 40.5 4 96. 5 69.4 6 40.0 30.4 8. 1-9.1} 46.9 1 u o . / -111./ 1 244. 1 -2 71.3 5 1*9.6 - 140.3 / 46.4 65. a 9 167.2 176.3 1 1 196. 6 204. 1 1 1 159. / 175.9 15 160.4 165.2 IT 18.8 12.1 1* 79.4 -85.2 21 101. 7 -94.5 2 J 108.4 -91.6 25 62. 3 -67. 3 27 24. J -19. / 29 -8.7 l.l I3 236.4 -25 3.6 159.2 -157.1 5 54. 7 -28.9 7 •J4.6 6 9. / 9 137.3 t 29 .2 1 1 115.4 142 . » 1 3 156. 1 151,1. 15 93. 1 104.3 17 17. 1 8.9 19 47.9 -55.7 21 37.9 -23.5 ?) 80.4 -62. 3 25 4 1.6 -64.6 27 25.9 -21.9 29 16.3 -16.3 1 139.6 127.6 3 4 7.0 61.3 5 -5.2 2/.7 7 2 7. 3 -22. 3 9 5 6.3 -51.1 I 1 88. 4 -91.9 13 )7. 6 -101.a 15 4d.2 -4 7 . K 17 19.3 -14.0 19 3 i.d 45.5 21 3d.6 27.4 23 32.9 2 1.4 25 36.0 3 1.2 27 25.3 19.1 1 19 7.1 17/.5 J 255. 1 2 10.6 5 3 7.3 38. 3 7 d 0. 1 -71.9 9 15 7.6 - 140. 5 11 182.7 - 1 84.2 13 1 44. 1 - 14 7.5 15. b2.0 -fc5 .4 17 1 1.8 -13.6 19 5 3.4 40.5 21 65. o 66. 1 2 1 4d.4 '.6.5 2 4 B).« / J .4 I 35.0 3.6 1 - 50. 6 J ». 1 5 11./ / .2 7 20. / -7o .4 9 -6. ' 1. 1 1 t 4 t . 'i. - \ t . 1 t ) l:j.<. -9.6 1 5 4 i.C -40. / 1 7 20. 4 -11.* I ) 40. 1 4 5.') 2 1 —-y.Awl/i 7 .<• 2[ 1 1 J.9 LM.2 - 9f. 1 7 f.H -'•1.1 i 2o.r, - il , i 4 1 . H HI. i 9 70. 1 1 I ) 6 . 4 92 .'j I 1 Jd.O /ii .0 15 ) / . 4 4.' .9 I 7 -0. 1 4 .4 1 1 40.4 40.it - lit . 1 _6£.._i 8  10 12 14 16 18 20 22 242 4 6 8 10 12 14 16 18 20 2 4 6 8  t  16 lb  7 9  0 0 0 0 0  0 2 4 4. 8 10 12 14 19 18 20 22 24 26  0 0  0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 (> (, <, 6 6 6 t 6 6 6 8 t. U 8 U 11 tl tl) io 10 10 H. io 10 to l0 10 L0 Io 1j 1i 12 12 I7 12 12 12 12 12 12 I I'( j-. 14 1 'i 14 X  ''  14 16 I4 li 74.1 72 .5 2 4 1. V 2 2 2 2 2  )  7.7 18.0 -8.8 -22.5  h°2  132.2" -14 5.3 290.6 -292.2 I'l.l - 194.6 92.5 85.8. ">?.. 7 54 .H 1 15.5 152.9 2 1 J.2 260.9 14 L . a 151.4 3 1.6 50.0 32.0 - Id.4 12 .4 - 12.5 65.9 -74. 7 /4. / -86 . 1 -a.2 -2 1.2 59. /... _-51 , [j 0 214.6 -205.2 2 65. / -44. (J 4 8.5 2. / 6 5 1.6 -69. d 8 90.4 92 .6 10 125.3 12 7.4 12 3 3 . ) 16.U 14 15.0 22.8 16 19. ) 22 .y 18 1 9.G 12.4 23 65. 3 -52. / 2? 40.8 -4d.O 24 ld.C -16.1 26 17.2 -15.3 28 -3.6 3.U 0 139.6 1 54 .6 2 204. 5 206.6 4 53.6 64.0 6 22 .1 21.4 e 49. 5 -50. 3 10 22 7.6 -224.9 12 lid./ - 124. 7 14 f.9. / -89. 1 16 32.2 -36. 1 Id 2-1.2 19.8 20 ) 1.4 11 .0 22 49.9 79 . 5 24 •)4. 1 53 . 1 26 20. 6 19.0 2 8 2 3.0 22. 3 2"0.4 20. . ( . 2 I'., 4. 0 117.1 4 41.2 4 1.J (, U t.2 4 .4 H 103.2 -106. 1 10 9 'j . li -114.0 12 7 1 . H -70.9 14 109.6 - U)b . 1 16 4 7.2 -46.3 Ui 16.6 24 .4 20 '.4 . 1 39.4 22 M .6 90.0 24 15.3 30. 1 26 1 I..U 20. 3 0 15. <> - 35. 7 2 t 1 .0 30.6 4 10. 1 -27.) 6 11./ 6.4 d 4 i.6 10 3 7.0 -42.9 12 19.1 2 4.2 I h - / .4 -11 ".2 l» - l . l , -SU.il 12.9 2 0 2 f.i, 22 -0.2 - !..' 24 - l i . i 0 1 4 0. 6-14 r... > 92.2 -98 .0 12 . 1 -4 1.0 f. 12. tl -1.2 • J /J.H /2 • .> 10 7 4.1 74.4 i.» 1 Jl . 1 i n i . i 1H 86. 1 7 4.0 16 12.4 24.2 111 - d. 1 1 3.d 20 40.0 -47.4 22 ..2.0 -60 .4 0 89. 7 -66.6 2 '.2. 1 -44.4 '9.2 -25. 1 6 2 ). 4 -11.0 <i •> I .2 I /. 1 ui 00.2 114.2 12 11./ Sl . i 14 -8. 1 22.4 I* 2 / .9 24.2 1 ii -a. 4 - 10. / .'0 4 . 1 -14.2 9 4 6. ) 4 1). 1 2 .4.2 4 7.4 4_ 16. 1 9.4 - o . 1 IO. * n 1 4 . i -7.1 10 .2 . •' -'•-'». 2 12 I L . (. -29 . 7 14 .' /. ) - ' 4 ' 0 ! •;»•;• 2d. 4 4 iO. 2 '} "•!*4 -'!) [ 1 1 I . 4•115.6 1 72H . 1 26 I . S 7 1 76. i 1 -i e . » ) 42 . 1 4 7.0 11 . / -24.1 1 > 2 4.3 - '. 2 . •.' i  T a b l e 18  60  (Continued) CONTINUED k I rob$ calc  h =1 50.2 - 7. 7  7 7.8 38. I  -123. J - )S. 7 - 5 9 . .1 - 12.0 40 . 8  40. , - 4 144 . 4  -7.9 2 7.2 34. I -8.7 44.2 42.9 24. 7 1J .4 18.4  52. 3 4b. J  70.0 - 1'>.4  4fa. 0 .9 14 8 . 4 I 75.4 114.') 09 . 1 51 .  75. L I '.I 54. 5 i 1.0 , - 7.3  . • J 20  -  5 7.3 49. 3  -48.5 -66. / -U2.4  19. I 6 3.0  r  .11.  :  -55.7 -56.5 - 30.6 -67*6 -18.5 5. 7  -27.7 - 14.9 -19.9 - 1 1.0 36. I  *  (.0.0 66. 5 28. 7  1 .1  -M.J - I t -62,.8 - 75 - I ) . 'J -6.0 - 1 2 . '» 3 I. I  - 7.5 - 1 5 -5.8 -18.2 -52 -26.5 1 <J .  66.0 41.9 I 1.8  CO..  .J  4 7. 5 27.7  6 7.9  - 7 5 . (i  -11.3  128.6  - 14 -161.1 -17.1 II.) 10). 4 7 0.2 . 7 J. 1 00. 1 112.1 1 2 0 . 0 _W_A_ (.1.7 56..1 2d. I 1-..8  20. 7 11.3  20 ).4 I J o . •> "  -17.)  11  1 •> 1 •)  'l r. 1 L  ' 1.1  5.ri 2.7  I 5 7 •I 1 I  „  7.a 1 2 1 158.7 1 • 4 10.8 6 1 H.l 1 '52.2 I L3U.4 L 68.0 12 90.7 1 1'. 33.2 1 16 ?o.9 1 1 8 1 19.8 20 4 3.5 1 22 24 t M . 1 -8.2 t 26 1 28 2 3.9 ?. 1 .3 . 8 0 i /. 1 16.9 j 4 125. 6 f> 44.4 j 3 •18 . 4 1 l-l.') Ki J 170.2 1 2 J (•7.2 4 3.5 J 1(. 3 if; 2 J.-l, 70. 6 3 20 3 62 . 3 22 13.0 1 3 '•'.<• 1 4 . 5 c'H 3 lb.0 (J 19,6 5 5 2 0.9 2 6 4 61.1 5 I, 14.3 5 7 6.6 y ii -5.9 l 2 5.1 5 12 S - d.5 1,4 s 14.1 16 1 V. 16.2 6 -7.5 2U 2 1.7 5 16.9 -•4 14.3 26 f) ji; -li.H 15.0 . 2 7 0 • 90.4 7 2 4 1 l'i2. 1 12.4 1 I Vl.'J 1 tr I lu 42.7. ! 7 / . fl l? 14 7 0.0 1 7 16 - 7.2 2 5.0 T K! 4 7.3 I 2') U.7 1 22 -8.4 r 24 i 26 10. J i 80. d 0 2 45.7 •) 28.8 9 /, •) 44. 1  to  i  M  - 4 5.2 -157.7 -167.2 - 104. 3 -87 .8  7.4 Lt>. 2 4 4.1  13./ f.d.t, .'2 . 1 " 15.U -5. 7 12.6  29 . 8 94 . 7 1 .5 I I .0 - I <i . 6 - 1 7 it 2.9  -5.1 1 2 3. U i ; " i . 'i i l .n  t)  102. i mmmkmm  10./  IU± l >. r  1 I. i 40. J 33.1 fi 5 . 4 1 -1. 5 -8.7  14 45 U 6H 1 / -21  9 1 8 1 2 5  - 35 5 - 15 2 -26 0 -5(1 0 39 7 I 19 3 6i; 1 107 6 30 ') -21) 7 -53 0 1 -34 -6 j i -1 1 2 28 4 -226 1 -138 7 7 -131 38 8 92 4 1 12 5 187 > 75 0 4 f 0 -14 7 -78 6 -65 4 -24 -31 0 -22 b 2? 7 - 1 5 4 -55 I 7 2 6 1 I 1 -1 - 1 ' 7 2 - 12 3 17 P. - 10 4 10 7 17 4 -2 7 1 -0 2 163 5 96 0 i n ? fi 5 1 -135 . 7 -97 . i - 8 0 .tt -H \ 5 - 0 .2 20 . 1 15 . 8 49 , : i 1 2. 3 12 . 1 69 . J 42 . 9 2 4 .8 5(1 . 3  2 1 252 7 i 1 5 7  0.• '• t'j.3 19.7 ';6.2 M . 9 15.5 6 9 . f. 1 7.0 2 0.8 31.0 36.2 -7. 1 13.8  -74.4 -22. ' 11 . 9 . -4 0 . 2 - 1 J.6 7 . 7  -7.0 1 I. 2 5 . t-. -13.1 1 7.4 16? .(. 1 14 . f.  - I I 1 I . . 5 - 124 .7i 1 70. J - 1 7 1 . 7 -121.9 -66.1 ) 8.0 -24.0 r  70. 6  r  -17.3 - IU.4  ft 111.2 -11.0 - 2 / .it  •) 1.6 72.  r 12. / -26. 1  2 6.2 15. 1 15.6  26.7 ^8.1  1 1 1  2 4 6 0 I 10 1 12 I • 14 1 16 1 18 I I 22 24 1 1 26 I >n 1 2 4 1 1 '., J 8 \ 1 0 i 1 7 1 14 j t 6 1 1:1 3 20 3 22 1 ?<t 1 26 5 2 'j 4 5 6 -> 0 1Q 5 12 14 5 16 5 U 'i 20 22 j 24 5 7h 7 ?. 7 i, 7 (> 7 8 7 10 7 12 7 14 7 16 7 18 7 29 1 22 ^4 t 4 2 4 4 9 h [i ') 9 10 4 12 >J 14 9 16 9 1 8 ') 20 4 22 2 11 1 1 4 (j 1 I il 1 1 1 1 1 0 1 1 12 L4 1 1 1 1 Ifa' 1 I 18 1 1 29 1 1 2 1 3 /, 13 1 3 8 1 1 10 13 12 1 1 14 1 J 16 15 2 15 4 7j 15 15 8  L  y  0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2  57 . 3 , 28. 1 27. -31.0 -45.5  68. 3 72.1 9 1.5 105.8 112.2 112.4 107.5 115.0 103.0 110 . (1 68.2 -71.4 69.4 -68.2 6 1.1 - 6 1 .4 59. 7 -70.6 4 6.') -4 1 . « 14.7 -41.7 17.0 30.2 15. ) 1 3.4 2 ). *i 2 ). ) 121> . 4 14 L . 1 1 7 j . 1 192 . 6 112.2 1 M ,0 111.2 17.8.0 17. 1 36.2 L 1 .;] -2.3 5'».9 -51.6 1 0 ) . f. - 1 1 3 . 4 -41.4 4 3.6 6 ' . . *> - 7 2 .2 I 4 - 1 . -i -8.2 -.1.1 11 .') 1 J.O 10. 7 17.0 -5.9 l't.4 7 4.1 11.4 -<». 1 -20 . 1 1 h.rt - 1 8.7> 17.7 2'J.3 20.2 -11.7 -7.2 6.1 U. ) - 1.2 n.n - 14 . fl -o. i - 1 .C 24. 7 2 I ,f. . . 1 -14.1' 4 0 . 8 - 117 . 1 14 1.1 - 1 4 7 . 6 1 h i. - 1 70. c n 7.6 -9'j .4 -11.4 10.4 2 9.1 18.1 4 4.6 S5. 8 15.5 6 5. 5 6 1.) 79 . 6 61.4 M.2 -8. 1 17.. 2 2S.4 -18.? - 10.9 2 6.8 82. 1 -l'.8.2 72. J -82.4 62.8 -53.0 -34 . 3 4 2.6 - 7.4 -6.P 32.0 3d . i •>(,.'• 4^. 7 30 . 5 6 1.) M.2 26. 1 Lti.O 21.7 2 5.2 4 ' . '. 40. Z 64. 7 72 . ' . 22.4 11.9 -K..2 2 1.9 - 7.9 4 .d 2 3. ) -11.2 19.0 -19. 1 -17.4 \ 1.0 -24. 7 .! 