Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A study of some Di- and Tri-atomic halogen and interhalogen cations Wilson, William Wayne 1975

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1975_A1 W55.pdf [ 15.03MB ]
Metadata
JSON: 831-1.0061885.json
JSON-LD: 831-1.0061885-ld.json
RDF/XML (Pretty): 831-1.0061885-rdf.xml
RDF/JSON: 831-1.0061885-rdf.json
Turtle: 831-1.0061885-turtle.txt
N-Triples: 831-1.0061885-rdf-ntriples.txt
Original Record: 831-1.0061885-source.json
Full Text
831-1.0061885-fulltext.txt
Citation
831-1.0061885.ris

Full Text

A STUDY OF SOME DI- AND TRI-ATOOTC HALOGEN AND INTER! IALOGEN CATIONS by WILLIAT 1 WAYNE WILSON B.Sc, University of Idaho, 1969 M.Sc, University of Br i t i s h Columbia, 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of CHEMISTRY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1975 In presenting t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the requirements f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f or reference and study. I f u r t h e r agree t h a t permission for extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s re p r e s e n t a t i v e s . It i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n permission. Department of C , U *£^vy\ 1_ T v r y The U n i v e r s i t y of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date ~J- Q C I Q We^ r 1 ABSTRACT T h i s study i s p r i m a r i l y concerned w i t h the c a t i o n i c h a l o -gen d e r i v a t i v e s i o d i n e ( I ) - and bromine ( I ) - f l u o r o s u l f a t e , t h e i r s t r u c t u r a l and chemical p r o p e r t i e s , and t h e i r use as p r e -c u r s o r s i n the f o r m a t i o n of p o l y h a l o g e n and p o l y i n t e r h a l o g e n c a t i o n s . I n f r a r e d s p e c t r o s c o p y a t 80°K i s used t o r e c o r d the v i b r a -t i o n a l spectrum o f IOSC^F. A c o n s i s t e n t assignment i s p r e s e n t e d f o r a l l halogen ( I ) - f l u o r o s u l f a t e s , XOS0 2F where X = F, C l , Br and I. Evidence f o r i n t e r m o l e c u l a r a s s o c i a t i o n i s found i n the s p e c t r a o f IOS0 2F and BrOS0 2F. The a d d i t i o n of d i a t o m i c halogens ( I 2 * B r 2 ' ° r ^ n t e r -halogens (IBr, ICI) t o IOS0 2F r e s u l t s i n the f o r m a t i o n of p o l y -halogen and p o l y i n t e r h a l o g e n f l u o r o s u l f a t e s a c c o r d i n g t o the g e n e r a l r e a c t i o n X 2 (XY) + 10S0 2F I X 2 S 0 3 F (IXYSC^F) X,Y = I, Br and C l When the two compounds I X 2 S 0 3 F and I Y 2 S 0 3 F are r e a c t e d t o g e t h e r a c c o r d i n g to I X 2 S 0 3 F + I Y 2 S 0 3 F *- 2 IXYS0 3F X,Y = I, Br and C l i i l i g a n d r e d i s t r i b u t i o n o c c u r s . I n f r a r e d and Raman s p e c t r a o f these compounds are i n t e r p r e t e d i n terms of i o n i c s t r u c t u r e s c o n s i s t -i n g o f the t r i a t o m i c iodonium (III) c a t i o n s 1 3 * / I B r 2 + ' I C J " 2 + ' + + + — I B r C l , l 2 C 1 a n d I 2 B r a n ( ^ t h e a n i ° n S 0 3 F W l t n evidence f o r c a t i o n - a n i o n i n t e r a c t i o n . S o l u t i o n s o f these compounds i n the s t r o n g p r o t o n i c a c i d s HSO-jF, HSC^CF-j and E2SO^ are s t u d i e d by conductometry and v i s i b l e -u l t r a v i o l e t s p e c t r o s c o p y . Complete i o n i z a t i o n t o the t r i a t o m i c + + + c a t i o n s I X 0 , i \i IXY . , . and I~X , , , i s found. 2 ( s o l v ) ' (solv) 2 (solv) For BrOSC^F o n l y the a d d i t i o n o f B r 2 was s u c c e s s f u l r e s u l t -i n g i n Br^SO-jF, which was s t a b l e o n l y a t low temperatures as evidenced by the I n f r a r e d spectrum a t 80°K. The s o l v o l y s i s of the i n t e r h a l o g e n f l u o r o s u l f a t e s I C 1 2 S 0 3 F and I B ^ S C ^ F , and the halogenmonof l u o r o s u l f a t e s IOSC<2F and BrOS0 2F i n the presence o f the halogens I 2 , B r 2 and C l 2 i n the n o n p r o t o n i c s o l v e n t SbF,. i s s t u d i e d . The compounds I C l 2 S b 2 F 1 1 , I B r 2 S b 2 F 1 1 , I 2 s b 2 F l l a n d B r 2 S b 3 F 1 6 a r e o b t a i n e d a s w e l l as the s o l v a t e d bromonium (III) c a t i o n s B r C 1 2 + ( s o l v ) + + B r 2 C l ( s o ^ v j a n d Br^ ( s o l v ) . 2 The n3/ 2g ground s t a t e i s confirmed f o r the d i a t o m i c + + • . halogen cat-ions I 2 and B r 2 by magnetic and s p e c t r o s c o p i c measurements. Attempts t o o b t a i n the d i a t o m i c i n t e r h a l o g e n c a t i o n I B r + were u n s u c c e s s f u l . Resonance Raman s p e c t r a were o b t a i n e d on s o l i d I 0 S b 0 F , , and Br~Sb-,F,,-. 2 2 11 2 J 16 In order t o g a i n i n s i g h t i n t o the s o l v o l y s i s r e a c t i o n s of f l u o r o s u l f a t e compounds i n SbF 5, the antimony (V) f l u o r i d e -f l u o r o s u l f a t e s S b F 3 ( S 0 3 F ) 2 , SbF 4 (SC>3F) and S b F 4 ( S 0 3 F ) - S b F 5 19 are s y n t h e s i z e d and s t u d i e d by v i b r a t i o n a l and F NMR s p e c t r o -scopy. i v TABLE OF CONTENTS Page I ' GENERAL INTRODUCTION 1 A. INTRODUCTORY REMARKS 1 1. V i b r a t i o n a l s p e c t r o s c o p i c t r e n d s i n the SO3F group 2 2. HSO3F as a non-aqueous s o l v e n t 8 3. Other a c i d i c s o l v e n t s 14 B. HALOGEN FLUOROSULFATES 18 1. General P o i n t s 18 2. P r e p a r a t i o n s 2 4 3. Some s t r u c t u r a l aspects and ch e m i c a l b e h a v i o r o f the halogen f l u o r o s u l f a t e s 25 C. POLY-HALOGEN AND POLY-INTERHALOGEN CATIONS 28 1. P o l y - i o d i n e c a t i o n s 29 2. Poly-bromine c a t i o n s 34 3. P o l y - c h l o r i n e c a t i o n s 37 4. P o l y - i n t e r h a l o g e n c a t i o n s 38 5. Summary of p r o j e c t e d work 49 II EXPERIMENTAL APPARATUS AND CHEMICALS 50 A. REACTION LINES AND ACID STILLS 50 1. G l a s s vacuum l i n e 50 2. Metal f l u o r i n e f l o w l i n e 51 3. HSO3F d i s t i l l a t i o n apparatus .• 51 4. HSO3CF3 d i s t i l l a t i o n apparatus 54 5. SbF5 d i s t i l l a t i o n apparatus 54 B. REACTORS, CONDUCTIVITY CELL, AND S 20 6F 2-ADDITION TRAPS 55 1. Reactors 55 2. C o n d u c t i v i t y c e l l • 57 3. S 2 0 6 F 2 - a d d i t i o n t r a p s 59 C. DRYBOX, BALANCES, AND MISCELLANEOUS 61 1. Dry box 61 2. Balances 61 3. M i s c e l l a n e o u s 61 D. INSTRUMENTAL METHODS 62 1. I n f r a r e d ' 62 2. Raman 64 3. U l t r a v i o l e t , v i s i b l e and n e a r - i n f r a r e d 65 4. Conductometry 65 5. Magnetochemistry 66 6. 19p NMR sp e c t r o s c o p y • 68 7. M e l t i n g p o i n t s 68 8 . Analyses ; 68 9. M o l e c u l a r weight d e t e r m i n a t i o n 69 TABLE OF CONTENTS cont'd. Page E. CHEMICAL STARTING MATERIALS 69 1. Commercial 69 2. Prepared ' 71 I I I VIBRATIONAL SPECTRA OF IOS0 2F AND BrOS0 2F 75 A. INTRODUCTORY REMARKS 75 B. THE LOW TEMPERATURE INFRARED SPECTRUM OF BrOS0 2F 78 C. THE LOW TEMPERATURE INFRARED SPECTRUM OF IOS0 2F 84 IV COMPOUNDS CONTAINING TRIATOMIC IODONIUM (III) CATIONS.... 92 A. ADDITION REACTIONS OF DIATOMIC HALOGENS AND INTER-HALOGENS TO I O S O 2 F (AND BrOS02F) 92 1. I n t r o d u c t i o n 92 2. P r e p a r a t i o n s and a n a l y s e s 9 3 a) I C 1 2 S 0 3 F 93 b) IBr2S03F 93 c) I 3 S O 3 F 93 d) I 2 B r S 0 3 F 94 e) I 2 C 1 S 0 3 F 95 f) A n a l y t i c a l d a t a 95 g) A d d i t i o n a l s y n t h e t i c attempts 9 6 3. S o l u t i o n s t u d i e s - c o n d u c t i v i t i e s and 1 9 F NMR i n HSO3F 100 4. V i s i b l e and u l t r a v i o l e t s p e c t r a i n H S O 3 F , H S O 3 C F 3 and 96% H2SO4 108 5. V i b r a t i o n a l s p e c t r a 117 B. HALOGEN REDISTRIBUTION REACTIONS IN SOLUTION 128 1. I n t r o d u c t i o n 128 2. P r e p a r a t i o n s and ex p e r i m e n t a l r e s u l t s 129 3. V i s i b l e and u l t r a v i o l e t s p e c t r a l s t u d i e s i n 96% H 2 S 0 4 131 C. HALOGEN REDISTRIBUTION REACTIONS IN MOLTEN STATE 132 1. I n t r o d u c t i o n 132 2. P r e p a r a t i o n and a n a l y s i s 132 a) I 2 C 1 S 0 3 F 132 b) I 2 B r S 0 3 F 132 c) I B r C l S 0 3 F 133 d) A n a l y t i c a l data 133 3. Product i d e n t i f i c a t i o n 133 a) C o n f i r m a t i o n o f I 2 C I S O 3 F and I 2 B r S 0 3 F 133 b) C h a r a c t e r i z a t i o n o f IBrClS03F 134 V I TABLE OF CONTENTS cont'd. Page D. HALOGEN SUBSTITUTION REACTIONS 137 1. I n t r o d u c t i o n 137 2. P r e p a r a t i o n s and ex p e r i m e n t a l r e s u l t s 137 3. Product i d e n t i f i c a t i o n 138 E. SOLVOLYSIS REACTIONS IN Sb F 5 140 1. I n t r o d u c t i o n 140 2. P r e p a r a t i o n s and an a l y s e s 142 a) ICl2Sb2F__ 142 b) IBr2Sb 2F__ 144 c) " l 3 S b x F 5 x + 1 " 144 d) A n a l y t i c a l data 145 3. C h a r a c t e r i z a t i o n s of ICl2Sb2F__ and I B r 2 S b 2 F 1 1 145 F. CONCLUSIONS. 149 V COMPOUNDS CONTAINING DIATOMIC HALOGEN CATIONS 158 A. INTRODUCTION;....'....' 158 B. PREPARATIONS 160 1. I 2 S b 2 F 1 1 160 2. B r 2 S b 3 F _ 6 160 3. A n a l y t i c a l data 161 C. EXPERIMENTAL RESULTS AND DISCUSSION 161 1. Magnetic measurements. . 164 a) Gouy method 164 b) NMR method • 169 2. V i s i b l e - u l t r a v i o l e t s p e c t r a 173 3. Resonance Raman s p e c t r a 186 4. Attempts t o prepare the I B r + c a t i o n 193 a) The o x i d a t i o n of IBr i n H S O 3 F 193 b) The c o n p r o p o r t i o n a t i o n o f l 2 + ( s o l v ) and B r 2 + ( s o l v ) i n HS0 3F/SbF 5/3S0 3 193 c) The c o n p r o p o r t i o n a t i o n o f l 2 + ( s o l v ) a n c ^ B r 2 + ( s o l v ) i n HS0 3F/SbF 5 194 d) The i n t e r a c t i o n o f I 2Sb2F__ and Br2Sb 3F_5 195 e) The o x i d a t i o n of IBr by S206F 2 and subsequent s o l v o l y s i s i n SbF^ 196 f) The i n t e r a c t i o n o f I B r 2 S 0 3 F w i t h I030 2F i n S bF 5. 197 g) The i n t e r a c t i o n o f l 2 + and B r 2 + i n v a r y i n g r a t i o s 197 VI COMPOUNDS CONTAINING TRIATOMIC BROMONIUM (III) CATIONS. A. INTRODUCTION 204 204 v i i TABLE OF CONTENTS cont'd. B. LOW TEMPERATURE ADDITIONS OF Br-, and C l Page TO BrOS0 2F 2 2 204 C. SOLVOLYSIS REACTIONS IN SbFc 2 The r e a c t i o n o f B r 2 with S 2 0 6 F 2 i n SbFs? 214 3. The r e a c t i o n o f B r 2 S b 3 F 1 6 w i t h B r 2 ... " ' 7 \ \ 4. The r e a c t i o n o f B r 2 S b 3 F l 6 w i t h C l ? 7 \ \ 5. The s o l v o l y s i s of Br (OS0 2F) 3 i n SbF 5 . \\\ _ . -w. i^ . j . x u m j x l \ ! O U r . . . . . . . . . . . . . . . . . . . . . . . . . 209 1. The r e a c t i o n of BrOS0 2F w i t h C l 2 i n SbFt The ' ' The The The . _.. <sx? 6. The s o l v o l y s i s o f I ( O S 0 2 F ) 3 i n SbFs — 222 7. C o n c l u s i o n s 223 VII FLUORIDE-FLUOROSULFATE-CONTAINING COMPOUNDS OF ANTIMONY (V) 22 4 A. INTRODUCTION 224 B. SOME PROPERTIES OF ANTIMONY (V) COMPOUNDS 225 1. Antimony (V) f l u o r i d e 225 2. Some adducts o f antimony (V) f l u o r i d e 226 3. Mixed antimony (V) f l u o r i d e - f l u o r o s u l f a t e s 227 4. Mixed f l u o r i d e - f l u o r o s u l f a t e antimonate (V) anions. 228 C. PREPARATIONS AND ANALYSES 228 1. S b F 3 ( S 0 3 F ) 2 228 2. S b F 4 ( S 0 3 F ) 229 3. SbF4 (S0 3F)-SbFs. 231 4. A n a l y t i c a l d a t a 232 5. Other s y n t h e t i c r e a c t i o n s . . . . 232 D. EXPERIMENTAL RESULTS AND DISCUSSIONS 235 1. Vapor d e n s i t y measurements 236 2. Mass spectrum 236 3. NMR s p e c t r a 237 4. V i b r a t i o n a l s p e c t r a 241 a) SbP4 (SO3F) .SbFs 242 b) S b F 4 ( S 0 3 F ) 249 c) S b F 3 ( S 0 2 F ) 2 253 5. Complexation r e a c t i o n s . a ) ^ r f p a 5 a t i o n s a n d a n a l y s e s . [ * *. '. " ' * * 259 259 260 U C10 2 S b F 4 ( S 0 3 F ) 2 9 ( l l ) C10 2 S b F 3 ( S 0 3 F ) 3 HI ( i i i ) "C10 2 S b F 5 ( S 0 3 F ) " 2 6 0 C10 2 S b F 3 ( S 0 3 F ) 3 I n v e s t i g a t i o n s o Low temperature V I I I SUGGESTIONS FOR FURTHER WORK c) I n v e s t i g a t i o n s o f ' "ci6 2 'SbFg ( S O 3 F ) ' " .' * 9 * 7 d) Low temperature I n f r a r e d spectrum o f Cl0 2 s 6 3Fv. 268 272 BIBLIOGRAPHY 275 v i i : LIST OF TABLES Page 1. S t r u c t u r a l Bonding D i f f e r e n t i a t i o n f o r the S O 3 F Group 3 2. C o r r e l a t i o n Diagram f o r the F l u o r o s u l f a t e Group 4 3. P h y s i c a l P r o p e r t i e s o f Some Strong Oxy-Acids 9 4. M o b i l i t i e s of V a r i o u s Ions i n H S O 3 F and H 2 S 0 4 11 5. P h y s i c a l P r o p e r t i e s of Some Oxy-Acid Halogen (I) Compounds , 22 6. Some S p e c t r o s c o p i c P r o p e r t i e s o f V a r i o u s P o l y - i o d i n e and Poly-bromine C a t i o n s 31 7. C a t i o n s o f the Types H a l F g + and H a l F 4 + , where Hal = I, Br, C l . . .. 40 Y Y+ 8. T r i a t o m i c I n t e r h a l o g e n C a t i o n s o f the Types X and X Y+ X 41 9. Commercially A v a i l a b l e Types of Apparatus . 63 10. Commercially A v a i l a b l e Chemicals 70 11. V i b r a t i o n a l F r e q u e n c i e s and Assignments f o r F O S O 2 F and C10S0 2F 77 12. V i b r a t i o n a l F r e q u e n c i e s and Assignments f o r BrOS0 2F.,... 80 13. Halogen-Oxygen I n f r a r e d S t r e t c h i n g F r e q u e n c i e s f o r X 20 and XOS0 2F Molecu l e s 83 14. I n f r a r e d F r e q u e n c i e s f o r I0S0 2F a t 80°K and 295°K 86 15. SO and SF S t r e t c h i n g V i b r a t i o n s o f B r i d g i n g S O 3 F Compounds 90 16. A n a l y t i c a l Data f o r I B r 2 S 0 3 F , I 2C1S03F and I 2 B r S 0 3 F 96 17. E x p e r i m e n t a l C o n c e n t r a t i o n s and S p e c i f i c C o n d u c t i v i t i e s f o r V a r i o u s I o d i n e - C o n t a i n i n g F l u o r o s u l f a t e Compounds i n HS0 3F a t 25QC 101,102 18. I n t e r p o l a t e d C o n c e n t r a t i o n s and C a l c u l a t e d y-Values f o r Some I o d i n e - C o n t a i n i n g F l u o r o s u l f a t e Compounds i n H S O 3 F 103 19. V i s i b l e and U l t r a v i o l e t S p e c t r a of 13"*", I B r 2 + and I C 1 2 + i n S u l f u r i c A c i d 109 20. V i s i b l e and U l t r a v i o l e t S p e c t r a of S o l u t i o n s o f Some I o d i n e - C o n t a i n i n g F l u o r o s u l f a t e Compounds i n Strong P r o t o n i c A c i d s a t 250C 110 21. S-0 and S-F I n f r a r e d V i b r a t i o n s of Some F l u o r o s u l f a t e -C o n t a i n i n g Compounds 119 22. Raman S p e c t r a o f Some I n t e r h a l o g e n F l u o r o s u l f a t e s and K S O 3 F 121 X X LIST OF TABLES cont'd. Page 23. V i b r a t i o n a l F r e q u e n c i e s of T r i a t o m i c Halogen and I o d i n e - C o n t a i n i n g I n t e r h a l o g e n C a t i o n s 125 24. Experimental Data f o r M i x t u r e s o f I C 1 2 S 0 3 F , I B R 2 S 0 3 F and I 3 S O 3 F i n 96% H 3 S O 4 130 25. E x p e r i m e n t a l Data f o r H a l o g e n a t i o n R e a c t i o n s of I 3 S 0 3 F and I B r 2 S 0 3 F w i t h B r 2 and C l 2 139 26. V i b r a t i o n a l S p e c t r a o f I C l 2 S b 2 F 1 1 and I B r 2 S b 2 F 1 1 147 27. T y p i c a l Donor-Acceptor Formation Reactions 151 28. Approximate F o r c e Constants f o r the C a t i o n s I C 1 2 + , I B r 2 + and I B r C l + i n V a r i o u s Compounds 156 29. C o r r e c t e d Molar Magnetic S u s c e p t i b i l i t i e s and E f f e c t i v e Magnetic Moments f o r I 2 S b 2 F 1 1 and B r 2 S b 3 F 1 6 a t V a r i o u s Temperatures 157 30. Magnetic S u s c e p t i b i l i t y Measurements o f X 2 + ( s o _ v ) C a t i o n s (X = I and Br) i n S o l u t i o n s of HS0 3F/SbF 5 171 31. E l e c t r o n i c T r a n s i t i o n s f o r I 2 + / B r 2 + and I B r + as C a l c u l a t e d from PES and as Observed i n V i s i b l e -U l t r a v i o l e t S p e c t r a 177 32. E x p e r i m e n t a l and Normalized C o n c e n t r a t i o n s of B r 2 + i n P r o t o n i c A c i d S o l u t i o n s and C a l c u l a t e d V a l u e s 184 33. Raman F r e q u e n c i e s , A b s o r p t i o n Maxima, and Bond Lengths f o r XY+ and XY S p e c i e s (X,Y = I, Br, Cl) 189 34. Resonance Raman F r e q u e n c i e s f o r S o l i d I 2 S b 2 F j _ _ and B r 2 S b 3 F 1 6 191 35. V i s i b l e - U l t r a v i o l e t S p e c t r a of I B r 2 S 0 3 F and V a r y i n g R a t i o s of I 2 + ( s o l v ) : B r 2 + ( s o l v ) i n H S 0 3 F / S b F 5 199 36. E x p e r i m e n t a l R e s u l t s on R e a c t i o n Products from 3:5 and 5:9 Molar M i x t u r e s o f I 2 S b 2 F 1 1 and B r 2 S b 3 F 1 6 201 37. Low Temperature I n f r a r e d V i b r a t i o n s of a Sample C o n t a i n i n g BrOSO F + excess Br 207 2 2 38. E l e c t r o n i c S p e c t r a of Some Bromonium (III) C a t i o n s i n S b F 5 2 1 2 39. Raman F r e q u e n c i e s f o r B r C l 2 S b F 6 • 3 . 46 S b F 5 213 40. A n a l y t i c a l Data f o r S b F 3 ( S 0 3 F ) 2 , S b F 4 ( S 0 3 F ) and and S b F 4 ( S 0 3 F ) .SbF 5 232 41. V i b r a t i o n a l F r e q u e n c i e s f o r Some Antimony (V) F l u o r i d e - F l u o r o s u l f a t e s 245 X L I S T OF TABLES c o n t ' d . Page 42. V i b r a t i o n a l F r e q u e n c i e s f o r C 1 0 2 S b F . ( S 0 3 F ) 2 and C 1 0 2 S b F 3 ( S 0 3 F ) 3 204 43. I n f r a r e d F r e q u e n c i e s o f t h e CIO2 G r o u p i n Some C h l o r y l Compounds 266 44. V i b r a t i o n a l F r e q u e n c i e s f o r C 1 0 2 S 0 3 F 270 x i LIST OF FIGURES Page 1. The C r y s t a l S t r u c t u r e of (CH3) 2 S n (SO3F) 2 7 2. Iodine (I) C h l o r i d e , M o l e c u l a r S t r u c t u r e 20 3. The C r y s t a l S t r u c t u r e of Br 2Sb 3F]_6 35 4. The C r y s t a l S t r u c t u r e of B r F 4 S b 2 F 1 1 43 5. The S t r u c t u r e of I C l 2 S b C l 6 - 44 6. The Charge D i s t r i b u t i o n i n the I C l 2 + C a t i o n . . . . 45 7. Apparatus f o r the P r e p a r a t i o n of S 2 0 g F 2 a n d FOS0 2F 52 8. F l u o r o s u l f u r i c A c i d D i s t i l l a t i o n Apparatus 53 9. R e a c t i o n V e s s e l s 56 10. C o n d u c t i v i t y C e l l 5 8 11. S 2 0 g F 2 - A d d i t i o n Trap 60 12. The I n f r a r e d Spectrum of BrOS0 2F a t 80°K from 1600 cm-1 to 200 cm~l 79 13. The I n f r a r e d Spectrum of I0S0 2F a t 80OK from 1600 cm-1 to 200 cm"! 85 14. The I n f r a r e d Spectrum of IOS0 2F a t 25°C between BaF 2 windows 1600-800 cm-1 Range. 89 15. S p e c i f i c C o n d u c t i v i t i e s i n HS0 3F of I 2 C 1 S 0 3 F and K S 0 3F a t 25.0°C 104 16. S p e c i f i c C o n d u c t i v i t i e s i n HS0 3F of I B r 2 S 0 3 F , IOS0 2F and KS0 3F a t 25.0OC ' 105 17. E l e c t r o n i c A b s o r p t i o n S p e c t r a from 700 to 250 nm o f I 3 S 0 3 F , I 2 B r S 0 3 F and I B r 2 S 0 3 F i n H 2S04(96%) a t 25QC 113 18. S p e c t r o p h o t o m e t r i c I d e n t i f i c a t i o n o f the I 2 B r * C a t i o n i n 96% H 2 S 0 4 a t 25QC 114 19. Walsh Diagram o f E l e c t r o n i c T r a n s i t i o n s f o r 20-e System AB 2 116 20. Raman Spectrum of I C 1 2 S 0 3 F . . 120 21. Magnetic S u s c e p t i b i l i t i e s o f I 2 + and B r 2 + from 80 t o 300°K. . 165 22. Magnetic Moments of I 2 + and B r 2 + from 80 t o 300°K 166 23. P o t e n t i a l Energy Diagram f o r I 2 and I 2 + ( I d e a l i z e d ) 175 24. E l e c t r o n i c Spectrum of I 2 + 178 25. The B r 2 + C a t i o n i n P r o t o n i c A c i d s 181 26. Resonance Raman Spectrum (Stokes Region) of B r 2 + i n S o l i d B r 2 S b 3 F 1 6 190 x i i LIST OF FIGURES cont'd. Page 27. I n f r a r e d Spectrum o f B r O S 0 2F + excess B r 2 a t 80°K i n the r e g i o n 2000-200 cm -! 206 28. Raman Spectrum of B r F ( S 0 3 F + i n S b F 5 221 29. 1 9 F NMR of S b F 4 ( S 0 3 F ) 238 30. Raman Spectrum of SbF 4 (S0 3F) • S b F 5 243 31. I n f r a r e d S p e c t r a o f SbF 4 (SO3F) • SbFs 244 32. S t r u c t u r a l P o s s i b i l i t i e s f o r S b F 4 (S0 3F) • S b F 5 246 33. Raman Spectrum of SbF 4 (S0 3F) 250 34. I n f r a r e d Spectrum of S b F 4 ( S 0 3 F ) 252 35. Raman Spectrum of S b F 3 ( S 0 3 F ) 2 254 36. I n f r a r e d Spectrum of S b F 3 ( S 0 3 F ) 2 a t 250C from 1600 t o 800 cm-1 255 37. Raman Spectrum of C 1 0 2 S b F 4 (S0 3F) 2 262 38. Raman Spectrum of C 1 0 2 SbF 3 (S0 3F) 3 263 39. I n f r a r e d Spectrum o f C 1 0 2 S 0 3 F a t 80°K between 1600 and 200 cm-1 269 ACKNOWLEDGMENTS My extreme thanks are g i v e n t o Dr. F e l i x Aubke f o r the a d v i c e , encouragement and time which he expended on my b e h a l f concerning t h i s r e s e a r c h t o p i c and the p e r s o n a l i n t e r e s t he took i n me d u r i n g my graduate years a t U.B.C. S p e c i a l thanks are extended t o Dr. John W i n f i e l d f o r h e l p i n o b t a i n i n g the low temperature I n f r a r e d s p e c t r a and many hours of h e l p f u l d i s c u s s i o n . Thanks are a l s o g i v e n t o Dr. P h i l A. Yeats and Mr. John R. D a l z i e l f o r use-f u l and t i m e l y comments on the I X 2 + system. I should- a l s o l i k e t o take t h i s o p p o r t u n i t y t o thank my t y p i s t s , Mrs. B e t t y Jackson and Mrs. E l l e n Moore, f o r t h e i r e f f o r t s i n p r e p a r i n g t h i s manuscript. F i n a l l y , but most i m p o r t a n t l y , I wish t o thank my w i f e , Denise, f o r the k i n d u n d e r s t a n d i n g and p a t i e n c e which she showed d u r i n g my years o f r e s e a r c h study. I. GENERAL INTRODUCTION INTRODUCTORY REMARKS Halogen f l u o r o s u l f a t e s , i n p a r t i c u l a r the monofluoro-s u l f a t e s of the type XOS0 2F, where X = F, C l , Br or I, have generated c o n s i d e r a b l e i n t e r e s t i n r e c e n t y e a r s . Of the chemical r e a c t i o n s r e p o r t e d f o r these compounds, the o x i d a -t i v e a d d i t i o n o f d i a t o m i c halogen and i n t e r h a l o g e n molecules to the h e a v i e r halogen m o n o f l u o r o s u l f a t e s ( IOS0 2F and BrOS02F) seemed to be a p r o m i s i n g route to p o l y - h a l o g e n and - i n t e r -halogen f l u o r o s u l f a t e s . Only a l i m i t e d number o f t h i s type of r e a c t i o n has been i n v e s t i g a t e d and a s y s t e m a t i c study was needed. Poly-halogen o r - i n t e r h a l o g e n f l u o r o s u l f a t e s may be expected t o c o n t a i n the c o r r e s p o n d i n g p o l y - h a l o g e n or - i n t e r -halogen c a t i o n s which have a t t r a c t e d c o n s i d e r a b l e a t t e n t i o n r e c e n t l y . They may a l s o be e x c e l l e n t p r e c u r s o r s f o r the very same c a t i o n s i n s u i t a b l e non-aqueous s o l v e n t s such as p r o t o n i c a c i d s (H2SO4, HSO3F or s u p e r a c i d media), or a n o n - p r o t o n i c s o l -v ent, l i q u i d S b F 5, which i s perhaps the s t r o n g e s t Lewis a c i d . The use of SbF^ as a s o l v o l y s i n g medium f o r f l u o r o s u l -f a t e s has been demonstrated f o r o n l y one example^, which was r e p o r t e d as C 1 0 2 S 0 3 F + 3 S b F 5 > C 1 0 2 + S b 2 F 1 ^ + S b F 4 ( S O 3 F ) t . T h i s r e a c t i o n , however r e q u i r e d more thorough a t t e n t i o n w i t h r e s p e c t to the c a t i o n s formed and the v o l a t i l e ant imony (V) f l u o r i d e - f l u o r o s u l f a t e o b t a i n e d i n t h i s r e a c t i o n . In any e v e n t , the f l u o r o s u l f a t e s o f c u r r e n t i n t e r e s t here s h o u l d be s u i t a b l y s t u d i e d i n p r o t o n i c and n o n - p r o t o n i c s o l v e n t s . S o l -u t i o n s o f these types s h o u l d be c a p a b l e o f s t a b i l i z i n g the p o l y - h a l o g e n and - i n t e r h a l o g e n c a t i o n s , and s h o u l d be u s e f u l as r e a c t i o n media f o r the c a t i o n s . B e s i d e s t y p i c a l n o n -aqueous s o l v e n t t e c h n i q u e s , such as c o n d u c t o m e t r y , e l e c t r o n i c s p e c t r o s c o p y and o r 1 9 F NMR, I n f r a r e d and Raman s p e c t r o -scopy s h o u l d p r o v i d e p r e l i m i n a r y s t r u c t u r a l i n f o r m a t i o n i n the c o n t e x t o f t h i s s t u d y . The main s u b j e c t s b r i e f l y ment ioned above ( v i b r a t i o n a l s p e c t r o s c o p y , non-aqueous s o l v e n t s , ha logen f l u o r o s u l f a t e s , and p o l y - h a l o g e n and - i n t e r h a l o g e n c a t i o n s ) w i l l now be d i s -c u s s e d i n the f o l l o w i n g s e c t i o n s to p r o v i d e the n e c e s s a r y d e t a i l e d background f o r the ex tended s t u d y . V i b r a t i o n a l t r e n d s i n the SO3F group The f l u o r o s u l f a t e group may be assumed t o have a t l e a s t f i v e d i f f e r e n t types o f b o n d i n g arrangements which r e s u l t i n w e l l d i f f e r e n t i a t e d v i b r a t i o n a l s p e c t r a . These v a r i o u s p o s -s i b i l i t i e s may be d i s t i n g u i s h e d r o u g h l y a c c o r d i n g t o T a b l e 1. In p u r e l y i o n i c s a l t s such as KSO-jF, f o r which the c r y -2 _ s t a l s t r u c t u r e has been done , the S0 3 F group posse s se s C 3 v symmetry w i t h 6 v i b r a t i o n a l modes, a l l I n f r a r e d and Raman a c t i v e 3 . Three modes a r e d o u b l y degenerate o f type E and t h r e e o t h e r s a r e s i n g l y degenera te o f type A - ^ The c o r r e l a t i o n d i a -gram shown i n T a b l e 2 l i s t s the f r e q u e n c i e s and ass ignments 3 TABLE 1 S t r u c t u r a l Bonding D i f f e r e n t i a t i o n f o r the SO3F Group l o c a l SO3F group sym-metry d e s c r i p t i o n of bonding p a t t e r n number of funda-mentals d i a g n o s t i c v i b r a t i o n a l mode and frequency '3v i o n i c t r i d e n t a t e t e t r a d e n t a t e 6 6 6 v S-F v S-F v S-F 800-700cm 850cm" 1 650cm" 1 -1 c o v a l e n t monodentate 9 c o v a l e n t b i d e n t a t e 9 v S-0 900-750cm J-v S 0 3 ( 3 r d ) 1080 -950cm _ 1 f o r t h i s molecule. In t h i s case a l l t h r e e oxygen atoms are e q u i v a l e n t and e q u i d i s t a n t from the s u l f u r atom. O c c a s i o n a l l y s m a l l p e r t u r b a t i o n s have been observed on f l u o r o s u l f a t e compounds which may be caused by a p o l a r i z i n g c a t i o n , such as L i + i n L i S 0 3 F 4 , or a n o n - s p h e r i c a l c a t i o n , such as NO + i n NOS0 3F. Tab l e 2 i l l u s t r a t e s how the degener-a c i e s of the E modes are removed i n the case of NOSO3F . The r e s u l t i n g s p l i t t i n g s of the E mode are b e s t n o t i c e d i n the SO s t r e t c h i n g r e g i o n . I n t e r e s t i n g to note i s t h a t n e i t h e r the f r e q u e n c i e s of c l a s s A^ nor those of c l a s s E, when the average v a l u e of i t s two v i b r a t i o n s i s taken, are s u b s t a n t i a l l y a f f e c t e d TABLE 2 Correlation Diagram for the Fluorosulfate Group ( C 3 v ) a) unperturbed KSO3F3 b) perturbed NOSO3F5 Covalent (C s) Monodentate F0SO 2F 7 Bridging (C s) Bidentate F 2 S n ( S 0 3 F ) 2 8 Tridentate ( C 3 y ) Bridging CO I l :(S03F)2 9 Tetradentate ( C 3 v ) Bridging T i 3 C l 1 0 ( S O 3 F ) 2 1 0 v a s y m S°3 v s y m S0 3 v 4E ViAj ^ l ^ c m " 1 ^ 1084cm"1 1278cm - 1 1246cm"1 1077cm"1 (1262cm - 1) vasymS02 vsym S 02 v SO v 7 A " v : A ' v 2A' 1502cm"1 1250cm - 1 788cm - 1 v SO3 v S0 3 v S0 3 v 7 A" VxA" v 2 A ' 1420cm"1 1101cm"1 1068cm - 1 vasym s o3 v Sym S0 3 1265cm"1 1109cm - 1 v a s J n S°3 v S j S 0 3 1248cm"1 1082cm"1 ^SF 6 a s y m S0 3 v 2 A x v 5E 741cm"1 587cm - 1 755cm 600cm 588cm (594cm - 1) v SF 6bend s o2 Yrock S 02 V3A1 " Vi^A' vsA" 857cm"1 577cm"1 530cm"1 v SF 6 SO3F 6 SO3F v 3 A ' VijA1 veA" 855cm - 1 630cm - 1 590cm - 1 U L 6asym S 03 v 2 A i y 5E 850cm"1 610cm"1 I I v SF <Sasym S O 3 V 2 A j V 5 E 660cm"1 592cm"1 5sym s°3 Prock v 3 A ! v 6E 571cm 1 405cm 1 570cm 1 416cm 1 403cm 1 (409cm"1) / \ VwagSF YtwistS02F T t o r s j o n S 0 2 F v 5A' v 9A" v 6A' 500cm"1 390cm"1 395cm"1 6 SO3F YrockSC-2 TtorsionS0 3F v 5A' v 9A" v 6A' 548cm - 1 430cm - 1 280cm - 1 6sym s 0 3 Prock v 3 A i v 6E 568cm 1 420cm 1 ^syro s o3 Prock v 3 A : v 5E 579cm - 1 390cm - 1 5 when compared to KSO3F. Another cause f o r o b s e r v a b l e s p l i t -t i n g s o f the E mode i s the s i t e symmetry e f f e c t . In t h i s s i t -u a t i o n the SO^F i o n i s p l a c e d on a c r y s t a l l o g r a p h i c s i t e which i s o f lower symmetry than i s normally g i v e n t o SO3F as a f r e e i o n . Furthermore, a u n i t c e l l may c o n t a i n more than one type of SO3F i o n w i t h r e s p e c t t o o r i e n t a t i o n of c a t i o n s to anions. T h i s o f t e n r e s u l t s i n the d u p l i c a t i o n o f most i f not a l l of the fundamentals, r e g a r d l e s s of symmetry (e.g. S r ( S O 3 F ) 2 ) ^ . I f the SO3F group's f u n c t i o n a l i t y i s changed from i o n i c to a c o v a l e n t monodentate type, then s e v e r a l f e a t u r e s emerge. The most s t r i k i n g i s the i n c r e a s e from 6 to 9 of the number of v i b r a t i o n a l modes which are found. In a d d i t i o n , the f r e q u e n c i e s of s e v e r a l modes may d r a s t i c a l l y change. In the case of FOSO2F, one of the b e s t cases o f a monodentate, c o v a l e n t l y bonded f l u o r o s u l f a t e group, 9 bands have been a s c r i b e d t o the 7 -OSO2F group and are d e s c r i b e d i n Table 2. A l l three E modes of the i o n i c SO3F group have s p l i t i n t o p a i r s o f A and A" modes as mandated by the symmetry c o n s i d e r a t i o n s f o r a mole-c u l e of C s p o i n t group, and the A_ modes are c o n v e r t e d i n t o A' modes. Again a l l A* and A" modes are both I n f r a r e d and Raman a c t i v e . The e f f e c t on the SO3F modes as a r e s u l t .of one oxygen atom bonding to such an e l e c t r o n e g a t i v e atom such as F should be p o i n t e d out. F i r s t l y , an obvious s h i f t t o lower cm ^'s i s d i s c o v e r e d f o r the v s -0 (the s i n g l y bonded oxygen to s u l f u r ) , from 1084 cm to 788 cm - 1, w h i l e a s h i f t to h i g h e r cm _ i's from 1285 c r n ^ t o ^ 1375 cm - 1, i s noted f o r the average v a l u e of v a S y m SO2 and v S y m S 0 2 . Secondly, the v a l u e f o r v S-F has i n c r e a s e d remarkably from 741 cm t o 857 cm-'*". These e f f e c t s can be accounted f o r by the a b i l i t y of h i g h l y e l e c t r o n e g a t i v e f l u o r i n e atom bonded to oxygen to withdraw e l e c t r o n i c s t r e n g t h from the f l u o r o s u l f a t e group i n g e n e r a l . When the SO^F group has a c o v a l e n t b i d e n t a t e b r i d g i n g f u n c t i o n a l i t y , i t s symmetry remains C g but can be e a s i l y d i s t i n g u i s h e d from a c o v a l e n t monodentate group. F2Sn(S0 3F)2 i s a good example where the f l u o r o s u l f a t e moiety i s b i d e n t a t e Q b r i d g i n g . In t h i s case the lowest v SO3 moves to h i g h e r energy and has been u s u a l l y observed i n the r e g i o n 1080-950 cm ^ as compared to the r e g i o n 900-750 cra"^ f o r c o v a l e n t monodentates The average v a l u e f o r the two h i g h e s t v SO3 f r e q u e n c i e s i s always ^ 1265 cm~^, much lower than those f o r c o v a l e n t mono-dentate s p e c i e s (^1370 cm--*-). The s t r u c t u r e a s s o c i a t e d w i t h such b r i d g i n g groups i n t i n compounds has been v e r i f i e d by 119 " 11 Sn Mossbauer Spectroscopy and a c r y s t a l s t r u c t u r e f o r 12 the i s o s t r u c t u r a l compound (CH3) 2 Sn (S0 3F )2 as i n F i g u r e 1. The two o t h e r d i f f e r e n t l y bonded SO3F groups can next be t r i d e n t a t e and t e t r a d e n t a t e b r i d g i n g t y p e s . In both of these cases, the l o c a l SO3F group symmetry i s r a i s e d t o ^ 3 V (as was the case f o r the i o n i c model). As expected, the t o t a l number o f f l u o r o s u l f a t e v i b r a t i o n a l modes has decreased to 6 i n each, 3 modes of the type E and 3 more of type A^. In the t r i d e n t a t e b r i d g i n g case, where b r i d g i n g i s through T T 9 a l l t h r e e oxygen atoms, CoXJ-(SC>3F)2 l s a good example . Here the c o b a l t atom i s presumed t o be surrounded o c t a h e d r a l l y 7 The Crystal Structure of (CH 3 ) 2 Sn(SQ 3 F) 2 One polymeric layer viewed along a* Bonddistances A Sn €> O s o Sn-- C 2 . 0 6 5 (9) Sn-- 0(1) 2 . 2 7 0 ( 6 ) Sn-- 0 ( 2 ) 2 .271 (7) S - O( l ) 1 . 4 3 7 (8) s- 0(2) 1 . 4 2 8 (7) S - 0(3) 1.422(11) S - F 1 . 5 0 4 ( 8 ) *F.H. A l l e n , D.A.Lerbscher and Z).Trotter. D.Chem. Soc . (A) 2507 , (1971) . F i g u r e 1. by s i x oxygen atoms from SO^F groups. The i n f r a r e d f r e q u e n c i e s f o r v a S y T O SC>2 and v s ^ m SO3 have now resumed t h e i r p o s i t i o n s comparable to those f o r K S O ^ F , but the v S - F frequency has i n c r e a s e d by *v 100cm ^ to 850cm ^. T h i s can be viewed as a n a t u r a l i n c r e a s i n g of s t r e n g t h of the s u l f u r - f l u o r i n e bond as a l l t h r e e of the oxygen atoms are now e f f e c t i v e l y c o o r d i n a t i n g to the c o b a l t atom. The o n l y r e p o r t e d case to date of a t e t r a -dentate b r i d g i n g . SO3F group ( b r i d g i n g through the f l u o r i n e as w e l l as the oxygen atoms) i s i n the compound Ti3Cl_Q (SO3F) 2"*"° • Here i t has been assumed t h a t t i t a n i u m i s o c t a h e d r a l l y c o o r d i n -ated, which i s o n l y f e a s i b l e i f the SO3F group i s t e t r a d e n t a t e 13 b r i d g i n g . Again the v SO and v SO f r e q u e n c i e s are asym 3 sym 3 comparable to those i n KSO3F, but u n l i k e both C o 1 1 ( S O 3 F ) 2 and KSO3F, the v S-F frequency has decreased to ^660cm \ T h i s marked s h i f t f o r v S-F has been e x p l a i n e d by a weakening of the s u l f u r - f l u o r i n e bond as a r e s u l t of the f l u o r i n e atom 10 donating i n t o the t i t a n i u m HSO3F as a nonaqueous s o l v e n t F l u o r o s u l f u r i c a c i d i s a s t r o n g , very v e r s a t i l e i o n i z i n g 2 0 s o l v e n t . A u t o i o n i z a t i o n y i e l d s the f o l l o w i n g e q u i l i b r i u m 2 HSO3F v * H 2 S 0 3 F + + S 0 3 F ~ (acidium ion) (base ion) The a d d i t i o n of a s o l u t e c o n t a i n i n g the f l u o r o s u l f a t e group i s expected to a f f e c t the acidium and base i o n c o n c e n t r a t i o n s i n a d i r e c t and uncomplicated manner, unl e s s the s o l u t e i s a n o n e l e c t r o l y t e . For t h i s reason HSO^F should be an i d e a l 9 s o l v e n t f o r the study of poly-halogen and - i n t e r h a l o g e n f l u o r o -s u l f a t e s . As Tab l e 3 shows, i t has a very c o n v e n i e n t l i q u i d range, a h i g h d i e l e c t r i c c o n s t a n t and an e a s i l y measured s p e c i f i c conductance. TABLE 3 P h y s i c a l P r o p e r t i e s of Some Strong Oxy A c i d s H C i o / 8 4 19 HN0 3 20 HS0 3F b o i l i n g p o i n t (°C) 4 3° w/7 t o r r 1 4 52° w/10 t o r r decomp w/higher p r e s s u r e s 82.6°w/decomp 162.7 f r e e z i n g p o i n t (°C) -100° 1 5 -41.6° -88.98 d e n s i t y 1.7608 1 6 1.504 1.726 v i s c o s i t y ( c e n t i p o i s e ) 0.795@20°C 1 7 7.46 0 25°C 1.56 @ 25°C d i e l e c t r i c con-s t a n t ^50+10 @ 14°C %120 @ 25°C s p e c i f i c conduc-tance (fi~ 1cm~ 1) 3.72X10" 2 @ 25°C •v.1. 08X10" 4 @ 25°C S i n c e q u i t e a few halogen p e r c h l o r a t e s and n i t r a t e s are known, i t might seem t h a t the HClO^ and HNO3 systems would be e q u a l l y i n t e r e s t i n g to i n v e s t i g a t e . The main advantage o f HSO3F over HClO^ and HNO3, however, i s found i n the absence o f . 19 any s e l f - d e h y d r a t i n g e q u i l i b r i a such as 2 HNO3 v H_0 + N 2 0 5 . In a d d i t i o n , HCIO4 and HNO3 are c o n s i d e r e d to be s t r o n g o x i d i z -i n g s o l v e n t s x 8 ' x ^ which are q u i t e d i f f i c u l t t o o b t a i n i n the pure s t a t e . 100% pure HSO3F i n c o n t r a s t i s e a s i l y o b t a i n e d commercially and i s e a s i l y p u r i f i e d by d i s t i l l a t i o n i n the 3 3 l a b o r a t o r y . The p o s s i b l e s e l f - d i s s o c i a t i o n e q u i l i b r i u m H S 0 3F s HF + SO3 27 does not appear t o p l a y a s i g n i f i c a n t r o l e a t 25°C . The 20 HSO^F s o l v e n t system has been p r e v i o u s l y w e l l s t u d i e d , and a few s a l i e n t f e a t u r e s w i l l be mentioned here. The s p e c i f i c conductance has been e a s i l y accounted f o r wi t h the E^SO-jF"1" and SOjF" i o n s , which c o n t r i b u t e t o the t o t a l s p e c i f i c conductance depending upon not o n l y t h e i r c o n c e n t r a - , t i o n s but a l s o upon t h e i r i o n m o b i l i t i e s . I t has been shown t h a t both the H 2 S 0 3 F + and S 0 3F~ i o n s have u n u s u a l l y l a r g e m o b i l i t i e s when compared t o those f o r o t h e r i o n s produced from 21 d i s s o l u t i o n of v a r i o u s s o l u t e s i n HSO3F . T h i s i m p l i e s t h a t a proton-jump mechanism i s a t l e a s t p a r t i a l l y r e s p o n s i b l e f o r 2 2 the t r a n s f e r of e l e c t r i c charge i n s o l u t i o n , much l i k e t h a t 23 proposed f o r U^SO^ . The e f f e c t o f v i s c o s i t y of the s o l v e n t (1.56 cp f o r HSO3F vs 7.46 cp f o r H^SO^) should have an e f f e c t on the i o n m o b i l i t i e s f o r c a t i o n s and anions o f v a r i o u s s o l u t e s p l a c e d i n s o l u t i o n as seen i n Table 4. TABLE 4 M o b i l i t i e s of V a r i o u s Ions i n HSO_,F and H-^ SO^  In the f l u o r o s u l f u r i c a c i d s o l v e n t system, a base i s d e f i n e d as any substance t h a t i n c r e a s e s the c o n c e n t r a t i o n of SO-jF i o n s , and an a c i d i s one t h a t i n c r e a s e s the c o n c e n t r a -t i o n of H 2 S 0 3 F + i o n s . KSO^F has a r b i t r a r i l y been chosen as a standard base s i n c e i t has been shown to be completely i o n -21 27 i z e d by cryoscopy and c o n d u c t i v i t y s t u d i e s i n HSO^F ' KS0 3F > K + + S 0 3F~. In c o n d u c t i v i t y experiments i t has been found c o n v e n i e n t t o d e s c r i b e a q u a n t i t y y which r e p r e s e n t s the number o f SO^F - or H 2 S 0 3 F + i ° n s Produced by the i o n i z a t i o n of one mole of s o l u t e . Thus y would equal 1 f o r a s t r o n g base such as KSO3F. For o t h e r s o l u t e s , y can be d e f i n e d as r a t i o o f the m o l a l i t y o f the s o l u t e t o the m o l a l i t y of KSO3F a t some s p e c i f i c conduct-a n c e ' m ' s o l u t e / m K S 0 3 F 2 5 * Although most compounds behave as bases i n HSO3F, due to the s o l v e n t ' s h i g h l y a c i d i c n ature, o t h e r compounds do be- . 26 22 have as a c i d s , such as SO-, and SbF.-3 b S 0 3 + 2 H S 0 3F _ •» H 2 S 0 3 F + + S ^ F " " S b F 5 + 2 H S 0 3F 3> HSbF 5 ( S 0 3F) + HSO3F izzz, H 2 S 0 3 F + + S b F 5 ( S 0 3F) I t was shown t h a t the a c i d HSbFc ( (S0 3F) i s merely a weak a c i d _ 3 (Ka = 3.7 X 10 ) i n t h i s s o l v e n t system. When both S b F 5 and S 0 3 are p l a c e d i n HSO3F, however, the a d d i t i o n a l presence of up to t h r e e moles of S 0 3 per mole of S b F 5 can i n c r e a s e the a c i d i t y of the system f a r t h e r . T h i s i s commonly c a l l e d the " s u p e r a c i d " system. The i n c r e a s i n g l y s t r o n g e r a c i d s H S b F ^ ( S O 3 F ) H S b F 3 ( S 0 3 F ) 3 and H S b F 2 ( S O 3 F ) 4 are formed a c c o r d i n g t o the gen-22 e r a l e q u a t i o n , the l a t t e r o f which i s completely i o n i z e d , n SbF 5 + m S 0 3 + 2HS0 3F ; = ± H 2 S 0 3 F + + S b . F ^ S C ^ F ) " + 1 n = 1 , 2 ; m = 0 , 1 , 2 , 3 . Another important a s p e c t o f HSO3F a r i s e s from i t s use-f u l n e s s as a s o l v e n t f o r v i s i b l e and u l t r a v i o l e t s p e c t r a be-cause of i t s tr a n s p a r e n c y i n these r e g i o n s up t o ^ 230 nm. The SO^F - i o n i s c o n s i d e r e d t o be very weakly b a s i c o r n u c l e o -p h i l i c ; hence, such e l e c t r o p h i l i c c a t i o n s such as I 2 + » I 3 + and I,- + are capable of e x i s t e n c e 3 ^ . With time, though, s o l -u t i o n s o f I g + are found t o be s l o w l y o x i d i z e d t o brown s o l -u t i o n s o f T.3 + 3 0 , thereby c o n f i r m i n g the independent observa-t i o n s t h a t HSO3F i s a very weak o x i d i z i n g agent w i t h r e s p e c t 31 t o I 2 , which a l s o forms brownish c o l o r e d s o l u t i o n s r a t h e r 32 than p u r p l e ones such as i n H 2 S 0 4 . T h i s has been a t t r i b u t e d to the presence of s m a l l amounts of SO^ even i n h i g h l y p u r i f i e d a c i d . T h i s may be caused e i t h e r by the d i s s o c i a t i o n o f HSO3F or by t r a c e amounts of SO3 i m p u r i t y c o l l e c t e d by d i s t i l l a t i o n 20 of the a c i d a t h i g h temperatures . In any case, s o l v e n t o x i d a t i o n can be r e a d i l y d e t e c t e d i n e l e c t r o n i c s p e c t r a where very low c o n c e n t r a t i o n s o f s o l u t e s are needed because of the h i g h l y c o l o r e d c a t i o n s . Besides i t s u s e f u l n e s s f o r conductometric s t u d i e s , HSO3F 27 has been employed f o r c r y o s c o p i c s t u d i e s as w e l l , d e s p i t e i t s r e l a t i v e l y low f r e e z i n g p o i n t (- 88.98°C). On the ot h e r hand, because o f i t s low f r e e z i n g p o i n t , low temperature I ^ F NMR s t u d i e s have o f t e n g i v e n v a l u a b l e i n f o r m a t i o n about v a r i o u s s p e c i e s i n s o l u t i o n when exchange processes have been s u f -2 8 29 f i c i e n t l y slowed down ' . i n a d d i t i o n , Resonance Raman + 34 s p e c t r a of v a r i o u s c a t i o n s , e.g. I 2 r i n HSO3F have been made, o f t e n i n very low c o n c e n t r a t i o n s . T h i s has allowed the d i r e c t o b s e r v a t i o n s o f some s p e c i e s made otherwise i m p o s s i b l e u s i n g o t h e r t e c h n i q u e s . Other a c i d i c s o l v e n t s For the study o f e l e c t r o n i c ( v i s i b l e and u l t r a v i o l e t ) s p e c t r a o f s e v e r a l p o l y - h a l o g e n and - i n t e r h a l o g e n c a t i o n i c s p e c i e s , i t was found necessary t o employ s o l v e n t s o f v a r y i n g a c i d i t y . Because o f t h e i r h i g h l y e l e c t r o p h i l i c b e h a v i o r , the types o f po l y - h a l o g e n and - i n t e r h a l o g e n c a t i o n s t o be d i s -cussed can o n l y be s t a b i l i z e d i n ve r y weakly n u c l e o p h i l i c s o l v e n t s . Attempts t o generate, f o r example, the i o n i n H S 0 3CH 3, H P 0 2 F 2 o r H C 0 2CF 3 by d i s s o l v i n g s o l i d I 3 S 0 3 F have 35 r e s u l t e d i n the immediate p r e c i p i t a t i o n o f mo l e c u l a r i o d i n e T h e r e f o r e , s o l v e n t s which are extremely weak bases (or ve r y s t r o n g a c i d s ) c o n t a i n i n g anions o f very low b a s i c i t y are r e -q u i r e d . P o s s i b l e c h o i c e s i n c l u d e the p r o t o n i c a c i d s 96% H 2 S 0 4 , 100% H 2 S 0 4 , HSO3F, H S 0 3 C F 3 , s u p e r a c i d media ( H S 0 3F/SbF 5/so and the Lewis a c i d SbFr^ as p o t e n t i a l s o l v e n t s . N a t u r a l l y , each i s somewhat d i f f e r e n t from the o t h e r s and has i t s own char-a c t e r i s t i c s . Commercial grade c o n c e n t r a t e d E^SO^ i s commonly regarded t o be about 96% H 2 S 0 4 by weight; the o t h e r 4% i s H 20 which i s pre s e n t as H^O* a c c o r d i n g to H 20 + H 2 S 0 4 ^ H 3 0 + + HS0 4~ . Some convenient f e a t u r e s o f t h i s a c i d are i t s ease o f b e i n g o b t a i n e d commercially and i t s commercial p u r i t y . In 100% H 2S0 4, H 20 i s a s t r o n g base as shown above, thereby demonstrating the h i g h e r a c i d i t y o f 100% vs 96% 23 H 2 S 0 4 . Such a s o l u t e as SO^, though, i s c o n s i d e r e d an a c i d i n 100% H 2 S 0 4 forming the s t r o n g e r d i s u l f u r i c a c i d , H 2 S 2 0 7 3 6 ' 3 7 In f a c t , i t i s by the p r e c i s e a d d i t i o n o f S 0 3 (as fuming s u l -f u r i c a c i d ) or H 20 to s o l u t i o n s near 100% H 2 S 0 4 t h a t the e x a c t s t o i c h i o m e t r y can be a t t a i n e d by conductance measurements (1.0439+. 0.0005 X I O - 2 fi-1 cm" 1 a t 2 5 . 0 0 ° C ) 3 7 . The o r i g i n a l and b e s t check f o r 100% H 2 S 0 4 remains, however, the determina-3 8 t i o n o f i t s f r e e z i n g p o i n t (10.371°C) which decreases r a p i d l y w i t h any excess SO3 or H 20. A d i s t r e s s i n g f e a t u r e o f t h i s s o l v e n t system r e s t s w i t h i t s complexity of e q u i l i b r i a r e a c t i o n s 3 ^ ' 4 ^ which t o a s l i g h t degree produce f r e e SO3, a very good o x i d i z i n g agent. Many s o l u t e s are bases i n the a c i d i c 100% H 2 S 0 4 system, but few behave as a c i d s . Examples of the l a t t e r are HC10 4, which i s weak, and HSO^F, which i s c ^ ™ „ 4 1 s t r o n g 1 6 HSG^F as a s o l v e n t has been p r e v i o u s l y d e s c r i b e d i n the p r eceeding s e c t i o n , but to be emphasized here i s i t s s t r o n g e r a c i d i c nature than 100% l^SO^, i . e . , the weaker n u c l e o -p h i l i c i t y of i t s weakly b a s i c anion as compared to HSO^ . Of minor i n t e r e s t i s the f a c t t h a t HCIO^ i s a very weak base which 2 1 i s p r o t o n a t e d by the s o l v e n t HSO^F . Another a c i d i c s o l v e n t i s HSO^CF^, i t s e l f v ery s t r o n g , 42 t h a t has been compared to HCIO^ , and i s presumably a t l e a s t a weak base i n HSO^F. Other r e p o r t s suggest t h a t the s t r e n g t h of H S 0 3CF 3 i s comparable to or even g r e a t e r than H S 0 3 F 4 3 ~ 4 5 , im p l y i n g t h a t i t may be a n o n e l e c t r o l y t e or perhaps s l i g h t l y a c i d i c i n HSOjF. At any r a t e , t h e r e appears to be l i t t l e i n -d i c a t i o n t h a t i t d i s s o c i a t e s to form SO3 as r e p o r t e d f o r the 33 comparable a c i d HS0 3F. . The super a c i d media c o n s i s t i n g of H S 0 3F,SbF 5 and S 0 3 has been touched upon p r e v i o u s l y . Because of the presence of f r e e S 0 3 , s o l u t i o n s o f t h i s s o l v e n t system tend to be h i g h l y o x i d i z i n g , r e s u l t i n g i n some i n t e r f e r e n c e where low or i n t e r m e d i a t e o x i d a t i o n s t a t e s of the p o l y - h a l o g e n or - i n t e r -halogen c a t i o n s are encountered. I n t e r e s t i n g l y , SO2 as a s o l u t e a c t s as a non e l e c t r o l y t e i n t h i s s o l v e n t , f a i l i n g t o 46 be p r o t o n a t e d and a c t i n g as an i n e r t d i l u e n t . SO2 a l s o 4 7 i n c r e a s e s the s o l u b i l i t i e s o f o r g a n i c s o l u t e s c o n s i d e r a b l y A c i d s and bases are perhaps most commonly thought of i n Brbnsted terms or Gutmann solvo-system terms, but Lewis terms may a l s o be used. In t h i s l i g h t , SbF^ i s c l a s s e d as one of the s t r o n g e s t Lewis a c i d s 4 8 , and i s a weak a c i d i n HSO.,F. 4^' 2 2 Another means to compare the s t r e n g t h s of SbF5 and HSO^F can be made through the s o l u t e S 0 2 . Since SC^ i s a n o n e l e c t r o l y t e and not p r o t o n a t e d i n the HS0 3F/SbF 5/S0 3 s y s t e m 4 6 , i t i s doubt-f u l any d i f f e r e n c e would be observed i n HSO F. That i s , HS0 3F i s u n l i k e l y t o be s t r o n g enough to make SO^ behave as a base. For SbF^, though, an a d d i t i o n compound wit h SC>2 has been f i r m l y e s t a b l i s h e d by a c r y s t a l s t r u c t u r e where donation t o the a n t i -en *n mony atom i s made by an oxygen atom on s u l f u r ' . In a s o l u t i o n of SC>2 i n SbF^ t h i s a s s o c i a t i o n i s maintained as 19 2 8 evidenced by F NMR s t u d i e s , thereby demonstrating the Lewis a c i d s t r e n g t h of SbF5» Many compounds have been s t u d i e d 19 xn SbF^ f o r a c i d o r base beh a v i o r , mainly by F NMR t e c h -n i q u e s 2 8 ' 5 2 . Thus S0 2C1F, CH 3OS0 2F and SOF 2 were complexed v i a oxygen b r i d g i n g , r a t h e r than f l u o r i d e i o n a b s t r a c t i o n , t o 2 8 SbF 5 w i t h o n l y S 0 2 F 2 a c t i n g as an i n e r t d i l u e n t ; s i m i l a r l y c o 29 oxygen b r i d g e d complexes were d e t e c t e d f o r H 20 and H2S0 4 , making a l l these molecules Lewis bases. At the p r e s e n t , few i f any molecules have been found to be a c i d s i n SbF,.. Some l i m i t a t i o n s e x i s t ; antimony p e n t a f l u o r i d e has been shown t o be 5 3 an o x i d i z i n g agent , and has a very low s p e c i f i c conductance (7.4 X 10~ 8 f T 1 cm" 1) a t 2 5 ° C 5 4 and i s s a i d to be a non-conductor. SbF^ a l s o has an extremely h i g h v i s c o s i t y (460 c p . ) which s e v e r e l y l i m i t s i t s a p p l i c a b i l i t y as a s o l v e n t f o r i o n -i z i n g s o l u t e s . The c h o i c e of a s o l v e n t f o r poly - h a l o g e n and - i n t e r -halogen c a t i o n s , t h e r e f o r e , must be made w i t h two primary con-s i d e r a t i o n s i n mind. F i r s t , the a c i d i t y of the system must be such t h a t no n u c l e o p h i l e i n the s o l v e n t w i l l a t t a c k the extremely e l e c t r o p h i l i c c a t i o n s , and second, the o x i d i z i n g a b i l i t y o f the s o l v e n t must be low. The p o l y - i o d i n e c a t i o n s may serve as an i l l u s t r a t i o n o f these c o n s i d e r a t i o n s . I 2 + i s e s s e n t i a l l y completely d i s p r o p o r t i o n a t e d i n 100% H 2 S 0 4 i n t o I 3 + and an I + 3 s p e c i e s (probably I ( S O 4 H ) 3 )^ 6, but i s com-p l e t e l y s t a b l e i n the HSO^F/SbF^ s o l v e n t s y s t e m 3 4 . On the othe r hand, I 5 + i s o x i d i z e d i n HSO^F s o l u t i o n 3 0 , but i s com-57 p l e t e l y s t a b l e i n 100% H 2 S ° 4 * T n e m o s t s t r a i g h t f o r w a r d f o r m a t i o n o f p o l y - h a l o g e n o r - i n t e r h a l o g e n c a t i o n s i n a p r o -t o n i c a c i d may be seen as a simple e l e c t r o l y t i c i o n i z a t i o n of the co r r e s p o n d i n g f l u o r o s u l f a t e i n HSO^F, f o r example. In SbFc, , however, such c a t i o n s w i l l have to be produced by c h e m i c a l r e a c t i o n s such as o x i d a t i o n s by the s o l v e n t o r an a d d i t i o n a l reagent, o r by s o l v o l y s i s p r o c e s s e s . In c o n t r a s t to p r o t o n i c a c i d s o l v e n t systems which have been developed along the l i n e s o f w a t e r - l i k e systems where many p h y s i c a l and i n s t r u m e n t a l methods are a p p l i c a b l e , SbF^ has been mostly used as a chemical reagent o r as a component i n s u p e r a c i d media r a t h e r than as a s o l v e n t system. HALOGEN FLUOROSULFATES  General p o i n t s For many ye a r s b e f o r e s o p h i s t i c a t e d p h y s i c a l measure-ments c o u l d be a p p l i e d , c a t i o n s such as I + were being formu-l a t e d i n s o l i d s and melts or as i n t e r m e d i a t e s i n p r o t o n i c a c i d s o l u t i o n s to e x p l a i n the i o d i n a t i o n of a r y l compounds^ 8. C e r t a i n l y i f the i o n i z a t i o n p o t e n t i a l s f o r the halogen atoms are c o n s i d e r e d , the most l i k e l y s t a b l e H a l + X c a t i o n would be I + (F, I.P. = 17.42 ev; C l , I.P. = 12.96 ev; Br, I.P. = 11.81 ev 59 + I, I.P. = 10.45 ev) . T h i s I s p e c i e s was assumed even as r e c e n t l y as 10-15 y ears a g o 6 ^ to be i n v o l v e d i n the e l e c t r o -61 62 l y t i c p r o c e s s e s o c c u r r i n g i n molten I 2 and IBr , and l i q u i d 6 3 ICI t o e x p l a i n t h e i r s m a l l s p e c i f i c conductances. The bond-i n g i n halogens has been d e s c r i b e d as being e x c l u s i v e l y co-v a l e n t , however, d e s p i t e the s m a l l conductance v a l u e s i n the melts or l i q u i d s . The s t a b l e d i a t o m i c i n t e r h a l o g e n s a r e a l s o p r e d i c t e d on e l e c t r o n e g a t i v i t y grounds to be c o v a l e n t 6 ^ even though p o l a r c o n t r i b u t i o n s may be expected i n these bonds. T h i s bond p o l a r i t y i s r e f l e c t e d i n d i p o l e moments f o r the gaseous molecules (0.63-1.29 debyes f o r C l F , BrF, ICI and IBr)^° _ -> -i _ i s p e c i f i c conductances i n the l i q u i d s t a t e (4.403 X 10 8 1 cm <-> ft 3 f o r ICI @ 26.75 C ) , and i n t e r m o l e c u l a r a s s o c i a t i o n s (Trouton c o n s t a n t = 27.2 f o r ICI @ 3 5 ° C ) 6 4 . The s o l i d s t a t e s t r u c t u r e of a - I C l i n F i g u r e 2 shows the compound to be extremely 65 a s s o c i a t e d . N e i t h e r the s o l i d s t a t e s t r u c t u r e nor the s p e c i f i c conductances i n the molten s t a t e can be r e a d i l y i n t e r -p r e t e d i n terms of I + . I t might be expected t h a t the g r e a t e s t p o l a r i z a t i o n f o r these types of compounds would be found i n IF; but t h i s s p e c i e s d i s p r o p o r t i o n a t e s e x t e n s i v e l y a c c o r d i n g to 5 I F » 2 I 2 + I F 5 at room temperature, and i s e x i s t e n t o n l y a t h i g h temperatures 20 Iodine (I) chloride, molecular structure 2.321 A a) gaseous ICI = (TV-(cT) b) solid ICI, a modification (segment) 2.44 A F i g u r e 2 6 6 under extreme c o n d i t i o n s . In none of these systems have 67 +1 paramagnetic p r o p e r t i e s been observed , where any Hal s p e c i e s would be expected t o have two un p a i r e d e l e c t r o n s i f i o n i c . I f any such c a t i o n i c s p e c i e s c o u l d be s t a b i l i z e d as a pure s a l t , i t would most l i k e l y be by the anion o f a s t r o n g a c i d , such as C104"~, N0 3~, S 0 3 C F 3 ~ or SC>3F~, or perhaps SbF g~. Indeed, s e v e r a l p e r c h l o r a t e s , n i t r a t e s and f l u o r o s u l f a t e s of the halogens are known, some of the p r o p e r t i e s o f which are i n c l u d e d i n Table 5. The s i m i l a r i t y o f these p r o p e r t i e s f o r compounds of these three types are q u i t e apparent which sug-gests s i m i l a r s t r u c t u r e s and bonding. G e n e r a l l y the f l u o r o -s u l f a t e s appear t o e x h i b i t a g r e a t e r thermal s t a b i l i t y . T h i s i s e s p e c i a l l y t r u e f o r the compounds formed w i t h bromine and i o d i n e — — IOS0 2F appears t o be the on l y u n i v a l e n t i o d i n e d e r i v a t i v e among them t o be s t a b l e a t room temperature. The f l u o r o s u l f a t e s have been shown to be h i g h l y v o l a t i l e and 7 6 s t r o n g l y o x i d i z i n g compounds , e s p e c i a l l y f o r f l u o r i n e , c h l o r i n e and bromine. The i o d i n e m o n o f l u o r o s u l f a t e , l i k e the l e s s s t a b l e n i t r a t e , i s a s o l i d and i s a l s o a very r e a c t i v e 7 8 s p e c i e s . I t sho u l d be remarked t h a t even though Br(I) and 1(1) n i t r a t e s and p e r c h l o r a t e s may be s t a b i l i z e d by the 79 a d d i t i o n o f two moles of p y r i d i n e , complexes o f t h i s type are not known f o r the f l u o r o s u l f a t e s and t h e i r study was con-s i d e r e d to be beyond the scope o f t h i s work. Bes i d e s the p h y s i c a l p r o p e r t i e s g i v e n i n Table 5, vapor d e n s i t y measure-ments f o r FOS0 2F 7 5 and C10S0 2F 7 6 / 8° , m o l e c u l a r weight s t u d i e s f o r Broso 2F 7 7, 1 9 F NMR s t u d i e s 8 1 and v i b r a t i o n a l s p e c t r a f o r FOS0 2F 7 5' 7 C10S0 2F 7 / 8 2 and .BrOS0 2F 8 3 a l l g i v e evidence f o r c o v a l e n t l y bound monomeric molecules i n the gas phase w i t h a tendancy toward i n t e r m o l e c u l a r a s s o c i a t i o n f o r the compounds 80 77 where X = C l and Br . These compounds may be somewhat 6+ 6 -p o l a r i z e d i n the sense X — OSC^F e s p e c i a l l y as X v a r i e s from C l to I r e s u l t i n g i n a p p r e c i a b l e s p e c i f i c c o n d u c t i v i t y 77 i n the l i q u i d s t a t e . Compounds of the type X(OS0 2F) 3 s i m i l a r l y have not been shown t o be i o n i c but p o l y m e r i c TABLE 5 Physical Properties of Some Oxy-Acid Halogen (I) Compounds Compound | Melting B o i l i n g Density Trouton X Point(°C) Point(°C) (g/ml) Constant Vapor Pressure Equation S t a b i l i t y and color Reference F -167.3 -15.9 4.85xl0"3 @25°C (gas) • — — colorless l i q u i d ; explodes on freezing 68 X O C I O 3 C l -117 +44.5 1.75 @21.2°C 22.6 logP(torr)=7.8156 1.568xl0 3 T(°K) pale yellow l i q u i d ; shock sensitive 69 Br Z -78 — — — — red l i q u i d ; decomposes @>-20°C; shock sensitive 70 F -181 -45.9 1.507 @-45.9°C 20.8 — colorless gas; explodes on warming >b.p. 71 XONO2 Cl Br -107 -42 +22.3 23.4 logP ( t o r r )=7.9892- 1.5094xl03 T(°K) yellow gas; yellow l i q u i d ; white s o l i d yellow l i q u i d ; yellow s o l i d ; decomposes @ 0°C 72, 73 72, 74 I t0 — — — — yellow s o l i d ; decomposes @ <v. - 5°C 72 F -158.5 -84.3 -31.5 +50.2 -31.3 +45.1 +117.3 1.770 22.15 24.0 25.75 logP ( t o r r )=6.56476-6.3906xl0 4  T 2 ( 0 K ) 1 ° 8 p ( t o r r ) = 8 - 1 ' 4 3 5 -1og p(torr)=8.544 -6.2687xl0 2 colorless gas; colorless 75 76 77 78,79 X O S 0 2 F Cl Br I @-69.7°C 1.711 @20°C 2.238 @ 25°C T(°K) 1.6745xl0 3 T(°K) 2.195xl0 3 T(°K) l i q u i d ; stable to -v300°C yellow l i q u i d ; yellow s o l i d red l i q u i d black s o l i d ; decomposes @ >200°C i n s t e a d ^ ' ^ ; t h e i r v i b r a t i o n a l s p e c t r a have been i n t e r p r e t e d i n terms of b r i d g i n g and t e r m i n a l f l u o r o s u l f a t e g r o u p s 8 4 . S i m i l a r p r o p o s a l s are r e p o r t e d f o r I (OCIO3) 3 8 5 , IfONO,^)^^ 86 and Br (ONC>2) 3 . Even when i n HSO3F s o l u t i o n , I ( O S c^F) 3 i s not markedly i o n i z e d , but does behave as a very weak e l e c t r o l y t e e x h i b i t i n g ampholytic b e h a v i o r ( b a s i c a t very low c o n c e n t r a t i o n s and a c i d i c a t h i g h e r c o n c e n t r a t i o n s of SO^F ions) . These con-c l u s i o n s a re p a r t l y supported by the e x i s t e n c e of the anion — 8 4 8 8 I(OSO_F) ; however, no co r r e s p o n d i n g c a t i o n i c s p e c i e s such as I ( O S 0 2 F ) 2 + ; presumably formed on b a s i c s o l v o l y s i s , has y e t been r e p o r t e d . I t should a l s o be mentioned t h a t when the v i s i b l e - u l t r a v i o l e t spectrum o f the l i g h t y e l l o w s o l u t i o n of I ( O S 0 2 F ) 3 i n HSO^F was s t u d i e d , no a b s o r p t i o n was noted a t wavelengths > 300nm8^. Below t h i s wavelength i n the u l t r a -v i o l e t r e g i o n , however, a b s o r p t i o n d i d begin t o take p l a c e and i n c r e a s e d i n i n t e n s i t y u n t i l the s o l v e n t prevented f u r t h e r measurement (^  240nm) w i t h no X_,_v being observed. In s o l u t i o n , the search f o r a s t a b l e H a l + ^ c a t i o n has been c o m p l i c a t e d by erroneous f i r s t r e p o r t s t h a t a s t a b l e b l u e c o l o r e d c a t i o n , I + , had been d i s c o v e r e d when I 2 was d i s s o l v e d o Q—9 3 i n oleum (H SO /SO ) . F u r t h e r work on t h i s system as 2 4 3 w e l l as i n HSO^F, u s i n g I_/S„0_.F mixtures i n the l a t t e r , J Z Z b Z however, proved t h a t the blue s p e c i e s was I 2 + ' ' When IOS0 2F i s added as a s o l u t e t o HSO3F, the same I 2 + s p e c i e s 7 8 has been i d e n t i f i e d s u p p o r t i n g the c o n c l u s i o n t h a t IOS0 2F + d i s p r o p o r t i o n a t e s t o I 2 and I(S03F)3 as suggested by o t h e r 30 workers . S i m i l a r d i s p r o p o r t i o n a t i o n r e a c t i o n s have been observed f o r BrOSC^F and 1:1 molar mixtures of B r 2 and 77 9 fi 9 7 S 2 ° 6 F 2 l n s u P e r a c i d ' u ' media. Here i t has been shown, though, t h a t BrOS0 2F e x i s t s i n e q u i l i b r i u m w i t h i t s d i s p r o -p o r t i o n a t i o n products B r 3 + , B r 2 + and B r ( S 0 3 F ) 3 . When C10S0 2F was formed i n s u p e r a c i d media by the r e a c t i o n o f C1F and S 0 3 , i t was found t o behave as a n o n e l e c t r o l y t e and remain s t a b l e q p to d i s p r o p o r t i o n a t i o n , no c o n c l u s i v e evidence was found f o r a C l + nor a C l 2 + c a t i o n i n t h i s s o l v e n t , perhaps the most h i g h l y a c i d i c system a v a i l a b l e . The l a c k o f evidence f o r a H a l + 1 i o n i n s o l u t i o n , though, does not n e c e s s a r i l y r u l e out such a s p e c i e s i n the s o l i d s t a t e f I O S 0 2F. In a phase st dy o f the l 2 / S 2 0 g F 2 ystem, 99 I O S 0 2F has been d e f i n i t e l y e s t a b l i s h e d . The e x i s t e n c e o f I + i n t h i s compound has t o be r u l e d out a g a i n , though, t h i s 7 8 time on the b a s i s o f diamagnetic b e h a v i o r f o r the s o l i d The phase study d i d p o i n t t o o t h e r p o l y i o d i n e c o n t a i n i n g com-pounds b e s i d e s IOS0 2F, namely I 3 S 0 3 F and I 7 S 0 3 F . P r e p a r a t i o n s Of the halogen p e r c h l o r a t e s , n i t r a t e s and f l u o r o -s u l f a t e s , the l a s t have been found i n g e n e r a l t o be much more e a s i l y prepared than the o t h e r s . These f l u o r o s u l f a t e com-pounds a l s o have much g r e a t e r thermal s t a b i l i t y compared t o the p e r c h l o r a t e s , XOCIO3 (X = F 6 8 ' 1 0 1 and C l 6 9 ) , which are 102 103 shock s e n s i t i v e , and the n i t r a t e s , X0N0 2(X = F ' , ^72,104-106 „ 72,74 , T74,107 x . . . ,, . C l , Br and I ), which g e n e r a l l y decompose below 20°C and may a l s o be e x p l o s i v e , e.g., FONO,,1^8. The halogen m o n o f l u o r o s u l f a t e s which are of primary i n t e r e s t here, may be prepared b e s t by one i f not two d i f f e r e n t r o u t e s . The f i r s t method a p p l i e s to each member of the . 