UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Structure determination of some organic, inorganic and organometallic compounds by X-ray diffraction Gibbons, Cyril Stephen 1971

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1971_A1 G52.pdf [ 6.23MB ]
Metadata
JSON: 1.0061879.json
JSON-LD: 1.0061879+ld.json
RDF/XML (Pretty): 1.0061879.xml
RDF/JSON: 1.0061879+rdf.json
Turtle: 1.0061879+rdf-turtle.txt
N-Triples: 1.0061879+rdf-ntriples.txt
Original Record: 1.0061879 +original-record.json
Full Text
1.0061879.txt
Citation
1.0061879.ris

Full Text

THE  STRUCTURE DETERMINATION OF  SOME ORGANIC, INORGANIC AND ORGANOMETALLIC COMPOUNDS BY X-RAY DIFFRACTION b  ^  CYRIL STEPHEN GIBBONS B.Sc.(Hons.), Memorial U n i v e r s i t y of Newfoundland, 1966 M.Sc,  U n i v e r s i t y o f B r i t i s h Columbia, A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE  REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n the Department of Chemistry  . We accept t h i s t h e s i s as conforming t o the  required  THE  standard  UNIVERSITY OF BRITISH COLUMBIA March 1971  1968  In presenting this thesis in partial  fulfilment  of the requirements for  an advanced degree at the University of B r i t i s h Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives.  It  is understood that copying or publication  of this thesis for financial gain shall not be allowed without my written permission.  Department of The University of B r i t i s h Columbia Vancouver 8, Canada  Date  ZL  kf/vJL  1911  ABSTRACT  Supervisor:  The each  of  the  structures  organic  organometallic by  i n  of  X-ray  solution  For  collected  on  radiation  and  a  The  structure  methiodide atom  a l l four  and  for  1834  observed  was  determined  consists  chain  valency  by  of  two  angles  do  of  have  been  and  the  have  the  .silver was  determined  pseudo-special  been  diffractometer  discussed data  with  the  alkaloid,  determined  syntheses,  methods  to  a  and  f i n a l  from  by  block-  R  of  0.089  value  carbon not  absolute  cage-structures atoms.,  d i f f e r  and  from  the  and  bond  from  n i t r a t e  Patterson  position,  exhibited  method  on  so  that  the  detailed  study  of  the  linked  lengths  '  and  Joct-6-ene the  to  be  resulting  pseudo-symmetry.  are  4-,  i t s e l f ,  syntheses  The  values.  exo-tricyclo[3.2.1.0 s i l v e r  configuration  which  normal  heavy-  refined  d i s p e r s i o n method.  anomalous two  Mo-K^  daphmacrine  the of  were  counter.  The  d e n s i t y , maps based  methods  r e f l e c t i o n s .  both  nitrate  and  determined  intensity  2 For  representing  inorganic  structures  structures,  Fourier  least-squares  a  the  s o l v a t e ) , was  diagonal  by  compounds  s c i n t i l l a t i o n  (acetone  compounds  product),  s i n g l e - c r y s t a l  Patterson  molecule  four  d i f f r a c t i o n ,  of  b r i e f l y .  a  of  T r o t t e r  (natural  classes  s i n g l e - c r y s t a l  employed  James  Professor  A  shape  s i l v e r lying  ion i n  a  e l e c t r o n -  trial-and-error of  the  Ag-Ag  Patterson the  peaks  s i l v e r  maps  the  their  was  ions,  true  adopted  and  l i g h t  images.  The  from atom  least-squares,  s i l v e r  nitrate  layers  was  by  %  a. to  exo-position,  Ag...C  van  der  =  2.45  Waals The  of  s i l v e r  separated  gap  between  N—O  distances  the  n i t r a t e has  s i l v e r  peaks  by  h  have  ion  procedure  was  light  atoms  maps.  The  complex  ion  of  and  The  i s  from  out  by  the  complex  nitrate  f u l l -  was  consists  the  thick  layers  are  n i t r a t e  held  and  roughly  hydrocarbon  three  of  0.067.  of  coordinated  to  of  (in  the  groups  together  by  b,  structure  to  the  b  with  the  nitrate  Previously been  being  of  layers  c r y s t a l l o g r a p h i c groups  observed  removed,  1.26  consists  (l)i£.  bridging  the  i n e q u a l i t i e s i n  a l l three The  axis,  bond  lengths  anisotropic  the i n  thermal  described.  N,N-dimethyl(ferrocenylmethyl)ammonium  i t was  because  for  s i l v e r  bond  nitrate  p a r a l l e l  been  and  discerned  c r y s t a l l o g r a p h i c axis,  2.4A*), 1  tetrachlorozincate atoms,  for  be  R  location  electron-density  c a r r i e d  f i n a l  a  double  3.03A ).  layers.  The  was  s i l v e r  =  could  the  the  exact  forces.  ions  and  motion  -  the  of  the  r e s u l t i n g  the and  to  The  tetrahedrally  (Ag...O  and  structure  find  peaks  0.105  perpendicular  separated  the  refinement  matrix  The  to  of  hydrate not  the  possible overlap.  employed  were  to  located  structure  structure  was  to A  locate from  contains  resolve direct the  to  a  heavy  Patterson  sign-determining  heavy  r e s u l t i n g  refined  the  seven  atoms,  and  the  electron-density  f i n a l  R  value  of  iv  0.068 f o r 2012 observed r e f l e c t i o n s . d i s t a n c e s are Fe-C = 2. 04& and C-C r i n g s ) = 1.43.R.  The mean bond (cyclopentadienyl  Groups o f f o u r c a t i o n s , two anions and  two water molecules  (two formula u n i t s ) , are l i n k e d  around c e n t r e s o f symmetry by N-H...C1 (3. N-H...0 (2.76&) and 0-H...C1 bonds.  (3.05, 3.17&) hydrogen  V  TABLE  OF  CONTENTS PAGE  TITLE  PAGE  i  ABSTRACT TABLE  i  OF  CONTENTS  LIST  OF  TABLES  LIST  OF  FIGURES  V v i i i  ACKNOWLEDGEMENTS PART  I  GENERAL  INTRODUCTION  Outline  •.  the Principles  of  "•Refinement THE  t h e Phase o f  STRUCTURE  DERIVATIVE  of  OF  D i f f r a c t i o n .  DAPHMACRINE,  4 9  the Structure  16 OF  AN  THE  METHIODIDE  ALKALOID  FROM  MACROPODUM  18  Introduction  .  .  .  19  Experimental  19  Structure  20  Analysis  Coordinates Absolute Results I I I  X-Ray  Problem  DETERMINATION  DAPHNIPHYLLUM  PART  1 2  of  Solution  I I  x  x i  H i s t o r i c a l  PART  i  THE  and Molecular  Dimensions  29  Configuration and  Discussion.  STRUCTURE  .  .  .  DETERMINATION  TRICYCLO[3.2.1.0 A  29  NITRATE  AND  NITRATE  STRUCTURE  2 , 4  OF  ]OCT-6-ENE  REFINEMENT  OF  THE  37 EXOSILVER SILVER . . . .  41  v i  PAGE A.  THE  6-ENE  STRUCTURE SILVER  Introduction  NITRATE .  ,  42  Structure  45  Analysis  Coordinates  and Molecular  Results  Discussion  A  and  REFINEMENT  OF  52 57  THE  SILVER  NITRATE  STRUCTURE 63  Experimental  63  Analysis  .65  Coordinates  and Molecular  Results  Discussion  and  STRUCTURE  Introduction  Dimensions  .  .  .  .  .  . 7 0 77  DETERMINATION  (FERROCENYLMETHYL)AMMONIUM  REFERENCES  Dimensions  Introduction  THE  SUMMARY  4  43  Structure  IV  2  Experimental  B.  PART  OF E X O - T R I C Y C L O [ 3 . 2 . 1 . 0 ' ] O C T -  OF  N,N-DIMETHYL-  TETRACHLOROZINCATE  .  .  .  80 81  Experimental  81  Structure  83  Analysis  Coordinates  and Molecular  Results  Discussion  and  .  Dimensions  93 104 I l l 113  v i i  LIST  OF  TABLES  TABLE  PAGE  Daphmacrine  methiodide  1  Measured  and  calculated  2  F i n a l  3  Bond  4  Determination  p o s i t i o n a l lengths  and o f  and  Measured  6  F i n a l  7  Bond  8  Angles  and  2  '  4  calculated  p o s i t i o n a l lengths  and  between  plane  n  .  .  . 2 3 .  30  configuration  .  .  36  [oct-6-ene—  and  structure  thermal  factors  parameters  .  . . .  48  .  53  .  .  angles  t h e Ag,  54 C=C  and Ag...C(olefin)  plane  and  C,  C=C,  distances  62  n i t r a t e  9  Measured  10  F i n a l  11  Interatomic  12  Magnitudes axes  .  .  n i t r a t e  5  S i l v e r  parameters  .  32  the absolute  r  C  thermal  factors  angles  E x o - t r i c y c l o I 3.2.1.0 s i l v e r  structure  and  calculated  p o s i t i o n a l  and  distances  structure  thermal and  and d i r e c t i o n s  of the v i b r a t i o n  factors  parameters  .  angles  . . .  67  .  71  .  .  72  of the p r i n c i p a l  e l l i p s o i d s  78  v i i i  TABLE  PAGE  N,N-dimethyl(ferrocenylmethyl)ammonium tetrachlorozincate 13  Comparison  of  theoretical 14  Base  15  Measured  16  F i n a l  17  Bond  18  Equations  |E|  and c a l c u l a t e d  p o s i t i o n a l lengths  structure  d e t e r m i n a t i o n . 85 factors  parameters  .  . . .  88  .  96  .  and angles  o f t h e mean  atoms from  f o r sign  and thermal  planes  the 99  i n d i f f e r e n t  cyclopentadienyl  through  independent  the eclipsed rings  .  97  rings  Crystallographically  Angles  with 84  s e t of r e f l e c t i o n s  between 20  s t a t i s t i c s  values  cyclopentadienyl 19  hydrate  distances  asymmetric  position  units  .  .107  f o rthe 110  ix  LIST  OF  FIGURES  FIGURE  PAGE  Daphmacrine 1  (a)  Superimposed  dimensional and  methiodide  (b)  a  sections  electron-density  drawing  2  Packing  3  Diagrammatic  of  diagram  of  the  viewed  the  three-  d i s t r i b u t i o n  structure  along  representation  27  the a of  axis  the  . . .  structure  34 .  39  2 4i Exo-tricyclo[3.2.1.0 s i l v e r 4  (a)  Superimposed  (b)  a  Packing  6  Coordination  7  Packing  8  The  sections  of  electron-density  drawing  5  S i l v e r  |oct-6-ene—  n i t r a t e  dimensional and  '  diagram  of  the  viewed  around  three-  d i s t r i b u t i o n  structure  along  the  the  the b  s i l v e r  50 axis  . . .  i o n  55 59  nitrate diagram  thermal  viewed  v i b r a t i o n  along  the b  axis  e l l i p s o i d s  .  .  .  .73 75  N,N-dimethyl(ferrocenylmethyl)ammonium tetrachlorozincate 9  A  diagram  the  of  numbering  the  hydrate  structure,  system  used  which  shows 94  X  FIGURE  10  11  PAGE  Views  of  along  the normals  Packing  the  ferrocenyl  diagram  t o  portions  the ring  viewed  along  planes the  c  axis  100 .  .  .  102  -2 12  The  environment  shows centre  of  the hydrogen of  symmetry  a  ZnCl^  bonding  group, around  which a 105  ACKNOWLEDGEMENTS  I would l i k e t o express my a p p r e c i a t i o n t o Professor  J . T r o t t e r f o r h i s encouragement and guidance  during my years a t the U n i v e r s i t y o f B r i t i s h Columbia. I want t o thank Dr. T. Nakano f o r the samples of daphmacrine methiodide and Dr. J . P. Kutney f o r h e l p f u l discussion.  I am a l s o indebted t o Dr. R. E. Pincock f o r  the c r y s t a l s o f the s i l v e r n i t r a t e complex and t o Dr. E. W. Neuse f o r the c r y s t a l s o f the ferrocene  derivative.  I am a l s o g r a t e f u l f o r the encouragement my wife has given me, and my a s s o c i a t i o n s w i t h other students and  post-doctoral  f e l l o w s which have made t h i s work an  enjoyable and rewarding e x p e r i e n c e .  PART  GENERAL  I  INTRODUCTION  2  Historical  The f o u n d a t i o n s o f t h e s c i e n c e  of c r y s t a l -  l o g r a p h y were l a i d i n t h e s e v e n t e e n t h c e n t u r y by Steno, Hooke, Huygens and o t h e r workers o f t h a t e r a , who  proposed  elementary t h e o r i e s o f c r y s t a l s t r u c t u r e based on t h e study o f t h e e x t e r n a l shapes o f c r y s t a l s . d i s c o v e r e d t h e fundamental  I n 1784, Haiiy  law o f r a t i o n a l i n d i c e s , and  even b e f o r e D a l t o n ' s atomic t h e o r y , Haiiy c o n s i d e r e d t h e c r y s t a l u n i t as 'molecules e l e m e n t a i r e s ' o r c h e m i c a l atoms of  d e f i n i t e and c o n s t a n t form.  The i d e a o f t h e c r y s t a l as  a l a t t i c e s t r u c t u r e was developed by B r a v a i s who showed g e o m e t r i c a l l y t h a t o n l y f o u r t e e n d i s t i n c t t y p e s o f space l a t t i c e are p o s s i b l e . These i m p o r t a n t advances were made w i t h o u t t o o l s f o r t h e e x a m i n a t i o n o f c r y s t a l l i n e m a t t e r on an atomic s c a l e , and such a t o o l d i d n o t become a v a i l a b l e u n t i l 1912 when von Laue demonstrated  the three-dimensional  l a t t i c e n a t u r e o f c r y s t a l s , and a t t h e same time t h e wave n a t u r e o f X - r a y s , by t h e f i r s t d i f f r a c t i o n  experiment.  The e l u c i d a t i o n o f t h e f i r s t c r y s t a l s t r u c t u r e s , KC1, N a C l , KBr and KI by W.L. Bragg f o l l o w e d q u i c k l y , and f o r t h e f i r s t time t h e p r e c i s e l o c a t i o n s o f atoms i n c r y s t a l s c o u l d be determined.  This i n i t i a l r e s t r i c t i o n to simple i n o r g a n i c  compounds o f h i g h symmetry passed w i t h t h e subsequent r e f i n e m e n t o f t h e methods, and soon a f t e r w a r d more complex o r g a n i c s t r u c t u r e s o f low symmetry were a l s o e l u c i d a t e d .  3  The advent o f h i g h speed d i g i t a l computers b r o u g h t about the development of p o w e r f u l new methods and the c a p a b i l i t y of c o n s i d e r i n g much more d i f f i c u l t problems,' especially  t h o s e of b i o l o g i c a l The p r i n c i p l e s  interest.  and methods o f s t r u c t u r e  a n a l y s i s by X-ray d i f f r a c t i o n have been d i s c u s s e d i n 1-4 d e t a i l i n a number o f r e f e r e n c e books, reproduced here.  and a r e not  However, t h e methods r e l e v a n t t o the  p r e s e n t s t r u c t u r e s a r e r e v i e w e d b r i e f l y , as a d e f i n i t i o n of terms and a g e n e r a l knowledge of t h e methods used be o f use t o one u n f a m i l i a r w i t h the t e c h n i q u e s .  may  4  Outline  of  the  One crystals angles  between up  intercept the  the  work  face  i s said which  indices ratios  c. to  Hauy  of of  exhibit  face  law  Only  classes)  these  i n  only  or  fourteen  extension  of  i n d e f i n i t e l y of  further  plane plus  plus  face  on  are  states  law  be  are  a/h,  of  the  Hauy r a t i o n a l  the  i n  terms  reference b/k,  (hk£).  and  natural  described  set of  that  rational,  constant.  a  indices  on  structure,  the  may  intercepts  c/l,  The  the  fundamental  r a t i o s  of  i n general  the  are the  numbers.  l i m i t s and  the the  thirty-two symmetry  symmetry  a  c r y s t a l  corresponding d i s t i n c t  elements  investigated  geometrical  p a r t i c l e s ,  are  made  may  inversion  combinations  elements  (crystal  are possible,  as  shown  1830.  Bravais purely  faces  makes  M i l l e r  1,2,3,4,6  observations  discovering  face  whole  1,2,3,4,6.  Hessel  the  D i f f r a c t i o n  c r y s t a l l i n e  c r y s t a l  have  small  of  by  discovered  any  to  given  I f these  This  by  A  intercepts b,  X-Ray  corresponding  ratios.  a,  of  e a r l i e s t  f o r a  this  axes  law  of  i s that  followed  of  P r i n c i p l e s  the  basis  this  without  properties  types  of  idea  space to  of  t r a n s l a t i o n  t r a n s l a t i o n  i s a  i s a screw  f o r the  c r y s t a l s .  crystal  elements  structure  regard  l a t t i c e  i n a l ld i r e c t i o n s  symmetry  c r y s t a l  structures  involving  a x i s ) .  about  showed  The  that  and  the  extended the  consideration  translations  plane;  a  fundamental  are possible,  brought  g l i d e  He  on  r o t a t i o n a l  (mirror axis  s e l f - c o n s i s t e n t  5  sets  of  groups late  a l l symmetry as  shown  nineteenth  wave  nature he  was  atomic  of  unable  to  concept  that  reflected  number  of as  By  the  and  experiment  showed  the  a  was  simple  p a r a l l e l  Bragg  l a t t i c e the  Bragg's  of  path  or  Law,  nX  and  i s  2d  scattering but  i s  not  centres are  this  c r y s t a l s ,  terms  planes  of the  within  i t may  be  a  X,  distance  equals which for  a  d  whole  has  become  c r y s t a l  planes on The  are  the  c e l l .  out  exact  from  reflections.  of  This  the  do  not  gives  rise  waves  varying  position  of  the  the  r e l a t i v e  task  scattering  the to  a  reduction  the  atoms  between  the  determination  matter  i n t e n s i t i e s of  by  degrees,  atoms  i s  the  planes  scattered  to  however,  l i e on  between  phase  crystallographer's  d i s t r i b u t i o n of  straightforward,  distributed  i n t e n s i t i e s since  of  c e l l  0,  the  introduction  at  basis  (atoms)  the  unit  of  wavelength  Sin  the  of  the  the  once  solving  from  difference =  i n  proof, of  at  i n  his  c r y s t a l planes  unit  of  on  X-rays  the  planes.  success  geometric of  t h e i r  problem  planes,  depending  in  structure  X-rays  throughout  between  space  analysis.  the  some  230  Barlow  results  based  r e f l e c t i o n  when  The  crystal  L.  wavelengths,  structure  since  W.  of  from  occurs  the  Schonflies  interpret  reinforcement  apart,  known  and  structures  crystal.  shown  famous  X-rays,  c r y s t a l  the  the  Laue's  positions.  f i r s t of  Fedorov,  constitute  century.  Von  but  by  operations  within  the  X-ray  the  6  Since scattering known  as  of  of  varies  with  atom  tends  electrons  X-rays,  the  i t s scattering  number  the  the  electrons  spread  as  the  the  than  f o r  the  ideal  by  the  expression  angle  scattering  i s  vibration symmetry  (B  =  f o r  anisotropic  be  2  h  2  +  used.  orientation  the  Consider the  wave  the from  atom), a  a  f^,  and  a  s i x  f  b  phase of  2  f i n i t e  a  larger  =  size  more  factor  of  motion  volume  amplitude  and  rapidly can  cloud  b  of  be  atomic  spherical abandoned,  hk  +  b  kil +  b  2 3  define  hi)  the  } '  13  size  and  vibration.)  