7. 1 44.4 4 3.0 t. i . 6 70. 1 •^2.6 40 . 5 65.4 5il. 1 42.3 41 . ' . 2 0.8 -/..?. 12. t - 2 'I 7. ->ti. 0 - 5 * .'i -b.6 6 .i. 24 . 0 10.4 25.5 2 1.7 10. •> 26.2  19.3 123.4 44. 1 15.) -o.8 48.9 (.7.2  -54.2  Z 1 . 1 25.5 5i-0  -10.0 2.9  *6.0 70. 1 72. •) 1 7 .4 r  - 1 4 1.1 -56. 1 -74.8  2 J.2 -8.2 17.7  12.7 25.2  M. 7 71.2 8 9.r>  -10. -2.4 10.9 -16.6 11.0 -12.2  -9 . I 28.0 6 7.4 7 1.6 36. 1 63'.4  i-7.._L_ 42 . 1  74 . 7 27,1 -8. 1 11.4 12. I 2 7. 1  155 . 4 102. 7 -_3-0„  -6. 1 100.4  -70.  -33.1 -2.1 - 107 .H -54.9 -10.7 17.8  .  6 S . ;i 63 . 0 20. 7 - 2 1 .1 20 1 . 8 2 it ,H 110.) 121.7 84.8 1.1 ".. 5 10 85 . 7 8 7.2 12 82 . 6 - 1 0 1 . 4 14 44.5 - 1 0 9 . 4 16 87.5 - 70 . 7 1 0 .14.2 20 -86 . 1 22 16.2 12.7 24 -8.1 7. 1 -8.5 -9.4 25 35.7 45.8 28 8 4.6 70.6 2 4 J4.2 - H . 6 6 IB. 1 .1 7 . 9 7 7.5 1 75.0 30.5 - 3 7.0 10 - L 1 . 3 I 2 ' 14.1 -10.9 I 1.6 - 10.4 to. 4 16 •> 7 . 5 - 2 1 . 6 18 19. 7 - 1... 0 20 -7.7 -7.8 22 24 . 13.2 10. 7 4.6 26 iO.) 2 0 . 7 2 -2 2 22. t -25.2 2 4 6  fl  r.  -1.1 -U.n 16.1  Table  61  18 -  (Continued) 1 CONTINUED I  F  Obi  h= 4 i  u 4 4  '* 4 4  * u 6 6  5 / i i i i i > t 7 14 21 21 25 1 1 5 7  ;  4 6 Ii 6 6 6 ii  11 l t 15 i i l > 2 I 2 1 I 1 5 1 1 1 I 1 1 1 • 1 1 1 -i 2 1 t i  ri I) Ii  .1 .) ,)  ri i,  1o 1') UJ _io lu 1 u ID  7 •I 1 1 1 .i  2 5.7 16. 7 52.2 40.3 2 7. I 2ri. 7 22. / 2 4.7 15. 5 42.2 2 1 .4 --). 5 n . 4 2 >.5 3 1.5 I l.'J 2 1.5 2 ). ) 1?. 5 12. "I - 7. > ' lb.5 -8.4 -5.7 -7.1 2 7. J 11.2 3 7.7 11. n - 7 . . 20.4 12.8 "'> 1 . 1 i 7. 5 -8.7 : »i. 5 i  1/ 12 t4 14 1 4 14 1 I 1 1 1 1 1 1 1 1 I 1 1 3 3  1 1 •i 7 ) 1 1 1 I 1 5 1 7 19 V I 2 1 25 1 J  1  7 •; 11 1 3 15 1 7 1 1 21 2 J  i 1 1 1 1 1 J J 5  '  5  I J 6 7 0 1 1 1 J 1 7 1 ') 2 I  i i i  \ r  I s 5 7 ') 1 1 1 'i 1*. 1 7 1 "J 21 1 s  0  J  1 t1 i i  colc  24.2 -35.3 - 5 1.1 -14.7 -26.6 -2).'i -11.) 2 9.4 32 . 6 4 1.6 1 1.4 - C . 1 -8.8 - 1 0 . -) .'0. 7 62 . 1 1 1 . 7 12 . 0 2(1.2 - 1 9 . T - 15 . .1 -6.9 -20. 7 -8.0 5 .7 ,i. 7 20. 7 24 . ) 1'.. 7 24. 1  \\ j| ; j  ;.;  II i i  , i i L 1 L 1 I I 1 1 L  1  35.0 9 1.4 18 7 . - . 10 7 . 1 92.4 2 >. 1  .'2.5 - I . '"( - 4 j.4 -21.0 - 7 .'. -12.5 14.6  4 7.'. 110.7 8 2.1 L 6. 7 31.0 22.8 1 J . >'. 2 .. > 32.0 6 1.4 11.? 10. » 26. 3 40.6 48.1 30. ) -8. 1 -8 . 4 22.4 7 5.4 15 5 . 140. 1 110.2 19.6 (.4 . 7 ,' 0 . 0 48 . 2 74. 1 40. 8 14.2 1. 0 7 1.6  1 :>. 1 14.1 ' 1 - I ; v.2 -8.6 21 . 7 14. 5 61.6 60.0 1*1. 8 26.0 2 4 .'J  18.4 28 . 9 6 i> . ? 56.4 4 2 . f44.4 10.6  7 •i 1 | 0 2 4 f, i 10 1 2 14 16 18 20 22  o 2 4  1 1 1 S 1 J J  8 in 12 L4 16 la 20  \  |;  24 0 2  5  &  1 1.1. - 32 . 2 - l'-.f. -14.0 -24 . 5 o;5 7 .9 0.1 ('.. G ?0.2 -8.1 - 1-3. 1  - 78.6 -40.2 - 3<J . 6 -1). 1 -1.2 57.7 5...2 16.8  1 1 I 1 l'"> 1 ' I 1  1 i 1  •>  -2'>.0 >, . 4  -22.6 114.3 109. 1 1H..I H i .0 2 1.2 -62.6 - T. 7 . 2 - 124. 5 -•14 . 2 '».0 - 1 7.6 20.0 - 25.6 -40.4 - 16.2 -63.1 1.1 — J. 1 -28. 1 .1 7 . 6 44. 1 34 . 6 -4.5 0 . > -7.1 -21.6 -ri4.9 - 1 7 1.6 - 1 4 7.1 -12 5.1 -21. 1 7 1.0 6;.. 3 10li.4 7 1.1 lu. 6 -U. 7 2 1- 0  7  [  ; 5.''  -Il .6 2 7.0 -8. 1 ] L .'• 27 . 6 l 5 , '< -i . 5 -8.6 - 1 : . L> 1-1,1i (..(' 2 1." - (... 8  15 17 19  t [  1 O.D  -8.4 1 1 14 I i 5 7 9 11 1 ) 1 4 1 j ; 1  10 to 12 1 2 1? 1 2 12  9 9 9  F  ; 7 7  j 7 7  Ul 12 14 16 18 2.) 22 24 0 .. 2 4 6 6 to 1," 14 16 18 >0 22  -98. 7 -47.2 -12. i 29.8 30.8 8 3 .It 100.6 3 7.6 22.0 -?4.6 -17.3 -4->.fc -25.4 9.4 23.2 -11.2 - 7.2 -8. 1  104.0 56.2 17.9 2 8.0 3(i.4 91.5 46.0 39. 1 25. 1 5 6.4 2 3.2 -8.4 2? . 1 -8.6 14. 1 •)).'. 51.1 68. 7 11 . •'» 6 J .4 76. 2 16. 4 4 1. •• ' 16 . > 45. 7 24, 1 66.4 2 4.6 2 8.4 19 1 . 5 1 4 ) .9 4,,. 7 14.6 72.U 12 1.6 12 2 . 7 4 0. 6 16 . 4 15.7 2o. 7 7o.O - 6 .4 5 1.9 25. 7 1 7.4 25.1 18.8 16.8 2 i. i 2 9.7 20. 1 15. / - tl . ii 10 7 . ) 127.t 42.5 1 7,2  11 J . 5 (i'i . '. 4 1.0 16.3 -4 9 .u -91.4 - 10 7 . 0 - 4 'i . 6 It . 1 - U; . 2 . 1^.7 '6 7 . 6 20. 3 1;).4 24'i .8 17.8. 4 62 .7 - 1 h . 7 -lUj .6 - 1 is .9 - 1 4 1 .2 - 105 . 4 -4') . 4 17.4 . 15.4 6 1 .4 76.1. -10.1 52.7 - t I .7 -11.4 2 0 .'2 - 50 . 2 4.0 II. 1 -28. 5 -9.4 10.2 16.0 10 . 4 -122.4 -139.4. - - 18.8 1 1. 1  107.. / 5 0 . •* J6. 1 62.'. -8.2  I Id . 8 7 7.0 o 1.4 46.(1 I .0 - 14 . 5 5 8.1 -65.-1 11 i . . ' - 1 0 9 . . f7 . t 44.8 2;.d • '> 1 . 5 70. 1 17.8 64 . 1 68. 7 8 1.8 84.6 14. 1 31.8 2 7.7 lo . 1 6.4. -3. i 19. ) - ; ' i . 7 16.2 23.0 18. 1 12.4 i l . 5 11.0 16.. - I 9.8 26.8 - ? 3.6 30. 1 -23.6 2 6.;^ - I 7.0 -6.6 -4.9 28.0 -24.4 117.5 M1.7 44.1 54 44 . 3 ia.6 IC.7 15.7 16.0 -50. 6 -46.4 1 / .•„ 18.4 -56. 1  1 . 1 5 5 -i 5  5 5  7 7 7 7 7 7 7 t I I 9 4 , 9 "7 4 ) 9 4 1 1 1 1 I 1 1 1 1 \ 1 1 I t t J 1 1 I 1 1 1 I 1 1 t \ 1 1 1 3 i 1 1 3 3 3 3 J 5 b 5 5  I 7 19 21 1 > 5 7 9 1 t 11 15 1 7 I 9 21 I 1 i . 7 1 1 1 1 1 1 5 1 7 I J 1 1 8 7 •) I 1 1 1 I 5 1 7 1  '. 7 •J ! 1 1 1 1 t 2 7. r. 1 0 i? 16 18 20 22 2 6 tl 10 1? 1 4 1 6 ; L  20 22 2  (]  10 1 2  r  )  i )  1 1  || I 1 1 1  I I | 1  || 1 1  || i 1 I  J ; i  J  I 1  -. 4 ., to U l'i 16 18 20 0 2 4 8 10 12 1 4 16 0 2 2 6 8 10 12  1 1 5 7 11 1 1 L6 17 19 21 2 1 1 1 5 7 7 1 1 11 15  Vi.i  h=5  114.7 1 10. 1 21.7 2 0 . •> - 2 9 . 1 -8ft. / 7 3.0 Ii. 1 - 1 1 6 . 1 -60.0 58.9 -81.5 )2.7 -14.7 2 7.8 56 . 1 6 2.5 i.'.. 1 30.2 4 7. 7 4 7.1 40. 5 --.4. 1 18.2 -11.6 -2 1.0 11.2 - 1.4 24.n 30. 1 57.6 4 J. i L4.2 11.8 17.1 41.8 »1.5 82 96 .. 64  5 6 S 7 7 7 7 f 7 7 7 7 4  16 18 20 2 (, ti_ 10 12 16 18  4 '} 6 9 8 •) t o 12 14 16 i I 2 1 I 6 i i 8 11 1 0 11 12 11 11 2 2 0 0 0 0 0 n 0 0  ?  u 1 0 12 14 16 18 20 2? 2  2 2 < 2 2 2  6 8 10 12 14 16 i n 20  2 2  21.2 7.5 2 . 4 45.8 -39 .0. t, 14.6 -9.2 94. 7 - 1 0 2 . 1 4 1 14.6 - 1 5 4 . 0 <v (. 6.4 15.0 50.5 4 4 7. 7 69. 8 1, 78.•> 4 86.8 101. 1 79.2 80.5 4 15.0 16. 1 4 20.6 23.0 4 - 1 9.8 22. 1 6' -51 . 0 46.8 6 17. 9 -61.2 6 4 1.4 -46.8 6 12.1 6. 1 6 24 . 1 18.d 6 12.6 14.4 6. 4 9.9 48.2 17.4 27.1 6 4 7.4 16. 6 6 15.8 6 .4 8 -34.8 1.0 8 106.4 j 8 8.6 14.4 I I .4 26.6 2 -: • 4 H -4 1 18.0 d - 52 . 4 2 7.) 8 M •<ij. 7 - 3 5 . 4 M .4 -51.1 10 * J . 1 -•'>>.'• . 10 20.1 10 '18. 5 .U> . 1 10 7 3. l i.-),2 10 11.1 [(>.'> IC -20. 7 2 7.2 10 .19 .O - IL. 3 43 .6 - 4 8 . <12 - 44 . 6 32. ( 12 - i 2 . 1 '4.2 12 L 8.3 17.4 2 4 7.7 - 6 0 .6 2 - f 1 . 7 • (.4.8 2 -76. 7 2 - 4 * . .1! 18. 3 2 -20. / 2 -7.4 7.8 2 3 8.2 4 6.6 2 2 5.3 8.6 2 2 7.2 21.9 2 46. 7 4 6.7. 2 2 4.0 .'1.2 2 8 6 . 0 - 1 0 1.1 4 4 li.O. 8 - 1 1 6 . 4 >8 . 1 - 1 2 2 . 4 4 4 -48.4 09. 5 i, '.7.8 - . 1 .2 4 22. 1 - 1 G . 1. 64.7. 71.2 4 e8.4 4 84. ) 62.4 4 53.9 '•5.4 6 1.9 -6.7 17.2 4 - ( . V 6 15.) 2 6.4 6 - 14.(, 2 1.4 7. - 2 1.4 2 9. J 6 -27.5 29. 7 6 20.1 17.0 (, i c o 6 -4 . 1 6 6 1.4 l 6.0 f. 61.4 '"• 7 . 1 ti 4 4.1 4 .. y P 104 . ' i 47.2 ;t 0 44 . 6 4 1.1 8 2 1.0 -0.8  u  22' ' 2 4 6 8 to 12 14 16 IB 20 22 2 4. 6 8 10 12 14 I, ) 18 20 2 4 3 10 12 14 16 18 2 4 6 B 10 12 14 1  I ij a t i 6 7 9 I 1 1 1 I 5 I 7 I 4 21 2 3 t 1  (  r  1  4 0.1 7i . 1 89.4 39. 7 52.4 6 3.4 74 . 1 2 7.5 -8.4 49,5 10.7 '.i.2 18.8 24 . 7 2 1. 7 :!6.6 .:o.o 16. 1 17.6  -37.2  1^.0 14.2 l'i.2 17.1 4 9.7 M.7 1'-. 1 4 7.1 ii. 7 10. 1 22. 1 15.5 18. 1 11.2 24.7 21.1 18.1 •.2.1 22.0 26 . 2 I 7.6  -1.6 - 1.0 16.6 11.7 - 4 1.2 34 . 9 - 34 . ' , -47.3 19. 1 2 .0 M.I -1.1 -1.7 - 1.2 2 0.4 -0.4 -11.2 !'. . 1 - 12.4 - 1 2 .4 0.2  -55.2 60.". 5 1.1 6 3.2 76.1 15.0 -6.1 -4 7 .0 -11.2 t 7. 1 - t 7.6 - 1 .1 .rt 15. ; -57. 4 - 6 - , . •>  7 9 1 1 1 1 1 5 17 1 7 2 I • 1 1 7 9 1 1 1 1 16 1 7 14 1. 