76,78,100,109 s e r i e s X2 + S 2 ° 6 F 2 > 2 X 0 S 0 2 F (X = F, C l , Br and I) 110 where the "pseudohalogen" S O F (F0 9S00S0 9F) f o r m a l l y 2 6 2 ^ o x i d i z e s the halogen to +1. T h i s method can a l s o be used to prepare the o n l y two h a l o g e n t r i s f l u o r o s u l f a t e s 1 0 ^ as w e l l , a c c o r d i n g to X 2 + 3 S 2 O g F 2 ^ 2 X ( 0 S 0 2 F ) 3 (X = Br and I ) . Another method can be a p p l i e d to prepare the m o n o f l u o r o s u l f a t e s 75,80 by i n s e r t i o n of S 0 3 between an e l e m e n t - f l u o r i n e bond XF + S 0 3 > X0S0 2F (X = F and C l ) . I n t e r e s t i n g l y , i t i s t h i s same type of r e a c t i o n t h a t r e s u l t s i n S20gF 2 when S 0 3 i s used i n a 2:1 r a t i o w i t h p_8°,111,112^ Some s t r u c t u r a l a s p e c t s and chemical b e h a v i o r of the halogen-f l u o r o s u l f a t e s Even though no d e f i n i t e s t r u c t u r a l s t u d i e s have been done on any of the h a l o g e n f l u o r o s u l f a t e s , v i b r a t i o n a l s p e c t r o -scopy has been ab l e t o g i v e good s t r u c t u r a l i n f o r m a t i o n on a l l 26 except i o d i n e m o n o f l u o r o s u l f a t e . Laser Raman sp e c t r o s c o p y has been unrewarding f o r IOSC^F because of i t s very b l a c k c o l o r , which tends to absorb a l l the i n c i d e n t r a d i a t i o n and s c a t t e r s v ery l i t t l e l i g h t i n r e t u r n . Because of i t s h i g h r e a c t i v i t y a t room temperature w i t h n e a r l y a l l I n f r a r e d window m a t e r i a l except B a F 2 , o n l y l i m i t e d s p e c t r a had p r e v i o u s l y been o b t a i n e d -1 99 (BaF., ceases to be t r a n s p a r e n t below ^ 800 cm a t RT) . For t h i s problem, low temperature 80°K) I n f r a r e d s p e c t r o s c o p y was expected to be u s e f u l where the r e a c t i v i t y of the sample would be no problem, p r o v i d e d t h a t the IOSO^F c o u l d be e f -f i c i e n t l y sublimed onto the c o l d I n f r a r e d window. Using t h i s same technique, the low temperature I n f r a r e d spectrum of BrOSG^F, a more v o l a t i l e compound, should be a b l e to be examined 8 3 and compared to i t s p u b l i s h e d Raman spectrum i n o r d e r t o c l e a r up some d i s c r e p a n c i e s i n i t s p r e v i o u s assignment of modes, e s p e c i a l l y the v B r - 0 frequency. Very few c h e m i c a l r e a c t i o n s of I O S 0 2F are r e p o r t e d . The compounds XOSG^F, X = F, C l and Br, have a l l been shov/n cap-a b l e of a d d i t i o n a c r o s s a c=C double b o n d 7 6 . In a d d i t i o n i t has been shown t h a t FOSC^F can o x i d a t i v e l y add to i o d i n e -t r i s f l u o r o s u l f a t e , whereas BrOSC^F can a c t as a f l u o r o s u l -113 f o n a t i n g agent s u b s t i t u t i n g C l atoms i n c o v a l e n t c h l o r i d e s For I O S 0 2F one i n t e r e s t i n g new type of r e a c t i o n had been b r i e f l y i n v e s t i g a t e d which y i e l d e d a p o l y i o d i n e - c a t i o n - c o n -7 R t a i n i n g compound v i a o x i d a t i v e a d d i t i o n a c c o r d i n g to I 2 + I O S 0 2F ^ I3SO3F Beside t h i s , I3SO3F was a l s o l a t e r confirmed i n a phase study 99 of I 2 and S 2 0 g F 2 . The r e a c t i o n of C l 2 with I O S 0 2F was a l s o attempted, but o n l y a product of l e s s than 100% p u r i t y was 7 8 o b t a i n e d . T h i s was thought to be ICI2SO3F, but more study was needed. From these l a s t two examples, i t was hoped t h a t a l a r g e r group o f compounds l i k e these c o u l d be formed from I0S0 2F (and perhaps even BrOS0 2F) a c c o r d i n g t o X 2 + I O S 0 2F > I X 2 S 0 3 F XY + I O S 0 2F ). I X Y S 0 3F X,Y = C l , Br and I . These compounds would then be e x c e l l e n t p r e c u r s o r s f o r both p o l y - h a l o g e n and p o l y - i n t e r h a l o g e n c a t i o n s i n v o l v i n g i n p a r t -i c u l a r the h e a v i e r halogens, I, Br and C l , where i n c o n t r a s t to the e x t e n s i v e l y s t u d i e d area of f l u o r o c a t i o n s , l i t t l e work has been done. These new c a t i o n s c o u l d subsequently be s t u d i e d i n non-aqueous s o l u t i o n s as w e l l as i n the s o l i d s t a t e . More d e t a i l on these k i n d s of c a t i o n s w i l l be g i v e n i n the next s e c t i o n s . Another type of r e a c t i o n f o r IOSC>2F and BrOS0 2F that~ has been s t u d i e d i s t h e i r d i s p r o p o r t i o n a t i o n s i n s t r o n g pro-34 t o n i c a c i d s . T h e i r behavior i n SbF,., a n o n - p r o t o n i c a c i d , had not y e t been i n v e s t i g a t e d . S t u d i e s o f t h i s s o r t were h e l d to be p r o m i s i n g a f t e r o t h e r s o l v o l y s i s r e a c t i o n s of o t h e r f l u o r o s u l f a t e s (e.g. ClO^SO^F) i n SbF,. had y i e l d e d i n t e r e s t i n g r e s u l t s ^ . T h e r e f o r e , the s o l v o l y s i s of IOSC^F and BrOS0 2F e i t h e r neat or i n the presence of o t h e r halogens w i t h SbF,. was c o n s i d e r e d as a p o s s i b l e v a r i a t i o n f o r the p r e p a r a t i o n o f poly-halogen or p o l y - i n t e r h a l o g e n c a t i o n i c s p e c i e s . POLY-HALOGEN AND POLY-INTERHALOGEN CATIONS W i t h i n the l a s t decade, i n t e r e s t i n the study of v a r i o u s h a l o g e n - c o n t a i n i n g c a t i o n s has markedly i n c r e a s e d . The sub-, . _ , , . 34,114,115 s u b j e c t has been covered i n a number of r e c e n t reviews as w e l l as an o l d e r one on compounds of halogens i n p o s i t i v e 116 o x i d a t i o n s t a t e s . A p o l y - h a l o g e n c a t i o n may be d e f i n e d as a p o s i t i v e l y charged c l u s t e r of halogen atoms of the same type, which may be g e n e r a l l y r e p r e s e n t e d as H a l _ * ^ , where n - 1 ; e.g. B r 2 + or l 7 + . A p o l y - i n t e r h a l o g e n c a t i o n i s then d e f i n e d as a p o s i t i v e l y charged c l u s t e r of halogen atoms of more than one type, which may be g e n e r a l l y r e p r e s e n t e d as (Hal).^ ( H a l ' ) n + - + + ( H a l " ) 0 , where m, n, o >1, e.g., BrF^ or I B r C l . As e a r l y as 1906 Ruff and coworkers prepared compounds w i t h the empir-117 l i s i c a l formulae S b F 5 I , ( S b F 5 ) 2 I , S b F 5Br and S b C l 7 I 2 by r e a c t i n g e i t h e r I 2 or B r 2 w i t h S b F 5 and ICI w i t h S b C l 5 . A l -though the f i r s t t h r e e compounds were d o u b t l e s s l y r a t h e r com-pl e x m i x t u r e s , they most l i k e l y c o n t a i n e d the l 3 + / J 2 + / B r 3 + and I 2 C 1 + s p e c i e s r e s p e c t i v e l y . The t r u e nature of these systems, however, went unrecognized a t the time. L i k e w i s e , i t was known s i n c e the 1800's t h a t the s o l u t i o n o f I 2 i n oleums of d i f f e r e n t c o n c e n t r a t i o n s produced brown, green or even bl u e s o l u t i o n s which were capable of h a l o g e n a t i n g v a r i o u s aromatic 29 119 systems . The chemical i d e n t i t y o f the s p e c i e s i n s o l u t i o n and even the f a c t t h a t they were c a t i o n s remained unrecognized a t t h a t time. I t i s i n t e r e s t i n g t o note t h a t subsequently the e x i s t e n c e of p o l y - h a l o g e n c a t i o n s a t t r a c t e d f a r more a t t e n t i o n than the s o l i d compounds mentioned b e f o r e , and i t was i n s o l u t i o n t h a t many s t r u c t u r a l c o n c l u s i o n s were reached. Only i n i s o l a t e d and p e c u l i a r i n s t a n c e s , p r i o r t o the u n d e r t a k i n g of t h i s p r e -sent r e s e a r c h , were pure s o l i d substances c o n t a i n i n g p o l y -halogen c a t i o n s o b t a i n e d as the r e s u l t of any i n t e n t i o n a l s y n t h e s i s . T h i s s i t u a t i o n c o n t r a s t s s h a r p l y t o the s i t u a t i o n f o r the p o l y - i n t e r h a l o g e n c a t i o n s , to be d i s c u s s e d l a t e r , where these c a t i o n s were g e n e r a l l y i s o l a t e d i n s o l i d compounds be-f o r e any i n v e s t i g a t i o n s i n s o l u t i o n were c a r r i e d out. P o l y - i o d i n e c a t i o n s I t was not u n t i l 1938 when Masson was i n v e s t i g a t i n g the r e a c t i v e i n t e r m e d i a t e s i n the i o d i n a t i o n o f a r y l compounds i n + + + + s o l u t i o n t h a t c a t i o n s o f the type I , , I 5 and Ii+2n w e r e 5 8 f i r s t f o r m u l a t e d . Even w i t h t h i s , no d e f i n i t e evidence was forwarded to e s t a b l i s h such c a t i o n s . Roughly 20 y e a r s passed a g a i n b e f o r e s u b s t a n t i v e evidence was forthcoming i n t h i s f i e l d when Symons and o t h e r s s t u d i e d the blu e c o l o r e d s o l u t i o n o f 89-93 I 2 i n oleum (H 2S0 4/S0 3) At f i r s t most emphasis was p l a c e d on t r y i n g t o e s t a b -l i s h the e x i s t e n c e of I + . A wide v a r i e t y of techniques were 90 92 93 1 91 used ( v i s i b l e and u l t r a v i o l e t s p e ctroscopy ' ' , H NMR , 30 9 2 9 3 92,93 93 magnetic s t u d i e s ' , conductometry and cryoscopy ) i n d i l u t e oleum and F^SO^ to account f o r t h i s i o n . U n f o r t u n a t e l y the e x p e r i m e n t a l data i n some i n s t a n c e s were unreproducable (as i n the conductance measurements), and i n o t h e r s the data was o n l y understandable by u s i n g q u e s t i o n a b l e concepts. For example, the e l e c t r o n i c spectrum was d e s c r i b e d as being due t o a s p l i t t i n g of the 5p o r b i t a l s by an unsymmetrical l i g a n d f i e l d 9 0 ' 9 2 ' 9 3 , and the low magnetic moment of 1.5 B.M. , versus 92 2.83 B.M. f o r the s p i n - o n l y v a l u e , was e x p l a i n e d u s i n g K o t a n i 120 Theory commonly used f o r t r a n s i t i o n metal i o n s . Based upon oth e r work i n HSO3F where I-> was o x i d i z e d i n s i t u w i t h S 2 0 g F 2 , c o n c l u s i v e evidence showed t h a t the blue c o l o r e d s p e c i e s was 3 0 i n a c t u a l i t y I 2 + , some p r o p e r t i e s of which are g i v e n i n Table 6 along w i t h those of v a r i o u s o t h e r p o l y - h a l o g e n c a t i o n s . In a l a t e r p u b l i c a t i o n Symons and coworkers were a b l e to r e -peat the work of Ruff by r e a c t i n g I 2 w i t h SbF 5 to form ( S b F _ ) 2 I . In t h i s case, the compound t h a t was o b t a i n e d was concluded to 121 be I 2 S b 2 F ^ , formed a c c o r d i n g t o 2 I 2 + 5 S b F 5 &> 2 I 2 S b 2 F i : L t SbF 3 , 121 and contaminated w i t h SbF^ as an i m p u r i t y . The v i s i b l e - u l t r a v i o l e t r e f l e c t a n c e spectrum o f t h i s mixture of r e a c t i o n products showed e s s e n t i a l l y the same a b s o r p t i o n s as e s t a b -+ 30 l i s h e d f o r the I 2 c a t i o n i n H S 0 3 F J U and as found f o r I 2 when o x i d i z e d i n o l e u m 5 6 ' 9 2 and I F 5 1 2 2 . A d d i t i o n a l evidence f o r the I 2 + c a t i o n was gathered from i t s Resonance Raman spectrum as a d i l u t e s o l u t i o n i n TABLE 6 Some Spectroscopic Properties of Various Poly-iodine and Poly-bromine Cations Cation Solvent Electrc Spectn (nm) mic im e Vibrational Spectrum (cm-1) Other Methods of Identification Reference HSO3F 640 490 410 2640 1400 1180 238 conductivity cryoscopy 30 123 I 42+ HSO3F 470 357 290 11,000 46,000 25,000 conductivity cryoscopy magnetic measurements 94 I 3 + HSO3F 470 305 210 5200 233 207 114 conductivity cryoscopy 30 114 I 5 + HSO3F 450 345 270 240 conductivity cryoscopy 30 B r 2 + Superacid (HSO3F/SbF5/3S03) or SbFs 510 300 <1800 >1400 368 conductivity cryoscopy magnetic measurements esr and nmr crystal structure 97 124 125 B r 3 + Superacid (HS03F/SbF5/3S03 or HSO3F 375 310 1600 conductivity cryoscopy magnetic measurements esr and nmr mass spectrum 96 97 127 -3 123 -1 HSO^F t>. 10 m) . The fundamental v I _ I v i b r a t i o n a t 238 cm was observed i n a d d i t i o n t o f i v e overtones f o r the c a t i o n . A s h i f t to h i g h e r energy than t h a t observed f o r v I-I i n mole-c u l a r 1-2 a t 215 cm" 1 has been a t t r i b u t e d to the s t r e n g t h e n i n g of the bond between the two i o d i n e atoms as an a n t i b o n d i n g e l e c t r o n i s removed to form the p o s i t i v e l y charged i o n . I t should be emphasised a t t h i s p o i n t under which con-d i t i o n s I 2 + can be s t a b l e . In a c i d s the s t r e n g t h of 100% H 2 S 0 4 o r weaker, the I 2 + c a t i o n has been found to completely d i s s o c i a t e i n t o I 3 + and an I 1 1 1 s p e c i e s 5 7 . I 2 + can be ob-t a i n e d i n HS0 3F, as mentioned, but d i s p r o p o r t i o n a t e s s l i g h t l y 3 0 to I 3 + and I ( S 0 - j F ) 3 . Only when the a c i d i t y o f the s o l v e n t i s i n c r e a s e d f a r t h e r to 45% oleum •H 2S0 4/S0 3 - H 2 S 2 0 7 can I 2 e x i s t w i t h o u t d i s p r o p o r t i o n a t i o n . A n o t i c e a b l e c o l o r change from bl u e to red-brown o c c u r r e d upon c o o l i n g s o l u t i o n s of I 2 + i n HS0 3F to - 8 0 ° C 9 4 . The observed changes i n the e l e c t r o n i c spectrum were subsequently e x p l a i n e d by a temper-ature dependent e q u i l i b r i u m a c c o r d i n g t o 2 I + , I 2 + z 12 t 14 and r e p r e s e n t s the o n l y doubly p o s i t i v e halogen c a t i o n r e p o r t e d to date. Much l e s s c o n t r o v e r s y has surrounded the i d e n t i f i c a t i o n of o t h e r p o l y - i o d i n e c a t i o n s o r i g i n a l l y p o s t u l a t e d by Masson . Symons e t a l f i r s t p r e s e n t e d s o l i d evidence f o r both I 3 + and + 9? 93 ' i n H 2 S 0 4 by redox r e a c t i o n s such as H I0 3 + 7 I 2 + 8H 2S0 4 = 5 I 3 + + 3 H 3 0 + + 8HS0 4" . The c h a r a c t e r i s t i c v i s i b l e - u l t r a v i o l e t a b s o r p t i o n s of t h i s brown s o l u t i o n are l i s t e d i n Table 6. Upon f u r t h e r a d d i t i o n of 1"2 to t h i s system, new a b s o r p t i o n s appeared and were a t -+ 93 t r i b u t e d to 1^ c a t i o n s a c c o r d i n g to I 3 + + I 2 = I 5 + . L a t e r conductometric and c r y o s c o p i c s t u d i e s o f I 2 / H I 0 3 riiix-5 7 t u r e s i n 100% U^SO^ confirmed these r e s u l t s w i t h the con-c l u s i o n t h a t the I 3 + and s p e c i e s were i n d e f i n i t e l y s t a b l e i n t h i s s o l v e n t . Subsequent s t u d i e s of 3:1 and 5:1 molar 30 mixtures o f I /S o0_F., i n HSO-F l e n t f u r t h e r support f o r Z Z. b Z J the e x i s t e n c e o f the 13"*" and c a t i o n s . A t a b u l a t i o n of the v i s i b l e - u l t r a v i o l e t a b s o r p t i o n s f o r I 5 + are g i v e n i n Table 6. I t was f u r t h e r concluded t h a t the s p e c i e s was s l o w l y o x i d i z e d i n HSOjF, however, w i t h time a t 25°C s l o w l y + 30 forming I 3 and I 2 thereby demonstrating the f a c t t h a t HS0 3F might be too s t r o n g an a c i d f o r the s t a b i l i t y o f 1"_;+-J u s t p r i o r t o the s o l u t i o n s t u d i e s i n HS0 3F, Aubke and Cady i s o l a t e d f o r the f i r s t time a pure s o l i d compound con-+ 78 t a i n i n g the I 3 c a t i o n . I 2 was found to r e a c t w i t h IOS0 2F a c c o r d i n g to I 2 + IOS0 2F ; ^ I 3 S 0 3 F • The dark brown s o l i d thus generated was found t o be s o l u b l e i n both 96% H 2 S 0 4 and HSO-jF, g i v i n g the t y p i c a l v i s i b l e -u l t r a v i o l e t a b s o r p t i o n s of I 3 + as found by o t h e r s . I t was 3 4 a l s o shown t h a t m o l e c u l a r 1^ when p l a c e d i n HS0 3F gave bands + a s c r i b a b l e to * 3 • E v i d e n t l y s o l v e n t o x i d a t i o n of the I 2 was r e s p o n s i b l e f o r t h i s , whereas no o x i d a t i o n o f the I 2 was ob-78 served when p l a c e d i n 96% E ^ S O ^ . A l a t e r phase study on the b i n a r y I 2 / S 2 0 g F 2 system gave c o n c l u s i v e support not o n l y f o r the I^SO-jF compound, but a l s o f o r I(OSC» 2F) 3 and IOS0 2F as 99 expected, as w e l l as f o r a h e r e t o f o r e unknown compound I^SO^F c o n t a i n i n g presumably the new I 7 + c a t i o n . No paramagnetic s p e c i e s c o u l d be d e t e c t e d as a r e s u l t of magnetic measurements f o r any o f these s p e c i e s , r u l i n g out the e x i s t e n c e of a s t a b l e + 99 I 2 s a l t i n t h i s system Poly-bromine c a t i o n s The f i r s t p r o o f of a B r 2 + s p e c i e s was p r o v i d e d oddly 124 125 enough by a c r y s t a l study on B r 2 S b 3 F ^ g ' . The m a t e r i a l , which was prepared by the i n t e r a c t i o n of SbF,. w i t h B r 2 and BrF,. was a b r i g h t s c a r l e t c o l o r e d s o l i d w i t h a r e p o r t e d m e l t i n g p o i n t of 69°C and a magnetic moment o f 1.6 B.M. A s t r o n g Raman band a t 368 cm" 1 f o r the s o l i d was a s s i g n e d to the v Br-Br s t r e t c h i n g mode which i s h i g h e r as expected than -1 124 v Br-Br i n m o l e c u l a r B r 2 (317 cm ) . The s t r u c t u r e of the compound as shown i n F i g u r e 3 has Br-Br d i s t a n c e s of 2.15(1) A* o as compared to the 2.27 A d i s t a n c e i n m o l e c u l a r B r 2 , i n d i c a t i n g a d e f i n i t e s t r e n g t h e n i n g of t h i s bond as v e r i f i e d by i t s Raman spectrum and completely i n accord w i t h the removal of ah 125 e l e c t r o n from an a n t i b o n d i n g 7fg 4p o r b i t a l . The Sb-F.^ 3 l o i o n was found to be based on octahedra of SbFg u n i t s l i n k e d 35 3 6 by the unusual t r a n s b r i d g i n g of Sb atoms wi t h F atoms. The bonding i n s o l i d S b F 5 i s more t y p i c a l of antimony (V) f l u o r i d e s , where c i s F-Sb-F b r i d g i n g l i n k a g e s are found i n the t e t r a m e r i c 126 u n i t , ( S b F 5 ) 4 . S h o r t l y t h e r e a f t e r o t h e r r e s u l t s f o r B r 2 + i n s u p e r a c i d QC an media (HS0 3F/SbF 5/3S0 3) appeared ' . In t h i s case B r 2 was o x i d i z e d i n s i t u by S 2 0 g F 2 to form BrOS0 2F which i n s o l u t i o n r a p i d l y d i s p r o p o r t i o n a t e d to form B r 2 + and B r ( O S 0 2 F ) 3 and even + . . 97 B r 3 i n accordance w i t h the e q u i l i b r i a 5BrOS0 2F- + 2 H 2 3 0 3 F + = 2 B r 2 + + B r ( O S 0 2 F ) 3 + 4HSC>3F 4BrOS0 2F + H 2 S 0 3 F + = B r 3 + + B r ( O S 0 2 F ) 3 + 2HSC>3F . The B r 2 + c a t i o n was. a l s o i d e n t i f i e d by i t s Resonance Raman spectrum i n s u p e r a c i d media. The fundamental v _ _ _ r v i b r a -t i o n a t 360 cm~ x was observed along w i t h two overtones f o r 9 7 . . . . . the c a t i o n . Attempts to prepare s t o i c h i o m e t r i c q u a n t i t i e s of B r 2 and S 2 0 g F 2 i n 2:1 r a t i o i n s u p e r a c i d s o l u t i o n proved t h a t the B r 2 s p e c i e s was h e a v i l y d i s p r o p o r t i o n a t e d even i n t h i s v e r y s t r o n g p r o t o n i c s u p e r a c i d media. A 3:1 molar r a t i o of B r 2 : S 2 0 g F 2 r e s u l t i n g i n the B r 3 + was not a l l t h a t s t a b l e because m o l e c u l a r B r 2 c o u l d e a s i l y be d i s t i l l e d away from the 97 mixture S h o r t l y afterwards s t a b l e s a l t s of B r 3 + were prepared 127 by the r e a c t i o n of d i o x y g e n y l h e x a f l u o r o a r s e n a t e w i t h bromine 2 0 2 A s F 6 + 3 B r 2 £ 2 B r 3 A s F f ) + 20 2 , 128 or by the i n t e r a c t i o n of B F 3 or AsF\ with B r 2 and F 2 3 B r 2 + F 2 + 2 B F 3 > 2 Br^BF^ 3 B r 2 + F 2 + 2 A s F 5 > 2 B r 3 A s F g . The compounds are chocolate-brown c o l o r e d s o l i d s the f i r s t o f which, Br-jAsFg, i s s t a b l e up to 70°C w h i l e the second, Br-^BF^, has a marked d i s s o c i a t i o n p r e s s u r e a t RT of ^ 185 t o r r , but s t a b l e a t about - 3 5 ° C 1 2 8 . S o l u t i o n s of B r 3 A s F 6 i n HS0 3F 12 gave t h e i r own c h a r a c t e r i s t i c v i s i b l e - u l t r a v i o l e t a b s o r p t i o n s and are t a b u l a t e d i n T a b l e 6. No e x t i n c t i o n c o e f f i c i e n t s were r e p o r t e d f o r these bands i n HS0 3F, but i t was l e f t i m p l i e d t h a t B r 3 + was s t a b l e i n t h i s s o l v e n t . S i m i l a r s p e c t r a were recor d e d i n s u p e r a c i d media where one c o e f f i c i e n t was r e -p o r t e d as shown i n the T a b l e . P o l y - c h l o r i n e c a t i o n s Although no a t t e n t i o n was devoted to the i n v e s t i g a t i o n o f p o l y - c h l o r i n e c a t i o n s i n t h i s r e s e a r c h study, a q u i c k r e -view o f some r e s u l t s i n t h i s area are n e v e r t h e l e s s i n o r d e r . The d i a t o m i c c a t i o n ' of c h l o r i n e , C l 2 + has been the s u b j e c t of 129—132 95 + much d i s p u t e ' . A s o l v a t e d C l 2 i o n was c l a i m e d as a s t a b l e s p e c i e s i n s u p e r a c i d s o l u t i o n by v i r t u e of i t s e s r 1 O Q spectrum-"-^. I t was p o i n t e d out subsequently, however, t h a t t h i s spectrum c o u l d o n l y be due to a s p e c i e s c o n t a i n i n g oxygen 132 as w e l l , and the most r e c e n t i n t e r p r e t a t i o n has suggested the formula C l 2 0 + as being the most c o n s i s t e n t w i t h e x p e r i -mental d a t a . Attempts to produce C l 2 + v i a the d i s p r o p o r t i o n -a t i o n of C10S0 2F i n s u p e r a c i d media an a l o g o u s l y to B r ? + have 38 f a i l e d . Unpublished r e p o r t s by B a r t l e t t as quoted i n r e f -erence 121 p o s t u l a t e d C ^ I r F g as an i n t e r m e d i a t e which was e x i s t e n t f o r o n l y a few minutes when C l 2 was allowed to r e -a c t with I r F g . . T h i s has not been supported by any c r e d i b l e evidence and perhaps f o r t h i s reason has remained unpublished f o r 10 y e a r s . I t must be concluded t h a t the e x i s t e n c e of C±2+ i n s o l u t i o n or i n the s o l i d s t a t e has not been e s t a b -l i s h e d . In c o n t r a s t , the f o r m a t i o n of a C l 3 + c o n t a i n i n g s a l t has been e s t a b l i s h e d . T h i s was accomplished by the i n t e r a c t i o n of an excess of CI2 w i t h C ^ F A s F g a compound to be d i s -cussed more f u l l y i n the next s e c t i o n — to generate the y e l -133 ]ow s o l i d compound Cl^AsFg . When t h i s product was warmed to room temperature, complete d i s s o c i a t i o n i n t o C l 2 r C l F and A S F 5 o c c u r r e d . The low temperature Raman spectrum of the s o l i d was r e c o r d e d and i n t e r p r e t e d i n terms of a bent C l 3 + c a t i o n and s t r o n g l y i n t e r a c t i n g AsFg" anion through what was 133 assumed to be F atom b r i d g i n g between the i o n s . I t should be p o i n t e d out, however, t h a t no c r y s t a l s t r u c t u r a l d e t e r -m i n a t i o n has been made on any t r i a t o m i c - p o l y - h a l o g e n c a t i o n t o c o n f i r m t h i s s t r u c t u r a l p r o p o s a l ; even so, t h i s view i s most l i k e l y c o r r e c t as w i l l soon be demonstrated. 4. P o l y - i n t e r h a l o g e n c a t i o n s As mentioned a t the b e g i n n i n g of t h i s s e c t i o n , the f i e l d of p o l y - i n t e r h a l o g e n c a t i o n s developed more al o n g s y n t h e t i c l i n e s r a t h e r than through s o l u t i o n s t u d i e s . But the b a s i c p r i n c i p l e s f o r t h e i r syntheses go back to attempts a t viewing some of the i n t e r h a l o g e n s , e s p e c i a l l y BrF3 and I F5 , as non-aqueous s o l v e n t s . The s p e c i f i c conductances of B r F 3 (8.0 X 1 0- 3ohm~ 1cm~ 1) 1 6 3 and I F 5 (1.53 X 1 0 ~ 5 o h n f ^ c m - 1 ) 1 6 4 a t 25°C have been i n t e r p r e t e d 1 6 5 ' 1 6 6 i n terms of t h e i r auto-i o n i z a t i o n e q u i l i b r i a 2 " L J J ~ L 4 2 BrF, % BrF„ + BrF 2 I F 5 v I F 4 + + I P 6 -In r e a c t i o n s w i t h o t h e r f l u o r i d e s both BrF^ and I F 5 were found to behave as ampholytes capable of r e a c t i n g as f l u o r i d e i o n a c c e p t o r s , or Lewis a c i d s , toward a l k a l i o r a l k a l i n e - e a r t h f l u o r i d e s , o r as f l u o r i d e i o n donors, or Lewis bases, toward Group I I I A and VA f l u o r i d e s . The l a t t e r type o f i n t e r a c t i o n s have g i v e n r i s e t o the f o r m a t i o n of a c i d s i n the g i v e n s o l -152 vent system as e x e m p l i f i e d f o r A S F 5 i n BrF^ B r F 3 + A s F 5 > B r F 2 + A s F 6 ~ B r ^ v B r F 2 + + A s F g ~ . (base) (acid) (acid) (base) Many f l u o r i d e s were t e s t e d i n BrF^ i n p a r t i c u l a r , and s o l i d 167 products were o f t e n formed . T h i s concept was then sub-sequent l y extended to o t h e r i n t e r h a l o g e n s which do not r e a d i l y a l l o w t h e i r c l a s s i f i c a t i o n as non-aqueous s o l v e n t s . Examples of t h i s l a t t e r group i n c l u d e CIF3 whose very low s p e c i f i c con-ductance i s 4.9 X 10~^ohm 1cm ^ a t 2 5 ° C ^ ^ , ICI3 which i s o n l y 6 3 s t a b l e i n the s o l i d s t a t e and the very v o l a t i l e GIF which b o i l s a t -100.1°C^"^. The r e s u l t s of these s t u d i e s extending over the past 30 years are summarized i n T a b l e s 7 and 8. TABLE 7 Cations of the Types XF 6 + and XF/t+, Where X = I, Br, Cl Cation Counter Ion Methods of Investigation References AsF 6" Sb 3 F i 6 - a ) Raman, Infrared in HF solution, reaction with KF to give KAsFg+IFy reaction with KF to produce 3KSbFg+IF7 134-137 135 BrF 6+ AsF 6" S b 2 F n ~ ° } Raman, Infrared, 1 9F NMR in HF Raman, *9F NMR in HF 138, 139 138 C1F6+ PtF 6- c) Infrared, 1 9 F NMR, reaction with C1F30 to produce ClF 2OPtFg+ClF 5+F 2 140, 141 PtF 6" SbF 6" Magnetic measurements X-ray crystal structure, Raman, Infrared, 1 9 F NMR in HF 142 143, 144 B r F 4 + AsF 6~ S b 2 F n -1 9 F NMR in HF X-ray crystal structure, Raman, In-frared, * 9F NMR in HF, 1 9 F NMR in SbF 5 144 138,144-146 C1F, + AsF 6" PtF 6" d) SbF 6" e> Raman, Infrared Infrared, reaction with C I F 3 O to give ClF 2OPtF 6+ C I F 5 . Raman, Infrared, 1 9 F NMR in HF 144 140,141 144 a) originally represented as IFi +(SbFg)3 only present in mixture with B r F ^ S b ^ n ' only present i n mixture with ClF^PtFg or with C10 2PtF 6 ^ only present in mixture with ClFgPtFg e) present as ClF 5'1.08SbF 5 TABLE 8 Triatomic Interhalogen Cations of the Types and Cation Counter Ion Physical Properties Methods of Investigation References ASF 6" weakly green s o l i d at -78°C, decomposes at - 22°C chemical analysis 147 SbF ~ 0 weakly green s o l i d at RT, decomposes at +45°C chemical analysis, 19F NMR i n AsF 5 147 i c i 2 + SbCl ~ 0 wine red needles, m.p. 83.5°C, density = 3.00 g /ciP X-ray c r y s t a l structure, Sp e c i f i c conductivity neat and i n S0 2 148 149 A1C1 ~ 4 wine red c r y s t a l s , m.p.l05°C, density = 2.64 g/cm^ X-ray c r y s t a l structure 148 149 + BrF 2 AsF, o white s o l i d , d i s s o c i a t i o n pressure of 2torr at 23°C Raman, Infrared 152 SbF ~ o white s o l i d , m.p. 200°C with decomposition Raman, Infrared, X-ray c r y s t a l structure,conductivity 150 151 B F 4 ~ stable up to -80°C phase study on Br,,, F 2 and BF^ 128 155 AuF " 4 lemon-yellow s o l i d at RT, decomposes at 180°C conductometric t i t r a t i o n with AgBrF^ i n BrF^ 154 SnF 6 2" white s o l i d , dissociates at STP to Rive BrF , completely decomposes at 190°C conductometric t i t r a t i o n with KBrF. i n BrF, 4 3 150 GeF 6 2" white s o l i d , d i s s o c i a t i o n pressure of 4 torr at 24°C Raman, Infrared 152 C 1 F 2 + AsF 6~ s o l i d at RT with d i s s o c i a t i o n pressure of 5 torr at 20°C Raman, Infrared, X-ray c r y s t a l structure, conductivity, cryoscopy, conductometric t i t r a t i o n with K IF5 i n C1F 3 134, 135, 156, 157, 161 SbF ~ 0 white s o l i d , m.p. 135°C Raman, Infrared, conductivity, X-ray c r y s t a l structure 134, 135, 153,156,159 B F 4 ~ colorless s o l i d , m.p. 30°C, completely dissociated i n gas phase Raman, Infrared, conductivity 156, 157, 158, 160 C1 2 F + AsF 6" white s o l i d , stable at -78°C completely'dissociated i n gas phase Raman, Infrared 133, 162 B F 4 ~ white s o l i d , stable at -127°C, completely dissociated i n gas phase Raman, Infrared 133 162 42 In Table 7 are t a b u l a t e d some known compounds c o n t a i n -i n g the c a t i o n s of types X F g + and XF^ + and the methods by which t h e i r s t r u c t u r e s were i n v e s t i g a t e d . The c l a s s of com-pounds w i t h t r i a t o m i c i n t e r h a l o g e n c a t i o n s are i n c l u d e d i n Table 8. With o n l y a few e x c e p t i o n s , a l l of t h e i r p r e p a r a -t i o n s e n t a i l e d the i n t e r a c t i o n of an i n t e r h a l o g e n and some str o n g Lewis a c i d a c c o r d i n g to a g e n e r a l r e a c t i o n of the type XY m + E Y n X Y m t 1 EYn~+1 X = I , B r , C l Y = C1,F E = As,Sb,Pt,B,Al m= 7,5,3 n = 5 , 3 . T h i s route was s u c c e s s f u l o n l y where the i n t e r h a l o g e n was known and where a Lewis a c i d o f s u f f i c i e n t s t r e n g t h t o w i t h -draw a h a l i d e i o n from the i n t e r h a l o g e n a l s o was a v a i l a b l e . T h i s type of r e a c t i o n c o u l d be r e a d i l y employed f o r f l u o r i n e -c o n t a i n i n g systems because f i r s t , most i n t e r h a l o g e n s are f l u o r i d e s , and second, among h a l i d e i o n a c c e p t o r s , the f l u o -r i d e s rank the h i g h e s t i n a c c e p t o r a b i l i t y . The same s y n t h e t i c + 16 8 p r i n c i p l e has a l s o been used to form c a t i o n s o f the type XeF , SF-j"*"^"^' and P C 1 ^ + and many more. There are two cases where the above c o n d i t i o n s c o u l d not be met C ^ F 6 + a n < ^ B r F g + are w e l l e s t a b l i s h e d even though CIF7 and B r F 7 have not been r e p o r t e d . These c a t i o n s were produced w i t h the a i d of the e x c e p t i o n a l l y powerful o x i d i z i n g agents P t F g ^ ^ and KrF2^~*^ r e s p e c t i v e l y . For c a t i o n s of the types X Y 6 + and XY^ +, a l l s p e c t r o -s c o p i c data p o i n t t o r e g u l a r symmetric s t r u c t u r e s based on an 43 octahedron with 0^ symmetry f o r the former and a d i s t o r t e d t r i g o n a l bipyramid f o r the l a t t e r ( i n c l u d i n g a s t e r e o c h e m i c a l l y a c t i v e lone p a i r ) w i t h C 2 v symmetry. X-ray c r y s t a l s t r u c t u r e 143 145 d e t e r m i n a t i o n s f o r IF 4SbFg and B r F 4 S b 2 F 1 ^ c o n f i r m these views f o r X F 4 + c a t i o n s , as shown f o r the Br compound i n F i g u r e 4, The C r y s t a l S t r u c t u r e of B r F _ ) S b 2 F 1 1 FIGURE 4 For c a t i o n s of the symmetric type XY2 +, s e v e r a l c r y s t a l 159 161 s t r u c t u r e s have a l s o been r e p o r t e d — C l F 2 S b F g , C l F 2 A s F g , B r F 2 S b F 6 1 5 1 / I C 1 2 A 1 C 1 4 1 4 9 and I C l 2 S b C l g 1 4 9 — the l a s t of which i s shown i n F i g u r e 5. In a l l of these cases a bent X Y 2 + c a t i o n was found w i t h v a r y i n g amounts of c a t i o n - a n i o n i n t e r a c t i o n . Such i n t e r a c t i o n was found to cause a r e d u c t i o n i n symmetry f o r the anion from 0^ ( f o r AsFg" or SbFg -) or T^ ( f o r BF 4~) to C 2 v or even lower, and a s l i g h t anion dependent bond-angle and bond-distance v a r i a t i o n f o r the c a t i o n . Both f e a t u r e s are commonly d e t e c t e d i n v i b r a t i o n a l s p e c t r a . The s e l e c t i o n r u l e s f o r the anions are o f t e n broken dov/n and degeneracies are removed. The c a t i o n modes have v a r i e d over a l i m i t e d range. A bent c a t i o n i c s p e c i e s would have C 2 v sym-metry and a l l Raman and I n f r a r e d data tend to c o n f i r m these The Structure of [iClJfSbCl^ C L 7 civ 2.26 2.34 Cl 8 3 . 0 0 \ ^85J0° ..'2.85 91.5° ' l' 8 8 . 7 ° * CU 8 Figure 5. views w i t h no e v i d e n c e s u p p o r t i n g a l i n e a r c o n f i g u r a t i o n f o r any of the c a t i o n s . T h i s i s to be expected on the b a s i s o f 170 the v a l e n c e - s h e l l - e l e c t r o n - p a i r - r e p u l s i o n (VSEPR) theory In t h i s theory the c o o r d i n a t i o n around the c e n t r a l halogen atom X of the XY2 + c a t i o n i s a d i s t o r t e d square formed by two f i r m l y bound halogen atoms Y and two i n t e r a c t i n g halogen atoms Y from the a n i o n . The two lone p a i r s of e l e c t r o n s i n t r a n s p o s i t i o n s complete the p s e u d o o c t a h e d r a l c o o r d i n a t i o n about X as p r e d i c t e d by VESPR theory. In a l l cases the h e a v i e r halogen atom (Br vs F and I vs Cl) has always o c c u p i e d the c e n t r a l p o s i t i o n i n the X Y 2 + c a t i o n . M o d i f i e d Huckel c a l -171 c u l a t i o n s have been a p p l i e d to c a l c u l a t e charge d i s t r i b u -t i o n s w i t h i n the I C l 2 + c a t i o n - as shown i n F i g u r e 6 - and to account f o r the nqr r e s u l t s ^ 2 , X-ray data"'- 4 9' ^ ^ and v i b r a -t i o n a l a n a l y s e s t h a t have accumulated f o r t h i s s p e c i e s . A r a t h e r unusual c a t i o n has been found i n C ^ F * . T h i s c a t i o n + 1.13 The Charge D i s t r i b u t i o n f o r the I C ^ * C a t i o n FIGURE 6 was e v i d e n t l y formed i n the r e a c t i o n of two moles o f the i n t e r -halogen (C1F) w i t h one mole of the a c c e p t o r (AsFg), but was found to be u n s t a b l e a t temperatures hi g h e r than ^ -80°C where 133 a r e v e r s i o n to the s t a r t i n g m a t e r i a l s o c c u r r e d A few systems c o n t a i n i n g p o l y - m t e r h a l o g e n c a t i o n s have been r e p o r t e d which do not comply w i t h the g e n e r a l p r i n c i p l e s d i s c u s s e d up to now. These systems have i n c l u d e d a) s o l u t i o n s c o n t a i n i n g the p o l y - i n t e r h a l o g e n c a t i o n s , b) the i n t e r h a l o g e n -f l u o r o s u l f a t e s , and c) some work done by Ruff back i n 1915. a) Conductometric, c r y o s c o p i c and conductometric s t u d i e s i n 100% H 2 S 0 4 5 6 ' 1 7 4 have f i r m l y e s t a b l i s h e d I C 1 2 + as a s t a b l e , s p e c i e s i n t h i s s o l u t i o n . Such means have a l s o been used t o i d e n t i f y the I B r 2 + c a t i o n i n s o l u t i o n , however no s t a b l e compound of t h i s s p e c i e s was i s o l a t e d . The c a t i o n s are e v i d e n t l y formed i n s i t u a c c o r d i n g to the r e a c t i o n H I 0 3 + 2 X 2 + 8 H 2 S 0 4 5 I X 2 + + 3 H 3 0 + + 8 HS0 4" X = Br, C l i n much the same manner as I 3 + was made e a r l i e r 5 ^ . b) The a d d i t i o n o f C l 2 to IOSC^F y i e l d e d a red-orange i n t e r -78 175 h a l o g e n f l u o r o s u l f a t e , I C 1 2 S 0 3 F ' . Even though t h i s sample was a d m i t t e d l y not 100% pure, the s y n t h e s i s of t h i s compound by the o x i d a t i v e a d d i t i o n o f C l 2 t o IOS0 2F r e -pr e s e n t s a d i f f e r e n t method than the p r e v i o u s l y used r o u t e . C l 2 + I0S0 2F > I C 1 2 S 0 3 F 99 T h i s method was e s s e n t i a l l y used by Chung and Cady ( i n t h e i r phase study of I 2 and S 2 0 g F 2 ) where the o n l y change i n the above eq u a t i o n was the replacement of C l 2 w i t h I 2 . 47 c) In 1915 Ruff r e p o r t e d the s y n t h e s i s of a 2:1 adduct of ICI with S b C l 5 , and formulated i t as S b C l 5 * 2 I C 1 1 1 8 . Even though the analogy to C l 2 F + A s F 6 ~ 1 3 3 , or AsF 5»2ClF, i s i n t r i g u i n g , no f u r t h e r work on t h i s m a t e r i a l was r e p o r t e d u n t i l a f t e r t h i s work was i n p r o g r e s s . In a d d i t i o n t o halogen c a t i o n s i n the condensed phase d i s c u s s e d up to t h i s p o i n t , the i o n i z a t i o n o f halogen atoms, halogen molecules and i n t e r h a l o g e n molecules i n the gas phase can l e a d to r a t h e r a l a r g e number of c a t i o n s . T h e i r range (g) may extend from a monoatomic c a t i o n l i k e F+ , » t o c a t i o n s o f i n t e r h a l o g e n s l i k e I F f - g ) where the parent molecule (IF) can e x i s t o n l y a t very low or very h i g h temperatures, t o p o l y -+ atomic c a t i o n s l i k e I F ^ ^ j . They would a l l be s h o r t - l i v e d i o n s and c o u l d be d e t e c t e d v i a mass spectrometry, p h o t o i o n i z a -t i o n s p e c t r o s c o p y o r i o n c y c l o t r o n resonance t o name j u s t a few o f the p o s s i b l e number of methods. A number of these gas phase i o n s have c o u n t e r p a r t s i n the condensed phase, but some are y e t unknown i n the condensed phase. An example of such an unknown i o n i n the condensed phase i s the d i a t o m i c i n t e r h a l o g e n c a t i o n I B r + . In t h i s case gas phase s t u d i e s may p r o v i d e i n d i c a t i o n s whether such i o n s are f e a s i b l e i n the condensed phase. Some o t h e r more s p e c i f i c examples t h a t i l l u s t r a t e t h i s p o i n t can be g i v e n . The C^^g) c a t i o n may be d e t e c t e d i n the hig h frequency d i s c h a r g e of CJL2 176 vapors and the a n a l y s i s o f the observed spectrum may al l o w 176 d e t e r m i n a t i o n o f the i n t e r n u c l e a r d i s t a n c e . Mass spectrometry of the halogen molecules w i l l y i e l d r e l i a b l e i o n i z a t i o n poten-48 t i a l s x , / and may a l l o w an educated guess to be made as to which i o n i z a t i o n p rocesses may be performed i n the condensed phase by chemic a l o x i d i z i n g agents. However, as b e s t i l l u s -17 8 179 t r a t e d by the r e a c t i o n o f C l 2 w i t h IrFg ' secondary r e a c t i o n s l i k e the subsequent f u r t h e r o x i d a t i o n of c h l o r i n e beyond + \ to h i g h e r o x i d a t i o n s t a t e s may r e s u l t i n an un-expected course f o r an otherwise simple r e a c t i o n . P h o t o e l e c t r o n s p e c t r a which are a v a i l a b l e f o r a l l d i -atomic halogens and interhalogens'''^' may a l l o w unambiguous i d e n t i f i c a t i o n o f the ground s t a t e . The technique a l s o y i e l d s s e t s o f i o n i z a t i o n e n e r g i e s f o r ground and e x c i t e d s t a t e s as w e l l as good e s t i m a t e s f o r the s p i n - o r b i t c o u p l i n g c o n s t a n t and the element-element s t r e t c h i n g f r e q u e n c i e s . S i n c e any photo-i o n i z a t i o n p rocess r e q u i r e s a n e u t r a l molecule as a p r e c u r s o r , such as Hal X n ( g ) > H a l X n + ( g ) + e -n. = 1,3,5 o r 7 Then o n l y the d i a t o m i c i o n s w i l l have c o u n t e r p a r t s i n the condensed phase, which aire w i t h i n the scope o f t h i s study — f o r example, ^"(g) a n d B r 2 * g ) ' I t w i l 1 b e i n t e r e s t i n g t o see whether a comparison between gas phase i o n s and t h e i r condensed phase c o u n t e r p a r t s are u s e f u l and a p p l i c a b l e to the i n t e r p r e t a t i o n of some of the r e s u l t s t o be pr e s e n t e d here. 49 5. Summary of p r o j e c t e d work In l o o k i n g a t the f i e l d o f p o l y - h a l o g e n and - i n t e r h a l o g e n c a t i o n s , the f o l l o w i n g i n t e r e s t i n g q u e s t i o n s may be asked — i ) Is the apparent nonexistence of s e v e r a l c a t i o n s formed by the h e a v i e r halogens I, Br and C l a f e a t u r e of t h e i r i n -herent thermodynamic i n s t a b i l i t y , or i s i t due to the l a c k of s u i t a b l e s y n t h e t i c routes to the f o r m a t i o n of these c a t i o n s ? i i ) Do p o l y - i n t e r h a l o g e n f l u o r o s u l f a t e s l i k e I C 1 2 S 0 3 F c o n t a i n c a t i o n s a t a l l , and how can t h e i r s t r u c t u r e s b e s t be r a t i o n a l i z e d ? i i i ) Can s o l u t i o n s t u d i e s i n HS0 3F or r e l a t e d s o l v e n t s be use-f u l i n the i n v e s t i g a t i o n of the nature of f l u o r o s u l f a t e d e r i v a t i v e s , and are p r o t o n i c a c i d s s u i t a b l e media f o r r e a c t i o n s i n v o l v i n g the c a t i o n s ? i v ) Why should i t not be p o s s i b l e to s t a b i l i z e I, C l and Br type c a t i o n s by f l u o r o a n i o n s of antimony, such as I C l 2 + S b F 6 " , f o r example? v) Why are t h e r e no p o l y - i n t e r h a l o g e n c a t i o n s known where thr e e or more d i f f e r e n t halogen atoms are i n v o l v e d ? These were o n l y a few of the q u e s t i o n s t h a t were asked which caused t h i s r e s e a r c h to be undertaken. I I . EXPERIMENTAL APPARATUS AND CHEMICALS REACTION LINES AND ACID STILLS  Glass vacuum l i n e Standard h i g h vacuum techniques were employed f o r the ma n i p u l a t i o n o f extremely h y g r o s c o p i c v o l a t i l e compounds. Vacua as low as 10 t o r r were achieved by the use of a Welsh Duo-Seal Pump, Model 1400, connected to a l i q u i d N 2 c o l d - t r a p to p r o t e c t the pump from c o r r o s i v e v o l a t i l e m e t e r i a l s . Con-nected to the c o l d - t r a p was a T-shaped p i e c e o f pyrex t u b i n g . I t branched i n one d i r e c t i o n to a Kontes g l a s s and T e f l o n 4mm vacuum stopcock and BIO socket, which was f r e q u e n t l y used simply t o pump o f f any u n d e s i r a b l e v o l a t i l e r e a c t i o n mater-i a l s . The T-pi e c e branched i n another d i r e c t i o n to the main g l a s s vacuum m a n i f o l d . T h i s m a n i f o l d , whose c a l i b r a t e d volume was 186.5ml, was made of pyrex t u b i n g s e a l e d o f f a t one end and s e p a r a t e d from the T-piece by a F i s h e r - P o r t e r T e f l o n stem stopcock and ground-glass j o i n t s . The m a n i f o l d was equipped w i t h f o u r a d d i t i o n a l T e f l o n stem stopcocks and co r r e s p o n d i n g BIO s o c k e t s , which served as i n l e t s . Connected t o the mani-f o l d was a mercury manometer capable of measuring p r e s s u r e s up to one atmosphere to the n e a r e s t t o r r . A l s o connected t o the m a n i f o l d c o u l d be a compressed dry N 2 source, r e a c t o r s , c o l l e c t i o n v e s s e l s , pocket t r a p s and t r a p - t o - t r a p d i s t i l l a -t i o n systems. G u i d e l i n e s f o r the de s i g n o f a d d i t i o n a l eguip-182 18 3 ment were taken from S h r i v e r o r Brauer Metal F l u o r i n e Flow L i n e The p r e p a r a t i o n s of S 2 0 g F 2 and FOS0 2F required, a metal flow r e a c t i o n system designed to mix F 2 and SO3 i n v a r y i n g r a t i o s . The b a s i c o u t l i n e of the system i s i l l u s t r a t e d i n F i g u r e 7 and i s e s s e n t i a l l y as d e s c r i b e d by Cady and S h r e e v e 1 1 Both copper and monel metal t u b i n g was employed of e i t h e r 1/4" or 3/8" o u t s i d e diameter. The AgF 2 c a t a l y t i c r e a c t o r was e n l a r g e d to 120cm long and was heated e l e c t r i c a l l y by w i r i n g a l l around the r e a c t o r , and c o n t r o l l e d by a v a r i a b l e r h e o s t a t 180°C f o r S 2 0 6 F 2 a n d % 2 2 0 ° f o r FOS0 2F). A MaF t r a p served to remove HF from the commercially a v a i l a b l e F 2 . N 2 and SO^, the l a t t e r heated to ^ 50°C and v a p o r i z e d from a 500ml s t o r a g e v e s s e l , c o u l d a l s o e n t e r the system, and the flow of any gas was c o n t r o l l e d by v a r i o u s Whitey, Hoke, o r A u t o c l a v e metal v a l v e s . G l a s s c o l l e c t i o n t r a p s were at t a c h e d to the flow system and c o u l d be immersed i n c o l d baths of v a r y i n g temper-a t u r e s to c o l l e c t the d e s i r e d p r o d u c t s . A bubble-type flow meter, f i l l e d w i t h F l u o r o l u b e o i l , completed the system. HSO3F D i s t i l l a t i o n Apparatus The f l u o r o s u l f u r i c a c i d , t h a t was used i n a l l conduc-t i v i t y measurements and s o l u t i o n s f o r e l e c t r o n i c s p e c t r a , was o b t a i n e d by a double d i s t i l l a t i o n p r o c e s s . T h i s was c a r r i e d out a t ^ 760 t o r r under a dry N 2 atmosphere i n an apparatus \ 21 as i l l u s t r a t e d i n F i g u r e 8 and d e s c r i b e d by Thompson e t a l In the f i r s t d i s t i l l a t i o n most of the HF i m p u r i t y was removed from the a c i d by a counterstream of dry N 2 « The second d i s -t i l l a t i o n y i e l d e d a c o n s t a n t b o i l i n g f r a c t i o n , 163°C, which Crosby Pressure Guoge To Flowmeter Copper Glass R e a c t o r ( j ) Whitey Va lve -0- Hoke 413 Va lve fi Autoc lave Engineer ing Valves To F cylinder 2 Copper Glass B 3 4 A ZY B 3 4 B B 3 4 To S o d a - l i m e Trap •Fluorolube Oil Tube c Apparatus" for the Preparat ion of S 2 0 6 B , a n d F O S 0 2 F Figure 7. e i t h e r was c o l l e c t e d d i r e c t l y i n t o a c o n d u c t i v i t y c e l l or a r e c e i v i n g f l a s k . The s p e c i f i c conductance of a c i d c o l l e c t e d i n t h i s f a s h i o n was t y p i c a l l y i n the range o f 1.1-1.3XlO - 4fi~ xcm" whereas the lowest r e p o r t e d v a l u e i s 1.085XlO~ 4fi - 1cm~ x. H S O 3 C F 3 D i s t i l l a t i o n Apparatus The t r i f l u o r o m e t h a n e s u l f o n i c a c i d was p u r i f i e d by a reduced p r e s s u r e d i s t i l l a t i o n , ^ 15 t o r r , a t s l i g h t l y e l e v a t e d temperatures from 20ml o f ^ 100% H2SO4, which a c t e d as a d r y -i n g agent. A c o n v e n t i o n a l d i s t i l l a t i o n set-up with a Vigreux column and f r a c t i o n s e p a r a t o r was employed. The whole d i s -t i l l a t i o n apparatus c o u l d be connected to the g l a s s vacuum l i n e w i t h Tygon t u b i n g . At the end of the d i s t i l l a t i o n , dry N 2 c o u l d be i n t r o d u c e d i n t o the system a l l o w i n g the r e c e i v e r w i t h the p u r i f i e d HSO3CF3 to be removed and stoppered. The a c i d was subsequently t r a p - t o - t r a p vacuum d i s t i l l e d f o r f u r t h e r p u r i f i c a t i o n SbFg D i s t i l l a t i o n Apparatus Crude a n t i m o n y p e n t a f l u o r i d e was p u r i f i e d f i r s t by purging the m a t e r i a l of most HF w i t h L-grade N 2 i n a 500ml two-necked f l a s k f i t t e d w i t h a gas i n l e t tube and D r i e r i t e guard tube. A f t e r about two hours the crude m a t e r i a l had become r e l a t i v e l y v i s c o u s and was f u r t h e r p u r i f i e d by standard atmospheric d i s t i l l a t i o n techniques u s i n g an a i r - c o o l e d con-denser, and kept from atmospheric moisture w i t h a D r i e r i t e guard tube. The s m a l l amount of HF t h a t i n v a r i a b l y remained was removed by i n t e r m i t t e n t vacuum pumping on the SbF^ u n t i l the e v o l u t i o n of gas bubbles ceased from the m a t e r i a l . The SbFc, was then d i s t i l l e d i n a dynamic vacuum i n t o another v e s s e l c o o l e d to -30°C f o r f i n a l p u r i f i c a t i o n . REACTORS, CONDUCTIVITY CELL, AND SoO f iF?- ADDITION TRAPS  Reactors During the course of t h i s work s e v e r a l d i f f e r e n t types of r e a c t i o n v e s s e l s were employed depending upon t h e i r s p e c i f i c use. For the r e a c t i o n of two s o l i d s or t h e i r m e l t s , a 50ml round-bottomed f l a s k was used w i t h a B19 socket to BIO cone adapter f i t t e d w i t h a T e f l o n stem v a l v e . T h i s r e a c t o r i s shown i n F i g u r e 9 a) and w i l l be subsequently r e f e r r e d t o as a "two-part r e a c t o r " . Such a r e a c t o r was r e a d i l y loaded or emptied i n the drybox. An improved d e s i g n was needed, however, where grease contamination was a problem, or where e x c e s s i v e p r e s s u r e was b u i l t up d u r i n g the r e a c t i o n . T h i s second r e a c t o r , c a l l e d a " s e a l - o f f one-part r e a c t i o n b u l b " , F i g u r e 9. b), was u s e f u l f o r s o l i d - s o l i d o r s o l i d - l i q u i d r e a c t i o n s ( r e f e r r i n g t o the s t a t e of the r e a c t a n t s a t STP) and c o u l d be completely immersed i n a h e a t i n g bath a f t e r flame s e a l i n g . Such a r e a c t o r c o u l d w i t h s t a n d i n t e r n a l p r e s s u r e s up to ^ 3 atmospheres. A t h i r d type 50ml round-bottomed "one-part r e a c t i o n b u l b " , F i g u r e 9 c)f g r a d u a l l y r e -p l a c e d the second type. Both s o l i d and l i q u i d reagents c o u l d be added to the f l a s k through a r i g h t angle 4mm T e f l o n stem stopcock w i t h the a i d of a s m a l l diameter a d d i t i o n f u n n e l . Afterwards the r e a c t o r c o u l d be a t t a c h e d to a vacuum m a n i f o l d 56 d) one-part r e a c t i o n v i a l and storage v e s s e l e) one-part t h i c k -walled r e a c t i o n v i a l F i g u r e 9: R e a c t i o n V e s s e l s 57 w i t h a BIO cone and e i t h e r have v o l a t i l e m a t e r i a l s added o r removed w i t h o u t f e a r o f c o n t a m i n a t i o n o f the p r o d u c t s . V a r i a t i o n s on t h i s t h i r d type of r e a c t o r were made by r e p l a c i n g the 50ml round-bot tomed f l a s k f i r s t w i t h a 35ml c y l i n d r i c a l tube o f normal w a l l t h i c k n e s s w i t h one end s e a l e d o f f , c a l l e d a " o n e - p a r t r e a c t i o n v i a l " o r "s torage v e s s e l " as shown i n F i g u r e 9 d ) , and second w i t h a 35ml c y l i n d r i c a l tube o f 4mm t h i c k w a l l c o n s t r u c t i o n , c a l l e d a " o n e - p a r t t h i c k - , w a l l e d r e a c t i o n v i a l " , which c o u l d w i t h s t a n d p r e s s u r e s up to 7-8 a tmospheres , F i g u r e 9 e ) . The T e f l o n stem v a l v e s e r v e d as a s a f e t y v a l v e i n the l a s t c a s e . A f t e r r e a c t i o n s had been completed i n r e a c t o r s o f types b) - e ) , the p r o d u c t s c o u l d e i t h e r be used i n s i t u f o r a s u c c e e d i n g r e a c t i o n , o r removed i n s i d e the drybox a f t e r b r e a k i n g the r e a c t o r . Some-t imes i f a l i q u i d was g e n e r a t e d , removal c o u l d be made v i a the s t o p c o c k open ing w i t h a p i p e t t e , thus a v o i d i n g breakage o f the r e a c t o r . V e s s e l s l i k e r e a c t o r d) were used as s t o r a g e v e s s e l s r a n g i n g i n volume from about 50ml t o 500ml and more. 2. C o n d u c t i v i t y c e l l An i l l u s t r a t i o n o f a c e l l s i m i l a r to the one used f o r c o n d u c t o m e t r i c s t u d i e s i s shown i n F i g u r e 10. The p l a t i n u m e l e c t r o d e s were e l e c t r o p l a t e d w i t h p l a t i n u m - b l a c k employ ing a s o l u t i o n o f h e x a c h l o r o p l a t i n i c a c i d as d e s c r i b e d p r e v -21 i o u s l y . The c e l l c o n s t a n t s were de termined w i t h an aqueous 184 s o l u t i o n o f KC1 a c c o r d i n g to L i n d e t a l and gave t y p i c a l v a l u e s o f k ^ 2 = 7.046 c m - 1 , k -^ = 10.19 cm , and k 2 3 = 3.210 cm CONDUCTIV ITY C E L L F i g u r e 10. The t o t a l volume o f the c e l l was about 200ml wit h d i s t a n c e s between e l e c t r o d e s 1 and 3 of ^  50mm and between e l e c t r o d e s 2 and 3 of ^  20mm. E l e c t r i c a l c onnections were made w i t h copper w i r i n g and mercury between the platinum w i r e s , which extended o u t s i d e the c e l l and were fused i n t o the g l a s s tubes, and the e l e c t r o d e s i n s i d e the c e l l . SoOfiF? - a d d i t i o n t r a p s In c e r t a i n p r e p a r a t i o n s an exact amount o f S 2 0 g F 2 had to be added to another r e a c t a n t . To accomplish t h i s a measur-in g t r a p c o n s t r u c t e d of a p i p e t t e (0.00-0.50ml) and s e a l e d o f f at one end was used (Figure 11). The p i p e t t e was connected to a p i e c e of Pyrex t u b i n g , 20mm long and of 10mm o.d., a t e f l o n stem stopcock and u l t i m a t e l y a B10 cone f o r attachment to the g l a s s vacuum m a n i f o l d . By knowing the mass of S 2 0 g F 2 d i s t i l l e d i n t o the evacuated t r a p and the volume i t occ u p i e d a t RT, t r a n s f e r o f S 2 0 g F 2 from the t r a p t o a r e a c t o r c o u l d be made q u a n t i t a t i v e l y by slow s t a t i c vacuum d i s t i l l a t i o n . A 0.0170 g sample o f S 2 0 g F 2 o c c u p i e d 0.010ml o f the t r a p . O c c a s i o n a l l y another t r a p l i k e the storage v e s s e l shown i n F i g u r e 9 d) was used. I t c o u l d add l a r g e r amounts of S 2 0 g F 2 , c a l i b r a t e d t o be about 0.38 g S 2 0 g F 2 per mm l e n g t h of the c y l i n d r i c a l v e s s e l , b e f o r e the s m a l l e r c a l i b r a t e d t r a p was employed. 60 ml o . o o o . \o o.zo 0 . 