UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Gallazanes and related compounds Penland, Allen David 1971-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
831-UBC_1972_A6_7 P45.pdf [ 3.75MB ]
Metadata
JSON: 831-1.0061858.json
JSON-LD: 831-1.0061858-ld.json
RDF/XML (Pretty): 831-1.0061858-rdf.xml
RDF/JSON: 831-1.0061858-rdf.json
Turtle: 831-1.0061858-turtle.txt
N-Triples: 831-1.0061858-rdf-ntriples.txt
Original Record: 831-1.0061858-source.json
Full Text
831-1.0061858-fulltext.txt
Citation
831-1.0061858.ris

Full Text

GALLAZANE3  Aril) RELATED  COK?OUHi)S  ALLEN DA^II) PENIAT'D  B.Sc. (Hons.) University of British Columbia. 1969  A THESIS  SUBMITTED  IN PARTIAL FULFILi/EEI?! O F  THE REQUIREMENTS FOR THE DEGREE OF MASTER O F SCIENCE  In The Department of Chemistry V/e accept this thesis as conforming to the required standard  The university of British J u l y 1971  Columbia  In presenting this thesis in p a r t i a l fulfilment of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library shall make i t freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives.  I t i s understood that copying or publication  of this thesis for financial gain shall not be allowed without my written permission.  Department of The University of B r i t i s h Columbia Vancouver 8, Canada  ABSTRACT T h i s work i n v o l v e d p r e p a r a t i o n o f c y c l i c a l o f g e n e r a l f o r m u l a : (RNHGaHg) s  d i m e r i c or t r i m e r i c  where n= 2 or 3 and R = E t ,  Pr",  Pr , 1  gallazanes Bu",  EuV  t  Bu , or Bu mined.  .  The e f f e c t  o f l a r g e r R group on r i n g s i z e (  ) was  deter-  Some, d e u t e r a t e d analogues o f these compounds were a l s o p r e p a r e d .  These  were (EtNHGaD ) , (BuSffiC-al)^, and (PrHffiGaP  n value  ) . 2  Attempted p r e p a r a t i o n o f j#NHGaH r e s u l t e d i n i s o l a t i o n o f  Ji^NH.GaH^.Me^.  2  R e a c t i o n s were undertaken w i t h jfeH. G a H . NMe.j and i t 2  ^KITGaD .IIf-Ie^, and shown to i n v o l v e p r o t o n t r a n s f e r 9  partially  deuterated  through a '+-centre  analogue  transition  state. A d d i t i o n a l work on the e f f e c t s o f R group on the n i t r o g e n w i t h i n  the  gallazanes involved preparation o f dimeric gallazanes of general formula ((CE ) .lT.GaH ) 2  y  2  where x = 2,3,k  or  5.  A d d i t i o n a l work on double r i n g systems i n v o l v e d p r e p a r a t i o n o f analogous alazanes o f general formula ( ( d l Similar x  x  2  n  where x =  2,3,^,5  and n =  2  or  3.  borazanes were l i k e w i s e p r e p a r e d and were o f g e n e r a l f o r m u l a :  ((CH ) lI.BH ) 2  ) N.AlH )  2  n  where x =  2,3,'+, 5  Adducts o f g e n e r a l f o r m u l a : were a l s o p r e p a r e d .  and n =  2  or  ' (CH^NH.EMe^  3. where E = B, A l , Ga,  Upon p y r o l y s i s these adducts y i e l d methane p l u s  o f the g e n e r a l f o r m u l a : ((CH ) N.EMe2)-j where E = Al,C-a, 2  In, materials  In.  C h a r a c t e r i z a t i o n o f these m a t e r i a l s as w e l l as gaseous r e a c t i o n p r o d u c t s was accomplished by i n f r a r e d s p e c t r o s c o p y .  A d d i t i o n a l d a t a was o b t a i n e d by 60MHz and  100MHz ' H nmr as w e l l as mass s p e c t r o m e t r y .  M o l e c u l a r weights were determined  c r y o s c o p i c a l l y i n benzene and a n a l y s e s f o r g a l l u i m , aluminum o r hydrogen c a r r i e d out by standard means.  hydrolysable/  - iii  -  Table of Contents: I. II. III.  '• Page  Title Page  i  Abstract  1 1  Table of Contents  i i i  IV. List of Tables  v  V.  List of Figures  vi  VI.  Acknowledgement  ix  VII.  Introduction  1  VIII. Experimental  6  A, Experimental Techniques (a) Desiccation  6 ...  6  (b) Reaction-Filtration Apparatus  10  (c) Molecular Weight  10  (d) Spectroscopy (e) Elemental Analysis B. Preparative  .  15 16 17  (a) Preparation of Gallium Trichloride ............  17  (b) Preparation of Lithium Gallium Hydride.,.,...'.  19  (c) Preparation of Trimethylamine Gallane  20  (d)  Preparation of Alkylamino Gallazanes  21  Preparation of Ethylamino Gallazane ..........  22  (e) Reaction of Me^NGall-j with aniline Reaction of j&TKOal^NMe^ with Methylamine (f) Preparation of Cyclic Imino Gallazanes Preparation of Aziridino Gallazane ...........  23 23 25 25  -  IV  -  Page (g) Preparation of Cyclic Imino Alazanes  25  Preparation of Pyrrolidine Alazane  27  (h) Preparation of CyclicImino Borazanes  27  Preparation of Purrolidino Borazane  27 i  (i) Preparation of Aziridino Borazane (j)  j  29  Preparation of Aziridine Gallium Trimethyljand Aziridino Gallium Dimethyl  (k) Preparation of Aziridine  30  Preparation of Azetidine  32  IX. Discussion Part 1. Alkyl Cyclogallazanes  X.  30  ••  33 33  Trimeric Cyclogallazanes  35  Dimeric Cyclogallazanes  ^2  I.r. Spectra of Cyclogallazanes  51  Part. 2 Reaction of tfe^NGaR"^ with Aniline  53  Part 3 Imino Gallazanes  58  Part k  66  Imino Alazane s  Part 5 Imino Borazanes  72  Part 6 Reactions of Imine Bases with EKe^  77  References  81  LIST OF TABLES:  Table 1  Analytical data for cyclogallazane compounds  2h  Table 2  Analytical data for imino cyclogallazanes  26  Table 3  Analytical data for imino cycloalazane compounds....  28  Table h  Analytical data for imin© trimethyl and imino metal dimethyl compounds........  31  Table 5  Ions of high m/e in mass spectrum of (Pr^THGaB^^...  50  Table 6  Infrared spectra of some cyclogallazanes in benzene solution  52  - vi -  List of Figures Page Figure 1  Drying Pistol.'  7  Figure 2  Sublimer  Figure 3  Me^NC-aH^ Sublimer  Figure k  Vacuum Line, Part A...  Figure k'  Vacuum Line, Part E  12  Figure 5  Filtration-Reaction Apparatus  13  Figure 6  Molecular V/eight Apparatus  Figure 7  Gallium Trichloride Apparatus  Figure 8  Hydrogen elimination scheme for gallazanes, alazanes  |  8  .•  9 J  11  . 1^ '..  18  and borazanes  3k  Figure 9  Conformations of Trimeric Gallane Species  36  Figure 10  lOOMc/s *H n.m.r. spectrum of EtNHGaH in.benzene 9  solution.....  38  Figure 11  'H n.m.r. of some cis and trans trimers  ^.0  Figure 12  100 Mc/s 'H n.m.r. spectrum of EtMGaH i n benzene  Figure 13 Figure 1^  2  solution.  ^1  100 Mc/s 'K n.m.r. spectrum of EtNHGaD2 i n benzene solution • ...'  ^3  100 Mc/s >H n.m.r. spectrum of i-PrNHGaH i n benzene 2  solution..  ,.  kk  - v i i-  Page F i g u r e 15  60MHz 'H n.m.r. s p e c t r u m c f neat a PrilTHGaHj and b Pr^NHGa,]^  k6  F i g u r e 16  Conformations of Dimeric Gallane Species  ^7  F i g u r e 17  60Mc/s 'H n.m.r. s p e c t r u m o f neat sec-BuNIIGaH2...  ^9  F i g u r e 18  60Mc/s 'H n.m.r. spectrum o f ^NHGaH .NMe-j i n 2  benzene s o l u t i o n F i g u r e 19  Infrared spectra of:  a a n i l i n e ; b MeNHGaH ; 2  c a n i l i n e & MeNITGaH  56  F i g u r e 20  S t r u c t u r e o f A z i r i d i n o G-allazane  59  F i g u r e 21  60Mc/s 'H n.m.r. spectrum o f ( C H ) N G a H i n  2  2  2  2  benzene s o l u t i o n F i g u r e 22  61  60Mc/s 'H n.m.r. s p e c t r u m o f ( C H ^ l T G a J ^ i n 63  benzene s o l u t i o n F i g u r e 23  60Hc/s 'H n.m.r. spectrum o f (CH )i ,NGaH i n 2  t  2  6k  benzene s o l u t i o n F i g u r e 2k  60Mc/s 'H n.m.r. spectrum o f (CH?) NGaII i n ?  65  benzene s o l u t i o n . . F i g u r e 25  60 Hc/s 'H n.m.r. spectrum o f ( C H ) N A I H 2  2  2  in 67  benzene s o l u t i o n F i g u r e 26  60Mc/s »H n.m.r. s p e c t r u m o f ( C H ) N A I H i n 2  2  2  68  benzene s o l u t i o n F i g u r e 27 60Mc/s 'H n.m.r. spectrum o f (CH )-jNAIH i n 2  benzene s o l u t i o n .  2  70  - viii -  Page Figure 28' 60Mc/s 'IT n.m.r. spectrum of (CH^ItfAIHg i n benzene solution Figure 29  71  60Mc/s 'H n.m.r. spectrum of (CE2)^K3H2 i n  73  benzene solution Figure 30  60Mc/s *H n.m.r. spectrum of (CH^^NBH^ i n benzene solution  Figure- 31  7^  60Mc/s 'H n.m.r. spectrum of (CH )^IJBH i n 2  2  75  benzene • solution Figure 32  60Nc/s 'H n.m.r. spectrum of (CH _) N.BH i n 2  2  2  benzene solution Figure 33  60Mc/s 'H n.m.r. spectrum .of H"3B.NH(CH2)2 i n  benzene solution Figure 3^  78  60Mc/s 'H n.m.r. spectrum of Me^B.NH(CH2)2 i n  benzene solution Figure 35  76  79  60Mc/s 'H n.m.r. spectrum of Me^Ga.I\fH(CH2)2 in  benzene solution  80  - ix -  ACKNOWLEDGEMENT I would l i k e Dr. Alan Storr,  to e x p r e s s my s i n c e r e s t  f o r h i s invalua.ble a d v i c e ,  d i s c u s s i o n s throughout the course o f t h i s I would a l s o l i k e  to thank D r . B.  more d i f f i c u l t - p r e p a r a t i v e work.  thanks to my r e s e a r c h  director  g u i d a n c e , and e n l i g h t e n i n g work.  S. Thomas f o r h i s h e l p w i t h some o f  p r o c e d u r e s encountered d u r i n g the course o f  the  this  INTRODUCTION  The  chemistry of g a l l i u m hydride  the d i s c o v e r y Previous hydride  has developed q u i c k l y  since  o f the s t a b l e adduct, Me^N.GaH^, trimethy1amine g a l l a n e ( 1 ) .  to this  t h e r e had been a l o n g s e a r c h  f o r uncoordinated  gallium  and i t s d e r i v a t i v e s . Free g a l l i u m hydride,  although o r i g i n a l l y b e l i e v e d  temperature s t a b l e dimer d i g a l l a n e . Ga H  ( 2 ) , has r e c e n t l y been shown  0  to be a v i s c o u s  p o l y m e r i c l i q u i d which d i s p r o p o r t i o n a t e s  g a l l i u m and hydrogen  ( 3 ) . On the b a s i s  t o be a  a t -15°C i n t o  that, t h i s m a t e r i a l was benzene  i n s o l u b l e , t h e s e workers s u g g e s t e d t h a t i t was not d i m e r i c , b u t r a t h e r , p o l y m e r i c l i k e aluminum h y d r i d e .  IR s p e c t r o s c o p y showed the  c h a r a c t e r i s t i c s t r o n g oGa-H a t 1980 cm this  compound.  and AGa-H a t ca. 700 cm  -1  In a d d i t i o n , a n a l y s i s showed a g a l l i u m t o hydrogen  of one t o t h r e e , p r o v i n g of  -1  that  t h i s was t h e l o n g sought a f t e r  for ratio  (4) h y d r i d e  gallium. By  a p r o c e d u r e analogous to t h a t used f o r t h e p r e p a r a t i o n  gallium hydride,  monochloro g a l l i u m h y d r i d e  c h a r a c t e r i z e d as p o l y m e r i c (GaHC^^ rather  w  a  than  s  prepared  (GaH^Cl)^ was p r e p a r e d and  ( 5 ) . Subsequently d i c h l o r o g a l l i u m  (6) by a d i f f e r e n t  of  route  and shown t o be  hydride dimeric  polymeric.  Lithium  gallium hydride,  Bond and S c h l e s i n g e r  LiGaH^, was f i r s t  i s o l a t e d by F i n h o l t ,  (7) by the r e a c t i o n :  4LiH(s) + G a C l ( s ) 3  T h i s compound i s the o n l y  Et 0 — — -  LiGaH^ + 3 L i C l ( s )  complex m e t a l g a l l i u m h y d r i d e  .  which i s s t a b l e  2 at' room temperature,  and  then o n l y as an e t h e r s o l u t i o n .  Two  other  u n s t a b l e analogues, b o t h d i s p r o p o r t i n a t i n g a t below -15°C, are AgGall. (8) andTl(GaH,)„ ( 9 ) . 4 4 3  The  r e a c t i o n of LiGaH, w i t h water 4  v i g o r o u s e v o l u t i o n of f o u r moles of hydrogen. are  Hence anhydrous c o n d i t i o n s  n e c e s s a r y f o r p r e p a r a t i o n and s t o r a g e of t h i s The GaH^  moeity  compounds of the group  compound.  forms complexes w i t h a number of organo  V and group  VI elements,  i n a d d i t i o n to  formed w i t h the h y d r i d e i o n (H ) , as f o u n d . i n LiGaH^. of  adducts  The p r e p a r a t i o n  these compounds i s summarized i n a r e c e n t review on g a l l i u m h y d r i d e  and d e r i v a t i v e s  (10).  Trimethylamine. g a l l a n e , Me^N.GaH^, i s , i n comparison g a l l i u m h y d r i d e s , f a i r l y temperature at  causes  room temperature.  with other  s t a b l e and can r e a d i l y be  sublimed  I t can be p r e p a r e d e a s i l y by the r e a c t i o n o f excess  l i t h i u m g a l l i u m h y d r i d e w i t h t i m e t h y l a m i n e h y d r o c h l o r i d e i n the f o l l o w i n g manner:  LiGaH. (s) + Me NHCl(s) 4 3  »- Me„N.GaH (s) + L i C l ( s ) 3 3  0  T h i s compound was  the f i r s t m e t a l h y d r i d e to have s u f f i c i e n t  p r e s s u r e to enable the gas phase IR spectrum gas phase IR spectrum 1853  cm ^ and  cm  These assignments  s t r e t c h i n g and deformation, v i b r a t i o n s  titration  , as  vapor  e x h i b i t e d s t r o n g a b s o r p t i o n s due. t o \5 Ga-H  SGa-H a t 758  t  to be r e c o r d e d (11).  