3 f. 7 <; 11 1 1 15 1 7 1 1  H o 8 10 to 10 10 10 10 10 10 1 2 12 1 2 12 1 2  7 4 1 t 1 1 1 5 t 1 5 7 '»  0  2  -9.5 17.8 -24.3 I 7.2 29.1 - 11.4 2 1.0 -21.8 1 7. 7 - n . 4 - 7.4 -2.1 7 . 1 20.0 21.8 18.7 14.9 -2.0 2 i.5 5.3 15.9 -4,8 -8.8 - 7.9 39.5 19.4 32. 7 -2J.5 11. 1 -2 8.6 1.6 19.8 16.0 6.9 20.6 -21.1 23.6 -24.2 1 1.4 ?9.R 13.5 27.9 14.1 -7.1 1 7.4 -18.6 31.2 15 . 0 20. T 17.5 18.2 16. 7 2 1.5 -18.2 19.8 17.4 22.6 -16.1 2 9.4 -19.9 11.8 -30 .8 40.6 19.0 -6 . 7 -5.2 1 7.2 -8 . 1 -8.4 11.2 17.8 -7.5 2 2.1 12.0 • 1 J.^ -4.0 -14.) 19. 6 -8. 7 0. 1 -8.8 '•.T2 14.6 14.2 -6.4 2 1.6 17.7 17.1 21.1 2 2.4 10.7 i5 .6 26.1 - j.8 2 9.0 16. 1 -7.1 17.7 14.1 14.3 21.6 ••1.0 12. 1  14 . h -14.1 ? .6 -16.4 -9.4 15.0 - 1.4 2. 1 -24. ) -14.7 19.4 •) . 1 15 .<) -41.T 1.6 - 1.0 -14.1 1 . i -11.7 26 . ' . 26.2  24. 7 -8.7 19.1 26. 3 .-9.1 ,4.1 2 0.0 2 3.4 >. (.. 4 «."fi . n 13.5 ?6. 5 10. 9 l 5 .v 7 1.5 28. t 14.:i 14.9 '3.1 31 . 4 16.1 -6 . 1 lo.;; .1. 7 16.1 15.6 26. 8 16.1 -8.8  - 2 1.6 - 1.4 -1.8 - 26 .8 29.6 17.1 - 1 1.4 7.2 - 1 i.4 J .6 8. 1 -26. 7 It . 2 9.6 -2 2 . 7 l6.i: 12.6 - 4 . ,• -28.;, - 10. 1 -11. t 1 . •• -23.2 16.', -0.(. -5.7 16.2 6.6  1 6. 9 I 3.4 1'. .11 -i.it  7.5 6. 1 -12.7 0.8  l  25.4 28-2  H.J 16.4 19.1 7.9 -4.2 14.3 2 2.6  . IB.i 27.6 !•>. 7 19.8  0 0 O 0 0 0 I) 2 2 2 2 2 2 2 2 2 ..  24 . 6  „ :i 10 12 14 16 18 0 2 4 6  22.8 25 . 4 17.4 15. 1 1 7. , 22.8 14.0 18.6 2 0.C 17.5 .12. i 22.1 16.8 . ' 0 . '. 19.1 ' 1 -2. 1  rt  10 12 14 16 1 L! 0  (  - iv. - 1 7 . •. -31.2 - 12. S - l'i. 1 8 11.6' 2; . 1 4. \ - 2 1 .6 - 1 6. 1 I.H -17.) -2.6 —U..; - I I .4  — — _  5 5 5 6 I 7 7 7 7 7 7 1 4 ') 4 » 1 1  I 1 1 1 1 1 I  19.9  - l t . 1  1 1 J  ie 0 2 4 6 8 10 12 14 16 t(3 0 2 6 8 10 12 14  u02» 4 6 8 10 12 14 0 2 4 6 8 to 0  i ( 6 7 ) 1 1 1 1 t 1 6 7  -4. 1 4 1.1 101 . 1 - 1 2 6 . 5 45.4 - 4 7.2 -26.5 .31.1 29.7 -31.6 4 i .o 46.6 54 . ? 7.8 72 . 1 81.4 5 / .5 6 1.7 1 '.4 11.6 1 >. » 4.6 24.0 - 2 7.2 7 0.6 12 . 0 2). 1 -20.6 10. 4 -15.2 4 I .0 42. 1 18.6 - 1.4 I >.o 18.0 10. 6 17.5 12.4 -10.7 6 1.1 4 9.1 1 I. 1 42.1 14.7 3(1.2 11.) 2 7.6 12. 1 - 10. 1 4J. 1 -45. 3 -_6_L»A 66.4 -6'1. 8 8 2.2 66. 1 3'3.4 30.0 3 1.6 26. 1 1 7.fi 6. o 36.8 -11.7 12-6 - 54.6 U .2 -2.1  h.l.h  h=7 1 ). 9 3 9. ) \ •>. : 22.2  - 1 t.8 -5. 1 22 . . 17.1  u .2 1 >.' 1 1 2 1.7 21.2  -1.2 7 .4  -t.l 1 5 29. I 28.6  -i 4 7 7 1 I 1 1 _ 1 1  22. 7 31.2 18.1  66. 4 53.0 11.6  -61.7 -S4. 1 - 75.5 -52 .8 -15. I 21.1 51.H 50.3 17.2 1.0  1 1 .0 8.4 1 . 3 - !o.9 -1.5.6 17.1 I 16.8  12  1 1. i  3 1 3 t 1 6 5  7 9 __1 1 5  6 n 1 0  24. / 4 1.1 19.0 2 1.1  2 * 19  7 7  2 2 2 2 2  2 6 8 Ul 12 2 4 6 t< 10 12  6 4 4  W. -20.1 - '. 6 . 5 1 >.Jill.0 -0.4  10 1 2  <-!  0 0 0 0 0 0  jlW '"'/.:> 4 0 . •! .2 5. 1 -b-9 18.6 2 4 . 1V 1 . t 64 . 0 2 . 7 li-.O 16.2  ? 4  4  id..; no. 3 26. 1  11  Ut  16. )  T/'') U. 1 2 0.1 16. 1 lit. 4  .'1.7 2li . 7 1 t. 1 70. 8 27..5 2 1.4 16.', In . 1 2i..2 I 6.0 18.2 17.'. 2 7.1 ••4,2 16.0 16.1  1 7 .9 !2.6 50 . 6 11.2 - 1 i ,'• w'<)G.4 19.4  <. 7 . 4 Li.il -0.4 0.8 6 .5  -0.2 -4.4 -'.1.2 -2-) . 1 .4 - 1 6 .'I - 1 9... - :••. 4 -  ' .1)  -7.1 -4... 7 -Jtl, t 1'.. 7 . 1 1-- . 2 4'.. 1 -1.9 U-.6  O  h =6 .'7.4  i 3 3 J 3 3 1 I 3 j 5 • > 5 i  37.1 ; i.4 16. I 16.4 26.0 14. 5  ±,U_ 2 7.6 -5.4 1.2 0 . 1 -20.2 - S f .11 -42.7  6  14.0 6 j .0 12.8  _1.6.._2_  I ! 5 7 4 1 1 I 1  40.8 ln.0 I ) . 1 16.7  - 4n . 5 - 16 . 0 - I >. 2 -'•. 1  1  .'7.2 20,4 1 '' . 5 2'- . 2 4 5.6  6  h  2 2  2 2  7  14.0 3fl-9  25.7 28.2  1 1 I  14. 1  2 6.0 -17.4 17.4 -C.J -22. 1 '•<• . 6 ,6.0  M ' 1 _6__ 6  1 - •1 9  62 The  f i n a l p o s i t i o n a l and  numbering  ( F i g . 7) b e i n g  f o r convenience i n the c r y s t a l a n a l y s i s .  p o s s i b l e t o d i s t i n g u i s h two and N(13)  The  from chemical  and m e c h a n i s t i c  bond d i s t a n c e s and v a l e n c y  angles,  n i f i c a n t i n t e r m o l e c u l a r d i s t a n c e s are summarized i n Table  R e s u l t s and  The  19,  the atom  I t was  not  o f the n i t r o g e n atoms from the carbons, and  have been a s s i g n e d  d i s c u s s i o n below).  thermal parameters are g i v e n i n T a b l e  N(12)  considerations and  the more s i g -  20.  Discussion  f i n a l s t e p i n the a n a l y s i s i n v o l v e d the assignment o f the  nitrogen  atoms, as i t d i d not prove p o s s i b l e t o d i s t i n g u i s h them on the b a s i s o f electron-density distribution  (see  ( F i g . 7) or o f bond d i s t a n c e s and  angles  the (Table  N ( l ) i s r e a d i l y a s s i g n e d on the b a s i s o f the p o s i t i o n o f the methyl group. method o f s y n t h e s i s o f the compound atoms  (12)  and  (13) o r  d e s i g n a t i o n of N(12) pieces of evidence, mechanistic,  (7) and  and N(13) one  There i s no d i r e c t X-ray evidence  as n i t r o g e n s , but t h e r e are t h r e e  c r y s t a l l o g r a p h i c , the second c h e m i c a l , are f a i r l y  conclusive.  o f c r y s t a l l i z a t i o n i s c l o s e t o N(12); the N(12)  f o r the  independent  and  Firstly,  the  third  the methanol  ... 0 d i s t a n c e i s 3.56A, too  l o n g f o r a hydrogen bond, but the presence o f the methanol molecule i n t h i s o f the c e l l does suggest t h a t N(12) monomethiodide i s o b t a i n e d , appears t o be  o n l y one  might be n i t r o g e n .  positions.  I f atom  s t r u c t u r e I I , s i n c e N(12) (18) was  secondary n i t r o g e n was  acetamide, benzamide, 4-bromobenzamide and Finally,  a p l a u s i b l e mechanism f o r the  molecule and  N(13)  a secondary n i t r o g e n i t  would be r e a c t i v e s i n c e i t i s i n a r e l a t i v e l y unhindered p o s i t i o n . dence f o r a h i n d e r e d  region  Secondly, s i n c e only a  o f the n i t r o g e n atoms i n the p a r e n t  r e a c t i v e ; t h i s i s i n accord with  are i n s t e r i c a l l y h i n d e r e d  The  l i m i t s the c h o i c e o f n i t r o g e n p o s i t i o n s to  31  (18) .  which taken t o g e t h e r  20).  Further  evi-  the f a i l u r e o f attempts to prepare 3,5-dinitrobenzamide d e r i v a t i v e s .  formation  of the compound can be  postu-  Table  Positional  19  ( f r a c t i o n a l ) and t h e r m a l (A ) parameters f o r the atoms o f 2 0 3 3 3 ' C ^ " 2  3  f o r C, N; 0.08A f o r 0; a(B) = 0.09A  N (1) C (2) C (3) C (4) C (5) C (6) C (7) C (8) C (9) C(10) C(ll) N(12) N(13) C(14) C(15) C('16) C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) 0(26) C(27) 1(25) Anisotropic:  H  N  1  a r e a ( x ) = a ( y ) = a ( z ) = 0.003A f o r I " , 0.03 - 0.06A  xCH OH. (Standard d e v i a t i o n s  Atom  C  f o r I " , 0.7 - 1.2A  2  X  Y  0.380 0.325 0.308 0.284 0.162 0.331 0.032 0.341 0.119 0.373 0.257 0.325 0.088 0.293 -0.037 0.340 -0.107 0.305 -0.178 0.227 -0.061 0.176 0.016 0.214 0.202 0.425 0.019 0.420 -0.095 0.474 -0.035 0.560 0.160 0.561 0.254 0.499 0.234 0.411 0.421 0.416 0.514 0.357 0.452 0.401 0.450 0.272 0.519 0.275 -0.228 0.111 not l o c a t e d 0.1983 0.0964 exp - 10  h  [243h  2  f o r C, N, and 1.7A  2  z  B  0.069 0.108 0.125 0.091 0.049 0.035 0.165 0.184 0.224 0.214 0.194 0.156 0.183 0.196 0.176 0.188 0.179 0.199 0.139 0.129 0.154 0.080 0.141 0.048 0.080  3.6 3.2 2.8 2.6 5.3 5.7 2.4 1.4 4.5 3.0 3.0 6.5 3.6 4.0 4.6 4.5 3.5 4.4 3.0 4.2 3.7 4.4 3.0 6.3 7.2  0.0429  5.6*  - lOhk - 2hH + 4 3 k  2  + Ik I + 1 5 £ ] 2  2  f o r 0).  F i g . 