3 0 o . s o F i g u r e 11: S 2 ° 6 F 2 " A d d i t i o n T r a P DRYBOX, BALANCES AND MISCELLANEOUS  Drybox To prevent any h y d r o l y s i s of the compounds used or made dur i n g t h i s study, a completely w a t e r - f r e e environment was needed to t r a n s f e r o r c o l l e c t them when vacuum l i n e t e c h n i -ques c o u l d not be employed. To t h i s end a drybox (VAC, Model HE-43-2 "Dri-Lab") proved s a t i s f a c t o r y . The atmosphere i n -s i d e was dry L-grade N 2 and was c o n s t a n t l y c i r c u l a t e d over m o l e c u l a r s i e v e s to m a i n t a i n i t s p u r i t y . These s i e v e s were regenerated a f t e r about a month's use by a h e a t i n g u n i t (VAC, Model HE-93-B " D r i - T r a i n " ) l o c a t e d w i t h the drybox i t -s e l f . Balances The f a t e s o f r e a c t i o n s were f o l l o w e d by mass measure-ments made on two d i f f e r e n t types of b a l a n c e s . One l o c a t e d i n the l a b o r a t o r y was a M e t t l e r Gram-atic s u b s t i t u t i o n balance # 1-911, capable of measuring a maximum o f lOOg wi t h a p r e -c i s i o n of 0.05mg and a r e a d a b i l i t y of 0.05mg. Another balance p o s i t i o n e d i n the drybox was a M e t t l e r P160 t o p - l o a d i n g b a l -ance, capable of measuring a maximum of 160g w i t h a p r e c i s i o n of ± O.OOlg and a r e a d a b i l i t y of O.OOlg M i s c e l l a n e o u s a. L u b r i c a t i n g grease was used on a l l ground-glass stopcocks, cones, and sockets to m a i n t a i n l e a k p r o o f c o n n e c t i o n s to the vacuum-type apparatus. T h i s low v o l a t i l i t y grease was F l u o r olube Grease GR-90, C F 2 C 1 ( C F 2 — C F C l ) n C F 2 C l . b. A pi-pump p i p e t t i n g d e v i c e was used to a i d s o l u t i o n measur-i n g i n s i d e the drybox. I t c o n s i s t e d of an a c i d r e s i s t a n t p l a s t i c tube c o n t a i n i n g a t i g h t - f i t t i n g i n n e r rod t h a t moved up and down the tube to any d e s i r e d p o s i t i o n by an e x t e r n a l l y l o c a t e d and maneuverable cogged wheel. A f t e r i t was a t t a c h e d to a p i p e t t e i t was capable of t r a n s f e r r i n g a maximum volume o f 2 ml. c. A g l a s s s p a t u l a was used to t r a n s f e r chemicals because of e x t e n s i v e a t t a c k t o metal c o u n t e r p a r t s . I t was f a s h i o n e d from a 15 cm long s o l i d g l a s s rod of 6mm diameter, heated 2 and f l a t t e n e d a t one end to form a curved area of ^ 2 cm upon which chemicals c o u l d e a s i l y be scooped and t r a n s f e r r e d d. In Table 9 i s a l i s t of v a r i o u s kinds of apparatus used i n t h i s r e s e a r c h and t h e i r manufacturers or s u p p l i e r s . INSTRUMENTAL METHODS . I n f r a r e d I n f r a r e d s p e c t r a were recorded w i t h a Perkin-Elmer 457 g r a t i n g spectrometer w i t h a range of 4000-250 cm" 1. The ac-curacy of t h i s instrument below 2000 cm ^, the r e g i o n where most v i b r a t i o n s were observed, was ±1 c m - 1 w i t h r e a d a b i l i t y from the c h a r t paper being +3 cm - 1. A l l s p e c t r a were c a l i -b r a t e d u s i n g a p o l y - s t y r e n e f i l m . Due to the high r e a c t i v i t y of the samples o n l y BaF2, and o c c a s i o n a l l y AgCl and AgBr, windows c o u l d be used w i t h s p e c t r a l c u t o f f s a t ^ 800 cm - 1, ^ 400 cm" 1 and i> 300 c m - 1 r e s p e c t i v e l y . In a d d i t i o n , a monel 63 TABLE 9 Commercially A v a i l a b l e Types of Apparatus Apparatus Manufacturer or S u p p l i e r Welsh Duo-Seal Vacuum Pump, Model 1400 High vacuum g l a s s and Tef l o n - s t e m stopcocks Metal h i g h p r e s s u r e and vacuum v a l v e s F l u o r o l u b e Grease, GR-90 F l u o r o l u b e O i l , MO-10 Tygon t u b i n g Linde chromatograph-grade 5A m o l e c u l a r s i e v e s Dri-Lab(VAC) Model HE-43-2 Dri-T r a i n ( V A C ) Model HE-93-B Welsh S c i e n t i f i c Company; Skokie, I l l i n o i s Kontes; F r a n k l i n Park, I l l i n o i s : F i s h e r and P o r t e r ; Warminster, P e n n s y l v a n i a Whitey; Columbia V a l v e and F i t t i n g Co., Vancouver, B r i t i s h Columbia: Hoke; Hoke Inc., C r e s k i l l , New J e r s e y : A u t o c l a v e ; A u t o c l a v e E n g i n e e r i n g Inc., E r i e , P e n n s y l v a n i a Hooker Chemical C o r p o r a t i o n ; North Vancouver, B r i t i s h Columbia F i s h e r S c i e n t i f i c Co., Vancouver, B.C. Union C a r b i d e ; Redondo Beach, C a l i f o r n i a Vacuum Atmospheres C o r p o r a t i o n North Hollywood, C a l i f o r n i a M e t t l e r Gram-atic #1-911 and P160 Balances Pi-pump IR window m a t e r i a l s (BaFp,CsI,AgBr and AgCl) F i s h e r S c i e n t i f i c Co., Vancouver, B.C. B e l - A i r P r o d u c t s ; Pequannock, New J e r s e y Harshaw Chemical Company; C l e v e l a n d , Ohio Quartz O p t i c a l C e l l s Thermal Sy n d i c a t e L t d ; Wallsend, Northumberland, U.K. metal gas c e l l , 7 cm long and equipped with AgCl windows was used f o r o b t a i n i n g the i n f r a r e d s p e c t r a of gaseous m a t e r i a l s . Low temperature (^  80°K) i n f r a r e d s p e c t r a were r e -corded on a Perkin-Elmer 225 prism and g r a t i n g spectrometer, the range of which was 4000-200 cm ^. V i b r a t i o n a l a b s o r p t i o n s c o u l d be determined t o w i t h i n ±2 cm _ x, and a l l s p e c t r a were c a l i b r a t e d w i t h a p o l y s t y r e n e f i l m . The low temperature i n -f r a r e d c e l l was a Horning-Wagner L i q u i d N i t r o g e n C e l l which 1 o c -t o c has p r e v i o u s l y been d e s c r i b e d ' . I t c o n s i s t e d b a s i c a l l y of an evacuable pyrex g l a s s body f i t t e d w i t h two e x t e r i o r C s l end windows, and equipped a l s o w i t h an i n t e r i o r dewar column, at the base of which was a brass b l o c k . The brass b l o c k was so c o n s t r u c t e d as t o h o l d C s l window c e n t r a l l y w i t h i n the i n f r a r e d c e l l body. Upon t h i s window v o l a t i l e samples c o u l d be d e p o s i t e d i n vacuo w i t h a movable pyrex d e p o s i t i o n tube which l e d from a separate sample c o n t a i n e r a l s o a t t a c h e d to the body of the c e l l . O c c a s i o n a l l y the sample c o n t a i n e r had to be c o o l e d to reduce the v o l a t i l i t y of the sample, and on othe r o c c a s i o n s long d e p o s i t i o n times a t room temperature were r e q u i r e d to a t t a i n s u f f i c i e n t m a t e r i a l on the c e n t r a l C s l c o l d window t o o b t a i n a s a t i s f a c t o r y spectrum. Raman Raman s p e c t r a were measured w i t h a Cary 81 s p e c t r o -photometer equipped w i t h a S p e c t r a p h y s i c s Model 125 "He-Ne o l a s e r source u s i n g the ruby red e x c i t i n g r a d i a t i o n a t 6328 A. Peak p o s i t i o n s c o u l d be determined a c c u r a t e l y to ±2 cm ^. The pyrex sample tubes were g e n e r a l l y f i l l e d i n the drybox and c o n s i s t e d o f a tube 5mm i n diameter w i t h an o p t i c a l l y f l a t end i n t o which s o l i d s or l i q u i d s c o u l d be p l a c e d and l a t e r f l a m e - s e a l e d a i r t i g h t . A l t e r n a t e l y , bent r i g h t - a n g l e d tubes 10 cm i n t o t a l l e n g t h and 5mm o.d., equipped w i t h or without an i n t e r n a l spacer, and capable of being a t t a c h e d t o a vacuum l i n e f o r the i n t r o d u c t i o n of v o l a t i l e m a t e r i a l s i n vacuo, were a l s o used. A f t e r d i s t i l l a t i o n of the compound i n t o the tube was completed, the sample c o u l d be removed from the vacuum l i n e w i t h f l a m e - s e a l i n g . 3. U l t r a v i o l e t , v i s i b l e and n e a r - i n f r a r e d E l e c t r o n i c s p e c t r a were recorded on a Cary 14 s p e c t r o -meter, employing a Model D lamp supply from A p p l i e d P h y s i c s C o r p o r a t i o n , f o r the s p e c t r a l range of 2000-190 nm. S p e c t r a were taken w i t h s p e c t r o s i l p r e c i s i o n o p t i c a l c e l l s of 1.0 cm and 0.1 cm path l e n g t h s which were f i l l e d i n the drybox and stoppered w i t h T e f l o n p l u g s to prevent h y d r o l y s i s o f the s o l u t i o n s d u r i n g the r e c o r d i n g of s p e c t r a . 4. Conductometry The c o n d u c t i v i t y o f v a r i o u s s o l u t e s i n HSO^F was measured i n a c e l l p r e v i o u s l y d e s c r i b e d ( S e c t i o n I I . C.) and immersed i n an o i l bath a t 25.00+0.01°C, whose volume was ^ 35 1. OC Turbine O i l - 11 was used, s u p p l i e d by Standard O i l Co. of B.C., L t d . Constant temperature was a t t a i n e d w i t h the use of a Sargent Model ST Thermonitor, and measurements of c o n d u c t i v i t y were taken w i t h the a i d of a Wayne Kerr 66 U n i v e r s a l Bridge Model B221-A. The technique employed f o r these experiments c o n s i s t e d o f f i r s t d i s t i l l i n g <\» 10 ml o f HSO^F i n t o the c o n d u c t i v i t y c e l l , then d i s t i l l i n g ^ 10 ml more HSO-jF onto a preweighed q u a n t i t y of s o l u t e i n a s e p a r a t e dropper a d d i t i o n v i a l . A f t e r t o t a l d i s s o l u t i o n of the s o l u t e w i t h i n the v i a l was a t t a i n e d , the c o n c e n t r a t i o n o f which c o u l d be c a l c u l a t e d , s m a l l volumes of t h i s s o l u t i o n were then added, dropwise a t f i r s t and f i n a l l y i n volumes of ^ 1 1/2 ml, to the s o l u t i o n w i t h i n the c o n d u c t i v i t y c e l l . New c o n c e n t r a t i o n v a l u e s were then c a l c u l a t e d and p l o t t e d a g a i n s t c o n d u c t i v i t y v a l u e s c o n v e r t e d to s p e c i f i c conductances u s i n g the c a l i -b r a t e d c e l l c o n s t a n t s . The c a l c u l a t i o n of y, d e f i n e d as the number of I^SC^F"*" or SO3F ions produced per molecule of 25 s o l u t e i n HSO3F , was done by comparing the c o n c e n t r a t i o n of KSO-jF to t h a t of the s o l u t e under study a t some c e r t a i n , ^ . . m o l a l i t y of KSO->F s p e c i f i c conductances, i . e . y = J . m o l a l i t y of s o l u t e under study 5. Magnetochemistry Measurements of u e f f f o r c e r t a i n paramagnetic com-187 pounds were made u s i n g the Gouy method a t v a r i a b l e temper-188 a t u r e s i n an apparatus d e s c r i b e d by C l a r k and O'Brien , as w e l l as an NMR method a t room temperature as d e s c r i b e d by 189 D i c k i n s o n . In the f i r s t case, a Gouy tube was c a l i b r a t e d 190 a c c o r d i n g to F i g g i s u s i n g Hg Co(CNS) 4 i n magnetic f i e l d s of ^ 8000 and ^ 4000 gauss. The e f f e c t i v e magnetic moments of sample compounds were c a l c u l a t e d u s i n g the e q u a t i o n v e f f = 2. 828 VXm' T . Xm' was the c o r r e c t e d molar magnetic s u s c e p t i b i l i t y i n c.g.s. u n i t s and T was the temperature i n °K. C o r r e c t i o n s f o r the diamagnetic s u s c e p t i b i l i t i e s of c l o s e d - s h e l l anions and c a t i o n s as w e l l as P a s c a l ' s c o n s t a n t s were used, and were II 191 taken from L a n d o l t - B o r n s t e i n . In c.g.s. u n i t s , the v a l u e s employed were as f o l l o w s : F, -6.3X10 - 6; Br, -30.6X10" 6; I, -44.6X10" 6; Sb, -14X10 - 6. Packings of the tube were done i n the drybox, and a f t e r the mass of the sample had been determined, a s m a l l amount of F l u o r o l u b e grease served t o block the otherwise open end o f the Gouy tube to prevent h y d r o l y s i s o f the sample d u r i n g the measurements. In the case o f the NMR method, the s h i f t and broadening of the *H NMR s i g n a l o f HSO3F was employed t o f i n d the e f f e c -t i v e magnetic moment of s o l u t i o n s c o n t a i n i n g paramagnetic 189 s p e c i e s . The r e l a t i o n s h i p e s t a b l i s h e d by D i c k i n s o n r e s u l t s i n the formula H e f f = . / 9 <5S k T - 2 7 rcH 0N 6' where 6 g = chemical s h i f t ( i n Hz or cps) k = Boltzmann's c o n s t a n t T = Temperature ( i n °K) c = c o n c e n t r a t i o n ( i n m o l a r i t y ) H Q = f i e l d ( i n gauss) i n the magnet gap N = Avogadro's number g = Bohr's magneton S o l u t i o n s f o r the NMR method were prepared i n the drybox, 68 capped and the AH chemical s h i f t s of HSO^F were q u i c k l y r e -corded on a V a r i a n A s s o c i a t e s HA-100 NMR spectrometer t o pr e -vent a p p r e c i a b l e h y d r o l y s i s of the samples. 19 6. F NMR spe c t r o s c o p y 19p N M R s p e c t r a were recorded on both the V a r i a n A s s o c i a t e s T60 and HA-100 NMR spectrometers w i t h the f i r s t o p e r a t i n g a t 56.4 MHz and the second a t 9 4.1 MHz. Standard 5mm o.d. NMR tubes were f i l l e d i n the drybox and l a t e r flame-s e a l e d to p r o t e c t the samples from h y d r o l y s i s . A l l s p e c t r a were c a l i b r a t e d w i t h r e s p e c t to C F C ^ (taken t o be zero ppm) by tube i n t e r c h a n g e due to the h i g h r e a c t i v i t y o f most of the compounds. 7. M e l t i n g p o i n t s M e l t i n g p o i n t s of s o l i d s were measured wi t h a Thomas Hoover c a p i l l a r y m e l t i n g p o i n t machine. Because of the r e -a c t i v i t y of the samples, the tubes were f i l l e d i n the drybox and f l a m e - s e a l e d . The contents melted i n a c l o s e d dry N 2 atmosphere and the m e l t i n g p o i n t s are r e p o r t e d u n c o r r e c t e d f o r temperature d i f f e r e n c e s along the thermometer stem. 8. Analyses E l e m e n t a l a n a l y s e s f o r v a r i o u s compounds were performed by A l f r e d Bernhardt M i k r o a n a l y t i s c h e s Laboratorium, 5251 E l b a c h liber E n g e l s k i r c h e n , West Germany. Elements t y p i c a l l y a n a l y s e d were F, C l , Br, I ( u s u a l l y i n the presence of one a n o t h e r ) , S and Sb. M o l e c u l a r weight d e t e r m i n a t i o n A c c o r d i n g to the equation pV = nRT, the m o l e c u l a r weight of an i d e a l gas can be measured. For t h i s purpose a m o l e c u l a r weight b u l b c o n s i s t i n g of an approximately .spher-i c a l f l a s k f i t t e d w i t h a vacuum T e f l o n stopcock and a BIO cone was used. The volume of t h i s b u l b was c a l i b r a t e d w i t h d i s t i l l e d water, the d e n s i t y of which was assumed a t a s p e c i f i c temperature, y i e l d i n g a v a l u e of 193.1 ml. In a d d i t i o n , a s p e c i a l F l u o r o l u b e o i l U-type manometer was employed to measure r e l a t i v e l y s m a l l vapor p r e s s u r e s . The d e n s i t y of the o i l used, F l u o r o l u b e o i l MO-10, was 1.92 g/ml a t room temperature. Thus the d i f f e r e n c e i n h e i g h t s of the two F l u o r o l u b e o i l l e v e l s when one s i d e was exposed to the vapors o f the compound under study, and the o t h e r s i d e was under vacuum, c o u l d be c o n v e r t e d from mm F l u o r o l u b e o i l h e i g h t to mm Hg h e i g h t , knowing the d e n s i t y o f Hg t o be 13.59 g/ml. A d e f l e c t i o n of 20 mm h e i g h t of o i l would be equal t o 2.8 mm I-Ig. G r a t e f u l thanks are g i v e n to Mr. G. Gunn and Dr. G. E i g e n d o r f i n the mass s p e c t r o m e t r i c l a b o r a t o r y f o r r e c o r d i n g the mass spectrum of S b F 4 ( S 0 3 F ) * S b F 5 on the AET MS902 mass spectrometer (operated a t 70 e.V. v i a d i r e c t i n l e t system). CHEMICAL STARTING MATERIALS  Commercial Some o f the chemicals used d u r i n g t h i s study were a v a i l -a b l e from commercial s o u r c e s . In some i n s t a n c e s t h e i r p u r i t i e s 70 were h i g h enough t o be used d i r e c t l y , but i n o t h e r s a d d i t i o n a l p u r i f i c a t i o n was needed. Table 10 l i s t s these r e a g e n t s , t h e i r s u p p l i e r s and p u r i t i e s a long w i t h notes on a d d i t i o n a l p u r i f i -c a t i o n procedures. TABLE 10 CHEMICAL SUPPLIER NOTES N. C l . Br. s o 3 KCl KC10-Canadian L i q u i d A i r , L t d . A l l i e d Chemical Corp. Matheson o f Canada L t d . B r i t i s h Drug Houses, L t d . M a l l i n c k r o d t Chem-i c a l Works A l l i e d Chemical Corp. N i c h o l l s Chemical Co. L t d . B r i t i s h Drug Houses, L t d . H 2 C 2 ° 4 * 2 H 2 ° Baker and Adamson 96% H 2 S 0 4 A l l i e d Chemical Canada, L t d . dry L-grade 98% pure, HF removed by NaF t r a p (See S e c t i o n II.A.2) 99.5% pure, f r a c t i o n a l l y d i s t i l l e d and c o l l e c t e d a t -118°C to remove HC1 >99% pure, s t o r e d over KBr and P->Oc to remove HC1 and H 20 resublimed a n a l y t i c a l reagent grade and used as r e c e i v e d under N 2 atmos-phere o b t a i n e d as S u l f a n and used as r e c e i v e d reagent grade, d r i e d a t 145°C f o r 3 h r s . a n a l y t i c a l reagent grade used as r e c e i v e d reagent grade used as r e c e i v e d reagent A.C.S. grade 6 5% oleum (fuming s u l -f u r i c a c i d ) Baker and Adamson T e c h n i c a l grade TABLE 10 (cont) CHEMICAL SUPPLIER NOTES H S 0 3 F Baker and Adamson T e c h n i c a l grade , "rken doubly d i s t i l l e d under N 2 atmos-phere (see S e c t i o n II.A.3) HSO3CF3 3M Company p u r i t y not g i v e n , r e c e i v e d as f l u o r o c h e m i c a l a c i d FC-24, d i s t i l l e d under p a r t i a l p r e s s u r e (see S e c t i o n II.A.4) SbF- F i s h e r S c i e n t i f i c Company T e c h n i c a l grade, r e c r y s t a l -l i z e d from methanol and d r i e d i n vacuo a t 160°C f o r 6 h r s . SbF 5 Ozark Mahoning Co, p u r i t y not g i v e n , d i s t i l l e d under N 2 stream and f r a c t i o n a l l y d i s t i l l e d (see S e c t i o n II.A.5) Prepared Other chemicals not commercially a v a i l a b l e had to be prepared a c c o r d i n g t o p u b l i s h e d l i t e r a t u r e methods. S 2 ° 6 F 2 ^ " ^ w a s Prepared i n an apparatus as d e s c r i b e d i n 1 1 2 S e c t i o n II.A.2 b a s i c a l l y a c c o r d i n g to Shreeve and Cady w i t h s e v e r a l changes. The AgF 2 c a t a l y z e d r e a c t o r furnace was heated t o ^180°C w i t h a r e l a t i v e flow r a t e o f S 0 3 : F 2 i n the r a t i o 2:1 as e s t i m a t e d by a b u b b l i n g flow meter. About 2.5 kilograms of r e l a t i v e l y pure S 2 0 g F 2 were c o l l e c t e d a t -78°C. Unreacted S O 3 , i f p r e s e n t , were removed by washing w i t h 96% H 2 S 0 4 i n a s e p a r a t o r y f u n n e l b e f o r e f i n a l vacuum d i s t i l l a t i o n 19 of the S ?O f iF 9. The p u r i t y of the S 2 0 6 F 2 was checked by F NMR. FOSC^F 7 5 was prepared i n the same apparatus as S 2 ° 6 F 2 ^ s e e S e c t i o n I I . A . 2 ) , but the furnace temperature was r a i s e d to ^220°C. The r e l a t i v e flow r a t e s of S 0 3 : F 2 were reduced to 1:1 as e s t i m a t e d by a b u b b l i n g flow meter and n e a r l y pure FOSC^F was c o l l e c t e d i n a t r a p a t -183°C. P u r i f i c a t i o n o f the FOSC^F (m.p. = -158.5°C, b.p. = -31.3°C) from any S 2 0 g F 2 (m.p. = -55.4 b.p. = 67.1°C) was accomplished by f r a c t i o n a l d i s t i l l a t i o n with the primary c o l l e c t i o n t r a p h e l d a t -7 8°C, thus a l l o w i n g the FOSO2F t o condense pure i n another t r a p h e l d a t -196°C. 19 The p u r i t y of the FOS0 2F was checked by F NMR. B r O S O 2 F 1 0 ° was prepared by d i s t i l l i n g a s l i g h t excess 7 7 of S 2 0 g F 2 onto B r 2 a c c o r d i n g to Aubke and G i l l e s p i e , thus s t o r i n g the p r o d u c t over B r ( S 0 3 F ) 3 . I O S 0 2 F 7 8 was made by an e x a c t l y s t o i c h i o m e t r i c a d d i t i o n o f S 2 O g F 2 to I 2 v i a a c a l -i b r a t e d a d d i t i o n - t r a p ( F i g u r e 11). B r ( S 0 3 F ) 3 ? 7 and I ( S 0 3 F ) 3 7 7 were generated by d i s t i l l i n g an excess of S 2 0 g F 2 o n t o B r 2 and I 2 and pumping o f f the u n r e a c t e d S 2 0 g F 2 a c c o r d i n g t o l i t e r a t u r e methods. ICI was s y n t h e s i z e d by p a s s i n g C l 2 over I-> a t RT i n the 19 2 manner g i v e n by Cornog and Karges and then f r a c t i o n a l l y c r y s t a l l i z e d b e f o r e use. IBr was o b t a i n e d by the method ' l i s t e d by B r a u e r 1 9 3 ; B r 2 was added t o f i n e l y crushed I 2 under a N 2 atmosphere w i t h the r e a c t o r a t 0°C i n i t i a l l y then e l e -v ated t o 45°C a t the end t o complete the r e a c t i o n . The IBr thus o b t a i n e d was f r a c t i o n a l l y c r y s t a l l i z e d b e f o r e use. 173 ( I C 1 3 ) 2 was produced i n s i t u a f t e r d i s t i l l a t i o n of an 194 excess of C l 2 onto f i n e l y crushed I 2 a c c o r d i n g to Brauer The f o r m a t i o n of (ICI3).) was checked by n o t i n g the y e l l o w s o l i d appearance of the product a f t e r d i s t i l l a t i o n of the excess C l 2 , and by the c o r r e s p o n d i n g weight i n c r e a s e approp-r i a t e f o r ( I C 1 3 ) 2 . 1 q c C 1 0 2 was made a c c o r d i n g t o the l i t e r a t u r e m e t h o d x 5 J by the i n t e r a c t i o n of KC10 3, E2C2°4 a n d H 2 S 0 4 a t % 1 0 0 ° C . The v o l a t i l e C 0 2 by—product was allowed to vent i n a darkened fume hood (CIO2 can detonate w i t h exposure to l i g h t ) , and the CIO2 was c o l l e c t e d i n -78°C t r a p s . Pumping on the product a t t h i s temperature f o r 2-3 hours served to remove any C l 2 and C 0 2 which may have been p r e s e n t . A l s o due to i t s e x p l o s i v e be-h a v i o r , the C1C>2 was never allowed to warm up to RT, but d i s -t i l l e d d i r e c t l y i n t o another r e a c t o r as shown i n F i g u r e 9 e) f o r f u r t h e r r e a c t i o n w i t h S 2 0 g F 2 . ClC^SO-jF was thus p r e -pared when an excess of S20gF2 w a s d i s t i l l e d upon the CIO2 and allowed to s l o w l y warm from -78°C to RT. A f t e r the un-r e a c t e d S 2 0 g F 2 was d i s t i l l e d from the r e l a t i v e l y n o n v o l a t i l e 19 C 1 0 2 S 0 3F, i t s p u r i t y was checked by F NMR. K S 0 3F was prepared by d i s t i l l i n g HSO3F onto d r i e d KCl 2 1 a c c o r d i n g to B a r r e t a l . The HCl t h a t was formed as w e l l as the excess HSO3F was removed i n vacuo, a t ^100°C, a f t e r w h i c h the crude KSO3F was r e c r y s t a l l i z e d i n an i c e - c o l d aqueous medium a t pH = 7. The p u r i t y of the product was checked by IR >and/lstored i n a d e s i c c a t o r . ^100% I^SO^ was prepared by the method of G i l l e s p i e , 37 Oubridge and Solomons , i n which 65% oleum (fuming H 2 S 0 4 ) and d i s t i l l e d H 2 0 were a l t e r n a t e l y added to 96% H 2 S 0 4 u n t i l a s p e c i f i c conductance o f 1.058 fi-J- cm 1 was achie v e d , s l i g h t l y on the aqueous s i d e of 100% H 2S0 4. A s o l u t i o n of SbF5 i n H S O 3 F was made by d i s t i l l i n g 16.6g SbFt^ i n t o a 500ml f l a s k and adding 368.Ig doubly d i s t i l l e d HSO3F i n the drybox. A s o l u t i o n o f 0.230 m o l a l SbFj-/3S0 3 i n SbF 5 was produced by f i r s t d i s t i l l i n g 38.5g SbF^ i n t o a 500ml f l a s k and adding 628.2g of doubly d i s t i l l e d HSO.3F i n the drybox. Next, the a d d i t i o n of 44.2g o f S O 3 was made i n t o 148.4g of doubly d i s -t i l l e d HSO3F i n a sep a r a t e 250ml f l a s k . F i n a l l y 185.9g of the r e s u l t i n g SO3 / H S O 3 F mixture was added t o the p r e v i o u s SbFtj/HSG^F mixture i n the drybox, r e s u l t i n g i n a s t o i c h i o m e t r i c 1:3 r a t i o o f S b F 5 : S 0 3 i n the HSO3F s o l u t i o n . 75 III. VIBRATIONAL SPECTRA OF IOSOQF AMD BrOSO-,F A. INTRODUCTORY REMARKS The d e t a i l e d s t r u c t u r e s of the halogen m o n o f l u o r o s u l f a t e s , XOS0 2F, X = F, C l , Br or I, are not known at t h i s time. The p h y s i c a l p r o p e r t i e s and the r e p o r t e d v i b r a t i o n a l s p e c t r a f o r FOSO2F, CIOSO2F AND Br0S02F have been i n t e r p r e t e d i n terms of • ^ *v 7 7 5 8 2 8 3 c o v a l e n t s t r u c t u r e s w i t h an X S grouping ' ' ' . Sim-i l a r c o v a l e n t s t r u c t u r e s have a l s o been suggested f o r the com-p a r a b l e h a l o g e n p e r c h l o r a t e s , F O C I O ^ 6 9 , 7 0 , C 1 0 C 1 0 3 1 0 1 and B r O C l 0 3 1 9 7 , and the h a l o g e n n i t r a t e s , F O N 0 2 8 5 and C 1 0 N 0 2 1 0 8 , as w e l l . At f i r s t g lance i t might be thought t h a t I O S 0 2F should be s t r u c t u r a l l y s i m i l a r t o the o t h e r h a l o g e n m o n o f l u o r o s u l f a t e s . Some evidence i n support of t h i s has been r e p o r t e d i n the l i t -e r a t u r e . IOSO2F i s s o l u b l e , however s p a r i n g l y , i n the non-c o o r d i n a t i n g s o l v e n t S 2O^F 2, i n which i t s v i s i b l e - u l t r a v i o l e t 77 spectrum has been reco r d e d , and was found comparable t o those 77 of B r O S 0 2 F , I C l and IBr . A very s m a l l but d e t e c t a b l e v o l a t i l -i t y o f I O S 0 2F was i n d i c a t i v e of e x t e n s i v e i n t e r m o l e c u l a r a s s o c -i a t i o n i n the s o l i d s t a t e . An i o n i c s t r u c t u r e such as [ l + ] [SO^F -] was r u l e d out because of i t s r e p o r t e d d i a m a g n e t i s m 7 8 . Any s t r u c t u r a l comparisons f o r IOS0 2F are perhaps be s t made with I C I , f o r which two m o d i f i c a t i o n s e x i s t . The s t r u c t u r e of 19 9 the r e c e n t l y r e p o r t e d I O S 0 2CF 3 i s y e t unknown . Whereas i n a phase study of the I 2 /' S2 <^6 F2 system, the e x i s t e n c e of a compound of the composition IOSO,,F was d e f i n i t e l y e s t a b l i s h e d , any s t r u c t u r a l i n f o r m a t i o n was l a c k i n g except q q f o r a r a t h e r l i m i t e d I n f r a r e d study i n the BaF 2 r e g i o n . Since IOSC^F was an important s t a r t i n g m a t e r i a l i n subsequent s t u d i e s , an attempt had to be made to g a i n a b e t t e r i n s i g h t i n t o the s t r u c t u r e of t h i s compound. Low temperature I n f r a r e d s p ectroscopy was thought to be a h e l p f u l t o o l i n t h i s r e s p e c t , making use of the l i m i t e d v o l a t i l i t y o f the IOSG^F. T h i s t e c h -nique was extended t o the ot h e r halogen m o n o f l u o r o s u l f a t e s as w e l l i n o r d e r t o d e t e c t a c o n s i s t e n t p a t t e r n . The v i b r a t i o n a l s p e c t r a of FOS0 2F 7 and C 1 0 S 0 2 F 7 ' 8 2 have p r e v i o u s l y been reco r d e d v i a Raman and low temperature I n f r a r e d techniques and analyzed i n terms of c o v a l e n t monodentate f l u o r o -s u l f a t e - c o n t a i n i n g s p e c i e s . As p a r t of t h i s study the low temperature I n f r a r e d s p e c t r a o f these two compounds were r e -corded a g a i n , and the p r e v i o u s f i n d i n g s were completely con-fi r m e d . Table 11 l i s t s the v i b r a t i o n a l f r e q u e n c i e s and a s s i g n -ments f o r FOS0 2F and C10S0 2F. Two i n t e r e s t i n g e f f e c t s i n the s p e c t r a were observed : f i r s t , some s m a l l s p l i t t i n g o f funda-mentals was seen, i n p a r t i c u l a r i n the S-0 s t r e t c h i n g range; second, the band p o s i t i o n s were lowered by ^ S-lOcm"^. The f i r s t f e a t u r e may be due to d i f f e r e n t m o l e c u l a r o r i e n t a t i o n s i n the s o l i d s t a t e , w h i l e the second i s g e n e r a l l y observed f o r s o l i d s t a t e s p e c t r a . A l l observed bands were r a t h e r sharp f o r these two compounds. Based upon p o l a r i z a t i o n data i n the Raman s p e c t r a f o r these compounds, C s symmetry was assumed, c o n s i s t e n t T A B L E 11 V i b r a t i o n a l Frequencies and Assignments for F0S0 2F and C10S0 2F F0S0 2F Raman (ref 7) cm ^ Int e n s i t y Low-Temperature Infrared ( t h i s work) cm -1 I n t e n s i t y C10S0 2F Raman (ref 7) cm Intensity Low-Temperature Infrared ( t h i s work) cm Intensity Assignments 1502 0.4 dp 1250 8.5 p 880 10.0 p 857 3.0 p 788 7.0 p 577 0.8 p 530 0.5 dp 500 1.5 p 390 1.0 dp 395 4.0 p 242 3.0 p 137 1.0 dp fl485) 114653 ^1360 (1248*1 (1239J 929 878 846 {1% 752 633 570 520 495 390 239 213? vs w vs w s s w w s s m m w 1478 1225 0.5 dp 4.5 830 1.5 P 856 1.5 P 706 10.0 P 573 0.7 P 534 0.7 dp 486 4.5 P 389 0.6 dp 363 8.0 P 212 2.5 P 1453 1435 ^1280 ^1200 1231 968 827 860 710 635 ^555 '531~) 528) 485 394 369 vs sh sh sh vs w vs vs s w s s sh m w m v S0 2 asym " comb band v S0 2 sym * comb band v FO v SF v SO v CIO comb band 5. bend S ° 2 Y rock S ° 2 Y SF Y , S0 2 Y t W 1 S t S O X 6 I** SOX T ^ E N D . 5 S - 0 t o r s i o n Abbreviations: vs = very strong, s = strong, m = medium, mw = medium weak, w = weak, sh •» shoulder, p = pol a r i z e d , dp = depolarized. with both a c i s and t r a n s c o n f i g u r a t i o n of the X atom (X=F or Cl) to the F atom on S. No c l e a r d i s t i n c t i o n was p o s s i b l e between the two. X \ 0 I F 0 c i s t r a n s 7 82 A peak which went unreported i n both p r e v i o u s s t u d i e s ' f o r CIOSO2F was the one a t 968cm~ x, even though i t can be p l a i n l y 8 ? observed i n a spectrum which was p u b l i s h e d A d i s c u s s i o n of t h i s band w i l l be presented i n the f o l l o w i n g s e c t i o n on BrOS0 2F. THE LOW TEMPERATURE INFRARED SPECTRUM OF B r O S 0 9F The Raman spectrum a t RT of BrOS0 2F had been r e p o r t e d 8 3 p r e v i o u s l y . However the I n f r a r e d spectrum c o u l d not be o b t a i n e d due to i t s extreme r e a c t i v i t y . A sample of BrOS0 2F prepared i n the g e n e r a l manner as g i v e n i n S e c t i o n s I. B.2 and I I . E.2 was handled i n a g l a s s vacuum system under s t r e n u o u s l y dry c o n d i t i o n s , and f u r t h e r p u r i f i e d by f r a c t i o n a l d i s t i l l a t i o n . The I n f r a r e d spectrum t h a t was observed i n t h i s study i s i l l -u s t r a t e d i n F i g u r e 12, and the f r e q u e n c i e s t h a t were recorded are p r e s e n t e d i n Table 12 t o g e t h e r w i t h the p r e v i o u s l y r e p o r t e d Raman f r e q u e n c i e s . 0 / X s F 0 The IR spectrum of BrOS0 2F at 80°K from 1600 c m - i to 200 c m - i 1600 1400 1200 1000 800 Wavenumber c m - 1 F i g u r e 12. TABLE 12 Vibrational Frequencies and Assignments for BrOSO?F Raman Low-Temperature Infrared Assignments (ref 83) (This work) -1 cm Intensity cm x Intensity 1438 2 1428 vs v asym S02 1390 sh 1280 VW comb band 1225 sh 1206 4 1200 vs v s y m SO2 965 mw 884 2.5 898 vs v SO 832 1 830 s v SF 659 6 652 m v BrO 570 1 569 ms <5 bend SO2 537 1 535 m Y rock SO2 464 4 461 w Y wag SF 390 1, br Y twist SO2 317 10 310 mw Y wag SOBr 175 4 <5 bend SOBr Abbreviations: vs = m = br = very strong, s = strong, ms medium, mw = medium weak, w broad. =5 medium strong, = weak, sh = shoulder The assignments which are g i v e n are i n many r e s p e c t s the same as the ones a l r e a d y r e p o r t e d . In a d d i t i o n t o f i n d i n g c o r r e s p o n d i n g peaks i n the low temperature I n f r a r e d spectrum as found i n the Raman spectrum, however, the presence of two -1 -1 shoulders a t ^1390cm and ^1225cm as w e l l as an a d d i t i o n a l band a t 965cm 1 were a l s o observed. These peaks must be r e -garded as SO-jF s t r e t c h i n g v i b r a t i o n s , but are not as e a s i l y e x p l a i n a b l e as the s o l i d s t a t e e f f e c t s t h a t were d i s c u s s e d be-f o r e . Whereas the frequency of the h i g h e s t band i s s h i f t e d downward, the o t h e r two are s h i f t e d upward by as much as 7 0cm 1 i n comparison to the main S 0 3 s t r e t c h e s f o r BrOSC^F. I t appears l i k e l y t h a t some i n t e r m o l e c u l a r a s s o c i a t i o n of the type S—O •> Br may produce the observed frequency s h i f t . The remaining SF and deformation bands f o r t h i s k i n d of f l u o r o s u l f a t e group are e i t h e r too weak to be observed or are obscured by the dominant c o v a l e n t monodentate BrOSC^F bands. The e x i s t e n c e of some i n t e r m o l e c u l a r a s s o c i a t i o n i s not unexpected f o r BrOSG^F i n the s o l i d s t a t e c o n s i d e r i n g i t s b o i l -i n g p o i n t and t r o u t o n c o n s t a n t which i n d i c a t e some a s s o c i a -t i o n even i n the l i q u i d s t a t e . I t should be p o i n t e d out t h a t the observed frequency p a t t e r n f o r the a s s o c i a t e d SG-^F group, which i s s t i l l a predominantly c o v a l e n t l y bound monodentate S0 3F group, i s q u i t e d i f f e r e n t from the one d i s p l a y e d by i d e a l l y b r i d g i n g SO3F groups, as i n (CH3) 2 S n (SO-jF) 2 ^ . I t i s p o s s i b l e t h a t f o r ClOSC^F the presence of a peak a t 968cm 1 may be due to a s i m i l a r e f f e c t , but an i n t e r p r e t a t i o n of t h i s band as a combination band cannot be completely r u l e d out. Presumably g r e a t e r i n t e r m o l e c u l a r a s s o c i a t i o n would be found f o r s o l i d IOSC>2F i n keeping with the demonstrated a s s o c i a t i o n of I C I . . , f o r example, versus C1F. (s) In r e s p e c t t o the assignment of the remaining funda-mentals, however, a b a s i c reassessment must be made f o r BrOSG^F. P r e v i o u s l y the v BrO v i b r a t i o n had been a s s i g n e d to a s t r o n g p o l a r i z e d band i n the Raman spectrum a t 464cm - 1, w i t h another s t r o n g p o l a r i z e d band a t 659cm 1 a s s i g n e d as the 6 k e n 3 S 0 2 v i b r a t i o n . A more c o n s i s t e n t p a t t e r n i s achieved by r e v i s i n g these assignments i n view of the f a c t t h a t no deformation or bending modes f o r FOS0 2F or C10S0 2F are found above 600cm - 1, and t h a t the p r e v i o u s assignment f o r v BrO i s d e c i d e d l y too low. In T a b l e 13 some halogen-oxygen s t r e t c h i n g f r e q u e n c i e s f o r r e l a t e d molecules of the type X 20 and XOS0 2F are l i s t e d i n c l u d i n g the reassignment f o r BrOS0 2F. Replacement of a halogen atom by the e l e c t r o n withdrawing S 0 2F group r e s u l t s i n an unchanged p o s i t i o n f o r the v OF mode, but a g r a d u a l i n c r e a s e i n the C l and Br p a i r s of compounds as molecules of the type XOS0 2F are compared to those of the type XOX ( X 2 0 ) . F u r t h e r -more, the assignment f o r the v BrO v i b r a t i o n a t 652cm" 1 f o r BrOS0 2F i s confirmed by another r e p o r t t h a t p l a c e s the Br-0 s t r e t c h i n g v i b r a t i o n f o r BrOCK> 3 a t 683cm" 1 7 0 ' 1 9 7 . The remaining bands f o r BrOS0 2F may then be r e a s s i g n e d e a s i l y i n analogy to FOS0 2F and C10S0 2F as shown i n T a b l e 12. Only the low frequency t o r s i o n a l mode which i s to be expected w e l l below 200cm" 1 was hot observed i n e i t h e r the Raman or the I n f r a r e d spectrum; otherwise e x c e l l e n t agreement was found f o r these v i b r a t i o n s . TABLE 13 Halogen-Oxygen Infrared Stretching Frequencies for X o0 and XOSO-F Molecules Compound v FO (asym) (sym) ave (cm 1) v CIO (asym) (sym) ave (cm 1) v BrO (asym) (sym) ave (cm 1) Reference F 20 (929) (826) 878 200 FOS02F 880 This Work ci 2o (671) (631) 651 201 C10S02F 710 This Work Br2° (574) (504) 539 202 Br0S02F 652 This Work 84 C. THE LOW TEMPERATURE SPECTRUM OF IOSOgF Somewhat d i f f e r e n t c o n d i t i o n s were needed to r e c o r d the spectrum of I O S O 2 F as compared to those d e s c r i b e d f o r the o t h e r s p e c t r a . In s p i t e o f the l i m i t e d v o l a t i l i t y o f I O S O 2 F , the sample had to be kept a t room temperature. I t had been found t h a t h e a t i n g of the sample to i t s m e l t i n g p o i n t or h i g h e r i n -s t a n t a n e o u s l y produced peaks i n d i c a t i v e o f monomeric SO^ a t 1410cm" 1 ( s ) , 1380cm" 1 ( s ) , 520 c m - 1 (mw) and 470cm" 1 (m) i n the spectrum. The spectrum was analyzed w i t h the a i d of a 203 l i t e r a t u r e r e p o r t o f m a t r i x i s o l a t e d S O 3 monomers . I t must be concluded t h a t some IF a l s o had to be formed i n the decom-p o s i t i o n I O S 0 2 F S 0 3 + " I F " . But s i n c e IF i s i t s e l f not thermodynamically s t a b l e a t room 165 temperature , secondary d i s p r o p o r t i o n a t i o n i n t o I2 and h i g h e r v a l e n t i o d i n e s p e c i e s (such as IF^) was a l s o expected. No other decomposition p r o d u c t s , however, c o u l d be unambig-uously i d e n t i f i e d i n the I n f r a r e d spectrum. L i t t l e decomposition was found i n the low temperature I n f r a r e d s p e c t r a of a sample from which the I O S O 2 F was sub-limed a t RT. D e p o s i t i o n times of 1-3 hours were subsequently needed which caused some v o l a t i l e i m p u r i t i e s to d e p o s i t on the c o l d C s l window, even though i n minute q u a n t i t i e s , and t o com-p l i c a t e the o b t a i n e d spectrum. A sample of such a spectrum i s i l l u s t r a t e d i n F i g u r e 13 and a l i s t of f r e q u e n c i e s f o r I O S O 2 F i s g i v e n i n Table 14. In t h i s spectrum r a t h e r broad bands are The IR spectrum of IOS0 2 F at 80°K between 1600 and 200 cm-i 1600 1400 1200 1000 800 Wavenumber cirri 600 400 200 Figure 13. CO TABLE 14 Infrared Frequencies for I0S02F at 80°K and 295°K I0S0 2F at Assignment FXeOS02F at 1 0 SO 2 F at Assignment 295°K for bridging 295°K 204 80°K for covalent -1 cm Intensity bidentate S0 3F -1 cm Intensity -1 cm Intensity monodentate S O 3 F 1475 s 1393 s 1428 1405 < 1382 vs sh m v S 0 2 asym SO 3 impurity 1340 s,vbr v S0 3 1210 vs 1229 vs,br v S 0 2 sym 1200 vs,br v S0 3 1040 m, sh v S0 3 * 990 ms 970 vs 970 s v SO 910 ms v SF ^830-880 sh on BaF 2cutoff 798 s 849 692 s,br w v SF * 518 vs 613 vs v 1 0 614 597 m w 557 543 464 372 315 s s mw mw m K A S 0 2 bend z Y 1 S 0 2 Yr O C k S F Y ! 3 - , S 0 2 F 1 twist Ywag SOI Abbreviations: vs = m = br = very strong, s = strong, ms = medium strong, medium, mw - medium weak, w = weak, vw = very weak, broad, sh = shoulder, * = oxygen atom i n I0S group. seen as c o n t r a s t e d to the r e l a t i v e l y sharp peaks observed f o r the much more v o l a t i l e FOS0 2F, C10S0 2F and BrOS0 2F compounds. By t a k i n g the most i n t e n s e bands i n the low temperature spectrum, however, a c e r t a i n s i m i l a r i t y o f p o s i t i o n s between those f o r I O S 0 2F and BrOS0 2F are n o t i c e d . I f some of the f i n e r d e t a i l s of the spectrum f o r IOSO2F are momentarily i g n o r e d w h i l the broader band contours are c o n s i d e r e d , the f r e q u e n c i e s a t 1428cm - 1, 1229cm" 1, 970cm" 1 and 849cm" 1 agree w e l l w i t h the u v 3 ^ SO2/ v SO and v SF v i b r a t i o n s r e s p e c t i v e l y expected f o r a c o v a l e n t monodentate SO^F group i n a p o l a r environment. Good , . , 204,168 agreement i s a l s o found w i t h s p e c t r a o f FXeOS0 2F , X e ( O S 0 2 F ) 2 2 ° 4 ' 1 6 8 and H O S 0 2 F 2 0 5 . The lower frequency range a l l o w s the same comparison, and assignments have been g i v e n i n Table 14. A moderately s t r o n g band a t 615cm" 1 i s a s s i g n e d as the v IO mode. The p o s i t i o n o f v IO so c l o s e t o v BrO f o r BrOS0 2F (at 652cm" 1) has precedence among oth e r r e l a t e d I—O and Br—0 compounds. For example, the s k e l e t a l O—I• and 0—Br v i b r a t i o n s i n the I ( O S 0 2 F ) 2 and B r ( O S 0 2 F ) 2 + c a t i o n s d i f f e r o n l y by 10-30 cm" 1 2 0 6 , w i t h the v g vsym I 0 2 m o d e s s l i g h t l y s p l i t a t 712cm" 1, 690cm 1 and a t 663cm 1 650cm 1 r e s p e c t i v e l y , and lower than the c o r r e s p o n d i n g v a Sy- m B r 0 2 and v S y m B r 0 2 modes. The same p a t t e r n can be seen i n the 207 * I 0 3 l s o l v ) a n d B r 0 3 ( s o l v ) a n i ° n s • Other I—0 s t r e t c h i n g v i b r a -* * t i o n s i n 0 = I—OSO2CF3 and ^ I - 0 S 0 2 C F 3 compounds occur a t -1 208 ° ^ 670cm (The a s t e r i s k i d e n t i f i e s the oxygen atom i n the I-O—S group). 88 Since"no bending or deformation modes i n any o t h e r p r e -v i o u s l y d i s c u s s e d XOSG^F compound has been found a t h i g h e r than 600cm ^, the peaks a t 557cm 1 and 543cm 1 must be c o n s i d e r e d as the <S b e n <j SC>2 and Y r o c k s o 2 v i b r a t i o n s , i n good agreement with those f o r I I O S 0 2 F a t 568cm - 1 and 543cm" 1 r e s p e c t i v e l y 2 0 5 . Besides the p o s i t i o n i n g of a peak a t 464cm 1 due to the Y w a g SF and another peak at 372cm - 1 due to the Y^wist S 0 2 F ' o n ^ - v the peak at 315cm - 1 due to the Y w a a S ° I v i b r a t i o n may.be t e n t -a t i v e l y a s s i g n e d to I O S 0 2 F . Peaks marked by T i n the spectrum are due to F l u o r o l u b e grease which was v o l a t i l i z e d over the long d e p o s i t i o n time from the l u b r i c a t i o n of the ground g l a s s j o i n t s . As noted i n T a b l e 14 203 the peaks marked by @ are due to t r a c e amounts o f S 0 3 , p r e -sumably caused by some s l i g h t thermal decomposition of the sample a t room temperature under prolonged exposure to vacuum pumping. Whereas the peak a t 1475cm ^ i s i n the range o f a s t r o n g l y c o v a l e n t l y bonded SO-jF group v i b r a t i o n , as i n F0S0 2F, i t s a s s i g n -ment a t the moment cannot be made wit h a b s o l u t e c e r t a i n t y . Otherwise o n l y the odd peak a t 692cm 1 remains unaccounted f o r . The I n f r a r e d spectrum of I O S O 2 F taken between BaF 2 windows at room temperature i s shown i n F i g u r e 14; a l i s t of the observed f r e q u e n c i e s i s a l s o g i v e n i n Table 14. S i g n i f i c a n t d i f f e r e n c e s between the s p e c t r a a t room temperature and at low temperature are observed. I t should be p o i n t e d out t h a t the s p e c t r a a t RT, 99 both o b t a i n e d here and by Chung and Cady , were on samples of the bulk m a t e r i a l whereas the low temperature spectrum was on a The IR. spectrum of IOS0 2 Fat 25°C between BaF^ windows 1600 to 800 cm- 1 range 1600 1400 1200 1000 800 Wavenumber cm~1 F i g u r e 1 4 . 90 t h i n f i l m . For the case of the I n f r a r e d spectrum a t room temp-e r a t u r e , the c o n f i g u r a t i o n o f the SO3F group i n IOSG^F has changed to a r e l a t i v e l y b r i d g i n g b i d e n t a t e c o n f i g u r a t i o n . In the spectrum of the bulk m a t e r i a l of IOSG^F, the t h r e e v SO3 f r e q u e n c i e s and the v SF frequency are not t o t a l l y d i f f e r e n t from a b r i d g i n g b i d e n t a t e SO3F group as found i n (CH3) 2Sn (SO3F) (the c r y s t a l s t r u c t u r e of which i s g i v e n i n F i g u r e 1) or i n SbF^ (SO-jF) *SbF,- (a new compound which i s to be more f u l l y d i s -cussed i n S e c t i o n V I I ) . A comparison o f these f o u r f r e q u e n c i e s f o r the t h r e e compounds i s made i n Table 15. TABLE 1 5 SO and SF S t r e t c h i n g V i b r a t i o n s of B r i d g i n g S 0 7F Compounds Compound v S 0 3 v S 0 3 v S 0 3 v SF ( C H 3 ) 2 S n ( S 0 3 F ) 2 1350 1180 1076 827 SbF 4 ( S O 3 F )*SbF 5 1425 1095 1060 900 I 0 S 0 2F 1340 1200 1040 910 The tendancy toward such a s s o c i a t i o n i s by f a r the g r e a t e s t f o r IOSO2F, as compared to B r O S 0 2F and C 1 0 S 0 2F, as i s expected on e l e c t r o n e g a t i v i t y grounds. T h i s i s w e l l i l l u s t r a t e d by merely comparing the SO^ s t r e t c h i n g f r e q u e n c i e s of these XOSO2F compounds at RT, a temperature a t which IOSO2F can a s s o c i a t e f r e e l y as compared to the temperature at 80 QK. On the C s l window a t t h i s c o l d temperature, complete a s s o c i a t i o n appears to be prevented. I t must be assumed t h a t the m a t e r i a l which sublimes over i s predominantly the I O S 0 2F monomer which thus produces the observed low temperature spectrum. Even though the spectrum may be a f f e c t e d by the sample being i n v o l v e d i n some weak i n t e r m o l e c u l a r a s s o c i a t i o n , as a l r e a d y d i s c u s s e d , some s i m i l a r i t y t o the o t h e r three XOSC^F s p e c t r a i s p r e s e r v e d and some l i m i t e d s t r u c t u r a l p r o p o s a l s can be made wit h c a u t i o n . The analogy t o ICI seems confirmed a t l e a s t f o r IOSC^F from the broad band contours as seen f o r the compound. T h i s analogy i s a l s o demonstrated by the c h e m i c a l and p h y s i c a l p r o p e r t i e s of IOSO2F, some of which have a l r e a d y been mentioned and some of which w i l l be d e a l t w i t h more f u l l y i n S e c t i o n IV. C l e a r l y t h i s technique o f low-temperature I n f r a r e d s p e c t r o s c o p y i s very u s e f u l i n o b t a i n i n g s p e c t r a of very r e -a c t i v e compounds, but c e r t a i n l i m i t s e x i s t with r e s p e c t to compounds whose v o l a t i l i t i e s are very s m a l l . In the case f o r IOSO2F, some i n f o r m a t i o n has been gained. D e s p i t e the i m p u r i t y bands, an i o n i c o r p e r t u r b e d i o n i c SO3F c o n f i g u r a t i o n f o r IOSO2F can be r u l e d out, and s t r o n g evidence f o r a s s o c i a t i n g SO3F groups f o r the compound has been g i v e n a t room temperature. 92 IV. COMPOUNDS CONTAINING TRIATOMIC IODONIUM(III) CATIONS A. ADDITION REACTIONS OF DIATOMIC HALOGENS AND INTERHALOGENS TO  IOSQ 2F (AND BrOSQ 2F) 1 . I n t r o d u c t i o n The a b i l i t y of I 2 and C l 2 to r e a c t w i t h IOS0 2F to form the t r i a t o m i c halogen and i n t e r h a l o g e n compounds I^SO^F and ICl 2SO.jF r e s p e c t i v e l y has a l r e a d y been d e s c r i b e d . I t seemed reasonable to extend t h i s r e a c t i o n t o the remaining halogen, B r 2 , and to the s t a b l e d i a t o m i c i n t e r h a l o g e n s , ICI and I B r , i n o r d e r t o o b t a i n , i f p o s s i b l e , IBr 2S03F and the com-pounds I2CISO3F and I 2BrS03F. T h i s type of r e a c t i o n would be a u s e f u l a l t e r n a t i v e t o the t y p i c a l r e a c t i o n o f the p a s t which i n v o l v e d a h a l i d e i o n a b s t r a c t i o n from polyatomic i n t e r h a l o g e n s by Lewis a c i d s , p r o v i d e d t h a t the e x i s t e n c e o f the i n t e r h a l o g e n c a t i o n s i n the f l u o r o s u l f a t e s c o u l d be e s t a b l i s h e d . The h a l i d e i o n a b s t r a c t i o n method, however, has had some use. In f a c t , a f t e r s t u d i e s presented here on the f l u o r o s u l f a t e system were a l r e a d y w e l l advanced, r e s u l t s from ot h e r r e s e a r c h groups be-came known t h a t d e s c r i b e d the syntheses and p r o p e r t i e s o f 210 211 213 othe r compounds. I3AICI4 (and I5AICI4) ' ' , I 2 C 1 A 1 C 1 4 2 1 1 - 2 1 3 , i 2 c l S b C l 6 2 0 2 ' 2 0 4 ' 2 ° 5 , 2 0 6 , 2 0 8 r I B r C l S b C l 6 2 1 5 ' 2 1 6 , I C l 2 S b C l 6 2 1 7 ' 2 1 8 , I C 1 2 A 1 C 1 4 2 1 7 and I ^ b F g 2 1 8 were a l l o b t a i n e d , again by u s i n g e s s e n t i a l l y the o l d method. The o n l y e x c e p t i o n was f o r I 3 S b F 6 2 1 8 R u f f s i n 1 9 0 6 1 1 7 , I 3SbFg which was prepared i n a manner s i m i l a r t o 93 2. P r e p a r a t i o n s and a n a l y s e s a) I C 1 2 S 0 3 F In the drybox 2.5141g (11.13 mmoles) of IOS0 2F, f r e s h l y prepared and f i n e l y ground, was p l a c e d i n a 50-ml one-part r e a c t i o n b u l b . Next an excess of dry C l 2 was condensed i n vacuo onto the IOS0 2F. When the temperature o f the r e -a c t o r was r a i s e d from -196°C to -78°C and f i n a l l y t o %20°C, a r e a c t i o n took p l a c e as evidenced by a c o l o r change of the m a t e r i a l s from b l a c k t o orange. F i n a l l y , the r e a c t o r was c o o l e d t o +5°C a t which temperature the excess C l 2 was r e -moved i n vacuo, r e s u l t i n g i n 3.2882g (11.08 mmoles) of a b r i g h t orange s o l i d , ICl 2SO-jF; m.p. = 41-42°C w i t h no apparent decomposition. b) I B r 2 S 0 3 F In the drybox 1.1363g (5.03 mmoles) of IOS0 2F, f r e s h l y prepared and f i n e l y ground, was p l a c e d i n a 50-ml two-part r e a c t i o n b u l b . An excess of dry and p u r i f i e d B r 2 was then d i s t i l l e d i n vacuo onto the IOS0 2F. A f t e r h e a t i n g i n an o i l bath a t ~95°C f o r one hour, the r e a c t a n t s became t o t a l l y l i q u i d , the c o l o r o f which was a dark red-brown. F o l l o w i n g t h i s , the r e a c t o r was c o o l e d t o +5°C and the excess B r 2 was removed i n vacuo. The r e s u l t i n g m a t e r i a l was 1.9329g (5.01 mmoles) o f the r u s t y - r e d brown s o l i d I B r 2 S 0 3 F ; m.p. = 95-97°C w i t h decomposition i n t o B r 2 and a b l a c k l i q u i d . c) I 3 S 0 3 F In the drybox 7.4446g (29.33 mmoles) of I 2 were p l a c e d i n a 50-ml s e a l - o f f one-part r e a c t i o n b ulb and t e m p o r a r i l y 94 l e f t w i t h an atmosphere of dry N 2 w i t h i n . Next, w i t h a P^Og guard tube a t t a c h e d to the r e a c t i o n b u l b , the stopcock was opened and the contents of the r e a c t o r f r o z e n to -196°C; t h i s was immediately f o l l o w e d by f l a m e - s e a l i n g the r e a c t o r a t the c o n s t r i c t i o n t o c r e a t e e s s e n t i a l l y a one-part r e -a c t i o n b u l b . Next the r e a c t i o n bulb was evacuated o f a l l a i r a t -196°C, and a s t o i c h i o m e t r i c amount .of S 2 ° g F 2 ' 1.9367g (9.775 mmoles), was added to the 1^ v i a a c a l i b r a t e d t r a p . A f t e r h e a t i n g the r e a c t a n t s to 115°C w i t h mixing and f r e e z i n g t o -196°C s e v e r a l times, e v e n t u a l l y the whole m a t e r i a l i n s t a n t a n e o u s l y p u l v e r i z e d upon f r e e z i n g t o -196°C. The r e s u l t i n g product was 9.3813g (19.55 mmoles) of the b l a c k s o l i d I3SO3F; m.p. = 104°C without any apparent de-composition, d) I 2 B r S 0 3 F With a l l a d d i t i o n s and measurements of mass done i n the drybox, a s t o i c h i o m e t r i c amount of IBr, 0.965g (4.67 mmoles), was added to 1.053g (4.66 mmoles) of IOSO2F i n a 50-ml two-p a r t r e a c t o r . The r e a c t a n t s were heated a t f i r s t t o 50°C and l a t e r t o 75°C and allowed to r e a c t f o r ^ 30 minutes. Upon subsequent slow c o o l i n g t o RT, 2.018g (4.66 mmoles) o f the b l a c k s o l i d I-jBrSC^F was formed; m.p. = 70°C w i t h s l i g h t decomposition i n t o B r 2 and I ^ . Another p r e p a r a t i o n of I ^ r S O ^ F was a l s o c a r r i e d out by the r e a c t i o n of 0.854g (4.13 mmoles) of IBr w i t h 0.933g (4.13 mmoles) of IOSC> 2F i n 23.5359g of doubly d i s t i l l e d H S O ^ F - L , the whole o p e r a t i o n being conducted i n the dry N 2 atmosphere of a drybox. To ensure a complete r e a c t i o n of the s p a r i n g l y s o l u b l e IBr w i t h the IOSC^F, v i g o r o u s shaking was employed f o r ^ 5 minutes. T h i s c r e a t e d a c o n c e n t r a t e d s o l u t i o n of I 2 B r + ( s o ] v ) + S 0 3 F (solv) which was subsequently s t u d i e d c o n d u c t o m e t r i c a l l y v i a s m a l l s u c c e s s i v e a d d i t i o n s of t h i s s o l u t i o n i n t o HSO^F, and s p e c t r o p h o t o m e t r i c a l l y v i a i t s v i s i b l e - u l t r a v i o l e t spectrum a f t e r a s u f f i c i e n t d i l u t i o n to the c o n c e n t r a t i o n of 5.05 X 10~ 3 molar w i t h HSO^F. e) I 2 C 1 S 0 3 F W i t h i n the drybox, n e a r l y s t o i c h i o m e t r i c amounts of I C I , 4.741g (29.20 mmoles), and IOSC^F, 6.590g (29.16 mmoles) were combined i n t o a 50-ml two-part r e a c t o r equipped w i t h a T e f l o n - c o a t e d magnetic s t i r b a r . The mixture was then s t i r r e d w i t h the r e a c t o r h e l d a t 50°C f o r 12 hours under an atmosphere of dry N 2. A v i s c o u s b l a c k l i q u i d formed, which c r y s t a l l i z e d on g r a d u a l c o o l i n g to RT to form the b l a c k -brown s o l i d I 2 C 1 S 0 3 F , 11.331g (29.18 mmoles); m.p. = 39-40°C wit h no apparent decomposition. f) A n a l y t i c a l data The e l e m e n t a l a n a l y s e s f o r the t h r e e newly prepared compounds as performed by A l f r e d Bernhardt M i c r o a n a l y t i c a l L a b o r a t o r i e s i n West Germany are g i v e n i n the T a b l e 16. TABLE 16 A n a l y t i c a l Data f o r I B r 2 S 0 3 F / I 2 C 1 S 0 3 F and I ? B r S 0 3 F Compound % I % Br % C l % F I B r 2 S 0 3 F c a l c 32.89 41.43 4.92 found 33.14 41.08 5.05 I 2 C 1 S 0 3 F c a l c 65.36 9.13 4.89, found 65.29 9.00 4.95 I 2 B r S 0 3 F c a l c 58.64 18.50 4.39 found 58 .84 18 .24 4.36 ) A d d i t i o n a l s y n t h e t i c attempts A l l the t r i a t o m i c halogen and i n t e r h a l o g e n f l u o r o s u l -f a t e s were found t o be i n t e n s e l y c o l o r e d or dark, v e r y h y g r o s c o p i c , and r e l a t i v e l y low m e l t i n g s o l i d s . The ob-served m e l t i n g or decomposition p o i n t s of these compounds and t h e i r thermal s t a b i l i t i e s a t room temperature r u l e d out the p o s s i b i l i t y t h a t they were merely m i x t u r e s o f IOS0 2F (which melts a t 5 0 . 2 ° C ) 9 9 and the halogens, C l 2 and B r 2 , or the i n t e r h a l o g e n s , ICI and IBr, from which they were prepared. D e s p i t e the r e l a t i v e l y sharp m e l t i n g p o i n t s f o r I 2 C 1 S 0 3 F and I 2 B r S 0 3 F , however, no c o n c l u s i o n r e g a r d i n g the p o s s i b l e d i s p r o p o r t i o n a t i o n of these two compounds i n t o I 3 S 0 3 F and IC1 2SC» 3F or I B r 2 S 0 3 F c o u l d be made on the b a s i s of t h i s i n f o r m a t i o n . In c o n t r a s t t o v a r i o u s t r i a t o m i c 97 i n t e r h a l o g e n h e x a c h l o r o a n t i m o n a t e s 2 1 4 " 2 1 ^ , none of the f l u o r o s u l f a t e s were found to sublime. I n s t e a d , the h e a t i n g of the f l u o r o s u l f a t e s i n vacuo merely caused a r e v e r s a l of the f o r m a t i o n r e a c t i o n . As expected, the most e l e c t r o p o s -i t i v e halogen atom remained bonded to the SO3F group w i t h a r e l e a s e of the more v o l a t i l e halogen or i n t e r h a l o g e n com-ponent of the c a t i o n . One s u r p r i s i n g f a c t was the h i g h thermal s t a b i l i t y o f I B r 2 S 0 3 F which melted a t > 90°C. Since the p a r e n t i n t e r h a l o g e n I B r 3 i s unknown, i t was doubt-f u l a t f i r s t whether any I B r 2 - c o n t a i n i n g s a l t c o u l d be i s o -l a t e d . Even though the I B r 2 + c a t i o n had been d e t e c t e d i n s o l u t i o n 1 7 4 , and a 1 2 9 i Mossbauer study had t e n t a t i v e l y 219 e s t a b l i s h e d a compound of the formula I-^CT^Br^ (perhaps I B ^ I C l ^ j ? ) , IB^SO-^F was unique as a s t a b l e compound. Si n c e i t s f i r s t p r e p a r a t i o n , however, i t should be noted t h a t IBr^SO-jCF^ has now a l s o been prepared and c h a r a c t e r -. ,220 i z e d In both i n s t a n c e s where an excess o f e i t h e r C l 2 or B r 2 was added to IOS0 2F, no evidence c o u l d be o b t a i n e d f o r the compounds I C 1 4 S 0 3 F or I B r 4 S 0 3 F . I f they are indeed formed, t h e i r thermal s t a b i l i t i e s must be very low i n view of the f a c t t h a t o n l y I C^SO^F and IB^SO^F c o u l d be o b t a i n e d . These f i n d i n g s can o n l y be s t r i c t l y a p p l i e d t o s y n t h e t i c attempts a t room temperature to i s o l a t e t r a c t a b l e and s t a b l e r e a c t i o n products f o r these two e l u s i v e s p e c i e s . Low temper-atu r e s t u d i e s may p r o v i d e evidence f o r p o l y i n t e r h a l o g e n + + + c a t i o n s such as I C l ^ , IBr^ and o t h e r s l i k e l 2 B r 3 / r o r y a example, but an e x t e n s i o n of t h i s study to i n v e s t i g a t e such low temperature systems was not c o n s i d e r e d a p p r o p r i a t e a t t h i s time. With a convenient route to I ^ r S O ^ F by the a d d i t i o n o f IBr t o IOS0 2F a l r e a d y developed, a s i m p l e r a l t e r n a t i v e p r e -p a r a t i o n was t r i e d i n a p r e l i m i n a r y way — the r e a c t i o n of I 2 w i t h B r O S 0 2F. B r O S 0 2F was d i s t i l l e d i n vacuo onto an excess of I 2 i n the e x p e c t a t i o n o f a s t r a i g h t f o r w a r d r e -a c t i o n I 2 + B r O S 0 2F > I 2 B r S 0 3 F . An i n s t a n t a n e o u s r e l e a s e of B r 2 from the r e a c t i o n mixture was noted, however, su g g e s t i n g the f o r m a t i o n o f IOS0 2F and/or I3SO3F. With time, though, when the r e a c t i o n mix-t u r e was a l l o w e d t o stand a t RT o v e r n i g h t , a l l the B r 2 vapor had d i s a p p e a r e d and seemingly r e a c t e d w i t h the IOSO2F to g i v e a r a t h e r complex mixture o f p r o d u c t s , p e r -haps i n c l u d i n g IBr 2SC»3F as w e l l as some I 2 B r S 0 3 F . No f u r -t h e r i n v e s t i g a t i o n s were made on t h i s system, but i t appears t h a t o x i d a t i v e a d d i t i o n of the halogen (or i n t e r h a l o g e n ) i s preceded by s u b s t i t u t i o n and t h a t a d d i t i o n o f halogens o f the same or h i g h e r e l e c t r o n e g a t i v i t y onto a halogenmono-f l u o r o s u l f a t e i s a p r a c t i c a l s y n t h e t i c r o u t e . An exact s t o i c h i o m e t r i c a d d i t i o n of I 2 to B r O S 0 2F i n the long run, however, should y i e l d the hoped f o r I-^BrSG^F perhaps by one or another of the f o l l o w i n g r e a c t i o n schemes: 1) 2 I 2 + 2 BrOS0 2F -—> 2 IOS0 2F + B r 2 + I 2 2 IOS0 2F + B r 2 + I 2 — > 2 IOS0 2F t- 2 IBr 2 IBr + 2 IOS0 2F — ^ 2 I 2 B r S 0 3 F ; 2) 2 I 2 + 2 BrOS0 2F — > 2 IOS0 2F + B r 2 + I 2 2 IOS0 2F + B r 2 + I 2 — > I B r 2 S 0 3 F + I 3 S 0 3 F I B r 2 S 0 3 F + I 3 S 0 3 F —3- 2 I 2 B r S 0 3 F The f i r s t scheme i s b a s i c a l l y an e x t e n s i o n of the method employed i n S e c t i o n IV A. 2. d., whereas the second scheme w i l l be dwelled upon i n f u r t h e r d e t a i l i n S e c t i o n IV.C. In any case, halogen s u b s t i t u t i o n r e a c t i o n s , l i k e the one i n i t i a l l y observed above, have been commonly found i n the 72 221 222 chemistry of c a t i o n i c halogen compounds ' J-,*-* ^ The a d d i t i o n of C l 2 t o BrOS0 2F should be f e a s i b l e ; how-ever, a f t e r d i s t i l l i n g an excess of C l 2 i n vacuo onto some BrOS0 2F i n a s p e c i a l l y c o n s t r u c t e d t h i c k - w a l l e d Raman c e l l , no s i g n o f a r e a c t i o n was observed. There was no c o l o r change, heat e v o l u t i o n nor p r e c i p i t a t i o n of a s o l i d product The Raman spectrum was wholly c o n s i s t e n t w i t h a mixture of BrOS0 2F and C l 2 — no new peaks were observed. I t must be concluded t h a t B r C l 2 S 0 3 F does not e x i s t a t room temperature 166 In view of the l i m i t e d thermal s t a b i l i t y of B r C l , which prevented u s i n g t h i s compound i n a d d i t i o n r e a c t i o n s , such a f i n d i n g i s not s u r p r i s i n g . The a d d i t i o n of B r 2 to BrOS0 2F a t room temperature was s i m i l a r l y u n s u c c e s s f u l i n a c h i e v i n g the d e s i r e d B r 3 S 0 3 F as a s t a b l e s o l i d compound. No evidence f o r the B r 3 + c a t i o n c o u l d be found i n Raman s p e c t r a l s t u d i e s i n t h i s system, d e s p i t e the d e t e c t i o n of + . . 