d e u t e r a t i o n of the p r o t o n s on the g a l l i u m atom.  f a c t o r of  4- H <8^  The  The at  were c o n f i r m e d by shift  o f the  to lower f r e q u e n c y was  Ga-H  by a  expected.  Trimethylamine  g a l l a n e has been shown by t e n s i o m e t r i c  to add a molar  e q u i v a l e n t of t r i m e t h y l a m i n e gas and  form a  2:1 adduct  ( 1 1 ) . Upon warming t o room temperature  this material reverted  back t o t h e s t a r t i n g m a t e r i a l w i t h e v o l u t i o n o f t r i m e t h y l a m i n e gas. Dimethylamine g a l l a n e was prepared of t r i m e t h y l a m i n e  r e c e n t l y by t r a n s a m i n a t i o n  g a l l a n e w i t h dimethylamine  gas ( 1 2 ) .  Me NH(g) + Me N.GaH (s) =• Me N(g) + Me^H.GaH (s) 2  3  2Me NH#'GaH (s) — » • 2 H 2  + Me N - GaH  2  2  2  H Ga - NMe 2  Over a p e r i o d o f a few weeks Me NHGaH 2  2  e v o l v e d one molar e q u i v a l e n t o f  hydrogen t o g i v e t h e g a l l a z a n e shown i n t h e second was shown t h a t t h i s adduct was d i m e r i c in.benzene  equation solution.  (above).  It  From con-  s i d e r a t i o n o f the gas phase IR spectrum, i t was concluded, however, t h a t t h i s compound was monomeric i n the gas phase, h a v i n g The  C  symmetry ( 1 2 ) .  2  t r a n s a m i n a t i o n r e a c t i o n w i t h gaseous ammonia has r e c e n t l y  been shown t o p r o c e e d v i a hydrogen e l i m i n a t i o n t o g i v e a q u a n t i t a t i v e y i e l d o f the p o l y m e r i c s o l i d  (NH^GaH,^)^ (13) a c c o r d i n g t o the f o l l o w i n g  reaction:  Me N.GaH (s) +• NH (g) -a- H^N.GaH^s) + Me N(g) + E^g) 3  .  3  A s i m i l a r r e a c t i o n w i t h methylamine gas gave a m i x t u r e isomers  o f t r i m e r i c (MeNH.GaH ) 2  according to the o v e r a l l  Me N.GaH (s) + MeNH^g) — * MeNH.GaH^s) +'Me 3  The gallazanes,  o f two  equation:  N(g) + H ( g ) . . 2  p r e s e n t study i n v o l v e d an e x t e n s i o n o f t h i s s e r i e s o f  (RNH.GaH^^, i n an attempt  t o e l u c i d a t e the v a r i o u s  factors  w h i c h g o v e r n t h e v a l u e o f n , t h e degree o f a s s o c i a t i o n . 11  1  In addition to  11  S  1  the use o f p r i m a r y a l k y l a m i n e s [R = E t , P r , P r , Bu , Bu^", B u , Bu "], t h e t r a n s a m i n a t i o n r e a c t i o n u s i n g a n i l i n e was a l s o  investigated.  The second p a r t o f t h i s work was concerned w i t h a s t u d y o f t h e r e a c t i o n o f c y c l i c i m i n e s , [ ( C I ^ ) NH where x = 2 , 3, 4 o r 5] w i t h methylamine g a l l a n e .  The i m i n o g a l l a n e p r o d u c t s  tri-  [(CH ) NGaH„] , were  e x p e c t e d t o i n v o l v e some double r i n g s t r a i n and an i n v e s t i g a t i o n o f t h i s e f f e c t was u n d e r t a k e n .  A f u r t h e r extension of t h i s l a t t e r study i n v o l v e d  the p r e p a r a t i o n and c h a r a c t e r i z a t i o n o f s i m i l a r boron aluminum [ ( C I ^ ^ A I H ]  [ C H ^ ^ N B B ^ ] ^ and  compounds.  The r e a c t i o n o f i m i n e bases w i t h d i b o r a n e t o y i e l d adducts w i t h t h e g e n e r a l f o r m u l a , [CH^^NH.BH^, where x = 2 , 3, 4, 5 was s t u d i e d i n 1956 by B u r g and Good ( 1 4 ) .  Three of t h e s e adducts g a v e , on hydrogen  e l i m i n a t i o n , m a t e r i a l s o f c o m p o s i t i o n : - ( C I ^ ) N.BI^ [where x = 3, 4 , 5 ] . However, t h e a z i r i d i n e compound, x = 2 , appeared t o g i v e r i n g - o p e n e d , p o l y m e r i c p r o d u c t s , and was n o t i s o l a t e d .  I n 1969 S. A k e r f e l d t e t a l (15)  p r e p a r e d t h e adduct a z i r i d i n e b o r a n e , as w e l l as a z i r i d i n o  borazane.  The l a t t e r compound was u n t i l then b e l i e v e d u n p r e p a r a b l e .  Simultaneously,  a c r y s t a l s t r u c t u r e of t h e adduct ( C I ^ ^ N H ' M ^  w a s  reported (16), i n  a d d i t i o n t o a "*"H nmr and i n f r a r e d s t u d y o f b o t h t h e adduct and t h e a z i r i d i n o borazane (17).  T h i s l a t t e r s t u d y r e j e c t e d the p r e v i o u s p.NH 2 f o r m u l a t i o n o f a r i n g opened p r o d u c t , ! \ , i n the p r e p a r a t i o n o f t h e L_BH a d d u c t . (18) The p r e p a r a t i o n o f a z i r i d i n o a l a z a n e and r e l a t e d c y c l i c a l a z a n e s has r e c e i v e d some r e c e n t a t t e n t i o n .  imino  The f i r s t p r e p a r a t i o n o f  t h e c y c l i c compounds d a t e s back t o 1962, when some I t a l i a n  workers  isolated  the piperidino  and p y r o l i d i n o a l a z a n e s  (19). T h e i r  o f a z i r i d i n o a l a z a n e was hampered by the f a c t t h a t decomposed w i t h some v i o l e n c e solvent. and  More r e c e n t l y , E h r l i c h  (20) d i s c u s s e d  compounds w i t h extend  Firstly,  the g a l l i u m  the p r e v i o u s The  the  preparation  which he suggests i s  f i n a l part  order to i n v e s t i g a t e  as i n d i c a t e d p r e v i o u s l y , derivatives;  to compare  these  and s e c o n d l y t o r e i n v e s t i g a t e  studies. o f t h i s work i n v o l v e d  metal dimethyl d e r i v a t i v e s ,  replacing  in detail  The p r e s e n t study on c y c l i c imino boremones and alaiemev has a  twofold purpose.  and  material  a t room temperature i n the absence o f  subsequent r i n g opening o f t h i s m a t e r i a l ;  polymeric.  this  preparation  preparing  the a z i r i d i n o  [ ( C H ^ ^ ^ M M ^ ^ where M = B, A l , Ga, I n , i n  the e f f e c t , on the degree of a s s o c i a t i o n , o f  t h e hydrogens on the group I I I atom w i t h m e t h y l groups.  EXPERIMENTAL  A.  .  E x p e r i m e n t a l Techniques (a)  Desiccation All  gases were d r i e d f i r s t  through a t r a p at -20°C, condensed  by f r a c t i o n a t i n g under h i g h vacuum  to remove l a r g e amounts of water,  at-196°C i n t o one  limb o f a d r y i n g p i s t o l ,  w i t h a m i x t u r e o f g l a s s - w o o l and phosphorus through the phosphorus the  .  other limb.  The  The  c o o l i n g one  packed  gas i s passed limb and  d r i e d gases are then s t o r e d at l e s s than  atmosphere i n l a r g e g l a s s b u l b s a t t a c h e d t o the vacuum All  then  see F i g u r e 1,  pentoxide.  p e n t o x i d e by a l t e r n a t e l y  and  then  one  line.  s o l v e n t s were d r i e d and r e d i s t i l l e d b e f o r e use;  diethyl  e t h e r over l i t h i u m aluminum h y d r i d e , benzene and cyclohexane o v e r molten p o t a s s i u m .  The  amine l i g a n d s which were commercially  were d r i e d by r e f l u x i n g Solid  over CaR^  available  f o l l o w e d by d i s t i l l a t i o n .  components were p u r i f i e d by s u b l i m a t i o n , e i t h e r by  vacuum b u l b - t o - b u l b s u b l i m a t i o n o r as w i t h t r i m e t h y l a m i n e h y d r o c h l o r i d e , sublimed to the c o o l e d c e n t r a l f i n g e r o f the apparatus shown i n F i g u r e 2. T r i m e t h y l a m i n e g a l l a n e was to  the l a r g e v e r t i c a l  cooled  to -80°C, All  and f i l l e d  sublimed, under dynamic vacuum from the  tube, marked as A, of the a p p a r a t u s , which  flask was  shown i n F i g u r e 3.  glassware was  washed w i t h acetone, oven d r i e d ,  w i t h n i t r o g e n b e f o r e use.  A l l n i t r o g e n used was  evacuated Canada  L i q u i d A i r "L" grade, p u r i f i e d n i t r o g e n . The h y d r i d e and a l k y l d e r i v a t i v e s , because instability  ^ of t h e i r  relative  and extreme r e a c t i v i t y w i t h oxygen o r water vapour were  Figure 1 Drying Pistol  BI4  n.  Figure 2 Sublimer  Me NGaH 3  3  Sublimer  Figure 3  all  prepared  filled in  dry  Figure  and h a n d l e d  box. 4.  in  either  a high-vacuum system or  The h i g h vacuum s y s t e m  A double-stage  an e l e c t r i c a l l y  heated  rotary  single  oil  stage  developed pump  mercury  for  a  nitrogen  t h e work  is  (Welch S c i e n t i f i c  shown  Co.)  and  d i f f u s i o n pump w e r e u s e d t o  -4  obtain  a vacuum o f The d r y  chamber t h a t then the  filled box..  molecular  than  mm o f  10  box  (Kewaunee  Scientific  c o u l d be  evacuated  by  with  The  circulates  greater  dry  dry  the  box i s  box's  sieve  nitrogen also  to  type  a double-stage  ensure  through  5A)  Reaction-Filtration The a p p a r a t u s  The a p p a r a t u s  is  are  flask  placed  in  a reaction by  filtered  by  (c)  the  A.  rotating  the  purity  of  oil  the  a circulating  a drying  train  furnace  pump  and  atmosphere i n pump  which  containing to  remove  reagents  The p r o d u c t s , the  flask  Molecular  weights  poured into  nitrogen,  C_.  Weights  of  dry  dumper t u b e  Molecular  sample  5 found e x t e n s i v e  the  sintered  receiver  with  Additional  d r y box an a c c u r a t e l y  a weighed  Figure  evacuated,filled  a magnetic bar  through  evacuating  was  rotary  fort  any  Apparatus  shown i n  a T o p l e r pump t h r o u g h one o f  the  had a s p e c i a l  _  (b)  stirred  the  and a c o p p e r  oxygen.  of  Equipment)  connected to  atmosphere  (Fisher  Hg.  B_,  stopcocks,  may b e the  use  and t h e  in  wo  reactants  added d u r i n g  reaction  our  the  mixture  cou  is  if  g a s e o u s may b e  removed b  or  if  can  be  cooling  or  in  solution  d i s c p_ (medium p o r o s i t y )  by  E^.  were determined by  known w e i g h t  pure benzene  (about  the m o l e c u l a r weight  of pure 10 m l ) .  apparatus,  the  c r y o s c o p i c method,  compound was  dissolved  The b e n z e n e see  Figure  6,  i  solution and  remov  Vacuum L i n e , P a r t  Figure 4  A  from P a r t A  Figure  5  14  M o l e c u l a r Weight A p p a r a t u s  Figure 6  from t h e . d r y box. apparatus  A slow stream  as i t was  s o l u t i o n was  of pure n i t r o g e n was  c o o l e d i n an i c e b a t h .  r e c o r d e d and  The  f l u s h e d through  f r e e z i n g p o i n t of  the  compared w i t h t h a t of pure benzene s o l v e n t and  w i t h s t a n d a r d s o l u t i o n s of b i p h e n y l i n benzene s o l v e n t . e m p i r i c a l f o r m u l a was  the  used  t o c a l c u l a t e the m o l e c u l a r  [K^]X[weight  of sample  The f o l l o w i n g  weights.  (gms)]  m o l e c u l a r weight = [weights of benzene s o l v e n t (gms)]X [change i n temperature (°C)] K.£ = f r e e z i n g p o i n t d e p r e s s i o n c o n s t a n t 5.20°C per m o l a l .  (d)  Spectroscopy : I n f r a r e d s p e c t r o s c o p y was  q u a n t i t a t i v e a n a l y s i s and  used  throughout  f o r s t r u c t u r a l d e t e r m i n a t i o n o f compounds.  I n f r a r e d s p e c t r a were r e c o r d e d on a P e r k i n - E l m e r (4000 - 250 was  cm  The  between 4000 and  observable  400  cm  Model 457  range f o r both  For l i q u i d  used  beam to. compensate f o r s o l v e n t a b s o r p t i o n . most o f t h e h y d r i d e adducts  As w i t h s p e c t r o s c o p y , NMR,  and a spectrum  was  used  and  gas  samples  used. c e l l was  used  f i x e d path  with  length  p l a c e d i n the r e f e r e n c e  Because of the  instability  a l l i n f r a r e d s o l u t i o n c e l l s were  run as r a p i d l y as p o s s i b l e .  i n f r a r e d s p e c t r o s c o p y , n u c l e a r magnetic  s t r u c t u r a l determination. V a r i a n T^-60  prepared,  cm  spectrometer  and a v a r i a b l e - t h i c k n e s s c e l l  f i l l e d w i t h pure s o l v e n t s ( u s u a l l y benzene) was  loaded i n t h e d r y box  gas  o r s o l u t i o n samples a 0.05  s o l u t i o n c e l l w i t h KBr windows was  of  liquid  ^ because KBr windows were  F o r gaseous o r v o l a t i l e samples a 10 cm KBr windows.  