7. (a) S e c t i o n s o f the t h r e e - d i m e n s i o n a l e l e c t r o n - d e n s i t y d i s t r i b u t i o n . (Contours a t 2,3,4,... e.A~ a t C,N,0 and 1,10,20,... e . A at I ) (b) Drawing o f the molecule. 3  - 3  -  cr.  Table  Bond d i s t a n c e s , v a l e n c y  20  angles,  and i n t e r m o l e c u l a r  d i s t a n c e s i n the methiodide d e r i v a t i v e o f C .H- N-, or  0  C-C = 1.43 - 1.65,  mean  1.53A  L  a t C = 105 - 117,  mean  110<  C-N = 1.43 - 1.57,  mean  1.51A  L  a t N = 100 - 116,  mean  110  Shortest intermolecular distances: N  ... O = 3.56A  C ... N = 3.82A  C  C = 3.68A  C ... I~= 3.85A  C ... O = 3.69A  c  66  lated,  b u t no r o u t e seems p o s s i b l e t o the compound w i t h n i t r o g e n a t p o s i t i o n s  (7) and (18). We are  t h e r e f o r e c o n f i d e n t t h a t the n i t r o g e n s have been c o r r e c t l y  p o s i t i o n e d , and t h a t the methiodide molecule  has the s t r u c t u r e shown i n F i g . 7; the p a r e n t  i s ( I I ) , t o g e t h e r w i t h the o p t i c a l enantiomorph, the compound b e i n g a  racemate. The m o l e c u l e has an i n t e r e s t i n g and unusual s t r u c t u r e .  Ring D (atoms N ( l ) ,  C ( 2 ) , C ( 3 ) , C ( 1 9 ) , C ( 2 0 ) , C(22), see F i g . 7 and ( I I ) ) has a boat conformation as a r e s u l t o f the two-atom, C(21) and C ( 2 3 ) , b r i d g e , so t h a t t h i s p a r t o f the molecule  c o n s i s t s of three boat-rings.  r i n g s , A, C, and E, have c h a i r  Ring B i s a l s o a boat, and the t h r e e o t h e r  conformations.  The mean bond d i s t a n c e s and v a l e n c y angles  (Table 20) are normal, and a l l  the i n t e r m o l e c u l a r d i s t a n c e s c o r r e s p o n d t o van d e r Waals i n t e r a c t i o n s . p a c k i n g o f the molecules  i n the c r y s t a l i s shown i n F i g . 8.  The  BART  III  STRUCTURE DETERMINATION  OF  ACETYLTRIPHENYLSILANE  69  A.  INTRODUCTION  An X-ray c r y s t a l s t r u c t u r e a n a l y s i s  3 2  of acetyltriphenylgermane,  Ph^Ge'CO-CH^. has r e v e a l e d i n t e r e s t i n g d i f f e r e n c e s between Ge-C bond l e n g t h s , Ge-C  ( p h e n y l )  b e i n g 1.945A (a = 0.008A) and G e - C  S i n c e the Ge-C bond d i s t a n c e i n CH GeH 3  acetyltriphenylgermane thening  3  i s 1.945A,  i s apparently longer  = 2.011A (a = 0.015A).  ( a c e t y l )  33  the G e - C (  a c e t  yi)  bond i n  (by 4a) than a s i n g l e bond. T h i s l e n g -  had been e x p l a i n e d by a c o n t r i b u t i o n from a resonance s t r u c t u r e i n  which t h e r e i s no f o r m a l bond between germanium and the c a r b o n y l carbon  atom.  Comparison o f these bond l e n g t h measurements w i t h the r e s u l t s o f s p e c t r a l and b a s i c i t y s t u d i e s on the c t - s i l y l and a-germyl ketones * 31  t i v i t y values? similar,  8  suggests  3 7  and w i t h e l e c t r o n e g a -  t h a t the analogous s i l i c o n compound should e x h i b i t a  and p o s s i b l y s l i g h t l y g r e a t e r l e n g t h e n i n g o f the S i - C (  The s t r u c t u r e o f a c e t y l t r i p h e n y l s i l a n e was determined l e n g t h e n i n g o f the S i - C (  a c e t  yT)  bond.  a c e  tyi)  bond.  t o i n v e s t i g a t e the  70 B. THE  STRUCTURE OF ACETYLTRIPHENYLSILANE  Experimental  C r y s t a l s o f a c e t y l t r i p h e n y l s i l a n e from p e t r o l e u m e t h e r are c o l o u r l e s s plates with  (010) developed, s m a l l e r (100) and  (001), and e l o n g a t e d a l o n g  U n i t - c e l l and space group d a t a were determined from r o t a t i o n , and p r e c e s s i o n f i l m s , and on the G. E.  C r y s t a l Data:  c.  Weissenberg  Spectrogoniometer.  (A, Cu-Ka = 1.5418A; X, Mo-Ka = 0.7107A). 39  Acetyltriphenylsilane, M o n o c l i n i c , a = 7.53 c = 7.90 U  D  m  = 1.182  Z = 4, D  (CgH ) Si-CO-CH^- M, 5  3  ± 0.03A, b = 28.7  ±  ± 0.03A; B = 9 6 ° 5 0  1  1695A ; F Q Q Q )  =  =  3  {  g. cm.  3  302.4; m.p.,  126-127°.  0.1A, ±10'  640.  ( f l o t a t i o n i n aqueous K l ) .  = 1.185 g. cmT . 3  x  Absorption c o e f f i c i e n t s f o r X-rays: V ( c - K a ) u  P(Mo-Ka)= ! -  4  =  H-  cmT ,  8  1  cm? . 1  Absent r e f l e x i o n s : hOi when I i s odd, OkO when k i s odd.  Space group: P 2 / c  (c| ).  1  h  The i n t e n s i t i e s o f the r e f l e x i o n s were measured on a G e n e r a l E l e c t r i c XRD Automatic Spectrogoniometer, w i t h a s c i n t i l l a t i o n c o u n t e r , Mo-K f i l t e r and p u l s e - h e i g h t a n a l y z e r ) , and a 8 - 28 scan. The c o r r e c t e d f o r background,  a  radiation  6  (Zr  i n t e n s i t i e s were  taken a t the b e g i n n i n g and end o f each scan. Of  1837  r e f l e x i o n s w i t h 2 0 ( _ ) < . 42.3° ( c o r r e s p o n d i n g t o a minimum i n t e r p l a n a r s p a c i n g M o  d = 0.98A), 1699  K a  (91%) had an i n t e n s i t y above background.  r e f l e x i o n s were i n c l u d e d i n the s t r u c t u r e a n a l y s i s w i t h  The 168  | F | =0.6 q  The c r y s t a l used f o r r e c o r d i n g the i n t e n s i t i e s had dimensions p a r a l l e l t o a, b and c,  and was  0.3  unobserved F(threshold)• x 0.3  x 0.5  mounted w i t h c* p a r a l l e l t o the $ a x i s o f the  mm.,  71  goniostat. (1.4  S i n c e the a b s o r p t i o n c o e f f i c i e n t f o r Mo-Ka r a d i a t i o n i s v e r y low  c m . ) , no a b s o r p t i o n c o r r e c t i o n was made. L o r e n t z and p o l a r i z a t i o n 1  were a p p l i e d  and the s t r u c t u r e  amplitudes were  Structure  The  Analysis  and a l l the carbon and oxygen atoms were l o c a t e d  successive three-dimensional electron-density was d i s t i n g u i s h a b l e Structure  maps.  from two  The oxygen atom  from the methyl carbon by b o t h peak h e i g h t and bond  f a c t o r s were c a l c u l a t e d w i t h a l l 22 atoms, and s c a t t e r i n g  length.  factors of  T a b l e s ? w i t h B = 4.OA ; R was 0.21.  International The  derived.  p o s i t i o n o f the s i l i c o n atom was determined from the t h r e e - d i m e n s i o n a l  Patterson function,  the  factors  2  p o s i t i o n a l and i s o t r o p i c t h e r m a l parameters and an o v e r a l l s c a l e  were r e f i n e d by b l o c k - d i a g o n a l l e a s t - s q u a r e s methods. The f u n c t i o n  factor  minimized  was E w ( J F | - | F | ) , w i t h /w = 1 f o r the unobserved r e f l e x i o n s , /w = 1 when 2  Q  |F | 0  c  <. 20 and /w = 2 0 / | F | when | F | > 20. Four c y c l e s o  0  of least-squares r e f i n e -  ment reduced R t o 0.16. A comparison o f the measured and c a l c u l a t e d factors  showed t h a t  twenty 0k£ r e f l e x i o n s had s e r i o u s  disagreement. A l l these  r e f l e x i o n s had h i g h backgrounds, due t o p r o x i m i t y t o n e i g h b o u r i n g r e s u l t i n g from the l o n g b - a x i s , four  reflexions,  and they were r e e s t i m a t e d from f i l m s . Another  l e a s t - s q u a r e s c y c l e s w i t h i s o t r o p i c temperature f a c t o r f o r a l l the atoms  reduced R t o 0.13. Two f u r t h e r and  structure  cycles with anisotropic  temperature f a c t o r s  forSi,  f o r the oxygen and methyl carbon atoms(both o f which had h i g h i s o t r o p i c  thermal parameters) reduced R t o 0.12. At  t h i s stage an ( F - F ) s y n t h e s i s Q  c  revealed  the p o s i t i o n s  p h e n y l hydrogen atoms, b u t the methyl hydrogens c o u l d  n o t be l o c a t e d .  