97 Br-j i n s u p e r a c i d media as p r e v i o u s l y r e p o r t e d ' , and o n l y bands a t t r i b u t a b l e t o B r O S 0 2F and B r 2 were found. I t r e -mained to be seen whether Br^SO^F c o u l d be d e t e c t e d i n low temperature s t u d i e s . 19 S o l u t i o n s t u d i e s — c o n d u c t i v i t i e s and F NMR i n HSO3F The i n t e r h a l o g e n f l u o r o s u l f a t e s , j u s t d e s c r i b e d , were found t o be very good sources f o r the t r i a t o m i c halogen and i n t e r h a l o g e n c a t i o n s and f l u o r o s u l f a t e anions i n s o l u t i o n of s t r o n g p r o t o n i c a c i d s . The experimental r e s u l t s o f the con-du c t o m e t r i c s t u d i e s i n HSO3F a t 2 5 . 0°C f o r these compounds are g i v e n i n Ta b l e s 17 and .18. A l s o i n c l u d e d are the data f o r IBrClSC^F to be d i s c u s s e d more f u l l y i n a subsequent s e c t i o n . In F i g u r e s 15 and 16 are shown r e p r e s e n t a t i v e graphs of the conductometric r e s u l t s f o r I2CISO3F and I B ^ S C ^ F as w e l l as f o r the st a n d a r d base i n HSO3F, KSO3F, and f o r the s t a r t i n g m a t e r i a l IOSO^F. S i m i l a r conductometric s t u d i e s i n HSO3F have p r e v i o u s l y been r e p o r t e d f o r and o t h e r c a t i o n s p r o -duced i n s i t u by r e d o x - r e a c t i o n s 3 0 ' ^ . The y - v a l u e s i n T a b l e 18 are shown to be c l o s e t o 1 .0 i n each i n s t a n c e . In f a c t , i t i s demonstrated i n F i g u r e s 15 and 16 how i n d i s t i n g u i s h a b l e were the p l o t s f o r I2CISO3F and I B ^ S C ^ F from the one f o r KSO3F. I t can be concluded t h a t a l l s o l u t e s are s t r o n g e l e c t r o l y t e s i n HSO^F, q u i t e i n con-t r a s t to the r e s u l t s f o r IOS0 2F seen i n F i g u r e 16. B a s i c b e h a v i o r was confirmed by subsequent a d d i t i o n of the known TABLE 17 Experimental Concentrations and Specific Conductivities for Various Iodine-Containing Fluorosulfate Compounds in HSO3F at 25.0°C IC1 2S0 3F I Br 2S0 3F I 3S0 3F *ohm-1 cm - 1 l2BrS0 3F 10 3 m* 10 3ohm - 1 cm"1 10 3 m* 10 3ohm - 1 cm - 1 10 3 m* 10: 10 3 m* 10 3ohm - 1 cm - 1 0.00 0.11 0.00 0.12 0.00 0.13 0.00 0.11 2.71 0.72 0.73 0.19 0.45 0.25 0.56 0.20 5.01 1.29 2.78 0.67 1.55 0.52 - 5.29 1.38 7.59 1.91 5.77. 1.42 2.93 0.87 10.15 2.59 11.71 2.89 12.81 3.16 5.20 1.44 14.33 3.61 16.84 4.07 18.52 4.55 9.86 2.59 18.31 4.56 24.70 5.79 24.96 6.07 15.29 3.89 24.78 6.09 - 30.96 7.15 32.07 7.71 21.46 5.35 31.27 7.59 36.73 8.38 38.75 9.18 28.26 6.92 37.47 8.99 41.98 9.52 45.37 10.67 35.64 8.58 45.39 10.74 46.93 10.57 51.89 12.17 42.45 10.09 52.13 12.21 51.05 11.68 56.51 13.13 48.47 11.41 58.51 13.57 55.12 12.56 61.37 14.23 53.51 12.49 64.05 14.74 58.68 13.36 65.91 15.34 58.52 13.56 68.35 15.63 61.97 14.12 69.09 16.07 62.80 14.49 72.62 16.50 64.82 14.78 71.25 16.63 66.65 15.45 76.56 17.32 67.14 15.43 69.94 16.32 *m = molality = moles of solute/Kg of solvent TABLE 17 - cont'd I 2C1S0 3F IBrClS0 3F IBr in + I0S02F HSO3F sol'n 10 3 m* . 10 3ohm - 1 cm - 1 10 3 m* 10 3ohm - 1 cm - 1 10 3 m* 103ohm_1 cm - 1 0.00 0.13 0.00 0.12 0.00 0.13 0.15 0.16 2.64 0.72 2.40 0.60 0.43 0.22 7.44 1.89 10.54 2.49 3.63 1.04 11.54 2.86 16.88 3.92 5.40 1.49 19.53 4.69 27.46 6.30 7.13 1.93 26.15 6.16 37.38 8.48 9.98 2.64 32.90 7.61 47.31 10.62 14.07 3.64 39.39 8.96 56.96 12.66 17.50 4.46 44.89 10.09 64.98 14.33 23.12 5.77 50.01 11.11 72.74 15.94 28.83 7.07 54.91 12.07 35.13 8.48 58.78 12.83 41.39 9.88 60.82 13.23 47.31 11.23 52.61 12.43 58.76 13.80 65.14 15.34 *m = molality = moles of solute/Kg of solvent TABLE 18 Interpolated Concentrations and Calculated Y _ values for Some Iodine-Containing Fluorosulfate Compounds in HSO,F Y~Values 103m* IC1 2S0 3F IBr 2S0 3F I 3S0 3F I 2BrS0 3F I 2C1S0 3F IBrClS0 3F IBr+IOSO F in HS03F sol'n 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 0.99 0.98 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.98 1.00 0.98 0.97 0.98 0.99 0.99 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.04 1.01 1.01 1.01 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.03 0.98 0.98 0.99 0.98 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 1.06 1.04 1.03 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.94 0.94 0.94 0.94 0.97 0.92 0.93 0.93 0.93 0.93 0.93 0.94 0.94 0.95 0.95 0.94 Y ave 0.97 0.99 1.00 0.99 1.01 0.97 0.94 *m = molality = moles of solute/kg of solvent 1 0 4 Specific Conductivities in H S 0 3 F of I 2CIS0 3F and KSO3F at 25.0 °C 160i 0 10 20 30 40 50 60 70 Concentration [moles/kg solvent] x 10 3 Figure 15. 105 Specific Conductivities in HS0 3 F of IBr 2 S0 3 F, IS0 3 Fand K S 0 3 F at 25.0°C I 1 1 1 1 1 1 : 1 1 0 20 40 6 0 80 Concentration [moles/kg solvent] x 10 F i g u r e 16. base KS0 3F' t" L to the s o l u t i o n s s t u d i e d , c o n s i s t e n t w i t h the f o l -lowing r e a c t i o n HSO3F IXYSG^F *• IXY"1" (solv) + S 0 3F~ (solv) where X and Y are I, Br and C l . In g e n e r a l , i t was n o t i c e d t h a t the s o l u t e ICI2SO3F was the l e a s t c o n d u c t i n g s p e c i e s over the whole c o n c e n t r a t i o n range i n v e s t i g a t e d . T h i s c o u l d be due to e i t h e r incomplete d i s s o c i a t i o n , or a reduced c o n t r i b u t i o n to the conductance v a l u e s from h i g h l y s o l v a t e d I C 1 2 + c a t i o n s . Although I C 1 2 + would be the s m a l l e s t o f a l l c a t i o n s under con-s i d e r a t i o n here when not s o l v a t e d , i t c o u l d e a s i l y become the l a r g e s t of a l l s p e c i e s when s o l v a t e d because o f the r e l a t i v e l y h i g h p o l a r i z a t i o n of the I C 1 2 c a t i o n when compared to I3 , f o r example. Thus, the e f f e c t i v e l y i n c r e a s e d s i z e o f such a c a t i o n would c e r t a i n l y reduce i t s m o b i l i t y i n s o l u t i o n , thereby d i m i n i s h i n g i t s s p e c i f i c conductance v a l u e s . These same e f f e c t s have been seen when the a l k a l i metal f l u o r o s u l f a t e s were s o l -v o l y z e d i n HSO3F, where the Rb + c a t i o n was observed to be more .mobile than L i + presumably due to i n c r e a s e d s o l v a t i o n o f the + 21 s m a l l e r more p o l a r i z i n g L i c a t i o n A l s o l i s t e d i n T a b l e s 17 and 18 are the r e s u l t s of con-d u c t o m e t r i c s t u d i e s on equimolar mixtures of IBr and I O S 0 2F. The y - values of * 0.94, even though s l i g h t l y below the v a l u e s f o r I 2 B r S 0 3 F , i n d i c a t e d s t r o n g b a s i c b e h a v i o r of the s o l u t e m ixture. S i n c e IBr has been found to be o n l y s p a r i n g l y s o l u b l e 223 m H S 0 3F * J and the y - v a l u e s f o r IOSO2F were around 0.4, i t was 107 reasonable to assume i n s i t u f ormation of l^BrSO^F and subse-quent i o n i c d i s s o c i a t i o n a c c o r d i n g to HSO3F HSO3F IBr + I O S 0 2F : — ? I 2 B r S 0 3 F > I 2 B r + ( s o l v ) + SO3F ( s o l v ) An e q u a t i o n l i k e the one above i s o n l y w r i t t e n t o i n d i c a t e the o v e r a l l r e a c t i o n i n s o l u t i o n r a t h e r than to account i n d e t a i l f o r any or a l l i n t e r m e d i a t e s which may be produced. S p e c i f i c conductance v a l u e s f o r c o n c e n t r a t e d s o l u t i o n s of about 5 X 10~2 m o l a l showed no measurable changes over sev-e r a l days. Very d i l u t e s o l u t i o n s of I-jClSC^F, ^ B r S C ^ F and I3SO3F though, were a l l found to develop a s l i g h t l i g h t b l u e c o l o r a f t e r i n i t i a l a d d i t i o n s o f the s o l u t e s . Furthermore, the y - v a l u e s i n the d i l u t e c o n c e n t r a t i o n range of about 5 X 10"^ m o l a l were s l i g h t l y h i g h e r than the average v a l u e s f o r these s o l u t e s by about 4-5% as seen i n T a b l e 18. I t must be assumed t h a t s o l v e n t o x i d a t i o n of the c a t i o n s to I 2 + was r e s p o n s i b l e f o r the b l u e c o l o r , thereby producing a d d i t i o n a l 10ns g i v i n g r i s e t o the s l i g h t l y enhanced conductance v a l u e s . F u r t h e r evidence f o r the o x i d a t i o n p r o c e s s w i l l be d i s c u s s e d i n the up-coming s e c t i o n on the v i s i b l e — u l t r a v i o l e t s p e c t r a of s i m i l a r s o l u t i o n s . As i n d i c a t e d by T a b l e s 17 and 18 as w e l l as by F i g u r e s 15 and 16, s o l v e n t o x i d a t i o n appeared to a f f e c t the conductance v a l u e s o n l y v e r y m a r g i n a l l y and o n l y i n the i n i t i a l stages o f the measurements. F u r t h e r evidence f o r the f o r m a t i o n of the SO3F i o n i n 19 19 s o l u t i o n was a l s o o b t a i n e d v i a F NMR s p e c t r o s c o p y . The F NMR s p e c t r a of the i n t e r h a l o g e n f l u o r o s u l f a t e s i n HSO^F con-s i s t e d o f o n l y a s i n g l e resonance i n each case. The s i n g l e peaks were s h i f t e d s l i g h t l y u p f i e l d from the p o s i t i o n of pure HSO3F, c o n s i s t e n t w i t h p r e v i o u s o b s e r v a t i o n s f o r KSO3F, NOS0 3F and N 0 2 S 0 3F i n H S O 3 F 2 2 4 , where f o r each of these s o l u t e s com-p l e t e i o n i z a t i o n o c c u r r e d , again i n d i c a t i n g SO^F" anion forma-t i o n . V i s i b l e and u l t r a v i o l e t s p e c t r a i n HSO3F, HSO-yCj^ and 96% H2SO, While the c o n d u c t i v i t y r e s u l t s have g i v e n i n f o r m a t i o n on the number of SO3F anions per mole o f i n t e r h a l o g e n f l u o r o -s u l f a t e o r s o l u t e m i x t u r e , s t r i c t l y speaking they have not borne any l i g h t as t o the nature o f the i n t e r h a l o g e n c a t i o n s . The asymmetrical c a t i o n s ^ B r * and I 2 C 1 + m a ^ e x l s t a s such o r they may undergo complete o r p a r t i a l d i s p r o p o r t i o n a t i o n i n t o the symmetrical c a t i o n s l 3 + and e i t h e r I B r 2 + o r I C l 2 + i n s o l u -34 115 t i o n , as suggested by o t h e r s ' , without a f f e c t i n g the con d u c t i v i t y r e s u l t s . The v i s i b l e - u l t r a v i o l e t s p e c t r a of these s p e c i e s , on the o t h e r hand, are produced s o l e l y by the c a t i o n s I t was hoped t h a t these s p e c t r a would a l l o w a d i s t i n c t i o n be-tween the two p o s s i b i l i t i e s to be made. + 78 30 93 The e l e c t r o n i c s p e c t r a o f I3 i n HSO^F ' and oleum and o f I B r 2 + and I C 1 2 i n 100% H 2 S 0 4 have a l r e a d y been r e -po r t e d . The observed * m a x and e m a x v a l u e s are summarized i n Table 19. The co r r e s p o n d i n g data f o r the t r i a t o m i c c a t i o n s produced by d i s s o l v i n g the poly-h a l o g e n and - i n t e r h a l o g e n f l u o r o s u l f a t e s i n HSO3F, HSO3CF3 and 96% H 2 S 0 4 are t a b u l a t e d i n T a b l e 20. 109 TABLE 19 V i s i b l e and U l t r a v i o l e t S p e c t r a of I 3 + , I B r 2 + and I C 1 ? + i n S u l f u r i c A c i d C a t i o n *max e (nm) max Reference 460 290 93 I B r 2 + 540(sh) 358 544 174 I C 1 2 + 452 360 44.9 56.7 174 174 As mentioned e a r l i e r c o n c e r n i n g the conductance meas-urements, i n d i c a t i o n s f o r s o l v e n t o x i d a t i o n o f r a t h e r low con-c e n t r a t i o n s o f the s o l u t e s i n HSO3F had been found. The prob-ab l e cause of such o x i d a t i o n was most l i k e l y t r a c e amounts of f r e e 803, p r e s e n t e i t h e r as an i m p u r i t y or as a consequence of s e l f - d i s s o c i a t i o n of the s o l v e n t (see S e c t i o n I.A.2.). That o x i d a t i o n of the c a t i o n s took p l a c e was demonstrated by the appearance of a peak a t about 635nm, due t o I 2 + 3 0 / when e i t h e r I3SO3F, I-^BrSC^F or I2CISO3F were s o l u t e s . By v i r t u e of the hig h e x t i n c t i o n c o e f f i c i e n t of t h i s a b s o r p t i o n , as w e l l as i t s p o s i t i o n , I 2 + was the o n l y i d e n t i f i a b l e product o f o x i d a t i o n i n HS0 3F. The e x t e n s i o n t o HSO3CF3 and 96% H 2 S 0 4 as s o l v e n t s i n o r d e r t o av o i d s o l v e n t i n t e r f e r e n c e was most s u c c e s s -f u l f o r 96% H 2S0 4, as seen i n Table 20. 96% H 2 S 0 4 was indeed the most s u i t a b l e s o l v e n t system f o r the v i s i b l e - u l t r a v i o l e t s p e c t r o s c o p i c study f o r s e v e r a l reasons. F i r s t , the c a t i o n s TABLE 20 Visible and Ultraviolet Spectra of Solutions of Some Iodine-Containing Fluorosulfate Compounds in Strong Protonic Acids at 25°C HSO 3F HSO qCF.3 96% H Compound xmax( n m) emax Xmax( n m) emax xmax<nm> £max IC1 2S0 3F 486 395 275* 48 64 ^470 471 374 310 48 70 146 448 355* 318 51 ^88 142 IBr 2S0 3F ^560* 455* 361 232 ^80 VL60 560 5600 ^545 453* 360 ^260 ^96 ^200 598 V1410 ^535* 355 260 ^94 630 1600 I3SO3F 635* 472 300 ^440 1580 4580 462 295 2430 5810 459 290 2200 6070 I 2BrS0 3F 635* 414 300* 260* ^250 790 M.920 4080 620* 418 300* 260* very weak 1070 ^2610 Vr600 409. 300* 255* 1000 ^2610 WOOO I 2C1S0 3F 635* 461 300 ^230 ^250 543 1220 630* 450 315 235 M.40 661 1350 1460 438 295 810 2400 IBrClS0 3F ^535* 342* ^67 VJ10 505* 340* ^275* ^76 ^312 ^809 488* 340* 270* ^81 V350 ^975 * denotes shoulder, extinction coefficient value is very approximate. 111 under study were o n l y moderately e l e c t r o p h i l i c and were a l l e x i s t e n t i n 96% r^SO^; second, the added presence of ^ 4% H 2 0 (undoubtedly protonated by the s o l v e n t to g i v e H^C^) should c o u n t e r a c t any s o l v e n t s e l f - d i s s o c i a t i o n t o g i v e SO3 from the r e a c t i o n H 2 S 0 4 — 9 r H 2 0 + S 0 3 (see S e c t i o n I. A. 3); t h i r d , the o x i d a t i o n product I 2 + i s not capable of e x i s t e n c e i n H2SO4, except perhaps i n t r a c e amounts d e t e c t a b l e o n l y by i t s Reson-ance Raman spectrum; and f o u r t h , the use of 100% H 2 S O ^ was found to o f f e r no advantage but i n s t e a d a r a t h e r s e r i o u s d i s -advantage because when i t was prepared from fuming s u l f u r i c a c i d (^  30% f r e e SO3 i n H2SC>4) and 96% H 2 S 0 4 a c c o r d i n g to the 37 l i t e r a t u r e , the presence o f S 0 2 as an i m p u r i t y caused a r e -d u c t i o n o f I B r 2 + to IBr over a 24 hour p e r i o d as evidenced from 32 225 i t s v i s i b l e - u l t r a v i o l e t spectrum ' . The convenience of o b t a i n i n g and employing 96% H 2 S 0 4 was a l s o q u i t e an e x p e r i -mental advantage. To r e c o r d a b s o r p t i o n bands below 300nm, o p t i c a l d e n s i t y f i l t e r s were used. As a consequence, the c a l -c u l a t e d e x t i n c t i o n c o e f f i c i e n t s f o r these bands may not be v e r y a c c u r a t e . Even so, the t r e n d of the e x t i n c t i o n c o e f f i c i e n t s ' v a l u e s t o i n c r e a s e as the mass o f the c a t i o n i n c r e a s e s seems to p a r a l l e l the same t r e n d f o r the halogens themselves i n non-225 c o o r d i n a t i n g s o l v e n t s . Beer's law was found to be obeyed i n a l l cases. As the v a l u e s f o r A m a x show i n Table 20, a d e f i n i t e s h i f t o c c u r s to h i g h e r e n e r g i e s as the a c i d s t r e n g t h i n c r e a s e s f o r a l l s o l u t e s . The g e n e r a l broadness of most bands, however, and the p o s s i b i l i t y of i n t e r f e r e n c e from s i d e products due to 112 the o x i d i z i n g a b i l i t y of the more a c i d i c s o l v e n t s reduce the s i g n i f i c a n c e of t h i s s h i f t somewhat. I C 1 2 + s n o w e < ^ t l i e g r e a t -e s t s h i f t s of a l l c a t i o n s n o n e t h e l e s s . Since t h i s c a t i o n should be the s m a l l e s t i n s i z e of a l l the t r i a t o m i c iodonium (III) c a t i o n s encountered here n e g l e c t i n g f o r the moment s o l v a -t i o n e f f e c t s , i t i s a l s o expected to have the g r e a t e s t p o l a r i z -a t i o n i n the i n t e r h a l o g e n bonds. But s o l v e n t - c a t i o n i n t e r -a c t i o n i s indeed most l i k e l y f o r t h i s s p e c i e s which should e f f e c t the e l e c t r o n i c spectrum. The p r e v i o u s l y mentioned f a c t t h a t ICI2SO3F has the lowest y-values (see T a b l e 18) and the 149 173 well-known a n i o n - c a t i o n i n t e r a c t i o n i n s o l i d s t a t e compounds ' are c o n s i s t e n t w i t h t h i s view. Shown i n F i g u r e 17 are the e l e c t r o n i c s p e c t r a o f I B r 2 S 0 3 F , I 2 B r S 0 3 F and I 3 S 0 3 F i n 96% H 2 S 0 4 . As the v a l u e s on the F i g u r e i l l u s t r a t e , each of the t h r e e c a t i o n s e x h i b i t a c h a r -a c t e r i s t i c a b s o r p t i o n p a t t e r n . The spectrum f o r I 2 B r + does not a l l o w d e t e c t i o n o f a p p r e c i a b l e amounts of e i t h e r I B r 2 or I 3 + . T h i s suggests t h a t e x t e n s i v e d i s p r o p o r t i o n a t i o n a c c o r d i n g t o 2 I 2 B r + ( s o l v ) > I B r 2 + ( s o l v ) + I 3 + ( s o l v ) does not o c c u r . F u r t h e r evidence was o b t a i n e d to support the + + + e x i s t e n c e of I 2 B r a p a r t from I B r 2 and I 3 and i s shown i n F i g u r e 18. Here a spectrum of I 2 B r + i n 9 6% H 2 S 0 4 i s compared with a composite spectrum of I B r 2 and I 3 i n 96% H 2SO^ a t a p p r o p r i a t e c o n c e n t r a t i o n s . I t seems t h a t the I 2 B r + c a t i o n i s a unique s p e c i e s ; however, d i s s o c i a t i o n e q u i l i b r i a such as 113 ELECTRONIC ABSORPTION SPECTRA FROM 700 TO 250 nm OF [3SO3F, I 2 BrS0 3 F AND IBr 2 S0 3 F IN H 2 S0 4 (96%) AT 25°C Xrnnv= 2 9 0 nm WAVELENGTH [nm] P i ' m i r p 17 QQ_| , , , • p r -3 0 0 4 0 0 500 6 0 0 700 800 F i g u r e 18 . 115 the one mentioned above cannot be completely r u l e d out. T h e v i s i b l e - u l t r a v i o l e t spectrum of I 2 n r + m a Y a l s o be produced i n HSO^F by the i n t e r a c t i o n of equimolar amounts of IBr and TOSG^F i n t h i s s o l v e n t , which i s c o n s i s t e n t w i t h the r e s u l t s of t h e conductometric study. The a b s o r p t i o n maxima a n d . e x t i n c t i o n c o e f f i c i e n t s — X = 635 (sh), e ^ 260; X = 420, e = 960; A ~ 300 (sh) , e ^ 2180; and X = 261, e = 3640 are v i r t u a l l y i d e n t i c a l to those of ^BrSO-^F when d i s s o l v e d i n HSO3F as shown i n T a b l e 20. Examination of X m a x and z v a l u e s f o r the I 2 C 1 + c a t i o n again does not i n d i c a t e any a p p r e c i a b l e d i s p r o p o r t i o n a t i o n of + + t h i s c a t i o n i n t o I C 1 2 and 13 a c c o r d i n g to Table 20. I t must b e concluded t h a t both I 2 B r + and I 2 C 1 + can e x i s t i n s t r o n g l y a c i d i c media p r o v i d e d t h a t i n t e r f e r e n c e from o x i d i z i n g or r e d u c i n g agents i s avoided. Attempts t o a s c e r t a i n the e x i s t -ence o f the i n t e r h a l o g e n c a t i o n s i n the s o l i d f l u o r o s u l f a t e s by r e c o r d i n g t h e i r e l e c t r o n i c s p e c t r a i n f l u o r o l u b e o i l mulls were s u c c e s s f u l o n l y f o r I C l ^ C ^ F . Good correspondence to the s o l u t i o n s p e c t r a c o u l d be found f o r t h i s case, but both IBr2SC>3F and I3SO3F were found to i n t e r a c t with the f l u o r o -lube o i l g i v i n g r i s e t o IBr and I 2 r e s p e c t i v e l y . Using the diagram f o r e l e c t r o n i c t r a n s i t i o n s as devo.l-2 2 6 oped by Walsh f o r a 20-E system AB 2 shown i n F i g u r e 19, the t r a n s i t i o n s f o r I C 1 2 and I B r 2 can be a s s i g n e d . Tho f i r s t and lowest energy t r a n s i t i o n must be from the b ^ " l e v e l t o the a ^ l e v e l . Depending upon the BAB angle, however, a d i f f e r e n t i n t e r p r e t a t i o n from the h£ l e v e l to the a^' I n v o l could a l s o be argued; t h i s p o s s i b i l i t y seems l e s s s a t i s f a c t o r y 90 120 150 180 Angle B A B F i g u r e 19. 117 though i n view of the g •+ g t r a n s i t i o n which would f o r m a l l y be f o r b i d d e n . The t h i r d and h i g h e s t energy a b s o r p t i o n s f o r I C l 2 + and I B r 2 + are perhaps b e s t regarded as charge t r a n s f e r t r a n s i t i o n s , as i n d i c a t e d by t h e i r r e l a t i v e l y h i g h e x t i n c t i o n c o e f f i c i e n t s , from the c a t i o n to the s o l v e n t . Again, o t h e r t r a n s i t i o n s from lower l y i n g l e v e l s t o one of the unpopulated or l e v e l s may be o c c u r r i n g i n s t e a d , but no evidence was gathered a t t h i s time to d i f f e r e n t i a t e between any of these cases. 5. V i b r a t i o n a l s p e c t r a Even though no s t r u c t u r a l data f o r the t r i a t o m i c halogen and i n t e r h a l o g e n f l u o r o s u l f a t e s e x i s t s t o date, a bent c o n f i g -u r a t i o n f o r the c a t i o n i s to be expected on the b a s i s of p r e -149 149 v i o u s c r y s t a l s t r u c t u r e s f o r I C l 2 S b C l g , ICI2AICI4 , B r F 2 S b F g 1 5 1 , C l F 2 S b F g 1 5 9 and C l F 2 A s F g 1 6 1 . In order to c o n f i r m t h i s assumption of a bent c o n f i g u r a t i o n f o r the v a r i o u s c a t i o n s , + + whether o f the type I X 2 or I 2 X , f u r t h e r i n v e s t i g a t i o n s were completed on the v i b r a t i o n a l s p e c t r a of these f l u o r o s u l f a t e compounds now to be d i s c u s s e d . Some g e n e r a l remarks r e g a r d i n g the o v e r a l l bonding of these f l u o r o s u l f a t e s need to be made be f o r e any d e t a i l e d assignment of t h e i r modes can be done. In the I n t r o d u c t i o n i t was s t a t e d how d i f f e r e n t l y bonded f l u o r o s u l f a t e s can be d i f f e r e n t i a t e d a c c o r d i n g to Tables 1 and 2. V a r i o u s types of SO^F groups may be c l a s s i f i e d i n one o f the f o l l o w i n g p a t t e r n s : a) i o n i c , unperturbed; b) i o n i c , p e r t u r b e d ; c) c o v a l e n t mono-dentate; d) b i d e n t a t e b r i d g i n g ; e) t r i d e n t a t e b r i d g i n g ; and f) t e t r a d e n t a t e b r i d g i n g . Once i t i s e s t a b l i s h e d which pat-t e r n emerges, a more p r e c i s e d e s c r i p t i o n o f the i n d i v i d u a l modes can be accomplished. The i n f r a r e d s p e c t r a o f the i n t e r h a l o g e n f l u o r o s u l f a t e s c o u l d o n l y be o b t a i n e d by u s i n g BflF 2 window m a t e r i a l because of the h i g h r e a c t i v i t y of these compounds. Consequently, j u s t the v i b r a t i o n s down to ^ 800cm 1 can be observed f o r the SO^F group i n c l u d i n g p r i m a r i l y the s u l f u r - o x y g e n s t r e t c h i n g modes and o c c a s i o n a l l y the s u l f u r - f l u o r i n e s t r e t c h i n g mode, i f h i g h enough i n energy. Since no m u l l i n g agents c o u l d be used, the peaks tended to be somewhat broad. The p o s i t i o n s of these peaks f o r the i n t e r h a l o g e n f l u o r o s u l f a t e s are l i s t e d i n Table 21 a l o n g w i t h o t h e r S-0 and S-F v i b r a t i o n s from some f l u o r o s u l f a t e compounds r e p r e s e n t i n g d i f f e r e n t l y bonded SO^F groups. A d d i t i o n a l v i b r a t i o n a l data was o b t a i n e d through the Raman s p e c t r a o f the i n t e r h a l o g e n f l u o r o s u l f a t e s . T a b l e 22 has l i s t e d w i t h i n i t the v i b r a t i o n s t h a t were observed. For ICl-^SO^F a w e l l r e s o l v e d spectrum was o b t a i n e d as i s shown i n F i g u r e 20. IB^SO^F gave a reasonably w e l l r e s o l v e d spectrum, as d i d IBrClSO^F which w i l l be more f u l l y d i s c u s s e d i n subse-quent s e c t i o n s , but I^SO-^F, I 2 B r S 0 3 F and I 2 C 1 S 0 3 F a l l gave incomplete s p e c t r a . T h i s was undoubtedly due t o t h e i r very dark c o l o r s and t h e i r very l a r g e a b s o r p t i o n s of the i n c i d e n t o e x c i t i n g r a d i a t i o n a t 6328A. F o r t u n a t e l y , i n most cases, the e n t i r e v i b r a t i o n a l spectrum can be seen when both I n f r a r e d and Raman f r e q u e n c i e s are used. The n o t a b l e e x c e p t i o n was TABLE 21 S-0 and S-F Infrared Vibrations of Some Fluorosulfate-Containing Compounds Compounds SO3F Conformation and Symmetry S-0 Vibrations (cm 1) S-F Vibrations (cm ) References MSO3F (M=Li to Cs) NOSO3F i o n i c i o n i c per-turbed C3^ 1280 \ 1295 1072 \ 1100 ^C 3v 1278 1246 1077 815 715 755 X0S0 2F (X=F,Cl,Br) covalent monodentate 1502 1250 I I 1428 1206 788 \ 884 857 I 832 7,83 R 3SnS0 3F R 2Sn( kS0 3F) 2 (R=CH 3,C 2H 5 etc) bidentate b r i d g i n g 1355 1205 1343 1180 1076 4 1070 827 + 820 11,227 Co I ] [(S03F) 2 t r i d e n t a t e b r i d g i n g '3v 1265 1108 850 T i 3 C l 1 0 ( S O 3 F ) 2 tetradentate perturbed A.C 3v 1260 1248 1082 ^660 1 0 I0S0 2F IC1 2S0 3F I B r 2 S 0 3 F I3SO3F I 2 B f S 0 3 F I 2C1S0 3F IBrClS0 3F 1340 1200 $ E 1160 1280 1225 (1315 11270 1280 1200 fl31 0 f l 2 4 5 [1270(1205 1310 1190 1200 fl040 I 990 1070 1060 1045 1050 fllOO 11060 1080 T910 (.830-800 This work This work This work This work This work. This work This work sensitivity 2.0 x 2 0 0 o TABLE 22 Raman Spectra of Some Interhalogen Fluorosulfates and K S O 3 F IC1 2S0 3F cm"-1- Int 1320 rw 1170 ms 1054 s 795 raw v EW W 603 580 565 42S n 399 w 3S0 vs 360 vs 161 IBr 2S0 3F -1 cm Int 1230 vw 1205 ms 1063 s 805 a 610 a 5S3 w 569 vw^sh 425 w 369 ms 256 vs 198* vw 127 w,sh IBrClS0 3F 1 cm Int 1304 1186 1061 806 624 600 571 422 w m m mw m a w mw { 3 7 0 } s 319 w.sh 263 vs 166 w,sh *trace impurity of I 2BrS0 3F Abbreviations: l2BrS0 3F cm - 1 Int 1216 a 1061 s 805 mw 585 mw 571 w 439 m 376 ms 258 ms 198m,sh I 2C1S0 3F -1 cm Int vs s ms m very strong strong medium strong medium mw w vw sh mw ms m m m w w m s 1210 1062 810 795 600 586 570 430 369 360 198mw,sh 126 m,sh medium weak weak very weak shoulder I3SO3F cm"1 Int 1059 ms 795 a 419 mw 364 mw Assignment Mode Description } } } Al Al A" A 1 A 1 A' A' KSO Infrared 3 v asym S0 3 v sym SO3 v SF & asym S0 3 <S sym S0 3 P rock v asym ICI v sym ICI v sym IBr v sym II 6bend ^ I - * 1285 1084 741 587 571 405 I^SO-jF where onl y fragmentary evidence was o b t a i n e d ; even the polyhalogen c a t i o n i c modes were unable to be observed. Of a l l the v a r i o u s bonding p a t t e r n s f o r a SO^F group, s e v e r a l can be d i s c o u n t e d immediately. The presence of t h r e e v i b r a t i o n s a t >1000cm - x, which correspond to s u l f u r - o x y g e n s t r e t c h i n g modes, i n the i n f r a r e d s p e c t r a e l i m i n a t e s the pos-s i b i l i t y of a symmetric unperturbed SO^F group wi t h C 3 v sym-metry such as i n the p u r e l y i o n i c KSO^F^ and the t r i d e n t a t e T T 9 C o x x (SO^F)^ • The absence of a s u l f u r - f l u o r i n e s t r e t c h i n g mode at >820cm 1 f o r a l l of the compounds as w e l l as the placement o f the S—O modes r u l e s out a c o v a l e n t monodentate p a t t e r n as found p r e v i o u s l y f o r the halogen m o n o f l u o r o s u l f a t e s , 7 83 XOSO2F ' . A g l a n c e at the Raman s p e c t r a c l e a r l y shows a v i b r a t i o n a t >800cm~'x which can be i n t e r p r e t e d as the S ~ F s t r e t c h i n a d d i t i o n t o the t h r e e o t h e r peaks i d e n t i f i e d as S-0 s t r e t c h e s , i n good agreement wi t h the I n f r a r e d s p e c t r a . The t e t r a d e n t a t e bonding SO^F group, which up to now has o n l y been observed i n T i ^ C l ^ Q ( S O ^ F ) 2 ^ ° , must then a l s o be d i s c a r d e d as a p o s s i b i l i t y f o r the i n t e r h a l o g e n f l u o r o s u l f a t e s s i n c e no S—F mode i s a s s i g n a b l e a t ^ 660cm~ x. The remaining two c h o i c e s i n c l u d e the b i d e n t a t e b r i d g i n g and the p e r t u r b e d i o n i c SO^F groups. A r e l a t i v e l y easy d e c i s i o n can be made between these l a s t two cases by f i r s t of a l l n o t i n g the placement of a peak i n a l l the i n t e r h a l o g e n f l u o r o s u l f a t e s a t about 800±10cm 1 c o r r e s p o n d i n g to the S—F s t r e t c h . Whereas the S—F s t r e t c h i n the b r i d g i n g b i d e n t a t e SO^F groups has never been observed 12 3 b e l o w ^ 820cm~^ and more f r e q u e n t l y a r o u n d 830-R60cm ^, t h e S—F s t r e t c h i n i o n i c f l u o r o s u l f a t e s , u n p e r t u r b e d a n d p e r t u r b e d , h a s b e e n f o u n d no h i g h e r t h a n 815cm ^ and more o f t e n b e l o w t h a t . S e c o n d o f a l l , t h e s e p a r a t i o n o f t h e two h i g h e s t S~0 modes i n t h e i n t e r h a l o g e n f l u o r o s u l f a t e s i s a b o u t 60cm \ w i t h t h e e x c e p t i o n o f I C ^ S O ^ F w h i c h i s s e p a r a t e d by 140cm \ I n t h e b i d e n t a t e b r i d g i n g c a s e , t h e s e same two modes a r e g e n e r a l l y s e p a r a t e d by a t l e a s t 140cm b u t more commonly by a r o u n d — 1 8 11 250cm ' . The p e r t u r b e d i o n i c SC»3F s h o w s , on t h e o t h e r h a n d , a s e p a r a t i o n o f o n l y <\>30cm ^ b e t w e e n t h e s e modes f o r 5 R NOS0 2F a n d NC^SO^F . The c o n c l u s i o n m u s t t h e r e f o r e be made t h a t t h e i o n i c p e r t u r b e d m o d e l f i t s b e s t f o r t h e i n t e r h a l o g e n f l u o r o s u l f a t e s , w i t h I C ^ S O ^ F e x h i b i t i n g p e r h a p s t h e g r e a t e s t p e r t u r b a t i o n ; s u c h a v i e w i s n o t i n c o n s i s t e n t w i t h p r e v i o u s c r y s t a l s t r u c t u r e d e t e r m i n a t i o n s w h i c h h a v e shown t h e I C 1 2 + 149 c a t i o n i n t e r a c t i n g h e a v i l y w i t h i t s c o u n t e r i o n s , i t s r e l a t i v e l y l o w y - v a l u e i n HSO P s o l u t i o n a n d i t s e l e c t r o n i c s p e c t r a l b e h a v i o r , a s d i s c u s s e d p r e v i o u s l y . C o m p l e t e v i b r a t i o n a l a s s i g n m e n t s o f t h e SO^F g r o u p h a v e b e e n made f o r a w i d e v a r i e t y o f compounds a s shown i n T a b l e 2. F o r t h e i n t e r h a l o g e n f l u o r o s u l f a t e s , t h e p e a k s a t 1320-1270cm ^ and a t 1245-1170cm ^ h a v e b e e n a s s i g n e d t o t h e d o u b l y d e g e n e r -a t e E mode w h i c h i s s p l i t due t o t h e p e r t u r b a t i o n o f t h e SO^F g r o u p b y t h e p o l y - i n t e r h a l o g e n c a t i o n s ; t o g e t h e r t h e y may be l o o s e l y d e s c r i b e d a s t h e A" and A' c o m p o n e n t s o f t h e \ > a s v m SO^ v i b r a t i o n . A c o m p a r i s o n o f t h e s e a n d o t h e r v i b r a t i o n a l f r e q u e n c i e s f o r t h e SO^F g r o u p i n t h e i n t e r h a l o g e n f l u o r o s u l f a t e s 124 v e r s u s those f o r K S 0 3 F i s made i n T a b l e 22. The A.^ mode o f the v s v m SO^ v i b r a t i o n i s found a t 1055+lOcm" 1 w h i l e the v SF v i b r a t i o n , a l s o o f - A^ symmetry, i s found a t 8 0 0 ± 1 0 c m f o r these new f l u o r o s u l f a t e s comparing f a v o r a b l y w i t h s i m i l a r bands i n K S O 3 F and N O S 0 3 F a t 1079 and 1077cm" 1 , and 745 and 755cm" 1 r e s p e c t i v e l y . The next two bands i n each spectrum a t about 610cm 1 and 590cm" 1 r e p r e s e n t another s p l i t t i n g o f an E mode d e s c r i b e d as the 6 a S y m SC>3 v i b r a t i o n . I n t e r e s t i n g l y t h i s mode has a l s o been o b s e r v e d to be s p l i t i n the Raman spec trum o f K S 0 3 F whereas i t s I n f r a r e d spectrum i s c o m p l e t e l y r e g u l a r as e x p e c t e d . The next band a t ^ 5 7 0 c m - 1 f o r the i n t e r h a l o g e n f l u o r o s u l f a tes i s the A-^  mode o f the <SSVJn S 0 3 v i b r a t i o n , and the f o l l o w i n g two peaks a t M 3 0 c m 1 and ^380cm 1 r e p r e s e n t the two p a r t s o f the degenera te E mode, P r 0 c k ' s p l i t l i k e the two b e f o r e i t due to the p e r t u r b a t i o n o f the S 0 3 F group by the c a t i o n s . The r e m a i n i n g bands must now be due to the p o l y - i n t e r -ha logen c a t i o n s . A number o f p o s s i b i l i t i e s e x i s t s f o r the t y p e o f c a t i o n s t h a t may be i n v o l v e d . They c o u l d be l i n e a r o r they c o u l d be b e n t , and they c o u l d a l s o be s y m m e t r i c a l o r asymmet-r i c a l w i t h r e s p e c t t o the arrangement o f i n d i v i d u a l atoms i n the c a t i o n s , e . g . I - I - B r v s . I - B r - I o r C l - I - C l vs C l - C l - I . The v i b r a t i o n a l modes o f a number o f t r i a t o m i c ha logen and i n t e r h a l o g e n c a t i o n s have been r e p o r t e d s i n c e t h i s r e s e a r c h was begun and a r e i n e x c e l l e n t agreement w i t h those t h a t have been p r e s e n t e d here f o r the f l u o r o s u l f a t e s . T a b l e 2 3 c o m p i l e s the d a t a i n the a r e a to date f o r the t r i a t o m i c ha logen c a t i o n s 125 TABLE 23 Vibrational Frequencies of Triatomic Halogen and Iodine-Containing Interhalogen Cations  Species vl(sym) ( c m _ 1 )  VX-X o r VI~Y v2(sym) (cm - 1) o bend or y v3(asym) ( c m _ 1) VX-X o r v i - x Reference Cl 3AsF 6 490 225 508 133 B r 3 + (solv) 290 n.o. 290 97 T + (solv) 207 114 233 218 ICl 2SbCl 6 366 149 372 217 IC1 2S0 3F 360 161 380 This work IBr2S03F 256 124 256 This work IBr2SC>3CF3 253 n.o. 260 220 IBrClS0 3F m 166 263 This work IBrClSbClg 370 149 255 216 I 2ClSbCl 6 T3561 1 3 5 0 J 126 190 216 I 2C1S0 3F 360 126 197 This work I 2BrS0 3F 258 n.o. 198 This work X = Cl, Br or I n.o. = not observed Y = Cl or Br 126 and the i o d i n e - c o n t a i n i n g i n t e r h a l o g e n c a t i o n s . I f a l i n e a r c o n f i g u r a t i o n f o r I C 1 2 + or I B r 2 + was c o r -r e c t , o n l y one Raman band would be observed; i f a bent c o n f i g -u r a t i o n f o r these c a t i o n s was c o r r e c t , a l l t h r e e bands should be o b s e r v a b l e . The f a c t t h a t t h r e e bands are seen f o r I C 1 2 + 149 i s i n agreement w i t h c r y s t a l s t r u c t u r a l d e t e r m i n a t i o n s f o r the c a t i o n , which d e f i n i t e l y e s t a b l i s h a bent c o n f i g u r a t i o n f o r t h i s s p e c i e s w i t h an angle of ^95° and wit h the i o d i n e atom a t the c e n t e r . A band a t 380cm _ 1 has been a s s i g n e d as the v g y m ICI2 mode. The d i a t o m i c i n t e r h a l o g e n ICI has i t s — 1 2 2 8 s t r e t c h i n g v i b r a t i o n a t 382cm . The bending mode, 6 I C ^ ^ was found a t 161cm ^. These bands are a l l i n reasonable agreement w i t h the bent i s o e l e c t r o n i c molecule TeCl2(g) which has i t s v s y m T e C l 2 a t 377cm" 1 and 6 T e C l 2 a t 125cm" 1 2 2 9 . I B r 2 + should be s i m i l a r t o I C l 2 + , but i n f a c t o n l y two v i b r a t i o n a l bands can be a s c r i b e d t o the I B r 2 + c a t i o n u n l e s s a c c i d e n t a l degeneracy of the v „ „ „ m I B r 0 and v„,, m I B r 0 modes o c c u r . As ^ J asym 2. sym ^ Table 23 shows, such a case has a l s o been p o s t u l a t e d f o r the B r ^ f s o l v ) c a t i o n . I f t h i s i s t r u e , then both v a S y m IBr2 and vsym I B r 2 m ° d e s are to be found a t 256cm 1 w h i l e the 6 IBr2 v i b r a t i o n i s seen a t 124cm 1 . The gaseous IBr i n t e r h a l o g e n -1 228 molecule has had i t s s t r e t c h i n g v i b r a t i o n measured a t 267cm Since the i s o e l e c t r o n i c T e B r 2 i s a p p a r e n t l y a s t r o n g l y assoc-229 230 i a t e d s o l i d ' , a more r e l i a b l e comparison of the v I B r 2 s t r e t c h i n g modes may be found i n the v TeBr modes a t 220-240cm ^ 2 31 + f o r TeBr^ . Support f o r a bent I B r 2 s p e c i e s can be taken from the v i b r a t i o n a l modes t h a t have been observed f o r the 1 2 7 very r e c e n t l y r e p o r t e d compound IB^SO^CF-j"'"'. In t h i s case, the a n t i s y m m e t r i c a l and symmetrical v IBr^ modes were both r e s o l v e d i n both the Raman and I n f r a r e d s p e c t r a , o c c u r r i n g a t 260 and 258cm" 1 f o r v a c , „ m IBr~ and 253 and 248cm - 1 f o r a sym / v s v m I B r 2 r e s p e c t i v e l y . For n e i t h e r the I C l 2 + nor the IB^" 1" case can an asym-m e t r i c a l versus the symmetrical o r i e n t a t i o n o f the t h r e e atoms be j u s t i f i e d i n the c a t i o n s . For t h i s to have o c c u r r e d , a i v C l - C l and/or a v Br-Br band should have been observed i n —1 —1 2 7 8 the r e g i o n s of 550cm and 320cm r e s p e c t i v e l y ' i n a d d i t i o n to the SO^F anion bands t h a t may a l s o be expected. Such were not the cases. S i m i l a r , but m o d i f i e d , arguments can be a p p l i e d to the and I 2 B r c a t i o n s where, i n s t e a d o f the symmetrical I - C l - I o r I-Br-I c o n f i g u r a t i o n s , the asymmetrical I - I - C l and I-I-Br c o n f i g u r a t i o n s a re i n d i c a t e d . In these two cases i t was the presence of a v I-I band a t 197cm 1 and 198cm 1 r e s p e c t i v e l y , as compared t o the s t r e t c h i n g v i b r a t i o n f o r rnole-— 1 228 c u l a r I2 a t 213cm , t h a t completed the assignments. In both of these cases, bent versus l i n e a r arrangements are fa v o r e d f o r the c a t i o n s . No d e f i n i t e c o n c l u s i o n can be made from Raman spect r o s c o p y between these two p o s s i b i l i t i e s s i n c e , f o r the f i r s t , a C 2 V symmetry and, f o r the second, a C o o V symmetry both command Raman a c t i v i t y f o r the t h r e e v i b r a t i o n a l modes expected i n the t r i a t o m i c c a t i o n s . On the b a s i s o f a l l p r e -v i o u s l y r e p o r t e d c r y s t a l s t r u c t u r e s f o r molecules c o n t a i n i n g t r i a t o m i c i n t e r h a l o g e n c a t i o n s , though, as w e l l as the s p e c t r a l data c o l l e c t e d f o r these c a t i o n s , the bent s t r u c t u r e s have been chosen. 128 Some attempts were made to o b t a i n Raman s p e c t r a of the ICI + c a t i o n i n HSO-.F s o l u t i o n . T h i s sample was chosen because 2 ~* i t s s o l u t i o n s were not n e a r l y as deeply c o l o r e d as f o r the other c a t i o n s . U n f o r t u n a t e l y , however, onl y the peaks due to HSO3F c o u l d be found with a r a t h e r broad a b s o r p t i o n band at 380-400cm~ x as the o n l y d e p a r t u r e from the f i n d i n g s f o r HSO3F. One unusual f e a t u r e n o t i c e d i n the I n f r a r e d spectrum of I 2 C 1 S 0 3 F i n p a r t i c u l a r (and i n those of I3SO3F and ICI2SO3F to minor extents) was the s p l i t t i n g of a l l three v SO modes i n t o d o u b l e t s . Although these f e a t u r e s do not i n any way a l t e r the i n t e r p r e t a t i o n s , i t must be concluded t h a t e s p e c i a l l y f o r I2CISO3F t h e r e are two s l i g h t l y n o n e q u i v a l e n t SO3F groups p r e s e n t . I t i s somewhat p e r p l e x i n g t h a t the c o r r e s p o n d i n g Raman bands are not s i m i l a r l y s p l i t ; however, t h i s may be r e l a t e d t o the g e n e r a l l y poor s c a t t e r i n g a b i l i t y of t h i s very dark compound. B. HALOGEN REDISTRIBUTION REACTIONS IN SOLUTION 1. I n t r o d u c t i o n In the p r e c e d i n g p a r t no c o n c l u s i v e evidence was found f o r any complete or e x t e n s i v e d i s p r o p o r t i o n a t i o n o f the asymmetrical s o l v a t e d c a t i o n s i n t o symmetrical c a t i o n s a c c o r d -i n g t o the r e a c t i o n 2 I 2 X + ( s o l v ) " I 3 + ( s o l v ) + I X 2 + ( s o l v ) . I t should t h e r e f o r e be p o s s i b l e to form these asymmetrical c a t i o n s by c o n p r o p o r t i o n a t i o n from the symmetrical c a t i o n s I 3 + ( s o l v ) + I X 2 + ( s o l v ) > 2 I 2 X + ( s o l v ) . The purpose of t h i s i n v e s t i g a t i o n would be two f o l d — one, i t would c o n f i r m e a r l i e r f i n d i n g s , and two, i t would al l o w the format i o n of the I B r C l + c a t i o n v i a I C l 2 + ( s o l v ) + I B r 2 + ( s o l v ) > 2 I B r C l + ( s o l v ) which was not o b t a i n e d by the a d d i t i o n r e a c t i o n of B r C l t o IOSC^F. I t has a l r e a d y been demonstrated t h a t the c a t i o n s I C 1 2 + , I B r 2 + , I 3 + / I 2 B r + a n < ^ I 2 C l + a r e a 1 1 c a P a k J - e of e x i s t e n c e i n 96% H 2SO^, the most s u i t a b l e s o l v e n t f o r such r e a c t i o n s . The b e s t method o f i n v e s t i g a t i o n was judged t o be t h a t o f v i s i b l e - u l t r a v i o l e t s p e c t r o s c o p y , s i n c e X__„ and e__,, v a l u e s f o r a l l the i o d i n e - c o n t a i n i n g t r i a t o m i c halogen and i n t e r -halogen c a t i o n s , except f o r I B r C l + , have a l r e a d y been e s t a b -l i s h e d . P r e p a r a t i o n s and exp e r i m e n t a l r e s u l t s The e x p e r i m e n t a l measurements made p r i o r t o the o b t a i n -i n g of the v i s i b l e and u l t r a v i o l e t s p e c t r a of s o l u t i o n s i n 96% H2SC>4 o f the t r i a t o m i c i n t e r h a l o g e n c a t i o n s are compiled i n Table 24. In each case s o l u t e A was added t o a 10.0ml volume-t r i c f l a s k i n s i d e the drybox and f o l l o w e d by the a d d i t i o n of an equimolar amount of s o l u t e B. 96% H 2SO^ was then f i l l e d i n t o the v o l u m e t r i c f l a s k up t o the p r e s c r i b e d l i n e and sub-seq u e n t l y d i l u t e d t o the a p p r o p r i a t e c o n c e n t r a t i o n . The s p e c t r a were a l l recorded i n 1.0mm path l e n g t h matched qu a r t z c e l l s u s i n g 96% H 2 S 0 4 i n the r e f e r e n c e c e l l . TABLE 24 Experimental Data for Mixtures of IC1 2S0 3F, IBr 2S0 3F and I 3S0 3F in 96% H2SC\ Solute A (moles) Solute B (moles) Solvent Concentration of Original Sol'n (molarity) Concentration of Final Sol'n (molarity) Visible-Ultra-violet spectrum Product A max (nm) e max IC1 2S0 3F I 3 S O 3 F 96% nzs°k 1.93 x 10 - 1M 1.93xl0_2M ' 432 780 I 2 C l + ( s o l v ) (9.63xl0~ 4) (9.63xl0 - 4) 300 1910 IBr 2S0 3F I 3 S O 3 F 96% H2SC\ 5.86x10"2M 5.86x10"3M 408 1150 I 2Br +(solv) (2.93xl0~ 4) (2.93xl0~ 4) 300* a.2540 270* ^5840 -1 -2 488* ^81 +, IC1 2S0 3F IBr 2S0 3F 96% HaSOjj 1.79x10 M 2.24x10 M IBrCl (solv) (8.76xl0~ 4) (8.74xl0~ 4) 340* ^350 270* - V 9 7 5 *denotes shoulder, extinction coefficient value i s only approximate. V i s i b l e and u l t r a v i o l e t s p e c t r a l s t u d i e s i'n 96% H.,SO^  The r e s u l t s of the e l e c t r o n i c s p e c t r a o f the t h r e e s o l u t i o n s are r e c o r d e d i n Table 24. Comparison of the A _ c max and £ m a x v a l u e s i n t h i s t a b l e w i t h the c o r r e s p o n d i n g ones i n Table 20 show c l e a r l y t h a t , f o r the f i r s t two examples, r e -a c t i o n s r e p r e s e n t e d by + . + + I C 1 2 (solv) + I 3 (solv) —3» 2 I 2 C 1 (solv) and I B r 2 + (solv) + I 3 + (solv) > 2 I 2 B r + ( s o l v ) must have o c c u r r e d . No evidence c o u l d be c o l l e c t e d t o show t h a t these r e a c t i o n s d i d not go e s s e n t i a l l y to c o m p l e t i o n . The very i n t e n s e l y a b s o r b i n g band at 459nm ( e m a x = 2200) due to the I 3 + ( s o l v ) c a t i o n was absent i n both these cases. The t h i r d example i n v o l v e d an equimolar amount of I C 1 2 S 0 3 F and I B r 2 S 0 3 F i n 96% H 2S0 4. The s p e c t r o s c o p i c data are l i s t e d i n T a b l e 24, and are d i s t i n c t l y d i f f e r e n t from those of p r e v i o u s l y s t u d i e d c a t i o n s . The spectrum cannot be i n t e r -p r e t e d as a composite o f the ones from I C 1 2 S 0 3 F and I B r 2 S 0 3 F taken t o g e t h e r , e i t h e r . The most l i k e l y e x p l a n a t i o n was one based on the r e a c t i o n I C 1 2 + (solv) + I B r 2 + (solv) > 2 I B r d * (solv) + and hence the f o r m a t i o n of the t r i h a l o g e n c a t i o n , I B r C l . I t should be p o i n t e d out t h a t the halogen r e d i s t r i b u t i o n r e a c t i o n s d i s c u s s e d here should a l s o take p l a c e i n the molten s t a t e . T h i s w i l l be d i s c u s s e d i n the f o l l o w i n g S e c t i o n IV.C. HALOGEN REDISTRIBUTION REACTIONS IN MOLTEN STATE I n t r o d u c t i o n The main o b j e c t i v e of these s t u d i e s was t o s y n t h e s i z e IBrClSO-^F and to p r o v i d e an a l t e r n a t e route to both I 2 B r S 0 3 F and I 2 C I S O 3 F . During the course of t h i s i n v e s t i g a t i o n a s t a b l e + 2 hexachloroantimonate c o n t a i n i n g the I B r C l c a t i o n was r e p o r t e d which was formed v i a the r e a c t i o n IBr + C l 2 + S b C l 5 > I B r C l S b C l g . P r e p a r a t i o n s and a n a l y s i s a) I 2 C 1 S 0 3 F In a 50-ml two-part r e a c t o r were combined i n the drybox 0.813g (2.74 mmoles) of I C 1 2 S 0 3 F and 1.315g (2.74 mmoles) of I^SO^F. Upon subsequent h e a t i n g of the c o n t e n t s to 55°C, the r e a c t a n t s melted to form a dark b l a c k l i q u i d . A f t e r thorough m i x i n g and a f t e r a l l o w i n g t o c o o l t o room temper-a t u r e , the dark b l a c k s o l i d I ^ l S O ^ F r e s u l t e d . The p r o d u c t o melted a t 41-42 C with no si g n s of decomposition. b) I 2 B r S 0 3 F In a s i m i l a r manner, 0.622g (1.61 mmoles) of I B r 2 S 0 3 F and 0. 774 (1.61 mmoles) of I-JSO3F were p l a c e d i n a 50-ml two-part r e a c t o r . The contents were heated u n t i l they had become molten a t ^75°C. A f t e r t h i s they were t h o r o u g h l y mixed, and the sample was allowed to c o o l to room temper-a t u r e . The b l a c k s o l i d I 2 B r S 0 3 F showed a m e l t i n g p o i n t of 68-69°C with some decomposition i n t o I 0 and B r 0 . 133 c) IBrClSC^F 0.561g (1.89 mmoles) of I C 1 2 S 0 3 F and 0.729 (1.89 mmoles) of I B r 2 S 0 3 F were p l a c e d i n t o a 50-ml two-part r e a c t o r w i t h i n the drybox. Next the r e a c t a n t s were heated to 9 5°C to i n -sure complete m e l t i n g . Subsequently, the r e a c t o r and con-t e n t s were q u i c k l y f r o z e n to -196°C. The sample was then remelted and r e f r o z e n a few times which u l t i m a t e l y r e s u l t e d i n a crimson-red m a t e r i a l which was s o l i d a t room temper-a t u r e . The IBrClSO^F thus produced had a m e l t i n g p o i n t of 68-69°C. d) A n a l y t i c a l d a t a E lemental analyses f o r I, Br, C l and F were performed on the new IBrClSG^F. The c a l c u l a t e d v a l u e s f o r IBrClSG^F are as f o l l o w s : % I = 37.18; %Br = 23.41; %C1 = 10.39; and %F = 5.57. The observed v a l u e s as found f o r IBrClSO^F are as f o l l o w s : %I = 37.38; %Br = 23.17; %C1 = 10.38; and %F = 5.64. 3. Product i d e n t i f i c a t i o n a) C o n f i r m a t i o n of I 2 C 1 S 0 3 F and I 2BrSC» 3F-The comparison of the two f l u o r o s u l f a t e s I 2 C 1 S 0 3 F and I 2 B r S 0 3 F was based on. m e l t i n g p o i n t s , I n f r a r e d s p e c t r a , Raman s p e c t r a and v i s i b l e - u l t r a v i o l e t s p e c t r a i n 96% H-^SO^. No d i s c e r n a b l e d i f f e r e n c e s between the compounds ^XSO^F produced by the route I 3 S 0 3 F + I X 2 S 0 3 F > 2 I 2 X S 0 3 F X = Br and C l 134 c o u l d be noted from those compounds made by i n t e r h a l o g e n a d d i t i o n t o IOSC^F. Even though these halogen r e d i s t r i b u -t i o n r e a c t i o n s are i n t e r e s t i n g a l t e r n a t e modes o f f o r m a t i o n f o r I 2 C 1 S 0 3 F and I 2BrSC> 3F, the o r i g i n a l a d d i t i o n of ICI or or IBr to IOS0 2F i s judged t o be a s i m p l e r more s t r a i g h t -forward s y n t h e t i c route f o r these compounds. C h a r a c t e r i z a t i o n of I B r C l S 0 3 F The new compound I B r C l S 0 3 F was s y n t h e s i z e d a c c o r d i n g to the r e a c t i o n I C 1 2 S 0 3 F + I B r 2 S 0 3 F » 2 IBrClSC^F , and r e q u i r e d complete c h a r a c t e r i z a t i o n u s i n g the same techniques as p r e v i o u s l y employed f o r the o t h e r t r i a t o m i c halogen and i n t e r h a l o g e n f l u o r o s u l f a t e s . The conductance data o f I B r C l S 0 3 F i n HSC»3F a t v a r y i n g c o n c e n t r a t i o n s have been t a b u l a t e d i n Table 17 and the y - v a l u e s a t i n t e r p o l a t e d c o n c e n t r a t i o n s are g i v e n i n T a b l e 18, a l o n g w i t h the c o r r e s p o n d i n g data f o r the o t h e r t r i a t o m i c i n t e r h a l o g e n f l u o r o s u l f a t e s . L i k e the o t h e r f l u o r o s u l f a t e s of t h i s group, IBrClSC> 3F behaved as a s t r o n g completely d i s s o c i a t e d base i n HSG^F. As f o r I C 1 2 S 0 3 F , the average y- v a l u e of 0.97 i n d i c a t e d some c a t i o n - s o l v e n t i n t e r -a c t i o n c a u s i n g reduced c a t i o n m o b i l i t y . Since c a t i o n m o b i l i t y i s i n v e r s e l y p r o p o r t i o n a l to the s i z e of the s o l -v ated c a t i o n , a s i m i l a r i t y to I C 1 2 + , as p r e v i o u s l y d i s c u s s e d , i s expected. The v i s i b l e - u l t r a v i o l e t s p e c t r a of IBrClSO^F i n the three s o l v e n t s HS0 3F, HS0 3CF 3 and 9 6% H 2 S 0 4 were r e c o r d e d , and the a b s o r p t i o n maxima and e x t i n c t i o n c o e f f i c i e n t s are l i s t e d i n T a b l e 20 to be compared wi t h those of the o t h e r t r i a t o m i c halogen and i n t e r h a l o g e n f l u o r o s u l f a t e s . F i r s t o f a l l , the spectrum o b t a i n e d i n 96% H2SC>4 f o r I B r C l S 0 3 F was i d e n t i c a l t o the one o b t a i n e d e a r l i e r f o r a 1:1 molar mixture o f IC1 2SG* 3F and I B r 2 S 0 3 F i n 96% H 2S0 4. I t must be concluded t h a t the new I B r C l + ( s o l v ) c a t i o n i s a unique s p e c i e s and t h a t i t i s r e s p o n s i b l e f o r the observed v i s i b l e -u l t r a v i o l e t a b s o r p t i o n spectrum. As f o r I C 1 2 S 0 3 F , a drama-t i c s h i f t o f the lowest energy band f o r I B r C l S 0 3 F o c c u r r e d depending upon the a c i d s t r e n g t h o f the s o l v e n t , again i n -d i c a t i n g some k i n d of c a t i o n - s o l v e n t i n t e r a c t i o n , compar-abl e t o t h a t p o s t u l a t e d f o r I C 1 2 S 0 3 F i t s e l f . T h i s was con-s i s t e n t w i t h the somewhat low y-values found i n the con-ductance study of I B r C l S 0 3 F i n HS0 3F b e f o r e . Although perhaps f o r t u i t o u s , a check o f the v a l u e s f o r the e x t i n c -t i o n c o e f f i c i e n t s f o r IBrClSO^F shows t h a t they f i t n e a t l y i n t e r m e d i a t e l y between those o f i t s two parent compounds, peak f o r peak, i n keeping w i t h those f o r i n t e r h a l o g e n s 32,22 ver s u s the halogens from which they are made i n g e n e r a l In none of the s o l v e n t s i n v e s t i g a t e d was t h e r e any evidence f o r e x t e n s i v e d i s p r o p o r t i o n a t i o n of the I B r C l + c a t i o n i n t o I C 1 2 + and I B r 2 + , nor of any o x i d a t i o n by the s o l v e n t . The I n f r a r e d and Raman v i b r a t i o n a l s p e c t r a l a b s o r p t i o n s are l i s t e d i n T a b l e s 21 and 22 r e s p e c t i v e l y f o r IBrClSG^F w i t h the o t h e r t r i a t o m i c halogen and i n t e r h a l o g e n f l u o r o -1 3 6 s u l f a t e s . The s p e c t r a can be d i s c u s s e d i n terms of a per-turbed i o n i c SO^F group and an i n t e r a c t i n g I B r C l c a t i o n , as p r e v i o u s l y o u t l i n e d f o r the oth e r f l u o r o s u l f a t e s i n S e c t i o n IV.A.5. The doubly degenerate E mode f o r the v a s v m SO.j v i b r a t i o n i s observed i n the Raman spectrum as the peaks a t 1304cm 1 and 1186cm the s i n g l y degenerate A^ mode f o r the ^Sym SO^ v i b r a t i o n i s l o c a t e d a t 1061cm" 1. Whereas the l a s t v i b r a t i o n i s f a i r l y i n v a r i a n t between members of t h i s group o f f l u o r o s u l f a t e s , the f i r s t two bands ar e s p l i t half-way as much between these f o r IC^SO^F and I B r ^ O ^ F . Important t o note i s t h a t o n l y one type of f l u o r o -s u l f ate group can be found, which i s c o n s i s t e n t w i t h the presence o f an unique che m i c a l compound r a t h e r than a mere mixture. Fo r the s t r u c t u r e o f the I B r C l + c a t i o n , the bent con-f i g u r a t i o n was p r e f e r r e d i n f a v o r o f the l i n e a r arrangement even though both are c o n s i s t e n t w i t h the observed v i b r a -t i o n a l spectrum. T h i s c h o i c e i s based on the f a c t t h a t a l l known c r y s t a l s t r u c t u r e s o f compounds c o n t a i n i n g t r i a t o m i c i n t e r h a l o g e n c a t i o n s have shown t h a t the c a t i o n s are , 149,151.159,161 „ c _ ^ ^ . , . , bent . O f the th r e e s t r u c t u r a l models shown below C l Br I / \ / \ / \ Br I C l I C l Br (a) (b) (c) on l y number (c) i s compatible w i t h the assignment of v ICI a t 373cm - 1 and 370cm 1 , the s e p a r a t i o n being caused 137 by the i s o t o p i c s p l i t t i n g of " " C l and ~ C 1 , and v IBr a t 267cm ^. A l l assignments a r e i n e x c e l l e n t agreement w i t h + + f i n d i n g s f o r the f l u o r o s u l f a t e s of the c a t i o n s I C l ^ , I 2 C 1 ' + IBr2 and I 2 B r a s w e l l as f o r I B r C l S b C l g as shown i n Tables 22 and 23. D. HALOGEN SUBSTITUTION REACTIONS 1. I n t r o d u c t i o n The v i b r a t i o n a l s t u d i e s of a l l the t r i a t o m i c - c a t i o n -c o n t a i n i n g compounds s y n t h e s i z e d so f a r have r e s u l t e d i n the c o n c l u s i o n t h a t they indeed c o n t a i n iodonium (III) c a t i o n s . T h i s view i m p l i e s t h a t there i s a c e n t r a l i o d i n e atom wi t h a formal charge of +3 which i s f l a n k e d by two o t h e r halogens. (I, Br or C l ) w i t h formal charges of -1 each. Even though M + 1 7 1 m o d i f i e d Huckel c a l c u l a t i o n s f o r I C 1 2 , see F i g u r e 6, i n -d i c a t e t h a t the r e a l charge d i s t r i b u t i o n i s not as extreme as the formal charges may i n d i c a t e , the c e n t r a l i o d i n e atom i s d e f i n i t e l y p o s i t i v e l y charged. The halogen-halogen bonds i n these c a t i o n s are strengthened by a s i z a b l e h e t e r o p o l a r i n t e r -a c t i o n . T h i s should i n c r e a s e i n the o r d e r I—I < I—Br < I — C l , and should p r o v i d e a d r i v i n g f o r c e f o r the halogen s u b s t i t u t i o n r e a c t i o n s along these same l i n e s . 