t h i s work f o r semi-  resonance  as a t o o l to i n v e s t i g a t e r e a c t i o n s and f o r The  i n s t r u m e n t s used were a V a r i a n A-60  and  b o t h o p e r a t i n g w i t h a r a d i o f r e q u e n c y of 60 megacycles per  16  second and a V a r i a n HA-100 which o p e r a t e s a t a r a d i o f r e q u e n c y of 100 megacycles p e r second.  Most  samples were run i n benzene s o l u t i o n w i t h a  c o n c e n t r a t i o n o f about 0.1 M t o 1 M. as  an i n t e r n a l , s t a n d a r d and was  m e t h y l s i l a n e , TMS,  was  The benzene p r o t o n s i g n a l was  d e f i n e d as T = 2.840 p.p.m.  sample  c o n s t r i c t i o n and a B-10  tubes were s p e c i a l l y quick-fit  at  s p e c t r a were run as r a p i d l y  room temperature o f t e n impeded (e)  Elemental Analysis  (i)  Active  f i t t e d with a flame-seal  cone so t h a t the samples  and s e a l e d under an atmosphere o f n i t r o g e n . NMR  c o u l d be  As w i t h the i n f r a r e d  loaded  samples,  as p o s s i b l e s i n c e s t e a d y d e c o m p o s i t i o n  prolonged i n v e s t i g a t i o n .  Hydrogen:  A c t i v e hydrogen was measured by p l a c i n g of  samples  = 10.000 p.p.m.  The NMR  the  Tetra-  used as an e x t e r n a l s t a n d a r d on s e v e r a l  and i s d e f i n e d as  used  a s m a l l weighed amount  compound i n a round bottom f l a s k i n the d r y box, a t t a c h i n g a s t o p c o c k  adaptor and e v a c u a t i n g on the vacuum l i n e . d i l u t e aqueous HNO^ The m i x t u r e was  s o l u t i o n was  Me NGaH  The volume  3  at -196°C.  to react f o r  stirring.  + 3H  +  —  Me N + G a 3  + 3  +  3H  2  of hydrogen gas, non-condensable at -196°C, was  u s i n g a T o p l e r pump. then  of degassed,  then condensed onto the s o l i d  a l l o w e d to r e a c h room temperature and l e f t  about one hour w i t h  3  A s m a l l volume  then measured  The amount of a c t i v e hydrogen i n the compound  calculated. T h i s aqueous  a l i q u o t was  s o l u t i o n was  made up t o . a known volume  and an  used i n the d e t e r m i n a t i o n o f g a l l i u m as i n d i c a t e d  below.  was  17  ( i i ) G a l l i u m (Aluminum): A measured a l i q u o t o f the s o l u t i o n p r e p a r e d i n s e c t i o n measured out i n t o a beaker.  The s o l u t i o n was f i r s t made n e u t r a l w i t h  d i l u t e ammonia s o l u t i o n , then was made s l i g h t l y aqueous HC1.  ( i ) was  a c i d i c , pH 5-7, w i t h  dilute  The s o l u t i o n was then h e a t e d t o 80°C and!a s l i g h t excess o f  a 5% s o l u t i o n o f 8 - h y d r o x y q u i n o l i n e i n g l a c i a l a c e t i c a c i d was added f o l l o w e d by an aqueous s o l u t i o n o f s a t u r a t e d ammonium a c e t a t e u n t i l cipitation hour,  o f Ga(C H NO)  i s complete.  A f t e r d i g e s t i o n a t 80°C f o r one  the y e l l o w p r e c i p i t a t e was c o l l e c t e d  i n a f i l t r a t i o n c r u c i b l e and  the p r e c i p i t a t e washed, f i r s t w i t h h o t , then c o l d water. was  pre-  The p r e c i p i t a t e  then d r i e d a t 120°C, weighed and i t s g a l l i u m content c a l c u l a t e d  the f o r m u l a Ga(CgHgNO)^ which i s 13.89% g a l l i u m b y weight.  from  T h i s method  has been found t o g i v e a c c u r a t e d e t e r m i n a t i o n s f o r a minimum c o n c e n t r a t i o n of  10 mg o f g a l l i u m i n 50 ml o f s o l u t i o n .  similarly  B.  Aluminum was determined  as i t s 8 - h y d r o x y q u i n o l a t e .  Preparative (a)  Preparation of Gallium T r i c h l o r i d e  (23) G a C l ^  G a l l i u m t r i c h l o r i d e xjas p r e p a r e d by d i r e c t elements.  Pure  c h l o r i n e gas (Matheson L t d . ) was d r i e d by p a s s i n g through  concentrated sulphuric acid g l a s s apparatus  combination o f the  i n a b u b b l e r and was then passed  shown i n F i g u r e 7.  The g a l l i u m m e t a l , about  i n t o the a l l 15 gms,  ( A l f a I n o r g a n i c s Inc.) p l a c e d i n A soon m e l t e d on warming w i t h a bunsen b u r n e r , and r e a c t e d w i t h the c h l o r i n e , f i r s t gallium tetrachlorogaliate  (21), G a C l ^  adding more c h l o r i n e t h i s l i q u i d  2  Ga Cl, 9  to give a colourless  ( m e l t i n g p o i n t 170.5°C  liquid,  (22)).  d i s a p p e a r e d and the l i q u i d  On  gallium  G a l l i u m T r i c h l o r i d e Apparatus  Figure  7  ca  burned w i t h a g r e y - w h i t e flame g i v i n g a v o l a t i l e w h i t e s o l i d , g a l l i u m t r i c h l o r i d e G a C l ^ , (melting point 79°C).  2Ga(l)'+ 2 C l ( g )  ^  2  (Ga+)(GaCl4") 1  +  (Ga ) ( G a C l 4 ) ( 1 ) + C l ( g ) — — * 2  i  Ga2Cl6  The r a t e o f f l o w o f c h l o r i n e gas and r a t e of h e a t i n g the m o l t e n g a l l i u m were a d j u s t e d so t h a t most o f t h e v o l a t i l e G a C l ^ was d e p o s i t e d i n the c o o l e d r e c e i v e r b o a t C!.  A f t e r a l l t h e g a l l i u m had r e a c t e d ( e s s e n t i a l l y  100%) , any s u b l i m a t e i n A was d r i v e n i n t o C_ by warming and then flame s e a l i n g t h e c o n s t r i c t i o n a t B_. s e a l e d a t F_.  The a p p a r a t u s was t h e n e v a c u a t e d and flame  The crude h a l i d e was then r e s u b l i m e d i n t o the ampoules E_  and t h e n t h e s e were s e a l e d a t t h e i r c o n s t r i c t i o n s .  The g a l l i u m  was found t o remain s t a b l e i n d e f i n i t e l y when s t o r e d t h i s (b)  trichloride  way.  P r e p a r a t i o n o f L i t h i u m G a l l i u m Hydride ( 7 ) , LiGaH^  4 L i H + GaCl_ 3  Et 0 = *• L i G a H . + 3 L i C l room Temp. 4  An ampoule of G a C l ^ , was weighed and b r o k e n open i n the d r y box and p l a c e d i n a c o n i c a l f l a s k .  The g a l l i u m t r i c h l o r i d e was then d i s s o l v e d  i n d i e t h y l e t h e r and the ampoule washed s e v e r a l t i m e s t o ensure a t i v e removal o f G a C l ^ . of GaCl^ determined.  The empty ampoule was reweighed  quantit-  and t h e w e i g h t  The e t h e r e a l s o l u t i o n o f G a C l ^ and a l l t h e washings  were now added t o the n i t r o g e n f i l l e d r e a c t i o n - f i l t r a t i o n a p p a r a t u s (see F i g u r e 5) and t h e s o l u t i o n b r o u g h t up t o about 150 m l . From t h e w e i g h t o f GaCl  c a l c u l a t e d , (8.59 gms;  48.8 mmoles)  ,20  the w e i g h t o f about 16 m o l a r e q u i v a l e n t s o f f i n e l y ground l i t h i u m (7.45  gms;  hydride  938 mmoles) ( A l f a I n o r g a n i c s I n c . ) , enough f o r a f o u r - f o l d  e x c e s s , was weighed out under n i t r o g e n i n t o the dumper t u b e . The r e a c t i o n f l a s k was c o o l e d t o -50°C i n an a c e t o n e - s o l i d C 0 o b a t h and t h e dumper tube r o t a t e d upwards t o p e r m i t the slow a d d i t i o n o f LiH  t o t h e r e a c t i o n f l a s k o v e r a p e r i o d o f about t h i r t y m i n u t e s .  b u b b l e r was a t t a c h e d  A  t o t h e a p p a r a t u s so t h a t t h e r e a c t i o n c o u l d be  c a r r i e d o u t under a c o n s t a n t  pressure  o f one atmosphere of n i t r o g e n .  The c o o l a n t was a l l o w e d t o warm up t o room t e m p e r a t u r e and the m i x t u r e was s t i r r e d f o r about f i f t y hours t o e n s u r e . c o m p l e t e r e a c t i o n . The r e s u l t i n g r e a c t i o n m i x t u r e was f i l t e r e d t h r o u g h t h e g l a s s s i n t e r e d d i s c and a c l e a r c o l o u r l e s s f i l t r a t e r e s u l t e d .  This  filtrate  was t h e n t r a n s f e r r e d , i n t h e d r y b o x , t o a c o n i c a l f l a s k f i t t e d w i t h a b r e a k s e a l and an extended neck w h i c h was flame s e a l e d f o r s t o r a g e .  The  L i G a H ^ e t h e r s o l u t i o n was o b s e r v e d t o be i n d e f i n i t e l y s t a b l e i f s t o r e d i n ' a l l g l a s s ampoules under a n i t r o g e n atmosphere and c o o l e d below 0 ° C . L i t h i u m g a l l i u w d e u t e r i d e , L i G a D ^ , was p r e p a r e d and s t o r e d i n e x a c t l y t h e same manner as L i G a H ^ , o n l y l i t h i u m d e u t e r i d e , L i D , ( A l f a I n o r g a n i c s I n c . ) was s u b s t i t u t e d i n t h e p r e p a r a t i o n f o r l i t h i u m (c)  P r e p a r a t i o n of T r i m e t h y l a m i n e G a l l a n e  hydride,  ( 1 ) , Me^NGaH^  Et 0 L i G a H . + Me NHC1 4 3  * room temp.  Me NGaH + L i C l + H 0 3 3 2  A known amount o f l i t h i u m g a l l i u m h y d r i d e  (2.38.gms;  29.4 mmoles)  i n e t h e r s o l u t i o n was p l a c e d i n t h e r e a c t i o n - f i l t r a t i o n a p p a r a t u s , see Figure 5.  S l i g h t l y l e s s t h a n t h e s t o i c h i o m e t r i c amount o f  h y d r o c h l o r i d e , Me_NHCl, (2.644 gms;  trimethylamine  27.6 mmoles) ( A l f a I n o r g a n i c s I n c . )  2f  d r i e d and p u r i f i e d by  s u b l i m a t i o n , was  r e a c t i o n v e s s e l which c o n t a i n e d The  p l a c e d i n the dumper tube of  a n i t r o g e n atmosphere.  e t h e r s o l u t i o n of LiGaH, was 4  i c e c o o l e d acetone b a t h ,  as  first  the t r i m e t h y l a m i n e  over a p e r i o d of about 10 m i n u t e s . up t o room temperature and  the  stirred  cooled  to -50°C i n a d r v *  h y d r o c h l o r i d e was  Then the s o l u t i o n was  added  allowed  to warm  f o r about f o u r hours' to ensure  complete  reaction. The  s o l u t i o n was  next  filtered  through the g l a s s s i n t e r and  r e c e i v e r f l a s k c o n t a i n i n g the c l e a r e t h e r s o l u t i o n was s u b l i m a t i o n apparatus, vacuum l i n e and was  see F i g u r e 5.  the e t h e r was  T h i s apparatus was  pumped o f f at -50°C.  removed, the r e s i d u e was  allowed  to warm up  sublimed  as l o n g n e e d l e  overall yield about  i n going  The  to  the ether  t o room temperature w h i l e immersed i n an  pure t r i m e t h y l a m i n e  g a l l a n e was  l i k e c r y s t a l s i n t o the c o o l e d r e c e i v e r .  vacuum The.  from g a l l i u m t r i c h l o r i d e to t r i m e t h y l a m i n e  The prepared  deuterated  compound, t r i m e t h y l a m i n e  gallane  was  t r i d e u t e r o g a l l a n e , Me^NGaD^  i n the same manner o n l y l i t h i u m g a l l i u m d e u t e r i d e  substituted for lithium gallium hydride. was  attached  60%.  „i was  slush bath.  to the  When most of the  the l a r g e bulb p a r t of the s u b l i m a t i o n apparatus was a c e t o n e - s o l i d CO^  attached  the  also obtained  similarly  was  T r i m e t h y l a m i n e alane , Me^NAlH^,  from commercially  a v a i l a b l e L i A l H ^ and  tri-  methylamine h y d r o c h l o r i d e . (d)  P r e p a r a t i o n of A l k y l a m i n o As  the p r o c e d u r e s  Gallazanes  are s i m i l a r f o r p r e p a r a t i o n of a l l the g a l l a z a n e  compounds, only the p r o c e d u r e f o r the ethylamino an  example.  (RNHGaH^^  compound w i l l be  given  as  23  benzene.  A weighed q u a n t i t y o f t h i s ; s o l u t i o n was  s c o p i c m o l e c u l a r weight apparatus e v o l v e d on h y d r o l y s i s was determined  removed from t h e c r y o -  and h y d r o l y s e d .  then d e t e r m i n e d .  The  w a s  The  Aniline g a l l a n e (.573  (.405  g , 4.351  g, 4.352 mmoles) was  to the above,  Experimental d e t a i l s f o r the  o t h e r a l k y l a m i n o g a l l a z a n e s are summarized i n t a b l e R e a c t i o n o f Me„NGaH„ w i t h a n i l i n e J J  was  deuterio derivative,  o b t a i n e d by an e x a c t l y s i m i l a r p r o c e d u r e  b u t u s i n g Me^NGaD^ as the s t a r t i n g m a t e r i a l .  (e)  volume of hydrogen  g a l l i u m content  g r a v i m e t r i c a l l y by s t a n d a r d p r o c e d u r e s .  (EtNHGaD^)^*  The  1.  (C,H C NH„) p J z condensed o n t o t r i m e t h y l a m i n e  mmoles) a t -196°C and a l l o w e d t o warm t o room t e m p e r a t u r e  A f t e r complete r e a c t i o n  (about two  days) the f l a s k was  c o o l e d t o -196°C and  t h e volume o f e v o l v e d hydrogen measured (Found: 92.5 m l ; C a l c . 97.8 The m i x t u r e was Me^N  was  then a l l o w e d t o warm t o room t e m p e r a t u r e and a t r a c e o f  gas d e t e c t e d .  The w h i t e s o l i d p r o d u c t , Me^NGaH^NH  m e r i c i n benzene (Found: 224, C a l c . 223) Ga:  , was mono-'  and gave the f o l l o w i n g  Found: 31.9%, C a l c : 31.2%. > H a c t i v e :  analysis:  Found: 1.12%, C a l c : 1.12%.  R e a c t i o n o f a two m o l a l q u a n t i t y of a n i l i n e l e d t o an i n s o l u b l e material.  ml).  polymeric  I t e v o l v e d a 2 m o l a l q u a n t i t y of hydrogen as w e l l as a m o l a l  q u a n t i t y of  Me^N.  R e a c t i o n o f c^NHGaR^NMe^ w i t h Methylamine A measured amount o f methylamine gas o n t o a weighed q u a n t i t y o f (JiNHGaH^NMe^ (.426 and t h i s m i x t u r e was  (42.8 ml) was  g, 1.878  condensed  mmoles) a t -196°C  t h e n p e r m i t t e d t o warm t o room t e m p e r a t u r e .  h y d r o g e n was  evolved.  (Found: 92.4  m l , C a l c : 91.8 ml) a n d . i t s p u r i t y was  i n f r a r e d spectroscopy.  The volume o f t r i m e t h y l a m i n e gas was  No  measured  checked by gas phase  T h i s p r o d u c t , as w e l l as the p r o d u c t s  resulting  Table 1 A n a l y t i c a l d a t a ' f o r c y c l o g a l l a z a n e compounds p r e p a r e d by t h e r e a c t i o n : -  Me.NGaH. + j j Compound  Phase a t 25°C  Moles H 2 p e r mole RNH 2 •  RNH„ /  Moles Me3N p e r mole RNH2  (RNHGaH.) + 2. n  H_ + Me.N l J  Degree o f a s s o c iation, n Ga  Analysis (RNHGaH?) r e q u i r e s 7J Found % Hydrolysable Hydrolysable Ga hydrogen hydrogen  EtNHGaH 2  Viscous liquid  1.01  1.01  2,92  60.1  1.73  60.2  1.73  PrnKHGaH2  Viscous liquid  0.98  1.02  2.64  53.5  1.53  53.7  1.54  BuI1NHGaH2  Viscous liquid  1.00  1.09  2.57  48.4  1.37  48.5  1.39  Pr X NHGaH 2  Mobile liquid  0.92  0.98  1.91  53.6  1.55  53.7  1.54  Bu X NHGaH 2  Viscous liquid  0.95  1.03  2.15  48.4  1.38  48.5  1.39 •  S  Bu NHGaH 2  Mobile liquid  Bu t NHGaH 2  White solid  . 0.92  1.02  1.83  48.5  1.40  48.5  1.39  0.97  1.02  1.83  48.4  1.37  48.5  1.39  from the r e a c t i o n s :  a n i l i n e p l u s Me^NGaD^, a n i l i n e p l u s Me NGaH ,  methylamine p l u s (^NHGaD^NMe^, and methylamine p l u s (JlNHGaH^NMe^ were c h a r a c t e r i z e d by i n f r a r e d (f)  Preparation  and ^"H nmr  spectroscopy.  o f C y c l i c Imino  Gallazanes  S i n c e t h e p r o c e d u r e f o r t h e p r e p a r a t i o n o f these s t r a i n " gallazanes  i s standard  "double  ring  throughout the s e r i e s , and s i n c e the  I technique, and apparatus a r e e s s e n t i a l l y p a r a t i o n o f t h e simple  t h e same as those  used i n p r e -  g a l l a z a n e s , o n l y a short, p r o c e d u r e f o r a z i r i d i n o  g a l l a z a n e w i l l be g i v e n as an example. Preparation Aziridino (23.8  of A z i r i d i n o Gallazane  g a l l a z a n e was prepared  m l ; 1.50 mmoles) onto t r i m e t h y l a m i n e  .  by condensing a z i r i d i n e gas gallane  (0.140 g; 1.60 mmoles  a t -196°C, and a l l o w i n g t h e m i x t u r e t o warm s l o w l y t o room temperature. After  complete r e a c t i o n (about  the volume o f e v o l v e d The  1 h) t h e f l a s k was c o o l e d t o -196°C, and  hydrogen measured  m i x t u r e was again brought t o room temperature and.the volume of  trimethylamine purity  gas was measured  (Found: 24.4 m l , C a l c : 23.8 m l ) .  o f t h e Me^N was checked by i t s gas phase i . r . spectrum.  w h i t e , c r y s t a l l i n e s o l i d product and  (Found: 23.6 ml, C a l c : 23.8 m l ) .  was a n a l y s e d  for hydrolysable  f o r g a l l i u m by the p r e v i o u s l y d i s c u s s e d methods.  f o r t h e compounds p r e p a r e d (g)  The hydrogen  The a n a l y t i c a l dat  a r e g i v e n i n t a b l e 2.  P r e p a r a t i o n o f C y c l i c Imino A l a z a n e s The  p r o c e d u r e f o r the p r e p a r a t i o n o f t h i s s e r i e s  compounds i s s t a n d a r d alazane  i n this series  The  throughout t h e s e r i e s .  o f alazane  Hence the p y r r o l i d i n o  p r e p a r a t i o n , o n l y i s g i v e n as an i l l u s t r a t i v e  example.  Tabie 2 Analytical data for imine cyclogallazane compounds prepared by the reaction:. Me NGaH • + (dft ) NH ===== 3  Compound  Phase  at 25*C  3  2  x  Moles H per Moles MeoN mole imine per mole imine 2  ((CTI ) 1lGaII ) 2  x  2  n  + H  + Meyi  2  Degree of association ,1 n. 1 j  Analysis Found % Theory % Ga IJydrol. Ga Hydrol. hydrogen hydrogen  i 61.1*  1.76  5^.1  1.55  5^.5  1.56  2.02  |^9.0  1.38  '+9.2  l.'H  1.89  |^3.9  1.26  1.01 .  1.00  2.00 (2.56)  (CH ) NGaH White solid  0.99  1.01  2.00  ;CH )^IGaH2 White solid  0.99  0.99  ;CH ) NGaH White solid  0.99  0.98  2  2  2  3  2  2  2  2  5  *  2  \ •  1.76  'CH ) NGaH White solid  62.1  !i  Degree of association immedtately after dissolving imine cyclogallazane in benzene.  \  1.28  27  P r e p a r a t i o n of P y r r o l i d i n o A l a z a n e  (CH„).NA1H„ t- 4 2 t  The b i s t r i m e t h y l a m i n e a l a n e used i n the r e a c t i o n was by condensing  excess Me^N  gas onto t r i m e t h y l a m i n e alane at -196°C.  e q u i l i b r a t i o n pf t h i s system was  a t room temperature,  removed at -20°C, l e a v i n g Pyrrolidine  t r i m e t h y l a m i n e alane benzene.  the b i s  (35.0 ml, 1.559 (0.228 g;  T h i s m i x t u r e was  1.542  the excess  After  trimethylamine  adduct. mmoles) was  condensed onto b i s  mmoles) d i s s o l v e d  i n 5 ml o f dry  p e r m i t t e d to warm t o room temperature.  the e v o l u t i o n of hydrogen had  ceased, the f l a s k was  the volume o f hydrogen measured benzene s o l v e n t and  prepared  (Found:  t r i m e t h y l a m i n e gas  35.2  ml;  After  c o o l e d t o -196°C  C a l c : 35.0  ml).  and  The  from the r e a c t i o n were then removed  at -20°C to l e a v e a white c r y s t a l l i n e s o l i d  i n the r e a c t i o n  vessel.  A n a l y s e s f o r aluminum and h y d r o l y s a b l e hydrogen were performed  o n l y on  the a z i r i d i n o a l a z a n e s i n c e most o f t h e s e compounds had been p r e v i o u s l y prepared  and  analysed  (23).  i s summarized i n t a b l e (h)  3.  P r e p a r a t i o n of C y c l i c Imino The procedure  is  E x p e r i m e n t a l d a t a f o r t h i s s e r i e s of compounds  Borazanes  f o r the p r e p a r a t i o n of t h e s e borazane  s t a n d a r d f o r t h r e e of the d e r i v a t i v e s ,  (CH ) NBH  where x = 3, 4, 5  and t h e r e f o r e the p r e p a r a t i o n o f p y r r o l i d i n o borazane The p r e p a r a t i o n of a z i r i d i n o borazane described  differs  compounds  slightly  o n l y w i l l be g i v e n . and w i l l  be  later. P r e p a r a t i o n o f P y r r o l i d i n o Borazane P y r r o l i d i n o borazane  (100 ml,  4.45  (50 ml, 2.22  mmoles)  on  was  p r e p a r e d by  condensing  pyrrolidine  a p r e v i o u s l y condensed sample o f  mmoles) i n a 500 ml b r e a k - s e a l f l a s k .  diborane  The m i x t u r e  was  Table 3 A n a l y t i c a l d a t a f o r i m i n C c y c l o a l a z a n e ; compounds p r e p a r e d by the r e a c t i o n : (Me N) AlH 3  2  3  Compound  +  (CH ) NH 2  Phase, a t 2$*C  (CH ) NA1H  2  (CH ) ?LA1H  2  -  X  ((CH ) KAlH ) + 2  x  2  Molecular weight  Moles H per' mole imine  H  n  2  .. j i j  +  2 M e  3  N  Degree o f a s s o c i a t i o n n  White solid  1.02  298  4.20 (3.14*)  White solid  1.00  263*  3.06*  (CH^NAIIL.  White solid  1.01  308  3.10  (CH ) NA1H  White solid  0.98  243  2.17  2  2  2  3  2  5  2  A n a l y t i c a l d a t a f o r i m i n o c y c l o b o r a z a n e compounds p r e p a r e d by the r e a c t i o n : -  H 6 H  +  Compound  CCH ) KBH 2  2  2  at 25*C  2  (CH )ra.H  2  2  2  n  +  Molecular weight  H  2  Degree o f a s s o c i a t i o n , n  3.00  0.97  134  1.9*+  White solid  1.03  166  2.00  White solid  1.08  196  2.02  solid 2  H o l e s IT p e r mole imine  ?  165  3  (CH )^JB.H  j i !  y  —  White solid  (CH ) NBJI*' White 2  2  X  Phase  2  ((CH ) HBH )  (CH ) MI  •  * P r i v a t e communication Dr. B. S. Thomas.  a l l o w e d t o warm to room temperature was  t o form the l i q u i d I t was  then c o o l e d and s e a l e d o f f under vacuum.  at 128°C f o r 3 1/2  hours  p l e t e , the f l a s k was  to p y r o l y s e the adduct.  measured  (Found:  room temperature  103 ml, C a l c : 100 m l ) . and checked  The  (i)  P r e p a r a t i o n of A z i r i d i n o This  4.45  compound was  p r e p a r e d by  The  e v o l v e d hydrogen  p r o d u c t was  of t a b l e  condensing (50 ml, 2.22  dry d i e t h y l e t h e r was  and the m i x t u r e warmed to -130°C.  removed g i v i n g  crystalline solid.  The  benzene and four hours.  3.  At  aziridine  ml,  mmoles) at -196°C.  condensed  this point  (100  onto t h i s  mixture  the m i x t u r e was  per-  i n f r a r e d and "^H nmr (18).  f r e e was  s p e c t r a of t h i s  The  adduct was  The  a white  adduct  agreed  dissolved i n  r e f l u x e d under an atmosphere of dry n i t r o g e n f o r t h r e e to The  a z i r i d i n o borazane  the benzene s o l v e n t  a t -20°C.  the a z i r i d i n o borane i n the l i t e r a t u r e Attempts  The  p r o d u c t was IR  and  nmr  s e p a r a t e d by  desired product.  removing  spectra recorded f o r  o b t a i n e d by t h i s method, agreed w i t h those  found  (18). to prepare t h i s  complex by a p y r o l y s i s method u s i n g the  r e a c t i o n o f a z i r i d i n e w i t h e i t h e r Me^N.BH^ or d i b o r a n e f a i l e d  to g i v e the  These r e a c t i o n s were n o n - s t o i c h i o m e t r i c , y i e l d i n g  of the t h e o r e t i c a l hydrogen o n l y 54%  was  E x p e r i m e n t a l data f o r  a p r o d u c t , which when s o l v e n t  w i t h those found i n t h e l i t e r a t u r e  the  then warmed to  m i t t e d , by means of a propane s l u s h b a t h , t o warm s l o w l y to -78°C. e t h e r was  com-  Borazane  mmoles) onto a sample of d i b o r a n e  About 5 ml of s t r i c t l y  then p l a c e d i n an oven  c o o l e d t o -196°C and  f o r non-condensibles.  these compounds i s g i v e n i n the lower p a r t  The b u l b  A f t e r p y r o l y s i s was  a t t a c h e d t o the vacuum l i n e ,  f r a g i l e b r e a k - s e a l r u p t u r e d w i t h a b a r magnet.  adduct.  o f hydrogen  and  77% o f the Me^N  i n the l a s t .  The  i n the f i r s t  case  40%  and  p r o d u c t s i n each of t h e s e cases  gave l i q u i d p l u s s o l i d but were not s o l u b l e i n benzene to any  significant  extent. (j)  P r e p a r a t i o n of A z i r i d i n e G a l l i u m t r f m e t h y l and Gallium dimethyl The  adduct a z i r i d i n e g a l l i u m t r i m e t h y l was  aziridine  (75.5 ml, 3.36  at -196°C  and warming to room temperature.  l i q u i d which was  (75.5 ml, 3.36  adduct was  mm<  a c l e a r mobile  s t a b l e t o methane e l i m i n a t i o n at room temperature.  The a z i r i d i n o 0.413  p r e p a r e d by condensi:  mmoles) onto g a l l i u m t r i m e t h y l The  Aziridino  g a l l i u m d i m e t h y l was  p r e p a r e d by p y r o l y s i n g a  g sample o f the p r e v i o u s l y p r e p a r e d adduct at 110°C f o r 5 hours i n  a break-seal bulb.  A f t e r the f i v e hour r e a c t i o n time the b u l b , now  t a i n i n g a white s o l i d c o o l e d to -196°C,  (mp  184°C).was  connected to the h i g h vacuum  the g l a s s b r e a k s e a l r u p t u r e d and  (Found: 56.8 ml, C a l c : 58.8 m l ) .  