ment o f 37 atoms w i t h /w = 0.35 f o r the unobserved r e f l e x i o n s Measured and c a l c u l a t e d  structure  f a c t o r s are l i s t e d  of a l l fifteen Refine-  reduced R t o 0.10.  i n Table 21. The e l e c t r o n -  Table Measured and c a l c u l a t e d  structure  21  factors f o r acetyltriphenylsilane.  (Unobserved r e f l e x i o n s have |FO| = h k  Fo  -0.6F 33.8 10. 5 28.5 13.1  Fc  32.2 -10.3 -2-7.9  ( t h r e s h o l d )  20. 5 21. T 17.6  2.3 -60.5 -13.2 -18.5 14.6 20. B -22.5 -23.T -*0,7 -10. T -26.2 2.B *5.3 38.6 23.8 -21.B  10.7 -20.2 -17.7  *7. J -**.9 -18.2 19. S  11.7 10.1 2*. 3  17.8 34. 7 31.5  10.2 13. T I*. 3  15.6 0.6 19. a  -35.3 -30.2 10.7 10.6 31 . 0 *2.1 -26.0 -15.9 -6.6 16.2 21.T  -13.2 -13.6 -1.2 -B.S -42.5 8.7 , 32.8  -10.3 -2.2 -3.* 0.2 -18.5 16.6 15.5  20.6  -22.7  12.5 6.9 -2.2 12.1  14.0 10. I 20.3 27.8 6.2 *3.l  21.B  -S - H 21 { -42.8  -22.2 -16.2 22.2 -*.5  -15.5  )  Table 21 (Continued) CONTINUED <  n  I rO rC 7  -_-  — !  7  12.4 i.e 2.3 2.2 3.7  -12*0 3.6 0.2 0.3 -2.6  ' 7 1 7, '  -l.*0 4.1 -l.l io j 3.8  0.6 3.9 0.6 -10.3 3.8  9.9  9.8  8.1 7, ___>.C 7' " \.i  3.3 _2.l 6. 1  3.9 24.5 50.0 10.7 31.7  3.9 24.5 -49.0 9.8 -30.7  2 2  Till 8.5  -69.5 9.9  2 2  61.B 27.1  -57.4 25.5  -1 I -1 1 -1  22 24 24 26 26  3 3 3  19. 7 6.7 10.0 -1.1 3.8  -20.3 -7.7 10.0 -3.9 -2.1  -a's  2*0 3.7 7.4 16.3 -14.9  2 2 2 2 2  53*8 44.8 5.8 20.4  -54*4 41.6 3.3 -19.9 6.3  -2  2  -2 2 -2  * 6 b  13.7 32.8 37.0 42.1 25.8  17.1 32.1 -37.6 42.8 -23.0  I  1 1 1 I  -\  -0.8 l.l 6.9 8.5 5.7 " - 3 . 6 5.1 4.2 12.8 - 1 1 . 9 .  2 1 -2 1  4 4 4 4 4  2.7 11.0 8.2 11.0 8.3  3  4.6  -2  8  39*1  36.6  -2  \  4  -1*0  0.5  7*3 20.0 13.5  -6*3 23.4 14.3  -2 2 -2  10 12 12  4*8 5.3 3.7  5*7 7.7 3.0  -T 3  2  4 4 4  11.2 16.6 8.9  11 .0 -17.7  1 1 1 I I  15*7 7.3 6.9 3.0 "9.1  15.* 6 -5.6 B.9 5.3 -10.9"  2 2 2 2 2  -0.9 18.1 15.2 6.4 4.9  -o!9 -2T.7 -16.7 4.7 -5.9  -2 __ 2 -2 2 -2  14 16 16 18 18  4.5 18,7 25.0 7.1 16.0  -5.3 -18.2 23.1 7.9 16.9  ~\  4 4 4 4 4  11.9 12.0 5.1 5.9 -0.8  8*7 -11.9 13.0 6.1 -7.1 1.7  1 1 1 1 1  39*4 16.5 9.1 12.4 5.7  -39*0 -16.9 -8.5 12.0 4.6  2 2 2 2 2  6.4 35.8 25.5 4 3.7 14.7  -8.0 -38.4 -26.9 -4473 ' 14.5  - 2 20 - i . . 22.. . - 2 22 2 24 - 2 24  22.7 6.0 6.2 -1.0  -23.8 -6.7 -6.5 -6.0 -1.1  4 4 4 4 4  24.9 4.5 6.6 6.4 10.8  -25.3 5.2 5.9" 6,6 9.6  1)'.* 14*.4 -2.9 3.3 7.9 8.1... -2.3 2.0 11.3 - 1 1 . 1  -  2 2 2 2 2  5.2 8.0 14.5 8.3 21.7  4.3 8.8 -15.7 -8.6 20.6  3 -3  16.3 7.0 36.7 3. 1 B.5  -13.8 -7.5 37.8 3.2 -5.0  -  2 2 2 2 2  4.4 11.6 5.1  5*1 18.8 5.5 -6.9 14.3  3 - 33 -3 3  7.3 2.0 5.3 8.4 6.1  7.3 -2.7 6.3 9.4 7.2  -  2 2 2 2 2  -4.4 4.7 0.8 6.6 -10.0  3 -3 3 -3 3  12. B 2.1 22.2 3.9 6.0  2 "j -2  2 2  5 1 9  0 0 0  llll 13.1 4.9  3  0  -l.C  2.1  -'-  1.  L 3 5 7 9  0 0 .0 0 0  9*9 13.8 2J. 3 12.8 32.1  -3.4 -11.9 -23.1 -12.4 33.3  -\  >  3 0 5 0 7 . .0. 9 0 1 0  26.6 19.6 3JuS_ -1.0 17.S  -28.1 19.5 34,9 2.6 -17.5  I 3 3 7 9  0 0  22.7 12.3 16.5 2.9 39.9  22.6 -11.7 -16.3 2.0 40.3  -5  it  -23!9 9.7 6.7 -0.8 -22.6  -5  1<  0 0  24.6 10.0 4.0 2.6 23.5  -5  2!  3*2 -12.1 -9.B 8.3 -3.6  -6 ~6 -6  I ,  0 0  12.3 10.3 8.2 8.2  -6  !  ] , I 1.  1.7 6.2 14.5 14.6  11  I 1 I 1 1  ~i i'  1 1  3.3 8.7  -3  ?!  -1  r  1 1  -1.0 2.9  1.6 8.8 _ 5.3 _ -1.1 1.8  -i i',  1 1  4.1 18.4  3*6 18.5  "i ii -3  i'  -3  1 1  -j j; i'  -; j  11.0 13.3  -12.3 -12.5  1 1  36! 8 7.7  36.5 6.2  1 1  1.8 17.3  -2.9 -18.3  1 1 1 1 1 1 1 1 . ..1  16.9 16.1 -0.9 1.1 12.9 13.4 21.5 22.6 *0.9 - 3 9 . B 2.2 -3*.2 3.1 14.8 - 1 4 . 3 J.2.? . _  -  -  __ 19  -  -  2  22  1.8 3.0 3.9  1 .6 5.1 3.6  1 1 1 I 1  15*B 16.8 4.2 15.7 17.4  -15.3 -16.2 4.7  -  1 1 1  -0*8 7.0 19.8  2.2 6.4 -18.1  -\ 1  1  3*8  -5  1 I 1 I  10*3 5.2 23.4 4,4  -5  ''  -5  1  -\  \\  I'  -t ;  1 1 1 1  3.4 21.7 15.0 9.3  1 1 1 1 1  5*5 16.0 5.9 13.4 2.0  12.6 7.8 * -23.3  -  "e""": 8 3 10 3 10  23.6 13.2 8.2 12.0 21.3  2 2 2" 2 2  7.7 4.5 5.7 14.1 22.5  -7.0 -4.3 -5.6 -12.9 24.0  r5. 5 -5 5 -5  .12 . 14 14 16 16 3  ...17.8 8.9 2.4 5.2 -1.0  2 2 2 2 2  14.8 4.7 3.8 3.1 9.9  -13.1  -5 6 -6  20 2 2  -6  :  9*9 -5."l 20.3 14.9 -4.9 -6*5 -6.4 14.7 2.2  -6 7  1 1 1 1  8*5 7^1 24.1 -1.0  ^80 -6*7 29.4 0.2  -0.*5  -18*5  ~i '<  1  5.7  3*9  0 0 0  1 1  14.9 18.3 -0.8  -12.8 16.9 7.6  -7  I  0  1 1 2  2.6 -1.0 25.9  3.4 -0.2 -26.9  0  2  6.9  -3.4  -1.0 13.2'  o!o  2 2 2 2 2  48*5 -0.6 12.3 27.9 14.9  -53.1  0 2 0 2 0 ~2  0 0 0 0 0  27.6 100.1 129. 1  24.3 109.3 170.3  0 0 0  1 2  2 2 2  2.6 -3.3 -6.7 -0.9 5.4. _-0_.5_  9. 7  -9*.9  0  2  2  11.4  13.9  43.7 76.0 14.8 19.3 19.9  -40.7 -72.1 13.3 20.8 -17.2  2  48*2  -43*8  2 2 2  9.4 15.0 2.9  -10.2 13.1 1.9  2  9.9  9*0  2 2  20.6 39.2  -21.8 33.9  2 2  18*5 37.0  -16.6  2 2  4.7 5.6  I  14.4  -isle  4.8 74.9 9. 3  -5.1 -73.9 10.6  I  -! I -| | -1  :  2  6.7 9.3 9.0  . "3" -5 3 -5  'o'e -1.1 35.6 -44.7  I  18.0 23.6 7.1  10 10 12  -2*3 -26.8 4.9 9.7 24.5  -i!o -Kl 25. 1 31.C  1  4 4 4  B  4 -4 4  4 6  -0.8 24. T 5.5 11.2 24.2  o 0  1 -1  5*. 6 9.1 -10.9  4  -4 4  2 2 2 2 2  1 I  -1  4*3 7.7 5.5 4.2 3.4  -  i:i  -1  4 4 4 4 4  -3*6  4*7  -15*6  3*0 -3.2 -5.2 21.8 2.9  2.9 -0.8 3.7 19.6 3.6  22 2 2  1  -1.4 -21.3 19.0  9,0 4.3 -0.9 -6,6 -6.8  6.0 -0.9 2.4 5.5 6.9  -4 9 -3  1,  14*6  9.6 7.0 -1.0 5.8 8.0  4 4 4 4 4  2.7 -3.6 -16.*" 31.B -8.7  1  3.8 20.0 19.3  3.9 2B.5 2.8  2*9 2.3 15.7 32.3 8.3  -6  I  4 4 4 4 4  2 2 2 2 2  '4*6  1  20 20 22 22 24  14.1 -l.l -24.3 1.7 -8.3  -  20.0  3.6  -I  IB  23*8 -27.8 20.2  24*5  25.6  2 2 2  1.9 -0.9 18.0  -2.0 3.6 -15.4  Z  —  _  -  -  _ 0  -  -  -  2 2 2  19.1 5.2 3.4  2  4.2  2 2 2 ' 2  2.0 9.0 3.4  '  5.B  -3.1 -5.0 9.2  14  1  3  -l.C -I.O'  3.1 1.7 8.5 20.1 4,9 13.4 8.4  -8*9 • 20.5 -4.8 -11.5 B.l  25.2 15.5  -8.2 11.7 -22.5  2*1 4. 1 5.4 5.1  -3.4 4,7 4.4 -5.1  -1*0  -7  8  9.9  5.3 6.8 -11.B  *0  " 3  a 0  5  11.8  -O" 9"" 17. 1 23.4 41.8 -29.8  2 10.0 3__ _16.T 3 10.5  .14.1 13. 1  -1.0 5.4 20.5  3 3 3 3  3.9 7.4 38.3 23.6  6.1 -6.3 -34.1 22.2  1 -1 1  3  63*4  3 3  22*0 9.3 28.4  3  49.0  3 3  _30._?_  3  6.4  3*9 0.3 -21.5  l.B  -2.1  5.1 20.5 -o.a 13.B 20.2  -6.1 -20.2 -0.3 -12.9 -18.8  11 11 13  15.1 4.1  17.3 6.2 9.7  -59.6  "l -1  15 15  18*6 19.2  -20. 1 16.3  -24*7 -6.9 27.6  -I ~ 17 1 19 -I 19  15.1 -6.5 -10.4  13*5  46.6  -1  21  19.0 6.1 8.4 17.7 3.0  -31.2 4.0 6.0  -1 -I -2  23 23 I  13.7 2.9 20.0  -3.3  20.1  1  7  2  2 -2  !  2  _  2  I 3  J  ~i -3  '  1  '1 tf ; -  31  4.7 17*. 4 -23.5 -6.8  *  -12*9 -4.8 16. 9 " -13.3 -3.1 0.1  it  6 8  5 5 5 5 5 5 5 5  9.0 -l.l -l.C 6. 1 10.8  10.2 1.3 0.6 5.9 -10.4  S. 3 B. 7 16.2  8.7 5.2 -17.4 0.6 14.3  2  a 0 0 0  13 15 17 1 3 5 7 9 9 11 11 13  \l  \\  2.7 4.9  2.0 -0.0 -1.1  15 15 17 19 3 3 5  -16.9 -3.7 "2.2 4.9 -6.3 0.7  4  -l.C  5 5 3 3 3  16.7 7.5 6.0 8.9  15*4 -7.2 -5.6 4.1 -13.8  3 5 5 5 9  13.5 2.6 11.8 9.8 13.4  12.3 -2.7 •10.2 12.2 I 1.4  2.8  3 3 5  5.6 10.5 10.4  5  26. 1 B.9 IB.a  4*4 8.9 8.6 -25.B -9!? 19.8  10.1 27.2  -26.4  5  23.3  -23.5  5 9 3  14.7 B.6 6.1  14.9 -7.B -5.9  5_.S_ - - 5 . 8 _  5 5 5  5.6 2.6 14.9  -6.2  5 5 5  30.0 27. B 28.5  31 . 3 -27.5 -27.1  18.3  8.2  1 .1 ~ '2.6 5.2 8.2 -16.1  5 5 5 5  9.3 2.8 20.4 10.7  -11.3 -0.1 18.1  5  22.4  "to -24.2  "5 5 9  7.6 7.1 8.4  -10.B 8.4 7.6  5  1.2  - 3.9  8.7 12.0 10.5  -T. 7  5 3  " 5  -T.B  -9.9  11.3  13 19 15  -2  1 I  -1 !  ~6" 6 6 6  10.7  6 6  10.1 6.6 5.6  I I  2.3  t  5.3  I  3.4 24.8 1.7 12.1  6 6 6  10. 3 7.9 10. 1 5.9  -10.2 7.7 - 12.4 -5.2  17.0 *2*5 3.7 21.2 2.8 4.2 -1.0 19.9  7.1 16.9 16.1 -6.1 -21.8  -1.3 -2.5 -0.1 20.5  -i!o 3.5 2.1 12.2 2."  0.5 -3.1 1.1 11.7 5.*  - '|;^2.7  -10.0  9  6  13 13  6 6 6  -I, ~~l T~ ~~b 1 -4 1 6 1 6 5 6  J  3.2 25.3 -3.2 T.9 10.7  9.8 12.7 5.2 11.8  .i  -I;  -3.9 7.1  2.1 -1.0 5.9 14.7 3.1  5 7 I  .« -* ~-\  5.0 12.1  6 b 6 6  - j  fc  ~:  -7*2 3.6 10.3 8.6 -5.1  -8.8  6 6 6  6 6 6 6  ||  3.8  6 £  3~ 5  -3  17.2  I  -]  _j  -6.6 1.8  5_  1 3 5 7 9  .;  -5*7  .4  0 0 0 0 0  .}  V\  10*5 3.1 16.6 9.7 2.8 1.9  - I . O "  Io  -0.9 4.3 6.2 7.4 15.3  I  2  3.4 -6.1 5.1  5 5 9 5 5  J i  -6  1.7 5.5 -7.5  5  '  -2— f 2 1 2  6.8  6, 7 3.0  l\ _ .12 14  -2*7 28.1 -1.9  -4!s  5 5  4 4 4  5  =Jt_-?J  •*  5  16 18  -1 2.0 2.4 3.2 17.1  \< '  is 17 19  24 26  8  .5  |*  4 4 4 4 4  V  d 0 0  0 0  6  -*  5 5 5 5 5  6 6  -1  12*6 8.4 -4.7  5 " 7 7  -7  -4  8 10 10 12  11  -I  "15.3 10. 1 3.2  -1 ~"l -1  1  -4  6  9*7  5.9  8.3  H ; it-- •  4.0  29.4  6  7  35 . 9 2.8 -13.2  7  J. 7 7.7 35.0 -34.5 -i.<r 5.4 3.0 -2.2 5.9 8*6 9.9 -9*5 -6.1 \ .8 1.4 9.7 -9.2 0.0 2.C  9  [  11  5 5 5 " 5 5  20 2  22.1  "l  0  -37.4 10.6 9.0 13.0 -3.5  6  2.B  -12.6  -_\  -8*8  5 5 3 5  20.9  3.1 -7.9 -9.7 2.0  -10.5 6.0 0.4 -16.8  H  21.1  0.4  -1*0 8.3 6.7 -1.1  11.3  -1  2  -0.9  5 5 5 5  21.1 10.9 5.7 -1.0 16.2  ! 1  38*3 5.7 14.4  5  14 16 16  4  -1 1  5.0 8.2 10. J  8*0  l' -11  -6  ~1  12  4 4 4 4 4  4 ',  2  38.1 15.8 6.0 18.7 -0.9  ^ — 5 1  -1  2 2 2  3 3 3 3 3  -5  ^  14 16 2 4  3  ~-l' •-\~  -2.8 2.5 5.2  _ -6 -6 -7 -7  i  I  -4  "^4~i - 4 it  -0.9 4.7 4.7  1.0 -8.4 -1.8 4.2  12 14 16  1  16 18 20 22  -1.0  1 3  -4  0 0 0 0  -l.C"  23 25  ];  -0.*3 0.1 -3.6 12.9 -B.6  10  0 0  I  "i4 I  ic 12  -6  9.B  -3  . 16*7 . -10.1 -3.4 5.2  6 8 8  5*7 -2*3  i  0 0 0 a 0  7.4 -1.0 -0.9 16.6 8.4  4 4 4, 4 4  "i !  -3  1*7 0.8 -4.6 0.1 -3.7 0. 1  -6 6 -6  19. 6 8.5  0 0 0 0 0  IB  3 3  I  -1 1  20  2*6 3  **9 -1.0  " ~2 2 2  -  -23.0 -3.9 T\«~  2  2 2  3 1 -3 1  10.5 -2.) 20.4  . 2 2  0  1•  -3 -3  14 14 16 16  'I ,  10.9 -l.l 19.6 31.3 28.5  16 16 18 18 20  5  17.9 -1.7 14*1 12.3  1  8 10 10 12  -3  -2.2 -11.9 6.1 12.6 -10.4  4 4 4 4 4  4  1 " 4 " ' "*3*5 1 _ J * . J _ 2*8 0.8 1 -1.0  II  3 -3  6  e  I  -0.7 -10.3 -2.7 3.3 -6.0  4 -4 4 -4 4  \'l1,  1 1 1 1  2*. 4 -4*2 _J7_._5_ - 1 6 , 7 4,8 1.9  3  1  2  2.0 9.2 3.9 4.5 6.4  16.3  -fc6  !  -14.1 -3.4 5.0 4.0 -29.9  1  -11.3 8.8 1.2 -6.4 18.9  12*5 5.2 ' -9.7  7  4*5 14.3 -l.l 3.8 2.8 24.9  2 2 4  10.2 9.7 -0.9 6.4 19.7  *'\ 6.4 9.9  l!  6. 3 4.3 2.9 6.7  6.8  16*7  7 1 _ 0.  -6  12.8  30.1 2 -28.3 _ „ „ 2 _ .1**0- - 1 2 . * . 2 3.7 -3.5 3.2 2 5.0 15.0 2 17.2  -  1 1 1  -I '  2 2 2 2 2  -  -  :  —\  --  -2  -i  IB  ,  4 4 4 4 4  . 2 2 2  22*3 • 9.2 -B.2 31.5 e.i  _  2  "|  13.4 9.1 -2.9  25*1  20.2 12.4 _13,7_ 13.6  29*7 -3.2 10.4 3.0  12.2 8.3 2.3  0 0 0 0 0  -  -12.3  1.7 8.4 3.2  1 I 1  3 1' 7 9 1  -  14.7  4 4 4 4  5 7 7  2  1 3 5 J  _  4  5  -2  33.4 -1.8 -8.6 -1.4 l.l  -  3  5*5 5.9  33^3 3.3 9.1 4.8 2.4  9.8  '1  2  ' 3 0 0 0  0  -13.0  9.1  1 0 3 0 s D  -  -0.9 1.6 7 . 8 . 1D.1 -0.9 -1.7 24.3 - 2 2 . 9  15.3  7.4  -12*5 -35.5 -8.6 35.0 3.4  .  1 3 S 1  1  io!a 50.2 6.1 33.3 5.6  0 0  IB  2  i 3  -11.0 -4.7  I  18 20 20  -2  2L9 5.9 18.5 50.3 3.8  -B"O  1«  1 -1 1 -1  2 2  l 3 0 0 0  9.2 31.6 8.1  1  2*4 7.7 4.2 -13.9  2 -2  3.5 9.5 14.5 26.5 21.6  9.8  -11.1  -1.0 6.4 5.8 13.4  1 11 1 1  1 0 0 0 9  -4.5 18.8 46.5 5.5  14.1  2 2 2 2  1  3 -3  -2o'.2  2'  55*2 8.8 -14.8 53.1  1  2.9 -0.3 39.9 - 3 3 . 5 41.6 - 4 1 . 8 40.7 38.7 30.4 . 31.4 -4.8 9.7 -13.7 -25.8 20.9  -61.6  54*2 6.7 15.4 55.9  2  1 0 0 0 0  8.8  61.9  1 1 1  -2  -3  3  -  i  6.9 10.0 9.7 4.9 -10.5  S 7 9 1  T  "2  10.8 4.5 10.1  6*1  I  I  • 7 7 7 7  1 3 7 9 1  -  3.0 _ _ 4 . 7_  f 7 7 7 7  f  0 6  z  f—_  I,  0.5 1.5 4.5 -3. ! 0.9 10.7 11.9 12.6  1.1 -1.0 3.0  2.3  -0.8 -11.1 10.6  J 7 9  * 6 6  2.3 3.4 11.5  13  6  11.7  3 5 1  " 6  *9* 7 8.*  6  b.B  -";[.  2.1  6.3 8.*  -0.2 -B.3  .4  7  c a 0  « ia 12  7 7 T  3.3  "l4*8 -4.7 2.1  -1  2  7  31.9  30ll  -\ -!  I  J 7  1.9 3.2 14,6  1.2 5.5 -14.6  7  ?! 1 2.7 B.O  'B'6 2.3 8.6  _,  6 8  10 -1  -I  12 12  2 2  ;  '_.  .;  -' -'  1  7  1  ]  8  J  9 10  -.  7  -1.1  -2.4  8.8  -B.l 13.5  13.6 2.2 5.2 8.C  4.0 6.1 1.0 2.5 -0.0  4*4  -5.0  1  2. ) 5,4 2,4  -2.0 -7.9 1.6  7  10.*  4  7  8  J7  2 I  -7.5  1. T  1  12  IC  itl* 3.1  2.5  8."J '  74  d e n s i t y d i s t r i b u t i o n i s shown i n F i g . 9 g i v i n g the atom numbering The  f  t o g e t h e r w i t h a drawing  o f the molecule  used.  f i n a l p o s i t i o n a l and thermal parameters  and t h e i r s t a n d a r d d e v i a t i o n s  are g i v e n i n T a b l e 22; x, y and z are f r a c t i o n a l c o o r d i n a t e s r e f e r r e d t o the m o n o c l i n i c c r y s t a l axes, and U^j are the components o f the v i b r a t i o n t e n s o r s , w r i t t e n i n m a t r i x form, and r e f e r r e d t o the axes a* b* and c*. The equations o f the mean p l a n e s o f the t h r e e p h e n y l r i n g s and the a c e t y l group are g i v e n i n T a b l e 23, a l o n g w i t h the C ( 3 ) - S i - C ( p h e n y l ) p l a n e s , and the i n t e r p l a n a r a n g l e s . Bond d i s t a n c e s and v a l e n c y a n g l e s w i t h t h e i r s t a n d a r d d e v i a t i o n s are l i s t e d i n T a b l e 24. The s h o r t e s t i n t e r m o l e c u l a r d i s t a n c e s are g i v e n i n T a b l e 25; a l l these c o r r e s p o n d t o van d e r Waals i n t e r a c t i o n s . F i g . 10 i l l u s t r a t e s the p a c k i n g o f the molecules  i n the c r y s t a l .  R e s u l t s and D i s s c u s s i o n  The m o l e c u l a r s t r u c t u r e o f a c e t y l t r i p h e n y l s i l a n e i s v e r y s i m i l a r t o t h a t o f the germanium a n a l o g u e ? t e t r a h e d r a l l y around  2  The a c e t y l and t h r e e p h e n y l groups a r e arranged  t h e s i l i c o n atom, w i t h a s m a l l b u t s i g n i f i c a n t  distortion  from e x a c t t e t r a h e d r a l geometry, the p h e n y l groups b e i n g s l i g h t l y spread o u t so t h a t the average c  C(  t y i ) S i - C (phenyl) _  a c e  a n  9"l-  e  i  s  107.4°,  and the average  ( p h e n y l ) - S i - C ( p h e n y l ) angle i s 111.3° (the c o r r e s p o n d i n g v a l u e s i n a c e t y l t r i -  phenylgermane a r e 108.3° and 110.7°). The angles between the C ( C(phenyl) The  a c e t  yi), Si,  p l a n e s a r e 120°, 121° and 119°. t h r e e p h e n y l r i n g s a r e p l a n a r (maximum d e v i a t i o n o f carbons  p l a n e s i s 0.04A), w i t h a mean C-C bond d i s t a n c e o f 1.38 A 8  from  ring  (a = 0.005A), and  a mean C-C-C angle o f 120.0° (a = 0.3°). The mean C-H d i s t a n c e i s 1.04A (a = 0.06A). The r i n g s a r e o r i e n t e d i n a p r o p e l l e r f a s h i o n about s i l i c o n with a n g l e s between the r i n g p l a n e s and the C ( 55° and 55° f o r C ( 5 ) , C ( l l ) and C(17)  a c e t  y T ) , S i , C ( p h y i ) planes of 58°,  rings, respectively  e n  (Table 23). These  O  •  1  i  2  i  3  Si  o  O  I A  O  o  C  o  H  °  24  a/2  a/2 Fig.  9. S e c t i o n s o f t h e t h r e e - d i m e n s i o n a l e l e c t r o n - d e n s i t y d i s t r i b u t i o n at for  i n t e r v a l s o f 1.2 e . A " silicon)  3  f o r c a r b o n and oxygen,  and a v i e w o f t h e Ph3Si-CO-CH3  (contours  a n d a t i n t e r v a l s o f 2.4  molecule.  