2. P r e p a r a t i o n s and experimental r e s u l t s For each of the r e a c t i o n s , a s i m i l a r method was employed. I n s i d e the drybox, r e a c t a n t A was added to a s e a l - o f f one-part r e a c t i o n bulb of ^50 ml volume, and a P-jO^ guard tube was a t t a c h e d to the o u t l e t with the stopcock momentarily opened. Then o u t s i d e the drybox the r e a c t o r was flame-sealed a t the c o n s t r i c t i o n and the stopcock c l o s e d . A f t e r e v a c u a t i o n of the dry a i r from the r e a c t o r , halogen B was d i s t i l l e d i n vacuo on-to r e a c t a n t A and allowed t o r e a c t under the c o n d i t i o n s des-c r i b e d i n Table 25. A l s o i n c l u d e d i n t h i s t a b l e are the methods by which the p r o d u c t s , which were o b t a i n e d , were i n -v e s t i g a t e d . Product I d e n t i f i c a t i o n As s t a t e d i n Table 25 o n l y the compounds IB^SO^F and I C 1 2 S 0 3 F c o u l d be o b t a i n e d i n the r e a c t i o n s w i t h B r 2 and C l 2 r e s p e c t i v e l y a t room temperature. In no i n s t a n c e was any evidence g i v e n f o r the s u c c e s s f u l halogen a d d i t i o n t o the t r i a t o m i c i n t e r h a l o g e n f l u o r o s u l f a t e s t o form compounds of the type I X 2 x ' 2 S 0 3 F , where X = I and Br and X' = Br and C l . I f such compounds are to be formed, perhaps as i n t e r m e d i a t e s i n t h i s system, they might o n l y be e x i s t e n t a t low temperatures. T h i s i s c o n s i s t e n t w i t h the r e s u l t s o b t a i n e d i n S e c t i o n IV.A.2. where no for m a t i o n of IX^SO-jF, X = Br or Cl., c o u l d be d e t e c t e d when an excess of B r 2 or C l 2 was r e a c t e d w i t h IOS0 2F, the end products of which were on l y I B r o S 0 o F and IC1„S0_F. 2 3 2 3 Instead, the products t h a t were o b t a i n e d suggested r e -a c t i o n s of the type I X 2 S 0 3 F + >2X2 » i x ' SO F + 2XX' X = I and Br , = Br and C l v/here X / was more e l e c t r o n e g a t i v e than X. In each case the TABLE 25 Experimental Data for Halogenation Reactions of I3SO3F and IBr 2 S 0 3F with Br 2 and C l 2 Reactant A (m moles) Halogen B (in excess) Reaction Temp (°C) Reaction Time (hr) Pro Compound duct C Method of. Identification Proc Compound luct D Method of .Identification I3SO3F (2.14) Br 2 84 122 95. 48 12 2 IBr 2S0 3F following reaction by weighing; melting point comparison; Infrared spectrum; Raman spectrum IBr + Br 2 removed in vacuo at 25°C visible-ultraviolet spectrum in CCl^; chemical spot tests I3SO3F (1.16) C l 2 -60 1 I C 1 2S0 3F following reaction by weighing; Infrared spectrum; Raman spectrum ( I C 1 3 ) 2 not separated Raman spectrum IBr 2S0 3F (1.36) C l 2 -35 1 ICI2SO3F following reaction by weighing; Infrared spectrum; visible-ultravio-let spectrum in 96% H2S0tt BrCl + CI2 removed in vacuo at 25°C for 5 hr. Chemical spot tests CO 1 4 0 t r i a t o m i c i n t e r h a l o g e n f l u o r o s u l f a t e , I X 2 S 0 3 F , was i d e n t i f i e d by a v a r i e t y o f m e t h o d s a n d p r o v e d t o be i d e n t i c a l w i t h t h o s e p r o d u c t s o b t a i n e d e a r l i e r a s d e s c r i b e d i n S e c t i o n I V . A . I t i s q u i t e a p p a r e n t t h a t h a l o g e n s u b s t i t u t i o n r e a c t i o n s l i k e t h e o n e s d i s c u s s e d a r e o f v e r y l i m i t e d s y n t h e t i c u s e a s c o m p a r e d t o e i t h e r t h e h a l o g e n o r i n t e r h a l o g e n a d d i t i o n r e a c t i o n s o r t h e h a l o g e n r e d i s t r i b u t i o n r e a c t i o n s . S i n c e t h e i n t e n t i o n h a d b e e n t o e s t i m a t e t h e e x t e n t a n d d i r e c t i o n o f s u c h s u b s t i t u t i o n r e a c t i o n s w h i c h w e r e b a s e d on t h e e l e c t r o n i c s t r u c t u r e o f t h e c a t i o n s i n v o l v e d , t h e s e r e a c t i o n s w e r e r e s t r i c t e d t o t h e sym-m e t r i c c a t i o n s o n l y . E. SOLVOLYSIS REACTIONS I N S b F ^ 1. I n t r o d u c t i o n Of a l l known L e w i s a c i d s , S b F ^ h a s f o u n d t h e g r e a t e s t u s e i n t h e f o r m a t i o n o f h e t e r o c a t i o h s a n d , i n p a r t i c u l a r , p o l y - i n t e r h a l o g e n c a t i o n s . The p r i n c i p l e r o u t e , a s d i s c u s s e d i n t h e G e n e r a l I n t r o d u c t i o n , was f l u o r i d e a b s t r a c t i o n f r o m a n i n t e r h a l o g e n , a s i n t h e r e a c t i o n C 1 F 3 + SbF$ ? C l F 2 + S b F 6 " , w h i c h r e s u l t e d i n t h e f o r m a t i o n o f c o m p l e x e s c o n t a i n i n g t h e SbFg o r S d 2 F H a n i o n . The b a s i c f e a t u r e s o f t h e s e c o m p l e x e s h a v e b e e n made a p p a r e n t f r o m a number o f X - r a y d i f f r a c t i o n s t u d i e s . From t h e f o r m a t i o n r e a c t i o n i t i s n o t s u r p r i s i n g t h a t t h e v a s t m a j o r i t y o f t h e i n t e r h a l o g e n c a t i o n s a r e f l u o r o -c a t i o n s . Except f o r some r a t h e r p o o r l y c h a r a c t e r i z e d compounds 233 234 of the composition ICl ' 2 S b F , - and ICl^'SbF^ which may c o n t a i n a c h l o r o - c a t i o n , no ot h e r compounds have been r e p o r t e d and f i r m l y e s t a b l i s h e d t h a t show a n o n - f l u o r o - c a t i o n s t a b i l i z e by a f l u o r o - a n i o n . T h i s has undoubtedly been due t o the absence of a s u i t a b l e s y n t h e t i c route f o r the formation of t h i s type of compound. For example, the for m a t i o n of I C 1 2 SbF by f l u o r i d e i o n a b s t r a c t i o n would r e q u i r e the i n t e r h a l o g e n p r e c u r s o r I C 1 2F, but u n f o r t u n a t e l y no such s t a b l e t e r n a r y i n t e r h a l o g e n i s e x i s t e n t . On the o t h e r hand, the e x i s t e n c e of i n t e r h a l o g e n f l u o r o s u l f a t e s c o n t a i n i n g b i n a r y or t e r n a r y c a t i o n i c groups, such as I C 1 2 S 0 3 F or I B r C l S 0 3 F , have been f i r m l y e s t a b l i s h e d i n the pr e c e d i n g s e c t i o n s . A l s o the s o l v o l y s i s o f C 1 0 2 S 0 3 F i n S b F 5 x a c c o r d i n g to SbF 5 C 1 0 2 S 0 3 F + 3 S b F 5 > C l 0 2 S b 2 F i ; L + SbF 4 (SO3F) q u i t e r e c e n t l y showed the p o s s i b i l i t y of a s u i t a b l e route to SbFg" or s b 2 F ^ T ~ complexes of t r i a t o m i c i n t e r h a l o g e n c a t i o n s . I n t e r e s t i n the s o l v o l y s i s r e a c t i o n s i n SbF,- arose from sev-e r a l reasons. F i r s t o f a l l , i t was i n t e r e s t i n g to see whether c a t i o n s l i k e I C 1 2 + and I B r 2 + would be o x i d i z e d or f l u o r i n a t e d i n SbF,.. In a d d i t i o n , p r o v i d e d the c o r r e s p o n d i n g complexes wit h SbFg or S b ^ ^ - j " c o u l d be o b t a i n e d , a comparison of the v i b r a t i o n a l s p e c t r a f o r the c a t i o n s should p r o v i d e some e v i -dence f o r the r e l a t i v e extent of a n i o n - c a t i o n i n t e r a c t i o n . For the 1 C 1 2 + c a t i ° n t h i s comparison c o u l d a l s o be extended to i n c l u d e compounds l i k e I C l 2 S b C l g and I C I 2 A I C I 4 . In or d e r t o t e s t the s u i t a b i l i t y o f the s o l v o l y s i s o f i n t e r h a l o g e n f l u o r o -s u l f ates i n SbF^, i t was decided t o r e s t r i c t t h i s method to on l y the symmetrical halogen and i n t e r h a l o g e n f l u o r o s u l f a t e s , I C 1 2 S 0 3 F , I B r 2 S 0 3 F and I3SO3F. P r e p a r a t i o n s and ana l y s e s S e v e r a l attempts were made t o r e a c t I C 1 2 S 0 3 F wi t h an excess of SbF^. In a t y p i c a l r e a c t i o n 0.6332g (2.133 mmole ' of I C 1 2 S 0 3 F were p l a c e d i n t o a 50-ml two-part r e a c t o r i n the drybox. Next, 8.1916g (37.795 mmoles) of SbF 5 were d i s t i l l e d onto the IC^SO^F i n vacuo. Then w i t h the r e -a c t a n t s a l l o w e d t o warm t o no h i g h e r than +5°C, the SbF,. began t o melt and immediately r e a c t e d w i t h the I C 1 2 S 0 3 F to produce a b l u e c o l o r e d l i q u i d m a t e r i a l i n the excess SbF^. A f t e r s t a n d i n g , a v i s c o u s dark b l u e l i q u i d e v e n t u a l l y separ ated to the bottom of the r e a c t o r beneath another c o l o r l e s s v i s c o u s l i q u i d . Dynamic pumping on the r e a c t o r succeeded i n removing the c o l o r l e s s l i q u i d m a t e r i a l , which was shown by i t s I n f r a r e d spectrum t o c o n t a i n S b F 4 ( S 0 3 F ) as expected. The o n l y d i s c o n c e r t i n g f e a t u r e of the s o l i d t h a t remained i n the r e a c t o r was i t s b l u e - b l a c k c o l o r which was i n c o n -s i s t e n t w i t h the red-orange c o l o r expected f o r an I C 1 2 + c o n t a i n i n g s a l t . The f u r t h e r a d d i t i o n o f an excess of SbF,-coupled w i t h 0.219g of Cl,,, however, changed the r e a c t i o n products to a b r i l l i a n t - r e d c o l o r . Upon removal i n vacuo a t temperatures up to 70°C f o r ^ 80 hours, of the v o l a t i l e m a t e r i a l s , though, the same b l u e - c o l o r e d m a t e r i a l r e s u l t e d . When a sample of the s o l i d r e a c t i o n product was d i s s o l v e d i n HSO^F and i t s v i s i b l e - u l t r a v i o l e t spectrum was r e c o r d e d , a b s o r p t i o n maxima at 637nm, 482nm, 405nm and ^ 275-280nm were found. T h i s i n d i c a t e d an impure sample c o n t a i n i n g ICI2 c a t i o n s contaminated w i t h t r a c e s o f I 2 + « O b v i o u s l y t h i s method was to be c o n s i d e r e d u n s a t i s f a c t o r y f o r the p r e p a r a -t i o n of an I C l 2 + - c o n t a i n i n g antimony (V) f l u o r i d e s a l t . Another method t h e r e f o r e had to be t r i e d . In what was found to be a s u c c e s s f u l s y n t h e s i s of ICl2Sb2F^^, 1.0418g (4.105 mmoles) of I2 were f i r s t a llowed to r e a c t with an excess of CI2 i n a 50-ml two-part r e a c t o r a t -78°C f o r 1/2 hour. A f t e r attachment of a p2°5 guard tube to the r e a c t o r , the excess CI2 was allowed t o evaporate i n a fume-hood as the r e a c t o r was g r a d u a l l y r a i s e d i n temperature t o F.T. The r e s u l t i n g m a t e r i a l was 1.915g (8.209 mmoles) of (1013)2 c o n t a i n i n g an atmosphere of CI2 above i t . The (ICI3 was then r e a c t e d w i t h 10.2732g (47.400 mmoles) of SbF 5, which was d i s t i l l e d i n vacuo i n t o the r e a c t o r . The r e s u l t -i n g p roducts were a b r i l l i a n t - r e d l i q u i d amidst the excess SbFj_, w i t h a s l i g h t l y y e l l o w i s h gas phase above the l i q u i d products i n d i c a t i v e of the s l i g h t excess of CI2 which was used. A l l the v o l a t i l e products were removed i n a dynamic vacuum over a p e r i o d of 6 3 hours w h i l e the temperature was g r a d u a l l y r a i s e d to 70°C to remove any SbF^Cl and excess SbF^ from the r e a c t o r . About 5.75g of an orange-red s o l i d 14 4 were o b t a i n e d , which a n a l y s e d as I C l 2 S b 2 F ^ and melted s h a r p l y a t 62.0°C w i t h no s i g n s of decomposition, b) I B r 2 S b 2 F 1 1 A l a r g e excess of SbF,. (4.075g, 12.04 mmoles) was added i n t o a 50-ml two-part r e a c t o r i n the i n e r t atmosphere box together w i t h 0.4 88g (1.27 mmoles) of f i n e l y powdered IB^SO^F. The rust-brown c o l o r of the l a t t e r darkened immediately, and a f t e r h e a t i n g the r e a c t i o n mixture f o r 18 hr a t 70°C black-brown g l o b u l e s had formed i n an o t h e r -wise c o l o r l e s s , v i s c o u s s o l u t i o n . The v o l a t i l e p r o d u c t s , SbF^SO^F) and excess SbF,., were removed i n a dynamic vacuum wit h the r e a c t i o n v e s s e l f i r s t a t 25°C f o r 6 1/2 hours and then a t 70°C f o r 35 hours u n t i l c o n s t a n t weight was a t t a i n e d . The remaining dark brown s o l i d (0.972g, 1.31 mmoles) melted at 65°C and a n a l y s e d as I B r 2 S b 2 F ^ ^ . In a t y p i c a l r e a c t i o n t o prepare I 3Sb 2F^^,0.559g (1.17 mmoles) of I 3 S O 3 F were p l a c e d i n a 50-ml two-part r e a c t o r i n the drybox. Afterwards 7.143g (21.10 mmoles) of SbFg was added by d i s t i l l a t i o n i n vacuo onto the I 3 S O 3 F . Immediately upon warming to room temperature, a d a r k - b l u e -b l a c k inhomogeneous sludge developed i n the excess SbF 5 which remained so even a f t e r h e a t i n g to 70°C f o r 18 hours. A f t e r h e a t i n g to 105°C f o r one hour a r e l a t i v e l y homogen-eous r e a c t i o n mixture developed f o r the d a r k l y c o l o r e d p r o d u c t s , but a white c o l o r e d s o l i d product a l s o began to sublime i n t o h i g h e r r e g i o n s of the r e a c t o r . D e s p i t e t h i s , the v o l a t i l e products were removed i n vacuo w h i l e h e a t i n g the r e a c t o r between 70°C and 110°C f o r about 30 hours. The r e s u l t i n g product was a b l u e - b l a c k s o l i d r e p r e s e n t i n g 1.5130g which melted between 109-111°C. The inhomogeneous appearance o f t h i s product p r e c l u d e d a chemical a n a l y s i s , d) A n a l y t i c a l data Elemental a n a l y s e s on the two samples, I C l 2 S b 2 F ^ and I B r 2 S b 2 F - j ^ , r e v e a l e d the expected v a l u e s as shown below. I C l 2 S b 2 F i ; L : c a l c % I = 19.51; %C1 = 10.90; %F = 32.14 found %I = 19.29; %C1 = 10.73; %F = 31.72 I B r 2 S b 2 F i ; L : c a l c % I = 17.17; %Br = 21.62; %F = 28.27 found %I = 17.43; %Br = 21.41; %F = 27.94 C h a r a c t e r i z a t i o n s of I C l ? S b ? F i -j and IBr?Sb?Fi -\ When each of these two compounds were d i s s o l v e d i n 96% H2SO4, the c h a r a c t e r i s t i c v i s i b l e - u l t r a v i o l e t s p e c t r a f o r I C l 2 + ( s o l v ) and I B r 2 + ( s o l v ) were observed. Since the molar e x t i n c t i o n c o e f f i c i e n t s have been p r e v i o u s l y determined f o r these two s p e c i e s i n 96% H2SO4, the measured o p t i c a l d e n s i t y v a l u e s and the known amounts o f s o l u t e s used c o u l d be e a s i l y c o nverted i n t o m o l e c u l a r weight v a l u e s f o r these two compounds. The v a l u e o b t a i n e d f o r I C l 2 S b 2 F ^ i n t h i s method was 642 com-pared t o the t h e o r e t i c a l m olecular weight of 650.3; I B r 2 S b 2 F ^ ^ gave a c a l c u l a t e d m olecular weight of 740 as compared to the t h e o r e t i c a l v alue o f 739.2. The v i b r a t i o n a l s p e c t r a of I C l 2 S b 2 F ^ and I B ^ S b - j F ^ 146 as recorded are gi v e n i n Table 26. Both compounds gave w e l l r e s o l v e d I n f r a r e d s p e c t r a down to ^ 250cm 1 when pr e s s e d be-tween s i l v e r bromide windows i n the absence of any m u l l i n g agent. The Raman s p e c t r a were o n l y i n c o m p l e t e l y r e s o l v e d be-cause of the dark c o l o r o f I B r 2 S b 2 F ^ and because" o f a n o t i c e -a b l e decomposition f o r both I B r 2 S b 2 F ^ and I C l 2 S b 2 F ^ i n the l a s e r beam. T h i s decomposition was observed as b l u e - b l a c k spots where the l a s e r l i g h t s t r u c k the samples which produced Raman bands not seen i n the I n f r a r e d spectrum a t 2 45cm \ 485cm - 1, 730cm ^ and 965cm ^. The p o s i t i o n s o f these peaks as w e l l as t h e i r d e c r e a s i n g i n t e n s i t i e s w i t h h i g h e r wavenumbers suggested t h e i r assignment as the fundamental and f i r s t t h r e e harmonics o f the v I I v i b r a t i o n from the I 2 + c a t i o n caused by the resonance Raman e f f e c t . A p p a r e n t l y the I 2 + s p e c i e s was formed i n a complex decomposition r e a c t i o n of the samples caused by the i n c i d e n t l a s e r l i g h t . The I n f r a r e d s p e c t r a o f ICl-^Sb-jF^ and I B r 2 S b 2 F - ^ have been compared t o t h a t o f B r F ^ S b ^ ^ i n Table 26. As can be seen, good agreement f o r the bands f o r these t h r e e compounds was found. S i n c e the c r y s t a l s t r u c t u r e o f BrF^Sb 2F^^ has . - 144 shown d i s c r e t e B r F . T and Sb.F.. ions , an i o n i c f o r m u l a t i o n 4 2 11 f o r I C l 2 S b 2 F ^ 1 and I B r 2 s b 2 F 1 1 *-s a ^ s o suggested by these s p e c t r a . Only i n the I C l 2 + - c o n t a i n i n g compound, however, were any of the c a t i o n i c v i b r a t i o n s s u f f i c i e n t l y h i g h t o be observed. In t h i s case, the peaks a t 398cm" 1 and 394cm" 1 i n the I n f r a r e d (404cm 1 and 396cm * i n the Raman) corresponded to the v a s y m ICI and v s y m ICI modes r e s p e c t i v e l y f o r the I C 1 2 + 147 TABLE 26 Vibrational Spectra of T.Cl„Sb?F -Q and IBr 2 Sb ? F ll I C l 2 S b 2 F n (infrared) IBr 2 Sb 2 Fi i (Infrared) B r F 4 S b 2 F H 770vw, sh 760 w, sh. 765** 735 m, sh 718 m 730** 705 m 695 s, br 690 vs 670 s, br (633)* 672 s 655 vs 655 vs 655 s 645 sh 585 w 585 m 568 m 560 mw 560 w, sh 540 mw 535 mw 502 ms 488 ms 410 vw 398 s, sh (404)* 394 s (396)* 295 ms 290 ms 295*** 275 ms 264*** Abbreviations: vs = very strong, s = strong, ms = medium strong, m = medium, mw = medium weak w = weak, vw = very weak, br = broad, yh = shoulder. * Bands observed in the Ranum spectrum of IC^Sh ,^^ ** Region obscured by BrF^ modes in B r F ^ S b ^ u ; frequencies as observed for Sb2F modes in V02''I>2F11» Weidlein, J . and Dehnicke, K. , Z . anorg. allg. Chem., 348, 278 (1966). *** Bands observed in the R;j;n;in spectrum of BrF4Sb2F^ + c a t i o n i n good agreement w i t h ICI v i b r a t i o n s f o r o t h e r I C 1 2 ~ c o n t a i n i n g compounds g i v e n i n Table 23. S i n c e both the v a S y m + vsym m o d e s a r e observed f o r the I C l 2 c a t i o n , a bent s t r u c t u r e i s a g a i n suggested. The e x p e r i m e n t a l r e s u l t s f o r the s o l v o l y s i s of I ^ O ^ F i n SbF,. were somewhat d i s a p p o i n t i n g , however, and the chances t h a t an I 3 + c a t i o n c o u l d be s t a b i l i z e d by an antimony (V) f l u o r i d e appeared q u i t e s l i m . The weight of the products t h a t were o b t a i n e d were o n l y s l i g h t l y g r e a t e r than what was expected had a compound of the type l 2 ^ ^ 2 F l l ^ e e n generated (1.2346g) a c c o r d i n g to the redox r e a c t i o n g i v e n by S b F 5 4 I 3 S 0 3 F + 17SbF 5 3> 6 I 2 S b 2 F i ; l + SbF 3 + 4SbF 4 (S0 3F) In f a c t , the sample may have been contaminated somewhat by S b F 3 thereby c a u s i n g the range observed f o r i t s m e l t i n g p o i n t . The m e l t i n g p o i n t s f o r s i m i l a r l y impure samples o f I 2 S b 2 F l l w i t h SbF 3, prepared by the i n t e r a c t i o n o f I 2 w i t h SbF^ alone or w i t h the a d d i t i o n o f I F 5 / has p r e v i o u s l y been r e p o r t e d a t 90 - 120°C and a t 100 - 110°C r e s p e c t i v e l y , where the p r o d u c t s were d e s c r i b e d as b l u e - b l a c k s o l i d s c o n t a i n i n g .traces o f a 121 white c r y s t a l l i n e s o l i d which c o u l d be sublimed away . The nature of t h i s b l u e - b l a c k s o l i d , however, w i l l be more thorough l y i n v e s t i g a t e d i n S e c t i o n V. I n t e r e s t i n g l y , a b r i e f p r e l i m -218 i n a r y r e p o r t on the s y n t h e s i s of I 3SbFg i n l i q u i d S 0 2 a c c o r d i n g t o 3 I 2 + 3SbF 5 9 2 I 3 S b F 6 + SbF 3 149 appeared a f t e r t h i s work was i n p r o g r e s s , but no evidence was o b t a i n e d to s u b s t a n t i a t e t h i s c l a i m . In f a c t , the same authors 235 have o n l y very r e c e n t l y r e p o r t e d the s y n t h e s i s of I 2 S b 2 F l l by the v e r y same r o u t e , which a l s o tends t o c a s t some doubt on the p r e l i m i n a r y r e p o r t f o r I 3 S b F g . I t i s thought here t h a t SbF^ was capable of o x i d i z i n g i o d i n e beyond the + 1/3 o x i d a t i o n s t a t e and t h e r e f o r e was u n s u i t a b l e f o r the g e n e r a t i o n of any I 3 S b x F 5 x + ^ compound and i t s f u r t h e r i n v e s t i g a t i o n . F. CONCLUSIONS The r e s u l t s obtained here show t h a t the t r i a t o m i c i o d i n e -c o n t a i n i n g halogen and i n t e r h a l o g e n c a t i o n s which have been produced are e s s e n t i a l l y i d e n t i c a l t o those produced by o t h e r m e t h o d s 3 4 , 2 1 0 2 i 8 . T h i s has a p p l i e d not o n l y to the c a t i o n s i n 174 s o l u t i o n s of s t r o n g p r o t o n i c a c i d s , but a l s o t o the c a t i o n s i n s o l i d compounds r e g a r d l e s s o f the type of anion. An obvious advantage of the o x i d a t i v e a d d i t i o n r e a c t i o n s t o IOSO2F over 210—218 the o t h e r methods was the f o r m a t i o n o f s t a b l e compounds + + w i t h the c a t i o n s I B ^ and ^ B r . The use of e i t h e r S b C l ^ or A1C1 3 had allowed p r i m a r i l y the s t a b i l i z a t i o n of c h l o r o and p o l y i o d o c a t i o n s . The f l u o r o s u l f a t e system o b v i o u s l y had s e v e r a l a d d i t i o n -a l advantages f o r the study of t h i s type of c a t i o n s , b e s i d e s the ease o f p r e p a r a t i o n o f the compounds. Those were the simple and s t r a i g h t f o r w a r d s o l u t i o n b e h a v i o r f o r the f l u o r o -s u l f a t e s i n the w e l l e s t a b l i s h e d p r o t o n i c a c i d HSO^F, and the u s e f u l n e s s of p r e v i o u s v i b r a t i o n a l s t u d i e s on a wide v a r i e t y of o t h e r SO^F compounds i n order t o c h a r a c t e r i z e the new t r i -atomic p o l y h a l o g e n and i n t e r h a l o g e n f l u o r o s u l f a t e s . When the v i b r a t i o n a l spectrum o f i o d i n e m o n o f l u o r o s u l f a t e was compared to those of the t r i a t o m i c halogen and i n t e r h a l o g e n f l u o r o s u l -f a t e s , a d e f i n i t e and fundamental s t r u c t u r a l change was noted. Besides the disappearance o f a v 10 v i b r a t i o n , the changes i n the SO3 s t r e t c h i n g range were q u i t e s i g n i f i c a n t and r e i n f o r c e d the p o s t u l a t i o n o f r e l a t i v e l y i o n i c t r i a t o m i c c a t i o n s and f l u o r o s u l f a t e anions i f allowance was made f o r the p e r t u r b a -t i o n o f the anion by v a r y i n g degrees o f c a t i o n - a n i o n i n t e r -a c t i o n . T h i s o b s e r v a t i o n l e d to a p a r a l l e l between the r e a c t i o n of the halogens o r i n t e r h a l o g e n s w i t h IOSO2F versus a t y p i c a l a c i d - b a s e r e a c t i o n between NH-j and HSO^F. In the l a t t e r case an 0-H bond i s broken and a proton i s a b s t r a c t e d by the base; i n the former, an I + i o n i s a b s t r a c t e d a t l e a s t f o r m a l l y by the halogen o r i n t e r h a l o g e n . T h i s s i m i l a r i t y a l l o w s a formal comparison t o be made between the two p r i n c i p l e methods of halogen o r i n t e r h a l o g e n c a t i o n f o r m a t i o n , whether by h a l i d e a b s t r a c t i o n o r by o x i d a t i v e a d d i t i o n . Using the Lewis a c i d -base concept, t h i s comparison i s shown i n Table 27 f o r two t y p i c a l examples t o g e t h e r w i t h the proton a b s t r a c t i o n r e a c t i o n . In a s t r i c t l y f o r m a l i s t i c sense, r e a c t i o n a) may be viewed as a f l u o r i d e i o n a b s t r a c t i o n by the ac c e p t o r c a u s i n g the h e t e r -o l y t i c cleavage o f a C l - F bond. I t i s t h i s F~ i o n which may only e x i s t i n a formal sense which i s the t r u e base. In a s i m i l a r manner, r e a c t i o n s b) and c) may then be viewed as I + 151 TABLE 27 T y p i c a l D o n o r — A c c e p t o r Formation Reactions Lewis base o r e l e c t r o n Lewis a c i d or Complex or p a i r donor e l e c t r o n p a i r s a l t a c c e p t o r a ) C 1 F 3 + SbF c > C 1 F 2 + S b F 6 b) ICI + IOS0 2F » I 2 C 1 + S 0 3 F ~ c) NH3 + H S 0 3F > NH+SO-jF" 4 J or H a b s t r a c t i o n s by the c o r r e s p o n d i n g bases w i t h the break-ing of an I—0 or an H—O bond r e s p e c t i v e l y , making the I + and + • + + H m o i e t i e s the t r u e a c i d s . Again I and H e x i s t o n l y i n a formal sense. T h i s formalism a l l o w s the r a t i o n a l i z a t i o n o f a number of p r e v i o u s l y s t a t e d o b s e r v a t i o n s . F i r s t , I + a b s t r a c t i o n i s p o s s i b l e because IOSG^F i s a s t r o n g enough a c i d toward the halogens or i n t e r h a l o g e n s , i n c o n t r a s t to the b e h a v i o r o f BrOSG^F. A l s o , u n l i k e r e a c t i o n a ) , r e a c t i o n b) does not r e -q u i r e a t e t r a a t o m i c i n t e r h a l o g e n t o be the base nor does r e a c t i o n b) r e q u i r e a b i n a r y mixture o f d i a t o m i c halogens or i n t e r h a l o g e n s as do the methods of L u s t i g and Shamir or C o r b e t t e t a l . Furthermore, the formalism of r e g a r d i n g r e a c t i o n b) as an I + a b s t r a c t i o n i s perhaps more r e a l i s t i c than the term o x i d a t i v e a d d i t i o n which had been used up to t h i s p o i n t , even though i t must be emphasized t h a t t h e r e i s no evidence f o r a 152 s t a b l e I + c a t i o n . T h i s becomes apparent when charge d i s t r i b u -t i o n s w i t h i n a g i v e n t r i a t o m i c c a t i o n are c o n s i d e r e d . 210-213 During the course of t h i s study, C o r b e t t and coworkers have a l s o been i n v e s t i g a t i n g systems c o n t a i n i n g t r i a t o m i c i o - ' donium (III) c a t i o n s , p r i n c i p a l l y through nqr s t u d i e s on A l C l ^ and SbClg s a l t s . T h e i r r e s u l t s and c o n c l u s i o n s appear to c o n f i r m much of what has been d e s c r i b e d h e r e i n . For example, i n t h e i r i n v e s t i g a t i o n s on the t e r n a r y system I 2-ICI - A I C I 3 , no evidence c o u l d be found from a phase study f o r any c a t i o n s + + + ,+ of the type I 4 C 1 or I 3 C l 2 ; furthermore, no B r 3 - or B r 2 C l -213 c o n t a i n i n g s a l t of A 1 C 1 4 or SbClg c o u l d be o b t a i n e d e i t h e r 35 Along more p o s i t i v e l i n e s , f o r I 3 A 1 C 1 4 the C l and 127 I nqr data which was o b t a i n e d subsequently showed t h a t i t c o u l d e x i s t i n two d i f f e r e n t m o d i f i c a t i o n s i n the s o l i d s t a t e . 35 Not o n l y t h i s , but f o r I 2 C 1 A 1 C 1 4 two C l nqr s i g n a l s from the c a t i o n i n d i c a t e d t h a t t h e r e were two independent I 2 C 1 + 213 c a t i o n s per u n i t c e l l . S i m i l a r c o n c l u s i o n s c o n c e r n i n g the anion have been reached i n t h i s study on I 2 C 1 S 0 3 F based on the I n f r a r e d spectrum. 35 27 Whereas from C l nqr and A l nmr measurements, the A 1 C 1 4 ~ anion i n the * 3 + / I 2 ^ 1 + a n < ^ 1 C l 2 + s a l t s have been shown to be q u i t e r e g u l a r and symmetric i n d i c a t i v e o f i o n i c 213 - + behavior , the SbClg anion f o r I 2 C 1 has shown from i t s *^C1 nqr s i g n a l s to have l e s s than r e g u l a r °h symmetry (perhaps C 2 v or C s i n s t e a d ) , which i s t h e r e f o r e c o n s i s t e n t 212 with i t s being i n v o l v e d i n some c a t i o n - a n i o n i n t e r a c t i o n T h i s c o n c l u s i o n f o r I 2 C l S b C l g has a l s o been reached by L u s t i g 15 3 and Shamir when they analyzed the Raman spectrum f o r t h i s com-216 pound One i n t e r e s t i n g r e s u l t o f the nqr measurements o b t a i n e d on I 3 A 1 C 1 4 2 1 3 , I 2 C l S b C l 6 2 1 2 and I 2 C 1 A 1 C 1 4 2 1 3 t o g e t h e r w i t h 172 those p r e v i o u s l y o b t a i n e d on I C l ^ A l C l . i s the c a l c u l a t i o n of charge d e n s i t i e s on the v a r i o u s atoms i n the c a t i o n s . In F i g u r e 6 has been shown the va l u e s f o r the charge d i s t r i b u t i o n s of the I C 1 2 + c a t i o n as had been c a l c u l a t e d by Wiebenga and 171 Kracht . In c a l c u l a t i o n s performed by Merryman, C o r b e t t and Edwards, q u a l i t a t i v e l y s i m i l a r c o n c l u s i o n s have been reached f o r not o n l y I C l 2 + but I 2 C l + and I 3 + as w e l l , however w i t h 213 s l i g h t l y v a r y i n g v a l u e s from b e f o r e +0.77 (+0.55)* (+1.09)* +1.64 (+1.58)* I I I / \ / \ / \ I I I C l C l C l +0.24 +0.21 +0.21 -0.30 -0.29 -0.29 * ( v a l u e s i n parentheses are those c a l c u l a t e d f o r the c e n t r a l i o d i n e atom when the d i f f e r e n c e i s taken from the fo r m a l charge of +1 of the c a t i o n and :those charges c a l c u l a t e d f o r the t e r m i n a l halogen atoms) An obvious r e l a t i o n s h i p can then be made between the p o s i t i v e charge a s s o c i a t e d w i t h the c e n t r a l i o d i n e atoms of the v a r i o u s c a t i o n s i n the f l u o r o s u l f a t e compounds, and the degree o f i n t e r a c t i o n f o r the c a t i o n s w i t h the SO^F anio n s . I f , i n the case of I C 1 2 S 0 3 F vs I 0 C I S O 3 F and I 3 S O 3 F , the s p l i t t i n g o f the S 0 3 s t r e t c h i n g mode of E symmetry i s taken as a measure f o r such i n t e r a c t i o n , i t has been shown t h a t the I C l 2 + compound e x h i b i t s the most extreme c a t i o n - a n i o n i n t e r a c t i o n o f them a l l , q u i t e i n keeping w i t h the t r e n d f o r the charge l o c a t e d 154 On the c e n t r a l i o d i n e atom. Of a l l the i n t e r h a l o g e n complexes s t u d i e d so f a r , the f l u o r o s u l f a t e s appear to show such anion i n t e r a c t i o n most c l e a r l y , but only' i n the v i b r a t i o n a l spectrum due to the a n i o n . S e v e r a l reasons may be r e s p o n s i b l e f o r t h i s . A c c o r d i n g t o 237 Cruxckshank's i n t e r p r e t a t i o n , the S - 0 bonds have s t r o n g m u l t i p l e bonding of the d a t i v e p i r -*• dir type between O, or . even F, atoms t o a S atom b e s i d e s the normal a c o n t r i b u t i o n . Any change i n the e l e c t r o n d e n s i t y a t oxygen or any change i n the bond angle should i n f l u e n c e the ir bond order n o t i c e a b l y . Such changes can be brought about by c a t i o n p o l a r i z a t i o n s . Besides a d e f i n i t e c a t i o n - a n i o n i n t e r a c t i o n , mere s i z e sym-metry lowering from C^v to C g or may b r i n g about a s p l i t t i n g of degenerate E modes. Since n e i t h e r the c r y s t a l s t r u c t u r e s nor the c a t i o n s i t e symmetries i n these s t r u c t u r e s are known, i t i s i m p o s s i b l e to assess t h i s c o n t r i b u t i o n . In a d d i t i o n , i t has o f t e n been observed t h a t the S O 3 s t r e t c h i n g range be-tween 'vlSOOcm"1 and ^lOOOcm" 1 i s very s e n s i t i v e toward s m a l l e f f e c t s as d i s c u s s e d b e f o r e . But g e n e r a l l y i t seems t h a t the SO^F" anion t o g e t h e r w i t h the o t h e r f l u o r o a n i o n s SbFg , AsFg 2— and SnFg do indeed show a g r e a t e r tendancy toward c a t i o n 224 i n t e r a c t i o n than do c h l o r o a n i o n s l i k e SbClg , A1C1 4 and 2 -SnClg In a d d i t i o n t o any c a t i o n - a n i o n i n t e r a c t i o n as n o t i c e d i n the p e r t u r b a t i o n s of the v i b r a t i o n a l spectrum of the anion, another e f f e c t can a l s o be d i s c u s s e d . T h i s i s the dependence of the c a t i o n v i b r a t i o n s on the type o f anion as p a r t i c u l a r l y observed i n the changes of the halogen-halogen s t r e t c h i n g v i b r a t i o n s . A good example of such dependence i s g i v e n by 2 3 8 Sharp and T h o r l e y who i n v e s t i g a t e d the v NO s t r e t c h i n g f r e -quencies f o r 25 N O + - c o n t a i n i n g complexes. In t h e i r study a l l the NO v i b r a t i o n s were found t o range between ^240 0cm 1 and ^2150cm ^, with the s a l t s c o n t a i n i n g the f l u o r o a n i o n s (such as B F ^ - SbFg" and SO3F"") having v a l u e s f o r v NO c l o s e r t o the high frequency end of the range, and those s a l t s c o n t a i n i n g the c h l o r o a n i o n s having v NO v a l u e s c l o s e r t o the low f r e -quency end. The reasons f o r t h i s have not been very w e l l e x p l a i n e d but the g e n e r a l t r e n d i s w e l l documented. To o b t a i n a p i c t u r e of such a t r e n d f o r the type of t r i a t o m i c c a t i o n s d i s c u s s e d here, s i m p l i f i e d f o r c e c o n s t a n t s can be c a l c u l a t e d . Normally t h i s r e q u i r e s the knowledge of p r e c i s e bond l e n g t h s and angles as w e l l as good v i b r a t i o n a l s p e c t r o s c o p i c d a t a , but a very g e n e r a l approximation can be reached employing the 239 methods d e v i s e d by S i e b e r t . Using the reduced mass of the atoms i n v o l v e d and t a k i n g i n t o c o n s i d e r a t i o n both the sym-m e t r i c and antisymmetric v i b r a t i o n s , as found f o r a bent 'IC1 2 + c a t i o n f o r example, a v e r y simple c a l c u l a t i o n can be performed to estimate the s t r e t c h i n g f o r c e c o n s t a n t s f o r an I—X bond. The r e s u l t s of such c a l c u l a t i o n s on the c a t i o n s I C l 2 + , l R r 2 + and I B r C l + are g i v e n i n Table 28. E s p e c i a l l y i n the i n s t a n c e s i n v o l v i n g the I C l 2 + c a t i o n , s i n c e i t has been the most exten-s i v e l y s t u d i e d and the most number of compounds are known f o r i t , a d e f i n i t e t r e n d can be observed. The f a c t t h a t f T _ / - i TABLE 28 Approximate Force Constants for the Cations IC1 2 , IBr and IBrCl* j n Various Compounds  cation compound VI-C1 (cm - 1) vI-Br (cm - 1) f I - C l (dyne/cm--'-) x 10 5 f I-Br (dyne/cm--'-) x 10 5 I C 1 2 + I C l 2 S b 2 F 1 1 396 2.56 IC1 2S0 3F 370 2.235 ICl 2SbCl 6 369 2.22 ICI2AICI4 365 2.175 I B r 2 + IBr 2S0 3F 256 1.89 IBr 2S0 3CF 3 253 1.85 IBr C l + IBrClS0 3F 371.5 263 2.25 2.00 IBrClSbCl 6 366 255 2.18 1.88 157 v a l u e s i n c r e a s e from the A l C l ^ s a l t to the S k ^ F i i s a l t m a Y i n d i c a t e a more complete removal of charge from the ICI2 group by the l a t t e r anion versus the former, and i s i n q u a l i t a t i v e agreement w i t h the o b s e r v a t i o n s f o r v NO. Such an i n c r e a s e d p o l a r i z a t i o n going from A1C1 4 to s k 2 F l l would then be l i k e l y t o r e s u l t i n some form of c a t i o n - a n i o n i n t e r a c t i o n as d i s c u s -sed b e f o r e . As p r e v i o u s l y mentioned, the v i b r a t i o n a l s p e c t r a of the c a t i o n s are so s i m i l a r r e g a r d l e s s of the c o u n t e r - i o n , t h a t i n s p i t e o f the observed i n t e r a c t i o n of the f l u o r o s u l f a t e s , i t i s q u i t e j u s t i f i e d t o re g a r d them as i o n i c s a l t s . The c a t i o n s which have been s t u d i e d here appear to f o l l o w the same s t r u c t u r a l p r i n c i p l e , a l s o mentioned e a r l i e r , t h a t f o r t r i -atomic c a t i o n s of t h i s s o r t , the h e a v i e r halogen ( i o d i n e i n these cases) o c c u p i e s the c e n t r a l p o s i t i o n i n the c a t i o n s 3 ^ 2 3 6 as s i m i l a r l y found f o r the t r i h a l i d e anions V. COMPOUNDS CONTAINING DIATOMIC HALOGEN CATIONS INTRODUCTION I t has been shown i n the pr e c e d i n g S e c t i o n IV t h a t when compounds of the type IX2SO3F, X = C l and Br, are s o l v o l y z e d i n SbF5, a b s t r a c t i o n o f the SO3F group can be accomplished to y i e l d f l u o r o a n t i m o n a t e (V) complexes of the same c a t i o n s . The occ u r r e n c e o f I 2 + as an o c c a s i o n a l s i d e product i n these r e -a c t i o n s suggested a s u i t a b l e s y n t h e t i c route t o I 2 + — a n d p e r -haps B r 2 + — c o n t a i n i n g compounds. I t may be r e c a l l e d t h a t s e v e r a l p o l y i o d i n e f l u o r o s u l -f a t e s a r e known, such as I7SO3F, I3SO3F and IOS0 2F, however, no evidence was found f o r a s t a b l e I 2 + — c o n t a i n i n g f l u o r o s u l f a t e A s u i t a b l e s t a r t i n g m a t e r i a l f o r a s o l v o l y s i s r e a c t i o n i n SbFs t o y i e l d I 2Sb 2F^2. would be a s t o i c h i o m e t r i c mixture of IOS0 2F and I 3S03F, or of BrOS0 2F and 1/2 B r 2 to y i e l d B r 2 S b 3 F 1 6 . In c o n t r a s t t o these f i n d i n g s , the s o l v a t e d I 2 + c a t i o n i s known i n SbF^ and r a t h e r impure s o l i d s o f the approximate composition I 2 S b 2 F ^ j _ have been produced when I 2 was d i s s o l v e d i n SbFr, w i t h 121 the l a t t e r a c t i n g as the o x i d i z i n g agent . No i o d i n e - c o n t a i n i n g s p e c i e s i n the +1 o r +1/3 o x i d a t i o n s t a t e appear to e x i s t i n SbFg as i o n s or as s a l t s s t a b i l i z e d by antimony (V) f l u o r o -anions. The c r y s t a l s t r u c t u r e of Br 2Sb3F^g as p r e v i o u s l y i l l -u s t r a t e d i n F i g u r e 3 had been r e p o r t e d b e f o r e much o f i t s chem-i s t r y was known ' . A s i d e from the B r 2 + c a t i o n , the o n l y o t h e r polybromine c a t i o n t h a t has been i d e n t i f i e d has been the 127 B r 3 + as the h e x a f l u o r o a r s e n a t e (V) . No d i a t o m i c i n t e r h a l o g e 159 c a t i o n appears to have been d e t e c t e d e i t h e r i n s o l u t i o n or i n the s o l i d s t a t e . In o t h e r words, whereas the f l u o r o s u l f a t e group has acted as a c o v a l e n t group i n halogen m o n o f l u o r o s u l f a t e s o r as a p e r t u r b e d i o n i c group w i t h a number o f t r i a t o m i c iodonium (III) c a t i o n s , only d i and t r i - a t o m i c halogen f l u o r o - a n t i m o n a t e s or -ar s e n a t e s are known. In these l a t t e r c ases, the anions, which are u s u a l l y but not always Sb 2F-j^ , have been found t o i n t e r -a c t w i t h the c a t i o n s v i a i n t e r - i o n i c c o n t a c t s which a r e s h o r t e r than van der Waal's d i s t a n c e s but longer than c o v a l e n t d i s t a n c e s . The c a t i o n s have been r e s t r i c t e d t o l 2 + , B r 2 + B r 3 + I B r 2 + a n ( x ICI2 where the fo r m a t i o n o f I3 or I7 has probably been p r e -vented by s o l v e n t o x i d a t i o n . When the s o l u b i l i t y i n SbF 5 has pe r m i t t e d i t , the ve r y same c a t i o n s have a l s o been d e t e c t e d i n s o l u t i o n . The e x i s t e n c e o f B r 2 + and I->+ i n p r o t o n i c a c i d s has a l -ready been d i s c u s s e d i n the General I n t r o d u c t i o n ; the r e s u l t s i n S e c t i o n IV have shown t h a t t r i a t o m i c iodonium (III) c a t i o n s can e x i s t i n p r o t o n i c a c i d s . The aim o f t h i s p a r t o f the study was t w o f o l d . One asp e c t was to s y n t h e s i z e B r 2 + - and I 2 + - c o n -t a i n i n g p o l y f l u o r o a n t i m o n a t e (V) s a l t s i n h i g h p u r i t y v i a the s o l v o l y s i s of f l u o r o s u l f a t e i n t e r m e d i a t e s and to study t h e i r p h y s i c a l p r o p e r t i e s i n more d e t a i l . The second was to attempt the s y n t h e s i s o f any d i a t o m i c i n t e r h a l o g e n c a t i o n s . The o r d e r of p r i o r i t y f o r i n v e s t i g a t i o n of the c a t i o n s IBr , ICI and B r C l + was the i o n i z a t i o n p o t e n t i a l s of the d i a t o m i c p a r e n t i n t e r h a l o g e n s . 1 6 0 B. PREPARATIONS To a one-part r e a c t i o n bulb, 1.0241g (4.0349 mmoles) o f f i n e l y ground I 2 was added i n the drybox. Next, 0.4070g (2.054 mmoles) of S„0,F» was d i s t i l l e d i n vacuo from the c a l i b r a t e d z b z S 2 ° 6 F 2 — a d d i t i o n t r a p i n t o the r e a c t o r w i t h the i o d i n e . The mixture was heated to 90°C to a l l o w the r e a c t a n t s t o combine f o r about 10 minutes b e f o r e the r e a c t i o n b ulb and i t s contents were f r o z e n t o -196°C. At t h i s temperature, 6.7745g (31.256 mmoles) of S b F 5 was added to the 2:1 mixture of I 2 : S 2 0 g F 2 by d i s t i l l a t i o n i n vacuo. Heating these m a t e r i a l s t o 50°C sub-sequently produced a homogeneous dark b l u e - b l a c k l i q u i d phase, somewhat v i s c o u s even a t t h i s temperature. To remove any v o l -a t i l e m a t e r i a l s , dynamic pumping i n vacuo was a p p l i e d t o the sample which was kept a t 25°C f o r 1/2 hour, 60°C f o r 15 hours and then 90°C f o r 1 hour. The v o l a t i l e products were trapped i n o r d e r t o d e t e c t any c o l o r e d m a t e r i a l (which was n e g a t i v e ) , which would have suggested thermal decomposition of the product. T h i s process y i e l d e d 2.8750g (4.0706 mmoles) of a dark b l u e -b l a c k s o l i d which analyzed a c c o r d i n g to I2 S 1 : >2 F11 W x t n a sharp m e l t i n g p o i n t of 127°C, and which was completely f r e e of SO-jF. 2 - B r 2 S b 3 F 1 6 0.9825g (6.148 mmoles) of dry, p u r i f i e d B r 2 was f i r s t d i s t i l l e d i n t o a one-part r e a c t i o n b ulb i n vacuo. Then 0.6146g (3.102 mmoles) of S 2 0 g F 2 was condensed i n vacuo onto the B r 2 , and the mixture was allowed to warm to room temperature. To promote t h i s f i r s t r e a c t i o n step the r e a c t a n t s were h e l d a t room temperature and thoroughly mixed f o r one hour. Next, 10.4156g (48.055 mmoles) of SbF^ were d i s t i l l e d i n vacuo i n t o the r e a c t i o n bulb and allowed t o warm up to room temperature. Upon mixing, a r e d - c o l o r e d s o l i d was formed i n s t a n t a n e o u s l y and subsequent pumping a t RT f o r 3 hours removed any v o l a t i l e m a t e r i a l s . T h i s procedure r e s u l t e d i n 5.0387g (6.078 mmoles) of a b r i g h t r e d s o l i d which analyzed as B^Sb^F^g w i t h a melt-in g p o i n t of 85.5°C. A n a l y t i c a l data E l e m e n t a l a n a l y s e s f o r I and F i n I2 S' 32 F11 w e r e P e r ~ formed w i t h the f o l l o w i n g r e s u l t s : % I ( c a l c u l a t e d ) = 35.94, % F ( c a l c u l a t e d ) = 29.59; % I (found) = 35.94, % F (found) = 29.23. Elemental a n a l y s e s were a l s o c a r r i e d out on B r ^ b ^ F ^ g f o r the elements Br and F which r e s u l t e d i n the f o l l o w i n g v a l u e s : % Br ( c a l c u l a t e d ) = 19.28, % F ( c a l c u l a t e d ) = 36.67; % Br (found) = 19.12, % F (found) = 36.53. EXPERIMENTAL RESULTS AND DISCUSSION . The s y n t h e t i c r e a c t i o n s t h a t were employed t o o b t a i n the two s a l t s I 2 S ^ 2 F 1 1 a n c ^ B r 2 S t > 3 F 1 6 m a ^ ^ e w r ^ - t t e n a s f o l l o w s SbFr-2X 2 + S 2 0 g F 2 + (x s ) S b F 5 — > 2 X 2 S b n F 5 n + 1 + 2SbF 4(S0 3F) 16 2 The r e a c t i o n s were s t r a i g h t f o r w a r d w i t h complete S O 3 F removal, and no o x i d a t i o n by the SbF^ c o u l d be d e t e c t e d by any unexplained weight i n c r e a s e of the r e s u l t a n t p r o d u c t s . The analyses and m e l t i n g p o i n t s a l s o i n d i c a t e d t h a t the compounds ob t a i n e d here were o f q u i t e h i g h p u r i t y . The r e c e n t l y p u b l i s h e d s y n t h e s i s of I2 S^ )2 F11^^^ v^- a t ^ i e r e a c t i o n s o 2 , 2 I 2 + 5SbF 5 > 2 I 2 S b 2 F 1 ] L + SbF 3 I 117 118 r e p r e s e n t s an a d a p t a t i o n of the methods by Ruff ' and 121 Kemmitt e t a l . However, the r e p o r t e d a n a l y s i s - which was c o i n c i d e n t a l l y c a r r i e d out by the same m i c r o a n a l y s t employed i n t h i s study, A. Bernhardt — as w e l l as the m e l t i n g p o i n t t h a t was r e p o r t e d (122—123°C ve r s u s 127°C here) suggest incomplete removal of a l l SbF^ and hence an impure product. S i m i l a r l y the Br2Sb 3F^g which was o r i g i n a l l y r e p o r t e d and used f o r i t s s t r u c t u r a l d e t e r m i n a t i o n o n l y had a m e l t i n g p o i n t of 6 9 ° C 1 2 ^ as compared to the v a l u e o f 85.5°C observed here. I t may be concluded t h a t both I2 S^ )2 F11 a n ^ B r2 S' : ,3 F16 a r e b e s t prepared by the method suggested here when high p u r i t i e s are d e s i r e d . In the p r e s e n t method f o r the p r e p a r a t i o n of these two compounds, the o r d e r o f a d d i t i o n o f the reagents seemed to be somewhat important. In the case o f B^Sb-jF^g, f o r example, i f the o r d e r of a d d i t i o n of reagents were changed from B r 2 f o l l o w e d by S^ C> F„ and then SbF,_ to Br f o l l o w e d by SbF,. and then S.O.F., 2 6 2 5 2 5 2 6 2 the s o l i d product t h a t was o b t a i n e d i n v a r i a b l y had a m e l t i n g o o p o i n t i n the range from 73 C to 80 C. Presumably f o r both cases, i f the halogen a d d i t i o n was f o l l o w e d by adding SbFg, some SbF 3 must have been formed from the o x i d a t i o n of the h a l -ogen to the + 1/3 or + 1/2 s t a t e . Even though l a t e r experiments t h a t w i l l be d e s c r i b e d i n S e c t i o n VII w i l l show t h a t SbF^ can u l t i m a t e l y be o x i d i z e d t o antimony (V) by S 2 0 g F 2 to y i e l d S b F 3 ( S 0 3 F ) 2 o r SbF 4 ( S O 3 F ) when a t l e a s t one mole o f SbFs i s p r e s e n t , t h i s p rocess i s e x c e e d i n g l y slow and the two r e a c t i o n s extend over s e v e r a l days or even weeks. I t was t h e r e f o r e c o n s i d e r e d n ecessary to use S 2 0 g F 2 as the s o l e o x i d i z i n g agent and to a v o i d any p a r t i c i p a t i o n o f SbF^ i n the o x i d a t i o n p r o c e s s , because removal i n vacuo of S bF 4 ( S 0 3F) i n the presence of SbF^ seemed p r e f e r a b l e t o the removal of any S b F ^ — c o n t a i n i n g mixed-valency f l u o r i d e s by the use of o t h e r s o l v e n t s . The r e s u l t s p r e s e n t e d here i n d i c a t e d t h a t i n t e r f e r e n c e by S b F 3 can be avoided and any SO^F s p e c i e s c o u l d be e a s i l y removed. Any doubts c o n c e r n i n g the u s e f u l n e s s of r e a c t i n g I 2 i n SbF5 u s i n g SO2 to o b t a i n pure I 2 S ^ 2 F 1 1 are not d i m i n i s h e d by a r e p o r t from the same group of workers 218 who o s t e n s i b l y prepare I 3SbFg which i s s a i d t o proceed s o l e l y a c c o r d i n g t o the r e a c t i o n S 0 2 3 I 2 + 3 SbF 5 > 2 I 3 S b F 6 + S b F 3 . Since the p u r i t y o f both l 2 S b 2 F l l a n C x B r 2 S b 3 F 1 6 s v n _ t h e s i z e d here was judged to be q u i t e good, p h y s i c a l s t u d i e s on these compounds seemed to be now r e a s o n a b l e . These s t u d i e s were aimed at not o n l y c h a r a c t e r i z i n g these compounds more f u l l y , but a l s o a t d e v e l o p i n g a s e t of c r i t e r i a which would be u s e f u l i n the search f o r the I B r + or other d i a t o m i c i n t e r -et 164 halogen c a t i o n s . 1. Magnetic measurements An X 2 + c a t i o n , X = I and Br, i s expected to have a 2 n3/2g 9 r o u n ^ s t a t e and should r e p r e s e n t r a t h e r r a r e examples of paramagnetic i o n s of main group elements. Some p r e v i o u s work on both Br 2Sb 3F-^g and l 2 s b 2 F l l (koth impure) has been r e -p o r t e d . In the o r i g i n a l r e p o r t f o r B r 2 S b 3 F ^ g a v a l u e of 1.6 B.M. a t room temperature was r e p o r t e d 1 ^ . Magnetic s t u d i e s f o r I 2Sb 2F-Q y i e l d i n g the v a l u e s of 2.05-2.25 B.M. over a wide temperature range were recorded by Kemmitt e t a l , but they " d i d not f e e l t h a t much s i g n i f i c a n c e can be a t t r i b u t e d to the 121 a c t u a l n u m e r i c a l r e s u l t s " . A magnetic study on I 2 + (solv) i n HSO^F s o l u t i o n has a l s o been r e p o r t e d which gave a value 30 of 2.0 B.M. f o r the c a t i o n a t room temperature . Two e x p e r i -mental r o u t e s were e x p l o r e d here: a) s o l i d s t a t e magnetic s t u d i e s v i a the Gouy technique i n the temperature range from room temperature t o l i q u i d N 2 temperature were completed on both I 2 S b 2 F ^ and Br 2Sb 3F-j_g; and b) s o l u t i o n phase magnetic s t u d i e s v i a the NMR technique f o r I 2 + ( s o i v ) a n d the B r 2 + ( s o i v ) cations.were o b t a i n e d , a) Gouy method The c o r r e c t e d molar magnetic s u s c e p t i b i l i t i e s and e f -f e c t i v e magnetic moments f o r I 2 S b 2 F - j ^ and B r 2 S b 3 F ^ g were c a l c u l a t e d a c c o r d i n g to the method d e s c r i b e d i n S e c t i o n II.D.5., and are g i v e n i n Table 29 and i l l u s t r a t e d i n F i g u r e s 21 and 22. Magnetic Susceptibilities T(°K) F i g u r e 21 . T (°K) Figure 22. TABLE 29 Corrected Molar Magnetic S u s c e p t i b i l i t i e s and E f f e c t i v e Magnetic Moments f o r I 2 S D 2 F 1 1 and B^Sb^Fis at Various Temperatures I 2 S b 2 F 11 B r 2 S b 3 F 16 Temperature Xm VXm i yeff TemperatuiE Xm 1/Xm ye f f °K cgs u n i t s x 10 6 i B.M. °K cgs units x 106 B.M. cgs u n i t s x 10 4 cgs units x 10 4 294.5 1961.7 5.0975 2.15 296.5 1790.0 5.5866 2.06 274.0 2075.1 4.8190 2.13 275.4 1934.1 5.1703 2.06 253.3 2198.9 4.5477 2.11 254.5 2084.4 4.7975 2.06 252.5 2200.1 4.5452 2.11 234.8 2250.1 4.4443 2.06 236.8 2308.7 4.3314 2.09 213.0 2454.1 4.0749 2.05 232.3 2332.1 4.2879 2.08 192.7 2702.5 3.7002 2.04 210.0 2486.4 4.0219 2.04 172.0 2998.6 3.3349 2.03 190.6 2676.9 3.7357 2.02 151.2 3354.4- 2.9812 2.01 170.0 2891.9 3.4580 1.98 131.2 3822.2 2.6163 2.00 148.8 3145.4 3.1792 1.94 116.0 4426.5 2.2591 2.02 131.0 3429.3 2.9160 1.90 104.0 4834.5 2.0685 2.01 112.0 3782.3 2.6439 1.84 79.6 6053.8 1.6518 1.96 102.7 3923.7 2.5486 1.80 81.2 4359.5 2.2938 1.68 1 6 8 For an antimony (V) f l u o r i d e s a l t of e i t h e r o r B r 2 + , the magnetic moment f o r a s i n g l e f r e e e l e c t r o n can be c a l c u l a t e d a c c o r d i n g t o the e x p r e s s i o n u = gg \/s (s+1) =1.73 s Bohr magnetons (B.M.), which i s commonly c a l l e d the s p i n -187 onl y v a l u e . I f the o r b i t a l motion of the e l e c t r o n about the i o n i s a l s o c o n s i d e r e d , a f u r t h e r c o n t r i b u t i o n i s made to the magnetic moment which has been shown to be u ^=8 i/l (£+1) • I f an i n t e r a c t i o n between these v a l u e s o c c u r s , a c o u p l i n g may r e s u l t . I f t h i s i s the Ru s s e l l - S a u n d e r s L-S c o u p l i n g , then the e x p r e s s i o n u s + £ =gB \Js (s+1) + B\/&U + l)=8\/4s(s+l)+J!,(Jc.+l) 187 equals 2.236 B.M. f o r the case's d i s c u s s e d here. G e n e r a l l y the s i t u a t i o n of j - j c o u p l i n g c o u l d be c o n s i d e r e d as w e l l . The g e n e r a l e x p r e s s i o n where m u l t i p l e t widths are l a r g e compared t o kT can be g i v e n as y 0 , =gB s/j (j + 1) where j = £+s and g (the gyromagnetic r a t i o ) i s no longer 2.00023 but i s . . . , _ 3 , s (s+1)-l (£+1) 187, , . , , ' -i c a l c u l a t e d from g=~- + —-„ • ,\ . .,• v whxch would equal y 2 2]TD+1) 1.333. However, i n t h i s case, the l a s t c o u p l i n g scheme or an i n t e r m e d i a t e scheme between L-S and j - j c o u p l i n g (as i s commonly encountered f o r t r a n s i t i o n metal i o n s w i t h atomic numbers >30) i s not a v i a b l e a l t e r n a t i v e because on l y one + + unpaxred e l e c t r o n xs found xn both I 2 and B r 2 . As the observed u v a l u e s i n d i c a t e - 2.15 B.M. f o r I „ + and 2.06 B.M. e f f 2 f o r B r 2 + a t room temperature -- There must be a c e r t a i n o r b i t a l c o n t r i b u t i o n t o the magnetic moments i n each case. The f a c t t h a t the observed v a l u e s are l e s s than 2.236 B.M. means t h a t the o r b i t a l c o n t r i b u t i o n s are sub-s t a n t i a l l y quenched, presumably by the e l e c t r o s t a t i c f i e l d c r e a t e d by the surrounding F atoms, as borne out i n t h e i r 156,240 , .• c r y s t a l s t r u c t u r e s (see F i g u r e 3 ). As the r e s u l t s f o r */X m versus temperature show, t h e r e i s no unusual b e h a v i o r f o r e i t h e r I 2 + or B r 2 + ; the s t r a i g h t l i n e p l o t s i n d i c a t e normal Curie-Weiss Law b e h a v i o r . There appears to be no f e r r o — or a n t i f e r r o — magnetism a t l e a s t down t o 80°K. Nor i s t h e r e any evidence f o r e q u i l i b r i a t h a t c o u l d produce dimers which might presumably produce a 2+ diamagnetic s p e c i e s such as X^ , where X = I or Br, com-2+ p a r a b l e t o the I4 c a t i o n which has been r e p o r t e d i n e q u i -l i b r i u m w i t h the I 2 + c a t i o n i n HSO3F s o l u t i o n . NMR method + + The magnetic p r o p e r t i e s of the I 2 and B r 2 c a t i o n s were a l s o i n v e s t i g a t e d i n p r o t o n i c a c i d s o l u t i o n s o f 187 HSOjF/SbF^ u s i n g Evan's method o r i g i n a l l y d e v i s e d by 189 241 D i c k i n s o n and m o d i f i e d by Wertz , which has been used 91 by o t h e r workers and which i s d e s c r i b e d i n S e c t i o n II.D.5. In t h i s method the measurement of u e f f depends upon the f a c t t h a t the proton resonance of the s o l v e n t v a r i e s w i t h the magnetic environment o f the proton, u s u a l l y undergoing broad-ening a t the same time, i n the presence of a paramagnetic s p e c i e s , such as an X 2 + c a t i o n . I f the d i f f e r e n c e i n the c h e m i c a l s h i f t o f t h i s p e r t u r b e d resonance from the unper-turbed resonance of the proton i s r e l a t e d t o the c o n c e n t r a t i o n 170 of a paramagnetic s p e c i e s i n a known a p p l i e d magnetic f i e l d , the magnetic s u s c e p t i b i l i t y of the s o l u t i o n can be c a l c u l a t e d 3 6 S from X s o l n = ~ 2 i r c H Q as d e s c r i b e d p r e v i o u s l y . Since x i s N E 2 u 2 r e l a t e d to \i by the e x p r e s s i o n x = 2kT ' t h e e f r e c t i v e magnetic moment o f the paramagnetic s p e c i e s i n s o l u t i o n can be roughl y approximated. The l i m i t i n g measurements a r e n e c e s s a r i l y those of the a p p l i e d magnetic f i e l d (taken as ^23,400 gauss i n t h i s case) and the s h i f t of the proton resonance, 6 S, as taken from a broadened s i g n a l . I d e a l l y a d i l u t e s o l u t i o n o f the paramagnetic s p e c i e s would reduce t h i s broadening, but the amplitude of the p e r t u r b e d reson-ance would a l s o be reduced thereby s t r a i n i n g d e t e c t i o n methods. Consequently, due to these r a t h e r severe c o m p l i c a -t i o n s , r e l a t i v e l y l e s s r e l i a b i l i t y i s to be g i v e n t o the r e s u l t s o b t a i n e d u s i n g t h i s method as compared to the Gouy method, but i n f o r m a t i o n gained i n t h i s manner should s t i l l be a b l e t o c o n f i r m the p r e v i o u s r e s u l t s t h a t the X 2 + c a t i o n s are paramagnetic. The parameters used f o r the d e t e r m i n a t i o n °f ^ e f f from the p r e v i o u s two equations are g i v e n i n T a b l e 30 t o g e t h e r w i t h the c a l c u l a t e d v a l u e s f o r u e f f ' For these measurements, the pure s a l t s I 2Sb 2F-Q a n < ^ B r 2 S b 3 F 1 6 were d i s s o l v e d i n HS0 3F/SbF 5 s o l u t i o n s . T h e oret-i c a l l y i f these compounds c o m p l e t e l y i o n i z e i n these s o l u -t i o n s w i t h no s i d e e f f e c t s , the r e s u l t s o b t a i n e d v i a the NMR method should be comparable t o the r e s u l t s o b t a i n e d v i a the Gouy method. The value of 2.58 B.M. f o r 1 2 % 0 l v ) d o e S C O m ~ pare t o t h a t of 2.15 B.M. as found i n . I 2 s b 2 F l l ' b u t i s s i g n i f i c a n t l y h i g h e r f o r the s o l v a t e d s p e c i e s than 171 TABLE 3 0 Magnetic S u s c e p t i b i l i t y Measurements of X 2 (solv) Cations (X=I and Br) i n Solutions of HS0 3F/SbF 5 I 2 + (solv) B r 2 + (solv) c, concentration (molarity) 1.898 1.915 6s , chemical s h i f t d i f f e r e n c e (cps) -264.0 -6.6 k, Boltzmann's constant (erg/°K) 1.3805xl0~ 1 6 1.3805xl0 - 1 6 T, temperature (°K) 293.16 293.16 H o , magnetic f i e l d (gauss) 23,439 23,439 N, Avogadro's number (molecules/mole) 6.0225xl0 2 3 6.0225xl0 2 3 3 , Bohr's magneton (erg/gauss) 9.273xl0~ 2 1 9.273xl0 - 2 1 peff (B.M.) 2.577 0.4057 1 l l f o r the s o l i d s t a t e s p e c i e s . T h i s i s t o be expected s i n c e the paramagnetic ! 