The p r o d u c t was  con-  line,  the methane measured  then warmed to room  temperature and checked f o r the p r e s e n c e of c o n d e n s i b l e s . The  a n a l y t i c a l d a t a f o r the o t h e r compounds o f t h i s s e r i e s i s  given i n table (k)  4.  Preparation of A z i r i d i n e S i n c e commercial samples  p r e p a r a t i o n o f t h i s m a t e r i a l was  ^NM o f a z i r i d i n e were not a v a i l a b l e  undertaken u s i n g the f o l l o w i n g  the  route.  The methods o f Wenker (24) L e i g h t o n (25) and Reeves (26) were a l l t r i e d b u t gave lower y i e l d s 96% 2 H  sample of  S 0  4  (  than the f o l l o w i n g method. 1 0 9  -  9  S»  1 > 0  ^  m  °l  ethanolamine (65.7 g, 1.07  e s  )  w  a  s  added  directly  to a s t i r r e d  moles). T h i s m i x t u r e was  then h e a t e d  to 100°C under water a s p i r a t o r vacuum to g i v e a q u a n t i t a t i v e y i e l d o f ethonolamine s u l f a t e a c c o r d i n g t o the f o l l o w i n g  scheme:  Table 4 Analytical  d a t a f o r imine metal t r i m e t h y l  and imino metal d i m e t h y l compounds  p r e p a r e d by the f o l l o w i n g :  (CHg) NH  Me M.KH(CH ) 3  Compound  IZZZZ  2  Me GaH(CH ) 2  2  2  2  Moles methane per mole imine  25*C  3  3  2  Phase a t  Me GaM-l(CH )  Me M.HH(CK )  (Me M.N(CH ) )  2  ;  2  n  CH^  j  0.97  2.88  •  Me EKH(CH ) 3  2  Me EN(CH ) 2  2  2  Me AlK(CH ) 2  2  iMeoInKH(CH i i  i  180  v/hite solid  2  Me AlM(CH ) 3  '. mobile liquid  2  ) ?  1  Me In!Sf(CII ) 2 2 2  *Private  0  mobile liquid white solid  C,12h polymeric s o l i d s and l i q u i d s  e v o l v e s CH^ at r . t .  v/hite . . " " solid  2  •  0.68  mobile, liquid  2  Degree o f a s s o c i a t i o n n  110*C,5h  | white : ! solid  2  +  Pyrolysis : temperature  ; mobile liquid  2  2  0.88  0.70  2.96  ! •  e v o l v e s CH^ at r . t . '  60*,4h  :  |  ••  '  communication Dr. B. S. Thomas.  80'c,12h '3.00*  - H0CH CH NH 2  2  2  + H SO  H 0 + CH -CH  2  2  2  O.-SO3-  2  N 1 I  The w h i t e s o l i d  p r o d u c t was ground w i t h 95% EtOH, s u c t i o n f i l t e r e d and  d r i e d i n a vacuum d e s c i c a t o r The ethonolamine  over  s u l f a t e was then p l a c e d  bottomed f l a s k surmounted by a s t i l l head downward d i s t i l l a t i o n 143 g H 0 ) . 2  3  i n a 1000 ml round  and water  The f l a s k was heated w i t h an open flame and t h e d i s t i l l a t e 500 ml r e c e i v e r .  was  a saturated  f l a s k stored  set f o r  and o v e r l a i d w i t h a 40% NaOH s o l u t i o n (95 g NaOH,  c o l l e c t e d r a p i d l y i n a w e l l cooled complete,  condenser  enough KOH to o b t a i n  i n the f r i d g e o v e r n i t e .  removed and d r i e d over CaH /K0H. 2  f r e e was s t o r e d over C a H Azetidine  2  HH  f  distillation  s o l u t i o n was added and t h e  The upper  organic  l a y e r was then  The p r o d u c t , when water  at +5° u n t i l  (27) C  Once  required.  (Yield  and e t h a n o l ~15%).  •  A z e t i d i n e was p r e p a r e d by the same procedure as above b u t s t a r t i n g w i t h propanolamine about 1%.  i n s t e a d o f ethanolamine.  The y i e l d was  DISCUSSION  Part 1  The  ease o f i n t r a m o l e c u l a r hydrogen e l i m i n a t i o n from adducts  of t h e type MeNH^, EH^, where E i s B, A l o r Ga follows ' the sequence 1  B < Ga < A l as i l l u s t r a t e d  i n f i g u r e 8.  Note t h a t 90° |(28) i s r e q u i r e d  i f o r hydrogen e l i m i n a t i o n w i t h room temperature  boron* MeNH^GaH^ e l i m i n a t e s hydrogen a t  (13) , w h i l e MeNH^AlH^ e l i m i n a t e s  of hydrogen a t -20° ( 2 9 ) .  Stone (30) e x p l a i n s  the r e l a t i v e e l e c t r o - n e g a t i v i t y v a l u e s 5+H  H5-  |  6+H  I  >- G-H  Me-N  I  \  H  *  y  H  V  Me-N I .H  two molar  t h i s sequence i n terms o f  o f t h e atoms i n v o l v e d .  H5-  S  > E ~H  _  >- Me-N  \  \  H  H  In t h e above scheme the hydrogen a t t a c h e d nitrogen  atom i s c o n s i d e r e d  A  — E - H I  atom, E , s i m u l t a n e o u s l y  directly  Hydrogen a t t a c h e d  increases  2  to the o f an  to the  i n e l e c t r o n d e n s i t y and an  e l e c t r i c a l s t r a i n i s thus c r e a t e d i n t h e adduct. when hydrogen e l i m i n a t i o n o c c u r s .  + H  H  t o l o s e e l e c t r o n d e n s i t y on f o r m a t i o n  e l e c t r o n donor bond by t h e donor moeity. acceptor  equivalents  The s t r a i n i s r e l i e v e d  On t h e b a s i s t h a t t h e d i f f e r e n c e s  between t h e Allred-Rochow (31) e l e c t r o - n e g a t i v i t i e s o f t h e E atoms and t h a t o f hydrogen (at 2 . 1 ) i n c r e a s e  i n t h e o r d e r B, Ga, A l , t h e  hydxidic  c h a r a c t e r i n EH^, and hence t h e ease of hydrogen e l i m i n a t i o n  should  d e c r e a s e i n t h e o r d e r A l through Ga.to B a s observed. }  The  f a c t o r s a f f e c t i n g t h e a s s o c i a t i o n o f t h e p r o d u c t s from -  hydrogen e l i m i n a t i o n a r e b e l i e v e d t o be the f o l l o w i n g (i)  (32).  S t e r i c E f f e c t - With the same donor and a c c e p t o r  atoms  B (2.01)  Ga  R  /  H,B«-N-H 3 \ H  H_Ga<-N-H 3 \  /  BORANE  It  n BORAZANE  (1.47)  3 H.A1«£— N-H  \  K  GALLANE  ALANE  -20 c  r . t . , 1 day  90°, 1 Hr.  H R I I -B-N-  Al  (1.82)  H  R  I I  -Ga-N-  I I  H  H  n GALLAZANE"  (ALAZANE)  9 0 ° , 10 H r .  I T B=N-  -20°  R  H  I  DECOMP.  R  I  -Al-NBORAZINE  (GALLAZINE)  Figure  POLYMERIC NETWORK IMINO ALANE (ALAZINE)  8  -35  i n c r e a s e d s i z e of R groups (ii) but  on t h e E atom cause a s h i f t , t o lower o l i g o m e r s .  V a l e n c y angle s t r a i n - Dimers c o n t a i n more s t r a i n than  trimers,  t h i s i s e a s i e r t o t o l e r a t e w i t h l a r g e r donor and a c c e p t o r atoms, (iii) (iv)  E n t r o p y - P r e f e r s monomer over dimer Nature  The solids  of r e a c t i o n i n t e r m e d i a t e s .  c y c l o g a l l a z a n e s prepared i n t h i s  to mobile  and dimer over  liquids  |  study ranged  and a l l had s a t i s f a c t o r y  and h y d r o l y s a b l e hydrogen;  trimer.  from white  analyses f o r g a l l i u m  a l l were s o l u b l e i n common o r g a n i c s o l v e n t s .  As i s e v i d e n t from T a b l e 1, i n c r e a s i n g t h e s i z e o f the R group w i t h the f o r m a t i o n o f lower o l i g o m e r s . cyclohexane-type  coincides  Thus, s t e r i c i n t e r a c t i o n s i n  t r i m e r s become t o o l a r g e and a p r e f e r e n c e f o r the  a n g u l a r l y - s t r a i n e d , dimers, w i t h lower s t e r i c r e q u i r e m e n t s , becomes apparent. (i.r.  With b o t h the t r i m e r i c and d i m e r i c s p e c i e s t h e p h y s i c a l d a t a  and '^H nmr s p e c t r a ) i n d i c a t e the p r e s e n c e of a t l e a s t  two c o n -  f i g u r a t i o n a l isomers i n benzene s o l u t i o n . T r i m e r i c C y c l o g a l l a z a n e s (RNHGaH^)^ A cyclohexane-type (RNHGaH^)^, i s proposed supplementary  ring structure f o rtrimeric  on e v i d e n c e c o l l e c t e d  e v i d e n c e from i . r .  w i t h t h e methyl  derivative,  from ^"H nmr d a t a and from  s p e c t r o s c o p y measurements.  (13) at l e a s t  most s t a b l e isomer, on s t e r i c grounds, occupy  The  i s t h e one i n which a l l t h r e e The next most^  i s one i n which one N - a l k y l group  and the r e m a i n i n g two N - a l k y l groups  isomers  F i g u r e 9.  e q u a t o r i a l p o s i t i o n s on the r i n g .  s t a b l e isomer, s t e r i c a l l y ,  As observed  two c o n f i g u r a t i o n a l  are p r e s e n t i n benzene s o l u t i o n s o f the new t r i m e r s .  N - a l k y l groups  cyclogallazanes,  e q u a t o r i a l t o the (Ga-N)  i s axial ring.  Ga Tsl N  R'  H  —  Ga  CIS  Ga N —R  H  H  Ga 'N~-Ga  .N  R' H  TRANS  Ga N—H R  Conformations of Trimeric Gallane Species Figure  9  -37  These isomers w i l l be  termed c i s and  trans r e s p e c t i v e l y .  (EtNHGaH^)^ - 1 , 3 , 5 - T r i e t h y l c y c l p g a l l a z a n e , a v i s c o u s l i q u i d room temperature, i s t r i m e r i c i n benzene s o l u t i o n . spectrum of the benzene s o l u t i o n at 100 MHz p r e s e n c e of a number of n o n - e q u i v a l e n t these  The  p a r t i a l "*"H  ( F i g u r e 10)  ^-CH^  groups.  groups c o n s i s t of t h r e e w e l l - d e f i n e d t r i p l e t s  nmr  shows c l e a r l y 'The  appears unique.  (J,.!™, ca. 7 Hz).  t r i p l e t s A and  2:1  ratio),  and  B, both a s s i g n e d  C, at h i g h e r  the t r i p l e t B to the  to e q u a t o r i a l p-CE^  c l o s e t o g e t h e r which i s to be expected s i n c e l i t t l e "CH^  environment w i l l o c c u r between the two  would i n d i c a t e t h a t the t r a n s - i s o m e r  ^-CH^ field, C to  cis-isomer.  groups, o c c u r v e r y .  change i n e q u a t o r i a l  isomers.  These assignments  i s i n g r e a t e r abundance, which i s  somewhat s u r p r i s i n g f o r a c y c l o h e x a n e - t y p e r i n g on p u r e l y s t e r i c  arguments.  S i m i l a r t r i m e r i c borazanes,  (33) however, show t h i s same p r e f e r e n c e  trans-isomer  a l t e r n a t e e x p l a n a t i o n i s t o a s s i g n the  formation.  A to the c i s - i s o m e r and conformation  An  the t r i p l e t s B and  s i m i l a r to the one  aluminium t r i m e r  (34).  C (ca. 1:2  recently reported  attached  one  I f the  obtain  the unique /3'CH^  a x i s of the m o l e c u l e .  T h i s a l t e r n a t e e x p l a n a t i o n would then i n d i c a t e the s t e r i c a l l y c i s - i s o m e r i n g r e a t e r abundance.  triplet  ethyleniminodimethyl-  c o u l d again  ratio,  to the n i t r o g e n on the t w o - f o l d  for  r a t i o ) to a t w i s t  f o r the  In the t w i s t conformation  yS-CH^ groups i n d i f f e r e n t environments i n a 1:2 group b e i n g  The.  HCOH  I t i s t h e r e f o r e tempting t o a s s i g n t r i p l e t s A and  the t r a n s - i s o m e r . ( c a . The  triplet  the  s i g n a l s from  p a t t e r n of s i g n a l s suggests t h a t the t r i p l e t s A and B a r i s e from groups i n s i m i l a r environments whereas the  at  favoured  c h a i r - t y p e model i s accepted  the t r i m e r i c g a l l a z a n e s , i t i s i n t e r e s t i n g to n o t e the appearance of a x i a l ^3-CH^ s i g n a l i n (EtNHGaH^)^ at h i g h e r  field  for the  than the e q u a t o r i a l  1 a  9.06  Fig. 10  l O O M c / s 'H n.m.r.  9.08.  9.27  s p e c t r u m of E t N H G a H  in benzene solution  39  signals.  This  i s i n contrast  t o t h e a x i a l NMe s i g n a l i n t h e  trans-(MeNHGaH^)^ t r i m e r , which appears a t . l o w e r f i e l d  than t h e  equatorial signals (13).  shift  I t seems t h a t t h i s d o w n f i e l d  f o r methyl  groups a x i a l to- c y c l o h e x a n e - t y p e r i n g s i s q u i t e common, o c c u r r i n g v a r i e t y of inorganic (MeCH.CH ) , 2  r i n g systems, (MeNHBH^) »  (35) (MeCH.S)^, (36)  3  (37) and (MeCH.O) , (38) two of which are shown i n F i g u r e 11.  3  3  Perhaps, t h i s phenomenon can be accounted f o r by i n v o k i n g d e s h i e l d i n g due t o 1 , 3 - a x i a l (EtNHGaH ) 2  3  the proximity  evidently not s u f f i c i e n t  interactions.  different fl-CR^  isomers.  groups of  3  t o a x i a l hydrogens on t h e n i t r o g e n t o g i v e t h i s type o f d e s h i e l d i n g .  a r e apparent i n t h e "4l nmr s p e c t r a  presumably a r i s i n g  van der Waals  With the /?-CH  p r o t o n s i n (EtNHGaR^).^ do n o t g i v e w e l l r e s o l v e d quintets  in a  atoms i s The methylene  s i g n a l s but overlapping  (J ?r J ) ( F i g u r e 12), rlCiUrl HNCH  from t h e a x i a l and e q u a t o r i a l environments i n t h e The NH resonance i s p a r t l y 'hidden' under t h e  s i g n a l s i n the hydride  appears as a broad t r i p l e t  compound o c c u r r i n g  (J  at c a t 9.3, b u t i t  . --7 Hz) at h i g h e r  spectrum of t h e d e u t e r i o d e r i v a t i v e ,  field  ( t 9.52) i n the  ( E t N H G a D ) , a t 100 MHz ( F i g u r e 1 3 ) . 