atoms atom  waves  |F|.  i s  12  parameters  of  of  of  For  scattering  being  X-radiation,  characterised  on  the  scattering  The  net  amplitude  i s  known  the  as  general  the  E f . e x p { 2 - r r i ( h x ,+ky  , + lz .) } ,  by  an  power  of  r e s u l t i n g structure  plane  i s F(hk&)  factor  form  +  constant.  by  the  Thermal  assumption  (depending  these  on  atom,  2  the I  each  ...  symbolized  resultant  of  b^..  series  the  This  3 3  from  combination  amplitude, the  f^,  +  given  scattering  decrease  electron  e l l i p s o i d  scattered  amplitude  2  over  2  2-2  These of  k  a  of  source.  to  the  Sin 6/A },  factors b  of  mean-square  vibrating  11  The  model.  (If the  2  thermal  r  the  8TT U ).  the  exp{-(b  may  to  (Z).  power  f o r  dependent  because  stationary  related  power  i s  cloud  exp{-B B  ,  atom  electron  causes  where  f  scattering  thus  given  the  a  responsible  scattering  factor  d i f f r a c t i o n  regarded  to  i n  are  (hkl),  7  summing x.,  y.  3  *3  over and  a l l t h e atoms  z.  are fractional  3  referred  t o unit  known  the structure  as  amplitude by  c e l l  |F| a n d  means  i n the unit  of the  a  axes  coordinates  a,  b,  factor,  phase  c e l l ,  c.  and  of the  This  atoms  complex  i s characterised  constant  where  a,  which  +  B  may  resultant,  by  an  be  evaluated  expressions F(hk£) a(hkA)  = =  /A  2  T a n  -  2  B/A  1  where  This For  expression example,  possible whether  may  f o r B  proportional  be  simplified  must  the  r e f l e c t i n g recording  q  symmetry  f o r A be  may  t h e above  the presence  of  i s chosen  origin,  0  or  as  TT d e p e n d i n g  symmetry. the  on  o r negative.  The  zero. o f these  corrections  equations  i s evident  o f the structure o f the X-ray  f o r the p a r t i a l  o f t h e X-rays,  be  to  3  i s positive  the square  method  3  by  are limited  t o the observed F  of  to the intensity  appropriate  applied  3  centre  that  2TT ( h x . + k y .+lz .) I D 3  3  significance  the  from  E f . S i n 2TT ( h x . + k y . + £ z .) .  =  angles  i s realized  factor  B  3  the expression  The  data  E f . Cos  i f a  phase  expression  i t  A =  and  amplitude  r e f l e c t i o n .  d i r e c t l y  expressions,  F  .  by  of the  (Lorentz-polarization factor)  compared  i s  I f  polarization  f o r the geometry  intensity,  when  are  the observed  structure  t o the value  calculated  8  Since periodic a  i n  the  three  electron-density  dimensions,  three-dimensional  p(xyz)  where  V  i s  the  therefore, F(hk£)'s summed  1 V  ZZE hk£  volume  that  could  to  =  Fourier  give  by  i t can  series  i n  a  crystal  be  represented  the  unit  observation  c e l l .  It  }  would  seem  of  the  i n t e n s i t i e s ,  and  the  above  be  calculated,  a  representation  by  as  F ( h k £ ) e x p { - 2 T T i ( h x + k y + Hz)  of  i s  of  the  the  series  entire  crystal  structure. However, the  measurement  about  the  modulus,  fundamental as  the  phase  ographer having  to  test  based the  on  the the  observed  structure  intensity  give  the  d i f f i c u l t y  i n  X-ray  problem.  It  i s  of  overcoming  find  means  the to  and  can  factor  not  deduced  corresponding to  of  the  a  phases,  to  chemically  structure proposed values.  by  This  analysis, task  find  of this  the  reasonable  calculating  positions  and  complex,  information  phase.  the  i s  i s  and the  and  only  the i s  known  c r y s t a l l -  d i f f i c u l t y ,  atomic  positions  structure;  structure comparing  and,  and  factors them  with  9  Solution  o f t h e Phase  If phaseless map  the Fourier  quantities  has peaks  This  provides If  N(N-l)/2  t h e same  of  Patterson be  i t s  there  size,  and with  easy  weight  i s  |F|  altered  which  give  with  r i s e  Patterson  map  solution  are  i n a  greater peaks,  c e l l breadth  r e s o l u t i o n  synthesis  t o t h e phase  i n v o l v i n g many  may  problem,  atoms  not possess  o f the atomic  To  o f the  consider AB  a n d BA.  but opposite  i n direction,  has a  o f symmetry  centre space  group  t o the corresponding  i n using  i n a two  simple  atoms  A  These  are  so that  the  regardless  has one o r n o t .  o f symmetry  the  exact  d i s t r i b u t i o n ,  involved  i l l u s t r a t e  symmetry,  a l l elements  reduced  there  the Patterson  t o two v e c t o r s  the o r i g i n a l  addition,  analyses.  contained  Fourier  of information  q u a n t i t i e s .  2  c e l l ,  vectors.  i n 1934, and  structure  i n a  function  group  Patterson  magnitude,  whether  Patterson  the loss  phaseless  r e s u l t i n g  d i f f i c u l t .  o f t h e space  r e f l e c t i n g  the  the  Patterson  the inherently  although an  L.  vectors  compared  Thus,  A.  atoms  Patterson  t o provide  symmetry  are  by  with  t o the interatomic  f o r many  are N  peaks  The  in  correspond made  i s summed  c o e f f i c i e n t s ,  a p p l i c a t i o n t o structures  same  the  as  2  the basis  poor.  appears  series  |F|  was  d i s t i n c t  of  may  which  observation  today  Problem  i n v o l v i n g  the way and  equal  o f In  translation  non-translational  B  ones  10  (ie.  screw axes become r o t a t i o n a l axes; g l i d e p l a n e s become  mirror planes). Harker p o i n t e d out t h a t u s e f u l i n f o r m a t i o n i s c o n t a i n e d i n c e r t a i n p l a n e s o r l i n e s o f the P a t t e r s o n f u n c t i o n due crystal.  three-dimensional  t o the p r e s e n c e of symmetry i n the  These Harker l i n e s and p l a n e s a r i s e because the  v e c t o r s between c o r r e s p o n d i n g  atoms of m o l e c u l e s r e l a t e d by  symmetry elements o t h e r than c e n t r e s have one o r constant  two  coordinates. As an example, the space group Pm has a m i r r o r  p l a n e p e r p e n d i c u l a r t o the b a x i s so t h a t f o r e v e r y atom a t x, y, z t h e r e i s a n o t h e r a t x, y, z.  The v e c t o r s between  these atoms a l l have c o o r d i n a t e s 0, 2y, 0, so t h a t they concentrated  on the Harker l i n e w h i c h i s the y a x i s of  Patterson function.  are the  For a m o l e c u l e w i t h a l a r g e number of  atoms of e q u a l w e i g h t , t h i s o f t e n does not s i m p l i f y  the  analysis. However, i f the s t r u c t u r e under c o n s i d e r a t i o n has a 'heavy' atom, the v e c t o r s between i t and i t s symmetryrelated equivalents w i l l  stand out s t r o n g l y a g a i n s t  p o o r l y r e s o l v e d background of l i g h t atom peaks.  the  In t h i s  case the P a t t e r s o n f u n c t i o n p r o v i d e s i n f o r m a t i o n about p a r t of the s t r u c t u r e , t h a t i s , the p o s i t i o n of the heavy atom. I f t h i s atom comprises the l a r g e r share of the s t r u c t u r e f a c t o r , the component due  t o the l i g h t e r atoms b e i n g  s m a l l , a f i r s t approximation  t o the phases may  be  obtained.  11  Expressed If  F(hk£)  and  f„  =  >>  f e x p { 2 T r i (hx +ky ,+£z„) } n n rl ri u  t I  -  series  approximate  recognizable  a  more  be  by  model the  although  the  true  the  of  molecule.  the with  phases  results.  of In  T  are the  some  this  atom,  obtained,  way,  phases,  i t i s only  of  I f  heavy  true  the  a  an  electron-density  p o s i t i o n  the  this  fundamental  an  hand, the  easily  portion  i n the  and  i s  phasing  therefore  electron-density the  the  heavier  Patterson  to  atom  the  the  on  may  hydrogen  atoms  compound  are  heavy the  method, the  less  the  not  i n a  are be  entire  structure  the  the  the  and  found atom  not  at  the |F  l i g h t  i s On  i t i s  a  more  i t dominates  | comparison Thus,  uncertain,  and  For  d e r i v a t i v e A  this or  to  phasing'  atoms.  a l l .  located.  method  easier  better  hand,  Q  this  d e r i v a t i v e .  increasingly  heavy  frequently  and  |F | of  of  atom  atom,  other  positions  positions  extreme,  d i f f i c u l t y  appropriate  i t i s ; while  sensitive  the  of  to  and  reveal  representation  structure,  l i g h t  T  deduced.  one  find  approximation  summed,  together  accurate  choosing  the  be  i t may  The in  f i r s t  feature  d i s t r i b u t i o n may  can  included,  closer  this  representation  d i s t r i b u t i o n ,  model,  T  f„exp{2Tri (hx„+ky„+£z„) }. rl rl rl rl  Using  then  Ef exp{2-rri ( h x + k y + £ z ) } Jj l_i Li ±j  ij  F(hk£)  Fourier  +  T  f_  rl  then  a n a l y t i c a l l y :  i s the i n  reason  the  organometallic  convenient  rule  of  T  12  thumb  used  although  i n  f a i r l y If  to  a  selecting  the  symmetry  class  of  (h-odd  phase  to  the  and  odd  higher  w i l l  omission on  may  be  solve  the  structure,  peaks  which  for  the  a  positions  h-odd  The  w i l l  i f a  series h-odd may be  of  the  map  Careful  give  case  a  very  only  to  close a  structure.  atoms  to  are  from  the  symmetry,  imposes the  images, select  a  between  F  the  l i g h t  and  to  set  of  reasonable  agreement  out  contribute  false  Thus  mirror  certain  others  computed  chemically  good  tolerated.  or  r e f l e c t i o n s  their  where  a  not  be  from  peaks  but  to  may  can  r e f l e c t i o n s  higher  to  element,  means  the  h  1,  molecule, and  q  F  C  r e f l e c t i o n s .  computed  show  by  map  additional,  odd  be  f o r the  l i g h t  i t i s necessary  contribute  Patterson  but  the  on  *  2  contributions  the  Fourier  entire  correspond  symmetry  atom  of  accompanied  For on  A  2  i t can  while  atom  only  exhibit  the  atoms  whose  from  £Z /£Z rl Li  contribute  heavy  Thus  i s  i s located  i t may  the  cancel.  symmetry  atom  (e.g.h-even)  case)  alone  the  and  atom  r e f l e c t i o n s .  atom  because  heavy  r e f l e c t i o n  heavy  deviations  element,  i n this  of  heavy  large  a  the  somewhere small detect  found  the  which  to  h-even are  corresponding  of  the  atom  near  part  of  this  estimate  i t ,the  the  odd  i t ,a  to  the their  density  by  exactly heavy  r e f l e c t i o n s .  displacement,  r e f l e c t i o n s ,  than  higher  i s not  slight  approximated  electron-density  selection  heavy  Fourier  and the  true  heavy  atom,  structure  unreal peaks  the  to  images.  which  form  13  a  reasonable  model  Methods but  examination  direct  can not  of  methods,  then  employing  the  and  gaining  a v a i l a b i l i t y  of  based  on  probability  which  determine  known  phases.  so  the  the  phases To  determined,  speed  normalized  symbol  e  structure  but  varies  f o r  on  the  certain  symmetry  of  d i s t r i b u t i o n  of  shape  unit  a  of  centre  t i c a l  the of  test  f o r  determining  F(hk£)  where any of  basis  Sayre, =  structure  a  Table  who  f  of i n  are  Sayre of  other  the  phases  to  define  that  .  2  i s generally  reflections question.  on  of the  values  acentric  1,  depending The  the  size  and  presence  provide  distributions  a  of  s t a t i s of  13).  the  probability above that  E E EF(h'k £') h'k'ii' ,  scaling  F(hk£)  of  ±  independent  these  showed  simple  of  sets  dependent  mentioned  factor  pairs  and  f o r  <Mhk£)  i s  but  by  terms  such  which  group  i s  i n  greater  methods  mathematically E(hkil)  called  with  r e l i a b i l i t y  integer  Thus  centric  phases  $(hk£)  a l l the  c e l l ,  (compare  The  by  values  are  deduced  2  an  function.,  Direct  |F(hk£)| /e£  space  symmetry.  intensities  deduced  |E|  the  special  the  alone  r e f l e c t i o n  factor =  represents  data  importance  convenient  2  The  one  structure.  Patterson  relationships  of  E (hk£)  true  computers.  evaluate  i t i s  the  the  intensity  are  high  reveal  i s  structure  relationships  i s  the  f o r  the  • F (h-h  term.  factors  relationship centrosymmetric 1  ,k-k  This  determined  f o r  by  whose  ',£-£')  implies the  that  products  indices  add  case  14  to  (hk£).  of  F(322)  appears  For and  to  F ( l l l ) ,  be  determined  example,  of  only  F(213)  or  l i t t l e  depends  F(612) value,  and  terms  of  However,  Sayre  pointed  the  F(401).  since  i n  on  others,  the  product This  signs  none  of  result  are  which  are  known.  F(hk£)'s (+  or  -)  in  sign  the  series  and  that  among  must  this  tend  out  strongly  direction  products  of  that  large  i s  i n  for  large  one  direction  indicated  F's.  Thus  by  for  agreement  large  reflections S(F(hk£)) S  means  'the  the  S(F(h'k'£'))  sign  As of  ^  shown  above  3  where  a  total  scattering  (ie.  =  n. l  =  by  En  f./Ef. i ' j  a  which  represent these, signs  a  and of  phases  be  the  of  has  n.  the  i s  o r i g i n  subsequently  others.  If  an  the by  atoms  are  Sayre's  i s  i  t h  a l l  given  much  a  a r b i t r a r i l y i s  the  alike), to  the  symbolic  small  impasse  reached,  of  they  arbitrary), ones, t o  addition  number  (since  determined i s  I }  attention recently,  the  of  of  by  atom  equation  called  which  i s  fraction  the  to'.  probability  (h-h' , k-k ',£-£')  selection  assigned of  E  equal  the  general  received  employed  involves  choice  the  En?;  application  can  i n  i f the  method  This  true  E(h'k'£')  =  1/N '  ' i s probably Woolfson,  =  and  method.  and  represented  of  usual  means  being  3  S ( F ( h - h ' , k - k ' , £-5, *) ) .  power  determination the  ^  Cochran  |E(hk£)  and  2  The  phases  and  relations  P = 35+3sTanh{2J- ,2 02 2  of',  •  and  deduce other  from the  15  phases may be assigned symbols, and t h e remainder  determined  i n terms o f these symbols, which can then be v a r i e d and the c o n s i s t e n c y o f the r e s u l t i n g s e t s o f phases  checked  mathematically. A c o n s i s t e n c y index has been d e f i n e d C =  <lE(hk£)EE(h'k'£') E(h-h',k-k',£-£')[> <|E(hk£) I l l E f h ' k ' D l |E(h-h' ,k-k' ,1-1') |>  the sums being taken over a l l p a i r s of (h'k'Ji ) and 1  (h-h ,k-k , l - l ) 1  1  1  whose sum i s (hkJl) and where < > means  the average over a l l v a l u e s o f (hk£). I f f o r each r e f l e c t i o n a l l of the terms i n the sum i n Sayre's equation have the same s i g n as a l l other terms i n t h a t p a r t i c u l a r sum, C equals 1, and the s o l u t i o n i s completely c o n s i s t e n t .  In g e n e r a l  the t r u e s o l u t i o n w i l l be the one with the h i g h e s t c o n s i s t e n c y index. Having  thus determined  a s e t o f phases f o r t h e  E's, a F o u r i e r s e r i e s can be summed u s i n g the E's as c o e f f i c i e n t s , and from t h i s the s t r u c t u r e (or a p a r t i a l s t r u c t u r e ) can be deduced.  I f the E-map i s i n s u f f i c i e n t l y  r e s o l v e d t o g i v e the p o s i t i o n of the e n t i r e molecule, a p a r t i a l s t r u c t u r e may be used as a phasing model f o r further F  F o u r i e r syntheses.  16  Refinement  of the  Once or  elucidated  c r i t e r i o n  a  Structure  model  from  f o r judging as well  required.  The most  structure  positions these  Patterson  as  a means  obvious  calculated  q u a n t i t i e s i s usually  'residual'  or  'discrepancy R  =  Z  a  postulated  proceed  t o an  F  F  errors F 's  of  of  makes this set  t h e most  t h e sum occurs  of  unknowns) s a t i s f y algebra. method'.  o f  when  'normal and  i n terms defined  o f  of  atomic  between a  by  refinement  or  i n t e n s i t i e s  exact.  acceptable  between  solution  them  the best  P r i n c i p l e  procedure  be  the F  According  the errors  s e t up  t o  E, a E£  i s called  and  which  2  vanish.  (n e q u a t i o n s  determined the  s  minimum,  s e t of v a r i a b l e s  can be  1 q  t o  Legendre's  i s t h e one  d e r i v a t i v e s of  may  usually  are subject  the p a r t i a l  equations'  w i l l  less.  t h e agreement  t o be  F  of  from  comparison  agreement  the squares  Legendre's This  0.10  the observed  observation,  P r i n c i p l e ,  as  0  value  i s not expected  C  E  C  i s correct,  Since  The  R,  some  M I-I I l / l l -  model  R  the model  the postulated  described  0  If  from  index'  methods,  i s direct  values.  proposed  of the structure i s  f o r improving  method  the observed  has been  or direct  the correctness  factors  with  the structure  either  necessary,  the  of  by  and A  i n n  which matrix  'least-squares  ,  17  In minimized  c r y s t a l  structure  w  i s  a  r e f l e c t i o n s such  may  weights  be  i f  the  be  are  =  W  for  computation  i s  normal  equations  the  f u l l  give of  atom  i f  i s  are A  the  cycles  acceptable ^  correct of  be  answer  F  correct,  R  the  others.  