2 + ( s o l v ) s P e c i e s appears now to a p p r o x i -mate f r e e i o n b e h a v i o r , which i m p l i e s a g r e a t e r c o n t r i b u t i o n to Meff from o r b i t a l terms which are no longer as e f f e c t i v e l y quenched as i n the s o l i d compounds. Ob v i o u s l y the observed v a l u e i s higher than the expected va l u e f o r f u l l o r b i t a l c o n t r i b u t i o n . T h i s p o i n t s to the i n h e r e n t i n a c c u r a c y of the method. Conse-q u e n t l y , d e s p i t e these r e s e r v a t i o n s g i v e n to the NMR method, i t can be s a i d t h a t l 2 S b 2 F ^ behaves reasonably w e l l i n t h i s s o l v e n t , simply i o n i z i n g t o g i v e l 2 + ( s o l v ) c a t i o n s and some p e r f l u o r o -antimonate (V) anions. In the case o f Br 2Sb3FiLg the r e s u l t s are not n e a r l y as s t r a i g h t f o r w a r d . A v a l u e of ^0.41 B.M. was o b t a i n e d i n sharp c o n t r a s t t o the v a l u e of 2.06 B.M. a t room temperature f o r s o l i d B r 2 S b 3 F 1 g . P r e v i o u s workers had determined t h a t B r 2 + c a t i o n s e x i s t o n l y i n e q u i l i b r i a w i t h o t h e r s p e c i e s which are diamagnetic ( B r 3 + , BrOS0 2F and B r ( O S 0 2 F ) 3 ) to the e x t e n t of ^23-31 mole % even i n the most a c i d i c p r o t o n i c 96,97 s o l v e n t system, HS0 3F/SbF 5/3S0 3 . I t s h o u l d not be un-reasonable t o b e l i e v e t h a t a s i m i l a r s i t u a t i o n i s o c c u r r i n g here, perhaps w i t h a s m a l l e r c o n c e n t r a t i o n o f B r 2 + c a t i o n s i n the l e s s a c i d i c HS03F/SbF 5 s o l v e n t system. I f i t i s assumed t h a t the observed paramagnetism r e s u l t i n g from the 1 7 3 d i s s o l u t i o n of B r 2 S b 3 F 1 6 i n HS0 3F/SbF 5 i s due s o l e l y to B r 2 (solv) c a t i o n s and t h a t no o t h e r paramagnetic s p e c i e s are e x i s t e n t , then the r a t i o of 0.406 B.M. to the t h e o r e t i c a l v a l u e of 2.58 B.M. y i e l d s an upper l i m i t of 15.7% B r 2 + ( s o i v ) p r e s e n t i n e q u i l i b r i a w i t h B r 3 + ( s o l v ) a n d BrOS0 2F as p o s t u -l a t e d e a r l i e r . In the p r e v i o u s study , s u p e r a c i d , HS0 3F/SbF 5/3S0 3, had been used as a s o l v e n t , and the h i g h e r a c t u a l c o n c e n t r a t i o n o f B r 2 + ( s o l v ) m a v be due to the i n c r e a s e d 20 21 a c i d i t y of t h i s s o l v e n t as a r e s u l t of the added S 0 3 ' A comparative s p e c t r o p h o t o m e t r y study of B r 2 + ( s o ^ v ) i n v a r i o u s a c i d s w i l l be d i s c u s s e d next. 2. V i s i b l e - u l t r a v i o l e t s p e c t r a The e l e c t r o n i c spectrum o f I 2 + ( s o i v ) has been known f o r some time . Because of e a r l i e r i n t e r p r e t a t i o n s of the + 89-94 spectrum as b e i n g due to I , a reasonable assignment was not p r e s e n t e d u n t i l 1966 3 <\ In c o n t r a s t , B r 2 + ^ s o ^ v j appears 97 to be e x t e n s i v e l y d i s p r o p o r t i o n a t e d even i n s u p e r a c i d media or i n the HS0 3F/SbFr> s o l v e n t as shown i n the p r e c e d i n g s e c t i o n . As a consequence, o n l y one a b s o r p t i o n band at 510nm has been as s i g n e d to B r 2 + ( s o i v ) w i t h i t s remaining bands presumed to be + 97 obscured by a b s o r p t i o n s due to B r 3 ( s o ^ v ) • Whereas i n p r e v i o u s work both I - > t „ ~ i . . \ a n d B r _ . t , x ^ had been formed i n s i t u 2 ( s o l v ) 3 ( s o l v ) by o x i d a t i o n by I 2 and B r 2 r e s p e c t i v e l y or by d i s p r o p o r t i o n -a t i o n of IOS0 2F or BrOS0 2F, the p r e v i o u s l y d e s c r i b e d I 2 s b 2 F 1 i and B r 2 S b 3 F ^ g should be s u i t a b l e p r e c u r s o r s f o r the s o l v a t e d c a t i o n s i n a more s t r a i g h t f o r w a r d manner p r o v i d e d t h e r e i s no s o l v e n t i n t e r a c t i o n . The o b j e c t i v e of t h i s study was to determine a c c u r a t e molar e x t i n c t i o n c o e f f i c i e n t s f o r I 2 _ ( S o l v ) a n c * B r 2 t s o l v ) a n ( J to f i n d the most s u i t a b l e s o l v e n t f o r an intended conpropor-t i o n a t i o n r e a c t i o n o f the s o r t g i v e n by I 2 ( s o l v ) + B r 2 ( s o l v ) ^ 2 I B r ( s o l v ) By s p e c i f y i n g a " s u i t a b l e " s o l v e n t i s meant t h a t the s o l v e n t must not o x i d i z e the c a t i o n s i n s o l u t i o n , but i t should maxi-mize the c o n c e n t r a t i o n s o f the s p e c i e s i n the case of a d i s -p r o p o r t i o n a t i o n . The s o l v e n t s of c h o i c e would be the s t r o n g e s t p r o t o n i c a c i d s known — HSO3F, HS0 3F/SbF 5 and HS0 3F/SbF 5/3S03, l i s t e d i n order o f i n c r e a s i n g a c i d s t r e n g t h . I t should be p o s s i b l e t o attempt a c o r r e l a t i o n o f the P h o t o - E l e c t r o n Spectroscopy (PES) data on I 2 + ' B r 2 + a n ( J e v e n I B r + , which were o b t a i n e d q u i t e r e c e n t l y 1 8 ^ , i n or d e r t o p r e -sent a good assignment of the I 2 + ( s o i v ) spectrum. In a d d i t i o n , i t should be p o s s i b l e to g a i n some i d e a where t o expect o t h e r bands f o r the B r ~ + , , x c a t i o n , b e s i d e s the one a t 510nm, as 2 (solv) w e l l as t o p r e d i c t the p r i n c i p l e a b s o r p t i o n bands f o r the I B r * s o - ^ c a t i o n , should t h i s s p e c i e s be formed i n s o l u t i o n . For a g i v e n ^2+(g) c a t l o n ' x = 1 ' B r ' c l a n d F ' P E S pro-v i d e s i o n i z a t i o n e n e r g i e s f o r the ground s t a t e and those e x c i t e d s t a t e s which correspond to unpaired e l e c t r o n s i n l e v e l s normally f i l l e d f o r a mo l e c u l a r halogen molecule, such as I 2> As can 2 be seen from F i g u r e 23, the A s t a t e f o r I - + i s produced by Potential Energy Diagram for T2 and l£ (idealized) > A T+ excited A u A2 state T + excited 2n u 1 2 state 2 n T+ ground u q L2 state I? ground 9 2 state 0.0 1.0 2.0 3.0 r e C&] Figure 23, an e l e c t r o n i c t r a n s i t i o n from a lower l y i n g s t a t e i n t o an empty m o l e c u l a r o r b i t a l . Such a s t a t e n a t u r a l l y cannot be pro-duced by a p h o t o i o n i z a t i o n p r o c e s s . In a r e c e n t paper by 242 H e r r i n g and McLean i t was suggested t h a t the b e s t approxima-t i o n to an e l e c t r o n i c t r a n s i t i o n can be made by t a k i n g the d i f -f e r e n c e of the f i r s t a d i a b a t i c I o n i z a t i o n P o t e n t i a l (IP) and the second v e r t i c a l IP, and so on f o r subsequent bands. The r e s u l t s of the comparison f o r I 2 + / B r 2 + a n < ^ I B r + a r e shown i n Table 31. R e l a t i v e l y good agreement i s found; some d i s c r e p -a n c i e s , however, may be due to the d i f f i c u l t i e s i n d i s t i n g u i s h -i n g the a d i a b a t i c IP's from v i b r a t i o n a l hot bands i n the PES spectrum. The PES data are taken from the Ph.D. t h e s i s of A.B. C o r n f o r d 1 8 0 which c o n t a i n s a few updated v a l u e s compared 181 to the p u b l i s h e d work . G e n e r a l l y o n l y adequate agreement i s found, probably caused by d i f f i c u l t i e s i n the e x a c t d e t e r -m i n a t i o n of a d i a b a t i c IP's f o r the r e s p e c t i v e ground s t a t e s . The data f o r I 2 + suggest the assignment proposed i n F i g u r e 24 and p o i n t to a good s i m i l a r i t y of the l^tg) a n d *2+(s) c a t i o n s . As f a r as B r 2 + i s concerned, i t appears t h a t the 2 2 second allowed t r a n s i t i o n ( n ^/2g * n l/2u^ should g i v e r i s e to an a b s o r p t i o n a t >475nm and one may suspect t h a t t h i s 2 2 band, which l i e s q u i t e c l o s e to the n 3/ 2g * n 3/2u t r a n s _ i t i o n a t ^510nm may not be r e s o l v a b l e . A band observed at ^355nm f o r s o l u t i o n s of B r 2 + i n SbF,. (to be d i s c u s s e d l a t e r ) 2 may be t e n t a t i v e l y a s s i g n e d to the n3/2g * A u t r a n s i t i o n , not p r e d i c t a b l e by PES. F i n a l l y the g'-^ -^  f o r b i d d e n t r a n s i t i o n 4 - 2 2 f o r B r 2 ( n 3 / / 2 g — ^ l/2g^ * s P r e d i c t e d to be a t ^3180nm thus 177 TABLE 31 Electronic Transitions for I 2 + , Br 2+ and IBr+ a s Calculated from PES and as Observed in Visible-ultraviolet Spectra Species Transition, e.V. Ae.V. PES calculated nm vis-UV observed nm h + 2 n 3 / 2 g - 2 n 1 / 2 g (9.29 9.97) 0.68 5,485 1,823 1953 2 n 3 / 2 g + 2 n 3 / 2 u (9.29 ->• 11.03) 1.74 14,035 712 638 2 2 n3/2g n i / 2 u (9.29 + 11.83) 2.53 20,407 490 486 2„ 2 n 3/ 2 g -> Au (9.29 -*• ?) (not observed in PES) 405 B r 2 + 2 n 3 / 2 g -> 2 n i / 2 g (10.47 -*• 10.86) 0.39 3,146 3,179 3559 ' 2lI3/2g + 2jI3/2u (10.47 12.85) 2.38 19,197 521 510 2 n 3 / 2 g + 2 n 1 / 2 u (10.47 -> 13.08) 2.61 21,052 475 ? 2 2 n3/2g * A u (10.47 -»• ?) (not c observed in PES) 355? IBr + n3/2 g * n 1 / 2 g (9.71 ->- 10.356) 0.646 5,211 1,919 2 2 n3/2g * n3/2u (9.71 -»• 12.04) 2.33 18,794 532 — 2 2 n3/2g •»• n l / 2 u (9.71 -»• 12.34) 2.63 21,214 471 — 2 2 n3/2g * A u (9.71 -> ?) (not o bserved in PES) _. ... .. ... Electronic Spectrum of l+z Solvent: HS0 3 F + 0.21 molal Sbf^ Solute: U[Sb 2F n-] Concentration: 7.43 x 10~3 molar Ground state: 2 n 3 / 2 g 2 II1/2g ^rnax = 1953nm e max 7 5 400 500 600 700 . 800 1800 Wavelength [nm] 1900 2000 2100 F i g u r e 24, 0 0 f a l l i n g i n t o the I n f r a r e d r e g i o n . Indeed, a l l I n f r a r e d s p e c t r a o b t a i n e d on s o l i d B r 2 Sb-jF-^g between BaF 2 windows showed a medium weak a b s o r p t i o n at 2 810cm 1 or 3559nm, i n good agreement wit h PES p r e d i c t i o n s . I B r + i s expected to have a main a b s o r p t i o n band a t -\-530nm, and the s p e c i e s may not be e a s i l y d i s t i n g u i s h e d from B r 2 + . T h i s suggests t h a t v i s i b l e s p e c t r a may not p r o v i d e as u s e f u l a + 2 2 t o o l as d e s i r e d to i d e n t i f y IBr u n l e s s the n3/2g — n l / 2 g t r a n s i t i o n a t ^1920nm i n the near I n f r a r e d i s o b s e r v a b l e ; but 2 2 u n f o r t u n a t e l y t h i s i s where the J - ^ ^ f o r b i d d e n ^2/2q *" n i / 2 g band f o r I 2 + i s a l s o found. A p r e v i o u s r e p o r t gave the e x t i n c t i o n c o e f f i c i e n t a t 640nm as 2560 f o r I-"t . » / but was based upon an i n s i t u 2 ( s o l v ) 1 o x i d a t i o n of I 2 w i t h S 2 0 g F 2 to form the c a t i o n s and not upon the s o l u t i o n of a s t a b l e I 2 + - c o n t a i n i n g compound. A comparison 30 of the r e s u l t s o b t a i n e d here w i t h p r e v i o u s l y o b t a i n e d r e s u l t s i n d i c a t e s no g r e a t d i s p a r i t y between them, even though a s l i g h t -l y d i f f e r e n t s o l v e n t was used i n both cases. I t i s f e l t , however, t h a t the v a l u e s o b t a i n e d here are more r e l i a b l e i n a s -much as a pure compound known t o c o n t a i n the I 2 + moiety was the p r e c u r s o r of the I * , , s p e c i e s r e s p o n s i b l e f o r the spectrum. 2 ( s o l v ) The measurements gi v e n here a l s o i n c l u d e the f i r s t c a l -c u l a t e d e x t i n c t i o n c o e f f i c i e n t f o r the normally f o r b i d d e n o 2 n3/2g — * • n l / 2 g t r a n s i t : i - o n a t 1953nm which had p r e v i o u s l y 30 been r e p o r t e d a t 1926nm . The low value o f e = 75 (as compared 2 2 to the v a l u e of E = 2192 f o r the n-,/0„ —> n_.~ t r a n s i t i o n 3/2g 3/2u t h a t was found i s c o n s i s t e n t with what i s expected f o r the s p i n - o r b i t s p l i t t i n g t r a n s i t i o n as c a l c u l a t e d from PES d a t a . -1 2 The energy s e p a r a t i o n o f ^5500 cm between the n i / 2 g 2 ground s t a t e and the n i / 2 g f i r s t e x c i t e d s t a t e i n d i c a t e s t h a t no s i g n i f i c a n t p o p u l a t i o n o f the l a t t e r o c c u r s , as shown i n the h i g h v a l u e o f from the magnet ic measurements. The s o l u t i o n o f I 2 S b 2 F l l i n H S 0 3 F / s b F 5 / 3 S 0 3 w a s a l s o i n v e s t i g a t e d by v i s i b l e - u l t r a v i o l e t s p e c t r o s c o p y . However, -3 when s o l u t i o n s o f the c o n c e n t r a t i o n ^7 X 10 molar were u s e d , the e x t i n c t i o n c o e f f i c i e n t s a t 640nm, 482nm and 390nm o n l y had v a l u e s o f ^400, ^110 and ^180 r e s p e c t i v e l y . F u r t h e r m o r e , when these s o l u t i o n s were a l l o w e d t o s t a n d over a p e r i o d o f 2 4 h o u r s , a f u r t h e r d e c r e a s e i n the e x t i n c t i o n c o e f f i c i e n t s o f about 20% was a l s o o b s e r v e d . O b v i o u s l y a d e t e r i o r a t i o n o f the I 2 + ( s o l v ) s p e c i e s was o c c u r r i n g when p l a c e d i n t h i s more a c i d i c S O 3 c o n t a i n i n g s o l u t i o n . The most l i k e l y e x p l a n a t i o n was an o x i d a -t i o n o f the I 2 + c a t i o n s by the S O 3 i n t h i s s o l v e n t which d i d no t o c c u r i n e i t h e r o f the HSO.F o r H S 0 _ F / S b F c s o l v e n t . 3 3 b The s o l u t i o n o f B r 2 S b 3 F 1 6 i n H S 0 3 F / S b F 5 , on the o t h e r hand , has a l r e a d y been shown to be h e a v i l y d i s p r o p o r t i o n a t e d as e v i d e n c e d by NMR magnet ic r e s u l t s on B r 2 S b 3 F ^ g and by c o n -+ 97 d u c t i v i t y r e s u l t s on s o l u t i o n s c o n t a i n i n g B r 2 ( s o i v ) 10ns N o n e t h e l e s s , i t s e l e c t r o n i c spectrum i n H S 0 3 F / S b F 5 was r e c o r d e d i n the range from 2000—200 nm where the a b s o r p t i o n s t h a t were o b s e r v e d a r e shown i n F i g u r e 25. The e l e c t r o n i c s p e c t r a o f B r j S b j F ^ g was a l s o r e c o r d e d i n H S 0 3 F / S b F 5 / 3 S 0 3 as w e l l as i n HSO3F t o show what e f f e c t v a r y i n g the a c i d s t r e n g t h o f the s o l v e n t had upon s t a b i l i z i n g the B r 2 + c a t i o n i n s o l u t i o n , and a r e a l s o shown i n F i g u r e 25. O t h e r i n v e s t i g a t i o n s i n the v i s -i i ie \p\2 U J I I U I i I I 1 u r u i u i nu u u u b nm 300 4 0 0 500 6 0 0 70 1 P i c t u r e 2 5 . Wavelenath 182 i b l e - u l t r a v i o l e t r e g i o n have been done by o t h e r s c o n c e r n i n g + 97 the B r 2 c a t i o n . V i a complicated c o n d u c t i v i t y measurements and e l e c t r o n i c s p e c t r a on v a r i o u s s o l u t i o n s of s p e c i e s formed by the i n s i t u o x i d a t i o n of B r 2 w i t h S 2 0 g F 2 , i t was concluded t h a t a band a t 510nm c o u l d be a s s i g n e d to B r 2 + w i t h a rough . . 97 e x t i n c t i o n c o e f f i c i e n t of 1600+200 The e x t i n c t i o n c o e f f i c i e n t s g i v e n i n F i g u r e 25 are those c a l c u l a t e d assuming the c o n c e n t r a t i o n of B r 2 + to be the t h e o r e t i c a l amount p o s s i b l e from the simple and n o n d i s p r o p o r -t i o n a t i n g s o l u t i o n of B r 2 S b 3 F ^ g i n each o f the s o l v e n t s . They are o n l y c i t e d i n an e f f o r t t o i l l u s t r a t e the i n c r e a s i n g s t a b -i l i t y of the B r 2 + c a t i o n from i n i t i a l l y comparable amounts o f s o l u t e i n the i n c r e a s i n g l y more a c i d i c s o l v e n t s , HSO3F < HS0 3F/SbF 5 < HSO 3F/SbF5 / 3 s 0 3. O b v i o u s l y even the l a s t s o l v e n t i s not capable o f c o m p l e t e l y s t a b i l i z i n g t h i s c a t i o n ; o therwise one would expect a v a l u e ^1600 f o r the e x t i n c t i o n c o e f f i c i e n t a t 503nm i n s t e a d of the "226" v a l u e . S i n c e the c o n c e n t r a t i o n of B r 2 S b 3 F ^ g was t h e o r e t i c a l l y c a l c u l a t e d from the number of moles o f s o l u t e d i s s o l v e d i n a c e r t a i n volume, and s i n c e an approximate f i g u r e of 15.7% of B r 2 + i n the HS03F/SbF 5 s o l u t i o n was a r r i v e d a t i n the p r e c e d i n g s e c t i o n , a t e n t a t i v e e x t i n c -t i o n c o e f f i c i e n t a t 498 nm can be c a l c u l a t e d t o be ^1060. Even though t h i s v alue i s low compared t o the p r e v i o u s l y r e p o r t e d one f o r B r 2 + , t h i s c o u l d be due to experimental l i m i t a t i o n s imposed upon each method and they are not c o n s i d e r e d to be c o n t r a d i c t o r y . The v a l u e s a t l e a s t have a comparable o r d e r of 183 2 2 magnitude - 1.1 X 10 versus 1.6 X 10 - d e s p i t e the ^ 30-50% r e l a t i v e d i f f e r e n c e . In any case, i f the c o n c e n t r a t i o n s o f B r 2 + i n HSO^F and HS0 3F/SbF 5/S0 3 are both normalized to t h a t i n HS0 3F/SbF 5, then a p p r o p r i a t e l y m o d i f i e d Absorbance v a l u e s can be c a l c u l a t e d f o r the f i r s t two s o l u t i o n s o f B r 2 + as shown i n Table 32. Assuming t h a t the e x t i n c t i o n c o e f f i c i e n t f o r B r 2 + i s the same i n a l l t h r e e s o l u t i o n s , then a simple r a t i o between the Absorb-ance v a l u e f o r B r 2 + i n HS0 3F or HS0 3F/SbF 5/S0 3 and t h a t f o r B r 2 + i n HS0 3F/SbF 5 a t the same c o n c e n t r a t i o n w i l l i n d i c a t e t o what e x t e n t , e i t h e r lower or h i g h e r , t h a t B r 2 + can be s t a b i l i z e d i n a l l three s o l v e n t s . A v a l u e o f 15.7% has been p r e v i o u s l y found f o r B r 2 + i n HSO^F/SbF,. s o l u t i o n v i a magnetic s t u d i e s which can be compared to 11.0% and 21.4% f o r Br + i n IISO^F and 2 3 HS0 3F/SbF 5/S0 3 s o l u t i o n s r e s p e c t i v e l y . The l a t t e r v alue comes c l o s e t o the lower l i m i t s e t by p r e v i o u s workers f o r the mole % of B r 2 + p r e s e n t i n the same s o l u t i o n (2 3 mole %) as determined 97 from c o n d u c t i v i t y s t u d i e s Due to the s p a r i n g s o l u b i l i t y of Br 2Sb 3F-^g i n SbF^, one o f the few media c o n s i d e r e d t o be p o s s i b l y more a c i d i c than the s u p e r a c i d system, o n l y a q u a l i t a t i v e spectrum of B r 2 + i n t h i s s o l v e n t was rec o r d e d , and no e x t i n c t i o n c o e f f i c i e n t v a l u e s c o u l d be o b t a i n e d . A X „ , „ v a l u e a t 480nm was observed as w e l l max as o t h e r s at 355nm and 247nm, but th e r e i s no c o n f i r m a t i o n from any o t h e r measurements thus f a r t h a t these bands r e p r e s e n t the unique spectrum of the B r 2 + c a t i o n . In f a c t , r e s u l t s t o be d i s c u s s e d i n S e c t i o n VI w i l l i n d i c a t e t h a t t h i s i s probably not the case. TABLE 32 Experimental and Normalized Concentrations of Br in Protonic Acid Solutions and Calculated Values HS03F HS03F/SbF5 . HS03F/SbF5/S03 Experimental Normalized Experimental Normalized Experimental Xmax (nm) 480 498 503 Path length (cm) 0.1 0.1 0.1 0.1 0.1 Concentration 3.66kl0"2 3.62xl0 - 2 3.62*10~2 3.62x10"2 3.56xl0"2 (molarity) — Absorbance 0.425 0.420 . 0.600 0.819 0.805 (Optical Density units) pseudo-"t", extinction "116" "166" "226" coefficient extinction coefficient 1060 1060 1060 ratio of normalized Absorbances ° '4 2 0 = 0 700 0.600 U , / U U 1 0.819 , „ r 0.600 " % ^ n solution 11.0 15.7* 21.4 *value taken from magnetic susceptibility studies. As a l r e a d y mentioned, the t h e o r e t i c a l l y f o r b i d d e n 2 2 n3/2g — * n l / 2 g s P l n ~ o r k i t t r a n s i t i o n was a l s o observed f o r B r 2 + , as was seen f o r I 2 + • In t h i s case i t was observed i n the i n f r a r e d r e g i o n as a moderately weak a b s o r p t i o n at ^2810cm + 2 + • ("v3560nm) . L i k e f o r I 2 , the n 1 / 2 q e x c i t e d s t a t e f o r B r 2 i s s u f f i c i e n t l y w e l l separated (by ^3100 cm 1) from the 2 n3/2g 9 r o u n d s t a t e to p revent i t s thermal p o p u l a t i o n by kT(%100 cm "*") , a g a i n c o n s i s t e n t w i t h the magnetic measurements a l r e a d y d e s c r i b e d i n the s o l i d s t a t e . The r e s u l t s t h a t have been o b t a i n e d so f a r i n d i c a t e t h a t one o r s e v e r a l e q u i l i b r i a are o c c u r r i n g when B r 2 S b 3 F ^ g i s d i s -s o l v e d i n HS0 3F/SbF 5/S0 3, HS0 3F/SbF 5 or HS0 3F s o l u t i o n s , much l i k e those p r e v i o u s l y r e p o r t e d f o r the d i s p r o p o r t i o n a t i o n of BrOS0 2F i n s u p e r a c i d s o l u t i o n . These may be expressed as e i t h e r 2 B r 2 + ( s o l v ) + S 0 3 F ~ ^ B r 3 + ( s o l v ) + B r 0 S 0 2 F  o r 8 B r 2 + ( s o l v ) + 3 S 0 3 F " ^ 5 B r 3 + ( s o l v ) + B r £ S 0 2 F ) 3 Even though none o f the t h r e e s o l v e n t systems i n v e s t i g a t e d c o u l d s t a b i l i z e the B r ~ + , , x c a t i o n to g r e a t e r than ^ 20%, 2 (solv) ^ these c a t i o n s c o u l d d e f i n i t e l y be d e t e c t e d . Good evidence w i l l be shown i n the next S e c t i o n VI t h a t the band appearing a t ^ 355nm can be as c r i b e d to the B r 3 (solv) c a t i o n , but un-f o r t u n a t e l y no evidence c o u l d be gathered f o r e i t h e r BrOS0 2F or B r ( O S 0 2 F ) ^ as w r i t t e n i n the two r e a c t i o n s above. S i n c e i t appears t h a t B r 2 + i s reduced t o B r ^ + t h e r e must be some c o r -responding s p e c i e s which i s o x i d i z e d (probably B r 2 + by d i s p r o -p o r t i o n a t i o n ) , but what t h i s s p e c i e s i s remains unknown. There-f o r e i t was not p o s s i b l e to choose one of the e q u i l i b r i a over the o t h e r o r , i n f a c t , over any o t h e r e q u i l i b r i a which c o u l d p o s s i b l y be w r i t t e n . But based on the other r e s u l t s f o r B r 2 + 97 i n s o l u t i o n , the r e s u l t s o b t a i n e d here tend to f a v o r the f i r s t e q u i l i b r i u m i n v o l v i n g BrOS0 2F. The most s a t i s f a c t o r y s o l v e n t when both o f the s o l u t e s I 2Sb 2F-Q and Br 2Sb3F^g are c o n s i d e r e d t o g e t h e r has t o be HSO^F/SbFj.. Even though the f o r m a t i o n o f B r 2 + ( s o i v ) c a t i o n s are f a v o r e d i n the more a c i d i c s u p e r a c i d medium, the r e i s s t i l l a d i s p r o p o r t i o n a t i o n of t h i s s p e c i e s i n t h i s s o l v e n t . In super-a c i d , though, the * 2 + ( s o l v ) c a t i o n s have been shown t o be o x i d i z e d . Whereas I 2 + ( s o i v ) c a t i o n s are p e r f e c t l y s t a b l e i n HSO^F, the d i s p r o p o r t i o n a t i o n o f B r 2 + ( s o i v ) c a t i o n s i s g r e a t e r i n t h i s s o l v e n t than i n HSG^F/SbFs s o l u t i o n . Thus s i n c e the I 2 + ( s o l v ) c a t i ° n s have been shown to be completely s t a b l e i n HSG^F/SbFs, i t must be concluded t h a t t h i s i s the most s a t i s -f a c t o r y s o l v e n t t h a t both I 2^^ >2 F11 a n d B r 2 S b 3 F 1 6 n a v e * n common. Resonance Raman S p e c t r a I t has been shown t h a t i f some molecules are i r r a d i a t e d with monochromatic l i g h t of the same or n e a r l y s i m i l a r wave-le n g t h as one of i t s p r i n c i p l e a b s o r p t i o n bands, then an un-u s u a l l y i n t e n s e Raman spectrum may be produced. T h i s e f f e c t has 24 3 been termed the Resonanance Raman E f f e c t (RRE) . B e s i d e s the fundamentals, a s e r i e s of overtones may be observed. In some cases the RRE bands completely dominate the spectrum. Other 187 bands due to the same molecule are o f t e n obscured or are of too low i n t e n s i t y to be observed. Besides the occurrence o f har-monics, the dependence on the wavelength of the e x c i t i n g l i g h t i s a good i n d i c a t i o n f o r the RRE. The i n t e n s i t y of a RRE band i n c r e a s e s as the e x c i t i n g l i n e more c l o s e l y approaches the ab-s o r p t i o n maximum of the main a b s o r p t i o n band. U s u a l l y a s e r i e s of monochromatic l i n e s , such as from He-Ne, Ar and Kr i o n l a s e r s or a tu n a b l e dye l a s e r , are r e q u i r e d f o r an e x t e n s i v e study of t h i s e f f e c t . G e n e r a l l y i n Resonance Raman spe c t r o s c o p y a con-tinuous broadening o f the succeeding overtones i s observed i n 243 a d d i t i o n t o a g e n e r a l decrease i n t h e i r peak i n t e n s i t i e s Not o n l y t h i s , but the p o s i t i o n s o f the overtones are r a r e l y e x a c t l y 2v-^, 3v^, 4v-^, e t c . Instead they decrease i n v a l u e from the expected ones, a c c o r d i n g t o the t r a n s i t i o n s between v = 0 — > • v = n as h i g h e r v a l u e s o f n are a t t a i n e d . To i l l -u s t r a t e these comments, the Resonance Raman s p e c t r a f o r a l l the 743 d i a t o m i c halogens and i n t e r h a l o g e n s have been r e p o r t e d " . In a d d i t i o n t o the n e u t r a l d i a t o m i c halogens, the RRE has been observed f o r both I ~ + , , , and B r „ + , , « a l l o w i n g the d e t e r -2 (solv) 2 (solv) ^ min a t i o n of the element-element s t r e t c h i n g f r e q u e n c i e s i n these c a t i o n s t o be measured very a c c u r a t e l y . The s e n s i t i v i t y o f t h i s e f f e c t has allowed the d e t e c t i o n of I 2 + i n extremely d i --4 123 l u t e s o l u t i o n s on the or d e r o f 10 m o l a l As t o be expected, when the ground s t a t e c o n f i g u r a t i o n of ^^2/2q ^ o r x 2 + -*-s c o n s i d e r e d , the decreased i n t e r n u c l e a r d i s t a n c e r e s u l t s i n an i n c r e a s e d element-element frequency as 18 8 compared to the n e u t r a l molecule X 2. T h i s e f f e c t i s w e l l dem-o n s t r a t e d i n Table 33. The value f o r C l 2 + , which i s l i s t e d , 1 7 fi i s taken from the emi s s i o n spectrum of C l 2 . A s i m i l a r t r e n d i s observed when the maximum a b s o r p t i o n bands (* m a x) of d i a t o m i c c a t i o n s and molecules are compared. However i t should be em-ph a s i z e d t h a t two q u i t e d i f f e r e n t e l e c t r o n i c t r a n s i t i o n s are i n v o l v e d . For X 2, the main a b s o r p t i o n band i s due to a Tig —>• n u t r a n s i t i o n , J ; N e v e r t h e l e s s reasonable p r e d i c t i o n s f o r both A m a x and v XY can be made f o r the hypo-t h e t i c a l c a t i o n s I B r + or I C 1 + which might be h e l p f u l i n t h e i r i d e n t i f i c a t i o n s . In o r d e r t o decide whether the RRE may be observed i n s o l i d s , the Raman s p e c t r a f o r both I 2 S b 2 F ^ i and B r ^ b ^ F - ^ have been r e c o r d e d . The spectrum o f the l a t t e r i s i l l u s t r a t e d i n F i g u r e 26, and a l i s t o f the observed f r e q u e n c i e s f o r both compounds i s g i v e n i n Table 34. The fundamental v I I frequency i s found a t 242cm 1 accompanied by 6 overtones i n l 2 s b 2 F n i n the Stokes r e g i o n . T h i s high number o f overtones i s to be o expected when l a s e r r a d i a t i o n a t 6328A i s used t o e x c i t e a s p e c i e s whose p r i n c i p l e a b s o r p t i o n maximum i s a t 6 38nm. The r e s u l t s t h a t have been o b t a i n e d here are completely c o n s i s t e n t with o t h e r p r e v i o u s l y p u b l i s h e d r e s u l t s on the I 2 + c a t i o n i n 123 s o l u t i o n + The fundamental v BrBr s t r e t c h i n g v i b r a t i o n f o r the B r 2 c a t i o n i n Br 2Sb-jF-^g i s found at 368cm \ i n reasonable agreemei wi t h the frequency found f o r the B r ~ + . . . c a t i o n i n superacit 2 (solv) ^ 189 TABLE 33 Some S p e c t r o s c o p i c V a l u e s f o r XY and XY S p e c i e s (X, Y = I , B r , C l )  S p e c i e s I o n i z a t i o n P o t e n t i a l I P (e.V.) Raman S t r e t c h i n g F r e q u e n c y ' v X - Y ( c m _ 1 ) P r i n c i p l e A b s o r p t i o n Maximum x m a x ( n m ) Bond L e n g t h o r X - Y ( A> R e f e r e n c e s 9.29 213 520 2.66 180,243,225,244 H+ — 238 (220)* 640 (712)* 2.56 — ,123,30,240 B r 2 10.47 318 417 2.28 180,243,225,244 B r 2 + — 360 (360)* 510 (521)* 2.17 --, 97,97,125 c i 2 11.49 554 332 1.99 180,243,225,245 c i 2 + — 646 (645)* (422)* 1.89 — ,176,180,176 IBr 9.71 265 487 2.49 180,243,225,246 I B r + — (290)* (532)* — — ,180,180, — ICI 10.08 381 464 2.30 180,243,225,244 I C 1 + . — (420)* (458)* — — ,180,180, — * i n d i c a t e s v a l u e s o b t a i n e d f r o m PES d a t a , r e f . 180. 190 Resonance Raman Spectrum (Stokes Region) of Br£ in solid Br£[Sb3Ffc] O ro O LO CVl LO 00 r-cn ro oo O LO O ro ro co (£> O ro ro o c\j Figure 26. TABLE 34 Resonance Raman Frequencies for Solid I 2 S b 2 F 1 1 and Br 2Sb 3F 1 6 l 2 S b 2 B r 2 ? b 3 F i 6 Assignment cm" L cm 1 Calc'd Observed Intensity Cal'd Observed Intensity 1694 M635 h 6th Overtone 1452 VL425 3 2208 ^2150 3 5th Overtone 1210 1193 6 1840 1798 10 4th Overtone 968 .951 10 1472 1447 15 3rd Overtone 718 726 24 1104 1090 28 2nd Overtone 484 480 439 52 10 736 730 701 663 (490 57 11 9 sh) 1st Overtone > (pyrex tube absorption) (420 sh) (420 sh) (pyrex tube absorption) 370 13 277 s h 242 242 100 368 368 3x100 {• Fundamental vBrBrJ 162 4 302 3 192 -1 97 ° media a t 360cm . The 6 328A He-Ne l a s e r l i n e was used to e x c i t e t h i s sample which has i t s p r i n c i p l e a b s o r p t i o n maximum at ^ 510nm. Undoubtedly an enhanced e f f e c t might be expected from the use of an Ar i o n l a s e r as shown i n the s o l u t i o n spec-97 trum . In any event, the two examples s t u d i e d here i l l u s t r a t e t h a t the RRE i s very e a s i l y observed i n s o l i d s as w e l l as i n s o l u t i o n . A ccurate and c o n s i s t e n t e x p e r i m e n t a l and t h e o r e t i c a l data have been compiled f o r both s a l t s and s o l u t i o n s c o n t a i n i n g the polyhalogen X 2 + c a t i o n s (X = I and B r ) . The r e s u l t s o f PES c a l c u l a t i o n s have a l s o shown t h a t v a r i o u s s t r e t c h i n g f r e q u e n c i e s and v i s i b l e a b s o r p t i o n maxima can be p r e d i c t e d f o r the i n t e r -halogen I X + c a t i o n s (X = Br and C l ) . These p r e d i c t i o n s are based, however, upon two assumptions. One i s t h a t the IX ( s o]_ v) or the I X + ( S ) c a t i o n s are comparable t o the I X + ^ g j c a t i o n s ; t h i s has a l r e a d y been shown t o h o l d f o r the X 2 + ( s o l v ) a n < ^ X 2 + ( s ) c a t i o n s when compared t o the X 2 + ( g ) c a t i o n s . T n e o t h e r assump-t i o n i s t h a t the I X + ( s o i v ) o r I x + ( s ) c a t i o n s d o n o t d i m e r i z e as has a l r e a d y been shown f o r the x 2 + ( s o l v ) a n d X 2 + ( s ) c a t i o n s . The most obvious q u e s t i o n then i s which way would be b e s t t o c h e m i c a l l y s y n t h e s i z e these IX c a t i o n s . From the PES 4. data i n T a b l e 33, i t would seem t h a t i f the IP's f o r I 2 and r 2 + can be reached c h e m i c a l l y to produce s t a b l e compounds c o n t a i n i n g these c a t i o n s , then I B r + and I C 1 + should be f e a s i b l e as w e l l . The most l o g i c a l approach would be the simple r e a c t i o n between equimolar amounts of I 2 + and B r 2 + hoping f o r a r e a c t i o n to produce the d e s i r e d I B r + c a t i o n e i t h e r i n s o l u t i o n or i n the B s o l i d s t a t e . And i f such a s p e c i e s was v i a b l e , i t was hoped t h a t d e t e c t i o n c o u l d be made e i t h e r 1 by v i s i b l e - u l t r a v i o l e t or e s p e c i a l l y by the very s e n s i t i v e Resonance Raman s p e c t r o s c o p i c methods as has proven s u c c e s s f u l f o r the n e u t r a l halogen and i n t e r h a l o g e n molecules. Attempts t o prepare the I B r + c a t i o n From the p r e v i o u s d i s c u s s i o n , the I B r + c a t i o n had em-erged as the most l i k e l y d i a t o m i c i n t e r h a l o g e n c a t i o n capable of e x i s t i n g i n the s o l i d s t a t e o r i n s o l u t i o n . A number o f attempts were made' to d e t e c t t h i s c a t i o n i n the condensed phase a) The o x i d a t i o n o f IBr i n HSO3F HSO3F 2 IBr + S 2 0 6 F 2 > 2 I B r ( g o l v ) + 2 S C ^ F " ^ - ^ T h i s method was completely analogous to the fo r m a t i o n r e -a c t i o n s of I 2 + ( s o l v ) a n d B r 2 + ( s o l v ) b y o t h e r s 3 ° ' 9 7 - When a v i s i b l e - u l t r a v i o l e t spectrum o f a s o l u t i o n prepared i n t h i s manner was recorded, an i n t e n s e band a t 6 38nm immed-i a t e l y i n d i c a t e d the presence o f I 2 + ( s o i v ) c a t i ° n s . T h i s was i n i t i a l l y thought t o suggest t h a t HSO3F may not be capable of s t a b i l i z i n g an I B r + ( s o i v ) c a t i o n i n t h i s s o l v e n t + + b) The c o n p r o p o r t i o n a t i o n o f L , , . and Br^ , , , i n super 2 (solv) 2 (solv) c a c i d , . HS0,F/SbF,./3S0, + + £ f| -\ + I 2 ( s o l v ) + B r 2 ( s o l v ) ^ 2 I B r (solv) + + The I- , . . and Br . . , c a t i o n s were f i r s t p r e -2 (solv) 2 (solv) t pared by d i s s o l v i n g the s a l t s I 2 S b 2 F 1 1 and B r 2 s b 3 F ^ 6 r e s p e c t i v e l y i n the s u p e r a c i d s o l v e n t , and the s o l u t i o n s then mixed, as shown i n the r e a c t i o n equation above, i n an equimolar f a s h i o n . The v i s i b l e - u l t r a v i o l e t spectrum t h a t was o b t a i n e d on the r e s u l t i n g blue-green s o l u t i o n again showed the presence of , \ c a t i o n s w i t h an 2 (solv) a b s o r p t i o n a t 6 38nm. In a d d i t i o n , o t h e r a b s o r p t i o n s a t 475nm, 320nm and ^270nm were found. A f t e r the s o l u t i o n was allowed to stand at room temperature f o r 24 hours, the blue-green c o l o r faded to a l i g h t golden-orange c o l o r and the e l e c t r o n i c spectrum showed o n l y a g r e a t l y enhanced band a t 470nm and a shoulder a t ^350nm b a r e l y d i s t i n g u i s h -a b l e on another very i n t e n s e band a t < 3 20nm, the maximum of which c o u l d not be rec o r d e d . What s p e c i e s , o r combina-t i o n o f s p e c i e s , was r e s p o n s i b l e f o r t h i s l a t t e r spectrum was not e s t a b l i s h e d . The disappearance o f l 2 + ( s o l v ) w a s a t t r i b u t e d to s o l v e n t o x i d a t i o n and hence i t was concluded t h a t s u p e r a c i d may be u n s u i t a b l e f o r the attempted r e a c t i o n , + + The c o n p r o p o r t i o n a t i o n o f I 2 ( s o i v ) a n d B r 2 (solv) l n HS0 3F/SbF 5 HS0 3F/SbF 5 I 2 + ( s o l v ) + B r 2 + ( s o l v ) 2 I B r (solv) HSO •^F/SbFcj had p r e v i o u s l y been found to be the most + + s u i t a b l e p r o t o n i c s o l v e n t , s i n c e both I 2 ( s o i v ) a n d B r 2 ( s o l \ c a t i o n s are capable of e x i s t e n c e i n t h i s medium, even though the l a t t e r i s q u i t e d i s p r o p o r t i o n a t e d . The s o l u t i o n s of I ~ + , , , and B r / , . , i n HSO-.F/SbF,. were o b t a i n e d by 2 (solv) 2 (solv) 3 5 19 5 d i s s o l v i n g the s a l t s I 2 S 1 d 2 F 1 1 a n d B r 2 S b 3 F 1 6 i n d e P e n d e n t l y i n t h i s s o l v e n t b e f o r e mixing equimolar amounts of them to g e t h e r as the r e a c t i o n suggests. The e l e c t r o n i c spec-trum t h a t was recorded on the r e s u l t i n g s o l u t i o n showed a peak a t 638nm t o g e t h e r w i t h o t h e r s a t 480nm and 378nm. The spectrum a l s o c o u l d not be i n t e r p r e t e d i n terms of a composite spectrum of the two r e a c t a n t s as i f they were a simple mixture. T h i s i m p l i e d t h a t some , » c a t i o n s - 2 (solv) were s t i l l p r e s e n t . The e x t i n c t i o n c o e f f i c i e n t s f o r these three bands were i n the r a t i o 1.00:0.43:0.75 r e s p e c t i v e l y , however, thus i n d i c a t i n g t h a t some o t h e r s p e c i e s must be + p r e s e n t i n a d d i t i o n to the * 2 ( s o l v ) c a t i ° n s ' perhaps i n an e q u i l i b r i u m . d) The i n t e r a c t i o n of l 2 S ^ 2 F l l a n d B r 2 s b 3 F 1 6 SbF 5 I 2 S b 2 F 1 1 + B r 2 S b 3 F 1 6 > 2 I B r S b x F 5 x + 1 + (5-2x) SbF 5 S t o i c h i o m e t r i c amounts of the s a l t s were mixed i n some SbF5 r e s u l t i n g i n an i n s t a n t a n e o u s r e a c t i o n and the f o r m a t i o n of a blue-green v i s c o u s l i q u i d . A f t e r a l l the v o l a t i l e c o l o r l e s s byproducts had been removed by pumping i n vacuo w i t h the r e a c t a n t s h e l d a t 65°C, a green-black s o l i d of the composition IBrSbFg•0.47SbF 5 was subsequently o b t a i n e d (m.p. = 63.5 - 64.0°C). Magnetic measurements u s i n g the Gouy technique over the temperature range of 80—300°K were re c o r d e d . Veff v a l u e s ranged from 1.24-1.33 B.M. f o r the same sample with d i f f e r e n t packings a t room temper-a t u r e . The i n c o n s i s t e n c y of these measurements d i f f e r e d s h a r p l y with those for. l 2 S b 2 F l l a n d B r 2 s b 3 F 1 6 • u e f f v a l u e s which were o b t a i n e d f o r the I B r + s o l i d were a l s o c o n s i d e r a b l y lower than 2.15 B.M. and 2.06 B.M. as found f o r the o t h e r two d i a t o m i c halogen c a t i o n i c s a l t s l 2 ^ b 2 F l l and Br2Sb3F^5 a t room temperature r e s p e c t i v e l y . V i s i b l e - u l t r a v i o l e t s p e c t r a o f s o l u t i o n s of the mat-e r i a l I BrSbF 6»0 . 4 7 S b F 5 i n HSO3F and H S 0 3 F / S b F 5 / S 0 3 both produced a b s o r p t i o n s f o r the l 2 + ( s o l v ) c a t i ° n a t 638nm; the s o l u t i o n i n HSO3F a l s o allowed the f o r b i d d e n 1950nra s p i n - o r b i t band f o r l 2 + ( s o l v ) ke observed, whereas the ; o t h e r s o l u t i o n caused a d e p l e t i o n of I 2 + ( s o l v ) c a t i ° n s t o occur a f t e r s t a n d i n g w i t h time, as t y p i f i e d by p r e v i o u s d i s c u s s i o n s of s i m i l a r s o l u t i o n s . A Raman spectrum o f the HSO3F s o l u t i o n f u r t h e r confirmed the presence o f the I2*(solv) 123 c a t i o n s by i t s c h a r a c t e r i s t i c Resonance Raman spectrum e) The o x i d a t i o n o f IBr by S20gF2 and subsequent s o l v o l y s i s i n S b F 5 SbF 5 2 IBr + S 2 0 6 F 2 + ( x s ) S b F 5 > 2 I B r S b n F 5 n + 1 + 2 SbF 4 ( S O 3 F ) T h i s r e a c t i o n was conducted completely a n a l o g o u s l y t o the o x i d a t i o n of I2 a n d B r 2 as d e s c r i b e d p r e v i o u s l y f o r the p r e p a r a t i o n s o f l 2 s b 2 F l l a n d B r 2 s b 3 F 1 6 - With the removal of the v o l a t i l e byproducts by pumping w i t h the r e a c t a n t s h e l d a t 65°C, a s i m i l a r green-black m a t e r i a l as b e f o r e was ob t a i n e d which melted a t 62°C. A Raman spectrum of t h i s 19 7 s o l i d p r o d u c t ( s ) , however, r e v e a l e d the c h a r a c t e r i s t i c Resonance Raman p a t t e r n p r e v i o u s l y e s t a b l i s h e d f o r I 2 + , and i t s e l e c t r o n i c spectrum i n s o l u t i o n a l s o showed the presence of I 2 + c a t i o n s w i t h an a b s o r p t i o n a t 638nm. f) The i n t e r a c t i o n o f I B r 2 S 0 3 F w i t h IOS0 2F i n SbF 5 SbF 5 I B r 2 S 0 3 F + IOS0 2F + (x s ) S b F 5 > 2 I B r S b n F s n + 1 + 2 S b F 4 ( S 0 3 F ) Again a green-black m a t e r i a l was o b t a i n e d , j u s t l i k e i n a l l the o t h e r p r e v i o u s r e a c t i o n s , which was shown t o c o n t a i n some unreacted I 2 + c a t i o n s i n excess. g) The i n t e r a c t i o n o f I 2 + and B r 2 + i n v a r y i n g r a t i o s Even though i n a l l the r e a c t i o n s d i s c u s s e d up t o t h i s p o i n t , a r e a c t i o n had taken p l a c e , i t seemed c e r t a i n now t h a t the d i r e c t i o n o f t h i s r e a c t i o n was q u i t e d i f f e r e n t from the intended one. A l l of the r e a c t i o n s had allowed the d e t e c t i o n o f some unreacted I 2 + , s o i t w a s d e c i d e d t o vary the I 2 + : B r 2 + r a t i o from 1:1 to o t h e r r a t i o s u n t i l a l l the I 2 + had been consumed. A t t e n t i o n was then s h i f t e d back t o r e a c t i o n s i h HS0 3F/SbF 5 s o l u t i o n . Again, independent s o l u t i o n s o f I 2 S b 2 F ^ a n d B r 2 S b 3 F ^ 6 i n t h i s s o l v e n t were prepared, and a 1:2 r a t i o o f I 2 + ( s o i v ) : B r 2 + ( s o i v ) were added t o g e t h e r and thoroughly mixed. When a v i s i b l e - u l t r a v i o l e t spectrum of the r e s u l t i n g g o lden-brown s o l u t i o n was recorded, no a b s o r p t i o n a t 638nm was observed but o t h e r s a t ^ 550nm (sh), 455nm (sh) and 360nm were d e t e c t e d w i t h Absorbance val u e s of ^ 0.135, ^ 0.260 and 0.980 r e s p e c t i v e l y . The observed spectrum was i n t r i g u -i n g l y s i m i l a r to the one which had been r e p o r t e d e a r l i e r f o r a s o l u t i o n c o n t a i n i n g I B r 2 * s o i v ) c a t i o n s (please see Table 20) . Immediately a s o l u t i o n of I B r 2 S 0 3 F was prepared i n HSO^F/SbF^ and i t s e l e c t r o n i c spectrum was re c o r d e d . As expected, a b s o r p t i o n s were observed at the a p p r o p r i a t e wave-len g t h s as l i s t e d i n Table 35. I t was concluded t h a t r a t h e r than a halogen r e d i s t r i b u -t i o n r e a c t i o n , a redox r e a c t i o n was being d e a l t w i t h where the B r 2 + was o b v i o u s l y o x i d i z i n g the ' I n o r < ^ e r t o e s t a b l i s h the exact s t o i c h i o m e t r y , v a r i o u s mixtures were produced of the I 2 + ( s o l v ) : B r 2 t s o l v ) c a t i ° n s i - n HS0 3F/SbF 5. Thus a 3:5 r a t i o of I 0 t , « : Br»"t , . i n t h i s s o l v e n t was added t o g e t h e r 2 ( s o l v ) 2 ( s o l v ) ^ a c c o r d i n g t o the r e a c t i o n ' • • HS0 3F/SbF 5 3 I~*t , » + 5 B r _ . . . * 2 ( s o l v ) 2 ( s o l v ) _ __ +* , T I I I 5 I B r . . . . + I s p e c i e s . 2( s o l v ) c where the I 1 1 1 s p e c i e s i s presumably I ( O S 0 2 F ) 3 or i t s r e -a c t i o n product i n t h i s s o l u t i o n . The v i s i b l e - u l t r a v i o l e t spectrum of t h i s r e s u l t i n g s o l u t i o n showed A and e ^ 3 max max va l u e s as shown i n Table 35. The e v a l u e s were computed max from c o n c e n t r a t i o n s o f IBr * , . based upon the t o t a l r e -2 ( s o l v ) ^ moval of Br~~t , . c a t i o n s . The em_,, v a l u e s thus o b t a i n e d 2 ( s o l v ) max do not f i t those from I B r ^ O ^ F and the shoulder a t ^ 590nm sugqests t h a t some I t , , s t i l l remains (besides 2 ( s o l v ) the s l i g h t l y blue c o l o r t h a t was a l s o observed f o r t h i s s o l -u t i o n ) . These r e s u l t s imply t h a t the c o r r e c t s t o i c h i o m e t r y between I * , . l i e s somewhere between 1:2 and 3:5. 2 ( s o l v ) T h e r e f o r e a 5:9 molar r a t i o o f I * , .: Br * , . 2 (solv) 2 ( s o l v ) i n HS0 3F/SbF^ was prepared a c c o r d i n g t o the r e a c t i o n TABLE 35 Visible-Ultraviolet Spectra of IBr 2S0 3F and Varying Ratios of I 2 + ( s o l v ) : B r 2 + ( s o l v ) i n HS03F/SbF5 Species (nm) emax IBr 2S0 3F * 565 (sh) 455 (sh) 360 89 VL59 600 I 2 + ( s o l v ) : B r 2 + ( s o l y ) 1 : 1 638 480 378 (A = 1.100) (A = 0.470) (A = 0.830) I 2 + ( s o l v ) : B r 2 + ( s o l v ) 1 : 2 ^550 (sh) 455 (sh) 360 99 vL91 720 I 2 + (solv) : B r 2 + ( s o l v ) 3 : 5 ^590 (sh) 455 (sh) 360 vL19 VL87 557 I 2 + ( s o l v ) : B r 2 + ( s o l v ) 5 : 9 ^560 (sh) 455 (sh) 360 * 84 ^154 602 200 HS0 3F/SbF 5 5 ^ " ( s o l v ) + 9 B r 2 ( s o l v ) > 9 I B 4 ( s o l v ) + ^ S p e c i e S When the v i s i b l e - u l t r a v i o l e t spectrum was r e c o r d e d , the r e s u l t s shown i n Table 35 were o b t a i n e d . T h i s time a n e a r l y e x a c t f i t w i t h I B r 2 S 0 3 F was a c h i e v e d . In o r d e r to help s u b s t a n t i a t e t h i s l a s t r e a c t i o n , s o l i d s t a t e r e a c t i o n s of I 2 S b 2 F ^ a n d B r2^' : >3 F16 w e r e t e s t e d i n both the 6:10 and 10:18 r a t i o s . These r e a c t i o n s can be p o s t u l a t e d as 3 I 2 S b 2 F 1 1 + 5 B r 2 S b 3 F 1 6 -> 5 I B r 2 S b 2 F 1 ; L + IF 2SbFg + 10SbF 5 and 5 I 2 S b 2 F - L 1 + 9 B r 2 S b 3 F 1 6 -> 9 I B r 2 S b 2 F 1 1 + I F 4 S b F g + 18SbF 5 A f t e r these mixtures had been thoroughly mixed and allowed to r e a c t f o r 24 hours, i n both cases a dark-brown c o l o r e d homogeneous r e l a t i v e l y v i s c o u s l i q u i d phase developed. The p e r c e n t of I B r 2 S b 2 F ^ as formulated i n the two r e a c t i o n s by weight was 58.97% and 60.52% r e s p e c t i v e l y . Thus when a c e r t a i n mass o f the r e a c t i o n products of e i t h e r r e a c t i o n was p l a c e d i n a v o l u m e t r i c f l a s k and d i l u t e d w i t h HSO^F/SbF^, a c o n c e n t r a t i o n of the r e s u l t i n g IBr * , . c a t i o n s c o u l d 2 ( s o l v ) be c a l c u l a t e d , t h e o r e t i c a l l y . And w i t h the Absorbance v a l u e s from.the e l e c t r o n i c spectrum, c o r r e s p o n d i n g e x t i n c -t i o n c o e f f i c i e n t s c o u l d be c a l c u l a t e d , which c o u l d be com-pared to the known ones f o r IBr * . .. The r e s u l t s of 2 ( s o l v ) these c a l c u l a t i o n s are g i v e n i n Table 36. Although not much d i f f e r e n c e s e p a r a t e s these r e s u l t s , i t can be seen t h a t the products from the 5:9 mixture are s l i g h t l y b e t t e r TABLE 36 Experimental R e s u l t s on Reaction Products from 3:5 and 5:9 Molar Mixtures of I 2 S b 2 F 1 1 - a n d B r 2 S b 3 F 1 6 Experiment R e s u l t s -I 2 S b 2 F n : B r 2 S b 3 F 1 5 3:5 I 2 S b 2 F l i : B r 2 S b 3 F 1 6 5:9 v i s i b l e - u l t r a -v i o l e t spectrum i n HS0 3F/SbF 5 max(nm) e max max(nm) e max ^570 (sh) ^455 (sh) 358 ^ 8 9 . 9 VL54 594 ^565 ^455 360 ^86.3 M.55 613 " e x t i n c t i o n coef-f i c i e n t " a t 640 nm 49.4 33.0 19 F NMR broad resonance at M.05 ppm w i t h r e s -pect to CFC1 3 sharp resonance at + 110.1 ppm w i t h r e s -pect to CFCI3 Raman peak at 241cm ^ due to I 2+ no peaks a t t r i b u t a b l e to e i t h e r I 2 + or B r 2 + when compared to the v a l u e s f o r I B ^SG^F i n HSG^F/SbFs. Perhaps a b e t t e r i n d i c a t i o n f o r any ^ " ( ^ o l v ) c a t i ° n s might be d e t e c t e d a t 640nm. I f the a b s o r p t i o n a t t h i s wavelength i s measured from each spectrum and an " e x t i n c t i o n c o e f f i c -i e n t " i s c a l c u l a t e d a c c o r d i n g to the assumed c o n c e n t r a t i o n s of IBr * . ,, then i t can be e a s i l y seen how a c o n t r i b u t i o n 2 (solv) 2 to the spectrum of the 3:5 mixture i s a f f e c t e d by the I , * 1 2 ( s o l v which i s p r e s e n t i n an excess. 19 In a d d i t i o n t o t h i s experiment, a F NMR spectrum was recorded f o r both r e a c t i o n m i x t ures. The r e s u l t s i n Table 36 show the e f f e c t t h a t the s l i g h t amount o f paramagnetic l 2 + c a t i o n s has upon the 3:5 product mixture by the broadening of the F on Sb resonances i n t h i s case. T h i s i s to be con-t r a s t e d t o the sharp s i g n a l i n t h i s area as found f o r the 5:9 product mixture where no paramagnetic s p e c i e s i s p r e s e n t . F i n a l l y , the Raman s p e c t r a of these two r e a c t i o n mix-t u r e s v/ere r e c o r d e d . Whereas the 5:9 product mixture showed a b s o l u t e l y no s i g n s of any peaks due to h i g h l y s e n s i t i v e Resonance Raman E f f e c t of I 2 or B r 2 / the 3:5 product mix-ture showed a medium peak a t 241cm-"'" which i s the v I I v i b -r a t i o n of the I 2 + c a t i o n . In c o n c l u s i o n i t may be s a i d t h a t , although the primary o b j e c t i v e was to e s t a b l i s h the I B r + c a t i o n i n a s t a b l e c hemical environment, no evidence was found to support t h i s i n any of the systems s t u d i e d here. Instead the i n t e r -a c t i o n of I 2 S b 9 F ^ and B r 2 S b 3 F ^ g was found to y i e l d an I B ^ * — c o n t a i n i n g s p e c i e s and most l i k e l y a p e n t a v a l e n t i o d i n e s p e c i e s , t e n t a t i v e l y p o s t u l a t e d as IF^SbFg — a compound 142-144 which has p r e v i o u s l y been e s t a b l i s h e d 204 VI. COMPOUNDS CONTAINING TRIATOMIC BROMONIUM(III) CATIONS A. INTRODUCTION As mentioned i n the General I n t r o d u c t i o n the o n l y s t a b l e B r ^ + — c o n t a i n i n g s a l t , Br^AsFg, had been s y n t h e s i z e d by the 127 + o x i d a t i o n of Br„ with O-AsF., . In a d d i t i o n , the Br,, , , . 2 2 6 3 ( s o l v ) Q 7 c a t i o n can be s t u d i e d i n s u p e r a c i d s o l u t i o n s " where i t was prepared by the i n s i t u o x i d a t i o n of B r 2 w i t h S 2 0 £ F 2 . The B r 3 t s o l v ) c a t i ° n i - s a l s o e v i d e n t from a v i s i b l e - u l t r a v i o l e t 247 spectrum i n l i q u i d SbF^ when B r 2 i s o x i d i z e d by the s o l v e n t Besides these examples an e q u i l i b r i u m of the type B r 2 + BrOS0 2F ^ . > B r 3 S 0 3 F has been p o s t u l a t e d i n order to e x p l a i n some f e a t u r e s of the 77 B r 2/BrOS0 2F mixture Any c o r r e s p o n d i n g bromonium(III) i n t e r h a l o g e n c a t i o n s l i k e B r C l 2 + and B r 2 C l + , however, have remained e l u s i v e up to now d e s p i t e some r e p o r t e d attempts at t h e i r syntheses i n S e c t i o n 213 IV and elsewhere . S i n c e a l l p r e v i o u s i n d i c a t i o n s have been t h a t no s t a b l e S 0 3F — c o n t a i n i n g compound of a t r i a t o m i c brom-onium(III) c a t i o n was expected a t room temperature, a low tem-p e r a t u r e a d d i t i o n of the halogens B r 2 and C l 2 to BrOS0 2F was attempted. The low temperature I n f r a r e d technique c o u l d then be used as the method of d e t e c t i o n . B. LOW TEMPERATURE ADDITIONS OF D r 2 AND C l 2 TO BrOSOoF To study f i r s t the a d d i t i o n of B r 2 to BrOSOoF, a s m a l l 205 amount of B r 2 (0.1949g, 1.220 mmoles) was added t o a one-part 35 ml r e a c t i o n v i a l c o n t a i n i n g 0.9826g (5.490 mmoles) o f BrOS0 2F. The sample v i a l was then a t t a c h e d to the low temper-ature I n f r a r e d c e l l c o n t a i n i n g a c e n t r a l C s l p l a t e upon which m a t e r i a l was condensed at 80°K a f t e r e v a p o r a t i o n from the v i a l which was h e l d at -20°C. A s e r i e s of c o n s e c u t i v e l y more con-c e n t r a t e d samples was p l a c e d on the c o l d C s l window and t h e i r s p e c t r a were re c o r d e d . The most i n t e n s e spectrum i s shown i n F i g u r e 27, and the r e s u l t s t h a t were o b t a i n e d are compiled i n Table 37. In a l l of the s p e c t r a , bands a t t r i b u t a b l e to BrOSC^F co u l d be d i s t i n g u i s h e d , as p r e v i o u s l y observed, and are d e s i g -nated on the spectrum by if,. But c l e a r l y t h e r e remained another s e t of bands which c o u l d not be a s c r i b e d to a monodentate co-v a l e n t SO-jF group. In f a c t , a very s t r i k i n g s i m i l a r i t y was noted of the e x t r a bands found here to the p e r t u r b e d i o n i c SO.-.F bands observed p r e v i o u s l y f o r the t r i a t o m i c iodonium (III) halogen and i n t e r h a l o g e n f l u o r o s u l f a t e s which were d i s c u s s e d i n S e c t i o n IV. By analogy to these o t h e r compounds, the SO3F v i b r a t i o n s not due to BrOS0 2F have been a s s i g n e d to Br^SO-^F and are i n c l u d e d i n Table 37, thus l e n d i n g support to the p r e -v i o u s l y mentioned e q u i l i b r i u m . A few c o i n c i d e n c e s of SO^F v i b r a t i o n s were noted f o r both B r 3 S 0 3 F and BrOS0 2F, ivhich have been l a b e l l e d b y @ i n F i g u r e 27. From the spectrum of a r e l a -t i v e l y c o n c e n t r a t e d sample of BrOS0 2F p l u s B r 2 , which has been i l l u s t r a t e d , o n l y a broad a b s o r p t i o n was observed at about 280cm — t h e r e g i o n where Br-Br s t r e t c h i n g v i b r a t i o n s are TABLE 37 Low Temperature Infrared V i b r a t i o n s of a Sample containing Br0S0 2F.+ excess B r 2 Bands a t t r i b u t a b l e to BrOS0 2F Bands a t t r i b u t a b l e to B r 3 S 0 3 F Assignment f o r B r 3 S 0 3 F cm -1 I n t e n s i t y cm -1 I n t e n s i t y Mode Desc r i p t i o n 1415 1210 940 900 810 645 570 L540J 445 305 vs s sh s sh m sh sh 1320 1180 1040 810 610 570 '550 540 425 405 295 275 } m vs mw m s sh m mw w sh mw A l v asym s 0 3 v sym s o 3 SF 6 S0 3 asym 5 S0 3 sym ° P rock k" v BrBr sym v BrBr asym Abbreviations: vs = very strong, s = strong, m = medium, mw = medium weak, w = weak, sh = shoulder 208 expected. But from the spectrum of another l e s s c o n c e n t r a t e d sample, r e s o l u t i o n o f t h i s area was o b t a i n e d where a shoulder at 295cm ^ was d e t e c t e d on another peak a t 275cm ^. These two bands have been a s s i g n e d as the symmetric and asymmetric BrBr s t r e t c h i n g v i b r a t i o n s r e s p e c t i v e l y as expected f o r a bent B r ^ + c a t i o n . The 6 Br^ bending v i b r a t i o n i s expected a t <200cm ^ and c o u l d not be observed. In another study on Br * , . 3 ( s o l v ) i n s u p e r a c i d , o n l y one band a t 290cm ^ had been observed i n 9 7 the Raman spectrum . Both the v a s y m BrBr and v s y m BrBr s t r e t -c h i n g v i b r a t i o n s had been a s s i g n e d to t h i s peak where a c c i d e n t a l degeneracy of the two s t r e t c h i n g modes had been p o s t u l a t e d . Of a l l the t r i a t o m i c iodonium(III) f l u o r o s u l f a t e s w i t h which Br^jSO-jF may be compared, the p o s i t i o n s o f the v a S y m S 0 3 v i b r a t i o n s f o r Br^SO-^F tend to be most n e a r l y l i k e those f o r I C 1 2 S 0 3 F (please see T a b l e 22). S i n c e a h i g h l y p e r t u r b e d SO3F group i s evidenced i n both cases and a s t r o n g l y i n t e r a c t i n g I C l 2 + c a t i o n w i t h the anion has been proposed f o r IC^SO-^F, then some s i m i l a r s o r t of i n t e r a c t i o n must be o c c u r r i n g between the B r ^ + c a t i o n and the SO3F anion i n Br-^SO^F as w e l l . F u r t h e r evidence f o r t h i s compound c o u l d be gained from low temperature Raman s p e c t r a u s i n g r o t a t i n g c e l l s , but these techniques were not a v a i l a b l e f o r t h i s study. In any case, the f a c t t h a t an I n f r a r e d spectrum of the r e l a t i v e l y i o n i c Br 3S03F was observed may be due to i t s being p h y s i c a l l y t r a n s p o r t e d from the v i a l to the c o l d C s l window v i a the v a p o r i z a t i o n of the h i g h l y v o l a t i l e BrOS0 2F. Thus the BrOS02F probably a c t e d as a c a r r i e r gas as w e l l as a r e a c t a n t . Without t h i s e f f e c t , no spectrum of Br-^SO-jF would pr o b a b l y have been observed s i n c e i o n i c compounds are not g e n e r a l l y regarded as being very v o l a t i l e nor r e a d i l y sublimed, e s p e c i a l l y a t temperatures as low as -20°C. M i x t u r e s of C l 2 and Br0S0->F were s t u d i e d i n a s i m i l a r manner as d e s c r i b e d above. In each case o n l y the spectrum of BrOS0 2F was observed. Again, a low temperature Raman study might be the most s u i t a b l e means to study t h i s system. SOLVOLYSIS REACTIONS IN SbF^ I t had to be concluded from the p r e c e d i n g o b s e r v a t i o n s t h a t the SO3F group was not a s u i t a b l e c o u n t e r i o n f o r the study of c a t i o n s l i k e B r C l 2 + or B r 2 C l + . As demonstrated e a r l i e r i n the h i g h l y a c i d i c s o l v e n t SbFtj, the s o l v o l y s e s of not o n l y 7 s t a b l e f l u o r o s u l f a t e s , l i k e CIO2SO3F , but a l s o h y p o t h e t i c a l f l u o r o s u l f a t e s , l i k e "Br-^SO^F", r e s u l t e d i n the s u b s t i t u t i o n of S03F~ anions by the S b 2 F ^ ] ~ or Sb3F^g~ ani o n s . The r e a c t i o n of BrOSO„F w i t h C l . i n SbF_ The s o l v o l y s i s o f a mixture of BrOS0 2F and C l 2 i n an excess of SbF^ was t h e r e f o r e attempted a c c o r d i n g to S bF 5 BrOS0 2F + C l 2 + ( x + l ) S b F 5 — • B r C l 2 S b x F 5 x + i + SbF 4 (SO3F) . For t h i s r e a c t i o n 0.3727g (2.083 mmoles) of BrOS0 2F and 0.1813g (2.569 mmoles) of C l 2 were d i s t i l l e d i n vacuo i n t o a 50 ml one-p a r t r e a c t i o n b u l b . A f t e r b e i n g allowed to warm up to room temperature, the r e a c t a n t s were mixed but there was no apparent r e a c t i o n . Next, 6.2948g (29.043 mmoles) of SbF 5 were d i s t i l l e d i n vacuo i n t o the r e a c t o r r e s u l t i n g i n the mole r a t i o 1.00:1.23:13.95 f o r BrOS0 2F : C l 2 : S b F 5 . Upon warming to room temperature a g a i n , a v i s i b l e r e a c t i o n o c c u r r e d and a c h e r r y -red c o l o r e d i n t e r m e d i a t e was produced (probably c o n t a i n i n g B r 2 + ) which e v e n t u a l l y changed t o a deep-red c o l o r e d v i s c o u s l i q u i d phase t h a t s e p a r a t e d from a c l e a r c o l o r l e s s somewhat v i s c o u s phase of lower s p e c i f i c g r a v i t y upon s t a n d i n g a t room tempera-t u r e . A f a i n t y e l l o w gas ( C l 2 ) remained above the two l i q u i d phases which c o u l d be removed i n a s t a t i c vacuum by condensa-t i o n a t -196°C. The s e p a r a t i o n of the two l i q u i d phases was accomplished by p i p e t t i n g i n an i n e r t atmosphere. The deep-red l i q u i d was found to be completely f r e e of any SO-^F — c o n t a i n i n g s p e c i e s and to c o n t a i n 7.03% Br and 6.24% C l by a n a l y s i s . These v a l u e s i n d i c a t e d a gram-atom r a t i o of Br : C l of 1.00 : 2.00. I f the f o r m a t i o n o f the B r C l 2 + c a t i o n i s assumed wi t h the anion being a p e r f l u o r o polyantimonate, then the c o m p o s i t i o n B r C l 2 S b F g • 3 . 4 6 S b F r ) may be c a l c u l a t e d . A l l attempts to remove any excess SbF^ i n vacuo t o a r r i v e a t a s o l i d w i t h a more common anion, such as S b ^ F ^ g " or St ) 2F^^~ , r e s u l t e d i n some decomposition of the halogen moiety. There-f o r e , the l i q u i d phase system was i n v e s t i g a t e d . Because BrOS0 2F was found to i n t e r a c t w i t h SbF,-, pr e -sumably i n a d i s p r o p o r t i o n a t i o n r e a c t i o n , to produce a b r i g h t red s o l i d (Br^Sb^F,.), i t had to be assumed t h a t f r e e Br0S0 oF 2 3 16 ^ was not p r e s e n t i n the mixture w i t h C l 0 . In t h i s case C1-, 21.1 p r o b a b l y o x i d i z e d t h e BrOSG^F t o f o r m t h e B r C ^ ' c a t i o n t h u s p r e v e n t i n g t h e d i s p r o p o r t i o n a t i o n o f BrOSG^F i n S b F ^ . The v i s i b l e - u l t r a v i o l e t s p e c t r u m o f B r C l 2 S b F 6 • 3 . 4 6 S b F 5 was r e -c o r d e d i n a q u a l i t a t i v e manner a n d t h e a b s o r p t i o n s t h a t w e r e f o u n d a r e i n c l u d e d i n T a b l e 38. F o r p u r p o s e s o f c o m p a r i s o n , t h e v i s i b l e - u l t r a v i o l e t s p e c t r u m o f C l 2 was r e c o r d e d i n SbFr, and i s a l s o l i s t e d i n t h e T a b l e . ( I n t e r e s t i n g l y , t h e * m a x f o r C l 2 i n SbFcj i s t h e same a s i t i s i n t h e n o n c o o r d i n a t i n g s o l v e n t 225 2 2 5 a C C I 4 o r i n t h e g a s p h a s e ) . The v i s i b l e - u l t r a v i o l e t s p e c -t r u m o f a n S b F ^ s o l u t i o n c o n t a i n i n g B r 2 + c a t i o n s was l i k e w i s e r e c o r d e d , t h e a b s o r p t i o n s f o r w h i c h a r e g i v e n i n T a b l e 38. A Raman s p e c t r u m o f t h e d e e p - r e d c o l o r e d B r C l 2 S b F 6 • 3 . 