2  3  S i g n a l s due t o GaH p r o t o n s were n o t observed p r i n c i p a l l y because o f low concentrations  b u t a l s o perhaps because o f n u c l e a r  quadrupole b r o a d e n i n g  (39, 4 0 ) . The (R = P r  1 1  "4l nmr s p e c t r a o f the r e m a i n i n g t r i m e r i c  and Bu ) a r e l e s s c l e a r l y r e s o l v e d , even a t 100 MHz. 3  7.2 Hz) c e n t r e d  appear as a s e r i e s o f t r i p l e t s  a t t - 9 . 4 3 , 9.44, and 9.46 a g a i n  p r e s e n c e o f a t l e a s t two i s o m e r s . assigned  The V -CH  11  proton s i g n a l s i n • (Pr^JHGa^) ca.  gallazanes  to c i s - and t r a n s - i s o m e r s ,  These t r i p l e t s the t r i p l e t  (  J H C C H  i n d i c a t i n g the  are t e n t a t i v e l y  at higher  field  being  3  a s s i g n e d t o the a x i a l  J*-CH^ group of the t r a n s - i s o m e r .  The  H nmr  of the n - b u t y l d e r i v a t i v e are v e r y complex, even at 100 MHz, ment i s Dimeric  spectra  and no a s s i g n -  attempted. C y c l o g a l l a z a n e s , (RNHGaH )  ! i  i  D i m e r i c c y c l o g a l l a z a n e s , (RNHGaH^^ may  exist  as  isomers w i t h the N - a l k y l groups c i s or t r a n s on the r i n g respectively].  [ ( I l a ) and ( l i b )  A number o f a d d i t i o n a l v a r i a t i o n s are p o s s i b l e i f the  (Ga-N)^ r i n g i s n o n p l a n a r , numerous analogous  to r e l i e v e s t e r i c  which has been shown t o be  substituted  p l a n a r c o n f i g u r a t i o n s may  the case f o r  cyclobutane d e r i v a t i v e s  be expected more e s p e c i a l l y  (41, 42).  2  2  Non-  i n the c i s - i s o m e r ,  i n t e r a c t i o n s between a d j a c e n t , b u l k y , R  (Pr N H G a H )  groups.  - 1,3-Di - i s o p r o p y l c y c l o g a l l a z a n e i s a mobile  l i q u i d a t room temperature  and  i s r e a d i l y sublimed.  i t s m o l e c u l a r weight corresponds  to a dimer.  In benzene s o l u t i o n  The .''"H nmr  spectrum  benzene s o l u t i o n c o n s i s t s of a s e r i e s o f d o u b l e t s i n the the spectrum  configurational  ( F i g u r e 14).  The major d o u b l e t s , D and E  in  "5"-CH^ r e g i o n of  (J ,„ or  6.3  1T  Hz)  at  HL.Cn  tr 9.14 The  and 9.15  remaining  signals  are a s s i g n e d t o the c i s - and t r a n s - i s o m e r s of the dimer.  s m a l l d o u b l e t s i n t h i s r e g i o n may  ( J J J ^ Q J 6.3  oligomers. s e p a r a t e any  Hz)  or to the presence  partly  to  Attempted f r a c t i o n a l d i s t i l l a t i o n , however, f a i l e d components and  d o u b l e t s A and B i n the spectrum  doublets decreased  to  a l l f r a c t i o n s when d i s s o l v e d i n benzene gave  r o t a t i o n of the i s o p r o p y l groups i n one  a t a s e r i e s o f temperatures  NH  of s m a l l amounts of o t h e r  s i m i l a r s p e c t r a t o t h a t shown i n F i g u r e 14.  the two  be due  was  isomer  possibility  of  restricted  l e a d i n g to b o t h the major  i n v e s t i g a t e d by o b t a i n i n g s p e c t r a  (0 - 6 0 ° ) . slightly  The  Although  the s e p a r a t i o n between  at h i g h e r temperatures  t h e r e was  no  OJ  D E  A  I  I  I  I  I  I  C  1  L.  8.86  Fig.14  8  8.89  8.93  •  '  1  I  I I I ,  44  9.14  9.32  9.15  IOO M c / s H n.m.r. s p e c t r u m of i— P r N H G a H  2  in benzene solution.  45  indication.of  a c o l l a p s e to j u s t one d o u b l e t and t h e r e f o r e  o f A and B t o c i s - and t r a n s - i s o m e r s i s The neat l i q u i d  signals  are c l e a r l y  (P^NHGaR^^ and i t s  deuterio'analogue gave  H e r e , f o r the f i r s t  the presence of i  environments f o r hydrogens on g a l l i u m atoms.  f6.34,  a d d i t i o n , the CH m u l t i p l e t  (J _ u  n u  The r e m a i n i n g d o u b l e t s , A and B,  (J  6.4 Hz)  y3-CH^ d o u b l e t s i s  course,  = J _ „ . ) , centred  at  T T  7  T  distinguished.  due to ft -CH '  groups  are  3  Again a m i x t u r e of c i s - and t r a n s - d i m e r s  ( F i g u r e 16) i s p o s t u l a t e d and i t the  a r e , of  the  HL.CH  T 8.15 and 8.32.  The  thus c o n f i r m i n g  and the broad NH resonance at T 7.94 are c l e a r l y  c e n t r e d at  the  different  These s i g n a l s  absent i n the spectrum of the d e u t e r i o - d e r i v a t i v e , In  time,  the  seen as broad resonances at tr 4.71 and 4 . 8 8 .  a r e f i e l d dependent and i n d i c a t e  assignment.  assignment  preferred.  n o v e l *H nmr s p e c t r a shown i n F i g u r e 15. GaH s i g n a l s  the  is  seen as f o r t u i t o u s  a p p r o x i m a t e l y 1:2.  the l i q u i d f o r m , which c o u l d g i v e r i s e  t h a t the r a t i o  of  The p r e s e n c e of the t r i m e r  in  to t h i s  ratio,  is  d i s c o u n t e d on  t h e mass s p e c t r a d a t a o b t a i n e d f o r the deuterio-compound, The i o n s o f h i g h m/e v a l u e s are l i s t e d p a t t e r n e x p e c t e d from the dimer  (Fr^NRGaT)^)2'  i n T a b l e 5 and c o r r e s p o n d to  (Pr^HGaD^) ^ t a k i n g i n t o  account  the  the  69 i s o t o p i c d i s t r i b u t i o n o f g a l l i u m atoms i n the m o l e c u l e s ^Ga(40%)].  [  Ga(60%),  M o l e c u l a r - i o n p e a k s , a l t h o u g h weak, o c c u r i n the mass  spectrum i n a d d i t i o n to peaks due to the more abundant i o n s which have lost  d e u t e r i u m from g a l l i u m .  The most i n t e n s e peak i n the  spectrum  o c c u r s at m/e = 44 and may c o r r e s p o n d to the propane i o n C H 0  o  +  spectrum gave no i n d i c a t i o n o f the p r e s e n c e of t r i m e r i c u n i t s , it  is  unlikely  .  The and s i n c e  f o r the dimer to be c o n v e r t e d i n t o t r i m e r i n g o i n g from  vapour to l i q u i d ,  a d i m e r i c c o n s t i t u t i o n f o r the neat compounds i s  2.84  471 4.88  6.34  60MHz 'H n.m.r. spectrum-of neat  7.94  ' 8 32  a Pr'NHGaH  and b Pr'NHGaO,  2  R  Ga  ,R  Conformations of Dim eric Gallane Species. Figure 16  predicted. s (Bu NHGaH^)^ ~ 1 , 3 - D i - s - b u t y l c y c l o g a l l a z a n e i s a m o b i l e  liquid  at  room temperature.  I t i s d i m e r i c i n benzene s o l u t i o n and i n t h i s  it  has a *H nmr spectrum which e x h i b i t s two s t r o n g d o u b l e t s ( J c a . 6.6 Hz) HCCH  at T 9.13 and 9.16 which  triplets  are a s s i g n e d to the 3 -CH^ groups i n t h e c i s - and  S i g n a l s due to the V -CH^ p r o t o n s appearj a t h i g h e r f i e l d b u t  trans-dimers. the  solvent  expected on a f i r s t - o r d e r b a s i s a r e p o o r l y r e s o l v e d .  The  nmr spectrum o f t h e neat l i q u i d showed e s s e n t i a l l y t h e same p a t t e r n as the  s o l u t i o n spectrum b u t once a g a i n , i n a d d i t i o n , the GaH s i g n a l s a r e  c l e a r l y v i s i b l e a t T 4 . 6 4 and 4.81 ( F i g u r e 1 7 ) . (Bu NHGaH ) at  - 1 , 3 - D i - i s o b u t y l c y c l o g a l l a zane i s a v i s c o u s  liquid  room temperature and i n s o l u t i o n p r o b a b l y e x i s t s as a m i x t u r e o f dimers  and t r i m e r s .  B r a n c h i n g of the hydrocarbon c h a i n o f the R group a t the  £ - c a r b o n atom p o s s i b l y reduces t h e s t e r i c i n t e r a c t i o n s u f f i c i e n t l y to b o t h dimer and t r i m e r f o r m a t i o n . ca.  Four w e l l - d e f i n e d d o u b l e t s  to l e a d .  (J  unnu  6.6 Hz) a t TT 9.27, 9.30, 9.31, and 9.38 appear i n t h e h i g h f i e l d  of  t h e ''"H nmr spectrum i n benzene s o l u t i o n at 100 MHz.  to  p  8  r o u  P  s  b  u t  no f u r t h e r assignment  These  region  are assigned  i s attempted.  (B^NHGaH^)^ - 1 , 3 - D i - t - b u t y l c y c l o g a l l a z a n e i s a w h i t e s o l i d a t room temperature, d i m e r i c i n benzene s o l u t i o n , and d i s p l a y i n g t h r e e y'S-CH^ s i g n a l s i n i t s "^H nmr spectrum i n t h i s s o l v e n t .  Two o f these s i g n a l s a r e  c l o s e t o g e t h e r a t t 8.96 and 8.97, and a t h i r d , much weaker s i g n a l , o c c u r s at h i g h e r f i e l d  ( f 9.15).  The s i g n a l s a r e a l l f i e l d  t h e r e f o r e n o t due t o c o u p l i n g . cisthe  dependent and  The major s i g n a l s a r e a s s i g n e d t o the  and t r a n s - d i m e r s , t h e t h i r d weaker s i g n a l , a c c o u n t i n g f o r c a . 5% o f t o t a l i n t e g r a l , i s p o s s i b l y due t o monomer i n s o l u t i o n .  0  >  i  l  H i I  2.84  • I I  I  I  I•I  i  i  I  I  I  i  i[ i j I  I  1  4.64 5.81  Fig.17 60Mc/s 'H n.m.r.  I  I  I  I  I  I  I  I  I  I  1  L_J  I  I  I  I  I  j  I  L  I  I  I  I , I  I  I  I  I  I I  !  1  I  I  !  I  I  L_  L_  spectrum cf neat sec-BuNHGaH 2  Hz  Table 5 Ions of high m/e in mass spectrum of (Pr NHGaD )  •  m/e  Relative Abundance  266  0.5  265  0.5  264  5.0  263  2.5  262  17.5  261  3.7  260  27.7  259  12.5  258  16.0  257  0.5  • •  44  100.0  51  I.'r. S p e c t r a o f C y c l o g a l l a z a n e s  (RNHGaH) 2 n  I . r . s p e c t r a of t h e c y c l o g a l l a z a n e s deuterio-derivatives recorded  (RNHGaH„) , and t h e i r L n  (RNHGaD„) i n some c a s e s , 2 n  i n t h e range 4000 - 250 cm  As observed p r e v i o u s l y w i t h  g a l l a n e d e r i v a t i v e s (5, 1 1 ) , t h e s t r o n g e s t  a b s o r p t i o n s were a t t r i b u t a b l e  to the Ga-H and Ga-D s t r e t c h i n g and d e f o r m a t i o n bands a r e l i s t e d  and a s s i g n e d  i n benzene s o l u t i o n were  i n Table  modes. S e l e c t e d  6 f o r the e t h y l and i s o p r o p y l d e r i -  v a t i v e s which are r e p r e s e n t a t i v e o f the t r i m e r i c and d i m e r i c respectively.  As expected on a m a s s e f f e c t  c l o s e t o 1.4.  The NH s t r e t c h i n g a b o s r p t i o n s  bands o c c u r  absorption  the r a t i o  cyclogallazanes  V ( G a - H ) / -0(Ga-D) i s  are i n t e r e s t i n g i n that  three  i n t h i s r e g i o n f o r t r i m e r i c s p e c i e s but two bands o n l y , f o r  dimeric species.  Presumably the d i f f e r e n t p o s s i b l e environments f o r the  NH u n i t i n t h e v a r i o u s  c i s - a n d . t r a n s - i s o m e r s l e a d t o the o b s e r v e d  v i b r a t i o n s but i s i s noteworthy t h a t the band a t 3280 cm ^ i n t h e e t h y l derivatives i s concentration on d i l u t i o n .  dependent, d e c r e a s i n g  Perhaps hydrogen bonding o f t h e type i n v o k e d  Brown e t a l ( 4 3 ) , t o e x p l a i n t h e i . r . at v a r i o u s  i n relative  concentrations,  intensity  r e c e n t l y by  s p e c t r a of s i m i l a r . c y c l o b o r a z a n e s  c o u l d be o p e r a t i v e , a l s o , i n these  gallium  systems. The  i.r.  were a l s o r e c o r d e d . occurred  s p e c t r a o f neat  deuterio-analogue  In each spectrum the NH s t r e t c h i n g v i b r a t i o n  as a broad band a t 3270 cm  vibrations  ( P r ^ H G a H ^ ) ^ and i t s  S i m i l a r l y , Ga-H(D) s t r e t c h i n g  appeared as broad bands a t 1875 and 1825 (1350) cm  The -1  Ga-H(D) d e f o r m a t i o n absorptions 590  cm" . 1  modes o c c u r r e d  a t 725 and 690 (510, 493) cm  and  a t t r i b u t a b l e to r i n g v i b r a t i o n s came i n the r e g i o n 540 -  Table 6 Infrared spectra of some cyclogallazane derivatives in benzene solution EtM.GaH  EtN-H.GaD  3338 w 3318 m 3280 s  3338 w 3316 m 3280 s  2  1875 vs 1825 vs 745 vs 580 s 550 s 510 m  Gall GaD  2  Assignment N-H stretch  1350 vs • 1335 vs 5 0 2 vs 496 vs  1.37'+  Ga-F.(D) stretch  1.404  Ga-H(D) defn.  Ring modes  542 s s  . 