If  be  defined  , and  R^  should  i s  fixed  structures  involve  large  equations,  and  1  s  the  structure  a  been  used,  the  off-diagonal  and  may  answer  at  the  used.  be  i s  of  of  immediately, i s to  required  the c  F  o  's.  with  these and  to  i f  a  of large  of  to  the  a  the  f i r s t block-  computing are  available,  procedures  usually  give  four  matrices  terms  greater  f a c i l i t i e s  None  that  by  deal  neglected,  obtained  cost  computing  found  great  has  small,  refinement  f i t of  J 5  of  may  It  better  may  2  O  are  i n  normal  s u f f i c i e n t  matrix  than  factor  c  large  approximation  and  R  some  same.  equations  approximation.  because  r e l i a b l y  weighted  required.  of  diagonal  the  2  employed  more  weights  the  the  number  time,  function  C  2  each  of  factor  O  (x,y,z,B),  solution  O  {Ew||F |-|F || Aw|F | }  assigned  Since  EW(|F |-|F |)  measured  used,  approximately  variables  =  weighting  R and  the  i s  Rwhere  analysis  the  a  w i l l  number  most  P A R T  T H E  S T R U C T U R E  I I  D E T E R M I N A T I O N  O F  T H E  AN  M E T H I O D I D E  A L K A L O I D  D E R I V A T I V E  FROM  O F  D A P H N I P H Y L L U M  DAPHMACRINE,  MACROPODUM  19  INTRODUCTION The i s o l a t i o n and p r o p e r t i e s of  ^ 3 2  H  daphmacrine 5  have been d e s c r i b e d by Nakano and S a e k i .  4 9 ^ 4 ^  X-ray c r y s t a l a n a l y s i s of the methiodide d e r i v a t i v e  An was  undertaken to show the d e t a i l s of the m o l e c u l a r s t r u c t u r e , i n c l u d i n g the a b s o l u t e c o n f i g u r a t i o n , and t o p r o v i d e a d d i t i o n a l evidence f o r the n o v e l framework o f daphniphyllum alkaloids. EXPERIMENTAL C r y s t a l s of daphmacrine  methiodide  s o l v a t e ) are c o l o u r l e s s p l a t e s w i t h smaller { 1 0 1 }  forms.  Unit c e l l  (acetone  ( 0 1 0 ) developed, and  and space group data were  determined from v a r i o u s r o t a t i o n , Weissenberg  and p r e c e s s i o n  films. C r y s t a l D a t a . — X (Cu-K ) = — a  1.5418;  X (Mo-K  Daphmacrine methiodide acetone s o l v a t e C  3 3  H  5 2 ° 4  N  I  *  (  M  e  2  Orthorhombic,  C  )  a =  U = 3 5 4 3 . R , D^ 3  Z = 4, D  0  =  M  =  7  1  1  -  8  14.23(2),  '  m  * P *  b =  =  0.7107&.  (from a c e t o n e - e t h e r ) ,  274-275°.  24.85(2),  c =  10.02(1)&  .  ( f l o t a t i o n i n aqueous KI) = 1 . 3 6 g.cm. , 3  =1.33  g.cmT ^  c F(000)  '  a) =  3  1496.  A b s o r p t i o n c o e f f i c i e n t s : u(Cu-K ) = 7 6 cm. ; 1  a  Absent r e f l e c t i o n s : hOO, Space group  P2i2 2i(D '). 1  2  h odd; OkO,  k odd;  u(Mo-K^) = 9 . 6 cm. 00&,&  odd.  20  The 28(Mo-K )  <  a  were XRD  i n t e n s i t i e s  40°  measured 6  on  a  counts The  with  analyser),  were  made  at  the  crystal  used  was  a  p a r a l l e l with  a  to  factors  and to  Of  2047  6-2 0  iodine  three-dimensional and  twenty-four  made.  and  the  213  containing  cage,  electron-density chain on  a  basis  and  the  second of  the  were map.  smaller,  located Eleven  computed  Background each  structure with  26  scan.  0.1 and  and  mm. was  mounted  No  p o l a r i z a t i o n  amplitudes  <40°,  1834  were (90%)  r e f l e c t i o n s with  F  Q  =  were  0.6  F(min).  ANALYSIS  was  determined  i n the on  a  (0.041, larger,  f i r s t  additional  n i t r o g e n - f r e e cage  three-dimensional phases  Lorentz  function  mainly  f i l t e r  the goniostat.  refinement  Patterson  of  <101>  unobserved  position  atoms,  of  to  1.04&)  counter,  scan. end  -  (Zr  dimensions  p a r a l l e l  was  structure  and  with  STRUCTURE  The  s c i n t i l l a t i o n  a  d  E l e c t r i c  and  r e f l e c t i o n s the  General  radiation  (}> a x i s  with  spacing,  Mo-K^  plate  the  and  i n the  a  beginning  mm.  applied,  observed,  included  0.3  correction  were  derived. were  b  p a r a l l e l  absorption  interplanar  monochromatic  pulse-height  a l lr e f l e c t i o n s  Datex-automated  spectrogoniometer  approximately and  (minimum  of  from  0.196 ,  the  0.167),  nitrogen-  three-dimensional atoms were  of  positions  the  located  e l e c t r o n - d e n s i t y map from  the  of  on the  the f i r s t  21  twenty-five were  atoms.  refined  minimization and  /w  as  30.  as  0.6  =  block-diagonal  o f  Ew (|F | - | F j )  F*/|F  F(min)  and  of  as  o f  only  one  of these  F*.  f o r X-ray  map  on  was  1 when  |F  scattering  revealed  factors  five  a  atoms,  i n the refinement.  assigned  as o f  t h e i r  Three  were  properly  higher  electron  are possible i t c a r r i e s as  used.  three-  further  carbon  of the  were  included  assigned  | 4 F*, •  taken  Crystallography  (since  with  r e f l e c t i o n s , F was ' o  refinement,  positions  was  F*  methods,  taken  the basis  cage  AT =  parameters  i n i t i a l l y  The  i s o t r o p i c  two  o f the larger  | >  1.0.  previously oxygen  densities;  and  =  subsequently  t h e atoms  atom  /w  difference  were  assigned  |F  with  f  unobserved  Tables  cycles  dimensional which  | when  and thermal  least-squares  2  q  F o r t h e 213  two  p o s i t i o n a l  by  International After  The  f o r the a  nitrogen  methyl  from  nitrogen group),  chemical  considerations. After 0.18; and  /w  four  f i n a l  molecule  also,  maps  of  have  other  o f refinement,  r e f l e c t i o n s was anisotropic  of refinement, synthesis The  were  solvent  atoms  two  cycles  atoms.  cycles  allowed  difference  two  difference  i o n was  more  dimensional  solvent  further  f o r the unobserved  the iodide  After  the  three  those  seven  atoms  atoms  were  thermal  side  t o  0.8,  parameters.  threeo f  on t h e chain  (acetone);  parameters.  re-assigned  was  the location  located  of the acetyl  thermal  changed  second  revealed  of c r y s t a l l i z a t i o n high  a  R  At  and o f the  the t h i s  as oxygens,  point  and  an  22  analysis of w ( F - F ) Q  and  c  ,  z  suggested t h a t F  *  be changed t o 40,  /w f o r t h e unobserved r e f l e c t i o n s be changed t o 0.6. Four f u r t h e r c y c l e s o f r e f i n e m e n t w i t h a l l t h e  atoms i n c l u d e d of 0.095. for  and p r o p e r l y  a s s i g n e d r e s u l t e d i n an R v a l u e  Four c y c l e s w i t h a n i s o t r o p i c t h e r m a l parameters  a l l 4 3 atoms completed t h e r e f i n e m e n t , t h e maximum  s h i f t i n t h e f i n a l c y c l e b e i n g 0.3a, and t h e f i n a l R was 0.089 f o r 1834 r e f l e c t i o n s .  Measured and c a l c u l a t e d  s t r u c t u r e f a c t o r s a r e l i s t e d i n T a b l e 1. A f i n a l three-dimensional Fourier summed, and s e c t i o n s o f t h e r e s u l t i n g d i s t r i b u t i o n a r e shown i n F i g u r e of the molecule.  s e r i e s was  electron-density  1, t o g e t h e r w i t h a drawing  A f i n a l d i f f e r e n c e map showed no s p u r i o u s  d e t a i l , t h e maximum f l u c t i o n s b e i n g ±0.6 e£ I e x c e p t a t t h e i o d i d e p o s i t i o n , where f l u c t u a t i o n s o f ±1.3 eR observed.  3  were  Table 1 Measured and c a l c u l a t e d s t r u c t u r e f a c t o r s f o r daphmacrine methiodide.  Unobserved r e f l e c t i o n s have  |F | = 0.6 F(min)  and are i n d i c a t e d by a n e g a t i v e s i g n b e f o r e F .  With  r e s p e c t to the right-handed a x i a l s e t used to d e s c r i b e the a b s o l u t e c o n f i g u r a t i o n , the F r e f l e c t i o n s hk£.  q  v a l u e s are those f o r  24  Table 1  h k I F  0  116.3 44.1 126.6 40.5 48.7 108.T 165.6 85.0 1?.6 34.8 50.4 16.8 51.5 1*0.0  F  C  100 37 119 36 45 \OT  I" 77 3 32 S3 la 49 136  73.1 IB.9 47.0 14.5 11.1 52.1 46.9 117.5 25.5 79.3 -4.7 -5.1  17.1 13.5 53.5 76.6  62.7 142.5 154.4 1B.T 44. 5 30.5 27.8 28.3  127.3 26.5 69.9  65.0 28.2 58. 1  ?2.4 65.5 72.8  50.? 22.2 11.?  14.5 101.5 33.9 38.0 36.8 28.5 24.0 33.2 27.8 10.1 65.2 33.1  790.3  298  21.7 16.4 33.0 10.7  30.0 29.0 61.3 33.? 71.8 51.1 JB.fi 2 J. I 20.9 29.0 5.6 64 .4  31.0 9.8 37.6  106.5 74.4 135.0 15. I 110. 7 27.5 12.2  37.4 37.2 17.8 -1.0 102.5 50. 1 112.4 77.5  59.2 133.5 110.1 25.7 47.5 30.6 25.5 28.1 7.1 137.6 56.2 80. 7 58. 3 85.9 78.5 30.6 25.2  19.6 12.2 43.4  29. I 10. 7 72.5  20.9 12.0 19.4  31.4 57.3 29.2 14.0 114.6 71.0 50.0 102.0 111.7  75.3 15. 1 -6. 1 17. 1 46.2 15.3 11.2 -5.8 15.0 36.2 23.6 22.0 10.6  143.5 11.1 109.3 28.2 13.2 15.9 54.1 7.4 10.0 126.9 86.2 17.3  13.9 -5.5 20.5  1  142.5  ?0.5 29.4 13.9  13.4 124.7 65.0  128.8  21.2 4.2 97.2 49.? 111.1 81.9 69. 7  72. J 1 74.6 108.0  5T.? 23. I 21.0 58.5  43.1 11.5 56.0  11.9 5.0 12.0 38.8 19.6 10.fi  21.8 20.1 13.8 23.0 19.5  33.7 26.6 19.5 7.7 17.7 15.6 1 7.6 27.5 25.6 18.8 38.4 12.2 5.9 6.5  19.2 14.1 *2.2 42.0 14.9 24.2  16.6 1 0.6 26.5  22.5 12.6 71.5  19.1 25.6 25.8  26.9 1 3.S 21.0  37. B 16.2 99. 8 68. 3 14.5 60.5 33. 1 40.6 62. 1 35. I -5.8 I 1,5 ?1.? 22.1 22.8 2e.o 2C.6 17.4 11.2 23.7 11.6 10.5  15.9 20.1 27.2 41.9 11.2 11.0 18.7 31.0  32.5 42.2 26.0  97.9 84.5 45.6 70.2 15.7 35.2 22.2  21.1 38.9 22.6  10.2 16.4 25.1  67.9 28.4 62. B 26.5 24. 3 46.9 97.0 62, 1  22.9 96. 1 95.3  29.9 55.4 48.B 42.8 2B. 1 86.? 119.2 77.5 91.9 53.6 65.2 33.1  58.2 21.5 77.2  25 Table continued h k 1 F„ 1 6 i 3 } 1 i 1 3 1 1 9  a 8 e 6 9 9 9 9  49. 1 74.0 30.6 13.0 0,7 52.7  2 J 4 5  6t>. 3 32.5 3*. 3 35.6 -5.? 30.2  66.1 77.2 37.7 38.7 11.6 30.6  7  0 0 C 0 0 0 0 0 0 t 1 1  0 1 2 1 * 5 6 7 8 0 1 2 1  I  5  I  T e 0 1  1 2 2  2 2  c  52.5 25. 3 32.0 14.0 -6.3 61.3  9  1  F  5 b 7 a <* 0  2  3  2  5  2 ? 1  7 e 0  1 3 J 1  2 3 4 5  3 3 4 4 4 4 4 4  7 a 0 1 2 3 4 5  4 5  7 0  5 5  2 1  5  5  5 6 6 b 6 6 6  63.5 88.4 76.5 21.1  27.6 * I .6 20.1 26.2 18. 1 37.5 51.7 36. 7 30.* 4 1.1 43.4 23.0 -5.7 31.8 -4.0 59.0 66.8 74.8 70.5 74.8 17.2 25.5 ?0.5 61.6  22. 3 60. 3 89.9 72. J 17.8 32.8 46.4 70.3 27. 1 15.1 30.0 51 . 3 40.9 17.0 49.a 54,B 74.6 31.a 10.4 59.0 65.6 26.0 23.7 29.9 16.7 31.4 77.1 64.7 30.4 45.1 39. 1 11.a 40. 3 73.7 15.2 32. 3 18. 3 20. 8 54. 1 24. 7 23.3 73.5  7 0 1 2 3 4 5  25.2 44.6 37.6 17.6 IS.2 71.1 1 7.B 30.9 11.3 20.5 49. 8 74. 7 18.5 2C.7 -6.0 31.8 37. 1 17.2 26. 1 11.3 20. 1 17.8 13.9 11.B 18.9 39.0 28.7 34.6 20.6  6 7 7 7  7 0 I I  26. 3 -4.8 15.7 31.8  T  5  e e a  o i 2  11.5 30. a 17.3 -4.9 14.6 36.0  26.2 6.5 70,8 29.8 27. 1 17.B 30.2 17.3 1.3 26.0 11.7  3 a 8 9 9 9 9  * 5 6 0 1 2 3  74.0 20.5 18.8 -5.1 -5.7 16.0 -5.6  20.7 17.n 18.4 3.7 72.9 14.6 5.9  9 0 C a 70 a 0  5 0 1 2 3 <• 5  73.9 11. a 22.4 21.7 19.0 9. 1 ia.a  24.0 9.5 11.a 17.1 71.8 3.8 22.3  1 1 1  1 3  2 2 2  0 1 2  -5.5 13.? 16.a -6.0 17.3 -5. 7 12.4  9.9 12.5 15.2 10.6 9.8 1 t .1 8.7  10.5 10.7 14.4 -5.9 14.6  8^5 17.6 10.3  2  3  0  3 23 )  2 1 0  • 0 c 0 0 0 0 0 1  I 1 1 2  48.9 2 30.5 1 4 74.7 61.2 5 42.5 6 35.3 T 19.1 ft 43.9 9 0 • 133.7 175.0 ac.o 38. 3 * 73.8 23.1 71.8 25.7 8 19.1 1 3.4 0 1 10.1  I  4 4 4 4  4  4 4 4 4 4  4  43.0 39,3 71.1 51.7 37.0 15,6 15.ft 45.0 145.2 109.6 77. 1 38.7 76.7 21.8 66.7 74.8 15.5 172.0  3  1  3  3  3 3  5 6  3  8  4  0  4 4  7 1  4 4  5 6  4 4 5 5 5 5  8 9 0  7 a 9 0  7 7  2 3  7 7 7 7 7  5 6 7 8 9  S e e B a 8 8 a a 9 9 9 9 9 9 9 9 9 10 10 0 0 0 10 10  0 i  0 1 1  4  4 4  2 3  6 6 6 7  0  4  1  5  4  4 4  7 8 9  6  4  4 4 4  5  2 2 2  7 B 9 0 1 2 3  4  4  2  40. 1 40.6 62.4 16.8 37.2 82.5 113.0  5 5 5 6 6 6 6  4 4 4  4  62. 7 ee.o  5  4  IB.3  2 3  5  4 4  29.0 40.5 17.4 19.0 19,5 11.4 30.0 26.0 38.2 26.7 16.7 23.4  7 2  1 1  1  1 2 2 17 12  * |»  2  ) 4 5 6 7 a 0 1 2 3 4 5 b 7 a 0 1 2 3 4 5 6 7 e 0 2 3 4 7 a 0 1 2 3  103. 3 84.0 71.4 17. a 31. 7 19.0 75.6 28.9 114.6 50.3 104. 7 31.1 76.4 34.0 31.7 -6.7 20.6 107.5 39.0 50.4 60.4 11.8 49.5 22.7 11.0 -3.1 33.5 92.6 45.0 63.2 22. 1  54.2 85,9 35.8 42.5 55.9 19.9 35.5 9 6 . ft 1G0.B 100.3 B9.5 74.1 65.5 39. 1 15.4 18.1 58.8 31.8 110.0 40.4 95. 1 31.2 25.a 37.3 35.6 4,5 75.6 105, 3 60.5 35,6 43.4 58.4 18.0 50. 8 27.8 3.0 1.4 35. 7 85. 1 46. 3 62.0 24.7  16.6 31.7 1 a.2 103.4 44. 9 48.9 35.5 34.8 61.2 21.2 21.3 12.1 17.6 97.3 41.9 99.1 96.6 52.6 29. 7 33.0 I 3.7 2C.9  16.1 31.6 15.2 90.4 55.6 49.5 41.7 33.9 54. B 22. 1 73.6 10.7 13.1 50.1 97 . 7 99.4 48.6 79.9 13.7 13.6 ia.o  85.0 31.5 70.5 50. 7  70.4 16.6 72.4 48.1  51.7 22. 1 -6.0 -3.9 27.5 64.0 96. 1 25.1 24.9 31.6 29.5 2 7 . <> 85. 1 78.0 55.0 32.7 34.4  55.1 20.5 8.9 9.B 26.4 63.4 97.1 75.4 24 . 6 31.5 28. 3 26.3 83.5 71 . 0 49.0 40,6 32 . 5  29.5 26.6 -6. 1 -4.1 32. 0  29.6 74.6 8.4 1.5 14.2  24. 1  29.2  5  28.7  32.2  T 8 0 1  10.6 20.9 18.7 27.2  27.9 16.7 21.8 30.2  3  3  12.4  1  5  4  1 1  7  4 4  1 1  4 4  4 14 14  7 3 4 5  14 5  7 0  5 5 •  2 3 4  4  5 16  4  16  4 ' ' 4  ! I2 13 3  t \  4  ' : i  • *  I 77 1  4 4  17 17  5 7 13 6  5 5  14.6 27.1 -5.7 25.4 -6.2 19.2 -5.3 10.9 12.4  30 6 21 14 ?B 2 31 2 20 16 6 6  B 1 9 6  5 5 5 5 5 5 5 5 5 5 5 5  13 50 5 79 12 5 29 15 1 1 10 8 70 13 17 B 2 20 1 1 3 3 119 19 14 8 36 1 65 88 78  7 8 1 7  2  14.6 55.7 -5.4 12.7 14.1 -6.0 12.4 20.4 13.8 11.6 17.6 20.9 1C. 7 21.5 12.8 -5.8 24.4 118.7 -4.1 134.6 23.5 13.3 -5.5 37.5 -6.3 70.5 105.5 89.0  4 5 6 7 8 9 0 1  T4!l 90. 1 44.1 44.0 -5.9 19.9 B5.2 62.7  62 6 86  3 4 5 6 7 B 9 0 1  87 1 90 0 6 0 24  3 4 5  86,2 101.3 12.1 74.5 37.0 23.9 31.4 77.6 86.4 75. 7 18.7 25.4 55.9  7 8 9 0  36.9 20. 1 -6.3 76.6  38 73  2  58.7  55  4 5 6 7 8 9 0 1 2 3 4 5 6 7 a fl  3l!s 68.3 76.6 33.5 24. 1 34.9 70.7 45. 3 40.6 21.8 57. 1 15.0 86. 3 26.6 -6.o 40.9  2 1 4  81 . 1 75.7 67.5  40 72 71 62  )  21.5  18  1 4 6  4 4 4  IT IB 18 18 18 18 18 18 19 19 19 19  4  19  5 0 1  '4 4 4 4  4 4 4 4  20  20 20 70 20 21 21 21 21 21 22  4 4 4 5 .5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  22 22 22 23 0 0 0 0 0  0 0 0 0  ! \  \  \ \  I I 5  \  \  \  \i I  1  \  I I  \ 3  j  0  1 2 3 4 5 6 . 0 1 2  3  2  3 4 0 1 2 3 4 0 1 2 3 0 1 2  3 4 5 6 7 8 9 0 1  2  9. 1 13.0 32.9 -5.0 20.a  6 5 6 7 2 a i  0 B 6 2 1 0 8 1 6 5 6 8 0 0 5 3 B 3  44 15 I 14 3 77 B 55 1  5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  i!  17  jj  :  16 . 8 16 0  39 5 33  5 6 7 8 0 1 2 3 4 5 6  3 51 7 22 0 27 7 20 3 -4 3 45 1 43 5 45 7 22 1 23 3 15 .1  35 52 20 73 IB 1 49 45 50 24 72 11  9 9 6 2 3  a 1 2 3  et -4 26 25  4 6 2 2  1 3  0 1 2 1 4 5 6 0 1 7 3 4  25 . 3 53 . 7 .1 -4 6 35 5 8 4 76 0 15 9 18 0 10 . 6 .2 80 2 23 . 6 14 7 15 9 22 8 17 1 22 «. 12 7 -s 0 70 . 4 3B . 9 18 7  79 7 27 73 30 27 55 6 1 1 35 9 75 Ik 17 8 11 79 76 1 3 70 19 16 74 15 10 70 38 16  6 0 1 2 3 4 5 6  -6 0 25 4 -5 1 13 7 14 2 1 1 .8 10 . 0 10 . 7  9 24 9 12 12 4 13 a  3 4 5 0 1 7 3 4 5 0 1  24 . a 21 . 6 -5 b 23 2 16 12 7 36 . 6 1 B. 2 -5 8 9 9 21 . 4 -5 4 21 9  25 16 2 19  27 0 2C 6 2b . 0 19 . 0  5 6  |*  it  \]  0 1 2 3 4 5 6  5 5 5 5 5 5 5 5 5 5 5 5 5  18 18 18 18 18 19 19 1?  5 5 5  20 70 21  1 4 0 1  2  5  ?t  . 3  78 9 66 1 23 2 35 A 71  5 5  22 22 0 0 0 0 0 0 0 0 0  78 3 27 2 76 6 86 72 4 15 2 73 49 1  ;i  3 7 6  70 50 50 70 60 5 IB 0 5 5  J  6 6 6 6  6 6 6 6  19 19 20 20  2  .0  -6 .0  I  1 9 4 8 9 0 5 3 0 4 5 2 7 0 2  80 58 39 25 17  3 0 3  40.4 15.1 17.9 42.a 44. 7 42. 1  41 19  6 3 9  32.7 IB. B -5.5 39.0 32.1 76.0 32.6 25.6 13.2 32.1 20.5 72.1 17.5 14.4 -4.2 91.5 12.8 93.9 21.3 17.7 13.4 24.a 83.1 34.5 27.6 -4.9 -5.1 28.8  33  0 0 0 0 0 c 0  t  t  6 7 8 0 1 2  4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 0 1 2  3 4 5 7 0 1 2  21.5 -4.5 71.8 11 . 7 -5.5 20.3 27!o 48.1 29.2 38.5 19.0 29.0 71.4  0 7 7  0 1 7 3 4  -4.7 13.8 48.4 16.5 39. 3  77 16 1 75 71 »  6 0 1 2  15.6 24.8 39.6 -5. 7  •5  4  -5.5  : 5 6 6 6 6  6 0 1 2 3 4  15:6 -5.0 16.1 28. 3 30.4 21.1 -6.2 61.0 31.7 22.9 19.0 16.7 20.6 -5.3  15 35 17 5 6 16 6 18  i  •  7 8 7  3 8  .  35 53 44  .2 19 32 83 35 28 1 1 31 19  2 1 0 0 9 .1 73 3 84 36 5 27 tl 3 6 1 29 7 20 0 19 79 10  6 5 2 0 6 0 7 7 21 4  7B 1 49 29 2 39 6 23 78 1 73 20 10 51 13 39  2 9  7 8  5  31 . 0  33 i  S  2  -5.6  J 2  7 B 0  20 . 0 15 -3 8 63 6  18 i 7  :a 8 9  4 5 0  -5.9 10.8 20.1  19  18 56 7  9  2  l a.5  15  80 5  9  4  29 . 2  27  10 27 0 9 101 4 51 90 a 18  4  86 9  6  2 2 2 3  b 7 8 0  15 28 25 94  6  3  I  6 6 6 b  3 3 3 3 3 4  6 6  4 4  6  4  6 6  4 5 5  1 0  33 9 7 4 129 I  35 1 7 I 179  5 5 5  3 4 5  11 7 23 2 79 6  28 5 24 1 73 1  I  1 6 7 4  to 77 24 7 100 a  28 3  4 5 6 7 9 0  24 75 40 17 70 26  2 1 4 5 b  101 44 61 1C 21  :  6 6 7 7 7 7  9 6 8 6  10 27 2 19 0 3  \  0 5  5 2 8 9 8  b  1  e 1 5  7 0 2  6  6 0 1 7 3 4 5 0  4  1 I  4 87 12 91 70  5 6 T B 0 1 2 3  11 4 60 62 27 149 3  1  15  -5 .8 -6.0 71 . 5 63 . 8 28 .7 157 . 7 .6 38 13 . 8 25 . 9 1C . 9 93 . 4 66 7 95 5 20 5  2 0 1 2 3  2  78  T4.2 65.1 40. 3 21.4 18.7  5 6  6  34 2? 5  0 1  0 1 7 3 4 5 6  9 B  6  0  t  8  !  ;  t t  t  2  82  8 e a e B 9 9 9 9 9 9 9 9 9  3 3 5  6  14.5  8 B 8  3 3  9  84.6 29.5 26.6 21.9  -5.4 21.1  3 4  t t  4 1 22 0  6 7  2  7 2 3 2  6 6  1  t  1 6 8 4  7 7 3  1 2 3 4  6 6  6  1 1 1 16 24 31 27 10 9 53 15 22 17 11 21  4 4 3 4 0 s 5 6 8 3 6  3 3 7 a *  6  17 11 33 0 9  0 0 20 1  I 3 0  35.6 -5.7  31 5  21  2  -6.0  3 4 B 6 1 4  27 73 0 14 39 2D 20 7  22 C  I  73.9  fl b 0 80 1  4 5  76. 9 9.1  71 6 1  2  99 42 61 B 19  7 B 0 1 2  18.6 50. 1 36.5 119.3 8.8  4 5  28.6 71 . 5  25 1 64 1 7 1  8 0 1  -6.2 8.3 65.5  5 4 7 61  44.2  49  5  18  2  I  B.B  5  6  26.6  27*6 -5. 7 14.4  10*1 8.0 12.5  5 5 5  46. 3 31.1 19.9 31.4 77.8 20.4 21.1 25.8  50. 3 33.7 17.2 33.2 29.8 22.8 20.6 73.0  5 5  8 8 8 8 B  8 0 1 2 3 4  -6.0 20.9 18.1 ee.9 16.7 57.6  12 82  5 5 5 5 5  8 B 8 9  6 7 B 0 1  1C.3 24.2 27.7 71.8 92. 1  10 7 71 a 29 2 65 I 94 7  30.6 3.3 26.1  5 5 5  9 9 9  3 4 5  14.5 21.7 52.4  1 1 71  7 0  11.3 -5. | 25.4 4 1.7 23.6 26.a 21.6  24.2 75.6 22.4  5 5 5  9 9 10  ' fl 0  43.0 12.3 52.5  45 0 7 1 55 1  6 6 6  2  43.8  41,4  5  10  !  