4 6 S b F 5 g a v e t h e v i b r a t i o n a l f r e q u e n c i e s l i s t e d i n T a b l e 39. I n t h e B r - C l s t r e t c h i n g r a n g e , two a b s o r p t i o n s w e r e o b s e r v e d a t 4 30cm *" and 421cm"'*' w h i c h w e r e a s s i g n e d a s t h e v a S y m B r C l a n d v s v m B r C l s t r e t c h i n g v i b r a t i o n s r e s p e c t i v e l y f o r t h e p r e s u m a b l y b e n t B r C l 2 + c a t i o n . The b a n d p o s i t i o n s f o r t h e two s t r e t c h i n g modes a r e i n t h e same r a n g e a s . t h e r e p o r t e d Raman b a n d f o r B r C l ( i n e x c e s s C l 2 ) a t 434cm--*- 2 2 8 . A b a n d a t 167cm *" i s t e n t a t i v e l y a s s i g n e d a s t h e 6 B r C l 2 b e n d i n g v i b r a t i o n . The r e m a i n i n g b a n d s n e c e s -s a r i l y b e l o n g t o t h e S b ^ t - ^ . ^ a n i o n a n d / o r any S b F ^ s o l v e n t m o l e c u l e s a s s o c i a t e d w i t h t h e s a m p l e . S i g n i f i c a n t l y a b s e n t , t h o u g h , w e r e any R e s o n a n c e Raman b a n d s o f t h e B r 2 + c a t i o n . A l l t h e e v i d e n c e r e p o r t e d h e r e i s c o n s i s t e n t w i t h t h e f o r m u l a t i o n o f a B r C l 2 + c a t i o n . I t i s p e r h a p s n o t s u r p r i s i n g t h a t t h i s s p e c i e s shows s u c h l i m i t e d t h e r m a l s t a b i l i t y c o n s i d e r -TABLE 38 E l e c t r o n i c Spectra of Some Bromonium (III) Cations i n SbF, Compound/Ion i n SbF,. Xmax (nm) Absorbance (Op t i c a l Density Units) C l , Br, Br + B r 2 C l BrCl, 330 0.70 480 0.36 355 0.49 247 2.92 380 0.56 V315 (sh) ^0.85 292 0.87 247 1.12 ^370 (sh) ^0.75 ^305 (sh) M..20 ^285 (sh) VL.30 252 1.68 ^305 ^0.60 248 1.02 TABLE 39 Raman Frequencies f or BrCl„ SbF,-• 3.46SbF BrCl„SbF,«3.46SbF c Frequencies Assignment cm •1 Inte n s i t y 709 m 1 678 sh \ ?*• V Sb-F 661 s 598 w 430 vs V asym Br-Cl 421 sh V sym Br-Cl 293 vw 235 sh 167 sh 6 B r C l 2 0 214 i n g e s p e c i a l l y the h i g h l y u n s t a b l e nature of B r C l . 2. The r e a c t i o n o f B r 2 w i t h S 2 0 6 F 2 i n SbFg In a 50 ml one-part r e a c t i o n b u l b , 0.8674g (5.428 mmoles) of B r 2 was allowed to r e a c t a t ^25°C wi t h 0.3613g (1.824 mmoles) of S 20gF2. The mixture was subsequently s o l v o l y z e d i n 7.3728g (34.016 mmoles) o f SbF^ which r e s u l t e d i n the f o r m a t i o n o f two v i s c o u s l i q u i d phases. The one of h i g h e r d e n s i t y v/as dark brown i n c o l o r whereas the supernatant phase was c o l o r l e s s . Attempts t o separate the mixture by d i s t i l l a t i o n i n a s t a t i c vacuum y i e l d e d SbF 4 ( S O 3 F ) t o g e t h e r w i t h SbF 5 i n the d i s t i l l a t e , but some s l i g h t amount of brownish m a t e r i a l was a l s o t r a n s f e r r e d s u g g e s t i n g the decomposition of the B r 3 + c a t i o n . The f o r m a t i o n r e a c t i o n may be g i v e n as SbFr 3 Br2_•+ S 2 0 6 F 2 • + • (2 x+2)SbF 5 ^ 2 B r 3 S b x F 5 x + 1 + 2 S bF 4 (SO3F) SbF 5 or BrOS0 2 F + B r 2 + ( x + l ) S b F 5 > B r 3 S b x F 5 x + l + SbF 4 ( S O 3 F ) i n analogy t o the p r e v i o u s r e a c t i o n w i t h C l 2 . I d e n t i f i c a t i o n o f the B r 3 + c a t i o n was based on the v i s -i b l e - u l t r a v i o l e t spectrum i n SbF 5 as g i v e n i n T a b l e 38, as com-pared t o a p a r t i a l spectrum i n SbFcj f o r the c a t i o n where a band 247 a t 375nm was p r e v i o u s l y r e p o r t e d . P o r t i o n s of the dark-brown v i s c o u s l i q u i d c o n t a i n i n g the B r 3 + c a t i o n s were d i s s o l v e d i n the p r o t o n i c a c i d s HSO3F, HS0 3F/SbF 5 and HS0 3F/SbF 5/3S0 3 i n order to observe the e l e c t r o n i c s p e c t r a i n these s o l u t i o n s . A s i m i l a r spectrum was observed i n a l l three s o l v e n t s t h a t was q u i t e d i f f e r e n t from the one i n S b F 5 . The new a b s o r p t i o n s t y p i c a l l y o c c u r r e d a t ^545nm (A = 0.135),^350nm (A = 2.165) and 312nm (A = 2.430), and c o u l d not e a s i l y be e x p l a i n e d i n terms of e i t h e r B r 2 + , B r 3 + or B r 2 a l o n e . In f a c t , what s p e c i e s (or combination of s p e c i e s ) i s r e s p o n s i b l e f o r the observed spectrum i s s t i l l i n doubt, but o b v i o u s l y the o r i g i n a l B r 3 + c a t i o n appears t o have undergone some r e a c t i o n i n these p r o -t o n i c s o l v e n t s . . D e s p i t e s e v e r a l attempts, no Raman spectrum o f the dark-brown B r 3 + _ c o n t a i n i n g sample c o u l d be o b t a i n e d , p r o b a b l y due to i t s e x c e e d i n g l y dark c o l o r . The Resonance Raman band-at 365cm-"'" due to B r 2 + was absent. In o r d e r to study the observed thermal decomposition of B r 3 + one sample was kept i n a dynamic vacuum f o r ^ 48 hours un-t i l most of the c o l o r e d m a t e r i a l had d i s t i l l e d o f f . The Raman spectrum of the r e s i d u e subsequently showed a Resonance Raman band a t 367cm-*- and s e v e r a l o v e r t o n e s . A f e a s i b l e decomposi-t i o n r e a c t i o n may be d e s c r i b e d as + vacuum . o pumping z z The r e a c t i o n of Br„Sb_F 1 ( r with Br_ . _ 2. 3 — l b Z In o r d e r to a v o i d any l a r g e excess of SbF5 and the f o r -mation of SbF^(S0 3F) r e q u i r i n g s e p a r a t i o n by d i s t i l l a t i o n , the a d d i t i o n of B r 2 t o Br2sb3F^ g was attempted to produce B r 3 S b 3 F ^ g or some s i m i l a r compound. When 1.0 339g (1.2 4.7 mmoles) of Br 2Sb 3F-^g and 0.1015g (0.6351 mmole) of h i g h l y p u r i f i e d and very dry B r 2 were p l a c e d i n a 50 ml one-part r e a c t i o n bulb and 216 warmed to room temperature, a s i n g l e dark-brown l i q u i d phase was o b t a i n e d w i t h no B r 2 d e t e c t a b l e i n the gas phase a c c o r d i n g to the r e a c t i o n 2 B r 2 S b 3 F 1 6 + B r 2 > 2 B r 3 S b x F 5 x + 1 + (6-2x)SbF 5 . The a b s o r p t i o n s from the v i s i b l e - u l t r a v i o l e t spectrum are l i s t e d i n T able 38 i n d i c a t i n g the f o r m a t i o n of B r 3 + c a t i o n s i n SbF 5 s o l u t i o n . I t must be concluded t h a t SbF 5 i s produced i n the r e a c t i o n p r e v e n t i n g the f o r m a t i o n of a s o l i d compound. I t may be suggested t h a t the r e a c t i o n of B r 2 w i t h 0 2SbFg i n analogy i> e-rre v-to the f o r m a t i o n of B r 3 A s F g may prove to be a/(synthetic route 127,128 to s o l i d Br 3SbFg than the s o l v o l y s i s r e a c t i o n s d i s c u s -sed here. 4. The r e a c t i o n of Br_Sb_F 1 / r w i t h Cl„ , 2. J—11> £. T h i s r e a c t i o n was c a r r i e d out a n a l o g o u s l y t o the one j u s t d e s c r i b e d by s u b s t i t u t i n g B r 2 w i t h C l 2 a c c o r d i n g to 2 B r 2 S b 3 F 1 6 + C l 2 > 2 B r 2 C l S b x F 5 x + 1 + (6-2x)SbF 5. In a p r e l i m i n a r y r e a c t i o n where an exact 2:1 r a t i o of Br 2Sb 3F-^g and C l 2 were r e a c t e d t o g e t h e r , a very s l i g h t i n d i c a t i o n of some unreacted B r 2 + was d e t e c t e d i n the Raman spectrum of the p r o d u c t s . I t has a l r e a d y been shown i n S e c t i o n V I . C . l . and i n r e f e r e n c e 117 t h a t C l 2 appears t o remain unreacted i n S b F 5 . I t was d e c i d e d t h e r e f o r e to use a s l i g h t excess of f o r the p r e p a r a t i o n of the B r 2 C l + c a t i o n . 2.9.881g (3.6043 mmoles) of B r 2 S b 3 F 1 6 i n a 50 ml one-part r e a c t i o n b ulb was r e a c t e d w i t h a ^3 f o l d excess (0.3775g, 5.324 mmoles) of C l 2 a t room temperature. When the excess C l 2 was allowed to escape i n an i n e r t atmosphere, a dark red-brown m a t e r i a l w i t h a m e l t i n g p o i n t a t about room temperature was o b t a i n e d . A sample of the product, which when formulated as B r 2 C l S b 3 F 1 6 was found to c o n t a i n 18.59% Br and 3.88% C l , which may be compared to the t h e o r e t i c a l v a l u e s of 18.4 8% Br and 4.10% C l . The v i s i b l e - u l t r a v i o l e t spectrum o f the B r 2 C l + c a t i o n i n SbF5 was q u a l i t a t i v e l y r ecorded and gave the a b s o r p t i o n s l i s t e d i n Table 38. The bands are d i s t i n c t l y d i f f e r e n t from the ones produced by B r 2 + and C l 2 i n SbF^. Even though the val u e s f o r X m a x are s i m i l a r t o those f o r B r 3 + , which may i n -d i c a t e a s i m i l a r e l e c t r o n i c s t r u c t u r e , examination o f the band i n t e n s i t i e s (as g i v e n by the Absorbance v a l u e s i n O p t i c a l D e n s i t y u n i t s ) does suggest t h a t a new s p e c i e s i s r e s p o n s i b l e f o r the spectrum. Attempts t o o b t a i n s p e c t r a o f B r 2 C l + i n the p r o t o n i c a c i d s o l v e n t s HSO^F and HSO^F/SbFr, produced bands a t %545nm, ^350nm and 313nm, which leads one to conclude t h a t d i s -s o c i a t i o n o f the c a t i o n i s probably o c c u r r i n g , much l i k e what must be o c c u r r i n g f o r B r 3 + i n s i m i l a r s o l v e n t s . To check whether any paramagnetic B r 2 + s p e c i e s was pre-sent i n the dark red-brown sample, i t s magnetic b e h a v i o r u s i n g the Gouy technique was t e s t e d at room temperature where the sample was concluded t o be diamagnetic, as expected. Owing t o the sample's r a t h e r dark c o l o r , the Raman spec-trum of B^Sb-jF^g was a l s o recorded and gave o n l y the peaks a t '^700, 655, 424 and 298 cm - 1. Of these, the peak a t 424cm" 1 has been a s s i g n e d as the v B r - C l s t r e t c h i n g v i b r a t i o n i n good agreement w i t h p r e v i o u s l y d i s c u s s e d v a l u e s f o r B r C l 2 + and B r C l . T h e v Br-Br mode f o r the B r 2 C l + c a t i o n has been assig n e d as the peak a t 298cm 1 , i t s e l f i n agreement w i t h the 290cm 1 band + 97 -1 as s i g n e d f o r B r 3 i n s u p e r a c i d s o l u t i o n . No band a t ^365cm was observed i n t h i s spectrum which c o u l d be .assigned t o the Resonance Raman a b s o r p t i o n f o r B r 2 + . I t i s i n t e r e s t i n g to note t h a t f o r B r 2 C l + the v B r C l v i b r a t i o n i s found a t a s l i g h t l y lower frequency than f o r v B r C l (ave) f o r B r C l 2 + . On the o t h e r hand, the v BrBr v i b r a t i o n f o r B ^ C l * i s r a i s e d i n r e s p e c t t o the v a l u e f o r v BrBr (ave) f o r B r . j + . S i m i l a r o b s e r v a t i o n s had p r e v i o u s l y been made f o r co r r e s p o n d i n g bands i n 13 , I 2 X and I X 2 + c a t i o n s . The o t h e r bands a t ^ 700 and 655 have t o be as s i g n e d as Sb-F s t r e t c h i n g modes, but s i n c e no o t h e r peaks were observed i n the spectrum very l i t t l e can be s a i d about the nature o f the anion. When the Br2ClSb2F^g products were s u b j e c t e d t o a s t a t i c vacuum d i s t i l l a t i o n a t RT f o r *v<4 hours, a y e l l o w s o l i d (presum-ably CI2) and a c l e a r c o l o r l e s s m a t e r i a l (presumably SbF^) were t r a n s f e r r e d i n t o a t r a p h e l d a t -196°C. A Raman spectrum o f the d a r k i s h r e d s o l i d which remained a f t e r the d i s t i l l a t i o n showed, b e s i d e s a peak a t 42 3cm 1 due t o the B^Cl"*" c a t i o n , peaks a t 365, ^ 725 and ^1080cm 1 o b v i o u s l y i n d i c a t i v e o f the fundamental and f i r s t two overtones f o r the B r 2 + s p e c i e s . T h i s 219 suggests t h a t the B r 2 C l c a t i o n , l i k e B r 3 + and B r C l 2 + , i s therm-a l l y somewhat u n s t a b l e under these c o n d i t i o n s . 5. The s o l v o l y s i s o f B r t O S C ^ F ^ i n SbFc; T h i s r e a c t i o n was undertaken f o r a couple o f reasons. As p o i n t e d out p r e v i o u s l y , the SO^F group may be regarded as a pseudohalogen moiety and the expected and r e p o r t e d c a t i o n + 13 97 206 B r ( O S 0 2 F ) 2 ' ' would r e p r e s e n t a bromonium c a t i o n s i m i l a r to the B r C l 2 + c a t i o n . Furthermore, a l l s o l v o l y s i s r e a c t i o n s o f f l u o r o s u l f a t e s i n SbF 5 had f o l l o w e d the g e n e r a l scheme SbF 5 Y O S 0 2 F Y + S b x F 5 x + 1 where Y was a p o t e n t i a l c a t i o n l i k e C l 0 2 + , B r 2 + or B r C l 2 + . B r ( 0 S 0 2 F ) ^ c o n t a i n s not one but three 0S0 2F groups and r e p r e -sents the f i r s t example of a p o l y f l u o r o s u l f a t e compound s t u d i e d i n S b F 5 . In an attempt to i d e n t i f y the B r ( S 0 3 F ) 2 + c a t i o n as r e -97 206 2 48 p o r t e d by o t h e r s ' ' i n S bF 5, h o p e f u l l y as a S b x F 5 x + 1 ~ s a l t , the f o l l o w i n g r e a c t i o n was i n v e s t i g a t e d SbF 5 B r ( O S 0 2 F ) 3 + (xs) SbF 5 > B r ( S O 3 F ) 2 s b x F 5 x + l + S b F 4 ( S 0 3 F ) . The r e a c t i o n c o u l d a l s o be formulated as SbF 5 BrOS0 2F + S 2 0 6 F 2 4- ( x s ) S b F 5 * Br ( 0 S 0 2 F ) 2 + s b x F 5 x + i ~ + SbF 4 ( S 0 3 F ) i n analogy w i t h p r e v i o u s r e a c t i o n s i n t h i s s e c t i o n . When 2.5166g (6.6738 mmoles) of B r ( 0 S 0 2 F ) 3 was r e a c t e d w i t h 8.3928g (38.723 mmoles) of SbF,. i n a 50 ml one-part r e a c t i o n b u l b , a l i g h t - g o l d e n -220 y e l l o w v i s c o u s s o l u t i o n was produced. Removal of the v o l a t i l e c l e a r c o l o r l e s s byproducts, which were shown t o c o n t a i n SbF^(SO^F) by an I n f r a r e d spectrum, g r a d u a l l y produced a red c o l o r i n the products which c o u l d be brought back t o the l i g h t -y e l l o w c o l o r by minute a d d i t i o n s o f S 2 0 g F 2 . T h i s c o l o r change o c c u r r e d t h r e e times u n t i l f i n a l l y a l i g h t - y e l l o w - w h i t e s o l i d remained i n the r e a c t o r . The Raman spectrum o f t h i s product 153 i d e n t i f i e d i t as BrF 2SbFg which was roughly confirmed by mass balance o f the p r o d u c t s . O b v i o u s l y the simple removal of one S0.J.F group from the B r ( O S 0 2 F ) 3 as expected d i d not oc c u r , but e f f e c t i v e l y a t o t a l f l u o r i n a t i o n o f the B r ( O S 0 2 F ) 3 was accomplished i n s t e a d . In t h i s case, the r e a c t i o n may perhaps b e t t e r be c o n s i d e r e d as SbF 5 B r ( O S 0 2 F ) 3 + 4 SbF 5 3 > B r F 2 S b F 6 + 3 Sb F 4 (SO3F) . In o r d e r to o b t a i n any evidence f o r p o s s i b l e intermed-i a t e s i n t h i s r e a c t i o n , another sample o f B r ( O S 0 2 F ) 3 was d i s -s o l v e d i n S b F 5 and the same l i g h t - y e l l o w s o l u t i o n r e s u l t e d . When vacuum pumping was a p p l i e d t o the sample to remove v o l a t i l e byproducts u n t i l the t h e o r e t i c a l c omposition o f Br(SO^ F)2sb2F^  was a t t a i n e d , no change i n c o l o r had y e t developed. A sample of the l i g h t - y e l l o w v i s c o u s l i q u i d product was a n a l y z e d a t t h i s stage, which y i e l d e d 14.75% Br and 6.12% S. These v a l u e s r e -p r e s e n t a gram-atom r a t i o o f Br : S of 1.00 : 1.03. The Raman spectrum o f the s o l u t i o n was re c o r d e d and i s i l l u s t r a t e d i n F i g u r e 28. A c c o r d i n g t o the a n a l y s i s the spectrum cannot be Raman Spectrum of CBrF(S0 3F)J + in Sbf§ g 00 - £ ro CD d CD o IrO 18 V CO I CD ^" CD rO LO 0 u CD 0 O LO 1 o OJ o co Is-"> o fl / ~ T of LO <d- 1/ Is- o oo oo | 1600 1400 1200 1000 800 600 400 Wavelength [cm-1] Figure 28. 222 + due t o a B r { S 0 3 F ) 2 s p e c i e s . But the p o s i t i o n s of peaks a t 1509, 1252 and 1081cm \ which correspond to the t h r e e s u l f u r -oxygen s t r e t c h i n g v i b r a t i o n s , c l e a r l y show t h a t a very s t r o n g l y c o v a l e n t l y bound SO^F group i s p r e s e n t . Between the two most l i k e l y s i t e s f o r i t to be bound — Br or Sb — l a t e r r e s u l t s i n S e c t i o n VII w i l l show t h a t i t cannot be Sb. The B r ( S 0 2 F ) 2 + c a t i o n has been s t a b i l i z e d i n a s a l t [ B r ( S 0 3 F ) 2 ] 2 [SnCSO^F)^ the Raman spectrum of which has SO^F f r e q u e n c i e s f o r the 206 c a t i o n i n the same r e g i o n as observed here. The v S-F v i b r a -t i o n i s found a t 875cm whereas the v Br-F v i b r a t i o n f o r the c a t i o n i s b e s t a s s i g n e d a t 706cm ^ as f o r the B r F 2 + c a t i o n ^ " ^ . The two s t r o n g bands a t 720 and 675 cm ^ are then a s s i g n e d t o Sb-F s t r e t c h i n g v i b r a t i o n s i n the anion or perhaps SbF^, not 153 u n l i k e those found i n the SbF,- anion f o r BrF_SbF^ . The 6 2 6 p o s i t i o n of the Br-0 s t r e t c h i n g v i b r a t i o n , which i s found a t ^680cm ^, cannot be e s t a b l i s h e d unambiguously, however, and may be obscured by s t r o n g Sb-F s t r e t c h i n g v i b r a t i o n s . Almost c e r -t a i n l y such an anion as found here would be s o l v a t e d by SbF^, which a c c o r d i n g to the a n a l y s i s must be p r e s e n t . 6. The s o l v o l y s i s of I ( O S 0 2 F ) 3 i n SbFg The s o l v o l y s i s of I ( O S 0 2 F ) 3 i n SbF,- was a l s o attempted along s i m i l a r l i n e s as f o r B r ( O S 0 2 F ) 3 and r e s u l t e d i n a y e l l o w c o l o r e d s o l u t i o n which was s t a b l e a t room temperature f o r a t l e a s t a week. Removal of SO^F groups as SbF^(SO^F) i n excess SbF^ from the mixture i n vacuo was apparent by the I n f r a r e d s p e c t r a of the c o l l e c t e d v o l a t i l e m a t e r i a l s . The formation of a green-blue s o l u t i o n i n the r e a c t o r , shown to c o n t a i n I „ t , > ^ 2 (solv) c a t i o n s by a v i s i b l e - u l t r a v i o l e t spectrum, and the d e t e c t i o n of some v o l a t i l e p e n t a v a l e n t i o d i n e s p e c i e s , shown by a q u a l -248 i t a t i v e spot t e s t w i t h KCNS , i n d i c a t e d some d i s p r o p o r t i o n -a t i o n of the I (OSO2F)^ as soon as a vacuum was a p p l i e d . A sim-i l a r b e h a v i o r had been found f o r s o l i d I (OSG^F) 3 a t e l e v a t e d 7 8 temperatures , and some of these f i n d i n g s had p r e v i o u s l y been 249 made on the I ( O S O j F ) 3 / S b F 5 system by P.A. Yeats . No attempt was made t o i n v e s t i g a t e the seemingly complex r e a c t i o n i n more d e t a i l . C o n c l u s i o n s In c o n c l u s i o n i t may be s a i d t h a t the p r e p a r a t i o n i n SbF^ of v a r i o u s bromonium ( I I I ) c a t i o n s does not i n g e n e r a l l e a d to s t a b l e s o l i d compounds a t room temperature i f , i n f a c t , a t any temperature. The d i f f e r e n t c a t i o n s which have been d i s -cussed, however, do e x i s t and are s t a b l e i n a s o l u t i o n of SbF^. D i s s o c i a t i o n of these c a t i o n s does occur, though, when they are s u b j e c t e d to a vacuum even a t room temperature, thereby demon-s t r a t i n g t h e i r thermal s t a b i l i t y . 224 V I I . FLUORIDE-FLUOROSULFATE-CONTAINING COMPOUNDS OF ANTIMONY (V) A. INTRODUCTION The s y n t h e t i c s i g n i f i c a n c e of s o l v o l y z i n g f l u o r o s u l f a t e compounds i n SbF,. to form d i a t o m i c and t r i a t o m i c halogen and i n t e r h a l o g e n c a t i o n i c compounds has a l r e a d y been demonstrated i n p r e v i o u s s e c t i o n s . L i t t l e a t t e n t i o n has been g i v e n , however, to the o t h e r SO^F-containing byproduct ( p r e v i o u s l y r e f e r r e d to as SbF 4 (S0 3F) i n SbF,.) . T h i s same product has a l s o been found p r e v i o u s l y i n the s o l v o l y s i s o f C l O ^ O ^ F . 1 In t h i s l a s t example, the product was i d e n t i f i e d as SbF^(SO^F) 1 when i t s I n f r a r e d s p e c t -250 rum was compared t o the Raman spectrum r e p o r t e d p r e v i o u s l y . Two items o f concern arose from t h i s , however. One was t h a t the observed peak p o s i t i o n s d i d not correspond e n t i r e l y t o the r e -p o r t e d p o s i t i o n s . The o t h e r was t h a t the compound was r a t h e r v o l a t i l e and e a s i l y t r a n s f e r r e d i n a dynamic o r s t a t i c vacuum i n c o n t r a s t t o the l i t e r a t u r e r e p o r t . A l s o d i s c o n c e r t i n g was the 250 r e p o r t e d d i s c r e p a n c y of I n f r a r e d and Raman bands f o r SbF^(SO^F). The importance of adding the reagents X 2, s 2 ° g F 2 a n d s b F 5 -*-n t h i s r e s p e c t i v e o r d e r f o r the r e a c t i o n s t h a t y i e l d e d the X 2 -cont -a i n i n g compounds i n h i g h p u r i t y has a l r e a d y been s t r e s s e d i n S e c t i o n V. I f X 2 c o u l d be p a r t l y o x i d i z e d by SbF,., then SbF 3 would be the l o g i c a l r e d u c t i o n product. I t became i n t e r e s t i n g , t h e r e f o r e , to i n v e s t i g a t e the p o s s i b i l i t y o f o x i d i z i n g SbF^ by S 2 ° 6 F 2 koth neat and i n the presence o f SbF,.. Given the e x c e p t i o n a l l y s t r o n g a c c e p t o r a b i l i t y o f a n t i -mony (V) compounds and the c a p a b i l i t y of the SO^F group to a c t as a donor moiety, as i n d i c a t e d by other reports,*"' 2 ^ the s y s -tems t o be s t u d i e d here should be i d e a l t o i n v e s t i g a t e b i d e n t a t e b r i d g i n g SO^F groups by v i b r a t i o n a l s p e c t r o s c o p y , such as found 8 11 i n many t i n (IV) f l u o r o s u l f a t e s . ' In the v i b r a t i o n a l s p e c t r a , and e s p e c i a l l y the Raman s p e c t r a , o f these S n X n ( S O ^ F ) 4 _ n compounds no p o l a r i z a t i o n data was o b t a i n a b l e because of the s o l i d p o l y -c r y s t a l l i n e s t a t e of the samples. T h i s prevented an a c c u r a t e assignment o f a l l the v i b r a t i o n a l modes w i t h r e s p e c t t o A' and A" symmetries. SOME PROPERTIES OF ANTIMONY (V) COMPOUNDS  Antimony (V) F l u o r i d e 55 SbF,. i s extremely v i s c o u s (460 c p . ) , and has a r e l a t i v e l y h i g h m e l t i n g p o i n t (8.3°C) and x a h i g h b o i l i n g p o i n t ( 1 4 1 ° C ) , 2 5 1 as compared to AsF,.. T h i s suggests c o n s i d e r a b l e a s s o c i a t i o n f o r the molecule. The vapor p r e s s u r e o f SbF,- a t 20°C has been r e -v 252 po r t e d t o be 4 t o r r , and p r e l i m i n a r y m o l e c u l a r weight d e t e r -m inations i n the gas phase have i n d i c a t e d the e x i s t e n c e of t r i m e r s 5 0 a t 152°C and dimers up t o 252°C. F u r t h e r evidence f o r a s s o c i a -t i o n o f SbF,. i n the gas phase has come from s e v e r a l mass s p e c t r o -253 254 m e t r i c s t u d i e s ' a t 25°C where aggregates as l a r g e as t e t -ramers and pentamers were observed. ' In the l i q u i d phase, even though an I n f r a r e d and Raman 2 52 study o f the compound was r e p o r t e d s u g g e s t i n g a t r i g o n a l b i p y r a m i d a l s t r u c t u r e , f u r t h e r work i n d i c a t e s t h a t n e i t h e r t h i s 226 nor a square pyramidal s t r u c t u r e f o r SbF,. as a monomer i s 255 256 19 l i k e l y . ' The F NMR spectrum o f l i q u i d SbF,- near i t s m e l t i n g p o i n t c o u l d o n l y be i n t e r p r e t e d i n terms o f a p o l y -meric s p e c i e s l i n k e d t o g e t h e r by a predominantly c i s Sb-F-Sb 257 b r i d g i n g of the molecules. T h i s i n t e r a c t i o n e f f e c t i v e l y meant t h a t the c o o r d i n a t i o n around antimony was then a p p r o x i -mately o c t a h e d r a l . But upon warming the sample t o f i r s t 25°C and then t o 80°C a p r o g r e s s i v e broadening o f the NMR spectrum r e s u l t e d which was e x p l a i n e d i n terms o f r a p i d 257 258 f l u o r i n e exchange, ' presumably i n t r a m o l e c u l a r . O c t a h e d r a l c o o r d i n a t i o n around the Sb atom of SbF.. i n 126 the s o l i d phase was confirmed by the c r y s t a l s t r u c t u r e where t e t r a m e r i c u n i t s were found l i n k e d t o g e t h e r by c i s f l u o r i n e b r i d g e s . The o n l y o t h e r b i n a r y antimony (V) h a l i d e , SbCl.., 259 has a l s o been shown by i t s c r y s t a l s t r u c t u r e t o a s s o c i a t e , but o n l y i n t o dimers. 2. Some adducts o f antimony (V) f l u o r i d e The f i l l i n g o f the s i x t h c o o r d i n a t i o n s i t e around the Sb atom may a l s o be accomplished by a donor-acceptor i n t e r a c t i o n w i t h e i t h e r f l u o r i d e i o n s , as i n C l F 2 + S b F g , or w i t h oxygen donors v i a 0 + Sb as d e s c r i b e d below. A s t a b l e 1:1 adduct o f SO2 w i t h SbF,. has been p r e p a r e d , ^ and a c r y s t a l s t r u c t u r e r e p o r t e d t h a t has c l e a r l y shown the i n t e r a c t i o n o f one oxygen atom from SO2 completing an o c t a h e d r a l c o o r d i n a t i o n around SbF,..5"'- A s t a b l e c r y s t a l l i n e adduct o f the 227 type B^O'SbFt- has a l s o been c h a r a c t e r i z e d by I n f r a r e d and 52 d i f f e r e n t i a l thermal a n a l y s i s t e c h n i q u e s . In the case of the 1:1 adduct of IC* F 0 w i t h S b F c , 2 6 0 ' 2 6 1 even though a h i g h l y Z 3 5 19 polymerized or a s s o c i a t e d compound i s evidenced by F NMR, 121 Raman, I n f r a r e d and Sb mossbauer r e s u l t s , an 0 + Sb i n t e r -a c t i o n has been proposed t o account f o r the data versus an i o n i c f o r m u l a t i o n such as IO„F„ +SbF^. f o r example. 2 2 6 , 3. Mixed antimony (V) f l u o r i d e - f l u o r o s u l f a t e s The o n l y w e l l s u b s t a n t i a t e d compound of t h i s s o r t i s 250 the p r e v i o u s l y mentioned SbF^SO^F) formed v i a S b F 5 + S 0 3 — * S b F 4 ( S 0 3 F ) 19 The F NMR spectrum of S b F 4 ( S 0 3 F ) showed not o n l y a s i g n a l due to F on S but a l s o a s i n g l e resonance p l u s an A 2 X 2 P a t t e r n 250 due t o F on Sb. The o n l y i n t e r p r e t a t i o n t h a t c o u l d be g i v e n f o r these s i g n a l s i n v o l v e d both c i s and t r a n s b r i d g i n g of SC<3F groups between SbF 4(SC> 3F) molecules, p o s t u l a t e d through d o n a t i o n by oxygen. Attempts t o s y n t h e s i z e an Sb(S0 3F) r. compound from 262 SbClf. and S 2 ° g F 2 w e r e u n s u c c e s s f u l . The i n a b i l i t y t o i s o l a t e a pure sample of S b ( S 0 3 F ) 5 from the r e a c t i o n products was compli-c a t e d by the removal of S 0 3 i s vacuo a t 2 5 ° C . 2 ^ 2 I t was found, however, t h a t a s t a b l e S b C l 4 ( S 0 3 F ) compound can be formed i n a r e a c t i o n of S b C l 5 w i t h e i t h e r H S 0 3 F 2 6 3 or S 2 0 6 F 2 2 6 2 , but very l i t t l e i s known about t h i s compound. Mixed f l u o r i d e - f l u o r o s u l f a t e antimonate (V) anions As e x p l a i n e d i n the General I n t r o d u c t i o n i n the super-20 21 - -a c i d system, ' the v a r i o u s anions, SbF^ , SbF^SO^F) , S b F 4 ( S 0 3 F ) 2 ~ , S b F 3 ( S 0 3 F ) 3 ~ and S b F 2 ( S 0 3 F ) " have a l l been 19 claimed t o e x i s t i n t h i s solvent, as i d e n t i f i e d by F NMR, w i t h the f i r s t a n ion formed presumably through a rearrangement 21 i n s o l u t i o n . I t was a l s o shown t h a t SbF 4(SC» 3F) i n HSC>3F gave e s s e n t i a l l y the same r e s u l t s as when one mole o f S 0 3 per 21 mole of SbF,. was added i n d e p e n d e n t l y to HSO-^F. As a r e s u l t i t was p o s t u l a t e d t h a t not o n l y S b F 4 ( S 0 3 F ) but a l s o S b F 3 ( S 0 3 F ) 2 and S b F 2 ( S 0 3 F ) 3 were i n v o l v e d i n e q u i l i b r i a with HSC»3F t o pro-duce the p a r e n t a c i d s H S b F ^ ( S 0 3 F ) 2 , H S b F 3 ( S 0 3 F ) 3 and H S b F 2 ( S 0 3 F ) ^ (together w i t h t h e i r a n i o n s ) , r e s p e c t i v e l y . None of these a c i d s of t h e type H S b F g _ x ( S 0 3 F ) x , nor any o f t h e i r s a l t s have y e t been i s o l a t e d . P r i o r t o t h i s study, no d i r e c t evidence has been p r o v i d e d f o r any o t h e r ansolvo a c i d of the type S b F 5 _ X ( S 0 3 F ) x b e s i d e s S b F 4 ( S 0 3 F ) . PREPARATIONS AND ANALYSES S b F 3 ( S 0 3 F ) 2 The attempt to prepare S b F 3 ( S 0 3 F ) 2 f o l l o w e d the g e n e r a l r e a c t i o n S b F 3 •+ S 2 0 2 F 2 > S b F 3 ( S 0 3 F ) 2 . Into a 50 ml one-part r e a c t i o n b ulb was added 3.1621 g (17.691 m moles) of f i n e l y ground, p u r i f i e d S bF 3 i n the drybox. Next 7.3885 g (37.293 mmoles) of S„0,F„ were d i s t i l l e d i n vacuo 2 6 2 onto the SbF^. The mixture was then c o n t i n u a l l y shaken auto-m a t i c a l l y a t room temperature f o r approximately 10 days. A f t e r the f i r s t day a tacky white mass o f s o l i d was observed below the l i q u i d S 2 0 g F 2 i n excess. G r a d u a l l y as time passed, the amount o f white s o l i d d i s a p p e a r e d and a second, q u i t e v i s c o u s , c l e a r c o l o r -l e s s l i q u i d phase more dense than S 2 ° g F 2 b e 9 a n t o i n c r e a s e i n q u a n t i t y u n t i l no more white s o l i d remained. Then to i n s u r e complete r e a c t i o n of any SbF^ d i s s o l v e d i n the v i s c o u s l i q u i d , the contents were heated to 65°C f o r an a d d i t i o n a l t h r e e days. Most of the excess S 2 0 6 F 2 c o u l d be removed by s t a t i c vacuum d i s -t i l l a t i o n a t room temperature, but b r i e f h e a t i n g of the products to 65°C was necessary t o remove (under s t a t i c vacuum) the l a s t t r a c e s of S 2 ° 6 F 2 w n i c n n a d d i s s o l v e d i n the extremely v i s c o u s product. During t h i s l a s t p r o c e s s , some t r a c e amounts of the v i s c o u s m a t e r i a l were p h y s i c a l l y t r a n s p o r t e d from the r e a c t o r , but a t the end t h e r e remained 6.2434g (16.567 mmoles) o f the product which analyzed as S b F 3 ( S 0 3 F ) 2 . Attempts to f u r t h e r p u r i -f y the compound by d i s t i l l a t i o n i n vacuo at e l e v a t e d temperatures were found to cause thermal decomposition of the product and t o form i n s t e a d S b F 4 ( S 0 3 F ) as the s o l e product i n the d i s t i l l a t e . S b F 4 ( S 0 3 F ) In the f i r s t method of p r e p a r a t i o n , S b F 4 ( S 0 3 F ) was syn-t h e s i z e d a c c o r d i n g to the r e a c t i o n SbF + SbF., + S„0,F. > 2 SbF. (SO,F) . 230 3.8978g (17.984) mmoles) of SbF 5 were d i s t i l l e d i n vacuo i n t o a 50 ml one-part r e a c t i o n bulb. Then i n the drybox 3.2132g 17.976 mmoles) of f i n e l y ground and w e l l p u r i f i e d SbF^ was added t o the SbF,-. Immediately a white c a k e - l i k e m a t e r i a l was produced. Next 10.0515g (50.734) mmoles) o f S o 0 r F _ were d i s t i l l e d i n vacuo onto z o z the white SbF^/SbF,. s o l i d mixture. The m a t e r i a l s were then con-t i n u a l l y shaken a t room temperature by ah automatic d e v i c e f o r two days. A f t e r the f i r s t day a v e r y f i n e l y d i v i d e d white s o l i d was apparent i n the r e a c t o r along w i t h the ^3 f o l d excess of c o l o r l e s s S 2 ° s F 2 l i q u i d * T n e next day the r e a c t i o n was complete as evidenced by a s i n g l e , c l e a r , c o l o r l e s s , r e l a t i v e l y v i s c o u s , l i q u i d phase. Most o f the excess S 2 ° 6 F 2 c o u l d be removed by dyna-mic pumping at room temperature. To remove the r e s t of the S 2 ° 6 F 2 d i s s o l v e d i n the v i s c o u s l i q u i d , h e a t i n g to 60°C was b r i e f l y a p p l i e d w i t h dynamic pumping. Subsequent f r a c t i o n a l d i s t i l l a t i o n of the sample under vacuum at e l e v a t e d temperatures (^100°C) was necessary to o b t a i n an a b s o l u t e l y pure sample o f S b F ^ S O ^ F ) . b) A second method of p r e p a r a t i o n was found i n the r e a c t i o n S b F 3 + FOS0 2F >• S b F 4 ( S 0 3 F ) . In t h i s case, 2.9789g (16.666 mmoles) of S b F 3 were r e a c t e d w i t h 2.5851g (21,897 mmoles) o f FOSG^F i n a t h i c k - w a l l e d one-part r e a c t i o n v i a l . The r e a c t a n t s were l e f t a t room temperature w i t h -out shaking f o r 8 days whereupon the white s o l i d g r a d u a l l y r e a c t e d producing a s i n g l e , c l e a r , c o l o r l e s s , somewhat v i s c o u s l i q u i d w i t h the excess FOSO-F. Removal of most of the unreacted FOSO-F was 231 accomplished with the r e a c t o r a t -40°C v i a s t a t i c vacuum d i s t i l -l a t i o n . Dynamic pumping on the r e a c t o r a t room temperature f o r about 15 minutes succeeded i n removing the l a s t t r a c e s of FOS0 2F, thereby producing SbF^(SO^F) as shown by a n a l y s i s . 3. S b F 4 ( S 0 3 F ) . S b F 5 a) The n o v e l adduct SbF^ (SO^F) • SbF,. was be s t prepared a c c o r d -i n g t o the r e a c t i o n S b F 4 ( S 0 3 F ) + SbF 5 > S b F 4 ( S 0 3 F ) - S b F 5 1.0695g (3.603 mmoles) of SbF 4 (SC»3F) was p l a c e d i n t o a 35 ml one-p a r t t h i n - w a l l e d r e a c t i o n v i a l under an i n e r t atmosphere. Then e x a c t l y o.7815g (3. 606 mmoles) of SbF,. was d i s t i l l e d i n vacuo onto the SbF 4(SC» 3F). M i x i n g of the two reagents a t room temp-e r a t u r e y i e l d e d the s t o i c h i o m e t r i c adduct SbF 4 (S0 3F) • SbF^. as a c l e a r , c o l o r l e s s , v o l a t i l e l i q u i d . b) In a manner analogous t o the p r e p a r a t i o n of B r 2 S b 3 F ^ g i n , s e c t i o n IV B.2., the s t o i c h i o m e t r i c r e a c t i o n shown below was found t o y i e l d S b F 4 ( S 0 3 F ) . S b F 5 q u a n t i t a t i v e l y a c c o r d i n g t o 2 B r 0 + S o0,F. + 1 0 S b F c — > 2 Br.Sb^F, ^  + 2.SbF . (S0 oF) • SbF,-. I 2 6 2 5 2 3 16 4 3 5 For t h i s r e a c t i o n , 1.2799g (8.009 mmoles) of B r 2 , 0.7970g (4.023 mmoles) of S 2 O g F 2 and 8.8760g (4.095 mmoles of S b F 5 were added c o n s e c u t i v e l y t o a 50 ml one-part r e a c t i o n b u l b . In t h i s case, though, i n s t e a d of u s i n g an excess of SbF^. as b e f o r e , the s t o i c h i o m e t r i c amounts of Br_:S o0,F„:SbF c i n the r a t i o 2 Z 6 2 b 232 1.99:1.00:10.18 were used to form the 1:1 adduct of S b F 4 ( S 0 3 F ) w i t h SbF,.. A f t e r the r e a c t a n t s were heated to ^90°C and allowed t o c o o l t o room temperature, the b r i g h t - r e d s o l i d B ^ Sb^F^g was found beneath a c l e a r , c o l o r l e s s , v i s c o u s l i q u i d . S t a t i c vacuum d i s t i l l a t i o n o f the v o l a t i l e l i q u i d a t room temperature a l l o w e d the easy s e p a r a t i o n o f the two p r o d u c t s , B^Sb^F^g (m.p.=85°C, sharp) and SbF . ( S 0 o F ) - S b F c . 4 3 5 A n a l y t i c a l d a t a The a n a l y t i c a l r e s u l t s as o b t a i n e d from A. Bernhardt micro-a n a l y t i c a l l a b o r a t o r i e s f o r the t h r e e d i f f e r e n t antimony (V) f l u o r i d e - f l u o r o s u l f a t e s are g i v e n i n T a b l e 40. TABLE 40 A n a l y t i c a l Data f o r S b F 3 ( S 0 3 F ) 2 , S b F 4 ( S 0 3 F ) and SbF„(SO^F)-SbF c Compound % Sb % S % F SbF-, (SC» F ) , c a l c 32. 31 16.79 25.21 -j J found 32. 46 17.02 25.10 SbF. (SO^F) c a l c 41.02 32. 00 4 o found 41.19 31.78 S b F . ( S 0 o F ) - S b F c c a l c 47.42 6. 24 36. 99 4 J D found 47. 71 6.41 36. 63 Other s y n t h e t i c r e a c t i o n s The r e a c t i o n s j u s t d e s c r i b e d i n 2 a) and 3 b) both imply t h a t some l i g a n d exchange around the c e n t r a l antimony atom i n SbF,. must occur f o r the products S b F 4 ( S 0 3 F ) and S bF 4 (SO-jF) • SbF,- to form. 233 In order t o t e s t t h i s h y p o t h e s i s f u r t h e r , a r e a c t i o n of the type SbF 3(Sfl> 3F) 2 + S b F 5 > 2 , SbF^.fSC^F) was c a r r i e d out u s i n g equimolar q u a n t i t i e s o f the two r e a c t a n t s . The S b F 4 ( S 0 3 F ) t h a t was o b t a i n e d i n t h i s manner was the same i n a l l r e s p e c t s as o t h e r samples prepared i n 2a) and 2b). A s i m i l a r r e a c t i o n but w i t h t h r e e moles i n s t e a d o f one mole of SbF,. was performed w i t h SbF 3(SC> 3F) 2 v i a S b F 3 ( S 0 3 F ) ' 2 + 3 SbF 5 >• 2 SbF ^  (SC^F) • SbF 5 t o produce the adduct which, too, was i n a l l r e s p e c t s s i m i l a r t o those d e s c r i b e d i n 3a) and 3b). I t was found, however, t h a t i n n e i t h e r of the l a s t two r e a c t i o n s i f some S b F 3 ( S 0 3 F ) 2 was used which had not been heated t o 65°C i n i t s i n i t i a l p r e p a r a t i o n , some unreacted S b F 3 which remained d i s s o l v e d i n the product would i n t e r a c t w i t h the SbF,. to produce t r a c e s of a white high m e l t i n g s o l i d (m.p. > 230°C) i n a d d i t i o n t o e i t h e r the S b F 4 ( S 0 3 F ) or the S b F 4 ( S 0 3 F ) * S b F 5 . The s o l i d was f r e e o f S 0 3 F and i t was i d e n t i f i e d as a mixed v a l e n c y f l u o r i d e o f antimony. S i m i l a r white s o l i d 2 6 4 — 2 6 7 products of t h i s type have been r e p o r t e d i n the l i t e r a t u r e . A Raman spectrum of t h i s m a t e r i a l was i d e n t i c a l t o one p r e v i o u s l y 266 r e p o r t e d f o r "SbF 3• SbF,. (A) " . ' R e c e n t l y , however, t h i s p r o d u c t 268 has been shown t o be s b n F 4 3 b Y X-ray d i f f r a c t i o n . An a n a l y s i s of the white m a t e r i a l o b t a i n e d here was a l s o i n e x c e l l e n t agree-ment f o r S b i ; L F 4 3 ( c a l c , %Sb=62.11, %F = 37.89; found, %Sb=61.94, %F=37.98). Treatment o f t h i s white s o l i d w i t h S 2 0 g F 2 e v e n t u a l l y 234 produced a compound which was i d e n t i f i e d as SbF^fSO^F) by i t s Raman spectrum a f t e r the excess S 2 ^ 6 F 2 w a s r e m o v e d * T n e forma-t i o n of SbF (S0 oF) and SbF . ( S 0 o F ) • S b F c v i a the r e a c t i o n s of 4 3 4 3 J S b F 3 ( S 0 3 F ) 2 w i t h SbF,. may o n l y be c o n s i d e r e d p o s s i b l e i f the l i g a n d exchange of an SO^F group from SbF 3 ( S 0 3 F ) 2 f o r an F atom from SbF,. i s accomplished. I t was a l s o d i s c o v e r e d t h a t i f o n l y 8 i n s t e a d of 10 moles of SbF,. were added onto a 2:1 r a t i o o f B r 2 : S 2 0 g F 2 a c c o r d i n g t o the r e a c t i o n 2 B r 2 + S 2 O g F 2 + 8 SbF 5 > 2 B r 2 S b 3 F l g + 2 S b F 4 ( S 0 3 F ) then indeed SbF 4(SC» 3F) was formed (as evidenced by i t s I n f r a r e d and Raman s p e c t r a t o be d i s c u s s e d l a t e r ) as opposed to SbF^ (S0 3F) • SbF,- when more SbF,. i s employed. S e p a r a t i o n o f S b F 4 ( S 0 3 F ) from the B r 2 S b 3 F ^ g by d i s t i l l a t i o n i n vacuo was extremely d i f f i c u l t due to the l a c k o f v o l a t i l i t y o f S b F 4 ( S 0 3 F ) . I t s h o u l d be emphasized t h a t s o l v o l y s i s r e a c t i o n s of any s u i t a b l e f l u o r o -s u l f a t e compound i n SbF,. are b e s t c a r r i e d out w i t h SbF p . i n an excess t o f a c i l i t a t e the s e p a r a t i o n o f the r e a c t i o n p r o d u c t s . In a r e a c t i o n analogous to the one which generated S b F 4 ( S 0 3 F ) i n 2a), the f o l l o w i n g r e a c t i o n was attempted 3 S b F 5 + S b F 3 + S 2 O g F 2 > 2.SbF4(S03F) •SbF 5 as another p o s s i b l e r o u t e t o the f o r m a t i o n o f the adduct. A f t e r 10 days of shaking a t room temperature i t was n o t i c e d t h a t , i f anything, the amount o f white s o l i d had i n c r e a s e d r a t h e r than decreased. Subsequent i n v e s t i g a t i o n i n vacuo showed the presence 235 o f a noncondensable gas at -196°C (C^) as w e l l as 3 0 ^ 2 i d e n t i f i e d 269 by i t s I n f r a r e d spectrum; no unreacted S 2 ° 6 F 2 w a s d e t e c t e d . In o r d e r t o c l a r i f y the s i t u a t i o n , a known q u a n t i t y of S2 (- >g F2 was condensed onto some SbF,. a l o n e . Upon warming to room tempera-t u r e , gas e v o l u t i o n was seen which seemed complete i n a matter of hours. In a d d i t i o n a white s o l i d developed. But to i n s u r e complete i n t e r a c t i o n the r e a c t o r was l e f t a t RT f o r s e v e r a l days. Examination of the r e s u l t i n g p roducts i n d i c a t e d one volume of noncondensable gas (C^) to two volumes o f 5 0 ^ 2 - Using the i d e a l gas law e x p r e s s i o n , i t became apparent t h a t as many moles of SO2F2 were produced i n the r e a c t i o n as t h e r e were moles of s2 ° g F 2 a t the b e g i n n i n g . These r e s u l t s seemed t o i n d i c a t e a decomposition of the s 2 ° g F 2 ' perhaps c a t a l y s e d by the SbF,., a c c o r d i n g t o 2 S 2 ° 6 F 2 * 2 S ° 2 F 2 + S 0 3 + °2-I t was p r o b a b l y t h i s decomposition, then, t h a t prevented the f o r m a t i o n of the adduct SbF^ (SO^F) • SbF,. because of the excess of SbFg i n the r e a c t i o n . G e n e r a l l y , i n a l l the r e a c t i o n s t h a t i n v o l v e d 8 2 0 ^ 2 / a l a r g e excess was employed; but o n l y when SbF,. was p r e s e n t , as i n some of the p r e v i o u s l y mentioned r e -a c t i o n s , was any s i g n i f i c a n t decomposition noted. D. EXPERIMENTAL RESULTS AND DISCUSSIONS One of the primary concerns a s s o c i a t e d with the v a r i o u s s o l v o l y s i s r e a c t i o n s d i s c u s s e d i n S e c t i o n s IV, V and VI was the exact nature of the SO^F-containfng byproduct. T h e r e f o r e , an e f f o r t was made to e s t a b l i s h t h i s m a t e r i a l as SbF„ (S0_,F) • SbF,. 236 (versus SbF 4(SO^F), f o r example) and subsequently to c h a r a c t e r i z e i t . 1. Vapor d e n s i t y measurements Using the F l u o r o l u b e - o i l manometer i n c o n j u n c t i o n w i t h the m o l e c u l a r weight b u l b as d e s c r i b e d i n S e c t i o n II.D.9., the vapor d e n s i t y of the adduct S bF 4 (SO.-,F) • SbF,- was measured f o u r times on the same sample a t ^298°K. Using the e x p r e s s i o n s pV=nRT and M o l e c u l a r Weight = -^~"/ a v a l u e o f 510+ 31 was o b t a i n e d f o r t h i s compound as compared t o the t h e o r e t i c a l v a l u e of 513.5. Reasonable agreement was o b t a i n e d c o n s i d e r i n g the d i f f i c u l t y i n a c c u r a t e l y d e t e r m i n i n g the vapor p r e s s u r e . Even w i t h the a i d of the l e s s dense F l u o r o l u b e - o i l (1.92g/ml a t 24°C) as compared 20 270 to Hg.(13.5939 4 g/ml ) o n l y about a 20 mm d e f l e c t i o n c o u l d be measured, which eq u a l s about 2.6 t o r r a t room temperature. Using the same apparatus, no measurable vapor p r e s s u r e was observed f o r e i t h e r SbF^SO^F) or S b F 3 ( S C » 3 F ) 2 a t room tempera-t u r e . 2. Mass spectrum To o b t a i n a more a c c u r a t e m o l e c u l a r weight, a mass spectrum was r e c o r d e d a t room temperature. Although no d e t a i l e d a n a l y s i s o f a l l fragments was attempted, because of the m u l t i t u d e of peaks, the parent peaks a t 512, 514, 516 and 518 were found i n r o u g h l y the same i n t e n s i t i e s as c a l c u l a t e d (31.1:47.9:19.5:0.8) r e f l e c t -i n g the i s o t o p i c e f f e c t s of 1 2 1 S b , 1 2 3 S b , 3 2 S r a n d 3 4 S . Other fragments c o u l d be i d e n t i f i e d i n the same r a t i o s c o r r e s p o n d i n g to a g a i n of one F atom (which was the h i g h e s t of a l l observed 32 peaks), a l o s s o f one 0 atom, a l o s s of two 0 atoms (or one S 237 atom), e t c . from the parent peaks. Some o f the o t h e r more dominant peaks were a l s o s e p a r a t e d by a l o s s o f n F atoms, n = 1, 2, 3, or by the l o s s o f an 0 atom, f o r example. In a d d i t i o n , very s m a l l peaks were found c o r r e s p o n d i n g t o SbF 4(SO,jF) at 296, 298 and 300 i n the expected r a t i o of 54.4:43.0:1.8 and to SbF 5 a t 216 and 218 roughly i n the c a l c u l a t e d r a t i o of 57.3: 42.7. These r e s u l t s tend t o c o n f i r m the vapor d e n s i t y measure-ments and a l s o t o i n d i c a t e t h a t the adduct i s a r e a s o n a b l y s t a b l e e n t i t y and not j u s t an independent mixture o f SbF^(SO^F) and Sb F 5 . 3. NMR s p e c t r a 19 S i n c e the F NMR spectrum o f S b F 4 ( S 0 3 F ) has a l r e a d y been 250 r e p o r t e d , as p r e v i o u s l y d i s c u s s e d , i t was thought a p p r o p r i a t e to r e c o r d the spectrum f o r the compound prepared here f o r pur-poses o f comparison. In t h i s case, the spectrum t h a t was r e -corded i s i l l u s t r a t e d i n F i g u r e 29. A l l c h e m i c a l s h i f t s have been measured w i t h r e s p e c t to CFC1 3. The spectrum o f the neat sample was e s s e n t i a l l y the same as the p r e v i o u s l y r e p o r t e d one, and the c o u p l i n g c o n s t a n t s o f 138 Hz compared w e l l t o 128 Hz 250 19 measured b e f o r e f o r the t r i p l e t s . When the F NMR spectrum of a 2:1 s o l u t i o n o f S b F 4 ( S 0 3 F ) d i s s o l v e d i n S 2 ° 6 F 2 w a s r e c o r d e d , peaks c o u l d be observed i n the same p l a c e s as f o r the neat sample but they were c o n s i d e r a b l y broadened, i n f a c t so much so t h a t the t r i p l e t s merely appeared as ve r y broad resonances with sh o u l d e r s on each s i d e . Undoubtedly the degree of a s s o c i a t i o n o f S b F 4 ( S 0 3 F ) molecules between themselves was reduced i n the second case ( a l s o evidenced by the decreased v i s c o s i t y o f the 238 19 Fnmr of Sbf^ (S0 3F) + 96.6 +90.8 a) Fluorine on Antimony region +123.1 +120.6 J + 93.0 _ 4 4 9 A 11 + 125.8 -454 b) Fluorine on Sulfur J F i g u r e 29. 239 S 2 ° 6 F 2 s o l u t i - o n compared t o the neat m a t e r i a l ) . But the f a c t t h a t both c i s and t r a n s b r i d g e d s p e c i e s were s t i l l e v i d e n t suggests t h a t perhaps the S 20gF2 i s a c t i n g as the donor i n l i e u o f the SO.jF group i n some i n s t a n c e s w i t h exchange between the two o c c u r r i n g s u f f i c i e n t l y e a s i l y a t room temperature to cause the broadening. 19 As f a r as the F NMR s p e c t r a of S b F ^ f S O ^ F ^ were concerned, e i t h e r neat or i n a s o l u t i o n o f S 2 ° g F 2 ' a t R T o r e l e v a t e d temper-a t u r e s o r lowered temperatures, no spectrum c o u l d be o b t a i n e d t h a t was reasonably w e l l r e s o l v e d . In the r e g i o n o f F on S a broad resonance a t -47.5 ppm was observed, w h i l e i n the r e g i o n o f F on Sb(V) about e i g h t broad resonances were d e t e c t e d , rang-i n g from + 90.1 t o + 123.7 ppm w i t h r e s p e c t t o C F C l ^ . In the s p e c t r a of SbF^CSO^F^ where the sample was l a t e r found t o c o n t a i n unreacted SbF^, an a d d i t i o n a l resonance a t +55.7 ppm was observed. On pure samples o f SbF^CSO^F^ t h i s resonance was absent, o f course. U n f o r t u n a t e l y , broad resonances a t ^ -46 ppm and a t + 90 to + 125 ppm w i t h r e s p e c t t o C F C l ^ were a l s o found f o r SbF^ (SO^F) -SbF,. i n the neat s t a t e . No attempt t o i n v e s t i g a t e t h i s i n S.O,F„ s o l u t i o n was made. 2 o 2 Apparent l y , then, some o t h e r method was needed t o study the s t r u c t u r a l p r o p e r t i e s o f these l a s t two compounds, s i n c e 1Q "F NMR sp e c t r o s c o p y gave such d i s a p p o i n t i n g r e s u l t s . Some e x p l a n a t i o n s may be g i v e n , though, r e g a r d i n g the q u a l i t y o f the NMR data. I t should be remembered t h a t the samples are a l l extremely v i s c o u s . Furthermore, there was a g e n e r a l l a c k of 240 s o l v e n t s i n which they c o u l d be mixed without r e a c t i o n ; o n l y the c o o r d i n a t i n g s o l v e n t s l i k e S 2 ° 6 F 2 o r 3 2 ° 5 F 2 w e r e s u - ^ i c i e n t l y i n e r t . U n f o r t u n a t e l y , low temperature NMR s t u d i e s t o pr e v e n t exchange processes were u n f e a s i b l e as a r e s u l t o f these f a c t s . Not o n l y t h i s , but a p o s s i b i l i t y o f d i f f e r e n t s t r u c t u r a l isomers 19 would be expected t o y i e l d v e r y c o m p l i c a t e d s p e c t r a . The F 2 NMR spectrum of l i q u i d SbF,. a l s o e x h i b i t s somewhat broad s i g n a l s and i s f o l l o w e d by those f o r S b F 4 ( S 0 3 F ) • S b F 5 and S b F 3 ( S 0 3 F ) 2 . Only f o r SbF^(S0 3F) i s a simple and w e l l r e s o l v e d spectrum g i v e n perhaps because a s t r o n g l y ordered e f f e c t o f the molecules i n the l i q u i d i s r e t a i n e d . 241 4. V i b r a t i o n a l s p e c t r a T h i s d i s c u s s i o n w i l l focus p r i m a r i l y on the SO^.F group s t r e t c h i n g v i b r a t i o n s . T h i s i s because of the c o m p l e x i t y and c o i n c i d e n c e of bands i n the lower frequency range where the Sb-F and Sb-0 s t r e t c h i n g and bending v i b r a t i o n s are expected, t o g e t h e r w i t h the deformation v i b r a t i o n s . F i r s t of a l l , w e l l r e s o l v e d Raman s p e c t r a of SbF^SO^F) • SbF S b F 4 ( S 0 3 F ) and SbF^SO^F),, were r e c o r d e d a t room temperature, but some bands appeared t o be absent or b a r e l y d e t e c t a b l e ; t h a t i s , o n l y two out of the t h r e e S-0 s t r e t c h i n g modes c o u l d be e a s i l y found. In the 1100 cm *" range where the remaining S-0 s t r e t c h i n g v i b r a t i o n was expected o n l y very weak and broad bands c o u l d be d e t e c t e d a t b e s t . To h e l p c l a r i f y t h i s s i t u a t i o n , I n f r a r e d s p e c t r a f o r these t h r e e compounds were reco r d e d a t room temperature. Due to the r e a c t i v i t y of the samples, o n l y B a F 2 proved to be a s u i t a b l e window m a t e r i a l and thus the s p e c t r a were l i m i t e d t o peaks o c c u r r i n g a t > 800 cm S i n c e SbF^ (SO^F)•SbF^ proved t o be q u i t e v o l a t i l e , the low temperature I n f r a r e d spectrum was o b t a i n e d i n the u s u a l manner. In s p i t e of the very low vapor p r e s s u r e s o f S b F 4 ( S 0 3 F ) and S b F 3 ( S 0 3 F ) 2 , low temperature s p e c t r a were attempted f o r these two compounds as w e l l . Only i n the case of SbF^(S0 3F) was t h i s t e c h n i q u e s u c c e s s -f u l though; f o r S b F 3 ( S 0 3 F ) 2 j u s t the decomposition p r o d u c t s S 0 3 and S b F 4 ( S 0 3 F ) were d e t e c t e d , r e f l e c t i n g i t s thermal i n s t a b i l i t y i n a dynamic vacuum. 242 a) S b F 4 ( S 0 3 F ) ' S b F 5 The Raman spectrum o f t h i s compound as r e c o r d e d i s i l l u s t r a t e d i n F i g u r e 30. At f i r s t g lance the peaks look reasonably w e l l r e s o l v e d , but c l o s e r i n s p e c t i o n r e v e a l s the absence o f S-0 v i b r a t i o n a t ^ 1100 cm ^. An I n f r a r e d spectrum o f SbF 4 (S0 3F) • SbF,- at room temperature as i l l u s t -r a t e d i n F i g u r e 31 c l e a r l y shows t h i s peak, however, a t ^1130 cm 1 , a l b e i t r a t h e r broad. The c o i n c i d e n c e o f the othe r t h r e e S 0 3 F s t r e t c h i n g v i b r a t i o n s above 800 cm 1 between the two types o f s p e c t r a i s e x c e p t i o n a l l y good. To r e c o r d those f r e q u e n c i e s below 800 cm ^, the low temp-e r a t u r e I n f r a r e d technique was employed produ c i n g the spectrum' a l s o shown i n F i g u r e 31. From the l i s t o f f r e -q uencies g i v e n i n Table 41 i t can be seen t h a t the non-observance o f the ^ 1100 cm 1 band i n the Raman spectrum was not j u s t an i s o l a t e d o c c u r r e n c e . Other bands a t ^730 cm 1 and ^ 6 48 cm \ among o t h e r s , although seen i n the I n f r a r e d spectrum appear t o have no Raman c o u n t e r p a r t s . A b r i e f examination o f the f r e q u e n c i e s i n the Table f o r SbF 4 (S0 3F) • SbF,. shows the uniqueness of t h i s compound w i t h r e s p e c t t o i t s parents S b F 4 ( S 0 3 F ) and SbF,.. The peaks a t 1425 cm ^, 1095 cm 1 and 1060 cm 1 i n the I n f r a r e d spec-trum correspond w e l l t o the t h r e e v S 0 3 s t r e t c h i n g frequen-c i e s f o r F2Sn(S0 3F)2 as l i s t e d i n Table 2, and have been c o r r e s p o n d i n g l y a s s i g n e d i n Table 41 f o r SbF 4 (S0 3F) • SbF,. a c c o r d i n g t o a b i d e n t a t e f l u o r o s u l f a t e group. oot o o o LJ_LO E _Q Z 3 CO • o CD CL LLT CO ro o c CO o -—" E LL5J-O _Q cr CO O O m O i E o CD ^ O o o o ro O O in Infrared Spectra of Sbr^(S0 3 F)°Sb^ a) at 298°K - Ba Fz windows, 1500 to .700 cm-' 1400 1 2 0 0 1000 8 0 0 b) at80°K-Cs! windows, 1500 to 200 c rrr1 1400 1200 1000 800 600 400 200 Wavelength [cm -1] * denotes trace amount of Sb^(S03F) Figure 31. TABLE 41 V i b r a t i o n a l Frequencies f o r Some Antimony (V) Fluori d e - F l u o r o s u l f a t e s SbF 5 SbF 4(S0 3F) •SbF 5 SbF 4(S0 3F) S b F 3 ( S 0 3 F ) 2 Assignments low-temp Infrared Raman low-temp Infrared Raman low-temp Infrared Raman room-temp Infrared Raman Description of Mode SO3F Group Type 1482 1440 1461 vasym S0 2 CM 1425 1430 p 1420 1240 1424 p 1408 1225 1424 p 1242 p v S0 3  v sym s 0 2 BB CM 1095 1155 ^1150 1125 v S0 3 BB 1060 1068 p 1050 965 1080 p 1060 1000 1078 p 1030 v S0 3 v SO BB • CM 900 898 p 896 900 p 870 885 p v SF BB ^840 861 v SF CM 750 731 727 718 718 p ^715 710 p ^705 699 p 700 p i v SbF 702 700 700 698 664 674 670 p 662 661 p 655 653 p 650 p ^ v SbO 660 f648"! L635J 641 635 606 610 606dp 6 S0 3F(A') 581 590? 580 585 p 549 556dp 550 555dp 556dp 6 S0 3F(A") 521 -\ 6 S0 3F(A') 485 472 483 464 443 444 434 p 443 p 442 p + 408 410 410 413 J <5 S b F m 0 n 332 349dp 341 295 299 285 302 288 300 299 250 268 p 265 271 255 268 266 230 231dp? 235 245 242 249 p 251 , Ydeform S°3F ^215? 215? 222? > + 189 p 201 199 Ydeform SbF mO n 140 129 130 116 J Abbreviations: p = p o l a r i z e d , dp = depolarized, CM = covalent monodentate, BB = brideine bidentate. 246 The assignment of the SO^F group i n t h i s compound as a b i d e n t a t e group can be based on the number of bands and t h e i r p o s i t i o n s i n the s t r e t c h i n g r e g i o n . The proposed s t r u c t u r e g i v e n i n F i g u r e 32 a) i s the most l o g i c a l one, assuming t h a t the SO^F group a c t s as a b r i d g i n g group. F i g u r e 32: S t r u c t u r a l p o s s i b i l i t i e s f o r S b F 4 ( S 0 3 F ) - S b F 5 . 