e.A  -3  ui  76 Table  22  P o s i t i o n a l ( f r a c t i o n a l ; xlO * f o r S i , 0, C; x l O f o r H) and thermal (A ) parameters f o r the atoms o f a c e t y l t r i p h e n y l s i l a n e . (Standard d e v i a t i o n s are g i v e n i n b r a c k e t s ) 1  Atoms Si 0 C C C C C C C C C C C C C C C C C C C C H H H H H H H H. H H H H H H H a  H  X  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37)  (1) (2) (4)  1379 2160 1835 1810 1696 1665 1927 2226 2257 1990 0994 0781 0490 0419 0621 0916 1038 0547 0297 0544 0999 1260 146 187 253 259 202 091 034 . 022 064 108 037 -011 045 124 162  24  mean i r  2  z  B  -0219 (5) 0185(15) 0995(18) 2859(24) -1769(16) -1746(17) -2846(20) -4007(20) -4101(19) -2986(17) -1297 (16) -0361(19) -1164(22) -2829(23) -3819(25) -3037(19) 1339(16) 1396(18) 2544(24) '3633(25) 3635(23) 2452(20) -087 -275 -487 -500 -282 094 -038 -373 -467 -390 072 255 466 429 249  2.96 (7) 7.03 (32) 3.99(29) 7.54(54) 3.08(24) 3.97(28) 4.80(32) 4.93 (32) 4.58(31) 3.87(27) 3.27 (25) 4.40(30) 5.73(37) 6.00(39) 6.80(44) 4.54(31) 3.22(25) 4.20(29) 6.03 (39) 6.62 (43) 5.97(39) 4.67(31) 1.4 6.6 7.6 5.8 9.5 6.8 2.3 5.9 3.2 2.9 0.6 6.9 23* 7.5 1.5  y  1590 (5) 3608(16) 3125(19) 3764(31) -0029(16) -1876(18) -3065(20) -2434(21) -0592(20) 0592(18) 3101(17) 4555(20) 5716(23) 5457(24) 4056(26) 2857(20) 0430(17) 0514(18) -0390(24) -1360(26) -1470(24) -0587(20) -227 -438 -339 001 195 474 639 613 362 172 125 -017 -179 -176 -065  u Si 0 C  3  (1) (4) (5) (7) (4) (5) (6) (6) (5) (5) (5) (5) (6) (6) (7) (5) (5) (5) (7). (7) (7) (6)  6  u  1 2  0.0393 (18) 0.0003 (16) 0.1111 (93) -0.0495 (57) 0.1407(161) -0.0326(124)  4.0  23 U  13  0.0037 (16) 0.0137 (66) 0.0422(109)  u  U  2 2  0.0375 (20) 0.1017 (70) 0.0909(129)  23  0.0003 (16) 0.0112 (63) 0.0032(100)  U  33  0.0393 (18) 0.0876 (75) 0.0619(104)  * Although t h i s hydrogen atom was c l e a r l y r e s o l v e d i n the ( F - F ) s y n t h e s i s , and the p o s i t i o n a l parameters r e f i n e d t o reasonable v a l u e s , the thermal parameter i n c r e a s e d t o an unreasonably h i g h v a l u e . Q  Q  77  Table  23  E q u a t i o n s o f mean p l a n e s and a n g l e s between p l a n e s i n a c e t y l t r i p h e n y l s i l a n e  E q u a t i o n o f mean p l a n e s i n the form  IX + mY  + nZ + p = 0  where X, Y and Z a r e c o o r d i n a t e s i n A it  r e f e r r e d t o o r t h o g o n a l axes a, b and c  Plane 1 2 3 4 5 6 7  Atoms 1, 5 1, 11 1, 17 1, 3, 1, 3, 1, 3, 1 - 4  - 10 - 16 - 22 5 11 17  £  m  n  p  0.036 -0.595 -0.737 -0.721 0.016 0.745 0.830  -0.756 -0.790 -0.055 0.072 -0.596 -0.661 -0.521  -0.653 0.145 -0.674 0.690 0.803 0.094 -0.197  2.794 3.872 1.006 0.712 2.476 1.722 1.017  Angles between p l a n e s : Planes  Angles  1-4 2-5 3-6 4-5 4 - 6 5-6 4-7 5-7 6-7  58.0° 54.7 54.9 120.0 121.3 118.7 39.5 80.4 19.2  Maximum d i s placement (A) 0.042 0.009 0.011 0 0 0 0.003  Table  24  Bond d i s t a n c e s (A) and v a l e n c y angles (degrees) i n a c e t y l t r i p h e n y l s i l a n e with standard d e v i a t i o n s .  Si-C(3)  acetyl  Si-C (5) Si-C(11) Si-C(17) mean S i - C h e n y l p  1.926  a = 0.014  1.860 1.864 1.867  0.014 0.014 0.014  1.864  0.008  C ( 3 ) - S i - C (5) C(3)-Si-C(ll) C(3)-Si-C(17) mean C  a c e t y l  -si-c  107.6 105.5 109.1 i  p h e n y  C(5)-Si-C(ll) C(5)-Si-C(17) C(ll)-Si-C(17) mean C  p  h  e  n  y  I  Si-C  107.4  112.2 111.3 110.5 . p  h  e  n  y  l  111.3  P h e n y l :r i n g s C (5) C (6) C (7) C (8) C (9) C(10) C(ll) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21) C(22)  -  -  -  -  -  -  -  C (6) C (7) C (8) C (9) C(10) C (5)  1.40 1.39 1.38 1.40 1.40 1.40  C(10)-C(5)-C(6) C(5)-C(6)-C(7) C(6)-C(7)-C(8) C(7)-C(8)-C(9) C(8)-C(9)-C(10) C(9)-C(10)-C(5)  117.5 121.7 120.3 119.7 119.4 121.4  C(12) C(13) C(14) C(15) C(16) C(ll)  1.39 1.41 1.32 1.37 1.43 1.38  C(16)-C(ll)-C(12) C(ll)-C(12)-C(13) C(12)-C(l'3)-C(14) C(13)-C(14)-C(15) C(14)-C(15)-C(16) C(15)-C(16)-C(ll)  117,. 5 120.8 120.8 121.1 119.2 120.6  C(18) C(19) C(20) C(21) C (22) C(17)  1.41 1.40 1.39 1.31 1.42 1.39  C(22)-C(17)-C(18) C(17)-C(18)-C(19) C(18)-C(19)-C(20) C(19)-C(20)-C(21) C(20)-C(21)-C(22) C(21)-C(22)-C(17)  117.6 120.7 118.2 123.4 119.3 120.9  mean C ar a r !  1.38  c  C-H  0.85  mean C-H  8  1.29  a = 0.005  120.0  C-C-C  0.25  1.04  0.06  1.50 1.21  0.026 0.021  A c e t y l group C(3)-CH C(3)-0  3  Si-C(3)-0(2) Si-C(3)-CH 0(2)-C(3)-CH 3  3  a = 0.6 0.6 0.6  117.4 124.1 118.5  0.6 0.6 0.6  Table  Shortest intermolecular distances  Atom  (of molecule 1)  to  Atom  of  25  (A) i n a c e t y l t r i p h e n y l s i l a n e .  molecule  Distance  C(13)  C(13)  2  3.59  C  (5)  H(26)  3  2.47  0  (2)  C (8)  3  3.45  0  (2)  H(25)  4  2.43  Si(l)  H(26)  3  3.20  H(30)  H(35)  5  2.24  Molecule  1  x  y  z  2  1-x  -y  -z  3  x  (l/2)-y  (l/2)+z  4  1+x  (1/2)-y  (1/2)+2  5  1+x  y  -1+z  80  may be compared w i t h t h e c o r r e s p o n d i n g o r i e n t a t i o n a n g l e s i n t h e germanium compound (Table 26). The two molecules  3 2  o f 6 2 ° , 41° and 58°  t h e r e f o r e have v e r y  s i m i l a r , b u t n o t q u i t e i d e n t i c a l shapes, the s i l i c o n  compound p r o p e l l e r b e i n g  r a t h e r more r e g u l a r . The a c e t y l group i n the s i l i c o n  compound has an o r i e n t a t i o n  which i s the same as t h a t i n the germanium analogue,  i t s plane being approxi-  mately  a t r i g h t angles  (80°) t o the C ( 3 ) , S i , C ( l l ) p l a n e . I t seems l i k e l y  f o r e t h a t the d e v i a t i o n from a symmetrical of  there-  p r o p e l l e r i n Ph^Ge-CO'CH-^ i s a r e s u l t  i n t e r m o l e c u l a r , r a t h e r than i n t r a m o l e c u l a r , i n t e r a c t i o n s . The dimensions  o f the a c e t y l group i n a c e t y l t r i p h e n y l s i l a n e , C=0, 1.21A  (a = 0.02A) and C-CHg, 1.50A  (a = 0.03A) are s i m i l a r t o those i n the germanium  analogue  (1.20A and 1.51A), and t o the d i s t a n c e s n o r m a l l y found i n ketones.  The  s i l i c o n - c a r b o n bonds a r e n o t a l l e q u i v a l e n t , the d i f f e r e n c e s b e i n g  e x a c t l y analogous  t o those found p r o v i o u s l y i n the germanium compound.  32  The  S i - C ( p h e n y l ) bond d i s t a n c e o f 1.864A (a = 0.008A) may be compared w i t h the v a l u e 1,870 ± 0.005A r e p o r t e d f o r S i - C H 0.005A f o r S i - C H 6  i s 0.062A  5  bonds'}  0  The S i - C (  bonds and w i t h the d i s t a n c e 1.843 ±  3  a c e t y  l)  b  o  n  d  l e n g t h o f 1.926A (a = 0.014A)  (4a) g r e a t e r than the S i - C ( p h e n y l ) d i s t a n c e s . The c o r r e s p o n d i n g  d i f f e r e n c e f o r the germanium compound i s 0.066A (4a). The S i - C ( Ge-C(  a c e  a c e t  y i ) and  t y l ) bonds t h e r e f o r e appear t o be l o n g e r than s i n g l e - b o n d s , and the  e l o n g a t i o n can b e e x p l a i n e d . b y the germanium a n a l o g u e ? resonance  2  resonance  s t r u c t u r e s s i m i l a r t o those g i v e n f o r  In a c e t y l t r i p h e n y l m e t h a n e , the c o n t r i b u t i o n o f  structure I l a  o Ph C-C-CH 3  la  : cp"! 