72.8  73  1  6  5  7  43 3  45 7  3  13.9  10.9  5  10  4  59.7  58  I  6  6  I  15 7  10 6  5  11.9 29. 7 9. 7  15,4 28 . 8 12.1  5  10  6  -5.5  8 4  6  6  89 6  89 6  7  18.7  1 7  5  10  B  44.8  1  6  6  75 1  73 0  0  74.8  69 8  ; \ 4  4  1  0 I  7  1 3 I  55 0  43  I  4  9 9 2 1  1 5 1 7  C  0 c 0 c 0  b  l  15 47 77 1 14 10  2  8 a 0 2 0  26 Table 1 continued •h k I F- F  10.0 28. 7 17.9  13.9 -5.8 56.4  c  49.1 30.9 26.2 34. 3 75.3 23.9 41.9 3 7.1 21.9 75.0 72.3  9.5 34. 3 46.B  45. 3 38.0 35.5 17.9 43.0 33.0  55. 9 29. 1 7 7.3  4.5 55.1 74.2 10.8 I 9.0 je.s 1 1.5 10.5 42.2 46.8 5.8 39,0 32.7  3D.9 -5. 3 22.7 35.5 -5.9 31.2 11.7 26.0 18.6 ICO 19,1 13.? 2L.2 16.5  6.7 11.7 2.7  16.9 43.4 37.9 2B.2 45.H 29. 8 32.2 24.3 19.8 57.0 28.5 30.3 49.8 29.2 19.4 29.5  42.7 31 . 6 37.5  10.11 6.0 21.1  31 . 7 22.0 14.3 19. 3 27.0 16.6 28.3 45.8 79.5  22.2 45. 3 10.7  18. 7 27.0 15.5  35.9 '29.9 -6.0  19.5 15. 3 24.0 -5.-5  30.0 37.9 34.7 10.2  19.9 17.0 52.0 15.0 22.5 15. » 17.9 -6.2  42.2 30.5 15.7  16.9 15.6 27.2 25.4 25.0 27.5 20.4  9.9 10.8 24.2  1 7.0 22. J 24.7 17.7 15.1 12.2 10.2  IB.5 16.8 53.1 19.9  42. 1 39.2 28.9 29.5  15.B 48.8 36.9  40. 2 17.4 53.0 -5.9  14.0 35.0 29.2 20.2 15.7 42.0 14.1  6.5 32.7 31.9  32.5 15. I 16.8  36.5 )?,? 23.3 14.0 1 .4 22. 7 70,9 15,7 12.0 18.5 15.6  Figure  1  (a) Superimposed s e c t i o n s o f the t h r e e - d i m e n s i o n a l e l e c t r o n density d i s t r i b u t i o n ei£ eR  ( c o n t o u r s a t i n t e r v a l s o f 2, 3, 4,  3  f o r c a r b o n , oxygen and n i t r o g e n , and 2, 20, 30, 40,  3  f o r i o d i n e ) , and  solvent  (acetone)  (b) a drawing  o f the m o l e c u l e .  i s omitted f o r c l a r i t y .  The  ... ...  28  29  COORDINATES  The  f i n a l  AND  MOLECULAR  p o s i t i o n a l  parameters  are  given  complexity  the  detailed  values  parameters  are  probably  of  not in  l i s t e d . Table  3,  The and  i n  bond  Table  and 2.  2  isotropic In  of  a  thermal  structure  of  anisotropic  significance,  and  shows  a  the  l i t t l e  distances  Figure  DIMENSIONS  valency  packing  this  thermal  and  they  angles  diagram  are  of  are  given  the  structure.  ABSOLUTE  To  complete  the  CONFIGURATION  analysis,  the  absolute  config-  7 uration  was  Fifteen  pairs  |F  c  were  (hk£)  determined  |/| F  of  2  measured  the  r e f l e c t i o n s  (hk£) |  r a t i o  2  c  by  with  a  anomalous of  dispersion  varying  were  intensity  chosen,  s c i n t i l l a t i o n  method.  and  counter  and  the and  i n t e n s i t i e s Cu-K  a radiation. The  results  unambiguously structure handed A l l  that  the  factors  axial  diagrams  set) i n  configuration.  are  given  parameters  (those  of  represent  this The  i n  work  used  Table the  show  molecular  Table  2  to  and  absolute  correct  structure  indicate  calculate  referred  true the  4,  to  a  the  r i g h t -  configuration.  absolute  previously depicted  5 8 (arbitrarily) enantiomorph  i n of  reports the  true  of  daphmacrine  configuration  '  i s  the  determined  o p t i c a l here.  30  Table 2 Final  p o s i t i o n a l ( f r a c t i o n a l x 10 ) and i s o t r o p i c  parameters.  3  (R2)  ther:  Mean standard d e v i a t i o n s a r e a(x) = a(y) =  a(z) =0.001 R f o r I, 0.013 R f o r N , 0.015 R f o r 0, 0.020 R f o r C; cr(B) = 0.05, 0.28, 0. 34, 0. 45 f o r I ~ , N, 0, C. Atom  X  y  z  B  N(l)  347  372  180  3.5  C(2)  414  327  219  3.3  C(3)  491  339  326  3.3  C(4)  456  342  472  4.7  C(5)  377  305  501  5.1  C(6)  299  298  391  3.0  C(7)  .347  281  262  3.0  C(8)  275  280  144  3.0  C(9)  302  252  010  4.9  C(10)  250  286  -090  5.7  C(ll)  278  342  -051  4.6  C(12)  265  341  104  3.5  C(13)  169  364  147  4.6  C(14)  149  352  294  5.6  C(15)  245  355  369  4.0  C(16)  306  396  311  4.3  C(17)  563  384  296  4.2  C(18)  633  389  411  5.8  C(19)  613  375  165  6.0  C(20)  389  414  096  4.1  *  ....'/continued  Table 2, continued Atom  X  y  z  B  C(21)  226  258  451  4.6  C(22)  402  228  268  4.3  C(23)  343  174  272  3.8  C(l' )  405  126  221  3.6  C(2' )  480  100  310  3.6  C(3' )  444  080  444  4.6  C(4' )  360  040  426  5.2  C(5' )  296  057  311  5.4  C(6' )  345  075  195  3.8  0(7 )  421  036  163  5.1  C(8')  495  050  232  4.8  0(9' )  569  024  222  6.5  C(IO')  285  082  066  6.7  C(ll')  571  133  331  5.0  0(12 ' )  416  128  523  4.0  C(13')  407  122  661  5.1  0(14')  418  077  706  8.1  C(15' )  383  171  724  6.1  C(l")  817  039  339  10.5  C(2")  894  018  239  8.1  C(3")  992  039  263  11.4  0(4")  869  -008  145  7.8  I (43)  040.6  164.0  5.4  1  196.7  32  Table 3 Bond d i s t a n c e s  (a = 0.03 k)  angles (a - 1.6°)  and valency  Large cage: C-C = 1.45-1.62 (21 bonds), mean = 1.54 & Angles a t C:  i n 6-membered r i n g s , 107.2- 117.5 (13 a n g l e s ) , mean = 111.1° i n 5-membered r i n g s , 101.9-106.0 (9 a n g l e s ) , mean = 103.2° others ( s u b s t i t u e n t groups and e x t e r n a l 105.3- 120.2 (19 a n g l e s ) , mean = 112.6°  angles),  C-N = 1.48-1.59 (4 bonds), mean = 1.54 & Angles a t N:  103.6 i n 5-membered r i n g 107.2-114.4 (5 a n g l e s ) , mean = 110.6°  Small cage: C-C = 1.43-1.57 (9 bonds), mean = 1.53 k Angles a t C:  Substituent  97.5 in Y ~ l others i n 6-membered r i n g 111.1-114.5 (5. a n g l e s ) , mean = 113.0 o t h e r s ( s u b s t i t u e n t groups and e x t e r n a l 98.7-121.6 (14 a n g l e s ) , mean = 109.7° a  c  t  o  n  e  angles),  groups  Chain C(7)-C(22) = 1.54 C(22)-C(23) = 1.57 C(23)-C(l') = 1.56  C(7)-C(22)-C(23) = 117.7 C(22)-C(23)-C(l') = 109.9  y-lactone C(6')-0(7') = 1.49 0(7')-C(8') = 1. 30 C(8')-0(9') = 1.23  C(6')-0(7*)-C(8') 0(7')-C(8')-0(9') 0(7 )-C(8 )-C(2 ) 0(9')-C(8')-C(2') ,  ,  I  = = = =  107.9 120.8 112.5 126.5  Acetoxy C(3')-0(12') = 1.49 0(12')-C(13') = 1.39 C(13')-0(14') = 1.22 C(13')-C(15') = 1.40  C(3')-OU2 )-C(13') ,  = 117.9  0(12')-C(13')-0(14') = 116.9 0(12')-C(13')-C(15') = 112.0 0(14')-C(13 )-C(15') = 130.9 ,  ./continued  Table 3, Solvent  continued (acetone):  C(l )-C(2") = C(2")-C(3") = C(2")-0(4") = ,,  1.58 1.50 1.20  C ( l " ) - C ( 2 " ) - C ( 3 " ) = 115 C ( l " ) - C ( 2 ) - 0 ( 4 " ) = 117 C ( 3 ) - C ( 2 " ) - 0 ( 4 " ) = 126 ,,  M  Figure 2 Packing of the molecules i n the u n i t c e l l  (heavy l i n e s  i n d i c a t e molecules i n the upper p a r t of the  cell).  35  36  Table 4 Determination o f the a b s o l u t e c o n f i g u r a t i o n h k I  F (hk£) | c  F  (hkii)  (Cu-K^  (hk£) |  2  c  I  (hkl") |  2  c  I  radiation) (hkA) Q  (hkl)  12  1  119.7  105.8  1.28  1.31  14  2  90.7  106.8  0.72  0.64  14  3  11.7  19.0  0.39  0.54  15  7  27.4  37.2  0.54  0.94  16  2  43.3  29.2  2.20  1.66  11  34.0  56.7  0.36  0.42  2 2 4  55.1  64.0  0.74  0.77  2 4 2  78.1  65.1  1.44  1.53  2 10 3  53.4  43.4  1.51  1.33  3  13  25.3  36.4  0.48  0.39  3 4 2  93.3  105.8  0.78  0.81  3 6 1  103.5  87.2  1.41  1.51  4 8 3  93.4  103.5  0.81  0.82  5  81.5  98.8  0.68  0.69  53. 8  70.6  0.58  0.53  2  11  6 7 1  37  RESULTS AND The s t r u c t u r e and methiodide two  DISCUSSION  c r y s t a l a n a l y s i s has absolute  established  the  c o n f i g u r a t i o n of daphmacrine  (acetone s o l v a t e ) .  The  compound c o n s i s t s of  cage s t r u c t u r e s which are l i n k e d by a f l e x i b l e  of two  carbon atoms (Figures 1 and  c o n t a i n i n g p o r t i o n c o n s i s t s of two the c h a i r form, and one together with two  3).  The  chain  nitrogen-  six-membered r i n g s i n  i n the boat form, which are  fused  five-membered r i n g s , as has been r e p o r t e d 5 9 10  f o r daphniphyllamine.' ' i s formed of one  The  s m a l l e r , n i t r o g e n - f r e e cage  six-membered r i n g i n the c h a i r form,  b r i d g e d by carbon and oxygen atoms to form a five-membered lactone The  ( y l a c t o n e ) , w i t h methyl groups at each bridgehead.  C(6')-C(1')-C(2') angle  other  angles  5 angles  i n the six-membered r i n g  the  (111.1-114.5, mean of  112.9°), presumably because of the b r i d g i n g .  Other bond l e n g t h s and and  (97.5°) i s s m a l l e r than  angles  g e n e r a l l y appear to be normal,  c o n s i d e r i n g the complex framework i n v o l v e d , are  s i g n i f i c a n t l y d i f f e r e n t from expected v a l u e s .  not  The p o s i t i o n  of the acetoxy group has been determined as shown i n Figure two  3, and  unsubstituted The  general cage  the c h a i n connecting  the two  cages  contains  carbon atoms.  acetone s o l v e n t molecule i s i n the same  r e g i o n of the u n i t c e l l as the oxygen-containing  (Figure 2), but  i s i n v o l v e d i n o n l y van  der Waals  38  contacts.  The s h o r t e s t d i s t a n c e s from acetone are to the  a c e t y l group, the minimum 0...0 3.54 C...C  and 3.21  R respectively.  d i s t a n c e i s 3.53  R.  and C...0  contacts  being  The s h o r t e s t i n t e r m o l e c u l a r  Figure 3 Diagrammatic r e p r e s e n t a t i o n of the s t r u c t u r e o f daphmacrine methiodide.  40  PART I I I  THE  STRUCTURE  DETERMINATION OF  EXO-TRICYCLO[3.2.1.0 ' ] OCT-6-ENE 2  4  SILVER  NITRATE  AND  A  REFINEMENT  OF  THE  SILVER  NITRATE  STRUCTURE  42  A.  THE STRUCTURE OF EXO-TRICYCLO [3. 2 .1. 0 ' ] OCT-6-ENESILVER NITRATE. INTRODUCTION A study o f p o t e n t i a l c y c l o p r o p y l  complex f o r m a t i o n  11  •silver i o n  had shown t h a t s i l v e r n i t r a t e forms a r  2 4i  s o l i d complex w i t h e x o - t r i c y c l o [3.2.1.0 ' Joct-6-ene ( I ) , but not w i t h the corresponding endo-isomer observed  (II) .  The  d i f f e r e n c e s i n the e q u i l i b r i u m constants f o r complex  formation c o u l d be i n t e r p r e t e d i n terms of the i n d u c t i v e e l e c t r o n - w i t h d r a w i n g p r o p e r t i e s of the c y c l o p r o p y l group, and p r o v i d e d no evidence f o r c y c l o p r o p y l  silver ion  i n t e r a c t i o n , although such i n t e r a c t i o n c o u l d not be d i s counted by the data o b t a i n e d . a n a l y s i s was undertaken  An X-ray c r y s t a l s t r u c t u r e  t o determine  whether the s i l v e r i o n  i s complexed t o the c y c l o p r o p y l r i n g o r the double bond, o r to both, as has been r e p o r t e d f o r analogous 12 complexes (III) .  platinum  CI  CI I exor-(study compound)  IT endo-isomer  III  43  EXPERIMENTAL r  4i  5  C r y s t a l s o f e x o - t r i c y c l o [ 3 . 2 . 1 . 0 ' Joct-6-ene s i l v e r n i t r a t e are c o l o u r l e s s ,  but become white on exposure  to l i g h t and a i r , and tend t o c l e a v e i n t o  irregular  fragments e l o n g a t e d along the b c r y s t a l l o g r a p h i c unit  axis.  The  c e l l dimensions and space group were determined from  rotation,  Weissenberg  and p r e c e s s i o n photographs.  The  d e n s i t y was not measured because o f the i n s t a b i l i t y o f the complex. C r y s t a l D a t a . — X(Cu-K ) = 1.5418; X(Mo-K ) = 0.7107 ft. — a •• a E x o - t r i c y c l o [ 3 . 2 . 1 . 0 ' Joct-6-ene silver nitrate, C H A g N O , M = 276.0. g  10  3  Orthorhombic, a = 25.54(5), b = 6.28(1), c = 5.60(3) ft. U = 898.2 ft , Z = 4, D 3  c  = 2.04 g.cmT  3  F(000) = 544. A b s o r p t i o n c o e f f i c i e n t s : u(Cu-K ) = 182 cm. ; 1  u(Mo-K  ) = 22 cm.  Absent r e f l e c t i o n s : hOO, h odd; OkO, k odd; 001, I odd. Space group P 2 2 2 1  1  1  (Dip.  The c r y s t a l s , although q u i t e u n s t a b l e on exposure to l i g h t and. a i r , were found t o remain f o r about a week i n s e a l e d c a p i l l a r y tubes without s i g n i f i c a n t decomposition. Two c r y s t a l s were t h e r e f o r e used i n the a n a l y s i s ; determine the c e l l dimensions and space group from and the second t o c o l l e c t the i n t e n s i t y  one t o films,  data on a d i f f -  ractometer. The i n t e n s i t i e s o f a l l r e f l e c t i o n s w i t h  44  28(Mo-K ) £ 40° (minimum i n t e r p l a n a r s p a c i n g , d = 1.04 ft) a  were measured on a General E l e c t r i c XRD 5 spectrogoniometer w i t h a s c i n t i l l a t i o n counter, approximately monochromatic Mo-K^ r a d i a t i o n a 6-2 6 scan.  (Zr f i l t e r and p u l s e - h e i g h t a n a l y s e r ) , and  Background counts were made a t the beginning  and end o f each scan.  Two r e f l e c t i o n s measured p e r i o d i c a l l y  as a check showed e s s e n t i a l l y no change i n i n t e n s i t y the time r e q u i r e d t o c o l l e c t the d a t a .  over  Some decomposition  w h i l e mounting the c r y s t a l and s e a l i n g o f f the c a p i l l a r y i s not p r e c l u d e d , however, and i t was noted t h a t the c r y s t a l s became t r a n s l u c e n t d u r i n g m a n i p u l a t i o n . The c r y s t a l used f o r i n t e n s i t y measurement was an i r r e g u l a r cleavage fragment 0.25  x 0.80 x 0.15 mm.,  dimensions  and was mounted w i t h b p a r a l l e l t o  the <|) a x i s o f the g o n i o s t a t . made.  w i t h approximate  No a b s o r p t i o n c o r r e c t i o n was  Lorentz and p o l a r i z a t i o n f a c t o r s were a p p l i e d and  the s t r u c t u r e amplitudes d e r i v e d .  Of the 554 r e f l e c t i o n s  w i t h 28 « 40°, 322 (58%) had i n t e n s i t i e s g r e a t e r than 3a(I) above background, where a(I) i s d e f i n e d as :  a (I) = {S + B + (0.05S)  where S = scan count and B = background count.  The  remaining 232 r e f l e c t i o n s were c l a s s i f i e d as unobserved and g i v e n zero weight  i n the refinement; they a r e i n c l u d e d  i n the s t r u c t u r e f a c t o r t a b l e w i t h I(unobs)  = a (I (unobs)) ..  45  STRUCTURE ANALYSIS Examination of the i n t e n s i t y data i n d i c a t e d t h a t a l l planes  (hk£)  s i l v e r i o n was  f o r which h i s odd were weak, so t h a t  expected to be at or very c l o s e to a p o s i t i o n  which would c o n f e r map  f a l s e symmetry on the  based on the heavy atom alone.  Patterson  the  function revealed  The  electron-density three-dimensional  t h i s p o s i t i o n to a  approximation to be on a screw a x i s  (0.056  first  0.25,  r  0.0),  so  t h a t as expected from the observed i n t e n s i t y r e l a t i o n s h i p s , the r e s u l t i n g e l e c t r o n - d e n s i t y map symmetry and  e x h i b i t e d pseudo-  c o u l d not be i n t e r p r e t e d to g i v e a reasonable  hydrocarbon or n i t r a t e s t r u c t u r e .  To compound t h i s  d i f f i c u l t y , no p a r t i a l s t r u c t u r e would r e f i n e by l e a s t squares methods, the s h i f t s to c o o r d i n a t e s the temperature parameters i l l - b e h a v e d s p i t e of the p a r t i a l s t r u c t u r e s being by the  being  (this occurred c o r r e c t , as  and  in  verified  subsequent s t r u c t u r e a n a l y s i s ) . A re-examination of the P a t t e r s o n  an accurate  function,  some e l o n g a t i o n  of the peaks i n the  z d i r e c t i o n s , so t h a t the s i l v e r i o n appeared to  d i s p l a c e d s l i g h t l y from the screw a x i s . e l o n g a t i o n was (0.259 and  and  p l o t t i n g of the c r o s s - s e c t i o n of the peaks then  showed t h a t there was y and  large,  0.02  used to estimate new r e s p e c t i v e l y ) and  y and  The  extent  of  be this  z parameters  an e l e c t r o n - d e n s i t y  based on the phases computed from t h i s s i l v e r p o s i t i o n  map  46  showed c l e a r l y a l l the atoms except C(4) and C(7). were subsequently l o c a t e d on a t h r e e - d i m e n s i o n a l map as the h i g h e s t and  included  peaks (but q u i t e low  i n the r e f i n e m e n t .  A  These  difference  electron-density)  least-squares  c a l c u l a t i o n w i t h a l l atoms a s s i g n e d t h e a p p r o p r i a t e s c a t t e r i n g curves  f o r C, N, 0 and A g , i s o t r o p i c temperature +  f a c t o r s equal t o 4.0 ft , and u n i t weights r e s u l t e d i n an R 2  v a l u e o f 0.15. A comparison o f the observed s t r u c t u r e  factors  with f i l m s i n d i c a t e d t h a t some o f the r e f l e c t i o n s had been mis-indexed, probably due t o the long  a axial  length  (25.54ft), d r i n a c c u r a t e l y measured, p a r t i c u l a r l y the weak odd  h planes.  Eighty-four  r e f l e c t i o n s were  re-evaluated  on the b a s i s o f f i l m measurements, s i x t y - o n e odd  o f these being  h planes. Two f u r t h e r c y c l e s o f f u l l - m a t r i x  least-squares  refinement w i t h a n i s o t r o p i c thermal parameters f o r the s i l v e r i o n , and a w e i g h t i n g scheme o f the form w = where a ( F ) = 59.56 - 2.561F I + 0.037 I F I o o o 2  1  1  1  1  2  observed s t r u c t u r e The  f a c t o r s are l i s t e d  maximum r a t i o o f parameter  standard d e v i a t i o n  2  Q  resulted i n  a f i n a l R o f .0.105, and a weighted R o f 0.127. and  1/a (F )  Calculated  i n Table 5. shift/estimated  (esd) i n the f i n a l c y c l e was 0.23 and a  f i n a l d i f f e r e n c e map showed maximum f l u c t u a t i o n s o f ±1.3 eft .  