522  PrHlHGaH^  Pr NHGaD  3320  3320  m  1  2  Gall GaD  w  Assignment N-H stretch  3283 s  3283 m  1875 vs 1820 vs  1355 vs 1330 s  1.3 64  Ga-H(D) stretch  508 vs  1.465  Ga-H(D) defn.  745 vs 586 s 560 m 4-90 m  J+97 vs  Ring modes  596 s 552 s 536 m GaH GaD  Assignment  Bt^NHGaTTg  Eu KKGaD  3307 v 3208 vs  3312  1890 vs 1820 m  1318 vs  1.408  Ga-H(D) stretch  745 s  538 vs 5 2 1 vs  1.402  Ga-H(D) stretch  598 s  554 s  t  2  s 3264 s  N-H stretch  Ring modes  53  Part 2  The  r e a c t i o n o f a n i l i n e w i t h t r i m e t h y l a m i n e g a l l a n e proceeded as  indicated i n the following equation:  Me N.GaH (s) + 3  <$NH (g) - — » 4>NH.GaH .NMe (s) + H f g )  3  2  The monomeric m a t e r i a l , <^NH.GaH .NMe , g i v i n g t h e \l nmr shown i n F i g u r e 18, 2  was  somewhat unexpected  s i n c e with  3  the p r i m a r y  alkylamine r e a c t i o n s d i s -  cussed i n p a r t 1, complete e l i m i n a t i o n o f t r i m e t h y l a m i n e o c c u r r e d w i t h the p r o d u c t i o n o f a g a l l a z a n e (Ga-N) r i n g s p e c i e s . n appears  t h a t due to some e l e c t r o n withdrawing  c y c l i c g a l l a z a n e was n o t formed.  This effect  I n the p r e s e n t case i t  effect  of t h e p h e n y l r i n g a  seems t o have reduced t h e  donor p r o p e r t i e s o f t h e l o n e p a i r on t h e a n i l i n e n i t r o g e n atom, and hence prevents  c o o r d i n a t i o n t o a second  g a l l i u m and consequent r i n g  formation.  I t was b e l i e v e d t h a t i n t r o d u c t i o n o f a s t r o n g a c c e p t o r would remove t h e t r i m e t h y l a m i n e donor such  from the complex, ^NH.GaH^.NMe^, s i n c e a s t r o n g  as n i t r o g e n always p r e f e r s a s t r o n g a c c e p t o r over a weak  acceptor.  . The  •  a c c e p t o r o f c h o i c e was d i b o r a n e s i n c e i t i s b o t h a s t r o n g  a c c e p t o r and would n o t undergo any unwanted s i d e r e a c t i o n s such o c c u r i f t h e (oron t r i f l u o r i d e , BF , a c c e p t o r were used. r e a c t i o n o f diborane with the d e s i r e d g a l l a z a n e ,  However, t h e  4NH.GaH^.NMe^ r e s u l t e d , n o t i n p r o d u c t i o n o f  d)NH.GaH , b u t i n decomposition 2  hydrogen, a n i l i n e as w e l l as the expected  into gallium,  t r i m e t h y l a m i n e borane.  f o l l o w i n g sequence o f r e a c t i o n s summarizes these observations:"  as might  experimental  The ^  2.84 'Fig: 18'60Mc/s 'H n.m.r. spectrum of (J)NHGaH -NMe in benzene solution 2  3  55  Me N.GaH .NH$ 5  + 1/2B.H, L o  L  4)NHGaH  > <j>NH  2  I t seems l i k e l y  * Me.N.BH 5  +  (j^NHGaH  5  L  + Ga + 1/2H  t h a t when the ' r^NH.GaH^' i s formed i n the  r e a c t i o n , t h e donor s t r e n g t h o f t h e n i t r o g e n connected'to i s so reduced  the p h e n y l  ring  t h a t f o r m a t i o n o f a s t a b l e c y c l i c g a l l a z a n e does n o t o c c u r .  The monomeric u n i t i s e v i d e n t l y u n s t a b l e , when formed and decomposes t o its  components even below 0°C. I t was of f u r t h e r i n t e r e s t  amine i n the hope t h a t displacement  to react  ctNH.GaH^.NMe^ w i t h  methyl-  o f t r i m e t h y l a m i n e would occur and  y i e l d a n o v e l c y c l i c g a l l a z a n e on hydrogen e l i m i n a t i o n a c c o r d i n g t o t h e f o l l o w i n g sequence of r e a c t i o n s :  '(J>NH.GaH .NMe + MeNH^ 2  3  <p NH. GaH . NH Me 2  The  *• M e ^ +  <j>NH.GaH ,NH Me 2  ' $ NH. GaH. NHMe' + H  2  2  a c t u a l m i x t u r e o f p r o d u c t s o b t a i n e d was i d e n t i f i e d by nmr and i n f r a r e d  spectroscopy.  F i g u r e 19 shows the N-H s t r e t c h i n g r e g i o n f o r each o f  a n i l i n e and m e t h y l - g a l l a z a n e be n o t e d  as w e l l as the r e a c t i o n m i x t u r e .  I t should  t h a t t h e two upper s p e c t r a combine to g i v e the lower  Hence, a l t h o u g h t r i m e t h y l a m i n e was d i s p l a c e d as expected, of a n i l i n e and p r o d u c t i o n o f t h e f a m i l i a r  spectrum.  the e l i m i n a t i o n  (MeNH.GaH,^)^ t r i m e r occur as  follows: Me N.GaH .NH<$> 3  2  + MeNH  £  +  t}>NH+ 1/3[MeNH.GaH ] 2  2  Fig. 19  Infrared spectra of: a aniline; b MeNHGaH ; 2  ,c  aniline & MeNHGaH  2  57  The p r o d u c t s were i d e n t i f i e d  a l s o b y means o f  their  characteristic  "*"H nmr  spectra. It transfer.  was  The  illustrated  of  interest  to  then e s t a b l i s h  two m o s t p r o b a b l e m e c h a n i s m s  the mechanism of  for  this  transfer  hydrogen  are  below: H  H  H  0 - N - — - G a - NMe H  —>  0NH  2  + GaH  .NHMe  H  H  B.  0-N*3-GaH  t  I Me In  the  first  from the  mechanism, the  gallium.  formed w i t h  5NHMe  In  the  of-, t h e  The d e u t e r a t e d  did not  Ga-H s t r e t c h  for  route  products.  actual  aniline  the  mode o f  the  proton  display  compound,  gallazane, It  either thus  therefore  transfer.  to  the  centre  aniline  the  2  The  infrared for  spectrum  aniline  e l i m i n a t i n g m e c h a n i s m A as likely  is  <> f NH. G a D .NMe^ was  a N-D s t r e t c h  seems  comes  intermediate  p r o d u c t i o n coming from  p r e p a r e d and r e a c t e d w i t h m e t h y l a m i n e .  products  to  transfers  second mechanism a f o u r  t h e h y d r o g e n atom f o r  methylamine n i t r o g e n . therefore  proton which  or a  a  possible  t h a t mechanism B i s  the  58  Part 3  Imino.Gallazanes  The with  r e a c t i o n of a z i r i d i n e , a z e t i d i n e , p y r r o l i d i n e and  piperidine  t r i m e t h y l a m i n e g a l l a n e y i e l d s compounds of. the type [ (CR^^NGaH^ ]  where x = 2, 3, 4 or 5;  f o l l o w i n g e l i m i n a t i o n of m o l a r e q u i v a l e n t s  of  i  hydrogen and  trimethylamine.  C r y o s c o p i c measurements on  benzene s o l u t i o n s i n d i c a t e t h a t a l l t h e s e m a t e r i a l s  centrifuged  arej d i m e r i c ( T a b l e  2)  i n benzene. R e c e n t l y , however, an x - r a y c r y s t a l l o g r a p h i c s t u d y (45) on s i n g l e c r y s t a l of a z i r i d i n o g a l l a z a n e produced by 5 - 7 cm  of n i t r o g e n  C-C  The  under about  p r e s s u r e , r e s u l t e d i n the c h a r a c t e r i z a t i o n of  compound as a t r i m e r i n w h i c h the (Figure 20).  sublimation  (Ga-N)^ r i n g . i s i n the c h a i r  mean dimensions, found were Ga-N  1.55A; N-Ga-N = 1 0 0 ° , Ga-N-Ga = 121,  1.97,  N-C  a  this  conformation  1.54,  Ga-N-C = 1 1 6 ° ; w h i l e the  angles  i n the t h r e e membered r i n g s were c l o s e t o 6 0 ° . T h i s s t r u c t u r e , a l t h o u g h c o n f i r m i n g the p r e d i c t i o n s c o n c e r n i n g the c o n f i g u r a t i o n  of the  (Ga-N)  i n part 1  r i n g , i s somewhat unexpected  i n v i e w o f the c r y o s c o p i c m o l e c u l a r w e i g h t i n benzene s o l u t i o n . r e s o l u t i o n o f t h i s apparent dilemma c o u l d be I t has  the  The  following.  been found t h a t f r e s h l y d i s s o l v e d samples of a z i r i d i n o  g a l l a n e , w h e t h e r f r e s h l y p r e p a r e d o r n o t , g i v e degrees of a s s o c i a t i o n 2.55  t o 2.65.  Samples d i s s o l v e d  a degree o f a s s o c i a t i o n of 2.00.  i n benzene and  stored  f o r a few  of  days g i v e  S i n c e the s o l i d i s t r i m e r i c , i t would  seem t h a t the c r y o s c o p i c r e s u l t s i n d i c a t e the g r a d u a l f o r m a t i o n of dimer i n the benzene s o l v e n t . of i n s o l u b l e m a t e r i a l was  I t was  a l s o o b s e r v e d t h a t a s i g n i f i c a n t amount  formed on d i s s o l v i n g the  mechanism seems p l a u s i b l e :  solid.  The  following  C1'  C1 S t r u c t u r e of A z i r i d i n o Gallazane  Figure 20  60  (Azir GaH ) 2  (Azir G a H ^ + (Azir'GaH )  3  ( A z i r GaH ) 2 x Thus the t r i m e r g i v e s u n s t a b l e monomer w h i c h p o l y m e r i z e s , l e a v i n g t h e dimer i n s o l u t i o n .  A n o t h e r p o s s i b l e mechanism appears to be  the  following: (Azir GaH ) 2  (Azir  GaH ) 2  2  3  ( A z i r GaH ) 2 x n  where two competing rearrangements  o c c u r , one g i v i n g p o l y m e r , the  other  dimer. If necessarily  the degree of a s s o c i a t i o n of g a l l a z a n e s i n benzene i s n o t an i n d i c a t i o n of the a s s o c i a t i o n i n the s o l i d o r n e a t  liquid  p h a s e , p o s s i b l y the n e a t nmr s p e c t r u m of i s o p r o p y l a m i n o g a l l a z a n e  (Figure  15)  c o u l d be a l s o r a t i o n a l i z e d i n terms of a t r a n s t r i m e r c o n f i g u r a t i o n , i n agreement w i t h the o b s e r v e d i n t e n s i t y r a t i o o f 2 : 1  f o r the . |3.-CH  proton  signals. The nmr s p e c t r u m of a z i r i d i n o g a l l a z a n e  ( F i g u r e 21)  shows o n l y  a sharp s i n g l e t , i n d i c a t i n g a s i n g l e i s o m e r i c c o n s t i t u t i o n w h i c h  is  e x p e c t e d on the b a s i s of a p l a n a r ( G a N )  equivalent.  2  r i n g w i t h a l l hydrogens  F i g u r e 22 shows the ^"H nmr s p e c t r u m of d i m e r i c a z e t i d i n o g a l l a z a n e , w i t h i n t e g r a l s of the two a r e a s of resonance i n the r a t i o 2:1. (GaN)  of  The s p l i t t i n g o b s e r v e d i s t h a t e x p e c t e d on the b a s i s of a p l a n a r 2  r i n g , a t r i p l e t f o r the f o u r  /3 p r o t o n s .  c< p r o t o n s and a q u i n t e t f o r the two  1 i  500  1 '  1  1  1  1 ' 1 1  1  1 1 i '  .  '  1  I  1  400  1 1 ' 1 1  1 1  1  1  1 • 1 1  1  |  1 1 I 1 | i 1 i. 1 1 1  1  300  1  I I I !  '  I  l  1 l  '  200  • i  1  1  1 1  1  [ I I I  1 1  1  100  11  1  1  1. 1 i  I- i  i  i  1  1  i  r  i ) Hz >-H>  J  L  I  I  I  I  J  I  I  I  L  I  l  I  I  I  I  _I_J  L  I  I  I  2.84 ... 8.44 Fig.21 60Mc/s H n.m.r. spectrum of (CHANGahL in benzene solution  J  L  <4>  F i g u r e s 23 gallazane  and  (integration  p r o t o n s ) and  evidence of  of 1:1  piperidino  proton m u l t i p l e t s ) .  24  The  show the  H nmr  spectra  as expected f o r the  gallazane latter  (integration  two  complicated spin-spin  spectra  of  are no  interaction.  of  four 4:6  pyrrolidino oc and for  f o u r (3  ©C : f$ + o~  longer simple, with  1  I I  '  1  500  1  1  1 • 1  1  1  1 1  1 1  1 1  1  I I  1  1i 11 1 1  400  1  I  I I ! I. 1 1 I 1  1 I  )0  3(  1  1 '  1 1 1 1 1  1  1 1  1  1  1  i  1 1 11 » 1 200  1 1  1  i  I-  1  1 1  1 1  1  III  100 1  1  1  1  1  1  1 1  j 1  1 1  c ) ~ H >  1 I I  I I •I-I  1  1  1 1  1 1  I I  i  500  2.84  \  1  1  l  |  I I 1  400  II  1  1  1 1 i | II 1. | | 1 i 1 I 1. 300  I  I  II  • 1  1 1  i ;1  1  1  200  i  i  !  1  !  1 1  1  1 I i i  100 1  1  1  1  1  1 1  1  1 1  712  Fig.24 60Mc/s 'H n.m.r. spectrum of (CH ) NGaH 2 B  i  2  8.76  in benzene solution  1  1 I  1  1  I  i  Q  Hz  66  P a r t 4 Imino  Alazanes  The r e a c t i o n between e t h y l e n i m i n e ( a z i r i d i n e ) and b i s t r i m e t h y l amine a l a n e was did  f i r s t a t t e m p t e d i n 1962 by M a r c o n i ( 1 9 ) .  These w o r k e r s  n o t i s o l a t e the a z i r i d i n o a l a z a n e p r o d u c t . A more r e c e n t d i s c u s s i o n of t h i s r e a c t i o n p r o d u c t (20) s u g g e s t s  t h a t r i n g o p e n i n g o f t h e a z i r i d i n e r i n g o c c u r s on s o l v e n t removal y i e l d i n g an average degree o f a s s o c i a t i o n o f n = 10.  The p r o d u c t p r e p a r e d i n t h i s s t u d y gave i n i t i a l l y the nmr spectrum of f i g u r e  25.  S i n c e t h i s spectrum c o n t a i n s a h i g h f i e l d t r i p l e t of  and e v i d e n c e  a l o w e r f i e l d q u a r t e t t h e p r e v i o u s f o r m u l a t i o n (20) of r i n g o p e n i n g t o  g i v e e t h y l groups seems f a i r l y hours l a t e r triplet  conclusive.  ( F i g u r e 26) showed an i n c r e a s e d i n t e n s i t y o f the h i g h  field  w i t h r e s p e c t , t o the b r o a d s i n g l e t f o r t h e a z i r i d i n e r i n g s .  f o l l o w i n g d a y , a f t e r s t o r a g e a t +5°CJ) the  However, the s p e c t r u m a few  high f i e l d t r i p l e t  The  :., the nmr spectrum showed  t o be even more i n t e n s e t h a n p r e v i o u s l y .  