3  -<->-  Ph C-C-CH 3  3  Ha  i s expected because o f the d i f f e r e n c e i n e l e c t r o n e g a t i v i t i e s o f carbon and oxygen i n the c a r b o n y l group. F o r a c e t y l t r i p h e n y l s i l a n e and a c e t y l t r i p h e n y l -  81  Table  26  Comparison o f P h S i - C O - C H 3  3  and Ph Ge-CO-CH  Ph Si-CO-CH 3  Unit  3  3  3  Ph Ge-CO-CH 3  cell 7.53A  a  15.30A  b  28.70  14.53  c  7.90  7.68  96.8°  94.8°  P2 /c  P2 /c  3 Space group  1  1  Bond l e n g t h s M-C (phenyl) M _ c  (acetyl)  1.864A  1.945A  1.926  2.011  Angles c  (phenyl)"  M - c  c  (acetyl)~  M - C  Ph  (phenyl)  111.3°  110.7°  (phenyl)  107.4  108.3  58.0  61.5  54.7  40.6  54.9  57.5  CMC p l a n e s  3  germane,  the  atom M  (M = S i or Ge)  i s more e l e c t r o p o s i t i v e than the the M than on  the p o s i t i v e charge i s more l i k e l y t o r e s i d e on tribution  from the  r e s u l t i n g resonance s t r u c t u r e ,  if  :  Ph M-C-CH 3  3  «-»-  M-C(  a c e t  :  :  Ph M-C-CH 3  Ib w i t h no  ?  Ph M  lib  o r t h o - and  bond l e n g t h s .  explanation  studies? * 1  and  - 3 7  f a c t t h a t the  •*-»• P h M 2  3  . :C-CH  3  IVb  a c e t y l carbon atom e x p l a i n s  i s i n a c c o r d w i t h the  the  3  experimental e r r o r . D e t a i l e d  3  IVb.  o f the  than t h a t o f the G e - C ( ( M = Ge,  differences  S i ) are  obviously  S i - C bonds v a r y w i t h bond o r d e r  the  a l l o f which suggest i n  3 8  s i l i c o n compound s h o u l d e x h i b i t an e l o n g a t i o n greater  long  r e s u l t s o f s p e c t r a l and b a s i c i t y  with e l e c t r o n e g a t i v i t y d i f f e r e n c e s  measured e l o n g a t i o n s i n Ph M-CO*CH  and  carbon. Con-  F u r t h e r d i s s i p a t i o n of the p o s i t i v e charge t o  bond which i s r e l a t i v e l y a l i t t l e  Ge-C  +  p a r a - carbons o f the p h e n y l r i n g s i s a l s o p o s s i b l e ,  This  The  f  Illb the  and  Illb,  :C-CH  3  3  f o r m a l bond between the M and yi)  ?  the  carbon  ( i n the  a c e t  a c e t  y j 1  y ) bond. q  i n f a c t equal  depend on  region  Si-C(  the way  within  i n which  of bond o r d e r  less  than u n i t y ) . A l t h o u g h the u n i t c e l l dimensions o f Ph Ge-CO-CH 3  t o be  r a t h e r d i s s i m i l a r (Table  r e l a t e d . Both c r y s t a l s c o n t a i n by  a c - g l i d e plane  ( F i g . 10 and  t i c a l o r i e n t a t i o n s but This b„. ^ Si  gives 2b  the  two  structures  and  Ph Si-CO-CH  are  i n f a c t very c l o s e l y  3  i d e n t i c a l b u i l d i n g u n i t s o f two F i g . 11),  and  3  s i t u a t e d d i f f e r e n t l y with respect such t h a t  appear  molecules r e l a t e d  these b u i l d i n g u n i t s have  r i s e to s l i g h t l y d i f f e r e n t stacking, .  Ge  are  26),  3  t o the i a  G e  2^  idenaxes.  and  9 1 ? ? *  "2  View o f the s t r u c t u r e o f a c e t y l t r i p h e n y l s i l a n e alon. (The c a x i s p o i n t s away from viewer.)  84  85  REFERENCES  1.  W. L. Bragg, P r o c . Cambridge P h i l . Soc. 17, 43 (1913).  2.  G. H. S t o u t and L. H. Jensen, "X-ray S t r u c t u r e D e t e r m i n a t i o n , " M a c m i l l a n Co., New York,  (1968).  3.  M. J . Buerger, "X-ray C r y s t a l l o g r a p h y , " W i l e y , New York,  4.  M. J . Buerger, York,  5.  The  (1942).  "The P r e c e s s i o n Method," J . Wiley and Sons, Inc., New  (1964).  M. J . Buerger, New York,  " C r y s t a l S t r u c t u r e A n a l y s i s , " J . Wiley and Sons, I n c . ,  (1960)  6'.  M. J . Buerger, " V e c t o r Space,"  7.  H. L i p s o n and W. Cochran,  J . W i l e y and Sons, I n c . , New York,  "The C r y s t a l l i n e S t a t e . V o l . I l l :  (1959).  The  D e t e r m i n a t i o n o f C r y s t a l S t r u c t u r e s , " 3 r d . ed., G. B e l l and Sons L t d . , London, 8.  (1966).  " I n t e r n a t i o n a l T a b l e s f o r X-ray C r y s t a l l o g r a p h y , " V o l . I , (1952), V o l . I I , (1959), V o l . I l l ,  9.  (1962), Kynoch P r e s s , Birmingham.  H. Hauptman and J . K a r l e , "The S o l u t i o n o f the Phase Problem — Centrosymmetric  C r y s t a l , " American  C r y s t a l l o g r a p h i c Ass.,  I . The  (1953).  10.  J . K a r l e and I . L. K a r l e , A c t a C r y s t . , 2^L, 849 (1966).  11.  R. E. Long, Ph. D. T h e s i s , U n i v e r s i t y o f C a l i f o r n i a a t Los A n g l e s ,  12.  J . L a d e l l and B. P o s t , A c t a C r y s t . , 1_, 559 (1954).  13.  E. M. A y e r s t and J . R. C. Duke, A c t a C r y s t . , 1_, 588 (1954).  14.  D. R. Davies and R. A. Pasternak, A c t a C r y s t . , 9_, 334 (1956).  15.  H. N. Rexroad;  16.  P. G. S t e c h e r ; The Merck Index,  Y. H. Hahn and W. J . Temple, J . Chem. Phys., 8  t h  (1965).  42_, 324 (1965).  e d i t i o n Merck & Co., I n c . Rahway N . J . ,  U. S. A., (1968). 17.  N. C y r and W. C. L i n , Chem. Comm., 192 (1967)  18.  H. M. McConnel, C. H e l l e r , T. C o l e and R. W. Fessenden,  J . Am. Chem. S o c ,  86  82,  766  (1960).  19.  N. Cyr, Ph. D. T h e s i s , U n i v e r s i t y o f B r i t i s h .Columbia,  20.  A . J . C. W i l s o n , Nature,  21.  R. Hoge, Ph. D. T h e s i s , U n i v e r s i t y o f B r i t i s h Columbia,  22.  D. Sayre, A c t a C r y s t . , 5_, 6 0 ( 1 9 5 2 ) .  23.  R. F. Stewart; F. R. Davidson and W. T. Simpson, J . Chem. Phys., 4 2 , 3175  (1967).  150, 151 (1942). (1968).  (1965).  24.  W. C. Hamilton, A c t a C r y s t . , 1 8 , 8 6 6 ( 1 9 6 5 ) .  25.  F. S e n t i and D. Harker, J . Am. Chem. S o c , 6 2 , 2 0 0 8  26.  D. W.  27.  W. R. B u s i n g and H. A. Levy, A c t a C r y s t . , 17_, 1 4 2 ( 1 9 6 4 ) .  28.  G. W. Wheland, "Resonance i n O r g a n i c Chemistry," J . Wiley and Sons, I n c . , New  29.  J . Cruickshank, Acta Cryst.,  York,  14, 896 (1961).  (1955).  L. N. Ferguson, Prentice-Hall,  30.  9_,151 ( 1 9 5 6 ) ;  (1940).  "The Modern S t r u c t u r a l Theory o f O r g a n i c I n c . , Englewoods C l i f f s ,  Chemistry,"  N. J . , ( 1 9 6 3 ) .  P. B e r n f e l d , " B i o g e n e s i s o f N a t u r a l Compounds," Pergamon P r e s s , M a c m i l l a n Co.,  (1963).  31.  J . P. Kutney and W. J . Cretney, i n p r e p a r a t i o n .  32.  R. W. H a r r i s o n and J . T r o t t e r , J . Chem. S o c , (A), 2 5 8 ( 1 9 6 6 ) .  33.  V . W. L a u r i e , J . Chem. Phys., 30_, 1 2 1 0 ( 1 9 5 9 ) .  34.  A. G. Brook, J . Am.  35.  A. G. Brook, M. A. Q u i g l e y , G. J . D. Peddle, N. V . Schwartz,  Chem. S o c , 7 9 ,  4373  (1957).  and C. M.  Warner, J . Am. Chem. S o c , 8 2 , 5 1 0 2 ( 1 9 6 0 ) . 36.  A. G . Brook and G . J . D. P e d d l e , J . O r g a n o m e t a l l i c Chem., 5_, 1 0 6 ( 1 9 6 6 ) .  37.  K. Yates and F. A g o l i n i , Canad. J . Chem., 4 4 , 2 2 2 9  38.  F. A. C o t t o n and G. W i l k i n s o n , "Advanced I n o r g a n i c Chemistry," J . Wiley and Sons, I n c . , New York,  39.  (1966).  (1962).  D. W i t t e n b e r g and H. Gilman,  J . Am. Chem. S o c , 80_, 4 5 2 9  (1958).  87  40.  "Tables o f I n t e r a t o m i c D i s t a n c e s and C o n f i g u r a t i o n i n M o l e c u l e s Ions," Chem. Soc. S p e c i a l P u b l . , No.  11,  (1958), and No.  18,  and  (1965).  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0061896/manifest

Comment

Related Items