A f i n a l F o u r i e r map  was  computed, and  s e c t i o n s of  the  r e s u l t i n g e l e c t r o n - d e n s i t y d i s t r i b u t i o n are shown i n F i g u r e 4, together w i t h a drawing of the  structure.  Table 5 Measured and c a l c u l a t e d s t r u c t u r e t r i c y c l o [3.2.1.0  ' joct-6-ene  f a c t o r s f o r exo-  silver nitrate.  Unobserved  r e f l e c t i o n s have I = a(I) and are i n d i c a t e d by a n e g a t i v e sign before F .  49  Table 5  hki 2  t:  6  c r 0 -~ ( c t f t C c-  A  lt» 12 14 16 18 70 2? 74 1 2 3  F C " " r, 0 i » * f 1  P  r  1  5 C 6 0 ,T C 8 C 9 t 1C r 1 1 c 17 C. 13 ( 14 f 11 C 16 P • IT C IB P ]9 C 70 C 71 c 22 r 73 C 74 C • i c 1 c ? r 3 C 4 0 5 f 6 '"• 1 C 8 • 0 9 c10 r 11 '< 12 P r 13 14 'TIS i lis t IT 0 iB r 1") 0 20 • c 21 <"•, 72 C 23 C 1 t. 2 ( 3 : 5 ft 7 * 9 10 11 12 1 3 14 15 lis 1T Ie 19 70 0 1 2 i 5 6 7 B 10 11 12 13 14 15 16 1 2  '  rr  r  1  I  2 1 4 5 6  I 1 i 1 1 i ] I I I I t 1 1 1 1 I 1 1 1 1 1 1  1* 1V i\ ?1 7? 73 24 1 7  C  1 t  *  4 » * 4 «  1  ( r < f r r  0 1 2 4 5 6  *B.T:<  i i. n -1,14 1 1 . 1 i '-4.13 ?U . 7 9 j7. u  4>\17 - 1 !. ' ? ?".<-7 -K'.'.B ??..'4 '•'..4JI ? / . "ft ii.' ' -o.rT ^7^7 ('.111  43.-T'.'  '  1  T  9 it 1 1 12 13 14 IS 16 17 IB 19 20 21 22 C 1  2 t . 75 -1 2 ."7 -17.If. M. S 1 -l^.i't  ,5 - 1 1 9.1^ 1 . 7e l">.7l  4-,. -7  • 1 J.' 4  T  '  '  I  -17.15 li.' 1 -!?."-( - 1 7 . 7H. -W.77 - 1 1.: 5  11.ft4 71,4 3 7.42 12.47 ? 1.1 2  7 4. .1 - 1 ! ,u4 ? 7 . '• 2 - 1 ! . •. ''  75.'j )  - 1 3 .1 C - 12.'t  16.51 5, M  11. f, P  11.11  5  •J  ft  5  a  5 5  i  r  "  ^ ? ir -  2ft."4  \ \ .4?  19  1. r -  72  c  '  r  I 1 1 I 1 1 1 1 1 1 1 1  2 3 5 7 a 0 10 12 13  - 1 7. 1 J -17, r 4 4 4.76 -1 ».'•(• 1*?."? '.M.H i l . 72  1'J . '. 4 :•.•>'. ,;.)=; l * . 74 117.1c 137.4? 7 5 . t;?  •  2  16  u  I 2 . >:\ 4hF'.r  4 4 5 *  1f.;7 11  111.'? .4 7 7li. V. )4  ! ,4ft l<i. . 1 U .6 J • 7.51 2 " . 14 71 . 1 S 47.2 r l«. t i 4?.4<»  17.  -17.14 -I?..1''  .  - 1 ? . 16 1 " -11.43 45 . 7T 25.77 ?i.:i4 4 (,, . •;  -12. * M.74  17 13 14  H 1 7 -i  15 I 7 in 19 70 22  2  I  •  4 9 , (• H 4 7.7" •'2. ' 4 4 7 . *• H 14.5-' 34. r ? V. ."I 12.9 1 t3.i2 13.' 7 .15,4!: 31.49 l ' . , M •7.. 2 4 ?|J . 1 1 1 i."''  4 4  5 5  10  7.P 1 14 , H j 6 7. 11 14.BA 5". 54 I B . 9? J? . 0 5 ' 5 , 4B 1 7 . 1 •) 13. 34 14,*.ft i5.;:i r.9 05. M 7'1.12  2 d  1  6 7 B  11.44 1 , Bft 9.9? 7 * . "i T •^0, ftP B 2 . ?S iP . I f 1 2 7 , 7H 2 4 16. ' 4 2 . :i 3 1°.i7.  -11.'! 7  I f .17 I?.-7 12.-5 *..f-4  1 72 12ft.IS llf.l.5 * 7 . i | 71.77 I t . ' ? 5 7. M ' J . IT 1 . 4 . en 13.7'. 77. 1 , 4  -  11 15 16  5.ST  £  -17.5ft '-17.'P -17.V4 -11. « 7  ri 5 . 5 5 75. ; t 1 7 0 . Kft. lift.22 11'..21 ibT.fl « B . 2° - U . 17 7 2,:-f.  -il.'"-! 3^.'.2 I? -12. " 3 1 . 3i* 2 1 ..••) -A 2. t t ,  4 A *•  If  1'J.M 4 9 . 16  -i *;.TH  )  11  . ' 4 . "9 15 . r 7  J^. T3 16,41  3  4 5  6,77  2 1 . <•<, 4 5 . ]A 4.1.9? 21. ' 5  3 1 7  11'. ' ri i i . rtr» ' 1. 7 13.4fi i^.-'-'l K.'-C IH . M."•.•.•4 ^.''ft 7 .77 P.11  -11.7f A ' . . 7? - . I 2 -1 ,' ft 21.7 7 -11."" -1?.^1 -H.f.'  J 3 ? i  •JI . I P  -17.24 -12.47 2ri. It  ?  17 IP  ft-. '?  17. 72 15  J 1 1  15  1  TJ. "J  3  7 A 9 12 13  12 -!". . ,.. 7| 3 4 ? . 7?  1 1 1 1 2 2 ' 2 ? 2 ? 2 2 2 2 2 7. 2 2 7 2  4 5  .  ^4,s^  '-12 5' . ' IH S*.',r  1  2 2 ! ? 2 I 3 3 3  2  ?».J5 " ,71 62.^4 <•--.. '5,<U 4,fl 4l.f.(> *t.^4  . M  '  42.' 4 71 . 9 7 41.4'; 4 0 . 3ft 1 " , 44 7 " . TP 12t.45 24. 1 5  42.7 I 2 5 . 4H 3r,. 4ti.H3 4 5 , 16 - 1T . 4 8 H'-ft. ? 9 21 . " 9 ftl . . i n - 14.75 -9.34 - 1 ' , . ?T 35,.- 1 -1 I •2T f . 4 . 14 -12 .^.4 49.^5 - 12.33 -1 .1 . ? B -12.op -12.51 -B.9C) 5 1 . IL' n 7 .'. ft 4 11. ») 1 12P..3" 7 7 . b? If: 7. "5 26.4 1 41.11 17. 75 -9177 1 7.HC T?,64 -13.44 bC. 7? 10.25 29.51 7 1.' 4 i :.?p  '  1 1 1 1 1 1 1  1 7 19 19 20 ' 21 22 23  4.HJ r.">j Ti . 77. 4--,. 3^ 1 7. 5B 3 . '5 i 11 if..-*?  - ! 1 . i'l  C  r C f C i " C r. r  1 11. 2.5T ' 4.7.05 1 H.15 27. n 6 ? . 1 ft 2T.-/9 Hi. 1 7 71.34 4 " . 45 rs.r.5 u . u -?T.57 J5.C> 6 . n I-"".""? '.14 5 1 . "7 9.53 *>,',? 19.t\ 74.55 5.17 ?4.9(4.:' V . 3 1 147.54 " O ' S 1 3".  7 ;<;!.'  P T  r : f  V-.64 -li.?2 -1l."fl IH.rtft l'J.1.41 ' T . 11? f-4 .r-c iri.'.n P4.. ] ft •.*4.t* 41 ,•• 3 17.92 -».<?*< ? f t . T* ii,,90 ~ H . /° 1 1 6 . -JC -«.45 55. (.ft -IS.-H -11.iR -ir.*« ?j;i7 -lj.^3 11.61 -12.rH 2 7 . 3if |14.47 3ft.4 9 117.71 2 a . 5? -1.11 77.^tt /I . ' 7 4 4 . (.7 1 -1. t rt -= l (.: 4 4 i .4*. Ti.7 1 - K . i] .11.77 -1( . ftT n.yi  1 1 1 1 1 1 1 1  9 10 11 12 11 14 15  17*.T9 11. lh' ?6 .7 1 l'6.64 1-7.OH 1 1J . 1 ' 12.12 36.15  -1  C r r n c c f  c  1 3 6 . r.i - 7.PI •>. 1 . ' - 0 11 t . l L K7.73 "".31 - 1 J.r.S ^ . ' 6  15.M  P  rt  \T  ?  C  <•  T  2  f C I C C r  5 ft  a 9 10 11 17 1 1 14 15 14  1  '  F  0  4 5 6 7  1 1 1 1 1 I I 1 1 1  54 . « 1 6 2 . "7 S'..24 174.S4 1 i, f7 -13. 1 U - 1 2 ."ft - ). Pft -11.^1 ? S . 74 - J.o<; 5ft• 1 '.r 1.3 . 7 1 4 7 .ft5 2^,. 77 - 1 2 .: C - a . 7 ft ? 1. ° i 12?.41 H. 5? 1 7 1 . 17 1 3 .7t 1 1 ">.64 1 t .fc3 7 1.47 H. c i" -1. " 2 24 . ' * i •>-'•. 4 3 1 ? . r> 7 !  i -1 l . " 2 -11 . ' . t -1 1 . 4 7 - 1 1 . )<; - i i."(, 7 ». ^ «  ^  '  '1.4 1 6. ' 4  ^1.11 ; 1' 4r,.'.7 52. 1 3 Sh, n ! 47, ' 1 17.11 6,0| 11. f . 5 4 1.79 »,»•? j.'f!" 7 2B l-*f.»l 71 .7 j l ' f t . '-"I • 14 .-:•> 12?.T5• 77 , *i1 1 . t c . *: •. 22 1 c 1.11 7 4 . 15 ir ,7? 1 '. • 4 9 12.-? 12,^ " 1 1 . 4 '1 ?7.i 7 5.11  14 15 16 0 1 2 5 6 7 H 9 10 11 0 1 2 4 5 7 P. "i 10 11 12 13 14 15 16 1 7 18 0 1 2 3 5 6  T  a 1C li 12 13 14 15 16 17 IB P 1 2 3 4 5 6 T  n u 12 13 14 15 16 I 2 3 4  3 3 3 3 3 3 3 3 3 3 3 1 4 4 4 4 4 4 4 4 4 4  i 1 3 4 4 4 4 4 4 4 t  " c 0 r. 0 0 c  4  p  fc fc 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  4 4  n I 1 1 1 1 1 I 1 1  1 I 1 1 1 t 1 1 1 2 2 2 ? ? 2 2 Z 2 7 7 ? 7 7 7 2 2  fc  4 4  ?  4  1 3  T  4  :t  4  i  4 4 4  3 4  1 2  5 5  4  5  1 ( "  B 10 11 12 li 14 0 1 2 3 5 6 8 9 10 11 12 13 0 2 3 5 6 T  5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 b 5 5  fl  1 IP 11 C  f  r  9 IP 1 1 12 0 1 2  4  -12.17 - 1 2 . 1ft - 1 2 . '2 -17.2* 2 5.7( -17.4? - 1 1. / I 3 I .if -12.56 - 1 1 . 'I 7 -17.50 -1^.44 -1 ! . J f c -1 1.<6 - 1 J . "-T 54 .1 5 5 J. T - 3.4 7 2'. .7^5 2". *5 21 .T 2 -i -IT . B C 44,.M - 1 5 . "ih 51.41 -14.75 12, f 1 -12.4a -1 I , .4 -1 1 . -12.6? -1 1.78  5 5  7 3 4 0 1 2 3 4  5 5 5  6 6  1  *  r r P r p i l i I i i i i i i i i i l 7 2 2 7 7 2 2 2 7 2 2 2 3 j » J  ft  f . - • 1 1  r r  ?>J.« I H. . ?4  - 1 r.. 5 5 3 . . ift 25.v.l  "  - 1. ? 7 ^7 . *P -11.42 -12.47 -1.1P. 22." 7 -l?.i 1 2 7.71 -17 . 1 " 37.-.1 - 1 >. If  11.67 11.54 lb .9) ?4.* c 14 . >i 14. ;>(» 15.27 12.14 }(,. 2 ' IT.f 5 14./.? /">.61 7 .6 I 7 2 . r-\ 6T . P ? 51 . T 4 65.; 5 1 1 . 5-'! 71.45 1.6 7 11 ^ 1 4. 1 T 51.47 lt.\ i 55. r 6 IP . T 27. f 2 tr.*2 lT.ifi i  1B.b 1 ?i.l 3 2ft. BC  ft .  1L.*7 35.5. 7 15 ..14 5 "i. J 1 2l'."B 40.71 15.15  l". 21 77.5n 12 .2-1 7 5 . 51 13.47 .11 . d 4 ? 6 . til 2ft. .4 ft. 1 5.5'.52 . 1 3 1 6.6* 16.60 1H..1 7 19,43 f  1 . •> 5 - 11 . J -1 1 , 2 6 1 ? 2V. 66 27.17 -I.•»..-* i , i .fte 7o.'l -ll.ftrt -12.')C - n . i - 1 3 . 15 - I t .'.7 7 6.41 2-r.4ft 2? 2 5 . SO 14 7 5 . 5C -12.rt; -1 2 .' 1 (. -12.4? -17.79 -12.78 - 1 i.7C -i;.5? -11.47 -11.19 -1 >. "7 - 1 1 .(.•: •2.->r - c . ~ l 24.7" -17.^7 ]».•." -1 1 . 7 7 - 1 1.5* -17." 1 -11.42 -12.76 -1 1 . f 7 < a• 76 35' . H j -11.12 14 . 9 7 -11 .44 -17. '2 -11.16 -I 1 . 6 3 2 >. 19 7 >. * ? -12.-7 25.54 -12 .P5 -1?.*1 -11.7 1 -17.15 -11.54 -11 40.44  2J.1J 21.5" 4!'. 15 11. 1 <i "5.45 1 a.4b •»2. 61 15.hi I " . 1!'. 4.5-". 2? . 7 2 '.2. 55 , ?T.(U '1 . 76 17.74 ?f . 5G 1.5fc 1 5 ... -J 12.7" (3.34 17.21 ?C. = 4 17.73 16,-6 16.74 7. «2 .'*-. 21 . '7 3. 1 25. ^ K 71.51 •>.'»7 I , 1ft 7.51 22. 1 1 19. ?4 ?H, 4 1  1^.-2 17.6') 14. 14.; 4 17.7.3 3. f " t 7. ' * 2(1. 2 2*.<-.:i • iB .r4 7 1 . J-) 11 - •>' 17.-5 5. 1 3 9.11 ' '". 1 5 1^.41 ' 15.7 1 ""•IT. ' 2  76 . 2 5 S|>  2 '.' 2 -1 J , * l -17.40 - 1 ? ..'fc -1:. 4 > -12.54  1^.76 11.54 11.72 r -4C 13.62  2 4 . S3 -17.7" -12...t -12."' -1 1 . 71 -11.li - 17. . 4 -11.47 -12..'2 -12.-"5  16.17 12.H 7. J7 ll..1! 12.67 7. 1 1 7.') 2.1* lr.15  72  Figure 4 (a) Superimposed s e c t i o n s o f the t h r e e - d i m e n s i o n a l density d i s t r i b u t i o n  (contours  carbon, oxygen and n i t r o g e n , for s i l v e r ) , complex.  and  a t 2, 3, 4,...  eft  3  and 2, 10, 20, 3 0,...  electronfor eft  3  (b) a drawing of the s t r u c t u r e of the  52  COORDINATES AND MOLECULAR DIMENSIONS The  f i n a l p o s i t i o n a l and thermal  parameters,  t o g e t h e r w i t h t h e i r standard d e v i a t i o n s , are l i s t e d i n Table 6.  Table 7 l i s t s the bond l e n g t h s and a n g l e s , and  F i g u r e 5 shows a view o f the s t r u c t u r e along the b crystallographic axis.  Although  abnormal, they do not d i f f e r  some bond l e n g t h s appear  from the expected v a l u e s by  more than 3a, and i t would appear t h a t any d i f f e r e n c e s are due t o i n a c c u r a t e d a t a .  53  Table 6 Final positional  (fractional  x lo *) and i s o t r o p i c 1  (& ) 2  thermal parameters, w i t h standard d e v i a t i o n s i n parentheses. Atom  x  z  Y  B  C(l)  1207(21)  -1799 (076)  0053 (092)  4. 26 (125)  C(2)  1823 (19)  -2171(111)  -0205 (094)  4. 96 (13?)  C(3)  2131(35)  -3624(131)  1799 (151)  6. 40(209)  C(4)  2114 (34) .  -0936(116)  1290 (148)  5. 59 (210)  C(5)  1654 (19)  0535(077)  2422 (088)  2. 34(100)  C(6)  1430(20)  1470 (085)  0175 (100)  3. 69(116)  C(7)  1190 (28)  0220(127)  -1039 (141)  C(8)  1189(21)  -1183(100)  2743 (100)  3. 81(129)  0(1)  0208 (19)  5632 (085)  6743 (087)  6. 75(131)  0(2)  0209(17)  5334 (077)  3170 (072)  5. 24 (104)  0(3)  0817(23)  3789 (086)  5413 (100)  8. 21 (136)  N  042 0 (14)  4948(063)  5231(074)  3. 34(086)  0532 (02)  2687 (009)  0316(006)  4. 69(014)  Ag  +  The a n i s o t r o p i c thermal f a c t o r f o r A g exp{ - ( 1 9 h  2  + 345k  2  +  is  + 334J1 + 8hk + 17k£ 2  6. 53 (202)  15M) X 10  -h  }.  Table 7 Bond d i s t a n c e s  (a - 0.09 £ f o r C-C; 0.05 f o r o t h e r s )  and v a l e n c y angles (a - 5°) f o r C H, AgN0-,. p  n  C ( l ) - C ( 2 ) = 1.60  C(2) - C ( l ) -C(7) =  97  C ( l ) - C ( 7 ) = 1.41  C(2) - c ( i ) -C(8) =  99  C ( l ) - C ( 8 ) = 1.56  C(7) - C ( l ) -C(8) = 101  C(2) -C(3)  C ( l ) -C (2) -C(3)  1.65  119  C(2)-C(4) = 1. 36  C ( l ) -C(2) -C(4) = 113  C(3)-C(4) = 1.71  C(3) -C(2) -C(4) =  69  C(4)-C(5) = 1.62  C(2) -C(3) -C(4) =  48  C(5)-C(8) = 1.61  C(2) -C(4) -C(3) =  64  C(5)-C(6) = 1.50  C(3) -C(4) -C(5) = 121  C(6)=C(7) = .1.21  C(2) -C (4) -C(5) = 100  N-O(l) = 1. 09  C(4) -C(5) -C(8) = 101  N-0(2) = 1. 30  C(4) -C(5) -C(6)  N-0(3) = 1. 25  C(6) -C(5) -C (8) = C (5) -C(6) -C (7)  100 94 114  C ( l ) -C(7) -C(6) = 109 Ag-C(6) = 2 .42  C ( l ) -C(8) -C(5) =  Ag-C(7) = 2 .41  0(1) - ' N -0(2) = 114  Ag-0(2) = 2 .45  0(1) - N  -0(3) = 124  Ag-0(3) = 3 . 03  0(2) - N  -0(3) = 121  A g - O ( l ) = 2 .85 I  Ag-0(3) = 2 .92 z  A g - O d ) ^ 2 .56 1  2 .55 I II  x, -x, -h  y, -1 + z  + Y, :  h - z  92  Figure 5 A view of the  structure  along the b c r y s t a l l o g r a p h i c  axis.  57  RESULTS AND The of the  DISCUSSION  c r y s t a l a n a l y s i s has  s i l v e r n i t r a t e complex  o c c u p i e s the exo-  p o s i t i o n and  e s t a b l i s h e d the  (Figure 4).  interaction i s possible.  w i t h the c o n c l u s i o n  silver  ion  i s therefore quite distant  from the three-membered r i n g , so t h a t no cyclopropyl  The  structure  s i l v e r ion  T h i s i s i n agreement  t h a t such i n t e r a c t i o n i s not  required  to e x p l a i n the r e l a t i v e e q u i l i b r i u m c o n s t a n t s f o r complex formation''"]" As  i n o t h e r complexes of t h i s type  the n i t r a t e groups are ions to b u i l d up The  (cf. ref 13),  l i n k e d by c o o r d i n a t i o n  t o the  l a y e r s , i n t h i s case p a r a l l e l t o  l a y e r s are c e n t r e d  around 0 and  ha  silver  (100).  (Figure 5 ) , w i t h  the hydrocarbon molecules between, and w i t h o n l y van Waals f o r c e s between the hydrocarbon molecules i n t e r l a y e r contact  i s C...C  at 3.6 R.) .  approaches three n i t r a t e groups i n the close contact group  i s made w i t h two  (Ag...O = 2.55  i s more d i s t a n t  and  2.56  (Ag...O = 2.85  The  (the c l o s e s t  silver  l a y e r , so  and  3.03  coordinated  A") .  Thus the  that  and  silver  nitrate  a second n i t r a t e group 2.92  A)/"  a  n  d  t  n i t r a t e group shares i t s oxygen atoms u n e q u a l l y 2.45  ion  oxygen atoms of one k);  der  n  third  e  (Ag...0 =  i o n appears to  be  to each n i t r a t e group as a whole r a t h e r  than  to i n d i v i d u a l oxygen atoms, Similar zo ciner compounds cz 13-15  t h i s type  .  can be d e s c r i b e d  On  t h i s b a s i s the  silver  as d i s t o r t e d t e t r a h e d r a l  ion (to  coordination three  58  n i t r a t e groups and one double bond), and F i g u r e 6 shows the l e n g t h s and angles i n v o l v e d i f the mid-points of the v e c t o r s and the C=C tetrahedron.  double bond are taken as a p i c e s of the  T h i s type of d i s t o r t e d  t e t r a h e d r a l coord-  i n a t i o n has been r e p o r t e d f o r g e r m a c r a t r i e n e silver nitrate  0...0  1 4  and g e i jerene"'"  6  complexes.  W i t h i n the somewhat l i m i t e d accuracy of the refinement, the bond l e n g t h s and angles do not d i f f e r 17 s i g n i f i c a n t l y from the expected v a l u e s  (average  C(sp )3  C ( s p ) = 1.59, C ( s p ) - C ( s p ) = 1.46, C ( s p ) - C ( s p ) = 1.21 &) . The n i t r a t e group i s p l a n a r (average O-N-0 angle i s 120°), 3  3  and the average determined  N-0  2  2  d i s t a n c e of 1.21  2  A i s comparable t o v a l u e s 1  f o r other s i l v e r n i t r a t e complexes,"'"  3  and f o r s i l v e r n i t r a t e be made t o c o r r e l a t e  (see next s e c t i o n ) .  N-0  No  "^'  2 0  attempt  should  and corresponding Ag...0 d i s t a n c e s 21  as has been done f o r AgCN*2AgN0 , 3  s i n c e the low  p r e c l u d e s any comparison of i n d i v i d u a l v a l u e s . where the accuracy i s low, t h i s c o r r e l a t i o n  accuracy In a case  i s not always  justified. For example, the apparent d i s t o r t i o n of the . 22 n i t r a t e group i n s i l v e r n i t r a t e r e p o r t e d p r e v i o u s l y has . 15 l e d o t h e r s t o make t h i s c o r r e l a t i o n  , but the present  refinement of the s i l v e r n i t r a t e s t r u c t u r e has shown t h a t there i s i n f a c t no s i g n i f i c a n t d i s t o r t i o n , so the comparison i s not v a l i d . The  s i l v e r i o n c o n t a c t s the two  carbon atoms of  the double bond at Ag...C d i s t a n c e s of 2.41  and 2.42  £  Figure 6 C o o r d i n a t i o n around the s i l v e r i o n i n the compl  61  ( A g — m i d - p o i n t of C=C  = 2.34  R.) , and the i n t e r a c t i o n i s  s i m i l a r to that i n other s i l v e r - o l e f i n r e f e r e n c e has been made.  complexes to which  The s i l v e r i o n i s e q u i d i s t a n t  from the two carbon atoms, although i n o t h e r complexes t h i s i s not always  the case  (see Table 8).  Maximum o v e r l a p  of the metal o r b i t a l s w i t h the T T - o r b i t a l of the alkene 23 would be expected  when the Ag, C(6), C(7) and the C ( l ) ,  C(5), C(6), C(7) planes are a t 90° to each o t h e r . angle was  This  found t o be 114°, somewhat l a r g e r than the  corresponding value  f o r s i m i l a r compounds, but as shown  i n Table 8, l a r g e d e v i a t i o n s from 90° have been r e p o r t e d . I t appears t h a t t r a n s - d o u b l e bonds a f f o r d the g r e a t e s t ability  to meet t h e requirement f o r maximum o v e r l a p ,  and  c i s - d o u b l e bonds show d e v i a t i o n s from i t depending a t l e a s t p a r t i a l l y on the amount o f s t e r i c hindrance i n v o l v e d . I t should be noted t h a t the g r e a t e s t d e v i a t i o n from  90°  r e p o r t e d p r e v i o u s l y , 112°, i s f o r norbornadiene, which i s c l o s e l y r e l a t e d to the p r e s e n t compound, so t h a t the angles may  be expected to be  similar.  62  Table 8 Angles between the Ag, C= C plane and the c, C= C, C plane :  and A g - C ( o l e f i n ) d i s t a n c e s f o r some r e l a t e d compounds. Compound C H (AgN0 )  Angle(° )  C=C type  Ag-C <&>  Reference  112  cis  2. 31, 2. 41  93  cis  2.78, 2. 84  (Cyclooctatetraene)  100  cis  2.46, 2. 51  18  C H  107  cis  2. 38, 2. 41  20  91  cis  2.69, 2. 84  92  cis  2.66, 2. 78  103  cis  2.45, 2. 58  104  cis  2.48/  105  cis  2.30, 2. 33  7  8  3  2  19  (Norbornadiene) C H AgN0 8  9  g  1 2  3  (AgN0 ) 3  3  (Cyclononatriene)  (Bullvalene)  C  1 2  H  1 8  (AgN0 ) 3  2  (Geij erene)  2.55  84 t e r m i n a l  2.39, 2. 59  82 t e r m i n a l  2.54 , 2. 54  86  trans  2.48, 2.57  (Germacratriene)  90  trans  2.52, 2. 54  C  85  trans  2.35, 2. 43  87  trans  2. 33, 2. 42  cis  2.41, 2. 42  C  1 5  1 5  H  H  2 4  2 4  AgN0  3  (AgN0 ) 3  2  (Humulene) C H AgNO 8  10  3  (Study compound)  114  23  16  14  13  63  B.  A REFINEMENT OF THE  SILVER NITRATE STRUCTURE.  INTRODUCTION During the course of refinement of the complex of s i l v e r n i t r a t e (C H^ AgNO ) d e s c r i b e d p r e v i o u s l y , g  0  attempts  3  were made to compare the c o o r d i n a t i o n that i n s i l v e r n i t r a t e .  