These  r e s u l t s i n d i c a t e t h a t r i n g o p e n i n g o c c u r s at a f a i r l y s t e a d y r a t e a t o  o  5 - 25 C. Al-  H„  The i n i t i a l aluminum t o a c t i v e hydrogen r a t i o was  found t o be  w h i l e the a n a l y s i s o f the same p r o d u c t l e f t a t room  t e m p e r a t u r e f o r t h r e e days under d r y n i t r o g e n was  found t o be A l ^ Q Q H^  These r e s u l t s i n d i c a t e t h a t i n the l i m i t , complete a z i r i d i n e r i n g o p e n i n g c o u l d o c c u r t o g i v e a l l N - e t h y l groups i n an i n s o l u b l e p o l y m e r i c p r o d u c t . I t was  o f i n t e r e s t t o see what t h e degree of a s s o c i a t i o n would  »  be i f r i n g o p e n i n g c o u l d be h e l d t o a minimum.  Thus the degree o f  a s s o c i a t i o n o f f r e s h l y p r e p a r e d a z i r i d i n o a l a z a n e was d e t e r m i n e d i n  1  1  1 1 1 1 1 1 1 . 1 . 1 1 1 1 500 . 1  1 1  1  1 400  1 1 I I  1 M  1 1 1 | | l 1  1  3C )0  Fig.25 6.0M.C/S 'H n.m.r. spectrum  I  I I I  1  1  |  1  1  1 1 |  I  1  of (CH ) NAIH 2  |  1 1 1 1 200  2  1 1  1 1  1  I I I-I  1  1  1 1  1 I 1 100 I  1  in benzene'solution  1 1  1 1  1  1  1  I I  1 ) Hz  Fig.26 60Mc/s 'H n.m.r. spectrum of (CH ) NAIH 2 2  2  in benzene solution .  0  , 0  w  69  benzene s o l u t i o n w i t h a minimum of d e l a y . a minimum v a l u e o f n = 4.2  whilst  These r e s u l t s suggest r i n g opening  a co-worker was  a s s o c i a t i o n i n view of the r e s u l t s product  a b l e to o b t a i n  a b l e to o b t a i n n =  t h a t the degree of a s s o c i a t i o n  s e t s i n , i s l i k e l y n = 3.  The  T h i s worker was  T h i s i s . t h e expected  before  degree of  f o r the o t h e r a l a z a n e s of t a b l e  from the r e a c t i o n of the b i s t r i m e t h y l a m i n e  w i t h a z e t i d i n e d i d not  3.14.  3. alane  g i v e up a l l i t s t r i m e t h y l a m i n e , some of which  remained c o o r d i n a t e d t o i t ( F i g u r e 27).  Pumping at 0°C  removed most of  this  of F i g u r e 28.  The  trimethylamine  r a t i o i s 2:1  to g i v e the spectrum  f o r the or: <5 p r o t o n s .  w i t h the f o r m u l a t i o n of t h i s Similarly shows two  t o be m a i n l y  resulting The nmr of 6:4  = 7.10  from  Tr = 8.61  I t appears and  T  = 8.50.  dimer i n benzene s o l u t i o n  and  requirements  compound shows two  at  = 7.18  One The  resonance  is  piperidino  (n = 2.17)  resonances  alazane  possibly  o f the p i p e r i d i n o  respectively.  alazane  i n the  ring. ratio  These correspond  to  resonances. t h a t t r i m e r i c s p e c i e s are common w i t h the  imino  i n t h i s r e s p e c t they d i f f e r from the d i m e r i c imino g a l l a z a n e s .  S i n c e t h e bond l e n g t h s o f Al-N and the r e a s o n  of t r i m e r i c p y r r o l i d i n o  i n the r a t i o of 1:1.  the o t h e r at  for this  (&+ T~ and o< p r o t o n  alazanes  spectrum  the l a r g e r s t e r i c  spectrum at  and  The m o l e c u l a r weight i s c o n s i s t e n t  compound as a t r i m e r .  nmr  areas of resonance  centred at 1 appears  the H 'i  integration  Ga-N  are known to be  almost  f o r t h i s d i f f e r e n c e p r o b a b l y l i e s more i n the n a t u r e  identical, of the  r e a c t i o n i n t e r m e d i a t e l e a d i n g to these s p e c i e s than i n s t e r i c o r o t h e r effects.  P o s s i b l y t h i s d i f f e r e n c e i s due  aluminum can go 5 - c o o r d i n a t e  i n the i n t e r m e d i a t e , but t h i s i s h i g h l y  s p e c u l a t i v e as no mechanism u t i l i z i n g been demonstrated.  to the r e l a t i v e ease w i t h which  a 5-coordinate  aluminum has  actually  785 792 6.46 2.84 Fiq.27 60Mc/s *H n.m.r. spectrum of (CH ) NAIH in benzene solution Fig 2 3  2  72  Part 5  Imino Borazanes  The are d i m e r i c  f a c t t h a t a z e t i d i n o , p i p e r i d i n o and p y r r o l i d i n o borazane  i n benzene i s not  s u r p r i s i n g since boron-nitrogen  g e n e r a l l y p r e f e r a monomeric or d i m e r i c The Figures  29,  nmr  s p e c t r a of these three  30 and  31 and  these compounds as having single isomeric The  gave the nmr The  (B-N)^ r i n g s and  in  the f o r m u l a t i o n  of  c o n t a i n i n g each a  form. the method of A k e r f e l d t  f o r the a z i r i d i n o r i n g hydrogen i n agreement w i t h  (18)  (Figure 32).  The  adduct, p r e p a r e d by  spectrum of f i g u r e 33 i n agreement w i t h  a z i r i d i n o borazane has  remaining members of t h i s c o n s t i t u t i o n may compound.  are a l l i n agreement w i t h planar  trimer.  compounds are g i v e n  a z i r i d i n o borazane p r e p a r e d by  gave a s i n g l e t literature  s t a t e to that of  systems  be  The  the l i t e r a t u r e  reasons f o r t h i s  a r e s u l t of the p r e p a r a t i v e  the  the Burg method  a t r i m e r i c c o n s t i t u t i o n i n c o n t r a s t to series.  (17)  (14)  (18).  the  different  r o u t e used to o b t a i n  the  i  I I |  i  500  2.84  f |  ;••i ' i  i  i  I 1 " 1  |  1  i i  i  400  i  1  1  i  i  i  1 i  i.l  1 1 11  1 1 1 |  M  1 .  DO 3(  M  i  l  I  l  1  1  > 1  M I M 1 200  762  1 1 11 M  M  1 1 1 1 | 1  1  |  |  1  1  100 I  1 1  1  1 1  1  i1  8.33  Fig;29 60Mc/s 'H n.m.r. spectrum of (CH ) NBH in benzene solution 2 3  2  CO  I ) Hz  f  ! • 1  1  1 500  i  1  [  i  I 1  i  i  | I I  i  i  i  i  i  1—1—|  400  1  i  1  i  ! •i  i  1  1  1  i  I  |  i  i  i i  i  l  l 1  1  '  —i—i—r i |  Hr  3( 30  1  i  |  i  i .i • 1  I  i 1  I  i  |  1  i  '  I 200  Fig.30 60.Mc/s 'H n.m.r. spectrum of ( C H ) N B H j 2  4  2  n  1  1  1  1  I  I 1  1  I I I !  i  i 100  I  I ri i  benzene solution  1  1  1  1 7 I I I ! i  0  -4  Hz  1  1  1 1 1 '  1  1  1 1  1  500  t  1 1 |  i  1  1  i  - -1  1  1  1! I  1 1  i  1  1 1  1  1  1 1  I  i  |  400  1 1  1 I  1  1 1  1  1  1 1 •. 1 1 | 1 1 1 i. I | l 1 I i ! 1 300  I  i  I  1  1 1  11  I  I  1 1  1  1 1  1  I  1 | I i 1 1 1 1 I 200  ) 1  1  I  1  1  1  1  1  [ l|  ! 1 1 1  1 1  1  1  1  1l  1  1  1  1l  l  1 II  i  I 1 I  1  I I I 1  1 1 100 l  1  M  1  1  i  1  2.84 . 746 8.69 Fig.31 60Mc/s 'H n.m.r. spectrum of ((5hOft3H9 in benzene solution  | 1  1  1  1  1  I-  i  1 I  i 1 I 0  l  1  1  i  I I I !  I l l ;  1 Hi  !  ~ i — r  i  1 1  400  300  1  1  1  i  1 i 1 1 200  1  I 1 I  1  1  ! 1  l 1 1 1 ' I M ' 10Q 1  I  1  i  i  1  ! i . 1  !  j  "  I i O H  s  J  L  J__L  .1.  Fig.32 60I\/Sc/s 'H n.m.r. spectrum of  . .  I  L_  l__l_L± I I ! I I  !  I  9.63 (CK,). N* B H  !  in benzene solution  I I I !  Part 6  R e a c t i o n s of Imine Bases w i t h EMe  E = B, A l , Ga, In  R e a c t i o n o f EMe^ w i t h a z i r i d i n e gave, on methane compounds which were t r i m e r i c  i n benzene s o l u t i o n .  analogues p r e v i o u s l y p r e p a r e d were t r i m e r i c  f i n a l degree o f a s s o c i a t i o n The  S i n c e the h y d r i d o  as w e l l ,  t h a t t h e groups about t h e E atom have l i t t l e  effect  this result  o f t h e complexes s t u d i e d h e r e .  compound Ke^B^(CE^)^  was n o t i s o l a t e d ,  as t h e h i g h from the adduct  cause p o l y m e r i z a t i o n . The  nmr s p e c t r a o f the two s t a b l e  adducts Me^BNR^CH^^  ( F i g u r e 34) and Me^GaNH(CH^)^ ( F i g u r e 35) a r e c h a r a c t e r i s t i c different.  the  at low f i e l d  - probably the r e s u l t  f a s t exchange r e a c t i o n s i n s o l u t i o n .  of nitrogen  The h i g h e r f i e l d  resonance o f t h e boron methyl p r o t o n s .  The a z i r i d i n e  not  T h i s complex s p l i t t i n g  o n l y p r i m a r y but a l s o  ring  into a  ) . p r o d u c t s had s i m p l e and v e r y  These s p e c t r a c o n s i s t e d o f a lower f i e l d  f o r t h e a z i r i d i n o p r o t o n s and a high, f i e l d groups o f t h e E atoms.  protons  i s b e l i e v e d t o be the r e s u l t o f  t h r e e methane e l i m i n a t i o n  s i m i l a r nmr s p e c t r a .  inversion  second o r d e r magnetic c o u p l i n g of t h e hydrogen  nuclei- on t h e a z i r i d i n e r i n g , . The  rise  singlet i s  of t h e g a l l i u m adduct, on t h e o t h e r hand, appear to be s p l i t multiplet.  but very  The a z i r i d i n e r i n g p r o t o n s o f the b o r o n compound g i v e  to a s i n g l e t or  suggests  i n determining the  temperatures n e c e s s a r y t o a c h i e v e methane e l i m i n a t i o n also  elimination,  singlet  singlet  f o r the methyl  •  r r — " i. •  500  r i  T  1 j  1  ! !  i  '  r r  > 1  ': • i' i  400 1  !  1  ••I"' T I 1  1 i ' i i  1  ( 1  1 -1 1  300  1 '  1  Fig.33 6.0 Mc/s 'H n.m.r. spectrum of  1  I i  1  i  i  1  I  1  1 1 1  1 1  200  1 1 1 I ' i 1 1 !  1  H B-NH(CH ) 3  2 2  | |  1. 1  i  |  1  100'  !  ! |  I  1 i  1  I-  in benzene solution  I i  1 • 1  c  ii i  2.84  Fig.34 60Mc/s 'H n.m.r.  spectrum of Me B-NH(CH ) 3  2 2  in benzene solution  CO  Bz  2.84 Fig.35 60Mc/s 'hTnmr. spectrum of Me Ga-NH(CH ) 3  2 2  10.46 in benzene solution  81  REFERENCES 1. N. N. Greenwood, A. Storr, and M. G. H. Vallbridge, J. Chem. Soc, 249 2.  E. Wiberg et. a l . , Z. Anorg. Chem,, 2 J 1 , 114  3. B..Siegel, J. Chem. Ed., 3 8 ,  496  (1943).  (l96l).  4. N. N. Greenwood, and M. G. H. Wallhridge, J. Chem. Soc, 3 9 1 2 5.  (1962)  N. N. Greenwood and A. Storr, J. Chem. Soc, 3426  (1963).  (1965).  6. H. Bretsacher and B. Sifigel. JACS, 87, 4255 (1967). 7.  A. E. Finholt, A. C. Bond, and H. I. Schlesinger, JACS,  8. E. V/iberg and H. Noth, F. Naturforsch, 9.  63  E. V/iberg and H. Heule, ibid, 126, 5 7 6  69,  1199  (1947)  (1957)  (1952).  1 0 . N. N. Greenwood, New Pathways in Inorganic Chemistry, Camb. U. Press, 1968, P37. 11. 12.  -N. N. Greenwood, A. Storr and M. G. H. Vallbridge, Inorg. Chem., 2 , N. N. Greenwood, E. J. F. Ross, and A. Storr, J. Chem.; Soc.-(A),  13. A. Storr, J. Chem. Soc.(A),  2605  S. Akerfeldt et. a l . , Acta Chem. Scand.,  16. H. Ringertz, Acta Chem. Scand.,  706  (1963)  (1966).  (1968)  14. A. B. Burg and C. D-. Good, J. Inorg. Nucl. Chem., 2, 2 3 7 15.  1036  23,  137  23,  115  (1956)  (1969)  (1969)  •17. S. Akerfeldt and TI. Hellstrom, Acta Chem. .Scand., 20, 1418 18. R. L. Williams, Acta Chem. Scand., 23, 149 19.  W. Marconi et. a l . , Gazz. Chim.Ital.,  20.  R. Ehrlich et. a l . , Inorg. Chem., 628  (1966)  (1969)  9 2 , 1062  (1962)  (1964)  2 1 . E . J . F. Ross.,Ph. D. Thesis, 1965, University of Newcastle-T.Tpon-Tyne  22. "Handbook of Chemistry and Physics" 4 9 th ed. Chemical Rubber Co., Cleveland, 1 9 6 8 .  23. N. N. Greenwood and K. Wade., J. Chem. Soc, 1527 (1956) 24. H. Wenker, JACS, 57, 2328 (1935) 25. P. Leighton et. a l . , JACS, 69, 1540 (1947) 26. W. Reves et. al.,JACS 73, 3522 (1951) 27. P. Leighton et. a l . , JACS, 75, 2505.(1953)  •' • -^.iW  \\-:.-\. ;:,Mfe  28. J). G. Gains and L. Schaeffer, JACS, 85; 395 (1963) 29. J. K. Ruff and K. F. hawthorne, JACS, 82, 2141 (i960) 30. F. G. A. Stone, Chem. Rev., 58, 101 (1958) 31. B. Allred and F. Rochow, J. Inorg. Nucl. Chem., j>, 264 (1958) 32. 0. T. Beachley and G. E. Coates, JCS, 591 (1965) 33. M. P. Brown, R. V/. Heseltine and L. H. Sutcliffe, J. Chem. Soc (A),6l2 (1968) 34. J. L. Atwood and G. D. Stucky, JACS, 92, 285 (1970) 35. G. E. Coates and K. V/ade Organometallic Compounds: Methuen, London 1967 vol. 1., p 307 36. E. Campaigne, II. F. Chamberlain, and B. E. Edwards, JOC, 27, 135 (1962) 37. A. Segre and.J. Musher, JACS, 89, 706 (1962) 38. J. L. Jungnickel and C. A. Rielly, Nuclear Magnetic Resonance i n Chemistry, ed. B. Pesce, Acad. Press, 1965, P 83 39. N. Ti. Greenwood, E. J. F. Ross and A . Storr, JCS (A), 706 (1966) '40. N. N. Greenwood, E. J. F. Ross and A. Storr, JCS, 1400 (1965). 41. T. N. Marfulis and M. Fisher, JACS, 89, 223 (196?) •4.2.. E. Adman and T. N. Margulis,. JACS, 90, 4.517 (I968) 43. M. P. Brown, R. V/. Heseltine, P. A. Smith, and P, J. Walker, JCS (A), 410 (1970 44. P. L. Corio, J. Chem. Ed., 46, 345 (1969) 45. W. Harrison, A. Storr and J. Trotter, Chem. Comm., submitted for publication.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0061858/manifest

Comment

Related Items