119 U n l i k e f o r F 2 S n ( S 0 3 F ) 2 or S b F 4 ( S 0 3 F ) where Sn Mossbauer 19 data or F NMR data has confirmed a p o l y m e r i c s t r u c t u r e and hence a b r i d g i n g c o n f i g u r a t i o n f o r . t h e S0 3F group, no a d d i t i o n a l support was a v a i l a b l e here. The d a t a presented here f o r SbF^ (S0 3F) • SbF,. are a l s o c o n s i s t e n t w i t h a c h e l a t i n g S 0 3F group w i t h f l u o r i n e b r i d g i n g between the antimony atoms as suggested i n F i g u r e 32 b ) ; however, no examples o f c h e l a t i n g 247 SO^F groups appear to e x i s t i n the l i t e r a t u r e a t t h i s time. The four-membered r i n g t h a t would be r e q u i r e d i n t h i s case would be r a t h e r s t r a i n e d , and no s u b s t a n t i a l evidence f o r b r i d g i n g f l u o r i n e atoms was found. Furthermore, the 1:1 complex would not be expected to be as e x c e p t i o n a l l y s t a b l e and v o l a t i l e as i t i s i f the s t r u c t u r e i n F i g u r e 32 b) was t r u e . F i n a l l y , the s i m i l a r i t y of the observed v i b r a t i o n a l p a t t e r n i n the S 0 3F s t r e t c h i n g range of S b F 4 ( S 0 3 F ) . S b F 5 to t h a t of F2Sn(S0 3F)2 lends support t o a b r i d g i n g s t r u c t u r e . The v SF frequency i n SbF 4 (SO-jF) • SbF 5 has been observed a t 900 cm ^ s i g n i f i c a n t l y h i g h e r than t h a t f o r the same v i b r a t i o n i n the t i n compound. To e x p l a i n t h i s o b s e r v a t i o n and the p o s i t i o n s of the t h r e e S-0 v i b r a t i o n a l f r e q u e n c i e s , i t seems reasonable to assume t h a t the S0 3F group f o r m a l l y bonded t o the S b F 4 ( S 0 3 F ) p a r t of the adduct i s d o n a t i n g , presumably through oxygen, to the vacant s i x t h c o o r d i n a t i o n s i t e o f antimony i n the SbF,. p a r t of the adduct. The comp-l e x would then be s i m i l a r to p r e v i o u s l y mentioned oxygen 51 52 donor complexes o f S bF 5 such as S 0 2 * S b F 5 and H 20-SbF 5. A d d i t i o n a l a s s o c i a t i o n over F b r i d g e s may occur i n the l i q u i d as w e l l , but the S 0 3F b r i d g e i s d e c i d e d l y s t r o n g e r as suggested by the vapor d e n s i t y measurements, mass spectrum and low temperature I n f r a r e d spectrum. The h i g h p o s i t i o n of the v SF mode i s f e a s i b l e i f i t i s c o n s i d e r e d t h a t the f l u o r i n e atom may p a r t i c i p a t e t o an i n c r e a s e d degree i n pir -* dir bonding when the f l u o r o s u l f ate group b r i d g e s between the two Lewis a c i d c e n t e r s . I t i s r e c a l l e d t h a t from symmetry arguments as d i s -cussed i n the General I n t r o d u c t i o n t h e r e must be a t o t a l o f 6 A' modes and 3 A" modes i n a b i d e n t a t e SO^F group w i t h C s symmetry, wit h 2 A' modes and 1 A" mode among the thr e e v SO^ v i b r a t i o n s i n t h i s case. The p o l a r i z a t i o n data o b t a i n e d here f o r S b F 4 ( S 0 3 F ) • S b F 5 i n the Raman exper ment show t h a t the f r e q u e n c i e s a t 1430 cm 1 and 1068 cm 1 are both p o l a r i z e d and thus o f A* symmetry. T h i s leaves o n l y the very weak, b a r e l y d e t e c t a b l e 1095 cm 1 band t o be o f A" symmetry by d e f a u l t . The f a c t t h a t t h i s band was so weak i n the Raman spectrum w h i l e a t the same time so s t r o n g i n the I n f r a r e d spectrum f u r t h e r c o n f i r m s i t s A" symmetry. I t can be seen, then, t h a t the o r i g i n a l assignment of symmetries f o r the two h i g h e s t peaks i n F2Sn(S0 3F)2 sh o u l d be changed i f one assumes the analogy o f v i b r a t i o n s between the two compounds. The unobserved peaks a t ^730 cm 1 and ^648 cm 1 among o t h e r s i n the Raman spectrum o f SbF^(SO^F)•SbF^ may l i k e w i s e be con-s i d e r e d to be o f A" symmetry and would be expected to be s t r o n g i n the I n f r a r e d spectrum by c o n t r a s t . In the r e g i o n between 750 cm 1 and 600 cm 1 f o r the adduct, s e v e r a l Sb-F and the Sb-0 s t r e t c h i n g v i b r a t i o n s are expected. Below t h a t the 6" S 0 3 F ( A') mode i s found a t 581 cm" 1 w h i l e the 6 S0 3F (A") mode i s a t 556 cm" 1 as compared t o the v a l u e s of 630 cm 1 and 590 cm 1 f o r 249 F 2 S n ( S 0 3 F ) 2 . In a d d i t i o n , the t h i r d 6 SC>3F (A') mode should be found a t M50 cm but t h i s i s a l s o where the <Sfc,end S b F m O n modes are expected t o occur. T h e r e f o r e no unambig-uous assignment can be made i n t h i s r e g i o n nor i n the r e g i o n below ^350 cm 1 where the deform a t i o n modes f o r the SbF: 0 and SCuF groups should be found. F o r t u n a t e l y , i n m n 3 the S-0 and S-F s t r e t c h i n g range t h e r e are no i n t e r f e r e n c e s and thus the observed f r e q u e n c i e s i n t h i s r e g i o n can be used t o i d e n t i f y the type o f f l u o r o s u l f a t e group p r e s e n t here. b) S b F 4 ( S 0 3 F ) The Raman spectrum o f t h i s compound, i l l u s t r a t e d i n F i g u r e 33, i s re a s o n a b l y c o n s i s t e n t w i t h the p r e v i o u s l y r e -250 p o r t e d Raman v a l u e s . As f o r S b F 4 ( S 0 3 F ) • S b F 5 , the peaks at 1424 cm" 1, ^1150 cm" 1, 1080 cm" 1 and 900 c m - 1 correspond w e l l t o a b r i d g i n g S0 3F group i n S b F 4 ( S 0 3 F ) . The one doubt-f u l peak i s the v e r y weak broad band a t ^ 1150 cm 1 s i m i l a r t o the one a t ^ 1100 c m - 1 i n the adduct. To support t h i s view o f a b r i d g i n g b i d e n t a t e group, the I n f r a r e d spectrum of S b F 4 ( S 0 3 F ) a t room temperature between B a F 2 windows was reco r d e d . The o n l y peaks t h a t were observed were a t 1425 c m - 1 ( s ) , ^ 1150 cm" 1 (s, br) , 1065 c m - 1 (s) and 890 cm" 1 (s) i n e x c e l l e n t agreement w i t h the Raman r e s u l t s o f t h i s r e g i o n . The absence o f any a b s o r p t i o n i n e i t h e r spectrum a t ^ 1240 cm 1 , which i s commonly the most i n t e n s e S-0 s t r e t c h i n g frequency o f A' symmetry f o r a monodentate f l u o r o s u l f a t e group, a l l o w s the c o n c l u s i o n t h a t no t e r m i n a l -0S0 2F groups are pr e s e n t i n the l i q u i d s t a t e . Attempts to r e c o r d the room temperature I n f r a r e d spectrum of Figure 33. 251 S b F 4 ( S 0 3 F ) with AgBr or AgCl windows i n the S-0 and S-F s t r e t c h i n g range r e s u l t e d i n c o n s i d e r a b l e change of the spectrum over a p e r i o d o f f i v e minutes. T h i s h e l p s to e x p l a i n the d i s c r e p a n c y between the I n f r a r e d and Raman s p e c t r a o f t h i s compound as p r e v i o u s l y r e p o r t e d by another 250 group. The I n f r a r e d spectrum o b t a i n e d by t h i s o t h e r group was i d e n t i a l t o the s p e c t r a o b t a i n e d here a f t e r e x t e n s i v e window a t t a c k . The low temperature I n f r a r e d spectrum which was ob-t a i n e d , however, was more complex than expected, as F i g u r e 34 shows. There appears to be e i g h t f r e q u e n c i e s above 800 cm 1 i n s t e a d of the u s u a l f o u r (three S-0 s t r e t c h e s and one S-F s t r e t c h ) as expected. The f o u r more i n t e n s e bands at 1420 cm - 1, 1155 cm - 1, 1050 cm" 1 and 898 cm 1 are e a s i l y a s s i g n e d t o the t h r e e v SO^ v i b r a t i o n s and one v SF v i b r a t i o n f o r a b i d e n t a t e b r i d g i n g S 0 3F group along l i n e s p r e v i o u s l y d i s c u s s e d f o r S b F 4 ( S 0 3 F ) • S b F g . The o t h e r f o u r bands a t 1482 cm" 1, 1240 cm" 1, 965 c m - 1 and ^840 cm 1 are o f lower i n t e n s i t y s u g g e s t i n g lower abund-ance of a monodentate -OS0 2F group. I t i s thought t h a t v a p o r i z a t i o n o f the {sbF 4(S0 3F ) J polymer must occur v i a cleavage of the 0 ^ Sb c o o r d i n a t e bonds which are p r e s e n t i n the l i q u i d s t a t e b e f o r e the sample may be d e p o s i t e d upon the c o l d C s l window. Among the most l i k e l y s p e c i e s i n the vapor phase are the monomer and dimers or t r i m e r s of the c h a i n type, f o r example. I t i s r e a s o n a b l e , then, to a s c r i b e t h i s second s e t of f o u r bands i n the SO^F 1600 1400 1200 1000 800 600 400 200 Wavelength [cm - 1] * denotes background band Figure 34 253 s t r e t c h i n g frequency range as being due to the monodentate c o v a l e n t l y bonded f l u o r o s u l f a t e group i n SbF^fSO^F) monomers or t o t e r m i n a l -OSC^F groups i n v a r i o u s c h a i n fragments, as a s s i g n e d i n Table 41. A low temperature I n f r a r e d experiment u s i n g a c e n t r a l B a F 2 window i n s t e a d o f a C s l window was a l s o attempted. A f t e r a spectrum of the S b F 4 ( S 0 3 F ) was reco r d e d a t 80°K the sample was allowed to s l o w l y warm up over a c e r t a i n p e r i o d o f time. The second s e t of f o u r weak peaks was then observed t o decrease i n i n t e n s i t y u n t i l t h e r e was no evidence f o r a monodentate c o v a l e n t SO^F group i n the sample. A p p a r e n t l y the presence o f such a monodentate group can o n l y be d e t e c t e d a t low temperatures where mole-c u l e s c o n t a i n i n g these groups may be f r o z e n out immediately a f t e r being v o l a t i l i z e d . At temperatures approaching RT, on the o t h e r hand, the S b F 4 ( S 0 3 F ) molecules tend to as-s o c i a t e much more e a s i l y r e s u l t i n g i n the presence o f pr e -dominantly i f not e x c l u s i v e l y b r i d g i n g b i d e n t a t e SO^F groups. c) S b F 3 ( S 0 3 F ) 2 The Raman spectrum of S b F 3 (SO-^F) 2 i s shown i n F i g u r e 35. As s t a t e d e a r l i e r , the low temperature I n f r a r e d spectrum of t h i s sample was not s u c c e s s f u l . T h e r e f o r e o n l y the I n f r a r e d spectrum w i t h B a F 2 windows was o b t a i n a b l e as i l l u s t r a t e d i n F i g u r e 36. For SbF 3(SC> 3F) 2 two d i f f e r e n t types of f l u o r o s u l f a t e groups are evidenced from the S-0 Figure 35. The I.R. spectrum of Sbf^ (S0 3 F) 2 at 25°C from 1600 tc 800 cirri (Baf| range) 1600 1400 1200 1000 800 Wavenumber cm~i Figure 36. 256 and S-F v i b r a t i o n a l band p o s i t i o n s as l i s t e d i n Table 41. As d i s c u s s e d f o r the oth e r two compounds, a d i s t i n c t i o n between the monodentate c o v a l e n t SO^F group w i t h the vasym 3 0 2 ' vsyni S 0 2 ' v SO and v SF modes a t 1461 cm 1 , -1 -1 -1 1242 cm , 1030 cm , and 861 cm can be made from the b r i d g i n g b i d e n t a t e SO^F group w i t h i t s t h r e e v SO^ modes at 1424 cm~ 1(p), 1225 cm" 1 (dp?) and 1078 cm" 1 (p) and i t s v SF a t 885 cm 1 (p). T h i s arrangement i s completely expected f o r S b F 3 ( S 0 3 F ) 2 . In t h i s case i t i s suggested t h a t one S 0 3 F group from each S b F 3 ( S 0 3 F ) 2 molecule b r i d g e s i n t o the s i x t h c o o r d i n a t i o n s i t e o f antimony i n another SbF 3(SC> 3F) 2 molecule p r o d u c i n g an a s s o c i a t e d s p e c i e s i n the l i q u i d s t a t e , as evidenced by i t s extremely v i s c o u s nature. There i s on each S b F 3 ( S 0 3 F ) 2 molecule, however, one u n c o o r d i n a t e d S 0 3F group which must n e c e s s a r i l y be monodentate or t e r m i n a l s i n c e the antimony atoms' co-o r d i n a t i o n s i t e s would a l l be f i l l e d . In each o f the l a s t two cases, S b F 3 ( S 0 3 F ) 2 and S b F ^ S C ^ F ) , the g e n e r a l r e g i o n o f ^750 cm 1 to ^600 cm 1 i s expected t o con-t a i n the v SbF and v SbO modes. Again, no c e r t a i n assignment can be made, u n f o r t u n a t e l y , r e g a r d i n g the types of isomers which may be p r e s e n t , such as c i s or t r a n s f o r example. The 6S0 3F(A') (or 6bend S0 2) and 6S0 3F(A") ( or Yrock 3 ^ 2 ) m ° d e s f o r the b i d e n t a t e b r i d g i n g (or c o v a l e n t monodentate) S0 3F group may be found a t ^580 c m - 1 and ^550 cm - 1. The t h i r d bending mode <5S03F(A") (or Ywag S F ) a n < ^ t n e 5bend s k F m ° n v i b r a t i o n s are expected ^450 cm 1 with the remaining deformation modes f o r the S b F m O n and SO^F groups then found below 300 cm "S however, no p r e c i s e assignments of these bands may be made at t h i s time. S e v e r a l p o i n t s can be made r e g a r d i n g the o v e r a l l r e s u l t s on the mixed antimony (V) f l u o r i d e - f l u o r o s u l f a t e s . One i s t h e i r seeming s t r u c t u r a l s i m i l a r i t y t o the mixed t i n (IV) f l u o r i d e -f l u o r o s u l f a t e s . J u s t as o c t a h e d r a l c o o r d i n a t i o n around t i n (IV) 8 10 atoms has been w e l l e s t a b l i s h e d f o r a wide v a r i e t y of compounds', ' the same has a l s o been shown f o r antimony (V) atoms i n many com-5 0 151 159 pounds. ' ' The o n l y major t h i n g t h a t changes i s t h a t as the v a l e n c y i n c r e a s e s from 4 to 5 i n the case of Sn versus Sb, the number o f p o s s i b l e c o o r d i n a t i o n s i t e s around the c e n t r a l atom decreases from 2 t o 1. In both cases, though, j u s t as f l u o r o -s u l f a t e b r i d g i n g i s f a v o r e d over f l u o r i n e b r i d g i n g i n t i n (IV) compounds where both types o f b r i d g i n g a r e p o t e n t i a l l y p o s s i b l e , l i k e i n F 2 S n ( S 0 3 F ) 2 , f l u o r o s u l f ate b r i d g i n g a l s o appears to dominate over f l u o r i n e b r i d g i n g i n the antimony (V) compounds, l i k e SbF-jtSO-jF),,, t h a t were s t u d i e d here. In analogous Sn (IV) and Sb (V) compounds which c o n t a i n not o n l y b r i d g i n g SO^F groups but t e r m i n a l groups as w e l l , i t appears t h a t i t i s always the t e r m i n a l group which i s changed i n t o a b r i d g i n g group when l i g a n d r e d i s t r i b u t i o n s are c a r r i e d o u t 1 1 such as i n the f o l l o w i n g two r e a c t i o n s (under m i l d c o n d i t i o n s f o r both) S n ( S 0 3 F ) 4 + S n C l 4 2 S n C l 2 ( S 0 3 F ) 2 S b F 3 ( S 0 3 F ) 2 + S b F 5 > 2 S b F 4 ( S 0 3 F ) . 258 In the antimony compounds another f e a t u r e a l s o seems to occur . S p e c i f i c a l l y , i t i s the p r e f e r e n c e o f complex for m a t i o n over s e l f polymer fo r m a t i o n as i l l u s t r a t e d i n the f o r m a t i o n o f the adduct from the two pol y m e r i c s t a r t i n g m a t e r i a l s v i a the r e a c t i o n I t might a l s o be p o s t u l a t e d from the evidence g i v e n here and elsewhere c o n c e r n i n g the tendancy o f the SO^F group to be-come i n v o l v e d i n b r i d g i n g s i t u a t i o n s , t h a t the f i r s t s t e p i n the s o l v o l y s i s r e a c t i o n s o f f l u o r o s u l f ate compounds i n SbF,_ may be the f o r m a t i o n o f the i n t e r m e d i a t e SbF 4(S0 3F) + S b F 5 >- SbF 4(S0 3F)-SbF 0 F 25' The subsequent cleavage o f the Y-0 bond and the e v e n t u a l f o r m a t i o n of S b F 4 ( S 0 3 F ) and then S b F 4 ( S 0 3 F ) • S b F 5 w i t h excess S b F 5 c o u l d w e l l be the method by which Y S b x F 5 x + l s a l t s a r e f o r m e d , s i n c e t h e r e i s now good evidence f o r the e x i s t e n c e o f these types of compounds. 5. Complexation r e a c t i o n s The compounds d i s c u s s e d i n the p r e c e e d i n g p a r t are o b v i o u s l y e x c e l l e n t SO^F i o n a c c e p t o r s . They should, t h e r e f o r e , y i e l d the " s u p e r a c i d " anions SbF__ (SO.,F) ~ p r o v i d e d t h a t a good SO^F~ donor c o u l d be found. In t h i s i n v e s t i g a t i o n v i b r a t i o n a l r a t h e r than NMR s p e c t r o s c o p y was c o n s i d e r e d t o be a b e t t e r method o f i d e n t i f i c a t i o n . A s u i t a b l e SO^F i o n donor would be an i o n i c f l u o r o s u l f a t e l i k e KSO^F, but the r e s u l t i n g r e a c t i o n between an i o n i c s o l i d and a v i s c o u s l i q u i d without any s u i t a b l e s o l v e n t c o u l d l e a d t o an incomplete c o n v e r s i o n . ClG^SO-jF was chosen i n s t e a d f o r the f o l l o w i n g reasons: f i r s t l y , the C 1 0 2 + c a t i o n has been w e l l e s t a -271 272 b l i s h e d ' and i t s v i b r a t i o n a l f r e q u e n c i e s may l e n d f u r t h e r support f o r an i o n i c s t r u c t u r e ; secondly, ClC^SO^F can be e a s i l y s y n t h e s i z e d ; and t h i r d l y , ClC^SO-jF can be r e a d i l y employed i n s y n t h e t i c r e a c t i o n s because i t i s a l i q u i d a t room temperature, a) P r e p a r a t i o n s and a n a l y s e s (i) C 1 0 2 [ s b F 4 ( S 0 3 F ) 2 ] To a 50 ml two-part r e a c t o r c o n t a i n i n g 0.687 g (2.32 mmoles) of S b F 4 ( S 0 3 F ) , 0.385g (2.32 mmoles) o f the dark red C 1 0 2 S 0 3 F was added dropwise a c c o r d i n g t o 260 C 1 0 2 S 0 3 F + S b F 4 ( S 0 2 F ) . ~> C 1 0 2 [ s b F 4 ( S Q 3 F ) J . A f t e r h e a t i n g the r e a c t a n t s to 50°C, a r e a c t i o n o c c u r r e d upon mixing o f the m a t e r i a l s t o produce a c l e a r l i g h t -y e l l o w , r e l a t i v e l y v i s c o u s l i q u i d a t room temperature. ( i i ) C 1 0 2 [ s b F 3 ( S 0 3 F ) J In a s i m i l a r manner as b e f o r e , 0.917g (2.43 mmoles) o f S b F 3 ( S 0 3 F ) 2 and 0.407g (2.44 mmoles) o f C10 2S0 3F were r e -ac t e d a c c o r d i n g t o the e q u a t i o n C 1 0 2 ( S 0 3 F ) + S b F 3 ( S 0 3 F ) 2 — = > C1C>2 [sbF 3 (SC>3F) 3 ] . Again, a f t e r h e a t i n g t o 50°C and thorough mixing, a c l e a r , l i g h t - y e l l o w , r e l a t i v e l y v i s c o u s l i q u i d r e s u l t e d . ( i i i ) "C10 2[sbF 5 (S0 3F ) J " A n a l o g o u s l y t o the p r e v i o u s two r e a c t i o n s , 4.42 80g (20.430 mmoles) of SbF c were r e a c t e d w i t h 2.5103g (20.402 o mmoles) of C 1 0 2 S 0 3 F a c c o r d i n g to the expected r e a c t i o n C 10 2S0 3F + S b F 5 C l 0 2 [ s b F 5 ( S 0 3 F ) ] . Upon mixing of these two m a t e r i a l s a t room temperatures, however, a c r y s t a l l i n e p roduct appeared amidst a c l e a r , l i g h t - y e l l o w , r e l a t i v e l y v i s c o u s l i q u i d . Heating of the m a t e r i a l s to 120°C e v e n t u a l l y caused the mixture to comp-l e t e l y l i q u e f y and change i n c o l o r t o a red-orange hue. Upon slow c o o l i n g to room temperature, a c r y s t a l l i n e product 261 and l i g h t - y e l l o w v i s c o u s l i q u i d reappeared. I f the sample was heated to 120°C and immediately immersed i n t o a l i q u i d N 2 bath, a l i g h t - y e l l o w c o l o r e d g l a s s y m a t e r i a l r e s u l t e d which, when slo w l y warmed back up t o room temperature, gave an opaque y e l l o w i s h p r o d u c t ( s ) . T h i s p r o d u c t ( s ) had a very t h i c k c o n s i s t e n c y and would b a r e l y flow a t room tempera-t u r e . A f t e r s t a n d i n g a t RT f o r one week, however, a r e t u r n t o the c r y s t a l l i n e s o l i d and l i g h t - y e l l o w l i q u i d was n o t i c e d . (iv) A nalyses Subsequent a n a l y s i s by A. Bernhardt on the f i r s t two samples confirmed t h e i r s t o i c h i o m e t r i e s as shown below. % Sb % S % F C10 2[sbF 4 ( S 0 3F) 2] c a l c : 26.28 24.60 13.84 found: 26.46 24.47 13.68 C10 2[sbF 3(S0 3F)3] c a l c : 22.41 20.98 17.70 found: 22.66 20.87 17.51 b) V i b r a t i o n a l s p e c t r a o f C 1 0 2[sbF 4 ( S 0 3F) 2 J and C 1 0 2[sbF 3 ( S 0 3F) J 9 In order t o a v o i d any a t t a c k o f the I n f r a r e d window mater-i a l by these two compounds, o n l y BaF 2 c o u l d be used. Raman s p e c t r a and p o l a r i z a t i o n data on the v i s c o u s l i q u i d s were a l s o recorded down to 13 3 cm 1 as shown i n F i g u r e s 3 7 and 38 and l i s t e d i n Table 42. As seen i n the Table most of the f r e q u e n c i e s Figure 37. 1500 1300 1100 900 700 Wavelength [cm - 1] 500 300 100 Figure 38, NJ CTl LO TABLE 42 V i b r a t i o n a l Frequencies f o r C102[sbFit (S03F) 2] and C10 2[sbF 3 (S03F) 3] Infrared C10 2[sbFi +(S0 3F) 2] cm -1 I n t e n s i t y Raman cm -1 I n t e n s i t y C10 2[sbF 3 (S0 3 F) 3 ] Infrared I Raman cm Intensity cm -1 Intensity Assignments 1398 1325") 1295J 12251 1205J 11031 1080J f10251 llOOOJ ^820 sh s s sh w, sh sh s sh sh on BaF 2cutoff f l 405") (1397J 1302 1053 { 853) 838J 683 637 585 557 519 441 412 291 262 213 mw,br (dp) w ms J1232") (1222) sh vs (dp) (P) (p) 980 vw,br (dp) mw.br (p) sh (dp?) (P) (P?) (P?) (P?) (P) w vs mw w mw mw w,sh (p?) m (p) m (p) w (dp?) 1405 (1330") 7 1290J (1225") I12OOJ f l l O O l (1080J ?1025"> t 985J ^835 sh m s sh sh sh sh s sh on BaF 2cutoff (1434") 11413J 1305 $"1243] ( l 2 2 l j 1052 f 8 5 4 | L842J 687 634 583 554 520 443 421 290 265 210 mw,br (dp) w vs s,sh vs (dp) (P) (P) 971 vw,br (dp) mw,br (p) sh w vs mw mw mw • m w, sh w, sh m (P) (P) (dp) (P?) (P) (P?) (P) (P) vw,shi (dp?) } \ J } } } s v S0 2 asym " v C102 asym vsym s o 2 vsym c l ° 2 + SO SF SbFc v SbO 6bend s o 2 Yrock s o 2 6bend C 1 0 2 6 bend SbF mO n Ywag SF Ydeform SbF mO n + Ydeform S0 3F Abbreviations: vs mw sh = very strong, s = strong, ms = medium strong, m = medium, = medium weak, w = weak, vw = very weak, br = broad, = shoulder, p = p o l a r i z e d , dp = depolarized. _1 above 800 cm are s l i g h t l y s p l i t . One or more of the f o l l o w i n g reasons may account f o r t h i s : f i r s t , t h ere may be d i f f e r e n t g e o m e t r i c a l isomers o f the SbF_ (SO^F) anions; second, the D — X -5 X 35 37 -t-C l and C l i s o t o p e s may produce s p l i t t i n g s i n the C 1 0 2 bands; t h i r d , t h e r e may be s l i g h t nonequivalence of the SO^F groups (that i s , they may be i n d i f f e r e n t orientations); and fourth v i b r a t i o n a l c o u p l i n g may even be p r e s e n t . The p o s s i b i l i t y o f mixtures produced by subsequent l i g a n d s c r a m b l i n g cannot be r u l e d out e i t h e r . The C 1 0 2 + c a t i o n has been found to be bent i n the c r y s t a l 273 s t r u c t u r e f o r C 1 0 2Sb 2F.|^, t h e r e f o r e t h r e e v i b r a t i o n s , a l l Raman and I n f r a r e d a c t i v e , are expected f o r t h i s c a t i o n . In Table 43 are l i s t e d the f r e q u e n c i e s f o r the C 1 0 2 group i n some c h l o r y l compounds. The peaks a t ^1300 cm \ ^1060 cm 1 and ^520 cm 1 have been a s s i g n e d f o r these compounds as the v a s v m C 1 0 2  vsym c l ° 2 a n c ^ 5bend c l ° 2 ra°des r e s p e c t i v e l y f o r the c a t i o n (except i n the case of C I O 2 F ) . The c o r r e s p o n d i n g v i b r a t i o n a l f r e q u e n c i e s f o r the i s o e l e c t r o n i c SO2 molecule have been i n c l u d e d f o r compari-son. The observed v a l u e s f o r the C 1 0 2 + v i b r a t i o n s i n C 1 0 2 [ s b F 4 (SO^F) 2 ] and C 1 0 2 | j 3 b F 3 (SOgF) J f a l l i n t o the same range as f o r o t h e r i o n i c compounds c o n t a i n i n g the c h l o r y l c a t i o n . A v i b r a t i o n a l study of the AsF^tSO^F) a n i o n 1 may serve as a u s e f u l example to e l u c i d a t e the v i b r a t i o n a l f r e q u e n c i e s of the SbF,_ (SO-.F) anions. In the case of the a r s e n i c - c o n t a i n i n g anion, bands a t 1359 cm - 1, 1205 cm - 1, 1034 c m - 1 and 856,849 c m - 1 were a s s i g n e d as the three S - 0 and one S-F s t r e t c h i n g modes f o r a t e r m i n a l , p o l a r , c o v a l e n t monodentate SO^F group. S i m i l a r 266 TABLE 43 Infrared Frequencies of the CIO2 Group i n Some C h l o r y l Compounds  Compound asym CIO. -1> (cm ) sym CIO; (cm *) 6, . C10 2 bend z-(cm ) Reference C10 2BF 4 C10 2AsF 6 C10 2AsF 5(S0 3F) C10 2SbF 6 C 1 0 2 S b 2 F 1 1 C 1 0 2 S b 3 F 1 6 C10 2SnF 6 C10 2Sn(S0 3F) 6 C10 2C10 4 C10 2F { { 1308 1294 1296 1283 /1307 (.1291 { 1307 1292 /1304 11290 11304 ( 1290 { 1302 1290 f 1303 (.1290 T1296 11282 J*1271 ll259 f l l l l 1.1099 ("1330 1.1308 m mw mwj mn mwj } } } ) :} } _> } } vs vs 1100-900 ("1044 \1038 /1060 £l057 fl062 (1057 1048 /1053 L1048 ("1076 (1072 1025 1040 ("1106 (1098 943 1147 mw^ l wj w, sh") } ms } :} 518 / 521 1517 524 C523 1520 515 T517 (.514 522 519 530 f 547 1 543 445 521 m m sh 1 } } m } 271 271,272 1 274 1,153 274 275 276 277 278 279 280 2 bands are a l s o found f o r the SbF^SO^F).^ and SbF^ (SO^F) ^  anions s t u d i e d here, as shown i n Table 42. The f a c t t h a t no b r i d g i n g b i d e n t a t e SO^F groups are i n d i c a t e d i n the s p e c t r a i m p l i e s t h a t the SO^F moiety has been a b s t r a c t e d from the C 10 2S0 3F by the SbF,. (SO-.F) compounds forming s t a b l e o c t a h e d r a l l y c o o r d i n a t e d O X j X anions where a l l the SO^F groups are t e r m i n a l . The bands a t ^685 cm 1 and ^6 35 cm 1 must be due to e i t h e r the v SbF and/or the v SbO s t r e t c h i n g v i b r a t i o n s , but no d i s t i n c t i o n between these and other perhaps v e r y weak peaks i n t h i s r e g i o n can be a c c u r a t e l y made. The peaks a t ^585 cm 1 and ^555 cm 1 can be a s s i g n e d as the <5fc)end S 0 2 a n ( 1 Y r o c k SC»2 modes i n analogy w i t h o t h e r s i m i l a r — 1 0 — 1 "7 C\ modes i n A s F 5 ( S 0 3 F ) and S n ( S 0 3 F ) g ~. But the r e g i o n around 450 - 400 cm 1 i s expected t o c o n t a i n the Ywag S F m ° d e ; any modes below t h i s are expected t o r e s u l t from v a r i o u s d e f o r m a t i o n modes from the s k e l e t a l SbF^O^ or SO^F groups. Consequently no s p e c i -f i c assignment of these bands has been made. I n v e s t i g a t i o n s o f "ClC> 2£sbF 5 (SC>3F)] " As mentioned p r e v i o u s l y two m a t e r i a l s seemed to s e p a r a t e i n the r e a c t i o n o f C 1 0 2 S 0 3 F w i t h SbF,.. Although a 1:1 r a t i o n o f the r e a c t a n t s was used i n t h i s case, a s i m i l a r r e a c t i o n i n v o l v i n g excess SbF,. had been r e p o r t e d i n the p r e p a r a t i o n of C 1 0 2 S b 2 F ^ . 1 A Raman spectrum of the y e l l o w opaque pro d u c t s o b t a i n e d a f t e r quenching the m a t e r i a l s i n t o l i q u i d N 2 immediately a f t e r h e a t i n g t o 120°C, and b e f o r e any s e p a r a t i o n o c c u r r e d showed peaks which c o u l d be a s c r i b e d to a mixture of C10„SbF 1 5 3 and ClCLTsbF,,(SO„F)„ 2 6 2L 4 3 2 268 A f t e r s e p a r a t i o n i n t o the two phases, a sample of the y e l l o w l i q u i d was c a r e f u l l y p i p e t t e d from the white s o l i d i n the mix-t u r e and i t s Raman spectrum recorded. No evidence was found f o r C 1 0 2 S b F 6 ; 1 5 3 however, peaks l i k e those o f ClC>2£sbF4 (SC> 2F) 2 J were observed, although not w i t h complete correspondence. An a n a l y s i s of t h i s l i q u i d showed the presence of 28.58% Sb and 14.66% S. T h i s corresponds t o a gram-atom r a t i o o f Sb:S as 1.95:1.00 f u r t h e r i n d i c a t i n g C 10 2[sbF 4(SO^F) 2 J. T h i s suggests t h a t i f Cl0 2|sbF^ (SO^FJj i s formed, i t probably d i s p r o p o r t i o n a t e s a c c o r d -i n g t o 2 C l 0 2 [ s b F 5 (S0 3F ) J C10 2SbF 6 + - C102[sbF.4 (SC^F) 2 ] . The f a c t t h a t both C10 2SbFg and C l C ^ S b ^ ^ are white s o l i d s sup-p o r t s t h i s argument, alt h o u g h no s e p a r a t i o n of the white s o l i d was attempted from the v i s c o u s y e l l o w l i q u i d i n t h i s case. d) Low temperature I n f r a r e d spectrum of CIG^SO^F Since ClO-^SO^F was used as one o f the s t a r t i n g m a t e r i a l s f o r the Cl0 2|^SbFg_ x (SO^F) x J compounds and v i b r a t i o n a l s p e c t r o s c o p y was the method of i d e n t i f i c a t i o n , i t was c o n s i d e r e d necessary t o c o n f i r m t h a t none o f the bands d i s c u s s e d f o r the complexes were due t o C10 2S0 3F. S i n c e C 10 2S0 3F i s such a dark l i q u i d , the complete Raman spectrum o f t h i s compound has never been r e c o r d e d , 281 but s e v e r a l o f i t s peaks have been observed. To complement these v a l u e s the low temperature I n f r a r e d spectrum of C10 2S0 3F was re c o r d e d . The spectrum t h a t was ob t a i n e d i s i l l u s t r a t e d i n F i g u r e 39, the r e s u l t s o f which are compiled i n Table 44. The IR spectrum of CI02S03Fat 80°K between 1600 and 200 cm~i 1600 1400 1200 1000 800 600 400 Wavenumber crrr1 Figure 39. CT, CO 270 TABLE 44 Vibrational Frequencies for C10 2S0 3F Raman at RT Infrared at ^OOK Assignments (Reference 281) (this. wo rk) -1 Intensity -1 cm cm Intensity 1440 w 1438 s vasym S0 2 ^1330 vw 1315 sh 1216 vw 1306 1232 vs s vasym C102 1190 vs,br' v sym v sym S0 2 1076 vs 1074 ^1040 m sh C102 975 ms V SO 882 w ^800 br 806 s V SF 674 w V C10 600 m 599 mw 583 sh? 578 mw 560 w 555 ms 5bend S0 2 547 ms Yrock S0 2 430 538 ms ^bend C102 m 423 407 -V320 ^290 ^260 mw mw sh sh m,br Ywag Ytwist SF S0 2F 195 s 271 For an i s o l a t e d molecule c o n t a i n i n g 8 atoms l i k e C l O ^ O ^ F , 18 v i b r a t i o n a l fundamentals are expected. O b v i o u s l y more than t h a t appear i n Table 44 and no complete assignment of the bands w i l l be g i v e n here. However, some bands can be d i s t i n g u i s h e d i n the spectrum, p a r t i c u l a r l y i n the s t r e t c h i n g range above 800 cm t h a t are r e l e v a n t f o r purposes of comparison to the bands g i v e n by the C 1 0 2 ^ S b F g _ x ( S O ^ F ) x J compounds. F i r s t o f a l l , s l i g h t s h i f t s are noted f o r the C10 2 group v i b r a t i o n s i n C l O ^ O ^ F where the v a s v m C10 2, V g y j j j C10 2 and ^foend Cl-0 2 modes are found at 1306 cm - 1, 1074 c m - 1 and 538 cm - 1. There may be s l i g h t i s o t o p e s p l i t t i n g o f the f i r s t two modes at 1315 cm 1 and ^1040 cm \ but these e x t r a f r e q u e n c i e s can a l s o be e x p l a i n e d i n o t h e r terms. By and l a r g e , though, t h e r e i s no s i g n i f i c a n t d i f f e r e n c e i n these modes t o d i s t i n g u i s h any of the C 1 0 2 - c o n t a i n -i n g complexes from C10 2S0 3F. In the S-0 and S-F s t r e t c h i n g range, the bands at 1438 cm \ 1190 cm 975 cm 1 and 806 cm 1 correspond to the v a S y m S 0 2 , vsym S 0 2 ' v S 0 a n c l v S F m o < ^ e s f ° r a monodentate SO^F group. As a b r i e f comparison between T a b l e s 42 and 44 w i l l show, these bands f o r ClO^O-jF are nowhere t o be found i n the s p e c t r a f o r the C 1 0 2 - c o n t a i n i n g complexes. A t e n t a t i v e assignment f o r some o f the lower frequency bands i n ClO-jSO^F are g i v e n i n Table 44. From these few peaks i t can s a f e l y be concluded t h a t a d e f i n i t e and v i r t u a l l y complete chemical r e a c t i o n has o c c u r r e d between CIO-SO.F and the SbF__ (SO^F) compounds forming the new C 1 0 2 - c o n t a i - n ; ' - n 9 complexes. V I I I SUGGESTIONS FOR FURTHER WORK Some of the r e a c t i o n s and methods d i s c u s s e d here were n a t u r a l l y l i m i t e d by the scope o f t h i s study, the i n s t r u m e n t a l techniques and the time a v a i l a b l e . E x t e n s i o n s of t h i s study c o u l d be made i n t h r e e areas: A. a c o n t i n u a t i o n of the study o f the chem i s t r y of some of the compounds s y n t h e s i z e d here; B. the a p p l i c a t i o n of s y n t h e t i c methods which have been d e s c r i b e d t o r e l a t e d c h e m i c a l systems; and C. a refinement o f some of the sugg e s t i o n s which were made on some of the p r e v i o u s l y d i s c u s s e d compounds by the use o f X-ray d i f f r a c t i o n , NQR and low tempera-t u r e Raman s p e c t r o s c o p y . J u s t as B r 0 and C l - were added t o Br„Sb 0F,, t o form the Br-> 2 2 2. 3 l o 3 and B^Cl"*" c a t i o n s , i t seems l i k e l y t h a t when added t o B ^ S b ^ F should y i e l d the B r 2 F + c a t i o n i f added i n a s t o i c h i o m e t r i c amount perhaps a c c o r d i n g t o the f o l l o w i n g r e a c t i o n scheme A P t F 4 + 2 B r n S b ^ F 3 16 + F 2 2 Br 0F" rSb F x 5x+l 273 An a l t e r n a t e method of p r e p a r a t i o n may be v i a the l i g a n d r e d i s t r i -b u t i o n r e a c t i o n s which have proven s u c c e s s f u l f o r the iodonium (III) compounds, e.g. B r F 0 S b F c + B r _ S b 0 F , c >• 2 Br»FSb F c + (4-2x)SbF c-. 2 6 3 3 16 2 x 5x+l 5 In analogy to p r e v i o u s r e s u l t s , the f o r m a t i o n o f the B r C l F + c a t i o n may be produced a c c o r d i n g t o S b F 5 + BrOS0 2F + C1F + (x+2)SbF 5 BrCIF s b x F 5 x + 1 + s b F 4 (SO^F) • SbF 5 The f o r m a t i o n o f the I 2 F + a n < ^ I F 2 + c a t ^ - o n s s h o u l d a l s o be f e a s i b l e a c c o r d i n g t o a s i m i l a r r o u t e f o r the former as f o r B r 2 F + PtF 6 A PtF 4 . + 2 I 2 S b 2 P n + F, § b P 5 ^ 2 I 2 F + S b x F 5 x + 1 - , and v i a the f o l l o w i n g r e a c t i o n s f o r the l a t t e r IOSO„F + XeF„ * — ~ £ ». I F o S 0 , F + Xe 2 2 temp 2 3 SbF. I F 2 S 0 3 F + (x+2)SbF 5 I F 2 S b x F 5 x + 1 + SbF 4 (SC>3F) • SbF 5 B. The s o l v o l y s i s of h y p o t h e t i c a l f l u o r o s u l f a t e s o f the type X m ( S 0 3 F ) n i n SbF,. may r e s u l t i n n o v e l homoatomic c a t i o n s o f the type X m n * i n SbF,.. A reasonably h o p e f u l e f f o r t c o u l d be made to o b t a i n the e l u s i v e C l 2 + c a t i o n , and e x t e n s i o n s t o o t h e r main group element c a t i o n s are p o s s i b l e . The methods used to s y n t h e s i z e the antimony (V) f l u o r i d e -f l u o r o s u l f a t e s may be extended t o the elements As, P or B i . Some o f the remaining antimony (V) f l u o r i d e - f l u o r o s u l f a t e s o f the type SbF r._ x (SO^F) , where x = 3,4,5, might be s y n t h e s i z e d u s i n g S 2 0 g F 2 v l a ^ e r e a c t i o n s 2 Sb + 4 SbF 3 + 9 S 2 O g F 2 ?~ 6 S b F 2 ( S 0 3 F ) 3 2 Sb + SbF- + 6 S„0,F» —r—»- 3 SbF(SO-,F). 3 2 6 2 3 4 2 Sb + 5 S„0,F„ >• 2 S b ( S 0 o F ) _ I b I 3 D . Other i n t e r e s t i n g t o p i c s t o i n v e s t i g a t e would be the low temperature Raman s p e c t r a o r halogen NQR s p e c t r a o f mix t u r e s o f C l 2 and BrOS0 2F or B r C l and BrOS0 2F t o form the compounds B r C l 2 S 0 3 F and B r 2 C l S 0 3 F comparable w i t h the B r 3 S 0 3 F molecule a t low temperature. 275 BIBLIOGRAPHY 1. Yeats, P.A., and Aubke, F., J . F l u o r i n e Chem., £, 243 (1974). 2. O ' S u l l i v a n , K., Thompson, R.C., and T r o t t e r , J . , J . Chem. Soc. (A), 1967, 2024. 3. Goubeau, J . and M i l n e , J.B., Can. J . Chem., 4 5, 2321 (1967). 4. Ruoff, A., M i l n e , J.B., Kaufmann, G., and Leroy, M., Z. anorg. allgem. Chem., 37_2, 119 (1970). 5. Q u r e s h i , A.M., C a r t e r , H.A., and Aubke, F., Can. J . Chem. 49, 35 (1971). 6. A l l e y n e , C.S., O 1 S u l l i v a n M a i l e r K., and Thompson, R.C., Can. J . Chem., 52, (1974). 7. Q u r e s h i , A.M., Levchuk, L.E., and Aubke, F., Can. J . Chem., 49, 2544 (1971). 8. Levchuk, L.E., Sams, J.R., and Aubke, F., Inorg. Chem. 11, 43 (1972). 9. T a y l o r , J.M., and Thompson, R.C., Can. J . Chem., 49, 511 (1971). 10. D a l z i e l , J.R., K l e t t , R.D., Yeats, P.A., and Aubke, F., Can. J . Chem., 52, 231 (1974). 11. Yeats, P.A., Sams, J.R., and Aubke, F., Inorg. Chem. 11, 2634 (1972). 12. A l l e n , F.H., Lerbscher, J.A., and T r o t t e r , J . , J . Chem. Soc. (A), 1971, 2507. 13. Yeats, P.A., Ph.D. T h e s i s , Dept. o f Chem., U.B.C., 1973. 14. Mascherpa, G., Compt. Rend., 252, 1800 (1961). 15. Zinov'ev, A.A., and R o s o l o v s k i i , V.Y., Russ. J . Inorg. Chem. 5, 1239 (1960). 16. Mascherpa, G., B u l l . Soc. Chim. France, 1961, 1259. 17. Zinov'ev, A.A., and R o s o l o v s k i i , V.Y., Russ. J . Inorg. Chem. 5, 1239 (1960). 18. Pearson, G.S., " P e r c h l o r i c A c i d " , i n Adv. Inorg. Chem. Radiochem., v o l . 8, chapter 3, ed. by H.J. Emeleus and A.G. Sharpe, Academic P r e s s , New York, 1966, p. 177. 276 19. Lee, W.H., " N i t r i c A c i d " , i n The Chemistry o f Non Aqueous S o l v e n t s , v o l . I I , chapter 4, ed. by J . J . Lagowski, Academic P r e s s , New York, 1967, p. 152. 20. Thompson, R.C, " F l u o r o s u l f u r i c A c i d " , i n I n o r g a n i c S u l f u r Chemistry, chapter 17, ed. by G. N i c k l e s s , E l s e v i e r , New York, 1968, p. 587. 21. Barr, J . , G i l l e s p i e , R.J., and Thompson, R.C, Inorg. Chem. 3, 1149 (1964). 22. Thompson, R . C , B a r r , J . , G i l l e s p i e , R.J., M i l n e , J.B., and Rothenbury, R.A., Inorg. Chem., 4, 1641 (1965). 23. G i l l e s p i e , R.J., " S u l f u r i c A c i d " , i n I n o r g a n i c S u l f u r Chemistry, c h a p t e r 16, ed. by G. N i c k l e s s , E l s e v i e r , New York, 1968, p. 568. 24. Flowers, R.H., G i l l e s p i e , R.J., Robinson, E.A. and Solomons, C , J . Chem. S o c , 1960, 4327. 25. G i l l e s p i e , R.J., Accounts Chem. Res., 1, 202 (1968). 26. G i l l e s p i e , R.J., and Robinson, E.A., Can. J . Chem., 40, 675 (1962). 27. G i l l e s p i e , R.J., M i l n e , J.B., and Thompson, R . C , Inorg. Chem., 5, 468 (1966). 28. Dean, P.A.W. , and G i l l e s p i e , R.J. , J . Amer. Chem. S o c , 91, 7260 (1969). 29. Dean, P.A.W. , and G i l l e s p i e , R.J. , J . Amer. Chem. S o c , 91, 7264 (1969). 30. G i l l e s p i e , R.J., and M i l n e , J.B., Inorg. Chem., 5_, 1577 (1966). 31. Aubke, F., unpublished o b s e r v a t i o n s . 32. Buckles, R.E., and M i l l s , J.F., J . Amer. Chem. S o c , 75. 552 (1953). 33. Badoz-Lambling, J . , Herlem, M., T h i e b a u l t , A., and Adhami, C , A n a l . L e t t e r s , 5, 305 (1972). 34. G i l l e s p i e , R.J., and Morton, M.J., Quart. Rev., 25, 553 (1971). 35. Aubke, F., and C a r t e r , H.A.C., unpublished o b s e r v a t i o n s . 36. G i l l e s p i e , R.J., and Wasif, S. , J . Chem. S o c , 1953, 204. 37. G i l l e s p i e , R.J., Oubridge, J.V. , and Solomons, C , J . Chem. S o c , 1957, 1804. 277 38. K u n z l e r , J.E. , and Giauque, W.F., J . Amer. Chem. S o c , 34, 5271 (1952). 39. G i l l e s p i e , R.J., J . Chem. S o c , 1950, 2493. 40. Bass, S.J., G i l l e s p i e , R.J., and Robinson, E.A. J . Chem. S o c , 1960, 821. 41. B a r r , J . , G i l l e s p i e , R.J., and Robinson, E.A., Can. J . Chem. , 39./ 1 2 6 6 (1961) . 42. Cotton, F.A., and W i l k i n s o n , G., Advanced I n o r g a n i c Chemistry, 3rd ed., I n t e r s c i e n c e P u b l i s h e r s , New York, 1972, p. 182. 43. H a z e l d i n e , R.N., and Kidd, J.M., J . Chem. Soc., 1954, 4228. 44. E n g e l b r e c h t , A., and Rode, B.M., Monatsh., 103, 1315 (1972). 45. Senning, A., Chem. Rev., 6_5, 385 (1965). 46. G i l l e s p i e , R.J., and Pez, G.P., Inorg. Chem., £, 1233 (1969). 47. Olah, G.A. , Chem. Eng. News, 4_5, 76 (March 27, 1967). 48. Cotton, F.A., and W i l k i n s o n , G., Advanced I n o r g a n i c Chemistry, 3rd ed., I n t e r s c i e n c e P u b l i s h e r s , New York, 1972, p. 174. 49. Woolf, A.A. , J . Chem. S o c , 1955, 433. 50. Aynsley, E.E., Peacock, R.D., and Robinson, P.L., Chem. and Tas., 1951, 1117. 51. Moore, J.W., B a i r d , H.W., and M i l l e r , H.B., J . Amer. Chem. Soc., £0, 1358 (1968). 52. Bonnet, B., R o z i e r e , J . , Fourcade, R., and Mascherpa, G., Can. J . Chem., 5_2, 2077 (1947). 53. K o l d i t z , L., " H a l i d e s o f A r s e n i c and Antimony", i n Halogen Chemistry, v o l . 2, ed. by V. Gutmann, Academic P r e s s , London, 1967, p. 118. 54. Hyman, H.H., Quarterman, L.A., K i l p a t r i c k , M., and Katz, J . J . , J . Phys. Chem., 65, 123 (1961). 55. Woolf, A.A., and Greenwood, N.N. , J . Chem. S o c , 1950, 2200. 56. G i l l e s p i e , R.J., and Malhotra, K.C., Inorg. Chem., 8, 1751 (1969) 57. G a r r e t t , R.A., G i l l e s p i e , R.J., and S e n i o r , J.B., Inorg. Chem., 4, 563 (1965). 58. Masson, I . , J . Chem. S o c , 1938, 1708. 278 59. Cotton, F.A., and W i l k i n s o n , G. , Advanced I n o r g a n i c Chemistry, 3rd ed., John Wiley and Sons, Inc., New York, 1972, p. 459. 60. Wiebenga, E.H., Havinga, E.E., and Boswijk, K.H., " S t r u c t u r e s of I n t e r h a l o g e n Compounds and P o l y h a l i d e s " , Advances i n Inorg. Chem. and Radiochem. , 3_, 133 (1961). 61. Rabinowitsch, M., Z e i t , f . phys. Chem., 119, 79 (1926). 62. Gutmann, V., Monatsh. , 8_2, 156 (1951). 63. Greenwood, N.N., and Emeleus, H.J., J . Chem. S o c , 1950, 987. 64. Carnog, J . , and Karges, R.A. , J . Amer. Chem. S o c , 54, 1882, (1932). 65. Boswijk, K.H., van der Heide, J . , Vos, A., and Wiebanga, E.H., A c t a C r y s t . , 9, 274 (1956). 66. D u r i e , R.A., Proc. Roy. S o c , A207, 388 (1951). 67. M e l l o r , J.W., A Comprehensive T r e a t i s e on I n o r g a n i c and T h e o r e t i c a l Chemistry, v o l . I I , Longmans, Green and Co., London, 1922, p. 65. 68. Rohrback, G.H., and Cady, G.H., J . Amer. Chem. S o c , 69, 677 (1947). 69. Schack, C.J., and P i l i p o v i c h , D., Wi l s o n , R.D., Inorg. Chem., 10, 1078 (1971) . 71. Schmutzler, R. , Angew. Chem. i n t e r n ' 1 . edn., 1_, 440 (1968), and r e f e r e n c e s t h e r e i n . 72. Schmeisser, M. , and Br a n d l e , K. , Angew. Chem., 7_3, 388 (1961) . 73. Schack, C.J., Inorg. Chem., 6, 1938 (1967). 74. Schmeisser, M., and T a g l i n g e r , L., Chem. Ber., ^ 4, 1533 (1961). 75. Dudley, F.B., Cady, G.H., and Eggers, D.F., J r . J . Chem. Soc. 78, 290 (1956) . 76. G i l b r e a t h , W.P., and Cady, G.H., Inorg. Chem., 2, 496 (1963). 77. Aubke, F. , and G i l l e s p i e , R.J., Inorg. Chem., ]_, 599 (1968). 78. Aubke, F., and Cady, G.H., Inorg. Chem., 4, 269 (1965). 79. Zingaro, R.A., and Witmer, W.B., Inorg. Sym., 1_, 169 (1963). 80. Schack, C.J., and Wilson, R.D., Inorg. Chem., 9_, 311 (1970). 279 81. Johnson, W.M., B.Sc. (Chem.) T h e s i s , Dept. of Chem., U.B.C., 1968. 82. C h r i s t e , K.O., Schack, C.J., and C u r t i s , E . C , Spectrochim A c t a , 26A, 2367 (1970). 83. Qureshi, A.M., and Aubke, F. , Inorg. Chem. 10., 1116 (1971). 84. C a r t e r , H.A., Jones, S.P.D., and Aubke, F., Inorg. Chem., 9, 2485 (1970). 85. C h r i s t e , K.O. , and Schack, C.J., Inorg. Chem., ljL, 1682 (1972). 86. C h r i s t e , K.O., Schack, C.J., and Wilson, R.D., Inorg. Chem. 13, 2811 (1974). 87. G i l l e s p i e , R.J., and M i l n e , J.B., Inorg. Chem., 5_, 1236 (1966). 88. L u s t i g , M., and Cady, G.H., Inorg. Chem., 1, 714 (1962). 89. Symons, M.C.R., J . Chem. S o c , 1957, 1708. 90. Symons, M.C.R. , J . Chem. S o c , 1957, 2186. 91. Connor, T.M., and Symons, M.C.R. , J . Chem. S o c , 1959, 963. 92. A r o t s k y , J . , Mishra, H.C., and Symons, M.C.R., J . Chem. Soc., 1961, 12. 93. A r o t s k y , J . , Mishra, H.C., and Symons, M.C.R., J . Chem. Soc., 1962, 2582. 94. G i l l e s p i e , R.J., and M i l n e , J.B., and Morton, M.J., Inorg. Chem. 7, 2221 (1968). 95. G i l l e s p i e , R.J., and Morton, M.J., Inorg. Chem., 11, 591 (1972). 96. G i l l e s p i e , R.J., and Morton, M.J., Chem. Comm., 1968, 1565. 97. G i l l e s p i e , R.J., and Morton, M.J., Inorg. Chem., 11, 586 (1972). 98. G i l l e s p i e , R.J., and Morton, M.J., Inorg. Chem., 11, 591 (1972). 99. Chung, C , and Cady, G.H., Inorg. Chem., 11, 2528 (1972). 100. Roberts, J.E., and Cady, G.H., J . Amer. Chem. S o c , 82, 352 (1960). 101. Agahigan, H., Gray, A.P., and V i c k e r s , G.D., Can. J . Chem. 40, 157 (1962). 102. Cady, G.H., J . Amer. Chem. S o c , 5j5, 2635 (1934). 103. Yost, D.M. , and Beerbower, A., J . Amer. Chem. S o c , 5_7, 782 (1935). 104. M a r t i n , H. , and Jacobsen, Th. , Angew. Chem., 6_7, 524 (1955). 280 105. Schmeisser, M., Fi n k , W. , and Brandle, K., Angew. Chem., 69, 780 (1957). 106. Schmeisser, M., Inorg. Syn., 9, 127 (1967). 107. Schmeisser, M. , and Brandle, K., Angew. Chem., 69^ , 781 (1957). 108. Skiens, W.E. , and Cady, G.H., J . Amer. Chem. S o c , j3_0, 5640 (1958). 109. Gambaruto, M., S i e r e , J.E., and Schumacher, H.J., J . F l u o r i n e Chem., 5, 175 (1975). 110. Cotton, F.A., and W i l k i n s o n , G., Advanced I n o r g a n i c Chemistry, 1st edn., John Wiley and Sons, Inc., New York, 1962,p.465. 111. Dudley, F.B., and Cady, G.H., J . Amer. Chem. Soc. 7_9, 513 (1957). 112. Shreeve, J.M., and Cady, G.H., Inorg. Syn., 7, 124 (1963) and Cady, G.H., Inorg. Syn., 11, 155 (1967). 113. Des Marteau, D.D., Inorg. Chem., 7, 434 (1968). 114. G i l l e s p i e , R.J., and Passmore, J . , Chem. B r i t . , 8^, 475 (1972). 115. G i l l e s p i e , R.J., and Morton, M.J., "Halogen C a t i o n s " , MTP In t e r n ' 1 . Rev. of Sc i e n c e , Inorg. Chem., S e r i e s 1, v o l . 3, ed. by H.J. Emelens and V. Gutmann, Butterworths, London, 1972. 116. K l e i n b e r g , J . , J . Chem. ed., 2/3, 559 (1946). 117. Ruff, 0., Graf, H e l l e r and Knock, Ber., 39>, 4310 (1906). 118. Ruff, 0., Zedner, J . , and Hecht, L., Ber., 48, 2073 (1915). 119. Lenssen, E., and Loewenthal, J . J . P r a k t . Chem. 8_6, 219 (1862); S k r a b a l , A., and Buchta, F., Chem. Ztg., 33, 1194 (1909). 120. K o t a n i , J . Phys. S o c Japan, 4, 293 (1949). 121. Kemmitt, R.D.W., Murray, Mrs. M. , McRae, V.M., McRae, V.M., Peacock, R.D., and Symons, M.C.R., J . Chem. S o c (A), 1968, 862. 122. Aynsley, E.E., Greenwood, N.N., and Wharmby, D.H.W., J . Chem. S o c , 1963, 5369. 123. G i l l e s p i e , R.J., and Morton, M.J., J . M o l e c Spect., 30, 178 (1969). 124. Edwards, A.J., Jones, G.R., and S i l l s , R.J.C., Chem. Comm. 1968, 1527. 125. Edwards, A.J., and Jones, G.R., J . Chem. Soc. (A), 1971, 2318. 28] 126. Edwards, A.J., and T a y l o r , P., Chem. Comm., 1971, 1376. 127. Glemser, 0., and Smale, A., Angew. Chem. I n t e r n " 1 . Edn., 8, 517 (1969). 128. Smale, A., " I n v e s t i g a t i o n s of the systems B r 2 , F 2 , A s F 5 and B r 2 , F 2 and BF 3", i n Programme and A b s t r a c t s , 4th European Symposium on F l u o r i n e Chemistry, L j u b l j a n a , Y u g o s l a v i a , 28 Aug - 1 Sept., 1972. 129. Olah, G.A., and Comisarow, M.B., J . Amer. Chem. S o c , 90, 5033 (1968). 130. Eachus, R.S., S l e i g h t , T.P., and Symons, M.C.R., Nature, 222, 769 (1969). 131. C h r i s t e , K.O., and Muirhead, J.S., J . Amer. Chem. S o c , 91, 7777, (1969). 132. Morton, J.R., and Pr e s t o n , K. F. , Inorg. Chem., L3, 1786 (1974). 133. G i l l e s p i e , R.J., and Morton, M.J., Inorg. Chem., 9_, 811 (1970). 134. S e e l , F. , and Detmer, 0., Angew. Chem., 7_0, 163 (1958). 135. S e e l , F., and Detmer, 0., Z. anorg. a l l g . Chemie, 301, 113 (1959). 136. C h r i s t e , K.O., and Sawodny, W. , Inorg. Chem., 6_, 1783 (1967). 137. C h r i s t e , K.O., Inorg. Chem., 9, 2801 (1970). 138. G i l l e s p i e , R.J., and S c h r o b i l g e n , G.J., Inorg. Chem., 13, 1230 (1974). 139. C h r i s t e , K.O., and Wilson, R.D., Inorg. Chem., 14, 694 (1975). 140. Roberto, Q., Inorg. N u c l . Chem. L e t t e r s , 8, 737 (1972). 141. C h r i s t e , K.O., Inorg. N u c l . Chem. L e t t e r s , 8_, 741 (1972). 142. B a r t l e t t , N. , and Lbhmann, D. , J . Chem. S o c , 1964, 619. 143. B a i r d , H.W., and G i l e s , H.F., A c t a C r y s t a l l o g r . , A25, S115 (1969). 144. C h r i s t e , K.O. , and Sawodny, W. , Inorg. Chem., _12, 2879 (1973). 145. L i n d , M.D., and C h r i s t e , K.O., Inorg. Chem., 11, 608 (1972). 146. S u r l e s , T., P e r k i n s , A., Quarterman, L.A., Hyman, H.H., and Popov, A. J . , J . Inorg. N u c l . Chem., 3_4, 3561 (1972). 147. Schmeisser, M., L u d o v i c i , W., Naumann, D., S a r t o r i , P., and S c h a r f , E., Ber., 101, 4214 (1968). 28 148. Vonk, C.G., and Wiebenga, E.H., Rec. Trav. Chim., 7_8, 913 (1959). 149. Vonk, C.G., and Wiebenga, E.H., Ac t a C r y s t . , 12, 859 (1959_ 150. Woolf, A.A., and Emeleus, H.J., J . Chem. S o c , 1949, 2865. 151. Edwards, A. J . , and Jones, G.R., J . Chem. Soc. (A), 1969, 1467. 152. C h r i s t e , K.O., and Schack, C.J., Inorg. Chem., 9_, 2296 (1970). 153. C a r t e r , H.A., and Aubke, F., Can. J . Chem., _48, 2456 (1970). 154. Sharpe, A.G., J . Chem. Soc., 1949, 2901. 155. Brown, D.H., Dixon, K.R., and Sharpe, D.W.A., Chem. Comm., 1966, 654. 156. C h r i s t e , K.O., and P a v l a t h , A.E., Z anorg. Allgem. Chem. 355, 210 (1965). 157. C h r i s t e , K.O. , and Sawodny, W. , Inorg. Chem., 6_, 313 (1967); a l s o L i n d , M.D., and C h r i s t e , K.O., Inorg. Chem., 11, 608 (1972) . 158. G i l l e s p i e , R. J . , and Merton, M.J., Inorg. Chem., 9_, 616 (1970). 159. Edwards, A . J . , and S i l l s , R.J.C., J . Chem. Soc. (A), 1970, 2697. 160. S e l i g , H. , and Shamir, J . , Inorg. Chem., 3_, 294 (1964). 161. Lynton, H., and Passmore, J . , Can. J . Chem., 4j), 2539 (1971). 162. C h r i s t e , K.O., and Sawodny, W. , Inorg. Chem., S3, 212 (1969). 163. Banks, A.A. , Emeleus, H.J., and Woolf, A. A. , J . Chem. S o c , 1949, 2861. 164. Woolf, A.A., J . Chem. S o c , 1950, 3678. 165. S t e i n , L., " P h y s i c a l and Chemical P r o p e r t i e s o f Halogen F l u o r i d e s " , i n Halogen Chemistry, v o l . I,.ed. by V. Gutmann, Academic P r e s s , London, 1967. 166. Greenwood, N.N., Rev. Pure and A p p l i e d Chem. ( A u s t r a l i a ) , 1, 84 (1951). 167. Emeleus, H.J., i n F l u o r i n e Chemistry, v o l I I , ed. by J.H. Symons, Academic P r e s s , New York, 1954, p. 39. 168. G i l l e s p i e , R.J., and Landa, B., Inorg. Chem., 12, 1383 (1973). 169. C o r b r i d g e , D.E.C., The S t r u c t u r a l Chemistry o f Phospherus, Chap. 10., E l s e v i e r , Amsterdam, 1974, p. 281. 21 170. G i l l e s p i e , R.J., and Nyholm, R.S., Quart. Rev., 11^ , 339 (1957). 171. Wiebenga, E.H., and Kracht, D., Inorg. Chem. 8, 738 (1969). 172. Evans, J.C., and Lo, G. Y-S., Inorg. Chem., 6, 836 (1967). 173. Boswijk, K.H., and Wiebenga, E.H., Ac t a C r y s t . 7 , 417 (1954). 174. S e n i o r , J.B., and Grover, J.L., Can. J . Chem., 49, 2688 (1971). 175. Shreeve, J.M. , and Cady, G.H., J . Amer. Chem. S o c , 83, 4521 (1961). 176. Huberman, F.P., J . Molec. Spect., 20_, 29 (1966). 177. F r a n k l i n , J.L., D i l l a r d , J . G . , Rosenstock, H.M., Herron, J.T., D r a x l , K., and F i e l d , F.N., I o n i z a t i o n P o t e n t i a l s , Appearance P o t e n t i a l s and Heats o f Formation of  Gaseous P o s i t i v e Ions, U.S. Dept. of Commerce, N a t i o n a l Bureau o f Standards, NSRDS-NBS 26, Washington, D.C, June, 1969. 178. B a r t l e t t , N., p e r s o n a l communication, 1967, as quoted by Kemmitt e t a l i n J . Chem. S o c (A), 1968, 862. 179. Jha, N.K., Ph.D. T h e s i s , Dept. of Chem., UBC, 1965. 180. C o r n f o r d , A.B., Ph.D. T h e s i s , Dept. of Chem. UBC, 1972. 181. C o r n f o r d , A.B., F r o s t , D.C, McDowell, C.A., Ragle, J.L., and Stenhouse, I.A., J . Chem. Phys., 5_4, 2651 (1971). 182. S h r i v e r , D.F., The M a n i p u l a t i o n o f A i r - S e n s i t i v e Compounds, McGraw-Hill, New York, 1969. 183. Handbook o f P r e p a r a t i v e I n o r g a n i c Chemistry, 2nd edn., v o l I and I I , ed. by Georg Brauer, Trans, by S c r i p e a T e c h n i c a , Inc., Academic P r e s s , New York, 1963. 184. L i n d , J.E., Zwolenik, J . J . , and Fuoss, R.M., J . Amer. Chem. S o c , 81, 1557 (1959). 185. Wagner, E.L., and Hornig, D.F., J . Chem. Phys., 18, 296 (1950). 186. Hardin, A.H., Ph.D. T h e s i s , Dept. of Chem., UBC, 1970. 187. Earnshaw, A., I n t r o d u c t i o n t o Magnetochemistry, Academic Pr e s s , London, 1968, pp 84-94. 188. Ckrk, H.C, and O'Brien, R.J., Can. J . Chem., 3_9, 1030 (1961). 189. D i c k i n s o n , W.C, Phys. Rev. 81, 717 (1951). 190. F i g g i s , B.N., and Nyholm, R.S., J . Chem. S o c , 1958, 4190. 284 191. L a n d o l t - B o r n s t e i n , Numerical Data and F u n c t i o n a l R e l a t i o n -s h i p s i n Science and Technology, v o l . 2, by E. Konig, ed. by K.-H. Hellwege and A.M. Hellwege, S p r i n g e r -V e r l a g , B e r l i n / H e i d e l b e r g , 1966, pp. 1-16, 1-17. 192. Cornog, J . , and Karges, R.A., Inorg. Synth., 1, 165 (1939). 193. Brauer, G., Handbook o f P r e p a r a t i v e I n o r g a n i c Chemistry, v o l . 1, Academic P r e s s , New York, 1963, p. 291. 19 4. Brauer, G., Handbook of P r e p a r a t i v e I n o r g a n i c Chemistry, v o l . 1, Academic Press, New York, 1963., p. 292. 195. Brauer, G., Handbook o f P r e p a r a t i v e I n o r g a n i c Chemistry, v o l . 1, Academic Press, New York, 1963, p. 301. 196. C a r t e r , H.A., Qur e s h i , A.M., and Aubke, F., Chem. Comm., 1968, 1461. 197. C h r i s t e , K.O., Schack, C.J., and C u r t i s , E . C , Inorg. Chem. 10, 1589 (1971). 198. W i l s o n , W.W., and Aubke, F., ex p e r i m e n t a l o b s e r v a t i o n s . 199. D a l z i e l , J.R. , and Aubke, F., Inorg. Chem., 12:, 2707 (1973). 200. B e r n s t e i n , H.J., and Powling, J . , J . Chem. Phys., 1J3 685 (1950). 201. Rochkind, M.M. , and Pimentel, G.C, J . Chem. Phys., 42, 1361 (1965). 202. Campbell, C , Jones, J.P.M., and Turner, J . J . , Chem. Comm., 1968, 888. 203. Lovejoy, R.W., C o l w e l l , J.H., Eggers, D.F., J r . and Halsey, G.D., J r . J . Chem. Phys., 36, 612 (1962). 204. Wechsberg, M., B u l l i n e r , P.A., Sladky, F.O., Mews, R., and B a r t l e t t , N., Inorg. Chem., 11, 3063 (1972). 205. Savoie, R., and Giguere, P.A., Can. J . Chem., £2, 277 (1964). 206. Yeats, P.A., Landa, B., Sams, J.R., and Aubke, F., submitted f o r p u b l i c a t i o n i n Inorg. Chem. 207. Nakamoto, K., I n f r a r e d S p e c t r a of I n o r g a n i c and C o o r d i n a t i o n Compounds, John Wiley and Sons, New York, 1963, p. 87"] 208. D a l z i e l , J.R., C a r t e r , H.A., and Aubke, F., submitted f o r p u b l i c a t i o n i n Inorg. Chem. 209. F i a l k o v , Y.A., and Shor, O.I., J . Gen. Chem., USSR, 19, 235 (1949). 210. Merryman, D.J., Edwards, P.A., C o r b e t t , J.D., and McCarley,R.E., Chem. Comm., 1972, 779. 28! 211. Merryman, D.J., "The S y n t h e s i s and C h a r a c t e r i z a t i o n o f Three Polyhalogen T e t r a c h l o r o a l u r a i n a t e s " , D i s s . Abst. I n t . B. , 3_3 (8) , 3536 (1973) . 212. Merryman, D.J., and C o r b e t t , J.D., Inorg. Chem., 13, 1258 (1974), 213. Merryman, D.J., C o r b e t t , J.D., and Edwards, P.A., Inorg. Chem., 14, 428 (1975). 214. Shamir, J . , and L u s t i g , M. , Inorg. N u c l . Chem. L e t t e r s , 8_, 985 (1972). 215. Shamir, J . , and L u s t i g , M., "The S y n t h e s i s and Raman S p e c t r a of C h l o r o d i i o d i n i u m and Bromochloroiodinium Hexachloro-antimonates", Annual Southwest Meeting o f the American Chemical S o c i e t y A b s t r a c t s , #29, D a l l a s , Texas, A p r i l , 1973. 216. Shamir, J . , and L u s t i g , M. , Inorg. Chem., 12_, 1108 (1973). 217. Shamir, J . , and R a f a e l o f f , R., Spectrochim. A c t a , 2 9A, 873 (1973). 218. G i l l e s p i e , R.J., Morton, M.J., and Sowa, J.M., Advances in. Raman Spectroscopy, v o l . I, ed. by J.P. Mathieu, Heyden and Sons, Inc., London, 1973, p. 539. 219. Pasternak, M., and Sonino, T., J . Chem. Phys., £8, 1997 (1968). 220. D a l z i e l , J.R., M.Sc. T h e s i s , Dept. o f Chem. UBC, May, 1975. 221. S e p p e l t , K., Chem. Ber., 106, 157 (1973). 222. S e p p e l t , K., Chem. Ber., 106, 1920 (1973). 223. Wilson, W.W., and Aubke, F., unpublished o b s e r v a t i o n s . 224 Q u r e s h i , A.M., Ph.D. T h e s i s , Dept. o f Chem., UBC, March, 1971. 225. G i l l a m , A.E., and Morton, R.A., Proc. Roy. Soc. (London), A124, 604 (1929) . 225 a M e l l o r ' s Comprehensive T r e a t i s e on I n o r g a n i c and T h e o r e t i c a l  Chemistry, V o l . I I , Supp. I I , P a r t I, Longmans, Green & Co., London, 1956, p. 627. 226. Walsh, A.D., J . Chem. S o c , 1953, 2260. 227. Tan, T.H., D a l z i e l , J.R., Yeats, P.A., Sams, J.R., Thompson, R.C. and Aubke, F., Can. J . Chem., 50, 1843 (1972). 228. Stammreich, H., F o r n e r i s , R., and Tavares, Y., Spectrochim. A c t a , 17, 1173 (1961). 229. B e a t t i e , I.R., and P e r r y , R.O., J . Chem. Soc. (A), 1970, 2429. 286 287 250. G i l l e s p i e , R.J., and Rothenbury, R.A., Can. J . Chem., 42, 416 (1964). 251. Advances i n F l u o r i n e Chemistry, v o l . 4, ed. by M. Stacy, J.C. Tatlow, and A.G. Sharpe, Butterworths, London, 1965. 252. Gaunt, J . , and Ainscough, J.B., Spectrochim. A c t a , _10 57 (1957). 253. M u l l e r , A., Roesky, H.W., and Bo h l e r , D. , Z. Chem., .7, 469 (1967). 254. V a s i l e , M.J., and F a l c o n e r , W.E., Inorg. Chem., 1_1, 2282, (1972), and r e f e r e n c e s t h e r e i n . 255. B e a t t i e , I.R., L i v i n g s t o n , K.M.S., Oz i n , G.A., and Reynolds, O.J J . Chem. Soc. (A), 1969, 958. 256. Alexander, L.E., and B e a t t i e , J . Chem. Phys., 5_6, 5829 (1972). 257. Hoffman, C.J., Holder, B.C., and J o l l y , W.L., J . Phys. Chem., 62^ , 364 (1958) . 258. M u e t t e r t i e s , E.L., and P h i l l i p s , W.D. , J . Amer. Chem. S o c , 81, 1084 (1959). 259. Brockner, W., C y v i n , S.J., and Hovdan, H., Inorg. N u c l . , Chem. L e t t e r s , 11, 171 (1975). 260. E n g e l b r e c h t , A., Mayr, 0., Z i l l e r , G., and Schandara, E., Monatsh., 105, 796 (1974). 261. C a r t e r , H.A., Ruddick, J.N., Sams, J.R., and Aubke, F., Inorg. N u c l . Chem. L e t t e r s , 11, 29 (1975). 262. N o f t l e , R.E., and Cady, G.H., J . Inorg. N u c l . Chem., 29, 969 (1967). 263. Hayek, E., Puschmann, J . , and Czaloun, A., Monatsh., 85, 359 (1954). 264. Ruff, 0., and P l a t o , W., Chem. Ber., 37, 673 (1904). 265. Davies, T.K., and Moss, K.C., J . Chem. Soc. (A), 1970, 1054. 266. B i r c h a l l , T., Dean, P.A.W., D e l i a V a l l e , B., and G i l l e s p i e , R.J. Can. J . Chem., 51, 667 (1973). 267. Hewitt, A.J., Holloway, J.H., and F r l e c , B., J . F l u o r i n e Chem., 5, 169 (1975). 268. Edwards, A.J., and Sl i m , D.R., Chem. Comm., 1974, 178. 28 269. Hunt, E.R., and Wilson, M.K., Spectrochim A c t a , 16, 570 (1960). 270. Handbook of Chemistry and P h y s i c s , 48th edn., ed. by R.C. Weast, The Chemical Rubber Co., C l e v e l a n d , Ohio, 1967-1968, p. B-195. 271. C h r i s t e , K.O., Schack, C.J., P i l i p o v i c h , D., and Sawodny, W., Inorg. Chem., 8, 2489 (1969) . 272. C a r t e r , H.A., Johnson, W.M., and Aubke, F., Can. J . Chem. 47, 4619 (1969). 273. Edwards, A.J., and S i l l s , J.C., J.C.S. D a l t r o n , 1974, 1726. 274. K a r e l i n , A . I ., N i k i t i n a , Z.K., Kharitonov, Y.Y., and R o s o l o v s k i i , V.Y., Russ. J . Inorg. Chem., 15, 480 (1970). 275. C a r t e r , H.A., Qu r e s h i , A.M., Sams, J.R., and Aubke, F., Can. J . Chem., 48, 2853 (1970). 276. Yeats, P.A., Sams, J.R., and Aubke, F., Inorg. Chem., 12, 328 (1973). 277. P a v i a , A . C , P a s c a l , J.L., and P o t i e r , A., Compt. Rend., 272(C), 1495 (1971). 278. Smith, D.F., Begun, G.M., and F l e t c h e r , W.H., Spectrochim. A c t a , 20, 1763 (1964). 279. N i e l s e n , A.H., a n d W o l t z , P.J.H., J . Chem. P h y s . 2 1 , 1878 (1952) 280. Duveau, N., B u l l . Soc. Chim. France, 10, 374 (1943). 281. Q u r e s h i , A.M., C a r t e r , H.A., and Aubke, F., unp u b l i s h e d r e s u l t s . LIST OF PUBLICATIONS Wil s o n , W i l l i a m W. , " V i b r a t i o n a l S p e c t r o s c o p i c S t u d i e s o f Some Simple and Mixed Selenium (IV) Ox y - h a l i d e s and - p s e u d o h a l i d e s " , M.Sc. T h e s i s , Dept. of Chem., U.B.C., A p r i l , 1972. Yeats, P.A., Wilson, W.W., and Aubke, F., "Dibromoiodine ( I I I ) -and D i c h l o r o i o d i n e ( I I I ) - F l u o r o s u l f a t e " , Inorg. N u c l . Chem. L e t t e r s , 9, 209 (1973) . Wil s o n , W.W., and Aubke, F., " I n t e r h a l o g e n F l u o r o s u l f a t e s and T r i a t o m i c I n t e r h a l o g e n C a t i o n s o f I o d i n e , Bromine and Chlorine',' Inorg. Chem., 13, 326 (1974). W i l s o n , W.W., D a l z i e l , J.R., and Aubke, F., " T r i a t o m i c C a t i o n i c Iodonium (III) I n t e r h a l o g e n D e r i v a t i v e s , T h e i r S y n t h e s i s and S t r u c t u r e " , J . Inorg. N u c l . Chem., 37, 665 (1975). W i l s o n , W.W., Landa, B., and Aubke, F., "The New I n t e r h a l o g e n C a t i o n s BrCl2+ and B r 2 C l + " , Inorg. N u c l . Chem. L e t t e r s , 11, 529 (1975). W i l s o n , W.W., W i n f i e l d , J.M., and Aubke, F., "Low Temperature I n f r a r e d S p e c t r a of Some Halogen F l u o r o s u l f a t e s and R e l a t e d Compounds", sub m i t t e d t o J o u r n a l o f F l u o r i n e Chemistry, September, 1975. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0061885/manifest

Comment

Related Items