i n the complex w i t h  A s t r u c t u r e a n a l y s i s had  been  22 c a r r i e d out  , and  showed s i l v e r n i t r a t e to have a s t r u c t u r e  unique i n the AXO^  c l a s s of compounds, and  s i l v e r ion coordination. a n a l y s i s was distances  photographic data,  absorption  the accuracy of  no b e t t e r than f o r the unstable  0.05-0.08 K),  measured and  Unfortunately  quite irregular  more e x t e n s i v e  the l i m i t e d number of r e f l e c t i o n s  I t was  r a d i a t i o n , f o r which the considered  u s e f u l to  collect  data by the s i n g l e - c r y s t a l d i f f r a c t o m e t e r  method, with an attempt to minimize the e r r o r s due absorption  (a,bond  because of the use of v i s u a l  the use of Cu-K  i s high.  complex  the  by using Mo-K^  to  radiation.  EXPERIMENTAL C r y s t a l s of s i l v e r n i t r a t e are c o l o u r l e s s p l a t e s with w e l l - d e v e l o p e d {001} determined from p r e c e s s i o n data,  and  accurate  faces.  The  space group  photographs and  was  diffractometer  u n i t c e l l parameters were determined  a p p l i c a t i o n of the e x t r a p o l a t i o n method of Farquhar 24 Lipson  to a b a c k - r e f l e c t i o n Weissenberg photograph  and  by  64  o b t a i n e d w i t h Cu-K  a  radiation.  The v a l u e s o b t a i n e d agree  22 2 5 w e l l w i t h those r e p o r t e d p r e v i o u s l y , ' and the 25 parameters  o f the U.S. N a t i o n a l Bureau o f Standards  used throughout. C r y s t a l Data. X(Cu-K , K  a  —-  , K  ai  1.54433; X(Mo-K ) = 0.7107  are  ) = 1.5418, 1.54051,  a  2  a  S i l v e r n i t r a t e , AgNO^, M = 169.9. Orthorhombic, a = 6.995, b = 7.328, c = 10.118 R, Dm = 4.35 i g.cm.  - 3 ..  t , Z = 8,i D c  U = 518.6 R  - 3  = 4.35 ^ g.cm.  F(000) = 624. A b s o r p t i o n c o e f f i c i e n t s : u(Cu-K ) = 617 cm.) u(Mo-K ) = 73 cm  a Absent  a  r e f l e c t i o n s : 0k£, k odd; h0£, I odd; hkO, h odd.  Space group Pbca The  ( *^) • D  i n t e n s i t i e s o f a l l r e f l e c t i o n s w i t h 2 0(Mo-K ) <  a 54°  (minimum i n t e r p l a n a r s p a c i n g , d = 0.83 R) were measured  on a Datex-automated General E l e c t r i c XRD 6 s p e c t r o goniometer  w i t h a s c i n t i l l a t i o n counter,  monochromatic Mo-K^  radiation  approximately  (Zr f i l t e r and p u l s e - h e i g h t  a n a l y s e r ) , and a 0-20 scan of 2° per minute i n 20.  Back-  ground counts o f 20 seconds were made a t the beginning and end o f each scan.  The c r y s t a l used f o r data c o l l e c t i o n was  cut t o a roughly square c r o s s - s e c t i o n o f 0.2 mm., l e n g t h 0.6 mm.,  and was mounted w i t h a (needle a x i s ) p a r a l l e l  to the <j) a x i s o f the g o n i o s t a t . was made.  and  No a b s o r p t i o n c o r r e c t i o n  Lorentz and p o l a r i z a t i o n f a c t o r s were a p p l i e d ,  65  and the s t r u c t u r e amplitudes  derived.  On the b a s i s of  comparison w i t h the i n t e n s i t i e s of s y s t e m a t i c a l l y absent r e f l e c t i o n s , 410  (76%) of the 538  were c l a s s i f i e d as observed.  independent r e f l e c t i o n s  The remaining  128 were  assigned t h e i r measured v a l u e , but were g i v e n zero weight i n the  refinement.  STRUCTURE ANALYSIS Because r e f l e c t i o n s hk£, k + £ odd are weak, the s i l v e r i o n was  expected  to l i e on or near to a p o s i t i o n  which causes the appearance of f a l s e symmetry i n the e l e c t r o n - d e n s i t y map  based on the s i l v e r i o n alone.  t h r e e - d i m e n s i o n a l P a t t e r s o n f u n c t i o n showed an s i l v e r i o n p o s i t i o n a t 0.125, 0.0,  0.125, but  The  apparent slight  e l o n g a t i o n of the peaks i n the y d i r e c t i o n i n d i c a t e d t h a t the y parameter c o u l d be changed to 0.01.  T h i s change  r e s u l t e d i n enhancement of some of the r e s u l t i n g F o u r i e r peaks at the expense of o t h e r s , so t h a t the t r u e n i t r a t e group c o u l d be d i s c e r n e d from i t s f a l s e image.  A c y c l e of  f u l l - m a t r i x l e a s t - s q u a r e s refinement w i t h the l i g h t atoms 6 assigned the s c a t t e r i n g curve f o r oxygen, i n i t i a l thermal parameters equal to 4.0 r e s u l t e d i n an R value of 0.15.  k, 2  and w i t h u n i t  Two  isotropic weights,  f u r t h e r cycles with  weights based on the counting s t a t i s t i c s , and w i t h  the  n i t r o g e n assigned i t s u s u a l s c a t t e r i n g curve reduced  R to  66  0.13, and two c y c l e s w i t h a n i s o t r o p i c temperature  factors  f u r t h e r reduced R t o 0.082. Examination  of the s t r u c t u r e  factors  indicated  t h a t the 211, 004, 020, 024, 040 and 102 r e f l e c t i o n s were reduced due t o e x t i n c t i o n .  These were excluded from the  refinement, and the two a n i s o t r o p i c c y c l e s were repeated, r e s u l t i n g i n an R v a l u e o f 0.064, and R o f 0.094. w  Two  f u r t h e r c y c l e s o f f u l l - m a t r i x l e a s t - s q u a r e s refinement w i t h a weighting scheme o f the form w = 1 / a ( F ) where a ( F ) = 2  32.66 - 1. 091F | + 0.0088|F | q  2  2  + 0.00008|F |  3  q  gave a f i n a l  R o f 0.067 and R, of 0.068 f o r the remaining 404 r e f l e c t i o n s . w J  The maximum r a t i o of parameter s h i f t / e s d i n the final  c y c l e was equal t o 1.0.  A f i n a l difference  map  -3 showed maximum f l u c t u a t i o n s o f ±2.2 eA , except a t the  —3 s i l v e r i o n p o s i t i o n , where a trough o f -4.4 eA  was  observed.  F i n a l measured and c a l c u l a t e d s t r u c t u r e  are  i n Table 9.  listed  factors  Table 9 Measured and c a l c u l a t e d  structure  factors for s i l v e r nitrate.  Unobserved r e f l e c t i o n s are assigned t h e i r measured v a l u e , but are g i v e n zero weight i n the refinement, i n d i c a t e d by a n e g a t i v e s i g n b e f o r e F .  and are  68 Table 9 h kI  172.70  10.35 17.27  11.66 73.->d *.. * i i *. l i . J7 . 7?  1  .4  „ 5 . ?  72 . Hd 71.19 7.82 99.41 19.S2 2 9 . 35 3.9„ 56.08 1 3. B 6 1 4 9 . 1H  7.27 19.•> \ 0.32  57.CI 40, 5 9 1 3 . 16  fl6. 10 6 .H5 7 4 . HO  37. 1 16.59 4 8 . 19 47.14 107.86 13.91  94 . 0 6 11.13 7 0 . CO -6.12  3.57 97.03 9 , 76  10 . 1 9 _4 3 ._4 4_ I .11 "  69  Table 9, continued The  following  r e f l e c t i o n s were excluded  refinement f o r suspected e x t i n c t i o n . determined  from the  F  v a l u e s were  c  from the l a s t c y c l e i n which they were h k I  F^ o  c  0 0 4  188  320  0 2 0  153  282  0 2 4  208  290  0 4 0  171  230  10  121  171  165.  238  2  2 11  included.  70  COORDINATES AND MOLECULAR DIMENSIONS The parameters,  f i n a l p o s i t i o n a l and a n i s o t r o p i c  thermal  w i t h t h e i r standard d e v i a t i o n s , are l i s t e d  i n Table 10.  I n t e r a t o m i c d i s t a n c e s and angles a r e l i s t e d 22  i n Table 11, together w i t h those determined for  comparison.  previously ,  F i g u r e 7 i s a view o f the s t r u c t u r e along  the b c r y s t a l l o g r a p h i c a x i s , and F i g u r e 8 shows the thermal v i b r a t i o n e l l i p s o i d s p r o j e c t e d i n the plane o f the n i t r a t e group.  Table 10 Final positional  (fractional  x 10 *) and a n i s o t r o p i c 1  (.R x 10 ) parameters f o r s i l v e r n i t r a t e ,  thermal  2  2  with  standard d e v i a t i o n s i n parentheses. Atom  x  y  z  Ag  3650(1)  4902(1)  1298(1)  N  3749(14)  3608 (12)  4074(9)  0(1)  3841 (13)  3164 (11)  5264 (8)  0(2)  4860 (14)  2930 (12)  3243 (8)  0(3)  2580 (12)  4757 (11)  3711 (8)  Atom  U  n  U  2 2  U  3 3  U  1 2  U  1 3  U  2 3  mean a (U)  Ag  4.59  3.49  3.09  -0.23  -0.81  0.54  0.05  N  2.64  2.29  2.27  -0.38  -0.25  -0.25  0.4  0(1)  4.73  3.47  2.04  -0.97  0.18  0.23  0.4  0(2)  4.04  3,92  3.06  1.10  1.75  0.41  0.4  0(3)  2.87  3.45  4.51  1.01  -0.43  -0.26  0.4  72  Table 11 Interatomic d i s t a n c e s (k,  a - 0.01 K) and v a l e n c y  angles  (degrees, a - 1°) f o r s i l v e r n i t r a t e , w i t h p r e v i o u s l y determined v a l u e s f o r comparison. r e f . 22  r e f . 22  N-O(l) = 1.25  1.19±0.06  0(l)-N-0(2) = 121  11815.6  N-0(2) = 1.25  1.32+0.06  0(l)-N-0(3) = 120  117+5.6  N-0(3) = 1.23  1.23+0.06  0(2)-N-0(3) = 119  125+6.0  Ag...0 and Ag...N c o n t a c t s r e f . 22 Ag.  .0(1)  2 ,48  2 ,51+0.05  Ag.  2, 48  2,,5410.05  Ag.  .0(1) I I .0(2) I I I  2 , 50  2,,4810.05  Ag.  .0(3)  2, 56  2, 5310.05  Ag.  .0(2)  2. 58  2. 59+0.05  Ag.  .0(3) IV  2. 75  2, 73+0.04  Ag.  .0(3)  2. 77  2, 80±0.05  Ag.  .0(2) V  3, 05  2, 9910.05  Ag.  .N  2, 97  2, 98+0.06  Ag.  .N" III .N  3, 01  2. 99+0.06  3. 29  3. 3210.06  Ag. I  h  II  -  X  1 - y  X  h - y  h + z -h  + z  III  l  -  X  h + y  h - z  IV  h +  X  y  h - z  +  X  y  h - z  V  -h  Figure 7 The  s i l v e r nitrate structure,  crystallographic  axis.  the d i s t o r t e d octahedron  viewed along the b  Heavy l i n e s are nearer the  viewer;  of n i t r a t e groups i s i n d i c a t e d .  Figure 8 The thermal v i b r a t i o n  e l l i p s o i d s viewed p e r p e n d i c u l a r to  the plane of the n i t r a t e  group.  76  77  RESULTS AND The  DISCUSSION  c r y s t a l a n a l y s i s has v e r i f i e d the s t r u c t u r e 22  of s i l v e r n i t r a t e , as p r e v i o u s l y determined p r o v i d e d more accurate  , and  i n t e r a t o m i c d i s t a n c e s and  has angles  (Table 11), as w e l l as a d e t a i l e d a n a l y s i s of the  aniso-  t r o p i c thermal motion. The 1.24(1) k, i n Table  average N-0  and  d i s t a n c e i n the n i t r a t e group i s  the average O-N-O  angle  i s 120°.  11, the i n d i v i d u a l values do not d i f f e r  As shown significantly  from the averages, so the s l i g h t asymmetry of the environment does not cause any the n i t r a t e i o n from D ^  nitrate  s i g n i f i c a n t d i s t o r t i o n of  symmetry. 26  After correction for  r o t a t i o n a l o s c i l l a t i o n e r r o r s , the mean N-0  distance i s  1.26(1) A", s l i g h t l y longer than t h a t r e p o r t e d f o r sodium nitrate  2 7  1.218(4) R,  but comparable to the v a l u e s  reported  f o r s e v e r a l s i l v e r n i t r a t e — o l e f i n complexes d i s c u s s e d 22 previously. 1.25  R,  The  average N-0  length reported e a r l i e r ,  i s i n good agreement, but the v a r i a t i o n i n l e n g t h  (1.19-1.32 R), estimated  although  standard  not s i g n i f i c a n t i n terms of  their  d e v i a t i o n s , suggests a d i s t o r t i o n of  the n i t r a t e group which i n f a c t , does not e x i s t , as shown by the present a n a l y s i s . The  thermal v i b r a t i o n e l l i p s o i d s are shown i n  F i g u r e 8, and Table  12 l i s t s the lengths and d i r e c t i o n s of  the p r i n c i p a l axes with r e s p e c t to a x i s 1 along the N-O(l) bond, a x i s 5 p e r p e n d i c u l a r  to the NO-,  plane, and  a x i s 3*  Table 12 P r i n c i p a l components o f the thermal  vibration ellipsoids  and t h e i r o r i e n t a t i o n s w i t h r e s p e c t t o a x i s 1 along the N-O(l) bond, a x i s 1 p e r p e n d i c u l a r t o the NO-, a x i s 3 equal t o  1  x  Atom Component  U  (& )  Ag  1  N  0(1)  0(2)  0(3)  2.  plane and  Angle w i t h r e s p e c t to -*  Axis 1  Axis 2  0.160  17.6  91.3  72.5  2  0.189  85.9  162.1  107.4  3  0.225  72. 9  72.1  154.9  1  0.134  65. 0  152.4  101.0  2  0.159  155.0  114.7  93.6  3  0.170  91. 3  78.5  168.4  1  0.140  11.4  83.5  99.3  2  0.174  86.0  164.5  104.9  3 •  0.230  100.7  76.0  162.3  1  0.130  49.6  80.1  137.9  2  0.183  130.7  112.1  131.1  3  0.245  113.1  24.4  97.6  1  0.145  105.8  83.3  162.8  2  0.197  114.0  27.7  77.0  3  0.220  29.3  63.3  101.1  Axis 3  79  equal t o 1 x 1.  The n i t r o g e n atom has i t s s m a l l e s t  component o f motion p e r p e n d i c u l a r t o t h i s p l a n e , and approximately  equal components i n the plane.  The s m a l l e s t  v i b r a t i o n o f a l l three oxygen atoms i s d i r e c t e d along the N-0 bonds, and the l a r g e s t motion i s roughly i n the plane of the n i t r a t e group. The  s t r u c t u r e i s composed of s i l v e r i o n s co-  o r d i n a t e d t o n i t r a t e i o n s t o form a t h r e e - d i m e n s i o n a l network so t h a t the s i l v e r i o n s , which l i e e s s e n t i a l l y i n l a y e r s p a r a l l e l t o (010) separated by hh, are l i n k e d by c o o r d i n a t i o n t o the n i t r a t e groups which b r i d g e the gap between l a y e r s .  Ag...O and Ag...N d i s t a n c e s a r e l i s t e d i n 22  Table 11 w i t h the v a l u e s determined comparison.  previously , f o r  The e i g h t Ag...0 lengths l i s t e d do not form any  e a s i l y r e c o g n i z a b l e geometric  c o o r d i n a t i o n around the s i l v e r  i o n , and the s i l v e r environment i s best d e s c r i b e d as irregular. As noted  . 22 i n the e a r l i e r r e p o r t , t h e r e a r e groups  of s i x n i t r a t e i o n s i n an i r r e g u l a r o c t a h e d r a l arrangement around c e n t r e s of symmetry.  These form a l a r g e c a v i t y  (Figure 7) which i s occupied by two s i l v e r ions 3.2 38 (2) A  5  a p a r t , r e l a t e d by the c e n t r e o f symmetry.  No n i t r a t e group  i s u n i q u e l y a s s o c i a t e d w i t h any one s i l v e r i o n , but a l l c o n t a c t s are shared; o f the e i g h t n e a r e s t oxygen  neighbours,  t h r e e are very c l o s e t o the s i l v e r l a y e r s ( 0 ( 3 ) ) , and the other f i v e  (0(1) and ( 0 ( 2 ) ) , l i e between l a y e r s t o b r i d g e  the gap and form the t h r e e - d i m e n s i o n a l  network.  PART  THE  STRUCTURE  IV  DETERMINATION OF  N,N-DIMETHYL(FERROCENYLMETHYL)AMMONIUM  TETRACHLOROZINCATE  81  INTRODUCTION The i s o l a t i o n o f N , N - d i m e t h y l ( f e r r o c e n y l methyl)ammonium t e t r a c h l o r o z i n c a t e , an i n t e r m e d i a r y  complex  i n t h e Z n C l - H C l c a t a l y s e d s e l f - c o n d e n s a t i o n of N,N-di2  28 methylaminomethylferrocene, has been r e p o r t e d the  .  Although  ammonium s t r u c t u r e was i n d i c a t e d by the s t r o n g  infrared  a b s o r p t i o n near 3.7u f o r the s o l u t i o n , i n f r a r e d data on KBr p e l l e t s f o r the c r y s t a l l i n e compound appeared t o be i n c o n s i s t e n t w i t h N - p r o t o n a t i o n i n .the s o l i d s t a t e , and suggested the p o s s i b i l i t y o f c o o r d i n a t e c o v a l e n t N+Zn 28 ' bonding . The c r y s t a l s t r u c t u r e a n a l y s i s was undertaken t o r e s o l v e t h i s problem, and t o o b t a i n i n f o r m a t i o n about t h e o r i e n t a t i o n o f the r i n g s i n t h e f e r r o c e n e p o r t i o n o f t h e structure.  EXPERIMENTAL C r y s t a l s o f N,N-dimethyl(ferrocenylmethyl)ammonium t e t r a c h l o r o z i n c a t e hydrate, [ c H F e C H « C H * N H M e ] « Z n C l • 5  H 0, are t h i n orange-brown 2  {100} developed.  5  5  4  2  2  2  4  p l a t e s elongated along c w i t h  The u n i t c e l l parameters and space group  were determined from r o t a t i o n and Weissenberg photographs, the  u n i t c e l l parameters being r e f i n e d by a l e a s t - s q u a r e s  procedure a p p l i e d t o the 29 v a l u e s o f 30 r e f l e c t i o n s measured on a s i n g l e - c r y s t a l d i f f r a c t o m e t e r w i t h Mo-K radiation.  82  C r y s t a l D a t a . — X (Cu-K  ) = 1.5418; X (Mo-K ) = 0.7107, ft.  N,N-dimethyl(ferrocenylmethyl)ammonium hydrate,  tetrachlorozincate  [C^H-^NFe] ZnCl -H^O, M = 713.5. 2  4  M o n o c l i n i c , a = 18.076(6), b = 14.038(5), c = 12.246(5) ft, 3 = 95.70(1)°, U = 3092.1 ft , D 3  m  ( f l o t a t i o n i n bromoform-  — 3  — 3  benzene) = 1.522 g.cm. , Z = 4, D = 1.532 g.cm. c F(000) = 1464. Absorption c o e f f i c i e n t s :  y(Cu-K ) = 118 cm? ; y(Mo-K^) = 21 cmT 1  a  Absent r e f l e c t i o n s : h0£, l odd; OkO, k odd. Space group P2/c ( C ^ ) • The i n t e n s i t i e s o f a l l r e f l e c t i o n s w i t h 20 (Mo-K ) a 1  40° (minimum i n t e r p l a n a r s p a c i n g , d = 1.04 ft) were measured on a Datex-automated  General E l e c t r i c XRD 6 spectrogoniometer  with a s c i n t i l l a t i o n counter, approximately monochromatic Mo-K^radiation  (Zr f i l t e r and p u l s e - h e i g h t a n a l y s e r ) , and  a 8-2 0 scan o f 2° per minute i n 20.  Background  made a t t h e b e g i n n i n g and end of each scan.  counts were  The c r y s t a l  used was a t h i n p l a t e w i t h dimensions 0.1 x 0.4 x 0.6  mm.,  and was mounted w i t h c p a r a l l e l t o the cj> a x i s o f the goniostat. polarization  No a b s o r p t i o n c o r r e c t i o n was made.  f a c t o r s were a p p l i e d , and the s t r u c t u r e  amplitudes d e r i v e d . 2012  Lorentz and  Of the 2991 independent  reflections  (67%) had i n t e n s i t i e s g r e a t e r than 3a(I) above back-  ground, where a(I) i s d e f i n e d by a(I)  = {S + B + (0.05S)  2  where S = scan count and B = background count.  The  83  remaining 979 r e f l e c t i o n s were c l a s s i f i e d  as unobserved.  STRUCTURE ANALYSIS The d a t a were p l a c e d on an a b s o l u t e s c a l e u s i n g 29 i i Wilson's method , and v a l u e s o f |E| were c a l c u l a t e d w i t h the program o f H a l l  30 .  The | E | s t a t i s t i c s o b t a i n e d are 31 compared w i t h t h e t h e o r e t i c a l v a l u e s f o r centrosymmetric  and non-centrosymmetric The  s t r u c t u r e s i n Table 13.  s t r u c t u r e was s o l v e d by a d i r e c t s i g n - d e t e r m i n i n g  32 procedure  , which uses a r e i t e r a t i v e a p p l i c a t i o n o f Sayre 33  relationships  .  The o r i g i n - d e t e r m i n i n g r e f l e c t i o n s and  symbols  (Table 14) were s e l e c t e d from those r e f l e c t i o n s o f  highest  | E | which e n t e r i n t o the g r e a t e s t number o f Sayre  r e l a t i o n s h i p s and which were o f s u i t a b l e p a r i t y Permutations  of the s i g n s of the symbols  'd' l e d t o 16 s t a r t i n g s e t s .  groups.  'a', 'b', 'c' and  Planes having  |E| values  g r e a t e r than 1.7 were used and twelve passes through the l i s t were performed determined  f o r each s t a r t i n g s e t , w i t h newly  s i g n s not used t o estimate a d d i t i o n a l s i g n s u n t i l  the next pass.  T h i s procedure y i e l d e d two p o s s i b l e  solutions  w i t h c o n s i s t e n c y index o f 0.83 (next h i g h e s t 0.60), and t h e E-map computed w i t h the s i g n s o f one o f these showed t h e two -2 Fe p o s i t i o n s and the ZnCl^  group.  Compared w i t h the  f u l l y r e f i n e d s t r u c t u r e , 280 o f the 296 p r e d i c t e d s i g n s were correct.  The E-map computed from the o t h e r s e t w i t h c o n s i s -  tency index 0.8 3 d i d not show r e c o g n i z a b l e s t r u c t u r a l f e a t u r e s .  84  Table 13 |E| s t a t i s t i c s f o r N,N-dimethyl(ferrocenylmethy1)ammonium t e t r a c h l o r o z i n c a t e hydrate. Experimental  Theoretical Centro.  Non-centro.  <|E|>  0. 785  0.798  0. 886  <|E |>  1. 008  1.000  1. 000  0.995  0.968  0.736  2  <|E  2  -  1|>  |E|  > 3.0  (%)  0. 37  0.30  0.01  |E|  > 2.0  (%)  4.28  5.00  1.80  |E|  > l . o (%)  32. 83  32. 00  37.00  85  Table Base s e t of r e f l e c t i o n s  14  f o r sign-determination. determined sign  h  k  £  1  2  1  4.64  +  To  2  1  3.23  +  4  5  9  3.77  +  2  2  1  2.61  a  +  1  0  2  3.02  b  -  1  4  4  2.93  c  -  5  2  5  2.33  d  _  E  sign/symbol  ] 1  origin  .  86  A s t r u c t u r e f a c t o r c a l c u l a t i o n based on the heavyatom c o o r d i n a t e s from the E-map, w i t h the Wilson  scale,  s c a t t e r i n g f a c t o r s from the I n t e r n a t i o n a l Tables i s o t r o p i c thermal parameters  B of 3.0 ft  atoms gave an R v a l u e of 0.40. the heavy-atom p o s i t i o n s was two  light  f o r a l l seven  2  A d i f f e r e n c e map  on  twenty-  With these i n c l u d e d i n the  d i f f e r e n c e maps r e v e a l e d the  p o s i t i o n s of the remaining non-hydrogen atoms. light  based  computed, from which  atoms were l o c a t e d .  phasing model, subsequent  and  With a l l  atoms a s s i g n e d the s c a t t e r i n g curve f o r carbon,  i s o t r o p i c thermal parameters  and  of 4.0 ft , the R v a l u e was  0.35.  2  The n i t r o g e n and oxygen atoms were a s s i g n e d t h e i r a p p r o p r i a t e s c a t t e r i n g c u r v e s , and t h r e e c y c l e s of  full-  matrix l e a s t - s q u a r e s refinement w i t h the Fe, Zn and CI atoms allowed a n i s o t r o p i c thermal parameters,  and u n i t  f o r observed, zero weights f o r unobserved reduced R t o 0.082.  Two  weights  reflections,  c y c l e s of b l o c k - d i a g o n a l l e a s t -  squares w i t h a l l atoms a s s i g n e d a n i s o t r o p i c thermal f u r t h e r reduced R to 0.068, but the a n i s o t r o p i c parameters  f o r the l i g h t  and are not l i s t e d . weighted  parameters  thermal  atoms are not c o n s i d e r e d a c c u r a t e ,  In the f i n a l c y c l e s the data were  so t h a t /w = 1 when |F | < 45, and /w = 45/|F  when I F I > 45. taken as 0.80.  For the 979 unobserved  r e f l e c t i o n s , /w  F i n a l measured and c a l c u l a t e d  f a c t o r s are l i s t e d  i n Table  15.  structure  | was  87  A f i n a l difference electron-density  map  showed  s p u r i o u s f l u c t u a t i o n s as h i g h as ±1 eft , and hydrogen atoms could not be l o c a t e d  reliably.  Table  15  Measured and c a l c u l a t e d s t r u c t u r e methyl(ferrocenylmethyl)ammonium  f a c t o r s f o r N,N-ditetrachlorozincate  hydrate.  Unobserved r e f l e c t i o n s are assigned t h e i r measured v a l u e , but weighted as d e s c r i b e d i n the t e x t , and are i n d i c a t e d by a negative sign before F .  89 Table 15 h k z 3  F  F  C  44  4"44 C C C  14  P 0 C  *  0  ?'3.ll 117.33 5C.C7  l?5.t*  "444  -?<..*<  24. 77  I  i  IC S ii 1? •) U S C  -I—HtH-  4-4 15  -44/  ->.9| n.c -11.45  1C  0  -7.17  10  0  2r.'s.  J IE s C 1  It Id  C 0  75.is  it* 1 ».4"*  J44  1  C o o  i IS S -ll:tl I I? ! !  44  •  "44^  I-  4tsf-  -14.n  1 " .45  4j^  "44  1144  1  !J:i;  - 4 4 4 -414  M4. 75  4j^^  i44  l**. 2r  S. If 51 ,<ti 17.14  44B  77.21 71.21 PS.21  4f:£-  44  4t:^  414  444-  22.n  1* 15  3'  44  n.-ic  is  '['.{)  7]  r-,.:^  ?r.7*  !] I  3 r . '.  44 4M4 444"  !'.<•'•  J 7. * •  i 7, i  444 4 4 4 — 4 4 24. ! J r.r  c  44f4  4  jj--5-4--S^~ 44.Ci (•O.b" 5G.C4  4-4 V, 15 J  S  5-f-  I  3f . 5 ' (5.T* i'..47  .44  4 4 - 4 4 4 4 -44 44 - 5 4 4 - •44-  14  -4.4-—44  44-  7C7. 7n  4?4J  4-;  44 it:::  44 -'4 44  44  ;  4f- #-  4J-  :  11  44  -Mr  44  4t^^  - 4i-  4::;i-—44  j U  !  44  -4  17  )T. i t  4 ~ 4 4 - - 4 ^ - -44  15. jr. -12.54  2 2  •I  12  4rt4 44T~  i?ft  iff-  -rf«f  4is  4i:-H-  1 7' . 7:i  l(^. 72  4Wh  444-  1  11  -4-J.4  ft  71 7 . ? .1 M. 1 I  -4:4-  -2  -4—4 1 J4.71  12. 77  -4:4  4-4-  1.0 J S  S  4-4-  2h.5)  !t;:" -4W4  45,15  4f>.11  4:4 i'.  i.'  , if.-.*f 7.17 ,  -447  0  444-  :>.\/  4  !)".!•. 11.11  7 2 2 J  13.-.4  7 7 7 ? 7  \ \ 2 2 7 2 7 1  i: -\\ :i)  i  2 7 7 7 2 2 7 2 2 •7  4  niii  f lit.-". - i . f ' r,.'. iflil 3 7.it -17.IT - o . 3" -I.Vi -1*.ii 17. iv  •  ?. .61 -;:i'. ?<•.!• '17.1 l  -IC.d  1 >•..!<;•  ;:4-  .  .' '•. M '.f.l-; ? If. i . ^ i X...72  I-,3c 7? •.. i-] ! .h • . V ^ J-.S"  -ir.'H  ,..-•]  ii  .  ; 7 2  1  7  M:,v, ^ 4 4 - -44  \ 1 '  3  :) i 4 5  ^fM4 2 2 7  17,4} 32.H -3.4C •!6.<!  4s4 1-1.7*  444  ".m .,..^1 1'.'.-"  r£i >;.ii  7 7. = 7 2 " . 7" -11.11 75.\,  c . . -  -J:;:  1 .1 1 i ' . i U . ^ 2^..H  -r^  2  -1C..1  . . i f  2 2 7  i3*.'.,: ' ' -11.11  iw.s' '• ' I'.M  2  -b  M  -7.,,  1  -B -7  - 3. • i ir.ii . i l  1  I  7 2 7 2 '7 7  .-.1.7 .4"  l',:'A ;;:::  2  2  ::; -\\  ii.  M  * ;.•>'•  7  1 71. f Z  2 2 2 2 2  ii.tl lbS.11 I M . V , i-;, * i • ?. 7b 71.72 •:.•.-•> 64.17 7',.!/_  2  -.4.7*  1 !  .7 ''  ..7,sr:  ;  12  i: -1ft -15  2 2 2 2 2 2 7 2 7 7 72  fl -1.*', 111.el -7.1-1 I4.f-H 41.24 1 1 . hi 45.'4 -1.7b -14.13 -7.71 27.. CZ  2 2 2 2 7  19. 1-).61 61.11 32. 15 44.71  2-  "'oic"  -.77 i r . K I7' ..i,'-l-1.1 ' M .-. '  * !."• '•. «7 M . U '7.. •  -13  -4  -•1  -10  -2-  "  j 10  Ifc.bJ IS.-P -r..43 .16.53  2 2 2 2  ;e.ib 15.43 114.40 2*.51  v.... 3*..T i:b.c2 'C.7H  7 2 2  1 1 . b? 30.15 19,71 -1 1. 55 -8.16 31.55 ?<;. ha -7.65  I ' . J S  7  2  12  \l 11 -15  ft  M.tl -'.H.> ' ). 1 1 'i. -"• '.7.7.  2 2  2  1  43.4 3 -I3..i;i I I . 71  ^.59 72.n  7 7  -b  T4>4 v 4 4  51.05  4htt- 4 4 4  "4,;  . ?:U  -tl..'S  2 7  7  11. y-  -^?:4 i .r i. 14L'. 1^ 7'..re  P  44 44r  TT.4  -44=7-  -4-4 -4:4  's:r  J  ;  4H.lt  H  -4-4-44-  4 7 4 4 444  ••1 .01 I f " . IM .  -444  -4-4-  44f  ! J  5 1 U:£ JiNl  4 1. V , 1 . 2  444  21. 5'.  4-4  -1 -7  14 11 16 -17  h  75.^1  71.1', -f.,7 77.n IL7,22  If 11 12 1> 1*  :3 11  K C . 7?  ii.*6<! ;^. 7 72.».i :t..!>r ?.«/ 7->.4-  7 7 7 2  -4:4 4 4 « -  444  ill  t.»t  - n ! n 19.M 2 1 . 77 2 9 , I)  2 7 7 2  If 11 17  ;J.I-.  1. C  i 1 -,':."  5  l b . 72  -4#-  i  !•«.-!/ 77.."'  31.57  ; 5  -6 -S  4t:4:— ?:4  4«?«-  44*—44r  i  29.b-17. i c "7,ir-  -8  10  ?3.ii 11 /. j 1 I /.Tt'-  -44—4:4  4i:if-  4^4-  <7. *2 1 I I. V>  -444  -4'  -41  4f-  >44  444  1  :  '4,'  7".4 1 '  44  .'J .'.<••  54^  4S:tr-  126. C* 7f.ll  2  2  -<5 -A -7 -6 -5  5 2 3 *  • 7. •••  •44  2 2  5';  ;;4i  44H iefr "4 -f444 iiiiil 4 4 4444 444^  -T44>-  -444 -144  4H4  17A.>-r. 10.9b 77. '6 85,Tf  :\i ; i  i • <t. i i * 1.12  :c  4:4  44:  i4 4 4 4 - 4,4  44 ;  -11 -li  tlf-  -4tf-  r&S  441—-44  ii i  .lh  ir."  :::  7 2 2 2  7 2 2 2 .2 2  1  11  -1 2.T-> -1*.b'  ~m ,44  444"  S-:4  7H.ni  7 7  li J  ft 9 If  444- 444  4it:;; 44  4i#  o 1C •  3  i7.4«  ".'.I 4.4i 1.35  ii  4-4  1 1 I 1  -7 -1 0 1  ii.3*  2 2 1 2  ,37,4^  4'  ••.'..• 11. 1 1  2-.1* 1,1 ;• 7.T r.71 If.71 if..n<.  P . ™  90 Table 15 continued:-  h k  I  -i.r.6  Fo 1 \ .24  -4-4-  I I • Jj44:  19.73  5 5 5  1 1 3  2C.li 24.44  ?<..!'  ^4v44—4:4-  24.  ;?  lit -B  I IS I  5  i  B  2  15  3  :  ft?;  :ll IS I -444—444 Si I 44 i! I : IT:-! 'iiil 2.5B  -16 -15 -14  :  4 5  3  K 1C  3 3  iVM  73.ft? 2 9.3d  4  41.46  *%.B7  -5.5H  1.22  :!S j : jf:;;—feff -13 -11 ::  3 ! J  ;  »  1  -11.39 6«.«  1J.37 7. .53  -4  J  4  (,2.90  5 * . 36  it:;:  -5—?—f—St^ i I : "H:H -ft*  411-  77. 59  16  4-444-  1  J  M.ii  l  3  2 5.1.14  1  4  7*.  -1T.12 '.74  1 -X.il J  3 L 64 '• 3 . ' 1  £2 14  i  i  4;, i'.  1 : : :  4-4—firK—=H:fr  -vi.9.  44-4  : St:H~ :  44fr  444 444 .47  -ft  IS  2  JL_L  •4h  H3  «  4  1K.U  5  4  102.42  0  ! J .ft1  4-4-4^444-  —4i4" 444 2*-. -1? -i ,*4  4^:4 ; i .71  44^4-M44 444~ 3  -44  4-4-  4  f  -17. fit  4^44;  7tl4  4—145  £tr  13.71  -r-^H-  -6  B  3  444-4-  4-4r:4s : ; 4-4—S44 4—4:44—sw?\ '-til  444  11  ^  1  J  :  ;  2fl  4-  3  53. 91  a  9  3  co  4-^44  ir. 76 1* .54 12.22  —^4-  -3  4-4444  -4^  4 4  44  --1.'^ I6.PJ  4—4:44 4 4  24. 7<> 16.0> >rt.77  4^:4  i :<..?i  44 ,4 4t  6  4  .  »  -17.SI 17.  H  1" .*>  -444  12. 41  -444 "^tti~4t4r  7 . iJ 1  ±rt ii.9T 11.07  -444  V7.7-}  i'.Hi 1 ; i.41  444 >"..!•  ^  91 Table 15 continued .4  7  -? -1 r.  14 -1  M  4  4  44 1 5 b  2 7 2  14.17 1'<•.«», 2'.2i -  4—44—441  ;  — 4 : 4  -44-4-4444 z  5  ,-r.ii  4 ; ; S);  | j ::4 4444—44  4 - 4 4 - 4 ^ -  44 • • 4': 4 44  1,  n>.7',  -1  ]  '2  1  -J  1 5  ^ 4 4 - 4  )  5 5 5  44 ?>•. i l n. !••.'!  I I 4-  3  1  1 1 1  U.7„ Ir-V.'l/ ?i.:i7  7 7 7  44 44 44 1.17  -4:4  4 4  12  "  1  -11  -1 3 . Ob  ,4<  1.' I . i ;  '  44444—4i4  n.v !7. . ? :-..!7  >;  =454-44 14 S  4  S  J7.V(.  -Mf-4-f—!t:4  -44  44-4-4 - r ; ! 4 -  44  V.**  -44-4-444-  41?  7. ? i  c  i ! -4 41 : ; 4 4 5  K M  -4 4;}  :  11.1. 77,1*  4 i 14 \ If !  44-4-44; if  4:1 • <•  n  44  -41!  n.-  V<il  4r:4,  4-^-444  "J-'-'  ii'4  -1! -1C  3 3  * (.  -4  1  fc-  -1. > |' . 1 J  'I . 77  1».*6  6  18.12  ] .1 I . ..  2^,:''.  ,:!u4  444r  4-4fer-  Tif:S—4:4  -44  (.  I 44 4—44  -44f  •4-4444r ;  - 4 4  :  44—44  444  -i;4—444  -44-  ri  14.60 7 2.77  6 6  4-14-4 - I K .  ;  6  : S! 7  -4|s  T444  if  •7 it i—Ji  -M-  444  :i I! I "  444-  -4*  5  *>.fi  4444—4:4-  4:f 44  17  1C  6  '  41 i I  44  -4  444  44  b  11 i* -H  4—£44  :!? I \  -11.16  • 12 •11  6 6  1 1  -1 -»  44f4  -44  J 7  5 5  -U 22. 14 15 .-J 7  h  7 - 5  b 6 h  1  t  b  4 4  ".iBsr. - 4 4 O.r a. 7J 71. '17  ? . 1 'i :,• . i "  -11."2  ? ! , 71 If .IT  4H  17. n  44£  b  17.47  J t  -4:4  L7.4C  --\\  •i; -e -4 -i  :i  71 1  7 e 10  21. 6<"  J 4:-"  "I,  44  'o.  ' 44[6.14  7  17. -5 '  ; ;;::" 4—4s4  -4:4  4—S:44  5  - 4 - 4 - 4 444-5  C c t  6  -44  -7t-.-n 1 .67 7N  i44  f . 12 .  144  44 2 . ;.  1 '. 3 l  4:4 2 ' . •• 3  -4:3  IK. (1  44  441-44:4!—441  444-4-444  44  .  1s 1 ls i:  4W4  5  -  4—44-  4 4 4  4—44—444 I  44 1 .?*  4 4 4 - 4 •44  4i! 4;ii  41  44 444-  '1 .07  4 4 - 4 - 4 -T444-11  444-  444-T744-  4r:4-  -4  44-4-  :!S f  44  4 - 4 4 -  41 ;:4,  t *  •b.C''  -V-4S-4-444-  ":U  -4.4  4; I I - 4; 4444-- 4 4 4 :;:;; 74-44;;4 -44 4f H  i  ?  1.44  II I : 44—44f -jj \ I 44 ,4J 4i4-4- ji:4 -444  4 4  '44444" 4 J ! 44 1 5  !  K.".  i44.._..i;E  ' •' . ? 7  -. —h-?-4f;74  25.3? - r l . '1  -^4---4:4  >7.f*  -4 4 4 — S 4 — 4 - K  u  J1. I  •4-4-4—44^  3«.7-  :• .' i . -• 7  i—445—44  44  7fi44-4I-:4  !  -44-4—^:4  «  h  7  if.il 21.??  .  -444-444  44444  5  5  4-4t'4^  4: \ 444  4 - 4 4 — 4 : 4  4ti~ -4:4-  -]?.t-' ;t.'".7 .•i.;;.  7'.i V..TM .-,7  11 I i ••-.4  -1  1  111. > ••  - 4 - 4 : 4 —  44  71. y 1 K.'^ 4... l i  •r  -44-4II .  5 5, 5  I I i 4,;—44  44  4  -4—44  4444—744  1  : i ; =  (.  -4;:S  '  :4  44 ;2.1i  '44  h *  4(-. S ' /1.4»  6 6 6 6 6 f> 6 6 6 6 6 b 6 6 6 fr  . sc.7> 3 1.1' -17.71 4i). 1J 14. Of 45. 31 16.10 77.77 77.76 46.71 2s.\« '4.71 frt.P1 76. 41 -4.23 O.rt  4?. 7" 71.ir.  12. l o 24 ,M,i 7 .<, ' . ^  ft  si.it.  vr.tr  -44  -44-4—44  -4:4  -,'4-44—  4:4  44; -14 z -11 7 -i? ? - 1 1 ? -1i -0 1 -f 7 -7 -7 -6 7  T 1 7 H.r l -1.77 4 }' .7.7 »7.(.o T.M 47.0ft ;t.i- • •  7 7 7 7 7 7 7 7 7  3n.44 'r.;? -ii-.'.* -0.-1 I S . 01 -If .r.7 M.I'' 2ft ,C t l i f t . 7" iri4. 7,..-,  -4 -•  ? 7  7 7  -1  2  7  \  7 1 4  4  A 9 1C 11 -14  i ;  72 7  4  2 2 7 2 »  77 7  51  .';'.]-i 71". 1* :.•.) 1'..'4 11.14 11.1'. l';.i7 27. u 2 141 , M '4l7 1-..77 47." 7  S:;^ 17H.-.4 -3.4': ."..14  I7S.1" -H. 77 Jl.Hfr  444  44i;  7 . 27^7? 7 27. J4 7 44.07 7 76.67 7 i 27. ?4  27.47 V:.^, W.41 ?*.24 '1 .^ip  92 Table 15 continued :h k I Fn 4!—  :?:;; -1.C1  !*..«•?  i -  |  7 7  7  ,5 li -I* -13 -12 -10  •  -7 -6 -5 -2 -1 0  1 -12 -11  44  ' 22.11 57.6* 65.17 25.80 34.46  Pf.tr ; t . M 67.19  - 1 0 . J'! 41."1 22.73 0.0 17.16 3C. 41 -12.11 CP 71.01 • -ft.8-, -14,55 J4.27  ».•.!4?..57 21.17 f . . ' 2 I-..-.S 3'.. KP 12.HO t.H9 72.77 b.'l 1 J.M, ?i.6?  -8.71, 40.C4 10.03 70. 30 27.0[ 24.25 45.B1 74.31 54.HI  '.7( *•.»** ?i.4> '7.M 2, .77  ' .  o.c 30.ft!  444-  444  t:.K'. 71 . 7C '.ll'  4t.t  -444  -44r  -r44J  •!5 S  28.1%  4 - 4 - 4 4447  e  a  4-4-^44-  / . - . i  -4:4-  -444-  44  4:4  (:,: • -4  s4  }  •4-4-  -s-  -iz. i i  44  44  1. * i  44  4f  444  24,74  444  4t4t •..1',  77,41  444  -4449  -8. 7  444  ii,  \l:'l 4144  4^45-  4—4  44  8 4:4  I  444  44  4:  B  LO.'B  i 44  44  -4-444-  2 . is 21 . I t  4^4  1:1; 4-4-  39.6*  -444-  4-14 :!!  -444  4«r  4-1 .r 61.19 17.76  44 4f  22.31 18.74  44  -4:4  !:SJ  44r;  444  -44^  -444  4 l 444-  44  6.41 .7.86 ft,*?  11.  n.ii  3..'?.  444  is::; -h-449  0 10  44-  444  :\V.V, -5.S  •  4 - 4 4 4 -S:f4  l i  . •7-72  -T44  is 4;; 4:1 -44 44  -!4rf  444-  1  17.-11  4J:4  444-  :::i?  ,;:•;;• -44V. - 14.78  1' . 1 7  74." 7 ;i . ;7  71. 11  444-  4-47  5:4!'•::;  4 -  4*4  .21.12  -444 135 49.16 -12.h5  II  4^4 4.fl  JI  ? i .30  5.06  444  -4TH 14 .r"7 ..?.34  -44f  21. 1' 6.13 8.76  44 1-..63  If  -S:5,  46. 12  • 10  ^ 10  34.6->  4 - 4 - l i -4r4-  ; 1 ; 1  17.t =  444 44  -44^  -i  44  14  5-.." 5').""  20.5 7 O.C  4l  44  r.c r..o -5.76  4: 44  4^,34 el,oo  -444  4414 -'1:51  :  44  2.1.0 7 7.77  '1:11 -44-  -H44-  ••ill -ft:;; 4 n : ;  -it  444-  45. 01  4 4  - 4 4 4 44  1  .11:™  "i;** "..7.3 li-i'l  1 11  !|:i;  2o;fi  -T44  1:4  -  28.21  -»  44  4—444  -itti  1 8  4 4  444  4i  -n,*7 *1.«S 34.12  :\l I IS  -44  4r  1t;f44a4  i«  -44-  44  ; ; ;  -4-4-  - 4 4  41.77 8.12  -44  -4-4-4-  -444- -444  4:4  -O.-M  4—444  4ii  "44"  ;4: 4—?44-  i : -4:44-4-  444 44-4  4t  44f  SJ:?:  !-'.:^  :::;;  ill -444  4—^:4-  -44  444 Ml  44  :4 44 44  -444-  4; 44 44-  -1.2! 2').^i  4-444-  4S 4T:4  4—!44-  i ; . 74  444  444  -444  44  -4:4  -4:4  • a  *  -44  44  4-  444  4: 44 44 -44  24,.  1  44- 4lf 57.67 * 1 . 06 57. 24  -444  •1.2* 1". 7 I '5.C = 1.42  21.11 ,  i.* >5.Ji  i;:i;  44? '11:;:  -LSI  4^4  8:. n  », :.>n!  4 1 .04  : 72,i-.  4tr4  llii;  ftt-*r  -44 -i.ftft  42. JM  29, »? 21. PS  444-  l i  11:1',  10.71  fl-5,HI  -44:fi-  7 24,71 7_. -J.ll .  M.  44  4-444-  47.16 -2.4 5  ?6 .65  -4fS—^:vi-  -444  444  B t  ft  r I  ":JJ -^44-  44-  4-444-  31,77  26.04 • -i.e.  -:-4  44  r*.0>  30.P3 -0.55 -i.t.4  * 5 ft 7 a  2ft.8 >  7.54 1 i. lb U.oi ?*.LC  2J.8T "IS. 29.72  7 7  s  2.17  -11.55.  7  -1 -2 -i  44-  h-44,—-4:4 7  -6 -5  j;:;J  1,:1I  H - 1' -1  ll:V,  -ir.i-t * 7./f-. 11. M  '1:V4.•>» U 7. • " ^4t.  102.'.J  lIH.-'l  44  liiii  i;:!,'  ":"  0 '• 4 I":  -7  12  -7 -6 14 -11  2 7 1 4  -! 8 -12 1C -2 -6  4 5 ' 7 0 ' 12 8  -t -1 1?  5 ' I 2  -8 1 5 -3 -1  C a 2 4 t  }?.71 7^.4 7  7-.I4?7 , '-0'-  61.16 •it.6' 16. -is -1.17 35.11 25.0) -3,7rt -1.64 21.81 lC4.b'l -13.37 -14.1,-i 0.0 - I J . 70 28. 34  V.1? si.1* 2;>.r6 ^.-2 27.6ft 7 » . "  44.;-,  •.^.if  '.,/• 24.\> U 2 . 11 1! .66 |t.B5 \.rt 8."4 V . l *  16. »0  444  T  93  COORDINATES AND MOLECULAR DIMENSIONS The numbering system used i s shown i n the diagram of  the s t r u c t u r e i n F i g u r e 9, and the f i n a l p o s i t i o n a l and  thermal parameters are l i s t e d  i n Table 16.  Bond l e n g t h s  and valency angles are g i v e n i n Table 17, and Table 18 g i v e s the equations o f the mean planes through the c y c l o p e n t a ^ d i e n y l r i n g s w i t h t h e angles between the normals o f these planes.  F i g u r e 10 shows a view of t h e f e r r o c e n y l groups  along t h e normals o f these p l a n e s , and F i g u r e 11 i s a packing diagram viewed along the c c r y s t a l l o g r a p h i c  axis.  Figure ? A diagram o f the s t r u c t u r e , which shows the system used.  numbering  Table 16 F i n a l p o s i t i o n a l ( f r a c t i o n a l x lo *) and thermal parameters i s o t r o p i c ) , w i t h standard d e v i a t i o n s .in. parentheses. 1  Atom  X  y  z  •  u  Un  (ft x i o 2  U33  2 2  Fe(l) 3640 (2) . 1096 (2) 4383 (3) . 5.41(18) 5. 69(19) . Fe(2) " -3735.(2) ••• 1086 (2) •••• 0954 (2) 5 .41(18) 4. 69(17) Zn 1170 (2) 4360(2) 2753 (2) 6 .39 (16) 5. 49(15) Cl(l) 1190 (4) 4281(5) 4631(5) 10 .98^48) 6. 59 (36) Cl(2) 0090 (4) 3641 (6) 2099 (6) 7 .21(39) 10. 98 (54) Cl(3) 2148(4) 3599 (5) 2198{5) 7 .87 (38) 7. 19 (40) Cl(4) 1188(5) 5901(5) 2185 (6) 11 .64 (54) 5. 69 (37)  5 .19.(18) 3 ;61(15) 5 .34 (14) 5 .04 (32) 7 .60 (41) 7 .82 (39) 7 .97 (42)  2  Ul  C(l) C(2) CX3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(ll) C(12) C(13) N 0  X  y  2547 (11) 0890 (15) 2980(14) 0865 (19) 3525 (14) 0097 (20) 3407(15) -0322 (16) 2813(12) 0165 (16) 3926(15) 1735 (20) 3702(16) 2427 (18) 4218(15) 2311 (19) 4732 (16) 1568 (21) 4543(15) 1220 (20) 1972 (12) 1593 (16) 0630(15) 1756 (23) 1063(14) 1134 (19) 1214(10) 1184 (14) -1110 (13)  4391(17)  z  2  Ui  2  3  U.2 3  -1 .15(33) 1. 78 (31) -1. 56(32) 0 .77(31) 2. 22 (28) 0. 35 (29) -0 .51(27) 1. 00 (26) 0. 26 (2.6) -6 .01(72.) 3. 00 (67) -1. 56(61) -3 .58(78) -0. 44 (70) -0. 95(81) 1 .79(68) 5. 88 (63) 1. 91(68) 0 .77 (77) -3. 33 (82) 2. 95(69)  Cation 1 Atom  f o r a n i s o t r o p i c ; ft f o r  Cation 2 B  3870(16) 3. 8 (4) 2965 (19) 5. 5 (5) 3177 (21) • 5.6 (5) 4167(22) 7. 4 (7) 4627(19) 4. 6 (5) 5866 (22) 6. 3 (6) 5035 (24) 7. 3 (7) 4184 (25) 7. 4 (7) 4535 (23) 6. 3 (6) 5550 (22) 5. 8 (5) 4080 (18) 4. 2 (4) 4214(24) 7. 5 (7) 2472 (20) 5. 7 (5) 3723 (15) 4. 7 (4) 0389 (20) 10. 2 (6)  X  -2 92 8 (12) -3588(12) -4184 (14) -3870(13) -3099(12) -3316(14) -3601(16) -4350(14) -4562 (14) -3943 (17) -2204 (12) -1811(14) -0864(15) -1613(10)  y  1194 (16) 16 82 (16) 0982 (18) 0086(18) 0218 (15) 1545(21) 0627 (22) 0642 (21) 1514(22) 2139 (18) 1684 (18) 1415(19) 1801 (21) 1314(13)  z -0077 (16) -0528(16) -0652 (18) -0258(19) 0082 (17) 2458(18) 2551(20) 2182(18) 1842(18) 1999(18) 0224(19) -1676 (20) -0131(23) -0480(16)  B 4 .6(4) 4 • 4(4) 5 • 9(5) 4 • 7(5) 3 .9(4) 6 • 4(6) 6 .7(6) 6 • 9(6) 7 • 2(6) 7 • 0(6) 4 .8(4) 5 .8(5) 6 •4(6) 4 •5(3)  Table 17 Bond l e n g t h s  (R) and v a l e n c y angles  (degrees)  with  standard d e v i a t i o n s i n parentheses. Cyclopentadienyl  Rings Cation 1  Cation 2  Fe-C(l)  2.03(2)  2.03 (2)  Fe-C(2)  2.03 (2)  2.04(2)  Fe-C (3)  2.03(3)  2.06 (2)  Fe-C(4)  2.05(2)  2.04 (2)  Fe-C(5)  2.03 (2).  2.05 (2)  Fe-C(6)  2.05 (3)  2.03(2)  Fe-C(7)  2.03 (3)  2.05 (2)  Fe-C(8)  2.03(3)  2.05 (3)  Fe-C(9)  2.07 (3)  2.03 (3)  Fe-C(10)  2.07 (3)  2.02 (2) Mean = 2.04  C(l)-C(2)  1.42(3)  1.44(3)  C(2)-C(3)  1.46(4)  1.46 (3)  C(3)-C(4)  1.38 (4)  1.44 (3)  C(4)-C(5)  1.44 (4)  1.43(3)  C(5)-C(l)  1.43(3)  1.42(3)  C(6)-C(7)  1.44 (4)  1.40 (4)  C(7)-C(8)  1.48 (4)  1. 3.8 (4)  C(8)-C(9)  1.43(4)  1.34 (4)  C(9)-C(10)  1.41 (4)  1.42 (4)  C(10)-C(6)  1.41 (4)  1.47 (4) Mean = 1.43  C ( 5 ) - C ( l ) - C(2)  108(2)  109 (2)  C ( l ) - C ( 2 ) - •C(3)  107 (2)  107 (2)  C ( 2 ) - C ( 3 ) - C(4)  •108(2)  107(2)  C(3)-C(4)- C(5)  109(2)  109 (2)  C(4)-C(5)- C(l)  108(2)  108 (2) . .../continued  Table 17, c o n t i n u e d C(10)-C(6)-C(7)  109(2)  106(2)  C(6)-C(7)-C(8)  106(2)  108 (3)  C(7)-C(8)-C(9)  108(2)  111 (3)  C(8)-C(9)-C(10)  108(3)  109 (2)  C(9)-C(10)-C(6)  109(2)  106 (2) Mean = 108  Side Chains: C(l)-C(ll)  1.47(3)  1.49(3)  N-C(ll)  1.51(3)  1.53(3)  N-C(12)  1.50(4)  1.48(3)  N-C(13)  1.53(3)  1.54 (3)  C(2)-C(l)-C(ll)  127(2)  123 (2)  C(5)-C(l)-C(;ll)  124(2)  127 (2)  C(l)-C(ll)-N  109(2)  110 (2)  C(X1)-N-C(12)  110(2)  114(2)  C(ll)-N-C(13)  112(2)  110(2)  C(12)-N-C(13)  111(2)  111(2)  T e t r a c h l o r o z i n c a t e group: Zn-Cl(1) = 2.299 (7)  C l ( 1 ) Zn--Cl(2) = 105 -2(3)  Zn-Cl (2) = 2.270 (8)  C l ( l ) Zn--CK3) = 110 .2 (3)  Zn-Cl(3) = 2.229(7)  C l ( l ) Zn--ci(4) = 110 .6 (3)  Zn-Cl(4) = 2.274 (7)  C l ( 2 ) Zn--Cl(3) = 111 .1(3) Cl(2)  Zn--Cl (4) = 110 .7(3)  Cl(3)  Zn--Cl(4) = 109 .0(3)  99  Table 18 Equations  of mean p l a n e s , i n the form JIX + mY' + nZ  where X , Y 1  1  1  1  = P  and Z' are c o o r d i n a t e s i n ft r e f e r r e d t o  o r t h o g o n a l axes a, b and c*. Atoms i n plane  Z  m  n  p  max. d i s p l . (ft)  C a t i o n 1: 1  C(l)-C(5)  0.6056  0.6440  0.4673  5.5153  0.010  2  C(6)-C(10)  0.5725  0.6704  0.4720  8.6592  0.005  C a t i o n 2: 3  C(l)-C(5)  -0.3197  0.2112  0.9237  1.9555  0.006  4  C(6)-C(10)  -0.3202  0.2127  0.9232  5.2432  0.006  Angles between plane normals; 1-2  2.4°  3-4  0.1°  Figure  10  Views of the c y c l o p e n t a d i e n y l r i n g s normal to t h e i r Heavier  l i n e s are nearer  the viewer.  planes.  F i g u r e 11 Packing diagram viewed along the c c r y s t a l l o g r a p h i c  axis.  103  104  RESULTS AND DISCUSSION The  c r y s t a l a n a l y s i s has confirmed  the f o r m u l a t i o n  of the compound as the t e t r a c h l o r o z i n c a t e , and p r e c l u d e s any p o s s i b i l i t y o f N->Zn c o o r d i n a t i o n . a b s o r p t i o n i n the NH  +  The l a c k o f  stretching region  (3.8-4.2u) f o r the  28 c r y s t a l l i n e compound  i s probably  r e l a t e d t o t h e strong  hydrogen bonding from N-H t o 0 and C l (discussed below). As shown i n the packing  diagram  (Figure 11), t h e  s t r u c t u r e i s composed o f ' i o n i c l a y e r s ' p a r a l l e l t o (100) -2 which c o n t a i n the ZnCl^  groups; the n i t r o g e n - c o n t a i n i n g  s i d e chains are d i r e c t e d i n t o the l a y e r s , with the Fehydrocarbon p o r t i o n s between l a y e r s .  Within the i o n i c  l a y e r s groups o f f o u r c a t i o n s , two anions molecules  (two formula  and two water  u n i t s ) a r e l i n k e d around c e n t r e s o f  symmetry by N-H...C1 (3.11ft),N-H...0 (2.76ft),and O-H... Cl  (3.05, 3.17 ft) hydrogen bonds as i l l u s t r a t e d i n F i g u r e 12.  The  l a y e r i s extended i n the (100) plane by weaker C...C1  i n t e r a c t i o n s ranging upwards i n l e n g t h from 3.56 ft (Table 19). These i n v o l v e p r i m a r i l y the N-methyl carbon atoms o f adjacent is C  side chains.  The s h o r t e s t c o n t a c t between l a y e r s  C = 3.65 ft. The  two c h l o r i n e atoms which are hydrogen bonded  to the water molecule subtend an angle o f 127° a t the oxygen atom so t h a t the hydrogen atoms o f t h e water molecule a r e most p r o b a b l y . d i r e c t e d not f a r from the O...C1 v e c t o r s .  F i g u r e 12 -2 The environment o f a ZnCl^  group, which shows the  hydrogen bonding around a c e n t r e o f symmetry.  107  Table 19 All  crystallographically  independent  between atoms i n d i f f e r e n t asymmetric Atom  to  1  Atom  2.76  1 1 1  3.05  T  0 - H . . . Cl(4)  1 1  3.17  Cl(l) . . H - N ( 2 )  I I 3 :  3.11  Cl(l) . . . . ^ ( 1 3 ) ™  3.56  Cl(l) . . . . C ( 1 3 )  3.65  2  1 1 1  Cl(:3) . . . . C ( l l )  1  3.67  Cl(4) . . .  I i : E  3.67  1  .c (ii) 2  . . .C (9)  c {9).  2  x  3.65  V  C (12) . . . C ( 1 3 )  I V  3.53  C (12) . . . C ( 1 0 )  V I  3.46  1  2  2  2  C (2) . . . C ( 6 ) 2  2  Cation 1 .  I  2  3.57  V I  Cation 2  x  y  z  - y  - z  II  -x  III  .- x  h + y  h - z  x  h - y  h + z  1 + x  y  z  h - y  •h + z  IV V VI  units.  d i s t a n c e (ft)  0 . . . .H - N ( l ) 0 - H . . . C1(2)  d i s t a n c e s < 3.7 ft  X  i  108  The N...O...C1 angles are 97° and 1 2 1 ° , and the C-N...0 and C-N...C1 angles are very c l o s e to the t e t r a h e d r a l value a t 109°,  105° and 1 1 0 ° , and 107°, 117° and 98° r e s p e c t i v e l y . The e x t e n t t o which the c h l o r i n e atoms take p a r t  i n hydrogen bonding i s r e f l e c t e d i n the Zn-Cl bond (Table 17).  C l ( 2 ) and C l ( 4 ) each i n t e r a c t w i t h an oxygen  atom a t d i s t a n c e s of 3.05 s i m i l a r Zn-Cl l e n g t h s Cl(l)  lengths  and 3.17 X r e s p e c t i v e l y , and have  (2.270 and 2.274 ft r e s p e c t i v e l y ) .  i s hydrogen bonded t o a n i t r o g e n atom a t 3.11 ft, and  the corresponding  Zn-Cl d i s t a n c e i s somewhat l o n g e r  (2.299 ft),  w h i l e C l ( 3 ) has no c o n t a c t s l e s s than 3.6 ft, and i s i n v o l v e d i n the s h o r t e s t Zn-Cl d i s t a n c e  (2.229 ft). A s i m i l a r  -2 s i t u a t i o n has been r e p o r t e d f o r the ZnCl^ groups i n the 34 L ^ Z n C l ^ • 2 H 2 O s t r u c t u r e ..  Two  hydrogen bonds t o one  chlorine  atom lengthen the Zn-Cl d i s t a n c e to 2.30 ft, and a s i n g l e i n t e r a c t i o n f o r two o t h e r c h l o r i n e atoms r e s u l t i n l e n g t h s of 2.28 ft, w h i l e the c h l o r i n e atom which i s not i n v o l v e d i n hydrogen bonding has the s h o r t e s t Zn-Cl d i s t a n c e of 2.25 ft. These v a l u e s may  be compared w i t h the normal  35 d i s t a n c e f o r c o v a l e n t t e t r a h e d r a l z i n c - c h l o r i n e bonds of 2.30 ft. Comparable Zn-Cl d i s t a n c e s have been r e p o r t e d f o r 36 the t h r e e m o d i f i c a t i o n s o f Z n C l  2  , and f o r s e v e r a l r e l a t e d  37-39 compounds The i r o n atoms are sandwiched between two ;  p e n t a d i e n y l r i n g s which are p l a n a r w i t h i n error  (Table 18), approximately  cyclo-  experimental  p a r a l l e l , and separated by  109  3.28 ft ( c f . r e f . 40).  The r i n g s are n e a r l y e c l i p s e d  as  shown i n F i g u r e 10, and can be d e s c r i b e d i n terms of the r o t a t i o n of one of the r i n g s from the e c l i p s e d as determined  position  by the v e c t o r s from each carbon atom t o the  Fe atoms i n the p r o j e c t i o n shown.  The angles l i s t e d i n  Table 20 show t h a t both f e r r o c e n e groups d i f f e r by o n l y approximately  7° from the f u l l y e c l i p s e d p o s i t i o n  (0°)  compared w i t h the f u l l y staggered p o s i t i o n  (36°) , and  best d e s c r i b e d as approximately  S i m i l a r small  eclipsed.  are  r o t a t i o n s from the e c l i p s e d p o s i t i o n have been r e p o r t e d f o r other f e r r o c e n e d e r i v a t i v e s , f o r example, 5° i n d i f e r r o c e n y l ketone and  9  o  40 o 41 , 12 i n a-keto-1,1'-trimethyleneferrocene  i n 1,1 -tetramethylethyleneferrocene 1  42 .  The bond l e n g t h s and angles i n the c y c l o p e n t a d i e n y l r i n g s and the s i d e chains do not d i f f e r  from  17 expected v a l u e s  (Table 17), and the i r o n atoms appear t o  be bound e q u a l l y to a l l the carbon atoms of the r i n g s , mean v a l u e s being Fe-C  = 2.04  and C-C  ( r i n g s ) = 1.43 ft.  the  110  Table 20 Angles from the e c l i p s e d p o s i t i o n f o r the c y c l o p e n t a d i e n y l r i n g s o f the c a t i o n s . Cation 1  Cation 2  C(l)-Fe-C(7)  = 6.6  C(l)-Fe-C(6)  C(2)-Fe-C(8)  =7.5  C(2)-Fe-C(10)=  5.5  C(3)-Fe-C(9) = 4.4  C(3)-Fe-C(9) =  2.1  C(4)-Fe-C(10)= 7.3  C(4)-Fe-C(8) =  6.4  C(5)-Fe-C(6)  =8.0  C(5)-Fe-C(7) =  9.7  Mean = 6.8  Mean =  7.0  = 11.2  SUMMARY  112  One how  of the o b j e c t s  the v a r i o u s  of t h i s work has  methods of X-ray d i f f r a c t i o n can be used t o  overcome the phase problem and structure.  been to show  deduce c r y s t a l and  Although i t i s extremely u s e f u l and  to examine a s e r i e s of r e l a t e d compounds and  to  the r e s u l t s i n terms of bonding, i n t e r m o l e c u l a r e t c . , i t i s a l s o of value to g a i n  by a p p l y i n g  d i v e r s i f i e d a s e t of problems as  possible.  and  correlate interactions, the  them to  Examples have been chosen from o r g a n i c inorganic  interesting  f a m i l i a r i t y with  methods of X-ray c r y s t a l l o g r a p h y  products),  molecular  as  (natural  o r g a n o m e t a l l i c compounds,  and,  w h i l e a l l c o n t a i n e d heavy atoms, s t r u c t u r e e l u c i d a t i o n not  always s t r a i g h t f o r w a r d  each compound.  because of problems p e c u l i a r  These d i f f e r e n c e s  f i n a l r e s u l t s ; one  involved  are a l s o r e f l e c t e d i n  hydrogen bonding  between molecules; o t h e r s i o n i c c o o r d i n a t i o n the c r y s t a l network  (Ag...O and  the  to b u i l d  up  continuing  of  s i n c e the analyses have p r o v i d e d answers to  f o l l o w might be the  project  to  i n v e s t i g a t i o n of compounds of h i g h e r  symmetry, as a l l those s t u d i e d were e i t h e r m o n o c l i n i c T h i s would l o g i c a l l y i n v o l v e m i n e r a l  m e t a l l i c c r y s t a l s , and interests.  the  interactions  immediate problems proposed, an a p p r o p r i a t e  orthorhombic.  to  Ag...C).  Since i n t h i s case t h e r e can be no a s e r i e s , and  was  i s not  i n c o n s i s t e n t w i t h the  or  or author's  REFERENCES  114  1.  J . M. Robertson,  "Organic C r y s t a l s and M o l e c u l e s " ,  C o r n e l l U n i v e r s i t y P r e s s , 1953. 2.  G. H. Stout and L. H. Jensen, "X-Ray S t r u c t u r e Determination.  A P r a c t i c a l Guide", The Macmillan  Company, 1968. 3.  H. L i p s o n and W. Cochran, Vol. I l l :  "The C r y s t a l l i n e S t a t e .  The Determination o f C r y s t a l S t r u c t u r e s " ,  3rd. ed., G. B e l l and Sons L t d . , 1966. 4.  M. J . Buerger,  " C r y s t a l S t r u c t u r e A n a l y s i s " , J . Wiley  and Sons I n c . , 1960. 5.  T. Nakano and Y. S a e k i ,  Tetrahedron L e t t e r s ,  1967,  4791. 6.  ' I n t e r n a t i o n a l Tables f o r X-ray C r y s t a l l o g r a p h y ' , vol. I l l ,  7.  Kynoch P r e s s , Birmingham, 1962.  J . M. B i j v o e t , A. F. Peerdeman and A. J . van Bommel, Nature, 1951, 168, 271.  8.  T. Nakano, Y. S a e k i , C... S. Gibbons and J . T r o t t e r , Chem. Communic,  9.  1968,600.  N. Kamijo, T. Nakano, Y. Terao and K. Osaki, Tetrahedron L e t t e r s , 1966, 2889.  10.  N. Sakabe and Y. H i r a t a , Tetrahedron L e t t e r s , 1966, 965.  11.  B. C. Menon and R. E. Pincock, Can. J . Chem., 1969, 47, 3327.  12.  H. C. V o l g e r , H. Hogeveen and M. M. P. Gaasbeek, J . Amer. Chem. S o c , 1969, 91, 2137.  115  13.  A. T. McPhail and G. A. Sim, J . Chem. S o c , (B) , 1966, 112.  14.  F. H. A l l e n and D. Rogers, 588  15.  and J . Chem. S o c , i n p r e s s .  M. B. Hossain and D. van der Helm, J . Amer. Chem. Soc.,  16.  Chem. Commun-ic , 1967,  1968, 90, 6607.  D. J . Robinson  and C. H. L. Kennard, J . Chem. S o c ,  (B), 1970, 965. 17.  L. E. Sutton, ed. 'Tables o f I n t e r a t o m i c D i s t a n c e s and C o n f i g u r a t i o n i n Molecules and Ions', Chem S o c Spec. P u b l . , No. 11, 1958 and No. 18, 1965.  18.  F. S. Mathews and W. N. Lipscomb, J . Phys. Chem., 1959,  19.  63, 845.  N. C. Baenziger, H. L. Haight, R. Alexander and . J . R. Doyle, Inorg. Chem., 1966, 5, 1399.  20.  R. B. Jackson and W. E. S t r e i b , J . Amer. Chem. S o c , 1967,  89, 2539.  21.  D. B r i t t o n and J . D. Dunitz, A c t a C r y s t . , 1965, 19, 815.  22.  P. F. L i n d l e y and P. Woodward, J . Chem. S o c ,  (A),  1966, 123. 23.  J . S. McKechnie, M. G. Newton and I . C. P a u l , J . Amer.. Chem. Soc., 1967, 89, 4819.  24.  M. C. M. Farquhar and H. L i p s o n , Proc. Phys. S o c , 1946,  58, 200.  116  25.  H. E. Swanson, N. T. G i l f r i c h  and G. M. U g r i n i c ,  U. S. Nat. Bur. Standards, 1955, 26.  27.  28.  5, 59  (Circular  D. W.  J . Cruickshank, A c t a C r y s t . , 1956,  1961,  14,  9, 757  539). and  896.  R. L. Sass, R. V i d a l e and J . Donohue, A c t a C r y s t . , 1957,  10,  E. W.  Neuse and E. Quo,  3,  567. J . Polymer S c i . , (A),  1965,  1499.  29.  A. J . C. Wilson, Nature, 1942,  30.  S. R. H a l l , i n F. R. Ahmed, S. R. H a l l , M. E. Pippy and C. P. Saunderson,  150,  152.  ' C r y s t a l l o g r a p h i c Programs f o r  IBM/360 System', N.R.C., Ottawa, 1967, 31.  I. L. K a r l e , K. S. Dragonette and S. A. Brenner, A c t a C r y s t . , 1965,  32.  Program NRC-4.  19,  713.  R. E. Long, Ph. D. T h e s i s , U n i v e r s i t y of at Los Angeles,  California  1965.  33.  D. Sayre, Acta C r y s t . , 1952,  5,  60.  34.  H. J a c o b i and B. B r e h l e r , Z. K r i s t . , 1969,  35.  L. P a u l i n g and M. L. Huggins,  36.  B. B r e h l e r , Z. K r i s t . , 1961,  37.  R. A l l e r m a n , Z. K r i s t . , 1968,  38.  W.  39.  H. P. Klug and L. Alexander, J . Amer. Chem. Soc.,  Z. K r i s t . , 1934, 115, 126,  66,  1056.  390. 87,  205.  373. 417.  Nowacki and J . N. Silverman, Z. K r i s t . ,  1944,  128,  1961,  115,  21,  117  40.  J . T r o t t e r and A. C. MacDonald, A c t a C r y s t . , 1966, 21, 359.  41.  N. D. Jones,  R. E. Marsh and J . H. R i c h a r d s , A c t a  C r y s t . , 1965, 19, 330. 42.  M. B. L a i n g and K. N. Trueblood, A c t a C r y s t . , 1965, 19, 373.  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 56 0
India 16 0
Azerbaijan 6 0
China 6 25
United Kingdom 4 0
Unknown 4 0
Germany 2 0
Spain 2 0
Iran 1 1
France 1 0
Italy 1 0
Japan 1 0
City Views Downloads
Washington 46 0
Unknown 25 1
Mountain View 6 0
Ashburn 3 0
Beijing 3 9
Shenzhen 3 16
London 3 0
Chennai 2 0
Mumbai 1 0
York 1 0
Sunnyvale 1 0
Barcelona 1 0
Delhi 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0061879/manifest

Comment

Related Items